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Preface

This text book ‘Fluid Mechanics and Hydraulic Machines’ is meticulously prepared to assist the candidates who partake 
in the curricula of undergraduate engineering courses (B.E./B.Tech.) in mechanical, civil and agricultural streams offered 
by many technological universities and engineering institutes. The only intent to prepare this book is to emphasize the 
theoretical concepts in a clear, concise and simplified manner for the students to grasp the subject without any hurdles. 
It also aims to cater the needs of students who prepare for various competitive and professional examinations. 

This book wholly consists of 27 chapters following the SI system of units. Each and every chapter is enhanced with a 
number of figure illustrations and solved examples.  Various applications to real time problems have also been comprehen-
sively emphasized. All the basic principles and theories have been discussed in a simple and lucid language which can be 
easily grasped. The summary, objective type questions, review questions and unsolved problems have also been provided 
at the end of each chapter.

Chapter 1 covers the basic concepts of fluid flows and engineering properties of fluids. Chapter 2 describes the relation 
for variation of pressure in a fluid under static conditions and manometers and mechanical gauges for measuring fluid 
pressure and aerostatics. Chapter 3 gives the hydrostatic equations and methods to determine the resultant force acting on 
a submerged surface under static fluid conditions. In Chapter 4, liquid in a container subjected to uniform acceleration 
and constant rotation under relative equilibrium conditions is described. Chapter 5 deals with the equilibrium of floating 
and submerged bodies. In Chapter 6, the basic concepts related to fluid kinematics and the methods for determining 
velocity and acceleration are described. In Chapter 7, the derivation of energy and momentum equations along with their 
applications for solving a wide variety of fluid flow problems have been described. Chapter 8 describes the characteristics 
of vortex flow, equation of vortex motion and rotation of liquid in a closed cylindrical vessel. Chapter  9 provides 
information on the important cases of potential flow with the help of potential and stream functions. Chapter 10 discusses 
the orifice and mouthpieces for measuring the rate of flow of fluid. Chapter 11 deals with concepts regarding notches and 
weirs. Chapter 12 presents expressions relating to shear stress and pressure gradients in laminar flow, power absorbed in 
bearings and various viscometers. Chapter 13 discusses some semi-empirical theories developed for turbulent flow and 
provides information on turbulence and turbulent flow in pipes. Chapter 14 deals with various problems of pipe flow based 
on major and minor energy losses, pipes in series, parallel and branches, flow through syphon and nozzles, water hammer 
and power transmission through pipes. Chapter 15 explains the boundary layer thickness parameters, shear stress and the 
associated drag on the flat plate surface. Chapter 16 describes the simple approach of analysing the drag and lift forces 
acting on the submerged moving bodies (plates, circular cylinders, spheres and airfoils). In Chapter 17, the basic equations 
for compressible flow and its analysis for flow through nozzles and venturimeter is introduced. Chapter 18 describes flow 
in open channels pertaining to steady flow under uniform and non-uniform flow conditions. In Chapter 19, Rayleigh 
method, Buckingham pi method, types of similarities and various model laws are presented. In Chapter 20, different cases 
of force exerted by free water jet on stationary and moving vanes of different shapes, propulsion of ship, and basics of fluid 
machines are described. Chapter 21 deals with construction, working, governing, work done, efficiency and design aspects 
of Pelton turbine (impulse turbine). In Chapter 22, the general features, various working proportions and design aspects of 
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Francis turbine (radial flow reaction turbines) are described. Chapter 23 describes the propeller and Kaplan turbines (axial 
flow reactions turbines), cavitation, draft tube and new turbines, namely Deriaz, tubular and bulb turbines. Chapter 24 
explains the unit quantities, characteristic curves, specific speeds, model relationship and testing of impulse and reaction 
turbines. Chapter 25 presents the main components, theoretical analysis for determining power requirements and other 
associated problems with centrifugal pumps. Chapter 26 deals with reciprocating pumps covering air vessels, effects of 
acceleration, friction and its characteristic curves. Chapter 27 provides information on hydraulic devices, such as press, 
accumulator, intensifier, ram, lift, crane, coupling, torque converter, air lift pump, jet pump and gear pump. 

Utmost care has been taken at every stage of proof reading and checking but it is possible that some unintentional errors 
and misprints might have crept in. I shall be very grateful to the readers for pointing out the errors. Valuable suggestions 
for the improvement in future editions of this text book are warmly welcome. I hope that this book will be of great use to 
the students and teachers.

Complete solutions manual and lecture PPTs are also available for the instructors at www.pearsoned.co.in/maheshkumar.
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1.1 ❐ INTRODUCTION
It is evident that matter exists in two forms, namely fluid and non-fluid (or solid). A fluid is a substance which deforms 
continuously when subjected to shear forces. The deformation occurs at a finite rate and it can be determined by the applied 
shear force and fluid properties. The act of continuous deformation is called the flow. Thus, fluid may be defined as a 
 substance which is capable of flowing and it includes liquids and gases.

A fluid does not have its own shape but it conforms to the shape of the container. The mass of a fluid has definite volume 
at particular temperature and pressure. A liquid is practically considered as incompressible (i.e., density remains constant), 
but it takes the shape of the container. If the container is of a larger volume, then it forms a free surface. Gases are highly 
compressible and it takes the shape of the containing vessel but it occupies the whole volume of the container without any 
free surface.

The fluid flow analysis is carried out at macro-level by considering the fluid as a continuum. In this chapter, the basic 
concepts used in the analysis of fluid flow and the various engineering properties of fluids that are essential in the study of 
their behaviour are described.

1.2 ❐ FLUID MECHANICS AND ITS APPLICATIONS
The subject of fluid mechanics deals with the behaviour of the fluids at rest or in motion, as well as its interaction with  solids 
or other fluids at the boundaries. Broadly, this subject is classified into statics, kinematics and dynamics of  fluids. Fluid 
mechanics can also be divided into several categories, such as hydrodynamics, hydraulics, gas dynamics and aerodynamics.

 1. Fluid statics: It deals with the behaviour of fluids at rest.

 2. Fluid kinematics: It deals with motion of fluids without considering the forces causing flow.

 3. Fluid dynamics: It deals with fluid flow subjected to forces.

 4. Hydrodynamics: It deals with the motion of incompressible fluids, such as liquids (mainly water) and gases at low 
speeds.

 5. Hydraulics: It deals with liquid flows, for example, flows in pipes and open channel.

 6. Gas dynamics: It deals with the fluid flows that undergo significant density changes, for example, flows of gases 
through nozzles at high speeds.

 7. Aerodynamics: It mainly deals with the flow of air over bodies, like automobiles, aircrafts, spacecrafts and rockets.

Chapter 1

Basic Concepts and 
Properties of Fluids
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1.2 Chapter 1

1.2.1 Application Areas of Fluid Mechanics
Fluid mechanics is widely used in a variety of applications, such as pumps, turbines, airplanes, ships, submarines, fans, 
blowers, windmills, pipes, engines, jets, rockets, sprinklers, rivers, designing of buildings and bridges, hydraulic systems, 
pneumatic systems, artificial hearts, breathing machines, automobiles like components related with transportation of the 
fuel, hydraulic brakes, lubrication systems and cooling systems, pumping of blood in human body, naturally occurring 
flows such as in meteorology, oceanography, hydrology and many more.

1.3 ❐ UNITS AND DIMENSIONS
Physical quantities are characterized quantitatively by dimensions. The magnitudes assigned to the dimensions are called units 
which are accepted as standards. The four basic dimensions, namely mass (m), length (L), time (T) and temperature ( )θ  are 
primary or fundamental dimensions. The other dimensions such as velocity (V ), density ( )ρ , force (F), etc., are secondary 
or derived units. The most commonly used dimensions and units in SI (System International) system are given in Table 1.1.

The SI system of units is based on a decimal relationship and thus, it requires prefix before the unit. Some of the 
 commonly used prefixes are listed in Table 1.2.

In the CGS system of units, the unit of force is dyne which is equal to 1 g cm/s2  and the gravitational units kgf and gf are 
also used as force units and it needs conversion to SI units. Some of the important conversions to SI units are given in Table 1.3.

Table 1.2 Standard prefixes in SI units with symbols

Multiple Prefix Multiple Prefix

1015 Peta (P) 10-1 Deci (d)

1012 Tera (T) 10-2 Centi (c)

109 Giga (G) 10-3 Milli (m)

106 Mega (M) 10-6 Micro (m)

103 Kilo (k) 10-9 Nano (n)

102 Hecto (h) 10-12 Pico (p)

101 Deca (da) 10-15 Femto (f)

Table 1.1 SI system of units

Quantity Dimensions SI unit with symbol

Mass [M] Kilogram (kg)

Length [L] Metre (m)

Time [T] Second (s)

Temperature [q] Degree Celsius (°C) or Kelvin (K)

Force [MLT–2] Newton (N)

Pressure [ML–1T–2] Pascal (Pa)

Work [ML2T–2] Joule (J)

Power [ML2T–3] Watt (W)

Frequency [T–1] Hertz (Hz)

Table 1.3 Important conversions of units

1 kgf gf 1 N 1 J 1 W 1 Pa 1 HP °C

9.81 N 981 dynes 105 dynes 1 Nm 1 J/s 1 N/m2 736 W (Metric)
746 W (British)

(°C + 273.15) K
(1.8°C + 32)°F
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 Basic Concepts and Properties of Fluids 1.3

1.4 ❐ PRESSURE IN FLUIDS
Pressure is a general characteristic of a fluid which is exerted normal to a solid boundary or any plane drawn through the 
fluid. Consider a small area ( )δ A  on the surface of a body (Figure 1.1). Let δF  be the force acting on the elementary area 
δ A. This force can be resolved into two components, (i) δFn  along the normal to the small area δ A, also called normal 
force or pressure force and (ii) δFt  along the plane of the small area δ A, also called tangential force or shear force.

The normal force exerted by a fluid per unit area is known as pressure or intensity of pressure ( p) and in case of solids 
it is termed as normal stress. The tangential force per unit area is called shear stress or tangential stress (τ ). Thus, the 
 expression for intensity of pressure is given as follows.

p Lt
F

AA

n=
→δ

δ
δ0

Shear stress is given by,

τ
δ
δδ

=
→

Lt
F

AA

t

0

In fluids at rest, there is no shear force and consequently, the force exerted is 
normal to the surface of the containing vessel. This normal force per unit area 
is termed as pressure which is measured in N/m2  or Pascal.

1.5 ❐ FLUID CONTINUUM
Fluid is made up of atoms or molecules which are widely spaced for gas and closely spaced for liquid. In fluids, the  
distance between molecules is very large when compared to its molecular diameter. It is convenient to ignore the atomic or 
molecular nature of a substance and view it as a continuous and homogeneous matter with no voids or holes and therefore, 
the fluid is called a continuum.

The continuum idealization allows us to consider the properties of fluids as continuous function of space variables. 
In other words, the variation in properties is so smooth that the differential calculus can be used to analyse the fluid  behaviour. 
Thus, according to the mathematical idealization of continuum any property function P defined at a point (x, y, z) is a 
 continuous and differential function of space variables x, y and z. The continuum idealization is valid as long the size of any 
system is large relative to the space between the molecules which practically exists in all problems being studied. However, 
the  continuum concept is not useful in high vacuum and very high elevation problems where rarefied gas flow theory is 
applicable.

1.6 ❐ FLUID PROPERTIES
The characteristics of a fluid by which its physical condition may be described are called properties of fluid. It helps in 
the formulation of general laws which govern fluid motion. Some of the important properties of fluids are density, specific 
weight, specific volume, specific gravity, viscosity, surface tension, capillarity, compressibility and vapour pressure. The 
properties that are independent of the mass of a system are called intensive properties, for example, temperature,  pressure 
and density. The properties that depend on the size (or extent) of the system are called extensive properties. Thus, in 
 dividing a system into two equal parts if the properties become half of the original system then the properties are said to be 
extensive properties, for example, mass and volume.

1.7 ❐ MASS DENSITY OR DENSITY
The mass density or density ( )ρ  is the ratio of mass (m) of a fluid to its volume (v). The mass density of a fluid is 
 mathematically expressed as given below.

	
ρ = =Mass

Volume

m

v
 (1.1)

Aδ

Fδ

Fnδ

Ftδ

Figure 1.1 Normal and shear forces
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1.4 Chapter 1

Its units are kg/m3  and dimensions are [ ]ML−3 . The density of water is denoted by ρw  and its typical value is  
1000 kg/m3  (at 4°C and 1 atm). The typical value of density for air is 1.3 kg/m3  (at 0°C and 1 atm).

1.8 ❐ SPECIFIC WEIGHT OR WEIGHT DENSITY
The specific weight or weight density (w) is the ratio of the weight (W) of a fluid to its volume (v). The specific weight of 
a fluid is mathematically expressed as given below.

	
w

W

v

mg

v

m

v
g g= = = = × = ×Weight

Volume
ρ  (1.2)

The units of specific weight or weight density is N/m3  and the dimensions are [ ]ML T− −2 2 . The value of specific weight 
for water is given below.

w gw= = × =ρ 1000 9 81 9810. N/m3

1.9 ❐ SPECIFIC VOLUME
The volume (v) of a fluid per unit mass (m) is called its specific volume (vs). It is the reciprocal of mass density and it is 
mathematically expressed as given below.

	
v

v

m m vs = = =1 1

( / ) ρ
 (1.3)

Its units are m /kg3  and dimensions are [ ]M L−1 3 . The concept of specific volume is used in the study of flow of gases 
(i.e., compressible fluids).

1.10 ❐ SPECIFIC GRAVITY OR RELATIVE DENSITY
Specific gravity (S) is defined as the ratio of the density (or weight density) of a fluid to the density (or weight density) of a 
standard fluid. For liquids, the standard fluid is assumed as water (at 4°C), whereas for gases it is air (at 0°C). The specific 
gravity is also known as relative density and it has no units. The specific gravity of a fluid is mathematically expressed as 
given below.

	
S

w

w
= =

ρ
ρ

liquid

water

liquid

water
  (For liquids) (1.4)

	
S

w

w
= =

ρ
ρ

gas

air

gas

air
  (For gases) (1.4a)

The specific gravities of some common substances are given in Table 1.4.

Table 1.4 Specific gravities of some substances at 0°C

Substance Water Mercury Seawater Petrol Ice

S 1 13.6 1.025 0.7 0.92
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 Basic Concepts and Properties of Fluids 1.5

 Example 1.1  Determine (i) specific weight, (ii) density and (iii) specific gravity of 3 litres of a liquid that weighs 24 N.

Solution

Let v = = × −3 3 10 3litres m3  and W = 24 N.

 (i) w
W

v
= =

×
=−

24

3 10 3
8000 N/m3

 (ii) ρ = = =
w

g

8000

9 81.
815.5 kg/ m3

 (iii) S
w

= = =
ρ

ρ
815 5

1000

.
0.8155

 Example 1.2  A liquid has specific gravity of 0.76, determine its (i) density, (ii) specific volume and (iii) specific weight.

Solution

Let S = 0 76. .

 (i) ρ ρ= × = × =S w 0 76 1000. 760 kg/m3

 (ii) vs = = =
1 1

760ρ
1.316 10 m /kg3 3×× −−

 (iii) w g= × = × =ρ 760 9 81. 7455.6 N/m3

1.11 ❐ VISCOSITY OR DYNAMIC VISCOSITY
Viscosity is the property of a fluid which offers resistance to the movement of one layer of fluid over an adjacent layer. 
In other words, it is a measure of the internal fluid friction which causes resistance to flow. The viscosity is due to cohesion 
and molecular momentum transfer between fluid layers. If there is any fluid flow, then these factors add up and appear 
as shearing stresses. A typical velocity profile developed during the flow of a fluid over a stationary solid flat surface is 
 illustrated in Figure 1.2(a).

u + du

u

du

dy

y

u

Solid
surface

Temperature

V
is

co
si

ty

Gases

Liquids

(a) (b) (c)

τ

)/( dydu

Air

Water

Oil

y

x

x
y

slope
dydu

===
/
τμ

u = 0

Velocity
profile

Figure 1.2 (a) velocity profile (b) shear stress versus velocity gradient (c) viscosity versus temperature
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1.6 Chapter 1

Here, no slip occurs at the point of contact between the fluid and the solid surface where the fluid motion completely 
stops and has a zero velocity ( )u = 0 . The layer that sticks to the solid surface slows down the next adjacent fluid layer 
due to the presence of viscous forces and it slows down the next layer and so on. Thereby, the velocity of each successive 
layer increases. Thus, the stream velocity in the fluid layers which is far away from the solid surface attains the free stream 
velocity. In fact, the velocity variation between each layer is due to viscosity.

1.11.1 Newton’s Law of Viscosity 
Consider two adjacent layers of a fluid at a distance apart and denoted as dy. The lower layer moves with a velocity u and 
the upper layer moves with a velocity ( )u du+  which is higher than the lower one as shown in Figure 1.2(a). The upper 
layer drags the lower layer along with it by means of force F acting over an area of contact A. However, the lower layer tries 
to retard the upper one with an equal and opposite force F. These two equal and opposite forces causes shear stress τ  and 
it is mathematically expressed as given below.

	
τ = F

A
 (1.5)

The Newton’s law of viscosity states that the shear stress on a fluid layer is directly proportional to the velocity gradient or 
the rate of shear strain ( / )du dy  as shown in Figure 1.2(b) and it is mathematically expressed as given below.

τ α du

dy

Thus τ μ=
du

dy
 (1.6)

Here, μ  is the constant of proportionality known as coefficient of viscosity or the dynamic viscosity or simply the viscosity.
Fluids which obey Newton’s law of viscosity are known as Newtonian fluid, for example, water, air and molten metals. 

Fluids which do not obey this law are known as non-Newtonian fluids, for example, human blood and thick lubricating oils. 
The variation of shear stress ( )τ  with velocity gradient ( / )du dy  for Newtonian fluid is a straight line whose slope ( / )y x  
is the viscosity of the fluid (Figure 1.2(b)).

It can be noticed that the Newton’s law of viscosity for fluids is analogous to the Hooke’s law of elasticity for solids.

1.11.2 Units of Viscosity
From Equation (1.6), we get:

μ τ
=

⎛
⎝⎜

⎞
⎠⎟

=
×⎛

⎝⎜
⎞
⎠⎟

= = ⋅ = ⋅
du

dy

N/m

m

s

1

m

Ns

m

N

m
s Pa s

2

2 2

In SI units, viscosity is measured in Ns/m2  or Pa s⋅  or kg/ms 	and its dimensions are [ ]ML T− −1 1 . Commonly, viscosity 
is measured in poise or centipoise (cP).

1 0 1 1 0 01poise Ns/m and cP poise2= =. .

For water at 20°C: μ = = −1 10 3cP Ns/m2

For air at 20°C: μ = = × −0 0181 0 0181 10 3. .cP Ns/m2

1.11.3 Variation of Viscosity with Temperature 
The viscosity of fluids varies greatly with temperature. With an increase in temperature, the viscosity of liquids decreases 
while for gases it increases (Figure 1.2(c)). This can be explained by the fact that the property of viscosity is due to 
inter molecular forces of cohesion and the momentum transfer due to exchange of molecules between adjacent layers of 
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 Basic Concepts and Properties of Fluids 1.7

fluid under shear. In liquids due to closely packed molecules, the cohesive forces predominates the molecular momentum 
 transfer. With increase in temperature, the molecular cohesion decreases due to increase in distance between the molecules 
and as a result, the viscosity of liquids decreases. In case of gases, the molecular cohesive forces are very small and the 
viscosity is mainly due to molecular momentum transfer. With increase in temperature, the molecular activity increases 
with increase in momentum transfer and also the viscosity.

The relationship between viscosity and temperature for liquids is expressed as follows.

	
μ

μ
=

+ +
o

aT bT1 2
 (1.7)

Here, μ  is the viscosity of liquid at T °C in poise, μo  is the viscosity at 0°C in poise, and a and b are the constants 
 depending on the liquid.

For water: 

μo = 0 0179. poise,  a = 0 03368.  and b = 0 000221.

From Equation (1.7), it can also be observed that viscosity of liquids decrease with increase in temperature.
The relationship between viscosity and temperature for gases is expressed as follows.

	 μ μ= + −o aT bT 2  (1.8)

Here, μ  is the viscosity of gas at T °C, μo  is the viscosity at 0°C, and a and b are the constants depending on the gas.
For air: 

μo = × −1 7 10 5 2. Ns/m , a = × −0 56 10 7.  and b = × −0 1189 10 9.

From Equation (1.8), it can also be observed that viscosity of gases increases with increase in temperature.
The dynamic viscosity of liquids and gases does not change appreciably with pressure values generally encountered in 

practice.

1.12 ❐ KINEMATIC VISCOSITY
The kinematic viscosity ( )ν  is the ratio of dynamic viscosity ( )μ  to the density ( )ρ  of a fluid. It represents the momentum 
diffusivity and it is mathematically expressed as given below.

	
ν μ

ρ
= =Viscosity

Density
 (1.9)

In SI units, kinematic viscosity is measured in m /s2  and its dimensions are [ ]L T2 1− . Commonly, kinematic viscosity is 
measured in stoke or centistoke.

1 10 1 0 014stoke m /s and centistoke stoke2= =− .

In case of liquids, the kinematic viscosity decreases with the increase in temperature, whereas in case of gases it increases. 
The kinematic viscosity of gases changes with pressure due to change in density.

1.13 ❐ TYPES OF FLUIDS
The fluids may be classified as (i) ideal and real fluids, (ii) Newtonian fluid, (iii) non-Newtonian fluid, (iv) ideal plastic fluid 
and (v) thixotropic fluids as shown in Figure 1.3.

 1. Ideal and real fluids: An imaginary fluid which is incompressible and has zero viscosity is called an ideal fluid. 
 Practically, all the fluids have some viscosity and are called real fluids. In Figure 1.3(a), an ideal fluid is represented by 

the horizontal axis for which shear stress τ = 0.
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1.8 Chapter 1

 2. Newtonian fluid: Fluids which obey the Newton’s law of viscosity are known as Newtonian fluids. These are real 
 fluids in which there is a linear relation between the magnitude of shear stress and the resulting velocity gradient 
( Figure 1.3(a)). Some of the Newtonian fluids are air, water, glycerine, kerosene and molten metals. It is important to 
note that this book deals with Newtonian fluids only.

 3. Non-Newtonian fluid: Fluids which do not obey the Newton’s law of viscosity are known as non-Newtonian fluids. 
These are real fluids in which there is a non-linear relation between the magnitude of shear stress and velocity gradient 
as shown in Figure 1.3(a). The behaviour of non-Newtonian fluid may be given by power law as expressed below.

 τ =
⎛
⎝⎜

⎞
⎠⎟

k
du

dy

n

 (1.10)

  Here, k is a consistency index and n is a flow behaviour index. For a Newtonian fluid k = μ  and n = 1.

Some of the non-Newtonian fluids are slurries, polymer solutions, suspensions, grouts, human blood, thick lubricating oil, 
toothpaste and gels. The study of non-Newtonian fluids is known as ‘Rheology’ and it comes under the following groups.

 (a) Pseudo-plastic fluids: Non-Newtonian fluids for which n < 1  are called pseudo-plastic fluids (or shear thinning  fluids) 
and its dynamic viscosity decreases as the rate of shear increases. Some examples of this type of fluids are milk, blood, 
colloidal solutions, clay and liquid cement.

 (b) Dilatant: Non-Newtonian fluids for which n > 1  are called dilatant (or shear thickening fluids) and its dynamic 
 viscosity increases as the rate of shear increases. Some examples of this type of fluids are concentrated sugar solution, 
aqueous suspension of rice starch and quicksand.

 (c) Ideal plastic fluid: Non-Newtonian fluids in which shear stress is more than the yield value and there is a linear 
 relation between shear stress and the velocity gradient is known as ideal plastic fluid or Bingham plastic. For example, 
sewage sludge and toothpaste does not flow out of the tube until a finite stress is applied by squeezing.

 (d) Thixotropic fluid: Non-Newtonian fluids which have a non-linear relationship between the shear stress and the 
 velocity gradient beyond an initial yield stress are called thixotropic fluids, for example, printer’s ink. These fluids 
thin out with time and require decreasing stress to maintain a constant velocity gradient, whereas fluids which require 
increasing shear stress to maintain a constant velocity gradient are called rheopectic (Figure 1.3(b)).

Dilatant

Ideal fluid

Newtonian fluid
Pseudo plastic

 fluid
Ideal plastic

 fluidThixotropic fluid

Yield
stress

S
he

ar
 s

tr
es

s

Velocity gradient

Ideal solid

S
he

ar
 s

tr
es

s

(Constant velocity gradient) 

Rheopectic fluid

Common fluids

Thixotropic fluid

Time

(a) (b)

Figure 1.3 Types of fluids
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 Basic Concepts and Properties of Fluids 1.9

 Example 1.3  A liquid has kinematic viscosity of 5 stokes and specific gravity of 1.6, determine its dynamic viscosity 
in poise.

Solution

Let ν = = × −5 5 10 4stokes m /s2  and S = 1 6. .

ρ ρ= × = × =S w 1 6 1000 1600. kg/m3

μ ρ ν= × = × × = = × =−1600 5 10 0 8 0 8 104 . .Ns/m2 8 poise

 Example 1.4  The shear stress at a point in oil of density 800 kg/m3 is 0.25 N/m2 and the rate of shear strain at that point 
is 0.15 per second, determine its kinematic viscosity in stoke.

Solution

Let ρ = 800 kg/m3 , τ = 0 25. N/m2  and ( ) .du dy/ per second.= 0 15

From Equation (1.6), we get:

μ τ= = =
( )

.

.
.

du dy/
Ns/m20 25

0 15
1 67

ν μ
ρ

= = = × −1 67

800
2 0875 10 3.

. m /s2

	 ∴	ν = × × =−2 0875 10 103 4. 20.875 stokes 	

 Example 1.5  A horizontal flat plate which is at a distance of 0.04 mm from another fixed flat plate moves with a velocity 
of 1 m/s. It requires a force of 1.8 N/m2 to maintain its speed in the oil placed between the plates. Find the viscosity of oil 
in poise.

Solution

Let dy = = × −0 04 0 04 10 3. .mm m, u = 1 m/s  and τ = 1 8. .N/m2

	 du u= − =( )0 1 m/s 	
From Equation (1.6), we get:

μ τ= = × × = ×
−

−dy

du
1 8

0 04 10

1
7 2 10

3
5.

.
. Ns / m2

	 ∴	 μ = × × =−7 2 10 105. 7.2 10 poise4×× −−
	

 Example 1.6  Two horizontal flat plates are placed 0.12 mm apart and the space between them is filled with an oil of 

viscosity 1.2 poise. The upper plate of area 1.6 m2 is pulled with a speed of 0.45 m/s relative to the lower plate. Evaluate 

the shear stress, shear force, and power required to maintain the given speed.

Solution

Let dy = = × −0 12 0 12 10 3. .mm m, μ = =1 2 0 12. .poise Ns / m2, A = 1 6. m2  and u = 0 45. m/s.
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1.10 Chapter 1

Let F be the shear force and P be the power required.

du u= − =( ) .0 0 45 m/s

τ μ= = ×
×

=−
du

dy
0 12

0 45

0 12 10 3
.

.

.
450 N/m2

F A= × = × =τ 450 1 6. 720 N

P F u= × = × =720 0 45. 324 W

 Example 1.7  A flat plate having an area of 0.64 m2 slides down the inclined plane at an angle of 30° to the horizontal 
with a speed of 0.35 m/s. A lubricant layer of 1.6 mm thickness is placed between the plane and the plate. Determine the 
viscosity of the lubricant used if the weight of the plate is 250 N.

Solution
Refer Figure 1.4. Let A = 0.64 m2, a = 30°, u = 0.35 m/s, dy = 1.6 mm = 
0.0016 m and W = 250 N.

The load along the plate is equal to the shear force on the bottom of 
the plate and it is given as follows.

F W= = ° =sin sinα 250 30 125  N

	
τ = = =F

A

125

0 64
195 31

.
. N/m2

	

	 du u= − =( ) .0 0 35 m/s 	
From Equation (1.6), we get:

μ τ= = × =
dy

du
195 31

0 0016

0 35
.

.

.
0.8928 Ns/m2

 Example 1.8  The velocity distribution for flow over a plate is given by u y y= −3 2 ,  where u is the velocity in m/s 
at a distance y metre above the plate. Find the velocity gradient and shear stress at the boundary and 0.2 m from it when

μ = 0 86. .Ns / m2

Solution

Let u y y= −3 2, y = 0 0 2m and m.  and μ = 0 86. .Ns/m2

	

du

dy
y= −3 2

	

Velocity gradient at the boundary, i.e., at y = 0  is given by,

du

dy y

⎛
⎝⎜

⎞
⎠⎟

= − =
=0

3 2 0( ) 3 per s

Velocity gradient at y = 0 2. m  is given by,

du

dy y

⎛
⎝⎜

⎞
⎠⎟

= − =
=0 2

3 2 0 2
.

( . ) 2.6 per s

dy

u

Plate

Lubricant

Inclined plane

W

α

α αsinW

Figure 1.4
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Shear stress at the boundary, i.e., at y = 0 is given by,

( ) .τ μy
y

du

dy=
=

=
⎛
⎝⎜

⎞
⎠⎟

= × =0
0

0 86 3 2.58 N/m2

Shear stress at y = 0 2. m  is given by,

( ) . ..
.

τ μy
y

du

dy=
=

=
⎛
⎝⎜

⎞
⎠⎟

= × =0 2
0 2

0 86 2 6 2.236 N/m2

 Example 1.9  The space between two horizontal square flat plates of sides 0.7 m each is filled with a lubricant film of 
thickness 1 cm. The upper plate requires a force of 100 N to maintain its speed of 2 m/s while the lower plate is fixed. 
Evaluate the dynamic viscosity in poise and the kinematic viscosity in stokes of the lubricant if its specific gravity 
is 0.96.

Solution

Let x = 0 7. m, dy = =1 0 01cm m. , F = 100 N, u = 2 m/s  and S = 0 96. .

A x= = =2 20 7 0 49. . m2

du u= − =( )0 2 m / s

τ = = =F

A

100

0 49
204 08

.
. N / m2

From Equation (1.6), we get:

μ τ= = × =dy

du
204 08

0 01

2
1 0204.

.
. Ns / m2

	 ∴	 μ = × =1 0204 10. 10.204 poise 	
ρ ρ= × = × =S w 0 96 1000 960. kg/m3

ν μ
ρ

= = = × −1 0204

960
1 0629 10 3.
. m / s2

	 ∴	ν = × × =−1 0629 10 103 4. 10.629 stokes 	

 Example 1.10  The parabolic velocity profile of a fluid over a flat plate 
with vortex 25 cm from the plate is given by u = ay2 + by + c, where 
the vortex velocity is 150 cm/s. If the dynamic viscosity of the fluid is 
8.9 poise, then determine (i) velocity gradients and (ii) shear stresses at 
distances of 0 cm and 12.5 cm from the plate.

Solution
Refer Figure 1.5. Let yvortex = 25 cm, u = ay2 + by + c, uvortex = 150 cm/s, 

μ = =8 9 0 89. .poise Ns / m2  and y = 0 12 5cm and cm. .

The boundary conditions becomes,

 (a) at y u= =0 0, ,

 (b) at y u= =25 150cm cm / s,  and ( )du dy/ = 0

y

u
Flat surface

Parabolic velocity
profile

u = 150 cm/s

25 cm

u = 0

Figure 1.5
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1.12 Chapter 1

	 u ay by c= + +2  (i)

	

du

dy
ay b= +2  (ii)

Substituting boundary condition (a) in Equation (i), we get:

0 0 0 02= + + ⇒ =a b c c( ) ( )

Substituting boundary condition (b) and value of c = 0  in Equation (i), we get:

	 150 25 25 0 625 25 1502= + + ⇒ + =a b a b( ) ( ) ( )  (iii)

Substituting boundary condition (b) in Equation (ii), we get:

                   0 2 25 50 0= + ⇒ + =a b a b( )  (iv)

Solving equations (iii) and (iv), we get:

a = −0 24.  and b = 12

Substituting the values of a, b and c in Equation (i), we get:

u y y= − +0 24 122.

 (i) Velocity gradients:

du

dy
y= − +0 48 12.

  Velocity gradient at y = 0 cm  is given by,

du

dy y

⎛
⎝⎜

⎞
⎠⎟

= − + =
=0

0 48 0 12. ( ) 12 per s

  Velocity gradient at y = 12 5. cm  is given by,

du

dy y

⎛
⎝⎜

⎞
⎠⎟

= − + =
=12 5

0 48 12 5 12
.

. ( . ) 6 per s

 (ii) Shear stress at y = 0  is given by,

( ) .τ μy
y

du

dy=
=

=
⎛
⎝⎜

⎞
⎠⎟

= × =0
0

0 89 12 10.68 N/m2

  Shear stress at y = 12 5. cm  is given by,

( ) ..
.

τ μy
y

du

dy=
=

=
⎛
⎝⎜

⎞
⎠⎟

= × =12 5
12 5

0 89 6 5.34 N/m2

 Example 1.11  A vertical cylinder of diameter 16 cm rotates concentrically inside another cylinder of diameter 16.1 cm. 
The clearance space between the cylinders is filled with a liquid of unknown viscosity which has a linear viscosity  profile 
and both cylinders are 24 cm high. Find the viscosity of the liquid if a torque of 10 Nm is required to rotate the inner 
 cylinder at a speed of 50 rpm.
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 Basic Concepts and Properties of Fluids 1.13

Solution
Let D = =16 0 16cm m. , D1 cm m= =16 1 0 161. . , l = =24 0 24cm m. , T = 10 Nm and N = 50 rpm.

Let u be the speed of the cylinder and t be the fluid film thickness.

t
D D

=
−

= − =1

2

0 161 0 16

2
0 0005

. .
. m

u
DN= = × × =π π
60

0 16 50

60
0 4189

.
. m / s

F A
du

dy
A

u

t
Dl= × = × = ×τ μ μ π   [Linear velocity profile]

Since T F R
u

t
Dl

D
= × = × ×μ π

2

10
0 4189

0 0005
0 16 0 24

0 16

2
= × × × × ×μ π.

.
. .

.

	 ∴	 μ
π

=
× ×

× × × ×
=

10 0 0005 2

0 4189 0 16 0 24 0 16

.

. . . .
1.237 Ns/m2

	

 Example 1.12  A dash pot is 0.2 m in diameter and 0.25 m long and it slides down in a vertical cylinder of diameter 
0.21 m. The lubricating oil filled in the annular space has a viscosity of 0.5 poise and has a linear velocity profile. When 
the load on the piston is 25 N, find the speed with which the piston slides down.

Solution

Refer Figure 1.6. Let D = 0 2. m, l = 0 25. m, D1 m= 0 21. , μ = =0 5 0 05. .poise Ns / m2  and F = 25 N.

Let u be the speed of dash pot and t be the thickness of fluid film.

	
t

D D
=

−
= − =1

2

0 21 0 2

2
0 005

. .
. m

	

F A
u

t
Dl= × = ×τ μ π   [Linear velocity profile]

Thus 25 0 05
0 005

0 2 0 25= × × × ×.
.

. .
u π

	

	 ∴	 u =
×

× × ×
=

25 0 005

0 05 0 2 0 25

.

. . .π
15.915 m/s

	

 Example 1.13  In a 75 mm long horizontal journal bearing arrangement, a shaft of diameter 25 mm rotates at 1500 rpm. 
The clearance space between the two at concentric condition is 0.12 mm in which a Newtonian lubricant of viscosity 
0.2 poise is filled. Find the frictional torque and the corresponding power loss if the velocity variation in the lubricant is 
linear.

25 N

0.2 m

0.25 m

0.21 m

Cylinder

Oil

Dash pot

Figure 1.6
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1.14 Chapter 1

Solution
Refer Figure 1.7. Let l = 75 mm = 0.075 m, D = 25 mm = 0.025 m, 
N = 1500 rpm, t = 0.12 mm = 0.12 × 10-3 m and m = 0.2 poise = 
0.02 Ns/m2.

Let u be the speed, t be the fluid film thickness, T be the 
 frictional torque and P be the power loss.

	
u

DN= = × × =π π
60

0 025 1500

60
1 96

.
. m / s

	

T F R
u

t
Dl

D= × = × ×μ π
2

  [Linear velocity profile]

	 ∴ = ×
×

× × × × =−T 0 02
1 96

0 12 10
0 025 0 075

0 025

23
.

.

.
. .

.π 0.024 Nm
	

P
NT

= =
× ×

=
2

60

2 1500 0 024

60

π π .
3.77 W

 Example 1.14  A central thin plate of area 3 m2 equidistant from both the fixed planes 16 mm apart is being pulled with 
a force of 100 N. Find the velocity at which the central thin plate moves when the viscosities of the two fluids are in the 
ratio of 1 : 4 and the viscosity of top fluid is 0.15 Ns/m2.

Solution

Refer Figure 1.8. Let A = 3 m2, y = 16 mm, F = 100 N, μ μ2 14=  and 

μ1 0 15= . Ns/m2 .

Let F1 be the shear force on the upper side of thin plate, F2 be the shear 
force on the lower side of thin plate, F be the total force required to drag 
the plate, u be the thin plate speed and t be the fluid film thickness between 
the plates and the planes. Assume linear velocity profile.

t t t
y

1 2
3

2

16

2
8 8 10= = = = = = × −mm m

Since F F F A A
u

t
A

u

t
A= + = + = ⎛

⎝⎜
⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟1 2 1 2 1 2τ τ μ μ

	

	
F

u

t
A

u

t
A

u

t
A= ⎛

⎝⎜
⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

= ⎛
⎝⎜

⎞
⎠⎟

μ μ μ1 1 14 5
	

	
100 5 0 15

8 10
3

3
= × ×

×
⎛

⎝
⎜

⎞

⎠
⎟×

−
.

u

	

	 ∴	 u = × ×
× ×

=
−100 8 10

5 0 15 3
0 355

3

.
. m/s

	

25 mm

75 mm

Lubricant

1500 rpm

t

Figure 1.7

8 mm

8 mm
16 mm

1μ

2 4μ 1μ=

F = 100 N
u

Plane surface

Figure 1.8
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 Basic Concepts and Properties of Fluids 1.15

 Example 1.15  A 20 mm wide gap between two vertical plane surfaces is filled with a lubricating fluid of specific gravity 
0.9 and dynamic viscosity 20 poise. A metal plate of thickness 1 m × 1 m × 0.002 m and weight 50 N is placed midway in 
the gap. Determine the force required when the plate is lifted up with a constant velocity of 0.1 m/s.

Solution
Refer Figure 1.9. Let d = =20 0 02mm m. , S = 0 9. , μ = =20 2poise Ns/m2,  

l = 1 m, b = 1 m, h = 0 002. m, W = 50 N  and u = 0 1. m/s.

Let F1 be the shear force on the left side of the metal plate, F2 be the shear 
force on the right side of the metal plate, F be the drag force against the plate, 
u be the speed of metal plate and t be the fluid thickness between the plate 
and the plane surface. Assume linear velocity profile.

t t t
d h

1 2 2

0 02 0 002

2
0 009= = = − = − =. .
. m

Since F F F A A
u

t
A

u

t
A

u

t
A= + = + = ⎛

⎝⎜
⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

= ⎛
⎝⎜

⎞
⎠⎟1 2 1 2 2τ τ μ μ μ

	 ∴	 F = × ×⎛
⎝⎜

⎞
⎠⎟

× × =2 2
0 1

0 009
1 1 44 44

.

.
( ) . N

	

Buoyant force on the plate is given by,

F w v S g lbhb w= × = × = × × × × × =ρ 0 9 1000 9 81 1 1 0 002 17 66. . . . N

Effective weight of the plate is given by,

F W Fe b= − = − =50 17 66 32 34. . N

Therefore, the total force required to lift the metal plate is given by,

F F Ft e= + = + =44 44 32 34. . 76.78 N

 Example 1.16  A skater weighing 500 N skates at 10 m/s and is supported by an average skating area of 10 cm2. If the 
viscosity of water is 1 centipoise and the coefficient of friction between skates and ice is 0.02, then find the thickness of 
thin film of water existing between the skates and the ice.

Solution
Let W = 500 N, u = 10 m/s, A = = × −10 10 10 4cm m2 2, μ = =1 0 001cP Ns/m2.  and μ f = 0 02. .

Let F be the frictional force which equals viscous shear force, u be the skater speed and t be the water film thickness 
between the skates and the ice.

F Wf= × = × =μ 0 02 500 10. N

F A
u

t
A= × = ×τ μ   [Linear velocity profile]

50 N

20 mm

Lifting force

0.002 m 
Thick plate

t t

Plane surface

Figure 1.9
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1.16 Chapter 1

10 0 001
10

10 10 4= ×⎛
⎝⎜

⎞
⎠⎟

× × −. ( )
t

	 ∴	 t =
× × ×

=
−0 001 10 10 10

10

4.
1 10 m6×× −−

	

 Example 1.17  A hydraulic lift used for lifting cars has a ram of 40 cm diameter and it slides in a 40.02 cm diameter 
cylinder. The annular space is filled with oil whose kinematic viscosity is 5 cm2/s and specific gravity is 0.85. Determine 
the viscous resistance when the ram of 2 m length in the cylinder travels with a velocity of 15 cm/s.

Solution
Let D = 40 cm = 0.4 m, D1 = 40.02 cm = 0.4002 m, v = 5 cm2/s = 5 × 10-4 m2/s, S = 0.85, l = 2 m and u = =15 0 15cm/s m/s..

Let u be the speed of ram, t be the oil film thickness and F be the viscous force.

t
D D

=
−

= − = m1

2

0 4002 0 4

2
0 0001

. .
.

ρ ρ= = × =S w 0 85 1000 850. kg / m3

μ ρν= = × × =−850 5 10 0 4254 . Ns / m2

Since F A
u

t
Dl= × = ×τ μ π

	 ∴	 F = × × × × =0 425
0 15

0 0001
0 4 2.

.

.
.π 1602.21 N

	

 Example 1.18  A disc of diameter 80 mm is rotated on a spindle and is enclosed in a small chamber filled with oil of 
viscosity 5 poise. Determine the torque required to rotate the disc at 60 rpm when the clearance at the top and the bottom 
of the disc is 1 mm. Assume linear velocity profile in the oil film.

Solution
Refer Figure 1.10. Let D = =80 0 08mm m. , μ = =5 0 5 2poise Ns/m. , N = 60 rpm  and t = =1 0 001mm m..

Let u be the tangential velocity of disc, t be the oil film  
thickness, F be the viscous force and T be the total torque acting 
on the disc.

Consider an element of width dr at a radial distance r. Shear 
force acting on this element after assuming linear velocity profile 
can be given as follows.

dF A
u

t
rdr

r

t
rdr= × = × = ⎛

⎝⎜
⎞
⎠⎟

×τ μ π μ ω π( ) ( )2 2

 [ ]∵u r= ω

Viscous torque on one face of the element is given by,

dT dF r
r

t
rdr r= × = × ×μ ω π2

Disc

Chamber80 mm

1 mm

1 mm

Oil

dr
r

Figure 1.10
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 Basic Concepts and Properties of Fluids 1.17

Therefore, the torque acting on both faces is obtained by integrating the above expression from r = 0 to r = R and by 
 multiplying two as given below.

T
t

r dr
t

R
t

N D
R

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= = × ×⎛
⎝⎜

⎞
⎠⎟∫2

2 2

60 2
3

0

4
4πμω πμω πμ π

  [ ]∵ω π= 2 60N /

	 ∴ =
×

×
×

× ⎛
⎝⎜

⎞
⎠⎟

=T
π π0 5

0 001

2 60

60

0 08

2

4.

.

.
0.0253 Nm

	

 Example 1.19  Two large fixed parallel planes are 20 mm apart. The space between the surfaces is filled with a  lubricating 

oil of viscosity 0 85 2. Ns/m . A flat thin plate 0.4 m2 area moves through the oil at a velocity of 0.5 m/s. Determine the drag 
force when the thin plate is at a distance of 6 mm from one of the plane surfaces.

Solution
Refer Figure 1.11. Let y = 20 mm = 0.02 m, m = 0.85 Ns/m2, A = 0.4 m2, u = 0.5 m/s, 
t1 = 6 mm = 0.006 m and t2 20 6 14 0 014= − = =mm m..

Since

	
F

u

t
A

u

t
A=

⎛

⎝
⎜

⎞

⎠
⎟ +

⎛

⎝
⎜

⎞

⎠
⎟μ μ

1 2 	

	 ∴	 F = × ⎛
⎝⎜

⎞
⎠⎟

× + × ⎛
⎝⎜

⎞
⎠⎟

× =0 85
0 5

0 006
0 4 0 85

0 5

0 014
0 4.

.

.
. .

.

.
. 40.4762 N

	

1.14 ❐ THERMODYNAMIC PROPERTIES

1.14.1 Perfect Gas Law 
The gases are compressible and its behaviour is different from liquids. All the gases at high temperature and low  
pressures (relative to their critical point) obey the perfect gas law (or characteristic equation for gases) as given in the below 
expression.

	 pv mRT=  or pv RTs =  (1.11)

or 
p

RT
ρ

=   [ ]∵vs = 1/ρ  (1.11a)

Here, p is the absolute pressure in N/m2,  v is the volume of m kg of gas in m3, vs is the specific volume in m /kg,3  ρ  is 
the mass density in kg / m3, T is the absolute temperature in K and R is the gas constant.

The units of gas constant can be given from Equation (1.11a) and we get the following expression.

R
p

T
= =

×
= =

ρ
( )N/m

(kg/m ) K

Nm

kgK

J

kgK

2

3

14 mm

6 mm

20 mm 0.5 m/s
F

Figure 1.11
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1.18 Chapter 1

1.14.2 Universal Gas Constant 
The characteristic equation given by Equation (1.11) can also be expressed in mole basis which is universally applicable.

Let for a gas, m be the mass in kg, M be its molecular weight in kg/mol and n be the number of moles in mol, then we 
get the following expression.

	 m nM=  (1.12)

From Equation (1.11), we get:

pv nMRT=

	
MR

pv

nT
=  (1.13)

According to Avogadro’s hypothesis, the molal volume ( )v n/  is same for all the gases at the same values of p and T.
From Equation (1.13), we get:

	
MR

pv

nT
Ro= =  (1.13a)

	
R

R

M
o=  (1.14)

Here, Ro  is the universal gas constant whose value is given below.

The volume of one mole of any perfect gas at N.T.P., p = = ×1 1 01325 105bar N / m2.  and T = ° =0 273 15C K.  is 
approximately equal to 22.4136 m3.

From Equation (1.13a), we get:

R
pv

nTo = = × ×
×

=1 01325 10 22 4136

1 273 15
8314 3

5. .

.
. Nm / mol K

From Equation (1.14), we get:

	
R

M
=

8314 3.
Nm / kg K  (1.14a)

Therefore, the value of gas constant of a gas can be calculated from Equation (1.14a) if its molecular weight is given.

1.14.3 Isothermal Process (Constant Temperature Process)
When the change in density of a fluid system occurs at constant temperature, then it is called isothermal process.

From Equation (1.11), we get:

	 pv = Constant   (Boyle’s law) 

	
pv

p
Cs = =

ρ
  [ ]∵vs = 1/ρ  (1.15)

1.14.4 Isobaric Process (Constant Pressure Process)
When the change in density of a fluid system occurs at constant pressure, then the process is called isobaric process.

From Equation (1.11), we get:
v

T
= Constant   (Charle’s law)

	

v

T T
Cs = =1

ρ
  [ ]∵vs = 1/ρ  (1.16)
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 Basic Concepts and Properties of Fluids 1.19

1.14.5 Reversible Adiabatic Process (Isentropic Process)
When the change in density of a fluid system occurs without involving any heat transfer and irreversibility (such as  friction), 
then the process is called reversible adiabatic process. A reversible adiabatic process (or frictionless adiabatic  process) is 
also known as isentropic process. The relation for reversible adiabatic process is given in the following expression.

	 	 pvγ = Constant 	

	
pv

p
Cs

γ
γρ

= =   [ ]∵vs = 1/ρ  (1.17)

Here, γ = ( )c cp v/ , cp is the specific heat at constant pressure, cv is the specific heat at constant volume and C is a constant. 

For air, γ = 1 4. and it may also be shown that R c cp v= −( ).

 Example 1.20  Determine the gas constant, density, specific volume and specific weight of CO2 containing in a vessel 
at a temperature of 25°C and absolute pressure of 5 bar.

Solution
Let T = ° =25 298 15C K.  and p = = ×5 5 105 2bar N/m .

Molecular weight of CO2: 

M = + × =12 2 16 44

R
M

= = =
8314 3 8314 3

44

. .
188.96 Nm/kgK

ρ = =
×
×

=
p

RT

5 10

188 96 298 15

5

. .
8.875 kg/m3

vs = = =
1 1

8 875ρ .
0.1127 m /kg3

w g= = × =ρ 8 875 9 81. . 87.064 N/m3

 Example 1.21  Determine the density and gas constant of a gas containing in a vessel at a temperature of 30°C and 
absolute pressure of 2 bar when it weighs 10 N/m3.

Solution
Let T = ° =30 303 15C K. , p = = ×2 2 105 2bar N/m  and w = 10 3N/m .

ρ = = =
w

g

10

9 81.
1.019 kg/m3

R
p

T
= =

×
×

=
ρ

2 10

1 019 303 15

5

. .
647.44 Nm/kgK

1.15 ❐ SURFACE TENSION
The surface of the liquids behaves like a stretched elastic membrane under tension. Due to intermolecular attraction 
(i.e.,  cohesion) between molecules, a pulling force acts parallel to the surface. The magnitude of this force per unit 

length is called surface tension which is denoted by σ  and it is usually expressed in N/m. Its dimensions are [ ].MT −2  
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1.20 Chapter 1

This  phenomenon also appears as surface energy which may be defined as the work done against the pulling force for the 

 formation of a surface and it is expressed in N m/m⋅ 2  or J/m2.
A liquid molecule inside a fluid mass is equally attracted on all the sides and thus, the forces of attraction are in 

 equilibrium (Figure 1.12(a)). However, a molecule at the surface of the liquid does not have any liquid molecule above it 
and consequently, there is a net downward force on it due to the attraction by the molecules below it. Thus, a film or an 
elastic membrane seems to form on the liquid surface which remains in tension and it can support small loads like a small 
steel needle that can float on it and water strider (an insect) can walk on the water surface in a pond. The surface tension 
phenomenon can be observed in a mercury drop which forms a sphere, a soap bubble, a liquid fuel injected into an engine 
which forms a mist of spherical droplets, water droplets and capillarity.

The surface tension ( )σ  of liquids decreases with increase in temperature (T). It depends on the cohesive forces and the 
fluid in contact with the liquid surface. The magnitude of surface tension of water in contact with air at 20°C is 0.073 N/m 
and it decreases to 0.059 N/m when the temperature is increased to 100°C (Figure 1.12(b)). The surface tension of some 
fluids in air at 20°C is given in Table 1.5. The addition of soaps and detergents lower the surface tension of water.

The effect of surface tension is to minimize the surface of the liquid and thus, the drops of liquid tend to take a spherical 
shape. For a droplet, surface tension increases the internal pressure p to balance the surface force. In the following sections, 
the pressure inside a liquid droplet, soap bubble and a liquid jet is described.

Table 1.5 Surface tension of some fluids in air at 20 °C

Liquid SAE 30 oil Petrol Soap solution Glycerine Ethyl alcohol NH3 Hg Kerosene

s	(N/m) 0.035 0.022 0.025 0.063 0.023 0.021 0.44 0.028

1.15.1 Pressure Inside a Liquid Droplet
Consider a small spherical droplet of liquid of diameter d as illustrated in Figure 1.13.

Let σ  be the surface tension of the liquid and p be the pressure intensity inside the liquid droplet which is above the 
atmospheric pressure.

Liquid
surface

Container

Liquid

0.073

0.059

0.050

(N/m)σ

T (°C)
(a) (b)

20 100

Figure 1.12 (a) Surface tension (b) Surface tension of water versus temperature

σ p

Droplet Pressure forcesSurface tension

d

Figure 1.13 Pressure inside the liquid droplet
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The forces acting on one half of the droplet are as follows.

 1. Tensile force due to surface tension which acts around the circumference is given below.

F dσ σ σ π= × = ×circumference

 2. Pressure force is given by,

	
F p dp = × π

4
2

	
F Fp = σ   [For equilibrium]

	
p d d× = ×π σ π

4
2

	

	 ∴	 p
d

d d
= × =σ π

π
σ

( )/4

4
2

 (1.18)

From Equation (1.18), it can be observed that pressure intensity inside the liquid droplet decreases with increase in its 
diameter or size.

1.15.2 Pressure Inside a Soap Bubble
A soap bubble has two surfaces in contact with air, one inside the bubble and the other outside it as schematically shown 
in Figure 1.14. Thus, the surface tension force will act on both the surfaces.

σ

p

Soap bubble Surface tension and pressure forces

d

σ

Figure 1.14 Pressure inside the soap bubble

For equilibrium of the soap bubble, the required condition is as follows.

 p d d× = ×π σ π
4

22 ( )  

	
∴ = × =p

d

d d

2

4

8
2

σ π
π

σ
( )/

 (1.19)

1.15.3 Pressure Inside a Liquid Jet
A schematic view of a cylindrical liquid jet of diameter d and length l is 
shown in Figure 1.15.

The following forces act on the liquid jet.

	 Pressure force = × ×p l d 	

	 Surface tension force = × ×σ 2 l 	

p
σ

l

d

Figure 1.15 Pressure inside a liquid jet
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For equilibrium of the liquid jet, equating the above forces, we get:

	 p l d l× × = ×σ 2 	

	 ∴
	

p
l

l d d
= ×

×
=σ σ2 2

 (1.20)

 Example 1.22  The pressure inside a soap bubble of 25 mm diameter is 2 N/m2 above the atmosphere. Determine the 
surface tension of the soap film.

Solution
Let d = =25 0 025mm m.  and p = 2 2N/m .

σ = =
×

=
pd

8

2 0 025

8

.
6.25 10 N/m3×× −−

 Example 1.23  Determine the power required to convert 1.2 litres of water per minute at a temperature of 20°C into a 
mist having an average drop size of 3.5 ×	10-6 m. Also determine the pressure intensity inside the mist droplets and neglect 
any thermal effects.

Solution
Let v l= = × −1 2 1 2 10 3 3. min ./ m /min , T = °20 C and d = × −3 5 10 6. m.

Take σ = 0 073. N/m

Number of drops produced per second (n) can be calculated by dividing the total volume per sec by volume of single drop 
as given below.

n
v

d
= =

× ×
× ×

= ×
−

−
( / )

( / )

.

( . )
.

60

6

1 2 10 6

60 3 5 10
8 91 10

3

3

6 3
11

π π

Power is equal to the product of surface tension and the rate of surface area produced.

 P n r= ×σ π( )4 2 	

	 ∴	 P = × × × ×
×⎛

⎝
⎜

⎞

⎠
⎟ =

−
0 073 8 91 10 4

3 5 10

2
11

6 2

. .
.π 2.503 Watts

	

p
d

= =
×
×

=−
4 4 0 073

3 5 10 6

σ .

.
83428.57 N/m2

 Example 1.24  Determine the surface tension of a liquid of specific gravity 0.82 when a tube of diameter 3.2 mm is 
immersed in the liquid to a depth of 0.055 m. The maximum pressure of air applied through the tube is 500 N/m2 above 
atmospheric. Neglect small differences in depth due to bubble formation.

Solution
Let S = 0 82. , d = =3 2 0 0032. .mm m, h = 0 055. m  and p = 500 2N/m .

ρ ρ= = × =S w 0 1000 kg/m.82 820 3
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The net pressure acting on the film is given by,

p p ghnet = − = − × × =ρ 500 820 9 81 0 055 57 569 2. . . N/m

Therefore, pressure force is given by,

F p p dp = × = × = × × = × −
net netarea N

π π
4

57 569
4

0 0032 4 63 102 2 4. . .

Surface tension force is given by,

F dσ σ π σ π= × = × × 0 0032.

F Fpσ =   [Under equilibrium]

σ π× × = × −0 0032 4 63 10 4. .

	 ∴	σ
π

=
×

×
=

−4 63 10

0 0032

4.

.
0.046 N/m

	

1.16 ❐ CAPILLARITY (CAPILLARY EFFECT)
Capillarity means the rise or fall of a liquid surface in a small diameter tube relative to the adjacent general level of liquid 
when the tube is inserted vertically into the liquid. The small diameter tube is called the capillary tube and the curved free 
surface of the liquid in this tube is called the meniscus. The rise of kerosene through the wick dipped into the sump of a 
kerosene lamp is a good example of capillary effect. The rise of liquid surface is called capillary rise and the lowering of 
liquid surface is called capillary depression and it is expressed in terms of mm of liquid or m of liquid.

The strength of capillary effect can be known by the contact angle α,  which is the angle that the tangent to the liquid 
surface makes with the solid surface at the point of contact. The liquid wet the surface when α < °90  and the liquid does 
not wet the surface when α > °90 .  The contact angle of water with clean glass tube is about zero, i.e., α ≈ °0 .  Therefore, 
the surface tension force acts upward on water in a glass tube and consequently, water rises in the tube until the weight of 
the liquid in the tube above the liquid level of the reservoir balances the surface tension force.

Capillarity is due to both cohesion (forces between like molecules) and adhesion (forces between unlike molecules). 
Adhesion between glass and water molecule is greater than cohesion between water molecules. Thus, water rises in the tube 
and forms a concave meniscus with very small angle of contact. In the case of mercury (Hg), the cohesion force between 
the molecules is more than the adhesion force between the mercury molecules and the glass surface. Thus, the mercury in 
the clean glass tube goes down relative to the free surface in the container and forms a convex meniscus with the angle of 
contact for about 130°.

1.16.1 Expression for the Capillary Rise or Fall
Let σ  be the surface tension of the liquid, ρ  be the density of the liquid, h be the height of the liquid in the tube and α  
be the contact angle as shown in Figure 1.16.

The magnitude of the capillary rise or depression (fall) in a circular glass tube can be determined from a force balance 
given below.

Weight of the liquid raised or lowered in the capillary tube is given by,

	
⇒ × × = × ×Area of tube rise or fall ρ π ρg d h g

4
2  (i)

Vertical component of the surface tension force is given by,

	 ⇒ × = ×σ α σ α πcos coscircumference d  (ii)
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For equilibrium, equating the above forces given by the expressions (i) and (ii), we get:

π ρ σ α π
4

2d h g d× × = ×cos

	 ∴
	

h
gd

=
4σ α

ρ
cos

 (1.21)

It can be observed from Equation (1.21) that for 0 90° < < °α ,  h is positive, i.e., capillary rise and that for 90 180° < < °α ,  
h is negative, i.e., capillary depression. The capillary rise or fall is inversely proportional to the tube diameter. For  minimizing 
the error in reading liquid levels in fine gauge tubes, the minimum tube diameter for mercury and water should be 6 mm.

 Example 1.25  Determine the capillary rise in a glass tube of 3 mm diameter when inserted vertically in water and  mercury 
(Hg). The values of surface tensions for water and Hg in contact with air are 0.073 N/m and 0.44 N/m,  respectively. Assume 
the values of specific gravity of mercury as 13.6 and the angle of contact for Hg and water as 130° and 0°, respectively.

Solution
Let d = =3 0 003mm m. , σw = 0 073. N/m, σHg = 0 44. N/m, S SHg mor = 13 6. , for mercury α = °130  and for water 
α = °0 .

ρ ρHg Hg wS= = × =13 6 1000 13600 3. kg/m

 (i) h
gd

w

w
= =

× °
× ×

=
4 4 0 073 0

1000 9 81 0 003

σ α
ρ

cos . cos

. .
0.0099 m or 9.9 mm

   (ii) h
gd

Hg

Hg
= =

× °
× ×

=
4 4 0 44 130

13600 9 81 0 003

σ α
ρ

cos . cos

. .
−− −−0.0028 m or 2..8 mm

For mercury, negative sign shows the capillary depression.

 Example 1.26  Calculate the minimum size of a glass tube that can be used to measure water level when capillary rise 
in the tube is not to exceed 0.4 mm and surface tension for water in contact with air is 0.0735 N/m. Take angle of contact 
α = °0 .

Solution
Let h = = × −0 4 0 4 10 3. .mm m, σ = 0 0735. N/m  and α = °0 .

h

σσ

d

h

d

Mercury
Liquid

(a) (b)

α α

α α

ασ sin

ασ cos

90°)( <α
90°)( <α

Figure 1.16 Capillary rise and depression
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From Equation (1.21), we get:

d
ghw

= =
× °
× × ×

=−
4 4 0 0735 0

1000 9 81 0 4 10 3

σ α
ρ

cos . cos

. .
0.075 m or 7.5 cm

 Example 1.27  A U-tube is made of two capillaries of bore 1.2 mm and 2.4 mm, respectively. The vertical tube is 
 partially filled with a liquid of surface tension 0.055 N/m and zero contact angle. If the estimated difference in the level of 
the two menisci is 1 cm, then determine the density of the liquid.

Solution
Let d1 1 2 0 0012= =. .mm m, d2 2 4 0 0024= =. .mm m, σ = 0 055. N/m, α = °0  and ( ) .h h1 2 1 0 01− = =cm m.

Let h1 and h2 be the heights of liquid columns and ρ  be the density of the liquid.

Since h h
gd gd g d d1 2

1 2 1 2

4 4 4 1 1− = − = −
⎡

⎣
⎢

⎤

⎦
⎥

σ α
ρ

σ α
ρ

σ α
ρ

cos cos cos

ρ σ α=
−

−
⎡

⎣
⎢

⎤

⎦
⎥

4 1 1

1 2 1 2

cos

( )h h g d d

	 ∴ =
× °

×
× −

⎡

⎣
⎢

⎤

⎦
⎥ =ρ 4 0 055 0

0 01 9 81

1

0 0012

1

0 0024

. cos

. . . .
934.42 kg/m3

	

 Example 1.28  A single column U-tube manometer made of glass has a nominal inside diameter of 2.6 mm, which is 
used to measure air pressure in a vessel. If the limb opened to atmosphere is 10% oversize, then find the error in m of 
Hg in the measurement of air pressure due to surface tension when σHg = 0 52. N/m, SHg = 13 6.  and angle of contact  
α = °128 .

Solution
Let d1 2 6 0 0026= =. .mm m, d2 0 0026 1 1 0 00286= × =. . . m, σHg = 0 52. N/m, S SHg mor = 13 6.  and α = °128 .

Let Δh h h= −( )1 2  be the error in measurement.

ρ ρHg Hg wS= = × =13 6 1000 13600 3. kg/m

Since Δh
gd gd g d d

Hg

Hg

Hg

Hg

Hg

Hg
= − = −

⎡

⎣
⎢

⎤

⎦
⎥

4 4 4 1 1

1 2 1 2

σ α
ρ

σ α
ρ

σ α
ρ

cos cos cos

		 ∴ =
× °

×
× −

⎡

⎣
⎢

⎤

⎦
⎥ =Δh

4 0 52 128

13600 9 81

1

0 0026

1

0 00286

. cos

. . .
−− ××3.356 110 m4−−

	

1.17 ❐ COMPRESSIBILITY AND THE BULK MODULUS
The compressibility of a fluid is the measure of volumetric strain caused by unit change in pressure. In other words, 
 compressibility or coefficient of compressibility ( )β  is the reciprocal of bulk modulus of elasticity of the fluid. The bulk 
modulus of elasticity (K) is the ratio of compressive stress to volumetric strain. Mathematically, the bulk modulus of 
 elasticity is given in the following expression.
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	 K
dp

dv
=

⎛

⎝
⎜

⎞

⎠
⎟

=
−

Change in pressure

Change in volume

Original volume vv
⎛
⎝⎜

⎞
⎠⎟

 (1.22)

Always increase in pressure causes a decrease in volume and thus, minus sign is included in the above equation to give a 
positive value of K.

Thus, the value of compressibility is given as follows.

	
β = = −1

K

dv v

dp

( )/  (1.23)

	 m v= ρ  (i)

dm dv vd= +ρ ρ   [Differentiating (i)]

ρ ρdv vd+ = 0   [ ]∵m = Constant

d dv

v

ρ
ρ

= −

From Equation (1.22), we get:

	
K

dp

dv v

dp

d
= − ( ) = − ( )/ /ρ ρ

 (1.22a)

The bulk modulus of elasticity is expressed in N/m2 and its dimensions are [ ]ML T− −1 2 . The values for the bulk modu-

lus of elasticity for water and air at normal temperature and pressure are about 2 06 109 2. × N/m  and 1 03 105 2. ,× N/m  

 respectively. This indicates that air is about 20000 times more compressible than water. A large value of the bulk modulus 
of elasticity indicates that a large pressure will be required to cause a small change in volume. Thus, a fluid with large 
value of K will be incompressible, for example, liquids. However, in some problems where the changes in pressure of 
 liquid is either very large or very rapid, such as water hammer or rapid closure of valve, the effect of compressibility is to 
be considered.

On the other hand, gases are highly compressible. Thus, the value of K for gases is not constant. It is proportional 
to  pressure and changes very rapidly. It may be noted that compressibility of air is considered only at high velocities, 
i.e., nearing the local speed of sound in that medium and otherwise the flow of air is considered as incompressible. In 
Chapter 17, it is explained that velocity of sound in an ideal gas is given by the following expression.

	
C

dp

d

K
RT= = =

ρ ρ
γ  (1.24)

Equation (1.24) is for an isentropic process, since there is negligible heat transfer and the disturbance is small.
The relationships between the bulk modulus of elasticity and pressure for an ideal gas for isothermal and adiabatic 

 process are discussed in the following sections.

1.17.1 Bulk Modulus for an Isothermal Process
The relation for isothermal process is given by the following expression.

	 pv = Constant  (ii)

pdv vdp+ = 0   [Differentiating (ii)]

p
dp

dv v
= − ( )/

	 ∴ K p=  (1.25)

Thus, for a perfect gas, the bulk modulus of elasticity equals the pressure for an isothermal process.
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1.17.2  Bulk Modulus for Reversible Adiabatic Process  
(or Isentropic Process)

The relation for reversible adiabatic process is given by the following expression.

	 pvγ = Constant  (iii)

p v dv v dpγ γ γ− + =1 0   [Differentiating (iii)]

p
dp

dv v
γ = −

( )/

	 ∴	 K p= γ  (1.26)

Thus, for an ideal gas, the bulk modulus of elasticity equals γ  times the pressure for an adiabatic process (or isentropic 
process).

 Example 1.29  Calculate the increase in pressure for water necessary to produce (i) 1.2% reduction in volume at the 
same temperature and (ii) 1.2% reduction in volume of air undergoing adiabatic compression when standard atmospheric 
conditions are considered and the bulk modulus of elasticity of water is given as 2.06 ×	106 kN/m2. Also comment on the 
results.

Solution

Let − = =( ) . % .dv v/ 1 2 0 012  and Kw = ×2 06 106 2. .kN/m

 (i) dp
dv

v
Kw=

−⎛
⎝⎜

⎞
⎠⎟

= × × =0 012 2 06 106. . 24720 kN/m2

 (ii) K pair kN/m= = × =γ 101 325 1 4 141 855 2. . .

dp
dv

v
K=

−⎛
⎝⎜

⎞
⎠⎟

= × =air 0 012 141 855. . 1.7023 kN/m2

The pressure required to bring a reduction in the volume of water is about 14521.53 times the pressure required for the 
same percentage reduction in the volume of air.

 Example 1.30  Calculate the bulk modulus of elasticity and the coefficient of compressibility of the liquid when increase 
in its pressure from 6000 kN/m2 to 12000 kN/m2 causes 0.15 per cent decrease in volume.

Solution

Let p1
26000= kN/m , p2

212000= kN/m  and − = =( ) . % . .dv v/ 0 15 0 0015

K
dp

dv v
= − ( ) =

−
=

/

12000 6000

0 0015.
4 10 N/m6 2××

β = =
×

=
1 1

4 106K
2.5 10 m /N7 2×× −−
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 Example 1.31  Calculate the velocity of sound through water when the bulk modulus of water is given as  

2 06 106 2. × kN/m .

Solution
Let Kw = ×2 06 106 2. kN/m  and taking ρw = 1000 3kg/m .

C
Kw

w
= =

× ×
=

ρ
2 06 10 10

1000

6 3.
1435.27 m/s

 Example 1.32  Calculate the bulk modulus of air kept in a cylinder of volume 0.2 m3 at 100 kPa when compressed to 

0.05 m3 by (i)  isothermal compression and (ii) adiabatic compression.

Solution
Let v1

30 2= . m , p1 100= kPa and v2
30 05= . .m

 (i) p
p v

v2
1 1

2

3
5 2100 10 0 2

0 05
4 10= = × × = ×.

.
N/m   [ ]∵ p v p v1 1 2 2=

  K p= = 4 10 N/m5 2××

 (ii) p v p v1 1 2 2
γ γ=

	 	
p p

v

v2 1
1

2

3
1 4

5 2100 10
0 2

0 05
6 96 10=

⎛
⎝⎜

⎞
⎠⎟

= × × ⎛
⎝⎜

⎞
⎠⎟

= ×
γ

.

.
.

.

N/m

	 	 K p= = × × =γ 1 4 6 96 105. . 9.74 10 N/m5 2××

1.18 ❐ VAPOUR PRESSURE
Atmospheric air is a mixture of dry air and water vapour. Thus, atmospheric pressure is the sum of the partial pressure 
of dry air and the partial pressure of water vapour. The partial pressure of water vapour constitutes only about 3% of 
the atmospheric pressure. The vapour pressure of water (liquid) can be defined as the pressure exerted by its vapour in 
phase equilibrium with water at a given temperature. When both vapour and water are present and the system is in phase 
equilibrium, then the partial pressure of vapour must be equal to the vapour pressure, and the system is said to be  saturated. 
A  liquid changes into vapour when exposed to atmosphere and its rate of evaporation is controlled by the difference between 
the vapour pressure and the partial pressure. The vapour pressure of air at a given temperature is equal to the  saturation 
pressure of water at that temperature. Consider a large tub of water at 30°C in a room with dry air at one  atmosphere. The 
evaporation of water starts but it stops when the partial pressure of water vapour in the room rises to 4.25 kPa at which 
phase equilibrium is attained.

At a given pressure, the temperature at which a pure substance changes its phase is termed as saturation temperature. 
Similarly, at a given temperature, the pressure at which a pure substance changes phase is called the saturation pressure. 
When the liquid is confined in a closed vessel, the ejected vapour molecules get accumulated in the space between the 
free liquid surface and the top of the vessel. These accumulated vapours of the liquid exert a partial pressure on the liquid 
surface which is known as vapour pressure of the liquid. There may be an interchange of vapour molecules between the 
liquid and the gaseous space above it. The vapour pressure will have a constant value when the vapour molecules leave 
and enter the liquid at the same rate (i.e., equilibrium state). The constant vapour pressure is called the saturated vapour 
pressure (or saturation pressure) and it greatly depends on the temperature. The vapour pressure and saturation pressure 
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are equivalent for phase changes processes and it increases with temperature. For example, water at 0°C has a saturation 
 pressure (or vapour pressure) of 0.611 kPa, whereas it changes to 2.34 kPa, 4.25 kPa and 12.35 kPa at 20°C, 30°C and 
50°C, respectively. The saturated pressure of water at 100°C is equal to 101.325 kPa. When the pressure above the liquid 
is equal to its saturation pressure, the liquid starts to boil. Thus, if the pressure above the liquid surface is reduced by some 
means to such an extent that it becomes equal to or less than the saturation pressure of the liquid, then boiling of the liquid 
starts irrespective of the temperature. The vapour pressure of mercury is very low and hence, it is an excellent fluid to be 
used in a barometer. On the other hand, the vapour pressure of volatile liquids, like benzene, petrol, etc., is very high.

1.19 ❐ CAVITATION
In a liquid flow system, the pressure at any location in the liquid may drop below its vapour pressure. This causes  vaporization 
of the liquid and results in the formation of small cavities of vapour bubbles and dissolved gases. The vapour bubbles so 
formed are carried by the flowing liquid from low pressure region to a high pressure region where they collapse suddenly 
and generate very high pressure waves. The pressure developed due to collapsing of bubbles may cause pitting, erosion 
and fatigue failure of the adjoining solid surfaces. This destructive phenomenon is called cavitation which results in noise, 
vibration, loss of efficiency and damage to machines. Cavitation phenomenon may occur in hydraulic machines, such as 
turbines, pumps and propellers and it can be sensed by its characteristic tumbling sound. To avoid cavitation, the pressure 
at any point in the fluid flow should not be allowed to drop below the vapour pressure at the local temperature. To avoid 
problems related to flow of water, the pressure should not be permitted to fall below 2.5 m of water.

Summary

 1. Fluid is a substance which is capable of flowing, for example, 
liquids and gases.

 2. Fluid mechanics deals with the behaviour of the fluids at rest 
or in motion.

 3. Fluid statics deals with the behaviour of fluids at rest.

 4. Fluid kinematics deals with motion of fluids without consid-
ering the forces.

 5. Fluid dynamics deals with fluid flow subjected to forces.

 6. Pressure: Normal force per unit area which is measured in  
N/m2 or Pascal.

 7. Mass density ( )ρ : Ratio of mass (m) of a fluid to its 
volume (v).

 8. Weight density (w): Ratio of weight of a fluid to its volume.

 9. Specific volume (vs): Reciprocal of mass density.

 10. Specific gravity (S): Ratio of density of a fluid to density of a 
standard fluid.

 11. Viscosity ( )μ : Measure of internal fluid friction which causes 
resistance to flow.

 12. Newton’s law of viscosity: τ μ= ( / )du dy , here ( )du dy/  is 
velocity gradient.

 13. Unit of viscosity ( )μ : Ns/m2  or Pa s⋅  or kg/ms, 1 poise = 
0.1 Ns/m2.

 14. Kinematic viscosity: ν μ ρ= / . It is measured in m /s2 , 
1 stoke = 10-4 m2/s.

 15. Perfect gas law: pv mRT=  or ( )p RT/ρ = , here R is the gas 
constant.

 16. Units of gas constant R: J/kgK.

 17. Universal gas constant: R MRo = = 8314 3. Nm/molK, here M 
is molecular weight.

 18. Isothermal process: pv = constant, Isobaric process: 
v T/ constant= .

 19. Adiabatic process: pvγ = constant, here γ = ( )c cp v/  is the 
specific heat ratio.

 20. Surface tension ( )σ  is usually expressed in N/m.

 21. Pressure inside a liquid droplet: p d= 4σ / , here d is the 
 diameter of droplet.

 22. Pressure inside a soap bubble: p d= 8σ / ; Pressure inside a 
liquid jet: p d= 2σ / .

 23. Capillarity is the rise or fall (h) of a liquid surface in a small 
diameter tube (d) that is expressed as h gd= ( cos ) / ( )4σ α ρ , 
here α  is the contact angle, α = °0  for water and α = °130  
for mercury.

 24. Bulk modulus of elasticity (K): Ratio of compressive stress 
to volumetric strain. For isothermal process, K p=  and for 
isentropic process, K p= γ .

 25. Compressibility: Reciprocal of the bulk modulus of elasticity 
of the fluid.
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Multiple-choice Questions

 1. Newton’s law of viscosity relates to
(a) Shear stress, temperature, velocity and viscosity.
(b) Pressure, viscosity and rate of angular deformation in a 

fluid.
(c) Pressure, velocity and viscosity.
(d) Shear stress and rate of angular deformation in a fluid.

 2. Poise is the unit of
(a) Kinematic viscosity. (b) Dynamic viscosity.
(c) Density.   (d) None of these.

 3. The unit of kinematic viscosity is
(a) m/kg s   (b) Ns/m2

(c) kg/m2 s   (d) m2/s

 4. Multiplying factor for converting one stoke into m2/s is
(a) 10-4   (b) 104

(c) 10-2   (d) 102

 5. With increase in temperature, the viscosity of liquids
(a) Increase.
(b) Decrease.
(c) First decreases and then increases.
(d) First increases and then decreases.

 6. In the phenomenon of cavitation, the characteristic fluid 
property is
(a) Viscosity.   (b) Surface tension.
(c) Vapour pressure. (d) None of these.

 7. The density of a fluid is sensitive to changes and pressure, the 
fluid is
(a) Real fluid.  (b) Newtonian fluid.
(c) Compressible fluid. (d) None of these.

 8. Surface tension has the units of
(a) N/m2   (b) N/m
(c) N/m3   (d) None of these

 9. The ratio of specific weight of the liquid to the specific weight 
of a standard fluid is called
(a) Specific gravity. (b) Mass density.
(c) Viscosity.   (d) None of these.

 10. Printer’s ink is an example of
(a) Newtonian fluid. (b) Non-Newtonian fluid.
(c) Elastic solid.  (d) Thixotropic fluid.

 11. With rise in pressure bulk modulus of liquid
(a) Remains constant. (b) Decreases.
(c) Increases.   (d) None of these.

 12. Bulk modulus of elasticity is the ratio of
(a) Compressive stress to compressive strain.
(b) Tensile stress to tensile strain.
(c) Compressive stress to volumetric strain.
(d) None of the above.

 13. The rain drop is spherical due to
(a) Incompressibility. (b) Capillarity.
(c) Surface tension. (d) None of these.

 14. The height of liquid in a capillary tube
(a) Increases with increase in diameter.
(b) Increases with decrease in diameter.
(c) Increases with increase in specific weight.
(d) Increases with decrease in surface tension.

 15. Paper pulp is an example of
(a) Newtonian fluid.
(b) Non-Newtonian fluid.
(c) Pseudoplastic fluid.
(d) Bingham plastic.

 16. Soap helps in cleaning clothes because
(a) Solution is more viscous.
(b) Dirt is absorbed.
(c) Chemical constituents of soap changed.
(d) Surface tension of solution is decreased.

 17. Ball pen works on the principle of
(a) Density.   (b) Viscosity.
(c) Capillarity.  (d) Surface tension.

 18. Oil in the wick of an oil pump rises due to
(a) Density.   (b) Viscosity.
(c) Capillarity.  (d) Surface tension.

Review Questions

 1. Define fluid mechanics and give its application areas. What is 
fluid continuum?

 2. Define the following properties of fluid: (i) mass density, 
(ii)  specific weight, (iii) specific volume and (iv) specific 
gravity.

 3. What do you mean by viscosity? State and explain Newton’s 
law of viscosity. Also discuss how does viscosity of liquids 
vary with temperature?

 4. Define a fluid and also discuss the various types of fluids.

 5. Define surface tension and explain its cause.

 6. Derive expressions for internal pressure inside a droplet and 
soap bubble.

 7. Explain the phenomenon of capillarity and also obtain an 
expression for capillary rise or fall of a liquid in a very small 
diameter glass tube.

 8. Explain why in a capillary tube, the meniscus of water is 
concave upwards while the meniscus of mercury is convex 
upwards.
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 9. Define compressibility. How is it related to bulk modulus of 
elasticity?

 10. Explain why some insects can walk on water and soap bub-
bles rise up in air?

 11. Explain why a water column in a thin glass tube be lifted up 
while a mercury column be depressed?

 12. Define cavitation, evaporation, vapour pressure and boiling.

Problems

 1. Find the mass density, specific weight and weight of one litre 
of a liquid of specific gravity of 0.72.

[Ans. 720 kg/m3, 7063.2 N/m3, 7.0632 N]

 2. Two horizontal plates are placed 12.5 mm apart, the space 
between them is filled with an oil of viscosity of 12 poises. 
Determine shear stress in oil if upper plate is moving with a 
velocity of 2 m/s.

[Ans. 192 N/m2]

 3. Calculate the intensity of shear of an oil of viscosity of 
1.2 poise. The oil is filled in the clearance of 1.2 mm between 
a journal bearing and shaft of diameter 100 mm when it 
rotates at 120 rpm.

[Ans. 62.8 N/m2]

 4. The velocity distribution u in m/s over a plate is given in 
terms of distance y m above the plate by u y y= −( / )2 3 2. 
Find shear stress at y = 0  and y = 0 15. m  when viscosity of 
the fluid is given as 9 poise.

[Ans. 0.6003 N/m2, 0.3303 N/m2]

 5. Determine the viscosity of a lubricant film of thickness 
1.4 mm used between a square plate of size 0.8 m × 0.8 m and 
an inclined plane with angle of inclination 30°. The weight of 
the square plate is 200 N and it slides down the inclined plane 
with a uniform velocity of 0.25 m/s.

[Ans. 8.75 poise]

 6. The space between two square plates of sides of 0.5 m is filled 
with an oil film of thickness 1.2 cm. The upper plate moving 
with a velocity of 2.4 m/s needs a force of 98 N to maintain 
its speed. Calculate the dynamic viscosity and kinematic vis-
cosity of the oil if its specific gravity is 0.85.

[Ans. 19.6 poise, 23.06 stokes]

 7. A plate 0.06 mm distant from a fixed plate moves at 1.2 m/s 
and needs a force of 2 N/m2 to maintain its speed. Calculate 
the viscosity of the fluid used between the plates.

[Ans. 1 ×	10-3 poise]

 8. A 100 mm diameter vertical cylinder rotates concentrically 
inside another cylinder of diameter 101 mm. The space 
between the cylinders is filled with a liquid of unknown vis-
cosity and both cylinders are 200 mm high. Determine the 
viscosity of the liquid when 15 Nm torque is required to 
rotate the inner cylinder at a speed of 125 rpm.

[Ans. 36.5 poise]

 9. An oil layer thickness of 1.4 mm having viscosity of one 
poise is being used between a shaft of diameter 0.5 m and a 

sleeve of length 10 cm. Determine the power lost in the bear-
ing when the shaft is revolving at a speed of 250 rpm.

[Ans. 480.27 Watts]

 10. A circular disc of diameter d is slowly rotates in a liquid of 
large viscosity m at a small distance h from a fixed surface. 
Derive an expression for torque T required to maintain an 
angular speed of ω.

[Ans. T d h= ( ) ( )πμω 4 32/ ]

 11. A fluid has an absolute viscosity of 0.048 Pa ⋅	s and a spe-
cific gravity of 0.913. For flow of such a fluid over a flat sur-
face, the velocity at a point 75 mm away from the surface is 
1.125 m/s. Calculate the shear stresses at the solid boundary 
and also at points 25 mm, 50 mm and 75 mm away from the 
surface in normal direction, if the velocity distribution across 
the surface is (i) linear and (ii) parabolic with vertex at the 
points 75 mm away from the surface.

[Ans. (i) 0.72 N/m2, (ii) 1.44 N/m2, 0.96 N/m2, 0.48 N/m2, 0]

 12. A square plate 0.5 m × 0.5 m weighing 100 N is allowed 
to slide down an inclined plane which is laid a slope of 
1   vertical to 2.5 horizontal. If 0.03 mm thick oil film of 
 viscosity 2 × 10-3 Ns/m2 is maintained between the inclined 
plane and the plate. Determine the terminal velocity attained 
by the plate.

[Ans. 2.23 m/s]

 13. In a 60 mm long journal bearing arrangement, a shaft of 
30 mm diameter rotates at 500 rpm. The clearance between 
the journal and bearing at concentric condition is filled with 
a Newtonian fluid of thickness 0.12 mm having viscosity of 
0.5  Ns/m2. If velocity variation in the fluid is linear, then 
determine frictional torque overcome by the journal and the 
corresponding power loss.

[Ans. 0.277 Nm, 14.5 W]

 14. A hydraulic lift used for lifting cars has 200 mm diameter 
ram sliding in a 200.16 mm diameter cylinder. The clearance 
space between the cylinder and ram is filled with a lubricating 
oil of kinematic viscosity 2 stokes and specific gravity of 0.8. 
If the travel of 3 m long ram has a uniform rate of 0.1 m/s, 
then determine the frictional resistance experienced by the 
ram.

[Ans. 376.99 N]

 15. A 6 cm disc rotates on a table separated by an oil film of 
1.5 mm thickness. Determine the viscosity of oil if the torque 
required to rotate the disc at 30 rpm is 3 × 10-4 Nm.

[Ans. 1.126 poise]
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 16. A thin plate of very large area is placed in a gap of height h 
with oils of viscosities μ1  and μ2  on two sides of the plate. 
The thin plate is pulled at a constant velocity u and y is the 
distance of the plate from one of the surfaces of the gap. Find 
the position of plate so that (i) shear force on the two sides of 
the plate is equal and (ii) force required to drag the plate is 
minimum. Assume viscous flow and neglect all end effects.

[Ans. (i) y h= +( ) / ( )μ μ μ2 1 2 , (ii) y h= +/ ( / )1 1 2μ μ ]

 17. In the bubble method of measuring surface tension, a tube of 
diameter 3 mm is immersed in the liquid of specific gravity 
0.85 to a depth of 6 cm. The maximum pressure of air that 
could be applied through the tube was 540 Pa above atmos-
phere. Determine the surface tension.

[Ans. 0.02977 N/m]

 18. Find the power required to convert one litre of water per 
 minute at a temperature of 20°C into a mist having an average 
drop size of 5 × 10-3 mm. Also determine the pressure inten-
sity inside the mist droplets if thermal effects are neglected.

[Ans. 1.46 Watts, 58.4 kN/m2]

 19. A capillary tube of internal diameter 2 mm is immersed into 
a pool of water to a depth of 12 mm. If the air bubbles are 
intended to have a diameter of 2 mm, then determine the pres-
sure required to form the air bubble if the surface tension of 
water is 0.073 N/m.

[Ans. 263.72 N/m2]

 20. A 1.5 mm diameter glass tube is immersed in mercury. 
 Determine the depression if the surface tension for mercury 
is 0.46 N/m and the contact angle is 130°.

[Ans. 5.91 mm]

 21. Derive an expression for the capillary rise of a liquid having 
surface tension σ  and contact angle α  between two vertical 
parallel plates at a distance of x apart.

[Ans. h gx= ( cos ) / ( )2σ α ρ ]

 22. In the bubble method, a tube of 1.5 mm internal diameter is 
immersed to a depth of 12.5 mm in a mineral oil of relative 
density 0.85. Air is forced through the tube forming a bubble 
at the lower end. Determine the unit surface energy indicated 
when the maximum bubble pressure intensity is 150 N/m2.

[Ans. 0.0172 N/m]

 23. Determine the percentage reduction in volume of water if 
there is an increase in pressure by 104 kN/m2 over the atmos-
pheric pressure of 101.3 kN/m2. The value of bulk modulus 
for water is given as 206 × 104 kN/m2. If the same reduction 
in volume of air is to be obtained by an isothermal process, 
then determine the required increase in pressure. Also com-
ment on your results.

[Ans. 0.4854%, 0.492 kN/m2, air is 20325.2 times  
more compressible than water]

 24. Gas A at 125 kPa (abs) is compressed isothermally and gas B 
at 100 kPa (abs) is compressed isentropically with compres-
sion index of 1.4. State which gas is more compressible?

[Ans. Gas A is more compressible]

 25. Determine (i) density, (ii) weight density and (iii) specific 
volume at a depth of 8000 m from the surface of ocean where 
the pressure is found to be 82.5 × 103 kN/m2. The density at 
the surface is 1020 kg/m3 and bulk modulus is 2.4 × 106 kN/
m2 for the given pressure.

[Ans. 1055.06 kg/m3, 10350.14 N/m3, 9.478 × 10-4 m3/kg]

ANSWERS TO MULTIPLE-CHOICE QUESTIONS

 1. (d) 2. (b) 3. (d) 4. (a) 5. (b)
 6. (c) 7. (c) 8. (b) 9. (a) 10. (d)
 11. (c) 12. (c) 13. (c) 14. (b) 15. (c)
 16. (d) 17. (d) 18. (c)
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2.1 ❐ INTRODUCTION
A fluid remains in contact with any surface and it needs a container to store it. It always exerts a normal force on the 
 surfaces. In case of liquids, this force is mainly due to specific weight of the liquid, whereas in gases it is mainly because of 
molecular activity. This normal force exerted by a fluid per unit area is called fluid pressure which is also termed as static 
or hydrostatic pressure.

Fluid statics deals with the study of fluid at absolute rest or relative rest. 
If both the fluid and its container are at rest or both are moving in the same 
direction at the same speed, then it is said to be in absolute rest. If the fluid is 
rotated or moved as a solid mass (i.e., there is no shear stress) in a stationary 
container, then the fluid is said to be in relative rest or  relative equilibrium. 
The weight (W) of a liquid element can be resolved into two components, 
namely tangential component (W sinα ) and perpendicular component  
(W cosα ) as shown in Figure 2.1. The angle of the water surface to the 
horizontal (α ) causes motion of the liquid due to shear. In a static liquid, 
W sinα = 0, i.e., the surface is horizontal.

This chapter describes the relation for variation of pressure along a vertical depth in a fluid under static conditions. 
The relation has been applied to the measurement of pressure at a point with manometers. The mechanical gauges which 
measure fluid pressure are briefly explained. The relation for variation of pressure in a compressible fluid (atmosphere) is 
also described.

2.2 ❐ FLUID PRESSURE
Fluid pressure (or pressure) is defined as the normal force exerted by a fluid per unit area. Let F be the total force uniformly 
distributed over an area (A), then pressure (p) at any point is given below.

p
F

A
=

However, if the force is not uniformly distributed and the pressure varies from point to point on the given area, then 
 pressure at any point is given below.

p
dF

dA
=

Chapter 2

Fluid Pressure and Its 
Measurement

W

Horizontal

Free surface of liquid

α

αsinW

αcosW

α

Figure 2.1 Free surface of liquid
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2.2 Chapter 2

Here, dF is the force acting on an infinitesimal area dA in a large mass of fluid. In SI units, the pressure is measured in  

N/m2 and it is called pascal (Pa), i.e., 1 Pa = 1 N/m2. Pascal is a very small unit and so commonly, pressure is given in 

kPa (1 kPa = 103 Pa) and MPa (1 MPa = 106 Pa) units. The other pressure units which are commonly used are as follows.

	 •	1	bar	= 105 Pa = 105 N/m2 = 0.1 MPa = 100 kPa

	 •	1	atm	= 101325 Pa = 101.325 kpa = 1.01325 bar

2.3 ❐ PASCAL’S LAW
The Pascal’s law states that pressure or intensity of pressure at a point in a fluid at rest is equal in all directions. This law was 
established by B. Pascal, a French Mathematician in 1653.

Consider an infinitesimal wedge shaped element of 
 stationary fluid as a free body. Assume the dimensions of this 
element as dx, dy, ds and it has a unit depth  perpendicular 
to the plane of the paper as shown in Figure 2.2. Let w be 
the weight density of the liquid and W be the weight of the 
fluid element ABC. Since the fluid is at rest there is no shear 
force. The two forces which act on the element are normal 
pressure force and the vertical force due to the weight of the 
element. Let Fx, Fy and Fz be the pressure forces acting on 
the faces AB, BC and CA, respectively and px, py and pz be 
the corresponding pressures.

Let ∠ =BAC α

∴ = =ds
dy dx

cos sinα α
The pressure force acting on a surface is given by the product of the pressure intensity and the surface area perpendicular 
to the direction of pressure. The pressure forces are given by the following expressions.

Fx = px × (dy × 1) = px dy; Fy = py × (dx × 1) = py dx; Fz = pz × (ds × 1) = pz ds

The vertical force due to weight of the element is given by the product of volume and weight density as follows.

W dx dy w wdxdy= × × ×⎛
⎝⎜

⎞
⎠⎟

× =
1

2
1

1

2

Since the element ABC is in equilibrium, the forces must be in equilibrium. Resolving the forces in x-direction, we get:

	 F Fx z− ° − =sin( )90 0α

	 F Fx z− =cosα 0

	 p dy p dsx z− =cosα 0

	
p dy p

dy
x z− × × =

cos
cos

α
α 0

 px dy – pz dy = 0

	 ∴	px = pz (i)

Resolving the forces in y-direction, we get:

F F wdx dyy z− ° − − =cos( )90
1

2
0α

Fx

Fy

Fz

dx

dy

ds

A

B C

x

y

z

α
)(90° – α

α

Figure 2.2 Forces on a static fluid element
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p dx p ds wdxdyy z− − =sinα 1

2
0

p dx p
dx

wdxdyy z− × × − =
sin

sin
α

α 1

2
0

p dx p dx wdxdyy z− − =
1

2
0

Since the term 
1

2
⎛
⎝⎜

⎞
⎠⎟ wdxdy  involves a product of infinitesimal quantities, it may be neglected.

Thus py dx – pz dx = 0 

	 ∴	py = pz (ii)

Therefore, from the expressions (i) and (ii), we get:

 px = py = pz (2.1)

From Equation (2.1), it can be seen that the pressure at any point in the stationary liquid is same in all the directions.

 Example 2.1  In a hydraulic press, the diameters of ram and plunger are 100 mm and 15 mm, respectively. Determine 
the weight lifted by the press when the force applied on the plunger is 300 N.

Solution
Let D = 100 mm = 0.1 m, d = 15 mm = 0.015 m and F = 300 N. Let W be the weight lifted by the hydraulic press.

Since p
F

a

W

A
= =  [Pascal’s law] 

∴ = =
×

=
×

=W
FA

a

F D

d

( / )

( / )

.

.

π
π

4

4

300 0 1

0 015

2

2

2

2
13333.33 N

2.4 ❐ HYDROSTATIC LAW (PRESSURE VARIATION IN A STATIC FLUID)
The hydrostatic law states that the rate of increase of pressure in 
a vertically downward direction must be equal to specific weight 
of the fluid at that point.

In a stationary fluid, consider a small fluid element ABCD 
of cross sectional area DA and height Dh. Let p be the intensity 
of pressure (above atmospheric pressure) on face BC and h be 
its distance from free surface as shown in Figure 2.3. Let w be 
the weight density of the fluid and W be the weight of the fluid 
 element ABCD. The following forces act on this small element.

 1. Pressure force on the face BC acting downward is given by,

= p × DA

 2. Pressure force on the face AD acting upward is given by,

= +
∂
∂

⎛
⎝⎜

⎞
⎠⎟

×p
p

h
h AΔ Δ

A

B C

D

Ap Δ×

Ah
h
p

p ×Δ Δ×∂
∂

+

hΔ

h

Fluid
element

Free surface of fluid

h

Figure 2.3 Forces acting on a static fluid element
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2.4 Chapter 2

 3. Weight of the fluid element acting downward is given by,

W = Weight density × Volume = w × DADh

 4. Pressure forces on surfaces AB and CD are equal and opposite, it cancels each other.

Since the element ABCD is in equilibrium, we get:

	
p A p

p

h
h A w A hΔ Δ Δ Δ Δ− +

∂
∂

⎛
⎝⎜

⎞
⎠⎟

+ = 0

	
p A p A

p

h
h A w A hΔ Δ Δ Δ Δ Δ− −

∂
∂

+ = 0

	
−

∂
∂

+ =
p

h
h A w A hΔ Δ Δ Δ 0

	

∂
∂

=
p

h
h A w A hΔ Δ Δ Δ

	

∂
∂

= =
p

h
w gρ  (2.2)

Since the pressure function (p) depends on a single variable distance (h) only, the partial derivative can be replaced by 
ordinary (or exact) derivative.

	
∴ = =

dp

dh
w gρ  (2.2a)

It is pertinent to mention here that in the above equation, h is measured vertically downward. But when h is measured 
 vertically up then Equation (2.2a) becomes,

	

dp

dh
w g= − = −ρ  (2.2b)

From Equation (2.2), it can be seen that rate of pressure increase in a vertical direction is equal to weight density of the 
stationary fluid at that point.

Now integrating Equation (2.2), we get:

∂ = ∂∫ ∫p g hρ

	 p gh wh= =ρ  (2.3)

	
h

p

g

p

w
= =

ρ
 (2.4)

In Equation (2.4), ‘h’ denoted as the vertical height of the free surface above any point in a fluid at rest is known as pressure 
head. In case the pressure at a point in a fluid at rest is pa, then the pressure at any point below it at a depth h will be given 
by the following expression.

	 p p gh p wha a= + = +ρ  (2.5)

From Equation (2.5), it is clear that the pressure at any point in a static fluid depends on the vertical depth of the point 
below the free surface and the specific weight of the fluid. It does not depend on the shape and size of the container. The 
containers of different shapes are interconnected in Figure 2.4. Thus, the weight of the liquid in each part differs but the 
pressures at points A, B, C, D and E lying on the same horizontal level are same. This is due to the same vertical height of 
the fluid column at the given points below the free surface and it is known as hydrostatic paradox.

If h1 and h2 be the heights of the columns of liquids of weight densities w1 and w2, respectively which develop the same 
pressure p at any point, then from Equation (2.3), we get the following expression.

 p = w1h1 = w2h2 (2.6)
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 Fluid Pressure and Its Measurement 2.5

If S1 and S2 be the specific gravities of the two liquids, then Equation (2.6) is as follows.

 p = S1h1 = S2h2 (2.7)

2.5 ❐ ATMOSPHERIC, ABSOLUTE, GAUGE AND VACUUM PRESSURES
 1. Atmospheric pressure: The atmospheric pressure (patm) may be defined as a normal pressure exerted by atmospheric 

air on all surfaces with which it is in contact. It varies with altitude and measured by a barometer and it is also called 
barometric pressure. At sea level, under normal conditions, its value is 1.01325 × 105 N/m2 or 1.01325 bar or 10.336 m 
of water or 760 mm of Hg (760 mmHg). The unit mmHg is also known as Torr in the honour of Torricelli (1608–1647). 
Thus, 1 atm = 760 torr and 1 torr = 133.3223 Pa. The atmospheric pressure can be measured with a mercury barometer 
that consists of a glass tube filled with mercury. The open end of the tube is immersed in a mercury container that is 
open to the atmosphere as shown in Figure 2.5(a). The column of mercury reaches to an equilibrium position where its 
weight balances the force due to the atmospheric pressure at point A. The pressure at A equals to that at B, since both 
lie on the same horizontal and therefore, we get the following expression.

p ghatm = ρ

 Here, ρ  is the density of mercury, g is the local acceleration due to gravity and h is the height of the mercury 
 column above the free surface. It is to be noted that vapour pressure of mercury (pv) is very low relative to atmospheric 
pressure and thus, it has been neglected. This almost vacuum condition above the mercury in the barometer is known 
as Torricellian vacuum. At sea level, h = 76 cm and it varies place to place as per the height above sea level.
 Generally, fluid pressures are measured by taking either absolute zero pressure (or complete vacuum) as datum or 
local atmospheric pressure as datum.

 2. Absolute pressure: When pressure is measured above absolute zero, it is called absolute pressure (abs) and all values 
of absolute pressure are positive.

 3. Gauge pressure: When pressure is measured by taking atmospheric pressure as datum, it is called gauge pressure and 
it is measured by pressure gauges. All pressure gauges show zero value when open to the atmosphere and it indicates 
only the difference between the fluid pressure and the atmospheric pressure.

 4. Vacuum pressure: When the pressure of a fluid is below atmospheric pressure, it is called vacuum pressure (or 
 negative gauge pressure) and it is measured by a vacuum gauge.

 Thus, the mathematical relation between the above pressures is given by,

Absolute pressure = Atmospheric pressure + Gauge pressure

Absolute pressure = Atmospheric pressure - Vacuum pressure

The above relationships between pressures are shown in Figure 2.5(b).

A B C D E

h

Figure 2.4 Fluid pressure is same at all points on a horizontal plane
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Gauge pressure

Absolute
pressure Vacuum pressure

Absolute pressure

Atmospheric
pressure

Absolute zero pressure (or complete vacuum)
P

re
ss

ur
e

patmpatm

h

Mercury

(a) (b)

pv

A

Torricellian
vacuum

Inverted
tube

Container
B

Figure 2.5 (a) A barometer (b) The scale of pressure

 Example 2.2  Determine the depth of a point below sea water surface where pressure intensity is 1005 kPa. Take specific 
gravity of sea water as 1.03.

Solution
Let p = 1005 kPa = 1005 × 103 Pa and S = 1.03. Let h be the depth to be found out.

	 ρ ρ= = × =S w 1 03 1000 1030. kg/m3

	
h

p

g
= =

×
×

=
ρ

1005 10

1030 9 81

3

.
99.463 m

 Example 2.3  Convert water pressure head of 100 m to kerosene of specific gravity 0.82.

Solution
Let h1 = 100 m, S2 = 0.82 and S1 = 1 (specific gravity of water). Let h2 be the kerosene pressure head.

Since  S1 h1 = S2 h2

 1 × 100 = 0.82 × h2

	
∴ = =h2

100

0 82.
121.95 m

 Example 2.4  The diameters of small and large pistons in a hydraulic jack are 0.03 m and 0.15 m, respectively. If the 
force applied on small piston is 500 N, then determine the load lifted by the large piston when smaller piston is 0.25 m 
above the large piston. Take specific gravity of oil as 0.82.

Solution
Let d = 0.03 m, D = 0.15 m, F = 500 N, h = 0.25 m and S = 0.82. Let W be the load lifted.

ρ ρ= = × =S w 0 82 1000 820 3. kg/m

Since p
F

a
gh

W

A
= +⎛

⎝⎜
⎞
⎠⎟

=ρ     [Pascal’s law]
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W
F

a
gh A

F

d
gh D= +⎛

⎝⎜
⎞
⎠⎟

= +
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

×ρ
π

ρ π
( / )4 42

2

∴ =
×

+ × ×
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

× × =W
500

4 0 03
820 9 81 0 25

4
0 15

2
2

( / ) .
. . .

π
π

12535.54 N

 Example 2.5  An open tank contains water in its bottom up to 2 m depth and then oil of specific gravity 0.8 up to a depth 
of 1.5 m. Determine the pressure at the bottom of the tank and at the interface of water and oil.

Solution
Let h1 = 2 m, S2 = 0.8 and h2 = 1.5 m. Let pb be the pressure at the bottom of the tank and pi be the pressure at the interface 
of water and oil.
Since p gh S ghb w w= +ρ ρ1 2 2

∴ pb = 1000 × 9.81 × 2 + 0.8 × 1000 × 9.81 × 1.5 = 31392 N/m2

p S ghi w= = × × × =2 2 0 8 1000 9 81 1 5ρ . . . 11772 N/m2

 Example 2.6  Determine the pressure due to a column of 0.5 m of an oil of specific gravity 0.85 and mercury having 
specific gravity of 13.6.

Solution
Let h = 0.5 m, Soil = 0.85 and SHg or Sm = 13.6.

 (i) Pressure due to oil is given by,

p S ghw= = × × × =oil ρ 0 85 1000 9 81 0 5. . . 4169.25 N/m2

 (ii) Pressure due to mercury is given by,

p S ghw= = × × × =Hg ρ 13 6 1000 9 81 0 5. . . 66708 N/m2

 Example 2.7  A cylindrical container of 2.5 m diameter and 5 m high is fully filled with an oil of specific gravity 0.8. 
Determine (i) intensity of pressure and the total force on the bottom of the tank and (ii) total force on the vertical surface.

Solution
Let d = 2.5 m, h = 5 m and S = 0.8.

 (i) Pressure intensity at the bottom is given by,

p S ghw= = × × × =ρ 0 8 1000 9 81 5. . 39240 N/m2

  Total pressure force at the bottom is given by,

F p d= × = × × =
π π
4

39240
4

2 52 2. 192618.9 N

 (ii) Minimum pressure intensity (pmin) at the top is given by,

 pmin = 0

  Maximum pressure intensity (pmax) at the bottom and it is given by,

 pmax = 39240 N/m2

	
∴ =

+
=

+
=p

p p
av

min max

2

0 39240

2
19620 2N/m
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2.8 Chapter 2

  Total force on the wall is given by,

F p dhav= × = × × × =π π19620 2 5 5. 770475.6 N

 Example 2.8  Determine the gauge and absolute pressures at a point 2.5 m from the free surface of the liquid whose 
density is 1525 kg/m3 when barometer reads 740 mm of Hg. Assume standard values for density of water and specific 
gravity of mercury.

Solution
Let h = 2.5 m, ρ = 1525 3kg/m  and hatm = 740 mm Hg = 0.74 mHg.

Gauge pressure (p) is given by,

p gh= = × × =ρ 1525 9 81 2 5. . 37400.625 N/m2

Atmospheric pressure (patm) is given by,

p S ghwatm Hg atm N/m= = × × × =ρ 13 6 1000 9 81 0 74 98727 84 2. . . .

Absolute pressure (pabs) is given by,

pabs = patm + p = 98727.84 + 37400.625 = 136128.465 N/m2

 Example 2.9  Determine the height of the mountain if the density of air is 1.23 kg/m3 and the pressure at the base and 
the top of the mountain are 0.76 mHg and 0.70 mHg respectively. Take specific gravity of mercury = 13.6 and density of 
water = 1000 kg/m3.

Solution
Let ρ = 1 23 3. kg/m , hbase = 0.76 mHg, htop = 0.70 mHg, SHg = 13.6 and ρw = 1000 3kg/m . Let h be the height of the 
mountain.
Since  ρgh p p= −base top

ρ ρ ρgh S gh S ghw w= −Hg base Hg top

h
S g h h

g

w=
× −Hg base topρ

ρ
( )

∴ =
× × × −

×
=h

13 6 1000 9 81 0 76 0 70

1 23 9 81

. . ( . . )

. .
663.415 m

 Example 2.10  For a 30 cm deep gasoline tank of a car, the fuel gauge fitted at the bottom of the tank indicates some 
value. The fuel tank accidentally contains 1.8 cm height of water column in addition to gasoline (specific gravity = 0.68). 

Determine the height of the air ( . )ρ = 1 21 3kg/m  remaining at the top when the gauge erroneously reads full.

Solution
Let h = 30 cm = 0.3 m, h3 = 1.8 cm = 0.018 m, S = 0.68 and ρair kg/m= 1 21 3. . Let h1 be the height of the air column,  

h3 be the height of water column and h2 = (0.3 – 0.018 – h1) = (0.282 – h1) m be the gasoline column.
When the tank is full of gasoline, we get:

p S ghw= = × × × =ρ 0 68 1000 9 81 0 3 2001 24 2. . . . N/m

Since p gh S gh ghw w= + +ρ ρ ρ3 2 1air

2001.24 = 1000 × 9.81 × 0.018 + 0.68 × 1000 × 981 × (0.282 – h1) + 1.21 × 9.81h1

 2001.24 = 176.58 + 1881.166 – 6670.8h1 + 11.87 h1
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 Fluid Pressure and Its Measurement 2.9

6658.93 h1 = 56.506

∴ = =h1
56 506

6658 93

.

.
8.486 10 m or 0.8486 cm3×× −−

2.6 ❐ MEASUREMENT OF PRESSURE
The fluid pressure is measured by the manometers and mechanical gauges which are described below.

2.6.1 Manometers
These devices measure pressure at a point in a liquid by balancing the column of liquid by the same or another column of 
liquid. The manometers may be classified as

 1. Simple manometers: (a) Piezometer, (b) U-tube manometer (or Double column manometer) and (c) Single column 
manometer

 2. Differential manometers: (a) U-tube differential manometer, (b) Inverted U-tube differential manometer and  
(c) Micromanometer.

2.6.2 Mechanical Gauges
In these pressure measuring devices, an elastic element like spring is used against the liquid pressure to be measured. Some 
of the commonly used mechanical gauges are (a) Bourdon tube pressure gauge, (b) Diaphragm pressure gauge, (c) Bellow 
pressure gauge and (d) Dead weight pressure gauge.

2.7 ❐ SIMPLE MANOMETERS (OPEN TYPE MANOMETERS)
Simple manometers measure pressure at a point in a fluid contained in a pipe or a vessel. Generally, it consists of a glass 
tube with one end connected to the point where pressure is to be measured and the other end remains open to atmosphere. 
These manometers are also known as open type manometers and some of the simple manometers are discussed below.

2.7.1 Piezometer
A piezometer is the simplest form of manometer which is used to 
 measure the moderate pressure of a liquid. It is essentially a single 
 column manometer which consists of a glass tube whose one end is 
connected to the point where pressure is to be measured and the other 
end remains open to atmosphere. The usual types of these manometers 
are shown in Figure 2.6.

Since the surface of the liquid in the tube is open to atmospheric 
pressure and therefore, a piezometer measures gauge pressure only.  
If ρ is the density of a liquid and h is its height in piezometer tube, then 
pressure at point ‘A’ in Figure 2.6 is given by the expression p gh= ρ .

Limitations

 1. A piezometer cannot be used when large pressure in a lighter liquid is to be measured, as it requires very long tubes 
and it cannot be handled easily.

 2. It cannot measure gas pressure, as gas does not form any free surface with the atmosphere.

 Example 2.11  An absolute pressure of 2.4 × 105 N/m2 acts on the free surface of water closed in a container. A  piezometer 
is fitted to the container at a depth of 2 m from the free surface. Determine the height of the water rising in the piezometer 
if atmospheric pressure is 1.01325 × 105 N/m2.

A

h

A

h

Pipe

Piezometer tube

Figure 2.6 Piezometers
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2.10 Chapter 2

Solution
Refer Figure 2.7. Let p = 2.4 × 105 N/m2, H = 2 m, patm = 1.01325 × 
105 N/m2. Let h be height of the water rising in the piezometer tube.

The manometric equation for point ‘A’ is given by,

	 p gH p ghw w+ = +ρ ρatm

	
h

p gH p

g
w

w
=

+ −ρ
ρ

atm

	
∴ =

× + × × − ×
×

=h
2 4 10 1000 9 81 2 1 01325 10

1000 9 81

5 5. . .

.
16.136 m

 Example 2.12  Determine the least diameter of a piezometer tube so that error due to capillary action in measuring the 
air gauge pressure of 120 N/m2 lies within 2%. Take surface tension for water as 0.0725 N/m and the angle of contact as 0°.

Solution
Let p = 120 N/m2, error = 2%, σ = 0 0725. N/m  and α = 0o. Let d be the least diameter of piezometer tube.

The height of the water in the tube is given by,

	
h

gdw
=

4σ α
ρ

cos
 (i)

The rise of water in the piezometer tube is also given by,

	
h

p

gw
=

ρ
 (ii)

Error can be obtained by dividing expression (i) by expression (ii) as given below.

	

( cos ) ( )

( )
.

4
0 02

σ α ρ
ρ

/

/
w

w

gd

p g
=

	
∴ = =

× °
×

=d
p

4

0 02

4 0 0725 0

0 02 120

σ αcos

.

. cos

.
0.1208 m or 12.08 cm

2.7.2 U-tube Manometer (Double Column Manometer)
A U-tube manometer consists of a glass tube bent in U-shape, where one end is connected to a point at which pressure is 
to be measured and the other end remains open to the atmosphere as shown in Figure 2.8.

The U-tube contains a liquid of specific gravity greater than that of the fluid whose pressure is to be measured. For 
 measuring high pressure, generally mercury (specific gravity = 13.6) is used as manometric liquid and for measuring low 
pressure, liquids of lower specific gravities, such as carbon tetrachloride (specific gravity = 1.59) and acetylene tetrabromide  
(specific gravity = 2.59) are used. A U-tube manometer can be used to measure both the gauge pressure and vacuum 
pressure.

 1. U-tube manometer for gauge pressure: Let p be the pressure which is to be measured at point ‘A’ and Z–Z be the 
horizontal datum line as schematically shown in Figure 2.8(a). Due to the application of pressure, manometric liquid 
moves downward in the left limb and correspondingly, it rise in the right limb of the manometer.

   Let h1 and h2 be the heights of light and heavy liquids from datum line, respectively, S1 and S2 be the specific 
 gravities of light and heavy liquids, respectively and ρ ρ1 1= S w  and ρ ρ2 2= S w  be the densities of light and heavy 
liquids, respectively, where ρw  is the density of water and patm is the atmospheric pressure.

H

h
p

Water

A

Figure 2.7
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 Fluid Pressure and Its Measurement 2.11

   Section Z–Z is the surface of manometric liquid in the left and right limbs. Thus, liquid has continuous connection 
at the same horizontal. Therefore, pressure above the horizontal datum line Z–Z in the left column will be equal to the 
pressure above the horizontal datum line Z–Z in the right column of the manometer. The corresponding expressions 
are as follows.

p gh gh+ =ρ ρ1 1 2 2

	 ∴ = −p gh ghρ ρ2 2 1 1  (2.8)

 2. U-tube manometer for vacuum pressure (or negative pressure): Here, Figure 2.8(b) illustrates the balancing of 
the light and heavy liquids in the two limbs of the manometer. Due to negative pressure, the manometric liquid sucks 
upwards in the left limb and correspondingly falls in the right limb of the manometer. Thus, we get the following 
expression.

p gh gh+ + =ρ ρ1 1 2 2 0

	 ∴ = − +p gh gh( )ρ ρ1 1 2 2  (2.9)

 Example 2.13  The right limb of a U-tube manometer filled with mercury (specific gravity = 13.6) is open to the 
 atmosphere while the left limb is connected to a pipe containing a fluid of specific gravity 0.8. The centre of the pipe lies 
15 cm below the level of mercury in the right limb. Determine the pressure of fluid 
in the pipe when the difference of mercury level in the two limbs is 30 cm.

Solution
Refer Figure 2.9. Let S2 = 13.6, S1 = 0.8 , h2 = 30 cm = 0.3 m and h1 = h2 – 15 = 
15 cm = 0.15 m.

Let p be the fluid pressure in the pipe at point ‘A’. Since the pressures in the 
left and right limbs at the plane Z–Z are equal, we get the following expression.

	 p gh gh+ =ρ ρ1 1 2 2

	 p gh gh S gh S ghw w= − = −ρ ρ ρ ρ2 2 1 1 2 2 1 1

	 ∴ p = 13.6 × 1000 × 9.81 × 0.3 – 0.8 × 1000 × 9.81 × 0.15 = 38847.6 N/m2

 Example 2.14  The right limb of a U-tube manometer filled with mercury (specific gravity = 13.6) is open to the 
 atmosphere while the left limb is connected to a pipe containing a fluid of specific gravity 0.85. The level of mercury in the 
left limb is 10 cm below the centre of the pipe. Determine the vacuum pressure of fluid in the pipe when the difference of 
mercury level in the two limbs is 25 cm.

A

Z Z

h1

h2

A

Z Z

h1

h2

(a) (b)

Specific gravity (S1)

Specific gravity (S1)

Specific gravity (S2) Specific gravity (S2)

patmpwhen > patmpwhen <

Figure 2.8 U-tube manometers

Specific gravity (S1)

Specific gravity (S2)

A

Z Z

h1

h2

15 cm

Figure 2.9
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Solution
Refer Figure 2.10. Let S2 = 13.6, S1 = 0.85 , h1 = 10 cm = 0.1 m and h2 = 25 cm = 
0.25 m. Let p be the fluid pressure in the pipe at point ‘A’. Since the pressures in 
the left and right limbs at the plane Z–Z are equal, we derive following expression.

	 p gh gh+ + =ρ ρ1 1 2 2 0

	 p gh gh S gh S ghw w= − + = − +( ) ( )ρ ρ ρ ρ2 2 1 1 2 2 1 1

 P = −(13.6 × 1000 × 9.81 × 0.25 + 0.85 × 1000 × 9.81 × 0.1)

	 ∴ p = −−34187.85 N/m2

 Example 2.15  The left limb of a U-tube mercury manometer is connected to a pipe line conveying water, the level of 
mercury (specific gravity = 13.6) in the leg being 0.5 m below the centre of pipe line and the right limb is open to 
 atmosphere. The level of mercury in the right limb is 0.4 m above that in the left limb and the space above mercury in the 
right limb contains benzene (specific gravity = 0.88) to a height of 0.2 m. Determine the pressure of water in the pipe.

Solution
Refer Figure 2.11. Let S2 = 13.6, h1 = 0.5 m, h2 = 0.4 m, S3 = 0.88 and h3 = 0.2 m.

Let p be the fluid pressure in the pipe at point ‘A’. Since the pressures in the 
left and right limbs at the plane Z–Z are equal, we get the following expression.

p gh gh ghw+ = +ρ ρ ρ1 2 2 3 3

p gh gh gh S gh S gh ghw w w w= + − = + −ρ ρ ρ ρ ρ ρ2 2 3 3 1 2 2 3 3 1

P = 13.6 × 1000 × 9.81 × 0.4 + 0.88 × 1000 × 9.81 × 0.2 – 1000 ×9.81 × 0.5

∴ P = 50187.96 N/m2

 Example 2.16  Determine the pressure of water in the pipeline when the 
 difference in the mercury level in the limbs of a U-tube manometer connected to 
the water pipe is 20 cm and the free surface of mercury (specific gravity = 13.6) is in level with the centre of pipe. Also 
 determine the new difference in the level of mercury when the pressure of water in the pipeline is reduced to 9.95 × 103 N/m2.

Solution

 (i) Refer Figure 2.12(a). Let h1 = 20 cm = 0.2 m and S2 = 13.6. Let p be the fluid pressure in the pipe at point ‘A’. Since 
the pressures in the left and right limbs at the plane Z–Z are equal, we get the following expression.

	 p gh ghw+ =ρ ρ1 2 1

	 p gh gh S gh ghw w w= − = −ρ ρ ρ ρ2 1 1 2 1 1

	 ∴ P = 13.6 × 1000 × 9.81 × 0.2 − 1000 × 9.81 × 0.2 = 24721.2 N/m2

 (ii) Refer Figure 2.12(b). With reduction in the pressure of water in the pipe, mercury level in the left limb will rise and 
there will be corresponding fall in the right limb. Let x cm be the new difference in the level of mercury. h1 = (0.2 – 
0.01x) m, h2 = (0.2 – 0.02x) m, S2 = 13.6 m, p = 9.95 × 103 N/m2 be the fluid pressure in the pipe at point ‘A’. Since 
the pressures in the left and right limbs at the plane Z1–Z1 are equal, we get the following expression.

p gh ghw+ =ρ ρ1 2 2

Specific gravity (S3)

Specific gravity (S2)

h3

h2

h1

A

Z Z

Water

Figure 2.11

Specific gravity (S1)

Specific gravity (S2)

A

Z Z

h1

h2

Figure 2.10

M02 Fluid Mechanics and Hydraulic Machines XXXX 01.indd   12 4/5/2019   10:03:53 AM

Download more at Learnclax.com



 Fluid Pressure and Its Measurement 2.13

  or p gh S ghw w+ =ρ ρ1 2 2

9.95 × 103 + 1000 × 9.81 × (0.2 – 0.01x) = 13.6 × 1000 × 9.81 × (0.2 – 0.02x)

9950 + 1962 – 98.1x = 26683.2 – 2668.32x

2570.22x = 14771.2

	
∴ = =x

14771 2

2570 22

.

.
5.747 cm

  Thus, new difference of mercury is given as follows.

h2 = 20 – 2x = 20 – 2 × 5.747 = 8.506 cm

 Example 2.17  A U-tube manometer containing mercury (specific gravity = 13.6) is connected to the outlet of a conical 
vessel as shown in Figure 2.13(a). The reading of the manometer given in the figure shows when the vessel is empty. Find 
the reading of the manometer when the vessel is completely filled with water.

Solution
Refer Figure 2.13(a). Let S2 = 13.6 and h2 = 0.15 m.

Specific gravity (S2) Specific gravity (S2)

Z Z

h1

x

(a) (b)

2.25 m

1.5 m

0.15 m
Z Z

h1

2.25 m

1.5 m

0.15 m

Water

Z1
Z1

x

h2

x

Figure 2.13

Specific gravity (S2) Specific gravity (S2)

A

Z Z

h1

Z1

Water

A

Z Z

h1
h2

Water

Z1
x

x

(a) (b)

Figure 2.12
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Let h1 be the height of the water above the plane Z–Z. Since the pressures in the left and right limbs at the plane Z–Z are 
equal, we get the following expression.

	 ρ ρw gh gh1 2 2=

or ρ ρw wgh S gh1 2 2=

1000 × 9.81 × h1 = 13.6 × 1000 × 981 × 0.15

	 ∴ h1 = 2.04 m

Refer Figure 2.13(b). Let x m be the fall in mercury level in the right limb with a corresponding rise of x m in the left limb. 
Thus, the difference of mercury level in two limbs becomes h2 = (0.15 + 2x) m and S2 = 13.6. Since the pressures in the left 
and right limbs at the plane Z1–Z1 are equal, we get the following expression.

	 ρ ρw g h x g x× + + = × +( . ) ( . )2 25 0 15 21 2

or ρ ρw wg h x S g x× + + = × +( . ) ( . )2 25 0 15 21 2

1000 × 9.81 × (2.25 + 2.04 + x) = 13.6 × 1000 × 9.81 × (0.15 + 2x)

 22072.5 + 20012.4 + 9810x = 20012.4 + 266832x

 257022x = 22072.5

	
∴ = =x

22072 5

257022
0 0859

.
. m

Thus, the difference of mercury level in the two limbs is given by,

h2 = 0.15 + 2 × 0.0859 = 0.3218 m or 32.18 cm

2.7.3 Single Column Manometer
The U-tube manometers require readings of liquid levels at two points since a change in pressure causes a rise of liquid 
in one limb of the manometer and a drop in the other. This difficulty can be overcome by using single column manometer.

A single column manometer is a modified form of a U-tube manometer in which one of the two limbs is made a 
large reservoir having a cross-sectional area of about 100 times to that of area of the narrow tube in the other limb 
(Figure 2.14). The change in liquid level in the reservoir due to any variation in pressure will be so small that it may be 
neglected and the pressure can be measured by the height of the liquid in the narrow tube. Thus, only one reading in the 
narrow tube of the manometer is to be recorded for pressure measurement. Based on the position of the narrow tube, 
single column manometers are classified into two types, namely (i) vertical single column manometer and (ii) inclined 
single column manometer.

 1. Vertical single column manometer: A vertical single column manometer is shown in Figure 2.14(a).

  The surface of the manometric liquid will stand at level Z–Z when the manometer is not connected to the vessel or 
pipe. When the reservoir limb of the manometer is connected to the vessel containing liquid at pressure p (greater than 
atmospheric pressure), the manometric liquid level in the reservoir falls down by Dh and there is a corresponding level 
rise h2 in the narrow right limb. Thus, the manometric liquid will stand at level Z1–Z1 as shown in Figure 2.14(a).

   Let h1 be the height of the centre of the pipe, S1 and ρ1  be the specific gravity and density of liquid in the pipe, S2 
and ρ2  be the specific gravity and density of liquid in the reservoir and right limb of the manometer, A be the cross- 
sectional area of the reservoir, and a be the cross-sectional area of the right limb. Fall of manometric liquid in the 
reservoir causes a rise in liquid in the right limb.
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   Thus A × Dh = a × h2 

Δh
a

A
h= 2

   Now considering the datum line Z1–Z1, the pressure in the left limb will be equal to the pressure in the right limb. 
Thus, we get the following expression.

p g h h g h h+ + = +ρ ρ1 1 2 2( ) ( )Δ Δ

p g h h g h h h g g gh gh= + − + = − + −ρ ρ ρ ρ ρ ρ2 2 1 1 2 1 2 2 1 1( ) ( ) ( )Δ Δ Δ

	
p

a

A
h g g gh gh= × − + −2 2 1 2 2 1 1( )ρ ρ ρ ρ  (2.10)

   The reservoir area (A) is very large in comparison to cross-sectional area a and thus, the ratio (a/A) is very small and 
it can be neglected. Therefore, Equation (2.10) is expressed as given below.

	 p gh gh= −ρ ρ2 2 1 1  (2.10a)

 2. Inclined single column manometer: An inclined single column manometer is shown in Figure 2.14(b). Due to 
inclined tube the distance moved by the liquid in the narrow right limb will be more. Thus, the inclined tube type 
 single manometers are more sensitive and are preferred for the measurement of small pressures. These are also used 
for determining the draft in steam generator settings.

   Let α  be the inclination of the right limb to the horizontal axis, l be the rise of manometric liquid in the right 
limb and h l2 = sinα  be the corresponding vertical rise in the tube. Sensitivity of inclined single column manometer 
increases by a factor of 1/ sinα  when compared to vertical single column manometer. Here, Equation (2.10a) can 
also be used for an inclined single column manometer after substituting the value of h2. Thus, we get the following 
expression.

	 p g l gh= × −ρ α ρ2 1 1sin  [ sin ]∵h l2 = α  (2.10b)

   The fall of liquid in the reservoir of the manometer is given by,

	
Δh l

a

A
= ×  (2.11)

 Example 2.18  A single column mercury manometer (specific gravity = 13.6) is connected to the centre of the pipe 
which carries a liquid of specific gravity 0.85. The area of narrow tube limb is one hundredths of the area of the  reservoir 
of the manometer. Determine the pressure of the liquid flowing through the pipe when the centre of the pipe and the free 
mercury surface in the narrow tube are 25 cm and 45 cm, respectively above the datum in the reservoir of the manometer.

A

Z Z
h1 h1

h2

hΔ
Z1 Z1

Specific gravity (S1) Specific gravity (S1)

Specific gravity (S2)Specific gravity (S2)

hΔ

A

Z Z

hΔ
Z1 Z1

hΔ

l

(a) (b)

α

αsinlh2 =

Figure 2.14 (a) vertical single column manometer (b) inclined single column manometer
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Solution
Refer Figure 2.15. Let S2 = 13.6, S1 = 0.85, a/A = 1/100, h1 = 25 cm = 0.25 m 
and h2 = 45 cm = 0.45 m. Let p be the pressure of the liquid in the pipe.

	 ρ ρ2 2
313 6 1000 13600= = × =S w . kg/m

	 ρ ρ1 1
30 85 1000 850= = × =S w . kg/m

Since        p
a

A
h g g gh gh= − + −2 2 1 2 2 1 1( )ρ ρ ρ ρ  [Equation (2.10)]

p = × × − × + × × − × ×
0 45

100
13600 9 81 850 9 81 13600 9 81 0 45 850 9 81 0

.
( . . ) . . . ..25

	 	 	 	 	 	 	 	∴ p = 562.849 + 60037.2 – 2084.625 = 58515.424 N/m2

 Example 2.19  The diameter of the reservoir of an inclined mercury manometer is 50 mm. The diameter of the  manometer 
tube is 2.5 mm and the inclination angle to the horizontal axis is 30°. Determine (i) change in pressure when the length of 
the mercury in the manometer tube changes by 5 mm and (ii) percentage error when neglecting the change in level in the 
container.

Solution
Refer Figure 2.16. Let D = 50 mm, d = 2.5 mm, α = 30o , l = 
5 mm. Let p be the change in pressure, A and a be the areas 
of reservoir and manometer tube, respectively. Here, h be the 
total change in head and Dh be the fall of liquid in the reservoir.

 (i) 
A

a

D

d
= = =

( / )

( / ) .

π
π

4

4

50

2 5
400

2

2

2

2

	 	 	
Δh l

a

A
= × = =

5

400
0 0125. mm

	 	 	 h l2 5 30 2 5= = ° =sin sin .α mm

	 	 	 h h h= + = + =2 2 5 0 0125 2 5125Δ . . . mm

	 	 	 ρ ρ= = × =13 6 13 6 1000 13600 3. .w kg/m

	 	 	 p gh= = × × × =−ρ 13600 9 81 2 5125 10 3. . 335.21 N/m2

 (ii) %
. .

.
Error =

−⎛
⎝⎜

⎞
⎠⎟

× =
−⎛

⎝⎜
⎞
⎠⎟

× ≈
h h

h
2 100

2 5125 2 5

2 5125
100 0.5%

2.7.4 Double U-tube Manometer (Compound Manometer)
If the pressure of a fluid to be measured is very high, then a very long U-tube will be required which is difficult to handle. 
In order to have a U-tube of reasonable size, a number of U-tubes, having the same or different manometric fluids may be 
used. A double U-tube manometer also known as compound manometer is shown in Figure 2.17.

Let p be the pressure which is to be measured at point ‘A’, Z–Z and Z1–Z1 be the horizontal datum lines, h1, h2, h3 and 
h4 be the heights of the liquids from datum lines, S1, S2, S3 and S4 be the specific gravities and ρ1 , ρ2 , ρ3  and ρ4  be the 
corresponding densities of the liquids as schematically shown in Figure 2.17.

Specific gravity (S1)

Specific gravity (S2)

A

Z Z

h1

h2

Figure 2.15

Z Z

Specific gravity (S2)

hΔ

Z1 Z1

hΔ

l

p

α

αh2 = l sin

Figure 2.16
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p gh gh gh gh+ − + − =ρ ρ ρ ρ1 1 2 2 3 3 4 4 0

	 ∴ = − + −p gh gh gh ghρ ρ ρ ρ2 2 1 1 4 4 3 3  (2.12)

 Example 2.20  Determine the gauge pressure at point ‘A’ by a 
 compound manometer as shown in Figure 2.18. Take specific gravity of 
mercury as 13.6.

Solution
Refer Figure 2.18. Let h1 = 0.15 m, h2 = 0.35 m, h3 = 0.3 m, h4 = 0.4 m, 

ρ ρ1 3
31000= = kg/m , ρ ρ2 4

313 6 1000 13600= = × =. kg/m . Let p be 

the pressure at point ‘A’ which is to be determined.
Since  p gh gh gh gh= − + −ρ ρ ρ ρ2 2 1 1 4 4 3 3

 p =  13600 × 9.81 × 0.35 – 1000 × 9.81 × 0.15 + 13600 × 9.81 
× 0.4 – 1000 × 9.81 ×	0.3

∴ p = 46695.6 – 1471.5 + 53366.4 – 2943 = 95647.5 N/m2

 Example 2.21  Determine the gauge pressure at point ‘A’ by 
a compound manometer as shown in Figure 2.19. Take specific 
gravity of mercury as 13.6 and density of air as 1.2 kg/m3.

Solution
Refer Figure 2.19. Let SHg = 13.6 and ρa = 1 23 3. kg/m . Let p 

be the pressure at point ‘A’, ρHg kg/m= × =13 6 1000 13600 3. , 

h1 = 0.4 m and h2 = 0.6 m.

Since  p g h h gh gh gh gh gha w w+ + − + − + − =ρ ρ ρ ρ ρ ρ( )1 2 2 2 2 2 2 0Hg Hg Hg

	
p g h h gh gh gh gh gha w w+ + − + − + − =ρ ρ ρ ρ ρ ρ( )1 2 2 2 2 2 2 0Hg Hg Hg

or p gh gh g h hw a= − − +3 22 2 1 2ρ ρ ρHg ( )

Specific gravity (S3)

Specific gravity (S1)

Specific gravity (S2) Specific gravity (S4)

A

Z Z

h1

h2
h3

h4

Z1 Z1

Figure 2.17 Compound manometer
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Water
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Z1 Z1

0.15 m 0.35
m

0.3
m

0.4 m

Figure 2.18

A

Z Z

Air

Mercury

0.4 m

0.6
m

Water

0.6
m

0.6
m

0.6
m

0.6
m

h2

h1

Figure 2.19
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p = 3 × 13600 × 9.81 × 0.6 – 2 × 1000 × 9.81 × 0.6 – 1.23 ×9.81 × (0.4 + 0.6)

	 ∴ p = 240148.8 – 11772 – 12.07 = 228364.73 N/m2

2.8 ❐ DIFFERENTIAL MANOMETERS
A differential manometer is used to measure the difference of pressures in two pipes or between two points in a pipeline. 
Generally, a differential manometer consists of a bent glass tube (U-tube) containing a heavy liquid (usually mercury). The 
two ends of the U-tube are connected to the two gauge points between which the pressure difference is to be measured. 
Thus, none of the ends of the limbs of a differential manometer are exposed to the atmosphere. These manometers are used 
in venturi meters and orifice or nozzle flow meters. The two most common types of differential manometers, namely U-tube 
differential manometer and inverted U-tube differential manometer are described in this section.

2.8.1 U-tube Differential Manometer (or Upright U-tube Differential Manometer)
The pipes connected to the differential manometers may be at same level or it may be at different levels as shown in 
Figure 2.20.

A

Z Z

h1

B

(a) (b)

h

A

Z Z

h1 h2

B

h
Mercury

Mercury

Specific gravity (S1) Specific gravity (S1)

Specific gravity (SHg) Specific gravity (SHg)

Specific gravity (S1)

Specific gravity (S2)

Figure 2.20 U-tube differential manometers

Case I: When the pipes are at same level as shown in Figure 2.20(a).
Let h be the difference of mercury level in the U-tube, h1 be the distance of centres of pipes A and B from the mercury 

level in the right limb, S1 be the specific gravity of the liquid in the two pipes at A and B. Here, ρ ρ1 1= S w  be the density of  

the liquid in the two pipes at A and B, and SHg be the specific gravity of the mercury, and ρ ρHg Hg= S w  be the density  
of mercury.

For obtaining the difference in pressure heads at A and B, equating the pressures in the left limb and right limb of the 
manometer at datum Z–Z, we get the following expression.

	
p g h h p gh ghA B+ + = + +ρ ρ ρ1 1 1 1( ) Hg

	
p p gh gh gh gh ghA B− = + − − = −ρ ρ ρ ρ ρ ρ1 1 1 1 1 1Hg Hg( )  (2.13)

Case II: When the pipes are at different levels as shown in Figure 2.20(b).
Let h be the difference of mercury level in the U-tube, h1 be the distance of centre of pipe A from the mercury level in 

the right limb, h2 be the distance of centre of pipe B from the mercury level in the right limb, S1 be the specific gravity of 
the liquid in the pipe at A, S2 be the specific gravity of the liquid in the pipe at B, ρ ρ1 1= S w  be the density of the liquid 
in the pipe at A, ρ ρ2 2= S w  be the density of the liquid in the pipe at B and SHg be the specific gravity of the mercury and 
ρ ρHg Hg= S w  be the density of mercury.
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 Fluid Pressure and Its Measurement 2.19

For obtaining the difference in pressure heads at A and B, equating the pressures in the left limb and right limb of the 
manometer at datum Z–Z, we get the following expression.

p g h h p gh ghA B+ + = + +ρ ρ ρ1 1 2 2( ) Hg

p p gh gh gh ghA B− = + − −ρ ρ ρ ρ2 2 1 1 1Hg

	
∴ − = − + −( ) ( )p p gh gh ghA B ρ ρ ρ ρHg 1 2 2 1 1  (2.14)

 Example 2.22  A differential mercury manometer connected at the two points A and B in a pipeline containing an oil 
of specific gravity 0.85 indicates a difference in mercury levels as 20 cm. Determine the difference in pressures at the two 
points. Take specific gravity of mercury as 13.6.

Solution
Refer Figure 2.20(a). Let S1 = 0.85, h = 20 cm = 0.2 m and SHg = 13.6.

Let pA be the pressure at point ‘A’ and pB be the pressure at point ‘B’.

	 ρ ρ1 1
30 85 1000 850= = × =S w . kg/m

	
ρ ρHg Hg kg/m= = × =S w 13 6 1000 13600 3.

For obtaining the difference in pressure heads at A and B, equating the pressures in the left limb and right limb of the 
manometer at datum Z–Z, we get the following expression.

	
p g h h p gh ghA B+ + = + +ρ ρ ρ1 1 1 1( ) Hg

	
( ) ( )p p ghA B− = −ρ ρHg 1

	 ∴ − = × × − =( ) . . ( )p pA B 9 81 0 2 13600 850 25015.5 N/m2

 Example 2.23  The centres of two pipes are connected to a differential manometer. The pipe at higher level carries a 
liquid (specific gravity = 0.95) at a pressure of 1.5 bar while the pipe at lower level carries a liquid (specific gravity = 1.3) 
at a pressure of 1 bar. The centres of pipes having high pressure liquid and low pressure liquid are 2 m and 1 m above the 
higher mercury level in the manometer respectively. Determine the difference in mercury level in the manometer. Take 
specific gravity of mercury as 13.6.

Solution
Refer Figure 2.20(b). Let S1 = 0.95, pA = 1.5 bar, S2 = 1.3, pB = 1 bar, h1 = 2 m, h2 = 1 m and SHg = 13.6. Let h be the 
 difference of mercury level in the U-tube.

ρ ρ1 1
30 95 1000 950= = × =S w . kg/m

ρ ρ2 2
31 3 1000 1300= = × =S w . kg/m

ρ ρHg Hg kg/m= = × =S w 13 6 1000 13600 3.

For obtaining the difference in pressure heads at A and B, equating the pressures in the left limb and right limb of the 
manometer at datum Z–Z, we get the following expression.

	
p g h h p gh ghA B Hg+ + = + +ρ ρ ρ1 1 2 2( )

 1.5 × 105 + 950 × 9.81 ×(2 + h) = 1 × 105 + 1300 × 9.81 × 1 + 13600 × 9.81 h

 168639 + 9319.5 h = 112753 + 133416 h
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133416 h – 9319.5 h = 168639 − 112753

124096.5 h = 55886

∴ = =h
55886

124096 5.
0.45 m

 Example 2.24  The difference in height of the centres of two pipes connected to a differential mercury manometer is 
2.5 m. The pipe at higher level carries a liquid (specific gravity = 0.9) at a pressure of 1.75 bar while the pipe at lower level 
carries a liquid (specific gravity = 1.45) at a pressure of 1 bar. The centre of pipe having low pressure liquid is 1.5 m above 
the higher mercury level in the manometer. Determine the difference in mercury level in the manometer. Take specific 
gravity of mercury as 13.6.

Solution
Refer Figure 2.21. Let h3 = 2.5 m, S1 = 0.9, pA = 1.75 bar, 
S2 = 1.45, pB = 1 bar, h2 = 1.5 m, h1 = h3 + h2 = 2.5 + 1.5 = 
4 m and SHg = 13.6.

Let h be the difference of mercury level in the U-tube.

ρ ρ1 1
30 9 1000 900= = × =S w . kg/m

ρ ρ2 2
31 45 1000 1450= = × =S w . kg/m

ρ ρHg Hg kg/m= = × =S w 13 6 1000 13600 3.

For obtaining the difference in pressure heads at A and B, 
equating the pressures in the left limb and right limb of the 
manometer at datum Z–Z, we get the following expression.

p g h h p gh ghA B+ + = + +ρ ρ ρ1 1 2 2( ) Hg

1 75 10 900 9 81 4 1 10 1450 9 81 1 5 13600 9 815 5. . ( ) . . .× + × × + = × + × × + ×h h

210316 + 8829 h = 121336.75 + 133416 h

133416 h – 8829 h = 210316 – 121336.75

124587 h = 88979.25

∴ = =h
88979 25

124587

.
0.7142 m or 71.42 cm

 Example 2.25  A differential manometer is connected at two 
gauge points A and B. At point A, in the pipe having water connected 
to left limb of the manometer, the air pressure is one bar. The centre 
of the pipe having water and air is 0.75 m above the lower mercury 
level in the manometer while the centre of the pipe having liquid 
(specific gravity = 0.95) is 0.25 m above the higher mercury level in 
the manometer. The difference in mercury level in the manometer is 
0.12 m. The specific gravity of mercury is 13.6. Determine the gauge 
pressure at point B.

Solution
Refer Figure 2.22. Let pA = 1 bar, h1 = 0.75 m, S2 = 0.95, h2 = 0.25 m, 
h = 0.12 m and SHg = 13.6. Let pB be the gauge pressure at point B.

A

Z Z

h1

h3

h2

B

h Mercury

Specific
gravity (S1)

Specific
gravity (S2)

Specific gravity (SHg)

Figure 2.21

A

Z Z

Water B

SHg = 13.6

S2 = 0.95

Mercury

0.25 m0.75 m

Air

0.12 m

Figure 2.22

M02 Fluid Mechanics and Hydraulic Machines XXXX 01.indd   20 4/5/2019   10:04:22 AM

Download more at Learnclax.com



 Fluid Pressure and Its Measurement 2.21

ρ ρHg Hg kg/m= = × =S w 13 6 1000 13600 3.

ρ ρ2 2
30 95 1000 950= = × =S w . kg/m

For obtaining the pressure pB at point B, equating the pressures in the left limb and right limb of the manometer at datum 
Z–Z, we get the following expression.

	
p gh p gh ghA w B+ = + +ρ ρ ρ1 2 2 Hg

	 1 10 1000 9 81 0 75 950 9 81 0 25 13600 9 81 0 125× + × × = + × × + × ×. . . . . .pB

 107357.5 = pB + 18339.79

	 ∴ pB = 107357.5 – 18339.79 = 89017.71 N/m2

 Example 2.26  Two pipes containing water are connected to a compound differential manometer as shown in  
Figure 2.23. Determine the pressure difference between the points at A and B when the specific gravities of mercury and oil 
are 13.6 and 0.9, respectively.

Solution
Refer Figure 2.23. Let h1 = 1 m, h2 = 0.5 m, h3 = 0.3 m,  
h4 = 0.4 m, h5 = 0.15 m and SHg = 13.6. Here, pA and 
pB be the pressure at points A and B, respectively.

ρ ρHg Hg wS= = × =13 6 1000 13600 3. kg/m

ρ ρ2 2
30 9 1000 900= = × =S w . kg/m

For obtaining the pressure difference between the 
points A and B, equating the pressures, we get the 
 following governing manometric equation.

p gh gh gh gh gh pA w w B+ − + − − =ρ ρ ρ ρ ρ1 2 2 3 4 5Hg Hg

p p g h h g h h ghA B w− = + − − −ρ ρ ρHg ( ) ( )2 4 1 5 2 3

p pA B−( ) = × × + − × × − − × ×13600 9 81 0 5 0 4 1000 9 81 1 0 15 900 9 81 0. ( . . ) . ( . ) . ..3	

	 	 	 	 	 	p pA B−( ) = × × + − × × − − × ×13600 9 81 0 5 0 4 1000 9 81 1 0 15 900 9 81 0. ( . . ) . ( . ) . ..3

∴ (pA – pB) = 109087.2 N/m2

 Example 2.27  Determine the pressure difference between the points at A and B shown in Figure 2.24. Take the specific 
gravity of mercury as 13.6 and density of air as 1.23 kg/m3.

Solution
Refer Figure 2.24. Let h1 = 0.25 m, h2 = 0.4 m, l3 = l4 = 0.2 m, SHg = 13.6, S1 = 1.2, ρair kg/m= 1 23 3.  and α = °30 . Here, 
pA and pB be the pressure at points A and B, respectively.

ρ ρHg Hg kg/m= = × =S w 13 6 1000 13600 3.

