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Preface to the 
Fourth Edition

During the thirty-five years since the first edition of this book was written, 
courses in “ modern algebra”  have become a standard part of college 
curricula all over the world, and many books have been written for use in 
such courses. Nevertheless, it seems desirable to recall our basic 
philosophy, which remains that of the present book.

“ We have tried throughout to express the conceptual background of 
the various definitions used. W e have done this by illustrating each new 
term by as many familiar examples as possible. This seems especially 
important in an elementary text because it serves to emphasize the fact 
that the abstract concepts all arise from the analysis of concrete situa
tions.

“ To develop the student’s power to think for himself in terms of the 
new concepts, we have included a wide variety of exercises on each topic. 
Some of these exercises are computational, some explore further exam
ples of the new concepts, and others give additional theoretical develop
ments. Exercises of the latter type serve the important function of 
familiarizing the student with the construction of a formal proof. The 
selection of exercises is sufficient to allow an instructor to adapt the text 
to students of quite varied degrees of maturity, of undergraduate or first 
year graduate level.

“ Modern algebra also enables one to reinterpret the results of classical 
algebra, giving them far greater unity and generality. Therefore, instead 
of omitting these results, we have attempted to incorporate them sys
tematically within the framework of the ideas of modem algebra.

“ We have also tried not to lose sight of the fact that, for many 
students, the value of algebra lies in its applications to other fields: higher 
analysis, geometry, physics, and philosophy. This has influenced us in our 
emphasis on the real and complex fields, on groups of transformations as 
contrasted with abstract groups, on symmetric matrices and reduction to 
diagonal form, on the classification of quadratic forms under the 
orthogonal and Euclidean groups, and finally, in the inclusion of Boolean 
algebra, lattice theory, and transfinite numbers, all o f which are important 
in mathematical logic and in the modern theory of real functions.”
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Preface V I

In detail, our Chapters 1-3 give an introduction to the theory of linear 
and polynomial equations in commutative rings. The familiar domain of 
integers and the rational field are emphasized, together with the rings of 
integers modulo n and associated polynomial rings. Chapters 4 and 5 
develop the basic algebraic properties of the real and complex fields 
which are of such paramount importance for geometry and physics.

Chapter 6 introduces noncommutative algebra through its simplest and 
most fundamental concept: that of a group. The group concept is applied 
systematically in Chapters 7-10, on vector spaces and matrices. Here care 
is taken to keep in the foreground the fundamental role played by algebra 
in Euclidean, affine, and projective geometry. Dual spaces and tensor 
products are also discussed, but generalizations to modules over rings are 
not considered.

Chapter 11 includes a completely revised introduction to Boolean 
algebra and lattice theory. This is followed in Chapter 12 by a brief 
discussion of transfinite numbers. Finally, the last three chapters provide 
an introduction to general commutative algebra and arithmetic: ideals 
and quotient-rings, extensions o f fields, algebraic numbers and their 
factorization, and Galois theory.

Many of the chapters are independent of one another; for example, 
the chapter on group theory may be introduced just after Chapter 1, 
while the material on ideals and fields (§§13.1 and 14.1) may be studied 
immediately after the chapter on vector spaces.

This independence is intended to make the book useful not only for a 
full-year course, assuming only high-school algebra, but also for various 
shorter courses. For example, a semester or quarter course covering 
linear algebra may be based on Chapters 6-10, the real and complex 
fields being emphasized. A  semester course on abstract algebra could deal 
with Chapters 1-3, 6-8, 11, 13, and 14. Still other arrangements are 
possible.

W e hope that our book will continue to serve not only as a text but 
also as a convenient reference for those wishing to apply the basic 
concepts of modern algebra to other branches of mathematics, including 
statistics and computing, and also to physics, chemistry, and engineering.

It is a pleasure to acknowledge our indebtedness to Clifford Bell, A . 
A . Bennett, E. Artin, F. A . Ficken, J. S. Frame, Nathan Jacobson, Walter 
Leighton, Gaylord Merriman, D. D. Miller, Ivan Niven, and many other 
friends and colleagues who assisted with helpful suggestions and improve
ments, and to Mrs. Saunders Mac Lane, who helped with the secretarial 
work in the first three editions.

Cambridge, Mass. 
Chicago, Illinois

G a r r e t t  B i r k h o f f  
S a u n d e r s  M a c  L a n e
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 1

The Integers

1.1. Commutative Rings; Integral Domains

Modern algebra has exposed for the first time the full variety and 
richness of possible mathematical systems. We shall construct and 
examine many such systems, but the most fundamental of them all is the 
oldest mathematical system— that consisting of all the positive integers 
(whole numbers). A  related but somewhat larger system is the collection 
Z  of all integers 0, ±1, ±2, ±3, • • •. We begin our discussion with this 
system because it more closely resembles the other systems which arise in 
modern algebra.

The integers have many interesting algebraic properties. In this chap
ter, we will assume some especially obvious such properties as postulates, 
and deduce from them many other properties as logical consequences.

We first assume eight postulates for addition and multiplication. These 
postulates hold not only for the integers, but for many other systems of 
numbers, such as that of all rational numbers (fractions), all real numbers 
(unlimited decimals), and all complex numbers. They are also satisfied by 
polynomials, and by continuous real functions on any given interval. 
When these eight postulates hold for a system R, we shall say that I? is a 
commutative ring.

Definition. Let R  be a set o f elements a, b, c, • • • for which the sum 
a +  b and the product ab o f any two elements a and b (distinct or not) o f R  
are defined. Then R  is called a commutative ring if  the following postulates 
( i ) - (v i i i )  hold:

(i) Closure. I f  a and b are in R , then the sum a +  b and the product 
ab are in R.

1
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Ch. 1 The Integers 2

(ii) Uniqueness. I f  a =  a ' and b =  b' in R , then

a +  b =  a' +  b' and ab =  a'b'.

(iii) Commutative laws. For all a and b in R,

a +  b =  b +  a, ab =  ba.

(iv) Associative laws. For all a, b, and c in R,

a +  (b +  c ) =  (a +  b) +  c, a (bc) =  (ab)c.

(v) Distributive law. For all a, b, and c in R,

a(b +  c ) =  ab •+ ac.

(vi) Zero. R  contains an element 0 such that

a +  0 =  a for all a in R.

(vii) Unity. R  contains an element 1 ^ 0  such that

a 1 =  a for all a in R.

(viii) Additive inverse. For each a in R , the equation a +  x =  0 has a
solution x in R.

It is a familiar fact that the set Z  o f all integers satisfies these 
postulates. For example, the commutative and associative laws are so 
familiar that they are ordinarily used without explicit mention: thus
a +  b +  c customarily denotes the equal numbers a. +  (b +  c ) and
(a +  b) +  c. The property of zero stated in (vi) is the characteristic 
property of the number zero; and similarly, the property of 1 stated in 
(vii) is the characteristic property of the number one. Since these laws are 
formally analogous, we may say that 0 and 1 are the “ identity elements”  
for addition and multiplication, respectively. The assumption 1 ^  0 in 
(vii) is included to eliminate trivial cases (otherwise the set consisting of 
the integer 0 alone would be a commutative ring).

The system Z  of all integers has another property which cannot be 
deduced from the preceding postulates. Namely, if c ¥= 0 and ca =  cb in 
Z, then necessarily a =  b (partial converse of (ii)). This property is not 
satisfied by real functions on a given interval, for example, though these 
form a commutative ring. The integers therefore constitute not only a
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§1.2 Elementary Properties of'Commutative Rings 3

commutative ring but also an integral domain in the sense of the follow
ing definition.

Definition. A n  integral domain is a commutative ring in which the 
following additional postulate holds:

(ix) Cancellation law. I f  c 5*0 and ca =  cb, then a =  b.

The domain Z[n/2]. An integral domain of interest for number 
theory consists of all numbers o f the form a +  Z>V2, where a and b are 
ordinary integers (in Z). In Z[V2], a +  b 'T l =  c +  d 'f l  if and only if 
a =  c, b =  d. Addition and multiplication are defined by

(a +  b'J2) +  (c +  d'/2) =  (a +  c ) +  (b +  d )V2

(a +  bJ2 )(c +  d 4 l )  =  (ac +  2 bd) +  (ad +  bcW 2.

Uniqueness and commutativity are easily verified for these operations, 
while 0 +  0>/2 acts as a zero and 1 +  0^2 as a unity. The additive inverse 
of a +  b'J2 is (—a) +  (—b )^2. The verification of the associative and 
distributive laws is a little more tedious, while that of the cancellation law 
will be deferred to the end of §1.2.

1.2. Elementary Properties of Commutative Rings

In elementary algebra one often takes the preceding postulates and 
their elementary consequences for granted. This seldom leads to serious 
errors, provided algebraic manipulations are checked against specific 
examples. However, much more care must be taken when one wishes 
to reach reliable conclusions about whole families of algebraic systems 
(e.g., valid for all integral domains generally). One must be sure that 
all proofs use only postulates listed explicitly and standard rules of 
logic.

Among the most fundamental rules of logic are the three basic laws 
for equality:

Reflexive law: a =  a.
Symmetric law: I f a =  b, then b =  a.
Transitive law: I f a -  b and b =  c, then a =  c, valid for all a, b, and c.

We now illustrate the idea of a formal proof for several rules valid in 
any commutative ring R.
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Ch. 1 The Integers 4

R u l e  1. (a +  b)c =  ac +  be, for all a, b, c in R.

This rule may be called the right distributive law, in contrast to 
postulate (v), which is the left distributive law.

Proof. For all a, b, and c in R :

1. (a +  b)c  =  c(a  +  b) (commutative law of mult.).
2. c(a  +  b) =  ca +  cb (distributive law).
3. (a +  b)c  =  ca +  cb (1, 2, transitive law).
4. ca =  ac, cb =  be (commutative law of mult.).
5. ca +  cb =  ac +  be (4, uniqueness of addn.).
6. (a +  b)c  =  ac +  be (3,5, transitive law).

R u l e  2. For all a in R, 0 +  a =  a and 1 ■ a =  a.

Proof. For all a in R :

1. 0 +  a =  a +  0 (commutative law o f addn.).
2. a +  0 =  a (zero).
3. 0 +  a =  a (1,2, transitive law).

The proof for 1 • a =  a is similar.

R u l e  3. I f z in R  has the property that a +  z =  a for all a in R, 
then z =  0.

This rule states that R  contains only one element 0 which can act as 
the identity element for addition.

Proof. Since a +  z =  a holds for all a, it holds if a is 0.

1. 0 +  z =  0
2. 0 =  0 +  2 (1, symmetric law).
3. 0 +  2 =  2 (Rule 2 when a is z).
4. 0 =  2 (2,3, transitive law).

In subsequent proofs such as this one, we shall condense the repeated 
use of the symmetric and transitive laws for equality.

R u l e  4. For all a, b, c in R :

a +  b =  a +  c implies b =  c.

This rule is called the cancellation law for addition.
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§1.2 Elementary Properties of Commutative Rings 5

Proof. By postulate (viii) there is for the element a an element x 
with a +  x =  0. Then

4. b =  0 +  b =  (x +  a) +  b
= x +  (a +  b) =  x +  (a +  c)
=  ( x + a )  +  c =  0 +  c =  c.

(Supply the reason for each step of 4!)

R u l e  5. For each a, R  contains one and only one solution x of the 
equation a +  x =  0.

This solution is denoted by x =  —a, as usual. The rule may then be 
quoted as a +  ( - a )  =  0. As customary, the symbol a -  b denotes a +

Proof. By postulate (viii), there is a solution x. If y is a second 
solution, then a + x  =  0 =  a +  y b y  the transitive and symmetric laws. 
Hence by Rule 4, x =  y. Q.E.D.

R u l e  6. For given a and b in R , there is one and only one x in R
with a +  x =  b.

This rule asserts that subtraction is possible and unique.
Proof. Take x =  (—a) +  b. Then (give reasons!)

a +  x =  a +  ( ( - a )  +  b) =  (a +  ( - a ) )  +  b =  0 +  b =  b.

If y is a second solution, then a + x = b  =  a +  y by the transitive law;
hence x =  y by Rule 4. Q.E.D.

R u l e  7. For all a in R, a • 0 =  0 =  0 • a.

1. x +  a =  a +  x =  0
2. x =  x, a +  b =  a +  c
3. x +  (a +  b) =  x +  (a +  c)

(comm, law addn., trans. law), 
(reflexive law, hypothesis).
(2, uniqueness of addn.).

H O .

Proof.

1. a =  a, a + 0  =  a
1. a(a  +  0) =  aa
3. aa + a  • 0 =  a(a  +  0) =  aa

(reflexive law, postulate (vi)). 
(1, uniqueness of mult.), 
(distributive law, etc.).

=  aa +  0
4. a • 0 =  0
5. O ' a =  a • 0 =  0

(3, Rule 4).
(comm, law mult., 4)
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Ch. 1 The Integers 6

R u l e  8 . If u in R  has the property that au =  a for all a in R, then 
u =  1.

This rule asserts the uniqueness of the identity element 1 for multipli
cation. The proof, which resembles that o f Rule 3, is left as an exercise.

R u l e  9. For all a and b in R, ( - a ) ( - b )  =  ab.

A  special case of this rule is the “ mysterious”  law (—1)(—1) =  1. 
Proof. Consider the triple sum (associative law!)

1. [ab +  a ( - b ) ]  +  ( - a ) ( - b )  =  ab +  [a ( - b )  +  ( - a ) ( - b ) ] .

By the distributive law, the definition of -a ,  Rule 7, and (vi),

2. ab +  [a ( - b ) +  ( - a ) ( - b ) ]  =  ab +  [a +  ( - a ) ] ( - b )
=  ab +  0 ( - b )  =  ab.

For similar reasons,

3. [ab +  a (—b )] +  (—a )(—b) =  a[b +  (—6)] +  (—a )(—b)
=  a • 0 +  ( - a ) ( - b )  =  ( - a ) ( - b ) .

The result then follows from 1, 2, and 3 by the transitive and symmetric 
laws for equality. Q.E.D.

Various other simple and familiar rules are consequences of our 
postulates; some are stated in the exercises below.

Another basic algebraic law is the one used in the solution of 
quadratic equations, when it is argued that (x +  2)(x  -  3) =  0 means 
either that x +  2 =  0 or that x — 3 =  0. The general law involved is the 
assertion

(1) if ab =  0, then either a =  0 or b =  0.

This assertion is not true in all commutative rings. But the proof is 
immediate in any integral domain D , by the cancellation law. For suppose 
that the first factor a is not zero. Then ab =  0 =  a • 0, and a may be 
cancelled; whence b =  0. Conversely, the cancellation law follows from 
this assertion (1) in any commutative ring R, for if a 5* 0, ab =  ac means 
that ab -  ac =  a(b -  c ) =  0, which by (1) makes b — c =  0. We there
fore have

Theorem  1. The cancellation law o f multiplication is equivalent in a 
commutative ring to the assertion that a product o f nonzero factors is not 
zero.
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§1.2 Elementary Properties of Commutative Rings 7

Nonzero elements a and b with a product ab =  0 are sometimes 
called “ divisors of zero,”  so that the cancellation law in a commutative 
ring R  is equivalent to the assumption that R  contains no divisors of zero.

Theorem 1 can be used to prove the cancellation law for the domain 
Z[V2] defined at the end of §1.1, as follows. Suppose that Z[V2] included 
divisors of zero, with

(a +  Z>V2)(c '+ d'J2) =  (ac +  2bd) +  (ad +  bc)-J2 =  0.

By definition, this gives ac +  2bd =  0, ad +  be =  0. Multiply the first by 
d, the second by c, and subtract; this gives b(2d2 — c 2) =  0, whence 
either b — 0 or c 2 =  2d2. If b =  0, then the two preceding equations 
give ac =  ad =  0, so either a = 0 o r c  =  d =  0b y  Theorem 1. But the 
first alternative, a =  0, would imply that a +  b'J2 =  0 (since b -  0); the 
second that c +  d'J2 =  0— in neither case do we have divisors of zero.

There remains the possibility c 2 =  2d2\ this would imply V2 =  c/d 
rational, whose impossibility will be proved in Theorem 10, §3.7.

If one admits that V2 is a real number, and that the set of all real 
numbers forms an integral domain R, then one can very easily prove that 
Z[V2] is an integral domain, by appealing to the following concept of a 
subdomain.

Definition. A  subdomain o f an integral domain D  is a subset of D  
which is also an integral domain, for the same operations o f addition and 
multiplication.

It is obvious that such a subset 5 is a subdomain if and only if it 
contains 0 and 1, with any element a its additive inverse, and with any 
two elements a and b their sum a +  b and product ab.

E xerc ises

In each of Exercises 1-5 give complete proofs, supporting each step by a 
postulate, a previous step, one of the rules established in the text, or an already 
established exercise.

1. Prove that the following rules hold in any integral domain:
(a) (a +  b)(c  +  d )  =  (ac +  be) +  (ad +  bd),
(b) a +  [b +  (c +  d ) ]  =  (a +  b) +  (c +  d ) =  [(a  +  b) +  c ]  +  d,
(c) a + (b + c) = (c + a) + b,
(d) a(bc) =  c(ab),
(e) a(b +  (c +  d ))  =  (ab +  ac) +  ad,
(f) a(b +  c )d  =  (ab)d  +  a(cd).
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Ch. 1 The Integers 8

2. (a) Prove Rule 8. (b) Prove 1*1 =  1,
(c) Prove that the only “ idempotents”  (i.e., elements x  satisfying xx =  * )  in 

an integral domain are 0 and 1.
3. Prove that the following rules hold for —a in any integral domain:

(a) ~ (~ a )  =  a, (b) - 0  =  0,
(c) - ( a  + b )  =  ( - a )  +  ( - b ) ,  (d) - a  =  (~ l)a ,
(e) ( - a)b  =  a ( - b )  =  ~(ab).

4. Prove Rule 9 from Ex. 3(d) and the special case (—1)(—1) =  1.
5. Prove that the following rules hold for the operation a — b =  a +  (—b) in 

any integral domain:
(a) (a — b) +  (c — d ) =  (a +  c )  — (b +  d),
(b) (a -  b) -  (c -  d) =  (a +  d)  -  (b +  c),
(c) (a -  b )(c  -  d ) =  (ac +  bd) -  (ad +  be),
(d) a — b =  c — d if and only if a +  d =  b +  c,
(e) (a — b)c  =  ac -  be.

6. A re  the following sets of real numbers integral domains? Why?
(a) all even integers, (b) all odd integers, (c) all positive integers,
(d) all real numbers a +  b51/4, where a and b are integers,
(e) all real numbers a +  b91/4, where a and b are integers,
(f) all rational numbers whose denominators are 1 or a power o f 2.

7. (a) Show that the system consisting of 0 and 1 alone, with addition and
multiplication defined as usual, except that 1 +  1 =  0 (instead of 2) is an 
integral domain.

(b) Show that the system which consists of 0 alone, with 0 +  0 =  0 - 0 =  0, 
satisfies all postulates for an integral domain except for the requirement 
0 7s 1 in (vii).

8. (a) Show that if an algebraic system S satisfies all the postulates for an
integral domain except possibly for the requirement 0 s4 1 in (vii), then S 
is either an integral domain or the system consisting of 0 alone, as 
described in Ex. 7(b).

(b) Is 0 ¥= 1 used in proving Rules 1-9?
9. Suppose that the sum of any two integers is defined as usual, but that the 

product of any two integers is defined to be zero. With this interpretation, 
which ones among the postulates for an integral domain are still satisfied?

10. Find two functions / ̂  0 and g & 0 such that fg  =  0.

1.3. Properties of Ordered Domains

Because the ring Z  of all ordinary integers plays a unique role in 
mathematics, one should be aware of its special properties, of which the 
commutative and cancellation laws of multiplication are only two. Many 
other properties stem from the possibility of listing the integers in the 
usual order

 4 ,-3 , -2 ,-1 ,0 ,1 ,2 ,3 ,4 ,  • • •.
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This order is customarily expressed in terms of the relation a <  b, where 
the assertion a <  b (a is less than b) is taken to mean that the integer a 
stands to the left of the integer b in the list above. But the relation a <  b 
holds if and only if the difference b -  a is a positive integer. Conse
quently, every property of the relation a <  b can be derived from 
properties of the set of positive integers. We assume then as postulates 
the following three properties of the set of positive integers 1, 2, 3, • • •.

Addition: The sum of two positive integers is positive.
Multiplication: The product of two positive integers is positive.
Law o f trichotomy: For a given integer a, one and only one of the 

following alternatives holds: either a is positive, or a =  0, or —a is 
positive.

Incidentally, these properties are shared by the positive rational 
numbers and the positive real numbers; hence all the consequences of 
these properties are also shared. It is convenient to call an integral 
domain containing positive elements with these properties an ordered 
domain.

Definition. A n  integral domain D  is said to be ordered if  there are 
certain elements o f D , called the positive elements, which satisfy the 
addition, multiplication, and trichotomy laws stated above fo r integers.

Theorem  2. In any ordered domain, all squares o f nonzero elements 
are positive.

Proof. Let a 2 be given, with a ^  0. By the law of trichotomy, either 
a or —a is positive. In the first case, a2 is positive by the multiplication 
law for positive elements; in the second, - a  is positive, and so a2 =  
( - a ) 2 >  0 by.Rule 9 of §1.2. Q.E.D.

It is a corollary that 1 =  l 2 is always positive.

Definition. In  an ordered domain, the two equivalent statements a <  b 
(read “ a is less than b ” ) and b >  a ( “ b is greater than a ” ) both mean that 
b — a is positive. Also a S  b means that either a <  b or a =  b.

According to this definition, the positive elements a can now be 
described as the elements a greater than zero. Elements b <  0 are called 
negative. One can deduce a number of familiar properties of the relation 
“ less than”  from its definition above.

Transitive law: If a <  b and b <  c, then a <  c.
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Proof. By definition, the hypotheses a <  b and b <  c mean that 
b -  a and c -  b are positive. Hence by the addition principle, the sum 
(b — a) +  (c — b) — c -  a is positive, which means that a <  c.

The three basic postulates for positive elements are reflected by three 
corresponding properties of inequalities:

Addition to an inequality: If a <  b, then a +  c <  b +  c.
Multiplication o f an inequality: I f a <  b and 0 <  c, then ac <  be.
Law o f trichotomy: For any a and b, one and only one of the

relations a <  b, a =  b, or a >  b holds.

As an example, we prove the principle that an inequality may be 
multiplied by a positive number c. The conclusion requires us to prove 
that be — ac -  (b -  a )c  is positive (cf. Ex. 5(e) of §1.2). But this is an 
immediate consequence of the multiplication postulate, for the factors 
b — d and c are both positive by hypothesis. By a similar argument one 
may demonstrate that the multiplication of an inequality by a negative 
number inverts the sense of the inequality (see Ex. 1(c) below).

Definition. In an ordered domain, the absolute value \a | o f a number 
is 0 if  a is 0, and otherwise is the positive member o f the couple a, —a.

This definition might be restated as

(2) | a | =  +a  if a §  0; | a | =  —a if a <  0.

By appropriate separate consideration of these two cases, one may prove 
the laws for absolute values of sums and products,

(3) \ab\ =  | a | |f>|, |a +  b | g  \a | +  \b |.

The sum law may also be obtained thus: by the definition, we have

—|a| ^  a g  |a | and —\ b \ ^ b ^ \ b \ ;  hence adding inequalities gives

~(\a\ +  \ b \ ) ^ a + b ^ \ a \  +  \b\.

This indicates at once that, whether a +  b is positive or negative, its 
absolute value cannot exceed |-a| +  |f»|.

E xerc ises

1. Deduce from the postulates for an ordered domain the following rules:
(a) if a <  b, then a + c <  b + c, and conversely,
(b) a -  x <  a -  y if and only if x >  y,
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(c) if a <  0, then ax >  ay if and only if jc <  y,
(d) 0 <  c and ac <  be imply a <  b,
( e ) x  +  x +  x +  x =  0 implies x =  0,
(f) a <  b implies a 3 <  b3,
(g) if c =3 0, then a =3 b implies ac =3 be.

2. Prove that the equation x 2 +  1 =  0 has no solution in an ordered domain.
3. Prove as many laws on the relation a S  b as you can.
4. Prove that ||a| — |6||S|a— 6|in any ordered domain.

★5. Prove that a 7 =  b1 implies a =  b in any ordered domain.
★6. In any ordered domain, show that a 2 — ab +  b2 =3 0 for all a, b.
★7. Define “ positive”  element in the domain Z[V2], and show that the addition, 

multiplication, and trichotomy laws hold.
★8. Let D  be an integral domain in which there is defined a relation a <  b 

which satisfies the transitive law, the principles for addition and multiplica
tion of inequalities, and the law of trichotomy stated in the text. Prove that 
if a set o f “ positive”  elements is suitably chosen, D  is an ordered domain. 

★9. P 'ove in detail that any subdomain of an ordered domain is an ordered 
domain.

★10. Let R  be any commutative ring which contains a subset of “ positive”  
elements satisfying the addition, multiplication, and trichotomy laws. Prove 
that R  is an ordered domain. (Hint: Show that the cancellation law of 
multiplication holds, by considering separately the four cases x  >  0 and 
y >  0, x  >  0 and —y >  0, — x  >  0 and y >  0, —x >  0 and —y >  0.)

1.4. Well-Ordering Principle
A  subset 5 of an ordered domain (such as the real number system) is 

called well-ordered if each nonempty subset of 5 contains a smallest
member. In terms of this concept, one can formulate an important
property of the integers, not characteristically algebraic and not shared by 
other number systems. This is the

Well-ordering principle. The positive integers are well-ordered.

In other words, any nonempty collection C  of positive integers must 
contain some smallest member m, such that whenever c is in C, m c. 
For instance, the least positive even integer is 2.

To illustrate the force of this principle, we prove

Theorem  3. There is no integer between 0 and 1.

This is immediately clear by a glance at the natural order of the 
integers, but we wish to show that this fact can also be proved from our

* Here and subsequently exercises of greater difficulty are starred.
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assumptions without “ looking”  at the integers. We give an indirect proof. 
If there is any integer c with 0 <  c <  1, then the set of all such integers is 
nonempty. By the well-ordering principle, there is a least integer m in 
this set, and 0 <  m <  1. If we multiply both sides of these inequalities by 
the positive number m, we have 0 <  m 2 <  m. Thus m 2 is another integer 
in the set C, smaller than the supposedly minimum element m of C. This 
contradiction establishes Theorem 3.

Theorem  4. A  set S of positive integers which includes 1, and which 
includes n +  1 whenever it includes n, includes every positive integer.

Proof. It is enough to show that the set S', consisting of those 
positive integers not included in S, is empty. Suppose S' were not empty; 
it would have to contain a least element m. But m #  1 by hypothesis; 
hence by Theorem 3, m >  1, and so m — 1 would be positive. But since 
1 > 0 ,  m — 1 <  m; hence by the choice o f m, m — 1 would be in S. It 
follows by hypothesis that (m — 1) +  1 =  m would be in S. This con
tradiction establishes the theorem.

E xerc ises

1. Show that for any integer a, a — 1 is the greatest integer less than a.
2. Which of the following sets are well-ordered:

(a) all odd positive integers, (b) all even negative integers,
(c) all integers greater than —7, (d) all odd integers greater than 249?

3. Prove that any subset of a well-ordered set is well-ordered.
4. Prove that a set of integers which contains —1000, and contains x +  1 when it 

contains x, contains all the positive integers.
5. (a) A  set S o f integers is said to have the integer b as “ lower bound”  if b S  x

for all x in S; b itself need not be in S. Show that any nonempty set S 
. of integers having a lower bound has a least element.

(b) Show that any nonempty set of integers having an “ upper bound”  has a 
greatest element.

1.5. Finite Induction; Laws of Exponents
W e have now formulated a complete list of basic properties for the 

integers in terms of addition, multiplication, and order. Henceforth we 
assume that the integers form an ordered integral domain 1L in which the 
positive elements are well-ordered. Every other mathematical property of 
the integers can be proved, by strictly logical processes, from those 
assumed. In particular, we can deduce the extremely important

Download more at Learnclax.com
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Principle of Finite Induction. Let there be associated with each posi
tive integer n a proposition P (n )  which is either true or false. If, first, 
P ( l )  is true and, second, for all k, P (k )  implies P (k  +  1), then P (n )  is 
true for all positive integers n.

To deduce this principle from the well-ordering assumption, simply 
observe that the set o f those positive integers k for which P (k )  is true 
satisfies the hypotheses and hence the conclusion of Theorem 4.

The method of proof by induction will now be used to prove various 
laws valid in any commutative ring. We first use it to establish formally 
the general distributive law for any number n of summands,

(4) d{b\ +  Z>2 +  ' ‘ ' "F bn) =  +  ab2 +  • • • +  ubn.

To be explicit, we define the repeated sum bx +  • • • +  bn as follows:

b\ +  b2 +  b3 =  (bx +  b2)  +  b3, 

b\ +  b2 +  b3 +  b4 =  [(f>i +  b2) +  b-f\ +  b4.

This convention can be stated in general as a recursive formula (for 
k S  1)

(5) bx +  ■ • • +  bk +  bk+1 =  (bx +  • • • +  bK) +  bk+x,

which determines the arrangement o f parentheses in k +  1 terms, given 
this arrangement for k terms.

The inductive proof o f (4) requires first the proof for n =  1, which is 
immediate. Secondly, we assume the law (4) for n =  k and try to prove it 
for n — k +  1. By the definition (5) and the simple distributive law (v),

a(bx +  • • • +  bk+x) =  a [(Z>j +  • • • +  bk) +  Z>*+i]
=  a (b x +  ■ • • +  bk) +  abk+x.

On the right, the first term can now be reduced by the assumed case of (4) 
for k summands, as

a (bx +  • • • +  bk+1) =  (abx +  • • • +  abk) +  abk+x.

Since the right-hand side is abx +  • • • +  abk+l, by the definition (5), we 
have completed the inductive proof o f (4).

Similar but more complicated inductive arguments will yield the 
general associative law, which asserts that a sum bx +  • • • +  bk or a
product b \ " 'b k has the same value for any arrangement of parentheses
(a special case appears in Ex. 9 below). Using this result and (4), one can
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then also establish the two-sided general distributive law

(ai +  • • • +  am)(b i +  •• • +  b„)
=  aib i +  • • • +  aibn +  ■ • • +  ambi +  • • • +  ambn.

Note also the general associative and commutative law, according to 
which the sum of k given terms always has the same value, whatever the 
order or the grouping of the terms.

Positive integral exponents in any commutative ring R  may also be 
treated by induction. If n is a positive integer, the power a n stands for the 
product a • a • • • a, to n factors. This can also be stated as a “ recursive” 
definition

(6) a 1 = a, a "+1 =  an ■ a (any a in R),

which makes it possible to compute any power an+1 in terms of an 
already computed lower power a n. From these definitions one may 
prove the usual laws, for any positive integral exponents m and n, as 
follows:

(7) aman =  am+n,

(8) (a m)n =  a mn, (ab)m =  ambm.

For instance, the first law may be proved by induction on n. If n =  1, 
the law becomes am •a =  a m+1, which is exactly the definition of a m+1. 
Next assume that the law (7) is true for every m and for a given positive 
integer n =  k, and consider the analogous expression amak+l for the next 
larger exponent k +  1. One finds

m fc +  1 ^m  / fc \   / m \   m +k    (m+fc )+ l   „m+(fc  +  l )a a =  a (a a) =  (a a )a =  a a ~  a — a ,

by successive applications of the definition, the associative law, the 
induction assumption, and the definition again. This gives the law (7) for 
the case n =  k +  1, and so completes the induction.

Finally, the binomial formula can be proved over any commutative 
ring R, as follows. First define the factorial function n ! on the nonnega
tive integers by recursion: 0! =  1 and (n +  1)! =  (n!)(n +  1). Then 
define the binomial coefficients similarly for n g  0 in Z  by

o-o-‘ crK-j+a)
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From these definitions it follows by induction on n that

(9) (x +  y)n =  x n +  nxn~'y +  • • • +  x n~kyk +  • • • +  y n

and that

(10) (k'.)(n -  k )\ (fy  =  n\

(I.e., = (n\)/(k\)(n -  k )l We leave the proof as an exercise.)

The Principle of Finite Induction permits one to assume the truth of 
P (n ) gratis in proving P (n  +  1). We shall now show that one can even 
assume the truth of P (k )  for all k n. This is called the

Second Principle o f Finite Induction. Let there be associated with 
each positive integer n a proposition P (n ). If, for each m, the assumption 
that P (k )  is true for all k <  m implies the conclusion that P (m ) is itself 
true, then P (n ) is true for all n.

Proof. Let S be the set of integers for which P (n ) is false. Unless S is 
empty, it will have a first member m. By choice of m, P (k ) will be true for 
all k <  m\ hence by hypothesis, P (m ) must itself be true, giving a 
contradiction. The only way out is to admit that 5 is empty. Q.E.D.

Caution: In case m =  1, the set of all k <  1 is empty, so that one 
must implicitly include a proof of P (l ) .

E xerc ises

1. Prove by induction that the following laws for positive exponents are valid 
in any integral domain:
(a) (a m)" =  a m", (b) (ab)n =  a nbn, (c) 1" =  1.

1. Prove by induction that 1 + 2  +  ■■• +  «  =  n(n  +  l)/2.
3. Prove formulas (9) and (10).
4. Prove by induction that x ,2 +  • • • +  x„2 >  0 unless x, =  • • • =  xn = 0 .
5. Prove by induction the following summation formulas:

(a) 1 + 4  +  9 +  ■ ■ ■ +  n 2 =  n (n +  l)(2n  +  l)/6,
(b) 1 + 8 + 2 7  +  • • • +  n3 =  [M( „  +  l)/2 ]2.

6. In any ordered domain, show that every odd power of a negative element is 
negative.

7. Using induction, but not the well-ordering principle, prove Theorem 3. 
(Hint: Let P (n )  mean n g  1.)
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★8. Using Ex. 7, prove the well-ordering principle from the Principle of Finite 
Induction. (Hint: Let P(n) be the proposition that any class of positive 
integers containing a number has a least member.)

9. Using the definition (5), prove the following associative law:

(a, +  • • • +  am) +  (&, +  ••• +  & „ ) =  a, +  ••• +  am + & ,  +  ••• +  &„.

10. Obtain a formula for the nth derivative o f the product o f two functions and 
prove the formula by induction on n.

★11. Prove that to any base a >  1, each positive integer m has a unique 
expression o f the form

a"r„ +  a ', -V „_1 +  • • ■ +  a2r2 +  ar, +  r0, 

where the integers rk satisfy 0 S  rk <  a, r„ ^  0.

★12. Illustrate Ex. 11 by converting the equation 63-111 =  6993 to the base 7, 
checking by multiplying out.

13. A  druggist has only the five weights of 1, 3, 9, 27, and 81 ounces and a 
two-pan balance (weights may be placed in either pan). Show that he can 
weigh any amount up to 121 ounces.

14. Prove that the sum of the digits o f any multiple o f 9 is itself divisible by 9.

1.6. Divisibility

An equation ax =  b with integral coefficients does not always have an 
integral solution x. If there is an integral solution, b is said to be divisible 
by a ; the investigation of this situation is the first problem of number 
theory.

An analogous concept o f divisibility arises in every integral domain; it 
is defined as follows.

Definition. In an integral domain D, an element b is divisible by an 
element a when b -  aq for some q in D. When b is divisible by a, we write 
a | b; we also call a a factor or divisor of b, and b a multiple o f a. The 
divisors o f 1 in D  are called units or invertibles of D.

Like the equality relation a =  b, the relation a | b is reflexive and 
transitive:

(11) a la ; a lb  and b\c imply a ) c .

The first law of (11) is trivial, since a = a • 1 implies that a \ a. To prove 
the second, recall that the hypotheses a | b and b | c are defined to mean
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b = ad] and c =  bd2■ for some integers dx and d2■ Substitution of the 
first equation in the second gives c =  a(d\d2). S i n c e  d xd 2 is in D,  
this states according to the definition that a | c, as asserted in the 
conclusion of (11).

Theorem 5. The only units o f Z  are ±1.

This theorem asserts, in effect, that for integers a and b, ab =  1 
implies a =  ±  1 and b =  ±1. But according to the rules for the absolute 
value of a product, ab — 1 gives \ ab\ =  |a | • |61 =  1. Since neither a nor 
b is zero, |a | and \b | are positive numbers. There are no positive integers 
between 0 and 1 (Theorem 3), so by the law of trichotomy \a | 1 and
16 1 S  1. If either inequality held, the product |a| • |6| could not be 1. 
Therefore \a | =  \b \ =  1, so that a =  ±1, b =  ±1, as asserted.

Corollary. I f  the integers a and b divide each other (a | b and b\a), 
then a =  ±b.

Proof. By hypothesis a =  bdx and b =  ad2, hence a =  ad2dx. If
a =  0, then b -  0, too. If a #  0, cancellation yields 1 =  d2d\. Then
d] =  ±1 by the theorem, and hence again a =  ±b. Q.E.D.

Since a -  a ■ 1 =  ( - a ) ( - l ) ,  any integer a is divisible by a, —a, +1, 
and -1 .

Definition. An integer p is a prime if  p is not 0 or ±1 and if p is 
divisible only by ±1 and ±p.

The first few positive primes are

2, 3, 5, 7, 11, 13,17,19,23,29,31.

Any positive integer which is not one or a prime can be factored into 
prime factors; thus

128 =  27; 90 =  9- 10 =  32 • 2 - 5;

672 =  7 - 96 =  7 - 12 - 8 =  7 - 3 - 25.

It is a matter of experience that we always get the same prime factors no 
matter how we proceed to obtain them. This uniqueness of the prime 
factorization can be proved by studying greatest common divisors, which 
we now do.
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E xercises

1. Prove the following properties of units in any domain:
(a) the product of two units is a unit,
(b) a unit u of D  divides every element of D,
(c) if c divides every x in D, c is a unit.

2. Prove that if a \ b and a\c, then a\(b +  c).
3. Prove: I f  b >  1 is not prime, it has a positive prime divisor d S  fb .
4. List all positive primes less than 100. (Hint: Throw away multiples of 2, 3, 5, 

7, and use Ex. 3.)
5. If a | b, prove that | a | S  | b | when b ^  0.

1.7. The Euclidean Algorithm

The ordinary process of dividing an integer a by b yields a quotient q 
and a remainder r. Formally, this amounts to the following assertion.

Division Algorithm. For given integers a and b, with b >  0, there exist 
integers q and r such that

(12) a = bq +  r, 0 S  r <  i.

Geometric picture. If we imagine the whole numbers displayed on the 
real axis, the possible multiples bq of b form a set of equally spaced 
division points on the line

 1 1 1 1 1 1 1-----
-3 b  -2 b  - b  0 b 2b 3b

The point representing a must fall in one of the intervals determined by 
these points, say in the interval between bq and b(q +  1), exclusive of the 
right-hand end point. This means that a -  bq =  r, where r represents a 
length shorter than the whole length b of an interval. Hence 0 s  r <  i, 
as asserted. This picture suggests the following proof based on our 
postulates.

Proof. There certainly is some integral multiple o f b not exceeding a ; 
for instance, since b >  0, b =£ 1 by Theorem 3, so (—|a\)b ^  -\a \ ^  a. 
Therefore the set of differences a — bx contains at least one nonnegative 
integer, namely, a — (—\a\)b. Hence, by the well-ordering postulate, 
there is a least nonnegative a — bx, say a — bq =  r. By construction, 
r 0; while if r ^  b, then a -  b(q +  l )  =  r -  6 ^ 0  would be less than 
a — bq, contrary to our choice of q. We conclude that 0 S  r <  b, while 
a =  bq +  (a -  bq) =  bq +  r.
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Corollary 1. For given integers a and b, the quotient q and the 
remainder r which satisfy (12) are uniquely determined.

Proof. Suppose that a =  bq +  r =  bq' +  r', where 0 S  r <  b, 0 £  
r' <  b. Then r — r' =  b (q ' — q ) is numerically smaller than b, but is a 
multiple of b. It follows that r — r' must be zero. Hence r =  r', bq =  bq',
q =  q ', which gives the uniqueness of q and r. Q.E.D.

Frequently, we have occasion to deal not with individual integers but 
with certain sets of integers, such as the set • • • -6 , —3, 0, 3, 6, 9, • • • 
which consists of all multiples of 3. This set has the important property 
that the sum or the difference of any two integers in the set is again an 
integer in the set. In general, a set S of integers is said to be closed under 
addition and subtraction if 5 contains the sum a +  b and the difference 
a — b of any two integers a and b in S. A ll the even integers (positive, 
negative, and zero) form such a set. More generally, the set of all 
multiples xm of any fixed integer m is closed under addition and 
subtraction, for xm  ±  ym =  (x ±  y)m  is a multiple of m. We now prove 
that such sets of multiples are the only sets of integers with these 
properties.

Theorem  6. Any nonvoid set o f integers closed under addition and 
subtraction either consists o f zero alone or else contains a least positive 
element and consists o f all the multiples o f this integer.

Proof. Let such a set 5 contain an element a #  0. Then 5 contains
the difference a — a =  0, and hence the difference 0 — a =  —a. Conse
quently, there is at least one positive element | a [ =  ±a  in S. The 
well-ordering principle will provide a least positive element b in S.

The set 5 must contain all integral multiples of b. For one may first 
show by induction on n that any positive multiple nb is in 5: if n =  1, b 
is in 5; if kb is already known to lie in 5, then (k +  \)b =  kb +  b is a 
sum of two elements of 5, hence is in S. Therefore, any negative multiple 
( -n )b  =  0 — (nb) is a difference of two elements of 5, hence is in S.

The set 5 can contain nothing but the integral multiples of b. For if a 
is any element of 5, the Division Algorithm may be applied to give a 
difference a — bq =  r, which is also in S. The remainder r is nonnegative 
and less than b, while b is the smallest positive element in S. Therefore 
r =  0, and a — bq is a multiple of b, as asserted. Q.E.D.

Definition. A n integer d is a greatest common divisor (g.c.d.) o f the 
integers a and b if  d is a common divisor of a and b which is a multiple of 
every other common divisor. In symbols, d must have the properties

d\a;  d\b\ c\a and c \ b imply c \ d.
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For example, both 3 and —3 are greatest common divisors of 6 and 9. 
According to the definition two different g.c.d.’s must divide each other, 
hence differ only in sign. Of the two possible g.c.d.’s ±  d for a and b, the 
positive one is often denoted by the symbol (a, b). Note that the adjective 
“ greatest”  in the definition of a g.c.d. means not primarily that d has a 
greater magnitude than any other common divisor c, but that d is a 
multiple of any such c.

Theorem  7. Any two integers a ^  0 and b ^  0 have a positive 
greatest common divisor (a, b). It can be expressed as a “ linear combina
tion" o f a and b, with integral coefficients s and t, in the form

(13) (a, b) =  sa +  tb.

Proof. Consider the numbers of the form sa +  tb. For any two such

(sia +  tib ) ±  (s2a +  t2b) =  (si ±  s2)a +  (/i ±  t2)b.

Therefore the set S  of all integers sa +  tb is closed under addhion and 
subtraction, so by Theorem 6 consists of all multiples of some minimum 
positive number d =  sa +  tb. From this formula it is clear that any 
f a c t o r  o f  ca  and b must be a factor of d. On the other hand, the 
original integers a =  1 ■ a +  0 • b and b =  0 • a +  1 • b both lie in the set 
5 under consideration, and hence must be multiples of the minimum 
number d in this set. In other words, d is a common divisor. Hence it is 
the desired greatest common divisor. Q.E.D.

Similarly, the set M  of common multiples of a and b is closed under 
addition and subtraction. Its least positive member m will be a common 
multiple of a and b dividing every common multiple. Thus m is a “ least 
common multiple”  (or l.c.m.).

Theorem  8. Any two integers a and b have a least common multiple 
m =  [a, &] which is a divisor o f every common multiple and which itself is 
a common multiple.

To find explicitly the g.c.d. o f two integers a and b, one may use the 
so-called Euclidean algorithm. We may suppose that a and b are both 
positive, since a negative integer b could be replaced by —b without 
altering the g.c.d. (a, b ) =  (a, - b ) .  The Division Algorithm gives

(14) a = bqi +  ru 0 g  ri <  b.

Every integer which divides the terms a and b must divide the remainder 
ri; conversely, every common divisor of b and rj is a divisor of a in (14).
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Therefore the common divisors o f a and b are the same as the common 
divisors o f b and rx, so the g.c.d.’s (a, b) and (b, ri) are identical. This 
reduction can be repeated on b and rx:

b =  rxq2 +  r2. 0 <  r2 <  rx;

rx =  r2q3 +  r3, 0 <  r3 <  r2;

(15)  ̂ ;

r*n—2 r*n_i^n "I- r„, 0 ^  rn ^  rn_j,

t*n — 1 TnQn+1*

Since the remainders continually decrease, there must ultimatelyt be a 
remainder rn+l which is zero, as we have indicated in the last equation. 
The argument above shows that the desired greatest common divisor is

(a, b ) = (b, rx) = Or, r2) = • • • = {rn- u rn).

But the last equation of (15) shows that r„ is itself a divisor o f r„_i, so that 
the last g.c.d. is just r„ itself. The g.c.d. of the given integers a and b is 
thus the last nonzero remainder r„ in the Euclidean algorithm (14) and
(15).

The algorithm can also be used to represent the g.c.d. explicitly as a 
linear combination sa +  tb. This can be done by expressing the successive 
remainders r, in terms o f a and b, as

ri =  a -  bqx =  a +  { - q x)b,

r2 =  b -  q2rx =  i~ q 2)a +  (1 +  q xq2)b.

The form of these equations indicates that one would eventually obtain r„ 
as a linear combination of a and b with integral coefficients s and t which 
involve the quotients qh

The expression (a, b) =  sa +  tb for the g.c.d. is of the greatest utility. 
One important consequence is the fact that a prime which divides a 
product o f two numbers must always divide at least one of the factors:

Theorem  9. I f  p is a prime, then p | ab implies p\a or p\b.

Proof. By the definition of a prime, the only factors of p are ±1 and 
±p. If the conclusion p \ a is false, the only common divisors o f p and a 
are ±1, so that 1 is a g.c.d. of a and p and can thus be expressed in the

t Why? Does a proof of this involve the well-ordering principle?
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form 1 =  sa +  tp. On multiplying through by b, we have

b =  sab +  tbp.

Both terms on the right are divisible by p, hence the left side b is divisible 
by p, as in the second alternative in the theorem. Q.E.D.

If (a, b ) =  1, we call a and b relatively prime. In other words, two 
integers a and b are relatively prime if they have no common divisors 
except ±1. The argument used to prove Theorem 9 will also prove the 
following generalization:

Theorem  10. I f  (c, a ) =  1 and c | ab, then c | b.

One consequence may be drawn for an integer m which is a multiple 
of each of two relatively prime integers a and c. Such an m has the form 
m =  ad and is divisible by c, so by this theorem c \ d, and m =  ad = 
a(cd '). Therefore the product ac divides m. This argument proves

Theorem  11. I f  (a, c ) =  1, a \ m, and c \ m, then ac \ m.

E xerc ises

1. Use the Euclidean algorithm to find the g.c.d. of
(a) (14,35), (b) (11,15), (c) (180, 252),
(d) (2873,6643), (e) (4148,7684), (f) (1001,7655).

2. Write (x, y) in the form s x +  ty (s, t integers) in Ex. l(a )-(c ).
3. Prove that (0, a ) =  \a | for any integer a.
4. If a >  0, prove that (ab, ac) =  a(b ,c ) .

5. Show that b \ c and |c| <  b imply c =  0. (This fact is used in proving 
Corollary 1.)

6. (a) Prove that any three integers a, b, c have a g.c.d. which can be
expressed in the form sa +  tb +  uc.

(b) Prove that ((a, b), c ) =  (a, (b, c )) =  ((a, c), b).
7. Discuss Exs. 3-5 and 6(b) for the case of l.c.m.
8. Show that a set of integers closed under subtraction is necessarily also 

closed under addition.
9. Show that a set of integers closed under addition alone need not consist of 

all multiples o f one fixed element.
10. In the Euclidean algorithm, show by induction on k that each remainder 

can be expressed in the form rk =  ska +  tkb, where sk and tk are integers.
11. Give a detailed proof o f Theorem 10.

★12. Show that for any positive integers a, b the set of all ma +  nb (m, n 
positive integers) includes all multiples of (a, b) larger than ab.
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13. If q is an integer such that for all integers a and b, q\ab  implies q | a or 
q | b, prove that q is 0, ±1, or a prime (cf. Theorem 9).

14. (a) Prove that if (a, m)  =  (b, m)  =  1, then (ab, m ) =  1.
(b) Prove that if (a, c )  =  d, a | b, and c | b, then ac \ bd.
(c) Prove that [a, c ] =  ac/(a, c).

1.8. Fundamental Theorem of Arithmetic

It is now easy to prove the unique factorization theorem for integers, 
also called the fundamental theorem of arithmetic.

Theorem  12. Any integer not zero can be expressed as a unit (±1 ) 
times a product o f positive primes. This expression is unique except for the 
order in which the prime factors occur.

Proof. That any integer a can be written as such a product may be 
proved by successively breaking a up into smaller factors. This process 
involves the second principle of finite induction and can be described as 
follows. It clearly suffices to consider only positive integers a.

Let P (a ) be the proposition that a can be factored as in Theorem 12. 
If a =  1 or if a is a prime, then P (a ) is trivially true. On the other hand, 
if a is composite, then it has a positive divisor b which is neither 1 nor a, 
so that a =  be, with b <  a, c <  a. But by the second induction principle, 
we can assume P (b ) and P (c )  to be true, so that b and c can be expressed 
as products of primes:

b =  P 1P2 Pn c =  q iq2 • • •qs, 

yielding for a the composite expression

a =  be — P1P2 • • • /V?i<72 ' ‘ '

which is of the desired form.
To prove the uniqueness, we have to consider two possible prime 

factorizations of an integer a,

a =  (±1 )p r f2 •■■pm =  (±1)<7i<72 • • • Qn-

Since the primes p, and qy are all positive, the terms ±1 in the two 
decompositions must agree. The prime p x in the first factorization is a 
divisor of the product a =  ± q  1 • • • q„, so that repeated application of 
Theorem 9 insures that px must divide at least one factor qt of this
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product. Since p i  \ qj and both are positive primes, p\ =  qt. Rearrange the 
factorization q^q2 ■■■ q, so that q-, appears first, then cancel p\ against qj, 
leaving

P 2P 3 • • • Pm =  Q2 Q3 • • • <in ■>

where the accents denote the q ’s in their new order. Continue this process 
until no primes are Jfeft one one side of the resulting equation. There can 
then be no primes left on the other side, so that in the original factoriza
tion, m =  n. W e have caused the two factorizations to agree simply by 
rearranging the primes in the second factorization, as asserted in our 
uniqueness theorem. Q.E.D.

In the factorization of a number the same prime p may occur several 
times. Collecting these occurrences, we may write the decomposition as

(16) a =  ± p i lp2ei •■•Pkk (1 <  pi  <  p2 <  • • • <  pk)•

Here our uniqueness theorem asserts that the exponent et to which each 
prime p, occurs is uniquely determined by the given number a.

E xerc ises

1. Describe a systematic process for finding the g.c.d. and the l.c.m. o f two 
integers whose prime-power decompositions (16) are known, illustrating with 
a =  216, b =  360, and a =  144, b =  625. (Hint: It is helpful to use 
“ dummy”  zero exponents for primes dividing one but not both of a or b.)

2. I f  Vp(a ) denotes the exponent o f the highest power o f the prime p dividing 
the nonzero integer a, prove the formulas

(i) Vp(a +  b) S  m in {Vrp(a ), Vp(b)}\
(ii) Vp((a ,b ) )  =  min {Vp(a), Vp(b)}\
(iii) Vp(ab) =  Vp(a) +  Vp(b);
(iv) Vp([a, b]) =  max{!/ , ( « ) ,  Vp(b)}.

3. If || a || =  2 for Vp as in Ex. 2, prove that

\\ab\\ =  || a ||-II&II and ||a +  b\\ S  max (||a ||, ||f>||).

★ 4. Let V (a )  be a nonnegative function with integral values, defined for all 
nonzero integers a and having properties (i) and (iii) of Ex. 2. Prove that 
V (a ) is either identically 0 or a constant multiple o f one o f the functions 
Vp(a ) o f Ex. 2. (Hint: First locate some p  with V (p )  >  0.)

5. Using the formulas of Ex. 2, show that for any positive integers a and b, 
ab =  (a, b)[a, b ]. (For a second proof, cf. Ex. 14(c), §1.7.)

6. Prove that the number of primes is infinite (Euclid). (Hint: I f  p lt ■ ■ • ,p„ are
n primes, then the integer p xp2 • • • p„ +  1 is divisible by none of these
primes.)

Download more at Learnclax.com



§1.9 Congruences 25

★7. Define the function e (n )  (n any positive integer) as the g.c.d. of the 
exponents occurring in the prime factorization of n. Prove that (a) for given r 
and n in Z, there is an integer x  such that x r =  n if and only if r\e( n) ;
(b) e (n r) =  r • e (n );  (c) if e (m ) =  e (n )  =  d, then d \ e(mn).

8. I f  a product mn o f positive integers is a square and if (m, n)  =  1, show that 
both m and n are squares.

★9. The possible right trangles with sides measured by integers x, y, and z may 
be found as follows. Assume that x, y, and z have no common factors except 
± 1.
(a) I f  x 2 +  y2 =  z 2, show that x  and y cannot both be odd.
(b) If  y is even, apply Ex. 8, to show that y =  2mn, where m and n are 

integers with x  =  m 2 — n 2, z =  m 2 +  n 2. (Hint: Factor z 2 — x 2, and 
show (z +  x, z -  x )  =  2.)

1.9. Congruences

In giving the time of day, it is customary to count only up to 12, and 
then to begin over again. This simple idea of throwing away the multiples 
o f a fixed number 12 is the basis o f the arithmetical notion o f congruence. 
We call two integers congruent “ modulo 12”  if they differ only by an 
integral multiple of 12. For instance, 7 and 19 are so congruent, and we 
write 7 =  19 (mod 12).

Definition, a =  b (mod m ) holds if  and only if  m\(a — b).

One might equally well say that a =  b (mod m)  means that the 
difference a — b lies in the set of all multiples o f m. There is still another 
alternative definition, based on the fact that each integer a on division by 
m leaves a unique remainder (Corollary 1 of §1.7). This alternative we 
state as follows:

Theorem  13. Two integers a and b are congruent modulo m if  and 
only i f  they leave the same remainder when divided by | m |.

Since a =  b (mod m) if and only if a =  b (mod —m), it will suffice to 
prove this result for the case m >  0.

Proof. Suppose first that a =  b (mod m ) according to our definition. 
Then a — b =  cm, a multiple of m. On division by m, b leaves a remain
der b — qm =  r, where 0 ^  r <  m. Then

a  — b +  cm =  (qm +  r) +  cm =  (q +  c )m  +  r.

This equation indicates that r is the unique remainder of a on division by 
m; hence a and b do have the same remainder.
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Conversely, suppose that a =  qm +  r, b =  q'm  +  r, with the same 
remainder r. Then a -  b =  (q — q ')m  is divisible by m, so that a =  b 
(mod m). Q.E.D.

The relation of congruence for a fixed modulus m has for all integers 
a, b, and c the following properties, reminiscent of the laws of equality

Each o f these laws may be proved by reversion to the definition of 
congruence. The symmetric law, so translated, requires that m | (a -  b ) 
imply m | (b —‘a). The hypothesis here is a -  b =  dm, which gives the 
conclusion m | (b — a)  in the form b -  a =  (—d)m .

The relation of congruence for a fixed modulus m has a further 
“ substitution property,”  reminiscent of equality also: sums of congruent 
integers are congruent, and products of congruent integers are congruent.

Theorem  14. I f  a =  b (mod m ), then for all integers x,

a +  x =  b +  x ax =  bx, —a =  —b (all modm).

Here again the proofs rest on an appeal to the definition. Thus the 
hypothesis becomes a — b =  km for some k ; from this we may derive 
the conclusions in the form

m | (a +  x — b — x ), m | (ax — bx), m \ (—a +  b).

The law of cancellation which holds for equations need not hold for 
congruences. Thus 2 • 7 =  2 • 1 (mod 12) does not imply that 7 =  1 
(mod 12). This inference fails because the 2 which was cancelled is a 
factor of the modulus. A t best, a modified cancellation law can be found:

Theorem  15. Whenever c is relatively prime to m,

Proof. By definition, the hypothesis states that m \ (ca -  cb) or, in 
other words, that m | c(a — b). But m is assumed relatively prime to the 
first factor c of this product, so Theorem 10 allows us to conclude that m 
divides the second factor a -  b. This means that a =  b (mod m), as 
asserted.

The study of linear equations may be extended to congruences.

(§1.2):

Reflexive: a =  a
Symmetric: a =  b implies b =  a
Transitive: a =  b and b =  c imply a =  c

ca =  cb (modm). implies a =  b (m odm ).
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Theorem  16. I f  c is relatively prime to m, then the congruence cx =  b 
(modm ) has an integral solution x. Any two solutions Xi and x2 are 
congruent, modulo m.

Proof. By hypothesis, the g.c.d. (c, m ) is 1, so 1 =  sc +  tm for 
suitable integers s and t. Multiplying by b , b -  bsc +  btm. The final term 
here is a multiple o f m, so that b =  (bs)c (mod m). This states that 
x =  bs is the required solution of b =  xc.

On the other hand, two solutions jcj and x2 of this congruence must 
satisfy cx1 =  cx2 because congruence is a transitive and symmetric 
relation. Since c is supposed prime to m, we can cancel the c 
here, as in Theorem 15, obtaining the desired conclusion x 1 =  x2 
(mod m). Q.E.D.

An important special case arises when the modulus m is a prime. In 
this case all integers not divisible by m are relatively prime to m. This fact 
gives the

Corollary. I f  p is a prime and if  c ^  0 (mod p), then cx =  b (mod p ) 
has a solution which is unique, modulo p.

Simultaneous congruences can also be treated.

Theorem  17. I f  the moduli m i and m2 are relatively prime, then the 
congruences

(17) x =  b\ (m odm i), x =  b2(m odm 2)

have a common solution x. Any two solutions are congruent modulo
m im 2.

Proof. For any integer y, x =  bi +  ymi is a solution of the first 
congruence. Such an x satisfies the second congruence also if and only if 
bi +  ym i =  b2 (mod m2), or ymj =  b2 — bx (mod m2). Since m, is rela
tively prime to the modulus m2, this congruence can be solved for y by 
Theorem 16.

Conversely, suppose that x and x ' are two solutions o f the given 
simultaneous congruences (17). Then x — x ' =  0 (mod and also 
(mod m2). Since mi and m2 are relatively prime, this implies that the 
difference jc — jc' is divisible by the product modulus m im 2, so that 
x =  x ’ (mod mtm2). Q.E.D.

The same methods of attack apply to two or more congruences of the 
form ape =  bt (mod m;), with (a„ m,) =  1 and with the various moduli 
relatively prime in pairs.
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Theorem  18 (Fermat). I f  a is an integer and p is a prime, then

ap =  a (modp).

Proof. For a fixed prime p, let P (n)  be the proposition that np =  n 
(mod p). Then P(0 ) and P ( l )  are obvious. In the binomial expansion (9) 
for (n +  l ) p, every coefficient except the first and the last is divisible by p, 
hence (n +  l ) p =  np +  1 (mod p), whence P(n)  implies (n +  l )p =  
n +  1 (mod p), which is the proposition P(n +  1).

E xerc ises

1. Solve the following congruences:
(a) 3x =  2 (mod 5), (b) I x  =  4 (mod 10),
(c) 243x +  17 =  101 (mod 725), (d) 4x +  3 =  4 (mod 5),
(e) 6x +  3 =  4 (mod 10), (f) 6x +  3 =  1 (mod 10).

2. Prove that the relation a =  b (mod m )  is reflexive and transitive.
3. Prove directly that a =  b (mod m) and c =  d (mod m ) imply a +  c =  

b +  d (mod m) and ac =  bd (mod m).
★4. (a) Show that the congruence ax =  b (mod m)  has a solution if and only if 

(a, m )  | b.
(b) Show that if (a, m) \ b, the congruence has exactly (a, m)  incongruent 

solutions modulo m. (Hint: Divide a, b, and m by (a, m).)
5. If m is an integer, show that m 2 =  0, 1, or 4, modulo 8.
6. Prove x 2 =  35 (mod 100) has no solutions.

★7. Prove that if x 2 =  n (mod 65) has a solution then so does x 2 =  - n  
(mod 65).

8. If x  is an odd number not divisible by 3, prove that x 2 =  1 (mod 24).
★9. (a) Show by tables that all numbers from 25 to 40 can be expressed as sums

o f four or fewer squares (the result is actually true for all positive 
numbers).

(b) Prove that no integer m =  7 (mod 8) can be expressed as a sum of 
three squares. (Hint: Use Ex. 5.)

10. Solve the simultaneous congruences:
(a) x =  2 (mod 5), 2x =  1 (mod 8),
(b) 3x =  2 (mod 5), 2x =  1 (mod 3).

11. On a desert island, five men and a monkey gather coconuts all day, then 
sleep. The first man awakens and decides to take his share. He divides the 
coconuts into five equal shares, with one coconut left over. He gives the 
extra one to the monkey, hides his share, and goes to sleep. Later, the 
second man awakens and takes his fifth from the remaining pile; he too 
finds one extra and gives it to the monkey. Each of the remaining three 
men does likewise in turn. Find the minimum number o f coconuts originally 
present (Hint: Try —4 coconuts.)

★12. Show by induction that Theorem 17 can be generalized to n congruences 
with moduli relatively prime in pairs.
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★13. Prove that if (m u m2) -  (a it /n,) =  (a2, m 2) =  1, then the simultaneous 
congruences ape =  bi (mod m,) (i =  1,2) have a common solution, and any 
two solutions are congruent modulo m im 2- 

★14. Generalize Ex. 13 to n simultaneous congruences.
15. For what positive integers m is it true that whenever x 2 =  0 (mod m )  then 

also x =  0 (mod m ) l
16. If a and b are integers and p  a prime, prove that (a +  b)p =  ap +  bp 

(mod p).

1.10. The Rings Z„

From early antiquity, man has distinguished between the “ even” 
integers 2, 4, 6, • • • and the “ odd”  integers 1, 3, 5, • • • . The following 
laws for reckoning with even and odd integers are also familar:

even +  even =  odd +  odd =  even, even +  odd =  odd,
(18)

even • even =  even . odd =  even, odd • odd =  odd.

These identities define a new integral domain Z 2, which consists of two 
elements 0 (“ even” ) and 1 (“ odd” ) alone, and having the addition and 
multiplication tables

0 +  0 =  l  +  l  =  0, 0 +  l  = l +  0 = l ,

0 • 0 =  0 • 1 =  1-0  =  0, 1-1 =  1.

We will now show that a similar construction can be applied to the 
remainders 0, 1, 2, • • •, n — 1 to any modulus n. Two such remainders 
can be added (or multiplied) by simply forming the sum (or product) in 
the ordinary sense (i.e., in Z), and then replacing the result by its 
remainder modulo n. Tables for the case n =  5 are

+ 0 1 2 3 4 0 1 2 3 4

0 0 1 2 3 4 0 0 0 0 0 0
1 1 2 3 4 0 1 0 1 2 3 4
2 2 3 4 0 1 2 0 2 4 1 3
3 3 4 0 1 2 3 0 3 1 4 2
4 4 0 1 2 3 4 0 4 3 2 1

In every case the resulting system has properties (i)- (v iii) o f §1.1. That is, 
we have

Theorem  19. Under addition and multiplication modulo any fixed 
n § 2 ,  the set o f integers 0, 1, • • •, n — 1 constitutes a commutative ring
Z„-
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Proof. In the last section, we saw that the relation x  =  y (mod n )  is 
reflexive, symmetric, and transitive, like ordinary equality. In fact, by 
Theorem 14, a =  b (modn) and c =  d  (modn) together imply

(19) a +  c =  b +  d (mod n), a ■ c =  b • d  (mod n).

That is, postulates (i) and (ii) hold, provided “ equality”  in Z  is reinter
preted to mean “ congruent modulo n.”  Again, 0 and 1 in Z  act in Z„ as 
identities for addition and multiplication, respectively, while n — k is an 
additive inverse of k, modulo n.

It remains to verify postulates (iii)-(v); consider the distributive law. 
Since a (b  +  c )  = ab +  ac for any integers, one must by (19) have 
a (b  +  c )  =  ab +  ac  (modn) when remainders are taken modn. This is 
the distributive law in Z „ ; the proofs of the commutative and associative 
laws are the same. Q.E.D.

The only postulate for an integral domain not such an identity is the 
cancellation law of multiplication. According to Theorem 1, this law is 
equivalent to the assertion that there are no divisors of zero in Z „: 
ab = 0 implies a = 0 or b =  0. These equations in Z„ mean congruences 
for ordinary integers, so the law becomes the statement: ab =  0 (mod n)
implies a =  0 (m odn) or b =  0 (modn). This is equivalent to the
assertion that n | ab implies n | a or n | b. This is true if n is a prime 
(Theorem 9). I f n is not prime, n has a nontrivial factorization n =  ab, so 
n | ab although neither n | a nor n | b, and Z„ has zero-divisors. This 
proves

T h e o re m  20. The ring Z„ o f  integers modulo  n is an integral domain i f  
and only i f  n is a prime.

There are other, more systematic ways to construct the algebra of 
integers modulo n. The device of replacing congruence by equality means 
essentially that all the integers which leave the same remainder on 
division by n are grouped together to make one new “ number.”  Each 
such group of integers is called a “ residue class.”  For the modulus 5 there 
are five such classes, corresponding to the possible remainders, 0, 1,2, 3, 
and 4; some of these classes are

Is =  {• • •, —14, -9 , —4,1,6,11,16, • • •},

25 =  {• • •, —13, —8, —3, 2, 7, 12, 17, • • •},

35 =  {• • • , “ 12, —7, - 2 ,3 ,8 ,1 3 ,1 8 ,  • • •}.

For any modulus n the residue class rn determined by a remainder r  with 
0 Si r  <  n consists of all integers a which leave the remainder r  on

Download more at Learnclax.com



§1.10 The Rings Z„ 31

division by n. Each integer belongs to one and only one residue class, and 
two integers will belong to the same residue class if and only if they are 
congruent (Theorem 13). There are n residue classes: 0„, 1„, • ■ •,
( «  -  !)«•

The algebraic operations of Z„ can be carried out directly on these 
classes. For suppose that two residues r and s give in Z„ a remainder t as 
sum, r +  s =  t (mod n). The answer would be obtained if one used 
instead of the residues r and s any other elements in the corresponding 
classes. If a is in rn, b in s„, then a +  b is in the class tn belonging to the 
sum t, for a =  r and b =  s give a +  b =  r +  s =  t (mod n). In general, 
the algebra Z „ could be defined as the algebra of these residue classes: to 
add (or multiply) two classes, pick any representatives a and b of these 
classes, and find the residue class containing the sum (or the product) of 
these representatives. If an denotes the residue class which contains a, 
this rule may be stated as

(20) (a +  b )n =  an +  bn, (ab)n =  anbn.

For instance, the sum 15 +  25 =  35 of the classes listed above may be 
found by adding any chosen representatives 6 +  (-13 ) to get a result -7  
which lies in the sum class 35. Other choices -9  +  (-3 ) =  —12, 11 +  7 =  
18, —14 +  17 =  3, all give the same sum, 35.

The residue classes which we have defined in terms of remainders may 
also be defined directly in terms of congruences, by a general method to 
be discussed in §6.13.

Exercises

1. Construct addition and multiplication tables for Z 3 and Z 4.
2. Compute in Z?: (3 • 4) • 5, 3 • (4 • 5), 3 • (4 +  5), 3 • 4 +  3 • 5.
3. Find all divisors o f zero in Z 26, Z 24.
4. Determine the exact set o f all sums x + y and that of all products xy for x in 

48, y in 48. How are these related to the sets 48 +  48 and 48 • 48?
5. Verify the associative law for the addition o f residue classes, as in the proof 

of Theorem 19.
6. For real numbers x and y, let x =  y (mod 2ir) mean that x =  y +  2nir for 

some integer n. Show that addition o f residue classes can then be defined as 
in (20), whereas multiplication o f residue classes cannot be so defined.

★7. Show that in Z„ any element c which is not a unit is a zero-divisor.
★8. (a) Enumerate the units of Z 15.

(b) Show that if n =  2m +  1 is odd, then the number of units of Z „ is even.
★9. Show that k is a unit o f Z„ if and only if (fc, n) =  1 in Z.
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1.11. Sets, Functions, and Relations

A t this point, we pause to discuss briefly the fundamental notions of 
set, function, binary operation, and relation.

A  set is a quite arbitrary collection of mathematical objects: for 
example, the set of all odd numbers or the set of all points in the plane 
equidistant from two given points. I f A  is a set, we write r e A t o  signify 
that the object x is an element of the set A , and x £ A  when x is not an 
element of A . A  finite set A  can be specified by listing its elements; for 
example, {0, 2 ,4 } denotes the set whose (only) elements are the numbers 
0, 2, and 4. More generally, any set is determined by its elements, in the 
sense that two sets A  and B  are equal (the “ same” ) if and only if they 
have the same elements. This principle (called the axiom o f extensionality) 
can also be stated symbolically: A  =  B  means that for all x, x e A  if and 
only if x e B. The resulting equality of sets is clearly a reflexive, symmet
ric, and transitive relation, as required in §1.2 for any equality.

A  set S is called a subset of a set A  if and only if every element x of 5 
is also in A ; the symbol S A  indicates that 5 is a subset of A . I f both 
T c S  and S c A ,  then clearly T  <= A , so the relation “ subset o f”  
is transitive. Likewise, the condition for the equality of sets becomes 
the statement that A  = B  if and only if both A  B  and B  c  A. 
Moreover, the empty set 0  (the set with no members) is a subset of 
every set.

Starting with any set, such as the set of all integers, we can pick out 
various subsets: the set of all positive integers, the set of all odd positive 
integers, the set of all integers greater than 18, and so on. These examples 
illustrate the principle that any property determines a subset; more 
exactly, given any set A  and a property P, one may form the subset

(21) S =  { x | x e A  and xh a sP }

o f all those elements of A  which have the property P.
Generally, if A  and B  are sets, a function tf>: A  -> B  on A  to B  is a 

rule which assigns to each element a in A  an element a<j> in B. We will 
write this a •-» atp. Thus x •-» x 1 is a function on the set A  =  Q of all 
rational numbers to the set B  of all nonnegative rationals (it can also be 
considered as a function Q -> Q). Likewise, the operation “ add one” 
sends each integer n to another, by n •-» n +  1; hence it is a function <f>: 
Z  -> Z. In any ordered domain D, the process of taking the absolute 
value, a*-+\a\,  is similarly a function on the set D  to the set of 
nonnegative elements in D . Taking the negative, a —a, is still another 
function on D  to D.

The relation a *-» a(j> is sometimes written a <f>a or a <f>(a), with 
the symbol for the function in front. A  function <f>: A  -> B  is also
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called a mapping, a transformation, or a correspondence from A  to B. The 
set A  is called the domain of the function <f>, and B  its codomain. For 
example, the usual telephone dial

A B C  D E F  G H I  J K L  M N O  P R S  T U V  W X Y  Z
\ i/  \ i/  \ i/  \ i/  \ i/  \ i/  \ i/  \ i/  I

2 3 4 5 6 7 8 9 0

defines a function on a set A  of 25 letters (the alphabet, Q  omitted) to 
the set {0, 1, • • • , 9} of all ten digits.

The image (or “ range” ) of a function <p: A  -* B  is the set of all the 
“ values”  of the function; that is, all a<f> for a in A . The image is a subset 
of the codomain B, but need not be all of B. For example, the image of 
the telephone-dial function is the subset {0, 2, • • •, 9}, with 1 omitted.

A  function (f>: A  -* B  is called surjective (or onto) when every 
element b e B  is in the image— that is, when the image is the whole 
codomain. For example, absolute value a ■-» | a | for integers is a function 
Z  -* Z, but is not surjective because the image is the (proper) subset 
N ^ Z  of all nonnegative integers. However, the rule a *—> |a | also 
defines a function Z  -* N  that is surjective. To decide whether or not a 
function is onto, we must know the intended codomain.

A  function <f>: A  -* B  is an injection (or one-one into) when different 
elements of A  always have different images— in other words, when 
a<f> =  a'<f> always implies a =  a'. For example, x -* 2x is an injection 
Z  -» Z  (but is not surjection).

A  function (f>: A  -* B  is a bijection (or bijective, or one-one onto) 
when it is both injective and surjective; that is, when to each element 
b e B  there is one and only one a e A  which has image b, with a(f> =  b. 
For example, n >-» n +  1 is a bijection Z  Z  and, for any domain D, 
a >-» a is a bijection £>-»£>. Bijections <f>: A  -* B  are also called 
one-one correspondences (of A  onto B ), while not necessarily injective 
correspondences have been called many-one correspondences.

Binary Operations. Operations on pairs of numbers arise in many 
contexts— the addition of two integers, the addition of two residue classes 
in Z„, the multiplication of two real numbers, the subtraction of one 
integer from another, and the like. In such cases we speak of a binary 
operation. In general, a binary operation on a set 5 of elements 
a, b, c, • • • is a rule which assigns to each ordered pair of elements a and b 
from 5 a uniquely defined third element c =  a ° b in the same set 5. Here 
by “ uniquely”  we mean the substitution property

(22) a =  a ' and b =  b' imply a ° b  =  a' °b ' ,

as in the uniqueness postulate for a commutative ring.
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It is convenient to write S  x  T  for the set of all ordered pairs of 
elements (a, b) with a e S,b  e T ; this is called the Cartesian product (or 
simply “ product” ) of S and T. One also writes S2 for the product S x S  
of a set with itself; a binary operation is then the same thing as a function 

S2 S.
Two given integers may be “ related”  to each other in many ways, such 

as “ a =  b," “ a <  b,”  “ a =  b (m od7),,Tor “ a\b.”  Each of these phrases 
is said to express a certain “ binary relation”  between a and b. One may 
readily mention many other relations between other types of mathemati
cal objects; there are also nonmathematical relations, such as the relation 
“ is a brother o f”  between people. To discuss relations in general we 
introduce a symbol R  to stand for any relation (“ R ”  stands for “ < , ”  
“  =  or “ |,”  etc.). Formally, “ R ”  denotes a binary relation on a given set 
S of objects if, given two elements a and b in the set S, either a stands in 
the relation R  to b (in symbols, aRb), or a does not stand in the relation 
R  to b (in symbols, aR 'b ).

Especially important in mathematics are the relations R  on a set 5 
which, like congruence and equality, satisfy the following laws:

Reflexive: aRa for all a in S.
Symmetric: aRb implies bRa for all a, b in S.
Transitive: aRb and bRc imply aRc for all a, b, c in S.

Reflexive, symmetric, and transitive relations are known as equivalence 
relations. For example, the relation of congruence between triangles in 
the plane is such an equivalence relation.

Exercises

1. Which of the following binary operations a ° b on integers a and b are 
associative, and which ones are commutative?

a -  b, a2 + b2, 2(a + b), —a — b.

2. Which of the three properties “ reflexive,” “ symmetric,”  and “ transitive” 
apply to each of the following relations between integers a and bl

a S  b, a <  b, a\b, a2 + a = b2 + b, a <\b\.

3. Do the same for the following relations on the class of all people: “ is a 
father of,”  “ is a brother of,”  “ is a friend of,” “ is an uncle of,”  “ is a 
descendant of.”  Would any of your answers be changed if these relations 
are restricted to apply only to the class of all men?

★4. How is the relation “ is an uncle of”  connected with the relations “ is a 
brother of”  and “ is a parent of” ? Can you state any similar general rule for 
making a new relation out of two given ones?
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5. A  relation R  is called “ circular”  if aRb and bRc imply cRa. Show that a 
relation is reflexive and circular if and only if it is reflexive, symmetric, and 
transitive.

★6. What is wrong with the following “ proof”  that the symmetric and transitive 
laws for a relation R  imply the reflexive law? “ By the symmetric law, aRb 
implies b R a ; by the transitive laws, aRb and bRa imply aRa.”

7. Each o f the following rules defines a function f :  Z  -* Z. In each case specify 
the image and whether or not the function is injective.
(a) a >-» | a | +  1, (b) a >-» a 2,
(c) a »-> 2a +  5, (d) g.c.d. (a, 6).

8. Do Ex. 7, replacing Z  by the class Z + of positive integers.
9. For what integers n is the function x  *-» 6x +  7 bijective on Z „?  surjective 

on Z „?
10. Show that any relation R  on a set S can be regarded as a function /: 

S2 -> {0 ,1 }.

1.12. Isomorphisms and Automorphisms

One of the most important concepts of modern algebra is that of 
isomorphism. We now define this concept for commutative rings as 
follows:

Definition. A n  isomorphism between two commutative rings R  and 
R ' is a one-one correspondence a * *  a ' o f the elements a o f R  with the 
elements a' o f R ', which satisfies for all elements a and b the conditions

(23) (a +  b )' =  a' +  b', (ab)' =  a'b'.

The rings R  and R ' are called isomorphic if  there exists such a corres
pondence.

On account of the laws (23) one may say that the isomorphism a *+ a' 
“ preserves sums and products.”  Loosely speaking, two commutative rings 
are isomorphic when they differ only in the notation for their elements. 
An appropriate example is the algebra of “ even”  and “ odd”  as compared 
with the integral domain Z 2, as discussed in §1.10. The one-one corres
pondence

even «-> 0 odd <-* 1

is an isomorphism between these domains because corresponding ele
ments are added and multiplied according to the same rules (cf. formula 
(18)).
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Many integral domains have important isomorphisms with themselves. 
Such isomorphisms are called automorphisms; they are analogous to 
symmetries of geometrical figures (see §6.1). Consider, for example, the 
domain Z[V2] described in §1.1 as the set of all numbers m +  nV2 for 
m and n in the domain Z  of integers; it is isomorphic to itself under the 
nontrivial correspondence m +  n^2 +* m — ti'J2. This correspondence is 
an isomorphism, since for any a =  m +  n^fl and b =  m x +  rii V2, we 
have

(ab)' =  [(m  +  «V2 )(m i +
= [(mm i + 2 nnx) +  (m«i +  m i / t ) ^ ] '
=  (mm i +  2 nn-i) — (m nx +  m\n)'f2, 

a'b ' =  (m — n 'f l ) (m l — n^Jl)
-  (m m i +  2nn{) — (m nx +  m in )'J l

and, similarly, (a +  b)' -  a ' +  b'.
Any isomorphism a *-* a ' preserves not only sums and products, but 

also differences. By definition, a — b is the solution of the equation 
b +  x =  a, so that b +  (a — b) =  a. Since the correspondence preserves 
sums, b' +  (a -  b )' =  a'; this asserts that (a -  b )’ is the (unique) solution 
of the equation b' +  x =  a', or that

(a -  by =  a' -  b'.

Other rules are

(24) 0' =  0, 1' =  1, (~ a )' =  —(a ').

In words: the zero (unity) of R  corresponds to the zero (unity) of R '.
W e shall see later that the idea of isomorphism applies to algebraic 

systems in general. One may even describe abstract algebra as the study 
of those properties of algebraic systems which are preserved under 
isomorphism.

In describing the system of integers as an ordered domain in which 
each set of positive integers has a least element, we claimed that these 
postulates completely describe the integers for all mathematical purposes. 
W e can now state this more precisely (it will be proved in §2.6). Any 
ordered domain in which the positive elements are well-ordered is 
isomorphic to the domain Z  of integers. Sucn a characterization of Z  “ up 
to isomorphism”  is the most that could be achieved with any postulate 
system of the type we have used, for it is clear, in general, that if a system 
5 satisfies such a system of postulates, and if S' is another system 
isomorphic to 5, then S' must also satisfy the postulates. Thus if 5 satisfies
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a commutative law for addition, then a +  b =  b +  a for all a and b in S. 
The corresponding elements in the given isomorphism must be equal, so 
(a +  bY =  (b +  a)'. Since the isomorphism preserves sums, a ' +  b' = 
b' +  a'. This asserts that the commutative law also holds in S'. This 
argument is of a general character and applies to all our postulates.

Exercises

1. Prove that the properties (24) hold for any isomorphism.
2. Let Z [V3] be the domain o f all numbers m +  nv3 for m, n e Z. Exhibit a 

nontrivial isomorphism o f Z [V3] with itself.
3. Prove that the correspondence m +  n^2  <-* m +  rt'/S is not an isomorphism 

between the domains Z [V2] and Z[V3].
4. (a) Prove that under any isomorphism an element x  satisfying an equation

x 2 =  1 +  1 must correspond to an element y =  x ’ satisfying the equa
tion y2 =  1' +  1'.

(b) Use (a) to show that no isomorphism is possible between Z[V2] and 
Z[V3],

5. Show that the domain Z  of integers has no nontrivial isomorphisms with 
itself.

★6. Prove that an integral domain with exactly three elements is necessarily 
isomorphic to Z 3.

7. Prove that isomorphism is an “ equivalence relation”  (i.e., a reflexive, sym
metric, and transitive relation).
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Rational Numbers 

and Fields

2.1. Definition of a Field

Both the integral domain Q  of all rational numbers and the integral 
domain R of all real numbers have an essential algebraic advantage over 
the domain Z  of integers: any equation ax =  b {a #  0) can be solved in 
them. Commutative rings with this property are called fields', we now 
show that division is possible and has its familiar properties in any 
commutative ring where all nonzero elements have nonmultiplicative 
inverses.

Definition. A  field F  is a commutative ring which contains for each 
element a #  0 an ‘"inverse” element a 1 satisfying the equation a 1 a =  1.

It is easy to show that the cancellation law (ix) of §1.1 holds in any 
field, for if c #  0 and ca =  cb, then

a — \a =  (c -1c)a =  c~ l {ca) =  c~l {cb) -  {c~1c)b  =  1 b =  b.

In other words, every field is an integral domain; more generally, so is 
every subdomain of a field (and for the same reason). Conversely, in this 
section and the next we will show that any integral domain can be 
extended to a field in one and only one minimal way. The method of 
extension is illustrated by the standard representation of fractions as 
quotients of integers.

Theorem 1. Division (except by zero) is possible and is unique in any 
field.

38
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Proof. We have to show that for given a ^  0 and b in a field F  the 
equation ax =  b has one and only one solution x in F. I f a ^  0, the 
inverse a -1 may be used to construct an elem ent x =  a 1b which on 
substitution proves to be a solution o f ax =  b. It is the only solution, for 
by the cancellation law proved above, ax =  b and ay =  b together imply 
x =  y if a ^  0. Q.E.D.

The solution of ax =  b is denoted by b/a (the quotient of b by a). In 
particular, 1/a =  a -1.

All the rules for algebraic manipulation listed in §1.2 are satisfied in 
fields, considered as integral domains. The usual rules for the manipula
tion of quotients can also be proved from the postulates for a field.

Theorem 2. In any field, quotients obey the following laws (where 
b ^  0 and d ^  0),

(i) (a/b) = {c/d ) if  and only if  ad =  be,
(ii) (a/b) ±  (c/d) =  (ad ±  bc)/(bd),
(iii) (a/b)(c/d) =  (ac/bd),
(iv) (a/b) +  (-a / b ) =  0,
(v) (a/b)(b/a) =  1 if  (a/b) ^  0.

Proof of (i). The hypothesis (a/b) =  (c/d) means ab~l =  cd~l . This 
gives ad =  a(b~1b)d =  cd~l (bd) =  cd~ldb =  be.Conversely, if ad =  be, 
then a/b =  b~xa =  b~xadd~x =  b~lbcd~x =  cd~l =  c/d, as desired.

Proof o f (ii). Observe that x =  a/b and y =  c/d denote the solu
tions of bx =  a and dy =  c. These equations may be combined to give

dbx =  da, bdy =  be, bd(x ±  y) =  ad ±  be.

Thus x ±  y is the unique solution z =  (ad ±  bc)/bd of the equation 
bdz =  ad ±  be.

Proof o f (iii). As above, the equations bx =  a and dy =  c can be 
combined to give

(bd)(xy) =  (bx)(dy) =  ac, 

whence xy =  (ac)/(bd).

Proof o f (iv). Substituting in (ii), we have

(a/b) +  (-a / b ) =  (ab -  ba)/b2 =  0/b2 =  0 • (Z>2)-1 =  0.

Proof of (v). Substituting in (iii), we have (a/b)(b/a) =  ab/ba. But 
ab/ba is the unique solution of the equation bax =  ab. Clearly, x =  1 
satisfies this equation; hence ab/ba =  1. Q.E.D.
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Arguments similar to those just employed can be used to prove such 
other familiar laws as the following:

(3) (a/b)/(c/d) =  ad/bc, (a/b)/c =  a/bc, a/\ =  a\ b ,c ,d  ^  0.

(4) - (a lb )  =  (~a)/b  =  a / (-b ), ( -a )/ ( - b )  =  a/b, b *  0.

The proofs will be left to the reader as exercises.
Fields exist in great variety. Thus, for any prime p, the integral domain 

Zp constructed in §1.10 is a field. This follows from the corollary of 
Theorem 16, §1.9. Again, if one assumes that the real numbers form a 
field, one can easily construct other examples of fields by using the notion 
of a subfield.

Definition. A  subfield o f a given field F  is a subset o f F  which is itself 
a field under the operations o f addition and multiplication in F.

All identities (viz., the commutative, associative, and distributive laws) 
which hold in F  hold a fortiori in any subset of F, provided the operations 
in question can be performed. In testing a subset 5 of F  for being a 
subfield, one can therefore ignore the postulates which are identities and 
test only those which involve some “ existence”  assertion, such as the 
existence of an inverse. This gives the following result:

Theorem  3. A  subset S o f a field F  is a subfield if  S contains the zero 
and unity o f F, i f  S is closed under addition and multiplication, and if  each 
a o f S has its negative and (provided a ^  0) its inverse a -1 in S.

Theorem 3 may now be applied to show that the set of all real 
numbers of the form a +  b 'J l, with rational coefficients a and b, is a 
subfield of the field of all real numbers. This subfield is customarily 
denoted by Q (^2 ), where Q  designates the field of rationals. Theorem 3 
does apply, for the sum of any two numbers of Q(V2) is another one of 
the same sort, and similarly the product is

(1) ' (bd)~l =  d~'b~\ ( - b T l =  - ( b - 1) if

(2) a ±  (b/c) =  (ac ±  b)/c, a(b/c) =  ab/c,

b,d  *  0.

C 9* 0.

(a +  b'Pi)(c +  d'J2) =  (ac +  2 bd) +  (be +  a d )>/2 .

Again, Q (^2) contains 0 =  0 +  0^2, 1 =  1 +  0^2, and —(a +  b 'f l )  =  

- a  — b '/ l if it contains a +  b 'f l .  Finally, an inverse (a +  b ' f i y 1 of any
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nonzero element may be found by “ rationalizing the denominator,”

1 I  /a -  b'/2\ / a \ / b \ r-

a +  b ^ 2  a +  b J T ' a - b ' J l '  V  - 2 b 2'  W  -  2b2'

The new denominator a2 — lb 2 is never zero (as is proved in §3.6), and 
the resulting inverse does have the required form a' +  b'-Jl with rational 
coefficients a' =  a/(a2 -  2b2), b' =  -b / (a 2 -  2b2). One may easily 
verify that this inverse does indeed satisfy the equation

(a ' +  b 'J2 )(a  +  bJ2) =  1.

Similarly, the set Q (^5) of all real numbers a +  b$ 5 +  c$25 with 
rational a, b, c is a field. Addition, subtraction, and multiplication are 
performed within this set much as in Q(V2), using this time the fact that 
(^5)3 =  5 is a rational number. Finally, (a +  b$5 +  c$ 25)_1 may be 
computed by showing that the equation

(a +  b$5 +  c$25)(x +  y#5 +  z^25) =  1 +  0 • ^5 +  0 • #25

is equivalent to a system of simultaneous linear equations. These equa
tions can always be solved for x, y, and z, unless a =  b =  c =  0.

We may construct still other subfields if we assume that there is a field
of complex numbers a +  bi, where i =  >/—'1 and a and b are real. The
quadratic equation

a)2 +  & +  1 =  0

will have a root cj =  (—1 +  V—3)/2 =  —1/2 +  (-v/3/2)x in the field. (Note 
that since <u3 — 1 =  ( «  — l)(<u2 +  <u +  1) =  0, <u is an “ imaginary”  cube 
root of unity!) A ll a +  ba> (a, b rational) form a subfield Q(<u) of the field 
of all complex numbers, for

(a +  bo)) +  (c  +  d(o) =  (a +  c ) +  (b +  d)a>,

(a +  b(o)(c +  d(o) =  ac +  (be +  ad)(o +  bdio2
=  (ac — bd) +  (be +  ad — bd)a>,

where the equation to2 =  —to — 1 has been used to get rid of the term in 
(o2. Furthermore, any a +  b(o ¥> 0 has an inverse in the set, for

, , , J - ( 6  -  a + M l  a 2 -
(a +  M [  a 2 _  ab +  b2 J  -  a 2 _

2 -  ab +  b2
2 1*ab +  b
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The denominator a 2 — ab +  b2 appearing in this inverse is never zero, 
for a 2 ~  ab +  b2 =  (a 2 +  b2)/2 +  (a -  b)2/ 2 is certainly positive unless 
a =  b =  0 .

Exercises

1. Prove formulas ( l )- (4 ) from the postulates for a field.
2. Make a table which exhibits c_I for each c ^  0 in Z n .
3. If the set of real numbers is assumed to be a field, which of the following 

subsets of reals are fields? (a) all positive integers, (b) all numbers a +  b'J3, 
with a, b rational, (c) all numbers a +  b<5, with a, b rational, (d) all 
rational numbers which are not integers, (e) all numbers a +  b'J5, with a 
and b rational.

4. Show that in Theorem 3 the conditions 0 € S and 1 6 S can be replaced by 
the condition “ S contains at least two elements.”  (Hint: Consider ax =  a.)

★5. Show that the law a +  b -  b +  a is implied by postulates (i), (ii), and
(iv)-(vii) of §1.1, together with 

(viii') For each a in R,  the equations a +  x =  0 and y +  a =  0 have 
solutions x and y in R.

6. Is every integral domain isomorphic to a field itself a field? Why?
7. Prove that the only subfield of the field Q of rational numbers is Q itself.
8. State and prove an analogue o f Theorem 3 for subdomains.
9. Show that a subfield of Q (V2) is either Q itself or the whole field Q i'J l ) .

10. If S and S' are two subfields of a given field F, show that the set of elements 
common to S and S' is also a subfield.

11. Can you state a general theorem on the possible subdomains of Z? of Z „?
★12. Construct addition and multiplication tables for a field of four elements,

assuming that 1 +  1 =  0 (addition is mod 2) and that there is an element x 
such that x 2 =  x  +  1.

★13. Find all subfields of the field of Ex. 12.

2.2. Construction of the Rationale

We will now prove rigorously that the (ordered) field Q of rational 
numbers can be constructed from the well-ordered domain Z  of all 
integers, whose existence was postulated in Chap. 1. Indeed, we will 
prove more: that a similar construction can be applied to any integral 
domain.

The integers alone do not form a field; the construction of the rational 
numbers from the integers is essentially just the construction of a field 
which will contain the integers. Clearly, this field must also contain 
solutions for all equations bx =  a with integral coefficients a and b ^  0.
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To construct abstractly the “ rational numbers”  which solve these equa
tions, we simply introduce certain new symbols (or couples) r =  (a, b), 
each o f  which is intended to stand fo r  a solution o f an equation bx =  a. 
To realize this intention we must specify that these new objects shall be 
added, multiplied, and equated exactly as are the quotients a/b in a field 
(Theorem 2, (i)—(iii)).

The preceding specification makes good sense whether we start with 
the domain of integers Z, or from some other integral domain D. It can 
be formulated precisely as follows.

Definition. Let D  be any integral domain. The field of quotients Q ( D )  of 
D  consists o f all couples (a, b) with a,b e D  and b ^  0. The “ equality" of 
such couples is governed by the convention that

(5) (a, b) =  (a ', b ') if  and only if ab' =  a'b,

while sums and products are defined, respectively, by

(6) (a, b) +  (a ', b ') =  (ab' +  a'b, bb'),

(7) ( a , b ) - ( a ' , b ' )  =  (aa ',bb ').

Note that since D  contains no “ divisors of zero”  (§1.2, Theorem 1), 
the product bb' #  0 in (6) and (7),and so 0 (D )  is closed under addition and 
multiplication.

We wish to regard the relation “  =  ”  of “ congruence”  between couples 
as an equality. Since this relation is not formal identity ((a, b) identical to 
(a ', b ') would mean a =  a ' and b =  b'), we must prove that this congru
ence has the properties of equality listed in §1.2 (for formal identity these 
properties would have been trivial). In the first place, we may check by 
straightforward argument that “  =  ”  is reflexive, symmetric, and transitive. 
And then, the sum and product are uniquely determined in the sense of 
this congruence. For instance, (a, b ) =  (a ', b ') implies (a, b) +  (a", b") =  
(a ', b ') +  (a", b"). For each sum in the conclusion is given by a formula 
like (6), and these two results are congruent in the sense (5) if and only if 
(ab" +  a"b )b 'b" =  (a 'b " +  a"b')bb". But this equation follows from the 
hypothesis (a, b) =  (a ', b ') (i.e., ab' =  a'b). A  similar uniqueness asser
tion holds for the product. We conclude that the equality defined by (5) 
has the desired properties.

Various algebraic laws in Q ( D )  may now be checked. Thus, for the 
distributive law one can reduce each side of the law systematically, 
according to definitions (6) and (7), in the following way, where r, r', and
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r" are any three couples:

r(r ' +  r") rr' +  rr"

(a, b )[(a ', b ') +  (a", 6")] (a, b) (a\b' )  +  (a, b)(a", b")

(a, b )(a 'b " +  a"b', b 'b") (aa\ bb') +  (aa", bb")

(aa'b" +  aa"b', bb'b") (aa'bb" +  aa"bb\ bb'bb”).

These two results give equal couples in the sense of (5), as the second 
result differs from the first only in the presence of an extra nonzero factor 
b in all terms. Such an extra factor in a couple always gives an equal 
couple, {bx, by) =  (x, y), for by (5) this equality amounts simply to the 
identity bxy =  byx.

This explicit proof of the distributive law in 0 ( D )  is but an illustra
tion. By the same straightforward use of the definitions and the laws for 
D,  one proves the associative and commutative laws. An identity element 
for addition (a zero) is the couple (0,1), for

(0,1) +  (a, b) =  (0 • b +  1 • a, 1 • b)  =  (a, b).

The cancellation law holds, and the couple (1,1) is an identity for 
multiplication. The negative of (a, b)  is - (a ,  b) =  (—a, b). This verifies all 
the postulates listed in §1.1 for an integral domain.

Theorem  4. The field o f quotients 0 ( D )  is a field for any integral 
domain D .

Proof. It remains only to prove that every equation rx =  1 with 
r 5* 0 has a solution x in Q { D ) — that is, the existence for every r ^  0 in 
0 (D )  of an inverse for r. But this is easy; more generally, any equation

(8) (a, b)(x, y ) =  (c, d ) with (a, b) & (0,1)

has a solution suggested by (3), namely,

(8') (x, y ) =  (be, ad).

For by direct substitution (a ,b )(b c ,ad ) =  (abc,bad), and (abc,bad) =  
(c, d) because abed =  bade. The hypothesis (a, b) & (0,1) insures that 
a ^  0, hence that (x, y ) has a second term ad not zero, as required by 
our definition of a rational number. Q.E.D.

We now wish to show that 0 (D )  actually contains our original integral 
domain D  as a subdomain— in other words, that 0 ( D )  is actually an
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extension of D. This is not strictly possible, since a couple (a, b) can’t be 
the same thing as an element of D. However, we can associate with each 
a e D  a couple (a, 1) which behaves under equality, addition, and 
multiplication exactly like a itself, as shown by

(a, 1) +  (b, 1) =  (a • 1 +  b • 1,1 • 1) =  (a +  b, 1),

(a, 1) • (b, 1) =  (ab, 1 • 1) =  (ab, 1),

(a, 1) =  (b, 1) if and only if a =  b.

One may conclude that the one-one correspondence a «-» (a, 1) is an
isomorphism of the given integral domain D  to a subdomain of the field
Q ( D )  =  F. Moreover, equations (8) and (8') show that any couple 
r =  (a, b) e Q ( D )  is the solution of an equation (b, l )r  =  (a, 1), or 
br =  a;  hence r =  (a, b) is the quotient a/b. This proves

Theorem 5. Any integral domain D  can be embedded isomorphically 
in a field Q ( D ) ,  each element o f which is a quotient of two elements 
of D.

Theorem 5 applies in particular to the domain Z; indeed it is sugges
tive to follow through the preceding arguments thinking of the special 
case that D  =  Z, so that Q (D ) =  Q (Z) is the set of all ordinary fractions. 
Hence we have the

Corollary. The integral domain Z can be embedded as a subdomain in 
a field Q =  Q (Z), each element of which is a quotient a/b o f integers, 
b ^  0.

We now show that the rational field Q =  Q (Z) is in fact exactly 
characterized (up to isomorphism) by the preceding statement. Since Z is 
defined by its postulates only up to an isomorphism, this is as complete a 
characterization as we can hope for. We will, in fact, prove the analogous 
result for any domain D.

Theorem 6. Let an integral domain D  be contained as a subdomain in 
any field F. Then the set o f all those elements o f F  o f the form a/b, a, b e 
D, b #  0, is a subfield S o f F\ moreover, this subfield S is isomorphic to 
Q ( D )  under the correspondence a/b *-> (a, b).

Note. An isomorphism between two fields F  and F  means an 
isomorphism between F  and F  regarded as commutative rings. Specifi
cally, it is a one-one correspondence between F  and F  such that if
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x x ' and y <-» y\ then

(x +  y) <-> (x ' +  y ') and (xy) <-» (x 'y ').

Proof. The field F  contains quotients a/b which are solutions of 
equations bx =  a with coefficients a and b ¥=■ 0 in D. The set 5 of all 
these quotients contains all the integers a/1 =  a ; by the laws of Theorem 
2, S is closed under addition, subtraction, multiplication, and division, so 
that 5 might be described as the closure of D  under these operations in F. 
In any event, 5 is a field (Theorem 3).

The way in which these quotients a/b add, multiply, and become 
equal is described by (i)—(iii) of Theorem 2. Exactly the same rules are 
used for the couples (a, b). Hence the correspondence a/b <-> (a, b) is an 
isomorphism of the closure 5 of D  onto Q (D ).  Q.E.D.

Observe, in particular, that this correspondence maps each a in D  
onto a/1 <-> (a, 1 ) =  a.

Combining Theorem 6 with the preceding corollary, we get

Theorem 7. The integral domain Z can be embedded in one and only 
one way in a field Q = Q(Z) so that each element o f Q is a quotient of 
integers.

This completes the construction of the rational field Q from the 
integers.

Exercises

1. Prove in detail the commutative and the associative laws for multiplication 
o f couples.

2. Prove that the “ equality”  relation defined by (5) is reflexive, symmetric, and 
transitive.

3. Let Z[i] be the set of all complex numbers a + bi, where a and b are 
integers and i2 =  -1 . (a) State explicitly how to add and multiply two such 
numbers, (b) Prove that they form an integral domain, (c) Describe its 
quotient field.

4. Can the ring Z6 of integers modulo 6 be embedded in a field? Why?
5. Describe the field of quotients of the ring Z3 of integers modulo 5.
6. What is the field o f quotients o f the field Q? Generalize.
7. Show that under any isomorphism F + + F  between two fields, a «-» a', 

b «-» b', and c «-» c ' imply c -1 «-> c '_1 and (a -  b)/c «-» (a ' -  b ')/c', pro
vided c *  0. (Cf. Ex. 1 of §1.12.)

8. Prove that the correspondence a +  b f l  «-> a +  b~f\\ (a, b rational) is not 
an isomorphism.
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★9. Prove that there is no isomorphism between the field Q(V7) of numbers of 
the form a +  b~Jl and that of numbers of the form a +  b 'JlT (a, b 
rational). (H int: Show that nothing can correspond to •Jl.)

10. What can one say about the fields of quotients a/b and a'/b’ from 
isomorphic integral domains D  and £>'? Prove your statements.

★11. Prove that any rational number not 0 or ±1 can be expressed uniquely in 
the form (± l )p iei • • • p,% where the p, are positive primes with p, <  p2 <  
• • • < p, and the exponents e, are positive or negative integers.

★12. Prove that any rational number r/s ^  0 can be expressed uniquely in the 
form r/s =  bx +  b2/2! +  b j 3! +  • • • +  b jn l ,  where n is a suitable inte
ger, and each bk is an integer, with 0 S  bk <  k if k >  1, and bn /  0.

13. For a fixed prime p show that the set T,ip) of all rationals m/n with n prime 
to p is an integral domain. Identify its field of quotients.

14. Find the smallest subdomain of Q containing the rational numbers 1/6 and 
1/5.

★15. Describe all possible integral domains which are subdomains of Q.
16. Show that any field with exactly two elements is isomorphic to Z 2.
17. Show that the integral domain Z[V3], consisting o f all a +  b J 3 for integers 

a and b, has a field of quotients isomorphic to the set o f all real numbers of 
the form r +  s J3, r and s rational, and obtain an explicit isomorphism.

2.3. Simultaneous Linear Equations

A  field need not consist of ordinary “ numbers” ; for instance, if p  is a 
prime, the integers modulo p  form a field containing only a finite number 
of distinct (i.e., incongruent) elements. The fact that the domain Zp is a 
field is a corollary of

Theorem 8. Any finite integral domain D  is a field.

Proof. The assumption that D  is finite means that the elements of D  
can be completely enumerated in a list bu b2, • • •, bn, where n is some 
positive integer (a discussion of finite sets in general appears in Chap. 12). 
To prove D  a field, we need only provide an inverse for any specified 
element a ^ 0 in D . Try all the products

(9) ab\,ab2, - ' ' , a b „  (bu ••• ,bn the elements of D) .

This gives n elements in D  which are all distinct, because abt = abj for 
i ^ / would by the cancellation law entail £>, =  bj, counter to the assump
tion that the b’s are distinct. Since this list (9) exhausts all of D , the unity 
element 1 of D  must somewhere appear in the list as 1 =  abt. The 
corresponding element bt is the desired inverse of a. Q.E.D.
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To actually find the inverse in Zp by the proof, one proceeds by trial 
of all possible numbers 6, in Zp. Inverses can also be computed directly, 
for the equation ax =  1 with a 9* 0 in Zp is simply another form of the 
congruence ax =  1 (mod p ) with a ^  0 , and the latter can be solved for 
the integer x by the Euclidean algorithm methods, as in Theorem 16 of 
§1.9.

It is a remarkable fact that the entire theory of simultaneous linear 
equations applies to fields in general. Thus, consider the two simultaneous 
equations

( 10 ) ax +  by =  e, cx +  dy =  /,

where the letters a, • • •, / stand for arbitrary elements of the field F. 
Multiplying the first equation by d, the second by b, and subtracting, we 
get (ad — bc)x =  de — bf\ multiplying the second equation by a, the first 
by c, and subtracting, we get (ad — bc)y =  af -  ce. Hence, if we define 
the determinant of the coefficients of (10) as (cf. Chap. 10)

A =
a b 

c d
=  ad — be,

and if A 0, then equations (10) have the solution

d e - b f  a f -  ce , 4 J , ,
(10 ) *  = — 7— , y = — 7—  (A =  ad -  be),

and no other solution. Whereas if A =  0, then equations (10) have either
no solution or many solutions (the latter eventuality arises when c =  ka,
d =  kb, f  =  ke, so that the two equations are “ proportional” ).

Gauss Elimination. The preceding device of elimination can be 
extended to m simultaneous linear equations in n unknowns x\, • • • ,x n, 
of the form

anXi +  a l2x2 +  •■• +  a lnxn =  bu

a21*1 +  an x2 +  • • • +  a2nx„ =  b2,
(11) ;

"F tim2x2 “F • ■ • “F amnxn bm.

Here both the known coefficients ai;, bt and the unknowns xt are 
restricted to a specified field F. We will now describe a general process,
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known as Gauss elimination, for finding all solutions of the given set 
(system) o f equations. The idea is to replace the given system by a simpler 
system, which is equivalent to the given system in the sense of having 
precisely the same solutions. (Thus, the degenerate equation 0 • x, +  
• • • +  0 • xn =  bi is “ equivalent”  to 0 =  bh which cannot be satisfied.)

In a more compact notation, we write down only the /th equation, 
indicating its form by a sample term ai;cc; and the statement that the 
equation is to be summed over / =  1 , • • •, n by writing

n
( IT )  X OijXj =  bi for i =  1, • • •, m; all ai} e F.

;= i

We argue by induction on n, the number of unknowns, distinguishing two 
cases.

Case 1. Every an =  0. Then, trivially, the system ( IT )  is equivalent 
to a “ smaller”  system of m equations in the n — 1 unkowns x2, • • •, xn; 
x\ is arbitrary for any solution of the smaller system.

Case 2. Some afl #  0. By interchanging two equations (if neces
sary), we get an equivalent system with a n #  0. Multiplying the first 
equation by an _1, we then get an equivalent system in which au =  1 . 
Then subtracting an times the new first equation from each /th equation
in turn ( i =  2 , • • •, m ), we get an equivalent system of the form

x i +  al2'x 2 +  013%  +  • • ■ +  aln'xn =  b\

a 2 2 X2 +  a22'x3 +  • • ■ +  a2„'xn =  b2'
(12) ;

am2 x2 “I- am3 x3 +  • ■ ■ 4” amn xn bn

For example, over the field Z n  this would reduce

3x +  5y +  7z =  6 x +  9y +  6z =  2

5x +  9y +  6z =  7 to 8y +  9z =  8

2x +  y +  4z =  3 5y +  3z =  10,

where all equations are understood to be modulo 1 1 .
Proceeding by induction on m, we obtain

Theorem 9. Any system (11) o f m simultaneous linear equations in n 
unknowns can be reduced to an  equivalent system whose ith equation has 
the form

(13) x, +  Ci.i+iXi+1 +  cu+2xi+2 +  • • • +  cinxn =  di,
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for some subset o f r o f the integers i =  1 , • • •, m, plus m — r equations of 
the form  0 =  dk.

Proof. If Case 2 always arises, we get m equations of the form (12), 
and the given system is said to be compatible. If Case 1 arises, then we 
may get degenerate equations of the form 0 =  dk. If all dk = 0, these can 
be ignored; if one dk ^ 0 , the original system ( 1 1 ) is incompatible (has no 
solutions). Q.E.D.

Written out in full, the system (13) looks like the display written below

*1  +  C 1 2 X 2  +  C i 3* 3  + ..........................+  =  d l>

X2 +  c23x 3 + .....................+  c2nxn =  d2,

X3 + ................+  C3nxn =  d3,

xr +  ■■■ +  cmxn =  dr (r S  m),

which is said to be in echelon form.
Solutions of any system of the echelon form (13) are easily described. 

Consider x„, x„_i, x„_2, • • •, x 3 in succession. If a given x, in this sequence 
is the first variable in an equation of (13), then it is determined by 
x„, • ■ •, Xj+i from the relation

(13 ) x  1 df C|,f+2 . . .  Cinx n.

If it is not, then this x, can be chosen arbitrarily. This proves the

Corollary. In the compatible case o f Theorem 9, the set o f all solutions 
o f (11) is determined as follows. The m — r variables xk not occurring in
(13) can be chosen arbitrarily (they are free parameters). For any choice of 
these xk, the remaining xt can be computed recursively by substituting in 
(13').

In the numerical example displayed, 8y +  9z =  8 (mod 11) would 
first be reduced to y +  8 2  =  1 (mod 11). Subtracting five times this 
equation from 5y +  3z =  10 (mod 11), we get 7z =  5 (mod 11), whence 
z =  7 (mod 11). The echelon form of the given system is thus
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Solving, we get y =  1 — 8z =  0(m od 11), and x =  2 -  9y -  6z =  
4 (mod 11). The solution x =  4, y =  0, z =  7 can be checked by sub
stituting into the original equation.

A  system of equations (11) is homogeneous if the constants Z>, on the 
right are all zero. Such a system always has a (trivial) solution x\ =  x2 =  
• • • =  xn = 0 .  There may be no further solutions, but if the number of 

variables exceeds the number of equations, the last equation of (12/ will 
always contain an extra variable which can be chosen at will. Further
more, the possible inconsistent equations 0 =  dt can never arise for 
homogeneous equations. Hence,

Theorem 10. A  system o f m homogeneous linear equations in n 
variables, with m <  n, always has a solution in which not all the 
unknowns are zero.

Exercises

1. Solve the following simultaneous congruences:
(a) 3x +  2y =  1 (mod 7), 4x +  6y =  3 (mod 7);
(b) 2x +  ly  =  3 (mod 11), 3x +  4z =  6 (mod 11),

4x +  7y +  z =  0 (mod 11);
(c) x  -  2y +  z =  5 (mod 13), 2x +  2y =  7 (mod 13),

5x — 3y +  4z =  1 (mod 13).
2. Solve equations (a) and (b) in Ex. 1, with moduli deleted, in the field Q  of 

rational numbers.

3. Solve in Q(>/2) the simultaneous equations

(1 +  V2)jc +  (1 -  V2)y =  2, (2 -  V2)x +  (3 -  V2)y =  1.

4. Find all incongruent solutions of the simultaneous congruences

x +  y +  z =  0 (mod 5), 3x +  2y +  4z =  0 (mod 5).

5. Find all incongruent solutions o f the simultaneous congruences:

(a) x +  2y -  z +  5t =  4, 2x +  5y +  z +  2t =  1,
x  +  3y +  2s +  6f =  2, all mod 7;

(b) x +  y +  z =  1 (mod 5), 3x +  3y +  3z =  4 (mod 5).
6. Prove that two equations a,jc, +  • • • +  anxn =  c, b^x  ̂ +  • • • +  b„x„ =  d 

always have a solution for coefficients in a given field, provided there are no 
constants k ?  0 and m ^  0 with /ca, =  mbt for i =  1, • • •, n.

7. Prove that if (jc,, , jc„) is any solution of a system of homogeneous linear 
equations, then (—jc1( • • •, —x„) is another solution. What can be said about 
the sum of two solutions?

Download more at Learnclax.com



Ch. 2 Rational Numbers and Fields 52

★8. (a) Prove that the three simultaneous equations

ax +  by +  cz =  d, a 'x  +  b'y +  c 'z  =  d\ a"x +  b"y +  c"z  =  d", 

have one and only one solution in any field F  if the 3 x 3  determinant 

A =  ab'c" +  a 'b"c  +  a"bc' — a"b 'c — a'bc" — ab"c' i* 0.

(b) Compute a formula for x  in (a), and use it to show that x  =  4 for the 
three simultaneous linear equations over Z u displayed below (12).

2.4. Ordered Fields

A  field F  is said to be ordered if it contains a set P  of “ positive” 
elements with the additive, multiplicative, and trichotomic properties 
listed in §1.3; in other words, a field is ordered if, when considered as a 
domain, it is an ordered integral domain. We know by experience that the 
rational numbers do constitute such an ordered field; we shall now prove 
this from our construction of rationals as couples of integers, and shall 
show further that the “ natural”  method of ordering is the only way of 
making the rational numbers into an ordered field.

First recall that in any ordered domain a nonzero square b2 is always 
positive. If a quotient a/b is positive, the product (a / b )b 2 = ab must 
therefore also be positive, and conversely. Hence in any ordered field,

(14) a/b > 0  if and only if ab >  0.

But the rational number (a ,b ) was intended to represent the quotient 
a/b. Hence we define a rational number (a, b ) to be positive if and only if 
the product ab is positive in Z.

Theorem 11. The rational numbers fo rm  an ordered fie ld  i f  (a, b ) >  0 
is defined to m ean that the integer ab is positive.

P roof. Since we have defined equality by convention, we must prove 
that equals of positive elements are positive: (a, b ) >  0 and (a, b ) =  (c, d ) 
imply (c, d ) >  0. This is true, since cd  has the same sign as b 2cd, ab the 
same sign as abd2, and since abd2 =  b 2cd  in virtue of the hypothesis 
ad  =  be. Positiveness also has the requisite additive, multiplicative, and 
trichotomic properties. For instance, the sum of two positive couples 
(a, b ) and (c, d )  is positive, since ab >  0 and cd >  0 imply d 2ab >  0 and 
b 2cd >  0, whence

bd{ad +  b e ) =  d 2ab +  b 2cd >  0,

Download more at Learnclax.com



§2.4 Ordered Fields 53

which is to say that the sum (ad  +  be, b d ) is positive. Finally, the 
definition of “ positive”  for fractions agrees with the natural order of the 
special fractions (a, 1) which represent integers, for (a, 1) is positive by 
the definition (14) only if 1 • a >  0. Q.E.D.

Since the proof o f Theorem 11 involves only the assumption that the 
integers are an ordered domain, it in fact establishes the following more 
general result.

Theorem 12. The fie ld  Q  o f  quotients o f  an ordered integral dom ain D  
m ay be ordered by the stipulation that a quotient a/b o f  elements a and b o f  
D  is positive i f  and on ly  i f  ab is positive. This is the only way in which the 
order o f  D  m ay be extended to m ake Q  an ordered field .

There are many other ordered fields: the field of real numbers, the 
field Q(n/2) of numbers a +  b ' f l  (see §2.1), and other subfields of the real 
number field. In any such field an absolute value can be introduced as in 
§1.3, and the properties of inequalities established there will hold. In 
any ordered field, in addition to the rules valid in any ordered domain, 
one may prove

(15) 0 <  1/a ifandon lyif a >  0,

(16) a/b <  c/d  ifandon lyif abd2 <  b 2cd,

(17) 0 <  a <  b implies 0 <  1/b <  1/a,

(18) a <  b <  0 implies 0 >  1/a >  1/b,

(19) a 2 +  a 22 +  • • • +  a 2 S  0.

The two rules (17) and (18) are the usual ones for the division of 
inequalities. The rule (19) that a sum of squares is never negative 
(Theorem 2, §1.3) is especially useful. For instance, if a ¥■ b, then 
(a — b )2 >  0, so a 2 — la b  +  b 2 >  0, which gives a 2 +  b 2 >  la b .  In this, 
set x  =  a 2 and y =  b 2 and divide by 2. Then

(x  +  y )/2  >  yfxy (x  y).

This states that the arithmetic mean of two distinct positive real numbers 
exceeds the geometric mean ■Jxy.

Exercises

1. Assuming that the integers form an ordered domain, prove that the product of 
two positive rational numbers is positive.
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2. Prove similarly that if (a, b ) & 0, then just one of the two alternatives 
(a, b ) >  0 and - ( a ,  b ) >  0 holds in 0 ( D ) , D  an ordered domain.

3. Prove +  yy'l S  V (x2 +  y 2) (x '2 +  y '2) in any ordered field in which all
positive numbers have square roots. (H int: Square both sides.)

4. Prove formulas (15)—(19) of the text.
5. If n is a positive integer and a and b positive rational numbers, prove that 

(a " +  b")/2  £  ((a  +  b)/2)". (H int: Set (a +  b)/2 =  r, a =  r +  d, b =  r -  d.)
6. (a) Prove: any subfield of an ordered field is an ordered field.

(b) Is any subdomain of an ordered field an ordered domain?
7. For the rational numbers (or, more generally, in any ordered field), prove that 

if a <  b, there are infinitely many x  satisfying a <  x <  b.
8. Prove that in no ordered field do the positive elements form a well-ordered set.
9. A  common mistake in arithmetic is the assumption that a/b +  a/c =  

a/(b +  c).
(a) Show that in any field, a/b +  a/c =  a/(b +  c )  implies a — 0 or 

b2 +  be +  c 2 =  0.
(b) Show that in an ordered field, it implies a =  0.

★2.5. Postulates for the Positive Integers

Although we have used the domain Z  of all integers as the starting 
point for our review of the basic number systems o f mathematics, this 
procedure is really quite sophisticated because it assumes that negative 
numbers exist. In the rest o f this chapter we shall show how this 
assumption can be avoided, by showing how to derive the negative 
integers and their properties from familiar facts about positive integers 
alone.

For consistency, we begin by listing some basic properties o f the 
system Z + of all positive integers that follow easily from the results of 
Chap. 1.

Theorem 13. The system Z + o f all positive integers in Z  has the 
following properties:

(i) It  is closed under uniquely defined binary operations o f addition 
and multiplication, which are associative, commutative, and dis
tributive.

(ii) There exists a multiplicative identity 1 in Z +, such that m • 1 = m 
for all m in Z +.

(iii) Furthermore, the following cancellation law holds in Z +:

(20) i fmx  = nx, then m = n.

★ Sections which are starred may be omitted without loss of continuity.
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(iv) Again, for any two elements m and n o f Z +, exactly one of 
the following alternatives holds: m =  n, or m +  x =  n has a 
solution x in Z +, or m =  n +  y has a solution y in Z +.

(v) Finally, the Principle o f Finite Induction holds in Z +: any subset o f 
Z + which contains 1, and n +  1 whenever it contains n, contains 
every element o f Z +.

We leave the proof of these properties of Z + as an exercise. 
Conversely, if the properties (i)-(v ) stated in this theorem are viewed 

as postulates, they do completely characterize the positive integers, in the 
sense that the positive integers as we previously defined them do have 
these properties and that any other system satisfying these postulates can 
be proved to be isomorphic to this system of positive integers. Note in 
particular that if m +  x =  n in Z +, then

n +  z =  (m +  x ) +  z =  m +  (x +  z ) =  m +  (z +  x ) =  (m +  z ) +  x,

whence m +  z =  n +  z is impossible, by (iv). Similarly, n =  m +  y is 
incompatible with m +  z =  n +  z. Therefore, appealing a third time to 
property (iv), we obtain

(21) if m +  z =  n +  z, then m -  n.

Furthermore, the three alternatives about the equations m +  x =  n take 
the place of some of the order properties of the positive integers.

Starting with the positive integers, as given by these postulates, one 
may reconstruct the system Z  of all integers. The object of this construc
tion is to get a system larger than Z + in which subtraction will always be 
possible. Hence we introduce as new elements certain couples (m, n) of 
positive integers, where each couple is to behave as if it were the solution 
of the equation n +  x =  m. The details of this construction resemble the 
construction of the rationals from the integers (§2.2).

Definition. A n integer is a couple (m, n ) o f positive integers m and n. 
“Equality ”  o f couples is defined by the convention

(22) (m, n) =  (r, s) means m +  s =  n +  r,

while sums and products are defined by

(23) (m, n) +  (r, s) =  (m +  r, n +  s),

(24) (m, n ) • (r, s) =  (mr +  ns, ms +  nr).

Finally, (m, n) is “ positive”  if  and only if  n +  x =  m for some positive 
integer x.
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The couples as introduced by these definitions do in fact satisfy all the 
postulates we have given for the integers. One must first verify that the 
equality introduced by (22) is reflexive, symmetric, and transitive, and 
that sums and products as given by (23) and (24) are uniquely determined 
in the sense of this equality. The various formal laws for an integral 
domain then follow by a systematic application of the definitions (23) and
(24) to these laws, much as in the discussion of rational numbers. In 
particular, (2, 1) is a unity and (1, 1) a zero for the system just defined. 
Additive inverses exist since

(m , n ) +  (n, m )  =  (1,1) for all (m, n).

The cancellation law for the multiplication of couples is harder to prove; 
one proof uses condition (iv) of Theorem 13. With this proved, we know 
that the couples form an integral domain.

By the postulate (iv) in Theorem 13, every couple can be written in 
just one of the three forms (m, m), (n + x, n), (m, m +  x). Those of the 
first form are equal to the zero (1 ,1 ); those of the second form (n +  x,n)  
are the positive couples, and may be shown to have the additive, 
multiplicative, and trichotomic properties required in the definition of an 
ordered integral domain (§1.3). Moreover, (m +  x, m )  =  (n +  y,n )  if. 
and only if x = y. Hence, if “ congruent”  couples are actually identified, 
the correspondence Xh»(n  +  x ,n)  is an injection from the given positive 
integers x and the new positive couples (n +  x, n). It is even a 
homomorphism, since by definitions (23) and (24),

(m  +  x, m ) +  (n  +  y, n ) =  (m  +  n +  x  +  y, m  +  n ),
(m  +  x, m )(n  +  y ,n )  =  ( m n  +  m y +  nx +  m n  +  xy,

m n +  nx +  m n  +  m y ).

Hence the new “ positive”  couples satisfy the law of finite induction. We 
have thus sketched a proof of the following result:

T h e o re m  14. The system Z + o f  positive integers can be embedded in a 

larger system Z  in which subtraction is possible, in such a way that any 
elem ent o f  Z  is a difference o f  two positive integers from  Z +. The system Z  
thus constructed is an ordered dom ain  whose positive elements satisfy the 
Princip le o f  F in ite  Induction.

By §1.5, Ex. 8, this result implies the well-ordering principle. It should 
be noticed that the proof just sketched involves only our postulates on 
Z +. Conversely, in any integral domain containing Z +, the differences 
(a  -  b ) of elements of Z + must satisfy definitions (22)—(24). (Cf. §1.2, Ex.
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5.) This proves

Theorem 15. Any integral domain containing the system Z + contains 
a subdomain isomorphic to the domain Z  o f all integers.

Exercises

1. Prove the relation defined by (22) is reflexive, symmetric, and transitive.
2. Prove that if (m ,n ) =  (m ',n '), then (m ,n ) +  (r, s) =  (m ',n ') +  (r, s) and 

(m, n ) • (r, s) =  {m\ n ') • (r, s) for all (r, s).
3. Prove that the “ addition”  defined by (23) is commutative and associative.
4. Prove the same for the “ multiplication”  defined by (24).
5. Prove that (m, m ) is the same for all m, and is an additive zero. Show that

the first statement follows from the second.
6. Prove that (m +  1, m ) is a multiplicative identity.
7. Prove the distributive law.
8. Prove the cancellation law for multiplication.
9. What properties o f Z + have been used in Exs. 1-8? State a theorem bearing 

the same relation to Theorems 14 and 15 that Theorem 7 bears to Theorem
5.

10. Show that Theorem 14 would not hold for any definition o f “ positiveness”  
o f couples (m, n ) other than that stated after (24).

11. Prove Theorem 13 in detail.
★12. Show that postulate (iv) o f Theorem 13 may be replaced by the require

ment that m +  1 5* 1 for every m of Z +. (This is essentially Peano’s 
postulate (iii), as stated in Theorem 16.)

13. In Z +, define m <  n to means that m +  x =  n for some x  6 Z +. Prove (a) 
m <  n and n <  r imply m <  r, (b) m <  m for no m ; (c) m <  n implies 
m +  r <  n +  r for all r; (d) m <  n implies mr <  nr for all r.

★14. Show that conditions (c) and (d) o f Ex. 13 may be used to replace the 
cancellation laws (20) and (21) in the list of postulates for Z +.

15. Show that repetition o f the process used to obtain Z  from Z + yields no new
extension of Z. Can you generalize this result?

*2 .6 . Peano Postulates

Instead of regarding addition and multiplication as undefined opera
tions on the set P  =  Z + of positive integers, one can define them in terms 
of the successor function

(25) S(n)  =  n +  1.
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Theorem 16. The set P  o f  positive integers and the successor function  S  

have the fo llow in g  properties:

(i) 1 e P;
(ii) i f  n e  P , then S (n )  e  P ;
(iii) fo r  no n in P  is S (n )  =  1;
(iv) fo r  n and m  in P , S (n )  =  S (m ) implies n = m ;
(v) a subset o f  P  which contains 1, and which contains S (n )  whenever 

it contains n, must equal P .

P roof. The cited properties are immediate from Theorem 13. Note, 
in particular, that (v) is the Principle of Finite Induction. Q.E.D.

The properties (i)-(v ) are known as the Peano postulates for the 
positive integers. They suffice, as will be shown below, to prove all the 
properties of the positive integers. We shall now use them to show that 
our original postulates for the integers determine the integers up to 
isomorphism.

Theorem 17. In  any ordered dom ain D , there is a unique subset P '
which satisfies the Peano postulates with respect to the unity 1' and the
successor function  S '(a )  =  a +  1'.

Rem ark . Intuitively, it is clear that the sequence 1', 2', 3', • • • defined 
by 2' =  1' +  1', 3' =  1' +  1' +  1', etc., is such a set P '. But we wish a 
formal proof, based on our postulates for ordered domains.

Proof. The set D + of all positive elements of D  clearly contains 1' 
and satisfies (i) and (ii). Now let £  be the class of all subsets T  of D + 
which have the properties (i) and (ii) of P ;  we define P '  to be the 
intersection of all these sets T ; i.e., a e  P '  if and only if a is in every such 
set T.

By definition, (i) and (ii) hold for P '.  Since P '  consists only of positive 
elements, (iii) holds; since a +  1' =  b +  1' implies a =  b, (iv) holds. To 
prove (v), let A  be a subset of P '  which contains 1' and contains S '(a )  
whenever it contains a. Then A  is one of the sets T  used above, hence P '  
is contained in A , and therefore P '  =  A .  This proves (v) for F ,  and (v) 
shows that P '  is the only possible such set, since P '  satisfies (i) and (ii).

Theorem 18. The subset P '  o f  Theorem  17 is isom orphic to the set P  o f  
positive integers with respect to addition, m ultip lication, and order.

R em ark . Informally, it is clear that 1 > 1', 2 > 2', • * • should yield 
the required isomorphism. Since 1' <  1' +  1' <  1' +  1' +  1' <  • • •, this 
correspondence should preserve order.

Proof. First let Q (n )  be the proposition that there is a unique 
correspondence x  >-*■ 4>„{x) between the integers 1 ^  x  ^  n in P  and
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elements c/>n(x ) in P ' under which

(26) (/>„( 1) =  V, 4>n(S (x )) =  S'(4>n(x )) for 1 ^  x <  n.

Clearly 0 (1 ) holds. Given Q (n ) and hence a </>„, we can construct a 
unique by setting 4>n+\(x) =  <j>n{x) for 1 ^  x g  n and
4>n+i(n +  1) =  S'((/>n(n )). Hence Q (n ) implies Q (n  +  1). This proves 
Q (n ) by induction.

Again, if 1 ^  x  ^  n <  m, one can prove by induction on x  that 
4>n(x )  =  4>m(x ) ;  hence 4>n(x )  is independent of n, provided that x  f i  n. 
Let 4>(x) denote this element of P '. This gives a correspondence x  >-* 
4>(x) of P  to P ' with the properties

Every element of P ' is the correspondent cj>(x) of some x e P, for the set 
of elements 4>(x) includes 1', and includes with any 4>(x) its successor; 
hence the set is all of P ' by property (v) of P '.

Both in P  and in P ' we have

From these equations and (27), one can easily prove by induction on m 
that <f>(n +  m ) =  4>(n) +  4>(m) and =  <£(n)<£(m); in other words,
<p is an isomorphism with respect to addition and multiplication.

Next, <f> preserves order; that is, m <  n implies 4>(m) <  
Indeed, by the definition, m <  n means that n — m is positive; that is,

(30) m <  n if and only if n =  m +  k for some k in P.

Hence m <  n yields n =  m +  k, hence 4>(n) =  4>(m) +  <f>(k); since <f>(k) 
is positive in D, this proves as required.

Finally, <f> is a bijection of P  to P '; since we already know that <j>{x) 
includes all of P ', we need only show that n ^  m implies 4>{n) ^  </»(m). 
But n 5* m means, say, that m <  n, hence 4>{m) <  <f)(n) and therefore

To summarize our conclusions, we define an order-isomorphism 
between two ordered domains to be an isomorphism which preserves 
order. In view of Theorem 15, we get from Theorem 18 the following 
corollary:

Corollary 1. Any ordered domain D  contains a subdomain order- 
isomorphic with Z.

(27) 4,(1) =  V, 4>(S(x)) =  S'(4>(x)).

(28)

(29)

n +  1 =  S(n) n +  S (m ) =  S(n +  m ), 

n • 1 =  n n • S (m ) =  n ■ m +  n.
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Combining this result with Theorems 6 and 7, we have

Corollary 2. Any ordered field contains a subfield order-isomorphic 
with the field Q o f rational numbers.

This result gives an abstract characterization of the rational field as the 
smallest ordered field.

Finally, in case the positive elements in D  are well-ordered, the set P ' 
of Theorem 17 can easily be shown to consist of all the positive elements 
of D. This proves:

Corollary 3. There is, up to order-isomorphism, only one ordered 
domain Z  whose positive elements form a well-ordered set.

This shows that the postulates we have used for the integers determine 
the integers uniquely, up to isomorphism.

The treatment of the integers can begin, not with the postulates for a 
well-ordered domain, but with the Peano postulates. The essential point 
is the observation that the recursive equations (28) and (29) can be used 
to define complete addition and multiplication tables. Formally, one can 
establish, much as in the proof of Theorem 15, that there is one and only 
one binary operation +  satisfying (28), and similarly for multiplication. 
The various properties listed in Theorem 13 can then be established by 
induction, and the construction of couples given in §2.5 then yields the 
integers from the Peano postulates.

E xerc ises

In the following exercises, assume only the Peano postulates and that addition 
and multiplication are defined by (28) and (29).

1. Show by induction that n + 1 = 1 + n.
2. Using Ex. 1, show that addition is commutative.
3. Prove that addition is associative.
4. Prove that multiplication is associative.
5. Prove the distributive law.
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Polynomials

3.1. Polynomial Forms

Let D  be any integral domain, and let x be any element of a larger 
integral domain E  which contains D  as a subdomain. In E  one can form 
sums, differences, and products of x with the elements of D  and with 
itself.

By performing these operations repeatedly, one evidently gets all 
expressions of the form

(1) a0 +  a Yx +  • • • +  a„xn (a0, • • •, an e D\ an *  0 if n >  0),

where x n (n any positive integer) is defined as xx • • • x to n factors. But
conversely, using only the postulates for an integral domain, one can add, 
subtract, or multiply any two expressions of the form (1), obtaining a 
third such expression. For example, if D  is the domain of integers,

f ix )  =  (0 +  1 • x +  (—2)x2){2 +  3 • x )

=  0-  2 +  0-  3 ‘ X +  l ‘ X - 2 + l ' X - 3 - x  +  (~2 )x2 • 2

+  ( - 2 )x2 -3  x

=  0 +  0 • x +  2x +  3x2 +  (~ 4 )x2 +  (-6 )x 3 

=  0 +  (0 +  2)x +  (3 +  ( - 4 ))x2 +  ( - 6)x3 

=  0 +  2x +  ( - l ) x 2 +  (~ 6 )x3,

by the generalized distributive law, the commutative and associative law, 
and finally the distributive law.

61
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This argument can be generalized. Indeed, let

p (x ) =  a0+ a xx +  ■ ■ ■ +  amx m 

and q (x ) =  b0 +  bxx +  • • • +  bnx n

be any two expressions of the form (1). If m >  n, then we have

A  similar formula holds if m g  n. Again, by the distributive law,

Collecting terms with the same exponent and adding coefficients, we have 

(3) p(.x)q(x) =  a0b0 +  (a0bx +  axb0)x  +  • • • +  ambnx m+n.

In this formula, the coefficient of x k is clearly a sum

element x not in D . Then the 
polynomials ( 1) in this element x are added, subtracted, and multiplied by 
formulas (2 ) and (3 ), and so form a subdomain o f E.

In order to prove that there always does exist such an integral domain 
E, one wants the following definition.

Definition. By a polynomial in x over an integral domain D  is meant 
an expression o f the form  (1). The integer n is called the degree of the form  
(1). Two polynomials are called equal i f  they have the same degree and if  
corresponding coefficients are equal.

(2) p (x ) ±  q{x ) =  (a0 ±  b0) +  • • • +  (an ±  bn)x n +  an+xx n+1

p (x )q (x ) =  I  I  OibjX1*1.
i=oj=o

j - n Z  atbk -i
i

i  =  m fo r all i with 0 ^  i ^  m and 
0 g  k — i S  n. See Figure 1.

We have thus proved the fo l
lowing result:

i + j  =  k

Figure 1

i
Theorem 1. Assume there 

exists an integral domain E  con
taining a subdomain isomorphic 
with the given domain D , and an
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Since nothing is assumed known about the symbol x, the expression
(1) is also often called a polynomial form  (to distinguish it from a 
polynomial function; see §3.2), and the symbol x itself is called an 
indeterminate.

Theorem  2. I f  addition and multiplication are defined by formulas (2 ) 
and (3 ), then the different polynomial forms in x over any integral domain 
D  form a new integral domain D\x~\ containing D .

Proof. The absence of zero-divisors (cancellation law o f multiplica
tion) follows from (3), since the leading coefficient ambn of the product of 
two nonzero polynomial forms is the (nonzero) product of the nonzero 
leading coefficients am and bn of its factors. The properties of 0 and 1 and 
the existence of additive inverses follow readily from (2) and (3).

