FEDERAL UNIVERSITY OF TECHNOLOGY, OWERRI DEPARTMENT OF MATHEMATICS SCHOOL OF PHYSICAL SCIENCES

2018/2019 HARMATTAN SEMESTER EXAMINATIONS TIME: 2.5 HOURS

MTH 403: TOPOLOGY 1 Instructions: Answer ALL questions in Section A and any five (5) in Section B,

write your FULL NAMES with ink on your question paper.

Section A

Which of the following sets are not countable; N. Q. Z?

- 2. Describe the set N \ Z.
- Given R with the usual metric, describe [a, b] as a closed ball.
- 4. Given (X, τ) a topological space, is ∅ closed or open?
- 5. Given $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = 3x^2 1$, is f injective?
- 6. Is every linear function injective? Justify
- 7. Given $X = \{1, 2, 3\}$ and $\tau = \{\emptyset, X, \{1\}, \{2, 3\}\}$, is (X, τ) connected?
- 8. If $X = \{a, b, c, d\}$, let $\tau_1 = \{\emptyset, X, \{a\}, \{c\}, \{a, c\}\}, \tau_2 = \{\emptyset, X, \{b\}\}$, obtain the smallest topology containing τ_1 and
- Describe the set N \ Z^c.
- 10. A set with only one (1) element has how many possible topology(ies)

Section B

- 1 (a) What is a topological space?
 - (b) Given $X = \{a, b, c, d, e\}$, describe one(1) topology on X which is not a discrete topology and has a minimum of six
 - (6) elements.
 - (c) Let X be an infinite set and let $\tau = \{U \in X : U^c \text{ is countable or } U^c = X\}$. Show that τ is a topology on X.
 - (d) Why is X assumed to be infinite?
- 2 (a) What is a metric space?
 - (b) Let X = C[-1, 1] and $d: X \times X \to [0, +\infty)$ be defined as $d(f, g) = \int_{-1}^{1} |f(t) g(t)| dt$ for all $f, g \in X$. Prove that d is a metric on X. Hence, obtain d(f,g) if f(t) = 1 + 2t and g(t) = 3 - 6t.
 - (c) Consider the function $g: \mathbb{R} \to \mathbb{R}$ defined by $g(x) = 2x^2 + 4$ for all $x \in \mathbb{R}$, obtain the following sets; (i) $g^{-1}([1,2])$ (ii) $g^{-1}([6, 12])$.
- 3 (a) Let (X, d) be a metric space and let $A \subset X$. When is A said to be open?
 - (b)(i) Let ℝ be endowed with the usual metric. Prove that [0, 2) is not open.
 - (b)(ii) Is [0,2) closed? (c) Describe the sets $B_{\frac{2}{3}}(4)$, $\overline{B}_{2}(1)$, and $S_{\frac{3}{5}}(1)$ if $X=\mathbb{R}$ with metric d_{0} defined by

$$d_0(x,y) = \begin{cases} 1 & \text{if } x \neq y \\ 0 & \text{if } x = y \end{cases}$$

4 (a) When is a function $f: X \to Y$ said to be an open function? (b) Let $g: \mathbb{R} \to \mathbb{R}$ (where \mathbb{R} is endowed with the usual metric) be given by

$$g(x) = \begin{cases} -1 & \text{if } x \ge 0\\ 1 & \text{if } x < 0 \end{cases}$$

Moderated by Or. M.C. Obi

Is a continuous?

(c) Is the discrete topology a connected space?

5 (a) Show that (a, b) and (0, 1) are homeomorphic. [Hint: Consider the function for all $x \in (a, b)$

(b) Let (X, τ) be a topological space, and let $x \in X$. When is $U \subseteq X$ said to be a neighborhood of x.

(c) Let (X, τ) be a topological space, and let $A, U \subseteq X$. If U is open in X, A is closed in X, show that $A \setminus U$ is closed in X.

6 (a) What is a subspace topology?

(b) Consider the following subset of the real line with the usual topology, $Y = [0,1) \cup (2,3]$:

(i) Is [0, 1) open in R2. (ii) Is [0, 1) open in Y2. (i(i)) Is j(2,3) open in Y''.

(c) Given $X = \{1, -1, 2, 0, 6\}$, is λ compact?

7 (a) When is a topological space (X, τ) said to be Hausdorff?

(b) When is a function $f: X \to Y$ said to be a bijection?

(c) Let (X, τ) be a cofinite topology for an infinite set X, show that X is a Fréchet space.

GOOD LUCK