ρ ρ1 1
31 2 1000 1200= = × =S w . kg/m

Mercury (SHg = 13.6)

A

Water

1 m

0.15 m

0.3 m 0.4 m

B

0.5 m

Water

Oil (S2 = 0.9)

Figure 2.23
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For obtaining the difference in pressure heads at A and B, equating the pressures in the left limb and right limb of the 
manometer at datum Z–Z, we get the following expression.

p gh gh gl gl pA B+ = + ° + ° +ρ ρ ρ ρ1 1 2 3 430 30Hg Hg airsin sin

p p g h l l hA B− = + ° + ° −( sin sin )ρ ρ ρ ρHg Hg air2 3 4 1 130 30

p pA B−( ) = × × + × × + × × − ×9 81 13600 0 4 13600 0 2 0 5 1 23 0 2 0 5 1200 0. ( . . . . . . .225)

∴	(pA – pB) = 63766.207 N/m2

2.8.2 Inverted U-tube Manometer
The inverted U-tube manometer is used when the difference of pressure to be measured between two points in a pipeline or 
between two pipes is small. This manometer contains lighter fluid than the working fluid in the pipeline. Here, Figure 2.25 

illustrates an inverted U-tube manometer connected at two gauge 
points in which the pressure at A is more than the pressure at B.

Let h be the difference of lighter liquid level in the U-tube, h1 
be the distance of centre of pipe A from the lighter liquid level 
in the left limb, h2 be the distance of centre of pipe B from the 
lighter liquid level in the right limb, S1 be the specific gravity of 
the liquid in the pipe at A, S2 be the specific gravity of the liquid 
in the pipe at B, ρ ρ1 1= S w  be the density of the liquid in the pipe 
at A, ρ ρ2 2= S w  be the density of the liquid in the pipe at B and S 
be the specific gravity of the lighter liquid in U-tube and ρ ρ= S w  
be the density of lighter liquid.

For obtaining the difference in pressure heads at A and B, equat-
ing the pressures in the left limb and right limb of the manometer 
at datum Z–Z, we get the following expression.

p gh p gh ghA B− = − −ρ ρ ρ1 1 2 2

	 ∴ − = − −( )p p gh gh ghA B ρ ρ ρ1 1 2 2  (2.15)

Mercury
(SHg = 13.6)

A

Liquid (S1 = 1.2)

B

Air

30°

Z Z

0.25 m

0.2 m
0.2 m

0.4 m

h4 = l4 sin 30°

h3 = l3 sin 30°

Figure 2.24

h2

A

h1

B

h

Specific gravity (S)
(Light liquid)

Specific
gravity (S2)

Specific gravity (S1)

Z Z

Figure 2.25 Inverted U-tube differential manometer
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When both the pipes are at same level, then h1 = h2 and Equation (2.15) becomes,

	 ∴ − = − −( ) ( )p p gh ghA B 1 1 2ρ ρ ρ  (2.16)

 Example 2.28  An inverted tube manometer is connected to two horizontal pipes at the points A and B. Pipe A carries 
water, pipe B carries oil (specific gravity = 0.94) and the manometer contains a light fluid (specific gravity = 0.85). Pipe 
A is at lower level when compared to pipe B. The common level is at 0.9 m above the centre of pipe A and 0.8 m above 
the centre of pipe B. The 0.8 m is consisted of 0.2 m light liquid and the remaining oil. Determine (i) pressure difference 
between the points at A and B and (ii) absolute pressure in pipe ‘A’ in m of water if pressure at point B is 5.2 × 104 N/m2 
and the atmospheric pressure is 750 mmHg.

Solution
Refer Figure 2.26. Let S2 = 0.94, S = 0.85, h1 = 0.9 m, h + 
h2 = 0.8 m, h = 0.2 m and h2 = 0.6 m. Here, pA and pB be the 
pressure at points A and B, respectively, pB = 5.2 × 104 N/m2 
and patm = 750 mmHg = 0.75 mHg.

 (i) ρ ρ= = × =S w 0 85 1000 850 3. kg/m

	 		ρ ρ2 2
30 94 1000 940= = × =S w . kg/m

  For obtaining the difference in pressure heads at A and 
B, equating the pressures in the left limb and right limb 
of the manometer at datum Z–Z, we get the following 
expression.

	 p gh p gh ghA w B− = − −ρ ρ ρ1 2 2

	 p p g h h hA B w− = − −( )ρ ρ ρ1 2 2

	 ∴ − = × × − × − × =( ) . ( . . . )p pA B 9 81 1000 0 9 940 0 6 850 0 2 1628.46 N/m2

 (ii) Pressure in pipe A is given by,

pA = 1628.46 + pB = 1628.46 + 5.2 × 104 = 53628.46 N/m2

  Atmospheric pressure is given by,

patm = 1000 × 9.81 ×13.6 × 0.75 = 100062 N/m2

  Absolute pressure is given by,

    pA (abs) = pA + patm = 53628.46 + 100062 = 153690.46 N/m2

	
∴ =

×
=pA( )

.

.
abs

153690 46

1000 9 81
15.67 m of water

 Example 2.29  An inverted U-tube manometer containing a manometric light fluid (specific gravity = 0.7) is connected 
to two pipes at points A and B. Pipe A carries liquid of specific gravity 1.2 and pipe B carries water. The pipes are at the 
same level. The height of the liquid of specific gravity 1.2 from the centre of the pipe is 30 cm. If all liquids are immiscible 
and the pressure in pipe B is 0.2 kPa above the pressure in the pipe A, determine the differential reading of the manometer.

Solution
Refer Figure 2.27. Let S = 0.7, S1 = 1.2, h1 = 30 cm = 0.3 m, pA and pB be the pressure at points A and B, respectively. Thus, 
pB = pA + 0.2 kPa = (pA + 200) N/m2. Let h be the differential reading of the given manometer.

A

Water
B

Oil (S2 = 0.94)

Z Z

0.2 m

0.6 m0.9 m

Oil (S = 0.85)

Figure 2.26
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	 ρ ρ1 1
31 2 1000 1200= = × =S w . kg/m

ρ ρ= = × =S w 0 7 1000 700 3. kg/m

ρ ρ2
31000= =w kg/m

Equating the pressures in the left limb and right limb of the  manometer 
at datum Z–Z, we get the following expression.

	 	 	 	 p gh gh p g hA B− − = − +ρ ρ ρ1 1 2 0 3( . )

	 	 	 	 p h p hA A− × × − × × = + − × × +1200 9 81 0 3 700 9 81 200 1000 9 81 0 3. . . ( ) . ( . )

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ×	9.81	×	(0.3	+	h)	

−3531.6 – 6867 h = 200 –2943 –9810 h

2943 h = 788.6

∴ = =h
788 6

2943

.
0.268 m

 Example 2.30  An inverted U-tube manometer containing oil as a manometric liquid (specific gravity = 0.75) is 
 connected to the two horizontal water pipes at the points A and B. Pipe B is at lower level when compared to pipe A. The 
common level is at 0.4 m above pipe A and 0.75 m above pipe B. The 0.75 m height consists of h m of manometric liquid 
and the remaining is water. If the pressure in pipe B is 2.5 kPa above the pressure in the pipe A, then determine the value 
of differential reading h of the manometer.

Solution
Refer Figure 2.28. Let S = 0.75 and h be the differential reading of the 
 manometer, h1 = 0.4 m, h + h2 = 0.75 m. Here, pA and pB be the pressure at 

points A and B, respectively. Thus, p p pB A A= + = +2 5 2500 2. ( ) .kPa N/m

ρ ρ= = × =S w 0 75 1000 750 3. kg/m

Equating the pressures in the left limb and right limb of the manometer at 
datum Z–Z, we get the following expression.

	 	 	 	 	 	 	 	 p g p g h ghA w B w− × = − × − −ρ ρ ρ0 4 0 75. ( . )

	 	 	 	 p p h hA A− × × = + − × × − − × ×1000 9 81 0 4 2500 1000 9 81 0 75 750 9 81. . ( ) . ( . ) .

               – 750 ×	9.81	×	h 

−3924 = 2500 – 7357.5 + 9810 h – 7357.5 h

2452.5 h = 933.5

∴ = =h
933 5

2452 5

.

.
0.3806 m or 38.06 cm

2.9 ❐ ADVANTAGES AND LIMITATIONS OF MANOMETERS
The following are the advantages of manometers.

 1. These are relatively inexpensive, easy to fabricate and have good accuracy.

 2. These have high sensitivity (i.e., respond rapidly to pressure changes).

 3. These require little maintenance and do not get affected by vibrations.

A B
Liquid (S1 = 1.2)

Z Z

0.3 m

Liquid (S = 0.7)

h

Water

Figure 2.27

A

B
Water

Z Z

0.4 m

Liquid (S = 0.75)

h

Water

0.75 m
h2

Figure 2.28
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 Fluid Pressure and Its Measurement 2.25

 4. It is suited to low pressure and low differential pressures.

 5. Sensitivity can be changed by changing the quantity of manometric liquid.

The following are the limitations of manometers.

 1. These are bulky, large and fragile.

 2. The readings of the manometers are affected by change in temperature and altitude.

 3. Surface tension of manometric fluid causes capillary effect.

 4. Meniscus is to be measured carefully to obtain accurate readings.

 5. The differential head is limited to low pressure differences in usual type of differential manometers. However, high 
differential heads can also be measured easily by using mercury as manometric liquid.

2.10 ❐ MICROMANOMETERS
The micromanometer consists of a U-tube with two reservoirs of wider cross section at the top of both limbs as shown in 
Figure 2.29.

A

Z Z

Specific gravity (S2)

hΔ

Z1 Z1

Specific
gravity (S) B

h1

h

hΔ

h2

(h/2)

(h/2)

Specific gravity (S1)
S1

Figure 2.29 Micromanometer

It measures very small pressure differences with very high precision. The micromanometer uses two manometric liquids of 
different specific gravities. The manometric liquids are immiscible with each other and with the fluid for which the pressure 
difference is to be measured. When the manometer is connected to the water pipes ‘A’ and ‘B’ subjected to pressure pA 
and pB such that pA > pB, then the level of the lighter liquid falls in the left reservoir and rises in the right reservoir by the 
amount Dh. Similarly, the level of the heavier manometric liquid falls in the left limb and correspondingly rises in the right 
limb to the datum Z–Z.

Let A and a be the cross-sectional areas of the reservoir and the tube, respectively. The volume of the liquid displaced in 
each reservoir is equal to the volume of the liquid displaced in each limb.

A h a
h

Δ = ×
2

	
Δh

a

A

h
= ×

2
 (2.17)

Let w and S be the weight density and specific gravity of the water in the pipe A and B, S1 be the specific gravity of the 
lighter liquid in the reservoirs and S2 be the specific gravity of the manometric heavier liquid. The other readings are shown 
in Figure 2.29. Equating the pressures at the datum Z1–Z1, we get the following expression.

p

w
h h S h h

h
S

p

w
h h S h h

h
SA B+ + + − +⎛

⎝⎜
⎞
⎠⎟

= + − + + −⎛
⎝⎜

⎞
⎠⎟

( ) ( )1 2 1 1 22 2
Δ Δ Δ Δ 11 2+ hS
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p

w

p

w
hS hS hS hSA B− = − − +2 21 1 2Δ Δ

Substituting the value of Dh from Equation (2.17), we get:

p

w

p

w

ah

A
S

ah

A
S hS hSA B− = × − × − +2

2
2

21 1 2

	

p

w

p

w
h S S

a

A
S

a

A
A B− = − −⎛

⎝⎜
⎞
⎠⎟

−
⎡

⎣
⎢

⎤

⎦
⎥2 1 1  (2.18)

When the cross-sectional area of the reservoir is large as compared with the cross-sectional area of the tube, then the ratio 
(a/A) becomes very small and thus, from Equation (2.18), we get the following expression.

	

p

w

p

w
h S SA B− = −( )2 1  (2.19)

	 p p wh S S gh S SA B w− = − = −( ) ( )2 1 2 1ρ  (2.19a)

 Example 2.31  In a micromanometer, the specific gravities of the liquids used at the top and bottom portions of the 
U-tube are 0.9 and 1, respectively. The ratio of areas of the reservoir to the tube is 25. When the micromanometer is 
 connected to two pipes A and B carrying oil of specific gravity 0.8, the common surface displaces 20 cm. If the pressure is 
large in pipe A than pipe B, then determine the difference in pressure between A and B.

Solution
Refer Figure 2.29. S1 = 0.9, S2 = 1, A/a = 25, S = 0.8, h = 20 cm = 0.2 m. Let pA and pB be the pressure at points A and B, 
respectively and pA > pB.

From Equation (2.18), we get:

	
p p gh S S

a

A
S

a

AA B w− = − −⎛
⎝⎜

⎞
⎠⎟

−
⎡

⎣
⎢

⎤

⎦
⎥ρ 2 1 1

	
p pA B−( ) = × × × − −⎛

⎝⎜
⎞
⎠⎟

− ×
⎡

⎣
⎢

⎤

⎦
⎥1000 9 81 0 2 1 0 9 1

1

25
0 8

1

25
. . . .

	 ∴	( pA − pB) = 204.048 N/m2

2.11 ❐ MECHANICAL GAUGES

2.11.1 Bourdon Tube Pressure Gauge
A schematic view of Bourdon tube pressure gauge is shown in Figure 2.30(a). It consists of an elastic metallic tube called 
Bourdon tube which senses the pressure. The Bourdon tube is made of phosphor bronze and it is of elliptical cross section 
bent in the form of circular arc. One end of the tube is fixed which is connected to the gauge point of the source of pressure 
through a syphon filled with water. The other closed end of tube is connected to a toothed sector wheel through a link. The 
toothed sector meshes with a pinion fixed on a spindle which carries the pointer to read the pressure on a dial gauge.

The fluid pressure forces the water inside the elliptical tube. The tube tries to become straight and thus, the closed end 
of Bourdon tube moves outward. This slight movement of the tube actuates the sector and the pinion rotates on which 
pointer is mounted. Hence, the slight movement of the Bourdon tube is considerably magnified and the pointer moves on 
the graduated scale which directly gives the fluid pressure in the container. A Bourdon tube pressure gauge may be used 
to measure high as well as low pressures. This can also be used to measure vacuum pressure. A compound Bourdon tube 
pressure gauge measures both above and below the atmospheric pressure.
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2.11.2 Diaphragm Pressure Gauge
A schematic view of diaphragm pressure gauge is shown in Figure 2.30(b). The difference between diaphragm pressure 
gauge and the Bourdon tube pressure gauge is that it uses a corrugated metallic diaphragm for transmission of pressure 
instead of Bourdon tube. The fluid pressure acts on the diaphragm which gets deformed and the deformation is transmitted 
to the needle point that moves on the calibrated scale with the help of a pinion arrangement. The diaphragm pressure gauge 
measures relatively low pressure.

2.11.3 Bellows Pressure Gauge
A schematic view of bellows pressure gauge is shown in Figure 2.31(a). In this gauge, the pressure is sensed by a thin 
metallic tube which has deep circumferential corrugations. When this pressure gauge is connected to the source of pressure 
the elastic element deforms and thereby, the pointer moves on the graduated scale. This pressure can be directly read from 
the scale.

Bellows

Weights

Pressure inlet

Piston

Cylinder

Scale

Pointer

(a) (b)

Pressure
inlet

Figure 2.31 (a) Bellows pressure gauge (b) Dead weight pressure gauge

2.11.4 Dead Weight Pressure Gauge
A schematic view of dead weight pressure gauge is shown in Figure 2.31(b). This pressure gauge consists of a cylinder 
and piston arrangement of known area which is connected to fluid by a tube. The pressure exerted by the fluid on the 
piston is counter-balanced by known dead weights placed on the top of the vertical pistons. Let p be the fluid pressure, 
A d= [( / ) ]π 4 2  be the area of the piston, d be the diameter of the piston and W be dead weight, then pressure is given by, 

p = W/A. Both W and A are known quantities and thus, the value of p can be determined. The dead weight pressure gauge is 
the most accurate pressure gauge. It is used for precision work and for the calibration of other pressure measuring devices.

Pressure inlet

Scale
Pinion

Diaphragm

Pointer

(b)

0

10

20

30

40

Toothed sector

Pointer
Pinion

Link

Scale

Bourdon tube

Pressure inlet
(a)

Figure 2.30 (a) Bourdon tube pressure gauge (b) Diaphragm pressure gauge
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2.28 Chapter 2

2.12 ❐  PRESSURE VARIATION IN COMPRESSIBLE FLUID 
(AEROSTATICS)

Atmosphere is a body of compressible fluid in which the pressure and temperature both vary with altitude. Depending on 
the changes in temperature, troposphere and stratosphere are two major layers in atmosphere. The troposphere is the lowest 
layer which extends up to about 11000 m above sea level. In this layer, the temperature of air decreases at an average rate of 
0.0065°C per metre of height. The stratosphere extends from 11000 m to 32000 m. In this region, the temperature remains 
constant at about -56.5°C, i.e., isothermal condition may be assumed. However, beyond 32000 m the temperature increases 
again. The density varies with both the pressure and temperature. For variable density, Equation (2.2) cannot be integrated, 
unless the relation between p and ρ  is known. The relation between density, pressure and temperature for a perfect gas is 
given by Equation (1.11a) and it is expressed below.

ρ =
p

RT
Now from Equation (2.2a), we get:

dp

dh
g

pg

RT
= =ρ

∵ h is measured vertically upward and we get the following expression.

	
∴ = −

dp

p

g

RT
dh  (2.20)

Pressure variation can be measured by assuming (i) isothermal process (temperature remains constant) and (ii) adiabatic 
process (no heat exchange).

2.12.1 Isothermal Process
In isothermal process, the temperature remains constant and by integrating Equation (2.20), we get the following 
expression.

dp

p

g

RT
dh

p

p

h

h

o o

∫ ∫= −

ln ( )
p

p

g

RT
h h

o
o

⎛
⎝⎜

⎞
⎠⎟

= − −

As ho is considered as ground level, ho = 0.

∴ = −⎛
⎝⎜

⎞
⎠⎟

p

p

gh

RTo
exp

Thus, pressure at a height h is given by,

	
p p

gh

RTo= −⎛
⎝⎜

⎞
⎠⎟

exp  (2.21)

2.12.2 Adiabatic Process
The relation between p and ρ  for an adiabatic process is given from Equation (1.17) and the expression is given below.

	
p po

oρ ργ γ=
	 [ ]∵ p C/ργ =

ρ ρ γ γ= −
o op p1 1/ /
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From Equation (2.2a) by taking h  in vertically upward direction, we get:

	

dp

dh
g p p go o= − = − −ρ ρ γ γ1 1/ /

	

dp

p
g p dho o1

1
/

/
γ

γρ= − −

Integrating the above equation, we get:

dp

p
g p dh

p

p

o o
h

h

o o

1
1

/
/

γ
γρ∫ ∫= − −

γ
γ

ρ
γ
γ

γ
γ γ

−
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= − −
− −

−
1

1 1
1p p g p h ho o o o
/ ( )

Using ρo o op RT= / ( )  and taking ho  as ground level, i.e., ho = 0 , we get:

	

γ
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γ
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γ γ

γ
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⎣
⎢

⎤

⎦
⎥

−
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1 1γ

γ

γ
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 (2.22)

Using the following relations for an adiabatic process, we get:

ρ
ρ

γ

o o

p

p
=

⎛
⎝⎜

⎞
⎠⎟

1

and 
T

T

p

po o
=

⎛
⎝⎜

⎞
⎠⎟

−γ
γ

1

We obtain the following expressions for temperature and density with altitude,

	
T T

gh

RTo
o

= −
−⎡

⎣
⎢

⎤

⎦
⎥1

1γ
γ  (2.23)

and ρ ρ γ
γ

γ
= −

−⎡

⎣
⎢

⎤

⎦
⎥

−
o

o

gh

RT
1

1
1

1
 (2.24)

Temperature lapse rate It is defined as the rate of decrease of temperature with altitude. It is denoted by λ  and it can 
be obtained by differentiating Equation (2.23), we get the following expression.

	
λ γ

γ
γ

γ
= = −

−⎡

⎣
⎢

⎤

⎦
⎥ = −

−⎛
⎝⎜

⎞
⎠⎟

dT

dh

d

dh
T T

gh

RT

g

Ro o
o

1 1
 (2.25)
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2.30 Chapter 2

When γ = 1  then l = 0 and it indicates that temperature does not vary with altitude and the process is isothermal. When

γ > 1 , λ = −ve  and it indicates that temperature decreases with increase in altitude.

 Example 2.32  If the atmospheric pressure at sea level is 1.01325 bar and the temperature is 27°C, then determine the 
pressure, temperature and density at an elevation 4500 m above sea level, assuming (i) constant density (ii) isothermal 
process and (iii) adiabatic process.

Solution
Let po = 1.01325 bar = 101325 N/m2, T = 27°C = 300.15 K and h = 4500 m.

 (i) ρ = =
×

=
p

RT

101325

287 300 15.
1.1762 kg/m3

  For constant density, pressure is given by integrating Equation (2.2a), we get:

	

dp g dh
p

p

o

∫ ∫= −ρ

	 p p g h h gho o o− = − − = −ρ ρ( )     [∵ ho =	0]

	 p p gho o= − ρ

	 ∴ = − × × =p 101325 1 1762 9 81 4500. . 49401.651 N/m2

	
T

p

R
= =

×
=

ρ
49401 651

1 1762 287

.

.
146.345 K

 (ii) For isothermal assumption pressure at a height h is given by,

	
p p

gh

RT
p

gh

po o
o

o
= −⎛

⎝⎜
⎞
⎠⎟

= −
⎛
⎝⎜

⎞
⎠⎟

exp exp
ρ

	
∴ = −

× ×⎛
⎝⎜

⎞
⎠⎟

=p 101325
9 81 4500 1 1762

101325
exp

. .
60696.714 N/m2

  Since it is isothermal process, we get the following value.

	 ∴	T = 300.15 K

	
ρ = =

×
=

p

RT

60696 714

287 300 15

.

.
0.7046 kg/m3

 (iii) For adiabatic assumption, pressure at a height h is given by,

	
p p

gh

RTo
o

= −
−⎡

⎣
⎢

⎤

⎦
⎥

−
1

1 1γ
γ

γ
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−
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×
×

⎡
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⎤
⎦⎥
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p 101325 1

1 4 1

1 4

9 81 4500
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1 4

1 4 1.

.

.

.

.

.
582220.47 N/m2

  Since T T
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RTo
o

= −
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⎣
⎢

⎤

⎦
⎥1

1γ
γ
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∴ = × −

−
×

×
×

⎡
⎣⎢

⎤
⎦⎥

=T 300 15 1
1 4 1

1 4

9 81 4500

287 300 15
.

.

.

.

.
256.2 K

	
ρ = =

×
=

p

RT

58220 47

287 256 2

.

.
0.7918 kg/m3

 Example 2.33  Determine the pressure, temperature and density of air at an elevation of 5000 m above sea level where 
pressure and temperature of the air are 1.01325 bar and 25°C, respectively. Assume the temperature lapse rate as 0.0065°C 
per metre and the density of air at sea level as 1.23 kg/m3

Solution
Let h = 5000 m, po = 1.01325 bar = 101325 N/m2, T = ° =25 298 15C K. , λ = − °0 0065. C/m  and ρo = 1 23 3. kg/m .

	
R

p

T
o

o o
= =

×
=

ρ
101325

1 23 298 15
276 3

. .
. /J kg K

	
λ γ

γ
= = −

−⎛
⎝⎜

⎞
⎠⎟

dT

dh

g

R

1

	
− = − ×

−⎛
⎝⎜

⎞
⎠⎟

0 0065
9 81

276 3

1
.

.

.

γ
γ

	

γ
γ

γ γ−
= ⇒ − =

1
0 1831 1 0 1831. .

	
∴ = =γ 1

0 8169
1 224

.
.

 (i) For adiabatic assumption, pressure at a height h is given by,

	p p
gh

RTo
o

= −
−⎡

⎣
⎢

⎤

⎦
⎥

−
1

1 1γ
γ

γ
γ

	
∴ = × −

−
×

×
×

⎡
⎣⎢

⎤
⎦⎥

p 101325 1
1 224 1

1 224

9 81 5000

276 3 298 15

1 224

1.

.

.

. .

.

..224 1− = 53941.79 N/m2

 (ii) T T
gh

RTo
o

= −
−⎡

⎣
⎢

⎤

⎦
⎥1

1γ
γ

	 	
∴ = × −

−
×

×
×

⎡
⎣⎢

⎤
⎦⎥

=T 298 15 1
1 224 1

1 224

9 81 5000

276 3 298 15
.

.

.

.

. .
265.666 K

 (iii) ρ = =
×

=
p

RT

53941 79

276 3 265 66

.

. .
0.7349 kg/m3
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 1. Pressure is the normal force exerted by a fluid per unit area.

 2. Pascal’s law: Pressure at a point in a static fluid is equal in all 
directions.

 3. Hydrostatic law: Rate of increase of pressure in a vertically 
downward direction is equal to specific weight of the fluid at 
that point, i.e., dp dh w g/ = = ρ .

 4. Absolute pressure: Pressure measured above absolute zero.

 5. Gauge pressure: Pressure measured by taking atmospheric 
pressure as datum.

 6. Vacuum pressure: Pressure of a fluid below atmospheric 
pressure.

 7. Manometer: It measures pressure at a point in a liquid by 
balancing the column of liquid by the same or another col-
umn of liquid. Manometers are of two types, namely simple 
manometers and differential manometers.

 8. Bourdon tube pressure gauge is a mechanical gauge that 
measures pressure by using an elastic element against the liq-
uid pressure to be measured.

 9. Piezometer: It is a single column manometer which consists 
of a glass tube whose one end is connected to the gauge point 
and other end remains open to atmosphere.

 10. U-tube manometer: It consists of a glass tube bent in 
U-shape, where one end is connected to gauge point and the 
other end remains open to the atmosphere.

 11. Single column manometer: It is a modified form of a U-tube 
manometer in which one of the two limbs is made a large 
reservoir having a cross-sectional area of about 100 times to 
that of area of the narrow tube in the other limb.

 12. Inclined tube type single manometer: It is more sensitive 
and preferred for the measurement of small pressures.

 13. A double U-tube manometer also known as compound 
manometer.

 14. Differential manometer: It is used to measure the difference 
of pressures in two pipes or between two points in a pipeline.

 15. Inverted U-tube differential manometer is used when the 
 difference of pressure to be measured between two points in a 
pipeline or between two pipes is small.

 16. Micromanometer consists of a U-tube with two reservoirs at 
the top. It measures very small pressure differences with very 
high precision.

 17. Atmosphere: A body of compressible fluid in which the 
pressure and temperature both vary with altitude. It has two 
layers, such as troposphere and stratosphere.

 18. Troposphere extends up to about 11000 m above sea level in 
which the temperature of air decreases at an average rate of 
0.0065°C per metre of height.

 19. Stratosphere extends from 11000 m to 32000 m in which 
temperature remains constant at about -56.5°C, i.e., isother-
mal condition may be assumed.

 20. Pressure at a height h from ground level in a static compress-
ible fluid under isothermal condition: p = po exp [−(gh)/RT].

 21. The pressure, temperature and density at a height h from 
ground level in a static compressible fluid under adiabatic 
condition is respectively given as follows.

p p
gh

RTo
o

= −
−⎡

⎣
⎢

⎤

⎦
⎥
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1

1 1γ
γ

γ
γ

; T T
gh

RTo
o

= −
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⎣
⎢

⎤
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ρ ρ γ
γ

γ
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−⎡

⎣
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⎤

⎦
⎥

−
o

o
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RT
1

1
1

1

   Here, po, To and ρo  are the pressure, temperature and den-
sity, respectively at ground level.

 22. Temperature lapse rate ( )λ  is the rate of decrease of tem-

perature with altitude. It is given by λ γ
γ

= = −
−⎛

⎝⎜
⎞
⎠⎟

dT

dh

g

R

1
. 

If γ = 1,  then λ = 0  and the process is isothermal. If γ > 1 , 

λ = −ve  and temperature decreases with increase in altitude.

Summary

Multiple-choice Questions

 1. Pressure at a point in a static mass of liquid depends on
(a) The depth below the free liquid surface.
(b) The shape and size of the container.
(c) The specific weight of liquid, depth below the free liquid 

surface and the shape and size of the container.
(d) The specific weight of liquid and depth below the free 

liquid surface.

 2. Piezometer measures only
(a) Gauge pressure. (b) Atmospheric pressure.
(c) Absolute pressure. (d) All of these.

 3. Inclined single column manometer is useful in measuring
(a) High pressure. (b) Medium pressure.
(c) Low pressure.  (d) All of these.
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 4. Which one of the followings statement is correct?
(a) A barometer indicates the difference between local and 

standard atmospheric pressure.
(b) Local atmospheric pressure depends only upon the height 

of locality above mean sea level.
(c) Standard atmospheric pressure is the mean local atmos-

pheric pressure at sea level.
(d) None of the above.

 5. Differential manometer is used to measure
(a) Pressure at a point in a fluid.
(b) Velocity difference between two points in a fluid.
(c) Velocity at a point in a fluid.
(d) Pressure difference between two points in a fluid.

 6. Manometers are comparatively suitable for measuring
(a) Very high pressure. (b) High pressure.
(c) Low pressure.  (d) All of these.

 7. The differential equation for pressure variation in a static fluid 
when h is measured vertically up may be written as
(a) dp gdh= ρ
(b) dp gdh= −ρ
(c) dp gd= ρ
(d) None of the above.

 8. Inverted U-tube manometer is used when the difference of 
pressure to be measured between two points in a pipeline is
(a) High. (b) Small.
(c) Very high. (d) All of these.

 9. The micromanometer is used to measure
(a) Very small pressure differences with very high precision.
(b) Very high pressure differences with very high precision.
(c) Very small pressure differences with very low precision.
(d) None of the above.

 1. Define fluid pressure and give an expression for it at a point 
in a fluid.

 2. State and prove (i) Pascal’s law and (ii) hydrostatic law.

 3. Define atmospheric, gauge, vacuum and absolute pressures.

 4. What are manometers? Give its classification, advantages and 
limitations.

 5. What do you mean by piezometer? Also give its applications 
and limitations.

 6. What are U-tube manometers? How it measures gauge and 
vacuum pressures?

 7. What do you mean by single column manometers? Discuss 
its types?

 8. Explain how vertical and inclined single column manometers 
measures pressure?

 9. What is the difference between U-tube differential manometer 
and inverted U-tube differential manometer? Also give their 
application areas.

 10. Explain how micromanometer measures small pressure 
difference?

 11. Derive an expression for the pressure p at a height h from 
sea level for a static air when the compression of the air is 
assumed isothermal and the pressure and temperature at sea 
level are po and To , respectively.

 12. Briefly explain the constructional and working details of a 
Bourdon pressure gauge with a neat sketch.

 13. Derive expressions for pressure, temperature and density for 
an adiabatic process at a height h from sea level for static air 
when po, To and ρo  are the pressure, temperature and density 
at ground level, respectively.

 14. Define the term temperature lapse rate and also derive an 
expression for the same.

Review Questions

Problems

 1. A hydraulic press has a ram and a plunger of diameters 
200 mm and 30 mm, respectively. Find the force required at 
the plunger to lift a weight of 20 kN.

[Ans. 450 N]

 2. Find the pressure at a point 4 m below the free surface in 
a liquid that has a variable density given by the relation 
ρ = +( )200 3Ah kg/m , where A = 5 4kg/m  and h metres is 
the distance measured from free surface.

[Ans. 8.24 kN/m2]

 3. Determine the pressure due to a column of 0.5 m (i) of water, 
(ii) an oil of specific gravity 0.85 and (iii) mercury of specific 
gravity 13.6.

[Ans. 4.905 kN/m2, 4.169 kN/m2, 66.708 kN/m2]

 4. The pressure at the base and top of a mountain are 750 mmHg 
and 620 mmHg, respectively. Calculate the height of moun-
tain if specific weight of air is 12 N/m3.

[Ans. 144.534 m]
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 5. If the pressure intensity at a point in a fluid is 4 N/cm2, then 
determine the corresponding height of fluid when the fluid is 
(i) water and (ii) oil of specific gravity 0.86.

[Ans. 4.08 m of water, 4.74 m of water]

 6. Determine the minimum depth of water in the tank when the 
inlet to pump which draws water through suction pipe is 12 m 
above the bottom of tank and the pressure at the pump inlet is 
not to fall below 2 ×	104 N/m2 (abs). The atmospheric pres-
sure is given as 105 N/m2.

[Ans. 3.845 m]

 7. A hydraulic jack filled with water has a large piston and a 
small piston of diameters 12 cm and 4 cm, respectively. If a 
force of 100 N is applied on the small piston, then determine 
the load lifted by the large piston in the following cases, (i) 
when the pistons are at the same level and (ii) when small 
piston is 20 cm above the large piston.

[Ans. 900 N, 922.18 N]

 8. A cylindrical vessel 4 m high and 5×10-4 m2 cross-sectional 
area is filled with water up to a height of 3 m and remain-
ing with oil (specific gravity = 0.8). If this vessel is open to 
atmosphere, then determine (i) pressure at the interface and 
(ii) absolute and gauge pressures on the base of the tank in 
terms of water head.

[Ans. 7.85 kN/m2, 3.8 m of water, 4.75 m of oil,  
14.129 m of water (abs), 17.661 m of oil (abs)]

 9. A pressure gauge consists of two cylindrical bulbs P and Q 
each of 1000 mm2 cross-sectional area are connected by a 
U-tube with vertical limbs each of 20 mm2 cross-sectional 
area. A coloured liquid (specific gravity = 0.9) is filled into Q 
and clear water is filled into P, the surface of separation being 
in the limb attached to Q. Determine the displacement of the 
surface of separation when the pressure on the surface in Q is 
greater than that in P by an amount equal to 15 mm head of 
water.

[Ans. 10.87 cm]

 10. Determine the pressure intensity at a depth of 20 m below the 
surface of sea water having a specific weight of 9.95 ×	103 
N/m3. Also determine the absolute pressure if the barometer 
reads 760 mm Hg.

[Ans. 199 kN/m2, 300.39 kN/m2]

 11. A U-tube manometer measures the water pressure in excess 
of atmospheric pressure in a pipe. The right limb opened to 
atmosphere contains mercury and the contact between water 
and mercury is in left limb of the manometer. Find the water 
pressure in the pipe, if the difference in level of mercury in 
the limbs of U-tube is 12 cm and the free surface of mercury 
is in level with centre of pipe. Also find the new difference 
in the level of mercury when the water pressure in pipe is 
reduced to 10 kN/m2.

[Ans. 14832.72 N/m2, 8.24 cm]

 12. Determine the height of liquid column in the three piezom-
eter tubes by taking the bottom of tank as datum. The top 
liquid column (specific gravity = 0.8) of tank is up to 1 m, 
followed by 2 m high liquid column (specific gravity = 0.9) 
and the bottom column is of water column of height 3 m. The 
piezometer tubes are fitted at a distance of 1 m, 3 m and 6 m 
from the top of the tank.

[Ans. 5.6 m, 5.89 m, 6 m]

 13. A simple U-tube manometer is installed across an orifice- 
meter. The manometer is filled with mercury (specific gravity =  
13.6) and the liquid above mercury is carbon tetrachloride 
(specific gravity = 1.6). If the manometer reads 200 mm, then 
determine the pressure difference over the manometer.

[Ans. 23.544 kN/m2]

 14. An inclined single column water manometer with 25° incli-
nation to the horizontal is used to measure the pressure of oil 
(specific gravity = 0.9) kept in a tank. The area ratio of res-
ervoir to tube is 25. Determine the absolute pressure of oil in 
the tank if the deflection length of inclined tube is 50 cm and 
the centre height of the oil tank is at 10 cm from the original 
water level.

[Ans. 1.207 kN/m2]

 15. An inclined glass tube manometer is connected to a cylinder 
standing upright and the manometric fluid fills the apparatus 
to a fixed zero mark on the tube when both cylinder and the 
tube are open to atmosphere. The upper end of the cylinder is 
then connected to a gas supply at a pressure p and the liquid 
rises in the tube. Obtain an expression for the pressure in cm 
of water when the liquid reads l cm in the tube, in terms of 
the inclination α  of the tube and specific gravity S and the 
ratio R of the diameter of the cylinder to the diameter of the 
tube. Also determine the value of R so that the error due to 
disregarding the change in the level in the cylinder will not 
exceed 0.2% when α = °20 .

[Ans. p gl R= +−ρ α( sin )2 , 38.2]

 16. A U-tube differential manometer containing mercury is con-
nected on one side to a pipe X containing a liquid (specific 
gravity = 1.6) under a pressure of 125 kN/m2 and on the other 
side of pipe Y containing another liquid (specific gravity = 
0.9) under a pressure of 200 kN/m2. The pipe X lies 2 m 
above pipe Y and the mercury level in the limb communi-
cating with pipe X lies 4 m below the pipe X. Determine the 
difference in the levels of mercury in the two limbs of the 
manometer.

[Ans. 24 cm]

 17. Determine the gauge pressure at P in Figure 2.32 which 
shows a compound manometer. Take all the dimensions in 
metres.

[Ans. 320 kPa]
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Water

1.4

1.5

1.2
1.3 0.15

Hg

P

Figure 2.32

 18. The pressure head h measured by a single column mercury 
manometer is within 1% of the true height corresponding to a 
pressure differential. Find out the diameter D of the reservoir 
required with respect to tube diameter d. If the ratio of tank 
area to the tube area is 400, then also find out percentage 
error involved in the difference in pressure by reading the sin-
gle column height h.

[Ans. D = 10 d, 0.25%]

 19. An inverted U-tube manometer (specific gravity = 0.8) is con-
nected to two horizontal water pipes A and B. Pipe A lies 150 
mm above than pipe B. The vertical height of water columns 
in the two limbs of the inverted manometer measured from the 
respective centres of the pipes are measured to be same equal 
to 175 mm. Find the difference of pressure between the pipes.

[Ans. 1177.2 N/m2]

 20. An inverted U-tube manometer containing a manometric 
light fluid (specific gravity = 0.7) is connected to the two 
pipes at the points A and B. Pipe A carries liquid of specific 
gravity 1.2 and pipe B carries water. The pipes are at the same 
level. The height of the liquid of specific gravity 1.2 from 
the centre of the pipe is 15 cm. If all liquids are immiscible 
and the pressure in pipe A and B is equal, then determine the 
differential reading of the manometer.

[Ans. 10 cm]

 21. Derive an expression for the pressure ratio in the troposphere 
if the absolute temperature is given by T T h ho o= − −α( ) , 

where To is the absolute temperature at ground level and α  
is the temperature gradient.

Ans. 
p

p

T h h

To

o o

o

g R

=
− −⎡

⎣
⎢

⎤

⎦
⎥

α
α

( )
/( )

 22. The barometric pressure at ground level is 76 cmHg while 
that on a mountain top is 73.5 cmHg. Determine the height of 
the mountain top if the density of air is 1.23 kg/m3.

[Ans. 276.42 m]

 23. Determine the pressure at an elevation of 8000 m above 
ground level if the atmospheric pressure is 101430 N/m2, 
density of air is 1.2 kg/m3, temperature is 288 K and there is 
no variation of ‘g’ with altitude, when (i) air is incompress-
ible, (ii) pressure variation is as per isothermal law and (iii) 
pressure variation is as per adiabatic law.

[Ans. 7.254 kN/m2, 40.08 kN/m2, 34.48 kN/m2]

 24. Determine the pressure around an aeroplane flying at an alti-
tude of 6000 m when the pressure and temperature at sea 
level are 101430 N/m2 and 290 K, respectively. Assume that 
there is no variation of ‘g’ with altitude and the temperature 
lapse rate in atmosphere is 0.0065 K/m. Take density of air as 
1.23 kg/m3.

[Ans. 47.13 kN/m2]

 25. Figure 2.33 shows an inverted differential manometer having 
an oil (specific gravity = 0.8) connected to two pipes A and 
B carrying water under pressure. Determine the pressure in 
the pipe B if the pressure in the pipe A is 2 m of water. In the 
figure take all the dimensions in metres.

[Ans. 19.23 kN/m2]

A
Water

B

Water

0.075

0.05

Oil (S = 0.8)

Z Z

Figure 2.33

ANSWERS TO MULTIPLE-CHOICE QUESTIONS

 1. (d) 2. (a) 3. (c) 4. (b) 5. (d)
 6. (c) 7. (b) 8. (b) 9. (a)
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3.1 ❐ INTRODUCTION
Hydrostatics deals with the behaviour of fluids at rest. A static fluid element may be subjected to two forces, namely a 
body force and normal surface forces. The body force means the force of gravity, whereas the normal surface forces are 
the forces exerted on the fluid element by the surrounding fluid or other sources. Force exerted on immersed surfaces by 
the static fluid is due to pressure distribution on the surfaces. In static fluids, shear stresses are completely absent. Thus, the 
surface forces are only due to the action of normal stress, i.e., hydrostatic pressure.

In many engineering applications, it becomes necessary to determine the pressure forces on the entire surface of a 
hydraulic device and structures, such as submarines, ships, pipes, dams, gates, containers, balloons, tanks, etc. This  chapter 
describes the hydrostatic equations and methods required to determine the magnitude, location and the direction of  resultant 
force acting on a submerged surface under static fluid conditions. The submerged surface may be horizontal plane surface, 
vertical plane surface, inclined plane surface and curved surface.

3.2 ❐  TOTAL PRESSURE, CENTRE OF PRESSURE AND CENTRE OF 
GRAVITY

In the design of several hydraulic machines and structures, it is often required to calculate the magnitude of total pressure 
and to locate its point of application.

3.2.1 Total Pressure
A static mass of fluid when comes in contact with a solid surface (plane or curved) exerts a force on it. This force always 
acts normal to the surface and it is known as total pressure. The total pressure is denoted by p.

3.2.2 Centre of Pressure
The point of application of total pressure on the surface is known as centre of pressure and it is denoted by C. In this 
chapter, the total pressure and centre of pressure are computed for (i) horizontal submerged plane surface, (ii) vertical 
submerged plane surface, (iii) inclined submerged plane surface and (iv) curved submerged surface.

Chapter 3

Hydrostatic Forces on 
Submerged Surfaces
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3.2 Chapter 3

3.2.3 Centre of Gravity
The centre of gravity (or centroid) is the point where the whole weight of the body lies and it is denoted by G. The 
 submerged surface does not experience the same intensity of pressure because pressure intensity at a point varies with 
the depth of the liquid. The lower portion of the submerged surface is subjected to higher pressure and thus, the centre of 
pressure lies below the centre of gravity.

3.3 ❐ MOMENTS OF AREA AND GEOMETRICAL PROPERTIES
The determination of first and second moment of areas is necessary in the evaluation of the resultant force and centre of 
pressure.

3.3.1 First Moment of Area
Consider the area A and the moments of area about the line O–O as shown in  
Figure 3.1.

Let hG be the distance of the centre of gravity of area from the line O–O. The 
moment of area with respect to the line O–O can be obtained by summing up the 
moments of elementary areas (dA) all over the surface with respect to the given 
axis. The first moment of area about the line O–O is given below.

	 ⇒ =∫ hdA AhG  (3.1)

The first moment of area is used to locate the centroid of the area. The moment of area about any line passing through the 
centroid will be zero.

3.3.2 Second Moment of Area (or Area Moment of Inertia)
The second moment of area is also known as area moment of inertia and it is given below.

	 I h dAO = ∫ 2  (3.2)

By parallel axis theorem, we get:

	 I I AhO G G= + 2  (3.3)

Here, IG is the moment of inertia about an axis G–G passing through the centre of gravity G and parallel to the line O–O.
Thus, moment of inertia (M.O.I.) of an area about any axis is equal to the sum of the moment of inertia about a parallel 

axis through the centroid and the product of the area and the square of the distance between this axis and the axis passing 
through centroid. The second moment of area is used in the determination of centre of pressure for plane areas submerged 
in liquids.

The moments of inertia and other geometrical properties of some important plane surfaces are given in Table 3.1 in 
which CG is the centre of gravity, IG is the moment of inertia about an axis passing through CG and parallel to base and 
IO is the moment of inertia about base.

Table 3.1 Moments of inertia and geometrical properties

Plane surface CG Area IG IO

1. Rectangle of width b and depth d. d /2 bd bd3 12/ bd3 3/

2.  Triangle of side b, height h and base zero 
of axis. 

h/3 bh/2 bh3 36/ bh3 12/

G G

O O

Area dA

hG

h

A

Figure 3.1  First and second 
moments of an area

(Continued )
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 Hydrostatic Forces on Submerged Surfaces 3.3

Plane surface CG Area IG IO

3.  Triangle of side b, height h and vortex 
zero of axis. 

2 3h/ bh/2 bh3 36/ bh3 12/

4. Circle of diameter d. d /2 πd2 4/ πd4 64/
–

5.  Semicircle with diameter horizontal and 
zero of axis.

2 3d /( )π πd2 8/ 0 11 4. r πd4 128/

6.  Trapezium of parallel sides a and b with 
height h and axis along b. 2

3

a b

a b

h+
+

⎛
⎝⎜

⎞
⎠⎟

a b
h

+⎛
⎝⎜

⎞
⎠⎟2

a ab b

a b
h

2 2
34

36

+ +
+

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥( )

–

3.4 ❐ HORIZONTAL SUBMERGED PLANE SURFACE

3.4.1 Total Pressure on a Horizontal Submerged Plane Surface
Consider a horizontal plane surface submerged in a static liquid as shown in 
Figure 3.2.

Let A be the surface area, C be the centre of pressure, G be the centroid, hC 
be the distance of centre of pressure from the free surface of liquid, hG be the 
distance of centre of gravity from the free surface of liquid, p be the pressure 
intensity and F be the total pressure force on the surface. For a submerged 
horizontal plane surface, the points C and G coincides with each other and 
thus, h hC G= .

Since all the points on the horizontal plane surface are at the same depth 
from the free surface of liquid, the pressure intensity is constant over the 
entire surface and it is given below.

	 p ghG= ρ  (3.4)

The total pressure force on the surface is given,

	 F p A gh AG= × = ×ρ  (3.5)

3.5 ❐ VERTICALLY SUBMERGED PLANE SURFACE

3.5.1 Total Pressure on a Vertical Submerged Plane Surface
Consider a plane vertical surface with random shape 
 submerged in a static liquid as shown in Figure 3.3.

Let A be the surface area, C be the centre of pressure, G be 
the centroid, hC be the distance of centre of pressure from the 
free surface of liquid, hG be the distance of centre of gravity 
from the free surface of liquid, p be the pressure intensity and 
F be the total force on the surface.

Consider an elementary strip of area dA at a depth h from 
the free surface of liquid and parallel to it. The pressure force 
on the strip is expressed below.

dF p dA gh dA= × = ×ρ

Free surface of liquid

CG

hC = hG F

Horizontal plane surface

Figure 3.2  Horizontal submerged plane 
surface

hC
hG

G

O O

h

C

Free liquid surface

b

Edge view of vertical plane

F

dF

Vertical plane surfaceArea dA

Figure 3.3 Vertical submerged plane surface

Table 3.1 (Continued )

M03 Fluid Mechanics and Hydraulic Machines XXXX 01.indd   3 4/5/2019   1:52:20 PM

Download more at Learnclax.com



3.4 Chapter 3

Total pressure force on the whole surface is given by,

	 F dF gh dA g hdA g AhG= = = = ×∫ ∫ ∫ρ ρ ρ  (3.6)

3.5.2 Centre of Pressure on a Vertical Submerged Plane Surface
The pressure force on the strip is given by,

dF gh dA= ρ
Moment of this pressure force about the free liquid surface is given by,

= × =ρ ρgh dA h gh dA2

Sum of moments of all such pressure forces about the free liquid surface becomes,

	 = = = ×∫ ∫ρ ρ ρgh dA g h dA g IO
2 2  (3.7)

Now moment of total force F acting at point C at a distance hC is given by,

	 = × = ×F h gAh hC G Cρ  (3.8)

Principle of moments states that the moment of the resultant force about an axis is equal to the sum of moments of the 
components about the same axis. Thus, by equating (3.7) and (3.8), we get the following expression.

ρ ρgAh h g IG C O× = ×

	 h
gI

gAh

I

AhC
O

G

O

G
= =

ρ
ρ

 (3.9)

Now substituting the value of IO from Equation (3.3) in Equation (3.9), we get:

	 h
I Ah

Ah

I

Ah

Ah

Ah

I

Ah
hC

G G

G

G

G

G

G

G

G
G=

+
= + = +

2 2

 (3.10)

Thus, Equation (3.10) gives the position of the centre of pressure on a plane surface submerged vertically in a static mass 
of liquid. From Equation (3.10), it is observed that the centre of pressure hC lies below the centroid of the area and it is 
independent of the density of the liquid.

 Example 3.1  A rectangular plate 0.4 m × 1.6 m is immersed in water. Determine the hydrostatic force and the centre 
of pressure when the plate is kept (i) vertical with 0.4 m side coinciding with water surface, (ii) vertical with 0.4 m side 
kept 2 m below and parallel to water surface and (iii) vertical with 1.6 m side kept 2 m below and parallel to water surface.

Solution
Refer Figure 3.4. Let b = 0 4. m  and d = 1 6. m.

 (i) Refer Figure 3.4(a).

A bd= = × =0 4 1 6 0 64. . . m2

h
d

G = = =
2

1 6

2
0 8

.
. m

F gAhw G= = × × × =ρ 1000 9 81 0 64 0 8. . . 5022.72 N

I
bd

G = =
×

=
3 3

12

0 4 1 6

12
0 1365

. .
. m4

h
I

Ah
hC

G

G
G= + =

×
+ =

0 1365

0 64 0 8
0 8

.

. .
. 1.067 m
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 Hydrostatic Forces on Submerged Surfaces 3.5

(ii) Refer Figure 3.4(b).

hG = + =2
1 6

2
2 8

.
. m

F gAhw G= = × × × =ρ 1000 9 81 0 64 2 8. . . 17579.52 N

h
I

Ah
hC

G

G
G= + =

×
+ =

0 1365

0 64 2 8
2 8

.

. .
. 2.8762 m

(iii) Refer Figure 3.4(c).

hG = + =2
0 4

2
2 2

.
. m

F gAhw G= = × × × =ρ 1000 9 81 0 64 2 2. . . 13812.48 N

I
db

G = =
×

= × −
3 3

3

12

1 6 0 4

12
8 533 10

. .
. m4

h
I

Ah
hC

G

G
G= + =

×
×

+ =
−8 533 10

0 64 2 2
2 2

3.

. .
. 2.2061 m

 Example 3.2  A circular thin plate of diameter 600 mm is immersed in water vertically such that its top edge is 2 m 
below free water surface. Determine the total pressure acting on the plate and the position of its centre of pressure.

Solution
Refer Figure 3.5. Let d = =600 0 6mm m. .

A d= = × =
π π π
4 4

0 6 0 092 2. . m2

hG = + =2
0 6

2
2 3

.
. m

F gAhw G= = × × × =ρ π1000 9 81 0 09 2 3. . . 6379.538 N

hGhC

Free liquid surface

2 m

G

C
0.6 m

Figure 3.5

hGhC

hG

hC

hGhC

Free liquid surface

1.6 m

0.4 m

Free liquid surface

1.6 m

0.4 m

2 m

Free liquid surface

2 mG

C

G

C
G

C
0.4 m

(a) (b) (c)

1.6 m

Figure 3.4
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3.6 Chapter 3

I
d

G = =
×

= × −π π4 4
3

64

0 6

64
6 362 10

.
. m4

h
I

Ah
hC

G

G
G= + =

×
×

+ =
−6 362 10

0 09 2 3
2 3

3.

. .
.

π
2.3098 m

 Example 3.3  A triangular thin plate of base 1 m and height 1.5 m is hinged vertically inside a tank containing a liquid 
 (specific gravity = 1.2) such that the base coincides with the free surface. Determine the total pressure acting on the plate 
and the depth of its centre of pressure.

Solution
Refer Figure 3.6. Let b = 1 m, h = 1 5. m and S = 1 2. .

A
bh

= =
×

=
2

1 1 5

2
0 75

.
. m2

h
h

G = = =
3

1 5

3
0 5

.
. m

F S gAhw G= = × × × × =ρ 1 2 1000 9 81 0 75 0 5. . . . 4414.5 N

I
bh

G = =
×

=
3 3

36

1 1 5

36
0 09375

.
. m4

h
I

Ah
hC

G

G
G= + =

×
+ =

0 09375

0 75 0 5
0 5

.

. .
. 0.75 m

 Example 3.4  A disc of diameter 2 m which can rotate about a horizontal diameter is used to close a circular opening of 
the same size in the vertical side of a tank. If the head of water above the horizontal diameter of the disc is 3 m, then find 
(i) force on the disc, (ii) position of centre of pressure and (iii) torque required to maintain the disc in equilibrium in the 
vertical position.

Solution
Refer Figure 3.7. Let d = 2 m, hG = 3 m and T be the torque required.

A d= = × =
π π π
4 4

22 2 m2

 (i) F gAhw G= = × × × =ρ π1000 9 81 3. 92457.072 N

 (ii) I
d

G = =
×

=
π π4 4

64

2

64
0 7854. m4

h
I

Ah
hC

G

G
G= + =

×
+ =

0 7854

3
3

.

π
3.0833 m

 (iii) T F h hC G= × − = × − =( 9 ( .0833) . )2457 072 3 3 7701.674 Nm

 Example 3.5  A pipeline 4 m in diameter containing an oil (specific gravity = 0.9) has a gate valve. The pressure at the 
centre of the pipe is 200 kPa. Find (i) the force exerted on the gate and (ii) the position of centre of pressure.

hGhC

Liquid (S = 1.2)

1.5 m

G

C

1 mLiquid surface

Triangular plate

Figure 3.6

G

C

3 m

F
2 m

hGhC

Figure 3.7
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Solution
Refer Figure 3.8. Let d = 4 m, S = 0 9.  and p = 200 kPa.

G
4 m

Oil surface

C C

G
Oil

(S = 0.9)

p = 200 kPa

hG hC

Figure 3.8

A d= = × =
π π π
4 4

4 42 2 m2

ρ ρ= = × =S w 0 9 1000 900. kg/m3

Pressure head at the centre is given by,

h h
p

gG= = =
×
×

=
ρ

200 10

900 9 81
22 653

3

.
. m

F gAhG= = × × × =ρ π900 9 81 4 22 653. . 2513.316 kN

I
d

G = =
×

=
π π π

4 4

64

4

64
4 m4

h
I

Ah
hC

G

G
G= + =

×
+ =

4

4 22 653
22 653

π
π .

. 22.697 m

Thus, the centre of pressure lies (22.697 - 22.653) = 0.044 m below the centre of pipe.

 Example 3.6  A square aperture in the vertical side of a tank has one diagonal and is completely covered by a plane 
plate hinged along one of the upper sides of the aperture. The diagonals of the aperture are 2 m long and the tank contains 
glycerine (specific gravity = 1.26). The centre of aperture is 1.4 m below the free surface. Determine (i) thrust exerted on 
the plate by the glycerine and (ii) position of its centre of pressure.

Solution
Refer Figure 3.9. Diagonals QS = PR = 2 m, S = 1 26.  and hG = 1 4. m.

Let A be the area of aperture.

hG
hC

G

C

1.4 m

Liquid surface

F

2 m

2 m

P

Q

R

SO

C

Square aperture
Glycerin
(S = 1.26)

Figure 3.9
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A QS OR QS OP= × × + × × = × × + × × =
1

2

1

2

1

2
2 1

1

2
2 1 2 m2

F S gAhw G= = × × × × =ρ 1 26 1000 9 81 2 1 4. . . 34609.68 N

Since I QRS QS QPS QSG = +M.O.I. of about M.O.I. of aboutΔ Δ

IG =
×

+
×

=
2 1

12

2 1

12
0 333

3 3

. m2  [ ]∵M.O.I. /= bh3 12

h
I

Ah
hC

G

G
G= + =

×
+ =

0 333

2 1 4
1 4

.

.
. 1.519 m

 Example 3.7  A dry dock is closed by a gate of trapezoidal shape 
having top and bottom lengths 18 m and 12 m,  respectively and a 
height of 7.5 m. Determine the total water pressure and the depth 
of centre of pressure on the gate if the sea water (specific gravity = 
1.02) level is up to the top of the gate on one side and the other side 
is empty.

Solution

Refer Figure 3.10. Let a = 18 m, b = 12 m, h = 7 5. m and S = 1 02. . 
Let A be the area of the gate. The distance of CG of the trapezoidal gate from the top surface AB is given below.

h
a b

a b

h
G =

+
+

⎛
⎝⎜

⎞
⎠⎟

=
× +

+
⎛
⎝⎜

⎞
⎠⎟

× =
2

3

2 18 12

18 12

7 5

3
4

.
m

A
a b h

=
+

=
+ ×

=
( ) ( ) .

.
2

18 12 7 5

2
112 5 m2

F S gAhw G= = × × × × =ρ 1 02 1000 9 81 112 5 4. . . 4502.79 kN

I
a ab b

a b
hG =

+ +
+

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
+ × × +

+

⎡

⎣
⎢
⎢

2 2
3

2 24

36

18 4 18 12 12

36 18 12( ) ( )

⎤⎤

⎦
⎥
⎥

× =7 5 520 313. . m4

h
I

Ah
hC

G

G
G= + =

×
+ =

520 31

112 5 4
4

.

.
5.156 m

 Example 3.8  A sluice gate is placed across a trapezoidal channel that is 20 m wide at the top and 8 m at a depth of 5 m. 
Calculate (i) total pressure on the gate and (ii) position of the centre of pressure when the depth of water on the gate is 3 m.

Solution
Refer Figure 3.11. Let AB = 20 m, CD b= = 8 m, h1 5= m ,  
h = 3 m and GH a= m . Let A be the area of the gate part 
 submerged into water.

a GH IJ GI GI= = + = +2 8 2( ) ( )

AE =
−

=
20 8

2
6 m

G

C

Liquid
surface

C

A E F B

D

Sea water
(S = 1.02)

a

b

h

Figure 3.10

G

C

Water surface
A B

C D

E F

G H
I Ja

h1
h

b

Figure 3.11
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 Hydrostatic Forces on Submerged Surfaces 3.9

From similar triangles AEC and GIC, we get:

GI

AE

CI

CE
GI

CI

CE
AE= ⇒ = × = × =

3

5
6 3 6. m

a GH GI= = + = + × =8 2 8 2 3 6 15 2( ) . . m

A
GH CD h

=
+

=
+ ×

=
( ) ( . )

.
2

15 2 8 3

2
34 8 m2

h
a b

a b

h
G =

+
+

⎛
⎝⎜

⎞
⎠⎟

=
× +

+
⎛
⎝⎜

⎞
⎠⎟

× =
2

3

2 15 2 8

15 2 8

3

3
1 6552

.

.
. m

F gAhw G= = × × × =ρ 1000 9 81 34 8 1 6552. . . 565.065 kN

I
a ab b

a b
hG =

+ +
+

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
+ × × +

× +

2 2
3

2 24

36

15 2 4 15 2 8 8

36 15 2 8( )

. .

( . )

⎡⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

× =3 25 2623 . m4

h
I

Ah
hC

G

G
G= + =

×
+ =

25 262

34 8 1 6552
1 6552

.

. .
. 2.094 m

 Example 3.9  Calculate the total pressure and the position of the centre of pressure in an isosceles triangular plate of 
base 3 m and 6 m height immersed vertically in oil (specific gravity = 0.85), (i) when the axis of symmetry of the plate 
passing through the apex being horizontal and 9 m below the water surface and (ii) when the base of the plate is 9 m below 
the water surface and apex is above the base.

Solution
Let b = 3 m, h = 6 m and S = 0 85. .

G

Oil surface

A

B

C

D

9 m

S = 0.85

G

(a) (b)

h

b
b

h

hG hG

Figure 3.12

 (i) Refer Figure 3.12(a). Given that: hG = 9 m

A
bh

= =
×

=
2

3 6

2
9 2m

F S gAhw G= = × × × × =ρ 0 85 1000 9 81 9 9. . 675.42 kN

  Since I ABD AD ACD ADG = +M.O.I. of about M.O.I. of aboutΔ Δ
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3.10 Chapter 3

IG =
×

+
×

=
6 1 5

12

6 1 5

12
3 375

3 3. .
. m4  [ / ]∵ I bhG = 3 12

h
I

Ah
hC

G

G
G= + =

×
+ =

3 375

9 9
9

.
9.042 m

 (ii) Refer Figure 3.12(b).

hG = − =9
6

3
7 m

F S gAhw G= = × × × × =ρ 0 85 1000 9 81 9 7. . 525.325 kN

I
bh

G = =
×

=
3 3

36

3 6

36
18 m4

h
I

Ah
hC

G

G
G= + =

×
+ =

18

9 7
7 7.286 m

 Example 3.10  A trapezoidal channel 4 m wide at the bottom and 2 m deep has sides inclined at 45° to the horizontal 
(side slopes 1 : 1). Calculate (i) total pressure force and (ii) centre of pressure on the vertical gate closing the channel when 
it is full of water.

Solution
Refer Figure 3.13. Let CD b= = 4 m, h = 2 m, α = °45 . Let A A1 3=  be the area 
of the triangles AEC and BFD and A2 be the area of rectangle EFDC.

AE BF
h

= = =
°

=
tan tanα

2

45
2 m

A A1 3
2 2

2
2= =

×
= m2

h h
h

G G1 3 3

2

3
= = = m

F F gA hw G1 3 1 1 1000 9 81 2
2

3
13080= = = × × × =ρ . N

This force acts at a depth of h hC C1 3= .

h h
I

A h
hC C

G

G
G1 3

1

1 1
1

32 2 36

2 2 3

2

3
1= = + =

×
×

+ =
( )

( )

/

/
m

A bh2 4 2 8= = × = m2

h
h

G2 2

2

2
1= = = m

F gA hw G2 2 2 1000 9 81 8 1 78480= = × × × =ρ . N

This force acts at a depth of hC2 which is derived as given below.

h
I

A h
hC

G

G
G2

2

2 2
2

34 2 12

8 1
1

4

3
= + =

×
×

+ =
( )/

m

G

C

A B

C D

E F

a

2
31

b

h

αα

Figure 3.13
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 Hydrostatic Forces on Submerged Surfaces 3.11

 (i) Thus, total pressure force is given by,

F F F F= + + = + + =1 2 3 13080 78480 13080 104640 N

 (ii) Taking moments about the top, we get:

F h F h F h F hC C C C× = × + × + ×1 1 2 2 3 3

h
F h F h F h

FC
C C C=

+ +1 1 2 2 3 3

∴ =
× + × + ×

=hC
13080 1 78480 4 3 13080 1

104640

( )/
1.25 m

 Example 3.11  A tank 1.2 m high contains water up to a height of 0.4 m above the base and an immiscible oil (specific 
gravity = 0.9) on the top of water for the remaining height. Determine the total pressure and the position of centre of 
 pressure on one side of the tank which has a width of 2 m.

Solution
Refer Figure 3.14. Let h = 1 2. m, h1 0 4= . m , h2 1 2 0 4 0 8= − =. . . m , S = 0 9.  and b = 2 m.

Oil (S = 0.9)

Water

P

Q R

S T

U

Container

(a)

P

S

Q

h1

h2

F1

F2

F3

Pressure distribution

h

(b)

Figure 3.14

To determine the given objectives, the pressure diagram is drawn as shown in Figure 3.14(b). Let F be the total pressure 
force and hC be the position of centre of pressure from the free oil surface.

Intensity of pressure at top is given by,

pP = 0

Intensity of pressure on S is given by,

p ST QU S ghS w= = = = × × × =ρ 2
20 9 1000 9 81 0 8 7063 2. . . . N/m

Intensity of pressure on Q is given by,

p QU UR p ghQ S w= + = + = + × ×ρ 1 7063 2 1000 9 81 0 4. . .

p QU URQ = + = + =7063 2 3924 10987 2 2. . N/m

F h ST b3 2
1

2

1

2
0 8 7063 2 2 5650 56= × × × = × × × =. . . N

F h ST b2 1 0 4 7063 2 2 5650 56= × × = × × =. . . N

F h UR b1 1
1

2

1

2
0 4 3924 2 1569 6= × × × = × × × =. . N
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∴ = + + = + + =F F F F1 2 3 1569 6 5650 56 5650 56. . . 12870.72 N

hC1 0 8
2

3
0 4

3 2

3
= + × =. .

.
m

hC2 0 8
0 4

2
1= + =.

.
m

hC3
2

3
0 8

1 6

3
= × =.

.
m

Taking moments about the top, we get:

F h F h F h F hC C C C× = × + × + ×1 1 2 2 3 3

h
F h F h F h

FC
C C C=

+ +1 1 2 2 3 3

∴ =
× + × + ×

=hC
1569 6 3 2 3 5650 56 1 5650 56 1 6 3

12870 72

. ( . ) . . ( . )

.

/ /
0.80322 m

 Example 3.12  A vertical rectangular gate 3.5 m wide and 5 m high contains water on one side to a depth of 2.4 m and 
an oil (specific gravity = 0.9) to a depth of 1.5 m on the other side. Determine the resultant hydrostatic pressure force on 
the gate and its point of application with respect to the bottom.

Solution
Refer Figure 3.15. Let b = 3 5. m, h = 5 m , h1 2 4= . m, S = 0 9.  and h2 1 5= . m.
Pressure force on the left side of the gate is given by,

F gA hw G1 1 1 1000 9 81 3 5 2 4
2 4

2
98884 8= = × × × × =ρ . ( . . )

.
. N

This force acts at a distance of hC1
2 4

3
0 8= =

.
. m  from the bottom.

Pressure force on the right side of the gate is given by,

F S gA hw G2 2 2 0 9 1000 9 81 3 5 1 5
1 5

2
34764 19= = × × × × × =ρ . . ( . . )

.
. N

This force acts at a distance of hC2
1 5

3
0 5= =

.
. m  from the bottom.

Resultant pressure force is given by,

F F F= − = − =1 2 98884 8 34764 19. . 64120.61 N

Let the resultant pressure force act at a distance of hC from the bottom. Taking moments about the bottom, we get the 
following expression.

F h F h F hC C C× = × − ×1 1 2 2

∴ =
−

=
× − ×

=h
F h F h

FC
C C1 1 2 2 98884 8 0 8 34764 19 0 5

64120 61

. . . .

.
0.9626 m

 Example 3.13  A 4 m × 2 m wide rectangular gate is vertical and is hinged at point 0.2 m below the centre of gravity 
of the gate. The total depth of water is 6 m. Find out the horizontal force required at the bottom of the gate to keep it in 
closed position.

h1 h2
F1

F2

Oil (S = 0.9)
Water

Figure 3.15
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 Hydrostatic Forces on Submerged Surfaces 3.13

Solution
Refer Figure 3.16. Let h = 4 m, b = 2 m, x = 0 2. m and h1 6= m.

hG = − =6
4

2
4 m

Pressure force acting on the plane surface of the gate is given by,

F gAhw G= = × × × × =ρ 1000 9 81 4 2 4 313920. ( ) N

h
I

Ah
h

bh

Ah
hC

G

G
G

G
G= + = + =

×
× ×

+ =
( ) ( )

( )
.

3 312 2 4 12

4 2 4
4 4 333

/ /
m

Let F1 be the force required to be applied at the bottom of the gate to keep it 
closed. Taking moments of all forces about the hinge, we get the following 
expression.

F1 2 0 2 313920 0 333 0 2× − = × −( . ) ( . . )

∴ =
× −

−
=F1

313920 0 333 0 2

2 0 2

( . . )

( . )
23195.2 N

 Example 3.14  A sliding gate of height 1.4 m and width 2.8 m lies in vertical plane that weighs 25 kN. Determine the 
vertical force required to lift the gate when its upper edge is 6 m below the free water surface and the coefficient of friction 
between the gate and guides is 0.15. Determine the position of centre of pressure acting on the gate.

Solution
Refer Figure 3.17. Let h = 1 4. m , b = 2 8. m, W = 25 kN, h1 6= m and μ = 0 15. .  
Let Fv be the vertical force required to lift the gate.

hG = + =6
1 4

2
6 7

.
. m

F gAhw G= = × × × × =ρ 1000 9 81 1 4 2 8 6 7 257 65. ( . . ) . . kN

I
bh

G = =
×

=
3 3

12

2 8 1 4

12
0 6403

. .
. m4

h
I

Ah
hC

G

G
G= + =

× ×
+ =

0 6403

2 8 1 4 6 7
6 7

.

( . . ) .
. 6.724 m

F F Wv = + = × + =μ 0 15 257 65 25. . 63.6475 kN

 Example 3.15  A circular plate of diameter 1 m with a hole of diameter 0.25 m is immersed vertically in a liquid 
 (specific gravity = 0.9) with its upper edge 0.5 m below the free surface of the liquid. The centre of hole is 0.25 m vertically 
below the centre of the plate. Determine the pressure force acting on the plate and the centre of pressure.

Solution
Refer Figure 3.18. Let d1 1= m, d2 0 25= . m , S = 0 9. , h1 0 5= . m and h2 0 25= . m. Let O1 and O2 be the centres of the 
plate and the hole, respectively.

hC

hG

6 m

Water

Gate

Hinge

0.2 m

C

G

F

A

B

4 m

F1

Figure 3.16

6 mWater

Gate

hGhC

C

G

F

Fv

1.4 m

W

Figure 3.17
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A d1 1
2 2

4 4
1 0 7854= = × =

π π
. m2

A d2 2
2 2 2

4 4
0 25 0 0491= = × =

π π
. . m

hG1 0 5
1

2
1= + =. m

hG2 0 5 0 5 0 25 1 25= + + =. . . . m

h
A h A h

A AG
G G=

−
−

=
× − ×

−
=1 1 2 2

1 2

0 7854 1 0 0491 1 25

0 7854 0 0491
0 98

. . .

. .
. 333 m

Since F S g A A hw G= −ρ ( )1 2

∴ = × × × − × =F 0 9 1000 9 81 0 7854 0 0491 0 9833. . ( . . ) . 6392.23 N

Since I d A h h d A h hG G G G G= + −⎡
⎣⎢

⎤
⎦⎥

− + −⎡
⎣⎢

⎤
⎦⎥

π π
64 641

2
1 1

2
2

2
2 2

2( ) ( )

IG = × + × −⎡
⎣⎢

⎤
⎦⎥

− × + × −
π π
64

1 0 7854 1 0 9833
64

0 25 0 0491 1 252 2 2. ( . ) . . ( . 00 9833 2. )
⎡
⎣⎢

⎤
⎦⎥

∴ = − =IG 0 0493 0 0066 0 0427. . . m4

h
I

Ah
hC

G

G
G= + =

− ×
+ =

0 0427

0 7854 0 0491 0 9833
0 9833

.

( . . ) .
. 1.0423 m

3.6 ❐ INCLINED SUBMERGED PLANE SURFACE

3.6.1 Total Pressure on an Inclined Plane Submerged Surface
Consider a plane inclined vertical surface with random shape submerged in a static liquid as shown in Figure 3.19. Let A 
be the surface area, hC be the distance of centre of pressure from the free surface of liquid, hG be the distance of centre of 
gravity from the free surface of liquid, p be the pressure intensity, F be the total force on the surface, C be the centre of 
pressure, G be the centroid and α  be the angle made by the plane of the surface with free liquid surface. When the plane 
of the surface is produced from point ‘B’, then it meets the free liquid surface at point ‘A’ and it will be perpendicular to 
the plane of the surface. Let lG and lC be the distances of G and C, respectively, from the axis AB.

Consider an elementary strip of area dA at a depth h from the free surface of liquid and at a distance l from the axis  
AB shown in Figure 3.19.

Pressure force on the strip is given by,

dF p dA gh dA= × = ρ  [ ]∵ p gh= ρ

Total pressure force on the whole surface is given by,

	 F dF gh dA g hdA= = =∫ ∫ ∫ρ ρ  (3.11)

Since h l= sinα , ldA AlG∫ =  and h lG G= sinα

	 F g l dA g ldA g Al gAhG G= = = × =∫ ∫ρ α ρ α ρ α ρsin sin sin  (3.12)

Liquid
(S = 0.9)

G

C

HolePlate

h2 = 0.25 m

h1 = 0.5 m

O1

O2

hGhC hG1

hG2

Figure 3.18
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 Hydrostatic Forces on Submerged Surfaces 3.15

3.6.2 Centre of Pressure on an Inclined Plane Submerged Surface
The pressure force on the strip is given by,

dF gh dA g l dA= × = × ×ρ ρ αsin  [ sin ]∵h l= α

Moment of this pressure force about the axis AB is given by,

= × =ρ α ρ αgl dA l g l dAsin sin 2

Sum of moments of all such pressure forces about the axis AB is given by,

	 = = = × = × +∫ ∫ρ α ρ α ρ α ρ αg l dA g l dA g I g I AlO G Gsin sin sin sin [ ]2 2 2  (3.13)

Where l dA AB IO
2 = =∫ M.O.I. of the surface about  and I I AlO G G= + 2

Moment of total force F acting at point C at a distance lC is given by,

	 = × = × = ×F l gAh l gAh
h

C G C G
Cρ ρ
αsin

 (3.14)

By solving equations (3.13) and (3.14), we get:

ρ
α

ρ αgAh
h

g I AlG
C

G G× = × +
sin

sin [ ]2

	 ∴ = + = +
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=h
Ah

I Al
Ah

I A
h I

C
G

G G
G

G
G Gsin

[ ]
sin

sin

sin2
2

2 2

2

2α α
α

α
AAh

h
G

G+  (3.15)

Here, Equation (3.15) gives the vertical depth of centre of pressure for the inclined surface submerged below the free 
surface of static liquid. If α = °90 , then Equation (3.15) becomes the same as Equation (3.10) which is applicable for 
vertically submerged plane surfaces.

 Example 3.16  A rectangular plane surface that is 1.5 m wide and 4 m deep is immersed in a liquid (specific gravity =  
0.9) in such a way that its plane makes an angle of 30° with the free surface of liquid. Determine the total pressure and 
position of centre of pressure when the upper edge is 1 m below the free liquid surface.

hC

hG

Edge view of
inclined plane

F

Inclined plane
surface

Area dA

O O
Free liquid surface

G
C

dF

h

l

lG

lC

A

B

α

Figure 3.19 Inclined submerged plane surface

M03 Fluid Mechanics and Hydraulic Machines XXXX 01.indd   15 4/5/2019   1:53:47 PM

Download more at Learnclax.com
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Solution
Refer Figure 3.20. Let b = 1 5. m, d = 4 m, S = 0 9. , α = °30  and h1 1= m.

h SU UT h TR h
d

G = + = + = + = + ° =1 1 2
1

4

2
30 2sin sin sinα α m

F S gAhw G= = × × × × × =ρ 0 9 1000 9 81 1 5 4 2. . ( . ) 105948 N

I
bd

G = =
×

=
3 3

12

1 5 4

12
8

.
m4

h
I

Ah
hC

G

G
G= + =

× °
× ×

+ =
sin sin

( . )

2 28 30

1 5 4 2
2

α
2.167 m

 Example 3.17  Determine the total pressure and position of centre of pressure of a circular plate that has diameter of  
2 m submerged in water whose greatest and least depths below the surface are 1.5 m and 0.5 m, respectively.

Solution
Refer Figure 3.21. Let d = 2 m, h2 1 5= . m and h1 0 5= . m.

A d= = × =
π π π
4 4

22 2 2m

sin
. .

.α = =
−

=
−

=
−

=
VX

VR

VU UX

VR

h h

d
2 1 1 5 0 5

2
0 5

h h WT h TRG = + = + = + × =1 1 0 5
2

2
0 5 1sin . .α m

F gAhw G= = × × × =ρ π1000 9 81 1. 30819.024 N

I
d

G = =
×

=
π π π4 4

64

2

64 4
m4

h
I

Ah
hC

G

G
G= + =

×
×

+ =
sin ( / ) .2 24 0 5

1
1

α π
π

1.0625 m

 Example 3.18  An annular plate having external and internal diameters 
of 2 m and 1 m, respectively is submerged in an oil (specific gravity = 0.92) 
in such a way that its greatest and least depths below the oil surface are  
3 m and 2 m, respectively. Determine the total pressure and the position of 
centre of pressure on one face of the plate.

Solution
Refer Figure 3.22. Let d1 2= m, d2 1= m, S = 0 92. , h2 3= m and 
h1 2= m.

A d d= − = × − =
π π
4 4

2 1 2 35621
2

2
2 2 2( ) ( ) . m2

sin .α = =
−

=
−

=
−

=
VX

VR

VU UX

VR

h h

d
2 1

1

3 2

2
0 5

hG

O O
P

2 m

R

Q

h1

S

T

U

h2

C

V
G

WX

α

Figure 3.21

hG

O O
P

2 
m

R

Q

h1

S

T

U

h2

V

WX

G

C

1 
m

α

Figure 3.22

hGhC

O O

G
C

P

1.5 m

4 m

R

Q

h1

S

T

U

α

Figure 3.20
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h h WT h TRG = + = + = + × =1 1 2
2

2
0 5 2 5sin . .α m

F S gAhw G= = × × × × =ρ 0 92 1000 9 81 2 3562 2 5. . . . 53162.941 N

I
d d

G =
−

=
× −

=
π π( ) ( )

.1
4

2
4 4 4

64

2 1

64
0 7363 m4

h
I

Ah
hC

G

G
G= + =

×
×

+ =
sin . .

. .
.

2 20 7363 0 5

2 3562 2 5
2 5

α
2.5312 m

 Example 3.19  A triangular plate of base 1.5 m and height 2 m is submerged in oil (specific gravity = 0.92). The plane 
of the plate is inclined at 30° with free oil surface and the base is parallel and it is at a depth of 1 m from the oil surface. 
Determine the total pressure and position of centre of pressure on one face of the plate.

Solution
Refer Figure 3.23. Let b = 1 5. m, h = 2 m, S = 0 92. , α = °30  and h1 1= m.

A
bh

= =
×

=
2

1 5 2

2
1 5 2.
. m

h h WT h TRG = + = + = + ° =1 1 1
2

3
30 1 333sin sin .α m

F S gAhw G= = × × × × =ρ 0 92 1000 9 81 1 5 1 333. . . . 18045.89 N

I
bh

G = =
×

=
3 3

36

1 5 2

36
0 333

.
. m4

h
I

Ah
hC

G

G
G= + =

× °
×

+ =
sin . sin

. .
.

2 20 333 30

1 5 1 333
1 333

α
1.3746 m

 Example 3.20  A trapezoidal plate of height 2.2 m and sides of 2.4 m and 3.6 m is immersed in water at an inclination 
of 30° to the free surface of the water. The depth of top edge of the plate is at 2 m from the free surface. Determine the 
hydrostatic force on the given plate and the centre of pressure.

Solution
Refer Figure 3.24. Let h = 2 2. m , a = 2 4. m, b = 3 6. m, α = °30  and 

h1 2= m.

TV
a b

a b

h
=

+
+

⎛
⎝⎜

⎞
⎠⎟

=
× +

+
⎛
⎝⎜

⎞
⎠⎟

× =
2

3

2 2 4 3 6

2 4 3 6

2 2

3
1 03

. .

. .

.
. m

∴ = − = − =TR h TV 2 2 1 03 1 17. . . m

h h UT h TRG = + = + = + ° =1 1 2 1 17 30 2 585sin . sin .α m

A
a b h

=
+

=
+ ×

=
( ) ( . . ) .

.
2

2 4 3 6 2 2

2
6 6 m2

F gAhw G= = × × × =ρ 1000 9 81 6 6 2 585. . . 167368.41 N

hG

O O
P

2 
m

R

Q

h1

S

T

U

hC

V

W

G

C

1.5 m

α

Figure 3.23
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I
a ab b

a b
hG =

+ +
+

=
+ × × +

× +

⎡

⎣
⎢
⎢

⎤2 2
3

2 24

36

2 4 4 2 4 3 6 3 6

36 2 4 3 6( )

. . . .

( . . ) ⎦⎦
⎥
⎥

× =2 2 2 62653 4. . m

h
I

Ah
hC

G

G
G= + =

°
×

+ =
sin . sin

. .
.

2 22 6265 30

6 6 2 585
2 585

α
2.6235 m

 Example 3.21  A circular plate of diameter 8 m has a circular hole of diameter 2 m with its centre above the centre of 
plate as shown in Figure 3.25. The plate is immersed in a liquid (specific gravity = 0.9) at an angle of 30° to the horizontal 
and with its top edge 4 m below the surface of the liquid. Determine the hydrostatic force on the given plate and the position 
of centre of pressure.

Solution
Refer Figure 3.25. Let d1 8= m, d2 2= m, S = 0 9. , α = °30  and h1 4= m.

h h WT h TRG1 1 1 4 4 30 6= + = + = + ° =sin sinα m

h h URG2 1 4 2 30 5= + = + ° =sin sinα m

Pressure force on the plate is given by,

F S gA hw G1 1 1
20 9 1000 9 81

4
8 6 2662 764= = × × × × × =ρ π

. . . kN

Since  h
I

A h
h

d

d h
h

d
C

G

G
G

G
G1

1
2

1 1
1

1
4 2

1
2

1
1

1
264

4
= + = + =

sin ( ) sin

( )

sinα π α
π
/

/

22

1
116

α
h

h
G

G+

∴ =
°

×
+ =hC1

2 28 30

16 6
6 6 167

sin
. m

Pressure force on the hole is given by,

F S gA hw G2 2 2
20 9 1000 9 81

4
2 5 138 686= = × × × × × =ρ π

. . . kN

Since h
I

A h
h

d

d h
h

d
C

G

G
G

G
G2

2
2

2 2
2

2
4 2

2
2

2
2

2
264

4
= + = + =

sin ( ) sin

( )

sinα π α
π
/

/

22

2
216

α
h

h
G

G+

∴ =
°

×
+ =hC2

2 22 30

16 5
5 5 0125

sin
. m

Thus, force on the plate is given by,

F F F= − = − =1 2 2662 764 138 686. . 2524.078 kN

Taking moments about the liquid surface, we get:

F h F h F hC C C× = × − ×1 1 2 2

∴ =
−

=
× − ×

=h
F h F h

FC
C C1 1 2 2 2662 764 6 167 138 686 5 0125

2524 078

. . . .

.
6.233 m

hG1

O O
P

8 
m

R

Q
S

T

C

W

2 m

2 m

h1

hG2

U

α

G

Figure 3.25
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 Hydrostatic Forces on Submerged Surfaces 3.19

 Example 3.22  A 6 m × 2 m rectangular gate is hinged at the base and it is inclined at an angle of 60° with the horizontal. 
The upper end of the gate is kept in position by a weight of 55000 N acting perpendicularly to the gate through a pulley 
system. If the weight of the gate and the friction at the hinge and pulley is neglected, then find the level of water when the 
gate begins to fall.

Solution
Refer Figure 3.26. Let PQ d= = 6 m, b = 2 m, α = °60 , W = 55000 N ,  
h be the level of water surface when the gate begins to fall, PR be the 
length of gate submerged in water and A be the wetted area of the gate.

PR
h h

h= =
°

=
sin sin

.
α 60

1 1547

A PR b h h= × = × =1 1547 2 2 309 2. . m

h
h

hG = =
2

0 5.

F gAh h h hw G= = × × × =ρ 1000 9 81 2 309 0 5 11325 645 2. . . . N

I
b PR h

hG = =
×

=
( ) ( . )

.
3 3

3 4

12

2 1 1547

12
0 2566 m

h
I

Ah
h

h

h h
h hC

G

G
G= + =

°
×

+ =
sin . sin

. .
. .

2 3 20 2566 60

2 309 0 5
0 5 0 667

α

PC
PT h h h h

hC= =
−

°
=

−
°

=
sin sin

.

sin
.

α 60

0 667

60
0 3845

Taking moments about the hinge, we get:

F PC W× = × 6

11325 645 0 3845 55000 62. .h h× = ×

∴ =
×

×
⎛
⎝⎜

⎞
⎠⎟

=h
55000 6

11325 645 0 3845

1 3

. .

/

4.232 m

 Example 3.23  A 4 m × 2.5 m rectangular sluice gate PQ hinged at point P (Figure 3.27) and inclined at an angle of 45° 
with the horizontal is kept closed by a weight fixed to the gate. The total weight of the gate and weight fixed to the gate is 
450 kN. The centre of gravity of the weight and gate is at G. Determine the height of the water h which will cause the gate 
to open.

Solution
Refer Figure 3.27. Let PQ d= = 4 m, b = 2 5. m, α = °45 , W = 450 kN,  
TG = 0 75. m and h be the height of water surface when the gate begins 
to open.

h h TR h PR PT h PQ TGG = − = − − = − ° − °( ) ( sin tan )45 45

∴ = − ° − ° = −h h hG ( sin . tan ) ( . )4 45 0 75 45 2 08 m

A PQ b= × = × =4 2 5 10. m2

6 
m

90°

+

Hinge

h

hC

F

P

Q

R
S

T C

Gate

Water surface

G

hG

W

α

α

Figure 3.26

4 m

45°

Hinge

h

hC

F

P

Q

R

S

T
C Gate

Water surface

G

hG

0.75 m

U

Support

W

Figure 3.27
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F gAh h hw G= = × × × − = −ρ 1000 9 81 10 2 08 98 1 2 08. ( . ) . ( . ) kN

I
bd

G = =
×

=
3 3

12

2 5 4

12
13 333

.
. m4

Since h
I

Ah
hC

G

G
G= +

sin2 α

h
h

h
h

hC =
× °

× −
+ − =

−
+ −

13 333 45

10 2 08
2 08

0 667

2 08
2 0

2. sin

( . )
( . )

.

( . )
( . 88)

Taking moments about the hinge P, we get:

F PC W TG× = ×

98 1 2 08
45

450 0 75. ( . )
sin

.h
PU

− ×
°

= ×

	
PU

h h
=

× °
−

=
−

450 0 75 45

98 1 2 08

2 433

2 08

. sin

. ( . )

.

( . )
 (i)

PU h SP h SR PR h h PQC C C= − = − − = − − °( ) ( sin )45

Substituting the values of hC and PQ in the above expression, we get:

	
PU

h
h h

h
o=

−
+ − − − =

−
+

0 667

2 08
2 08 4 45

0 667

2 08
0 748

.

( . )
( . ) ( sin )

.

( . )
.  (ii)

From expressions (i) and (ii), we get:

0 667

2 08
0 748

2 433

2 08

.

( . )
.

.

( . )h h−
+ =

−

0 667 0 748 2 08 2 433. . ( . ) .+ − =h

0 748 2 433 0 667 1 556. . . .h = − +

∴ = =h
3 322

0 748

.

.
4.44 m

 Example 3.24  Figure 3.28 illustrates a gate hinged at point C. Determine the height of water so that the gate tips about 
the hinged point. Consider the width of gate as unity.

Solution
Refer Figure 3.28. Let PQ d= m, b = 1 m, α = °60 , and hC = (h 
- 2.5) m.

The tipping of the gate is possible when the centre of pressure 
hC of the resultant pressure force F acts at point C.

h
d d

G = = °
2 2

60sin sinα

Since h
I

Ah
hC

G

G
G= +

sin2 α

Hinge

h

hC

P

QR

S

T
C

Gate

Water surface

G

hG

Support
2.5 m

d/
2

F

α

α

Figure 3.28
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h
d

d d

d
− =

× °
× × °

+ °2 5
1 12 60

1 2 60 2
60

3 2

.
[( ) ]sin

( ) ( )sin
sin

/

/

d
d d

sin . sin sin60 2 5
6

60
2

60° − = ° + °

d

3
60 2 5sin .° =

∴ =
×

°
=d

2 5 3

60
8 66

.

sin
. m

∴ = ° = ° ≈h d sin . sin60 8 66 60 7.5 m

 Example 3.25  Figure 3.29 illustrates an inclined rectangular sluice gate PQ of size 1 m × 3 m hinged at point P which 
controls the discharge of water. Determine the force normal to the gate applied at Q to open it.

Solution
Refer Figure 3.29. Let PQ d= = 1 m, b = 3 m, α = °45 , h = 4 m and F1 be 
the force required to open the gate.

h h VQ h QGG = − = − = − ° =sin sin .α 4
1

2
45 3 646 m

F gAhw G= = × × × × =ρ 1000 9 81 1 3 3 646 107301 78. ( ) . . N

I
bd

G = =
×

=
3 3

12

3 1

12
0 25. m4

h
I

Ah
hC

G

G
G= + =

°
× ×

+ =
sin . sin

( ) .
. .

2 20 25 45

1 3 3 646
3 646 3 657

α
m

PC PQ QC PQ QU CU= − = − −( )

PC
QT CS h hc= −

°
−

°
⎡
⎣⎢

⎤
⎦⎥

= −
°

−
°

⎡
⎣⎢

⎤
⎦⎥

1
45 45

1
45 45sin sin sin sin

∴ = −
°

−
°

⎡
⎣⎢

⎤
⎦⎥

=PC 1
4

45

3 657

45
0 5149

sin

.

sin
. m

Taking moments about the hinge P, we get:

F PQ F PC1 × = ×

F1 1 107301 78 0 5149× = ×. .

∴ =F1 55249.69 N

 Example 3.26  Figure 3.30(a) illustrates a container filled with an oil (specific gravity = 0.9) under a pressure of 

17658 Pa . The opening of the container is covered by an inclined square plate 1 m × 1 m hinged at point P by a force F1. 
Determine the force F1 and the reaction Rp at the hinge point P.

Hinge
hC

P

Q

R

C

Gate

Water surface

G

hG

45°

4 m

F1

ST U

V

1 
m

F

Figure 3.29
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Solution
Refer Figure 3.30. Let S = 0.9, p = 17658 Pa, PQ d= = 1 m, b = 1 m, α = °30 .  F1 be the force required to close the plate 
and Rp be the reaction at the hinge point P.

Hinge hC

P

Q

R

C

Oil surface

G

hG

30°

F1

S T

1 
m

Rp

30°
F1

1 
m

17658 Pa

Oil (S = 0.9)

P

Rp

Container

Plate

Hinge

U

(a) (b)

V

h

FQ

Figure 3.30

The water head equivalent to the given gauge pressure of p = 17658 Pa  is given by,

h
p

S gw
= =

× ×
=

ρ
17658

0 9 1000 9 81
2

. .
m

Thus, the oil surface may be considered 2 m above the hinge as shown in Figure 3.30(b).

h h PU h PGG = + = + = + ° =sin sin .α 2
1

2
30 2 25 m

F S gAhw G= = × × × × × =ρ 0 9 1000 9 81 1 1 2 25 19865 25. . ( ) . . N

I
bd

G = =
×

=
3 3

12

1 1

12
0 0833. m4

h
I

Ah
hC

G

G
G= + =

°
× ×

+ =
sin . sin

( ) .
. .

2 20 0833 30

1 1 2 25
2 25 2 259

α
m

PC
PV RV RP hC=

°
=

−
°

=
−

°
=

−
°

=
sin sin sin

.

sin
.

30 30

2

30

2 259 2

30
0 518 m

Taking moments about the hinge P, we get:

F PQ F PC1 × = ×

F1 1 19865 25 0 518× = ×. .

∴ =F1 10290.2 N

R F Fp = − = − =1 19865 25 10290 2. . 9575.05 N

 Example 3.27  A 3 m square gate provided in an oil tank containing petrol (specific gravity = 0.7) up to a height of 1.5 m 
above the top edge of the gate is hinged at its top edge as shown in Figure 3.31(a). The space above the oil is subjected to 
a negative pressure of 6.867 kPa. Determine the necessary vertical pull to be applied at the lower edge to open the gate.
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Solution
Refer Figure 3.31. Let PQ d= = 3 m, b = 3 m, S = 0 7. , ht = 1 5. m, p = 6 867. kPa, α = °45  and F1 be the vertical force 
required to open the gate.

Hinge

F

P

Q

C

Gate

Negative pressure
(6.867 kPa)

G

45°

1.5 m

F1 3 
m

Petrol
(S = 0.7)

Petrol
surface

Oil tank

Q

R

C

Gate

G

45°

F1 3 
m

P
Hinge

hC

hG

STU

(a) (b)

V

F

Figure 3.31

The oil head equivalent to the given negative pressure above the petrol surface is as follows.

h
p

S gw
= =

×
× ×

=
ρ

6 867 1000

0 7 1000 9 81
1

.

. .
m

Thus, negative pressure reduces the head above the top edge of the gate from ht = 1 5. m  to (1.5 - 1) = 0.5 of oil. Therefore, 
the calculations for the magnitude and location of the pressure force are to be made corresponding to a head of PS = 0.5 m 
of oil as shown in Figure 3.31(b).

h TR RG PS PGG = + = + = + ° =sin . sin .α 0 5
3

2
45 1 561 m

F S gAhw G= = × × × × × =ρ 0 7 1000 9 81 3 3 1 561 96474 483. . ( ) . . N

I
bd

G = =
×

=
3 3

12

3 3

12
6 75. m4

h
I

Ah
hC

G

G
G= + =

°
× ×

+ =
sin . sin

( ) .
. .

2 26 75 45

3 3 1 561
1 561 1 801

α
m

VC UC UV h PSC= − = − = − =1 801 0 5 1 301. . . m

PC
VC

=
°

=
°sin

.

sin45

1 301

45

Taking moments about the hinge P, we get:

F PQ F PC1 45sin ° × = ×

F1 45 3 96474 483
1 301

45
sin .

.

sin
° × = ×

°

∴ =
×

°
=F1 2

96474 483 1 301

3 45

. .

sin
83675.535 N
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3.7 ❐ CURVED SUBMERGED PLANE SURFACE
Figure 3.32 illustrates a curved surface PQ  submerged in a static fluid. Let dA be the elemental area at a vertical depth of 
h below free liquid surface. The differential force dF acting on the elemental area is given below.

	 dF gh dA= × = ×Pressure Area ρ  (3.16)

In case of curved surface submerged in liquid, the direction of the pressure force on the elementary areas varies from point 
to point. Therefore, we do not use a direct method of integration to find the force due to hydrostatic pressure. Thus, the force 
dF can be resolved in two components dFH and dFV in the horizontal and vertical directions, respectively.

	 dF dF ghdAH = =sin sinα ρ α  (3.17)

	 dF dF ghdAV = =cos cosα ρ α  (3.18)

In the above equations, dAsinα  and dAcosα  are the vertical and horizontal projections respectively of the elemental area 
dA shown in Figure 3.32(b).

P

Q

R

S
T

dFH

dFV

dF

dA

h

Free liquid surface

dA P

Q

R

(a) (c)

Free surface
S

dF

FV

FH

(b)

α

αdA cos

αdA sin
α

α

Figure 3.32

The total forces in the horizontal and vertical directions, namely FH and FV respectively can be obtained by  integrating 
Equations (3.17) and (3.18). The force FH is the total pressure force which acts on the imaginary vertical projection 
RQ of the curved surface on vertical plane through the centre of pressure of the plane surface SRQ. The force FV is the 
total  pressure force which acts on the imaginary horizontal projection RP of the curved surface on horizontal plane. The 
 magnitude of FV is the weight of the liquid supported by the curved surface up to the free liquid surface and it passes 
through the centre of gravity of the volume PQRSTP.

The total resultant force on the curved surface is given,

	 F F FH V= +2 2  (3.19)

The resultant force F passes through the intersection of its two components and its inclination with horizontal is given 
below.

	 β =
⎛
⎝⎜

⎞
⎠⎟

−tan 1 F

F
V

H
 (3.20)

When the underside of a curved surface is subjected to hydrostatic pressure as shown in Figure 3.32 (c), the force FV will 
be equal to the weight of the imaginary fluid supported by PQ upto the free surface of liquid and its direction will be taken 
in upward direction.

 Example 3.28  Determine the resultant pressure force per unit length acting on the curved corner PQ of the container 
having gasoline (specific gravity = 0.7) upto a depth of 4 m as shown in Figure 3.33.
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Solution
Refer Figure 3.33. Let OP OQ= = 2 m, b = 1 m, S = 0 7. , F be the resultant 
force and β  be its inclination with the horizontal.

Let Ap be the projected area of the curved surface on vertical plane.

F S gA hH w p G= = × × × × × +⎛
⎝⎜

⎞
⎠⎟

=ρ 0 7 1000 9 81 2 1 2
2

2
41 202. . ( ) . kN

Since F PQ RSV = Weight of gasoline above upto

or F OPRS OPQV = × +Weight of gasoline Volume Volume[ ]

 ( OPRS  is a cuboid and OPQ  is a quadrant of a circular cylinder)

Thus FV = × × × × × + × ×⎡
⎣⎢

⎤
⎦⎥

=0 7 1000 9 81 2 2 1
1

4
2 1 49 0412. . .π kN

F F FH V= + = + =2 2 2 241 202 49 041. . 64.052 kN

β =
⎛
⎝⎜

⎞
⎠⎟

= ⎛
⎝⎜

⎞
⎠⎟

=− −tan tan
.

.
1 1 49 041

41 202

F

F
V

H
49.96°°

 Example 3.29  A door in the form of a quadrant of a cylinder of 3 m radius and 4 m width is fitted in a water tank shown 
in Figure 3.34. Determine the magnitude and direction of the resultant force on the door.

Solution
Refer Figure 3.34. Let OP OQ R= = = 3 m, b = 4 m, F be the resultant force and β  be its inclination with the horizontal.

Let Ap be the projected area of the curved surface on vertical plane.

F gA hH w p G= = × × × × +⎛
⎝⎜

⎞
⎠⎟

=ρ 1000 9 81 3 4 2
3

2
412 02. ( ) . kN

Since F PQRS PQRS gV w= = × ×Weight of water block Volumeρ ( )

∴ = × × × − × ×⎡
⎣⎢

⎤
⎦⎥

× =FV 1000 5 3 4
1

4
3 4 9 81 311 232π . . kN

F F FH V= + = + =2 2 2 2412 02 311 23. . 516.357 kN

β =
⎛
⎝⎜

⎞
⎠⎟

= ⎛
⎝⎜

⎞
⎠⎟

=− −tan tan
.

.
1 1 311 23

412 02

F

F
V

H
37.07°°

 Example 3.30  Figure 3.35 illustrates a cylindrical roller gate of diameter 2 m and 5 m in length which is placed on the 
dam in such a way that water is going to spill over it. Determine the magnitude and direction of the resultant force acting 
on the gate due to water.

Solution
Refer Figure 3.35. Let PR = 2 m, b = 5 m , F be the resultant force and β  be its inclination with the horizontal. Let Ap be 
the projected area of the curved surface on vertical plane.

P

Q

O

R S

2 m 2 m

2 m

2 m

6 m

Figure 3.33

3 m

P

Q
O

R
S

3 m

2 m
Water

Free surface

F

β

Figure 3.34
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F gA hH w p G= = × × × × =ρ 1000 9 81 2 5
2

2
98 1. ( ) . kN

Since F PSR PSR gV w= = × ×Weight of water block Volume of curved surfaceρ ( )

Thus F r b gV w= × × = × × × × =ρ π π
2

1000
2

1 5 9 81 77 052 2 . . kN
	

F F FH V= + = + =2 2 2 298 1 77 05. . 124.74 kN

∴ =
⎛
⎝⎜

⎞
⎠⎟

= ⎛
⎝⎜

⎞
⎠⎟

=− −β tan tan
.

.
1 1 77 05

98 1

F

F
V

H
38.15°°

 Example 3.31  Figure 3.36 illustrates a cylinder of diameter 4 m and 5 m in length which retains water on one side.  
If the cylinder weighs 350.19 kN and the frictional effects are neglected, then determine the vertical reaction at P and the 
horizontal reaction at Q.

Solution
Refer Figure 3.36. Let PR = 4 m, b = 5 m , W = 350 19. kN , RP be the vertical reaction at P and RQ be the horizontal 
reaction at Q.

Let Ap be the projected area of the curved surface on vertical plane.

F gA hH w p G= = × × × × =ρ 1000 9 81 4 5
4

2
392 4. ( ) . kN

Since F PSR r b gV w= = × ×Weight of water block ρ π
2

2

∴ = × × × × =FV 1000
2

2 5 9 81 308 192π
. . kN

The vertical component FV is acting in the upward direction and for 
 equilibrium, we get the following result.

R W FP V= − = − =350 19 308 19. . 42 kN

R FQ H= = 392.4 kN

 Example 3.32  Figure 3.37 illustrates a 45° sector gate of 3 m radius mounted on a support. One of the radial arms of 
the gate and its hinge are at same horizontal level as the liquid surface (specific gravity = 0.9). If the length of the gate is 
2.6 m, then find the magnitude and direction of the resultant pressure force on the gate.

Solution
Refer Figure 3.37. Let α = ° =45 1 8( )/ th of a circle, OP OQ r= = = 3 m, S = 0 9.  and b = 2 6. m. Let Ap be the projected 

area of the curved surface on vertical plane RQ and RQ h= .

RQ h OQ= = ° = ° =sin sin .45 3 45 2 12 m

A RQ bp = × = × =2 12 2 6 5 512 2. . . m

F S gA hH w p G= = × × × × =ρ 0 9 1000 9 81 5 512
2 12

2
51585 37. . .

.
. N

P

Q

R

S
4 m

O

Water surface

FH
FV

Figure 3.36

P

Q

R OLiquid surface

45°

3 m

Hinge

FV

FH

(S = 0.9)

3 m

h

Figure 3.37

P

Q

R

S
2 m

O

Water surface

FH
FV

Figure 3.35
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Area Area AreaPRQ POQ ROQ r OR RQ= − = − × ×
π
8

1

2
2

Area m2PRQ = × − × ° × =
π
8

3
1

2
3 45 2 12 1 2862 cos . .

Since F PRQ S PRQ b gV w= = × × ×Weight of liquid block Area ρ

∴ = × × × × =FV 0 9 1000 1 286 2 6 9 81 29520 64. . . . . N

F F FH V= + = + =2 2 2 251585 37 29520 64. . 59434.99 N

The angle of inclination of resultant with the horizontal is given by,

β =
⎛
⎝⎜

⎞
⎠⎟

= ⎛
⎝⎜

⎞
⎠⎟

=− −tan tan
.

.
1 1 29520 64

51585 37

F

F
V

H
29.78°°

 Example 3.33  A gate having a shape of a quadrant of circle 1 m radius has to resist liquid (specific gravity = 0.92) 
force as shown in Figure 3.38. If the width of the gate is unity, then determine the magnitude and direction of the resultant 
pressure force on the gate.

Solution
Refer Figure 3.38. Let OP OQ r= = = 1 m, S = 0 92.  and b = 1 m.

Let Ap be the projected area of the curved surface on vertical plane OQ.

F S gA hH w p G= = × × × × × =ρ 0 92 1000 9 81 1 1
1

2
4512 6. . ( ) . N

Since F POQ S r b gV w= = × ×Weight of water block ρ π
4

2

∴ = × × × × × =FV 0 92 1000
4

1 1 9 81 7088 372. . .
π

N

F F FH V= + = + =2 2 2 24512 6 7088 37. . 8402.89 N

The angle of inclination of resultant with the horizontal is given by,

β =
⎛
⎝⎜

⎞
⎠⎟

= ⎛
⎝⎜

⎞
⎠⎟

=− −tan tan
.

.
1 1 7088 37

4512 6

F

F
V

H
57.52°°

 Example 3.34  Figure 3.39 illustrates a gate of radius 4 m and of 1 m width. Find the magnitude and direction of the 
resultant pressure force acting on the gate.

Solution
Refer Figure 3.39. Let α = ° =30 1 12( )/ th of a circle, OP OQ r= = = 4 m and  
b = 1 m.

Let Ap be the projected area of the curved surface on vertical plane RQ and 

RQ h= .

RQ h OQ= = × ° = ° =sin sin30 4 30 2 m

A RQ bp = × = × =2 1 2 m2

P

Q
1 m

OLiquid surface

Support

FV

FH

(S = 0.9)

1 m

Figure 3.38

P

Q

R

4 m

O
Water surface

30°

Support

FV

FH

2 m

S

h

Figure 3.39
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3.28 Chapter 3

F gA hH w p G= = × × × =ρ 1000 9 81 2
2

2
19620. N

Area Area Area RSQ OSQ ORQ r OR RQ= − = − × ×
π
12

1

2
2

Area mRSQ = × − × ° × =
π
12

4
1

2
4 30 2 0 72472 2cos .

Since F RQS RQS b gV w= = × × ×Weight of liquid block  Area ρ

∴ = × × × =FV 1000 0 7247 1 9 81 7109 31. . . N

F F FH V= + = + =2 2 2 219620 7109 31. 20868.32 N

The angle of inclination of resultant with the horizontal is given by,

β =
⎛
⎝⎜

⎞
⎠⎟

= ⎛
⎝⎜

⎞
⎠⎟

=− −tan tan
.1 1 7109 31

19620

F

F
V

H
19.92°°

 Example 3.35  The pressure gauge fitted on a water tank (Figure 3.40) shows a reading of 19620 N/m2. The curved 
surface PQ of the top is quarter of a circular cylinder of radius 1.4 m. Find the magnitude and direction of the resultant 
pressure force acting on the curved surface if the width of the tank is unity.

Solution
Refer Figure 3.40. Let p = 19620 2N/m , OP OQ r= = = 1 4. m and 
b = 1 m.

Let Ap be the projected area of the curved surface on vertical 
plane OQ.

The water head equivalent to the given pressure is given by,

h
p

gw
= =

×
=

ρ
19620

1000 9 81
2

.
m

Thus, the free water surface can be imagined to be 2 m above the 
top of the tank.

A OQ bp = × = × =1 4 1 1 4. . m2

F gA hH w p G= = × × × +⎛
⎝⎜

⎞
⎠⎟

=ρ 1000 9 81 1 4 2
1 4

2
37081 8. .

.
. N

Since F PQV = Weight of liquid block above

or F OPSR OPQ b gV w= × + × ×ρ ( )Area Area

∴ = × × + ×⎡
⎣⎢

⎤
⎦⎥

× × =FV 1000 2 1 4
4

1 4 1 9 81 42569 322( . ) . . .
π

N

F F FH V= + = + =2 2 2 237081 8 42569 32. . 56455.35 N

The angle of inclination of resultant with the horizontal is given by,

β =
⎛
⎝⎜

⎞
⎠⎟

= ⎛
⎝⎜

⎞
⎠⎟

=− −tan tan
.

.
1 1 42569 32

37081 8

F

F
V

H
48.94°°

P

Q

R

O
FV

FH

2 m
S

19620 N/m2

1.4 m

Water tank

Imaginary water surface

Figure 3.40
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 Hydrostatic Forces on Submerged Surfaces 3.29

 Example 3.36  Figure 3.41 illustrates the water level on the two sides of a cylindrical gate 2 m in diameter and 1 m in 
length. If the weight of the cylinder is 15000 N, then determine the magnitude and the location of the horizontal and vertical 
components of the force that keeps the cylinder just touching the floor. Also determine the magnitude and direction of the 
resultant force.

Solution
Refer Figure 3.41. Let POQ h= =1 2 m, OQ h= =2 1 m, b = 1 m and W = 15000 N .

P

Q

R
S2 m

O

Water surface

FH1
FV1

Water surface

FH2

FV2
1 m

hC1

hC2

Figure 3.41

F gA hH w p G1 1 1 1000 9 81 2 1
2

2
19620= = × × × × =ρ . ( ) N

F gA hH w p G2 2 2 1000 9 81 1 1
1

2
4905= = × × × × =ρ . ( ) N

Thus, the net horizontal force is given by,

F F FH H H= − = − =1 2 19620 4905 14715 N

Therefore, 14715 N force acting towards left is required to keep the gate in position.

h
I

A h
h

bh

A h
hC

G

G
G

G
G1

1

1 1
1

1
3

1 1
1

312 1 2 12

2 1 2 2

2

2
= + = + =

×
× ×

+ =
( ) ( )

( )

/ /

/
11 333. m

h
I

A h
h

bh

A h
hC

G

G
G

G
G2

2

2 2
2

2
3

2 2
2

312 1 1 12

1 1 1 2

1

2
= + = + =

×
× ×

+ =
( ) ( )

( )

/ /

/
00 667. m

The line of action of net horizontal force from Q (bottom) can be obtained by taking moments about Q.

F h F h F hH H C H C× = × − − × −1 1 2 22 1( ) ( )

14715 19620 2 1 333 4905 1 0 667× = × − − × −h ( . ) ( . )

∴ = =h
11453 175

14715

.
0.7783 m  (From bottom)

Since F PRQ PQR b gV w1 = = × × ×Weight of water block Areaρ

∴ = × × × × =FV1
21000

2
1 1 9 81 15409 512

π
. . N

F Area SOQ b gV w2
21000

4
1 1 9 81 7704 756= × × × = × × × × =ρ π

. . N
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3.30 Chapter 3

Net upward force is given by,

F F FV V V= + = + =1 2 15409 512 7704 756. . 23114.268 N

Thus, the additional force (Fa) required to keep the cylinder in position is given by,

F F Wa V= − = − =23114 268 15000. 8114.268 N

From vertical diameter, FV1 acts at a distance as given below.

4

3

4 1

3
0 4244

r

π π
=

×
= . m  (From PQ towards left)

From vertical diameter, FV2 acts at a distance as given below,

4

3

4 1

3
0 4244

r

π π
=

×
= . m  (From PQ towards right)

The line of action of net vertical force from POQ can be obtained by taking moments about POQ.

F x F FV V V× = × − ×1 20 424 0 424. .

23114 268 15409 512 0 4244 7704 756 0 4244. . . . .× = × − ×x

∴ = =x
3269 898

23114 268

.

.
0.1415 m  (From POQ)

F F FH V= + = + =2 2 2 214715 23114 268. 27400.74 N

The angle of inclination of resultant with the horizontal is given by,

β =
⎛
⎝⎜

⎞
⎠⎟

= ⎛
⎝⎜

⎞
⎠⎟

=− −tan tan
.1 1 23114 268

14715

F

F
V

H
57.52°°

 Example 3.37  Figure 3.42 illustrates the curved surface PQ which is a quadrant of a circular cylinder. The radius of 
the curved surface is 3 m and length of the cylinder is 4 m. If water is 2 m above the curved surface PQ, then find the 
 magnitude and location of the horizontal and vertical components of the force exerted by the water from Q. Also determine 
the magnitude and direction of the resultant force acting on the curved surface.

Solution
Refer Figure 3.42. Let OP OQ r= = = 3 m, b = 4 m and OR = 2 m.

Let Ap be the projected area of the curved surface on vertical plane OQ.

Ap = × =3 4 12 2m

hG = + =2
3

2
3 5. m

F gA hH w p G= = × × × =ρ 1000 9 81 12 3 5. . 412.02 kN

I
bd

G = =
×

=
3 3

4

12

4 3

12
9 m

h
I

Ah
hC

G

G
G= + =

×
+ =

9

12 3 5
3 5 3 7143

.
. . m

P

Q

O

S

Water surface

FV

FH

3 m

2 m

R

hC

Figure 3.42
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Thus, the horizontal component of the resultant force acts (5 3.7143) 1.2857 m−− ==  vertically above from Q.

Since F PQORSP F FV V V= = +Weight of water block 1 2

or F PORS g PQO gV w w= × × + × ×ρ ρVolume of part Volume of part

FV = × × × × + × × × ×1000 2 3 4 9 81 1000
4

3 4 9 812. .
π

∴ = + =FV 235 44 277 37. . 512.81 kN

The line of action of FV  can be obtained by taking moments of its two components say FV1 235 44= . kN  and 
FV 2 277 37= . kN  about the line ROQ and we get the following expression.

F x F F
r

V V V× = × + ×1 2
3

2

4

3π

512 81 235 44 1 5 277 37
4 3

3
. . . .x = × + ×

×
π

∴ = =x
706 3184

512 81

.

.
1.3773 m  (From ROQ towards right)

F F FH V= + = + =2 2 2 2412 02 512 81. . 657.826 kN

The angle of inclination of resultant with the horizontal is given by,

β =
⎛
⎝⎜

⎞
⎠⎟

= ⎛
⎝⎜

⎞
⎠⎟

=− −tan tan
.

.
1 1 512 81

412 02

F

F
V

H
51.22°°

 Example 3.38  Determine the magnitude and direction of the resultant water pressure force acting on the curved face of 
the dam (Figure 3.43) which is shaped according to the relation y x= ( / )2 2 . The height of the water retained by the dam is 
10 m and the width of the dam is 2 m.

Solution

Refer Figure 3.43. Let y x x y= =2 1 22 2/ or / , h = 10 m and 
b = 2 m.

Let Ap be the projected area of the curved surface on vertical 
plane QR.

F gA hH w p G= = × × × × =ρ 1000 9 81 10 2
10

2
981. ( ) kN

Since F PQR PQR b gV w= = × × ×Weight of water block Areaρ

F g xdyb g y dy
y

V w w= = × = × × ×
⎡

⎣
⎢
⎢

⎤

⎦
∫ ∫ρ ρ
0

10

0

10
1 2

3 2

2 2 1000 9 81 2 2
3 2

/
/

.
/

⎥⎥
⎥0

10

∴ = × × ×
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=FV 1000 9 81 2 2
10

3 2
584 955

3 2

.
/

.
/

kN

∴ = + = + =F F FH V
2 2 2 2981 584 955. 1142.162 kN

P

Q

Water surface R

dy

x

10 m
Dam

y = x2/2

Figure 3.43
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3.32 Chapter 3

The angle of inclination of resultant with the horizontal is given by,

β =
⎛
⎝⎜

⎞
⎠⎟

= ⎛
⎝⎜

⎞
⎠⎟

=− −tan tan
.1 1 584 955

981

F

F
V

H
30.81°°

3.8 ❐ ANALYSIS OF FORCES ON DAMS
A dam is a structure built across a river or a stream to store water whose cross section may be triangular, rectangular or 
trapezoidal. The upstream face of the dam experiences force due to water pressure and it resists due to its dead weight. 
Consider a dam as shown in Figure 3.44 of trapezoidal section. The height of the dam is H and the widths of the top and 
bottom section is a and b, respectively. The main forces that act on a gravity dam are hydrostatic force and its weight.

 1. Hydrostatic force: Let h be the depth of water stored on the upstream side for unit length. The horizontal thrust of 
water on the dam is given by the following expression.

	 F gAh g h
h

g
h

H w G w w= = × =ρ ρ ρ( )1
2 2

2

 (3.21)

  This force will act at a depth of hC below the free surface which is given by,

	 h
I

Ah
h

h

h h

h h
C

G

G
G= + =

×
×

+ =
( )

( )( )

1 12

1 2 2

2

3

3 /

/
 (3.22)

 2. Weight of the dam: Let ρd  be the density of the material used in the dam. Thus, the weight of the dam is given by the 
following expression.

	 W gH
a b

d=
+ρ ( )

2
 (3.23)

  Let the centre of gravity of the section lies at a distance x from the vertical face PS. Divide the trapezium PQRS into a 
rectangle PQUS and a triangle QUR. Now take moments about the vertical face, we get the following expression.

a H
a

b a H a
b a

a H
b a

H x× × + − × +
−⎛

⎝⎜
⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ = × +

−
×⎡

⎣⎢
⎤
⎦⎥

×
2

1

2 3 2
( )

( )

  Thus, by rearranging the above expression, the distance of line of action of the force due to weight of the dam from the 
vertical face PS can be calculated.

	 x
a b ab

a b
=

+ +
+

( )

( )

2 2

3
 (3.24)

Water surface

Downstream face

Upstream face

Water surface
h

2h/3

Dam

h/3 FW

a

b

x

x1

P Q

R
S

FH FH

T

H

U

Figure 3.44
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 Hydrostatic Forces on Submerged Surfaces 3.33

  For the equilibrium and stability of the dam, the resultant of FH and W must be balanced by the reaction force RF at 
the base. Let the resultant force F pass through a point T at a distance of x1 from the vertical face PS. The eccentricity 
of this force is expressed below.

	 e x
b

= −1 2
 (3.25)

  The horizontal component FH  ends to slide the dam. The sliding is resisted by the frictional force μW  acting between 
the bottom of the dam and the soil on which it is resting. In order to avoid the sliding of the dam it is taken that  
μW F> , where μ  is the coefficient of friction.

 Example 3.39  A dam with vertical upstream face 17 m high retains water to a depth of 15 m. Determine the total 
 pressure force per metre length due to water on the upstream face of the dam and the location of centre of pressure.

Solution
Refer Figure 3.45. Let H = 17 m, h = 15 m and b = 1 m.

Total water pressure force is given by,

F gAhH w G= = × × × × =ρ 1000 9 81 15 1
15

2
. ( ) 1103.625 kN

I
bd

G = =
×

=
3 3

12

1 15

12
281 25. m4

h
I

Ah
hC

G

G
G= + =

× ×
+ =

281 25

15 1 15 2

15

2

.

( / )
10 m

 Example 3.40  A dam retains water to a depth of 10 m. The face of the dam in contact with water is vertical to 4 m from 
the top of the dam and thereafter, it is inclined at 60° to the horizontal to increase the thickness of the dam at the base. 
Determine the total pressure per metre length due to water on the upstream face of the dam.

Solution
Refer Figure 3.46. Let h = 10 m, h1 4= m, α = °60  and b = 1 m.

Horizontal component of the water pressure force is given by,

F gAhH w G= = × × × × =ρ 1000 9 81 10 1
10

2
490 5. ( ) . kN

Vertical components of the water pressure force is given by,

F PQST PQST gV w1 = = × ×Weight of water block Volume of ρ

F bh QS g g bh RSV w w1 1 1 60= × × × = × °ρ ρ( ) ( cot )

∴ = × × × × ° =FV1 1000 9 81 1 4 6 60 135 93. ( cot ) . kN

F QSR QSR gV w2 = = × ×Weight of water block  Volume ofρ

F g RS QS b g RS RS bV w w2
1

2

1

2
60= × × × × = × × × ° ×ρ ρ cot

∴ = × × × × ° × =FV 2 1000 9 81
1

2
6 6 60 1 101 95. cot . kN

Water surface

Water surface

FH

2 m

15 m

Dam

hC

Figure 3.45

Water surface

Water surface

FH

Dam

60°

FV1

FV2

Q

P

R

S

T

6 m

4 m

Figure 3.46
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Thus, total vertical component of water pressure force is given by,

F F FV V V= + = + =1 2 135 93 101 95 237 88. . . kN

The resultant pressure force is given by,

F F FH V= + = + =2 2 2 2490 5 237 88. . 545.14 kN

The angle of inclination of resultant with the horizontal is given by,

β =
⎛
⎝⎜

⎞
⎠⎟

= ⎛
⎝⎜

⎞
⎠⎟

=− −tan tan
.

.
1 1 237 88

490 5

F

F
V

H
25.87°°

3.9 ❐ LOCK GATES
Lock gates are used to change the water level in a canal or a river for the purpose of navigation. Let AB and BC be the two 
set of gates, one set on either side of the chamber (Figure 3.47). Each gate is supported on two hinges fixed on their top and 

bottom. Figure 3.47 illustrates the front view and top view of the 
closed position of the lock gates with its two wings butting each 
other at B. Let a be the inclination of the lock gate with the normal 
to the side of the lock and h be the distance between two hinges.

Consider the gate AB. Let h1 and h2 be the heights of water on 
the upstream and downstream sides, respectively, F1 and F2 be the 
water pressure forces on the gates and b be the width of the gate.

F gA h g h b
h gbh

w G w
w

1 1 1 1
1 1

2

2 2
= = =ρ ρ

ρ
( )

The force F1 acts at 
2

3
1h  below the water surface or at 

h1

3
 from 

bottom.

F gA h g h b
h gbh

w G w
w

2 2 2 2
2 2

2

2 2
= = =ρ ρ

ρ
( )

The force F2 acts at 
2

3
2h

 below the water surface or at 
h2

3
 from 

bottom.

The resultant force F acting at the right angle to the gate is 
given by,

	 F F F
gbh gbhw w= − = −1 2

1
2

2
2

2 2

ρ ρ
 (3.26)

The other forces acting on each gate are (i) thrust T exerted by the other gate, which is normal to the point of contact B of 
the gates and (ii) reaction R at the lower and upper hinges, which is given by R R RT B= + , where RT is the reaction at the 
top hinge and RB is the reaction at the bottom hinge, respectively.

Let the forces T and F intersect at O. Due to equilibrium condition of the gate, the reaction R must also pass through O. 
Resolving the forces along the gate AB, we get the following expression.

T Rcos cosα α=

	 T R=  (3.27)

Water surface
F1

F2

A

B

C

Upstream
side Downstream

side

Hinge

Hinge

(h1/3) (h2/3)

h1

h2

Water surface

T

R

F

(Top view)

(Front view)

O α αα

Gate AB

ϕ

h

Figure 3.47
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 Hydrostatic Forces on Submerged Surfaces 3.35

Resolving the forces normal to the gate AB, we get:

F T R R= + =sin sin sinα α α2  [ ]∵T R=

	 ∴ = =R T
F

2sinα
 (3.28)

After finding the total reaction R at the hinges, the reactions RT and RB at the top and bottom hinges can be determined by 
taking moments about the lower hinge and it is expressed as follows.

	 R h
F h F h

T × × = × − ×sinα 1 1 2 2

2 3 2 3
 (3.29)

Generally, the angle between the two lock gates ( )ϕ  is given, so angle α  can be calculated using ϕ α= ° −( ).180 2

 Example 3.41  The end gates of a lock are 5 m high and when closed, it includes an angle of 120°. Each gate is  carried 
on two hinges placed at the top and the bottom of the gate. If the water levels are 4 m and 2 m on the upstream and 
 downstream sides, respectively and the width of the lock is 6.6 m, then find the magnitudes of the forces on the hinges due 
to the water pressure.

Solution
Refer Figure 3.48. Let h = 5 m , ϕ α α= ° − = ° ⇒ = °( )180 2 120 30 , h1 4= m, h2 2= m  and width of lock m= 6 6. . Let b 
be the width of each gate.

Water surface
F1

F2

A

B

C

Upstream
side

DownstreamHinge

Hinge

(h1/3) (h2/3)

Water surface

T

R

F

(Top view)
(Front view)

6.6 m
4 m

2 m

120°5 m

α αα

Figure 3.48

b =
°

=
( . )

cos
.

6 6 2

30
3 81

/
m

F gA hw G1 1 1 1000 9 81 4 3 81
4

2
299 01= = × × × × =ρ . ( . ) . kN

hC1
4

3
1 333= = . m (From bottom)

F gA hw G2 2 2 1000 9 81 2 3 81
2

2
74 752= = × × × × =ρ . ( . ) . kN

hC2
2

3
0 667= = . m (From bottom)

F F F= − = − =1 2 299 01 74 752 224 258. . . kN
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3.36 Chapter 3

Let x be the distance of F from the bottom and taking moment of the forces, we get the following expression.

F x F h F hC C× = × − ×1 1 2 2

224 258 299 01 1 333 74 752 0 667. . . . .× = × − ×x

∴ = =x
347 6008

224 26
1 555

.

.
. m

R T
F F

F= = =
°

=
2 2 30sin sinα

T R F= = = 224 258. kN

For determining the reactions RT and RB at the top and bottom hinges taking moments about the bottom hinge, we get the 
following expression.

R RT × = ×5 1 555.

∴ =
×

=RT
224 258 1 555

5

. .
69.744 kN

R R RB T= − = − =224 258 69 744. . 154.514 kN

Summary

 1. Hydrostatics deals with the behaviour of fluids at rest.

 2. A static mass of fluid when comes in contact with a solid 
surface (plane or curved), it exerts a normal force on it and it 
is known as total pressure (p).

 3. Centre of pressure (C ): The point of application of total 
 pressure on the surface.

 4. Centre of gravity or centroid (G ): The point where the 
whole weight of the surface lies.

 5. Total pressure force on the vertical, horizontal or an 
inclined plane immersed surface: F gh AG= ρ , here hG is 
the distance of the centre of gravity of the immersed surface 
from the free surface of the liquid.

 6. The position of the centre of pressure on a plane sur-
face submerged vertically in a static mass of liquid: 
h I Ah hC G G G= +/( ) , here IG is the moment of inertia about 
an axis passing through centre of gravity.

 7. For a submerged horizontal plane surface, the points C and G 
coincides with each other and thus, h hC G= .

 8. The vertical depth of centre of pressure for the inclined 
surface submerged below the free surface of static liquid: 
h I Ah hC G G G= +sin ( )2 α / , here a is the inclination of the 
inclined surface with free liquid surface.

 9. Resultant force on curved surface: F F FH V= +2 2 , here  

FH and FV are the horizontal and vertical forces on curved 
surface, respectively. FH = total pressure force which acts on 
the imaginary vertical projection of the curved surface on 
vertical plane and FV = weight of the liquid supported by the 
curved surface up to the free liquid surface. The inclination of 

F with horizontal: β = −tan ( )1 F FV H/ .

 10. A dam is a structure built across a river or a stream to store 
water whose cross section may be triangular, rectangular or 
trapezoidal.

 11. Horizontal thrust of water on the dam: F ghH w= ( )1 2 2/ ρ ,  
here h is the depth of water stored on the upstream side. FH 
acts at a depth of h hC = 2 3/  below the free surface.

 12. Lock gates are used to change the water level in a canal or 
a river for the purpose of navigation. The resultant force F 
acting at the right angle to the gate: F F F= −1 2, here F1 and 
F2 are the water pressure forces on the gates on the upstream 
and downstream sides, respectively.

 13. Reaction between two gates: R T F= = /( sin )2 α , here T is 
the thrust exerted by the other gate and α  is the inclination 
of the lock gate with normal to the side of the lock.
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 Hydrostatic Forces on Submerged Surfaces 3.37

Multiple-choice Questions

 1. The point of application of the total pressure on the surface is 
called
(a) Centre of pressure.
(b) Centroid.
(c) Both (a) and (b).
(d) None of the above.

 2. Depth of the centre of pressure from the free surface of a liq-
uid on a vertical wall in terms of vertical height (h) is given 
by
(a) h.
(b) h/2.
(c) ( )2 3h / .
(d) All the above.

 3. The hydrostatic pressure force on a plane surface in terms of 
density of liquid ( )ρ , surface area (A), acceleration due to 
gravity (g), distance of centre of gravity from the free surface 
of liquid (hG) is given by

(a) F gAhG= ( )1 2/ ρ .

(b) F gAhG= ρ .

(c) F gAhG= ( )2 3/ ρ .
(d) None of the above.

 4. Centre of pressure of a plane surface immersed in water lies
(a) At the centre of gravity of the plane surface.
(b) Above the centre of gravity of the plane surface.
(c) Below the centre of gravity of the plane surface.
(d) None of the above.

 5. When a vertical wall is subjected to pressure due to water on 
both sides, the resultant pressure is due to
(a) Arithmetic mean of pressures.
(b) Sum of pressures.
(c) Logarithmic mean of pressures.
(d) Difference of pressures.

 6. The water pressure per metre of length on a vertical wall of a 
gravity dam for the depth of water stored (h) is given by

(a) F ghH w= ( )1 2 2/ ρ .

(b) F ghH w= ( )1 3 2/ ρ .

(c) F ghH w= ( )2 3 2/ ρ .

(d) None of the above.

 7. For a submerged curved surface, the vertical component of 
the hydrostatic force is equal to
(a) Force on the projected area of the curved surface on 

 vertical plane.
(b) Mass of the liquid supported by the curved surface.
(c) Weight of the liquid supported by the curved surface.
(d) None of the above.

 8. For a submerged curved surface, the horizontal component of 
the hydrostatic force is equal to
(a) Force on the projected area of the curved surface on 

 vertical plane.
(b) Mass of the liquid supported by the curved surface.
(c) Weight of the liquid supported by the curved surface.
(d) None of the above.

 9. Lock gate is used to
(a) Store water.
(b) To divert water.
(c) Alter water level for navigation.
(d) All the above.

 10. The possibility of dam failure may be due to
(a) Sliding.
(b) Tension or compression.
(c) Overturning.
(d) All the above.

Review Questions

 1. Define the terms (i) hydrostatics, (ii) total pressure and 
(iii) centre of pressure.

 2. Define first moment and second moment of areas.

 3. Derive expressions for total pressure and centre of pressure 
for a vertical submerged surface.

 4. Derive expressions for total pressure and centre of pressure 
for an inclined plane submerged surface.

 5. Determine from the first principle, the horizontal and vertical 
components of the total pressure force on a vessel which is a 
quadrant of a circle of radius r.

 6. Derive an expression for resultant hydrostatic force on a 
curved surface.

 7. Derive an expression for the reaction between the gates as 
R T F= = /( sin )2 α , where T is the thrust exerted by the  
other gate and α  is the inclination of the lock gate with the 
normal to the side of the lock.
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3.38 Chapter 3

Problems

 1. A rectangular plate 2 m × 4 m is submerged vertically in 
water such that the 2 m side is parallel to the water surface. 
Determine the hydrostatic force and the centre of pressure if 
the top edge of the surface is (a) flush with the water surface 
and (b) 1 m below the water surface.

[Ans. (a) 156.96 kN, 2.67 m (b) 235.44 kN, 3.44 m]

 2. A rectangular plate 2 m × 1 m is held in water at a depth of 
1 m below the free water surface (i) if 2 m height is vertical, 
then find the total pressure force on the plate and depth of 
centre of pressure, (ii) if 1 m side lies in vertical plane at the 
same depth, then find the change in total pressure force acting 
and depth of centre of pressure, and (iii) another circular plate 
having the same area of rectangle is also kept at 1 m below 
the free water surface. Also determine the total pressure force 
acting on the circular plate and centre of pressure.

[Ans. (i) 39.24 kN, 2.17 m, (ii) 29.43 kN, 1.55 m,  
9.81 kN, 0.62 m and (iii) 35.32 kN, 1.889 m]

 3. A tank has a square opening on one of its vertical sides. The 
opening is such that one of its diagonal is vertical. It is closed 
by a plate. Find the thrust exerted by the oil (specific gravity =  
0.9) stored in the tank and the position of its centre of pres-
sure, if the diagonal of the square opening is 0.6 m and the 
centre of the opening is 0.4 m below the oil surface.

[Ans. 635.69 N, 0.4375 m]

 4. An isosceles triangular lamina of 2 m base and 4 m height is 
immersed vertically in water. Determine the total pressure on 
the plate and the centre of pressure when (i) base of the lam-
ina coincides with the free surface of water, (ii) base of the 
lamina is 8 m below the water surface (apex above the base), 
and (iii) axis of symmetry passing through the apex being 
horizontal and 8 m below the water surface.

[Ans. (i) 52.32 kN, 2 m, (ii) 261.6 kN, 6.8 m,  
and (iii) 313.92 kN, 8.021 m]

 5. A circular plate of diameter 400 mm is placed vertically in 
water in such a way that the centre of plate is 2 m below the 
free surface of water. Determine the total pressure and the 
position of centre of pressure.

[Ans. 2.466 kN, 2.005 m]

 6. An isosceles triangular lamina of base 3 m and altitude 3 m 
is immersed vertically in water. If base of the plate coincides 
with the free surface of water determine the total pressure and 
centre of pressure.

[Ans. 44.145 kN, 1.5 m]

 7. A square aperture in the vertical side of a tank has one diago-
nal vertical and is completely covered by a plane plate hinged 
along one of the upper sides of the aperture. The diagonals of 
the aperture are 2.4 m long and the tank contains a liquid of 
specific gravity 1.2. The centre of the aperture is 1.8 m below 
the free surface. Determine the thrust exerted on the plate by 
the liquid and the position of its centre of pressure.

[Ans. 61.03 kN, 1.93 m]

 8. Figure 3.14(a) illustrates a tank containing water and oil (spe-
cific gravity = 0.9) up to a height of 0.25 m and 0.5 m, respec-
tively. Determine the total pressure on the side of the tank and 
the position of centre of pressure from one side of the tank 
which is 1.5 m wide.

[Ans. 3.77 kN, 0.502 m from the top]

 9. An opening 2 m wide and 1.2 m high in a dam is covered by 
the use of a vertical sluice gate. On the upstream of the gate 
a liquid (specific gravity = 1.45) is available up to a height of 
1.5 m above the top of the gate, whereas on the downstream 
side the water is available up to a height touching the top of 
the gate. If the gate is hinged at the bottom, then determine 
(i) the resultant force acting on the gate and the position of 
centre of pressure and (ii) the force acting horizontally at the 
top of the gate which is capable of opening it.

[Ans. (i) 57.56 kN, 0.578 m above the hinge and (ii) 27.72 kN]

 10. A rectangular plate 1.2 m deep and 0.6 m wide is immersed 
in water. The minimum and maximum depths of the plate are 
0.75 m and 1.6 m from the free surface. Determine the hydro-
static force on one face of the plate and the depth of centre of 
pressure.

[Ans. 7.95 kN, 1.167 m]

 11. Figure 3.49 shows a circular opening in the sloping wall of a 
reservoir which is closed by 1 m diameter disc valve. The side 
is hinged at point P and a balance weight W is just sufficient 
to hold the valve close when the reservoir is empty. Deter-
mine (i) the total force on the valve and (ii) the additional 
weight required to be placed in order that the valve remains 
closed until the water level is 0.8 m above the centre of the 
valve.

[Ans. 6.164 kN, 2495.89 N]

P

1 m

60°

W

+0.8 m

0.6
5 m

1.75 m

G

Figure 3.49

 12. Figure 3.50 shows an opening in a dam which is closed by 
a 1 m square plate hinged at the upper horizontal edge. The 
weight of the plate is 1000 N. The plate is inclined at an angle 
of 60° to the horizontal and its top edge is 2 m below the water 
surface in the reservoir. If this plate is pulled by means of a 
chain attached to the centre of the lower edge, then determine 
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the necessary pull in the chain. The line of action of the chain 
makes an angle of 45° with the plate.

[Ans. 18.243 kN]

60°
45°

Plate

Dam

Opening

2 m

Chain 1 
m

P

Water surface

Figure 3.50

 13. A rectangular door covering an opening 3 m wide and 2 m 
high in a vertical wall is hinged about its vertical edge by 
two pivots placed symmetrically 250 mm from either end. 
The door is locked by a clamp placed at the centre of the 
vertical edge. The height of water is 1.5 m above the top edge 
of the opening. Find (i) the total pressure on the door, (ii) the 
position of centre of pressure and (iii) the reactions at the two 
hinges and the clamp.

[Ans. (i) 147.15 kN, (ii) 2.633 m and (iii) 49.835 kN, 23.74 kN]

 14. A circular plate 2.5 m in diameter is submerged in a liquid 
(specific gravity = 1.42), its least and greatest depths below 
the free surface are 1 m and 3 m, respectively. Determine 
(i) the total pressure on one face of the plate and (ii) the posi-
tion of centre of pressure.

[Ans. 136.77 kN, 2.125 m]

 15. A rectangular opening which is 3 m long and 1.2 m high in 
the vertical side of a reservoir is closed by a plate with the 
help of four bolts fixed at the corners of the opening. The 
water is stored up to a height of 1.6 m above the top edge of 
the horizontal opening. Determine (i) the total pressure on the 
plate, (ii) the position of centre of pressure and (iii) tension in 
the bolts.

[Ans. (i) 77.69 kN, 2.2545 m, 21.187 kN, 17.658 kN]

 16. An annular plate of external diameter 3 m and internal diam-
eter 1.5 m is submerged in an oil (specific gravity = 0.9) with 
the least and greatest depths below oil surface as 1.2 m and 
3.6 m, respectively. Determine the total pressure and the posi-
tion of the centre of pressure on one face of the plate.

[Ans. 112.305 kN, 2.59 m]

 17. Find the horizontal and vertical components of water pressure 
acting on the face of a tainter gate PQ of 90° sector of radius 
5 m and width 1 m (Figure 3.51).

[Ans. 245.176 kN, 69.994 kN]

P

Q

R

5 m

O

Water surface

90°

Support

FV

M

Figure 3.51

 18. Figure 3.52 shows a gate PQ of quadrant shape with 2 m 
radius supporting water. If the gate is 3 m long and the height 
of the water above the lowest point of the gate is 5 m, then 
find the total resultant pressure force acting on the gate and its 
relative direction with the horizontal surface.

[Ans. 357.51 kN, 48.81°]

P

Q

O

S
Water surface

2 m

3 m

R

5 m

Figure 3.52

 19. The curved shape of a dam is given by the relation y x= ( )2 16/   
If the width of dam is unity and the height of water is stored 
up to 20 m, then calculate the magnitude and direction of the 
resultant water pressure acting over the curved surface.

[Ans. 3053.55 kN, 50.02°]

 20. Each gate of a lock is 5 m high and 4 m wide which is sup-
ported on one side by two hinges, each 0.5 m from the top and 
from bottom. The angle between the gates in closed position 
is 120o. The water levels are 4 m and 1 m on the upstream and 
downstream sides, respectively and the reaction between the 
gates to be in the same horizontal plane as that of the resultant 
water pressure. Determine (i) the magnitude and position of 
the resultant water pressure on each gate and (ii) the magni-
tudes of the reactions at the hinges.

[Ans. (i) 294.3 kN, 1.4 m (ii) 52.97 kN, 241.33 kN]

ANSWERS TO MULTIPLE-CHOICE QUESTIONS

 1. (a) 2. (c) 3. (b) 4. (c) 5. (d)
 6. (a) 7. (c) 8. (a) 9. (c) 10. (d)
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4.1 ❐ INTRODUCTION
For a liquid to be in absolute rest or equilibrium there must be no relative motion between the particles of a liquid or 
between the liquid and the vessel containing it. If there is any relative motion between the liquid and the vessel but there 
is no relative motion among the liquid particles and the entire liquid moves as a single unit, then that liquid is said to be 
in a state of relative rest or relative equilibrium. In such cases, there is no relative motion between the liquid particles and 
thus, there is no shear stress. Therefore, the liquid pressure is normal everywhere to the surface on which it acts. Hence, 
hydrostatic law can be used to evaluate the liquid pressure by taking into account the effect of acceleration. 

A liquid contained in a container may be subjected to horizontal acceleration, vertical acceleration and radial  acceleration. 
D’Alembert’s principle states that a moving liquid mass may be brought to a static equilibrium position by applying an 
imaginary inertia force of the same magnitude as that of the accelerating force but in opposite directions. In this chapter, 
liquid in a container subjected to uniform acceleration in the horizontal and vertical directions and liquid in a container 
subjected to constant rotation under relative equilibrium conditions are explained briefly. 

4.2 ❐ LIQUID CONTAINERS SUBJECTED TO CONSTANT 
HORIZONTAL ACCELERATION 

Consider an open tank partly filled with liquid at absolute rest, the free surface of which is horizontal. Let the tank be 
 subjected to a horizontal acceleration a towards right as shown in Figure 4.1(a). Due to acceleration, the liquid mass 
 redistributes itself to the upwards slope in the direction opposite to that of horizontal acceleration, i.e., the liquid falls at the 
front end and rise at the back end of the container as shown in Figure 4.1(b). The fuel tank in an aeroplane during take-off 
is a good example of a liquid in a container subjected to a constant horizontal acceleration.

Liquid surface

New surface
Original surface

Line of constant pressure

a
A

ma

mgP1F
2F

1ghρ
2ghρ

(a) (b) (c)

α

α

1h
2h

α
x

y

A
a

Figure 4.1 Liquid under constant horizontal acceleration

Chapter 4

Liquids in Relative Equilibrium
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4.2 Chapter 4

An equation for the free liquid surface can be written by considering the equilibrium of a fluid particle A on the free 
surface. As there is no relative motion between particles, there exists no shear stress. Thus, the fluid particle A is subjected 
to the following forces (Figure 4.1(c)), (i) pressure force P exerted by the surrounding fluid particles which acts normal to 
the free surface, (ii) accelerating force which is equal to ma acting horizontally in a direction opposite to the direction of 
acceleration and (iii) gravitational force which is equal to the weight of the fluid element (mg) acting vertically downward. 
Resolving the forces horizontally and vertically, we get the following expressions.

 P masin α =  (i)

	 P mgcos α =  (ii)

Dividing expression (i) by expression (ii), we get:

 tanα =
a

g
 (4.1)

The term (a/g) is constant at all points on the free surface and thus, tan α  is constant. Therefore, the free surface is a 
straight plane inclined down at α  along the direction of acceleration. 

To find the pressure intensity at any point, say at depth h from the free liquid surface consider a fluid element of cross 
sectional area dA. The forces acting on the fluid element are (i) atmospheric pressure force (patmdA) acting downwards, 
(ii) pressure force (pdA) acting upwards and (iii) weight of the element ( )ρghdA  acting downwards. From the equilibrium, 
we get:

 pdA p dA ghdA− − =atm ρ 0 	

	 p p gh= +atm ρ  (4.2)

If pressure is written in gauge units, (i.e., patm = 0), then we have the following expression.

 p gh= ρ  (4.2a)

Therefore, the pressure distribution is same as hydrostatic pressure distribution. Thus, the lines of constant pressure are 
parallel to the inclined liquid surface as shown in Figure 4.1(b). Let h1 and h2 be the depths of liquid at the rear and 
front ends of the container, respectively, hG be the depth of centre of gravity from free surface, b be the width of the  
container and m be the total mass of liquid. The total pressure force exerted on the rear and front ends are respectively given 
by the following expressions.

 F gAh g bh
h gbh

G1 1
1 1

2

2 2
= = × × =ρ ρ

ρ
( )  (4.3)

 F gAh g bh
h gbh

G2 2
2 2

2

2 2
= = × × =ρ ρ

ρ
( )  (4.4)

Therefore, net force is given by,

 F F F= −1 2   (4.5)

Thus, according to Newton’s second law, we get the following expression.

 ma F F= −1 2   (4.5a)

For a closed container completely filled with liquid and subjected to horizontal acceleration, there will be no adjustment 
in the liquid surface. The pressure building up at the rear end will be greater than that at the front end. The slope of the 
constant pressure lines will be governed by Equation (4.1). A portion of liquid will spill out from an open container filled 
with liquid subjected to horizontal acceleration and a new free surface will form. 
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 Liquids in Relative Equilibrium 4.3

 Example 4.1  A rectangular water tank moves horizontally in the direction of its length with a constant acceleration 

of 2.2 m/s2. The tank is 7 m long, 2 m wide, 2 m deep and it contains water to a depth of 1 m. Determine (i) slope of the 
free surface, (ii) maximum and minimum pressure intensities at bottom, (iii) total force acting at the front and back ends 
of the tank, (iv) net force due to water acting on each end of the tank and (v) volume of water getting spilt, if the tank is 
completely filled. 