To prove the commutative, associative, and distributive laws it is 
convenient to introduce “ dummy” zero coefficients. This changes (2) and
(3) to the simpler forms

where all but a finite number of coefficients are zero. Any law such as the 
distributive law may then be verified simply by multiplying out both sides 
of the law by rules (2') and (3*'), as

expressions. By the distributive law in the domain D , the coefficient of the 
fc-th power of x is the same in both expressions. Similar arguments 
complete the proof of Theorem 2.

Now recalling Theorem 7 of §2.2, we see that if we define a rational 
form  in the indeterminate x over D  as a formal quotient

(2') Z akx k +  Z bkx k =  Z (ak +  bk)x k,

(3')

and showing that the coefficient of each power x k of x is the same in both

p (x ) _  ao +  a tx +  • • • +  amx m 

q (x ) b0 +  bi +  ■ • • +  bnx n
(a„ bj in D ; am ^  0 if m >  0; bn ^  0)
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of polynomial forms with non-zero denominator, and define equality, 
addition, and multiplication by (5), (6), and (7) of the Definition of §2.2, 
we get a field.

Corollary. The rational forms in an indeterminate x over any integral 
domain D  constitute a field. This field is denoted by D (x ).

E xerc ises

1. Reduce to the form (1): x 2 -  5x(3x +  7)2,
(.x2 +  5x -  4 )(x2 - 2 x  +  3), (3x2 +  l x -  1/2)(jc3 -  x/2 +  1).

2. Compute similarly (3x3 +  5x — 4)(4x3 — x +  3), where the coefficients are 
the integers mod 7.

3. Is x 3 +  5x — 4 of the form (1)? Reduce it to this form. Reduce (1 +  x +
2x2 +  3x3) -  (0 +  x  +  x 2 +  3x3) to the form (1), stating which postulates
are used at each step.

4. (a) Is 1/2 +  3 • x 1/2 +  5x a polynomial form over the rational field?
(b) Why is x 3 • x 4 not equal to x 2 in the domain of polynomial forms with 

coefficients in Z5?
5. Discuss the following statements:

(a) The degree of the product of two polynomial forms is the sum of the 
degrees of the factors.

(b) The degree of the sum of two polynomials is the larger of the degrees of 
the summands.

6. Prove that the associative laws for addition and multiplication hold in D[x~\.
7. The “ formal derivative”  of p(x) = a0 + axx + • ■ • + a„xn is defined as 

p'(x) =  at +  2a2x +  • • • +  na„x"~l. Prove, over any integral domain:
(a) (cp)' =  cp', (b) (p +  q )' =  p ' +  q',
(c) (pq) ' =  pq' +  p'q, (d) (p ")' =  npn_1p'.

★8. I f  p (y ) and q (x ) are polynomial forms in indeterminates y and X, show that 
the substitution y =  q (x ) yields a polynomial p iq (x )) . For the formal 
derivative of Ex. 7, prove that [p (q (x )) ] ' =  p '(q (x )) ■ q '(x ).

★9. For given D  show how to construct an integral domain D {t )  consisting of all 
“ formal”  infinite power series a0 +  a j  +  a2t2 +  • • ■ in a symbol t, with 
coefficients a, in D.

★10. (a) I f  D  is an ordered domain, show that the polynomial forms (1) 
constitute an ordered domain D [x ] if p (x )  >  0 is defined to mean that 
the first nonzero coefficient ak in p (x ) is positive in D .

(b) Show that D [x ] is also an ordered domain if we define p (x ) >  0 to 
mean that a„ >  0 in (1).

★11. Setting D  =  Z in Ex. 10(b), show that 1 is the least “ positive”  polynomial 
in Z[x], although Z[x] fails to satisfy the well-ordering principle.
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3.2. Polynomial Functions

As before, let D  be any integral domain, and let

f (x )  =  a0 +  a ix  +  • • • +  amx m

be any polynomial form in x over D. If the indeterminate x is replaced by 
an element c e D ,f (x )  no longer remains an empty expression: it can be 
evaluated as a definite member a0 +  a xc +  • • • +  amcm of D. In other 
words, if x is regarded as an independent variable in the sense of the 
calculus, instead of as an abstract symbol outside of D ,f (x )  becomes an 
ordinary function: “ If x is given (as c ), then f ix )  is determined (as f ie ) ) .” 
By abstraction, we shall define generally a “ function”  / of a variable on D  
as a rule assigning to each element x of D  a “ value”  f (x ) ,  also in D. We 
shall define two such functions to be equal (in symbols, / =  g ) if and only 
if f (x )  =  g (x ) for all x. The sum h =  f  +  g, the difference q =  / -  g, and 
the product p =  fg  of two functions are defined by the rules h (x ) =  
f ix )  +  g ix ), q ix ) =  f ix )  -  g ix ), and p ix )  =  f ix )g ix )  for all x. A  constant 
function is one whose value b is independent of x ; the identity function is 
the function j  with j i x )  =  x for all x.

Definition. A  polynomial function is a function which can be written in 
the form  ( 1).

Since the only rules used in deriving formulas (2) and (3) are valid in 
any integral domain, they hold no matter what value c (in D )  is assigned 
to the indeterminate! x. That is, they are identities, and therefore sums 
and products of polynomial functions can also be computed by formulas
(2) and (3). As will be explained in §3.3, it follows that the polynomial 
functions over D  constitute a commutative ring in the sense defined in 
§ 1 .1 .

By definition, each form (1) determines a unique polynomial function, 
and each polynomial function is determined by at least one such form. 
Therefore there is certainly a mapping which preserves sums and pro
ducts, from the polynomial forms to the polynomial functions over any 
given integral domain D. (Such correspondences are called homomorph
isms onto, or epimorphisms; see §3.3.)

I f we could be certain that the mapping was one-one, we would know 
that it was an isomorphism. Hence, from the point of view of abstract 
algebra, it would be permissible to forget the distinction between polyno
mial forms and polynomial functions. Unfortunately, such is not the case.

t  Indeed, this is the secret of solving equations by letting “x be the unknown quantity” : 
every manipulation allowed on x must be true for every possible valuf of x.
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Indeed, over the field Z 3 of integers mod 3, the distinct forms f (x )  -  
x 3 -  x and g (x ) =  0 determine the same function— the function which is 
identically zero. By Fermat’s theorem (§1.9, Theorem 18), the same is 
true over Zp for x p -  x and 0. Hence, over any Z p, equality has an 
effectively different meaning for functions than it does for forms.

We shall now show that it is no accident that the domain of coeffi
cients in the preceding example is finite. We could not construct such an 
example over the field of rationals. But before doing this, we recall some 
elementary definitions. By the degree of a nonzero form (1), we mean n, 
its biggest exponent. The term anx n of biggest degree is called its leading 
term, an its leading coefficient, and if an =  1, the polynomial is termed 
monic.

Theorem 3. A  polynomial form r (x ) over a domain D  is divisible by 
x — a if and only if  r (a ) =  0.

Here the statement “ r(x) is divisible by x — a ”  means that r (x ) =  
(x — a )s (x ) for some polynomial form over D.

Proof. Set r (x ) =  c0 +  C\X +  • • • +  cnx " (cn A 0). For every a, we 
have, by high school algebra,

Z- ckx k ~  i cka k =  i ck(x k -  a k)
fc=0 k =0 fc=0

=  I  ck[(x -  a )(x fc- 1 +  x k- 2a +  • • • +  a * '1)].
*=i

Therefore r(x) -  r(a ) =  (x — a)s(x ), where s(x ) is a polynomial form of
degree n -  1. Conversely, if r (x ) -  (x — a )s (x ), substituting a for x
gives r(a ) =  0.

Corollary. A  polynomial form r(x ) o f degree n over an integral domain 
D  has at most n zeros in D.

(By a zero of r(x) is meant a root o f the equation r(x) =  0; that is, an 
element a e D  such that r (a ) =  0.)

Proof. If a is a zero, then by the theorem, r(x) =  (x -  a)s (x ), where
s(x ) has degree n — 1. By induction, s(x) has at most n — 1 zeros, but 
r(x ) =  0 by Theorem 1 of §1.2 if and only if x =  a or s(x ) = 0. Hence 
r(x) =  0 has at most n zeros.

Theorem 4. I f  an integral domain D  is infinite, then two polynomial 
forms over D  which define the same function have identical coefficients.
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Proof. As in (1), let p (x ) and q (x ) be two given forms in the 
indeterminate x. I f they determine the same function, then p (a ) -  q (a ) 
for every element a chosen from D\ the desired conclusion is then that 
p (x ) and q (x ) have the same degree and have corresponding coefficients 
equal. In terms of the difference r (x ) =  p (x ) — q (x ), this is to say that 
r(a ) =  c0 +  Cia +  • • • +  c„an =  0 for all a in D  implies that c0 =  =
• • • =  c„ =  0. This conclusion follows by Theorem 3, for unless the 
coefficients c, are all zero, the polynomial r (x ) is zero for at most n values 
of x— whence, since D  is infinite, there will be remaining values of x on 
which r (x ) ^  0.

Thus, if D  is infinite, the concepts o f polynomial function and polyno
mial form are equivalent (technically, the ring of polynomial functions is 
isomorphic to that of polynomial forms).

On the other hand, Theorem 4 never holds if D  is a finite integral 
domain, with elements aly • • •, an. For example, the monic polynomial 
form (x — a i)(x  — a2) • • • (x — an) of degree n determines the same 
function as the form 0, in this case.

Since any system isomorphic with an integral domain is itself an 
integral domain, Theorem 4 implies the following corollary:

Corollary. The polynomial functions on any infinite integral domain 
themselves form an integral domain.

I f D  is an infinite field, distinct rational forms define distinct rational 
functions, and the rational functions on D  form a field. (Caution: A  
rational function is not defined at all points, but only where the 
denominator is not zero. Thus it is defined, if D  is a field, at all but a 
finite number of points.)

It is often desired to find a polynomial p {x ) o f minimum degree which 
assumes given values y0, yi, • • •, y„ in a field F  at n +  1 given points 
a0, au - • • ,a n e F, so that

(4) pifli) =  y, (/ =  0,1, • • •, n; a, *  aj if i *  /).

This is called the problem of polynomial interpolation.
To solve this problem, consider the polynomials

?.-(*) =  I I  (*  “  <*;) =  (x -  a0) - • - (x  -  i)(x  -  a,-+i) • • • ( * -  an).

Evidently, qfiaj) =  0 if j  t  i, while

Q  =  qfia fi =  n  (a. ~  a j) 5* 0.
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Hence Q  1 exists, and the following polynomial of degree n or less

n y , U ( x - a , )

(5) P (x ) =  I  C, 'y a ix )  =  I , —^ -----------
■=0 n  (A, -  a,)

i * ‘

satisfies equations (4). Formula (5) is called Lagrange’s interpolation 
formula.

In view of Theorem 3, at most one polynomial of degree n or less can 
satisfy equations (4): the difference of two such polynomials would have 
n +  1 zeros, and so would be the polynomial form zero. This proves the 
following result.

Theorem 5. There is exactly one polynomial form o f degree n or less 
which assumes given values at n +  1 distinct points.

Exercises

1. In the domain Z5, find a second polynomial form determining the same 
function as x2 — x +  1.

2. Show that x2 — 1 has four zeros over Z 15. Why doesn’t this contradict the 
corollary o f Theorem 3?

3. Show that if a0 =  at — h, a2 =  a2 +  h, and 1 +  1 ^ 0 ,  then (4) can be 
solved for n =  2 by the parabolic interpolation formula

pix) = y, + i ( y 2 -  y0) ( * h ai)  + -  2y, + y0) ( ^ ~ ~ J  .

4. Find a cubic polynomial f (x )  =  a +  bx +  cx2 +  dx3 satisfying /(0) =  0, 
/ ( l )  =  1, /(2) =  0, /(3) =  1, by treating a, b, c, d as unknowns in four 
equations, of which the last is a +  3b +  9c +  27d =  1. (This is the method 
of undetermined coefficients.)

5. Use the interpolation formula (5) to show that every function on any finite 
field (such as Zp) is equal to some polynomial function.

★6. Let D  be a finite integral domain with n elements au - - - , a n. Let m(x) 
denote the fixed polynomial form (x — at)  ••• (x — an).
(a) Show that if two polynomial forms f ix ) and g (x ) determine the same 

function, then mix) is a divisor of the form fix ) -  g (x ).
(b) Compute m(x) for the domains Z3 and Z5.
(c) Show that mix) =  xp — x in case D  =  Zp. iHint: Use Fermat’s 
theorem.)

7. Prove that over an infinite field, distinct rational forms which determine the 
same functions are formally equal in the sense of §2.2.
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8. (a) If D  and D '  are isomorphic domains, prove that D [x ]  is isomorphic to
D '[y\, where D [x\  and D'\y\ are the domains of polynomial forms in 
indeterminates x and y over D  and £>', respectively.

(b) How about D (x )  and D '(y ) l
9. If O  is the field o f quotients of a domain D  (Theorem 4, §2.2), prove that 

the field D (x )  is isomorphic to the field Q (x ).

3.3. Homomorphisms of Commutative Rings
Let D  be any given integral domain, and let D (x )  denote the system 

of polynomial functions over D. For all x e D , f (x )  +  g (x ) =  
g(jc) +  f (x ) ,  0 +  f (x )  =  f (x ) ,  1 • f (x )  =  f (x ) ,  and so on. Hence addition 
and multiplication are commutative, associative, and distributive; identity 
elements exist for addition and multiplication; and inverses exist for 
addition. In summary, D {x ) satisfies all the postulates for an integral 
domain except the cancellation law o f multiplication. This breaks down 
when D  is finite because there exists a zero product (x — a ,)(*  — a2) • • • 
(x — a„) of nonzero factors.

In other words, D (x ) is a commutative ring in the sense defined in 
§1.1. For convenience, we recapitulate this definition here.

Definition. A  commutative ring is a set closed under two binary, 
commutative, and associative operations, called addition and multiplica
tion, and in which further:

(i) multiplication is distributive over addition;
(ii)‘ an additive identity (zero) 0 and additive inverses exist;
(iii) a multiplicative identity (unity) 1 exists.t

It will be recalled that Rules 1-9 in §1.2 were proved to be valid in 
any commutative ring. Also, an interesting family of finite commutative 
rings Z m was constructed in §1.10, Theorem 19.

Another instance of a commutative ring is furnished by the system D *  
of all functions on any integral domain D , where addition and multiplica
tion are defined as in §3.2. There are zero-divisors in the domain D *  of 
all functions even on infinite integral domains D . Thus, if D  is any ordered 
domain, and if we define f (x )  =  |x | +  x and g (x ) =  |x | -  x, then fg  =  h 
is h (x ) =  |x|2 -  x 2 =  0 for all x, yet / ^  0, g ^  0. On the other hand, 
D *  has every other defining property of an integral domain. One can 
prove each law for D* from the corresponding law for D  by the simple

t Some authors omit condition (iii) in defining commutative rings. Noncommutative rings 
will be considered in Chap. 13.
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device of writing “ for all x ”  in the right places. Thus f (x )  +  g (x ) =  
g (x ) +  f { x )  for all x implies / +  g =  g +  /. Again, if we define e as the 
constant function e (x ) =  1 for all x, then e (x )f (x )  =  1 • /(jc) =  f ix )  for all 
x and /, whence ef =  / for all /, so that e is a multiplicative identity 
(unity) of D *. (See why the cancellation law of multiplication cannot be 
proved in this way.) Since the cancellation law for multiplication was 
nowhere used in the above, we may assert:

Lemma 1. The functions on any commutative ring A  themselves form  
a commutative ring.

Now let us define (by analogy with “ subdomain” ) a subring of a 
commutative ring A  as a subset of A  which contains, with any two 
elements / and g, also f  ±  g and fg, and which also contains the unity of 
A .

By Theorem 1, the set D {x )  of polynomial functions on any integral 
domain D  (1) is a subring of the ring D *  of all functions on D , (2) 
contains all constant functions and the identity function, and (3) is 
contained in any other such subring. In this sense D {x )  is the subring of 
D *  generated by the constant functions and the identity function. This 
gives a simple algebraic characterization of the concept of a polynomial 
function.

Deeper insight into commutative rings can be gained by generalizing 
the notion of isomorphism as follows.

Definition. A  function <j>: a •-» a<f> from a commutative ring R  into a 
commutative ring R ' is called a homomorphism if  and only if  it satisfies, 
for all a,b e R,

(6) ia +  b)<f> =  a<f> +  b<f>,

(7) (ab)<f> =  (a * ) ( t y ) ,

and carries the unity o f R  into the unity o f R '.

These conditions state that the homomorphism preserves addition and 
multiplication. They have been written in the compact notation of 
§§1.11-1.12, whereby a<f> signifies the transform of a by <f>. If we write 
4>ia) instead of a<f>, they become <f>ia +  b) =  <f>ia) +  <f>ib) and <f>iab) =  
4>ia)(f>ib) instead. Evidently, an isomorphism is just a homomorphism 
which is bijective (one-one and onto).

One easily verifies that the function from n to the residue class 
containing n, for any fixed modulus m, is a homomorphism Z  Z m
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mapping the domain of integers onto the ring Z m of §1.10, Theorem 19. 
We now prove another easy result.

Lemma 2. Let <f> be a homomorphism from a commutative ring R  into 
a commutative ring R '. Then 0<f> is the zero o f R ', and (a -  b)<f> =  
atf) — b<f> for all a, b e R.

Proof. By (6), 0<£ =  (0 +  0)<f> =  0(f> +  0<f>, which proves that 0<f> 
is the zero of R '. Likewise, if x =  a — b in R, then b +  x =  a and so 
a<f> =  (b +  x)<(> =  b(f> +  x<f>, whence x<f> =  a<f> — bf> in R '.

Theorem 6. The correspondence p (x ) •-> f (x )  from the domain D[jc] of 
polynomial forms over any integral domain D  to the ring D {x ) o f polyno
mial functions over D  is a homomorphism.

Proof. For any element x in D, the addition and multiplication of the 
numbers p (x ) and q (x ) in D  must conform to identities (2) and (3), since 
the derivation of these identities in §3.1 used only the postulates for an 
integral domain.

The result o f Theorem 4 states that if D  is infinite, then the 
homomorphism of Theorem 6 is an isomorphism.

Exercises

1. (a) Show that there are only four different functions on the field Z2, and write
out addition and multiplication tables for this ring of functions.

(b) Express each of these functions as a polynomial function.
(c) Is this ring of functions isomorphic with the ring of integers modulo 4?

2. How many different functions are there on the ring Z„ of integers modulo n l
3. Are the following sets of functions commutative rings with unity?

(a) all functions / on a domain D  for which /(0) = 0,
(b) all functions f  on D  with /(0) = /(l),
(c) all functions f  on D  with /(0) ^ 0,
(d) all functions / on Q (the rational field) with —7 S f (x ) S  7 for all x,
(e) all / on Q with f (x  + 1) = /(x) for all x (such an / is periodic).

4. Construct two commutative rings of functions not included in the examples of 
Ex. 3.

5. Let D *  be defined as in the text. Prove the associative law for sums and 
products in D*.

6. (a) If D  and D ' are isomorphic domains, prove that D (x ) and D '(x ) are
isomorphic.

(b) How about D * and (D')*?
7. Show that one cannot embed in a field the ring Zp(x) of all polynomial 

functions over Zp.
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8. Show that if a homomorphism maps a commutative ring R onto a commutative 
ring R', then the unity of R  is carried by <f> into the unity of R'.

9. Show that if <f>: R  -> R ' is any homomorphism of rings, then the set K  of those 
elements in R  which are mapped onto 0 in R ' is a subring.

*3 .4 . Polynomials in Several Variables

The discussion of §§3.1-3.3 dealt with polynomials in a single variable 
(indeterminate) x. But most of the results extend without difficulty to the 
case of several variables (or indeterminates) x1, - - - , x „ .

Definition. A  polynomial form over D  in indeterminates x u - •• ,x n is 
defined recursively as a form in xn over the domain £>[xi, • • • , x „_ i] of 
polynomial forms in x u • • •, (in short, D [x u • • ■, x„] =
D [x i, • • •, * „ - i ][* „ ]). A  polynomial function o f variables x u • ■ •, xn on 
an integral domain D  is one which can be built up by addition, subtraction, 
and multiplication from the constant function f(x\, • • • ,x n) =  c and the n 
identity functions /f(jci, • • •, xn) =  x, (i =  1, ■ • •, n).

Thus, in the case of two variables x, y, one such form would be 
p(x, y ) =  (3 +  x 2) +  0 • y +  (2x — x 3)y2— usually written in the more 
flexible form 3 +  x 2 +  2xy2 -  x 3y2.

A  corollary of Theorem 4 and induction on n is

Theorem  7. Each polynomial function in x l7 • ■ ■, xn can be expressed 
in one and only one way as a polynomial form if D  is infinite. Whether D  is 
infinite or not, D [x\, • ■ • ,x n]  is an integral domain.

It is obvious from the definition that every permutation of the sub
scripts induces a natural automorphism of the commutative ring 
D (x  i, • • • , * „ )  of polynomial functions of n variables. It follows by 
Theorem 7 that if D  is infinite, the same is true of polynomial forms 
(whose definition is not symmetrical in the variables). We shall now show 
that this result is true for any integral domain D.

Theorem  8. Every permutation o f the subscripts induces a different 
automorphism on D [x i,  • •• , * „ ] .

Proof. Consider the case of two indeterminates x, y. Each form
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of D [y , x ] can be rearranged by the distributive, commutative, and 
associative laws in D\y, x ] to give an expression of the form

This result has the proper form, and can be interpreted as if it were a 
polynomial p'(x, y ) in the domain D [x , y ] (x first, then y). The correspon
dence p(y, x ) i-* p'(x, y) thus set up is one-one— every finite set of non
zero coefficients atj corresponds to just one element of D [y , x ] and just 
one of D [x , y]. Finally, since rules (2) and (3) for addition and multiplica
tion can be deduced from the postulates for an integral domain, which 
both D [y , x ]  and D [x , y ] are, we see that the correspondence preserves 
sums and products.

The case of n indeterminates can be treated similarly with a more 
elaborate general notation— or deduced by induction from the case of two 
variables.

Thus D [x i, • • •, x „] in fact depends symmetrically on x\, • • •, xn. This 
suggests framing a definition of D [x i, • • • , xn]  from which this symmetry 
is immediately apparent. This may be done in the case n =  2, for the 
domain D "  =  D\x, y ], roughly as follows. Firstly, D "  is generated by x, y, 
and elements of D  (every element of D "  may be obtained from x, y, and 
D  by repeated sums and products); in the second place, the generators x 
and y are simultaneous indeterminates over D  or are algebraically 
independent over D ).  By this we mean that a finite sum

with coefficients ai} in D  can be zero if and only if all coefficients atj are 
zero. These two properties uniquely determine the domain D\x, y ] in a 
symmetrical manner (see Ex. 9 below).

1. Represent as polynomials in y with coefficients in D[x]:
(a) p(x, y) =  y3x + (x2 -  xy)2,
(b) q{x, y) = (x + y)3 -  3yx(x2 + x -  1).

2. Compute the number of possible functions of two variables x, y on the domain

3. Rearrange the following expression as a polynomial in x with coefficients 
which are polynomials in y (as in the proof of Theorem 8):

Exercises

(3x2 + 2x + l)y 3 + (x4 + 2)y2 + (2x -  3)y + x4 -  3x2 + 2x.
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4. Let D be any integral domain. Prove that the correspondence which carries 
each p(x) into p (-x )  is an automorphism of D [x]. Is it also one of D(x)7

5. Is the correspondence p(x) >-* p(x + c), where c is a constant, an automorph
ism of £>[*]? Illustrate by numerical examples.

6. If F  is a field, show that the correspondence p(x) <-*,p(ax) is an automorphism 
of F [x ] for any constant a ^ 0.

7. Exhibit automorphisms of D[x, y] other than those described in Theorem 8.
8. Prove Theorem 7, (a) for n = 2; (b) for any n.
9. (a) Prove in detail that the domain D[x , y] (first x, then y) is indeed generated

over D  by two “simultaneous indeterminates” x and y.
(b) Let D ' and D" be two domains each generated over D by two simultane

ous indeterminates x', y' and x", y", respectively. Prove that D ' is isomor
phic to D" under a correspondence which maps x' on x", y’ on y", and each 
element of D  on itself.

(c) Use parts (a) and (b) to give another proof of Theorem 8, for n = 2.

3.5. The Division Algorithm

The Division Algorithm for polynomials (sometimes called “ polyno
mial long division” ) provides a standard scheme for dividing one polyno
mial b (x ) by a second one a (x ) so as to get a quotient q (x ) and remainder 
/■(*) of degree less than that of the divisor a (x ). We shall now show that 
this Division Algorithm, although usually carried out with rational coeffi
cients, is actually possible for polynomials with coefficients in any field.

Theorem 9. I f  F  is any field, and a (x ) #  0 and b (x ) are any polyno
mials over F, then we can find polynomials q (x ) and r (x ) over F  so that

(8 ) b (x ) =  q (x )a (x ) +  r(x ),

where r (x ) is either zero or has a degree less than that of a (x).

Informal proof. Eliminate successively the highest terms of the 
dividend b (x ) by subtracting from it products of the divisor a (x ) by 
suitable monomials cxk. If a (x ) =  a0 +  a,x +  • ■ • +  amx m (am #  0) and 
b (x ) =  b0 +  b\X +  ■ ■ • +  bnx n (bn 0), and if the degree n of b (x ) is not 
already less than that m of a (x ), we can form the difference

(9) bx(x ) =  b (x ) -  (b ja m)x n~ma (x )
= 0 • x n +  (bn...i -  am^lb ja m)x n~l +  • • •,

which will be of degree less than n, or zero. We can then repeat this 
process until the degree of the remainder is less than m.
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A  formal proof for this Division Algorithm can be based on the 
Second Induction Principle, as formulated in §1.5. Let m be the degree of 
a(x). Any polynomial b (x ) of degree n <  m then has a representation 
b(x) =  0 • a (x ) +  b (x ), with a quotient q (x ) =  0. For a polynomial b (x ) 
of degree n g  m, transposition of (9) gives

(10) b{x) =  b i(x ) +  (bn/am)x "~ ma (x ),

where the degree k of is less than n unless b\{x) =  0. By the second 
induction principle, we can assume the expansion (8) to be possible for all 
b (x ) of degree k <  n, so that we have

(11) b i{x ) =  q i(x )a (x ) +  r{x),

where the degree of r (x ) is less than m, unless r (x ) =  0. Substituting (11) 
in ( 1 0 ), we get the desired equation (8 ), as

b{x) =  [q i(x ) +  { b j  am)x n~m\a{x) +  r{x).

In particular, if the polynomial a (x ) =  x — c is monic and linear, then 
the remainder r(x) in (8 ) is a constant r =  b (x ) — (x — c )q (x ). If we set 
x =  c, this equation gives r =  b (c ) — 0q (c) =  b (c). Hence we have

Corollary 1. The remainder o f a polynomial p (x ), when divided by 
x -  c, is p (c ) (Remainder Theorem).

When the remainder r (x ) in (8 ) is zero, we say that b (x ) is divisible by 
a (x ). More exactly, if a{x) and b (x ) are two polynomial forms over an 
integral domain D , then b (x ) is divisible by a (x ) over D  or in £>[*] if and 
only if b (x ) =  q (x )a (x )  for some polynomial form q (x ) e £>[*].

Exercises

1. Show that q{x) and r(x) are unique for given a(x) and b(x) in (8).
2. Compute q(x), r(x) if b{x) = x5 — x3 + 3x — 5 and a(x) = x2 + 7.
3. The same as Ex. 2 if a(x) is respectively x — 2, x + 2, x3 + x -  1.
4. (a) Do Ex. 2 for the field Z3.

(b) Do Ex. 3 for the field Z3.
5. Given distinct numbers a0, au - ■ • ,a„ in a field F, let a(x) = [ ] ( * “  aj)-

i-o
Show that the remainder r(x) of any polynomial f (x ) over F  upon division by 
a(x) is precisely the Lagrange interpolant to f (x ) at these points.

6. Is x2 + x2 + x + 1 divisible by x2 + 3x + 2 over any of the domains Z3, Z3, 
Z7?

Download more at Learnclax.com



Ch. 3 Polynomials 76

7. Find all possible rings Z„ over which x5 — lOx + 12 is divisible by x2 + 2.
8. (a) If a polynomial f (x ) over any domain has /(a) = 0 = f(b ), where a ^ b,

show that /(x) is divisible by (x — a)(x — b).
(b) Generalize this result.

9. In the application of the Second Induction Principle to the Division Algorithm,
what specifically is P(n) (see §1.5)?

3.6. Units and Associates
One can get a complete analogue for polynomials of the fundamental 

theorem of arithmetic. In this analogue, the role of prime numbers is 
played by “ irreducible”  polynomials, defined as follows.

Definition. A  polynomial form is called reducible over a field F  if  it 
can be factored into polynomials o f lower degree with coefficients in F ; 
otherwise, it is called irreducible over F.

Thus the polynomial x 2 +  4 is irreducible over the field of rationals. 
For suppose instead x 2 +  4 =  (x +  a )(x  +  b). Substituting x =  —b this 
gives (—b )2 +  4 =  (—b +  a ) ( -b  +  b) =  0, hence (—b )2 =  —4. This is 
clearly impossible, as a square cannot be negative. Since the same 
reasoning holds in any ordered field, we conclude that x 2 +  4 is also 
irreducible over the real field or any other ordered field.

To clarify the analogy between irreducible polynomials and prime 
numbers, we now define certain divisibility concepts for an arbitrary 
integral domain D, be it the polynomial domain Q [x], the domain Z  of 
integers, or something else.

An element a of D  is divisible by b (in symbols, b\a) if there exists 
some c in D  such that a =  cb. Two elements a and b are associates if 
both b\a and a \b. An associate of the unity element 1 is called a unit. 
Since 11 a for all a, an element u is a unit in D  if and only if it has in D  a 
multiplicative inverse w_1 with 1 =  m m - 1 . Elements with this property are 
also called invertible.

If a and b are associates, a =  cb and b =  c'a, hence a =  cc'a. The 
cancellation law gives 1 =  cc', so both c and c' are units. Conversely, 
a =  ub is an associate of b if u is a unit. Hence two elements are 
associates if and only if each may be obtained from the other by 
introducing a unit factor.

E x a m p l e  1. In a field, every a ^  0 is a unit.

E x a m p l e  2. In the domain Z  of integers, the units are ±1 ; hence 
the associates of any a are ±a.
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E x a m p l e  3. In a polynomial domain D [x ]  in an indeterminate x, 
the degree of a product f (x )  ■ g (x ) is the sum of the degrees o f the factors. 
Hence any element b (x ) with a polynomial inverse a (x )b (x ) =  1 must be 
a polynomial b(x ) =  b o f degree zero. Such a constant polynomial b has 
an inverse only if b already has an inverse in D. Therefore the units of 
D[x\  are the units of D.

If F  is a field, the units of the polynomial domain F [x ] are thus exactly 
the nonzero constants of F, so that two polynomials f (x )  and g (x ) are 
associates in F [x ] if and only if each is a constant multiple of the other

E x a m p l e  4. In the domain Z[V2] of all numbers a +  b'J2 (a, b 
integers), (a +  b^F2)(x +  yV2) =  1 implies x =  a/(a2 — 2b2), y =  
-b / (a 2 -  2b2)— and these are integers if and only if a 2 -  2b2 =  ±1. 
Thus, 1 ±  y/2 and 3 ±  2V2 are units, whereas 2 +  V2 is not a unit in

An element b of an arbitrary integral domain D  is divisible by all its 
associates and by all units. These are called “ improper”  divisors of b. An 
element not a unit with no proper divisors is called prime or irreducible in 
D.

E x a m p l e  5. Over any field F, a linear polynomial ax +  b with 
a 0 is irreducible, for its only factors are constants (units) or constant 
multiples of itself (associates).

E x a m p l e  6. Consider the domain Z f v —11 of “ Gaussian integers”  of 
the form a +  b 'J -1, with a, b e Z. If a +  b'J- 1 is a unit, then, for some 
c +  d y P I ,  we have

1 =  (a +  b'J—l) (c  +  d'J—Y) — (ac — bd) +  (ad +  b c ) ' f - 1.

Hence ac — bd =  1, ad +  be =  0, and

1 =  (ac -  bd)2 +  (ad  +  be) 2 =  (a 2 +  b2) ( c 2 +  d 2),

as can easily be checked. Since a2 +  b2, c2 +  d2 are nonnegative integers, 
we infer a 2 +  b2 =  c 2 +  d2 =  1; the only possibilities are thus 1, —1, 
V—1, and — V—1, giving four units.

Lemma. In any integral domain D , the relation “ a and b are 
associates ”  is an equivalence relation.

The proof will be left to the reader. (See also Exs. 1-3 below.)
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Exercises

1. In any integral domain D, prove that
(a) the relation “ b\a ”  is reflexive and transitive,
(b) if c & 0, then b \ a if and only if be \ ac,
(c) any two elements have a common divisor and a common multiple,
(d) if a | b and a\c, then a\(b ± c).

2. Prove that the units o f Zm are the integers relatively prime to m.
3. In any integral domain, let “ a ~  b" mean “ a is associate to b." Prove that

(a) if a ~  b, then c \ a if and only if c | b,
(b ) if a ~  b, then a | c if and only if b | c,
(c) if a | c if and only if b \ c, then a ~ b,
(d) if p is prime and p ~  q, then q is prime.

4. Show that if a ~  a' and b ~  b', then ab ~  a'b'—whereas in general 
a +  b ~  a' +  b' fails.

5. Prove the “ generalized law o f cancellation” : I f  ax ~ by, a ~ b, and a ^ 0, 
then x — y.

6. List all associates o f x2 +  2x -  1 in Z 5[x ].
7. Find all units in the domain D[x, y ]  o f polynomials in two indeterminates.
8. For which elements a o f an integral domain D  is the correspondence 

p(x) -> p(ax) an automorphism o f D[x]7
9. Find all the units in the domain D  which consists o f all rational numbers m/n 

with m and n integers such that n is not divisible by 7.
10. W here a =  a +  hV3, define N(a) =  a2 -  3b2. Prove

(a) N(aa') =  J V (a )N (a '),
(b ) that if a  is a unit in Z (V 3 ], then N(a) = ±1 .

11. Let Z [V 5 ] be the domain o f all numbers a =  a +  b'fs (a, b integers), and set 
N(a) = a2 -  5b2.
(a) Prove that 9 +  4V5 is a unit in this domain. (C f. Ex. 10.)
(b) Show that 1 -  V5 and 3 +  V5 are associates, but are not units.
(c) Show generally that a  is a unit if and only if N(a) =  ±1 .
(d ) I f N(a) is a prime in Z , show that a  is a prime in Z [V 5 ].
(e ) Show that 4 +  V5 and 4 -  V5 are primes.
(f) Show that 2 and 3 +  Vs are primes. (H int: x2 = 2 (m od 5) is impossible 

for x e  Z .)
(g ) Use 2 • 2 =  (3 +  V5)(3  -  V5 ) to show that Z [V 5 ] is not a unique factori

zation domain (§3.9).
12. Prove in detail the lemma o f the text.

3.7. Irreducible Polynomials

A  basic problem in polynomial algebra consists in finding effective 
tests for the irreducibility o f polynomials over a given field. The nature of 
such tests depends entirely on the field F  in question. Thus over the
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complex field C, the polynomial x 2 +  1 can be factored as x 2 +  1 = 
{x +  > / -!)(*  -  y f -1). In fact, as will be shown in §5.3, the only irreduci
b le  p o lyn om ia ls  o f  C[x] are lin ear. Y e t  x 2 +  1 is irredu c ib le  o v e r  the rea l 

field R.
Again, since x 2 — 28 =  (x — V28)(x +V28), the polynomial x 2 — 28 

is reducible over the real field. The same polynomial is irreducible over 
the rational field, as we shall now prove rigorously.

Lemma. A  quadratic or cubic polynomial p (x ) is irreducible over a 
field, F, unless p (c ) =  0 for some c e F.

Proof. In any factorization of p (x ) into polynomials of lower degree, 
one factor must be linear, since the degree of a product of polynomials is 
the sum of the degrees of the factors.

Theorem 10. Let p (x ) =  aox" + a ^ " -1 +  ■■■ +  an be a polynomial 
with integral coefficients. Any rational root o f the equation p (x ) =  0 must 
have the form r/s, where r \ an and s \ ao.

Proof. Suppose p (x ) =  0 for some fraction x =  b/c. By dividing out 
the g.c.d. of b and c, one can express b/c in “ lowest terms”  as a quotient 
r/s of relatively prime integers r and s. Substitution of this value in p (x ) 
gives

(12) 0 =  snp(r/s) =  a0rn +  a irn~1s +  • • • +  ansn,

whence

- a 0rn =  s i a ^ '1 +  a2rn~2s +  • • • +  a„sn-1), and s|aor"-

But (s, r) =  1; hence, by successive applications of Theorem 10 of §1.7, 
s|a0rn_1, • • • ,s|ao- Similarly, as -a „s n =  r(a0rn~l +  • • • +  a „ -1sn~1), 
r\an.

Corollary* Any rational root o f a monic polynomial having integral 
coefficients is an integer.

It is now easy to prove that x 2 — 28 is irreducible over Q. By the 
Corollary, x 2 =  28 implies that x =  r/s is an integer. But x 2 — 28 >  0 if 
|x| S  6, and x 2 — 28 <  0 if |x| S  5. Hence no integer can be a root of 
x 2 — 28 =  0, and (by the Lemma) x 2 — 28 is irreducible over the rational 
field.

There is no easy general test for irreducibility of polynomials over the 
rational field Q (but see §3.10).
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Exercises

1. Test the follow ing equations for rational roots:
(a) 3x3 -  Ix  =  5, (b) 5x3 + x 2 + x =  4,
(c) 8x5 +  3x2 =  17, (d ) 6x3 -  3x =  18.

2. Prove that 30jc" =  91 has a rational root for no integer n >  1. (H int: Use 
the fundamental theorem o f arithmetic.)

3. For which rational numbers x is 3x2 — Ix  an integer? Find necessary and 
sufficient conditions.

4. For what integers a between 0 and 250 does 30jc" =  a have a rational root 
for some n >  1?

5. Is jc2 +  1 irreducible over Z3? over Z5? H ow  about x3 +  x +  2?
6. Find a finite field over which x 2 — 2 is (a) reducible, (b ) irreducible.
7. Find all monic irreducible quadratic polynomials over the field Z5.
8. Find all monic irreducible cubic polynomials over Z3.
9. Prove that if a0 +  a xx +  a2x2 +  • • • +  anx" is irreducible, then so is 

an +  <*„_!* +  an. 2x2 +  • • • +  anx".
10. Decom pose into irreducible factors the polynomial x* — 5x2 +  6 over the 

field o f rationals, over the field Q(V2) o f §2.1, and over the field o f reals.
★11. Show that if 4ac >  b2, then ax2 + bx + c is irreducible over any ordered 

field.

3.8. Unique Factorization Theorem

Throughout this section we shall be considering factorization in the 
domain F [* ]  of polynomial forms in one indeterminate x over a field F. 
The main result is that factorization into irreducible (prime) factors is 
unique, the proof being a virtual repetition of that of the analogous 
fundamental theorem of arithmetic (Chap. 1). The analogy involves the 
following fundamental notion, which will be considered systematically in 
Chap. 13.

Definition. A  nonvoid subset C  o f a commutative ring R  is called an 
ideal when a e C  and b e C  imply (a ±  b) e C, and a e C, r e R  imply 
ra e C.

Remark. For any a e R , the set of all multiples ra of a is an ideal, 
since

ra ±  sa =  (r ±  s)a and s(ra) =  (sr)a, s , r e R .

Such an ideal is called a principal ideal. We will now show that all ideals 
in any F [x ] are principal.
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Theorem  11. Over any field F, any ideal C  o f F\_x) consists either (i) 
o f 0 alone, or (ii) o f the set o f multiples q (x )a (x ) o f any nonzero member 
a (x) o f least degree.

Proof. Unless C  =  0, it contains a nonzero polynomial a (x ) of least 
degree d (a ), and, with a (x ), all its multiples q (x )a (x ). In this case, if b (x ) 
is any polynomial of C, by Theorem 9 some r(x ) =  b (x ) — q (x )a (x ) has 
degree less than d(a ). But by hypothesis C  contains r(x), and by con
struction it contains no nonzero polynomial of degree less than d(a ). 
Hence r(x ) =  0 and b (x ) =  q (x )a (x ), proving the theorem.

Now let a (x ) and b (x ) be any two polynomials, and consider the set C  
of all the “ linear combinations”  s (x )a (x ) +  t (x )b (x ) which can be formed 
from them with any polynomial coefficients s(x ) and t(x ). This set C  is 
obviously nonvoid, and contains any sum, difference, or multiple of its 
members, since (in abbreviated notation)

(sa +  tb) ±  (s'a +  t'b ) =  (s ±  s')a +  (t  ±  t')b, 

q(sa +  tb) =  (qs)a +  (qt)b.

Hence the set C  is an ideal and so, by Theorem 11, consists of the 
multiples of some polynomial d (x ) o f least degree.

This polynomial d (x ) will divide both a (x ) =  1 • a (x ) +  0 • b (x ) and 
b (x ) =  0 ■ a (x ) +  1 • b (x ), and will be divisible by any common divisor of 
a (x ) and b(x), since d (x ) =  s0(x)a(jc) +  t0(x )b (x ). Our conclusion is

Theorem  12. In  F [x ], any two polynomials a and b have a “ greatest 
common divisor”  d satisfying (i) d\a and d\b, (i') c |a and c \b imply c \d. 
Moreover, (ii) d is a “ linear combination” d =  sa +  tb o f a and b.

We remark that the Euclidean algorithm, described in detail in §1.7, 
can be used to compute d explicitly from a and b. (This is because our 
Division Algorithm allows us to compute remainders of polynomials 
explicitly.)

Also, if d satisfies (i), (i'), and (ii), then so do all associates of d. 
Incidentally, (i) and (ii) imply (i').

The g.c.d. d (x ) is unique except for unit factors, for if d and d' are 
two greatest common divisors of the same polynomials a and b, then by
(i) and (i'), d\d' and d'\d, so that d and d' are indeed associates. 
Conversely, if d is a g.c.d., so is every associate of d. It is sometimes 
convenient to speak of the unique monic polynomial associate to d as 
“ the”  g.c.d.

Two polynomials a (x ) aAd b (x ) are said to be relatively prime if their 
greatest common divisors are unity and its associates. This means that
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polynomials are relatively prime if and only if their only common factors 
are the nonzero constants of F  (the units of the domain F[jc]).

Theorem 13. I f  p (x ) is irreducible, then p(jt)|a(x)Z>(*) implies that 
p (x )\a (x ) o rp (x )\b (x ).

Proof. Because p (x ) is irreducible, the g.c.d. of p (x ) and a (x ) is 
either p (x ) or the unity 1. In the former case, p(x)| a (x ); in the latter 
case, we can write 1 =  s (x )p (x ) +  t (x )a (x ) and so

b (x ) =  1 • b (x ) =  s (x )p (x )b (x ) +  f(x)[a(;t)Z>(;t)].

Since p (x ) divides the product a (x )b (x ), it divides both terms on the 
right, hence does divide b (x ), as required for the theorem.

Theorem 14. Any nonconstant polynomial a (x ) in F [x ] can be ex
pressed as a constant c times a product o f monic irreducible polynomials. 
This expression is unique except fo r the order in which the factors occur.

First, such a factorization is possible. If a (x ) is a constant or irreduci
ble, this is trivial. Otherwise, a (x ) is the product a (x ) =  b (x )b '(x ) of 
factors of lower degree. By the Second Induction Principle, we can 
assume

b (x ) =  cp^x) • • • pm(x ), b '(x ) =  c 'p f ix )  ■ ■ • pn'{x),

whence a (x ) =  (cc ')p i(x ) • • • pm(x )p i '(x ) • • • pn'(x ), where cc' is a con
stant and the P i(x ) and p/(x) are irreducible and monic polynomials.

To prove the uniqueness, suppose a(x) has two possible such “ prime”  
factorizations,

a (x ) =  cpx(x ) • • • pm(x ) =  c ’qx{x) • • • qn(x).

Clearly, c =  c ' will be the leading coefficient of a(x) (since the latter is 
the product of the leading coefficients of its factors). Again, since Pi(x) 
divides c'qj(x) • • • q„(x) =  a(x), it must by Theorem 13 divide some 
(nonconstant) factor <7,(x); since qfx)  is irreducible, the quotient 
qi(x)/p\(x) must be a constant; and since p\(x) and qi(x) are both monic, 
it must be 1. Hence pi(x) =  qt(x). Cancelling, p2(* ) • • • Pm(x ) equals the 
product of the qk(x) [k  ^  ('], and has a lower degree than a(x). There
fore, again by the Second Induction Principle, the p j(x ) [/ A 1] and <&(*) 
[k  #  /] are equal in pairs, completing the proof.

It is a corollary (cf. §1.8, last paragraph) that the exponent e, to 
which each (monic) irreducible polynomial P i(x ) occurs as a factor of
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a (x ) is uniquely determined by a (x ), and is the biggest e such that 
Pi(xY\a(x). '

I f a polynomial a (x ) is decomposed into irreducible factors pt(x ) 
which are not necessarily monic, the factors are no longer absolutely 
unique, as in Theorem 14. However, each factor pt(x ) divided by its 
leading coefficient gives a (unique) monic irreducible factor, and therefore 
is associate to this irreducible in F[jc]. Hence any two such factorizations 
can be made to agree with each other simply by reordering terms and 
replacing each factor by a suitable associate factor. This situation is 
summarized by the statement that the decomposition of a polynomial in 
F[x\ is unique to within order and unit factors (or to within order and 
replacement of factors by associates).

Exercises

1. Show that if <j> is any homomorphism from  a commutative ring R to a 
commutative ring R', then the antecedents o f the additive zero o f R' form 
an ideal in R.

2. (a ) Find the g.c.d. of jc3 -  1 and x* + x3 + 2x2 + x +  1 over Q.
(b ) Express this g.c.d. as a linear combination d(x) =  s (jt )a (jt ) +  t(x)b(x) 

o f the given polynomials. ( Caution: The coefficients need not be inte
gers.)

(c) The same for jc18 -  1, jc33 — 1.
3. Find the g.c.d. o f 2jc3 +  6x2 -  x — 3, jc4 + 4 x3 + 3jc2 + x +  1 over Q.
4. D o Ex. 3, assuming that the polynomials have coefficients in Z3.
5. Show that jc3 +  x + 1 is irreducible modulo 5.
6. Factor the follow ing polynomials in Z3:

(a ) x2 +  x +  1, (b ) x3 +  x + 2, (c) 2 x3 +  2x2 +  x + 1,
(d ) x4 + x3 + x + 1, -* (e ) x4 + x 3 + x + 2.

7. List (to  within associates) all divisors o f jc4 — 1 in the domain o f polyno
mials with rational coefficients, proving that every divisor o f  jc4 — 1 is 
associate to one on your list.

8. D o  the same for jc6 -  1, Xs — 1.
9. Prove that two polynomial forms q(x) and r(x) over Z represent the same 

function on Zp if and only if (xp — x)| [<?(*) -  r(jc)]. (Hint: Use Ex. 6 o f 
§3.2.)

10. Prove that any Unite set o f polynomials over a held has a g.c.d., which is a 
linear combination o f the given polynomials.

11. (a) Prove that the set o f  all common multiples o f  any two given polyno
mials over a held is an ideal.

(b ) In fer that the polynomials have a l.c.m.; illustrate by finding the l.c.m. 
o f x2 + 3x + 2 and (x +  l ) 2.

12. I f  a given polynomial p(x) over F  has the property that p(x)\a(x)b(x) 
always implies either p(x)\a(x) or p(x)\b(x), prove p(x) irreducible over F.
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13. If p(x) is a given polynomial such that any other polynomial is either 
relatively prime to p(x) or divisible by p(x), prove p(x) irreducible.

14. If m(x) is a power of an irreducible polynomial, show that m(x)\a(x)b(x) 
implies either m(x)\a(x) or m(x)|f>(x))* for some e.

15. If h(x) is relatively prime to both f ix ) and g(x), prove h(x) relatively prime 
to f(x )g (x ).

16. If h(x)\f(x)g(x) and h(x) is relatively prime to fix ), prove that h(x)|g(x).
17. If f ix ) and g(x) are relatively prime polynomials in F[x], and if F  is a 

subfield of K, prove that f ix ) and g(x) are relatively prime also in /£[*].
★18. If two polynomials with rational coefficients have a real root in common, 

prove that they have a common divisor with rational coefficients which is 
not a constant.

19. The following descriptions give certain sets of polynomials with rational 
coefficients. Which of these sets are ideals? When the set is an ideal, find in 
it a polynomial of least degree.
(a) all bix) with bi3) = bi5) = 0,
(b) all bix) with bi3) ^ 0 and h(2) = 0,
(c) all bix) with bi3) = 0, bi6) = h(7),
(d) all bix) such that some power of bix) is divisible by (x + l )4(x + 2).

20. Let S be any set of polynomials over F  which contains the difference of any 
two of its members and contains with any bix) both xbix) and abix) for 
each constant a in F. Show that S is an ideal.

*3 .9 . Other Domains w ith Unique Factorization

Consider the domain Q [jc , y ] of polynomial forms in two indetermi
nates over the rational field Q. The only common divisors of a(jc, y) =  x 
and bix, y ) =  y2 4- x are 1 and its associates, yet there are no polyno
mials six, y) and tix, y) such that xsix, y) +  (y2 4- x )tix , y ) =  1, since the 
polynomial xs +  (y2 4- x )t  would never have a constant term not zero, 
whatever the choice of s and t. Similarly, in the domain Z [x ]  of polyno
mials with integral coefficients, g.c.d. (2, jc) =  1, yet s ix ) • 2 4- r(jc) • jc = 
1 has no solution. Thus Theorem 12 does not hold in either domain.

Nevertheless, one can show that in both cases, factorization into 
primes is possible and unique (Theorem 14 holds).

Definition. By a unique factorization domain isometimes called a 
“ Gaussian domain” ) is meant an integral domain in which

(i) any element not a unit can be factored into primes;
(ii) this factorization is unique to within order and unit factors.

Our main result will be that if G  is any unique factorization domain, 
then so is any domain G [x u • • •, jc „] of polynomial forms over G. Using
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induction on n, one can evidently reduce the problem to the case G [x ]  of 
a single indeterminate, and it is this case which we shall consider.

First, we shall embed G  in the field F  =  O (G )  of its formal quotients 
(§2.2, Theorem 4), and we shall consider F[jc] along with G [x ], We may 
typically imagine G  as the domain of the integers and F  correspondingly 
as that of the rationals.

Second, we shall call a polynomial of F [x ] primitive when its coeffi
cients (i) are in G  (“ integers” ) and (ii) have no common divisors except 
units in G. Thus 3 — 5x2 is primitive, 3 -  6x2 is not.

Lemma 1 (Gauss). The product o f any two primitive polynomials is 
itself primitive.

Proof. Write

I  ckx k =  I  a,x‘ • Z  bjx1;
k i j

if this is not primitive, then some prime p e G  will divide every ck. But let

am and bn be the first coefficients not divisible by p in X a ,* ' and £  bjxj,
i i

respectively (they certainly exist, since the polynomials are primitive). 
Then the formula (3) for the coefficient cm+n in the product gives

ttmbn ^m+n \_ttobm+n 4" • • * “F am~\bn+\ 4" am+\bn—i 4" • * • 4" am+nbo\,

so that the product ambn is divisible by p, since all the terms on the right 
are so divisible. This means that the prime p must appear in the unique 
decomposition of one of the factors am or b„, in contradiction to the 
choice of am and b„ as not divisible by p.

Lemma 2. Any nonzero polynomial f (x )  o f F [x ] can be written as 
f (x )  =  c/ *(x ), where cf  is in F  and f * (x )  is primitive. Moreover, for a given 
f (x ) ,  the constant cf  and the primitive polynomial f * (x )  are unique except 
for a possible unit factor from G.

Proof. First write f (x )  =  (b0/a0) 4- (b ja ^ x  4- • • • 4- (b ja n)x n, 
a„ bi e G  (“ integers” ). If c =  \/a0ai • • • a„, we have f (x )  =  cg(x ), 
where g (x ) has coefficients in G. Now let c' be a greatest common divisor 
of the coefficients of g (x ) (this exists, since the unique factorization 
theorem holds in G ). Clearly, f * (x )  =  g (x )/ c ' is primitive, and f (x )  =  
(cc')/*(*)• This is the first result, with cf  -  cc'.

To prove the uniqueness of cf  and /*, it suffices to show that f *  is 
unique to within units in G. To this end, suppose f * (x )  =  cg*(x ), where

Download more at Learnclax.com



Ch. 3 Polynomials 86

f * (x )  and g * (x ) are primitive and c e F. Write c =  u/v, where u , v e G  
are relatively prime, so that u g*(x ) =  v f*(x ). The coefficients of ug*(x ) 
will then have v as a common factor, whence, since u and v are relatively 
prime, v divides every coefficient o f g* (x ). But g * (x ) is primitive, hence v 
is a unit in G. By symmetry, u is a unit, and so u/v is a unit in G. This 
completes the proof.

The constant cf  of Lemma 2 is called the content of / ( jc );  it is unique 
to within associateness in G.

Lemma 3. I f  f (x )  =  g (x )h (x ) in G [x ] or even F [x ], then cf  ~  c f h 
and f * (x )  ~  g * (x )h * (x ), where denotes the relation o f being associate 
in G [x ],

Proof. By Lemma 1, g * (x )h * (x ) is primitive; it is also clearly a 
constant multiple of /*(x); hence by Lemma 2 the two differ by a unit 
factor u in G  (are associate); hence cf  =  u~1cgch. Q.E.D.

It is a corollary that if /(x) is in G [x ] and reducible in F [x ], then 
f (x )  =  ucf g * (x )h * (x ). This gives the following generalization of the 
Corollary of Theorem 10.

Theorem  15. A  polynomial with integral coefficients which can be 
factored into polynomials with rational coefficients can already be factored 
into polynomials of the same degrees with integral coefficients.

What is more important, by Lemma 3 the factorization of any /(x) in 
G [x ] splits into independent parts: the factorization of its “ content”  cf 
and that of its “ primitive part”  /*(x). The former takes place in G  and so 
by hypothesis is possible and unique. By Lemma 3, the latter is essentially 
equivalent to factorization in F [x ], which is possible and unique by 
Theorem 14. This suggests

Lemma 4. I f  G  is a unique factorization domain, so is G [x].

Proof. By Lemma 2, any polynomial f ( x )  has a factorization f (x )  =  
cff * (x ),  hence a prime element /(x) in G [x ] must have one of these 
factors cf  or f *  a unit of G [x ]. Therefore the primes of G [x ] are of two 
types: the primes p of G, and the primitive polynomials q (x ) which are 
irreducible, both in G [x ] and (Theorem 15) in F [x],

Now consider any polynomial /(x) in G [x ]. It has a factorization in 
F [x ], and hence is associate to a product of primitive irreducibles of 
G [x ], as /(x) ~  q i(x ) • • • qm(x ). Thus /(x) =  dq^x) • • • qm(x ), where the 
element d of G  can be factored into irreducibles p, of G. A ll told, /(x)

Download more at Learnclax.com



§3.9 Other Domains w ith  Unique Factorization 87

has the decomposition

f ix )  =  p i "  • p ,q i(x )-  ■ • qm(x),

where each p, is a prime of G, each qsix ) a primitive irreducible of G [x ].
In this factorization the polynomials qj{x) which appear are uniquely 

determined, to within units in G, as the primitive parts of the unique 
irreducible factors of f i x ) in F [x ], Since the q,ix) are primitive, the 
product pi ■ • • pr is the essentially unique content cf of f ix ) .  Therefore 
the Pi are the (essentially) unique factors of cy in the given domain G. 
This shows that G [x ] is a unique factorization domain. Q.E.D.

Fom Lemma 4 and an induction on n one concludes

Theorem  16. I f  G  is any unique factorization domain, so is every 
polynomial domain G [x  i, • • •, x„] over G.

In §14.10, we shall exhibit an integral domain which is not a unique 
factorization domain, in which neither Theorem 12 nor Theorem 14 holds 
(cf. §3.6, Ex. 11(g)).

E xerc ises

1. Represent each of the following as a product of a constant by a primitive
polynomial of Z [x ]:  3x2 + 6x + 9, x 2/2 + x/3 + 7.

2. List all the divisors of 6x2 + 3x — 3 in Z[x].
★3. Describe a systematic method for finding all linear factors ax + b of a

polynomial f  ix ) in Z[x\.
4. For what integers n is 2x2 + nx — 7 reducible in Q[x]?
5. Find the prime factors of the following polynomials in Q[x]:

x3 -  lOOlx2 -  1, x4 + 50x2 + 2.

6. Prove that two elements a and b in a unique factorization domain always 
have a g.c.d. (a, b) and an l.c.m. [a, b\

7. Prove that ab *- (a, b)[a, b ] in any unique factorization domain.
8. Do the properties of “ relatively prime” elements as stated in Exs. 15 and 

16 of §3.8 hold in every unique factorization domain?
9. In the notation of the text, show directly

(a) that c , f * (x )  \ csg * (x ) in G[x] if and only if cf  \ cg in G  and /*(x) | g*(x) 
in F[x];

(b) using (a), that a “ prime” of G [x] which divides a product a (x )b (x ) must 
- divide a(x) or b{x).

10. If f i x )  and g ix ) are relatively prime in F[x], prove that y f ix f  +  g(x) is 
irreducible in F[x, y].
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11. Decompose each of the following into irreducible factors in Q[x, y], and 
prove that your factors are actually irreducible:

(a) x 3- y 3, (b) x 4 -  y2, (c) x 6 -  y6, (d) x 1 +  l x 3y +  3x2 +  9y.
12. Find all irreducible polynomials o f degree 2 or less in Z f[x , y].
13. Show that there exist in Q[x, y ] no polynomial solutions for the equation
, 1 =  s(x, y )(x  -  2) +  t{x, y )(x  +  y -  3).
14. Show that the polynomial /(jc, y) is irreducible in F [x , y ] if there is a 

substitution x  -» t', y -» ts which yields a polynomial f (t\  t’ ) irreducible in 
F {f ],  provided the degree of f ( t r, t ’ ) is the maximum of the integers mr and 
ns for all pairs m, n appearing as the exponents o f some term x my" o f /.

★15. (Kronecker.) If /Oc)|g(jc) in Z [x ], prove that /(c)|g(c) for each c in Z. 
Develop from this fact (and the interpolation formula (5) of §3.2) a 
systematic method of finding in a finite number of steps all factors of given 
degree of any / ( jc )  of Z [jc ].

16. Let D  be the set o f all rational numbers which can be written as fractions 
a/b with a denominator b relatively prime to 6. Prove that D  is a unique 
factorization domain.

*3 .1 0 . Eisenstein's Irreducibility Criterion

It is obvious that the equation x n =  1, n odd, has no rational root 
except x =  1. It follows that x n -  1 has no monic linear factors over Q 
except x -  1. But this does not show that the quotient

(13) <f>(x) =   -----=- =  jc"-1 +  i " " 2 +  • • • +  x +  1
^  jc -  1

is irreducible. Indeed, this polynomial is reducible unless n is a prime.
We now show that if n =  p is a prime, then the cyclotomic polynomial 

<f>(x) defined by (13) is irreducible, so that jcp — 1 =  (jc — 1)</>(jc) gives 
the (unique) factorization of jcp — 1 into monic irreducible factors. This 
result will be deduced from the following sufficient condition for irreduci
bility due to Eisenstein:

Theorem  17. For a given prime p, let a (x ) =  a„jcn +  a ^ jc " -1 +  
• ■ • +  a0 be a polynomial with integral coefficients, such that 
an & 0 (mod p ), a„_i = a„_2 =  • • • =  a0 =  0 (mod p), a0 #  0 (mod p 2). 
Then a (x ) is irreducible over the field o f rationals.

Proof. In any possible factorization (n =  m +  k)

a (x )  =  (bmx m +  bm- iJCm 1 +  • • • +  b0)(c kx k +  ck^ x k 1 +  • • • +  c0)
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we may assume by Theorem 15 that both factors have integral coefficients 
bi and ct. Since a0 =  b0c0, the third hypothesis a0 #  0 (mod p 2) means 
that not both b0 and c0 are divisible by p. To fix our ideas, suppose that 
b0 ^  0 (mod p ), while c0 =  0 (mod p ). But bmck =  an ^  0 (mod p), so 
ck & 0 (mod p). Pick the smallest index r ^  k for which cr #  0 (mod p), 
with c,_i =  • • • =  c0 =  0 (mod p). Then

a, =  b0cr +  bicr- i  +  • • • +  brc0 =  b0cr (mod p).

But b0 & 0 and cT ^  0, give a, ^  0, for p  is a prime. By the hypothesis, 
the only coefficient a, for which this is possible is a„, so r = n : the degree 
of the second of the proposed factors must be rt, so that the polynomial 
f (x )  is indeed irreducible. Q.E.D.

This criterion may be applied to the polynomial (13) when n =  p ; it 
gives the cyclotomic polynomial

(13') 4>(x) =  (xp -  l)/ (x  -  1) =  x” - 1 +  xp~2 +  • • • +  x +  1.

The Eisenstein criterion does not apply to (13') as it stands, but a simple 
change of variable y =  x — 1 works, for the binomial expansion gives

(xp -  l)/ (*  -  1) =  [(y +  V f  -  l]/y
(i
1 -2

The binomial coefficients which appear on the right are all integers 
divisible by the prime p, for p occurs in each numerator as a factor, and 
can never be cancelled out by the (smaller) integers in the denominator. 
The polynomial in y thus satisfies the hypotheses of the Eisenstein 
criterion, hence is irreducible; this entails the irreducibility of the original 
cyclotomic polynomial <f>(,x) of (13').

Exercises

1. Which of the following polynomials are irreducible over the field of 
rationals?

x3 +  2x2 +  4x + 2 , x3 +  2x2 +  2x + 4 , x7 -  47, x4 +  15.

2. Use Eisenstein’s criterion to show x2 +  1 irreducible over the rationals.
3. If f (x ) is irreducible over a field F, show that/(x +  a) also is, for any a in F.
4. If a polynomial f (x ) of degree n > k satisfies the hypotheses 

an ^  0,ak & 0, ak- i  =  • • • =  a0 =  0 (mod p) and a0 ^  0 (mod p2), show 
that f (x ) has an irreducible factor of degree at least k.
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★5. Show that the irreducibility o f a polynomial of odd degree 2n +  1 is 
enforced by the conditions a2„+i ^  0 (mod p ), a2„ =  • • • — a„+i =  0 
(mod p ), an =  a„_i =  • • • =  a0 =  0 (m odp2), a0 #  0 (m od p 3).

6. (a) If f i x )  is a monic polynomial with integral coefficients, show that the
irreducibility o f f ix )  modulo p implies its irreducibility over Q.

(b) Show that every factor o f f i x )  over Z  must reduce modulo p  to a factor 
o f the same degree over Zp.

(c) Use this to test (using small p ) the irreducibility over Q  of

x 3 +  6x2 +  5x +  25, x 2 +  6x2 +  11* + 8 ,  x 4 +  8x3 +  x 2 +  2x +  5.

7. (a) Let P it ] be the domain of all polynomials in an indeterminate t. State
and prove an analogue of the Eisenstein Theorem for polynomials f ix )  
with coefficients in F[t\. iH int: Use t in place o f p.)

(b) Use this to prove that x 3 +  3t2x 2 +  2tx2 +  t4x + 7 1 +  t2 is irreducible in 
the domain F [t, x ].

★3.11. Partial Fractions

The unique decomposition theorem for polynomials can be applied to 
rational functions to obtain certain simplified representations, like the 
partial fraction decomposition used in integral calculus. This we now 
discuss, assuming throughout that the polynomials and rational forms 
used have coefficients in some fixed field F.

Consider first a rational form b{x)/a ix) in which the denominator has 
a factorization a (x ) =  c (x )d (x )  with relatively prime factors c(x ) and 
d (x ). Theorem 12 gives polynomials six ) and t{x ) with 1 =  sc +  td; 
hence

(14) b(x)/[_cix)d(x )] =  [_s(x)bix)]/d(x) +  [ t(x )b (x )]/ c (x ).

The result in words is

Lemma 1. A  rational form in which the denominator is the product of 
relatively prime polynomials c (x ) and d (x ) can be expressed as a sum o f 
two quotients with denominators c (x ) and d (x ), respectively.

If the denominator a{x ) is a power a{x) =  [c (x )]m, m >  1, this 
process does not apply directly. Instead, divide the numerator by c(x ) as 
in the division algorithm, b (x ) =  q0(x )c (x ) +  r0(x ), then divide the quo
tient q0(x ) again by c(x ), to get q0(x ) =  $ i(x )c (x ) +  r,(x). Combined, 
these give

b{x) =  q ,(x )[c (x )]2 +  r^ ix)cix ) +  r0(x ).
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Repeating this process (this phrase disguises an induction; remove the 
camouflage!), one finds, in abbreviated notation, thatf

(15) b(x ) =  qm- 1c m +  rm-iC m 1 +  • • • +  +  r0,

where each polynomial r, =  r,(x), if not zero, has degree less than that of 
c(x). The rational form b (x )/a (x ) now becomes

(16) b/cm =  qm—i +  rm^ / c +  rm_2/c2 +  • • • +  r j c m~l +  r0/cm.

This proves

Lemma 2. A  rational form with a power [c (x )]m as denominator can 
be expressed as a polynomial plus a sum of rational forms with 
denominators which are powers of c (x ) and numerators which have degrees 
less than that of c (x ).

To combine these results, decompose an arbitrary given denominator 
a (x ) into a product of monic irreducibles. If equal irreducibles are 
grouped together, one has

(IV ) a (x ) =  a0[p i(* )]mi[p2(* ) ]m2 • ' ’ [p * (* )]"\

with integral exponents m,. Any two distinct monic irreducibles p i(x ) and 
p2(x ) are certainly relatively prime, so that the powers [pi(jc)]m‘ and 
[pzOO]” 2 have no common factors except units, hence are relatively 
prime. Lemma 1 can therefore be applied to that factorization of the 
denominator in which one factor is ci(x ) =  [piOO]m\ while the other 
factor is all the rest o f (17). Repetition gives b/a as a sum of fractions, 
each with a denominator [p,-(jc)]m'. To these denominators the reduction 
of (16) may be applied.

Theorem  18. Any rational form b{x)/a{x) can be expressed as a 
polynomial in x plus a sum o f (“partial” ) fractions of the form  
r(x)/[_p(x)~\m, where p (x ) is irreducible and r(x ) has degree less than that of 
p (x ). The denominators [p (x )]m which occur are all factors o f the original 
denominator a (x ).

I f the explicit partial fraction decomposition of a given rational 
function b (x )/a (x ) is to be found, the successive steps of the proof of 
Theorem 18 may be carried out to get the explicit result. Such a proof,

tT his is the analogue of the decimal expansion of an integer presented in Ex. 11, §1.5.
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which can always be used for actual computation of the objects con
cerned, is known as a “ constructive”  proof.

For example, consider, over the field Q, (x + l)/ (x3 -  1). The de
nominator is (x -  l ) ( x 2 +  x +  1), and the second factor is irreducible.
The Division Algorithm gives x 2 +  x +  1 =  (x +  2)(x — 1) +  3. Multi
plying this equation by the numerator x +  1 of the original equation, we 
get

3(x +  1) =  (x  +  l)0 t2 +  x +  1) — (x 2 +  3x +  2)(x — 1);

3(x +  1) _  x +  1 _  x 2 +  3x +  2 
x 3 -  I  ~  x -  1 x 2 +  x +  I '

Each o f the resulting fractions may be simplified by a further long 
division,t to give

3(s +  1) 2 2x +  1
x 3 - I  x -  1 x 2 +  x +  1

Over the field R  of real numbers the only irreducible polynomials are 
the linear ones and the quadratic polynomials ax2 +  bx +  c with b2 — 
4ac <  0. (This statement will be proved in §5.5, Theorem 7.) Therefore 
over R  any rational function can be expressed as a sum of terms with 
denominators which are powers of linear and quadratic expressions. This 
fact is used in calculus to prove that the indefinite integral of any rational 
function can be expressed in terms of “ elementary functions”  (i.e., 
algebraic, trigonometric, and exponential functions, and their inverses). 
By Theorem 18, the rational form to be integrated is essentially a sum of 
terms of the types c (x  +  a)~m and c (x  +  d )(x 2 +  ax +  b)~m. Hence the 
proposition on integrals will be proved if one can integrate these two 
types by elementary functions (which can be done).

Exercises

1. Decompose into partial fractions (over the rational field):

3x + 4 /LX 1 1
(a) 2 , (b) —— ~2, (c)x2 + 3x + 2’ x2 -  a2’ x3 + x ’

fl2 / 3 m 3x -  7
( } x3 -  a 3’ (C) x4 + 5x2 + 4’ (f) (x -  2)2'

t  Compare the directness of this method with that often used in texts on calculus, where 
one must solve for the “unknown” coefficients A , B, C  which occur in the terms A/(x — 1) 
and (Bx +  C )/(x2 + x +  1).
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2. Decompose (4 jc  +  2)/( jc 3 +  2x2 +  Ax + 8) over (a) the field Z5 of integers 
mod 5, (b) the field Q  of rational numbers.

3. If aa, au • • • , an are distinct, prove that

: =  I — — , where C, =  FI (a. ~  aj)-II (x -  a,) , x -  a, t*i
i

(H int: Expand p (a i) =  1 by Lagrange’s interpolation formula.)
4. Prove equation (13) by induction on m.
5. Give a detailed proof by induction o f Theorem 18.
6. (a) Prove that any rational form not a polynomial can be represented as a

polynomial plus another rational form in which the numerator is 0 or 
has lower degree than the denominator.

(b) Is this representation unique?
7. If all fractions (including the partial fractions) are restricted to have 

numerators of degrees lower than the respective denominators, show that 
the representation is unique (a) in Lemma 1, (b) in Lemma 2, (c) in 
Theorem 18.

8. (a) If (jc -  a ) is not a factor o f /(jc), prove that

1 _  C  +  g (x )____
(jc -  a r m  (x -  a)' (jc -  «r '/ (jc ) ’

where C = 1 //(a) and g(jc) is a suitable polynomial.
★(b) Using Ex. 8(a) or Ex. 3, deduce a canonical form for those rational 

functions whose denominators can be factored into linear factors.
9. (a) If p(jc) is irreducible, prove that any representation of a fraction 

b(x)/p(x) (with b relatively prime to p) as a sum of fractions must 
involve at least one fraction with a denominator divisible by p(x). (This 
means that further partial fraction decompositions of b(x)/p(x) are out 
of the question.)

(b) Can the same be said for 6(jc)/[p(jc)]m?
★10. Find the sum of [(jc + 1)(jc + 2)]-1 + 2[(jc + 2)(x + 4)]-1 + • • • + 

2"[(jc + 2")(jc + 2"+1)]-1.
★11. Develop a method of representing any rational number as a sum of “ partial 

fractions” of the special form a/pn (p prime, O S a <  p). For example, 
1/6 = 1/2 -  1/3.

★12. Assuming Theorem 6 of §5.3, show that the indefinite integral of any 
complex rational function is the sum of a rational function and a linear 
combination of complex logarithms log (z + a,) = J dz/(z + a,).

★13. Show that over any ordered domain D, the polynomial domain Z?[jc] 
becomes ordered if we choose for “positive” polynomials those having a 
positive leading coefficient, so that a„ >  0 in (1).
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Real Numbers

4.1. Dilemma of Pythagoras

Although “ modern”  algebra properly stresses the wealth of properties 
holding in general fields and integral domains, the real and complex fields 
are indispensable for describing quantitatively the world in which we live. 
For example, these two fields are crucial in the relation of algebra to 
geometry, both in elementary analytic geometry and in the further 
development of vectors and vector analysis (Chap. 7). Moreover, they 
also have unique algebraic properties, which will be exploited in later 
chapters of this book. Especially important are the order completeness of 
the real field R and the algebraic completeness of the complex field C. 
We shall devote the next two chapters to these completeness properties 
and their algebraic implications.

A  completely geometric approach to real numbers was used by the 
Greeks. For them, a number was simply a ratio (a :b ) between two line 
segments a and b. They gave direct geometric constructions for equality 
between ratios and for addition, multiplication, subtraction, and division 
of ratios. The postulates stating that the real numbers form an ordered 
field (§2.4) appeared to the Greeks as a series of geometric theorems, to 
be proved from postulates for plane geometry (including the parallel 
postulate).

The ancient Greek philosopher Pythagoras knew that the ratio r =  
d/s between the length d of a diagonal of a square and the length s of its 
side must satisfy the equation

(1) d2 =  (rs)2 =  r2s2 =  s2 +  s2 (Pythagorean theorem).

So, he reasoned, there is a “ number”  r satisfying r2 =  1 +  1 = 2.

94
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On the other hand, he found r could not be represented as a quotient 
r =  a/b of integers, for (a/b)2 =  2 would imply a2 =  2b2. By the prime 
factorization theorem, 2 divides a2 just twice as often as it divides 
a— hence an even number of times; similarly, it divides 2b2 an odd 
number of times. Therefore, a 2 =  2b2 has no solution in integers.

From this “ dilemma of Pythagoras”  one can escape only by creating 
irrational numbers: numbers which are not quotients of integers.

Similar arguments show that both the ratio V3 of the length of a 
diagonal of a cube C  to the length o f its side, and the ratio v'z of the 
length of a side of C  to the side o f a cube having half as much volume, 
are irrational numbers. These results are special cases of Theorem 10 of 
§3.7.

Further irrational numbers are it (which thus cannot be exactly t  or 
even 3.1416), e, and many others. In Chap. 14 we shall prove that the 
vast majority of real numbers not only are irrational, but also (unlike V2) 
even fail to satisfy any algebraic equation. To answer the fundamental 
question “ what is a real number? "  we shall need to use entirely new 
ideas.

One such idea is that of continuity— the idea that if the real axis is 
divided into two segments, then these segments must touch at a common 
frontier point. A  second such idea is that the ordered field Q of rational 
numbers is dense in the real field, so that every real number is a limit of 
one or more sequences of rational numbers (e.g., of finite decimal 
approximations correct to n places). This idea can also be expressed in 
the statement

(2) If x <  y, then there exists m/n e Q  such that x <  m/n <  y.

This property of real numbers was first recognized by the Greek 
mathematician Eudoxus. Thinking of x =  a : b and y =  c : d as ratios of 
lengths of line segments, integral multiples n • a of which could be 
formed geometrically, Eudoxus stipulated that (a :b ) =  (c :d ) if and only 
if, for all positive integers m and n,

(3) na >  mb implies nc >  md, na <  mb implies nc <  md.

The two preceding ideas can be combined into a single postulate of 
completeness, which also permits one to construct the real field as a 
natural extension of the ordered field Q. This “ completeness”  postulate is 
analogous to the well-ordering postulate for the integers (§1.4): both deal 
with properties o f infinite sets, and so are nonalgebraic. As we shall see, 
this completeness postulate is needed to establish certain essential alge
braic properties of the real field (e.g., that every positive number has a 
square root).
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E xerc ises

1. Give a direct proof that V3 is irrational.
2. Prove that 'Ja is irrational unless the integer a is the nth power of some 

integer.
3. Prove that log10 3 is irrational (H int: Use the definition o f the logarithm.)
4. Show that, if a ^  0 and b are rational, then au +  b is rational if and only if 

u is rational.
★5. Prove that V2 +  V5 is irrational. (H int: Find a polynomial equation for 

x =  V2 +  V5, starting by squaring both sides of x  — v2  =  V5.)
CO

★6. Prove that e, as defined by the convergent series £  1 /k !, is irrational. (H int:
k - 0

I f  e were rational, then (n  !)e would be an integer for some n.)

4.2. Upper and Lower Bounds

The real field can be most simply characterized as an ordered field in 
which arbitrary bounded sets have greatest lower and least upper bounds. 
We now define these two notions, which are analogous to the concepts of 
greatest common divisor and least common multiple in the theory of 
divisibility.

Definition. By an upper bound to a set S o f elements o f an ordered 
domain D  is meant an element b (which need not itself be in S ) such that 
b g  x fo r every x in S. A n  upper bound b o f S is a least upper bound i f  no 
smaller element of D  is an upper bound for S, that is, if  fo r any b' <  b there 
is an x in S with b' <  x.

The concepts of lower bound and greatest lower bound of 5 are defined 
dually, by interchanging >  with <  throughout, in the above definition.

It follows directly from the definition that a subset 5 of D  has at most 
one least upper bound and at most one greatest lower bound (why?).

Intuitively, think of the real numbers as the points o f a continuous line 
(the x-axis), and imagine the rational numbers as sprinkled densely on 
this line in their natural positions. From this picture, one readily con
cludes that every real number a can be characterized as the least upper 
bound of the set S of all rational numbers r =  m/n (n >  0) such that 
r <  a. For example, V2  is the least real number greater than all ratios 
m/n (m  >  0, n >  0) such that m 2 <  2n2. That is, the number -J l is the 
least upper bound of the set of positive rational numbers m/n such that 
m 2 <  2n2.
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The concept of real numbers as least upper bounds of sets of rationals 
is directly involved in the familiar representation of real numbers by 
unlimited decimals. Thus we can write V2 as both a least upper bound 
(l.u.b.) and a greatest lower bound (g.l.b.),

>/2 =  l.u.b. (1.4,1.41,1.414,1.4142, • • •)
(4)

=  g.l.b. (1.5,1.42,1.415,1.4143, • • •)•

Assuming the familiar properties of this decimal representation, it is very 
easy to “ see”  that every nonempty set T  of positive real numbers has a 
greatest lower bound, as follows.

Consider the n -place decimals which express members of T  to the 
first n places: there will be a least among them, because there are only a 
finite number o f nonnegative n -place decimals less than any given 
member o f T. Let this least n -place decimal be k +  0.d\d2 • • • dn, where 
k is some integer and each d, is a digit. The least (n +  l)-st place decimal 
coincides with this through the first n places, so has the form k +
0.did2 • • • dndn+i, with one added digit. Our construction hence defines a 
certain unlimited decimal c =  k +  0.did2d3 • • •. By construction, this is 
a lower bound to T  (since its decimal expansion is greater than that of no 
x in T), and even a greatest lower bound (any bigger decimal would lose 
this property).

However, if the real numbers are defined as unlimited decimals, it is 
very hard to prove what is implicitly assumed in high-school algebra: 
that the system of unlimited decimals is an ordered field.t

E xerc ises

1. Prove that x  =  .12437437437 • • • represents a rational number. (H int: 
Compute lOOOx — x.)

2. Do the same for y =  1.23672367
★3. Prove that any “ repeating decimal,”  like those of Exs. 1 and 2, represents a 

rational number. Define your terms carefully.
★4. Prove conversely that the decimal expansion of any rational number is 

“ repeating.”  (Suggestion: Show that if the same remainder occurs after m as 
after m — k divisions by 10, the block o f k digits between gets repeated 
indefinitely.)

★5. Does the result of Ex. 4 holds in the duodecimal scale?
6. Find three successive approximations to V2 in the domain of all rational 

numbers with denominators powers o f 3.

t  For details, see J. F. Ritt, Theory of Functions (New York: Kings Crown Press, 1947). 
The difficulty begins with equations like .19999 ■ • • =  .20000 • • • between different deci
mals.
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7. Describe two different sets o f rational numbers which both have the same
l.u.b. 2.

★8. Define the sequence (2, 3/2, 17/12, 577/408,- • •) recursively by Xi =  2, 
xk+i = (xk/2) + (l/jcfc).
(a) Show that for k >  1, =  mk/nk, where mk =  2nk +  1.
(b) Defining ek =  xk -  ^2, show that 0 <  <  ek2/2^2.
(c) Show that g.l.b. (2, 3/2, 17/12, • • •) =  V2.

4.3. Postulates for Real Numbers

We shall now describe the real numbers by a brief set of postulates. 
Subsequently we shall see (Theorem 6) that these postulates determine 
the real numbers uniquely, up to an isomorphism.

Definition. A n ordered domain D  is complete if  and only if every 
nonempty set S of positive elements o f D  has a greatest lower bound in D.

Postulate for the real numbers. The real numbers form a complete 
ordered field R.

From the properties of the real numbers given by this postulate, one 
can actually deduce all the known properties of the real numbers, 
including such a result as Rolle’s theorem, which is known to be funda
mental in the proof of Taylor’s theorem and elsewhere in the calculus.

However, we shall confine our attention to a few simple applications.

Theorem  1. In the field R  o f real numbers, every nonempty subset S 
which has a lower bound has a greatest lower bound, and, dually, every 
nonempty subset T  which has an upper bound has a least upper bound.

Proof. Suppose S has a lower bound b. If 1 — b is added to each 
number x of S, there results a set S' of positive numbers x — b +  1. By 
our postulate, this set S ' has a g.l.b. c'. Consequently, the number 
c =  c ' +  b — 1 is then a g.l.b. for the original set S, as may be readily 
verified.

Dually, if the set T  has an upper bound a, the set of all negatives —y 
of elements of T  has a lower bound -a .  Hence, by the previous proof, the 
set has a greatest lower bound b*. The number a* =  —b* then proves to 
be a least upper bound of the given set T. Q.E.D.

Our postulates make the real numbers an ordered field R, so Corol
lary 2 of Theorem 18 in §2.6 shows that R  must contain a subfield 
isomorphic to the field Q of rationals. Since Q is defined in Chap. 2 only 
up to isomorphism, we can just as well assume that the field R  of real
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numbers does contain all the rationals and hence all the integers. This 
convention adjusts our postulates to fit ordinary usage, and enables us to 
prove the fo llow ing  property o f  the reals (o ften  called the Arch im edean 
law).

Theorem  2. For any two numbers a >  0 and b >  0 in the field R  of 
all real numbers (as defined by our postulates), there exists an integer n for 
which na >  b.

Proof. Suppose the conclusion false for two particular real numbers a 
and b, so that, for every n,b  S  na. The set S of all the multiples na then 
has the upper bound b so that it has also a least upper bound b*. 
Therefore b* §  na for every n, so that also b* §  (m +  \)a for every m. 
This implies b* — a §  ma so that b* — a is an upper bound for the set S 
of all multiples of a, although it is smaller than the given least upper 
bound, a contradiction.

Corollary. Given real numbers a and b, with b >  0, there exists an 
integer q such that a =  bq +  r, 0 ^  r <  b.

The proof of this extension of the Division Algorithm will be left to 
the reader.

The so-established “ Archimedean property”  may be used to justify 
the condition of Eudoxus (cf. §4.1, (3)).

Theorem  3. Between any two real numbers c >  d, there exists a 
rational number m/n such that c >  m/n >  d.

As before, this is to be proved simply from the postulate that the reals 
form a complete ordered field. By hypothesis, c — d >  0, so the 
Archimedean law yields a positive integer n such that n(c — d ) >  1, or 
1 /n <  c — d. Now let m be the smallest integer such that m >  nd\ then 
(m  -  1 )/n d, so that

m/n =  (m — l)/n +  1/n <  d +  (c  — d) =  c.

Since m/n >  d, this completes the proof.
We can visualize the above proof as follows. The various fractions 0, 

± l/n ,  ±2 / tl,' '  • with a fixed denominator n are spaced along the real 
axis at intervals of length 1/n. To be sure that one such point falls 
between c and d, we need only make the spacing 1/n less than the given 
difference c — d.
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This theorem may be used to substantiate formally the idea used 
intuitively in a representation like (4) of a real number as a l.u.b. of 
rationals.

Corollary. Every real number is the l.u.b. o f a set o f rationals.

Proof. For a given real number c, let S denote the set of all rationals 
m/n ^  c. Then c is an upper bound of 5; by the theorem no smaller real 
number d could be an upper bound of S, hence c is the least upper bound 
of S.

Exercises

1. Prove that there is no ordered domain D  in which every nonempty set has a
l.u.b. (H int: Show that D  itself can have no upper bound.)

★2. Show that the ordered domain Z  is complete.
3. State in geometrical language a postulate on points o f the real axis which 

asserts that bounded sets have l.u.b. and g.l.b. (use the words “ left”  and 
“ right” ).

4. Exhibit the l.u.b. of each of the following sets of rational numbers:
(a) 1/3, 4/9, 13/27, 40/81, • • • ; (b) 1/2, 3/4, 7/8, 15/16,

5. Let a set S have a l.u.b. a* and a g.l.b. b*.
(a) Show in detail why the set of all numbers —3x, for x in S, has the l.u.b.

—3b* and the g.l.b. —3a*.
(b) In the same way, find the l.u.b. and the g.l.b. of the set of all numbers 

x +  5, for x in S.
6. In Ex. 5, what is the l.u.b. (a) of the set o f all numbers 7x +  2 for x in S, (b) 

o f the set of all numbers 1/x for x ^ 0 in S, if b* >  0?
7. Let Si and S2 be sets o f real numbers with the respective least upper bounds 

bi and b2. What is the least upper bound (a) o f the set Si +  S2 o f all sums 
Si +  s2 (for Si in S, and s2 in S2), (b) of the set o f all elements belonging 
either to S\ or to S2?

8. Collect in one list a complete set of postulates for the real numbers.
★9. Construct a system of postulates for the positive real numbers. (H int: Cf. 

§2.5.)
10. Show that an element a * in an ordered field is a least upper bound for a set 5 

if and only if (i) x S a *  for all x 6 5 and (ii) for each positive e in the field, 
there is an x in 5 with |x -  a*\ <  e.

11. Show that between any two real numbers c <  d, there exists a rational cube 
(m /n)3 such that c < (m / n 3) <  d. Is this true for rational squares?

12. If h >  1 is an integer, prove that between any two real numbers c >  d, there 
lies a rational number of the form m/hk, where m  and k are suitable 
integers.

13. Let a, b, c, and d be positive elements o f a complete ordered field. Show 
that a/b =  c/d if and only if the condition (3) o f Eudoxus is satisfied.

14. Prove in detail the corollary to Theorem 2.
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4.4. Roots of Polynomial Equations

W e shall now show how  to use the existence o f  least upper bounds to 
prove various properties o f  the real number system R, including first the 
existence o f solutions fo r equations such as x =  2.

Theorem 4. I f  p (x ) is a polynomial with real coefficients, if  a <  b, and 
if  p (a ) <  p (b ), then for every constant C  satisfying p (a ) <  C  <  p{b), the 
equation p (x ) =  C  has a root between a and b.

Geometrically, the hypothesis means that the graph of y =  p (x ) meets 
the horizontal line y =  p (a ) at x =  a and the line y =  p (b ) at x =  b; the 
conclusion asserts that the graph must also meet each intermediate 
horizontal linet y =  C  at some point with an x -coordinate between a 
and b.

The proof depends upon two lemmas.

Lemma 1. For any real x and h, we have p{x +  h) — p (x ) =  hg(x, h), 
where g(x, h ) is a polynomial depending only on p (x ).

Proof. (Cf: Theorem 3, §3.2.) For each monomial term akx k of p (x ), 
this is true by the binomial theorem. Now summing over k and taking out 
the common factor h, we get the desired result.

Lemma 2. For given a, b, and p (x ), there exists a real constant M  such 
that |p (x  +  h) — (jc ) | ^  M h for all x and all positive h satisfying 
a ^ = x ^ = b ,  a ^ x  +  h = b .

Proof By Lemma 1, it suffices to show that |g(x, h)\ S  M  whenever 
|jc| g  \a \ +  16 1, |/i| S  \b — a\. But if we replace each term in g {x ,h ) by 
its absolute value, we increase |g(x, h)\ or leave it undiminished, by 
formula (3) of §1.3 and induction. We do the same again if we replace |x | 
and \ h | by \a | +  \ b | and |b — a |, respectively. This substitution gives us, 
however, a real constant M, depending only on the coefficients of p (x ) 
and the interval a ^  x Si b.

Having Lemma 2 at our disposal, we are ready to prove Theorem 4. 
Let S denote the set of real numbers between a and b satisfying 
p{x) S  C. Since p (a ) <  C, S is nonvoid, and it has b as upper bound; 
hence it has a real least upper bound c. We shall show that p (c ) =  C.

For this purpose, it is clearly sufficient to exclude the possibilities 
p (c ) <  C  and p (c ) >  C. But p (c ) <  C  would imply that p (c  +  h) ^  C

t  There is a general theorem of analysis which asserts this conclusion, not only for 
polynomial functions p(x), but for any continuous function.
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for h =  [C  — p (c )]/M , by Lemma 2, whence (c +  h) e S. This would 
contradict our definition of c, as an upper bound to S. (Lemma 2 applies 
because c +  h §  b is evidently also impossible.)

There remains the possibility p (c ) >  C. But in this case, again by 
Lemma 2, p (c  -  h ) >  C  for all positive h =  [p (c) -  C]/{2M ). This 
would contradict our definition of c as the least upper bound of 5: 
c — [p (c )  — C ]/ (2M ) would give a smaller upper bound. There remains 
only the possibility p (c ) =  C. Q.E.D.

From the theorem one readily proves:

Corollary 1. I f  p( x )  is a polynomial with positive coefficients and no 
constant term, and if  C  >  0, then p (x ) =  C  has a positive real root.

Corollary 2. I f  p (x ) is o f odd degree, then p (x ) =  C  has a real root for 
every real number C.

Theorem 4 does not give a construction for actually computing a root 
of p (x ) =  C  in decimal form, but this is easy to do. For example, one can 
let ci =  (a +  b)/2; then p (c f) — C  or p (c t) >  C  or p (c t) <  C. In the 
first case the root is found; in the second and third cases there is a root in 
an interval (either a ^  x ^  C[ or ci S  x §  4) half as long as before. By 
repeating this construction, a root of p (x ) =  C  can be found to any 
desired approximation.

Convergence would be much faster if one used linear interpolation 
and set

d  =  a +  [C  -  p (a )][b  -  a jp (b )  -  p (a )T \

Other efficient methods of calculating roots of equations are studied in 
analysis. For example, if | jc | <  1, one may use the infinite series

(5) v rT 7 .1+i I + i ( - i ) | +i( - i)H ) |!  + ....

Appendix. Trigonometric Solution o f Cubic. In the case of a cubic 
equation

(6) a3x 3 +  a2x 2 +  a&  +  a0 =  0, a3 ^  0,

the real roots can be found as follows. Dividing through by a3, we reduce
(6) to the case a3 =  1. Now, by making the substitution x =  y — a2/3 
and transposing the constant term, we reduce (6) to

(7) y 3 +  py =  q.

If p =  0, the solution is immediate.
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Otherwise, setting y =  hz and multiplying (7) through by k, where 
h =  =  3/(h |p |), we can reduce it to one of the forms

(8) 4 z 3 +  3 z =  C  or 4 z 3 — 3 z — C.

To solve the first equation, one can use the familiar trigonometric identity 
sinh 30 =  4 sinh3 0 +  3 sinh 0, whence

(9a) z — sinh [(1/3) sinh-1 C].

To solve the second equation, if C  ^  1, we use the analogous formula 
cosh 30 =  4 cosh3 0 — 3 cosh 0 to get

(9b) z =  cosh [(1/3) cosh-1 C].

If C  S  -1 , the same method applies after changing the sign of z. To solve 
the second equation when |C| <  1 (this is the so-called irreducible case 
of §15.8), use similarly cos 30 =  4 cos3 0 -  3 cos 0, to get

(9c) z =  cos [(1/3) cos-1 C],

In this case z assumes three values because cos-1 C  has three values, 
differing by multiples of 120°.

Exercises

1. Prove that every positive real number has a real square root.
2. Show that for any positive real number a and any integer n, the equation

x" — a has one and only one positive real root yfa.
3. Show that x* — x =  C  has two real roots for every C >  —3/8.
4. Find yf5 to four decimal places, using (5) and (V5/2)2 =  1 +  1/4.
5. Find V2 to six places using (5) and (5V5/7)2 =  1 +  1/49.
6. Show that a monic polynomial o f even degree assumes a least value K, and

every value C >  K  twice.

7. (a) I f  a and b are positive real's, show that axn+' >  bx" for all sufficiently
large positive values o f x.

(b) Given a polynomial p(x) with a positive leading coefficient, find a real
number m such that p{x) >  0 for all x >  M .

8. Prove Corollary 1.
9. Prove Corollary 2.

10. Find to three decimal places the real roots of
(a) 3x3 - x  =  1/9, (b) x 3 -  3x2 +  6x =  7, (c) x 3 +  3x2 +  2 =  0.
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*4 .5 . Dedekind Cuts

Imagine the rational numbers sprinkled in their natural position on 
the x-axis. But cutting the x-axis (say with scissors), one divides the 
rational numbers into two classes, L  on the left and U  on the right. Every 
rational number falls into one of these two classes, while a rational 
number m/n is in both only if the axis is cut exactly at the point 
x =  m/n. Observe especially that if x is in L, then x g  y for every y of 
U ; conversely, if x g  y for all y in U, x must lie in L. This leads to the 
idea of a Dedekind cut.

Formally, let F  be any ordered field. By a “ Dedekind cut”  in F, we 
mean a pair of nonvoid subsets L  and U  such that

(i) L  is the set of all lower bounds to the elements of U, and
(ii) U  is the set of all upper bounds to the elements of L.

Lemma 1. The lower and upper halves o f a Dedekind cut taken 
together include all elements; they have at most one element in common.

Proof. Let x e F  be given. If x g  a for some a e L, then x g  a g  y 
for all y e U, whence x e L. Otherwise, by the trichotomy law; x >  a 
for all a e L, and so x e U, which proves the first assertion: every 
element of F  is in either L  or U. Again, let a and b each be both in L  
and in U. Then a g  b (since a e U, b e L )  and a g  b (since a e L, 
b e U ), whence a = b, proving the second assertion.

If L  and U  have an element a in common, the cut will be said to go 
through a. Clearly, there is a cut (L a, Ua) through every a, if L a is the set 
of x g  a, and Ua the set of x S  a.

Dedekind Cut Axiom (on an ordered field F). Every cut goes through 
some element a.

Theorem 5. The Dedekind cut axiom holds in an ordered field F  if  and 
only i f  F  is a complete ordered field.

Proof. Let (L, U ) be any cut. If the existence o f least upper bounds is 
given, L  has a least upper bound a. Since a is an upper bound of L, it 
must lie in U ; since it is a least upper bound, it is a lower bound for all 
the upper bounds, and so for all the elements of U. By the definition o f a 
cut this means that a lies in L, so the given cut does go through the 
element a.

Conversely, suppose the Dedekind axiom holds, and that 5 is a 
nonempty bounded set. Let U  be the set of all upper bounds of S, and L  
the set o f all lower bounds of U  (clearly, L  contains 5). To prove (L, U ) a
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cut, one need only establish that U  is the set of all upper bounds of L. 
But by the construction of L, every element of U  is an upper bound of L  
(x S  y for all x e L, y e U)\ while since L  contains S, U  includes all 
such upper bounds. Now by the Dedekind axiom, the cut (L, U ) goes 
through some element a, which is an upper bound to S qua an element of 
U, and a least upper bound (i.e., a S  x for all x e  U ) qua an element of 
L. This completes the proof.

We shall now sketch a proof of the categorical nature of our postulate 
(§4.3) that the real number system is a complete ordered field.

Theorem 6. Any two complete ordered fields are isomorphic.

Proof. Let F  and F '  be any two such fields; by Corollary 2 of 
Theorem 18 in §2.6, they will contain isomorphic “ rational”  subfields Q' 
and Q". We shall extend the isomorphism between Q ' and Q" (an 
isomorphism which preserves order as well as sums and products) to an 
isomorphism between F  and F '.

Indeed, every a ' e F  defines a cut in F ,  and thereby a cut in Q' (the 
subfield of rationals). But by Theorem 3, a ' is determined by this cut in 
Q'— and every cut (L R, UR) in Q ' determines an a ' =  l.u.b. L R =  g.l.b. 
UR in this way. Cuts in Q" behave similarly, whence the elements of F  
and F '  are bijective to the cuts in Q ' and Q", respectively. This bijection 
clearly preserves order.

Finally, the operations in F  and F '  can be defined from those of Q' 
and Q" so as to extend the isomorphism. More precisely, let a and b 
correspond to cuts (L a, Ua) and (L b, Ub) in Q'. Then a +  b corresponds 
to the cut! (L a +  L„, Ua +  Ub)— where L a +  L b is the set of sums x +  y 
(x e L a, y e  L b), while Ua +  Ub is similarly described. To multiply 
positive elements a and b, form similar cuts in the system of positive 
rationals. Then ab corresponds to the cut (L aL b, UaUb)— where L aL b is 
the set o f products xy (x e L a, y e L b), and similarly for UaUb. Since 
(—a)b =  a (—b) =  —ab and ( - a ) ( - 6 )  =  ab, this extends to all products. 
We omit the details.

Conversely, one may use the cuts to “ construct”  the real numbers 
from the integers or positive integers. One first proves that the rationals 
form an ordered field Q having the Archimedean property stated in 
Theorem 2. By defining the addition and multiplication of cuts in Q in the 
way sketched in the previous paragraph, one can show that the cuts in Q 
form an ordered field satisfying the Dedekind cut axiom— hence giving a

t In certain cases, (La +  L b, \Ja +  Ub) fails to be a cut because the number a +  b 
appears in neither half; but one then obtains a cut if the missing number is adjoined to both 
halves. A  similar remark applies to LaLb below.
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complete ordered field. But the proof is long, and would lead us far afield, 
so that we shall just state the result.

Theorem 7. There is one and (except for isomorphic fields) only one 
complete ordered field.

Instead of using Dedekind cuts, it is also possible to construct the real 
numbers from the rationals as limits of sequences of rationals.t

Exercises

1. Show that if (L, U) and (L\ if ') are cuts in the rational field, every rational 
number with one exception at most can be written either as x +  y (x e L, 
y e L ') or as u +  v (u e U ,v e  U').

2. State and prove an analogous theorem for the positive rational numbers 
under multiplication.

3. Why does this theorem fail for negative rationals?
4. Show that for every e >  0 there is an n so large that 1CT" < e.
5. A  Dedekind cut in an ordered field F  is sometimes defined as a pair of 

subsets L ' and U' of F  such that every element of F  lies either in L ' or in 
U ’ and such that jc <  y whenever x e L ' and y e i f ’. By adding and 
deleting suitable single numbers, show that every cut (L 1, if ') of this type 
gives a cut (L, if ) in the sense o f the text, and conversely.

6. If t is an element in an ordered domain D  with 0 <  t <  1, show that 
s = 2 — t has the properties s >  1, st S  1.

7. Let D  be a “ complete”  ordered domain not isomorphic to Z. Show that D  
contains an element t with 0 <  t <  1. If b and c are any positive elements 
o f D, show that t"b <  c for some n.

★8. Use Exs. 6 and 7 to show that any “ complete”  ordered domain is isomor
phic either to Z or to R. (Hint: To  find the inverse of b >  1, consider all jc 
with x i  s  1.)

9. (a) Prove that any isomorphism of R with itself preserves the relation 
x S y .  (Hint: x S  y if and only if z 2 =  y — x has a root.)

(b) Using (a), prove that the only isomorphism of R with itself is the trivial 
isomorphism x ^ x .

★10. Show that if D  =  F  is an ordered field and if, for each rational function,

, b0 +  bjx  +  • • • +  b X  / n ,
R (x ) = -----------------------------   ^  0, a„b. t4 0,

a0 + ajjc + • • • + a„ x"

we define R (x ) >  0 to mean that a„br >  0, then F(x) becomes an ordered 
field.

★11. Show that in Ex. 10 R (x ) >  0 if and only if R (t) >  0 for all sufficiently 
large t in F.

tS ee  the treatment in Chapter VI of C. C. MacDuffee, Introduction to Abstract Algebra 
(New York: Wiley, 1940).
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________ 5
Complex Numbers

5.1. Definition

Especially in algebra, but also in the theory of analytic functions and 
differential equations, many algebraic theorems have much simpler state
ments if one extends the real number system R to a larger field C of 
“ complex”  numbers. This we shall now define, and show that it is what 
one gets from the real field if one desires to make every polynomial 
equation have a root.

Definition. A  complex number is a couple (x, y ) o f real numbers— x 
being called the real and y the imaginary component of (x, y). Complex 
numbers are added and multiplied by the rules:

The system o f complex numbers so defined is denoted by C.

We owe the above definition not to divine revelation, but to simple 
algebraic experimentation. First, it was observed that the equation x 2 = 
—1 had no real root (x 2 being never negative). This suggested inventing 
an imaginary number /, satisfying i 2 =  —1, and otherwise satisfying the 
ordinary laws of algebra. Stated in precise language, it suggested the 
plausible hypothesis that there was an integral domain D  containing such 
an element / and the real field R as well.

In D , any expression of the form x + yi (x, y real numbers) would 
represent an element. Moreover, by the definition of an integral domain

(1)
(2)

(x, y ) +  (x ’, y ') =  (x +  x ',y  +  y'),

(x, y) • (x ', y') =  (xx' -  yy', xy' +  yx').

107
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(laws of ordinary algebra),

(1') (x +  yi) ±  (x ' +  y 'i) =  (x ±  x ') +  (y ±  y')i,

(2') (x +  yi) • (x ' +  y 'i) =  xx' +  (xy' +  yx ')i +  yy 'i2.

Since i2 -  -1 , we get from (2')

(2") (x +  yi) • (x' +  y 'i) =  (xx' -  yy') +  (xy' +  yx ')i.

It is a corollary that the subdomain of D  generated by R and i contains 
all elements of the form x +  yi and no others.

Again, (x +  yi) =  (x' +  y 'i) implies (x -  x ') =  (y ' -  y )i; hence
squaring both sides, (x — x ')2 =  —(y' -  y )2. And since (x -  x ')2 g  0,
—(y' -  y )2 g  0, this is impossible unless x =  x', y =  y'. In summary, 
distinct couples (x, y ) of real numbers determine distinct elements x +  yi 
of D . This establishes a one-one correspondence of the form (x, y ) <-» 
x +  yi between the elements of C and those of the subdomain of D  
generated by R and /. Finally, comparing formulas (l')- (2 ") with (1)—(2), 
we see that the correspondence preserves sums and products, hence is an 
isomorphism. This proves

Theorem 1. Let D  be any integral domain containing the real number 
system R and a square root i o f —1. Then the subdomain o f D  generated by 
R and i is isomorphic with C.

W e now prove our conjecture that there does indeed exist an integral 
domain D  which contains the real numbers and a square root of -1 .

Theorem 2. The complex number system, as defined above, is a field 
containing a subfield isomorphic to R and a root o f x 2 +  1 =  0.

Proof. For the couples (x, y), the commutative and associative laws . 
o f addition, the fact that (0,0) is an additive identity, and the fact that 
(—x, —y) is an additive inverse of (x, y) are immediate consequences of 
the fact that real and imaginary components are added independently, 
while the corresponding laws hold for them.

Similarly, the commutative and associative laws of multiplication, the 
facts that (1,0) is a multiplicative identity and that every (x, y ) ¥=■ (0,0) 
has a multiplicative inverse

(3) (x, y r 1 =  (x/(x2 +  y2), -y / (x 2 +  y 2))

follow from the fact to be established in §5.2, that “ arguments”  and 
“ absolute values”  of complex numbers combine independently under
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multiplication and themselves satisfy the same laws. But at the present 
stage, it is preferable to check these laws by direct substitution in the 
de fin ition  (2 )— on ly  the ca lcu la tion  fo r  the associa tive  law  is lon g-w in d ed . 

We omit the details.
Finally, we can check the distributive law by similar direct substitu

tion. Thus let z =  (jc, y), z '  =  (jc', y '), z "  =  (x ", y"). Then substituting in
(1) and (2),

z (z '  +  z " )  =  ( jc, y )(x ' +  x", y ' +  y")
=  (jc(jc' +  x") -  y (y ' +  y"), x (y '  +  y") +  y(jc' +  x")),

zz ' +  zz "  =  (xx ' -  yy', xy' +  yjc') +  (xx" -  yy", xy" +  yjc")
=  (xx ' -  yy' +  xx" -  yy", xy' +  yx’ +  xy" +  yjc");

from this, z (z '  +  z" )  =  zz ' +  zz"  can be checked directly.
In this field C of couples of numbers one may find a subfield of real 

numbers by exploiting the correspondence (x, y ) <-> x +  yi, used in 
Theorem 1, in which the real numbers x correspond to couples with 
second term zero and the couple (0 ,1) to /. Specifically, if the second 
components y and y ' in the definitions (1) and (2) are both zero, then the 
first components x and x ' add and multiply just as do the real numbers x 
and x'. This is just the recognition that the correspondence x <-> ( j c ,  0) is 
an isomorphism of the field R  of reals to a subset of C. We agree, as in 
previous cases, that each such special complex number ( j c ,  0) is simply to 
be identified with the corresponding real number j c .

Finally, the desired square root of —1 is presumably the couple (0,1); 
and in fact, a special case of the definition (2) shows that (0, l ) 2 =  
(-1 ,0 ) =  -1 . Hence we define i to be the couple (0,1). Any couple 
( j c ,  y) then has the form

(4) (x, y ) =  ( j c ,  0) +  (0, y ) =  ( j c ,  Q) +  (y, 0 )(0 ,1) =  j c  +  yi

The notation j c  +  yi is so suggestive that we shall usually employ it 
instead of ( j c ,  y ) in the sequel. For brevity, we shall also often write 
z =  ( j c ,  y ) =  j c  +  yi, w =  (u ,v ) =  u +  vi, c =  (a, b) =  a +  bi, and so 
on— in other words, we use a single letter to denote a complex number, 
and the two immediately preceding letters of the alphabet for its real and 
imaginary components.

Exercises

1. Check that complex multiplication is commutative and associative.
2. Check that ( jc ,  y)(jc, y )-1 =  (1 ,0 ) holds if formula (3) is used.
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3. Solve (1,1)0*:, y ) =  (2,1)
(a) as a pair o f simultaneous linear equations in x  and y,
(b) using (3).

4. Find complex numbers z =  x +  yi and w =  u +  vi which satisfy
(a) z +  iw -  1, iz +  tv =  1 +  i,
(b) (1 +  i )z  -  iw =  3 +  i, (2 +  i)z  +  (2 -  i)tv =  2i.

5. Find all complex roots o f z 2 =  —a, where a is any positive real number. 
Justify your answer.

6. Describe the subfield o f C which is generated by i and the rational 
numbers.

7. Is Theorem 1 still true if D  is a commutative ring? Give details.
8. (a) Show that z 2 =  a +  ib has solutions z =  x +  iy with

x =  f(l/2 )(a  +  v V  +  b2) ] 1' 2, y =  b/(2x).

(b) Show also that y =  [(1/2)(V a2 +  b2 — a ) ]1/2, x  =  b/(2y). (Note that
these formulas are more accurate for numerical computation when a is 
negative and b/a small.)

9. The equation z 3 +  3iz = 3  +  / has - i  for one root. Compute one other 
root in decimal form.

★10. Show that if F  is any ordered field, then there exists a larger field F *  
containing a subfield isomorphic to F  and a square root of -1 .

★11. Using the methods of Theorems 1 and 2, show without recourse to the real 
numbers that the rational field Q  can be extended to a larger field Q(V2)
containing Q  and a square root of 2.

12. Show that there is no possible definition of “ positive complex number”  
which would make C an ordered field.

5.2. The Complex Plane

There is a fundamental one-one mapping of the complex numbers 
onto the points of a Cartesian plane. Namely, each complex number 
z =  x +  iy is mapped onto the point P  =  (x, y ) with the real component 
x of z as abscissa and the imaginary component y as ordinate.

Polar coordinates may be used in this plane. We may recall that each 
point P  of the plane and hence each complex number z is uniquely 
determined by the two polar coordinates r and 0, where r is the (non
negative) length of the segment Oz joining the point P  to the origin, 
while 6 is the angle from the x-axis to this segment (Figure 1), so

(5) \z \ =  r =  (x2 +  y 2) 1/2, argz =  0 =  tan_1y/x.

One calls r the absolute value of the complex number z and 0 the 
argument of z. They determine x and y by

(6) x =  r cos 0, y =  r sin 0, z =  r(cos 0 +  i sin 0),
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the usual laws for the transformation from 
polar to rectangular coordinates. One also 
writes (6) in the form z =  re'6, since the 
usual Taylor series expansion gives

z

=  cos 0 +  i sin 0.

x x
The importance of the absolute values 

and arguments rests largely on de Moivre’s 
formulas, which may be stated as follows: Figure 1

Theorem  3. The absolute value o f a product o f complex numbers is the 
product o f the absolute values o f the factors; the argument is the sum o f the 
arguments of the factors; in other words,

Proof. As in (6), z =  r(cos 6 +  i sin 6), z ’ =  r'(cos O' +  i sin O'). 
Substituting in the definition (2), we get

zz' =  rr'[(cos 0 cos O' -  sin 0 sin O') +  i(cos 0 sin O' +  sin 0 cos 0')];

by well-known trigonometric formulas, this is equivalent to

This gives the result (7).
Not only the multiplicative, but the additive properties o f (inequalities 

on) absolute values are valid for complex as well as real numbers. That is,

To prove these, note that formula (1) means that the sum z +  z ' may be 
found by drawing (Figure 2) the parallelogram with three vertices at z, 0, 
and z the fourth vertex will be z +  z '. Formulas (8) and (9) now follow 
from the identity between absolute values and geometrical lengths.

Complex nth roots o f unity may be found using trigonometry. From the 
de Moivre formulas (7) one sees immediately that

(7) zz '| =  \z\ • \ z'\, a rgzz ' =  argz +  argz'.

zz ’ =  rr'[cos (Q +  O') +  i sin (Q +  0')]-

(8)

(9)
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[r(cos 8 +  i sin 0)] 1

=  (l/ r )[c o s  (- 8) +  i  sin ( - 0 ) ] .

Further, one sees that z "  =  1 if and only if 
| z |" =  1 and n • arg z is an integral multi
ple 2krr of 2tt. Since |z| §  0, |z| =  1. Since 
arg z is single-valued on 0 S  8 <  2tt, there 
are thus precisely n solutions of z "  =  1; 
in rectangular coordinates they are 1, 
cos 'IttIti +  i  sin 'I'trln, • • •, cos 2rr(n — 
1 )/n +  i sin 27r(n -  1 )/n. If we denote 
cos Itt/ti +  i sin Ttt/h by w, we obtain 
another representation of these nth roots of 
unity as 1, (a, oj2, • • •, ojn~\ Geometrically 
stated, this is

Theorem 4. The complex nth roots o f unity are the vertices o f a regular 
polygon o f n sides inscribed in the unit circle | z ] =  1.

Consider more generally the equation z n =  c, where c ^  0 is any
complex number. In polar coordinates, one solution of this is

z0 =  |c |1/n(cos 6 +  i sin 8), with 8 =  (1/n) arg c.

Moreover, wz0 is a root of x "  =  c if and only if c =  (wz0)n = wnz0n =  
wnc, whence wn =  1. Thus the nth roots of c are z0, <oz0, a>2z0, • • •, 
w "_1z0, where a> is as defined above. In particular, they are also rep
resented by the vertices of a regular polygon.

One can easily compute the nth roots z0, toz0, • • •, &>"_1z0 of c =
a +  bi numerically, with the aid of logarithmic and trigonometric tables.
From the identity

log | z01 =  log | c |1/n =  (1/n) log (a 2 +  b2)1/2 =  (l/ 2 n )lo g (a 2 +  b2)

one can compute |z0|. By de Moivre’s formulas (7), argz0 equals 
(1/n) tan-1 (b/a), and argw z0 =  (1/n) tan-1 (b/a) +  360k/n in degrees. 
The computation is completed by the formula

z =  r(cos 8 +  i sin 8) =  | z | cos (arg-z) +  /1 z | sin (arg z).

Each complex nth root of unity a> satisfies a polynomial equation with 
rational coefficients irreducible over the field of rationals. These equa
tions, known as the “ cyclotomic”  equations, play an important role in the 
theory o f equations.

y
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By definition, every nth root of unity satisfies z n — 1 =  0; moreover, 
all except z — 1 satisfy

(10) qn(z )  =  ( z "  -  1 )/ (z  -  1) =  z ^  +  z " - 2 + - - - + Z  +  1 =  0.

In §3.10 Eisenstein’s criterion was used to show that qp(z )  is irreducible if 
n =  p is a prime.

If n is not a prime, the facts become less simple. Thus, if ri =  4, 
z 3 +  z 2 +  z +  1 =  (z  +  1 ) ( z 2 +  1) is reducible. In general, we can factor 
out from (10) the cyclotomic polynomials satisfied by fcth roots of unity, 
where k runs through the proper divisors of n. The nth roots of unity 
which are not also fcth roots of unity for some k <  n are called primitive 
nth roots of unity. (Thus, the primitive fourth roots of unity are i and -/.) 
They are the a»m with m relatively prime to n, and they all satisfy the 
same irreducible equation over the rational field. But the proof of this 
result, and the computation of the degree of this equation, involve more 
number theory than is desirable here.

E xerc ises

1. Prove the commutative and associative laws of multiplication and the existence 
of multiplicative inverses from de Moivre’s formulas.

2. Describe geometrically the correspondence z >-» zi.
3. Find to 4 decimal places (using trigonometric tables) the real and imaginary 

components of the cube roots and the fifth roots of unity.
4. Find to 4 decimal places the cube and fourth roots of 2 +  2i.
5. List the primitive twelfth roots o f ■ unity, and plot them on graph paper, 

drawing a large “ unit circle.”
6. Describe geometrically the effect o f transformations z i-» cz +  d (c, d e  C, 

c 0). What if |c | =  1? (H int: Use the words “ translation,”  “ rotation,”  and 
“ expansion.” )

7. Find the irreducible factors of z 6 — 1 over Q (the rationals).
8. (a) Prove that a  =  cos (2ir/n) +  i  sin (2ir/n) is a primitive nth root o f unity,

(b) Prove that o)m is a primitive nth root of unity if and only if m is relatively
prime to n.

5.3. Fundamental Theorem of Algebra

W e saw in §5.1 that the complex number system is obtained by 
adjoining to the real number system R  an imaginary root i of the 
equation z 2 +  1 =  0. But why stop here? Why not try to add “ imagi
nary”  roots of other polynomial equations so as to get still larger fields?
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The answer is contained in the so-called Fundamental Theorem of 
Algebra: as soon as / is adjoined, every polynomial equation has actual 
(complex) roots, so that one does not need to invent imaginary ones to 
solve equations.

Theorem 5 (Euler-Gauss). Every polynomial p (z) o f positive degree 
with complex coefficients has a complex root.

Many proofs of this celebrated theorem are known.t A ll proofs 
involve nonalgebraic concepts like those introduced in Chap 4; we have 
selected one whose nonalgebraic part is especially plausible intuitively. 
We do not prove the nonalgebraic part in detail from the relevant axioms 
of Chap. 4.

Proof. Since p (z ) = amz m +  am_1z m_1 +  • • • +  a0, with am 5* 0, has 
the same roots as

q (z ) =  z m +  (am-i/ a m)z m~l +  • • • +  (a0Jam)

=  z m +  cm~ izm 1 +  • • • +  c0,

only the case where the leading coefficient is unity need be discussed.
In this case let us picture two complex planes, labeling one the 

“ z-plane,”  and the other the “ w-plane.”  The given function q (z ) maps 
each point z0 =  (jc0, y0) of the z-plane onto a point w0 =  q (z0) of the 
w-plane. Moreover, if z  describes a continuous curve on the z-plane, 
then q (z )  (being differentiable) will describe a continuous curve on the 
w-plane. Our object is to show that the origin 0 of the w-plane is the 
“ image”  q (z ) of some z on the z-plane— or, what is the same thing, that 
the image of some circle on the z-plane passes through 0.

For each fixed r >  0, the function w =  q(re‘e) defines a closed curve 
-yf in the w-plane: the image of the circle yr: \z \ -  r (z =  re,e) of radius 
r and center 0 in the z-plane. For each fixed r, consider the line integral.$

<f>(r, 6) =  \ d{arg w) =  [ (udv -  vdu )/ (u2 +  v2);
Jo Jo

this is defined for any yr' not passing through the origin w =  0. (If y/

t  Cf., for example, L. E. Dickson, New First Course in the Theory o f Equations (New 
York: Wiley, 1939), Appendix, or L. Weisner, Introduction to the Theory o f Equations (New 
York: Macmillan, 1938), p. 145.

t  In proving the existence of line integrals, essential use is made of the completeness of 
R. The identity (d arg w) = (udv  — vdu)/(u2 +  v2) holds, since arg w =  arctan (v/u).
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Figure 3

passes through iv =  0, the conclusion of 
Theorem 5 is immediate.) It is geometrically 
obvious that 2 ir ) =  2 irn (r ) ,  where the 
winding number n (r) is the number of times 
that y/ winds counterclockwise around the 
origin. Thus n (r) =  1 in the imaginary exam
ple depicted in Figure 3.

Now consider the variation of n(r) with r.
Since q(re‘e) is a continuous function, n(r) 
varies continuously with r except when yr' 
passes through the origin. Again, n(0) = 0 
(unless c0 =  0 in which case 0 is a root). Now 
assume c0 ^  0. We shall now show that if r is large enough, n(r) is the 
degree m of q (z ). Indeed, let

q (z ) =  z m +  cm- 1z m~1 +  • • • +  ciz  +  c0 =  z m{ 1 +  X cm_fcz _fc).
' fc=i /

By de Moivre’s formulas (7),

:(>argq (z ) =  m argz +  arg (1  +  £  cm_fcz *).
k=i '

Hence, as z describes the circle yT counterclockwise, the net change in 
arg q (z ) is the sum of m times the change in arg z (which is m • 2tr) plus 
the change in

a r g ( l  + X c m_fcz “ fc) .

But if | z | =  r is sufficiently large, by formulas (8) and (9)

1 +  I  cm- kz k =  u
k

stays in the circle | u -  l| <  1/2, and so goes around the origin zero 
times (make a figure to illustrate this).

We conclude that if r is large enough, n (r) =  m: the total change in 
a rgg (z ) is 2-nrn. But as r changes, y/ is deformed continuously (since 
q (z ) is continuous). It is geometrically evident,t  however, that a curve

tThis is proved as a theorem in plane topology; cf., for example, S. Lefschetz, 
Introduction to Topology (Princeton University Press, 1949), p. 127.
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which winds around the origin n ^  0 times cannot be continuously 
deformed into a point without being made to pass through the origin at 
some stage of the deformation. It follows that, for some r, yr' must pass 
through the origin; where this happens, q (z ) =  0! Q.E.D.

As a corollary, we note that if p (z i) =  0, then by the Remainder 
Theorem (§3.5) we can write p (z )  = (z — z t)r (z ). If the degree m of p (z ) 
exceeds 1, the quotient r (z ) has positive degree, hence also has a complex 
root z =  z2. Proceeding thus, we find m linear factors for p (z ), as

(11) p (z ) =  c (z  -  z ,)(z  -  z2) • • • (z -  zm).

It follows that the only irreducible polynomials over C are linear. A  
corollary of this and the unique factorization theorem of Chap. 3 is

Theorem  6. Any polynomial with complex coefficients can be written 
in one and only one way in the form (11).

The roots of p (z ) are evidently the z, in (11)— since a product 
vanishes if and only if one of its factors is zero. If a factor (z — z,) occurs 
repeatedly, the number o f its occurrences is called the multiplicity of the 
root z,. It can also be defined, using the calculus, as the “ order”  to which 
p (z ) vanishes at z,: the greatest integer v such that p (z ) and its first 
( v — 1) derivatives all vanish at z,.

Exercises

1. Prove the uniqueness of the decomposition (11) without using the general 
uniqueness theorem of §3.8.

2. Prove that any rational complex function which is finite for all z is a 
polynomial.

3. Do couples (w, z ) o f complex numbers when added and multiplied by rules (1) 
and (2) form a commutative ring with unity? a field?

4. Show that any quadratic polynomial can be brought to one of the forms 
cz (z  — 1) or cz2 by a suitable automorphism o f C[z].

5. (a) Using the MacLaurin series, show formally that e“  =  cos x +  i  sin x.
(b) Show that every complex number can be written as reie.
(c) Derive the identities cosz =  (e lz +  e~,z)/2, sinz =  (e ‘z -  e~iz)/2i.

6. Use partial fractions to show that any rational function over the field C can be 
written as a sum of a polynomial plus rational functions in which each 
numerator is a constant and each denominator a power o f a linear function.

7. Factor z 2 +  z +  1 +  i.
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5.4. Conjugate Numbers and Real Polynomials

In the complex field C, the equation z 2 =  — 1 has two roots i and 
—i =  0 +  (—1)/. The correspondence x +  yi *-* x +  y (—i) =  x — yi car
ries the first of these roots into the second and conversely, while leaving 
all real numbers unchanged. Furthermore, this correspondence carries 
sums into sums and products into products, as may be checked either by 
direct substitution in formulas (1) and (2) or by application of Theorem 1. 
In other words, the correspondence is an automorphism o f C (an 
isomorphism of C with itself).

We can state this more compactly as follows. By the “ conjugate”  z* 
of a complex number z =  x +  yi, we mean the number x — yi. The 
correspondence z •-» z *  is an automorphism of period two of C, in the 
sense that

(12) 0Z1 +  z2)*  =  Zl* +  z2-*, ( z , z 2) *  =  Z ! * Z 2* ,  (z * )*  =  z.

It amounts geometrically to a reflection of the complex plane in the 
x-axis; the only numbers which are equal to their conjugates are the real 
numbers.

Conjugate complex numbers are very useful in mathematics and 
physics (especially in wave mechanics). In using them, it is convenient to 
memorize such simple formulas as

|z|2 =  zz*, z -1 =  z*/|zr I2.

Their use enables one to derive the factorization theory o f real 
polynomials easily out of Theorem 6.

Lemma. The nonreal complex roots o f a polynomial equation with real 
coefficients occur in conjugate pairs.

This generalizes the well-known fact that a quadratic ax2 +  bx +  c 
with discriminant b2 — 4ac <  0 has two roots x =  (—b ±  'Jb2 — 4ac)/2a 
which are complex conjugates.

Proof. Let p (z ) be the given polynomial; we can write it in the form
(11), where the z, are complex (not usually real). Since the correspon
dence z, >—> z * applied to these roots z, is an automorphism, it carries 
p (z ) into another polynomial p * (z )  =  c* (z  -  Z i*)(z -  z2*) • • • (z -  z „*) 
in which each coefficient is the conjugate of the corresponding coefficient 
of p(z) . But since the coefficients of p (z )  are real, p(z )  = p * (z ). Hence, 
the factorization (11) being unique, c =  c* is real, and the zt are also real 
or complex conjugate in pairs.

^Now commonly written as z.
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Theorem 7. Any polynomial with real coefficients can be factored into 
(real) linear polynomials and (real) quadratic polynomials with negative 
discriminant.

Proof. The real z, in the lemma give (real) linear factors (z — z,). A  
pair of conjugate complex roots a +  bi and a — bi with b #  0 may be 
combined as in

( z - ( a  +  b i))(z  -  ( a -  bi)) =  z 2 -  2 az +  (a 2 +  b2)

to give a quadratic factor of p (z )  with real coefficients and with a real 
discriminant 4a2 — 4 (a2 +  b2) =  —Ab2 <  0. Q.E.D.

Conversely, linear polynomials and quadratic polynomials with nega
tive discriminant are irreducible over the real field (the latter since they 
have only complex roots, and hence no linear factors). It is a corollary 
that the factorization described in Theorem 7 is unique.

E xerc ises

1. Solve: (a) (1 +  i)z + 3iz* = 2 + /,
(b) zz* +  2z = 3 +  i, (c) zz* +  3(z  -  z*) =  4 -  3i.

2. Solve: zz* +  3(z  +  z * ) =  7, zz* +  3(z  +  z * ) =  3/.
3. Solve simultaneously: iz +  (1 +  i)w = 3 +  i, (1 +  i)z* — (6 +  i)w* =  4.
4. Give an independent proof o f Corollary 2 of Theorem 4 (§4.4).
5. Show that if one adjoins to the real number system an imaginary root o f any 

irreducible nonlinear real polynomial, one gets a field isomorphic with C.
6. Show that over any ordered field ax2 +  bx +  c is irreducible if b2 — 4ac <  0.
7. Show that every automorphism o f C in which the real numbers are all left fixed 

is either the identity automorphism (z >-» z) or the automorphism z *-» z*.

★5.5. Quadratic and Cubic Equations

In §5.3 we proved the existence of roots for any polynomial equation 
with complex coefficients, but did not show how to calculate roots 
effectively. We shall show, in §§5.5-5.6, how to do this for polynomials of 
degrees two, three, and four. The procedures will involve only the four 
rational operations (addition, multiplication, subtraction, and division) 
and the extraction of nth roots. We showed how to perform these 
operations on complex numbers in §§5.1-5.2; the procedure to be used 
now will also apply to any other field in which nth roots of arbitrary 
numbers can be constructed and in which 1 +  1 ^ 0  and 1 +  1 +  1 ^  0.
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Quadratic equations can be solved by “ completing the square”  as in 
high-school algebra. Such an equation

(13) az2 +  bz +  c =  0 (a ^  0),

is equivalent to (has the same roots as) the simpler equation

(14) z 2 +  Bz +  C  =  0 (B  =  b/a, C  =  c/a).

If one sets w =  z +  B/2 (i.e.,z = w — B/2),so as to complete the square, 
one sees that (14) is equivalent to

(15) tv2 =  B 2/A -  C.

Substituting back z, a, b, c for w, B, C, this gives

(16) z =  w -  B/2 =  ( - b +  y/b2 -  Aac)/(2a)

and so yields two solutions, by §5.2.
Cubic equations can be solved similarly. First reduce the cubic, as in 

§4.4, to the form

(17) z 3 +  pz +  q =  0.

Then make Vieta’s substitution z =  w — p/(3w). The result (after cancel
lation) is

(18) tv3 -  p3/(27w3) +  q =  0.

Multiplying through by w3, we get a quadratic in w3, which can be solved 
by (16), giving

(19) w3 =  —q/2 +  y/q2/A +  p 3/27 (two values).

This gives six solutions for w in the form of cube roots. Substituting these 
in the formula z =  w — p/(3w), we get three pairs of solutions for z, 
paired solutions being equal.

It is interesting to relate the preceding formulas to Theorem 6. Thus, 
in the quadratic case, writing z 2 +  Bz +  C  =  (z -  z t)(z  -  z2), we have

(20) Z\ +  z2 =  ~B, Z\Z2 =  C, whence (z a -  z 2)2 =  B 2 -  AC.

The quantity B 2 — AC =  D  is the discriminant of (14). In terms of the 
original coefficients of (13), D  =  (b2 — Aac)/a2.
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Similarly, if z u z2, z3 are the roots of the reduced cubic equation (17),

(21) Z i  +  z2 +  z3 =  0 , Z 1Z2 +  2 2z 3 +  Z3Z 1 =  P, 2 i 2 22 3 =  -  q. 

Combining the first two relations, we get the formulas

(22) p =  z iz 2 -  z 32, (z 1 -  z2f  =  -4 p -  3z32, z 2 +  z2 +  z 32 =  -2 p. 

We now define the discriminant of a cubic equation by

(23) D  =  n  (2 ,- -  Z jf  =  P 2, where P  =  (z j -  z2)(z 2 -  z3)(z j -  z3).

Squaring P  and using the second relation of (22), we get after some 
calculation

(24) D  =  - 4 p3 -  21q2,

which can be used to simplify (19) to w =  — q/2 +  V—D/6.

Theorem  8. A  quadratic or cubic equation with real coefficients has 
real roots if  its discriminant is nonnegative, and two imaginary roots if  its 
discriminant is negative.

Proof. By the Corollary of Theorem 7, either all roots are real or 
there are two conjugate imaginary roots z x =  x x +  iy, and z2 =  X\ — iy. 
If all roots are real, (z, -  zf)2 g  0 for all i #  j, and so 9  g  0. In the 
opposite case (z x — z2)2 =  - 4 y 2 <  0, and since z 3 =  x3 is real, 
(z\ — z3)(z 2 -  z3) =  {x\ -  x3)2 +  y 2 >  0, so that D  <  0. Q.E.D.

By (23), the condition D  =  0 gives a simple test for multiple roots. 
Unfortunately, precisely in the case D  >  0 that z 3 +  pz +  q =  0 has 

all real roots, formula (19) expresses them in terms of complex numbers. 
W e shall show in §15.6 that this cannot be helped!

Exercises

1. Prove that for any (complex) y, p  there exists a z satisfying y =  z -  p/3z. 
How many exist?

2. Solve in radicals

(a) z2 +  iz =  2, (b) z3 +  3iz =  1 +  i, (c) z3 +  3iz2 = 10/.
3. Convert one root in each o f Exs. 2(a)-(c) into decimal form.

4. (a) Prove (22). (b) Prove (24).
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★5. (a) Show that sinh 3y  =  sinh (3y +  2m ).
(b) Using formula (9a) in §4.4, show that 4 z3 +  3z =  C  has, in addition to 

the real root sinh [(1/3) sinh-1 C ] =  sinh y, also the complex roots 
—(1/3) cosh y ±  «'('/3/2) sinh y.

6. Let at =  c2" ' 5 be a primitive fifth root o f unity, and let f  =  <o +  1 /<o.
(a) Show that f 2 +  f  =  1.
(b) Infer that in a regular pentagon with center at (0 ,0 ) and one vertex at 

(1, 0), the x-coordinate of either adjacent vertex is (V5 — l)/4.
7. Using the formula cos 0 =  (eia +  e~ia)/2, show that cos nd =  T„(cos 0) for a 

suitable polynomial T„ o f degree n, and compute T,, T 2, T 3, T4.

★5.6. Solution of Quartic by Radicals

Any method which reduces the solution of an algebraic equation to a 
sequence of rational operations and extractions o f nth roots o f quantities 
already known is called a “ solution by radicals.”

Theorem  9. Any polynomial equation o f degree n 4 with real or 
complex coefficients is solvable by radicals.

Proof. Since the case n =  1 is solvable over any field, while the cases 
n =  2, 3 were treated in §5.5, we need only consider

ax4 +  bx3 +  cx1 +  dx +  e =  0 (a #  0).

Again, dividing through by a, and replacing x by z =  x +  b/4a (so as to
“ complete”  the quartic), we get the equation

(25) z 4 +  p z2 +  qz +  r =  0,

whose roots differ from those of the original equation by b/4a. But for all 
u, (25) is equivalent to

(26) z 4 +  z 2u +  u2/4  — z 2u — u2/4  +  pz2 +  qz +  r =  0 

or (z 2 +  u/2)2 -  [ ( «  -  p )z 2 — qz +  {u2/4 -  r)] =  0.

The first term is a perfect square P 2, with P  =  z 2 +  \u. The term in
square brackets is a perfect square Q 2 for those u such that (equating the 
discriminant to zero)

(27) q 2 =  4 («  -  p )(u 2/4 -  r).
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This cubic equation in u can be solved by radicals, using Theorem 8. If 
the coefficients of (25) are real, one can even show that at least one real 
number Wj ^  p satisfies (27), for the right side of (27) is zero if u =  p 
and becomes larger than q2, or any other preassigned constant, when u is 
sufficiently large and positive. Hence, by Theorem 4 of §4.4, (27) has the 
desired real root Ui.

Substituting this constant ui into (26), the left side of (25) assumes the 
form P 2 - Q 2 =  (P  +  Q )(P  -  O ), or

(28) (z 2 +  Ui/2 +  Q )(z2 +  u j 2 -  Q ),

where

(29) Q  =  A z  -  B, A  =  Vuj -  p, B  -  q/2A.

The roots of (25) are clearly those of the two quadratic factors o f (28), 
which can be found by (16). Note that these factors are real if the 
coefficients a, b, c, d, e of the original equation were real.

It is interesting to recall the history of the solution of equations by 
radicals. The solution of the quadratic was known to the Hindus and in its 
geometric form (§4.1) to the Greeks. The cubic and quartic were solved 
by the Renaissance Italian mathematicians Scipio del Ferro (1515) and 
Ferrari (1545). However, not until the nineteenth century did Abel and 
Galois prove the impossibility of solving all polynomial equations of 
degree n S  5 in the same way (§15.9).

Exercises

1. Solve by radicals: z 4 — 4z3 + (1 + i)z = 3i.
2. Prove, without using the Fundamental Theorem of Algebra, that every real 

polynomial of degree n <  6 has a complex root.
3. Solve the simultaneous equations: zw = 1 +  i, z2 + w2 = 3 ~ i.

★5.7. Equations of Stable Type

Many physical systems are stable if and only if all roots of an 
appropriate polynomial equation have negative real parts. Hence equa
tions with this property may be called “ of stable type.”

