Strength of materials, Fifth edition by RK Rajput PDF free download

RK Rajput Strength of materials, Fifth edition PDF, was published in 2015 and uploaded for 300-level Engineering students of Federal University of Technology, Owerri (FUTO), offering ENG305 course. This ebook can be downloaded for FREE online on this page.

Strength of materials, Fifth edition ebook can be used to learn stress, strain, centroid, inertia, bending moment, shear force, deflection of beams, fixed beam, continous beam, thin shells, joint, shafts, spring, column, struts.

Technical Details
Updated at:
Size: 29.91 MB
Number of points needed for download: 45
Number of downloads: 443

Books related to Strength of materials, Fifth edition

Strength of Material, Second Edition

Author: SS Rattan

School: Bayero University, Kano

Department: Engineering

Course Code: CIV3308

Topics: Simple stress, simple strain, Shear stress, Saint-Venant's principle, Stress, strain, Modulus of elasticity, Modulus of Rigidity, Bar elongation, Superposition principle, Tapering section Bars, Elongation due to self-weight, Uniform strength column, Statically indeterminate systems, Temperature stresses, Shrinking on, Strain analysis, Tensile test diagram, Elastic constants, Three-Dimensional stress systems, Compound stress, compound stress, Principal stresses, Maximum shear stresses, Mohr's Stress cycle, Three coplanar stress, Ellipse of Stress, Strain Analysis, Principal Strain, Principal shear strain, Mohr's Strain cycle, Strain Energy, Shear force, Bending moment, Supports types, Bending stress in beams, Simple bending theory, Moment of inertia, Flitched beams, composite beams, Unsymmetrical bending, Ellipse of inertia, Shear stress in beams, Shear stress variation, Built-up beams, Shear centre, Deflection, Beam differential equation, Deflection at a point, Macaulay's method, Moment-Area method, Strain energy due to bending, Castigliano's First theorem, Deflection by castigliano's Theorem, Impact loading on beams, conjugate beam method, Betti's reciprocal deflections theorem, Maxwell's Reciprocal Deflection theorem, Fixed beams, Continuous beams, Fixidity Effects, Clapeyron's three moment equation, Torsion, Springs, Columns, Struts, Failure Theories, Plastic bending, Plane frame structures, Materials properties, Materials testing, Tensile testing, Compression testing, Torsion testing, Hardness testing, Impact testing, Fatigue testing

Applied Strength of Materials, 6th Edition

Author: Robert Mott, Joseph Untener

School: Bayero University, Kano

Department: Engineering

Course Code: CIV3308

Topics: Direct Normal stress, stress, strain, Direct shear stress, Screw Threads, Experimental stress analysis, Computational stress analysis, Fundamental of statics, Materials design properties, Properties of steel, Properties of Cast Iron, Properties of Aluminum, Wood, Concrete, Plastics, Composites, Direct stress, Deformation, Computing design stress, Thermal stress, Bearing stress, Design bearing stress, Twisting, Elastic Torsional Deformation, Torsion, Beam loading, Beams supports, Beam types, Supports reactions, Centroids, Complex shapes centroid, Radius of Gyration, section modulus, Flexure formula, General shear formula, Special shear formulas, Shear flow, Beams deflection, combined stress, Columns, Slenderness Ratio, Buckling formula, Pressure vessels, Bolted connections design, Rivet joints, Eccentrically loaded riveted joints, Eccentrically loaded Bolted joints

Design of Structural Elements

Author: WMC McKenzie

School: Bayero University, Kano

Department: Engineering

Course Code: CIV3307

Topics: Structural elements design, Structural Analysis Techniques, Shear Force, Bending moment, Shear force diagram, Bending moment diagram, Deflection of Beams, Elastic Shear stress distribution, Elastic Bending stress distribution, Transformed sections, Moment distribution, Bending stiffness, Rotational Stiffness, Carry-over moment, Pinned End, Free Moments, Fixed bending moments, Distribution Factors, Design Philosophies, Permissible stress Design, Load Factor Design, Limit State Design, Design codes, Eurocodes, National Annex, Structural Loading, Dead loads, Imposed loads, Imposed roof loads, Floor load distribution, Load distribution, Structural Instability, Overall Stability, Robustness, Reinforced concrete Element's Design, Structural Steelwork Elements' Design, Structural Timber Elements' Design.