Solution
Refer Figure 4.2(a). Let a = 2 2. m/s2, l = 7 m, b = 2 m, d = 2 m  and h = 1 m.

a

1F
2F

(a) (b)

1h
2h

h
d

l

ad

l
C A

B

α
α

Figure 4.2

 (i) α =
⎛
⎝⎜

⎞
⎠⎟

= ⎛
⎝⎜

⎞
⎠⎟

=− −tan tan
.

.
1 1 2 2

9 81

a

g
12.64°°  

 (ii) h h
l

h
l a

g1 2 2
1

7

2

2 2

9 81
1 785= + = + × = + × =tan

.

.
.α m

   h h
l

h
l a

g2 2 2
1

7

2

2 2

9 81
0 215= − = − × = − × =tan

.

.
.α m

  Maximum pressure intensity occurs at the bottom of the back end as given by,

	 p ghwmax . .= = × × =ρ 1 1000 9 81 1 785 17510.85 N/m2  

  Minimum pressure intensity occurs at the bottom of the front end as given by,

 p ghwmin . .= = × × =ρ 2 1000 9 81 0 215 2109.15 N/m2  

 (iii) Force at the back end is given by,

 F
gbhw

1
1
2 2

2

1000 9 81 2 1 785

2
= =

× × ×
=

ρ . .
31256.87 N  

  Force at the front end is given by,

 F
gbhw

2
2

2 2

2

1000 9 81 2 0 215

2
= =

× × ×
=

ρ . .
453.47 N  

 (iv) Net force is given by, 

	 F F F= − = − =1 2 31256 87 453 47. . 30803.4 N  

 (v) When the tank is filled completely, then the water surface after spilling would be as shown in Figure 4.2(b). Drop in 
water level at the front end will be equal to distance AB and is given by the following expression.

 AB l l
a

g
= = × = × =tan

.

.
.α 7

2 2

9 81
1 57 m  
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4.4 Chapter 4

  Volume of water spilt is given by,

 v b CABs = × = × × × =area( ) .Δ 2
1

2
7 1 57 10.99 m3  

 Example 4.2  A water tank is 3 m square and contains 1 m of water. How high must its sides be if no water is to be spilt 
when the uniform horizontal acceleration is 5 m/s2.

Solution
Refer Figure 4.3. Let l = b = 3 m, h = 1 m and a = 5 m/s2.

Rise or fall in water surface, i.e., AB = CD is given by, 

 AB CD
l l a

g
= = = × = × =

2 2

3

2

5

9 81
0 7645tan

.
.α m  

Thus, the height of the tank must be at least,

 d h CD= + = + =1 0 7645. 1.7645 m  

 Example 4.3  An open water tank which is 8 m long, 4 m wide and 2 m deep containing water up to a depth of 1.4 m 
of water is uniformly accelerated from rest to 10 m/s. Determine the shortest time in which the tank may be accelerated 
without the water spilling over the edge. 

Solution
Refer Figure 4.3. Let l = 8 m , b = 4 m, d = 2 m, h = 1 4. m and v = 10 m/s. Let t be the shortest time. 

 AB CD d h= = − = − =2 1 4 0 6. . m  

	 a g g
CD

OD
= = × = × =tan .

.
.α 9 81

0 6

4
1 4715  

	 t
v u

a
=

−
=

−
=

10 0

1 4715.
6.796 s   [ ]∵v u at= + 	

 Example 4.4  A spherical water tank of radius 2 m is half filled and it is given a horizontal acceleration of 6 m/s2. 
 Determine the inclination of the water surface to the horizontal and maximum pressure on the tank. 

Solution
Let r = 2 m  and a = 6 2m/s .

α =
⎛
⎝⎜

⎞
⎠⎟

= ⎛
⎝⎜

⎞
⎠⎟

=− −tan tan
.

1 1 6

9 81

a

g
31.45°°

The maximum pressure acting on the boundary where depth is maximum, i.e., at radius is given by the following expression.

 ∴ = = × × =p ghwmax .ρ 1000 9 81 2 19.62 kN   

 Example 4.5  A rectangular water tank which is 5 m long, 3 m wide and 2.5 m deep contains water to a depth of 2 m. 
Determine the horizontal acceleration which should be imparted to the tank in the direction of its length so that (i)  spilling 
of water from the tank is just on the verge of taking place, (ii) the front bottom corner of the tank is just exposed and (iii) the 
bottom of the tank is exposed up to its midpoint. Also determine the total forces on each end of the tank in each case. 

a
d

l
C

A
B

D
O

h

α
α

Figure 4.3
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 Liquids in Relative Equilibrium 4.5

Solution
Refer Figure 4.4. Let l = 5 m , b = 3 m, d = 2 5. m and h = 2 m. Let a  be the required horizontal acceleration to be 
imparted to the tank, F1  be the force acting on the back end, F2 be the force acting on the front end and F  be the net force. 

a
d

l
C

A
B

D
O

h

E F

a

l
C

AB

D

h

E

a

l
C

AB

D

h

E

(a) (b) (c)

2h

F

d d

α

α
α α

α

α

Figure 4.4

 (i) Refer Figure 4.4(a). 

	 h h d h2 2 2 5 2 1 5= − − = − − =( ) ( . ) . m  

 tan
( / )

.

( / )
.α = =

−
=

−
=

CD

OD

d h

l 2

2 5 2

5 2
0 2

	

	
a g= = × =tan . .α 9 81 0 2 1.962 m/s2   

	 F
gbdw

1

2 2

2

1000 9 81 3 2 5

2
= =

× × ×
=

ρ . .
91.97 kN    

	 F
gbhw

2
2

2 2

2

1000 9 81 3 1 5

2
= =

× × ×
=

ρ . .
33.11 kN   

 F F F= − = − =1 2 91 97 33 11. . 58.86 kN   

 (ii) Refer Figure 4.4(b).

	 tan
.

.α = = = =
CD

DE

d

l

2 5

5
0 5  

	 a g= = × =tan . .α 9 81 0 5 4.905 m/s2   

F
gbdw

1

2 2

2

1000 9 81 3 2 5

2
= =

× × ×
=

ρ . .
91.97 kN  

  Since there is no water against face AE, we derive the following expression. 

	 F2 = 0    

 F F F= − = − =1 2 91 97 0. 91.97 kN   

 (iii) Refer Figure 4.4(c).

	 tan
( / )

.

.
α = = = =

CD

DF

d

l 2

2 5

2 5
1  

	 a g= = × =tan .α 9 81 1 9.81 m/s2   

F
gbdw

1

2 2

2

1000 9 81 3 2 5

2
= =

× × ×
=

ρ . .
91.97 kN  
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4.6 Chapter 4

  Since no water against face AE, we get the following expression.

	 F2 = 0    

 F F F= − = − =1 2 91 97 0. 91.97 kN   

 Example 4.6  A closed rectangular water tank which is 6 m long, 2 m wide and 1.6 m deep contains water to a depth of 
1 m and its top has an opening in the front part to have air space at atmospheric pressure. Determine the total pressure force 
on the top of the tank when it is given a constant horizontal acceleration of 2.5 m/s2 along its length. 

Solution
Refer Figure 4.5. Let l = 6 m, b = 2 m, d = 1 6. m, h = 1 m and a = 2 5 2. .m/s

Let F be the force acting on the top of the tank.

tan
.

.
.α = = =

a

g

2 5

9 81
0 255

Volume of air in triangle OAE = Volume of air in rectangle ABDC

	

1

2
OA OA b l b d h× × = × × −tan ( )α

	

	 [ tan ]∵ AE OA= α

1

2
0 255 2 6 2 1 6 12( ) . ( . )OA × × = × × −

	
∴ = =OA

7 2

0 255
5 314

.

.
. m

BO l OA= − = − =6 5 314 0 686. . m

HB BO= = × =tan . . .α 0 686 0 255 0 175 m

The pressure on the top of the tank is shown by the imaginary water weight in triangle HBO extending over the width which 
is given by the following expression.

F g BO HB bw= × × ×ρ 1

2
 

∴ = × × × × × =F 1000 9 81
1

2
0 686 0 175 2. . . 1177.69 N  

4.3 ❐ LIQUID CONTAINERS SUBJECTED TO CONSTANT 
VERTICAL ACCELERATION 

Consider an open tank containing liquid and moving vertically upward with a constant acceleration ‘a’. The free liquid 
 surface in the tank will remain horizontal but the pressure intensity at any point in the liquid will be different from that 
when the tank is stationary. An equation for pressure distribution can be obtained by considering the equilibrium of forces 
acting on an imaginary elementary prism of height h and cross-sectional area dA as shown in Figure 4.6(a). 

a

d

l

C
AB

D

O

h E

F G

H Air

Water

New water surface

Original water surface
α

α

Figure 4.5
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 Liquids in Relative Equilibrium 4.7

Liquid surface

h

(a)

p

W

dA

h

a

ghρ

)]/(1[ gaghp += ρ

Pressure 
increase  

h

a

ghρ

Pressure 
decrease  

)]/(1[ gaghp −= ρ
(b) (c)

P

Q

R

P

Q

R

Figure 4.6

The forces acting on the elementary prism are pressure force equal to pdA acting upwards and weight W of the prism 
 element equal to ρghdA  acting downwards. By applying Newton’s second law of motion, according to which the net force 
in the vertical upward direction will be equal to the product of mass and acceleration. Thus, the expression is derived as 
given below. 

 Pressure force on element – Weight of element = Mass × Acceleration 

 pdA ghdA hdA a− = ×ρ ρ 	

 pdA ghdA hdA a= + ×ρ ρ   

	 p gh
a

g
= +

⎡

⎣
⎢

⎤

⎦
⎥ρ 1  (4.6)

Equation (4.6) shows that the pressure variation is linear and it is greater than static pressure ρgh  by an amount 
[( ) / ].ρgha g  It is also shown in Figure 4.6(b).

If the tank accelerates in downward direction, then the pressure variation is given by the following expression.

 p gh
a

g
= −

⎡

⎣
⎢

⎤

⎦
⎥ρ 1  (4.7)

Equation (4.7) indicates that the pressure intensity is lower than static pressure ρgh  by an amount [( ) ]ρgha g/  as shown 
in Figure 4.6(c).

When the tank is lowered vertically at the gravitational acceleration, then a  becomes equal to g and Equation (4.7) 
becomes p = 0. It means that pressure throughout the liquid mass is same and it is equal to that of the surrounding 
 atmosphere. It is evident that there is no force on the walls or at the base of the tank.

 Example 4.7  A cubical water tank of side 2 m contains water to a depth of 1.5 m. Determine the force acting on the side 
of the tank when (i) it is accelerated vertically upward at 5.5 m/s2 and (ii) it is accelerated vertically downward at 5.5 m/s2. 

Solution
Let l b d= = = 2 m, h = 1 5. m and a = 5 5. m/s2. 

 (i) Refer Figure 4.6(b). 
  When the water tank accelerates upwards, the pressure intensity is derived as follows.

 p gh
a

gw= +
⎡

⎣
⎢

⎤

⎦
⎥ = × × × +⎛

⎝⎜
⎞
⎠⎟

=ρ 1 1000 9 81 1 5 1
5 5

9 81
22965. .

.

.
N/m2	

  Force on the side PQ is given by,

 F p A
QR

PQ bav= × =
+

× ×
( )0

2
  [ ]∵pressure at point P = 0   

 ∴ = × × =F
22965

2
1 5 2. 34447.5 N   
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4.8 Chapter 4

 (ii) Refer Figure 4.6(c). 
  When the water tank accelerates downwards, the pressure intensity is derived as follows. 

 p gh
a

gw= −
⎡

⎣
⎢

⎤

⎦
⎥ = × × × −⎛

⎝⎜
⎞
⎠⎟

=ρ 1 1000 9 81 1 5 1
5 5

9 81
6465. .

.

.
N/m2 	

  Force on the side PQ is given by,

 F p A
QR

PQ bav= × = × × = × × =
2

6465

2
1 5 2. 9697.5 N   

 Example 4.8  An open rectangular tank which is 4 m long and 3 m wide contains a liquid (specific gravity = 0.9) up to 
a depth of 1.5 m. Determine the total force acting on the base of the tank when (i) it is moving vertically upward with an 

acceleration of ( / )g 2 m/s2  and (ii) it is moving vertically downwards with an acceleration of ( / )g 2 m/s2. 

Solution
Let l = 4 m, b = 3 m, S = 0 9. , h = 1 5. m and a g= ( / )2 m/s2. 

 (i) When the water tank is accelerated upwards then pressure intensity is given by,

 p S gh
a

g

g

gw= +
⎡

⎣
⎢

⎤

⎦
⎥ = × × × × +

⎡

⎣
⎢

⎤

⎦
⎥ =ρ 1 0 9 1000 9 81 1 5 1

2
19865 2. . .

( / )
. 55 N/m2  

  Force on the base of the tank is given by,

 F p= × = × × =base area 19865 25 4 3. 238.383 kN   

 (ii) When the water tank is accelerated downwards then pressure intensity is given by,

 p S gh
a

g

g

gw= −
⎡

⎣
⎢

⎤

⎦
⎥ = × × × × −

⎡

⎣
⎢

⎤

⎦
⎥ =ρ 1 0 9 1000 9 81 1 5 1

2
6621 75. . .

( / )
. NN/m2  

  Force on the base of the tank is given by,

 F p= × = × × =base area 6621 75 4 3. 79.461 kN   

4.4 ❐ LIQUID CONTAINERS SUBJECTED TO CONSTANT 
ACCELERATION ALONG INCLINED PLANE 

Consider an open tank containing liquid and moving upwards along the inclined plane with a constant acceleration a  as 
illustrated in Figure 4.7.

Let β  be the inclination of the direction of acceleration with the horizontal surface, then the horizontal and vertical 
components of acceleration are derived as given below.

	 a ax = cos β  (4.8)

 a ay = sin β  (4.9) 

Let α  be the angle of the liquid surface with the horizontal after the redistribution of the liquid. The liquid surface falls on 
the front side and rises up on the back end of the tank. 

An equation for the free liquid surface can be written by considering the equilibrium of a fluid particle M on the free  
surface. As there is no relative motion between the particles, there exists no shear stress. Thus, the fluid particle M is 
 subjected to the following forces (Figure 4.7(b)), such as (i) pressure force p exerted by the surrounding fluid particles 
which acts normal to the fluid element, (ii) accelerating forces, i.e., max acting horizontally and may acting vertically 
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 Liquids in Relative Equilibrium 4.9

downwards and (iii) gravitational force, that is equal to the weight of the fluid element (mg) acting vertically downward. 
Resolving the forces horizontally and vertically, we have the following expressions.

 p maxsin α =  (i)

	 p ma mgycos α = +  (ii)

Dividing expression (i) by expression (ii), we get:

 tanα =
+
a

g a
x

y
 (4.10)

Similarly, when the vessel is moving in the downward direction then Equation (4.10) is derived as given below.

	 tanα =
−
a

g a
x

y
 (4.11)

 Example 4.9  An open rectangular tank which is 6 m long and 3 m wide contains water up to a depth of 2.5 m. Determine 
the angle made by the free surface of the liquid with the horizontal when the tank moves with an acceleration of 4.5 m/s2 
(i) up towards  30° inclined plane and (ii) down towards 30° inclined plane. 

Solution
Refer Figure 4.7. Let l = 6 m, b = 3 m, h = 2 5. m, a = 4 5. m/s2  and β = °30 . 

Let α  be the slope of the free liquid surface, ax and ay be the horizontal and vertical components of acceleration, 
respectively.

	 				 a ax = = ° =cos . cos .β 4 5 30 3 897 m/s2   

 a ay = = ° =sin . sin .β 4 5 30 2 25 m/s2  

 (i) For the tank moving up the inclined plane with constant acceleration, we have the following expression.

	 α =
+

⎛

⎝
⎜

⎞

⎠
⎟ =

+
⎛
⎝⎜

⎞
⎠⎟

=− −tan tan
.

. .
1 1 3 897

9 81 2 25

a

g a
x

y
17.91°°   

 (ii) For the tank moving down the inclined plane with constant acceleration, we have the following expression.

	 α =
−

⎛

⎝
⎜

⎞

⎠
⎟ =

−
⎛
⎝⎜

⎞
⎠⎟

=− −tan tan
.

. .
1 1 3 897

9 81 2 25

a

g a
x

y
27.27°°   

ad

l

C
A
B

D

h

α

M

M
xma

yma

mg

(a) (b)

mg
EF

1h

O

p

pβ

α

α

α
x

y

2h

Figure 4.7
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4.10 Chapter 4

 Example 4.10  An open rectangular tank which is 4 m long and 2 m wide contains a liquid (specific gravity = 0.9) up 
to a depth of 1.5 m. The tank is moving up towards a 30° inclined plane with a constant acceleration of 5 m/s2. Determine 
(i) the angle made by the free surface of the liquid with the horizontal and (ii) pressure at the bottom of the tank at the front 
and back ends. 

Solution
Refer Figure 4.7. Let l = 4 m, b = 2 m, S = 0 9. , h = 1 5. m, β = °30  and a = 5 m/s2.

Let h2 be the height of liquid at front end, h1 be the height of liquid at back end, p2 be the pressure at the bottom of the 
tank at front end and p1 be the pressure at the bottom of the tank at back end.

	 			 a ax = = ° =cos cos .β 5 30 4 33 m/s2   

 a ay = = ° =sin sin .β 5 30 2 5 m/s2  

 (i) When the water tank is accelerated upwards, we derive as follows.

 tan
.

. .
.α =

+
=

+
=

a

g a
x

y

4 33

9 81 2 5
0 35175 	

	 			∴ = =−α tan ( . )1 0 35175 19.38°°   

 (ii) CD OD= = × =tan . .α 4

2
0 35137 0 7035 m

	 											∴ = + = + =h h CD1 1 5 0 7035 2 2035. . . m  

	 													 h h CD2 1 5 0 7035 0 7965= − = − =. . . m   

  Since p S gh
a

gw
y

2 2 1= +
⎛

⎝⎜
⎞

⎠⎟
ρ

	 ∴ = × × × × +⎛
⎝⎜

⎞
⎠⎟

=p2 0 9 1000 9 81 0 7965 1
2 5

9 81
. . .

.

.
8.8244 kN/m2   

  Since  p S gh
a

gw
y

1 1 1= +
⎛

⎝⎜
⎞

⎠⎟
ρ 	

	 ∴ = × × × × +⎛
⎝⎜

⎞
⎠⎟

=p1 0 9 1000 9 81 2 2035 1
2 5

9 81
. . .

.

.
24.4126 kN/m2   

4.5 ❐ LIQUID CONTAINERS SUBJECTED TO CONSTANT ROTATION 
Consider an open cylindrical container partly filled with liquid at absolute rest whose free surface is horizontal. Let the 
container along with the liquid be subjected to rotation about its vertical axis with a constant angular velocity ω . The shape 
of the free surface of liquid becomes concave. This phenomenon is due to the liquid rising above the original surface near 
the walls and it falls down below the original free surface at the centre of the container. When a steady state of rotation 
is reached, the liquid attains equilibrium condition and it rotates as a solid mass with the container at the same angular 
velocity.

In Figure 4.8(a), the path AB shows the free liquid surface before rotation and ′ ′A OB  shows the new free surface after 
attaining steady state.

Consider a small fluid element M at a distance x from the axis of rotation. The liquid element will be in equilibrium  
under the action of the forces, such as (i) weight of fluid element (W) acting downwards, (ii) inertia force given by 
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 Liquids in Relative Equilibrium 4.11

F W x g= ( )ω2 /  which acts radially from the axis of rotation at a distance x and (iii) a force P acting normal to the surface 
of the element due to action of surrounding liquid particles as shown in Figure 4.8(b).

Resolving the forces horizontally and vertically, we get the following expressions.

 P
W

g
xsin α ω= 2  (i)

	 P Wcos α =  (ii)

Dividing expression (i) by expression (ii), we get:

 tan α ω
=

2x

g
 (4.12)

The angle α  is the slope of the tangent drawn to the free surface of the fluid element M.

 
dy

dx

x

g
=

ω2

 (4.13)

Integrating the above expression, we get:

 y
x

g
dx

x

g
C

x

= = +∫
ω ω2

0

2 2

2
 (iii)

Here, C is the constant of integration. Let the vortex O of the curve be the origin, then the boundary conditions become 
y = 0  at x = 0. Substituting this condition in expression (iii), we get the following expression. 

 0
0

2
0

2 2

= + =
ω ( )

,
g

C Ci.e., 	

Substituting the value of C in expression (iii), we get:

 y
x

g
=

ω2 2

2
 (4.14)

From Equation (4.14), it is observed that the shape of the surface of liquid developed is a paraboloid of revolution with its 
section being a parabola. It can also be observed from this equation that the concavity of the surface depends only on the 
angular velocity ω  and the distance x from the axis of rotation. In case of a closed cylinder filled with liquid subjected to 
constant rotation, the lines of constant pressure will also be governed by Equation (4.14).

 Example 4.11  An open cylindrical tank which is 2 m in diameter and 4 m high contains water up to 3 m depth. If the 
cylinder rotates about its vertical axis, then what maximum angular velocity can be attained without any spillage? 

A B

B′A′

O

x

M

y

ω

Axis of
rotation

W

P

F
M W

F P

(a) (b)

α
ααα

αP sin

αP cos

Figure 4.8 Liquid container subjected to constant rotation 
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4.12 Chapter 4

Solution
Refer Figure 4.9. Let d = 2 m, h2 4= m and h1 3= m. 

Let ω  be the angular speed and N be the corresponding speed in rpm. At maximum  
speed, the water surface will just touch the top of the rim of the cylinder. Let AB be 
the free liquid surface before rotation and ′ ′A OB  shows the new free surface after 
attaining steady state. Let y be the water surface elevation at the outer edge above 
vortex O and the expression is OC y= / 2.

	 y h h= − = − =2 2 4 3 22 1( ) ( ) m

But y
x

g
=

ω2 2

2
 

Thus   2
1

2 9 81

2 2

=
×

×
ω

.
  [ / ]∵ x r d= = 2 	

∴ = × × =ω 2 2 9 81 6 2642. . rad/s

 
2

60
6 2642

πN
= .  

	 ∴ =
×

=N
6 2642 60

2

.

π
59.82 rpm  

 Example 4.12  An open cylindrical tank 0.5 m in diameter and 3 m high contains water up to a depth of 1.6 m. If the 
cylinder rotates about its vertical axis at a speed of 250 rpm, then determine the height of the paraboloid formed at the free 
surface. Also determine the speed of rotation required for water to just start spilling, the total pressure force on the bottom 
of the tank and side walls. 

Solution
Refer Figure 4.9. Let d = 0 5. m, h2 3= m, h1 1 6= . m  and N = 250 rpm. Let w be the angular speed and x = r = 0.5 / 2 = 
0.25 m. 

	 ω π π
= =

× ×
=

2

60

2 250

60
26 18

N
. rad/s  

The height of the paraboloid formed at the free surface is given by,

 y
x

g
= =

×
×

=
ω2 2 2 2

2

26 18 0 25

2 9 81

. .

.
2.183 m    

For the water to just spill, the water will just touch the top of the rim of the tank. Thus, rise of water above the original 
become equal to ( )h h2 1− , i.e., ( . ) .3 1 6 1 4− = m .

  ∴ = − = × =y h h2 2 1 4 2 82 1( ) . . m  

But y
x

g
=

ω2 2

2
	

Thus 2 8
0 25

2 9 81

2 2

.
.

.
=

×
×

ω
 

	 				∴ =
× ×

=ω 2 8 2 9 81

0 25
29 65

2

. .

.
. rad/s 	

A B

B′A′

O

ω

C y

h2h1

Figure 4.9
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2

60
29 65

πN
= .  

	 ∴ =
×

=N
29 65 60

2

.

π
283.14 rpm   

Total pressure force on the bottom ( )Fbottom  will be equal to the total weight of the water in the tank and is given by the 
following expression.

 F g r hwbottom = = × × × × =ρ π π2
1

21000 9 81 0 25 1 6. . . 3081.9 N   

Total pressure force on the side walls ( )Fside  will be given by,

 F g rh hside w G= × = × × × × × =ρ π π2 1000 9 81 2 0 25 3
3

22 . . 69342.8 N   

 Example 4.13  An open cylindrical tank 0.6 m in diameter and 1 m high is completely filled with water. It spins about 
its vertical axis at 125 rpm. Determine (i) the water left in the tank when it reaches to its full speed and (ii) the slope of the 
water surface at the point where it just touches the top of the rim of the tank. 

Solution
Refer Figure 4.9. Let d = 0 6. m, h h1 2 1= = m and N = 125 rpm .

Let ω  be the angular speed, y be the height of the paraboloid formed at the free surface and x r= = =0 6 2 0 3. / . m.

 (i) ω π π
= =

× ×
=

2

60

2 125

60
13 09

N
. rad/s  

   y
x

g
= =

×
×

=
ω2 2 2 2

2

13 09 0 3

2 9 81
0 786

. .

.
. m  

  Initial volume of water ( )vinitial  in the tank is given by,

 v r hinitial
3m= = × × =π π2

2
20 3 1 0 2827. . 	

  Volume of water spilled ( )vspilled  is equal to the volume of paraboloid formed and it is derived as follows.

 v r yspilled
3m= = × × × =

1

2

1

2
0 3 0 786 0 11112 2π π . . . 	

  Thus, the volume of water left ( )v  is given by,

 v v v= − = − =initial spilled 0 2827 0 1111. . 0.1716 m3   

 (ii) The slope of the water surface at the point where it meets the rim of the tank is given by equations 4.12 and 4.13 and 
the value is derived as follows.

 
dy

dx

x

g
= =tan α ω2

	

 ∴ =
⎛

⎝
⎜

⎞

⎠
⎟ =

×⎛

⎝
⎜

⎞

⎠
⎟ =− −α ω

tan tan
. .

.
1

2
1

213 09 0 3

9 81

x

g
79.2°°   
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4.14 Chapter 4

 Example 4.14  An open cylindrical tank 0.3 m in diameter and 1.2 m high contains water up to a height of 0.8 m. 
 Determine the speed at which the cylinder may be rotated about its vertical axis so that the axial depth becomes zero. 

Solution
Refer Figure 4.10. Let d = 0 3. m, h2 1 2= . m and h1 0 8= . m. 

Let ω  be the angular speed, N be the corresponding speed in rpm and x r= = =0 3 2 0 15. ./ m.
When axial depth become zero, the depth of paraboloid is calculated as follows.

	 y h= =2 1 2. m 	

But y
x

g
=

ω2 2

2
	

Thus 
ω2 20 15

2 9 81
1 2

×
×

=
.

.
.  

 ∴ =
× ×

=ω 1 2 2 9 81

0 15
32 35

2

. .

.
. rad/s 	

 
2

60
32 35

πN
= .  

	 			∴ =
×

=N
32 35 60

2

.

π
308.92 rpm   

A B

B′A′

O

ω

C

h2 = y
h1

d

Figure 4.10

Summary

 1. D’Alembert’s principle states that a moving liquid mass may 
be brought to a static equilibrium position by applying an 
imaginary inertia force of the same magnitude as that of the 
accelerating force but in opposite directions.

 2. When a tank containing a liquid is accelerated horizontally, 
then the liquid falls at the front end and rises at the back end 
of the container. The slope of the free surface of the liquid 
along the direction of acceleration is given by tan /α = a g ,  
here α  is the inclination of free surface of the liquid and a  
is the horizontal acceleration. 

 3. Pressure variation for an open tank containing a liquid moves 
vertically with a constant acceleration a is p gh a g= +ρ [ ( )]1 /  
(for upward) and p gh a g= −ρ [ ( / )]1  (for downward). 

 4. For an open tank containing liquid and moving upwards 
along the inclined plane (inclination angle β) with a con-
stant acceleration a, the horizontal and vertical components 
of acceleration are a ax = cos β  and a ay = sin β.

 5. For an open tank containing a liquid subjected to a constant 
acceleration a along the inclined plane, the slope of the free 
liquid surface is tan / ( )α = +a g ax y  (for upward) and 
tan / ( )α = −a g ax y  (for downward). 

 6. The shape of the surface of the liquid developed in a con-
tainer subjected to constant rotation is a paraboloid of revo-
lution with its section being a parabola and it is governed by 
y x g= ( ) /ω2 2 2 , here ω  is the angular velocity and x is the 

distance from the axis of rotation. 

Multiple-choice Questions

 1. When an open tank containing a liquid is accelerated in the 
upward direction, then it causes
(a) No change in hydrostatic pressure.
(b) A decrease in hydrostatic pressure.
(c) An increase in hydrostatic pressure.
(d) None of the above.

 2. When an open tank containing a liquid is accelerated with a 
constant linear acceleration, then the free surface of the liquid
(a) Is inclined with smaller depth at the rear.
(b) Is inclined with larger depth at the rear.
(c) Remains horizontal.
(d) None of the above.
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 Liquids in Relative Equilibrium 4.15

 3. When an open tank containing a liquid is vertically acceler-
ated downward, then the free surface of the liquid
(a) Is inclined with smaller depth at the rear.
(b) Is inclined with larger depth at the rear.
(c) Remains horizontal.
(d) None of the above.

 4. When the tank is lowered vertically at the gravitational accel-
eration (g), then pressure intensity (p) at any point in the tank 
is given by which of the following expression?
(a) p gh a g= +ρ [ ( )]1 /  

(b) p gh a g= −ρ [ ( )]1 /  
(c) p = 0
(d) None of the above.

 5. An open tank containing liquid is sliding down an inclined 
plane with uniform velocity, then the free surface of the liquid
(a) Will be parallel to the plane of inclined plane.
(b) Will be horizontal.

(c) Will be inclined to the horizontal whose angle of inclina-
tion depends upon the slope of inclined plane.

(d) None of the above.

 6. When an open cubical tank containing liquid is accelerated 
on a horizontal plane along one of its side, then one fourth of 
the volume of liquid spills out. The acceleration is
(a) ( )2 3g /  
(b) g /3  
(c) g /2  
(d) None of the above.

 7. When an open cubical tank containing liquid is accelerated 
on a horizontal plane along one of its side, then one third of 
the volume of liquid spills out. The acceleration is equal to
(a) ( )2 3g /  
(b) g /3  
(c) g /2  
(d) g

Review Questions

 1.  Explain the effect of constant horizontal acceleration in a tank 
containing liquid. 

 2.  What happens when a liquid is subjected to constant acceler-
ation while moving up along an inclined plane? Also give the 
angle of slope of the free surface of the liquid.

 3. Describe the effect of constant vertical acceleration on the 
pressure distribution for a liquid container.

 4. An open cylindrical container partly filled with a liquid 
rotates about a vertical axis at constant angular velocity. 
Derive an expression for the free surface of the liquid when 
the liquid has attained the angular velocity of the container.

Problems

 1. An open tank which is 8 m long and 2 m deep is filled with 
1.5 m of oil (specific gravity = 0.9). The tank is subjected to 
horizontal acceleration to the velocity of 10 m/s. Determine 
the smallest time to attain this velocity without any spillage.

[Ans. 10.194 s] 

 2.  An open tank 2 m high contains 1.8 m water. How high must 
its side be if no water is to be spilled out when subjected to 
horizontal acceleration of 5 m/s2?

[Ans. 2.31 m] 

 3. An open rectangular tank which is 6 m long, 2.5 m wide and 
2 m deep is moving horizontally in the direction of its length 
with a constant acceleration of 2.2 m/s2. If the depth of water 
in tank is 1 m, then calculate (i) angle of the water surface to 
the horizontal, (ii) maximum and minimum pressure inten-
sities at the bottom and (iii) total force and net force due to 
water acting on each end of the tank.

[Ans. (i) 12.64o (ii) 16.41 kN/m2, 3.21 kN/m2 and 
(iii) 34.32 kN, 1.312 kN, 33.01 kN] 

 4. An open rectangular tank which is 7 m long, 3.6 m wide and 
4 m deep contains water to a depth of 3 m. Determine the 

horizontal acceleration which may be given to the tank along 
its longer side so that (i) there is no spillage of water from 
the tank, (ii) the front bottom of the tank is just exposed and 
(iii) the bottom of the tank is exposed up to its midpoint. Also 
determine the total forces on each end of the tank.

[Ans. (i) 2.803 m/s2, 282.53 kN, 70.632 kN, 211.9 kN,  
(ii) 5.6 m/s2, 282.53 kN, 0 kN, 282.528 kN and  
(iii) 11.213 m/s2, 282.53 kN, 0 kN, 282.53 kN] 

 5. A cubical tank of side 2 m is filled with 1.5 m of a liquid 
(specific gravity = 1.6). Find the force acting on the side of 
the tank when (i) it is accelerated vertically upward at 5 m/s2 
and (ii) it is accelerated downward at 5 m/s2.

[Ans. 53.32 kN, 17.32 kN] 

 6. An open cubical tank with each side 2 m contains oil (specific 
gravity = 0.765) up to a depth of 2 m. Find the force acting 
on the side of the tank when it is moved with an acceleration 
of ( )g / m/s22  in vertically upward and downward directions. 
Also determine the pressure at the bottom of the tank when 
the acceleration rate is g m/s2  vertically downwards.

[Ans. 45.028 kN, 15.01 kN, 0] 
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 7. A tank of length 4 m and width 2 m is filled with oil (specific 
gravity = 0.9) up to a height of 1 m. Determine the total force 
on the sides of the tank when (i) it moves vertically upwards 
with an acceleration of 3 m/s2 and (ii) it moves vertically 
downwards with an acceleration of 3 m/s2.

[Ans. 69.17 kN, 36.77 kN]

 8. An open cylinder of diameter 0.4 m, height 2 m contains a 
liquid up to a height of 1.2 m. Determine the depth of parab-
ola formed at the free surface of the liquid when the tank is 
rotated about its vertical axis at 200 rpm.

[Ans. 0.894 m]

 9. An open cylinder of diameter 0.2 m, height 1.25 m contains 
a liquid up to a height of 0.85 m. Determine the maximum 
speed of the cylinder at which it should be rotated about its 
vertical axis so that no water spills.

[Ans. 378.34 rpm]

 10. An open cylindrical tank of diameter 0.9 m, height 1.2 m 
contains a liquid up to 2/3rd of its height when at rest. If it 
is spun about its vertical axis with an angular velocity, then 
determine (i) the speed of rotation when the liquid just starts 
spilling over the sides of the tank and (ii) what would be the 
speed of rotation and the percentage of liquid left in the tank 
when the point at the centre of the base is just exposed?

[Ans. (i) 84.03 rpm,  
(ii) 102.97 rpm, 24.99%]

 11. An open cylindrical container of diameter 0.15 m and height 
1 m contains a liquid up to a height of 0.76 m from its bottom 
when at rest. If it is spun about its vertical axis with a speed 
of 240 rpm, then determine (i) the height of the paraboloid 
formed at the free surface of liquid, (ii) maximum speed at 

which the container is rotated so that no water spills out and 
(iii) speed at which the axial depth of liquid becomes zero.

[Ans. (i) 0.181 m, (ii) 390.76 rpm, (iii) 563.98 rpm]

 12. An open cylindrical container of diameter 0.15 m and height 
1 m contains a liquid up to a height of 0.65 m from its bottom 
when at rest. If it is spun about its vertical axis, then deter-
mine the speed so that the axial depth becomes zero.

[Ans. 563.98 rpm]

 13. An open cylindrical container of diameter 0.5 m and height 
0.85 m contains a liquid up to its full height. If it is spun about 
its vertical axis at 100 rpm, then determine the liquid left in 
the container when it reaches to its full speed. Also find the 
slope of liquid surface at the point where it meets the rim of 
the container.

[Ans. 0.1327 m3, 2.794]

 14. An open cylindrical tank of diameter 0.2 m and length 1 m 
contains a liquid up to a height of 0.8 m. If it is spun about 
its vertical axis, then determine the maximum speed so that 
there is no spillage of the liquid.

[Ans. 267.52 rpm]

 15. An open cylindrical tank of diameter 0.4 m and length 0.8 m 
contains a liquid (specific gravity = 1) up to a height of 0.6 m. 
If it is spun about its vertical axis at a speed of 240 rpm, then 
determine (i) the height of the paraboloid formed at the free 
surface of the liquid, (ii) how fast should the tank be rotated 
so that the liquid is just on the point of spilling and (iii) pres-
sure on the side walls and bottom of the container.

[Ans. (i) 1.287 m, (ii) 133.76 rpm,  
(iii) 739.66 N, 3944.84 N]

ANSWERS TO MULTIPLE-CHOICE QUESTIONS

 1. (b) 2. (b) 3. (c) 4. (c) 5. (b)
 6. (c) 7. (a)
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5.1 ❐ INTRODUCTION
When a body is immersed in a fluid it is subjected to two forces, namely gravitational force (or body force) and  buoyant 
force (or an upthrust or surface forces). The gravitational force is due to the weight of the body and it acts vertically 
 downwards. The buoyant force is exerted by the liquid (fluid) on the body and it acts vertically upwards. A body placed on 
the free surface of a liquid will either sink or float. In this chapter, the equilibrium of floating as well as submerged bodies 
has been described. The concept of floating and submerged bodies is used in various practical applications, such as boats, 
ships, submarines and toys. The necessary conditions required for the body to float and for its stability are also discussed 
in this chapter.

5.2 ❐ BUOYANCY, BUOYANT FORCE AND CENTRE OF BUOYANCY

5.2.1 Buoyancy
A body feels lighter and it weighs less in water (liquid) than it does in air which suggests that water exerts an upward force. 
Therefore, when a body is immersed in fluid (water) either wholly or partially, an upward force is exerted by the fluid on 
the body which tends to lift up. This tendency for an immersed body to be lifted up in the fluid is known as buoyancy.

5.2.2 Buoyant Force
The force tending to lift up an immersed body against the gravitational force is called buoyant force (or force of buoyancy) 
and it is denoted by FB. It is also known as upthrust which is equal to the weight of the fluid displaced by the body.

5.2.3 Centre of Buoyancy
The point of application of the buoyant force on the body is known as centre of buoyancy and it is denoted by B. The centre 
of buoyancy will be the centre of gravity of the fluid displaced. The buoyant force exerted by the fluid on the body can be 
calculated by Archimedes’ principle.

5.3 ❐ ARCHIMEDES’ PRINCIPLE
The Archimedes’ principle states that when a body is immersed in a fluid either wholly or partially, it is lifted up by a force 
which is equal to the weight of the fluid displaced by the body. It is due to this upward force acting on an immersed body 
in a fluid, where the body experiences an apparent weight loss. Thus, a body has less weight in a liquid than outside. Since 

Chapter 5

Buoyancy and Floatation
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5.2 Chapter 5

liquids are heavier than gases (air), we are conscious about their buoyant forces. However, air also exerts buoyancy on any 
body immersed in it. Therefore, in the design of balloons and blimps, the buoyant force of air (instead of being negligible) 
is the controlling factor.

5.3.1 Proof
Consider a body completely immersed in a liquid of density r as shown in Figure 5.1(a). Let dA be the cross sectional  
area of a small vertical element, dv be the volume of the small element, p1 and p2 be the intensity of pressures at depths h1 
and h2, respectively.

The force acting on the top face of the element is equal to p dA gh dA1 1= ×ρ  which acts vertically downwards. The force 
on the bottom face of the element is equal to p dA gh dA2 2= ×ρ  which acts vertically upwards. The net force on the element 
is equal to the buoyant force dFB which acts upwards ( )∵h h2 1>  and it is given below.

dF gh dA gh dA g h h dA g dvB = − = × − = ×ρ ρ ρ ρ2 1 2 1( )

The total buoyant force is given by,

	 F dF gdv gv WB B d= = = =∫ ∫ ρ ρ  (5.1)

Here, v is the volume of the submerged body which is equal to the volume of fluid displaced by the body and Wd is the 
weight of the fluid displaced by the body.

Thus, buoyant force is equal to the weight of the fluid displaced by the body. It acts through centre of buoyancy which 
coincides with the centroid of the displaced volume. For a fully submerged body, the centre of buoyancy (B ) coincides with 
the centre of gravity (G ) of the body. Further, the lines of action of both the buoyant force and the weight of the body must 
be along the same vertical line, so that their moment about any axis is zero.

When a body floats on the surface of separation between two immiscible fluids of different density (assume ρ1 and ρ2) 
(Figure 5.1(b)), then the total buoyancy force is given below.

	 F gv gvB = +ρ ρ1 1 2 2  (5.2)

Here, v1 is the volume of the body submerged in the liquid of density ρ1  and v2 is the volume of body submerged in the 
liquid of density ρ2.

It is observed from the discussion that a body will sink if its weight (W) is greater than the buoyant force (FB). Thus, if 
W > FB, then the body would sink, but if F WB ≥ then it would float.

 Example 5.1  A cuboidal wooden block (specific gravity = 0.65) that is 3.5 m long, 1.3 m wide and 2 m deep floats 
horizontally in sea water (specific gravity = 1.025). Determine (i) the volume of liquid displaced and (ii) the position of 
centre of buoyancy.

h

B

O O

dA

h1

h2

p1

p2

FB

Immersed
body

Interface

Liquid 1 (    )1
ρ

Liquid 2 (    )2
ρ

Immersed body

(a) (b)

Tank

Figure 5.1 Archimedes’ principle
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 Buoyancy and Floatation 5.3

Solution
Refer Figure 5.2. Let Swood = 0 65. , l = 3 5. m, b = 1 3. m, d = 2 m 

and Ss = 1 025. . Let W be the weight of the wooden block, v be the 

volume of water displaced by the block, B be the centre of buoyancy 

and ρw = 1000 kg/m3 be the density of water.

 (i) Let W S g lbdw= ×

= × × × × × =
wood

N

ρ

0 65 1000 9 81 3 5 1 3 2 58026 15. . . . .

  Weight of the liquid displaced by the body = Weight of the wooden block

  Thus S gv Ws wρ =

∴ = =
× ×

v
W

S gs wρ
58026 15

1 025 1000 9 81

.

. .
 = 5.771 m3

 (ii) Let h be depth of wooden block under water and we get the following result.

3 5 1 3 5 771. . .× × =h  [ ]∵v lbh=

∴ =
×

=h
5 771

3 5 1 3
1 268

.

. .
. m

B
h

= =
2

1 268

2

.
 = 0.634 m from base

 Example 5.2  A metallic body weighs 500 kN in air and 250 kN in water. Determine the volume of body and its specific 
gravity.

Solution
Let W = 500 kN and W1 250= kN . Let v be the volume of body which is equal to the volume of water displaced by it 
and S be its specific gravity. The reduction in weight of the metallic body when immersed in water is due to the buoyancy 
force (FB).

F W WB = − = − =1 500 250 250 kN

But F gvB w= ρ

∴ = = ×
×

=v
F

g
B

wρ
250 10

1000 9 81

3

.
25.4842 m3

The specific weight of metallic body is given by,

w
W

v
= =

×
=

500 10

25 4842
19620

3

.
N/m3

S
w

gw
= =

×
=

ρ
19620

1000 9 81.
2

 Example 5.3  A metallic body floats at the interface of mercury (Hg) and water (H2O) in a tank such that 35% of its 
volume is submerged in mercury and 65% in water. Find the density of the metallic body. Take density of mercury as 
13600 kg/m3 and density for water as 1000 kg/m3.

h B
FB

b

d

G
W

Sea water surface

(Ss = 1.025) 

Wooden block
(Swood = 0.65)

Figure 5.2
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5.4 Chapter 5

Solution
Refer Figure 5.3. Let v be the volume and ρ  be the density of the 
 metallic body.

Let v v1 0 35= .  be the volume of the body submerged into mercury, 

v v2 0 65= .  be the volume submerged into water, ρHg = 13600 kg/m3 

and ρw = 1000 kg/m3.

Weight of metal piece = Weight of Hg displaced + Weight of H2O displaced

or ρ ρ ρgv gv gvHg w= +1 2

ρ × × = × × + × ×9 81 13600 9 81 0 35 1000 9 81 0 65. . . . .v v v

∴ = × + ×ρ 13600 0 35 1000 0 65. . 	=	5410 kg/m3

 Example 5.4  If a piece of ice (specific gravity = 0.93) floats in sea water (specific gravity = 1.04), then determine the 
percentage volume of ice outside the water.

Solution
Let Si = 0 93.  and Ss = 1 04. . Let v be the total volume of the ice piece and x be a fraction of it outside water.

Weight of ice piece = Weight of water displaced by ice piece

S g v S g x vi w s wρ ρ× = × −( )1

0 93 1000 9 81 1 04 1000 9 81 1. . . . ( )× × × = × × × −v x v

1
0 93

1 04
0 8942− = =x

.

.
.

∴ = −x 1 0 8942. 	=	0.1058 or 10.58%

 Example 5.5  A wooden body of height 73 mm floats in a water tank of height 25 mm projecting above the water surface. 
The same wooden body when placed in glycerine tank is projected 37.5 mm above the surface of glycerine. Find (i) the 
relative density of the wooden body and (ii) the relative density of glycerine.

Solution
Refer Figure 5.4. Let d = 73 mm, y1 25= mm and y2 37 5= . mm . Let Swood  be the relative density of wooden body and 
Sg be the relative density of the glycerine.

Water

Wooden body

GlycerinTank

y1

d
h1

Wooden body

Tank

y2

d h2

G

B
G

B

(a) (b)

Figure 5.4

Interface

Mercury

Water

Metallic body

Tank

Figure 5.3
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 Buoyancy and Floatation 5.5

 (i) Refer Figure 5.4(a). Let mmh d y1 1 73 25 48= − = − =

Weight of wooden body = Weight of water displaced

  or ρ ρwood gAd gAhw= 1

ρ
ρ
wood

w

h

d
= 1

∴ = = =S
h

dwood
1 48

73
0.6575

 (ii) Refer Figure 5.4(b). Let mmh d y2 2 73 37 5 35 5= − = − =. .

Weight of wooden body = Weight of glycerine displaced

  or ρ ρwood gAd gAhg= 2

( )S gAd gAhw gwoodρ ρ= 2

ρ
ρ

g

w

S d

h
= wood

2

∴ = =
×

=S
S d

hg
wood

2

0 6575 73

35 5

.

.
1.352

 Example 5.6  If a wooden log that is 0.8 m in diameter, 7 m long and of specific gravity 0.65 floats in water, then find 
its depth in water.

Solution
Refer Figure 5.5. Let d = 0 8. m, l = 7 m and Swood = 0 65. .

Let h be the depth of the wooden log in water and v be the volume of water 
displaced.

r
d

= = =
2

0 8

2
0 4

.
. m

Weight of wooden log = Weight of water displaced

or S gAl gvw wwoodρ ρ=

v S Al S d l= = × ×wood wood
π
4

2

∴ = × × × =v 0 65
4

0 8 7 2 28712. . .
π

m3

Area m3( ) .PQRP l× = 2 2871

Area m2( )
. .

.PQRP
l

= = =
2 2871 2 2871

7
0 3267

Area Area m2( ) ( ) .POQRP POQ+ =Δ 0 3267

Wooden log

P

O

Q

R

h

rr
α2 αr cos

αr sin

Figure 5.5
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5.6 Chapter 5

π α α αr r r2 360 2

360
2

1

2
0 3267

−⎡
⎣⎢

⎤
⎦⎥

+ ×⎡
⎣⎢

⎤
⎦⎥

=sin cos .

π α α αr r2 21
180

0 3267−⎡
⎣⎢

⎤
⎦⎥

+ =sin cos .

π α α α× × −⎡
⎣⎢

⎤
⎦⎥

+ =0 4 1
180

0 4 0 32672 2. . sin cos .

π π α α α× −
× ×

+ =0 4
0 4

180
0 4 0 32672

2
2.

.
. sin cos .

0 503 2 792 10 0 16 0 32673. . . sin cos .− × + =− α α α

Let α = °76 3.  [Hit and trial]

0 503 2 792 10 76 3 0 16 76 3 76 3 0 32673. . . . sin . cos . .− × × + ° ° =−

0 3267 0 3267. .≈

Since L.H.S R.H.S.. ≈

Thus α = °76 3.

h r r= + = + ° =cos . . cos .α 0 4 0 4 76 3 0.4947 m

 Example 5.7  A football of diameter 40 cm fell into a water tank, 20% of its volume is found under water. Determine 
the density of the football.

Solution
Let d = =40 0 4cm m. . Let ρ f  be the density of football and v be its volume.

Volume of water displaced of= =20 0 2% .v v

Weight of football = Weight of water displaced

or ρ ρf wgv g v= × 0 2.

∴ = × = ×ρ ρf w 0 2 1000 0 2. . 	=	200 kg/m3

 Example 5.8  An iceberg of relative density 0.92 floats in sea water (specific gravity = 1.03). Find the weight of the 
iceberg if the volume of ice above the water surface is 10 m3.

Solution
Let Si = 0 92. , Ssea = 1 03.  and ( )v vb− = 10 m3, where v is the total volume of the iceberg and vb is the volume of iceberg 

below the water surface.

Weight of iceberg = Weight of water displaced by iceberg

or S gv S gvi w w bρ ρ= sea

Thus 0 92 1000 9 81 1 03 1000 9 81. . . .× × × = × × ×v vb

∴ = =v v vb
0 92

1 03
0 8932

.

.
.
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 Buoyancy and Floatation 5.7

Since v vb− = 10 m3

v v− =0 8932 10.

0 1068 10. v =

∴ = =v
10

0 1068
93 633

.
. m3

The weight of iceberg is given by,

W S gvi w= = × × × =ρ 0 92 1000 9 81 93 633. . . 845.06 kN

 Example 5.9  A wooden block (specific gravity = 0.65) that is 2.5 m long, 1 m wide and 0.5 m high floats in a water 
tank. Determine the volume of concrete of specific weight 24.5 kN/m3, that may be kept on the block and immerse the  
(i) block completely in water and (ii) block and the concrete completely in water. Take weight density of water as 9.81 kN/m3.

Solution
Let Swood = 0 65. , l = 2 5. m, b = 1 m, d = 0 5. m, wc = 24 5. kN/m3 and wwater

3kN/m= 9 81. .

Let vc be the volume of the concrete and vwood  be the volume of wooden block which is equal to the volume of water 
displaced.

Water

Wooden block

(a) (b)

Concrete

Water

Wooden block

Concrete

Figure 5.6

 (i) Refer Figure 5.6(a). We get the following relation when the block is completely immersed.

Weight of the concrete + Weight of wooden block = Weight of water displaced

  or w v S w v w vc c + =wood water wood water wood

24 5 0 65 9 81 2 5 1 0 5 9 81 2 5 1 0 5. . . ( . . ) . ( . . )× + × × × × = × × ×vc

∴ =
× × × − × × × ×

=vc
9 81 2 5 1 0 5 0 65 9 81 2 5 1 0 5

24 5

. ( . . ) . . ( . . )

.
0.1752 m3

 (ii) Refer Figure 5.6(b). We get the following relation when the block and concrete is completely immersed.

Weight of the concrete and wooden block = Weight of water displaced

w v S w v w v vc c c+ = +wood water wood water wood( )

24 5 0 65 9 81 2 5 1 0 5 9 81 2 5 1 0 5. . . ( . . ) . [ . . ]× + × × × × = × × × +v vc c

24 5 9 81 9 81 2 5 1 0 5 0 65 9 81 2 5 1 0 5. . . ( . . ) . . ( . . )v vc c− = × × × − × × × ×

∴ =
× × × − × × × ×

−
=vc

9 81 2 5 1 0 5 0 65 9 81 2 5 1 0 5

24 5 9 81

. ( . . ) . . ( . . )

. .
0.2922 mm3
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5.8 Chapter 5

 Example 5.10  A wooden block (specific gravity = 0.64) that is 0.12 m square in cross-section and 2.6 m long floats in 
a water tank. Determine how much lead (specific gravity = 12.5) is to be attached at the lower end of the block so that it 
floats vertically in water with 0.6 m length out of the water.

Solution
Refer Figure 5.7. Let Swood = 0 64. , b = 0 12. m, l = 2 6. m, Sl = 12 5.  and 
y = 0 6. m.

Let vwood  be the volume of the wooden block in water and vl be the 

volume of lead, Wl be the weight of the lead and Wwood  be the weight of 

the wooden block.

W S g bblwwood wood N= × = × × × × × =ρ 0 64 1000 9 81 0 12 0 12 2 6 235 063. . . . . .

The volume of wooden block in water which is equal to the volume of water displaced by it is given below.

v b b l ywood
3m= × × − = × × − =( ) . . ( . . ) .0 12 0 12 2 6 0 6 0 0288

The volume of lead in water which is equal to the volume of water displaced by it is given below.

v
S g

W W
l

l w

l l= =
× ×

=
Weight

m3

ρ 12 5 1000 9 81 122625. .

Thus, ( )W Wlwood +  is equal to the sum of weight of water displaced by block and weight of water displaced by the lead.

W W gv gvl w w lwood wood+ = +ρ ρ

Thus 235 063 1000 9 81 0 0288 1000 9 81
122625

. . . .+ = × × + × ×W
W

l
l

235 063 282 528 0 08. . .+ = +W Wl l

W Wl l− = −0 08 282 528 235 063. . .

0 92 47 465. .Wl =

∴ = =Wl
47 465

0 92

.

.
51.5924 N

 Example 5.11  A metallic cube has side 0.25 m and it weighs 250 N when lowered into a tank containing a two-fluid 
layer of water and mercury. Determine the position of block at mercury-water interface when it has reached equilibrium.

Solution
Refer Figure 5.8. Let b = 0 25. m and W = 250 N.

The metallic cube sinks beneath the water surface and comes to rest at 
the water-mercury interface. Let h1 be the depth of cube in water and h2 
be the depth of cube in  mercury in metres. The weight of cubical block is 
equal to the sum of weight of water  displaced and the weight of mercury 
displaced.

W gv S gvw w= +ρ ρwater Hg Hg

Thus 250 1000 9 81 0 25 0 25 13 6 1000 9 81 0 25 0 251 2= × × × × + × × × × ×. ( . . ) . . ( . . )h h

250 1000 9 81 0 25 0 25 13 61 2= × × × × +. . . ( . )h h

Water

Wooden block
l

y

Lead

Figure 5.7

Water
h1

h2

Mercury
Metallic cube

Interface

Figure 5.8
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 Buoyancy and Floatation 5.9

h h1 213 6
250

1000 9 81 0 25 0 25
+ =

× × ×
.

. . .

	 h h1 213 6 0 40775+ =. .  (i)

Since h h1 2 0 25+ = .  (ii)

Subtracting expression (ii) from (i), we get:

12 6 0 40775 0 25 0 157752. . . .h = − =

∴ = =h2
0 15775

12 6

.

.
0.01252 m or 12.52 mm

∴ = − =h1 0 25 0 01252. . 0.23748 m or 237.48 mm

5.4 ❐ METACENTRE
Metacentre (M) is defined as the point about which a floating body starts oscillating when it is given a small angular 
 displacement. A floating body in static equilibrium is acted upon by two forces, namely the weight of the body W acting at 
G and the buoyant force FB acting at B as shown in Figure 5.9(a). These two forces are equal and opposite and the points 
G and B lie along the same vertical line which is the normal axis.

When this body is given a small angular displacement (or angle of heel), such as α  in clockwise direction, the centre of 
buoyancy moves to a new position B1 and thus, the buoyant force acts in a vertical upward direction at this new point. Now 
if a vertical line is drawn through the new centre of buoyancy B1, then it intersects the normal axis of the body through BG 
at point M, which is called the metacentre.

Thus, metacentre may also be defined as the point of intersection between the normal axis of the floating body which 
passes through the points B and G and a vertical line passing through the new centre of buoyancy B1. The position of the 
metacentre practically remains constant for small values of angular displacement.

5.5 ❐ METACENTRIC HEIGHT AND METHODS OF ITS DETERMINATION
Metacentric height is the distance between the centre of gravity G and the metacentre M of a floating body. In Figure 5.9(b), 
GM is the metacentric height. The normal ranges of metacentric heights for different ships are (i) sailing ships: 0.45 to 
1.25 m, (ii) battle ships: 1 to 1.5 m, (iii) merchants ships: 0.3 to 1 m and (iv) river crafts: up to 3.5 m.

The metacentric height of a floating body can be determined by either of the methods, such as (i) analytical method and 
(ii) experimental method.

B1B

G
W

FB FB

B

G

M

W
(a) (b)

α

α

Angular
displacement

Figure 5.9 Metacentre and metacentric height
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5.10 Chapter 5

5.5.1 Analytical Method
Figure 5.10(a and c) illustrates the front view and top view of a floating body (boat or a ship) in equilibrium at the water 
surface in which points G and B lie on the normal vertical axis. Let l be the length, b be the width or breadth, d be the depth 
or height and h be the depth of immersion of the floating body.

Figure 5.10(b) illustrates the position of the floating body after it has been given a small angular displacement α  in 
the clockwise direction in which B1 is the new centre of buoyancy. The vertical line through B1 cuts the normal axis (axis 
of symmetry) at M, i.e., the metacentre and GM is the metacentric height. In the tilted position, the wedge shaped portion 
POP ′ comes out of the water on the left of the axis, whereas the wedge shaped portion QOQ ′ goes inside water on the 
right of the axis. The wedge shaped portions represent gain or loss in buoyant force on either side of the axis of symmetry. 
The buoyancy force dFB acts at the centre of gravity of the displaced portions POP ′  in the downward direction, thus there 
is a loss in buoyancy force on the left side. The buoyancy force (dFB) acts at the centre of gravity of the displaced portions 
QOQ ′ in the upward direction. Thus, there is a gain in buoyancy force on the right side. The angle of heel α  is such that

α α α≈ ≈tan sin .
The weight of the body W acting at G and the buoyant force FB acting at B (Figure 5.10(a)) are equal and opposite. If v is 

the volume of water displaced by the body, we get the following expression.

F W gvB w= = ρ

The moment due to displacement of centre of buoyancy from B to B1 is given by,

	 = × = × = = ×F BB F BM F BM gv BMB B B w1 sinα α ρ α  (5.3)

B1B

G
W

FB FB

B

G

M

W

(a) (b)

P′

P
O

Q

Q′

dFB

P Q
(Front views)

α

dFB

O

α

α
α

x

Angular
displacement

b

d
h

dx
x

dA(Top view)

y

y

Fore-and-aft axis

O

(c)

l

Figure 5.10 Metacentric height of a floating body
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 Buoyancy and Floatation 5.11

Now consider an elemental strip of thickness dx and area dA l dx= ×  in the top view at a distance x from the axis y–y as 
shown in Figure 5.10(c), where l is the length of the floating body. The height of the elemental strip (dh) in the front view 
at a distance x (Figure 5.10(b)) is given by the following expression.

dh x QOQ x= × ∠ ′ = × α
The volume of the elemental strip (dv) is given by,

dv dA dh dA x= × = × α
The weight of the elemental strip (dW) is given by,

dW dv g dAx gw w= × × = × ×ρ ρ α

Thus, the gain in buoyant force is given by,

	 dF dW g xdAB w= = ρ α  (5.4)

Similarly, if a small elemental area dA is considered at a distance x from the axis y y−  towards the left of the axis, then 
the weight of the strip will be the same. The loss in buoyant force acting on this element is the weight dW of the element 
below the waterline and it is also given by Equation (5.4). These two buoyant forces acting in opposite directions constitute 
a couple which is given by the following expression.

⇒ × + = = × × =dF x x dF x g xdA x g x dAB B w w( ) 2 2 2 2ρ α ρ α

Therefore, the moment of the couple for the whole wedge is as follows.

	 ⇒ ∫ 2 2ρ αw g x dA  (5.5)

In Equation (5.5), 2 2x dA∫  is the second moment of area (or moment of inertia) of horizontal sectional area of the body 

at the water surface about its longitudinal axis y y−  and it is denoted by I. It is pertinent to mention here that the body of 
ships or boats is more stable about x x−  axis (transverse axis) than y y−  axis (longitudinal axis). Therefore, the rotational 
stability about y y−  axis is considered in practice.

From Equation (5.5), we get:

	 ⇒ ×ρ αw g I  (5.6)

The moment of the couple due to buoyant forces dFB must be equal to the moment caused by the displacement of the centre 
of buoyancy from B to B1. From Equations (5.3) and (5.6), we get:

ρ α ρ αw wgvBM g I=

	 BM
I

v
=  (5.7)

Here, sometimes BM is also known as metacentric radius.
The metacentric height is given by,

	 GM BM BG
I

v
BG= − = −  (5.8)

If the centre of gravity G lies below the centre of buoyancy B, then the metacentric height is given below.

	 GM
I

v
BG= +  (5.9)

5.5.2 Experimental Method
The Figure 5.11(a) illustrates a floating body (a vessel or a ship or a boat) in equilibrium at the water surface in which 
points G and B lie on the normal vertical axis and the top surface of the body is horizontal. Let w1 be a movable weight 
placed centrally on the floating body and W be the total weight of the body including the movable weight w1.
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B1B

G
W

FB
B

G

M

G1

x

(a) (b)

w1

w1

(Front views)
FB

W

α

Figure 5.11 Experimental method for metacentric height of a floating body

Now the weight w1 is moved transversely through a distance x so that the body tilts through a small angle α  and attains 
a new equilibrium position. The angle α  can be measured with the help of a plumb line and a protractor provided on the 
floating body. The movement of w1 through distance x to the right of the axis changes the centre of gravity of the body from 
G to G1 and the centre of buoyancy from B to B1 as shown in Figure 5.11(b). Under equilibrium, the moment due to change 
in position of w1 and the moment due to change of G to G1 will be equal.

Thus w x W GG W GM1 1× = × = × tanα

	 ∴ =GM
w x

W
1

tanα
 (5.10)

 Example 5.12  If a wooden block (specific gravity = 0.65) of size 4 m × 2 m × 1.6 m floats in water, then determine 
(i) the weight of the wooden block and (ii) its metacentric height.

Solution
Refer Figure 5.12. Let Swood = 0 65. , l = 4 m, b = 2 m and d = 1 6. m.

Let W  be the weight of the wooden block which is equal to the weight 
of water displaced, GM  be the metacentric height and h  be the depth of 
immersion.

 (i) Weight of the wooden block = Weight of water displaced

S g gw wwood Volume of block Volume of block in waterρ ρ× = ×

S g lbd g lbhw wwoodρ ρ× = ×( ) ( )

  Thus 0 65 1000 9 81 4 2 1 6 1000 9 81 4 2. . ( . ) . ( )× × × × × = × × × × h

∴ = × =h 0 65 1 6 1 04. . . m

W S g lbhw= = × × × × × =wood ρ ( ) . . ( . )0 65 1000 9 81 4 2 1 04 53052.48 N

 (ii) Moment of inertia of the top view at water surface about y y−  is given 
by,

I
lb

= =
×

=
3 3

4

12

4 2

12
2 667. m

v lbh= = × × =4 2 1 04 8 32 3. . m

BM
I

v
= = =

2 667

8 32
0 3205

.

.
. m

B

G

(Top view)

(Front view)

b

y

y

h
d

O

M

l

y

Figure 5.12
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 Buoyancy and Floatation 5.13

OM OB BM
h

BM= + = + = + =
2

1 04

2
0 3205 0 8405

.
. . m

OG
d

= = =
2

1 6

2
0 8

.
. m

∴ = − = − =GM OM OG 0 8405 0 8. . 0.0405 m

 Example 5.13  A rectangular barge of dimensions 10 m × 3 m weighs 75 tons and its centre of gravity lies 1.3 m above 
the bottom. Determine the metacentric height when it floats in fresh water.

Solution
Refer Figure 5.12. Let l = 10 m, b = 3 m, m = = ×75 75 103tons kg  and OG = 1 3. m.

Let GM  be the metacentric height and h  be the depth of immersion.

W mg N= = × ×( . )75 10 9 813

Volume of water displaced by the barge is given by,

v
W

gw
= =

× ×
×

=
ρ

75 10 9 81

1000 9 81
75

3
3.

.
m

10 3 75× × =h  [ ]∵v lbh=

∴ =
×

=h
75

10 3
2 5. m

Thus OB
h

= = =
2

2 5

2
1 25

.
. m

Moment of inertia of the top view at water surface about y y−  is given by,

I
lb

= =
×

=
3 3

4

12

10 3

12
22 5. m

BM
I

v
= = =

22 5

75
0 3

.
. m

OM OB BM= + = + =1 25 0 3 1 55. . . m

GM OM OG= − = − =1 55 1 3. . 0.25 m

 Example 5.14  A rectangular pontoon of length 20 m and weight 2750 kN floats in fresh water of specific weight  
10 kN/m3. Its centre of gravity lies 25 cm above the centre of cross section and for 10° angle of heel its metacentric height 

is 1 m. If 0.6 m height portion of the pontoon is lying outside water, then determine its breadth and height.

Solution
Refer Figure 5.12. Let l = 20 m, W = 2750 kN , w = 10 3kN/m , OG d= +( ) ./2 0 25, α = °10 , GM = 1 m  and y = 0 6. m, 

where d  is the depth or height of the pontoon and b  is its width or breadth and h  is the depth of immersion.
Total volume of water displaced is given by,

v
W

w
= = =

2750

10
275 3m
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OB
h d y d

= =
−

=
−

2 2

0 6

2

.

BG OG OB
d d

= − = +⎛
⎝⎜

⎞
⎠⎟

−
−⎛

⎝⎜
⎞
⎠⎟

=
2

0 25
0 6

2
0 55.

.
.

BM
I

v

lb

v

b b
= = = =

( ) ( )3 3 312 20 12

275 165

/ /

Since GM BM BG= −

1
165

0 55
3

= −
b

.

∴ = × =b 1 55 1653 . 6.35 m

Since v l b h l b d y l b d= × × = × × − = × × −( ) ( . )0 6

275 20 6 35 0 6= × × −. ( . )d

∴ =
×

+ =d
275

20 6 35
0 6

.
. 2.765 m

 Example 5.15  A body has cylindrical upper portion of diameter 2.5 m and it is 1.5 m deep. The lower portion is a curved 
one which displaces a volume of 500 litres of water and its centre of buoyancy is at a distance of 1.6 m below the top of the 
cylinder. The centre of gravity of the whole body is 1 m below the top of the cylinder and the total displacement of water 
is 32.5 kN. Determine the metacentric height of the body if the specific weight of sea water is 10 kN/m3.

Solution
Refer Figure 5.13. Let D = 2 5. m, d1 1 5= . m, v1

3500 0 5= =litres m. , 

OB1 1 6= . m, OG = 1 m, W = 32 5. kN  and w = 10 3kN/m .

Let GM  be the metacentric height, B  be the centre of buoyancy of 
the whole body and y  be the distance between the water surface and top 
of the body.

The total volume of water displaced is given by,

v
W

w
= = =

32 5

10
3 25 3.
. m

The volume of water displaced by cylindrical portion is given by,

v v v2 1
33 25 0 5 2 75= − = − =. . . m

v D d y2
2

14
= × −

π
( )

Thus 2 75
4

2 5 1 52. . ( . )= × × −
π

y

∴ = −
×

×
=y 1 5

2 75 4

2 5
0 94

2
.

.

.
.

π
m

B

G

(Front view)

y
D

O
M

B1

B2

1.6 m

1 m

d1

d

Figure 5.13
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The distance of the centre of buoyancy of the cylindrical portion from top of the body is given below.

OB y
d y

2
1

2
0 94

1 5 0 94

2
1 22= +

−
= +

−
=.

. .
. m

Now v OB v OB v OB× = × + ×1 1 2 2

or ( )v v OB v OB v OB1 2 1 1 2 2+ × = × + ×

Thus OB
v OB v OB

v v
=

× + ×
+

=
× + ×

+
=1 1 2 2

1 2

0 5 1 6 2 75 1 22

0 5 2 75
1 2785

. . . .

. .
. m

BG OB OG= − = − =1 2785 1 0 2785. . m

I
D

= =
×

=
π π4 4

4

64

2 5

64
1 9175

.
. m

BM
I

v
= = =

1 9175

3 25
0 59

.

.
. m

GM BM BG= − = − =0 59 0 2785. . 0.3115 m

 Example 5.16  A vessel that is 49 m long and 7 m broad has a displacement of 12800 kN in sea water (specific gravity = 
1.02). The vessel tilts through 6.1° when a weight of 160 kN moves through a distance of 5 m. If the second moment of area 
of the waterline section about its fore-and-aft axis is 75% than that of the circumscribing rectangle and centre of  buoyancy 
is 1.5 m below the waterline, then determine the metacentric height and the position of centre of gravity of the vessel.

Solution
Refer Figure 5.14. Let l = 49 m , b = 7 m, W = 12800 kN , 

Ssea = 1 02. , α = °6 1. , w1 160= kN, x = 5 m, I = ×0 75 2. nd  M.I. 

of water line section and OB = 1 5. m .
Let v  be the volume of water displaced by the vessel and GM  

be its metacentric height.

GM
w x

W
= = ×

°
=1 160 5

12800 6 1tan tan .α
0.585 m

I
lb

= × = ×
×

=0 75
12

0 75
49 7

12
1050 44

3 3
4. . . m

v
W

S gw
= =

×
× ×

=
sea

m
ρ

12800 10

1 02 1000 9 81
1279 21

3
3

. .
.

BM
I

v
= = =

1050 44

1279 21
0 8212

.

.
. m

Since OG OM GM OB BM GM= + = − +( )

		∴ = − + =OG ( . . ) .1 5 0 8212 0 585 1.2638 m below the waterline

 Example 5.17  A cube of side 2 m floats in a liquid with half of its volume immersed and the bottom face being 
 horizontal. The weight 360 N is moved on to the middle point of one of the top edges of the cube. Find the angle through 
which the cube tilts under the action of weight, if the centre of gravity of the cube is 0.65 m below the geometric centre in 
a vertical line through it.

(Top view)

M

G

B

O

1.5 m

Water line

l

b

Figure 5.14

M05 Fluid Mechanics and Hydraulic Machines XXXX 01.indd   15 4/19/2019   2:07:57 PM

Download more at Learnclax.com



5.16 Chapter 5

Solution
Refer Figure 5.15. Let l b d= = = 2 m, v l= ( )3 32/ m , w1 360= N, 

x = =2 2 1/ m  and h1 0 65= . m.
Let v  be the volume of water displaced by the cube, W  be the weight 

of water displaced, GM  be its metacentric height and h  be the depth of 
immersion.

Since half of the volume of cube is immersed, we get the below expression.

h
d

= = =
2

2

2
1 m

OB
h

= = =
2

1

2
0 5. m

OG
d

h= − = − =
2

1 0 65 0 351 . . m

GB OB OG= − = − =0 5 0 35 0 15. . . m

	
v

l
= = =

3 3
3

2

2

2
4 m  (Since half of the volume of cube is immersed)

W gvw= = × × =ρ 1000 9 81 4 39240. N

I
lb

= =
×

=
3 3

4

12

2 2

12
1 333. m

BM
I

v
= = =

1 333

4
0 333

.
. m

GM BM BG= + = + =0 333 0 15 0 483. . . m

Since GM
w x

W
= 1

tanα

0 483
360 1

39240
.

tan
=

×
α

tan
.

.α =
×

×
=

360 1

39240 0 483
0 018994

∴ = =−α tan ( . )1 0 018994 1.09°°

5.6 ❐ STABILITY OF SUBMERGED AND FLOATING BODIES
The stability of a submerged or a floating body means the tendency of the body to return to its original position after a 
slight displacement caused by any external force. A submerged or a floating body may have any of the following three 
equilibrium conditions.

 1. Stable equilibrium: The body will have stable equilibrium when a small angular displacement of the body sets up a 
restoring couple tending to bring back the body to its original equilibrium position.

 2. Unstable equilibrium: The body will have unstable equilibrium when a small angular displacement of the body 
sets up a couple that tends to displace the body further and thereby, not allowing the body to its original equilibrium 
position.

(Front view) h

O

d

M

B
G

h1

b

Figure 5.15
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 Buoyancy and Floatation 5.17

 3. Neutral equilibrium: The body will have neutral equilibrium when a small angular displacement of the body does not 
set up couple of any kind and the body takes new position without either returning to its original position or increasing 
the displacement.

5.6.1 Stability of a Submerged Body
The stability of a submerged body such as a balloon submerged in air or a submarine submerged in water is determined by 
the relative position of the centre of gravity G and centre of buoyancy B of the body. The centre of gravity and the centre 
of buoyancy of a wholly submerged body remain fixed. The conditions for stability of a submerged body are listed below.

 1. The body remains in stable equilibrium when G lies below B.

 2. The body remains in unstable equilibrium when G lies above B.

 3. The body remains in neutral equilibrium when G coincides with B.

The Figure 5.16(a) shows a balloon fully submerged in air whose lower portion contains a heavier material, so that its 
centre of gravity is lower than its centre of buoyancy. The balloon is in equilibrium due to its weight W acting at G is equal 
to the buoyant force FB acting at B. When a clockwise angular displacement is given to the balloon, W and FB  makes an 

anticlockwise couple (or restoring couple) that brings the balloon to its original position as shown in Figure 5.16(a). Thus, 
the balloon has a stable equilibrium.

The Figure 5.16(b) shows a test tube fitted with a heavy stopper and immersed in a liquid. In this case, the centre of 
gravity lies above the centre of buoyancy. When a small displacement is given to the body, an overturning couple is formed 
which tends to tilt the tube further. Thus, the body has unstable equilibrium.

The Figure 5.16(c) shows a homogeneous spherical body submerged in a liquid whose centre of gravity and centre of 
buoyancy coincide. When a small displacement is given to the body, it assumes a new position. Thus, the body has neutral 
equilibrium.

5.6.2 Stability of a Floating Body
The stability of a floating body is determined by the relative position of the centre of gravity G and the metacentre M of the 
body. Thus, the stability of a floating body differs from the stability of a submerged body, where the body may be in stable 
equilibrium even when its centre of gravity lies above the centre of buoyancy. The conditions for stability of a floating body 
are listed below.

 1. The body remains in stable equilibrium when G lies below M.

 2. The body remains in unstable equilibrium when G lies above M.

 3. The body remains in neutral equilibrium when G coincides with M.

B
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5.18 Chapter 5

Figure 5.17(a) shows a floating body which has undergone a small angular displacement in the clockwise direction so that 

its new centre of buoyancy B1  is such that the metacentre M lies above the centre of gravity G of the body. The body weight 

W and the buoyant force FB  make an anticlockwise couple (or restoring couple) that brings the body to its original position 

as shown in Figure 5.17(a). Thus, the body has a stable equilibrium.
Figure 5.17(b) shows a floating body in which the centre of gravity lies above the metacentre of the body. When a small 

displacement is given to the body, an overturning couple is formed which tends to tilt the body further. Thus, the body has 
unstable equilibrium.

For a floating body when the centre of gravity coincides with metacentre of the body, there will be neither a restoring 
couple nor an overturning couple formed when a small angular displacement is given to the body. Thus, the body will adapt 
to new position and it will have neutral equilibrium.

 Example 5.18  A wooden solid cylinder (specific gravity = 0.65) of diameter 2 m and height 1.5 m floats in water with 
its axis vertical. Determine its metacentric height and also comment on its equilibrium.

Solution
Refer Figure 5.18. Let Swood = 0 65. , D = 2 m and d = 1 5. m. Let v be the 

volume of water displaced by the cylinder, GM  be its metacentric height and 
h be the depth of immersion.

Weight of the wooden cylinder = Weight of water displaced

or S g gw wwood Volume of block Volume of water displacedρ ρ× = ×

S g D d g D hw wwood ρ π ρ π
× = ×

4 4
2 2

Thus h S d= = × =wood m0 65 1 5 0 975. . .

Moment of inertia of the top view at water surface about y y−  is given by,

I
D

= =
×

=
π π4 4

4

64

2

64
0 7854. m

v D h= × = × × =
π π
4 4

2 0 975 3 0632 2 3. . m

BM
I

v
= = =

0 7854

3 063
0 2564

.

.
. m

G

B

W

FB

B
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FB
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W

Restoring couple

M

G
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B
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 Buoyancy and Floatation 5.19

BG OG OB
d h

= − = − = − =
2 2

1 5

2

0 975

2
0 2625

. .
. m

GM BM BG= − = − =0 2564 0 2625. . −−0.0061 m

The negative sign shows that the metacentre lies below the centre of gravity and thus, the cylinder is in unstable equilibrium.

 Example 5.19  A rectangular pontoon that is 10 m long, 7.5 m wide and 2.5 m deep weighs 750 kN and floats in water 
having a specific weight of 10 kN/m3. The pontoon carries on its upper deck a boiler of diameter 5 m and it weighs 600 kN. 
The centre of gravity of each unit coincides with the geometrical centre of the arrangement and it lies in the same vertical 
line. Determine the metacentric height and comment on the stability of this arrangement.

Solution
Refer Figure 5.19. Let l = 10 m, b = 7 5. m, d = 2 5. m, W1 750= kN, 

w = 10 3kN/m , D = 5 m  and W2 600= kN .

Let v be the volume of water displaced by the arrangement and W be its 
weight, GM be its metacentric height and h be the depth of immersion.

W W W= + = + =1 2 750 600 1350 kN

v
W

w
= = =

1350

10
135 3m

Weight of the arrangement = Weight of water displaced by the arrangement

or    W w w lbh= × = ×Volume of arrangement in water

Thus 1350 10 10 7 5= × × ×( . )h

∴ =
× ×

=h
1350

10 10 7 5
1 8

.
. m

I
lb

= =
×

=
3 3

4

12

10 7 5

12
351 5625

.
. m

BM
I

v
= = =

351 5625

135
2 6042

.
. m

OB
h

= = =
2

1 8

2
0 9

.
. m

∴ = + = + =OM OB BM 0 9 2 6042 3 5042. . . m

OG
d

1 2

2 5

2
1 25= = =

.
. m

OG d
D

2 2
2 5

5

2
5= + = + =. m

The position of the combined centre of gravity G above the base point O can be determined by taking the moments about 
point O and we get the below expression.

W OG W OG W OG× = × + ×1 1 2 2

∴ =
× + ×

=
× + ×

=OG
W OG W OG

W
1 1 2 2 750 1 25 600 5

1350
2 9167

.
. m

B

G

(Front view)
h

O

d

M

G1

G2

D

b
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5.20 Chapter 5

Since OM OG>> , i.e., M lies above G and thus, the arrangement is stable.

GM OM OG= − = − =3 5042 2 9167. . 0.5875 m

 Example 5.20  A solid cylinder of diameter 3 m and length 3 m consists of two parts made of different materials. Its base 
part is 0.1 m long and has specific gravity 6. The remaining part of the cylinder is of specific gravity 0.5. State whether it 
can float vertically in water.

Solution
Refer Figure 5.20. Let D = 3 m, d = 3 m, d1 0 1= . m, S1 6= , d2 2 9= . m and 
S2 0 5= . .

Let G1 and G2 be the centre of gravity of the two parts, W1 and W2 be the 
weight of the two parts, G be the combined centre of gravity, W be the weight of 
the body, v be the volume of water displaced, GM be its metacentric height and 
h be the depth of immersion.

W W W S g D d S g D dw w= + = × + ×1 2 1
2

1 2
2

24 4
ρ π ρ π

W = × × × × × + × × × × ×6 1000 9 81
4

3 0 1 0 5 1000 9 81
4

3 2 92 2. . . . .
π π

∴ = + =W 41 606 100 547 142 153. . . kN

OG
d

1
1

2

0 1

2
0 05= = =

.
. m

OG d
d

2 1
2

2
0 1

2 9

2
1 55= + = + =.

.
. m

Taking moments about point O, we get:

W OG W OG W OG× = × + ×1 1 2 2

∴ =
× + ×

=
× + ×

=OG
W OG W OG

W
1 1 2 2 41 606 0 05 100 547 1 55

142 153
1 111

. . . .

.
. m

Weight of the body = Weight of water displaced

or W g g D hw w= × = ×ρ ρ π
Volume of water displaced

4
2

142 153 10 1000 9 81
4

33 2. .× = × × × ×
π

h

∴ =
× ×

× × ×
=h

142 153 10 4

1000 9 81 3
2 05

3

2

.

.
.

π
m

v D h= × = × × =
π π
4 4

3 2 05 14 492 2 3. . m

OB
h

= = =
2

2 05

2
1 025

.
. m

BG OG OB= − = − =1 111 1 025 0 086. . . m

B

G

(Front view)
h

D

O

M

G1

G2

d1

d2

S1 = 6

S2 = 0.5
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I
D

= =
×

=
π π4 4

4

64

3

64
3 976. m

BM
I

v
= = =

3 976

14 49
0 2744

.

.
. m

GM BM BG= − = − =0 2744 0 086. . 0.1884 m

As GM is positive which indicates that the metacentre lies above the centre of gravity and thus, the cylinder is in stable 
equilibrium and it can float vertically in water.

 Example 5.21  A wooden cylinder (specific gravity = 0.6) of diameter d and length l is required to float in oil (specific 
gravity = 0.8). Show that l cannot exceed about 0 8165. d  for the cylinder to float when its longitudinal axis being vertical.

Solution
Refer Figure 5.21. Let Swood = 0 6. , diameter = d, length = l , and Soil = 0 8. .

Let v be the volume of oil displaced, GM be the metacentric height of 
cylinder and h be the depth of immersion.

Weight of the cylinder = Weight of oil displaced

or S g S gw wwood oilVolume of cylinder Volume of oil displacedρ ρ× = ×

0 6 1000 9 81
4

0 8 1000 9 81
4

2 2. . . .× × × = × × ×
π π

d l d h

∴ =
×

=h
l

l
0 6

0 8

3

4

.

.

OB
h

l l= = × =
2

1

2

3

4

3

8

OG
l

=
2

BG OG OB
l

l
l

= − = − =
2

3

8 8

BM
I

v

d

d l

d

l
= =

×
=

( )

( ) ( )

π
π

/

/ /

64

4 3 4 12

4

2

2

GM BM BG
d

l

l
= − = −

2

12 8

For stable equilibrium, GM > 0 and we get:

d

l

l2

12 8
0− >

l d2 28

12
<

l d<
8

12
2

∴∴ <<l d0.8165

d

B
G

(Front view) h

O

l

M
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 Example 5.22  A wooden cylinder (specific gravity = 0.6) of diameter d and length l twice of its diameter is required 
to float in water with its longitudinal axis vertical. Comment on its stability and also determine the metacentric height and 
locate the metacentre with reference to water surface.

Solution
Refer Figure 5.22. Let Swood = 0 6. , diameter = d and length = =l d2 .

Let v be the volume of water displaced, GM be the metacentric height of 
cylinder and h be the depth of immersion.

Weight of the cylinder = Weight of water displaced

or   S g gw wwood Volume of cylinder Volume of water displacedρ ρ× = ×

0 6 1000 9 81
4

2 1000 9 81
4

2 2. . .× × × × = × ×
π π

d d d h

∴ = × =h d d0 6 2 1 2. .

OB
h d

d= = =
2

1 2

2
0 6

.
.

OG
l d

d= = =
2

2

2

BG OG OB d d d= − = − =0 6 0 4. .

BM
I

v

d

d d
d= =

×
=

( )

( ) .
.

π
π

/

/

64

4 1 2
0 0521

4

2

Since BM BG<< , i.e., the metacentre lies below the centre of gravity and thus, the cylinder is in unstable equilibrium.

GM BM BG d d= − = − =0 0521 0 4. . – 0.3479d

The depth of the metacentre below the water surface is given by,

= − =0 6 0 0521. .d d 0.5479d

 Example 5.23  If a hollow cylinder (specific gravity = 7.7) closed at both ends of outside diameter 1.25 m and length 
3.5 m floats with its axis vertical just in equilibrium in sea water (specific gravity = 1.02), then find its minimum  permissible 
thickness.

Solution
Refer Figure 5.23. Let Sc = 7 7. , D = 1 25. m, d = 3 5. m and Ssea = 1 02. .

Let t be the thickness of cylinder, v be the volume of water displaced,  
W be the weight of water displaced and h be the depth of immersion.

W S g v S g D hw w= × = ×sea seaρ ρ π
4

2

	
W h h= × × × × × =1 02 1000 9 81

4
1 25 12279 4552. . . .

π
 (i)

The weight of the cylinder is given by,

W S g D t D D t dc c w= × + − −⎡
⎣⎢

⎤
⎦⎥

ρ π π
2

4 4
22 2 2{ ( ) }

B

M(Front view)
h

d

O

G

l

Figure 5.22
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W S g D t Dtdc c w= × +⎡
⎣⎢

⎤
⎦⎥

ρ π π2
4

2  [Neglecting t2 ]

	
∴ = × × × × × + × ×⎡

⎣⎢
⎤
⎦⎥

=W t tc 7 7 1000 9 81 2
4

1 25 1 25 3 5 1223611 562. . . . . .
π π tt  (ii)

For equilibrium, equating the expressions (i) and (ii), we get:

12279 455 1223611 56. .h t=

h
t

t= =
1223611 56

12279 455
99 647

.

.
.

OB
h t

t= = =
2

99 647

2
49 8235

.
.

v
W

S g

t
t

sea w
= =

× ×
=

ρ
1223611 56

1 02 1000 9 81
122 285 3.

. .
. m

BM
I

v

D

v t t
= = =

×
=

× −( ) ( ) .

.

.π π/ /64 64 1 25

122 285

9 8 104 4 4

BG OG OB t= − = −1 75 49 8235. .  [ / ]∵OG d= 2

For the cylinder to float just in stable equilibrium: BG BM=

1 75 49 8235
9 8 10 4

. .
.

− =
× −

t
t

49 8235 1 75 9 8 10 02 4. . .t t− + × =−

t =
± − − × × ×

×

−1 75 1 75 4 49 8235 9 8 10

2 49 8235

2 4. ( . ) . .

.

∴ =
±

=t
1 75 1 6933

99 647
0 03455 0 000569

. .

.
. .m or m

Thus, the minimum permissible thickness of the cylinder is given below.

tmin = 0.000569 m or 0.569 mm

 Example 5.24  A hollow wooden cylinder (specific gravity = 0.65) has outer and inner diameters as 0.6 m and 0.3 m, 
respectively. If it is required to float in an oil (specific gravity = 0.8), then determine the maximum height of the cylinder 
so that it would be stable when it floats with its axis vertical. Also determine the depth to which it will sink.

Solution
Refer Figure 5.24. Let Swood = 0 65. , Do = 0 6. m, Di = 0 3. m and Soil = 0 8. .

Let d be the height or depth of cylinder, v be the volume of oil displaced 
and h be the depth of immersion.

Weight of the cylinder = Weight of oil displaced

S g S gw wwood oilVolume of cylinder Volume of oil displacedρ ρ× = ×

0 65 1000 9 81
4

0 8 1000 9 81
4

2 2 2 2. . ( ) . . ( )× × × − = × × × −
π π

D D d D D ho i o i

Do

Di

B
G

(Front view) h

O

d

M

Figure 5.24
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∴ = =h
d

d
0 65

0 8
0 8125

.

.
.

OB
h d

d= = =
2

0 8125

2
0 40625

.
.

OG
d

d= =
2

0 5.

BM
I

v

D D

D D h

o i

o i

= =
−

−

=
−

( )( )

( )( )

( )( . . )

(

π
π

π
π

/

/

/

/

64

4

64 0 6 0 3

4

4 4

2 2

4 4

))( . . ) .

.

0 6 0 3 0 8125

0 0346
2 2− ×

=
d d

OM OB BM d
d

= + = +0 40625
0 0346

.
.

For stable equilibrium, M should be at a level higher than G, i.e., OM OG>  and we get the below expression.

0 40625
0 0346

0 5.
.

.d
d

d+ >

0 0346
0 09375 0 0346 0 09375 2.
. . .

d
d d> ⇒ >

d <
0 0346

0 09375

.

.

d < 0 6075. m

The maximum height of the cylinder is given by,

dmax = 0.6075 m

h d= = × =0 8125 0 8125 0 6075. . . 0.4936 m

 Example 5.25  A cylinder buoy of diameter 1.4 m, length 1 m and weight 4400 N floats in sea water (specific weight = 

10 kN/m3) with its axis being vertical. If a 440 N load is placed centrally at the top of the buoy, then find the maximum 
permissible height of the centre of gravity of the load above the top of the buoy so that it remains in stable equilibrium.

Solution
Refer Figure 5.25. Let D = 1 4. m , d = 1 m, W1 4400= N , w = 10 3kN/m  
and W2 440= N.

Let v be the volume of water displaced, hG  be the height of centre of 
 gravity G2 above the base and h be the depth of immersion.

W W W N= + = + =1 2 4400 440 4840

v
W

w
m= =

×
=

4840

10 10
0 484

3
3.

Weight of the arrangement = Weight of water displaced by the buoy in water

B

(Front view)
h

d

O

b

M

W2 = 440 N

G1

G2

hG

Figure 5.25
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or W w w D h= × = ×Volume of water displaced
π
4

2

Thus 4840 10 10
4

1 43 2= × × × ×
π

. h

∴ =
× × ×

=h
4840

10 10 4 1 4
0 3144

3 2( ) .
.

π /
m

OB
h

= = =
2

0 3144

2
0 1572

.
. m

BM
I

v

D

v
= = =

×
=

( ) ( ) .

.
.

π π/ /
m

64 64 1 4

0 484
0 3896

4 4

OM OB BM= + = + =0 1572 0 3896 0 5468. . . m

OG
d

1 2

1

2
0 5= = = . m

OG hG2 =

The position of the combined centre of gravity G above the base point O can be determined by taking the moments about 
point O and we get the expression as follows.

W OG W OG W OG× = × + ×1 1 2 2

∴ =
× + ×

=
× +

= +OG
W OG W OG

W

h
hG
G

1 1 2 2 4400 0 5 440

4840
0 4545 0 091

.
. .

For stable equilibrium, M should lie above G, i.e., OM OG>  and we get:

0 5468 0 4545 0 091. . .> + hG

0 091 0 0923. .hG <

hG <
0 0923

0 091

.

.

hG < 1 0143.

Thus, the height of centre of gravity of the load above the buoy should not be more than

= − =1 0143 1. 0.0143 m

 Example 5.26  A cylindrical buoy of diameter 1.8 m, length 2.4 m and weight 20 kN is in sea water (specific weight = 

10 kN/m3). (i) Show that the buoy does not float with its axis being vertical. (ii) What minimum pull should be applied to 
a chain attached to the centre of the base to keep the buoy vertical?

Solution

 (i) Refer Figure 5.26(a). Let D = 1 8. m, d = 2 4. m, W = 20 kN  and w = 10 3kN/m .

  Let v be the volume of water displaced and h be the depth of immersion.

v
W

w
= = =

20

10
2 3m
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B
G
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O
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Figure 5.26

  Since W w w D h= × = ×Volume of buoy in water
π
4

2

20 10 10 10
4

1 83 3 2× = × × × ×
π

. h

∴ =
×

× × ×
=h

20 10

10 10 4 1 8
0 786

3

3 2( ) .
.

π /
m

OB
h

= = =
2

0 786

2
0 393

.
. m

BM
I

v

D

v
= = =

×
=

( ) ( ) .
.

π π/ /
m

64 64 1 8

2
0 2576

4 4

OM OB BM= + = + =0 393 0 2576 0 6506. . . m

OG
d

= = =
2

2 4

2
1 2

.
. m

  Since OM OG<< , i.e., M lies below G and thus, the buoy is unstable and it does not float with vertical axis.

 (ii) Refer Figure 5.26(b). Let T be the minimum pull in chain to keep the buoy vertical, F be the total downward force,  
v′  be the volume of water displaced and h′ be the new depth of immersion.

F W T T= + = +( )20

′ = =v
F

w

F

10
3m

F w h= × = × × × ′Volume of buoy in water 10
4

1 82π
.

∴ ′ =
× ×

=h
F F

10 4 1 8 25 4472( ) . .π /
m

OB
h F F

′ = ′ =
×

=
2 2 25 447 50 894. .

m

′ ′ =
′

=
×

=B M
I

v F F

( ) .

( )

.π /

/
m

64 1 8

10

5 1534

  Taking moments about point O to obtain the new centre of gravity G′, we get the following expression.

F OG W OG× ′ = ×
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F OG× ′ = ×20 1 2.  [ ]∵OG d= /2

  Thus OG
F

′ =
24

′ ′ = ′ − ′ = −B G OG OB
F

F24

50 894.

  For stable equilibrium, ′M  should lie above G′ and thus, ′ ′ > ′ ′B M B G , we get:

5 153 24

50 894

.

.F F

F
> −

  or 
F

F F50 894

24 5 153

.

.
> −

F 2 959 2> .

  or F > 959 2.

∴ >F 30 971.

T F W= − = − =30 971 20. 10.971 kN

 Example 5.27  A float valve regulates the flow of oil (specific gravity = 0.85) into a cistern (Figure 5.27). The spherical 
float is 0.15 m in diameter. AOB is weightless link carrying the float at one end and a valve at the other end which closes the 
pipe through which oil flows into the cistern. The link is mounted in a frictionless hinge at O and the angle AOB is 135°. 
The length of OA is 0.2 m and the distance between the centre of the float and the hinge is 0.5 m. When the flow is stopped 
AO will be vertical. The valve is to be pressed on to the seat with a force of 10 N to completely stop the flow of oil into the 
cistern. It was observed that the flow of oil is stopped when the free surface of oil in the cistern is 0.35 m below the hinge. 
Determine the weight of the float.

Solution
Refer Figure 5.27. Let Soil = 0 85. , D = 0 15. m, ∠ = °AOB 135 , OA = 0 2. m,  

OB = 0 5. m , F = 10 N and OM = 0 35. m.

Let W be the weight of the float, FB be the buoyant force which passes 
through B, h be the depth of its centre below the oil level and v be the 
volume of oil displaced.

∠ = ∠ = ° − ° = °NOB OBN 180 135 45

From ΔONB, we get:

0 35

0 5
45

.

.
sin

+
= °

h

h = ° − =0 5 45 0 35 0 00355. sin . . m

BN OB= ° = × =cos . .45 0 5
1

2
0 3535 m

Since v R R h= +
2

3
3 2π π

Cistern

h

A

O

B

F

M

N

0.35 m

0.2 m

0.15 m

0.5 m

45°
Oil level

Soil = 0.85

Figure 5.27
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∴ = × ⎛
⎝⎜

⎞
⎠⎟

+ × ⎛
⎝⎜

⎞
⎠⎟

× =v
2

3

0 15

2

0 15

2
0 00355 0 000946

3 2
3π π. .

. . m

F S gvB w= = × × × =oil Nρ 0 85 1000 9 81 0 000946 7 8882. . . .

Thus, the net vertical force on the float is given by,

R F W WB= − = −( . )7 8882 N

Taking moments about the hinge O, we get:

F AO R BN× = ×

10 0 2 7 8882 0 3535× = − ×. ( . ) .W

∴ = −
×

=W 7 8882
10 0 2

0 3535
.

.

.
2.2305 N

 Example 5.28  A cone of base radius R and height l floats in water with its vertex downwards. Show that for stable 

equilibrium of the cone: (i) sec2 α = l h/  and (ii) l R S S< −[ ( )] ,2 1 3 1 3 1 21/ / //  where h is the depth of immersion, a is the 
semi-vertex angle of the cone and S be the specific gravity of the cone material.

Solution
Refer Figure 5.28.

 (i) OG l=
3

4
 and OB h=

3

4

BM
I

v

r

r h

r

h
= = =

( )

( )

π
π

/

/

4

1 3

3

4

4

2

2

BM
h

h
h= =

3

4

3

4

2
2( tan )

tan
α α  [ tan ]∵ r h= α

OM OB BM h h= + = +
3

4

3

4
2tan α

OM h h= × + = ×
3

4
1

3

4
2 2( tan ) secα α

  For equilibrium, M should be above G, i.e., OM OG>  and we get the following expression.

3

4

3

4
2h lsec α >

∴∴ >>sec2 αα l

h
 (Proved)

 (ii) Let wcone  be the specific weight of the cone and wwater  be the specific weight of water.

Weight of the cone = Weight of water displaced

w R l w r hcone water× = ×
1

3

1

3
2 2π π

w l l w h hcone water× × × = × × ×
1

3

1

3
2 2π α π α( tan ) ( tan )

B

(Front view)
l

G

O

M

R

r

h
α α

Figure 5.28
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h l
w

w
l S=

⎛
⎝⎜

⎞
⎠⎟

=cone

water

1 3
1 3

/
/

l

h S
=

1
1 3/

sec
/

2
1 3

1α >
S

 [ sec ( / )]∴ >2 α l h

( tan ) tan
/ /

1
1 1

12
1 3

2
1 3

+ > ⇒ > −α α
S S

R

l

S

S

⎛
⎝⎜

⎞
⎠⎟

>
−2 1 3

1 3

1 /

/
 [ tan / ]∴ =α R l

l

R

S

S
l

R S

S

⎛
⎝⎜

⎞
⎠⎟

<
−

⇒ <
−

2 1 3

1 3
2

2 1 3

1 31 1

/

/

/

/

∴∴ <<
−−

⎛⎛

⎝⎝
⎜⎜

⎞⎞

⎠⎠
⎟⎟l

R S

S

2 1 3

1 3

1 2

1

/

/

/

 (Proved)

 Example 5.29  A solid cone of base radius R and height l floats in a liquid (specific gravity = 0.8) with its vertex 
 downwards. If specific weight of the cone material is 0.6, then determine the least apex angle of cone for stable equilibrium.

Solution
Refer Figure 5.28. Let Sliquid = 0 8.  and Scone = 0 6. .

Let 2α  be the least apex angle of cone for stable equilibrium.

Weight of the cone = Weight of liquid displaced

w R l w r hcone liquid× = ×
1

3

1

3
2 2π π

w l l w h hcone liquid× × × = × × ×
1

3

1

3
2 2π α π α( tan ) ( tan )

l

h

w

w
=

⎛

⎝⎜
⎞

⎠⎟
liquid

cone

1 3/

sec

/
2

1 3

α >
⎛

⎝⎜
⎞

⎠⎟
w

w

liquid

cone
 [ sec ( )]∴ >2 α l h/

sec

/
2

1 3

α > ×
⎛

⎝⎜
⎞

⎠⎟
w

w

w

w

liquid

water

water

cone

sec

/
2

1 3

α >
⎛

⎝⎜
⎞

⎠⎟
S

S

liquid

cone
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sec
.

.

/
2

1 30 8

0 6
α > ⎛

⎝⎜
⎞
⎠⎟

sec . cos .α α> ⇒ >1 0491 0 9532

α α> ⇒ > °−cos . .1 0 9532 17 6

∴∴ >> °°2 35.2αα

 Example 5.30  A conical buoy that is 0.6 m long and base diameter 0.5 m floats in water with its apex downwards. 
Determine the minimum weight of the buoy for its stable equilibrium.

Solution
Refer Figure 5.28. Let l = 0 6. m and D = 0 5. m.

Let v be the volume of water displaced, h be the depth of immersion and W be the weight of the buoy.

v r h h h

h
R

l
h

= = × ×

= × × = × ⎛
⎝⎜

⎞
⎠⎟

×

1

3

1

3

1

3

1

3

2 2

2 3
2

3

π π α

π α π

( tan )

(tan )

v h h= × ⎛
⎝⎜

⎞
⎠⎟

× =
1

3

0 25

0 6
0 1818

2
3 3π .

.
.

I d h= = ×
π π α
64 64

24 4( tan )  [ tan ]∴ = =d r h2 2 α

I h h= × ×⎛
⎝⎜

⎞
⎠⎟

=
π
64

2
0 25

0 6
0 0237

4
4.

.
.  [ tan ]∴ =α R l/

BM
I

v

h

h
h= = =

0 0237

0 1818
0 1304

4

3

.

.
.

OG l= = × =
3

4

3

4
0 6 0 45. . m

OB h h= =
3

4
0 75.

For stable equilibrium, M should lie above G, i.e., OM OG≥  and we get the following expression.

BM BG≥

BM OG OB≥ −

0 1304 0 45 0 75. . .h h≥ −

0 8804 0 45
0 45

0 8804
. .

.

.
h h≥ ⇒ ≥

∴ ≥h 0 511.

v h= = × =0 1818 0 1818 0 511 0 024263 3 3. . . . m

W gvw= = × × =ρ 1000 9 81 0 02426. . 237.9906 N
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5.7 ❐ OSCILLATION OF A FLOATING BODY
A floating body (Figure 5.29(a)) may be set in a state of 
oscillation when an overturning couple by which it is tilted 
through a small angle is suddenly removed. The body 
starts oscillating about its metacentre just like a  pendulum 
 oscillating about its point of suspension as shown in 
Figure 5.29(b).

Let W be the weight of the floating body, α  be the 

small angular displacement in radians, −( )d dt2 2α /  be the 

 angular acceleration in rad/s2 in which the negative sign 
shows that it tends to decrease the angle a, T be the time 
of one complete oscillation in seconds, k be the radius of 
gyration about a longitudinal axis passing through G, GM 
be the metacentric height and I Wk g= ( )2 /  be the moment 
of inertia of the body about its axis passing through G.

	
Inertia torque = −

⎛

⎝
⎜

⎞

⎠
⎟

W

g
k

d

dt

2
2

2

α
 (i)

	 Restoring couple = × = ×W GG W GM1 sinα  (ii)

Equating the expressions (i) and (ii), we get:

W

g
k

d

dt
WGM2

2

2
−

⎛

⎝
⎜

⎞

⎠
⎟ =

α αsin

k

g

d

dt
GM

2 2

2
0

α α+ =  [ sin ]∵ α α≈

d

dt

gGM

k

2

2 2
0

α α+ =

This is a second-degree differential equation, whose solution is given by,

α ω ω= +A t B tsin cos

α = × + ×A
gGM

k
t B

gGM

k
tsin cos

2 2

Here, A and B are the constants of integration which can be determined by applying the following conditions.

 (i) At t = 0, α = °0  and (ii) At t T= ( )/2 , α = °0

  Substituting the first boundary condition, we get:

0 0 1= × + ×A B

B = 0

  Now substituting second boundary conditions, we get:

0
22

= ×A
gGM

k

T
sin

B1

B

G
W

FB

B

G

M

G1

(a) (b)

(Front views)

α

W
FB

Restoring couple

Figure 5.29 Oscillation of a floating body
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∵ A ≠ 0

∴ × = =sin sin
gGM

k

T
2 2

0 π

gGM

k

T
2 2

× = π

	 ∴ =T
k

gGM
2

2

π  (5.11)

The oscillatory motion of a ship (or a boat) about its longitudinal axis is called rolling, whereas the oscillatory motion 
of a ship about its transverse axis is called pitching. The Equation (5.11) specifies the time period of oscillation for 
rolling motion of ships. However, if a ship has a safe metacentric height for rolling motion, then it will also be safe in 
 pitching motion. The increase in metacentric height gives better stability to a floating body but reduces the time period 
of the  rolling body. A smaller value of the time period of a rolling ship is not desirable because it is not comfortable to its 
 passengers and the ship is also subjected to undue strains which may damage its structures.

 Example 5.31  A ship of weight 30000 kN floats in sea water (specific weight = 10 kN/m3) whose centre of buoyancy 
is 1.8 m below its centre of gravity. The radius of gyration of the ship is 3 m and its moment of inertia at the water level is 
8500 m4. Determine the rolling period of ship.

Solution
Let W = 30000 kN, w = 10 3kN/m , BG = 1 8. m, k = 3 m and I = 8500 4m . Let T be the rolling period of the ship and v 
be the volume of water displaced.

v
W

w
= = =

30000

10
3000 3m

BM
I

v
= = =

8500

3000
2 833. m

GM BM BG= − = − =2 833 1 8 1 033. . . m

T
k

gGM
= =

×
=2 2

3

9 81 1 033

2 2

π π
. .

5.92 s

 Example 5.32  A log of wood (specific gravity = 0.85) of square section 0.4 m × 0.4 m floats in water. Determine the 
period of rolling when its one edge is depressed and released.

Solution
Refer Figure 5.30. Let Swood = 0 85.  and b d= = 0 4. m. Let l be the length of the 

log, h be the depth of immersion in water and v be the volume of water displaced.

Weight of the wood log = Weight of water displaced

or S g lbd g lbhw wwood ρ ρ× = ×( ) ( )

h S d= = × =wood m0 85 0 4 0 34. . .

OB
h

= = =
2

0 34

2
0 17

.
. m

OG
d

= = =
2

0 4

2
0 2

.
. m

B
G

(Top view)

(Front view)

b

y

y

h d

O

M

l

y

Figure 5.30
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BG OG OB= − = − =0 2 0 17 0 03. . . m

I
lb l

l= =
×

= × −
3 3

3 4

12

0 4

12
5 333 10

.
. m

v lbh l l= = × × =0 4 0 34 0 136 3. . . m

GM
I

v
BG

l

l
= − =

×
− =

−5 333 10

0 136
0 03 0 00921

3.

.
. . m

k
b2

2 2
2

12

0 4

12
0 0133= = =

.
. m

T
k

gGM
= =

×
=2 2

0 0133

9 81 0 00921

2

π π .

. .
2.41 s

 Example 5.33  A ship of weight 28000 kN floats in sea water (specific weight = 10.2 kN/m3) whose centre of buoyancy 
is 1.4 m below its centre of gravity. If the rolling period of ship is 4.31 seconds and the moment of inertia of the ship at the 
waterline about fore-and-aft axis is 9200 m4, then determine its radius of gyration.

Solution
Let W = 28000 kN , w = 10 2 3. kN/m , BG = 1 4. m, T = 4 31. s and I = 9200 4m . Let k be the radius of gyration of the ship 

and v be the volume of water displaced.

v
W

w
= = =

28000

10 2
2745 1 3

.
. m

GM
I

v
BG= − = − =

9200

2745 1
1 4 1 95

.
. . m

k
T

gGM= ⎛
⎝⎜

⎞
⎠⎟

×
2

2

π
 [From Equation (5.11)]

∴ = ⎛
⎝⎜

⎞
⎠⎟

× × =k
4 31

2
9 81 1 95

2.
. .

π
3 m

 Example 5.34  A 5 m wide ship coming into port has a draught of 1.2 m and after unloading its cargo it has a draught of 
1 m. If its centre of gravity remains at the waterline, then determine the ratio of the periodic times before and after leaving 
the cargo.

Solution
Let the subscripts 1 and 2 denote the parameters before and after leaving the cargo respectively, b = 5 m , ( ) .OG h1 1 1 2= = m  
and ( )OG h2 2 1= = m.

Let T1 and T2 be the periodic times for the ship before and after leaving the cargo, respectively, l be its length and v be 
the volume of water displaced.

( )
( ) .

.BG
OG

1
1

2

1 2

2
0 6= = = m

( ) ( )
( )

.
. .GM

I

v
BG

l

l1 1

35 12

5 1 2
0 6 1 136= − =

×
× ×

− =
/

m
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T
k

g GM

k
k1

2

1

2

2 2
9 81 1 136

1 882= =
×

=π π
( ) . .

.

( )
( )

.BG
OG

2
2

2

1

2
0 5= = = m

( ) ( )
( )

. .GM
I

v
BG

l

l2 2

35 12

5 1
0 5 1 583= − =

×
× ×

− =
/

m

T
k

g GM

k
k2

2

2

2

2 2
9 81 1 583

1 5944= =
×

=π π
( ) . .

.

∴ = =
T

T

k

k
1

2

1 882

1 5944

.

.
1.18

Summary

 1. The tendency for an immersed body to be lifted up in the 
fluid due to an upward force exerted by the fluid is known as 
buoyancy.

 2. The force tending to lift up an immersed body against the 
gravitational force is called buoyant force (or force of 
buoyancy).

 3. The point of application of the buoyant force on the body is 
known as the centre of buoyancy which is denoted by B.

 4. The Archimedes’ principle states that when a body is 
immersed in a fluid either wholly or partially, it is lifted up by 
a force which is equal to the weight of the fluid displaced by 
the body.

 5. Metacentre is the point about which a floating body starts 
oscillating when it is given a small angular displacement and 
it is denoted by M.

 6. The distance between the centre of gravity G and the 
 metacentre M of a floating body is called metacentric height. 
It is given by the expression GM I v BG= −( )/ , here I is the 
M.I. (in top view) at the water surface about vertical axis (axis 
of symmetry), v is the volume of body immersed in water and 
BG is the distance between the centre of gravity and centre of 
buoyancy.

 7. The experimental value of metacentric height is GM = (w1x)/
(W tan a), here w1 is a movable weight which moves through 
a distance x, W is the total weight of the body including the 
movable weight w1 and a is the small angle through which 
the body tilts.

 8. The stability of a submerged body such as a balloon submerged 
in air or a submarine submerged in water is determined by  

the relative position of the centre of gravity G and the centre 
of buoyancy B of the body.

 9. The conditions for stability of a submerged body are listed 
below.

    (i)  The body remains in stable equilibrium when G lies 
below B.

   (ii)  The body remains in unstable equilibrium when G lies 
above B.

  (iii)  The body remains in neutral equilibrium when G coin-
cides with B.

 10. The stability of a floating body is determined by the relative 
position of the centre of gravity G and the metacentre M of 
the body.

 11. The conditions for stability of a floating body are:

    (i)  The body remains in stable equilibrium when G lies 
below M.

   (ii)  The body remains in unstable equilibrium when G lies 
above M.

  (iii)  The body remains in neutral equilibrium when G coin-
cides with M.

 12. The oscillatory motion of a ship about its longitudinal axis is 
called rolling.

 13. The oscillatory motion of a ship about its transverse axis is 
called pitching.

 14. The time period of oscillation (T ) of a floating body is 

T k gGM= 2 2π /( ), here k is the radius of gyration and GM 
is the metacentric height.
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Multiple-choice Questions

 1. When a block of ice floats on the surface of water contained 
in a vessel the water level will
(a) Rise.
(b) Fall.
(c) Remains same.
(d) None of the above.

 2. When a ship enters sea from a river then its depth of submer-
gence will
(a) Decrease.
(b) Increase.
(c) Remains same.
(d) None of the above.

 3. A floating body is in stable equilibrium when its
(a) Metacentric height is zero.
(b) Centre of gravity is below the centre of buoyancy.
(c) Metacentric height is negative.
(d) Metacentric height is positive.

 4. The metacentric height is the distance between the
(a) Metacentre and the centre of buoyancy.
(b) Centre of gravity of the floating body and the centre of 

buoyancy.
(c) Centre of gravity of the floating body and the metacentre.
(d) None of the above.

 5. The relation for stable equilibrium of a floating body in terms 
of metacentric height GM, distance between centre of gravity 
(G) and centre of buoyancy (B) BG, the moment of inertia I 
and the volume of water displaced by the body v is given by

(a) BG GM I v+ = / .
(b) BG GM I v− = / .
(c) BG I v GM= ( )/ / .
(d) None of the above.

 6. For merchants ships, the metacentric height lies in the range 
of
(a) 0 to 0.25 m.
(b) 0.3 to 1 m.
(c) 1 to 2.5 m.
(d) None of the above.

 7. The metacentric heights of two floating bodies P and Q are 
0.5 m and 1 m, respectively, then which one of the following 
statements is correct?
(a) Body P is more stable.
(b) Body Q is more stable.
(c) Both P and Q are equally stable.
(d) None of the above.

 8. For a submerged body, if the metacentre is below the centre of 
gravity, then equilibrium is
(a) Stable.
(b) Unstable.
(c) Neutral.
(d) None of the above.

 9. For a submerged body, if the centre of buoyancy coincides 
with the centre of gravity, then the equilibrium is
(a) Stable.
(b) Unstable.
(c) Neutral.
(d) None of the above.

 10. For a floating body, if the metacentre is below the centre of 
gravity, then the equilibrium is
(a) Stable.
(b) Unstable.
(c) Neutral.
(d) None of the above.

Review Questions

 1. Define buoyancy, centre of buoyancy, metacentre and meta-
centric height.

 2. Prove the Archimedes’ principle of buoyancy.

 3. Explain how will you determine the metacentric height 
analytically?

 4. Explain how will you determine the metacentric height 
experimentally?

 5. Define oscillation of a floating body. Also derive an expres-
sion for the time period of the oscillations (T ) of a floating 
body in terms of metacentric height (GM ) and radius of gyra-
tion (k) of the floating body.

 6. Explain the conditions of equilibrium for floating and 
 submerged bodies.

Problems

 1. A wooden block (specific gravity = 0.64) of cuboidal shape 
4 m long, 1.25 m wide and 2 m deep floats horizontally in 
water. Determine the volume of liquid displaced and position 
of centre of buoyancy.

[Ans. 6.4 m3, 0.64 m above base]

 2. A stone weighs 400 N in air and 200 N in water. Determine 
the volume of body and its specific gravity.

[Ans. 0.0204 m3, 2]

 3. A metallic body floats at the interface of mercury and water in 
a tank such that 40% of its volume is submerged in mercury 
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and 60% in water. Find the specific weight of the metallic 
body.

[Ans. 59252.4 N/m3]

 4. A wooden body floats in water tank with 50 mm height pro-
jecting above the water surface. The same wooden body when 
placed in glycerine tank it projects 75 mm above the surface 
of glycerine. If the specific gravity of glycerine is 1.35, then 
find (i) the height of the wooden body and (ii) relative density 
of wooden body.

[Ans. 146 mm, 0.657]

 5. When a football of 30 cm diameter fell into a water tank, 
10% of its volume found under water. Determine the density 
of the football.

[Ans. 100 kg/m3]

 6. A wooden block (specific gravity = 0.7) that is 2 m long, 
0.4 m wide and 0.2 m high floats in a water tank. Determine 
the volume of concrete of specific weight 20 kN/m3, that may 
be kept on the block and thus, immerse the (i) block com-
pletely in water and (ii) block and the concrete completely in 
water.

[Ans. 0.0235 m3, 0.0462 m3]

 7. A spherical body of diameter 1 m is completely immersed 
in a water tank and chained to the bottom of the tank. If the 
chain has a tension of 2 kN, then determine the weight of the 
body when it is taken out of the tank into the air.

[Ans. 3.136 kN]

 8. Find the volume and density of a body that weighs 4 N in 
water and 5 N in oil of specific gravity 0.85.

[Ans. 6.796 ×	10−4 m3, 1600.45 kg/m3]

 9. A cube 1 m side is inserted in a two-layer fluid with specific 
gravities 1.2 and 0.9. The upper and lower halves of the cube 
are composed of materials with specific gravity 0.6 and 1.4, 
respectively. What is the distance of the top of the cube above 
interface?

[Ans. 0.667 m]

 10. An iceberg (specific gravity = 0.9) floats in sea water (specific 
gravity = 1.023). If the volume of ice above the water surface 
is 30 m3, then determine the weight of the iceberg.

[Ans. 2203.54 kN]

 11. A 6.5 m long, 2.5 m wide and 1.5 m high rectangular pontoon 
floats in seawater (specific gravity = 1.023) with a depth of 
immersion of 1 m. Find the metacentric height, if the centre 
of gravity is 0.7 m above the bottom of the pontoon.

[Ans. 0.321 m]

 12. If a wooden block (specific gravity = 0.72) of size 1 m × 0.5 m 
× 0.4 m floats in water, then determine its metacentric height.

[Ans. 0.016 m]

 13. A uniform body of the size 4 m × 2 m × 1 m floats in water. 
Determine its metacentric height and the weight if the depth 
of immersion is 0.6 m.

[Ans. 0.3555 m, 47.09 kN]

 14. A vessel that is 70 m long and 10 m broad has a displacement 
of 19620 kN in sea water (specific gravity = 1.03). The vessel 
tilts through 6o when a weight of 343 kN moves through a 
distance of 6 m. If the second moment of area of the waterline 
section about its fore-and-aft axis is 70% than that of the cir-
cumscribing rectangle and centre of buoyancy is 2.2 m below 
the water line, then determine the metacentric height and the 
position of centre of gravity of the vessel.

[Ans. 0.998 m, 1.095 m]

 15. A rectangular pontoon of length 25 m and weight 2450 kN 
floats in fresh water of specific weight 10 kN/m3. Its centre 
of gravity lies 0.3 m above the centre of cross section and for 
10° angle of heel its metacentric height is 1.3 m. If 0.65 m 
height portion of the pontoon is lying outside water, then 
determine its breadth and height.

[Ans. 6.095 m, 2.26 m]

 16. A rectangular pontoon that is 8 m long, 6 m wide and 2 m 
deep weighs 500 kN and it floats in water having a specific 
weight of 10 kN/m3. The pontoon carries on its upper deck a 
boiler of diameter 5 m and weight 200 kN. The centre of grav-
ity of each unit coincides with the geometrical centre of the 
arrangement and it lies in the same vertical line. Determine 
the metacentric height.

[Ans. 0.786 m]

 17. A solid wooden cube (specific gravity = 0.6) of sides 0.6 m 
floats in a liquid (specific gravity = 0.9) with two of its faces 
being horizontal. Find its metacentric height and state about 
its stability.

[Ans. -0.025 m, unstable]

 18. A wooden cylinder (specific gravity = 0.6) of diameter d 
and length l is required to float in oil (specific gravity = 0.9). 
Show that l cannot exceed about 0.75d for the cylinder to float 
when its longitudinal axis being vertical.

 19. A log of wood (specific gravity = 0.86) of square section 
0.35 m × 0.35 m floats in water. One edge is depressed and 
released causing the log to roll. Find the period of a roll.

[Ans. 2.09 s]

 20. A wooden cone (specific gravity = 0.6) weighing 86 N floats 
with its apex downwards in a liquid (specific gravity = 0.82). 
Determine the weight of a steel piece (specific gravity = 7.86) 
suspended from the apex of the cone by a rope which will just 
suffice to submerge the cone. Also determine the tension in 
the rope.

[Ans. 35.2 N, 31.528 N]

 21. A ship has a displacement of 50000 kN and its radius of 
gyration is 2 m when it floats in sea water (specific weight = 
10 kN/m3). If the centre of buoyancy is 2.5 m below the cen-
tre of gravity and the moment of inertia about its fore-and-aft 
axis is 15000 m4, then determine the metacentric height and 
the time period of oscillation.

[Ans. 0.5 m, 5.67 s]
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 Buoyancy and Floatation 5.37

 22. A ship weighing 29.43 MN in sea water (specific weight = 
10.1 kN/m3) has a rolling time period of 5 seconds. The 
moment of inertia of the ship about its fore-and-aft axis is 
104 m4 and its centre of buoyancy is 1.5 m below the centre 
of gravity. Calculate the radius of gyration of the ship.

[Ans. 3.46 m]

 23. A rectangular pontoon is 5 m long, 3 m wide and 1.2 m high. 
The depth of immersion of the pontoon is 0.8 m in sea water 
(specific gravity = 1.023). Determine the metacentric height 
if the centre of gravity is 0.6 m above the bottom of the 
pontoon.

[Ans. 0.7375 m]

ANSWERS TO MULTIPLE-CHOICE QUESTIONS

 1. (c) 2. (a) 3. (d) 4. (c) 5. (a)
 6. (b) 7. (b) 8. (d) 9. (c) 10. (b)
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6.1 ❐ INTRODUCTION
Fluid kinematics deals with the geometry of fluid motion in terms of displacement, velocity and acceleration without 
 considering the forces causing the motion. After knowing the velocity it becomes possible to calculate the pressure 
 distribution and consequently, the force acting on the fluid can also be estimated. The methods by which the motion of a 
fluid may be described are Lagrangian method and the Eulerian method. The Eulerian method is commonly used in fluid 
mechanics. In this chapter, the basic concepts related to fluid kinematics and the methods for determining velocity and 
acceleration are described.

6.2 ❐ VELOCITY OF FLUID PARTICLES
The velocity of fluid flow is a function of space and time. Let ds be the distance travelled by a fluid particle in time dt in the 
space occupied by a fluid in motion. The velocity (V ) of the fluid particle at any point is given by the following expression.

	
V

ds

dtdt
=

→
Lim

0
 (6.1)

The velocity is a vector quantity and thus, it has both magnitude as well as direction. The velocity V at any point in the 
fluid can be resolved into three components, such as u, v and w in the three mutually perpendicular directions x, y and z 
respectively. If dx, dy and dz be the components of displacement ds in x, y and z directions, respectively, then the velocity 
components can be expressed as follows.

	
u

dx

dt
f x y z t

dt
= =

→
Lim

0
1( , , , )  (6.2a)

	
v

dy

dt
f x y z t

dt
= =

→
Lim

0
2( , , , )  (6.2b)

	
w

dz

dt
f x y z t

dt
= =

→
Lim

0
3( , , , )  (6.2c)

Thus, at a particular instant of time, the velocity components u, v and w vary at different points and each individual particle 
has its own velocity that varies both with respect to time and position.

Chapter 6

Fluid Kinematics
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6.2 Chapter 6

In vector form, the velocity of the fluid particle at any point can be represented as follows.

	
�

V ui vj wk= + +  (6.3)

Here, i, j and k are the unit vectors in the direction of coordinate axes.
The magnitude of velocity (or the resultant velocity) is given by,

	 V u v w= + +2 2 2  (6.4)

 Example 6.1  Find the velocity vector and its magnitude for the velocity components u xy t= −( )3 , v yz t= + +( )2 1  and 

w ty= +( )1 3  at point A (3, 2, 1) m at t = 2 s.

Solution
Let u xy t= −( )3 , v yz t= + +( )2 1 , w ty= +( )1 3 , x = 3 m, y = 2 m, z = 1 m and t = 2 s. Let 

�
V  be the velocity vector and V 

be its magnitude.
The velocity components at point A (3, 2, 1) are calculated in the following expressions.

u xy t= − = × × − =3 3 3 2 2 16 m/s

v yz t= + + = × × + + =2 1 2 2 1 2 1 7 m/s

w ty= + = + × × =1 3 1 3 2 2 13 m/s

�
V ui vj wk= + + = 16 + 7 +13i j k

V u v w= + + = + + =2 2 2 2 2 216 7 13 21.77 m/s

6.3 ❐ TYPES OF FLUID FLOW
The fluid flow may be of the following types classified as (i) steady flow and unsteady flow, (ii) uniform flow and non- 
uniform flow, (iii) laminar flow and turbulent flow, (iv) compressible flow and incompressible flow, (v) rotational flow and 
irrotational flow and (vi) one dimensional flow, two dimensional flow and three dimensional flow.

6.3.1 Steady and Unsteady Flows
Steady flow The flow in which the fluid characteristics like velocity (V ), pressure ( p), density ( r), etc., do not change 
with time is called steady flow. However, these characteristics may be different at different points in the flowing fluid. Most 
of the practical engineering problems involve steady flow and thus, it can be analysed easily. Mathematically, the steady 
flow at any point in the flowing fluid may be given by the following expressions.

∂
∂

=
V

t
0 , 

∂
∂

=
p

t
0, 

∂
∂

=
ρ
t

0, etc.

Unsteady flow The flow in which the fluid characteristics like velocity, pressure, density, etc., change with time is 
called unsteady flow (or transient flow). It is very difficult to analyse the unsteady flow except under special conditions. 
 Mathematically, the unsteady flow at any point in the flowing fluid may be expressed as given below.

∂
∂

≠
V

t
0 , 

∂
∂

≠
p

t
0, 

∂
∂

≠
ρ
t

0, etc.
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 Fluid Kinematics 6.3

6.3.2 Uniform and Non-uniform Flows
Uniform flow The flow in which the fluid velocity does not change with location over a specified region at any given time 
is called uniform flow. Mathematically, the uniform flow may be expressed as given below.

∂
∂

=
V

s
0

Here, s denotes any space coordinates. Therefore, for a uniform flow, the space rate of change of the flow parameters at any 
given time is equal to zero.

Non-uniform flow The flow in which the fluid velocity at any given time changes with location over a specified region is 
called non-uniform flow. Mathematically, the non-uniform flow may be expressed as given below.

∂
∂

≠
V

s
0

Therefore, for a non-uniform flow, the space rate of change of the flow parameters at any given time is not equal to zero.

6.3.3 Laminar and Turbulent Flows
Laminar flow A laminar flow is characterized by a smooth flow of one layer (or lamina) of fluid over the adjacent layer. 
The fluid particles move in well-defined paths (or streamlines) and keep the same path at successive cross sections of the 
flow passage. The laminar flow is also known as viscous flow or streamline flow. Generally, laminar flow occurs in highly 
viscous liquids flow and in smooth pipes when the flow velocity is low.

Turbulent flow A fluid motion is said to be turbulent when the fluid particles move in a zigzag manner, i.e., entirely in 
a disorderly  manner. This causes rapid and continuous mixing of the fluid leading to momentum transfer when the flow 
occurs. Eddies or vortices are formed in turbulent flow and it causes energy losses. More often turbulent flow occurs than 
laminar flow, for examples, flow in water supply pipes, flow in natural streams, sewers, etc.

Reynolds number (Re) is defined as the ratio of inertia force to the viscous force. Laminar and turbulent flows are 
 characterized on the basis of Reynolds number. Flow through a pipe is laminar when Re < 2000, turbulent when Re > 4000 
and transitional when Re lies between 2000 and 4000.

6.3.4 Compressible and Incompressible Flows
Compressible flow The flow in which the density of the fluid does not remain constant is called compressible flow. Thus, 
for compressible flow, ρ ≠ Constant.

Incompressible flow The flow in which the density remains constant is called incompressible flow. Thus, for incom-
pressible flow, ρ = Constant. The densities of liquids are constant and thus, the flow of liquids for practical purposes can 
be considered as incompressible.

Mach number (M ) is defined as the square root of the ratio of the inertia force to the elastic force or the ratio of local 
flow velocity to the sonic velocity in the fluid. The compressibility effects are generally ignored for M < 0 3. . Based on the 
Mach number, the flow may be subsonic flow ( )M < 1 , sonic flow ( )M = 1 , supersonic flow ( )M > 1  and hypersonic flow 
( )M >> 1 .

6.3.5 One-dimensional, Two-dimensional and Three-dimensional Flows
One-dimensional flow The flow in which the parameter such as velocity is a function of time and has only one space 
coordinate is called one-dimensional flow. Thus, the flow parameters vary only in one direction and mathematically, it is 
expressed as given below.

V f x t= ( , ) or u f x t= 1( , ), v = 0 and w = 0
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6.4 Chapter 6

For a steady one-dimensional flow, the velocity is a function of one space coordinate only and the variation of velocities in 
other two directions is zero. Mathematically, it is expressed as given below.

V f x= ( ) or u f x= 1( ), v = 0 and w = 0

Two-dimensional flow The flow in which the parameter such as velocity is a function of time and contains two space 
coordinates is called two-dimensional flow. The two-dimensional flow is mathematically expressed as given below.

V f x y t= ( , , ) or u f x y t= 1( , , ), v f x y t= 2( , , )  and w = 0

For a steady two-dimensional flow, the velocity is a function of two space coordinates only and the variation of velocity in 
third direction is zero. Mathematically, it is expressed as given below.

V f x y= ( , ) or u f x y= 1( , ), v f x y= 2( , )  and w = 0

Three-dimensional flow The flow in which the parameter such as velocity is a function of time and contains three space 
coordinates is called three-dimensional flow. The three-dimensional flow is mathematically expressed as given below.

V f x y z t= ( , , , ) or u f x y z t= 1( , , , ), v f x y z t= 2( , , , ) and w f x y z t= 3( , , , )

For a steady three-dimensional flow, the velocity is a function of three space coordinates and it is mathematically expressed 
as given below.

V f x y z= ( , , )  or u f x y z= 1( , , ), v f x y z= 2( , , ) and w f x y z= 3( , , )

6.3.6 Rotational and Irrotational Flows
Rotational flow The flow in which the fluid particles rotate about their own axis is called rotational flow.

Irrotational flow The flow in which the fluid particles do not rotate about their own axis is called irrotational flow.

6.4 ❐ DESCRIPTION OF FLUID FLOW PATTERN (FLOW VISUALIZATION)
The fluid flow pattern may be described by means of streamlines, stream-tubes, pathlines, streaklines and timelines which 
are described below.

 1. Streamline: A streamline may be defined as an imaginary line drawn through a flowing fluid in such a way that the 
tangent to it at any point gives the direction of the velocity of flow at that point. Thus, streamlines indicate the direction 
of motion of particles at each point. Since the streamlines are tangent to the velocity vector at every point in the flow 
field, there can be no flow across a streamline. Figure 6.1(a) illustrates streamlines in a two-dimensional flow field in 
which one of the streamlines passing through a point A x y( , ) is tangential to the velocity vector V at point A.

   Let ds be the distance travelled by a fluid particle along the streamline during the time interval dt. Here, dx and dy 
be the components of the displacement along x and y directions, respectively and u and v be the components of the 
velocity V along x and y directions, respectively.

v

u

dy

dx
= =tanα

  Thus, the differential equation for streamlines in two-dimensional flow field is as follows.

 

dx

u

dy

v
=  (6.5)
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 Fluid Kinematics 6.5

  Similarly, the general differential equation for three-dimensional flow for streamlines as given below.

	

dx

u

dy

v

dz

w
= =  (6.6)

  The streamlines for steady flow do not vary with time and it is constant for a given set of conditions. In unsteady flow, 
the streamline pattern would change from time to time.

 2. Stream-tube: A stream-tube is a cylindrical passage or tube which may be imagined to form by a bundle of neighbour-
ing streamlines through which the fluid flows. The surface of the stream-tube is known as the stream surface. Since the 
stream-tube is bounded on all sides by streamlines, there can be no flow across the surface. Therefore, the flow can be 
only through the ends of a stream-tube. A schematic diagram of stream-tube is shown in Figure 6.1(b). A stream-tube 
with a small enough cross-sectional area is known as stream filament. A clear picture of the actual flow pattern can 
be known from stream-tubes. The shape of a stream-tube changes from one instant to another due to change in the 
position of streamlines. However, in a steady flow it is fixed in space.

 3. Pathline: A pathline is the trace of the path of a single particle over a period of time. It shows the direction of the 
velocity of a fluid particle at successive instants of time. In a steady flow, the pathlines and streamlines are identical. 
However, in case of unsteady flow, the pathlines and streamlines are different as shown in Figure 6.2. A pathline can 
intersect itself at different times. The streamline shows the velocity vectors for particles P and Q at time t1. The  particle 
P takes different positions at different times (t2, t3 and t4) and the line connecting these positions of P occupied at 
different instant of times signifies its pathline.

O

A (x, y)

V

V

V

u

v

X

Y
Streamlines

Stream filament

Streamline

Stream face

Stream-tube

(a) (b)

α

Figure 6.1 Streamlines and stream-tube

O X

Y

Streamline

P

Q

P
P

P

V

V

t2

t1

t3

t4

t1

Pathline for particle P

Figure 6.2 Pathline and streamline
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6.6 Chapter 6

 4. Streakline: A line traced by a fluid particle passing through a fixed point in a flow field is known as streakline. If a dye 
or a colour is injected into a flowing field, then the resulting trails of colour are known as streaklines. A line formed 
by the smoke particles (assume P1, P2 and P3) emanating from a fixed nozzle also forms a streaklines as shown in 
Figure 6.3(a).

   In a steady flow, there is no change in the flow pattern and thus, a streakline also represents a streamline and 
a  pathline. Thus, it can be concluded that in a steady flow, a streakline, a streamline and a pathline are identical. 
 However, in unsteady flow, the fluid particles may not remain on the same streamline.

 5. Timeline: A timeline is the line formed by a number of adjacent fluid particles in a flow field marked at a given instant. 
The timelines are used for examining the uniformity of a flow and it can also be used to study the deformation of a 
fluid under shear force. Here, the timelines generated in a water channel through the use of hydrogen bubble wire at 
different times are shown in Figure 6.3(b).

 Example 6.2  The velocity vector in two different flow fields are given by the equations (i) 
�

V xi yj= −2 2  and  

(ii) 
�

V x i x yj= −2 63 2 . Determine the equations of streamline in each case when it passes through a point A( , )3 2 .

Solution

 (i) V xi yj
→

= −2 2

u x= 2  and v y= −2

  Since 
dx

u

dy

v
=   [Streamline equation] 

  Thus 
dx

x

dy

y2 2
=

−

dx

x

dy

y∫ ∫= −

ln ln lnx y C= − +

ln ln lnx y C+ =

ln( ) lnxy C=

	 xy C=  (i)

  The streamline passes through point A( , )3 2  and thus, it must satisfy the expression (i).

 3 2× = C  or C = 6 	
  Therefore, the required streamline is calculated as given below.

xy = 6

P1 P2 P3

Streakline
Nozzle

FlowTimeline
at t = 0

Timeline at t1

Timeline at t2

Timeline at t3

(a) (b)

Figure 6.3 Streakline and timelines
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 Fluid Kinematics 6.7

 (ii) 
�

V x i x yj= −2 63 2

  Thus u x= 2 3 and v x y= −6 2

  Since 
dy

dx

v

u
=   [Streamline equation] 

dy

dx

x y

x
=

−6

2

2

3

dy

y

dx

x
= −3

dy

y

dx

x∫ ∫= −3

ln ln lny x C= − +3

ln ln lny x C+ =3

ln( ) lnyx C3 =

  Thus yx C3 =  (ii)

  The streamline passes through the point A( , )3 2  and thus, it must satisfy the expression (ii).

2 33× = C  or C = 54

  Therefore, the required streamline is calculated as given below.

yx3 = 54

6.5 ❐ ACCELERATION OF A FLUID PARTICLE
The rate of change of velocity with respect to time is called acceleration. At any instant of time, each fluid particle has its 
own velocity and acceleration that varies with respect to time and position. Thus, the motion of fluid particles at various 
points and at successive instants of time is to be observed for complete description of a fluid flow. The fluid motion is 
described by two methods, namely Lagrangian method and Eulerian method. Generally, the Eulerian method is used in 
fluid mechanics.

6.5.1 Lagrangian Method
In this method, a single particle is followed over the flow field during its course of motion by a moving rectangular 
 coordinate system and its behaviour is observed. Let the initial coordinate of a fluid particle be a, b and c which change to 
x, y and z after time interval t. The position of the fluid particle can be expressed as given below.

	 x f a b c t= 1( , , , ), y f a b c t= 2( , , , ), z f a b c t= 3( , , , )  (6.7)

From the above equations, the velocity and acceleration components of the fluid particles can be obtained by taking 
 derivatives with respect to time.
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6.8 Chapter 6

The velocity components can be obtained by the following expression.

	
u

dx

dt
= , v

dy

dt
= , w

dz

dt
=  (6.8)

The acceleration components can be obtained by the following expression.

	
a

du

dt

d x

dt
x = =

2

2
, a

dv

dt

d y

dt
y = =

2

2
, a

dw

dt

d z

dt
z = =

2

2
 (6.9)

The magnitude of velocity (or the resultant velocity) is given by the following expression.

	 V u v w= + +2 2 2  (6.10)

The magnitude of acceleration (or the resultant acceleration) is given by the following expression.

	
a a a ax y z= + +2 2 2  (6.11)

Similarly, other quantities, such as pressure, density, etc., can be determined. However, the motion of single fluid particle is 
not sufficient to describe the entire flow field. Moreover, the solution of equations of motion is difficult due to its non-linear 
nature and therefore, this method is rarely used.

6.5.2 Eulerian Method
In this method, a finite volume called control volume (or flow domain) is defined through which the fluid flows in and out. 
The motion of fluid is specified by velocity components expressed as functions of space and time in the control volume. 
Thus, Eulerian method does not follow an individual particle. Let V be the resultant velocity at any point in a fluid flow with 
u, v and w being its components in x, y and z directions, respectively. Thus, the velocity components can be mathematically 
expressed as given below.

	 u f x y z t= 1( , , , ), v f x y z t= 2( , , , ), w f x y z t= 3( , , , )  (6.12)

Let a be the resultant acceleration at any point in a fluid flow with ax, ay and az being its components in x, y and z directions, 
respectively. The components of acceleration of the fluid particles can be worked out by partial differentiation. Therefore, 
for x component of acceleration, we have the following expressions.

du
u

x
dx

u

y
dy

u

z
dz

u

t
dt=

∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

a
du

dt

u

x

dx

dt

u

y

dy

dt

u

z

dz

dt

u

t

dt

dtx = =
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

But 
dx

dt
u= , 

dy

dt
v= , 

dz

dt
w=

	
∴ = =

∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

a
du

dt
u

u

x
v

u

y
w

u

z

u

tx  (6.13a)

However, in some textbooks, total acceleration ( )du dt/  is denoted by ( )Du Dt/  and the expression is as follows.

a
du

dt

Du

Dt
u

u

x
v

u

y
w

u

z

u

tx = = =
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

Similarly, the y and z components of acceleration are given in the below expressions.

	
a

dv

dt
u

v

x
v

v

y
w

v

z

v

ty = =
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂  (6.13b)

	
a

dw

dt
u

w

x
v

w

y
w

w

z

w

tz = =
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂  (6.13c)
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 Fluid Kinematics 6.9

Acceleration vector is given by,

	
�
a a i a j a kx y z= + +  (6.14)

Here, i, j and k are the unit vectors in the directions of coordinate axes.
In vector notation, acceleration may be represented as given below.

	
�
a

dV

dt

V

t
V V= =

∂
∂

+ ⋅∇  (6.15)

The magnitude of acceleration (or the resultant acceleration) is given by the following expression.

	
a a a ax y z= + +2 2 2  (6.16)

Local acceleration It is defined as the rate of change of velocity of the fluid particles with respect to time at a given point 
in a fluid flow. In Equations 6.13 (a), 6.13(b) and 6.13(c), the following given expressions are called local acceleration or 
temporal acceleration. 

	

∂
∂
u

t
; 

∂
∂
v

t
; 

∂
∂
w

t
 (6.17)

Convective acceleration It is defined as the rate of change of velocity due to the change in position of the fluid particles 
in a flow field. In Equations 6.13(a), 6.13(b) and 6.13(c), the following given expressions are called covective acceleration 
or advective acceleration.

	
u

u

x
v

u

y
w

u

z

∂
∂

+
∂
∂

+
∂
∂

, u
v

x
v

v

y
w

v

z

∂
∂

+
∂
∂

+
∂
∂

, u
w

x
v

w

y
w

w

z

∂
∂

+
∂
∂

+
∂
∂

 (6.18)

The total acceleration, i.e., the sum of local acceleration and convective acceleration of the fluid particle is called material 
or substantial acceleration. In a steady flow, the local acceleration is zero, since the velocity at any point is invariant with 
time. However, in uniform flow, the convective acceleration is zero, since the velocity components are not the functions of 
space coordinates. In steady and uniform flow, both the local and convective acceleration are zero and hence, there exists 
no total acceleration.

 Example 6.3  Find the velocity and acceleration components at point A( , , )1 2 3 m and at t = 2 s for the fluid flow 

described by the velocity vector 
�

V x i x yj tk= − +2 5 33 2 .

Solution
Let x = 1 m, y = 2 m, z = 3 m, t = 2 s, u x= 2 3, v x y= −5 2  and w t= 3 . Let 

�
V  be the velocity vector, V  be the resultant 

velocity, 
�
a  be the acceleration vector and a be the resultant acceleration.

The velocity components at point A( , , )1 2 3 m and at time t = 2 s are calculated as follows.

u x= = × =2 2 1 23 3 m/s

v x y= − = − × × = −5 5 1 2 102 2 m/s

w t= = × =3 3 2 6 m/s

�
V ui vj wk= + + = 2 10 + 6i j k–

V u v w= + + = + − + =2 2 2 2 2 22 10 6( ) 11.83 m/s
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6.10 Chapter 6

Now 
∂
∂

=
∂

∂
=

u

x

x

x
x

( )2
6

3
2; 

∂
∂

=
∂

∂
=

u

y

x

y

( )2
0

3

; 
∂
∂

=
∂

∂
=

u

z

x

z

( )2
0

3

; 
∂
∂

=
∂

∂
=

u

t

x

t

( )2
0

3

Since a u
u

x
v

u

y
w

u

z

u

tx =
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

Thus a x x x y t xx = + − + + =2 6 5 0 3 0 0 123 2 2 5( ) ( )( ) ( )( )

The acceleration in x-direction at point A( , , )1 2 3 m and at t = 2 s is calculated as follows.

a xx = = =12 12 1 125 5( ) m/s2

Now 
∂
∂

=
∂ −

∂
= −

v

x

x y

x
xy

( )5
10

2

; 
∂
∂

=
∂ −

∂
= −

v

y

x y

y
x

( )5
5

2
2; 

∂
∂

=
∂ −

∂
=

v

z

x y

z

( )5
0

2

; 
∂
∂

=
∂ −

∂
=

v

t

x y

t

( )5
0

2

Since a u
v

x
v

v

y
w

v

z

v

ty =
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

Thus a x xy x y x t x yy = − + − − + + =2 10 5 5 3 0 0 53 2 2 4( ) ( )( ) ( )( )

The acceleration in y-direction at point A( , , )1 2 3 m and at t = 2 s is calculated as follows.

a x yy = = × × =5 5 1 2 104 4 m/s2

Now 
∂
∂

=
∂

∂
=

w

x

t

x

( )3
0, 

∂
∂

=
∂

∂
=

w

y

t

y

( )3
0, 

∂
∂

=
∂

∂
=

w

z

t

z

( )3
0, 

∂
∂

=
∂

∂
=

w

t

t

t

( )3
3

Since a u
w

x
v

w

y
w

w

z

w

tz =
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

Thus a x x y tz = + − + + =2 0 5 0 3 0 3 33 2( ) ( )( ) ( )( )

The acceleration in z-direction at point A( , , )1 2 3 m and at t = 2 s is calculated as follows.

az = 3 m/s2

�
a a i a j a kx y z= + + = 12 +10 + 3i j k

a a a ax y z= + + = + + =2 2 2 2 2 212 10 3 15.9 m/s2

 Example 6.4  Find the velocity and acceleration components of a fluid particle at position 
�
r x y z i j k( , , ) ,= + +2 3  when 

t = 1 5.  for the fluid flow described by the velocity vector 
�

V x y z t xyi x j t x z k( , , , ) ( )= + + +5 3 22 2 .