In the case o f real quadratic equations z 2 +  Bz +  C  =  0, it is easy to 
test for stability. If 4C  ^  B 2, both roots are real. They have the same
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sign if and only if ZiZ2 =  C  >  0, the sign being negative if and only if 
B  =  - ( z i  +  z 2) >  0. If 4C  >  B 2, the roots are two conjugate complex 
numbers. They both have negative real parts x i =  x2 if and only if 
B  = — 2*i =  — 2*2 >  0; in this case also C  >  B 2/A >  0. Hence in both 
cases the condition for “ stability”  is B  >  0, C  >  0.

In the case of real cubic equations z 2 +  A z 2 +  Bz +  C  =  0, condi
tions for stability are also not hard to find. (It is not, of course, sufficient 
to consider the reduced form (17).) Indeed, if all roots have negative real 
parts, then, since one root z =  —a is real, we have a factorization

(30) z 3 +  A z 2 +  Bz +  C  =  (z +  a )(z 2 +  bz +  c).

Here a >  0, and by the previous case b >  0 and c >  0. Therefore 
A  =  a +  b >  0, B  =  {ab +  c) >  0, and C  =  ac >  0 are necessary for 
stability. Furthermore, A B  — C  =  b (a 2 +  ab +  c ) > 0 .

Conversely, suppose that A  >  0, B  >  0, C  >  0, and consider the real 
factorization (30), which always exists by Theorem 7. Since ac =  C  >  0, 
a and c have the same sign. But, if they were both negative, then b would 
have to be negative to make ab +  c >  0, and so A  =  a +  b <  0, con
trary to hypothesis. Hence a >  0 and c >  0, implying a2 +  ab +  c = 
a (a +  b) +  c >  0. But this implies b =  (A B  -  C )/{a2 +  ab +  c ) >  0, 
whence both factors of (30) are “ stable.”  Hence we have proved the 
following result.

Theorem  10. The real quadratic equation z 2 +  Bz +  C  =  0 is o f 
stable type if  and only if  B  >  0 and C  >  0. The real cubic equation 
z 3 +  A z 2 +  Bz  +  C  =  0 is o f stable type if  and only if  A  >  0, B  >  0,
C  >  0, and A B  >  C.

Exercises

1. Test the following polynomials for stability:
(a) z 3 +  z 2 +  2z +  1, (b) z 3 +  z 2 +  2z + 2 .

2. Show that for monic real polynomial of degree n to be of stable type, all its 
coefficients must be positive.

★3. Show that z* +  A z 3 +  B z 2 +  Cz +  D  with real coefficients is of stable type 
if and only if all its coefficients are positive, and A B C  >  A 2D  +  C 2.

★4. Assuming Ex. 3, obtain necessary and sufficient conditions for a complex 
quadratic equation z 2 +  B z +  C  =  0 to be of stable type. (H int: Consider 
(z2 + Bz + C )(z2 + B*z + C*) = 0.)
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Groups

6.1. Symmetries of the Square

The idea of “ symmetry”  is familiar to every educated person. But 
fewer people realize that there is a consequential algebra o f symmetry. 
This algebra will now be introduced in the concrete case of the symmet
ries of the square.

Imagine a cardboard square laid on a plane with fixed axes, so that the 
center of the square falls on the origin of coordinates, and one side is 
horizontal. It is clear that the square has rotational symmetry: it is carried 
into itself by the following rigid motions.

R : a 90° rotation clockwise around its center O.
R ’, R ": similar rotations through 180° and 270°.

The square also has reflective symmetry; it can be carried into itself by 
the following rigid reflections.

H : a reflection in the horizontal axis through O.
V : a reflection in the vertical axis through O.

. D :  a reflection in the diagonal in quadrants I and III.
D a reflection in the diagonal in quadrants II  and IV.

Our list thus includes seven symmetries so far.
The algebra of symmetries has its genesis in the fact that we can 

multiply two motions by performing them in succession. Thus, the pro
duct H R  is obtained by first reflecting the square in a horizontal axis, 
then rotating clockwise through 90°. By experimenting with a square

124
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D

piece of cardboard, one can verify that this has the same net effect as D ',  
reflection about the diagonal from the upper left- to the lower right-hand 
corner. Alternatively, the equation H R  =  D ' can be checked by noting 
that both sides have the same effect on each vertex of the square. Thus, in 
Figure 1, H R  sends 1 into 4 by H  and then 4 into 3 by R — hence 1 into 
3, just as does D '.

Similarly, R H  is defined as a result 
of a clockwise rotation through 90° 
followed by reflection in a horizontal 
axis. (Caution: The plane of Figure 1, 
which contains the axes of reflection, 
is not imagined as rotated with the 
square.)

A  computation shows that R H  =
D  #  H R, from which we conclude 
incidentally that our “ multiplication”  
is not in general commutative! It is, 
however, associative, as we shall see 
in §6.2.

The reader will find it instructive 
to compute other products of sym
metries of the square (a complete list is given in Table 1, §6.4). If he does 
this, he will discover one exception to the principle that successive 
applications of any two symmetries yield a third symmetry. If, for 
example, he multiplies R  with R ", he will see that their product is a 
motion which leaves every point fixed: it is the so-called “ identity”  
motion I. This is not usually considered a symmetry by nonmathemati
cians; nevertheless, we shall consider it a (degenerate) symmetry, in order 
to be able to multiply all pairs of symmetries.

In general, a symmetry of a geometrical figure is, by definition, a 
one-one transformation of its points which preserves distance. It can be 
readily seen that any symmetry of the square must carry the vertex 1 into 
one of the four possible vertices, and that for each such choice there are 
exactly two symmetries. Thus all told there are only eight symmetries, 
which are those we have listed.

Not only the square, but every regular polygon and regular solid (e.g., 
the cube and regular icosahedron) has an interesting group of symmetries, 
which may be found by the elementary method sketched above.

Similarly, many ornaments have interesting symmetries. Thus consider 
the infinite ornamental pattern

>
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in which the arrowheads are spaced uniformly one inch apart along a line. 
Three simple symmetries of this figure are T, a translation to the right by 
one inch, T ,  a translation'to the left by one inch, and H, a reflection in 
the horizontal axis o f the figure. Others (in fact, all others!) may be found 
by multiplying these together repeatedly.

Exercises

1. Compute H V , H D ', D 'H , R 'D ',  D 'R ',  R 'R " .
2. Describe T H  and H T  in the ornamental “ arrowhead”  pattern.
3. List the symmetries of an equilateral triangle, and compute five typical 

products.
4. List the symmetries of a general rectangle, and compute all their products. 

★5. How many symmetries are possessed by the regular tetrahedron? by the
regular octahedron? Draw figures.

★6. Show that any symmetry of the ornamental pattern of the text can be 
obtained by repeatedly multiplying H, T, and T'.

6.2. Groups of Transformations

The algebra of symmetry can be extended to one-one transformations 
of any set S of elements whatever. Although it is often suggestive to think 
o f the set S  as a “ space”  (e.g., a plane or a sphere), its elements as 
“ points,”  and the bijections as “ symmetries”  of S with respect to suitable 
properties, the bijections of S  satisfy some nontrivial algebraic laws in any 
case.

To understand these laws, one must have clearly in mind the defini
tions of function, injection, surjection, and bijection made in §1.11. To 
illustrate these afresh, we give some new examples; as in §1.11, we will 
usually abbreviate /(jc) to x f  (read “ the transform of jc by /” ), g(jc) to jcg, 
etc.

The function f (x )  = e2mx maps the field R of all real numbers into the 
field C of all complex numbers; its range (image) is the unit circle. 
Similarly, g (z )  = \z | is a function g :C  -» R whose image is the set of all 
nonnegative real numbers.

Again, consider the following functions <j>0: Z  -» Z  and ip0: Z  -» Z  on 
the domain Z  of all integers to itself:

. , [ m/2 if m is even,
n<f>0 =  2n, and mip0=\ .

10 if m is odd.
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By the cancellation law of multiplication <f>0 is one-one; yet its range 
consists only of even integers, so that <f>0 does not transform Z  onto Z. On 
the other hand, i/r0 is not one-one, since all odd integers are mapped onto 
zero, but it does map Z  onto Z ; thus t[r0 is surjective but not injective.

We turn now to the algebra of transformations. Two transformations 
<f>: S -> T  and <f>': S -> T  with the same domain S and the same codomain 
T  are called equal if they have the same effect upon every point of S; that 
is,

(1) (f> =  4>' means that p<f> =  p4>' for every p e S.

The product or composite <f»lr of two transformations is again defined 
as the result of performing them in succession; first <f>, then <p, provided 
however that the codomain of tf> is the domain of t[r. In other words, if

<j> \ S -> T, t/r: T  -> U,

then is the transformation of S into U  given by the equation

(2) p ( # )  =  (p4>) ip,

which defines the effect of (fuff upon any point p e S. In particular, the 
product o f two transformations o f S (into itself) is always defined. We 
shall now restrict our attention to this case, although almost all the 
identities proved below apply also to the general case, provided that the 
products involved are defined.

Multiplication of transformations conforms to the

Associative law: (<fii\i)Q =  <f){4>6),

whenever the products involved are defined. This is obvious intuitively: 
both (<ptj/)d and amount to performing first <f>, then ij/, and finally 6,
in that order. Formally, we have for each p e S,

= (p<fi)(tjfd) =  [(p<fi)tj/]d =  [p(<£t/O]0 =  p[(<f»P)d],
4>(4tO) fa], (4><A)0

where each step depends on applying the definition (2) of multiplication 
to the product indicated below the equality symbol for that step. By the 
definition (1) of equality for transformations, this proves the associative 
law <f>(il/d) =

The identity transformation I  =  Is on the set S is that transformation 
I :  S -> S which leaves every point of S fixed. This is stated algebraically

Download more at Learnclax.com



Ch. 6 Groups 128

in the identity 

(3) p i =  p for every p e S.

From the above definitions there follows directly the

Identity law: I(f> =  <f)I =  <f> for all <f>.

To see this, note that p(I<f>) =  (pl)<f> =  p<f> for all p and, similarly, that 
p(,(f>I) =  (p<f>)I =  p<f>.

Return now to the special transformations <f>0 and <p0 defined above on 
the set Z, and compute their products. Clearly, mif/0<f>o — m if m is even, 
and 0 if m is odd; hence if/o<f>o ^  I. On the other hand, m<f>0tft0 =  m for 
all m e  Z, hence (poipo =  I. We may thus call ip0 a right-inverse (but not a 
left-inverse) of <f>0.

In general, if the transformations <f>: S -* S and if/: S -> S have the 
product <f>tf/ =  I :  S -» 5, then <f> is called a left-inverse of ip, and ip a 
right-inverse of <f>. These definitions are closely related to the concepts of 
being “ one-one”  (injective) and “ onto”  (surjective), as defined earlier.

Theorem  1. A  transformation <f>:S -* S is one-one if  and only i f  it has 
a right-inverse; it is onto i f  and only if it has a left-inverse.

Proof. I f <f> has a right-inverse if/, <f>ip =  / and p<f> =  p ’<f> imply

Thus p<f> =  p'<f> implies p =  p', so that <f> is one-one. Similarly, if <f> has a 
left-inverse if/', then tf/'<f> -  I. Hence, any q in S can be written q =  q l  = 
q(if/’<f>) =  (qif/')<f>, as the <f>-image o f a suitable point p =  qtf/'. Therefore <f> 
is onto.

Conversely, given any <f>: S -» 5, we first construct a second transfor
mation if/: S -* S, as follows. For each q in S which is the image under <f> 
of one or more points p of S, chooset as image qif/ any one of these points 
p. Then q(if/<f>) =  (qif/)<f> =  p<f> =  q for any q of the form p<f>. Let if/ map 
the remaining points q of S in any way whatever, say on some fixed point 
of the (nonempty) set S.

Now if <£ .is onto, every q has the form p<f>, and hence if/<f> =  I, so that 
<f> has if/ as left-inverse. On the other hand, if <f> is one-one, then, for each 
p,(p<f/)if/ must be the unique antecedent p o f q =  ptf>; hence <f>if/ =  I  and 
if/ is a right-inverse o f <f> as asserted.

t In case the set of such points q is infinite, the Axiom of Choice (cf. §12.2) asserts the 
possibility of making such an infinite number of choices of p, one for each q.

p =  p(<f>tf/) =  (p<f>)ll/ =  (p'<f>)if/ =  p'(<f>if/) =  p'.
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Remark. The functional notation y =  <f>(x) of the calculus suggests 
writing y =  <f>x where we have written y =  x<f> above. In this notation, 
the composite of <f> and z =  tp(y) is naturally written z =  (ip(p)x, as an 
abbreviation for z — tp{<p{x)), instead of z =xtj>tp. Hence ip<p means “ per
form first tp, then tp,”  and the notions of right- and left-inverse become 
interchanged. Either notation by itself is satisfactory, but confusion 
between them must be avoided. The meaning of two-sided inverse stays 
the same, however, as do the following corollaries.

Corollary 1. A  transformation <p: S -* S is a bijection if  and only if  it 
has both a right-inverse and a left-inverse. When this is the case, any 
right-inverse o f <p is equal to any left-inverse o f <f>.

Indeed, if tp has a right-inverse 6 and a left-inverse tp, then 

6 =  Id =  {tp<p)6 =  tp(<p0) =  tpl =  ip.

Define a (two-sided) inverse of <p:S -*• S as any transformation <p~l 
which satisfies the

Inverse law: <P<P~l =  tp~xtp ~  I-

These equations also state that <p-1 is a two-sided inverse of <p, hence the 
further corollary:

Corollary 2. A  transformation <p:S -* S is bijective if and only if<p has 
a (two-sided) inverse When this is the case, any two inverses o f tp are 
equal, and

(4) or1)-1 = 4>.
This corollary is what will be used below; it has an immediate direct 

proof, for (p~l is simply that transformation o f S which takes each point 
q =  p<p back into its unique antecedent p. In the special case when S is 
finite, <p is one-one if and only if it is onto, so that the more elaborate 
discussion o f left- and right-inverses is pointless in this case.

Theorem 1 and its corollaries also hold, together with their proofs, for 
functions <p:S ^  T  on a set into another set T. One need only observe 
that a left-inverse tp or a right-inverse 0 is a transformation of the second 
set T  into S and that

ip<f> — I j - : T  -*■ T, <f>0 — Ig . S -* S.

Here Is and I T are the identity transformations on 5 and T, respectively.
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We are now ready to define the important concept o f a group of 
transformations. By a group o f transformations on a “ space”  S is meant 
any set G  of one-one transformations <f> o i S onto 5 such that (i) the 
identity transformation of 5 is in G ; (ii) if (ft is in G, so is its inverse; (iii) 
if (ft and if/ are in G, so is their product (ftif/.

Theorem  2. The set G  o f all bijections o f any space S onto itself is a 
group o f transformations.

Proof. Since 11  =  I, the identity I  of S  is bijective, hence is in the 
set G, as required by condition (i) above. If (ft is in G, Corollary 2 above 
shows that <f>~1 is also one-one onto, hence is likewise in G, as in (ii). 
Finally, the product of any two one-one transformations (ft and ift of S 
onto S has an inverse, for by hypothesis

(<£e/0 (e /c V _1) =  (f>{tfnft~l)(f>~1 =  (ftl(ft~l =  (ft(ft~l =  I,

(il/~ltft~l)((ftil/) =  *A_1(<̂ _1<̂ )*A =  rA-1#  = </'_V  =  I-

Therefore (fttp is also bijective (one-one onto), and has as inverse

(5 ) (<fnft)~ 1 =  tft~'(f>~1.

In words, the inverse of a product is the product of the inverses, taken in 
the opposite order. Q.E.D.

A  bijection of a finite set 5 to itself is usually called a permutation of 
S. The group of all permutations of n elements is called the symmetric 
group of degree n; it evidently contains n! permutations, for the image k x 
of the first element can be chosen in n ways, that of the second element
can then be chosen in n — 1 ways from the elements not k x, and so on.

Exercises

1. Compute VD, ( V D )R ", D P " ,  V (D R ”) in the group of the square.
2. Compute similarly H R , R '(H R ),  R 'H , (R 'H )R .
3. Let S consist o f all real numbers (or all points jc  on a line), while the 

transformations considered have the form xtft =  ojc +  b. In each o f the 
following cases, find when the set of all possible (ft’s with coefficients a and 
b of the type indicated is a group o f transformations. Give reasons.
(a) a and b rational numbers; (b) a =  l , b  an odd integer;
(c) a =  1, b a positive integer or 0; (d) a =  1, b an even integer;
(e) a an integer, b =  0; (f) a ^  0, a and b real numbers;
(g) u ^ O . a a n  integer, b a real number;
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(h) a 0, a a real number, b an integer;
(i) a #  0 ,a  an integer, b an irrational number;
( j )  a & 0, a a rational number, b a real number.
In which o f these groups is “ multiplication”  commutative?

4. Find all the transformations on a “ space”  S  o f exactly three “ points.”  How 
many are there? How many o f these are one-one?

5. Show that the transformation n>-» n 2 on the set of positive integers has no 
left-inverse, and exhibit explicitly two right-inverses.

6. Exhibit two distinct left-inverses o f the transformation <l>0: Z  -*• Z  defined in 
the text, and two right-inverses o f <f>0.

7. Show that if <f> and i/» both have right-inverses, then so does <t><p.
8. Compute (R ~ x( V R ))~ 1((R ~ 1D )R )  for the group o f the square.
9. Solve the equation R X R ' =  D  for the group o f the square.

10. Check that, in the group of the square, (R H )~ 1 =  H ~ 'R ~ X & R ~ 'H ~ '.
11. Find the inverse o f every symmetry o f the rectangle, and test the rule (5).
12. If  <f>i, ■ • •, 4>„ are one-one, prove that so is with

‘ ‘ ' * * . ■
13. Show that for any 4> : S -* S, the transformation <j> constructed in the 

second part o f the proof of Theorem 1 satisfies <f>tp4> =  4>-
★14. Show that a transformation <f>:S -* S  which has a unique right-inverse or a 

unique left-inverse is necessarily a one-one transformation o f S  onto S.

6.3. Further Examples

The symmetries of a cube form another interesting group. Geometri
cally speaking, these symmetries are the one-one transformations which 
preserve distances on the cube. They are known as “ isometries,”  and are 
48 in number. To see this, note that any initial vertex can be carried into 
any one of the eight vertices. A fter the transform of any one vertex has 
been fixed, the three adjacent vertices can be permuted in any of six 
ways, giving 6 • 8 =  48 possibilities. When one vertex and the three 
adjacent vertices occupy known positions, every point of the cube is in 
fixed position, so the whole symmetry is known. Hence the cube has 
exactly 48 symmetries. Many of them have special geometrical properties, 
such as the one which reflects each point into the diametrically opposite 
point.

A  familiar group containing an infinite number of transformations is 
the so-called Euclidean group. This consists of the “ isometries”  of the 
plane— or, in the language of elementary geometry, of the transforma
tions under which the plane is congruent to itself. It is made up of 
products of translations, rigid rotations, and reflections; it will be dis
cussed in greater detail in Chap. 9.
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Another group consists o f the “ similarity”  transformations of space—  
those one-one transformations which multiply all distances by a

constant factor k >  0 (a factor of proportion
ality). The rigid motions of the surface of any 
sphere into itself again constitute a group.

The isometries of the plane leaving
invariant a regular hexagonal network (Figure
2) form another interesting group.

Again, a rubber band held in a straight line 
between fixed endpoints P  and Q  may be 
deformed in many ways along this line. A ll 
such deformations form a group (the group of 
so-called “homeomorphisms”  o f the segment 
P Q ).

Generally speaking, those one-one transformations of any set of 
elements which preserve any given property or properties o f these ele
ments form a group. Felix Klein (Erlanger Programm, 1872) has elo
quently described how the different branches of geometry can be 
regarded as the study of those properties o f suitable spaces which are 
preserved under appropriate groups of transformations. Thus Euclidean 
geometry deals with those properties of space preserved under all 
isometries, and topology with those which are preserved under all 
homeomorphisms. Similarly, “ projective”  and “ affine”  geometry deals 
with the properties which are preserved under the “ projective”  and 
“ affine”  groups to be defined in Chap. 9.

Figure 2

Exercises

1. Describe all the symmetries o f a wheel with six equally spaced radial spokes.
2. Describe the six symmetries of a cube with one. vertex held fixed.
3. Let S, T  be reflections o f a cube in planes parallel to distinct faces. Describe 

S T  geometrically.
4. Describe some isometries of the plane which carry the hexagonal network of 

Figure 2 onto itself.
5. Do the same for a network o f squares. Can you enumerate all such 

transformations (this is difficult)?
6. Do the same for the network o f equilateral triangles, and relate this to the 

group of Ex. 1.
7. Do the same for an infinite cylinder, for a finite cylinder, for a helix wound 

around the cylinder making a constant angle with the axis o f the cylinder.
★8. Show that the transformations x *-* x ' =  {ax +  b)/{cx +  d ), with ad — be =  

1 and with coefficients in any field F, constitute a group acting on the set 
consisting o f the elements o f F  and a symbolic element oo.
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6.4. Abstract Groups

Groups of transformations are by no means the only systems with a 
multiplication which satisfies the associative, identity, and inverse laws of 
§6.2. For instance, the nonzero numbers of any field (e.g., of the rational, 
real, or complex field) satisfy them. The product of any two nonzero 
numbers is a nonzero number; the associative law holds; the unit 1 of the 
field satisfies the identity law, and \/x =  x~ l satisfies the inverse law.

Similarly, the elements (including zero, this time) of any integral 
domain satisfy our laws when combined under addition. Thus, any two 
elements have a uniquely determinate sum; addition is associative; while 
zero satisfies the identity law, and —x the inverse law, relative to addition. 
In other words, the elements of any integral domain form a group under 
addition.

It is convenient to introduce the abstract concept of a group to include 
these and other instances.

Definition. A  group G  is a system o f elements with a binary operation 
which (i) is associative, (ii) admits an identity satisfying the identity law, 
and (iii) admits for each element a an element a~l (called its inverse) 
satisfying the inverse law.

Groups can be defined abstractly, without reference to trans
formations, in many ways; groups so defined are often called abstract 
groups.

In discussing abstract groups, elements will be denoted by small Latin 
letters a ,b ,c ,- • • . The product notation “ ab”  will ordinarily be used to 
denote the result of applying the group operation to two elements a and b 
of G — but other notations, such as “ a +  b”  and “ a °b ,”  are equally 
valid. In the product notation, with “ e ”  for the identity, the three laws 
defining groups become

Associative law: a (bc) — (ab)c for all a, b, c.
Identity law: ae =  ea =  a for all a.
Inverse law: aa~1 =  a~1a = e  for each a and some a -1.

A  group whose operation satisfies the commutative law is called a 
“ commutative”  or “ Abelian”  group. Using this concept, we can simplify 
the definition of a field as follows.

Definition. A  field is a system F  o f elements closed under two uniquely 
defined binary operations, addition and multiplication, such that

(i) under addition, F  is a commutative group with identity 0;
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(ii) under multiplication, the nonzero elements form a commutative 
group;

(iii) both distributive laws hold: a(b +  c ) =  ab +  ac.

To see that this definition is equivalent to that given in §2.1, observe 
that the postulates just given include all those previously stated for a field, 
except for the associative law for products with a factor 0; this can be 
verified in detail.

Some of the results of the first sections of Chaps. 1 and 2 will now 
appear as corollaries of the following theorem on groups.

Theorem  3. In any group, xa =  b and ay =  b have the unique 
solutions x =  ba~l and y — a~ib. Hence ca =  da implies c =  d, and so 
does ac =  ad (cancellation law).

Proof. If aT1 is the element specified in the inverse law, clearly, 
(6a_1)a =  b{a~la ) =  be =  b, and, similarly, a{a~lb) =  b. Conversely, 
xa =  b implies x =  xe =  xaa~l =  ba~l , and, similarly, ay =  b implies 
y =  a~lb.

Note that in this proof a -1 is not assumed to be the only element 
satisfying xa =  e. But it is, since if xa =  e, then

x =  xe =  x{aa~l ) =  (xa )a -1 =  ea~l =  a~l .

Similarly, a -1 is the only element such that ay =  e.
Since in any group G  the equations ex =  e and ay =  e have by

Theorem 3 the unique solutions x =  e and y =  a -1, we get the

Corollary. A  group has only one identity element, and only one inverse 
a~1 for each element a.

Theorem 4. In the preceding definition o f a group, the identity and 
inverse laws can be replaced by the weaker laws,

Left-identity: For some e, ea =  a for all a.
Left-inverse: Given a, a~la =  e for some a -1.

Proof. Given these weaker laws, cancellation on the left is possible; 
that is, ca =  cb implies a =  b, for we need only to premultiply each side 
of ca =  cb by c~ l and apply the associative law to get (c~ lc)a  =  (c~ lc)b,
which is ea =  eb, and gives a =  b.

The given left-identity is also a right-identity, for
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whence, by left-cancellation, ae =  a for all Finally, left-inverses are 
also right-inverses, for

a 1(aa *) =  (a la )a  1 =  ea 1 =  a 1 =  a xe,

since the left-identity is a right-identity. Left-cancellation now gives 
aa~l =  e. This completes our proof.

There are many other postulate systems for groups. A  useful one may 
be set up in terms of the possibility of division, as follows:

Theorem 5. I f  G  is a rionvoid system closed under an associative 
multiplication for which all equations xa =  b and ay -  b have solutions x 
and y in G, then G  is a group.

The proof is left as an exercise (Ex. 12).

Besides systematizing the algebraic laws governing multiplication in 
any group G, we may list in a “ multiplication table”  the special rules for 
forming the product of any two elements of G, provided the number of 
elements in G  is finite. This is a square array of entries, headed both to 
the left and above by a list of the elements of the group. The entry 
opposite a on the left and headed above by b is the product ab (in that 
order).

In Table 1 we have tabulated for illustration the multiplication table

Table 1. Group of the Square

I R R ' R " H V D D '

/ I R R ' R " H V D D '

R R R ' R " I D D ' V H

R ' R ' R " I R V H D ' D

R " R " I R R ' D ' D H V

H H D ' V D I R ' R " R

V V D H D ' R ' I R R "

D D H D ' V R R " I R '

D ' D ' V D H R " R R ' I
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for the group of symmetries of the square. The computations can be 
modeled on those made in §6.1 in proving that H R  -  D ' and R H  =  D. 
Another method is described in §6.6.

Most o f the group properties can be read directly from the table. 
Thus, the existence of an identity states that some row and the corres
ponding column must be replicas of the top heading and of the left 
heading, respectively. The possibility of solving the equation ay =  b 
means that the row opposite a must contain the entry b\ since the 
solution is unique, b can occur only once in this row. The group is 
commutative if and only if its table is symmetric about the principal 
diagonal (which extends from upper left to lower right). Unfortunately, 
the associative law cannot be easily visualized in the table.

Exercises

1. Let a, b, c be fixed elements o f a group. Prove the equation xaxba =  xbc 
has one and only one solution.

2. In a group of 2n elements, prove there is an element besides the identity 
which is its own inverse.

3. Do the positive real numbers form a group under addition? under multi
plication? Do the even integers form one under addition? Do the odd ones? 
Why?

4. In the field Z u of integers modulo 11, which of the following sets are 
groups under multiplication?
(a) (1 ,3 ,4 ,5 ,9 ); (b) (1 ,3 ,5 ,7 ,8 ); (c) (1 ,8 ); (d) (1,10).

5. Prove that a group with 4 or fewer elements is necessarily Abelian. (H int: 
ba is one of e, b, a, ab, except in trivial cases.)

6. Prove that if xx =  x  in a group, then x  =  e.
7. Do the following multiplication tables describe groups?

a b c d

a b d a c

b d c b a

c a b c d

d c a d b

8. Prove that Rules 2, 4, and 6 o f §1.2 are valid in any commutative group.
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9. Which of the following sets o f numbers are groups? Why?
(a) A ll rational numbers under addition; under multiplication.
(b) A ll irrational numbers under multiplication.
(c) A ll complex numbers of absolute value 1, under multiplication.
(d) A ll complex numbers z with | z | =  1, under the operation z » z ' =

\ A - z ' -
(e) A ll integers under the operation o f subtraction.
(f) The “ units”  (§3.6) o f any integral domain under multiplication.

10. Prove that the following postulates describe an Abelian group: (i) (ab)c =  
a(cb ) for all a, b, c ;  (ii) the “ left-identity”  postulate of Theorem 4; (iii) the 
“ left-inverse”  postulate o f Theorem 4.

★11. Prove that if x 2 =  e for all elements o f a group G, then G  is commutative. 
★12. Prove Theorem 5. (H int: I f  ax =  a, then x  is a right-identity, and any 

right-identity equals any left-identity.)
★13. Let S  be a nonvoid set closed under a multiplication such that ab =  ba, 

a (bc) =  (ab)c, and ax =  ay implies x  =  y.
(a) I f  S is finite, prove that S is a group.
(b) I f  S is finite or infinite, prove that S can be embedded in a group.

6.5. Isomorphism

Consider the transformation x •-» log x on the domain of positive 
reals. It is well known that as x increases in the interval 0 <  x <  +oo, 
logx increases continuously in the interval —oo <  y <  +°o; that is, the 
correspondence is one-one between the system of positive real numbers 
and the system of all real numbers (the inverse transformation being 
y >-» ey). Moreover log (xy) =  logx  +  logy  for all x, y: we can replace 
computations of products by parallel computations with sums. This is 
indeed the main practical use of logarithms!

Next, let Z 3 be the field of the integers mod 3 (§1.10), and let G  be 
the group of the rigid rotations of an equilateral triangle into itself. If I, 
R, and R ' are the rotations through 0°, 120°, and 240°, respectively, the 
bijection 0 * *  I, 1 ++ R, 2 * *  R ' associating integers with rotations is one 
which carries sums in Z 3 into products o f the corresponding rotations. For 
instance, consider the correspondences

1 +  2 =  0 (mod 3), R R ’ =  /,

2 +  2 =  1 (mod 3), R 'R ' =  R.

These are instances of the general concept of “ isomorphism”  men
tioned in §1.12. This concept is simpler and also more important for 
groups than for integral domains.
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Definition. By an isomorphism between two groups G  and G ' is 
meant a bijection a ** a' between their elements which preserves group 
multiplication— i.e., which is such that if  a *-* a ' and b * *  b', then ab **  
a'b'.

Thus, in the first example, we have described an isomorphism between 
the group of positive real numbers under multiplication, and that of all 
real numbers under addition. In the second, we have pointed out the 
isomorphism of the additive group of the integers mod 3 with the group 
of rotational symmetries of the equilateral triangle.

Similarly, the mapping 0 >-» 1, 1 2, 2 4, 3 3 is an isomorph
ism from the group o f integers under addition mod 4 to the group of 
nonzero integers mod 5 under multiplication. It is convenient to check 
this result by comparing the group table for the integers under addition 
mod 4 with that for the nonzero elements of Z 5 under multiplication. See 
Tables 2 and 3.

In turn, the group of the integers under addition modulo 4 is isomor
phic with the group of rotational symmetries of the square. That the 
bijection 0 «-> I, 1 «-> R, 2 «-* R ’, 3 «-* R "  is an isomorphism can be 
checked by comparing Tables 2 and 3 with part of Table 1 (§6.4).

Table 2  Table 3

+ 0 1 2 3 X 1 2 4 3

0 0 1 2 3 1 1 2 4 3
1 1 2 3 0 2 2 4 3 1
2 2 3 0 1 4 4 3 1 2
3 3 0 1 2 3 3 1 2 4

The notion of isomorphism is technically valuable because it gives 
form to the recognition that the same abstract group-theoretic situation 
can arise in entirely different contexts. The fact that isomorphic groups 
are abstractly the same (and differ only in the notation for their elements) 
can be seen in a number of ways.

Thus, by definition, two finite groups G  and G ' are isomorphic if and 
only if every group table for G  yields a group table for G ', by appropriate 
substitution. It follows from the next to the last sentence of §6.4 that G ’ is 
Abelian if and only if G  is; that is, any isomorphic image of a finite 
Abelian group is Abelian. Again, isomorphism behaves like equality in 
another respect.

Theorem  6. The relation “ G  is isomorphic to G '"  is a reflexive, 
symmetric, and transitive relation between groups.
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Proof. The reflexive property is trivial (every group is isomorphic to 
itself by the identity transformation). As for the symmetric property, let 
a ++ a T  be any isomorphic correspondence between G  and G'\ since T  is 
bijective, it has an inverse T~\  which is an isomorphism of G ' onto G. 
Finally, if T  maps G  isomorphically on G ', while T ' maps G ' isomorphi- 
cally on G", then T T '  is an isomorphism of G  with G". Q.E.D.

It is worth observing that Theorem 6 and its proof hold equally for 
isomorphisms between integral domains, and indeed for isomorphisms 
between algebraic systems of any kind whatever.

Theorem 7. Under an isomorphism between two groups,, the identity 
elements correspond and the inverses o f corresponding elements correspond.

Proof. The unique solution e of ax =  a goes into the unique solution 
e' of a'x  =  a '; hence the identities correspond. Consequently, the unique 
solution a -1 of the equation ax =  e in G  goes into the unique solution 
a '-1 of a'x =  e' in G'\ this completes the proof.

We shall finally prove a remarkable result of Cayley, which can be 
interpreted as demonstrating the completeness of our postulates on the 
multiplication of transformations.

Theorem 8. Any abstract group G  is isomorphic with a group o f 
transformations.

Proof. Associate with each element a 6 G  the transformation 
d>a:x  -» xa -  x<ba on the “ space”  of all elements x of G. Since e<j>a -  
e(f>b implies a = ea =  eb =  b, distinct elements of G  correspond to 
distinct transformations. Since

(6) x(<t>a4>b) =  (x<t>a)<t>b =  (xa)b  =  x(ab) =  x<fab

holds for all x, the product 4>a<f>b is 4>ab, and the set G ' of all <f>a contains, 
with any two transformations, their product. Again, since x<j>e — xe =  x 
for all x, G ' contains the identity. One can similarly show that (</>„)“ 1 
exists and is in G ' for all a, being in fact <£a-i. Hence G ' is a group of 
transformations, which is by (6) isomorphic with G.

Exercises

1. Are any two of the following groups isomorphic: (a) the group of symmetries 
of an equilateral triangle; (b) the group of symmetries of a square; (c) the 
group of rotations of a regular hexagon; (d) the additive group of integers 
mod 6?
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2. The same question for (a) the group of rotations of a square; (b) the group of 
symmetries of a rectangle; (c) the group of symmetries of a rhombus 
(equilateral parallelogram); (d) the multiplicative group of 1, 5, 8, 12, mod 
13; (e) the multiplicative group of 1, 5, 7, 11, mod 12.

3. (a) Prove that the additive group of “ Gaussian” integers m + n f̂—1
(m, n 6 Z) is isomorphic to the multiplicative group of rational fractions 
of the form 2n3"' (m, n e Z).

(b) Show that both are isomorphic to the group of all translations of a 
rectangular network.

★4. Is the multiplicative group of nonzero real numbers isomorphic with the 
additive group of all real numbers?

5. Determine all the isomorphisms between the additive group of Z4 and the 
group of rotations of the square.

6. (a) Exhibit an isomorphism between the group of the square and a group of
transformations on the four vertices 1, 2, 3, 4 of the square.

(b) Show explicitly how inverses correspond under this isomorphism, as in 
Theorem 7.

7. Do the same for the group of all rotations of a regular hexagon.
8. Illustrate Theorem 8 by exhibiting a group of transformations isomorphic 

with each of the following groups:
(a) the additive group of all real numbers,
(b) the multiplicative group of all nonzero real, numbers,
(c) the additive group of integers mod 8.

6.6. Cyclic Groups
In any group, the integral powers am of the group element a can be 

defined separately for positive, zero, and negative exponents. If m >  0, we 
define

(7) am =  a • a • • • a (to m factors), a0 -  e, a~m =  (a -1)m.

Two of the usual laws of exponents hold,

(8) a V '=  ar+s, (arY =  a” .

On the other hand, (ab)r ^  a rbr in general (cf. Ex. 2).
If both exponents r and s are positive, the laws (8) follow directlyt 

from the definition (7) (cf. §1.5). In the other cases for the first law of (8), 
one of r or s may be zero, in which case (8) is immediate, or both r and s 
may be negative, in which case the result comes directly from the last part

t Thus r factors “a” followed by s factors “a” give all told r + s factors. Again, s sets of 
r factors “a ” each give all told sr factors.
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of the definition (7). There remains the case when one exponent is 
negative and one positive, say r =  — m and s =  n, with m >  0 and 
n >  0. Then

a~ma" =  (a ~ T a " =  (a -1 • • • a _1)(a  • • • a).

By the associative law we can cancel successive a ’s against the inverses 
a -1. In case n g  m we have left an~m, while if n <  m, we have some 
inverses left, (a -1)m-n or a~<m~n\ In both cases we have the desired law 
a~man =  an+(~m\

The second half of (8) can be established even more simply. I f s is 
positive, then by the first half o f (8),

a ’a ’ ■ • • a ’ (tos factors) =  ar+r+ '+r =

If s is negative, we can make a similar expansion, noting that (a r)~l =  a~r 
whether r is positive, zero, or negative. If s is zero, the result is 
immediate.

Definition. The order o f an element a in a group is the least positive 
integert  m such that am =  e; if  no positive power of a equals the identity e, 
a has order infinity. The group G  is cyclic if  it contains some one element x 
whose powers exhaust G ; this element is said to generate the group.

For example, the group of all rotations of a square into itself consists 
of the four powers R, R 2, R 3, and R 4 =  / of the clockwise rotation R  of 
90°. This group might equally well have been generated by R 3, which is a 
counterclockwise rotation of 90°, since R 2 =  (R 3)2, R  =  (R 3)3, and 
/ =  (R 3)4 with R 3 exhaust the group.

Theorem 9. I f  an element a generates the cyclic group G, then the 
order o f a determines G  to within isomorphism. In  fact, if  the order o f a is 
infinite, G  is isomorphic with the additive group o f the integers; if  the order 
of a is some finite integer n, G  is isomorphic with the additive group o f the 
integers modulo n.

Proof. First, ar =  as if and only if

(9) e =  ar{a*)~l =  ara~s =  ar~s, by (8).

Again, if r ¥=■ s, either r >  s, or s >  r; hence if the order of a is infinite, 
so that ar~s =• e for no r >  s, no two powers of a are equal. Moreover,

tT he well-ordering principle of §1.4 guarantees the existence of this m.
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by (8) asa ' =  a ŝ '\ therefore, the correspondence as >-> s makes G  
isomorphic with the additive group of the integers, proving our first 
assertion.

If the order of a is finite, then the set of those integers t with a ' =  e 
contains 0, and by (8) contains the sum and difference o f any two of its 
members. Hence, by Theorem 6 of §1.7, a ' =  e if and only if t is a 
multiple of the order n of a— and so by (9), a =  as if and only if 
n | (r -  s); that is, ar =  as if and only if r =  s (mod n). Finally, by (8) 
again, aras =  a r+s; consequently, the function a ■-» r is an isomorphism 
of G  to the additive group of the integers modulo n. Q.E.D.

It is a corollary that the number of elements in any cyclic group G  is 
equal to the order of any generator of G, and that any two cyclic groups 
of the same order are isomorphic.

The group of the square is not cyclic, but is generated by the two 
elements R  and H ; indeed Table 1 (§6.4) shows that

R °  =  I, R  =  R , R 2 =  R ', R 3 =  R"\

H  =  H, H R  =  D ', H R 2’=  V, H R 3 =  D.

The elements of the group are thus represented uniquely as H 'R 1 with 
i =  0,1 and j  =  0,1, 2, 3. Furthermore, H  and R  satisfy

i?4 =  I, H 2 =  I, R H  =  H R 3.

These are called “ defining relations”  because they suffice to put the 
product of any two elements H 'R 1 (i =  0,1) into the same form. For 
example,

D 'V  =  H R H R 2 =  H H R 3R 2 =  IR  =  R\

similar calculations will give the whole multiplication table for the group 
of the square (Table 1).

Exercises

1. Using the definitions a1 = a, am+1 = ama, prove laws (8), for positive 
exponents, by induction.

2. Prove that if (ab)n = anbn for all a and b in G  and all positive integers n, 
then G  is commutative, and conversely.

3. How many.different generators has a cyclic group of order 6?
4. Show that if a commutative group with 6 elements contains an element of 

order 3, it is cyclic.
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5. Is the multiplicative group of 1, 2, • • •, 6 mod 7 cyclic? of 1, 3, 5, 7 mod 8? 
of 1, 2, 4, 5, 7, 8 mod 9?

6. If a cyclic group G  is generated by a of order m, prove that ak generates G 
if and only if g.c.d. (k, m) = 1.

7. Under the hypotheses of Ex. 6, find the order of any element ak of G.
8. Find the order of every element in the group of the square.
9. Give the elements and the multiplication table of the group generated by 

two elements x and y subject to the defining relations x2 = y2 = e, xy = 
yx.

10. The dihedral group Dn is the group of all symmetries of a regular polygon 
of n sides (if n = 4, Dn is the group of the square). Show that D n contains 
2n elements and is generated by two elements R  and H  with R n = I, 
H 2 = I, and R H  = HR"~\

★11. Obtain generators and defining relations for the groups of symmetries of 
the three infinite patterns

> > > w  /  -v v v
imagined as extended to infinity in both directions. Are any two of these 
three groups isomorphic?

★12. Make similar studies for the groups described in Exs. 1, 2, 4, and 5 of §6.3.

6.7. Subgroups

Many groups are contained in larger groups. Thus, the group of 
rotations o f the square is a part o f the group o f all symmetries of the 
square. Again, the group o f the eight permutations of the vertices of the 
square induced by symmetries is a part of the group of all 4! =  24 
permutations of these vertices. The group of the even integers under 
addition is a part o f the group of all integers under addition.

These examples suggest the concept of a subgroup. A  subset 5 o f a 
group G  is called a subgroup of G  if S is itself a group with respect to the 
binary operation (multiplication) of G.

In any group G, the set consisting of the identity e alone is a 
subgroup. The whole group G  is also a subgroup of itself. Subgroups of G  
other than the trivial (“ improper” ) subgroups e and G  are called proper 
subgroups.

Theorem 10. A  nonvoid subset S o f a group G  is a subgroup if  and 
only if  (i) a and b in S imply ab in S and (ii) a in S implies a~l in S.

Proof. Under these hypotheses, clearly 5 is a subgroup: the 
associativity is trivial; the identity e =  aa-1 of G  is in S, for there is at
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least one element a in 5; the other group postulates are assumed. 
Conversely, we must prove that (i) and (ii) hold in any subgroup. The 
identity x =  e' of any subgroup of G  satisfies xx =  x, and so is the 
identity of G  (Ex. 6, §6.4). Consequently, since G  has but one inverse for 
any a, the inverse of any element a in the subgroup is the same as its 
inverse in G, so (ii) holds. Condition (i) is obvious.

For elements a o f finite order m, clearly a m~1a =  a m =  e, and so 
a -1 =  am~l . Hence one has the following simplified condition.

Theorem  11. A  non void subset S o f a finite group G is  a subgroup o f G  
if  and only if  the product o f any two elements in S is itself in S.

Among the subgroups of a given non-Abelian group G, one of the 
most important is its center. This is defined as the set of all elements 
a e G  such that ax =  xa for all x e G. We leave to the reader the 
verification that the center is, in fact, always a subgroup of G.

The problem of determining all subgroups o f a specified group G  is in 
general very difficult. We shall now solve it in the case that G  is a cyclic 
group.

Theorem  12. Any subgroup S o f a cyclic group G  is itself cyclic.

Proof. Let G  consist of the powers of an element a. If as and a ' are 
in 5, then as+t =  asa ‘ and as~‘ =  as{a ')~ l are in 5, by Theorem 10. The 
set of integers s for which as is in 5 is therefore closed under addition 
and subtraction, sot consists of the multiples of some least positive 
exponent r (Theorem 6, §1.7). Therefore 5 itself consists of the powers 
akr =  (a r)k, hence is cyclic with generator ar. Q.E.D.

In case G  is infinite, every r >  0 determines a different subgroup. If G  
has n elements, then since a " =  e is surely in 5, only those r >  0 which 
are divisors of n determine subgroups in this manner— but again these 
subgroups are all distinct.

To obtain material for further development, we now enumerate all the 
subgroups of the group of the square. By examining the definitions given 
in §6.1 for the operations of this'group, one finds the (proper) subgroups 
leaving invariant each of the eight following configurations:

A  diagonal An  axis A  face An axis and a diagonal

[ I ,D , D ' , R ' ]  [.I ,H ,V ,R '] [ I ,R ,R ',R " ]  [/,!?']

Vertex 1 (dr 3 ) Vertex 2 (or 4) A  vertical side A  horizontal side
[.I ,D ] [/,£>'] [ I , m  [/, V ]

t  The conclusion, with r  = 0, also holds if the set S  consists of 0 alone.
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By the transformations leaving a face invariant, we understand those 
which do not turn the square over. A ll these subgroups may be displayed 
in their relation to each other in a table, where each group is joined to all 
of its subgroups by a descending line or sequence o f lines, as shown in 
Figure 3.

Figure 3

Without using geometry we could still find all these subgroups. 
Indeed, the determination of all the subgroups of a specified finite group 
G  is most efficiently handled by considering the group elements purely 
abstractly, as follows.

Observe first that if a subgroup 5 of G  contains an element a, it also 
contains the “ cyclic”  subgroup {a }  (prove it is a subgroup!) consisting of 
all the powers of a. In the present case, this gives us all but the first two of 
the subgroups listed. Next, observe that any other must contain not 
only two cyclic subgroups {a } and {&}, but also the set {a, b}  of all 
products, such as a2b~3a, of powers o f a and b. (Prove, using Theorem 
11, that these form a subgroup!) In the present case, this procedure gives 
us the remaining subgroups. (W e shall see in §6.8 why they all contain 
either 2 or 4 elements.) In general, we may have to test further for 
subgroups {a, b, c} generated by three or more elements, but this can 
never happen unless the number of elements in the group is a product of 
at least four primes.

The intersection S n  T  of two subgroups (indeed, of any two sets!) 5 
and T  is the set o f all elements which belong both to 5 and to T.

Theorem 13. The intersection S n  T  o f two subgroups S and T  o f a 
group G  is a subgroup o f G.

Proof. By Theorem 10, a in 5 n  T  implies a in 5, hence a 1 in 5; 
likewise it implies a -1 in T, and so a -1 in 5 n  T. Similarly, a and b in 
5 n  T  implies ab in 5, ab in T, and so ab in 5 n  T. Hence by Theorem
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10, S n  T  is a subgroup. Also, S n  T  contains e, and so is 
nonvoid. Q.E.D.

Clearly, S n  T  is the largest subgroup contained in both S and T ; 
dually, there exists a least subgroup containing both S and T. It consists 
of all the products of positive and negative powers of elements of S and 
T —it is called the join of S and T, and denoted S V T. We shall return to 
these concepts in Chap. 11.

Exercises

1. In the group of symmetries of the regular hexagon, what is the subgroup 
leaving a diagonal fixed?

2. If T  is a subgroup of S, and S a subgroup of G, prove T  is a subgroup of G.
3. In the group of all permutations <f> of four digits 1, 2, 3, 4, find the 

following subgroups: (a) all <f> carrying the set {1,2} into the set {1, 2}; (b) 
all <j> such that a =  b (mod 2) implies a<f> =  b(f> (mod 2) for any digits a, b 
of the set 1, 2, 3, 4.

4. Prove that Theorem 11 still holds if G  is infinite, but all elements of G  have 
a finite order. Show that the additive group of Zp[x] is such a group.

5. Tabulate all the subgroups of the following groups: (a) the additive group 
mod 12; (b) the group of a regular pentagon; (c) the group of a regular 
hexagon; ★(d) the group of all permutations of four letters.

★6. Let a * *  a ' be an isomorphism between two groups G  and G ' of permuta
tions, and let 5 consist of those permutations of G  leaving one letter fixed. 
Does the set S' of all elements of G ' corresponding to a ’s in S necessarily 
form a subgroup of G 'l Must the set S' leave a letter fixed? Illustrate.

7. Prove that the center of any group G  is a subgroup of G.
8. Find the center of the group (a) of the square, (b) of the equilateral triangle.

★9. Do the same for the group of a regular polygon of n sides.
★10. Show that the elements of finite order in any commutative group G  form a 

subgroup.

6.8. Lagrange's Theorem

We now come to a far-reaching concept of abstract group theory: the 
idea that any subgroup S of a group G  decomposes G  into cosets.

Definition. By the order o f a group or subgroup is meant the number of 
its elements. By a right coset {left coset) o f a subgroup S o f a group G  is 
meant any set Sa (or aS) consisting o f all the right-multiples sa ( left- 
multiples as) o f the elements s o f S by a fixed element a in G. The number 
o f distinct right cosets is called the “ index”  o f S in G.
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Since Se =  5, 5 is a right coset of itself. Moreover, one has

Lemma 1. I f  S is finite, each right coset Sa o f S has exactly as many 
elements as S does.

For, the transformation s >-> sa is bijective: each element t =  sa of 
the coset Sa is the image o f one and only one element s =  to-1 of S. (Cf. 
also Theorem 8.)

Lemma 2. Two right cosets Sa and Sb o f S are either identical or 
without common elements.

For, suppose Sa and Sb have an element c =  s'a =  s"b (s', s" in 5) 
in common. Then Sb contains every element sa =  ss'~1s'a =  (ss'~1s")b 
of Sa, and similarly Sa contains every element o f Sb. Consequently, 
Sa =  Sb.

It is easy to illustrate these results. Thus, if G  is the group of 
symmetries o f the square, the subgroup S =  [I, H ]  has the four right 
cosets

[/, H ] I  =  [/, H ], VI H ]R  =  [R , h r ]  =  [R , D ' l

[I, H ]R ' =  [/?', H R '] =  [/?', V ], [I, H ]R "  =  [R ", H R "] =  [R ", D ].

Each coset has two elements, and every element o f the group falls into 
one o f the four right cosets.

Again, if G  is the additive group of the integers, the subgroup of 
multiples ±5 n of 5 has for right cosets the different residue classes 
modulo 5. Finally, let G  be the symmetric group of all permutations of 
the symbols 1, • • •, 6, while S is the subgroup leaving the symbol 1 fixed. 
Then 1 <f> =  k implies for all 1 e S that l(i jt<b) =  (li/0<£ =  l<f> =  k. 
Hence the coset S<f> contains only (and so by Lemma 1 all) the 5! 
permutations carrying 1 -» k. Therefore the right cosets of S are the 
subsets carrying 1 -» 1,1 -» 2, • • •, 1 -» 6, respectively.

From the preceding lemmas, we obtain a classic result which is of 
fundamental importance for the theory of finite groups. Since any right 
coset Sa always contains a =  ea, any group G  is exhausted by its right 
cosets. Therefore G  is decomposed by S into nonoverlapping subsets, 
each of which has exactly as many elements as S. If G  is finite,t the 
conclusion is:

Theorem 14 (Lagrange). The order o f a finite group G  is a multiple o f 
the order o f every one o f its subgroups.

tT h e  extension to the infinite case follows immediately from the discussion of Chap. 
12—but the importance of the result disappears.
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Each element a of G  generates a cyclic subgroup, whose order is 
(Theorem 9) simply the order of a. Therefore we have

Corollary 1. Every element o f a finite group G  has as order a divisor o f 
the order o f G.

Corollary 2. Every group G  o f prime order p is cyclic.

For, the cyclic subgroup A  generated by any element a ^  e in such a 
group has an order n >  1 dividing p. But this implies n =  p, and so 
G  =  A  is cyclic.

More generally, Lagrange’s theorem can be applied to determine (up 
to isomorphism) all abstract groups of any low order. As an example, 
define the four group as the group with four commuting elements: e (the 
identity) and a, b, c =  ab, the latter each of order two. It will be shown in 
§6.9 that this group is isomorphic to the group of symmetries of a 
rectangle. We now prove

Corollary 3. The only abstract groups o f order four are the cyclic group 
o f that order and the four group.

In other words, every group of order four is isomorphic to either the 
cyclic group of that order or the four group.

Proof. If a group G  of order 4 contains an element of order 4, it is 
cyclic. Otherwise, by Corollary 1, all elements of G  except e must have 
order 2. Call them a, b, c. By the cancellation law, ab cannot be ae =  a, 
eb =  b, or aa =  e\ hence ab =  c. Similarly, ba =  c, ac =  ca =  b, be — 
cb =  a. But these, together with a2 =  b2 =  c 2 =  e, and ex =  xe =  x for 
all x, give the multiplication table o f the four group.

Lagrange’s theorem can also be applied to number theory.

Corollary 4 (Fermat). I f  a is an integer and p a prime, then ap =  a 
{mod p).

Proof. The multiplication group mod p (excluding zero) has p — 1 
elements. The order of any element a of this group is then a divisor of 
p — 1, by Corollary 1, and so ap~1 =  l(m o d p ) whenever a ^  0 (m odp). 
If we multiply by a on both sides, we obtain the desired congruence,
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except for the case a =  0 (mod p ), for which the conclusion is trivially 
true. (This is a new proof of Theorem 18 in Chapter 1).

Exercises

1. Check Fermat’s theorem for p =  7 and a =  2 ,3 ,6 .
2. (a) Enumerate the subgroups o f the dihedral group (§6.6, Ex. 10) o f order

26. How many are there?
(b) Generalize your result.

3. Prove: the number o f right cosets o f any subgroup o f a finite group equals 
the number of its left cosets. (H int: Use the correspondence x  >-> jc-1.)

4. Determine the cosets o f the subgroup [/, D ] o f the group o f the square.
5. If S is any subgroup o f a group G, let SaS denote the set o f all products 

sas' for s, s' in S. Prove that for any a,b  e G, either SaS n  SbS is void or 
SaS =  SbS.

6. For a subgroup S, let jc =  y (mod 5 ) be defined to mean xy~x e 5.
(a) Prove that this relation is reflexive, symmetric, and transitive, and show 

that x =  y (mod S ) if and only if x  and y lie in the same right coset of
S.

(b) Show that x =  y (mod 5 ) implies xa =  ya (mod S) for all a.
7. Let G  be the group of a regular hexagon, 5 the subgroup leaving one 

vertex fixed. Find the right and left cosets o f S.
8. Prove that a group of order pm, where p is a prime, must contain a 

subgroup o f order p.
9. (a) If G  is the group of all transformations x >-* ax +  b of R, where a ^  0

and b are real, while S is the subgroup o f all such transformations with 
a =  1, describe the right and left cosets o f S in G.

(b) Do the same for the subgroup T  o f all transformations with b =  0. 
★10. (a) Show that in any commutative ring R, the units (those elements with 

multiplicative inverses) form a group G.
(b) Show that if R  =  Z„, then G  consists o f the positive integers k <  n 

relatively prime to n.
(c) The order o f G, in case R  =  Z„, is denoted <f>(n) and called Euler’s 

0 -function. Show that 4>(p) — p — 1 if n =  p is a prime, and compute 
0 (12), 0 (16), 0 (30).

(d) Using Lagrange’s theorem, infer that if (k, n ) =  1, then k *M  =  1 
(mod n).

★11. If S and T  are subgroups of orders s and t of a group G, and if u and v are 
the orders of 5 n  T  and 5 u  T, prove that st S  uv.

★12. Prove that the only abstract groups o f order 6 are the cyclic group and the 
symmetric group on three letters.

★13. Let 2h + 1 be a prime p.
(a) Prove that in the multiplicative group mod p, the order o f 2 is 2h.
(b) Using Fermat’s theorem, infer that 2h divides p — 1 =  2\
(c) Conclude that h is a power of 2.
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6.9. Permutation Groups

A  permutation is a one-one transformation of a finite set into itself. 
For instance, the set might consist of the five digits 1, 2, 3, 4, 5. One 
permutation might be the transformation </>,

(10) 1 <f> =  2, 2 <f> =  3, 3 <(> =  4, 4<f> =  5, 5<f> =  1.

Another might be the transformation <f>' with

(11) 1 <f>' =  2, 24>' =  3, 3 4>' =  1, 4 4>' =  5, 54>' =  4.

The reader will find it instructive to compute 4Mt>\ 4>'4>> ar>d to note that
4>4>’ ^  4>'4>-

Permutations which, like the permutation 4> defined above, give a 
circular rearrangement of the symbols permuted (Figure 4) are called 

cyclic permutations or cycles. There is a sugges
tive notation for cyclic permutations— simply 
write down inside parentheses first any letter 
involved, then its transform, • • •, and finally the 

I letter transformed into the original letter. Thus,
I the permutation 4> of (10) might be written in

)  any one of the equivalent forms (12345),
/  (23451), (34512), (45123), or (51234).

Figure 4 Theorem  15. A  cyclic permutation of n sym
bols has order n.

Proof. The cyclic permutation y =  (a ia2 • • • a„) carries a, into a I+1. 
Hence y2 has the doubled effect of carrying each a, into ai+2, and 
generally yk carries a, into ai+k, where all subscripts are to be reduced 
modulo n. We have in yk the identity I  if and only if ai+k equals a,-; that 
is, if and only if k =  0 (m odn). The smallest k with yk =  I  is then n 
itself, so y does have the order n (see the definition in §6.6). The cycle y 
is said to have length n.

The notation for a cyclic permutation can be extended to any permu
tation. For example, the permutation 4>' in (11) cyclically permutes the 
digits 1, 2, and 3 by themselves, and 4 and 5 by themselves. Thus, it is the 
product of these two cycles,

(123)(45) =  (45)(123).

This product may be written in either order, since the symbols permuted
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by (123) are left unchanged by (45), which means that successive applica
tion of these permutations in either order gives the same result.

Theorem 16. Any permutation 4> can be written as a product o f cycles, 
acting on disjoint sets o f symbols (more briefly: a product o f disjointt 
cycles).

Proof. Select any symbol, denote it by a\. Denote «i</> by a2, a2<f> by 
a3, • • •, an- i f )  by an, until an<f> =  a, is some element already named. 
Since the antecedent of any a, (i  >  1) is a,_i, an<j> must be a\. Thus the 
effect of 4> on the letters a lf ■ • •, an is the cycle (a ia 2 • • • an). Moreover, 
{ai • • • an) contains, with any symbol a„ its antecedent; hence <f> permutes 
the remaining symbols among themselves. The result now follows by 
induction on the number of symbols. In particular, the identity permuta
tion on m letters is represented by m “ cycles,”  each of length one.

Conversely, evidently any product of disjoint cycles represents a 
permutation. Moreover, one can prove

Theorem 17. The order o f any permutation <f> is the least common 
multiple o f the lengths o f its disjoint cycles.

Proof. Write the permutation <f> as the product — y ’ yr of 
disjoint cycles yt. If i ^  /, then -y, and y, are disjoint; hence ytyj =  y;y„ 
and the factors y, may be rearranged in <j> and in its powers to give 
<f>" =  y i" • • • yrn for all n. Therefore, <f>n =  I  if and only if every yfl is 
the identity. But by Theorem 15, this means <f>" =  I  if
and only if n is a common multiple of the lengths of ___________!
the yh from which the conclusion of Theorem 17 
follows immediately. Q.E.D.

Every finite group is isomorphic with one or more
groups of permutations, by Theorem 8 of §6.5. In -----------------
particular, this is true of finite groups o f symmetries of 
geometrical figures, as we now illustrate by two exam- Figure
pies.

Consider the group of symmetries o f the rectangle (Figure 5). Under 
it, the vertices are transformed by the four permutations

I  =  (1)(2)(3)(4), R  =  (14)(23), H  =  (13)(24), V  =  (12)(34).

This group is known as the four group. According to Theorem 8, it is
isomorphic with the group of permutations <p, =  ( I ) (R ) (V ) (H ) ,  <t>R =
(.IR ) (H V ), <t>H =  (IH ) (R V ), 4>v =  ( IV )(R H ).

t  Two sets are called disjoint when they have no element in common.
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The group of symmetries of the square (§6.1) can similarly be rep
resented as a group of permutations of the four vertices. Using Theorem 
8, we can also represent it as a group of permutations of the eight 
symbols which represent the elements of the group. Thus, R  corresponds 
to the permutation effected on right-multiplication of these symbols by 
“ jR” ; from the column headed “ R ”  in the group table (Table 1), one sees 
that this permutation is (IR R 'R " ) (H D 'V D ). Similarly, H  corresponds to 
(.IH ) (R D ) (R 'V ) (R "D ').

Two cycles of the same length are closely related. For example, if 
y =  (1234) and y' =  (2143), then one may compute that y' =  <}>~ly<j>, 
where </> =  (12)(34) is the permutation taking each digit of the cycle y 
into the corresponding digit in y'. This is a special case o f the following 
result.

Theorem  18. Let <f> and y be permutations o f n letters, where y is a 
cyclic permutation y =  (ai, • • •, am), and denote by y ' =  (a ^ ,  • • •, am<p) 
the cycle obtained by replacing each letter a, in the representation o f y by its 
image under <f>. Then (J>~1y<f> =  y'.

Proof. The product (f>~lyd> carries each letter a,</> in succession into 
Oiifxf)1 =  a.; then to aty =  ai+1, then to aty<j> =  a,+i</>, and hence has the 
same effect upon a,<£ as does y' (call am+t =  a j .  Similarly, one computes 
that <f>~ly<f> and y' both carry any letter b not o f the form a,</> into itself. 
Hence <j>~ly<j> — y', as asserted.

Corollary- For any permutations <j> and tp, if  tp =  y\ - • • yr is written as 
a product o f cycles, we have =  y \ - - - y r', where the y f are
obtained from the yt as in Theorem 18.

E xercises

1. Express as products of disjoint cycles the following permutations:
(a) 1 <p = 4 ,  2 <f> =  6, 3 <p = 5 ,  4 <p =  1, 5<p =  3, 6 <p =  2;
(b) 1 <p =  5, 2<p =  3, 3<p — 2, 4<p =  6, 5<p = 4 ,  6<p =  I ;
(c) 1 <p =  3, 2<p — 5, 3<f> =  6, 4<p =  4, 5<p =  1, 6<P =  2.
Find the order of each of these permutations.

2. Represent the following products as products o f disjoint cycles: 

(1234)(567)(261)(47), (12345)(67)(1357)(163), (14)(123)(45)(14).
Find the order of each product.

3. Find the order o f (abcdef)(ghij)(klm) and o f (abcdef)(abcd)(abc).
4. Represent th^ group o f the rhombus (equilateral parallelogram) as a group 

o f permutations of its vertices.

Download more at Learnclax.com



§6.10 Even and Odd Permutations 153

5. Describe the right and left cosets o f the subgroup o f all those permutations 
o f x u • • •, x6 which carry the set {x 1; x2} into itself.

6. Which symmetric groups are Abelian?
7. Let G  be the group o f all symmetries of the cube leaving one vertex fixed. 

Represent G  as a group o f permutations o f the vertices (cf. §6.3).
8. (a) Prove that every permutation can be written as a product o f (not in

general disjoint) cycles o f length two (“ transpositions” ).
★ (b) How does this relate to the proof o f the “ generalized commutative law”  

from the law ab =  ba (§1.5)?
9. Represent the group of symmetries of the equilateral triangle as a group of 

permutations o f (a) three and (b) six letters.
★ (c) Do (b) in two essentially different ways.

★10. Prove that the symmetric group o f degree n is generated by the cycles 
(1,2, • • •, n — 1) and (n — 1, n).

★11. In what sense is the representation o f Theorem 16 unique? Prove your 
answer.

6.10. Even and Odd Permutations
An important classification of permutations may be found by consid

ering the homogeneous polynomial form

p  = n (*. - xj),
•'</

where i and j  run from 1 to n. If n =  3, P  is 

(*i “  x 2)(xt -  x 3)(x2 -  *3)
2 , 2 , 2  2 2 2

=  X t  x2 +  x2 x3 +  x3 Xt  -  X X X 3 -  x3 x2 -  X 2 Xx,

and P 2 is the discriminant discussed in §5.5. In general, P  is a polynomial 
of degree n(n  — l)/2. Clearly, any permutation o f the subscripts in P  
leaves the set of factors of P, and hence P  itself, unchanged except as to 
sign. Moreover, the transposition (xxx2) changes (xi -  x2) into its nega
tive (x2 -  x j ,  interchanges the (x t -  Xj) and the (x2 -  Xj), j  >  2, and 
leaves the other factors unchanged. Hence it does change P  to —P.

The til permutations of the subscripts are therefore of two kinds: the 
even permutations leaving P  (and —P )  invariant, and the odd permuta
tions interchanging P  and —P. It follows when we consider the effect of 
two permutations performed in succession, we have the rules

(12)
even x even =  odd x odd =  even 

even x  odd =  odd x  even =  odd.
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It is a corollary of (12) and of Theorem 11 that the even permutations 
form a subgroup A n of the symmetric group of degree n. This subgroup is 
usually called the “ alternating group”  of degree n.

Moreover, if /? is a fixed and <f> a variable odd permutation, then 
is even, and so <£ =  (<£/3-1)/3 is in the right coset A„/3. In summary, the 
odd permutations form a single right coset of A n. Hence by Lagrange’s 
theorem, the “ alternating group”  on n symbols contains just (n!)/2 
elements.

A  polynomial g(xi, ■ • •, xn) in n indeterminates xt is called “ symmet
ric”  if it is invariant under the symmetric group of all permutations of its 
subscripts. Particular symmetric polynomials are (for n =  3)

(13) 0-1 =  X ]  +  X 2 +  * 3 ,  0-2 =  X j X 2 +  X j X 3 +  * 2 * 3 ,  O 3 =  X xX 2X 3 .

They are the coefficients in the expansion

(14) (/ -  xj)(/ -  x2)(t -  x3) = t3 -  exit2 +  a 2t -  0-3.

In general, we call such polynomials elementary symmetric polynomials (in 
n variables); they are

(15) 0-1 = X>„ o-2 = Z  XtXj, 0 3 = I  XiXjXk, • • •,  o„ = Xi ■ - • xn.
i i < i  i < j < k

Since (—l )ko-k is the coefficient of tn~k in the expansion of p(t) =  
I l k(t — xk) as a polynomial in t, the expressions o, give the coefficients of 
p(t) as functions of its roots. They derive much of their importance from 
the so-called “ fundamental theorem on symmetric polynomials,”  which 
we shall state without proof.!

Theorem  19. A n y  symmetric polynomial p (xu • • • ,x n) can be ex
pressed as a polynomial in the elementary symmetric polynomials.

Thus, in the case of two variables x and y, 

x 2 +  y 2 =  (x +  y)2 -  2 xy - a  2 -  2a 2, 

x 3 +  y 3 =  (x +  y )3 -  3xy(x +  y) =  <Ti(cr2 — 3a2), and so on.

Even if a polynomial q(xu ■ • • , xn) is not symmetric, one can at least ask 
for the set of all those permutations of the indices which leave the 
polynomial unchanged. It is clear that this set is a group; it is called the 
group of the polynomial.

t  See L. Weisner, Introduction to the Theory o f Equations (New York: Macmillan, 1938), 
p. 108. Also see §15.6, Theorem 15, corollary.
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Exercises

1. List the odd permutations (a) of three letters, (b) o f four letters.
2. For which positive integers n is a cycle of length n even? odd?
3. (a) Show that a product of not necessarily disjoint cycles is odd if and only if

it contains an odd number o f cycles of even length.
(b) A re the permutations (123)(246)(5432) and (12)(345)(67)(891) odd or 

even?
4. (a) Construct sample even and odd permutations of order 14 on 11 letters,

(b) Prove every permutation o f order 10 on 8 letters is odd.
5. Show that a permutation is even if and only if it can be written as a product 

o f an even number o f transpositions (Ex. 8, §6.9).
★6. Show that every even permutation can be written as the product o f cycles of 

length three.
7. Find the group o f each o f the following polynomials:

* 1 *2  +  * 3* 4. * 2 *1  +  * 3 *2  +  * 2* 4 . * ^ * 2  +  * 3* 4* +  * ^ * 3  +  * 2* 42-

8. Represent each o f the following polynomials in terms of the elementary 
symmetric polynomials:

x 2 +  y2 +  z 2, x 2y +  y2z +  z 2x  +  x 2z +  y2x +  z 2y.

6.11. Homomorphisms

A  single-valued transformation from a group G  to a group G ' may 
preserve multiplication without being one-one (i.e., without being an 
isomorphism).

Thus, consider the correspondence between the symmetric group of 
degree n and the group of ±1 under multiplication, which carries even 
permutations into +1 and odd ones into —1. By (12), it carries products 
into products.

Or consider the correspondence n where i =  V—1, between the 
additive group of the integers and the multiplicative group of the fourth 
roots of unity. Again the group operation is preserved: im+n — imin, but 
the correspondence is many-one.

These and other examples lead to the following concept.

Definition. A  homomorphism o f a group G  to a group G ' is a 
single-valued transformation x •-> x ' mapping G  into G ', such that (xy)' =  
x 'y ' for all x, y in G.

Theorem 20. Under any homomorphism G  -> G ', the identity e o f G  
goes into the identity o f G ', and inverses into inverses.
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Proof. Since e2 =  e, the image f  of e satisfies f 2 =  / =  fe ', where e' 
is the identity of G '. Hence, by cancellation, / =  e', and the identity of G  
must go into the identity of G '. Likewise, if a goes into a ' and a -1 into 
(a - 1 )', then a a -1 =  e must go into a '( a - 1 )' =  e', and so (a - 1 )' is the 
inverse of a'.

Corollary 1. Any homomorphic imaged o f a cyclic group is cyclic.

For, by Theorem 20, (am)' =  (a ')m whether m is positive, zero, or 
negative. Hence if the powers a m exhaust G, the powers (a ')m =  (am)' of 
a’ exhaust G '.

Corollary 2. The set N  o f all elements o f G  mapped on the identity e' o f 
G ', under a homomorphism o f G  to G ', is a subgroup o f G.

This set N  is called the kernel of the homomorphism.
Since e e', N  is nonvoid. Again, by Theorem 20 and hypothesis, 

a >-> e' and b e' imply a -1 (a ')-1 =  e'~x =  e' and ab a 'b ' —
e 'e ' =  e '; hence A  is a subgroup.

Direct Products. Any two groups G  and H  have a direct product 
G  x  H. The elements of G  x  H  are the ordered pairs (g, h) with 
g e G, h e  H ; multiplication in G  x  H  is defined by the formula

(15a) (g, h){g ', h ') =  (gg', hh').

Evidently, (e, e) acts as an identity in G  x  H\ (g -1, h~l) is an inverse of 
(g, h), and multiplication is associative; hence G  x  H  is a group. 
Moreover, the function a (g ,h )  =  g defines a homomorphism a from 
G  x  H  onto G, and the function /3(g, h) =  h is a homomorphism from 
G  x  H  onto H.

It can be proved that every Abelian group of finite order is isomorphic 
to a direct product of cyclic groups of prime-power orders. We content 
ourselves here with the following, much weaker result.

Theorem  21. I f  m and n are relatively prime, then the direct product of 
cyclic groups o f orders m and n is itself a cyclic group, o f order mn.

Proof. Let a and b generate the cyclic groups A  and B, of orders m 
and n, respectively. Then, in C  =  A  x  B, (a, b) =  (ak, bk) is the iden
tity (e, e) if and only if fe =  0 (mod m ) and k =  0 (mod n). By Theorem

t Homomorphisms onto are sometimes called epimorphisms, and correspondingly 
homomorphic images are called epimorphic images.
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17 of §1.9, this implies k =  0 (mod mn). Hence (a, b) =  c is of order mn 
in C, which contains only mn elements, and is therefore cyclic. Q.E.D.

Exercises

1. In the homomorphism n > - *  i", where i  =  V—1 and n e Z, find the kernel.
2. Show that a cyclic group of order 8 has as homomorphic images (a) a cyclic 

group of order 4, (b) a cyclic group of order 2.
3. Is the correspondence mapping each x  on the complex number e2'nx a 

homomorphism of the additive group o f real numbers x?  If so, what is its 
image G ', and what is the kernel?

4. If G  is a group of permutations of n letters 1,2, • • • , « ,  in which each
permutation 4> of G  carries the subset of letters 1 ,k  into itself, show 
that G  is homomorphic onto the group G ' of the permutations <j>* induced 
on 1, • • ■, k.

5. In a square let the two diagonals be d and d’, the axes h and v. Show that 
there is a homomorphism <f> >-» <j>* in which each motion <f> in the group of
the square induces a permutation <f>* on d, d 1, h, and v. Exhibit the
correspondence <f> *-* <f>* in detail. What is the kernel?

6. If G  is homomorphic to G ' and G ' to G ", prove that G  is homomorphic to 
G".

7. Which of the following correspondences map the multiplicative group of all 
nonzero real numbers homomorphically into itself? If the correspondence is 
a homomorphism, identify the homomorphic image G ' and the kernel.
(a) x  >-> | jc |, (b) x  *-> 2x, (c) x  *-> x 2, (d) x  *-> 1/x,
(e) x  *-> - x ,  (f) x  *-> x 3, (g) x  >-> -1/x , (h) x  >-» Vx.

8. Show that the four group is the direct product o f two cyclic groups o f order
2.

★9. Show that the multiplicative group o f all nonzero complex numbers is the 
direct product of the group of rotations o f the unit circle and the group of all 
real numbers under addition. (H int: Let z =  re‘e.)

10. Prove that for any groups G, H , K , G  x  H  is isomorphic to H  x  G  and 
G  x  (H  x  K )  is isomorphic to (G  x  H )  x  K.

6.12. Automorphisms; Conjugate Elements

Definition. A n isomorphism o f a group G  with itself is called an 
automorphism o f G. Thus an automorphism a o f G  is a one-one transfor
mation o f G  onto itself (bijection o f G ) such that

(16) (xy)a  =  (xa )(ya ) for all x, y in G.
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Theorem 22. The automorphisms of any group G  themselves form a 
group A .

Proof. (Cf. Theorem 6.) It is obvious that the identity transformation 
is an automorphism, and that so is the product of any two automorph
isms. Finally, if x -*x a  is an automorphism, then by (16)

(x y )a -1 =  [(x a ~ 1a ) (y a -1a ) ]a ~ 1 =  ( [ (x a -1) (y a -1) ]a )a _1 
= (xaT’XyaT1)

so that a -1 is an automorphism. Q.E.D.
A  parallel definition and theorem apply to integral domains, and 

indeed to abstract algebras in general. One can fruitfully regard an 
“ automorphism”  of an abstract algebra A  as just a symmetry of A.

Definition. In any group G, a~lxa is called the conjugate of x under 
“ conjugation”  by a.

In Theorem 18 we have already seen that the conjugate of any cycle 
in a permutation group is another cycle of the same length. A  similar 
interpretation applies to any group of transformations. Thus if a and cp 
are one-one transformations of a space S onto itself, tp =  a~'cpa is related 
to <p much as in Theorem 18. Specifically, any point q in 5 can be written 
as q =  pa for some p e S, and

(pa) tp =  pa (a~1(pa) =  (paa~1)<pa =  (pcp)a.

Thus tp is the transformation pa -> (p<p)a; in other words, the conjugate 
tp =  a~ l (pa is obtained from tp by replacing each point p and its image 
r =  p<p by pa and ra, respectively. For example, in the group of the 
square, V  =  R ~ lH R ; reflection in the vertical axis is conjugate under R  
to reflection in the horizontal axis because R  carries the horizontal axis 
into the vertical axis.

Theorem 23. For any fixed element a of the group G, the conjugation 
Ta: x i-> a~lxa is an automorphism of G.

Proof. (a~1xa)(a~1ya) =  a~1(xy)a for all x, y.
Automorphisms Ta of the form x >-» a~' xa are called inner auto

morphisms; all other automorphisms are outer.
It may be checked that the group of symmetries of the square has four 

distinct inner automorphisms; it has four outer automorphisms. On the 
other hand, the cyclic group of order three has no inner automorphisms 
except the identity, but has the “ outer”  automorphism x <-> x 2.
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Theorem  24. The inner automorphisms o f any group G  form a sub
group o f the group o f all automorphisms o f G.

Proof. Since b~1{a~1xa)b =  {ab)~1x{ab), the product of the inner 
automorphisms Ta and Tb is the inner automorphism Tab; similarly, since 
(a -1) -1(a -1* a ) (a -1) =  x, the inverse of the conjugation Ta is Tta-'y

Definition (Galois). A  subgroup S o f a group G  is normal {in G ) if  
and only if  it is invariant under all inner automorphisms o f G  {i.e., contains 
with any element all its conjugates).

A  normal subgroup is sometimes called a “ self-conjugate”  or an 
“ invariant”  subgroup.

Thus, the group of rotations of the square is a normal subgroup of the 
group of all its symmetries; so is the subgroup [I, R 2]. Again, every 
subgroup of an Abelian group is normal since a~1xa =  a -1 ax =  x for all 
a, x. The group of translations of the plane is also a normal subgroup of 
the Euclidean group of all rigid motions of the plane (cf. Chap. 9).

Theorem  25. The kernel N  o f any homomorphism 6: G  -> H  is a 
normal subgroup o f G.

Proof. It is a subgroup, by Corollary 2 of Theorem 20. Again, if 
a e N  and b e G, then 6{b~1ab) =  b '~16{a)b' =  b'~le'b ' =  e' for b' =  
6{b) and e' =  6{e), since (by Theorem 20) 0(f>_1) =  [0(f>)]_1.

In general, let a~1Sa denote the set of all products a~1sa for s in S. 
The definition then states that S is normal if and only if the set a~lSa 
equals S for every a in G.

Theorem  26. A  subgroup S is normal if  and only if  all its right cosets 
are left cosets.

Proof. If S is normal, then aSa~l =  S for all s; hence the set 
Sa of sa {s e S ) is the same as the set {aSa~1)a  of (asa_1)a =  as {s e S). 
Thus, Sa =  aS for all a. Conversely, if the right coset Sa is a left coset 
bS, then a~rSa =  a~1bS contains e =  a~xea and so (Lemma 2, §6.8) is 
eS =  S.

It is a corollary that every subgroup S with only one other coset is 
normal; the elements not in S form the right and left coset of S. Hence 
the alternating group is a normal subgroup of the symmetric group of 
degree n.

Remark. Consider the correspondence between elements a of a 
group G  and the inner automorphisms Ta which they induce. By the
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proof of Theorem 24, TaTb — Tab: it preserves multiplication. Yet, as in 
the case of the group of symmetries of the square, it is usually not 
one-one (R 2 and / induce the same inner automorphism); it is a 
homomorphism. One easily verifies that the kernel of this homomorphism 
is precisely the center of G.

Exercises

1. How many automorphisms has a cyclic group of order p? of order p q l (p ,q  
distinct primes).

2. List all the automorphisms o f the four group. Which are inner?
3. Find all the automorphisms o f the cyclic group of order eight.
4. Show that the automorphisms of the cyclic group o f order m are the 

correspondences ak >-> ark, where r is a unit of the ring Z m.
5. Prove that in any group, the relation “x is conjugate to y ”  is an equivalence 

relation.
6. Prove that an element a o f a group induces the inner automorphism 

identity if and only if it is in the center.
★7. (a) Find an automorphism a  o f the group o f the square such that R a  =  R  

and H a  =  D .
(b) Show that a  is an outer automorphism. (H int: Represent the group of 

the square by the generators R  and H  discussed in § 6.6.)
8. Prove that if G and H  are isomorphic groups, the number of different 

isomorphisms between G and H  is the number of automorphisms of G.
9. Enumerate the inner automorphisms, sets o f conjugate elements, and 

normal subgroups of the group of the square.
★10. Let G be any group, and A  its group o f automorphisms. Show that the 

couples (a, g ) with a e A  and g  e  G  form a group (the “ holomorph”  of 
G) under the multiplication (a, g )(a ', g ') =  (a a f, (ga ')g ').

★11. (a) Show that the holomorph of the cyclic group of order three is the 
symmetric group of degree three.

(b) Show that the holomorph o f the cyclic group of order four is the group 
of the square.

12. Prove that if M  and N  are normal subgroups o f a group G, then so is their 
intersection.

13. Prove that, under the hypotheses of Ex. 12, the set MN  of all products xy 
(x s M, y s N) is a normal subgroup o f G.

14. Prove that the inner automorphisms of any group G are a normal subgroup 
o f the group o f all automorphisms of G.

★15. (a) Show that for every rational c ^  0, the correspondence x >-> xc is an 
automorphism o f the additive group o f -all rational numbers.

(b) Show that this group has no other automorphisms.
★16. Let G be a group of order pq (p, q primes). Show that G either is cyclic or 

contains an element of order p (or q). In the second case, prove G contains 
either 1 normal or q conjugate subgroups o f order p. In the latter case,
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show that the pq — q (p  — 1) =  q elements not o f order p  form a normal 
subgroup. Infer that G  always has a proper normal subgroup.

★17. (a) Show that the defining relations a m — b" =  e, b~lab =  a k define a 
group o f order mn with a normal subgroup of order m, if k n =  I  (mod 
m ).

(b) Using Ex. 16, find all groups of order 6 and all groups of order 15. 
★18. Using Ex. 16, find all possible groups o f orders (a) 10 and (b) 14.
★19. Using the analysis o f Ex. 16, show that there are only two nonisomorphic 

groups of any given prime-square order.

6.13. Quotient Groups

Now we shall show how to construct isomorphic replicas o f all the 
homomorphic images G ' o f a specified abstract group G.

Indeed, let x >-» x ' be any homomorphism of G  onto a group G ', and 
let N  be the kernel o f this homomorphism. If a and b are any elements of 
G, we can write b =  at, so that b’ =  a't'. But by the cancellation law, 
a 't' — a ' if and only if t' =  e '— that is, if and only if t e N. In summary, 
b' =  a ' if and only if b =  at (t e  N ).

Lemma 1. Two elements o f G  have the same image in G ' i f  and only if  
they are in the same coset Nx  =  x N  o f the kernel N.

This establishes a one-one correspondence between the elements of 
G ’ and the cosets of N  in G. Hence the order of G ' is the number of cosets 
(or “ index” ) of N  in G.

Lemma 2. Let x ' and y' be elements o f G '. Then x 'y ' may be found as 
follows. Let Nx and Ny correspond to x ' and y', respectively; then x 'y ' 
corresponds to the (unique) coset o f N  containing the set NxNy o f all 
products uv (u  e  Nx, v e  Ny).

Proof. If u =  ax, v =  by (a, b e  N ),  then

(.uv)' =  a 'x 'b 'y ' =  e 'x 'e 'y ' =  x 'y '.

Thus G ' is determined to within isomorphism by G  and N :  it is 
isomorphic with the system of cosets of N  in G, multiplied by the rule 
that the “product” N x 0 Ny of two cosets is the (unique) coset containing 
all products uv (u e  Nx, v e  Ny).

We can illustrate the preceding discussion by considering the 
homomorphism between the group G  of the symmetries of the square
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and the “ four group”  G'\ [e, a, b, c] (§6.8), under which [/, R 2)*-^ e, 
[i?, i?3] >-* a, [H , V]<-> b, [D , D ']  <-> c. (Check from the group table that 
this is a homomorphism!) The antecedents of e form the normal subgroup 
[/, i?2], and those of the other elements are the cosets of [I, i?2]. Finally, 
we can derive the sample rule ab =  c by computing the products [RH , 
R V , R 3H, R 3V ]— which lie in (in fact, form) the coset [D ,D '] of 
antecedents of c.

Conversely, let there be given any normal subgroup N  of G, not 
associated a priori with any homomorphism. One can construct from N  a 
homomorphic image G ' of G  as follows.

The elements of G ' are defined as the different cosests N r  of N. The 
product [TVr] ° [N y ] of any two cosets N x  and Ny of N  is defined as the 
coset (if any) containing the set NxNy  of all products uv ( u e Nx, 
v £ N y). If u =  ax and v =  by for a, b in N, then uv =  axby =  ab'xy, 
where b' =  xbx~l is also in N  because N  is normal. Therefore N (xy ) is a 
coset containing N xN y ; moreover, since distinct cosets are nonoverlap
ping and the set NxNy  is nonvoid, there cannot be two different cosets 
each containing NxNy.

We have thus defined a single-valued binary operation on the ele
ments of G ' (alias cosets of G ), which may be written as

(17) [N r ] o [N y ] =  N (ry ).

In words: the product of any two cosets is found by multiplying in G  any 
pair of “ representatives”  x and y, and forming the coset containing the 
product xy. The product [N e ] ° [N y ] =  N (ey ) =  Ny, by (17), so the coset 
N  =  Ne is a left identity for the system of cosets. Both ([N r] ° [Ny]) ° [Nz] 
and [N r ]°  ([N y ]°  [N z ]) contain (xy)z = x (yz ), so the multiplication of 
cosets is associative. Finally, the coset [N r _1] °  [N r ] contains r _1r  =  e, so 
must be Ne =  N ; therefore, left-inverses of cosets exist. These results, 
with Theorem 4, prove the following

Lemma 3. The cosets o f any normal subgroup N  o f G  form a group 
under multiplication.

Definition. The group of cosets o f N  is called the quotient-group (or 
factor group) o f G  by N  and is denoted by t  G/N.

The correspondence r  •-» N r  is, by (17), a homomorphism of G  onto 
G/N, and the kernel of this homomorphism is N.

t  If G  is an Abelian group in which the binary operation is denoted by “+,” then every 
subgroup N  is normal in G; and the quotient-group is often called the difference group, 
written G  — N.
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Conversely, we have already seen (following Lemma 2) that for any 
homomorphism of G  onto a group G ' in which the kernel is N, the image 
G ' is isom orphic with the quotient-group G/N. W e conclude

Theorem 27. The homomorphic images o f a given abstract group G  
are the quotient-groups G /N  by its different normal subgroups, multiplica
tion of cosets of N  being defined by {17).

Remark. The preceding “ construction”  of quotient-groups from 
groups and normal subgroups is analogous to the construction of the ring 
of integers “ mod n ”  from the integral domain of all integers (§§1.9- 
1.10). The cosets of N  are the analogues of the residue classes mod n, and 
the relation x =  y (mod n ) can be paralleled by defining x =  y (mod N ) as 
the relation xy~x e  N — which is equivalent to the assertion that jc  and y 
are in the same coset of N  (see Ex. 6 of § 6.8).

Exercises

1. List all abstract groups which are homomorphic images of the group of 
symmetries of a square.

2. Do the same for the group of a regular hexagon.
3. Prove that the center Z  o f any group G is a normal subgroup of G, and that 

G /Z  is isomorphic with the group of inner automorphisms of G.
4. Prove that in Ex. 6, § 6.8, x s  y (mod S) implies ax =  ay (mod S) for all a 

if and only if 5 is a normal subgroup.
5. If G is the group o f all rational numbers of the form 2lc3m5", with integral 

exponents k, m, and n, while 5 is the multiplicative subgroup of all numbers 
2lc, describe (a) the cosets of 5, (bi G/S.

6. Let G -> G' be a homomorphism. Show that the set of all antecedents of 
any subgroup S' of G' is a subgroup 5 of G—  and that if S' is normal, then 
so is S.

★7. If 5 is a subgroup and N  a normal subgroup o f a group G, if 5 n  N = e 
and S u  N  =  C, prove that G/N  is isomorphic to S.

★8. I f G is a group, elements of the form x ~ 'y _1xy are called commutators. 
Prove that the set C  o f all products o f such commutators forms a normal 
subgroup o f G.

★9. In Ex. 8, prove that G /C  is Abelian. Finally, if N  is a normal subgroup of 
G and G/N  is Abelian, prove that N  contains C.

★10. Two subgroups 5 and T  o f a group G are called conjugate if a~'Sa  =  T 
for some a e G. Prove that the intersection of any subgroup 5 of G with its 
conjugates is a normal subgroup o f G.

11. (a) Show that if M  and N  are normal subgroups of G  with Af n N = 1, 
then ab =  ba for all a e  M, b e  N. {Hint-. Show that 
aba~lb_1 e M  n  N.)

★(b) Show that, in (a), if M  u  JV =  G, then G =  M  x N.
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★ 12. Let G  be any group, S any subgroup of G. For any a e  G, let Ta be the 
permutation (Sx) *-» (Sxa) on the right cosets Sx of S. Prove:
(a) The correspondence a ►-> Ta is a homomorphism.
(b) The kernel is the normal subgroup of Ex. 10.

13. Prove that the cosets of a nonnormal subgroup do not form a group under 
the multiplication (17).

*6 .1 4 , Equivalence and Congruence Relations

In defining the relation a =  b (mod n) between integers, in setting up 
the rational numbers in terms of a congruence of number pairs (a, b) =  
(a ', b'), which was defined to mean that ab' = a'b, and elsewhere, we 
have asserted that any reflexive, symmetric, and transitive relation might 
be regarded as a kind of equality. We shall now formulate the significance 
of this assertion.

For convenience, a relation R  which has the reflexive, symmetric, and 
transitive properties,

aRa, aRb implies bRa, aRb and bRc imply aRc,

for all the members a, b, c of a set S, will be called an equivalence relation 
on S. If, as in the case of cosets (§6.13), we are willing to treat suitable 
subsets of S as elements, such as equivalence relation R  becomes ordi
nary equality. Indeed, if a is any element of S, we may denote by R (a ) 
the set of all elements b equivalent to a\ b e R (a ) if and only if bRa. 
These R-subsets have various simple properties.

Lemma 1. aRb implies R (a )  = R (b ), and conversely.

Proof. Suppose first that aRb, and let c be any element of /2(a). 
Then by definition cRa, hence by the transitive law cRb, which mean , 
that c e R (b ). Conversely, since the symmetric law gives bRa, c e R (b ) 
implies c e /2(a), which means that the two classes /2(a) and R (b ) have 
the same members and hence are equal.

Suppose now that /2(a) =  R (b ). By the reflexive law, bRb, so that 
b e R (b ). Since /2(a) =  R (b ), implies b e /2(a), and so aRb. This com- - 
pletes the proof.

In the particular case when R  is the relation of congruence modulo n 
between integers, the class /2(a) determined by an integer a is simply the 
residue class containing a. Lemma 1 here specializes to the assertion that 
a =  b (mod n) if and only if a and b lie in the same residue class, mod n 
(cf. §1.10). Other illustrations are given as exercises.
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Again, the residue classes mod n divide the whole set Z  of integers 
into nonoverlapping subclasses, and hence may be said to form a “ parti
tion”  of Z. In general, a partition i t  of a class S is any collection of 
subclasses A , B, C, ■ • • , of S such that each element of S belongs to one 
and only one of the subclasses (subsets) of the collection. The R -subsets 
always provide such a partition.

Lemma 2. Two R-subsets are either identical or have no elements in 
common, and the collection of all R-subsets is a partition o f S.

Proof. If R (a )  and R (b ) contain an element c in common, so that 
cRa and cRb, then by the symmetric and transitive laws, aRb. By 
Lemma 1 this implies R (a ) =  R (b ). Consequently, if R (a )  #  R (b ), 
the two classes cannot overlap. Finally, every element c of the set 
5 is in the particular R -subset R (c ),  for, by the reflexive law, cRc, so 
c e R (c ).

The converse of Lemmas 1 and 2 is immediate. If a set S is divided by 
a partition n  into nonoverlapping subclasses A , B, C, • • • , then a relation 
aRb may be defined to mean that a and b lie in one and the same 
subclass of this partition, and this does give an abstract equivalence 
relation R  on S. Moreover, the I?-subset R (a )  determined by each 
element a for this relation is exactly that subclass of the partition v  which 
contains a. These conclusions may be summarized as follows:

Theorem 28. Every equivalence relation R  on a set S determines a 
partition n  o f S into nonoverlapping R-classes, and, conversely, each 
partition of S yields an equivalence relation R . There is thus a one-one 
correspondence R  * *  n  between the equivalence relations R  on S and the 
partitions n  o f S, such that elements a and b o f S lie in the same subclass of 
the partition n  if and only if aRb.

In discussing the requisites for an admissible equality relation (§ 1.11), 
we also demanded a certain “ substitution property”  relative to binary 
operations. In terms of the equivalence relation R  and the binary 
operation a ° b =  c on the set 5, this property takes the form

(18) aRa' and bRb' imply {a ° b )R {a '° b').

This condition also has a definite theoretical content.
Indeed, let R  be any equivalence relation on 5, and let tt be the 

corresponding partition into the I?-subsets A , B, C, • • • . Just as with 
cosets, let us regard the J?-subsets as the elements of a new system 
2  =  S/R. And just as with quotient-groups (or residue classes mod n), we
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may try to define a binary operation in 2  from that in S,

A ° B  =  C  in 2  if and only if
(19)

a 6 A  and b e B  imply (a ° b )  e C  in 5.

Property (18) asserts that if a and a' are both in an R -subset A  (i.e., if 
aRa ') and if b and b' are in an R -subset B, then (a ° b) and (a’ ° b ') both 
lie in the same R  -subset. This resulting R  -subset C  is thus uniquely 
determined by A  and B  and is the “ product”  A  ° B  in the sense of (19). 
In other words, the substitution property (18) is equivalent to the asser
tion that definition (19) yields a (single-valued) binary operation on 
I?-subsets (i.e., on 2). This proves

Theorem 29. Given an equivalence relation R  on a set S, any binary 
operation defined on S and having the substitution property (18) yields a 
(single-valued) binary operation on the R-subsets o f S, as defined by (19).

For example, if R  is the relation of congruence mod n on the set of 
integers, both addition and multiplication have the substitution property 
(18), and the theorem yields the addition and multiplication of residue 
classes in Z„, as defined in §1.10. More generally, Theorem 29 can be 
applied to the relation a — b e C, where C  is any ideal in any commuta
tive ring, and can even be extended to other algebraic systems with 
operations which need not be binary. In general, relations satisfying the 
conditions of Theorem 29 may be called “ congruence relations.”  Simi
larly, the concepts of isomorphism, automorphism, and homomorphism 
can be applied to general algebraic systems. Thus if G  and H  are 
algebraic with a ternary operation (a, b, c ), a homomorphism of G  onto 
H  is a map 6 of G  on H  with the property that (a, b, c )6  = (ad, bd, cd) 
for all a, b, c in G.

Exercises

1. Which of the following relations R are equivalence relations? In case they are, 
describe the I?-subsets.
(a) G  is a group, 5 a subgroup, and aRb means a~lb e S.
(b) G, S as in (a); aRb means ba~l e S.
(c) Z  is the domain of integers; aRb means that a — b is a prime.
(d) Z  as in (c); aRb means that a -  b is even.
(e) Z  as in (c); aRb means that a — b is odd.

2. Let G  be a group o f permutations o f the letters * ,,  • • • , * „ ;  let x ftx j mean that
Xi4> =  Xj for some <f> e G. Is R  an equivalence relation? How does G  act on 
each I?-subset?
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3. Let G  consist of the transformations (jc, y ) (jc +  a, y ) of the plane. Let 
(x ,y )R (x ',y ')  mean that (x,y)<f> =  (jc', y ') for some <f> e G. What are the 
R  -subsets in this case?

4. With real numbers a and b, let aRb mean that a — b is an integral multiple of 
360.
(a) Is R  an equivalence relation?
(b) Is it a congruence relation for addition?
(c) Is it one for multiplication?
(d) What does this imply regarding addition and multiplication of anglesi

5. (a) Let C  be any ideal in a commutative ring. Show that the relation (a  -  b) e
C  is a congruence relation for addition and multiplication.

(b) Prove that if R  is any congruence relation on a commutative ring, the 
R -subsets form another commutative ring if addition and multiplication 
are defined by (19).

6. In Ex. 1(a), show that half the substitution rule (18) holds for any S and that 
the other half holds if and only if S is normal.

7. Let cr: S2 -* S be a binary operation, and R  an equivalence relation on S. 
Show that if aRa ' implies (a 0 b )R (a '°  b ) and (b ° a )R (b  ° a '), then (18) holds.
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Vectors and 

Vector Spaces

7.1. Vectors in a Plane

In physics there arise quantities called vectors which are not merely 
numbers, but which have direction as well as magnitude. Thus a parallel 
displacement in the plane depends for its effect not only on the distance 
but also on the direction of displacement. It may conveniently be repre

sented by an arrow a of the proper length and 
direction (Figure 1). The combined effect of two 
such displacements a and /3, executed one after 
another, is a third “ total”  displacement y. If /3 is 
applied after a by placing the origin of the arrow 
/3 at the terminus of a, then the combined dis- 

Figure 1 placement y = a + /3 is the arrow leading from
the origin of a to the terminus of /3. This is the 

diagonal of the parallelogram with sides a and /3. This rule for finding a +  I3 
is the so-called parallelogram law for the addition of vectors.

A  displacement a may be tripled to give a new displacement 3 • a, or 
halved to give a displacement \a. One may even form a negative multiple 
such as —2a, representing a displacement twice as large as a in the 
direction opposite to a. In general, a may be multiplied by any real 
number c to form a new displacement c • a. If c is positive, ca has the 
direction of a and a magnitude c times as large, while if c is negative, the 
direction must be reversed. The numbers c are called scalars and the 
product ca a “ scalar”  product.

Forces acting on a point in a plane, and velocities and accelerations 
have similar representations by means of vectors— and in all cases the 
parallelogram law of vector addition, and multiplication by (real) scalars

168
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have much the same significance as with displacements. This illustrates 
the general principle that various physical situations may have the same 
mathematical representation.

Analytical geometry suggests representing vectors in a plane by pairs 
of real numbers. We may represent any such vector by an arrow a with 
origin at (0,0) and terminus at a suitable point (a x,a 2), where the 
coordinates a x, a2 are real numbers. Then vector sums and scalar 
products may be computed coordinate by coordinate, using the rules

(1) (a u a2) +  (bu b2) =  (a x +  bu a2 +  b2),

(2) c (a u a2) =  (cau ca2).

From these rules we easily get the various laws of vector algebra,t such as

(3) a +  /3 =  /3 +  a, a +  (P  + -y) =  (a  +  P )  +  y,

(4) c (a  +  P )  =  ca +  c/3, 1 • a — a,

and so on. Many of these (notably the commutative law of vector 
addition) also correspond to geometrical principles.

Vector operations may be used to express many familiar geometric 
ideas. For example, the midpoint o f the line joining the terminus of the 
vector a =  (a i, a2) to that of /3 =  (Jb\, b2) is given by the formulas 
((a x +  bi)/2, (a2 +  b2)/2), hence by the vector sum \{a +  P ). The result
ing vector is also known as the center of gravity of a and /3. A  complete 
list of postulates for vector algebra will be given in §7.3; we shall first 
describe other examples of vectors.

Exercises

1. Prove the laws (3) and (4) of vector algebra, using the rules (1) and (2).
2. Illustrate the distributive law (4) by a diagram.
3. Show that the vectors in the plane form a group under addition.
4. Show that every vector a in the plane can be represented uniquely as a sum 

a =  fi +  y, where p  is a vector along the x-axis, y  a vector along the y-axis.

7.2. Generalizations

The example just described can be generalized in two ways. First, the 
number of dimensions (which was two in §7.1) can be arbitrary. The first

t  We shall systematically use small Greek letters such as a, p, y, • • • , £  ij, (, • • • to 
denote vectors and small Latin letters to denote scalars.
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hint of this is seen in the possibility of treating forces and displacements 
in space in the same way that plane displacements and forces were treated 
in §7.1. The only difference is that in the case of space, vectors have three 
components (* i, x2, x3) instead of two.

Again, it is shown in the theory o f statics that the forces acting on a 
rigid solid can be resolved into six components: three pulling the center 
of gravity in perpendicular directions and three of torque causing rotation 
about perpendicular axes. The sum of two forces may again be computed 
component by component, while multiplication by scalars (real numbers) 
has the same significance as before.

More generally, for any positive whole number n, the n -tuples a =  
(a l t ' '  •, an) of real numbers form an n-dimensional vector space which 
may be regarded as an n-dimensional geometry. Thus, straight lines are 
the sets of elements of the form a +  0  (a, fi fixed, fi ^  0; t variable); 
the center of gravity of a j, • • •, am is (l/ m )(a i +  • • • +  am), and so on 
(this will be developed in §9.13). To get a complete geometrical theory, 
one need only introduce distance as in § 7.10.

A  second line of generalization begins with the observation that, so far 
as algebraic properties are concerned, the components o f vectors and the 
scalars need not be real numbers, but can be elements of any field. 
Indeed, vectors with complex components are constantly used in the 
theory of electric circuits and in electromagnetism, while we shall in 
Chap. 14 base the theory of algebraic numbers on the study of vectors 
with rational scalars.

The generalizations described in the last two paragraphs can be 
combined into a single formulation, valid for any positive integer n (the 
dimension) and any field F  of scalars.

E x a m p l e . The vector space F n has as elements all n -tuples a  =
(ai, • • •, an), fi =  (b i, ■ • •, bn), • • •, with components a, and £>, in F.
Addition and scalar multiplication in F n are defined as follows:

(5) (a u • • •, a„) +  (bu ■ • •, bn) =  (a 3 +  bu ■ • •, an +  bn),

(6 ) c (a u - • • ,a n) =  (cau - ■ ■ ,can).

Theorem  1. In the vector space V  =  F ", vector addition and scalar 
multiplication have the following properties :

(7) V  is an Abelian group under addition;

(8) c • (a +  f i)  =  c ■ a +  c • fi, (c +  c1) • a =  c • a +  c ' • a
t \ i {Distributive laws)(9) (cc )■ a =  c ■ (c • a ) , 1 • a  =  a.
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Proof. We first verify the postulates for a group. Vector addition is 
associative, since for any vectors a and /3 as defined above and any 
y =  (ci, ■ • ■, c„), we have:

(a  +  f i) +  y =  (a i +  bi +  c i, a„ +  b„ +  c„) =  a +  ((3 +  y),

since (a, +  ft,) +  c, =  a, +  (ft, +  c,) for each i by the associative postulate 
for addition in a field (§ 6.4). The special vector 0 =  (0, • • •, 0) acts as 
identity, while - a  =  ( - a j, • • • , —an) is inverse to a in the sense that 
a +  ( - a )  =  ( - a )  +  a =  0. Note that —a =  ( - l ) a  is also the product of 
the vector a by the scalar -1 , while 0 =  0 • a for any a.

The group is commutative because a, +  bi -  ft, +  a, for each i. 
Likewise, the definitions (5) and (6) reduce each side of the distributive 
laws (8) to a corresponding distributive law for fields which holds compo
nent by component.

E xerc ises

1. Let a  =  (1 ,1 ,0 ), fi =  (-1/2 ,0 , 2/3), -y = (0, 1/4,2).
Compute: (a) a +  2/3 +  3y, (b) 3(a  +  f i )  -  2(fi +  y).
(c) What is the center of gravity of a, fi, y ?
(d) Solve 6/3 +  5 f  =  a.

2. Let a  =  (1, /, 0), fi =  (0 ,1 -  /, 2/), y  =  (1 ,2 -  /, 1).
Compute: (a) 2a -  ifi, (b) ia +  (1 +  i )f i -  (/' +  3)y.
(c) Solve a — i f  =  fi.  ^

3. Divide the line segment afi in the ratio 2:1 in Exs. 1 and 2.
★4. In Ex. 2, can you “ divide the line segment afi in the ratio 1 :2 i” ? Explain.

5. Let Z 3" consist of vectors with n components in the field of integers mod 3.
(a) How many vectors are then in Z 3"?
(b) What can you say about a +  a +  a in Z 3"?

★6. Can you define a “ midpoint”  between two arbitrary points in Z 3"?  A  center 
of gravity for three— for four— arbitrary points? (H in t : Try numerical exam
ples.)

7.3. Vector Spaces and Subspaces

We now define the general notion of a vector space; it is essentially 
just an algebraic system whose elements combine, under vector addition 
and multiplication by scalars from a suitable field F, so that the rules 
listed in § 7.2 hold.
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Definition. A  vector space V  over a field F  is a set o f elements, called 
vectors, such that any two vectors a and fi o f V  determine a (unique) vector 
a +  /? as sum, and that any vector a e V  and any scalar c e F  determine 
a scalar product c ■ a in V, with the properties (4) and (7 )-(9 ).

(Rules (8) and (9) are to hold for all vectors a and fi and all scalars c and 
c'.)

Theorem 1 essentially stated that for any positive integer n and any 
field, F " was a vector space. There are also many m/imfe-dimensional 
vector spaces; they play a fundamental role in modern mathematical 
analysis.

For example, let S denote the set of all functions f ix )  of a real 
variable x which are single-valued and continuous on the interval 0 S  
t i l .  Two such functions f (x )  and g (x ) have as sum a function 
h (x ) =  f {x )  +  g (x ) in S, and the “ scalar”  product of f ix )  by a real 
constant c is also such a function cfix ). These functions cannot be 
represented by arrows, but their operations of addition and scalar multi
plication have the same formal algebraic properties as our other examples. 
Vectors in this set 5 may even be regarded as having one “ component”  
(the value of the function!) at each point x  on the line 0 ^  x  ^  1.

Again, consider the functions / whose domain is any set 5 whatever 
(say, any plane region), with the field F  as codomain, so that / assigns to 
each x  e  S  a value f ix )  e  F. The set o f all such functions / forms a vector 
space over F, if the sum h =  f  +  g and the scalar product h' =  c • / are 
the functions defined for each x  e 5 by the equations h ix ) =  f ix )  +  g (x ) 
and h '(x ) =  c - f ix ) .

Conforming with our use of the additive notation for the group 
operation in a vector space, we shall denote by 0 the identity element of 
the group; it is the unique “ null”  or “ zero”  vector satisfying

(10) a + 0  =  0 +  a =  a for all a.

The null vector 0 is not to be confused with the zero scalar 0. However, 
the two are connected by an identity.

Indeed, the two distributive laws give, for all c and a,

ca +  0a =  (c +  0)a =  ca =  ca +  0, 

ca +  cO =  c (a  +  0) =  c • a =  ca +  0.

Now, cancelling ca on both sides, we get the two laws

(11) 0a =  0 for all a, cO =  0 for all c.
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Again, the scalar multiple ( - l ) a  acts as the inverse of any given vector a 
in the group, for

a  +  (— l ) a  =  1 • a  +  (— l ) a  =  (1 +  (—l) ) a  =  Oa =  0;

hence

(12) the (additive) group inverse o f any vector a is (—l)a .

It follows from (11) and (12) that the cyclic subgroup of the “ powers”  
of any vector a consists o f the multiples of a by the different 
integers n.

In ordinary three-dimensional vector space, R 3, the vectors which lie 
in a fixed plane through the origin form by themselves a “ two- 
dimensional”  vector space which is part of the whole space. Similarly, the 
set 5 of all vectors lying on a fixed line through the origin is closed under 
the operations of addition and multiplication by scalars, hence this set is 
also a “ subspace”  of R 3.

Definition. A  subspace S o f a vector space V  is a subset o f V  which is 
itself a vector space with respect to the operations o f addition and scalar 
multiplication in V.

A  nonvoid subset 5 is a subspace if and only if the sum of any two 
vectors of 5 lies in S and any product o f any vector o f 5 by a scalar lies in 
5. This statement may be easily checked from the definition. The analogy 
with earlier definitions of a subfield and subgroup is obvious. Geometri
cally, a “ subspace”  is simply a linear subspace (line, plane, etc.) through 
the origin O.

For example, the vectors o f the form (0, x2, 0, x4) constitute a sub
space of F 4 for any field F. Also, the null vector 0 alone is a subspace of 
any vector space.

Again, the set of polynomials o f degree at most seven is a subspace of 
the vector space of all polynomials— whether the base field is real or not. 
Similarly, the set of all continuous functions f {x )  defined for 0 S  x =  1 is 
a subspace of the linear space of all functions defined on the same 
domain.

For given vectors a u m"  ,a m in a vector space V, the set of all 
linear combinations

Ciai +  c2a2 +  • • • +  cmam (each c, a scalar)
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of the ai is a subspace. This is because of the identities

(13) (cjor! +  • • • +  cmam) +  (c 1'a 1 +  • • • +  cm'am)
=  (c! +  C iV i  +  • • • +  (cm +  cm')a m,

(14) c '(c ia i +  • • • +  cmam) =  (c'c^ori +  • • • +  (c 'cm)am,

valid for all vectors a, and for all scalars c„ c,', and c'. This proves

Theorem  2. The set o f all linear combinations of any set o f vectors in a 
space V  is a subspace of V.

This subspace is evidently the smallest subspace containing all the 
given vectors; hence it is called the subspace generated or spanned by 
them. The subspace spanned by a single vector <*1 ^  0 is the set Si of all 
scalar multiples c<*i; geometrically, this is simply the line through the 
origin and a i. Similarly, the subspace spanned by two noncollinear 
vectors on and a2 turns out to be the plane passing through the origin, <*i, 
and a2.

Theorem  3. The intersection S n  T  of any two subspaces of a vector 
space V  is itself a subspace of V.

Proof. The intersection of two given subspaces S and T  is defined to 
be the set S n  T  of all those vectors belonging both to S and to T  (cf. 
Theorem 17 of §6.9, on the intersection of two subgroups). I f a and p  
are two such vectors, their sum a +  P  must be in S (since S is a subspace 
containing a and P )  likewise in T, hence is also in the intersection S n  T. 
Similarly, any scalar multiple c • a of a is in S n  T. Q.E.D.

Again, any two subspaces S and T  o f a vector space V  determine a set 
S +  T  consisting of all sums a +  P  for a in S and p  in T. By the 
commutative, associative, and distributive laws (3) and (4), this set is itself 
a subspace, called the linear sum or span o f S and T. It clearly contains S 
and T, and is contained in any other subspace R  containing both S and 
T ; hence the concept o f linear sum is analogous to that of the join (cf. 
§6.8) o f two subgroups. These properties of S +  T  may be stated as

S c 5 + r , '  T  c  S +  T ;
(15)

S c  R  and T  c  R  imply S +  T  c  g ,  

where S  <= R  means that the subspace S is contained in the subspace R.
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Exercises

1 . P ro v e  th a t  in an y  v e c to r  sp ace , ca  =  0  im p lies c  =  0  o r  a  =  0 .

2. In Ex. 1, §7.2, compute 7(2(a — 3/3) +  y(3/3 — 6y)) — 2(a  — y ) +  5/3 +
2a.

3. In Ex. 2, § 7.2, compute (1 +  2/)(2a — 3/3) — 8a — 9i'/3.

4. Which of the following subsets of Q " (n £  2) constitute subspaces (here £ 
denotes (x lt • • •, x„))?
(a) all f  with x x an integer, (b) all f  with x2 — 0,
(c) all f  with either x x or x2 zero, (d) all f  such that 3xj +  4x2 =  1,
(e) all f  such that 7x, — x2 =  0.

5. Wh’ch of the following sets of real functions f ( x )  defined on 0 S  x S  1 are 
subspaces of the vector space of all such functions?
(a) all polynomials of degree four,
(b) all polynomials of degree S  four (including f ( x )  =  0),
(c) all functions / such that 2/(0) =  / (l),
(d) all functions such that 0 +  / ( l )  =  /(0) +  1,
(e) all positive functions,
(f) all functions satisfying/(x) =  / (I — x ) for all x.

6. Which o f the sets of functions described in Ex. 3, § 3.3, form vector spaces 
when D  is taken to be a field F?

7. Let S be the subspace of Q 3 consisting of all vectors of the form (0, x2, x3),
and T  the subspace spanned by (1 ,2 ,0 ) and (3 ,1 ,2 ). Which vectors are in
S n T ?  I n S + 7 ?

8. In Z 33, how many vectors are spanned by (1, 2 ,1 ) and (2 ,1 ,1 )?  By (1 ,2 ,1 ) 
and (2 ,1 ,2 )?

9. In Q 3 show that the plane x3 =  0 may be spanned by each o f the following 
pairs of vectors: (1 ,0 ,0 ) and (1 ,1 ,0 ); (2 ,2 ,0 ) and (4 ,1 ,0 ); (3 ,2 ,0 ) and 
(-3 , 2, 0).

10. If S is spanned by ^  and £2, T  by r^, ri2, and t)3, show that S +  T  is 
spanned by f 1; f 2, r )u tj2, tj3. Generalize this result.

11. Construct an addition table for and list its subspaces.

12. Construct Z 23 and tabulate its subspaces.

13. Prove that the set of all solutions (x^  • • • ,x „ ) of a pair of homogeneous 
linear equations +  • • • +  anxn =  0, b lx l +  • • • +  bnxn -  0 is a sub
space of F", where a„ bt, x, all lie in F.

★14. Prove that the vector space postulate 1 • a  =  a cannot be proved from the 
other postulates. (H int: Construct in the plane a pseudo-scalar product 
c ®  a, the projection o f c ■ a  on a fixed line.)

★ IS . Show that the postulate of commutativity for vector addition is redundant. 
(H int: Expand (1 +  l ) (a  +  (3) in two ways.)
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7.4. Linear Independence and Dimension

The important geometric notion of the dimension of a vector space or 
subspace remains to be defined abstractly. It will be described as the 
minimum number of vectors spanning the space (or subspace).

Thus, ordinary space R 3 can be spanned by the three vectors (1, 0,0), 
(0 ,1 ,0 ), and (0 ,0 ,1 ) of unit length lying along the three coordinate axes, 
but by no set of two vectors (a set of two noncollinear vectors spans a 
plane through the origin). Hence its dimension is three.

More generally, any F a is spanned by n unit vectors

E! =  (1,0, • • • ,0),

e2 =  (0,1, • • •, 0),
(16) ;

e„ =  (0,0, • • •, 1).

Indeed, any vector o f F n is a linear combination o f these, because

(17) ( * 1 , x 2, • • •, xH) =  *iEi +  x2e2 +  • • • +  *„e„.

W e shall prove in Corollary 2 of Theorem 5 that F "  cannot be spanned 
by fewer than n vectors. This justifies calling F "  an n -dimensional vector 
space over the field F.

Not only do Ei, • • • ,£„  generate the whole o f F " ; in addition, 
XiEi +  • • • +  x„e„ =  0 if and only if (xi, • • •, x„) =  (0, • • •, 0)— that is, if 
and only if =  • • • =  xn =  0. This means that the unit vectors are 
“ linearly independent”  in the following sense.

Definition. The vectors a u • ■ • , am are linearly independent (over F ) 
i f  and only if, fo r all scalars c, in F,

(18) c2a x +  c2a2 +  • • • +  cmam =  0
implies =  c2 =  • • • =  cm -  0 .

Vectors which are not linearly independent are called linearly dependent.

It is a trivial consequence of the definition that any subset o f a linearly 
independent set is linearly independent. However, the following relation 
of dependence to linear combinations is more important:

Theorem  4. The nonzero vectors a\, ■ • •, aM in a space Vare linearly
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dependent i f  and only i f  some one o f the vectors ak is a linear combination 
of the preceding ones.

Proof. In case the vector ak is a linear combination ak =  
c i « i  +  • • • +  of the preceding ones, we have at once a linear
relation

CiOti +  c2a 2 +  • • • +  ck- iak_i +  ( - l ) a fc =  0,

with at least one coefficient, (—1), not zero. Hence the vectors are 
dependent, by (18).

Conversely, suppose that the vectors are linearly dependent, so that 
d ia i +  d2a2 +  • • • +  dmam =  0, and choose the last subscript k for 
which dk ^  0. One can then solve for ak as the linear combination

=  (~d k~ldx)ai +  • • • +  { - d C ldk-f )a k- x.

This gives ak as a combination of preceding vectors, except in the case 
k =  1. In this case di<x\ =  0, with dx 0, so a i =  0, contrary to the 
hypothesis that none of the given vectors equals zero. Q.E.D.

For instance, the three vectors P i  =  (2, 0, 0), 0 2 =  (1 ,3 ,0 ), and 0 3 =  
(0, —2, 0) do not span the whole of ordinary space R 3 because they all lie 
in one plane. W e can express this linear dependence either by the relation 
P i -  2/32 -  303 =  0 or (solving for P i )  by 0 i =  20 2 +  303. Thus, the set 
(0i» 0 2 , 0 3 ) spans the same subspace as does its proper subset (0 2 , 03 ). 
This illustrates

Corollary 1. A  set o f vectors is linearly dependent if  and only if  it 
contains a proper (i.e., smaller) subset spanning the same subspace.

Namely, we can delete from the set any one vector which is 0 or which 
is a linear combination of the preceding ones, and show that the remain
ing vectors generate the same subspace. Now, using induction, we obtain

Corollary 2. Any finite set o f vectors contains a linearly independent 
subset which spans (generates) the same subspace.

W e can now state the fundamental theorem on linear dependence.

Theorem  5. Let n vectors span a vector space V  containing r linearly 
independent vectors. Then n a  r.

Proof. Let A 0 =  [cti, • • •, a „ ] be a sequence of n vectors spanning 
V, and let X  =  [& , •••,£■] be a sequence of r linearly independent
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vectors of V. Since A 0 spans V, £ 1 is a linear combination of the a„ so 
that the sequence B  j =  [£x,ax, • • • , « „ ]  both spans V  and is linearly 
dependent. By Theorem 4, some vector of B x must be dependent on its 
predecessors. This cannot be since belongs to a set X  o f indepen
dent vectors. Hence some vector a, is dependent on its predecessors 
£i, a i , - - - ,  a,_x in B x. Deleting this term, we obtain, as in Corollary 1, a 
subsequence Ax =  [& , a x, • • •, a ;_x, a i+x, • • •, an] which still spans V.

Now repeat the argument. Construct the sequence B 2 =  =
.[£2, £i, « i, • ‘ ‘ , oti-u oti+1, • • •, a*]. Like B 1} B 2 spans V  and is linearly 
dependent. Hence as before, some vector of B 2 is a linear combination of 
its predecessors. Because the are linearly independent, this vector 
cannot be £ 2 or gi, so must be some ay, with a subscript j  ^  i (say, with 
j  >  i). Deletion of this leaves a new sequence

A-2 =  [£>, fu  « ! , • • • ,  oti-u «,+ i, • • •, ay-1, ay+1, • • •, a„]

of n vectors spanning V. This argument can be repeated r times, until the 
elements of X  are exhausted. Each time, an element o f A 0 is thrown out. 
Hence A 0 must have originally contained at least r elements, proving 
n g  r. Q.E.D.

Theorem 5 has several important consequences. We shall prove these 
now for convenience, even though the full significance of the concepts of 
“ basis”  and “ dimension” , which they involve, will not become apparent 
until §7.8.

Definition. A  basis o f a vector space is a linearly independent subset 
which generates (spans) the whole space. A  vector space is finite
dimensional i f  and only if  it has a finite basis.

For example, the unit vectors e lf • • •, e„ of (16) are a basis of F".

Corollary 1. A ll bases o f any finite-dimensional vector space V  have 
the same finite number o f elements.

Proof. Since V  is finite-dimensional, it has a finite basis A  =  
[ax, • ■ •, a ,]; let B  be any other basis of V. Since A  spans V  and B  is 
linearly independent, Theorem 5 shows that B  is finite, say with r 
elements, and that n S  r. On the other hand, B  spans V, and A  is 
linearly independent, so r §  n. Hence n =  r.

The number of elements in any basis of a finite-dimensional vector 
space V  is called the dimension of V, and is denoted by d\V]. By 
Theorem 5, we have

Corollary 2. I f  a vector space V  has dimension n, then (i) any n +  1
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elements o f V  are linearly dependent, and (ii) no set o f n -  1 elements can 
span V.

Theorem  6 . Any independent set o f elements o f a finite-dimensional 
vector space V  is part o f a basis.

Proof. Let the independent set be f i ,  • • •, and let a„ be a
basis for V. Form the sequence C  =  [ f i ,  • • • , £ ,  « i ,  •••,  « „ ] .  We can 
extract (Theorem 4, Corollary 2) an independent subsequence of C  which 
also spans V  (hence is a basis for V ) by deleting every term which is a 
linear combination of its predecessors. Since the £  are independent, no £ 
will be deleted, and so the resulting basis will include every f (.

Corollary. For n vectors c*i, ••■,<*„ o f an n-dimensional vector space 
to be a basis, it is sufficient that they span V  or that they be linearly 
independent.

Proof. If A  =  {<*!, • • •, <*„} spans V, it contains a subset A '  which is 
a basis of V  (Theorem 4, Corollary 2); since the dimension of V  is n, this 
subset A ' must have n elements (Theorem 5, Corollary 1). Hence 
A '  =  A , and A  is a basis of V. Again, if A  is independent, then it is a 
part of a basis by Theorem 6, and this basis has n elements by Corollary 1 
of Theorem 5, and so must be A  itself.

Exercises

1. Show that the vectors (a„ a2) and (bu b2) in F 2 are linearly dependent if 
and only if a xb2 — a2bi =  0.

2. Do the vectors (1 ,1 ,0 ) and (0 ,1 ,1 ) form a basis of Q 3? Why?
3. Prove that if p  is not in the subspace S, but is in the subspace spanned by S  

and a, then a  is in the subspace spanned by S  and p.
4. Prove that if f j ,  f 2, f 3 are independent in R", then so are +  f 2, +  f 3,

f 2 +  £3. Is this true in every F "?
5. How many elements are in each subspace spanned by four linearly indepen

dent elements o f Z 37? Generalize your result.
6. Define a “ vector space”  over an integral domain D . Which o f the postulates 

and theorems discussed so far fail to hold in this more general case?
★7. Prove: Three vectors with rational coordinates are linearly independent in 

Q 3 if and only if they are linearly independent in R 3. Generalize this result 
in two ways.

8. I f  the vectors a „  • • •, a m are linearly independent, show that the vector fi
is a linear combination o f a !, • • •, am if and only if the vectors a !, • • •, am,
P  are linearly dependent.
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★9. Show that the real numbers 1, V2, and V5 are linearly independent over the 
field of rational numbers.

10. Find four vectors of C3 which together span a subspace of two dimensions, 
any two vectors being linearly independent.

11. If  Cia +  Cifi +  c3y  =  0, where CiC3 ^  0, show that a and ft generate the 
same subspace as do /3 and y.

12. I f  two subspaces 5 and T  o f a vector space V  have the same dimension, 
prove that S <= T  implies S  =  T.

★13. (a) How many linearly independent sets of two elements has Z 23? How 
many o f three elements? o f four elements?

(b) Generalize your formula to Z 2" and to Zp".
★14. How many different k -dimensional subspaces has Zp"?

7.5. Matrices and Row-equivalence

Problems concerning sets of vectors in F "  with given numerical 
coordinates can almost always be formulated as problems in simultaneous 
linear equations. As such, they usually can be solved by the process of 
elimination described in §2.3. We will now begin a systematic study of 
this process, which centers around the fundamental concept of matrices 
and their row-equivalence. We first define the former concept.

Definition. A  rectangular array o f elements o f a field F, having m rows 
and n columns, is called an m x  n matrix over F.

Remark. Evidently, the m x  n matrices A , B, C  over any field F  
form an mn-dimensional vector space under the two operations of (i) 
multiplying all entries by the same scalar c and (ii) adding corresponding 
components.

We now use the concept of a matrix to determine when two sets of 
vectors in F", a u - • ■ ,a m and /?i, •••,/?„ span the same subspace. 
Clearly, the vectors c*i, • • •, am define the m x  n matrix

(19) A  =

<*11 <*12 • • - <*ln \

<*21 <*22 * ' ’ <*2n

(< *m l <*m 2 ’ ' ' <*mn/

whose /'th row consists of the components an, ■ • •, <*,„ of the vector a,. 
The matrix (19) may be written compactly as || aj; ||. The row space of the 
matrix A  is that subspace of F "  which is spanned by the rows of A ,
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regarded as vectors in F n. We now ask: when do two m X n matrices 
have the same row space? That is, when do their rows span the same 
subspace of F nl  A  partial answer to this question is provided by the 
concept of row-equivalence, which we now define.

We now consider the effect on the matrix A  in (19) of the following 
three types of steps, called elementary row operations:

(i) The interchange of any two rows.
(ii) Multiplication of a row by any nonzero constant c in F.
(iii) The addition of any multiple of one row to any other row.

The m x  n matrix B  is called row-equivalent to the m x  n matrix A  if B  
can be obtained from A  by a finite succession of elementary row 
operations. Since the effect of each such operation can be undone by 
another operation of the same type, we have the following

Lemma. The inverse o f any elementary row operation is itself an 
elementary row operation.

Hence, if B  is row-equivalent to A , then A  is row-equivalent to B ; 
that is, the relation of row-equivalence is symmetric. It is clearly also 
reflexive and transitive, hence it is an equivalence relation.

Theorem 7. Row-equivalent matrices have the same row space.

Proof. Denote the successive row vectors of the m x  n matrix A  by 
t*!, • • •, am. The row space of A  is then the set of all vectors of the form 
Cia-y +  • • • +  cmam, and the elementary row operations become:

(i) Interchanging any a, with any af (/ ^  ;').
(ii) Replacing a, by ca, for any scalar c #  0.
(iii) Replacing a, by a, +  da, for any j  ^  i and any scalar d.

ft suffices to consider the effect on the row space of a single elementary 
row operation of each type. Since operations of types (i) and (ii) clearly 
do not alter the row space, we shall confine our attention to the case of a 
single elementary operation of type (iii). Take the typical case of the 
addition of a multiple of the second row to the first row, which replaces 
the rows a u • • •, am o f A  by the new rows

(2 0 ) /3j =  a , +  da2, /? 2 =  «z , • ' •, Pm =

Of the row-equivalent matrix B. Any vector y in the row space of B  has 
the form y  =  £  cfih hence on substitution from (2 0 ) we have

y  =  Cj(ai +  da 2) +  c2a 2 +  • • • +  cmam,
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which shows that y is in the row space of A . Conversely, by the Lemma, 
the rows of A  can be expressed in terms of the rows of B  as

« i  =  P\ ~  d/32, a2 =  P 2, • ■, ocm =  p m,

so that the same argument shows that the row space of A  is contained in
the row space of B ; thus these row spaces are equal.

This proof gives at once

Corollary 1. Any sequence o f  elementary row operations reducing a 
matrix A  to a row-equivalent matrix B  yields explicit expressions for the 
rows o f B  as linear combinations o f the rows o f A .

Simultaneous Linear Equations. W e next apply the concept of 
row-equivalent matrices to reinterpret the process of “ Gauss elimination” 
described in § 2.3. Consider the system of simultaneous linear equations

0 n * i +  012*2 +  • • • +  a\nxn = U i,„+i,

021*1 +  022*2 +  • • • +  a2nxn =  a2n+1,

(2 D : : :

0ml*l 0m2*2 ttmnXn 0m,n + l>

where the coefficients 0O are given constants in the field F. We wish to 
know which solution vectors £ =  (*! ,••■ ,* „ ),  if any, satisfy the given 
system of equations (2 1 ).

. It is easy to verify that the set of solution vectors £ satisfying (21) is 
invariant under each of the following operations:

(i) the interchange of any two equations.
(ii) multiplication of an equation by any nonzero constant c in F.
(iii) Addition of any multiple of one equation to any other equation.

But as applied to the m x  (n +  1) matrix of constants a^ in (21), these 
are just the three elementary row operations defined earlier. This proves

Corollary 2. I f  A  and B  are row-equivalent m x (n +  1) matrices over 
the same field F, then the system o f simultaneous linear equations (21) has 
the same set o f solution vectors g =  (xi, • • •, x„) as the system

*11*1 +  *12*2 +  • • * +  * !„* „  =  *!,„ + !,

* 21*1 +  * 22*2 +  • • • +  * 2„*„ =  * 2,n + l ,
(2 i ' )  : : : :

*m  1*1 F  *m 2 *2  F  * * * F  *m n*n  *m,n + 1*
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Exercises

1. If A  and B  are row-equivalent matrices, prove that the rows o f A  are 
linearly independent if and only if those o f B  are.

2. Show that the meaning o f row-equivalence is unchanged if one replaces the 
operation (iii) by
(iii') The addition o f any row to any other row.

★3. Show that any elementary row operation of type (i) can be effected by a 
succession of four operations o f types (ii) and (iii). (H int: Try 2 x 2  mat
rices.)

7.6. Tests for Linear Dependence

We now aim to use elementary row operations to simplify a given 
m x  n matrix A  as much as possible. In any nonzero row of A , the first 
nonzero entry may be called the “ leading”  entry o f that row. We say that 
a matrix A  is row-reduced if:

(a) Every leading entry (of a nonzero row) is 1.
(b) Every column containing such a leading entry 1 has all its other 

entries zero.

Sample 4 x 6  row-reduced matrices are

0 0 1 r 14 '•is r 16̂ /l d\2 0 d u 0 d l6\

1 0 0 *24 f  25 r26 0 0 1 di4 0 di6

0 1 0 r34 f  35 r36
>

0 0 0 0 1 ^36

\0 0 0 0 0 0 / \0 0 0 0 0 0 /
Theorem 8. Any matrix A  is row-equivalent to a row-reduced mat

rix, by elementary row operations o f types (i i )  and (iii).

Proof. Suppose that the given matrix A  with entries has a nonzero 
first row with leading entry a u located in the fth column. Multiply the 
first row by this leading entry becomes one. Now subtract ait times 
the first row from the /th row for every / y* 1. This reduces every other 
entry in column t to zero, so that conditions (a) and (b) are satisfied as 
regards the first row.

Now let the same construction be applied to the other rows in 
succession. The application involving row k does not alter the columns
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containing the leading entries of rows 1, • • •, k — 1, because row k 
already had entry zero in each such column. Hence, after the application 
involving row k, we have a matrix satisfying conditions (a) and (b) at its 
first k rows. Theorem 8 now follows by induction on k.

By permutations of rows (i.e., a succession of elementary row opera
tions of type (i)), we can evidently rearrange the rows of a row-reduced 
matrix R  so that

(c) Each zero row of R  comes below all nonzero rows of R.

Suppose that there are r nonzero rows and that the leading entry of row i 
appears in column /, for / =  1, • • •, r. Since any such column has all its 
other entries zero, we have f, j4 tj whenever i ^  j. By a further permuta
tion of rows, we can then arrange R  so that

(d) fi <  t2 <  • • • <  tr (leading entry of row i in column r,).

A  row-reduced matrix which also satisfies (c) and (d) is called a (row) 
reduced echelon matrix (the leading entries appear “ in echelon” ). We 
have proved the

Corollary. Any matrix is row-equivalent to a reduced echelon matrix.

For example, the second matrix of (22) is already a reduced echelon 
matrix; the first matrix of (2 2 ) is not, but can be brought to this form by 
placing the first row after the third row.

Theorem  9. Let E  be a row-reduced matrix with nonzero rows 
yi, • ■ •, y„ and leading entries 1 in columns tu • ■ • , tr. Then, for any vector

P  =  y i Y i  + • "  +  yrYr

in the row space o f E, the coefficient y, of y, is the entry o f fi in the column 
tp, i.e., the trth  entry o f p.

Proof. Since all entries of E  in column tt are zero, except that of y„ 
which is one, the f;-th component of p  must be y,- • 1 .

Corollary 1. The nonzero rows of a row-reduced matrix are linearly 
independent.

For if p  =  0, then every y, =  0 in the preceding theorem.
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Corollary 2. Let the m x n matrix A  be row-equivalent to a row- 
reduced matrix R . Then the nonzero rows of R  form a basis of the row 
space o f A .

Proof. These rows of R  are linearly independent, by Corollary 1, and 
span the row space o f R. They are thus a basis of this row space, which by 
Theorem 7 is identical to the row space of A.

The rank r of a matrix A  is defined as the dimension of the row space 
of A . Since this space is spanned by the rows o f A , which must contain a 
linearly independent set o f rows spanning the row space, we see that the 
rank of A  can also be described as the maximum number o f linearly 
independent rows of A . By Theorem 7, row-equivalent matrices have the 
same rank.

In particular, an n x  n (square!) matrix A  has rank n if and only if all 
its rows are linearly independent. One such matrix is the n x  n identity 
matrix /„, which has entries 1  along the main diagonal (upper left to lower 
right) and zeros elsewhere.

Corollary 3. A n n x  n matrix A  has rank n if  and only if  it is 
row-equivalent to the n x n identity matrix /„.

Proof. A  is row-equivalent to a reduced echelon matrix E  which also 
has rank n. This matrix E  then has n nonzero rows, hence n leading 
entries 1  in n different columns and no other nonzero entries in these 
columns (which include all the columns). Because of the ordering o f the 
rows (condition (d) above), E  is then just the identity matrix. Q.E.D.

In testing vectors for linear independence, or more generally in 
computing the dimension o f a subspace (=rank o f a matrix), it is needless 
to use the reduced echelon form. It is sufficient to bring the matrix to any 
echelon form, such as the form of the following 4 x 7  matrix:

1° 1 <*13 d u <*15 d\6 <*17

0 0 0 1 <*25 <*26 <*27

0 0 0 0 1 <*36 <*37

\o 0 0 0 0 0 0

Such an echelon matrix may be defined by the condition that the leading 
entry in each nonzero row is 1 , and that in each row after the first the 
number of zeros preceding this entry 1 is larger than the corresponding 
number in the preceding row.
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Thus, after reduction to echelon form, the rank of a matrix can be 
found immediately by applying the following theorem.

Theorem  10. The rank o f any matrix A  is the number o f nonzero rows 
in any echelon matrix row-equivalent to A .

The proof will be left as an exercise.