Bending moment and Shear Force

Author: ENG305

School: Federal University of Technology, Owerri

Department: Engineering

Course Code: ENG305

Topics: Computation of reactions, Computation of forces and moments, bending moment and shear force, bending moment diagram, beams of composite cross section

Properties and strength Of Materials

Author: Muhannad Zedan

School: Bayero University, Kano

Department: Engineering

Course Code: CIV3308

Topics: strength Of Materials, Simple stress, simple strain, Elastic materials, Hooke's law, Modulus of elasticity, Young's modulus, Brittle materials, Poisson's ratio, Shear stress, Modulus of rigidity, Double shear, Temperature stresses, Compound bar, Cantilever beams, Simple beams, Shear force, bending moment, Shear force diagram, bending moment diagram, Torsion, Crystalline structure, Metals crystalline structure, Atomic bonding, crystal structure, Body-centered cubic structure, Face-centered cubic structure, Hexagonal close-packed structure, grain structure, grain boundary, polymorphism, Slope of beams, deflection of beams, Fatigue, creep, Fracture, Creep test, Fracture mechanics, Linear fracture mechanics, Griffith's fracture criterion

Introduction to strength of materials, fourth edition

Author: RK Bansal

School: Federal University of Technology, Owerri

Department: Engineering

Course Code: ENG305

Topics: stress, strain, elastic constant, strain energy, shear force bending moment, center of gravity, moment of inertia, bending stress, deflection of beam, dam, deflection of cantilever

Strength of materials

Author: Barry dupen

School: University of Benin

Department: Engineering

Course Code: CVE211

Topics: Strength of materials, stress, strain, Poisson's ratio, thermal expansion, shear stress, thermal stress, pressure vessels, stress concetrations, Thin-Walled Pressure Vessels, Bolted Welded Joints, Welded Joints, centroid, centroidal area, Radius of Gyration, Beam Reactions, Shear Diagrams, Moment Diagrams, Beam Deflection, beam design, Combined Stresses, Eccentric Loading, Buckling of Columns, columns, steel machine parts, Mohr's Circle

Advanced Structural Mechanics

Author: David Johnson

School: Bayero University, Kano

Department: Engineering

Course Code: CIV5304

Topics: Structural Mechanics, Elasticity, Elasticity theory, Stress, Displacements, strains, Plane stress, Stress function solution, Finite element method, Triangular element theory, concrete cube analysis, Finite element types, Eight-nodded isoperimetric element, Assessment of solution accuracy, Plain strain, Torsion, Torsion behavior, Solid sections, Circular sections, Non-circular sections, Finite difference solutions, solution comparison methods, solid sections properties, Thin-walled sections, singly closed sections, open sections, Plates, slabs, Beam analogy, Grid analogy, Poisson's ratio effect, Elastic plate theory, Moments, curvatures, Equilibrium, General elastic plate equation, Boundary conditions, Thin shells, Axisymmetric shells Membrane theory, Circular cylindrical shells bending, Structural dynamics, Vibration Types, Free, undamped vibration, Free, damped vibration, Forced, damped vibration, Beams Analysis

Applied mechanics, 3rd edition

Author: Hannah, MJ Hillier

School: Federal University, Oye-Ekiti

Department: Engineering

Course Code: MEE203

Topics: Applied mechanics, statics, mass, force, weight, couple, frameworks, friction, square-threaded screw, tribology, average speed, constant speed, velocity, free falling bodies, inertia, Variable forces, Periodic Motion, Simple harmonic motion, Car wheel balancing, Periodic time, simple pendulum, resonance, Angular acceleration, Centripetal acceleration, Centripetal force, Centrifugal force, Dynamic instability, balancing, static balance, dynamic balance, springs, energy, kinetic energy, potential energy, impulse, momentum, Impulsive forces, Inelastic collisions, aircraft, rockets, Reaction propulsion, Jet propulsion aircraft, Helicopters, Rocket propulsion, thrust, Ductile metals, metal, alloy, Shear Force, Bending Moment, Bending moment diagram, Poisson's ratio, stress, strain, Strain energy, Combined loading, Combined Bending, Direct Stress, fluid, pressure, Experimental Errors, discrepancy, error

Prestressed Concrete A Fundamental Approach, Fifth edition

Author: Edward Nawy

School: Federal University of Technology, Owerri

Department: Engineering

Course Code: STE509

Topics: fiber stress, stress-strain curve of concrete, creep, shrinkage, nonprestressing reinforcement, ACI Maximum permissible stress, AASHTO maximum permissible stress, circular prestressing, elastic shortening of concrete, steel stress relaxation, creep loss, shrinkage loss, anchorage-seating loss, service-load design, composite beam, ultimate-strength flexural design, shear strength, torsional strength, web-shear reinforcement, dowel reinforcement, torsional behavior, indeterminate frame, indeterminate portal, camber, deflection, crack control, prestressed compression, tension member, LRFD, seismic shear