Solution
Let x = 2, y = 1, z = 3, t = 1 5. , u xy= 5 , v x= 3 2  and w t x z= +2 2( ). Let 

�
V  be the velocity vector, V  be the resultant velocity,  

�
a  be the acceleration vector and a be the resultant acceleration.
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 Fluid Kinematics 6.11

The velocity components at point ( , , )2 1 3  and at time t = 1 5.  are calculated in the below expressions.

u xy= = × × =5 5 2 1 10 units

v x= = × =3 3 2 122 2 units

w t x z= + = × + =2 2 1 5 2 3 152 2( ) ( . ) units

�
V ui vj wk= + + = 10 +12 +15i j k

V u v w= + + = + + =2 2 2 2 2 210 12 15 21.66 units

Now 
∂
∂

=
∂

∂
=

u

x

xy

x
y

( )5
5 , 

∂
∂

=
∂

∂
=

u

y

xy

y
x

( )5
5 , 

∂
∂

=
∂

∂
=

u

z

xy

z

( )5
0, 

∂
∂

=
∂

∂
=

u

t

xy

t

( )5
0

Since a u
u

x
v

u

y
w

u

z

u

tx =
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

Thus a xy y x x t x z xy xx = + + + + = +5 5 3 5 2 0 0 25 152 2 2 3( ) ( )( ) ( )( )

The acceleration in x-direction at point ( , , )2 1 3  and at t = 1 5.  is derived as given below.

a xy xx = + = × × + × =25 15 25 2 1 15 2 1702 3 2 3 units

Now 
∂
∂

=
∂

∂
=

v

x

x

x
x

( )3
6

2

, 
∂
∂

=
∂

∂
=

v

y

x

y

( )3
0

2

, 
∂
∂

=
∂

∂
=

v

z

x

z

( )3
0

2

, 
∂
∂

=
∂

∂
=

v

t

x

t

( )3
0

2

Since a u
v

x
v

v

y
w

v

z

v

ty =
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

Thus a xy x x t x z x yy = + + + + =5 6 3 0 2 0 0 302 2 2( ) ( )( ) ( )( )

The acceleration in y-direction at point ( , , )2 1 3  and at t = 1 5.  is derived as given below.

a x yy = = × × =30 30 2 1 1202 2 units

Now 
∂
∂

=
∂ +

∂
=

w

x

t x z

x
t

[ ( )]2
2

2
2; 

∂
∂

=
∂

∂
=

w

y

t

y

( )3
0; 

∂
∂

=
∂ +

∂
=

w

z

t x z

z

[ ( )]2
2

2

; 
∂
∂

=
∂ +

∂
=

w

t

t x z

t
tx

[ ( )]2
4

2

Since a u
w

x
v

w

y
w

w

z

w

tz =
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

Thus a xy t x t x z txz = + + + +5 2 3 0 2 2 42 2 2( ) ( )( ) ( )( )

∴ = + + +a xyt t x z txz 10 4 42 2( )
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6.12 Chapter 6

The acceleration in z-direction at point ( , , )2 1 3  and at t = 1 5.  is derived as given below.

az = × × × + × + + × × =10 2 1 1 5 4 1 5 2 3 4 1 5 2 872 2. ( . ) . units

�
a a i a j a kx y z= + + = 170 +120 + 87i j k

a a a ax y z= + + = + + =2 2 2 2 2 2170 120 87 225.54 units

6.6 ❐ TANGENTIAL AND NORMAL ACCELERATIONS
Let s and n be the respective tangential and normal directions at any point on the streamline (Figure 6.4 (a)) and r be its 
radius of curvature (Figure 6.4 (b)).

Let at any point on a streamline, Vs and Vn be the velocity components along the tangential (s) and normal (n) directions, 
respectively.

V f s n ts = 1( , , ) and V f s n tn = 2( , , )

The acceleration components as and an in the tangential and normal directions, respectively (Figure 6.4(a)) are given in the 
below expressions.

a
dV

dt

V

s

ds

dt

V

n

dn

dt

V

ts
s s s s= =

∂
∂

⋅ +
∂
∂

⋅ +
∂
∂

a
dV

dt

V

s

ds

dt

V

n

dn

dt

V

tn
n n n n= =

∂
∂

⋅ +
∂
∂

⋅ +
∂
∂

But 
ds

dt
Vs=  and 

dn

dt
Vn=

Thus a V
V

s
V

V

n

V

ts s
s

n
s s=

∂
∂

+
∂
∂

+
∂
∂

 and

a V
V

s
V

V

n

V

tn s
n

n
n n=

∂
∂

+
∂
∂

+
∂
∂

Streamline

(a) (b)

s

n

an

as

a

P

O

Q R

S

T Vsδ

Vnδ
Vδ

V = Vs

sδ

r

V

Stre
am

lin
e

αd

αd

VV δ+

Figure 6.4 Tangential and normal accelerations

M06 Fluid Mechanics and Hydraulic Machines XXXX 01.indd   12 4/5/2019   10:23:10 AM

Download more at Learnclax.com



 Fluid Kinematics 6.13

For any streamline, there is no flow across it and thus, Vn = 0, but ( )∂ ∂V sn /  need not be zero. Although Vn = 0 at any point 

on the streamline, but at any other point on the streamline, the component of the velocity in the direction parallel to that of 
Vn need not always be zero. Therefore, we derive the following expressions.

	
a V

V

s

V

ts s
s s=

∂
∂

+
∂
∂

 (6.19)

	
a V

V

s

V

tn s
n n=

∂
∂

+
∂
∂

 (6.20)

Let at any point P on the streamline, the fluid particle has a velocity V tangential to the streamline (i.e., V Vs= ). In an 

infinitesimal time dt the fluid particle moves through a distance δ s  and it takes new position at point Q by attaining 

the velocity ( )V V+ δ . The total change in velocity δV  for any fluid particle which moves through a distance δ s  can be 
resolved into two components, such as δVs and δVn along the tangential and normal directions, respectively as shown in 
Figure 6.4(b).

From ΔPOQ :	 δ α α δ
s rd d

s

r
= ⇒ =  (i)

From ΔQRS : δ δ α α δ αV V V d V d V dn = + = +( )sin sin sin

But for small angular travel dα , sin , whered dα α=  δ αV dsin  is negligible.

Thus δ α α
δ

V Vd d
V

Vn
n≈ ⇒ =  (ii)

Therefore, from expressions (i) and (ii), we derive as follows.

δ δs

r

V

V
n=  or 

δ
δ
V

s

V

r

V

r
n s= =

From Equation (6.20), we get:

	
a

V

r

V

tn
s n= +

∂
∂

2

 (6.21)

From Equations (6.19) to (6.21), the term ( )∂ ∂V ts /  is called local tangential acceleration and ( )∂ ∂V tn /  is called local 

 normal acceleration. Similarly, in these equations, the term V V ss s( )∂ ∂/  is called the convective tangential acceleration and 

( )V rs
2 /  is called convective normal acceleration.
For a steady flow, there is no local acceleration and it means there is only convective acceleration. Thus, for a steady 

flow, the respective Equations (6.19) and (6.21) are expressed as given below.

	
a V

V

ss s
s=

∂
∂

 (6.22)

	
a

V

rn
s=
2

 (6.23)

When the streamlines are straight and parallel to each other, then both the normal and tangential convective acceleration 
are zero. If the streamlines are straight and converging, then there will be tangential convective acceleration only. When the 
streamlines are curved and equidistant, then there will be normal convective acceleration only. However, when streamlines 
are curved and converging, then there will be both normal and tangential convective accelerations.
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6.14 Chapter 6

6.7 ❐ RATE OF FLOW (DISCHARGE)
The rate of flow (or discharge) is defined as the quantity of a fluid flowing per second through a section of a pipe or a 
 channel. Generally, the value of rate of flow is denoted by Q.

Let A be the area of cross section of the pipe and V be the average velocity of the liquid flowing through the pipe. The 
discharge value is given by the following expression.

	 Q AV=  (6.24)

The value of discharge is measured in m /s3  (or cumecs) and it may also be measured in litres per second ( )l /s  and 
1 1000m /s /s.3 = l

6.8 ❐ CONTINUITY EQUATION
The equation based on the principle of conservation of mass is called the continuity equation. According to continuity 
equation, the mass of a fluid passing through different sections of a pipe is the same if no fluid is added or removed from 
it. Consider section 1–1 and section 2–2 of a pipe as shown in Figure 6.5.

Let ρ1 be the density of the fluid at section 1-1, A1 be the area 
of the pipe at section 1–1, V1 be the velocity of the fluid at section 
1–1 and ρ2 2 2, ,A V  be the corresponding values at section 2–2.

The mass flow rate at section 1–1 is given by,

m AV1 1 1 1= × = ×Density Discharge ρ

The mass flow rate at section 2–2 is given by,

m A V2 2 2 2= ×ρ

According to the law of conservation of mass m m1 2= , we derive the following expression.

	 ρ ρ1 1 1 2 2 2AV A V=  (6.25)

Equation (6.25) is called continuity equation and it is applicable to compressible as well as incompressible fluids. For 
incompressible fluids, ρ ρ1 2=  and thus, the continuity equation is expressed as given below.

	 AV A V1 1 2 2=  (6.26)

The Equation (6.26) is applicable to a steady one-dimensional flow of incompressible fluid.

 Example 6.5  If 1200 litres of water flows per minute through a 0.2 m diameter pipe which reduces to 0.1 m diameter, 
then determine the velocities of water flow in the two pipes.

Solution
Let / m /3Q l= =1200 1 2min . min, d1 0 2= . m and d2 0 1= . m.

Q = =
1 2

60
0 02

.
. m /s3

Since Q AV A V= =1 1 2 2   [Continuity equation] 

∴ = = =
×

=V
Q

A

Q

d
1

1 1
2 24

0 02

4 0 2( / )

.

( / ) .π π
0.637 m/s

∴ = = =
×

=V
Q

A

Q

d
2

2 2
2 24

0 02

4 0 1( / )

.

( / ) .π π
2.55 m/s

1

1
2

2

1, A1, V1ρ 2, A2, V2ρPipe

Figure 6.5 Fluid flow through a pipe
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 Fluid Kinematics 6.15

 Example 6.6  A water pipe of enlarging cross section has diameters 0.4 m and 1.2 m at sections 1–1 and 2–2,  respectively. 
If the average flow velocity is 2 m/s at section 1–1, then find the velocity at section 2–2. Also determine the discharge and 
the mass flow rate of water.

Solution
Let md1 0 4= . , d2 1 2= . m and V1 2= m/s.

Let Q be the discharge and m be the mass flow rate.

A d1 1
2 2

4 4
0 4 0 1257= = × =

π π
. . m2

A d2 2
2 2

4 4
1 2 1 131= = × =

π π
. . m2

Since AV A V1 1 2 2= 	 	 [Continuity equation] 

∴ = =
×

=V
AV

A2
1 1

2

0 1257 2

1 131

.

.
0.222 m/s

Q AV= = × =1 1 0 1257 2. 0.2514 m /s3

m Qw= = × =ρ 1000 0 2514. 251.4 kg/s

 Example 6.7  A pipe 1 m in diameter carrying water at a velocity of 4 m/s is branched into two pipes. The first branch 
is 0.6 m in diameter and it carries one-third of the water flow. If water flows in the second branch with a velocity of 3 m/s, 
then determine the flow velocity in the first branch pipe and the diameter of the second branch.

Solution
Let d = 1 m, V = 4 m/s, d1 0 6= . m, Q Q1 3= ( )/ m /s3  and V2 3= m/s. 

Let Q be the total discharge, V1 be the water velocity in the first branched pipe and d2 be the diameter of the second 
branched pipe.

Q AV d V= = × = × × =
π π
4 4

1 4 3 14162 2 . m /s3

Q
Q

1 3

3 1416

3
1 0472= = =

.
. m /s3

V
Q

A

Q

d
1

1

1

1

1
2 24

1 0472

4 0 6
= = =

×
=

( / )

.

( / ) .π π
3.704 m/s

Q Q Q2 1 3 1416 1 0472 2 0944= − = − =. . . m /s3

A
Q

V2
2

2

2 0944

3
0 6981= = =

.
. m2

Thus 
π
4

0 69812
2d = .

∴ =
×

=d2
4 0 6981.

π
0.9428 m

 Example 6.8  A main pipe of diameter 0.4 m carrying water at an average velocity of 3 m/s is branched into two pipes 
of diameters 0.25 m and 0.15 m. If water flows in the 0.25 m diameter pipe with a velocity of 2.5 m/s, then determine the 
water flow velocity in the other branched pipe. Also determine the discharge through the main pipe.

M06 Fluid Mechanics and Hydraulic Machines XXXX 01.indd   15 4/5/2019   10:23:40 AM

Download more at Learnclax.com



6.16 Chapter 6

Solution
Let d = 0 4. m, V = 3 m/s, d1 0 25= . m, d2 0 15= . m  and V1 2 5= . m/s.

Let Q be the total discharge, Q1 be the discharge through d1 diameter pipe, Q2 be the discharge through d2 diameter pipe 
and V2 be the water velocity in the pipe of diameter d2.

Q AV d V= = × = × × =
π π
4 4

0 4 32 2. 0.377 m /s3

Q d V1 1
2

1
2

4 4
0 25 2 5 0 123= × = × × =

π π
. . . m /s3

Q Q Q2 1 0 377 0 123 0 254= − = − =. . . m /s3

V
Q

A

Q

d
2

2

2

2

2
2 24

0 254

4 0 15
= = =

×
=

( / )

.

( / ) .π π
14.373 m / s

 Example 6.9  A nozzle fitted at the end of a pipe is required to supply 0.3 kg/s of air at pressure 2 bar and temperature 
20°C, respectively. If the air flow velocity is limited to 5 m/s, then determine the minimum diameter of the nozzle. Take 
R = 287 J/kgK .

Solution
Let m = 0 3. kg/s, p = = ×2 2 105bar N/m2, T = ° =20 293 15C K. , V = 5 m/s and R = 287 J/kgK . Let d be the minimum 
diameter of the nozzle.

ρ = =
×
×

=
p

RT

2 10

287 293 15
2 377

5

.
. kg/m3

Since m AV= ρ

Thus 0 3 2 377 5. .= × ×A

∴ =
×

=A
0 3

2 377 5
0 0252 2.

.
. m

π
4

0 02522d = . m2

∴ =
×

=d
0 0252 4.

π
0.1791 m

 Example 6.10  A 10 mm water jet leaves the tip of the nozzle fitted at the end of a pipe with 10 m/s velocity in the 
vertically upward direction. If there is no energy loss and the jet remains circular, then determine its diameter at a point  
3 m above the nozzle tip.

Solution
Refer Figure 6.6. Let the subscripts 1 and 2 denote the conditions at the nozzle tip and 
at 3 m height from it. Let d1 10 0 01= =mm m,.  V1 10= m/s and h = 3 m. Let d2 be the 
diameter of the jet at 3 m above the nozzle.

Since	 V V gh2
2

1
2 2− = 	 [ ]∵v u gh2 2 2− =  

Thus V2
2 210 2 9 81 3− = × − ×( . )

∴ = − =V2 100 58 86 6 414. . m/s

3 m

1

2

Water jet

Pipe

Nozzle

Figure 6.6
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From continuity equation, we get:

A
AV

V

d V

V2
1 1

2

1
2

1

2

2
4

4

0 01 10

4 6 414
1 2245 10= =

×
×

=
× ×

×
= × −π π .

.
. m2

Thus 
π
4

1 2245 102
2 4d = × −.

∴ =
× ×

=
−

d2

41 2245 10 4.

π
0.0125 m

 Example 6.11  A cylindrical container of radius 3 m and height 9 m is to be filled completely with water by a number of 
pipes in 50 minutes. Determine the required water inflow of the container in m3/s and also determine the number of pipes 
required if the container is to be filled by 5 cm diameter water pipes in which water flows with a velocity of 5 m/s.

Solution
Let r = 3 m, h = 9 m, t = =50 3000min s, d1 5 0 05= =cm m.  and V = 5 m/s. Let n be the number of water pipes required, 
Q be the total discharge, q be the discharge through one pipe and v be the volume of the cylindrical container.

v r h= = × × =π π2 23 9 254 469. m3

Q
v

t
= = =

254 469

3000
0 085

.
. m /s3

q d V= × = × × =
π π
4 4

0 05 5 0 009821
2 2. . m /s3

n
Q

q
= = ≈

0 085

0 00982

.

.
9

6.9 ❐ CONTINUITY EQUATION IN DIFFERENTIAL FORM 
(3-DIMENSIONS)

Consider a three-dimensional space element of dimensions dx, dy and dz in a flow field which has three velocity compo-
nents, such as u, v and w along x, y and z directions, respectively, through which a fluid flows as shown in Figure 6.7.

The mass flow of fluid that enters the element through surface ABFE in time dt in x-direction is expressed below.

Fluid influx Density Velocity in -direction Area Time= × × ×x ABFE

Fluid influx = × × ×ρ u dydz dt

During the same time interval, the mass of fluid leaving the element 
through face DCGH, a distance dx apart from  surface ABFE is given by 
the following expression.

Fluid efflux = +
∂
∂

⎡
⎣⎢

⎤
⎦⎥

ρ ρu
x

u dx dy dz dt( )

The gain in mass due to flow in x-direction is given by the difference of 
fluid influx to fluid efflux as given below.

	
⇒ − +

∂
∂

⎡
⎣⎢

⎤
⎦⎥

= −
∂
∂

ρ ρ ρ ρu dy dz dt u
x

u dx dy dz dt
x

u dx dy dz dt( ) ( )  (i)

dx

dy

dz

x

y

z

u
A

B
C

D

E

F G

H

dx
x
uu

∂
∂+

v
w

dz
z
ww

∂
∂+

dy
y
vv

∂
∂+

Figure 6.7  Three-dimensional infinitesimal  

fluid element
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6.18 Chapter 6

Similarly, the respective gain in fluid mass due to flow in y and z-direction is expressed as given below.

	
⇒ −

∂
∂y

v dx dy dz dt( )ρ  (ii)

	
⇒ −

∂
∂z

w dx dy dz dt( )ρ  (iii)

Thus, the total gain in mass fluid in the element in time dt can be obtained by adding the expressions (i), (ii) and (iii) as 
given below.

	
⇒ −

∂
∂

+
∂
∂

+
∂
∂

⎡

⎣
⎢

⎤

⎦
⎥x

u
y

v
z

w dx dy dz dt( ) ( ) ( )ρ ρ ρ  (iv)

The mass of fluid within the element is given by the following expression.

m dx dy dz= × = ×Density Volume ρ

Rate of increase of mass within the element in time dt is given by,

	

∂
∂

=
∂
∂

m

t
dt

t
dx dy dz dt( )ρ  (v)

According to the principle of conservation of mass, the total gain in mass equals to the time rate of increase of mass in the 
element. Thus, by equating the expressions (iv) and (v), we have the following expression.

−
∂
∂

+
∂
∂

+
∂
∂

⎡

⎣
⎢

⎤

⎦
⎥ =

∂
∂x

u
y

v
z

w dx dy dz dt
t

dx dy dz dt( ) ( ) ( ) ( )ρ ρ ρ ρ

By simplification and rearrangement of terms, we get:

	

∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

=
ρ ρ ρ ρ
t x

u
y

v
z

w( ) ( ) ( ) 0  (6.27)

Equation (6.27) is the continuity equation in Cartesian coordinates in its most general form which is applicable to any type 
of flow and for any fluid that is either compressible or incompressible. This equation may be expanded as given below.

∂
∂

+
∂
∂

+
∂
∂

⎡
⎣⎢

⎤
⎦⎥

+
∂
∂

+
∂
∂

⎡

⎣
⎢

⎤

⎦
⎥ +

∂
∂

+
∂
∂

⎡
⎣⎢

⎤
⎦⎥

ρ ρ ρ ρ ρ ρ ρ
t

u
x

u

x
v

y

v

y
w

z

w

z
== 0

	

∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

⎡

⎣
⎢

⎤

⎦
⎥ +

∂
∂

+
∂
∂

+
∂
∂

⎡

⎣
⎢

⎤

⎦
⎥ =

ρ ρ ρ ρ ρ
t

u
x

v
y

w
z

u

x

v

y

w

z
0  (6.28)

For a steady flow, 
∂
∂

=
ρ
t

0 and for incompressible flow, ρ  is constant and thus, Equation (6.28) is derived below.

	

∂
∂

+
∂
∂

+
∂
∂

=
u

x

v

y

w

z
0  (6.29)

The Equation (6.29) represents the continuity equation in three-dimensions for a steady and incompressible flow. For a 
two-dimensional flow, the component w = 0 and thus, Equation (6.29) can be written as follows.

	

∂
∂

+
∂
∂

=
u

x

v

y
0  (6.30)

M06 Fluid Mechanics and Hydraulic Machines XXXX 01.indd   18 4/5/2019   10:24:06 AM

Download more at Learnclax.com



 Fluid Kinematics 6.19

6.10 ❐  CONTINUITY EQUATION IN CYLINDRICAL POLAR 
COORDINATES

Consider a point P r z( , , )α  in space of a flow field. Let dr, rdα  and dz be the small increments and ur, uα  and uz be the 
components of the velocity in the directions r, α  and z, respectively, at point P. The general continuity equation can be set 
up by considering an infinitesimal cylindrical volume element as shown in Figure 6.8 and writing mass flow equations in 
the radial, tangential and axial directions. In Figure 6.8, we have AB EF DC GH dr= = = = , AE DG BF CH dz= = = = , 
AD EG rd= = α  and BC FH r dr d= = +( ) .α
 1. Radial direction (x – a	plane): The mass flow of fluid that enters the element through surface AEGD in time dt in 

radial direction is given by the following expression.

Fluid influx Density Velocity in radial direction Area Ti= × × ×AEGD mme

Fluid influx = × × × ×ρ αu rd dz dtr ( )

  During the same time interval, the mass of fluid leaving the element through face BCHF at a distance dr apart from 
the surface AEGD is given by the following expression.

Fluid efflux = +
∂
∂

⎡
⎣⎢

⎤
⎦⎥

+ρ ρ αu
r

u dr r dr d dz dtr r( ) ( )

  The gain in mass due to flow in radial direction is given by,

= −Fluid influx Fluid efflux

= − +
∂
∂

⎡
⎣⎢

⎤
⎦⎥

+ρ α ρ ρ αu r d dz dt u
r

u dr r dr d dz dtr r r( ) ( ) ( )

= − +
∂
∂

⋅ +⎡
⎣⎢

⎤
⎦

ρ α ρ α ρ α ρ αu r d dz dt u r d dz dt
r

u dr r d dz dt u dr d dz dtr r r r( ) ⎥⎥

	
= −

∂
∂

+⎡
⎣⎢

⎤
⎦⎥r

u r u dr d dz dtr r( )ρ ρ α  (Neglecting smaller terms)

	
= −

∂
∂r

u r dr d dz dtr[( ) ]ρ α  (i)

 2. Tangential direction (r – z	plane): The mass flow of fluid that enters the element through surface ABFE in time dt in 
tangential direction is given by the following expression.

Fluid influx = ρ αu dr dz dt( )

dr

dz

A

B

C

D

E

F

G

H

ur

dr
r

urur ∂
∂+uz

z

y

x

),,( zrP α

α

αrd

αu α
α
α

α d
u

u
∂
∂+

αddrr )( +

dz
z

uzuz ∂
∂+

Figure 6.8 Three-dimensional infinitesimal cylindrical fluid element
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6.20 Chapter 6

  During the same time interval, the mass of fluid leaving the element through face DGHC, a distance rdα  apart from 
surface ABFE is given by the following expression.

Fluid efflux = +
∂
∂

⎡
⎣⎢

⎤
⎦⎥

ρ
α

ρ αα αu
r

u r d dr dz dt( )

  The gain in mass due to flow in tangential direction is given by,

⇒ −Fluid influx Fluid efflux

⇒ − +
∂
∂

⎡
⎣⎢

⎤
⎦⎥

ρ ρ
α

ρ αα α αu dr dz dt u
r

u rd dr dz dt( ) ( )

⇒ − −
∂
∂

ρ ρ
α

ρ αα α αu dr dz dt u dr dz dt
r

u r d dr dz dt( ) ( )

	
⇒ −

∂
∂α

ρ αα( )u dr d dz dt  (ii)

 3. Axial direction (r – a	plane):	The mass flow of fluid that enters the element through surface EFHG in time dt in axial 
direction is given by the following expression.

Fluid influx = × × × ×ρ αu dr rd dtz ( )

  During the same time interval, the mass of fluid leaving the element through face ABCD, a distance dz apart from the 
surface EFHG is given by the following expression.

Fluid efflux = +
∂
∂

⎡
⎣⎢

⎤
⎦⎥

×ρ ρ αu
z

u dz dr r d dtz z( )

  The gain in mass due to flow in axial direction is given by,

⇒ −Fluid influx Fluid efflux

⇒ ⋅ − +
∂
∂

⎡
⎣⎢

⎤
⎦⎥

×ρ α ρ ρ αu dr r d dt u
z

u dz dr r d dtz z z( ) ( )

⇒ × − × −
∂
∂

×ρ α ρ α ρ αu dr rd dt u dr rd dt
z

u dz dr r d dtz z z( ) ( ) ( )

	
⇒ −

∂
∂

r
z

u dr d dz dtz( )ρ α  (iii)

Thus, the total gain in mass fluid in the element, in time dt can be obtained by adding the expressions (i), (ii) and (iii) as 
shown below.

	
⇒ −

∂
∂

+
∂

∂
+

∂
∂

⎡
⎣⎢

⎤
⎦⎥r

u r u r
z

u dr d dz dtr z[( ) ] ( ) ( )ρ
α

ρ ρ αα  (iv)

The mass of fluid within the element is given by,

m dz dr rd= × = × × ×Density  Volume ρ α( )

Rate of increase of mass within the element in time dt is given by,

	

∂
∂

=
∂
∂

⋅
m

t
dt

t
dzdr rd dt( )ρ α  (v)

According to the principle of conservation of mass, the total gain in mass equals the time rate of increase of mass in the 
element. Thus, by equating the expressions (iv) and (v), we have the following result.

−
∂
∂

+
∂

∂
+

∂
∂

⎡
⎣⎢

⎤
⎦⎥

=
∂
∂

⋅
r

u r u r
z

u dr d dz dt
t

dz dr r dr z[( ) ] ( ) ( ) (ρ
α

ρ ρ α ρα αα)dt
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 Fluid Kinematics 6.21

Dividing throughout by r and simplifying, we get:

	

1 1
0

r r
u r

r
u

z
u

tr z
∂
∂

+
∂

∂
+

∂
∂

+
∂
∂

=( ) ( ) ( )ρ
α

ρ ρ ρ
α  (6.31)

The Equation (6.31) represents the continuity in cylindrical polar coordinates in its most general form. This equation is 
applicable for steady or unsteady flow, uniform or non-uniform flow and compressible or incompressible fluids.

For a steady flow, from Equation (6.31), we get:

	

1 1
0

r r
u r

r
u

z
ur z

∂
∂

+
∂

∂
+

∂
∂

=( ) ( ) ( )ρ
α

ρ ρα  (6.32)

For a two-dimensional steady flow, from Equation (6.31), we get:

	

∂
∂

+
∂

∂
=

r
u r ur( ) ( )ρ

α
ρ α 0  (6.33)

For a two-dimensional steady and incompressible flow, from Equation (6.31), we get:

	

∂
∂

+
∂
∂

=
r

u r
u

r( ) α
α

0  (6.34)

  Example 6.12  Two velocity components are given in the following cases, find the third component of velocity such that 
they satisfy the continuity equation (i) u x y z= − + −3 2 22  and v x y yz xy= + +2  (ii) v y= −2 2 and w xyz= −2 .

Solution

 (i) u x y z= − + −3 2 22  and v x y yz xy= + +2

∂
∂

= −
u

x
x3 2 , 

∂
∂

= + +
v

y
x z x2

	

∂
∂

+
∂
∂

+
∂
∂

=
u

x

v

y

w

z
0  [Continuity equation]

  Substituting the values in the above equation, we get:

− + + + +
∂
∂

=3 02 2x x z x
w

z
( )

∂
∂

= − −
w

z
x z x( )2 2

∂ = − − ∂w x z x z( )2 2

  Integrating both sides, we get:

w x z
z

xz C= − −
⎛

⎝
⎜

⎞

⎠
⎟ +2

2
2

2

  The constant of integration could be a function of x and y, i.e., f x y( , ). Thus, we derive the third component as follows.

w =
⎛

⎝
⎜

⎞

⎠
⎟2

2
+ ( , )2

2
x z

z
xz f x y−− −−

 (ii) v y= −2 2 and w xyz= −2

∂
∂

= −
v

y
y4 , 

∂
∂

= −
w

z
xy2

	

∂
∂

+
∂
∂

+
∂
∂

=
u

x

v

y

w

z
0  [Continuity equation]
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6.22 Chapter 6

  Substituting the values in the continuity equation, we get:
∂
∂

− − =
u

x
y xy4 2 0

∂
∂

= +
u

x
y xy4 2

∂ = + ∂u y xy x( )4 2

  Integrating both sides, we get:

u xy x y C= + +( )4 2

  The constant of integration could be a function of y and z, i.e., f y z( , ). Thus, we derive the third component as follows.

u = (4 + ) + ( , )2xy x y f y z

  Example 6.13  In a flow field, if 
�

V x i x yj x zk= − −2 53 2 2  is the velocity vector, then find whether it is a possible case of 
steady incompressible flow. If so, then determine the velocity and acceleration of fluid particle at (3, 1, 3).

Solution

Let
�

V x i x yj x zk= − −2 53 2 2 , x = 3, y = 1 and z = 3.

 (i) From the velocity vector equation, we get:

u = 2x3, v x y= −5 2  and w x z= − 2

∂
∂

=
∂

∂
=

u

x

x

x
x

( )2
6

3
2; 

∂
∂

=
∂

∂
=

u

y

x

y

( )2
0

3

; 
∂
∂

=
∂

∂
=

u

z

x

z

( )2
0

3

; 
∂
∂

=
∂

∂
=

u

t

x

t

( )2
0

3

∂
∂

=
∂ −

∂
= −

v

x

x y

x
xy

( )5
10

2

; 
∂
∂

=
∂ −

∂
= −

v

y

x y

y
x

( )5
5

2
2; 

∂
∂

=
∂ −

∂
=

v

z

x y

z

( )5
0

2

; 
∂
∂

=
∂ −

∂
=

v

t

x y

t

( )5
0

2

∂
∂

=
∂ −

∂
= −

w

x

x z

x
xz

( )2

2 ; 
∂
∂

=
∂ −

∂
=

w

y

x z

y

( )2

0; 
∂
∂

=
∂ −

∂
= −

w

z

x z

z
x

( )2
2; 

∂
∂

=
∂ −

∂
=

w

t

x z

t

( )2

0

  For a possible case of fluid, the following continuity equation must be satisfied.

∂
∂

+
∂
∂

+
∂
∂

=
u

x

v

y

w

z
0

  Thus 6 5 02 2 2x x x+ − + − =( ) ( )

  Since the continuity equation is satisfied, the given expression for velocity represents a possible case of steady 
incompressible flow.

 (ii) u x= = × =2 2 3 543 3 units

v x y= − = − × × = −5 5 3 1 452 2 units

w x z= − = − × = −2 23 3 27 units

  The velocity vector is given by,
�

V ui vj wk= + + = 54 45 27i j k– –

  The resultant velocity is given by,

V u v w= + + = + − + − =2 2 2 2 2 254 45 27( ) ( ) 75.3 units
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 (iii) a u
u

x
v

u

y
w

u

z

u

tx =
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

  Thus a x xx = + − + − + =54 6 45 0 27 0 0 3242 2( ) ( )( ) ( )( )

∴ = = × =a xx 324 324 3 29162 2 units

  Since a u
v

x
v

v

y
w

v

z

v

ty =
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

  Thus a xy x xy xy = − + − − + − + = − +54 10 45 5 27 0 0 540 2252 2( ) ( )( ) ( )( )

∴ = − + = − × × + × =a xy xy 540 225 540 3 1 225 3 4052 2 units

  Since a u
w

x
v

w

y
w

w

z

w

tz =
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

  Thus a xz x xz xz = − + − + − − + = − +54 2 45 0 27 0 108 272 2( ) ( )( ) ( )( )

∴ = − + = − × × + × = −a xz xz 108 27 108 3 3 27 3 7292 2 units

  Acceleration vector is given by,
�
a a i a j a kx y z= + + = 2916 + 405 729i j k–

  The resultant acceleration is given by,

a a a ax y z= + + = + + − =2 2 2 2 2 22916 405 729( ) 3032.91 units

 Example 6.14  Determine whether the velocity components u rr = cosα  and u rα α= 2 sin  represent a physically 
 possible flow?

Solution
Let u rr = cosα  and u rα α= 2 sin .

	 u r rr = 2 cosα  [Multiply both sides by r]

∂
∂

=
∂
∂

=
r

u r
r

r rr( ) ( cos ) cos2 2α α

∂
∂

= −
u

rα
α

α2 cos

For physically possible flow, the following continuity equation should be satisfied,

∂
∂

+
∂
∂

=
r

u r
u

r( ) α
α

0

Thus 2 2 0r rcos ( cos )α α+ − =

Since the continuity equation is satisfied and therefore, the given velocity components represent a physically possible 
flow.
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 Example 6.15  A pipe converges uniformly from 0.2 m diameter to 0.1 m diameter over 1 m length. The discharge 
through the pipe is 10 litres per second. (i) Determine the convective acceleration at the middle of the pipe. (ii) If the 
 discharge through the pipe increases uniformly from 10 to 20 litres per second in 20 seconds, then find the total  acceleration 
at the middle of the pipe after 10 seconds.

Solution
Refer Figure 6.9. Let d1 0 2= . m, d2 0 1= . m, l = 1 m, Q Q l= = =1 10 0 01/s m /s,3.  

Q l2 20 0 02= =/s m /s3. , t = 20 s and t1 10= s.

 (i) u
Q

d
1

1
2 24

0 01

4 0 2
0 3183= =

×
=

( / )

.

( / ) .
.

π π
m/s

u
Q

d
2

2
2 24

0 01

4 0 1
1 273= =

×
=

( / )

.

( / ) .
.

π π
m/s

  Since the cross section of the pipe decreases linearly, the velocity also 
increases linearly. Therefore, velocity at a distance x can be expressed as 
given below.

u u u u
x

l

x
= + − × = + − ×1 2 1 0 3183 1 273 0 3183

1
( ) . ( . . )

∴ = +u x0 3183 0 9547. .

∂
∂

=
u

x
0 9547.

  The flow is one-dimensional and thus, v = 0 and w = 0. Therefore, the convective acceleration can be given from 
 Equation (6.18) and derived as follows.

u
u

x
x

∂
∂

= + ×( . . ) .0 3183 0 9547 0 9547

  The convective acceleration at the middle of the pipe, i.e., at x = 0 5. m  is given by,

u
u

x

∂
∂

= + × × =( . . . ) .0 3183 0 9547 0 5 0 9547 0.7596 m/s2

 (ii) The discharge increases uniformly from Q1 0 01= . m /s3  to Q2 0 02= . m /s3  in 20 seconds. Thus, the discharge after  
10 seconds can be derived as given below.

Q Q Q Q
t

t
= + − × = + − × =1 2 1

1 0 01 0 02 0 01
10

20
0 015( ) . ( . . ) . m /s3

u
Q

d
1

1
2 24

0 015

4 0 2
0 4775= =

×
=

( / )

.

( / ) .
.

π π
m/s

u
Q

d
2

2
2 24

0 015

4 0 1
1 91= =

×
=

( / )

.

( / ) .
.

π π
m/s

u u u u
x

l

x
= + − × = + − ×1 2 1 0 4775 1 91 0 4775

1
( ) . ( . . )

∴ = +u x0 4775 1 4325. .

∂
∂

=
u

x
1 4325.

1

1

2

2

1 m

0.2 m 0.1 m
Mid point

Figure 6.9
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 Fluid Kinematics 6.25

  The convective acceleration can be given from Equation (6.18) and it is derived as given below.

u
u

x
x

∂
∂

= + ×( . . ) .0 4775 1 4325 1 4325

  The convective acceleration at the middle of the pipe, i.e., at x = 0 5. m  is given as given below.

u
u

x

∂
∂

= + × × =( . . . ) . .0 4775 1 4325 0 5 1 4325 1 71 2m/s

  The diameter at mid-section is derived as follows.

d d d d
x

l
= − − × = − − × =2 2 1 0 2 0 2 0 1

0 5

1
0 15( ) . ( . . )

.
. m

  The local acceleration can be given by Equation (6.17) and it is expressed as follows.

∂
∂

=
∂

∂
=

−
= −

u

t

t

t

V V Q

A

Q

A

Change in velocity in time

Time

( )

( )
2 1 2 1

20

1

20

⎡⎡
⎣⎢

⎤
⎦⎥

  Thus 
∂
∂

=
−⎡

⎣⎢
⎤
⎦⎥

=
−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= ×
−u

t

Q Q

A

Q Q

d

1

20

1

20 4

1

20

0 02 0 012 1 2 1
2( / )

. .

π (( / ) .
.

π 4 0 15
0 0283

2
2

×
= m/s

  Since total acceleration is the sum of convective acceleration and local acceleration, we get:

Total acceleration =
∂
∂

+
∂
∂

= + =u
u

x

u

t
1 71 0 0283. . 1.7383 m/s2

6.11 ❐ TYPES OF MOTIONS OF A FLUID ELEMENT
A fluid particle during its motion can undergo anyone or any combination of the four types of displacements, namely linear 
translation (or pure translation), linear deformation, angular deformation and rotation as shown in Figure 6.10.

6.11.1 Linear Translation
It is defined as the bodily movement of a fluid element from one position to another in such a way that its new axes are 
parallel to the original axes. The particle neither rotates nor deformed, i.e., no change in size, shape and orientation of the 
element as shown in Figure 6.10(a). It may be observed in a parallel uniform flow.

6.11.2 Linear Deformation
In this type of motion, when the fluid element moves, it gets deformed (stretch or shrink) in the linear direction in such a 
way that the axes of the elements remain parallel but its lengths change as shown in Figure 6.10(b).

6.11.3 Angular Deformation
In this type of motion, the fluid element deforms in such a way that the two axes rotate by the same amount but in opposite 
directions with respect to the original positions. It is defined as the average change in the angle between the two adjacent 
sides of a fluid element as illustrated in Figure 6.10(c).

Let δα1 be the angular displacement of x-axis and δα2 be the angular displacement of y-axis in time d	t.
Since δα1 is caused by the variation of v along the x-axis, we get:

δα δ δ
δ1
1

=
∂
∂

⎛
⎝⎜

⎞
⎠⎟

×
v

x
x t

x
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6.26 Chapter 6

Thus, the angular deformation rate of x-axis (assume Δα1) is given by the following expression.

Δα
δα
δ1

1= =
∂
∂t

v

x

Since δα2 is caused by the variation of u along the y-axis, we get:

δα δ δ
δ2
1

=
∂
∂

⎛
⎝⎜

⎞
⎠⎟

×
u

y
y t

y

Thus, angular deformation rate of y-axis (assume Δα2) is given by the following expression.

Δα
δα
δ2

2= =
∂
∂t

u

y

Thus, shear strain rate in ( )x y−  plane is given by the following expression.

	
ε α αxy

v

x

u

y
= + =

∂
∂

+
∂
∂

⎛
⎝⎜

⎞
⎠⎟

1

2

1

21 2( )Δ Δ  (6.35a)

Similarly, the respective shear strain rate in ( )y z−  and ( )z x−  planes are expressed as follows.

	
ε yz

w

y

v

z
=

∂
∂

+
∂
∂

⎛
⎝⎜

⎞
⎠⎟

1

2
 (6.35b)

	
εzx

u

z

w

x
=

∂
∂

+
∂
∂

⎛
⎝⎜

⎞
⎠⎟

1

2
 (6.35c)

Direct strain rate or linear strain or dilatancy The direct strain rate or linear strain or dilatancy in x, y and z directions, 
respectively are as follows.

	
εxx

u

x
=

∂
∂

, ε yy
v

y
=

∂
∂

 and εzz
w

z
=

∂
∂

 (6.36)
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∂
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∂
∂
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O
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1δα
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v

y

(d)
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New

Original

1δα

2δα

Figure 6.10 Displacement of fluid particles
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6.11.4 Rotation
In this type of motion, the fluid element moves in such a way that both of its axes rotate in the same direction as shown in 
Figure 6.10(d). The rotation may be defined as the average of the angular velocities that are perpendicular to the axis of 
rotation.

The angular velocity of element OA about the z-axis is given by the following expression

ω
δα
δδOA

t t

v

x
= =

∂
∂→

Lim
0

1

The angular velocity of element OB about the z-axis is given by the following expression.

ω
δα
δδOB

t t

u

y
= = −

∂
∂→

Lim
0

2

The negative sign is introduced because u is negative on the left hand side of the y-axis.
Thus, rotation of the element about z-axis is given by the average of the angular velocities of the line OA and the line 

OB as expressed below.

	
ω ω ωz OA OB

v

x

u

y
= +( ) =

∂
∂

−
∂
∂

⎛
⎝⎜

⎞
⎠⎟

1

2

1

2
 (6.37a)

Similarly, the rotation about x-axis and y-axis can be respectively expressed as follows.

	
ωx

w

y

v

z
=

∂
∂

−
∂
∂

⎛
⎝⎜

⎞
⎠⎟

1

2
 (6.37b)

	
ω y

u

z

w

x
=

∂
∂

−
∂
∂

⎛
⎝⎜

⎞
⎠⎟

1

2
 (6.37c)

For irrotational flow, the rotation components ωx, ω y and ω z  will be zero. Thus, for the flow to be irrotational, the  following 
conditions must be satisfied.

 1. For ωx = 0:     
∂
∂

=
∂
∂

w

y

v

z
 (6.38a)

 2. For ω y = 0:      
∂
∂

=
∂
∂

u

z

w

x
 (6.38b)

 3. For ω z = 0:      
∂
∂

=
∂
∂

v

x

u

y
 (6.38c)

In the vector notation, from Equation (6.37), we get:

	
ω ω ω ω= + +( ) = ∇ ×( )1

2

1

2x y zi j k V  (6.39)

The vector ( )∇ ×V  is the curl of velocity vector. Thus, the condition for the flow to be irrotational may be expressed as 
given below.

curl V V= ∇ × =( ) 0

6.11.5 Vorticity
The value of vorticity is generally denoted by ξ  (zeta) and its mathematical expression is represented below.

	 ξ = ∇ ×( )V  (6.40)

From Equation (6.39), we get:

	 ξ ω= 2  (6.41)
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Thus, from the above expression, it can be noticed that vorticity is equal to twice the value of rotation.
From Equation (6.40), we get:

ξ = ∇ × =
∂
∂

∂
∂

∂
∂

( )V

i j k

x y z

u v w

In vector notation, the expression for vorticity is given by,

	
ξ ξ ξ ξ= + +x y zi j k  (6.42)

The vorticity components can be separately given by,

	
ξ ωx x

w

y

v

z
= =

∂
∂

−
∂
∂

⎛
⎝⎜

⎞
⎠⎟

2  (6.43a)

	
ξ ωy y

u

z

w

x
= =

∂
∂

−
∂
∂

⎛
⎝⎜

⎞
⎠⎟

2  (6.43b)

	
ξ ωz z

v

x

u

y
= =

∂
∂

−
∂
∂

⎛
⎝⎜

⎞
⎠⎟

2  (6.43c)

For an irrotational flow, the vorticity components ξx, ξy and ξz  will be zero.

6.11.6 Circulation
It is defined as the flow along a closed curve, i.e., it represents flow in eddies and vortices. It is denoted by Γ  (gamma). 
Mathematically, circulation is represented as the line integral of the tangential velocity around a closed contour in the flow 
field.

Let us consider a closed contour with points P and Q lying on it at a distance ds apart and V be the velocity inclined 
at an angle α  with the tangent to the contour as shown in Figure 6.11(a). The general expression for circulation is shown 
below.

	
Γ = ∫V ds

c

cosα  (6.44)

Considering a rectangular element ABCD with sides dx and dy parallel to x -axis and y-axis, respectively. The tangential 
velocities are shown in Figure 6.11(b). Generally, circulation is taken positive in anticlockwise direction. The total circula-
tion for the rectangular element can be obtained by a summation of line integrals around the element in an anticlockwise 
direction proceeding from corner A.

P

Q

ds

VStreamlines

dx

dy

x

y

uA
B

CD

v dx
x
vv ∂

∂+

(a) (b)

α

αcosV

dy
y
uu ∂

∂+

Figure 6.11 Circulation around (a) closed curve (b) an infinitesimal rectangle
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Thus Γ Γ Γ Γ Γ= + + +AB BC CD DA

Γ = + +
∂
∂

⎛
⎝⎜

⎞
⎠⎟

− +
∂
∂

⎛
⎝⎜

⎞
⎠⎟

−udx v
v

x
dx dy u

u

y
dy dx vdy

	
Γ =

∂
∂

−
∂
∂

⎛
⎝⎜

⎞
⎠⎟

v

x

u

y
dxdy  (6.45)

Since 
∂
∂

−
∂
∂

=
v

x

u

y zξ

Thus Γ = ξzdxdy

	
∴ = =ξz dxdy

Γ Circulation

Area
 (6.46)

Therefore, vorticity about a normal to the plane in a flow is equal to the circulation per unit area in the given plane. For an 
irrotational flow, the vorticity is zero and thus, the circulation around any closed path in an irrotational flow will also be 
zero.

 Example 6.16  Examine whether u y x x y= + −3 26 3  and v xy y x= − −3 62 3 represent a physically possible two- 
dimensional flow. Also check whether the flow is rotational or irrotational.

Solution
Let u y x x y= + −3 26 3  and v xy y x= − −3 62 3.

∂
∂

= −
u

x
xy6 6 , 

∂
∂

= −
u

y
y x3 32 2, 

∂
∂

= −
v

x
y x3 32 2, 

∂
∂

= −
v

y
xy6 6

	 	 	 	

∂
∂

+
∂
∂

=
u

x

v

y
0   [Continuity equation] 

Substituting the values in the continuity equation, we get:

( ) ( )6 6 6 6 0− + − =xy xy

Since continuity equation is satisfied, it is a possible case of fluid flow.

ω z
v

x

u

y
y x y x=

∂
∂

−
∂
∂

⎛
⎝⎜

⎞
⎠⎟

= − − − =
1

2

1

2
3 3 3 3 02 2 2 2[( ) ( )

Since ωω z == 0 and therefore, the flow is irrotational.

 Example 6.17  The velocity components of a three-dimensional incompressible fluid flow are u x y z t= + +( )3 , 

v x y z t= − +( )3  and w x y t= +( ) . State if the flow represented by the given velocity components is a physically possible 
three-dimensional flow and also state whether the flow is rotational or irrotational.

Solution
Let u x y z t= + +( )3 , v x y z t= − +( )3  and w x y t= +( ) .

∂
∂

=
u

x
t3 , 

∂
∂

= −
v

y
t3 , 

∂
∂

=
w

z
0

	 	 	 	 	 	 	 		

∂
∂

+
∂
∂

+
∂
∂

=
u

x

v

y

w

z
0

	 	
[Continuity equation] 
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Substituting the values in the continuity equation, we get:

3 3 0 0t t+ − + =( )

Since continuity equation is satisfied, it is a possible case of fluid flow.

Now ( )

( ) ( ) ( )

∇ × =
∂
∂

∂
∂

∂
∂

+ + − + +

V

i j k

x y z

x y z t x y z t x y t3 3

=
∂
∂

+ −
∂
∂

− +
⎡

⎣
⎢

⎤

⎦
⎥ −

∂
∂

+ −
∂
∂

+ +⎡
⎣⎢

⎤
⎦y

x y t
z

x y z t i
x

x y t
z

x y z t( ) ( ) ( ) ( )3 3 ⎥⎥

+
∂
∂

− + −
∂
∂

+ +
⎡

⎣
⎢

⎤

⎦
⎥

j

x
x y z t

y
x y z t k( ) ( )3 3

∴ ∇ × = − − − + − =( ) ( ) ( ) ( )V t t i t t j t t k 0

Since the curl of velocity vector is zero, the flow is irrotational.

 Example 6.18  The velocity components of a two-dimensional incompressible fluid flow are u x x y= +/ ( )2 2  and 

v y x y= +/ ( )2 2 . State whether the flow is rotational or irrotational.

Solution
Let u x x y x x y= + = + −/ ( ) ( )2 2 2 2 1 and v y x y y x y= + = + −/ ( ) ( )2 2 2 2 1.

Since ω z
v

x

u

y
=

∂
∂

−
∂
∂

⎛
⎝⎜

⎞
⎠⎟

1

2

Thus ω z x
y x y

y
x x y=

∂
∂

+ −
∂
∂

+
⎡

⎣
⎢

⎤

⎦
⎥

− −1

2
2 2 1 2 2 1{ ( ) } { ( ) }

∴ = −
+

+
+

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=ω z
xy

x y

xy

x y

1

2

2 2
0

2 2 2 2 2 2( ) ( )

Since the rotation ωω z == 0 and therefore, the flow is irrotational.

 Example 6.19  If the velocity components of a two-dimensional incompressible fluid flow are u x= 3 3 and v x y= −5 2 , 
then find the shear strain rate and also state whether the flow is rotational or irrotational.

Solution

Let u x= 3 3 and v x y= −5 2 .

∂
∂

=
u

x
x9 2, 

∂
∂

=
u

y
0, 

∂
∂

= −
v

x
xy10 , 

∂
∂

= −
v

y
x5 2

εxy
v

x

u

y
xy=

∂
∂

+
∂
∂

⎛
⎝⎜

⎞
⎠⎟

= − +( ) =
1

2

1

2
10 0 −−5xy

ω z
v

x

u

y
xy xy=

∂
∂

−
∂
∂

⎛
⎝⎜

⎞
⎠⎟

= − −[ ] = −
1

2

1

2
10 0 5

Since the rotation ωω z ≠≠ 0 and therefore, the flow is rotational.
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 Example 6.20  If the velocity vector of a three-dimensional incompressible fluid flow is given by 
�

V y z i x z j x y k= + − + + +( ) ( ) ( ) ,2 2 2 2 2 2  then find the components of rotation at (2, 1, 3).

Solution
�

V y z i x z j x y k= + − + + +( ) ( ) ( )2 2 2 2 2 2 , x = 2, y = 1 and z = 3.

From velocity vector, we get:

u y z= +( )2 2 , v x z= − +( )2 2  and w x y= +( )2 2

∂
∂

=
u

y
y2 , 

∂
∂

=
u

z
z2 , 

∂
∂

= −
v

x
x2 , 

∂
∂

= −
v

z
z2 , 

∂
∂

=
w

x
x2 , 

∂
∂

=
w

y
y2

ω z
v

x

u

y
x y x y=

∂
∂

−
∂
∂

⎛
⎝⎜

⎞
⎠⎟

= − −( ) = − +
1

2

1

2
2 2 ( )

∴ = − + =ω z ( )2 1 −−3 units

ωx
w

y

v

z
y z y z=

∂
∂

−
∂
∂

⎛
⎝⎜

⎞
⎠⎟

= − − = +
1

2

1

2
2 2[ ( )] ( )

∴ = + =ωx ( )1 3 4 units

ω y
u

z

w

x
z x z x=

∂
∂

−
∂
∂

⎛
⎝⎜

⎞
⎠⎟

= −( ) = −
1

2

1

2
2 2 ( )

∴ = − =ω y ( )3 2 1 units

 Example 6.21  If the velocity vector of a two-dimensional incompressible fluid flow is given by 
�

V x z i y z j= − + +( ) ( ) ,2 22 2 2 2  
then find (i) the third component of velocity and (ii) examine whether the flow is irrotational.

Solution

Let 
�

V x z i y z j= − + +( ) ( ) ,2 22 2 2 2  u x z= −2 2 2 and v y z= +2 22 .

 (i) 
∂
∂

=
u

x
x4 , 

∂
∂

=
v

y
y2

	
∂
∂

+
∂
∂

+
∂
∂

=
u

x

v

y

w

z
0   [Continuity equation] 

  Substituting the values in the continuity equation, we get:

4 2 0x y
w

z
+ +

∂
∂

=

∂
∂

= − − ⇒ ∂ = − − ∂
w

z
x y w x y z( ) ( )4 2 4 2

  Integrating on both sides, we get:

w x y z C= − − +( )4 2

  Neglecting the constant of integration which is a function of x and y, we get:

w = ( 4 2 )– –x y z
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 (ii) ( )

( )

∇ × =
∂
∂

∂
∂

∂
∂

− + − −

V

i j k

x y z

x z y z x y z2 2 4 22 2 2 2

=
∂
∂

− − −
∂
∂

+
⎡

⎣
⎢

⎤

⎦
⎥ −

∂
∂

− − −
∂
∂

−⎡
y

x y z
z

y z i
x

x y z
z

x z( ) ( ) ( ) ( )4 2 2 4 2 22 2 2 2

⎣⎣⎢
⎤
⎦⎥

+
∂
∂

+ −
∂
∂

−
⎡

⎣
⎢

⎤

⎦
⎥

j

x
y z

y
x z k( ) ( )2 2 2 22 2

= − − − − − − + −( ) [ ( )] ( )2 4 4 2 0 0z z i z z j k

= − +6 2zi zj

  Since the curl of velocity vector is not zero, the flow is rotational.

 Example 6.22  The velocity components of a three-dimensional incompressible fluid flow are u xy= , v yz= −2  and 

w yz z= − + 2 . Examine (i) whether it is a possible case of fluid flow and (ii) whether the flow is rotational or irrotational. 
Also determine (iii) the angular velocity, (iv) vorticity, (v) shear strain and dilatancy at (1, 2, 3).

Solution
Let u xy= , v yz= −2  and w yz z= − + 2.

 (i) 
∂
∂

=
u

x
y, 

∂
∂

= −
v

y
z2 , 

∂
∂

= − +
w

z
y z2

	
∂
∂

+
∂
∂

+
∂
∂

=
u

x

v

y

w

z
0 	 	 [Continuity equation] 

  Substituting the values in the continuity equation, we get:

y z y z− − + =2 2 0

  Since continuity equation is satisfied, it is a possible case of fluid flow.

 (ii) ( )∇ × =
∂
∂

∂
∂

∂
∂

− − +

V

i j k

x y z

xy yz yz z2 2

=
∂
∂

− + −
∂
∂

−
⎡

⎣
⎢

⎤

⎦
⎥ −

∂
∂

− + −
∂
∂

⎡
⎣⎢

⎤
⎦⎥

+
∂

y
yz z

z
yz i

x
yz z

z
xy j( ) ( ) ( ) ( )2 22

∂∂
− −

∂
∂

⎡

⎣
⎢

⎤

⎦
⎥x

yz
y

xy k( ) ( )2

= − − − − − + −[ ( )] [ ] ( )z y i j x k2 0 0 0

= − + −( )z y i xk2

  Since the curl of velocity vector is not zero, the flow is rotational.

 (iii) Let u xy= , v yz= −2  and w yz z= − + 2.

∂
∂

= −
w

y
z; 

∂
∂

= −
v

z
y2 ; 

∂
∂

=
u

z
0; 

∂
∂

=
w

x
0; 

∂
∂

=
v

x
0; 

∂
∂

=
u

y
x
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  Since ω ω ω ω= + +( )1

2 x y zi j k

  or ω =
∂
∂

−
∂
∂

⎛
⎝⎜

⎞
⎠⎟

+
∂
∂

−
∂
∂

⎛
⎝⎜

⎞
⎠⎟

+
∂
∂

−
∂
∂

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤1

2

w

y

v

z
i

u

z

w

x
j

v

x

u

y
k

⎦⎦
⎥

  Thus ω = − − − + − + −[ ]1

2
2 0 0 0{ ( )} ( ) ( )z y i j x k

∴ = [ ]ω 1

2
( + 2 )– –z y i xk

 (iv) Vorticity is given by,

ξ ω= = × − + −[ ]2 2
1

2
2( )z y i xk

∴ =ξ ( + 2 )– –z y i xk

 (v) x = 1, y = 2 and z = 3.

  Shear strain rate can be given by Equation (6.35) and we get:

εxy
v

x

u

y
x

x
=

∂
∂

+
∂
∂

⎛
⎝⎜

⎞
⎠⎟

= +( ) = = =
1

2

1

2
0

2

1

2
0.5

ε yz
w

y

v

z
z y=

∂
∂

+
∂
∂

⎛
⎝⎜

⎞
⎠⎟

= − −( ) = − − × =
1

2

1

2
2

1

2
3 2 2( ) −−3.5

εzx
u

z

w

x
=

∂
∂

+
∂
∂

⎛
⎝⎜

⎞
⎠⎟

= +( ) =
1

2

1

2
0 0 0

  Dilatancy in x, y and z, directions respectively can be given by Equation (6.36) and we get:

εxx
u

x
y=

∂
∂

= = 2

ε yy
v

y
z=

∂
∂

= − = − × =2 2 3( ) −−6

εzz
w

z
y z=

∂
∂

= − + = − + × =2 2 2 3 4

 Example 6.23  If the velocity field is given by u y x= −4 2  and v y x= −2 , then determine the circulation and vorticity 
around the closed curve defined by x = 2, y = 1, x = 4 and y = 4.

Solution

Refer Figure 6.12. Let u y x= −4 2 , v y x= −2 , x = 2, y = 1, x = 4 and y = 4.

Γ Γ Γ Γ Γ= + + + = + + +∫ ∫ ∫ ∫AB BC CD DA
AB BC CD DA

udx vdy udx vdy

Γ = − + − + − + −∫ ∫ ∫ ∫( ) ( ) ( ) ( )4 2 2 4 2 2
2

4

1

4

4

2

4

1

y x dx y x dy y x dx y x dy

Γ = − + − + − + −[ ] [ ] [ ] [ ]4 42
2
4 2

1
4 2

4
2 2

4
1xy x y xy xy x y xy

x

y

u
A B

CD

v

y = 4

y = 1

x = 2

x = 4

Figure 6.12
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For 1st integral y = 1, for 2nd integral x = 4, for 3rd integral y = 4 and for 4th integral x = 2.

Γ = × × − − × × − + − × − − ×

+ × × − −

[( ) ( ] [( ) ( )]

[( ) (

4 4 1 4 4 2 1 2 4 4 4 1 4 1

4 2 4 2

2 2 2 2

2 44 4 4 4 1 2 1 4 2 42 2 2× × − + − × − − ×)] [( ) ( )]

∴ = − + − + − + − − =Γ [ ] [ ] [ ] [ ]0 4 0 3 28 48 1 8 −−36

Area of the rectangle ABCD is given by,

A = − × − =( ) ( )4 2 4 1 6

Vorticity, i.e., circulation per unit area is given by,

ξ = =
−

=
Γ
A

36

6
−−6

6.12 ❐ VELOCITY POTENTIAL AND STREAM FUNCTIONS

6.12.1 Velocity Potential Function
The velocity potential function is defined as a scalar function of space and time such that its derivative with respect to 
any direction gives the fluid velocity in that direction. It is denoted by the Greek letter ϕ  (phi). Mathematically, velocity 
 potential function for steady flow is defined as ϕ = f x y z( , , ) and the respective expression is as follows.

	
u

x
=

∂
∂
ϕ

; v
y

=
∂
∂
ϕ

; w
z

=
∂
∂
ϕ

 (6.47)

Here, u, v and w, are the components of velocity in x, y and z, directions, respectively. The potential function f decreases 
along the flow direction and it can also be expressed as shown below.

	
u

x
= −

∂
∂
ϕ

; v
y

= −
∂
∂
ϕ

; w
z

= −
∂
∂
ϕ

 (6.47a)

The lines of constant velocity potential function are called equipotential lines.
In polar coordinates, the velocity component in terms of potential function is expressed as given below.

	
u

rr =
∂
∂
ϕ

, u
rα

ϕ
α

=
∂
∂

1
 (6.47b)

For an incompressible steady flow, the continuity equation is given by Equation (6.29) and we get:

∂
∂

+
∂
∂

+
∂
∂

=
u

x

v

y

w

z
0

Substituting the values of u, v and w, from Equation (6.47) in the above equation, we get:

∂
∂

∂
∂

⎛
⎝⎜

⎞
⎠⎟

+
∂
∂

∂
∂

⎛
⎝⎜

⎞
⎠⎟

+
∂
∂

∂
∂

⎛
⎝⎜

⎞
⎠⎟

=
x x y y z z

ϕ ϕ ϕ
0

	 	

∂
∂

+
∂
∂

+
∂
∂

=
2

2

2

2

2

2
0

ϕ ϕ ϕ
x y z

 (6.48)

Equation (6.48) is known as Laplace equation and it may be expressed in vector notation as given below.

	 ∇ =2 0ϕ  (6.48a)

Any function ϕ that satisfies the Laplace equation will correspond to some case of fluid flow. For a rotational flow, the 
rotation components are given in terms of the velocity potential by substituting Equation (6.47) in Equation (6.37a, b, c) 
and it is expressed as given below.
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	 ω ϕ ϕ
z

v

x

u

y x y y x
=

∂
∂

−
∂
∂

⎛
⎝⎜

⎞
⎠⎟

=
∂
∂ ∂

−
∂
∂ ∂

⎛

⎝
⎜

⎞

⎠
⎟

1

2

1

2

2 2

 (6.49a)

	 ω ϕ ϕ
x

w

y

v

z y z z y
=

∂
∂

−
∂
∂

⎛
⎝⎜

⎞
⎠⎟

=
∂
∂ ∂

−
∂
∂ ∂

⎛

⎝
⎜

⎞

⎠
⎟

1

2

1

2

2 2

 (6.49b)

	 ω ϕ ϕ
y

u

z

w

x z x x z
=

∂
∂

−
∂
∂

⎛
⎝⎜

⎞
⎠⎟

=
∂
∂ ∂

−
∂
∂ ∂

⎛

⎝
⎜

⎞

⎠
⎟

1

2

1

2

2 2

 (6.49c)

If ϕ  is a continuous function, then we have,

∂
∂ ∂

=
∂

∂ ∂

2 2ϕ ϕ
x y y x

; 
∂

∂ ∂
=

∂
∂ ∂

2 2ϕ ϕ
y z z y

; ∂
∂ ∂

=
∂

∂ ∂

2 2ϕ ϕ
z x x z

According to which ω ω ωx y z= = = 0 and thus, the flow is irrotational.

Thus, if the velocity potential ϕ  satisfies the Laplace equation, then it represents the possible steady incompressible 
irrotational flow. The velocity potential exists only for irrotational flows of fluids. Generally, an irrotational flow is known 
as potential flow.

6.12.2 Stream Function
Stream function is defined as the scalar function of space and time such that its partial derivative with respect to any 
 direction gives the velocity component at right angles to that direction. It is denoted by the Greek letter ψ  (psi). Thus, the 
stream function for a two-dimensional steady flow can be defined as ψ ( , )x y  and it is mathematically expressed as follows.

	
u

y
=

∂
∂
ψ

, v
x

= −
∂
∂
ψ

 (6.50)

The line drawn in a steady flow field along which the stream function is constant is called a streamline.
In cylindrical polar coordinates, we get:

	
u

rr =
∂
∂

1 ψ
α

, u
rα
ψ

= −
∂
∂

 (6.50a)

The rotational component in the x y−  plane is ω z  and from Equation (6.37a), we get:

ω z
v

x

u

y
=

∂
∂

−
∂
∂

⎛
⎝⎜

⎞
⎠⎟

1

2

Substituting the values of v and u from Equation (6.50) in the above expression, we get:

ω ψ ψ
z x x y y

=
∂
∂

−
∂
∂

⎛
⎝⎜

⎞
⎠⎟

−
∂
∂

∂
∂

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

1

2

	
ω ψ ψ

z
x y

= −
∂
∂

−
∂
∂

⎛

⎝
⎜

⎞

⎠
⎟

1

2

2

2

2

2
 (6.51)

For irrotational flow, ω z = 0  and from Equation (6.51), we get:

∂
∂

+
∂
∂

=
2

2

2

2
0

ψ ψ
x y

Therefore, it is the Laplace equation in ψ .
The existence of ψ  signifies a possible case of fluid flow that may be rotational or irrotational. However, when the 

 function ψ  satisfies Laplace equation, then it is a possible case of an irrotational flow.
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6.12.3  Cauchy–Riemann Equations (Relation between Stream Function  
and Velocity Potential Function)

In a potential flow, the Cauchy–Riemann equations enable us to find the stream function if velocity potential is known and 
vice versa. From the definition of stream function and velocity function, derive the following expressions.

u
x y

=
∂
∂

=
∂
∂

ϕ ψ
 and v

y x
=

∂
∂

= −
∂
∂

ϕ ψ

Thus 
∂
∂

=
∂
∂

ϕ ψ
x y

 and 
∂
∂

= −
∂
∂

ϕ ψ
y x

 (6.52)

Equation (6.52) is known as Cauchy–Riemann equations for irrotational flow.

6.12.4 Orthogonality of Streamlines and Equipotential Lines
Since ψ  is a function of x and y, its total differential is derived as follows.

d
x

dx
y

dyψ ψ ψ
=

∂
∂

+
∂
∂

A streamline is given by ψ = Constant, i.e., dψ = 0.

Thus 
∂
∂

+
∂
∂

=
ψ ψ
x

dx
y

dy 0

The slope of a streamline is given by,

	

dy

dx

x

y

v

u
=

− ∂ ∂
∂ ∂

=
( )

( )

ψ
ψ

/

/
 (6.53)

Since ϕ is a function of x and y, its total differential is given by,

d
x

dx
y

dyϕ ϕ ϕ
=

∂
∂

+
∂
∂

An equipotential line is given by ϕ = Constant , i.e., dϕ = 0 .

Thus 
∂
∂

+
∂
∂

ϕ ϕ
x

dx
y

dy

The slope of an equipotential line is given by,

	

dy

dx

x

y

u

v
= −

∂ ∂
∂ ∂

= −
( )

( )

ϕ
ϕ

/

/
 (6.54)

The product of the two slopes given by equations (6.53) and (6.54) is expressed as follows.

v

u

u

v
× −⎛

⎝⎜
⎞
⎠⎟

= −1

This indicates that the streamline and equipotential lines intersect each other orthogonally at all points of intersection. 
Thus, the streamlines are normal to equipotential lines.

6.12.5 Flow Net
A flow net is a grid obtained by drawing a series of streamlines and equipotential lines. A flow net drawn for a two- 
dimensional irrotational flow gives a complete visual picture of the flow pattern. Especially, it helps in analysing the flow 
problems when mathematical relations for stream function and potential function are not available. The flow nets can be 
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 Fluid Kinematics 6.37

drawn by the following methods, such as (i) analytical method which involves the solution of Laplace equation in ψ  and ϕ ,  
(ii) graphical method, (iii) electrical analogy method, (iv) relaxation method and (v) viscous flow analogy method.

Uses of flow nets The flow nets have many advantages, such as (i) it can be used to determine the discharge, (ii) it helps 
in determining the velocity at any point in the flow field provided the velocity at any reference point is known, (iii) it helps 
in avoiding separation and points of stagnation in the design of boundary shapes, (iv) it helps in the estimation of pressure 
distribution and (v) it also helps in making the calculations for the drag force.

Limitations of flow nets The flow nets have certain limitations, such as (i) the analysis of flow net cannot be applied 
in the region close to the boundary where the viscosity effects are predominant, (ii) it cannot be applied to a sharply 
diverging flow and (iii) it does not provide any information about wake formation, i.e., the disturbed flow in the rear of a 
solid body.

 Example 6.24  A stream function is given by ψ = −2 2 3x y . Determine the magnitude and direction of velocity 
 components at the point (2, 1).

Solution

Let ψ = −2 2 3x y , x = 2 and y = 1. Let V be the magnitude of velocity.

v
x x

x y x= −
∂
∂

= −
∂
∂

− = −
ψ

( )2 42 3

∴ = − × = −v 4 2 8

u
y y

x y y=
∂
∂

=
∂
∂

− = −
ψ

( )2 32 3 2

∴ = − × = −u 3 1 32

V u v= + = − + − =2 2 2 23 8( ) ( ) 8.54

tanα = =
v

u

8

3

∴ = ⎛
⎝⎜

⎞
⎠⎟

=−α tan 1 8

3
69.44°°

 Example 6.25  The velocity potential function is given by ϕ = −3 2 2x y . Determine the magnitude of velocity 
 components at the point (2, 3).

Solution

Let ϕ = −3 2 2x y , x = 2 and y = 3. Let V be the magnitude of velocity.

u
x x

x y x=
∂
∂

=
∂
∂

− =
ϕ

( )3 62 2

∴ = × =u 6 2 12

v
y y

x y y=
∂
∂

=
∂
∂

− = −
ϕ

( )3 22 2

∴ = − × = −v 2 3 6

V u v= + = + − =2 2 2 212 6( ) 13.42
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 Example 6.26  If the stream function ψ = 2 xy describes a flow, then determine the point at which the velocity vector 
has a magnitude of 2 units and makes an angle of 45°.

Solution
Let ψ = 2 xy , V = 2 and α = °45 . Let x and y be the required points.

v
x x

xy y= −
∂
∂

= −
∂
∂

= −
ψ

( )2 2

u
y y

xy x=
∂
∂

=
∂
∂

=
ψ

( )2 2

Since tanα =
v

u

Thus tan 45
2

2
° =

− y

x

∴ = −y x

Since V u v= +2 2

Thus 2 2 22 2= + −( ) ( )x y

 2 2 22 2= +( ) ( )x x   [ ]∵ y x= − 	

4 4 2= x

∴ =x 1

y x= − = −−1

 Example 6.27  Sketch the streamline represented by (i) ψ = +x y2 2 and (ii) ψ = −x y2 2. Also find out the velocity and 
its direction for each case at point (1, 2).

Solution

 (i) Let ψ = +x y2 2, x = 1 and y = 2.

v
x x

x y x= −
∂
∂

= −
∂
∂

+ = −
ψ

( )2 2 2

∴ = − × = −v 2 1 2

u
y y

x y y=
∂
∂

=
∂
∂

+ =
ψ

( )2 2 2

∴ = × =u 2 2 4

V u v= + = + − =2 2 2 24 2( ) 4.47

tan .α = =
−

= −
v

u

2

4
0 5

∴ = − =−α tan ( . )1 0 5 −− °°26.56
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  If ψ = + =x y r2 2 2 and r = 1 2 3, , , ......, 	then ψ = + =x y2 2 1 4 9, , ....

  Thus, we get concentric circles of different diameters as shown in Figure 6.13(a).

 (ii) ψ = −x y2 2, x = 1 and y = 2

v
x x

x y x= −
∂
∂

= −
∂
∂

− = −
ψ

( )2 2 2

∴ = − × = −v 2 1 2

u
y y

x y y=
∂
∂

=
∂
∂

− = −
ψ

( )2 2 2

∴ = − × = −u 2 2 4

V u v= + = − + − =2 2 2 24 2( ) ( ) 4.47

tan .α = =
−
−

=
v

u

2

4
0 5

∴ = =−α tan ( . )1 0 5 26.56°°

  If ψ = −x y2 2 , then x y= ± +2 ψ .

   The streamlines are lines of constant ψ  and thus, the given equation represents hyperbola, which may be plotted for 
different values of ψ = 1 2 3, , ..... by taking y = 0 1 2 3, , , ..... as shown in Figure 6.13(b) and the values are given below 
in Table 6.1.

Table 6.1

y 0 1 2 3

ψ = 1 x y= ± +2 ψ x = ±1 x = ± 2 x = ± 5 x = ± 10

ψ = 2 x y= ± +2 ψ x = ±2 x = ± 3 x = ± 6 x = ± 11

ψ = 3 x y= ± +2 ψ x = ±3 x = ± 4 x = ± 7 x = ± 12

 Example 6.28  If the velocity potential function is given by ϕ = + −( / ) ,y x x y3 23 2  then find the velocity components 
and also show that ϕ represents a possible case of flow.

x

y
1=ψ

4=ψ

9=ψ
3=ψ

1=ψ

2=ψ

3=ψ
2=ψ

1=ψ

x

y

(a) (b)

Figure 6.13

M06 Fluid Mechanics and Hydraulic Machines XXXX 01.indd   39 4/5/2019   10:28:36 AM

Download more at Learnclax.com



6.40 Chapter 6

Solution

Let ϕ = + −
y

x x y
3

2

3
2

u
x x

y
x x y=

∂
∂

=
∂
∂

+ −
⎛

⎝
⎜

⎞

⎠
⎟ =

ϕ 3
2

3
2 2 2– xy

v
y y

y
x x y=

∂
∂

=
∂
∂

+ −
⎛

⎝
⎜

⎞

⎠
⎟ =

ϕ 3
2

3
2 y x2 2–

∂
∂

=
∂
∂

∂
∂

⎛
⎝⎜

⎞
⎠⎟

=
∂
∂

− = −
2

2
2 2 2

ϕ ϕ
x x x x

xy y( )

∂
∂

=
∂
∂

∂
∂

⎛
⎝⎜

⎞
⎠⎟

=
∂
∂

− =
2

2
2 2 2

ϕ ϕ
y y y y

y x y( )

∂
∂

+
∂
∂

= − + =
2

2

2

2
2 2 0

ϕ ϕ
x y

y y

Since Laplace equation is satisfied, ϕ  represents a possible case of flow.

 Example 6.29  For a two-dimensional flow, ϕ =3xy and ψ = −1 5 2 2. ( )y x . Find the velocity components at the points 

P( , )1 3  and Q( , )2 3 . Also find the discharge between the streamlines passing through the given points.

Solution
Let ϕ =3xy, ψ = −1 5 2 2. ( )y x , P( , )1 3  and Q( , )2 3 .

u
x x

xy y=
∂
∂

=
∂
∂

( ) =
ϕ

3 3

v
y y

xy x=
∂
∂

=
∂
∂

( ) =
ϕ

3 3

The velocity components at point P( , )1 3  are derived as follows.

u = × =3 3 9

v = × =3 1 3

The velocity components at point Q( , )2 3  are derived as follows.

u = × =3 3 9

v = × =3 2 6

Now v
x

y x

x
x= −

∂
∂

= −
∂ −

∂
=

ψ [ . ( )]1 5
3

2 2

u
y

y x

y
y=

∂
∂

=
∂ −

∂
=

ψ [ . ( )]1 5
3

2 2

which are same as obtained above.
The value of ψ  for streamline passing through P( , )1 3  is given by,

ψ1
2 21 5 3 1 12= − =. ( )
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The value of ψ  for streamline passing through Q( , )2 3  is given by,

ψ 2
2 21 5 3 2 7 5= − =. ( ) .

Thus discharge passing between these two streamlines is given by,

ψ ψ1 2 12 7 5− = − =. 4.5

 Example 6.30  If stream function is ψ = −x xy3 23 , then show that the flow is irrotational.

Solution

Let ψ = −x xy3 23

∂
∂

=
∂
∂

− =
2

2

2

2
3 23 6

ψ
x x

x xy x( )

∂
∂

=
∂
∂

− = −
2

2

2

2
3 23 6

ψ
y y

x xy x( )

∂
∂

+
∂
∂

= − =
2

2

2

2
6 6 0

ψ ψ
x y

x x

Since ψ  satisfies Laplace equation, it is a possible case of an irrotational flow.

 Example 6.31  In a two-dimensional incompressible flow, the fluid velocity components are given by u x y= − 4  and 
v y x= − − 4 . Show that the velocity potential exists and determine its form as well as stream function.

Solution
Let u x y= − 4  and v y x= − − 4 .

∂
∂

=
∂
∂

− =
u

x x
x y( )4 1

∂
∂

=
∂
∂

− − = −
v

y y
y x( )4 1

∂
∂

+
∂
∂

= − =
u

x

v

y
1 1 0

Since the continuity equation is satisfied, the flow is possible.

Now ( )

( )

∇ × =
∂
∂

∂
∂

∂
∂

− − −

V

i j k

x y z

x y y x4 4 0

=
∂
∂

−
∂
∂

− −
⎡

⎣
⎢

⎤

⎦
⎥ −

∂
∂

−
∂
∂

−⎡
⎣⎢

⎤
⎦⎥

+
∂
∂

− −

y z
y x i

x z
x y j

x
y

( ) ( ) ( ) ( )

(

0 4 0 4

4xx
y

x y k) ( )−
∂
∂

−
⎡

⎣
⎢

⎤

⎦
⎥4

= − − − + − +[ )] [ ] ( )0 0 0 0 4 4i j k

= 0
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Since the curl of velocity vector is zero, the flow is irrotational and therefore, velocity potential exists.
Since f is a function of x and y, its total differential is given as follows.

		
d

x
dx

y
dy u dx v dyϕ ϕ ϕ

=
∂
∂

+
∂
∂

= +

d x y dx y x dyϕ = − + − −( ) ( )4 4

	 d xdx ydy d xyϕ = − − 4 ( )  (i)

Integrating the expression (i), we get:

ϕ =
x y

xy C
2 2

12 2
4 +– –

Since ψ  is a function of x and y, its total differential is expressed below.

d
x

dx
y

dy vdx udyψ ψ ψ
=

∂
∂

+
∂
∂

= − +

d y x dx x y dyψ = + + −( ) ( )4 4

	 d xdx ydy d xyψ = − +4 4 ( )  (ii)

Integrating the expression (ii), we get:

ψ = 2 2 + +2 2
2x y xy C–

 Example 6.32  In a two-dimensional flow, the velocity potential is given by ϕ = −x y( ).2 1  Determine the velocity at the 
point P( , )4 5  and also determine the value of stream function at the given point.

Solution
Let ϕ = −x y( )2 1  and P( , )4 5 .

u
x x

x y y=
∂
∂

=
∂
∂

− = −
ϕ

[ ( )]2 1 2 1

v
y y

x y x=
∂
∂

=
∂
∂

− =
ϕ

[ ( )]2 1 2

At point P( , ),4 5  the velocity components can be given by,

u = × − =2 5 1 9

v = × =2 4 8

Thus, the velocity vector is given in the following expression.
�

V ui vj i j= + = +9 8

Resultant velocity is given by,

V u v= + = + =2 2 2 29 8 12.04 units

d
x

dx
y

dy vdx udyψ ψ ψ
=

∂
∂

+
∂
∂

= − +

d xdx y dyψ = − + −2 2 1( )

	 d xdx ydy dyψ = − + −2 2  (i)

M06 Fluid Mechanics and Hydraulic Machines XXXX 01.indd   42 4/5/2019   10:29:26 AM

Download more at Learnclax.com



 Fluid Kinematics 6.43

Integrating the expression (i) and neglecting constant of integration, we get:

ψ = − + −x y y2 2

Thus, the stream function at point P( , )4 5  is given by,

ψ = − + − =4 5 52 2 4 units

 Example 6.33  In a two-dimensional flow, the stream function is given by ψ = 2xy. Show that the flow is irrotational and 
it also determines the corresponding velocity potential.

Solution
Let ψ = 2xy

∂
∂

=
∂
∂

=
2

2

2

2
2 0

ψ
x x

xy( )

∂
∂

=
∂
∂

=
2

2

2

2
2 0

ψ
y y

xy( )

Thus 
∂
∂

+
∂
∂

=
2

2

2

2
0

ψ ψ
x y

Since ψ  satisfies Laplace equation, it is a possible case of an irrotational flow.

	
u

x y
x=

∂
∂

=
∂
∂

=
ϕ ψ

2

v
y x

y=
∂
∂

= −
∂
∂

= −
ϕ ψ

2

d
x

dx
y

dy u dx v dyϕ ϕ ϕ
=

∂
∂

+
∂
∂

= +

	 d x dx y dyϕ = −2 2  (i)

Integrating the expression (i), we get:

ϕ = x y C2 2
1+–

 Example 6.34  If in a two-dimensional flow, the velocity function is ϕ = − +x y2 2 , then (i) determine the velocity com-
ponents in x and y directions and show that flow is possible and it satisfies the conditions of irrotational flow, (ii) determine 
stream function and the flow rate between the streamlines (3, 0) and (3, 3) and (iii) also show that the streamlines and 
potential lines intersect orthogonally at the point (3, 3).

Solution
Let ϕ = − +x y2 2

 (i) u
x x

x y x=
∂
∂

=
∂
∂

− + = −
ϕ

[ ]2 2 2

v
y y

x y y=
∂
∂

=
∂
∂

− + =
ϕ

[ ]2 2 2

∂
∂

=
∂
∂

− = −
u

x x
x( )2 2  and 

∂
∂

=
∂
∂

=
v

y y
y( )2 2

∂
∂

+
∂
∂

= − + =
u

x

v

y
2 2 0
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  Since the continuity equation is satisfied, flow is possible.

  Now ( )∇ × =
∂
∂

∂
∂

∂
∂

−

V

i j k

x y z

x y2 2 0

=
∂
∂

−
∂
∂

⎡

⎣
⎢

⎤

⎦
⎥ −

∂
∂

−
∂
∂

−⎡
⎣⎢

⎤
⎦⎥

+
∂
∂

−
∂
∂y z

y i
x z

x j
x

y
y

( ) ( ) ( ) ( ) ( ) (0 2 0 2 2 −−
⎡

⎣
⎢

⎤

⎦
⎥2x k)

= − − − + + =[ )] [ ] ( )0 0 0 0 0 0 0i j k

  Since the curl of velocity vector is zero, the flow is irrotational.

 (ii) d
x

dx
y

dy vdx udyψ ψ ψ
=

∂
∂

+
∂
∂

= − +

	 d ydx xdy d xyψ = − − = −2 2 2 ( )  (i)

  Integrating the expression (i) and neglecting constant of integration, we get:

ψ = −−2xy

  The value of ψ  for streamline passing through (3, 0) is given by,

ψ1 2 3 0 0= − × =( )

  The value of ψ  for streamline passing through (3, 3) is given by,

ψ 2 2 3 3 18= − × = −( )

  Thus, the discharge passing between these two streamlines is given by,

ψ ψ1 2 0 18− = − − =( ) 18 units

 (iii) The slope of a streamline at point (3, 3) is given by,

dy

dx

v

u

y

x
= =

−
=

×
− ×

= −
2

2

2 3

2 3
1

  The slope of an equipotential line at point (3, 3) is given by,

dy

dx

u

v

x

y
= − = −

−
=

×
×

=
2

2

2 3

2 3
1

  The product of the two slopes is given by,

= − × = −1 1 1

  This shows that the streamline and equipotential lines intersect each other orthogonally at point (3, 3).
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 Fluid Kinematics 6.45

Summary

 1. Fluid kinematics deals with the geometry of fluid motion in 
terms of displacement, velocity and acceleration without con-
sidering the forces causing the motion.

 2. Steady flow: The fluid characteristics do not change with 
time.

 3. Unsteady flow: The fluid characteristics change with time.

 4. Uniform flow: The fluid velocity does not change with 
location.

 5. Non-uniform flow: The fluid velocity at any given time 
changes with location.

 6. Laminar flow: A smooth flow of one layer of fluid over the 
adjacent layer.

 7. Turbulent flow: The fluid particles move in a zigzag manner.

 8. Reynolds number (Re): The ratio of inertia force to the vis-
cous force.

 9. For laminar flow, Re < 2000 and for turbulent flow, Re .> 4000

 10. Incompressible flow: The density remains constant.

 11. Compressible flow: The density does not remain constant.

 12. One-dimensional flow: Velocity is a function of time and 
one space coordinate.

 13. Two-dimensional flow: Velocity is a function of time and 
two space coordinates.

 14. Three-dimensional flow: Velocity is a function of time and 
three space coordinates.

 15. Rotational flow: The fluid particles rotate about their own 
axis.

 16. Irrotational flow: The fluid particles do not rotate about their 
own axis.

 17. Streamline: An imaginary line drawn through a flowing fluid 
in such a way that the tangent to it at any point gives the direc-
tion of the velocity of flow.

 18. The differential equation for streamlines: dx u dy v/ /= .

 19. Stream-tube: Cylindrical passage formed by a bundle of 
neighbouring streamlines.

 20. Pathline: The trace of the path of a single particle over a 
period of time.

 21. Streakline: The line traced by a fluid particle through a fixed 
point in a flow field.

 22. Timeline: The line formed by a number of adjacent fluid par-
ticles in a flow field.

 23. Lagrangian method: A single particle is followed over the 
flow field during its course of motion by a moving rectangular 
coordinate system.

 24. Eulerian method: A finite volume called control volume is 
defined through which fluid flows in and out.

 25. The components of acceleration of the fluid particles:

a u
u

x
v

u

y
w

u

z

u

tx =
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

,

a u
v

x
v

v

y
w

v

z

v

ty =
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

,

  and a u
w

x
v

w

y
w

w

z

w

tz =
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

 26. Local acceleration: The rate of change of velocity of the fluid 

particles with respect to time is given by 
∂
∂
u

t
, 

∂
∂
v

t
 and 

∂
∂
w

t
.

 27. Convective acceleration: The rate of change of velocity due 
to change of position of fluid particles in a flow field is given 
by,

u
u

x
v

u

y
w

u

z

∂
∂

+
∂
∂

+
∂
∂

; u
v

x
v

v

y
w

v

z

∂
∂

+
∂
∂

+
∂
∂

; u
w

x
v

w

y
w

w

z

∂
∂

+
∂
∂

+
∂
∂

 28. The rate of flow (or discharge) is given by Q AV= , here A  
is the area of cross section and V is the average velocity of 
the liquid.

 29. Continuity equation: AV A V1 1 2 2= .

 30. Continuity equation for a steady and incompressible flow: 
∂
∂

+
∂
∂

+
∂
∂

=
u

x

v

y

w

z
0.

 31. The general continuity equation in cylindrical polar 
coordinates:

1 1
0

r r
u r

r
u

z
u

tr z
∂
∂

+
∂

∂
+

∂
∂

+
∂
∂

=( ) ( ) ( )ρ
α

ρ ρ ρ
α

 32. The rotation components are given by,

ω z
v

x

u

y
=

∂
∂

−
∂
∂

⎛
⎝⎜

⎞
⎠⎟

1

2
; ωx

w

y

v

z
=

∂
∂

−
∂
∂

⎛
⎝⎜

⎞
⎠⎟

1

2
; ω y

u

z

w

x
=

∂
∂

−
∂
∂

⎛
⎝⎜

⎞
⎠⎟

1

2

 33. The condition for the flow to be irrotational: 
curl V V= ∇ × =( ) 0.

 34. Vorticity: ξ = ∇ ×( )V , this is equal to twice the rotation.

 35. The vorticity components are given by,

ξ ωx x
w

y

v

z
= =

∂
∂

−
∂
∂

⎛
⎝⎜

⎞
⎠⎟

2 ; ξ ωy y
u

z

w

x
= =

∂
∂

−
∂
∂

⎛
⎝⎜

⎞
⎠⎟

2 ; 

ξ ωz z
v

x

u

y
= =

∂
∂

−
∂
∂

⎛
⎝⎜

⎞
⎠⎟

2
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 36. Circulation is defined as the flow along a closed curve.

 37. Velocity potential function: u
x

=
∂
∂
ϕ

; v
y

=
∂
∂
ϕ

; w
z

=
∂
∂
ϕ

.

 38. Stream function: 
∂
∂

= −
ψ
x

v ; 
∂
∂

=
ψ
y

u.

 39. Cauchy–Riemann equations for irrotational flow: 

∂
∂

=
∂
∂

ϕ ψ
x y

; 
∂
∂

= −
∂
∂

ϕ ψ
y x

.

 40. Flow net: Grid obtained by drawing a series of streamlines 
and equipotential lines.

Multiple-choice Questions

 1. A highly viscous fluid flowing at a low velocity is called
(a) Steady flow.
(b) Uniform flow.
(c) Turbulent flow.
(d) Laminar flow.

 2. A streamline
(a) Is defined for uniform flow only.
(b) Is drawn normal to the velocity vector at every point.
(c) Is fixed in space in steady flow.
(d) Is the line connecting the midpoints of flow cross section.

 3. If the velocity in a fluid flow does not change with respect to 
the length of direction of flow, then it is known as
(a) Rotational flow.
(b) Compressible flow.
(c) Uniform flow.
(d) None of the above.

 4. Streamlines, streaklines and pathlines are all identical in the 
case of
(a) Non-uniform flow.
(b) Unsteady flow.
(c) Steady flow.
(d) None of the above.

 5. An equipotential line
(a) Has constant dynamic pressure.
(b) Is same as streamline.
(c) Has no velocity component tangent to it
(d) Has no velocity component normal to it.

 6. Vorticity is
(a) Thrice the rotation.
(b) Twice the rotation.
(c) 1 to 1.5 times the rotation.
(d) None of the above.

 7. The constant rate water flow through a tapering pipe is
(a) Steady non-uniform flow.
(b) Steady uniform flow.
(c) Unsteady non-uniform flow.
(d) All the above.

 8. The flow during the opening of a valve is
(a) Rotational.
(b) Uniform.
(c) Unsteady.
(d) None of the above.

 9. When velocity potential exists in a flow it means
(a) Flow satisfies the condition of rotational flow.
(b) Vorticity is non-zero.
(c) Flow satisfies the condition of irrotational flow.
(d) All the above.

 10. When a stream function exits it means
(a) Flow is steady and incompressible.
(b) Flow is uniform.
(c) Flow is turbulent.
(d) Function represents a possible flow field.

 11. A pathline is a
(a) Trace made by a single particle over a period of time.
(b) Path traced by continuously injected tracer at a point.
(c) Direction of a number of particles at the same instant of 

time.
(d) None of the above.

 12. If a stream function exists for a flow and satisfies the Laplace 
equation, then the flow is
(a) Rotational.
(b) Irrotational.
(c) Irrotational and satisfies the continuity equation.
(d) None of the above.

 13. The continuity equation is mathematical representation of the 
principle of
(a) Conservation of momentum.
(b) Conservation of energy.
(c) Conservation of mass.
(d) All the above.

 14. The path traced by a single particle of smoke from a cigarette 
forms a
(a) Flow line.
(b) Pathline.
(c) Streakline.
(d) All the above.

 15. The steady irrotational flow of an incompressible fluid is 
called
(a) Steady flow.
(b) Uniform flow.
(c) Potential flow.
(d) None of the above.
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 Fluid Kinematics 6.47

Review Questions

 1. Define the fluid kinematics and velocity of fluid particles.

 2. Define and discuss the types of fluid flow.

 3. Define and distinguish between streamline, pathline and 
streakline.

 4. What do you mean by stream-tube and a timeline?

 5. What are the methods of describing fluid flow? Explain.

 6. What do you mean by local and convective accelerations?

 7. Define and discuss the tangential and normal accelerations.

 8. What do you mean by discharge?

 9. Define and obtain an expression for continuity equation in a 
three-dimensional flow.

 10. Derive continuity equation in cylindrical polar coordinates.

 11. Discuss the various types of motions of a fluid element.

 12. What do you understand by rotation, vorticity and circula-
tion? Explain.

 13. Define (i) velocity potential function, (ii) stream function and 
(iii) Cauchy–Riemann equations. Also give their physical 
significance.

 14. Discuss the orthogonality of streamlines and equipotential 
lines.

 15. What do you mean by flow net? What are their uses and 
limitations?

Problems

 1. If a fluid flow is given by V x i x yj tk= − +5 153 2 , then deter-
mine the acceleration components and resultant at a point  
(1, 2, 3) in the field and at t = 2.

[Ans. 75, 150, 1, 167.7]

 2. Determine the components of acceleration at a point (3, 1, 2) 

when the flow is described by V y z i x z j= + + + +( ) ( )2 2 2 2

(x2 + y2)k.
[Ans. 66, 70, 56]

 3. If a fluid flow is given by V x i x yj= +2 33 2 , then determine 
whether (i) the flow is steady or unsteady (ii) flow is two- 
dimensional or three-dimensional? Also determine the veloc-
ity, local acceleration and convective acceleration at a point 
(1, 2, 3) in the field.

[Ans. Steady, two-dimensional, 6.324, 0, 0, 12, 42, 43.68]

 4. The water flows through a pipeline 1.2 m diameter at a veloc-
ity of 3 m/s which bifurcates at a y-junction into two branches. 
The first branch is 0.8 m in diameter and carries 1/3rd of the 
flow, whereas the 2nd branch carries the water with a veloc-
ity of 2.4 m/s. Calculate (i) discharge, (ii) velocity in the 1st 
branch and (iii) diameter of the 2nd branch.

[Ans. 3.39 m3/s, 2.25 m/s, 1.095 m]

 5. Determine the velocity and acceleration at a point (1, 3, 5) and 
at t = 1 when the flow is described by V yz t i xz t j= + + − +( ) ( )
xyk.

[Ans. 16.76, 101.63]

 6. Determine the third velocity component that satisfies the 
continuity equation when the two velocity components are 

u x y z= + +2 2 2 and v xy yz xy= − +2 2 .

[Ans. w xz xyz z= − − +3 2 33 / ]

 7. Determine the acceleration component when the two velocity 

components are u x x y= +/( )2 2  and v y x y= +/( ).2 2

[Ans. − +x x y/( )2 2 2, − +y x y/( )2 2 2]

 8. Determine the inflow required in m3/s for filling a rectangular 
pool which is 10 m × 25 m × 3 m in 2 hours. Also determine the 
number of hoses required if 50 mm diameter hoses are availa-
ble and the water velocity in each hose is limited to 2.5 m/s.

[Ans. 0.1042 m3/s, 22]

 9. For the velocity vector V xt yz i t xy j= + + + +( ) ( )6 32 2  (xy - 
2xyz - 6tz)k) verify whether the flow exists or not. If it exists, 
then also determine the resultant acceleration at a point (1, 2, 
3) at t = 1.

[Ans. Exists, 216.52]

 10. What is the irrotational velocity field associated with the 

potential function ϕ = − + + +3 3 3 16 122 2 2x x y t zt ? Does 
this flow field satisfy the incompressible continuity equation?

[Ans. ( ) ,6 3 6 12x i yj tk− + +  does not satisfy]

 11. A 0.25 m diameter pipe carries oil (specific gravity = 0.8) at a 
velocity of 2 m/s. If at another section, the diameter is 0.2 m, 
then determine the velocity at this section and the oil mass 
flow rate.

[Ans. 3.12 m/s, 78.4 kg/s]

 12. Determine the rotation components when u Cyz= , v Czx= , 
w Cxy= , where C is a numeric constant. State whether the 
flow is rotational or irrotational.

[Ans. 0, 0, 0, irrotational flow]
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6.48 Chapter 6

 13. Determine the velocity components if ϕ = − − + +( ) ( )xy x x y y3 2 3 23 3/ / 

ϕ = − − + +( ) ( )xy x x y y3 2 3 23 3/ /  and also show that it represents a possible case 

of flow.

[Ans. u y x x y= − − +( / ) ,3 23 2  v xy x y= − + +2 3 3 2( / ) ]

 14. If the velocity vector in a two-dimensional flow is given by 
V y x x y i xy y x j= + − + − −[( ) ] [( ( )]3 2 2 33 2 2 3/ / , then (i) show  
that it is a possible case of irrotational flow, (ii) find the 
stream function and (iii) find the velocity potential function.

[Ans. 4 12 122 2 4 4xy x y x y− + +/ / , 

( / ) ( / )2 3 2 33 3 2 2xy yx x y− + − ]

 15. The velocity vector V a by cz i d bx ez j f cx ey k= + − + − − + + −( ) ( ) ( )
V a by cz i d bx ez j f cx ey k= + − + − − + + −( ) ( ) ( )  represents a three-dimensional flow, where a, 

b, c, d, e, f are the constants. Does it represent an irrotational 
flow? Also find the vorticity and rotation.

[Ans. irrotational flow, ξ = +2 2 2c b , ω = +c b2 2 ]

 16. For a stream function ψ = + +3 22 2x y t y( ) , determine the 
velocity field and its value at a point (1, 2, 3) when t = 2.

[Ans. V i j= −19 12 , α = − °32 27. , 22.47 m/s]

 17. If the velocity vector V xyi yzj yz z k= + − +2 2( )  represents 
a three-dimensional flow, then (i) show that it represents a 
possible three-dimensional steady incompressible continuous 
flow, (ii) state whether the flow is rotational or irrotational, if 
irrotational, then determine at a point (3, 2, 1), (iii) also find 
angular velocity, vorticity, shear strain and dilatancy.

[Ans. three-dimensional steady incompressible flow, rotational 
flow, ω = − +( )( )1 2 5 3/ i k , ξ = − +( )5 3i k , 3/2, 3/2, 0, 2, 2, -4]

 18. For a two-dimensional flow, the velocity vector is 
V x i x yj= −5 153 2 , determine the velocity, acceleration and 
stream function at a point (2, 4).

[Ans. 243.31 m/s, 5366.56 m/s2, 160 m3/s]

ANSWERS TO MULTIPLE-CHOICE QUESTIONS

 1. (d) 2. (c) 3. (c) 4. (c) 5. (c)
 6. (b) 7. (a) 8. (c) 9. (c) 10. (d)
11. (a) 12. (c) 13. (c) 14. (b) 15. (c)
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7.1 ❐ INTRODUCTION
Fluid dynamics deals with fluid motion considering the forces causing the flow. The dynamics of fluid motion is governed 
by Euler’s and Bernoulli’s equations. These equations can be derived by Newton’s second law of motion which states that 
the resultant force on any fluid element must be equal to the product of the mass and the acceleration of the element, 
and the acceleration has the direction of the resultant force. The analysis of fluid flow problems is made by considering a 
fixed region known as control volume whose size is chosen as per convenience. In this chapter, the derivation of energy 
equation and momentum equation along with their applications for solving a wide variety of fluid flow problems have been 
discussed in brief notion. Concepts regarding to kinetic energy correction factor, momentum correction factor and free 
liquid jet are also discussed in this chapter. 

7.2 ❐ ENERGY AND FORCES ACTING ON A FLOWING FLUID

7.2.1 Energy of a Flowing Fluid
The total energy of a fluid remains in various forms. When a fluid flows, it transfers energy from one form to another. 
Generally, a flowing incompressible fluid possesses three forms of energy, namely potential energy, kinetic energy and 
pressure energy. In fluid flow studies, it is required to express the energy as the head of fluid in metres.

 1. Potential energy: The energy possessed by a liquid due to the virtue of its position with respect to the datum line is called 
potential energy. If m is the mass of liquid at a height z above a datum line, then the potential energy of the liquid at that 
location is given by P.E. = mgz. Potential energy per unit weight is called potential head and its expression is given below. 

	 Potential head = =
mgz

mg
z   (7.1)

 2. Kinetic energy: The energy possessed by a liquid due to the virtue of its motion is called kinetic energy. If m is the 

mass of the moving liquid with a velocity V, then kinetic energy of the liquid is given by K.E. /= ( )1 2 2mV . The kinetic 
energy per unit weight is called kinetic head and its expression is given below. 

	 Kinetic head
/

= =
( )1 2

2

2 2mV

mg

V

g
  (7.2)
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7.2 Chapter 7

 3. Pressure energy: The energy created by a liquid in rest when contained in a container is called pressure energy which 
is also equal to the flow energy (or flow work). The pressure energy per unit weight is called pressure head. If p is the 
pressure of liquid and w is its weight density, then the pressure head is given below.

	 Pressure head = =
p

w

p

gρ
 (7.3)

 4. Total energy: The total energy of a flowing liquid in terms of head is given by the summation of potential head, kinetic 
head and pressure head.

 ∴ = + +Total head z
V

g

p

g

2

2 ρ
 (7.4)

7.2.2 Forces Acting on a Flowing Fluid
The various forces that may influence the motion of a fluid are (i) gravity force (Fg) which is due to the weight of the fluid, 
(ii) pressure force (Fp) which is due to the pressure gradient between two points in the direction of flow, (iii) viscous force 
(Fv) which is due to the viscosity of the flowing fluid, (iv) turbulent force (Ft) which is due to the turbulence of the flow, 
(v) compressibility force (Fc) which is due to the elastic property of the fluid and (vi) surface tension force (Fs) which is 
due to the cohesive property of the fluid.

7.3 ❐ EQUATIONS OF MOTION
If a moving fluid element of mass m is influenced by all the above-mentioned forces, then according to Newton’s second 
law of motion, the net force acting on the element in x-direction is given by the following equation of motion.

 F F F F F F F max g x p x v x t x c x s x x= + + + + + =( ) ( ) ( ) ( ) ( ) ( )  (7.5)

Similarly, the net force acting in y and z-directions can also be obtained.
In most of the fluid flow problems, the surface tension and compressibility forces are not significant. Thus, after 

neglecting these two forces, Equation (7.5) can be rewritten as follows. 

 F F F F F max g x p x v x t x x= + + + =( ) ( ) ( ) ( )  (7.6)

Therefore, Equation (7.6) is known as Reynolds equation of motion. When turbulent forces are neglected as in laminar or 
viscous flow, then Equation (7.6) can be rewritten as follows.

 F F F F max g x p x v x x= + + =( ) ( ) ( )  (7.7)

Therefore, Equation (7.7) is known as Navier–Stokes equation which is useful in the analysis of viscous flow. When viscous 
forces are neglected as in ideal fluid flow problems, then Equation (7.7) can be rewritten as follows.

 F F F max g x p x x= + =( ) ( )  (7.8)

Thus, Equation (7.8) is known as Euler’s equation of motion.

7.4 ❐ EULER’S EQUATION OF MOTION
Euler’s equation of motion can be derived by applying Newton’s second law of motion to a small element of fluid moving 
along a streamline (Figure 7.1) by considering few assumptions, such as (i) flow is steady, (ii) motion of fluid element is 
along a streamline and (iii) fluid is ideal (frictionless, i.e., viscosity is zero).
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 Fluid Dynamics 7.3

Let dA be the cross-sectional area, ds be the length, r be the  density, 
( )ρgdAds  be the weight and α  be the angle of the fluid  element with 
the vertical surface. 

The body force and pressure force acting at the ends of the fluid 
element are listed below.

 (i) Pressure force pdA in the direction of flow.

 (ii) Pressure force p
p

s
ds dA+

∂
∂

⎛
⎝⎜

⎞
⎠⎟

 in the opposite direction of flow.

 (iii) Gravity force due to the weight of the fluid element acting 
 vertically downward whose component in the direction of flow = 
ρ αgdAdscos .

  We know that:  Force Mass Acceleration= ×   [Newton’s second law of motion]

 pdA p
p

s
ds dA gdAds dAds a− +

∂
∂

⎛
⎝⎜

⎞
⎠⎟

− = ×ρ α ρcos  (i)

  Since velocity of the fluid element is a function of distance (s) and time (t), i.e., V f s t= ( , ).

dV
V

s
ds

V

t
dt=

∂
∂

+
∂
∂

 

dV

dt

V

s

ds

dt

V

t
=

∂
∂

+
∂
∂

 a V
V

s

V

t
=

∂
∂

+
∂
∂

  [ ( ) ( )]∵a dV dt V ds dt= =/ and / 	

  For steady flow ( )dV dt/ = 0 	and we get:

a V
V

s
=

∂
∂

  Substituting the value of a in expression (i), we get:

 pdA p
p

s
ds dA gdAds dAds V

V

s
− +

∂
∂

⎛
⎝⎜

⎞
⎠⎟

− = ×
∂
∂

ρ α ρcos 	

−
∂
∂

− = ×
∂
∂

p

s
dsdA gdAds dAds V

V

s
ρ α ρcos

−
∂
∂

− =
∂
∂

1

ρ
αp

s
g V

V

s
cos

  For steady flow, p and V are functions of s only and thus, partial differential becomes the total differential.

 
1

0
ρ

dp

ds
g

dz

ds
V

dV

ds
+ + =   [ cos ]∵ a = dz ds/ 	

dp
gdz VdV

ρ
+ + = 0  (7.9)

  Therefore, Equation (7.9) is the Euler’s equation of motion.

Streamline

dA

ds

ds
dz

pdA

dAdsp
s∂
p∂

+

gdAds

α

ρ

α

Figure 7.1  Forces on a fluid element  
(Euler’s equation)
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7.4 Chapter 7

7.5 ❐ BERNOULLI’S EQUATION
In case of incompressible flow, the given Euler’s equation (7.9) can be integrated to obtain Bernoulli’s equation. However, 
Bernoulli’s equation can be obtained by few assumptions, such as (i) flow is steady, (ii) motion of fluid element is along a 
streamline (i.e., flow is one-dimensional), (iii) fluid is ideal (frictionless, i.e., viscosity is zero), (iv) the flow is incompressible 
(i.e., density of fluid remains constant), (v) the flow is continuous and velocity is uniform, (vi) the flow is irrotational, 
(vii) only gravity and pressure forces are present and no energy (heat or work) is either added or extracted from the fluid. 

By integrating Equation (7.9), we get:

 
dp

gdz VdV
ρ∫ ∫ ∫+ + = Constant 	

p
gz

V

ρ
+ + =

2

2
Constant

p

g

V

g
z

ρ
+ + =

2

2
Constant  (7.10)

Therefore, Equation (7.10) is known as Bernoulli’s equation in which the first term represents the pressure head, second 
term represents the kinetic head and third term represents the potential head. This equation shows that the sum of the 
pressure head, kinetic head and datum head in a steady, ideal flow of an incompressible fluid is constant along a streamline 
at any point of the fluid. The Bernoulli’s equation finds its applications in practical designs to estimate pressure and velocity 
in flow through ducts, venturimeter, orificemeter, etc. 

7.6 ❐ BERNOULLI’S EQUATION FOR REAL FLUIDS
The Bernoulli’s equation was derived by assuming that the fluid has zero viscosity (i.e., non-viscous or inviscid fluid) 
and thus, frictionless. Practically, all fluids are real which are more or less viscous and hence, their flow is accompanied 
by resistance or frictional forces. There are always certain losses of energy in real fluid flows and thereby, energy at the 
downstream section is less than that at its upstream section. Thus, if hL represents the loss of energy per unit weight of fluid 
between the sections 1 and 2, then the Bernoulli’s equation for real fluids may be modified as given below.

 
p

g

V

g
z

p

g

V

g
z hL

1 1
2

1
2 2

2

22 2ρ ρ
+ + = + + +  (7.11)

The Equation (7.11) states that in a steady flow of real fluid (through a pipe or channel or any passage), the total head at 
any section (section 1) is equal to that at any subsequent section (section 2) plus the loss of head occurring between the two 
sections (sections 1 and 2).

7.7 ❐ BERNOULLI’S EQUATION FROM ENERGY EQUATION
Considering various energies of the fluid in a control volume in which entry of the fluid is at section 1 and exit occurs 
at section 2 as shown in Figure 7.2. Let p1, V1, A1, ρ1  and z1 be the pressure, velocity, area, density and height from the 

datum, respectively at section 1 and p2, V2, A2, ρ2  and z2 be the corresponding values at section 2. 

The energies per unit weight at section 1 of the control volume during time dt are listed below.

 (i) Internal energy u1 is the sum of all microscopic forms of energy.

 (ii) Kinetic energy per unit weight is V g1
2 2/( ).

 (iii) Potential energy per unit weight is z1.

 (iv) Flow energy per unit weight (pressure energy per unit weight) is p g1/( )r  as given below at the inlet section.
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 Fluid Dynamics 7.5

Since  Flow energy/Weight
Flow work

Weight of fluid

Force Velocity

=

=
× ××

×
Time

Weight density Volume

Thus Flow energy/Weight = = =
p AV dt

wAV dt

p

w

p

g
1 1 1

1 1

1 1

ρ

Similarly, the energies per unit weight can be given at 
section 2. Let work w1 be added to the system and heat q1 be 
dissipated to the surrounding from the system. Thus, the gen-
eral energy equation per unit weight of the fluid flowing between two sections is given below.

 
p

g

V

g
z u w

p

g

V

g
z u q1

1

1
2

1 1 1
2

2

2
2

2 2 12 2ρ ρ
+ + + + = + + + +  (7.12)

The Equation (7.12) represents general energy equation which is applicable to steady flow, ideal, real, compressible and 
incompressible fluids. The Bernoulli’s equation can be obtained by making the following assumptions.

 (i) No heat transfer across the system boundaries, i.e., q1 0= .

 (ii) No work is done on or by the fluid, i.e., w1 0= .

 (iii) Fluid is ideal and thus, u u1 2= .

 (iv) Fluid is incompressible, i.e., ρ ρ ρ1 2= = .

With the above assumptions, the energy equation given by Equation (7.12) becomes,

p

g

V

g
z

p

g

V

g
z1 1

2

1
2 2

2

22 2ρ ρ
+ + = + + 	

or       
p

g

V

g
z

ρ
+ + =

2

2
Constant  (7.13)

This is Bernoulli’s equation for steady incompressible and non-viscous flow.

 Example 7.1  A pipe of diameter 0.2 m carries oil (specific gravity = 0.85) at the rate of 100 litres per second and the 
pressure at a point P is 19.62 kN/m2 (gauge). If the point P is 3 m above the datum line, then determine the total energy at 
point P in metres of oil.

Solution
Let d = 0 2. m, Soil = 0 85. , Q l= =100 0 1/s m /s3. , p = 19 62. kN/m2

	and z = 3 m. Let E be the total energy in terms of 

metres of oil.

ρ ρ= = × =S woil
3kg/m0 85 1000 850. 	

A d= = × =
π π
4 4

0 2 0 03142 2. . m2

V
Q

A
= = =

0 1

0 0314
3 185

.

.
. m/s

 E
p

g

V

g
z= + + = ×

×
+

×
+ =

ρ

2 3 2

2

19 62 10

850 9 81

3 185

2 9 81
3

.

.

.

.
5.87 m of oil   

1

2

z1

z2

w1

q1

Control volume

Datum

, u11p1, V1, A1, ρ

, u22p2, V2, A2, ρ

Figure 7.2 Bernoulli’s equation from energy equation
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7.6 Chapter 7

 Example 7.2  The water is flowing through a tapering pipe having 
diameters 0.25 m and 0.125 m at sections 1 and 2, respectively. 
The discharge through the pipe is 40 litres per second. The section 1 
is 5 m above the datum and section 2 is 3 m above the datum. If the 
pressure at section 1 is 0.4 MPa, then determine the intensity of 
pressure at section 2.

Solution
Refer Figure 7.3. Let p V d A z1 1 1 1 1, , , and  be the pressure, velocity, 
diameter, area and height from the datum, respectively, at section 1 and 
p V d A z2 2 2 2 2, , , and  be the corresponding values at section 2. Let d1 0 25= . m , d2 0 125= . m, Q l= =40 0 04/s m /s3. , 

z1 5= m, z2 3= m and p1
60 4 0 4 10= = ×. .MPa Pa . 

A d1 1
2 2

4 4
0 25 0 0491= = × =

π π
. . m2

V
Q

A1
1

0 04

0 0491
0 815= = =

.

.
. m/s

A d2 2
2 2

4 4
0 125 0 0123= = × =

π π
. . m2

V
Q

A2
2

0 04

0 0123
3 252= = =

.

.
. m/s

Since 
p

g

V

g
z

p

g

V

g
z

w w

1 1
2

1
2 2

2

22 2ρ ρ
+ + = + +   [Bernoulli’s equation] 

Thus      
0 4 10

1000 9 81

0 815

2 9 81
5

1000 9 81

3 252

2 9 81
3

6 2
2

2.

.

.

. .

.

.

×
×

+
×

+ =
×

+
×

+
p

	

45 81
9810

3 5392. .= +
p

∴ = − × =p2
45 81 3 539 9810

1000

( . . )
414.68 kPa

 Example 7.3  The water is flowing through a pipe having diameters 0.3 m and 0.5 m at the upper and bottom ends, 
respectively. The intensity of pressures at the upper and bottom ends are 100 kPa and 300 kPa, respectively. If the rate of 
flow through the pipe is 50 litres per second, then determine the difference in datum head. 

Solution
Let p V d A z1 1 1 1 1, , , and  be the pressure, velocity, diameter, area and height from the datum, respectively, at the upper 

end (section 1) and p V d A z2 2 2 2 2, , , and  be the corresponding values at the bottom end (section 2). Let md1 0 3= . , 

d2 0 5= . m, p1 100= kPa, p2 300= kPa  and Q l= =50 0 05/s m /s3. .

A d1 1
2 2 2

4 4
0 3 0 0707= = × =

π π
. . m

V
Q

A1
1

0 05

0 0707
0 7072= = =

.

.
. m/s

z1

z2

p2, V2, d2, A2

p1, V1, d1, A1

1

2

Datum

Figure 7.3 
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 Fluid Dynamics 7.7

A d2 2
2 2

4 4
0 5 0 19635= = × =

π π
. . m2

V
Q

A2
2

0 05

0 19635
0 2546= = =

.

.
. m/s

Since 
p

g

V

g
z

p

g

V

g
z

w w

1 1
2

1
2 2

2

22 2ρ ρ
+ + = + +   [Bernoulli’s equation] 

Thus 
100 10

1000 9 81

0 7072

2 9 81

300 10

1000 9 81

0 25463 2

1

3 2×
×

+
×

+ =
×
×

+
.

.

. .

.
z

22 9 81 2×
+

.
z 	

	 10 2192 30 58431 2. .+ = +z z 	

∴ − = − =( ) . .z z1 2 30 5843 10 2192 20.3651 m

 Example 7.4  A 200 m long pipe has a slope of 1 in 100 and tapers from 1 m diameter at the high end to 0.5 m diameter 
at the low end. If the quantity of water flowing through the pipe is 80 litres per second and the pressure at the high end is 
70 kPa, then determine the pressure at the low end. Assume that datum passes through the lower end and neglect the losses. 

Solution
Refer Figure 7.4 in which sections 1 and 2 denotes the high end 
and the low end of the pipe, respectively. Let p V d A z1 1 1 1 1, , , and  
be the pressure, velocity, diameter, area and height from datum, 

respectively, at the high end and p V d A z2 2 2 2 2, , , and  be the 

corresponding values at the low end of the pipe. Let l = 200 m,  

Slope in= 1 100, d1 1= m, d2 0 5= . m , Q l= =80 0 08/s m /s3. ,  

p1 70= kPa  and z2 0= . 

A d1 1
2 2

4 4
1 0 7854= = × =

π π
. m2

V
Q

A1
1

0 08

0 7854
0 102= = =

.

.
. m/s

	 A d2 2
2 2

4 4
0 5 0 19635= = × =

π π
. . m2  

V
Q

A2
2

0 08

0 19635
0 4074= = =

.

.
. m/s

Since the datum line passes through the centre of the lower end, z2 0= .

z1
1

100
200 2= × = m   [∵Slope = 1 in 100]

Since 
p

g

V

g
z

p

g

V

g
z

w w

1 1
2

1
2 2

2

22 2ρ ρ
+ + = + +   [Bernoulli’s equation] 

z1

z2 = 0p2, V2, d2, A2

p1, V1, d1, A1

1

2 Datum

Figure 7.4 
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7.8 Chapter 7

	
70 10

1000 9 81

0 102

2 9 81
2

1000 9 81

0 4074

2 9 81
0

3 2
2

2×
×

+
×

+ =
×

+
×

+
.

.

. .

.

.

p
	

9 1361
9810

0 00852. .= +
p

∴ = − × =p2
9 1361 0 0085 9810

1000

( . . )
89.542 kPa

 Example 7.5  The diameter of a pipe carrying oil (specific gravity = 0.85) changes from 0.5 m at section 1 to 0.25 m 
diameter at section 2 which is at 5 m lower level. The pressures at sections 1 and 2 are 60 kPa and 100 kPa, respectively. 
If the discharge through the pipe is 250 litres per second, then determine the direction of flow and the loss of head. 

Solution
Refer Figure 7.4. Let p V d A z1 1 1 1 1, , , and  be the pressure, velocity, diameter, area and height from the datum, respectively, 

at section 1 and p V d A z2 2 2 2 2, , , and  be the corresponding values at section 2. Let Soil = 0 85. , d1 0 5= . m , d2 0 25= . m ,  

z z1 25= + , p1 60= kPa , p2 100= kPa  and Q l= =250 0 25/s m /s3. .

	 A d1 1
2 2

4 4
0 5 0 19635= = × =

π π
. . m2  

V
Q

A1
1

0 25

0 1963
1 273= = =

.

.
. m/s

	 A d2 2
2 2

4 4
0 25 0 0491= = × =

π π
. . m2  

V
Q

A2
2

0 25

0 0491
5 092= = =

.

.
. m/s

Assume that datum line passes through the centre of the lower end and thus, z2 0= .

z z1 25 5 0 5= + = + = m

 ρ ρ= = × =S woil
3kg/m0 85 1000 850. 	

Total energy at point 1 is given by,

 E
p

g

V

g
z1

1 1
2

1

3 2

2

60 10

850 9 81

1 273

2 9 81
5 12 278= + + =

×
×

+
×

+ =
ρ .

.

.
. m 	

Total energy at point 2 is given by,

 E
p

g

V

g
z2

2 2
2

2

3 2

2

100 10

850 9 81

5 092

2 9 81
0 13 314= + + =

×
×

+
×

+ =
ρ .

.

.
. m 	

Since E E2 1>> , flow occurs from section 2 to section 1. 

Loss of head between the given points is given by,

 h E EL = − = − =2 1 13 314 12 278. . 1.036 m   
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 Fluid Dynamics 7.9

 Example 7.6  A 0.25 m pipe carries water at a velocity of 20 m/s. At points 1 and 2, the measurements of pressure 
and elevation are 350 kPa, 275 kPa, 30 m and 33 m, respectively. For steady flow, determine the loss of head between the 
given points. 

Solution

Let d = 0 25. m, V V V= = =1 2 20 m/s, p1 350= kPa, p2 275= kPa , z1 30= m and z2 33= m. Let hL be the loss of head 

between the points 1 and 2.
Total energy at point 1 is given by,

 E
p

g

V

g
z

w
1

1 1
2

1

3 2

2

350 10

1000 9 81

20

2 9 81
30 86 065= + + =

×
×

+
×

+ =
ρ . .

. m 	

Total energy at point 2 is given by,

 E
p

g

V

g
z

w
2

2 2
2

2

3 2

2

275 10

1000 9 81

20

2 9 81
33 81 42= + + =

×
×

+
×

+ =
ρ . .

. m 	

∴ = − = − =h E EL 1 2 86 065 81 42. . 4.645 m

 Example 7.7  A vertical conical draft tube of a turbine is 2 m long and is kept vertical with the smaller diameter end 
facing upwards. The measured pressure head at the smaller end is 2.5 m of water. The loss of head in the tube expressed in 

metres is [ . ( ) ] ( )0 35 21 2
2 /V V g− , where V1 and V2 is the velocities at the upper and lower ends, respectively. If the velocities 

at the upper and lower ends are 4.5 m/s and 1.5 m/s, respectively, then determine the pressure head at the lower end. 

Solution
Refer Figure 7.5. Let the datum line passes through the lower end (section 2), 
p V z1 1 1, and  be the pressure, velocity and height from the datum, respectively, at 

the upper end (section 1), p V z2 2 2, and  be the corresponding values at the bottom 

end (section 2). Let l z= =1 2 m, p gw1 2 5/ m( ) .ρ = , h V V gL = −[ . ( ) ] ( )0 35 21 2
2 / , 

V1 4 5= . m/s and V2 1 5= . m/s. 

Since              
p

g

V

g
z

p

g

V

g
z h

w w
L

1 1
2

1
2 2

2

22 2ρ ρ
+ + = + + +   [Bernoulli’s equation]

p

g

V

g
z

p

g

V

g
z

V V

gw w

1 1
2

1
2 2

2

2
1 2

2

2 2

0 35

2r r
+ + = + + +

-. ( ) 

Thus    2 5
4 5

2 9 81
2

1 5

2 9 81
0

0 35 4 5 1 5

2 9 81

2
2

2 2
.

.

.

.

.

. ( . . )

.
+

´
+ = +

´
+ +

-
´

p

gwr
 	

5 5321 0 27522. .= +
p

gwρ

∴ = − =
p

gw

2 5 5321 0 2752
ρ

. . 5.2569 m of water

z1

z2 = 0 p2, V2

p1, V1

Draft tube
1

2
Datum

Figure 7.5 
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 Example 7.8  The diameter and pressure at the inlet of the draft tube is 1 m and 0.45 bar (absolute), respectively. If the 
discharge of water is 1500 litres per second, pressure at the exit is atmospheric, and the vertical distance between the inlet 
and outlet is 5.6 m, then determine the exit diameter of the draft tube. 

Solution
Refer Figure 7.5. Let p V d A z1 1 1 1 1, , , and  be the pressure, velocity, diameter, area and height from the datum, respectively, 

at the upper inlet end (section 1) and p V d A z2 2 2 2 2, , , and  be the corresponding values at the exit of the tube (section 2). 

Let d1 1= m, p1 0 45= . bar, Q l= =1500 1 5/s m /s3. , p2 1 01325= . bar , z1 5 6= . m  and z2 0= .

V
Q

A

Q

d
1

1 1
2 24

1 5

4 1
1 91= = =

×
=

( / )

.

( / )
.

π π
m/s

Since 
p

g

V

g
z

p

g

V

g
z

w w

1 1
2

1
2 2

2

22 2ρ ρ
+ + = + +   [Bernoulli’s equation] 

Thus 
0 45 10

1000 9 81

1 91

2 9 81
5 6

1 01325 10

1000 9 81

5 2 5
2

2.

.

.

.
.

.

.

×
×

+
×

+ =
×

×
+

V

22 9 81
0

×
+

.
	

10 373 10 329 0 051 2
2. . .= + V

∴ =
−

=V2
10 373 10 329

0 051
0 929

. .

.
. m/s

Since AV A V1 1 2 2=   [Continuity equation] 

Thus               
A

A

d

d

V

V
2

1

2
2

1
2

1

2
= =  

d2
2

21

1 91

0 929
=

.

.

∴ = =d2
1 91

0 929

.

.
1.434 m

 Example 7.9  Gasoline (specific gravity = 0.74) flows upwards in a vertical pipe of length 1.2 m which tapers from 0.4 m 
to 0.2 m diameter. The mercury differential manometer fitted between the two ends shows a gauge reading of 0.6 mHg. 
Determine the differential gauge reading in terms of gasoline head and the discharge if losses are neglected.

Solution
Refer Figure 7.6. Let p V d A z1 1 1 1 1, , , and  be the pressure, velocity, diameter, area and height from the datum, respectively, 

at the bottom end (section 1) and p V d A z2 2 2 2 2, , , and  be the corresponding values at the exit of the pipe (section 2) and 

Q be the discharge. Let Sgasoline = 0 74. , z2 1 2= . m, d1 0 4= . m, d2 0 2= . m	and y = 0 6. mHg .

Since    h
p p

g
y

S

S
m=

−
= × −

⎛

⎝
⎜

⎞

⎠
⎟1 2 1

ρ gasoline
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∴ =

−
= × −⎛

⎝⎜
⎞
⎠⎟

=h
p p

g
1 2 0 6

13 6

0 74
1

ρ
.

.

.
10.427 m of gasoline

V
AV

A

d V

d

V
V2

1 1

2

1
2

1

2
2

2
1

2 1
0 4

0 2
4= = = =

.

.
  [From Continuity equation]

Since the datum line passes through the lower end, z1 0= .

Since   
p

g

p

g

V

g

V

g
z z1 2 1

2
2

2

1 22 2
0

ρ ρ
−

⎛
⎝⎜

⎞
⎠⎟

+ −
⎛

⎝
⎜

⎞

⎠
⎟ + − =( )   [Bernoulli’s equation]

Thus      10 427
2

4

2
0 1 2 01

2
1

2

.
( )

( . )+ −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+ − =
V

g

V

g

9 227
15

2
01

2

. − =
V

g

	 ∴ =
×

=
× ×

=V
g

1
9 227 2

15

9 227 2 9 81

15
3 474

. . .
. m/s 	

Q AV d V= = × = × × =1 1 1
2

1
2

4 4
0 4 3 474

π π
. . 0.4365 m /s3

 Example 7.10  The smaller diameter 0.1 m of a 4 m long pipe at lower level is inclined at an angle of 30° with the 
horizontal and its large diameter is 0.3 m. If the velocity of water at the smaller diameter section is 2 m/s, then calculate the 
difference of pressure between the smaller and larger diameter sections of the pipe. 

Solution
Refer Figure 7.7. Let the datum passes through the smaller diameter 
end (section 1), p V d A z1 1 1 1 1, , , and  be the pressure, velocity, 

diameter, area and height from the datum, respectively, at the lower 

level (section 1) and p V d A z2 2 2 2 2, , , and  be the corresponding 

values at the large diameter of the pipe (section 2). Let d1 0 1= . m,  

l = 4 m, α = °30 , d2 0 3= . m and V1 2= m/s.

A d1 1
2 2

4 4
0 1 0 007854= = × =

π π
. . m2

A d2 2
2 2

4 4
0 3 0 0707= = × =

π π
. . m2

 V
AV

A2
1 1

2

0 007854 2

0 0707
0 2222= =

×
=

.

.
. m/s   [ ]∵ AV A V1 1 2 2= 	

Since the datum line passes through the lower end, z1 0= .

z l2 4 30 2= = =sin sina ° m

z2

z1 = 0

p2, V2

p1, V1

Pipe

1

2

Gasoline (S = 0.74) 

Datum

Figure 7.6 

z1 = 0

z2

p2, V2, d2, A2

p1, V1, d1, A1
1

2

Datumα

Figure 7.7 
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p

g

p

g

V

g

V

g
z z

w w

1 2 2
2

1
2

2 12 2ρ ρ
−

⎛
⎝⎜

⎞
⎠⎟

= −
⎛

⎝
⎜

⎞

⎠
⎟ + −( )   [From Bernoulli’s equation] 

Thus       
p p

gw

1 2
2 20 2222

2 9 81

2

2 9 81
2 0 1 799

−⎛
⎝⎜

⎞
⎠⎟

=
×

−
×

⎛

⎝
⎜

⎞

⎠
⎟ + − =

ρ
.

. .
( ) .

∴ − = = × × =( ) . . .p p gw1 2 1 799 1 799 1000 9 81ρ 17.65 kN/m2

7.8 ❐ PRACTICAL APPLICATIONS OF BERNOULLI’S EQUATION
Bernoulli’s equation is widely used in the solution of energy based problems of incompressible fluid flow. Some of the 
fluid flow measuring devices in which Bernoulli’s equation is used are (i) venturimeter, (ii) orificemeter, (iii) pitot tube, 
(iv) rotameter, (v) siphon and (vi) sluice gate.

7.8.1 Venturimeter
A venturimeter is a device commonly used to measure the flow rate of a fluid flowing through a pipe. It is named after 
the notable Italian physicist G. B. Venturi (1746 –1822). In venturimeter, a pressure difference is created by reducing the 
cross-sectional area of the flow passage and the measurement of the pressure difference enables the determination of the 
flow rate through the pipe. A venturimeter consists of the following three parts (Figure 7.8). 

 (i)  A short converging part (at the inlet) with a cone angle of about 21° to 22°. The inlet of the venturimeter has the same 
diameter as that of the pipe, i.e., d1. The length of convergent cone is kept nearly equal to 2 7 1 2. ( ), d d-  where (d2) is 
the throat diameter. 

 (ii)  Throat, a short cylindrical region of a constant area. The throat diameter d2 may vary from 0 33 1. d  to 0 75 1. d  but 
 commonly it is taken as 0 5 1. d . 

 (iii) A divergent cone (or diffuser at exit) with a diverging angle of about 5° to 7°. The divergent cone of the venturimeter 
is kept longer with a gradual divergence (preferably 6°) to avoid the flow separation. The divergent part is not used for 
discharge measurement since separation of flow may take place in this portion.

A venturimeter may be fixed horizontally, vertically or in an inclined way in a section of the pipe. A venturimeter fitted to 
a horizontal pipe is shown in Figure 7.8(a). 

Expression for discharge through venturimeter Let d1 be the diameter, a d1 1
24= ( / )π  be the area, V1 be the velocity 

of fluid and p1 be the pressure at section 1 (inlet section) and d2, a d2 2
24= ( / )π , V2 and p2 be the corresponding values at 

section 2 (throat). 

d1 d2 z1

z2

1
2

h

Throat

Converging part

Diverging part

Inlet

2

1

Z Z

Throat

Diverging part

Converging part

(a) Horizontal (b) Inclined

y

Datum

Figure 7.8 Venturimeter
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 Fluid Dynamics 7.13

Applying Bernoulli’s equation at sections 1 and 2 of the horizontal venturimeter shown in Figure 7.8(a), we get the 
below expression.

p

g

V

g
z

p

g

V

g
z1 1

2

1
2 2

2

22 2ρ ρ
+ + = + +  (i)

 
p

g

p

g

V

g

V

g
1 2 2

2
1
2

2 2ρ ρ
− = −   [ ]∵ z z1 2= 	

p p

g

V

g

V

g
1 2 2

2
1
2

2 2

−
= −

ρ
 (ii)

The term ( ) ( )p p g1 2− / ρ  in expression (ii) is the difference in pressure heads between the two sections, which is called 
venturi head and it is denoted by h. 

Thus h
V

g

V

g
= −2

2
1
2

2 2
 (iii)

From continuity equation between sections 1 and 2, we get:

V
a V

a1
2 2

1
=   [ ]∵a V a V1 1 2 2=

Substituting the value of V1 in expression (iii), we get:

 h
V

g

a V a

g

V

g

a

a

V

g

a a

a
= − = −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
−2

2
2 2 1

2
2

2
2

2

1
2

2
2

1
2

2
2

2 2 2
1

2

[( ) / ]

11
2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

	

V
a gh

a a
2

2 1
2

1
2

2
2

2
=

×

−

∴ =
×

−
=

−
V

a gh

a a

a gh

a a
2

1
2

1
2

2
2

1

1
2

2
2

2 2

If Qth is the theoretical discharge through the pipe, then we get the following expression.

Q a V
a a gh

a a
th = =

−
2 2

1 2

1
2

2
2

2
 (7.14)

In deriving Equation (7.14), the head loss between sections 1 and 2 is not considered. Thus, it gives the discharge under 
ideal conditions. However, in actual practice there is always some loss of head when fluid flows through the venturimeter, 
as a result of which the actual discharge will be less than the theoretical discharge. Thus, the expression for actual discharge 
Qa is given below.

Q
C a a gh

a a
a

d=
−

1 2

1
2

2
2

2
 (7.15)

Here, Cd is the coefficient of discharge of the venturimeter which is defined as the ratio of actual discharge to the theoretical 
discharge. Its value is always less than 1 (lies between 0.96 and 0.98) and in general for fluids of low viscosity, it is taken 
as 0.98. It can also be calculated from the following relation.

C
h h

hd
f=

−
 (7.16)

Here, hf is the friction head loss between the inlet and the throat of the venturimeter.
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7.14 Chapter 7

Value of ‘h’ given by differential U-tube manometer
Case I: The differential manometer contains heavier liquid (say mercury) than the liquid flowing through the pipe. Thus, the 
value of h is given below.

h y
S

S
m= −⎛

⎝⎜
⎞
⎠⎟1  (7.17)

Here, y is the difference of the mercury column (heavier liquid column) in U-tube, Sm is the specific gravity of mercury 
(heavier liquid) and S is the specific gravity of the liquid flowing through the pipe.

Case II: The differential manometer contains lighter liquid than the liquid flowing through the pipe. Thus, the value of h 
is given below.

 h y
S

S
l= −⎛

⎝⎜
⎞
⎠⎟

1  (7.18)

Here, y is the difference of the lighter liquid column in U-tube, Sl is the specific gravity of lighter liquid and S is the specific 
gravity of the liquid flowing through the pipe.

Inclined venturimeter The Equation (7.15) can also be used for calculating the discharge through inclined or vertical 
venturimeter. A venturimeter fitted to an inclined pipe is shown in Figure 7.8(b). The value of h for inclined venturimeter in 
the differential manometer contains a liquid which is heavier than the liquid flowing through the pipe and it is given below. 

 h
p

g
z

p

g
z y

S

S
m= +

⎛
⎝⎜

⎞
⎠⎟

− +
⎛
⎝⎜

⎞
⎠⎟

= −⎛
⎝⎜

⎞
⎠⎟

1
1

2
2 1

ρ ρ
 (7.19)

The value of h for inclined venturimeter in which the differential manometer contains a liquid which is lighter than the 
liquid flowing through the pipe is given below.

h
p

g
z

p

g
z y

S

S
l= +

⎛
⎝⎜

⎞
⎠⎟

− +
⎛
⎝⎜

⎞
⎠⎟

= −⎛
⎝⎜

⎞
⎠⎟

1
1

2
2 1

ρ ρ
 (7.20)

 Example 7.11  A venturimeter has a diameter of 0.16 m at the enlarged end and 0.08 m diameter at the throat. It is fitted 
in a horizontal pipeline of diameter 0.16 m which carries an oil (specific gravity = 0.85). If the coefficient of discharge of 
the venturimeter is 0.98 and the difference of pressure head between the enlarged end and the throat recorded by a U-tube 
is 0.18 mHg, then determine the discharge through the pipe. Take specific gravity of mercury as 13.6.

Solution
Let d1 0 16= . m, d2 0 08= . m , Soil = 0 85. , Cd = 0 98. , y = 0 18. mHg and Sm = 13 6. .

a d1 1
2 2

4 4
0 16 0 0201= = × =

π π
. . m2

a d2 2
2 2

4 4
0 08 0 00503= = × =

π π
. . m2

h y
S

S
m

oil
= −

⎛
⎝⎜

⎞
⎠⎟

= × −⎛
⎝⎜

⎞
⎠⎟

=1 0 18
13 6

0 85
1 2 7.

.

.
. m

Since      Q
C a a gh

a a
a

d=
−

1 2

1
2

2
2

2

  ∴ = × × × × ×

−
=Qa

0 98 0 0201 0 00503 2 9 81 2 7

0 0201 0 005032 2

. . . . .

. .
0.03706 mm /s3   
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 Fluid Dynamics 7.15

 Example 7.12  A venturimeter has a diameter of 0.2 m at the inlet and 0.1 m diameter at the throat. It is fitted in a 
horizontal pipeline to measure the flow of oil of specific gravity 0.82. If 5900 kg of oil is collected in 2 minutes and the 
difference of levels in the U-tube differential manometer reads 0.185 mHg, then determine the discharge coefficient for the 
pipe venturimeter. Take specific gravity of mercury as 13.6.

Solution
Let d1 0 2= . m, d2 0 1= . m, Soil = 0 82. , m = 5900 kg per 2 min, y = 0 185. mHg and Sm = 13 6. . 

a d1 1
2 2

4 4
0 2 0 031416= = × =

π π
. . m2

a d2 2
2 2

4 4
0 1 0 007854= = × =

π π
. . m2

h y
S

S
m= -

æ

è
ç

ö

ø
÷ = ´ -æ

è
ç

ö
ø
÷ =

oil
m1 0 185

13 6

0 82
1 2 883.

.

.
.

m =
×

=
5900

2 60
49 167. kg/s

r r= = ´ =S woil
3kg/m0 82 1000 820.

Q
m

a = = =
ρ

49 167

820
0 05996

.
. m /s3

But              Q
C a a gh

a a
a

d=
−

1 2

1
2

2
2

2

Thus 0 05996
0 031416 0 007854 2 9 81 2 883

0 031416 0 007852
.

. . . .

. .
=

× × × × ×

−

Cd

442
	

0 05996 0 061. .= ×Cd

∴ = =Cd
0 05996

0 061

.

.
0.983

 Example 7.13  A venturimeter with inlet and throat diameters as 150 mm and 75 mm, respectively is fitted in a 
horizontal water pipeline to measure the flow. If the pressure at the inlet is 175 kPa and the vacuum pressure at the throat 
is 275 mmHg, then determine the discharge. Take the values of coefficient of discharge and specific gravity of mercury as 
0.97 and 13.6, respectively.

Solution

Let d1 150 0 15= =mm m. , d2 75 0 075= =mm m. , p1 175= kPa, p g vac2 275 0 275/ mmHg mHg( ) ( ) .ρ = = − , Cd = 0 97.  

and Sm = 13 6. .

a d1 1
2 2

4 4
0 15 0 01767= = × =

π π
. . m2

	 a d2 2
2 2

4 4
0 075 0 00442= = × =

π π
. . m2 	

M07 Fluid Mechanics and Hydraulic Machines XXXX 01.indd   15 4/5/2019   11:25:53 AM

Download more at Learnclax.com



7.16 Chapter 7

p

gw

1
3175 10

1000 9 81
17 84

ρ
=

×
×

=
.

. m of water

p

gw

2 0 275 13 6 3 74
ρ

= − × = −. . . m of water

Thus           h
p

g

p

gw w
= − = − −( ) =1 2 17 84 3 74 21 58

ρ ρ
. . . m of water 	

Since           Q
C a a gh

a a
a

d=
−

1 2

1
2

2
2

2

 ∴ = × × × × ×

−
=Qa

0 97 0 01767 0 00442 2 9 81 21 58

0 01767 0 004422 2

. . . . .

. .
0.099112 m /s3   

 Example 7.14  A venturimeter having an inlet diameter of 0.3 m is fitted in a horizontal pipeline to measure the flow 
of water. If the water flow rate through the venturimeter is 0.3 m3/s and the pressure of water in the pipe is 285 kPa, then 
determine the least throat diameter of the venturimeter to avoid any cavitation. Take atmospheric pressure as 10.34 m of 
water and assume that cavitation occurs when the absolute pressure head falls below 2.5 m (abs). 

Solution
Let d1 0 3= . m, Q = 0 3. m /s3 , p1 285= kPa, p gwatm / m of water( ) .ρ = 10 34  and p gw2 2 5/ m (abs)( ) .ρ = .

a d1 1
2 2

4 4
0 3 0 0707= = × =

π π
. . m2

V
Q

a1
1

0 3

0 0707
4 243= = =

.

.
. m/s

p

gw

2 2 5 10 34 7 84
ρ

= − = −. . . m (Gauge)

Since 
p

g

V

g

p

g

V

gw w

1 1
2

2 2
2

2 2ρ ρ
+ = +   [Bernoulli’s equation] 

285 10

1000 9 81

4 243

2 9 81
7 84

2 9 81

3 2
2

2×
×

+
×

= − +
×.

.

.
.

.

V

29 97 7 84
19 62

2
2

. .
.

= − +
V

∴ = + × =V2 29 97 7 84 19 62 27 237( . . ) . . m/s

a
Q

V2
2

0 3

27 237
0 011= = =

.

.
. m2
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 Fluid Dynamics 7.17

Thus                  
π
4

0 0112
2d = .

	 ∴ = × =d2
0 011 4.

π
0.1183 m   

 Example 7.15  A venturimeter with an inlet diameter of 0.3 m and throat diameter of 0.1 m is fitted in a horizontal 
pipeline to measure the flow of water. The pressure intensity of water at the inlet of venturimeter is 120 kPa and the vacuum 
pressure head at the throat is 300 mmHg. If 3.5% of head is lost in between the inlet and throat, then determine (i) the 
coefficient of discharge for the venturimeter and (ii) rate of flow through it.

Solution
Let d1 0 3= . m, d2 0 1= . m, p1 120= kPa, p g2 300 0 3/ mmHg mHg( ) .ρ = − = −  and hf = 3 5. %.

 (i) a d1 1
2 2

4 4
0 3 0 0707= = × =

π π
. . m2

a d2 2
2 2

4 4
0 1 0 007854= = × =

π π
. . m2

h
p

g

p

gw w
= − =

×
×

− − ×( ) =1 2
3120 10

1000 9 81
0 3 13 6 16 312

ρ ρ .
. . . m

h hf = = × =3 5
3 5

100
16 312 0 571. %

.
. .of m of water

C
h h

hd
f=

−
= − =16 312 0 571

16 312

. .

.
0.982

 (ii) Q
C a a gh

a a
a

d=
−

1 2

1
2

2
2

2

∴ = × × × × ×

−
=Qa

0 982 0 0707 0 007854 2 9 81 16 312

0 0707 0 0078542 2

. . . . .

. .
0..1388 m /s3   

 Example 7.16  A venturimeter with an inlet diameter of 0.3 m and throat diameter of 0.15 m is fitted in a horizontal 
pipeline carrying oil (specific gravity = 0.86) to measure the discharge through the pipe. The venturimeter is connected to 
a mercury manometer. If the discharge through the venturimeter is 100 litres per second and its coefficient of discharge is 
0.98, then determine the reading of mercury manometer head in cm. 

Solution
Let d1 0 3= . m, d2 0 15= . m , Soil = 0 86. , Q la = =100 0 1/s m /s3.  and Cd = 0 98. .

a d1 1
2 2 2

4 4
0 3 0 0707= = × =

π π
. . m

	 a d2 2
2 2

4 4
0 15 0 01767= = × =

π π
. . m2  
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Since              Q
C a a gh

a a
a

d=
−

1 2

1
2

2
2

2

Thus 0 1
0 98 0 0707 0 01767 2 9 81

0 0707 0 017672 2
.

. . . .

. .
=

× × × ×

−

h
	

0 1 0 07922. .= h

∴ = ⎛
⎝⎜

⎞
⎠⎟

=h
0 1

0 07922
1 5934

2.

.
. m

Also                h y
S

S
m= -

æ

è
ç

ö

ø
÷

oil
1

Thus                1 5934
13 6

0 86
1.

.

.
= × −⎛

⎝⎜
⎞
⎠⎟

y

∴ = =y
1 5934

14 814

.

.
0.1076 m or 10.76 cm of Hg

 Example 7.17  A venturimeter with its axis vertical is used to measure 
the flow rate of petrol (specific gravity = 0.8) in a vertical pipeline. The inlet 
and throat diameters of venturimeter are 0.15 m and 0.075 m, respectively. 
The throat is 0.25 m above the inlet and its coefficient of discharge is 
0.97. If the rate of flow through the venturimeter in the upward direction 
is 0.03 m3/s, then determine the pressure difference between the inlet and 
the throat.

Solution
Refer Figure 7.9. Let Spetrol = 0 8. , d1 0 15= . m, d2 0 075= . m , z2 - z1 = 

0.25 m, Cd = 0 97.  and Qa = 0 03. m /s3 .

r r= = ´ =S wpetrol
3kg/m0 8 1000 800.

a d1 1
2 2

4 4
0 15 0 01767= = × =

π π
. . m2

a d2 2
2 2

4 4
0 075 0 00442= = × =

π π
. . m2

Since              Q
C a a gh

a a
a

d=
−

1 2

1
2

2
2

2

Thus 0 03
0 97 0 01767 0 00442 2 9 81

0 01767 0 004422 2
.

. . . .

. .
=

× × × ×

−

h
	

0 03 0 019614. .= h

d1
z1

z2

(z2 – z1)
d2

Vertical venturimeter

y

2

1

Inlet

Outlet

Figure 7.9 
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∴ = ⎛

⎝⎜
⎞
⎠⎟

=h
0 03

0 019614
2 3394

2.