E xam p le . Test a i =  (1 ,-1 ,1 ,3 ), a2 =  (2 ,-5 ,  3 ,10), and a3 =  
(3 ,3 ,1 ,1 ) for independence. By transformations of type (iii), obtain the 
new rows p t - a t, p 2 =  a2 — 2a x =  (0, —3,1,4 ), p 3 =  a3 — 3ax =  
(0 ,6, -2 , - 8). Finally, set yx =  p x, y2 =  —(l/3)/32, y 3 =  03 -  6 y2 =  
p 3 +  2/32 =  0. There results the echelon matrix C  with rows yx, y2, y3, 
sketched below; since C  has a row of zeros, the original a, are linearly

11 -1  -1/3 3 \

C = 0 1 - 1 / 3  -4/3

0 0 0 0

dependent. By substitution in the definition o f y3 =  0, we have the 
explicit dependence relation

0 =  y 3 =  0 3 +  2/32 =  (a 3 -  3ati) +  2 (a2 -  2ax) =  —7a x +  2a2 +  a3

between the a ’s.

Appendix on Row-equivalence. Reduced echelon matrices provide 
a convenient test for row-equivalence.

Theorem  11. There is only one m x  n reduced echelon matrix E  with 
a given row space S c  F".

Proof. Let the reduced echelon matrix E  with row space S have the 
nonzero rows ylt • • •, y„ where y, has leading entry 1 in column By 
condition (d), tx <  t2 <  • • ■ <  tn Let /3 =  yxyx +  • • • +  yryr be any non
zero vector in the row space of E ; by Theorem 9, /3 has entry y, in 
column If ys is the first nonzero y„ then /3 =  ysys +  • • • +  yryr. Because 
ts < • • • < / „  the leading entries o f the remaining ys+i, • • •, y, lie beyond 
t„ so that p  has ys as its leading entry in column ts. In other words, every 
nonzero vector p  of 5 has leading entry in one o f the columns tx, • ■ • , tr. 
Each of these columns occurs (as the leading entry of a y,); hence the row 
space S  determines the indices tx, • • •, tn
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The rows yi, • ■ ■, y, of E  have leading entry 1 and entries zero in all 
but one of the columns t i , - - - , t r. If /3 is any vector of S with leading 
entry 1 in some column r, and entries zero in the other columns th then, 
by Theorem 9, /3 must be y,. Thus the row space and the column indices 
uniquely determine the rows y u • ■ ■, yr of E, as was required. Q.E.D.

Corollary 1. Every m x  n matrix A  is row-equivalent to one and only 
one reduced echelon matrix.

This result, which is immediate, may be summarized by saying that the 
reduced echelon matrices provide a canonical form  for matrices under 
row-equivalence: every matrix is row-equivalent to one and only one 
matrix o f the specified canonical form.

Corollary 2. Two m x  n matrices A  and B  are row-equivalent i f  and 
only if  they have the same row space.

Proof. If A  is row-equivalent to B, then A  and B  have the same row 
space, by Theorem 7. Conversely, if A  and B  have the same row space, 
they are row-equivalent to reduced echelon matrices E  and E ', respec
tively. Since E  and E ' have the same row space, they are identical, by 
Theorem 11. Hence A  is indeed row-equivalent (through E  =  E ')  to B.

These results emphasize again the fact that the row-equivalence of 
matrices is just another language for the study o f subspaces of F".

E xerc ises

1. Show the row-equivalence of
5 2 7

-3 4 1
-1 - 2  -3/

and
/I 0

P  1 
0 0

2. Reduce each o f the following matrices to row-equivalent echelon form:

(a)

/ l  - 1
\

—5
V 1 6 - 2 5\

A 6 —3^
4 0 4 - 2

2 -4 i , (b) 3 1 11 , (c)
7 2 0 2

0 3 2 1 4 - 2  8I - f i 1 - 1

2 - 1 3 2\ 1 *■ 1 —i l + i\

0 2 1 4 1 —i i 2 -  i
(d) (e)

4 - 2 3 9 - 1 0 1 0

\2 -3 4 5/ \ 2 i 2  i 3i /
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3. In Ex. 2, express the rows o f each associated echelon matrix as linear 
combinations of the rows of the original matrix.

4. Test the following sets o f vectors for linear dependence:
(a) (1, 0,1), (0,2, 2), (3 ,7 ,1 ) in Q 3 and C3;
(b) (0 ,0 ,0 ), (1 ,0 ,0 ), (0 ,1 ,1 ) in R3;
(c) (1, i, 1 +  /), (/, - 1 ,2  -  /), (0 ,0 ,3 ) in C3;
(d) (1, 1, 0), (1, 0, 1), (0, 1, 1) in Z 23 and Z 32.
In every case o f linear dependence, extract a linearly independent subset 
which generates the same subspace.

5. In Q6, test each of the following sets o f vectors for independence, and find a 
basis for the subspace spanned.
(a) (2 ,4 ,3 , -1 , -2 ,1 ),  (1 ,1 ,2 ,1 , 3,1), (0, -1 , 0,3 ,6 , 2).
(b) (2, 1, 3, - 1 ,  4, - 1 ) ,  ( - 1 ,  1, - 2 ,  2, - 3 ,  3), (1, 5, 0, 4, - 1 ,  7).

6. In Ex. 5, find a basis for the subspace spanned by the two sets of vectors, 
taken together.

7. Find the ranks and bases for the row spaces o f the following matrices:

h i

(a)

11 2 3\
3 2 - 3 2

1 2 4 5 7\

2 3 4 (b) . (c) 1 2 3 4 5
- 1 - 3  0 4

\3 4 S) \"1 - 2 0 2 1/

8. List all possible forms for a 2 x  4 reduced echelon matrix with two nonzero 
rows. (These yield a cell decomposition of the “ Grassmann manifold”  whose 
points are the planes through the origin in 4-space.)

9. Prove: The rank of an m x  n matrix exceeds neither m nor n.
10. If the m x  ( «  +  k ) matrix B  is formed by adding k new columns to the

m x  n matrix A , then rank (A )  S  rank (B ).
11. Prove directly (without appeal to Theojem 8) that any matrix A  is row-

equivalent to a (not necessarily reduced) echelon matrix.

7.7. Vector Equations; Homogeneous Equations

It is especially advantageous to use elementary row operations on a 
matrix in place of linear equations (2 1 ) when one wishes to solve several 
vector equations of the form

(23) A =  Xicti +  • • • +  xmam

for fixed vectors a 1? • • •, am of F "  and various vectors A.
For instance, let a^, a2, a3 be as in the Example of § 7.6, and let 

A =  (2,7, -1 , - 6). Having reduced the matrix A  to echelon form, we
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first solve the equation

A =  y ir i  +  y 2y 2 +  ysrs =  y ir i  +  y 2y 2-

Equating first components, we get 2 =  y\, equating second components, 
we then get 7 =  - y ,  +  y2 or y2 =  9. Hence we must have

A =  2yi +  9y2 “  2 « i  — 3/32 =  2a\ — 3(a2 — 2 « i )  -  8a i — 3a2,

if A is a linear combination of the a ’s at all. Computing the third and 
fourth components of 8a ! -  3a2, we see that A is indeed such a linear 
combination.

Since y3 =  -7 a  1 +  2a2 +  a 3 =  0, other solutions of (23) in this case
are

A =  (8 -  7y )a i +  (- 3  +  2y )a 2 +  ya3,

for arbitrary y. This is actually the most general solution of (23). Had the 
vector A been A' =  (2 ,7 ,1 , - 6), the above procedure would have shown 
that A' cannot be expressed as a linear combination of the a ’s at all.

In fact, when several vectors A are involved, it is usually best to first 
transform the m X n matrix whose rows are a\, • • • , am to reduced 
echelon form C  with nonzero rows y u • • •, yr. Since each elementary row 
operation on a matrix involves only a finite number of rational opera
tions, and since a given matrix can be transformed to reduced echelon 
form after a finite number of elementary row operations, this can be done 
after a finite number of rational operations (i.e., additions, subtractions, 
multiplications, and divisions).

One can then apply Theorem 9 to get the only possible coefficients 
which will make A =  yiyi  +  • • • +  yryn If this equation is not satisfied by 
all components of y, then A is not in the row space of A , and (23) has no 
solution. If it is satisfied, then since the rows of C  will be known linear

m
combinations y, =  £  of the a ’s, we will obtain a solution for (23) 

/“ i
in the form A =  £  y,-£ya/, whence we have Xj =  y 1^1/ +  • • • +  y#,-,. This 
proves the following result.

Theorem  12. For given vectors A, a ! ,•••> am in F", the vector equa
tion A =  Xia i +  • ■ ■ +  xmam can be solved ( if  a solution exists) by a finite 
number of rational operations in F.

Corollary. Let S and T  be subspaces o f F " spanned by vectors 
a 1, • • •, am and ( i u - • • , ( i k respectively. Then the relations S =  T, T  =  5, 
and S =  T  can be tested by a finite number o f rational operations.
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For, one can construct from the a ’s, by elementary operations, a 
sequence of nonzero vectors y i, • • •, y, forming the rows of a reduced 
echelon matrix and also spanning S. One then tests as above whether all 
the /3’s are linear combinations o f the y ’s, which is clearly necessary and 
sufficient for S => T. By reversing the preceding process, one determines 
whether or not T  => S. Together these two procedures test for S =  T; 
alternatively S =  T  may be tested by transforming the matrix with rows a 
and the matrix with rows fi to reduced echelon form, for S = T  holds 
if and only if these two reduced forms have the same nonzero vectors.

Reduced echelon matrices are also useful for determining the solu
tions of systems of homogeneous linear equations of the form

f l i i X i  +  <*12*2 +  • • • +  a i „ x n =  0 ,

(24) j j :

« m  1*1  « m 2 * 2  "I-  ’ * '  4“ «m n *n  fi*

Thus let S be the set of all vectors £ =  (* i, • • • , * „ )  of F " satisfying (24). 
It is easy to show that S is a subspace. We shall now show how to 
determine a basis for this subspace.

First observe, as in §2.3, that elementary row operations on the 
system (24) transform it into an equivalent system of equations. Specifi
cally, as applied to the m x  n matrix A  which has as /th row the 
coefficients (an , • • •, ain) in the /th equation of (24), these operations 
carry A  into another matrix having the same set S of “ solution vectors”  
£ =  (* i, • • • , * „ ) .  Now bring A  to a reduced echelon form, with leading 
entries 1 in the columns t\, • • •, tr. The corresponding system of equations 
has r nonzero equations, and the /th equation is the only one containing 
the unknown xH.

To simplify the notation, assume that the leading entries appear in the
first r columns (this actually can always be brought about by a suitable
permutation, applied to the unknowns *, and thus to the columns of A ).  
The reduced equations then have the form

■*! +  Ci,r+1x,+i +  • • • +  c lnxn = 0,

*2  +  C2, r + l * r + l  +  ‘ • • +  C2nXn =  0 ,

(25) :

Xr C r ,r+ lX r+ l H-  * * * 4“ CmXn 0 .

In this simplified form, we can clearly obtain all solutions by choosing 
arbitrary values for xr+J, ••• , * „ ,  and solving (25) for x\, • • •, * „  to give
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the solution vector

( ^ 6 )  g  (  2  9 ]C c rjx j9 x r + 1> 9 x n  )•
^ j - r + 1 /='■+1 '

In particular, we obtain n — r solutions by setting one of the parameters 
xr+i, • • ■ ,x n equal to 1 and the remaining parameters equal to zero, 
giving the solutions

£ r+ l (  Cl,r+1> , Cr,r+1, 1 ) ' ' * 9

gn (  C lm , Cm, 0 ,  0 ,  ’ ’ ’ , 1 ) .

These n — r solution vectors are linearly independent (since they are
independent even if one neglects entirely the first r coordinates!). Equa
tion (26) states that the general solution g is just the linear combination 
g =  xr+\gr+i +  ■ • • +  xngn of these n — r basic solutions. We have thus 
found a basis for the space S of solution vectors of the given system of 
equations (24), thereby proving

Theorem 13. The “ solution space" o f all solutions ( jcj, • ■ •, jc„ )  of a
system o f r linearly independent homogeneous linear equations in n
unknowns has dimension n — r.

Corollary. The only solution o f a system o f n linearly independent 
homogeneous linear equations in n unknowns x u • • •, xn is

x i =  x 2 = • • • = = 0.

E x a m p le .  Let S be defined by the equations X i +  x2 =  x3 +  x4 and 
Xi +  x3 =  2(jc2 +  x4). Thus, geometrically, S is the intersection of two 
three-dimensional “ hyperplanes”  in four-space. The matrix of these 
equations reduces as follows:

/l 1 -1  -1\ /I 1 - 1  -1\ /I 4 -3  0\
\1 - 2  1 -2/ \0 -3  2 -1/ \0 -3  2 - l / ‘

The final matrix (except for sign and column order) is in reduced echelon 
form. It yields the equivalent system of equations Xi +  4x2 — 3x3 =  0,
- 3x2 +  2x3 -  x4 =  0, with the general solution g =  (3x3 -  4x2, x2, x3,
—3x2 +  2 jc3)  ; a basis for the space of solutions is provided by the cases 
x2 =  0, x3 =  1, and x2 =  1, x3 =  0, or (3 ,0 ,1 ,2 ) and (-4 ,1 ,0 , -3 ).
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By duality, one can obtain a basis for the linear equations satisfied by 
all the vectors of any subspace. Thus, let T  be the subspace of F 4 spanned 
by the vectors (1 ,1 , -1 ,-1 )  and (1 ,-2 ,1 ,-2 ).  Then the homogeneous 
linear equation 2 a,X; =  0 is satisfied identically for (* i, x2, x3, x4) in T  if 
and only if « i  +  a2 — a3 +  aA and ai +  a3 =  2 (a2 +  £4). A  basis for the 
set o f coefficient vectors ( « i ,  a2, a3, a4) satisfying these equations has 
been found above, with x ’s in place o f a ’s.

The linear equations of our example, x x +  x2 — x3 — x4 =  0 and 
* i  -  2*2  +  *3 -  2 x4 =  0 , are equivalent to the vector equation

* i ( l ,  1 ) +  x2( l ,  - 2 ) +  x3( - l ,  1 ) +  x4(—1 , - 2 ) =  (0 , 0).

The solutions are thus all relations of linear dependence between the four 
vectors ( 1 , 1 ), ( 1 , - 2 ), ( - 1 , 1 ), and ( - 1 , - 2 ) of the two-dimensional space 
F 2. This could also be solved as in §7.5 by reducing to echelon form the 
4 x 2  matrix having these vectors as rows, this matrix being obtained 
from that displayed above by transposing rows and columns.

Exercises

1. Let &  =  (1 ,1 ,1 ), f a =  (2 ,1 ,2 ), f ,  =  (3,4, -1 ),  f 4 =  (4 ,6 ,7 ). Find num
bers c, not all zero such that +  c2£2 +  c3£3 +  c4£4 =  0.

2. Let rji =  (1 +  U 2i), i?2 =  (2, —3/), 173 =  (2i, 3 +  4i). Find all complex 
numbers c, such that CjTji +  c2Tj2 +  c3t)3 =  0.

3. Find two vectors which span the subspace o f all vectors (xu x2, x3, x4) 
satisfying +  x2 =  x3 — x4 =  0.

4. Do Ex. 3 for the vectors satisfying

3*! — 2x2 +  4x3 +  x4 =  Xi +  x2 — 3x3 -  2x4 =  0.

5. Find a basis of the proper number of linearly independent solutions for 
each of the following four systems of equations:

(a) x +  y +  3z =  0, (b) x +  y +  z =  0,
2x +  2y +  6z =  0; y +  z +  t =  0;

(c) x +  2y -  4z =  0, (d) x +  y +  z +  / =  0,
3x +  y — 2z =  0; 2x +  3y -  z +  t =  0,

3x +  4y +  2/ =  0.
6. Do Ex. 5 if the equations are taken to be congruences modulo 5.
7. Determine whether each o f the following vector equations (over the 

rational numbers) has a solution, and when this is the case, find one 
solution.
(a) (1 , -2 ) =  x i ( l , l )  +  xa(2,3 ),
(b) (1 ,1 ,1 ) =  x , ( l ,  -1 ,2 )  +  xa(2 ,1,3) +  x3( l ,  -1 ,0 ),
(c) (2, -1 ,1 )  =  x1(2 ,0 ,3 ) +  x3(3, 1,2) +  x3( l ,  2, -1 ).
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8. In Q4 let a , =  (1 ,1 , 2 ,2 ), a 2 =  (1 ,2 ,3 ,4), a 3 =  (0 ,1 ,3 ,2 ),  and a4 -  
(—1,1, —1,1). Express each o f the following four vectors in the form 
x,ar i +  x2ar2 +  x3a 3 +  x4a4:
(a) (1 ,0 ,1 ,0 ), (b) (3, -2 ,1 ,  -1 ),  (c) (0 ,1 ,0 ,0 ), (d) (2, -2 ,2 ,  -2 ).

9. Show that an m x  n matrix can be put in row-reduced form by at most m 2 
elementary operations on its rows.

10. Show that a 4 x  6 matrix can be put in row-reduced form after at most 56 
multiplications, 42 additions and subtractions, and 4 formations o f reciproc
als. (Do not count computations like aa~l =  1, a -  a =  0, or 0a =  0.) 

★11. State and prove an analogue o f Ex. 10 for n x  n matrices.

7.8. Bases and Coordinate Systems

A  basis of a space V  was defined to be an independent set of vectors 
spanning V. The real significance of a basis lies in the fact that the vectors of 
any basis of F n may be regarded as the unit vectors of the space, under a 
suitably chosen coordinate system. The proof depends on the following 
theorem.

Theorem 14. I f  a i, • • • , anform a basis for V, then every vector f  e V  
has a unique expression

(27) f  =  *iari +  x2a 2 +  • • • +  x„a„

as a linear combination o f the a,.

Proof. Since the a, form a basis, they span V, hence every vector f  in 
V  has at least one expression of the form (27). I f some f  e V  has a second 
such expression £ =  xjari +  • • • +  x'„a„, then subtraction from (27) and 
recombination gives

0  =  £ -  £ =  (*! -  x i)« i +  •••  +  ( * „ -  x ’J a n.

Since the a, are a basis, they are independent, and the preceding equation 
implies that (x t -  x ’f) =  • • • =  (x„ -  x'„) =  0 , so that each x, =  x'h 
whence the expression (27) is unique.

We shall call the scalars x, in (27) the coordinates of the vector £ 
relative to the basis a if • • •, an. If

7j =  +  y2a2 +  • • • +  ynan

is a second vector of V, with coordinates yi, • • •, y„, then by the identities
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of vector algebra

(28) f  +  17 =  (xi +  yOai  +  (x2 +  y2)a 2 +  ••• +  (*„ +  yn)an.

In words, the coordinates of a vector sum relative to any basis are found 
by adding corresponding coordinates of the summands. Similarly, the 
product of the vector f  of (27) by a scalar c is

(29) c f  =  c (x i « i  +  • • • +  x„a„) =  (cx i)a i +  • • • +  (cxn)an,

so that each coordinate of c f  is the product of c and the corresponding 
coordinate o f f.

By analogy with the corresponding definitions for integral domains 
and groups, let us now define an isomorphism C: V  -* W  between two 
vector spaces V  and W, over the same field F, to be a one-one correspon
dence f  -* f C  o f V  onto W  such that

(30) ( f  +  7?)C =  fC  +  tjC and (c f )C  =  c ( fQ

for all vectors f, 17 in V  and all scalars c in F. Equations (28) and (29) 
then show that each basis a 1; • • •, an in a vector space V  over F  provides 
an isomorphism of V  onto F". This isomorphism is the correspondence 
Ca which assigns to each vector f  of V  the n -tuple of its coordinates 
relative to a, as in

(31) (x ia i +  • • • +  xnan)Ca =  (* i, • • •, xn) e F n.

Since the number n of vectors in a basis is determined by the dimension 
n, which is an invariant (Theorem 5, Corollary 1), we have proved

Theorem 15. Any finite-dimensional vector space over a field F  is 
isomorphic to one and only one space F n.

We have thus solved the problem of determining (up to isomorphism) 
all finite-dimensional vector spaces. What is more, we have shown that all 
bases of the same vector space V  are equivalent, in the sense that there is 
an automorphism of V  carrying any basis into any other basis.

A  vector space can have many different bases. Thus by Theorem 7, 
any sequence of vectors of F "  obtained from £ ! , • • • , £„  by a succession 
of elementary row operations is a basis for F". In particular, = 
(1 ,1 ,0 ), a2 =  (0 ,1 ,1 ), and a 3 =  (1 ,0 ,1 ) are a basis for F 3 for any field 
F  in which 1 +  1 ^ 0 .  Likewise, any three noncoplanar vectors in ordi
nary three-space define a basis of vectors for “ oblique coordinates.”
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Again, the field C of all complex numbers may be considered as a 
vector space over the field R  o f real numbers, if one ignores all the 
algebraic operations in C except the addition of complex numbers and the 
(“ scalar” ) multiplication of complex numbers by reals. This space has the 
dimension 2 , for 1 and i form a basis, generating respectively the 
“ subspaces”  of real and pure imaginary numbers. The two numbers 1 +  i 
and 1 — i form another, but less convenient, basis for C over R.

Or consider the homogeneous linear differential equation cfx/dt1 — 
3dx/dt +  2x =  0. One verifies readily that the sum x i(t ) +  x2(t) of two 
solutions is itself a solution, and that the product of a solution by any 
(real) constant is a solution. Therefore the set V  of all solutions of this 
differential equation is a vector space, sometimes called the “ solution 
space”  of the differential equation. The easiest way to describe this space 
is to say that e‘ and e2t form a basis of solutions, which means precisely 
that the most general solution can be expressed in the form x =  
C\e‘ +  c2e2\ in one and only one way.

Finally, the domain F [x ] of all polynomial forms in an indeterminate x 
over a field F  is a vector space over F, for all the postulates for a vector 
space are satisfied in F [x ]. The definition of equality applied to the 
equation p (x ) =  0 implies that the powers l ,x,  x2, x 3, • • • are linearly 
independent over F. Hence F [x ] has an infinite basis consisting of these 
powers, for any vector (polynomial form) can be expressed as a linear 
combination of a finite subset o f this basis.

In R 3, a plane S and a line T  not in 5, both through the origin, span 
the whole space, and any vector in the space can be expressed uniquely as 
a sum of a vector in the plane and a vector in the line. More generally, we 
say that a vector space V  is the direct sum of two subspaces S and T  if 
every vector f  of V  has one and only one expression

(32) f  =  a  +  t , = a  e S, r  s T

as a sum of a vector of 5 and a vector of T.
Since (a  +  t )  +  (o-' +  t ')  =  (cr +  a ') +  ( t  +  t '), the correspondence 

(a, t )  -* {a  +  t )  is an isomorphism from the additive group o f the vector 
space V  onto the direct product (§6.11) of the additive groups of 5 and T. 
More generally, F n is the direct product (as an additive group) of n copies 
of the additive group of F ; in symbols, F " =  F  x  • • • X F  (n factors).

Conversely, if S and T  are any two given vector spaces over the same 
field F, one can define a new vector space V  =  S ®  T  whose additive 
group is the direct product of those of S and T, scalar multiplication being 
defined by the formula c(rj, f )  =  (crj, c f ) for any c e F. In this V, the 
subsets of (17,0 ) and (0, f ) constitute subspaces isomorphic to S and T, 
respectively; moreover, V  is their direct sum in the sense defined above.
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One also speaks of S ©  T  as the direct sum of the given vector spaces 5 
and T.

Theorem 16. I f  the finite-dimensional vector space V  is the direct sum 
o f its subspaces S and T, then the union o f any basis o f S with any basis of 
T  is a basis of V.

Proof. Let 5 and T  have the bases P\, - • • ,Pk and yu • • •, ym, 
respectively; we wish to prove that p u • • •, Pk, yi, • • •, ym is a basis of V. 
First, these vectors span V, for any f  in V  can be written as f  =  17 +  £, 
where 17 is a linear combination of the /3’s and £ of the y ’s. Secondly, 
these vectors are linearly independent, for if

(33) 0 =  b iP i +  • • • +  bkPk +  CiTi +  • ■ • +  cmym,

then 0 is represented as a sum of the vector 770 =  £  bfij in 5 and 
£0 =  Z  Cjjj in T. But 0 =  0 +  0 is another representation of 0 as a sum of 
a vector in S and one in T. By assumption, the representation is unique, 
so that 0 =  170 =  Z  bfij and 0 =  £c/y;. But the /3’s and the y ’s are 
separately linearly independent, so that bi — • • • =  bk =  0 and c\ =  
• • • =  cm = 0. The relation (33) thus holds only when all the scalar 
coefficients are zero, so that the p u • • •, pk, yi, • • •, ym are indeed 
linearly independent.

This theorem and its proof can readily be extended to the case of a 
direct sum of a finite number of subspaces.

Corollary. I f  the finite-dimensional space V  is the direct sum of its 
subspaces S and T, then

(34) d[V\ =  d [S ] +  d [T ].

P roof Since the dimension of a space is the number of vectors in 
(any) basis, the above proof shows that when d [S ] =  k and d{T\ =  m, 
then d[V\  =  k +  m. Q.E.D.

When V  is the direct sum of 5 and T, we call 5 and T  complementary 
subspaces o f V. We then have

(35) S + T = V ,  5 n  T  =  0.

Indeed, (32) states that V  is the linear sum of the subspaces 5 and T. 
Secondly, if is any vector common to 5 and T, then fii has two 
representations £1 =  £ 1 +  0 and £ 1 =  0 +  £1 of the form (32); since these 
two representations must be the same, =  0 , so that the intersection
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S n  T  is zero, as asserted. Conversely, we can prove that under the 
conditions (35), V  is the direct sum of S and T. Thus in this case equa
tion (34) reduces to d[V\  =  d [S  +  T ] +  d [S  n  T ) = <f[S] +  d [T ].  This 
latter result holds for any two subspaces.

Theorem  17. Let S and T  be any two finite-dimensional subspaces of 
a vector space V. Then

(36) rf[5] +  d [T ] =  d [S  n  T ] +  +  T],

Proof. Let gu • • •, be a basis for S n  T ; by Theorem 6 , S and T  
have bases f i ,  • • •, £,, r/,, • • •, r/r and fr, ■ ■ •, £,, • • •, & respectively.
Clearly, the £, r/,, and £k together span S +  T. They are even a basis, 
since

a\t\ +  • • • +  a„£n +  b\Tfo +  • • • +  brrir +  ĉ C\ +  • • • +  c£s =  0

implies that X bftft =  — £  a ^  — X cfĉ fc is in T, whence X is in 5 n  T  
and so X =  £  d ^  for some scalars dh Hence (the §  and being 
independent) every is 0. Similarly, every ck =  0; substituting, £  =
0, and every a, =  0. This shows that the £, r/; and & are a basis for 
S +  T.

But having proved this, we see that the conclusion o f the theorem 
reduces to the arithmetic rule (n +  r) +  (n +  s) =  n +  (n +  r +  s).

E xerc ises

1. In Ex. 4 of §7.6, which of the indicated sets o f vectors are bases for the 
spaces involved there?

2. In Q4, find the coordinates of the unit vectors e „  e2, e3, e4 relative to the 
basis

a , =  (1, 1, 0, 0), a 2 =  (0, 0, 1, 1), a 3 =  (1, 0, 0, 4), a 4 =  (0, 0, 0, 2).

3. Find the coordinates o f (1 ,0 ,1 ) relative to the following basis in C3:

(2«,1,0), (2 ,-«,1), (0,1 +  i, 1 — i).

4. In Q4, find

(a) a basis which contains the vector (1 ,2 ,1 ,1 );
(b) a basis containing the vectors (1 ,1 ,0 ,2 ) and (1, -1 ,2 ,0 );
(c) a basis containing the vectors ( 1 , 1 ,0 ,0), (0 , 0, 2 ,2), (0 , 2 ,3 ,0).

5. Show that the numbers a +  b 'J l  +  c V3 +  d -J6 +  e V l2  with rational 
a, • • ■, e form a commutative ring, and that this ring is a vector space over 
the rational field Q. Find a basis for this space.
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6. In Q4, two subspaces S and T  are spanned respectively by the vectors:

S: (1 ,-1 , 2, -3 ),  (1 ,1 ,2 ,0 ), (3 , - 1 ,6 , -6 ) ,
T: (0 , - 2 ,0 , - 3 ) ;  (1 ,0 ,1 ,0 ).

Find the dimensions of S, of T, or S n  Ty and o f S +  71 
★7. Solve Ex. 6 for the most general Zp4.

8. Find the greatest possible dimension o f S +  T  and the least possible 
dimension o f S n  T, where S and T  are variable subspaces o f fixed 
dimensions s and t in F ". Prove your result.

★9. Prove that, for subspaces, S n T = S n T ' , S  +  T =  S +  T ,  and T  c: T  
imply T  =  T '.

10. I f  S is a subspace of the finite-dimensional vector space V, show that there 
exists a subspace T  of V  such that V  is the direct sum of S and T.

★11. V  is called the direct sum o f its subspaces Su • • •, Sp if each vector £ of V  
has a unique expression £ =  ijj +  • • • +  tjp, with tj,- e S,. State and prove 
the analogue of Theorem 16 for such direct sums.

12. Prove that V  is the direct sum o f S and T  if and only if (35) holds.
★13. State and prove the analogue o f Ex. 12 for the direct sum of p subspaces.

14. By an “ automorphism”  of a vector space V  is meant an isomorphism of V  
with itself.
(a) Show that the correspondence (x lX z .X j)!- * (* 2. - x ltx3) is an 

automorphism of F 3.
(b) Show that the set o f all automorphisms of V  is a group of transforma

tions on V.
15. An  automorphism of F 2 carries (1 ,0 ) into (0 ,1 ) and (0 ,1 ) into (—1, —1). 

What is its order? Does your answer depend on the base field?
★16. Establish a one-one correspondence between the automorphisms (cf. Ex. 

14) of a finite-dimensional vector space and its ordered bases. How many 
automorphisms does Z 2 have? What about Zp"?

7.9. Inner Products

Ordinary space is a three-dimensional vector space over the real field; 
it is R 3. In it one can define lengths of vectors and angles between vectors 
(including right angles) by formulas which generalize very nicely not only 
to R", but even to m/imte-dimensional real vector spaces (see Example 2 
of §7.10). This generalization will be the theme of §§7.9—7.11.

To set up the relevant formulas, one needs an additional operation. 
The most convenient such operation for this purpose is that of forming 
inner products. By the “ inner product”  of two vectors £ =  (jcj, • • •, x„) 
and tj =  (y i, • • •, y„), with real components, is meant the quantity

(37) (£  v )  =  * i y i  +  x2y2 +  • • • +  xnyn.
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(Since this is a scalar, physicists often speak of our inner product as a 
“ scalar product”  of two vectors.) Inner products have four important 
properties, which are immediate consequences o f the definition (37):

(38) (£ +  i7, £) =  (£  £) +  ( 17, 0 ,  (c£ 17) =  c (£  77);

(39) (£  ti) =  to, f ) ,  ( f , f ) > 0  unless | =  0.

The first two laws assert that inner products are linear in the left-hand 
factor; the third is the symmetric law, and gives with the first two the 
linearity of inner products in both factors (bilinearity); the fourth is that 
of positiveness.

Thus, the Cartesian formula for the length (also called the “ absolute 
value”  or the “ norm” ) |£| of a vector £ in the plane R 2 gives the length as 
the square root of an inner product,

(40) |£| =  (* i2 +  * 22) 1/2 =  (6 £)1/2.

A  similar formula is used for length in three-dimensional space. Again, if 
a and /3 are any two vectors, then for the triangle with sides a, /3, y  =  
/3 -  a (Figure 2), the trigonometric law of cosines gives

|/3 -  a\2 =  \a\2 +  |/312 -  2 1at| • |/3| • cos C,

(C  =  L (cl, /3)). But by (38) ancj (40),

|/3 — a |2 =  (/3 — a, /3 — a )  =  (/3, /3) -  2(a, /3) +  (a, a).

Combining and canceling, we get

(41) cos L.(a, (3) =  (a, /3)/|a | • |/31.

In words, the cosine of the angle A.(a, (3) between two vectors a and (3 is 
the quotient of their inner product by the product of their lengths. It 
follows that a and /3 are geometrically orthogonal (or “ perpendicular” ) if 
and only if the inner product (a, /3) vanishes.

In view of the ease with which the con
cepts of vector addition and scalar multiplica
tion extend to spaces of an arbitrary dimen
sion over an arbitrary field, it is natural to try 
to generalize the concepts o f length and angle 
similarly. When we do this, however, we find that although the dimension 
number can be arbitrary, trouble arises with most fields. Inner products
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can be defined by (37); but lengths

(42) | =  (£  £ )m  =  ( x 2 +  x22 +  • • • +  x 2) m

are not definable unless every sum of n squares has a square root. The 
same applies to distances, while angles cause even more trouble.

For these reasons we shall at present confine our discussion of lengths, 
angles, and related topics to vector spaces over the real field. In §9.12 the 
corresponding notions for the complex field will be treated.

Exercises

1. In the plane, show by analytic geometry that the square of the distance 
between £ =  (x „  x2) and 77 =  (y u y2) is given by \£ |2 +  17/12 -  2(£, 77).

2. Use direction cosines in three-dimensional space to show that two vectors £ 
and 17 are orthogonal if and only if (£, 77) =  0 .

3. I f  length is defined by the formula (42) for vectors £ with complex numbers 
as components, show that there will exist nonzero vectors with zero length.

4. Show that there is a sum of two squares which has no square root in the 
fields Z 3 and Q.

5. Prove formulas (38) and (39) from the definition (37).
6 . Prove formulas analogous to (38) asserting that the inner product is linear in 

the right-hand factor.
7. Prove that the sum of the squares of the lengths of the diagonals of any 

parallelogram is the sum of the squares of the lengths of its four sides.
★ 8 . In R 3, define outer products by

£ x  V =  (x2y3 -  x 3y2, x 3y 3 -  x ^ ,  Xly2 -  x ^ ) .

(a) Prove that (£  x rj, £ x t )  =  (£, £)(t}, t )  -  (£, r ) (%  £).
(b) Setting £ =  £, 77 =  r, infer the Schwarz inequality in R 3 as a corollary. 

(Cf. Theorem 18.)
(c) Prove that £ x  (v  * ( )  =  (£, ( ) v  ~  (£, v ) ( -

7.10. Euclidean Vector Spaces

Our discussion of geometry without restriction on dimension will be 
based on the following definition, suggested by the considerations of 
§7.9.

Definition. A  Euclidean vector space is a vector space E  with real 
scalars, such that to any vectors £ and 77 in E  corresponds a (real) “ inner
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product”  (£ ,  t j )  which is symmetric, bilinear, and positive in the sense o f 
(38) and (39).

E xam p le  1. Any R" is an n-dimensional Euclidean vector space if 
(£, tj)  is defined by equation (37).

E x a m p l e  2. The continuous real functions 4>(x) on the domain 
0 =  jc =  1 form an m/zm7e-dimensional Euclidean vector space, if we 
make the definition (<j>, ip) =  J0 ef>(x)ip(x)dx.

The “ length”  |£| of a vector £ of a Euclidean vector space E  may be 
defined in terms of the inner product as the positive square root 
(£> £)1/2— the existence of the root being guaranteed by the positiveness 
condition of (39).

Theorem  18. In any Euclidean vector space, length has the following 
properties:

(0
(ii)
(iii)
(iv)

=  |c| 
>  0 

£ 
£

•l£l-
unless € =  0 .

• h i  
+  h i

( Schwarz inequality). 
(itriangle inequality).

Proof. Since (c£, c£) =  c2(£, £), we have (i). Property (ii) is a corol
lary of the condition o f positiveness required in the definition of a 
Euclidean vector space.

The proof of (iii) is less immediate. If £ =  0 or tj =  0, then (iii) 
reduces to the trivial inequality 0 ^ 0 .  Otherwise,

0 S  (a^ ±  bp, a^ ±  bp) =  a 2(£, £) ±  2 ab(£, p ) +  b2(p, p ).

Set a =  |tj| and b =  |, so that a 2 =  (p, p ) and b2 =  (£,£)■ Transpos
ing, we then have

(43) *2\£ \ -\p\ -(£ ,p ) S  2{£, £)(p, p ) =  2 |£|2 -|tj|

Dividing through by 2\£\ • |tj| >  0, we get (iii).
From (iii) we now get (iv) easily, for

|£ +  v  |2 =  (£ +  £ +  v )  =  (£» £) +  2 (£, p ) +  (p, p )

s k i 2 +'2\£\-\p\ +  \p\2 =  (\£\ +  \p\)2.

Now, if we define the distance between any two vectors £ and tj of £
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as | £  — 17 1, we can show that it has the so-called “ m etric”  properties of 
ordinary distance, first considered abstractly by Frechet (1906).

Theorem  19. Distance has the properties:

(M l )  | f  -  f  | =  0 , while | f  -  171 >  0 / / f  #  77.
(M 2) Distance is symmetric, | f - T j |  =  | r j - f | .
( M 3) | f - T j |  +  | i j - f | a | f - f | .

Proof. First, | f  -  f  | =  |0 | =  |0 • f  | =  0 • | f  | =  0 by (i), while 
f  -  77 >  0 if f  -  77 #  0 (or f  #  77) by (ii), proving M l .  Secondly, 
f  -  77 =  |(—1)(t7 -  f)|  =  | - 1 | • 177 -  f  | =  177 -  f |  by (i), proving M 2 . 

Finally, M 3 follows from (iv) because

I f  -  771 +  | 77 -  f I  S  | ( f  -  T ,) +  (77 -  f ) |  =  I f  -  f | .

From  Schw arz’s inequality, we deduce in particular that for any f ,  77 not 
0 , we have - 1  g  (f, T j )/ | f  | • |tj | ^  1. Hence (f, 77)/! | f  | * 1771 is the cosine 
o f one and only one angle between 0° and 180°, which we can define as 
the angle between the vectors f  and 77 (compare the special case (41)). 
W e shall not prove except in the case of right angles that the angles so 
defined have any properties (could you prove that Z.(f, 77) +  /.(tj, f )  g

m .
T w o  vectors f  and 77 will be called orthogonal (in symbols, f  _L 77) 

whenever (f, 77) =  0 . This definition, applied to Exam ple 2 above, yields 
an instance of the important analytical concept of orthogonal functions. It 
is easy to prove that if f  ±  77, then 77 _L f  (the orthogonality relation is 
“ symmetric” ), and c f  ±  c'77 for all c, c '. A lso, 0 is the only vector 
orthogonal to itself. Furtherm ore, whenever (77, f i )  =  • • • =  (77, f m) =  0 , 
then for any scalars c„

(t?> "f" ’ * * "f" ^ m fm ) C l(^7» f j )  “l~ * • * “l~ Cm ( 77, f m)
=  Ci • 0 +  • • • +  cm • 0  =  0 ,

so that 77 is also orthogonal to every linear combination of the f,. This 
proves

Theorem  20. I f  a vector is orthogonal to f i ,  ■ • •, f m, then it is 
orthogonal to every vector in the subspace spanned by f i ,  • • •, fm.

Exercises

1. Set f  =  (1,2, 3,4), 77 =  (0 ,3 ,-2 ,1 ).  Compute (f,T7), |f|, 1171, ^ ( £ 77).
2. If f  and 77 are as in Ex. 1, find a vector o f the form (1 ,1 ,0 ,0 ) +  c , f  +  c2r)

orthogonal to both f  and 77.
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3. (a) Are sin 2irx and cos 2 m  “orthogonal” in Example 2 of the text?
(b) Are sin 2mirx and sin 2nmc orthogonal?
(c) Find a polynomial of degree two orthogonal to 1 and x.

4. Prove that |£ -  t j |2 + |£ + t j |2 = 2(|£|2 + |t j |2).
5. Prove that in R3, there are precisely two vectors of length one perpendicu

lar to two given linearly independent vectors.
6. Prove that there is a vector with rational coordinates in R 3 perpendicular to 

any two given vectors with rational coordinates.
7. If a and fi ^  0 are fixed vectors of a Euclidean vector space, find the 

shortest vector of the form y =  a +  tfi. Is this orthogonal to fit  Draw a 
figure. __

★8. If a is equidistant from fi and y, prove that_the midpoint of the segment fiy 
is the foot of the perpendicular from a to fiy.

9. Prove that if |£ | = |a  | in a Euclidean vector space, then £ — a ±  (  +  a. 
Interpret this geometrically.

★10. (a) Show that the discriminant B 2 — 4A C  of the quadratic equation

(f> £)t2 +  2(£ tj)/ + (tj, tj) = + tj I2 = 0

is four times (f, tj)2 — (f, £)(tj, tj).
(b) Using this fact, prove the Schwarz inequality. (Hint: | /£ + tj | = 0 

cannot have two distinct real solutions t unless £ = 0 .)
11. Prove | | f |  — | T j | | s | f  — tj|, in any Euclidean vector space.
12. Show that R 3 becomes' a Euclidean vector space if inner products are 

defined by

(£, v )  = (*1 + *2)(yi + y2) +  x2y2 +  (x2 + 2x3)(y2 + 2 y3).

7.11. Normal Orthogonal Bases

In Example 1 of §7.10, the “ unit vectors”  ei =  (1,0, • • •, 0), • • •, 
e„ =  (0,0, • • •, 1) have unit length and are mutually orthogonal. This is 
an instance of what is called a “ normal orthogonal basis.”

Definition. Vectors a lt • • •, ani are called normal orthogonal when (i) 
| or,-1 =  1 for all i, (ii) a, i. i f  i #  j.

Lemma 1. Nonzero orthogonal vectors a l t - - - , a m o f a Euclidean 
vector space E  are linearly independent.

Proof. If Xiori +  • • • +  xmam =  0, then for k =  1, • • •, m

0 (0, a k) offc) 4* • • • 4* xm(ofm, £/jt) xk(ock, ocjt),

where the last equality comes from the orthogonality assumption. But 
ak #  0 by assumption; hence (ak, ak) >  0 and xk =  0. Q.E.D.

Download more at Learnclax.com



Ch. 7 Vectors and Vector Spaces 204

Corollary. Normal orthogonal vectors spanning E  are a basis for E  (a 
so-called “ normal orthogonal basis” ).

W e shall now show how to orthogonalize any basis o f a Euclidean 
vector space, using only rational operations. This is called the G ram - 
Schmidt orthogonalization process.

Lemma 2. From any finite sequence o f independent vectors y i, -  • • ,y m 
of a finite-dimensional Euclidean vector space E, an orthogonal sequence 
o f nonzero vectors

(44) ai =  y, -  £  dikyk (i =  1, • • •, m)
k < i

can be constructed, which spans the same subspace of E  as the sequence 
Tl) ' ‘ " > Tm.

Proof. By induction on m, we can assume that orthogonal nonzero 
vectors a u • • •, am- j have been constructed which span the same sub
space 5 as y i, • • •, ym-i. W e now split ym into a part pm “ parallel”  to S, 
and a part am perpendicular to S. To do this, set

(44') am =  ym -  £  cmkak, where cmk =  (ym, ak)/(ak, ak).
k < m

Then for / =  1, • • •, m — 1, we have

m—1
(ô m? & j)  (Ym? ^7) X  Cmfc(̂ fc? O7) 0?

k — 1

since (ak, aj) =  0 if k ^  j  by orthogonality, while cm;(a;, a,-) = (ym, af) by 
(44'). Substituting in (44), we have by induction on m,

&m ym X  Cmk®k 7m X  Cmkyk 4" X  (-mkdkjyj.
k < m  k < m  j< k < m

This proves (44), with

dmk Cmk X  Cmjdjk- 
k</<m

Since ym is not dependent on yu • • •, ym~u it cannot be in S; hence 
am 0. Finally, yi, • • •, ym and a i, • • •, am both span the subspace 
spanned by S and ym. This completes the proof of Lemma 2.
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Theorem 21. Every set y - ■ ,y m o f normal orthogonal vectors o f a 
finite-dimensional Euclidean vector space E  is part of a normal orthogonal 
basis.

Proof. By Theorem 6 , the y, are part of a basis yp ■ • •, y„ of E. This
basis may be orthogonalized by Lemma 2, and then normalized by setting
j3i = of,-/| or,-1; the process will not change the original vectors yi, • • •, ym.

Corollary. Any finite-dimensional Euclidean vector space E  has a 
normal orthogonal basis.

The Gram-Schmidt orthogonalization process has other implications. 
Thus let S be any m -dimensional subspace of a Euclidean vector space 
E\ as above, S has a normal orthogonal basis <*!,•••, am. If y is any 
vector not in S, the process represents y as the sum y =  a +  (3 of a 
component ft in S and a component a perpendicular to every vector of S. 
The vector ft is called the orthogonal projection of y on S.

We shall conclude by determining all inner products on a given 
(real) finite-dimensional vector space V. Clearly, if a i3 • • •, an is any basis 
for V, then for any vectors £ =  jcjcki +  • • • +  xnan and tj = 
yiari +  • • • +  ynan, we have by bilinearity

(45) (£  tj)  = ( l  xfith X ykakJ =  X *.yfc(«,, <**)•

Thus, the inner product of any two vectors is determined by the n2 real 
constants (<*,, ak) =  aik as a certain “ bilinear”  form X  oikxiyk in the

i,k

coordinates jc, and yk. Because (<*,, ak) = (ak, a,), this form is called 
“ symmetric.”

Conversely, any symmetric bilinear form X Oikxtyk (aik =  aki) in F "
i,k

satisfies the first three conditions of (38) and (39). The fourth condition is 
that the quadratic form X  oikXiXk be “ positive definite”— i.e., be positive 
unless every jc( =  0. An algorithm for determining when a square matrix 
is positive definite will be derived in §9.9.

Relative to a normal orthogonal basis, we have (<*,, ak) =  0 if / ^  k, 
and (<*,, =  1; hence (45) reduces to

(46) ( £  tj) =  X  *.y. =  * i y i  +  • • • +  Jc„y„.
;=i

This formula enables us to conclude with

Theorem 22. Relative to any normal orthogonal basis, an “ abstract”  
inner product assumes the “ concrete”  form (46).
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Thus every finite-dimensional Euclidean vector space is isomorphic to 
some R".

Exercises

1. Find normal orthogonal bases for the subspaces of Euclidean four-space 
spanned by:
(a) (1, 1, 0, 0), (0, 1, 2, 0), and (0, 0, 3, 4);
(b) (2, 0, 0, 0), (1, 3, 3, 0), and (0, 4, 6, 1).
(H int: First find orthogonal bases, then normalize.)

2. Draw a figure to illustrate the orthogonal projection of a vector on a 
one-dimensional subspace.

3. Find the orthogonal projection o f /? = (2 ,1 ,3 ) on the subspace spanned by 
a = (1 , 0, 1 ).

4. Find the orthogonal projection o f /? = (0 ,0 ,0 ,3 ) on each of the subspaces of 
Ex. 1.

5. Let S be any subspace of a Euclidean vector space E. Show that the set S± of 
all vectors orthogonal to every £ in 5 is a subspace satisfying

S n  S x =  0, S +  S ± =  E, and d [S ] +  d [S x] =  d [E ].

(The subspace Sx is called the orthogonal complement of 5.)
6. Find a basis for the orthogonal complement of the subspace spanned by 

(2 ,-1 , —2) in Euclidean three-space.
7. Find bases for the orthogonal complements of each o f the subspaces of Ex. 1. 

★8. (a) Exhibit a nontrivial subspace of Q3 which does not contain any vector of
unit length.

(b) State and prove an analogue o f Lemma 2 which is valid for vector spaces 
with scalars in any ordered field.

7.12. Quotient-spaces

We shall now show that the construction of quotient-groups in §6.13 
has an easy extension to vector spaces. Let V  be any vector space over a 
field F, and let S be any subspace of V. Under addition, V  is a 
commutative group, and S is a (necessarily normal) subgroup of V. Hence 
we can form the additive quotient-group V/S.

For example, in Euclidean space R3, let S consist of the multiples 
(0, y, 0) of the unit vector (0,1, 0). Then the coset of any vector a =  
(a, b, c) will consist of the vectors (a, b +  y ,c ) having the same x - 
coordinate a and z-coordinate c as a  ; they are the vectors (a, •, c), where 
the dot stands for an arbitrary entry. The sum (a, •, c) +  (a ', •, c') of two 
such vectors in the quotient-group R 3/S is clearly (a +  a', -,c  +  c ').
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In this example, we can also multiply each vector (a, •, c ) by any scalar 
( e R t o  get the new coset (ta, •, to), and it is evident that the quotient- 
group R 3/S is a (real) vector space under these operations. We shall now 
show that a similar construction is possible in general.

Given a vector space V  over a field F, we can paraphrase the
discussion of §6.13 to obtain a quotient-space V/S =  X . Recall that for
any group G  and (normal) subgroup N, the elements of the quotient- 
group G /N  are simply the cosets x N  o f N  in G. Hence, given a subspace 
S of the vector space V, each vector a e , V  determines a coset o f S, 
defined as the set a +  S of all sums a +  er for variable er e S. Thus 
a =  a +  0  is one of the vectors in this coset; call it a “ representative”  of 
the coset. Two cosets a +  S and /3 +  S are equal (as sets) if and only if 
(a  — (3) e S ; when this holds, a and /3 represent (are members of) the 
same coset. Geometrically, the different cosets o f a subspace 5 are just its 
“ parallel subspaces”  under translation.

Now define the sum of two cosets to be the coset

(a  +  S) +  (fi +  S) — (ce +  /3) +  S',

as in Lemma 2 o f §6.13, this sum does not depend on the choice of the 
representatives a and /3. Next, define the product of a coset a +  5 by a 
scalar c to be the coset

c (a  +  S) =  ca +  S.

Since (a  -  j3) e S implies (ca -  c/3) e S, this product also does not 
depend on the choice of the representative o f the given coset. It is readily 
verified that these two definitions make the set V/S o f all the cosets of 5 
in V  into a vector space, called the quotient-space of V  by 5. Moreover, if 
the function P  is defined by a P  =  a +  S, then P  is an epimorphism of 
vector spaces with kernel exactly S and range all of V/S. This transforma
tion P  is called the canonical projection of V  onto its quotient-space; we 
have thus proved

Theorem 23. Given any subspace S o f a vector space V, there exists a 
quotient-space X  =  V/S and an epimorphism P : V  -* X  whose kernel 
is S and whose range is X.

Exercises

1. If 5 is a one-dimensional subspace of the space R3, show that the cosets of 5 
are the lines parallel to 5.
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2. For V  =  F 3, F  any field, let S be the subspace spanned by (1 ,1 ,0 ) and 

(1 , 1 , 1 ).
(a) Show that two vectors (x, y, z ) and (x', y ',z ')  are in the same coset of S if

and only if x +  y ' =  x ' +  y.
(b) For F  =  R, describe S and its cosets geometrically.

3. Prove that if S is a subspace of V  — F "  that is isomorphic to F m, then V/S is
isomorphic to F ”~m.

4. Prove in detail that, under the operations displayed in the text, the cosets of 
any subspace S of a vector space V  do form a vector-space.

5. Let V  =  R [x ] be the space of all real polynomials /(x), and let <j>: / (x) *-> 

! [/ (* )  + /(-*)]•
(a) Show that 0  is a homomorphism of vector spaces.
(b) Describe its kernel S and the quotient-space V/S.

*7 .1 3 . Linear Functions and Dual Spaces

In elementary algebra, a (homogeneous) “ linear function”  of the 
coordinates x, of a variable vector f  =  (xi, • • •, x„) of the finite
dimensional vector space V  =  F " is a polynomial function of the special 
form

(47) / (f) =  f f  =  CiXi +  • • • +  c„x„ =  XjCj +  • • • +  xncn,

where the c, terms are arbitrary constants in the field F. One easily 
verifies that any such function / satisfies the identities'

(48) ( f  +  n )f  =  0  +  17/, (a f)/  =  a (0 ),

for any vectors f, 17 in V  and any scalar a in F.
The preceding identities have two advantages over the definition by 

formula (47): they are intrinsic (i.e., they do not depend on the choice of 
a basis in V ), and they apply to infinite-dimensional vector spaces (e.g., to 
function spaces). W e shall therefore define a linear function f  on any 
vector space V  over any field F  as a function from V  to F  which satisfies 
the two identities (48).

The first identity, with 17 =  0, shows at once that 0/ =  0. The two 
identities imply the combined identity

(49) (a f  +  br\)f =  a (f/ ) +  b (r f ) ,  f, -q e  V; a ,b  e F.

Conversely, this one identity yields the first identity of (48), for a =  b =  
1, hence Of =  0, and hence the second identity of (48), for b =  0. 
Briefly, a linear function / is one which preserves linear combinations.
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The concept of “ linear function”  just defined is virtually equivalent to 
that of “ coordinate”  introduced in §7.8; namely, each in Theorem 14 is 
a linear function of £  as i  varies over V. The following result is “ dual”  to 
Theorem 14, in a sense which will be made precise shortly.

Theorem 24. I f  P i, • • • ,P„ is a basis o f the vector space V  over F, and 
i f  Ci, • • •, c„ are n constants in F, then there is one and only one linear 
function f  on V  with /?,/ =  c„ i =  1, • • •, n. This function f  is given by the 
formula

(50) (xrPr +  • • • +  x„pn) f  =  XiCi + ' ■ • • +  x„c„.

Proof. By induction on n, equation (50) follows directly from (49) for 
any linear function / with ptf  -  c„ / =  1, • • •, n. Conversely, for any 
basis P u "  ' ,P„  of V, each f  has by Theorem 14 a unique expression 
f  =  XiPi +  • • • +  x„pn. For any constants Ci, ■ • •, c„ in F, equation (50) 
therefore defines a single-valued function. This function is linear, because 
for any f  and tj = y ^  +  • • • +  y„p„,

(a i  +  b r))f =  ( I  (axi +  6y,)A )/  =  I  (a*, +  byf)c,

=  a I  xfii +  b I  y,Ci =  a ( i f )  +  b(rrf),

so that condition (49) is satisfied.

Corollary. The linear functions on F n are the functions given by the 
linear expressions (47).

Indeed, (47) gives that function / which takes the value C; at the unit 
vector e, of F n. Each linear function is thus determined uniquely by the 
n-tuple (ci, • • •, c„) of coefficients in the formula (47); this suggests that 
the linear functions themselves form a vector space.

For any vector space V, define the sum / +  g of two linear functions /
and g to be the function given by the equation

(51) i ( f  +  g ) =  i f  +  ig  for all £ € V,

and the product fc  of the linear function / by a scalar c to be the function
given by the equation

(52) i ( f c )  =  ( i f )c  for all f  e V, c e F.

One verifies readily that / +  g and fc  are again linear functions on V.
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Theorem  25. I f  V  is a vector space over F, the set V * o f all linear 
functions on V  is also a vector space over F, under the operations f  +  g and 
fc  defined by (51) and (52).

This space V *  of linear functions on V  is called the dual or conjugate 
vector space to V ; it is fundamental in modern mathematics.

The proof requires only that we verify that the axioms for a vector 
space hold for the operations f  +  g and fc. For example, to prove the 
distributive law (/ +  g)c  =  fc  +  gc, observe that for any £ e V,

(53) £[(/ +  g )c ] =  [£(/ +  g )]c =  [£/ +  & ]c

=  (& )c  +  (& )c  =  £(/c) +  £(gc) =  £(/c +  gc),

by the definitions (51) and (52) and the distributive law in V. This 
equation states that the functions (/ +  g)c and fc  +  gc have the same 
value for any argument £  hence are necessarily equal. The proof of the 
other axioms is similar.

Corollary 1. I f  the vector space V  has a finite basis • • •, j8„, then its 
dual space V * has a basis / ),•••,/ „, consisting o f  the n linear functions fi 
defined by (xi/3i +  • • • +  x„fin)fi = x„ i =  1, ■ • •, n. The n linear func
tions fi are uniquely determined by the formulas

f 0 if  i *  fi
(54) ■ i , j  =  h - - ' , n .

[ 1  i f  i =  1,

Proof. For n given scalars C\, • • •, c„, the linear combination / =  
f\C\ +  • • • +  /„c„ is a linear function; by (54), its value at any basis vector
Pi is

f t ( l  f ic) j  =  I  PifjCj =  c,.

It follows that the functions f u •••,/„ are linearly independent in V *, for 
if / =  /iCj +  • • • +  /„c„ =  0 , then fS,f =  0 for each hence c, =  c2 =  
• • • =  c„ =  0. It also follows that the n linear functions /i, • • • ,/„ span 
V*: any linear function / is determined, by Theorem 24, by its values 
f i i f  =  c„ and hence / is equal to the combination X ficj formed with these 
values as coefficients. 1

The basis f u • • • is called the basis of V * dual to the given basis 
P u - - ' , P n  Of V.

Corollary 2. The dual V * o f an n-dimensional vector space V  has the 
same dimension n as V.
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The transformation T: V  -> V *  which maps each vector £  x fii of V  
into the function E/i*, of V *  is an isomorphism of V  onto V *; the 
isomorphism, however, depends upon the choice of the basis in V.

If i  is a vector in V  and / a vector in the dual space V*, one can also 
write the value of / at the argument i  in the symmetric “ inner product” 
notation i f  =  (f, f ) .  Equation (49) then becomes

(55) (a i  +  bv , f )  =  a ( i , f )  +  b (v , f ) ,

while the definitions (51) and (52) of addition and scalar multiplication 
become

(56) ( i , f c  +  gd) =  ( i , f ) c  +  H, g)d.

The similarity of these two equations suggests another interpretation. In 
( i , f ) ,  hold i  fixed and let / vary. Then, by (56), f  determines a linear 
function of /, and by (55), the vector operations on these functions 
correspond exactly to the vector operations on the original vectors i  

Formally, each i  in V  determines a function F(  on the dual space V*, 
defined by F^ (f) =  ( f , f ) .  Then (56) states that is a linear function.

Theorem 26. Any finite-dimensional vector space V  is isomorphic to 
its second conjugate space (V * )* , under the correspondence mapping each 
i  e V  onto the function F(  defined by F ^ (f) =  if.

Proof. By (55), the correspondence r : i  -* F(  preserves vector addi
tion and scalar multiplication. We now show that r  is one-one, hence an 
isomorphism. If i  ^  t j, then i  =  i  — 17 5* 0, and so i  is a part o f a basis 
o f V. Hence, by Theorem 24, there is a linear function f 0 in V *  with 
ifo =  1  #  0 , so that

W o )  =  F„(/o) +  F( ( f 0) =  F„(/0) +  1 *  F„(/0).

This proves that r  is one-one, hence an isomorphism of V  into (V * )* . But 
by Corollary 2 of Theorem 25, V  and (V * )*  have the same dimension, 
hence r  is onto. Q.E.D.

This isomorphism i  -> F( , unlike that between V  and V *  implied by 
Corollary 2, is “ natural”  in that its definition does not depend upon the 
choice of a basis in V.

With any subspace S o f V  we associate the set S' consisting of all 
those linear functions / in V * such that (a ,f )  =  0 for every a  in S. We 
call S' the annihilator of S. It is clearly a subspace of V*, for (a , f )  =  0 
and (a, g ) =  0 imply (a ,fc  +  gd) =  0. The correspondence S -> S'
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between subspaces of V  and their annihilators in V* has the property 
that

(57) S e  T  implies S' => T

(inclusion is reversed). For if / e T ,  then (tr,/) = 0 for every tr in T, and 
hence for every tr in S T. The annihilator of the subspace consisting of 
0 alone is the whole dual space V*, and the annihilator of V  is the 
subspace of V* consisting of the zero function alone.

Dually, each subspace R  of the conjugate space V* determines as its 
annihilator the subspace R ' of V, consisting of all £ in V  with (£,/) =  0 
for every / in R.

Theorem 27. I f  S is a k-dimensional subspace o f the n-dimensional 
vector space V, then the set S ' o f all linear functions f  annihilating S is an 
(n — k)-dimensional subspace of V*.

Proof. Choose a basis jSi, • • ■ , j8k of S and extend it, by Theorem 6 , 
to a basis jSi, • • •, j8„ of V. In the dual basis f\, •••,/„ of V*, the function 
/iCi +  • • • +  /„c„ vanishes in all of S if and only if it vanishes for each 
P u ‘ ' ’ >Pk‘> that is, if and only if Ci =  • • • =  ck =  0. This means pre
cisely that the n — k functions fa+u ’ "  >fn form a basis of the annihilator 
S' of S.

Theorem 27 is just a reformulation of Theorem 13, about the number 
of independent solutions of a system of homogeneous linear equations.

The correspondence S S' of subspaces to their annihilators leads to 
the Duality Principle of n-dimensional projective geometry, in which 
connection the following properties are also basic.

Theorem 28. The correspondence S S ' satisfies

(58) (S ') ' =  5, (5  +  T ) ' =  S' n  T ', (S n  T ) ' =  5 ' +  T .

Proof. Since (£,/) =  0 for all £ in S and all / in S', each £ in S 
annihilates every vector / e S', hence £ e (S ')', and thus (S ')' => S. But by 
Theorem 27, the dimension of (S ')' is n — (n — k ) =  k =  d[S ]; therefore 
(S ')' >  S is impossible, and (S ')' =  S.

This equation states that the correspondence S S' of a subspace to 
its annihilator when applied twice is the identity correspondence; hence 
this correspondence has an inverse and is one-one onto. Because it also 
inverts inclusion by (57), it follows that it carries S +  T, the smallest 
subspace containing S and T, into the largest subspace S ' n  T ' contained 
in S' and T ,  and dually that (S n  T ) ' =  S ' +  T '.
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Corollary 1. Let L (V )  be the set o f all subspaces o f a finite- 
dimensional vector space V  over a field. There is a one-one correspondence 
of L (V )  onto itself, which inverts inclusion and satisfies (58).

Proof. Let any fixed basis f iu - ■ ■ , f in be chosen in V. For any 
subspace S of V, let S' be the set of all vectors 17 =  yi/?i +  • • • +  y„/3„ 
such that

(59) xiyx +  ■ • • +  xnyn =  0 for all £ =  ( x ^  +  ■ • • +  x„/3„) in S.

The arguments leading to Theorem 27 and (58) can be repeated to give 
the desired result.

Remark 1. In the case of a finite-dimensional Euclidean vector space 
E, there is a natural isomorphism from E  to its dual E *, which can be 
defined in terms of the intrinsic inner product (£, 17). The formula £fv =  
(£  17) defines for each vector 17 e E  a function f v on E, which is linear 
since (£  17) is bilinear. The correspondence 17 -» /j, can easily be shown to 
be an isomorphism of E  onto E *.

Remark 2. The isomorphism of V  to V*  does not in general hold for 
an infinite-dimensional space V. For example, let V  be the vector space 
of all sequences £ =  (xx, • ■ • ,x n, ■ • •), xn e F, having only a finite 
number of nonzero entries, addition and multiplication being performed 
termwise. Any linear function on V  can still be represented in the form 
£f =  £  xfii for an arbitrary infinite list of coefficients y =  
(ci, c2, • • ■, c„, • • •). Hence the dual space V* consists o f all such infinite 
sequences. The spaces V  and V *  are not isomorphic; for example, to 
appeal to more advanced concepts, if F  is a countable field, then V  is 
countable but V *  is not.

Exercises

1. Complete the proof of Theorem 25.
2. Let /],••• ,/„ be n linearly independent linear functions on an n-dimensional 

vector space V, and Cj, • • • ,c„ given constants. Show that there is one and 
only one vector £ in V  with = c„i = (1,••• , « .  Interpret in terms of 
nonhomogeneous linear equations.

3. (a) Complete the proof in Remark 1.
(b) Show the connection with Corollary 1 of Theorem 25.

4. In C4, define (£, tj) = jc,y2 ~ yix 7 + x3y4 -  y3x4. For each subspace S, define 
S' as the set of all vectors r\ with (£, rf) = 0 for all f  e S. Prove (57) and (58), 
and show that if S is one-dimensional, then S c: S'.
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The Algebra of 
Matrices

8.1. Linear Transformations and Matrices

There are many ways of mapping a plane into itself linearly, that is, so 
that any linear combination o f vectors is carried into the same linear 
combination of transformed vectors. Symbolically this means that

(1) (c£ +  d r ,)T  =  c (£T ) +  d(r\T).

Equivalently, it means that T  preserves sums and scalar products, in the 
sense that

(2 ) ( f  +  n )T  =  £T  +  r\T, ( d ) T  =  c(£T).

For example, consider the (counterclockwise) rigid rotation R e o f the 
plane about the origin through an angle 0. It is clear geometrically that R e 
transforms the diagonal f  +  17 o f the parallelogram with sides £ and 17

214
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into the diagonal £Re +  r)Re o f the rotated parallelogram with sides £Re 
and 17R e. This is illustrated in Figure 1, where 6 =  135°; it shows that 
(£ +  17)Re =  $Re +  vRe- Also, if c is any real scalar, the multiple eg of £ 
is rotated into c(f;Rg), so that (c£ )R g =  c(£Rg). Hence any rigid rotation 
of the plane is linear; moreover, the same considerations apply to 
rotations of space about any axis.

Again, consider a simple expansion D k of the plane away from the 
origin, under which each point is moved radially to a position k times its 
original distance from the origin. Thus, symbolically,

(3) ££)* =  ki; for all £

This transformation again carries parallelograms into parallelograms, 
hence vector sums into sums, so that (£ +  r ])D k =  £Dk +  r)Dk. 
Moreover, (c£ )Dk =  keg =  ck£ =  c (gD k); hence D k is linear. Note that 
if 0 <  k <  1, equation (3) defines a simple contraction toward the origin; 
if k =  —1 , it defines reflection in the origin (rotation through 180°), so 
that these transformations are also linear.

Similar transformations exist in any finite-dimensional vector space 
F". Thus, let T  be the transformation of R 3 which carries each vector 
£ =  (jci, x2, x3) into a vector 17 =  (yi, y2, y3) whose coordinates are given 
by homogeneous linear functions

(4) yj =  a i* ! +  bxx2 +  C\X2f ■ ■ ■, y3 =  <*3*1 +  b3x 2 +  c3x3

of x u x2, and x3. Clearly, if the x, are all multiplied by the same constant
d, then so are the y, in (4), so that (d £ )T  =  dr) =  d(T ij). Likewise, the
transform £ of the sum £ +  =  (* i +  X\, x2 +  x2, x3 +  x3') of £ and the
vector =  (* ]', x2, x3) may be computed by (4) to have the coor
dinates

Zj =  dj(x\ +  X)') +  bj(x2 +  x2) +  Cj(x3 +  x3)
=  (a jX i +  bjX2 +  cjx3) +  (a ,x i +  bpc2 +  cpc3 ),

for / =  1, 2, 3. This zi is just y, +  y/, where the ŷ  are given by (4) and 
the y/ are corresponding primed expressions; that is, (£ +  £ ')T  =  
£T +  g'T.

Conversely, any linear transformation T  on R 3 into itself is of the 
form (4). To see this, denote the transforms of the unit vectors

e, =  ( 1 , 0 , 0 ), e2 =  (0 , 1 , 0 ), e3 =  (0 , 0 , 1 ) 

by a =  (a 1, a2, a3), & =  (b i,b 2,b 3), y =  (c1; c2,c 3).
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Then T  must carry each £ = (jc1( x2, x3) in R3 into

V =  € T  =  (x ie i +  x 2e 2 +  x3z3) T
=  * 1(6 ! T ) +  x2(e2T ) +  x3(e3T ) =  x xa +  x2& +  x3y 
=  (x tat +  x2bi +  x3ct , x ta2 +  x2b2 +  x3c2, x ^ 3  +  x2b3 +  x3c3).

Hence, if T  is linear, it has the form (4).
The preceding construction gives the coefficients of (4) explicitly. Thus 

consider the counterclockwise rotation R e about the origin through an 
angle 0. The very definition of the sine and cosine functions shows that 
the unit vector Ci =  ( 1 , 0) is rotated into (cos 0, sin 0), while the unit 
vector e 2 =  (0 , 1 ) is rotated into

(cos (0 +  7t/2 ), sin (0 +  7r/2 )) =  (-sin 0, cos 0).

Thus in (4) we have a =  cos 0, b =  sin 0, a* =  -sin 0, b* =  cos 0, so 
that the equations for R e are

(5) R e: x ' =  x cos 0 -  y sin 0, y' =  x sin 0 +  y cos 0.

Likewise, reflection Fa in a line through the origin making an angle a 
with the x-axis carries the point whose polar coordinates are (r, 0) into 
one with polar coordinates (r, 2a — 0). Hence the effect of Fa is ex
pressed by

(5') Fa: x ' =  x cos 2a +  y sin 2a, y' =  x sin 2a — y cos 2a.

The concept of linearity also applies more generally to transforma
tions between any two vector spaces over the same field.

Definition. A  linear transformation T: V  -*■ W, o f a vector space V  to 
a vector space W  over the same field F, is a transformation T  o f V  into W  
which satisfies (eg 4- d p )T  =  c(£T) +  d (rjT ) for all vectors £ and r\ in V  
and all scalars c and d in F.

For example, consider the transformation

(6) T t : (x, y) (x +  y, x -  y, 2x) =  (* ', y', z '),

defined by the equations x ' =  x  +  y, y ' =  x  -  y, z ' =  2x. This carries 
the plane vectors ( 1 , 0) and (0 , 1 ) into the orthogonal space vectors 
( 1 , 1 , 2 ) and ( 1 , —1 , 0 ), respectively, and transforms the plane linearly into 
a subset of space.
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The finite-dimensional case is most conveniently treated by means of 
the following principle.

Theorem 1. I f  p i, • • • ,/3m is any basis o f the vector space V, and 
« 1; • • • ,a m are any m vectors in W, then there is one and only one linear 
transformation T : V  -* W  with P\T  =  a u • • ■, p mT  =  am. This transfor
mation is defined by

(7) (xj/?! +  • • • +  x„J3m) T  =  +  • • • +  xmam.

For example, let P i =  (1,0), p 2 =  (0,1), a j =  (1, 0), and a2 =  (a, 1) 
in the plane. Then Theorem 1 asserts that the horizontal shear transfor
mation

D C_________Df__________ C'
(8) Sa: (x, y) *-» (x  +  ay, y)

■ C J

Figure 2

is linear and is the only linear trans- ^ B a ' b '
formation satisfying P iSa =  a 1; 
p 2Sa =  a2. Geometrically, each point 
is moved parallel to the x-axis
through a distance proportional to its altitude above the x-axis, and 
rectangles with sides parallel to the axes go into parallelograms. (See 
Figure 2, and picture this with a deck of cards!)

Proof. If T  is linear and /3,T =  a, ( i  =  1, • • •, m ), then the definition
(1) and induction give the explicit formula (7). Since every vector in V  
can be expressed uniquely as Xi Pi  +  • • • +  x„j3m, formula (7) defines a 
single-valued transformation T  of V  into W\ hence there can be no other 
linear transformation of V  into W  with /3,T =  a,. To show that T  is 
linear, let 77 =  £  y,/3, be a second vector of V. Then,

[m m “1 f  m “I
I  cxfii +  I  dy,/3,J T  =  x  (cx,- +  dy,)/3,J T

m m m
=  I  (cxf +  dyi)at =  c I  x,«, +  d £  y.a,-

i =  l  i =  l  1 =  1

=  c (fT ) +  d(r,T ).

Hence T  is linear. Q.E.D.
If V  =  F m and W  =  F n, and we let the /3, be the unit vectors 

ex =  (1, 0, • • ■, 0), • • •, em =  (0, 0, • • •, 1) of Vm, we obtain a very 
important application of Theorem 1. In this case, we can give each a, its
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coordinate representation

&lT =  OCi =  ( f l u ,  <Jl2> ■ ■ • ,  A in )

&2T =  OC2 =  (O21, (I22, ‘ n)

^mT &m (^ml» 5

Theorem 1 states that there is just one linear transformation 
associated with the formula (9). This transformation is thus determined by 
the m X n matrix A  =  ||a;y||, which has the coordinates (an , • • •, ain) as 
its zth row, and a,y as the entry in its ith row and /th column. W e have 
proved

Theorem 2. There is a one-one correspondence between the linear 
transformations T: F m -* F "  and the m x  n matrices A  with entries in the 
field F. Given T, the corresponding matrix A  is the matrix with ith row the 
row o f coordinates o f zfT; given A  =  ||a;y||, T  is the (unique)  linear 
transformation carrying each unit vector e, o f F™ into the ith row 
(an , ■ • •, ain) o f A .

W e denote by TA the linear transformation of F m into F " correspond
ing to A  in this fashion. For example, in the plane, the rotation, 
similitude, and shear of (5), (3), and (8) correspond respectively to the 
matrices

_  / cos0 sin0 \ (k  0\ (\  0 \
6 \ • a a ) ’ k In  z J ’ a I 1 ) -V—sin 0 cos 0/ \0 k/ \a 1/

The general transformation T  =  TA of (9) carries any given vector 
£ =  (*i> • ' • » xm) =  * i£ i +  • ■ ■ +  xmzm of F m into the vector

£T  =  Xy(X\ +  • • • +  xmam
ATi(z2n, , ain') F  ■ * ■ F  xm(ami, , amn')
(*i<Jn "T • • • +  xmami, , X\a\n +  • ■ • xmamn')

in W  =  F n. Hence, if (y t, • • •, y„) are the coordinates of the transformed 
vector tj =  £T, T  is given in terms of these coordinates by the homogene
ous linear equations
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y 1 =  * 1^ 11 +  x2a2i +  • • • +  Xmaml =  l Xian ,
i

(IQ) yi -̂ 1^12 "i” X2&22 "t“ * ' ' "t“ Xmam2 2] X((lj2>

yn X iflin "L X2@-2n "f” " * * "f” Xmdmn X XtClin.
i

Hence we have the

Corollary. Any linear transformation T  o f F "1 into F " can be described 
by homogeneous linear equations o f the form (10). Specifically, each T  
determines an m x  n matrix A  =  ||a;;-||, so that Tcarries the vector £ with
coordinates x t, • • •, xn into the vector tj =  gT  with coordinates yu • • •, yn
given by (10). Conversely, each m x  n matrix A  determines, by means of 
equations (10), a linear transformation T  =  Ta '. F m -* F".

Caution. The rectangular array of the coefficients of (10) is not the 
matrix A  appearing in (9); it is the matrix of (9) with its rows and 
columns interchanged. This n x  m matrix of coefficients of (10), which is 
obtained from the m x  n matrix A  by interchanging rows and columns, is 
called the transpose of A  and is denoted by A  T. If A  = ||a,7|| has entry ai} 
in its /th row and /th column, then the transpose B  =  A T of the matrix A  
is defined formally by the equations.

( 1 1 ) bu =  at,1' =  aji (i =  l, • • • , « ;  / =  1 , • • •, m).

In this notation, (10) assumes the more familiar form

&n*i +  6 i2x2 +  • • • +  6 lmxm =  yi

621X1 +  622x 2 + • • ■ +  b2mxm = y2

<i r > : : : :

6„lXi “1“ bn2X2 "f” * " * "L bnmXfn yn•

The preceding formulas for linear transformations refer to the spaces f "  
and F "  of m-tuples and n-tuples, respectively. More generally, if V  and 
W  are any two finite-dimensional vector spaces over F  of dimensions m 
and n, respectively, then any linear transformation T: V  -* W  can be 
represented by a matrix A , once we have chosen a basis p u ■ • ■, f3m in V  
and a basis • • •, y„ in W. For then T  is determined by the images 
/3j T  =  Xy and we say that T  is represented by the m X n matrix
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A  =  ||ai; || of these coefficients, relative to the given bases. This amounts 
to replacing the spaces V  and W  by the isomorphic spaces of m - and 
n-tuples, under the isomorphisms £  xfi, '-*■ U i, ■ • •, xm)\ Z  yj7j 
(y i , “ ‘ ,y nX

Exercises

1. Describe the geometric effect of each of the following linear transformations
(a) y ' =  x, x 1 =  y; (b) y ' =  x, x ' =  x ;
(c) y ' =  x, x ’ =  0; (d) y ' =  ky, x ' =  kx +  kay;
(e) y ' =  by, x ' =  cx.

2. Consider the transformation o f the plane into itself which carries every point P  
into a point P ' related to P  in the way described below. Determine when the 
transformation is linear and find its equations.
(a) P ' is two units to the right o f P  and one unit above (a translation).
(b) P ' is the projection of P  on the line of slope 1/2 through the origin.
(c) P ' lies on the half-fine O P  joining P  to the origin, at a distance from O  

such that O P ' =  4/OP.
(d) P ' is obtained from P  by a rotation through 30° about the origin, followed 

by a shear parallel to the y-axis.
(e) P ' is the reflection of P  in the line x  =  3.

3. Find the matrices which represent the symmetries o f the equilateral triangle 
with vertices (1 ,0 ) and (—1/2, ±V3/2).

4. Describe the geometric effects o f the following linear transformations o f space:
(a) x ' =  ax, y ' -  by, z ' =  cz\
(b) x ' =  0, y ' =  3y, z ' =  3z;
(c) x ' =  x +  2y +  5z, y ' =  y, z ' =  z ;
(d) x ' =  x -  y, y ' =  x +  y, z ' =  Az.

5. What is the matrix o f the transformation (6) o f the text?
6. Find the matrix which represents the linear transformation described:

(a) (1 ,1 ) - *  (0 ,1 ) and ( - 1 , 1 ) ( 3 ,  2);
(b) (1 ,0 ) (4, 0) and (0 ,1 ) (-1 ,2 );
(c) (2 ,3 )->  (1 ,0 ) and ( 3 , 2 ) ( 1 , - 1 ) ;
(d) (1 ,0 ,0 ) (1 ,2 ,1 ), (0 ,1 ,0 )- *  (3 ,1 ,1 ), (0 ,0 ,1 ) - *  (0 ,0 ,3 ).

7. By the image of a subspace S of V  under a linear transformation T, one means 
the set (S )T  of all vectors f T  for f  in S. Prove that (S )T  is itself a subspace.

8. A  linear transformation T  takes (1 ,1 ) into (0 ,1 ,2 ) and (—1,1) into (2 ,1 ,0 ). 
What matrix represents T?

8.2. Matrix Addition

The algebra of linear transformations (matrices) involves three opera
tions: addition of two linear transformations (or matrices), multiplication 
of a linear transformation by a scalar, and multiplication of two linear

Download more at Learnclax.com



§8.2 Matrix Addition 221

transformations (matrices). We shall now define the vector operations on 
matrices, namely, the addition of two matrices, and the multiplication of a 
m atrix  b y  a  scalar.

The sum A  +  B  of two m x  n matrices A  =  11% || and B  =  ||f»,y|| is 
obtained by adding corresponding entries, as

(12 ) || || +  \\bij II =  11% +  bij\\.

This sum obeys the usual commutative and associative laws because the 
terms %  obey them. The m x  n matrix O  which has all entries zero acts 
as a zero matrix under this addition, so that

0  +  A =  A  +  0  =  A  for any m x  n matrix A.

The additive inverse may be found by simply multiplying each entry by 
—1. Under addition, m x  n matrices thus form an Abelian group.

The scalar product cA  of a matrix A  by a scalar c is formed by 
multiplying each entry by c. One may verify the usual laws for vectors:

1 • A  =  A , c (d A ) =  (cd )A ,
(13)

(c +  d )A  =  cA  +  dA, c (A  +  B ) =  cA  +  cB.

Theorem 3. Under addition and scalar multiplication, all m x  n 
matrices over a field F  form a vector space over F.

Any matrix ||%|| may be written as a sum y£)y, where Ey is the 
special matrix with entry 1  in the /th row and y'th column, entries 0 
elsewhere. These matrices Ey are linearly independent, so form a basis 
for the space of all m x  n matrices. The dimension of this space is 
therefore mn.

There is a corresponding algebra of linear transformations. One can 
define the sum T  +  U  of any two linear transformations from a vector 
space V  to a vector space W  by

(14) £ (T  +  U ) =  O ' +  for all £ in V.

Similarly, the scalar product c T  is defined by £ (cT ) =  c(£T). The sum 
T  +  U  is linear according to definition (1), for

(c£ +  d rj)(T  +  U ) =  (c£ +  d-q)T  +  (c£ +  d-q)U  

=  c£T  +  c£U  +  drjT  +  d-qU 
=  c£ (T  + U )  +  dV (T  +  U ).

The product c T  is also linear.
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When V  =  F m and W  = F n, definition (14) implies that e , (T  +  U ) = 
etT  +  ZiU, whence the matrix C  corresponding to T  +  U  in Theorem 2 
is the sum of the matrices which correspond to T  and U. Since c(e ,T ) =  
c(e,T ), the operation of scalar multiplication just defined corresponds to 
that previously defined for m x  n matrices. That is, in the notation 
introduced following Theorem 2.

(15) Ta +b =- Ta  +  Tb and TcA =  cTA.

The new definitions have the advantage of being intrinsic, in the sense of 
being independent of the coordinate systems used in V  and W  (cf. §7.8). 
They also apply to infinite-dimensional vector spaces.

Finally, it should be observed that a linear transformation of a vector 
space V  into a vector space W  is just a homomorphism of V  into W  (both 
being considered as Abelian groups), which preserves multiplication by 
scalars as well. For this reason, the vector space of all linear transforma
tions from V  into W  is often referred to as Horn (V, W).

Exercises

1. For the matrices Re, Dk, Sa o f §8.1, compute 2Re + Dk, 2Sa -  3 Dk, and 

Re ~ Sa + 5 Dk.
2. Prove that (A +  B)r = A T +  B r, (cA)T =  cAT.
3. Prove the rules (13).
4. Prove directly, without reference to matrices, that the set o f  all linear transfor

mations T: V -* W is a vector space under the operations defined in and 
below (14).

8.3. Matrix Multiplication

The most important combination of two linear transformations T  and 
U  is their product T U  (first apply T, then U, as in §6.2). In this section, 
we shall consider only the product of two linear transformations T, U  of a 
vector space V  into itself. Then T U  may be defined as that transforma
tion of V  into itself with g (T U )  =  (£ T )U  for every vector £

For instance, if the shear Sa of (8 ) is followed by a transformation of 
similitude D k, which sends (* ', y ') into x" =  kx', y" =  ky', the combined 
effect is to take (*, y ) into x" =  kx +  kay, y" =  ky. This product SaD k is 
still linear.

Theorem 4. The product o f two linear transformations is linear.
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Proof. By definition, a product T U  maps any f  into £ (T U ) =  (£T)U . 
By the linearity of T  and U, respectively,

(16) (c f +  d if )T U  =  [c ( f  T ) +  d (r ]T ) ]U  =  c (f7 U ) +  d (r,TU ),

which is to say that T U  also satisfies the defining condition (1) for a linear 
transformation. Q.E.D.

This result implies that the homogeneous linear equations (10) for T  
and U  may be combined to yield homogeneous linear equations for TU. 
To be specific, let the transformation

(17) =  A  / «n  al2\
y =  xal2 +  ya22, va2\ a22>

with matrix A , be followed by a second linear transformation of the
plane, mapping (x', y ') on (x ", y"), where

C181 x" =  x 'b n +  y'b2\, _  /bu b i2\
( ’ y" =  x 'b l2 +  y’b22, "  \b2l b22r

The combined transformation, found by substituting (17) in (18), is

x ” — {&\\b\\ +  Oi2b2i)x +  io 2\b\\ +  a22b2\)y,
y" =  (a u b i2 +  (i\2b22)x  +  (o 2ib i2 +  a22b22)y.

The matrix of coefficients in this product transformation arises from the 
original matrices A  and B  by the important rule

(2 0 )  ( fll1  a i2 ,j  • f ^ 11 f l l2 ^ 21 a \ \ b \ 2  +  <212^>22'j
'■#21 ^22' b2i b22/ '^21^11 "I" 2̂2̂ 21 2̂1̂ 12 "I" 022b22J

The entry in the first row and the second column of this result involves 
only the first row of a ’s and the second column of b ’s, and so on. This 
multiplication rule is a labor-saving device which spares one the trouble 
of using variables in substitutions like (19).

Similar formulas hold for n x  n matrices, for Theorems 2 and 4 show 
that the product of the transformations T, U : F " -* F " must yield a 
suitable product of their matrices. We shall now compute the “ matrix 
product”  A B  which corresponds to TATB, so as to give the rule

(21) TaTb — Tab-

Download more at Learnclax.com



Ch. 8 The Algebra of Matrices 224

By Theorem 2, e,Ta  =  £  flf/C/ and e;Tb =  X Hence

Ei(TATB) =  (e ,T  Ifliyey)T B =  I  a,j(ZjTB)
j  '  J

where

(2 2 ) cik =  J  aijbjk =  +  anb2k +  • • • +  ainbnk.
i

Hence the matrix product C  =  A B  must be defined by (22) in order to 
make (2 1 ) valid; we adopt this definition.

Definition. The product A B  o f the n x  n matrix A  by the n x  n 
matrix B  is defined to be the n x  n matrix C  having fo r its entry in the ith 
row and kth column the sum cik given by (22).

The product of two matrices may also be described verbally: the entry 
cik in the ith row and the fcth column of the product A B  is found by 
multiplying the ith row of A  by the fcth column of B. To “ multiply”  a 
row by a column, one multiplies corresponding entries, then adds the 
results.

It follows immediately from the correspondence (21) between matrix 
multiplication and transformation multiplication that the multiplication of 
matrices is associative. In symbols

since these matrices correspond to the transformations TA (TBTC) and 
(T a Tb )T c , which are equal by the associative law for the multiplication of 
transformations (§6 .2 ).

Not only is matrix multiplication associative; it is distributive on 
matrix sums, for the matrix (A  +  B )C  has entries dik given by formulas 
like (2 2 ) as

This gives dik as the sum of an entry gik of A C  and an entry hik of B C  
and proves the first of the two distributive laws

(23) A (B Q  =  (A B )C ,

d ik X b ij)C jk X &ijCjk X bijCjk.
i  i  j

(24) (A  +  B )C  =  A C  +  BC, A (B  +  C ) =  A B  +  AC.

Download more at Learnclax.com



§8.3 Matrix Multiplication 225

For scalar products by d, one may also verify the laws

(25) (,d A )B  =  d (A B ) and A (d B ) =  d (A B ).

The laws (24) and (25) are summarized by the statement that matrix 
multiplication is bilinear, for the first halves of these laws combine to give 
(dA +  d *A * )B  =  d (A B ) +  d * (A *B ).  This is exactly the condition that 
multiplication by B  on the right be a linear transformation X  •-> X B  on 
the vector space of all n x  n matrices X . The other laws of (24) and (25) 
assert that multiplication by A  on the left is also a linear transform
ation.

Corresponding to the identity transformation 7} of F "  is the n x  n 
identity matrix I, which has entries e„ =  1 along the principal diagonal 
(upper left to lower right) and zeros elsewhere, since £;7} =  e, for all 
/ =  1, • • ■, n. Since I  represents the identity transformation, it has the 
property IA  =  A  =  A I  for every n x  n matrix 7.

We may summarize the foregoing as follows:

Theorem  5. The set o f all n x  n matrices over a field F  is closed under 
multiplication, which is associative, has an identity, and is bilinear with 
respect to vector addition and scalar multiplication.

However, multiplication is not commutative. Thus

Hint: What geometric transformations do these matrices induce on the 
square of §6 .1 ?

Not all nonzero matrices have multiplicative inverses; thus the matrix

induce a one-one transformation and is not onto; hence (Theorem 1, 
§6.2) it has no left-inverse or right-inverse. Similarly, the law of cancella
tion fails, for there are plenty of divisors of zero, as in

g j, which represents an oblique projection on the x-axis, does not

Formulas (15) and (21) assert the following important principle.
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Theorem  6 . The algebra o f linear transformations o f F "  is isomorphic 
to the algebra o f all n x  n matrices over F  under the correspondence 
Ta  * *  A  o f Theorem 2.

This suggests that the formal laws, asserted in Theorem 5 for the 
algebra o f matrices, may in fact be valid for the linear transformations of 
any vector space whatever. This conjecture is readily verified, and leads 
directly to certain aspects of the “ operational calculus,”  when applied to 
suitable vector spaces of infinite dimensions.

E x a m p l e  1. Let V  consist of all functions f (x )  of a real variable x, 
and let J  be the transformation or “ operator”  [/ (* )]/  =  f (x  +  1). If I  is 
the identity transformation, the operator A =  / — I  is known as a “ differ
ence operator” ; it carries f (x )  into f (x  +  1) — f (x ) .  Both J  and A are 
linear, for [c f(x ) +  d g (x )]J  =  c [f (x ) ]J  4- d [g (*)]/. This definition of 
linearity applies at once, but observe that we cannot set up the linear 
homogeneous equations in this infinite space. For fixed a (x ) the operation 
f ix )  -* a (x )f (x ) is also linear.

Ex a m p l e  2. The derivative operator D  applies to the space C°° of 
all functions f (x )  which possess derivatives of all orders; it carries f (x )  
into f '(x ) .  D  is linear. Taylor’s theorem may be symbolically written as

E x a m p l e  3. For functions f (x , y ) of two variables, there are corre
sponding linear operators Jx, Jy, D x, D y, Ax, Ar  Thus, [f (x , y)]/x =  
f (x  +  1, y) and [f (x ,  y )]D x =  f/ (x , y).

(a) A B , B A , A 2 + A B  -  2B;
. (b) {A +  B  -  I ) (A  - B  + 1 ) -  (A  +  2B )(B  -  A );

(c) D B , A C , A D .
(d ) Test the associative law for the products (A C )D , A  (C D ).

2. Use matrix products to compute the equations of the following transforma
tions (notation as in §8.1).

(a) D kSa, (b ) SaD k, (c) ReSa for 0 =  45°,

=  J.

E xerc ises

1. Compute the products indicated, for the matrices

(d) ReSaD k tore  = 30°, (e) D kSaD k.
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3. When is SaD k =  D kSa (notation as in Ex. 2)?
4. In Ex. 4 of §8.1 denote by T„ the transformation described in part (n). 

Compute (using matrices) the following products:
(a) TbTc, (b) TaTc, (c) TbTaTb, (d) TdTc, (e) TcTbTd.

5. Prove the laws (25) and the second half o f (24).
6. (a) Expand (A  +  B )3. (b) Prove that A 3A 2 =  A 2A 3.
7. Prove the associative law for matrix multiplication directly from definition 

(22).
8. Consider a new “ product”  A  x  B  o f two matrices, defined by a “ row-by- 

row”  multiplication of A  by B. Is this product associative?
9. (a) Compute the products B E U B E 2, B E 3, E 2E 3, E tE 3, where

/I 2 1\ /0 0 1\ /I 0 fc\ /a 0 0\

B  =  l l  3 2 ) ,  £ ,  =  10 1 0 ) ,  E 2 = ( o  1 Oj ,  E 3 = ( o  b 0 ).

\ l 4 6/ Vl  0 0/ \0 0 1 /  Vo 0 c l

(b) If A  is any 3 x 3  matrix, how is A E 3 related to A ?
(c) Describe the effect caused by multiplying any matrix on the right by E ,; 

by E 2.

10. Without using matrices, prove the laws R (S  +  T ) =  RS +  R T , 
(R  +  S )T  =  R T  +  ST, and S (cT ) =  c (ST ) for any linear transformations 
R, S, T  o f V  into itself.

★11. Show that if R, S, T  are any transformations (linear or not) of a vector
space, then R (S  +  T ) =  R S  +  R T, but that (R  +  S )T  =  R T  +  S T  does
not hold in general, unless T  is linear.

12. Find all matrices which commute with the matrix E 3 of Ex. 9, when a, b, 
and c are distinct.

★13. Prove that every matrix which commutes with the matrix D  of Ex. 1 can be 
expressed in the form a l +  bD.

14. If A  is any n x  n matrix, prove that the set C {A )  of all n x  n matrices 
which commute with A  is closed under addition and multiplication.

★15. Prove that each n x  n matrix A  satisfies an equation of the form

A m +  cm^ A m~l +  • • • +  c 3A  +  Co/ =  0, m S  n2.

★16. (a) Let A  =  ||ai;|| be an n x  n matrix of real numbers, and let A/ be the 
largest of the |ai;|. Prove that the entries o f A k are bounded in 
magnitude by n k~1M k.

(b) Show that the series I  +  A  +  A 212! +  A 3/3! +  • • • is always con
vergent. (It may be used to define the exponential function eA o f the 
matrix A .)

In Exs. 17-21, the notation follows that in Examples 1-3 above.

17. (a) Prove D  linear. (b) Show why eD = J.
18. Prove DxDy =  DyDx.

★19. (a) Simplify x D  — Dx, xA  — Ax, xA 2 — A2x.
(b) Simplify x ‘D ' -  D 'x ‘, x 'A ' -  A'x'.
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★20. Define the Laplacian operator V2 by V2 =  D 2 +  D y2, and find xV2 -  V2x, 
y(V2)2 -  (V2)2y, V2(x2 +  y 2) -  (x 2 +  y2)V2.

★21. Expand A" =  (J -  /)" by a “ binomial theorem.”

8.4. Diagonal, Permutation, and Triangular 
Matrices

A  square matrix D  =  || d,j |] is called diagonal if and only if i #  j  
implies =  0; that is, if and only if all nonzero entries of D  lie on the 
principal diagonal (from upper left to lower right). To add or to multiply 
two diagonal matrices, simply add or multiply corresponding entries along 
the diagonal (why?). I f all the diagonal entries du of D  are nonzero, the 
diagonal matrix E  =  ||e,y|| with ea =  d„_1 is the inverse of D , in the sense 
that D E  =  I  =  E D . One may then prove

Theorem 7. A ll n x n diagonal matrices with nonzero diagonal entries 
in a field F  form a commutative group under multiplication.

A  permutation matrix P  is a square matrix which in each row and in 
each column has some one entry 1 , all other entries zero.

The 3 x 3  permutation matrices are six in number. They are I  and the 
matrices

/0 1 0\ /I  0 0\ /0  0 1\ /0  0 1\ /0 1 0\
1 0 0 ) ,  0 0 1 ) ,  0  1 0 , 1 0 0 , 0 0  1 .

Vo 0 1 / Vo i  o/ Vi  o o /  Vo i  o/ Vi o o/
Since the rows of a matrix are the transforms of the unit vectors, a matrix 
P  is a permutation matrix if and only if the corresponding linear transfor
mation TP of V„ permutes the unit vectors £j, • ■ •, e„. The n x n 
permutation matrices therefore correspond one-one with the n ! possible 
permutations o f n symbols (§6.9), and this correspondence is an 
isomorphism.

Theorem 8 . The n x  n permutation matrices form under multiplication 
a group isomorphic to the symmetric group on n letters.

There are also other important classes of matrices. A  matrix M  is 
monomial if each row and column has exactly one nonzero term; any 
such matrix may be obtained from a permutation matrix by replacing
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the l ’s by any nonzero entries, as for example in 

/ 0 0 5\ /0 7 0\
(26) M 1 =  - 2  0 0 , M 2 =  I 0 0 -3  , M 3 =  (  J -

\ 0 3 0/ \4 0 0/

A  square matrix T  =  ||ri;-1| is triangular if all the entries below the 
diagonal are zero; that is, if =  0 whenever i >  /. A  matrix S is strictly 
triangular if all the entries on or below the main diagonal are zero. These 
two patterns may be schematically indicated in the 4 x 4 case by

I q0
r s t\ /° u V w
u V w

s  =

0 0 X y
0 0 X y 0 0 0 z

\ 0 0 0 w \ 0 0 0 o /
where the letters denote arbitrary entries. Finally, a scalar matrix is a 
matrix which can be written as cl, where I  is the identity.

This scheme of prescribing a “ pattern”  for the nonzero terms of a 
matrix is not the only method of constructing groups of matrices. Any 
group of linear transformations may be represented by a corresponding 
group of matrices. For instance, the group of the square consists of linear 
transformations. Pick an origin at the center of the square and an x-axis 
parallel to one side of the square. If the equations giving the motions R, 
R ', H, and D  are written out in terms of x and y (see the description in 
§6 .1 ), they will give transformations with the following matrices,

-J). -?)• -?)• 3 -
The other four elements of the group can be similarly represented. The 
multiplication table of this group, as given in §6.4, might have been 
computed by simply multiplying the corresponding matrices here (try it!). 
In other words, the group of the square is isomorphic to a group of eight 
2 x 2  matrices.

The preceding examples show that a given matrix A  may have an 
inverse A -1, such that A A - 1  =  A _1A  =  I. Such matrices are called 
nonsingular or invertible-, they will be studied systematically in §8 .6 .

Exercises

1. What is the effect of multiplying an n x n matrix A  by a diagonal matrix D  
on the right?
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2. If  D  is diagonal and all the terms on the diagonal are distinct, what matrices 
A  commute with D  (when is A D  =  D A )?

3. Show that a triangular 2 x 2  matrix with l ’s on the main diagonal repre
sents a shear transformation.

4. Exhibit explicitly the isomorphism between the 3 x 3  permutation matrices 
and the symmetric group.

5. Let Sj be the one-dimensional subspace o f V„ spanned by the ith unit 
vector Si. Prove that a nonsingular matrix D  is diagonal if and only if the 
corresponding linear transformation TD maps each subspace St onto itself.

6. Find a description like that o f Ex. 5 for monomial matrices.
7. (a) Prove that a monomial matrix M  can be written in one and only one

way in the form M  =  D P, where D  is nonsingular and diagonal, and P  
is a permutation matrix. (H int: Use Ex. 5.)

(b) Write the matrices M l and M 2 of the text in the forms D P  and PD . 
★ (c) Exhibit a homomorphism mapping the group of monomial matrices 

onto the group of permutation matrices.
8. Describe the inverse of a monomial matrix M , and find the inverses of M t 

and M 2 in (26).
9. If M  is monomial, D  diagonal, prove M ~ 'D M  diagonal.

10. If P  is a permutation matrix and D  diagonal, describe explicitly the form of 
the transform P ~ 'D P .

11. How are the rows of P A  related to those of A  for P  as in Ex. 10?
12. A  matrix A  is called nilpotent if some power of A  is 0. Prove that any 

strictly triangular matrix is nilpotent. (H int: Try the 3 x  3 case.)
13. Represent the group of symmetries of the rectangle as a group of matrices.
14. For the group of symmetries of the square with vertices at ( ± 1,  ± 1) ,  

compute the matrices which represent the symmetries H, D , V. Verify that 
H D  =  D V .

★15. In Ex. 7, show that the formula M  — D P  defines a group-homomorphism 
M  i-» P. Find its kernel.

8.5. Rectangular Matrices

So far we have considered only the multiplication of square (i.e., 
n x  n) matrices; we now discuss the multiplication of rectangular 
matrices— that is, o f m X n  matrices where in general m ^  n.

An m x n matrix A  =  ||ai; || and an n X r matrix B  =  ||fyfc||, with the 
same n, determine as product A B  =  ||clfc || an m x r matrix C  with entries

Cik X Clijbjk, 
i

where, in the sum, j  runs from 1 to n. This “ row-by-column”  product 
cannot be formed unless each row of A  is just as long as each column of
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B\ hence the assumption that the'number n of columns of A  equals the 
number n of rows of B. Thus, if m =  1, n =  2, r =  3,

As in our formulas (21)—(22), the matrix product A B  corresponds 
under Theorem 2 to the product TATB of the linear transformations 
TA -.Fm -* F ", and TB\Fn -* F r, associated with A  and B, respectively. 
Here, as always, the product of a transformation T: V  W  by a trans
formation U :W ~ *  AT is defined by

The algebraic laws for square matrices hold also for rectangular 
matrices, provided these matrices have the proper dimensions to make all 
products involved well defined. For example, the m x m identity matrix 
Im and the n x n identity /„ satisfy

Matrix multiplication is again bilinear, as in (24) and (25). The associative 
law is

(30) A (B C )  =  (A B )C  (A  ism x n; B, n x  r; C, r x  s).

Again, it is best proved by appeal to an interpretation of rectangular 
matrices as transformations.

As in (11), the transpose A T o f an m x n matrixA is an n x m matrix 
A t  with entries ai;T =  a;i (/ =  1 =  1, • • •, m ). The ith row of
this transpose A T is the /th column of the original A , and vice versa. One 
may also obtain A T by reflecting A  in its main diagonal. To calculate the 
transpose C T of a product A B  =  C, use

( 31 )  Cjfc Ckl X  &k]bji X  bjiOkj X  ^ ij Uy'fc ’

the result is just the (/, k ) element of the product B TA T. (Note the change 
in order.) This proves the first of the laws

(32) (A B )t  =  B t A t , (A  +  B )t  =  A t  +  B t , ( c A ) t  =  c A T.

(28) £ (T U ) =  ( i D U  for all f  in V.

(29) ImA  =  A  =  A/„ (if A  ism X n).

The correspondence A  +* A T therefore preserves sums and inverts the

Download more at Learnclax.com



Ch. 8 The Algebra of Matrices 232

order of products, so is sometimes called an anti-automorphism. Since 
( A t )t  =  A ,  this anti-automorphism is called “involutory.”

A  systematic use of rectangular matrices has several advantages. For 
example, a vector £ in the space F "  of n -tuples over F  may be regarded 
as a 1 x  n matrix X  with just one row, or “ row matrix.”  This allows us to 
interpret the equations y, =  Zx,a,y of ( 10 ) as stating that the row matrix 
Y  is the product o f the row matrix X  by the matrix A . Thus the linear 
transformation TA : F m -* F "  can be written in the compact form

(33) Y  =  X A , X e F m, Y  e F n.

Also, the scalar product c X  is just the matrix product of the l x l  matrix 
c by the 1 x n (row) matrix X.

Column Vectors. Note that even though Y  is a row vector in the 
equation X A  =  Y, its entries appear in the display (10) in a single 
column. Hence it is customary to rewrite the matrix equation X A  =  Y  in 
the transposed form Y T =  A  TX T, with Y T and X T both column vectors. 
Changing the notation, there results an equation B X  =  Y  of the form of 
( IT ) ,  with B  =  A t , and X  =  (x u • ■ • ,x n) T and Y  =  (yu • • •, y „)T both 
column vectors.

In treating bilinear and quadratic forms, row and column vectors are 
used together. Thus, the inner product Xiyi +  • • • +  xnyn of two vectors 
(§7.9) is simply the matrix product of the row matrix X  by the column 
matrix Y T, so that

(34) (X , Y ) =  X Y t , X  and Y  row matrices.

The row-by-column multiplication of matrices A  and B  is actually a 
matrix multiplication of the ith row of A  by the fcth column of B  so that 
the definition of a product may be written as

(35) A B  =  ||c* || w ithe* =  A ,B (k\

where we have employed the notation

(36) A i =  the ith row of A , B ik) =  the fcth column o f B.

The whole ith row (c,i, • • •, cin) o f the product A B  uses only the ith row 
in A  and the various columns of B, hence is the matrix product of A , by 
all o f B. Similarly, the fcth column of A B  arises only from the fcth column 
of B. In the notation of (36) these rules are

(37) (A B ), =  AJ3, (A B )W =  A B (k).
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The second rule may be visualized by writing out B  as the row of its 
columns, for then

(38) A  • ||B(1) B (2) • • • B (r)|| =  ||AB(1) A B (2) • • • A B (0 ||.

These columns may also be grouped into sets of columns forming 
larger submatrices. Thus, a 6 x  5 matrix B  could be considered as a 
6 x 2  matrix D i  =  ||£(1) B (2)|| laid side by side with a 6 x 3  matrix 
D 2 =  ||5<3J B (4) B (SJ|| to form the whole 6 x 5  matrix B  =  \\Dl D 21|. 
By (38), the rule for multiplication becomes

(39) A  • HZ?! D 2\\ =  \\ADi A D 21|; D x andD 2 n-rowed blocks.

If we decompose the n x  r matrix B  into n rows B l , • • •, Bn, and if 
y  =  (yi» • • • » yn) is a row matrix, the product YB  is the row matrix

The product YB  is thus formed by multiplying the row Y  by the 
“ column”  of rows B,. For example, the z'th row of A B  is by definition the 
product of the row matrix A,- =  (an , • • •, ain) by B, hence

thus each row of A B  is a linear combination of the rows of B. These 
formulas are special instances of a method o f multiplying matrices which 
have been subdivided into “ blocks”  or submatrices. It is convenient to 
sketch other instances of this method.

YB  =  {yxbn +  • • • +  ynb„\, • • ■, y\blr +  • • • +  ynbnr) 
=  y i(*n , • • •. bu) +  • • • +  y„(bn 1 , • • •, bnr)
=  y jB i +  • • • +  ynBn.

(40) (A B ), =  anB i +  • • • +  ainBn, i =  1, • • •, m;

<W +i ••• flm»/ bs+i.i ••• bs+1,
“ S/ ' '  vy 'V"

M 2 n 2

Let the n columns of a matrix A  consist o f the s columns of a 
submatrix M i followed by a submatrix M 2 with the remaining n — s
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columns. Make a parallel, subdivision of the rows of the matrix B, so that 
B  appears as an s x  r matrix on top of an (n -  s) x  r matrix N 2- The 
product formula for A B  =  C  subdivides into two corresponding sections

(41) (rtiifhfc "T * * * "h Qisbsk) "I” “I” ' * ' “I” Oinbnk)•

The first parenthesis uses only the ith row from the first block M t of A , 
and only the fcth column from the top block N\ of B. Therefore this first 
parenthesis is exactly dik, the entry in the ith row and fcth column of the 
block product M \N i. Likewise, the second parenthesis of (41) is the term 
dfk of the product M 2N 2. Therefore cik =  dik +  d*, so the whole product 
A B  is the matrix sum, M iN i  +  M 2N 2. Thus,

(42) || Mr M 2
N i
N 2

= M tN i +  M 2N 2.

This formula is a row-by-column multiplication o f blocks, just like the 
row-by-column multiplication of matrix entries. A  similar result holds for 
any subdivision of columns of A , with a corresponding row subdivision of 
B. When both rows and columns are subdivided, the rule for multiplica
tion is a combination of (42) and rule (39),

(4 3 ) 11 ^ 12}
\m 21 m 22)  \n 21 n 22)

_ f M n N n  +  M\2N 2\ M\\N\z +  M i2N 22\ 
W a iM i  "b M 22N 2\ M 2\N\2 +  M 22N 22'

This assumes that the subdivisions fit: that the number of columns in M n  
equals the number of rows in N u  - This rule (43) is exactly the rule for the 
multiplication of 2 x 2 matrices, as stated in §8.3, (20), except that the 
entries My and Ny are submatrices or “ blocks,”  and not scalars. We 
conclude that matrix multiplication under any fitting block subdivision 
proceeds just like ordinary matrix multiplication.

Exercises

1. Let

B * ( o  1 1 +  i ) '

(a) Find XA, XB, YA, YB.
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(b) Find 3A — 4B, A  +  (1 +  i)B , (X  -  (1 +  i )Y ) ( iA  +  55).
(c) Find B A T, A B T, X A B T, B A TY T.

2. Show that if X  is any row vector, then X X T is the inner product of X  with 
itself, while X TX  is the matrix A  with a,, =  xpt,.

3. Find A B , B A , A C , and BC, if

3 0 °\ 11 0 0 °\ 1° 1\
2 0 0 0 1 0 0 1 0

B  = c  =
00 4 0 1 2 1 0 2

0 0 2/ 3 4 0 1 \o 2

4. Let I *  be the (r  + n ) x n matrix formed by putting an n x n identity matrix 
on top of an r x n matrix of zeros. What is the effect of multiplying any 
n x (r +  n ) matrix by /*?

★5. Prove the “ block multiplication rule”  (43).

8.6. Inverses

Linear transformations of a finite-dimensional vector space are o f two 
kinds: either bijective (both one-one and onto) or neither injective nor 
surjective (neither one-one nor onto). For instance, the oblique projec
tion (x , y, z ) *-*■ (x, y +  z, 0) of three-dimensional Euclidean space onto 
the (x, y)-plane is neither injective nor surjective.

Definition. A  linear transformation T  of a vector space V  to itself is 
called nonsingular or invertible when it is bijective from V  onto V. 
Otherwise T  is called singular.

A  nonsingular linear transformation T  is a bijection of V  onto V  
which preserves the algebraic operations of sum and scalar product, so is 
an isomorphism of the vector space V  to itself. Hence a nonsingular 
linear transformation of V  may be called an automorphism of V.

The most direct way to prove the main facts about singular and 
nonsingular linear transformations is to apply the theory of linear inde
pendence derived in Chap. 7, using a fixed basis a u ■ • •, a„ for the vector 
space V  on which a given transformation T  operates.

Theorem  9. A  linear transformation T  of a vector space V  with finite 
basis atu • • • , an is nonsingular if  and only if  the vectors a 1 T, • • •, anT  are 
linearly independent in V. When this is the case, Thas a ( two-sided) linear 
inverse T -1, with T T - 1  =  T,~lT  =  /.

Proof. First suppose T  is nonsingular. If there is a linear relation
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YdXi(aiT ) =  0  between the a,T, then

(xjc*! +  • • • +  xnan)T  =  Xi(ai70 +  • • • +  xn(anT ) =  0.

Since 0 T  =  0, and T  is one-one, this implies X\ax +  • • • +  x„an =  0 and 
hence, by the independence o f the a ’s, x x =  • • * =  x„ =  0. Therefore the 
atT  are linearly independent.

Conversely, assume that the vectors f t  =  a xT, ■ ■ • ,(3n =  a „T  are 
linearly independent, and recall that a transformation T  is one-one onto 
if and only if it has a two-sided inverse (§6.2). Since V  is n-dimensional, 
the n independent vectors f t ,  • • • , ft, are a basis of V. By Theorem 1, 
there is a linear transformation S of V  with

f t S  =  « i ,  f t S  =  « 2, ' '  •, -  an.

Thus for each / =  1, • • • , n , f t (s r )  =  ft. Since the ft, • • • ,ft  are a 
basis, there is by Theorem 1 only, one linear transformation R  with 
ft-R =  ft  for every i, and this transformation is the identity. Hence 
S T  =  I. Similarly, a,(TS ) =  ftS  =  ah and, since the a ’s are a basis, 
TS =  I. Thus S  is the inverse o f T, and T  is nonsingular.

Thus to test the nonsingularity of T, one may test the linear indepen
dence of the images of any finite basis of V, as by the methods 
of §7.6.

Corollary 1. Let T  be a linear transformation o f a finite-dimensional 
vector space V. I f  T  is nonsingular, then (i) T  has a two-sided linear 
inverse, (ii) £T  =  0 and £ in V  imply g =  0, (iii) T  is one-one from V  into 
V, (iv) T  transforms V  onto V. I f  T  is singular, then (i') T  has neither a left- 
nor a right-inverse, (ii') £T  =  0 for some g ^  0, (iii') T  is not one-one, (iv') 
T  transforms V  into a proper subspace o f  V.

Proof Condition (i) was proved in Theorem 9. Again, if =  0 for 
some £ ^  0, then since 0 T  =  0, T  would not be one-one, contrary to the 
definition of “ nonsingular.”  This proves (ii); (iii), and (iv) are parts of the 
definition. Again, if T  is singular, then for any basis a x, - - - , a n of V, the 
a ,T  are linearly dependent by Theorem 9. Therefore

0 =  X ia iT  +  • • • +  xnanT  =  (xxa x +  • • • +  xnan) T  =

for some x lt • • ■, xn not all zero— hence (the ai being independent) for 
some £ ^  0, which proves (ii'). Since 0 T  =  0, it follows that T  is not 
one-one, proving (iii'). Again, since the a ,T  are linearly dependent and V  
is n-dimensional, they span a proper subspace of V, by Theorem 5,
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Corollary 2, of §7.4, proving (iv'). Finally, by Theorem 1 of §6.2, (iii') and 
(iv') are equivalent to (i'). Q.E.D.

Note that since the conditions enumerated in Corollary 1 are incom
patible in pairs, all eight conditions are “ if and only if”  (i.e., necessary 
and sufficient) conditions. Thus if (iv) holds, then (iv') cannot hold, hence 
T  cannot be singular, hence it must be nonsingular.

Corollary 2. I f  the product T U  of two linear transformations of a 
finite-dimensional vector space V  is the identity, then T  and U  are both 
nonsingular, T  =  U ~ l, U  =  T -1, and U T  =  I.

Proof. Since T U  =  /, T  has a right-inverse, hence is nonsingular by 
(i') above, and has an inverse T ~ 1 by (i). Then T _1 =  T ~ l (T U )  =  
(T ~ 1T ) U  =  U, as asserted, and the other conclusions follow. Q.E.D.

In view of the multiplicative isomorphism of Theorem 6 between 
linear transformations of F " and n x  n matrices over F, the preceding 
results can be translated into results about matrices. We define an n x  n 
matrix A  to be nonsingular if and only if it corresponds under Theorem 2 
to a nonsingular linear transformation TA of F " ; otherwise we shall call 
A  singular. But the transformation TA is, by Theorem 2, that transfor
mation which takes the unit vectors o f F " into rows of A . Hence the 
condition of Theorem 9 becomes (cf. the Corollary of Theorem 6 , §7.4):

Corollary 3. A n n x  n matrix over a field F  is nonsingular if  and only 
i f  its rows are linearly independent— or, equivalently, i f  and only if  they 
form a basis for F".

Similarly, conditions (i) and (i') o f Corollary 1 translate into the 
following result.

Corollary 4. A n n x  n matrix A  is nonsingular if  and only if  it has a 
matrix inverse A  -1, such that

(44) A A ~ l =  A ~ lA  =  / ( A , A ~ \ l  all n x  n).

I f A  has an inverse, so does its transpose, for on taking the transpose 
of either side of (44), one gets by (31) (A ~ y)TA T =  A T(A ~ l) T =  I, so 
that

(45) G4-1)t  =  ( A 7) - 1.

Thus, if A  is nonsingular, so is A T ; moreover, the reverse is true 
similarly. But by Corollary 4, A T is nonsingular if and only if its rows are
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linearly independent. These rows are precisely the columns of A ;  hence 
we have

Corollary 5. A  square matrix is nonsingular if  and only if  its columns 
are linearly independent.

If Corollary 2 is translated from linear transformations to matrices, by 
Theorem 6 , we obtain

Corollary 6 . Every left-inverse o f  a square matrix is also a right- 
inverse.

If matrices A  and B  both have inverses, so does their product,

(46) {A B )~ l =  B ~ lA ~ l (note the order!),

for (A B )(B ~ 1A ~ 1) =  A (B B ~ l)A ~ l =  A / A - 1  =  A A - 1  =  I.
Inverses of nonsingular matrices may be computed by solving suitable 

simultaneous linear equations. I f  we write the coordinates of the basis 
vectors as

h  =  ( 1 , 0 , 0 , • • • , 0),

I 2 =  (0 , 1 , 0 , • •• ,()),
(47)

/„ =  (0 , 0 , • • •, 0 , 1 ),

then in a given matrix A  =  Hâ H each row A, is given as a linear 
combination

A i =  I  aijIj 
J

of the basis vectors. One may try to solve these equations for the 
“ unknowns”  Ij in terms of the A , ; the result will be linear expressions for 
the Ij as

(48) Ij =  CjXA i  +  • • • +  Cj„A„ =  £  c,fcAfc.
fc=i

By (40), this equation states that the matrix C  =  |lcyfc || satisfies C A  =  I, 
hence that C  =  A -1. Another construction for A ~  appears in §8 .8.
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E x a m p l e . To compute the inverse of the matrix

1  2  —2 \ 

-1  3 0 ,
0 -2  1/

write its rows as A j  =  1̂  +  2I 2 -  213, A z =  - / 1 +  312, A 3 =  -2 / 2+ I 3. 
These three simultaneous equations have a solution /, = 
3A j +  2 A 2 +  6A 3, / 2 =  A j  +  A 2 +  2 A 3, / 3 =  2A j +  2 A 2 +  5 A 3. The 
coefficients cjk in these linear combinations give the inverse matrix, for 
one may verify that

Linear transformations from a finite-dimensional vector space V  to a 
second such space W  (over the same field) can well be one-one but not 
onto, or vice versa. The same is true of linear transformations from an 
infinite-dimensional vector space to itself. For example, the linear trans
formation (x1? x2, x3, •••)!-> (0 , x u x2, x3, • • •) on the space of infinite 
sequence? of real numbers is one-one but not onto, hence has many 
(linear) right-inverses, but no left-inverse.

However, a two-sided inverse, when it exists, is necessarily linear even 
if V  is a space of infinite dimensions:

Theorem 10. I f  the linear transformation T  : V  -* W  is a one-one 
transformation o f V  onto W, its inverse is linear.

Proof. Let #  denote the unique inverse transformation of W  onto V, 
not assumed to be linear. Take vectors f  and 17 in W  and scalars c and d. 
Since ij/T is the identity transformation of W, and T  is linear

(c f +  drt)\pT =  c f  +  dr\ =  c(fi/fT) +  d ^ ip T ) -  [c(fi/0 +  d(T}\]/)]T. 

Apply i/f to both sides; since Ti/r is also the identity, one finds that

an equation which asserts that i/f is linear. Q.E.D.
A  one-one linear transformation T  of V  onto W  is an isomorphism of 

V  to W, in the sense of §7.8.

(49) (c f +  dr))#  =  c ( fi/0  +  d(r)# ),
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Corollary 1. A n  isomorphism T  o f V  onto W  carries any set o f 
independent vectors a u - • •, a, o f V  into independent vectors in W, and any 
set • ■ ■, fi, o f vectors spanning V  into vectors spanning Wi

Proof. If there is a linear relation

XiianT) +  • • • +  xr(arT ) =  0

between the a{T, we may apply T~x to find JCiai +  • • • +  x/xT =  0, hence 
Xi =  • ■ • =  xr =  0; the a{T  are independent. The proof of the second 
half is similar.

For any transformation T: V  -> W, the image or transform S' =  (S )T  
under T  of a subspace 5 of V  is defined as the set of all transforms of 
vectors in S. This image is always a subspace of W, for each linear 
combination c (£ T ) +  d (i}T ) — (c f  +  dr\)T o f vectors f T  and tjT  in S ' is 
again in S'.

Corollary 2. For an isomorphism T : V  -» W, the image under T  o f any 
finite-dimensional subspace S o f V  has the same dimension as S. Thus T  
carries lines into lines, and planes into planes.

Exercises

1. Find inverses for the matrices A, B, C, D  of Ex. 1, §8.3.

2. (a) Prove that A  = is nonsingular if and only if ad — be ^ 0.

(b) Show that if A  is nonsingular, its inverse is A-1  ̂  ^  where

A = ad — be.
3. Find inverses for the linear transformations Rg, Dk, Sa of §8.1.
4. Find inverses (if any) for the linear transformations of Ex. 4, §8.1.
5. (a) If 6 = 45°, compute the matrix of the transformation Rg^UJig (see

§8.1), where Ub is the transformation x' = bx, y' = y.
(b) Describe geometrically the effect of this transformation.
(c) Do the same for Re~~lSaRg (with 6 = 45°).

6. If A  satisfies A 2 -  A  +  I  = 0, prove that A - 1  exists and is I  -  A.
7. Find inverses for the matrices E t, E2, and E3 of Ex. 9, §8.3.
8. Find inverses for the matrices A  and B of Ex. 3, §8.5. (Hint: Use blocks.)
9. (a) Compute a formula for the inverse of a 2 x 2 triangular matrix.

(b) The same for a 3 x 3. (Hint: Try a triangular inverse.)
(c) Prove that every triangular matrix with no zero terms on the diagonal 

has a triangular inverse.
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10. Given A, B ,A  \ B \ and C, find the multiplicative inverse of

O -  O -  O -
11. Prove that all nonsingular n X  n matrices form a group with respect to 

matrix multiplication.
12. If a product A B 'of square matrices is nonsingular, prove that both factors 

A  and B  are nonsingular.
★13. Prove without appeal to linear transformations that a matrix A  has a 

left-inverse if and only if its rows are linearly independent.
14. Prove Corollary 2 of Theorem 10.
15. Exhibit a linear transformation of the space o f sequences (* i, x2, x3, • • •) 

onto itself which is not one-one.
★16. I f  a linear transformation T  : V  -* W  has a right-inverse, prove that it has a 

right-inverse which is linear (without assuming finite-dimensionality).

8.7. Rank and Nullity

In general (see §6.2), each transformation (function) T: S -* S3 has 
given sets S and S3 as domain and codomain, respectively. The range of 
T  is the set of transforms (image of the domain under T).

In case T  is a linear transformation of a vector space V  into a second 
vector space W  the image (set of all £T) cannot be an arbitrary subset of 
W.

Lemma 1. The image o f a linear transformation T: V  -* W  is itself a 
vector space (hence a subspace o f W ).

Proof. Since c(£T ) =  (cg )T  and +  17T  =  ( f  +  17)T, the set of 
transforms is closed under the vector operations.

Lemma 2. Let TA be the linear transformation corresponding to the 
m x  n matrix A . Then the image o f TA is the row space o f A .

Proof. The transformation TA : F™ -* F n carries each vector X  =  
(* !, ■ • •, xm) of F m into y  =  X A  in F ”, so that the image of TA consists 
of all n -tuples of the form

Y  X A  * ) Z  ̂ A'n) XI “Tj (^i 11 , ain).

These are exactly the different linear combinations of the rows A , =  
(an, ■ • •, ain) of A . The range of TA is thus the set of all linear 
combinations o f the rows of A . But this is the row space of A , as defined 
in §7.5. Q.E.D.
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The rank of a matrix A  has been defined (§7.6) as the (linear) 
dimension of the row space of A ;  it is therefore the dimension of the 
range of TA. More generally, the rank of any linear transformation T  is 
defined as the dimension (finite or infinite) of the image of T.

Since the dimension of the subspace spanned by m given vectors is the 
maximum number of linearly independent vectors in the set, the rank of 
A  also is the maximum number of linearly independent rows of A . For 
this reason, the rank of A  as defined above is often called the row-rank 
of A , as distinguished from the column-rank, which is the maximum 
number of linearly independent columns of A.

Dual to the concept of the row space of a matrix or range of a linear 
transformation is that o f its null-space.

Definition. The null-space o f a linear transformation T  is the set o f all 
vectors £ such that £,T -  0. The null-space of a matrix A  is the set o f all 
row matrices X  which satisfy the homogeneous linear equations X A  =  0.

Lemma 3. The null-space of any linear transformation (or matrix) is a 
subspace of its domain.

Proof. If £T  =  0 and t j T  =  0, then for all c, c',

(c£ +  c 'tj) T  =  c ( fT )  +  c '(tjT )  =  0 +  0 =  0.

Hence c£ +  c ' t j  is in the null-space, which is therefore a
subspace. Q.E.D.

The dimension of the null-space of a given matrix A  or a linear 
transformation T  is called the nullity of A  or T. Nullity and rank are 
connected by a fundamental equation, valid for both matrices and linear 
transformations. Because of the correspondence between matrices and 
linear transformations, we need supply the proof only for one case.

Theorem  11. Rank +  nullity =  dimension o f domain.

Thus for an m x n matrix, (row) rank plus (row) nullity equals m.
Proof. If the nullity of T  is s, its null-space N  has a basis « ! , • • • ,  as 

of s elements, which can be extended to a basis « i ,  • • •, as, j3i, • • •, j3r for 
the whole domain of T. Since every atT  =  0, the vectors /3/T span the 
image (range) R  of T. Moreover, x\(P\T) +  • • • +  xr(firT ) =  0 implies 
Xij32 +  ■ • • +  xr[3r in N, so that Xi +  • • • +  xr =  0. Hence the vectors 
J3;T  are independent and form a basis for R. We conclude that the 
dimension m =  s +  r of the domain is the sum of the dimensions s of N  
and r of R, which is all we need.
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Theorem 12. For a linear transformation T: F n -» F "  to be nonsingu
lar, each o f the following conditions is necessary and sufficient:

Proof. Condition (a) states that T  carries F n onto itself, while condi
tion (b) states that £T  =  0 implies £ =  0 in F n. Thus Theorem 12 is just a 
restatement of conditions (iv) and (ii) of Corollary 1 to Theorem 9.

1. Find the ranges, null-spaces, ranks, and nullities of the transformations given 
in Exs. l(a)-l(d), 4(a), 4(b), §8.1.

2. Construct a transformation of R3 into itself which will have its range spanned 
by the vectors (1,3,2) and (3, —1,1).

3. Construct a transformation of R4 into itself which has a null-space spanned by 
(1,2,3,4) and (2,2,4,4).

4. Prove that the row-rank of a product AB  never exceeds the row-rank of B.
5. If the n x n matrix A  is nonsingular, show that for every n x n matrix B the 

matrices AB, B, and BA  all have the same rank.
6. Prove that rank {A + B) §  rank (A ) + rank (B).

8.8. Elementary Matrices

The elementary row operations on a matrix A,  introduced in §7.5, 
may be interpreted as premultiplications of A  by suitable factors. For 
example, two rows in a matrix may be permuted by premultiplying the 
matrix by a matrix obtained by permuting the same rows of the identity 
matrix I. Thus

/O l\ ( a i af\ _  (0  • a i +  1  • b\ 0  • a2 +  1  • b2\ _  /hi b2\
\ 1  O/vZjj b2)  \ 1  • <2! +  0  • \ - a 2 +  0 ' b J  \Ui a2) '

To add the second row to the first row or to multiply the second row by c,
simply do the same for an identity factor in front:

(a)  rank T  =  n, (b) nullity T  =  0.

Exercises

7. Given the ranks of A  and B, what is the rank of ^

/I l\/<ii a2\ =  l a x +  bx 

\ 0  1  IXbx b2)  \ bx
CL\ +  b\ Q.2 +  b i  

b\ &2 4

/I 0 \/<2! a2\ / a x  a2\ 

\ 0  c)\bx b2)  \cbx cb2) '

Download more at Learnclax.com



Ch. 8 The Algebra of Matrices 244

Similar results hold for m x  n matrices; the prefactors used to represent 
the operations are known as elementary matrices.

Definition. An elementary m X m matrix E  is any matrix obtained 
from the m X m identity matrix I  by one elementary row operation.

There are thus three types of elementary matrices, samples of which
are

(50)

/I 0 0 0 \ 

0 0 0 1 
0 0 1 0  

\o 1  0 0 1
H 2 4

11 0 0 0 \ 
0 1 0  0 

0 0 3 0
\o 0 0 1  /

I  +  2E33

11 0  0 0 

d 1 0  0 

0 0 1 0  
\o 0 0 1 1 

I  +  dE2!

In general, let I k denote the fcth row of the m x m identity matrix I. 
Then the interchange in I  of row i with row y gives the elementary 
permutation matrix H  =  ||/i,y|| whose rows H k are

(51) H, =  Ij, H j =  H k = 4  (*  *  i , i ) .

Similarly, multiplication of row i in I  by a nonzero scalar c gives the 
matrix M  whose rows M k are given by

(52) M i =  cl, (c 5* 0), M k = 4  (k 5* i).

If Eij is, as before, the matrix having the single entry 1 in the ith row and 
the yth column, and all other entries zero, this matrix M  can be written as 
M  =  / +  (c -  \)EU. Finally, the elementary operation of adding d times 
the ith row to the yth row, when applied to /, gives the elementary matrix 
F  =  I  +  dEjh whose rows Fk are given by

(53) Fj =  Ij +  dli Fk = 4  (k  *  y).

Theorem  13. Each elementary row operation on an m x  n matrix A  
amounts to premultiplication by the corresponding elementary m x  m ma
trix E.

This may be proved easily by direct computation of the product E A . 
Consider, for example, the elementary operation of adding the ith row to 
the yth row of A . The rows Fk of the corresponding elementary matrix F  
are then given by (53). The rows of any product E A  are always found
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from the rows of the first factor, by formula (37), so

(FA); =  FjA  =  (I, +  Ij)A =  I/A +  IjA =  (M ) , +  ( M ) y,

(F A )k =  FkA  =  7fcA  =  ( I A ) k (k *  j ) .

These equations state that the rows of F A  are obtained from the rows of 
IA  =  A  by adding the ith row to the /th row. In other words, the 
elementary operation in question does carry A  into FA , as asserted in 
Theorem 13.

Corollary 1. Every elementary matrix E  is nonsingular.

Proof. E  is obtained from / by certain operations. The reverse 
operation corresponds to some elementary matrix E * and carries E  back 
into I. By Theorem 13 it carries E  into E *E , so E * E  =  I , E  has a 
left-inverse E *, and so is nonsingular.

Corollary 2. I f  two m x  n matrices A  and B  are row-equivalent, then 
B  — PA , where P  is nonsingular.

For, by Theorem 13, B  =  E nE n_i • • • E XA,  where the E, are elemen
tary, and so nonsingular.

The equivalence between row operations and premultiplication gives 
to Gauss elimination another useful interpretation, in the usual case that 
no zeros are produced on the main diagonal, for in this case, not only is 
the coefficient matrix A  reduced to upper triangular form U  (which 
is obvious), but since subtracting multiples of any ith row from later 
rows amounts to premultiplication by a lower triangular matrix L k, we 
have

U  =  L jL j- iL j - 2  • • • L XA  =  L A , s S  n(n -  l)/2,

where L  =  • • • L i  is lower triangular. Therefore A x  -  b is equi
valent to Ux -  Lb, where U  -  L A . Hence we can write A  — L ~  U, 
where L _1 is lower and U  is upper triangular; this is referred to as the 
“ Lt/-decomposition”  of A .

Matrix inverses can be calculated using elementary matrices. Let A  be 
any nonsingular square matrix. By Corollary 3 o f Theorem 9 of §7.6, A  
can be reduced to / by elementary row operations. Hence, by Theorem 
13, for suitable elementary matrices

EsEs- i  • • • E iA  =  I.
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Multiply each side o f this equation by A  1 on the right. Then

(54)

The matrix on the left is the result of applying to the identity I  the 
sequence of elementary operations E x, ■ ■ ■ ,E S. This proves

Theorem 14. I f  a square matrix A  is reduced to the identity by a 
sequence o f row operations, the same sequence o f operations applied to the 
identity matrix I  will give a matrix which is the inverse o f  A .

This is an efficient construction for the inverse. Given any A , it will by 
a finite sequence of rational operations either produce an inverse for A  or 
reduce A  to an equivalent singular matrix. In the latter event A  has no 
inverse. For matrices larger than 3 x 3 ,  this method is more efficient than 
the devices from determinant theory sometimes used to find A - 1  (cf. 
Chap. 10).

Incidentally, any nonsingular matrix P  is the inverse (P - 1 )- 1  of 
another nonsingular matrix; hence, as in (54), it can be written as a 
product of elementary matrices. This combines with Corollary 1 of 
Theorem 13 to yield the following result.

Theorem 15. A  square matrix P  is nonsingular i f  and only if  it can be 
written as a product o f elementary matrices,

Corollary 1. Two m x  n matrices A  and B  are row-equivalent i f  and 
only if  B  =  P A  for some nonsingular matrix P.

For B  is row-equivalent to A  if and only if (by Theorem 13) 
B  =  E nE n- 1  • • • E iA , where the E, are elementary. And by Theorem 15 
this amounts to B  =  PA , with P  nonsingular.

Theorem 15 has a simple geometrical interpretation in the two- 
dimensional case. The only 2 x 2  elementary matrices are

(55) P  =  E jE j-! •• •E l .

Fl2"C l ) ’ F21-(o l)-
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The corresponding linear transformations are, as in §8.1:

(H 12) a reflection of the plane in the 45° line through the origin,
(Mj, for c positive) a compression (or elongation) parallel to the x -  or 
y-axis,
(M „  for c negative) a compression followed by a reflection in the axis,
(Fy) a shear parallel to one of the axes.

This gives

Corollary 2. Any nonsingular homogeneous linear transformation o f 
the plane may be represented as a product o f shears, one-dimensional 
compressions (or elongations), and reflections.

This primarily geometric conclusion has been obtained by algebraic 
argument on matrices. Analogous results may be stated for a space of 
three or more dimensions.

The elementary row operations on a matrix involve only manipula
tions within the given field F. I f the elements of a matrix A  are rational 
numbers, while the field is that of all real numbers, the elementary 
operations can be carried out just as if the field contained only the 
rational numbers. In either field we get the same echelon form, hence the 
same number of independent rows.

Theorem  16. I f  a matrix A  over a field F  has its entries all contained 
in a smaller field F ,  then the rank o f A  relative to F  is the same as the rank 
o f A  relative to the smaller field F .

The operations with row-equivalence are exactly those used to solve 
simultaneous linear equations (§2.3 and §7.5). To state the connection, 
consider m equations

I  ayXj =  bi (i =  1 , • • •, m; / =  1 , • • ■, n) 
i

in the n unknowns Xj. The coefficients of the unknowns form an m X  n 
matrix A  =  ||a/; ||, while the constant terms bt constitute a column vector 
B t . The equations may be written in matrix form as A X T =  B T, where 
X T is the column vector of unknowns (the transpose of the vector 
X  =  (* !, • • •, * „ )). The column of constants B T may be adjoined to the 
given matrix A  to form an m x  (n +  1) matrix ||A, B T \\, the so-called 
augmented matrix of the given system of equations. Operations on the 
rows of this matrix correspond to operations carrying the given equations
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into equivalent equations, and so two systems of equations A X T =  B T 
and A * X t  =  B * have the same solutions X T if  their augmented matrices 
are row-equivalent.