Reinforced Concrete Design To Eurocode 2

Author: Bill Mosley, John Bungey, Ray Hulse

School: Bayero University, Kano

Department: Engineering

Course Code: CIV3307

Topics: Reinforced Concrete Design, Design processes, composite action, stress-strain relations, shrinkage, thermal movement, creep, materials specification, Limit state design, Characteristics material strengths, Combination of actions, Load combinations, Beams analysis, Frames Analysis, Shear wall structures resisting horizontal loads, Moments redistribution, Rectangular-parabolic stress block, Triangular stress block, Shear, bond, Torsion, Anchorage bond, span-effective depth ratio, deflection calculation, flexural cracking, Thermal cracking, Shrinkage cracking, Reinforced concrete beams design, Reinforced concrete slabs design, Column design, column classification, slender column design, Foundations design, Retaining walls design, Prestressed concrete, Water-retaining structures, composite construction, Footings, Reinforcement details, Shear connector design

Applied Mechanics ,3rd edition

Author: Hannah, MJ Hillier

School: Federal University of Agriculture, Abeokuta

Department: Science and Technology

Course Code: PHS105

Topics: mechanics, traingle of forces, couple, free body diagram, velocity, acceleration, friction, periodic motion, simple harmonic motion, periodic time, resonance, inertia, force, weight, inertia force, angular acceleration, balancing, work, energy, power, impulse, momentum, aircraft, rockets, direct stress, direct strain, shear stress, torsion, shear, shear force, bending moments, stress, strain, thermal strain, Poisson's ration, strain energy, combined bending, fluid, pressure energy, fluid in motion

Table of Selected Moments of Inertia(MOMI Table)

Author: ENG305

School: Federal University of Technology, Owerri

Department: Engineering

Course Code: ENG305

Topics: Inertia, central axis

Strength of materials material

Author: GRANIT CHIKA

School: Federal University of Technology, Owerri

Department: Engineering

Course Code: ENG305

Topics: Tensile stress, Compressive test, Strain, deformation, force, load, shearing forces, bending moments, beam, bending stress, flexural stress, colums, torsion, Strength of materials

Applied Mechanics ,3rd edition

Author: RK Rajput

School: University of Uyo

Department: Engineering

Course Code: ENG211

Topics: Applied Mechanics, force, force systems, free body diagrams, resultant force, moments, Varignon’s Theorem, centre of gravity, centroid, Moment of Inertia, friction, Screw Friction, rectilinear motion, Velocity-Time Graphs, Displacement-Time Graphs, laws of motion, impulse, D’alembert’s Principle, work, power, energy, simple machine, Weston’s Differential Pulley Block, circular motion, Centrifugal force, Centripetal Force, curvilinear motion, stress, strain, Hooke's law, tensile test, Strain Hardening, Poisson’s Ratio

Mechanics of Materials Instructor’s Solutions Manual ,7th edition

Author: James Gere, Barry Goodno

School: University of Nigeria, Nsukka

Department: Engineering

Course Code: EGR201

Topics: Tension, Compression, Shear, Axially Loaded Members, torsion, Shear Forces, Bending Moments, stress analysis, strain analysis, plane stress, Deflections of Beams, Statically Indeterminate Beams, column, materials

MACHINE DESIGN

Author: RS KHURMI, JK GUPTA

School: Federal University of Technology, Owerri

Department: Engineering

Course Code: AME304

Topics: Engineering Materials, Engineering Properties, machine design, torsional stress, bending stress, variable stress, pressure vessels, pipes, joints, keys, coupling, shafts, levers, columns, struts, screws, belt, pulley, drives, flywheel, springs, clutches, brakes, bearings, gears, internal combustion engine

Strength of Materials and Structures

Author: John Case, Lord Chilver, Carl Ross

School: University of Nigeria, Nsukka

Department: Engineering

Course Code: CVE212

Topics: Tension, compression, direct stresses, Pin-jointed frames, Pin-jointed trusses, Shearing stress, joints, connections, Bending moment, shearing force, centroid, bending stress, Built-in beam, continuous beam, Energy methods, plate differential methods, matrix algebra, finite element method, Structural vibrations