.
. m

But                   h
p

g

p

g
z z= −

⎛
⎝⎜

⎞
⎠⎟

− −( )1 2
2 1ρ ρ

Thus               2 3394 0 251 2. .= −
⎛
⎝⎜

⎞
⎠⎟

−
p

g

p

gρ ρ
	

p p

g
1 2 2 3394 0 25 2 5894

−⎛
⎝⎜

⎞
⎠⎟

= + =
ρ

. . .

Thus              ( ) .p p g1 2 2 5894− = ρ

 ∴ − = × × =( ) . .p p1 2 2 5894 800 9 81 20321.61 N/m2   

 Example 7.18  A 0.3 m × 0.15 m venturimeter is provided in a vertical pipeline carrying oil of specific gravity 0.9, 
where the flow being upward. The difference in elevation of the throat section and entrance section of the venturimeter is 
0.3 m. The differential U-tube mercury manometer shows a gauge deflection of 0.25 m. Calculate (i) the discharge of oil 
and (ii) pressure difference between the entrance section and the throat section. Take the coefficient of discharge of meter 
as 0.98 and specific gravity of mercury as 13.6.

Solution
Refer Figure 7.9. Let d1 0 3= . m, d2 0 15= . m , Soil = 0 9. , z z2 1 0 3− = . m, y = 0 25. m, Cd = 0 98. 	and Sm = 13 6. . 

 (i)  a d1 1
2 2

4 4
0 3 0 0707= = × =

π π
. . m2

a d2 2
2 2

4 4
0 15 0 01767= = × =

π π
. . m2

h y
S

S
m= -

æ

è
ç

ö

ø
÷ = ´ -æ

è
ç

ö
ø
÷ =

oil
m1 0 25

13 6

0 9
1 3 528.

.

.
.

Since           Q
C a a gh

a a
a

d=
−

1 2

1
2

2
2

2
 

	 ∴ = × × × × ×

−
=Qa

0 98 0 0707 0 01767 2 9 81 3 528

0 0707 0 017672 2

. . . . .

. .
0.14888 m /s3   

 (ii) r r= = ´ =S woil
3kg/m0 9 1000 900.

  Since         h
p

g

p

g
z z= −

⎛
⎝⎜

⎞
⎠⎟

− −( )1 2
2 1ρ ρ

 

  Thus           3 528 0 31 2. .= −
⎛
⎝⎜

⎞
⎠⎟

−
p

g

p

gρ ρ
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p p

g
1 2 3 528 0 3 3 828

−⎛
⎝⎜

⎞
⎠⎟

= + =
ρ

. . .

Thus                ( ) .p p g1 2 3 828− = ρ

 ∴ − = × × =( ) . .p p1 2 3 828 900 9 81 33797.412 N/m2   

 Example 7.19  A venturimeter inclined at 60° to the vertical is fitted to 
a 300 mm diameter pipe and its 150 mm diameter throat is 1.3 m from the 
entrance along its length. The gasoline (specific gravity = 0.78) flows upwards 
at a rate of 230 litres per second. Determine (i) the discharge coefficient of 
venturimeter if the pressure gauges fitted at the entrance and throat indicate 
pressures of 150 kPa and 80 kPa, respectively and (ii) if pressure gauges 
fitted at the entrance and throat of the meter are replaced by a U-tube mercury 
manometer, then determine the reading in differential mercury column. 
Take specific gravity of mercury as 13.6.

Solution
Refer Figure 7.10. Let α1 60= ° , d1 300 0 3= =mm m. , d2 150 0 15= =mm m.

d2 150 0 15= =mm m. , l = 1 3. m, Sgasoline = 0 78. , Q la = =230 0 23/s m /s3. , p1 150= kPa ,  

p2 80= kPa and Sm = 13 6. .

 (i) a d1 1
2 2

4 4
0 3 0 0707= = × =

π π
. . m2

a d2 2
2 2 2

4 4
0 15 0 01767= = × =

π π
. . m

	 ρ ρ= = × =S wgasoline
3kg/m0 78 1000 780.  

a a= - = - =90 90 60 301° ° ° °

  Assume that the datum line passes through the lower end, where z1 0= .

z l2 1 3 30 0 65= = =sin . sin .a ° m

 h
p

g
z

p

g
z= +

⎛
⎝⎜

⎞
⎠⎟

− +
⎛
⎝⎜

⎞
⎠⎟

=
×
×

+
⎛

⎝
⎜

⎞

⎠
⎟ −

×1
1

2
2

3150 10

780 9 81
0

80 1

ρ ρ .

00

780 9 81
0 65 8 5

3

×
+

⎛

⎝
⎜

⎞

⎠
⎟ =

.
. . m 	

  Since             Q
C a a gh

a a
a

d=
−

1 2

1
2

2
2

2

0 23
0 0707 0 01767 2 9 81 8 5

0 0707 0 017672 2
.

. . . .

. .
=

× × × × ×

−

Cd

0 23 0 2357. .= ×Cd

∴ = =Cd
0 23

0 2357

.

.
0.976

z1 = 0

z2

d1

d2

l

y

2

1Inlet

Exit

Inclined
venturimeter

1α
α

Figure 7.10 
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 (ii) h y
S

S
m= −

⎛

⎝
⎜

⎞

⎠
⎟

gasoline
1

8 5
13 6

0 78
1.

.

.
= × −⎛

⎝⎜
⎞
⎠⎟

y  

∴ = =y
8 5

16 436

.

.
0.5172 m or 51.72 cm

 Example 7.20  A venturimeter of convergent length 0.8 m and throat diameter 0.2 m is fitted in a 0.4 m diameter 
pipeline carrying oil (specific gravity = 0.82). The venturimeter is inclined at 30° to the horizontal and oil flows upwards. 
If the U-tube mercury manometer indicates a deflection of 5 cm and the coefficient of discharge of the meter is 0.98, then 
determine (i) the discharge through the pipe and (ii) if instead of the mercury manometer, pressure gauges are fitted at the 
entrance and throat of the meter, then determine the pressure gauge reading at the throat when the pressure gauge reading 
at the entrance is 160 kPa. Take specific gravity of mercury as 13.6.

Solution
Refer Figure 7.10. Let l = 0 8. m , d2 0 2= . m, d1 0 4= . m, Soil = 0 82. , a = 30°, y = =5 0 05cm m. , Cd = 0 98. , 

p1 160= kPa and Sm = 13 6. .

 (i) a d1 1
2 2

4 4
0 4 0 1257= = × =

π π
. . m2

a d2 2
2 2

4 4
0 2 0 0314= = × =

π π
. . m2

h y
S

S
m= -

æ

è
ç

ö

ø
÷ = ´ -æ

è
ç

ö
ø
÷ =

oil
m1 0 05

13 6

0 82
1 0 78.

.

.
.

  Since        Q
C a a gh

a a
a

d=
−

1 2

1
2

2
2

2

	 ∴ = × × × × ×

−
=Qa

0 98 0 1257 0 0314 2 9 81 0 78

0 1257 0 03142 2

. . . . .

. .
0.1243 m3 //s   

 (ii) Assume that datum line passes through the lower end, where z1 0= .

z l2 0 8 30 0 4= = =sin . sin .a ° m

r r= = ´ =S woil
3kg/m0 82 1000 820.

  Since       h
p

g
z

p

g
z= +

⎛
⎝⎜

⎞
⎠⎟

− +
⎛
⎝⎜

⎞
⎠⎟

1
1

2
2ρ ρ

  Thus          0 78
160 10

820 9 81
0

820 9 81
0 4

3
2.

. .
.=

×
×

+
⎛

⎝
⎜

⎞

⎠
⎟ −

×
+⎛

⎝⎜
⎞
⎠⎟

p
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7.22 Chapter 7

0 78 19 89
8044 2

0 42. .
.

.= − −
p

 ∴ = − − × =p2 19 89 0 78 0 4 8044 2( . . . ) . 150.51 kPa   

 Example 7.21  A venturimeter having throat diameter of 0.2 m is fitted in 0.4 m diameter inclined pipe carrying water. 
An inverted U-tube manometer filled with a liquid of specific gravity 0.72 indicates the difference of pressure between the 
entrance and throat of meter as 0.28 m. If the loss of head between the entrance and throat is 0.25 times of the kinetic head 
of the pipe, then determine the rate of flow of water through the pipe. 

Solution
Let d2 0 2= . m, d1 0 4= . m, Sl = 0 72. , y = 0 28. m	and h V gL = ×0 25 21

2. [ ( )]/ .

a d1 1
2 2

4 4
0 4 0 1257= = × =

π π
. . m2

a d2 2
2 2

4 4
0 2 0 0314= = × =

π π
. . m2

Since h
p

g
z

p

g
z y

S

S
l= +

⎛
⎝⎜

⎞
⎠⎟

− +
⎛
⎝⎜

⎞
⎠⎟

= −⎛
⎝⎜

⎞
⎠⎟

1
1

2
2 1

ρ ρ
 

Thus 
p

g
z

p

g
z1

1
2

2 0 28 1
0 72

1
0 0784

ρ ρ
+

⎛
⎝⎜

⎞
⎠⎟

− +
⎛
⎝⎜

⎞
⎠⎟

= × −⎛
⎝⎜

⎞
⎠⎟

=.
.

. m 	

 V
a V

a

d V

d

V V
1

2 2

1

2
2

2

1
2

2
2

2
20 2

0 4 4
= = = =

.

.
  (From continuity equation) 

Thus             V V2 14=

	
p

g
z

p

g
z

V

g

V

g
hL

1
1

2
2

1
2

2
2

2 2ρ ρ
+

⎛
⎝⎜

⎞
⎠⎟

− +
⎛
⎝⎜

⎞
⎠⎟

+ − =   (From Bernoulli’s equation) 

Thus               0 0784
2

4

2
0 25

2
1
2

1
2

1
2

.
( )

.+ − = ×
V

g

V

g

V

g

15 25

2
0 07841

2.
.

V

g
=

	 ∴ =
×

=
× ×

=V
g

1
0 0784 2

15 25

0 0784 2 9 81

15 25
0 32

.

.

. .

.
. m/s 	

Q a V= = × =1 1 0 1257 0 32. . 0.040224 m /s3

7.8.2 Orificemeter
An orificemeter (or orifice plate) is another simple device which is commonly used for measuring the discharge of a fluid 
through a pipe. The cost of this device is inexpensive and it requires less space than venturimeter. It also works on the 
same principle as that of venturimeter. It consists of a flat thin circular plate with a circular sharp edged hole called orifice, 

M07 Fluid Mechanics and Hydraulic Machines XXXX 01.indd   22 4/5/2019   11:26:38 AM

Download more at Learnclax.com



 Fluid Dynamics 7.23

which is concentric with the pipe. It is held in the pipeline 
between two flanges. Generally, the diameter of orifice is kept 
0.5 times the diameter of the pipe, but it may vary from 0.4 to 
0.8 times the diameter of the pipe. A differential manometer 
is connected at section 1–1 which is at a distance of 1.5 to 2 
times the diameter of the pipe on the upstream from the orifice 
plate and at section 2–2 which is at a distance of about half the 
diameter of the orifice on the downstream from the orifice plate 
as shown in Figure 7.11. 

Expression for discharge through orificemeter Let a1 
be the area, V1 be the velocity of fluid and p1 be the pressure at 
section 1–1 (inlet section), and a2, V2 and p2 be the corresponding values at section 2–2 (i.e., at vena contracta which is the 
least cross section of the converging jet) and a0 be the area of the orifice.

Applying Bernoulli’s equation at sections 1–1 and 2–2 of the orificemeter as shown in Figure 7.11, we get the following 
expression.

p

g

V

g
z

p

g

V

g
z1 1

2

1
2 2

2

22 2ρ ρ
+ + = + +  (i)

	
p

g
z

p

g
z

V

g

V

g
1

1
2

2
2

2
1
2

2 2ρ ρ
+

⎛
⎝⎜

⎞
⎠⎟

− +
⎛
⎝⎜

⎞
⎠⎟

= − 	

Since h
p

g
z

p

g
z= +

⎛
⎝⎜

⎞
⎠⎟

− +
⎛
⎝⎜

⎞
⎠⎟

1
1

2
2ρ ρ

	

Thus                  h
V

g

V

g
= −2

2
1
2

2 2

V V gh2
2

1
2 2− =

V gh V2 1
22= +  (ii)

The coefficient of contraction (Cc) for the orifice is given by,

C
a

ac = 2

0

a a Cc2 0=

Applying continuity equation between sections 1–1 and 2–2, we get:

a V a V1 1 2 2=

V
a V

a

C a V

a
c

1
2 2

1

0 2

1
= =

Substituting the value of V1 in expression (ii), we get:

V gh
C a V

a

c
2

2
0

2
2

2

1
2

2= +

1 2

Inlet

y

1 2

Exit

Di�erential manometer

Pipe

Orificemeter Vena-contracta

 Figure 7.11 Orificemeter
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V gh
C a V

a

c
2

2
2

0
2

2
2

1
2

2= +

V
C a

a
ghc

2
2

2
0

2

1
2

1 2−
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=

Thus                        V
gh

a a Cc

2

0 1
2 2

2

1
=

− ( )/
	

Now Q a V a C
gh

a a C
c

c

= =
−

2 2 0

0 1
2 2

2

1[ ( )/
 (iii)

Let                C C
a a

a a C
d c

c

=
−

−

1

1

0 1
2

0 1
2 2

( )

( )

/

/
 

                    C C
a a C

a a
c d

c=
−

−

1

1

0 1
2 2

0 1
2

( )

( )

/

/
	

Substituting the value of Cc in expression (iii), we get:

Q a C
a a C

a a

gh

a a C

a C gh
d

c

c

d=
−

−
×

−
=

−
0

0 1
2 2

0 1
2

0 1
2 2

01

1

2

1

2

1

( )

( / ) [ ( ) (

/

/ aa a0 1
2/ )

∴ =
−

Q
C a a gh

a a

d 0 1

1
2

0
2

2
 (7.21)

In Equation (7.21), Cd is the coefficient of discharge for orificemeter whose value is much smaller than that for a venturimeter. 
Its approximate value is 0.67 which depends upon the type of the orifice edge, size of the opening, surface of the plate and 
the nature of the approaching flow. 

The advantage of the orificemeter is that it can be easily manufactured, installed and replaced. It requires very less 
space but it has very large head loss when compared to other flow meters. Its coefficient of discharge is very low and it is 
susceptible to inaccuracies resulting from corrosion, erosion and scaling.

 Example 7.22  An orificemeter of diameter 0.1 m in a 0.2 m diameter pipe carrying oil (specific gravity = 0.78) has a 
coefficient of discharge equal to 0.67. If the pressure difference on the two sides of the orifice plate measured by a mercury 
oil differential manometer is 0.6 mHg, then determine the discharge through the pipe. Take specific gravity of mercury 
as 13.6.

Solution
Let d0 0 1= . m, d1 0 2= . m, Soil = 0 78. , Cd = 0 67. , y = 0 6. mHg 	and Sm = 13 6. .

 a d0 0
2 2

4 4
0 1 0 007854= = × =

π π
. . m2  

a d1 1
2 2

4 4
0 2 0 0314= = × =

π π
. . m2
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h y
S

S
m= -

æ

è
ç

ö

ø
÷ = ´ -æ

è
ç

ö
ø
÷ =

oil
m1 0 6

13 6

0 78
1 9 86.

.

.
.  

Since             Q
C a a gh

a a

d=
−

0 1

1
2

0
2

2
 

 ∴ = × × × × ×

−
=Q

0 67 0 007854 0 0314 2 9 81 9 86

0 0314 0 0078542 2

. . . . .

. .
0.07566 m /s3   

 Example 7.23  An orificemeter having an orifice diameter 0.2 m is fitted in a pipe of diameter 0.4 m carrying water. 
The pressure gauge fitted with upstream and downstream of orificemeter indicates readings of 196.2 kPa and 98.1 kPa, 
respectively. If the coefficient of discharge of the meter is 0.65, then determine the discharge through the pipe. Also determine 
the velocity of water in the pipe. 

Solution
Let d0 0 2= . m, d1 0 4= . m, p1 196 2= . kPa , p2 98 1= . kPa and Cd = 0 65. . 

a d0 0
2 2

4 4
0 2 0 0314= = × =

π π
. . m2  

a d1 1
2 2 2

4 4
0 4 0 1257= = × =

π π
. . m  

h
p

g

p

gw w
= − =

×
×

−
×
×

=1 2
3 3196 2 10

1000 9 81

98 1 10

1000 9 81
10

ρ ρ
.

.

.

.
m 	

Since             Q
C a a gh

a a

d=
−

0 1

1
2

0
2

2
 

 ∴ = × × × × ×

−
=Q

0 65 0 0314 0 1257 2 9 81 10

0 1257 0 03142 2

. . . .

. .
0.2952 m /s3   

The velocity in the pipe is given by,

V
Q

a1
1

0 2952

0 1257
= = =.

.
2.35 m/s   

 Example 7.24  The water flows at the rate of 15 litres per second through a 0.15 m diameter orifice fitted in a 0.3 m 
diameter pipe. If the coefficient of discharge is 0.65, then determine the difference in pressure head between the upstream 
section and the vena contracta section.

Solution

Let /s m /s3Q l= =15 0 015. , d0 0 15= . m , d1 0 3= . m 	and Cd = 0 65. . 

   a d0 0
2 2

4 4
0 15 0 01767= = × =

π π
. . m2  

	 a d1 1
2 2

4 4
0 3 0 0707= = × =

π π
. . m2  
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Since                  Q
C a a gh

a a

d=
−

0 1

1
2

0
2

2
 

Thus 0 015
0 65 0 01767 0 0707 2 9 81

0 0707 0 017672 2
.

. . . .

. .
=

× × × × ×

−

h
	

0 015 0 052542. .= h 	

∴ = ⎛
⎝⎜

⎞
⎠⎟

=h
0 015

0 052542

2
.

.
0.0815 m   

7.8.3 Pitot Tube
A pitot tube is a simple device used for measuring the velocity of flow at any point in a channel or pipe. It is named in the 
honour of its inventor Henri de Pitot (1695–1771), a French engineer. In its simplest form, the pitot tube consists of a glass 

tube bent at right angle and open at both ends. The lower limb known as 
the body is inserted in the direction of flow, whereas the other end (vertical 
end) known as stem remains open to atmosphere as shown in Figure 7.12. 
The liquid enters the tube and rises up in the vertical end to a height h.

A pitot tube works on the principle that if the velocity of flow at a 
point is reduced to zero, then the pressure at that point increases due 
to the conversion of kinetic energy into pressure energy. Thus, by 
 measuring the increase in pressure energy at this point, the velocity can 
be measured.

The pressure in the flow far away from the tube is called static pressure 
which can be measured by fitting a piezometer tube in the static orifice (or a pressure tap). The fluid velocity at the tip of 
the tube becomes zero and that point is called stagnation point, where the velocity head is converted into pressure head. 
Therefore, the rise of liquid in the tube represents the sum of the static head and the velocity head. The pressure at the 
stagnation point is known as stagnation pressure.

Consider two points 1 and 2 at the same level in such a way that point 1 is far away from the tube and point 2 is just at 
the inlet of the pitot tube (i.e., at the stagnation point). Applying Bernoulli’s equation at points 1 and 2, we get:

 
p

g

V

g
z

p

g

V

g
z1 1

2

1
2 2

2

22 2ρ ρ
+ + = + + 	

 z z1 2=  and V2 0=   

  
p

g

V

g

p

g
1 1

2
2

2ρ ρ
+ =  (i) 

	
p

g
h1
1ρ

=  and 
p

g
h h2

1ρ
= +( ) 	

 From expression (i), we get: 

 h
V

g
h h

V

g
h1

1
2

1
1
2

2 2
+ = + ⇒ =( ) 	

∴ =V gh1 2  (7.22)

Equation (7.22) gives the value of theoretical velocity and the actual velocity is given below.

 ∴ =V C ghv1 2  (7.23)

1 2
Flow

direction

h1

h
Pitot tube

Figure 7.12 Simple pitot tube
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 Fluid Dynamics 7.27

Here, Cv is the coefficient of the pitot tube whose value will be less than unity and its probable value is about 0.98. However, 
the actual value can be known by calibration. It can be observed that the liquid level in the vertical limb of the pitot tube 
rises above the free surface by an amount equal to the velocity head.

The velocity of flow can be measured by inserting a pitot tube as shown in Figure 7.13(a). The dynamic pressure head h 
can be measured by connecting a differential mercury manometer between the pitot tube and the static orifice for measuring 
the static pressure as shown in Figure 7.13(a). The following relation is used to determine the velocity head. 

 h y
S

S
m= −⎛

⎝⎜
⎞
⎠⎟

1  (7.24)

Here, y is the difference of mercury level in the U-tube, Sm is the specific gravity of the mercury and S is the specific gravity 
of the liquid in the pipe.

A pitot-static tube is shown in Figure 7.13(b) which combines the measurement of stagnation and static pressures. 
The static tube surrounds the total head tube. Two or more holes are drilled in the surface of static head tube (outer tube) 
in the horizontal portion. The static head tube and the total head tube are connected to a differential manometer to measure 
the dynamic head h which can be determined by Equation (7.24). The pitot-static tube gives very high accuracies when it 
is carefully pointed in the direction of flow.

 Example 7.25  A pitot tube connected to the limbs of a U-tube mercury manometer is placed in front of the submarine 
moving horizontally in the sea whose axis lies below the water surface. If the difference in mercury level is observed to be 
165 mm and specific gravity of sea water is 1.023, then find the speed of submarine. Take specific gravity of mercury as 
13.6 and coefficient of the tube as unity.

Solution
Let y = =165 0 165mm m. , Sseawater = 1 023. , Sm = 13 6.  and Cv = 1. Let V1 be the speed of submarine.

h y
S

S
m= -

æ

è
ç

ö

ø
÷ = ´ -æ

è
ç

ö
ø
÷ =

seawater
m1 0 165

13 6

1 023
1 2 03.

.

.
.

	V C ghv1 2 1 2 9 81 2 03= = × × × =. . 6.31 m/s  

 Example 7.26  One of the orifices of a pitot-static probe placed in the centre of a 0.2 m pipeline points upstream and 
the other perpendicular to it. When the water flow rate through the pipe is 20 litres per second, the pressure difference 
between the orifices is 3.5 cm of water. If the mean velocity in the pipe is 0.82 times the central velocity, then determine 
the coefficient of the probe.

Solution
Let md = 0 2. , Q l= =20 0 02/s m /s3. , h = =3 5 0 035. .cm m  and V V= ×0 82 1. . 

1 2

Piezometer
tube

Pitot tubey

Z Z

1 2

y

ZZ

Static head
tube

Total head
tube

(a) (b)

Figure 7.13 (a) Pitot tube (b) Pitot-static tube
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 a d= = × =
π π
4 4

0 2 0 03142 2. . m2  

V
Q

a
= = =

0 02

0 0314
0 64

.

.
. m/s  

V
V

1 0 82

0 64

0 82
0 78= = =

.

.

.
. m/s  

But                   V C ghv1 2=  

Thus                0 78 2 9 81 0 035. . .= × × ×Cv  

∴ =
× ×

=Cv
0 78

2 9 81 0 035

.

. .
0.94   

 Example 7.27  A pitot tube placed at the centre of the pipe of 0.35 m diameter pipe indicates stagnation pressure and 
static vacuum pressure as 10 kPa and 0.11 mHg, respectively. If the coefficient of velocity is 0.975 and the mean velocity 
of flow is 0.82 times the velocity at the centre of pipe, then find the discharge through the pipe. Take specific gravity of 
mercury as 13.6.

Solution
Let d = 0 35. m, po = 10 kPa , hs = −0 11. mHg, Cv = 0 975. , V V= ×0 82 1. 	and Sm = 13 6. . Let Q be the discharge through 
the pipe.

a d= = ´ =
p p
4 4

0 35 0 09622 2. . m2  

Since                h
p

g
p

p

g
h So

w
s

o

w
s m= − = −

ρ ρ
 

Thus h =
×
×

− − × =
10 10

1000 9 81
0 11 13 6 2 5154

3

.
( . . ) . m of water 	

 V C ghv1 2 0 975 2 9 81 2 5154 6 85= = ´ ´ ´ =. . . . m/s 	

V V= = ´ =0 82 0 82 6 85 5 6171. . . . m/s  

Q aV= = × =0 0962 5 617. . 0.54035 m /s3   

7.9 ❐ KINETIC ENERGY AND MOMENTUM CORRECTION FACTORS
In deriving the Bernoulli’s equation, the velocity distribution across a single stream tube is assumed uniform. However, in 
the case of flow of real fluids due to viscosity and boundary resistance, the velocity distribution across any cross section 
area of the flow passage is not uniform. In order to obtain the exact amount of kinetic energy or momentum at a given 
section, kinetic energy correction factor ( )αcf  and momentum correction factor ( )βcf  are to be considered.

7.9.1 Kinetic Energy Correction Factor
It is defined as the ratio of the kinetic energy (K.E.) of flow per second based on actual velocity across a section to the 
kinetic energy of flow per second based on average velocity across the same section.
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 Fluid Dynamics 7.29

Consider the velocity distribution for the flow through a passage as shown 
in Figure 7.14.

Let dA be the area of cross section of the fluid element, u be the actual 
velocity, ρ  be the mass density of the fluid, V be the average velocity and A 
be the whole cross section.

The kinetic energy correction factor is given by,

 α
ρ

ρ
cf

dAu u

AV V AV
u dA= =∫ ∫

( )( )

( )( )

1 2

1 2

1
2

2 3
3

/

/
 (7.25)

The actual value of αcf  depends on the velocity distribution at the flow section. Its numerical value will always be greater 

than 1. The practical value of αcf  for laminar flow in a pipe is 2 and for turbulent flow it varies from 1.03 to 1.06. However, 

in many fluid mechanics problems, its value is taken as 1 since the velocity is a small percentage of the total head.

7.9.2 Momentum Correction Factor
It is defined as the ratio of momentum of the flow per second based on actual velocity to the momentum of flow per second 
based on average velocity across a section. The mathematical expression for momentum correction factor is given below. 

 b
r

rcf

dAu u

AV V AV
u dA= =ò ò

( )

( )

1
2

2
 (7.26)

The actual value of βcf  also depends on the velocity distribution at the section. The value of βcf  will be equal to 1 if 

the velocity is uniform over the entire cross section. The practical value of βcf  for laminar flow in a pipe is 1.33 and for 

turbulent flow it varies from 1.02 to 1.05. However, in many fluid mechanics problems, its value is taken as 1, since most 
of the flow situations are turbulent in nature.

 Example 7.28  The velocity profile in a circular pipe is given by u u r Rm= −[ ( / ) ],1 2  where u is the velocity at any 
radius r, um is the velocity at the pipe axis and R is the radius of the pipe. Determine the average velocity, the energy 
correction factor and the momentum correction factor. 

Solution
Let u u r Rm= −[ ( / ) ]1 2 . Refer Figure 7.15. Let V be the average velocity.

Consider an elementary area dA in the form of a ring of thickness dr at a distance r from the pipe axis and thus, 
dA rdr= 2π . 

Flow rate through the ring is given by,

dQ dA u rdru= × = 2π 	
Thus, the total flow can be obtained by the integration of above expression as,

dQ rudr
R

∫ ∫= 2
0

π 	

Velocity profile

dA

R

r

dr

u

um

R

r

dr

Figure 7.15  

Velocity profile

udA

Figure 7.14  
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Substitute the value of u u r Rm= −[ ( / ) ]1 2 , we get:

dQ u
r

R
rdr u r

r

R
drm m

RR

∫ ∫∫= − ⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= −
⎛

⎝
⎜

⎞

⎠
⎟2 1 2

2 3

2
00

π π  

Q u
r r

R
u

R R
u

R
m

R

m m= −
⎛

⎝
⎜

⎞

⎠
⎟ = −

⎛

⎝
⎜

⎞

⎠
⎟ = ×2

2 4
2

2 4
2

4

2 4

2
0

2 2 2

π π π  (i)

 (i) Q AV R V= = ×π 2  (ii)

  Thus       π πR V u
R

m
2

2

2
4

= ×   [From (i) and (ii)]

∴ =V
um

2
  

 (ii) α πcf m

R

AV
u dA

AV
u

r

R
rdr= = − ⎛

⎝⎜
⎞
⎠⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥∫ ∫

1 1
1 2

3
3

3

2
3

0

	

	 α
π π

cf
m

R
mu

AV
r

r

R

r

R

r

R
dr

u

AV

r r
= − + −

⎛

⎝
⎜

⎞

⎠
⎟ = −∫

2 3 3 2

2

3

4

3

3

3

2

5

4

7

6
0

3

3

2 4

RR

r

R

r

R

R

2

6

4

8

6
0

3

6 8
+ −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

	

  Thus       α
π π

cf
m mu

AV

R R R R u

AV

R
= − + −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
2

2

3

4 2 8

2

8

3

3

2 2 2 2 3

3

2

  Substituting A R= π 2  and V um= ( )/2 , we get:

α
π

π
cf

m

m

u

R u

R= =
2

2 8

3

2 3

2

( )( / )
2   

 (iii) β πcf m

R

AV
u dA

AV
u

r

R
rdr= = − ⎛

⎝⎜
⎞
⎠⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥∫ ∫

1 1
1 2

2
2

2

2
2

0

 

β
π π

cf
m

R
mu

AV
r

r

R

r

R
dr

u

AV

r r

R

r
= − +

⎛

⎝
⎜

⎞

⎠
⎟ = − +∫

2 2 2

2

2

4 6

2

2

3

2

5

4
0

2

2

2 4

2

6

RR

R

4
0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

	

  Thus        β
π π

cf
m mu

AV

R R R u

AV

R
= − +

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
2

2 2 6

2

6

2

2

2 2 2 2

2

2

	

  Substituting A R= π 2  and V um= ( )/2 , we get:

β
π

π
cf

m

m

u

R u

R= = =
2

2 6

4

3

2

2 2

2

( )( )/
1.33   
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 Fluid Dynamics 7.31

 Example 7.29  The velocity distribution for turbulent flow in a circular pipe is given approximately by Prandtl’s 

one-seventh power law as u u y rm o= ( / ) ,/1 7  where u is the local velocity of flow at a distance y from the pipe wall, 
um is the maximum velocity at the centreline of the pipe and ro is the radius of the pipe. Determine the average velocity, 
the kinetic energy correction factor and the momentum correction factor. 

Velocity profile

dA

dy

u

um

y

ro

(ro − y)
ro

(ro − y)

y

Figure 7.16  

Solution
Let u u y rm o= ( / ) /1 7 . Refer Figure 7.16. Let V be the average velocity.

Consider an elementary area dA in the form of a ring of thickness dy at a radius ( )r yo −  from the pipe axis and thus, 
dA r y dyo= −2π( ) . 

Flow rate through the ring is given by,

 dQ dA u r y dyuo= × = −2π( ) 	

Thus, total flow can be obtained by the integration of above expression after substituting the value of u u y rm o= ( ) // 1 7 
as follows.

dQ r y dyu u
y

r
r y dyo

r

m
o

o

ro o

∫ ∫ ∫= − =
⎛
⎝⎜

⎞
⎠⎟

−2 2
0

1 7

0

π π( ) ( )
/

 

Q
u

r
r y y dy

u

r
r y ym

o
o

r
m

o
o

o

= − = × −∫
2 2 7

8

7

151 7
1 7 8 7

0
1 7

8 7 15 7π π
/

/ /
/

/ /( )
⎛⎛
⎝⎜

⎞
⎠⎟ 0

ro

	

Q
u

r
r r

u

r
rm

o
o o

m

o
o= −⎛

⎝⎜
⎞
⎠⎟

= −⎛2 7

8

7

15

2 7

8

7

151 7
15 7 15 7

1 7
15 7π π

/
/ /

/
/

⎝⎝⎜
⎞
⎠⎟

= ⎛
⎝⎜

⎞
⎠⎟

2
49

120
2πu rm o  (i)

 (i) Q AV r Vo= = ×π 2  (ii)

π πr V u ro m o
2 22

49

120
= ⎛

⎝⎜
⎞
⎠⎟

  [From (i) and (ii)] 

∴ = ⎛
⎝⎜

⎞
⎠⎟

=V
u

r
rm

o
o

2 49

1202
2π

π
49

60
um   

 (ii) α πcf m
o

o

r

AV
u dA

AV
u

y

r
r y dy

o

= =
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−∫ ∫
1 1

2
3

3
3

1 7 3

0

/

( ) 	

	 α
π π

cf
m

o
o

r
m

o
o

u

AV r
r y y dy

u

AV r
r y

o

= −( ) = ×∫
2 2 7

10

3

3 3 7
3 7 10 7

0

3

3 3 7/
/ /

/
110 7 17 7

0

7

17
/ /−⎡

⎣⎢
⎤
⎦⎥

y
ro
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  Thus         α
π π

cf
m

o
o o

m

o

u

AV r
r r

u

AV r
= −⎡

⎣⎢
⎤
⎦⎥

=
2 7

10

7

17

2 493

3 3 7
17 7 17 7

3

3 3 7/
/ /

/ 1170
17 7ro

/⎛
⎝⎜

⎞
⎠⎟

	

  Substituting A ro= π 2  and V um= ( / )49 60 , we get:

α
π

π
cf

m

o m o
o

u

r u r
r= ⎛

⎝⎜
⎞
⎠⎟

=
2

49 60

49

170

3

2 3 3 7
17 7

( )[( / ) ] /
/ 1.06   

 (iii) β πcf m
o

o

r

AV
u dA

AV
u

y

r
r y dy

o

= =
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−∫ ∫
1 1

2
2

2
2

1 7 2

0

/

( ) 	

 β
π π

cf
m

o
o

r
m

o
o

u

AV r
y r y dy

u

AV r
r y

o

= −( ) = × −∫
2 2 7

9

72

2 2 7
2 7

0

2

2 2 7
9 7

/
/

/
/

116
16 7

0

y
ro

/⎡
⎣⎢

⎤
⎦⎥

	

  Thus         β
π π

cf
m

o
o o

m

o

u

AV r
r r

u

AV r
= −⎡

⎣⎢
⎤
⎦⎥

=
2 7

9

7

16

2 49

1

2

2 2 7
16 7 16 7

2

2 2 7/
/ /

/ 444
16 7ro

/⎡
⎣⎢

⎤
⎦⎥

	

  Substituting A ro= π 2  and V um= ( / )49 60 , we get:

β
π

π
cf

m

o m o
o

u

r u r
r= ⎡

⎣⎢
⎤
⎦⎥

=
2

49 60

49

144

2

2 2 2 7
16 7

( )[( / ) ] /
/ 1.02   

7.10 ❐ FREE LIQUID JET
A jet of liquid coming out from a nozzle in the atmosphere is called a free liquid jet. Under the action of gravity, the 
liquid jet travels a parabolic path known as trajectory. Consider a jet coming out from a nozzle at point A with a velocity 

V which makes an angle α  with the horizontal as shown in 
Figure 7.17. 

The horizontal and vertical components of the velocity are 
V cosα  and V sin ,α  respectively. Let t be the time taken by a 
liquid particle to reach from point A to point P. The horizontal 
distance (x) and vertical distance (y) travelled by the liquid 
particle is respectively expressed below. 

	 	 	 	 	 	 x V t= ×cosα  (7.27)

      y V t gt= × −sinα 1

2
2  (7.28)

It can be observed from the above expressions that the horizontal component of velocity remains constant but the vertical 
component is affected by the gravity.

From Equation (7.27), we have t x V= /( cos )α . 

Substituting the value of t  in Equation (7.28), we get:

 y V
x

V
g

x

V
x

gx

V
= × − ⎛

⎝⎜
⎞
⎠⎟

= −sin
cos cos

tan secα
α α

α α1

2 2

2 2

2
2  (7.29)

Trajectory

h

P
V

x

y

Nozzle

R

BA
α

αV cos

αV sin

Figure 7.17  Free liquid jet
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 Fluid Dynamics 7.33

Equation (7.29) is the equation of a parabola and thus, the path travelled by the free liquid jet is parabolic. 

 1. Maximum height attained by the jet: To find the maximum height attained by the jet, we use the following relation.

V V gh2
2

1
2 2− = −  (7.30)

  As the particle moves upwards and gravity acts downwards, negative sign is used in the above equation.

  Here V V1 = =Initial vertical component sinα  

  and V2 0=  at the highest point

  Thus 0 22− = −( sin )V ghα

∴ =h
V

g

2 2

2

sin α
 (7.31)

 2. Time of flight: It is the time taken by the fluid particle in reaching from point A to point B as shown in Figure 7.17. 

  Using y V t gt= × −sinα 1

2
2 

  When the particle reaches at B, y = 0 and t T= .

  Thus 0
1

2
2= × −V T gTsinα 	

T
V

g
=

2 sinα
 (7.32)

  Time to reach the highest point is given by,

′ = =T
T V

g2

sinα
 (7.33)

 3. Horizontal range of the jet: It is the total horizontal distance travelled by the fluid particle which is denoted by R 
(Figure 7.17). It is given by the product of horizontal velocity component and the time taken by the particle in reaching 
from A to B.

  Thus           R V T= ×cosα 	

	 R V
V

g

V

g
= × =cos

sin sinα α α2 22

 (7.34)

  The range will be maximum when sin 2 1α = , i.e., sin sin2 90a = °. 

  Thus              2 90a = °  or a = 45° 	
  The maximum range is given by,

R
V

g

V

gmax
sin( )

=
×

=
2 22 45°

 (7.35)

 Example 7.30  A liquid jet of 30 mm diameter comes out of a nozzle into atmosphere with a velocity of 4.5 m/s at an angle 
60° above the horizontal. Determine (i) the equation of trajectory, (ii) maximum height attained by the jet, (iii) horizontal 
range of the jet and (iv) maximum range. Neglect air friction and assume the jet continuous throughout the trajectory. 
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Solution
Let d = =30 0 03mm m. , V = 4 5. m/s and a = 60°. 

 (i)  y x
gx

V
= −tan secα α

2

2
2

2
  [Equation of trajectory]

  y x
x= −

×
=tan

.

.
sec60

9 81

2 4 5
60

2

2
2° ° 1.732 0.969 2x x–  

 (ii) Maximum height attained by the jet is given by,

 h
V

g
= =

×
=

2 2 2 2

2

4 5 60

2 9 81

sin . sin

.

α °
0.7741 m   

 (iii) Horizontal range of the jet is given by,

R
V

g
= = =

2 22 4 5 2 60

9 81

sin . sin ( )

.

α °
1.79 m   

 (iv) Maximum range of the jet is given by,

R
V

gmax
.

.
= = =

2 24 5

9 81
2.064 m   

 Example 7.31  A jet of water produced from a nozzle with a velocity of 16 m/s is projected to the top of a 7 m high wall. 
If the nozzle is at a distance of 13 m from the wall, then determine its angle of projection with the horizontal. 

Solution
Let m/sV = 16 , y = 7 m and x = 13 m. 

Since y x
gx

V
= −tan secα α

2

2
2

2
  [Equation of trajectory] 

7 13
9 81 13

2 16

2

2
2= −

×
×

tan
.

secα α 	

7 13 3 2381 2= −tan . secα α 	

sec . tan .2 4 015 2 162 0α α− + = 	

( tan ) . tan .1 4 015 2 162 02+ − + =α α 	

tan . tan .2 4 015 3 162 0α α− + = 	

Thus tan
. ( . ) .

. .α =
± − − × ×

×
=

4 015 4 015 4 1 3 162

2 1
2 9392 1 0758

2

or 	

∴ = = =− −α tan ( . ) tan ( . )1 12 9392 1 075871.21 4°° °°or 7.09   

 Example 7.32  A jet of water coming out from a 25 mm diameter nozzle strikes the ground at a horizontal distance of 
4.5 m from the nozzle. The nozzle is positioned at a vertical height of 0.6 m from the ground level. If the nozzle is inclined 
at an angle of 30° with the ground, then determine the discharge from the nozzle. 
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Solution
Refer Figure 7.18. Let d = =25 0 025mm m. , x = 4 5. m, y = −0 6. m 
and a = 30°. Let Q be the discharge from the nozzle.

A d= = × =
π π
4 4

0 025 0 0004912 2. . m2

Since y x
gx

V
= −tan secα α

2

2
2

2
  [Equation of trajectory]

Thus - = -
´

´
0 6 4 5 30

9 81 4 5

2
30

2

2
2. . tan

. .
sec° °

V
	

− = −0 6 2 6
132 435

2
. .

.

V
	

132 435
3 2

2

.
.

V
= 	

∴ = =V
132 435

3 2
6 4332

.

.
. m/s 	

Q AV= = × =0 000491 6 4332. . 0.00316 m /s3   

 Example 7.33  Six nozzles each of diameter 30 mm are placed at a height of 1 m from the ground level. All the nozzles 
are inclined at an angle of 45° to the horizontal and the water jets strike the ground at a horizontal distance of 5.5 m. If the 
velocity coefficient of nozzles is 0.975, then determine the total discharge from the nozzles and pressure head at them. 

Solution
Refer Figure 7.18. Let n = 6, d = =30 0 03mm m. , y = −1 m, a = 45°, x = 5 5. m	and Cv = 0 975. . Let h be the pressure 
head and Q be the total discharge from the nozzles.

A d= = × =
π π
4 4

0 03 0 000712 2. . m2  

Since y x
gx

V
= −tan secα α

2

2
2

2
  [Equation of trajectory] 

Thus            - = -
´

1 5 5 45
9 81 5 5

2
45

2

2
2. tan

. .
sec° °

V
	

− = −1 5 5
296 7525

2
.

.

V
	

296 7525
6 5

2

.
.

V
= 	

∴ = =V
296 7525

6 5
6 76

.

.
. m/s 	

Trajectory

x

y

Nozzle

B

A

V

α

Figure 7.18 
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	 Q n A V= × × = × × =6 0 00071 6 76. . 0.0288 m /s3   

Since                 V C ghv= 2 	

Thus              6 76 0 975 2 9 81. . .= × × × h 	

	
∴ = ⎛

⎝⎜
⎞
⎠⎟

×
×

=h
6 76

0 975

1

2 9 81

2.

. .
2.45 m 	

 Example 7.34  A fireman intends to reach a window 25 m above the ground with a water stream from a nozzle at 1 
m height and 3 cm in diameter. If the jet discharges water at a rate of 0.019 cubic meters per second, then determine the 
greatest horizontal distance from the building at which fireman can stand and still reach the water stream upon the window. 

Solution

Refer Figure 7.19. Let y1 25= m , y2 1= m , y y y= − = − =1 2 25 1 24 m

y y y= − = − =1 2 25 1 24 m , d = =3 0 03cm m. 	and Q = 0 019. m /s3 . Let x be the 

greatest horizontal distance from the building.

V
Q

A

Q

d
= = =

×
=

( / )

.

( / ) .
.

π π4

0 019

4 0 03
26 88

2 2
m/s

Since     y x
gx

V
= −tan secα α

2

2
2

2
  [Equation of trajectory]

Thus 24
9 81

2 26 88

2

2
2= −

×
x

x
tan

.

.
secα α 	

	 x
x

tan .
cos

α
α

− − =0 0068 24 0
2

2
 (i)

Differentiating expression (i) with respect to α , we get:

	 x
dx

d
x x

dx

d
sec tan .

( )

cos
( sin )

cos

2 2
3 2

0 0068
2 1

2α α
α α

α
α α

+ − ×
−

− +
⎡

⎣
⎢

⎤

⎦⎦
⎥ = 0  (ii)

For maximum value of x, ( )dx d/ α = 0  and thus, expression (ii) becomes,

  x xsec .
( )

cos
( sin )2 2

3
0 0068

2
0α

α
α− ×

−
−

⎡

⎣
⎢

⎤

⎦
⎥ = 	

x x
x

cos cos
( . tan )

2 2
0 0136 0

α α
α− = 	

1 0 0136 0− =. tanx α 	

x =
73 53.

tanα
 (iii)

Window

x

yNozzle

BA

V

Water jet

1 m

25 m
α

Figure 7.19 
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 Fluid Dynamics 7.37

Substituting expression (iii) in expression (i), we get:

73 53
0 0068

73 53 1
24 0

2

2

.

tan
tan .

.

tan cosα
α

α α
− × ⎛

⎝⎜
⎞
⎠⎟

− =

73 53
36 7653

24 0
2

.
.

sin
− − =

α

36 7653
49 53

2

.

sin
.

α
=

sin
.

.
.α = =

36 7653

49 53
0 86156

\ = =-a sin ( . ) .1 0 86156 59 49°

Substituting the value of α  in expression (iii), we get:

  x = =73 53

59 49

.

tan . °
43.33 m   

 Example 7.35  A fireman intends to reach a window 7.5 m above the ground with a water stream from a nozzle at 1.5 m 
height and 5 m away from the building. If the water jet discharging from the nozzle is 5 cm in diameter and it strikes the 
window at a velocity of 13 m/s, then determine the angle of inclination of the nozzle and the amount of water falling on 
the window. 

Solution
Refer Figure 7.19. Let y1 7 5= . m, y y y= − = − =1 2 7 5 1 5 6. . m , x = 5 m, d = =5 0 05cm m.  and V = 13 m/s. Let α  be 

the angle of inclination and Q be the amount of water falling on the window.

Since              y x
gx

V
= −tan secα α

2

2
2

2
  [Equation of trajectory] 

Thus              6 5
9 81 5

2 13
1

2

2
2= −

×
×

+tan
.

( tan )α α 	

6 5 0 7256 0 7256 2= − −tan . . tanα α  

0 7256 5 6 7256 02. tan tan .α α− + =  

tan . tan .2 6 891 9 269 0α α− + =  

Thus tan
. ( . ) .

. .α =
± − − × ×

=
6 891 6 891 4 1 9 269

2
5 0587 1 8323

2

or 	

∴ = = =− −α tan ( . ) . tan ( . )1 15 0587 78 82 1 8323° or 61.38°°   

Q AV d V= = × = × × =π π
4 4

0 05 132 2. 0.0255 m /s3   
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7.11 ❐ IMPULSE-MOMENTUM EQUATION
The impulse-momentum equation is based on Newton’s second law of motion according to which the rate of change of 
momentum is equal to the applied force and it takes place in the direction of force. Momentum is the product of mass and 
velocity of the body and it represents the energy of motion stored in a moving body. 

Let m be the mass of fluid, V be the velocity of fluid, F be the force acting on the fluid and a dV dt= ( )/  be the 
acceleration in the direction of force.

According to Newton’s second law of motion, we get:

 F m a m
dV

dt
= × = × 	

Since m is a constant, it can be taken inside the differential.

	 ∴ =F
d mV

dt

( )
 (7.36)

Equation (7.36) is known as impulse-momentum principle which can be written as follows.

	 F dt d mV⋅ = ( )  (7.37)

Equation (7.37) is known as impulse-momentum equation in which F.dt is the impulse and d mV( ) 	is the resulting change 
in momentum in the direction of force. It is a very useful principle for solving several fluid flow problems, such as (i) force 
on a pipe bend, (ii) force exerted by a fluid jet striking fixed or moving vanes (or blades), (iii) force on propeller vanes and 
(iv) jet propulsion.

7.11.1 Impulse-Momentum Equation for Steady Flow and Force on a Pipe Bend
Consider a steady flow through a diverging stream tube in a pipe lying in the x y−  plane as shown in Figure 7.20(a). 
Assume the flow as uniform and normal to the inlet and outlet areas. 

Let ρ1 , A1 and V1 be the density, area and velocity respectively at the entrance and ρ2 , A2 and V2 be the corresponding 
values at the exit. Let α1  and α2  be the inclinations with horizontal to the centrelines of the pipe and p1 and p2 be the static 
pressures at the entrance and exit, respectively. 

Let the mass of fluid in the region ABDC  moves to A B D C¢ ¢ ¢ ¢  in a short time dt. Let AA ds V dt¢ = =1 1  and 
CC ds V dt¢ = =2 2 . The area A B DC¢ ¢  is common to both the regions and thus, it will not experience any momentum 
change. Therefore, the fluid masses in the section ABB A¢ ¢  and CDD C¢ ¢  are to be considered. According to the principle 
of mass conservation, we get the following relation. 

 Fluid mass in Fluid mass inABB A CDD C¢ ¢ ¢ ¢=  

x

y

V1

V2

A

B

C

D

A′

B′

C ′

D′

V2

1

2

Fx

Fy

p2 A2

p1A1

(a) (b)

p 2
A 2

ds1

ds2

p1A1

p2A21

2

1αp1A1 sin

1αp1A1 cos

2αp2 A2 sin

2αp2A2 cos

αV2 sin

αV2 cos

2α1α

2α
1α

α

α

α
αp2 A2 cos

αp2A2 sin

Figure 7.20  Momentum equation for steady flow and force on a pipe bend 
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	 ρ ρ1 1 1 2 2 2A ds A ds= 	

  ρ ρ1 1 1 2 2 2AV dt A V dt=   

	 Momentum of fluid in the region ABB A AV dt V¢ ¢ = ( )r1 1 1 1 	

	 				Momentum of fluid in the region CDD C A V dt V¢ ¢ = ( )r2 2 2 2 	

	 ∴ = −Change in momentum ( ) ( )ρ ρ2 2 2 2 1 1 1 1A V dt V AV dt V 	

 AV A V Q1 1 2 2= =   [Continuity equation] 

     ρ ρ ρ1 2= =   [Steady incompressible flow] 

	 ∴ = −Change in momentum ρQ V V dt( )2 1 	

Applying impulse-momentum principle, we get:

	 F dt Q V V dt⋅ = − ρ ( )2 1 	

  F
wQ

g
V V = −( )2 1   [ ]∵r = w g/  (7.38)

The quantity ( )wQ g Q/ = ρ  is the mass flow per second and is termed as mass flux.

Components of force (F) along x-axis and y-axis are given by,

    F Q V Vx  = −ρ α α( cos cos )2 2 1 1  (7.39a)

	 F Q V Vy  = −ρ α α( sin sin )2 2 1 1  (7.39b)

Equations 7.39(a) and 7.39(b) represent the force components exerted by the pipe bend on the fluid mass. Thus, the fluid 
mass would also exert the same force on the pipe bend but in opposite direction. Therefore, the dynamic force components 
exerted by the fluid on the pipe bend are given below. 

    F Q V Vx  = −ρ α α( cos cos )1 1 2 2  (7.40a)

	 F Q V Vy  = −ρ α α( sin sin )1 1 2 2  (7.40b)

When considering static pressures at the entrance and exit, the above equations become,

       F Q V V p A p Ax  = − + −ρ α α α α( cos cos ) cos cos1 1 2 2 1 1 1 2 2 2  (7.41a)

	 F Q V V p A p Ay  = − + −ρ α α α α( sin sin ) sin sin1 1 2 2 1 1 1 2 2 2  (7.41b)

Components of force (F) along x-axis and y-axis on a pipe bend shown in Figure 7.20(b) are given by,

	 F Q V V p A p Ax  = − + −ρ α α( cos ) cos1 2 1 1 2 2  (7.41c)

F Q V p Ay  = − −ρ α α( sin ) sin2 2 2  (7.41d)

The resultant force exerted by the fluid and its direction with x-axis is given by,

 F F Fx y= +2 2  (7.42)

tanα =
F

F

y

x
 (7.43)
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 Example 7.36  A 0.3 m diameter pipe carries water under a head of 20.6 m with a velocity of 4 m/s. If the axis of the 
pipe turns through 45°, then find the magnitude and direction of the resultant force on the bend. 

Solution
Refer Figure 7.21. Let d d1 2 0 3= = . m, p gw/ ( ) .ρ = 20 6 m, V V1 2 4= = m/s and Ð = 45°. Let the subscripts 1 and 2 

denote the values at sections 1 and 2, respectively.

	 A A d1 2
2 2 2

4 4
0 3 0 0707= = = × =

π π
. . m  

Q AV= = × =1 1 0 0707 4 0 2828. . m /s3  

x

y

V1

1

2

Fx

Fy

p1

p2 A2

1

2

p2

45°
45°

45°
V2V2 sin 45°

V2 cos 45°

p2 A2 cos 45°

p2 A2 sin 45° F

α

Figure 7.21  

Since               
p

gwρ
= 20 6. m of water 	

Thus p p p gw= = = =
× ×

=1 2 3
20 6

20 6 1000 9 81

10
202 086.

. .
.ρ kN/m2  

Force along x-axis is given by,

	F Q V V p A p Ax w = - + -r [ cos ] cos1 2 1 1 2 245 45° ° 	

	 Fx  =
´ ´ -

+ ´ - ´
1000 0 2828 4 4 45

10
202 086 0 0707 202 086 0 07

3

. [ cos ]
. . . .

°
007 45cos ° 	

∴ = →Fx  kN4 516. ( ) 	

Force along y-axis is given by,

			
F Q V p Ay w = - -r ( sin ) sin0 45 452 2 2° ° 	

	 \ =
´ ´ -

- ´ = -Fy  
1000 0 2828 0 4 45

10
202 086 0 0707 45 10 9

3

. ( sin )
. . sin .

°
° kkN( )¯ 	

The magnitude of resultant force is given by,

F F Fx y= + = + − =2 2 2 24 516 10 9. ( . ) 11.7985 kN   

The direction of F with x-axis is given by,

α = −⎛
⎝⎜

⎞
⎠⎟

=−tan
.

.
1 10 9

4 516
–67.49°°   
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 Example 7.37  In a system, 260 litres per second of oil of specific gravity 0.9 is flowing in a pipe having a diameter  
of 0.3 m. If the pipe is bent by 135° and the pressure of oil flowing in the pipe is 400 kPa, then find the magnitude and 
direction of the resultant force on the bend.

Solution

Refer Figure 7.22. Let Q l= =260 0 26/s m /s3. , Soil = 0 9. , d = 0 3. m, ∠ = °135  and p p1 2 400= = kPa. Let the subscripts 

1 and 2 denote the values at sections 1 and 2, respectively.

 A A d1 2
2 2

4 4
0 3 0 0707= = = × =

π π
. . m2  

 V V
Q

A1 2
0 26

0 0707
3 6775= = = =

.

.
. m/s  

 ρ ρ= = × =S woil
3kg/m0 9 1000 900.  

Force along x-axis is given by,

 F Q V V p A p Ax  = - - + +r [ ( cos )] cos1 2 1 1 2 245 45° ° 	

	 Fx  =
´ ´ +

+ ´ + ´
900 0 26 3 6775 3 6775 45

10
400 0 0707 400 0 070

3

. [ . . cos ]
. .

°
77 45cos ° 	

 ∴ = →Fx  kN49 746. ( ) 	

x

y
135°1

p1

p2

1

2

2

V1

V2
p2 A2

45°

p2 A2 sin 45°

p2 A2 cos 45°

V2 sin 45°

V2 cos 45°

45°

V2

Fx

Fy

F

α

Figure 7.22 

Force along y-axis is given by,

	 F Q V p Ay  = - -r ( sin ) sin0 45 452 2 2° ° 	

\ =
´ ´ -( )

- ´ = -Fy
900 0 26 0 3 6775 45

10
400 0 0707 45 20 605

3

. . sin
. sin .

°
° kNN ¯( )

The magnitude of resultant force is given by,

 F F Fx y= + = + − =2 2 2 249 746 20 605. ( . ) 53.8445 kN   

The direction of F with x-axis is given by,

 α =
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ = −⎛

⎝⎜
⎞
⎠⎟

=− −tan tan
.

.
1 1 20 605

49 746

F

F

y

x
−− °°22.5   
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 Example 7.38  A 0.2 m diameter to 0.15 m diameter reducing bend fitted in a horizontal oil pipeline deviates from its 
initial direction to final direction by 60°. The pipe carries oil of specific gravity 0.9 at a rate of 0.3 m3/s and the pressure at 
the inlet of the bend is 300 kN/m2. If 10% of the exit kinetic energy is lost in the bend, then determine the magnitude and 
direction of the force exerted by the bend. 

Solution
Refer Figure 7.23. Let d1 0 2= . m, d2 0 15= . m , Ð = 60°, Soil = 0 9. , Q = 0 3. m /s3 , p1 300= kN/m2 and hL = 0.1 × 

[ ( )]V g2
2 2/ . Let the subscripts 1 and 2 denote the values at sections 1 and 2, respectively.

A d1 1
2 2 2

4 4
0 2 0 031416= = × =

π π
. . m  

	 A d2 2
2 24 4 0 15 0 01767= = × =( ) ( ) . .π π/ / m2  

Fx

Fy

F

α
x

y V2

V1

1

2

p1

p2

p2A2

1

2

V2 sin 60°

V2 cos 60°

p2A2 cos 60°

p2 A2 sin 60°

60°

60°

60°

Figure 7.23  

V
Q

A1
1

0 3

0 031416
9 55= = =

.

.
. m/s  

V
Q

A2
2

0 3

0 01767
16 978= = =

.

.
. m/s  

h
V

gL = =
×
×

=
0 1

2

0 1 16 978

2 9 81
1 46922

2 2. . .

.
. m  

ρ ρ= = × =S woil
3kg/m0 9 1000 900.  

Since 
p

g

V

g
z

p

g

V

g
z hL

1 1
2

1
2 2

2

22 2ρ ρ
+ + = + + +   [Bernoulli’s equation] 

or             
p

g

V

g

p

g

V

g
hL

1 1
2

2 2
2

2 2ρ ρ
+ = + +   [ ]∵ z z1 2= 	

Thus         
300 10

900 9 81

9 55

2 9 81 900 9 81

16 978

2 9 81
1 469

3 2
2

2×
×

+
×

=
×

+
×

+
.

.

. .

.

.
.

p
22 	

38 6274
8829

16 1612. .= +
p

 

∴ =
− ×

=p2 3

38 6274 16 161 8829

10
198 356

( . . )
. kN/m2 	
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Force along x-axis is given by,

F Q V V p A p Ax  = - + -r [ cos ] cos1 2 1 1 2 260 60° ° 	

	 Fx  =
× × −

+ × − ×
900 0 3 9 55 16 978 60

10
300 0 031416 198 356 0

3

. [ . . cos ]
. . .

°
001767 60cos ° 	

∴ = →Fx  kN7 9588. ( ) 	

Force along y-axis is given by,

	
F Q V p Ay  = - -r ( sin ) sin0 60 602 2 2° ° 	

		
\ =

´ ´ -
- ´ = -Fy  

900 0 3 0 16 978 60

10
198 356 0 01767 60 7

3

. [ . sin ]
. . sin .

°
° 0005 kN( )¯ 	

The magnitude of resultant force is given by,

F F Fx y= + = + − =2 2 2 27 9588 7 005. ( . ) 10.602 kN   

The direction of F with x-axis is given by,

α =
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ = −⎛

⎝⎜
⎞
⎠⎟

=− −tan tan
.

.
1 1 7 005

7 9588

F

F

y

x
−− °°41.35   

 Example 7.39  In a 45° bend, a rectangular air duct of 1 m2 cross-sectional area is gradually reduced to 0.5 m2 area.  
Find the magnitude and direction of force required to hold the duct in position if the velocity of air flow (density = 1.16 kg/
m3) at 1 m2 section is 10 m/s and pressure is 30 kPa. 

Solution
Refer Figure 7.24. Let Ð = 45°, A1 1= m2, A2 0 5= . m2, ρ = 1 16. kg/m3, V1 10= m/s and p1 30= kPa. Let the subscripts 

1 and 2 denote the values at sections 1 and 2, respectively.

V
AV

A2
1 1

2

1 10

0 5
20= =

×
=

.
m/s  

Since 
p

g

V

g
z

p

g

V

g
z1 1

2

1
2 2

2

22 2ρ ρ
+ + = + +   [Bernoulli’s equation] 

Fx

Fy

F

α
x

y V2

V1

1

2

p1

p2

p2A2

1

2

V2 sin 45°

V2 cos 45°

p2A2 cos 45°

p2A2 sin 45°

45°

45°

45°

Figure 7.24  

M07 Fluid Mechanics and Hydraulic Machines XXXX 01.indd   43 4/5/2019   11:29:33 AM

Download more at Learnclax.com



7.44 Chapter 7

Thus 
30 10

1 16 9 81

10

2 9 81 1 16 9 81

20

2 9 81

3 2
2

2×
×

+
×

=
×

+
×. . . . . .

p
  [ ]∵ z z1 2= 	

2641 3934
11 3796

20 38742.
.

.= +
p

	

∴ =
− ×

=p2 3

2641 3934 20 3874 11 3796

10
29 826

( . . ) .
. kN/m2 	

Q AV= = × =1 1 1 10 10 m /s3 	

Force along x-axis is given by,

		 F Q V V p A p Ax  = - + -r [ cos ] cos1 2 1 1 2 245 45° ° 	

	 \ =
´ ´ -

+ ´ - ´ =Fx
1 16 10 10 20 45

10
30 1 29 826 0 5 45 19 407

3

. [ cos ]
. . cos .

°
° kkN( )® 	

Force along y-axis is given by,

F Q V p Ay  = - -r ( sin ) sin0 45 452 2 2° ° 	

\ =
´ ´ -

- ´ = - ¯Fy
1 16 10 0 20 45

10
29 826 0 5 45 10 709

3

. ( sin )
. . sin . ( )

°
° kN 	

The magnitude of resultant force is given by,

F F Fx y= + = + − =2 2 2 219 407 10 709. ( . ) 22.1656 kN   

The direction of F with x-axis is given by,

α =
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ = −⎛

⎝⎜
⎞
⎠⎟

=− −tan tan
.

.
1 1 10 709

19 407

F

F

y

x
−− °°28.89   

 Example 7.40  A right angled vertical reducing bend with inlet diameter of 0.3 m and exit diameter of 0.2 m is fitted to 
a pipe which carries 0.4 m3/s of water. The volume of the bend is 0.1 m3 and the pressure at its inlet is 125 kPa. Find the 
magnitude and direction of force on the bend if water enters the bend at 45° to the horizontal level. Neglect friction and 
take both inlet and outlet at the same horizontal level. 

Solution
Refer Figure 7.25. Let d1 0 3= . m, d2 0 2= . m, Q = 0 4. m /s3 , v = 0 1. m3, p1 125= kPa, and Ð = 45°. Let the subscripts 

1 and 2 denote the values at sections 1 and 2, respectively.

	 A d1 1
2 2 2

4 4
0 3 0 0707= = × =

π π
. . m  

	 A d2 2
2 2 2

4 4
0 2 0 0314= = × =

π π
. . m  
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 V
Q

A1
1

0 4

0 0707
5 658= = =

.

.
. m/s  

	 	 V
Q

A2
2

0 4

0 0314
12 739= = =

.

.
. m/s  

Since 
p

g

V

g
z

p

g

V

g
z

w w

1 1
2

1
2 2

2

22 2ρ ρ
+ + = + +   [Bernoulli’s equation] 

	
125 10

1000 9 81

5 658

2 9 81 1000 9 81

12 739

2 9 81

3 2
2

2×
×

+
×

=
×

+
×.

.

. .

.

.

p
  [ ]∵ z z1 2= 	

14 374
9810

8 2712. .= +
p

	

∴ =
− ×

=p2 3
214 374 8 271 9810

10
59 87

( . . )
. kN/m 	

Force along x-axis is given by,

 F Q V V p A p Ax w= - + -r [ cos cos ] cos cos1 2 1 1 2 245 45 45 45° ° ° ° 	

V1 45 5 658 45 4cos . cos° °= = m/s

	V2 45 12 739 45 9 01cos . cos .° °= = m/s

p A1 1 45 125 0 0707 45 6 249cos . cos .° °= ´ = kN

	 p A2 2 45 59 87 0 0314 45 1 3293cos . . cos .° °= ´ = kN

\ =
´ ´ -

+ - = ®Fx
1000 0 4 4 9 01

10
6 249 1 3293 2 9157

3

. ( . )
. . . ( )kN 	

Force along y-axis is given by,

F Q V V p A p A Wy w= - + + -r ( sin sin ) sin sin1 2 1 1 2 245 45 45 45° ° ° ° 	

	 V1 45 5 658 45 4sin . sin° °= = m/s 	

x

yV1

V2

Fx

Fy

p2A2

V2 cos 45°

V2 sin 45°

p2 A2 cos 45°

p2A2 sin 45°

45° 45°

45° 45°

V1 cos 45°

V1 sin 45°

p1A1 cos 45°

p1A1 sin 45°
p1A1

W

F

α

Figure 7.25 
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		V2 45 12 739 45 9 01sin . sin .° °= = m/s 	

	 p A1 1 45 125 0 0707 45 6 249sin . sin .° °= ´ = kN 	

	 p A2 2 45 59 87 0 0314 45 1 3293sin . . sin .° °= ´ = kN 	

W
v gw= =

× ×
=

ρ
10

0 1 1000 9 81

10
0 981

3 3

. .
. kN  

 ∴ =
× × −

+ + − = ↑Fy  kN
1000 0 4 4 9 01

10
6 249 1 3293 0 981 4 5933

3

. ( . )
. . . . ( ) 	

The magnitude of resultant force is given by,

F F Fx y= + = + =2 2 2 22 9157 4 5933. . 5.4406 kN   

The direction of F with x-axis is given by,

α =
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ = ⎛

⎝⎜
⎞
⎠⎟

=− −tan tan
.

.
1 1 4 5933

2 9157

F

F

y

x
57.59°°   

7.12 ❐  MOMENT OF MOMENTUM EQUATION  
(ANGULAR MOMENTUM PRINCIPLE)

The moment of momentum equation is based on the principle of moment of momentum which states that the resulting 
torque (T) acting on a rotating fluid is equal to the rate of change of moment of momentum. The moment of the force is 
called the torque and the moment of momentum is called the angular momentum, where the moments are taken about the 
axis of rotation. 

Let Q be the rate of fluid flow, ρ  be the density of the fluid, m Q= ρ  be the mass of fluid per unit time, V1 be the 
velocity of fluid flow at section 1 (i.e., inlet), Vw1 is the component of velocity V1 in tangential direction at section 1 and r1 
be the radius of curvature at section 1. V2, Vw2 and r2 be the corresponding values at section 2 (i.e., exit). 

 Angular momentum per second of fluid at inlet = ρQV rw1 1 	

 Angular momentum per second of fluid at exit = ρQV rw2 2 	

 Rate of change of angular momentum = −ρ ρQV r QV rw w2 2 1 1 	

According to the moment of momentum principle, we get:

 Resultant torque Rate of change of angular momentum= 	

	 ∴ = −T Q V r V rw wρ ( )2 2 1 1  (7.44)

In a turbine, the fluid exerts torque on the runner, thus Equation (7.44) becomes,

 T Q V r V rw w= −ρ ( )1 1 2 2  (7.44a)

Equation (7.44) is known as moment of momentum equation. It is used to find the torque exerted by water on the sprinklers 
and to analyse the flow problems in turbomachines, such as turbines and centrifugal pumps.
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 Fluid Dynamics 7.47

 Example 7.41  A lawn sprinkler has two similar nozzles of diameter 10 mm each fitted at the ends of rotating arms. 
One of the nozzles discharges water in vertically upwards direction while the other downwards. The nozzles are at a radial 
distance of 0.4 m and 0.3 m from the centre of the rotor. If the velocity of flow from each nozzle is 8 m/s, then determine 
(i) the torque required to hold the arm stationary and (ii) the speed of rotation of the arm neglecting friction. 

Solution

Refer Figure 7.26. Let d = =10 0 01mm m. , r1 0 4= . m, r2 0 3= . m	and V V V1 2 8= = = m/s. Let ω  be the angular speed 

of rotation of the sprinkler and subscripts 1 and 2 denote the values of nozzles 1 and 2, respectively. 

V1

V2

r2

r1

Q1Q2

ω

Nozzle 1
Nozzle 2

Figure 7.26  

A d= = × =
π π
4 4

0 01 0 00007852 2. . m2  

V V r V rw1 1 1 1= − = −ω ω   

V V r V rw2 2 2 2= − = −ω ω 	

Q Q Q AV1 2= = =   

	 T Q V r Q V r Q V r V rw w w w w w w= + = × +ρ ρ ρ1 1 1 2 2 2 1 1 2 2[ ] 	

T AV V r r V r rw= × − + −ρ ω ω[( ) ( ) ]1 1 2 2  (i)

 (i) Torque required to hold the arm stationary will be equal to torque exerted by water on sprinkler. Substituting ω = 0  
and the other values in expression (i), we get the below result.

 T = × × × − × + − ×1000 0 0000785 8 8 0 0 4 8 0 0 3. [( ) . ( ) . ]  

∴ =T 3.5168 Nm   

 (ii) The sprinkler will rotate freely if the resultant torque on the sprinkler is zero. Thus, substituting T = 0 and the other 
values in expression (i), we get the following result. 

0 = × × × − × + − ×1000 0 0000785 8 8 0 4 0 4 8 0 3 0 3. [( . ) . ( . ) . ]ω ω  

0 = − + −3 2 0 16 2 4 0 09. . . .ω ω 	

0 25 5 6
5 6

0 25
22 4. .

.

.
.ω ω= ⇒ = = rad/s 	

  Thus           
2

60
22 4

π N
= . rad/s

∴ = × =N
22 4 60

2

.

π
213.9 rpm   
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 Example 7.42  A lawn sprinkler has two similar nozzles of diameter 5 mm each fitted at the ends of rotating arms. 
The nozzles are at a radial distance of 0.3 m and 0.2 m from the centre of the rotor which is fed with 0.15 litres of water 
per second. Both the nozzles have equal discharge of water in vertically downwards direction. Determine (i) the torque 
required to hold the arm stationary and (ii) the speed of rotation of the arm neglecting friction.

Solution
Refer Figure 7.27. Let d = =5 0 005mm m. , r1 0 3= . m , r2 0 2= . m	and Q l= = × −0 15 0 15 10 3. ./s m /s3 . Let ω  be the 

angular speed of rotation of the sprinkler and subscripts 1 and 2 denote the values at nozzles 1 and 2, respectively. The 
nozzle 1 has a greater radius arm and thus, if the sprinkler is free to rotate, then it will rotate in anticlockwise direction.

V1V2

r2 r1

Q1Q2

ω
Nozzle 1Nozzle 2

Figure 7.27  

A d= = × =
π π
4 4

0 005 0 00001962 2. . m2  

	 q
Q

= =
×

= ×
−

−
2

0 15 10

2
0 075 10

3
3.

. m /s3    [ ]∵Q Q q1 2= = 	

V V V
q

A1 2

30 075 10

0 0000196
3 83= = = =

×
=

−.

.
. m/s  

∵V r1 1and ω  are in opposite directions.  

Thus           V V r V rw1 1 1 1= − = −ω ω 	

∵V r2 2and ω  are in same direction.  

Thus           V V r V rw2 2 2 2= + = +ω ω

T Q V r Q V r q V r V rw w w w w w w= − = × −ρ ρ ρ1 1 1 2 2 2 1 1 2 2[ ]  

T AV V r r V r rw= × − − +ρ ω ω[( ) ( ) ]1 1 2 2  (i)

 (i) Torque required for holding the arm stationary will be equal to torque exerted by water on sprinkler. Substituting 
ω = 0  and the other values in expression (i), we get the following result.

T = × × × − × − − ×1000 0 0000196 3 83 3 83 0 0 3 3 83 0 0 2. . [( . ) . ( . ) . ]  

∴ =T 0.02875 Nm   

 (ii) The sprinkler will rotate freely if the resultant torque on the sprinkler is zero. Thus, substituting T = 0  and the other 
values in expression (i), we get the below result. 

0 = × × × − × − + ×1000 0 0000196 3 83 3 83 0 3 0 3 3 83 0 2 0 2. . [( . . ) . ( . . ) . ]ω ω  

0 = − − −1 149 0 09 0 766 0 04. . . .ω ω 	
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 Fluid Dynamics 7.49

Summary

 1.  Fluid dynamics deals with the fluid motion considering 
the forces causing the flow. It is governed by Euler’s and 
Bernoulli’s equations.

 2.  A flowing incompressible fluid possesses potential, kinetic 
and pressure energies.

 3. The forces which influence the motion of a fluid are gravity 
force (Fg), pressure force (Fp), viscous force (Fv), turbulent 
force (Ft), compressibility force (Fc) and surface tension 
force (Fs). 

 4.  Euler’s equation of motion: ( )dp gdz VdV/r + + = 0.

 5. Bernoulli’s equation: 
p

g

V

g
z

ρ
+ + =

2

2
Constant, i.e., the 

sum of the pressure head, kinetic head and datum head in a 

steady, ideal flow of an incompressible fluid is constant along 
a streamline at any point of the fluid. 

 6. Bernoulli’s equation for real fluids: 
p

g

V

g
z

p

g

V

g
z hL

1 1
2

1
2 2

2

22 2ρ ρ
+ + = + + +

p

g

V

g
z

p

g

V

g
z hL

1 1
2

1
2 2

2

22 2ρ ρ
+ + = + + + , here hL is the loss of energy per unit 

weight of fluid between the sections 1 and 2.

 7. A venturimeter is used to measure the flow rate of a fluid 
flowing through a pipe.

 8. Discharge through venturimeter: Q C a a gh a aa d= −( ) /1 2 1
2

2
22

Q C a a gh a aa d= −( ) /1 2 1
2

2
22 , here a1 and a2 be the area at the inlet and outlet 

of the venturimeter, respectively, Cd is the coefficient of dis-
charge and h is the difference of pressure head.

 9. h y S Sm= -[( ) ]/ 1   (For heavier manometric liquid) 

	 	 h y S Sl= -[ ( )]1 /   (For lighter manometric liquid) 

  Here, y is the difference of the liquid column in U-tube, Sm is 
the specific gravity of mercury, Sl is the specific gravity of 
lighter liquid and S is the specific gravity of the liquid flowing 
through the pipe.

 10. Values of h for inclined venturimeter is given by,

  h
p

g
z

p

g
z y

S

S
m= +

⎛
⎝⎜

⎞
⎠⎟

− +
⎛
⎝⎜

⎞
⎠⎟

= −⎛
⎝⎜

⎞
⎠⎟

1
1

2
2 1

ρ ρ

 (For heavier manometric liquid)

  h
p

g
z

p

g
z y

S

S
l= +

⎛
⎝⎜

⎞
⎠⎟

− +
⎛
⎝⎜

⎞
⎠⎟

= −⎛
⎝⎜

⎞
⎠⎟

1
1

2
2 1

ρ ρ

 (For lighter manometric liquid)

 11. Orificemeter (or orifice plate) is used for measuring the 
discharge of a fluid through a pipe. Its discharge is given by 

Q C a a gh a ad= −( )0 1 1
2

0
22 / , here a1 and a0 is the area at 

the inlet and the orifice, respectively and Cd is the coefficient 
of discharge.

 12. A pitot tube is used for measuring the velocity of flow at any 

point in a pipe. The velocity is given by V C ghv1 2= ,  here 

Cv is the coefficient of the pitot tube and h is the rise of liquid 
in the tube above free surface of liquid whose value is given 
by h y S Sm= −[( / ) ].1

 13. A pitot-static tube combines the measurement of stagnation 
and static pressures.

 14. Kinetic energy correction factor:

  αcf =
K.E. per second based on actual velocity

K.E. per second based on aaverage velocity

 15. Momentum correction factor:

  βcf =
Momentum per second based on actual velocity

Momentum per seecond based on average velocity

 16. A jet of liquid coming out from a nozzle in atmosphere is 
called a free liquid jet. The equation of jet is y = x tan a - 

[(gx2)/2V 2]sec2a, here x and y is horizontal and vertical 

distances, respectively, V is the jet velocity and α  is the jet 
inclination.

0 13 0 383
0 383

0 13
2 946. .

.

.
.ω ω= ⇒ = = rad/s 	

Thus         
2

60
2 946

π N
= . 	

∴ = × =N
2 946 60

2

.

π
28.13 rpm   
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7.50 Chapter 7

 17. Maximum height attained by the jet:

	 	 h V g= ( sin ) ( )2 2 2α /

 18. Time of flight: T V g= ( sin )2 α /

 19. Time to reach the highest point:

  T T V g′ = =/ /2 ( sin )α

 20. Horizontal range of the jet: R V g= ( sin )2 2α /

 21. Maximum range: R V gmax = 2 /

 22. Impulse-momentum equation: F dt d mV⋅ = ( ), here F ⋅ dt 
is impulse and d(mV) is the resulting change in momentum in 
the direction of force.

 23. Force on a pipe bend in x and y directions respectively are: 

F Q V V p A p Ax = − + −ρ α α α α( cos cos ) cos cos1 1 2 2 1 1 1 2 2 2

F Q V V p A p Ay  = − + −ρ α α α α( sin sin ) sin sin1 1 2 2 1 1 1 2 2 2

 24. The resultant force exerted by the fluid on the pipe bend and 

its direction with x axis is given by F F Fx y= +2 2  and 

tanα = F Fy x/ .

 25. Moment of momentum equation: T Q V r V rw w= −ρ ( )1 1 2 2 , 

here T is the resultant torque, Vw1 and r1 is the component 
of velocity in tangential direction and radius of curvature at 
section 1, respectively and Vw2 and r2 are the corresponding 
values at section 2.

Multiple-choice Questions

 1. The value of momentum correction factor for laminar flow 
through a pipe is 
(a) 0.3.
(b) 0.33.
(c) 1.
(d) 1.33.

 2. The value of kinetic energy correction factor for laminar flow 
through a pipe is 
(a) 1.
(b) 2.
(c) 3.
(d) 4.

 3. The Bernoulli’s equation refers to conservation of 
(a) Force.
(b) Momentum.
(c) Energy.
(d) Mass.

 4. Bernoulli’s equation is applicable to 
(a) Venturimeter.
(b) Pitot tube.
(c) Orificemeter.
(d) All the above.

 5. Venturimeter is used to measure 
(a) Fluid velocity.
(b) Fluid pressure.
(c) Fluid discharge.
(d) None of the above.

 6. A change in angular momentum of fluid flowing in a curved 
path results in a 
(a) Change in total energy.
(b) Change in force.
(c) Change in pressure.
(d) Torque.

 7. In a venturimeter, the pressure of liquid at throat is 
(a) Equal than at inlet.
(b) Higher than at inlet.
(c) Lower than at inlet.
(d) None of the above.

 8. In a venturimeter, the velocity of liquid at throat is 
(a) Equal than at inlet.
(b) Higher than at inlet.
(c) Lower than at inlet.
(d) None of the above.

 9. The velocity of liquid flowing through the divergent portion 
of a venturimeter 
(a) Decreases.
(b) Increases.
(c) Remains constant.
(d) All the above.

 10. The total energy represented by Bernoulli’s equation, p/(rg) 

+ V 2/(2g) + z = C has the units 
(a) Ns/m.
(b) Nm/m.
(c) Nm/N.
(d) None of the above.

 11. The value of coefficient of discharge of a venturimeter lies 
within the range of 
(a) 0.65–0.69.
(b) 0.75–0.79.
(c) 0.85–0.89.
(d) 0.95–0.99.

 12. Orificemeter is used to measure 
(a) Pressure.
(b) Velocity.
(c) Temperature.
(d) Discharge.
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 Fluid Dynamics 7.51

 13. Discharge through a venturimeter varies with venture head 
(h) as 

(a) h2 5. .

(b) h1 5. .

(c) h1 0. .

(d) h0 5. .

 14. The coefficient of discharge of an orificemeter than that of 
venturimeter is 
(a) Much larger.
(b) Equal.
(c) Much smaller.
(d) None of the above.

Review Questions

 1.  Explain briefly the various heads and forces acting on a 
flowing fluid. Also give a brief discussion on equations of 
motion.

 2. Derive Euler’s equation of motion. Also obtain Bernoulli’s 
equation from it.

 3. Give the assumptions, limitations and practical applications 
of Bernoulli’s equation.

 4. State and prove Bernoulli’s equation and also give its 
assumptions.

 5. What is venturimeter? Explain its working principle. Also 
obtain an expression for the discharge through it.

 6. What is an orificemeter and what are its merits and demerits? 
Also derive an expression for discharge through it.

 7. What is a pitot tube and how will you determine the velocity 
at any point with the help of it? Also state how it is different 
than pitot-static tube?

 8. Define kinetic energy and momentum correction factors.

 9. Define free jet of liquid. Derive an expression for the path 
travelled by free jet of liquid coming out from a nozzle. Also 
find expressions for (i) maximum height attained by the jet, 
(ii) time of flight and (iii) horizontal range of the jet.

 10. State and derive impulse-momentum equation for steady flow.

 11. What is moment of momentum equation? Also give its 
applications.

 12. Define the coefficient of discharge of venturimeter and 
coefficient of contraction of orificemeter.

Problems

 1. If water flows through a pipe of 50 mm diameter under a 
pressure of 290 kPa (gauge) with mean velocity of 2 m/s, 
then determine the total head at 3 m above the datum line.

[Ans. 32.766 m] 

 2.  A pipe carrying oil of specific gravity 0.9 varies in diameter 
from 0.3 m at section 1 to 0.6 m diameter at section 2 which 
is 5 m at a higher level. If the pressures at sections 1 and 2 are 
100 kPa and 60 kPa, respectively and discharge is 0.3 m3/s, 
then determine the loss of head and direction of flow.

[Ans. 0.3895 m, Flow occurs from section 1 to 2] 

 3. The rate of flow of water through a pipe having diameters 
10 cm and 5 cm at sections 1 and 2, respectively, is 25 litres 
per second. The sections 1 and 2 are 3 m and 2 m above the 
datum, respectively. Determine the intensity of pressure at 
section 2 if the pressure at section 1 is 392.4 kPa.

[Ans. 325.94 kPa]

 4. The water flow through a conical vertical tube of length 
2.5 m is in the downward direction. The velocity of flow at 
the inlet and outlet ends is 8 m/s and 3 m/s, respectively. If the 
pressure head at the inlet end is 3 m of liquid and the loss of 

head in the tube is 0 3 21 2
2. [( ) ( )]V V g− / , where V1 and V2 are 

the velocities at the inlet and outlet ends of the tube, respec-
tively, determine the pressure head at the lower end.

[Ans. 7.92 m of water]

 5. The water flows through a taper pipe of length 100 m having 
diameters 0.6 m at the upper end and 0.3 m at the lower end 
at the rate of 0.05 m3/s. If the pressure at the higher level is 
196.2 kPa and the pipe has a slope of 1 in 40, then determine 
the pressure at the lower end.

[Ans. 220.49 kPa]

 6. A horizontal venturimeter 20 cm × 10 cm is used to meas-
ure the flow of oil (specific gravity = 0.7). (i) Determine the 
deflection of the oil mercury gauge, if the discharge of the 
oil is 60 litres per second and the coefficient of discharge is 
unity. (ii) If the deflection of mercury gauge is 0.2 m, then 
determine the coefficient of meter.

[Ans. 0.153 m, 0.877]

 7. Determine the discharge of water through a horizontal 
venturimeter with inlet and throat diameters 300 mm and 
150 mm, respectively, if the reading of differential manometer 
connected to the inlet and throat is 250 mmHg and coefficient 
of discharge of meter is 0.97.

[Ans. 0.13916 m3/s]
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 8. A venturimeter of throat diameter 0.1 m is fitted in the 
pipeline of diameter 0.2 m through which water flows at a 
rate of 30 litres per second. A differential manometer in the 
pipeline has an indicator liquid and the manometer reading 
is 1.16 m. Determine the relative density of the manometer 
liquid when the venturimeter coefficient is 0.96 and the 
density of water is 998 kg/m3.

[Ans. 1.65]

 9. A horizontal venturimeter with inlet diameter 200 mm and 
throat diameter 100 mm is used to measure the discharge. 
If the pressure at the inlet and vacuum pressure at the throat 
is 180 kPa and 0.35 mHg, respectively and the coefficient of 
meter is 0.98, then determine its discharge.

[Ans. 0.16918 m3/s]

 10. A venturimeter of coefficient 0.96 is to be fitted in a pipe 
250 mm diameter, where the pressure head is 7.6 m of flowing 
liquid and the maximum flow is 0.135 m3/s. Determine the 
least diameter of the throat to ensure that the pressure head 
does not become negative.

[Ans. 119.4 mm] 

 11. A horizontal venturimeter of throat diameter 125 mm is 
fitted in a water pipeline of diameter 300 mm. The pressure 
in the pipeline is 140 kPa and the vacuum in the throat is 
375 mmHg. If 4% of the differential head is lost between the 
gauges, then determine the discharge in the pipeline.

[Ans. 0.238 m3/s]

 12. A vertical venturimeter carrying a liquid (specific gravity = 
0.8) has inlet and throat diameters as 15 cm and 7.5 cm, 
respectively. The pressure connection at the throat is 15 cm 
above that at the inlet. If the actual rate of flow is 0.04 m3/s and 
the coefficient of meter is 0.96, then determine the pressure 
difference between inlet and throat of the venturimeter.

[Ans. 34.84 kPa]

 13. A venturimeter of 0.5 contraction ratio has been fitted in a 
0.1 m diameter horizontal pipe. When there is no flow, the 
head of water on the meter is 3 m (gauge). If the throat 
pressure is 2 m of water (abs), coefficient of discharge of 
venturimeter is 0.97 and atmospheric pressure head is 10.3 m 
of water, then find the discharge.

[Ans. 29.31 litres/s]

 14. Determine the discharge in the pipeline when the following 
data are given for an inclined venturimeter, where diameter 
of the pipeline = 0.4 m, throat diameter = 0.2 m, inclination 
of the pipeline with the horizontal = 30°, distance between 
inlet and throat of the venturimeter = 0.6 m, specific gravity 
of the oil flowing through the pipeline = 0.7, specific gravity 
of the mercury in U-tube manometer = 13.6, reading of the 
differential manometer = 5 cm and coefficient of discharge of 
the venturimeter = 0.98.

[Ans. 137.5 litres/s]

 15. The difference of mercury level in a differential U-tube 
manometer connected to the pitot tube is 10 cm. If the 
coefficient of tube is 0.975 and the specific gravity of oil is 
0.82, then find the velocity of flow.

[Ans. 5.39 m/s]

 16. Determine the discharge of oil for the following data given 
for an orificemeter, such as diameter of the pipe = 0.25 m, 
diameter of the orifice = 0.125 m, specific gravity of oil 
= 0.8, reading of mercury differential manometer = 0.5 m and 
coefficient of discharge of the meter = 0.65.

[Ans. 103.5 litres/s]

 17. A jet of water comes out from a 50 mm diameter nozzle and 
strikes the ground at a horizontal distance of 4 m from the 
nozzle. The nozzle is positioned at a vertical height of 1.2 m 
from the ground level. If the nozzle is inclined at an angle of 
45° with the ground, then determine the discharge from the 
nozzle.

[Ans. 0.0108 m3/s]

 18. An orifice of diameter 0.3 m is fitted in a pipeline of 0.6 m 
diameter carrying oil (specific gravity = 0.9). If the manometer 
indicates 400 mmHg and coefficient of discharge as 0.65, then 
determine the oil flow rate and the velocity through the pipe.

[Ans. 0.4993 m3/s, 1.77 m/s] 

 19. A jet of water coming out from a nozzle is inclined at 60° to 
the horizontal and is held at level 3 m above the ground. If the 
jet strikes the ground at a horizontal distance of 15 m from the 
nozzle and air resistance is negligible, then determine (i)  the 
velocity of the jet coming out from the nozzle, (ii) maximum 
height reached by the jet and (iii) position of the top most point.

[Ans. 12.34 m/s, 5.82 m, 6.72 m]

 20. Petroleum oil (specific gravity = 0.93 and μ = 13 cP ) flows 
isothermally through a horizontal 50 mm pipe. A pitot tube is 
placed at the centre of the pipe which is connected to a U-tube 
containing water which shows a reading of 100 mm. If the 
coefficient of tube is 0.98, then find the volumetric flow of oil 
through the pipe in litres per second.

[Ans. 9.95 litres per second] 

 21. If a nozzle of diameter 25 mm is fitted in a water pipe of 
diameter 50 mm, then calculate the force exerted by the 
nozzle on the water flowing through the pipe at the rate of 
1250 litres per minute.

[Ans. −990.43 N]

 22. A fireman intends to reach a window 40 m above the ground 
with a water jet, issued from a nozzle 3 cm in diameter and 
discharging 1800 kg per minute. If the nozzle height is 2 m 
above the ground, then determine the maximum horizontal 
distance from the building where the fireman can stand and 
still the water jet reaches the window. Also determine the 
amount of water falling on the window.

[Ans. 140.58 m, 0.0299 m3/s]
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 23. An oil of specific gravity 0.86 enters horizontally and gets 
turned through 45° in clockwise direction in the reducing 
bend which tapers from 0.4 m diameter at the inlet to 0.2 m 
diameter at the outlet. If the oil flows at a rate of 400 litres per 
second, then the pressure of 30 kPa at the inlet section drops 
to 12 kPa at the exit. Find the magnitude and direction of the 
resultant force on the bend.

[Ans. 3.685 kN, 65.97°]

 24. A 0.4 m diameter pipe carries water under a head of 20 m with 
a velocity of 4 m/s. If the axis of the pipe turns through 45°, 
then determine the magnitude and direction of the resultant 
force on the bend.

[Ans. 20415.66 N, −67.5°]

 25. A horizontal water pipe fitted with a 90° bend of 0.3 m diameter 
gives discharges 320 litres per second. If the pressure at the 
inlet and exit of the bend are 245 kPa and 235 kPa, respectively, 
then determine the resultant force exerted on the bend.

[Ans. 26051.22 N, −43.9°]

 26. A lawn sprinkler has two similar nozzles of diameter 7.5 mm 
each fitted at the ends of rotating arms. One of the nozzles 
discharges water in vertically upwards direction while the 

other downwards. The nozzles are at a radial distance of 
0.2 m and 0.15 m from the centre of the rotor. If the velocity 
of flow from each nozzle is 12 m/s, then determine (i) the 
torque required to hold the arm stationary and (ii) the speed 
of rotation of the arm neglecting friction.

[Ans. 2.228 Nm, 641.71 rpm]

 27. A horizontal water pipe fitted with a 90° bend reducer. The 
pressure at the inlet is 210 kPa where its cross-sectional area 
is 0.012 m2. If at the exit section, the velocity is 15 m/s, 
the area is 0.0024 m2 and the pressure is atmospheric, then 
determine the resultant force exerted on the bend and its 
direction.

[Ans. 2.683 kN, −11.61°]

 28. A lawn sprinkler has two similar nozzles of diameter 3.5 mm 
each fitted at the ends of rotating arms. The nozzles are at a 
radial distance of 0.25 m and 0.15 m from the centre of the rotor 
which is fed with 0.2 litres of water per second. Both the nozzles 
have equal discharge of water in vertically downward direction. 
Determine (i) the torque required to hold the arm stationary and 
(ii) the speed of rotation of the arm neglecting friction.

[Ans. 0.10386 Nm, 116.692 rpm]

ANSWERS TO MULTIPLE-CHOICE QUESTIONS

 1. (d) 2. (b) 3. (c) 4. (d) 5. (c)
 6. (d) 7. (c) 8. (b) 9. (a) 10. (c)
 11. (d) 12. (d) 13. (d) 14. (c)
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8.1 ❐ INTRODUCTION
The flow of a rotating mass of fluid is called vortex flow (i.e., the motion of fluid along a curved path). It is characterized  
by curved streamline patterns. When fluid flows between curved streamlines, centrifugal forces are set up which are 
 counterbalanced by the pressure force acting in the radial direction. The vortex flow is of two types, namely forced vortex 
flow and free vortex flow. When a vessel containing a liquid is rotated about a vertical axis at a constant angular velocity, 
after a small initial adjustment period, the liquid rotates as a solid mass. In such a case, it becomes important to determine 
the pressure intensity and velocity field. In this chapter, the characteristics of vortex flow, its types, equation of vortex 
motion and rotation of liquid in a closed cylindrical vessel have been explained in brief context.

8.2 ❐ TYPES OF VORTEX FLOW
The vortex flow is of two types, namely forced vortex flow and free vortex flow which are discussed in the following 
sections.

8.2.1 Forced Vortex Flow
In a forced vortex flow, the fluid mass is made to rotate by means of some external power source, which exerts a constant 
torque on the fluid mass. Therefore, this torque induces the whole mass of fluid to rotate at constant angular velocity ( )ω  
as shown in Figure 8.1.

Thus, in a forced vortex flow, a constant external torque is to be applied to the fluid mass resulting in an expenditure of 
energy. In this flow, the tangential velocity (V) of any fluid particle at a radius (r) from the axis of rotation is given below.

	 V r= ω  (8.1)

Thus, angular velocity is given by,

	 ω =
V

r
 (8.2)

A most common example of a forced vortex flow is the motion 
of a vertical cylinder containing liquid rotated about its central 
axis with a constant angular velocity. In Figure 8.1, AB shows the 
free liquid surface before rotation and ′ ′A OB  shows the new free 

A B

B′A′

O

ω

Axis of rotation

Rotating cylinder
Liquid

Figure 8.1 Forced vortex flow
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8.2 Chapter 8

surface after attaining steady state. Some of the other examples of forced vortex flow are fluid motion inside the runner of 
a hydraulic turbine or inside the impeller of a centrifugal pump.

8.2.2 Free Vortex Flow
In a free vortex flow, no external torque is required to rotate the fluid mass. The motion may be due to the rotation imparted 
previously to the fluid particles or due to some internal action (i.e., fluid pressure itself or the gravity force). Some of the 
examples of free vortex flow are (i) flow of liquid through a hole (or an orifice) provided at the bottom of a vessel or tank, 
(ii) a whirlpool in a river, (iii) flow of liquid around a circular bend in a pipe, (iv) flow of water in a turbine casing before it 
enters the guide vanes and (v) flow of liquid in a centrifugal pump casing after it has left the impeller.

Let m be the mass of a fluid particle at a radius r from the axis of rotation and V be its tangential velocity. The rate of 
change of angular momentum (or moment of momentum) is given below.

	
∂
∂t

mVr( )  (8.3)

Since in free vortex flow, no external torque is required to be exerted on the fluid mass. Thus, the rate of change of angular 
momentum of the flow must be zero and it is given below.

	
∂
∂

=
t

mVr( ) 0  (8.4)

Integrating Equation (8.4), we get:

	 mVr k= =Constant 	

	 Vr C=   [ ]∵k m C/ =  (8.5)

The constant C is also known as strength of the vortex. The Equation (8.5) can also be written as given below.

	 V
C

r
=  (8.5a)

It can be observed from Equation (8.5a) that the velocity of flow in a free vortex flow varies inversely with the radial 
distance from the axis of rotation. As r → 0, V → ∞, it mathematically signifies a point of singularity at r = 0, which is 
practically impossible. Thus, the definition of a free vortex flow cannot be extended as r = 0. For a free vortex flow, vorticity 
( )ξ  becomes zero. Therefore, free vortex flow is irrotational and hence, it is also referred to as irrotational vortex.

8.2.3 Other Types of Vortex Flow
A vortex flow may also be classified as cylindrical vortex flow and spiral vortex flow.

Cylindrical vortex flow In cylindrical vortex flow, the fluid mass rotates in concentric circles which can be described by 
concentric circular streamlines.

Spiral vortex flow A spiral vortex flow is a combination of cylindrical vortex flow and radial flow. In a spiral vortex flow, 
a cylindrical vortex flow is superimposed over the radial flow and the resulting flow is called spiral vortex flow. Thus, in a 
spiral vortex flow, the mass of fluid either moves spirally outward or spirally inward.

All these types of vortex flow can exist independent of each other. The four types and combination of vortex flow are (i) 
cylindrical forced vortex, (ii) cylindrical free vortex, (iii) spiral forced vortex and (iv) spiral free vortex.

8.3 ❐ EQUATION OF MOTION FOR A VORTEX FLOW
Consider a fluid element PQSR rotating at a uniform velocity in a horizontal plane about a vertical axis passing through O 
as shown in Figure 8.2(a). Let the fluid element PQSR of radial thickness dr subtends an angle δα  at the centre of rotation 
and is at a radial distance r from the centre. Let dA be the area of the element perpendicular to the radial direction, V be its 
tangential velocity, m dAdr= ρ  be its mass, p be the pressure intensity and ρ  be the fluid density.
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 Vortex Flow 8.3

Pressure force acting on face PR p dA= ×

Pressure force acting on face QS p
p

r
dr dA= +

∂
∂

⎛
⎝⎜

⎞
⎠⎟

×

Centrifugal force acting on PQSR
mV

r
dAdr

V

r
= = ×

2 2

ρ

There is no variation of pressure in the tangential direction because tangential velocity is constant. However, there is a 
slight difference in the pressure forces at the two radial faces due to centrifugal force on the fluid element. Thus, by equating 
the forces in the radial direction, we get the following expression.

p
p

r
dr dA pdA dAdr

V

r
+

∂
∂

⎛
⎝⎜

⎞
⎠⎟

− = ρ
2

∂
∂

=
p

r
drdA dAdr

V

r
ρ

2

	
∂
∂

=
p

r

V

r
ρ

2

 (8.6)

Consider the vertical plane of the fluid element as shown in Figure 8.2(b). If there is no acceleration other than gravity, then 
the following forces will act on the fluid element.

Pressure force at the bottom = ×p r drδα

Pressure force at the top = +
∂
∂

⎛
⎝⎜

⎞
⎠⎟

×p
p

z
dz r drδα

Gravity force acting downwards = = =W mg r dr dz g( )ρ δα

Considering the equilibrium of the fluid element in the vertical direction, we get the following expression.

pr dr p
p

z
dz r dr r dr dz gδα δα ρ δα− +

∂
∂

⎛
⎝⎜

⎞
⎠⎟

= ( )

−
∂
∂

=
p

z
dzr dr gr dr dzδα ρ δα

	
∂
∂

= −
p

z
gρ  (8.7)

P
Q

O
R

Sdrr

V

pdA

dz

z
drr

Axis of
rotation

Datum

W

(b)

δα
drprδα

drrdzp δα
z∂
p∂+

dAdrp
r∂
p∂+

(a)

Figure 8.2 Vortex flow
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8.4 Chapter 8

It can be seen that p is the function of both r and z. Thus, the total derivative of p is given below.

	 dp
p

r
dr

p

z
dz=

∂
∂

+
∂
∂

 (8.8)

Substituting the values from Equations (8.6) and (8.7) in Equation (8.8), we get:

	 dp
V

r
dr gdz= −ρ ρ

2

 (8.9)

The Equation (8.9) is the fundamental equation for vortex flow. By this equation, the variation of pressure in a vortex flow 
can be measured.

8.4 ❐ EQUATION OF FORCED VORTEX FLOW
In case of forced vortex flow, the velocity distribution is given by Equation (8.1) as given below.

V r= ω

Substituting the value of V given by the above equation in Equation (8.9), we get the following expression.

	 dp
r

r
dr gdz= −ρ ω ρ

2 2

 (8.10)

Considering forced vortex flow in a cylinder subjected to rotation as illustrated in Figure 8.3 in which AB shows the free 

liquid surface before rotation and ′ ′A OB  shows the new free surface after attaining steady state.
Let the points 1 and 2 be at radial distance r1 and r2 from the centre of rotation and at elevation z1 and z2, respectively. 

By integrating Equation (8.10) between 1 and 2, we get the following expression.

	
dp rdr g dz

1

2
2

1

2

1

2

∫ ∫ ∫= −ρω ρ

	
( ) ( ) ( )p p r r g z z2 1

2
2

2
1
2

2 1
1

2
− = − − −ρω ρ

	 ( ) ( ) ( )p p r r g z z2 1
2

2
2 2

1
2

2 12
− = − − −

ρ ω ω ρ  (8.11)

Since V r V r1 1 2 2= =ω ωand

	 ( ) ( ) ( )p p V V g z z2 1 2
2

1
2

2 12
− = − − −

ρ ρ  (8.12)

From Equation (8.11) it can be seen that fluid pressure increases with the radial distance from the centre of the vortex.
When the points 1 and 2 lie on the free surface of the liquid, then p1 = p2 and thus, Equation (8.12) is expressed as 

follows.

	 0
2 2

2
1
2

2 1= − − −
ρ ρ( ) ( )V V g z z 	

	 z z
V V

g2 1
2

2
1
2

2
− =

−
 (8.13)

When the point 1 lies on the axis of rotation, r1 = 0 and V1 0 0= × =ω  and let (z2 – z1) = z.

A B

B′A′

O

ω

Axis of rotation

Rotating cylinder

Liquid
r1

r2

z1

z2

Free liquid surface

1

2

Figure 8.3 Forced vortex flow
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 Vortex Flow 8.5

From Equation (8.13), we get:

	 z
V

g

r

g
= =2

2 2
2

2

2 2

ω
 (8.14)

The Equation (8.14) is an equation of parabola, since z varies with square of r. Therefore, the free liquid surface is a 
 paraboloid of revolution.

 Example 8.1  An open cylindrical tank of diameter 1 m and height 2 m contains water up to a depth 1.5 m. If the cylinder 
rotates about its vertical axis, then what maximum angular velocity can be attained without any spillage?

Solution
Refer Figure 8.4. Let d = 1 m, h2 = 2 m and h1 = 1.5 m. Let ω  be the angular speed and N be its corresponding speed 
in rpm. At maximum speed, the water surface will just touch the top of the rim of the cylinder. Let AB be the free liquid 
 surface before rotation and ′ ′A OB  shows the new free surface after attaining steady state. Let z be the water surface 
 elevation at the outer edge above vortex O and thus, OC = z/2.

r
d

= = =
2

1

2
0 5. m

z h h= − = − =2 2 2 1 5 12 1( ) ( . ) m

Also z
r

g
=

ω2 2

2

1
0 5

2 9 81

2 2

=
×

×
ω .

.

∴ =
×

=ω 2 9 81

0 5
8 859

2

.

.
. rad/s

Thus 
2

60
8 859

π N
= .

∴ =
×

=N
8 859 60

2

.

π
84.6 rpm

 Example 8.2  An open cylindrical tank of diameter 0.4 m and height 2 m contains water up to a depth 1.4 m. If the 
cylinder rotates about its vertical axis at a speed of 240 rpm, then determine the height of the paraboloid formed at the free 
surface. Also determine the speed of rotation required for the water to start spilling.

Solution
Refer Figure 8.4. Let d = 0.4 m, h2 = 2 m, h1 = 1.4 m and N = 240 rpm. Let ω  be the angular speed and r = 0.4/2 = 0.2 m.

 (i) ω π π
= =

× ×
=

2

60

2 240

60
25 133

N
. rad/s

  The height of the paraboloid formed at the free surface is given by,

z
r

g
= =

×
×

=
ω2 2 2 2

2

25 133 0 2

2 9 81

. .

.
1.288 m

A B

B′A′

O

ω

C z

h2h1

Figure 8.4
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8.6 Chapter 8

 (ii) For the water to spill, the water will just touch the top of the rim of the tank. Thus, the rise of water above the original 
level becomes equal to (h2 – h1), i.e., (2 – 1.4) = 0.6 m.

∴ = × =z 2 0 6 1 2. . m

  Also z
r

g
=

ω2 2

2

1 2
0 2

2 9 81

2 2

.
.

.
=

×
×

ω

∴ =
× ×

=ω 1 2 2 9 81

0 2
24 26

2

. .

.
. rad/s

  Thus 
2

60
24 26

π N
= .

∴ =
×

=N
24 26 60

2

.

π
231.66 rpm

 Example 8.3  An open cylindrical tank of diameter 0.5 m and height 0.9 m is completely filled with water. It spins about 
its vertical axis at 104 rpm. Determine the water left in the tank when it reaches to its full speed.

Solution
Refer Figure 8.4. Let d = 0.5 m, h1 = h2 = 0.9 m and N = 104 rpm. Let ω  be the angular speed and z be the height of the 
paraboloid formed at the free surface.

r
d

= = =
2

0 5

2
0 25

.
. m

ω π π
= =

× ×
=

2

60

2 104

60
10 891

N
. rad/s

z
r

g
= =

×
×

=
ω2 2 2 2

2

10 891 0 25

2 9 81
0 378

. .

.
. m

Initial volume of water in the tank is given by,

v r hinitial m= = × × =π π2
2

2 30 25 0 9 0 1767. . .

Volume of water spilled is equal to volume of paraboloid formed and it is given by,

v r zspilled m= = × × × =
1

2

1

2
0 25 0 378 0 03712 2 3π π . . .

Thus, the volume of water left is given by,

v v v= − = − =initial spilled 0 1767 0 0371. . 0.1396 m3

 Example 8.4  An open cylindrical tank of diameter 1 m containing 100 litres of milk is used as a cream separator. 
Determine the smallest height of the vessel so that it can be rotated at 120 rpm about its vertical axis without any spillage 
of milk over the sides.
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 Vortex Flow 8.7

Solution
Refer Figure 8.4. Let d = 1 m, v = 100 litres = 0.1 m3 and N = 120 rpm.

Let ω  be the angular speed, h1 be the height of milk in the vessel and h2 be the smallest height of the vessel. Let z be 
the milk surface elevation at the outer edge above vortex O and thus, OC z= /2.

A d m= = × =
π π π
4 4

1
4

2 2 2

h
v

A1
0 1

4
0 1273= = =

.

( )
.

π /
m

ω π π
= =

× ×
=

2

60

2 120

60
12 57

N
. rad/s

r
d

= = =
2

1

2
0 5. m

Since z h h
r

g
= − =2

22 1

2 2

( )
ω

Thus 2 0 1273
12 57 0 5

2 9 812

2 2

( . )
. .

.
h − =

×
×

∴ =
×

× ×
+ =h2

2 212 57 0 5

2 2 9 81
0 1273

. .

.
. 1.134 m

 Example 8.5  An open cylindrical tank of diameter 0.24 m and height 1 m contains water up to a height of 0.74 m. 
 Determine (i) the speed at which the cylinder may be rotated about its vertical axis so that the axial depth becomes zero.  
Also determine (ii) the difference in total pressure at the sides of the cylinder and (iii) at the bottom of cylinder due to 
rotation.

Solution

 (i) Refer Figure 8.5. Let D = 0.24 m, h2 = 1 m and h1 = 0.74 m.

  Let ω  be the angular speed, N be its corresponding speed in rpm and  
R = 0.24/2 = 0.12 m.

  When axial depth become zero, the depth of paraboloid is given by the 
following expression.

z h= =2 1 m

  Since z
R

g
=

ω2 2

2

ω2 20 12

2 9 81
1

×
×

=
.

.

∴ =
×

=ω 2 9 81

0 12
36 912

2

.

.
. rad/s

A B

B′A′

O

ω

h2 = z
h1

D

rdr

Figure 8.5
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  Thus 
2

60
36 912

π N
= .

∴ =
×

=N
36 912 60

2

.

π
352.484 rpm

 (ii) Refer Figure 8.5. Let F1 and F2 be the total pressure forces before and after rotation of the cylinder, respectively. Let A 
be the surface area of the sides of the cylinder in contact with water, hG be the height of centre of gravity of the above 
area and ΔF  be the increase in pressure force.

  Since F gAh g Rh hw G w1 1 12 2= = × ×ρ ρ π( ) ( )/

∴ =
× × × × ×

=F1 3

1000 9 81 2 0 12 0 74 0 74 2

10
2 0252

. ( . . ) ( . / )
.

π
kN

  After rotation, the height of water on the sides of the cylinder becomes equal to the height of the cylinder. Thus, 
A Rh= 2 2π  and h hG = 2 2/ .

  Since F gAh g Rh hw G w2 2 22 2= = × ×ρ ρ π( ) ( )/

∴ =
× × × × ×

=F2 3

1000 9 81 2 0 12 1 1 2

10
3 6983

. ( . ) ( / )
.

π
kN

ΔF F F= − = − =2 1 3 6983 2 0252. . 1.6731 kN

 (iii) Refer Figure 8.5 and the pressure force on the bottom is given by,

F gAh g D hw G w1
2

14= = × ×ρ ρ π( )/

∴ =
× × × ×

=F1

2

3

1000 9 81 4 0 24 0 74

10
0 3284

. ( ) . .
.

π /
kN

  Pressure on the bottom after rotation varies as a function of the radial distance. Take an elementary ring at the bottom 
surface of the cylinder of thickness dr at a radial distance r from the axis of the cylinder as shown in Figure 8.5.

   The force on the elementary ring is given by,

dF g rdr
r

g
r drw w2

2 2
2 32

2
= × × =ρ π ω πρ ω( )

  Thus, the total pressure force on the bottom is given by,

F r dr r dr
R

w

R

w

R

w2
2 3

0

2 3

0

2
4

4
= = =

⎛

⎝
⎜

⎞

⎠
⎟∫ ∫πρ ω πρ ω πρ ω

∴ = × × × × =F2
2

4

3
1000 36 912

0 12

4

1

10
0 2219π .

.
. kN

ΔF F F= − = − =1 2 0 3284 0 2219. . 0.1065 kN

 Example 8.6  Prove that in case of forced vortex, the rise of liquid level at the ends is equal to the fall of liquid level at 
the axis of rotation when there is no spillage.

M08 Fluid Mechanics and Hydraulic Machines XXXX 01.indd   8 4/5/2019   11:32:53 AM

Download more at Learnclax.com



 Vortex Flow 8.9

Solution
Refer Figure 8.6. Let d be the diameter of the cylinder, v be the volume of liquid 
in cylinder, ω  be the angular speed, AB be the free liquid surface before rotation 
and ′ ′A OB  shows the new free surface after attaining steady state.

Let z1 be the fall of liquid at the centre from AB and z2 be the rise of liquid at 
the outer edge above AB.

	 v r h z= +π 2
1( )  (i)

When the cylinder is rotated, the volume of liquid is given by the following 
relation.

v A B= ′ ′ −Volume of cylinder upto Volume of paraboloid

v r h z z r z z r h r z z
r

z z= + + − + = + + − +π π π π π2
1 2

2
1 2

2 2
1 2

2

1 2
1

2 2
( ) ( ) ( ) ( )

	
v r h

r
z z= + +π π2

2

1 22
( )  (ii)

Thus π π π
r h z r h

r
z z2

1
2

2

1 22
( ) ( )+ = + +  [From (i) and (ii)]

π π π π π
r h r z r h

r
z

r
z2 2

1
2

2

1

2

22 2
+ = + +

π π π
r z

r
z

r
z2

1

2

1

2

22 2
− =

π πr z r z2
1

2
2

2 2
=

∴ z z1 2==

Hence, it is proved.

 Example 8.7  An open cylindrical vessel of diameter 0.15 m and depth 0.375 m is filled with water up to the top. 
 Determine the volume of water left in the vessel when it is rotated about its vertical axis with a speed of (i) 250 rpm and 
(ii) 500 rpm.

Solution
Refer Figure 8.7. Let d = 0.15 m, h = 0.375 m, N = 250 rpm and 500 rpm. Let v be the initial volume of water.

Q T

SP

O

R U

V W

r

0.375 m

0.411 m

0.786 m

0.15 m

Imaginary parabola

Imaginary cylinder

ω

Figure 8.7

A B

B′A′

O

ω

C

h

z1

z2

Figure 8.6
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 (i) r
d

= = =
2

0 15

2
0 075

.
. m

v = × × =
π
4

0 15 0 375 0 006632 3. . . m

ω π π
= =

× ×
=

2

60

2 250

60
26 18

N
. rad/s

z
r

g
= =

×
×

=
ω2 2 2 2

2

26 18 0 075

2 9 81
0 1965

. .

.
. m

Volume of water spilled Volume of paraboloid= = v1

v d
z

1
2 2 3

4 2 4
0 15

0 1965

2
0 00174= × = × × =

π π
.

.
. m

  The volume of water left is given by,

v v v2 1 0 00663 0 00174= − = − =. . 0.00489 m3

 (ii) ω π π
= =

× ×
=

2

60

2 500

60
52 36

N
. rad/s

z
r

g
= =

×
×

=
ω2 2 2 2

2

52 36 0 075

2 9 81
0 786

. .

.
. m

  It is known that the height of parabola is greater than the height of the cylinder and thus, the shape of the imaginary 
parabola will be as shown in Figure 8.7.

  The height of imaginary parabola is given by,

h1 = 0.786 – 0.375 = 0.411 m

  The volume of water left in the vessel is given by,

v PQR STU2 = Volume of portions and

v v v POS v ROU2 3 4= − +(Volume of paraboloid ) Volume of paraboloid )(

  Now v = × × =
π
4

0 15 0 375 0 006632 3. . . m

v d
z

3
2 2 3

4 2 4
0 15

0 786

2
0 006945= × = × × =

π π
.

.
. m

  For imaginary paraboloid,

ω = = − =52 36 0 786 0 375 0 411. . . .rad/s and mz

  Since z
r

g
=

ω2 2

2

   0 411
52 36

2 9 81

2 2

.
.

.
=

×
×

r
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∴ =
× ×

=r
0 411 2 9 81

52 36
0 0542

2

. .

.
. m

v r z4
2 2 31

2

1

2
0 0542 0 411 0 001896= = × × =π π . . . m

∴ = − + = − + =v v v v2 3 4 0 00663 0 006945 0 001896. . . 0.001581 m3

8.5 ❐ ROTATION OF LIQUID IN A CLOSED CYLINDRICAL VESSEL
A cylindrical vessel of radius R closed at the top containing liquid up to some level (h1) is shown in Figure 8.8(a). When 
it is given a rotation ( ω1 ), the shape of paraboloid of revolution will be as shown in Figure 8.8(b). As the speed of rotation 
is increased to w2, the shape of the paraboloid will be different as illustrated in Figure 8.8(c). In this case, the radius (r) of 
the parabola at the top of the cylinder and the height of the parabola (z) are not known. These two parameters can be found 
out by equating the volume of air before rotation (Figure 8.8a) and after rotation (Figure 8.8c).

O O

2ω1ω

z
r

h1

h2

(a) (b) (c)

Figure 8.8 Rotation of liquid in a closed cylinder

	 Volume of air before rotation = −π R h h2
2 1( )  (8.15)

	 Volume of air after rotation = ( / )1 2 2π r z  (8.16)

Simplifying the Equations (8.15) and (8.16), we get:

	 π πR h h r z2
2 1

21

2
( )− =  (8.17)

The height of the paraboloid is given by,

	 z
r

g
=

ω2
2 2

2
 (8.18)

By solving the Equations (8.17) and (8.18), the unknown parameters r and z can be determined.

8.6 ❐ CLOSED CYLINDRICAL ROTATING VESSEL COMPLETELY  
FILLED WITH A LIQUID

Let a cylindrical vessel of radius R and height h be completely filled with liquid of density ρ  is given a rotation ω  as 
shown in Figure 8.9.

The pressure distribution at any radius along a horizontal plane is given by Equation (8.6) and it is given by,

∂
∂

= = =
p

r

V

r

r

r
rρ ρω ρω

2 2 2
2

∂ = ∂p r rρω2
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8.12 Chapter 8

Integrating the above expression, we get:

	
∂ = ∂∫ ∫p r rρω2

	 p
r

=
ρω2 2

2
 (8.19)

Consider an elementary ring of radius r and width dr on the top of the 
vessel (Figure 8.9). The pressure force on the ring is given by the prod-
uct of pressure and area as given below.

dF p rdr
r

rdr r drt = × = × =2
2

2
2 2

2 3π ρω π ρω π

The total force on the top of the vessel (Ft) can be obtained by integrat-
ing the above expression and it is given below.

	
dF r drt

R

∫ ∫= ρω π2 3

0

	 ∴ =
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=F
r R

t

R

ρω π ρω π2
4

0

2 4

4 4
 (8.20)

The total force acting on the bottom of the vessel (Fb) is given by the sum of Ft and weight of liquid in the vessel as 
 represented below.

	 F
R

g R hb = +
ρω π ρ π

2 4
2

4
 (8.21)

 Example 8.8  A cylindrical vessel closed at both ends is 0.25 m in diameter and 1.5 m deep. It is filled with a liquid 
up to a height of 1 m. Determine (i) the height of paraboloid formed, if it is rotated about its vertical axis at 240 rpm and  
(ii) speed of rotation of the vessel, when axial depth of liquid is zero.

Solution

 (i) Refer Figure 8.10(a) and (b). Let D = 0.25 m, h2 = 1.5 m, h1 = 1 m and N = 240 rpm. Let r be the radius of the 
 paraboloid and z be its height.

ω

z

(a) (b) (c)

r r
ω

h1

h2
h2

D

Figure 8.10

ω

h

R

rdr

Figure 8.9  Rotation of a closed cylinder  
completely filled with a liquid
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 Vortex Flow 8.13

ω π π
= =

× ×
=

2

60

2 240

60
25 133

N
. rad/s

z
r

g

r
r= =

×
×

=
ω2 2 2 2

2

2

25 133

2 9 81
32 195

.

.
.

	
r

z2

32 195
=

.
 (i)

R
D

= = =
2

0 25

2
0 125

.
. m

Volume of air before rotation Volume of air after rotation=

  or π πR h h r z2
2 1

21

2
( )− =

π π× × − =0 125 1 5 1
1

2
2 2. ( . ) r z

	 r z2 0 015625= .  (ii)

	

z
z

32 195
0 015625

.
.× =   [From (i) and (ii)]

z2 0 50305= .

∴ = =z 0 50305. 0.7093 m

 (ii) Refer Figure 8.10(c). We know that z = 1.5 m. Let r be the radius of the paraboloid and ω  be the speed of rotation.

  Since z
r

g
=

ω2 2

2

   1 5
2 9 84

2 2

.
.

=
×

×
ω r

	 ω2 2 29 43r = .  (i)

Volume of air before rotation Volume of air after rotation=

  or π πR h h r z2
2 1

21

2
( )− =

π π× × − = × ×0 125 1 5 1
1

2
1 52 2. ( . ) .r

	
r2

20 125 0 5 2

1 5
0 01042=

× ×
=

. .

.
.  (ii)
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8.14 Chapter 8

	 ω2 0 01042 29 43× =. .   [From (i) and (ii)] 

∴ = =ω 29 43

0 01042
53 145

.

.
. rad/s

  Thus 
2

60
53 145

π N
= .

∴ =
×

×
=N

53 145 60

2

.

π
507.5 rpm

 Example 8.9  A cylindrical vessel closed at both ends is 0.24 m in diameter and 0.3 m deep is completely filled with a 
liquid of specific gravity 0.86. Determine the total pressure force exerted by the liquid on the top and bottom of the vessel 
when it is rotated about its vertical axis at 300 rpm.

Solution
Let D = 0.24 m, h = 0.3 m, S = 0.86 and N = 300 rpm.

R
D

= = =
2

0 24

2
0 12

.
. m

ω π π
= =

× ×
=

2

60

2 300

60
31 416

N
. rad/s

ρ ρ= = × =S w 0 86 1000 860 3. kg/m

The total force on the top of the vessel (Ft) is given by,

F Rt = = × × × × =
1

4

1

4
860 31 416 0 122 4 2 4ρω π π. . 138.234 N

The total force acting on the bottom of the vessel (Fb) is given by,

F F F g R hb t t= + = +Weight of liquid in the vessel ρ π 2

∴ = + × × × =Fb 138 234 860 9 81 0 12 0 32. . . .π 252.733 N

 Example 8.10  A cylindrical steel vessel closed at both ends is 0.6 m in radius and 2.4 m deep is completely filled with 
water. The vessel consists of 0.5 cm thick steel plates which can withstand an allowable stress of 3.25 ×	105 kPa. Determine 
the speed of rotation of the vessel at which the water pressure bursts its sides under hoop tension.

Solution
Let R = 0.6 m, h = 2.4 m, t = 0.5 cm = 0.005 m and ft = ×3 25 105. kPa . Let N be the speed of rotation required to burst 
the vessel.

The maximum permissible pressure is given by,

p
f t

R
t

max
. .

.
.= =

× × ×
= ×

3 25 10 10 0 005

0 6
2 708 10

5 3
6 2N/m

The centrifugal pressure head due to rotation is given by,

p

g

R

gwρ
ω

=
2 2

2
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 Vortex Flow 8.15

Thus p
g R

g
w= =

× ×
×

=
ρ ω ω ω

2 2 2 2
2

2

1000 9 81 0 6

2 9 81
180

. .

.

For the cylinder to burst, p p> max and it is given by,

180 2 708 102 6ω > ×.

ω >
×2 708 10

180

6.

ω > 122 656. rad/s

Thus 
2

60
122 656

π N
> .

N >
×122 656 60

2

.

π

∴ N > 1171.28 rpm

 Example 8.11  A cylindrical steel vessel closed at both ends is 0.1 m in radius and it is completely filled with water. 
If the vessel rotates at 1240 rpm about its vertical axis, then determine the difference in pressure for a horizontal plane 
between (i) its circumference and at a radial distance of 0.05 m and (ii) its circumference and the centre.

Solution

Let mR2 0 1= . , N = 1240 rpm and R1 0 05= . m.

ω π π
= =

× ×
=

2

60

2 1240

60
129 85

N
. rad/s

 (i) The centrifugal pressure head difference due to rotation is given by,

p p

g

R R

gw

2 1
2

2
2

1
2

2

−
=

× −
ρ

ω ( )

( )
( )

p p
R Rw

2 1

2
2

2
1
2

2
− =

−ρ ω

∴ − =
× × −

=( )
. ( . . )

p p2 1

2 2 21000 129 85 0 1 0 05

2
63.23 kN/m2

 (ii) For this case, R1 0=  and it is given by,

∴ − = =
× ×

=( )
. .

p p
Rw

2 1

2
2

2 2 2

2

1000 129 85 0 1

2

ρ ω
84.305 kN/m2

 Example 8.12  A cylindrical shaped vessel closed at both ends contains water up to a height of 0.64 m. The diameter of 
the vessel is 0.2 m and its length is 1 m. If the vessel rotates at 600 rpm, then determine the area uncovered at the bottom 
of the vessel.
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8.16 Chapter 8

Solution
 (i) Refer Figure 8.11. Let h1 0 64= . m , D = 0 2. m, R = =0 2 2 0 1. ./ m, h2 1= m and N = 600 rpm .

  Let Auncovered  be the area uncovered at the base, z1 and z2 be the portions of the height of the imaginary parabola as 

shown in Figure 8.11.

ω π π
= =

× ×
=

2

60

2 600

60
62 832

N
. rad/s

  If the tank is not closed at the top and it is long enough, then the height of parabola corresponding to ω = 62 832. rad/s  
is derived as follows.

z
r

g
= =

×
×

=
ω2 2 2 2

2

62 832 0 1

2 9 81
2 0122

. .

.
. m

z z z= + + =1 21 2 0122.

	 z z1 2 1 0122+ = .  (i)

  For the paraboloid VOW, we get:

1
2

62 832

2 9 81
201 221

2
2

2 2
2

2

2
2+ = =

×
×

=z
r

g

r
r

ω .

.
.

	
r

z
2

2 11

201 22
=

+
.

 (ii)

  For the paraboloid XOY, we get:

	
z

r

g

r
r1

2
1
2 2

1
2

1
2

2

62 832

2 9 81
201 22= =

×
×

=
ω .

.
.  (iii)

Volume of air before rotation Volume of air after rotation=

  or π π πR h h r z r z2
2 1 2

2
1 1

2
1

1

2
1

1

2
( ) ( )− = + −

π π
× × − = + −0 1 1 0 64

2
12

2
2

1 1
2

1. ( . ) [ ( ) ]r z r z

ω

1 m

P Q

RS

T U

V W

O

X Yz1

z2

r1

r2

P Q

RS

h2
h1

z

Figure 8.11
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 Vortex Flow 8.17

  Substituting the value of expression (ii) in the above expression, we get:

	
0 01131

2

1

201 22
11

1 1
2

1.
( )

.
( )=

+
+ −⎡

⎣⎢
⎤
⎦⎥

π z
z r z  (iv)

  Substituting the value of expression (iii) in expression (iv), we get:

0 01131
2

1 201 22

201 22
1 201 22 201 221

2

1
2

1
2

1
2.

( . )

.
( . ) .=

+
+ − ×

⎡

⎣

π r
r r r⎢⎢

⎢

⎤

⎦
⎥
⎥

0 01131 2 201 22
1 201 22 201 221

2 2 2
1
4. .

( . ) ( . )
× ×

= + −
π

r r

1 449 1 402 44 40489 49 40489 491
2

1
4

1
4. ( . . ) .= + + −r r r

402 44 0 449
0 449

402 44
0 0011161

2
1
2. .

.

.
.r r= ⇒ = =

∴ = = × =A runcovered π π1
2 0 001116. 0.003506 m2

 Example 8.13  A cylindrical shaped vessel closed at both ends contains water up to a height of 0.9 m. The diameter of 
the vessel is 0.4 m and its length is 1.2 m. If the vessel rotates at 275 rpm and the air above the water surface is at a pressure 
of 70.2 kPa, then determine the pressure head at the bottom of the vessel (i) at the centre and (ii) at the edge.

Solution

Refer Figure 8.12. Let h1 = 0.9 m, D = 0 4. m,  h2 1 2= . ,m  N = 275 rpm  and p = 70 2. kPa.

Let r1 and z1 be the radius and height of the parabola VOW, respectively and R and z2 be the corresponding values of 
the parabola TOU.

r R
D

2 2

0 4

2
0 2= = = =

.
. m

ω π
=

× ×
=

2 275

60
28 8. rad/s

z
r

g

r
r1

2
1
2 2

1
2

1
2

2

28 8

2 9 81
42 3= =

×
×

=
ω .

.
.

ω

1.2 m

P Q

RS

T U

V W

O

r1

P Q

RS

h2
h1

R

z1

z2

R

Figure 8.12
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8.18 Chapter 8

z
r

g2

2
2

2 2 2

2

28 8 0 2

2 9 81
1 691= =

×
×

=
ω . .

.
. m

Volume of air before rotation Volume of air after rotation=

  or π πR h h r z2
2 1 1

2
1

1

2
( )− =

π π× × − = × ×0 2 1 2 0 9
1

2
42 32

1
2

1
2. ( . . ) .r r

0 2 0 3 2 42 32
1
4. . .× × = r

∴ =
× ×⎛

⎝
⎜

⎞

⎠
⎟ =r1

2 1 4
0 2 0 3 2

42 3
0 15434

. .

.
.

/

m

z1
242 3 0 15434 1 01= × =. . . m

  Head due to air pressure is given by,

h
p

gw
= =

×
×

=
ρ

70 2 10

1000 9 81
7 156

3.

.
. m

 (i) Pressure head at the centre of the bottom of the vessel is given by,

h h h zcentre = + − = + − =( ) . ( . . )2 1 7 156 1 2 1 01 7.346 m of water

 (ii) Pressure head at the edge of the bottom of the vessel is given by,

h h z h zedge = + + −[ ( )]2 2 1

∴ = + + − =hedge 7 156 1 691 1 2 1 01. [ . ( . . )] 9.037 m of water

8.7 ❐ EQUATION OF FREE VORTEX FLOW
For free vortex flow, we have Equation (8.5a) as given below.

V
C

r
=

Substituting the value of V in Equation (8.9), we get:

	 dp
C r

r
dr g dz

C

r
dr g dz= − = −ρ ρ ρ ρ( )/ 2 2

3
 (8.22)

Let r1 and r2 be the radii of two points 1 and 2, respectively, in the fluid from the central 
axis and z1 and z2 be the corresponding heights from the bottom of the vessel (Figure 8.13).

Integrating Equation (8.22) between the points 1 and 2, we get:

dp C
dr

r
g dz

1

2
2

3
1

2

1

2

∫ ∫ ∫= −ρ ρ

r1

P Q

S

R

r2 2

1

z1 z2

R

Figure 8.13
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p p C
r

g z z C
r

g2 1
2

3 1

1

2

2 1
2

2
1

2

3 1

1

2
− =

− +

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

− − = −⎡
⎣⎢

⎤
⎦⎥

−
− +

ρ ρ ρ ρ( ) (( )z z2 1−

p p
C

r r
g z z

C

r

C

r
2 1

2

2
2

1
2 2 1

2

1
2

2

2
22

1 1

2
− = − −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

− − = −
⎡

⎣
⎢
⎢

⎤

⎦

ρ ρ ρ
( ) ⎥⎥

⎥
− −ρg z z( )2 1

p p V V g z z2 1 1
2

2
2

2 12
− = − − −

ρ ρ( ) ( )

p p

g

V V

g
z z2 1 1

2
2

2

2 12

−
=

−
− −

ρ
( )

	
p

g

V

g
z

p

g

V

g
z1 1

2

1
2 2

2

22 2ρ ρ
+ + = + +  (8.23)

Therefore, the Equation (8.23) is the Bernoulli’s equation which is also applicable to free vortex flow.

 Example 8.14  In the free cylindrical vortex water flow at a point 0.2 m radius, the velocity and pressure are 7.5 m/s and 
155 kPa, respectively. Determine the pressure at a radius of 0.3 m.

Solution
Let r1 0 2= . ,m  V1 7 5= . m/s,  p1 155= kPa  and r2 0 3= . m. 	Let p2 be the pressure at point 2.

	
V

V r

r2
1 1

2

7 5 0 2

0 3
5= =

×
=

. .

.
m/s   [ ]∵Vr C= 	

Since 
p

g

V

g

p

g

V

gw w

1 1
2

2 2
2

2 2ρ ρ
+ = +   [ ]∵ z z1 2= 	

155 10

1000 9 81

7 5

2 9 81 1000 9 81

5

2 9 81

3 2
2

2×
×

+
×

=
×

+
×.

.

. . .

p

18 6672
9810

1 27422. .= +
p

∴ =
− ×

=p2 3

18 6672 1 2742 9810

10

( . . )
170.6253 kN/m2

 Example 8.15  At a point which is at a radius of 0.25 m and height 0.125 m, in the free cylindrical vortex fluid flow, the 
velocity and pressure are 12 m/s and 125 kPa, respectively. If the fluid in air having a density of 1.25 kg/m3, then determine 
the pressure at a radius of 0.5 m and at a height of 0.25 m.

Solution
Refer Figure 8.13. Let r1 0 25= . ,m  z1 0 125= . m, V1 12= m/s, p1 125= kPa, ρ = 1 25 3. ,kg/m  r2 0 5= . m and z2 0 25= . m.

Let p2 be the pressure at point 2.

	 V
V r

r2
1 1

2

12 0 25

0 5
6= =

×
=

.

.
m/s   [ ]∵Vr C= 	
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Since 
p

g

V

g
z

p

g

V

g
z1 1

2

1
2 2

2

22 2ρ ρ
+ + = + +

 
125 10

1 25 9 81

12

2 9 81
0 125

1 25 9 81

6

2 9 81
0 25

3 2
2

2×
×

+
×

+ =
×

+
×

+
. . .

.
. . .

.
p

10201 1444
12 2625

2 0852.
.

.= +
p

∴ =
− ×

=p2 3

10201 1444 2 085 12 2625

10

( . . ) .
125.066 kN/m2

Summary

 1. The flow of a rotating mass of fluid is called vortex flow.

 2. Forced vortex flow: The fluid mass is made to rotate by means 
of some external constant torque and thereby, the fluid rotates 
at constant angular velocity ( )ω  which is given by the rela-
tion V r= ω , here V and r be the tangential velocity and 
radius, respectively.

 3. Free vortex flow: No external torque is required to rotate the 
fluid mass. The relation between the tangential velocity and 
radius is given by the relation Vr = C, here C is a constant and 
it is also known as vortex strength.

 4. Cylindrical vortex flow: The fluid mass rotates in concen-
tric circles which can be described by concentric circular 
streamlines.

 5. Spiral vortex flow: It is a combination of cylindrical vortex 
flow and radial flow.

 6. Pressure variation in the horizontal plane of a vortex flow: 
∂ ∂ =p r V r/ /ρ( )2 .

 7. Pressure variation in the vertical plane of a vortex flow: 
∂ ∂ = −p z g/ ρ .

 8. Fundamental equation for vortex flow: dp V r dr gdz= −ρ ρ( ) .2 /

 9. In forced vortex flow, the height of parabola is given by 

z V g r g= =2
2 2

2
22 2/ /( ) .ω

 10. The total pressure force on the top of the completely filled 

vessel rotating about its axis is given by F Rt = ( ) .1 4 2 4/ ρω π
 11. The total pressure force on the bottom of the com-

pletely filled vessel rotating about its axis is given by 

F R g R hb = +( ) .1 4 2 4 2/ ρω π ρ π

 12. The Bernoulli’s equation is applicable to free vortex flow.

Multiple-choice Questions

 1. Which of the following is an example of free vortex flow?
(a) A whirlpool in a river.
(b) Flow of liquid around a circular bend.
(c) Flow of liquid through a hole provided at the bottom of a 

container.
(d) All the above.

 2. The flow of liquid through the hole in the bottom of the 
 washbasin is an example of
(a) Forced vortex flow.
(b) Free vortex flow.
(c) Uniform flow.
(d) Steady flow.

 3. For a forced vortex
(a) Velocity increases with radius.
(b) Velocity decreases with radius.

(c) Fluid rotates as a solid mass.
(d) None of the above.

 4. A tornado has greater destructive force near the centre than at 
its sides because
(a) Velocity is very low.
(b) Pressure is very low.
(c) Pressure is very high.
(d) Velocity is very high.

 5. In case of forced vortex flow, the height of parabola varies 
with
(a) Fourth power of radius.
(b) Cubic power of radius.
(c) Square of radius.
(d) Directly proportional to radius.
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Review Questions

 1. What do you mean by free and forced vortex? Give some 
practical examples of it.

 2. Discuss the various types of vortex flow.

 3. Derive the fundamental equation for vortex flow and also 
obtain an expression for free surface of a forced vortex.

 4. Prove that Bernoulli’s equation for an ideal fluid also satisfies 
free vortex flow.

 5. Derive expressions for the total pressure force on the top and 
bottom of a closed cylindrical vessel completely filled with a 
liquid when rotated about its vertical axis.

 6. Prove that in case of forced vortex, the rise of liquid level 
at the ends is equal to the fall of liquid level at the axis of 
rotation.

 7. Prove that in case of closed cylindrical vessel, the speed at 
which water touches the top lid is ( )2 1 2h h/  times the speed at 
which the air touches the base, where h1 is the height of air 
column in the vessel and h2 is the height of the vessel.

Problems

 1. An open cylindrical vessel 200 cm high and 50 cm in diam-
eter is filled with water up to 150 cm height. Determine the 
rotational speed in rpm of the vessel about its axis so that the 
water does not spill out.

[Ans. 169.19 rpm]

 2. A right circular cylinder of radius r and height h is open at the 
top and completely filled with water. Determine its speed of 
rotation in rpm about its axis so that half of the circular area 
at the bottom is exposed.

[Ans. 59 82 1. r h− rpm]

 3. A cylindrical vessel 90 cm in diameter and 2 m high open at 
top is filled with water to a depth of 1.5 m. Find the value of 
its rotation in rpm about its axis so that water level is raised 
to the brim.

[Ans. 93.9 rpm]

 4. A cylindrical vessel 18 cm in diameter and 120 cm high open 
at top is filled with water to a depth of 96 cm. Find the value 
of its maximum rotational speed in rpm about its vertical axis 
so that no water spills.

[Ans. 325.5 rpm]

 5. A cylindrical vessel 10.4 cm in diameter and 25.5 cm high 
open at top is completely filled with water when at rest. Some 
amount of water spills out when the vessel is rotated about its 
vertical axis at a speed of 300.2 rpm. Determine the depth of 
water in the vessel when it is brought to rest after rotation.

[Ans. 0.1868 m]

 6. A cylindrical vessel 100 cm in diameter is used as a cream 
separator from the milk. If it contains 850 litres of milk, then 
determine the smallest height of the vessel so that it can be 
rotated at 125 rpm about its vertical axis without any spillage 
of milk over the sides.

[Ans. 2.174 m]

 7. A cylindrical vessel 20 cm in diameter and 100 cm high open 
at top is filled with water to a depth of 60 cm. Determine the 
maximum speed in rpm with which the vessel can be rotated 
so that water just touches the centre bottom of the vessel. 
Also determine the pressure forces difference at the bottom 
and sides of the vessel.

[Ans. 422.94 rpm, 0.3085 kN, 1.972 kN]

 8. A cylindrical vessel closed at both the ends is 14 cm in diam-
eter and 100 cm high contains water up to a depth of 64 cm. 
Determine the height of paraboloid formed, if it is rotated 
about its vertical axis at a speed of 240 rpm. Also find the 
speed of rotation of the vessel, when the axial depth of water 
is zero.

[Ans. 0.3371 m, 711.9 rpm]

 9. A closed vertical cylinder 40 cm in diameter and 40 cm in 
height is completely filled with oil (specific gravity = 0.8). 
Determine the thrust of oil on the top and bottom of the 
 cylinder when the cylinder is rotated about its vertical axis at 
a speed of 200 rpm.

[Ans. 0.441 kN, 0.8355 kN]

 10. A cylindrical vessel closed at both ends contains water up to 
a depth of 40 cm. This vessel is 10 cm in radius and 60 cm 
in height. Determine the height of paraboloid formed when it 
is rotated about its vertical axis at a speed of 300 rpm. Also 
find the rotational speed when the paraboloid just touches the 
centre of the bottom of the vessel.

[Ans. 0.449 m, 401.52 rpm]

 11. A cylindrical vessel closed at both ends contains water up 
to its full depth. This vessel is 30 cm in radius and 50 cm in 
height. Determine the total pressure of water on each end if it 
is rotated about its vertical axis at a speed of 200 rpm.

[Ans. 2.789 kN, 4.176 kN]

ANSWERS TO MULTIPLE-CHOICE QUESTIONS

 1. (d) 2. (b) 3. (a) 4. (d) 5. (c)
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9.1 ❐ INTRODUCTION
A flow of a fluid which has no viscosity (i.e., μ = 0) and is incompressible (i.e., ρ = constant) is called potential flow or 
ideal fluid flow. There is no fluid in nature which behaves as ideal fluid, but water and air may be considered as ideal fluids 
under certain conditions. Therefore, potential flow is an approximation of flow where density is assumed to be constant and 
the viscosity effects are negligible. In the absence of viscosity, there cannot be any shear stresses in an ideal flow. It means 
the only stress at a point in an ideal fluid flow must be pressure and the only stress the fluid may act on the solid boundary 
must be normal to it at that point. The assumption of zero viscosity simplifies the mathematical equations of fluid motion 
significantly. In a flow field, both potential function (ϕ) and stream function (ψ ) exist. Thus, any flow can be expressed 
in the form of these two mathematical tools. In potential flow, the flow field can be represented by a potential function ϕ 
such that it satisfies the Laplace equation. The derivatives of ϕ give the velocities for two-dimensional flows. The potential 
function exists only if the flow is irrotational, i.e., the viscous effects are absent.

Due to the complex nature of fluid flow, an exact analysis of flow is very difficult and often not required for engineering 
estimation. Even with computational techniques, it is necessary to proceed by iteration, starting with a good first guess. The 
first approximation with potential flow analysis is often adequate. Thus, the simple technique of potential flow analysis has 
considerable importance in the solution of engineering problems.

In this chapter, the important cases of potential flow, namely uniform flow, source flow, sink flow, free vortex flow 
and superimposed flow are described with the help of ϕ and ψ . The superposition of flows finds many applications in 
 aerodynamics. The analysis of potential flow is restricted to steady, incompressible and two-dimensional flow mostly in 
the horizontal plane. There are two variables x and y  having components of velocity u and v, respectively in the Cartesian 
coordinates and r and α  in the polar coordinates.

9.2 ❐ UNIFORM FLOW
A uniform flow is also termed as free stream flow in which the flow velocity remains constant (or uniform) at any cross 
section. Figure 9.1(a) and Figure 9.1(b) illustrate the uniform flow parallel to x-axis and y-axis, respectively for which 
the velocity U  remains constant. The velocity U  has velocity components u and v  along x and y-axis, respectively.  
Figure 9.1(c) illustrates a uniform flow in which the uniform velocity U  is inclined at an angle α  to the x-axis. The 
 velocity components in x and y-directions are given by u U= cosα  and v U= sinα .

Chapter 9

Potential Flow 
(Ideal Fluid Flow)

M09 Fluid Mechanics and Hydraulic Machines XXXX 01.indd   1 4/5/2019   10:57:12 AM

Download more at Learnclax.com



9.2 Chapter 9

Since ψ  is a function of x and y , its total differential is given by,

d
x

dx
y

dyψ ψ ψ
=

∂
∂

+
∂
∂

Also 
∂
∂

= −
ψ
x

v  and 
∂
∂

=
ψ
y

u   [Equation 6.50]

Thus d vdx udyψ = − +  (9.1)

Integrating Equation (9.1), we get:

	 ψ = − + +vx uy k1  (9.2)

Here, k1 is constant of integration. Thus, Equation (9.2) is a family of streamlines (Figure 9.1(c)).
Since ϕ is a function of x and y , its total differential is given by,

d
x

dx
y

dyϕ ϕ ϕ
=

∂
∂

+
∂
∂

Also u
x

=
∂
∂
ϕ

 and v
y

=
∂
∂
ϕ

  [Equation 6.47]

Thus d udx vdyϕ = +  (9.3)

Integrating Equation (9.3), we get:

	 ϕ = + +ux vy k2  (9.4)

Here, k2 is the constant of integration. Equation (9.4) represents a family of potential lines which are perpendicular to the 
streamlines (due to orthogonality) as shown in Figure 9.1(c).

Case I: Uniform flow parallel to x-axis
For uniform flow parallel to the x-axis, the streamlines will be parallel to the x-axis, i.e., α = °0 . Thus, the velocity 
 components become u U U= ° =cos 0  and v U= ° =sin 0 0. Therefore, the Equation (9.2) and (9.4) is written as follows.

	 ψ = +Uy k1  (9.5)

	 ϕ = +Ux k2  (9.6)

α

x

y

u

v
U

α

Streamlines

Equipotential lines
= constantϕ

= constantψ

x

y

U

x

y

U

(a) (b) (c)

Figure 9.1 Uniform flow
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  9.3 Potential Flow 

For determining the constants k1 and k2, applying the boundary conditions, we get:

 1. At y = 0, ψ = 0 and thus, k1 0= .

 2. At x = 0, ϕ = 0 and thus k2 0= .

Therefore, the equations for streamlines and potential lines are respectively given below.