Exercises

1. Find the row-equivalent echelon form for each of the matrices displayed in 
Ex. 9(a) of §8.3.

2. (a) Display the possible 3 x 3  elementary matrices.
(b) Draw a diagram to represent each n x n elementary matrix o f the form 

(51M53).
3. Find the inverse of each of the 4 x  4 elementary matrices H 24,1  +  2E 33,1  +  

dE21 displayed in the text.
4. Prove Theorem 13 for 2 x 2 matrices by direct computation for the five 

matrices displayed after Theorem 15.
/I 0 3\ /0 1 2

5. Find the inverses o f [2  4 I I  and I 1 0 2

\1 3 0/ V l 2 0
6. Write each o f the following matrices as a product o f elementary matrices:

(a) ^  , (b) ^  , (c) the first matrix o f Ex. 5.

7. Represent the transformation x' = 2x -  5y, y' = —3jc + y as a product of 
shears, compressions, and reflections.

★8. For a three-dimensional space, state and prove an analogue o f Corollary 2 to 
Theorem 15. Using Ex. 3, §7.5, sharpen your result.

9. Prove that any nonsingular 2 x 2  matrix can be represented as a product of

the matrices , ( q i )  ’ and ( o  i )  ’ where ^  0 is

any scalar. What does this result mean geometrically?
10. Show that the rank of a product never exceeds the rank o f either factor.
11. Prove that a system o f linear equations A X T =  B T has a solution if and only 

if the rank of A  equals the rank of the augmented matrix || A , £ T||.
12. Let A X t  =  B T be a system of nonhomogeneous linear equations with a 

particular solution X T =  X 0T. Prove that every solution X T can be written 
as X T =  X 0T +  Y t , where Y T is a solution o f the homogeneous equations 
A Y T -  0, and conversely.

13. Prove: If  a system of linear equations with coefficients in a field F  has no 
solutions in F, it has no solutions in any larger field.

8.9. Equivalence and Canonical Form

Operations analogous to elementary row operations can also be 
applied to columns. An elementary column operation on an m x  n matrix 
A  thus means either (i) the interchange of any two columns of A , (ii) the
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multiplication of any column by any nonzero scalar, or (iii) the addition of 
any multiple of one column to another column.

The replacement of A  by its transpose A T changes elementary 
column operations into elementary row operations, and vice versa. In 
particular, A  can be transformed into B  by a succession of elementary 
column operations if and only if the transpose A T can be transformed 
into B t  by a succession of elementary row operations. Applying Corol
lary 1 of Theorem 15, this means that B T =  P A T, or B  =  ( B T) T =  
( P A t ) t  =  A P T =  A O , where Q  =  P T is nonsingular. Conversely, B  = 
A O , for a nonsingular Q  makes B  column-equivalent to A . Hence, 
application of column operations is equivalent to pas/multiplication by 
nonsingular factors. The explicit postfactors corresponding to each 
elementary operation may be found by applying this operation to the 
identity matrix, much as in Theorem 13.

Column and row operations may be applied jointly. We may define 
two m x n matrices A  and B  to be equivalent if and only if A  can be 
changed to B  by a succession of elementary row and column operations, 
and we then get the following result.

Theorem 17. A n  m X n matrix A  is equivalent to a matrix B  if and 
only if  B  =  P A Q  for suitable nonsingular m X m and n x n matrices P  
and Q.

Using simultaneous row and column operations, we can reduce matrices 
to a very simple canonical form  (see §9.5).

Theorem 18. Any m X n matrix is equivalent to a diagonal matrix D  
in which the diagonal entries are either 0  or 1 , all the l ’s preceding all the 
0’s on the diagonal.

Explicitly, if r is the number of nonzero entries in D , where clearly 
r m, r n, then D  =  D r may be displayed in block form as

where 0 1>; denotes the i x j  matrix of zeros.
The proof is by induction on the number m of rows of A . If all entries 

of A  are zero, there is nothing to prove. Otherwise, by permuting rows 
and columns we can bring some nonzero entry c to the an  position. After 
the first row is multiplied by c -1, the entry au  is 1. A ll other entries in 
the first column can be made zero by adding suitable multiples o f the first 
row to each other row, and the same may be done with other elements of

(56) I r the r X r identity matrix,
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the first row. This reduces A  to an equivalent matrix of the form

(57) b  =  ( q  C  an (m -  1) x (n -  1) matrix.

Upon applying the induction assumption to C  we are done.

Theorem  19. Equivalent matrices have the same rank.

Proof. \Ve already know (§7.5, Theorem 7) that row-equivalent 
matrices have the same row space, and hence the same rank. Hence we 
need only show that column-equivalent matrices A  and B  =  A Q  ( Q  
nonsingular) have the same rank. Again, by Theorem 11, this is true if A  
and B- have the same nullity, which is certainly true if they have the same 
null-space. But X A  =  O  clearly implies X B  =  X A Q  =  O Q  =  O, and 
conversely, X B  =  O  implies X A  - X A Q Q - 1  =  X B Q ~ l =  O Q ~ l =  O. 
That is, column-equivalent matrices have the same null-space.

Corollary 1. A n m x n matrix A  is equivalent to one and only one 
diagonal matrix of the form (56) ; the rank r of A  determines the number r 
o f units on the diagonal.

Corollary 2. Equivalent matrices have the same column rank.

Proof. The column rank of A  (the maximum number of independent 
columns of A )  equals the (row) rank of its transpose A T. But the 
equivalence of A  to B  entails the equivalence of the transposes A  T and 
B t . By the theorem, A T and B T have the same rank, so A  and B  have 
the same column rank.

In the canonical form (56) the rank is the same as the column rank; 
since both ranks are unaltered by equivalence, we deduce

Corollary 3. The (row) rank o f a matrix always equals its column 
rank.

Corollary 4. Two m x n matrices are equivalent if  and only if they 
have the same rank.

If equivalent, they have the same rank {Theorem 19); if they have the 
same rank, both are equivalent to the same canonical D ; hence to each 
other.

Corollary 5. A n n x n matrix A  is nonsingular if and only if it is 
equivalent to the identity matrix I.
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For, by Corollary 4, A  is equivalent to I  if and only if it has rank n ; 
by Theorem 12, this is true if and only if A  is nonsingular.

1. Check Corollary 3 of Theorem 19 by computing both the row and the 
column ranks (a) in Ex. 1 of §7.6, (b) in Exs. 7(a), 7(b) of §7.6.

2. Find an equivalent diagonal matrix for each matrix o f Ex. 2, §7.6.
3. Do the same for the matrices o f Ex. 7, §7.6.
4. Let T  be a linear transformation o f an m-dimensional vector space V  into 

an n -space W. Show that by suitably choosing bases in V  and m W  the 
equations of T  take on the form y, =  xt (/ =  1, • • •, r), y; =  0 
(/ = r +  1 ,- • • ,n).

5. (a) Prove that the transpose o f any elementary matrix is elementary.
(b) Use this to give an independent proof o f the fact that the transpose of 

any nonsingular matrix is nonsingular.
★6. I f  A  and B  are n X n matrices of ranks r and s, prove that the rank of A B  

is never less than (r +  s) — n. (H int: Use the canonical form for A .)
★7. (a) Prove Sylvester’s law o f nullity: the nullity o f a product A B  never 

exceeds the sum o f the nullities o f the factors and is never less than the 
nullity of A ; if A  is square, it is also at least the nullity o f B.

(b) G ive examples to show that both of these limits can be attained by the 
nullity of A B .

★8. Let A k denote the k x  k submatrix o f A  consisting o f the a(j with i, j =  1, 
• • •, k. Show that if no A k is singular, k =  1, • • •, n, then A  =  L U , where 
L  is lower and U  upper triangular.

9. Prove: An  m x  n matrix A  has rank at most 1 if and only if it can be 
represented as a product A  =  BC, where B  is m x  1 and C  is 1 x  n.

10. Prove that any matrix o f rank r is the sum of r matrices o f rank 1.
★11. Let the sequence E u of elementary row operations, suitably

interspersed with the elementary column operations • • • ,£ , ',  reduce A  
to I. Show that A ' 1 =  QP, where P  =  E r • • • £ ,  and (? =  £ , ' • • •  Es' are 
obtained from I  by the same sequences o f elementary operations.

12. Show that if P A Q  =  D , as in Theorem 18, then the system A X T =  B T of 
simultaneous linear equations (§8.8) may be solved by solving D Y T =  P B T 
and then computing X T =  Q Y T.

★8.10 Bilinear Functions and Tensor Products

Now let V  and W  be any vector spaces over the same field F. A  
bilinear function /(£, 17) of the two variables £ € V  and 17 € W  is defined 
as a function with values in F  such that

Exercises

(58)

(58')

fia t; +  fi) =  a/(£ 17) +  bf (g ,  17), and

/ (£  er] +  d t]') =  c/(£ 17) +  d f(i, 17')
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for all £  e V  and 17, 17 ' e W. Repeating the argument used to prove 
Theorem 23 of § 7 .12 , one easily obtains the following result.

Theorem 20. I f  V  and W  have finite bases P \ , " ' , p m and 
7 u ”  7m respectively, then every bilinear function / ( £  17) of the variables 
£  =  X1P 1 +  • • • +  xmp m e V  and 17 =  y jy ,  +  • • • +  y„y„ e W  has the 
form

m ft
(59) / (£  17) =  £  I  *,%y,, an =  /(ft, yy).

i = l y = l

Note that the two equations of (59) describe inverse functions A  *-» /  
and f  A  between m x  n matrices A  =  ||a,y|| over F  and bilinear 
functions f : F m x  F "  -» F , where F m x  F "  is the Cartesian product of 
F ”  and F^ defined in § 1 . 1 1 .  Hence (59) is a bijection.

The preceding bijection can be generalized. We can define bilinear 
functions h(g, 17) of variables £  and 17 from vector spaces V  and W  with 
values in a third vector space U  (U , V, and W  all over the same field F). 
Namely, such a function h: V  x  W  -» 17 is bilinear when it satisfies (58) 
and (58').

There are many such functions. For example, the outer product £ x  17 

of two vectors from R3 is bilinear with U  =  V  =  W  — R . Likewise, if 
we let U  =  V  =  W =  M„ be the vector space of all n x  n matrices over 
F , the “ matrix product”  function p(A , B ) =  A B  is bilinear from
M„ x  M„ to M„, as stated in Theorems 3 and 5.

The result of Theorem 20 holds in the preceding, more general
context, and its proof is similar.

Theorem 21. Let the vector spaces V  and W over F  have finite bases 
P u  • • ‘ , Pm and 7 1 , • • •, y„, respectively. Then any mn vectors 0iy in a third 
vector space U  over F  determine a bilinear function h : V  x  W -» U  by the 
formula

(60) h(£, 17) =  S  t XtyAj
i = l i = l

for £  and 17 expressed as before. Moreover, any bilinear h : V  x  W  -» U  has 
this form for =  /i (ft, yy), so that H  ^  h is a bijection from the set of 
m x  n matrices H  =  || 0,y || with entries in U  to the set of bilinear functions 
h : V x  W - *  U.

This theorem suggests a way of getting a single standard or “ most 
general”  bilinear function ®  on V  x  W, with the symbol ®  usually
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written between its arguments as £ ®  17 =  ® (£  17). The values of this 
function®lie in a new vector space called V ®  W ; indeed, we construct 
this space so as to have a basis o f mn vectors, a jy, for i =  1 , • • • , m and 
j  — 1 , • • •, n which serve as the values ar/y =  /3; ®  y, of ®  on the given 
basis elements of V  and W. This means that the function ®  can 
be defined by

(61) (xj/3i +  • • • +  x j3 m) ®  (y iy i +  • • • +  ynyn) =  £  £  x,y;o!iy,
i - 1 7 -1

as in (60), with the 0(y replaced by a{J. However, this new space V  ®  W  is 
best described by an intrinsic property not referring to any choice of bases 
in V  and W, as follows:

Theorem 22. For any given finite-dimensional vector spaces V  and W  
over a field F, there exist a vector space V  ®  W  and a bilinear function

® : V  X W  ^  V ® W

with the following property: Any bilinear function h: V  X W  -> U  to any 
vector space Uover Fcan be expressed in terms o f ® : V  x  W  -* V ®  Was

h(&r i )  =  { € ® i i ) T ,  £ e V, r, e W,

for a unique linear function T : V ® W  -> U.

Proof. We first construct ®  as above. Then any bilinear h can be 
expressed, as in (60), in terms of the mn vectors =  /i(/3„ yf). Now the 
parallel between (60) and (61) leads to the linear transformation 
T : V  ®  W  -> U, which is uniquely determined as that transformation 
which takes each basis vector a,; of V  ®  W  to in U. Then formula (60) 
becomes

h(f,  r/) =  1 1  x,yy(a iyT ) =  ( I  I  x,y;<*iy) T  =  (£ ®  17) T

as required. On the other hand, if h(g, 77) =  (£ ®  17)T* for some linear 
T :  V ®  W  -> U, then

ctijT =  03, ®  y ) ) T  =  Bij, i =  1 , • • •, m, j  =  1 , • • •, n,

so T  must be the T  used above. Therefore T  is unique, as asserted in the 
theorem.
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Example. Let V  =  F m, W  = F n, and let the /3i and yj be the 
standard unit vectors £, and e/ in these spaces. Then V  ®  W  =  F mn can 
be the space of all m x  n matrices ||aj;||, while ®  maps each (£  77) 6
V  X W  into the rank one matrix 1| =  || ||. Each bilinear 6:
V  x  W  -* U  is then determined by the nm vectors d(eh e/) =  hti. Then 
the function & is clearly the composite ® T  of ®  as defined above and the 
linear function T: V  ®  W  -* U  defined by the formula T’(||ai/||) =  £  
because for all £ e V, 77 e W, ®  r j )T  =  £  xiyjhij.

Universality. This theorem can be represented by a diagram

V  x  W  ®  W

T

U

in which the top row is the “ standard”  bilinear function ® , and the 
bottom row is any bilinear function h; the theorem states that there is 
always exactly one linear transformation T, so that the diagram “ com
mutes”  as ® T  =  h; that is, so that /i(£ 77) =  (£ ®  17)T. For this reason, ®  
is called the universal bilinear function— any other h can be obtained 
from it.

In particular, if we constructed any other standard bilinear function ® ’ 
with the same “ universal”  property— say, by using different bases for V  
and W —we would have a diagram

with ® T  - ® ' and ® 'T  =  ® . This means that ® 7 T  =  ®  =  ®/, with I  
the identity. In turn, by the theorem, this means that T V  = I. Similarly, 
T T  =  I, so T  is invertible with inverse V  and so is an isomorphism 
V ®  w  = V ® ' w.

The space V  ®  W  with this universal property is called the tensor 
product of the spaces V  and W-, this last result shows that the “ universal”  
property determines this space uniquely up to an isomorphism. For 
example, had we constructed V ® W  not from the bases f3u ■ • •, (}„ and 
yh • • •, y„, but from some different bases for V  and W, we would have
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obtained an isomorphic space V  ®  W. For that matter, this tensor pro
duct space V ® W  can be constructed in other ways, without using any 
bases (or using infinitely many basis vectors for infinite-dimensional 
spaces V  and W)\ it always has the same “ universal”  property. Our 
particular construction with its basis j8, ®  y; shows that its dimension is

dim (V ®  IV) =  (dim V )  +  (dim WO.

Specifically, given one space V  and its dual space V*, we can construct 
various tensor products:

V ® V ,  V ®  V ®  v , - - - ,  V ®  V*, v ® v * ® v , - - -

These are the spaces of tensors used in differential geometry and relativ
ity theory.

Exercises

1. Show that the mapping f  <-> A  defined by (59) is an isomorphism of vector 
spaces from the space o f all bilinear functions on V  x  W  to the space of all 
m x  n matrices over F.

2. Show that the formula q (x ) =  a (x )p ’(x ) defines a bilinear function <p(a,p) =  
q from the Cartesian product R [x ] x  R[;c] of two copies of the space of all 
real polynomials to R [x].

3. Show that the function p (A , B ) =  A B  is bilinear from V  x W  to U, where 
V  and W  are the spaces of all m x  r and all r x  n matrices over F, 
respectively. What is I/?

In Exs. 4 and 5, let U, V, and W  be any vector spaces over a field F.
4. Establish the following natural isomorphisms:

V ® F s V ,  u ® ( V ® W )  =  ( U ® V ) ® W .

5. Show the set Horn ( V  ®  W, U)  =  Horn ( V, Horn ( W, U )).
★6. Every vector in V  ®  W  is a sum of terms £ ®  tj. Show that there are vectors 

not representable as a single summand £ ®  tj. (Hint: Take V  =  F 2 — IV.) 
★7. The Kronecker product A  ®  B  of an m x  m matrix A  and an n x n matrix 

B  is the matrix C  with entries cM =  aikbjh where the p and q are the pairs 
(/,/) and (k, /), suitably ordered. To what linear transformation on V  ®  IV 
does A  ®  B  naturally correspond?

*8 .1 1 . Quaternions

The algebraic laws valid for square matrices apply to other algebraic 
systems, such as the quaternions of Hamilton. These quaternions consti
tute a four-dimensional vector space over the field of real numbers, with a
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basis of four special vectors denoted by 1, i , k. The algebraic operations 
for quaternions are the usual two vector operations (vector addition and 
scalar multiplication), plus a new operation of quaternion multiplication.

Definition. A  quaternion is a vector x =  x0 +  x 1i +  x^  +  x3k, with 
real coefficients x0, jc1s x2, x3. The product o f any two o f the quaternions 1, 
i, j, k is defined by the requirement that 1 act as an identity and by the table

.2 .2 , 2 , i =  ;  =  k =  - 1 ,
(62)

ij =  —ji  =  k, jk  =  - k j  =  i, ki =  —ik =  j.

If c and d are any scalars, while I, m are any two of 1, i, j, k, the product 
( c l ) (dm) is defined as (cd )(lm ). These rules, with the distributive law, 
determine the product of any two quaternions.

Thus, if x =  x0 +  +  x 2]  +  * 3k and y =  yo +  yti +  y-J +  y3k are
any two quaternions, then their product is

(63) xy =  *0yo -  * iy i -  *2y2 -  *3y3
+  (*0y! +  * 1  y0 +  X2y 3 -  X3y2)i
+  (*oy2 +  *2yo +  *3yi -  * iy3)i
+  (*0y3 +  *3yo +  * iy2 -  x2yf)k.

Though the multiplication of quaternions is noncommutative, they satisfy 
every other postulate for a field. Number systems sharing this property 
are called division rings.

Definition. A  division ring is a system R  o f elements closed under two 
single-valued binary operations, addition and multiplication, such that

(i) under addition, R  is a commutative group with an identity 0;
(ii) under multiplication, the elements other than 0 form a group;

(iii) both distributive laws hold:

a(b +  c ) =  ab +  ac and (a +  b)c =  ac +  be.

From these postulates, the rule aO =  0a = 0  and thence the associa
tive law for products with a factor 0 can be deduced easily. It follows that 
any commutative division ring is a field. W e note also that analogues of 
the results of §§8 .1-8.7 are valid over division rings if one is careful about 
the side on which the scalar factors appear. Thus for the product eg of a 
vector g by a scalar c, we write the scalar to the left, but in defining (§8 .2 ) 
the product of a transformation T  by a scalar, we write the scalar on the 
right g (T c ) =  (cg)T, and we likewise multiply a matrix by a scalar on the
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right. The space of linear transformations T  o f a left vector space over a 
division ring R  is thus a right vector space over R.

Theorem 23. The quaternions form a division ring.

The proof of every postulate, except for the existence of multiplicative 
inverses (which implies the cancellation law, by Theorem 3 of §6.4) and 
the associative law of multiplication, is trivial. To prove that every 
nonzero quaternion x =  x0 +  x xi +  x2j  +  x3k has an inverse, define the 
conjugate of x as x *  =  x0 — x xi — x-J — * 3k. It is then easily shown that 
the norm of x, defined by N i x )  =  xx*,  is a real number which satisfies

(64) N ( x )  =  xx* =  x*x  =  x02 +  x 2 +  x2 +  x 2 >  0 if x ^  0.

Hence x has the inverse x*/N(x ) .
The proof of the associative law is most easily accomplished using 

complex numbers. Indeed, it is easily seen from (64) that the quaternions 
x =  x0 +  Xii with x2 =  x3 =  0  constitute a subsystem isomorphic with 
the field of complex numbers. Moreover,

(65) x =  (x0 +  x j )  +  (x2 +  x3i ) j  =  z x +  z-J,

where z x and z2 behave like ordinary complex numbers. Actually, all the 
rules of (62) are contained in the expansion (65), the associative and 
distributive laws, and the rules

(66) z j  =  jz i* ,  j 2 =  - 1 ,

where z *  — x0 — Xii is the complex (and quaternion!) conjugate of 
=  x0 +  X|i. Indeed, the product of two quaternions in the form (65) is

(x i +  Z2j ) (w 1 +  W2j )  =  (ZiW! -  Z2w2* )  +  ( z 3W2 +  Z2Wy*)j.

Using this formula, we can readily verify the associative law.
Every quaternion x satisfies a quadratic equation f ( t ) =  0 with roots x 

and x*, and with real coefficients. This equation is

f i t )  =  (t -  x ) i t  -  x * ) =  t2 -  (x +  x* ) t  +  xx* =  t2 -  2x0f +  N(x ) .

Any quaternion x =  x0 +  x^i +  x-J +  x3k can be decomposed into its 
real part x0 and its “ pure quaternion”  part Xii +  x-J +  x3k. These have 
various interesting properties (cf. Ex. 2(c), 15); one of the most curious 
concerns the multiplication of the pure quaternions £ — x xi +  x-J +  x3k
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and T) =  y i i +  ynj +  y3k. By definition,

(67) fi? =  f  x t, -  (f, r,),

where f  X t ) =  (x2y3 -  x3y2)i +  (*3yi ~  •*iy3)/.+ U iy 2 ~  x1y1)k is the 
usual outer product (or “ vector product” ) of £ and tj, and (£  77) = 
jciy 1 +  x2yi +  x3y3 is the “ inner product”  defined in Chap. 7. Largely 
because of the identity (67), much of present-day three-dimensional 
vector analysis was couched in the language of quaternions in the half- 
century 1850-1900.

It was proved by Eilenberg and Niven in 1944 that any polynomial 
equation f ( x )  =  a0 +  a ijc +  * • • +  anx n =  0 , with quaternion coeffi
cients, an #  0 , and n >  0 , has a quaternion solution x.

Exercises

1. Solve xc = d for (a) c = i, d = 1 + j  and (b) c = 2 + /, d = 3 + k.
2. (a) Prove that x2 = —1 has an infinity of quaternions x as solutions.

(b) Show why this does not contradict the Corollary of Theorem 3, §3.2, on 
the number of roots of a polynomial.

(c) Show that the real quaternions are those whose squares are positive, 
while the pure quaternions are those whose squares are negative real 
numbers. Infer that the set of quaternions satisfying x 2 <  0 is closed 
under addition and subtraction.

(d) Show that if q is not real, x2 — q has exactly two quaternion solutions.
3. Let a = I + i + j, b = I + j  + k.

(a) Find a + b, ab, a — b, ia — 2b, a*, aa*.
(b) Solve ax = b, xa = b, x2 = b, bx + (2j  + k) = a.

4. Derive the multiplication table (66) from (62).
5. (a) Show that the norm N(x)  = xx* of x is x02 + x 2 + x22 + x 2.

(b) Show that x*y* = (yx)*.
6. Show that in the group of nonzero quaternions under multiplication, the 

“ center” consists precisely of the real nonzero quaternions.
7. Prove that the solution of a quaternion equation xa = b is uniquely deter

mined if a t4 0 .
8. If a quaternion x satisfies a quadratic equation x2 + OqX + b0 = 0, with real 

coefficients a0 and b0, prove that every quaternion q~lxq satisfies the same 
quadratic equation (if q '■£ 0).

9. Prove that the multiplication of quaternions is associative. (Hint: Use (65) 
and (66).)

10. In the algebra of quaternions prove the elements ±1, ±i, ± 7, ±k  form a 
multiplicative group. (This group, which could be defined directly, is known 
as the quaternion group.)
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11. (a) Enumerate the subgroups of the quaternion group (Ex. 10), and show
they are all normal.

(b) Show that the quaternion group is not isomorphic with the group of the
square.

12. (a) Prove that the quaternions x0 + x^i + x^- + x3k with rational coefficients
x, form a division ring.

(b) Show that this is not the case for quaternions with complex coefficients.
(Note: Do not confuse the scalar V—I  e C with the quaternion unit i.)

13. In a division ring, show that the commutative law for addition follows from 
the other postulates. (Hint: Expand (a +  6)(1 +  1) in two different ways.)

14. How many o f the conditions of Theorem 2, §2.1, can you prove in a general 
division ring, if a/b is interpreted as ab-1!

15. Show that the “ outer product”  of two vectors is not associative;
16. If the integers a and b are both sums o f four squares of integers, show that 

the product ab is also a sum o f four squares. (Hint: Use Ex. 5.)
17. Derive all of the rules (62) from i2 =  j 2 =  k2 =  ijk =  —1.
18. Does (A B )t  =  B tA t hold for matrices with quaternion entries?
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Linear Groups

9.1. Change of Basis

The coordinates of a vector £ in a space V  depend upon the choice of 
a basis in V  (see §7.8); hence any change in the basis will cause a change 
in the coordinates of £  For example, in the real plane R 2, the vector 
fi =  4e] +  2e2 has by definition the coordinates (4,2) relative to the

basis of unit vectors E ] , e 2 . The 
vectors

( 1 )  a  i  =  2 e , ,  a 2 =  E i  +  e 2

also form a basis; in terms of this 
basis, f3 is expressed as fi =  
a x +  2a2. The coefficients 1 and 2 
are the coordinates of fi, relative to 
this new basis (i.e., relative to the 
oblique coordinate system shown 
in Figure 1).

More generally, the coordinates * i* , x2* of any vector £ relative to the 
“ new”  basis a^,a2 may be found from the “ old”  coordinates x i , x 2 of £ 
as follows. By definition (§7.8), these coordinates are the coefficients in 
the expressions

£  =  x i E !  +  x 2e 2 , £  =  * , * « !  + x2*a2

of £ in terms of the two bases. Solving the vector equations (lJTor Ej and

o e n
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e 2 ,  we find

e l — 2« 1> ^2 — a2 2a \-

Substituting in the first expression for £ the values of E i  and e 2 ,  we find

Hence the new coordinates of £ are given by the linear homogeneous 
equations

Conversely, the old coordinates can be expressed in terms of the new, as
X j  =  2 * ! *  +  X 2 * ,  X 2  =  X 2 * .

Similar relations hold in n dimensions. If <*1, • ■ •, an is a given basis 
with its vectors arranged in a definite order, and ai*,  - • • , a n* a new 
(ordered) basis, then each vector a *  of the new basis can be expressed as 
a linear combination of vectors of the old basis, in the form

Formally, the expression (3) can be written as the matrix equation 
a *  =  a P T, where P T is the transpose of P.

The matrix P  =  ||piy || of the coefficients in these expressions has as its 
z'th row the row of old coordinates (pn , • • • , p,„) of the vector a * .  Since 
the vectors a *  form a basis, the rows of P  are linearly independent, and 
hence the matrix P  is nonsingular (§8 .6 , Theorem 9). Conversely, if 
P  ~  IIPi/II is any nonsingular matrix, and a 1; • • • ,a „ any basis of V, the 
vectors a *  determined as in (3) by P  are linearly independent, hence 
form a new basis of V. This proves

Theorem 1. I f  a lt • • • , «„ is a basis o f the vector space V, then for 
each nonsingular matrix P  =  ||p,7 1|, the n vectors a *  -  X Pi fit j, with i = 
1, • • •, n, constitute a new basis o f V, and every basis o f V  can be obtained 

in this way from exactly one nonsingular n x  n matrix P.

One may also express the old basis in terms o f the new basis by 
equations ak =  Y.<1ki(Xi* with a coefficient matrix Q  =  ||zfc,-||. Upon sub
stituting the values of a * in terms of the a ’s, we obtain

€ — Xi(2a i) +  x2(a 2 2a j) — 2(xj x2)a j +  x2a2.

(2) x i *  =  ( x i  -  x 2 ) / 2 ,  x 2 *  =  x 2 .

n
(3) a ;* =  pna i +  • J • +  pinan =  X P«a/» i =  1, • ■ • , n.

/= 1
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But there is only one such expression for the vectors ak in terms of 
themselves; namely, ak =  ak. Hence the coefficient Y.QkiPij of a; here 
must be 0 or 1, according as fc ^  / or fc =  j. These coefficients are exactly 
the (fc,/) entries in the matrix product Q P; hence Q P =  I, and Q  =  P  l 
is the inverse of P.

The parallel result for change of coordinates is as follows:

Theorem 2. I f  the basis a i, • • • ,a n o f the vector space V  is changed to 
a new basis a j* , • • • ,a „ *  expressed in the form a *  =  'LPi]<*j, then the

coordinates x, o f any vector £ relative to the old basis a, determine the 
new coordinates x *  o f ij relative to the a *  by the linear homogeneous 
equations

Proof. By definition (§7.8), the coordinates x *  of f  relative to the 
basis a *  are the coefficients in the expression £ =  £ x * a *  o f £ as a 
linear combination of the a * .  Substitution of the formula (3) for a *  
yields

The coefficient of each ay here is the old coordinate x; of f ; hence the 
equations (4).

The equations (4) may be written in matrix form as X  =  X *P , where 
X  =  (xj, • • •, x„) is the row matrix of old coordinates and X *  =  
(xi*, • • •, x„*) is the row matrix of new coordinates. Since the and a *  
are bases, P  is nonsingular, and one may solve for X *  in terms of X  as 
X *  =  XP~\

If one compares this matrix equation with the matrix formulation 
a *  =  a P T of (3) already mentioned, one gets the interesting relation

(5) bases: a *  =  a P T, coordinates: X *  =  X P -1.

The matrix P~ l of the second equation is the transposed inverse of the 
matrix P T of the first. (This situation is sometimes summarized by the 
statement that the change of coordinates is contragredient to the corres
ponding change of basis.)

n
(4) Xj X \  P \ j  ■ + ■ • * * +  Xn p nj  X %i P ij

i— 1
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Exercises

1. Let T  carry the usual unit vectors e, (in V2 or V3) into the vectors a,-specified 
below. Find the corresponding equations for the new coordinates in terms of 
the old coordinates, and for the old coordinates in terms of the new coordi
nates. In cases (a) and (b) draw a figure.
(a) a , =  (1,1 ), a 2 =  (1, -1 );  (b) a , =  (2, 3), a 2 =  (-2 , -1 ),
(c) a , =  (1,1, 0), a 2 =  (1, 0, 1), a 3 =  (0, 1, 1);
(d) a , =  (/, 1, i), a 2 =  (0, 1 , ;), «3 =  (0, /, 1), where i2 = —1 .

2. If a new basis a *  is given indirectly by equations o f the form a, =  X <?.><*/*.
j

work out the equations for the corresponding change of coordinates.
3. Give the equations for the transformation of coordinates due to rotation of 

axes in the plane through an angle 6.

9.2. Similar Matrices and Eigenvectors

A  linear transformation T : V  -* V  of a vector space V  may be 
represented by various matrices, depending on the choice of a basis 
(coordinate system) in V. Thus, in the plane the transformation defined 
by e, >-> 3ei, e2 •-> —£i +  2 e2 is represented, in the usual coordinate 
system of R 2, by the matrix A  whose rows are the coordinates of the 
transforms of £! and e2, as displayed below:

But relative to the new basis a i =  2 ^ , a2 =  £i +  £ 2  discussed in §9.1 
the transformation is 3a! and a2 •-> 2 a 2; hence it is represented by 
the simpler diagonal matrix D  displayed above. We shall say that two 
such matrices A  and D  are similar.

To generalize this result, let us recall how a matrix represents a 
transformation. Take any (ordered) basis a u - - - , a „  of a vector space V  
and any linear transformation T:  V  ■-» V. Then the images under T  of 
the basis vectors a, may be written by formula (9) of §8.1 as

(6 ) a{T =  I  aljaj, A  =  ||a,y||.
/

Hence T  is represented, relative to the basis a =  { a 1( • • •, a „}, by the 
n x  n matrix A.  This relation can also be expressed in terms of coordi
nates. Let £ =  £ * ,0:, be a vector of V  with the M-tuple X  =  (jci, • ■ • , * „ )
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of coordinates relative to the basis a. Then the image t j  =  f T  is 

f T  =  ( l  Xfit^T =  I  XiiotiT) =  1 1  xflijCtj =  I  ( r * i a iyW
\ / / j  j  \ j /

The coordinates y, of 17 are then just the coefficients of a,, so that

yy X
i

and the coordinate vector Y  of t j  is just the matrix product Y  =  X A . 
Briefly,

(7) Y  =  X A , where X  =  a -coordinates o f £,

y  =  a-coordinates of t j  =  £T.

Either o f the equivalent statements (6) or (7) means that T  is represented, 
relative to the basis a, by the matrix A .

Now let a !* , • • •, a „*  be a second basis. Then, by Theorem 1, the new 
basis is expressed in terms of the old one by a nonsingular n x n matrix P  
as in (3); and the new coordinates of £ and t j  =  are given in terms of 
the old coordinates, by Theorem 2, as X *  =  X P - 1  and Y *  =  YP~l . 
Then by (7)

Y *  =  YP~l =  X A P ~ l =  X * (P A P ~ l ).

Hence, by (7) again, the matrix B  representing T  in the new coordinate 
system has the form P A P ~ X. The equivalence relation B  =  P A P ~ l is 
formally like that of conjugate elements in a group (§6 .1 2 ); it is of 
fundamental importance, and called the relation of similarity.

Definition. Two n x n matrices A  and B  with entries in a field F  are 
similar (over F ) if  and only if  there is a nonsingular n X n matrix P  over F  
with B  =  PA P~  .

Our discussion above proves

Theorem  3. Two n x  n matrices A  and B  over a field F  represent the 
same linear transformation T: V  -* V  on an n-dimensional vector space V  
over F, relative to (usually) different coordinate systems, i f  and only i f  the 
matrices A  and B  are similar.
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More explicitly, we may restate this as

Theorem 3'. Let the linear transformation T: V  -» V  be represented by 
a matrix A  relative to a basis « i ,  • • • , « „  o f V, let P  =  ||p,y|| be a 
nonsingular matrix, and a *  =  £ Pnaj the corresponding new basis o f V.

v ,
Then T  is represented relative to the new basis by the matrix P A P  .

The algebra of matrices applies especially smoothly to diagonal mat
rices: to add or multiply any two diagonal matrices, one simply adds (or 
multiplies) corresponding diagonal entries. For this and other reasons, it 
is important to know which matrices are similar to diagonal matrices—  
and also which pairs of diagonal matrices are similar to each other. The 
answer to these questions involves the notions of characteristic vector and 
characteristic root— also called eigenvector and eigenvalue.

Definition. A n  eigenvector o f a linear transformation T: V  -*■ V  is a 
nonzero vector f  e V  such that i-T  =  c f  for some scalar c. A n  eigenvalue 
o f T  is a scalar c such that i-T  =  ci- fo r some vector f  not 0. A n  eigenvector 
or eigenvalue o f a square matrix A  is, correspondingly, a vector X  = 
(jci, • • •, x„) such that X A  =  cX. The set o f all eigenvalues o f T  (or TA) is 
called its spectrum.

Thus each eigenvector f  of T  determines an eigenvalue c, and each 
eigenvalue belongs to at least one eigenvector. Since similar matrices 
correspond to the same linear transformation under different choice of 
bases, similar matrices have the same eigenvalues. Explicitly, the n -tuple 
X  #  0 is an eigenvector o f the n x  n matrix A  if X A  =  c X  for some 
scalar c. If the matrix B  =  P A P ~ 1 is similar to A , then (X P  l)B  = 
X P ~ lP A P ~ l =  c (X P ~ l), so that X P ~ l is an eigenvector o f B  belonging 
to the same eigenvalue c. Note also that any nonzero scalar multiple of an 
eigenvector is an eigenvector.

The connection between eigenvectors and diagonal matrices is pro
vided by

Theorem 4. A n n x  n matrix A  is similar to a diagonal matrix D  if 
and only if  the eigenvectors o f A  span F " ; when this is the case, the 
eigenvalues o f A  are the diagonal entries in D.

In particular, this means that the eigenvalues of a diagonal matrix are 
the entries on the diagonal.

Proof. Suppose first that A  is similar to a diagonal matrix D  with 
diagonal entries dx, • • •, dn. The unit vectors ei =  (1,0, • • •, 0), • • •,
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e„ = (0, • • • , 0, 1)  are then characteristic vectors for D, since e ,D  = 
d\zx, • • •, enD  =  dnen. Also, the diagonal entries dx, - - - , d n are the 
corresponding eigenvalues of D  and hence of A.  They are the only 
eigenvalues, for let X  =  (jcj, • • • , * „ )  #  0 be any characteristic vector of 
D,  so that X D  =  cX  for a suitable eigenvalue c. Now X D  =  
(dxx x, ■ ■ ■, dnxn), so that dtx, =  cx, for all i. Since some x, ^  0, this 
proves that dt =  c for this /, and the eigenvalue c is indeed some dh

Conversely, suppose there are enough eigenvectors of the matrix A  to 
span the whole space F "  on which TA operates. Then (§7.4, Theorem 4, 
Corollary 2) we can extract a subset o f eigenvectors /31, • • •, /9„ which is a 
basis for F n. Since each /?, is an eigenvector, fi\TA =  c xf}x, • • • ,(I„T A = 
c„/3„ for eigenvalues c Hence, relative to the basis
/?i, • • •, /3„, Ta  is represented as in (6) by the diagonal matrix D  with 
diagonal entries c x, ■ • ■, c„, and A  is similar to this matrix D.

Corollary. I f  P  is a matrix whose rows are n linearly independent 
eigenvectors o f the n x n matrix A , then P  is nonsingular and P A P - 1  is 
diagonal.

Proof. We are given n linearly independent n-tuples X x, - - - , X n 
which are eigenvectors of A,  so that X tA  =  cX,  for characteristic roots 
Ci, • • •, c„. The matrix P  with rows X x, • • ■, X n is nonsingular because 
the rows are linearly independent. By the block multiplication rule

This asserts that P A  =  DP,  and hence that P A P  1 =  D, where D  is the 
diagonal matrix with diagonal entries cx, • • •, c„. The matrix P  is, in fact, 
exactly the matrix required for the change of basis involved in the direct 
proof o f Theorem 4. Q.E.D.

On the other hand, there are matrices which are not similar to any 
diagonal matrix (cf. Ex. 5 below).

To explicitly construct a diagonal matrix (if it exists!) similar to a given 
matrix, one thus searches for eigenvalues and eigenvectors. This search is 
greatly facilitated by the following consideration.

If a scalar A is an eigenvalue of the n x  n matrix A,  and if I  is the 
n x  n identity matrix, then X A  =  A X  =  AX I  and consequently 
X { A  -  AI )  =  O  for some nonzero n -tuple X.  The n homogeneous linear 
equations with matrix A  — A/ thus have a nontrivial solution; hence by 
Theorem 9 of §8 .6 , we have

(8)

c .x A  /c, 0 \ l x \

cnX nJ \0 cnj \XnJ
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Theorem 5. The scalar A is an eigenvalue o f  the m atrix A  i f  and only  

i f  the m atrix A  — A/ is singular.

For example, the 2 x 2  matrix

(9) A - \ I  =  ( a n ~ X a i 2 v)
' #21 2̂2 — ^ /

is readily seen to be singular if and only if

(10) A — (flu +  fl22M +  ^ 11^22 — a 1 2 a 21  =  0.

(This merely states that the determinant of A  — A/ is zero.) Hence we 
find all eigenvalues by solving this equation. Moreover, for each root A 
there is at least one eigenvector, found by solving

■̂ 1^ 11 T  -̂ 2^21 = AjCj 

JC 1 12 "I" -̂ 2̂ 22 =  AjC2-

( - 3  4\
E x a m p l e . Find a diagonal matrix similar to the matrix  ̂ ^

The polynomial (10) is A 2 +  4A -  5. The roots of this are 1 and —5; 
hence the eigenvectors satisfy one or the other of the systems of 
homogeneous equations

—3x +  2y =  x  —3x +  2y =  —5jc
or

4x -  y =  y, 4x -  y =  -5 y .

Solving these, we get eigenvectors (1,2) and (1 ,-1 ). Using these as a new 
basis, the transformation takes on a diagonal form. The new diagonal 
matrix may be written, according to Theorem 3', as a product

(; . r i  -X i r x  -")■
Exercises

1. Show that the equations 2x' = (1 + b)x + (1 -  b)y, 2y' = (1 -  b)x + 
(1 + b)y represent a compression on the 45° line through the origin. 
Compute the eigenvalues and the eigenvectors of the transformation and 
interpret them geometrically.
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2. Compute the eigenvalues and the eigenvectors of the following matrices
over the complex field:

3. For each matrix A  given in Ex. 2 find, when possible, a nonsingular matrix 
P  for which P A P '1 is diagonal.

4. (a) Find the complex eigenvalues of the matrix representing a rotation of
the plane through an angle 0.

(b) Prove that the matrix representing a rotation o f the plane through an 
angle 0 (0 <  0 <  v )  is not similar to any real diagonal matrix.

5. Prove that no matrix ^  ^  is similar to a real or complex diagonal matrix

if c ^  0. Interpret the result geometrically.
6. Show that the slopes y o f the eigenvectors of a 2 x  2 matrix A  satisfy the 

quadratic equation: a21 y 2 +  (a n -  a22)y  -  a12 =  0.
7. Prove that the set o f all eigenvectors belonging to a fixed eigenvalue 

of a given matrix constitutes a subspace when 0 is included among the 
eigenvectors.

8. Prove that any 2 x 2  real symmetric matrix not a scalar matrix has two 
distinct real eigenvalues.

9. (a) Show that two m x  n matrices A  and B  are equivalent if and only if
they represent the same linear transformation T : V  -* W  of an tri
dimensional vector space V  into an n -dimensional vector space W, 
relative to different bases in V  and in W.

(b) Interpret Theorem 18, §8.9, in the light o f this remark.
★10. Let both A  and B  be similar to diagonal matrices. Prove that A B  =  B A  if 

and only if A  and B  have a common basis of eigenvectors (Frobenius).

★11. (a) Show that if A  =  is similar to an orthogonal matrix, then

ad — be =  ±1. (For definition o f orthogonal, see §9.4.)
(b) Show that if ad — be =  1, then A  is similar to an orthogonal matrix if 

and only if A  =  ±1  or — 2 <  a +  d <  2.
(c) Show that if ad — be =  —1, then A  is similar to an orthogonal matrix if 

and only if a +  d = 0 .

9.3. The Full Linear and Affine Groups

A ll nonsingular linear transformations of an n -dimensional vector 
space F "  form a group because the products and inverses of such 
transformations are again linear and nonsingular (§8 .6 , Theorem 9). This 
group is called the fu ll linear group L n =  L „(F ). In the one-one corre
spondence of linear transformations to matrices, products correspond to
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products, so the full linear group L n(F ) is isomorphic to the group of all 
nonsingular n x  n matrices with entries in the field F.

The translations form another important group. A  translation of the 
plane moves all the points of the plane the same distance in a specified 
direction. The distance and direction may be represented by a vector k  of 
the appropriate magnitude and direction; the translation then carries the 
end-point of each vector £ into the end-point of £ +  k .  A  translation in 
any space F "  is a transformation £ £ +  k for k fixed. Relative to any
coordinate system, the coordinates y, of the translated vector are yi = 
X\ +  A : y „  =  x„ +  fc„, where the fc, are coordinates o f k .  The 
product of a translation £ 77 =  £ +  *  by 77 ►-» £ =  77 +  a is found by
substitution to be the translation £ f  =  £ +  ( * +  A). It corresponds 
exactly to the sum of the vectors k  and A. Similarly, the inverse of a 
translation £►-»£ +  /< is — k .  Thus we have proved the following
special case of Cayley’s theorem (§6.5, Theorem 8):

Theorem 6 . A ll the translations £ * - * £  +  k  o f F " form an Abelian 
group isomorphic to the additive group o f the vectors k  of F".

A  linear transformation T  followed by a translation yields

(11) £ t) =  £T +  k ( T  linear, k a fixed vector).

An affine transformation H  of F "  is any transformation of this form. The 
affine transformations include the linear transformations (with k =  0) and 
the translations (with T  =  I ) .  If one affine transformation (11) is followed 
by a second, 77 7jU  +  A, the product is

(12) £ (£T  +  k ) U  +  \ =  £ (T U ) +  ( k U  +  A).

The result is again affine because k U  +  A is a fixed vector of F". Every 
translation is one-one and onto, hence it has an inverse; hence the affine 
transformation ( 1 1 ) will be one-one and onto if and only if its linear part 
T  is one-one. Its inverse will consequently be the affine transformation 
17 >-► £  =  77T ^ 1 — k T ■_ 1 , found by solving (11) for £  This proves

Theorem 7. The set o f all nonsingular affine transformations o f F " 
constitutes a group, the affine group A n (F).  I t  contains as subgroups the fu ll 
linear group and the group o f translations.

What are the equations of an affine transformation relative to a basis? 
The linear part T  yields a matrix A  =  ||a/; ||; the translation vector has as

Download more at Learnclax.com



Ch. 9 Linear Groups 270

coordinates a row K  =  (fci, • • •, fc„). The affine transformation thus car
ries a vector with coordinates X  =  (xi, • • •, x„) into a vector with coordi
nates,

(13) Y  =  X A  +  K, yf =  I  x +  fc, (/ =  1, • • •, n).
i=i

A  transformation is affine if and only if it is expressed, relative to some 
basis, by nonhomogeneous linear equations such as these.

The product of the transformation (13) by Z  =  YB  +  L  is

(14) Z  =  X ( A B )  +  K B  +  L  (K , L  row matrices);

the formula is parallel to (12). The same multiplication rule holds for a 
matrix o f order n +  1 constructed from the transformation (13) by 
bordering the matrix A  to the right by a column of zeros, below by the 
row K,  below and to the right of the single entry 1:

a s  i r - x A + n - f t  ? )

The rule for block multiplication (§8.5, (43)) gives

( A  0 \ ( B  0\ _  ( A B  +  O  L  A O  +  O - I X
(16) \K  1 / vL i ) - \ k B  +  1 - L  K O  +  1 - J

= /AB  OX
"  \KB +  L  i r

the result is precisely the bordered matrix belonging to the product 
transformation (14). This proves

Theorem 8 . The group o f all nonsingular affine transformations o f an 
n-dimensional space is isomorphic to the group o f all those nonsingular 
(n +  1) x  (n 4- 1) matrices in which the last column is (0, • • •, 0,1). The 
isomorphism is explicitly given by the correspondence (15).

Each affine transformation £H =  gT  +  k  determines a unique linear 
transformation T, and the product of two affine transformations deter
mines as in (12) the product of the corresponding linear parts. This 
correspondence H  >-* T  maps the group of nonsingular affine transforma
tions H  onto the full linear group, and is a homomorphism in the sense of 
group theory (§6.11). In any homomorphism the objects mapped on the
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identity form a normal subgroup; in this case the affine transformations H  
with T  =  / are exactly the translations. This proves

Theorem 9. The group of translations is a normal subgroup of the 
affine group.

Equation (13) was interpreted above as a transformation of points 
(vectors), which carried each point X  =  (jci, • ■ •, x„) into a new point Y  
having coordinates ( yi ,  • • •,  y „ ) in the same coordinate system. We could 
equally well have interpreted equation (13) as a change of coordinates. 
We call the first interpretation an alibi (the point is moved elsewhere) and 
the second an alias (the point is renamed).

Thus, in the plane, the equations

yi =  Xi +  2 , y2 =  x2 ~  1

can be interpreted (alibi) as a point transformation which translates the 
whole plane two units east and one unit south, or (alias) as a change of 
coordinates, in which the original coordinate network is replaced by a
parallel network, with new origin two units west and one unit north of the
given origin.

A  similar double interpretation applies to all groups of substitutions.

Exercises

1. (a) Represent each of the following affine transformations by a matrix

H i. x' =  3x +  6y +  2, y ' =  3y — 4;

H 2: x '  =  x  +  y +  3, y ' =  x  -  y *f 5.

(b) Compute the products H tH 2, H 2H i .
(c) Find the inverses of H i and H 2.

2. Prove that the set o f all affine transformations x' = ax + by + e, y' = 
cx +  dy +  /, with ad — be =  1, is a normal subgroup of the affine group 
A 2(F).

★3. Given the circle x2 +  y 2 =  1, prove that every nonsingular affine transfor
mation o f the plane carries this circle into an ellipse or a circle.

4. Which o f the following sets o f n x n matrices over a field are subgroups of 
the full linear group?

(a) A ll scalar matrices cl. (b) A ll diagonal matrices.
(c) A ll nonsingular diagonal matrices, (d) A ll permutation matrices.
(e) A ll monomial matrices. ( f ) A ll triangular matrices.
(g) A ll strictly triangular matrices.
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(h) All matrices with zeros in the second row.
(i) All matrices in which at least one row consists of zeros.

5. Exhibit a group of matrices isomorphic with the group of all translations of 
F".

6. (a) If Z2 is the field of integers modulo 2, list all matrices in L 2(Z2).
(b) Construct a multiplication table for this group L 2(Z2).

★7. What is the order of the full linear group L 2(ZP) when Zp is the field of 
integers mod p?

the correspondence A  -* a is a homomorphism.
9. Map the group of nonsingular 3 x 3  triangular matrices homomorphically 

on the nonsingular 2 x 2  triangular matrices. {Hint: Proceed as in Ex. 8, 
but use blocks.)

10. If two fields F  and K  are isomorphic, prove that the groups L n(F )  and 
L „ (K )  are isomorphic.

11. If n <  m, prove that L „ (F )  is isomorphic to a subgroup of L m(F ).
12. (a) Prove that the center of the linear group L „ (F ) consists of scalar

matrices c l  (c ^ 0). (H int: They must commute with every / + £ 0.)
(b) Prove that the identity is the only affine transformation that commutes 

with every affine transformation.
★13. If L„(F) is the full linear group, show that two affine transformations H x 

and H 2 fall into the same right coset of L „ (F ) if and only if O H x = O H 2 (O  
is the origin!).

14. Prove that the quotient group A n(F )/ T „ (F ) is isomorphic to L „ (F ), where 
A„ denotes the affine group, T„ the group of translations.

15. (a) Show that all one-one transformations y = (ax + b)/(cx +  d ) with
ad t* be form a group (called the linear fractional group).

(b) Prove that this group is isomorphic to the quotient group of the full
linear group modulo the subgroup of nonzero scalar matrices.

★(c) Extend the results to matrices larger than 2 x 2 .

A  r x  r and B  s x j ,  is a group isomorphic with the direct product
L , ( F ) X L , ( F ) .

(b) What is the geometric character of the linear transformations of R3 
determined by such a matrix if r = 2 , s =  1?

9.4. The Orthogonal and Euclidean Groups

8. Let G  be the group of all matrices

16. (a) Show that the Set of all nonsingular matrices of the form ^

In Euclidean geometry, length plays an essential role. Hence we seek 
those linear transformations o f Euclidean vector spaces which preserve 
the lengths | £ | of all vectors £
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Definition. A  linear transformation T  o f a Euclidean vector space is 
orthogonal if  it preserves the length o f every vector {-, so that |£T| =  |.

We now determine all orthogonal transformations Y  =  X A  of the 
Euclidean plane. The transforms

(17) ( l . O ) ^  ab2J  =  (au a2), (0 ,1 )(* ;  a£ j  =  (b u b 2)

of the unit vectors (1,0) and (0,1) have the length 1, since A  is 
orthogonal. According to the Pythagorean formula for length, this means

(18) a 2 +  a22 =  1 , b 2 +  b22 =  1 .

In addition, the vector (1,1) has a transform (ax +  bu a2 +  b2) o f length 
V2 , so (ai +  b{)2 +  (a2 +  b2)2 =  2. Expanding, and subtracting (18), we 
find

(18') aibi  +  a2b2 =  0 .

By (18) there is an angle 8 with cos 8 =  au sin 8 =  a2. Then by (18'), 
tan 8 =  <1 2 /^ 1  = ~bi/b2, whence by (18) b2 =  ±cos 8, bx =  ±sin 8. The 
two choices o f sign give exactly the two matrices

^  qs / cos 8 sin fA / cos 8 sin fA
sin 8 cos 8/ \ sin 8 —cos 8 )

By §8.1, formulas (5) and (5'), these represent rotation through an angle 
8 and reflection in a line making an angle a =  8/ 2  with the x-axis, 
respectively. Hence every orthogonal transformation o f the plane is a 
rotation or a reflection.

Geometrically, the inverse of the first orthogonal transformation (19) 
is obtained by replacing 8 by —8; hence it is the transpose of the original. 
This fact (unlike the trigonometric formulas) generalizes to n x  n 
orthogonal matrices.

Theorem 10. A n orthogonal transformation T  has, for every pair o f 
vectors £, 17, the properties

(i) Tpreserves distance, or |£ — 171 =  |£T — t\T\.
(ii) Tpreserves inner products, or (£, 17) =  (£T, rjT).
(iii) T  preserves orthogonality, or g _L 17 implies $ T  _L 17T.
(iv) T  preserves magnitude of angles, or cos /.(£, 17) =  cos Z_(£T, 17T).
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Proof. Since T  is linear, the definition gives (i). Since £ 1  77 means 
(f> v )  =  0 and since angle is also definable in terms of inner products 
(§7.9, (41)), properties (iii) and (iv) will follow immediately from (ii). As 
for (ii), the “ bilinearity”  of the inner product proves that (£ +  77, £ +  
17) =  (£, £) +  2(£ 17) +  (77, 77). This equation may be solved for (£, 17) in 
terms of the “ lengths”  such as |£| =  (£, £ )1/2, in the form

(20) 2(f, 77) =  |£ +  t,|2 -|£|2 -|7,|2.

The orthogonal transformation T  leaves invariant the lengths on the 
right, hence also the inner product on the left of this equation. This 
proves (ii). Q.E.D.

Conversely, a transformation T  known to preserve all inner products 
must preserve length and hence be orthogonal, for length is defined in 
terms of an inner product.

Next we ask, which matrices correspond to orthogonal linear transfor
mations? The question is easily answered, at least relative to normal 
orthogonal bases.

Theorem 11. Relative to any normal orthogonal basis, a real n x n 
matrix A  represents an orthogonal linear transformation if and only if  each 
row o f A  has length one, and any two rows, regarded as vectors, are 
orthogonal.

Proof. Any orthogonal transformation T  must, by Theorem 10, 
carry the given basis Ei, • • ■ , e„ into a basis =  e 1 T, • • •, an =  znT  
which is normal and orthogonal. Conversely, if T  has this property, then 
for any vector £ =  * i£ i +  • • • +  xnen having the transform £T = 

+  • • • +  xnan, we know by Theorem 22 of §7.11 that the length is 
given by the usual formula as

If I = (*12 + • • • + XnY2 = |fT|,

whence T  is orthogonal. The proof is completed by the remark (cf. §8.1) 
that the /th row of A  represents the coordinates o f or, = £,-7  ̂ relative to 
the original basis ei, • • • , e„.

In coordinate form, the conditions on A  stated in the theorem are 
equivalent to the equations

n n
(2 1 ) X aikaik =  1 for all/', X aikajk = 0  if/' *  j.

1 fc=i

The conclusions (21) are exactly those already found explicitly in (18) 
and (18') for a two-rowed matrix. If we write A, for the ith row of the
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matrix A  and A jT for its transpose, the inner product of A f by A, is the 
matrix product A ,A ;T (see (34), §8.5), so the conditions (21) may be 
written as

(21') A iA ?  =  1, A A T =  0 if / A j.

In the row-by-column product A A  T of A  by its transpose, the equations 
(21') state that the ith row times the yth column is A ,A ;T =  5i;, where 
is the element in the ith row and the yth column of the identity matrix 
7 =  || Si, ||, with diagonal entries S„ =  1 and all nondiagonal entries zero. 
(The symbol is called the Kronecker delta.) W e have proved

Theorem 12. A  real n x  n matrix represents an orthogonal transfor
mation if  and only if  A A  T =  I.

The equation A A T =  7 has meaning over any field, so that the 
concept of an orthogonal matrix can be defined in general.

Definition. A  square matrix A  over any field is called orthogonal if  
and only if A A T =  I.

This means that the transpose A T of an orthogonal matrix A  is a 
right-inverse of A ; hence by Theorem 9 of §8.6, every orthogonal matrix 
A  is nonsingular, with A -1 =  A T. Therefore A TA  =  I. This equation 
may be written as A T(A T)T =  7, whence A T is orthogonal: the transpose 
of any orthogonal matrix A  is also orthogonal. From this it also follows 
that a matrix A  is orthogonal if and only if each column A  has length 
one, and any two columns are orthogonal,

n n
(22) I  akiaki =  1 for all i, £  akiakj =  0 if i ^  j.

*=1 k=1

A ll n x  n orthogonal matrices form a group. This is clear, since the 
inverse A -1 =  A T of an orthogonal matrix is orthogonal and the product 
of the two orthogonal matrices A  and B  is orthogonal: (A B )T =  
B tA t  =  B _1A _1 =  (A B )-1. This subgroup of the full linear group 
L n(F ) is called the orthogonal group On(F)\ it is isomorphic to the group 
of all orthogonal transformations of the given Euclidean space if F  = R.

By a rigid motion of a Euclidean vector space E  is meant a nonsingu
lar transformation U  of E  which preserves distance, i.e., which satisfies 
|£U -  t>U | =  |f — tj | for all vectors f, tj. Any translation of E  preserves 
vector differences f  -  tj, hence their lengths, and so is a rigid motion. 
Therefore if an affine transformation f  ’ f T  +  k is rigid, so is f
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(tj — k) =  £T\ conversely, if T  is rigid, so is £ i-» tj =  £T  +  k. But by 
Theorem 10, a linear transformation is rigid if and only if it is orthogonal. 
We conclude, an affine transformation (11) is a rigid motion if  and only if  
T  is orthogonal. It follows as in the proof of Theorem 7, since the 
orthogonal transformations form a group, that the totality of rigid affine 
transformations constitutes a subgroup of the affine group, called the 
Euclidean group. It is the basis of Euclidean geometry.t

Various other geometrical groups exist. A  familiar one is the group of 
similarity transformations T, consisting of those linear transformations T  
which alter all lengths by a numerical factor cT >  0, so that \ gT\ =  cT |. 
One may prove that they do in fact form a group which contains the 
orthogonal group as subgroup. The “ extended”  similarity group consists 
of all affine transformations £ £T +  k in which T  is a similarity 
transformation.

Exercises

1. Test the following matrices for orthogonality. If a matrix is orthogonal, find 
its inverse:

( J  ^ 2 , <„>( i /2 M  ,C) ( - 6 -8 ).
\ - V 3 / 2  1 /2 )  1 ^ 3 /2  1 /2 J  1 .8  - .6 1

2. Find an orthogonal matrix whose first row is a scalar multiple o f (5,12, 0).
3. If the columns of an orthogonal matrix are permuted, prove that the result is 

still orthogonal.

4. If A  and B  are orthogonal, prove that ^  ^  j  and ^  are also.

5. Multiply the following two matrices, and test the resulting product for 
orthogonality:

( cos <t> sin <t> 0\ /I 0 0 \

—sin <t> cos <t> 0 , [O  cos 0 sin <9 1.

0 0 1/ \0 —sin 0 cos 0J

6. Show that the Euclidean group is isomorphic to a group o f matrices.
7. Prove that all translations form a normal subgroup of the Euclidean group.
8. As an alternative proof of (ii) in Theorem 10, show from first principles that 

4(£> 17) = + 1712 -  |£ -  1712.
9. Show that an affine transformation H  commutes with every translation if and 

only if H  is itself a translation.
10. Prove that any similarity transformation S can be written in the form S =  cT  

as a product of a positive scalar and an orthogonal transformation T  in one 
and only one way.

t  It is a fact that any rigid motion is necessarily affine; hence the Euclidean group is 
actually the group of all rigid motions.

Download more at Learnclax.com



§9.5 Invariants and Canonical Forms 277

11. Give necessary and sufficient conditions that a matrix A  represent a similarity 
transformation relative to a normal orthogonal basis (cf. Theorems 11 and 
12).

12. (a) Prove that all similarity transformations form a group S„.
(b) Prove that On is a normal subgroup of S„.
(c) Prove that the quotient group SJO n is isomorphic to the multiplicative 

group of all positive real numbers.
13. How many 3 x 3  orthogonal matrices are there with coefficients in Z 2? in Z 3?
14. (a) Show that the correspondence A  >-> 8 (A ) =  (A ~ ')T is an automorphism

of the full linear group L n(F ).
(b) Show that 02(A )  =  A  for all A .
(c) For which matrices does 8 (A ) — A I

9.5. Invariants and Canonical Forms

The full linear, the affine, the orthogonal, and the Euclidean groups 
form examples of linear groups. Another is the unitary group (§9.12). In 
the following sections, we shall see how far one can go in “ simplifying”  
polynomials, quadratic forms, and various geometrical figures, by apply
ing suitable transformations from these groups. These simplifications will 
be analogous to the simplification made in reducing a general matrix to 
row-equivalent reduced echelon form, whose rank was proved to be an 
invariant under the transformations considered. The notions of a simpli
fied “ canonical form”  and “ invariant”  can be formulated in great general
ity, as follows.!

Let G  be a group of transformations (§6.2) on any set or “ space”  S. 
Call two elements x and y of 5 equivalent under G  (in symbols, xEGy) if 
and only if there is some transformation T  of G  which carries x into y. 
Then T -1 carries y back into x, so yEc x, and the relation of equivalence 
is symmetric. Similarly, using the other group properties, one proves that 
equivalence under any G  is also a reflexive and transitive relation (an 
equivalence relation). A  subset C  of 5 is called a set of canonical forms 
under G  if each x e 5 is equivalent under G  to one and only one 
element c in C; this element c is then the canonical form of x. A  function 
F (x ) defined for all elements x of 5 and with values in some convenient 
other set, say a set of numbers, is an invariant under G  if F (x T )  =  F (x )  
for every point x in 5 and every transformation T  in G ; in other words, F  
must have the same value at all equivalent elements. A  collection of 
invariants F x, • • • ,F n is a complete set o f invariants under G  if F x(x ) =  
F t(y), • • •, F „(x ) =  F „(y ) imply that x is equivalent to y.

tT h e  reader is advised to return again to this discussion when he has finished the 
chapter.

Download more at Learnclax.com



Ch. 9 Linear Groups 278

For example, let the space S be the set M n of all n x  n matrices over 
some field. W  already have at hand three different equivalence relations 
to such matrices; these are listed below, together with three new cases 
which will be discussed in subsequent sections (§9.8, §9.10, and §9.12, 
respectively).

A  row-equivalent to B  B  -  PA , P  nonsingular,
A  equivalent to B  B  =  PA Q , P, Q  nonsingular,
A  similar to B  B  =  P A P -1, P  nonsingular,
A  congruent to B  B  =  P A P T, P  nonsingular,
A  orthogonally equivalent to B  B  =  P A P -1 P  orthogonal,
A  unitary equivalent to B  B  =  P A P -1, P  unitary.

The first line is to be read “ A  is row-equivalent to B  if and only if there 
exists P  such that B  =  PA , with P  nonsingular,”  and similarly for the 
other lines.

Each of these equivalence relations is the equivalence relation E a 
determined by a suitable group G  acting on M n, and arises naturally from 
one of the various interpretations of a matrix.

The first relation, that o f row equivalence, arises from the study of a 
fixed subspace of F " represented as the row space of a matrix A ; in this 
case, the full linear group of matrices P  acts on A  by A  *-* PA , and the 
reduced echelon form is a canonical form under this group. The rank of A  
is a (numerical) invariant under this group, but it does not give a complete 
system of invariants, since two matrices A  and B  with the same rank 
need not be row-equivalent.

The second relation of equivalence (in the technical sense B  =  PA Q , 
not to be confused with the general notion of an equivalence relation) 
arises when we are studying the various matrix representations of a linear 
transformation of one vector space into a second such space (cf. §9.2, Ex. 
9). Here, by Theorem 18 o f §8.9, the rank is a complete system of 
invariants under the group A  >-* PA Q . The set of all diagonal matrices 
with entries 1 and 0 along the diagonal, the l ’s preceding the 0’s, is a set 
of canonical forms. Note that we might equally well have chosen a 
different set of canonical forms— say the same sort of diagonal matrices, 
but with the 0’s preceding the l ’s on the diagonal.

The relation o f similarity arises when we study the various matrix 
representations of a linear transformation of a vector space into itself; in 
this case, the full linear group acts on A  by A  *-* P A P -1. Under 
similarity the rank of the matrix A  is an invariant, since two similar 
matrices are certainly equivalent, and rank is even invariant under 
equivalence. The set of all eigenvalues of a matrix is also an invariant 
under similarity, by §9.2, but is not a complete system of invariants. The
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formulation of a complete set of canonical forms under similarity is one of 
the major problems of matrix theory; for the field of complex numbers, it 
gives rise to the Jordan canonical form of a matrix (see §10.10).

The relation of congruence (B  =  P A P T), as will appear subsequently, 
arises from the representation of a quadratic form by a (symmetric) 
matrix.

As still another example of equivalence under a group, consider the 
simplification of a quadratic polynomial f (x )  =  ax2 +  bx +  c, with a # 
0, by the group of all translations y =  x +  k. Substituting x =  y — k, we 
find the result of translating f (x )  to be

g (y ) =  a(y — k )2 +  b(y — k ) +  c =  ay2 +  {b — 2ak)y +  ak2 — bk +  c.

In particular, we obtain the familiar “ completion of the square” — the 
new polynomial will have no linear terms if and only if k =  b/2a, and in 
this case the polynomial is

(23) g(y ) =  ay2 — d/(4a), where d =  b2 — 4ac.

Thus f (x )  is equivalent under the group of translations to one and only 
one polynomial of the form ay2 +  h, so that the quadratic polynomials 
without linear terms are canonical forms under this group. On the other 
hand, any transformed polynomial has the same leading coefficient a and 
the same discriminant d =  (b — 2ak)2 — 4a(ak2 — bk +  c) as the origi
nal polynomial f (x ) .  Hence the first coefficient and the discriminant of 
f (x )  are invariants under the group. They constitute a complete set of 
invariants because the canonical form can be expressed in terms of them 
as shown in (23).

To give a last example, recall that the full linear group L n(F ) is a 
group of transformations on the vector space F Each transformation of 
this group carries a subspace S of F " into another subspace. By Corollary 
2 of Theorem 10, §8.6, the dimension of any subspace 5 is an invariant 
under the full linear group. This one invariant is actually a complete set of 
invariants for subspaces of F "  under the full linear group (see Ex. 5 
below).

Exercises

1. Find canonical forms for all monic quadratic polynomials x2 + bx + c 
under the group of translations.

2. Find canonical forms for all quadratic polynomials ax2 + bx + c with 
a t4 0 under the affine group y = hx + k, h t4 0.
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3. In Ex. 2, show that d/a = b2/a -  Ac is an affine invariant.
4. Show that over any field in which 1 + 1 ^ 0 ,  any quartic polynomial is 

equivalent under translation to a polynomial in which the cubic term is 
absent.

5. Let V  be an n -dimensional vector space. Show that a complete system of 
invariants for ordered pairs of subspaces (S„ S2) of V  under the full linear 
group is given by the dimensions of Si, of S2, and of their intersection.

6. Consider the set of homogeneous quadratic functions ax2 with rational a 
under the group x >-> rx, with r ^ 0 and rational. Show that the set of 
integral coefficients a which are products of distinct primes (“ square free” ) 
provide canonical forms for this set.

7. If /(x) is any polynomial in one variable, prove that the degree of / and the 
number of real roots are both invariant under the affine group.

8. For a polynomial in n variables, show that the coefficient of the term of 
highest degree is invariant under the group of translations.

9. Show that a real cubic polynomial is equivalent under the affine group to 
one and only one polynomial of the form x3 + ax + b.

★10. Find canonical forms for the quadratic functions x2 + bx + c under the 
group of translations, in case b and c are elements from the field Z2 of 
integers modulo 2.

9.6. Linear and Bilinear Forms

A  linear form  in n variables over a field F  is a polynomial of the form

with coefficients b\, • • •, bn and c in F ; to exclude the trivial case, we 
assume that some coefficient b, is not zero. The form is homogeneous if 
c =  0. Any form (24) may be regarded as a function f (X )  of the vector 
X  =  Oci, • • • ,x n) of F". Distinct forms determine distinct functions, for 
the function f (X )  determines the coefficients of the form by the formulas

To any linear form we may apply a nonsingular affine transformation

(24) f ( x u • • • , X n )  =  b i X i  +  • • • +  bnxn +  C,

(25) xi =  Z  tf;;)'; +  kh || || nonsingular,
/

to yield upon substitution in (24) the new linear form

(26) g(yi, • •• ,  yn) =  I  ( l  bfii^yj +  ( z  biki +  c).

We say that / and g are equivalent forms under the affine group, if there 
exists such a nonsingular affine transformation carrying / into g.

Download more at Learnclax.com



§9.6 Linear and Bilinear Forms 281

A  canonical form may be obtained readily. First, since some bj ^  0, 
the translation xt =  y;- — c/bj and x, =  y,- for i ^  / will remove the 
constant term. The permutation z\ =  y}, z, =  yu and z, =  y, for / ^  1 or 
/ will then give a new form like (24) with bt ^  0 and c =  0. I f this form is 
written with the variables x,-, the new affine transformation with the 
equations

yi =  M i  +  ■ • • +  bnxn, y2 =  x2, ■ ■, yn =  xn

is nonsingular, and carries any / with c — 0 to the equivalent function 
g (yi, ■ • •, y„) =  y^ Therefore all nonzero linear forms are equivalent 
under the affine group.

Consider now the equivalence of real linear forms under the Eucli
dean group (i.e., with A  =  ||%|| in (25) an orthogonal matrix). Call 
d =  ( b 2 +  • • • +  bn2) 1/2 the norm of the form (24). As before, we can 
remove the constant c by a translation. By the choice of d, 
(bi/d, • • •, b jd )  is a vector of unit length. Hence there is an orthogonal 
matrix || hu ||with this vector as its first row. The transformation y; =  £ 
is then in the Euclidean group; since dyx =  Z>iXi +  • • • +  bnxn, it carries 
the form /, with c =  0, into the form g =  dyx.

This form dyx is a canonical form for linear forms under the Euclidean 
group. To show this, we need only prove that the norm d is invariant 
under the Euclidean group. Now the norm d of / is just the length of the 
coefficient vector f3 =  (b i, • • •, bn), and (26) shows that in the trans
formed form the coefficient vector is the transform f iA  o f the original 
coefficient vector by the orthogonal matrix ||a/y||; hence the norm is 
indeed invariant. We have proved

Theorem 13. Under the Euclidean group, every linear form (24) is 
equivalent to one and only one o f the canonical forms dy, with positive d, 
where d =  ( b 2 +  ■ • • +  bn2) 1/2 is an invariant under this group.

A  (homogeneous) bilinear form  in two sets of variables xx, • • ■, xm 
and y x, • • •, y„ is a polynomial of the form

m n
(27) b (x i, • • •, xm, yi, • • •, y„) =  £  £  x,a0yy;

i- iy - l

it is determined by the matrix o f coefficients A  =  || 1|. In terms of the
vectors X  =  (xi, • • •, xm) and Y  =  (y 1; • • •, y„) the bilinear form may be 
written as the matrix product

(28) b(X, Y ) =  X A Y t .

As a function of X  and Y, it is linear in each argument separately.
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More generally, let V  and W  be any vector spaces having finite 
dimensions m and n, respectively, over the same field F, and let B(g, 77) 
be any function, with values in F, defined for arguments £ e V  and 
77 e W, which is bilinear in the sense that for a 1 and a2 e F,

(29) B (a ^ i  +  a2& , =  <*\B(t;\, v )  +  a2B (^2, 77),
€u &  e V, 7, € W;

(29') B(g, « i i 7i +  a2rj2) -  B (g, r)l)a l +  B(g, T)2)a2,
£ e  Vu V2 e  W.

Choose a basis a u • • •, am in V  and a basis /?i, •••,/?„ in W  and let the 
scalars aif be defined as atj =  B (a h fy). Then for any vectors £, and 77 in V  
and W, expressed in terms of the respective bases, we have

B(£, tj) =  B(xi<xi +  ■ • ■ +  xmam, y ^ i  +  • • • +  yn/?n) 

and hence, by (29) and (29'),

B (C  77) =  I  XiB(ah /3y)y; =  I  x^ y ^
‘J ‘V

In other words, any bilinear function B  on V  and W  has a unique 
expression, relative to given bases, as a bilinear form (27). Equivalently, 
in the notation of §8.5, a bilinear form is just the product X B Y  of a row 
m -vector X , an m x n matrix B, and a column n -vector Y.

A  change of basis in both spaces corresponds to nonsingular transfor
mations X  =  X * P  and Y  =  Y *Q  of each set of variables. These trans
formations replace (28) by a new bilinear form X * (P A Q T)Y * T, with a 
new matrix P A Q T. Since any nonsingular matrix may be written as the 
transpose Q T of a nonsingular matrix, we see that two bilinear forms are 
equivalent (under changes of bases) if and only if their matrices are 
equivalent. Hence, by Theorem 18 of §8.9 on the equivalence of mat
rices, any bilinear form is equivalent to one and only one o f  the canonical 
forms

* i y i  +  • • • •+  xryr.

The integer r, which is the rank of the matrix of the form, is a (complete 
set o f) invariants.

Exercises

1. Find a canonical form for homogeneous real linear functions under the 
similarity group.
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2. Treat the same question (a) under the diagonal group of transformations
yi =  dxx u ' ’ ' .  y„ ~  dnxn, (b) under the monomial group of all transforma
tions Y  =  X M  with a monomial matrix M.

3. Prove that any bilinear form of rank r is expressible as

I  (b, 1*1 +  • • • +  binxn)(cnyl +  • • • +  cinyn), where i =  1, • • •, r\
i

that is, as the sum of r products of linear forms.
4. Find new variables x*, y*, z *  and u*, v*, w* which will reduce to canonical

form the bilinear function

xu +  xv +  xw +  yu +  yv +  yw +  zu +  zv +  zw.

9.7. Quadratic Forms

The next four sections are devoted to the study of canonical forms for 
quadratic functions under various groups of transformations. The simplest 
problems of this type arise in connection with central conics in the plane 
(ellipses or hyperbolas with “ tilted”  axes). Such conics have equations 
A x 2 +  Bxy +  Cy2 =  1, in which the left-hand side is a “ quadratic form”  
Such quadratic forms (homogeneous quadratic expressions in the vari
ables) arise in many other instances: in the equations for quadric surfaces 
in space, in the projective equations for conics in homogeneous coordi
nates, in the formula \X\2 =  (x i2 +  x22 +  ■ • ■ +  x 2) for the square of the 
length of a vector, in the formula (m/2)(u2 +  v2 +  w2) for the kinetic 
energy of a moving body in space with three velocity components u, v, 
and w, in differential geometry, in the formula for the length of arc ds in 
spherical coordinates of space, ds =  dr +  r d<f> +  r sin <t>dO .

Such quadratic forms can be expressed by matrices. To obtain a 
matrix from a quadratic form such as 5x2 +  6xy +  2y2, first adjust the 
form so that the coefficients of xy and yx are equal, as 5x2 +  3xy +  
3yx +  2y2. The result can be written as a matrix product,

M s  D ( p - ^ C : 5 ) - * * 1 + ^ + ^

The 2 x 2  matrix of coefficients which arises here is symmetric, in the 
sense that it is equal to its transpose.

In general, a square matrix A  is called symmetric if it is equal to its 
own transpose, A  — A ;  in other words, || 1| is symmetric if and only if
dy =  ciji for all / and Similarly, a matrix C  is skew-symmetric if 
C T =  —C. To split a matrix B  into symmetric and skew-symmetric parts,
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write

(30) B  =  (B  +  B t )/2 +  (B  -  B t )/2 =  S +  K,

where S =  (B  +  B T)/2, K ' =  (B  -  B T)/2. By the laws for the transpose, 
(B  ±  B t ) t  =  B t  ±  B 77 =  B t  ±  B, so S is symmetric and K  skew. No 
other decomposition B  =  Si +  K\ with Si symmetric and K\ skew is 
possible, since any such decomposition would give B T -  S iT +  K\T =  
Si ~ K U B  +  B  — 2Si, B  -  B t  =  2 K U and S, =  S, K i  =  K. For
mulas (30) apply over any field in which 2 =  1 +  1 ¥=■ 0, but are meaning
less for matrices over the field Z2, where 1 +  1 =  0. In conclusion, any 
matrix can be expressed uniquely as the sum of a symmetric matrix and a 
skew matrix, provided 1 +  1 ^ 0 .

A  homogeneous quadratic form  in n variables x u • • •, xn is by defini
tion a polynomial

Z Z XibijXj 
i i

in which each term is of degree two. This form may be written as a matrix 
product X B X t . If the matrix B  of coefficients is skew-symmetric, £>,y =  
-b ji and the form equals zero. In general, write the matrix B  as B  = 
S +  K, according to (30); the form then becomes

X B X t  =  X (S  +  K )X T =  X S X T +  X K X t  =  X S X T, K  skew.

Hence if 1 +  1 ^  0, any quadratic form may be expressed uniquely, with 
S denoted by A , as

n  f t  j .

(31) Z Z XiOijXj =  X A X  , A  =  || || symmetric.

If a vector £ has coordinates X  =  (x1; • • •, x„), each quadratic form 
determines a quadratic function Q (£) =  X A X T of the vector £  A  change 
of basis in the space gives new coordinates X *  related to the old 
coordinates by an equation X  =  X *P , with P  nonsingular. In terms of the 
new coordinates of £  the quadratic function becomes

O (f )  =  X A X t  =  (X * P )A (X * P )t  =  X * (P A P t )X * t ;

this is another quadratic form with a new matrix P A P T. The new matrix, 
like A , is symmetric; (P A P T) T =  P TrA TP T =  P A P T.

Theorem 14. A  change o f coordinates replaces a quadratic form with 
matrix A  by a quadratic form with matrix P A P T, where P  is nonsingular.
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Symmetric matrices A  and B  are sometimes called congruent when (as 
in this case) B  =  P A P T for some nonsingular P.

Reinterpreted, Theorem 14 asserts that the problem of reducing a 
homogeneous quadratic form to canonical form, under the full linear 
group of nonsingular linear homogeneous substitutions on its variables, is 
equivalent to the problem of finding a canonical form for symmetric 
matrices A  under the group A  *-»■ P A P T.

Exercises

1. Prove that A  TA  and A A T are always symmetric.
2. Prove: If A  is skew-symmetric, then A 2 is symmetric.
3. Represent each matrix o f Ex. 1, §8.3, in the form S +  K.
4. Find the symmetric matrix associated with each o f the following quadratic 

forms:
(a) 2x2 +  3xy +  6y2, (b) 8xy +  4y2,
(c) x 2 +  2xy +  4xz +  3y2 +  yz +  7 z2, (d) 4xy,
(e) x 2 +  4xy +  4y 2 +  2xz +  z 1 +  4yz.

5. Prove: (a) If S is symmetric and A  orthogonal, then A ~ XSA  is symmetric,
(b) If  K  is skew-symmetric and A  orthogonal, then A ~ XK A  is skew-
symmetric.

6. Describe the symmetry o f the matrix A B  — B A  in the following cases:
(a) A  and B  both symmetric, (b) A  and B  both skew-symmetric,
(c) A  symmetric and B  skew-symmetric.

7. Prove: If A  and B  are symmetric, then A B  is symmetric if and only if 
A B  =  B A .

8. (a) Prove: Over the field Z? (integers mod 2) every skew-symmetric matrix
is symmetric.

(b) Exhibit a matrix over Z? which is not a sum S +  K  (cf. (30)).
9. Let D  be a diagonal matrix with no repeated entries. Show that A D  =  D A  

if and only if A  is also diagonal.
10. I f  Q (£ ) is a quadratic function, prove that

Q (a  +  f i +  y ) — Q (a  +  /}) — Q (j3 +  y) — Q (y  +  a )

+  Q (a ) +  Q(J3) +  Q (y ) =  0.

11. A  bilinear form B(tj, tj), with £, rj both in V, is symmetric when 
B (& v )  =  B (ri, £). Prove that if B  is a symmetric bilinear form, then 
Q (tj) =  B{£, £) is a quadratic form, with 2B{£, 77)  =  Q (£  +  ■>)) -
Q (f) "  O b7).

12. Show that a real n x  n matrix A  is symmetric if and only if the associated 
linear transformation T  =  TA o f Euclidean n -space satisfies (£T, t7) =  
( i ,  r jT ) for any two vectors £ and 77.

★13. Show that if the real matrix S is skew-symmetric and / +  S is nonsingular, 
then (/ — S )( I  +  S )-1 is orthogonal.
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9.8. Quadratic* Forms Under the Full Linear Group

The familiar process of “ completing the square”  may be used as a 
device for simplifying a quadratic form by linear transformations. For two 
variables, the procedure gives

ax2 +  2bxy +  cy2 =  a [x 2 +  2(b/a)xy +  (b2/a2)y2] +  [c -  (b2/a)]y2 
=  a[x +  (b / a )y f +  [c  -  (b2/a)]y2.

The term in brackets suggests the new variables x ' =  x +  (b/a)y, y' =  y. 
Under this linear change of variables, the form becomes ax'2 +  
[c  -  (b2/a )]y '2; the cross term has been eliminated.

This argument requires a #  0. If a =  0, but c #  0, a similar transfor
mation works. Finally, if a =  c =  0, the original form is 2bxy, and the 
corresponding equation 2bxy =  1 represents an equilateral hyperbola. In 
this case, the transformation x =  jc' +  y', y =  x ' — y ' will reduce the 
form to

2b{x' +  y ')(x ' -  y') =  2b (x '2 -  y '2);

the result again contains only square terms. (Hint: How is the transforma
tion used here related to a rotation of the axes o f the hyperbola?)

An analogous preparatory device may be applied to forms in more 
than two variables.

Lemma. By a nonsingular linear transformation, any quadratic form  
X XiOijXj not identically zero can be reduced to a form with leading coeffi
cient an  #  0, provided only that 1 +  1 #  0.

Proof. By hypothesis, at least one coefficient a;y ^  0. If there is a 
diagonal term ati #  0, one can get a new coefficient a n ' #  0 by inter
changing the variables and x, (this is a nonsingular transformation 
because its matrix is a permutation matrix). In the remaining case, all 
diagonal terms a„ are zero, but there are indices i #  ;, with a,y t4 0. By 
permuting the variables, we can make a i2 ^  0; by the symmetry of the 
matrix a 12 =  a2\. The given quadratic form is then a 12x i*2 +  a2\x2X\ =  
2ai2XjX2, plus terms involving other variables. Just as in the case of the 
equilateral hyperbola, this may be reduced to a form 2a12( y 2 -  y2 ), with 
a leading coefficient 2a i2 s4 0, by a transformation

*1 =  yi -  yi, X 2 =  yx +  y2, x3 =  y3, • • •, x„ =  y„.

This transformation is nonsingular, for by elimination one easily shows
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that it has an inverse

y, =  (jci +  x2)/2, y2 =  (x2 ~  x x)f2 , y3 =  x3, • • •, yn -  xn.

Query: Where does this argument use the hypothesis 1 +  1 ^ 0 ?
Now for the completion of the square in any quadratic form! By the 

Lemma, we make a u ^  0, so the form can be written as an(£JC,Ay*/)> 
where bij =  ay/an and bu =  1. Because of the symmetry of the matrix, 
the terms which actually involve jc j are then

Xi2 + 2 t  bijXiXj =  ( * 1  +  £ - ( £ bijx'\ .
/ = 2 ' > = 2 ' '/ = 2 '

The formation of this “ perfect square”  suggests the transformation

n
y\ =  Xi +  I  bijXh y2 = x2, • • •, y„ = x„ ;

i=2

then yi will appear only as y 2. The original form is now any i 2 +  
Y. yjCjkyk, where the indices j  and fc run from 2 to n. This residual part in 
y2 , ' • ' > yn is a quadratic form in n — 1 variables; to this form the same 
process applies. The process may be repeated (an induction argument!) 
till the new coefficients in one of the residual quadratic forms are all zero. 
Hence we have

Theorem 15. By nonsingular linear transformations o f the variables, a 
quadratic form over any field with 1 +  1 ^ 0  can be reduced to a diagonal 
quadratic form,

(32) d iy 2 +  d2y2 +  • • • +  dry f , eachdt 0.

The number r o f nonzero diagonal terms is an invariant.

This number r is called the rank of the given form X A X 1". Its 
invariance is immediate, for r is the rank of the diagonal matrix D  of the
reduced form (32). This rank must equal the rank of the matrix A  of the
original quadratic form, for by Theorem 14 our transformations reduce A  
to D  -  P A P t , and we already know (§8.9, Theorem 19) that rank is 
invariant under the more general transformation A  ►-* PAQ.

A  quadratic form X A X T in n variables is called nonsingular if its rank 
is n, since this means that the matrix A  is nonsingular.

In the diagonal form (32) the rank r is an invariant, but the coeffi
cients are not, since different methods of reducing the form may well
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yield different sets of coefficients d u - - - , d r. We shall now get a complete 
set o f invariants for the special case of the real field.

E xerc ises

1. Over the field of rational numbers reduce each of the quadratic forms of Ex. 4, 
§9.7, to diagonal form.

2. Reduce 2x2 +  xy +  3y2 to diagonal form over the field of integers modulo 5.
3. Over the field Z5, prove that every quadratic form may be reduced by linear 

transformations to a form Y.diy2, with each coefficient d, =  0, 1, or 2.
4. Over the field of rational numbers show that the quadratic form x 2 + x22 can 

be transformed into both o f the distinct diagonal forms 9y!2 +  4y22 and 
2 * i2 +  8 z2 .

5. Find a P  such that P A P T is diagonal if

6. Find all linear transformations which carry the real quadratic form x 2 +  • • • +  
x 2 into y 2 +  ■ • • +  y„2.

7. Show rigorously that the quadratic form xy is not equivalent to a diagonal 
form under the group L2(Z2).

9.9. Real Quadratic Forms Under the Full Linear 
Group

Conic sections and quadric surfaces are described in analytic geometry 
by real quadratic polynomial functions. Over the real field, each term of 
the diagonal form (32) can be simplified further by making the substitu
tion y,' =  (±d i) 1/2y„ so that the term d-y2 becomes ±y ,'2. Carrying out 
these substitutions simultaneously on all the variables will reduce the 
quadratic form to £  ±yfi. In this sum the variables may be permuted so 
that the positive squares come first. This proves

Theorem  16. Any quadratic function over the field o f real numbers can 
be reduced by nonsingular linear transformation o f the variables to a form

(33) z x2 +  • • • +  zp2 -  zp + 2 -----------z 2.

Theorem  17. The number p o f positive squares which appear in the 
reduced form (33) is an invariant o f  the given function Q, in the sense that 
p depends only on the function and not on the method used to reduce it 
(Sylvester’s law o f inertia).
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Proof. Suppose that there is another reduced form 

(34) y i2 +  • • • +  y„2 -  y„+i2 ---------yr2

with q positive terms. Since both are obtained from the same Q  by
nonsingular transformations, there is a nonsingular transformation carry
ing (33 ) into (34). W e may regard the equations of this transformation as 
a change of coordinates (“ alias” ); then (33 ) and (34 ) represent the same 
quadratic function Q (£ ) of a fixed vector £ with coordinates z, relative to 
one basis, y; relative to another.

Suppose q <  p. Then Q (£ ) §  0 whenever zp+1 =  • • • =  z, =  0 in
(33). The £’s satisfying these r — p equations form an n — (r — p ) dimen
sional subspace Si (in this subspace there are n — (r — p ) coordinates 
Zi, • • •, zp, z,+1, • • •, z„). Similarly, (34 ) makes Q (g ) <  0 for each £ #  0
with coordinates yi =  • • • =  y, =  y,+i =  • • • =  y„ = 0 .  These condi
tions determine an (r -  q)-dimensional subspace S2. The sum of the 
dimensions of these subspaces Si and S2 is

n -  (r -  p ) +  (r -  q ) =  n +  (p  -  q ) >  n.

Therefore St and S2 have a nonzero vector £ in common, for according to 
Theorem 17 of §7.8, the dimension of the intersection St n  S2 is positive. 
For this common vector £, Q (£) §  0 by (33 ) and Q (£) <  0 by (34), a 
manifest contradiction. The assumption q >  p would lead to a similar 
contradiction, so q =  p, completing the proof.

This result shows that any real quadratic form can be reduced by 
linear transformations to one and only one form of the type (33). The 
expressions Z ± z 2 o f this type are therefore canonical for quadratic 
forms under the full linear group. This canonical form itself is uniquely 
determined by the so-called signature { + , • • • , + , —, • • • , —} which is a 
set of p positive and r -  p negative signs, r being the rank of the form. 
This set of signs is determined by r and by s =  p — (r — p ) =  2p — r (s is 
the number of positive signs diminished by the number of negative signs). 
Sometimes this integer s is called the signature. Together, r and s form a 
complete system of numerical invariants, since two forms are equivalent if 
and only if they reduce to the same canonical form (33).

Theorem 18. Two real quadratic forms are equivalent under the full 
linear group if  and only if  they have the same rank and the same signature.

A  real quadratic form Q  =  X A X T in n variables is called positive 
definite when X  #  0 implies Q  >  0; a real symmetric matrix A  is called 
positive definite under the same conditions. If we consider the canonical
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reduced form (33), it is evident that this is the case if and only if the 
reduced form is z\ +  • • • +  zn2. This is because a sum of n squares is 
positive unless all terms are individually zero, and because for X  =  e„, 
the nth unit vector, X A X T ^  0 in (33) unless p = n. That is, we have 
proved

Theorem  19. A  real quadratic form is positive definite if  and only if  its 
canonical form is z 2 +  ■■■ +  zn2.

By Theorem 14, this means that A  =  P IP T, which gives the following 
further result.

Theorem  20. A  real symmetric matrix A  is positive definite i f  and only 
if  there exists a real nonsingular matrix P  such that A  =  P P T.

A  quadratic form X A X T defines in n -dimensional real space a locus, 
consisting of all points X  satisfying X A X T =  1. The canonical form (33) 
means that a suitable nonsingular linear transformation will reduce this 
locus to one with an equation

2 , , 2 2 2 1Zl +  • • • +  Zp ~  Zp+1 -  • • • -  Zr =  l .

For example, in the plane, the reduced equations of rank 2 are

x 2 +  y2 =  l ,  x 2 -  y2 =  l ,  - x 2 -  y2 =  l.

They represent, respectively, a circle, an equilateral hyperbola, or no 
locus. The only form of rank 0 is 0 =  l ;  those of rank l  are x 2 =  l 
(which represents the two lines x =  ± l )  or - x 2 =  l  (no locus). In §8.8 it 
was proved (Theorem 15, Corollary 2) that any nonsingular linear trans
formation of the plane can be represented as a product of shears, 
compressions, and reflections. Hence any “ central conic”  with an equa
tion ax2 +  bxy +  cy2 =  1 can be reduced to one of the forms we have 
listed by a succession of shears, compressions, and reflections. Geometri
cally, this result is reasonable: an ellipse could be compressed along one 
axis ta make a circle; but, clearly, no sequence of linear transformations 
could reduce a circle x 2 +  y2 =  1 to an equilateral hyperbola x 2 — y2 = 
1. This is the geometric significance of the invariance of the signature in 
this case.

The signature is useful in studying the maxima and minima of func
tions of two variables. Let z =  f{x , y) be a smooth function whose first 
partial derivates fx and f y both vanish at x =  x0, y =  y0, so that there 
are no first-degree terms in the Taylor’s series expansion of z in powers
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of h =  (x -  x0) and k — (y -  y0). This expansion is

f (x o +  h, y0 +  k) =  f (x 0, y0) +  (l/ 2 )[a h 2 +  2bhk +  ck2] +  • • •,

the coefficients being the partial derivatives

a =  / « ( * o, yo), b =  f xy(xo, y0), c = f yy{xo, y0).

For small values of h and k the controlling term is the one in brackets; it 
is a quadratic form in h and k with real coefficients. If this form has rank 
2, it can be expressed in terms of transformed variables h' and k', as 
± h '2 ±  k '2. If both signs are plus, nearby values of f (x 0 +  h, y0 +  k) must 
always exceed f (x 0, yo), and z has a relative minimum. If both signs are 
minus, z has a maximum. If one sign is plus and one sign is minus, the 
quadratic form may take on both positive and negative values, so x0, yo is 
neither a maximum nor a minimum, but a saddle-point (like a saddle or a 
pass between two mountain peaks, where motion in one direction 
increases the altitude z, in another decreases z). Maxima, minima, and 
saddle-points of / are therefore distinguished by the signature of the 
quadratic form. Similar results hold for critical points of functions of three 
or more variables.

Exercises

1. Prove that the real quadratic function ax2 +  bxy +  cy2 is positive definite if 
and only if a >  0 and 4ac -  b2 >  0 .

2. Show that a positive definite symmetric matrix has all positive entries on its 
main diagonal.

3. Reduce the following real quadratic forms to the canonical form of Theorem
16. Find the rank and signature o f each form.
(a) 9 x 2 +  1 2jc,jc2 +  79x22, (b) 2x ,2 -  1 2jc,jc2 +  1 8jc22,
(c) -2 jc ,2 -  4jc,jc2 +  2 2 x 2 +  12jc2Jc3 +  6X3* ! -  x 2.

4. Describe the geometrical loci corresponding to the various possible canonical 
forms for real quadratic forms in three dimensions.

5. Prove: A  homogeneous quadratic form with complex coefficients is always 
equivalent under the full complex linear group to a sum of squares z 2 + 
• ■ • + z 2.

6 . Prove that two quadratic forms in n variables with complex coefficients are 
equivalent under the full linear group if and only if they have the same rank.

7. Prove that the bilinear function X A Y T is an “ inner product”  if and only if A  
is symmetric and positive definite.

8 . A  quadratic form is called positive semidefinite if its rank equals its signature. 
State and prove an analogue of Theorem 19 for such forms.

9. Do the same for Theorem 20.
10. (a) List all the types of nonsingular quadratic forms in four variables.

(b) Describe geometrically at least two of the corresponding loci in R 4.
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9.10. Quadratic Forms Under the Orthogonal 
Group

How far can a real quadratic form be simplified by transformations 
restricted to be orthogonal? An orthogonal transformation Y  =  X P  
changes X A X T into Y (P ~ 1A P ~ 1T)Y T, since P  is orthogonal, the new 
matrix may be writtenf P~ lA P ~ lT =  P~ lAP.

In the plane an orthogonal transformation (rotation or reflection) of 
an ellipse will never yield a circle; at most one can hope to rotate the axes 
of the ellipse into standard position. The major axis might be charac
terized as the longest diameter. To reformulate this maximum property, 
consider any real quadratic function 0 (g )  =  ax2 +  cy2 with a ^  c and 
no xy term. Then Q (g ) ^  cx2 +  cy2 =  c (x 2 +  y2)*; this means that the 
maximum value assumed by O  for all points on the unit circle x 2 +  y2 =  
1 is c, and this maximum is taken on at the point y =  1 , x  =  0 . 
Conversely, the latter statement insures the absence of an xy term in Q.

Lemma. I f  a real quadratic function Q  =  ax2 + 2bxy + cy2 has 
among all points on the unit circle x 2 +  y 2 =  1 a maximum value at 
x =  0 , y =  1 , then b =  0 .

Proof. Consider Q  as a (two-valued) function of one variable x, where 
y is given implicitly in terms of x by x 2 +  y 2 =  1 . Differentiating, we get 
2x +  2y(dy/dx) =  0, so the derivative y' =  dy/dx is y ' =  —x/y. The 
derivative of Q  is

O ' =  (ax2 +  2 bxy +  cy2)' =  2 ax +  2 by +  2 bxy' +  2 cyy'.

Putting in the value of y ' and setting y =  1, x =  0, one finds O ' =  2b. 
But at the maximum y =  1, x =  0, this derivative must be zero, hence 
2b =  0. Q.E.D.

Now return to quadratic forms in n variables. In n -space the unit 
hypersphere X x 2 =  1 is a closed and bounded set 5; its points are all 
vectors of length one. On this hypersphere the values taken on by a real 
quadratic form 0 (g )  =  'L x iaijXj have an upper bound £  | a  ̂\. Therefore,

U
since 0 (£ )  is a continuous function of f, O ( f  ) has a maximum^ Ai on 5. 
In other words, among all vectors g of unit length there is one, g0, at 
which 0 (g )  takes as its maximum value Ai. Since g0 has length 1, we may

tT w o  symmetric matrices A  and P ~ 1AP, with P  orthogonal, are sometimes called 
orthogonally congruent.

tH ere , as in calculus, we assume the fact that a function continuous on a bounded closed 
set has a maximum value on this set.
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choose « !  =  £ 0 as the first vector o f a new normal orthogonal basis
« i . ( T h e o r e m  21, §7.11). In terms of the new coordinates
yi. • • •. yn of £ relative to this basis, the quadratic form is now expressed 
as Q (£) =  Z yibi,y,- with a new matrix of coefficients Z»,y. The maximum 
value Ai of Q  is given by the vector a j with coordinates ( 1 , 0 , • • •, 0); so 
by substitution the maximum value Ai is bu . This maximum will remain 
the maximum if we further restrict the variables so that all but two, yi
and y„ are zero. Therefore, yj =  1, y, =  0 is the maximum of the form
Z>ny, 2 +  2Z>i,yiy, +  Z\,y,2, subject to the condition y i2 +  y 2 =  1. The 
Lemma (with x replaced by y,) then asserts that the cross product 
coefficient bu is zero. This argument applies to each i =  2, • • •, n. 
Therefore Q, in these coordinates y„ loses all cross product terms 
involving y! and becomes

(35) Q (£ ) =  A i y i 2 +  Z  Z  y.b.jyj, B  =  ||Z>„|| =  B T
i=2y=2

The first coefficient A i is not a vector, but a scalar (the maximum of Q (£ ) 
on the sphere |£| =  1 ).

The difference Q *(£ ) =  Q (£ ) -  A iyi2 in (35) is a quadratic form in 
n — 1 variables y2, • • •, y„. These variables are coordinates in the space 
5„_i spanned by the n — 1 new basis vectors a2, • • • In this space 
(which is the orthogonal complement of the first basis vector £0)> we may 
reapply the same device of choosing a new normal orthogonal basis which 
makes Q *(£ ) a maximum for |£| =  1 ; this splits another diagonal term off 
the form. One finally finds a basis of principal axes for which

(36) Q (£ ) =  X\Z\ +  A2z 22 +  • • • +  A„z„2, A, ^  A2 g  ••• S A „.

Here Z\, • • •, zn are the coordinates of £ relative to a basis 
« i »  @2 , 7 3 , •1 • which has been chosen step by step by successive maximum 
requirements. The first vector « i  gives Q (£ ) its maximum value Ai, 
subject only to the restriction |£| =  1. The second basis vector (32 was 
chosen as a vector in the space orthogonal to a f, that is, 17 =  f i2 makes 
O (tj) a maximum A2 among all vectors tj for which | tj | =  1, (tj, a x) =  0. 
The third basis vector yields a maximum for Q (£ ) among all vectors 
|̂ | =  1 orthogonal to a ! and /32, and so on. These successive maximum 
problems may be visualized (in inverted form) on an ellipsoid with three 
different axes a >  b >  c >  0. The shortest principal axis c is the 
minimum diameter; the next principal axis b is the minimum diameter 
among all those perpendicular to the shortest axis, etc.

The coefficients A, of (36) may be thus characterized as the solutions 
of certain maximum problems which depend only on Q, and not on a
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particular coordinate system. An ambiguity in the reduction process could 
arise only if the first maximum (or some later maximum) were given by 
two or more distinct vectors £0 and t)0 of length 1. Even in this case the A, 
can still be proved unique (§10.4).

This proves the following Principal Axis Theorem.

Theorem 21. Any real quadratic form in n variables assumes the 
diagonal form (36), relative to a suitable normal orthogonal basis.

This new basis a *, • • •, a t  can, by Theorem 1, be expressed in terms 
of the original basis Ei =  (1,0, • • •, 0), • • •, e„ = (0, • • •, 0,1) as a *  =  
Zp/,e7-; furthermore, since the vectors are normal and
i
orthogonal, the matrix p =  ||pi7 || of coefficients is an orthogonal matrix. 
As in Theorem 2, the old coordinates x\, • • •, xn are then expressed in 
terms of the new coordinates jc*, • • •, jc* as Xj =  £  x*pu ; in other words,

I
we have made an orthogonal transformation of the variables in the 
quadratic form. The “ alias”  result of Theorem 21 thus may be rewritten 
in “ alibi”  form as

Corollary 1. Any real homogeneous quadratic function of n variables 
can be reduced to the diagonal form (36) by an orthogonal point- 
transformation.

Either of these two results is known as the “ Principal Axis Theorem.”  
If the quadratic form is replaced by its symmetric matrix, the theorem 
asserts

Corollary 2. For any real symmetric matrix A  there is a real orthogonal 
matrix P  such that P A P T =  P A P -1 is diagonal.

In other words, we have shown that any real symmetric matrix is 
similar to a diagonal matrix. Comparing with Theorem 4, we see that the 
A, in the canonical form (36) are just the eigenvalues of A.

In the plane the canonical forms of equations Q (g ) =  1 are simply 
AiX2 +  A2y 2 =  1; they include the usual standard equations for an ellipse 
(Ai ^  A2 >  0) or hyperbola (Ai >  0 >  A2); the coefficients determine the 
lengths of the axes. In three-space a similar remark applies to the three 
coefficients Ai, A2, A3. If all are positive, the locus CP =  1 is an ellipsoid; if
one is negative, a hyperboloid of one sheet; if two are negative, a
hyperboloid of two sheets; if all three are negative, no locus. (Note again
the role of the signature and of the rank.)
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Comparing with the Corollary of Theorem 4, we see that (for A  
symmetric) the principal axes of the quadratic function X A X T are 
precisely the eigenvectors of the linear transformation X  X A . There 
follows

Corollary 3. For A  real symmetric, the linear transformation X  >-» X A  
has a basis of orthogonal eigenvectors with real eigenvalues.

Corollary 4. Every nonsingular real matrix A  can be expressed as a 
product A  =  SR, where S is a symmetric positive definite matrix and R  is 
orthogonal.

Proof. We already know (Theorem 20) that A A T is symmetric and 
positive definite. By the present theorem, there is an orthogonal matrix P  
with P _1A A t P  diagonal and positive definite. The diagonal entries are 
thus positive; by extracting their square roots, we obtain a positive 
definite diagonal matrix T  with T 2 =  P ~ lA A TP  and hence a positive 
definite symmetric matrix S =  PTP~ l with S2 =  A A T. The corollary will 
be proved if we show that R  =  S -1A  is orthogonal, for then A  =  SR, as
desired. But R R T =  S~lA A T(S ~ Y  =  S~lS2(S ~ Y  =  S (S ~ Y  = 
SS~' = I, since (S-1)7" =  S-1 for symmetric S.

Corollary 5. Let A  be any real symmetric matrix, and B any positive 
definite (real) symmetric matrix. Then there exists a real nonsingular matrix 
P  such that P A P ~ l and PB P~X are simultaneously diagonal.

We leave the proof as an exercise; to find a basis of vectors such 
that A£j = AjBgj is called the generalized eigenvector problem; its solu
tion plays a basic role in vibration theory.

Exercises

1. Consider the real quadratic form ax2 + 2bxy + cy2.
(a) Show that a + c and b2 — ac are invariant under orthogonal transforma

tions.
(b) If cot 2a = (a -  c)/2b, show that the form is diagonalized by the 

orthogonal substitution x = x 'cosa  -  y 'sina, y = x 's ina + y'cosa.
2. Prove that every real skew-symmetric matrix A  has the form A  = P ~ 'B P ,  

where P  is orthogonal and B 2 diagonal.
3. Reduce the following quadratic forms to diagonal forms by orthogonal 

transformations, following the method given:

(a) 5x2 -  6xy + 5y2, (b) 2x2 +  A'Jlxy — 2y2.
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4. To the quadratic form 9x i2 — 9x22 +  1 8jc32 apply the orthogonal transforma
tion:

3*i =  2yx -  y2 +  2y3, 3x2 =  - y ,  +  2y2 +  2y3, 3x3 =  2y3 +  2y2 -  y3.

For the resulting form Q  in y „  y2, and y3 show directly that the vector (2/3, 
2/3, -1/3) yields the maximum value 18 for Q  when y 2 +  y2 +  y 2 =  1. 
Check by the calculus.

5. Consider the quadratic form ax2 +  2bxy +  cy2 on the unit circle x =  cos 6, 
y =  sin 6. Show that its extreme values are (cf. Ex. 1):

(a + c) ±  V(a + c)2 — 4A/2, A = ac — b2.

6. Show that there is no orthogonal matrix with rational entries which 
reduces xy to diagonal form.

7. A  Lorentz transformation is defined to be a linear transformation leaving 
x x2 +  x22 +  x 2 — x 2 invariant. Show that a matrix P  defines a Lorentz 
transformation if and only if P ~ ' =  S PTS =  S PTS~\ where S is the special 
diagonal matrix with diagonal entries, 1, 1, 1 ,-1 .

8. (a) If A  =  SR, with S symmetric and R orthogonal, prove that S2 =  A A T. 
★(b) Show that there is only one positive definite symmetric matrix S which

satisfies S2 =  A A T. (Hint: Any eigenvector for S2 must be one for S.) 
★9. Prove Corollary 5 of Theorem 21. (Hint: Consider X A X T as a quadratic 

function in the Euclidean vector space with inner product X B X T and write 
B  =  P P T by Theorem 20.)

9.11. Quadrics Under the Affine and Euclidean 
Groups

Consider next an arbitrary nonhom ogeneous quadratic function of a 
vector £ with coordinates X\, • • • , xn,

(37) / ( f )  =  1 1  x.dijXj +  I  bkx k +  c ( i , j , k =  1, • • •, n ).
t j k

This may be written / (f) =  X A X r  +  B X T +  c, where A  =  ||a/y || is a 
symmetric matrix and B  =  (b i,  • ■ ■, bn)  a row matrix. In the simple case 
of a function / =  a x 2 +  bx +  c o f one variable, observe that a translation 
x  = y +  k leaves invariant the quadratic coefficient a, for

(38) / =  a (y  +  k )2 +  b (y  +  k )  +  c 

=  ay2 +  (2 ak  +  b )y  +  a k 2 +  bk +  c.
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A  similar computation works for n variables; a translation X  Y  =  
X  -  K  (K  a row matrix) gives

/ (f) =  (Y  +  K )A (Y  +  K ) t  +  B (Y  +  K ) t  +  c

=  Y A Y t  +  K A Y t  +  Y A K t  +  K A K t  +  B Y t  +  B K t  +  c.

The product Y A K T (row matrix x  matrix x  column matrix) is a scalar,
hence equals its transpose K A TY T =  K A Y T; all told,

(39) / (f) =  Y A Y t  +  (2 K A  +  B )Y T +  K A K T +  B K T +  c,

an exact analogue of the formula (38). This proves the

Lemma. A  translation leaves unaltered the matrix A  o f the homogene
ous quadratic part o f a quadratic function / (f).

On the other hand, a homogeneous linear transformation X  =  YP  
changes / (f) to Y (P A P T) Y T +  (B P T) Y T +  c; in this quadratic function 
the new matrix of quadratic terms is P A P T, just as in the case of 
transformation of a homogeneous form alone.

Now to reduce the real function / (f) by a rigid motion with equations 
X  =  YP  +  K, P  orthogonal! By the remarks above, the orthogonal 
transformation by P  alone may be used to simplify the matrix A  of the 
quadratic terms, exactly as for a homogeneous quadratic form. As in 
§9.10, one finds (with new coefficients b\)

/ (f) =  A ,z ,2 +  • • • +  A„z„2 +  b'iZi +  • • • +  b'nzn +  c.

The b'j associated with nonzero Ay can now be eliminated by the simple
device of “ completing the square,”  using a translation y; =  z; +  b’J lX j.
Now, permuting the variables so that the nonzero A ’s come first, we get

/ (f) =  A ,y ,2 +  ■ • ■ +  Aryr2 +  6 '+1zr+1 +  • • • +  b'n z„ +  c'.

If the linear part of this function is not just the constant c', it may be 
changed by a suitable translation and orthogonal transformation, as in 
Theorem 13, to the form dyT+,. This transformation need not affect the 
first r variables. The result is one of the forms

(40) / (f) =  Aiyi2 +  ■ • • +  A ryr2 +  dyr+1,

(41) / (f) =  Aiyi2 +  • • • +  Aryf2 +  c',

where Aj S ’ A2 =  • • • =  Af, no A, =  0, d >  0.
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Theorem 22. Under the Euclidean group o f all rigid motions, any real 
quadratic form (37) is equivalent to one o f the forms (40) or (41).

These reduced forms are actually canonical under the Euclidean 
group, but the proof is much more difficult. In outline, it goes as follows.

The A, are (see §9.10) the eigenvalues of the matrix A  of (37); the 
uniqueness of these (including multiplicity) will be proved in § 10.4. In 
particular, the number r of squares in (40) or (41) is an invariant; note 
that r is also the rank of A , unaltered under A  P A P T. The invariants d 
and c' are most simply characterized intuitively using the calculus. Con
sider the locus where the vector

is the zero vector. In (41) it is the subspace yi = • • • =  y, =  0, and c ' is 
the constant value of /(£) on this (invariant) locus. In (40), the locus is 
empty, since df/dyr+i -  d #  0; but d can be characterized as the 
minimum of |grad/|; this minimum can also be proved invariant under 
the Euclidean group.

For affine transformations X  =  Y P  +  K, with P  nonsingular, a similar 
treatment applies. In reducing the quadratic part to diagonal form, the 
coefficients now can all be made ±1, as in §9.9. The linear part is then 
treated as in §9.6.

Theorem 23. By an affine transformation (or by an affine change of 
coordinates) any real quadratic function in n variables may be reduced to 
one o f the forms

(43) y 2 +  • • • +  y 2 -  yp+l2    y,2 +  y,+1 (r <  n).

Since the quadratic terms are unaffected by translation, the rank r and 
the number p of positive terms must be invariants by the law of inertia 
(Theorem 17).

From a geometrical point of view, each quadratic function /(£) =  
X A X t  +  B X T +  c defines a figure or locus, which consists of all those 
vectors £ which satisfy the equation /(£) =  0. In two-dimensional space, 
the figure found from such a quadratic equation is simply an ordinary 
conic section; in three-space, it is a quadric surface; and in general it 
may be called a hyperquadric (or a quadric hypersurface). An affine 
transformation Y  =  X P  +  K  applied to the equation of this surface

(42) y j2 +  • • • +  y 2 -  yp + 2 y,2 +  c M  n),
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amounts simply to applying the same transformation to the points o f the 
figure, and the new figure is said to be equivalent to the old one under the 
given affine transformation.

Clearly, the results found above for the classification of quadratic 
functions under equivalence will yield a similar classification of the 
corresponding figures. Observe first, however, that an equation /(£) =  0 
and a scalar multiple cf(tj) = 0 of the same equation give identical loci. 
This may be used to simplify the canonical forms such as y 2 -  y22 +  c = 
0 found above. When c ^  0, this equation gives the same locus as does 

-  (c -1)y 2 + 1  =  0; when c >  0, this may be reduced by an 
affine transformation yi =  Vcz,, y2 =  Vcz2 to the form z 2 -  z 22 +  1 = 
0, while for c <  0 the transformation y, =  V -cz, gives a similar result 
z22 -  Zi2 +  1 =  0. In general, this device can always be applied to 
change the constant c which appears in (43) to 1 or 0. Therefore, in an 
n-dimensional vector space over the field of real numbers, any hyper
quadric is equivalent under the affine group to a locus given by an 
equation of one of the following forms:

(44) yx2 +  • • • +  yp2 -  yp+12 -  • • • -  yr2 +  1 =  0,

(45) y i2 +  • • • +  yp2 -  yp+ 2    y 2 +  yr+i =  0,

(46) y i2 +  • • ■ +  y 2 -  yp+i2    y 2 =  0,

where 0 i  p g  r S  n, with r <  n in the case of (45).
In (44) distinct forms represent affinely inequivalent loci, but in (45) 

the transformation y,+x'-^—y,+x interchanges p and r — p, which are thus 
equivalent.

For example, in the plane the possible types of loci with r >  0 are:

=  2 1

x 2 +  y 2 +  1 =  0 
x 2 -  y 2 +  1 =  0 

-x2 -  y 2 +  1 =  0 
± {x 2 +  y 2) =  0 

x 2 -  y 2 =  0

no locus 
hyperbola 
circle 
one point
two intersecting’lines

± *  +  y = 
x 2 +  1 = 

- x 2 +  1 =
X  =

0 parabola 
0 no locus 
0 two parallel lines 
0 one line.

Observe in particular that the different canonical functions x 2 +  y2 +  1 
and x 2 +  1 give the same locus (namely, the figure consisting of no points 
at all). So do the canonical functions x 2 +  y 2 and - x 2 -  y 2, and so do 
x 2 +  y and —x 2 +  y.
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Exercises

1. Classify under the Euclidean group the forms
(a) Axz + 4y2 + 8y + 8,
(b) 9x2 — Axy + 6y2 + 3z 2 + 2'/5x + A\f5y + 12z + 16.

2. Classify under the affine group the forms
(a) x 2 + Ay2 + 9z2 + Axy + 6xz + Ylyz + 8x + 16y + 2Az +  15,
(b ) x 2 -  6xy +  10y2 +  2xz — 20z2 -  lOyz -  40z -  17,
(c) x 2 + Az2 + Axz + Ax + Az — 6y + 6,
(d) —2x2 — 3y2 -  I z 2 + 2xy — 8yz -  6xz -  Ax -  6y -  lA z  — 6.

3. In a quadratic function X A X T + BX T + c with a nonsingular matrix A, 
prove that the linear terms may be removed by a translation.

4. (a) Show that a nontrivial real quadric X A X T = 1 is a surface of revolution
if and only if A  has a double eigenvalue.

(b) Describe the quadric xy + yz + zx = 3.
5. Generalize the affine classification of quadratic functions given in Theorem 

23 to functions with coefficients in any field in which 1 + 1 t4 0.
6. (a) List the possible affine types of quadric surfaces in three-space.

(b) Give a brief geometric description of each type.
7. Classify (a) ellipses, (b) parabolas, and (c) hyperbolas under the extended 

similarity group (§ 9.4, end). Find complete sets of numerical invariants in 
each case.

★8. Classify quadric hypersurfaces in n -dimensional Euclidean space under the 
group of rigid motions (use Theorem 22).

9. Find a hexagon of maximum area inscribed in the ellipse x 2 +  3y2 =  3.

★ 9.12. Unitary and Hermitian Matrices

For the complex numbers the orthogonal transformations of real 
quadratic forms are replaced by “ unitary”  transformations of certain 
“ hermitian”  forms. A  single complex number c =  a +  ib is defined as a 
pair of real numbers {a, b) or a vector with components {a, b) in two- 
dimensional real space R2. The norm or absolute value | c | of the complex 
number is just the length of the real vector

(47) | c |2 =  \a +  ib\2 =  a2 +  b1 =  (a +  ib)(a -  ib) =  cc*,

where c* denotes the complex conjugate a — ib. On the same grounds, a 
vector y with n complex components (ci, • • •, c„), each of the form 
Cj =  fly +  ibj, may be considered as a vector with 2n components 
(d j, bi, • • •, a„, b„) in a real space of twice the dimensions. The length of
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this real vector is given by the square roo t o f

|(c,, ■ • •, c„ ) |2 =  { a 2 +  b 2) +  • • ■ +  ( a 2 +  b 2)

(48 ) =  I  (cij +  ib j)(a j -  ib j)
i =i

=  c ,c *  +  • • • +  c„c*.

Since each product c;c *  =  a 2 +  b 2 =  0, this expression has the crucial
n

property o f positive definiteness: the real sum £  cf i f  is positive unless all
;= i

Cj =  0. In this respect (48 ) resembles the usual Pythagorean formula for 
the length o f a real vector. W e  adopt (48 ) as the definition o f  the length 
o f the com plex row  vector K  =  (c i, • ■ • , c „ ). The formula £  c ,c f  may be 
written in matrix notation as K K * T, where K *  is the vector obtained by 
form ing the conjugate o f  each com ponent o f  K .

Definition. In  the com plex vector space C n, le t f  and  tj be vectors with 
coordinates X  =  (x i, • • •, x „ )  and Y  =  (y i,  • • • , y „ ),  and introduce an 
inner product

(49) ( I  t j )  =  x j y ?  +  • • • +  xny *  =  X Y * T.

The  length o f  € is then |£| =  (£  f ) 1/2.

Much as in the case o f  the ordinary inner product, one may then prove 
the basic properties

Linearity : ( c f  +  dr}, f )  =  c ( f ,  f )  +  d (r j, f ) .

Skew -sym m etry: ( f ,  tj)  =  ( tj, f ) * .

Positiveness: I f  f  ^  0, ( f ,  f ) is real and ( f ,  f )  > -0 .

The skew-sym m etry clearly implies a sfcew-linearity in the second factor:

( f ,  CT, +  dC) =  (CT, +  dC, f ) *  =  C*(TJ, f ) *  +  d * i t ,  0 *

=  C * ( f ,T j )  +  d * ( f , f ) ,
so that

(50) ( f ,  CT, +  d£) =  C * (f, T j) +  d * ( l  a

I f  desired, one may adopt the properties o f  linearity, skew-symmetry, and 

positiveness as postulates fo r  an inner product ( f ,  17) in an abstract vector 
space over the com plex fie ld ; the space is then called a unitary space 

(com pare the Euclidean vector spaces o f  §7.10).
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Two vectors £ and 17 are orthogonal (£ J . 17) if (£, 17) = 0 . B y  the 
skew-symmetry, £ 1 17 implies 17 1  £. A  set of n vectors <*],•••, a„ in 
the (n -dimensional) space is a normal unitary basis of the space if each 
vector has length one and if any two are orthogonal:

(51) | aj| =  • • • =  |a„ | =  1, (a,-, a,-) =  0 ( i 9* /).

Such a set is necessarily a basis in the ordinary sense. The original basis 
vectors ei =  (1,0, • • •, 0), • • •, e„ =  (0, • • •, 0,1) do form such a basis. 
By the methods of §7.11, one may construct other such bases and prove

Theorem 24. Any set o f m <  n mutually orthogonal vectors of length 
one o f a unitary space forms part o f a normal unitary basis o f the space.

In particular, if a u • ■ •, am are orthogonal nonzero vectors, and 
c, =  (£, a,)/(«,, a,), then am+1 =  £ -  Cjaj -  • • • -  cmam is orthogonal to 
a i, • • •, am, for any £.

An n x n matrix U  =  || || o f complex numbers is called unitary if
U U * T =  /, where U *  denotes the matrix found by taking the conjugate 
of each entry of U. This is clearly equivalent to the condition that 
I « i kujk* ~  &ip where Sv is the Kronecker delta (§9.4); in other words,
k
that each row of U  has length one, and any two rows of U  are 
orthogonal. This means that the linear transformation of C" defined by U  
carries ei, • • •, e„ into a normal unitary basis. It is also equivalent, by 
Theorem 9, Corollary 6, of §8.6, to the condition U * TU  =  I, which 
states that each column of U  has length one, and that any two columns 
are orthogonal.

An arbitrary linear transformation X  *-> X A  of C" carries the inner 
product X Y * t  into X A A * TY * T. This new product is again equal to 
X Y * t  =  X IY * t  for all vectors X  and Y  if and only if A A * T -  I, i.e., if 
and only if A  is unitary. Thus a matrix A  is unitary if and only if the 
corresponding linear transformation TA preserves complex inner products 
X Y * t . A  similar argument shows that A  is unitary if and only if TA 
preserves lengths (X X * T)1/2. Geometrically, a linear transformation T  of 
a unitary space is said to be unitary if T  preserves lengths, \£T\ =  |f |, 
and hence inner products. The set o f all unitary transformations of 
n -space is thus a group, isomorphic to the group of all n x n unitary 
matrices.

Quadratic forms are now replaced by “ hermitian”  forms, of which the 
simplest example is the formula £x ,x* for the length. In general, a 
hermitian form  is an expression with complex coefficients htj

(52) £ XihijX*j = XHX*t , // = |IM,
i . / =  1
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in which the coefficient matrix H  has the property H * T — H. A  matrix H  
of this sort is called hermitian; in the special case when the terms /i;y are 
real, the hermitian matrix is symmetric. The form (52) may be considered 
as a function /i(f) =  X H X * T of the vector f  with coordinates x\, • ■ • ,x n 
relative to some basis. The value X H X * T of this function is always a real 
number. To prove this, it suffices to show that this number is equal to its 
conjugate (or, equally well, to its conjugate transpose). But since H  is 
hermitian,

(X H X * t ) * t  =  (X * H * X * * t ) t  =  X rrH * TX * T = X H X * t , 

as asserted.
A  unitary transformation Y  =  X U , X  =  Y L T 1 =  Y U *T, applied to a 

hermitian form, yields

X H X * t  =  (Y U ~ 1)H {Y U * t ) * t  =  Y U ~ 'H (U Y * t ) =  Y {U ~ 1H U )Y * t . 

The coefficient matrix U ~ lH U  is still hermitian,

(U ~ 1H U )* t  =  U * tH * t (L T 1)* T =  I T 1 H U , since I T 1 =  U * T.

Exactly the same effect on the form may be had by changing to a new 
normal unitary coordinate system, for such a change will give new 
coordinates Y  for f  related to the old coordinates by an equation 
Y  -  X U  with a unitary matrix U.

Using this interpretation of the substitution, one may transform any 
hermitian form to principal axes. The new axes are chosen by successive 
maximum properties exactly as in the discussion of the principal axes of a 
quadratic form under orthogonal transformations. The first axis a i is 
chosen as a vector o f length one which makes h(g) a maximum among all 
f  with | =  1; one may then find a normal unitary basis involving a\ by 
Theorem 24. Relative to this basis the cross product terms x^x* for j  #  1 
again drop out. Since the values o f the form are all real, the successive 
maxima A,- are real numbers. This process proves the following Principal 
Axis Theorem.

Theorem 25. Any hermitian form X H X * T can be reduced to real 
diagonal form,

(53) Y H Y * t  =  A 1y 1y* +  A2y2y? +  • • • +  A„y„y£,

by a unitary transformation Y  =  X U .
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This theorem may be translated into an assertion about the matrix H  
of the given form, as follows:

Theorem  26. For each hermitian matrix H  there exists a unitary matrix 
U  such that U ~ 1H U  =  U * TH U  is a real diagonal matrix.

The methods of Chap. 10 will again prove the diagonal coefficients A, 
of (53) unique.

Exercises

1. Which of the following matrices are unitary or hermitian?

|(l +  /)/2 ( 1 - 0 / 2  

1(1 -  0/2 (1 +  0/2/

3 1 — 0  / I i

1 + i 'J l ) ’ j 1

2. Find a normal unitary basis for the subspace of vectors orthogonal to 
(1/2, if  2, (1 +0/2).

3. Prove that ||/ti; || is hermitian if and only if h* =  hj{ for all i and j.
4. Show that if a) is a primitive nth root of unity, then n-1/2||<u,y|| is unitary, for 

i, / =  1, • • •, n.
_ , . I  cosh 6 i sinh 8\ ,
5. Show that the complex matrix I . , I is unitary for any real 0.

K \ - i  sinh 8 cosh 8 )
Compute its eigenvalues and eigenvectors.

6. Show that all n x  n unitary matrices form a group (the unitary group) 
which is isomorphic with a subgroup o f the group o f all 2n x 2n real 
orthogonal matrices.

7. Prove the linearity, skew-symmetry, and positiveness properties of the 
hermitian inner product ( ( , tj).

8. Give a detailed proof of Theorem 24 on normal unitary bases.
9. Show that a monomial matrix is unitary if and only if all its nonzero entries 

have absolute value one.
10. Prove a lemma like that of § 9.10 for a hermitian form in two variables with 

a maximum at x = 0, y =  1. (H int: Split each variable into its real and 
imaginary parts.)

★11. Give a detailed proof of the principal axis theorem for hermitian forms.
12. Reduce the form xy* +  x*y  to diagonal form by a unitary transformation 

of x and y. (H int: Consider the corresponding real quadratic form.)
13. Reduce zz* — 2tvw* +  2i(zw * -  wz*) to diagonal form under the unitary 

group.
14. Show that any real skew-symmetrix matrix A  has a basis of complex 

eigenvectors with pure imaginary characteristic values. (H int: Show iA  is 
hermitian.)
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15. Show that the spectrum of any unitary matrix lies on the unit circle in the 
complex plane.

16. Show that a complex matrix C is positive definite and hermitian if and only 
if C = PP*T for some nonsingular P.

17. Show that a hermitian matrix is positive definite if and only if all its 
eigenvalues are positive.

*9 .1 3 . Affine Geometry

Affine geometry is the study of properties of figures invariant under 
the affine group, just as Euclidean geometry treats properties invariant 
under the Euclidean group. The affine group, acting on a finite
dimensional vector: space V, consists as in (11) of the transformations H  
of V  which carry a point (vector) £ of V  into the point

(54) { H = t ,  =  €T +  k ;

here k  is a fixed vector, and T  a fixed nonsingular linear transformation 
of V. We assume that V  is a vector space over a field F  in which 
1 +  1 ^ 0  (e.g., F  is not the field Z 2).

In affine geometry, just as in Euclidean geometry, any two points a 
and p  are equivalent, for the translation f  f  +  (fi — a )  carries a into 
p. This distinguishes affine geometry from the vector geometry of V  
(under the full linear group), where the origin O  plays a special role as 
the 0 of V. When considering properties preserved under the affine 
group, one usually refers to vector spaces as affine spaces.

In plane analytic geometry, the line joining the two points (xi, y0  and 
(x2, y2) has the equation

y -  yi = —— — (* -  *i), x2 *  x u 
x2 -  *1

Introduce the parameter t =  (x — Xi)/(x2 -  x 0 ;  then one obtains y =  
yi + t(,y2 — yi) and x — Xi = f(x2 — Xj); in other words, the line has the 
parametric equations

(55) x =  (1 -  r)xj +  tx2, y =  (1 -  r)yj +  ty2,

which may be written in vector form as (x, y ) =  £ =  (1  — t)g t +  tg2. 
Geometrically, the point (x, y ) of (55) is the point dividing the line 
segment from (x1; y t) to (x2, y2) in the ratio t : (1 -  r). For t =  5, this 
point is the midpoint.
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In any affine space, the point dividing the “ segment”  from a to /3 in 
the ratio t : (1 -  t) is defined to be the point

(56) y =  (1 — /)<* +  tp,

and the (affine) line a/3 joining a to /3, for a ^  13, is defined to be the set 
of all such points for t in F.

Theorem 27. Any nonsingular affine transformation carries lines into 
lines.

Proof. By substituting (54) in (56), we have

y H  =  y T  +  k =  (1 — t )a T  +  t(3T +  k

= (1 -  t ) (a T  +  k ) +  t((3T  +  k ) =  (1 -  t){aH ) +  t(pH ).

Hence H  carries the affine line a/3 through a and /3 into the affine line 
through a H  and /3H. Q.E.D.

If y =  (1 — t)a  +  tp and 8 =  (1 -  u)a  +  up are any two distinct 
points of a/3, then, since

(1 — v )y  +  v8 =  (1 — t +  vt — vu)a +  (t — vt +  vu)P,

ap  contains every point o f -y<5. The converse may be proved similarly, 
whence a/3 =  y8. That is, a straight line is determined by any two o f its 
points.

An ordinary plane is sometimes characterized by the property of 
flatness: it contains with any two points the entire straight line through 
these points. We may use this property to define an affine subspace of V  
as any subset M  of V  with the property that when a and p  are in M, then 
the entire line a/3 lies in M . Clearly, an affine transformation maps affine 
subspaces onto affine subspaces. Furthermore, the affine subspaces of V  
are exactly the subspaces obtained by translating vector subspaces of V, 
in the following sense.

Theorem 28. I f  M  is any affine subspace o f V, then there is a linear 
subspace S o f V  and a vector k  such that M  consists o f all points £ +  k  for £ 
in S. Conversely, any S and k  determine in this way an affine subspace 
M  =  S +  k .

Proof. Let k  be any point in M, and define S to be the set of all 
vectors a  — k for a in M ; in other words, S is obtained by translating M  
by k . Clearly, M  has the required form in terms of S and k  ; it remains
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only to prove that S is a vector subspace. Since straight lines translate 
into straight lines, the hypotheses on M  insure a like property for S: the 
line joining any two vectors of S lies in S. For any a  in S, the line joining 
O  (in 5) to a lies in S, which therefore contains all scalar multiples ca. If 
S contains a and >3, it contains 2/3 and 2a and all the line £ =  
2a +  t (2/3 -  2a) joining them. (Draw a figure!) In particular, for t = 
1/2, it contains £ =  2a +  (/3 -  a ) =  /3 +  a, the sum of the given vec
tors. Thus, we have demonstrated that S is closed under sum and scalar 
product, hence is a vector subspace, as desired. Q.E.D.

The case F  =  Z 2 is a genuine exception: the triple of vectors (0,0),
(1,0), (0,1) is a “ flat”  which contains with any two points a and /3, all 
(1 -  t)a  +  t/3; yet this triple is not an affine subspace.

The converse assertion is readily established; it asserts in other words 
that an affine subspace is just a coset of a vector subspace in the additive 
group of vectors. In particular, an affine line is a coset (under translation) 
of a one-dimensional vector subspace.

The preceding results involve another concept of affine geometry: that 
of parallelism.

Definition. Two subsets S and S* of an affine space V  are called 
parallel if and only if there exists a translation L : ( i - » (  +  A o / V  which 
maps S onto S*.

Theorem 29. Any affine transformation of V  carries parallel sets into 
parallel sets.

Proof. Let S and S* =  S +  X be the given parallel sets; let U  and 
U *  be their transforms under H :£  i-> £T +  k. The theorem asserts that 
U *  is the set of all £ +  p  for variable £ e U  and some fixed translation 
vector p.. By definition, U* is the set of (a  +  X )T  +  k =  (a T  +  k ) +  X T  
for cr g S. And U  is the set of all £ =  crT  +  k for s g S. Setting p. =  XT, 
the conclusion is now obvious. Q.E.D.

Equivalence under the affine group over the real field R has a 
number of interesting elementary geometrical applications. Under 
the affine group any two triangles are equivalent. To prove this, it suffices 
to show that any triangle ajiy  is equivalent to the particular equilateral 
triangle with vertices at O  =  (0,0), /30 = (2,0), and -y0 =  (1 ,^3) (see 
Figure 2). By a translation, the vertex a may be moved to the origin O ; 
the other vertices then take up positions /3' and y'. Since these vectors /3' 
and y ' are linearly independent, there then exists a linear transformation 
x/3' +  yy' i-> x/30 +  yy0 carrying /3' into /30, y ' into y0. The product of the 
translation by this linear transformation will carry ajiy into O/30-y0, as 
desired; hence the two triangles are equivalent.
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7

tangents (but observe that 
orthogonal, Figure 3).

Thus, every triangle is equivalent 
to an equilateral triangle. But in the 
latter, the three medians must by 
symmetry meet in one point (the 
center of gravity). An affine trans
formation, however, carries mid
points into midpoints and hence 
medians into medians. This proves 
the elementary theorem that the 
medians of any triangle meet in a 
point. Again, one may prove very 
easily that the point of intersection 
divides the medians of an equilateral 
triangle in the ratio 1:2; hence the 
same property holds for any triangle.

Moreover, any ellipse is affine 
equivalent to a circle. But any 
diameter through the center of a cir
cle has parallel tangents at opposite 
extremities; furthermore, the conju
gate diameter which is parallel to 
these tangents bisects all chords 
parallel to the given diameter. It fol
lows that the same two properties 
hold for any ellipse, for an affine 
transformation leaves parallel lines 
parallel and carries tangents into 

e diameters in an ellipse need not be

Appendix. Centroids and Barycentric Coordinates. The point
(56) dividing a line segment in a given ratio is a special case of the notion 
of a centroid. Given m +  1 points a0, ' ' - , a m in V  and m +  1 elements 
*o, • • •, xm in F  such that x0 +  • • • +  xm =  1, the centroid of the points 
a0, ' ' ' , a m with the weights x0, • • • , xm is defined to be the point

(57) £ XoOfo 4“ • • • 4“ xmotm, Xq 4“ * * * 4“ xm 1.

(More generally, whenever w =  vv0 4- • • • 4- wm ^  0, the “ centroid”  of 
the points a 0, • • •, am with weights vv0, • ■ •, wm is defined by (57), where 
Xi =  w-Jw.)
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If H  is any affine transformation (54), then

=  (*oao +  • • • +  xmam)T  +  k  
=  x0(a0T ) +  • • • -I- xm(amT ) +  ( I x , ) *
=  x0(a0H ) +  • • • +  xm(amH ).