Mechanics of Materials ,9th edition

Author: Barry Goodno, James Gere

School: University of Nigeria, Nsukka

Department: Engineering

Course Code: EGR201

Topics: Tension, Compression, Shear, Axially Loaded Members, torsion, Shear Forces, Bending Moments, stress analysis, strain analysis, plane stress, Deflections of Beams, Statically Indeterminate Beams, columns, materials

strength of materials

Author: ENG305

School: Federal University of Technology, Owerri

Department: Engineering

Course Code: ENG305

Topics: Tension, Compression, and Shear, Deflection

Past Questions related to Strength of materials, Fifth edition

Strength of materials

Year: 2020

School: Federal University of Technology, Owerri

Department: Engineering

Course Code: ENG305

Topics: Shear Force, Bending Moment, Torsion, Theory of Columns, Deflection of Beams, Axial and Flexural Bending Stress, Strength of materials

Strength of materials 2016,2017

Year: 2017

School: Federal University of Technology, Owerri

Department: Engineering

Course Code: ENG305

Topics: Shear stress, force, load, normal stress, stress, factor of safety, modulus of elasticity, modulus of rigidity, mohr's circle, beams, cantilever, deflection, deformation, flexural rigidity, columns

STRENGTH OF MATERIALS

Year: 2019

School: Federal University of Technology, Owerri

Department: Engineering

Course Code: ENG305

Topics: force, load, stress, strain, elasticity, plasticity, elastic limit, beam, modulus of resilience, column, cantilever

REINFORCED CONCRETE DESIGN 2-2012-2018

Year: 2018

School: Federal University of Technology, Owerri

Department: Engineering

Course Code: STE518

Topics: column, beam, floor, shear, deflection, reinforcement, retaining wall, punching shear, yield line method, flat slab, slab, cantilever, dead load, preliminary design, bearing pressure analysis, stem wall design, stem wall reinforcement, axial load, unaxial moment, slender column

Strength of Materials

Year: 2022

School: Air Force Institute of Technology

Department: Engineering

Course Code: GET208

Topics: Strength of Materials, Stress, strain, stress transformation, torque, bending moments, shear stress, force, moment

STRENGTH OF MATERIALS 2

Year: 2018

School: Federal University of Technology, Owerri

Department: Engineering

Course Code: ENG306

Topics: transverse force equilibrium, column, stress, failure, beam, thin plate

Strength of materials

Year: 2018

School: Federal University of Technology, Owerri

Department: Engineering

Course Code: ENG305

Topics: proportional limit, elastic limit, deformation, strain, tensile stress, failure strength, Mohr's circle

Theory of structures

Year: 2019

School: Federal University of Technology, Owerri

Department: Engineering

Course Code: ACE308

Topics: Structures theory, truss, truss parameters, trusses analysis, warren steel truss, bending moment, radial shear, normal thrust, Warren steel truss, horizontal deflection, maximum shear

Strength of materials 1

Year: 2019

School: University of Nigeria, Nsukka

Department: Engineering

Course Code: CVE211

Topics: Strength of materials, shear force, bending moment, beam, stress, working stress

Machine design 2

Year: 2019

School: Federal University of Technology, Owerri

Department: Engineering

Course Code: AME304

Topics: Machine design, Shafts, hollow shafts, Shaft coupling, sheer stress

Strength of materials 2

Year: 2019

School: Federal University of Technology, Owerri

Department: Engineering

Course Code: ENG306

Topics: Strength of materials, maximum depletion, critical buckling loads, determinate straight beam, determinate curved beam, shear stress, inertia, Ritz method

Materials processing

Year: 2019

School: Federal University of Technology, Owerri

Department: Engineering

Course Code: MME302

Topics: Materials processing, casting, pure metal solidification, Scheil equation, zone refining, engineering stress strain curve, true stress strain curve, cold working operation, hot working operations, vapour deposition

Structural analysis

Year: 2020

School: Federal University of Technology, Owerri

Department: Engineering

Course Code: STE401

Topics: Structural analysis, consistent deformation method, collapse moment, collapse mechanism, plastic moment capacity, fixed end moments, stiffness factor, carry-over factor, moment equation method

Mechanical properties of materials

Year: 2020

School: Federal University of Technology, Owerri

Department: Engineering

Course Code: MME413

Topics: Materials mechanical properties, true strain, tensile test, true stress-strain curve, tensile uniaxial flow stress, uniform plastic deformation, ultimate tesnile strength

Tests related to Strength of materials, Fifth edition

Physics (JAMB)

School: WAEC, JAMB & POST UTME

Department:

Course Code: JAMB

Topics: Physics, JAMB, Friction, work, force, motion, speed, velocity, energy, hydraulic press, relative density, hydrometer, gas law, sound wave, wave, light, mirror,capacitor, electricity, pressure