	 ψ = Uy  (9.7)

	 ϕ = Ux  (9.8)

Equation (9.7) is an equation of streamline parallel to x-axis and at a distance y from the x-axis. In this equation, Uy  
represents the volume flow rate (thickness of fluid stream is assumed unity) between that streamline and the x-axis, where 
ψ = 0. Thus, the streamlines having the values of ψ0, ψ1, ψ 2, ψ3 and ψ 4 corresponding to y = 0, y = 1, y = 2, y = 3 

and y = 4, respectively, can be plotted as shown in Figure 9.2(a).
Equation (9.8) is an equation of equipotential line (potential line) parallel to y-axis and at a distance x from y-axis. 

Thus, the potential lines having the values of ϕ0 , ϕ1, ϕ2, ϕ3  and ϕ4 corresponding to x = 0, x = 1, x = 2, x = 3 and x = 4, 

respectively, can be plotted as shown in Figure 9.2(b).
Figure 9.2(c) illustrates the plot of streamlines and equipotential lines for uniform flow parallel to x-axis. The  streamlines 

and potential lines intersect each other at right angles.
The constant of integration do not affect the flow pattern and thus, it will not be considered in the subsequent expressions.

Case II: Uniform flow parallel to y-axis
For uniform flow parallel to the y-axis, the streamlines will be parallel to the y-axis, i.e., α = °90 . Thus, the velocity 
components become u U= ° =cos 90 0 and v U U= ° =sin 90 . Therefore, the similar line equations for streamlines and 
potential lines are respectively given as follows.

	 ψ = −Ux  (9.9)

	 ϕ = Uy  (9.10)

Thus, the streamlines are parallel to y-axis and equipotential lines are parallel to x-axis. Equation (9.9) has negative sign 
that indicates that streamlines are in the downward direction. Therefore, the streamlines having the values of ψ0, ψ1, ψ 2,  

ψ3 and ψ 4 corresponding to x = 0, x = 1, x = 2, x = 3 and x = 4, respectively, can be plotted as shown in Figure 9.3(a).
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(a) (b) (c)

0ϕ 1ϕ 2ϕ 3ϕ 4ϕ

x

y

S
tream

lines

0ψ

1ψ
2ψ

3ψ
4ψ

1

2

3

4
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y
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0ψ
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4ψ
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1
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0

Figure 9.2 Uniform flow parallel to x-axis
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9.4 Chapter 9

Similarly, the potential lines having the values of ϕ0, ϕ1, ϕ2, ϕ3 and ϕ4 corresponding to y = 0, y = 1, y = 2, y = 3 and 
y = 4, respectively, can be plotted as shown in Figure 9.3(b).

Figure 9.3(c) illustrates the plot of streamlines and equipotential lines for uniform flow parallel to y-axis. The  streamlines 
and potential lines intersect each other at right angles.

Case III: Uniform flow inclined to x-axis
For uniform flow inclined at an angle α  to the x-axis (Figure 9.1(c)), the streamline and equipotential lines are respectively 
given as follows.

	 ψ = − +vx uy  (9.11)

	 ϕ = +ux vy  (9.12)

9.3 ❐ SOURCE FLOW
A source flow can be defined as the flow coming out from a single point and moving radially out in all directions at a 
 constant rate. Figure 9.4(a) shows a practical source flow in which the flow originates from a small hole in one of the two 
flat parallel plates, a unit distance apart with the fluid particles move radially outwards between the plates.

E
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Figure 9.3 Uniform flow parallel to y-axis
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  9.5 Potential Flow 

Let q  be the strength of the source which can be defined as the volume flow rate per unit depth ( )m /s2 , r  be any radius, 
ur  be the radial velocity component and uα  be the tangential velocity component.

The path of the fluid particle is purely radial and thus, uα = 0. The expression for magnitude of radial velocity at any 
radius is given below

	 u
q

rr =
2π

 (9.13)

From Equation (9.13), it can be seen that the radial velocity decreases with the increase of r and at a large distance away 
from the source it will be nearly equal to zero.

Also u
rr =

∂
∂

1 ψ
α

  [Equation 6.50(a)]

Thus 
1

2r

q

r

∂
∂

=
ψ
α π

∂
∂

=
ψ
α π

q

2

Integrating the above equation, we get:

ψ α
π

= +
q

k
2 1

If assumed that at α = 0, ψ = 0, then k1 0=  and therefore, we get the below expression.

	 ψ α
π

=
q

2
 (9.14)

When α π= 2 , ψ
π

π= =
q

q
2

2

From Equation (9.13), we have q rur= 2π  and thus, Equation (9.14) is rewritten as follows.

ψ α
π

π α
π

α α= =
×

= × =
q ru

ru Cr
r2

2

2

Here, C  is a constant. Thus, ψ  is a function of α  and the above expression indicates that the streamlines are radial lines. 
The streamlines can be plotted by taking different values of α  in radians varying from 0 to 2π  in Equation (9.14). The 
different streamlines ψ0, ψ1, ψ 2, ψ3, ψ 4, ψ5, ψ6, ψ7 and ψ8 shown in Figure 9.4(b) have been plotted by taking α = 0, 

α π= /4, α π= 2 4/ , α π= 3 4/ , α π= 4 4/ , α π= 5 4/ , α π= 6 4/ , α π= 7 4/  and α π= 2 , respectively.
In polar coordinates, the velocity component in terms of potential function is given by Equation 6.47(b) as follows.

u
rr =

∂
∂
ϕ

Using Equation (9.13), we get:

∂
∂

=
ϕ

πr

q

r2

Integrating the above equation, we get:

ϕ
π

= +
q

r k
2 2ln
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9.6 Chapter 9

If assumed that at r = 1, ϕ = 0, then k2 0= , therefore, we get:

	 ϕ
π

=
q

r
2

ln  (9.14a)

or r e q= 2πϕ /

Also ϕ
π

π
= × = × =

2

2

ru
r ru r C rr

rln ln ln

The above expression shows that ϕ is a function of r and the equipotential lines are concentric circles with the centre as 
origin of the source. Thus, the equipotential lines can be plotted by drawing concentric circles with centre at the origin of 

the source and radius r e q= 2πϕ / . The different equipotential lines ϕ0, ϕ1 and ϕ2 have been plotted by taking the values of 
r  as 1, 2 and 3, respectively, as shown in Figure 9.4(c).

Figure 9.5 shows the streamlines and equipotential lines for a source flow.

Expression for pressure distribution For deriving an expression for pressure distribution in a source flow considering 
two points 1 and 2. Let ur be the velocity and p be the pressure at the point 1 which is at radius r  and the corresponding 
values at the other point (i.e., point 2) which is at a large distance away from the source are ur = 0 and p∞. Applying 
 Bernoulli’s equation, we get the below expression.

p

g

u

g

p

g g
r

ρ ρ
+ = +∞

2 2

2

0

2
 [ ]∵ z z1 2=

	 p p
u q

r

q

r

r− = − = − ×
⎛
⎝⎜

⎞
⎠⎟

= −∞
ρ ρ

π
ρ
π

2 2 2

2 22 2 2 8
 (9.15)

Thus, the pressure increases inversely as the square of the radius from the source.

9.4 ❐ SINK FLOW
A sink flow can be defined as the flow moving radially inwards in a plane towards a point where it disappears at a constant 
rate. Sink flow is just opposite to the source flow. A practical sink flow between two parallel plates with fluid particles 
flowing towards the central hole on one of the plates is illustrated in Figure 9.6(a).
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Figure 9.5 Streamlines and equipotential lines for a source flow
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  9.7 Potential Flow 

The pattern of streamlines and equipotential lines of a sink flow are the same as that of a source flow. The strength of a 
sink flow is taken negative ( )−q . Thus, the equations for ψ  and ϕ can be derived by replacing q in source flow with −q . 
Therefore, for a plane sink flow, we get the below expression.

	 u
q

rr = −
2π

 (9.16)

The stream function and potential function for a sink flow would be as follows.

ψ α
π

= −
q

2
, ϕ

π
= −

q
r

2
ln  and r e q= −2πϕ /

Figure 9.6(b) shows the streamlines and equipotential lines for a sink flow. The pressure variation in a plane sink flow is 
given by the same expression as in a plane source flow given by Equation (9.15).

9.5 ❐ FREE VORTEX FLOW
A free vortex flow is a purely circulatory flow such that the centre of the vortex is singular point with a circulation Γ . 
Generally, the circulation is taken positive in an anticlockwise direction. In a plane vortex flow, the fluid particles move 
in concentric circles. While moving round, if the fluid particles do not rotate about their own axis, the flow is known as 
 irrotational free vortex flow. A free vortex is an irrotational flow at all points except at the singular point.

For a free vortex flow (purely circulatory flow), we get the below expression.

	 u r Cα =  (i)

Here, C  is the vortex strength and it is defined as C = Γ /( )2π  and uα  is the tangential velocity at any radius r  from the 
centre. Thus, expression (i) can be rewritten as follows.

u rα π
=

Γ
2

	 ∴ =Γ 2π αru  (9.17)
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9.8 Chapter 9

For a free vortex flow, the tangential velocity component and radial velocity component are respectively given as 
u rα π= Γ /2  and ur = 0.

Therefore, expression (i) can be written as follows.

	 u
C

rα =  (ii)

Substituting the value of uα  from Equation (6.50(a)) in expression (ii), we get:

−
∂
∂

=
ψ
r

C

r

Integrating the above expression, we get:

	 ψ
π

= − = −C r rln ln
Γ
2

 (9.18)

From Equation (9.18), it can be seen that the stream function is a function of radius ( )r  and it would be a constant for 

a given value of r . Thus, streamlines are constant radius lines which are concentric circles with radius r e= −2πψ /Γ  as 
shown in Figure 9.7(a).

Now substituting the value of uα  from Equation (6.47(b)) in expression (ii), we get the following expression.

1

r

C

r

∂
∂

=
ϕ
α

∂
∂

=
ϕ
α

C

Integrating the above expression, we get:

	 ϕ α
π

α= =C
Γ
2

 (9.19)

From Equation (9.19), it can be seen that the velocity potential function is a function of angular displacement ( )α  and it 
would be a constant for a given value of α . Thus, equipotential lines are radial lines drawn from the centre as shown in 
Figure 9.7(b). The pattern of streamlines and equipotential lines are similar to that for the source except that ψ  and ϕ lines 
are interchanged as illustrated in Figure 9.8.
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  9.9 Potential Flow 

 Example 9.1  A source flow between two flat parallel plates originates from a small hole of diameter 0.05 m in the lower 
plate, 1.5 m distance apart with the water particles move radially outwards between the plates. If water enters the space 
between the plates at a rate of 1.2 m3/s, then determine (i) the strength of the source and velocity at a radius of 0.4 m from 
the centre of the plate, (ii) pressure at the given location if water pressure at the inlet is 225 kPa and (iii) stream function 
for the streamlines at 30° and 90° from the streamline with ψo = 0.

Solution
Let d1 0 05= . m, b = 1 5. m, Q = 1 2. m /s3 , r2 0 4= . m , p1 225= kPa, α1 30= °  and α2 90= °.

r
d

1
1

2

0 05

2
0 025= = =

.
. m

 (i) q
Q

b
= = =

1 2

1 5
0 8

.

.
. m /s2

 (ii) ( )
.

.
.u

q

rr 1
12

0 8

2 0 025
5 093= =

×
=

π π
m/s

( )
.

.
.u

q

rr 2
22

0 8

2 0 4
0 3183= =

×
=

π π
m/s

p

g

u

g
z

p

g

u

g
z

w

r

w

r1 1
2

1
2 2

2

22 2ρ ρ
+ + = + +

( ) ( )
 [Bernoulli’s equation]

225 10

1000 9 81

5 093

2 9 81 1000 9 81

0 3183

2 9 81

3 2
2

2×
×

+
×

=
×

+
×.

.

. .

.

.

p
 [ ]∵ z z1 2=

24 25783
9810

0 0051642. .= +
p

∴ =
− ×

=p2 3

24 25783 0 005164 9810

10

( . . )
237.919 kPa

 (iii) Let ψ1 and ψ 2 be the stream functions at α1 30= °  and α2 90= °, respectively.
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Figure 9.8 Streamlines and equipotential lines for a free vortex flow
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9.10 Chapter 9

ψ
α
π π

π
1

1

2

0 8

2

30

180
= = ×

° ×
=

q .
0.0667 m / s2

ψ
α
π π

π
2

2

2

0 8

2

90

180
= = ×

° ×
=

q .
0.2 m /s2

 Example 9.2  If a two-dimensional seawater (specific gravity = 1.02) motion is given by the stream function ψ = ln r , 
then find the radial pressure gradient at radius r = 1 2. m.

Solution
Let Sseawater = 1 02. , ψ = ln r  and r = 1 2. m.

ρ ρ= = × =S wseawater kg/m1 02 1000 1020 3.

Since ψ
π

= = −ln lnr r
Γ
2

 [Using Equation (9.18)]

or ln lnr
ru

r= −
2

2

π
π

α

Thus ru u
rα α= − ⇒ = −1
1

The radial pressure gradient for a vortex motion is given by,

dp

dr

u

r

r

r r
= =

−
= = =

ρ ρ ρα
2 2

3 3

1 1020

1 2

( )

.

/
590.28 N/m3

9.6 ❐ SUPERIMPOSED FLOW
For an irrotational flow, both the stream function and the velocity potential function satisfy the Laplace equation, which is 
a linear partial differential equation. The linearity of the operator implies that if various basic flows are combined together, 
then the velocity potentials and stream functions can be combined to form new potentials and stream functions. Thus, the 
principle of superposition helps in the study of complex flows by assuming as if it is made from the superposition of the 
basic flows for which the potential and stream functions are known. The pressure distribution can be obtained by applying 
Bernoulli’s equation. Therefore, the flow pattern due to a uniform flow, a source flow, a sink flow and a free vortex flow 
can be superimposed in any linear combination to obtain a resultant flow which closely resembles the flow around bodies. 
The resultant flow will also be potential flow. In the following sections, some potential flow solutions by superposition are 
described.

9.6.1 Source and Uniform Flow (Flow Past a Half Body)
Consider a uniform flow of velocity U  parallel to the x-axis (Figure 9.9(a)) and a source flow of strength q placed at the 
origin ‘O’ (Figure 9.9(b)).

The resulting flow pattern obtained from the combination of a uniform flow and a source flow is shown in Figure 9.10 
and it is known as flow past a half body. Let a point P x y( , ) lie in the resultant flow field with polar coordinates r  and α .

The stream function ψ  and the velocity function ϕ for the combined flow is given by,

	 ψ ψ ψ α
π

α α
π

= + = + = +uniform source Uy
q

Ur
q

2 2
sin  (9.20)

	 ϕ ϕ ϕ
π

α
π

= + = + = +uniform source Ux
q

r Ur
q

r
2 2

ln cos ln  (9.21)
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  9.11 Potential Flow 

The radial velocity from the source decreases with increase in radial distance from it. The velocity of uniform flow and that 
due to source are equal and opposite to each other at a distance on the left side of the source from the origin O lying on the 
x-axis. Thus, the resultant velocity will be zero at a point known as stagnation point which is denoted by S. At the stagnation 
point (S), the radial distance becomes r rs=  and α π= .

At the stagnation point, the equation for the streamline passing through S can be given by substituting α π=  and r rs=  
in Equation (9.20) as follows.

	 ψ π π
πs sUr

q q
= + =sin

2 2
 (9.22)

The flow particles issued from the source cannot go further to the left of the stagnation point S. These are carried along 
the contour ASA′  which separates the source flow from the uniform flow. The curve ASA′  can be considered as a solid 
 boundary of a round nosed body, such as an island or bridge pier around which the uniform flow is forced to pass. The 
contour ASA′  is known as the Rankine half body (or plane half body), because it has only the leading point and it trails 
to infinity at the downstream end. A body is called half body if its surface is not closed at one end, for example, a bullet, 
spear, etc.

Since no fluid mass crosses a streamline, a streamline is a virtual solid surface. Thus, the composite flow consists of 
flow over a plane half body ( )ASA′  outside ψ = q/2 and the source flow within the plane half body. Therefore, the equation 
for dividing streamline ( )Equation of curve ASA′  may be obtained by substituting ψ = q/2  in Equation (9.20) as follows.

Uy
q q

+ =
α
π2 2

(a) (b)

Source flowUniform flow

O
+

U

x

y

Figure 9.9 (a) Uniform flow ( b) Source flow

OSU

y

x

Equipotential lines
= constantϕ

rs

q
ymax =

2U

Streamlines
= constantψ

Half body

= 0ψ
2

q
=ψ

A′

A

2

q
=ψ

2

q
=ψ

α

P(x, y)

r
y

x

y

Figure 9.10 Flow past a half body
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9.12 Chapter 9

	 y
U

q q q

U

q

U
= −⎡

⎣⎢
⎤
⎦⎥

=
−

=
−1

2 2

1

2 2

α
π

α π π α
π

[ ( )] ( )/
 (9.23)

Also r
y q

U
= =

−
sin

( )

sinα
π α

π α2

From Equation (9.23), it can be observed that  y is maximum when α = 0. The principal dimensions of the half body may 
be obtained from Equation (9.23) as follows.

 1. At α = 0: y
q

U

q

Umax
( )

=
−

=
π
π

0

2 2
 (Maximum positive ordinate) (9.23a)

 2. At α π
=

2
: y

q

U

q

U
=

−
=

[ ( )]π π
π

/2

2 4
 (Upper ordinate at the origin) (9.23b)

 3. At α π= : y
q

U
=

−
=

( )π π
π2

0  (The leading point) (9.23c)

 4. At α π
=

3

2
: y

q

U

q

U
=

−
= −

[ ( )]π π
π

3 2

2 4

/
 (Lower ordinate at the origin) (9.23d)

 5. At α π= 2 : y
q

U

q

Umax
( )

=
−

= −
π π

π
2

2 2
 (Maximum negative ordinate) (9.23e)

The width of the half body at any point can be given as b y= 2 .

The velocity at any point P in the flow field is given by,

	 u
r r

Ur
q

U
q

rr =
∂
∂

=
∂

∂
+⎡

⎣⎢
⎤
⎦⎥

= +
1 1

2 2

ψ
α α

α α
π

α
π

sin cos  (9.24)

	 u
r r

Ur
q

Uα
ψ α α

π
α= −

∂
∂

= −
∂
∂

+⎡
⎣⎢

⎤
⎦⎥

= −sin sin
2

 (9.25)

The resultant velocity can be obtained by,

	 V u ur= +2 2
α  (9.26)

For determining the point of maximum velocity, put the differential of resultant velocity with respect to α  equal to zero, 
consequently, we obtain α = ± °63  and the maximum velocity would be equal to 1 25. U .

At the stagnation point, α π= , r rs= , ur = 0 and uα = 0. Thus, Equation (9.24) can be rewritten as follows.

U
q

r
U

q

rs s
cosπ

π π
+ = ⇒ =

2
0

2

	 ∴ =r
q

Us 2π
 (9.27)

The position of stagnation point S can be obtained by equating the radial and tangential velocity components given by 
Equations (9.24) and (9.25), respectively to zero as follows.

U
q

r
r

q

U
cos cosα

π
α

π
+ = ⇒ = −

2
0

2

Thus x
q

U
= −

2π
 [ cos ]∵ r xα =  (9.27a)
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  9.13 Potential Flow 

Now u Uα α= − =sin 0  or sinα = 0  or α π= 0,  [ ]∵U ≠ 0

Thus y r r= = × =sinα 0 0  (9.27b)

Therefore, the stagnation point S q U{ ( ), }− / 2 0π  is the leading point of the Rankine half body.
Let p∞  be the pressure at infinity, where the velocity is U and p be the pressure at any point P in the flow field, where 

the velocity is V. Applying Bernoulli’s equation, we have the following expressions.

p

g

V

g

p

g

U

gρ ρ
+ = +∞

2 2

2 2
 [ ]∵ z z1 2=

p

g

p

g

U

g

V

gρ ρ
− = −∞

2 2

2 2

p p U V− = −∞
ρ
2

2 2( )

The non-dimensional pressure coefficient ( )C p  is given by,

	 C
p p

U

U V

U

V

Up =
−

=
−

= − ⎛
⎝⎜

⎞
⎠⎟

∞

( )

( )( )

( )1 2

2

1 2
1

2

2 2

2

2

/

/

/ρ
ρ

ρ
 (9.28)

 Example 9.3  Flow over a plane half body is studied by superimposing a uniform flow at 6 m/s on a source at the origin. 
If a body has a maximum width of 2.4 m, then determine (i) the coordinates of the stagnation point, (ii) width of the body 
at the origin and (iii) velocity at a point ( . , )0 5 2π / .

Solution
Let U = 6 m/s, 2 2 4 1 2y ymax max. .= =m or m, r = 0 5. m  and α π= /2.

Let ( , )x y  be the coordinates at the stagnation point, b be the width of the body at the origin and V be the resultant 
velocity at the given point.

Since y
q

Umax =
2

∴ = = × × =q Uy2 2 6 1 2 14 4max . . m /s2

 (i) For the stagnation point using Equations 9.27(a) and 9.27(b), we get:

x
q

U
= − = −

×
=

2

14 4

2 6π π
.

−−0.382 m

y = 0

 (ii) The value of upper coordinate at the origin ( )i.e., at /α π= 2  is given by,

y
q

U
= =

×
=

4

14 4

4 6
0 6

.
. m

b y= = × =2 2 0 6. 1.2 m

 (iii) u U
q

rr = + = +
×

=cos cos
.

.
.α

π
π

π2
6

2

14 4

2 0 5
4 584 m/s

u Uα α π
= − = − = −sin sin6

2
6 m/s

V u ur= + = + − =2 2 2 24 584 6α . ( ) 7.551 m/s
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9.14 Chapter 9

 Example 9.4  Obtain the equation of the dividing streamline for the flow resulting from a superposition of a uniform 
flow at 10 m/s on a two-dimensional source with a strength of 10 m2/s. Also sketch the flow pattern.

Solution
Let U = 10 m/s and q = 10 m /s2 .

For source and uniform flow, we get:

ψ α
π

α
π

= + = +Uy
q

y
2

10
10

2

But ψ = = =
q

2

10

2
5 m /s2  (Dividing streamline)

Thus 5 10
10

2
= +y

α
π

∴ =y 0.5
2

−−
αα
ππ

The values of  y for different values of a from the above equation can be given by,

 (i) At α = 0, y = 0 5. m (Maximum positive ordinate)

 (ii) At α π
=

2
, y = 0 25. m (Upper ordinate at the origin)

 (iii) At α π= , y = 0 (The leading point)

 (iv) At α π
=

3

2
, y = −0 25. m (Lower ordinate at the origin)

 (v) At α π= 2 , y = −0 5. m (Maximum negative ordinate)

The horizontal distance of the stagnation point (S) from the source towards left is given by,

r
q

Us = =
×

=
2

10

2 10π π
0.16 m

The flow pattern is illustrated in Figure 9.11.

O
S

Streamlines 
= constantψHalf body

= 0ψ

A′

A 2
q

=ψ

x

y y = 0.25 m
ymax = 0.5 m

rs = 0.16 m
2
q

=ψ

Figure 9.11

 Example 9.5  The flow over a plane half body is studied by superimposing a uniform flow at 5 m/s in a source at the 
origin. If the stagnation point occurs at (-0.5, 0), then determine (i) the strength of the source, (ii) maximum width of the 
Rankine body and (iii) width of the Rankine body at the source.

M09 Fluid Mechanics and Hydraulic Machines XXXX 01.indd   14 4/5/2019   10:58:56 AM

Download more at Learnclax.com



  9.15 Potential Flow 

Solution
Refer Figure 9.12. Let U = 5 m/s and coordinate of stagnation point = 
(-0.5, 0). This means rs = 0 5. m  and stagnation point lies on the x-axis 
at a distance of 0.5 m towards left of the origin of source.

 (i) ∵ r
q

Us =
2π

∴ = = × × =q Urs2 2 5 0 5π π . 15.71 m /s2

 (ii) y
q

Umax
.

.= =
×

=
2

15 71

2 5
1 571 m

  Thus, maximum width of the Rankine body is given by,

b y= = × =2 2 1 571max . 3.142 m

 (iii) The value of upper ordinate at the origin where source is placed is given by,

y
q

U
= =

×
=

4

15 71

4 5
0 7855

.
. m

  Thus, the width of the Rankine body at the source is given by,

b y= = × =2 2 0 7855. 1.571 m

 Example 9.6  A free stream flow with a velocity of 2.4 m/s is flowing over a plane source of strength 16 m2/s. The free 
stream flow and the source flow are in the same plane. If a point A is located in the flow field at a distance of 0.5 m and at 
an angle of 30° to the free stream flow, then determine (i) the stream function at point A, (ii) the resultant velocity of flow 
at A, (iii) the location of stagnation point from the source and (iv) maximum width of the plane half body.

Solution
Refer Figure 9.13. Let U = 2 4. m/s, q = 16 m /s2 , r = 0 5. m  and α = °30 .

 (i) ψ α α
π π

π
= + = × ° + × ° ×⎛

⎝⎜
⎞
⎠⎟

=Ur
q

sin . . sin
2

2 4 0 5 30
16

2
30

180
1.933 m /s2

 (ii) u U
q

rr = + = ° +
×

=cos . cos
.

.α
π π2

2 4 30
16

2 0 5
7 17 m/s

u Uα α= − = − ° = −sin . sin .2 4 30 1 2 m/s

V u ur= + = + − =2 2 2 27 17 1 2α . ( . ) 7.27 m/s

 (iii) r
q

Us = =
×

=
2

16

2 2 4π π .
1.06 m

 (iv) y
q

Umax .
.= =

×
=

2

16

2 2 4
3 333 m

∴ = = × =b y2 2 3 333max . 6.666 m

9.6.2 Source and Sink Pair
Consider a source and a sink of equal strength placed symmetrically on the x-axis at equal distance a from the origin as 
shown in Figure 9.14(a).

O
S

Rankine
half body

A′

A

y
ymax

rs

= 0α

Figure 9.12

O
S

Plane
half body r ymax

rs

A

α

Figure 9.13
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9.16 Chapter 9

Let the strength of the source and sink placed at A and B be q and −q, respectively, ( , )r1 1α  and ( , )r2 2α  be the positions 
of any point P in the flow with respect to source and sink, respectively, ( , )r α  be the cylindrical coordinates of point P and 
( , )x y  be the corresponding Cartesian coordinates with respect to origin O and β α α= −( )2 1  be the angle subtended with 
respect to r1 and r2.

The stream function ψ  for the combined flow is given by,

	 ψ ψ ψ
α
π

α
π π

α α
π

β= + = − = − = −source sink
q q q q1 2

1 22 2 2 2
( )  (9.29)

For a given streamline ψ  = constant, and the angle β  as constant (since q is constant), the streamlines of the combined flow 
field are circles with AB as common chord. Thus, the circles will pass through source A and sink B which has been proved 
below.

tan tan( )
tan tan

tan tan
β α α

α α
α α

= − =
−

+2 1
2 1

1 21

tan tanα α1 2=
+

=
−

y

x a

y

x a
and

Thus tan
[ ( )] [ ( )]

[ ( )] [ ( )]
β =

− − +
+ + ⋅ −

=
+ −

y x a y x a

y x a y x a

ay

x y a

/ /

/ /1

2
2 2 2

 (9.30)

From Equation (9.29), β πψ= −2 /q  and thus, Equation (9.30) is written as follows.

tan tan
−⎛

⎝⎜
⎞
⎠⎟

= − =
+ −

2 2 2
2 2 2

πψ πψ
q q

ay

x y a

x y a ay
q

2 2 2 2
2

0+ − + =cot
πψ

or x y a ayk2 2 2 2 0+ − + = , here k q= cot( )2πψ /

O

a a

A B

y

y
r1

r2

β

x

aa

y

xA
B

ψ = constant
1 + k2a

ak

(a) (b)

O

1α 2αα

r

x

)αor (r,
P(x, y)

Streamlines

Source
Sink Source Sink

Figure 9.14 (a) Source-sink pair ( b) Streamlines pattern for source-sink pair
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  9.17 Potential Flow 

By adding, subtracting ( )a k2 2  and rearranging, we get:

	 x y ak a k2 2 2 21+ + = +( ) ( ) (9.31)

Here, Equation (9.31) represents a circle. The streamlines consist of family of circles starting from the source and ending 

at sink with the centres ( , )0 ± ak  on the y-axis having radii a k1 2+  are shown in Figure 9.14(b).

The velocity function f for the combined flow is given by,

	 ϕ ϕ ϕ
π π π

= + = − =
⎛
⎝⎜

⎞
⎠⎟source sink

q
r

q
r

q r

r2 2 21 2
1

2
ln ln ln  (9.32)

Equation (9.32) can be transformed into Cartesian coordinates by using the following expression.

r y x a x y a ax1
2 2 2 2 2 2 2= + + = + + +( )

r y x a x y a ax2
2 2 2 2 2 2 2= + − = + + −( )

Thus ϕ
π

=
+ + +
+ + −

⎛

⎝
⎜

⎞

⎠
⎟

q x y a ax

x y a ax2

2

2

2 2 2

2 2 2

1 2

ln

/

 (9.33)

x y a ax

x y a ax
e q

2 2 2

2 2 2

4
2

2

+ + +
+ + −

=
πϕ

Let e nq

4πϕ

=

Thus x y a ax n x y a ax2 2 2 2 2 22 2+ + + = + + −( )

( )( ) ( )x y a n ax n2 2 2 1 2 1 0+ + − − + =

x y ax
n

n
a2 2 22

1

1
0+ −

+
−

⎡
⎣⎢

⎤
⎦⎥

+ =  [Dividing by ( )]n −1

or y x
n

n
a a

n

n
2

2 2
2

1

1

1

1
1+ −

+
−

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ =

+
−

⎛
⎝⎜

⎞
⎠⎟

−
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

 (9.34)

Here, Equation (9.34) represents a circle. The potential lines consisting of family of eccentric non-intersecting circles with 

centres [ {( ) ( )} , ]± + −n n a1 1 0/  on the x-axis having radii a n n a n n{( ) ( )} ( ) ( )+ − − = −1 1 1 2 12/ /  are shown in Figure 9.15.

a

y

x

a

Source Sink

A B

= constantϕ
Potential lines

2a

n − 1
n

a
n − 1
n + 1

Figure 9.15 Equipotential lines pattern for source-sink pair
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9.18 Chapter 9

 Example 9.7  A source of strength 7 m2/s is located at (-1, 0) and a sink of strength 14 m2/s is located at (1, 0). If the 
density of the fluid is 1.9 kg/m3 and the pressure at infinity is negligible, then calculate the velocity, stream function and 
pressure at point P (1, 1).

Solution
Refer Figure 9.16. Let q1 7= m /s2 , A ( , )−1 0 , q2 14= m /s2 , B ( , )1 0 , a = 1, ρ = 1 9 3. kg/m , p∞ = 0 , x = 1 and y = 1.

α π
1

1 1 1

1 1
26 565

26 565

180
0=

+
⎛
⎝⎜

⎞
⎠⎟

=
+

⎛
⎝⎜

⎞
⎠⎟

= ° =
° ×

=− −tan tan .
.

.
y

x a
44636 rad

α π π
2

1 1 1

1 1
90

90

180 2
=

−
⎛
⎝⎜

⎞
⎠⎟

=
−

⎛
⎝⎜

⎞
⎠⎟

= ° =
° ×

=− −tan tan
y

x a
rad

Since ψ
α
π

α
π π π

= − =
+

⎛
⎝⎜

⎞
⎠⎟

−
−

⎛
⎝⎜

⎞
⎠⎟

− −q q q y

x a

q y

x a
1 1 2 2 1 1 2 1

2 2 2 2
tan tan

∴ = × − × =ψ
π π

π7

2
0 4636

14

2 2
. −−2 9835 m /s2.

Now u
y y

q y

x a

q y

x a
=

∂
∂

=
∂
∂ +

⎛
⎝⎜

⎞
⎠⎟

−
−

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

− −ψ
π π
1 1 2 1

2 2
tan tan

u
q

y x a x a

q

y x a x a
= ×

+ +
×

+
− ×

+ −
×

−
1

2
2

22

1

1

1

2

1

1

1

π π[ ( )] [ ( )]/ /

Thus u
q x a

x a y

q x a

x a y
= ×

+
+ +

− ×
−

− +
1

2 2
2

2 22 2π π
( )

( )

( )

( ) 	

∴ = ×
+

+ +
− ×

−
− +

=u
7

2

1 1

1 1 1

14

2

1 1

1 1 1
0 4456

2 2 2 2π π
( )

( )

( )

( )
. m/s

Now v
x x

q y

x a

q y

x a
= −

∂
∂

= −
∂
∂ +

⎛
⎝⎜

⎞
⎠⎟

−
−

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

− −ψ
π π
1 1 2 1

2 2
tan tan

v
q

y x a

y

x a

q

y x a

y

x a
= − ×

+ +
×

−
+

− ×
+ −

×
−
−

⎡

⎣
⎢
⎢

1
2 2

2
2 22

1

1 2

1

1π π/ /( ) ( ) ( ) ( )

⎤⎤

⎦
⎥
⎥

Thus v
q y

x a y

q y

x a y
= − ×

−
+ +

− ×
−

− +

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1
2 2

2
2 22 2π π( ) ( )

∴ = − ×
−

+ +
− ×

−
− +

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= −v
7

2

1

1 1 1

14

2

1

1 1 1
2 0053

2 2 2 2π π( ) ( )
. m/s

V u v= + = + − =2 2 2 20 4456 2 0053. ( . ) 2.054 m/s

The Bernoulli’s equation between a point in the uniform flow stream and point P (1, 1) is given by,

p U p V∞ ∞+ = +
1

2

1

2
2 2ρ ρ   [ ]∵ z z1 2=

The velocity of fluid at infinity will be zero, i.e., U∞ = 0 .

O
a a

A (–1, 0)
Source B (1, 0)

Sink

y

r1

r2

x

P (1, 1)

1α 2α

Figure 9.16
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  9.19 Potential Flow 

Thus 0 0
1

2
2+ = +p Vρ

∴ = − = − × × = −p V
1

2

1

2
1 9 2 0542 2ρ . . 4.008 N/m2

9.6.3 Doublet (or Dipole)
A doublet (or dipole) is a special case of a source and sink pair of equal strength q wherein both approach each other in 
such a way that the distance 2a between them approaches zero and the product 2a q. , also called the doublet strength ( )μ  
remains constant. Thus, the doublet strength is given by the following expression.

	 μ = 2aq (9.35)

Figure 9.17 illustrates the position of the source (at point A) and the 
sink (at point B) of strength q and (-q), respectively, at a distance 
2a apart and P  is any point in the combined flow field. Let α  be the 
angle made by P  at A (source) and ( )α δα+  at B (sink) where δα  is 
a very small angle. Let AP r r= +( )δ , BM is the perpendicular on 
AP, AM r= δ , PM PB r= =  and ∠ =APB δα  is very small.

BM r= × δα  [ ]∵δα is very small

Also BM a= 2 sinα  [ ]From right-angled ΔBMA

Thus r a× =δα α2 sin

	
∴ =δα α2a

r

sin
 (i)

The stream function for the doublet is given by,

	
ψ

π
α

π
α δα

π
δα

π
α

= − + = − = − ×
q q q q a

r2 2 2 2

2
( )

sin
 [Substitute (i)] 

Since μ = 2aq

Thus ψ μ
π

α
= − ×

2

sin

r
 (9.36)

When 2a tends to zero, δα  becomes very small such that δr  vanishes and AP r= .

Thus sinα = y r/  and x y r2 2 2+ =

Using these values in Equation (9.36), we get:

	 ψ μ
π

μ
π

μ
π

= − ×
×

= − × = − ×
+2 2 22 2 2

y

r r

y

r

y

x y
 (9.37)

Rearranging the expression given by Equation (9.37), we get:

	 x y y2 2

2
0+ + =

μ
πψ

 (9.37a)

By adding and subtracting with [ ( )]μ πψ/ 4 2  and rearranging, we get:

	 x y2
2 2

4 4
+ +

⎡

⎣
⎢

⎤

⎦
⎥ =

⎛
⎝⎜

⎞
⎠⎟

μ
πψ

μ
πψ

 (9.38)

2a

A B

y

x

α

r

x

P

M

N

r

δα

)( δαα +

rδ

(r + r)δ

Figure 9.17 Analysis of a doublet
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9.20 Chapter 9

Here, Equation (9.38) represents a circle. The streamlines of a doublet are family of circles tangent to the x-axis whose 
centres { , ( )}0 4± μ πψ/  lie on the y-axis having radii μ πψ/( )4  as shown in Figure 9.18(a).

From right-angled triangle BMA, we get:

	 δ αr a= 2 cos  (ii)

The potential function ϕ for the combined flow is given by,

ϕ
π

δ
π π

δ
π π

δ
= + + −⎛

⎝⎜
⎞
⎠⎟

= + − =
+⎛q

r r
q

r
q

r r
q

r
q r r

r2 2 2 2 2
ln( ) ln ln( ) ln ln

⎝⎝⎜
⎞
⎠⎟

or ϕ
π

δ
= +⎛

⎝⎜
⎞
⎠⎟

q r

r2
1ln

Using expansion of ln( ) ...1 2 32 3+ = + + +x x x x/ / , the above expression is rewritten as follows.

ϕ
π

δ δ δ
= + ⎛

⎝⎜
⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

+
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

q r

r

r

r

r

r2

1

2

1

3

2 3

..

Since ( )δr r/  is a small quantity and neglecting higher powers, we have the below expression.

ϕ
π

δ
= ×

q r

r2

Substituting expression (ii) in the above expression, we get:

	
ϕ

π
α

π
α μ

π
α

= × = × = ×
q a

r

aq

r r2

2 2

2 2

cos cos cos
 (9.39)

When 2a tends to zero, δα  becomes very small such that δr  vanishes and AP r= .

Thus cosα = x r/  and x y r2 2 2+ =

y

x

= constantϕ
Potential lines

O

y

x

(a) Streamlines (b) Potential lines

Streamlines
= constantψ

O

Figure 9.18 Streamlines and potential lines for a doublet
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  9.21 Potential Flow 

Using these values in Equation (9.39), we get:

ϕ μ
π

μ
π

μ
π

= ×
×

= × = ×
+2 2 22 2 2

x

r r

x

r

x

x y( )

Rearranging the expression given, we get:

x y x2 2

2
0+ − =

μ
πϕ

By adding and subtracting { ( )}μ πϕ/ 4 2  and after rearranging, we get:

	 y x2
2 2

4 4
+ −

⎡

⎣
⎢

⎤

⎦
⎥ =

⎛
⎝⎜

⎞
⎠⎟

μ
πϕ

μ
πϕ

 (9.40)

Here, Equation (9.40) represents a circle. The potential lines of a doublet are family of circles tangent to the y-axis whose 
centres { ( ), }±μ πϕ/ 4 0  lie on the x-axis having radii μ πϕ/( )4  are shown in Figure 9.18(b).

 Example 9.8  If the strength of a doublet is 15 m2/s, then determine the velocity at point P (1, 2) and the value of stream 
function passing through it by using both the Cartesian and polar coordinates systems.

Solution

Let μ = 15 m /s2 , x = 1 and y = 2.

 (i) Cartesian coordinate system:

ψ μ
π

μ
π

= −
+

= − + −
2 22 2

2 2 1y

x y
y x y

( )
[ ( ) ]

u
y

d

dy
y x y

d

dy
y x y=

∂
∂

= − +{ }⎡
⎣⎢

⎤
⎦⎥

= − +⎡
⎣

⎤
⎦

− −ψ μ
π

μ
π2 2

2 2 1 2 2 1( ) ( )

  Now 
d

dy
y x y y x y y x y[ ( ) ] ( )( ) ( ) ( ) ( )2 2 1 2 2 2 2 2 11 2 1+ = − + + +⎡

⎣
⎤
⎦

− − −

  or 
d

dy
y x y

y

x y x y

x y

x y
[ ( ) ]

( ) ( ) ( )

2 2 1
2

2 2 2 2 2

2 2

2 2 2

2 1
+ =

−
+

+
+

=
−

+
−

  Thus u
y

x y

x y
=

∂
∂

= −
−

+

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

ψ μ
π2

2 2

2 2 2( )

  And v
x x

y x y
d

dx

y

x y
= −

∂
∂

= −
∂
∂

− +{ }⎡
⎣⎢

⎤
⎦⎥

=
+

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=−ψ μ
π

μ
π

μ
2 2 2

2 2 1
2 2

( )
ππ

−
+

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2
2 2 2

xy

x y( )

  At point P(1, 2) and μ = 15 m /s2 , we get:

ψ μ
π π

= −
+

= − ×
+

=
2

15

2

2

1 22 2 2 2

y

x y( ) ( )
−−0.955 m /s2

u = − ×
−

+

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
15

2

1 2

1 2
0 2865

2 2

2 2 2π ( )
. m/s
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v = ×
− × ×

+

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= −
15

2

2 1 2

1 2
0 382

2 2 2π ( )
. m/s

V u v= + = + − =2 2 2 20 2865 0 382. ( . ) 0.4775 m/s

 (ii) Polar coordinate system:

r x y= + = + =2 2 2 21 2 2 236.

sin
.

.α = = =
y

r

2

2 236
0 8944

cos
.

.α = = =
x

r

1

2 236
0 4472

ψ μ
π

α
π

= − × = − × =
2

15

2

0 8944

2 236

sin .

.r
0.955 m /s2

∵u
r r r r

r =
∂
∂

=
∂

∂
− ×⎡

⎣⎢
⎤
⎦⎥

= −
1 1

2 2 2

ψ
α α

μ
π

α μ
π

αsin
cos

∴ = −
×

× = −ur
15

2 2 236
0 4472 0 2135

2π .
. . m/s

∵u
r r r r

α
ψ μ

π
α μ

π
α= −

∂
∂

= −
∂
∂

− ×⎡
⎣⎢

⎤
⎦⎥

= −
2 2 2

sin
sin

∴ = −
×

× = −uα
π

15

2 2 236
0 8944 0 4271

2.
. . m/s

V u ur= + = − + − =2 2 2 20 2135 0 4271α ( . ) ( . ) 0.4775 m/s

 Example 9.9  If the relation for a doublet is x y K C y2 2 0+ − =( )/ , then comment on the nature of constants K  and C  
and the form of streamline. Also determine the magnitude and direction of velocity at the point P(1, 3), where u = 5 m/s.

Solution
Let x y K C y2 2 0+ − =( )/ , x = 1, y = 3 and u = 5 m/s.

	
x y

K

C
y2 2 0+ − =  (i)

The standard equation of streamline for a doublet can be given by Equation (9.37(a)) as follows.

x y y2 2

2
0+ + =

μ
πψ

On comparing the above expressions, the following points are noted:

 (i) K  represents the strength of doublet μ that remains constant for the flow.

 (ii) C  represents the stream function ψ  that remains constant for a streamline.
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Thus, expression (i) can be written as follows.

x y
K

C

K

C
y

K

C
2 2

2 2

2 2
+ + ⎛

⎝⎜
⎞
⎠⎟

− = ⎛
⎝⎜

⎞
⎠⎟

	
x y

K

C

K

C
2

2 2

2 2
+ −⎛

⎝⎜
⎞
⎠⎟

= ⎛
⎝⎜

⎞
⎠⎟

 (ii)

The expression (ii) prescribes the equation of a circle with centre ( , )0 2K C/  and radius K C/2 . Thus, the streamlines of 
the doublet are a family of circles with their centres on the y-axis. The equation of the streamline is satisfied at x y= = 0. 
Therefore, all circles pass through the origin.

By partially differentiating expression (ii), we get:

2 2 0xdx ydy
K

C
dy+ − =

or dy y K C xdx( )2 2− = −/

Thus 
dy

dx

x

y K C
=

−
−
2

2( )/
 (ii)

For the given point P(1, 3), from the expression (i), we get:

1 3 3 0
10

3
2 2+ − × = ⇒ =

K

C

K

C

From expression (ii), we get:

dy

dx
=

− ×
× −

= −
2 1

2 3 10 3
0 75

( / )
.

Also 
dy

dx

v

u
= , thus 

v

u
= −0 75.

∴ = − = − × = −v u0 75 0 75 5 3 75. . . m/s

V u v= + = + − =2 2 2 25 3 75( . ) 6.25 m/s

Since tanα =
dy

dx

∴ = = − = −− −α tan tan ( . )1 1 0 75
dy

dx
36.87°°

9.6.4 A Doublet in a Uniform Flow (Flow Past a Circular Cylinder)
A doublet placed in a uniform flow makes an important flow pattern past a circular cylinder (or a Rankine oval of equal 
axes, i.e., a circle). Figure 9.19(a) shows a uniform flow of velocity U  parallel to x-axis and a doublet at the origin with its 
axis coinciding with x-axis. The resulting flow due to doublet and uniform flow is illustrated in Figure 9.19(b) which is also 
known as the flow past a Rankine oval of equal axes or flow past a circular cylinder.

The stream function ( )ψ  for the resultant flow is obtained by adding the stream functions for a uniform flow and a 
 doublet as follows.

ψ ψ ψ μ
π

α
= + = + −⎛

⎝⎜
⎞
⎠⎟uniform flow doublet Uy

r2

sin
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9.24 Chapter 9

Since y r= sinα

Thus ψ α μ
π

α μ
π

α= − = −
⎛
⎝⎜

⎞
⎠⎟

Ur
r

U r
r

sin
sin

sin
2 2

 (9.41)

Similarly, the potential function f for the resulting flow can be given by,

ϕ ϕ ϕ μ
π

α
= + = +uniform flow doublet Ux

r2

cos

Since x r= cosα

Thus ϕ α μ
π

α μ
π

α= + = +⎛
⎝⎜

⎞
⎠⎟

Ur
r

Ur
r

cos
cos

cos
2 2

 (9.42)

For obtaining the profile of the Rankine oval of equal axes, substituting ψ = 0 in Equation (9.41), we get the below 
expression.

U r
r

−
⎛
⎝⎜

⎞
⎠⎟

=
μ
π

α
2

0sin

Thus either sinα = 0 or U r
r

−
⎛
⎝⎜

⎞
⎠⎟

=
μ
π2

0

 (i) If sinα = 0 or α = 0 and ±π , i.e., a horizontal line through the origin of the doublet.

 (ii) If U r
r

− =
μ
π2

0, then U r
r

r
U

= ⇒ =
μ
π

μ
π2 2

2

Thus r
U

=
μ
π2

Since μ and U 	are constants, the above expression is also a constant say R.

	 r
U

R R
U

= = =
μ
π

μ
π2 2

2or  (9.43)

y

x

Doublet

O

Uniform
flow

U +

y

(a) (b)

= 0ψ
S1 S2

= constantϕ

= constantψ

R

= 0ψ
x

P

Streamlines

Figure 9.19 Doublet in a uniform flow
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Using Equations (9.43), (9.41) and (9.42), respectively, we get:

	 ψ μ
π

α μ
π

α α= −
⎛
⎝⎜

⎞
⎠⎟

= − ×⎛
⎝⎜

⎞
⎠⎟

= −
⎛

⎝
⎜

⎞

⎠
⎟U r

r
U r

U r
U r

R

r2 2

1 2

sin sin sin  (9.44)

	 ϕ μ
π

α μ
π

α= +⎛
⎝⎜

⎞
⎠⎟

= + ×⎛
⎝⎜

⎞
⎠⎟

= +
⎛

⎝
⎜

⎞

⎠
⎟Ur

r
U r

U r
U r

R

r2 2

1 2

cos cos  (9.45)

The streamline ψ = 0 comprises a horizontal line through the origin of the doublet and a circle with centre at the origin 

with a radius R U= μ π/( )2 . The streamline ψ = 0 has two stagnation point S1 and S2. At S1, it splits into two streams that 
flow along the circle with radius R. The two streams meet again at S2 and the flow continues in the downward direction. 
Apparently, the flow field due to the doublet lies entirely in the circle, whereas the uniform flow occurs outside the circle 
and does not mingle with the doublet flow.

The velocity components at any point P r( , )α  in the flow field in polar coordinates can be determined with the help of 
stream function as follows.

	 u
r r

U r
R

r
U

R

r
r =

∂
∂

=
∂

∂
−

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= −
⎛

⎝
⎜

⎞

⎠
⎟

1 1
1

2 2

2

ψ
α α

α αsin cos  (9.46)

	 u
r r

U r
R

r
U

R

r
α

ψ α α= −
∂
∂

= −
∂
∂

−
⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= − +
⎛

⎝
⎜

⎞

⎠
⎟

2 2

2
1sin sin  (9.47)

The resultant velocity is given by,

V u ur= +2 2
α

At the surface of the cylindrical body, r R=  and thus, from Equations (9.46) and (9.47), we get the below expression.

ur = 0

	 u Uα α= −2 sin  (9.48)

In Equation (9.48), the negative sign indicates the clockwise direction of tangential velocity ( )uα  at that point. At the  surface 
of the cylindrical body, maximum velocity for uα  occurs at α = ° °90 270and . Thus, the magnitude of the  maximum velocity  
will be equal to −2U . When α = ° °0 180and , uα = 0  and hence, V = 0. This corresponds to the stagnation points S1  
and S2 on the surface of the cylinder.

Let U  be the velocity and p∞ be the pressure at a point in the uniform flow far away from the cylinder and the 
 corresponding values at a point anywhere in the flow field are V  and p, respectively.

Applying Bernoulli’s equation, we get:

p

g

U

g

p

g

V

g
∞ + = +

ρ ρ

2 2

2 2
  [ ]∵ z z1 2=

p

g

p

g

U

g

V

gρ ρ
− = −∞

2 2

2 2

p p U V

U

−
= − ⎛

⎝⎜
⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

∞
ρ

2 2

2
1
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p p

U

V

U

−
= − ⎛

⎝⎜
⎞
⎠⎟

∞

( )1 2
1

2

2

/ ρ

The pressure coefficient is given by,

C
p p

U

V

Up =
−

= − ⎛
⎝⎜

⎞
⎠⎟

∞

( )1 2
1

2

2

/ ρ

At the surface of the cylinder, ur = 0 and V u U= = −α α2 sin  and therefore, we get the below expression.

	 C
U

Up = −
−⎛

⎝⎜
⎞
⎠⎟

= −1
2

1 4
2

2sin
sin

α α  (9.49)

The values of C p for different values of α  calculated from Equation (9.49) are summarized below in Table 9.1.

Table 9.1 Variation of pressure coefficient for different angles

S. no. a Cp Remarks

1 0° 1 Stagnation point

2 30° 0 Zero pressure

3 90° -3 Least pressure

4 150° 0 Zero pressure

5 180° 1 Stagnation point

The variation of pressure coefficient along the surface of the cylinder for different angles is illustrated in Figure 9.20(a) 
and the pressure distribution on the cylinder surface is illustrated in Figure 9.20(b).

As the velocity distribution is same at the top and bottom sides of the cylinder, the pressure distribution will also be the 
same on both sides. Therefore, there is no upward force due to pressure difference. The positive pressure acts normal to 
the surface and towards the surface of the cylinder, whereas the negative pressure acts normal and away from the surface 
of the cylinder.

S1 S2

Negative
pressure

Positive
pressure

x

y

Cp = −3

Cp = 1 Cp = 1

Cp = −3

30°
30°

Cp

–1

–2

–3

1 1
30° 90° 150°

180°
0°

(a) (b)

α

Figure 9.20 Pressure distribution over the surface of a cylinder
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 Example 9.10  A doublet of strength 20 m2/s is in the line of the uniform flow having a velocity of 15 m/s. Determine 
the stream function and the resultant velocity in the flow field at a point P(0.5, 30°).

Solution
Let μ = 20 m /s2 , U = 15 m/s, r = 0 5. m  and α = °30 .

R
U

= =
×

=
μ
π π2

20

2 15
0 4607. m

ψ α= −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= −
⎛

⎝
⎜

⎞

⎠
⎟ ° =U r

R

r

2 2

15 0 5
0 4607

0 5
30sin .

.

.
sin 0.5663 m2 //s

u U
R

r
r = −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= −
⎛

⎝
⎜

⎞

⎠
⎟ ° =1 15 1

0 4607

0 5
30 1 962

2

2

2

2
cos

.

.
cos .α m/ss

u U
R

r
α α= − +

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= − +
⎛

⎝
⎜

⎞

⎠
⎟ ° = −1 15 1

0 4607

0 5
30 13 8

2

2

2

2
sin

.

.
sin . 667 m/s

V u ur= + = + − =2 2 2 21 962 13 867α . ( . ) 14 m/s

 Example 9.11  If a doublet of strength 20 m2/s lies in the line of a uniform flow of 12 m/s, then what is the shape of the 
Rankine body formed? Determine the dimensions of the Rankine body and the values of the tangential and radial velocity 
components of the surface at a point 30° from x-axis. Also determine the maximum velocity on the Rankine body and its 
location.

Solution
Let μ = 20 m /s2 , U = 12 m/s and α = °30 .

When a doublet lies in the line of a uniform flow, the shape of the Rankine body be cylindrical with radius R U= μ π/2 .

R
U

= =
×

=
μ
π π2

20

2 12
0.515 m

The value of stream function ( )ψ  on the surface of Rankine body will be zero, i.e., ψψ == 0.

The values of radial velocity ( )ur  and tangential velocity ( )uα  on the surface of the Rankine body when α = °30  will be 
given by Equation (9.48) as given below.

ur = 0 and u Uα α= − = − × ° =2 2 12 30sin sin −−12 m/s

The resultant velocity at the surface of the body is given by,

V u ur= + = + − =2 2 2 20 12α ( ) ( ) 12 m/s

The resultant velocity at any point on the Rankine body is given by u Uα α= −2 sin  and it will be maximum at α = °90 .

∴ = − ° = − = − × =Maximum velocity 2 90 2 2 12U Usin −−24 m/s
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9.6.5 Source, Sink and Uniform Flow (Flow Past a Rankine Oval Body)
A uniform flow parallel to x-axis combined with a source-sink pair of equal strength located on the x-axis with the origin 
of coordinates midway between them results in a flow past a Rankine oval body. Let U be the velocity of uniform flow 
along x-axis, q be the strength of the source (placed at point A), −q be the strength of the sink (placed at point B) and 2a 
be the distance between the source and the sink. Figure 9.21 shows a uniform flow of velocity U parallel to x-axis and a 
source-sink pair of equal strength.

The resultant flow also known as flow past a Rankine oval body is illustrated in Figure 9.22. Let P  be any point in the 
combined flow field that makes the angles α1 and α2 with source and sink along x-axis, respectively.

The stream function for the resulting flow can be obtained by adding the stream functions for a uniform flow, source 
and a sink as given below.

ψ ψ ψ ψ
α
π

α
π

= + + = + −uniform flow source sink Uy
q q1 2

2 2

or ψ α
π

α α= + −Ur
q

sin ( )
2 1 2  [ sin ]∵ y r= α  (9.50)

Similarly, the potential function for the resulting flow can be given by,

ϕ ϕ ϕ ϕ
π π

= + + = + −uniform flow source sink Ux
q

r
q

r
2 21 2ln ln

or ϕ α
π

= +Ur
q r

r
cos ln

2
1

2
 [ cos ]∵ x r= α  (9.51)

Source

O
+

a a

Uniform
flow

U

Sink

x

y
q –q

A B

Figure 9.21 Superposition of uniform flow over source-sink pair
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Figure 9.22 Flow past a Rankine oval body
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  9.29 Potential Flow 

The streamlines make exactly similar pattern to the flow past an oval body. There are two stagnation points S1 and S2. 
The stagnation point S1 lies to the left of the source, whereas S2 lies to the right of the sink. Let rs be the distance of the 
 stagnation points from the origin O. At the stagnation point S1, the velocity of uniform flow is U , the velocity from source 
is q r as/{ ( )}2π −  and the velocity from sink is − +q r as/{ ( )}2π . At stagnation point S1, the velocity due to uniform flow is 
in positive x-direction, whereas due to source and sink it is in the negative x-direction. At the stagnation points, the resultant 
velocity will be zero. Therefore, we get the following expressions.

U
q

r a

q

r as s
−

−
−

−
+

=
2 2

0
π π( )

( )

( )

U
q

r a r a

q r a r a

r a r as s

s s

s s
=

−
−

+
⎡

⎣
⎢

⎤

⎦
⎥ =

+ − −
− +

⎡

⎣
⎢

2

1 1

2π π( ) ( )

( ) ( )

( )( )

⎤⎤

⎦
⎥ =

−
q a

r as
2

2
2 2π ( )

r a
qa

Us
2 2− =

π

r a
qa

U
a

q

aUs
2 2 2 1= + = +

⎛
⎝⎜

⎞
⎠⎟π π

	 ∴ = +
⎛
⎝⎜

⎞
⎠⎟

r a
q

aUs 1
π

 (9.52)

Equation (9.52) locates the position of stagnation points on the x-axis. A streamline passing through the stagnation point 
has a zero velocity and thus, it can be replaced by a solid body having an oval shape as shown in Figure 9.22.

The flow field due to source and sink lies within the Rankine oval and the uniform flow outside the body does not mingle 
with the source-sink flow. The equation for the streamlines forming the surface of the oval can be obtained by substituting 
the upstream stagnation point S rs1( , )π  at which α α π1 2= =  in Equation (9.50). Thus, we get the below expression.

	 ψ π
π

π π= + − =Ur
q

sin ( )
2

0 (9.53)

Thus, the surface of the oval body is a streamline having stream function equal to zero and it can be prescribed by the 
following equation.

	
ψ α

π
α α= = + −0

2 1 2Ur
q

sin ( )  [Equation (9.50) and (9.53)]

Thus r
q

U
=

−
2

2 1

π
α α

α
( )

sin
 (9.54)

For determining the maximum width (height) of the oval body, ym shown in Figure 9.23, substituting α β1 = , α π β2 = −( )  
and α π= /2 in Equation (9.54), we have the below expression.

y
q

U

q

Um =
− −

=
−

2 2

2

2π
π β β

π
π β

π
( )

sin( )

( )

/

Thus β π π
= −

2

Uy

q
m

Also from right-angled triangle P OA1  (Figure 9.23), we get the below 
expression.

y am = tan β

r1 r2

a a

β

)( βπ −

β
ym

O

P1

l

b
S1 S2

A

Oval body

B

Figure 9.23  Maximum height of the  
oval body
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9.30 Chapter 9

Substituting the value of β  in the above expression, we get:

	 y a
Uy

q
a

Uy

qm
m m= −

⎡

⎣
⎢

⎤

⎦
⎥ =tan cot

π π π
2

 (9.55)

From Equation (9.55), the value of ym can be obtained by hit and trial method.
The length (l) and breadth (b) of the Rankine oval can be obtained by the following relations.

	 l r a
q

aUs= = +
⎛
⎝⎜

⎞
⎠⎟

2 2 1
π

 (9.56)

	 b y a
Uy

qm
m= =2 2 cot

π
 (9.57)

 Example 9.12  A source and sink of strength 20 m2/s are located at a distance of 2 m. If a uniform flow of 8 m/s  parallel 
to the line joining the source-sink pair is superimposed, then find the length of the Rankine oval body formed and the 
distance of the stagnation points from the source. Also determine the width of the Rankine body and its profile equation.

Solution
Let q = 20 m /s2 , 2 2 1a a= =m or m and U = 8 m/s.

r a
q

aUs = + = × +
× ×

=1 1 1
20

1 8
1 34

π π
. m

Distance of stagnation points from the source are given by,

S1 is at a distance = − = − =r as 1 34 1. 0.34 m

S2 is at a distance = + = + =r as 1 34 1. 2.34 m

Length of the Rankine oval is given by,

l rs= = × =2 2 1 34. 2.68 m

y a
Uy

q
a

y
a ym

m m
m= =

× ×
×⎛

⎝⎜
⎞
⎠⎟

= °cot cot cot( )
π π

π
8

20

180
72

Let L.H.S. m= =ym 0 742.  [Hit and trial method]

Then R.H.S. m= × =acot ( . ) .72 0 742 0 742

Thus L.H.S. R.H.S. m= = =ym 0 742.

b ym= = × =2 2 0 742. 1.484 m

Profile equation of the Rankine body is given by,

r
q

U
=

−
= ×

−
=

2

20

2 8
2 1 2 1

π
α α

α π
α α

α
( )

sin

( )

sin

0.398( )

sin
2 1αα αα
αα

−−

9.6.6 Doublet, Free Vortex and Uniform Flow (Flow Past a Cylinder with Circulation)
When a uniform flow parallel to x-axis combined with a doublet and a clockwise irrotational vortex is at origin, the 
 resultant flow will be equivalent to the flow past a rotating (spinning) cylinder. Figure 9.24(a) shows a uniform flow of 
velocity U parallel to x-axis to which a doublet and a clockwise irrotational vortex at origin are superimposed. The resulting 
flow pattern (flow past a cylinder with circulation) shown in Figure 9.24(b) is asymmetrical about x-axis and the extent of 
asymmetry is related to the transverse force acting on the dividing streamline.
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The stream function for the resulting flow can be obtained by adding the stream functions for a doublet in uniform flow 
given by Equation (9.44) and the clockwise free vortex flow at the origin of the doublet is given below.

	 ψ α
π

= −
⎛

⎝
⎜

⎞

⎠
⎟ +U r

R

r
r

2

2
sin ln

Γ
 (9.58)

Similarly, the potential function for the resulting flow can be obtained by adding the potential functions for a doublet in 
uniform flow given by Equation (9.45) and the clockwise free vortex flow is given as follows.

	 ϕ α
π

α= +
⎛

⎝
⎜

⎞

⎠
⎟ −U r

R

r

2

2
cos

Γ
 (9.59)

The dividing streamline consists of a circle of radius R U= μ π/( )2 .

The velocity components at any point in the flow field are given by,

	 u
r r

U
R

r
r =

∂
∂

=
∂
∂

= −
⎛

⎝
⎜

⎞

⎠
⎟

1
1

2

2

ψ
α

ϕ αcos  (9.60)

	 u
r r

U
R

r rα
ψ ϕ

α
α

π
= −

∂
∂

=
∂
∂

= − +
⎛

⎝
⎜

⎞

⎠
⎟ −

1
1

2

2

2
sin

Γ
 (9.61)

The resultant velocity is given by,

V u ur= +2 2
α

On the surface of the cylinder, r R=  and thus, Equations (9.60) and (9.61) is rewritten as follows.

	 u U
R

R
r = −

⎛

⎝
⎜

⎞

⎠
⎟ =1 0

2

2
cosα  (9.62)

	 u U
R

R R
U

Rα α
π

α
π

= − +
⎛

⎝
⎜

⎞

⎠
⎟ − = − +⎛

⎝⎜
⎞
⎠⎟

1
2

2
2

2

2
sin sin

Γ Γ
 (9.63)

Since dividing streamline is a circle at any point on the dividing streamline (i.e., at the surface of the cylinder), r R=  and 
ur = 0, because no flow can cross a streamline. Therefore, the tangential component of velocity ( )uα  is a measure of the 
flow along the circular streamlines, i.e., u Vα = . Therefore, Equation (9.63) can be written as follows.

y

x

Doublet

O

Uniform
flow

U +

y

S1 S2

R

x

Vortex

(a) (b)

Figure 9.24 Flow past a cylinder with circulation
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	 u V U
Rα α

π
= = − +⎛

⎝⎜
⎞
⎠⎟

2
2

sin
Γ

 (9.64)

At the stagnation points, the velocity components become zero, i.e., ur = 0 and uα = 0.

Thus − +⎛
⎝⎜

⎞
⎠⎟

=2
2

0U
R

sinα
π
Γ

 

 ∴ = −sinα
π
Γ

4 RU
 (9.65)

Thus, the location of stagnation points is given by r R=  and sin ( ).α π= −Γ / 4 RU

The ratio Γ /( )4π RU  may have any value from 0 to more than 1. Thus, there will be two, one or no stagnation points on 
the cylinder surface corresponding to Γ . These conditions closely resemble the flow around a circular cylinder when the 

cylinder is rotated at different speeds. Thus, the following may be the cases.

Case I: When Γ = 0, the free vortex will be absent and sinα = 0 which corresponds to the stagnation points S1 and S2 
located at α = 0 and α π= , respectively, as shown in Figure 9.25(a). This case corresponds to no rotation of the cylinder.

Case II: When Γ < 4π RU , the strength of the free vortex will be small, the value of sinα  lies between 0 ( )when /0 2< < −α π  
and -1 (when /π α π< < 3 2) and the stagnation points are located at S1 and S2 as shown in Figure 9.25(b). This case 
 corresponds to a small rotational speed of the cylinder.

Case III: When Γ = 4π RU , the strength of the free vortex will be just equal to the critical product 4π RU , the value 
of sinα = −1 which corresponds to a single stagnation point S  at α π π= − / or /2 3 2, i.e., at the bottom of the dividing 
 streamline as shown in Figure 9.25(c). This case corresponds to a critical rotational speed of the cylinder.

Case IV: When Γ > 4π RU , the strength of the free vortex will be large, the value of sinα > 1, i.e., α  is imaginary. Thus, 
the stagnation point S  will not be on the circular streamline but it will be located below it as shown in Figure 9.25(d). This 
case corresponds to a high rotational speed of the cylinder.

Let p∞ be the pressure at infinity where the velocity is U  and p be the pressure at the surface of the cylinder where the 
velocity is V . Applying Bernoulli’s equation, we have the following expressions.

U S1 S2
S1 S2

Γ = 0 RUπ4<Γ

RUπ4=Γ

S
S

RUπ4>Γ

(a) (b)

(c) (d)

Figure 9.25 Flow pattern over a rotating circular cylinder
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p

g

V

g

p

g

U

gρ ρ
+ = +∞

2 2

2 2
 [ ]∵ z z1 2=

p

g

p

g

U

g

V

gρ ρ
− = −∞

2 2

2 2

p p U
V

U
− = − ⎛

⎝⎜
⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

∞
1

2
12

2

ρ

But 
V

U UR
= − +⎛

⎝⎜
⎞
⎠⎟

2
2

sinα
π
Γ

 [From Equation (9.64)]

Thus p p U
UR

− = − +⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

∞
1

2
1 2

2
2

2

ρ α
π

sin
Γ

 (9.66)

When α π= /2, sinα = 1 and p will become pressure at the top, i.e., ptop and thus, Equation (9.66) can be rewritten as 
follows.

p p U ktop − = − +∞
1

2
1 22 2ρ [ ( ) ] , here k UR= Γ /( )2π

	 p p U k ktop − = − + +∞
1

2
3 42 2ρ [ ]  (9.67a)

Similarly, when α π= − /2, sinα = −1 and p will become pressure at the bottom, i.e., pbottom and thus, Equation (9.66) 
can be written as follows.

	 p p U k kbottom − = − − +∞
1

2
3 42 2ρ [ ]  (9.67b)

Subtracting Equation (9.67(b)) from Equation (9.67(a)) and rearranging, we get:

	
p p

U
k

UR UR

top bottom

/

−
= − = − × = −

( )1 2
8 8

2

4
2ρ π π

Γ Γ
 (9.68)

This pressure difference between the top and bottom sides causes an upward force (lift force). This phenomenon of lift 
generation by a spinning cylinder in a uniform flow is known as Magnus effect. The expression for amount of lift generated 
per unit length of the cylinder is given below.

	 Lift = ρUΓ  (9.69)

From Equation (9.69), it can be seen that the lift force is independent of radius. The derivation of this expression is given 
in Chapter 16.

 Example 9.13  (i) If a circular cylinder of diameter 1 m rotates at 300 rpm in a uniform stream of 10 m/s, then locate the 
stagnation point. (ii) Also determine the minimum rotational speed for detached stagnation points.

Solution
Let D = 1 m, N = 300 rpm  and U = 10 m/s.

 (i) u
DN

α
π π

= =
× ×

=
60

1 300

60
15 71. m/s

Γ = = × × =2 2
1

2
15 71 49 354π παRu . . m /s2

M09 Fluid Mechanics and Hydraulic Machines XXXX 01.indd   33 4/5/2019   11:01:46 AM

Download more at Learnclax.com



9.34 Chapter 9

  For the stagnation points, we get:

sin
.

( )
.α

π π
= − = −

× ×
= −

Γ
4

49 354

4 1 2 10
0 7855

RU /

∴ = − =−α sin ( . )1 0 7855 −− °° −− °°51.77 and 128.23

 (ii) The stagnation points coincide and are at the verge of detachment when,

sinα
π

= − = −
Γ

4
1

RU
 at α π π

= −
2

3

2
or

sin −⎛
⎝⎜

⎞
⎠⎟

= −
π

π2 4

Γ
RU

  Thus Γ = 4π RU

2 4π παRu RU=  [ ]∵Γ = 2π αRu

  Thus u Uα = 2

∴ = × =uα 2 10 20 m/s

  But 
π DN

60
20=  

∴ =
×

=
×
×

=N
D

20 60 20 60

1π π
381.972 rpm

 Example 9.14  If a long circular cylinder of diameter 1 m lies in an air stream ( . )ρ = 1 2 kg/m3  of velocity 70 m/s 
and there is an additional flow around the cylinder with clockwise circulation of 420 m2/s, then calculate the  followings 
by neglecting viscous and compressibility effects if any (i) maximum velocity due to air stream alone on the  cylinder, 
(ii)  velocity at the cylinder surface due to circulation alone, (iii) maximum velocity on the surface of the cylinder,  
(iv) location of stagnation points, (v) difference of pressures between top and bottom sides of the cylinder and (vi) lift force 
on the cylinder per units its length.

Solution
Let D = 1 m, ρ = 1 2. kg/m3, U = 70 m/s and Γ = 420 m /s2 .

The velocity on the surface of the cylinder is given by,

u V U
Rα α

π
= = − +⎛

⎝⎜
⎞
⎠⎟

2
2

sin
Γ

 (i) Due to air stream alone, V U= −2 sinα, which is maximum at α π α= =/ or2 1sin , i.e., at the top of the cylinder. Thus, 
the expression for maximum velocity is given below.

V Umax = − = − × =2 2 70 −−140 m/s

 (ii) Velocity due to air circulation alone is given by,

V
R

= − = −
×

=
Γ

2

420

2 1 2π π ( / )
−−133.69 m/s

 (iii) Maximum velocity due to air stream and circulation can be obtained by adding the velocity due to air stream alone and 
due to circulation alone as follows.

Vmax ( ) ( . )= − + − =140 133 69 −−273.69 m/s
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 (iv) For the stagnation points, we get:

sin
( )

.α
π π

= − = −
× ×

= −
Γ

4

420

4 1 2 70
0 955

RU /

					∴ = − =−α sin ( . )1 0 955 −− °° −− °°72.75 and 107.25

 (v) Pressure difference between the top and bottom sides of the cylinder can be obtained by using Equation (9.67) as given 
below.

p p U
URtop bottom− = − ×

1

2

42ρ
π

Γ

∴ − = − × × ×
×

× ×
=( ) .

( )
p ptop bottom /

1

2
1 2 70

4 420

70 1 2
2

π
−−44919.89 N/m2

  The negative sign indicates the lift force.

 (vi) Lift force generated per unit length of the cylinder is given by,

Lift = =
× ×

=ρUΓ
1 2 70 420

103

.
35.28 kN/m

Summary

 1. Potential flow: A fluid flow with μ = 0  and ρ = Constant .

 2. Uniform flow: The flow velocity remains constant at any 
cross section.

 3. For uniform flow equations for streamline and potential 
lines: (i) Parallel to x-axis is ψ = Uy and ϕ = Ux (ii) parallel 
to y-axis is ψ = −Ux  and ϕ = Uy.

 4. Source flow: The flow coming out from a single point and 
moving radially out in all directions at a constant rate. The 
equations for streamline and potential line are ψ θ= C  and 
ϕ = C rln .

 5. Sink flow: The flow moving radially inwards in a plane 
towards a point where it disappears at a constant rate. The 
sink flow is just opposite to the source flow.

 6. Free vortex flow: A purely circulatory flow such that the 
centre of the vortex is singular point with a circulation
Γ . The equations for stream and potential functions are 
ψ π= −( ) lnΓ /2 r and ϕ π α= ( )Γ /2 .

 7. The stream function ψ  and the velocity function f for the 

flow past a half body is ψ
π

α α
π

β= − = −
q q

2 21 2( )  and 

ϕ α
π

= +Ur
q

rcos ln
2

.

 8. The velocity components for the flow past a half body is 

u U q rr = +cos ( )α π/ 2  and u Uα α= − sin .

 9. At a stagnation point, all components of velocity are zero.

 10. The stream function ψ  and the velocity function f for 

the source-sink pair is ψ
π

α α
π

β= − = −
q q

2 21 2( )  and 

ϕ
π

=
q r

r2
1

2
ln .

 11. A doublet (or dipole) is a special case of a source and sink 
pair of equal strength q  wherein both approach each other 
in such a way that the distance 2a between them approaches 
zero and the product 2a q⋅ , also called the doublet strength 
μ  remains constant. Thus, the doublet strength is given by 
μ = ⋅2a q.

 12. The stream function ψ  and the velocity function f for a dou-

blet is ψ μ
π

α μ
π

α
= − × = −

2 22

r

r r

sin sin
 and ϕ μ

π
α

=
2

cos

r
.

 13. A doublet placed in a uniform flow makes an important flow 
pattern past a circular cylinder (or a Rankine oval of equal 
axes, i.e., a circle).

 14. The stream function ψ  and the velocity function f for the 

flow past a circular cylinder is ψ μ
π

α= −
⎛
⎝⎜

⎞
⎠⎟

U r
r2

sin  and 

ϕ μ
π

α= +
⎛
⎝⎜

⎞
⎠⎟

U r
r2

cos .

 15. The velocity components at any point in the flow field for 

the flow past a circular cylinder is u U
R

r
r = −

⎛

⎝
⎜

⎞

⎠
⎟1

2

2
cosα  and 

u U
R

r
α α= − +

⎛

⎝
⎜

⎞

⎠
⎟1

2

2
sin .
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 16. A uniform flow parallel to x-axis combined with a source-
sink pair of equal strength located on the x-axis with the ori-
gin of coordinates midway between them results in a flow 
past a Rankine oval body.

 17. The value of ψ  and f for the flow past a Rankine oval body 

is ψ α
π

α α= + −Ur
q

sin ( )
2 1 2  and ϕ α

π
= +Ur

q r

r
cos ln

2
1

2
 

and the position of stagnation points on the x-axis is 

r a q aUs = +1 /( ).π

 18. The maximum width of flow past a Rankine oval body is 
y a Uy qm m= cot( ).π /

Multiple-choice Questions

 1. A stationary tornado is similar to which one of the following 
composite flow?
(a) Free vortex and sink flow.
(b) Free vortex and uniform flow.
(c) Source and sink flow.
(d) All the above.

 2. The velocity potential flow for a source flow changes with 
respect to radial distance r  from the source point as
(a) r
(b) ln r
(c) 1/r
(d) None of the above.

 3. The potential lines in a doublet are
(a) Concentric circles with centre on the y-axis.
(b) Circles tangent to the x-axis.
(c) Circles tangent to the y-axis.
(d) None of the above.

 4. Flow pattern around a nosed bridge pier can be represented 
by
(a) A doublet in a uniform flow.
(b) A source and sink of equal strength.
(c) A source and sink in a uniform flow.
(d) A source in a uniform flow.

 5. Flow over an elliptical body may be idealized by superim-
posing a uniform flow and
(a) a doublet.
(b) a source.
(c) a free vortex.
(d) a source and sink pair.

 6. The dividing streamline for a uniform flow superimposed 
over a two-dimensional doublet is
(a) an ellipse.   (b) a sphere.
(c) a circle.   (d) a straight line.

 7. The stagnation points for uniform flow past a cylinder coin-
cide when circulation of the cylinder is
(a) Equal to 4πRU .
(b) Zero.
(c) Less than zero.
(d) None of the above.

 8. The stagnation points in a uniform flow around a circular 
cylinder are located at

(a) 0° and π .

(b) 0 2° and /π .

(c) π π/2 and .

(d) None of the above

Review Questions

 1. What do you mean by uniform flow? Obtain the expressions 
for stream function and velocity function for uniform flow of 
an ideal fluid parallel to (i) x-axis, (ii) y-axis and (iii) inclined 
to x-axis. Also plot the streamlines and equipotential lines.

 2. Define source flow. Obtain expressions for stream function, 
velocity function and pressure distribution for source flow. 
Also plot the streamlines and equipotential lines.

 3. Define free vortex flow. Obtain the expressions for stream 
function and velocity function. Also plot the streamlines and 
equipotential lines.

 4. What do you mean by superimposed flow? Explain how the 
contour of a half body is obtained.

 5. Differentiate between a source and sink with sketches.

 6. Derive expressions and draw streamlines and equipotential 
lines for a source-sink pair of equal strength q  kept at a dis-
tance a  from the origin.

 7. What do you mean by a doublet and the strength of a doublet? 
How is it possible to obtain the flow pattern of a doublet?
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  9.37 Potential Flow 

 8. Explain flow past a circular cylinder with a neat sketch. 
Obtain expressions for stream and velocity potential func-
tions. Also show the pressure variations.

 9. Discuss and explain the flow past a Rankine oval body with 
neat sketches. Also derive expressions for stream function 
and dimensions of the body.

 10. Explain and sketch the flow pattern of an ideal fluid flow past 
a cylinder with circulation. Also derive the expressions for 
stream function, velocity function and velocity components.

Problems

 1. Two discs one over the other are placed in a horizontal plane. 
The water enters at the centre of the lower disc and flows 
radially outward from a source of strength 0.72 m2/s. If at 
a radius of 4 cm the pressure is 150 kPa, then determine 
(i) the pressure at a radius of 0.4 m and (ii) stream function 
at angles of 30° and 90° if ψ = 0  at α = °0 .

[Ans. 154.065 kPa, 0.06 m2/s, 0.18 m2/s]

 2. If a cyclone is approximated as a free vortex flow for which 
the wind velocity at a distance of 5 km from the centre of the 
cyclone is 40 km/h, then determine the pressure gradient at 
that point. Also determine the difference in pressure over a 
radial distance of 2.5 km from that point towards the centre 
of cyclone. Take density of air as 1.2 kg/m3.

[Ans. 0.0296 Pa/m, 222.18 Pa]

 3. A free stream flow of velocity 2.5 m/s is superimposed over a 
plane source of strength 20 m2/s. Both flows are in the same 
plane and a point A lies in the flow field. If the distance of the 
point A from the source is 0.4 m and it is at an angle of ( )π /6  
to the free stream flow, then determine (i) the stream func-
tion and resultant velocity at the given point and (ii) location 
of stagnation point from the source.

[Ans. 2.17 m2/s, 10.2 m/s, 1.273 m]

 4. A uniform flow at 5 m/s is superimposed on a source placed 
at the origin. If the stagnation point occurs at (-0.32, 0), then 
determine the strength of source, maximum width of the 
Rankine half body and the flow velocity at a point ( . , )0 5 2π /  
in the flow field.

[Ans. 10 m2/s, 2 m, 5.93 m/s]

 5. A uniform flow with a velocity of 3 m/s is superimposed 
over a source placed at the origin. If the stagnation point lies 
at (-0.4, 0), then find (i) the strength of the source, (ii) max-
imum width of the Rankine body and (iii) other principal 
dimensions of the Rankine body.

[Ans. 7.54 m2/s, 1.26 m, 2.52 m, 0.628 m, 1.256 m]

 6. The discharge of 25 m3/s waste from a plant into a 10 m 
deep river flowing at 0.2 m/s may be modelled as a two- 
dimensional source spanning across the river depth. If the 
discharge is located in the middle of the river, then find the 
extent of the critical region where the aquatic animals will 
be unaffected.

[Ans. 1.99 m]

 7. Determine the velocity and stream function at point (1, 1) 
for a source-sink pair with the source located at (-1, 0) and 
the sink located at (1, 0). The strengths of the source and the 
sink are 5 m2/s and 10 m2/s, respectively. Also determine the 
pressure if the density of the fluid is 2 kg/m3 and the pressure 
at infinity is zero.

[Ans. 0.318 m/s, 1.432 m/s, 1.466 m/s, -2.149 Pa]

 8. A plane half body is to be designed for the nose of a solid 
strut 76 mm wide placed in an infinite two-dimensional air 
stream of velocity 10 m/s and density 1.22 kg/m3. Determine 
(i) the strength of the source, (ii) gap between the stagnation 
point and the source and (iii) pressure difference between the 
stagnation point on the strut where it is 38 mm wide and the 
resultant velocity.

[Ans. 0.76 m2/s, 0.0121 m, 85.8 Pa, 11.86 m/s]

 9. A source flow of strength 10 m2/s is superimposed on a uni-
form flow of velocity 2 m/s. Determine the location of the 
stagnation point, maximum width of the half body and width 
of the half body at source.

[Ans. (-0.7958, 0), 5 m, 2.5 m]

 10. State about the pattern of the streamlines if for a two- 
dimensional doublet the streamline equation is x2 + y2 - (k/c)
y = 0. Also find the magnitude and direction of velocity at 
point P(3, 5), where u = 4 m/s.

[Ans. 8.5 m/s, -61.93°]

 11. The strength of a doublet is 20 m2/s. Determine the velocity 
at a point (2, 1) located in the field of the doublet and the 
value of stream function passing through it.

[Ans. 0.64 m/s, -0.64 m2/s]

 12. If a point P(0.5, 1) is located in the flow field of a doublet 
of strength 10 m2/s, then determine the velocity at the given 
point. Also find the value of stream function.

[Ans. 1.273 m/s, -1.273 m2/s]

 13. A 40 mm diameter cylinder is immersed in a fluid stream of 
1 m/s uniform velocity. Determine the radial and tangential 
velocity components on a streamline at a point where radius 
is 40 mm and the angle is 120° measured from the positive 
x-axis. Also determine the resultant velocity at the given 
point. Assume the flow to be ideal.

[Ans. -0.375 m/s, -1.08 m/s, 1.143 m/s]
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9.38 Chapter 9

 14. A uniform flow of 5 m/s is flowing over a doublet of strength 
7.5 m2/s. If the doublet is in the line of the uniform flow and 
the polar coordinates of a point in the flow field are 0.5 m 
and 30°, then determine the streamline function and the 
resultant velocity at the given point.

[Ans. 0.056 m2/s, 4.884 m/s]

 15. If a doublet of strength 25.5 m2/s lies in the line of a uniform 
flow of 14.5 m/s, then what is the shape of the Rankine body 
formed? Also find the dimensions of the Rankine body and 
the value of the tangential and radial velocities of the surface 
at a point 30° from the x-axis.

[Ans. Cylindrical shape, 0.529 m, 0, 0, -14.5 m/s]

 16. A source and sink of strength 25 m2/s are located at a dis-
tance of 1.5 m. If a uniform flow of 10 m/s parallel to the 
line joining the source-sink pair is superimposed, then find 
the length of the Rankine oval body formed and the distance 
of the stagnation points from the source.

[Ans. 2.16 m, 0.33 m, 1.83 m]

 17. If a circular cylinder of diameter 0.5 m rotates at 600 rpm in 
a uniform stream of 15 m/s, then locate the stagnation point. 
Also determine the minimum rotational speed for detached 
stagnation points.

[Ans. -31.5o, -148.5°, 1145.9 rpm]

ANSWERS TO MULTIPLE-CHOICE QUESTIONS

 1. (a) 2. (b) 3. (c) 4. (d) 5. (d)
 6. (c) 7. (a) 8. (a)

M09 Fluid Mechanics and Hydraulic Machines XXXX 01.indd   38 4/5/2019   11:02:11 AM

Download more at Learnclax.com



10.1 ❐ INTRODUCTION
An orifice is an opening of any cross section, which may be circular, triangular, square or rectangular, provided in the walls 
or bottom of the tank (or vessel) through which the fluid is discharged. The top edge of the orifice always lies below the free 
surface of the liquid in the container. Usually, the orifice is used to measure the rate of flow of fluid.

A mouthpiece is an attachment in the form of a short length of tube or pipe. It is two to three times its diameter in length 
and is fitted to a circular opening or orifice of the same diameter provided in a tank or vessel containing fluid, through 
which fluid is discharged. It is also used for measuring the rate of flow of a fluid from a tank or reservoir. Mouthpieces are 
designed to improve the coefficient of discharge of orifices which leads to increase the amount of discharge. In this chapter, 
orifice and mouthpieces are described in detail.

10.2 ❐ CLASSIFICATION OF ORIFICES
The orifices may be classified on the basis of their shape, size, shape of the upstream edges and the discharge conditions 
are discussed below.

 1. According to the shape, the orifices may be classified as circular, rectangular, square and triangular orifices depending 
upon its cross-sectional area. Mostly, the circular and rectangular orifices are used.

 2. According to the size, the orifices may be classified as small and large orifices. If the head of the liquid from the centre 
of the orifice is more than five times the depth of orifice, then it is called small orifice and if the head of liquid is less 
than five times the depth of the orifice, then it is known as large orifice.

 3. According to the shape of the upstream edge, the orifices may be classified as sharp-edged orifices and bell-mouthed 
orifices (or orifices with round corners). Due to minimum frictional effects, a sharp-edged orifice is considered as a 
standard orifice and it is most commonly used for the purpose of discharge measurement.

 4. According to the discharge conditions, the orifices may be classified as orifices discharging free orifices and submerged 
orifices (or drowned orifices). A free discharging orifice discharges into the atmosphere, whereas a submerged orifice 
discharges into another tank of fluid. The submerged orifices (or drowned orifices) may be further classified as fully 
submerged orifices and partially submerged orifices.

Chapter 10

Flow Through Orifices and 
Mouthpieces
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10.2 Chapter 10

10.3 ❐ FLOW THROUGH AN ORIFICE
Figure 10.1 illustrates a small circular orifice with sharp edge in one of the side wall of a tank and it discharges freely into 
the atmosphere.

Let h be the head of the liquid above the centreline of the orifice.  
As the liquid flows through the orifice, it forms a jet of liquid and attains 
a parallel form at an approximate distance of half the diameter of the 
orifice. The section C–C of the jet, at which the streamlines are straight, 
parallel to each other and perpendicular to the plane of the orifice and 
the jet has minimum cross-sectional area is known as vena contracta 
(Latin word meaning contracted vein or jet). Beyond this section C–C, 
the jet diverges and bends in the downward direction due to gravity.

Assuming (i) flow through the orifice is steady under a constant 
head h and (ii) loss of energy due to flow of liquid through the orifice 

is zero. Consider two points ‘o’ and ‘c’ as shown in Figure 10.1. The point ‘o’ is at the free surface of the liquid in the tank 
and the point ‘c’ is at the centre of the vena contracta. Applying Bernoulli’s equation between the points ‘o’ and ‘c’, we get 
the below expression.

p

g

V

g
z

p

g

V

g
zo o

o
c c

cρ ρ
+ + = + +

2 2

2 2

However, p p po c= = atm, z z ho c= +( ), Vo = 0 ( )∵V Vo c<<  and V Vc = th, here Vth is the theoretical velocity (since losses 
are neglected).

Thus         
p

g g
z h

p

g

V

g
zc c

atm atm th

ρ ρ
+ + + = + +

0

2 2

2 2

( )

h
V

g
= th

2

2
 (10.1)

∴ =V ghth 2  (10.2)

The Equation (10.2) is also known as Torricelli’s equation in honour of Evangelista Torricelli who deduced this equation 
in 1643. It gives the theoretical velocity ( )Vth  or ideal velocity of flow through an orifice which equals the velocity of free 
fall from the surface of the tank. Due to viscous effects, the actual velocity of flow through an orifice will always be less 
than the theoretical velocity given by Equation (10.2).

10.4 ❐ HYDRAULIC COEFFICIENTS (COEFFICIENTS FOR AN ORIFICE)
The hydraulic coefficients, namely coefficient of velocity, coefficient of contraction, coefficient of discharge and coefficient 
of resistance are discussed below. The orifices are calibrated with the help of hydraulic coefficients for using them as a 
precise discharge measuring device.

Coefficient of velocity (Cv ) It is defined as the ratio of the actual velocity of the jet at vena contracta ( )V  to the 
theoretical (ideal) velocity of the jet ( )Vth . It is denoted by Cv and it is mathematically expressed as follows.

	 C
V

V

V

gh
v = =

th 2
 (10.3)

V C ghv= 2  (10.4)

The difference between the theoretical and the actual velocities of the jet at vena contracta is mainly due to friction at the 
orifice. The value of Cv varies from 0.95 to 0.99 for different orifices, depending upon the shape and size of the orifice 

Jet of liquid

C

C

hTank

Vena-contractao

c

Figure 10.1 A circular sharp-edged orifice 

discharging free

M10 Fluid Mechanics and Hydraulic Machines XXXX 01.indd   2 4/5/2019   11:34:34 AM

Download more at Learnclax.com



 Flow Through Orifices and Mouthpieces 10.3

and on the head of liquid under which flow occurs. However, the average value of  Cv is assumed as 0.98 for sharp-edged 
orifices discharging water and other liquids of similar viscosity.

For determining the loss of head hf  through an orifice, applying the Bernoulli’s equation between the points ‘o’ and ‘c’ 
(Figure 10.1), we get the below expression.

p

g

V

g
z

p

g

V

g
z ho o

o
c c

c fρ ρ
+ + = + + +

2 2

2 2

However, p p po c= = atm, z z ho c= +( ), Vo = 0 ( )∵V Vo c<<  and V Vc = , here V  is the actual velocity (since losses are 
considered).

Thus      
p

g g
z h

p

g

V

g
z hc c f

atm atm

ρ ρ
+ + + = + + +

0

2 2

2 2
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h
V

g
hf= +

2

2

h h
V

g
h

V
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h Cf v= − = −
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⎝
⎜

⎞

⎠
⎟ = −

2 2
2

2
1

2
1( ) (10.5)
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22

2
1

2

1
1  (10.6)

Coefficient of contraction (Cc ) It is defined as the ratio of the area of the jet at vena contracta ( )ac  to the area of the 
orifice ( )a . It is denoted by Cc and it is mathematically expressed as follows.

C
a

ac
c=  (10.7)

a C ac c= ×  (10.8)

The value of Cc for orifices varies from 0.61 to 0.69 and its average value is assumed as 0.64.

Coefficient of discharge (Cd ) It is defined as the ratio of the actual discharge from an orifice ( )Q  to its theoretical 
discharge ( )Qth . It is denoted by Cd  and it is mathematically expressed as follows.

	 C
Q

Q

V

V

a

a
C Cd

c
v c= = × = ×

th th
 (10.9)

Equation (10.9) shows that the coefficient of discharge of an orifice is the product of coefficient of velocity and coefficient 
of contraction. The value of Cd  varies from 0.62 to 0.65 and its average value is taken as 0.62.

Coefficient of resistance (Cr ) It is defined as the ratio of the loss of kinetic energy (K.E.) as the liquid flows through an 
orifice to the actual kinetic energy possessed by the flowing liquid. It is denoted by Cr  and it is mathematically expressed 
as follows.

Cr = =
−Loss of K.E.

Actual K.E.

Theoretical K.E. Actual K.E.

Actual K.EE.
=

Loss of head

Actual head

Theoretical K.E./Weight th= = =
V

g

gh

g
h

2 2

2

2

2
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Actual K.E./Weight = = =
V

g

C gh

g
hCv

v

2 2
2

2

2

2
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10.4 Chapter 10

Thus        C
h hC

hC C
r

v

v v

=
−

= −
⎛

⎝
⎜

⎞

⎠
⎟

2

2 2

1
1  (10.10)

The coefficient of resistance Cr  accounts for the loss of energy during flow of liquid through an orifice and its value can be 
determined from Equation (10.10) by knowing the value of Cv.

 Example 10.1  The actual velocity at the vena contracta of a water jet coming out from an orifice of diameter 4 cm is 
9.5 m/s. If the orifice is working under a head of 5 m and the measured discharge is 0.0078 m3/s, then determine (i) the 
coefficient of velocity, (ii) coefficient of discharge, (iii) coefficient of contraction and (iv) coefficient of resistance.

Solution
Let d = =4 0 04cm m. , V = 9 5. m/s , h = 5 m  and Q = 0 0078. m /s3 .

a d= = × =
π π
4 4

0 04 0 0012572 2 2. . m

Vth m/s= × × =2 9 81 5 9 9. .

Q aVth th
3m /s= = × =0 001257 9 9 0 01244. . .

 (i) C
V

Vv = = =
th

9 5

9 9

.

.
0.96

 (ii) C
Q

Qd = = =
th

0 0078

0 01244

.

.
0.627

 (iii) C
C

Cc
d

v
= = =

0 627

0 96

.

.
0.653

 (iv) C
C

r
v

= −
⎛

⎝
⎜

⎞

⎠
⎟ = −

⎛
⎝⎜

⎞
⎠⎟

=
1

1
1

0 96
1

2 2.
0.0851

 Example 10.2  If an orifice of diameter 5 cm discharges water under a head of 10 m, coefficient of discharge is 
0.62 and coefficient of velocity is 0.97, then determine (i) the actual discharge and (ii) actual velocity of the jet at vena 
contracta.

Solution
Let d = =5 0 05cm m. , h = 10 m, Cd = 0 62.  and Cv = 0 97. .

a d= = × =
π π
4 4

0 05 0 00196352 2. . m2

V ghth m/s= = × × =2 2 9 81 10 14 01. .

Q aVth th
3m /s= = × =0 0019635 14 01 0 02751. . .

 (i) Q C Qd= = × =th /0 62 0 02751. . 0.01706 m s3

 (ii) V C Vv= = × =th /0 97 14 01. . 13.59 m s
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 Flow Through Orifices and Mouthpieces 10.5

10.5 ❐  EXPERIMENTAL DETERMINATION OF HYDRAULIC COEFFICIENTS
There are many methods by which the value of each of the hydraulic coefficients of an orifice can be determined. 
The commonly adopted methods are discussed below.

10.5.1 Determination of Coefficient of Velocity (Cv )
Consider a tank provided with a small orifice discharging 
water under a constant head h which is maintained by 
a constant supply (Figure 10.2). Let a liquid particle 
takes t time to travel along the jet from vena contracta 
(section C–C) to position P.

Let x be the horizontal distance travelled by the particle 
in time t, y  be the vertical distance between the centre of the 
vena contracta and point P, V  be the actual velocity of the jet 
at vena contracta and Vth be the theoretical velocity of the jet.

The horizontal and vertical distances are respectively 
given below.

	 	 	 	 	 	 	 	 	 x Vt=  (i)

	 	 	 	 	 	 	 	 	
y gt=

1

2
2 (ii)

Substituting t x V= ( )/  from expression (i) in expression 
(ii), we get:

y g
x

V
V

gx

y
= ⎛

⎝⎜
⎞
⎠⎟

⇒ =
1

2 2

2
2

2

Thus        V
gx

y
=

2

2

V ghth = 2

	 C
V

V

gx y

gh

x

yh

x

yh
v = = = =

th

( ) / ( )2 22

2 4 4
 (10.11)

10.5.2 Determination of Coefficient of Discharge (Cd )
The water flowing through the orifice of area a under a constant head h is collected in a measuring tank as shown in 
Figure 10.2. The rise of water level in the measuring tank in a specific time t  is recorded. The expression for actual 
discharge through the orifice is given below.

Q =
×Area of measuring tank Rise of water level

Time

Q a ghth = 2

C
Q

Q

Q

a gh
d = =

th 2
 (10.12)

∴ =Q C a ghd 2  (10.13)

Measuring tank

C

C

xTank with orifice

Water supply

h

P

y

Jet

Figure 10.2 Determination of hydraulic coefficients
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10.6 Chapter 10

10.5.3 Determination of Coefficient of Contraction (Cc )
After knowing the values of Cv and Cd , the coefficient of contraction ( )Cc  can be determined from the following relation.

C C Cd v c= ×

∴ =C
C

Cc
d

v
 (10.14)

 Example 10.3  The water discharged through an orifice of diameter 10 cm working under a head of 10 m is collected in 
a circular tank of diameter 1.4 m. If the water level in the measuring tank rises by 0.9 m in 20 seconds and the coordinates 
of a point on the water jet measured from vena contracta are 4.5 m horizontal and 0.6 m vertical, then determine (i) the 
coefficient of velocity, (ii) coefficient of discharge and (iii) coefficient of contraction.

Solution
Let d = =10 0 1cm m. , h = 10 m, d1 1 4= . m, h1 0 9= . m, t = 20 s, x = 4 5. m and y = 0 6. m.

a d= = × =
π π
4 4

0 1 0 0078542 2 2. . m

V ghth m/s= = × × =2 2 9 81 10 14 01. .

Q aVth th
3m /s= = × =0 007854 14 01 0 11003. . .

a d1 1
2 2

4 4
1 4 1 5394= = × =

π π
. . m2

Q
a h

t
= =

×
=1 1 1 5394 0 9

20
0 0693

. .
. m /s3

 (i) C
Q

Qd = = =
th

0 0693

0 11003

.

.
0.63

 (ii) C
x

yh
v = =

× ×
=

4

4 5

4 0 6 10

.

.
0.9185

 (iii) C
C

Cc
d

v
= = =

0 63

0 9185

.

.
0.686

 Example 10.4  A tank has two identical orifices in one of its vertical 
side. The upper orifice is 2.5 m below the water surface and the lower one 
is 4.5 m below the water surface. If the coefficient of velocity for both the 
orifices is 0.97, then find the point at which the two jets intersect.

Solution
Refer Figure 10.3. Let h1 2 5= . m, h2 4 5= . m and C Cv v1 2 0 97= = . .

Let x be the horizontal coordinate of the point of intersection of P, 
y1 and y2 be the vertical distance of P from orifice 1 and 2, respectively.

	 	 	 	 	 	 	 	
C

x

y h

x

y
v1

1 1 14 4 2 5
= =

× .
 (i)

	 	 	 	 	 	 	 	
C

x

y h

x

y
v2

2 2 24 4 4 5
= =

× .
 (ii)

x

1

P

y1
y2

h1

h2

2

Figure 10.3 
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Thus    
x

y

x

y4 2 5 4 4 51 2×
=

×. .
   [ ]∵C Cv v1 2=

∴ =y y1 21 8.  (iii)

Since      y y h h1 2 2 1− = −

Thus      y y1 2 4 5 2 5 2− = − =. .  (iv)

Solving expressions (iii) and (iv), we get:

y2 2 5= .

Substituting the values of y2 2 5= .  and Cv2 in expression (ii), we get:

0 97
4 2 5 4 5

.
. .

=
× ×

x

∴ = × × × =x 0 97 4 2 5 4 5. . . 6.507 m

 Example 10.5  An orifice of diameter 11 cm discharges 50 litres of water per second while working under a constant 
head of 3.7 m. If a flat plate held normal to the jet downstream from the orifice needs a force of 400 N to resist the impact 
of jet, then determine the hydraulic coefficients.

Solution
Let d = =11 0 11cm m. , Q l= = × −50 50 10 3/s m /s3 , h = 3 7. m and F = 400 N .

Since         F QVw= ρ    [Momentum equation]

Thus         400 1000 50 10 3= × × ×− V

∴ = =V
400

50
8 m/s

a d= = × =
π π
4 4

0 11 0 0095032 2. . m2

V ghth m/s= = × × =2 2 9 81 3 7 8 52. . .

Q aVth th
3m /s= = × =0 009503 8 52 0 080965. . .

 (i) C
Q

Qd = =
×

=
−

th

50 10

0 080965

3

.
0.6175

 (ii) C
V

Vv = = =
th

8

8 52.
0.939

 (iii) C
C

Cc
d

v
= = =

0 6175

0 939

.

.
0.6576

 Example 10.6  An orifice of diameter 4 cm fitted in the vertical side of a tank discharges water under a constant head 
of 2 m. If the head loss in the orifice is 0.1 m and the coefficient of contraction is 0.64, then determine (i) the theoretical 
discharge through the orifice, (ii) coefficient of velocity and the coefficient of discharge, (iii) actual discharge through the 
orifice and (iv) location of the point of impact of the jet on a horizontal plane located 0.4 m below the centre of the orifice.
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10.8 Chapter 10

Solution
Let d = =4 0 04cm m. , h = 2 m, hf = 0 1. m, Cc = 0 64.  and y = 0 4. m.

 (i) V ghth m/s= = × × =2 2 9 81 2 6 2642. .

	 	
V g h hfactual m/s= − = × × − =2 2 9 81 2 0 1 6 1056( ) . ( . ) .

	 	
a d= = × =

π π
4 4

0 04 0 0012572 2 2. . m

	 	 Q aVth th /= = × =0 001257 6 2642. . 0.0078741 m s3

 (ii) C
V

Vv = = =actual

th

6 1056

6 2642

.

.
0.9747

	 	 C C Cd c v= = × =0 64 0 9747. . 0.6238

 (iii) Q C Qd= = × = ×th /0 6238 0 0078741. . 4.912 10 m s-3 3

 (iv) x C yhv= = × × × =4 0 9747 4 0 4 2. . 1.7436 m

 Example 10.7  A closed tank contains water up to a height of 1.64 m 
and the upper part of the tank is filled with air at a pressure of 82 kPa above 
atmospheric pressure. Determine the rate of flow of water through an orifice 
of diameter 12 cm fitted at the bottom. Take coefficient of discharge for the 
orifice as 0.62.

Solution
Refer Figure 10.4. Let h = 1 64. m , p po = +atm kPa82 , d = =12 0 12cm m.  
and Cd = 0 62. .

Applying Bernoulli’s equation to the water surface (i.e., point o) and the 
outlet of the orifice (i.e., point c), we get the below expression.

p

g

V

g
z

p

g

V

g
zo

w

o c

w

c
cρ ρ

+ + = + +
2

0

2

2 2
 (i)

z z h zo c c= + = +1 64. , Vo = 0 and p g pc w/ m of wateratm( ) .ρ = = 10 3

p

g
po

wρ
= + = +

×
×

=atm kpa m of water82 10 3
82 10

1000 9 81
18 659

3

.
.

.

Substituting the above values in expression (i), we get:

18 659 0 1 64 10 3
2

2

. ( . ) .+ + + = + +z
V

g
zc

c
c

V

g
c

2

2
9 999= .

∴ = × = × × =V gc 2 9 999 2 9 81 9 999 14 01. . . . m/s

Jet of water

h Tank

o

c

Water

Air (82 kPa)

Figure 10.4 
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 Flow Through Orifices and Mouthpieces 10.9

a d= = × =
π π
4 4

0 12 0 011312 2. . m2

Q C aVd c= = × × =0 62 0 01131 14 01. . . 0.098241 m /s3

 Example 10.8  If the head loss in the flow through an orifice of diameter 2.5 cm working under a certain head is 8 cm 
of water and the velocity of water jet is 3.5 m/s, then determine (i) the head on the orifice causing flow, (ii) coefficient of 
velocity and (iii) diameter of the jet. Take coefficient of discharge of the orifice as 0.62.

Solution
Let d = =2 5 0 025. .cm m , hf = =8 0 08cm m. , V = 3 5. m/s	and Cd = 0 62. .

Let d1 be the jet diameter.

 (i) h
V

g
hf= + =

×
+ =

2 2

2

3 5

2 9 81
0 08

.

.
. 0.7044 m

 (ii) C
V

gh
v = =

× ×
=

2

3 5

2 9 81 0 7044

.

. .
0.9415

 (iii) C
C

Cc
d

v
= = =

0 62

0 9415

.

.
0.6585

Also       C
a

a

d

d

d

d
c

c= = =
( )

( )

π
π

/

/

4

4

1
2

2
1
2

2

∴ = = × =d C dc1
2 20 6585 0 025. . 0.0203 m or 2.03 cm

 Example 10.9  A tank of height 4 m full of water is placed on the ground. There is a small orifice in its vertical side with 
its centre at depth h metres below the free surface of water in the tank. Determine the value of h so that the water jet strikes 
the ground at the maximum distance from the tank. Also determine the maximum value of the horizontal distance if the 
value of coefficient of velocity is 0.98.

Solution
Refer Figure 10.5. Let H = 4 m and Cv = 0 98. .

Let V  be the velocity, t  be the time and g  be the acceleration due to gravity.
The horizontal and vertical distances are respectively given below.

	 	 	 	 	 	 	 	 	 	 	 	 x Vt=  (i)

	 	 	 	 	 	 	 	 	 	 	 	
y gt=

1

2
2 (ii)

Substituting t x V= ( )/  from expression (i) in expression (ii), we get:

y g
x

V
x

V y

g
= ⎛

⎝⎜
⎞
⎠⎟

⇒ =
1

2

2
2

2
2

Substituting V C ghv= 2  and y H h= −( ), we get:

x
C gh H h

g
v2

22 2
=

−( ) ( )

C

C

x

Tank with orifice

h

P

y

Jet

H

Figure 10.5 
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10.10 Chapter 10

Thus      x C h H hv= −2 ( )  (iii)

The horizontal distance will be maximum when h H h( )−  is maximum and the expression is given below.

d

dh
h H h[ ( )]− = 0

H h− =2 0

Thus h H= /2

∴ = =h
4

2
2 m

Thus, the maximum horizontal distance can be obtained by expression (iii) as follows.

xmax . ( )= × × × − =2 0 98 2 4 2 3.92 m

10.6 ❐  DISCHARGE THROUGH A LARGE RECTANGULAR ORIFICE
In the case of a large orifice (head of liquid above the centre of orifice is less than five times the depth of orifice), the 
velocity of the jet cannot be considered constant over the entire cross section of the jet. Thus, the discharge is given by 
Equation (10.13) as Q C a ghd= 2  for small orifice cannot be used for large orifices. Consider a large rectangular orifice on 
one side of a tank discharging freely into atmosphere under a constant head maintained by a constant supply (Figure 10.6).

Let h1 be the height of liquid above the upper edge of the orifice, h2 be the height of liquid above the lower edge of the 
orifice, d h h= −( )2 1  be the depth of the orifice, b be the width of the orifice and Cd  be the coefficient of discharge.

Consider an elementary horizontal strip of depth dh at a depth h below the free surface of the liquid. The expression for 
discharge through the strip is given below.

	 dQ C C bdh ghd d= × × = × ×Area of strip Velocity 2  (i)

The total discharge through the orifice can be obtained by integrating expression (i) between the limits h1 and h2 as follows.

Q C b g h dh C b g
h

d
h

h

d

h

h

= = ×
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

∫2 2
3 2

1 2
3 2

1

2

1

2

/
/

/

Thus Q C b g h hd= × −
2

3
2 2

3 2
1
3 2[ ]/ /  (10.15)

 Example 10.10  A rectangular orifice of width 2 m and depth 1.5 m fitted to tank discharges water. If the coefficient of 
discharge of the orifice is 0.62 and the water level in the tank is 3.5 m above the top edge of the orifice, then determine the 
discharge through it.

dh

Tank with large
rectangular orifice

Water supply

h

b
Water jet

d
h2

h1

Figure 10.6 Large rectangular orifice
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 Flow Through Orifices and Mouthpieces 10.11

Solution
Refer Figure 10.6. Let b = 2 m, d = 1 5. m, Cd = 0 62.  and h1 3 5= . m.

h h d2 1 3 5 1 5 5= + = + =. . m

Since  Q C b g h hd= × −
2

3
2 2

3 2
1
3 2[ ]/ /

	

∴ = × × × × × − =Q
2

3
0 62 2 2 9 81 5 3 53 2 3 2. . [ . ]/ / 16.9625 m /s3

10.7 ❐  DISCHARGE THROUGH SUBMERGED ORIFICES
At the discharge end, the orifices may be fully submerged or partially submerged and it is discussed in the following 
sections.

10.7.1 Fully Submerged Orifice (or Totally Drowned Orifice)
If an orifice has its whole of the outlet side submerged under liquid 
so that it discharges a jet of liquid into the liquid of same kind, then 
it is known as fully submerged orifice or totally drowned orifice 
(Figure 10.7).

Let h1 be the height of liquid above the upper edge of the ori-
fice, h2 be the height of liquid above the lower edge of the orifice, 
d h h= −( )2 1  be the depth of the orifice, h be the difference in liquid 
levels in the two tanks, b be the width of the orifice, bd be the area 
of the orifice and Cd  be the coefficient of discharge.

Consider two points ‘o’ and ‘c’ as shown in Figure 10.7. The point ‘o’ is at the free surface of the liquid in the tank and 
point ‘c’ is at the centre of the vena contracta. Applying Bernoulli’s equation between the points ‘o’ and ‘c’, we get the 
below expression.

	

p

g

V

g
z

p

g

V

g
zo o

oρ ρ
+ + = + +

2 2

2 2
 (i)

Now p po = =atm 0  (assumed) and Vo = 0. 

z h
h h h h

o = +
−

=
+

1
2 1 1 2

2 2
 and 

p

g
z h

h h
hoρ

= − =
+

−( ) 1 2

2

Substituting the above values in expression (i), we get:

0 0
2 2 2

01 2 1 2
2

+ +
+

=
+

−⎛
⎝⎜

⎞
⎠⎟

+ +
h h h h

h
V

g

h
V

g
=

2

2

∴ =V gh2

Discharge through the orifice is given by,

	 Q C C b h h ghd d= × × = × − ×Area of orifice Velocity ( )2 1 2  (10.16)

	 Q C b d ghd= × × × 2  (10.16a)

h
h2

h1

o

c

zo

z (Datum)

Figure 10.7 Fully submerged orifice
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10.12 Chapter 10

 Example 10.11  Determine the discharge through a fully submerged orifice of width 1.2 m and depth 1 m. If the 
difference in water levels on both sides of the orifice is 2 m, then take coefficient of discharge of the orifice as 0.62.

Solution
Refer Figure 10.7. Let b = 1 2. m, d = 1 m , h = 2 m and Cd = 0 62. .

Q C bd ghd= = × × × × × =2 0 62 1 2 1 2 9 81 2. . . 4.6605 m /s3

10.7.2 Partially Submerged Orifice
If the outlet side of an orifice is only partly submerged under liquid, then it is known as partially submerged orifice or 
partially drowned orifice (Figure 10.8). In partially submerged orifice, its upper portion behaves as an orifice discharging 

free, whereas the lower portion behaves as a submerged orifice. Only large ori-
fice can behave as a partially submerged orifice. The discharge through a partially 
submerged orifice may be determined by individually calculating the discharge 
through the free and submerged portions and then adding together the two dis-
charges produced.

Discharge through the submerged portion of the orifice is given by Equation 
(10.16) as follows.

Q C b h h ghd1 2 2= −( )

Discharge through the free portion of the orifice is given by,

Q C b g h hd2
3 2

1
3 22

3
2= × −[ ]/ /

Thus, the expression for total discharge through the partially submerged orifice is given below.

	 Q Q Q C b h h gh C b g h hd d= + = − + × −1 2 2
3 2

1
3 22

2

3
2( ) [ ]/ /  (10.17)

 Example 10.12  A large tank is provided with a rectangular orifice of width 1.5 m and depth 2 m in one of its sides. 
The water level in one side of the orifice is 1.8 m above the top edge of the orifice while on the other side it is 0.9 m below 
the top edge. If the coefficient of discharge of the orifice is 0.62, then determine the discharge through the orifice.

Solution
Refer Figure 10.9. Let b = 1 5. m , d = 2 m, h1 1 8= . m, y = 0 9. m and Cd = 0 62. .

h h y= + = + =1 1 8 0 9 2 7. . . m

h h d2 1 1 8 2 3 8= + = + =. . m

Since  Q C b h h gh C b g h hd d= − + × −( ) [ ]/ /
2

3 2
1
3 22

2

3
2

Q = × × − × × ×

+ × × × × ×

0 62 1 5 3 8 2 7 2 9 81 2 7

2

3
0 62 1 5 2 9 81 2 73 2

. . ( . . ) . .

. . . [ . / −−1 83 2. ]/

∴ = + =Q 7 446 5 552. . 12.998 m /s3

hh2
h1

Figure 10.8 Partially submerged 

orifice

hh2
h1

y

Figure 10.9
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 Flow Through Orifices and Mouthpieces 10.13

10.8 ❐  TIME OF EMPTYING A TANK THROUGH AN ORIFICE
Usually, tanks containing liquid are emptied through an orifice and it becomes important to know their time of emptying. 
In the following sections, time of emptying of the following tanks, namely (i) vertical tank of uniform cross section, 
(i.e., rectangular, square or cylindrical), (ii) hemispherical tank and (iii) circular horizontal tank is discussed.

10.8.1 Time of Emptying Vertical Tank of Uniform Cross Section
Consider a tank of uniform cross-sectional area containing some liquid. The 
tank is provided with an orifice at its bottom as shown in Figure 10.10. Let 
A be the cross-sectional area of the tank, h1 be the initial height of liquid, h2 
be the final height of liquid, a be the cross-sectional area of the orifice, T  be 
the time in seconds for the liquid to fall from height h1 to h2.

Assuming that at some instant, the height of liquid in the tank is h and 
the level decreases by dh in a small interval of time dT . Let dq be the 
discharge through the orifice per second.

Thus  dq C C a ghd d= × × = × ×Area of orifice Theoretical velocity 2

Discharge through the orifice in time dT  is given by,

	 	 	 	 	 	 	 	 dQ dq dT C a gh dTd= × = ×2  (i)

Volume of liquid that has passed the tank in time dT  is given by,

	 dQ A dh= × = − ×Area of liquid surface Fall in liquid level  (ii)

The negative sign has been taken in expression (ii) since liquid level falls with time. Thus, equating the expressions (i) 
and (ii), we get the following expression.

C a gh dT Adhd 2 = −

	
dT

Adh

C a ghd

=
−

2
 (iii)

Therefore, the time for the liquid level to fall from h1 to h2 can be calculated by integrating the expression (iii) between the 
limits h1 and h2 as follows.

T
A

C a gh
dh

A

C a g
h dh

dh

h

d h

h

=
−

=
−

∫ ∫ −

2 2
1

2

1

2

1 2/

	 T
A

C a g

h A h h

C a g

A h h

C ad h

h

d d

=
− ⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
− −

=
−

2 1 2

2

2

2

2

1 2
2 1 1 2

1

2/

/

[ ] [ ]

gg
 (10.18)

For emptying the tank completely, h2 0=  and therefore, Equation (10.18) is written as follows.

	 T
A h

C a gd

=
2

2

1  (10.19)

In Equations (10.18) and (10.19), the area of the tank A for rectangular, square or circular in shape will remain constant 
with depth and will be given by lb, b2 or ( ) ,π /4 2d  respectively.

h

Vertical tankdh

h1

h2

Liquid jet

Figure 10.10 Vertical tank with an orifice 

at its bottom
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 Example 10.13  A circular tank of diameter 1.4 m containing water up to a height of 4.2 m is provided with an orifice 
of diameter 3 cm at its bottom. If the coefficient of discharge for the orifice is given as 0.62, then determine the height of 
water above the orifice after 84 seconds.

Solution
Let D = 1 4. m, h1 4 2= . m , d = =3 0 03cm m. , Cd = 0 62.  and T = 84 s. Let h2 be the height of water above the orifice after 
84 seconds.

A D= = × =
π π
4 4

1 4 1 53942 2. . m2

a d= = × =
π π
4 4

0 03 0 0007072 2. . m2

Since  T
A h h

C a gd

=
−2

2

1 2[ ]

	

Thus 84
2 1 5394 4 2

0 62 0 000707 2 9 81

2=
× × −

× × ×

. [ . ]

. . .

h

	
0 053 2 05 2. [ . ]= − h

∴ = − =h2
22 05 0 053( . . ) 3.988 m

 Example 10.14  A circular tank of diameter 2 m containing water up to a height of 3 m is provided with an orifice of 
diameter 0.3 m at its bottom. If the coefficient of discharge for the orifice is given as 0.6, then determine the time taken by 
water, (i) to fall from 3 m to 1 m and (ii) for completely emptying the tank.

Solution
Let D = 2 m, h1 3= m, d = 0 3. m, Cd = 0 6.  and h2 1= m.

A D= = × =
π π
4 4

2 3 14162 2 . m2

a d= = × =
π π
4 4

0 3 0 07072 2. . m2

 (i) T
A h h

C a gd

=
−

=
× × −
× × ×

=
2

2

2 3 1416 3 1

0 6 0 0707 2 9 81

1 2[ ] . [ ]

. . .
24.48 s

 (ii) T
A h

C a gd

= =
× ×

× × ×
=

2

2

2 3 1416 3

0 6 0 0707 2 9 81

1 .

. . .
57.92 s

 Example 10.15  A rectangular vessel with vertical sides is provided with an orifice in one of its side. If the head over the 
orifice is lowered from 5 m to 2 m in a certain time, then find the constant head at the orifice so that same amount of water 
is discharged through the orifice at the same time.

Solution
Let h1 5= m and h2 2= m. Let h be the constant head over the orifice and v  be the volume of water leaving the vessel in 
time T .

v A h h= −( )1 2 , also v C a gh Td= ×2

Thus  A h h C a gh Td( )1 2 2− = × 	
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 Flow Through Orifices and Mouthpieces 10.15

Substituting Equation (10.18) in the above expression, we get:

A h h C a gh
A h h

C a g
d

d

( )
[ ]

1 2
1 22

2

2
− = ×

−

( ) [ ]h h h h h1 2 1 22− = −

( )( ) [ ]h h h h h h h1 2 1 2 1 22− + = −

Thus h
h h

=
+⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1 2
2

2
	

∴ =
+⎡

⎣
⎢

⎤

⎦
⎥ =h

5 2

2

2

3.331 m

10.8.2 Time of Emptying Hemispherical Tank
Consider a hemispherical tank of radius R containing some liquid and provided with an orifice of area a at its bottom as 
shown in Figure 10.11. In this case, the cross-sectional area A is not constant. As the level of liquid decreases, the area 
decreases. Let h1 be the initial height of liquid, h2 be the final height of liquid and T  be the time in seconds for the liquid 
to fall from height h1 to h2.

Assuming that at some instant, the height of liquid in the tank is h, r is the radius of the liquid surface and the level 
decreases by dh in a small interval of time dT . Let dq be the discharge through the orifice per second.

Thus dq C C a ghd d= × × = × ×Area of orifice Theoretical velocity 2

Discharge through the orifice in time dT  is given by,

dQ dq dT C a gh dTd= × = ×2  (i)

Volume of liquid that has passed the tank in time dT  is given by,

	 dQ A dh r dh= × = − × = −Area of liquid surface Fall in liquid level π 2  (ii)

The negative sign has been taken in expression (ii) since liquid level falls with time. Thus, by equating expressions (i)  
and (ii), we get the below expression.

C a gh dT r dhd 2 2= −π

dT
r dh

C a ghd

=
−π 2

2
 (iii)

O

h1

h2

r

h

dh

A

B

R

R − h

Orifice

Hemispherical tank

Liquid jet

Figure 10.11 Hemispherical tank with an orifice at its bottom
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10.16 Chapter 10

Now   OB R OA R h= = −and ( )

r R R h Rh h2 2 2 22= − − = −( )    [ ]∵ r AB OB OA2 2 2 2= = −

Thus, expression (iii) is written as follows.

	
dT

Rh h dh

C a gh C a g
Rh h dh

d d

=
− −

=
−

−
π π( )

( )/ /2

2 2
2

2
1 2 3 2  (iv)

Therefore, the time for the liquid level to fall from h1 to h2 can be calculated by integrating expression (iv) between the 
limits h1 and h2 as follows.

T
C a g

Rh h dh
C a g

R
h h

d h

h

d

=
−

− =
−

−∫
π π

2
2

2
2

3 2 5 2
1 2 3 2

3 2 5 2

1

2

( )
( / ) ( / )

/ /
/ /⎡⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥h

h

1

2

T
C a g

R h h h h
d

=
−

− − −⎡
⎣⎢

⎤
⎦⎥

π
2

4

3

2

52
3 2

1
3 2

2
5 2

1
5 2( ) ( )/ / / /

∴ = − − −⎡
⎣⎢

⎤
⎦⎥

T
C a g

R h h h h
d

π
2

4

3

2

51
3 2

2
3 2

1
5 2

2
5 2( ) ( )/ / / /  (10.20)

For emptying the tank completely, h2 0=  and therefore, Equation (10.20) is written as follows.

T
C a g

Rh h
d

= −⎡
⎣⎢

⎤
⎦⎥

π
2

4

3

2

51
3 2

1
5 2/ /  (10.21)

 Example 10.16  A hemispherical tank of diameter 5 m containing water to a depth of 2 m is provided with an orifice of 
diameter 50 mm at its bottom. If the coefficient of discharge of the orifice is 0.62, then determine the time required by the 
water (i) to fall from 2 m to 1 m and (ii) for completely emptying the tank.

Solution
Let D = 5 m , h1 2= m, d = =50 0 05mm m.  and Cd = 0 62. .

a d= = × =
π π
4 4

0 05 0 00196352 2. . m2

 (i) h2 1= m

  Since T
C a g

R h h h h
d

= − − −⎡
⎣⎢

⎤
⎦⎥

π
2

4

3

2

51
3 2

2
3 2

1
5 2

2
5 2( ) ( )/ / / /

  Thus T =
× × ×

× × − − −⎡
⎣⎢

π
0 62 0 0019635 2 9 81

4

3

5

2
2 1

2

5
2 13 2 3 2 5 2 5 2

. . .
( ) ( )/ / / / ⎤⎤

⎦⎥

	 	∴ =T 2465.61 s

 (ii) T
C a g

Rh h
d

= −⎡
⎣⎢

⎤
⎦⎥

π
2

4

3

2

51
3 2

1
5 2/ /

  Thus T =
× × ×

× × × − ×⎡
⎣⎢

⎤
⎦⎥

π
0 62 0 0019635 2 9 81

4

3

5

2
2

2

5
23 2 5 2

. . .
/ /

	 	∴ =T 4174.6 s
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 Example 10.17  A tank has an upper cylindrical portion of diameter 2 m 
and height 3 m with hemispherical base. If the tank is full of water, then 
determine the time required to empty it through an orifice of diameter 40 mm 
at its bottom. Take coefficient of discharge for the orifice as 0.62.

Solution
Refer Figure 10.12. Let D = 2 m, h = 3 m, d = =40 0 04mm m. 	 and 
Cd = 0 62. .

a d= = × =
π π
4 4

0 04 0 0012572 2 2. . m

A D= = × =
π π
4 4

2 3 14162 2 2. m

The problem is split into two parts, namely Ist part (cylindrical part) and IInd part (hemispherical part). Let T1 be the time 
required to empty the Ist part and T2 be the time required to empty the IInd part. Thus, the total time becomes T T T= +1 2.

 (i) For Ist part (cylindrical part): h1 3 1 4= + = m  and h2 1= m.

T
A h h

C a gd
1

1 22

2

2 3 1416 4 1

0 62 0 001257 2 9 81
1820=

−
=

× × −
× × ×

=
[ ] . [ ]

. . .
.114 s

 (ii) For IInd part (spherical part): h1 1= m, h2 0=  and R = =2 2 1/ m.

  Since      T
C a g

Rh h
d

2 1
3 2

1
5 2

2

4

3

2

5
= −⎡

⎣⎢
⎤
⎦⎥

π / /

∴ =
× × ×

× × × − ×⎡
⎣⎢

⎤
⎦⎥

=T2
3 2 5 2

0 62 0 001257 2 9 81

4

3
1 1

2

5
1 849 4

π
. . .

./ / s

T T T= + = + =1 2 1820 14 849 4. . 2669.54 s

10.8.3 Time of Emptying a Circular Horizontal Tank
Consider a circular horizontal tank of radius R and length L containing some liquid which is provided with an orifice of 
area a at its bottom as shown in Figure 10.13. Let h1 be the initial height of liquid, h2 be the final height of liquid and T  be 
the time in seconds for the liquid to fall from height h1 to h2.

Assuming that at some instant, the height of liquid in the tank is h, r is the radius of the liquid surface and the level 
decreases by dh in a small interval of time dT . Let dq be the discharge through the orifice per second.

40 mm dia orifice

Hemispherical
part (II part)1 m

3 m 2 m

Cylindrical
Part (I part)

Figure 10.12 

h1

h2 R

Orifice

O
dh

hM N

P
h2

h1

L

Circular horizontal tank

Figure 10.13 Circular horizontal tank with an orifice at its bottom
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10.18 Chapter 10

Thus   dq C C a ghd d= × × = × ×Area of orifice Theoretical velocity 2

Discharge through the orifice in time dT  is given by,

dQ dq dT C a gh dTd= × = ×2  (i)

Volume of liquid that has passed the tank in time dT  is given by,

dQ A dh= × = − ×Area of liquid surface Fall in liquid level  (ii)

The negative sign is taken in expression (ii), since the liquid level falls with time.

But    A L MN L MP L OM OP= × = × = × −( ) [ ]2 2 2 2

A L R R h L Rh h= − − = −2 2 22 2 2( ) ( )

Thus, expression (ii) is written as follows.

	 dQ L Rh h dh= − − ×2 2 2( )  (iii)

Equating expressions (i) and (iii), we get:

C a gh dT L Rh h dhd 2 2 2 2× = − − ×( )

dT
L Rh h dh

C a ghd

=
− −2 2

2

2( )
 (iv)

Therefore, the time for the liquid level to fall from h1 to h2 can be calculated by integrating expression (iv) between the 
limits h1 and h2 as follows.

T
L

C a g
R h dh

L

C a g

R h

d h

h

d

=
−

− =
− −

−
⎡

⎣
⎢
⎢

⎤
∫

2

2
2

2

2

2

3 2
11 2

3 2

1

2

( )
( )

( / )
( )/

/

⎦⎦
⎥
⎥h

h

1

2

T
L

C a g
R h R h

d

= − − −⎡
⎣

⎤
⎦

4

3 2
2 22

3 2
1

3 2( ) ( )/ /  (10.22)

For emptying the tank completely, h2 0= 	and therefore, Equation (10.22) is written as follows.

T
L

C a g
R R h

d

= − −⎡
⎣

⎤
⎦

4

3 2
2 23 2

1
3 2( ) ( )/ /  (10.23)

Further if the tank is half at the commencement and is to be completely emptied, then substituting h1 = R in Equation (10.23), 
we get the below expression.

	 T
L

C a g
R R R

LR

C ad d
= − −⎡

⎣
⎤
⎦ =

4

3 2
2 2 0 553 2 3 2

3 2

( ) ( ) ./ /
/

 (10.24)

 Example 10.18  A horizontal boiler drum of diameter 2 m and length 4 m is provided with an orifice of diameter 5 cm 
at its bottom. If the drum contains water up to a height of 1.2 m and the discharge coefficient of the orifice is 0.6, then 
determine the time taken to empty it.

Solution
Let D = 2 m, L = 4 m, d = =5 0 05cm m. , h1 1 2= . m  and Cd = 0 6. .
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a d= = × =
π π
4 4

0 05 0 00196352 2 2. . m

Since    T
L

C a g
R R h

d

= − −⎡
⎣

⎤
⎦

4

3 2
2 23 2

1
3 2( ) ( )/ /

Thus    T =
×

× × × ×
× × − × −⎡

⎣
⎤
⎦

4 4

3 0 6 0 0019635 2 9 81
2 1 2 1 1 23 2 3 2

. . .
( ) ( . )/ /

∴ =T 2159.45 s

10.9 ❐ CLASSIFICATION OF MOUTHPIECES
A mouthpiece is an attachment in the form of a short length of tube or pipe. It is two to three times its diameter in length and 
is fitted to the tank containing fluid, through which the fluid is discharged. The types of mouthpieces are classified as follows.

 1. According to the position of the mouthpiece.

    (i)  External mouthpiece: If the pipe projects outwards from the wall of the reservoir, then it is called an external 
mouthpiece.

  (ii)  Internal mouthpiece: If the pipe projects inside the tank (i.e., fixed internally), then it is called an internal 
mouthpiece. The internal mouthpiece is also known as Borda’s mouthpiece or reentrant mouthpiece.

 2. According to the shape of the mouthpiece.

      (i)  Cylindrical mouthpiece: If the mouthpiece has uniform circular cross section (i.e., its flow area remains uniform 
from the inlet to outlet), then it is called cylindrical mouthpiece.

    (ii)  Convergent mouthpiece: If the flow area of the mouthpiece decreases from its inlet to outlet, then it is called 
convergent mouthpiece.

  (iii)  Divergent mouthpiece: If the flow area of the mouthpiece increases from its inlet to outlet, then it is called 
divergent mouthpiece.

  (iv)  Convergent-divergent mouthpiece: If the flow area initially decreases and attains a minimum value and then 
increases, then it is called convergent-divergent mouthpiece.

 3. The classification based on the nature of discharge is only for the internal mouthpiece.

    (i)  Mouthpiece running free: If the jet after contraction does not touch the sides of the orifice, then it is called 
mouthpiece running free.

  (ii)  Mouthpiece running full: If the jet after contraction expands and fills the whole mouthpiece, then it is called 
mouthpiece running full.

10.10 ❐ FLOW THROUGH AN EXTERNAL MOUTHPIECE
A tank having an external cylindrical mouthpiece (small tube of length two to three times its diameter) is shown in 
Figure 10.14. The jet of liquid entering the mouthpiece contracts to form vena contracta at section C–C and beyond this 
section it again fills the whole mouthpiece.

Let h be the height of liquid above the centreline of mouthpiece, a 
be the area of mouthpiece, ac be the area of flow at vena contracta, V  
be the velocity of liquid at mouthpiece outlet (1–1 section), Vc be the 
velocity of liquid at the vena contracta (C–C section), hL be the loss of 
head due to sudden enlargement from C–C section to 1–1 section and 
C a ac c= ( )/  be the coefficient of contraction.

h

o

zo

z (Datum)

1

1

C

C

Figure 10.14 External cylindrical mouthpiece
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10.20 Chapter 10

h
V V

gL
c=

−( )2

2

Applying continuity equation between sections C–C and 1–1, we get:

a V aVc c =

	 V
aV

a

V

a a

V

C

V
c

c c c
= = = =

( / ) .0 62
   [Taking Cc = 0 62. ] (10.25)

Thus      h
V V

g

V

gL =
−

=
[( / . ) ] .0 62

2

0 375

2

2 2

Applying Bernoulli’s equation between the points ‘o’ and 1–1, we get:

p

g

V

g
z

p

g

V

g
z ho o

o Lρ ρ
+ + = + + +

2 2

2 2

However, p p po = = =atm 0 (assumed), Vo = 0 and z = 0.

Thus      0 0 0
2

0
0 375

2

2 2

+ + = + + +h
V

g

V

g

.

h
V

g
= 1 375

2

2

.  (10.26)

	 V
gh

gh= =
2

1 375
0 855 2

.
.  (10.27)

The theoretical velocity of liquid at the outlet is given by Equation (10.2) as follows.

V ghth  = 2

Therefore, the expression for coefficient of velocity for the mouthpiece is given below.

	 C
gh

gh
v = = =

Actual velocity

Theoretical velocity

0 855 2

2
0 855

.
.  (10.28)

Since the area of the jet of liquid at the outlet is equal to the area of mouthpiece at the outlet, Cc = 1.
Thus, the expression for coefficient of discharge for mouthpiece is given below.

C C Cd c v= × = × =1 0 855 0 855. .

It is observed that the value of Cd  for a mouthpiece is higher than that for an orifice. Therefore, the discharge through a 
mouthpiece is more when compared to an orifice and the expression is given below.

Q C a gh a ghd= =2 0 855 2.  (10.29)

Expression for pressure head at vena contracta Applying Bernoulli’s equation between the points ‘o’ and C–C, 
we get the following expression.

p

g

V

g
z

p

g

V

g
zo o

o
c c

ρ ρ
+ + = + +

2 2

2 2

However, p p po a= =atm , Vo = 0, z ho =  and z = 0, here patm is the atmospheric pressure.
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Thus 
p

g
h

p

g

V

g
a c c

ρ ρ
+ + = + +0

2
0

2

p

g

p

g
h

V

g
c a

ρ ρ
= + − ×

1

0 62 22

2

.
  [ . ]∵V Vc = /0 62

Since 
V

g

h2

2 1 375
=

.
  [From Equation (10.26)]

Thus 
p

g

p

g
h

hc a

ρ ρ
= + − ×

1

0 62 1 3752. .

	
p

g

p

g
hc a

ρ ρ
= − 0 89.  (10.30)

However, p g hc c/( )ρ =  and p g ha a/( )ρ =  and thus, Equation (10.30) is written as follows.

	 h h hc a= − 0 89.  (10.31)

Equation (10.31) shows that the pressure head at vena contracta is less than the atmospheric pressure head by an amount 
equal to 0.89 times the head under which the mouthpiece works.

 Example 10.19  Determine the increase in discharge by the addition of an external cylindrical mouthpiece to a circular 
orifice of the same diameter. Take the coefficients of contraction and velocity for the sharp-edged orifice as 0.62 and 0.98, 
respectively. If the separation occurs at 2.5 m of water and the barometric pressure is 10.336 m of water, then determine the 
limiting conditions of head under which the mouthpiece runs full and provide your comments.

Solution
Let Cc = 0 62. , Cv = 0 98. , hc = 2 5. m of water and ha = 10 336. m of water.

C C Cd c v= = × =0 62 0 98 0 6076. . .

Discharge through the orifice is given by,

Q C a gh a gho d= =2 0 6076 2.  (i)

Discharge through the mouthpiece is given by Equation (10.29) as follows.

Q C a gh a ghm d= =2 0 855 2.  (ii)

Thus, percentage increase in discharge (% )Qi  is given by,

%Q
Q Q

Qi
m o

o
=

−⎛
⎝⎜

⎞
⎠⎟

×100

∴ =
−⎛

⎝
⎜

⎞

⎠
⎟ × =%

. .

.
Q

a gh a gh

a gh
i

0 855 2 0 6076 2

0 6076 2
100 40.72%

Since       h h hc a= − 0 89.

∴ =
−

=
−

=h
h ha c

0 89

10 336 2 5

0 89.

. .

.
8.804 m of water

The mouthpiece will not run full if head over the mouthpiece exceeds 8.804 m of water.
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 Example 10.20  An external cylindrical mouthpiece of diameter 150 mm fitted to a tank discharges water under a 
constant head of 7.5 m. If the coefficient of contraction at vena contracta is 0.62, coefficient of velocity is 0.99 and 
atmospheric pressure head is 10.34 m of water, then determine the discharge through the mouthpiece. Also determine the 
absolute pressure head of water at vena contracta.

Solution
Let d = =150 0 15mm m. , h = 7 5. m, Cc = 0 62. , Cv = 0 99.  and ha = 10 34. m of water.

C C Cd c v= = × =0 62 0 99 0 6138. . .

a d= = × =
π π
4 4

0 15 0 017672 2 2. . m

Q a gh= = × × × × =0 855 2 0 855 0 01767 2 9 81 7 5. . . . . 0.1833 m /s3

h h hc a= − = − × =0 89 10 34 0 89 7 5. . . . 3.665 m (abs)

10.11 ❐ FLOW THROUGH A CONVERGENT-DIVERGENT MOUTHPIECE
Figure 10.15 shows a tank fitted with an external convergent-divergent mouthpiece (also known as Bell mouthpiece) whose 
sectional area initially converges up to vena contracta and then diverges gradually. Since there is no sudden enlargement 
of the jet, the loss of head due to sudden enlargement gets eliminated. Thus, Cv will be unity. Since Cc is also unity as the 

area of the jet at the outlet is equal to that of the mouthpiece, the value 
of Cd  will also be unity.

Let h be the height of liquid above the centreline of mouthpiece, 
ac be the area of flow at vena contracta (C–C section), a1 be the area 
of mouthpiece at its outlet (1–1 section), Vc be the velocity of liq-
uid at the vena contracta, V1 be the velocity of liquid at the mouth-
piece outlet, ha be the atmospheric pressure head, hc be the absolute 
pressure head at vena contracta and Q be the discharge through the 
mouthpiece.

Let the suffix ‘o’ denotes the free liquid surface, ‘c’ denotes the 
vena contracta section, and 1 denotes the mouthpiece outlet.

Applying Bernoulli’s equation between sections ‘o’ and ‘C–C’, we get:

p

g

V

g
z

p

g

V

g
zo o

o
c c

cρ ρ
+ + = + +

2 2

2 2

However, p po = atm, p g ho a/( )ρ = , Vo = 0, z ho = , p g hc c/( )ρ =  and zc = 0.

Thus          h h h
V

ga c
c+ + = + +0

2
0

2

V

g
h h hc

a c

2

2
= + −( )

∴ = + −V g h h hc a c2 ( )

Applying Bernoulli’s equation between sections ‘C–C’ and ‘1–1’, we get:

p

g

V

g
z

p

g

V

g
zc c

cρ ρ
+ + = + +

2
1 1

2

12 2

h

o

zo
1

1

C

C

zc (Datum)

Figure 10.15 Convergent-divergent mouthpiece
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However, p g hc c/( )ρ = , V g h h hc a c
2 2/( ) ( )= + − , p p1 = atm, p g ha1/( )ρ =  and z zc1 = .

Thus    h h h h h
V

gc a c a+ + − + = + +( ) 0
2

01
2

V

g
h V gh1

2

12
2= ⇒ =

Applying continuity equation between sections ‘C–C’ and, ‘1–1’, we get:

a V a Vc c = 1 1

a

a

V

Vc

c1

1
=

a

a

g h h h

gh

h

h

h

hc

a c a c1 2

2
1=

+ −
= + −

( )

∴ = +
−⎛

⎝⎜
⎞
⎠⎟

a

a

h h

hc

a c1 1  (10.32)

Q a ghc= 2  (10.33)

The pressure at the vena contracta section (also called throat) should not fall below the vapour pressure of the liquid 
to avoid cavitation. If the flowing liquid is water, then the limiting value of the suction pressure at vena contracta 
( ) . . .h ha c− = − =10 3 2 5 7 8 m. Thus, the maximum value of the areas ratio given by Equation (10.32) is written as follows.

a

a hc

1 1
7 8

= +
.

 (10.34)

 Example 10.21  A convergent-divergent mouthpiece is fitted into the side of a water tank. The losses in the divergent 
part of the mouthpiece are equivalent to 0.15 times the velocity head at the exit and there are no losses in its convergent 
part. Determine the throat and exit diameters of the mouthpiece to discharge 4.5 litres per second of water for a head of 
1.6 m above the centreline of the mouthpiece, if the minimum absolute pressure at the throat is 2.44 m for a barometric 
pressure of 10.34 m of water.

Solution
Refer Figure 10.15. Let h V gL = 0 15 21

2. [ ( )]/ , Q l= =4 5 0 0045. ./s m /s3 , h = 1 6. m , hc = 2 44. m and ha = 10 34. m.

Let dc  and d1 be the throat and exit diameters, respectively.

Applying Bernoulli’s equation between the free surface and vena contracta (throat), we get:

h h h
V

ga c
c+ = +

2

2

Thus            10 34 1 6 2 44
2

2

. . .+ = +
V

g
c

V gc
2 10 34 1 6 2 44 2= + − ×( . . . )

∴ = × × =Vc 9 5 2 9 81 13 6525. . . m/s

Since             Q a V d Vc c c c= =
π
4

2
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Thus    0 0045
4

13 65252. .= ×
π

dc

∴ =
×

×
=dc

0 0045 4

13 6525

.

.π
0.0205 m 20.5 mmor

Applying Bernoulli’s equation between the free surface and exit of mouthpiece, we get:

h h h
V

g

V

ga a+ = + +1
2

1
2

2
0 15

2
.

Thus    V
gh

1
2

1 15

2 9 81 1 6

1 15
5 225= =

× ×
=

.

. .

.
. m/s

Since      Q a V d V= =1 1 1
2

14

π

	 	
∴ = =

×
×

=d
Q

V1
1

4 4 0 0045

5 225π π
.

.
0.03311 m 33.11 mmor

 Example 10.22  Water is being discharged under a constant head of 5 m through a convergent-divergent mouthpiece 
with a throat diameter 50 mm. If the minimum absolute pressure at the throat is 2.5 m for a barometric pressure of 10.3 m 
of water, then determine the maximum outlet diameter to avoid separation of water flow. Also determine the discharge 
through the mouthpiece.

Solution
Let h = 5 m , dc = =50 0 05mm m. , hc = 2 5. m  and ha = 10 3. m.

a dc c= = × =
π π
4 4

0 05 0 00196352 2. . m2

Since           
a

a

h h

hc

a c1 1= +
−⎛

⎝⎜
⎞
⎠⎟

Thus             
( / )

( / )

. .π
π

4

4
1

10 3 2 5

5
1
2

2

d

dc

= +
−⎛

⎝⎜
⎞
⎠⎟

Thus     
d

dc

1
2

1 6
⎛
⎝⎜

⎞
⎠⎟

= .

∴ = = × =d dc1 1 6 1 6 0 05. . . 0.06324 m 63.24 mmor

Q a ghc= = × × × =2 0 0019635 2 9 81 5. . 0.01945 m /s3

10.12 ❐  FLOW THROUGH AN INTERNAL MOUTHPIECE 
(REENTRANT OR BORDA’S MOUTHPIECE)

A short cylindrical tube attached to a circular orifice in the side wall of a reservoir or tank such that it projects inwardly 
is called an internal mouthpiece. It is also known as reentrant or Borda’s mouthpiece. Depending upon the length of the 
mouthpiece, it is said to be running free or running full which are discussed below.
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10.12.1 Borda’s Mouthpiece Running Free
If the length of the tube is equal to the diameter and the jet of liquid leaves without touching the sides of the tube, then it is 
known as Borda’s mouthpiece running free (Figure 10.16(a)).

Let h be the height of liquid above the centreline of mouthpiece, ac be the area of contracted jet in the mouthpiece, a 
be the area of mouthpiece, Vc be the velocity of the contracted jet and Q be the discharge through the mouthpiece. Let the 
suffix ‘o’ denotes the free liquid surface and ‘c’ denotes the section C–C.

Applying Bernoulli’s equation between sections ‘o’ and ‘C–C’, we get:

p

g

V

g
z

p

g

V

g
zo o

o
c c

cρ ρ
+ + = + +

2 2

2 2

But p p po c= = =atm 0  (assumed), Vo = 0, z ho =  and zc = 0.	

Thus 0 0 0
2

0
2

+ + = + +h
V

g
c

	
∴ =V ghc 2

As per momentum equation, the expression for force on the mouthpiece is given below.

Force = Rate of change of momentum

Pressure Area of orifice = Mass flowing per second Change of velo× × ccity

( ) ( )( )ρ ρgh a a V Vc c c= − 0

	 ρ ρgha a Vc c= 2 (i)

	 gha a ghc= ( )2 2  [ ]∵V ghc = 2 	
a

a
c = =

1

2
0 5.

∴ =Cc 0 5.