In other words, an affine transformation carries centroids to centroids with 
the same weights.

Theorem 30. An affine subspace M  contains all centroids o f its points.

The proof is by induction on the number m +  1 of points in (57). If 
m =  0, the result is immediate, and if m =  1, a centroid of a 0 and a i is 
just a point on the line through a 0 and atu hence lies in M  by definition. 
Assume m >  1, and consider £ as in (57). Then some coefficient xh say 
xm, is not equal to 1. Set t = x0 +  • • • +  xm-u  then xm =  1 — t, t ^  0,
and the point /3 =  {x0/t)a0 +  • • • +  (xm-i/ f)am- i is a centroid of
a 0, • • •, am- 1  and lies in M  by the induction assumption. Furthermore, 
£ =  t/3 +  (1 -  t)am is on the line joining /3 e M  to am e M , hence £ is in 
M, as asserted.

Centroids may be used to describe the subspace M  spanned by a given 
set of points a 0, • • •, am, as follows.

Theorem 31. The set o f all centroids (57) o f m + 1 points a0, ■ ■ ■, am 
o f V  is an affine subspace M. This subspace M  contains each and is 
contained in any affine subspace N  containing all o f a0, ■ • •, am.

Proof. Let the £ of (57) and 

(57') t j =  y0a0 +  • • • +  ymam, y0 +  ■ ■ ■ +  y m =  1

be any two centroids. Then

(1 -  t)€ +  tT) =  [(1 -  t)x0 +  ry0]a 0 +  • • • +  [(1 -  t)xm +  tym]am

is also a centroid of a0, ■ • ■, a„, since the sum of the coefficients 
(1 -  t)xj +  ry, is 1. Hence M  is indeed an affine subspace. That it 
contains each ai is clear. On the other hand, any affine subspace N  
containing all the a, must, by Theorem 30, contain all of M . Q.E.D.

The m +  1 points a0, • ■ • ,a m are called affinely independent if the m 
vectors a i — aQ,- ■ ■ ,a m — a0 are linearly independent. For an affine 
transformation H, one has (a, — a0)T  =  a^H — a0H\ hence a nonsingu
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lar affine transformation carries affinely independent points into affinely 
independent points. In this definition of affine independence, the initial 
point of0 plays a special role. The following result will show that affine 
independence does not depend on the choice of an initial point.

Theorem 32. The m + 1 points a0, - - - , a m are affinely independent if 
and only if  every point £ in the affine subspace M  spanned by a0, • • • ,a m 
has a unique representation as a centroid (57) o f the at.

Proof. Suppose that the points a, are independent, but that some 
point £ in M  has two representations £ =  Y.Xfith £ =  Xx/a, as a cen
troid, both with =  1 =  Xx/. Then

xo ~  *o =  ( * i  -  x f)  +  • • •  +  ( * « -  xm'), 

and the zero vector 0 =  0  has a representation

m m

0  =  X  t e  - X , V ;  =  x (Xi -  xD cti -  ( x i  -  x 0) a 0
1=0 1
m

=  X  (Xi -  Xi ') (a ,  -  a 0).
i=i

Since the vectors a, — a0 are linearly independent, we conclude that 
Xi =  Xj', for i =  1, • • •, m. Since x0 =  1 — (xi +  • • • +  xm), we also have 
x0 =  x0'. The representation of £ as a centroid is thus unique.

Secondly, suppose the points a0, • • •, am to be affinely dependent. 
There is then a linear relation X c, (or, -  a 0) =  0 with some coefficient, say 
Ci, not zero. By division we can assume Ci =  1. Then

« i  =  -C 2«2 -  • • • -  cmam +  (c2 +  • • • +  cm +  l )a 0,

a representation of a x in which the sum of the coefficients is 1. But a x has 
a second such representation as =  1 • a x; hence the representation as a 
centroid is not unique. Q.E.D.

When the points a0, • • • ,a m are affinely independent, the scalars 
x0, • • • , xm appearing in the representation (57) of points in the space 
spanned by a0, • • •, am are called the barycentric coordinates of £ relative 
to a 0, • • •, am. Note that any m of these coordinates determines the 
remaining coordinate, in virtue of x0 +  • • • +  xm — 1.

Exercises

1. For each of the following pairs of points, find the parametric equations of the 
line joining the two points and represent the line in the form Sr +  A (i.e., 
find the space Sj).
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(a) (2 ,1 ) and (5,0), (b) (1,3, 2) and (-1 ,7 ,3 ),
(c) (1 ,2 ,3 ,4 ) and (4,3, 2,1).

2. Represent the line through (1 ,3 ) and (4 ,2 ) in the form S +  A, with four 
different choices of X. Draw a figure.

3. Prove: Through three vectors a, fi, y  not on a line there passes one and only 
one two-dimensional affine subspace (a plane!). Prove that the vectors in this 
plane have the form £ =  a  +  s(fi — a ) +  t(y  — a )  for variables s and t.

4. Find the parametric equations (in the form o f Ex. 3) for the plane through 
each of the following triples o f points:
(a) (1 ,3 ,2 ), (4 ,1 ,-1 ),  (2 ,0 ,0 ), (b) (1 ,1 ,0 ), (1 ,0 ,1 ), (0 ,1 ,1 ),
(c) (2 ,-1 ,3 ),  (1 ,1 ,1 ), (3 ,0 ,4 ).

5. In each part o f Ex. 4, find a basis for the parallel plane through the origin. 
★6. Prove that Theorem 28 is valid over every field except Z 2.

7. Prove, assuming only the relevant definitions, that any affine transformation 
carries midpoints into midpoints.

8. Show that every parallelogram is affine equivalent to a square.
9. Give an affine proof that the diagonals o f a parallelogram always bisect each 

other.
10. (a) Find an affine transformation of R 2 which will take the triangle with

vertices (0,0 ), (0, 1L and (1 ,0 ) into the equilateral triangle with vertices
(1 ,0 ), (-1 ,0 ),  (0, y/3).

(b) The same problem, if the first triangle has vertices (1,1 ), (1 ,2 ), and 
(3,3).

11. Prove by affine methods that in a trapezoid the two diagonals and the line 
joining the midpoints o f the parallel sides go through a point.

12. Prove that any parallelepiped is affine equivalent to a cube.
13. Prove that the four diagonals o f any parallelepiped have a common midpoint 

(it is the center o f gravity).
14. (a) Show that over any field F  any two triangles are equivalent under the

affine group.
★ (b) Show that if 1 +  1 ^  0 and l  +  l  +  l ^ O i n F ,  then the medians of any 

triangle meet in a point.
15. Show that a one-one transformation T  of a vector space V  is affine if and 

only if y  =  (1 — t)a  +  r/J always implies y T  =  (1 — t )a T  +  t (f iT ).
16. If ah affine subspace M  is spanned by m +  1 affinely independent points 

« o » ' ‘ ‘ » «m> prove that M  is parallel to an m-dimensional vector subspace.
17. By definition, a hyperplane inF " is an affine subspace o f dimension n — 1.

(a) Prove that the set o f all vectors £ whose coordinates satisfy a linear 
equation a,jc, +  • • • +  anxn =  c is a hyperplane, provided the coefficients 
a, are not all zero.

(b) Conversely, prove that every hyperplane has such an equation.
(c) Find the equation o f the hyperplane through (1 ,0 ,1 ,0 ), (0 ,1 ,0 ,1 ), 

(0 ,1 ,1 ,0 ), (1 ,0 ,0 ,1 ).
18. Let a0, • • •, a„ be n + 1 affinely independent points of an n -dimensional 

vector space V, and let (30, --,(3 n be any n + 1 points in V. Prove that 
there is one and only one affine transformation of V  carrying each a, 
into fi,.
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19. Prove: If an affine subspace M  is spanned by m + 1 affinely independent 
points a0, " - , a m and by r + 1 affinely independent points /30, • • • ,Pn then 
m = r.

★9.14. Projective Geometry

In the real affine plane, any two points lie on a unique line, and any 
two nonparallel lines “ intersect”  in a unique point. We shall now con
struct a real projective plane, in which

(i) Any two distinct points lie on a unique line.
(ii) Any two distinct lines intersect in a unique point.

The incidence properties (i) and (ii) are clearly dual to each other, in the 
sense that the interchange of the words “ point”  and “ line,”  plus a minor 
change in terminology, changes property (i) into property (ii) and vice 
versa.

One way to construct the real projective plane P 2 =  P 2(R ) is as follows. 
Take a three-dimensional vector space V3 over the field R  of real 
numbers, and call a one-dimensional vector (not affine) subspace S of V3 
a “ point”  of P 2, and a two-dimensional subspace L  of V3 a “ line”  of P 2. 
Furthermore, say that the point 5 lies on the line L  if and only if the 
subspace S is contained in the subspace L.

W e prove that the “ points”  and “ lines”  of P2(R ) satisfy (i) and (ii), as 
follows. If the points Si and S2 are the one-dimensional subspaces 
spanned by the vectors a i and a 2, then Si #  S2 if and only if a i and a2 
are linearly independent. The unique line L  in which both St and S2 lie is, 
then, the two-dimensional vector subspace spanned by « i  and a 2; this 
proves (i). Secondly, if the lines (two-dimensional subspaces) L x and L 2 
are distinct, the subspace L\ +  L 2, which is their linear sum, must have a 
higher dimension and is then the whole three-dimensional space V3. 
Therefore, by Theorem 17, §7.8,

dim (L i n  L 2) -  dim L 3 +  dim L 2 — dim (L i +  L 2) =  2 +  2 — 3 =  1,

so that the one-dimensional subspace L x n  L 2 is the unique point lying 
on both L i and L 2. This proves (ii).

To obtain suitable projective coordinates in P 2 -  P 2(R ), take V 3 to be 
the space R 3 of triples (x\,x2,x 3) of real numbers. Then each nonzero 
triple (jci, jc2, jc3) determines a point S of P 2; the triples (* i, x2, jc3) and 
(cjci, cx2, cx3) determine the same point S if c #  0. We call these triples,
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with the identification

(xi, x2, X 3) = (cxi, cx2, cx3), c #  0,

homogeneous coordinates of the point S. Since any two-dimensional 
subspace L  of V3 may be described as the set of vector solutions of a 
single homogeneous linear equation, a line L  of P 2 is the locus of points 
whose homogeneous coordinates satisfy an equation

(58) ajXi +  a2x2 +  a3x3 =  0, (a u a2, a3) #  (0, 0, 0).

We may call {a3,a 2, a3) homogeneous coordinates of the line L ;  clearly, 
the coordinates {a3,a 2, a3) and {cax, ca2, ca3), for c #  0, determine the 
same line.

The real projective plane has a very simple geometrical representa
tion. Any homogeneous coordinates (x 1,x 2,x 3) of a point S can be 
normalized, by multiplication with { x 2 +  x2 +  x32)-1/2, so that the new 
coordinates (yx, y2, y3) satisfy y 2 +  y2 +  y32 =  1 and lie on the unit 
sphere, and two antipodal points (yx, y2, y3) and (—y x, - y 2, —y3) on this 
sphere determine the same point of P 2. In other words, the points of P 2 
may be obtained by identifying diametrically opposite points on the unit 
sphere. Since any two-dimensional vector subspace L  of V3 cuts the unit 
sphere in a great circle, we may say that a line of P 2 consists of the pairs 
of antipodal points on a great circle o f the unit sphere. It is thus again 
clear that two projective lines (two great circles) intersect in one projec
tive point (one pair of antipodal points on the sphere).

A  “ projective plane”  P 2(F ) can be defined in just the same way over 
any field F. In any case, it is clear that each one-dimensional vector 
subspace (cxi, cx2, cx3), with x3 #  0, intersects the affine plane x3 =  1 in 
exactly one point (x 3/x3, x 2/x3, 1); the ratios {xy/x3, x2/x3) are called the 
nonhomogeneous coordinates of the projective point (cxi, cx2, cx3). But 
the locus x3 =  0 is a projective line, called the “ line at infinity.”  It may be 
verified that each line

L : a 3x i +  a2x2 +  a3x3 =  0

of the projective plane P 2 is either the line at infinity (if a3 =  a2 =  0) or a 
line a i(x i/x3) +  a2(x2/x3) +  a3 =  0 of the affine plane, plus one point 
(a2, —au 0) on the line at infinity.

An n-dimensional projective space P  can be constructed over any 
field F. The essential step is to start with a vector space V  =  F n+l of one 
greater dimension. Then P  =  Pn(F ) is described as follows: a point of P  is 
a one-dimensional subspace S of V ; an m-dimensional subspace of P  is
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the set of all points S or P  lying in some (m +  l)-dimensional vector 
subspace L  of V. Clearly, each such subspace is itself isomorphic to the 
m -dimensional projective space Pm determined in the same fashion by 
the (m +  l)-dimensional vector space L. If V  is represented (say by 
coordinates relative to a given basis) as the space of (n +  l)-tuples of 
elements of F, then each point S of P„ can be given n +  1 homogeneous 
coordinates (X], • • • , x„+i), and the coordinates (cxi, • • • , cx„+i), with 
c ^  0, determine the same point.

A  hyperplane (a subspace o f dimension n — 1) in P  = Pn(F ) is again 
the locus given by a single homogeneous equation

(59) a xX\ +  • • • +  an+]xn+1 =  0, (a u ■ ■ ■, an+l) *  (0, • • •, 0).

The numbers (ai, ■ ■ ■, a„+1) may be regarded as the homogeneous coor
dinates of the hyperplane; the relations between the projective space P  
and the dual projective space whose points are the hyperplanes of P  are 
exactly the same as the relation between the vector space V  and the dual 
space V*. By Theorem 13 in §7.7 about the dimension of the set of 
solutions of homogeneous linear equations, it follows that a set of r 
linearly independent equations such as (59) determines a projective 
subspace of dimension n — r.

Let T: V  -* V  be a nonsingular linear transformation. We know (§8.6, 
Theorem 10, Corollary 2) that T  carries each one-dimensional subspace S 
of V  into a one-dimensional subspace S* of V. Hence T  induces a 
transformation S >-> S* =  ST* of the points of the projective space P, 
and this transformation T *  carries projective subspaces into projective 
subspaces, with preservation of the dimension. We call T*  a projective 
transformation of P. If T x and T 2 are two such linear transformations of 
V, the product T XT 2 induces a transformation {T XT2)*  on P  which is the 
product of the induced transformations, T \ T *. Hence the set of all 
projective transformations constitutes a group, the n-dimensional projec
tive group-, and the correspondence T  T *  is a homomorphism of the 
full linear group in (n +  1) dimensions onto the projective group in n 
dimensions over the field F.

Relative to a given system of coordinates in V, the linear transforma
tion T  is determined by a nonsingular (n +  1) x (n +  1) matrix ||a;/1|. The 
transformation T*  then carries the point with homogeneous coordinates 
(xi, • • •, x„+i) into the point with homogeneous coordinates yu • ■ •, yn+1 
given by

(60) yj =  xyayj +  ■ ■ ■ +  xn+ian+u  (j =  1, • • •, n +  1).

Theorem 33. The (n +  1) x (n +  1) matrix A  determines the identi
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cal projective transformation T * o f Pn if  and only if  A  is a scalar multiple 
c l  o f the identity matrix I, with c ^  0.

Proof. If A  =  c l  in (60), then y} =  cx,'. the homogeneous coordi
nates (jcj, • • •, jc„+1) and {cx\, • • •, cxn+\) determine the same point of P, 
and T *  is indeed the identity. Conversely, suppose that T *  is the identity. 
Then T  must carry each of the n +  1 unit vectors e, into some scalar 
multiple c,e„ hence A  must be the diagonal matrix with diagonal entries 
c !>•••,  cn+j. But T  must also carry the vector (1,1, • • ■, 1) into some 
scalar multiple of itself, while A  carries this vector into (c\, • • •, c„+1). 
This is a scalar multiple of (1, • • •, 1) if and only if all the c, are equal. 
Therefore A  is indeed a scalar multiple of I.

Corollary. The projective group in n dimensions over the field F  is 
isomorphic to the quotient-group of the fu ll linear group in n +  1 dimen
sions by the subgroup o f nonzero scalar multiples o f the identity.

Proof. The map T  •-> T *  is a homomorphism of the full linear group 
into the projective group; Theorem 33 asserts that the kernel of this 
homomorphism is precisely the set of scalar multiples of the identity 
transformation. Hence the result follows by Theorem 28 of §7.13.

It also follows that two matrices A  and A i  determine the same 
projective transformation if and only if A i  =  cA  for some scalar c.

For the one-dimensional projective line, a projective transformation 
has the form

(61) yi =  axi +  bx2, y2 =  +  dx2, ad #  be.

In terms of the nonhomogeneous coordinates z =  X\/x2 and w =  y\/yz, 
this transformation may be written as a linear fractional substitution

obtained by dividing the first equation of (61) by the second. Formula
(62) is to be interpreted as follows: if c =  0, then (62) carries the point
z =  oo into the point w =  oo; if c #  0, then (62) carries the point
z =  oo into the point a/c, and the point z =  —d/c into the point
w =  oo. The correctness of these symbolic interpretations may be 
verified by reverting to homogeneous coordinates and using (61). A  
similar representation

(62) w =  (az +  b )j(c z  +  d),

(62') =
Z ia u +  • • • +  z„ani +  a„+i,i 

Zibi +  • • • +  z„b„ +  bn+i
(bj Ojtn+i) i I * ' '  * * n)
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of projective transformations by linear fractional substitutions is possible 
in n dimensions.

We have already seen that projective transformations of P „ (F ) carry 
lines into lines. Conversely, it is a classical result that any one-one 
transformation of a real projective space P„(R ), which carries lines into 
lines, is projective if n 2 (see Ex. 6).

A  homogeneous quadratic form in three variables determines a locus

(63) I  Xib.jXj =  0 (/,/ =  1,2,3)
‘J

in the projective plane, for if the coordinates (x i,x 2,.X3) satisfy this 
equation, then any scalar multiple (cx lycx2,cx 3) also satisfies the equa
tion. This locus is called a projective conic, the (projective) rank of the 
conic is the rank of the matrix B  of coefficients. If the line at infinity is 
deleted, the projective conic (63) becomes an ordinary conic. In the real 
projective plane, any nondegenerate conic (i.e., ellipse, hyperbola, or 
parabola) is equivalent by § 9.9 to one having one of the four equations

(64) x 2 +  x2 +  x 2 =  0, x 2 +  x2 ~  x 2 =  0,

(64 ) ~ x i — x2 ~  x3 =  0, Xi — x2 ~  x3 =  0.

A  change of sign in the whole left-hand side of such an equation does not 
alter the locus; hence the conics given by (64') are essentially those given 
by (64). For the first conic of (64), the locus is empty. Hence we conclude 
that any two nondegenerate conics are projectively equivalent in the real 
projective plane.

Exercises

1. In the projective three-space over a field F, prove:
(a) Any two distinct points lie on one and only one line.
(b) Any three points not on a line lie on one and only one plane.

2. Generalize Ex. 1 to projective n -space.
3. List all points and lines, and the points on each line in the projective plane 

over the field Z2.
4. In the projective plane over a finite field with n elements, show that there are 

n 2 +  n +  1 points, n2 +  n +  1 lines, and n +  1 points on each line.
5. The cross-ratio of four distinct numbers zu z2, z3, z4 is defined as the ratio 

(z3 -  Zi)(z4 -  z2)/(z3 — z2)(z4 — zd (with appropriate conventions when one 
o f the z, is °o). Prove that the cross-ratio is invariant under any linear 
fractional transformation (62).
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6. Show that the transformation (zu z2, z3) >-* (z*, z*, z%) carries lines into 
lines, in the complex projective plane, but is not projective. (Asterisks denote 
complex conjugates.)

7. What does the projective conic x t2 = 2x2x3 represent in the affine plane if the 
“ line at infinity” x3 = 0 is deleted?

8. (a) Show that every nondegenerate real quadric surface is projectively equiv
alent to a sphere or to a hyperboloid of one sheet.

(b) To which of the above is an elliptic paraboloid projectively equivalent? a 
hyperbolic paraboloid?

(c) Show that a sphere is not projectively equivalent to a hyperboloid of one 
sheet.

9. Show that, given any two triples of distinct points zu z2, z3 and w,, w2, w3 in 
the projective line, there exists a projective transformation (62) which carries 
each into the corresponding wt.

10. Let px, p2, p3, Pi and qx, q2, q3, q* be any two quadruples of points in the 
projective plane. Show that there exists a projective transformation (62') 
which carries each p, into the corresponding q,.
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Determinants and 
Canonical Forms

10.1. Definition and Elementary Properties of 
Determinants

Over any field each square matrix A  has a determinant; though the 
determinant can be used in the elementary study of the rank of a matrix 
and in the solution of simultaneous linear equations, its most essential 
application in matrix theory is to the definition of the characteristic 
polynomial o f a matrix. In this chapter we shall define determinants, 
examine their geometric properties, and show the relation of the charac
teristic polynomial of a matrix A  to its characteristic roots (eigenvalues). 
These concepts will then be applied to the study of canonical forms for 
matrices under similarity.

The formulas for the solution o f simultaneous linear equations lead 
naturally to determinants. Two linear equations axx +  bxy =  ku 
a2x +  b2y =  k2 have the unique solution

x =  (k xb2 -  k2b1)/(a ib2 -  a2bx), y =  (axk2 -  a2kx)/(axb2 -  a2bj),

provided axb2 -  a2bx ^  0. The polynomials which appear here 
numerator and denominator are known as determinants,

in

(1)
ax bA 
a2 b2\

— axb2 — a2bx,
k i b J 
k2 b21

-  kxb2 =  k2bx.

Similarly, one may compute the simultaneous solutions of three linear 
equations £  aitXj =  fc,. The denominator of each solution xt turns out to

318
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be

a 11 a 12 13

(2) <221 <*22 <223

a3i a32 <233

<211<222<233 +  <212<223<231 +  <213<221<232 

— <2l l <223<232 — <2l2^21<233 — <2l3<222<23 l-

On the right are six products. Each involves one factor a u from the first 
row, one from the second row, and one from the third. Each column is 
also represented in every product, so that a term of (2) has the form 
ai_a2-fl3-> with the blanks filled by some permutation of the column 
indices 1, 2, 3. Of the six possible permutations, the three even permuta
tions I, (123), (132) appear in products with a prefix +, while the odd 
permutations are associated with a minus sign. Experience has shown that 
the solutions of n equations in n unknowns are expressed by analogous 
formulas.

Definition. The determinant \ A\ o f an n x n matrix A  =  ||a0|| is the 
following polynomial in the entriest  atj =  a (i, j ) :

Summation is over the n! different permutations if of the integers 
1 , • • • , « .  The factor sgn if prefixing each product 11ai i<t, is +1 or —1, 
according as <j> is an even or an odd permutation.

Thus, the determinant |̂ 4| =  ||a,; || is a sum of n! terms ± a i_ a 2—
• • • a „_ , where the blanks are filled in by a variable permutation if of the 
digits 1,- • • ,n. Writing atj as a (i , j ) ,  and letting i<f> be the image of i 
under if, the general term can be written ±a ( l ,  lif )a (2 , 2i f )  ■ ■ ■ a(n, m f), 
where the sign ± 'is  called sgn if (for signum if). Each term has exactly 
one factor from each row, and exactly one factor from each column.

Each row appears once and only once in each term of |A|, which 
means that |>4| is a linear homogeneous function of the entries 
a,-1, • • •, ain in the /th row of A . Collecting the coefficients of each such 
Oin we 8et an expression

(4) \A I =  A n an +  A i2ai2 +  • • • +  A inain,

(3)
=  I  (sgn i f )a ( 1, l if )a (2 , 2tf) • ■ • a(n, nif).

where the coefficient A tj of %  is called the cofactor of ai;; it is a 

t  The entries are elements of a field F  or, more generally, of a commutative ring.
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polynomial in the entries o f the remaining rows of A .  This cofactor can 
also be described as the partial derivative Ay  =  d\A \/Bay. Since each 
term of \A | involves each row and each column only once, the cofactor 
Ajj can involve neither the ith row nor the yth column. It contains only 
entries from the “ minor”  or submatrix My,  which is the matrix obtained 
from A  by crossing out the ith row and the yth column.

Rows and columns enter symmetrically in | A  |:

Theorem 1. I f  A T is the transpose o f A ,  | A r | =  \A |.

Proof. The entry a ?  =  ait of A T is found by inverting subscripts. 
A  sample term of | A  | with j  =  i<f> and i =  j<f>~1 is

(sgn <f>) ]1 fl(i> i<t>) = (sgn 4>) X\ a(j<t>~1, j )  =  (sgn <f>) n  a T(j,j<f>~1).
* / /

This result is a sample term of |AT|, for every permutation is the inverse 
4>~1 of some permutation <f>. Even the signs (sgn <f>) =  (sgn </>-1) agree, for 
<f> is even (i.e., in the alternating group) if and only if its inverse </>-1 is 
also even (§6.10). Hence |A| =  |At |. Q.E.D.

What is the effect of elementary row operations on a determinant?

R u le  1. To multiply the ith row of A  by a scalar c #  0, multiply 
the determinant | A  | by c, for in the linear homogeneous expression (4), 
an extra factor c in each term an , • • •, ain from the ith row simply gives 
an extra factor c in | A  |.

R u le  2. To permute two rows of A ,  change the sign of | A  |. By 
symmetry (Theorem 1), we may prove instead that the interchange of two 
columns changes the sign. This interchange is represented by an odd 
permutation <f>0 of the column indices; thus it replaces A  by B  = | |6 (/ || 
where b (i, j )  =  a(i,j<f>0). Then,

\B | =  E (sgn <f>) n  b(i, i(f>) =  I  (sgn <f>) F M ',  i<t><t>o).
cp i  4> i

Since the permutations form a group, the products (with <f>o fixed) 
include all permutations, so that |B| above has all the terms of \A \. Only 
the signs of the terms are changed, for <f>0 is odd, so is even when <f> 
is odd, and vice versa: sgn =  -sgn </>. This gives the rule.

Lemma 1. I f  A  has two rows alike, | A  | = 0.

. Proof. By Theorem 1, it suffices to prove that | A  \ =  0 if A  has two 
like columns. Let ip be the transposition which interchanges the two like
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columns. Then the summands (sgn <J>)Ila(i, i<J>) in (3) occur in pairs 
{<p, consisting o f the cosets o f the two-element subgroup generated 
by i{/. Since if/ is odd, sgn <fi — —sgn *p<p; since the columns are alike, 
Ha(i,i<f>) =  Hence the paired summands are equal in mag
nitude and opposite in sign, and their sum is zero. Q.E.D.

For the consideration of adjoints (§10.2), it is convenient to express 
this lemma by an equation. In A , replace row / by row k. Then two rows 
become alike, and the determinant is zero. But this determinant may be 
found by replacing row i by row k in the linear homogeneous expression
(4), so that

(5) 0 =  A n aki +  A i2ak2 +  • • • +  A inakn (i *  k).

R u l e  3. The addition of a constant c times row k to row i leaves 
| A  | unchanged. This operation replaces each by ai; +  cakj; by the 
linear homogeneous expression (4), the new determinant is

I  A M u  +  cakj) =  I  Aiflij +  c I  A iflkj =  | A  | +  0, 
i  i  i

by (4) and (5). The determinant is indeed unchanged.
These rules may be summarized in terms o f elementary matrices. Any 

elementary row operation carries the identity I  into an elementary matrix 
E, and A  into its product E A . The determinant |/| =  1 is thereby 
changed to |.E| =  c, -1 , or 1 (Rule 1, 2, or 3), while |A| goes to 
E A  | =  c| A  |, (-1 ) | A  |, or | A  | as the case may be. This proves |E A  | = 
E\\A\\ by symmetry (Theorem 1) the same applies to postfactors E. 

This establishes

Theorem 2. I f  E  is an elementary matrix,

\EA\ =  \E\\A\ =  |AE|

Another rule is that for explicitly getting the cofactors from the 
submatrices My discussed above.

R u l e  4. A i; =  (—l ) I+y|M,y |; in words, each cofactor A tj is found 
from the determinant of the corresponding submatrix by prefixing the 
sign (—l ) ,+y. This is the sign to be found in the (/,/) position on a ±  
checkerboard which starts with a plus in the upper left-hand corner. First, 
consider the proof o f this rule for i =  j  -  1. The definition (3) shows at 
once that the terms involving an  are exactly the terms belonging to 
permutations <fi with 1 <j> =  1. An even (odd) permutation of this type is
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actually an even (odd) permutation of the remaining digits 2, • • •, n, so 
the terms with an removed are exactly the terms in the expansion of 
|Mn |. Any other cofactor A,y may now be reduced to this special case by 
moving the atj term to the upper left position by means of / — 1 
successive interchanges of adjacent rows and — 1 interchanges of adja
cent columns. These operations do not alter |M|y| because the relative 
position of the rows and columns in M,y is unaffected, but they do change 
the sign of | A  |, and hence the sign of the cofactor of a,7, / + j  -  1 — 1 
times. This reduction proves the rule.

An especially useful case is that in which all the first row is zero except 
for the first term. The expansion (4) then need involve only the first 
cofactor |Mn| =  A n , so

(6) c O  
K  B

=  c\B\,

where O  is 1 x  (n — 1), K  is (n — 1) x  1, and B  is (n — 1) x  (n — 1). 
By this rule and induction, one obtains the following result.

Lemma 2. The determinant o f a triangular matrix is the product of its 
diagonal entries.

The preceding rules provide a system for computing a determinant 
|A|. Reduce A  by elementary operations to a triangular form T, and 
record t, the number of interchanges of rows (or columns) used, and 
Ci, • • •, c„ the various scalars used to multiply rows (or columns) of A . By 
Theorem 2, |A| =  ( - l ) ' ( c i  • • • Cj)-1|T|. The computation is completed 
by setting | T\ =  tu • • • using Lemma 2.

Exercises

1. Prove Lemma 2 directly from the definition o f a determinant.
2. Compute the determinant of the matrices of Ex. 2, § 7.6.

I 1 -1  0 \
3. (a) If A  =  — 1 0 1 , compute | A  | both by the minors o f the first

\ 2 1 1 /
row and by the minors of the first column, and compare the results.

(b) Compute j A  | on the assumption that the entries o f A  are integers 
modulo 2.

4. Write out the positive terms in the expansion of a general 4 X 4  
determinant.

5. If n is odd and 1 +  1 ^ 0 ,  show that an n X n skew-symmetric matrix A  
has determinant 0.
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6. (a) Deduce the following expansion o f the “ Vandermonde”  determinant:

1
1 x 2 
1 x.

*2 =  ( * 2  -  * l ) ( * 3  _  * i ) ( x 3 -  X2).

(b) Generalize the result to the 4 x  4 case.
(c) Generalize to the n x n case, by proving that if ait =  x/-1, 

1-4 | = fi  U- “  Xj).
then

(>/
7. Show that for any 4 x 4  skew-symmetric matrix A ,

|-41 =  ( a 12a 34 — a 13a 24 +  014^ 23) •

8. (a) Show that the determinant o f any permutation matrix is ±1.
(b) Show that the determinant o f a monomial matrix is the product of the 

nonzero entries, times ±1.

9. A  real n x  n matrix is called diagonally dominant if £  I au I <  au for

i =  1, • - •, n. Show that if A  is diagonally dominant, then | A  \ >  0.
10. In the plane show that the line joining the point (a u a2) to the point (b lt b2) 

has the equation

1

= 0.

x 3 x2 

a 1 a2 1 

bi b2 1

★11. (a) If each entry av in a matrix A  is a function o f x, show that

d\A\ _  f. dalk 
~  K d x Aik-dx M*

(b) Use this to verify that A if =
d]-4 1
day

★12. I f  A  and C  are square matrices, prove that = 1-4 I |Cl.

★13. I f  f l  is the n x  «  matrix ||<uv ||, where at is a primitive complex nth root of 
unity, show that |H| =  n"/2, provided n =  1 (mod 4).

10.2. Products of Determinants

Under elementary row and column operations, any square matrix'A is 
equivalent to a diagonal matrix D  (Theorem 18, § 8.9), so A  can be 
obtained from D  by pre- and postmultiplication by elementary matrices 
Ei and £ (,), as in Theorem 13 of § 8.8,

(7) A  = £ , • • •  £ ,D £ (1) • • • £ (,).
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The rules \EA \ =  |.E|*|A| and \AE\ =  |A|-|£| of Theorem 2 show 
that in the determinant of the product (7) the factors |£| may be taken 
out one at a time to give

(8) |A| =  |£1| -- .| £ 1||I>||£(1)| ---|£ (') |.

Since each If/I #  0, the whole determinant |A| 0 if and only if
\D | ^  0. The canonical form D  has exactly r entries 1 along the diagonal, 
where r is the rank of A, while the determinant |£>| is the product of its n 
diagonal entries. Hence \ D  | ^  0 if and only if r = n ; that is, if and only if 
A  is nonsingular. Therefore (8) proves

Theorem 3. A  square matrix A  is nonsingular i f  and only i f\A \ ^  0.

Computing Determinants. Formula (8) also provides an efficient 
algorithm for computing n x  n determinants numerically. One proceeds 
as in Gaussian elimination, forming the product of the diagonal entries 
which are replaced by 1 as one proceeds; since the determinants of the 
other elementary matrices used are 1, this suffices. Thus

2 3 4 1 1 3/2 2 1/2 1 3/2 2 1/2

4 -1 2 3 0 -7  -6 1 0 1 6/7 -1/7
=  2 =  -14

-6 5 2 6 0 14 14 9 0 0 2 11

8 5 7 -2 0 -7  -9 -6 0 0 -3 -7

whence the determinant is (—14)(19) =  -266.
A  nonsingular matrix A  is a product A  =  E, • • • E i  of elementary 

matrices. If B  = £ * • • ■  E *  is a second such matrix, the product A B  has 
a determinant which may be computed, as in (8), as

\AB | =  | E, • - • E 1E * - - - E *11

=  |E ,| '--|£1|-|ft|---|£T| =  |A|-|B|.

Theorem 4. The determinant o f a matrix product is the product o f  the 
determinants: \AB | =  | A  | • |B |.

Proof. The computation above proves this rule only when A  and B  
are both nonsingular. But if A  or B  is singular, so is A B , and both sides 
of |AB| =  | A  | • |B| are zero. Q.E.D.

The inverse of a matrix A  with a determinant |A | ^  0 exists and may 
be found explicitly by using cofactors of A . The original equations (4) and
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(5) involving the cofactors may be written as

(9 )  ak iA n  +  ■ ■ ■ +  aknA in =  Ski

This number Ski is exactly the (k, i)  entry of the identity matrix / =  ||5fci||. 
The equation (9) is much like a matrix product; if the subscripts of the 
cofactors A /;- are interchanged, the left side of (9) gives the (k, i )  entry of 
the product of A  =  ||u;y|| by the transposed matrix of cofactors. On the 
right of (9) is the (k, i) entry of the identity multiplied by a scalar | A  |, so

(10) A W A y f  =  \A\I.

The matrix ||A;;-||7' which appears in this equation is the transposed matrix 
of the cofactors of elements of A , and is known as the adjoint of A. In 
case | A  | =  1, the equation (10) states that the adjoint is the inverse of A ; 
in general, if | A  | ^  0, (10) proves

Theorem 5. I f  \ A  | ^  0, the inverse o f A  is A -1 =  | A  |_1||Ai;||r.

Cramer’s rule for solving n linear equations in n unknowns is a 
consequence of this formula for the inverse. A  given system of equations 
has the form

X ttijXj bi,
i

where i and / range from 1 to n. In matrix notation the equation is 
A X  =  B  (X  and B  =  {bu • • •, bn) T column n -vectors). If A  is nonsingu
lar, this equation premultiplied by A -1 gives the unique vector solution 
X  =  (* i, • • •, x„) =  A ~ lB. This solution may be expanded if we 
observe that the ( i , j )  entry in the inverse A -1 is just A ;,/| A  |. This proves

Theorem 6 (Cramer's Rule). I f  n linear equations

Z  dijX j =  bi 
i

in n unknowns have a nonsingular matrix A  =  ||a,; || of coefficients, there is 
a unique solution

(11) Xj =  (Ai jbi  +  • • • +  A njbn)/\A  |, j  =  1, • • •, n, 

where A i; is the cofactor o f atj in the coefficient matrix A .

. 1 if / =  k,wheres,, -  o

Download more at Learnclax.com



Ch. 10 Determinants and Canonical Forms 326

The numerator of this formula may itself be written as a determinant, 
for it is the expansion by cofactors of the j  th column of a determinant 
obtained from A  by replacing the yth column by the column of constants 
bj. Observe, however, that large sets of simultaneous equations may 
usually be solved more efficiently by reducing the matrix (or augmented 
matrix) to a row-equivalent “ echelon”  form, as in §7.7.

Cramer’s rule evidently applies to any field— and so in particular to all 
equations discussed in §2.3 (cf. Ex. 9 below). It is especially convenient 
for solving simultaneous linear equations in 2 and 3 unknowns.

Appendix. Determinants and Rank. A  submatrix (or “ minor” ) of a 
rectangular matrix A  is any matrix obtained from A  by crossing out 
certain rows and certain columns of A  (this is to include the case when no 
rows or no columns are omitted). A  “ determinant rank”  d for any 
rectangular matrix A  ^  O  may be defined as the number of rows in the 
biggest square minor of A  with a nonvanishing determinant; in other 
words, d has the properties: (i) A  has at least one d x  d minor M , with 
\M\ 0; (ii) if h >  d, every h x  h square minor N  of A  has \N\ =  0. It
can be shown that the rank o f any matrix equals its determinant rank.

Exercises

1. Write out the adjoint of a 2 x 2 matrix A  =  and the product of A
by its adjoint. c

2. (a) Compute the adjoint of the matrix of Ex. 2(a), § 7.6, and verify in this
case the rule for the product of a matrix by its adjoint.

(b) Do the same for the matrix of Ex. 2(b), § 7.6.
3. By the adjoint method, find the inverses o f the 4 x 4  elementary matrices

H 24,1  +  2E 33, and I  +  dE2l of § 8.8 (50).
4. Find the inverses of Ex. 5, § 8.8, by the adjoint method.
5. If A  is nonsingular, prove that |A-1| =  | A  |_1.
6. Prove that the product o f a singular matrix by its adjoint is the zero matrix.
7. Prove that the adjoint of any orthogonal matrix is its transpose.
8. Write out Cramer’s Rule for three equation in 3 unknowns.
9. Solve the simultaneous congruences of Ex. 1, § 2.3, by Cramer’s Rule.

10. (a) Show that the pair of homogeneous linear equations

axx + btf + CjZ = 0, a2x + b2y + c2z = 0 

has a simultaneous solution

b\ c,| |c, ad U] bd
x = u ’ „ >  2 = j . -t?2 ^21 IC2 &2' 2̂'

(b) When is this solution a basis for the whole set of solutions?
(c) Derive similar formulas for three equations in 4 unknowns.

Download more at Learnclax.com



§10.3 Determinants as Volumes 327

11. Prove that the determinant o f an orthogonal matrix is ±1.
12. Show that the determinant of the adjoint of a matrix A  is | A  |"-1.
13. Prove that the adjoint o f the adjoint o f A  is | A  |"~2A .
14. Show directly from the definition of determinant rank that an elementary 

row operation does not alter the determinant rank.
★15. (a) If A  and B  are 3 x 3  matrices, show that the determinant o f any 2 x 2  

submatrix of A B  is the sum o f a number of terms, each of which is a 
product of the determinant of a 2 x 2 submatrix of A  by that of a 
2 x 2  submatrix o f B.

(b) Generalize this result and use it to prove that rank (A B )  S  rank A.
★16. If an n x n matrix A  has rank r, prove that the rank s o f the adjoint o f A  

is determined as follows: If r =  n, then s =  n ; if r =  n — 1, then s =  1; if 
r <  n — 1, then s =  0.

★17. Prove that the rank o f any matrix equals its determinant rank.

10.3. Determinants as Volumes

Determinants of real n x n matrices can be interpreted geometrically 
as volumes in n -dimensional Euclidean space. The connection is 
suggested by the formula for the area 
of a parallelogram.

Each real 2 x 2  matrix A  with 
rows a i and a 2 may be represented as 
a parallelogram with vertices at

O ,  a iy a 2, £*i +  ac2;

and conversely, each such parallelo
gram determines a matrix (cf. Figure 
1). The area of the parallelogram is

(12) base x altitude =  |ai | • |a2| • | sin c  |,

where C  denotes the angle between the given vectors a ! and a 2. By the 
cosine formula (41) of §7.9, the square of the area is

(a i ,a i ) (a 2, « 2)(1 -  cos2 C ) =  (a !, a i) (a 2, a 2) -  (atu  a 2)(at2, aj).

The result looks very much like the determinant of a 2 x 2 matrix; it is in 
fact the determinant of ||(a„ ay)|| =  A A  T.

A  similar formula holds for parallelograms in Euclidean space of any 
dimension— and can even be extended to m -dimensional analogues of

ai=(xi,;K i) oq+aj

o
a 2 =  (x2<y2)

Figure 1
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parallelograms in n-dimensional Euclidean space. These analogues are 
called parallelepipeds.

To establish the generalization, let A  be any m x  n matrix, with rows 
a x, - - - , a m. These rows represent vectors issuing from the origin in 
n-dimensional Euclidean space E n. The parallelepiped II in E n spanned 
by the m vectors a, consists of all vectors o f the form

txa i +  • • • +  tmam (0 =  ti g  1; / =  1, • • •, m).

(Picture this in case m =  n =  3; you will get something affinely equiva
lent to a cube!) This construction establishes a correspondence between 
real m x  n matrices and m -dimensional parallelepipeds in n-dimensional 
space; the a, are called edges of the parallelepiped II.

The m -dimensional volume (including as special cases length if m =  1 
and area if m =  2) V (II) of this figure can be defined by induction on m. 
Let the parallelepiped with the edges a 2, • • •, am be called the base of II. 
The altitude is the component o f a x orthogonal to a2, • • •, am; it is to be 
found from the remaining edge a x by writing a x as the sum of a 
component y in the space Sm_i spanned by a 2, • • ■, am and a component 
/3 orthogonal to 5m_i (see Figure 1; this is always possible by §7.11).

(13) cti =  /3 +  y, 0  1  Sm- U y in Sm- X.

The volume of II  is defined as the product of the (m — l)-dimensional 
volume of the base by the length |/31 of the altitude.

Theorem 7. The square o f the volume o f the parallelepiped with edges 
a i, • ■ ■ ,a m is the determinant |A A T |, where A  is the matrix with the 
coordinates of at in the ith row A

Note. Since a permutation o f the rows of A  replaces A  by PA , 
where P  is an m x  m permutation matrix with |P| =  |PT | =  ±1, and

| (PA )(P A )t | =  |P| • |A A r | • \PT \ =  |A A r |,

the “ volume”  of II  is independent of which m — 1 vectors are said to 
span its “ base.”

Proof. Since A  is an m x  n matrix, the product A A T is an m x  m 
square matrix. We now argue by induction on m. If m =  1, the matrix A  
is a row, and the “ inner product”  A A T =  ( a ^ a O  is the square o f the

t  Throughout §10.3, the coordinates of a vector are taken relative to a fixed normal 
orthogonal basis. Theorem 7 degenerates to the equation 0 =  0 if m >  n.
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length, as desired. Suppose that the theorem is true for matrices o f m -  1 
rows, and consider the case of m rows. As in (13), the first row A\ may 
be written A i  =  B x +  C u where the “ altitude”  B 1 is orthogonal to each 
of the rows A 2, • • • , A m (B iA ,t  =  0), while C  =  c2A 2 +  • • • +  cmA m is 
a linear combination of them. Subtract successively c, times the ith row 
from the first row of A. This changes A  into a new matrix A *  with first 
row B u  furthermore, the elementary row operations involved each pre
multiply A  by an elementary matrix of determinant 1, hence A *  =  PA ,
where |P| =  1, and\ A * A * t \ =  \ PA A TP T \ =  \P\\AAt \\Pt \ =  \AAt \.
But if D  is the block composed of the m — 1 rows A 2, • • •, A m of A * ,

where B \ DT =  O  because B\A ,T =  0 for each row A, of D.  By (6), the 
determinant is

Here D  is the matrix whose rows A 2, • • •, A m span the base of II, so 
|DDt | is the square of the volume of the base, by induction on m. 
Furthermore, the scalar B j B i T is the square of the length-of the altitude, 
so we have the desired base x altitude formula for A A T. Q.E.D.

|A | • |At | =  |A |2, and we have proved!

Theorem  8. Let A  be any real n x  n matrix with rows a u - ■ - ,a n. The 
determinant o f A  is (except possibly for sign) the volume of the paral
lelepiped in E n having the vectors a u • • • ,a n as edges.

The absolute value of a determinant is unaltered by any permutations 
of the rows, so this theorem shows also that our definition of the volume 
of a parallelepiped is independent of the arrangement of the edges in a 
sequence. This argument applies also to the formula of Theorem 7, when 
m <  n. When m =  n, the determinant | A  \ is often called the “ signed”  
volume of the parallelepiped with edges a ,, • • •, a „; its sign is reversed 
by any odd permutation.

Theorem  9. A  linear transformation Y  =  X P  o f an n-dimensional 
Euclidean vector space multiplies the volumes of all n-dimensional paral
lelepipeds by the factor ±|.P|.

tThe line of argument in this proof was originally suggested to us by Professor J. S. 
Frame.

then

In the special case when the number of rows is n, evidently |A A t | =
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Proof. Consider a parallelepiped which has n edges with respective 
coordinates A u  • • ■, A n. The row vectors A u • • •, A„ are transformed 
into A\P, - "  , A „ P : the matrix with these new rows is simply the matrix 
product A P, where A  has the rows A iy ■ • • ,A „. The new signed volume 
is then | AP| =  \A | |P|, where \A | is the old volume.

From this it follows that the transformation Y  =  X P  preserves signed 
volumes if and only if its matrix satisfies |P| =  +1. The set of all matrices 
(or of all transformations) with this property is known as the unimodular 
group. Sometimes this group is enlarged to include all P  with |P| =  ±1 
(i.e., all transformations which preserve the absolute magnitude of vol
umes).

The volume of any region / in n -dimensional Euclidean space may be 
defined loosely as follows: circumscribe / by a finite set o f parallelepipeds 
Iii, • • • ,I I j  of given shape and orientation, take the sum £  V'(IIf), and 
define the volume of / to be the greatest lower bound (Chap. 4) of all 
these sums for different such sets of parallelepipeds. (This is commonly 
done in the integral calculus, the parallelepipeds being cubes with sides 
parallel to the coordinate axes.)

By Theorem 9, a linear transformation with matrix P  changes the 
volume of any parallelepiped in the ratio 1 : | P  |; hence it changes the 
volume of / in the same ratio. Since translations leave volumes unaltered, 
we obtain the following result.

Corollary. An affine transformation Y  =  X P  +  K  alters all volumes 
by the factor |P| (or rather, its absolute value).

E xerc ises

1. (a) Compute the area o f the parallelogram with vertices (0,0), (3 ,0 ), (1,4),
and (4 ,4 ) in the plane.

(b) Do the same for the parallelepiped in space with the adjacent vertices
(0, 2,0), (2 ,0 ,0 ), (1, 1, 5), and (0 ,0 ,0 ).

2. Show that the medians o f any triangle divide it into six parts of equal area. 
(H int: Reduce to the case o f an equilateral triangle, by an affine transfor
mation.)

3. Prove that the diagonals of any parallelogram divide it into four parts of 
equal area.

4. (a) If P  is the intersection of the diagonals of a parallelogram, prove that
any line through P  bisects the area of the parallelogram.

(b) Extend this result to three dimensions.
5. Describe three planes which divide a tetrahedron into six parts o f equal 

volume.
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6. Using trigonometry, prove directly that the area A  o f the parallelogram 
spanned by the vectors £ = (i,, x2) and tj = (y 1( y2) satisfies

A 2 =
*i x2
yi yi

7. (a) If m vectors a u • ■ • ,a m in E n are linearly dependent, prove that the
parallelepiped which they span has m -dimensional volume zero.

(b) State and prove the converse o f this result.
8. In the group of orthogonal matrices, show that the matrices with | A  | =  +1 

(the “ proper”  orthogonal matrices) form a normal subgroup o f index 2.
9. (a) Show that the correspondence A  >-*\A \ maps the full linear group

homomorphically onto the multiplicative group o f nonzero scalars.
(b) Infer that the unimodular group is a normal subgroup o f the full linear 

group.
(c) Is the extended unimodular group (all P  with \P\ =  ±1 ) a normal 

subgroup o f the full linear group?

10. (a) Prove that if A  is any matrix with rows a „ then A A  T is the matrix of
inner products llfa,, ory) ||.

(b) Using (a), prove that if the a, are orthogonal, then

\ A A t \ =  (|or,| • • • \ a m |)2.

11. (a) If A  is a real m x n matrix, use the proof of Theorem 7 to
show that | A A r | S  0. Show that the case m =  2 o f this result is the
Schwarz inequality o f §7.10, Theorem 18.

(b) Show that the area o f a triangle with vertices (0 ,0 ,0 ), (x,, y,, z x), and

(* 2> yi, Zz) is (1/2)| A 4 t |i/2, where A  =  ( * '  Z l) .
\x2 y2 z2)

★(c) The volume of the tetrahedron with three unit edges along the x -, y-, 
and z-axes is 1/6. Prove the volume o f a tetrahedron with vertices 
a lt a 2, a3, o 4 is (1/6)|BBT |I/2, where B  is the 3 x n matrix with rows 
(a 2 -  a ,), (a 3 -  a ,), (a 4 ~  <*i).

★ (d) Generalize to “ tetrahedra”  of higher dimensions.
★12. Let —K  =  au S  K  for /, j  =  1, • • •, n.

(a) Show that if a, =  (a n , • • •, a,„), then |a, | S  Ksfn.
(b) Infer \A | S  |a, | • |o2| ■ • ■ |a„ | =  K ntin/2 (Hadamard’s determinant

theorem).

10.4. The Characteristic Polynomial

We have already seen (§9.2, Theorem 5) that A is a characteristic root 
(eigenvalue) of the n x n matrix A  if and only if the matrix A  -  X I is 
singular. By Theorem 3, this is the case if and only if | A  — A/1 =  0, 
which proves the following lemma.
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Lemma. The characteristic roots (eigenvalues) o f a matrix A  are the 
scalars A such that \A -  A/| =  0.

This lemma provides a straightforward means for reducing a matrix to 
diagonal form, when such a reduction is possible.

E x a m p l e . Let A  be the real symmetric matrix

Then, expanding | A  — A/| by minors o f the first row,

A  -  A/ =

1 -  A 

3 
0

3 0

-2 -  A -1  
-1  1 -  A

=  —A +  13A -  12.

Factoring, we have |A — A/| =  -(A  -  1)(A +  4)(A -  3), so that the 
characteristic roots of A  are 1,3, —4. (In general, to find the characteris
tic roots of a 3 x 3 matrix, one must solve a cubic equation, as in §4.4 or 
§5.5.) For each characteristic root there is a characteristic vector of the 
transformation TA.

Since

(x, y, z )T a =  (x +  3y, 3x -  2y -  z, - y  +  z),

a vector £ =  (x ,y ,z ) is characteristic, with characteristic root A =  1, if 
and only if x +  3y =  x, 3x -  2y -  z =  y, —y +  z =  z ; i.e., if and only 
if y =  0 and z =  3x, giving £ =  (x, 0, 3x). Similarly, it is characteristic 
for A = 3  if and only if x +  3y =  3x, 3x -  2y -  z =  3y, - y  +  z =  3z; 
this is the case only for scalar multiples of (3 ,2 ,-1 ). The characteristic 
vectors for A =  —4 are likewise the scalar multiples of (-3 , 5,1). The 
three characteristic vectors

(1 ,0 ,3 ), (3 ,2 ,-1 ), (-3 ,5 ,1 )

are mutually orthogonal, hence linearly independent. The matrix P  with 
these vectors as rows is nonsingular. Relative to the new basis formed by 
these three vectors, the transformation TA is nonsingular with matrix 
P A P ~1 (cf. §9.2, Theorems 3' and 4). We may also normalize this basis, to
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obtain the normal orthogonal basis of characteristic vectors

a ! =  -^ = (1 ,0 ,3 ), a 2 = - / = (3 ,2 , - l ) ,  a 3 =  ^ = = (-3 , 5, 1).

The matrix Q  with these rows is orthogonal, and Q A Q X =  Q A Q T is the 
diagonal matrix with diagonal entries 1, 3, —4.

The 3 x 3  symmetric matrix A  displayed above is the matrix of the 
quadratic form x 2 +  6xy -  2y2 — 2yz +  z 2. The preceding analysis 
shows that this quadratic form, relative to the normal orthogonal basis 
(“ principal axes” ) « i ,  a 2, a 3, assumes the diagonal form x 2 +  3y2 -  4z2.

In general, let A  be any n x  n matrix. Since a determinant is a 
polynomial, linear in the entries of each row, the determinant | A  — A / |  is 
a polynomial of degree n in the indeterminate A ,  of the form

(14) |A -  A/1 =  (—1)"A" +  ^ - i A " '1 +  • • • +  M  +  b0.

We shall define the characteristic polynomial of A  as the polynomial 
cA (A) = |A -  A/1, and the characteristic equation of A as the equation 
| A  — A/1 =  0. We can now restate the lemma above as follows:

Theorem 10. The characteristic roots (eigenvalues) o f a matrix A  are 
the roots of the characteristic equation o f A .

Since a complex polynomial has at least one root, we infer the 
following

Corollary. Over the complex field, a linear transformation has at least 
one (nonzero) characteristic vector.

Theorem 11. Similar matrices have the same characteristic poly
nomial.

Proof. Let the matrices be A  and B  =  P ~ 1A P . Since IP -1! =  |P|_1 
and |P| are scalars, they commute, and so the rule for multiplying 
determinants gives

|P_1A P  -  A/1 =  |P-1A P  -  AP_1/P| =  |P-1(A  -  A/)P|

=  | P - 1 H ^  — A / 1  - 1 P I  =  I A  — A / | .
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It is a corollary that the successive coefficients b 0 =  | A  |, b x, • • • ,

b n — 2 =  (  1 )  X  ( f l i f l j j  d l j d j i ) ,
><i

b n - 1 =  ( - l r C f l l l  +  • • • +  d n n )

of | A  — A/1 are invariants of the matrix A , under the group A  >-* P ~ 1A P. 
Suitable polynomials in the Z>, give other useful invariants. One such 
invariant is

I  aifii< =  I  a » 2  +  2  I  anan =  * n - i 2  +  ( — l ) n _ 1 2 Z > n _ 2 .
{,/=i /=i i </

In the case of symmetric matrices, this invariant is simply £  aiy2.
Since |AT — A/| =  |(A -  A/)r | =  |A — A/|, by Theorem 1, we also 

have the

Corollary. A  matrix A  and its transpose A T have the same charac
teristic polynomial, hence the same characteristic roots.

Theorem 12. The characteristic polynomial o f a triangular matrix T  
with diagonal entries dx, - - - , d n is

| T  — A/1 =  {dx -  \ ){d2 — A) • • • (dn -  A).

The proof follows from Lemma 2 of §10.1, since T  — XI  is itself a 
triangular matrix. It is a corollary that the set of diagonal entries (with 
multiplicity) consists of the roots (with multiplicity) of the characteristic 
polynomial. Hence the set of diagonal entries and the number of occur
rences of each diagonal entry are the same for any two similar diagonal 
matrices. This can be stated as follows:

Corollary. Two diagonal matrices are similar if  and only if  they differ 
only in the order o f their diagonal terms.

The properties of similarity throw a new light on the orthogonal 
transformation of a real quadratic form (§9.10). If a quadratic from 
X A X t  with matrix A  has been reduced by an orthogonal transformation 
Z  =  X P  to a diagonal form A iZ i2 +  ■••. +  A„z„2, the diagonal matrix D  
of this new form is D  =  P A P T. Since P  is orthogonal, P T = P -1 and 
D  =  P A P ~ l ; hence the new matrix D  and the original matrix A  are 
similar. The eigenvalues Ai, • • ■, A„ of D  are therefore the same as those 
of the given matrix A . This gives the following sharpened form of 
Theorem 21 of §9.10.
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Theorem  13. Any real quadratic form X A X T may be reduced by 
an orthogonal transformation to a diagonal form  A iZj2 +  • • • +  A„z„2, 
in which the coefficients A, are the roots o f the characteristic equation 
\A -  A/1 =  (At — A) —  (A„ -  A) of A .

But the characteristic equation, and hence its roots, is uniquely 
determined by A . This proves the essential uniqueness of the diagonal 
form— and gives a direct way to compute the coefficients. Knowing the 
coefficients, one can also compute the principal axes as the associated 
eigenvectors in the way indicated above.

Since we know that any real symmetric matrix is orthogonally equiva
lent to a real diagonal matrix, we get the

Corollary. A ll eigenvalues o f a real symmetric matrix are real.

Remark. If A  is symmetric, then eigenvectors X\ and X 2 having 
distinct characteristic values Ai ^  A2 are necessarily orthogonal, for the 
bilinear expression X ^ A X 2T may be computed in two ways as

(.X lA )X 2T =  \ i (X lX 2r ), X A A X / )  =  X 1(X 2A ) t  =  A2(X 1X 2t ).

Since Ai ^  A2, X\X2T must be zero, and X 1 is therefore orthogonal to 
X 2.

Hence if the n x  n symmetric matrix A  has n distinct eigenvalues 
Ai, • • •, A„, any n associated eigenvectors X u  • • •, X n will be orthogonal, 
and the unit vectors Xi/\X\\, • • •, X J \ X n | will form the rows of an 
orthogonal matrix P  such that P A P T =  P A P ~ l will be diagonal.

E xerc ises

1. Let D  be a diagonal matrix with diagonal entries 3, 1, and —1, while P  is a 
traingular matrix with rows (1, 2, —3), (0, -1 , 4), (0, 0, 1). Compute the 
characteristic equation of P ~ lD P  and compare with that o f D .

2. Compute the eigenvalues and eigenvectors o f the matrices:

3. Find the lengths o f the principal axes o f the quadric xy +  yz +  zx +  x +  
y +  z =  1.

4. Write down a diagonal quadratic form equivalent under orthogonal trans
formation to the expressions given below.
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(a) — 2x2 — l l y 2 — 5 z 2 +  4xy +  16 yz +  20xz. (H int: Show that all
integral eigenvalues are multiples of 9.)

(b) 3x2 -  y2 -  3z 2 -  t2 -  4x2 -  10y/.
5. Exhibit an orthogonal transformation which reduces each form of Ex. 4 to 

its diagonal equivalent.
6. Find a necessary and sufficient condition that the eigenvalues o f a 2 x  2 

matrix be equal.
7. Find all 2 x 2  matrices with'eigenvalues +1 and —1.
8. Show that if A  and B  are square matrices, the characteristic polynomial of

the matrix ^  ^  is the product o f those for A  and B.

9. Prove that in (14), b „ =  ± (a u +  • • ■ +  a„„). (The invariant <!,, +  ••• +  
a„„ is called the trace of A .)

10. Prove that in (14), f>„_2 =  (- 1 )"  I  {a,,an -  a ^ ) .
11. Prove the formula £  at2 =  f>„_,2 +  ( - l ) n-12f>„_2 for symmetric matrices.
12. Prove directly from the definition that all eigenvalues o f a real symmetric A  

are real. (H int: For X  an eigenvector, show X A X * T =  X X X *T =  
A * X X T*, where X *  denotes the complex conjugate of X .)

13. (a) Prove that all eigenvalues of a hermitian matrix are real.
(b) Prove that the eigenvectors span the space o f all vectors.

★14. Show that every unitary matrix U  has an eigenvector £ with (;U  =  dd, 
where \d \ =  1.

15. (a) Show that if a matrix A  has r linearly independent eigenvectors with 
eigenvalue Ay, then ca (A) is a multiple o f (A -  Ay)'.

(b) Construct, for any r, an r x  r matrix A  with ca (A) =  (A -  A O', but 
having no two linearly independent eigenvectors with eigenvalue A,. 

★16. Prove the principal axis theorem for a real symmetric matrix A  by the 
following analysis o f the linear transformation X  >-» X A .
(a) The matrix A  has an eigenvector a , of length 1.
(b) If a , is chosen as the first vector in a new normal orthogonal basis, the 

new matrix for the given transformation has zeros in the first column 
and the first row, except for the first entry.

(c) The argument is continued by induction.
★17. Prove that the volume of the ellipsoid 'Za ljxix, S  1 is (47t/3) • \A |-1/2, 

where A  =  ||av ||. (Hint: Transform to principal axes, and use Theorem 9.)

10.5. The Minimal Polynomial

The construction of canonical forms for a matrix under similarity 
depends upon the study of the polynomial equations satisfied by the 
matrix or by the corresponding transformation. Specifically, let V  be an 
n-dimensional vector space over a field F, and T . V - + V  a linear 
transformation of V. The various powers T ” of T  are then also linear
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transformations of V. Since transformations can also be added or multi
plied by scalars, we can consider for each polynomial form f (x )  =  
a0 +  a 1*  +  • • • +  akx k with coefficients a, in F  the corresponding 
polynomial

(15) f ( T )  =  aol +  a iT  +  • • • +  ak T*

in T. It represents a linear transformation f iT ) :  V  -* V, and in particular, 
the constant polynomial f (x )  =  1 yields the identity transformation 
I :  V  -> V. since powers of T  are permutable (T mT q =  T qT m =  T m+q), 
the polynomials f iT )  are added and multiplied like the polynomials 
f ix ).

Similarly, each n x  n matrix A  with entries in F  yields polynomials

(16) f ( A )  — ciol +  a\A  +  • ■ • +  akA k

in A ; they are again n x  n matrices with entries in F. Since there are 
exactly n linearly independent n X n matrices over F, the n2 +  1 
matrices I, A , • • •, A " 2 are certainly linearly dependent, and the depen
dence relation provides a nonzero polynomial f ix )  of degree at most n2 
with / ( A )  =  O. Because of the isomorphism A  TA between n X n 
matrices and linear transformations of Vn, there will also exist for each 
linear transformation T  of an n -dimensional vector space V  a nonzero 
polynomial f ix )  with / (T ) =  O.

Theorem  14. For each linear transformation T  of a finite-dimensional 
vector space V  over F, the polynomials f ix )  over F  such that f i T )  =  O  are 
the multiples o f a unique monic polynomial m ix ).

Proof. Consider the set M  of all polynomials f ix )  over F  such that 
f iT )  =  O. We have just seen that M  contains a nonzero polynomial. 
Moreover, M  is closed under addition, subtraction, and multiplication by 
any polynomial g (x ): it is an ideal of the ring F[jc]. Hence, by Theorem 
11 of §3.8, M  consists o f the multiples of the monic polynomial m ix ) of 
least degree with m (T ) =  O.

We call m ix ) the minimal polynomial of T. It is the monic polynomial 
characterized by the properties

(17) m (T ) =  O ; f iT )  =  O  implies m (x)|/(x),

where the symbol m ix ) |/(jc) means that m ix ) divides f ix )  in the poly
nomial ring F [x ], as in Chap. 3. The minimal polynomial of an n X n 
matrix A  is described similarly; it is identical with the minimal polyno-
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mial of the corresponding transformation TA of F". Since similar matrices 
are different representations of the same linear transformation, we have

Corollary. Similar matrices over a field F  have the same minimal 
polynomial over F.

As an illustration, consider a nilpotent transformation (or matrix); that 
is, a linear transformation T  with T™ =  O  for some m. Since T  then 
satisfies T™ =  O, its minimal polynomial is x h for some integer h ; 
indeed, h is the least positive integer with 7*  =  O.

As a special case, suppose that h =  n. Since T *_1 =  T " -1 # O, there 
is a vector a with a T n~1 t4 O. We assert then that the n vectors a, aT, 
a T 2, • • •, a T " -1 are linearly independent. If not, there would be a linear 
dependence relation O  =  a0a +  a xa T  +  • • • +  O n^aT"-1 with coeffi
cients a, not all zero. If at is the first nonzero coefficient, we apply T n~i~l 
to the equation to get O  =  O T "~ '~ l =  a ja V T n~’~l =  aia T ,~1; but a 
was chosen so that a T " -1 #  O ; hence at =  0, a contradiction.

When these independent vectors a, aT, • • •, a T h~l are chosen as a 
basis, T  carries each vector of the basis into the next and the last vector 
to zero, and hence is represented by the n x  n matrix

10 1 0 •••• 0\
0 0 1  ••• 0

0 0 0 ••• 1
\ 0  0 0 ••• 0 /

in which the only nonzero entries are l ’s along the diagonal just above 
the principal diagonal. This matrix, which is clearly nilpotent, is known as 
the “ companion matrix” of the polynomial x".

More generally, to each monic polynomial

g (x ) =  c0 +  Cix +  • ■ • +  c„_ i * " -1 +  x"

of degree n we can construct an n x  n matrix with minimal polynomial 
g (x ). This matrix, called the companion matrix of g (x ) is, for n =  4,

(18) Q  =

I 0 1 0 0
0 0 1 0
0 0 0 1

\ — Co —Cl —Cl —C j j

Download more at Learnclax.com



§10.5 The Minimal Polynomial 339

for any n, Cg has entries zero except for entries 1 in the diagonal just 
above the main diagonal, and entries —c0, • • •, ~c„~i in the last row.

Theorem 15. For each monic polynomial g (x ), the companion matrix 
Cg has minimal polynomial g (x ) and characteristic polynomial (—l)"g (A ).

Proof. Let T  be the linear transformation of F "  represented by the 
companion matrix Cg of (18). Since the rows of the matrix are the 
coordinates of the transforms of the unit vectors Ei, • • •, e„ of F n, we 
have

E l T  =  £ 2, ' • ’  , &n-\T =  E „ , EnT  - —C0 — • • • — C „ _ iE „ .

In other words, the vectors Ei, e XT, - ■ ■ , E iT "_1 are a basis of F", so that 
any vector £ can be written uniquely as

(19) £ =  a0ei +  O jEjT +  • • • +  a ^ e i T " -1 =

where f (x )  =  a0 +  a\X +  • • • +  an-iX n_1 is a polynomial of degree at 
most n — 1. Furthermore, e iT ” =  —c0ei — • • • — cn_ iE iT "-1, so that 
e ig (T ) — 0. Therefore, for any vector £,

& (T) = e t f (T )g (T )  = elg (T ) f (T )  = 0,

which asserts that T  satisfies the monic polynomial equation g (T ) =  0. 
For any f (x )  ^  0 of smaller degree, Z\ f(T ) =  ^ ^  0 by (19), hence 
f ( T )  5̂  0. Thus g (x ) is indeed the minimal polynomial of Cg.

The characteristic polynomial of Cg is found by expanding the deter
minant | Cg — A/1 by minors of the last row. Since the minor of —ck is 
triangular with k diagonal entries —A and the others 1, |Cg — A/| is 
exactly (—l)"g (A ); the sign (—1)" occurs because the characteristic 
polynomial of any n x  n matrix has (—1)"A" as its leading term.

Exercises

1. (a) Show that any 2 x 2  matrix which satisfies X 2 =  O  is similar to

• 0>l
Oris\o 0) '

(b) Prove a corresponding result for 3 x  3 matrices.
2. Show that every real 2 x 2  matrix whose determinant is negative is similar to 

a diagonal matrix. Interpret geometrically.
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3. (a) For any nonsingular n x n matrix P, prove that the correspondence
A  •-* P A P ~1 is an automorphism of the algebra of all n x n matrices A . 

(b) Deduce from (a) a direct proof that similar matrices have the same 
minimal polynomial.

4. Show that the characteristic polynomial of any diagonal matrix is a multiple 
of its minimal polynomial. When are they the same?

★5. (a) Show that every real 2 x 2  orthogonal matrix, whose determinant is 
negative, is a rigid reflection. (H int: See Ex. 2 or §9.4.)

(b) Show that every 2 x 2  orthogonal matrix, whose determinant is positive, 
is a rigid rotation.

★6. (a) Show that any real 3 x 3  matrix A  has a real eigenvector.
(b) Show that any orthogonal 3 x 3  matrix is similar, under an orthogonal

change of basis, to a matrix of the form ^  j , where B  is an

orthogonal 2 x 2  matrix.
(c) Using Ex. 5 , show that if A  is an orthogonal 3 x 3  matrix and \A \ >  0, 

then A  has an eigenvalue +1 and is a rigid rotation. (This is Euler’s 
theorem.)

★7. Show that if A is an eigenvalue o f A , and q (k ) is any polynomial, then q (A) is 
an eigenvalue of q (A ).

★8. (a) Show that the eigenvalues of the matrix C  displayed to / 0 1 0 0 \ 
the right are ±1, ± i, the complex fourth roots of unity.

(b) What are the complex eigenvectors of C?
(c) To what complex diagonal matrix is C  similar?

0 0 1 0  
0 0 0 1 

\ 1 0 0 0 j

★9. An  n x n matrix A  is called a circulant matrix when =  ai+1J+1 for all 
i , j— subscripts being all taken modulo n. Show that the eigenvalues 
Ai, • • •, A„ of any circulant matrix are

A p — flu +  a 12<op +  • • • +  a lna>(" 1)p,

where to is a primitive nth root of unity. (H int: Use Exs. 7 and 8.)

10.6. Cayley—Hamilton Theorem

We shall now show that every square matrix A  satisfies its characteris
tic equation— that is, the minimal polynomial of A  divides the charac
teristic polynomial of A .

This is eaily proved using the concept of a matric polynomial or 
k-matrix. By this is meant a matrix like A  -  k l  whose entries are 
polynomials in a symbol A. Collecting terms involving like powers of A, 
one can write any nonzero A-matrix B (k ) in the form

B (k )  — B q +  kB\ +  • • • +  k rB r,
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where the Br are matrices of constants and Br ^  O. (Equality means 
equality in every coefficient of A in each entry.)

Lemma. I f  C  -  B (k )(A  -  A/) is a matrix o f constants, then C  =  O.

Proof. Expanding B (k )(A  -  A/), we get

- A ,+1Br +  t  Ak(B kA  -  f l t _ ,) +  BoA,
k =  l

where Br ^  O  unless B (A) =  O. The conclusion is now obvious.

Theorem 16 (Cayley-Hamilton). Every square matrix satisfies its 
characteristic equation.

This means that if each power A' in the characteristic polynomial 
/(A) =  |A  -  A/1 of (14) is replaced by the same power A 1 of the matrix 
(and if A0 is replaced by A 0 =  I ) ,  the result is zero:

(20) b0I  +  b lA  +  - - -  +  bn-\ A n~l +  (-1  ) nA n =  O.

Proof. In the matrix A  — k l  the entries are linear polynomials in A, 
so that its nonzero minors are determinants which are also polynomials in 
A of degree n -  1 or less. Each entry in the adjoint C  of A  -  A/ is such a 
minor, so that this adjoint may be written as a sum of n matrices, each 
involving terms in a fixed power A0, A 1, • • • ,A n_1 of A. In other words, 
the adjoint C  =  C (A) is a A-matrix C  =  C (A) =  ZA'Cj. According to
(10), the product of A  -  k l  by its adjoint is

(21) C (A )(A  -  k l) =  \A — k l\ ■ I  =  /(A) •

where /(A) is the characteristic polynomial.
Now observe that the familiar factorization (/ §  1)

A '  -  A'/ =  (A i+1 +  k A 1-2 +  • • • +  A/_,/ )(A  -  k l) 

will give, in terms of the coefficients bt of the characteristic polynomial (14),

f (A )  -  /(A) • / =  i  biA i -  I  b,k‘I  =  i  b ,(A ‘ ~  A'/)
i = 0  i =  0  i =  l

=  Z b i(A '~ x +  k A ‘~2 +  • • • +  A ,-1/)(A  -  k l),
1 = 1
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where / (A ) is obtained from the characteristic polynomial /(A) by sub
stituting A  for A. That is,

(22) / (A ) -  /(A) ■ / =  -G (A ) (A  -  A/),

where G (A ) is a new A-matrix. If we add (22) to (21), we get

[C (A ) -  G (A )](A  -  A/) =  / (A ),

where / (A ) is a matrix of constants. By the lemma, this result implies 
/ (A ) =  O.

Exercises

1. Prove by direct substitution that every 2 x 2  matrix satisfies its characteristic 
equation.

2. Show that if A  is nonsingular and has the characteristic polynomial (14), then 
the adjoint of A  is given by

- [ b j  + b2A  + • • • + hn_1A '- 2 + (-D -A "-1].

3. In the notation of Ex. 2, show that the characteristic polynomial of A -1 is

(-1)n[A n + j V ,"1 + ' " + w ] -
4. (a) Prove the Cayley-Hamilton theorem for strictly triangular matrices, by

direct computation.
★(b) Same problem for triangular matrices.

5. (a) Show by explicit computation that the 4 x 4 companion matrix Cg of (18)
satisfies its characteristic equation.

(b) Do the same for the companion matrix of a polynomial of degree n.

10.7. Invariant Subspaces and Reducibility

If a linear transformation T  satisfies a polynomial equation which can 
be factored, the matrix representing T  can often be correspondingly 
simplified. Suppose, for example, that T  satisfies T 2 =  I  (is of period 
two); we assume that 1 +  1 ^  0 in the base field F, so that the factors of 
(T  -  / )(T  +  I )  =  O  will be relatively prime. The eigenvectors for T  
include all nonzero vectors 17 =  £ (T  +  I )  in the range of T  +  I, since

H (T  +  I ) ) T  =  & T 1 +  T )  =  i ( T  +  /);
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they belong to the eigenvalue +1. A ll nonzero vectors in the range of 
T  — I  are also characteristic, with eigenvalue —1, for

(£ (T  -  I ) ) T  =  £ (T 2 - T )  =  £ ( I - T )  =  ~ (£ (T  -  /)).

But since 1 +  1 #  0, any vector £ can be written as a sum

£ =  (1/2) [£ (T  +  I )  -  £ {T  -  /)];

hence the eigenvectors with eigenvalues ±1 span the whose space. There
fore, by Theorem 4 of §9.2, T  can be represented by a diagonal matrix 
with diagonal entries ± 1  on the diagonal.

Specifically, if the entries are all +1, T  is the identity, and the minimal 
polynomial of T  is x — 1; if the entries are all -1 , the minimal poly
nomial is x +  1; if both +1 and —1 occur, the minimal polynomial of T  is 
x 2 — 1. This analysis is a special case of

Theorem 17. I f  the minimal polynomial m (x ) o f a linear transforma
tion T: V  -> V  can be factored over the base field F  o f V  as m (x ) =  
f (x )g (x ) ,  with f (x )  and g (x ) monic and relatively prime, then any vector in 
V  has a unique expression as a sum

(23) £ =  V +  £, v f (T )  =  0, £g(T ) =  0.

Proof. Since / and g are relatively prime, the Euclidean algorithm 
provides polynomials h (x ) and k (x ) with coefficients in F  so that

(24) 1 =  h (x )f (x )  +  k (x )g (x ).

Substitution of T  for x  yields I  =  h (T ) f (T )  +  k (T )g (T ).  Thus, for any 
vector £

£ =  &  =  V +  £, V =  & (T )g (T ) ,  c  =  & i(T )f (T ).

As 17 /(2 1 =  £ k (T )g (T )f (T ) =  g k (T )m (T ) =  0, and similarly £g(T ) =  0, 
this is the required decomposition.

The decomposition (23) is unique, for if £ =  171 +  £1 =  172 +  £2 are
two decompositions, then a =  171 — 172 =  £2 — ( 1  is a vector such that
afCO  =  0 and also a g {T ) =  0; hence by (24),

a i  =  a h (T )f (T )  +  a k (T )g (T )  =  0, and 171 =  172, £1 =  £2 -

Theorem 17 can be restated in another way. The subspace Si consists 
of all vectors 17 with 17 /(2 1 =  0, and S2 of all £ with £g(T ) =  0. That is,
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Si is the null-space of f (T ) ,  and S2 the null-space of g (T ). Moreover V  is 
the direct sum of the subspaces Si and S2, in the sense of §8 .8 . Each of 
these subspaces is mapped into itself by T ; thus it is an “ invariant” 
subspace in the sense of the following general definition.

A  subspace S of a vector space V  is said to be invariant under a linear 
transformation T: V  -» V, if £ e S implies £T e S. In this event, the 
correspondence £ £T  is called the transformation induced on S by T.

Evidently, if S is invariant under T, and h (x ) is any polynomial, then S 
is invariant under h (T ).

In Theorem 17, t ]f (T ) =  0 for every 17 e Si; hence, if Ti is the linear 
transformation of Si induced by T, the minimal polynomial of T x is a 
divisor f\(x) of /(jc). Similarly the minimal polynomial of T2 on S2 is a 
divisor g2(x ) of g(;t). Therefore, for any vector £  represented as in (23),

(25) &i(T)g2(T) =  [7,/,(7i]g 2c n  +  [cg2{ m m  =  0 +  0 =  0.

Hence the product f\{x)g2(x ) is divisible by the minimal polynomial 
m {x) =  f (x )g (x ).  Since / and g are relatively prime, this proves that f (x )  
divides f\ (x), g (x ) divides g2(x ). But /i(jc) also divides /(jc), so that f\ =  /, 
and likewise g2 =  g. We thus get the following result.

Theorem 17'. I f  Si and S2 are the null-spaces of f { T )  and g {T ), 
respectively, in Theorem 17, then V  is the direct sum o f Si and S2, and the 
transformations T x and T2 induced by T  on Si and S2 have the minimal 
polynomials /(jc) and g{x), respectively.

Invariant subspaces arise in many ways. Thus if /(jc) is any polynomial, 
then the range of the transformation f(T )\  V  -» V — that is, the set of all 
vectors t jf(T ) with | e V — is invariant under T, for £ f (T )T  =  (£ T )f (T ) is 
in this range. A  special class of invariant subspaces are the cyclic 
subspaces generated by one vector, which we shall now define.

Given T: V  -» V  and a vector a in V, clearly any subspace of V  
which contains a and is invariant under T  must contain all transforms 
a/(7’) of a by polynomials in T. But the set Z a of all such transforms is 
an invariant subspace which contains a ; we call it the T-cyclic subspace 
generated by a.

Consider now the sequence a =  a I ,a T ,a T 2, • • • of transforms of a 
under successive powers o f T. Clearly, there is a first one a T *  which is 
linearly dependent on its predecessors. We will then have

(26) a T 1 +  cd- ia T d_1 +  • • • +  c0a l  =  ama{T ) — 0 ,

where a, aT, • • •, a T d~l are linearly independent. Thus ma(x ) =
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x d +  cd-iX d~1 +  • • • +  c0 is the minimal polynomial for the transforma
tion Ta induced by T  on the T-cyclic subspace Z a ; the polynomial ma(x ) 
is called the T-order of a. Note that T  carries each vector of the basis 
a, aT, ■ ■ ■, a T d~x for Z a into its immediate successor, except for a T <_1, 
which is carried into

(27) a T d =  - c 0at — c^aT  — • • • — cd-\ a T d~l.

Relative to the basis a, aT, • ■ •, a T d_1 of Z a, Ta is thus represented by 
the matrix whose rows are the coordinates (0 ,1,0, • • •, 0), 
(0, 0,1, • - •, 0), • • •, (0, • • •, 0,1), (—c0, • • •, -C d -i) of the transforms of 
the basis vectors. This matrix is exactly the companion matrix of the 
polynomial ma(x), so that we have proved

Theorem 18. The transformation induced by T  on a T-cylic subspace 
Z a with T-order ma(x ) can be represented by the companion matrix of 
ma(x).

Conversely, the companion matrix Cf of a monic polynomial / of 
degree n represents a transformation T  =  TCf : F "  -* F "  which carries 
each unit vector e, of F "  into the next one and the last unit vector e„ into 
£ \ T ; hence, as in (19), the whole space F "  is a T-cyclic subspace 
generated by ei, with the T-order f (x ) .

Theorem 19. I f  T : V  -* Vhas the minimal polynomial m (x ), then the 
T-order o f every vector a in V  is a divisor o f m (x ).

Proof. Since m (T ) =  O, a m (T ) =  0; therefore, by (26), m (x ) is a
multiple of the T-order ma(x ) of a.

Corollary. Two vectors a and (3 in V  span the same T-cyclic subspace 
Z a =  Z p if  and only if  f} =  a g (T ), where the polynomial g (x ) is relatively 
prime to the T-order ma(x ) o f a.

The proof is left as an exercise (Ex. 8).

Exercises

1. (a) Show that any real 2 x 2  matrix satisfying A 2 =  - /  is similar to the 

matrix ( _ °  J ).

(b) Show that no real 3 x 3  matrix satisfies A 2 =  —
(c) What can be said of real 4 x 4  matrices A  satisfying A 2 =  —I I
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2. (a) Show that the range and null-space of any “ idempotent”  linear trans
formation T  satisfying T 2 =  T  are complementary subspaces (cf. §7.8,
(3 5 )).

(b) Show that any two idempotent matrices which have the same rank are 
similar. (H int: Use the result of (a).)

3. (a) Classify all 3 x 3 complex matrices which satisfy A 2 =  I.
(b) Do the same for real 3 x 3  matrices.

4. Every plane shear satisfies A 2 +  I  =  A  +  A . Find a canonical form for 
2 x 2  matrices satisfying this equation. (H int: Form A  -  I.)

★5. Under what conditions on the field of scalars is a matrix with minimal 
polynomial x 2 +  x -  2 similar to a diagonal 2 x 2  matrix?

6. (a) In Theorem 17, show that the range of g (T )  is identical with the
null-space of f (T ) .

(b) Show that if f (T )g (T )  =  O, where f ( x )  and g (x ) are relatively prime 
polynomials, then the conclusion of Theorem 17 holds, even if f (x )g (x )  
is not the minimal polynomial of T.

7. Prove: The T-order of a vector a is the monic polynomial f (x )  o f least 
degree such that a f (T )  =  0.

8. Prove the Corollary o f Theorem 19.
9. Prove: Given T : V  -* V  and vectors a and /3 in V  with the relatively prime 

T-orders f (x )  and g (x ), then a +  p  has the T-order f (x )g (x ).
★10. Prove: Every invariant subspace of a T-cyclic space is itself T-cyclic. (Hint: 

Consider the corresponding property o f cyclic groups.)
11. Prove: If f ( T )  =  O, while f ( x )  and g (x ) are relatively prime, then T  and 

g (T ) have the same cyclic subspaces.

10.8. First Decomposition Theorem

The construction used in proving Theorems 17 and 17' can be used 
to decompose a general linear transformation into “ primary”  compo
nents, whose minimal polynomials are powers of irreducible polynomials. 
In this decomposition, the concept of a direct sum of k subspaces plays a 
central role.

Definition. A  vector space V  is said to be the direct sum of its 
subspaces S ly - • • ,S k (in symbols, V  =  Si ©  ■ • • ©  Sk) when every vector 
g in V  has a unique representation

(28) £ =  T)l +  • • • +  Vk (Vi € Si > t =  1, • • •, fc).

Exactly as in §7.8, Theorem 16, one can prove
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Theorem 20. I f  V  has subspaces S], ■ ■ ■, Sk, where each S, is of 
dimension n, and has a basis a , i ,  • • • , a int, then V  is the direct sum of 
Si, • • •, Sk if  and only if

(29 )  a n ,  , a lni,, a 2 i, , a 2n2 > > ocki> , otknk

is a basis o f V.

It follows that the dimension of V  is the sum « !  +  ••• +  nk of the 
dimensions of the direct summands S,.

Corollary. I f  V  is spanned by the subspaces Si, • • •, Sk, and 

d [V ]  =  d [S i] +  • • • +  d[Sk], 

then V  is the direct sum o f Si, • • •, Sk.

A  linear transformation T : V  V  (or a matrix representing T ) is said 
to be fully reducible if the space V  can be represented as a direct sum of 
proper invariant subspaces.

Theorem 21. I f  V  is the direct sum o f invariant subspaces Si, • • •, Sk 
on each o f which the transformation induced by a given transformation 
T: V  -* V  is represented by a matrix £?,, then T  can be represented on V  by 
the matrix

(30) B  =

B i 0 ••• 0\

0 B 2 ••• 0

\ ° 0 ■■■ B,

This matrix B, consisting of blocks B u - • • ,B k arranged along the 
diagonal, with zeros elsewhere, is called the direct sum o f the matrices 
B i, • • • ,B k. Observe that any polynomial f (B )  in B  is the direct sum of 
/ (B i),- - - ,/ (B k).

Proof. Choose a basis an • • • aini for each invariant subspace S„ so 
that B, is the matrix representing the transformation T  on S, relative to 
this basis. Then these basis vectors combine to yield a basis (29) for the 
whole space. Furthermore, T  carries the basis vectors a,i, • • • ,a ini into 
vectors of the ith subspace, and hence T  is represented, relative to the 
basis (29), by the indicated direct sum matrix (30). Q.E.D.
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Now consider the factorization of the minimal polynomial m (x ) of T  
as a product of powers of distinct monic polynomials p,(x ) irreducible 
over the base field, in the form

(31) m (x ) =  p i(x )c’ ■ ■ ■ pk(x )ek, e< >  0.

Since distinct P i (x )e‘ are relatively prime, repeated use of Theorem 1.7' 
will yield

Theorem 22. I f  the minimal polynomial o f the linear transformation 
T: V  -» V  has the factorization (31 ) into monic factors p,(x ) irreducible 
over the base field F, then V  is the direct sum o f invariant subspaces 
Si, ■ ■ •, Sk where S, is the null-space o f P i(T )e‘. The transformation 7] 
induced by T  on S, has the minimal polynomial P i (x )e‘.

This is our first decomposition theorem; the subspaces S, are called 
the “ primary components”  of V  under T. They are uniquely determined 
by T  because the decomposition (31) is unique.

An important special case is the

Corollary. A  matrix A  with entries in F  is similar over F  to a diagonal 
matrix i f  and only if  the minimal polynomial m (x ) o f A  is a product of 
distinct linear factors over F.

Proof. Let T  =  TA : F " -» F " be the transformation corresponding 
to A . If

(32) m (x ) =  (x — Ai) • • • (x -  \k), A l5 • • •, A* distinct scalars,

the theorem shows that V  is the direct sum of spaces Sf, where 5, consists 
of all vectors 17, with t^T  =  A,17,; that is, o f all eigenvectors belonging to 
the eigenvalue A,. Any basis of 5, must consist o f such eigenvectors, so 
that the matrix representing T  on S; is A,/. Combining these bases as in
(29), we have T  represented by a diagonal matrix with the entries 
A 1, • - •, A* on the diagonal.

Conversely, if D  is any diagonal matrix whose distinct diagonal entries 
are c u • ■ •, ck, then the transformation represented by the product 
/(£>) = (D  — ci/) •••(£> — ckI )  carries each basis vector into 0, and 
consequently /(£>) =  O. The minimal polynomial of D — and of any other 
matrix similar to D — is a factor o f the product (x -  c f) ••• (x — ck), and 
hence is a product o f distinct linear factors.
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Exercises

1. Prove Theorem 20.
2. In Theorem 22, set qt(x ) = m (x)/pi (x )e‘, and prove that the subspace 5, 

there is the range of q ,(T ).
★3. Give a direct proof of Theorem 22, not using Theorem 17'.

4. If the n x  n matrix A  is similar to a diagonal matrix D, prove that the
number of times an entry A, occurs on the diagonal of D  is equal to the
dimension o f the set o f eigenvectors belonging to the eigenvalue A,.

5. Prove: the minimal polynomial of the direct sum o f two matrices B t and B 2 
is the least common multiple of the minimal polynomials o f and B 2.

6. Show that the minimal polynomial o f a matrix A  can be factored into linear 
factors if and only if the characteristic polynomial o f A  can be so factored.

★7. Let A  be a complex matrix whose minimal polynomial m (x ) =
(jc — A ,)ei • • • (jc -  Ar)e' equals its characteristic polynomial. Show that A  is
similar to a direct sum of r triangular et x  e, matrices Bt, o f the form 
sketched below:

B,

/A, 1 

A, 1

\0

°\

A, 1 
A«/

★8. Prove that if m (x ) is the minimal polynomial for T, there exists a vector 
a with T-order exactly m (jc). (H int: Use Ex. 9, §10.7, considering first the 
case m (x ) =  p (x )e, where p(jc) is irreducible.)

10.9. Second Decomposition Theorem

We shall show below that each “ primary”  component S, of a linear 
transformation T: V  -* V  is itself a direct sum of T-cyclic subspaces. In 
proving this, we shall use the concept of the quotient-space V /Z  of a 
vector space V  by a subspace S. We recall (§7.12) that the elements of 
this quotient-space V  =  V/S are the cosets f  +  S of S, and that the 
projection P : V  -*■ V/S =  V  given by £P =  f  +  S is a linear transfor
mation. In particular, for given T: V  -» V, if the subspace S is invariant 
under T, then in the formula

(33) (i + S)T = £T+ S,
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£T +  S does not depend upon the choice o f the representative £ of 
=  £ +  5, for if another representative tj = £ +  £ were chosen, then

tj T  +  S =  £T +  £T +  S =  g r  +  S,

since £ e S implies £T e S. Hence the linear transformation T :  V ' -> V ' 
defined by (33) is single-valued; it is easily verified that T  is also linear. 
We call T  the transformation of V/S =  V ' induced by T. Moreover, for 
any polynomial f (T )  in T, (33) gives with the formulas of §7.12,

(34) ( f  +  S ) f (T )  =  & (T ) +  5.

In particular, / (T ) =  O  implies f ( T )  =  O ' in V', so that the T'-order of 
in V ' divides the T-order of £ in V.
We are now ready to prove the second decomposition theorem.

Theorem 23. I f  the linear transformation T: V  -> V  has a minimal 
polynomial m {x) =  p (x )e which is a power o f a monic polynomial p (x ) 
irreducible over the field F  o f scalars of V, then V  is the direct sum

(35) V  =  Z j  ®  • • • ®  Z r

o f T-cyclic subspaces Z, with the respective T-orders

(36) p (x )e,,p (x )e% • • • ,p {x )‘r, e =  ej s  C2 >  • • • s  Cr.

Any representation o f V  as a direct sum o f T-cyclic subspaces has the same 
number of component subspaces and the same set (36) o f T-orders.

Proof. The existence of the direct sum decomposition will be estab
lished by induction on the dimension n of V. In case n =  1, V  is itself a 
cyclic subspace, and the result is immediate.

For n >  1, we have p (T ) ‘ =  O, but p (T ) ‘ ~l ^  O ; hence V  contains a 
vector a i with a ip iT )" -1 ^  O. The T-order of a\ is therefore p (x )e, and 
a i generates a T-cyclic subspace Z x. Since Z x is invariant under T, T  
induces a linear transformation T  on V  =  V /Zx. Since evidently 
p (V y  =  O ', the minimal polynomial of V  on V ' is a divisor of p (x )‘ , and 
we can use induction on d [V/Zf\ =  d [V ] -  d [Zf\  to decompose V fZ x 
into a direct sum of T'-cyclic subspaces Z 2', • • •, Z r', for which the 
T'-orders are

p (x )‘2,-  • • ,p (x Y r, e g  e2' =  • • • =  er'.
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Lemma 1. I f  a,' generates the T -cyclic  subspace Z ', i = 2, 
then the coset a, ' contains a representative a, whose T-order is the T-order 
of a/.

The proof depends on the fact that the T-order p (x )e of a i is a 
multiple of the T-order of every element of V. In particular let p (x )d be 
the T-order of a,', so that for any representative tj =  tj, of a f, i}p (T )d =  
« i/ (T )  is in the T-cyclic subspace generated by « i .  Then

0 =  t j p ( 7T  =  a 1f (T )p (T )e~d.

Since a i has the T-order p (x )e, this implies that p (x )e | f (x )p (x )e~d, and 
hence that f ix )  =  g (x )p (x )d for some polynomial g (x ). We shall now 
show that a, =  tj — a ig (T ) has a T-order p (x )d equal to the T'-order of 
or/, as required. Since the T-order of a, is a multiple of the T-order p (x )d
of a/ =  a, +  Z i,  it is sufficient to note that

[ t,  -  alg(T ) ]p (T )d =  V P (T )d ~  « i/ (T )  =  0.

Having proved Lemma 1, we let Z, be the T-cyclic subspace gener
ated by a,. Then d [Z t] =  d [Z/ ], since both dimensions are equal to the 
degree of the common T-order p (x )e‘ of a '. Hence

(37) d [ V ] -  d\Zx\ =  d [V / Z i] =  d [Z 2]  +  • • • +  d iz , l

By choosing bases, it follows that the subspaces Z U - - - , Z ,  span V; 
hence by (37) and the Corollary to Theorem 20, it follows that V  is the 
direct sum V  =  Z x 0  • • ■ ©  Z „  as asserted.

It remains to prove the uniqueness of the exponents appearing in any 
decomposition (36); it will suffice to show that these exponents are 
determined by T  and V. This will be done by the computation of the 
dimensions of certain subspaces. For example, if d denotes the degree of 
p{x), then the cyclic subspace Z  has dimension deh and hence the whole 
space V  has dimension d{ei +  • • • +  er). Observe also that for any 
integer s, the image Z p (T )J of Z  under p (T )J is the cyclic subspace 
generated by j3, =  a ,p (T )s. It has dimension d(e, -  s) if e, >  s, and 
dimension 0 if e g  s.

Any vector f  of V  has a unique representation as

f  =  T j i  +  • • • +  TJ,  ( t j ,  e  Z ;  f  =  1 ,  • • • ,  r ) .

Hence any vector in the range VP(T )S of p (T )s has a unique
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representation, as

(38) f r (7 T  =  V iP (T )s +  • • • +  VrP(T)s,

with components i7,p (T )5 in the spaces Z ip (T )s. The integer s determines 
an integer t such that

ex >  s, • • • , e, >  s, e,+i ^  5

(or if e, >  s, t =  r). Hence, by (38), V p (T )s is the direct sum of the cyclic 
subspaces Z p. generated by the ft  =  a,p (T )J, for i =  1, • • •, t, and its 
dimension is

(39) d [V p (T )s] =  d [(ei -  s) +  • • • +  (e, -  s)].

The dimensions on the left are determined by V  and T; they, in turn, 
determine the e, in succession as follows. First take s =  e — 1 =  ei — 1, 
then (39) determines the number of e, equal to e; next take s =  e — 2, 
then (39) determines the number of e, (if any) equal to e — 1, and so 
forth. This proves the invariance of the exponents ex, • • •, e„ and com
pletes the proof of Theorem 23.

Exercises

1. Show that if a vector space V  is spanned by the T-cyclic subspaces generated 
by vectors a u • • • ,a„, then the minimal polynomial of T  is the l.c.m. of the 
T-orders of the a,.

2. Find the minimal polynomial of the matrix B  of §8.5, Ex. 3.
3. Prove in detail that V :  V IZ  -» V IZ  is linear if T: V  - »  V  is linear and the 

subspace Z  is invariant under T.
4. Prove, following (37), that Z u • • • ,Z r span V.

10.10. Rational and Jordan Canonical Forms

Using Theorems 20 and 23, it is easy to obtain canonical forms for 
matrices under similarity. One only needs to give a canonical form for 
transformations on cyclic subspaces!

One such form is provided by Theorem 21. If A  is any n x  n matrix, 
then a suitable choice of basis in each cyclic subspace represents TA on 
that subspace by a companion matrix. Combining all these bases yields a
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basis of F", with respect to which TA is represented by the direct sum of 
these companion matrices. The uniqueness assertions of Theorems. 20 and 
23 show that the set o f companion matrices so obtained is uniquely 
determined by A. We have proved

Theorem 24. Any matrix A  with entries in a field F  is similar over F  to 
one and only one direct sum o f companion matrices o f polynomials

(40) P i (x )e‘ l , • • • ,p ;(x )e% g  • • • s  ein > 0 ,  / =  1, • • •, k,

which are powers o f monic irreducible polynomials p\(x), • • ■, pk(x ). The 
minimal polynomial o f A  is m (x ) -  p\(x)e"p 2(x )e21 • • • pk{x )e“\

The set o f polynomials (40), which is a complete set o f invariants of A  
under similarity (over F ) is called the set of elementary divisors o f A. The 
representation of A  as this direct sum of companion matrices is called the 
primary rational canonical form  of A  (“ Primary”  because powers of 
irreducible polynomials are used and “ rational”  because the analysis 
insolves only rational operations in the field F).

Corollary 1. The characteristic polynomial o f an n x  n matrix A  is 
(—1)" times the product of the elementary divisors o f A .

Proof. It is readily seen that the characteristic polynomial of a direct 
sum of matrices is the product of the characteristic poly
nomials o f the B t. But, by Theorem 15, the characteristic polynomial o f a 
companion matrix Cf  is f (x ) ,  except for sign. These two facts, with the 
theorem, prove Corollary 1.

Corollary 2. The eigenvalues o f a square matrix are the roots of its 
minimal polynomial.

Proof. Since the minimal polynomial m (x ) divides the characteristic 
polynomial, any root o f the minimal polynomial is a root of the charac
teristic polynomial, hence a characteristic root (eigenvalue). Conversely, 
any root o f the characteristic polynomial must, by Corollary 1, be a root 
of one of the elementary divisors p,(x)e", hence by the theorem is a root 
of m (x).

E x a m p le . Any 6 x 6  rational matrix with minimal polynomial 
( x 2 +  l ) (x  +  3)2 is similar to one of the following direct sums of
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companion matrices:

C(*2+i) © C(*2+i) © C(j.+3)2,
C ( X 2+ 1) ©  C (x + 3 f  ©  Q * + 3 )2>

C ( x 2+ 1) ©  C (x + 3 )2 ©  Q x +3) ©  Q x + 3)',

in the first case the characteristic polynomial is (x2 +  l ) 2(x + 3)2; in the 
second and third cases, the characteristic polynomial is (x2 +  l)(x  +  3)4.

Over the field of complex numbers, the only monic irreducible 
polynomials are the linear polynomials x -  A„ with A, a scalar. Using this 
observation, a different canonical form can be constructed for matrices 
with complex entries or, more generally, for any matrix whose minimal 
polynomial is a product of powers of linear factors.

In this case, each T-cyclic subspace Z a in Theorem 23 will have the 
T-order (x -  A,)* for some scalar A, and positive integer e. Relative to 
the basis a, aT, • • •, a T *-1 of Z a, T  is represented as in Theorem 24 by 
the companion matrix of (x — Af)e. On the other hand, consider the 
vectors /3i =  a, /32 =  ' '  ' > Pe -  a l l " -1, where U  =  T  — A,/. Since
each /3; is a T ’~l plus some linear combination of vectors a 7 * with 
k <  j  — 1, the vectors (3U - ■ ■ ,f ie also constitute a basis of Z a. To obtain 
the effect of T  upon the /3;, observe that

/3,T =  a U ‘~lT  =  a U j~l(U  +  A,/) =  A ,aC//_1 +  a U ‘.

If / <  e, this gives /3,-T =  A,-/3,• +  fij+u if / =  e, then a U ' =  0 and /3{T  =
A fiy Now T  is represented relative to this basis by the matrix whose rows

/A, 1 0 0\
0 A, 1 0
0 0 A, 1

^0 0 0 A,/

are the coordinates of the /3;T. This is a matrix like that displayed just 
above, with entries A, on the principal diagonal, entries 1 on the diagonal 
next above the principal diagonal, and all other entries zero. Call such a 
matrix an elementary Jordan matrix.

I f we use the above type of basis instead of that leading to the
companion matrix in Theorem 24, we obtain

Theorem 25. I f  the minimal polynomial fo r the matrix A  over the field 
F  is a product o f linear factors

(41) m {x) =  (x -  A i)e'(x -  A2)e2 • • • (x -  Afc)e\

Download more at Learnclax.com



§10.10 Rational and Jordan Canonical Forms 355

with A i, • • •, Afc distinct, then A  is similar over F  to one and only one direct 
sum o f elementary Jordan matrices, which include at least one e, x  e, 
elementary Jordan matrix belonging to the characteristic root (eigenvalue) 
Af, and no larger elementary Jordan matrix belonging to the characteristic 
root (eigenvalue) A,.

Note that the number of occurrences of A, on the diagonal is the 
multiplicity of A, as a root o f the characteristic polynomial of A .

The resulting direct sum of elementary Jordan matrices, which is 
unique except for the order in which these blocks are arranged along 
the diagonal, is called the Jordan canonical form of A. It applies to any 
matrix over the field of complex numbers. Note that the Jordan canonical 
form is determined by the set of elementary divisors and, in particular, 
that if all the et in (41) are 1, and only then, the Jordan canonical form is 
a diagonal matrix with the A, as the diagonal entries. Part of the Corollary 
of Theorem 22 is thus included as a special case.

Corollary. Any complex matrix is similar to a matrix in Jordan canon
ical form.

E xerc ises

1. Find all possible primary rational canonical forms over the field of rational 
numbers for the matrices described as follows:
(a) 5 x 5 ,  minimal polynomial (x — l ) 2.
(b) 7 x 7 ,  minimal polynomial (x2 — 2)(x — 1); characteristic polynomial 

(x2 -  2)2(x -  l )3.
(c) 8 x 8 ,  minimal polynomial (x2 + 4)2(x + 8)2.
(d) 6 x 6 ,  characteristic polynomial (x4 — 1)(jc2 — 1).

2. Exhibit all possible Jordan canonical forms for matrices with each of the 
following characteristic polynomials:
(a) (x -  A,)3(x -  A2)2, (b) (x -  A,)5(x -  \f)3,
(c) (x -  A,)(x -  A2)2(x -  A3)2.

3. Express in primary rational canonical form the elementary Jordan matrix 
displayed in the test.

4. (a) Show that a complex matrix and its transpose necessarily have the same
Jordan canonical form.

(b) Infer that they are always similar.
5. (a) Two of the Pauli “ spin matrices”  satisfy ST =  — TS, S2 =  T2 =  I, and

are hermitian. Prove that U  = iST is hermitian and satisfies TU  = 
-CTT, U2 = /.
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(b) Show that, if 2 X 2, S is similar to Q  and that, with these

coordinates, T  =   ̂ for some b.

★6. Using the methods of §10.9, show that any linear transformation T : V  -> V  
decomposes V  into a direct sum of T-cyclic subspaces with T-orders 
f i (x ) ,  ■ • ■ where f j (x ) |/i_i(*) for i =  2, • • •, r, and f x(x ) is the minimal
polynomial o f T.
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11
Boolean Algebras 

and Lattices

11.1. Basic Definition

We will now analyze more closely, from the standpoint of modern 
algebra, the fundamental notions of “ set”  (or class) and “ subset,”  briefly 
introduced in §1.11. Suppose that I  is any set, while X, Y, Z, • • • denote 
subsets of I. Thus I  might be a square, and X, Y, Z  three overlapping 
congruents disks located in I, as in the “ Venn 
diagram”  of Figure 1.

One writes X  c  Y  (or Y  X )  whenever 
X  is a subset of Y — i.e., whenever every 
element of X  is in Y. This relation is also 
expressed by saying that X  is “ contained”  or 
“ included”  in Y.

The relation of inclusion is reflexive: tri
vially, any set X  is a subset of itself. It is also 
transitive: if every element of X  is in Y  and 
every element of Y  is in Z , then clearly every 
element of X  is in Z. But the inclusion rela
tion is not symmetric. On the contrary, if 
X  a  Y  and Y c X ,  then X  and Y  must contain exactly the same 
elements, so that X  =  Y.

In summary, the inclusion relation for sets shares with the inequality 
relation of arithmetic the following properties:

Reflexive: For all X , X  <=■ X.
Antisymmetric: I f X  c  Yand Y  c  X , then X  =  Y.
Transitive: If X  c  Y  and Y  c  Z , then X  <=■ Z .

■«7
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It is, however, not true that, given two sets X  and Y, either X  <= Y  or 
Y  e  X.

There are, therefore, four possible ways in which two sets X  and Y  
can be related by inclusion. It may be that X  <= y  and Y  <= X , in which 
case, by antisymmetry, X  -  Y. We can have X  <= Y  but not Y  <= X, in 
which case we say that X  is properly contained in Y, and we write X  <  Y  
or Y  >  X. We can have Y  <= X  but not X  <= Y, in which case X  properly 
contains Y. And finally, we have neither X  c= Y  nor Y  c  X , in which 
case X  and Y  are said to be incomparable. It is principally the existence 
of incomparable sets which distinguishes the inclusion relation from the 
inequality relation between real numbers.

The subsets of a given set I  are not only related by inclusion; they can 
also be combined by two binary operations of “ union”  and “ intersec
tion,”  analogous to ordinary “ plus”  and “ times.”  The extent and impor
tance of this analogy were first clearly recognized by the British 
mathematician George Boole (1815-64), who founded the algebraic 
theory o f sets little more than a century ago.

We define the intersection of X  and Y  (written X  n  Y ) as the set of 
all elements in both X  and Y ; and we define the union of X  and Y  (in 
symbols, X  u  Y ) as the set of all elements in either X  or Y, or both. The 
symbols n  and u  are called “ cap”  and “ cup,”  respectively.

Finally, we write X ' (read, “ the complement of X ” ) to signify the set 
of all elements not in X. For example, T  is the empty set 0 ,  which 
contains no elements at all! This is because we are considering only 
subsets of I.

The operations of the algebra of classes can be illustrated graphically 
by means of the Venn diagram of Figure 1. In this diagram, X, Y, and Z  
are the interiors of the three overlapping disks. Combinations of these 
regions in the square I  can be depicted by shading appropriate areas: 
thus, Y ' is the exterior of Y, and I n ( y ' u Z ) i s  the shaded area.

Exercises
1. The Venn diagrams for X, Y, and Z  cut the square into eight nonoverlapping 

areas. Label each such area by an algebraic combination of X, Y, and Z  which 
represents exactly that area.

2. On a Venn diagram shade each of the following areas:

( X '  n  Y )  u  ( X  n  Z '), (X  u  Y ) '  n  Z ,  ( X u  Y ' )  u  Z ' .

3. By shading each of the appropriate areas on a Venn diagram, determine
which of the following equations are valid:
(a) ( X '  u  Y ) '  = X  n  Y\ (b) X ' u  Y ' = ( X  u  Y ) ' ,

(c) ( X  u  Y )  n  Z  = ( X  u  Z )  n  Y ,  (d) X  u . ( Y  n  Z ) '  = ( X  u  Y ' )  n  Z ' .
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11.2. Laws: Analogy w ith Arithmetic

The analogy between the algebra of sets and ordinary arithmetic will 
now be described in some detail, and used to define Boolean algebra. The 
analogy between n , u  and ordinary •, +  is in part described by the 
following laws, whose truth is obvious.

Idempotent: X  n  X  =  X  and X  u  X  =  X.
Commutative: X  n  Y  =  Y  n  X  and X  u  Y  =  Y  u  X.
Associative: X  o  ( Y  n  Z )  =  (X  n  Y ) n  Z  and

X  U ( Y  u  Z )  =  (X  u  Y ) u  Z.
Distributive: X  n  (V  u  Z ) =  (X  n  Y ) u  (X  n  Z )  and

X u  ( Y  n Z )  =  (X  u  Y ) n  (X  u  Z ).

Clearly, all of these except for the idempotent laws and the second 
distributive law correspond to familiar properties of +  and •, as post
ulated in Chap 1.

Intersection and union are related to each other and to inclusion by a 
fundamental law of

Consistency: The three conditions X  <= Y, X  n  Y  =  X , and X  u  Y  =  
Y  are mutually equivalent.

Further, the void (empty) set being denoted by 0 ,  we have the 
following special properties of 0  and I,

Universal bounds: 0  <= X  <= / for all X.
Intersection: 0  n  X  =  0  and I  n  X  =  X.
Union: 0  u  X  =  X  and / u  X  =  I.

The first three intersection and union properties are analogous to properties 
of 0 and 1 in ordinary arithmetic.

Finally, complementation is related to intersection and union by three 
new laws.

Complementarity: X  n  X ' =  0  and X u  X ' =  I.
Dualization: (X  n  Y )' =  X ' u  Y ' and ( X u  Y )' =  X ' n  Y '.
Involution: (X ')' =  X.
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The first and third laws correspond to laws of ordinary arithmetic, if X ' is
interpreted as 1 -  X  and X X  =  X  is assumed.

The truth of the above laws can be established in various ways. First, 
one can test them in particular examples, thus verifying them by “ induc

tion.”  Appropriate examples are furnished by 
the Venn diagrams. If X  and Y  are the 
respective interiors of the left- and right-hand 
circles in Figure 2, then the area X ' is shaded 
by horizontal lines and Y ' by vertical lines. 
The cross-hatched area is then just the 
intersection X ' n  Y\ the figure shows at once 
that this area is the complement of the sum 
X  u  Y, as asserted by the second dualization
law. Such an argument is convincing to our
common sense, but it is not permissible tech

nically, since only deductive proofs are allowed in mathematical 
reasoning.

Second, we can consider separately each of the possible cases 
for an element of I :  first, an element in X  and in Y ; second, an 
element in X  but not in Y ; and so on. For example, an element of the 
first type is in X  n  Y, hence not in (X  n  Y )' and not in X ' u  Y', 
while an element of the second type is in (X  n  Y )' and in Y 1, hence 
in X ' u  Y .  By looking at the other two cases also, one sees that 
(X  n  Y )' and X ' u  Y ' have the same elements, as in the first duali
zation law. Note that for two classes X  and Y, all four possible cases 
for an element are represented by points in the four areas of the Venn 
diagram; while for three classes there are eight cases and eight areas 
(Figure 1).

Third, we can use the verbal definitions of the operations cup and cap 
to reformulate the laws. Consider the distributive law. Here

“ i i n A '  n  ( Y u  Z ) ”  means “ b is both \nX  and in Y  o rZ ,”
“ b in (X  n  Y ) u  (X  n  Z ) ”  means “ b is either in both X  and Y  

or in both X  and Z .”

A  little reflection convinces one that these two statements are equivalent, 
according to the ordinary usage of the connectives “ and”  and 
“ either • • • or.”  This verification of the distributive law may indicate how 
the laws of the algebra o f classes are paraphrases of the properties of the 
words “ and,”  “ or,”  and “ not.”  If one assumes these properties as basic, 
as one normally does in mathematical reasoning, one can then prove from 
them all the above laws for classes.

Figure 2
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Exercises

1. Use Venn diagrams to verify the distributive laws.
2. Use the method o f subdivision into cases to verify the associative, commuta

tive, and consistency laws.
3. Reformulate the laws o f complementarity, dualization, and involution in terms 

of “ and,”  “ or,”  and “ not,”  as in the third method described above.
4. (a) In treating an algebraic expression in four sets by considering all possible 

cases for their elements, how many cases occur?
★ (b) Draw a diagram for four sets which shows every one o f these possible cases 

as a region.
(c) Show that no such diagram can be made, in which the four given sets are 

discs.
5. Show that the intersection and union properties of 0  and I  may be derived 

from the universal bounds property and the consistency principle.
6. O f the six implications obtained by replacing “ equivalent”  by “ if”  and “ only 

if”  in the consistency postulate, show that four hold for real numbers x, y if 
0 =  x, y =  1.

7. In Ex. 6, which of the intersection and union properties of 0 , / fails if 0  is 
replaced by the number 0, and I  by 1? Which o f the properties o f comple
ments fails if X ' is replaced by 1 — x and V  by 1 — y?

8. Prove that for arbitrary subsets X , Y  o f I, X  <= Y  if and only if X '  u  Y  =  I.

11.3. Boolean Algebra

We will not concern ourselves further with deriving the preceding 
algebraic laws from the fundamental principles of logic. Instead, we will 
simply assume the most basic of these laws as postulates, as was done in 
Chap. 1 for the laws of arithmetic, and then deduce from these postulates 
as many interesting consequences as possible. Accordingly, we now lay 
down our basic definition, using a slightly different notation to emphasize 
the fact that the postulates assumed may apply to other things than sets.

Definition. A  Boolean algebra is a set B  o f  elements a ,b , c , • • • with 
the fo llow in g  properties:

(i) B  has two binary operations, a  (wedge) and v  (vee), which satisfy 
the idempotent laws

a * a = a v a  =  a,

Download more at Learnclax.com



Ch. 11 Boolean Algebras and Lattices 362

the commutative laws

a a  b  = b a  a, a v b  = b  v a,

and the associative laws

a a  (b  a  c ) =  (a a  b )  a  c, a v (b v c )  =  (a v b) v c.

(ii) These operations satisfy the absorption laws

a a  (a v b) =  a v (a a  Z>) =  a,

(iii) These operations are mutually distributive:

a a  (Z> v c ) =  (a a  Z>) v (a a  c), a v (Z> a  c )  =  (a v Z>) a  (a v c),

(iv) 5  contains universal bounds O, I  which satisfy

O  a  a =  O, O  v  a =  a, I  a a =  a, I  v  a = I,

(v) 5  (tas a unary operation a a' o f complementation, which obeys 
the laws

a a  a' =  O, a v a' =  I.

It is understood that the preceding laws are assumed to hold for all 
a ,b ,c  e B.

Using this definition, the conclusions of §§11.1-11.2 can be sum
marized in the following statement.

Theorem 1. Under intersection, union, and complement, the subsets of 
any set I  form a Boolean algebra.

To illustrate more selectively the significance of the preceding post
ulates, we now describe examples in which some of them hold, but not all.

E xam ple  1. Let L  have as “ elements”  the subspaces of the n- 
dimensional Euclidean vector space of §7.10. Define 5 A 7 ’ = 5 n 7 ’ as 
the intersection of 5 and T, S v T = S  +  T  as their linear sum, O  as the 
null vector 0 ,1 as the whole space, and S'  as the orthogonal complement 
5 -1 of the subspace 5.

Then postulates (i), (ii), (iv), and (v) are satisfied, although the 
distributive laws (iii) are not. (Let 5, T, U  be the subspaces of the plane 
spanned by (1,0), (0,1), (1,1), respectively, for example.)
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Ex a m p l e  2. Let L  have as “ elements”  the normal subgroups 
M , N, • • • of a finite group G. Let M  a N  =  M  n  JV be the intersection 
of M  and N, while M  v N  -  M N  is the set of all products xy (jc e  

M , y e N ). Then M  a N  and M  v N  are normal subgroups of G. If O  
denotes the group identity 1, and I  is G  itself, then postulates (i), (ii), and
(iv) are satisfied, although in general (iii) and (v) are not.

Since the systems constructed in Examples 1 and 2 satisfy postulates
(i) and (ii), they are lattices in the following sense.

Definition. A  lattice is a set L  o f elements, with two binary operations t 
a  and v  which are idempotent, commutative, and associative and which 
satisfy the absorption law (ii). I f  in addition the distributive laws (iii) hold, 
then L  is called a distributive lattice.

For example, if the void set 0  is included, and sets of zero area are 
neglected, then the set of all polygonal domains is a distributive lattice, 
under intersection and union. Again, the set of positive integers is a 
distributive lattice, with m a  n the greatest common divisor of m and n, 
and m v n their least common multiple.

The various laws postulated above have many interesting algebraic 
consequences, of which we will now derive a few o f the simplest.

The effect of the associative and commutative laws has already been 
studied in §1.5. The associative law means essentially that we can form 
multiple intersections or unions without using parentheses; the commuta
tive law, that we can permute terms in any way we like in an expression 
involving only vees or only wedges.

In conjunction with the above laws, the effect of the idempotent laws 
is clearly to permit elimination of repeated occurrences of the same 
term— all but one of the occurrences of a given term can be deleted. In 
summary, we have

Lemma 1. Let f  and g be two expressions formed from the letters 
ai, • • •, an using only vees v and using all these letters (possibly with some 
repetitions). Then the idempotent, commutative, and associative laws imply 
that f  =  g. The same holds for expressions involving only wedges a  .

If N  is the set of subscripts i =  1, • • •, n, we can without ambiguity 
write

n n
V  a, or V  o-i and f\ a,- or f\ a,
N i =  1 N i = 1

t  The wedge operation a  is also called meet, and the vee operation v called jo in ; we will 
use these names interchangeably.
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to denote the join and meet of all the ah respectively. These notations are 
analogous to the £, 11 notations of algebra.

Again, starting from the commutative, associative, and distributive 
laws, we can derive by induction, just as in §1.5, generalized distributive 
laws such as the following:

jc a  ( y i  v  • • • v  y „ )  =  (x  a  y i )  v  • • • v  ( x  a  y „ ) ,

x v  ( y ,  a  • • • a  y n ) =  (x v  y O  a  • • • a  (x v  y „ ) ,

(x , V • • • V x m) a  (y , V ■ • • V y„)
=  (Xi a  y i) V (Xi a  y2) V • • • V (xm a  y„).

Exercises

1. Use induction to prove in detail that
n n

(a) x a V y. = V (x a yf) in any distributive lattice,
i -1 i -1

(b) ( V x l ' = A x 'i in any Boolean algebra.
' i  = l '  i = l

★2. Prove in detail by induction that in any distributive lattice,

(  V  xS a  f  V  y > )  =  V  {  V  ( * ,  a  y y ) } .
V, =  l / \, =  l / , =  l  l y _ i  )

3. Prove in detail that Example 1 defines a lattice which is not distributive if 
n >  1.

4. Prove that Example 2 defines a lattice which is distributive if G is cyclic.
5. Prove that the lattice of all subgroups of the four-group is not distributive.

11.4. Deduction of Other Basic Laws

We now show that the postulates for Boolean algebra listed above 
imply the other basic formulas of the algebra of classes which were 
discussed in §§11.1-11.2. For instance, they imply the uniqueness of O  
and I, which we did not postulate.

Lemma 2. In any Boolean algebra, each o f the identities a a  x  =  a 
and a v  x  = x  (for all x )  implies that a =  O ; dually, each o f the identities 
a v  x  =  a and a a  x  = x  implies that a =  I.
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Proof. If a a  x =  a for all x, then in particular a a O  =  a; but 
a a O  =  O  by (iii); hence a =  O. Likewise, if a v x =  x for all x, then 
a v O  =  O ; but a v O =  a by (iii); hence again a =  O. The proof of 
the unicity of / is similar.

Lemma 3. For elements a, b o f any lattice, a a b =  a holds if  and 
only if  a v b =  b.

Proof. If a v b =  b, then by the absorption law (ii) a a b =  a a 

(a v b) =  a. Conversely, if a a b =  a, then by the same law a v b =  
(a a b) v b. Hence, by the commutative laws, a v b =  6 v (b a a ) =  b, 
where the last step uses (ii) again.

Corollary. In the definition o f a Boolean algebra, conditions (iv) can be 
replaced by either o f the following postulates:

(iv') For all x, x a O = O  and x v / =  /
(iv") For all x, O  v x =  x and I  a x =  x.

The definition of a Boolean algebra given above did not mention the 
inclusion relation, even though this is the most fundamental concept of 
all. We shall now define this relation and deduce its basic properties from 
the postulates stated above. The proof restates the law of consistency, of 
which a part was already proved as Lemma 2 above.

Definition. Define a ^  b to mean that a a b =  a— or equivalently 
(Lemma 2), that a v b =  b.

Lemma 4. The relation a g  b is reflexive, antisymmetric, and transi
tive in any lattice.

Proof. Since a a  a =  a, a ^  a for all a, proving the reflexive law. 
Again, a g  b and b ^  a imply

a =  a A b  =  b A a  =  b,

which proves the antisymmetric law. Finally, a 2= b and 6 =  c imply 
a =  a a b =  a a (b a c ) =  (a a b) a c =  a a c, whence a tk c. This 
proves the transitive law. Q.E.D.

The power of the absorption laws was exhibited above in the proofs of 
Lemmas 2 and 3. Actually, the absorption, commutative, and associative 
laws imply the idempotent laws: the latter are redundant in the definition 
of a lattice, for one absorption law is x =  x a ( x  v  z ) for all x, z. Setting 
z — x  a  y, we infer x -  x a (x v  ( x  a  y )) for all x, y. Applying the dual
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absorption law jc v (jc a y) =  jc, we conclude x =  x a x  (one idempotent 
law). The proof that x =  x v x is similar, interchanging a and v .

Lemma 5. In any distributive lattice, a v x =  a v y and a a x  =  
a a y together imply x =  y.

Proof. By substitution of equals for equals, and the absorption and 
distributive laws, successively, we have

x =  x a (jc v a) =  x a (y  v a)
=  (jc a y ) v (r  a a ) =  (y  a x ) v (y  a a )

=  y a (jc v a ) =  y a (y  v  a ) =  y.

Now recall that the operation a *-* a ' of complementation satisfies

a a  a ' — O  and a v a ' =  I.

But any element x with a a x  =  O  and a v x =  I  must, by Lemma 5, 
satisfy x = a'. In other words, the complement a' is uniquely determined 
by the complementation laws (v) in the definition of a Boolean algebra. 
We now show that the remaining properties of set-complements also hold 
in any Boolean algebra.

Lemma 6. In any Boolean algebra, we have

(1) (jc') ' =  x, (jc a y ) ' =  x ' v  y', and (jc v  y ) ' =  x ' a y '.

Proof. The statement that x ' is a complement of x implies by the 
commutative law that x is a complement of x', since jc' a j c = jcajc ' = 0  
and x ' v x =  x v  x ' =  I. But we have just seen that complements are
unique; hence x is the unique complement of x ', and (jc') ' =  x. Again, by
the distributive laws,

(jc a y ) a (x ' v  y ') =  (jc a y a x ' )  v  (jc a y a y ')

=  ( (jc a jc') a y ) v (jc a O )

=  ( 0 A y ) v 0  =  0 v 0  =  0  

(jc a y ) v (jc' v y ') =  (jc v jc' v y ') a (y  v jc' v y ')

=  (/ v y ') a (y  v y ' v jc')

=  / a (/ v jc') =  /.

This shows that jc' v y' is a complement of jc a y. Hence, again by the

Download more at Learnclax.com



§11.4 Deduction of Other Basic Laws 367

uniqueness o f complements, jc ' v y ' =  (jc a y )' is the com plem ent o f 
jc a y. The identity (jc a y ) ' =  jc ' a y ' can be proved similarly.

Corollary. To find the complement o f an expression built up from  
primed and unprimed letters by iterated vees and wedges (but not using 
primed parentheses), interchange v and a throughout, prime each 
unprimed letter and unprime each primed letter.

Thus, the com plem ent o f (jc' a y ) v (z a >v') is, by this rule, 
(jc v y ') a (z ' v >v).

Proof. I f  the number n o f  letters in the given expression / (counting 
repetitions) is 1, then the lemma is true, since (jc)' =  jc' and (jc')' =  jc. 
Otherwise, since no parentheses are prim ed, w e can write the expression 
as / =  a a b  or / =  a v b — giving, respectively, /' =  a'  v b '  or /' =  
a ' a b ' .  But the expressions a and b  contain few er letters than does / ;  

hence by induction on n we can assume the lem m a to be true fo r  them. 
Substituting in the expressions /' =  a ' v b' or f  -  a ' a b', w e get the 
desired form ula fo r  the com plem ent.

E xerc ises

1. Prove that the idempotent law jc v jc =  jc follows: (a )  from the commutative, 
associative, and absorption laws, (b ) the absorption law alone.

Exercises 2-10 refer to Boolean algebras.
2. Prove in detail that (jc v y )' =  jc' a y'.
3. Simplify the following Boolean expressions:

(a) (jc' a y'Y, (b) (a v b ) v (c v a ) v (b v c),
(c) (jc a y ) v (z  a jc) v (jc' v y')'.

4. Prove that (jc a y ) v (jc a y ') v (jc' a y ) v (jc' a y ') =  I.
Interpret in terms of the two-circle analog o f Venn’s diagram.

5. Prove that jc =  y if and only if (jc a y') v (jc' a y) =  O.
6. Prove Poretzky’s law: Given jc and /, jc =  O  if and only if

/ =  (JC A / ') V (JC' A /).

7. Prove that
(a) y =  jc' if and only if jc a y =  O, (b) y g  jc' if and only if jc v y =  /.

8. Find complements of the following expressions:
(a) jc v y v z ', (b) (jc v y' v 2 ') a (jc v (y v 2 ')),
(c) X v (y A (z  v w ')), (d) ( * ' v y )' a (jc v y').

9. Apply the argument of the corollary to Lemma 5 to the expression (jc' a y a 
2 ') v (jc a y'), justifying each step.

10. Prove that (jc v  y ) a  ( jc ' v  2 )  =  ( jc ' a  y ) v  (jc a  2 ) .
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11. Prove that (x a y ) v (y a z )  v ( z  a y ) =  (x v y ) a (y v z ) a (z v jc) in any 
distributive lattice.

12. An element a o f a lattice L  with universal bounds O, I  is said to be 
complemented when, for some x e L ,  <z a x  =  0  and a v jc = I. Show that 
if a and b are complemented elements of a distributive lattice, the same is 
true o f a a b and a v b.

11.5. Canonical Forms of Boolean Polynomials

Various expressions built up from the a ,  v ,  and ' operations have 
been studied in the preceding section. Such expressions are called 
“ Boolean polynomials”  (or “ Boolean functions” ); the analogy with ordi
nary polynomials (Chap. 3) is obvious.

We now define a subalgebra of a Boolean algebra B  as a nonvoid 
subset S of B  which contains, with any two elements x and y, also x a y, 
x v y, and x ' (and hence O  =  x a x ' and I ) .  Given an arbitrary nonvoid 
subset X  of B, the set of all values p (x1; • • • , xn) of elements x-, e X  is 
clearly the smallest subalgebra of B  which contains X . As in the case of 
groups, this subalgebra is said to be generated by X. For example, the 
subalgebra generated by any one element x consists of the four elements 
x, x ', O, I.

This is a special instance of the following surprising fact: the number of 
different Boolean polynomials in n variables x1; • • •, xn is 22". This we now 
show, illustrating the argument by the polynomial

f (x , y ,z ) =  [x  v z v (y  v z ) '] ’ v ( y  a x).

First, if any prime occurs outside any parenthesis in the polynomial, it 
may be moved inside by an application of the dualization law, as in 
Lemma 5 of §11.4. When all the primes have been moved all the way 
inside, the polynomial becomes an expression involving only vees and 
wedges acting on primed and unprimed letters. Thus, in our example:

/ =  [x ' a z ' a (y v z ) ] v (y a x).

Secondly, if any a stands outside a parenthesis which contains a v , then 
the a  can be moved inside by applying the distributive law, as in 
c a (a v b) =  (c a a) v (c a b). There results a polynomial in which all 
meets a are formed before any join v ; that is, the expression is a join of 
terms T 1, - - - , T k in which each Tk is a meet of primed and unprimed 
letters. In the example above,

/ =  (x ' A z ' A y) V (x ' A z '  A z ) v (y A x).
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Thirdly, certain expressions can be shortened or omitted. If a letter “ c ” 
appears twice in one term, one occurrence can be omitted, since c a c  =  

c. If c appears both primed and unprimed, then the whole term is O, 
since c a a a c' =  O  for all a ; hence it can be omitted, since O  v b =  b 
for all b. Thus, above

/ =  (x' a z ' a y) v (y a x).

Now if some term Tk fails to contain a letter c, we can write

Tk =  Tk a I  =  Tk a (c v c') =  (Tk a c ) v (T fc a c'),

replacing Tk by two terms, in each of which c occurs exactly once. Thus,
in our example:

/ =  (x' a z ' a y ) v (y a x a z ) v (y a x a z').

Finally, the letters appearing in each term can be rearranged so as to
appear in their natural order, thus

/ =  (x ' a y a z ') v (x A y a z ) v (x a y a z ').

This is called the disjunctive canonical form  for /; we have proved the 
following lemma.

Lemma. Any Boolean polynomial in X i ,  • • • , x„ can be reduced either 
to O  or to some join of terms Tk o f the form

(2) Tk =  a q2 a ■ • • a qn (each q, =  x, or x/),

that is, to disjunctive canonical form.

Since there are two alternatives for each qjt we see that there are 
exactly 2" possible Tk. Thus when n =  3, our process reduces any 
Boolean polynomial to O  or to some join of the terms

X A y A 2, x ' A y A 2, X A y ' A 2, X A y A 2 ',
(3)

X  A y '  A 2 ', x '  A y  A 2 ', x '  A y '  A 2 , x '  A y '  A 2 '.

It is no accident that these eight polynomials represent the eight regions 
into which the three circles o f Figure 1 divide the square. This means 
geometrically that any Boolean combination of the three circles X , Y, and 
Z  will be the union of some selection of the eight regions of the diagram.
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The ultimate terms, such as those listed in (3), will be called minimal 
Boolean polynomials. In other words, a minimal polynomial

n
M (x i, • • • ,  xn) in n variables x ly • • • ,  xn is a meet A  th of n elements in

i =  l

which each ith element <7, is either xt or xf. We have proved

Theorem 2. A n y given Boolean polynomial in x u - • • ,x n is equal to O  
or to the join of a set S  of minimal polynomials.

Now assign to each M  the n -digit binary number 7?(M) =  y xy2 • • • ym
n

where the digit y, is 1 or 0 according as <7, is jc,- or jc, ' in M  =  A  <k above.
1=1

Then the function 77: M  •-> 17 (M) is a bijection from the set of minimal 
polynomials in jci, • • • ,  xn to the set I  of all 2" ai-digit binary numbers. 
Thus in (3), the 17 (M) as listed are

111, Oil, 101, 110, 100, 010, 001, 000.

Alternatively, 77 (M) can be thought of as the vector 77 =
(yi, y 2, • • • ,  y„) e Z 2", and each Boolean polynomial V  ' • ' ,  xn)

s
as corresponding to a set of these vectors.

If Sj c  /  consists of those binary numbers with y, =  1, then S,' will 
consists of those with y, =  0 . Hence (cf. Ex. 9 below) the set representing 
a given minimal polynomial M (S U • ■ ■, S„) consists of a single binary 
number a{M )  =  a ia 2 • • • an, whose ith digit a, is 0 or 1 according as 5, is 
primed or unprimed in M. Different minimal polynomials M  — M a are 
clearly represented by different binary numbers; therefore, the joins of 
different sets of M a represent different subsets of I. This proves the 
following result.

Corollary. There are just 22" different Boolean functions of n variables.

We can now replace haphazard manipulation of Boolean polynomials 
by a systematic procedure. The truth or falsity of any purported equation 
E \  =  E 2 in Boolean algebra can be settled definitely, simply by reducing 
each side to disjunctive canonical form.

Exercises

1. Reduce each of the following expressions to canonical form:
(a) (x v y) a (z ' a y)', (b) (jc v y) a (y v z) A (x v z).
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2. Test each of the following proposed equalities by reducing both sides to 
(disjunctive) canonical form:
(a) [x a (y v z ) '] ' =  (x a y )' v (x a z ) ,

(b) jc =  (jc' v y ')' v [z  v (jc v y)'].
3. Show that every Boolean polynomial has a dual canonical form which 

is a “ meet”  of certain “ prime”  polynomials. Describe these prime polyno
mials carefully, and show that they are complements of minimal polyno
mials. How is the result analogous to the theorem that every ordinary
polynomial over a field has a unique representation as a product of 
irreducible polynomials?

4. Use the canonical form of Ex. 3 to test the equality of Ex. 2(a).
5. Prove that the canonical form of / ( jc, y ) is

f ix , y ) =  (/(/, /) a x  a y ] v [/(/, O ) a x  a y ']
v [ f (0 ,1 )  a x ' a y ] v [ f (0 ,  O ) a x ’ a y'].

6. Prove that the meet of any two distinct minimal polynomials is O.
7. Expand I  =  (xx v x ,') a • • • a ( x „ v  xn') by the generalized distributive 

law to show that I  is the join o f the set o f all minimal Boolean polynomials.
8. Prove from Ex. 7 and x, =  x, a I  that each X; is the join of all those 

minimal polynomials with ith term x,-.
9. (a) Let V  M a denote the join of all minimal polynomials in the set A .

A

Prove:

(V M „ )  v ( V M „ )  = V  M y , (V M „ )  a ( V M „ )  = V  M r
' A  '  ' B  '  A U B  ' A  / ' B  /  A D B

(b) Show that the preceding formulas are valid also if we define the join
V M a of the void set of minimal polynomials to be O.
*

★10. Using Exs. 7 and 9, prove M ^ j' =  V  M a. (H int: Use Lemma 5 of §11.4.)

★11. Using only Exs. 8-10, give an independent proof that every Boolean 
polynomial can be written as a join o f minimal polynomials.

11.6. Partial Orderings

Little use has been made above of the reflexive, antisymmetric, and 
transitive laws of inclusion. Yet these are the most fundamental laws of 
all; thus they apply to many systems which are not Boolean algebras.

For example, they clearly hold for the system of all subsets of a set 
which are distinguished by any special property (writing either c  or g ). 
Thus, they hold for the subgroups (or the normal subgroups!) of any 
group, the subfields of any field, the subspaces o f any linear space, and so 
on— even though these do not form Boolean algebras. They also hold for
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the less-than-or-equal-to relation x S  y between real numbers, for the 
divisibility relation x \ y between positive integers, and so on.

These examples suggest the abstract concept of a “ partial ordering.”  
By this is meant any reflexive, antisymmetric, and transitive relation.