	 Cv = 1  [∵ No head loss]	
 ∴ = = × =C C Cd v c 1 0 5 0 5. . 	
Thus, the expression for discharge through a Borda’s mouthpiece running free is given below.

	 Q C a gh a ghd= =2 0 5 2.  (10.35)

However, if some loss of energy is considered, then V C ghc v= 2 . Thus, from expression (i), the coefficient of contraction 
may be obtained as follows.

h

o

zo
C

C

zc (Datum)

ac

a

h

o

zo C

C

z1 (Datum)

ac

a

1

1
(a) Running free (b) Running full

Figure 10.16 Borda’s mouthpiece
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	 ρ ρgha a C ghc v= ( )2 2  [ ]∵V C ghc v= 2 	
a

a C

c

v

=
1

2 2

	 ∴ = =C
a

a C
c

c

v

1

2 2
 (10.36)

10.12.2 Borda’s Mouthpiece Running Full
If the length of the tube is about three times its diameter and the jet comes out with its diameter equal to the diameter of the 
mouthpiece at the exit, then it is known as Borda’s mouthpiece running full (Figure 10.16(b)).

Let h be the height of liquid above the centreline of mouthpiece, ac be the area of flow at C–C section (i.e., vena 
contracta), a be the area of mouthpiece, Vc be the velocity of the liquid jet at C–C section, Q be the discharge through 
the mouthpiece and hL be the loss of head due to sudden enlargement from C–C section to 1–1 section. Let the suffix ‘o’ 
denotes the free liquid surface and ‘c’ denotes the section C–C.

Applying continuity equation between sections C–C and 1–1, we get:

a V a Vc c = 1 1

V
V

a a

V

Cc
c c

= =1

1

1

( / )

Since the flow pattern at the entrance section of the mouthpiece is same as that for a running free condition, taking 
Cc = 0 5. .  Therefore, the above expression is written as follows.

 V
V

Vc = =1
10 5

2
. 	

	 h
V V

g

V V

g

V

gL
c=

−
=

−
=

( ) ( )1
2

1 1
2

1
2

2

2

2 2
 (10.37)

Applying Bernoulli’s equation between sections ‘o’ and ‘1–1’, we get:

p

g

V

g
z

p

g

V

g
z ho o

o Lρ ρ
+ + = + + +

2
1 1

2

12 2

But p po = =1 0, Vo = 0, z ho = , z1 0=  and h V gL = 1
2 2/( ).	

Thus 0 0 0
2

0
2

1
2

1
2

+ + = + + +h
V

g

V

g 	

2 21
2

1V gh V gh= ⇒ =

The theoretical velocity of liquid at the outlet is given by Equation (10.2) as follows.

V ghth  = 2

C
V

V

gh

gh
v = = = =1

2

1

2
0 707

th
.

Since the area of the jet at exit equals the area of the mouthpiece, we get the below expression.
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Cc = 1

∴ = = × =C C Cd v c 0 707 1 0 707. .

Thus, the expression for discharge through a Borda’s mouthpiece running full is given below.

	 Q C a gh a ghd= =2 0 707 2.  (10.38)

 Example 10.23  Determine the diameter of the Borda’s mouthpiece working under a head of 5 m and discharging water 
at a rate of 25 litres per second. Also determine the percentage increase in discharge if the mouthpiece is made to run full 
by increasing its length.

Solution
Let h = 5 m  and Q l= =25 0 025/s m /s3. . Let d  be the diameter of the mouthpiece.

The discharge through a Borda’s mouthpiece running free is given by Equation (10.35) as follows.

Q a gh d gh= = × ×0 5 2 0 5
4

22. .
π

∴ =
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
×

× × ×
⎡

⎣
⎢

⎤

⎦
⎥ =d

Q

gh

4

0 5 2

4 0 025

0 5 2 9 81 5

1 2 1 2

.

.

. .

/ /

π π
0.08002 m

The discharge through a Borda’s mouthpiece running full is given by Equation (10.38) as follows.

Q a gh d gh′ = = × ×0 707 2 0 707
4

22. .
π

∴ = × × × × × =Q′ 0 707
4

0 0802 2 9 81 5 0 03542. . . .
π

m /s3

The percentage increase in discharge (% )Qi is given by,

%
. .

.
Q

Q Q

Qi = ′ −⎛
⎝⎜

⎞
⎠⎟

× =
−⎛

⎝⎜
⎞
⎠⎟

× =100
0 0354 0 025

0 025
100 41.6%

Summary

 1. Orifice is a small opening in the walls or the bottom of the 
tank through which the fluid is discharged. It is used to 
measure the rate of flow of fluid.

 2. Mouthpiece is a short length of tube fitted to the orifice in 
a tank, through which fluid is discharged. It is also used for 
measuring the rate of flow of a fluid.

 3. Theoretical velocity of jet of water (Torricelli’s equation): 

V gh= 2 .

 4. The coefficient of velocity ( )Cv  is defined as the ratio of 
the actual velocity of the jet at vena contracta ( )V  to the 
theoretical (ideal) velocity of the jet ( )Vth .

 5. The coefficient of contraction ( )Cc  is defined as the ratio of 
the area of the jet at vena contracta ( )ac  to the area of the 
orifice ( )a .

 6. The coefficient of discharge ( )Cd  is defined as the ratio of 
the actual discharge from an orifice ( )Q  to its theoretical 
discharge ( )Qth .

 7. The coefficient of resistance ( )Cr  is defined as the ratio of the 
loss of kinetic energy as liquid flows through an orifice to the 
actual kinetic energy possessed by the flowing liquid.

 8. C x yhv = / 4 , here x  and y are the horizontal and vertical 
coordinates, respectively, of any point of jet of water from 
vena contracta.
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10.28 Chapter 10

 9. The coefficient of discharge is C C Cd v c= .

 10. In case of large orifice, the head of liquid above the centre of 
orifice is less than five times the depth of orifice.

 11. Discharge through large rectangular orifice is 

Q C b g h hd= × −( ) [ ],/ /2 3 2 2
3 2

1
3 2/  here b is the width of the 

orifice, h1 is the height of liquid above the upper edge of the 
orifice and h2  is the height of liquid above the lower edge of 
the orifice.

 12. Discharge through fully submerged orifice is 

Q C b h h ghd= −( ) ,2 1 2  here h is the difference in liquid lev-

els in the two tanks.

 13. Discharge through partially submerged orifice is given by,

Q C b h h gh C b g h hd d= − + × −( ) ( ) [ ]/ /
2

3 2
1
3 22 2 3 2/

 14. The time ( )T  for emptying vertical tank is

T A h h C a gd= −[ ( )] ( )2 21 2 /  and for emptying the tank 

completely is T A h C a gd= ( ) ( ),2 21 /
	
here A is the area of 

tank, a  is the area of orifice, h1 and h2  are the initial and final 
heights of liquid in the tank, respectively.

 15. Time for emptying hemispherical tank is given by,

T
C a g

R h h h h
d

= − − −⎡
⎣⎢

⎤
⎦⎥

π
2

4

3

2

51
3 2

2
3 2

1
5 2

2
5 2( ) ( )/ / / /

  Time for completely emptying the tank is given by,

T
C a g

Rh h
d

= −⎡
⎣⎢

⎤
⎦⎥

π
2

4

3

2

51
3 2

1
5 2/ /

  Here, h1 and h2  be the initial and final heights of liquid.

 16. Time for emptying a circular horizontal tank is given by,

T
L

C a g
R R h

d

= − −⎡
⎣

⎤
⎦

4

3 2
2 23 2

1
3 2( ) ( )/ /

  Here, R and L are the radius and length of the tank, 
respectively and h1 and h2  be the initial and final heights of 
liquid.

  When the tank is half full at the commencement and is to be 
completely emptied,

T LR C ad= 0 55 3 2. [( ) ( )]/ /

 17. Discharge through an external mouthpiece is 
Q a gh= 0 855 2. .

 18. Pressure head ( )hc  at vena contracta of an external mouthpiece 
is h h hc a= − 0 89. , here h is the height of liquid above the 
centreline of mouthpiece and ha  is the atmospheric pressure 
head.

 19. Ratio of areas at exit and at vena contracta of a 
convergent-divergent mouthpiece is given by,

a a h h hc a c1 1/ /= + −[( ) ]

 20. Discharge through a Borda’s mouthpiece running free is 
Q a gh= 0 5 2. .

 21. Cc for Borda’s mouthpiece running free if some loss of energy 
is considered:

C a a Cc c v= =/ /1 2 2( )

 22. Discharge through a Borda’s mouthpiece running full is 

Q a gh= 0 707 2. .

Multiple-choice Questions

 1. The coefficient of contraction ( )Cc  in terms of areas at the 
vena contracta ( )ac  and exit ( )a  is

(a) C a ac c= / .   (b) C a ac c= × .

(c) C a ac c= / .  (d) None of the above.

 2. The average value of coefficient of velocity is
(a) 0.9.   (b) 0.8.
(c) 0.98.   (d) 0.63.

 3. The average value of coefficient of discharge for small 
sharp-edged orifice varies between
(a) 0.9 to 0.98.  (b) 0.8 to 0.88.
(c) 0.62 to 0.65.  (d) 1 to 1.2.

 4. The Borda’s mouthpiece is said to be running free if its 
length is
(a) Less than 3 times of its diameter.
(b) Equals its diameter.

(c) More than double its length.
(d) None of the above.

 5. Which of the following mouthpiece has maximum coefficient 
of discharge?
(a) Convergent-divergent. (b) External.
(c) Internal.   (d) None of the above.

 6. For a Borda’s mouthpiece running full, the value of coefficient 
of discharge is equal to
(a) 0.507.   (b) 0.607.
(c) 0.707.   (d) 0.807.

 7. A mouthpiece cannot be used under very large heads due to
(a) Cavitation at vena contracta.
(b) Small coefficient of discharge.
(c) Uneconomical operation and short life.
(d) None of the above.
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 Flow Through Orifices and Mouthpieces 10.29

Review Questions

 1. What do you mean by an orifice and a mouthpiece and how 
are they classified?

 2. Derive the expression for Torricelli’s equation.

 3. Define (i) coefficient of velocity, (ii) coefficient of contraction, 
(iii) coefficient of discharge and (iv) coefficient of resistance.

 4. What are hydraulic coefficients and how are these determined 
experimentally?

 5. Differentiate between a large and a small orifice. Derive an 
expression for discharge through a large rectangular orifice.

 6. Differentiate between a wholly submerged orifice and a 
partially submerged orifice. Also derive an expression for 
discharge through a wholly submerged orifice.

 7. Obtain an expression for discharge through a partially 
submerged orifice.

 8. Derive an expression for time of emptying a vertical tank of 
uniform cross section.

 9. Obtain an expression for time of emptying hemispherical 
tank.

 10. Obtain an expression for time of emptying a circular 
horizontal tank.

 11. Derive an expression for discharge through an external 
cylindrical mouthpiece. Also obtain an expression for 
absolute pressure head at its vena contracta.

 12. What is the difference between external mouthpiece and 
reentrant mouthpiece?

 13. Derive expressions for discharge through (i) Borda’s 
mouthpiece running free and (ii) Borda’s mouthpiece running 
full.

Problems

 1. An orifice of diameter 2.5 cm discharges water under a 
head of 5 m. If the measured discharge through the orifice 
is 3  litres per second and the diameter of the jet at vena 
contracta is measured as 2 cm, then calculate the coefficients 
of discharge, velocity and contraction of the orifice.

[Ans. 0.617, 0.64, 0.964]

 2. The water flows through an orifice of diameter 5 cm under 
a constant head of 3 m in a rectangular measuring tank 
1.7 m × 2 m. The rise of water level in the tank is registered 
as 170  mm in one minute. Determine the coefficient of 
discharge.

[Ans. 0.64]

 3. A short tube is connected to a water tank to produce a vertical 
jet. If the water head is 4.5 m above the outlet of the tube and 
coefficient of velocity is 0.94, then determine the height to 
which the jet rises.

[Ans. 3.98 m]

 4. A tank contains water up to a depth of 3.2 m and the upper 
part of the tank is filled with air at a pressure of 0.4 bar above 
atmospheric pressure. Determine the discharge through an 
orifice of diameter 50 mm fitted at the bottom. Neglect the 
losses and take coefficient of discharge as 0.62.

[Ans. 0.01455 m3/s]

 5. A water jet comes out from a sharp-edged vertical orifice under 
a constant head of 50 mm. At a certain point, the horizontal 
and vertical coordinates measured from the vena contracta 
are 100 mm and 52 mm, respectively. Calculate the value of 
coefficient of velocity. Also calculate the value of coefficient 
of contraction if the coefficient of discharge is 0.62.

[Ans. 0.98, 0.633]

 6. A large vessel has a sharp-edged circular orifice of diameter 
34.411 mm at a depth of 3 m below a constant water level. 
The jet issues horizontally and in a horizontal distance of 
240 cm, it falls by 53 cm. If the water discharge was measured 
as 4.3  litres per second, then determine the coefficients of 
velocity, contraction and discharge for the orifice.

[Ans. 0.952, 0.603, 0.633]

 7. Two orifices are fitted on the same side of a vessel containing 
water to a height of h units. One orifice is situated at a depth 
of h1 units from the free surface of water while the other is 
situated at a height of h1 units from the bottom of the vessel. 
If the coefficients of velocity for both orifices are same, then 
show that the jets strike the ground at the same horizontal 
distance from the vessel. Also find the horizontal distance if 
h = 6 m , h1 2 4= . m and Cv = 0 97. .

[Ans. 5.702 m]

 8. The head of water over an orifice of diameter 10 cm is 12.5 m. 
The water issued from the orifice is collected in a rectangular 
tank of size 2 m × 0.95 m and the rise of water level was 
observed 1.2 m in 30 seconds. Determine the coefficient of 
discharge.

[Ans. 0.62]

 9. A tank has two identical orifices A and B located on the same 
side at depths h1 and h2, respectively below the free surface 
of water in the tank. If the coefficients of velocity of both 
orifices are same, then prove that their point of intersection 
is h2  below orifice A and h1 below orifice B. Also find the 
horizontal distance of the point of intersection from the plane 
of orifices.

[Ans. 2 1 2C h hv ]
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 10. A tank has two orifices, namely A of diameter d1 and B of 
diameter d2 which are located on the opposite sides at depths 
h1 and ( ),h1 2/  respectively, below the free surface of water in 
the tank. Determine the diameter d2 in terms of d1 when the 
net horizontal force on the tank is zero.

[Ans. d d2 12= ]

 11. A vessel standing on the ground containing water up to a 
height of H 	 metres has an orifice in its wall at a depth of 
h  metres from the free surface of water. Determine the 
relation between H  and h so that the jet of water strikes the 
ground at a maximum distance from the tank. Also determine 
the maximum horizontal distance.

[Ans. h H= /2, x C Hvmax = ]

 12. A nozzle of diameter 3 cm discharges 760 litres of water per 
minute working under a head of 65 m. If the diameter of the 
jet is 2.55 cm, then determine the values of coefficients of 
contraction, discharge and velocity. Also determine the loss 
of head due to friction.

[Ans. 0.7225, 0.502, 0.695, 33.603 m]

 13. A horizontal pipe of diameter 10 cm is fitted with a nozzle 
of diameter 5 cm at its discharge end. If the water flow rate 
through the nozzle is 0.02 m3/s and the pressure at the base 
of the nozzle is 60 kPa, then determine the coefficient of 
discharge of the nozzle.

[Ans. 0.9]

 14. Determine the discharge through a vertical rectangular 
orifice of width 0.6 m and depth 1 m , if the top edge of the 
orifice is 1.2 m below the water surface in the tank. Also 
determine the percentage error in the determined discharge, 
if the orifice is treated as a small orifice. Take coefficient of 
discharge as 0.62.

[Ans. 2.1405 m3/s, 0.368%]

 15. Determine the discharge through a fully submerged orifice 
of width 2 m and depth 1 m , if the difference of water levels 
on both the sides of the orifice is 3 m and the coefficient of 
discharge is 0.6.

[Ans. 9.21 m3/s]

 16. A large tank is fitted with a rectangular orifice of width 2 m 
and depth 1.2 m in one of its sides. The water level on one 
side of the orifice is 3 m above the top edge of the orifice, 
whereas on the other side of the orifice, the water level is 
0.5 m below its top edge. If the coefficient of discharge of the 
orifice is 0.6, then determine the discharge through it.

[Ans. 11.751 m3/s]

 17. A rectangular orifice of width 1.5 m and depth 1 m is provided 
in one side of a large vessel. The water level in one side of 
the orifice is 2 m above the top edge of the orifice, while on 
the other side of the orifice; the water level is 0.4 m below its 

top edge. Determine the discharge through the orifice if the 
coefficient of discharge is 0.62.

[Ans. 6.27 m3/s]

 18. A hemispherical cistern of diameter 10 m full of water is 
provided with a 6 cm diameter sharp-edged orifice at its 
bottom. If the coefficient of discharge of the orifice is 0.6, 
then determine the time required to lower the level in the 
cistern by 2 m.

[Ans. 9928.4 s]

 19. A vertical cylindrical water tank of diameter 3 m has a 
hemispherical portion at its bottom and its cylindrical portion 
of height is 4 m. It is fitted with an orifice of diameter 15 cm 
at its bottom having coefficient of discharge as 0.6. If the 
given tank is full of water, then determine the time taken to 
empty it.

[Ans. 509.34 s]

 20. A swimming pool of length 12 m and width 7 m holds water to 
a depth of 2 m. If the water is discharged through an opening 
of area 0.2 m2 at the bottom of the pool having coefficient of 
discharge as 0.6, then determine the time required to empty 
the tank.

[Ans. 446.98 s]

 21. A horizontal boiler drum of diameter 3 m and length 10 m 
contains water to a height of 2.5 m. If it is fitted with an 
orifice of diameter 15 cm at its bottom with coefficient of dis-
charge of 0.62, then determine the time taken for emptying 
the drum.

[Ans. 1328.32 s]

 22. An external cylindrical mouthpiece is provided into the 
vertical side of a tank containing water up to a height of 3 m 
above the centreline of the mouthpiece. If the diameter of the 
mouthpiece is 3 cm, then find the discharge through it.

[Ans. 0.00464 m3/s]

 23. Water is discharging under a constant head of 2 m through 
a convergent-divergent mouthpiece with a throat diameter 
30  mm. If the minimum absolute pressure at the throat is 
2.5  m for a barometric pressure of 10.3 m of water, then 
determine the maximum outlet diameter to avoid separation 
of water flow. Also determine the discharge through the 
mouthpiece.

[Ans. 44.63 mm, 0.00443 m3/s]

 24. A convergent-divergent mouthpiece fitted to the side of a 
tank discharges water at a rate of 0.005 m3/s working under 
a constant head of 2.2 m. Determine the throat and exit 
diameters if the separation pressure is 2.5 m, the head loss 
in the divergent portion of the mouthpiece is (1/10th) of the 
kinetic head at its outlet and atmospheric pressure is 10.3 m 
of water.

[Ans. 21.32 mm, 31.88 mm]
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 Flow Through Orifices and Mouthpieces 10.31

 25. The water is flowing through a convergent-divergent 
mouthpiece of diameter at convergence 30 mm working under 
a head of 3.2 m. If the maximum vacuum pressure is 8 m of 
water, then determine the maximum diameter of divergence 
to avoid the separation of water flow.

[Ans. 0.041 m]

 26. An internal mouthpiece of diameter 4 cm discharges water 
under a constant head of 5 m. Determine the discharge 
through the mouthpiece when (i) the mouthpiece is running 
free and (ii) the mouthpiece is running full.

[Ans. 0.00622 m3/s, 0.0088 m3/s]

ANSWERS TO MULTIPLE-CHOICE QUESTIONS

1. (c) 2. (c) 3. (c) 4. (b) 5. (a) 6. (c) 7. (a)
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11.1 ❐ INTRODUCTION
A notch may be defined as an opening provided in the side of a tank (or reservoir) such that the liquid surface in the tank 
is below the top edge of the opening. Generally, notches are made of metallic plates and are used for measuring the rate of 
flow of liquid from a tank or in a channel.

A weir is a concrete or masonry structure built across a river (stream or open channel) through which the liquid flows. 
It is used for measuring the rate of flow of water in rivers or streams. The weir is similar to a small dam constructed across 
a river with a sharp edge at the top and water flows through its entire length.

The sheet of water flowing through a notch or over a weir is known as the nappe (meaning sheet) or vein. The bottom 
edge of a notch or the top of the weir through which water flows is known as sill or crest. The height of the crest above the 
bottom of the tank is known as the crest height. The head under which the notch or weir discharges water is measured from 
the crest to the free water surface. In this chapter, the concepts regarding notches and weirs are discussed in a brief context.

11.2 ❐ COMPARISON BETWEEN A NOTCH AND A WEIR

Notch Weir

A notch is a cut or a pass made in a metallic sheet. A weir is a concrete or masonry structure in the form of a wall 
or a dam. 

The edges of a notch are thin and sharp. Weirs are fairly wide and have rough crests. 

A notch is of lesser dimensions and measures small quantity of 
discharge.

A weir is of larger dimensions and measures large quantity of 
discharge.

The ratio between the head over the sill and the length of sill is 
more than in a weir.

The ratio between the head over the sill and the length of sill is 
less than in a notch.

11.3 ❐ CLASSIFICATIONS OF NOTCHES AND WEIRS

11.3.1 Classification of Notches
 1. Generally, the notches are classified according to the shape of the opening (Figure 11.1), they are namely (i) rectangu-

lar notch, (ii) triangular notch (or V-notch), (iii) trapezoidal notch and (iv) stepped notch.

Chapter 11

Flow Over Notches and Weirs
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11.2 Chapter 11

(i) Rectangular notch (ii) Triangular notch (iii) Trapezoidal notch (iv) Stepped notch

Figure 11.1 Types of notches

 2. The notches may also be classified according to the effect of the sides on the nappe emerging from a notch as (i) notch 
with end contraction and (ii) notch without end contraction (or suppressed notch).

   If the sides of a notch cause the contraction of nappe, then it is said to be notch with end contraction, whereas if there 
is no contraction of the nappe due to the sides, then it is known as notch without end contraction.

11.3.2 Classification of Weirs
The weirs are usually classified according to its physical characteristics and they are listed below.

 1. According to the shape of the opening: (i) Rectangular weir, (ii) triangular weir and (iii) trapezoidal weir (Cipolletti 
weir).

 2. According to the shape of the crest: (i) Narrow-crested weir, (ii) broad-crested weir, (iii) sharp-edged weir and 
(iv) Ogee-shaped weir.

 3. According to the effect of the sides on the issuing nappe: (i) Weir with end contraction and (ii) weir without end 
contraction.

 4. According to the discharge conditions: (i) Freely discharging weir and (ii) submerged (or drowned) weir.

11.4 ❐ DISCHARGE OVER A RECTANGULAR NOTCH OR WEIR
Consider a rectangular notch or weir provided in a channel carrying water as shown in Figure 11.2(a). Let H  be the height 
of water over the crest, L be the length of notch or weir, z  be the height of weir crest above the  bottom and Cd  be the coef-
ficient of discharge. Consider an elementary horizontal strip of water of thickness dh and length L at a depth h below the 
free surface of water as shown in Figure 11.2(b). The discharge dQ  through the strip is given below.

dQ C C Ldh ghd d= × × = × ×Area of strip Theoretical velocity 2

Total discharge can be determined by integrating the above expression and the expression is as follows.

	 Q C Ldh gh C L g h dhd

H

d

H

= =∫ ∫2 2
0

1 2

0

/  (11.1)

	 ∴ =
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=Q C L g
h

C L gHd

H

d2
3 2

2

3
2

3 2

0

3 2
/

/

/
 (11.2)

dh

L

h

Crest

Nappe

H

(a) (b)

H

z

Figure 11.2 Discharge from a rectangular notch or weir
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11.4.1 Effect on Discharge Due to Error in Measurement of Head
Let k C L gd= ( )2 3 2/ , then Equation (11.2) is written as follows.

	 Q k H= × 3 2/  (11.3)

From Equation (11.3), it can be seen that a slight error in the measurement of head H  will reflect upon the accuracy of the 
discharge. In order to establish a relationship between error in the reading of head and its effect on the computed discharge, 
differentiating Equation (11.3), we get the below expression.

	 dQ k H dH= × ×
3

2
1 2/  (11.4)

Dividing Equation (11.4) by Equation (11.3), we get:

	
dQ

Q

k H dH

k H

dH

H
=

× ×
×

=
( ) /

/

3 2 3

2

1 2

3 2

/
 (11.5)

Here, dQ  is the error in discharge and dH  is the error in the measurement of the head.
Equation (11.5) shows that an error of 1% in measuring H  will produce 1.5% error in the computed Q over a  rectangular 

weir or notch.

11.4.2 Velocity of Approach
In deriving Equation (11.2), the velocity of approach Va has not been considered. The velocity of approach may be defined 
as the velocity with which water approaches the weir or notch before it passes over it. The approach velocity generates 
an additional head, h V ga a= 2 2/( ). Thus, the limits of integration for Equation (11.1) becomes ha to ( )H ha+  instead of  
0 to H . Therefore, the discharge given by Equation (11.1) over a rectangular weir or notch is given below.

	 Q C Ldh gh C L g H h hd
h

H h

d a a

a

a

= = × + −
+

∫ 2
2

3
2 3 2 3 2[( ) ]/ /  (11.6)

It is pertinent to mention here that Equations (11.2) and (11.6) are applicable only for suppressed weir or notch (i.e., the 
weirs in which the crest length is equal to the width of the channel) where there is no end contraction.

 Example 11.1  Determine the length of a rectangular notch which discharges 250 litres of water per second working 
under a head of 0.75 m. Take coefficient of discharge as 0.6.

Solution
Let /s m /s3Q l= =250 0 25. , H = 0 75. m and Cd = 0 6. .

Since Q C L gHd=
2

3
2 3 2/

Thus 0 25
2

3
0 6 2 9 81 0 753 2. . . . /= × × × × ×L

∴ =
×

× × × ×
=L

0 25 3

2 0 6 2 9 81 0 753 2

.

. . . /
0.21724 m

 Example 11.2  A rectangular weir of length 7.5 m built across a rectangular channel discharges 1850 litres per second 
with a coefficient of discharge of 0.62. If the maximum depth of water on the upstream side of the weir is 2.2 m, then 
determine the height of the weir.

Solution
Let L = 7 5. m, Q l= =1850 1 85/s m /s3. , Cd = 0 62.  and ( ) .H z+ = 2 2 m. Let H  be the height of water over the crest and 
z  be the height of the weir.
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11.4 Chapter 11

Since Q C L gHd=
2

3
2 3 2/

Thus 1 85
2

3
0 62 7 5 2 9 81 3 2. . . . /= × × × × × H

∴ =
×

× × × ×
⎡

⎣
⎢

⎤

⎦
⎥ =H

1 85 3

2 0 62 7 5 2 9 81
0 2628

2 3
.

. . .
.

/

m

∵( ) . ( . )H z z H+ = ⇒ = −2 2 2 2m m

∴ = − =z 2 2 0 2628. . 1.9372 m

 Example 11.3  If the discharge through a rectangular notch is 30 cubic metres per minute and the head of water is half 
the width of the notch, then determine the width of the notch. Take coefficient of discharge as 0.6.

Solution
Let Q = =30 0 5m / m /s3 3min . , H L= /2 and Cd = 0 6. .

Since Q C L gHd=
2

3
2 3 2/

0 5
2

3
0 6 2 9 81

2

3 2

. . .
/

= × × × × × ⎛
⎝⎜

⎞
⎠⎟

L
L

0 5 0 62642 5 2. . /= × L

∴ = ⎡
⎣⎢

⎤
⎦⎥

=L
0 5

0 62642

2 5.

.

/

0.9138 m

 Example 11.4  A rectangular notch of length 0.3 m is used for measuring a discharge of 50 litres per second. An error 
of 1 mm was made in measuring the head over the notch. Determine the percentage error in the discharge if coefficient of 
discharge is 0.62. Also find the percentage accuracy.

Solution
Let L = 0 3. m, Q l= =50 0 05/s m /s3. , dH = =1 0 001mm m.  and Cd = 0 62. .

Since Q C L gHd=
2

3
2 3 2/

0 05
2

3
0 62 0 3 2 9 81 3 2. . . . /= × × × × × H

∴ =
×

× × × ×
⎡

⎣
⎢

⎤

⎦
⎥ =H

0 05 3

2 0 62 0 3 2 9 81

2 3
.

. . .

/

0.2024 m

Since 
dQ

Q

dH

H
=

3

2

∴ = × =
dQ

Q

3

2

0 001

0 2024

.

.
0.0074 or 0.74%

Percentage accuracy = − =100 0 74. 99.26%
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 Flow Over Notches and Weirs 11.5

 Example 11.5  The head of water over a rectangular weir of length 75 m is 1.3 m. If the velocity of approach is 0.6 m/s 
and the coefficient of discharge is 0.62, then determine the discharge over the weir.

Solution
Let mL = 75 , H = 1 3. m, Va = 0 6. m/s and Cd = 0 62. .

The head due to velocity of approach is given by,

h
V

ga
a= =

×
=

2 2

2

0 6

2 9 81
0 01835

.

.
. m

Since Q C L g H h hd a a= × + −
2

3
2 3 2 3 2[( ) ]/ /

	

Thus Q = × × × × × + −
2

3
0 62 75 2 9 81 1 3 0 01835 0 018353 2 3 2. . [( . . ) . ]/ /

∴ =Q 207.512 m /s3

 Example 11.6  The maximum flow through a rectangular flume of width 1.75 m and depth 1.25 m is 1.6 m3/s. It is  
proposed to install a suppressed sharp-crested rectangular weir across the flume to measure the flow. Determine the  
maximum height at which the weir crest can be placed in order that water may not overflow the sides of the flume (i) when the 
velocity of approach is neglected and (ii) when the velocity of approach is considered. Take coefficient of discharge as 0.6.

Solution
Let L = 1 75. m, d z H= + =( ) .1 25 m, Q = 1 6. m /s3  and Cd = 0 6. , where z  is the height of the weir crest above the bottom 
of the flume.

 (i) Q C L gHd=
2

3
2 3 2/

  Thus 1 6
2

3
0 6 1 75 2 9 81 3 2. . . . /= × × × × × H

∴ =
×

× × × ×
⎡

⎣
⎢

⎤

⎦
⎥ =H

1 6 3

2 0 6 1 75 2 9 81
0 6433

2 3
.

. . .
.

/

m

  Since z H+ = 1 25. m

∴ = − = − =z H1 25 1 25 0 6433. . . 0.6067 m

 (ii) V
Q

Lda = =
×

=
1 6

1 75 1 25
0 7314

.

. .
. m/s

h
V

ga
a= =

×
=

2 2

2

0 7314

2 9 81
0 02726

.

.
. m

  Since Q C L g H h hd a a= × + −
2

3
2 3 2 3 2[( ) ]/ /

1 6
2

3
0 6 1 75 2 9 81 0 02726 0 027263 2 3 2. . . . [( . ) . ]/ /= × × × × × + −H

∴ =
×

× × × ×
+

⎡

⎣
⎢

⎤

⎦
⎥ − =H

1 6 3

2 0 6 1 75 2 9 81
0 02726 0 02726 0 613 2

2 3
.

. . .
. . ./

/

998 m
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∵( ) . ( . )z H z H+ = ⇒ = −1 25 1 25m m

∴ = − =z 1 25 0 6198. . 0.6302 m

 Example 11.7  A suppressed rectangular weir is built across a channel of width 0.8 m . If the head over the crest is 0.4 m 
and the weir crest is 0.5 m above the bed of the channel, then determine the discharge over the weir. Consider the velocity 
of approach and take coefficient of discharge as 0.6.

Solution
Let L = 0 8. m, H = 0 4. m, z = 0 5. m and Cd = 0 6. .

d z H= + = + =0 5 0 4 0 9. . . m

Since Q C L gHd=
2

3
2 3 2/

∴ = × × × × × =Q
2

3
0 6 0 8 2 9 81 0 4 0 35863 2. . . . ./ m /s3

V
Q

Lda = =
×

=
0 3586

0 8 0 9
0 498

.

. .
. m/s

h
V

ga
a= =

×
=

2 2

2

0 498

2 9 81
0 01264

.

.
. m

Since Q C L g H h hd a a= × + −
2

3
2 3 2 3 2[( ) ]/ /

Thus Q = × × × × × + −
2

3
0 6 0 8 2 9 81 0 4 0 01264 0 012643 2 3 2. . . [( . . ) . ]/ /

∴ =Q 0.3737 m /s3

11.5 ❐  EMPIRICAL FORMULAE FOR DISCHARGE OVER  
RECTANGULAR WEIRS

11.5.1 Francis’s Formula
The effect of end contraction for the discharge over a rectangular weir was studied by J. B. Francis. It was found that the 
end contraction reduces the effective length of the crest of weir by 0 1. × H  times, where H  is the head over the weir  
(Figure 11.3). Therefore, the actual discharge decreases.

If there are n end contractions, then the effective length of the weir is given 
below.

L L nHeffective = −( . ),0 1  here L is the length of weir

Thus Q C L nH gHd= −
2

3
0 1 2 3 2( . ) /  (11.7)

When Cd = 0 623.  and g = 9 81. m/s2, Equation (11.7) is written as follows.

	Q L nH H= −1 84 0 1 3 2. ( . ) /  (11.8)

When velocity of approach is also considered then Equation (11.8) becomes,

	Q L n H h H h ha a a= − + + −1 84 0 1 3 2 3 2. [ . ( )][( ) ]/ /  (11.9)

(L − 0.2 H)

0.1 H0.1 H

L

Figure 11.3  Rectangular weir  

with end contractions
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 Flow Over Notches and Weirs 11.7

For a rectangular weir, there are two end contractions (i.e., n = 2) and thus, from Equation (11.7), we get the below 
expression.

	 Q C L H gHd= −
2

3
0 2 2 3 2( . ) /  (11.10)

When Cd = 0 623.  and g = 9 81. m/s2, then Equation (11.10) becomes,

	 Q L H H= −1 84 0 2 3 2. ( . ) /  (11.11)

When end contractions are suppressed, i.e., n = 0 , then Equation (11.8) becomes,

	 Q LH= 1 84 3 2. /  (11.12)

When velocity of approach is also considered, then Equation (11.12) becomes,

	 Q L H h ha a= + −1 84 3 2 3 2. [( ) ]/ /  (11.13)

Here h
V

ga
a=

2

2

11.5.2 Bazin’s Formula
Bazin found that the value of Cd  varies with the head H  over the crest of the weir and he proposed the following formula 
for discharge over suppressed weirs.

	 Q mL gH= 2 3 2/
 (11.14)

Here m
H

= +0 405
0 003

.
.

When velocity of approach is considered, then we get the below expression.

	 Q m L g H ha= +1
3 22 ( ) /  (11.15)

Here m
H ha

1 0 405
0 003

= +
+

.
.

11.5.3 Rehbock’s Formula
The following empirical formula was proposed by T. Rehbock for discharge over suppressed rectangular weirs.

	 Q mL g H= × +2 0 0011 3 2( . ) /  (11.16)

Here, m
H

z
= +

+⎡
⎣⎢

⎤
⎦⎥

0 403
0 053 0 0011

.
. ( . )

 and z  is the height of weir.

 Example 11.8  Determine (i) the discharge over a rectangular weir of length 1 m under a constant head of 80 cm by 
using Francis’s and Bazin’s formulae when the end contractions are suppressed. (ii) Also determine the discharge using 
Francis’s formula when the end contractions are considered.

Solution
Let L = 1 m  and H = =80 0 8cm m. .

 (i) Q LH= 1 84 3 2. /   [Francis’s formula]

  ∴ = × × =Q 1 84 1 0 83 2. . / 1.3166 m /s3
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11.8 Chapter 11

  Now Q mL gH= 2 3 2/   [Bazin’s formula]

m
H

= + = + =0 405
0 003

0 405
0 003

0 8
0 40875.

.
.

.

.
.

∴ = × × × × =Q 0 40875 1 2 9 81 0 83 2. . . / 1.2955 m /s3

 (ii) Francis’s formula, when end contractions are considered is given below.

Q L H H= −1 84 0 2 3 2. ( . ) /

∴ = × − × × =Q 1 84 1 0 2 0 8 0 83 2. ( . . ) . / 1.10594 m /s3

 Example 11.9  A stream approaching waterfall of 10 m is measured by a rectangular weir. The length of the weir 
crest is 2 m and head over the weir is found to be 0.4 m. The velocity of approach is 1 m/s and it increases the head by 
1 2 22. [ ( )]× V ga / . Determine (i) the discharge by using Francis formula if the end contractions are suppressed. (ii) Also 
determine the power developed from the waterfall if 76% of its energy is utilized.

Solution
Let mH1 10= , L = 2 m, H = 0 4. m, Va = 1 m/s, h V ga a= ×1 2 22. [ ( )]/  and η = 0 76. .

h
V

ga
a= =

×
×

=
1 2

2

1 2 1

2 9 81
0 0612

2 2. .

.
. m

Q L H h ha a= + −1 84 3 2 3 2. [( ) ]/ /   [Francis’s formula]

∴ = × × + − =Q 1 84 2 0 4 0 0612 0 06123 2 3 2. [( . . ) . ]/ / 1.097 m /s3

Power developed from the waterfall is given by,

P
gQHw= =

× × × ×
=

ηρ 1

1000

0 76 1000 9 81 1 097 10

1000

. . .
81.788 kW

 Example 11.10  A weir of length 48 m is divided into 10 equal bays by vertical posts each of width 0.5 m. Calculate 
the discharge over the weir by using Francis’s formula if the head over the crest of the weir is 1.4 m and the velocity of 
approach is 2.5 m/s.

Solution
Refer Figure 11.4. Let L1 48= m, number of bays = 10, width of each post m= 0 5. , H = 1 4. m  and Va = 2 5. m/s.

L = − × =48 9 0 5 43 5. . m

Posts (each 0.5 m wide)

48 m

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 10

Bays

Figure 11.4
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 Flow Over Notches and Weirs 11.9

Since each bay has two end contractions, we get the following value.

n = × =2 10 20

h
V

ga
a= =

×
=

2 2

2

2 5

2 9 81
0 3185

.

.
. m

Since Q L n H h H h ha a a= − + + −1 84 0 1 3 2 3 2. [ . ( )][( ) ]/ /

Thus Q = × − × × + + −1 84 43 5 0 1 20 1 4 0 3185 1 4 0 3185 0 31853 2 3. [ . . ( . . )][( . . ) ./ /22 ]

∴ =Q 152.8176 m /s3

 Example 11.11  In a catchment area, the daily record of rainfall is measured as 1.5 × 105 m3. Eighty per cent of the 
rainwater reaches the storage reservoir and then passes over a rectangular weir. If the water level over the weir crests does 
not rise more than 0.5 m, then determine the length of weir using Bazin’s formula.

Solution
Let m /day3Q1

51 5 10= ×. , Q Q= 80 1% of  and H = 0 5. m.

Q1

51 5 10

24 3600
1 7361=

×
×

=
.

. m /s3

Thus Q = × =
80

100
1 7361 1 3889. . m /s3

Since Q mL g H= ×2 3 2/

m
H

= + = + =0 405
0 003

0 405
0 003

0 5
0 411.

.
.

.

.
.

Thus 1 3889 0 411 2 9 81 0 53 2. . . . /= × × × ×L

∴ =
× × ×

=L
1 3889

0 411 2 9 81 0 53 2

.

. . . /
2.1579 m

 Example 11.12  A 20 m long weir is divided into 12 equal bays by vertical posts each of width 0.4 m. Calculate the 
discharge over the weir using Francis’s formula if the head over the crest of the weir is 1.2 m.

Solution
Let L1 20= m, number of bays = 12, width of each post m= 0 4.  and H = 1 2. m.

L = − × =20 11 0 4 15 6. . m

Since each bay has two end contractions, we get the following value.

n = × =2 12 24

Since Q L nH H= −1 84 0 1 3 2. ( . ) /

∴ = × − × × × =Q 1 84 15 6 0 1 24 1 2 1 23 2. ( . . . ) . / 30.7664 m /s3

 Example 11.13  A rectangular weir is divided into N  number of openings each of span 10 m. If discharge over the weir 
is 971.73 m3/s and the velocity of approach is 2 m/s, then determine the number of openings so that the head of water does 
not exceed 3 m over the weir.
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Solution
Let Number of openings = N , L = 10 m, Qtotal

3m /s= 971 73. , Va = 2 m/s and H = 3 m.

h
V

ga
a= =

×
=

2 2

2

2

2 9 81
0 2039

.
. m

Let Q be the discharge through each opening which can be given from Equation (11.9) by taking n = 2 (because each 
 opening has two number of end contractions) as given below.

Q L H h H h ha a a= − × × + + −1 84 0 1 2 3 2 3 2. [ . ( )][( ) ]/ /

Thus Q = × − × × + + −1 84 10 0 1 2 3 0 2039 3 0 2039 0 20393 2 3 2. [ . ( . )][( . ) . ]/ /

∴ =Q 97 173. m /s3

N
Q

Q
= = =total 971 73

97 173

.

.
10

 Example 11.14  A rectangular weir of width 5 m has no end contractions. If the head over the crest is 0.5 m and the crest 
is 1.3 m above the bed level of the channel, then determine the discharge using Rehbock’s formula.

Solution
Let L = 5 m, H = 0 5. m and z = 1 3. m.

Since Q mL g H= +2 0 0011 3 2( . ) /

m
H

z
= +

+⎡
⎣⎢

⎤
⎦⎥

= +
× +

0 403
0 053 0 0011

0 403
0 053 0 5 0 0011

1 3
.

. ( . )
.

. ( . . )

.
⎡⎡
⎣⎢

⎤
⎦⎥

= 0 42343.

∴ = × × × × + =Q 0 42343 5 2 9 81 0 5 0 0011 3 2. . ( . . ) / 3.3265 m /s3

11.6 ❐ DISCHARGE OVER A TRIANGULAR NOTCH OR WEIR
A triangular notch (or weir) has a V-shaped opening, thus it is also known as a V-notch (Figure 11.5). Generally, it is 
 preferred over a rectangular notch when the discharge is to be measured at varying heads. This is due to the reason that the 
coefficient of discharge in case of V-notch remains fairly constant for different heads, whereas it does not remain constant 
in a rectangular notch.

The discharge of water flowing over a triangular notch or weir may be computed by using the expression as derived 
below.

dh

h

H
P

Q
R

O

P Q

O

H − h

Apex of the notch
α 2

α

Figure 11.5 Discharge from a triangular notch or weir
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 Flow Over Notches and Weirs 11.11

Let H  be the height of water over the crest of V-notch having vertex angle α  and Cd  be the coefficient of discharge. 
Consider an elementary horizontal strip of water of thickness dh and length L at a depth h below the free surface of water 
as shown in Figure 11.5.

Width of strip / /= = × = −2 2 2 2 2PQ OQ H htan( ) ( ) tan( )α α

Area of strip Width of strip Thickness of strip /= × = −2 2( ) tan ( )H h dhα

The discharge ( )dQ  through the strip is given by,

dQ Cd= × ×Area of strip Theoretical velocity

Thus dQ C H h dh ghd= −[ ]2 2 2( ) tan( )α /

The total discharge can be determined by integrating the above expression and it is given as follows.

Q C H h dh gh C g H h h dhd

H

d

H

= −⎡
⎣⎢

⎤
⎦⎥

= −∫ ∫2
2

2 2 2
2

0

1 2

0

( ) tan tan ( ) /α α

Q C g H
h h

d

H

= × −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2 2
2 3 2 5 2

3 2 5 2

0

tan
/ /

/ /α

Q C g H H Hd= × −⎡
⎣⎢

⎤
⎦⎥

2 2
2

2

3

2

5
3 2 5 2tan / /α

	 ∴ = ⎡
⎣⎢

⎤
⎦⎥

=Q C g H C g Hd d2 2
2

4

15

8

15
2

2
5 2 5 2tan tan/ /α α

 (11.17)

For a right-angled V-notch, α = °90  and if Cd = 0 6. , then Equation (11.17) is written as follows.

	 Q H H= × × × ×
°

× =
8

15
0 6 2 9 81

90

2
1 4175 2 5 2. . tan ./ /  (11.18)

11.6.1 Effect on Discharge Due to Error in Measurement of Head
Let k C gd= ( ) tan( )8 15 2 2/ /α , then Equation (11.17) is written as follows.

	 Q k H= × 5 2/  (11.19)

Differentiating Equation (11.19), we get:

	 dQ k H dH= × ×( / ) /5 2 3 2  (11.20)

Dividing Equation (11.20) by Equation (11.19), we get:

	
dQ

Q

k H dH

k H

dH

H
=

× ×
×

=
( ) /

/

5 2 5

2

3 2

5 2

/
 (11.21)

Equation (11.21) shows that an error of 1% in measuring H  will produce 2.5% error in the computed Q over a  triangular 
weir or notch.

11.6.2 Advantages of a Triangular Notch (or Weir) Over a Rectangular Notch (or Weir)
The following are the advantages of a triangular notch (or weir) over a rectangular notch (or weir).

 1. The coefficient of discharge for a triangular weir or notch is fairly constant for all the heads. Thus, it is preferred over 
a rectangular notch when the discharge is to be measured at varying heads.
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11.12 Chapter 11

 2. Even with a low discharge, the head over the crest of a triangular weir or notch is comparatively large and therefore, it 
can be measured accurately. Thus, a triangular weir or notch is very useful for measuring low discharge.

 3. Ventilation of air is not required in a triangular weir or notch.

 Example 11.15  A right-angled V-notch weir provided in a 2.5 m wide rectangular channel measures water discharge of 
0.3 cumec. If the maximum depth of water does not exceed 1 m, then determine the position of the apex of the notch from 
the bed of the channel. Assume coefficient of discharge as 0.6.

Solution
Let α = °90 , L = 2 5. m, Q = 0 3. m /s3 , ( )z H+ = 1 m and Cd = 0 6. , here z  is the height of apex of the notch from the bed 
of the channel.

Let H  be the height of water over the triangular notch.

Since Q C g Hd=
8

15
2

2
5 2tan /α

Thus 0 3
8

15
0 6 2 9 81

90

2
5 2. . . tan /= × × × ×

°
× H

∴ =
×

× × × °
⎡

⎣
⎢

⎤

⎦
⎥ =H

0 3 15

8 0 6 19 62 45
0 53734

2 5
.

. . tan
.

/

m

Since z H+ = 1 m

∴ = − = − =z H1 1 0 53734. 0.46266 m

 Example 11.16  The water flows over a rectangular weir of width 1.5 m at a depth of 0.25 m and afterwards, it passes 
through a triangular right-angled weir. If the coefficients of discharge for the rectangular and triangular weir are 0.623 and 
0.6, respectively, then determine the depth of water over the triangular weir.

Solution
The subscripts 1 and 2 denote the values for rectangular and triangular weirs, respectively. L1 1 5= . m, H1 0 25= . m, 
α = °90 , Cd1 0 623= .  and Cd2 0 6= . .

Let Q be the discharge through both the weirs and H2 be the depth of water over the triangular weir.

Since Q C L g Hd= ×( ) /2 3 21 1 1
3 2/   [Rectangular weir]

∴ = × × × × × =Q
2

3
0 623 1 5 2 9 81 0 25 0 3453 2. . . . ./ m /s3

Since Q C g Hd=
8

15
2

22 2
5 2tan /α

  [Triangular weir]

0 345
8

15
0 6 2 9 81

90

2 2
5 2. . . tan /= × × × ×

°
× H

∴ =
×

× × × °
⎡

⎣
⎢

⎤

⎦
⎥ =H2

2 5
0 345 15

8 0 6 19 62 45

.

. . tan

/

0.56824 m

 Example 11.17  The actual discharge by a right-angled V-notch with coefficient of discharge as 0.62 is known to be 
0.044 m3/s. However, in an experiment, the discharge is found to be 0.04 m3/s. Determine the error by assuming that this 
discrepancy is due to an error in measuring head above the sill.

M11 Fluid Mechanics and Hydraulic Machines XXXX 01.indd   12 4/5/2019   11:43:03 AM

Download more at Learnclax.com



 Flow Over Notches and Weirs 11.13

Solution
Let α = °90 , Cd = 0 62. , Q = 0 044. m /s3  and Qmeasured

3m /s= 0 04.  .

Let H  be the actual head over the notch and dH  be the error in measurement of head. The actual head over the notch is 
given by,

Q C g Hd=
8

15
2

2
5 2tan /α

Thus 0 044
8

15
0 62 2 9 81

90

2
5 2. . . tan /= × × × ×

°
× H

∴ =
×

× × × °
⎡

⎣
⎢

⎤

⎦
⎥ =H

0 044 15

8 0 62 19 62 45
0 2461

2 5
.

. . tan
.

/

m

Since 
dQ

Q

dH

H
=

5

2

Thus dH
dQ

Q
H

Q Q

Q
H= × × = ×

−
×

2

5

2

5

( )measured

∴ = ×
−⎛

⎝⎜
⎞
⎠⎟

× =dH
2

5

0 044 0 04

0 044
0 2461

. .

.
. 0.00895 m or 8.95 mm

 Example 11.18  A rectangular notch of length 1 m and height 40 cm discharges water. If the same quantity of water is 
allowed to flow over a right-angled V-notch, then determine the height to which water will rise above the apex of the notch. 
Take coefficient of discharge for both notches as 0.623.

Solution
Let mL = 1 , H = =40 0 4cm m. , α = °90  and Cd = 0 623. .

Let H1 be the height to which water will rise in the right-angled V-notch.

Since Q C L g Hd= ×( ) /2 3 2 3 2/   [Rectangular notch]

∴ = × × × × × =Q
2

3
0 623 1 2 9 81 0 4 0 465413 2. . . ./ m /s3

Since Q C g Hd=
8

15
2

2 1
5 2tan /α

  [Triangular notch]

0 46541
8

15
0 623 2 9 81

90

2 1
5 2. . . tan /= × × × ×

°
× H

∴ =
×

× × ×

⎡

⎣
⎢

⎤

⎦
⎥ =H

o1

2 5
0 46541 15

8 0 623 19 62 45

.

. . tan

/

0.631 m

 Example 11.19  The head and discharge over the V-notch having coefficient of discharge as 0.62 is 80 mm and  
0.008 m3/s, respectively. Determine the depth and top width of the V-notch when it discharges 0.5 m3/s.

Solution
Let Cd = 0 62. , H = =80 0 08mm m. , Q = 0 008. m /s3  and Q1 0 5= . m /s3 .

Let H  be the depth and B  the width of V-notch as shown in Figure 11.6.
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H

P
Q

R

O

P Q

O

H

B
B/2

2
α

α

Figure 11.6

Since Q C g Hd=
8

15
2

2
5 2tan /α

  [Equation (11.17)]

0 008
8

15
0 62 2 9 81

2
0 085 2. . . tan . /= × × × × ×

α

∴ =
×

× × ×

⎡

⎣
⎢

⎤

⎦
⎥ =tan

.

. . .
.

/

α
2

0 008 15

8 0 62 19 62 0 08
3 017346

5 2

Again using Equation (11.17) for the discharge Q1 0 5= . m /s3 , we get:

0 5
8

15
0 62 2 9 81 3 017346 5 2. . . . /= × × × × × H

∴ =
×

× × ×
⎡

⎣
⎢

⎤

⎦
⎥ =H

0 5 15

8 0 62 19 62 3 017346

2 5
.

. . .

/

0.418256 m

Since tan
( )α

2

2
=

B

H

/
  [Figure (11.6)]

∴ = = × × =B H2
2

2 0 418256 3 017346tan . .
α

2.524 m

11.7 ❐ DISCHARGE OVER A TRAPEZOIDAL NOTCH OR WEIR
A trapezoidal notch or weir is a combination of a rectangular and a triangular notch or weir as shown in Figure 11.7. Thus, 
the total discharge over a trapezoidal weir or notch is the sum of the two discharges, namely discharge through a rectangular 
notch or weir and discharge through a triangular notch or weir.

H

A
E

D

B

H

L

F

C

= +

Rectangular portion Triangular portionTrapezoidal notch or weir

H

/2α

α

/2α

Figure 11.7 Discharge from a trapezoidal notch or weir
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 Flow Over Notches and Weirs 11.15

Let L be the length of the crest of the notch (i.e., rectangular portion), H be the height of water over the notch, ( )α /2  
is the angle of inclination of its sides with the vertical, Cd1 and Cd2 be the coefficient of discharges, respectively for the 

rectangular portion (i.e., EBCF) and the triangular portion (i.e., AEB and DFC) of the trapezoidal notch or weir.
The discharge through the rectangular portion of the trapezoidal notch or weir is given by,

Q C L gHd1 1
3 22 3 2= ( ) //  [From Equation (11.2)]

The discharge through the triangular portion of the trapezoidal notch or weir is given by,

Q C g Hd2 2
5 28

15
2

2
= tan /α

 [From Equation (11.17)]

Total discharge through the trapezoidal notch or weir is equal to the sum of Q1 and Q2.

Thus Q C L gH C g Hd d= +
2

3
2

8

15
2

21
3 2

2
5 2/ /tan

α
 (11.22)

If the coefficient of discharge for the whole of the trapezoidal notch or weir is taken as Cd , then Equation (11.22) can be 
written as follows.

	 ∴ = +⎡
⎣⎢

⎤
⎦⎥

Q C gH L Hd 2
2

3

8

15 2
3 2/ tan

α
 (11.23)

 Example 11.20  A trapezoidal notch is 0.8 m wide at the top and 0.32 m at the bottom and 0.24 m in height. If the head 
of water on the notch is 0.1 m, then determine the discharge through the notch in litres per second. Take coefficient of 
 discharges for rectangular and triangular portions as 0.62 and 0.6, respectively.

Solution
Refer Figure 11.8. Let AD = 0 8. m, BC L= = 0 32. m, EB = 0 24. m,  

H = 0 1. m , Cd1 0 62= .  and Cd2 0 6= . .

From right-angled triangle AEB, we get:

tan
( ) ( . . )

.

α
2

2 0 8 0 32 2

0 24
1= =

−
=

−
=

AE

EB

AD EF

EB

/ /

Since Q C L gH C g Hd d= +
2

3
2

8

15
2

21
3 2

2
5 2/ /tan

α

Thus Q = × × × × × + × × × × ×
2

3
0 62 0 32 2 9 81 0 1

8

15
0 6 2 9 81 1 0 13 2 5 2. . . . . . ./ /

∴ = + =Q 0 01853 0 00448. . 0.02301 m /s or 23.01 /s3 l

11.8 ❐ CIPOLLETTI WEIR OR NOTCH
We know that the full discharge through a rectangular weir is reduced due to end contractions. To compensate this 
 reduction in discharge, the sides of the rectangular weir are widened to form trapezoidal weir of increased area as shown in  
Figure 11.7. The sloping sides of which have an inclination of 1 horizontal to 4 vertical. Such weir is known as Cipolletti 
weir and it is named after the notable Italian engineer, Cipolletti. This weir is extensively used for measuring water supplied 
for irrigation purposes.

The discharge through a Cipolletti weir will be equal to the discharge through a rectangular weir of the same base L 
without any end contractions. It can be proved that in Cipolletti weir, tan ( )α / /2 1 4= , where ( )α /2  is the angle by which 
each side slopes outwardly from the vertical.

H

A
E

D

B
L

F

C

/2α /2α

Figure 11.8
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11.16 Chapter 11

Discharge for a rectangular weir with two end contractions is given by Equation (11.10) as follows.

Q C L H gHd= −
2

3
0 2 2 3 2( . ) /

By opening the brackets, we get:

Q C gLH C gHd d= −
2

3
2

2

15
23 2 5 2/ /

Thus, reduction in discharge due to end contractions ( ) /2 15 2 5 2/ C gHd  is to be compensated by additional discharge due 

to the additional triangular area (Figure 11.7) which is given by Equation (11.17) as Q C g Hd= ( ) tan( ) /8 15 2 2 5 2/ /α .
Therefore, equating these two expressions, we get:

8

15
2

2

2

15
25 2 5 2C g H C gHd dtan / /α

=

∴ = ⇒ = ° ′tan
α α
2

1

4 2
14 2

Since the reduction in discharge over a rectangular weir due to end contractions is compensated by the additional discharge 
due to additional triangular area. Thus, the resultant discharge through a Cipolletti weir is equal to the discharge through 
its rectangular portion without end contractions. This is same as the discharge given by Equation (11.2) for the discharge 
over a suppressed rectangular weir as given below.

	 Q C L gHd= ( ) /2 3 2 3 2/  (11.24)

If the velocity of approach is also considered, then Equation (11.24) is written as follows.

	 Q C g H h hd a a= × + −( ) [( ) ]/ /2 3 2 3 2 3 2/  (11.25)

Here h
V

ga
a=

2

2 	
Cipolletti proposed the following expression for discharge over a Cipolletti weir.

	 Q LH= 1 866 3 2. /  (11.26)

By comparing Equations (11.24) and (11.26), the value of coefficient of discharge Cd  for a Cipolletti weir is found as 0.632.

 Example 11.21  The water flows over a Cipolletti weir such that the head over the sill is 0.72 m. If the base of the weir 
is 2.5 m wide and its coefficient of discharge is 0.62, then determine the quantity of water flowing over the weir. Also 
 determine the width of the weir at the top water surface.

Solution
Refer Figure 11.7. Let H = 0 72. m, BC L= = 2 5. m and Cd = 0 62. .

Let Ltop be the width of the weir at the top water surface.

Since Q C L g Hd= ×( ) /2 3 2 3 2/

∴ = × × × × × =Q
2

3
0 62 2 5 2 9 81 0 723 2. . . . / 2.7963 m /s3

From right-angled triangle AEB, we get:

AE EB= = × =tan . .
α
2

0 72
1

4
0 18 m   [ tan( ) ]∵ α / /2 1 4=

L L AEtop = + = + × =2 2 5 2 0 18. . 2.86 m   [ ]∵ AE FD=
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 Flow Over Notches and Weirs 11.17

 Example 11.22  Determine the discharge over a Cipolletti weir of crest length 0.75 m when the head over the weir is 
0.45 m. Take the coefficient of discharge as 0.6. Also determine the discharge if the channel is 1 m wide and 0.625 m deep 
and the velocity of approach is taken into consideration.

Solution
Let L = 0 75. m, H = 0 45. m, Cd = 0 6. , bc = 1 m and dc = 0 625. m.

 (i) Q C L g Hd= ×( / ) /2 3 2 3 2

	 	
∴ = × × × × × =Q

2

3
0 6 0 75 2 9 81 0 453 2. . . . / 0.40113 m /s3

 (ii) A b dc c= = × =1 0 625 0 625. . m2

V
Q

Aa = = =
0 40113

0 625
0 642

.

.
. m/s

h
V

ga
a= =

×
=

2 2

2

0 642

2 9 81
0 021

.

.
. m

  Since Q C L g H h hd a a= × + −( ) [( ) ]/ /2 3 2 3 2 3 2/

  Thus Q = × × × × × + −( ) . . . [( . . ) . ]/ /2 3 0 6 0 75 2 9 81 0 45 0 021 0 0213 2 3 2/

∴ =Q 0.4255 m /s or 425.5 /s3 l

11.9 ❐ DISCHARGE OVER A STEPPED NOTCH
Figure 11.9 shows a stepped notch which is a combination of rectangular notches. The discharge Q through a stepped notch 
is the sum of the discharges passing through each rectangular notch.

Let L1 be the length of the crest of the notch 1, H1 be the height of water above the crest of notch 1 and Q1 be the 
 discharge over the notch 1. Similarly, L2, H2, Q2 and L3, H3, Q3 be the corresponding values for notch 2 and 3, respectively.

Q C L gHd1 1 1
3 22 3 2= ( ) //

Q C L g H Hd2 2 2
3 2

1
3 22 3 2= −( ) ( )/ //

Q C L g H Hd3 3 3
3 2

2
3 22 3 2= −( ) ( )/ //

The discharge Q through the stepped notch is given by,

Q C L gH C L g H H C L g H Hd d d= + − + −
2

3
2

2

3
2

2

3
21 1

3 2
2 2

3 2
1
3 2

3 3
3 2

2
3 2/ / / / /( ) ( ))

H1

H2

H3

L1

L2

L3

1

3

2

Figure 11.9 Stepped notch
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11.18 Chapter 11

 Example 11.23  Determine the discharge over a stepped rectangular notch as shown in Figure 11.9, when L1 0 9= . m,  
H1 0 4= . m, L2 0 6= . m, H2 0 7= . m, L3 0 3= . m  and H3 0 9= . m. Take the coefficient of discharge for the entire 
 rectangular notch as 0.62.

Solution
Refer Figure 11.9. Let L1 0 9= . m, H1 0 4= . m, L2 0 6= . m, H2 0 7= . m, L3 0 3= . m, H3 0 9= . m and Cd = 0 62. .

Since Q C L gHd1 1 1
3 22 3 2= ( ) //

∴ = × × × × × =Q1
3 22 3 0 62 0 9 2 9 81 0 4 0 41685( / ) . . . . ./ m /s3

Since Q C L g H Hd2 2 2
3 2

1
3 22 3 2= −( ) ( )/ //

∴ = × × × × × − =Q2
3 2 3 22 3 0 62 0 6 2 9 81 0 7 0 4 0 36545( ) . . . ( . . ) ./ // m /s3

Since Q C L g H Hd3 3 3
3 2

2
3 22 3 2= −( ) ( )/ //

∴ = × × × × × − =Q3
3 2 3 22 3 0 62 0 3 2 9 81 0 9 0 7 0 14728( ) . . . ( . . ) ./ // m /s3

Q Q Q Q= + + = + + =1 2 3 0 41685 0 36545 0 14728. . . 0.92958 m /s3

11.10 ❐ DISCHARGE OVER A BROAD-CRESTED WEIR
A broad-crested weir means a weir having a wide crest as shown in Figure 11.10. For a broad-crested weir, 2L H> , here  
L is the length (thickness) of the weir and H  is the head of water on the upstream side of the weir.

Let h be the head of water on the downstream side, V  be the velocity of the water on the downstream side and Cd  be the 
coefficient of discharge. Now applying Bernoulli’s equation at point 1, where water is assumed to be still and point 2, where 
water velocity is V , we get the following expression.

0 0 0
2

2

+ + = + +H
V

g
h

V

g
H h V g H h

2

2
2= − ⇒ = −( ) ( )

H
h

L

Nappe

1

2

Figure 11.10 Broad-crested weir
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 Flow Over Notches and Weirs 11.19

The discharge ( )Q  over the weir is given by,

Q C C Lh g H hd d= × × = −Area of flow Velocity 2 ( )

Thus Q C L g Hh hd= −2 2 3( )  (11.27)

The discharge will be maximum if ( )Hh h2 3−  is maximum.

d

dh
Hh h( )2 3 0− =

2 3 0 2 3 02Hh h H h− = ⇒ − =

∴ =h H
2

3

For obtaining maximum discharge ( ),maxQ  substituting the value of h in Equation (11.27), we get the below expression.

Q C L g H H Hdmax = ⎛
⎝⎜

⎞
⎠⎟

− ⎛
⎝⎜

⎞
⎠⎟

2
2

3

2

3

2 3

Q C L g H H C L Hd dmax .= − = ×2
4

9

8

27
2 9 81

4

27
3 3 3

	 ∴ =Q C LHdmax
/.1 705 3 2  (11.28)

If the velocity of approach ( )Va  is also considered, then Equation (11.28) is written as follows.

	 Q C L H hd amax
/. ( )= +1 705 3 2  (11.29)

Here h
V

ga
a=

2

2

 Example 11.24  Determine the maximum discharge over a broad-crested weir when the head of water above the crest is 
0.4 m, the length of weir is 40 m and the channel has a cross-sectional area of 40 m2 on the upstream side. Take coefficient 
of discharge as 0.62. Also determine the maximum discharge when the velocity of approach is considered.

Solution
Let mH = 0 4. , L = 40 m, A = 40 m2 and Cd = 0 62. .

	 Q C LHdmax
/ /. . . .= = × × × =1 705 1 705 0 62 40 0 43 2 3 2 10.6971 m /s3

V
Q

Aa = = =
10 6971

40
0 2674

.
. m/s

h
V

ga
a= =

×
=

2 2

2

0 2674

2 9 81
0 00364

.

.
. m

Since Q C L H hd amax
/. ( )= +1 705 3 2

∴ = × × × + =Qmax
/. . ( . . )1 705 0 62 40 0 4 0 00364 3 2 10.84345 m /s3
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11.11 ❐ DISCHARGE OVER A NARROW-CRESTED WEIR
A narrow-crested weir (sharp-crested weir) shown in  
Figure 11.11 is similar to a rectangular weir or notch. 
For a narrow crested weir, 2L H< , here L is the 
length of the weir and H  is the head of water on the 
upstream side of the weir.

The discharge ( )Q  over the narrow-crested weir is 
given by the same equation as a rectangular weir or 
notch as given below.

	 Q C L gHd= ( ) /2 3 2 3 2/  (11.30)

11.12 ❐ DISCHARGE OVER AN OGEE WEIR
An Ogee weir (Figure 11.12) is generally employed as 
a spillway of a dam in which the crest rises to a maxi-
mum height of about 0 115. H  (here H  is the head of 
water on the upstream side of the weir) and then falls 
down. This phenomenon is also known as Ogee spill-
way which is a portion of a dam over which the excess 
water from the dam flows to the  downstream side.

The discharge over an Ogee weir is same as that of 
a rectangular weir and is given by,

	 	 	 Q C L gHd= ( ) /2 3 2 3 2/  (11.31)

 Example 11.25  Determine the discharge over an Ogee weir when the head of water above the crest is 0.5 m, the length 
of weir is 5 m and the coefficient of discharge is 0.6.

Solution
Let mH = 0 5. , L = 5 m and Cd = 0 6. .

Since Q C L gHd= ( ) /2 3 2 3 2/

∴ = × × × × × =Q ( ) . . . /2 3 0 6 5 2 9 81 0 53 2/ 3.1321 m /s3

11.13 ❐ DISCHARGE OVER A SUBMERGED OR DROWNED WEIR
If a weir in which the water level on its downstream is above its crest, then the weir is known as submerged weir or drowned 
weir as shown in Figure 11.13. The submerged weir has large discharge capacity than a freely discharging weir. During 
floods, often a weir constructed across the river becomes a submerged weir.

Let Q be the total discharge over the submerged weir, H  be the height of water on the upstream side of the weir, 
h be the height of water on the downstream side of the weir and L be length of the weir. The total discharge over a 
 submerged weir may be evaluated by dividing it into two parts as, (i) Q1 be the discharge through the portion between the  
upstream and downstream water surface having head ( )H h−  that may be treated as a free weir and (ii) Q2 be the discharge 
through the portion between the downstream water surface and the crest of the weir having head h that may be treated as 
a drowned weir.

H

Figure 11.11 Narrow or sharp-crested weir

H

0.115 H
Crest of weir

Crest of spillway

Sharp crested weir

Filled with concrete

Nappe

Figure 11.12 Ogee weir
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Thus, if Cd1 and Cd2 be the coefficients of discharge for the free and drowned portions, respectively, then we get the 
following expression.

Q C L g H hd1 1
3 22 3 2= −( ) ( ) //

Q C C Lh g H hd d2 2 2 2= × × = −Area of flow Velocity of flow ( )

Thus Q Q Q= +1 2

	 ∴ = − + −Q C L g H h C Lh g H hd d( ) ( ) ( )/2 3 2 21
3 2

2/  (11.32)

 Example 11.26  A submerged weir of length 2 m has heads of water on the upstream and downstream sides as 20 cm 
and 10 cm, respectively. Determine the discharge over the weir if the coefficients of discharge for the free and drowned 
portions are 0.6 and 0.8, respectively.

Solution
Let L = 2 m, H = =20 0 2cm m. , h = =10 0 1cm m. , Cd1 0 6= .  and Cd2 0 8= . .

Since Q C L g H h C Lh g H hd d= − + −( / ) ( ) ( )/2 3 2 21
3 2

2

Thus Q = × × × × × − + × × × × × −
2

3
0 6 2 2 9 81 0 2 0 1 0 8 2 0 1 2 9 81 0 2 0 13 2. . ( . . ) . . . ( . . )/

∴ = + =Q 0 11206 0 22411. . 0.33617 m /s3

11.14 ❐ VENTILATION OF SUPPRESSED WEIR
The nappe emerging from the suppressed weir touches the side walls of the channel. The air traps in the space between the 
sidewalls of the channel, the falling nappe, the weir and the bottom of the channel. Gradually, the air is carried away with the 
flowing water and thereby, it reduces the pressure in the space below the nappe, which may fall below atmospheric  pressure. 
This negative pressure (vacuum pressure) under the nappe results in drawing more water and it eventually increases the 
actual discharge over the weir. To overcome this difficulty, ventilation of the weir is done, i.e., holes are made in the side 
walls of the channel just below the lower nappe (Figure 11.14). This region connects with the atmospheric air outside and 
thus, a constant discharge can be maintained. These holes provided for the circulation of air are called  ventilation holes and 
the weirs are called ventilated weirs.

Based on the extent of vacuum pressure and ventilation, some of the important types of nappe are given below.

 1. Free nappe (or fully aerated nappe): When atmospheric pressure exists always in the space below the emerging 
nappe and it is not allowed to be reduced, then it is known as free nappe (Figure 11.14(a)). This is a standard case and 
the weir discharges freely.

H

Crest of weir

h

(H − h)

Free weir

Drowned weir

Figure 11.13 Submerged weir
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 2. Depressed nappe: When the space between the weir and the nappe is partially ventilated, then the emerging nappe is 
known as depressed nappe (Figure 11.14(b)). The discharge over a weir with depressed nappe will be about 5% to 7% 
more than that obtained with a free nappe.

 3. Clinging nappe: When there is no air below the nappe, then the nappe may adhere to the downstream surface of the 
weir. Such a nappe is called clinging nappe (Figure 11.14(c)). The discharge of clinging nappe is about 25% to 30% 
more than that obtained with a free nappe.

11.15 ❐  TIME OF EMPTYING A RESERVOIR WITH RECTANGULAR  
WEIR OR NOTCH

Let L be the length of weir or notch, A be the cross-sectional area of reservoir or tank, H1 be the initial height of liquid 
above the crest, H2 be the final height of liquid above the crest, Cd  be the coefficient of discharge and T be the time taken 

to lower the height of liquid from H1 to H2. Let h be the height of liquid 
surface above the crest of weir or notch at any instant, dh be the fall in the 
height of liquid in a small interval of time dT  (Figure 11.15).

Decrease in the volume of liquid in the tank Discharge Ti= × mme

− =Adh QdT  (Negative sign shows h decreases with increase in T )

dT
Adh

Q

Adh

C L ghd

=
−

=
−

( ) /2 3 2 3 2/

Thus, total time can be obtained by integrating the above expressions as 
follows.

dT
Adh

C L gh

T

dH

H

0
3 22 3 2

1

2

∫ ∫=
−

( / ) /

T
A

C L g
h dh

A

C L g

h

d H

H

d

=
−

=
−

− +

⎡

⎣
⎢
⎢

⎤−
− +

∫
( / ) ( / )

/
( / )

2 3 2

3

2 2 3 2 1
3 2

3 2 1

1

2

⎦⎦
⎥
⎥H

H

1

2

T
A

C L g h

A

C L g H Hd H

H

d

=
−

−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
− × −

−
3

2 2

1

1 2

3 2

2 2

1 1
1 2

2
1 2

1

2

( / )

( )
/ /

11
1 2/

⎡

⎣
⎢
⎢

⎤
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dh

L

h H1

H2

Figure 11.15  Emptying a reservoir by a 

rectangular weir or notch

Suppressed
weir

Ventilation holes
(a) (b) (c)

Figure 11.14 Types of nappe over a suppressed weir
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 Flow Over Notches and Weirs 11.23

 Example 11.27  Calculate the time required to lower the water level from 4 m to 3 m in a reservoir of dimensions 50 m × 
50 m by a rectangular notch of length 1.3 m and coefficient of discharge as 0.623.

Solution
Let mH1 4= , H2 3= m, A = × =50 50 2500 m2, L = 1 3. m and Cd = 0 623. .

Since T
A

C L g H Hd

= −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

3

2

1 1

2 1

∴ =
×

× × ×
× −

⎡

⎣
⎢

⎤

⎦
⎥ =T

3 2500

0 623 1 3 2 9 81

1

3

1

4. . .
161.712 s

11.16 ❐  TIME OF EMPTYING A RESERVOIR WITH TRIANGULAR  
WEIR OR NOTCH

Let A be the cross-sectional area of reservoir or tank, H1 be the initial height 
of liquid above the apex of notch, H2 be the final height of liquid above apex 
of notch, α  be the angle of notch, Cd  be the coefficient of discharge and T 
be the time taken to lower the height of liquid from H1 to H2. Let h be the 
height of liquid surface above the crest of weir or notch at any instant, dh be 
the fall in the height of liquid in a small interval of time dT  (Figure 11.16).

Decrease in the volume of liquid in the tank Discharge Ti= × mme

− =Adh QdT  (Negative sign shows h decreases with increase in T )

dT
Adh

Q

Adh

C g hd

=
−

=
−

( ) tan( ) /8 15 2 2 5 2/ /α

Thus, total time can be obtained by integrating the above expressions as follows.

dT
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dh

h
H1

H2α

Figure 11.16  Emptying a reservoir by a 
triangular weir or notch
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 Example 11.28  Calculate the time required to lower the water level from 3 m to 2 m in a reservoir of dimensions 60 m × 
60 m by a right angled V-notch having a coefficient of discharge as 0.62.

Solution
Let mH1 3= , H2 2= m , A = × =60 60 3600 m2, α = °90  and Cd = 0 62. .

Since T
A

C g H Hd

= −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

5

4 2 2

1 1

2
3 2

1
3 2tan( / ) / /α

∴ =
×

× × × × °
× −

⎡

⎣
⎢

⎤

⎦
⎥ =T

5 3600

4 0 62 2 9 81 90 2

1

2

1

33 2 3 2. . tan( ) / //
263.9833 s

Summary

 1. A notch is an opening in the side of a tank such that the liq-
uid surface in the tank is below the top edge of the opening.

 2. A weir is a concrete or masonry structure built across a river 
(stream or open channel) over which the liquid flows.

 3. The sheet of water flowing through a notch or over a weir is 
known as the nappe.

 4. The bottom edge of a notch or the top of the weir over which 
water flows is known as sill or crest.

 5. The height of the crest above the bottom of the tank is known 
as the crest height.

 6. The discharge over a rectangular notch or weir is Q = (2/3)

C L gHd 2 3 2/ , here Cd  is the coefficient of discharge, L is 
the length of notch or weir and H  is the height of water over 
the crest.

 7. The discharge over a rectangular notch or weir considering 
velocity of approach Va is

Q C L g H h hd a a= × + −( ) [( ) ]/ /2 3 2 3 2 3 2/ ,

  here h V ga a= 2 2/( ).

 8. Empirical formulae for discharge over rectangular weirs:

  (a) Francis’s formula:

      (i)  Q C L nH gHd= −( ) ( . ) /2 3 0 1 2 3 2/

      (For n end contractions)

     (ii)  Q C L H gHd= −( ) ( . ) /2 3 0 2 2 3 2/

       (For 2 end contractions)

    (iii) Q LH= 1 84 3 2. /

      (For suppressed end contractions)

  (b)  Bazin’s formula: Q mL gH= 2 3 2/ , here m = 0.405 + 
(0.003/H)

  (c) Rehbock’s formula: Q mL g H= +2 0 0011 3 2( . ) / ,

  Here, m
H

z
= +

+⎡
⎣⎢

⎤
⎦⎥

0 403
0 053 0 0011

.
. ( . )

 and z is the height 

of weir.

 9. The discharge over a triangular notch or weir is Q = (8/15)

C g Hd 2 2 5 2tan( / ) /α , here α  is the vertex angle.

 10. Effect on discharge due to error in measurement of head.

   (i) A rectangular notch or weir: dQ Q dH H/ /= 1 5. ( )

  (ii) A triangular notch or weir: dQ Q dH H/ /= 2 5. ( )

  Here, dQ is the error in discharge Q  and dH is the error in 
the measurement of the head H .

 11. Discharge over a trapezoidal notch or weir:

	 	 Q C L gH C g Hd d= +( ) ( ) tan( )/ /2 3 2 8 15 2 21
3 2

2
5 2/ / /α , 

  here Cd1 and Cd2 are the coefficient of discharges, 
respectively, for the rectangular and triangular portions, 
respectively.

 12. Cipolletti weir is a trapezoidal weir with side slopes of 1 
horizontal to 4 vertical.

 13. Maximum discharge over a broad-crested weir: 

Q C LHdmax
/.= 1 705 3 2

 14. Discharge over a narrow-crested weir or an Ogee weir or 

a Cipolletti weir: Q C L gHd= ( ) /2 3 2 3 2/

 15. Discharge over a submerged or drowned weir:

Q C L g H h C Lh g H hd d= − + −( ) ( ) ( )/2 3 2 21
3 2

2/
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 Flow Over Notches and Weirs 11.25

  Here, Cd1 and Cd2 are the coefficients of discharge for the 
free and the drowned portions, respectively, H  is the height 
of water on the upstream side of the weir and h is the height 
of water on the downstream side of the weir.

 16. Time for emptying a reservoir with the following conditions.

   (i) Rectangular weir or notch: 

T
A

C L g H Hd

= −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

3

2

1 1

2 1

  (ii) Triangular weir or notch: 

T
A

C g H Hd

= −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

5

4 2 2

1 1

2
3 2

1
3 2tan( ) / /α /

  Here, H1 and H2 are the initial and final heights of liquid 
above the crest respectively and α  is the angle of notch.

Multiple-choice Questions

 1. A weir of length L and having head of water H  is said to be 
broad-crested if
(a) L H= 2 .
(b) L H= .
(c) L H= /2.
(d) None of the above.

 2. If H  is the height of water over the crest, then the discharge 
over a rectangular notch is directly proportional to
(a) H .

(b) H1 2/ .

(c) H 3 2/ .

(d) H 5 2/ .

 3. If H  is the height of water over the crest, then the discharge 
over a triangular notch is directly proportional to

(a) H .

(b) H1 2/ .

(c) H 3 2/ .

(d) H 5 2/ .

 4. The ratio of percentage error in the discharge over rectangu-
lar notch and the percentage error in the measuring head is
(a) 1/2
(b) 1
(c) 1.5
(d) None of the above.

 5. The ratio of percentage error in the discharge over triangular 
notch and the percentage error in the measuring head is
(a) 1
(b) 1.5
(c) 2
(d) 2.5

 6. The horizontal to vertical side slope in the case of a Cipolletti 
weir is
(a) 1 2: .
(b) 1 3: .
(c) 1 4: .
(d) 1 5: .

Review Questions

 1. Define and compare a notch and a weir. Also give their 
classifications.

 2. Define nappe and crest. Also derive an expression for the 
discharge over a rectangular notch in terms of head of water 
over the crest of it.

 3. Derive an expression for the error in discharge due to error 
in the measurement of head over (i) a rectangular weir or 
notch and (ii) a triangular weir or notch.

 4. What do you mean by velocity of approach? Also find an 
expression for the discharge over a rectangular notch or weir 
with velocity of approach.

 5. What do you mean by end contraction? What is the effect of 
end contraction on the discharge through a weir?

 6. Obtain an expression for discharge over a triangular notch 
in terms of head of water over its crest. Also mention the 
advantages of a triangular notch over a rectangular notch.

 7. Obtain the expressions for discharge over (i) a trapezoidal 
notch or weir and (ii) a submerged weir.

 8. Obtain the expressions for discharge over (i) a Cipolletti 
notch or weir and (ii) a stepped notch.

 9. Derive an expression for maximum discharge over a broad-
crested weir.

 10. Briefly explain the narrow-crested weir and an Ogee weir.

 11. Write short notes on ventilation of suppressed weir and the 
important types of nappe.

 12. Derive an expression for the time required to empty a tank 
with (i) a rectangular notch and (ii) a triangular notch
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Problems

 1. A rectangular notch has a discharge of 0.5 m3/s when the 
height of water over the crest is half the breadth of the notch. 
If coefficient of discharge is 0.62, then find the breadth of the 
notch.

[Ans. 0.902 m]

 2. A rectangular notch is required to measure a maximum dis-
charge of 400 litres per second. If the maximum head of  
liquid over its still is not to exceed beyond 0.5 m, then what 
should be the width of the notch? Take coefficient of dis-
charge as 0.62.

[Ans. 0.618 m]

 3. The head of water passing through a rectangular notch 0.2 m 
broad is measured as 0.1 m. Calculate the discharge, if coef-
ficient of discharge is 0.6. Also find the percentage error in 
the discharge if the permissible error in the measurement of 
head is 1%.

[Ans. 0.0112 m3/s, 1.5%]

 4. The head of water over a 100 m long rectangular weir is 1.5 
m. If the velocity of approach is 0.5 m/s and coefficient of 
discharge is 0.62, then determine discharge over the weir.

[Ans. 340.38 m3/s]

 5. A rectangular weir of crest length 0.5 m is provided in a rectan-
gular channel of width 1 m wide and depth 0.8 m. Determine 
the discharge over the weir if the head of water over its crest is 
0.2 m and the coefficient of discharge is 0.623.  Consider the 
velocity of approach and neglect end contractions.

[Ans. 0.0826 m3/s]

 6. A rectangular channel of width 3 m is provided with a sharp-
crested rectangular weir of 100 cm height across it. Deter-
mine the discharge over the weir if the head of water over its 
crest is 0.4 m, coefficient of discharge is 0.6 and velocity of 
approach is considered.

[Ans. 1.369 m3/s]

 7. The water flows over a rectangular weir of width 1 m at a 
depth of 15 cm and afterwards, it passes through a triangular 
right-angled weir. If the coefficients of discharge for the rec-
tangular and triangular weir are 0.62 and 0.59, respectively, 
then determine the depth of water over the triangular weir.

[Ans. 0.357 m]

 8. Determine the depth and top width of a V-notch capable of 
discharging a maximum of 500 litres per second and such 
that the head shall be 6 cm for a discharge of 5 litres per sec-
ond. Its coefficient of discharge is same as that of a similar 
right-angled V-notch for which Q H= 1 407 5 2. / .

[Ans. 0.3786 m, 3.0515 m]

 9. Determine the discharge over a triangular notch of angle 60° 
when the head over the V-notch is 0.5 m and the coefficient 
of discharge is 0.6.

[Ans.0.1447 m3/s]

 10. Determine the coefficient of discharge of a right angled 
V-notch if the quantity of water collected in one minute is 
217 litres with a constant head of 9 cm. Assume that there is 
no lateral contraction.

[Ans. 0.63]

 11. Determine the coefficient of discharge of a right angled 
V-notch if the quantity of water collected in one minute is 
0.1 m3/s and it works under a constant head of 6.5 cm.

[Ans. 0.656]

 12. The water flows through a triangular right-angled weir first 
and then over a rectangular weir of 1 m width. If the coef-
ficients of discharge of the triangular and rectangular weirs 
are 0.6 and 0.62, respectively and the depth of the triangular 
weir is 30 cm, then determine the depth of water over the 
rectangular weir.

[Ans. 0.1134 m]

 13. A right angled V-notch having coefficient of discharge as 
0.62 is used to measure the discharge. Determine the flow 
rate if the head ( )H dH+  measured above the crest is given 
as ( . . )0 2 0 01± m.

[Ans. ( . . )0 0262 0 003275 3± m /s]

 14. A sharp-edged rectangular notch 0.5 m broad has been used 
to measure the discharge estimated to be about 30 litres per 
second. Determine the percentage error in computing the 
discharge that would be introduced by an error of 2 mm 
in observing the head over the notch. Take coefficient of 
 discharge as 0.63.

[Ans. 2.96%]

 15. Determine the discharge over a rectangular weir 3 m long 
working under a constant head of 0.25 m using Francis’s and 
Bazin’s formulae when (i) end contractions are suppressed 
and (ii) end contractions are considered.

[Ans. 0.69 m3/s, 0.693 m3/s, 0.678 m3/s]

 16. A weir 36 m long is divided into 12 equal bays by vertical 
posts, each 0.6 m wide. Determine the discharge over the 
weir if the head over the crest is 1.2 m and the velocity of 
approach is 2 m/s.

[Ans. 75.267 m3/s]

 17. The head of water over a triangular notch of angle 60° is 
0.4 m and the coefficient of discharge is 0.6. Determine the 
limiting values of head if the flow measured by it is to be 
within an accuracy of ±1 5. %.

[Ans. 0.4024 m or 0.3976 m]

 18. Determine the discharge over a Cipolletti weir of length 
1.5 m when the head over the weir is 1 m and the coefficient 
of discharge is 0.62.

[Ans. 2.746 m3/s]
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 Flow Over Notches and Weirs 11.27

 19. Determine the discharge over a Cipolletti weir of crest length 
0.6 m when the head over the weir is 0.4 m. Take the coef-
ficient of discharge as 0.62. Also determine the discharge if 
the channel is 0.8 m wide and 0.6 m deep and the velocity of 
approach is taken into consideration.

[Ans. 0.2779 m3/s, 0.2934 m3/s]

 20. The horizontal base of a sharp-edged trapezoidal weir is 
0.1  m wide and its top and depths are 0.5 m and 0.3 m, 
respectively. Determine the discharge over the weir in litres 
per second when the upstream water surface is 0.25 m above 
the weir crest. Neglect the velocity of approach and take 
coefficient of discharge as 0.62 for both the rectangular and 
triangular portions.

[Ans. 53.39 litres/s]

 21. Determine the discharge over a Cipolletti weir of crest length 
0.6 m when the head over the weir is 0.225 m. Take the coef-
ficient of discharge as 0.62. Also determine the discharge if 
the channel is 1 m wide and 0.5 m deep and the velocity of 
approach is taken into consideration.

[Ans. 0.11724 m3/s, 0.1193 m3/s]

 22. Find the maximum discharge over a broad-crested weir of 
length 60 m and height 60 cm of water above the crest of the 
weir. Take coefficient of discharge as 0.62. Also determine 
the maximum discharge when the velocity of approach is 
considered and the cross-sectional area of the channel on the 
upstream side of the weir is 45 m2.

[Ans. 29.478 m3/s, 47.01 m3/s]

 23. Using Francis and Bazin’s formulae determine the discharge 
over an Ogee weir which is 4 m long with suppressed end 
contractions and discharges water under a head of 0.45 m.

[Ans. 2.2217 m3/s, 2.202 m3/s]

 24. A submerged weir of length 2 m has heads of water on 
the upstream and downstream sides as 15 cm and 7.5 cm, 
respectively. Determine the discharge over the weir if the 
coefficients of discharge for free and drowned portions are 
0.58 and 0.8, respectively.

[Ans. 0.21595 m3/s]

 25. A submerged weir spans the entire width of a rectangular 
channel 5 m wide. The crest of weir is 1 m above the bed 
of the channel. If the depths of water on the upstream and 
downstream sides are 1.6 m and 1.2 m, respectively and the 
coefficients of discharge for free and drowned portions are 
0.6 and 0.8, respectively, then determine the discharge.

[Ans. 4.482 m3/s]

 26. Water flows over a rectangular sharp-crested weir of length 
1 m, the head over the sill of the weir is 66 cm. The approach 
channel is 1.4 m wide and the depth of the flow in the chan-
nel is 1.2 m. Taking coefficient of discharge as 0.6 and 
neglecting the velocity of approach, determine the discharge 
over the weir. Also determine the discharge if the velocity of 
approach and the effect of end contractions are considered.

[Ans. 0.824 m3/s, 0.8431 m3/s]

 27. Calculate the time required to lower the water level from  
4 m to 3 m in a reservoir of dimensions 60 m × 60 m by 
(i)  a rectangular notch of length 1.5 m and (ii) a right- 
angled V-notch. Take coefficient of discharge as 0.62 in 
each case.

[Ans. 202.8 s, 110.5 s]

ANSWERS TO MULTIPLE-CHOICE QUESTIONS

 1. (c) 2. (c) 3. (d) 4. (c) 5. (d)
 6. (c)

M11 Fluid Mechanics and Hydraulic Machines XXXX 01.indd   27 4/5/2019   11:44:59 AM

Download more at Learnclax.com



M11 Fluid Mechanics and Hydraulic Machines XXXX 01.indd   28 4/5/2019   11:44:59 AM

This page is intentionally left blank

Download more at Learnclax.com



12.1 ❐ INTRODUCTION
All real fluids are viscous in nature. Viscosity is the property of a fluid that resists the movement of one layer of fluid over 
an adjacent layer. It produces tangential or shear stresses in a moving fluid. Depending upon the domination of viscosity, 
viscous flow can be classified as laminar flow and turbulent flow. In laminar flow, the fluid particles move along straight 
parallel paths in layers (laminae or sheets) and there is no mixing of fluid particles between two adjacent layers. This occurs 
at low velocity so that forces due to viscosity predominate over the inertial forces. The viscosity induces relative motion 
within the fluid when fluid layers slide over each other. The gradient of velocity between the layers gives rise to shear 
stresses. The magnitude of viscous shear stress varies from point to point, being maximum at the boundary and gradually, 
decreases with increase in the distance from the boundary. In order to overcome the shear resistance to flow, the pressure 
drops from section to section in the direction of flow, so that a pressure gradient exists. In a turbulent flow, the motion of 
the fluid particles is irregular, where it moves in heterogeneous fashion and the pathlines are erratic curves.

In previous chapters, the effect of viscosity has not been considered when the fluid flows. This idealization of non-
viscous flow greatly simplifies the mathematics involved in the analysis. However, such an idealization fails to explain 
many phenomena where viscous force is very large and in such cases it is not desirable to neglect these forces. In this 
 chapter, the effect of viscosity has been introduced for formulating the mathematical solutions of different practical 
 problems. Expressions relating to shear stress and pressure gradients in laminar flow is developed and applied to analyse 
many cases of laminar flow, such as Couette flow, Poiseuille flow and flow through annulus. Relationships among the 
velocity field, flow rate, shear stress, pressure gradient and geometry of the laminar flow field have also been established 
in this chapter.

12.2 ❐ REYNOLDS EXPERIMENTS
Osborne Reynolds (1883), an English scientist performed experiments on the setup shown schematically in Figure 12.1.  
It consists of a long horizontal glass tube of bell-mouthed entrance fitted to a constant head tank containing water.  
To control the water flow through the glass tube, a regulating valve is fitted at its outlet. A jet of dye (aniline) of same 
 specific weight as water is introduced from a small tank containing dye.

The observations made by Reynolds are given below.

 1. When the velocity of flow was low, the dye filament in the glass tube was in the form of a stable straight line and moved 
so steadily that it hardly appeared to be in motion. This was the case of laminar flow (Figure 12.2(a)) in which the loss 
of pressure head ( )hf  was observed to be proportional to the velocity ( )V , i.e., h Vf ∝ .

Chapter 12

Laminar Flow (Viscous Flow)
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12.2 Chapter 12

 2. When the velocity of flow was increased, a stage reached at which the dye filament was no longer a straight line but it 
became irregular and wavy as shown in Figure 12.2(b). This showed that the flow was no longer laminar, i.e., it was a 
transitional state.

 3. When the velocity of flow was further increased, the irregularity and the waviness of the dye filament increases and 
finally, the dye filament disappeared or diffused in water as shown in Figure 12.2(c). Such a flow wherein the motions 
are randomized and irregular is called turbulent flow and the velocity at which it starts is called lower critical velocity. 
The flow velocity at the instant when the dye filament breaks completely and gets diffused throughout the flow is called 
higher critical velocity. In case of turbulent flow, the loss of pressure head was observed to be proportional to V n, i.e., 
h Vf

n∝ , where n varies from 1.75 to 2.

Reynolds found that the fluid flow is governed by the parameters, namely density of fluid ( )ρ , mean flow velocity ( )V , 
dynamic viscosity of the fluid ( )μ , kinematic viscosity of the fluid ( )ν μ ρ= /  and the characteristic dimension of the stream 
cross section, for example, diameter of the pipe ( )D . By grouping these variables, a dimensionless quantity was formed 
called Reynolds number as given below.

	 Re
( )

= = =
ρ

μ μ ρ ν
VD VD VD

/
 (12.1)

Reynolds number represents the ratio of inertia force to viscous force. At low Reynolds number, the viscous force 
 predominates and the flow is laminar, whereas at higher Reynolds number, the inertia force predominates and consequently, 
the fluid layers break up into a turbulent flow.

The values of Reynolds number for the type of flow in circular pipes and tubes are (i) laminar flow when Re < 2000, 
(ii) turbulent flow when Re > 4000 and (iii) unpredictable flow or transitional flow (i.e., transition from laminar to  turbulent) 
when 2000 4000< <Re .

The lower critical Reynolds number (Re)cr  is the value of Reynolds number below which disturbances of any magnitude 

is eventually damped by viscous action. The approximate values of (Re)cr  for some cases are (i) (Re)cr = 1000 for parallel 

walls, (ii) (Re)cr = 50 for open channel flows and (iii) (Re)cr = 1 for flow around a sphere.

Glass tube
Regulating valve

Valve

Water tank
Dye filament

Tank containing dye

Figure 12.1 Schematics of Reynolds experimental set-up

(a) Laminar flow (b) Transition (c) Turbulent flow

Wavy dye filament Di�used dye filamentStraight dye filament

Figure 12.2 Stages of dye filament
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  12.3 Laminar Flow 

12.3 ❐ NAVIER-STOKES EQUATIONS OF MOTION
Consider a three-dimensional fluid element of dimensions dx , dy  and dz 
having an infinitesimal volume dx dy dz in a flow field which has three veloc-
ity components u, v  and w along x, y  and z 	 directions, respectively, as 
shown in Figure 12.3. Assuming viscosity ( )μ  and density ( )ρ  of the fluid is 
throughout constant. The motion of the fluid element is influenced by normal 
forces due to pressure p, i.e., Fp , body force (gravity force) Fb , shear forces 
Fτ  and inertia forces Fi .

 (i) Normal forces due to pressure: The net pressure force in x-direction is 
given by,

F p dydz p
p

x
dx dydz

p

x
dxdydzpx = × − +

∂
∂

⎛
⎝⎜

⎞
⎠⎟

× = −
∂
∂

 (ii) Body or gravity force: Let Fbx, Fby and Fbz  be the components of the body force per unit mass in x, y  and z   directions, 
respectively. The body force acting on the fluid element in the direction of x-coordinate is given below.

= × ×F dxdydzbx ρ

 (iii) Shear forces: Let F xτ , F yτ  and F zτ  be the components of shear force per unit mass in x, y  and z 	directions,  respectively. 
The shear force acting on the fluid element in the direction of x-coordinate is given below.

= × ×F dxdydzxτ ρ

 (iv) Inertia forces: The inertia force acting on the fluid element in the direction of x-coordinate is given by the product of 
mass and acceleration as follows.

( )F dxdydz a dxdydz
du

dti x x= × × = × ×ρ ρ

  Here a
du

dt
u

u

x
v

u

y
w

u

z

u

tx = =
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

  [Equation (6.13a)]

According to Newton’s second law of motion, the summation of forces acting on the fluid element in any direction equals 
the inertia forces in that direction. Thus, along x-direction, we get the following expression.

−
∂
∂

+ + =
p

x
dxdydz F dxdydz F dxdydz dxdydz

du

dtbx xρ ρ ρτ

	 F
p

x

du

dt
Fbx x−

∂
∂

= −
1

ρ τ  (12.2a)

Similarly, along y  and z  directions, respectively, we get the below expressions.

	 F
p

y

dv

dt
Fby y−

∂
∂

= −
1

ρ τ  (12.2b)

	 F
p

z

dw

dt
Fbz z−

∂
∂

= −
1

ρ τ  (12.2c)

Since shear stress due to viscosity on a particular surface equals the rate of change of velocity in a direction normal to the 
surface. Thus, shear force in terms of shear stress τ  acting on face ABFE is given below.

= − × = −
∂
∂

×τ μ( )dydz
u

x
dydz

dx

dy

dz
x

y

z

u

A

B
C

D

E

F G

H

xpp + ) dx/( ∂∂

xuu + ) dx/( ∂∂
p uv

w

Figure 12.3  Three-dimensional  

infinitesimal fluid element
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12.4 Chapter 12

Shear force acting on face DCGH is given by,

=
∂
∂

+
∂
∂

⎛
⎝⎜

⎞
⎠⎟

× =
∂
∂

+
∂
∂

⎛

⎝
⎜

⎞

⎠
⎟μ μ

x
u

u

x
dx dydz

u

x

u

x
dx dydz

2

2

It should be noted that the shear force (resistance force) acting on the opposite faces have opposite sign and both of these 
forces are directed opposite to the respective pressure forces.

The resultant shear force along x-direction can be obtained by the algebraic sum of forces acting on the faces ABFE and 
DCGH as given below.

	
= −

∂
∂

+
∂
∂

+
∂
∂

⎛

⎝
⎜

⎞

⎠
⎟ =

∂
∂

μ μ μu

x
dydz

u

x

u

x
dx dydz

u

x
dxdydz

2

2

2

2
 (i)

Similarly, the resultant shear force along x-axis acting on the faces BCGF and ADHE is given below.

	
=

∂
∂

μ
2

2

u

y
dxdydz (ii)

The resultant shear force along x-axis acting on the faces EFGH and ABCD is given by,

	
=

∂
∂

μ
2

2

u

z
dxdydz  (iii)

The total viscous resistance parallel to x-axis on all six faces can be obtained by adding expressions (i), (ii) and (iii) as 
given below.

=
∂
∂

+
∂
∂

+
∂
∂

μ μ μ
2

2

2

2

2

2

u

x
dxdydz

u

y
dxdydz

u

z
dxdydz

	
=

∂
∂

+
∂
∂

+
∂
∂

⎛

⎝
⎜

⎞

⎠
⎟μ

2

2

2

2

2

2

u

x

u

y

u

z
dxdydz  (iv)

The shear force per unit mass F xτ  can be obtained by dividing expression (iv) by ρdx dy dz , we get the following expression.

F
u

x

u

y

u

z

u

x

u

y

u

z
xτ

μ
ρ

ν=
∂
∂

+
∂
∂

+
∂
∂

⎛

⎝
⎜

⎞

⎠
⎟ =

∂
∂

+
∂
∂

+
∂
∂

⎛

⎝
⎜

⎞2

2

2

2

2

2

2

2

2

2

2

2 ⎠⎠
⎟

Similarly, we can obtain the below expression.

F
v

x

v

y

v

z
yτ ν=

∂
∂

+
∂
∂

+
∂
∂

⎛

⎝
⎜

⎞

⎠
⎟

2

2

2

2

2

2
 and F

w

x

w

y

w

z
zτ ν=

∂
∂

+
∂
∂

+
∂
∂

⎛

⎝
⎜

⎞

⎠
⎟

2

2

2

2

2

2

Substituting the values of F xτ , F yτ  and F zτ  in Equations (12.2a), (12.2b) and (12.2c), we get:

	 F
p

x

du

dt

u

x

u

y

u

z
bx −

∂
∂

= −
∂
∂

+
∂
∂

+
∂
∂

⎛

⎝
⎜

⎞

⎠
⎟

1 2

2

2

2

2

2ρ
ν  (12.3a)

	 F
p

y

dv

dt

v

x

v

y

v

z
by −

∂
∂

= −
∂
∂

+
∂
∂

+
∂
∂

⎛

⎝
⎜

⎞

⎠
⎟

1 2

2

2

2

2

2ρ
ν  (12.3b)

	 F
p

z

dw

dt

w

x

w

y

w

z
bz −

∂
∂

= −
∂
∂

+
∂
∂

+
∂
∂

⎛

⎝
⎜

⎞

⎠
⎟

1 2

2

2

2

2

2ρ
ν  (12.3c)
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  12.5 Laminar Flow 

The Equations (12.3a), (12.3b) and (12.3c) are called Navier-Stokes equations for constant viscosity and density. These 
equations are fundamental to general analysis of a viscous flow. Since these equations are non-linear second order  differential 
equations, finding the general solution to these equations is not possible. However, the solution can be obtained for different 
flow situations by making suitable assumptions and thus, by neglecting some of the terms in the equation. Some simple 
solutions, for simple flow situations are described in this chapter.

12.4 ❐  RELATION BETWEEN SHEAR STRESS  
AND PRESSURE GRADIENT

Consider a three-dimensional fluid element of dimensions dx , dy  and dz in a flow field which has three velocity  components 
u, v  and w along x, y  and z 	directions, respectively, as shown in Figure 12.4(a). Due to viscous effects, there is relative 
motion between different layers of fluid, i.e., the velocity distribution is non-uniform as shown in Figure 12.4(b). The 
 velocity gradient across the two layers setup shear stresses.

dx

dy

dz

x

y

z

A

B
C

D

E

F
G

H

p

xpp + ) dx/( ∂∂

τ

y

x

Velocity profile

B, F G, C

A, E D, H

τ

dy
y∂

∂+ ττy) dy/( ∂∂+ ττ

(a) (b)

x

z

y

uv

w

Figure 12.4 Forces on a fluid element in laminar flow

For two-dimensional steady flows, there will be no shear stresses on the vertical faces ABCD and EFGH. Thus, the only 
forces acting on the fluid element in the direction of flow x will be the pressure and shear forces.

Let τ  be the shear stress on the lower face BFGC and τ τ+ ∂ ∂( / )y dy be the shear stress on the upper face ADHE, then 
the net shear force on the element is given below.

= +
∂
∂

⎛
⎝⎜

⎞
⎠⎟

−
⎡

⎣
⎢

⎤

⎦
⎥ =

∂
∂

τ τ τ τ
y

dy dxdz dxdz
y

dxdydz

Net pressure force becomes,

= − +
∂
∂

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ = −

∂
∂

pdydz p
p

x
dx dydz

p

x
dxdydz

For steady and uniform flow, there is no acceleration in the direction of motion. Thus, the sum of these forces in the  
x-direction must be equal to zero as given below.

∂
∂

−
∂
∂

=
τ
y

dxdydz
p

x
dxdydz 0

	 ∴
∂
∂

=
∂
∂

τ
y

p

x
 (12.4)
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12.6 Chapter 12

The Equation (12.4) shows that in a steady uniform laminar flow, the pressure gradient in the direction of flow is equal to 
the shear stress gradient in the normal direction. This equation is applicable to both the laminar and turbulent flows and 
holds good for all types of boundary geometry. For a Newtonian fluid, τ μ= ( )du dy/  and thus, Equation (12.4) is written 
as follows.

	
∂
∂

=
p

x

d u

dy
μ

2

2
 (12.5)

12.5 ❐  LAMINAR FLOW IN CIRCULAR PIPES  
(HAGEN-POISEUILLE THEORY)

Shear stress distribution The Figure 12.5 shows a horizontal circular pipe of radius R through which steady laminar 
flow of an incompressible fluid occurs from the left to right. Consider a small cylindrical fluid element of radius r and 
length dx  located at a distance y  from the bottom internal surface of the pipe.

The forces acting on the small element in the flow direction are the net pressure force and the shear force on the surface. 
If p be the intensity of pressure on the face PQ (left end of the element), then the intensity of pressure on the face RS (right 
end of the element) will be p p x dx+ ∂ ∂( )/ . If τ  be the shear stress, then shear force on the surface of fluid element will be 
τ π× 2 rdx . Thus, the forces acting on the fluid element are as follows.

 (i) Pressure force: p r× π 2 on the face PQ

 (ii) pressure force, p
p

x
dx r+

∂
∂

⎛
⎝⎜

⎞
⎠⎟

× π 2 on the face RS

 (iii) Shear force: τ π× 2 rdx  on the surface of fluid element.

Since the flow is steady and the pipe is of uniform size, the acceleration is zero. Therefore, the sum of net pressure force 
and viscous force in the x-direction must be zero as given below.

p r p
p

x
dx r rdx× − +

∂
∂

⎛
⎝⎜

⎞
⎠⎟

− × =π π τ π2 2 2 0

−
∂
∂

− × = ⇒ −
∂
∂

− =
p

x
dx r rdx

p

x
rπ τ π τ2 2 0 2 0

	 ∴ = −
∂
∂

τ p

x

r

2
 (12.6)

dx

τ

r

R

y

dx
x

p
p

∂
∂

+Direction
of flow

dr

r

P

Q R

S

τ

x
p

Lx1

x2

1 2

Figure 12.5 Laminar flow through a circular pipe
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  12.7 Laminar Flow 

In the above equation, the negative sign indicates that the pressure decreases in the direction of flow. The Equation (12.6) 
shows that the shear stress ( )τ  varies linearly along the radius of the pipe as shown in Figure 12.6. At the centre of the pipe 
r = 0, τ = 0 and at the pipe wall r R=  and thus, τ  is maximum as given below.

	 τmax = −
∂
∂
p

x

R

2
 (12.7)

Since −
∂
∂

=
− −

−
=

−
=

p

x

p p

x x

p p

L

p

L

( )2 1

2 1

1 2 Δ

Thus τmax = −
∂
∂

=
p

x

R p

L

R

2 2

Δ

Velocity distribution From Newton’s law of viscosity, we get:

	 τ μ=
du

dy
 (12.8)

Since y R r= −

Thus dy dr= −

	 ∴ = −τ μ du

dr
 (12.9)

Comparing Equations (12.6) and (12.9), we get:

−
∂
∂

= − ⇒ =
∂
∂

p

x

r du

dr
du

p

x
rdr

2

1

2
μ

μ

Upon integration, we get:

	 u
p

x
r k=

∂
∂

+
1

4
2

μ
 (12.10)

Here, k  is the constant of integration whose value can be obtained from the boundary condition that at r R= , u = 0.

Thus 0
1

4

1

4
2 2=

∂
∂

+ ⇒ = −
∂
∂μ μ

p

x
R k k

p

x
R

τ

maxτ

Shear stress distribution

R

u

umax

Velocity distribution

r

x

Figure 12.6 Shear stress and velocity distribution for laminar flow in a pipe
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12.8 Chapter 12

Substituting the value of k  in Equation (12.10), we get:

	 u
p

x
r

p

x
R

p

x
R r=

∂
∂

−
∂
∂

= −
∂
∂

−
1

4

1

4

1

4
2 2 2 2

μ μ μ
[ ] (12.11)

or u
p

x
R

r

R
= −

∂
∂

− ⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1

4
12

2

μ
 (12.11a)

The Equation (12.11) shows that the velocity distribution is parabolic and the surface of velocity distribution is a  
paraboloid of revolution as shown in Figure 12.6.

Ratio of maximum velocity to average velocity The maximum velocity occurs at the centre, i.e., when r = 0. Thus, 
maximum velocity ( )maxu  can be obtained from  Equation (12.11) as follows.

	 u
p

x
Rmax = −

∂
∂

1

4
2

μ
 (12.12)

From Equations (12.11(a)) and (12.12), we get:

	 u u
r

R
= − ⎛

⎝⎜
⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

max 1
2

 (12.13)

The discharge ( )dQ  through an elementary ring of thickness dr at a radial distance r (Figure 12.5) is given by,

dQ u rdr
p

x
R r rdr= × = −

∂
∂

− ×2
1

4
22 2π

μ
π[ ]   [Substitute Equation (12.11)]

The total discharge can be obtained by integrating the above equation and it is given below.

dQ
p

x
rR r dr

R

∫ ∫= −
∂
∂

⎛
⎝⎜

⎞
⎠⎟

−
π
μ2

2 3

0

( )

Thus Q
p

x

r R r p

x

R R
R

= −
∂
∂

⎛
⎝⎜

⎞
⎠⎟

−
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= −
∂
∂

⎛
⎝⎜

⎞
⎠⎟

−
⎡π

μ
π
μ2 2 4 2 2 4

2 2 4

0

4 4

⎣⎣
⎢
⎢

⎤

⎦
⎥
⎥

= −
∂
∂

⎛
⎝⎜

⎞
⎠⎟

π
μ8

4p

x
R  (12.14)

Average velocity of flow ( )V uavor  is given by,

 V
Q

A

p

x
R

R

p

x
R= =

∂
∂

⎛
⎝⎜

⎞
⎠⎟

× = −
∂
∂

⎛
⎝⎜

⎞
⎠⎟

π
μ π μ8

1 1

8
4

2
2 (12.15)

	 V
p

x
R

u
= × −

∂
∂

⎛
⎝⎜

⎞
⎠⎟

=
1

2

1

4 2
2

μ
max  [Substitute Equation (12.12)] (12.16)

Thus 
u

V
max = 2

The point where the local velocity (u) is equal to the average velocity ( )V  can be located by combining Equations (12.13) 
and (12.16) as follows.

u
r

R

u
max

max1
2

2

− ⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
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  12.9 Laminar Flow 

or 1
1

2

2

− ⎛
⎝⎜

⎞
⎠⎟

=
r

R

Thus r
R

R= =
2

0 707.  (12.17)

Loss in pressure head over a length of pipe From Equation (12.15), we get:

−
∂
∂

=
p

x

V

R

8
2

μ

The pressure difference ( )Δp 	between sections 1 and 2 shown in Figure 12.5 at distances x1 and x2 can be obtained by 
 integrating the above equation as given below.

− ∂ = ∂∫ ∫p
V

R
x

1

2

2
1

2
8μ

− − = −( ) ( )p p
V

R
x x2 1 2 2 1

8μ

or ( ) ( )p p
V

R
x x1 2 2 2 1

8
− = −

μ

Since Δp p p= −( )1 2 , R D= / 2, and L x x= −( )2 1

	 ∴ = =Δp
VL

D

VL

D

8

2

32
2 2

μ μ
( )/

 (12.18)

Here, D  is the diameter of pipe and L is the length.
The Equation (12.18) is known as Hagen-Poiseuille equation (pronounced as Har’-gen Pwah-zoy’-yuh equation) which 

can also be written as follows.

	
Δp

g

VL

gDρ
μ

ρ
=

32
2

 (12.19)

Here, [ / ( )]Δp g hfρ =  represents the drop in pressure head between two sections. From Equation (12.19), we get:

	 h
p

g

VL

gD
f = =

Δ
ρ

μ
ρ
32

2
 (12.20)

From Equation (12.20), it can be observed that the frictional head loss over length of the pipe varies directly proportional 
to the velocity of flow of fluid and inversely as the square of the diameter of the pipe.

The loss of head due to frictional resistance in a pipe of length L and diameter D  may also be expressed by Darcy- 
Weisbach equation as given below.

	 h
fLV

gDf =
4

2

2

 (12.21)

Here, f  is the coefficient of friction (Darcy coefficient of friction) and V  is the average velocity of flow. Sometimes 
 Equation (12.21) may also be used in the following form.

h
f LV

gDf
f=

2

2
, where f ff = 4  is called the friction factor or Darcy friction factor.
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12.10 Chapter 12

By simplifying Equations (12.20) and (12.21), we get:

4

2

322

2

fLV

gD

VL

gD
=

μ
ρ

Thus f
VD

= =
16 16

( ) Reρ μ/
 (12.22)

And f f =
64

Re
 (12.22a)

The Equation (12.21) is also known as Fanning equation and f  is known as Fanning friction factor.

 Example 12.1  An oil of viscosity 0.9 poise and specific gravity 0.89 flows through a horizontal pipe of diameter 90 mm 
and length 9 m. If 800 N of the oil is collected in a tank in 20 seconds, then determine the pressure difference between the 
two ends of the pipe.

Solution
Let μ = =0 9 0 09 2. .poise Ns/m , Soil = 0 89. , D = =90 0 09mm m. , L = 9 m and weight of oil collected in s N20 800= .

Let W  be the weight of oil collected per second, ρ  be its density, V  be its average velocity and Δp is the pressure 
 difference between the two ends of the pipe.

ρ ρ= = × =S woil
3kg/m0 89 1000 890.

A D= = × =
π π
4 4

0 09 0 0063622 2. . m2

W = =
800

20
40 N/s

Thus Q
W

g
= =

×
=

ρ
40

890 9 81
0 00458

.
. m /s3

V
Q

A
= = =

0 00458

0 006362
0 72

.

.
. m/s

Re
. .

.
.= =

× ×
=

ρ
μ
VD 890 0 72 0 09

0 09
640 8

Since Re < 2000, the flow is laminar.

Δp
VL

D
= =

× × ×
=

32 32 0 09 0 72 9

0 092 2

μ . .

.
2304 N/m2

 Example 12.2  The maximum velocity of flow in a pipe of diameter 250 mm is measured to be 2.4 m/s. If the flow 
through the pipe is laminar, then determine the average velocity and the radius at which it occurs. Also determine the 
 velocity at 40 mm from the wall of the pipe.

Solution
Let D = =250 0 25mm m. , umax .= 2 4 m/s  and y = =40 0 04mm m. . Let r be the radius at which average velocity occurs 

and r1 is the radius at 40 mm from the wall of the pipe.
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  12.11 Laminar Flow 

R
D

= = =
2

0 25

2
0 125

.
. m

V
u

= = =max .

2

2 4

2
1.2 m/s

r R= = × =0 707 0 707 0 125. . . 0.0884 m or 88.4 mm

r R y1 0 125 0 04 0 085= − = − =. . . m

The velocity at a radius of r1 is given by,

u u
r

R
= − ⎛

⎝⎜
⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= × − ⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

max .
.

.
1 2 4 1

0 085

0 125
1

2 2

== 1.29 m/s

 Example 12.3  An oil of absolute viscosity 0.1 Ns/m2 and relative density 0.9 is pumped through a 32 mm diameter 
pipe. If the pressure drop per metre length of the pipe is 20 kN/m2, then find (i) the mass flow rate, (ii) maximum shear 
stress, (iii) type of flow and (iv) power required per metre length of the pipe to maintain the flow.

Solution

Let μ = 0 1. Ns/m2, Soil = 0 9. , D = =32 0 032mm m. , Δp = 20 kN/m2 and L = 1 m.

ρ ρ= = × =S woil
3kg/m0 9 1000 900.

A D= = × =
π π
4 4

0 032 0 0008042 2. . m2

R
D

= = =
2

0 032

2
0 016

.
. m

 (i) ∵ Δp
VL

D
=

32
2

μ

∴ = =
× ×

× ×
=V

pD

L

Δ 2 3 2

32

20 10 0 032

32 0 1 1
6 4

μ
.

.
. m/s

Q AV= = × =0 000804 6 4 0 005146. . . m /s3

  The mass flow rate ( )m  is given by,

m Q= = × =ρ 900 0 005146. 4.6314 kg/s

 (ii) Maximum shear stress will be at the pipe wall and is given by,

τmax
.

= −
∂
∂

= =
×⎛

⎝
⎜

⎞

⎠
⎟ × =

p

x

R p

L

R

2 2

20 10

1

0 016

2

3Δ
160 N/m2

 (iii) Re
. .

.
.= =

× ×
=

ρ
μ
VD 900 6 4 0 032

0 1
1843 2

  Since Re 2000<< , the flow is laminar.
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12.12 Chapter 12

 (iv) h
p

gf = =
×
×

=
Δ
ρ

20 10

900 9 81
2 2653

3

.
. m of oil

  The power required for maintaining the flow per metre length of the pipe is given below.

P gQhf= = × × × =ρ 900 9 81 0 005146 2 2653. . . 102.922 W

 Example 12.4  Lubricating oil of absolute viscosity 0.12 Ns/m2 and relative density 0.86 flows through a 40 mm 
 diameter pipe. If the rate of flow of oil through the pipe is 3 litres per second, then find (i) the pressure drop in a length of 
280 m and (ii) shear stress at the pipe wall.

Solution
Let μ = 0 12. Ns/m2, Soil = 0 86. , D = =40 0 04mm m. , Q l= =3 0 003/s m /s3.  and L = 280 m.

ρ ρ= = × =S woil
3kg/m0 86 1000 860.

A D= = × =
π π
4 4

0 04 0 0012572 2. . m2

R
D

= = =
2

0 04

2
0 02

.
. m

 (i) V
Q

A
= = =

0 003

0 001257
2 387

.

.
. m/s

Re
. .

.
.= =

× ×
=

ρ
μ
VD 860 2 387 0 04

0 12
684 27

  Since Re < 2000, the flow is laminar.

Δp
VL

D
= =

× × ×
=

32 32 0 12 2 387 280

0 042 2

μ . .

.
1604064 N/m2

 (ii) Shear stress at the pipe wall is given by,

τmax
.

= −
∂
∂

= = ⎛
⎝⎜

⎞
⎠⎟

× =
p

x

R p

L

R

2 2

1604064

280

0 02

2

Δ
57.288 N/m2

 Example 12.5  An oil of absolute viscosity 9 poise and specific gravity 0.88 is flowing through a horizontal pipe of 
diameter 50 mm. If the pressure drop in 80 m length of the pipe is 1620 kPa, then find (i) the rate of flow of oil, (ii) centre 
line velocity, (iii) total frictional drag over 80 m length, (iv) power required to maintain the flow, (v) velocity gradient at the 
wall of the pipe and (vi) velocity and shear stress at 6 mm from the wall.

Solution
Let μ = =9 0 9poise Ns/m2. , Soil = 0 88. , D = =50 0 05mm m. , L = 80 m, Δp = 1620 kPa and y = =6 0 006mm m. .

ρ ρ= = × =S woil
3kg/m0 88 1000 880.

A D= = × =
π π
4 4

0 05 0 00196352 2. . m2

R
D

= = =
2

0 05

2
0 025

.
. m
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  12.13 Laminar Flow 

 (i) ∵ Δp
VL

D
=

32
2

μ

∴ = =
× ×
× ×

=V
pD

L

Δ 2 3 2

32

1620 10 0 05

32 0 9 80μ
.

.
1.76 m/s

Re
. .

.
.= =

× ×
=

ρ
μ
VD 880 1 76 0 05

0 9
86 04

  Since Re < 2000, the flow is laminar.

Q AV= = × =0 0019635 1 76. . 0.003456 m /s3

 (ii) u Vmax .= = × =2 2 1 76 3.52 m/s

 (iii) τmax
.

= −
∂
∂

= =
×⎛

⎝
⎜

⎞

⎠
⎟ × =

p

x

R p

L

R

2 2

1620 10

80

0 025

2
2

3Δ
53.125 N/m2

  The frictional drag ( )FD  is given by,

F DLD = × = × × × =τ π πmax . .253 125 0 05 80 3180.862 N

 (iv) Power required for maintaining the flow is given by,

P
F VD= =

×
=

1000

3180 862 1 76

1000

. .
5.5983 kW

 (v) Velocity gradient at the wall of the pipe is given by,

∂
∂

⎛
⎝⎜

⎞
⎠⎟

= = =
=

u

y y 0

253 125

0 9

τ
μ

max .

.
281.25 s 1−−

 (vi) r R y= − = − =0 025 0 006 0 019. . . m

  Since u
p

x
R r

p

L
R r=

∂
∂

− = −
1

4

1

4
2 2 2 2

μ μ
[ ] [ ]

Δ

∴ =
×

×
×

× − =u
1

4 0 9

1620 10

80
0 025 0 019

3
2 2

.
[ . . ] 1.485 m/s

  Since 
τ τ
r R

= max   [Linear variation]

∴ = =
×

=τ
τmax . .

.

r

R

253 125 0 019

0 025
192.375 N/m2

 Example 12.6  A fluid of viscosity 0.9 Ns/m2 and relative density 1.2 flows through a horizontal pipe of diameter 
120 mm. If the flow is laminar and the maximum shear stress at the pipe wall is 200 N/m2, then find (i) the pressure 
 gradient, (ii) average velocity and (iii) Reynolds number of the flow.

Solution
Let Ns/m2μ = 0 9. , Sfluid = 1 2. , D = =120 0 12mm m.  and τmax = 200 N/m2.
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12.14 Chapter 12

ρ ρ= = × =S wfluid
3kg/m1 2 1000 1200.

R
D

= = =
2

0 12

2
0 06

.
. m

A D= = × =
π π
4 4

0 12 0 011312 2. . m2

 (i) ∵τmax = −
∂
∂
p

x

R

2

  Thus 
∂
∂

= − = −
×

=
p

x R

2 2 200

0 06

τmax

.
−−6666.67 N/m per m2

  The negative sign indicates that pressure decreases in the direction of flow.

 (ii) V
p

x
R= −

∂
∂

⎛
⎝⎜

⎞
⎠⎟

=
×

× × =
1

8

1

8 0 9
6666 67 0 062 2

μ .
. . 3.333 m/s

 (iii) Re
. .

.
= =

× ×
=

ρ
μ
VD 1200 3 333 0 12

0 9
533.28

 Example 12.7  A lubricating oil of absolute viscosity 0.14 Ns/m2 and relative density 0.9 flows through a pipe of 
 diameter 24 mm and length 3 m at one-tenth of critical velocity for which Reynolds number is 2400. Find (i) the velocity 
of flow through the pipe, (ii) loss of head required for maintaining the flow and (ii) power required to overcome viscous 
resistance to the flow.

Solution
Let μ = 0 14. Ns/m2, Soil = 0 9. , D = =24 mm 0.024 m, L = 3 m , V Vcr= ( )/10  and Re = 2400.

ρ ρ= = × =S woil
3kg/m0 9 1000 900.

A D= = × =
π π
4 4

0 024 0 00045242 2 2. . m

 (i) Re =
ρ

μ
V Dcr

  Thus V
Dcr = =

×
×

=
Re .

.
.

μ
ρ

2400 0 14

900 0 024
15 55 m/s

V
Vcr= = =
10

15 55

10

.
1.555 m/s

 (ii) h
VL

gD
f = =

× × ×
× ×

=
32 32 0 14 1 555 3

900 9 81 0 0242 2

μ
ρ

. .

. .
4.11 m

 (iii) Q AV D V= = × = × × =
π π
4 4

0 024 1 555 0 00070352 2. . . m /s3

Power required to overcome viscous resistance of flow is given by,

P gQhf= = × × × =ρ 900 9 81 0 0007035 4 11. . . 25.528 W
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  12.15 Laminar Flow 

 Example 12.8  Oil of absolute viscosity 0.15 Ns/m2 and specific gravity 0.85 flows through a pipe of diameter 0.3 m.  
If the head loss in 3000 m length of pipe is 20 m and the flow is laminar, then find (i) the velocity of flow through the pipe, 
(ii) Reynolds number, (iii) coefficient of friction (Fanning) and (iv) Darcy friction factor.

Solution
Let μ = 0 15. Ns/m2 , Soil = 0 85. , D = 0 3. m , L = 3000 m  and hf = 20 m.

ρ ρ= = × =S woil
3kg/m0 85 1000 850.

 (i) ∵h
VL

gD
f =

32
2

μ
ρ

∴ = =
× × ×

× ×
=V

gD h

L

fρ
μ

2 2

32

850 9 81 0 3 20

32 0 15 3000

. .

.
1.042 m/s

 (ii) Re
. .

.
= =

× ×
=

ρ
μ
VD 850 1 042 0 3

0 15
1771.4

 (iii) f = = =
16 16

1771 4Re .
0.009

 (iv) f ff = = × =4 4 0 009. 0.036

 Example 12.9  An oil of relative density 0.82 is pumped through a 0.15 m diameter and 3000 m long horizontal pipe at 
the rate of 15 litres per second. If the pump has an efficiency of 68% and requires 7.35 kW power to pump the oil, then find 
the dynamic viscosity of the oil and the type of flow.

Solution
Let oilS = 0 82. , D = 0 15. m, L = 3000 m, Q l= =15 0 015/s m /s3. , ηp = 0 68.  and P = 7 35. kW.

ρ ρ= = × =S woil
3kg/m0 82 1000 820.

A D= = × =
π π
4 4

0 15 0 0176712 2. . m2

V
Q

A
= = =

0 015

0 017671
0 849

.

.
. m/s

Since P
gQhf

p
=

ρ
η

Thus h
P

gQ
mf

p= =
× ×

× ×
=

η
ρ

0 68 7 35 10

820 9 81 0 015
41 421

3. .

. .
.

Also h
VL

gD
f =

32
2

μ
ρ

Thus 41 421
32 0 849 3000

820 9 81 0 152
.

.

. .
=

× ×
× ×

μ

∴ =
× × ×
× ×

=μ 41 421 820 9 81 0 15

32 0 849 3000

2. . .

.
0.092 Ns/m2
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12.16 Chapter 12

Re
. .

.
.= =

× ×
=

ρ
μ
VD 820 0 849 0 15

0 092
1135 08

Since Re 2000<< , the flow is laminar.

 Example 12.10  The laminar flow of glycerine through a horizontal pipe of diameter 0.1 m is 0.012 m3/s. If the  absolute 
viscosity of glycerine is 0.9 Ns/m2 and kinematic viscosity is 9 stokes, then what power is required per kilometre of 
 pipeline to overcome the viscous resistance to the flow of glycerine?

Solution
Let D = 0 1. m , Q = 0 012. m /s3 , μ = 0 9. Ns/m2, ν = = × −9 9 10 4stokes m /s2  and L = =1 1000km m. Let P  be the power 
required to overcome viscous resistance.

ρ μ
ν

= =
×

=−
0 9

9 10
1000

4

.
kg/m3

A D= = × =
π π
4 4

0 1 0 02 2. . 07854 m2

V
Q

A
= = =

0 012

0 007854
1 528

.

.
. m/s

h
VL

gD
f = =

× × ×
× ×

=
32 32 0 9 1 528 1000

1000 9 81 0 1
448 59

2 2

μ
ρ

. .

. .
. m

P
gQhf= =

× × ×
=

ρ
1000

1000 9 81 0 012 448 59

1000

. . .
52.808 kW

 Example 12.11  A crude oil of viscosity 0.14 Ns/m2 and relative density 0.92 flows through a 25 mm diameter vertical 
pipe. If the pressure gauges fixed at 15 m apart measure 540 kN/m2 and 180 kN/m2, the lower value of the gauge is at the 
higher level, then determine the direction and the rate of flow through the pipe.

Solution
Refer Figure 12.7. Let μ = 0 14. Ns/m2, Soil = 0 92. , D = =25 mm 0.025 m, 

L = 15 m, p1
2540= kN/m  and p2 180= kN/m2.

ρ ρ= = × =S woil
3kg/m0 92 1000 920.

A D= = × =
π π
4 4

0 025 0 0004912 2. . m2

Let the level at point 1 be the datum and h1 and h2 be the piezometric heads at 
points 1 and 2, respectively. As the pipe is of uniform cross section, the velocity head is same at the points 1 and 2.

h
p

g
z1

1
1

3540 10

920 9 81
0 59 8325= + =

×
×

+ =
ρ .

. m

h
p

g
z2

2
2

3180 10

920 9 81
15 34 9441= + =

×
×

+ =
ρ .

. m

∵h h1 2> , flow takes place from point 1 to 2, i.e., in upward direction.

h h hf = − = − =1 2 59 8325 34 9441 24 8884. . . m

15 m

540 kN/m2

180 kN/m2

25 mm

1

2

Figure 12.7
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  12.17 Laminar Flow 

Also h
VL

gD
f =

32
2

μ
ρ

Thus 24 8884
32 0 14 15

920 9 81 0 0252
.

.

. .
=

× × ×
× ×

V

∴ =
× × ×

× ×
=V

24 8884 920 9 81 0 025

32 0 14 15

2. . .

.
2.09 m/s

Re
. .

.
.= =

× ×
=

ρ
μ
VD 920 2 09 0 025

0 14
343 36

Since Re < 2000, the flow is laminar.

Q AV= = × =0 000491 2 09. . 0.00103 m /s3

 Example 12.12  A pipe of diameter 0.04 m and length 300 m slopes upwards at the rate of 1 in 30. If an oil of viscosity 

0.88 Ns /m2 and specific gravity 0.89 is pumped at the rate of 0.003 m3/s, then determine (i) the type of flow, (ii) pressure 
difference between the two ends, (iii) power of the pump assuming the overall efficiency of 0.68, (iv) centre line velocity 
and (v) velocity gradient at the pipe wall.

Solution
Refer Figure 12.8. Let D = 0 04. m , L = 300 m, slope in=1 30, μ = 0 88 2. Ns/m , Soil = 0 89. , Q = 0 003. m /s3  and ηo = 0 68. .

Datum

1

2

300 m

0.04 m

z1 = 0

z2 = 10 m

Figure 12.8

R
D

= = =
2

0 04

2
0 02

.
. m

ρ ρ= = × =S woil
3kg/m0 89 1000 890.

A D= = × =
π π
4 4

0 04 0 0012572 2 2. . m

 (i) V
Q

A
= = =

0 003

0 001257
2 387

.

.
. m/s

Re
. .

.
.= =

× ×
=

ρ
μ
VD 890 2 387 0 04

0 88
96 565

  Since Re 2000<< , the flow is laminar.
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 (ii) 
p

g

V

g
z

p

g

V

g
z hf

1 1
2

1
2 2

2

22 2ρ ρ
+ + = + + +   [Bernoulli’s equation]

  But V V1 2= , z1 0= , z2 1 30 300 10= × =( )/ m, and h VL gDf = ( ) ( )32 2μ ρ/

  Thus 
p p

g

VL

gD

1 2
2

10
32−

= +
ρ

μ
ρ

  or Δp g
VL

D
= +10

32
2

ρ μ
  [ ]Δp p p= −1 2

∴ = × × +
× × ×

=Δp 10 890 9 81
32 0 88 2 387 300

0 042
.

. .

.
12690669 N/m2

 (iii) P
gQh gQ p

g

Q pf

p p p
= = × = =

×
×

=
ρ

η
ρ
η ρ η

Δ Δ 0 003 12690669

0 68 103

.

.
55.988 kW

 (iv) u Vmax .= = × =2 2 2 387 4.774 m/s

 (v) τmax
.

.= = ⎛
⎝⎜

⎞
⎠⎟

× =
Δp

L

R

2

12690669

300

0 02

2
423 0223 2N/m

∂
∂

⎛
⎝⎜

⎞
⎠⎟

= = =
=

u

y y 0

423 0223

0 88

τ
μ

max .

.
480.71 s 1−−

 Example 12.13  Water flows in a pipe of diameter 0.25 m. The shear stress at a point 25 mm from the pipe axis is 
0.1 kPa. If coefficient of friction is 0.04, then determine (i) Reynolds number and type of flow and (ii) shear stress at the 
pipe wall.

Solution
Let D = 0 25. m, r = =25 0 025mm m. , τ = =0 1 0 1. .kPa kN/m2 and f = 0 04. .

 (i) Re
.

= = =
16 16

0 04f
400

  Since Re 2000<< , the flow is laminar.

 (ii) R
D

= = =
2

0 25

2
0 125

.
. m

  Since 
τ τ
r R

= max   [Linear variation]

∴ = =
×

=τ τ
max

. .

.

R

r

0 1 0 125

0 025
0.5 kN/m2

 Example 12.14  A pipe of diameter 0.25 m and length 10000 m slopes upwards at a slope of 1 in 250 m of pipe length 
traversed. An oil of viscosity 0.15 Ns/m2 and specific gravity 0.86 is required to be discharged through it at the rate of 
0.025 m3/s. Determine (i) the head lost due to friction and (ii) power required to drive the pump.

Solution
Let D = 0 25. m, L = 10000 m, i = 1 250in , μ = 0 15 2. Ns/m , Soil = 0 86.  and Q = 0 025. m /s3 .
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  12.19 Laminar Flow 

ρ ρ= = × =S woil
3kg/m0 86 1000 860.

A D= = × =
π π
4 4

0 25 0 04912 2. . m2

 (i) V
Q

A
= = =

0 025

0 0491
0 5092

.

.
. m/s

Re
. .

.
.= =

× ×
=

ρ
μ
VD 860 0 5092 0 25

0 15
729 85

  Since Re < 2000, the flow is laminar.

h
VL

gD
f = =

× × ×
× ×

=
32 32 0 15 0 5092 10000

860 9 81 0 252 2

μ
ρ

. .

. .
46.353 m

 (ii) Let h be the height through which oil is to be lifted and it is given by,

h i L= × = × =
1

250
10000 40 m

  Thus, the total head ( )H  against which the pump is to work is given by,

H h hf= + = + =40 46 353 86 353. . m

  Power required to pump the oil is given by,

P
gQH

= =
× × ×

=
ρ
1000

860 9 81 0 025 86 353

1000

. . .
18.213 kW

12.6 ❐ LAMINAR FLOW THROUGH ANNULUS
Velocity distribution Consider a steady laminar flow of an incompressible fluid through horizontal annular space 
between two concentric circular pipes as shown in Figure 12.9. Let R1 be the outer radius and R2 be the inner radius of the 
annulus. A small fluid element of the shape of a small concentric cylinder of length dx  and thickness dr at a radial distance 
r considered as free body. The forces acting on the small cylindrical fluid element in the flow direction are normal pressure 
forces and shear forces as shown in Figure 12.9.

Direction of flow

dr

r

R1

R2

rdrx)dx]2pp + π/([ ∂∂

(r + dr)dxr 2])dr/([ ∂∂+ πττ

x

y

dx

rdrp π2×

rdxπτ 2×

Figure 12.9 Laminar flow through an annulus
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Thus, the forces acting on the fluid element are as follows.

 (i) Pressure forces: p rdr× 2π  and p
p

x
dx rdr+

∂
∂

⎡
⎣⎢

⎤
⎦⎥

2π

 (ii) Shear forces: τ π× 2 rdx and τ τ π+
∂
∂

⎡
⎣⎢

⎤
⎦⎥

+
r

dr r dr dx2 ( )

Since the flow is steady and uniform, the summation of the forces on the fluid element in the direction of flow is zero as 
given below.

p rdr p
p

x
dx rdr rdx

r
dr× − +

∂
∂

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ + × − +

∂
∂

⎛
⎝⎜

⎞
⎠⎟

2 2 2 2π π τ π τ τ π(( )r dr dx+
⎡

⎣
⎢

⎤

⎦
⎥ = 0

−
∂
∂

⎛
⎝⎜

⎞
⎠⎟

− −
∂
∂

−
∂
∂

=
p

x
dx rdr drdx

r
drrdx

r
drdrdx2 2 2 2 0π πτ π τ π τ

−
∂
∂

− −
∂
∂

=
p

x r r

τ τ
0 [By neglecting ( )dr 2 term and dividing by 2πr dr dx]

r
p

x
r

r
r

p

x

d

dr
r

∂
∂

+
∂
∂

+ = ⇒
∂
∂

+ ( ) =
τ τ τ0 0

	
r

p

x

d

dr
r

du

dr

d

dr
r

du

dr

r p

x

∂
∂

+ −⎛
⎝⎜

⎞
⎠⎟

= ⇒ ⎛
⎝⎜

⎞
⎠⎟

=
∂
∂

μ
μ

0  (i)

Integrating expression (i) with respect to r, we get:

r
du

dr

r p

x
k

⎛
⎝⎜

⎞
⎠⎟

=
∂
∂

+
2

12μ

	

du

dr

r p

x

k

r
=

∂
∂

+
2

1

μ
 (ii)

Integrating expression (ii) with respect to r, we get:

 u
r p

x
k r k=

∂
∂

+ +
2

1 24μ
ln  (iii)

The constants of integration k1 and k2 can be determined from the boundary conditions, (i) at r R= 1, u = 0 and (ii) at r R= 2, 
u = 0

Applying first boundary condition in expression (iii), we get:

 0
4

1
2

1 1 2=
∂
∂

+ +
R p

x
k R k

μ
ln  (iv)

Applying second boundary condition in expression (iii), we get:

	
0

4
2

2

1 2 2=
∂
∂

+ +
R p

x
k R k

μ
ln  (v)

Equating expressions (iv) and (v), we get:

R p

x
k R k

R p

x
k R k1

2

1 1 2
2

2

1 2 24 4μ μ
∂
∂

+ + =
∂
∂

+ +ln ln
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  12.21 Laminar Flow 

k R R
R p

x

R p

x1 1 2
2

2
1
2

4 4
(ln ln )− =

∂
∂

−
∂
∂μ μ

k
R

R

R R p

x1
1

2

1
2

2
2

4
ln

( )
= −

− ∂
∂μ

	
k

R R

R R

p

x1
1
2

2
2

1 24
= −

− ∂
∂

( )

ln( )μ /
 (vi)

Substituting the value of k1 in expression (iv), we get:

0
4 4
1
2

1
2

2
2

1 2
1 2=

∂
∂

−
− ∂

∂
+

R p

x

R R

R R

p

x
R k

μ μ
( )

ln( )
ln

/

Thus k
p

x
R

R R

R R
R2 1

2 1
2

2
2

1 2
1

1

4
= −

∂
∂

−
−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥μ

( )

ln( )
ln

/
 (vii)

Substituting the value of k1 and k2 in expression (iii), we get:

u
r p

x

R R

R R

p

x
r

p

x
R

R R
=

∂
∂

−
− ∂

∂
−

∂
∂

−
−2

1
2

2
2

1 2
1
2 1

2
2

2

4 4

1

4μ μ μ
( )

ln( )
ln

(

/

))

ln( )
ln

R R
R

1 2
1/

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

u
p

x
R r

R R

R R
R r= −

∂
∂

− −
−

−
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1

4 1
2 2 1

2
2

2

1 2
1μ

( )

ln( )
(ln ln )

/

Thus u
p

x
R r

R R

R R

R

r
= −

∂
∂

− −
− ⎛

⎝⎜
⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1

4 1
2 2 1

2
2

2

1 2

1

μ
( )

ln( )
ln

/
 (12.23)

In order to locate the point where maximum velocity occurs, differentiating Equation (12.23) with respect to r and equating 
it to zero, we get the below expression.

∂
∂

= −
∂
∂

− +
−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
u

r

p

x
r

r

R R

R R

1

4
2

1
01

2
2

2

1 2μ
( )

ln( )/

	 ∴ =
−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

r
R R

R R
1
2

2
2

1 2

1 2

2ln( )

/

/
 (12.24)

By substituting this value of r in Equation (12.23), the value of maximum velocity can be obtained.

Shear stress The shear stress is given by,

τ μ μ
μ

= −
∂
∂

= −
∂
∂

−
∂
∂

− −
− ⎛

⎝⎜
⎞
⎠⎟

u

r r

p

x
R r

R R

R R

R

r

1

4 1
2 2 1

2
2

2

1 2

1( )

ln( )
ln

/

⎧⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Thus τ =
∂
∂

− −
−

−⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= −
∂
∂

1

4
2

1 1 1

4
21

2
2

2

1 2

p

x
r

r

R R

R R r

p

x

( )

ln( )/
rr

r

R R

R R
−

−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1 1
2

2
2

1 2

( )

ln( )/
 (12.25)
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Discharge The discharge ( )Q  through an annulus is given by,

Q u rdr
p

x
R r

R R

R R

R

r
R

R

= × = −
∂
∂

− −
− ⎛

⎝⎜
⎞
⎠∫ 2

1

4
1

2

1
2 2 1

2
2

2

1 2

1π
μ

( )

ln( )
ln

/ ⎟⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

×∫ 2

1

2

πrdr
R

R

Thus Q
p

x
R R

R R

R R
= −

∂
∂

− −
−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

π
μ8 1

4
2

4 1
2

2
2 2

1 2

( )

ln( )/
 (12.26)

Average velocity The average velocity ( )V 	through the annulus is given by,

V
Q

A

p

x
R R

R R

R R R R
= = −

∂
∂

− − −
−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

×
−

π
μ π8

1
1
4

2
4 1

2
2

2 2

1 2 1
2

( )

ln( ) (/
22

2 )

	 ∴ = −
∂
∂

+ −
−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

V
p

x
R R

R R

R R

1

8 1
2

2
2 1

2
2

2

1 2μ
( )

ln( )/
 (12.27)

12.7 ❐  LAMINAR FLOW BETWEEN TWO PARALLEL PLATES  
WHEN BOTH PLATES ARE AT REST

Velocity distribution Consider a laminar flow of fluid between two parallel fixed plates located at a distance b apart as 
shown in Figure 12.10. Take a small rectangular fluid element of length dx , thickness dy  and width unity at a distance y  
from the bottom plate.

The forces acting on the small element in the flow direction are the net pressure force and the shear forces on the  
surface. If p be the intensity of pressure on the face PQ (left end of the element), then the intensity of pressure on the face 
RS (right end of the element) will be p p x dx+ ∂ ∂( / ) . If τ  be the shear stress on the face QR (bottom surface of the element), 
then the shear force on the face PS (top surface of the element) will be τ τ+ ∂ ∂( )/ y dy. Thus, the forces acting on the fluid 
element are as follows.

dx

y

Flow direction

P

Q R

S

X

L
x1

x2

1 2

Y

dy pdy p p

dxτ

y )dy]dx/([ ∂∂+ ττ

x)dx]dy/([ ∂∂+
b

Fixed plate

Fixed plate

Figure 12.10 Laminar flow between two parallel fixed plates
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  12.23 Laminar Flow 

 (i) Pressure force on the face: PQ = × × =p dy pdy1

 (ii) Pressure force on the face: RS = +
∂
∂

⎡
⎣⎢

⎤
⎦⎥

× × = +
∂
∂

⎡
⎣⎢

⎤
⎦⎥

p
p

x
dx dy p

p

x
dx dy1

 (iii) Shear force on the face: QR = × × =τ τdx dx1

 (iv) Shear force on the face: PS = +
∂
∂

⎡

⎣
⎢

⎤

⎦
⎥ × × = +

∂
∂

⎡

⎣
⎢

⎤

⎦
⎥τ τ τ τ

y
dy dx

y
dy dx1

For steady and uniform flow, there is no acceleration and hence, the resultant force in the direction of flow is zero.  
Therefore, the sum of net pressure force and viscous force in the x-direction is zero as given below.

pdy p
p

x
dx dy dx

y
dy dx− +

∂
∂

⎛
⎝⎜

⎞
⎠⎟

− + +
∂
∂

⎛
⎝⎜

⎞
⎠⎟

=τ τ τ
0

−
∂
∂

+
∂
∂

=
p

x
dxdy

y
dydx

τ
0

Thus 
∂
∂

=
∂
∂

τ
y

p

x
 (12.28)

∂
∂

∂
∂

⎛
⎝⎜

⎞
⎠⎟

=
∂
∂

⇒
∂
∂

=
∂
∂y

u

y

p

x

u

y

p

x
μ

μ

2

2

1

Integrating the above equation with respect to y , we get:

∂
∂

=
∂
∂

+
u

y

p

x
y k

1
1μ

Integrating again, we get:

	 u
p

x

y
k y k=

∂
∂

+ +
1

2

2

1 2μ
 (12.29)

The constants of integration k1 and k2 can be determined from the boundary conditions, (i) at y = 0, u = 0 and (ii) at y b= , 
u = 0

Applying boundary conditions (i) in Equation (12.29), we get:

0 0 0 01 2 2= + × + ⇒ =k k k

Now substitute k2 0=  and applying boundary conditions (ii) in Equation (12.29), we get:

0
1

2
0

1

2

2

1 1=
∂
∂

+ + ⇒ = −
∂
∂μ μ

p

x

b
k b k

p

x
b

Substituting the value of k1 and k2 in Equation (12.29), we get:

	 u
p

x

y p

x
by

p

x
by y=

∂
∂

−
∂
∂

= −
∂
∂

−
1

2

1

2

1

2

2
2

μ μ μ
( )  (12.30)

Since μ, ( / )∂ ∂p x  and b are constant, velocity varies with the square of y . Therefore, Equation (12.30) indicates that the 
velocity distribution across the section of parallel plates is parabolic as shown in Figure (12.11).
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τ

maxτ

Shear stress distributionu

umax

Velocity distribution

X

Y

b

2
b

Figure 12.11 Velocity distribution and shear stress distribution

For obtaining maximum velocity ( ),maxu  substitute ( / )∂ ∂ =u y 0 as given below.