Definition. A  partially ordered set is a set P  with a binary relation = ,  
which is reflexive, antisymmetric, and transitive.

For any relation a S! b (read, “ fi includes a " )  of this type, we may 
define a <  b to mean that a S  b but a ¥= b, while b may be said to cover 
a if a <  b, and if a <  x <  b is possible for no x.

The following lemma shows that any lattice can be considered as a 
partially ordered set (the full significance of this will be explained in the 
next section). It is a consequence of the absorption law.

Lemma. In any lattice, the relation x ^  y defined to mean x a  y =  x 
is a partial ordering; it is equivalent to x v y =  y.

Partially ordered sets with a finite number of elements can be conve
niently represented by diagrams. Each element of the system is rep
resented by a small circle so placed that the circle for a is above that for b 
if a >  b. One then draws a descending line from a to fi in case a covers 
fi. One can reconstruct the relation a §  fi from the diagram, for a >  fi if 
and only if it is possible to climb from fi to a along ascending line 
segments in the diagram.

For example, in Figure 3 the first diagram represents the system of all 
subgroups of the four-group; the second, the Boolean algebra of all 
subsets o f a set of three points; the third, the numbers 1, 2, 4, 8 under the 
divisibility relation. The others have been constructed at random, and 
show how one can construct abstract partially ordered sets simply by 
drawing diagrams. Figure 3, §6.7, is a diagram for the partially ordered 
set of all the subgroups of the group of the square.

It is clear that in any partially ordered set, the relation S  is also 
reflexive, antisymmetric, and transitive (simply read the postulates from 
right to left to see this). Therefore any statement which can be proved

Figure 3
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from the postulates defining partially ordered sets by using the relation 
a Si b could be established by exactly the same train of reasoning, if 
everywhere a b were replaced by the converse relation a g  b, and vice 
versa. This is the

Duality Principle. Any theorem which is true in every partially ordered 
set remains true if  the symbols =  and are interchanged through the 
statement o f the theorem.

It is to be emphasized that this principle is not a theorem about 
partially ordered sets in the usual sense, but is a theorem about theorems. 
As such, it belongs to the domain of “ metamathematics.”

Exercises

1. Show in detail how the second diagram o f Figure 3 does represent the algebra 
of all subsets of a set I  of three points.

2. Draw a diagram for each o f the following partially ordered sets:
(a) the Boolean algebra of all subsets o f a set of four points,
(b) the set o f all subgroups o f a cyclic group of order 12,
(c) the set o f all subgroups of the quaternion group,
(d) the integers 1, 2, 3, 4, 6 , 8 , 12, 24 under divisibility,
(e) the set of all subgroups of a cyclic group of order 54,
(f) the set of all ideals of the ring Z 40 o f integers modulo 40.

3. Show that the partially ordered set of parts (d), (e), (f) and Ex. 2 are all 
“ isomorphic”  in a suitably defined sense.

4. Which o f the following sets are partially ordered sets?
(a) all subfields o f the field R  of real numbers, under the inclusion relation,
(b) all pairs of numbers (a, b ) if (a, b ) S  (a ', b ') means that a S  a ' and b §  b',
(c) all pairs o f real numbers if (a, b ) S  (a ',b ') means that either a <  a ' or 

a =  a ' and b b',
(d) all pairs of real numbers if (a ,b ) S  (a ',b ') means that a S  a ' and b a  b',
(e) all subdomains of a given integral domain, under the inclusion relation,
(f) all polynomials in F [x ] if f (x ) S  g (x ) means that f (x ) divides g (x ).

5. Consider a system of elements with a relation a <  b which is transitive and 
irrefiexive (a <  a is never true). If a :§ b is defined to mean that either a <  b 
or a =  b, prove that one gets a partially ordered set.

6. Prove the lemma stated in the text.
7. (a) Show that in Example 1 of §11.3 the lattice L  is defined by the relation of

set-inclusion between subspaces.
(b) Make and prove a similar statement about Example 2 of §11.3.
(c) If m | n is used to define a partial ordering of the positive integers, what do 

a  and v signify?
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11.7. Lattices

The consistency principle shows how to define inclusion in terms of 
join or meet; we shall now show that, conversely, one can define join and 
meet in terms of inclusion. Namely, x  v y is the least thing which 
contains both x  and y, while x  a y is the greatest thing contained in both 
x  and y. This observation is due to C. S. Peirce; we shall state it more 
precisely as follows.

By a “ lower bound”  to a set X  of elements of a partially ordered set P  
is meant an element a satisfying a g  x  for all x  e X . By a “ greatest 
lower bound”  (g.l.b.) is meant, as in Chap. 4, a lower bound including 
every other lower bound: a lower bound c such that c s  a for any other 
lower bound a. Clearly, g.l.b.’s are unique if they exist— for if a and b are 
both g.l.b.’s of the same set X, then a i£ b and b s  a, whence a — b.

Dually, we can define “ upper bounds”  and “ least upper bounds”  
(l.u.b.), and prove the uniqueness of the latter when they exist. We are 
here applying our metamethematical Duality Principle! Hence it is legiti
mate to speak of the g.l.b. and the l.u.b. of a set of elements, whenever 
these bounds exist.

Lemma 1. In any lattice, the meet x  a y and the join i v y  are the 
g.l.b. and l.u.b., respectively, o f the set consisting o f the two elements x  and
y-

Proof. Since x  a x  a y — x  A y  and y a i  a y =  i  a y, the consis
tency principle shows that x  a y is a lower bound of x  and y. It is a 
greatest lower bound, since z S  x  and z S  y imply z = x a z = x a  
(y  a z ), and so z S  x  a y, again by the consistency principle. The proof 
is completed by duality.

This shows that any lattice is a partially ordered set having the “ lattice 
property”  that any two elements have a g.l.b. and a l.u.b. We will now 
show that this property completely characterizes lattices.

Theorem 3. Let L  be any partially ordered set in which any two 
elements x,  y have a g.l.b. x  a y and a l.u.b. i v y .  Then L  is a lattice 
under the operations a , v , in which a ^  b if  and only if  a a b =  a (or, 
equivalently, a v b =  b).

Proof. It suffices to prove the idempotent, commutative, associative, 
and absorption laws, together with the consistency principle. Moreover, 
by the Duality Principle, it suffices to prove each of the first three laws for 
g.l.b. The commutative law is obvious from the symmetry o f the defini
tion; the associative law, since both x  a (y a z ) and ( x a y)  a z are
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g.l.b.’s of the three elements x, y, and z. The idempotent law is trivial, by 
substitution in the definition. For the consistency principle, assume first 
that x  ^  y ; then any z  with z x  and z  y satisfies z  ^  x,  while i  =  i  
and i  g  y, so that jc satisfies the definition of the g.l.b. x  a y. Conversely, 
if jc =  jc a y, then jc is a lower bound of y, so that jc g y ;  this proves the 
consistency principle. The absorption law now follows by a proof similar 
to that of Lemma 3 in §11.4.

The distributive laws were not mentioned above, since they do not 
hold in all lattices. For example, they do not hold if x, y, z  are chosen to 
be the three subgroups of order 2 in the four-group (Figure 3, first 
diagram). However, two related inequalities do hold.

Theorem 4. In any lattice, the semidistributive laws 

x  a (y v  z)  §  (jc a y ) v (jc a z ), x  v (y a z )  ^  (x v y ) a ( x  v z ) 

hold. Moreover, either distributive law implies its dual.

Proof. The labor of proof is cut in half by the Duality Principle. As 
regards the first semidistributive law, note that both terms on the left 
have both terms on the right for lower bounds; hence the g.l.b. of x  and 
y v  z  is an upper bound both to jc a y and to jc a z , and hence to their 
l.u.b. (jc a y ) v (jc a z ). Finally, assuming the first distributive law of 
§11.3, (iii), we get by expansion

(jc v  y ) a (jc v  z)  ~  ((jc v y) a jc) v ((jc v y) a z )
=  x  v (jc a z ) v (y a z)  =  jc v (y a z ),

which is the other distributive law of §11.3, (iii). The proof is completed 
by the Duality Principle.

It is a corollary of the preceding theorems that, to prove that the 
algebra of classes is a Boolean algebra, we need only know that (i) 
set-inclusion is reflexive, antisymmetric, and transitive; (ii) the union of
two sets is the least set which contains both, and dually for the intersec
tion; (iii) S n ( r u f / )  =  ( S n 7 ) u ( S n ( / )  identically; (iv) each set S 
has a “ complement”  S' satisfying S n  S' =  O, S kj S ' =  I. This also 
proves

Theorem  5. A  Boolean algebra is a distributive lattice which contains 
elements O  and I  with O  S  a g  / for all a, and in which each a has a 
complement a ' satisfying a a  a ' =  O, a v a' =  I.

Boolean algebras can also be described by many other systems of 
postulates. One such is indicated by Ex. 13 below.
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Exercises

1. Which of the diagrams of Figure 3 represent lattices?
2. Draw two new diagrams for partially ordered sets which are not lattices.
3. Which of the examples of Ex. 4, §11.6, represent lattices?
4. Show that if b S  c in a lattice L , then a a  b §  a a  c  and a v b S  a v c 

for all a e L.
5. State and prove a Duality Principle for Boolean algebras.
6. Illustrate the Duality Principle by writing out the detailed proof o f the

second half of Lemma 1 from the proof given for the first half.
7. Show that a lattice having only a finite number of elements has elements O  

and I  satisfying O S r  S  I  for all elements jc .

★8. Show that a finite partially ordered set with O  and / is a lattice whenever 
between any elements au a2, bu b2 with a, S  bt ( i , j  =  1,2) there is an 
element c such that a, S  c S  b, for all i and j.

9. A  chain is a simply ordered set (i.e., a partially ordered set in which any x
and y have either i  g  y or y S  r ),
(a) Prove that every chain is a distributive lattice.
(b) Prove that a lattice is a chain if and only if all o f its subsets are

sublattices.
★10. A  lattice is called modular if and only if x  g  z always implies x  a

( y  v  z ) =  ( jc  a  y )  v  z.
(a) Prove that every distributive lattice is modular.
(b) Construct a diagram for a lattice of five elements which is not modular.
(c) Prove that each o f the following is a modular lattice: (i) all subspaces of 

a vector space, (ii) all subgroups o f an Abelian group, (iii) all normal 
subgroups of any group.

(d) Show that in a modular lattice, x  S  z always implies x  v  ( y  a  z )  =
( jc  v  y )  a  z. Hence infer that the Duality Principle holds for modular
lattices.

★11. In any Boolean algebra the symmetric difference of two elements x  and y  is 
defined by x +  y =  ( x  a  y ' )  v  ( jc '  a  y ) .

(a) What does this mean if jc  and y  are classes? Draw a figure.
(b) Show that jc  +  y  is associative, commutative, and has a zero element.
(c) With the symmetric difference as a sum and the meet as a product, show 

that every Boolean algebra is a commutative ring.
12. (a) Show that if, in the vector space X 2n, we define multiplication by 

~ (x ty lt ■ ■ ■, JC „ y „ ) ,  then Z 2n becomes a commutative ring in which 
£2 =  € for all f

★ (b ) Show that this ring is a Boolean algebra under the operations £ a  t j  = 
£77 , £  v t j  =  $ + t j  +  £77 , £ '  =  ( 1 ,  1 ,  • • • ,  1) -  £

★13. I f  L  is a lattice with universal bounds O  and /, in which each element a has 
a complement a ' with the properties

jc  S a 1 if and only if a a  jc  = O,

y g j 1 if and only if a v y =  /.
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prove that L  is a Boolean algebra. (H int: To  prove the first distribu
tive law it suffices to prove that e =  [a  a (b v c ) ]  a [(a  a b) v (a a c ) ] ' =
O. Write e as a meet and consider the individual terms.)

11.8. Representation by Sets

The main conclusion of §11.5 is that the postulates which were 
assumed for Boolean algebra imply all true identities for the algebra of 
sets with respect to intersection, union, and complement. In fact, a 
suitable family of subsets Si, • • •, Sn of a particular set Z 2n was shown to 
have the property that p(S i, • • •, Sn) =  q (S lt • • •, S„) for two Boolean 
polynomials p, q if and only if these polynomials had the same disjunctive 
canonical form. The Boolean algebra consisting of all these disjunctive 
canonical forms, for given n, is called the free Boolean algebra with n 
generators.

We will now prove a stronger result, showing in passing that the 
postulates used to define distributive lattices completely characterize the 
properties of intersections and unions of sets. For this purpose, we will 
need concepts of homomorphism and isomorphism analogous to those 
already used for groups.

Definition. A  function f :  L  -> M  from a lattice L  to a lattice M  is 
called a homomorphism when f (x  a  y) =  f (x )  a  f (y )  and f (x  v y )  =  
f ix )  v f (y )  for all x , y e L . A  homomorphism which is one-one and onto 
is called an isomorphism.

For example, the Boolean algebra generated by the circles X, Y, Z  of 
the Venn diagram (Figure 1) is isomorphic with the algebra of all subsets 
of Z 23, the function being defined as in §11.5.

Lemma 1. An isomorphism f :  A  *-> B  between two Boolean algebras 
( regarded as lattices) necessarily carries the universal bounds O, I  and 
complements in A  into the corresponding bounds and complements in B.

Proof. Clearly, O  a  x = O  for all x e A  implies f ( 0 )  a  f (x )  =  
f { 0  a x )  — f (O )  for all f (x )  e B ; hence f (O )  is a universal lower bound 
in B ;  the proof that /(/) =  / is similar. Therefore x a x' = O  in A  
implies

f (x )  a  /(* ') =  f ix  a  * ')  =  f iO )  =  0  in B,
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and dually / ( jc) v  / ( jc') = I  in B, which proves that / ( jc') = [/(jc)]', com
pleting the proof of Lemma 1.

Definition. A  ring o f sets is a family o f subsets o f a set I  which 
contains with any two subsets 5 and T  also their intersections S c\ T  and 
their union 5 u  T ; a field o f sets is a ring o f sets which contains I, the 
empty set 0 ,  and with any set 5 also its complement S'.

In other words, a field of subsets of I  is just a Boolean subalgebra of 
the Boolean algebra A  of all subsets of / ;  a ring of subsets is just a 
sublattice of A , considered as a distributive lattice. We will prove that 
every finite distributive lattice is isomorphic with a ring of sets and every 
finite Boolean algebra is isomorphic with the field of all subsets of some 
(finite) set. These may be regarded as partial analogs of Cayley’s theorem 
for groups.

In proving these converses of Theorem 1, we will also want the 
following concepts.

Definition. A n element a >  O  o f a lattice L  is join-irreducible if  
x v  y = a implies x = a or y =  a; it is meet-irreducible i f  a <  I  and 
x a y =  a implies x =  a or y =  a; an element p is an atom i f p > 0 ,  and 
there is no element x such that p >  x >  O.

Lemma 2. In a Boolean algebra, an element is join-irreducible i f  and 
only i f  it is an atom.

Proof. If p is an atom, then p = x v  y implies x = p or x = O ; in 
the second case p =  O  v  y -  y; hence p is join-irreducible. Conversely, 
if a is not an atom or O, then a >  x >  O  for some jc. Therefore

a = a a  I  = a a (jc v  jc') =  (a a  jc) v  (a a  jc') = jc v  (a a  jc'),

where x <  a. Since a a  jc' a, and a a  jc' = a would imply jc =  a a 

x =  a r \ x ' r \ x  =  0 ,  a \  x'  <  a also; hence a is join-reducible.
Now, for each element a of any finite lattice L, let 5 (a ) be the set of 

all join-irreducible elements pk S  a in L, and consider the mapping 
a *-> 5 (a). We have

Lemma 3. In a finite lattice L ,  every element a satisfies a = V  Pk-
S(a)

Proof. For a = O, the result is immediate, since 5 (0 )  =  0 ,  the void 
set, and O  is the least upper bound of the void set. For any other a e  L, 
we use the Second Principle of Finite Induction, letting P (n ) be the
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proposition that Lemma 3 holds if the number of elements x ^  a in L  is 
n. Trivially, P in ) is true if a is join-irreducible. But if a is not join- 
irreducible and not O, then a =  x v y, where x <  a and y <  a, whence 
n (x ) <  n (a ) and n(y ) <  n (a ). By induction on n, it follows that x and y 
are joins of join-irreducible elements: x =  V  Pt and y =  V  <?„• Hence

x  Y

a ~  V  Pi v V  <7t) is a join o f join-irreducible elements.

Lemma 4. In any finite lattice L , the mapping a >-* S (a ) carries meets 
in L  into set-theoretic intersections: S(a  a  b) =  S ia ) n  Sib).

Proof. By definition of a a  b, p ^  a a  b if and only if both p g  a 
and p ^  b.

Lemma 5. In a finite distributive lattice L , the correspondence of 
Lemma 4 carries joins in L  into set-theoretic unions: S(a v b) =  
S(a ) u  S{b).

Proof. A  given join-irreducible p is contained in a v b if and only if

p =  p a  (a v b) =  (p a  a) v {p a  b).

If p is join-irreducible, this implies either p a  a =  p (i.e., p 2 = a) or 
p h b — p {p  =  b). This shows that S(a  v b) contains p if and only if 
S (a) contains p or S{b) contains p. But the converse is obvious in any 
lattice. Q.E.D.

Lemmas 4 and 5 show that the mapping a S (a ) is a homomorph
ism from L  onto a ring 5H of subsets of the set I  of join-irreducible 
elements of L. Lemma 3 shows that it is, moreover, one-one from L  onto 
91. This proves

Theorem 6. Any finite distributive L  is isomorphic with a ring o f sets.

When L  is a finite Boolean algebra, Lemma 2 tells us that each a e L  
is the join of the atoms p Si a. Also, by Lemmas 4 and 5, for any a e L :

S (a ) n  S(a ') =  S(a a  a') =  S (O ) =  0 ,  and

S (a ) u  S (a ') =  S(a v a ') =  S (I ) =  J,

the set of all atoms (join-irreducibles) of L. That is, [S (a )]' =  S (a '), and 
so the function a S (a ) is an isomorphism.

We have shown that the mapping a ^  T (a ) is an isomorphism from 
any Boolean algebra L  to a field g  of subsets of atoms of L. We now 
show that §  contains all sets of atoms of L, proving
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Theorem  7. Any finite Boolean algebra L  is isomorphic with the 
Boolean algebra o f all sets o f its atoms.

Completion o f proof. It only remains to show that if 5 and T  are
distinct sets of atoms p „ p„ - •• of L , then V  Pa ^  V  Pr  But this is a

s T

corollary of the following result.

Lemma 6. I f  an atom q ^  V  Pa, then q e S.
s

For, assuming Lemma 6, V  Pa contains the atoms in 5 and no others.
s

Proof o f lemma. By the generalized distributive law,

q =  q a V  Pa =  V  (<7 a pa).
s s

Since q is join-irreducible, it follows that some one q a pa =  q, whence 
O  <  Pa- q. Since q is an atom, this implies p„ =  q.

Exercises

1. If two finite sets I  and J  have the same number of elements, show that the 
algebra o f all subsets o f I  is isomorphic to the algebra o f all subsets of J.

2. Prove that for every positive integer n there is a Boolean algebra with 2" 
elements.

3. Show that the Boolean algebra o f all subsets o f a class o f n elements has 
exactly n ! automorphisms.

4. (a) Find a lattice homomorphism /: A  -* B from a Boolean algebra A  onto a
Boolean algebra B  which does not preserve universal bounds or comple
ments.

(b) Show that such an / preserves complements if and only if it preserves 
universal bounds.

5. (a) Show that the set Z + o f all positive integers is a lattice under the partial
ordering m S  n if and only if m \ n.

(b) Show that this lattice is distributive.
(c) Identify its join-irreducibles.

6. Show that if the join-irreducibles o f a finite distributive lattice L  are a chain C, 
then L  itself is a chain. How many more elements does L  have than C l
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Transfinite 
Arithmetic

12.1. Numbers and Sets

The present chapter will be concerned with the relationship between 
numbers and sets. This is the cardinal approach to the positive integers, 
as contrasted with the ordinal approach exemplified by the Peano pos
tulates of §2.6, which regard position in the familiar sequence “ one, 
two, three, four, • • • ”  as basic. Developed with care, this cardinal 
approach enables one to define numbers in terms of sets, thereby reduc
ing the totality of undefined terms which must be assumed in mathema
tics. But to carry out this program requires too great a reshuffling of basic 
ideas to fit neatly into the present book.

Instead, therefore, we shall assume the reader to be familiar with both 
the positive integers and the concept of a set, and shall proceed from 
there. Our object will be to extend the cardinal approach so as to give a 
precise definition of infinite cardinal numbers, which play a basic role in 
modern mathematics. Using this definition, we shall show how to add, 
multiply, and raise to powers arbitrary cardinal numbers, showing in the 
process that these operations have most (though not all) of the properties 
possessed by the corresponding operations on positive integers.

The source of the relationship between numbers and sets is the 
following definition.

Definition. Let n be any positive integer.'A set S will be said to have 
cardinal number n (in symbols,t  o (S ) =  n) if  and only if  there exists a 
bijection between the elements o f S and the integers 1, 2, 3, • • • , n.

t  An empty set is sometimes said to have the cardinal number zero.

381
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This definition means that the elements of S can be labeled 
Si> s2, S3, • ■ •, s„, where sk is the element of S corresponding to the 
integer fc. In other words, one can count the elements of S by counting up 
to n, counting each element once and only once. It is a corollary that if 
two sets S and T  have the same cardinal number, then there is a bijection 
between them— namely, the correspondence S] «-» tt, • • •, sn «-» tn. But 
what is not obvious, a priori, is the fact that the same set cannot have two 
different cardinal numbers— that, by recounting in a different order, one 
will not arrive at a different total number of elements. We shall now 
prove this fact, stating first a somewhat more general result.

Theorem 1. Let m and n be positive integers. There exists a bijection 
between the set 1 , • • •, m and a proper subset o f the set 1, • ■ •, n if and 
only if  m <  n.

Proof. If m < n , then the bijections 1 «-» 1, 2 «-» 2, • • •, m **  m is of 
the desired sort. This half of the proposition is obvious, but the converse 
must be analyzed more carefully.

The converse is trivial if m =  1, since 1 is the least positive integer; 
hence we can use induction on m. But now suppose there were a bijection. 
1 «-» / (l), • • •, m «-» f (m )  between 1, • • •, m and a proper subset S of the 
integers 1, • • •, n. Define a new bijection i «-» g (f) [/ =  1, • • •, m — 1] as 
follows:

( 1 ) g (i)  = f ( i )  unless /(/) =  « ;  g ( i )  =  f{m ) if /(/) =  «.

Since /(/) =  n for at most one /, the correspondence i «-» g (i )  would be 
one-one between the integers 1 , ■ • •, m — 1 and certain of the integers 
1, • • •, n -  1.

By hypothesis, the set S of all integers /(/') is a proper subset of the set 
1, • • •, n ; this means that S does not contain all the integers 1, • • •, n. Let 
us select the first positive integer k Si n which is not in S, so that f ( i )  is 
never k for / =  1, • • •, m. If k <  n, the definition (1) shows that no g (i) 
equals fc; if fc =  n, f ( i )  =  n is never true, so no g (i) equals /(m). In 
either event, the integers g ( l ) ,  • • •, g(m -  1 ) fail to include all the 
integers 1 , • • •, n — 1 , so / «-» g ( i )  is one-one between the integers 
1, • • •, m -  1 and a proper subset of the integers 1, • • •, n — 1. Now, by 
mathematical induction, we can assume m -  1 <  n — 1— whence, adding 
one to both sides, m <  n.

Corollary 1. There exists a bijection between the set {1, • • •, m ) and a 
subset of the set {1, • • •, n } if  and only if m Si n.
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Proof. If m S  n, the bijection 1 **  1, ■ • •, m <-» m is of the desired 
sort. Conversely, if i <-> f { i )  is a bijection between {1, • • •, m } and certain of 
the integers 1, • • •, n, it is a bijection between {1, • • ■, m ) and a proper 
subset of {1, • • • , « ,  n +  1}. Hence by Theorem 1, m <  n +  1, so m ^  n.

Corollary 2. I f  there exists a bijection between the set {1, • • • , m} and 
the set {1, • • •, n}, then m =  n.

For, by Corollary 1, m S  n and n si m— whence m =  n. This shows 
that the same set cannot have two different positive integers for cardinal 
numbers.

Corollary 3. I f  S is a proper subset o f the set {1, • • • , n}, there is no 
bijection between the set {1, • • •, n} and the set S.

Proof. If there were such a bijection, Theorem 1 would prove n <  n, 
a contradiction.

The preceding results immediately imply the following. Let 5 and T  
be any two sets whose cardinal numbers are positive integers m and n. 
Then m S  n if and only if there is a bijection between S and a subset of 
T ; m =  n if and only if there is a bijection between S and all of T.

Exercises

1. If a set S has cardinal n, and if i is a particular element of S, show that there
exists a bijection between S and 1, • • •, n in which t corresponds to n.

2. If a set S has cardinal n, show that the deletion of a single element from S
leaves a set S* o f cardinal n — 1.

3. Prove Corollary 1 directly by the method used in the proof of Theorem 1.
4. Do the same for Corollary 3.

12.2. Countable Sets

A  set is called finite if and only if its elements can be counted in the 
usual way. We shall formulate this more precisely as follows.

Definition. A  nonempty set S is called finite if  and only if its cardinal 
number is a positive integer. A  set which is not empty or finite is called 
infinite.
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For example, the set Z+ of all positive integers is infinite. (It is not 
hard to prove this, using Theorem 1.) We shall now introduce the idea 
that infinite sets may also be considered to have cardinal numbers.

Definition. A  set S is said to be countable or denumerable or to have 
the cardinal number d (in symbols,t o (S ) =  d) i f  it is bijective with the set 
o f all positive integers.

This is equivalent to the requirement that it be possible to enumerate 
all the elements of 5 in an ordinary infinite sequence: 
*i» s2, s3, • • •, sn, ■ • •, so that each element o f S appears once and only 
once. If another set T  is bijective with a countable set S, it follows that T  
is itself countable.

Theorem 2 (Paradox of Galileo). Any denumerable set has a bijection 
onto a proper subset o f itself.

Proof. A ll the elements of the set (say 5) can by hypothesis be 
written si, s2, s3, • • •, with the different positive integers as subscripts. 
The bijection Sj s2, s2 s3, • • •, s, si+u • • • is one-one between the 
set 5 and the set obtained from 5 by deleting $!. Q.E.D.

It may be shown that d (“ countable infinity” ) is the smallest infinite 
cardinal number. More precisely, this is

Theorem 3. Any infinite set contains a countable subset.

Proof. Let 5 be the infinite set; choose for Si any element in it. From 
S — {si}, then choose a second element s2; from S - { s i , s 2}  a third 
element s3, and so on. Since 5 is infinite, 5 — {sj, s2, • • •, s„} can never be 
empty; hence we can always choose an s„+i in it,! and the process can 
never stop until we have constructed an infinite sequence of different 
elements o f S.

Corollary (Dedekind-Peirce). A  set S is infinite if  and only if  it has a 
bijection with a proper subset o f itself.

Proof. If 5 is a finite set of cardinal number n, then 5 is bijective 
with 1, • • •, n, so Corollary 3 to Theorem 1 asserts that 5 cannot have a

t  The Hebrew letter X 0 (aleph-nought) is often used instead of d.

t  This construction uses a basic principle of set theory known as the Axiom of Choice: 
that given any set S, there exists a “choice function” y which chooses from any nonempty 
set T  c  S  an element y (T ) e T.
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bijection with a proper part of itself. Conversely, let S be any infinite set; 
it will contain a countable subset U  of elements uu u2, u3, ■ ■ •. The 
function associating each element «, in U  with its successor ui+i, and each 
element of S not in U  with itself, is a bijection from S to a proper part of 
itself. Q.E.D.

In practice, surprisingly many infinite sets 
turn out to be countable (to have the cardinal 
number d). Examples are given by

1/1 2/1 - 3/1-1

1 t t
1/2 — » 2/2 3/2

i 1
1/3 — ► 2/3 —> 3/3

i ..........................
Theorem  4. The set Z  o f all integers is 

countable; the set Q o f all rational numbers is 
countable. Figure 1

Proof The correspondence n «-* 2n +  1 (n =  0, 1, 2, ■ • •) ( - n )
2/i (n =  1, 2, 3, • • •) is one-one between the set 0, -1 , +1, -2 , +2, • • • 
of all integers and the set 1, 2, 3, 4, 5, • • • of positive integers. This proves 
the first assertion.

We shall next prove that the set Q + of all positive rational numbers is 
countable. To do this, we first arrange the quotients of positive integers in 
an infinite square, as in Figure 1. By going around the borders of smaller 
squares in order, we can then arrange all such quotients in the following 
ordinary infinite sequence. The first term is 1/1; the successor of n/l is 
l/(n +  1); the successor of m/n is (m +  l)/n if m <  n, and is m/(n — 1) 
if m g  n >  1. Delete from this sequence all fractions which are not in 
their lowest terms (or equivalently, which are equal to other quotients of 
integers previously enumerated). The resulting subsequence enumerates 
the positive rational numbers in an ordinary sequence, establishing a 
bijection m/n <-> k between Q + and Z +. But this can be easily extended 
to a bijection m/n «-* k, 0 «-* 0, —(m/n) «-* —k between the set Q of all 
rational numbers and the set Z  o f all integers. Since Z  is countable, it 
follows that Q is.

Exercises
1. Show that the set of all integral multiples of 7 is countable.
2. Show that the set of all vectors in a finite-dimensional space Q" over the 

field of rationals is countable.
3. Prove directly that a bijection between the set of all positive integers and a 

finite set is impossible.
4. If S = T  u U, where T  and U  are countable, prove that S is countable.
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5. If S =  T  <u U, where S is countable and T  is finite, prove that U  is 

countable.
6. Show that every subset of a countable set is either finite or countable.
7. Show that the number of decimals ending in an infinite sequence which 

consists exclusively of 9 ’s is countable.
8. Establish specific bijections between the set of all integers and three 

different proper subsets of itself.
9. Show that in Figure 1, m/n is the ( ( «  — l ) 2 +  m)th term if m ^  n and the 

(m 2 — n +  l)st if m >  n.
10. Prove that the field Q (V2) is countable (cf. §2.1).
11. Prove that every group contains a subgroup which is countable or finite.

12. Exhibit a bijection between the field of real numbers and a proper subset 
thereof.

13. Prove that the set of all numbers of the form r +  r'V-T (r, r ' e Q ) is 
countable.

★14. Prove that the ring Q [x ] of all polynomials with rational coefficients is 
countable.

12.3. Other Cardinal Numbers

Not all infinite classes are countable: there is more than one “ infinite” 
cardinal number. For instance.

Theorem 5 (Cantor). The set R o f all real numbers is not countable.

Proof. We use the so-called “ diagonal process.”  Suppose there were 
an enumeration x u x 2, x3, - - -  o f all real numbers. List the decimal

expansions of these numbers after the 
* 1 =  • • • .au a i2a33a\4 • • • decimal point in their enumerated order in
x2 =  • ■ ■ .a21a22a23a24 • • • a square array as in Figure 2. From the
x3 =  • • • ,a33a32a33a34 • • • digits along the diagonal of this array con-
x4 =  • • • .a43a42a43a44 • • • struct a new real number b between 0 and

1 as follows. Where ann is the nth diagonal 
Figure 2 term, let the Mh digit bn in the decimal

expansion of b be ann — 1 if ann T  0 and 
1 if ann =  0. Then b — ,b1b2b3b4 . . .  is the decimal expansion of a real 
number b which differs from the nth number xn of the enumeration in at 
least the nth decimal place. Thus, b is equal to no xn, contradicting our 
supposition that the enumeration included all real numbers.

Remark. This proof is complicated by the circumstance that certain 
numbers, such as 1.000 =  0.999 • • •, may have two different decimal
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expansions, one ending in an infinite succession of 9’s, the other in a 
succession of 0’s. The trouble may be avoided by assuming that the 
former type of expansion (with 9’s) is never used for the decimals 
x u x2, • • • in the original enumeration. The construction of b never yields 
a digit b„ =  9; hence the decimal expansion of b is in proper form to be 
compared with the expansions xn.

Definition. A  set S which is bijective to the set R  o f all real numbers will be 
said to have the cardinal number c of the continuum (in symbols, o (S ) =  c).

In practice, most of the sets occurring in geometry and analysis have 
one of the cardinal numbers d or c. This can be shown case by case, using 
special constructions. But in the long run it is much easier to prove first a 
general principle due to E. Schroeder and F. Bernstein. The formulation 
of this principle involves the general concept of a cardinal number, and so 
we proceed to define this concept now.

Definition. The cardinal number o f a set S is the class of all setsj 
which have a bijection onto S; the cardinal number o f S is denoted by o(S ).

It follows that two sets 5 and T  have the same cardinal number (or 
are cardinally equivalent) if and only if there exists a bijection between 
them. We denote this by the symbolic equation o (S ) =  o (T ).

In virtue of the last sentence of §12.1, the concept of inequality 
between cardinal numbers can be defined in a way which is consistent 
with the ordinary notion of inequality between positive integers.

Definition. We shall say that a set S is cardinally majorizable by a set 
T — and write o (S ) S  o (T )— whenever there is an injection from S to T.

Theorem  6 (Schroeder-Bernstein). I f  o (S ) ^  o (T )  and o (T )  S  o(S), 
then o (S ) =  o (T ).

In words, if there is an injection from S  to T  and another from T  to 5, 
then there is a bijection between all of S and all of T. (The converse is 
trivial.)

Proof. Let s st be the given injection from 5 to T, and let t ^  to- 
be the given injection from I  to a subset of 5. Each element s of 5 is 
the image to of at most one element t =  so--1 of T ; this (if it exists) in 
turn has at most one parent s' =  tr-1 =  so-_1r _1 in S, and so on. Tracing

tThis concept is like that of a “ chemical element,” which is likewise an abstraction, 
referring to all atoms having a specified nuclear charge (i.e., a specified structure).
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back in this way the ancestry of each element of S (and also of T ) as far 
as possible, we see that there are three alternative cases: (a) elements 
whose ancestry goes back forever, perhaps periodically (see Ex. 13), (b)

elements descended from a parentless ancestor 
in S, (c) elements descended from a parentless 
ancestor in T. Corresponding to these cases, 
we divide S into subsets Sa, S„, Sc, and T  into 
subsets Ta, Tb, Tc. Moreover, the category 
containing any element of 5 or T  contains all 
its ancestors and descendants.

Indeed, a  (also r !) is clearly bijective 
between Sa and Ta— each element of Sa is the 
image under a  of one and only one element of 
Ta, while each element t of Ta is the parent of 
one and only one element ta of Sa. Similarly, 
r  (but not m!) is bijective between Sb and Tb, 
while a  (but not r !) bijective between Sc and 
Tc. Combining these three bijections, Sa <h> 
Ta, Sb Tb, and Sc «-» Tc, we get a bijection 
between all of 5 and all of T. Q.E.D.

The situation is illustrated by Figure 3, 
which does not show the elements of infinite 
ancestry. The sets S and T  are represented by 

points on two vertical lines, where r  is represented by the arrows slanting
down to the right and a  by those slanting to the left, while the bijection
of Sb to Tb is indicated by the lines without arrowheads.

Theorem 7. The line segment Sj: 0 <  x <  1, the unit square S2: 
0 < x, y <  1 in the plane, and the unit cube S3: 0 < x, y, z <  1 in space, 
all have the cardinal number c.

Proof. The function x >-+ ex =  y (with inverse y log,, y ) is one- 
one between —oo <  x < ‘+oo and 0 <  y <  +oo; the function y 
y/(l +  y ) =  z with inverse z z/{ 1 -  z ) is bijective between 0 <  y <  
+oo and 0 <  z <  1. Hence the function x ■-> e /(\ +  ex) = z is bijective 
from —oo <  x <  +oo to 0 <  z <  1. This proves the first assertion.

To prove the second, consider the mapping

(2) U i jc 2jc3 • • ■, .y iy 2y3 • • •) '-* .xlyix2y2xiy3 • • •

between ordered couples of real numbers between 0 and 1, written in 
decimal form, and single real numbers between 0 and 1. It is injective
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(although not continuous) between the square S2 and a subset of the line 
segment Si— if it were not that decimals consisting exclusively of 9’s after 
one point were excluded, it would be bijective between S2 and all of Si. 
This proves o (S 2) =  o(S,). But o (S ,) s; o (S 2) (by the obvious mapping 
x >-*• (x, 1/2)); hence by Theorem 6, o (S2) =  o(S,), which is c. A  similar 
mapping

(3) (.x,x2x3 • • •, .y iy 2y 3 • • •, -Ziz2z3 ■ • •) •->. ( . x ^ z ^ y ^ z  • • •)

shows that o(S3) §  o (S i), whence, similarly, o(S3) =  c. Q.E.D.
Further examples of sets o f cardinal number c are listed in the 

exercises.

Exercises

1. Why is the Schroeder-Bernstein theorem trivial in case the set Tc is void? 
What about Sc in this case?

2. Determine explicitly the sets Sa, Sb, Sc, Ta, Tb, Tc when S and T  are the 
intervals -1  S s  S  1/2 and - I S / S  1/2, r  is the injection s >-> s 3 and a  

the injection t >—► t3.
3. The same exercise, if 5 is the set o f positive integers, T  that o f nonnegative 

integers, cr is s >-» s, r  is t >-» t +  1.
4. Prove: Any subset o f real n-dimensional space which contains a continuous 

arc has cardinal number c.
5. Prove that if there is a surjection from S to all o f a second set T, then 

o{T) S o(S).
6. Prove, conversely, that if o (T ) 2= o(S), then there is a surjection of S onto 

T. (You may assume the Axiom o f Choice.)
7. Do the properties “ reflexive,”  “ symmetric,”  and “ transitive”  apply to the 

relation o f cardinal equivalence (o(S ) =  o(T))7 Do they apply to the 
relation o (S ) £  o (T )l Give reasons.

8. If  o(S) S  o (T ) and o{U ) =  o{S), prove that o (U ) S  o(T).
★ 9 . Prove: There are c n x n matrices with quaternion coefficients.

★10. Establish an explicit bijection between the set o f all real numbers between 0 
and 1, inclusive, and the set o f all unlimited decimals ,ala2a3 

★11. The same exercise, for the intervals 0 <  x <  1 and O S i  £  10.
★12. Without using the Schroeder-Bernstein theorem, prove directly that

(a) the set o f nonnegative real numbers has cardinality c;
(b) the set of those positive real numbers which are not integers has 
cardinality c.

★13. Determine explicitly the sets Sa, Sb, Sc, Ta, Tb, Tc when S =  N  u  {a, b, c },
T  =  N  u  {a, b, c}, cr(n) =  n +  1 and cyclic on (a, b, c), and r (n ) =  n +  2
and identity on {a, b, c}.
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*1 2 .4 . Addition and Multiplication of Cardinals

Infinite cardinal numbers can be added and multiplied just like finite 
ones with preservation of all laws except the cancellation laws.

If m and n are positive integers, one may construct a set with cardinal 
number m +  n by starting with a set S' of cardinal m (say the set 
1, • • •, m ) and adding to it a disjoint set S" of cardinal n (say the set 
m + 1, m + 2, • • •, m +  n). The union S' u S" then has cardinal m +  n. 
Similarly, the class of all couples (/,/), where i runs through the integers 
1, • • •, m and j  through the integers 1, • ■ •, n (e.g., the subscripts of an 
m x n matrix) has the cardinal number mn. We shall not prove these 
familiar facts; instead, we shall point out that they suggest the following 
extension of the operations of ordinary addition and multiplication to 
infinite cardinal numbers.

Definition. Let a and /3 be arbitrary cardinal numbers. Then a +  (3 is 
the cardinal number o f those sets which are sums o f disjoint subsets having 
a and fi elements, respectively, and afi is the cardinal number o f the set o f 
all couples (x, y), where x runs through a set o f a elements and y through a 
set o f fi elements.

Addition is single-valued, for if S and T  are sums of disjoint subsets 
S' and S" respectively T ' and T", and there are bijections between S' and 
T ' and between S" and T", then one can combine these into a bijection 
between all of S and all of T. Similarly, multiplication is single-valued. 
Indeed, most of the laws of ordinary arithmetic apply to infinite as well as 
to finite numbers.t

Theorem 8. Addition and multiplication are commutative and 
associative; multiplication is distributive over addition; 1 is an identity.

Proof. The commutative and associative laws of addition are corol
laries of the laws of Boolean algebra. The commutative law of multiplica
tion follows, since the function (jc, y ) ■-» (y, jc) is bijective between the set 
of all couples (jc, y)[jc e S, y e T ]  and that of all couples (y, jc) 

[y e T, x e S], whatever the sets S and T. The associative law of multi
plication follows from an obvious bijection from the set of all triples 
((jc, y), z ) [ jc e S,y e T ,z  e U ] to that of all triples (x, (y, z )) [ jc e  S,

t  Unfortunately, this fact loses much of its interest in the light of the theorem (which we 
shall not prove) that the sum or product of any two infinite cardinal numbers is simply the 
greater of the two. Transfinite exponentiation (§12.5) is much more interesting.
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y e  T , z e  U ], where S, T, and U  are any sets. Finally, if T  and U  are 
disjoint, o (S )(o (T ) + o (U ))  is clearly the cardinal number of the set of all 
couples (x, w) [x  e S, w in T  or U ];  while o (S )o (T ) + o(S )o (t/ ) is that of 
the set of all couples (jc, y) [x  e S, y 6 T ] plus all couples (jc, z ) 
[ jc e S, z e U ], There is an obvious bijection between these two sets, 
proving the distributive law. The proof that 1 • a = a for any cardinal 
number a is trivial.

Theorem 9. The cancellation laws o f addition and of multiplication do 
not hold for infinite cardinal numbers.

Proof The proof of Theorem 2 shows that d = d + 1. But this 
implies d + l  =  (d + l )  +  l  =  d + 2, although 1 *  2— which violates 
the cancellation law of addition. Again, the set Z + of positive integers is 
divisible into the disjoint subsets of even and odd integers, and these are 
countable, whence d + d =  d. Hence by Theorem 8, (1 +  l)d =  1 • d or 
2d = Id—yet 2 * 1 .  Q.E.D.

Actually, the equations a =  a + 1 and a =  a + a hold for all 
infinite cardinal numbers, but we shall not prove this.

It is a corollary that the system of finite and infinite cardinal numbers 
cannot be embedded in any system in which subtraction and division are 
possible; can you prove it?

Exercises

1. Prove in detail (using Boolean algebra) that addition of cardinal numbers is 
commutative and associative.

2. Prove a =  a +  1 for any finite cardinal number a. (Hint: Use Theorem 3.)
3. Prove d +  d +  d =  ddd =  d. (Hint: See Figure 1.)
4. (a) I f  n is a finite cardinal, show that d +  n =  d.

(b) Show likewise that dn =  d.
5. Prove c +  d =  c without using Theorem 6.
6. Prove c +  c =  c- c =  c without using §12.5.
7. Prove dc =  c.
8. Prove the last statement in §12.4.
9. (a) Prove that if x s  d, then x +  d =  x.

(b) Prove that if x +  d =  c, then x =  c.
★10. For a denumerable group G  consider the proof of the Lagrange theorem 

(Chap. 6) on the orders of possible finite subgroups S of G.
(a) Show that the proof puts no restriction on the order of S.
(b) Show that there may exist subgroups of any given finite order in a

denumerable G.
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*1 2 .5 . Exponentiation

If 5 and T  are finite sets with cardinalities m =  o (5 ) and n =  o (T ),  
then the ordinary power nm = o (T )°<s) can be described as the number of 
functions from the set 5 to T. For any such function *  h-> y determines a 
function y =  / (* ) which prescribes for each argument x in 5 a value y in 
T. To count the number of different such abstract functions /, observe 
that the first element x of S has just o (T )  possible images; for each of 
these, there are o (T )  choices for the image y of the second element of S, 
and so on— so that the number of ways of choosing all o(S) images is 
o (T )  multipied by itself o (S ) times, or o (T )o(S\

This combinatory characterization of o (T )0(S) can be applied to 
infinite cardinal numbers.

Definition. Let a and fi be arbitrary cardinal numbers, not 0. Then (3a 
is the number o f functions from a class o f a elements to a class of (3 
elements.

We omit the essentially trivial proof that this defines a univalent 
operation: that if a =  a ' and /3 =  f3’, then /3“ =

Theorem 10. c = 2d.

Proof. Each real number x between 0 and 1 has a dyadic expansion 
.* 1* 2*3 • • • as an infinite seqence of *, equal to 0 or 1. Distinct real 
numbers *  and y have different expansions (§4.3); hence the function 
/ (* ) =  ( * i ,  * 2, * 3 ,  • • •) is one-one. But the number of such sequences is by 
definition the number of functions from a countable domain (namely, the 
set of all d places in the sequence) to a domain of two elements (namely, 
0 and 1). We infer that there are at most 2d real numbers between 0 and 
1— hence by Theorem 7, that c g  2d.

On the other hand, each infinite decimal composed exclusively o f (say) 
3’s and 7’s represents a different real number— hence 2d S  c. Now, using 
Theorem 6, we get c =  2d.

Theorem 11. The following laws on exponentiation hold for arbitrary 
cardinal numbers a, fi, and y: (i) a pa y =  a /3+Y; (ii) (a/3)Y =  a y( i y\ (iii) 
(a p)y = a fiy; (iv) a 1 = a and 1“ = 1.

Proof. The proofs of the two parts of (iv) are trivial. To prove 
identities (i)-(iii), we suppose that S, T, and U  are sets of a, (3, and y 
elements, respectively, with T  and U  disjoint.
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Proof o f (/'). Consider the functions h (v ) from a set V, in which T  
and U  are complementary subsets, to the set S. By definition, the number 
of such functions is a p+y. On the other hand, each such function deter
mines and is determined by a pair (f ( t ) ,  g (u )) o f independent functions, 
one from T  to 5 and the other from U  to 5. The number of these is by 
definition a ea y.

Proof o f (ii). Consider the functions h(u ), assigning to each u e U  a 
pair (s, t) =  ( f (u ), g (u )) of arbitrary values in 5 and T, respectively. The 
number of such functions is (a/3)r, by definition. But it is also the number 
a y(3y of pairs of functions f (u ),  g (u )— one from U  to 5 and the other 
from U  to T.

Proof o f (iii). Consider the functions f (t , u) of two variables t e T  
and u e U  with values in 5; their number is by definition a 0y. But every 
f (t , u) associates with each fixed u a rule f u(t), assigning to each t a value 
fu (t) — f(t, u) in 5. Conversely, each mapping « * - »/ „  defines a function 
f(y , u) =  f u(t) of the variables t and u. Since the number o f f u is by 
definition a 0, the number of f (t , u) is (a*3)*. Q.E.D.

Theorems 10 and 11 allow one to infer a number o f equations 
involving c from corresponding equations on d. Thus,

c 2 =  (2d)2 =  22d =  2d =  c,

2c =  212d =  2d+1 =  2d =  c,

cd =  (2d)d =  2d2 =  2d =  c (cf. Theorem 4).

Using these results, Ex. 1 below, and Theorem 6, we obtain easily such 
rules as dd =  c, nd =  c for any n >  1, and so on.

We shall conclude by proving a generalization of Theorem 5.

Theorem 12. For any cardinal number a, a <  2“ .

Explanation. By this notation is intended the assertion that a S  2“, 
and yet a ^  2“ .

Proof. Let 5 be any set o f cardinal number a. Then 2“ is by 
definition the number of functions f (x ) ,  g (x ), • • • with domain S and with 
values 0 and 1. By defining fx(y ) =  0 if x ^  y and f x(x ) =  1, we get a 
bijection x ++ f x between 5 and a special set of functions from 5 to the 
set (0,1). This proves that a §  2“ .

Conversely, let there be given any bijection x  <-» gx between 5 and 
functions with the domain 5 and with values 0 and 1. Construct a new 
function h (x ): h (x ) =  0 if gx(x ) =  1 and h (x ) =  1 if gx(x) =  0. This 
defines a function with domain S and with values 0 and 1; moreover, by 
construction, h (x ) ^  gx(x ) for all gx. We conclude that h is different from
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every gx, and so, that there exists no bijection between S and the set of 
all functions with domain S and with values 0 and 1. In symbols, a ^  2“ .

Exercises

1. Show that if a S  /?, then for all y:
(a) a  +  y  S  f} +  y, (b ) ay  S  (iy, (c) a y S  p r, (d) ya S y fi.

2. Prove c* =  2*. (Hint: Use Ex. 7 o f §12.4.)
3. I f  a set S has cardinal a, prove that the set o f all possible subsets o f S has

cardinal 2“ . (Hint: Each subset T  S  S determines a so-called characteristic 
function fT(x), with fT(x) =  1 if x e T, fT(x) =  0 otherwise.)

4. Show that the number o f subsets o f the square is equal to the number o f all 
real functions o f a real variable.

★5. W hat is the number o f (a) finite and (b) countable sets o f real numbers?
★6. H ow  many sets o f real numbers are there whose cardinal number is c?

7. Show that the conventions 0° =  1 and 0“ =  0 for all a >  0 are consistent 
with laws (i)- (iv ) o f Theorem  11.
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Rings and Ideals

13.1. Rings

In this chapter, we shall take up the study of general rings and their 
homomorphisms, showing how the latter are associated with ideals. We 
shall then apply the concept of ideals to the geometry of algebraic curves 
and surfaces, and (in Chap. 14) to the factorization theory of algebraic 
numbers. Our basic postulates will be as follows.

Definition. A  ring A  is a system o f elements which is an Abelian 
group under an operation o f addition, and is closed under an associative 
operation o f multiplication which is distributive with respect to addition. Thus, 
for all a, b, c in the ring A ,

(1) a{bc) =  (ab)c, a(b +  c ) =  ab +  ac, (a +  b)c =  ac +  be.

We shall also assume that every ring A  has a unity 1 7s 0, such that 
la  = a l  =  a for all a e A.

Rings include all the integral domains and other commutative rings 
studied in Chapters 1-3, such as Z m (the integers modulo m ), and 
A [x ],  A [x , y], the rings of polynomials with coefficients in any given 
commutative ring A . They also include noncommutative rings, such as the 
quaternion ring of §8.11. The set M „(F ) of all n x n matrices over any 
given field F  is a ring under A  +  B  and AB, which is also noncommuta
tive if n >  1.

395
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If A  and B  are any two rings, the set of all pairs (a, b), with a in A  
and b in B, becomes a ring under the two operations defined by

(a u b i) +  (a2, b2) =  (a x +  a2, b i +  b2),
(2)

(a u b i)(a 2,b 2) =  (a ia 2,b ib 2).

The resulting ring A  ©  B  is called the direct sum of A  and B. Thus if Q 
is the rational field, Z  the domain of integers, and Q  the quaternion ring, 
then Q ©  Z  ©  Q  is a ring. This bizarre example gives some indication of 
the enormous variety of rings!

Much of the theory of commutative rings extends to the noncommuta- 
tive case. Thus the definition of isomorphism of rings given in §1.12 
applies whether or not ab =  ba ; so does the definition of subring given in 
§3.3. Moreover, much of the discussion of commutative rings applies to 
any ring. Thus one can prove that a subset S of a ring A  is a subring if 
and only if 1 e S, while b and c in S imply that b — c and be are in S; 
see also Ex. 1.

Linear Algebras.t Matrices and quaternions are important examples 
of a class of rings having an additional vector space structure. Such rings 
were originally constructed as “ hypercomplex number systems”  more 
extensive than C; today, they are usually called linear associative 
algebras.

Definition. A  linear algebra over a field F  is a set 21 which is a 
finite-dimensional vector space over F  and which admits an associative and 
bilinear multiplication,

(3) a (P y ) =  (a fi)y  (associative),

(4) a(c/3 +  dy) =  c(a/3) +  d (a y ), (ca +  d fi)y  =  c (a y ) +  d((3y)
(bilinear),

where these laws are to hold for all scalars c and d in F  and for all a, (3, y 
in 21. The order o f 21 is its dimension as a vector space. 21 has a unity 
element 1 if  la  =  a =  a 1 for all a in 21. The algebra is called a division 
algebra if, in addition, it contains with every a #  0 an a~ l for which 
a~ la — 1.

In particular, every linear algebra is a ring.

tT h e  material on linear algebras has been included primarily as a source of examples 
and because of its intrinsic interest; it and §13.6 can be omitted without loss of continuity.
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A  celebrated theorem of Frobenius (1878) states that the quaternions 
constitute the only noncommutative division algebra over the field of real 
numbers.

E xam ple  1. Construct over the real numbers an algebra of “ dual 
numbers”  which has two basis elements S and e, which multiply according 
to the rules Se =  eS =  <5, <52 =  0, e2 =  e. From these rules the product of 
any two elements of A  can be found, for

(aS +  be)(cS +  de) =  acS2 +  adfie +  bceS +  bde2 
=  (ad +  bc)S +  bde.

The requisite postulates, such as the associative law for multiplication, 
may be verified. This example, like the quaternions, shows how an 
algebra may be defined by giving a suitable multiplication table for the 
basis elements.

E xa m p le  2. The total matrix algebra M n(F ) o f all n x  n matrices 
over F  has as a basis the matrices E ih which have entry 1 in the i , j  
position and zeros elsewhere. The multiplication table for the basis 
elements is E,jEik =  E ik, EijEkl =  O  ( j  ^  k).

Ex a m p l e  3. Let G  be any finite group, with elements <*i, • • • , an 
and multiplication a,a; =  ak. If F  is any field, there exists a linear algebra 
21 over F  which has the elements of G  for a basis, and in which 
multiplication is determined by bilinearity from the group table for G,

( * ! « !  +  • • • +  x„a „)(y1« i  +  ■ • • +  ynan) =  £  (*/y,)(a,a,).
‘J

This algebra is known as the group algebra of G  over F.
In particular, the group algebra of the cyclic group of order two with 

generator a has the basis 1 =  a 2 and a, and the multiplication

(x ■ 1 +  ya)(u ■ 1 +  va) =  (xu +  y v )l +  (xv +  yu)a.

Relative to the basis /3 = (1 +  a)/2, y =  (1 — a)/2, it has the multiplica
tion table /32 =  /3, y 2 =  y, /3y = y/3 = 0 .

E xa m p le  4. The set of all those 2n  x 2n  matrices which have 
n x n blocks of zeros, at the upper right and the lower left, forms an
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algebra which is a subring of M 2n(F ). It is the direct sum of two copies of 
M n(F ).

We now prove an analogue for matrices of Cayley’s theorem (§6.5, 
Theorem 8). First, we define two algebras 21 and 21' over the same field F  
to be isomorphic when there is a bijection a «-» a ' between their elements 
that preserves all three operations:

(5) (a + p)' =  a ' +  /3', (ca )' = ca', (a/3)' = a'/3',

for all a, /3 e 21 and all c e F.

Theorem 1. Every linear associative algebra of order n with a unity is 
isomorphic to an algebra o f n x  n matrices.

Proof. The algebra 21 is a vector space o f elements $. Associate with 
each element a in 21 the transformation T  obtained by right multiplica
tion as £T =  ga for any £ in 21. Since multiplication is bilinear as in (4), T  
is a linear transformation. Since a unity 1 is present, la  =  1/3 implies 
a =  /3, so distinct elements a and /3 induce distinct transformations T  
and U. Moreover, the algebra postulates give

i (a  +  P ) =  $a +  £/3, i (c a )  =  c(ga ), £(a/3) =  (& )P ,

so the corresponding transformations are a +  /3 >-» T  +  £/, ca >-> cT, 
a/3 >-> TU. This means that the correspondence a ►-> T  is an isomorphism 
of the given algebra to an algebra of linear transformations on 21. The 
transformations in turn are represented isomorphically by matrices, hence 
the statement of the theorem.

E xercises

1. (a) In any ring, prove that (—a)(—b) =  ab and that —(—a) =  a.
(b ) Prove that a0 =  Oa for all a, and that the unity 1 is unique.

2. Prove that the direct sum defined by (2 ) is actually a ring.
3. Prove that the direct sum o f two integral domains is not an integral domain.
4. Define the direct sum o f n given rings, and prove it a ring.
5. Prove that the direct sum o f two linear algebras over a field F can be made

into a linear algebra over F, after suitable definition o f scalar multiplication.
6. Prove the statement o f the text characterizing a subring S.
7. Show that the zero element 0 o f a linear algebra satisfies £ • 0 =  0 =  0 • £ for 

all I
8. Is the algebra o f dual numbers a division algebra? Justify.
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9. Show that the following systems are linear algebras:
(a) a vector space V„, with a  • \3 =  0 for all a  and /3,
(b) all n x tt triangular matrices (entries all 0 below the diagonal).

10. Show that if P  is any invertible n x n matrix over F, then A  >—> P  lA P  is an 
automorphism o f M„ (F). Generalize.

11. Prove that an n x  n matrix A  which commutes with every tt x n matrix is 
necessarily a scalar matrix. (Hint: A  commutes with each E tj.)

12. If 21 is an algebra, show that the set 3  o f all those elements z in 21 which 
commute with every element of 21 is a subalgebra of 21. (It is called the center 
of 21.)

13.2. Homomorphisms

Given two rings A  and A ',  the correspondence a -» aH  is called a 
homomorphism of A  to A ' if a H  is a uniquely defined element o f A ' for 
each element a of A , and if, for all a and b in A,

(6) (a +  b )H  =  aH  +  bH, (ab )H  =  (a H )(bH ), 1H  =  V.

In brief, just as in the commutative case of §3.3, a homomorphism is a 
mapping which preserves unity, sums, and products. As with groups, a 
homomorphism onto is also called an epimorphism.

A  homomorphism H  from the ring A  to A ' is certainly a 
homomorphism of the additive group of A  to that of A '.  Therefore, H  
has the properties, proved in §6.11 for groups,

(7) OH  =  O', (~ a )H  =  - (a H ) ,  ( a - b ) H  =  a H  -  bH.

Here 0' is the zero element of the ring A ', that is, the identity element of 
the additive group of A '.

The familiar correspondence a am, which carries each integer a 
into its residue class modulo m, is a homomorphism of the ring Z  of 
integers to Z m. If f (x )  is any polynomial with coefficients in an integral 
domain D, the correspondence f ( x ) •-» f (b )  found by “ substituting”  for x 
a fixed element b of D  is a homomorphism of the polynomial domain 
D [x ]  to D, for the rules for adding and multiplying polynomial forms in 
an indeterminate x  certainly apply to the corresponding polynomial 
expressions in b. If Q [x ] is the ring of polynomials with rational coeffi
cients, the correspondence f (x )  •-» /(V2) is an epimorphism of the polyno
mial ring Q [x ] onto the field of all numbers a +  f>V2 (see the discussion 
in §2.1). The direct sum A  ©  B  of two rings A  and B  is mapped 
epimorphically on the summand B  by the correspondence (a, b) b\ this
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correspondence preserves sums and products by the very definition (2) of 
the operations in a direct sum.

To describe a particular homomorphism explicitly, one would natur
ally ask when two elements a and b o f the first ring have the same image 
in the second. By the rule (7), this can happen only when their difference 
has the image (a -  b )H  -  O'. Hence we search for the set of elements 
mapped by H  on the zero element 0' of A '.  For example, the 
homomorphism Z  -> Z m maps onto zero all multiples km of the modulus 
m. The set o f all these multiples is closed under subtraction, and also 
under multiplication by any integer of Z  whatever. Similarly, the 
homomorphism f (x )  ►-> f (b )  maps onto zero all polynomials divisible by 
(x -  b), and no others. The set 5 of all these polynomials is also closed 
under subtraction and under multiplication by all members of D [x ] 
(whether in 5 or not). These two examples suggest the following defini
tion and theorem (cf. §3.8).

Definition. A n  ideal C  in a ring A  is a nonvoid subset of A  with the 
properties

(i) C\ and c2 in C  imply that Cj — c2 is in C;
(ii) c in C  and a in A  imply that ac and ca are in C.

Theorem 2. In any homomorphism H  o f a ring A , the set o f all
elements mapped on zero is an ideal in A .

To prove Theorem 2 in general, let C  be the set o f all elements c in A  
with cH  =  O', where 0' is the zero element of the image A '.  Then, for any 
a whatever in A , (a c )H  =  (a H )(cH ) =  (a H )0' =  0' and (ca )H  = 
{cH ){aH ) =  O', which proves (ii). Moreover, CiH =  c2H  =  0' gives by (7)

(C! -  c2) H  =  C\H -  c2H  =  0' -  0' =  O',

hence property (i).
This result suggests that ideals in a ring are analogous to normal 

subgroups in a group. To express this analogy, we call the set of all
elements mapped on zero by a homomorphism H  the kernel o f H, and we 
say that a ring B  is an epimorphic image of a ring A  under the 
homomorphism H  when H  is surjective (an epimorphism), so that every 
element b e B  is the image aH  of some a e A  under H.

Theorem  3. A n  epimorphic image o f a ring A  is determined up to 
isomorphism by its kernel.

Proof. We have to show that if H  and K  are epimorphisms of A  
onto rings A ' and A ",  respectively, and if aH  =  0' if and only if aK  =  0",
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then A '  and A "  are isomorphic. It is natural to let an element a ' e A ' 
correspond to.a" e A "  if and only if these two elements have a common 
antecedent a in A , so

a ' a " when a H  =  a', a K  =  a",

for some a. This correspondence is one-one: under it each a' in A ' 
corresponds to one and only one a" in A ".  To see this, note first that each 
a ' in A ' has at least one antecedent a in A  and hence corresponds to at 
least one a" =  aK  in A ". Second, if a ' «-» a" and a ' b", then

aH  =  a', aK  =  a", bH  =  a', bK  =  b"

for some a, b in A , whence (a -  b )H  =  a ' -  a ' =  O', implying that 
0" =  (a — b )K  =  a" — b" by hypothesis. The correspondence also pre
serves sums and products, for if a ' <-» a " and b' <-> b", then

a' +  b' =  (a +  b )H  <-» (a +  b )K  =  a" +  b"

a 'b ' =  (ab )H  <-» (a b )K  =  a"b"

where a is a common antecedent of a ' and a", and b one for b' and b".
The two properties (i) and (ii) of an ideal have several immediate 

consequences. Any ideal C  contains some element c, hence (i) shows 
c — c =  0 to be in C. Therefore 0 — c =  —c is also in C  for any c in C.
By property (i), we find that the sum c x +  c2 =  Ci -  ( - c 2) of any two
elements of C  lies in C. Thus, since 1 e A , a nonvoid subset C  of A  is an 
ideal o f A  if and only if every linear combination axc i ±  a2c2 and 
Cifli ±  c2a2 lies in C, for Ci and c2 in C  and coefficients a\ and a2 in A . 
In particular, an ideal of A  need not be a subring of A , since it may not 
contain the unity of A . The whole ring A  and the subset (0) consisting of 
0 alone are always ideals in any ring A . They are called improper ideals of 
A . Any other ideal is called proper. Correspondingly, a proper epimorph
ism of a ring A  is one whose kernel is a proper ideal, so that the 
epimorphism is not an isomorphism (mapping only (0) on O').

Theorem  4. A  division ring has no proper epimorphic images.

Proof. It suffices to show that a division ring D  can have no proper 
ideals. Let C  be any ideal in D  which is not the ideal (0), and which thus 
contains an element c ^  0. By (ii), C  then contains 1 =  c-1c and, by (ii) 
again, C  contains any element a — a • 1 of the whole division ring. 
Therefore C  is improper, as asserted.
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If b is an element in a commutative ring A , the set (b) of all multiples 
xb of b, for variable x in A , is an ideal, for properties (i) and (ii) may be 
verified. This ideal (b ) is known as a principal ideal; it is the smallest ideal 
of A  containing b. We recall that, by Theorem 6 of §1.7, every ideal in 
the domain Z  of integers is principal. By Theorem 11 of §3.8, the same is 
true in the domain F [x ] of polynomials in one indeterminate over any 
field F.

In the ring Q[x, y] of polynomials in two variables with rational 
coefficients, the set C  of all polynomials with constant term zero is an 
ideal. It is not a principal ideal, for the two polynomials x  and y both lie 
in C  and cannot both be multiples of one and the same polynomial 
f{x , y). Though this ideal C  is not generated by any single polynomial 
f ix , y), all its elements can be represented by linear combinations 
xglx, y ) +  yhlx, y ) with polynomial coefficients, so the whole ideal is 
given by the linear combinations of two generating elements x and y.

Consider now the ideal generated by any given finite set of elements 
in a commutative ring A . If an ideal C  contains elements c i, c2, • • •, cm, 
then it must contain all linear combinations x,c, of these elements with 
coefficients x, in A . But the set

(8) (ci, c2, • ■ •, cm) =  [all elements £  x,c, for Xj in A ]
i

is itself an ideal, for

I -  I  y,c, =  £  (x, -  y jc , and a l lx ,c , l  =  I (a x ,)c „
i i i '  i '  i

so the set has the properties (i) and (ii) requisite for an ideal. Since A  has 
a unity element 1, each c, is necessarily one of the elements c, = 
0 • Cj +  • ■ • +  0 • c,—i +  1 • c, +  0 • ci+1 +  ■ • • +  0 ■ cm in this set (8). 
Therefore, the set (ci, • ■ ■, cm), defined by (8), is an ideal of A  containing 
the c, and contained in every ideal containing all the c,. It is called the 
ideal with the basis c 1}- - - ,  cm. (Such basis elements do not resemble 
bases of vector spaces because XiCi +  • • • +  xmcm =  0 need not imply 
Ci =  • • • =  cm =  0.)

In most familiar integral domains, every ideal has a finite basis, but 
there exist domains where this is not the case.

Exercises

1. Which of the following mappings are homomorphisms, and why? If the 
mapping is a homomorphism, describe the ideal mapped into zero.
(a) a >-* 5a, a an integer in Z;
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(b) f ix ) •-» fi<o), f (x ) a polynomial in Q [x ], cj a cube root of unity;
(c) f(x, y) *-» fit, t), mapping F[x, y] into F[/] ix, y, t indeterminates).

2. Show that every homomorphic image of a commutative ring is commuta
tive.

3. In the ring Q[x, y ] of polynomials fix, y) =  a +  bxx +  b2y +  G * 2 +  
c2xy +  c3y 2 +  • ■ •, which of the following sets of polynomials are ideals? If 
the set is an ideal, find a basis for it.
(a) all f(x, y) with constant term zero (a =  0),
(b) all fix, y) not involving x ibt =  =  c2 =  • • ■ =  0),
(c) all polynomials without a quadratic term (c! =  c2 = c3 = 0).

4. (a) Find all ideals in Z 6. (b) Find all homomorphic images of Z 6.
5. Prove in detail that the only proper epimorphic images of Z  are the rings 

Z/ im )  =  Z m defined in Chap. 1.
6. (a) Find all ideals in Z m for every m.

(b) Find all epimorphic images of Z m.
7. Find all ideals in the direct sum of two fields. Generalize.
8. Find all ideals in the direct sum Z  ©  Z, where Z  is the ring of integers.

★9. I f  C, and C2 are ideals in rings A ,  and A 2, prove that C, ©  C2 is an ideal in
the direct sum A x ©  A 2, and that every ideal in the direct sum has this 
form.

10. In an integral domain show that (a) = (b) if and only if a and b are 
associates (§ 3.6).

11. I f  A  is a commutative ring in which every ideal is principal, prove that any 
two elements a and b in A  have a g.c.d. which has an expression 
d = ra + sb.

★12. Let A  be a ring containing a field F  with the same unity element (e.g., A  
might be a ring of polynomials over F ). Prove that every proper 
homomorphic image of A  contains a subfield isomorphic to F.

★13. Let Z *  be the ring of all rational numbers m/n with denominator relatively 
prime to a given prime p. Prove that every proper ideal in Z * has the form 
i p k) for some positive integer k.

13.3 Quotient-rings

For every homomorphism of a ring there is a corresponding ideal of 
elements mapped on zero. Conversely, given an ideal, we shall now 
construct a corresponding homomorphic image. An ideal C  in a ring A  is 
a subgroup of the additive group of A . Each element a in A  belongs to a 
coset, often called the residue class a ' =  a +  C, which consists of all sums 
a +  c for variable c in C. Two elements a x and a2 belong to the same 
coset if and only if their difference lies in the ideal C. Since addition is 
commutative, C  is a normal subgroup of the additive group A , so the 
cosets of C  form an Abelian quotient-group, in which the sum of two
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cosets is a third coset found by adding representative elements, as

This sum was shown in §6.13 to be independent of the choice of the 
elements ax and a2 in the given cosets.

To construct the product of two cosets, choose any element ax +  c x in 
the first and any element a2 +  c2 in the second. The product

(a x +  c x)(a 2 +  c2) =  axa2 +  (axc2 +  c xa2 +  c xc2) -  axa2 +  c '

is always an element in the coset a xa2 +  C, for by property (ii) of an ideal 
the terms axc2, cxa2, and CiC2 lie in the ideal C. Therefore all products of 
elements in the first coset by elements in the second lie in a single coset; 
this product coset is

The associative and the distributive laws follow at once from the corre
sponding laws in A, and the coset which contains 1 acts like a unity, so 
the cosets of C  in A  form a ring.

The correspondence a>-> a' =  a +  C  which carries each element of 
A  into its coset is an epimorphism by the very definitions (9) and (10) of 
the operations on cosets. In the epimorphic image, the zero element is the 
coset 0 +  C, so the elements of C  are mapped upon zero. These results 
may be summarized as follows:

Theorem  5. Under the definitions (9 ) and (10), the cosets of any ideal 
C  in a ring A  form a ring, called the quotient-ringt A/C. The function 
a >-* a +  C  which carries each element of A  into the coset containing it is 
an epimorphism of A  onto the quotient-ring A/C, and the kernel o f this 
epimorphism is the given ideal C.

Corollary 1. I f  A  is commutative, so is A/C.

The relation of ideals to homomorphisms is now complete. In particu
lar, the uniqueness assertion of Theorem 3 can be restated thus:

Corollary 2. I f  an epimorphism H  maps A  onto A ' and has the kernel 
C, then A ’ is isomorphic to the quotient-ring A/C.

t  The ring A /C  is also often called a residue class ring, since its elements are the residue 
classes (cosets) of C  in A .

(9) (a i +  C ) +  (a2 +  C ) — (a x +  a2) +  C.

(10) (ax +  C )(a 2 +  C ) — axa2 +  C.
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The ring Z m of integers modulo m can now be described as the 
quotient-ring Z /(m). Conversely, with this example in mind, one often 
writes a =  b (C ), and says that a and b are congruent modulo an ideal of 
a ring R, when (a -  b ) e C.

Every property of a quotient-ring is reflected in a corresponding 
property of its generating ideal C. To illustrate this principle, call an ideal 
C  <  A  maximalt when the only ideals of A  containing C  are C  and the 
ring A  itself. Call an ideal P  in A  prime when every product ab which is 
in P  has at least one factor, a or b, in P.

In commutative rings, prime ideals play a special role. Thus, in the 
ring Z  of integers, a (principal) ideal (p )  is a prime ideal if and only if p is 
a prime number, for a product ab of two integers is a multiple of p if and 
only if one of the factors is a multiple of p, when p is a prime but not 
otherwise.

Theorem 6. I f  A  is a commutative ring, the quotient-ring A / C  is an 
integral domain if and only if  C  is a prime ideal, and is a field if and only if 
C  is a maximal ideal in A .

Proof. The commutative ring A / C  is an integral domain if and only 
if it has no divisor of zero (§1.2, Theorem 1). This requirement reads 
formally

(11) a'b ' =  0 onlyif a ' =  0 or b' = 0,

where a' and b' are cosets of elements a and b in A . Now a coset a' of C  
is zero if and only if a is in the ideal C, so the requirement above may be 
translated by

(12) ab in C  only if a is in C  or b is in C.

This is exactly the definition of a prime ideal C.
Suppose next that C  is maximal, and let b be any element of A  not in 

C. Then the set of all elements c +  bx, for any c in C  and any x in A , can 
be shown to be an ideal. This ideal contains C  and contains an element b 
not in C; since C  is maximal, it must be the whole ring A . In particular, 
the unity 1 is in the ideal, so for some a, 1 =  c +  ba. In terms of cosets 
this equation reads V =  b'a'. Thus, for any coset b' =  b +  C  ^  C, we 
have found a reciprocal coset a ' =  a +  C, which is to say that the 
commutative ring of cosets is a field. Conversely, if A / C  is a field, one 
may prove C  maximal (Ex. 10). Q.E.D.

t “ Maximal” is sometimes replaced by the term “divisorless.”
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Since every field is an integral domain, Theorem 6 implies that every 
maximal ideal is prime. Conversely, however, a prime ideal need not be a 
maximal ideal. For example, consider the homomorphism f(x , y) ►-» 
/(0, y) which maps the domain F [x , y ] of all polynomials in x and y with 
coefficients in a field on the smaller domain F [y ], The ideal thereby 
mapped onto 0 is the principal ideal (x ) of all polynomials which are 
multiples of x. Since the image ring F [y ] is indeed a domain, this ideal (x ) 
is a prime ideal, as one can also verify directly. But F [y ] is not a field, so 
(x) cannot be maximal. It is in fact contained in the larger ideal (jc, y), 
which consists of all polynomials with constant term zero.

Exercises

1. Prove the associative and distributive laws for the multiplication of cosets.
2. Let congruence modulo an ideal C S A b e  defined so that a =  b (mod C) if 

and only if a -  b is in C. Prove that congruences can be added and
multiplied, and show that a coset of C consists of mutually congruent
elements.

3. Prove in detail Corollary 1, Theorem 5.
4. Find all prime ideals in the ring Z of integers.
5. Find all prime ideals and all maximal ideals in the ring F [jc ] of polynomials

over F.
★6. Prove without using Theorem 6 that every maximal ideal of an integral 

domain is prime.
★7. Find a prime ideal which is not maximal in the domain Z[x\ of all poly

nomials with integral coefficients.
8. Show that, in the domain Z[a>] of all numbers a + ba> (a, b integers, <u an 

imaginary cube root of unity), (2 ) is a prime ideal. Describe Z [a > ]/(2 ) .
9. In the polynomial ring Q [ jc, y], which of the following ideals are prime and 

which are maximal?
(a) (x2) (b) (x -  2 , y -  3 ), (c) (y -  3),
(d) (x2 + 1), (e) (x2 -  1), (f) (x2 + 1, y -  3).

10. Prove that if a quotient-ring A/C  is a field, then C  is maximal.
11. F in d  a fa m ilia r  r in g  iso m o rp h ic  to each of the fo llo w in g  q u otient rings A/C:

(a) A  =  Q [jc], C =  (jc -  2) ; (b) A  =  Q[x], C  =  (x2 +  1);
(c) A  = Q[x,y], C  = (x,y -  1); (d) A = Z[x], C  = (3,x);
(e) A  = Z *  C  = (p), as in Ex. 13 of § 1 3 .2 .

12. (The “ Second Isomorphism Theorem.” ) Let C >  D  be two ideals in a ring A.
(a) Prove that the quotient C/D is an ideal in A/D.
(b) Prove that A/C  is isomorphic to (A/D)/(C/D). (Hint: The product of 

two homomorphisms is a homomorphism.)
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*1 3 .4 . Algebra of Ideals

In c lu s io n  b e tw e e n  id e a ls  is  c lo s e ly  r e la t e d  to  d iv is ib il it y  b e tw e e n  

numbers. In the ring Z  of integers n | m means that m =  an, hence that 
every multiple of m is a multiple o f n. The multiples of n constitute the 
principal ideal (n), so the condition n | m means that (m) is contained in 
(n ). Conversely, (m ) <= (n ) means in particular that m is in (n), hence 
that m =  an. Therefore

(m) <= (n) if and only if n\m.

More generally, in any commutative ring R, (b) <= (a ) implies that b =  ax 
for some x e R — that is, that a | b. Conversely, if a \ b, then b =  ax for 
some x e R  and so by =  axy e (a ) for all by e (b), whence (b) <= (a). 
This proves

Theorem  7. In a commutative ring R,

(13) (b ) <= (a ) if  and only if  a\b.

But beware! The “ bigger”  number corresponds to the “ smaller”  ideal; for 
instance, the ideal (6) of all multiples of 6 is properly contained in the 
ideal (2) of all even integers.

The g.c.d. and l.c.m. also have ideal-theoretic interpretations. The 
least common multiple m of integers n and k is a multiple of n and k 
which is a divisor of every other common multiple. The set (m ) of all 
multiples of m is thus the set of all common multiples of n and k, so is 
just the set of elements common to the principal ideals (n) and (k ). This 
situation can be generalized to arbitrary ideals in arbitrary (not necessar
ily commutative) rings, as follows.

The intersection B  n  C  of any two ideals B  and C  of a ring A  may be 
shown to be an ideal. If D  is any other ideal of A , the ideal B  n  C  has 
the three properties

B  n  C  <= B, B  n  C  C, and 

D  c  B  and D  <=■ C  imply D  <=■ B  n  C.

The intersection is thus the g.l.b. of B  and C  in the sense of lattice 
theory.

Dual to the intersection is the sum o f two ideals. If B  and C  are ideals 
in A, one may verify that the set

(14) B  +  C  =  [all sums b +  c for b in B, c in C]
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is an ideal in A . Since any ideal containing B  and C  must contain all sums 
b +  c, this ideal B  +  C  contains B  and C  and is contained in every ideal 
containing B  and C. Thus B  +  C  is a l.u.b. or join in the sense of lattice 
theory.

Theorem 8. The ideals in a ring A  form a lattice under the ordinary 
inclusion relation with the join given by the sum B  +  C  o f (14) and the 
meet by the intersection B  n  C.

If the integers m and n have d as g.c.d., then the ideal sum (m ) +  (n ) 
is just the principal ideal (d ). For, by (13), (d ) => (m ) and (d ) => (n); since 
d has a representation d =  rm +  sn, any ideal containing m and n must 
needs contain d and so all of (d ). Therefore, (d ) is the join of (m ) and 
(n); that is, (d ) =  (m ) +  (n ).

The preceding observation can be generalized as follows:

Lemma. In  a commutative ring R , the sum (b) +  (c) o f two principal 
ideals is itself a principal ideal (d ) if  and only if  d is a greatest common 
divisor o f b and c.

W e leave the proof to the reader.
In general, if ideals B  and C  in a commutative ring are generated by 

bases

(15) B  =  (bu • • •, bm), C  =  (c u - ■ ■ ,c n),

then we have, for any b +  c e B  +  C,

b +  c =  I  x,bi +  I  yjCj,
‘ j

as in (8). That is, B  +  C  is generated by b’s and c ’s, so that

(16) (b\, , bm) +  (d ,  , cn) (b\, *, bm, Ci, , cn).

This rule, in combination with natural transformations of bases, may be 
used to compute greatest common divisors of integers explicitly. For 
example,

(336) +  (270) =  (336, 270) =  (336 -  270, 270) =  (66, 270)

=  (66, 270 -  4 x 66) =  (66,6) =  (6),

so that the g.c.d. of 336 and 270 is 6.
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In any commutative ring, one can also define the product B  • C  of any 
two ideals B  and C,

(17) B  ■ C  =  [all sums bxc x +  • • • +  bmcm for f>, ini?, c; in C].

This set is in fact an ideal; it is generated by all the products be with one 
factor in B  and another in C, so is the smallest ideal containing all these 
products. In particular, the product of two principal ideals (b) and (c) is 
simply the principal ideal (be) generated by the product of the given 
elements b and c. More generally, if ideals B  and C  are determined by 
bases as in (12), any product be has the form

be =  ( l x A ' ) ( l y ;cy)  =  ZCxiyjXbiCj).
'  i '  '  j  '  i j

Hence the product ideal B C  has the basis

(18) B C  (b\C\, b\C2y , bmcn~\, bmcn).

Such products are useful for algebraic number theory (§14.10).

Exercises

1. Prove in detail that B  n  C  and B  +  C  are always ideals.
2. Prove that the product B C  of (17) is an ideal.
3. Draw a lattice diagram for all the ideals in Z ^ .
4. If f ( x )  and g (x ) are polynomials over a field, and d (x )  is their g.c.d., prove 

that ( f ( x ) )  +  (g (x ) )  =  (d (x )).
5. Compute by ideal bases the g.c.d.’ s (280, 396) and (8624, 12825).
6. Prove that every ideal in the ring Z  of integers can be represented uniquely 

as a product of prime ideals.
7. Prove the following rules for transforming a basis of an ideal:

(Cj, c2, ■ ■ • , cm) = (Cj +  xc2, c2, • • • , cm),
(xc 1, C1, c2, , cm) (cj, C2, * , Cm).

8. Simplify the bases of the following ideals in l?[x, y]:

(x2 +  y, 3y, 4x3 +  x 2), (x 2 +  3xy +  y2, 2x2 -  y 2, x 2 +  6xy, x 3 +  y2).

9. (a) In any commutative ring, show that B C  <=B nC .
(b) Give an example to show that BC <  B n C is possible.
(c) Prove that B ( C  +  D )  =  B C  +  BD.

★10. Prove that the lattice of ideals in any ring is modular in the sense of Ex. 10, 
§11.7.
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11. In a commutative ring A ,  let B : C  denote the set of all elements x  such 
that xc is in B  whenever c is in C.
(a) If B  and C  are ideals, prove that B : C  is also an ideal in A.  (It is called 

the “ ideal quotient.” )
(b) Show that (B, n B2) : C  = (B ,: C)  n (B 2 : C).
(c) Prove that B : C  is the l.u.b. (join) of all ideals X  with C X  c  B.

12. Prove that if a ring R  contains ideals B  and C  with B n C  =  0, B  +  C  =
R, then R  is isomorphic to the direct sum o f B  and C.

13.5. Polynomial Ideals

The notion of an ideal is fundamental in modern algebraic geometry. 
The reason for this soon becomes apparent if one considers algebraic 
curves in three dimensions.

Generally, in the n -dimensional vector space F", an (affine) algebraic 
variety is defined as the set. V  of all points (jci, • • •, x„) satisfying a 
suitable finite system of polynomial equations

(19) f i ( x u ■ • • ,x n) =  0, •••,  /m(x j, • • • ,xn) =  0.

For example, in R 3, the circle C  of radius 2 lying in the plane parallel 
to the (x, y)-plane and two units above it in space is usually described 
analytically as the set of points (x , y, z ) in space satisfying the simultane
ous equations

(20) x 2 +  y2 -  4 =  0, 2 - 2  =  0.

These describe the curve C  as the intersection of a circular cylinder and a 
plane. But C  can be described with equal accuracy as the intersection of a 
sphere with the plane z =  2, by the equivalent simultaneous equations

(21) x 2 +  y2' +  z 2 -  8 =  0, z — 2 =  0.

Still another description is possible, by the equations

(22) x2 +  y2 -  4 =  0, x2 +  y 2 -  2z =  0.

These describe C  as the intersection of a circular cylinder with the 
paraboloid o f revolution x 2 +  y 2 =  2z.

One can avoid the preceding ambiguity by describing C  in terms of all 
the polynomial equations which its points satisfy. But if /(x, y, z ) and 
g(x, y, z ) are any two polynomials whose values are identically zero on C,
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then their sum and difference also vanish identically on C. So, likewise, 
does any multiple a(x, y, z )f(x , y, z ) of / ( jc, y, z ) by any polynomial 
a(x, y, z ) whatsoever. This means that the set of all polynomials whose 
values are identically zero on C  is an ideal. This ideal then, and not any 
special pair of its elements, is the ultimate description of C. We will now 
show that the set of all such equations is an ideal.

Theorem 9. In F ", the set J (S ) o f all polynomials which vanish 
identically on a given set S is an ideal in F [jcx, ■ • • , jc„].

For, if p (x u • ■ ■, jc„ )  vanishes at a given point, then so do all multiples 
of p, while if p and q vanish there, so do p ±  q. The same is true of 
polynomials which vanish identically on a given set; in fact J (S ) is just the 
intersection of the ideals J(£) of polynomials which vanish at the different 
points £ e S.

Thus, in the case of the circle C  discussed above, J (C ) is the ideal of 
all linear combinations

(23) h(x, y, z ) =  a(x, y, z ) (x 2 +  y2 -  4) +  b(x, y, z )(z  -  2),

with polynomial coefficients a (x ,y ,z )  and b(x, y, z). That is, J (C ) is 
simply the ideal (jc2 +  y 2 — 4, z — 2) with basis x 2 +  y 2 — 4 and 2  — 2. 
The polynomials of (21) generate the same ideal, for these polynomials 
are linear combinations of those of (20), while those of (20) can con
versely be obtained by combination of the polynomials of (21). The 
polynomial ideal determined by this curve thus has various bases,

(24) (jc2 +  y 2 -  4, 2  -  2) =  (jc2 +  y2 +  2 2 -  8 ,2  -  2)
=  (jc2 +  y 2 -  22, 2 -  2).

The quotient ring R [jc, y, 2 ]/ (jc2 +  y2 — 4 , 2  — 2) has an important 
meaning. Namely, it is isomorphic with the ring of all functions on C  (cf. 
§3.2) which are definable as polynomials in the variables jc, y, 2 . It is 
clearly isomorphic with R [jc, y]/(jc +  y 2 -  1), and hence to the ring of all 
trigonometric polynomials p(cos 6, sin 6) with the usual rules of identifica
tion. This quotient ring is called the ring of polynomial functions on C, 
and its extension to a field is called the field of rational functions 
on C.

The twisted cubic C3: jc = t, y =  t2r z =  t3 is an algebraic curve which 
(unlike C ) can be defined parametrically by polynomial functions of the
parameter t. Evidently, a given point (jc, y, 2 ) lies on C3 if and only if
y =  jc2 and 2  =  jc3. Hence C3 is the algebraic curve defined in R 3 by the 
ideal M  =  (y — jc2, 2  — jc3).
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By definition, a polynomial p(x, y, z ) vanishes identically on C3 if and 
only if pit, f2, t3) =  0 for all t e R. Now consider the homomorphism!

(25) f{x , y, z ) i-» f it , t2, t3) it an indeterminate).

Clearly, y =  x 2 and z =  x 3 for all points on C3, which shows that y -  x 2 
and z — x 3 will lie in our ideal M. But, conversely, observe that the 
substitution y — y' +  x 2, z =  z ' +  x3 will turn any polynomial f ix , y, z ) 
into a polynomial f ix ,  y1, z '), and that in this form the homomorphism
(25) is

(25') f ix ,  y', z ') f i t ,  0,0).

This correspondence maps onto 0 every term o f /' which contains y' or z ', 
and no others, so the polynomials mapped onto zero are simply those 
which are linear combinations g(x, y, z )y ' +  h ix ,y ,z )z '. Therefore, our 
ideal M  is exactly the ideal iy ',z ')  =  (y -  x 2, z -  x 3) with basis y' =  
y — x 2, z ' = z — x 3. This expresses C3 as the intersection of a parabolic 
cylinder and another cylinder. In the further analysis o f C3, the quotient- 
ring R[x, y, z ]/M  plays an important role. The mapping (25) shows that 
this quotient-ring is isomorphic to the polynomial ring R [f].

The sum of two ideals has a simple geometric interpretation. For 
example, in R[x, y, z ] the principal ideal (z — 2) represents the plane 
z =  2, because all the polynomials f ix , y, z )iz  -  2) of this ideal vanish 
whenever x, y, and z are replaced by the coordinates of a point on the 
plane z =  2. Similarly, the principal ideal ix 2 +  y2 — 4) defines a cylinder 
of radius 2 with the z-axis as its axis. The sum of these two ideals is 
ix 2 +  y2 — 4, z -  2), according to the rule (16). We have just seen that 
this sum (23) represents the circle which is the intersection of the plane 
and the cylinder. In fact, it is obvious that the locus corresponding to the 
sum of two ideals is the intersection of the loci determined by the ideals 
separately.

Conversely, any ideal J in the polynomial ring R [x1; • • • ,x „ ] deter
mines a corresponding locus, which consists of all points (a 1; • • •, an) of 
n -space such that f {a u • ■ • , an) =  0 for each polynomial / e /. Hilbert’s 
Basis Theorem asserts that J has a finite basis /1; • • • , f m, so that the 
corresponding locus V  is indeed an algebraic variety. However, the ideal 
J iV )  of this variety may be larger than the given ideal J  (cf. Ex. 3 
below).

t Caution. The tact that (25) defines a homomorphism is not obvious; to prove it requires 
an extension of Theorem 1 of §3.1.
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Exercises

1 . F in d  th e  idea l b e lo n g in g  to  th e  cu rv e  w ith  th e  p a ra m e tr ic  e q u a tio n s  x — t +  1, 
y =  t3, z =  t4 +  t2 in R 3.

2. Show that any ideal (ax +  by +  cz, a'x +  b'y +  c'z) generated by two linearly 
independent linear polynomials determines a line in R 3.

3. (a) Show that the ideals (x, y) and (x2, xy, y2) in R[x, y, z ] determine the same
algebraic variety.

(b) Show that any ideal and its square determine the same locus.
4. Show in detail that the set of polynomials in R[jt,, • • ■, jc„ ] vanishing identi

cally on any locus C  is an ideal.
5. (a) What is the locus determined by xy =  0 in three-dimensional space?

(b) Prove that the locus determined by the product of two principal ideals is 
the union of the loci determined by the two ideals individually.

(c) Generalize to arbitrary ideals. (Hint: If a point in the locus of the product 
is not in the locus determined by the first factor, it fails to make zero at 
least one of the polynomials in the first ideal.)

(d) What is the locus determined by the intersection of two ideals?
6. (a) Compute the inverse of the “ birational”  transformation

T: x' = x, y' =  y -  x2, z' =  z + y  + x3.
(b) Prove that the set of all substitutions of the form x' =  x, y' =  y +  p(x), 

z =  z' + q(x, y) (p, q polynomials) is a group.
(c) Show that each such substitution induces an automorphism on the ring

R[x, y ,z ].
7. (a) If H  is an ideal in a commutative ring A,  the radical of H  is the set V H  of

all x in A  with some power xm in H. Prove that 'J~H is an ideal.
(b) If H  is an ideal in the polynomial ring C[x, y, z], V  the corresponding 

locus, prove that J(V) contains 'J~H. (The Hilbert Nullstellensatz asserts 
that J(V ) = -JH.)

8. Describe the locus determined by x2 +  y 2 =  0 (a) in R 3 and (b) in C3.

★13.6. Ideals in Linear Algebras

In a noncommutative ring one may consider “ one-sided”  ideals. A  
left ideal L  in a ring A  is a subset of A  such that x — y and ax lie in L  
whenever x and y are in L  and a is in A . A  right ideal may be similarly 
defined. In contrast to these notions, an ideal in our previous sense is 
called a two-sided ideal. For example, in the ring M 2 of all 2 x 2  
matrices, the matrices in which the first column is all zero form a left ideal 
but do not form a two-sided ideal.

These concepts may be profitably applied to a linear algebra A  with a 
unity element 1; as observed in §13.1, any such linear algebra A  is a ring. 
In this case, any left ideal L  or right ideal R  is closed also with respect to
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scalar multiplication. Thus, if fi is any element in L  and c any scalar, then 
L  contains cfi, because cfi =  (c • l )f i  is the product of an element in L  by 
some element c • 1 in A . I f A  is regarded as a linear space over its field F  
of scalars, any left (or right) ideal o f A  is thus a subspace.

A  linear algebra is said to be simple if it has no proper (two-sided) 
ideals. Thus, a simple algebra has no proper homomorphic images.

Theorem 10. The algebra o f all n x  n matrices over a field is simple.

Proof. This algebra M „ has as a basis the n2 matrices E iS, which have 
entry 1 in the (/,/) position and zero elsewhere. A  proper ideal B  in M„

would contain at least one nonzero matrix A  =  £  a ‘‘E^, with a coefficient
I

ars 5* 0. Each matrix

(26) (ars)~ lE krA E sk =  {a„)~ l £  E^E^E^a^ =  E kk
‘J

then lies in B. Consequently, the identity matrix I  -  £  E kk is in B, so B
k

must be the whole algebra, and is improper. Q.E.D.
Wedderburn (1908) proved a celebrated converse of Theorem 10. 

This converse asserts that, in particular, every simple algebra over the 
field C of complex numbers is isomorphic to the algebra of all n x  n 
matrices over C. To handle the general case, one needs the concept o f a 
division algebra. By this is meant a linear algebra which is a division ring. 
Using the fundamental theorem of algebra, one can prove that the only 
division algebra over the complex field C is C itself. A  famous theorem of 
Frobenius asserts that the only division algebras over the real field R  are 
R, C, and the algebra of quaternions (§8.11).

One can construct a total matrix algebra M n(D )  of any order n over 
any division ring D, as follows. To add or multiply two n x  n matrices 
with coefficients in a division algebra D, apply the ordinary rules,

l l ^ y l l  T  l l ^ y l l  I\ t t i j  +  6 , y  | | ,  c | | t Z / y | |  , | | c £ Z j y | | ,

(27)

KIHIM = X &ik,bkj
k = 1

Wedderburn’s result is that if F  is any field, the most general simple 
algebra A  over F  is obtained as follows. Take any division algebra D  
over F  and any positive integer n. Then A  consists of all n x  n matrices 
with coefficients in D.
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E xerc ises

1. Prove that every division algebra is simple.
2. Find all right ideals in a division algebra.
3. Discuss the algebra of left ideals in a ring, describing sums, intersections, and 

principal left ideals.
4. Show that eveiy quotient-ring of a linear algebra over F  is itself a linear 

algebra.
5. (a) If S is a subspace o f the vector space F ”, prove that the set o f all matrices

with rows in S is a left ideal of M „(F ).
★(b) Show that every left ideal C  of M n(F )  is one of those described in part

(a). {Hint: Show that every row of a matrix of C  is the first row of a 
matrix in C  which has its remaining rows all zero. Use the methods of

★6. Extend Theorem 10 to the total matrix algebra M n(D )  over an arbitrary 
division ring D.

13.7. The Characteristic of a Ring

Any ring R  can be considered as an additive (Abelian) group. The 
cyclic subgroup generated by any a e R  consists of the mth powers of a, 
where m ranges over the integers. In additive notation we write m X a 
for the mth “ power”  of a. Thus, if m is positive integer,

(28) m X a  =  a +  a +  -- - +  a (m summands);

if m =  0, 0 x a =  0; while if m =  —n is negative,

We call m x a the mth natural multiple of a ; it is defined for any m e  Z  
and a e R.

These natural multiples of elements in a domain D  have all the 
properties which have been proved in §6.6, in the multiplicative notation, 
for powers in any commutative group; hence,

§§7.6-7.7.)

(29) (—n) x  a =  n x  (—a)

=  (—a ) +  (—a ) +  • • • +  (—a) (n summands).

(30) (m x a) +  (n x  a) =  (m +  n) x  a,
m x  (n x  a) — (mn) x  a, and

(31)
m x ( a  +  6)  =  m x a  +  m x 6 ,  

m x ( - a )  =  (-m ) x a.
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There are further properties which result from the distributive law. One 
general distributive law (see §1.5) is

(a +  a +  • • • +  a)b =  ab +  ab +  • • • +  ab (m summands).

In terms of natural multiples, this becomes

(32) (m x a)b =  m x  (ab) =  a(m  x  b).

This also holds for m =  0 and for negative m, for with m = —n the 
definition (29) gives

(-n )  x ab =  n x  ( -a b )  =  [n x  (-a f\b  =  [ ( -n )  x a]b.

The rule (a +  • • • +  a)(b  +  • • • +  b) =  ab +  • • • +  ab is another gen
eral distributive law. It may be reformulated as

(33) (m x a)(n  X  b) -  (mn) x  (ab).

This also is valid for all integers m and n, positive, negative, or zero.
Setting a — 1, the unity (multiplicative identity) o f R, (32) shows that. 

m x b is just (m  x  1 )b, the product of b with the mth natural multiple of
1. Moreover, setting a -  1 in (30), we see that the mapping m »-» m x  1 
from Z  into R  preserves sums. Finally, setting a =  b =  1 in (33), we 
obtain

(33') (m  X  l)(n  X  1) =  (mn) X  (1 • 1) =  (mn) X  1;

the mapping preserves products. This proves

Theorem  11. The mapping m »-» m x  1 is a homomorphism from the 
ring Z  into R  for any ring R.

Corollary 1. The set o f natural multiples o f 1 in any ring R  is a subring 
isomorphic to Z  or to Z m for some integer m >  1.

Definition. The characteristic o f a ring R  is the number m o f distinct 
natural multiples m x  1 o f its unity element 1.

Corollary 2. In the additive group o f an integral domain D , all nonzero 
elements have the same order— namely, the characteristic o f D .

Proof. For all nonzero b e D , m x  b =  O if and only if (m x  1 )b =  
0, which is equivalent by the cancellation law to m x  1 =  0. Q.E.D.
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The domain Z  of all integers has characteristict °o, while the domain 
Zp has characteristic p. These are the only characteristics possible:

Theorem  12. The characteristic o f an integral domain is either oo or a 
positive prime p.

To prove this, suppose, to the contrary, that some domain D  had a 
finite characteristic which was composite, as m =  rs. Then by (33'), the 
ring unity 1 of D  satisfies

By the cancellation law, either r x l  =  0 or 5 X 1  =  0. Hence the 
characteristic must be a divisor or r or of s, and not m, as assumed.

Corollary. In any domain, the additive subgroup generated by the 
unity element is a subdomain isomorphic to Z  or to Zp.

The binomial formula (9) of §1.5 illustrates the value of natural 
multiples. In any commutative ring R, the expansion

(a +  b)2 =  a2 +  ab +  ba +  b2 =  a2 +  2 x (ab) +  b2

has a middle term which is, properly speaking, a natural multiple 
2 x  (ab). More generally, the proof by induction given in §1.5 of the 
binomial formula (9) there involves the binomial coefficients as natural 
multiples, and so we can write

0  =  f f l X l  =  (rs) X  1 =  (r X  1)  • (5 X  1) .

(34)
( ” )  x  (a n~ 'b ) +  ( " )  x  (a n~2b2)(a +  b )n =  an + +  • • • +

where the coefficients ( ” ) are natural integers given by the formulas

(35) ( " )  =  \n!]/ [(« -  /)!**!], i =  0,1, • • •, n,

and where n! =  n(n -  1) • • • 3 • 2 • 1 and 0! =  1.

t  Most writers use “ characteristic 0”  in place of “ characteristic 00.”
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Theorem 13. In any commutative ring R  o f prime characteristic p, the 
correspondence a ap is a homomorphism.

Proof. By (6), we are required to prove that V  =  1, that (ab)p =  
apbp, and that (a ±  b)p -  ap ±  bp for all a,b e R. The first two equa
tions hold in every commutative ring. As for the third, set n =  p in 
formulas (34) and (35). Since p is a prime, it is not divisible by any of the 
factors of /! or (p  -  /)! for 0 <  i <  p. Hence all the binomial coefficients 
in (34) with 0 <  / <  p are multiples of p. But the ring R  has characteris

tic p\ hence all terms in (34) with factor 0 <  i < p , drop out. There 

follows the identity

(36) (a ±  b)p =  ap ±  bp,

completing the proof.

Corollary. In a finite field F  o f characteristic p the correspondence 
a ►-> ap is an automorphism.

Proof. Since ap =  0 implies a =  0 in F, the kernel of the 
homomorphism a >-» ap is 0, and the homomorphism is one-one. Since F  
is finite, this implies that a *-» ap is also onto, hence an automorphism.

Exercises

1. Show that the natural multiple m x  a can be defined for positive m by the 
“ recursion formulas”  1 x  a =  a, (m  +  1) x  a =  m x  a + a.

2. Prove by induction the rules (30) and (32) for positive natural multiples.
3. Obtain Fermat’s theorem (§1.9, Theorem 18) as a corollary of Theorem 13.
4. What can you say about the characteristic of an ordered integral domain?
5. (a) Show that a : a *-»■ a" is one-one (a monomorphism) in any integral domain

D  of characteristic p.
(b) Show that if D  = Zp(x), then the image of a is a proper subdomain of D.
(c) Show that a finite field must have a proper automorphism unless it-is one of 

the “ prime” fields Zp.

13.8. Characteristics of Fields

Since a field is defined as an integral domain in which division (except 
by zero) is possible, the discussion of characteristics applies at once to 
fields. If a field F  has characteristic p, then by Theorem 12 the additive
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subgroup of F  generated by its unity element is a subfield and is 
isomorphic to the finite field composed of the integers modulo p. If a field
F  has characteristic oo, then by Theorem  12 the subgroup generated by 
the unity element 1 consists of all multiples m x 1, and so the subfield 
generated by c is composed of all the quotients (m X l)/(n x 1), with 
n 5* 0. This subfield is the field o f quotients o f the subdomain of all 
multiples m x 1. As such, by Theorem 7 of §2.2, it is isomorphic to the 
field o f rational numbers, which is the field of quotients of the domain of 
the integers m m x  1. Indeed, the map (m x  l)/(n x  l ) e  m/n is an 
isomorphism between the subfield generated by 1 and the field of rational 
numbers. This proves the following result (cf. Corollary 2 of Theorem 18, 
§2 .6):

Theorem  14. In a field of characteristic oo, the subfield generated by 
the unity element is isomorphic to the field Q of all rational numbers.

The isomorphism (m x  1 )/(n x l ) o  m/n preserves all four rational 
operations in such a field F. In dealing with a single field F, it is thus 
possible (and convenient) to identify each quotient (m x  l)/ (n  x 1) with 
its corresponding rational number m/n. With this convention, each field 
of characteristic oo may be said to contain all the rational numbers m/n, 
with n #  0. By a similar convention every field of characteristic p may be 
said to contain the field Zp. In this sense, every field is an extension of 
one of the minimal fields (so-called prime fields) Q and Zp. Therefore it is 
natural to begin a systematic classification of fields with a survey o f the 
ways of extending a given field. Such a survey will be made in the next 
chapter.

Exercises

1. Let F 4 be any field with exactly four elements.
(a) Show that F4 has characteristic 2.
(b) Show that both elements not in the prime subfield Z2 of F 4 satisfy 

x2 = x + 1.
(c) Using this fact, show that F 4 is isomorphic to the field Z [ oj]/(2) of Ex. 8, 

§13.3.
2. Find all automorphisms of the field F 4 of Ex. 1.
3. Show that the conventional formula for the solution of a quadratic equation 

applies to any field of characteristic not 2.
4. Over which fields is the usual formula (§5.5) for solving a cubic equation valid?
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Fields

14.1. Algebraic and Transcendental Extensions

The remaining two chapters are concerned with solutions of poly
nomial equations p (x ) =  0 over a general field F  and their properties. It 
will be shown that any such equation can be solved in a suitable extension 
of F, by which is meant a field K  containing F  as a subfield. Thus 
p (x ) =  0 always has one root in the quotient-field F [x ]/ (p ) of the 
polynomial ring F [x ] by the principal ideal of multiples of p.

After describing general properties o f such extensions, we will study 
specifically the field of all “ algebraic numbers”  obtained by extending the 
rational field Q in this way. A  brief introduction is given to algebraic 
number theory, through the problem of proving unique factorization 
theorems for “ integers”  in certain quadratic extensions Q [x]/(x2 -  r) =  
q(Vr), r e Z .  For instance, the Gaussian integers m +  n>/-l (the case 
r =  —1) can be uniquely factored into Gaussian primes.

The simplest kind of extension K  of a field F  is that consisting of 
rational expressions p (c )/q (c ) =  (£  akc k)/(£l b,cr) of a single element 
c e K  with coefficients ah bj in F. For example, the complex numbers 
a +  bi are generated by the reals and the single complex number i, while 
the field Q (x ) of all rational forms (with rational coefficients) in an 
indeterminate x is generated by the field Q and the element x. A  single 
field may be generated in several different ways. For example, the field 
Q(V2) is generated by a root V2 of the equation x 2 -  2 and consists of all 
real numbers a +  b 'J l with rational coefficients a and b (see the^xample

420
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in §2.1). A  different equation x 2 +  4x +  2 =  0 has a root — 2 +  -^2 which 
generates the same field Q(V2), for any number in the field can be 
expressed in terms o f  this new generator as

a +  b 'H  =  (a +  2b) +  b ( -2  +  ^2).

The usual process of completing the square, applied to this equation, 
gives x 2 +  Ax +  2 =  (jc +  2)2 — 2 =  0, so that y =  x +  2 satisfies a new 
equation y2 — 2 =  0 with a root generating the same field. The use of a 
transformations of variables to simplify an equation thus corresponds to 
the choice of a new generator for the corresponding field.

Let us describe in general the subfield generated by a given element in 
any extension 1C of a field F. Let 1C be a given field, F  a subfield of K, 
and c an element of K. Consider those elements of K  which are given by 
polynomial expressions of the form

(1) /(c) =  a0 +  axc +  a2c 2 +  • ■ • +  anc n (each a, in F ).

Any subdomain of K  containing F  and c necessarily contains all such 
elements /(c). Conversely, the set of all such polynomials is closed under 
addition, subtraction, and multiplication. Therefore these expressions (1) 
constitute the subdomain of K  generated by F  and c. This subdomain is 
conventionally denoted by F [c ], with square brackets.

If /(c) and g (c ) t4 0 are polynomial expressions like (1), their quotient 
f (c )/ g (c ) is an element of K, called a rational expression in c with 
coefficients in F. The set of all such quotients is a subfield; it is the field 
generated by F  and c and is conventionally denoted by F (c ), with round 
brackets.

A  field K  is called a simple extension of its subfield F  if K  is generated 
over F  by a single element c, so that K  =  F (c ). The fields Q(V2), Q(-^5), 
and Q ( « )  discussed in §2.1 are all instances o f simple extensions. It can 
be proved that any extension of F  whatever is obtainable by a finite or 
(well-ordered) transfinite sequence of simple extensions.

Over the field of rational numbers, some complex numbers, such as i, 
V2, ^5, V—3, satisfy polynomial equations with rational coefficients. 
There are other numbers, like tt and e =  2.71828 • • •, which can be 
shown to satisfy no such equations (except trivial ones). The latter 
numbers are called “ transcendental.”  This important dichotomy applies 
to elements over any field.

Definition. Let K  be any field, and F  any subfield of K. A n  element c 
of K  will be called algebraic over F  if  c satisfies a polynomial equation with
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coefficients not all zero in F,

(2) a0 +  axc +  a2c 2 +  • • • +  anc n =  0 (a, mF, not all 0).

A n  element c o f K  which is not algebraic over F  is called transcendental 
over F.

A  simple extension K  =  F (c ) is said to be algebraic or transcendental 
over F, according as the generating element c is algebraic or transcenden
tal over F. The structure of a simple transcendental extension is especially 
easy to describe.

Theorem 1. I f  c is transcendental over F, the subfield F (c ) generated 
by F  and c is isomorphic to the field F ix ) o f all rational forms in an 
indeterminate x, with coefficients in F. The isomorphism may be so chosen 
that a a for each a in F, and c ►-> x.

Proof The extension F (c )  clearly contains F  and all the rational 
expressions f (c )/ g (c ) with coefficients in F. If two polynomial expressions 
/i(c) and /2(c) are equal in F (c ), their coefficients must be equal term by 
term, because otherwise the difference f f ie )  -  f 2(c ) would yield a poly
nomial equation for c with coefficients not all zero, contrary to the 
assumption that c is transcendental over F. Therefore the correspondence 
/(c) <-» f (x )  is a bijection between the domain F [c ] and the domain F [x ] 
of polynomial forms in an indeterminate x. By the rules for operating 
with polynomials, this correspondence is an isomorphism. It may be 
extended by Theorem 6 of §2.2 to give the isomorphism f (c )/ g (c ) 
f (x )/ g (x ) between F (c ) and F (x ).

Exercises

1. Identify each of the following complex numbers as algebraic or transcendental 
over the field Q of rational numbers and cite your reasons: ffl, $5, it2, e +  3 
(where e = 2.71828 • • •)> * +  3, e2m, >/2 +  i.

2. Show that if x is algebraic (over F), then so are x 2 and x + 3, and conversely.
3. What numbers in Q(V5) generate the whole field?
4. (a) If d is an integer which is not a square, describe the field Q(Vd).

(b) Find those elements in Q(Vd) which generate the whole field.
(c) Express each such element as a root of a quadratic equation with coeffi

cients in Q.
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14.2. Elements Algebraic over a Field

We next investigate the nature of simple algebraic extensions of a field 
F, generated by F  and a single element u algebraic over F. By definition, 
this element must satisfy over F  a polynomial equation of degree at least 
one. The same element u may satisfy many different equations; for 
example, V2 is a root of x 2 — 2 =  0, x 3 -  2x =  0, x 4 — 4 =  0, and so 
on. But it is the root o f just one irreducible and monic polynomial 
equation (see also Ex. 6 below).

Theorem 2. I f  an element u o f an extension K  o f a field. F  is algebraic 
over F, then u is a zero o f one and only one monic polynomial p (x ) that is 
irreducible in the polynomial domain F [x ]. I f  h is another polynomial in 
F [x], then h (u ) =  0 if and only if h is a multiple o f p in the domain F [x ], 
that is, if  and only if h is in the principal ideal (p ) o f F [x ].

Proof. The polynomials h e F [x ] with h (u ) =  0 constitute an ideal 
in F [x ]; this ideal is just the kernel of the homomorphism <f>u: F [x ] -» K  
defined by the “ evaluation map”  p >-*■ p (u ) that assigns to each poly
nomial p its value at u e K. Like all ideals of F [x ], this ideal is principal 
(§3.8, Theorem 11), and so consists of all multiples of any one of its 
members of least degree. Just one of these is monic; call it p. This p is 
irreducible, for otherwise it could be factored as p =  fg, where / and g 
are polynomials of smaller degree, which would imply f (u )g (u ) =  p (u ) =  
0, so either / (« )  =  0 or g (u ) =  0 contrary to the choice of p as a 
polynomial of least degree with p (u ) =  0. The proof is complete.

Definition. The minimal polynomial of an element u algebraic over a 
field F  is the (unique) monic irreducible polynomial p e F [x ] with p (u ) =  0; 
the degree n =  [u  :F ] o f u over F  is the degree o f this polynomial.

Corollary. I f  the element u has degree n over a field F, then one has 
a0 +  a iu +  • • • +  =  0 for coefficients a, in F  if  and only if
ao — a\ = • • • = a„_i = 0.

W e are now in a position to describe the subfield of K  generated by F  
and our algebraic element u. This subfield F (u )  clearly contains the 
sub-domain F [ « ]  of all elements expressible as polynomials / (« )  with 
coefficients in F. Moreover, the mapping /(x) >-► f (u )  will be shown to be 
an isomorphism <f>': F [x ]/ (p ) -» F (u ) of fields between the quotient-ring 
F [x\/(p ) and F (u ).

The rest of this section will be concerned with this result. From the 
formulas for adding and multiplying polynomials, it is evident that <f>' is
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an epimorphism from F[x\ to the subdomain F [n ], But actually, the 
domain F [ « ]  is a subfield. Indeed, let us find an inverse for any element 
f lu )  5* 0 in F[m]. The statement that f lu )  ^  0 means that u is not a root 
of /(jc), hence by Theorem 2 that f ix )  is not a multiple of the irreducible 
polynomial p (x ), hence that f (x )  and p lx ) are relatively prime. Therefore 
we can write

(3) 1 =  t lx )f ix )  +  s(x )p (x)

for suitable polynomials t (x ) and s(x) in F [x ]. The corresponding equa
tion in F [u ] is 1 =  t (u )f(u ). This states that the nonzero element f lu )  of 
F [u ] does have a reciprocal t (u ) which is also a polynomial! in u, and 
shows that jF[m] is a subfield of K.

Since, conversely, every subfield of K  which contains F  and u evi
dently contains every polynomial f lu )  in F [u ], we see that jF[m] is the 
subfield of K  generated by F  and u. We have proved

Theorem 3. Let K  be any field, and u an element of K  algebraic over 
the subfield F  of K\ let p (x ) be the monic irreducible polynomial over F  of 
which u is the root. Then the mapping (/>': f (x )  t-* f lu )  from the polynomial 
domain F [x ] to F (u ) is an epimorphism with kernel (p (x )).

Combining this result with Corollary 2 of Theorem 5, §13.3, we have 
an immediate corollary.

Theorem 4. In Theorem 3, F {u ) is isomorphic to the quotient-ring 
T\x~\/{p), where p is the monic irreducible polynomial of u over F.

The quotient-ring F [* ]/ (p ) can be described very simply. Each 
polynomial f ix )  e F [x ] is congruent modulo Ip ) to its remainder 
r (x ) -  f ix )  ~  a lx )p lx ) when divided by p lx ), and this is a unique 
polynomial

(4) r lx ) =  r0 +  ryx +  • • • +  r ^ x " ' 1

of degree less than n. To add or subtract two such polynomials, just do 
the same to their coefficients. To multiply them, form their polynomial 
product as in §3.1, (3'), and compute the remainder under division by 
p lx ).

Thus, in the special case of the extension Q (n/2) of the rational field

t  For example, in Q[^3], 1 + ^3  has the multiplicative inverse, found by “rationalization 
of the denominator” as 1/(1  + ^3) = (1 -  V5)/(l + %/3)(l -  V5) = - j  + 5V3 .
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F  =  Q  by u =  V2, we have p (x ) =  x 2 — 2. Hence any element of Q (u ) 
can be written as a +  hV2 with rational a, b, and

(a +  hV2)(c +  dyFl) — a2 +  (ad +  be)'/2 +  bd(^2)2 

=  (a 2 +  2 bd) +  (ad +  b c )J2

Formula (4) reveals the quotient-ring F [x ]/ (p ) as an n-dimensional 
vector space over F ; it is the quotient space of the infinite-dimensional 
vector space F [x ] by the subspace of multiples of p (x ). Note also that 
multiplication is bilinear (linear in each factor). Hence the algebraic 
extension F (x )/ (p ) can also be considered as a commutative linear 
algebra over F, in the sense of §13.1.

Exercises

1. Find five different polynomial equations for V3 and show explicitly that they 
are all multiples of the monic irreducible equation for V3 (over the field Q).

2. In the simple Q (u ) generated by a root u of the irreducible equation 
u3 -  6u2 +  9u +  3 =  0, express each o f the following elements in terms of 
the elements 1, u, u 2, as in (4): w4, u 5, 3u 5 — n4 +  2, \/(u +  1),
1 / ( u 2 — 6 u + 8).

3. In the simple extension Q (u )  generated by a root u of x 5 +  2x +  2 =  0, 
express each of the following elements in the form (4): ( « 3 +  2) ( « 3 +  3 «), 
u4(u4 +  3u2 +  7 u +  5), 1/u, (u +  2)/(u2 +  3).

4. Represent the complex number field as a quotient-ring from the domain R[x] 
o f all polynomials with real coefficients.

5. Represent the field Q (V2) as a quotient-ring from the domain Q [x ] of 
polynomials with rational coefficients.

6. Prove directly from the relevant definitions: If u is algebraic over F, then the 
monic polynomial of least degree with root u is irreducible over F.

7. Prove from the relevant definitions: If u is any element of a field K, and F  any 
subfield of K, then the set of all polynomials g (x ), with coefficients in F, of 
which u is a root is an ideal o f F [x ].

14.3. Adjunction of Roots

So far we have assumed as given an extension K  of a field F, and have 
characterized the subfield of K  generated by F  and a given u e K  in 
terms of the minimal (i.e., monic irreducible) polynomial p over F  such 
that p (u ) =  0. Alternatively, we can start just with F  and an irreducible 
polynomial p and construct a larger field containing a root o f p (x ) =  0.
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This “ constructive”  approach generalizes the procedure used in Chapter 
5 to construct the complex field C from the real field R  by adjoining an 
“ imaginary”  root of the equation x 2 +  1 =  0. The characterizations of 
Theorems 3 and 4 show how to achieve the same result in general.

Theorem  5. I f  F  is a field and p a polynomial irreducible over F, there 
exists a field K  =  F [x]/ (p ) which is a simple algebraic extension o f F  
generated by a root u o f p (x ).

Proof. Since p (x ) is irreducible, the principal ideal (p ) is maximal in 
F [x ]. Hence the quotient-ring F [x]/ (p ) is a field, by §13.3, Theorem 6. It 
contains F  and the residue class x +  (p) containing x, which satisfies 
p {x ) =  0 in F [x ]/ (p ).

This simple extension is unique, up to isomorphism:

Theorem  6. I f  the fields F {u ) and F (v ) are simple algebraic extensions 
o f the same field F, generated respectively by roots u and v o f the same 
polynomial p irreducible over F, then F {u ) and F (v ) are isomorphic. 
Specifically, there is exactly one isomorphism of F {u ) to F (v ) in which u 
corresponds to v and each element o f F  to itself.

Proof. Take the composite <fiu~'<fiv of the isomorphisms 

F {u ) F [x ]/ (p )---- » F (v )

provided in Theorem 3.
Theorem 5 may be used to construct various finite fields. For example,

start with the field Z 3 of integers modulo 3. The polynomial x 2 — x — 1
has none of the three elements 0, 1, or 2 as a zero; hence it is irreducible 
in Z 3[x]. Therefore the quotient-ring Z 3[jc]/(jc2 — x — 1) is a field K  
generated by its subfield Z 3 and the coset, call it u, of x. Moreover, since 
[w : F ] =  2, every element of this field K  can be written uniquely as 
a +  bu, with a ,b e  Z 3, so K  has exactly nine elements.

This field can also be constructed directly without using the concept of 
a quotient-ring. It consists of just nine elements of the form a +  bu. The 
sum of two of them is given by the rule

(a +  bu) +  (c +  du) =  (a +  c ) +  (b +  d)u.

To compute the product of two elements of this type, we “ multiply out”  
in the natural fashion and then simplify by the proposed equation
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u2 =  u +  1. The result is

( a +  b u ) (c  +  d u ) =  ac  +  (ad  +  b c )u  +  bdu2
= (ac +  bd) +  (ad +  be +  bd)u.

One can verify in detail that the nine elements a +  bu (a, b e Z 3) under 
these two operations satisfy all the postulates for a field. In particular, the 
inverses of the nonzero elements are given by

1 2 u 2 u 1 +  u 1 +  2 u 2 +  u 2 +  2 u

1 2 2 +  u 1 +  2 u 2 +  2 u 2 u u 1 +  u

By its construction, this field is clearly the field Z 3(u) generated by u from 
the field Z 3 of residue classes. It is one of the simplest examples of a finite 
field (see §15.3).

The preceding adjunction process may be applied to any base field F  
whatever. If F  is the field R of all real numbers, and p (x ) the polynomial 
x 2 +  1 irreducible over R, then the construction yields a field R(u) 
generated by a quantity u with u2 =  -1 . This quantity u behaves like 
i =  n/-T, and the field R (u) is actually isomorphic to the field C of 
complex numbers; we thus have a slight variant of the construction used 
in Chap. 5 to obtain the complex numbers from the real numbers.

If F  is the field Zp of integers modulo p, and if p (x ) is some 
irreducible polynomial over F, the construction above will yield a field 
consisting of elements a0 +  axu +  • • • +  an- Jun~1. There are only a 
finite number p of choices for each coefficient a,-; hence the field con
structed is a finite field of p n elements, where n is the degree of the 
polynomial p.

One can construct algebraic function fields in the same way. Thus, let 
F  =  C (z ) be the field of all rational complex functions; let it be desired to 
adjoin to F  a function t (z ) such that t2 =  (z 2 — 1 ) (z 2 — 4). We can 
consider the polynomial p (t) =  f (z , t) -  t2 — (z 2 -  1 ) (z 2 — 4) as an 
irreducible quadratic polynomial in t with coefficients in C (z ). The 
quotient-ring K  =  F\t]/p(t)) is then a field containing all rational func
tions and the algebraic function t. One can study t (z ) as an element of K, 
without having to construct a Riemann surface for it (it is two-valued). 
The field K  is called an elliptic function field because it is generated by the 
integrand of an elliptic integral,

J.V(z2 -  l ) ( z 2 -  4) dz.
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If Theorem 6 is applied to an ordinary polynomial such as x 3 — 5, 
irreducible over the field Q  of rationals, it can refer equally to the 
extension of Q by the positive 3 5 or to Q(w5^5) where to =  (—1 +  '/3i)/2 
is a complex cube root of unity. It shows that these two fields Q (^5 ) and 
Q(m-3^5) are algebraically indistinguishable because they are isomorphic.

This isomorphism means, roughly speaking, that any two roots of an 
irreducible polynomial p (x ) have the same behavior, and that all the 
algebraic properties of a root u may be derived from the irreducible 
equation which it satisfies. There are many examples of such an 
isomorphism. For instance, the field C =  R(i) of complex numbers is 
generated over the field R of real numbers by either of the two roots ± i  
of the equation x 2 +  1 =  0. Hence there is by Theorem 6 an automorph
ism of C carrying i into This automorphism is just the correspondence 
a +  bi * *  a -  bi between a number and its ordinary complex 
conjugate.

Exercises

1. Exhibit an automorphism not the identity of each of the following fields: • 
Q(V2), QC'/—3), Q (i).

2. Exhibit a nonreal field of complex numbers isomorphic to each of the real 
fields Q C ^ ), Q(</2).

3. Prove that x 3 +  x — 1 is irreducible over the field Z5 of integers modulo 5. If 
a root o f this polynomial is adjoined to Z5, how many elements has the 
resulting field?

4. (a) Find polynomials o f degrees 2 and 3 irreducible over the field o f integers
modulo 2.

(b) Construct addition and multiplication tables for a field with four ele
ments.

5. (a) Show that the field of nine elements constructed in the text has charac
teristic 3.

(b) Exhibit explicitly the isomorphism a «-» a3 for this field.
6. (a) Find all the irreducible quadratic polynomials over the field Z3.

(b) Prove that any two fields with nine elements are isomorphic. (Hint: First 
show that every element in such a finite field is quadratic over Z3.)

7. Prove that the polynomial t2 -  (x 2 -  l ) (x 2 — 4) is irreducible in t over the 
field C (x). (Hint: Use the results o f §3.9.)

8. Prove that the elliptic function field C(x, y ) of the text can be generated over 
C (x ) by a root z of the equation t2 =  (x 2 — 4)/(x2 -  1).

9. If g(t) is a reducible polynomial, which elements in the quotient-ring 
FI*]/(g(/)) actually have inverses?

10. Use Theorem 6 of §13.3 to give another proof that F [t ]/ (p (t ) )  is a field.
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14 ,4 . Degrees and Finite Extensions

In a simple extension F ( u )  generated by an elem ent u o f  degree n, 
every  elem ent >v has by form ula (4 ) a unique representation as

(5) w =  a0 +  oiH +  • • • +  an- lUn-\

with coefficients in F. This unique representation closely resembles the 
representation of a vector in terms of the vectors of a “ basis” 
1, u, • • •, un~\ This suggests an application of vector space concepts. 
Indeed, any extension K  of a field F  may be considered as a vector space 
over F : simply ignore the multiplication of elements of K, and use as 
operations of the vector space the addition of two elements of K  and the 
multiplication (a “ scalar”  multiplication) of an element of K  by an 
element of F. A ll the vector space postulates are satisfied by this addition 
and scalar multiplication. If this vector space K  has a finite dimension, 
then the field K  is called a finite extension of F, and the dimension n of 
the vector space is known as the degree n = (X :F ]  of the extension.

For example, the complex field C =  R (f) is a two-dimensional vector 
space over the real subfield R  (as in §5.2); the field Q-^5) generated by 
the rational numbers and a cube root of 5 is a three-dimensional vector 
space over the rational subfield Q, and so on. In general, Theorem 4 on 
simple algebraic extensions may be restated in terms of dimensions as 
follows.

Theorem  7. The degree of an algebraic element u over a field F  is 
equal to the dimension of the extension F (u ), regarded as a vector space 
over F. This vector space has a basis 1, « , • • • ,

In §14.5 we shall show how the vector space approach may be used to 
analyze extensions of a field F  obtained by adjoining several different 
algebraic elements. But before discussing such “ multiple”  extensions we 
shall first see how the vector space approach enables one to compare the 
irreducible equations satisfied by different elements in the same simple 
algebraic extension F (u )  over F.

A  fundamentlal fact about vector spaces is the invariance of the 
dimension (any two bases of a space have the same number of elements). 
This fact may be applied to the special case of finite extensions of fields, 
as follows,

Corollary. I f  two algebraic elements u and v over a field F  generate the 
same extension F (u )  =  F (v ), then u and v have the same degree over F.
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A  simple algebraic extension is finite, and, conversely, every finite 
extension consists of algebraic elements.

Theorem  8. Every element w of a finite extension K  of F  is algebraic 
over F  and satisfies an equation irreducible over F  of degree at most n, 
where n =  [K :F ]  is the degree o f the given extension.

Proof. The n +  1 powers 1, w, w2, • • •, w" of the given element w 
are elements of the n -dimensional vector space K, hence must be linearly 
dependent over F  (§7.4, Theorem 5, Corollary 2). There must, therefore, 
be a linear relation b0 +  biw +  • • • +  bnwn =  0 with not all coefficients 
zero. Interpreted as a polynomial, this relation implies that w is algebraic 
over F.

Corollary. Every element of a simple algebraic extension F {u ) is alge
braic over F.

This important conclusion assures us that a transcendental element 
would never appear in a simple algebraic extension.

In working with a particular simple algebraic extension F (u ), the 
irreducible polynomial p (x ) for u must be used systematically, for by 
Theorem 2 an element g (u ) in the extension is zero if and only if the 
polynomial g (x ) is divisible by p (x ). Suppose, for instance, that Q (u ) is an 
extension of degree 3 over the field Q of rationals, generated by a root u 
of x 3 — 2x +  2. This polynomial is irreducible by the Eisenstein irreduci
bility criterion (§3.10). The element w = u2 — u in this extension Q (u ) 
must satisfy some polynomial equation of degree at most 3. To find this 
equation, express the powers w2 =  u4 — 2u3 +  u2 and w3 =  
u6 -  3u 5 +  3m4 -  u3 linearly in terms of 1, u, and u2, as in Theorem 4. 
This is done by applying repeatedly the given equation u3 =  2u — 2. This 
gives

w =  u2 — u, w2 =  3m2 — 6m +  4, w3 =  16u2 -  28u +  18.

To obtain the linear relation which must hold between 1, w, w2, and w3, 
one may solve the equations for w and w2 linearly to get u and n2, as

(6) m  = —w2/3 +  w +  4/3, u2 =  —w2/3 +  2w +  4/3.

These, substituted in the expression for w3, give the desired equation

w3 — 4w2 — 4w — 2 =  0.
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This equation is irreducible over Q , by the Eisenstein theorem . A lterna
tively, one may argue by equation (6 ) that u is in Q (w ),  so that
Q ( « )  =  Q ( w )  a n d  u a n d  w  g e n e r a t e  t h e  s a m e  e x te n s io n ,  a n d  b y  th e
Corollary to Theorem  7 have the same degree 3 over Q . This means that 
any equation o f degree 3 fo r  w must be irreducible.

Exercises

1. Each of the following numbers is in a simple algebraic extension of Q, hence 
is algebraic over Q. Find in each case the monic irreducible equation satisfied 
by the number, (a) 2 + V3, (b) yf5 f  V5, (c) $2 + v4. (d) u1 — 1, where u 
satisfies u ’ = 2u +  2, (e) u2 + u, where u satisfies w1 =  —3u2 +  3.

2. Prove that every finite extension of the field R  of real numbers either is R 
itself or is isomorphic to the field C of complex numbers.

3. Prove that the field of all complex numbers has no proper finite extensions.
4. (a) If K  is an extension of degree 2 of the field Q of rationals, prove that

K  =  Q(-fd), where d is an integer which is not a square and which has no 
factors which are squares o f integers.

(b) How much of this result remains true if Q is replaced by a field F  of 
characteristic oo? by a field F  of any characteristic?

5. Is the field F(jc) of rational lorms in the indeterminate x  a finite extension of 
F I  Why?

6. Prove that the number of elements in a finite field of characteristic p is a 
power of p.

7. (a) Prove that there are exactly ( p 2 — p)/2 monic irreducible quadratic
polynomials over the field Zp of integers modulo p  (exception: p  = 5).

(b) Prove that for each p there exists a field of characteristic p with p 2 
elements.

★8. Prove that, unless p =  2 (m od 3), there are exactly (p2 — p)/3 monic 
irreducible cubic polynomials over the field Z p o f integers modulo p.

★9. Let F  be any field contained in an integral domain D. Prove:
(a) D  is a vector space over F.
(b) If, as a vector space, D  has a finite dimension over F, then D  is a field.

14.5. Iterated Algebraic Extensions

Finite extensions of a field F  may be built up by repeated simple 
extensions. If F  has characteristic oo, one may prove that any such 
iterated extension can be obtained as a simple extension; that is, it is
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generated over F  by a suitably chosen single element. We shall omit this 
proof and discuss the properties of iterated extensions directly. In gen
eral, if K is any extension of F  containing elements c u c2, • • ■, c„ the 
symbol F (c t, c2, ■ ■ •, cr) denotes the subfield of K  generated by c u • • •, cr 
and the elements of F  (the subfield consisting of all elements rationally 
expressible in terms of C\, • • •, cr over F). Alternatively, such a multiple 
extension may be obtained by iterated simple extensions; thus, F (ci, c2) is 
the simple extension L (c 2) of the simple extension L  =  F(C|).

Iterated algebraic extensions may arise in the solution of equations, 
where it is often useful to introduce appropriate auxiliary equations. For 
example, the equation x4 — 2x2 +  9 = 0 may be written as

x 4 - 2 x 2 +  9 = (x4 -  6x2+  9 ) +  Ax2 = (x 2 -  3)2 +  4x2 =  0.

The equation, therefore, is [(jc2 -  3)/2 jc]2 = -1 . This formula indicates 
that any field which contains a root u of the given equation also contains 
a root i = (u2 — 3)/2u of the equation y 2 =  -1 . If we adjoin the 
auxiliary quantity i to the field Q of rationals, the original equation 
becomes reducible over Q(/), for

jc4 -  2jc2 +  9 = (x 2 -  3 +  2jc/)(jc2 -  3 -  2xi).

By the usual formula, the factor jc2 -  3 -  2ix has a root u =  i +  -s/2. The 
original equation thus has a root in the field K  =  Q(i, s/2). This field K  
could have been obtained by adjoining to Q first s/2, then /. The 
intermediate field Q(s/2) consists of real numbers, hence cannot contain i. 
The quadratic equation y~ +  1 =  0 for i must therefore remain irreduci
ble over the real field Q(s/2), so that the extension Q(s/2, i) has over 
Q(s/2) a degree 2 and a basis of two elements 1 and /. The field Q(s/2) in 
turn has a basis 1, s/2 over Q. Therefore any element w in the whole field 
Q(>/2, i ) can be expressed as

(7) w =  (a +  ts/2) +  (c +  r/s/2)/ = a +  b 'f i  +  ci +  d^2i,

with rational coefficients a, b, c, and d. The four elements 1, s/2, i, s/2i 
thus form a basis for the whole extension K  =  Q (s/2, i ) over Q. This 
method of compounding bases can be stated in general, as follows:

Theorem 9. I f  the elements ui, - ■ • ,u n form a basis for a finite 
extension K o f F, while w t, • • •, wm constitute a basis for an extension L  of 
K, then the mn products UjW, for i =  1, • • •, n and j  =  1, • • •, m form a 
basis for L  over F.
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Proof. Any element y in L  can be represented as a linear combina
tion y =  Z  rjwi ° f  the given basis, with coefficients r; in K. Each coeffi- 

/
cient ry is in turn some com bination ry =  2  aijui o f  the basis elements o f

I
K, with each « /; in F. On substitution o f these values,

y =  1 1  a-tjUiWj
i ‘

appears as a linear combination of the suggested elements «,ty,, with 
coefficients in F. The same type of successive argument proves that these 
mn elements are linearly independent over F, hence do constitute a basis 
for K. Q.E.D.

Many consequences flow from Theorem 9. In the first place, one may 
state the result without reference to the particular bases used, as follows:

Corollary 1. I f  K  is a finite extension o f F  and L  a finite extension o f K, 
then L  is a finite extension o f F, and its degree is

(8) [L  :F ] =  [L  :K ] [K :F ] (L  => K  => F ).

Corollary 2. I f  K  is is a a finite extension o f degree n =  [/C: F ] over F, 
every element u o f K  has over F  a degree which is a divisor o f n.

Proof. The element u generates a simple extension F (u ); hence by
(8), n =  \K :F(u)|[F(u) :F ], where the second factor is the degree of u 
under consideration.

Corollary 3. A n element u o f a finite extension K  F  generates the 
whole extension if  and only if  [K : F ]  =  [ «  :F ].

Proof. If u satisfies over F  an irreducible equation of degree \_K: F ], 
then u generates a subfield F (u ) of degree n over F. By (8) this subfield 
must include all of K.

Corollary 4. I f  K  — F (y lt y2, ■ ■ •, yr) is a field generated by r quan
tities y„ where each successive y, is algebraic over the field F (y u • • •, y ,^ ) 
generated by the preceding i — 1 quantities, then K  is a finite extension o f F, 
and every element in K  is algebraic over F.

Proof. Every degree [ F ^ ,  • • •, y,_j, y,) :F (y u • • •, y.-O] is finite; 
hence by Corollary 1 the whole degree [/C: F ] is finite. By Theorem 8, 
every element in K  is then algebraic over F.
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Corollary 5. I f  p (x ) is an irreducible cubic polynomial over a field F, 
and if  K  is an extension o f F  o f degree 2m, then p (x) is irreducible over K.

This corollary means in particular that an irreducible cubic equation 
could never be solved by successive square roots, for the adjunction of a 
square root to a field F  either will give no extension at all or will give an 
extension of degree 2, so that the extension K  =  F ('fa , •Jb, vc, • • •) 
obtained by any number of square roots will have as degree some power 
2m of 2. By Corollary 5, this extension will never contain a root of the 
given irreducible cubic.

For a proof, suppose p (x ) reducible over the field K  of degree 2m. 
Then the cubic p (x ) must have at least one linear factor x — u, so that K  
contains a root u of p(x). But such an element u of degree 3 over F  
cannot be contained in a field K  of degree 2m over F, by Corollary 2. 
This proves p{x) irreducible.

This corollary is the algebraic basis of the theorem that it is impossible 
to solve the classical problem of duplicating a general cube or trisecting a 
general angle by ruler and compass alone. Any such construction problem 
may be reduced to analytic terms. The data of the problem consist of a 
number of points and lines. Relative to some set of axes, the coordinates 
of these points (and the ratios of the coefficients in the equations for these 
lines) are a set of real numbers which generates a certain field F  of real 
numbers. Each step in a ruler and compass construction provides certain 
new points and lines. It can be shownt that the corresponding new field of 
numbers is either F  itself or a quadratic extension of F. Hence repeated 
constructions yield a set of points and lines corresponding to a field K  of 
degree 2m over F.

Consider now the duplication of the cube. The data consist o f a pair of 
coordinate axes, a unit segment along one of these axes, and a cube with 
this segment as side. The problem is to construct another cube of double 
the volume. The side of this new cube will satisfy the equation x 3 — 2 =
0. By Eisenstein’s theorem this equation is irreducible over the field Q 
of rationals (the field associated with the data). Over any field K  corres
ponding to a ruler and compass construction, the polynomial x 3 — 2 will 
still be irreducible, by Corollary 5. Hence by these methods it is impossi
ble to construct (say along the x-axis) a segment which is the side of the 
duplicated cube.

The trisection problem is treated in similar fashion; the essential 
device consists in writing the trigonometric equation for the cosine of one 
third of an angle in terms of the cosine of the whole angle. For most 
angles, this will again give an irreducible cubic equation.

t  This depends essentially on the fact that the equation of a circle (compass) is quadratic 
and the equation of a straight line (ruler) is linear.
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Exercises

1. In  T heorem  9, prove in detail th a t the mn  e lem ents u,wt are independent 
over F.

2. Prove that the equation x 4 — 2x2 +  9 treated in the text is irreducible over 
Q. (Hint: Use the degree o f Q(V2, /).)

3. If p (x )  is a polynomial of degree q and is irreducible over F  and if K  is a 
finite extension of F  o f degree relatively prime to q, prove that p (x )  is 
irreducible over K.

4. Determine the degree of each of the following multiple extensions of the field 
Q of rational numbers. Give reasons.
(a) Q(>/3,i), (b) Q(^5, V—2), (c) 0(^18, </2),
(d) Q(V8, 3 + V50), (e) Q(v2, m), where u4 + 6u + 2 = 0,
( f )  Q(V3, V—5, yfl), (g) Q (V3,V2).

5. Give a basis over Q  for each field o f Ex. 4.
6. Determine whether the polynomial given is irreducible over the field indi

cated. Give reasons.
(a) x 2 +  3, over Q(V7); (b) x 2 +  1, over Q (V=2);
(c) x 3 +  8x -  2, over Q(V2);
(d) x 5 +  3x3 -  9x — 6, over Q(V7, V 5 ,1 +  /).

7. Determine in each of the following cases whether the number u given 
generates the given extension of the field Q  of rational numbers. In each case, 
prove your answer correct.
(a) u =  in Q (^7); (b) u =  V2 +  V I, in Q(V2, V5 );
(c) u =  2 +  19, in Q ( ^ ) ;  (d) u =  V2 -  1/(1 +  V2), in Q(V2);
(e) u =  v2 +  v +  1, in Q (e ), where v3 +  5v -  5 =  0.

8. Is c =  ir6 +  57r3 +  277 -  14 transcendental or algebraic over the field Q  of 
rational numbers? Why?

9. I f .K  is an extension of F  of prime degree, prove that any element in K  but 
not in F  generates all of K  over F.

10. (a) Find the cubic equation which gives cos 0 in terms of cos 30.
(b) Show that this equation is irreducible over Q  when 30 =  60° (this means

that an angle of 60° cannot be trisected with ruler and compass).

14.6. Algebraic Numbers

An algebraic number u is a complex number which satisfies a polyno
mial equation with rational coefficients not all zero.

(9) a0 +  a tu +  a2u2 +  • • • +  anu" =  0 (a, in Q, not all at =  0).

In other words, an algebraic number is any complex number which is 
algebraic over the field Q of rationals. In discussing extensions of fields, 
we have repeatedly used examples of algebraic numbers, such as t'V—2, 
■̂ 3, or a>.
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Theorem 10. The set o f all algebraic numbers is countable.

The verification of this statement requires that we describe a method 
of enumerating or of listing all algebraic numbers. First, we list all the 
equations which they satisfy. Observe that an equation (9) for an alge
braic number can be multiplied through by a common denominator for its 
rational coefficients; there results an equation with integral coefficients 
not all zero, in which the first coefficient may be assumed to be positive. 
We know that the possible integral coefficients of these polynomials can 
be enumerated, for example, as 0, +1, —1, +2, -2 , +3, — 3, • • •. The 
linear polynomials with integral coefficients can be displayed in an array, 
such as:

x, x +  1, x  1, JC +  2, x — 2, x +  3 , ...

'x. — x ,  —x +  l, — x — 1, —x +  2, —x —2, - x  +  3, ...
^  ^

2x, 2 x + l ,  2x — 1, 2x +  2, 2x —2, 2x +  3, ...
t ' ^
lv -2 x ; —2x +  1, —2x — 1, —2x +  2, —2x — 2,

One can then make a single list including them all by taking in succession 
as indicated the diagonals of the above array. The result is the list

x, —x, x +  1, x — 1, —x +  1, 2x, — 2x, 2x +  1, —x — 1, • • •.

We then find a rectangular array of quadratic polynomials by simply 
adjoining the various second-degree terms mx2 to each element in this 
list. From this array we again obtain a list of all quadratic polynomials,
and so on for higher degrees. When this is done for every degree, there
results an array of lists, in which the nth row is the list of all polynomials 
of degree n. Take again the diagonal development of this list, and we get 
a list of all polynomials. In this list replace every polynomial by its roots 
and drop out any duplications. The result is a list of all the roots of 
polynomials with integral coefficients; that is, it is the required enumera
tion of all algebraic numbers.

A  consequence is that the real algebraic numbers are countable. But 
Cantor’s diagonal process proves (§12.3, Theorem 5) that the set of all 
real numbers is not countable. Hence this set must be larger than the set 
of algebraic real numbers. This argument gives an indirect proof of the 
existence of a transcendental real number. The result we state as follows:

Corollary. Not every real number is algebraic.
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Cantor’s argument for this result was at first rejected by many 
mathematicians, since it did not exhibit any specific transcendental real 
numbers. His argu m ent is n o w  g en e ra lly  accep ted , but it is possib le  to  

give more explicit proofs of this corollary (see Exs. 10-13 below).

Theorem  11. The set o f all algebraic numbers is a field.

Proof. We need only demonstrate that the sum, product, difference, 
and quotient of any two algebraic numbers u and v # 0 are again 
algebraic numbers. But all these combinations are contained in the 
subfield Q («, v ) of the field of complex numbers generated by u and v. 
Since u is algebraic over Q, Q (u) is a finite extension of Q; since v is 
algebraic over Q(u), Q(m, v ) is finite over Q(u). Hence by Theorem 9, 
Q(m, v ) is a finite extension of Q, so each of its elements is an algebraic 
number (Theorem 8). Q.E.D.

A  field F  is called algebraically completed if every polynomial equa
tion with coefficients in F  has a root in F. Over such a field F  every 
polynomial f (x )  has a root c, hence has a linear factor x — c. Conse
quently, the only irreducible polynomials over F  are linear, and every 
polynomial over an algebraically complete field F  can be written as a 
product o f linear factors (as in formula (11), §5.3). Furthermore, there 
can be no simple algebraic extension of F  except F  itself. We conclude 
that a field F  is algebraically complete if and only if F  has no proper 
simple algebraic extensions. The fundamental theorem of algebra (§5.3, 
Theorem 5) asserts that the field of all complex numbers is algebraically 
complete.

Theorem  12. The field A  o f all algebraic numbers is algebraically 
complete.

Proof. Take a polynomial equation x n +  un- xx n~l +  • • • +  u0 =  0 
whose coefficients are algebraic numbers u, in A . These coefficients 
generate an extension K  =  Q (u0, « ! , • • • ,  i) which is a finite extension 
of the field Q of rationals, by Corollary 4 to Theorem 9. Any complex 
root r of the given equation is algebraic over the field K, so that K (r )  is a 
finite extension of K  and hence of Q. The element r of this extension is 
then algebraic over Q, by Theorem 8. This means that the root r is an 
algebraic number, in the field A , so A  is algebraically complete. Q E D

We now have the field Q embedded in the algebraically complete field 
A  of all algebraic numbers, and the field R  of real numbers embedded in

t  Instead of “ algebraically complete,”  some sources use “ algebraically closed.”  The term 
“ complete”  seems preferable, in view of the topological analogy.
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the algebraically complete field C of complex numbers. These results are 
special cases of a general theorem, which states that any field F  whatever 
has an extension A  which is algebraically complete and in which every 
element is algebraic over F  (cf. §15.1, Appendix).

The theory of algebraic numbers has been elaborately developed. It 
concerns chiefly fields K  of algebraic numbers which are finite extensions 
of the field Q. Such a field is known as an algebraic number field. We 
consider next the arithmetic properties of such a field.

Exercises

1. Illustrate Theorem 11 by finding an equation with rational coefficients for 
each of the following algebraic numbers:
(a) V2 + V—3, (b) V-1 + ^5, (c) (V7)(^2),
(d) -Jl/i 1 + '/2), (e) mV—2, where m3 + lu  — 14 = 0.

2. (a) If u and v are algebraic numbers of degrees m and n, respectively (over
Q), prove that the degree of u + v never exceeds mn.

(b) What about the degree of u/v?
(c) If t is transcendental and u algebraic, prove that t + u and tu are 

transcendental, provided, in the latter case, that u ^ 0.
3. Illustrate Theorem 12 by finding an equation with rational coefficients for a 

root of each of the following equations:
(a) x2 + 3x +  V2 = 0, (b) x2 + V3x -  = 0,
(c) x3 -  V3x + 1 + ^2 = 0,
(d) x2 + u +  2 = 0, where u is a root of u1 + 5u2 — 10m + 5  = 0.

4. Give the first sixteen terms in the list of all quadratic polynomials, as in the 
proof of Theorem 10.

5. Prove that the set of all algebraic numbers of a fixed degree is countable, 
without using Theorem 10.

6. Prove that any finite extension of a countable field is countable.
7. Show that the set A  of all elements of a field F  which are algebraic over 

any countable subfield S of F  is countable.
8. (a) Show that there exists a real number transcendental over Q(7r).

(b) Show that there exist countably many algebraically independent real 
numbers, using Ex. 7 and the definition of §3.4.

9. Show that the proof given for Theorem 10 implicitly uses the following 
formulas of transfinite arithmetic:
(a) There are d"+1 = d polynomials of degree n.
(b) There are d + d + • • • + d + • • ■ (to d terms) = d2 polynomials of all 

degrees.
★10. (a) If m is any fixed real number, show by factorization of x' -  u‘ that 

there is a constant N (j), such that \x' — u*\ S N\x — u | whenever 
|x — u | <  1.

(b) If f{x ) is any polynomial with real coefficients, u any real number, show
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that there is a constant M  depending on / and u, such that \f(x) -  
/(m)| 2= M \ x  — m| whenever |x — n| <  1.

★11. Let the real algebraic number u satisfy the polynomial equation f(x) = 0 of 
degree r 'with integral coefficients. If m and n are integers such that 
| m/n — m | <  1 /Mnr, where M  is the constant of Ex. 10, show that 
f(m/n) = 0. (Hint: By Ex. 10, \ f(m/n)\ < \/n\ while f(m/n) is a rational 
number of denominator n'.)

★12. If u is a real number for which an infinite sequence of distinct rational 
fractions m jnk can be found, such that |« -  (m jnk) \ <  1 /knk for all k, 
show that u is transcendental. (Hint: If the degree of u were r, Ex. 11 
would give f(mk/nk) = 0 for all sufficiently large k.)

★13. Numbers satisfying the hypothesis of Ex. 12 are called “ Liouville (transcen
dental) numbers.”

(a) Show £ 10-fc! = 0.110001 • • • is a Liouville number.
k = 1

(b) Exhibit two other Liouville numbers.

14.7. Gaussian Integers

A  Gaussian integer is a complex number a =  a +  bi whose compo
nents a, b are both integers. Any such Gaussian integer satisfies a monic 
equation a 2 — 2aa +  (a 2 +  b2) =  0 with integral coefficients; hence it is 
an algebraic number. The sum, difference, and product of two such 
integers is again such an integer, hence the Gaussian integers form an 
integral domain Z [i ] .  In this domain questions of divisibility and decom
position into primes (irreducibles) may be considered.

It is convenient to introduce the “ norm”  of any complex number a  
(integral or not). I f a  =  r +  si. the norm N (o-) is the product of <r by its 
conjugate a *  =  r — si:

(10) N(cr) -  aa* =  (r +  si)(r -  si) =  r2 +  s2.

This norm is always nonnegative and is the square of the absolute value 
of a. For any two numbers a  and r, one has

(11) N ( o t ) =  N (a )N (  r).

This equation means that the correspondence a  N (a )  preserves pro
ducts; in other words, it is a homomorphic mapping o f the multiplicative 
group of nonzero numbers t r o n a  multiplicative group of real numbers. 
In particular, the norm of a Gaussian integer is a (rational) integer.

Recall now the general concepts involving divisibility (§3.6). A  unit of 
Z [i] is a Gaussian integer a ^  0 with a reciprocal a -1 which is also a
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Gaussian integer. Then aa~ l =  1, so that N (a a -1) =  M “ )M “ -1) =  1, 
and the norm of a unit a must be N (a )  =  1. Inspection of (10) shows that 
the only possible units are ±1 and ±i. Two integers are associate in Z [i] if 
each divides the other. Hence the only associates of a in Z [i] are ± a  and 
±ia.

The rational prime number 5 has in Z [i] four different decompositions

(12) 5 =  (1 +  2/)(l -  20 =  (2/ -  1)(—2/ -  1)
=  (2 +  0(2 -  i ) =  O' -  2) ( - «  -  2).

These decompositions are not essentially different; for instance, (2 +  i) = 
/(I — 20 and 2 — i =  - / ( l  +  20, and in each of the other cases corres
ponding factors are associates. Each factor in (12) is prime (irreducible). 
For example, if 2 +  i had a factorization 2 +  i =  a/3, then N (2  +  i ) =  
5 =  N (a )N (/3), so that N (a )  (or M/3)) would be 1, hence a (or /3) would 
be a unit. The factors (12) give essentially the only way of decomposing 5, 
for in any decomposition 5 =  y8,N (5 ) =  25 =  N (y )N (8 ), so each factor 
which is not a unit must have norm 5. By trial one finds that the only 
integers of norm 5 are those used in (12).

On the other hand, the rational prime 3 is prime in Z[/]. Suppose
3 =  a/3; then N (a )N ((3 ) =  9 and M «)| 9 . If N (a )  =  1, a is a unit, while 
if N (a )  =  N (a  +  bi) =  3, then a2 +  b2 =  3, which is impossible for 
integers a and b. Hence 3 has no proper factor a in the domain of 
Gaussian integers.

A  unique factorization theorem can be proved for the Gaussian 
integers by developing first a division algorithm, analogous to that used 
for ordinary integers and for polynomials.

Theorem 13. For given Gaussian integers a and (3 # 0 there exist 
Gaussian integers y and p with

(13) a =  /3y +  p, N (p ) <  M/8).

Proof. Start with the quotient a//3 =  r +  si and select integers r' and
s' as close as possible to the rational numbers r and s. Then

a/0 =  (r ' +  s’i) +  [(r -  r') +  (s -  s ')0  -  y +  cr, y = r' +  s'i, 

where \ r -  r'\ =  1/2, | s -  s'| Si 1/2, so that

N {a ) =  (r — r')2 +  (s -  s ')2 1/4 +  1/4 <  1.
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The equation may now be written as a  =  /3y +  (3a, where a and (By, and 
hence /3a, are integers, and where N((3&) =  N ((3 )N (a ) <  N ((3). Q.E.D.

Lemma 1. Two Gaussian integers <*i and a 2 have a greatest common 
divisor 8 which is a Gaussian integer expressible in the form 8 =  
{}\ai +  /32a 2 where (3i and (32 are Gaussian integers.

Proof. By repeated divisions, one may construct a Euclidean 
algorithm, much as in the case of rational integers (§1.7). The successive 
remainders p of (13) decrease in norm, hence the algorithm eventually 
reaches an end. The last remainder not zero is the desired greatest 
common divisor. Q.E.D.

A  more sophisticated proof starts with the ideal (a , ,a 2) generated by 
<*i and a 2 in the ring Z [/]. Among the elements of this ideal choose one, 
8, of minimum norm, and write <*i =  Syi +  p u a2 =  Sy2 +  p2, as in (13). 
The remainders p, lie in the ideal and have norm less than 5, hence must 
be zero. Therefore a i =  <5yl5 a 2 =  <5y2, so 8 is a common divisor. Since 8 
is in the ideal, it has the form 8 =  /3i£*i +  /32a 2, hence it is a multiple of 
every common divisor of <*i and a 2. Therefore 8 is the required g.c.d.

The rest of the treatment of the decomposition of Gaussian integers 
proceeds exactly as in the case of rational integers (§§1.7-1.8) and of 
polynomials (§3.5 and §3.8); hence we state only the important stages. 
A  Gaussian integer tt is said to be prime if it is not 0 or a unit and if its 
only factors in Z [i] are units and associates of tt. One proves

Lemma 2. I f  t t  is prime, then Tr|a/3 implies that t t \o l  or that rr|j8.

Theorem 14. Every Gaussian integer a can be expressed as a product 
a =  771 • • • tt„ o f prime Gaussian integers. This representation is essentially 
unique, in the sense that any other decomposition o f a into primes has the 
same number o f factors and can be so rearranged that correspondingly 
placed factors are associates.

In order appropriately to generalize these notions, we first investigate 
the irreducible polynomial equations satisfied by Gaussian integers. If 
a =  a +  bi is a Gaussian integer which is not a rational integer, then 
b ^  0, and a must satisfy an irreducible quadratic equation. This is

[x -  (a +  b i)][x  -  (a -  b i)] =  x 2 -  la x  +  (a 2 +  b2) =  0;

it is a monic irreducible equation with rational integers as coefficients. 
Conversely, it may be shown that if a number r  +  si in the field Q(i)
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satisfies a monic irreducible equation with integral coefficients, then this 
number is a Gaussian integer.! This gives

Theorem 15. A  number in the field Q(i) is a Gaussian integer if and 
only if the monic irreducible equation which it satisfies over Q has integers 
as coefficients.

Exercises

1. Find the decomposition into primes of the following Gaussian integers: 5, 
3 +  i, 6 1, 11, 1 — 7/.

2. Find the g.c.d. of each of the following pairs of Gaussian integers a t and a 2 
and express it as j31ar1 +  /32a 2:
(a) 3 +  6 1 and 12 — 3/, (b) 5 +  3/ and 13 +  18/.

3. Find all possible factorizations of 13 into Gaussian integers, and show 
explicitly that any two factorizations differ only by associates.

4. Prove that every ideal o f Gaussian integers is principal.
5. (a) Prove Lemma 1, using a Euclidean algorithm.

(b) Prove Lemma 2.
6. Prove Theorem 14 from Lemma 2.
7. (a) Prove that a rational prime p is prime in Z [i ]  if and only if the equation

x 2 +  y2 =  p has no solution in integers x and y.
(b) Show that any rational prime of the form p =  An +  3 is prime in Z [/]. 

★8. (a) Prove that the quotient-ring Z [x ]/ (p , x 2 +  1) is isomorphic to both 
Z[/]/(p) and Z p[x ]/ (x 2 +  1).

(b) Prove that the first is an integral domain if and only if p is prime in Z [/]; 
while the second is an integral domain if and only if x 2 =  —1 (mod p ) 
has no solution in Z.

(c) Assuming that the multiplicative group modp is cyclic (§15.3, Theorem 
6), show that if p =  4n +  1, x 2 =  — 1 (mod p) has a solution in Z.

(d) Conclude that p =  4n +  1 cannot be a prime in Z [/].

Exs. 9-13 all refer to the domain Z [V -2 ] of numbers a +  b 'j—2, where a and b 
are integers.

9. Define a norm as N(a + b 'j—2) = a2 + 2b2 and exhibit its properties.
10. Prove a division algorifhm in the domain Z|V—2],
11. Prove the existence of greatest common divisors in Z [V -2 ].
12. State and prove the unique decomposition theorem for Z [V —2],
13. Factor the following numbers in Z[\/—2]: 5, 1 +  3\/—2, 2 +  •J—2.

14. (a) Find a unit different from ±1 in Z[V2].
(b) Show that there is an infinite number of distinct units in Z[V2], (Hint: 

Use powers of one unit.)

tT h e  proof is given in a slightly more general case in the next section (Theorem 16).
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14.8. Algebraic Integers

In general, an algebraic number u is said to be an algebraic integer if 

the monic irreducible equation satisfied by u over the field of rationals 
has integers as coefficients; so that

(14) p ( u ) =  a0 +  a xu +  • • • +  an-\Un~x +  u"  ~  0, at integers,

where p{x ) is irreducible over Q. The irreducible equation satisfied by a 
rational number m/n is just the linear equation x — m/n =  0. Therefore 
a rational number is an algebraic integer if and only if it is an integer in 
the ordinary sense. Such an (ordinary) integer of Z  may be called a 
rational integer to distinguish it from other algebraic integers. An alge
braic number u ¥= 0 is called a unit if both u and u~x are algebraic 
integers.

In testing whether a given algebraic number is an integer, it is not 
necessary to appeal to an irreducible equation, by virtue of the following 
result:

Theorem 16. A  number is an algebraic integer if  and only if  it satisfies 
over Q  a monic polynomial equation with integral coefficients.

Proof. Suppose that u is a root of some monic polynomial f ix )  with 
integral coefficients. Over Q, u also satisfies an irreducible polynomial 
p (x ), which may be taken to have integral coefficients. Any common 
divisor of these coefficients may be removed, so we can assume that the 
coefficients of p (x ) have 1 as g.c.d. This amounts to saying that p (x ) is 
primitive, in the sense of §3.9, in the domain Z[jc] of all polynomials with 
integral coefficients. The given polynomial f ix )  is monic, hence is also 
primitive. By Theorem 2 we know that the polynomial f (x )  with root u 
must be divisible, in Q [x], by the irreducible polynomial p (x ) for u, so 
f {x )  =  q (x )p (x ). Since / and p are primitive, Lemma 3, §3.9, asserts that 
the quotient q (x ) also has integral coefficients. The leading coefficient 1 in 
f ix )  is then the product of the leading coefficients in q and p\ hence 
± p ix ) is monic, which means that u is integral according to the definition
(14). Q.E.D.

A  number may be an algebraic integer even if it doesn’t look the part; 
for example, u =  (1 +  V5)/2 looks like a fraction but satisfies an equa
tion,

i x - i  1 +  V5)/2)(jc -  (1 -  >/5)/2) =  x 2 -  x -  1 =  0, 

which is monic and has integral coefficients. This suggests a systematic
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search for those numbers in quadratic fields which are algebraic integers. 
Any field K  of degree 2 over the field Q of rationals can be expressed as 
a simple algebraic extension K  =  Q(Vd). Without loss of generality, one 
may assume that d is an integer and that it has no factor (except 1) which 
is the square of an integer. This is the case to be considered:

Theorem 17. I f  d #  1 is an integer with no square factors, then in case 
d =  2 or d =  3 (mod 4), the algebraic integers in Q(Vd) are the numbers 
a +  b'fd, with (rational) integers a and b as coefficients. However, if 
d =  1 (mod 4), the integers of Q(Vcf) are the numbers a +  b( 1 +  'fd)/2, 
with a and b rational integers.

Proof. As a preliminary, observe that a =  1 (mod 2) means that 
a =  1 +  2r, hence that a 2 =  1 +  4r +  4r2 =  1 (mod 4). In other words,

(15) a =  1 (mod 2) implies a2 =  1 (mod 4),

(16) a =  0 (mod 2) implies a 2 =  0 (mod 4),

so a square is always congruent to 0 or 1, modulo 4.
Any number u in Q(Vd) may be expressed as u =  (a +  b'Jd)/c, 

where the integers a, b, and c have no factor in common. We assume 
b & 0 to exclude the trivial case of a rational number. The monic 
irreducible quadratic equation for u is then

(17) [x -  (a +  b'/d)/c][x -  (a -  b^fd)/c]

=  x 2 — (2a/c)x +  (a 2 -  db2)/c2 =  0.

If u is an algebraic integer, these coefficients 2a/c and (a2 -  db2)/c2 
must also be integers. Therefore, Aa2/c2, (4a2 -  Adb2)/c2, and Adb2/c2 
must all be integers, so that c \ 2a and c 2 \ Adb2. Since d was assumed to 
contain no square factors, any prime p ^  2 contained in c must divide 
both a and b2, contrary to the arrangement that a, b, c have no factor 
(except ±1 ) in common. For similar reasons 4 | c is impossible, so the only 
choices for c are c =  1 and c =  2.

Consider now the case d =  2 or d =  3 (mod 4), with c =  2. In this 
case the last coefficient (a2 — db2)/A of (17) must be integral, so a2 =  
db2 (mod 4). I f b =  1 (mod 2), then b2 =  1 (mod 4), and a2 =  db2 =  2 
or 3 (mod 4), a contradiction to the rules (15) and (16). If b =  0 (mod 2), 
then a2 =  0 (m od4), and a =  0 (m od2), so that a, b, and c have a 
common factor 2. In either event we conclude that c is 1, and that all the 
integers of Q(Vd) are of the form a +  b'fd. Conversely, the monic 
equation (17) for a number of this form does have integral coefficients.
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The remaining case d =  1 (mod 4) is given a similar treatment, except 
that a =  b =  1 (mod 2) turns out to be possible.

Corollary. In any field of degree 2 over Q the set o f all algebraic 
integers is an integral domain.

Proof. Sums, differences, and products of integers, represented as in
Theorem 17, are again integers of this form. Q.E.D.

The next task is that of generalizing this corollary to any algebraic 
number field.

Exercises

1. Prove that every root of unity is an algebraic integer.
2. (a) Find all integers and all units in Q(<u), where ta is a complex cube root of

unity.
(b) Prove that every unit in Q(ta) is a root of unity.

3. Complete the proof o f the second case o f Theorem 17 (d  =  1 (mod 4)).
4. (a) Prove that any algebraic number can be written as a quotient u/b, where

u is an algebraic integer and b a rational integer (i.e., an integer of Z).
(b) Prove that any field K  of algebraic numbers is the field of quotients of 

the domain of all algebraic integers in K.
★5. Find all the integers in Q(V2, i).

14.9. Sums and Products of Integers

This section is devoted to the proof o f the following result:

Theorem 18. The set o f all algebraic integers is an integral domain.

The following specialization is an immediate consequence:

Corollary. In any field K  of algebraic numbers, the algebraic integers 
form an integral domain.

An instructive proof of Theorem 18 depends on an analysis of the 
additive groups generated by algebraic integers. If V u ’ " , v n are any 
algebraic numbers, we let G  =  [t>i, • • •, u„] denote the subgroupt gener
ated by these numbers in the additive group of all complex numbers. This

t  Such an additive group is sometimes called a Z-module because its elements can be 
multiplied by “scalars” from Z.
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group G  simply consists of all numbers representable in the form

(18) u =  a iU] +  a2v2 + • • • +  anvn (a, rational integers).

Recall that the natural multiple av = a x v is simply a “ power”  of v in 
the additive cyclic subgroup generated by v.

Lemma 1. Any subgroup S o f the group G  — \v\, • • • ,v n] can also be 
generated by n or fewer numbers.

Proof. For each index k let G k be the subgroup [ufc, • • •, u„] gener
ated by the last n — k +  1 generators of G, so that G k consists of all 
sums of the form akvk +  • • ■ +  anv„. Among the elements of Gk which lie 
in the given subgroup 5, select an element

(19) wk = ckvk + ck+1vk+1 +  • • • +  cnvn,

in which the first coefficient ck has the least positive value possible. (If in 
every element the coefficient of vk is zero, set wk =  0.) If w =  bkvk + • • ■ 
is any other element of 5 in G k, its first coefficient bk may be written 
bk = qkck +  rk, with a nonnegative remainder rk <  ck. The difference 
w ~  qkWk =  rkvk + • • • then lies in the groups G k and 5 and has a 
nonnegative first coefficient rk less than the minimum ck. Therefore 
rk = 0, and any element w of 5 in Gk gives an element w' =  w — qkwk 
in Gk+i.

The n selected elements Wi, ■ • •, wn generate the whole group 5, for 
given any any element w in 5, one may find q i so that w -  qiWi depends 
only on v2, ■ • •, vn, and then some q2 so that w — <7 ^ 1  — q2w2 depends 
only on d 3 ,  • • ■, vn, and so on; at the end w =  X <7,w,. Q.E.D.

Lemma 2. A  number u is an algebraic integer i f  and only if  the 
additive group generated by all the powers 1 ,u ,u 2,u  , • • • o f u can be 
generated by a finite number o f elements.

Proof. If u is an integer, it satisfies a monic equation (14) of degree n 
with integral coefficients. This equation expresses u" as an element in the 
group G  =  [1, u, • ■ • , m"-1] generated by n smaller powers of u. By 
iteration, the same equation may be used to express any higher power of 
u as an element of this group. Therefore u satisfies the criterion of 
Lemma 2.

Conversely, suppose that the group G  generated by 1, u, u2, • • ■ can 
be generated by any n numbers v\, • • • , vn of G. The product of u by any 
element £  aju1 of G  is still an element X atui+l of G, so each of the 
products uVi must lie in G  and must be expressible in terms of the
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generators as uvt =  £  a^Vj, where the a,y are integers. These expressions
i

give n homogeneous equations in the n’s, of the form

(an  -  a)i>i +  an v2 +  • • • +  aXnvn =  0,

a2ii>i +  (a22 “  u)v2 +  • • • +  a2nvn =  0,

a„ivx +  an2v2 +  • • • +  (ann -  u)vn =  0.

This system of equations has a set o f solutions vx,v 2, ' '  ■ ,v n not all zero,
so the matrix of coefficients must be linearly dependent (§7.7, Theorem 
13, Corollary). The matrix of coefficients may be written as A  -  ui, 
where A  =  ||a,y||. Since it is singular, its determinant is zero, so

(20) |A -  u i| = ( - i y V  +  b „ -iun~1 +  ■■ ■ +  bn =  0,

where the coefficients b{ are certain polynomials in the integers a,y and 
are thus themselves integers. This equation (20) meanst that u is an 
algebraic integer, as required in the lemma.

The conclusion of Lemma 2 may be reformulated thus:

Corollary. I f  all the positive powers o f art algebraic number u lie in an 
additive group generated by a finite set o f numbers yx, • • •, y„, then u is an 
algebraic integer.

Proof. The group S generated by 1, u, u2, ■ • • is a subgroup of the 
group generated by 1, yi, • • •, yn. Hence by Lemma 1, this subgroup S 
can be generated by a finite number o f its members, and therefore, by 
Lemma 2, the number u is an algebraic integer. Q.E.D.

Return now to the proof of Theorem 18. If u and v are algebraic 
integers, we are to show that u +  v and uv are integers. The hypothesis 
means that all powers uk and vk can be expressed in terms of a finite
number of powers 1, u, • • •, h” ' 1 and 1, v, ■ • •, v r~l . Therefore every
power (uv)k =  ukvk and (u +  v )k lies in the additive group generated by 
the products 1, u, uv, uv2, • • ■, u "~ lv r~1. By the corollary it follows that 
uv and u +  v are algebraic integers, as required for the theorem.

Exercises

1. Show explicitly that each of the following numbers is an algebraic integer by 
displaying an appropriate monic equation with integral coefficients:
(a) V2 + V3, (b) i + o), (c) V7 +  (1 + VE)/2.

t  Note that (20) is simply the characteristic polynomial of A , in the sense of Chap. 10.
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2. (a) If numbers vu ■ • • , v„ are linearly independent over Q, prove that any
subgroup S of finite index in G  =  [ r l5 • • •, vn]  also can be generated by 
n linearly independent numbers Hq, • • •, h>„.

(b) Show that any such subgroup S is (group) isomorphic to the whole group 
G.

3. If numbers v : , • ■ ■, v„ are linearly independent over Q, show how the basis 
found in Lemma 1 for a subgroup S of G  =  [t>,, • • •, v„] may be used to 
compute the index of S in G. (Hint: Find a representative for each coset of 
5.)

★4. Show that a group G  =  [u,, • • •, t>„] has no infinite ascending chain of 
distinct subgroups; i.e., show that, given an infinite sequence of subgroups 
St ^  S2 =  S3 • • • £  G, there is an index m for which Sm =  Sm+1 =  
Sm+ 2 =  • • •. (H int: Apply Lemma 1 to the join of the groups Sk.)

5. (a) Show that every module contained in the domain Z  of ordinary integers 
is an ideal of Z .

(b) Exhibit a module contained in the domain Z [ i ] of Gaussian integers 
which is not an ideal of Z[»'].

★6. If an algebraic number u satisfies a monic polynomial equation in which the 
other coefficients are algebraic integers, prove that u is also an algebraic 
integer.

14.10. Factorization of Quadratic Integers

To illustrate the factorization theory of algebraic integers, we consider 
in more detail the simplest case, that of quadratic integers. That is, we 
consider factorizations of the integers of Q(-fd), as characterized in 
Theorem 17. The basic tool for this purpose is the concept of norm.

The formula for the norm depends on the field, but the idea is the 
same in all cases, even for algebraic number fields of higher degrees. The 
norm is defined essentially by means of the automorphisms of the field. 
The quadratic field Q(\d) has by Theorem 6 an automorphism u = 
a + bsfd +* u = a — b'J~d which carries each number u into its “ conju
gate”  ii

Definition. The norm N (u ) o f a number u = a +  b'fd. o f Q(Vd) is the 
product uii o f u by its conjugate ii,

(21) N (u ) =  uii = (a +  b 'fd )(a -  b'fd).

Since the correspondence u ii is an isomorphism, uv =  ii • v, henee

(22) N(uv)  =  N(u)N(v).
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The norm thus transfers any factorization w =  uv of an integer in the 
field into a factorization N (w ) =  N (u )N (v )  of a rational integer N (w ). 
(T h e  n o r m  o f  a n  a lg e b r a ic  i n te g e r  is  a  r a t i o n a l  i n te g e r ;  s e e  E x .  1 .)

The properties of the norm depend basically on whether d is positive 
or negative— i.e., on whether Q(Vd) is a real or complex quadratic field. If 
d <  0, then N (u )  is simply ] u |2, the square of the absolute value of u, and 
it is positive unless u =  O.Whereas if d >  0, then N (u )  = a2 — b2d may 
be positive or negative. This difference shows up in the group U  of the 
units of Q(Vd), as we shall now see.

Lemma 1. An integer u e Q('fd) is a unit if  and only if  N (u ) = ±1.

Proof. Trivially, N ( l )  = 1; moreover, N (u )  is necessarily a rational 
integer. Hence if uv =  1 for some other integer v e Q(Vd), then 
N (u )N (v )  = N (u v ) = 1, whence N (u ) = ±1. Conversely, if N (u ) = 
uu =  ±1, then m(±m) =  1 and u is a unit of Q(Vd).

A  similar argument applies to algebraic number fields generally.
Combining Lemma 1 with Theorem 17, one can determine the units 

of any complex quadratic number field Q (V—J), d >  0 a square-free 
integer. The integers of Q (V -d ) then have the form u = 
m +  na(m, n e /), where

1 + V— d

if d ^  3 (mod 4) 

if d =  3 (mod 4).

Correspondingly, the norm of u satisfies

N (u ) =

2 . 2 jm +  n d if d ^  3 (mod 4) 

if d =  3 (mod 4).
2 

1 C
4

If d ^  3 (mod 4) and d >  1, m2 +  n2d S  1 is possible only if m =  
±1, n -  0. Likewise, if d =  3 (mod 4) and d > 3 , then d § 7  and 
N (u ) §  7n2/4 >  1 unless n = 0. Hence, again, the only units of Q (V -d ) 
are ±1. This proves

Theorem 19. The only complex quadratic number fields having units 
other than ±1 are Q(V—1) and Q(V—3).

The units of Q('/—1) are ±1 and ±r, those of Q (V—3) are the powers 
of w =  (1 +  V-3)/2, which is a primitive sixth root of unity.
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Real quadratic number fields have infinitely many units. For example,
1 +  V2  is a unit of Q (^2), since N (  1 +  •Jl) =  -1 . Hence so are all the 
powers (1 +  V2)±fc of (1 +  V2).

Though factorization into primes is unique for many rings of quadratic 
integers, this is not the case in QCV-J). For example, consider the 
factorizations of the number 6:

(23) 6 =  2 • 3 =  (1 +  VZ 5)(1 -  V ^ I).

If two integers u and v of Q(>/—5) satisfy uv =  6, then N (u )N (v )  =  
N (6 ) =  36. A  proper factor u of 6 will thus have a norm which is a 
proper factor of 2232, so only the cases N (u ) =  2, 3, 4, 6, 9, 12, 18 
require investigation. Since, in these cases, N (v )  =  18, 12, 9, 6, 4, 3, 2, 
respectively, it suffices to consider N (u ) =  2, 3, 4, 6. One easily sees from 
N (m  +  u v—5) =  m 2 +  5n2 that all possible factors are listed in (23).

One can rescue the unique factorization theorem in the preceding 
example by considering products of ideals, as in §13.4, instead of pro
ducts of numbers. One finds that the principal ideals (2), (3), (1 +  v —5),
and (1 -  V -5 ) are not prime ideals. The relevant prime ideals are the 
ideals P  =  (2,1 +  V ^ I), Q  =  (3*1 +  V^5), and Q '=  (3,1 +  7^5), as 
described by their bases in Z [V —5].These ideals are not principal; moreover

P 2 =  (4,2 +  2V=5,6) =  (2),

QQ ‘ =  (9, 3 +  3V^5, 6) =  (3),

This shows that the ideals (2) and (3) are not prime.
To show that P  is a prime ideal in Z [v -5 ],  we observe that 

(m +  n ' f - 5) e P  if and only if m +  n =  0 (mod 2). Therefore Z [V —5]/P  
contains only two elements and is the field Z 2. Hence, as in §13.3, 
Theorem 6, P  is a prime ideal. Similarly, Z [V^5]/O  =  Z [V ^5 ]/0 ' =  Z 3, 
and so Q  and Q ' are prime ideals.

In conclusion, we have shown that the ideal (6) of Z [V—5] has the 
unique factorization (6) =  P 2Q Q ' into prime ideals.

This unique ideal decomposition which we have derived in the domain 
Z [V —5] serves merely to indicate how the notion of an ideal may be used 
systematically to reestablish the unique decomposition theorem in 
domains of algebraic integers where the ordinary factorization is not 
unique. By a further development one may establish the “ fundamental 
theorem of ideal theory” : In the domain D  o f all algebraic integers in an 
algebraic number field K, every ideal can be represented uniquely, except for 
order, as a product o f prime ideals. In particular, every integer u o f the 
domain generates a principal ideal (u ) which has such a unique factori
zation.
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Exercises

1. (a) In any quadratic field, show that the norm o f an integer is an integer.
(b) I f  u = a + b'Jd is not rational, show that N(u) is the constant term in

the monic irreducible equation satisfied by u.
2. Find all units in Q [V —7],
3. Prove that the number o f  units in a quadratic field Q('/—d) with d positive is 

finite, and show that every unit is a root o f unity.
★4. Prove that the roots o f unity which lie in any given algebraic number field 

form  a cyclic group.
5. State and prove a division algorithm for Z[ta], where <o = (— 1 + V—3)/2. 

(Hint: The integral multiples o f  any fi divide the complex plane into 
equilateral triangles.)

★ 6 . Let D  be any integral domain in which a norm N(a) is defined, where 
(i) N(a) is a positive integer if a  ^  0; (ii) jV(a/3) =  N(a)N(@); (iii) given a  
and (3 j4 0, y  and £ exist such that a =  fiy +  £, and N(£) <  N(j3).
(a) Prove D  is a unique factorization domain.
(b) Prove every ideal in D  is principal.
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Galois Theory

15.1. Root Fields for Equations

Classically, algebraists tried to solve real and (later) complex polyno
mial equations by explicit formulas. Their efforts produced the solutions 
“ by radicals”  of the general quadratic, cubic, and quartic equations which 
we derived in Chap. 5. But repeated attempts to obtain similar formulas 
which would solve general quintic (fifth-degree) equations proved fruit
less.

The reason for this was finally discovered by Evariste Galois, who 
showed that an equation is solvable by radicals if and only if the group of 
automorphisms associated with it is “ solvable”  in a purely group- 
theoretic sense. The automorphisms in question are those automorphisms 
of the extension field generated by all the roots of the equation, which 
leave fixed all the coefficients of the equation. This final chapter presents 
the most essential arguments o f Galois in modern form, beginning with an 
examination of the extension field generated by all the roots of a given 
polynomial p (x ) over a given field F. This is the so-called “ root field”  of 
p (x ), which we now define formally.

Definition. An extension N  o f F  is a root field o f a polynomial f (x )  o f 
degree n g  1 with coefficients in F  when ( i )  f ix )  can be factored into linear 
factors f {x ) =  c (x  — u i) • • • ( jc — un) in N\ (ii )  N  is generated over F  by 
the roots o f f (x ) ,  as N  =  F(u\, • • •, un).

If f (x )  =  ax2 + bx + c (a #  0) is a quadratic polynomial over F  
with the conjugate roots! wy =  (b ±  •Jb2 -  Aac)/2a, j  =  1,2, the simple

t By a “ root” of a polynomial /, we mean, of course, a number x such that f ( x )  = 0; 
such an x is also called a “zero” of/(x). ~

452
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extension K  =  F/uf) =  F [x ]/ { f {x ))  o f F  generated by one root ux of 
f (x )  =  0 is already the root field of / over F  This is true because u2 =  c/au1, 
whence f {x ) =  a (x  — u{)(x — u2) can be fa c to red  in to  lin ea r factors o v e r  in

K  =  F (Ul).
However, this is not generally true of irreducible cubic polynomials. 

Thus the root field N  of x 2 — 5 over Q is Q(^5, co$5, co2</5) =  Q(^5, co), 
where co =  (-1  +  V30/2 is a complex cube root of unity. The real 
extension field Q (^5) =  Q [x]/ (x3 — 5) of the rational field generated by 
the real cube root of 5 is of degree three over Q, while the smallest 
extension of Q  containing all cube roots of 5 is N  = Q(^5, co). This is of 
degree two over Q (^5), since co satisfies the cyclotomic equation co2 + 
co +  1 =  0. Considered as a vector space over ^  the root field TV of 
x 3 -  5 thus has the basis (1, \̂ 5, \/25, co, co\/5, coy/25), and is an extension 
of Q  of degree six.

A  general existence assertion for root fields may be obtained by using 
the known existence of simple algebraic extensions, as follows:

Theorem 1. Any polynomial over any field has a root field.

For a polynomial of first degree, the root field is just the base field F ; 
hence we may use induction on the degree n o f f (x ) .  Suppose the 
theorem true for all fields F  and for all polynomials of degree n — 1, and 
let p (x ) be a factor, irreducible over F, o f the given polynomial f{x ). By 
Theorem 5 of §14.3 there exists a simple extension K  =  F (u ) generated 
by a root u of p{x). Over K, f (x )  has a root u and hence a factor x — u, 
so f (x )  =  ( jc  -  u )g (x ). The quotient g(jc) is a polynomial of degree n — 1 
over K, and the induction assumption provides a root field N  over K  
generated by n -  1 roots of g(jc). This field AT is a root field for /(x).

It will be proved in the next section (Theorem 2) that all root fields of 
a given polynomial / over a given base field F  are isomorphic, so that it is 
legitimate to speak of the root field of / over F.

Appendix. Theorem 1 can be used to construct, purely algebraically, 
an algebraically complete extension of any finite or countable field F, as 
follows. The number of polynomials of degree n over F  is finite or 
countable, being dn+1 =  d (d =  countable infinity) if F  is countable. 
Hence the number of all polynomials over F  is countable (cf. Ex. 14, 
§12.2), and we can arrange these polynomials in a sequence 
P i ( x ) , p 2( x ) , p 3(x) ,

Now let F i be the root field of p i(x ) over F ; let F z be the root field of 
p2(x ) over Fi*, • • •; and generally, let F„ be the root field o f pn(x ) over 
F„_i- Finally, let F *  be the set of all elements that appear in one of the 
Fn— and hence in all its successors. I f a and b are any two elements of
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F*, they must both be in some Fn and hence in all its successors. 
Therefore a +  b, ab, and (for b ^  0) a/b must also have the same value 
in F„ and all its successors, which shows that F *  is a field.

To show that F *  is algebraically complete, let g (x ) be any polynomial 
over F *; all the coefficients o f g (x ) will be in some Fn, and so algebraic 
over F. Using Theorem 9, §14.5, one can then find a nonzero multiple 
h (x ) of g (x ) with coefficients in F  (see Ex. 5 below). But h (x ) can 
certainly be factored into linear factors in its root field Fm over an 
appropriate Fm_i— hence so can its divisor g (x). Hence g (x ) can also be 
factored into linear factors over the larger field F*, which is therefore an 
algebraically complete field of characteristic p. Furthermore, every ele
ment of F *  is algebraic over F.

Using general well-ordered sets and so-called transfinite induction 
instead of sequences, the above line of argument can be modifiedt so as 
to apply to any field F. The modification establishes the following 
important partial generalization of the Fundamental Theorem of Algebra. 
Any field F  has an algebraically complete extension.

15.2. Uniqueness Theorem

W e now prove the uniqueness (up to isomorphism) of the root field of 
Theorem 1.

Theorem 2. Any two root fields N  and N ' o f a given polynomial f (x )  
over F  are isomorphic. The isomorphism o f N  to N ' may be so chosen as to 
leave the elements o f F  fixed.

Proof. The assertion that the root field is unique is essentially a 
straightforward consequence of the fact that two different roots of the 
same irreducible polynomial generate isomorphic simple extensions 
(Theorem 6, §14.3). Specifically, two root fields N  =  F (u i, • • •, « „ )  and 
N ' =  F (u f ,  • • •, « „ ')  of an irreducible p (x )  contain isomorphic simple 
extensions F(w i) and F {u f )  generated by roots Wj and u f  of p (x ). Hence 
there is an isomorphism T  of F iu f) to F(m/); it remains only to extend 
appropriately this isomorphism to the whole root field. The basic proce
dure for such an extension is given by

Lemma 1. I f  an isomorphism S between fields F  and F  carries the 
coefficients o f an irreducible polynomial p (x ) into the corresponding coeffi-

t A  detailed proof appears in B. L. van der Waerden, Modeme Algebra, Part I. Berlin, 
1930 (in some but not all editions).
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cients of a polynomial p '(x ) over F ', and if  F (u ) and F '{u ') are simple 
extensions generated, respectively, by roots u and u o f these polynomials, 
then S can be extended to an isomorphism S* o f F (u ) to F '{u '), in which 
uS* =

Proof. Exactly as in the discussion of Theorem 6, §14.3, the desired 
extension 5 * is given explicitly by the formula

(1) (a0 +  a xu +  • • • +  an_iKn-1)S*
=  a0S +  (a iS )u ’ +  ■ • • +  (a „-i5 )(u ')n-1

for all a,- in F, where n is the degree of u over F.

Lemma 2, I f  an isomorphism S o f F  to F ' carries f ix )  into a polynomial 
f i x )  and if N  => F  and N ' => F ' are, respectively, root fields of f ix )  and 
f i x ) ,  the isomorphism S can be extended to an isomorphism o f N  to N '.

This will be established by induction on the degree m =  [ N : F ], For 
m =  1 it is trivial, since 5 is then already extended to N\ hence take 
m >  1 and assume the lemma true for all root fields N  of degree less 
than m over some F. Since m >  1, not all roots of f ix )  lie in F, so there is 
at least one irreducible factor p ix ) in f ix )  o f degree d >  1. Let u be a 
root of p ix ) in N, while p 'ix ) is the factor of f i x )  corresponding to p ix ) 
under the given isomorphism 5. The root field N ' then contains a root u' 
of p 'ix ), and by Lemma 1 the given S can be extended to an isomorphism 
S*, with

(2) uS* =  u\ [F iu ) ]S * =  F ’iu '), p iu ) =  0, p 'iu ') =  0.

Since N  is generated over F  by the roots of f ix ) ,  N  is certainly 
generated over the larger field F(m) by these roots, so N  is a root field of 
f ix )  over F iu ), with a degree m/d. For the same reason, N ’ is a root field 
of f i x )  over F ’iu '). Since m/d <  m, the induction assumption of our 
lemma therefore asserts that the isomorphism 5* of (2) can be extended 
from F iu ) to N. This proves Lemma 2.

In case the two root fields N  and N ' are both extensions of the same 
base field F, and 5 is the identity mapping of F  on itself, Lemma 2 shows 
that N  is isomorphic to N ', thereby proving Theorem 2.

Exercises

1. Find the degrees of the root fields of the following polynomials over Q:
(a) x 3 — x 2 -  x — 2 =  0, (b) x 3 - 2  =  0,
(c) x4 -  7 = 0, (d) ix2 -  2)ix2 -  5) = 0.
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2. Prove: The root field of a polynomial of degree n over a field F  has at most 
the degree n ! over F.

3. (a) If f  is a primitive nth root of unity, prove that Q (f) is the root field of
* " - 1  = 0 over Q.

(b) Compute its degree for n = 3,4,5,6.
4. Prove that any algebraically complete field of characteristic p contains a 

subfield isomorphic to the field constructed in the Appendix of §15.1.
★5. Let g(x) = a0 + axx + • • • + anx" have coefficients algebraic over a field F; 

prove that g(x) is a divisor of some nonzero h(x) with coefficients in F. 
(Hint: Form a root field of g(x) over F(a0, • • ■ ,a„); factor g(x) into linear 
factors (x -  u,) in this root field; the u, will be algebraic over F  with 
irreducible equations ht(x); set h(x) = FIM*)-)

6. Let p e Q[x] be any monic polynomial with rational coefficients, and let 
z „  • • •, z„ be its complex roots. Show that Q(zi, • • •, z„) is the root field of p 
over Q.

15.3. Finite Fields

By systematically using the properties of root fields, one can obtain a 
complete treatment of all fields with a finite number of elements (finite 
fields). Since a field of characteristic oo always contains an infinite subfield 
isomorphic to the rationals (Theorem 14, §13.8), every finite field F  has a 
prime characteristic p. Without loss of generality, we can assume that F  
contains the field Zp of integers modulo p (see Theorem 12, Corollary, 
§13.7). The finite field F  is then a finite extension of Zp and so has a basis 

over Zp. Every element in F  has a unique expression as a 
linear combination Za,w,. Each coefficient here can be chosen in Zp in 
exactly p ways, so there are p" elements in F  all told. This proves

Theorem  3. The number q o f elements in a finite field is a power p n of 
its characteristic.

In a finite field F  with q =  p " elements, the non-zero elements form a 
multiplicative group of order q — 1. The order o f every element in this 
group is then a divisor of q — 1, so that every element satisfies the 
equation x q~l =  1. Therefore all q elements au a2, • • ■ ,a q of F  (includ
ing zero) satisfy the equation

(3) x q — x =  0, q =  p n.

Hence the product (x -  ax)(x  — a2) • • • (x — aq) is a divisor of x q — x, 
being a product of relatively prime polynomials each dividing x q — x.
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Since it, like x q -  x, is monic and of degree q, we conclude that

(4) xq -  x =  (x -  a jH * -  a2) • • • (x -  aq).

Therefore F  is the root field of xq — x over Zp. Any other finite field F ' 
with the same number of elements is the root field of the same equation; 
hence is isomorphic to F  by the uniqueness of the root field (Theorem 2). 
This argument proves

Theorem 4. Any two finite fields with the same number o f elements are 
isomorphic.

Next consider the question: which finite fields really exist? To exhibit 
a finite field one would naturally form the root field N  of the polynomial 
xq -  x over Zp. We now prove that the desired root field consists 
precisely of the roots of this polynomial.

Lemma. The polynomial x q — x has q distinct linear factors in its root 
field N.

The proof will be by contradiction. If x q — x had a multiple factor 
(x — u), we could write xq — x =  (x -  u )2g (x ). Comparing formal 
derivatives (§3.1, Ex. 7), we would have

(x q — x ) ' =  q x xq~1 — 1 =  —1 

[(*  -  u )2g (x )J  =  (x -  « )[2 g (x ) +  (x -  « )g '(x )],

whence (x — u) would be a divisor of —1, a contradiction. This proves the 
lemma.

On the other hand, the sum of any two of the roots « ! , • • • , « ,  of 
x q -  x is a root, for (a ±  b)p — ap ±  bp in any field of characteristic p, 
so that if apn =  a and bp" =  b, then

(a ±  b )pn =  apn ±  bpn =  a ±  b.

The product ab is also a root, for (ab)f = apnbpn =  ab, and a similar 
result holds for a quotient. The set of all q roots of x q — x is therefore a 
subfield o f the root field N ; since this subfield contains all the roots, it 
must actually be the whole root field N. This means that we have 
constructed a field with q elements, hence

Theorem 5. For any prime p and any positive integer n, there exists a 
finite field with p n =  q elements: the root field o f x q — x over Zp.
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By Theorems 4 and 5 there is one and essentially only one field with 
p n elements. This field is sometimes called the Galois field G F (p n). The 
structure of the multiplicative group of this field can be described com
pletely, as follows.

Theorem 6. In any finite field F, the multiplicative group of all nonzero 
elements is cyclic.

Proof. Each nonzero element in F  is a (q -  l)st root of unity, in the 
sense that it satisfies the equation x4-1 =  1, where q is the number of 
elements in F. To prove the group cyclic, we must find in F a  “ primitive”  
(q — l)st root of unity, which has no lower power equal to 1; the powers 
of the primitive root will then exhaust the group. To this end, write q -  1 
as a product of powers o f distinct primes

q -  1 =  p i 'p 2e* • ■ ■ Pr‘r (0 <  pi <  p2 <  • • • <  pr)-

For each P  =  p„ P e | (q -  1), so the roots of x p = 1  are all roots of 
x q~1 =  1, hence all lie in F. O f all the P e distinct roots of this equation 
x p =  1, exactly P ‘ ~x satisfy the equation x p = 1 ;  therefore^ contains 
at least one root c =  c, of x p = 1  which does not satisfy x p = 1 .  This 
element c, thus has order p f‘ in the multiplicative group of F. The 
product C\C2 ■ • • cr is an element of order q — 1 (cf. Ex. 8 below), as 
desired.

Theorem 7. Every finite field of characteristic p has an automorphism 
a * *  ap.

Proof. From the general discussion of fields of characteristic p, we 
know that the correspondence a >—> ap maps F  isomorphically into the set 
of pth powers (§13.7, Theorem 13). Since this correspondence is one-one, 
the q elements a give exactly q pth powers, which must then include the 
whole field F. Therefore a >-> ap maps F  on all of F.

Corollary. In a finite field o f characteristic p, every element has a pth 
root.

Some additional properties of finite fields are stated in the exercises.

Exercises

1. Prove that there exists an irreducible polynomial o f every positive degree
over Zp.
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2. Prove that every finite field containing Zp is a simple extension of Zp.
3. Prove that every finite extension of a finite field is a simple extension.
4. (a) Using degrees, show that any subfield of GF(p") has pm elements, where

m | n.
(b) I f  m | n, prove that (p m — 1) | (pn — 1).
(c) Use (b) to show that, if m\n,  then GF(p”) has a subfield with pm 

elements.
5. Show that the lattice o f all subfields of the Galois field of order pn is 

isomorphic to the lattice of all positive divisors of n.
6. In GF(pn) show that the automorphism a ap has order n.
7. If m is relatively prime to the characteristic p of F, show that there exists a 

primitive mth root of unity over F. (Hint: Apply the method used for 
Theorem 6. Does this apply to a field of characteristic oo?)

8. Prove: in an Abelian group the product c ,c2 •••<:, of elements c, whose 
orders are powers p‘‘ of distinct primes has order exactly p,*1 • ■ • p/r =  h. 
(Hint: Show the order divides h, but fails to divide h/p, for any i.)

9. (a) Show from first principles that the multiplicative group of nonzero
integers mod p (in Zp) is cyclic.

(b) Let £ be a primitive pth root of unity over the field Q  of rational 
numbers. Use (a) to prove that the Galois group of Q ({ )  over Q  is cyclic 
of order p — 1.

10. (a) Show that in any finite field of order q =  p", the set S of perfect squares 
has cardinality (q +  l)/2 at least.

(b) Infer that S n  (a — S ) cannot be void for any a e S.
(c) Conclude that every element is a sum of two squares.

15.4. The Galois Group

Groups can be used to express the symmetry not only of geometric 
figures but also of algebraic systems. For example, the field C of complex 
numbers has, relative to the real numbers, two symmetries; one is the 
identity and the other is the isomorphism a +  bi <-> a — bi, which maps 
each number on its complex conjugate. Such an isomorphism of a field 
onto itself is known as an automorphism. In general, an automorphism T  
of a field K  is a bijection a <-> a T  of the set K  with itself such that sums 
and products are preserved, in the sense that for all a and b in K,

(5) (a +  b )T  =  a T  +  bT, (a b )T  =  (aT )(bT ).

The composite S T  of two automorphisms S and T  is also an 
automorphism, and the inverse of an automorphism is again an 
automorphism. Hence
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Theorem 8. The set o f all automorphisms o f a field. K  is a group under 
composition.

Let K  be an extension of F  and consider those automorphisms T  such 
that a T  =  a for every a in F. These are the automorphisms which leave 
F  elementwise invariant; in the whole group of automorphisms of K, they 
form a subgroup called the automorphism group of K  over F. Thus the 
automorphism group of C over R consists of the two automorphisms 
a +  bi ►-» a +  bi and a +  bi >-> a -  bi.

Definition. The automorphism group o f a field K  over a subfield F  is 
the group o f those automorphisms o f K  which leave every element o f F  
invariant.

The most important special case is the automorphism group of a field 
of algebraic numbers over the field Q of rationals, but before we consider 
specific examples, let us determine the possible images of an algebraic 
number under an automorphism.

Theorem 9. Any automorphism T  o f a finite extension K  over F  maps 
each element u o f K  on a conjugate u T  o f u over F.

This theorem asserts that u and its image u T  both satisfy the same 
irreducible equation over F. To prove it, let the given element u, which is 
algebraic over F, satisfy a monic irreducible polynomial equation p (x ) =  
x "  +  b „ -\ X n~ l +  • • • +  b0 with coefficients in F. The automorphism T  
preserves all rational relations, by (5), and leaves each bt fixed; hence 
p{u ) =  0 gives

( « "  +  bn- iu n~l +  • • • +  b0)T
=  {u T )n +  bn- i{u T )n~l +  • • ■ +  bfiu T ) +  b0 =  0.

This equation states that u T  is also a root of p (x ), hence that u T  is a 
conjugate of u.

E x a m p l e  1. Consider the field K  — Q (V2,/)  of degree four over 
the field of rationalst generated by V2 and i =  V—1. Over the inter
mediate field F  =  Q(/) the whole field K  is an extension of degree two, 
generated by either of the conjugate roots ±V2 of x 2 =  2. By Theorem 6, 
§14.3, there is an automorphism S of K  carrying V2 into and 
leaving the elements of Q (i) fixed. That is, the conjugate roots v2  and

t  As in §14.5, one may observe that this field is the root field of x4 -  2x2 + 9.
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—72 are algebraically indistinguishable. The effect of S on any element u 
of K  is

(6) (a +  b\fl +  ci +  d'/2i)S  =  a — b 'j2 +  ci — d-Jli,

where we have written each element of K  in terms of the basis 
1, 72, i, - J l i  (cf. §14.5). By a similar argument, there is an automorphism 
T  leaving the members of Q(72) fixed and carrying i into —i. Then

(7) (a +  b J2 +  ci +  d 'J l^ T  =  a +  b-Jl — ci -  d-Jli,

so T  simply maps each number on its complex conjugate. The product S T  
is still a third automorphism of K. The effect of these automorphisms on 
72 and i may be tabulated as

S\

ST:

[ 7 2  - »  - 7 2

f 7 2  - »  - 7 2  

[ i ^  - i ,

We assert that /, 5, T, and S T  are the only automorphisms of K  over 
Q. By Theorem 9, any other automorphism U  must carry 72 into a 
conjugate ±72, and i into a conjugate ±i. These are exactly the four 
possibilities tabulated above for /, S, T, and ST. Hence U  must agree with 
one of these four automorphisms in its effect upon the generators 72 and 
i and, therefore, in its effect upon the whole field. Thus U  =  I, S, T, or 
ST.

The multiplication table for these automorphisms can be found 
directly from the tabulation of the effects on 72 and i displayed above. It 
is

(8) Sz =  I, T  =  I, S T  =  TS.

This is exactly like the multiplication table for the elements of the four 
group (§6.7), so we conclude that the automorphism group of Q(72, i )  is 
isomorphic to the four group {/, 5, 7) ST}.

Definition. I f  N  =  F (u  1, • • • , « „ )  is the root field o f a polynomial 
f (x )  =  (x — « i )  • ■ • (x — «„ ),  then the automorphism group o f N  over F  is 
known as the Galois group o f the equation f ix )  =  0 or as the Galois group 
o f the field N  over F.
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To describe explicitly the automorphisms T  of a particular Galois 
group, one proceeds as follows. Let N  be the root field of f (x )  over F. 
Then T  maps roots of f (x ) onto roots of f (x )  (Theorem 9), and distinct 
roots onto distinct roots. Hence T  effects a permutation <f> of the distinct 
roots « ! , • • • ,  uk of f (x ) ,  so that

(9) U\T =  u1<t>, •• •, ukT  =  uk4>, k S  n.

On the other hand, every element w in the root field is expressible as a 
polynomial w =  h{u\,- • - ,u k), with coefficients in F. Since T  leaves 
these coefficients fixed, the properties (9) of T  give

[h (u u • • •, uk) ]T  =  h{uxT, • • ■, ukT ) =  h (u 14>, ■ • ■, uk<t>).

This formula asserts that the effect of T  on w is entirely determined by 
the effect of T  on the roots, or that T  is uniquely determined by the 
permutation (9). Since the product of two permutations is obtained by 
applying the corresponding automorphisms in succession, the permuta
tions (9) form a group isomorphic to the group of automorphisms. The 
permutations (9) include only those permutations which do preserve all 
polynomial identities between the roots and so can correspond to 
automorphisms. The results so established may be summarized as follows:

Theorem 10. Let f (x )  be any polynomial o f degree n over F  which has 
exactly k distinct roots ut, ■ • ■, uk in a root field N  =  F (u j, • • •, uk). Then 
each automorphism T  o f the Galois group G  o f f (x )  induces a permutation 
^  <-» u,T on the distinct roots o f f (x ) ,  and T  is completely determined by 
this permutation.

Corollary 1. The Galois group of any polynomial is isomorphic to a 
group o f permutations o f its roots.

Corollary 2. The Galois group of a polynomial of degree n has order 
dividing n!.

E x a m p l e  2. The equation x 4 -  3 =  0 is irreducible over the field 
Q, by Eisenstein’s Theorem, and has the four distinct roots r, ir, - r ,  —ir, 
where i -  >/—1, and r =  ^3 is the real, positive fourth root of 3. The root 
field N  =  Q(r, ir, —r, - i r )  may be generated as N  =  Q(r, i). Since r is of 
degree four over Q and since i is complex, hence of degree two over the 
real field Q (r), the whole root field N  has degree eight over Q. By 
Theorem 9, §14.5, this extension N  has a basis of 8 elements 1, r, r2, r3, i, 
ir, ir2, ir3. Since every element in N  can be expressed as a linear
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combination of these basis elements, with rational coefficients, the effect 
of an automorphism T  will be completely determined once rT  and iT  are 
known.

Several automorphisms of N  may be readily constructed. Since N  is 
an extension of degree two over the real field Q (r), it has an automorph
ism T  which maps each number of N  on its complex conjugate; hence 
rT  = r, iT  =  —i. On the other hand, N  is an extension of degree four of 
the subfield Q(/), generated by the element r. By Theorem 6, §14.3, N  
has an automorphism S mapping r into its conjugate ir, so rS =  ir, iS =  i. 
It follows that S2 is an automorphism with rS2 =  i 2r, iS2 =  i, while 
rS3 =  —ir, iS3 =  i. By further combinations of S and T, one finds for N  
eight automorphisms, with the following effects upon the generators i and 
r:

I S S2 S3 T TS TS2 T53

r mapped into r ir —r - ir r ir —r —ir
i mapped into i i i i —i —i —i —i

One may also compute that TS3 =  ST, S4 =  T 2 =  I, so that these eight 
automorphisms form a group, isomorphic with the group of the square 
(§6.4). These automorphisms constitute the whole Galois group, for 
any automorphism must map i into one of its conjugates ±i, and r into a 
conjugate ± r  or ±ir\ the table above includes all eight possible combina
tions of these effects.

Many concepts o f group theory can be applied to such a Galois group 
G. Thus G  contains the subgroup H  =  [I, S, S2, S3] generated by S and 
the smaller subgroup L  =  [I, S2] generated by S2. Each automorphism of 
the subgroup H  leaves i fixed, and hence leaves fixed every element in 
the subfield Q(/). The smaller subgroup L  consists of those automorph
isms which leave fixed everything in the larger subfield Q(/, r2). In this 
sense, the descending sequence of subgroups G  H  ^  L  ^  / corre
sponds to an ascending sequence of subfields Q c  Q (j) c  Q(/, V3) c  
Q(t, r). Such an ascending sequence of subfields gives a method of solving 
the given equation by successively adjoining the roots of simpler equa
tions x 2 — —1, y2 =  3, z 2 =  V3. This example illustrates the significance 
of the subgroups of a Galois group for the solution of an equation by 
radicals.

Homomorphisms of Galois groups arise naturally. Each automorph
ism U  o f the group G  above carries i into ±i, hence carries each element 
of the field Q(/) into some element of the same field. This means that U  
induces an automorphism U *  of Q (t), where U *  is defined for an element 
w in Q(i') by the identity wU* =  wU. The correspondence U  U *  is a
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homomorphism mapping the group G  of all automorphisms U  of N  on 
the group G *  of automorphisms of Q (i). But G *  has only two elements: 
the identity I *  and the automorphism interchanging i and —i. Further
more, [/* =  /* if and only if U  leaves Q(r') elementwise fixed; that is, if 
and only if U  is in the subgroup H  =  [1,5, 52, 5 3]. Hence U  U *  is 
that epimorphism of G  whose kernel is H, and the group G * is therefore 
isomorphic to the quotient-group G/H.

Exercises

1. Draw a lattice diagram for the system of all subfields of Q(i, r).
2. Prove that x* — 3 is irreducible over Q  by showing that none of the linear or 

quadratic factors of x4 — 3 have coefficients in Q.
3. Represent each automorphism o f the Galois group of x4 — 3 as a permuta

tion of the roots.
4. (a) Prove that x4 — 3 is irreducible over Q (i).

(b) Describe the Galois group of x4 — 3 over Q(i).
5. Show from first principles that the following permutation of the roots of 

x 4 — 3 cannot possibly correspond to an automorphism: r i-» ir, ir >—► 
—ir, —r i-» r, —ir i-» —r.

6. Let F  =  Q(a>) be the field generated by a complex cube root oj o f unity. 
Discuss the Galois group x3 — 2 over F, including a determination of the 
degree of the root field, a description of the Galois group in purely group- 
theoretic language, and a representation of each automorphism as a permuta
tion.

7. Do the same for xs — 7 over Q(£), £ a primitive fifth root of unity.
8. Prove that the Galois group of a finite field is cyclic.
9. If £ is a primitive nth root o f unity, prove that the Galois group of Q [£) is 

Abelian. (H int: Any automorphism has the form £ i-» £'.)
10. (a) If K  is an extension of Q, prove that every automorphism of K  leaves 

each element of Q  fixed.
(b) State and prove a similar result for fields of characteristic p.

15.5. Separable and Inseparable Polynomials

The general discussion of Galois groups is complicated by the pres
ence of so-called inseparable irreducible polynomials— or elements which 
are algebraic of degree n but have fewer than n conjugates. This 
complication occurs for some fields of characteristic p, and can be 
illustrated by a simple example.

Let K  -  Zp(u ) denote a simple transcendental extension of the field 
Z p of integers mod p, and let F  denote the subfield Zp(up) of K  generated
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by up =  f. Thus, F  consists of all rational forms in an element t transcen
dental over Zp. Over F  the original element u satisfies an equation 
f (x )  =  x p -  t =  0. This polynomial f (x )  is actually irreducible over F  =  
Z p(r), for if / were reducible over Z p(t), it would, by Gauss’s Lemma 
(§3.9), be reducible over the domain Zp[r] of polynomials in t; but such a 
factorization f (x )  =  g(x, t)h (x, t) is impossible, since f (x )  =  xp -  t is 
linear in t. Therefore the root u of f (x )  has degree p  over F. But /(x ) has 
over K  the factorization

(10) f ix )  = x p -  up =  (x -  u )p.

Hence it has only one root, and u (although of degree p >  1) has no 
conjugates except itself.

We can describe the situation in the following terms:

Definition. A  polynomial f ix )  o f degree n is separable over a field F  if  
it has n distinct roots in some root field N  =  F; otherwise, f ix )  is insepara
ble. A  finite extension K  §  F  is called separable over F  i f  every element in 
K  satisfies over F  a separable polynomial equation.

There is an easy test for the separability or inseparability of a given 
polynomial f ix )  =  a0 +  a !*  +  ••• +  anx n. Namely, first define the fo r
mal derivative f i x )  of f ix )  by the formula (cf. §3.1, Ex. 7)

(11) / '(* ) =  ax +  (2 x  a2)x +  ■ • • +  (n x  a j x ” ' 1,

where n x  an denotes the nth natural multiple of an (see §13.7). If the 
coefficients are in the field of real numbers, this derivative agrees with the 
ordinary derivative as found by calculus. From the formal definition (11), 
without any use of limits, one can deduce many of the laws for differenti
ation, such as

(/  +  gy = r  +  g \  (f g r  = fs '  +  g f \  (r r  =  mfm- xr ,

and so on.
Now factor f (x )  into powers of distinct linear factors over any root 

field N,

(12) f {x )  =  c (x  -  u t f 1 • • • (x -  ukYk (c ^  0).

Differentiating both sides of (12) formally, we see that f ' (x )  is the sum of 
cei(x  -  u i)€ l ^(x -  u 2T 2 • ■ ■ (x — uk) ‘k and (k — 1) terms each contain
ing (x — Mj)*1 as a factor. Hence if ex >  1, (x — uf) divides f i x ) ,  while if
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ex =  1, then it does not. Repeating the argument for e2, • • •, ek, we find 
that f (x )  and f ' (x )  have a common factor unless ex =  e2 =  • • • =  ek =  1, 
that is, unless f (x )  is separable; hence the polynomial f (x )  is separable 
when factored over N  if and only if f (x )  and its formal derivative / '(* ) are 
relatively prime.

But the g.c.d. of f (x )  and f ' (x )  can be computed as in Chap. 3 directly 
by the Euclidean algorithm in F [x ]; it is not altered if F  is extended to a 
larger field. We infer

Theorem  11. Let f (x )  be any polynomial over a field F; compute by the 
Euclidean algorithm the (monic) greatest common divisor d (x ) o f f (x )  and 
its formal derivative f '(x ) .  I f  d (x ) =  1, then f (x )  is separable; otherwise, 
f (x )  is inseparable.

If f (x )  is irreducible, then the g.c.d. ( f (x ),  g (x )) is 1 unless f (x )  divides 
g (x ), and f (x )  cannot divide any polynomial of lower degree except 0. 
Hence

Corollary 1. A n irreducible polynomial is separable unless its formal 
derivative is 0.

Corollary 2. Any irreducible polynomial over a field o f characteristic oo 
is separable.

For f ' (x )  =  n x a„x"~x +  • • • #  0 if n >  0 and an #  0.
It is a further corollary that if F  is of characteristic oo, then the root

field of any irreducible polynomial f (x )  of degree n contains exactly n 
distinct conjugate roots of f (x ) .  Furthermore, any algebraic element over 
a field of characteristic oo satisfies an equation which is irreducible and
hence separable, so that any algebraic extension of such a field is
separable in the sense of the definition above.

The result of Corollary 2 does not hold for fields of prime characteris
tic. For example, the irreducible polynomial f (x )  =  xp — t mentioned at 
the beginning of the section has a formal derivative (xp — t)' = 
p x xp~x =  0.

Exercises

1. Without using Theorem 11, show that the roots of an irreducible quadratic 
polynomial over Q are distinct.

2. Let f (x ) be a polynomial with rational coefficients, while d(x) is the g.c.d. of 
f ix )  and f (x ) .  Prove that f(x)/d(x) is a polynomial which has the same roots as 
fix ), but which has no multiple roots.
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3. (a) Show that if f ' ( x )  =  0, then f ( x )  is inseparable over any field F.
★(b) Show that if f  (x ) =  0 over Zp, then f(,x ) =  [g (x )]p for some g(x ).

4. Show that x 3 — 2u is inseparable over Z 3(n). Show that the Galois group of its 
root field is the identity.

5. Use Theorem 11 to show that x q — x is separable over Zp, if q =  p".
6. (a) If /"(jc) is a polynomial over a field F  of characteristic p  with f ’(x ) =  0,

show that f ix )  can be written in the form a0 +  a ,xp +  • • • +  anx np.
(b) Show that if F  is finite, f ( x )  =  [g (jc)]'’ for suitable g (x ).
(c) Use part (b) to show that every irreducible polynomial over a finite field is 

separable.

15.6. Properties of the Galois Group

The root fields and Galois groups of separable polynomials have two 
especially elegant properties, which we now state as theorems.

Theorem  12. The order of the Galois group o f a separable polynomial 
over F  is exactly the degree [ N : F ] o f its root field.

In the second example o f §15.4 we have already seen that this is the 
case for the root field of x 4 =  3.

Theorem  13. In the root field N  F  o f a separable polynomial, the 
elements left invariant by every automorphism o f the Galois group o f N  over 
F  are exactly the elements o f F.

This theorem gives us some positive information about the Galois 
group G, for it asserts that for each element a in N  but not in F  there is 
in G  an automorphism T  with a T  #  a.

For the proof of Theorem 12, refer back to Lemma 2 of §15.2, which 
concerned the extensibility of isomorphisms between fields. Note that in 
this lemma (unlike in §15.5) f '(x )  does not signify the derivative of f (x ).

Lemma. I f  the polynomial f (x )  o f Lemma 2 in §15.2 is separable, S 
can be extended to N  in exactly m =  [ N : F ] different ways.

This result can be proved by mathematical induction on m. Any 
extension T  of the given isomorphism S of F  to F ' will map the root u 
used in (2) into some one of the roots u' of p '(x );  hence every possible 
extension of S is yielded by one of our constructions. Since f (x )  is 
separable, its factor p (x ) of degree d will have exactly d distinct roots u '.
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These d choices of u' give exactly d choices for S* in (2). By the 
induction assumption, each such S* can then be extended to N  in 
m/d =  [N :F (u ) ] different ways, so there are all told dim/d) =  m exten
sions, as asserted.

If f (x )  =  f ' (x )  is separable of degree m and we set N  =  N ' in Lemma 
2 of §15.2, our new lemma asserts that the identity automorphism I  of F  
can be extended in exactly m different ways to an automorphism of N. 
But these automorphisms constitute the Galois group of N  over F, 
proving Theorem 12.

Finally, to prove Theorem 13, let G  be the Galois group of the root 
field IV of a separable polynomial over F, while K  is the set of all 
elements of N  invariant- under every automorphism of G. One shows 
easily that K  is a field, and that K  F. Hence every automorphism in G  
is an extension to N  of the identity automorphism I  of K. Since N  is a 
root field over K, there are by our lemma only [ N : K ] such extensions, 
while by Theorem 12 there are [N : F ]  automorphisms, all told. Hence 
[AT: A-] =  [N :F ].  Since K  => F, this implies that K  =  F, as asserted in 
Theorem 13.

Still another consequence of the extension lemmas is the fact that a 
root field is always “ normal”  in the following sense.

Definition. A  finite extension N  of a field F  is said to be normal over F  
i f  every polynomial p ix ) irreducible over F  which has one root in N  has all 
its roots in N.

In other words, every polynomial p ix ) which is irreducible over F, and 
has a root in N, can be factored into linear factors over N.

Theorem  14. A  finite extension of F  is normal over F  if  and only i f  it is 
the root field o f some polynomial over F.

Proof. If N  is normal over F, choose any element u of N  not in F  
and find the irreducible equation p ix ) =  0 satisfied by u. By the definition 
of normality, N  contains all roots of p ix ), hence contains the root field M  
of p ix ). If there are elements of N  not in M , one of these elements v 
satisfies an irreducible equation q ix ) =  0, and M  is contained in the 
larger root field of p ix )q ix ), and so on. Since the degree of N  is finite, 
one of the successive root fields so obtained must be the whole field N.

Conversely, the root field N  of any f ix )  is normal. Suppose that there 
is some polynomial p ix ) irreducible over F  which has one but not all of 
its roots in N. Let w be a root of p ix ) in N, and adjoin to N  another root 
w' which is not in N. The simple extension F (w ) is isomorphic to F (w ') by
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a correspondence T  with wT =  w'. The field TV is a root field for f (x )  
over F (w ); on the other hand, AT' =  N (w ') is generated by roots of f (x )  
over F (w '), hence is a root field for f (x )  over F (w '). Hence, by Lemma 2, 
§15.2, the correspondence T  can be extended to an isomorphism of AT to 
AT'. Since T  leaves the elements of the base field F  fixed, these isomorphic 
fields AT and N ' must have the same degree over F. But we assumed that 
N ’ =  N (w ') is a proper extension of N, so that its degree over F  is larger 
than that of N. This contradiction proves the theorem.

If the first half of this proof is applied to a separable extension (one in 
which each element satisfies a separable equation), all the polynomials 
p (x ), q (x ) used are separable. This proves the

Corollary. Every finite, normal, and separable extension o f F  is the root 
field of a separable polynomial.

In particular, every finite and normal extension AT of the field Q of 
rational numbers is automatically separable (Theorem 11, Corollary 2), 
hence is the root field of some separable polynomial. The order of the 
automorphism group of N  over Q is therefore exactly the degree [AT: Q],

The Galois group may be used to treat properties of symmetric 
polynomials, as defined in §6.10.

Theorem  15. Let N  =  F (u x, ,u n) be the field generated by all n 
roots « ! , • • • , « „  o f a separable polynomial f (x )  o f degree n, and let 
g (x x, ••• ,x „ ) be any polynomial form over F  symmetric in n indetermi
nates xt. The element w =  g (u u ■■■ , un) o f N  then lies in the base 
field F.

Proof. Any automorphism T  of the Galois group G  of N  effects a 
permutation «, >-» « ,T  of the roots of f (x ) ,  by Theorem 10. The symmetry 
of g (x i, • • • ,x n) means that it is unaltered by any permutation of the 
indeterminates; hence

w h-> wT =  g (u xT, ■ ■ ■, unT ) =  g (u u ■ ■ ■, un) =  w.

Since w is altered by no automorphism T, w lies in F, by Theorem 13.

Corollary. Any polynomial (over F ) symmetric in n indeterminates 
Xi , • •• , x n can be expressed as a rationalt  function (over F ) in the n

t  Cf. Theorem 19 of §6.10, which states a stronger result.
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elementary symmetric functions

or =  * i  +  x2 +  • • • +  xn,

0-2 =  * 1 * 2  +  x , x 3 +  • • • +
(13) ;

CTn =  * 1 * 2  • • • * n -

To simplify the formulas, we write out the proof for the case n =  3 
only. Over F  the elementary symmetric functions a u cr2, and cr3 generate 
a field K  =  F(cru cr2, cr3). The field N  =  F (x u x2, x3) generated by the 
three original indeterminates is a finite extension of K\ in fact, the 
generators jc, of N  are the roots of a cubic polynomial

/(jc )  =  ( *  -  * i ) ( *  -  * 2) ( *  ~  * 3 )  =  * 3 -  o-i* 2 +  a 2x -  o-3 ,

with coefficients which prove to be exactly the given symmetric functions
(13). Introduce the Galois group G  of the root field N  over K. By 
Theorem 10, every automorphism induces a permutation of the jc, ; hence 
by Theorem 15, any symmetric polynomial of the jc, lies in the base field 
K. Since K  =  T V i ,  cr2, cr3), it follows that such a symmetric polynomial is 
a rational function of <t \, cr2, cr3.

Exercises

1. In the proof o f the corollary of Theorem 15, show that the Galois group of 
N  =  K (x u x2,x 3) over K  is exactly the symmetric group on three letters.

2. Express jc,3 +  jc23 +  jc33 in terms o f the elementary symmetric functions. (Cf. 
also §6.10, Exs. 7 and 8.)

3. (a) Show that there exist a field K  and a subfield F, such that the Galois group
of K  over F  is the symmetric group of degree n.

(b) Show that in (a) K  may be chosen as a subfield of the field of real numbers. 
(H int: Use n algebraically independent real numbers.)

4. If a polynomial o f degree n has n roots x „  • • •, x„, its discriminant is 
D  =  n(jc, — Xj)2, where the product is taken over all pairs o f subscripts with 
f <  j.
(a) Show that the discriminant o f a polynomial with rational coefficients is a 

rational number.
(b) For a quadratic polynomial, express D  explicitly as a rational function of 

the coefficients.
★ (c) The same problem for a cubic polynomial.

5. Show that if K  is normal over F, and F  <= L  a  K , then K  is normal over L.
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15.7. Subgroups and Subfields

If H  is any set of automorphisms of a field TV, the elements a of TV left 
invariant by all the automorphisms of H  (such that a T  =  a for each T  in 
H ) form a subfield of TV. In particular, this is true if TV is the root field of 
any polynomial over any base field F, and H  is any subgroup of the 
Galois group of TV over F.

Theorem 16. I f  H  is any finite group of automorphisms of a field TV, 
while K  is the subfield of all elements invariant under H, the degree [TV: K ] 
of TV over K  is at most the order o f H.

Proof.t If H  has order n, it will suffice to show that any n +  1 
elements c i, • • •, c„+i of TV are linearly dependent over K. From the n 
elements T  of H  we construct a system of n homogeneous linear 
equations

y 1(c17’) +  y2(c2T ) +  • • • +  yn+l(cn+iT )  =  0

in n +  1 unknowns y;. Such a system always has in TV a solution different 
from yi =  y2 =  ■ • • =  y„+i = 0, by Theorem 10 of §2.3. Now pick the 
smallest integer m such that the n equations

(14) y i(c iT ) +  y2(c2T ) +  • • • +  ym(cmT ) =  0, T  e H,

still have such a solution. This solution yi, • • •, ym consists of elements of 
TV and is unique to within a constant factor, for if there were two 
nonproportional solutions, a suitable linear combination would give a 
solution of the system with m — 1 unknowns. Without loss of generality, 
we can also assume yi =  1.

Now apply any automorphism S in H  to the left side o f (14). Since 
TS =  T  runs over all the elements of H, the result is a system

(y,S )(c, T )  +  (y2)(c2T ') +  •••• +  (ymS){cmT ) =  0, T  e H,

identical with (14) except for the arrangement of equations. Therefore 
y^S, • • •, ymS is also a solution of (14), and so by the uniqueness of the 
solution is tyi, • • •, tym, where t is a factor of proportionality. However, 
since yi =  1 and S is an automorphism, yjS =  1 also and so t =  1. We 
conclude that ytS =  y, for every i =  1, • • •, m and every S in H, which

tT his proof, which involves the idea of looking on a Galois group simply as a finite 
group of automorphisms, with no explicit reference to a base field, is due to Professor Artin.
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means that the coefficients y, lie in the subfield K  of invariant elements. 
Equation (14) with T  =  I  now asserts that the elements ci, • • •, cm are 
linearly dependent over the field K. This proves the theorem.

On the basis of this result, we can establish, at least for separable 
polynomials, a correspondence between the subgroups of a Galois group 
and the subfields of the corresponding root field. This correspondence 
provides a systematic way of reducing questions about fields related to a 
given equation to parallel questions about subgroups of (finite) Galois 
groups.

Theorem  17 (Fundamental Theorem o f Galois Theory). I f  G  is
the Galois group for the root field. N  of a separable polynomial f {x ) over F, 
then there is a bijection H  «-» K  between the subgroups H  o f G  and those 
subfields K  o f TV which contain F. I f  K  is given, the corresponding subgroup 
H  =  H (K )  consists of all automorphisms in G  which leave each element of 
K  fixed; if  H  is given, the corresponding subfield K  =  K (H ) consists o f all 
elements in TV left invariant by every automorphism of the subgroup H. For 
each K, the subgroup H (K ) is the Galois group o f TV over K, and its order is 
the degree [TV: AT],

Proof. For a given K, H (K )  is described thus:

(15) T  is in H (K )  i f andonlyi f  b T = b  for all b in K.

I f 5 and T  have this property, so does the product ST, so the set H (K )  is 
a subgroup. The field TV is a root field for /(x) over K, and every 
automorphism of TV over K  is certainly an automorphism of TV over F  
leaving every element o f K  fixed, hence is in the subgroup H (K ).  
Therefore H (K )  is by definition the Galois group of TV over K. If 
Theorem 12 is applied to this Galois group, it shows that the order of 
H (K )  is exactly the degree of TV over K.

Two different intermediate fields K x and K 2 determine distinct sub
groups H (K f )  and H (K 2). To prove this, choose any a in K x but not in 
K 2, and apply Theorem 13 to the group H (K 2) of TV over K 2. It asserts 
that H (K 2) contains some T  with a T  ^  a. Since a is in K u this 
automorphism T  does not lie in the group H (K f), so H (K i)  ^  H (K 2).

We know now that K  H (K )  is a bijection between all of the 
subfields of TV and some of the subgroups of G. In order to establish a 
bijection between all subfields and all subgroups we must show that 
every subgroup appears as an H (K ).  Let TT be a subgroup of order h 
and K  =  K (H )  be defined as in the statement o f Theorem 17:

(16) b is in K (H )  if and only if bS =  b for all 5 in H.
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According to Theorem 16, §  h. By comparing (15) with (16), one
sees that the subgroup H (K )  corresponding to K  =  K (H )  certainly 
includes the group H  originally given, while by Theorem 12 the order of 
H (K )  is [ N : K\. Since [ N : K ]  S  h, this means that the order of the group 
H (K )  does not exceed the order o f its subgroup H. Therefore H (K ) =  H, 
as asserted. This completes the proof.

The set of all fields K  between N  and F  is a lattice relative to the 
ordinary relation of inclusion between subfields. If K\ and K 2 are two 
subfields, their g.l.b. or meet in this lattice is the intersection K x n  K 2, 
which consists of all elements common to K i  and K 2, while their l.u.b. or 
join is K i  v K 2, the subfield o f N  generated by the elements of K x and K 2 
jointly. For instance, if K x =  F(v\) and K 2 -  F (v 2) are simple extensions, 
their join is the multiple extension F (v  i, v2).

Theorem 18. The lattice o f all subfields K x, K 2, is mapped by the 
correspondence K  H (K ) of Theorem 17 onto the lattice o f all subgroups
of G, in such a way that

In particular, the subgroup consisting o f the identity alone corresponds to the 
whole normal field N.

These results state that the correspondence inverts the inclusion relation 
and carries any meet into the (dual) join and conversely. Any bijection 
between two lattices which has these properties is called a dual 
isomorphism.

To prove the theorem, observe first that the definition (15) of the 
group belonging to a field K  shows that for a larger subfield the 
corresponding group must leave more elements invariant, hence will be 
smaller. This gives (17). The meet and the join are defined purely in 
terms of the inclusion relation (see §11.7); hence by the Duality Principle, 
a bijection which inverts inclusion must interchange these two, as is 
asserted in (18) and (19).

We omit the proof of the following further result.

Theorem 19. A  field K , with N  => K  F, is a normal field over F  if 
and only if  the corresponding group H (K ) is a normal subgroup o f the 
Galois group G  o f N. I f  K  is normal, the Galois group o f K  over F  is 
isomorphic to the quotient-group G /H (K ).

(17)

(18) 

(19)

K i  c  K 2 implies H {K X) => H (K 2), 

H (K i  v K 2) =  H (K i )  n  H (K 2), 

H (K i  n  K 2) =  H (K i )  v H (K 2).
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The conclusions of this theorem have already been illustrated in a 
special case by the example at the end of §15.4.

Exercises

1. (a) Prove that if H  is any set of automorphisms o f a field N, the elements of
N  left invariant by all the automorphisms in H  form a subfield K  of N.

(b) Show that N  is normal over this subfield K.
2. Exhibit completely the subgroup-subfield correspondence for the field 

Q(V2, /) over Q.
3. Do the same for the root field o f x 4 -  3, as discussed in §15.4.
4. Prove that the index of H (K )  in G  is the degree of K  over F.
5. If N  is the root field of a separable polynomial f (x )  over F, prove that the 

number of fields between N  and F  is finite.
6. Prove that the fields K  between N  and F  form a lattice.
7. If K  is a finite extension of a field F  of characteristic oo, prove that the 

number of fields between K  and F  is finite.
★8. Prove Theorem 19.
★9. Two subfields K x and K 2 are called conjugate in the situation of Theorem 17, 

if there exists an automorphism T  of N  over F  carrying K x into K 2. Prove 
that this is the case if and only if T ' 1H (K 1) T  -  H (K 2) (i.e., if and only if 
H (K X) and H (K 2) are “ conjugate”  subgroups of G ).

15.8. Irreducible Cubic Equations

Galois theory can be applied to show the impossibility of resolving 
various classical problems about the solution of equations by radicals. As 
a simple example of this technique, we shall consider the famous 
“ irreducible case”  of cubic equations with real roots.

A  cubic equation may be taken in the form (see §5.5, (17))

(20) f(y )  =  y 3 +  py +  q =  (y -  yi)(y -  y2)(y -  y3),

with real coefficients p and q and with three real or complex roots y1; y2, 
and y3. The coefficients p and q may be expressed as symmetric functions 
of the roots, for on multiplying out (20), one finds

(21) 0 = yi + y2 + y3, p  = yiy2 + yiy3 + y2y3, q =  -y iy 2y3.

It is important to introduce the discriminant D  of the cubic, defined by 
the formula

(22) D  =  [(y3 -  y2)(y i -  y3)(y2 -  y3)]2.
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The permutation of any two roots does not alter D, so that D  is a 
polynomial symmetric in y!, y2, and y3. By Theorem 15 it follows that D  
is expressible as a quantity in the field F  =  Q(p, q ) generated by the 
coefficients. This expression is, as in §5.5, (24),

(23) D  =  - 4 p 3 -  l l q 1',

this equation is a polynomial identity in yu y2, and y3 and may be 
checked by straightforward use o f the equations (21) and (22).

Theorem 20. A  real cubic equation with a positive discriminant has 
three real roots; if  D  =  0 , at least two roots are equal; while if  D  <  0 , two 
roots are imaginary.

This may be verified simply by observing how the various types of 
roots affect the formula (22) for D. If all roots are real, D  is clearly 
positive, while D  =  0 if two roots are equal: Suppose, finally, that one 
root yi =  a +  bi is an imaginary number (b #  0). The complex conju
gate y2 =  a — bi must then also be a root (§5.4), while the third root is 
real. In (22), yi -  y2 =  (a +  bi) — (a -  bi) =  2bi is a pure imaginary, 
while

(yi -  y3)(y2 -  ys) =  (yi -  y3)(y i*  -  ys) =  (yi -  y3)(y i -  ys)*

is a real number. The discriminant D  is therefore negative. This gives 
exactly the alternatives listed in the theorem.

Theorem 21. I f  the cubic polynomial (20) is irreducible over F  =  
Q (p, q), has roots yu y2, y3, and discriminant D , then its root field 
F (y i , y2, y3) isF (-JD ,y x).

Proof. By the definition (22) of D , the root field certainly contains 
V i); hence it remains only to prove that the roots y2 and y3 are contained 
in K  =  F (V d , yj). In this field K  the cubic has a linear factor (y — y3), so 
the remaining quadratic factor

(24) (y -  y2)(y -  y3) =  y 2 -  (y2 + y3)y +  y2y3

also has its coefficients in K. By substitution in (24), (yi — y2)(y i -  y3) is 
in K ,  so that

y2 -  y3 =  ±yfD/(y1 -  y2)(y , -  y3)
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is in K. But the coefficient y2 +  y3 of (24) is also in K. I f both y2 +  y3 and 
y2 -  y3 are in K, so are y2 and y3. This proves the theorem.

Consider now a cubic which is irreducible over its coefficient field but 
which has three real roots. Formula (19) of §5.5 gives the roots as 
y =  z — p/3z, where

z 3 =  —q/2 +  V ^ V 4 + T V 2 7  =  -q/2  +  V-D/108.

(W e have used the expression (23) for D .) Since the roots are real, D  is 
positive (Theorem 20); hence the square root in these formulas is an 
imaginary number. The formula thus gives the real roots y in terms of 
complex numbers!

For many years this was regarded as a serious blemish in this set of 
formulas, and mathematicians endeavoured to find for the real roots of 
the cubic other formulas which would involve only real radicals (square 
roots, cube roots, or higher roots). This search was in vain, by reason of 
the following theorem.

Theorem 22. I f  a cubic polynomial has real roots and is irreducible 
over the field F  =  Q(p, q ) generated by its coefficients, then there is no 
rational formula fo r a root o f the cubic in terms o f real radicals over F.

Before proving this, we discuss more thoroughly the properties of a 
radical 'yfa =  a 1/m. If m is composite, with m =  rs, then a 1/m = (a 1/r) 1/s, 
and so on, so that any radical may be obtained by a succession of radicals 
with prime exponents. In the latter case we can determine the degree of 
the field obtained by adjoining a radical.

Lemma. A  polynomial x r — a o f prime degree r over a real field t  K  is 
either irreducible over K  or has a root in K.

Proof. Adjoin to K  a primitive rth root of unity £ and then a root u 
of x r -  a. The resulting extension K(£, u) contains the r roots 
u, £u, £2u, • • • , C ~ lu of the polynomial x r -  a, hence is the root field of 
this polynomial, which has the factorization

(x r -  a ) =  (x -  u )(x  -  Cu)(x -  C2u) • • • (x -  r ' u ) .

Suppose that x T — a has over F  a proper factor g (x ) of positive degree 
m <  r. This factor g (x ) is then a product of m of the linear factors of 
x r -  a over K(£, u), so that the constant term b in g (x ) is a product of m

t  A real field is any field with elements which are real numbers. This lemma is true for 
any field, though the proof must be slightly modified if K  has characteristic r.
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roots ['u . Therefore b =  C u m, for some integer k, and 

br =  (£ ku m) r =  ( n ‘ ( « T  =  ( « r) m =  a m.

From this we can find in K  an rth root o f a, for m <  r is relatively prime 
to r and there exist integers s and t with sm +  tr =  1 (§1.7, (13)), so that

b "  =  asm =  a ' - ,r =  a/a\

and a =  (bsa ‘) r. The assumed reducibility of x r — a over K  thus yields a 
root bsa ‘ of x r -  a in K. Q.E.D.

We can now prove Theorem 22. To do this, suppose the conclusion 
false. Then some root of the cubic can be expressed by real radicals, 
which is to say that a root yi lies in some field L  =  F{<fa, yfb, • • 
generated over F  by real radicals. Since D  is positive, the real radical v D  
adjoined to this field gives another real field K  =  L (vD ). By Theorem 21 
the roots of the cubic will all lie in this field, so they all can be expressed 
by formulas involving real radicals. The field K  is obtained by a finite 
number of radicals. If V d  is adjoined first, this amounts to saying that K  
is the last o f a finite chain of fields

(25) F  <= /Cj <= k 2 ^  • • • c  K n =  K,

where

(26) K , =  F(VD ), K i+1 =  K t{a?/r'), i  = 1, • • •, n -  1,

with each a, in K t and each r, a prime. By dropping out extra fields, one 
may assume that the real root a,1/r‘ is not in the field K t; by the lemma 
this means that x r‘ — a, is irreducible over K t and hence that the degree 
of K i+1 is [K i+ iiK i] =  r,.

By assumption, the roots of the cubic lie in K ; they do not lie in F  or 
in f (V d ) ,  since the cubic is irreducible over F. In the chain (25) there is 
then a first field Kj+1 which contains a root of the cubic, say the root yx. 
Over the previous field Kj the given cubic must be irreducible, for 
otherwise it would have a linear factor (y — y,) over Kj, contrary to the 
fact that Kj contains none of the y,. The extension

(27) Kj+i =  K j(a 1/r), a =  at, r =  ry,

then has degree r and contains an element y! of degree three over Kj. By 
Theorem 9, Corollary 2, §14.5, 3 | r, so the prime r must be 3; we are
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dealing in (27) with a cube root $a. The field Kj+1 is generated over Kj by 
yi, contains Vd , and hence by Theorem 21 contains all roots of the cubic. 
Therefore AT/+1 is the root field of the given cubic over Kj. As a root field 
it is normal by Theorem 14; since it contains one root a 1/3 of the 
polynomial x 2 — a irreducible over Kj, it must therefore contain all roots 
of this polynomial. The other roots are (oai/2 and oi2a 1/2, so Kj+1 also 
contains a), a complex cube root of unity. This violates the assumption 
that Kj+1 c: K  is a real field. The proof is complete.

Exercises

1. Verify formula (23) for the discriminant.
2. Express the roots o f the cubic explicitly in terms of yt and Vd, after the 

method of Theorem 21.
★3. How much of the discussion o f cubic equations applies to cubics over Z3?

4. Prove: A  polynomial xn — a which has a factor o f degree prime to n over a 
field F  of characteristic oo has a root in F.

5. Prove: If F  is a field o f characteristic oo containing all nth roots of unity, then 
the degree [F (a I/n):F ] is a divisor of n.

6. Consider the Galois group G o f the irreducible cubic (20) over F  =  Q(p, q). 
Prove that if D  is the square o f a number of F, then G is the alternating 
group on three letters, and that otherwise it is the symmetric group.

15.9. Insolvability of Quintic Equations

Throughout the present section, F  will denote a subfield of the field of 
complex numbers which contains all roots of unity, and K  will denote a 
variable finite extension of F.

Suppose K  =  F (a 1/r) is generated by F  and a single rth root a 1/r of 
an element a e F, where r is a prime. The other roots of x r =  a are, as in 
Chap. 5, fa 1/r, ••• ■, £r~xa 1/r, where £ is a primitive rth root of unity, and 
so is in F. Therefore K  is the root field of x r =  a over F, and hence is 
normal over F. Unless K  =  F, the polynomial x r -  a is irreducible over 
F, by the lemma of §15.8, so there is an automorphism S of K  carrying 
the root a 1/r into the root £a1/r. The powers I ,S ,S 2, • • •, Sr_1 of this 
automorphism carry a x,r respectively into each of the roots of the 
equation x r =  a ; hence these powers include all the automorphisms of K  
over F. We conclude that the Galois group o f K  over F  is cyclic.

More generally, suppose K  is normal over F  and can be obtained 
from F  by a sequence of simple extensions, each involving only the 
adjunction of an n,th root to the preceding extension of F. This means
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that there exists a sequence of intermediate fields K h

(28) F  =  K 0 <= K^ c  K 2 c  • • • c  K s =  K,

such that Ki =  /C,_1(xt), where x " ‘ e Without loss of generality, we 
can assume each n, is prime. Such a K  we shall call an extension of F  by 
radicals. Since K  is normal, it is the root field of a polynomial f ix )  over F, 
and so the root field of the same f (x )  over K 1— and so (Theorem 14) 
normal over K\. But K x is normal over F  by the preceding paragraph. 
Consequently, every automorphism of K  over F  induces an automorph
ism of Ki over F, and the multiplication of automorphisms is the same. 
Further, by Lemma 2 of §15.2, every automorphism of K i over F  can be 
extended to one of K  over F. Hence the correspondence is an epimorph
ism from the Galois group of K  over F to that of Ki over F, like that 
described at the end of §15.4. Under this epimorphism, moreover, the 
elements inducing the identity automorphism on K i over F  are by 
definition just the automorphisms of K  over K r. This shows that the 
Galois group G(K/F) of K  over F  is mapped epimorphically onto 
G { K JF ) .  The latter is therefore isomorphic to the quotient-group 
G(K/F)/G(K/Ki). Combining this with the result of the last paragraph, 
we infer that G {K /K X) is a normal subgroup o f G(K/F) with cyclic 
quotient-group G { K JF ) .

Now use induction on s. By definition, K  is an extension of K\ by 
radicals; as above, it is also normal over K\. Hence the preceding 
argument can be reapplied to G (K / K f) to prove that G (K / K 2) is a 
normal subgroup of G (K / K f) with cyclic quotient-group G (K 2/K 1). 
Repeating this argument s times and denoting the subgroup G iK /K i) by 
Sh we get the following basic result.

Theorem 23. Let K  be any normal extension o f F  by radicals. Then 
the Galois group G  o f K  over F  contains a sequence o f subgroups 
S0 =  G  => Si => S2 =>•••=> Ss, each normal in the preceding with cyclic 
quotient-group S. î/S,-, and with Ss consisting o f I  alone.

This states that the Galois group of K  over F  is solvable in the sense 
of the following definition.

Definition. A  finite group G  is solvable i f  and only i f  it contains a 
chain o f subgroups S0 =  G  => Si => S2 =>•••=> Ss =  I  such that for all k, 
(i) Sk is normal in Sfc_i and (ii) Sk-i/Sk is cyclic.

A  great deal is known about abstract solvable groups; for example, 
any group whose order is divisible by fewer than three distinct primes is
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solvable (Burnside); it is even known (Feit-Thompson) that every group 
of odd order is solvable. W e shall, however, content ourselves with the 
following meager fact.

Lemma 1. Any epimorphic image G ' o f a finite solvable group G  is 
itself solvable.

Proof. Let G  have the chain of subgroups Sk as described in the 
definition of solvability, and let S0' =  G ', S i,  • • •, Ss' =  /' be their 
homomorphic images. Then each Sk' contains, with any x ' and y', also 
x 'y ' =  (xy )’ and x '~ 1 =  (x -1)' (jc, y being arbitrary antecedents of x ' and 
y ' in Sk), and so is a subgroup of G '. Furthermore, if a is in Sk- 1  and x is 
in Sk, the normality of Sk in Sfc_i means that a~lxa is in Sk and hence 
that a'~ lx 'a ' =  (a~ lxa )' is in Sk'. Since a ' may be any element of 5k-!', 
this proves Sk' normal in Sk- X'. Finally, since Sk- i  consists of the powers 
(Ska )n =  Skan of some single coset of Sk (Sk- X/Sk being cyclic), Sk_ i’ 
consists of the powers Sk'a 'n =  (Sk'a ')n of the image of this coset, and so 
is also cyclic. The chain of these subgroups S0' S f  S2' 3  Ss'
thus has the properties which make G ' solvable, as required for Lemma 
1. Q.E.D.

Now let us define an equation f (x )  = 0  with coefficients in F  to be 
solvable by radicals over F  if its roots lie in an extension K  of F  
obtainable by successive adjunctions of nth roots. This is the case for all 
quadratic, cubic, and quartic equations, by §5.5. It should be observed 
that K  is not required to be normal, but only to contain the root field N  
of f (x )  over F. However, since any conjugate of an element expressible by 
radicals is itself expressible by conjugate radicals, the root field N  of f (x )  
must also be contained in a finite extension K *  => K, normal over F  and 
an extension of F  by radicals. This K *  contains AT as a normal subfield 
over F. Hence each automorphism 5 of K *  over F  induces an 
automorphism Si of N  over F, and the correspondence S i-* Si is an 
epimorphism. That is, the Galois group of K *  over F  is epimorphic to 
that of N  over F ;  but the former is solvable (by Theorem 23); hence by 
Lemma 1, so is the latter. This proves

Theorem 24. I f  an equation f (x )  =  0 with coefficients in F  is solvable 
by radicals, then its Galois group over F  is solvable.

In order to prove that equations of the fifth degree are not always 
solvable by radicals, we need therefore find only one whose Galois group 
is not solvable. W e shall do this: first we shall prove that the symmetric 
group of degree five is not solvable, and then we shall exhibit a quintic 
equation whose Galois group is the symmetric group of degree five.
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Theorem 25. The symmetric group G  on n letters is not solvable unless 
« g 4 .

Proof. Let G  =  S0 => Sx => S2 =3 . . .  =3 Ss be any chain o f sub
groups, each normal in the preceding with cyclic quotient-group Sk-x/Sk; 
we shall prove by induction on s that Ss must contain every 3-cycle ( ijk ). 
This will imply that Ss >  I, and so that G  cannot be solvable.

Since S0 =  G  contains every 3-cycle, it is sufficient by induction to 
show that if 5s_i contains every 3-cycle, then so does Ss. First, note that if 
the permutations <f> and are both in Ss_i, then their so-called “ com
mutator”  y  =  is in Ss. To see this, consider the images <(>', ip',
and y' in Ss-i/Ss. This quotient-group, being cyclic, is commutative; 
hence

y ' =  =  I '  in Ss- j S s,

which implies y e Ss. But in the special case when <f> =  (ilj) and <A =  
(jkm ), where i , j ,k  are given and /, m are any two other letters (such 
letters exist unless n =  4), we have

y  =  ( jli)(m k j)(ilj )( jk m ) =  (ijk ) e Ss for all i, j, k.

This proves that Ss contains every 3-cycle, as desired.
Incidentally, it is possible to prove a more explicit form of this 

theorem. It is known that the alternating group A„  is a normal subgroup 
of the symmetric group G, so there is a chain beginning G  >  A n. One 
may then prove that the alternating group A„  (for n >  4) has no normal 
subgroups whatever except itself and the identity.

Lemma 2. There is a (real) quintic equation whose Galois group is the 
symmetric group on five letters.

Proof. Let A  be the field of all algebraic numbers; it will be count
able and contain all roots o f unity. Hence we can choose in succession, as 
in §14.6, five algebraically independent real numbers Xi, • ■ •, x5 over A . 
Form the transcendental extension A  (x lt • • •, xs). Now let o-j, • • •, cr5 be 
the elementary symmetric polynomials in the x„ and let F  =  
A ((T i , -  • •, o-5). As in Theorem 15, the Galois group of the polynomial

(2 9 ) f ( t )  =  f 5 — (T it4 +  (7 2 13 — a 3t2 +  <74f — <75 =  0

over F  is the symmetric group on the five letters x,.
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It follows from Lemma 2 and Theorem 25 that there exists a (real) 
quintic equation over a field containing all roots of unity, whose Galois 
group is not solvable. Now applying Theorem 24, we get our final result.

Theorem  26. There exists a (real) quintic equation which is not 
solvable by radicals.

Exercises

1. Prove that the symmetric group on three letters is solvable.
2. Prove that any finite commutative group is solvable. (H int: Show that it 

contains a (normal) subgroup of prime index.)
3. Prove that if a finite group G  contains a normal subgroup N  such that N  and 

G /N  are both solvable, then G  is solvable.
4. (a) Prove that in the symmetric group on four letters the commutators of

3-cycles form a normal subgroup of order 4.
(b) Using this and the alternating subgroup, prove that the symmetric group 

on four letters is solvable.
5. Prove that any finite abstract group G  is the Galois group of a suitable 

equation. (H int: By Cayley’s theorem, G  is isomorphic with a subgroup of a 
symmetric group.)

★6. (a) Show that the Galois group of x" =  a is solvable even over a field not 
containing roots of unity.

(b) Show that Theorem 24 holds for any F, whether it contains roots of unity 
or not.

7. Show explicitly that if K  is an extension of F  by radicals, then there exists an 
extension K *  of K  which is normal over F  and which is also an extension of 
F  by radicals. (This fact was used above in the proof of Theorem 24.)

8. If F  contains the nth roots of unity, and if K  =  F (a 1/n), where a is in K, 
show that the Galois group of K  over F  is cyclic, even when n is not prime.

9. I f  Q is the rational field, / the special polynomial of (29), show that the 
Galois group of / over the field Q(«Ti, • • •, cr5) is still the symmetric group on 
five letters.

10. Show that if n >  4, there exists a real equation of degree n which is not 
solvable by radicals.
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List of 
Special Symbols

A Matrix (also B, C, etc.)
A t Transposed matrix

A * Complex conjugate of matrix

a Linear algebra

A „ (F ) Affine group over F
B Boolean algebra
c Cardinality of R
C Complex field
D Integral domain

D [x ] Polynomial forms in x, coefficients in D
D (x ) Polynomial functions in x, coefficients in D

d Cardinality o (R  Z ) of set of positive integers

E n Euclidean n -space

£.7 Special matrix, (i,/)-entry 1, others O
e, 1 Group identity

F Field
F n Space of n -tuples over F

F ix ] Polynomial forms in x, coefficients in F
F (x ) Rational forms in x, coefficients in F

G Group
g.l.b. Greatest lower bound

i
I Identity matrix or transformation; greatest element of lattice

j, fc Quaternion units
J Ideal in ring (also H, L , etc.)

K Field

[X :F | Degree of K  over F
£„(F> Full linear group over F
l.u.b. Least upper bound

M n( f ) Total matric algebra over F
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o Zero matrix; least element o f lattice

On(F ) Orthogonal group

o (S ) C a r d in a l  n u m b e r  of s e t  S

p Prime ideal (also nonsingular matrix)
Positive prime number

O (D ) Field of quotients of domain D

Q Rational field

R RingR Real field

S Set; subgroup; subspace

S' Set-complement

s x Orthogonal complement (of subspace)

T Linear transformation

t a Transformation given by matrix A

[ u : R ] Degree of u over F
V, W Vector spaces

v * Dual vector space

X Vector or row matrix
z Domain or group of integers

z „ Integers mod n
z+ Semiring of positive integers

a, /3 Vectors

(a,/3) Inner (dot) product of vectors

«i/ Kronecker delta

Ci Unit vector
i/r Transformations; mappings; functions

n Product

s Summation
Vectors

0 Zero vector

0 Void set
n ,  u Intersection, union (of sets)
A , V Meet, join (in Boolean algebra, lattice)

e Is a member of
c Is a subset of
< Less than; properly included in
< Inequality

Download more at Learnclax.com



List of Special Symbols 488

±  Orthogonal to

®  Direct Product
©  Direct sum

° Binary operator
•-» Goes into (for elements)

Goes into (for sets)

* Conjugate complex number 

oo Infinity

~  Associate
=  Congruent

| A  | Determinant of A
| a | Absolute value

|| djj || Matrix
a | b a divides b

{a, b) Greatest common divisor (g.c.d.)
[a, b\ Least common multiple (l.c.m.)

Download more at Learnclax.com



Index

A
Abelian group, 133 
Absolute value, 10

o f complex number, 110 
Absorption law, 362 
Addition (see also Sum) 

o f cardinal numbers, 390 
o f complex numbers, 107 
o f inequalities, 10 
o f matrices, 220 ff. 
o f polynomials, 62 ff. 
o f vectors, 170 

Additive group, 170, 269, 415, 446 
Additive inverse, 2 
Adjoint o f matrix, 325 
Affine 

— geometry, 305 ff.
— group, 269 
— independence, 309 
— space, 305 
— subspace, 306 
— transformation, 270 

Algebraic, 421 
— extension, 422 
— function field, 427 
— integer, 443 
— number, 435

— number field, 438 
— variety, 410 

Algebraically 
— closed, 437 
— complete, 437, 454 
— independent, 73 

Alias-alibi, 271 
Alternating group, 154 
Angle between vectors, 202 
Annihilator, 211 
Anti-automorphism, 232 
Anti-symmetric law, 357, 372 
Archimedean property, 99 
Argument o f complex number, 110 
Arithmetic, Fundamental Theorem 

of, 23 
Associate, 76 
Associative law, 2 

for groups, 127, 133 
for matrices, 224 
for rings, 2
for transformations, 127 
general— , 13 

Atom, 378
Augmented matrix, 247 
Automorphism, 36 

o f a group, 157 
inner— , 158 
involutory, 232
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outer— , 3 58 
o f a vector space, 235 

Axiom  o f choice, 129, 384

B
Barycentric coordinates, 310 
Base o f parallelepiped, 328 
Basis, 176, 193 

change o f— , 260 
for ideals, 402, 411 
normal orthogonal— , 203 ff. 
normal unitary— , 302 
o f vector spaces, 176, 193 

Bijection, 33, 129 
Bilinear form, 281 
Bilinear function, 251 
Bilinear multiplication, 225 
Bilinearity, 199 
Binary operation, 33 
Binary relation, 34 
Binomial coefficients, 14 
Block multiplication, 234 
Boolean algebra, 359, 361 

free— , 377 
isomorphism o f— , 377 

Boolean function, 368 
minimal polynomial, 370 
— polynomial, 368 

Bounds (lower, upper, etc.), 96

c
Cancellation law, 3, 391 

for cardinal numbers, 391

for groups, 134 
Canonical form, 187, 248, 277 

bilinear— , 282 
disjunctive— , 369 
for linear forms, 281 
for matrices, 187 
for quadratic forms, 283 ff.
Jordan— , 355 
primary rational— , 353 

Canonical projection, 207 
Cantor’s diagonal process, 386, 436 
Cardinal number, 381, 387 
Cartesian product, 34 
Cayley’s Theorem, 139, 269, 398, 

482
Cayley-Hamilton Theorem, 340 
Center o f a group, 144 
Centroids, 308 
Chain, 376 
Characteristic, 415 ff.

— equation, 333 
— polynomial, 331 ff.
— root, 265, 332 
— vector, 265, 332 

Class (see Set)
Closure under an operation, 1 
Codomain o f transformation, 33, 

241
Co factor, 319 
Column 

— equivalent, 249 
— operation, 248 
— rank, 250 
— vector, 232 

Commutative group, 133 
Commutative law, 2 

general— , 14
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Commutative ring, 1, 69 
Commutator, 163 
Companion matrix, 338 
Complement in a lattice, 375 
Complementarity law, 359 
Complementation, 362 
Complementary subspaces, 196 
Complete ordered domain, 98 
Complete ordered field, 98 
Complete set o f invariants, 277 
Completing the square, 119 
Complex number, 41, 107 ff.
Complex plane, 110 
Composite, 127
Congruence (see also Congruent), 

25, 43 
— relation, 164 

Congruent, 25, 43, 405 
— matrices, 285 

Conic, 283, 296, 316 
Conjugate

— algebraic numbers, 448 
— complex numbers, 117 
— diameter, 308 
in a group, 158 
— quaternions, 257 
— subfields, 474 
— subgroups, 163 
— vector space, 210 

Consistency principle, 359 
Constructive proof, 92 
Contain (a  set), 358 
Content o f polynomial, 86 
Continuum, cardinal number of, 

387
Coordinates

change o f— , 260 ff.

homogeneous— , 313 
o f vectors, 193, 209, 262 

Coset, 146, 207 
Countable set, 384, 436 
Cover (in  partial order), 372 
Cramer’s Rule, 325 
Critical points, 291 
Cubic equation, 119 

— irreducible case, 474 
— trigonometric solution, 102 

Cut, Dedekind, 104 
Cycle, 150 
Cyclic

— group, 140 
— permutation, 150 
— subspace, 344 

Cyclotomic
— equation, 112 
— polynomial, 89

D
Decimals, 97
Decomposition o f ideal, 450 
Decomposition o f matrices, linear 

transformations, 346 ff. 
Dedekind cut (axiom ), 104 
Defining relation, 142 
Degree, 62, 66 

o f extension field, 429 
o f polynomial, 62 

De Moivre formulas, 111 
Denumerable set, 384 
Dependence, linear, 176 
Derivative, formal, 465 
Determinant, 48, 318 ff.
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— rank, 326 
Diagonal matrix, 228 
Diagonal process, 386, 436 
Diagonally dominant, 323 
Diagram, for partial order, 372 
Dihedral groups, 143 
Dilemma, Pythagorean, 94 
Dimension o f vector space, 169, 178 
Direct product, 156 
Direct sum, 195 

o f matrices, 347 
o f rings, 396 
o f subspaces, 195, 346 

Discriminant, 117 
o f cubic, 120 

Disjunctive canonical form, 369 
Distance, 201 
Distributive lattice, 363 
Distributive law, 2, 134, 170 

for Boolean algebra, 362 
for cardinal numbers, 390 
general, 14 
for matrices, 224 
right, 4 
for sets, 359 

Divisible, 16 
Division

— algebra, 396, 414 
— Algorithm, 18, 74, 440 .
— ring, 256, 401 

Divisor, 16
greatest common— , 19 

Divisor o f  zero {see Zero divisor) 
Domain, 33, 241 

integral— , 3 
ordered— , 9, 98 
unique factorization— , 84

Dual
— basis, 210 
— isomorphism, 473 
— numbers, 397 
— space, 210 

Duality principle, 212, 373 
Dualization law, 359 
Duplication o f cube, 434

E
Echelon matrix, 184, 185 
Eigenvalue, 265, 332 
Eigenvector, 265
Eisenstein’s irreducibility criterion, 

88
Elementary

— column operation, 248 
— divisors, 353 
— matrix, 243 ff., 321 
— row operation, 181 
— symmetric polynomial, 154 

Elimination, 48, 180 
Elliptic function field, 427 
Epimorphic image, 400 
Epimorphism, 399 
Equality

o f functions, 127 
laws o f— , 3, 26 
o f transformations, 127 

Equations {see also Polynomial) 
simultaneous linear— , 47 
o f stable type, 122 

Equivalence, 248, 277 
under a group, 277 ff.
— relation, 34, 164
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Erlanger Program, 132 
Euclidean Algorithm, 18 

for Gaussian integers, 441 
for polynomials, 81 

Euclidean group, 131, 276 
Euclidean vector space, 200 ff.
Even permutation, 153 
Exponentiation o f cardinal numbers, 

392
Exponents, laws of, 14 
Extension, 45 
Extension field, 421 

iterated— , 431 ff.

F
Factor, 16 

— group (see Quotient-group) 
Fermat Theorem, 28, 418 
Field, 38, 133 

o f quotients, 43 
o f sets, 378 

Finite
— dimensional, 178 
— extension, 429 
— field, 456 ff.
— set, 383 

Finite induction, 13 
second principle of, 15 

Formal derivative, 465 
Four group, 151 
Full linear group, 268 
Fully reducible, 347 

Function, 32 
Fundamental Theorem 

o f Algebra, 113 ff.

o f Arithmetic, 23 
o f Galois theory, 472 
o f Ideal theory, 450 
on symmetric polynomials, 154

G
Galileo paradox, 384 
Galois field, 458 
Galois group, 459 ff.
Gauss elimination, 48, 180 
Gauss’ Lemma, 85
Gaussian domain (see Unique factor

ization domain)
Gaussian integer, 439 
Generation o f subalgebras, 369 
Generators

o f a field extension, 421 
o f group, 141 
o f vector space (see Span) 

Gram-Schmidt process, 204 
Greatest common divisor, 19, 81, 407 
Greatest lower bound, 96, 374 
Group, 124 ff., 133 

abstract— , 133 
— algebra, 397 
cyclic— , 140
o f transformations, 126, 130

H
Hadamard determinant theorem, 331 
Hermitian form, 302 
Hermitian matrix, 300 ff.
Hilbert Basis Theorem, 412
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Hilbert Nullstellensatz, 413 
Holomorph o f a group, 313 
Homogeneous

— coordinates, 313 
— linear equations, 51, 190, 219 
— quadratic forms, 283 

Homomorphism 
— of a group, 155 
— o f a lattice, 377 
— of a ring, 69 ff., 399 

Hypercomplex numbers, 396 
Hyperplane, 191

I
Ideal, 80, 400 

prime— , 405 
principal— , 80, 402 
— quotient, 410 

Idempotent law, 359 
Identity, 65

— element, 2, 133 
— function, 65 
— law, 128, 133 
— matrix, 185, 225 
— transformation, 127 

Image, 33, 241 
o f subspace, 240 

Imaginary component, 108 
— numbers, 107 

Improper Ideal, 401 
Inclusion, 357

for Boolean algebra, 365 
for partial ordering, 372 

Incomparable sets, 358 
Independence

affine— , 309 
algebraic— , 73 
linear— , 176 

Indeterminate, 63 
Index o f subgroup, 146 
Induction principle 

finite— , 13 
second— , 15 

Inequality, 10
o f cardinal numbers, 387 
Schwarz— , 201 
triangle— , 201 

Infinite set, 383 
Inner automorphism, 158 
Inner product, 198 ff. 
Inseparable polynomial, 465 
Insolvability o f quintic, 478 
Integers, Ch. 1 

algebraic— , 443 
positive— , 9 

Integral domain, 3 
Intersection, 358 

o f ideals, 407 
o f subgroups, 145 
o f subspaces, 174 

Invariant
— subgroup, 159 
— subspace, 344 

Invariants, 277 
o f a matrix, 334 
o f quadratic functions, 287 ff. 

Inverse, 38, 47 
additive— , 173 
— law, 133 
left— , right— , 128 
o f a matrix, 229, 235 
o f a transformation, 128, 136
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Invertible, 16, 76, 229 
Involution law, 359 
Involutory automorphism, 232, 235 
Irrational number, 95 
Irreducible element

— polynomial, 76, 78 ff.
Isometry, 131 
Isomorphism, 35, 65

o f commutative rings, 35 
o f groups, 137 
o f lattices, 377 
o f vector spaces, 194, 240 

Iterated field extension, 431 ff.

J
Join, 364 

o f ideals, 408 
o f subgroups, 146 

Join-irreducible, 378 
Jordan matrix, 354

K
Kernel o f homomorphism, 156, 207, 

400
Kronecker delta, 275 
Kronecker product, 255

L
Lagrange interpolation formula, 68 

— theorem for groups, 146 
Lattice, 363, 374 ff.
Leading coefficient, term, 66 
Least common multiple, 20, 407

Least upper bound, 96, 374
Left coset, 146
Left ideal, 413
Left identity, 134
Left inverse, 128, 134, 238
Length o f vector, 199, 201, 301
Linear

— algebra, 396 
— combination, 173 
— dependence, 176 
— equations, 47, 182 
— form, 280
— fractional substitution, 315 
— function, 208 
— groups, 260 ff., 268 
— independence, 176 
— space (see vector space)
— sum o f subspaces, 174 
— transformations, 216 

Liouville number, 439 
Lorentz transformation, 296 
Lower bounds, 96, 374

M
Majorizable, cardinally, 387 
Matric polynomial (A.-matrix), 340 
Matrix, 180 ff., 214 ff. 

circulant, 340 
companion— , 338 
diagonal— , 228 
diagonally dominant, 323 
hermitian— , 300 ff. 
invertible— , 229 
Jordan— , 354 
monomial— , 228
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nilpotent— , 313 
nonsingular— , 229 
orthogonal— , 275 
reduced echelon— , 184 
row-reduced— , 183 
triangular— , 229 
unimodular— , 330 
unitary— , 300 ff.

Maximum, 291 
Maximal ideal, 405 
Meet, 363 

— irreducible, 378 
Metamathematics, 373 
Metric properties, 202 
Midpoint, 305
Minimal polynomial, 337, 423 

Boolean, 370 
Minimum, 291 
Minor o f matrix, 320 
Modular lattice, 376 
Modulo, modulus (o f  a congruence), 

25 ff.
Monic polynomial, 66 
Monomial matrix, 228 
Multiple, 16

least common— , 20 
Multiplication ( see also Product) 

o f  matrices, 222 ff. 
scalar— , 170 
— table o f group, 135 

Multiplicity o f roots, 116

N
Natural multiple, 415 
Nilpotent matrix, 313

Nonhomogeneous coordinates, 313 
Nonsingular matrix, 229, 237, 246 
Nonsingular linear transformation, 

235
Norm, 257, 281 
o f complex number, 439, 448 

o f vector (see Length o f vector) 
Normal 

— field extension, 468 
— orthogonal basis, 203 ff.
— subgroup, 159 
— unitary basis, 302 

Null-space, nullity, 242 
Null vector, 172

o
Odd permutation, 153 
One-one, 33, 128 
Onto, 33, 128 
Operation, binary, 33 
Operational calculus, 226 
Order

o f a group, 146 
o f a group element, 141 
— isomorphism, 59 
o f a linear algebra, 396 

Ordered domain, 9, 69 
Ordered field, 52 
Orthogonal, 176 

— group, 275 
— matrix, 275 
— projection, 205 
— transformation, 273 
— vector, 119, 302 

Outer automorphism, 158
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Outer product o f  vectors, 258

P
Paradox o f Galileo, 384 
Parallel, 307 
Parallelepiped, 328 
Parallelogram law, 168 
Partial fractions, 90 ff.
Partial order, 371 ff.
Partition, 165 
Peano postulates, 57 
Permutation, 130, 150 

— group, 150 
— matrix, 228 

Polynomial, 61 ff. 
form, 63 
function, 65, 411 
— ideal, 410 ff. 
inseparable, 465 
irreducible— , 76, 78 ff. 
minimal— , 337, 423 
monic— , 66 
separable— , 465 
symmetric— , 154 

Positive definite, 289 
Positive integers (postulates), 9, 54 
Positive semi-definite, 297 
Postulates, 1
Power ( see also Exponent) 

o f group element, 140 
Primary canonical form, 353 
Primary component, 348 
Prime, 17 

— field, 419 
— ideal, 405

— integer, 17 
relatively— , 22, 81 

Primitive polynomial, 85 
Primitive root o f unity, 113 
Principal axes, 294, 333 
Principal Axis Theorem, 294, 303 
Principal ideal, 80, 402 
Principle o f Finite Induction, 13 

Second— , 15 
Product (see also Multiplication) 

o f cardinal numbers, 390 
o f cosets, 161, 166, 404 
o f determinants, 324 
o f ideals, 409 
o f matrices, 222, 224 
tensor— , 251 ff. 
o f transformations, 127, 222 ff. 

Projective 
— conic, 316 
— geometry, 312 ff.
— group, 314 
— line, 312 ff.
— plane, 312 
— space, 313 
— subspace, 313 
— transformation, 314 

Proper
— homomorphism, 401 
— ideal, 401 
— subgroup, 143 

Properly contain, 358

Q
Quadratic 

— equation, 119
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— form, 283 ff.
— function, 296 ff.
— integers, 448 

Quadric, 296 ff.
Quartic equation, 121 ff.
Quaternion group, 258 
Quaternions, 255 ff.
Quintic equation, 478 
Quotient, 18, 39, 43 

field o f — s, 44 
— group, 161 ff:
— ring, 403 ff.
— space, 206 ff.

R
Radical o f an ideal, 413 
Radicals, solution by, 121 
Range (o f  transformations), 33 
Rank

o f bilinear form, 282 
determinant— , 326 
o f matrix, 185, 241 ff. 
o f quadratic form, 289 

Rational
— canonical form, 353 
— form, 63 
— function, 67, 411 
— integer, 443 
— number, 42 ff.

Real numbers, 98 
Real quadratic form, 288 ff., 335 
Real symmetric matrix, 290, 294, 

335
Rectangular matrix, 230 
Recursive definition, 14 
Reducible polynomial, 76

Reflection, 124, 216, 273 
Reflexive law, 3, 34 

o f congruence, 26 
for divisibility, 16 
for equivalence relations, 34, 164 
for inclusion, 357 

Relations, 34, 163 
binary— , 34 
equivalence— , 34, 164 

Relatively prime, 28, 81 
Remainder, 18, 74 
Remainder Theorem, 75 
Residue class, 20, 166, 403 

— ring, 403 
Right 

— coset, 146 
— ideal, 413 
— identity, 128 
— inverse, 134, 238 

Rigid motion, 275 
Ring, 395 

commutative— , 1, 29, 69, 402 ff. 
division— , 256, 401 
noncommutative, 395 
o f sets, 378 

Root field, 452 ff.
— isomorphism, 455 
normal— , 468 

Roots o f equations, 79, 101, 112 ff. 
cubic— , 102, 119, 474 ff. 
polynomial, 101 
quartic— , 121 

Roots o f unity, 112 
primitive— , 113 

Rotation, 125, 214 
Row

— equivalent, 181 ff., 186, 246
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— matrix, 232 
— rank, 242 
— reduced, 183 
— space, 180

s
Saddle-point, 291 
Scalar, 168

— matrix, 229, 232 
— multiples (see Product)
— product, 168, 172, 221 

Schroeder-Bemstein theorem, 387 
Schwarz inequality, 201 
Self-conjugate subgroup, 159 
Semidistributive laws, 375 
Separable extension, 465 
Separable polynomial, 465 
Set, 32, 357
Shear transformation, 217, 247 
Signature o f quadratic form, 289 
Signum (o f  permutation), 319 
Similar matrices, 264, 333 
Similarity transformation, 132, 276 
Simple extension o f field, 421 
Simple linear algebra, 414 
Simultaneous

— congruences, 27, 43 
— indeterminates, 73 
— linear equation, 47, 182, 247, 

318
Singular matrix, 235 
Skew-linearity, 301 
Skew-symmetric matrix, 283 
Skew-symmetry, 301

Solution by radicals, 121 ff., 480
Solution space, 191
Solvable group, 479
Span, 174
Spectrum, 265
Square, group of, 124 ff.
Stable type (equations), 122 
Subalgebra (o f  Boolean algebra), 

368 
Subdomain, 7 
Subfield, 40 
Subgroup, 143

normal— , 159, 473 
Sublattice, 378 
Submatrix, 233, 320, 326 
Subring, 70, 396 
Subset, 32, 357 ff.
Subspace, 173 ff., 185 ff. 

affine— , 306 
invariant— , 344 
parallel— , 207 
T-cyclic— , 344 

Substitution property, 26, 165 
Successor function, 57 
Sum (see also Addition, Direct sum) 

o f ideals, 407 
o f matrices, 221 
o f subspaces, 174 

Surjection, 33
Sylvester’s law o f inertia, 288 
Symmetric

— difference, 376 
— group, 130, 154, 481 
— law, 3, 34, 199 
— matrix, 283 
— polynomial, 154, 470 

Symmetries, 124, 131
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T
Tensor product, 254 
Total matrix algebra, 397 
Trace o f a matrix, 336 
Transcendental extension, 422 

— number, 422 
Transformation, 126

affine— , 269 ff., 298, 330 
linear— , 216 ff., 241 
one-one, onto, 128 
orthogonal— , 273 
projective— , 314 
unitary— , 300 

Transforms, set of, 241 
Transitive law, 3, 9, 26, 34 

for inclusion, 357, 372 
Transitive relation, 34 
Translation, 269
Transpose o f matrix, 219, 231, 320 
Triangle inequality, 201 
Triangular matrix, 229, 322 
Trichotomy (law o f ) ,  9, 10 
Trigonometric solution o f cubic, 102 
Trisection o f angle, 434 
Two-sided ideal, 413

u
Unary operation, 362 
Unimodular group, 330 
Union (see also Join), 358 
Unique factorization, 23 ff., 80 ff. 

o f algebraic integers, 450 
— domain, 84 
o f Gaussian integers, 441 
o f polynomials, 80 ff.

Unit, 16, 76, 439, ,449

Unit vectors, 176 
Unitary basis, 302 
Unitary matrix, 300 ff., 302 
Unitary space, 301 
Unitary transformations, 300 
Unity, 2, 396 

for commutative rings, 2, 69 
Universal bounds, 359 
Universality, 254 
Upper bounds, 96, 374

V
Vandermonde determinant, 323 
Vector, 168 ff.

— addition, 170
characteristic (eigenvector), 265 
— equations, 188 
— product, 258 
unit— , 176 
zero— , 172 

Vector space, 172 ff.
dimension of, 169, 178 

Venn diagram, 357 
Vieta substitution, 119 
Volume, 327

w
Well-ordering principle, 11 
Winding number, 115

z
Zero (see also Roots o f equations), 

2, 347 
— divisor, 6, 69 
— matrix, 221 
— vector, 172
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