∂
∂

−
∂
∂

−
⎡

⎣
⎢

⎤

⎦
⎥ = ⇒ − =

y

p

x
by y b y

1

2
0 2 02

μ
( )

∴ =y
b

2

The maximum velocity can be obtained by substituting y b= ( )/2  in Equation (12.30) as follows.

	 u
p

x
b

b b p

x
bmax = −

∂
∂

⎛
⎝⎜

⎞
⎠⎟

− ⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= −
∂
∂

1

2 2 2

1

8

2
2

μ μ
 (12.31)

Shear stress distribution From Newton’s law of viscosity, we get:

τ μ μ
μ

=
∂
∂

=
∂
∂

−
∂
∂

−
⎡

⎣
⎢

⎤

⎦
⎥

u

y y

p

x
by y

1

2
2( )  [Substitute Equation (12.30)]

Thus τ = −
∂
∂

−
1

2
2

p

x
b y( ) (12.32)

The Equation (12.32) indicates that shear stress varies linearly with y  and its minimum and maximum values are given as 
follows.

 (i) At y
b

=
2

: τ = 0 (minimum value)

 (ii) At y = 0: τmax = −
∂
∂

⎛
⎝⎜

⎞
⎠⎟

p

x

b

2
 (maximum value) (12.33)

The shear stress distribution is shown in Figure 12.11.

Discharge and average velocity The discharge ( )dQ  through an elementary strip of thickness dy  is given by,

dQ u dy
p

x
by y dy= × = × × = −

∂
∂

−Velocity Area 1
1

2
2

μ
[ ]
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  12.25 Laminar Flow 

The total discharge can be obtained by integrating the above equation as given below.

dQ
p

x
by y dy

b

∫ ∫= −
∂
∂

−
1

2
2

0
μ

( )

	 Q
p

x

by y p

x

b b
b

= −
∂
∂

−
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= −
∂
∂

−
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= −
1

2 2 3

1

2 2 3

1

12

2 3

0

3 3

μ μ μ
∂∂
∂
p

x
b3 (12.34)

The average velocity of flow V uav( )or  is given by,

	 V
Q

A

p

x
b

b

p

x
b= = −

∂
∂

×
×

= −
∂
∂

1

12

1

1

1

12
3 2

μ μ( )
 (12.35)

Ratio of maximum velocity to average velocity The ratio of maximum velocity to average velocity is given by,

	
u

V

p

x
b

p

x
b

max =
− ∂

∂

− ∂
∂

=

1

8
1

12

3

2

2

2

μ

μ

 (12.36)

Loss in pressure head over a length of plates From Equation (12.35), we get:

∂ = − ∂p
V

b
x

12
2

μ

The pressure difference between sections 1 and 2 as shown in Figure 12.10 at distances x1 and x2 can be obtained by inte-
grating the above expression as follows.

∂ = − ∂ ⇒ − = − −∫ ∫p
V

b
x p p

V

b
x x

1

2

2
1

2

2 1 2 2 1
12 12μ μ

( ) ( )

Since Δp p p= −( )1 2  and ( )x x L2 1− =

	 ∴ =Δp
VL

b

12
2

μ
 (12.37)

From Equation (12.37), we get:

	
Δp

g
h

VL

gb
fρ

μ
ρ

= =
12

2
 (12.38)

Here, [ ( )]Δp g hf/ ρ =  represents the drop in pressure head between two sections. From Equation (12.38), it can be observed 
that the frictional head loss over the length of plates varies directly proportional to the velocity of flow of fluid and inversely 
as the square of the distance between the plates.

 Example 12.15  Two parallel plates kept 10 cm apart have laminar flow of oil between them with a maximum velocity 
of 1.5 m/s. If the viscosity of oil is 25 poise, then compute (i) the discharge per metre width, (ii) maximum shear stress at 
the plates, (iii) difference in pressure between two points 20 m apart, (iv) velocity gradient at the plates and (v) velocity at 
2 cm from the plate.
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12.26 Chapter 12

Solution
Let b = =10 0 1cm m. , umax .= 1 5 m/s, μ = =25 2 5poise Ns/m2. , L = 20 m and y = =2 cm 0.02 m. Let q be the  discharge 
per metre width of the plate.

 (i) From Equation (12.36), we get:

V u= = × =
2

3

2

3
1 5 1max . m/s

q Vb= = × =1 0 1. 0.1 m /s per m3

 (ii) From Equation (12.35), we get:

−
∂
∂

⎛
⎝⎜

⎞
⎠⎟

= =
× ×

=
p

x

V

b

12 12 2 5 1

0 12 2

μ .

.
3000 N/m /m2

τmax
.

= −
∂
∂

⎛
⎝⎜

⎞
⎠⎟

= × =
p

x

b

2
3000

0 1

2
150 N/m2

 (iii) Δp
VL

b
= =

× × ×
=

12 12 2 5 1 20

0 12 2

μ .

.
60000 N/m2

 (iv) 
∂
∂

⎛
⎝⎜

⎞
⎠⎟

= = =
=

u

y y 0

150

2 5

τ
μ

max

.
60 s 1−−

 (v) u
p

x
by y= −

∂
∂

⎛
⎝⎜

⎞
⎠⎟

− =
× × −

×
=

1

2

3000 0 1 0 02 0 02

2 2 5
2

2

μ
( )

( . . . )

.
0.96 m/s

 Example 12.16  Two parallel plates are 5 mm apart and a steady laminar flow of oil is occurring between them. If the 
pressure drop is 10 kPa per metre length of the plates and viscosity of oil is 0 06 2. Ns/m , then calculate (i) the discharge 
per metre width, (ii) maximum shear stress and (iii) maximum velocity of flow.

Solution
Let mm mb = =5 0 005. , Δp L/ kPa/m= 10 , L = 1 m and μ = 0 06 2. Ns/m . Let q be the discharge per metre of width of 
the plate.

 (i) ∵ Δp
VL

b
=

12
2

μ

	
∴ = =

× ×
× ×

=V
pb

L

Δ 2 3 2

12

10 10 0 005

12 0 06 1
0 3472

μ
.

.
. m/s

q Vb= = × =0 3472 0 005. . 1.736 10 m /s m3 3×× −− per

 (ii) τmax
.

= −
∂
∂

⎛
⎝⎜

⎞
⎠⎟

= × × =
p

x

b

2
10 10

0 005

2
3 25 N/m2

 (iii) From Equation (12.36), we get:

u Vmax .= = × =
3

2

3

2
0 3472 0.5208 m/s
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  12.27 Laminar Flow 

 Example 12.17  A container is filled completely by an oil of viscosity 0.2 Ns/m2. The container has a horizontal crack 
in its end wall which is 0.4 m wide and 0.04 m thick in the direction of flow. If the pressure difference between two faces 
of the crack is 12 kN/m2 and the crack forms a gap of 0.5 mm between the parallel surfaces, then calculate (i) the rate of 
leakage of the oil through the crack, (ii) maximum leakage velocity, (iii) shear stress at the wall and (iv) velocity gradient 
at the wall.

Solution
Let μ = 0 2 2. Ns/m , w = 0 4. m, L = 0 04. m , Δp = 12 2kN/m  and b = =0 5 0 0005. .mm m.

The oil leakage through the crack corresponds to the case of flow between two parallel fixed plates.

 (i) ∵ Δp
VL

b
=

12
2

μ

∴ = =
× ×

× ×
=V

pb

L

Δ 2 3 2

12

12 10 0 0005

12 0 2 0 04
0 03125

μ
.

. .
. m/s

	 Q Vwb= = × × =0 03125 0 4 0 0005. . . 6.25 10 m /s6 3×× −−

 (ii) From Equation (12.36), we get:

u Vmax .= = × =
3

2

3

2
0 03125 0.0469 m/s

 (iii) τmax .

.
= −

∂
∂

⎛
⎝⎜

⎞
⎠⎟

=
×

× =
p

x

b

2

12 10

0 04

0 0005

2

3

75 N/m2

 (iv) 
∂
∂

⎛
⎝⎜

⎞
⎠⎟

= = =
=

u

y y 0

75

0 2

τ
μ

max

.
375 s 1−−

12.8 ❐  LAMINAR FLOW BETWEEN TWO PARALLEL PLATES WHEN  
ONE PLATE MOVES AND OTHER AT REST (COUETTE FLOW)

Velocity distribution Consider a laminar flow of fluid between two parallel flat plates located at a distance b apart as 
shown in Figure 12.12. The lower plate is fixed and the upper plate moves with a uniform velocity V . This type of flow is 
known as Couette flow and it is named after M.F.A. Couette.

b

Direction of flow

Fixed plate

Moving plate

V Velocity distribution

dx

y

P

Q R

S

X

Y

dy pdy dydxxpp ])/([ ∂∂+

dxτ

dxdyy ])/([ ∂∂+ ττ

u = 0

u = V

Figure 12.12 Couette flow
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The Equation (12.29) derived earlier for laminar flow between two fixed parallel plates is also applicable for  
Couette flow.

Thus u
p

x

y
k y k=

∂
∂

+ +
1

2

2

1 2μ
 (12.29)

The boundary conditions for Couette flow are

 (i) at y = 0, u = 0 and

  (ii) at y b= , u V= .

Applying boundary conditions (i) in Equation (12.29), we get:

0 0 0 01 2 2= + × + ⇒ =k k k

Now substitute k2 0=  and applying boundary conditions (ii) in Equation (12.29), we get:

V
p

x

b
k b k

V

b

p

x
b=

∂
∂

+ + ⇒ = −
∂
∂

1

2
0

1

2

2

1 1μ μ

Substituting the value of k1 and k2 in Equation (12.29), we get:

	 u
p

x

y V

b

p

x
b y

V

b
y

p

x
by y=

∂
∂

− −
∂
∂

⎛
⎝⎜

⎞
⎠⎟

= −
∂
∂

−
1

2

1

2

1

2

2
2

μ μ μ
( ) (12.39)

The Equation (12.39) shows that the velocity distribution in Couette flow depends upon the velocity of the moving plate V  
and the pressure gradient ( )∂ ∂p x/ . The velocity profiles for different pressure gradients may be either positive or negative.

If V = 0, i.e., the upper plate is fixed, then Equation (12.39) reduces to Equation (12.30). If there is no pressure gradient 
[i.e., ( )∂ ∂ =p x/ 0], then Equation (12.39) is written as follows.

	 u
V

b
y=  (12.40)

The Equation (12.40) shows that the velocity distribution is linear. This type of flow is known as plain Couette flow or 
simple shear flow.

The Equation (12.39) can be transformed into non-dimensional form by dividing both sides by V  and by rearranging as,

	
u

V

y

b V

p

x
b

y

b

y

b

y

b

b

V

p

x
= + −

∂
∂

⎛
⎝⎜

⎞
⎠⎟

−
⎛

⎝
⎜

⎞

⎠
⎟ = + −

∂
∂

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣

1

2 2
2

2

2

2

μ μ
⎢⎢
⎢

⎤

⎦
⎥
⎥

−⎛
⎝⎜

⎞
⎠⎟

y

b

y

b
1  (12.41)

In Equation (12.41), the term [{ ( )}( )]b V p x2 2/ /μ −∂ ∂  is constant and it is termed as non-dimensional pressure gradient f. 
Thus, Equation (12.41) is written as follows.

	
u

V

y

b

y

b

y

b
= + −⎛

⎝⎜
⎞
⎠⎟

ϕ 1  (12.42)

A family of velocity distribution curves can be plotted in terms of ( )y b/  and ( )u V/  for different values of f as shown in 
Figure 12.13. The positive values of f (i.e., ϕ > 0) indicates pressure drop in the direction of flow and thus, the velocity 
distribution is positive over the entire width of the plate. The negative values of f (i.e., ϕ < 0) indicate an increase in fluid 
pressure in the direction of flow and thus, for some layers of fluid, there exists a backward flow due to an adverse pressure 
gradient in the fluid.
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Fixed plate

Moving plate

−1
−2

+1 +2
= 0ϕ

= +3ϕ

= −3ϕ

b
y

(u/V )

Reverse flow

V

Figure 12.13 Non-dimensional velocity curves for Couette flow

Shear stress distribution From Newton’s law of viscosity, we get:

τ μ μ
μ

=
∂
∂

=
∂
∂

−
∂
∂

−
⎡

⎣
⎢

⎤

⎦
⎥

u

y y

V

b
y

p

x
by y

1

2
2( )  [Substitute Equation (12.39)]

Thus τ μ
μ

μ
= −

∂
∂

−
⎡

⎣
⎢

⎤

⎦
⎥ = −

∂
∂

−
V

b

p

x
b y

V

b

p

x
b y

1

2
2

1

2
2( ) ( ) (12.43)

The Equation (12.43) indicates that shear stress varies linearly with distance y  from the boundary as shown in Figure 12.14. 
The shear stress distribution is asymmetrical with the values of y  at different locations as given below.

 (i) At y = 0 : τ μ
= −

∂
∂

V

b

p

x

b

2

 (ii) At y
b

=
2

: τ μ
=

V

b

 (iii) At y b= : τ μ
= +

∂
∂

V

b

p

x

b

2

Discharge The discharge per unit width ( )Q  is given by,

Q udy
V

b
y

p

x
by y dy

b b

= = −
∂
∂

−
⎡

⎣
⎢

⎤

⎦
⎥∫ ∫

0

2

0

1

2μ
( )  [Substitute Equation (12.39)]

= 0τ

Shear stress distribution

X

Y

b

Moving plate

Fixed plate

τ

τ

(b/2)

Figure 12.14 Shear stress distribution for Couette flow
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Q
V

b

y p

x

by y V

b

b p

x

bb
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= −
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∂

−
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⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
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⎥

= −
∂
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⎣
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⎤

⎦
⎥
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Thus Q
Vb p

x
b= −

∂
∂2

1

12
3

μ
 (12.44)

Average velocity Average velocity of flow ( )uav  is given by,

	 u
Q

A

Vb p

x
b

b

V p

x
bav = = −

∂
∂

⎛
⎝⎜

⎞
⎠⎟

×
×

= −
∂
∂2

1

12

1

1 2

1

12
3 2

μ μ( )
 (12.45)

Maximum velocity The location of maximum velocity ( )maxu  can be obtained by differentiating Equation (12.42) with 
respect to dy  and equating with zero as given below.

du

dy

d

dy
V

y

b

y

b

y

b

V

b

V

b

y

b
= + −⎛

⎝⎜
⎞
⎠⎟

⎧
⎨
⎩

⎫
⎬
⎭

⎡

⎣
⎢

⎤

⎦
⎥ = ⇒ + −⎛

⎝⎜
⎞
⎠⎟

=ϕ ϕ
1 0 1

2
00

Thus 
y

b
= +

1

2

1

2ϕ
 (12.46)

The value of maximum velocity can be obtained by substituting Equation (12.46) in Equation (12.42) as given below.

	 u Vmax
( )

=
+1

4

2ϕ
ϕ

 (12.47)

 Example 12.18  Two horizontal plates 10 mm apart contain oil of viscosity 0.86 poise. If the upper plate is moving with 
1.2 m/s with respect to the lower plate which is stationary and the pressure difference between two sections 80 m apart is 
80 kPa, then calculate the velocity distribution, shear stress on the upper plate and discharge per unit width.

Solution
Let b = =10 0 01mm m. , μ = =0 86 0 086 2. .poise Ns/m , V = 1 2. m/s, ( )x x2 1 80− = m  and ( )p p p2 1 80− = =Δ kPa.

∂
∂

= −
−

= −
×

= −
p

x

p

x x

Δ
( )2 1

3
380 10

80
10 N/m per m2

Since u
V

b
y

p

x
by y= −

∂
∂

−
1

2
2

μ
( )

Thus u y
y y

y y= −
− × −

×
= + −

1 2

0 01

10 0 01

2 0 086
120 58 14 5813 95

3 2.

.

( ) ( . )

.
( . . )

∴ =u y y(178.14 5813.95 )−−

Since τ μ
= −

∂
∂

−
V

b

p

x
b y

1

2
2( )

∴ =
×

−
− × − ×

=τ 0 086 1 2

0 01

10 0 01 2 0 01

2

3. .

.

( ) ( . . )
5.32 N/m2
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Since Q
Vb p

x
b= −

∂
∂2

1

12
3

μ

	
∴ =

×
−

− ×
×

=Q
1 2 0 01

2

10 0 01

12 0 086

3 3. . ( ) .

.
0.00697 m /s3

12.9 ❐ POWER ABSORBED IN BEARINGS
Lubrication of bearings is an example of laminar flow of viscous fluids. In a bearing, a very thin film of lubricating oil 
is maintained between its stationary surface and that of the rotating shaft. Highly viscous oil used for lubrication of 
 bearings offers great resistance which causes great power loss, whereas light oil may not be able to maintain a required oil 
film between the rotating part and stationary metal surface. Therefore, an oil of suitable viscosity should be used for the 
 lubrication of bearings. A thin film of lubricating oil formed between the stationary and rotating surfaces may acquire high 
pressure, which is capable of supporting load and friction. The power lost or absorbed due to viscous resistance is described 
below in three types of bearings, namely journal bearing, foot step bearing and collar bearing.

12.9.1 Journal Bearing
A journal bearing consists of a sleeve which may be partially or completely wrapped around a rotating shaft or journal as 
shown in Figure 12.15. Journal bearing is designed to support a radial load. A thin film of lubricating oil separates the shaft 
and the bearing and it offers viscous resistance to the rotating shaft.

Let D  be the diameter of the shaft, R be the radius of the shaft, N  be the speed of the shaft in rpm, ω π= ( ) /2 60N  be 
the angular speed of the shaft, V  be the tangential speed of the shaft, L be the length of the bearing and t  be the thickness 
of the oil film.

Now V R
N D DN

= = × =ω π π2

60 2 60

Since the thickness of oil film is very small, a linear velocity distribution can be assumed.

du

dy

V

t

V

t

DN

t
=

−
= = ×

0

60

1π

Shear stress ( )τ  in the oil is given by,

τ μ μ π
= = ×

du

dy

DN

t60

R

Oil film

L

D

t
Bearing

Oil film

Rotating shaft

Figure 12.15 Journal bearing
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Shear force or viscous resistance ( )F  is given by,

F DL
DN

t
DL

D NL

t
= × = × = × =τ τ π μπ π μπ

  Surface area
60 60

2 2

Torque ( )T  required to overcome the viscous resistance is given by,

	 T F
D D NL

t

D D NL

t
= × = × =

2 60 2 120

2 2 2 3μπ μπ
 (12.48)

Power ( )P  absorbed in overcoming the viscous resistance is given by,

	 P T
D NL

t

N D N L

t
= = × =

⎛

⎝
⎜

⎞

⎠
⎟ω μπ π μπ2 3 3 3 2

120

2

60 3600
watts  (12.49)

 Example 12.19  A shaft of diameter 0.1 m rotates at 80 rpm in a 0.1 m long journal bearing. If the shaft and bearing are 
separated by a distance of 1 mm of oil with dynamic viscosity of 0.008 Ns/m2, then find the power absorbed by the bearing.

Solution

Let D = 0 1. m , N = 80 rpm, L = 0 1. m, t = =1 0 001mm m.  and μ = 0 008 2. Ns/m .

P
D N L

t
= =

× × × ×
×

=
μπ π3 3 2 3 3 2

3600

0 008 0 1 80 0 1

3600 0 001

. . .

.
0.0441 Wattss

12.9.2 Foot Step Bearing
The Figure 12.16 illustrates a foot step bearing in which one end of a  vertical shaft rests in the bearing and a thin film of 
lubricating oil separates the surface of the shaft and the bearing.

Let R be the radius of the shaft, N  be the speed of the shaft in rpm, 
ω π= ( ) /2 60N  be the angular speed of the shaft, V  be the tangential 
speed of the shaft and t  be the thickness of the oil film. Consider an 
elementary ring of thickness dr at a radial distance r from the axis of 
the shaft. The area of the elementary ring is equal to 2π rdr . Since the 
thickness of oil film is very small, a linear velocity distribution can be 
assumed.

Thus                    
du

dy

V

t

V

t
=

−
=

0

V r
N

r= = ×ω π2

60

The shear stress ( )τ  on the elementary oil ring is given by,

τ μ μ μ π π μ
= = × = × × =

du

dy

V

t

Nr

t

Nr

t

2

60

1 2

60

Shear force or viscous resistance ( )dF  on the elementary ring is given by,

dF rdr
Nr

t
rdr

N

t
r dr= × = × = × =τ τ π π μ π μπ

area of ring 2
2

60
2

15

2
2

R

Oil film

t

BearingShaft

r

dr

R

Figure 12.16 Foot step bearing
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Thus, the torque ( )dT  required to overcome the viscous resistance on the ring is given by,

dT dF r
N

t
r dr r

N

t
r dr= × = × =

μπ μπ2
2

2
3

15 15

Total torque ( )T  required to overcome the viscous resistance is given by,

	 T
N

t
r dr

N

t

r NR

t

R R

= =
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=∫
μπ μπ μπ2

3

0

2 4

0

2 4

15 15 4 60
 (12.50)

Power ( )P  absorbed in overcoming the viscous resistance is given by,

	 P T
NR

t

N N R

t
= = × =ω μπ π μπ2 4 3 2 4

60

2

60 1800
Watts (12.51)

 Example 12.20  The lower end of a vertical shaft of diameter 0.12 m rotates in a foot step bearing at a speed of 800 rpm. 
Both surfaces at the end of the vertical shaft and that of the bearing are separated by an oil film thickness of 0.6 mm. If the 
dynamic viscosity of the oil is 0.12 Ns/m2, then determine the torque and the power absorbed in the bearing.

Solution
Let D = 0 12. m, N = 800 rpm, t = =0 6 0 0006. .mm m and μ = 0 12 2. Ns/m .

T
NR

t
= =

× × ×
×

=
μπ π2 4 2 4

60

0 12 800 0 12 2

60 0 0006

. ( . / )

.
0.3411 Nm

P T
NT

= = =
× × ×

=ω π π2

60

2 800 0 3411

60

.
28.576 Watts

12.9.3 Collar Bearing
The collar bearing shown in Figure 12.17 supports the axial thrust of the rotating shaft. The face of the collar is separated 
from the surface of the bearing by an oil film of uniform thickness which is  maintained by a forced lubrication system.

Oil film

t

r

dr

R1

R2

Collar

Shaft

Bearing

Figure 12.17 Collar bearing
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Let R1 be the internal radius of the collar, R2 be the external radius of the collar, N  be the speed of the shaft in rpm, 

ω π= ( )2 60N /  be the angular speed of the shaft, V  be the tangential speed of the shaft and t  be the thickness of the oil film.
Consider an elementary ring of thickness dr at a radial distance r from the axis of the shaft. Area of the elementary ring 

is equal to 2π rdr . Since the thickness of oil film is very small, a linear velocity distribution can be assumed.

du

dy

V

t

V

t
=

−
=

0

V r
Nr

= =ω π2

60

Shear stress ( )τ  on the elementary oil ring is given by,

τ μ μ μ π π μ
= = × = × × =

du

dy

V

t

Nr

t

Nr

t

2

60

1 2

60

Shear force or viscous resistance ( )dF  on the elementary ring is given by,

dF rdr
Nr

t
rdr

N

t
r dr= × = × = × =τ τ π π μ π μπ

area of ring 2
2

60
2

15

2
2

Torque ( )dT  required to overcome the viscous resistance on the ring is given by,

dT dF r
N

t
r dr r

N

t
r dr= × = × =

μπ μπ2
2

2
3

15 15

Total torque ( )T  required to overcome the viscous resistance is given by,

	 T
N

t
r dr

N

t

r N R R

t
R

R

R

R

= =
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
−

∫
μπ μπ μπ2

3
2 4 2

2
4

1
4

15 15 4 60
1

2

1

2

( )
 (12.52)

Power ( )P  absorbed in overcoming the viscous resistance is given by,

	 P T
N R R

t

N N R R

t
= =

−
× =

−
ω

μπ π μπ2
2

4
1
4 3 2

2
4

1
4

60

2

60 1800

( ) ( )
Watts  (12.53)

 Example 12.21  A collar bearing used to take the thrust of a shaft has internal and external diameters as 0.16 m and 
0.22 m, respectively. An oil film of thickness 0.2 mm and viscosity 0.088 Ns/m2 is maintained between the collar surface 
and the bearing. If the shaft rotates at 250 rpm, then determine the torque and the power lost in overcoming the viscous 
resistance.

Solution
Let D1 0 16= . m , D2 0 22= . m, t = =0 2 0 0002. .mm m, μ = 0 088 2. Ns/m  and N = 250 rpm.

R
D

1
1

2

0 16

2
0 08= = =

.
. m  and R

D
2

2

2

0 22

2
0 11= = =

.
. m

T
N R R

t
=

−
=

× × −
×

=
μπ π2

2
4

1
4 2 4 4

60

0 088 250 0 11 0 08

60 0 0002

( ) . ( . . )

.
1.9088 Nm

P T
NT

= = =
× × ×

=ω π π2

60

2 250 1 908

60

.
49.951 Watts
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12.10 ❐ MOVEMENT OF PISTON IN DASHPOT
A dashpot is a hydraulic device used for damping vibrations of 
machines. A simple dashpot mechanism consisting of a piston 
moving in a concentric cylinder containing highly viscous oil is 
shown in Figure 12.18. The piston is connected with the machine 
element whose motion is to be restrained. The downwards  
movement of the piston increases the pressure of oil below it, as a 
result of which the viscous oil moves upwards through the annular  
space between the piston and the  cylinder. Conversely, when the 
piston moves upwards, the oil is displaced downwards and thus, 
it moves to the space below the piston. The flow of oil offers 
 resistance to the movement of piston which damps the mechanical 
vibrations of the machine.

Let D  be the diameter of the piston, L be the length of the piston, W  be the weight of the piston, u be the velocity of 
the piston, μ be the viscosity of oil, V  be the average velocity of the oil in the clearance, b be the clearance between the 
piston and the dashpot, and Δp be the difference of pressure intensities between the two ends of the piston. The flow of 
oil through the clearance of the dashpot behaves as laminar flow between two parallel plates. Therefore the difference  
of pressure between the two ends of the piston is given below.

	
Δp

VL

b
=

12
2

μ
 (i)

The difference of pressure at the two ends of the piston is also given by,

	
Δp

W

A

W

D

W

D
= = =

( )π π/4

4
2 2

 (ii)

Simplifying expressions (i) and (ii), we get:

	

12 4

32 2

2

2

μ
π π μ

VL

b

W

D
V

Wb

LD
= ⇒ =  (iii)

Using continuity equation, we get:

Rate of oil flow in the clearance = Rate of oil flow in the dashpot

Average velocity Clearance area Velocity of piston Area of pisto× = × nn

	
V Db u D V

uD

b
× = × ⇒ =π π

4 4
2  (iv)

Simplifying expressions (iii) and (iv), we get:

Wb

LD

uD

b

2

23 4πμ
=

Thus μ
π

=
4

3

3

3

Wb

uLD
 (12.54)

 Example 12.22  The piston of an oil dashpot used for damping vibrations falls with a uniform speed and covers 60 mm 
in 120 seconds. If an additional weight of 1.5 N is placed on the top of the piston, then it falls through 60 mm in 96 seconds 
with uniform speed. The diameter of the piston is 60 mm and its length is 96 mm. If the clearance between the piston and 
the cylinder is 1.24 mm which is uniform throughout, then determine the viscosity of the oil.

Oil

W

b

D

L

Piston

Cylinder

Figure 12.18 A dashpot mechanism
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Solution
Let y = =60 0 06mm m. , T = 120 s, w = 1 5. N, ′ =T 96 s, D = =60 0 06mm m. , L = =96 0 096mm m.  and b = 1.24 mm 

= 0.00124 m.
Let W  be the weight of the piston, u be the velocity of piston without additional weight and ′u  be the velocity of piston 

with additional weight.

u
y

T
= = =

60

120
0 5. mm/s  and ′ =

′
= =u

y

T

60

96
0 625. mm/s

Since μ
π π

= =
+
′

4

3

4 1 5

3

3

3

3

3

Wb

uLD

W b

u LD

( . )

Thus 
W

W

u

u+
=

′
= =

1 5

0 5

0 625
0 8

.

.

.
.

W W W= + ⇒ =0 8 1 2 0 2 1 2. . . .

∴ = =W N
1 2

0 2
6

.

.

μ
π π

= =
× ×

× × × × ×
=−

4

3

4 6 0 00124

3 0 5 10 0 096 0 06

3

3

3

3 3

Wb

uLD

.

. . .
0.4683 Ns//m2

12.11 ❐ MEASUREMENT OF VISCOSITY (VISCOMETERS)
The apparatus used to determine the viscosity of fluid is called a viscometer. In this section, some of the viscometers, 
namely (i) capillary tube viscometer, (ii) rotating cylinder viscometer, (iii) falling sphere viscometer and (iv) efflux 
 (orifice type) viscometer are discussed. The viscometers are based on three principles, namely Newton’s law of viscosity, 
Hagen-Poiseuille law and Stoke’s law.

12.11.1 Capillary Tube Viscometer
This viscometer uses the Hagen-Poiseuille law for determining the viscosity of the liquid. A capillary tube viscometer 
shown in Figure 12.19 consists of a capillary tube attached horizontally very close to the bottom of a tank filled with the 
 liquid whose viscosity is to be measured. The level of the liquid in the tank is maintained constant so as to ensure steady 
flow through the tube. The liquid passing through the capillary tube is collected in a measuring tank for a given period and 
thus, the rate of flow of the liquid is measured. The pressure head is measured by a piezometer at a point far away from 
the tank.

Let h be the difference of pressure head for the length L of the capillary tube, D  be the diameter of the tube, Q be the rate 
of discharge through the tube, ρ  be the density of the liquid and μ be the viscosity of the liquid. Recalling Hagen-Poiseuille 
equation, we get the following expression.

Measuring tank

h

Piezometer

Capillary tube of diameter D

L

Constant head tank

Figure 12.19 Capillary tube viscometer
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h
VL

gD
=

32
2

μ
ρ

But V
Q

A

Q

D
= =

( / )π 4 2

Thus h
L

gD

Q

D

QL

gD
= × =

32

4

128
2 2 4

μ
ρ π

μ
πρ( )/

	 ∴ =μ πρghD

QL

4

128
 (12.55)

It can be seen from Equation (12.55) that the diameter D  is raised to the fourth power, whereas all other variables occur 
as first power. Thus, any error in the measurement of the diameter D  would significantly change the result and hence, the 
diameter of the capillary tube should be measured accurately.

 Example 12.23  A capillary tube viscometer of diameter 40 mm is used to measure the viscosity of an oil of specific 
gravity 0.86. The difference of pressure head between two points 1.4 m apart is 0.4 m of water. If the mass of oil collected 
in a measuring tank is 50 kg in 100 seconds, then determine the viscosity of the oil.

Solution
Let D = =40 0 04mm m. , Soil = 0 86. , L = 1 4. m, h = 0 4. m , mass kg= 50  and T = 100 s. Let m be the mass of oil per 

second, ρ  be its density and Q be its discharge.

m
T

= = =
mass

kg/s
50

100
0 5.

ρ ρ= = × =S woil
3kg/m0 86 1000 860.

Q
m

= = =
ρ

0 5

860
0 0005814

.
. m /s3

μ πρ π
= =

× × × ×
× ×

=
ghD

QL

4 4

128

860 9 81 0 4 0 04

128 0 0005814 1 4

. . .

. .
0.2605 NNs/m2

12.11.2 Rotating Cylinder Viscometer
The rotating cylinder viscometer uses Newton’s law of viscosity for 
determining the viscosity of a fluid. It consists of two coaxial cylinders 
of radii R1 and R2 in such a way that the annular space ( )R R b2 1− =  
is left between the cylinders on the side and t  at the bottom as shown 
in Figure 12.20. The annular space is filled with the liquid whose 
 viscosity is to be determined. The outer cylinder is rotated at a fixed 
speed N  while the inner cylinder is kept stationary and is suspended 
by a torsion wire.

The torque generated due to the rotation of the outer cylinder is 
transmitted to the inner cylinder through the oil film in the annular 
space. This causes the rotation of the torsion wire which can be meas-
ured by attaching a dial and pointer to it.

h

t

R1

R2

b

Pointer

Torsional spring

Dial

Rotating cylinder

Stationary
cylinder Liquid to be tested

Figure 12.20 Rotating cylinder viscometer
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Let T  be the total torque exerted on the inner cylinder, Tb be the torque due to liquid in annular space, Tt  be the torque 
due to liquid at the bottom, h be depth of liquid in the cylinder and u be the tangential velocity.

T R h R
du

dy
R hRb = × × = × × = ×(Shear stress Area) Radius ( )τ π μ π2 21 1 1 1

Since the thickness of oil film is very small, a linear velocity distribution can be assumed.

du

dy

u

b

D N

b

R N

b
= = =

π π2 2

60

2

60

Thus T
R N

b
R hR

NR R h

bb = × =μ
π

π
μπ2

60
2

15
2

1 1

2
1
2

2

T
NR

tt =
μπ 2

1
4

60
 [Using Equation (12.50)]

Thus T T T
NR R h

b

NR

t

N R R h

b

R

tb t= + = + = +
⎡

⎣
⎢
⎢

⎤

⎦

μπ μπ μπ2
1
2

2
2

1
4 2

1
2

2 1
4

15 60 15 4
⎥⎥
⎥

Thus μ
π

=

+
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

T

N R R h

b

R

t

2
1
2

2 1
4

15 4

 (12.56)

 Example 12.24  The radii of the outer and inner cylinders in a rotating cylinder viscometer are 0.04 m and 0.038 m, 
respectively. The outer cylinder rotates at 300 rpm. The annular space between the cylinders is filled with a liquid up to 
a height of 0.125 m and the clearance at the bottom of the two cylinders is 0.003 m. If the torque produced on the inner 
cylinder is 0.0015 Nm, then determine the viscosity of the liquid.

Solution
Let R2 0 04= . m, R1 0 038= . m, N = 300 rpm , h = 0 125. m, t = 0 003. m and T = 0 0015. Nm.

b R R= − = − =2 1 0 04 0 038 0 002. . . m

μ
π π

=

+
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
× × × ×

T

N R R h

b

R

t

2
1
2

2 1
4 2 2

15 4

0 0015

300

15

0 038 0 04 0

.

. . ..

.

.

.

125

0 002

0 038

4 0 003

4
+

×
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

∴ =μ 2.01 10 Ns / m3 2×× −−

12.11.3 Falling Sphere Viscometer
This method of measuring the viscosity of a liquid is based on the Stoke’s law. A falling sphere viscometer consists of a 
tall vertical transparent tube which is filled with the liquid whose viscosity is to be determined. This tube is surrounded by 
a constant temperature bath tub as shown in Figure 12.21.

A small spherical steel ball is released to fall vertically into the test liquid. The time ( )T  to traverse a known vertical 
distance ( )L  between two fixed marks on the tube is noted to calculate the terminal velocity, V L T= ( / ) of the ball. For 
the equilibrium of the ball under steady state condition, the drag force ( )FD  and the buoyancy force ( )FB  must be added 
to balance the weight of the ball ( )W .
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According to Stoke’s law, the expression for drag force ( )FD  on a ball of diameter d  moving at a velocity V  in a liquid 
of viscosity μ is given below.

	 F VdD = 3π μ  (12.57)

It may be noted that the equation for drag used above is valid only for Re < 1.

Let ρl be the density of the liquid and ρs be the density of the steel ball.

F g d gB l= × × = × ×Volume of liquid displaced Density of liquid
π ρ
6

3

W g d gs= × × = × ×Volume of sphere Density of sphere
π ρ
6

3

F F WD B+ =   [For equilibrium]

Thus 3
6 6

3 3π μ π ρ π ρVd d g d gl s+ =

	 3
6

3π μ π ρ ρVd d gs l= −( ) 	

	 ∴ =
−

μ
ρ ρgd

V
s l

2

18

( )
 (12.58)

The Equation (12.58) is true only for the motion of small sphere in viscous fluids. The falling sphere viscometer measures 
viscosity accurately only if Stoke’s law is applicable.

 Example 12.25  In a falling sphere viscometer, a lubricating oil of density 860 kg/m3 is filled in 0.1 m inside the 
 diameter tube. A steel sphere of diameter 5 mm is made to fall 1 m in 25 seconds. If the density of the sphere is 8500 kg/m3,  
then find the viscosity of the oil.

Solution

Let ρl = 860 3kg/m , D = 0 1. m , d = =5 0 005mm m. , L = 1 m, T = 25 s and ρs = 8500 3kg/m .

Liquid to
be tested

L Constant 
temperature 

bath tub

Transparent
tube

Sphere
released

V

V

Figure 12.21 Falling sphere viscometer
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V
L

T
= = =

1

25
0 04. m/s

μ
ρ ρ

=
−

=
× × −

×
=

gd

V
s l

2 2

18

9 81 0 005 8500 860

18 0 04

( ) . . ( )

.
2.6024 Ns/m2

12.11.4 Efflux Viscometer
An efflux viscometer mainly consists of (i) a container maintained at a required temperature and (ii) an aperture (an orifice, 
a nozzle or a capillary) through which a fixed volume of liquid whose viscosity is to be determined is drained out. The 
time taken to discharge the fixed volume of liquid under standard condition is taken as a measure of the viscosity of the 
liquid. These viscometers are calibrated with some standard liquid and the viscosity is expressed in terms of ratios of time 

taken with respect to the standard liquid. The Saybolt viscom-
eter, Redwood viscometer and Eagler viscometer works based 
on this principle.

Figure 12.22 shows a schematic view of the Saybolt 
 viscometer which consists of a tank having a short capillary 
tube at its bottom. This tank contains the liquid whose viscosity 
is to be determined and it is surrounded by another tank called 
constant temperature bath. The time taken by 60 cm3 of liquid 
to pass through the capillary tube at a standard temperature is 
noted down. The initial height of the liquid in the tank is fixed at 
a predetermined height. From time measurement, the kinematic 
viscosity of the liquid can be known by the use of empirical for-
mula or the calibration curve. The relation between kinematic 
viscosity ( )ν  in stokes and the time ( )T  in seconds for a Saybolt 
viscometer is given below.

		 	 	 	 	 	 	 ν = −0 24
190

. T
T

 (12.59)

Liquid to
be tested

Constant
temperature

bath tank

Tank

Capillary
tube

Measuring
cylinder

Figure 12.22 Saybolt viscometer

Summary

 1. Laminar flow: The fluid particles move along straight paral-
lel paths in layers.

 2. Reynolds number (Re): The ratio of inertia force to viscous 
force.

 3. For laminar flow: Re < 2000 , (ii) for turbulent flow: 
Re > 4000  and (iii) for transitional flow: 2000 4000< <Re .

 4. In a steady uniform laminar flow, the pressure gradient 
( )∂ ∂p x/  in the direction of flow is equal to the shear stress 
gradient ( )∂ ∂τ / y  in the normal direction.

 5. For laminar flow in circular pipes:

   (i) Shear stress: τ = −
∂
∂
p

x

r

2

  (ii) Velocity: u
p

x
R

r

R
= −

∂
∂

− ⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1

4
12

2

μ

  (iii)  Ratio of maximum velocity ( )maxu  to average veloc-

ity (V ): 
u

V
max = 2

  (iv) Drop in pressure head: h
p p

g

VL

gD
f =

−
=1 2

2

32

ρ
μ

ρ

   (v) Discharge: Q
p

x
R= −

∂
∂

⎛
⎝⎜

⎞
⎠⎟

π
μ8

4

  Here, r  is the radius at any point, R is the radius of the pipe, 
D is the diameter of the pipe, L is the length of the pipe, ρ is 
the density of the liquid and μ  is the viscosity of the liquid.

 6. For laminar flow through annulus:

    (i) Velocity: u
p

x
R r

R R

R R

R

r
= −

∂
∂

− −
− ⎛

⎝⎜
⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1

4 1
2 2 1

2
2

2

1 2

1

μ
( )

ln( )
ln

/
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   (ii) Shear stress: τ = −
∂
∂

−
−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1

4
2

1 1
2

2
2

1 2

p

x
r

r

R R

R R

( )

ln( )/

  (iii) Discharge: Q
p

x
R R

R R

R R
= −

∂
∂

− −
−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

π
μ8 1

4
2

4 1
2

2
2 2

1 2

( )

ln( )/

   (iv) Average velocity: V
p

x
R R

R R

R R
= −

∂
∂

+ −
−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1

8 1
2

2
2 1

2
2

2

1 2μ
( )

ln( )/

  Here, r  is the radial distance at any point, R1 is the outer 
radius and R2 is the inner radius of the annulus.

 7. For laminar flow between two stationary parallel plates:

    (i) Velocity: u
p

x
by y= −

∂
∂

−
1

2
2

μ
( )

   (ii) Maximum velocity: u
p

x
bmax = −

∂
∂

1

8
2

μ

    (iii) Shear stress: τ = −
∂
∂

−
1

2
2

p

x
b y( )

     (iv) Discharge: Q
p

x
b= −

∂
∂

1

12
3

μ

    (v) Average velocity: V
p

x
b= −

∂
∂

1

12
2

μ
    (vi)  Ratio of maximum velocity to average velocity: 

u

V
max =

3

2

  (vii) Drop in pressure head: 
p p

g
h

VL

gb
f

1 2
2

12−
= =

ρ
μ

ρ

  Here, y is the distance at any point and b is the distance 
between the plates.

 8. For Couette flow:

     (i) Velocity: u
V

b
y

p

x
by y= −

∂
∂

−
1

2
2

μ
( )

   (ii) Shear stress: τ μ
= −

∂
∂

−
V

b

p

x
b y

1

2
2( )

  (iii) Discharge: Q
Vb p

x
b= −

∂
∂2

1

12
3

μ

   (iv) Average velocity: u
V p

x
bav = −

∂
∂2

1

12
2

μ

    (v) Maximum velocity: u Vmax
( )

=
+1

4

2ϕ
ϕ

  Here, y is the distance at any point, b is the distance 
between the plates, V  is the velocity of the upper plate and 

ϕ
μ

= −
∂
∂

⎛
⎝⎜

⎞
⎠⎟

b

V

p

x

2

2
 is a constant.

 9. Power (P) absorbed in journal bearing: 

P
D N L

t
=

μπ3 3 2

3600
Watts, here D is the diameter of the shaft, 

N  is the speed of the shaft in rpm, L is the length of the bear-
ing and t  is the thickness of the oil film.

 10. Power absorbed in foot step bearing is P
N R

t
=

μπ3 2 4

1800
Watts,  

here R is the radius of the shaft, N  is the speed of the shaft 
in rpm, μ  is the viscosity of the oil and t  is the thickness of 
the oil film.

 11. Power absorbed in collar bearing is 

P
N R R

t
=

−μπ3 2
2

4
1
4

1800

( )
Watts , here R1 is the internal radius 

of the collar, R2 is the external radius of the collar, N  be the 
speed of the shaft in rpm and t  is the thickness of the oil film.

 12. The viscosity determined by dash pot is μ
π

=
4

3

3

3

Wb

uLD
, here 

D is the diameter of the piston, L is the length of the piston, 
W  is the weight of the piston, u  is the velocity of the piston 
and b is the clearance between the piston and the dashpot.

 13. The viscosity determined by capillary tube viscometer is 

μ πρ
=

ghD

QL

4

128
, here h is the difference of pressure head for 

length L of the capillary tube, D is the diameter of the tube 
and Q  is the rate of discharge through the tube.

 14. Viscosity by rotating cylinder viscometer is 

μ π
= +

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

T
N R R h

b

R

t
/

2
1
2

2 1
4

15 4
, here R1 and R2 are the radii 

such that ( )R R b2 1− =  is the space left between the cylin-
ders on the side and t  at the bottom, N  is the speed of outer 
cylinder, T  is the total torque exerted on the inner cylinder 
and h is the depth of liquid in the cylinder.

 15. Viscosity by falling sphere viscometer is μ
ρ ρ

=
−gd

V
s l

2

18

( )
, 

here d  is the diameter of the ball, V  is the velocity of the ball 
in the liquid, ρs is the density of the steel ball and ρl is the 
density of the liquid.

 16. The relation between kinematic viscosity ( )ν  in stokes 
and the time ( )T  in seconds for a Saybolt viscometer is 

ν = −0 24 190. ( ).T T/
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Multiple-choice Questions

 1. In laminar flow through a pipe
(a) Velocity varies.
(b) Reynolds number < 2000.
(c) Reynolds number > 2000.
(d) Fluid particles move in a zigzag manner.

 2. The velocity distribution for steady laminar flow in a pipe is
(a) Exponential.
(b) Parabolic.
(c) Linear.
(d) None of the above.

 3. The ratio of maximum velocity to average velocity in a lam-
inar flow through a pipe is
(a) 0.6
(b) 1.3
(c) 1.67
(d) 2.

 4. At what radius ( )r  from the centre of a pipe of radius ( )R , the 
average velocity occurs?

(a) r R= / 2 .

(b) r R= 3 .

(c) r R= 2 3/ .
(d) None of the above.

 5. For a laminar flow through a pipe, the loss of head
(a) Is directly proportional to viscosity.
(b) Varies directly as the length of the pipe.
(c) Is directly proportional to the velocity.
(d) Varies as the square of the diameter of the pipe.

 6. For a dashpot system, the piston velocity varies directly as
(a) Viscosity of liquid.
(b) Square of piston diameter.
(c) Clearance between the piston and cylinder.
(d) Load on the piston.

 7. For viscous flow, the coefficient of friction ( )f  in terms of 
Reynolds number (Re)  is equal to

(a) 64/ Re.
(b) 32/ Re.
(c) 16/ Re .
(d) 8/ Re.

 8. In a laminar flow between two stationary parallel plates, the 
ratio of maximum velocity to average velocity is equal to
(a) 1
(b) 1.5
(c) 2
(d) 2.5.

Review Questions

 1. Define viscous flow and explain the Reynolds experiment 
with a neat sketch?

 2. Derive Navier-Stokes equations.

 3. Derive the relationship between shear stress and pressure 
gradient.

 4. Derive expressions for the velocity and shear stress distribu-
tions for laminar flow through a circular pipe.

 5. Prove that the maximum velocity in a circular pipe for lami-
nar flow is twice the average velocity of the flow.

 6. Obtain an expression for the Hagen-Poiseuille equation.

 7. Derive expressions for (i) velocity distribution, (ii) shear 
stress, (iii) discharge, and (iv) average velocity of flow 
through an annulus.

 8. Derive expressions for velocity and shear stress distributions 
for laminar flow between two stationary parallel plates.

 9. Obtain expression for the difference of pressure head for a 
given length of the laminar flow between two parallel fixed 
plates.

 10. Define the Couette flow and derive expressions for the veloc-
ity and shear stress distributions in it.

 11. Derive expressions for the discharge, average velocity and 
maximum velocity for the Couette flow.

 12. Derive expressions for the power absorbed in overcoming 
viscous resistance in (i) journal bearing and (ii) foot step 
bearing.

 13. Derive an expression for the power absorbed in overcoming 
viscous resistance in a collar bearing.

 14. Derive an expression for the viscosity measured in a dashpot 
mechanism.

 15. Explain capillary tube viscometer with a neat sketch. Also 
derive an expression for the coefficient of viscosity meas-
ured by it.

 16. Derive an expression for the coefficient of viscosity meas-
ured by rotating cylinder viscometer.

 17. Briefly explain the falling sphere viscometer. Also derive an 
expression for the coefficient of viscosity measured by it.

 18. Write short note on efflux viscometers.
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Problems

 1. An oil of viscosity 0.097 Ns/m2 and specific gravity 0.9 
flows through a horizontal circular pipe of diameter and 
length 10 cm and 10 m, respectively. If 50 kg of the oil is 
collected in 15 seconds, then find the difference of pressure 
at the two ends of the pipe.

[Ans. 1461.98 N/m2]

 2. A laminar flow occurs in a pipe of diameter 400 mm. If the 
maximum velocity is 2 m/s, then determine the average 
velocity and the radius at which it occurs. Also determine 
the velocity at 10 mm from the wall of the pipe.

[Ans. 1 m/s, 0.1414 m, 0.195 m/s]

 3. A fluid of specific gravity 1.2 and viscosity 5 poise flows 
through a pipe of diameter 0.1 m. If the maximum shear 
stress at the pipe wall is 147.15 N/m2, then determine the 
pressure gradient, average velocity and Reynolds number of 
flow.

[Ans. -5.89 kN/m3, 3.68 m/s, 883.2]

 4. A crude oil of viscosity 1 Ns/m2 and relative density 0.6 
flows through a horizontal pipe of diameter 3 cm. If the 
pressure drop in 50 m length of the pipe is 3200 kPa, then 
determine (i) the discharge of oil, (ii) centre line velocity,  
(iii) wall shear stress and the total drag over 50 m length of 
pipe, (iv) power required to maintain the flow and (v) veloc-
ity gradient at the pipe wall.

[Ans. 0.001272 m3/s, 3.6 m/s, 480 N/m2,  
2261.95 N, 4.0715 kW, 480 s-1]

 5. An oil of viscosity 1.5 poise and relative density 0.9 flows 
through a horizontal pipe of diameter 5.5 cm and length 
325 m. If the oil flow rate through the pipe is 0.0037 m3/s, 
then determine (i) the pressure drop in a length of 325 m and 
(ii) shear stress at the wall.

[Ans. 804.496 kPa, 34.04 N/m2]

 6. An oil of viscosity 1.2 poise and relative density 0.8 flows 
through a horizontal pipe of diameter 60 cm and length 
500 m. If the oil flow rate through the pipe is 5 litres per 
second, then determine the shear stress at the wall.

[Ans. 0.02832 N/m2]

 7. The glycerine having viscosity as 8 poise flows through 
a horizontal pipe of diameter 10 cm at a rate of 10 litres 
per second. Determine the power required per kilometre of  
pipeline to overcome the viscous resistance.

[Ans. 32.594 kW]

 8. An oil of viscosity 0.1 Ns/m2 and specific gravity 0.85 is 
pumped through a 3 cm diameter pipe. If the pressure drop 
per metre length of pipe is 20 kPa, then determine (i) the 
mass flow rate, (ii) shear stress at the pipe wall, (iii) Reyn-
olds number and (iv) power required per 50 m length of the 
pipe to maintain the flow.

[Ans. 3.38 kg/s, 150 Pa, 1434.375, 3.974 kW]

 9. A pipe of diameter 0.2 m and length 10000 m slopes upwards 
at a slope of 1 in 200 m of pipe length traversed. An oil of 
viscosity 0.15 Ns/m2 and specific gravity 0.85 is required to 
be discharged through it at the rate of 0.025 m3/s. Determine 
(i) the head lost due to friction and (ii) power required to 
drive the pump.

[Ans. 114.55 m, 34.3 kW]

 10. An oil of viscosity 0.09 Ns/m2 and relative density 0.85 
is flowing through an inclined pipe of 20 mm diameter. 
Determine the inclination of the pipe when a discharge of 
0.014 m3/s is maintained through the pipe in such a way that 
pressure along the length remains constant.

[Ans. 39.9°]

 11. Water flows in a pipe of diameter 0.2 m. The shear stress at 
a point 3 cm from the pipe axis is 0.12 kPa. If the coefficient 
of friction is 0.04, then determine the Reynolds number and 
the shear stress at the pipe wall.

[Ans. 400, 0.4 kPa]

 12. Water flows between two large parallel plates at a distance  
of 0.2 cm apart. If the dynamic viscosity of water is  
0.002 Ns/m2, then determine the maximum velocity, the 
pressure drop per unit length and the shear stress at the walls 
of the plates if the average velocity is 0.25 m/s.

[Ans. 0.375 m/s, 1500 Pa/m, 1.5 Pa]

 13. Oil flows between two parallel fixed plates of width 17.5 cm 
kept at a distance of 7.5 cm apart. If the drop of pressure in 
a length of 1.25 m is 4 kPa and the dynamic viscosity of oil 
is 1.5 Ns/m2, then determine the discharge of oil in litres per 
second between the plates.

[Ans. 13 125. l /s]

 14. A laminar flow of an oil of dynamic viscosity 25 poise is 
maintained between two horizontal parallel fixed plates kept 
at a distance of 15 cm apart. If maximum velocity of the oil 
is 2.5 m/s, then determine the pressure gradient, the shear 
stress at the plates and the discharge per metre width for the 
flow of oil.

[Ans. -2222.22 Pa/m, 166.67 Pa, 0.25 m3/s]

 15. An oil of viscosity 0.5 poise flows between two stationary 
parallel plates 100 cm wide maintained 2 cm apart. If the 
velocity midway between the plates is 2.5 m/s, then deter-
mine the pressure gradient along the flow, the average veloc-
ity and the discharge of the oil.

[Ans. 2.5 kPa/m, 1.67 m/s, 0.0334 m3/s]

 16. A 10 cm thick wall has 5 cm wide and 0.2 cm deep horizontal 
crack. If the difference of pressure between the two ends of 
the crack is 2950 Pa and viscosity of water is 0.001 Ns/m2,  
then determine the rate of leakage of water in litres per sec-
ond through the crack.

[Ans. 0.983 litres/s]
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 17. Determine the direction and amount of flow per metre width 
between two parallel plates when one is moving relative to 
the other with a velocity of 3 m/s in the negative direction, 
if ( )∂ ∂ = −p x/ MN/m per m100 2 , viscosity is 0.4 poise, and 
the distance between the plates is 1 mm.

[Ans. 0.2068 m3/s]

 18. A shaft of 0.1 m diameter rotates at 60 rpm in a 0.2 m long 
bearing. Find the power absorbed in the bearing when the 
two surfaces are uniformly separated by a distance of 0.5 mm 
and assuming linear velocity distribution in the lubricating 
oil having dynamic viscosity of 0.06 poise.

[Ans. 0.0744 watts]

 19. A shaft of diameter 0.06 m rotates centrally at a speed of 
750  rpm in a journal bearing of 0.0602 m diameter and 
length 0.1 m. If the annular space between the shaft and the 
bearing is filled with oil of 0.85 poise viscosity, then deter-
mine the power absorbed in the bearing.

[Ans. 88.95 watts]

 20. A shaft of diameter 0.1 m rotates at a speed of 35 rpm cen-
trally in a journal bearing of length 0.2 m. If the annular 
space between the shaft and the bearing is 0.02 mm and the 
power absorbed in the bearing is 200 Watts, then find the 
viscosity of the oil.

[Ans. 1.896 Ns/m2]

 21. Determine the power required to rotate a vertical shaft of 
diameter 100 mm at 750 rpm. The lower end of the shaft 
rests in a foot step bearing. The end of the shaft and surface 
of the bearing are both flat and are separated by an oil film of 
thickness 0.5 mm. The viscosity of the oil is 1.5 poise.

[Ans. 18.166 W]

 22. A circular disc of diameter 0.24 m rotates at 750 rpm. If the 
disc has a clearance of 0.5 mm from the bottom flat plate and 
the clearance is filled with an oil of viscosity 1.5 poise, then 
determine the power required to rotate the disc.

[Ans. 602.762 W]

 23. The internal and external diameters of a collar bearing 
are 0.2 m and 0.3 m, respectively. An oil film thickness of 
0.25 mm and of viscosity 0.8 poise is maintained between 
the collar surface and the bearing. If the shaft rotates at 
150 rpm, then find the torque and power lost in overcoming 
the viscous resistance.

[Ans. 3.2076 Nm, 50.385 W]

 24. An oil dashpot consists of a piston moving in a cylinder hav-
ing oil is used for damping vibrations. The piston falls with 
a uniform speed and covers 50 mm in 100 seconds. If an 
additional weight of 1.34 N is placed on the top of the pis-
ton, then it falls through 50 mm in 86 seconds with uniform 
speed. The diameter of the piston is 75 mm and its length is 
100 mm. The clearance between the piston and the cylinder 
is 1.2 mm which is uniform throughout. Find the viscosity of 
the oil in poise.

[Ans. 2.861 poise]

 25. A capillary tube viscometer of diameter 2 mm and length 
0.1 m measures viscosity of a liquid as 0.3 poise. If the dif-
ference of pressure between the two ends of the tube is 7 kPa, 
then determine the discharge through the capillary tube.

[Ans. 9.163 × 10-7 m3/s]

 26. A rotating viscometer is used for determining the viscosity 
of a liquid. The radii of inner and outer cylinders are 0.1 m 
and 0.1025 m, respectively. The liquid is filled in the annular 
space up to a height of 0.3 m and the clearance at the bottom 
of the cylinder is 0.005 m. If the outer cylinder rotates at 
300 rpm and the torque was registered as 8 Nm, then deter-
mine the viscosity of the liquid.

[Ans. 0.3166 Ns/m2]

 27. A sphere of diameter 3 mm is made to fall 160 mm in 20 sec-
onds in a viscous liquid of density 950 kg/m3. If the density 
of the sphere is 7650 kg/m3, then find the viscosity of the 
viscous liquid.

[Ans. 4.108 Ns/m2]

ANSWERS TO MULTIPLE-CHOICE QUESTIONS

 1. (b) 2. (b) 3. (d) 4. (a) 5. (b)
 6. (d) 7. (c) 8. (b)
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13.1 ❐ INTRODUCTION
In pipes, turbulent flow occurs when Reynolds number (Re) is greater than 4000. Mostly, the flow in pipes is turbulent in 
which the fluid motion is irregular and chaotic. In turbulent flow, the fluid particles move haphazardly, remains in a state 
of disorder and develop large scale eddies (lump of particles) which causes complete mixing of the fluid. Therefore, in 
turbulent flow, the mass, momentum and heat transfer get enhanced.

In turbulent flow, the velocity distribution is relatively uniform and it tends to follow power law and logarithmic law. The 
velocity profile of turbulent flow is more flat than the corresponding laminar flow (Figure 13.1) and it becomes even flatter 
with increasing Reynolds number. In turbulent flow, the velocity gradient near the pipe wall is very large and  therefore, 
shear stress at the wall of the pipe is very high. There are irregular velocity and pressure fluctuations due to which the 
analytical treatment of turbulent flow is extremely complicated. The velocity fluctuations cause an additional shear stress 
(or frictional resistance) to flow which is in addition to the viscous shear stress and it is known as turbulent shear stress.

The laminar flow is an idealization to get some analytical or numerical solution. In practical life, most of the  engineering 
flows are turbulent, for example, flow in rivers, channels, flow past an obstruction, the rising smoke, etc. Simple  mathematical 
relationship between frictional head loss for turbulent flow does not exist as flow is random. In this chapter, some semi- 
empirical theories developed for turbulent flow are discussed and some information on turbulence and turbulent flow in 
pipes has been provided.

13.2 ❐ LOSS OF HEAD IN PIPES (DARCY-WEISBACH EQUATION)
Consider a control volume between sections 1 and 2 of a horizontal pipe having a steady flow of any fluid as shown in 
Figure 13.1.

Velocity profile
of laminar flow

Velocity profile
of turbulent flow

Flow 
direction 

L

D

F1p1 p2

F1

21

Figure 13.1 Velocity distribution and forces on control volume in a pipe flow

Chapter 13

Turbulent Flow in Pipes
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13.2 Chapter 13

Let L be the length of the pipe between sections 1 and 2, D  be the diameter of the pipe, A be the area of cross section 
of the pipe, V  be the average flow velocity, ′f  be the dimensional parameter whose value depends upon the material 
and nature of the pipe surface, p1 and p2 be the intensities of pressure at sections 1 and 2, respectively, P  be the wetted 
 perimeter, τo be the shear stress on the pipe walls, F DLo1 = ×τ π  be the frictional resistance force, hf  be the loss of head 
due to friction, ρ  be the density and w g= ρ  be the weight density of flowing fluid.

There is a frictional resistance to the flow and thus, pressure continuously decreases along the length of the pipe as given 
in the below expression.

p A p A F1 2 1= +

	 F p p A1 1 2= −( )  (i)

Experimentally, the frictional resistance force is found proportional to L, P  and V n , where n varies from 1.5 to 2 and for 
turbulent flow n = 2.

Thus F f PLV1
2= ′  (ii)

Under equilibrium conditions, from expressions (i) and (ii), we get:

( )p p A f PLV1 2
2− = ′

p p

w

f PLV

wA
1 2

2−
= ′

Since h
p p

wf =
−1 2

Thus h
f

w

P

A
LVf = ′ ⎛

⎝⎜
⎞
⎠⎟

2  (13.1)

The ratio ( )A P/  is known as the hydraulic mean depth (or hydraulic radius) and it is denoted by m. Thus, by multiplying 
and dividing by 2g, we get the below expression.

h
gf

w

LV

gmf = ′ ⎛

⎝
⎜

⎞

⎠
⎟

2

2

2

As the term [( ) ( )]LV gm2 2/  has the same dimensions as that of hf , the term ( )2gf w′ /  is a non-dimensional quantity and 
it can be replaced by f .

Thus h f
LV

gmf =
2

2
 (13.1a)

The hydraulic radius for a circular pipe is given by,

m
A

P

D

D

D
= = =

( )π
π
/4

4

2

By substituting the above value of m in Equation (13.1a), we get:

	 h
f LV

g D

f LV

gDf = =
2 2

2 4

4

2( )/
 (13.2)

The Equation (13.2) is known as Darcy-Weisbach equation. It is valid for all types of flows provided a proper value of f  is 
chosen. The factor f  is known as Darcy coefficient of friction (or coefficient of friction) and it can be expressed in terms 
of shear stress as given below.
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 Turbulent Flow in Pipes 13.3

( )p p A F DLo1 2 1− = = τ π

p p
DL

A

DL

D

L

D
o o o

1 2 24

4
− = = =

τ π τ π
π

τ
( )/

or 
p p

w

L

wD
o1 2 4−

=
τ

Thus h
L

wD

L

gDf
o o= =

4 4τ τ
ρ

 (13.2a)

4

2

42fLV

gD

L

gD
o=

τ
ρ

 [Equating (13.2) and (13.2a)]

Thus τ ρ
o

f V
=

2

2
 (13.3)

f
V

o=
2

2

τ
ρ

The above equation can also be rearranged by multiplying both sides by 4 as given below.

4
8 4

8 82
f

V
V

f
V

f
o o f= ⇒ = =

τ
ρ

τ
ρ

The quantity τ ρo /  has the dimensions of velocity. It is known as shear velocity (or friction velocity or friction shearing 

velocity) and it is denoted by us. In some books, it is denoted by u* or u*. In the above equation, f f  is friction factor which 
is equal to 4 f .

Thus u V
f

V
f

s
o f= = =

τ
ρ

4

8 8
 (13.4)

The Equation (13.4) holds good for both the smooth and rough pipes.

 Example 13.1  The petrol of specific gravity 0.74 flows at a rate of 0.06 m3/s through a pipe of length 1250 m and 
 diameter 0.25 m. If the coefficient of friction is f = 0 002.  in the Darcy-Weisbach equation, then determine (i) the loss 
of head due to friction, (ii) shear stress on the pipe wall, (iii) shear velocity and (iv) power required to maintain the flow.

Solution
Let Spetrol = 0 74. , Q = 0 06. m /s3 , L = 1250 m, D = 0 25. m and f = 0 002. .

V
Q

A

Q

D
= = =

×
=

( / )

.

( / ) .
.

π π4

0 06

4 0 25
1 222

2 2
m/s

 (i) h
fLV

gDf = =
× × ×

× ×
=

4

2

4 0 002 1250 1 222

2 9 81 0 25

2 2. .

. .
3.044 m

 (ii) ρ ρ= = × =S wpetrol kg/m0 74 1000 740 3.

	 	
τ ρ

o
f V

= =
× ×

=
2 2

2

0 002 740 1 222

2

. .
1.105 N/m2
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13.4 Chapter 13

 (iii) u V
f

s = = ×
×

=
4

8
1 222

4 0 002

8
.

.
0.0386 m/s

 (iv) P
gQhf= =

× × ×
=

ρ
1000

740 9 81 0 06 3 044

1000

. . .
1.326 kW

13.3 ❐ CHARACTERISTICS OF TURBULENT FLOW (TURBULENCE)

13.3.1 Classification of Turbulence
Turbulence is the disturbance that causes transfer of fluid particles from one region to the other and it is three-dimensional 
in character. It can be generated by the flow of fluid layers with different velocities over one another or by frictional forces 
at the solid walls. Turbulence can be classified into the following main groups.

 1. Wall turbulence: The turbulence generated and affected by stationary wall is called wall turbulence. It occurs in the 
boundary layer flows and in the vicinity of solid surface.

 2. Free turbulence: The turbulence generated by two adjacent layers of fluid away from the solid boundary is called free 
turbulence. It occurs in wakes, jets, mixing layers and in the outer part of boundary layer flows.

 3. Homogeneous turbulence: Turbulence having the same structure quantitatively in all parts of the flow field is called 
homogeneous turbulence.

 4. Isotropic and anisotropic turbulence: Turbulence in which the statistical features have no directional preference and 
the gradient of the mean velocity does not exist is called isotropic turbulence. However, if the mean velocity has a 
gradient, then the turbulence is known as anisotropic. Isotropic turbulence will always be homogeneous.

 5. Convective turbulence: Turbulence due to conversion of potential energy into kinetic energy by the process of mixing 
is called convective turbulence. It occurs in the turbulent flow in the annular space between the concentric rotating 
cylinders.

 6. Fully developed turbulence: When the flow as a whole approaches to a certain invariant state in terms of appropriate 
variables, then the turbulence is called fully developed.

 7. Fine and large scale turbulence: When the size of eddies are small, then the turbulence is called fine scale turbulence 
and when the size of eddies are large, then the turbulence is called large scale turbulence.

13.3.2 Mean and Fluctuating Velocities
The instantaneous velocity ( )ui  at any point in the turbulent flow in x-direction is made up of average velocity component 
(time mean component) ( )u  and a randomly varying velocity component ( )′u , i.e., u u ui = + ′. Similarly, v v vi = + ′ and 
w w wi = + ′ are the velocity components in y-direction and z-direction, respectively. The average velocity components  
u, v  and w are the functions of position only, whereas the fluctuating velocity components ′u , ′v  and ′w  vary with time  
(t) also. The average velocity is also known as temporal velocity. The fluctuating velocity components may be positive or 
negative as shown in Figure 13.2.

t

u

u′

uui
ui

u′

Mean velocity line

Instantaneous velocity curve

Figure 13.2 Mean and fluctuating velocities
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 Turbulent Flow in Pipes 13.5

The expression for average velocity u and the time average of the random component ′u  over a long interval of time t  
is respectively given below.

 u
t

u dti

t

= ∫
1

0

 (13.5)

	 ′ = ′ = − = − = − =∫ ∫ ∫ ∫u
t

u dt
t

u u dt
t

u dt
t

udt u u
t

i

t

i

t t
1 1 1 1

0
0 0 0 0

( )  (13.6)

Similarly,

v
t

v dti

t

= ∫
1

0

, w
t

w dti

t

= ∫
1

0

, ′ =v 0  and ′ =w 0

Thus, it can be seen that the time average of the fluctuating velocities are zero. Like velocity, the other properties, such as 
pressure, temperature and density also fluctuate and their instantaneous values can be respectively given as p p pi = + ′, 
T T Ti = + ′ and ρ ρ ρi = + ′.

13.3.3 Degree and Intensity of Turbulence
The degree of turbulence (or magnitude of turbulence) can be expressed in terms of root mean square of velocity  

fluctuations ′u 2 , ′v 2  and ′w 2  as given below.

	 Degree of turbulence = ′ + ′ + ′( )1

3
2 2 2u v w  (13.7)

Here, the mean square of the velocity fluctuations is given below.

	 ′ = ′∫u
t

u dt
t

2 2

0

1
, ′ = ′∫v

t
v dt

t
2 2

0

1
 and ′ = ′∫w

t
w dt

t
2 2

0

1
 (13.8)

Intensity of turbulence is a measure of the level of turbulence. It can be obtained as the ratio of the degree of turbulence to 

the average flow velocity, V u v w= + +2 2 2  at a point in the turbulent flow field as given below.

	 Intensity of turbulence = ′ + ′ + ′( )1 1

3
2 2 2

V
u v w  (13.9)

For a unidirectional flow, v w= = 0 and V u=  and thus, Equation (13.9) is written as follows.

	 Intensity of turbulence = ′ + ′ + ′( )1 1

3
2 2 2

u
u v w  (13.10)

The intensity of turbulence is observed to increase with the increase in velocity fluctuations.

13.3.4 Scale of Turbulence
In addition to the intensity of turbulence, the scale of turbulence, i.e., the size of eddy is also required for the analysis of 
turbulent flow. The mean time interval between reversals in the sign of ′u , ′v  and ′w  gives a measure of the size of eddies. 
The average size of the eddy which is equal to the product of mean velocity ( )u  and the average time interval ( )dt  is known 
as the scale of turbulence in the x-direction. The relation between these factors is mathematically expressed as follows.

Scale of turbulence = udt
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13.6 Chapter 13

The scale of turbulence depends upon the boundary conditions. The energy dissipation in turbulent flow depends upon the 
intensity of turbulence and the size of the eddy. Energy dissipation will be higher with high intensity of turbulence and 
smaller eddy size.

13.3.5 Kinetic Energy of Turbulence
The kinetic energy of turbulence per unit mass is given by,

	 K.E. of turbulence/Mass = ′ + ′ + ′( )1

2
2 2 2u v w  (13.11)

The kinetic energy of turbulence in a boundary layer is maximum near the wall and it decreases towards the free stream.

13.3.6 Reynolds Equations of Turbulence
The continuity equation for a steady incompressible flow is given by,

∂
∂

+
∂
∂

+
∂
∂

=
u

x

v

y

w

z
0

When we incorporate the mean and fluctuating components in the above equation, it becomes the continuity equation for 
the turbulent flow as given below.

	
∂ + ′

∂
+

∂ + ′
∂

+
∂ + ′

∂
=

( ) ( ) ( )u u

x

v v

y

w w

z
0  (i)

The following two rules are used for applying the time average process.

 (i) Integration with respect to time is independent of differentiation with respect to space coordinates.

  (ii) According to Equation (13.5), 
1 1

0 0
t

u dt
t

u u dt ui

t t

∫ ∫= + ′ =( ) .

Time average of first term 
∂ + ′

∂
( )u u

x
 in expression (i) is given by,

∂ + ′
∂

=
∂
∂

+ ′⎡
⎣⎢

⎤
⎦⎥

=
∂
∂

+ ′
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=∫ ∫
( )

( ) ( )
u u

x t x
u u dt

x t
u u dt

t t
1 1

0 0

∂∂
∂
u

x

Similarly, the time average of 2nd and 3rd terms is respectively given below.

∂ + ′
∂

=
∂
∂

( )v v

y

v

y
 and 

∂ + ′
∂

=
∂
∂

( )w w

z

w

z

Therefore, the continuity equation for turbulent flow is given below.

	

∂
∂

+
∂
∂

+
∂
∂

=
u

x

v

y

w

z
0 (ii)

Now subtracting (ii) from (i), we get:

	

∂ ′
∂

+
∂ ′
∂

+
∂ ′
∂

⎛
⎝⎜

⎞
⎠⎟

=
u

x

v

y

w

z
0  (iii)

From expressions (ii) and (iii), it can be seen that the continuity equation holds good both for the mean and fluctuating 
components of velocity.
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 Turbulent Flow in Pipes 13.7

Now considering the steady, incompressible, Newtonian, isotropic, turbulent flow at constant temperature and without 
body force state, the Navier-Stokes equation is given below.

u
u

x
v

u

y
w

u

z

p

x

u

x

u

y

u

z

∂
∂

+
∂
∂

+
∂
∂

= −
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

⎛

⎝
⎜

⎞

⎠
⎟

1 2

2

2

2

2

2ρ
ν

or u
u

x
v

u

y
w

u

z

p

x
u

∂
∂

+
∂
∂

+
∂
∂

= −
∂
∂

+ ∇
1 2

ρ
ν

Replacing u, v , w and p by ( )u u+ ′ , ( )v v+ ′ , ( )w w+ ′  and ( )p p+ ′ , respectively, we get:

( )
( )

( )
( )

( )
( ) ( )

u u
u u

x
v v

u u

y
w w

u u

z

p p
+ ′

∂ + ′
∂

+ + ′
∂ + ′

∂
+ + ′

∂ + ′
∂

= −
∂ + ′1

ρ ∂∂
+ ∇ + ′

x
u uν 2( )

Expanding the first term of the above equation by taking time average and using the facts,

′ =u 0, 
∂ ′
∂

=
u

x
0 and ′

∂ ′
∂

= ′ ∂ ′
∂

u
u

x

u u

x

 we get: ( )
( )

u u
u u

x
u

u

x

u u

x
+ ′

∂ + ′
∂

=
∂
∂

+ ′ ∂ ′
∂

Similarly, the remaining terms can be expanded and thus, we obtain the time average of x-direction equation for the fluid 
motion as follows.

u
u

x
v

u

y
w

u

z

p

x
u

u u

x

v u

y

w u

z

∂
∂

+
∂
∂

+
∂
∂

= −
∂
∂

+ ∇ − ′∂ ′
∂

+ ′∂ ′
∂

+ ′∂ ′
∂

⎡

⎣
⎢

⎤1 2

ρ
ν

⎦⎦
⎥

	
u

u

x
v

u

y
w

u

z

p

x
u

x
u

y
u v

z
u w

∂
∂

+
∂
∂

+
∂
∂

= −
∂
∂

+ ∇ −
∂
∂

′ +
∂
∂ ′ ′( ) +

∂
∂ ′ ′(1 2 2

ρ
ν ( ) ))⎡

⎣
⎢

⎤

⎦
⎥  (13.12a)

Similarly, the time average of y  and z-directions equations for the fluid motion can be respectively obtained as follows.

	
u

v

x
v

v

y
w

v

z

p

y
v

x
u v

y v z
u w

∂
∂

+
∂
∂

+
∂
∂

= −
∂
∂

+ ∇ −
∂
∂ ′ ′( ) +

∂
∂ ′( ) +

∂
∂ ′ ′(1 2 2

ρ
ν ))⎡

⎣
⎢

⎤

⎦
⎥  (13.12b)

	
u

w

x
v

w

y
w

w

z

p

z
w

x
u w

y
v w

z w
∂
∂

+
∂
∂

+
∂
∂

= −
∂
∂

+ ∇ −
∂
∂ ′ ′( ) +

∂
∂ ′ ′( ) +

∂
∂ ′(1 2 2

ρ
ν ))⎡

⎣
⎢

⎤

⎦
⎥  (13.12c)

The Equations (13.12a), (13.12b) and (13.12c) are called the Reynolds equations for the motion of turbulent flow. When 
these equations are compared with Navier-Stokes equations, then we find the following additional terms.

−
∂
∂ ′( ) +

∂
∂ ′ ′( ) +

∂
∂ ′ ′( )⎡

⎣
⎢

⎤

⎦
⎥x u y

u v
z

u w2

−
∂
∂ ′ ′( ) +

∂
∂ ′( ) +

∂
∂ ′ ′( )⎡

⎣
⎢

⎤

⎦
⎥x

u v
y v z

v w2

−
∂
∂ ′ ′( ) +

∂
∂ ′ ′( ) +

∂
∂ ′( )⎡

⎣
⎢

⎤

⎦
⎥x

u w
y

v w
z w 2

These above terms represent the stress components and they are known as Reynolds stresses (or turbulent stresses or  
eddy stresses).
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13.8 Chapter 13

13.4 ❐ SHEAR STRESSES IN TURBULENT FLOW
The velocity fluctuations in turbulent flow cause a continuous interchange of fluid masses between the adjacent layers which 
is accompanied by a momentum transfer. The momentum transport between adjacent layers results in additional shear 
stresses of high magnitude. A number of semi-empirical theories also known as turbulence models have been  developed to 
determine the magnitude of the turbulent shear stress. A few of these theories are discussed below.

13.4.1 Boussinesq’s Theory
The viscous shear stress ( )τv  obtained from Newton’s law of viscosity is given below.

	 τ μv
du

dy
=  (13.13)

Similar to the above expression, J. Boussinesq, a French mathematician in 1877 proposed the following expression for 
turbulent shear stress ( )τt  as given below.

	 τ ηt
du

dy
=  (13.14)

Here, η is called eddy viscosity (apparent or virtual viscosity) which is analogous to the absolute viscosity ( )μ  and u is the 
average velocity at a distance y  from boundary.

Similar to kinematic viscosity ( )ν μ ρ= / , the kinematic eddy viscosity ( )ε  can also be obtained by dividing the eddy 
viscosity by mass density of the fluid as given below.

	 ε η
ρ

=  (13.15)

Both the eddy viscosity and kinematic eddy viscosity are mainly the functions of the characteristics of flow and vary from 
point to point in the flow.

The total shear stress ( )τ  in turbulent flow can be given as the sum of the shear stress by Newton’s law of viscosity and 
the shear stress given by Boussinesq as stated below.

τ τ τ= +v t

	 τ μ η μ η= + = +
du

dy

du

dy

du

dy
( )  (13.16)

For laminar flow, η = 0, whereas for turbulent flow, η is several thousand times larger than μ. Therefore, for evaluating the 
shear stress in turbulent flow, the shear stress due to fluid viscosity can be neglected. As the value of η cannot be predicted, 
the Boussinesq’s equation has only limited practical use.

13.4.2 Reynolds Theory
The expression for turbulent shear stress ( )τt  between the two layers of a fluid at a small distance apart developed by Reyn-
olds (1886) is given below.

	 τ ρt u v= ′ ′  (13.17)

Here, ′u  and ′v  are the fluctuating components of velocities in the x and y-directions, respectively.
Since both ′u  and ′v  are fluctuating, the magnitude of τt  will also vary. Generally, for the analysis of turbulent flow 

problems, the time average value of turbulent shear stress is considered which is also known as Reynolds stress and the 
expression is as follows.

	 τ ρ ρt u v u v= ′ ′ = ′ ′  (13.18)

Here, ′ ′u v  is the time average of the product of the fluctuating components ′u  and ′v  and it is usually negative.
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 Turbulent Flow in Pipes 13.9

13.4.3 Prandtl’s Mixing Length Theory
Ludwig Prandtl, a German engineer in 1925 gave the mixing length 
hypothesis by means of which the turbulent shear stress can be expressed in 
terms of measurable quantities related to the average flow characteristics. 
According to Prandtl, mixing length ( )l  is the distance between two layers 
in transverse direction such that a lump of fluid particles travel from one 
layer to the other and mixes with the fluid particles of the adjacent layer in 
such a way that their momentum in x-direction remains same (Figure 13.3).

It was also assumed that the velocity fluctuation components ′u  and ′v  
are of the same order and are related to the mixing length as given below.

	 ′ = ′ =u v l
du

dy
 (13.19)

Thus ′ ′ =
⎛
⎝⎜

⎞
⎠⎟

u v l
du

dy
2

2

 (13.20)

According to Prandtl, shear stress in turbulent flow can be obtained by substituting Equation (13.20) in Equation (13.18) as 
given below. For the sake of convenience the bar sign on τ  denoting the time average quantity has been omitted.

Thus τ ρt l
du

dy
=

⎛
⎝⎜

⎞
⎠⎟

2
2

 (13.21)

The expression for total shear stress ( )τ  at any point is the sum of the viscous shear stress and turbulent shear stress as 
given below.

	 τ μ ρ= +
⎛
⎝⎜

⎞
⎠⎟

du

dy
l

du

dy
2

2

 (13.22)

However, the viscous shear stress is negligible when compared with the turbulent shear stress and therefore, the shear 
stress can be assumed due to turbulence only. Since it is possible to establish a relationship between mixing length ( )l  and 
the characteristic length of the flow, the Equation (13.22) is used for determining the shear stress in various turbulent flow 
problems.

13.4.4 Von Karman Similarity Concept
Theodore von Karman extended the Prandtl’s momentum theory by considering the dependence of mixing length on the 
distribution of average flow velocity. Karman proposed that the mixing length ( )l  is the ratio of the first derivative of mean 
velocity to the second derivative of mean velocity. The mathematical expression for mixing length is given below.

	 l k
du dy

d u dy
t=

( )

( )

/

/2 2
 (13.23)

Here, kt  is the turbulence constant.
The turbulent shear stress can be obtained by substituting Equation (13.23) in Equation (13.21) as given below.

	 τ ρt tk
du dy

d u dy
= 2

4

2 2 2

( )

( )

/

/
 (13.24)

It is to be noted that neither Prandtl’s hypothesis nor Karman’s concept is valid for determining shear stress at the pipe 
centreline and at the wall surface.

y

Fluid particle

Fluid particle

l

Surface

Figure 13.3 Mixing length
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13.10 Chapter 13

 Example 13.2  The velocity profile for turbulent flow of water in a pipe of diameter 0.7 m is given by u y= +5 1 5( ) ln/ ,  
where velocity u is in metre per second and the distance y  from the wall is measured in metres. If shear stress at a point 
0.1 m from the wall is measured as 8 N/m2, then find the turbulence viscosity, mixing length and turbulence constant.

Solution
Let mD = 0 7. , u y= +5 1 5( / ) ln , y = 0 1. m and τt = 8 N/m2.

du

dy y
= =

×
= −1

5

1

5 0 1
2 1

.
s

d u

dy y

2

2 2 2
11

5

1

5 0 1
20= − = −

×
= − −

.
s

η
τ

= = =t

du dy( )/

8

2
4 Ns/m2

From Equation (13.21), we get:

l
du dy

t

w

= =
×

=
τ

ρ ( )/ 2 2

8

1000 2
0.04472 m

Turbulence constant can be given from Equation (13.24) as follows.

k
d u dy

du dy
t

t

w
= = ×

−
=

τ
ρ

( )

( )

( )2 2 2

4

2

4

8

1000

20

2

/

/
0.4472

13.5 ❐ UNIVERSAL VELOCITY DISTRIBUTION EQUATION
In turbulent flow through circular pipes, Prandtl assumed that the mixing length ( )l  is a linear function of the distance y  
from the pipe wall and its mathematical expression is given below.

	 l y= κ  (13.25)

Here, κ  (Greek kappa) is a proportionality constant and is known as Karman universal constant. As per Nikuradse’s 
 experimental results, the value of κ  is found to be 0.4.

By neglecting viscous shear stress, the turbulent shear stress ( )τ τor t  can be obtained by substituting Equation (13.25) 
in Equation (13.21) as given below.

τ ρκ=
⎛
⎝⎜

⎞
⎠⎟

2 2
2

y
du

dy

	
du

dy y
=

1

κ
τ
ρ

 (13.26)

For regions very close to the boundary of the pipe, the shear stress ( )τ  is constant and it is approximately equal to τo, i.e., 
turbulent shear stress at the boundary of the pipe. Thus, Equation (13.26) is written as follows.

	
du

dy y
o=

1

κ
τ
ρ

 (13.27)

	

du

dy

u

y
s=

κ
  [ ]∵us o= τ ρ/ 	
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 Turbulent Flow in Pipes 13.11

As for the given turbulent flow, us is constant and thus, the above equation can be integrated to obtain the equation for 
velocity as given below.

	 u
u

y Cs= +
κ

ln  (13.28)

Here, C  is a constant of integration and it can be obtained by applying boundary conditions. From Equation (13.28), it can 
be seen that velocity distribution in turbulent flow is logarithmic in nature. Now applying boundary condition, the velocity 
is maximum at the centre of the pipe, i.e., u u= max  at y R=  and we get the following expression.

	 u
u

R Cs
max ln= +

κ
 (13.29)

Thus C u
u

Rs= −max ln
κ

Substituting the above value of C  in Equation (13.28), we get:

u
u

y u
u

R u
u y

R
s s s= + − = +

κ κ κ
ln ln lnmax max

	
u u

u y

R
u u

y

R
s

s= + = +max max.
ln . ln

0 4
2 5   [ . ]∵κ = 0 4  (13.30)

The Equation (13.30) is called Prandtl’s universal velocity distribution equation which is applicable to both smooth and 
rough pipes. This equation may also be written in non-dimensional form as given below.

	
u u

u

R

ys

max . ln
−

= 2 5  (13.31)

Since ln . log
R

y

R

y
= 2 3 10

From Equation (13.31), we get:

	
u u

u

R

y

R

ys

max . . log . log
−

= × =2 5 2 3 5 7510 10  (13.31a)

The Equation (13.31) is called velocity defect law in which the difference ( )maxu u−  is known as velocity defect. This 

 equation shows that the ratio of velocity defect to shear velocity is a function of ( )R y/  alone and it appears to be  independent 
of the nature of the boundary. However, it is experimentally found that the nature of boundary (i.e., rough or smooth) in 
pipe affects the velocity near the boundary. Thus, it may be stated that Prandtl’s equation is applicable only to the turbulent 
flow in the central region of the pipe. For hydrodynamically smooth and rough boundaries, different velocity distribution 
equations are to be derived.

 Example 13.3  A pipe of diameter 124 mm carries water. The velocities at the pipe centre and 40 mm from the pipe 
centre are 3 m/s and 2 m/s, respectively. Determine (i) the shear velocity and (ii) wall shearing stress.

Solution
Let mm mD = =124 0 124. , r = =40 0 04mm m. , umax = 3 m/s and u = 2 m/s.

R
D

= = =
2

0 124

2
0 062

.
. m

y R r= − = − =0 062 0 04 0 022. . . m
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13.12 Chapter 13

 (i) From Equation (13.31a), we get:

u
u u

R ys =
−

=
−

=max

. log ( ) . log ( . . )5 75

3 2

5 75 0 062 0 02210 10/ /
0.3865 m/ss

 (ii) From Equation (13.4), we get:

τ ρo w su= = × =2 21000 0 3865. 149.38225 N/m2

13.6 ❐ HYDRODYNAMICALLY SMOOTH AND ROUGH BOUNDARIES
The pipe wall surface over which fluid flows contains irregularities that vary in shape, size and spacing. The absolute 
 roughness is called the average height of the irregularities projecting from the pipe surface. In general, all boundaries 
are rough. Let k  be the average height of the irregularities projecting from the surface of a boundary as illustrated in 
Figure 13.4.

Generally, if the average height of the irregularities ( )k  of the boundary on its surface is large, then the boundary is 
called rough boundary and if the value of k is small, then the boundary is known as smooth boundary. However, for proper 
classification of smooth and rough boundaries, the flow and fluid characteristics have to be considered. In circular pipes 
for turbulent flow, there is a laminar sublayer of height d	′ in the immediate neighbourhood of the boundary where viscous 
shear stress predominates while the shear stress due to turbulence is negligible. However, the flow outside the laminar 
sublayer is turbulent and thus, shear stress due to turbulence is large when compared to viscous stress. Depending upon the 
values of k and d	′, the boundary is known as rough or smooth.

If the value of k  is much less than d	′, then the boundary is called smooth boundary (Figure13.4a). Various sizes of 
eddy present in the flow outside the laminar sublayer try to penetrate through the laminar sublayer. However, due to greater 
thickness of the laminar sublayer, these cannot reach the surface irregularities and as a result, the boundary acts as a smooth 
boundary. Such type of boundary is called hydrodynamically smooth boundary.

If the value of k  is much larger than d	′, then the boundary is called rough boundary (Figure13.4b). With the increase 
in Reynolds number, d	′ becomes much smaller than k . Thus, the irregularities of the surface project through the laminar  
sublayer and eddies come in contact with them and consequently, large amount of energy loss occurs. Such type of   boundary 
is called hydrodynamically rough boundary.

According to Nikuradse’s experimental results, the boundary behaves as follows.

 1. If 
k

′
<

δ
0 25. , then the boundary is hydrodynamically smooth.

 2. If 
k

′
>

δ
6, then the boundary is hydrodynamically rough.

 3. If 0 25 6. <
′

<
k

δ
, then the boundary is in transition.

′
′

Laminar sublayer

Turbulent boundary layer

k
δk

δ

(a) Smooth boundary (b) Rough boundary

Turbulent boundary layer

Laminar sublayer

Figure 13.4 Smooth and rough boundaries
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 Turbulent Flow in Pipes 13.13

In terms of roughness Reynolds number, (Re) ( )r su k= /ν , the boundary behaves as follows.

 1. If (Re)r < 4, then the boundary is smooth.

 2. If (Re)r > 100, then the boundary is rough.

 3. If 4 100< <(Re)r , then the boundary is in transition.

 Example 13.4  A pipe carrying water has average irregularities projecting from the surface of the pipe as 0.01 mm. If the 
shear stress developed is 5.5 N/m2, then what type of boundary is it? For water, take density as 1000 kg/m3 and dynamic 
viscosity as 0.001 Ns/m2.

Solution
Let k = = × −0 01 0 01 10 3. .mm m, τo = 5 5 2. N/m , ρw = 1000 3kg/m  and μ = 0 001 2. Ns/m .

us
o

w
= = =

τ
ρ

5 5

1000
0 0742

.
. m/s

(Re)
. .

.
.r

w su k
= =

× × ×
=

−ρ
μ

1000 0 0742 0 01 10

0 001
0 742

3

Since (Re) < 4r , the boundary is smooth.

 Example 13.5  A pipe carrying oil of specific gravity 0.85 has average irregularities projecting from the surface of the 
pipe as 0.25 mm. If the shear stress developed is 6 N/m2, then what type of boundary is it? For oil, take kinematic viscosity 
as 0.01 stoke.

Solution
Let Soil = 0 85. , k = = × −0 25 0 25 10 3. .mm m, τo = 6 2N/m  and ν = = × −0 01 0 01 10 4. .stoke m /s2 .

ρ ρ= = × =S woil
3kg/m0 85 1000 850.

us
o= = =

τ
ρ

6

850
0 084. m/s

(Re)
. .

.
r

su k
= =

× ×
×

=
−

−ν
0 084 0 25 10

0 01 10
21

3

4

Since (Re)r  lies between 4 and 100, the boundary is in transition.

13.7 ❐  VELOCITY DISTRIBUTION FOR TURBULENT FLOW  
IN SMOOTH PIPES

The velocity distribution for turbulent flow in pipes is given by Equation (13.28) as follows.

u
u

y Cs= +
κ

ln

The velocity distribution for turbulent flow has a peculiarity that the velocity will be zero at a certain finite distance above 
the boundary say y y= ′. Thus, the above equation is written as follows.
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13.14 Chapter 13

0 = ′ + ⇒ = − ′
u

y C C
u

ys s

κ κ
ln ln

Substituting this value of C  in the equation of velocity distribution, we get:

u
u

y
u

y
u y

y
s s s= − ′ =

′κ κ κ
ln ln ln

Substituting the value of κ = 0 4.  in the above equation, we get:

u u
y

ys=
′

2 5. ln

	
u

u

y

y

y

ys
= ×

′
=

′
2 5 2 3 5 7510 10. . log . log  (13.32)

For turbulent flow in smooth pipes according to Nikuradse, we get:

′ =δ ν11 6.

us
 and

′ = ′ = =y
u us s

δ ν ν
107

11 6

107

0 108. .

Substituting the value of ′y  in Equation (13.32), we get:

u

u
y

u u y

s

s s= ×⎛
⎝⎜

⎞
⎠⎟

= ×⎛
⎝⎜

⎞
⎠⎟

5 75
0 108

5 75 9 25910 10. log
.

. log .
ν ν

Thus 
u

u

u y u y

s

s s= + = +5 75 5 75 9 259 5 75 5 510 10 10. log . log . . log .
ν ν

 (13.33)

The Equation (13.33) is known as Karman-Prandtl equation for the velocity distribution near hydrodynamically smooth 
boundaries.

 Example 13.6  A smooth pipe of diameter 100 mm and length 1000 m carries water at the rate of 0.009 m3/s. If 
 coefficient of friction f  is given as f = 0 0791 1 4. (Re )//  and kinematic viscosity of water is 0.015 stokes, then find (i) the 
loss of head, (ii) wall shearing stress, (iii) centreline velocity, (iv) shear stress and velocity at 25 mm from the pipe wall and 
(v) the thickness of laminar sublayer.

Solution
Let D = =100 0 1mm m. , L = 1000 m, Q = 0 009. m /s3 , f = 0 0791 1 4. (Re )// , ν = = × −0 015 0 015 10 4. .stoke m /s2  and 
y = =25 0 025mm m. .

R
D

= = =
2

0 1

2
0 05

.
. m

V
Q

A

Q

D
= = =

×
=

( )

.

( ) .
.

π π/ /
m/s

4

0 009

4 0 1
1 146

2 2

Thus Re
. .

.
= =

×
×

=−
VD

ν
1 146 0 1

0 015 10
76400

4

Since Re > 4000, the flow is turbulent.
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 Turbulent Flow in Pipes 13.15

Thus f = = =
0 0791 0 0791

76400
0 00476

0 25 0 25

.

Re

.
.

. .

 (i) h
fLV

gDf = =
× × ×

× ×
=

4

2

4 0 00476 1000 1 146

2 9 81 0 1

2 2. .

. .
12.745 m

 (ii) τ
ρ

o
wf V

= =
× ×

=
2 2

2

0 00476 1000 1 146

2

. .
3.1257 N/m2

 (iii) us
o

w
= = =

τ
ρ

3 1257

1000
0 05591

.
. m/s

  The centreline velocity ( )maxu  will be at y R= .

  From Equation (13.33), we get:

u

u

u R

s

smax . log .= +5 75 5 510 ν

  Thus 
umax

.
. log

. .

.
.

0 05591
5 75

0 05591 0 05

0 015 10
5 510 4

=
×

×
⎛
⎝⎜

⎞
⎠⎟

+−

∴ = × =umax . .0 05591 24 30462 1.36 m/s

 (iv) Shear stress ( )τ  at any distance ( )r  from the centre is given by,

	
τ = −

∂
∂
p

x

r

2
 (i)

  Shear stress at pipe wall τo, i.e., at r R=  is given by,

	
τo

p

x

R
= −

∂
∂ 2

 (ii)

	

τ
τo

r

R
=  [Dividing (i) by (ii)] 

  Thus τ
τ

= or

R

  At y r R y= = − = − = =25 50 25 25 0 025mm mm m, .

∴ =
×

=τ 3 1257 0 025

0 05

. .

.
1.56285 N/m2

  Since 
u

u

u y

s

s= +5 75 5 510. log .
ν

  Thus, velocity ( )u  at y = =25 0 025mm m.  is given by,

u

0 05591
5 75

0 05591 0 025

0 015 10
5 510 4.

. log
. .

.
.=

×
×

+−

∴ = × =u 0 05591 22 574. . 1.262 m /s

 (v) ′ = =
× ×

=
−

δ ν11 6 11 6 0 015 10

0 05591

4. . .

.us
3.112 10 m or 0.3112 mm4×× −−
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13.16 Chapter 13

13.8 ❐  VELOCITY DISTRIBUTION FOR TURBULENT FLOW  
IN ROUGH PIPES

In rough pipes, the laminar sublayer is very small. The surface irregularities protrude beyond the laminar sublayer and 
hence, the sublayer is totally destroyed. For rough pipes (cement coated), Nikuradse and others found that y ’ is directly 
proportional to k  and ′ =y k( )/30 . Substituting this value of ′y  in Equation (13.32), we get the below expression.

u

u

y

k

y

ks
=

⎡

⎣
⎢

⎤

⎦
⎥ = +5 75

30
5 75 5 75 3010 10 10. log

( )
. log . log

/

Thus 
u

u

y

ks
= +5 75 8 510. log .  (13.34)

 Example 13.7  A rough pipe of diameter 80 mm carries water. If the velocity at a point 3 cm from the wall is 24% more 
than the velocity at a point 1 cm from the pipe wall, then determine the average height of the roughness.

Solution
Let mm mD = =80 0 08. , u be the velocity at a point 1 cm from the pipe wall, then 1 24. u  be the velocity at a point 3 cm 
from the pipe wall.

Since 
u

u

y

ks
= +5 75 8 510. log .   [Equation (13.34)] 

At y = 1 cm , the velocity is u and thus, Equation (13.34) is written as follows.

	

u

u ks
= +5 75

1
8 510. log .  (i)

At y = 3 cm, the velocity is 1 24. u  and thus, Equation (13.34) is written as follows.

	

1 24
5 75

3
8 510

.
. log .

u

u ks
= +  (ii)

Thus 1 24
5 75 3 8 5

5 75 1 8 5
10

10
.

. log ( ) .

. log ( ) .
=

+
+

/

/

k

k
 [Dividing (ii) by (i)] 

1 24 5 75 1 8 5 5 75 3 8 510 10. [ . log ( ) . ] . log ( ) .× + = +/ /k k

7 13 1 7 13 10 54 5 75 3 5 75 8 510 10 10 10. log . log . . log . log .− + = − +k k

0 7 13 10 54 2 74345 5 75 8 510 10− + = − +. log . . . log .k k

− =1 38 0 7034510. log .k

log
.

.10
0 70345

1 38
k = −

∴ = =
−⎛

⎝⎜
⎞
⎠⎟k 10

0 70345

1 38

.

. 0.3092 cm or 3.092 mm

M13 Fluid Mechanics and Hydraulic Machines XXXX 01.indd   16 4/5/2019   12:14:29 PM

Download more at Learnclax.com



 Turbulent Flow in Pipes 13.17

13.9 ❐ VELOCITY DISTRIBUTION IN TERMS OF AVERAGE VELOCITY
Let a fluid flow through a pipe of radius R as shown in Figure 13.5. Consider an elementary circular ring of thickness dr 
and radius r at a distance y  from the pipe wall, i.e., y R r= −( ).

dr

D
r

R
r

R

y
dr

y

Figure 13.5 Velocity distribution and forces on control volume in a pipe flow

The discharge ( )dQ  through the ring is given by the product of area and velocity as follows.

dQ rdr u= ×2π

The total discharge ( )Q  through the pipe is given by integrating the above expression.

	 Q rdr u
R

= ×∫ 2
0

π  (13.35)

 1. Smooth pipes: The velocity distribution for smooth pipe is given from Equation (13.33) as follows.

u
u y

u
u R r

us
s

s
s= +⎡

⎣⎢
⎤
⎦⎥

=
−

+⎡
⎣⎢

⎤
⎦⎥

5 75 5 5 5 75 5 510 10. log . . log
( )

.
ν ν

  Substituting the above value of u in Equation (13.35), we get:

Q
u R r

u rdrs
s

R

=
−

+⎡
⎣⎢

⎤
⎦⎥

×∫ 5 75 5 5 210
0

. log
( )

.
ν

π

  The average velocity ( )u  is given by,

u
Q

A

Q

R R

u R r
u rdrs

s

R

= = =
−

+⎡
⎣⎢

⎤
⎦⎥

×∫π π ν
π

2 2 10
0

1
5 75 5 5 2. log

( )
.

  Integrating and simplifying the above expression, we get:

	
u

u

u R

s

s= +5 75 1 7510. log .
ν

 (13.36)

 2. Rough pipes: The velocity distribution for rough pipe is given from Equation (13.34) as follows.

u
y

k
u

R r

k
us s= +⎡

⎣⎢
⎤
⎦⎥

=
−

+⎡
⎣⎢

⎤
⎦⎥

5 75 8 5 5 75 8 510 10. log . . log
( )

.

  Substituting the above value of u in Equation (13.35), we get:

Q
R r

k
u rdrs

R

=
−

+⎡
⎣⎢

⎤
⎦⎥

×∫ 5 75 8 5 210
0

. log
( )

. π
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  The average velocity ( )u  is given by,

u
Q

A

Q

R R

R r

k
u rdrs

R

= = =
−

+⎡
⎣⎢

⎤
⎦⎥

×∫π π
π

2 2 10
0

1
5 75 8 5 2. log

( )
.

  Integrating and simplifying the above expression, we get:

	
u

u

R

ks
= +5 75 4 7510. log .  (13.37)

 3. Relationship between velocity at any point and average velocity for smooth and rough pipes:

  For smooth pipes, subtracting Equation (13.36) from Equation (13.33), we get:

u

u

u

u

u y u R

s s

s s− = +⎡
⎣⎢

⎤
⎦⎥

− +⎡
⎣⎢

⎤
⎦⎥

5 75 5 5 5 75 1 7510 10. log . . log .
ν ν

u u

u

u y

u Rs

s

s

−
= × +5 75 3 7510. log .

ν
ν

  Thus 
u u

u

y

Rs

−
= +5 75 3 7510. log .  (13.38)

  At the centreline of the pipe Equation (13.38) becomes,

	
u u

u

R

Rs

−
= + =5 75 3 75 3 7510. log . .  (13.38a)

  Similarly, for rough pipes, subtracting Equation (13.37) from Equation (13.34), we get:

u

u

u

u

y

k

R

ks s
− = +⎡

⎣⎢
⎤
⎦⎥

− +⎡
⎣⎢

⎤
⎦⎥

5 75 8 5 5 75 4 7510 10. log . . log .

	
u u

u

y

Rs

−
= +5 75 3 7510. log .  (13.39)

  Since Equations (13.38) and (13.39) are identical, velocity distribution in smooth as well as rough pipes is the same.

 Example 13.8  Find the distance y  from the pipe wall at which the local velocity u is equal to the average velocity u for 
turbulent flow in a pipe of radius R.

Solution

Since 
u u

u

y

Rs

−
= +5 75 3 7510. log .

Thus 
u u

u

y

Rs

−
= +5 75 3 7510. log .  [ ]∵u u= 	

5 75 3 75 010. log .
y

R
+ =

log
.

.10
3 75

5 75

y

R
= −
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y

R
= =

−⎛
⎝⎜

⎞
⎠⎟10 0 223

3 75

5 75

.

. .

∴∴ ==y R0.223

 Example 13.9  If turbulent flow of water is maintained in a pipe of diameter 0.3 m , then determine the distance from 
the wall surface of the pipe when local velocity is half of the average velocity and shear velocity is (1/20th) of the average 
velocity.

Solution
Let D = 0 3. m, u u= ( )/2  and u us = ( )./20

R
D

= = =
2

0 3

2
0 15

.
. m

Since 
u u

u

y

Rs

−
= +5 75 3 7510. log .

( )

( )
. log .

u u

u

y

R

/

/

2

20
5 75 3 7510

−
= +

− = +10 5 75
0 15

3 7510. log
.

.
y

log
.

.

.
.10 0 15

10 3 75

5 75
2 3913

y
=

− −
= −

y

0 15
10 0 0040622 3913

.
..= =−

∴ = × =y 0 004062 0 15. . 0.00061 m or 0.61 mm

13.10 ❐  POWER LAW FOR VELOCITY DISTRIBUTION  
IN SMOOTH PIPES

According to Nikuradse, the velocity distribution for turbulent flow in smooth pipe can be expressed by an exponential 
equation instead of logarithmic equation. The following exponential form (i.e., velocity distribution equation) for turbulent 
flow in smooth pipe was suggested as follows.

 
u

u

y

R

n

max

/

= ⎛
⎝⎜

⎞
⎠⎟

1

 (13.40)

Here, exponent ( )1/n  depends on Reynolds number (Re) and it decreases with increasing Re, but it tends to approach a 
constant value asymptotically for very large Re.

1 1

6n
=  for Re = 4000

1 1

7n
=  for Re .= ×1 1 105

1 1

10n
=  for Re ≥ ×2 106
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Thus, for ( ) ( ),1 1 7/ /n =  the velocity distribution Equation (13.40) is written as follows.

	
u

u

y

Rmax

/

= ⎛
⎝⎜

⎞
⎠⎟

1 7

 (13.41)

The Equation (13.41) is known as 1 7/ th  power law of velocity distribution for smooth pipes.

13.11 ❐  RESISTANCE TO FLOW OF FLUID IN SMOOTH  
AND ROUGH PIPES

The loss of head due to friction in pipes may be calculated correctly by Darcy-Weisbach equation (Equation 13.2) only if 
coefficient of friction ( )f  is evaluated accurately. The coefficient of friction depends upon the Reynolds number (Re) and 
relative roughness (k/D).

Thus f k D= [ ]ϕ Re, ( )/  (13.42)

Sometimes ( )k D/  is replaced by relative smoothness ( )R k/ , here k  is 
the average height of pipe wall roughness  protrusions, D  is the diame-
ter of the pipe and R is the radius of the pipe. The Equation (13.42) is 
the general equation which is  applicable to laminar as well as turbulent 
flow in pipes. The general graphical relationship between f  and Re 
is shown in Figure 13.6 in which AB represents the laminar flow, BC 
represents the transition zone and CD represents the turbulent flow.

The relationship between friction factor ( )f f , Reynolds number 
(Re) and relative roughness ( )k D/  over a wide range can be shown by 
the Moody diagram (or Moody chart) as graphically shown in Figure 
13.7. The friction factor is given as f ff = 4  and it can be known from 

the Moody diagram that was prepared by L. F. Moody (American engineer) for ordinary commercial pipes. The logarithmic 
plot of f f  versus Re for various values of k D/  is known as Stanton diagram.

The Moody diagram is the best means for predicting the values of f f  for circular pipes when the value of relative 
 roughness is known. It can also be used for non-circular pipes by replacing the diameter by the hydraulic diameter. The 
following observations can be made from the given diagram (Figure 13.7).

 (i) In laminar flow, the friction factor ( )f f  is independent of pipe roughness ( )k D/  and it decreases with increase in 

Reynolds number (Re).

 (ii) For Re > 2000, there are two regions, namely transition region and turbulent region.

 (iii) In transition region, f f  depends on Re and k D/ .

 (iv) In turbulent region, f f  solely depends on k D/  and it is independent of Re, since f f  curves corresponding to relative 
roughness values are nearly horizontal.

 1. Variation of coefficient of friction ‘f  ’ for laminar flow. In previous chapter, the coefficient of friction ( )f  for laminar 
flow in pipes is derived as follows.

 f =
16

Re
 (13.43)

  From Equation (13.43), it can be observed that coefficient of friction f for laminar flow varies inversely with Re and it 
is independent of ( )k D/ . The friction factor can be given as f ff = =4 64/ Re .

 2. Variation of coefficient of friction ‘f  ’ for turbulent flow. Depending on whether the boundary is smooth or rough, 
the coefficient of friction f  may be given as follows.

A

B

C

D

f

Re

Figure 13.6  Variation of friction coefficient 

with Reynolds number
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  (a)  Variation of coefficient of friction ‘f  ’ for turbulent flow in smooth pipes: The value of f for smooth pipes  

for 4000 105< <Re  given by Blasius is as follows.

	 f =
0 0791

1 4

.

Re /
 (13.44)

     Since V u uo s= =and τ ρ/

     Thus f
V u u

uo o
s= =

⎛

⎝
⎜

⎞

⎠
⎟ = ×

2 2 2
2 2

2

2
2τ

ρ
τ
ρ

 [From Equation (13.3)]

     Thus u u
f

s =
2

 (i)

     Now 
u

u

u R

s

s= +5 75 1 7510. log .
ν

 [Equation (13.36)]

     The value of f  for Re > 105 can be obtained by substituting expression (i) in Equation (13.36) as given below.

u

u f

u f R

/

/

2
5 75

2
1 7510= +. log .

ν

MOODY DIAGRAM

Fr
ic

ti
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 f
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es
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0.1
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0.03
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5 × 10–5
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0.005

0.01
0.015
0.02
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Smooth pipe

Complete turbulence, rough pipes
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Re
64ff  =

Figure 13.7 Moody diagram for friction factor
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     After substituting R D= ( )/2  and simplifying, we get:

1

4
2 03 4 0 9110

f

uD
f=

⎛

⎝⎜
⎞

⎠⎟
−. log .

ν

	
1

4
2 03 4 0 9110

f
f= ( ) −. log Re .  (13.45)

     Equation (13.45) is valid up to Re = ×4 106 and in terms of friction factor, it is written as follows.

	
1

2 03 0 9110
f

f
f

f= ( ) −. log Re .  (13.45a)

      The Karman-Prandtl resistance equation for turbulent flow in smooth pipe which is applicable in the range of 

Re = × ×5 10 4 104 7to  is given below.

	
1

4
2 0 4 0 810

f
f= ( ) −. log Re .  (13.46)

     or 
1

2 0 0 810
f

f
f

f= ( ) −. log Re .  (13.46a)

     The equation valid for Re .= × ×4 10 3 2 103 6to  given by Nikuradse is as follows.

	 f = +0 0008
0 05525

0 237
.

.

Re .
 (13.47)

  (b) Variation of coefficient of friction ‘f  ’ for turbulent flow in rough pipes:

u

u

R

ks
= +5 75 4 7510. log .   [Equation (13.37)]

      The value of f  for turbulent flow in rough pipe can be obtained by substituting u u fs = / 2  in Equation (13.37) 
as given below.

u

u f

R

k/2
5 75 4 7510= +. log .

      After simplifying, we get:

	
1

4
2 03 1 6810

f

R

k
= +. log .  (13.48)

      or 
1

2 03 1 6810
f

R

kf

= +. log .  (13.48a)

      However, Nikuradse suggested the following expressions.

	
1

4
2 1 7410

f

R

k
= +log .  (13.49)

     or 
1

2 1 7410
f

R

kf

= +log .  (13.49a)
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  (c)  Value of coefficient of friction ‘f  ’ for commercial pipes: The following empirical relation was developed by 
Colebrook and White for determining the value of f for smooth as well as rough pipes.

	
1

4
2 1 74 2 1 18 7

4
10 10

f

R

k

R k

f
− = − +

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

log . log .
( )

Re

/
 (13.50)

     or 
1

2 1 74 2 1 18 710 10
f

R

k

R k

ff f

− = − +
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

log . log .
( )

Re

/
 (13.50a)

 Example 13.10  The velocity at the centre of the pipe and 10 cm away from the centre are 2.2 m/s and 1.8 m/s, 
 respectively. If the diameter of pipe is 30 cm and flow is turbulent, then determine (i) the discharge through the pipe, 
(ii) coefficient of friction and (iii) height of roughness projections.

Solution
Let r = 10 cm , umax .= 2 2 m/s, u = 1 8. m/s and D = 30 cm.

R
D

= = =
2

30

2
15 cm

 (i) y R r= − = − =15 10 5 cm

  Since 
u u

u

R

ys

max . log
−

= 5 75 10

  Thus 
2 2 1 8

5 75
15

5
2 7434510

. .
. log .

−
= =

us

∴ =
−

=us
2 2 1 8

2 74345
0 1458

. .

.
. m/s

  Since 
u u

u

y

Rs

−
= +5 75 3 7510. log .

  At y R= , velocity u u= max  and thus, from the above equation, we get the following result.

u u

u

R

Rs

max . log . .
−

= + =5 75 3 75 3 7510

2 2

0 1458
3 75

.

.
.

−
=

u

∴ = − × =u 2 2 3 75 0 1458 1 653. . . . m/s

Q D u= = × × =
π π
4 4

0 3 1 6532 2. . 0.11684 m /s3

 (ii) u u
f

s =
2

0 1458 1 653
2

. .= ×
f

∴ = × ⎛
⎝⎜

⎞
⎠⎟

=f 2
0 1458

1 653

2.

.
0.01556
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 (iii) 
1

4
2 1 7410

f

R

k
= +log .

1

4 0 01556
2

0 15
1 7410×

= +
.

log
.

.
k

4 01 2
0 15

1 7410. log
.

.= +
k

log
. . .

.10
0 15 4 01 1 74

2
1 135

k
=

−
=

0 15
10 13 6461 135.

..

k
= =

∴ = =k
0 15

13 646

.

.
0.01099 m or 1.099 cm

 Example 13.11  A pipe of diameter 0.25 m and length 450 m carries oil with mass density 860 kg/m3 and dynamic 
viscosity 0.006 Ns/m2. Determine the head lost due to friction and the power required maintaining the oil flow at a rate of 
0.08 m3/s.

Solution
Let D = 0 25. m, L = 450 m, ρ = 860 3kg/m , μ = 0 006 2. Ns/m  and Q = 0 08. m /s3 .

Let hf  and P  be the head lost due to friction and power, respectively.

V
Q

A

Q

D
= = =

×
=

( )

.

( ) .
.

π π/ /
m/s

4

0 08

4 0 25
1 63

2 2

Re
. .

.
.= =

× ×
=

ρ
μ
VD 860 1 63 0 25

0 006
58408 33

Since Re > 4000, the flow is turbulent.

Thus f = = =
0 0791 0 0791

58408 33
0 0051

0 25 0 25

.

Re

.

.
.

. .

h
fLV

gDf = =
× × ×

× ×
=

4

2

4 0 0051 450 1 63

2 9 81 0 25

2 2. .

. .
4.9725 m

P
gQhf= =

× × ×
=

ρ
1000

860 9 81 0 08 4 9725

1000

. . .
3.324 kW

 Example 13.12  A pipe of diameter 25 cm and length 750 m carries oil with specific gravity 0.96 and dynamic viscosity 

0.96 Ns/m2 at a rate of 0.15 m3/s. If the viscosity of oil decreases by a factor of 10, then compare the pumping cost when 
the same quantity of oil is conveyed.

Solution
Let D = =25 0 25cm m. , L = 750 m, Soil = 0 96. , μ1 0 96= . Ns/m2, Q = 0 15. m /s3  and μ2

20 96 10 0 096= =( . ) ./ Ns/m .

ρ ρ= = × =S woil
3kg/m0 96 1000 960.
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V
Q

A

Q

D
= = =

×
=

( )

.

( ) .
.

π π/ /
m/s

4

0 15

4 0 25
3 056

2 2

Re
. .

.1
1

960 3 056 0 25

0 96
764= =

× ×
=

ρ
μ
VD

Since Re1 2000< , the flow is laminar. Thus, frictional loss can be given as follows.

h
VL

gD
f 1

1
2 2

32 32 0 96 3 056 750

960 9 81 0 25
119 623= =

× × ×
× ×

=
μ

ρ
. .

. .
. m

Power required for pumping the oil is given by,

P
gQhf

1
1

1000

960 9 81 0 15 119 623

1000
168 984= =

× × ×
=

ρ . . .
. kW

Now Re
. .

.2
2

960 3 056 0 25

0 096
7640= =

× ×
=

ρ
μ
VD

Since Re2 4000> , the flow is turbulent. Thus, the coefficient of friction is given as follows.

f = = =
0 0791 0 0791

7640
0 00846

0 25 0 25

.

Re

.
.

. .

h
fLV

gDf 2

2 24

2

4 0 00846 750 3 056

2 9 81 0 25
48 324= =

× × ×
× ×

=
. .

. .
. m

Power required for pumping the oil is given by,

P
gQhf

2
2

1000

960 9 81 0 15 48 324

1000
= =

× × ×
=

ρ . . .
68.264 kW

Ratio of pumping cost is given by,

P

P
2

1

68 264

168 984
= =

.

.
0.404

 Example 13.13  A smooth pipe of diameter 0.46 m and length 900 m carries water with kinematic viscosity 0.019 
stokes. Determine the head lost due to friction, wall shear stress, centreline velocity and the thickness of laminar sublayer 
for maintaining water flow at a rate of 0.06 m3/s.

Solution
Let D = 0 46. m , L = 900 m, ν = = × −0 019 0 019 10 4. .stokes m /s2  and Q = 0 06. m /s3 .

V
Q

A

Q

D
= = =

×
=

( )

.

( ) .
.

π π/ /
m/s

4

0 06

4 0 46
0 361

2 2

Re
. .

.
= =

×
×

=−
VD

ν
0 361 0 46

0 019 10
87400

4

Since Re > 4000, the flow is turbulent. Thus, the coefficient of friction is given below.

f = = =
0 0791 0 0791

87400
0 0046

0 25 0 25

.

Re

.
.

. .
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h
fLV

gDf = =
× × ×

× ×
=

4

2

4 0 0046 900 0 361

2 9 81 0 46

2 2. .

. .
0.2391 m

τ
ρ

o
wf V

= =
× ×

=
2 2

2

0 0046 1000 0 361

2

. .
0.29974 N/m2

us
o

w
= = =

τ
ρ

0 29974

1000

.
0.0173 m/s

Centreline velocity ( )maxu  will be at y R= = 0 23. m.

From Equation (13.33), we get:

u

u

u y

s

smax . log .= +5 75 5 510 ν

Thus 
umax

.
. log

. .

.
. .

0 0173
5 75

0 0173 0 23

0 019 10
5 5 24 59610 4

=
×

×
⎛
⎝⎜

⎞
⎠⎟

+ =−

∴ = × =umax . .0 0173 24 596 0.4255 m/s

′ = =
× ×

=
−

δ ν11 6 11 6 0 019 10

0 0173

4. . .

.us
0.001274 m or 1.274 mm

 Example 13.14  A rough pipe of diameter 0.3 m and length 3000 m carrying water has average height of roughness 
of 0.3 mm. Determine (i) the head lost due to friction and (ii) power required for maintaining water flow rate of 0.1 m3/s.

Solution
Let D = 0 3. m, L = 3000 m, k = = × −0 3 0 3 10 3. .mm m and Q = 0 1. m /s3 .

R
D

= = =
2

0 3

2
0 15

.
. m

 (i) V
Q

A

Q

D
= = =

×
=

( )

.

( ) .
.

π π/ /
m/s

4

0 1

4 0 3
1 415

2 2

  Since 
1

4
2 1 7410

f

R

k
= +log .

  Thus 
1

4
2

0 15

0 3 10
1 74 7 13810 3f

=
×

+ =−log
.

.
. .

∴ = × ⎛
⎝⎜

⎞
⎠⎟

=f
1

4

1

7 138
0 00491

2

.
.

h
fLV

gDf = =
× × ×

× ×
=

4

2

4 0 00491 3000 1 415

2 9 81 0 3

2 2. .

. .
20.043 m

 (ii) P
gQhw f= =

× × ×
=

ρ
1000

1000 9 81 0 1 20 043

1000

. . .
19.6622 kW
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 Example 13.15  A turbulent flow of water is maintained in a rough pipe of diameter 0.3 m and length 500 m. The 
 velocity and velocity gradient at a distance of 3 cm from the wall are observed to be 2.5 m/s and 12 s-1. Using Prandtl’s 
mixing length hypothesis and assuming linear variation of shear stress, determine (i) the wall shear stress, (ii) protrusion 
height, (iii) coefficient of friction, (iv) mean velocity, (v) head lost due to friction and (vi) power required for maintaining 
the water flow rate of 0.15 m3/s.

Solution
Let D = 0 3. m, L = 500 m, y = =3 0 03cm m. , u = 2 5. m/s, ( )du dy/ s= −12 1 and Q = 0 15. m /s3 .

R
D

= = =
2

0 3

2
0 15

.
. m

 (i) τ ρ κ=
⎛
⎝⎜

⎞
⎠⎟w y

du

dy
2 2

2

	 	 [From Prandtl’s hypothesis]

∴ = × × × =τ 1000 0 4 0 03 12 20 7362 2 2. . . N/m2   [ . ]∵κ = 0 4

  Since τ τ= −⎡
⎣⎢

⎤
⎦⎥o

y

R
1   [Linear variation]

  Thus 20 736 1
0 03

0 15
0 8.

.

.
.= −⎛

⎝⎜
⎞
⎠⎟

=τ τo o

∴ = =τo
20 736

0 8

.

.
25.92 N/m2

 (ii) us
o

w
= = =

τ
ρ

25 92

1000
0 161

.
. m/s

  Since 
u

u

y

ks
= +5 75 8 510. log .

  Thus 
2 5

0 161
5 75

0 03
8 510

.

.
. log

.
.= +

k

5 75
0 03

15 528 8 5 7 01810. log
.

. . .
k

= − =

log
. .

.
.10

0 03 7 018

5 75
1 2223

k
= =

0 03
10 16 6841 2223.

..

k
= =

∴ = =k
0 03

16 684

.

.
0.001798 m

 (iii) 
1

4
2 1 7410

f

R

k
= +log .

1

4
2

0 15

0 001798
1 74 5 582610

f
= + =log

.

.
. .

∴ = × ⎛
⎝⎜

⎞
⎠⎟

=f
1

4

1

5 5826

2

.
0.008
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 (iv) 
u

u

R

ks
= +5 75 4 7510. log .

u

0 161
5 75

0 15

0 001798
4 75 15 797510.

. log
.

.
. .= + =

∴ = × =u 15 7975 0 161. . 2.5434 m/s

 (v) u V= = 2 5434. m/s

h
fLV

gDf = =
× × ×

× ×
=

4

2

4 0 008 500 2 5434

2 9 81 0 3

2 2. .

. .
17.5845 m

 (vi) P
gQhw f= =

× × ×
=

ρ
1000

1000 9 81 0 15 17 5845

1000

. . .
25.8756 kW

Summary

 1. Turbulent flow occurs when Reynolds number (Re)  is greater 
than 4000.

 2. Darcy-Weisbach Equation: h fLV gDf = ( ) ( )4 22 / , here hf  
is the loss of head due to friction, L is the length of the pipe, 
D is the diameter of the pipe, V  is the average flow velocity 
and f  is coefficient of friction.

 3. Coefficient of friction in terms of shear stress (to): 
f Vo= ( ) ( )2 2τ ρ/ .

 4. Turbulence is the disturbance that causes transfer of fluid 
particles from one region to the other.

 5. The instantaneous velocity ( )ui  at any point in the turbulent 
flow is made up of average velocity component ( )u  and a 
randomly varying velocity component ( )′u , i.e., u u ui = + ′.  
Similarly v v vi = + ′ and w w wi = + ′ .

 6. Degree of turbulence = ′ + ′ + ′( ) /u v w2 2 2 3

 7. Intensity of turbulence / /= ′ + ′ + ′( ) ( )1 32 2 2V u v w

 8. Scale of turbulence = udt

 9. K.E. of turbulence/Mass /= ′ + ′ + ′( )u v w2 2 2 2

 10. The total shear stress (t	) in turbulent flow: τ μ η μ η= + = +
du

dy

du

dy

du

dy
( )

	τ μ η μ η= + = +
du

dy

du

dy

du

dy
( )

 11. According to Reynolds theory, the Reynolds stress is 

τ ρ ρt u v u v= ′ ′ = ′ ′ .

 12. According to Prandtl’s mixing length theory, the total shear 
stress ( )τ  is

τ μ ρ= + ( )( ) .du dy l du dy/ /2 2

 13. Prandtl’s universal velocity distribution equation: 
u u u y Rs= +max . ln( )2 5 / .

 14. Shear velocity (or friction velocity): us o= τ ρ/

 15. (i) If ( ) .k / ′ <δ 0 25, then smooth boundary, (ii) if ( )k / ′ >δ 6,  
then rough boundary and (iii) if 0 25 6. ( )< ′ <k /δ , then 
boundary in transition, here k  is the height of the irregulari-
ties and ′δ  is the thickness of laminar sublayer.

 16. Karman-Prandtl equation for smooth pipes: 

u u u ys s/ /= +5 75 5 510. log ( ) .ν

 17. Velocity distribution for turbulent flow in rough pipes:

u u y ks/ /= +5 75 8 510. log ( ) .

 18. Velocity distribution for smooth pipe: 

u u u Rs s/ /= +5 75 1 7510. log ( ) .ν

 19. Velocity distribution for rough pipe: 

u u R ks/ /= +5 75 4 7510. log ( ) .

 20. Relationship between velocity at any point and average 
velocity for smooth and rough pipes: 

( ) . log ( ) .u u u y Rs− = +/ /5 75 3 7510
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 Turbulent Flow in Pipes 13.29

 21. 1/7th power law for velocity distribution in smooth pipes: 

u u y R/ /max
/= ( )1 7

.

 22. Coefficient of friction (  f  ) for laminar flow: f = 16/ Re.

 23. The value of f for turbulent flow in smooth pipes when 

4000 < Re < 105 (Blasius equation): f = 0 0791 0 25. Re ./ .

 24. The value of f for turbulent flow in smooth pipes when 

Re 4 10 to 3.2 103 6= ×× ×× : f = +0 0008 0 05525 0 237. . Re ./ .

 25. The value of f for turbulent flow in rough pipes given by 

Nikuradse: 1 4 2 1 7410/ /f R k= +log ( ) . .

Multiple-choice Questions

 1. The relation for coefficient of friction ( )f  in terms of shear 
stress ( )τo  is

(a) f Vo= ( ) ( )2 2τ ρ/ .
(b) f Vo= τ ρ/( )2 .
(c) f Vo= τ ρ/( )2 2 .
(d) None of the above.
Here, ρ is the fluid density and V  is fluid velocity.

 2. The flow in water supply pipes is generally
(a) Turbulent.
(b) Laminar.
(c) Transition.
(d) None of the above.

 3. Shear stress according to Prandtl’s mixing length theory is 
given by

(a) ρl du dy( )/ 2.
(b) l du dy2 2( )/ .
(c) ρl2.
(d) ρl du dy2 2( )/ .

  Here, ρ is the fluid density, l  is the mixing length and ( )du dy/  
is the velocity gradient.

 4. In a turbulent flow through a pipe, the shear stress is
(a) Maximum at the centre and deceases logarithmically 

towards the pipe wall.
(b) Maximum at the centre and decreases linearly towards 

the wall.
(c) Maximum at the wall and decreases linearly to a zero 

value at the centre.
(d) None of the above.

 5. The velocity distribution in laminar sublayer in a fully turbu-
lent pipe flow is
(a) Linear.
(b) Logarithmic.
(c) Parabolic.
(d) Exponential.

 6. For a hydraulically smooth pipe, the relation between height 
of the irregularities ( )k  and thickness of laminar sublayer 
( )′δ  is given by

(a) ( ) .k / ′ <δ 0 25.
(b) ( ) .′ <δ /k 0 25.
(c) ( )k / ′ >δ 6.
(d) None of the above.

 7. For a hydraulically rough pipe, the roughness Reynolds 
number [(Re) ]r  is

(a) (Re)r < 4 .

(b) (Re)r > 100 .

(c) (Re)r > 1000.
(d) None of the above.

 8. Friction velocity ( )us  in a pipe in terms of shear stress ( )τo  
and density ( )ρ  is equal to

(a) τ ρo / .

(b) ρ τ/ o .

(c) τ ρo / .

(d) ρ τ/ o.

Review Questions

 1. Define turbulent flow and mention the factors which decide 
the type of flow in a pipe. Also give a comparison for veloc-
ity distribution in laminar and turbulent flow.

 2. Derive an expression for the Darcy-Weisbach equation.

 3. Define turbulence and also give its classification.

 4. Derive expressions for the Reynolds equations and Reynolds 
stresses for the motion of turbulent flow.

 5. Define the terms (i) mean and fluctuating velocities, (ii) 
degree and intensity of turbulence, (iii) scale of turbulence 
and (iv) kinetic energy of turbulence.
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13.30 Chapter 13

 6. Obtain an expression for shear stress on the basis of Prandtl 
mixing length theory.

 7. What is von Karman similarity concept? What are its 
limitations?

 8. Briefly discuss (i) Boussinesq’s theory and (ii) Reynolds 
theory.

 9. Obtain an expression for the Prandtl’s universal velocity dis-
tribution equation.

 10. What do you mean by hydrodynamically smooth and rough 
boundaries? Also give its criteria.

 11. Derive expressions for the velocity distribution for turbulent 
flow in smooth and rough pipes.

 12. Derive expressions for the velocity distribution in terms of 
average velocity for smooth and rough pipes.

 13. Derive an expression for the difference of local velocity and 
average velocity for turbulent flow through smooth or rough 
pipe.

Problems

 1. A turbulent flow of water in a pipe of diameter 800 mm has 
velocity profile as u y= +4 1 4( )ln/ , where velocity u  is 
in m/s and the distance y from the wall is measured in m.  
If shear stress at a point 0.1 m from the wall is measured as 
1.25 N/m2, then find the turbulence viscosity, mixing length 
and turbulence constant.

[Ans. 0.5 Ns/m2, 0.01414 m, 0.1414]

 2. If in a pipe of diameter 300 mm having turbulent flow, the 
centre velocity is 7.5 m/s and that at 50 mm from the pipe 
wall is 6 m/s, then determine the shear friction velocity.

[Ans. 0.546 m/s]

 3. In a pipe of diameter 0.1 m carrying water has the velocities 
at pipe centre and 30 mm from the pipe centre are measured 
as 2 m/s and 1.5 m/s, respectively. Determine the wall shear-
ing stress.

[Ans. 47.742 N/m2]

 4. In a rough pipe of diameter 90 mm, the velocity of flow 
increases by 20% as the pitot tube is moved from a point 
2.5 cm to a point 1 cm from the pipe wall. Determine the 
height of roughness.

[Ans. 3.08 mm]

 5. A smooth pipe of diameter 76 mm and length 1000 m carries 
water at the rate of 0.48 m3/min. If coefficient of friction 
is given as f = 0 0791 1 4. / (Re )/  and kinematic viscosity of 
water is 0.015 stokes, then find (i) the loss of head, (ii) wall 
shearing stress, (iii) centreline velocity, (iv) shear stress and 
velocity at 25 mm from the pipe wall and (v) thickness of 
laminar sublayer.

[Ans. 38.17 m, 7.114 N/m2, 2.08 m/s,  
2.434 N/m2, 1.99 m/s, 0.2064 mm]

 6. A pipe carrying water has turbulent flow with shear stress 
20 N/m2 and surface irregularity k = 0 3. mm. Determine 
whether the pipe behaves as hydrodynamically rough or 
smooth, if the kinematic viscosity of fluid is one stoke.

[Ans. smooth]

 7. A rough pipe of diameter 6 cm carries water. If the velocity 
at a point 2 cm from the wall is 24% more than the velocity 

at a point 1 cm from the pipe wall, then determine the aver-
age height of the roughness.

[Ans. 1.675 cm]

 8. For turbulent flow in a pipe of diameter 300 mm, determine 
the distance from the pipe wall at which the local velocity is 
equal to the average velocity.

[Ans. 33.4 mm]

 9. A rough pipe of diameter 0.5 m and length 300 m carrying 
water with a velocity of 3 m/s has an absolute roughness of 
0.25 mm. If the kinematic viscosity of water is 0.9 centis-
toke, find (i) the type of flow and (ii) head loss in friction.

[Ans. 0.0042, 4.624 m]

 10. A turbulent flow of water is maintained in a pipe of 5 cm 
diameter. If the velocity at the centre of the pipe is 2.4 m/s 
and 1.5 cm away from the centre is 1.4 m/s, then determine 
the shear stress at the pipe wall.

[Ans. 190.97 N/m2]

 11. The velocity at the centre of the pipe and 10 cm away from 
the centre are 2.4 m/s and 2 m/s. If the pipe diameter is 
30 cm and the flow is turbulent, then determine the average 
velocity and discharge through the pipe.

[Ans. 1.853 m/s, 0.13098 m3/s]

 12. A rough pipe of diameter 0.1 m carries water at a rate of 
0.05  m3/s. If the average height of the protrusions on the 
pipe surface is 0.15 mm and kinematic viscosity of water 
is one centistoke, then determine (i) the coefficient of fric-
tion, (ii) maximum velocity, (iii) stress at the pipe surface, 
(iv) shear velocity and (v) thickness of laminar sublayer.

[Ans. 0.00543, 6.37 m/s, 110.17 N/m2, 0.332 m/s, 0.0035 cm]

 13. A pipe of length 50 m and diameter 300 mm carries water 
at a velocity of 3.2 m/s. If the kinematic viscosity of water 
is 0.01 stoke, then determine the head lost due to friction by 
using Darcy relation.

[Ans. 0.88 m]

 14. Air flows through a 0.25 m diameter rough pipe with aver-
age velocity of 8 m/s. Determine the coefficient of friction 
and wall shear stress when the average roughness of pipe 
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 Turbulent Flow in Pipes 13.31

surface is 0.5 mm and the flow is turbulent. The values of 
density and kinematic viscosity for air are 1.22 kg/m3 and 
1.5 ×	10-5 m2/s, respectively.

[Ans. 0.00585, 0.2284 N/m2]

 15. A smooth pipe of length 750 m and diameter 0.4 m carries 
water at a rate of 40 litres per second. If the kinematic vis-
cosity of water is 0.018 stokes, then find (i) the coefficient of 
friction, (ii) head lost due to friction, (iii) wall shear stress, 
(iv) centreline velocity and (v) thickness of laminar sublayer.
[Ans. 0.00485, 0.188 m, 0.2457 N/m2, 0.38 m/s, 1.33 mm]

 16. A fluid with a kinematic viscosity of one centistoke and 
 specific gravity of 1.1 flows through a pipe of diameter 0.3 m 
and length 1000 m. If the flow rate is 66.67 litres per second, 
then find the maximum pressure and power rating of the pump.

[Ans. 23.61 kPa, 1.574 kW]

 17. A rough pipe of diameter 0.48 m and length 850 m carries 
water at a rate of 500 litres per second. If the average height 
of roughness is 0.15 mm, then determine the coefficient of 
friction, wall shear stress, centreline velocity and velocity at 
a distance of 0.2 m from the pipe wall.

[Ans. 0.00376, 14.352 N/m2, 3.225 m/s, 3.171 m/s]

 18. For turbulent flow in a rough pipe of radius R, the coefficient 
of friction f = 0.01, determine the local velocity at a radial 
distance of R/4 from the axis of pipe. Also determine the 
velocity at the centre of the pipe if the average velocity is 
0.4 m/s.

[Ans. 0.485 m/s, 0.505 m/s]

 19. A turbulent flow of water is maintained in a rough pipe of 
diameter 0.24 m. The velocity and velocity gradient at a 
 distance of 3 cm from the wall are 2 m/s and 10 s-1, respec-
tively. Using Prandtl mixing length theory, determine (i) the 
wall shear stress, (ii) protrusion height, (iii) coefficient of 
friction and (iv) average velocity.

[Ans. 19.2 N/m2, 0.0028 m, 0.00998, 1.96 m/s]

 20. The velocity in a rough pipe of diameter 10 cm is observed 
by a pitot tube. When the pitot tube is moved from 1.5 cm to 
3 cm from the wall, the increase in velocity is observed to be 
10%. Determine the roughness of the pipe and coefficient of 
friction for the pipe.

[Ans. 0.44 mm, 0.0073]

ANSWERS TO MULTIPLE-CHOICE QUESTIONS

 1. (a) 2. (a) 3. (d) 4. (c) 5. (a)
 6. (a) 7. (b) 8. (a)
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14.1 ❐ INTRODUCTION
A pipe (commonly circular in section) is a closed conduit through which fluids flow under pressure. Since the fluids flow 
under pressure, the pipes always run completely full and there is no free surface. Atmospheric pressure exists in a pipe 
running partially full and thus, it behaves like an open channel such as sewer pipes. A fluid flowing through the pipe is 
subjected to resistance due to shear forces between fluid particles and boundary walls of the pipe and between the fluid par-
ticles themselves due to viscosity of fluid. This resistance to the flow is known as frictional resistance and it causes loss of 
a certain amount of fluid energy. Pipes are commonly used for distribution of water, drainage collection and for supplying 
oil and gases. The flow in a pipe is characterized as internal flow. This chapter deals with the analysis of internal flow of a 
liquid with constant viscosity and density. In this chapter, various problems of pipe flow based on major and minor energy 
losses, pipes in series, parallel and branches, flow through syphon and nozzles, water hammer, and power transmission 
through pipes are discussed and solved with the help of empirical and theoretical formulae.

14.2 ❐ ENERGY LOSS (HEAD LOSS) IN PIPES
Resistance offered to the flowing fluid through a pipe results in loss of energy. These losses may be major losses and minor 
losses.

14.2.1 Major Losses
When fluid flows through a pipe, the major loss of energy is caused by friction. In long pipelines, this loss forms the major 
portion of the total loss and thus, the other losses may be neglected. Therefore, this loss of energy due to friction is known 
as major loss.

14.2.2 Minor Losses
The minor energy losses occur due to change in the velocity of flowing fluid in the magnitude or direction. In long pipes, 
these losses are small when compared to the friction losses and they are known as minor losses. However, in short pipes, 
these losses may sometimes supersede the friction loss. The minor head losses may be (i) due to sudden enlargement, 
(ii) due to sudden contraction, (iii) at the entrance of a pipe, (iv) at the exit of a pipe, (v) due to obstruction in a pipe,  
(vi) due to bend in a pipe (vii) in various pipe fittings.

Chapter 14

Flow Through Pipes
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14.2 Chapter 14

14.3 ❐ FORMULAE FOR MAJOR ENERGY LOSS IN PIPES
The following formulae are used to determine the major energy loss in the analysis of the pipe flow problems.

14.3.1 Darcy-Weisbach Formula
This formula is commonly used to determine the loss of head due to friction in pipes and the expression is as follows.

	 h
fLV

gDf =
4

2

2

 (14.1)

	 h
fL

gD

Q

A

fL

gD

Q

D

fLQ

gD
f = ⎡

⎣⎢
⎤
⎦⎥

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
4

2

4

2 4

322

2

2 2

2 5( / )π π
 (14.1a)

Here, hf  is the loss of head due to friction, L is the length of the pipe, D  is the diameter of the pipe, A is the area of cross- 
section of the pipe, V  is the average flow velocity, Q is the discharge and f  is the coefficient of friction which can be 
 calculated on the basis of Reynolds number (Re)	as given below.

	 f = <
16

2000
Re

( Re )When  (14.2)

	 f =
0 0791

0 25

.

Re
( )

.
When Re varies from 4000 to 106  (14.3)

14.3.2 Chezy’s Formula
In Equation (13.1) given in Chapter 13, hf  is the loss of head due to friction, w is the weight density of fluid, ′f  is the 
dimensional parameter, P  is the wetted perimeter, A is the area of cross section of the pipe, L is the length of the pipe and 
V  is the mean (average) flow velocity.

h
f

w

P

A
LVf = ′ ⎛

⎝⎜
⎞
⎠⎟

2   [Equation (13.1)]

V
w

f

A

P

h

L

f=
′

×

Here, C w f= ′/  is the Chezy’s constant and the dimensions are [ ]/L T1 2 1− , m A P= ( )/  is the hydraulic mean depth (or 
hydraulic radius) and i h Lf= ( )/  is the loss of head per unit length of pipe.

Thus V C m i=  (14.4)

The Equation (14.4) is called Chezy’s formula invented by the French engineer Chezy (1775). This formula may be used 
for computing head loss due to friction in pipes. However, it is not commonly used. The hydraulic engineers use C  without 
bothering about the dimensions even though it is very important.

14.3.3 Manning’s Formula
This formula is often used for the analysis of the pipe flow problems and the expression is given below.

	 V
n

m i=
1 2 3 1 2/ /  (14.5)
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 Flow Through Pipes 14.3

Here, V  is the average flow velocity, n is the Manning’s roughness whose value depends on the nature of the boundary, m is 
the hydraulic mean depth and i h Lf= ( )/  is the loss of head per unit length of pipe. The hydraulic engineers use n without 
bothering about the dimensions even though it is very important.

14.3.4 Hazen William’s Formula
Earlier, this formula was widely used for designing water supply systems but nowadays it is not used. Due to its empirical 
nature, the range of applicability of this formula is limited and if used outside its data, the level of error is significant. 
This formula is applicable to pipes having diameter more than 5 cm and flow velocity less than 3 m/s and it is given by the 
following expression.

	 V k m i= 0 848 0 63 0 54. . .  (14.6)

Here, V  is the average flow velocity, k  is the coefficient whose value depends on the nature of the boundary, m is the 
 hydraulic mean depth, i h Lf= ( )/  is the loss of head per unit length of pipe. The value of k  for very smooth pipes is taken 
as 130 and for extremely smooth and straight pipes it is taken as 140.

 Example 14.1  Find the head lost due to friction in a pipe of diameter 0.15 m and length 60 m carrying water at a veloc-
ity of 2.5 m/s, using (i) Darcy-Weisbach formula and (ii) Chezy’s formula for which C = 58. Take kinematic viscosity of 
water as 0.012 stoke.

Solution
Let D = 0 15. m, L = 60 m , V = 2 5. m/s, C = 58 and ν = = × −0 012 0 012 10 4. .stoke m /s2 .

 (i) Re
. .

.
= =

×
×

=−
VD

ν
2 5 0 15

0 012 10
312500

4

  Since Re > 4000, the flow is turbulent.

  Thus f = = =
0 0791 0 0791

312500
0 003345

0 25 0 25

.

Re

.
.

. .

h
fLV

gDf = =
× × ×

× ×
=

4

2

4 0 003345 60 2 5

2 9 8 0 15

2 2. .

. .
1.705 m

 (ii) m
A

P

D

D

D
= = = = =

( / ) .π
π
4

4

0 15

4

2

0.0375 m

  Since V C m i C m
h

L

f= = ×

  Thus 2 5 58 0 0375
60

. .= × ×
hf

∴ = ⎛
⎝⎜

⎞
⎠⎟

× =hf
2 5

58

60

0 0375

2.

.
2.973 m

 Example 14.2  If an oil with specific gravity 0.75 and kinematic viscosity 0.25 stoke flows at a rate of 0.3 m3/s through a 
pipe of diameter 0.3 m and length 500 m, then find the head lost due to friction and the power required to maintain the flow.
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14.4 Chapter 14

Solution

Let Soil = 0 75. , ν = = × −0 25 0 25 10 4. .stoke m /s2 , Q = 0 3. m /s3 , D = 0.3 m and L = 500 m.

ρ ρ= = × =S woil
3kg/m0 75 1000 750.

V
Q

A

Q

D
= = =

×
=

( / )

.

( / ) .
.

π π4

0 3

4 0 3
4 244

2 2
m/s

Re
. .

.
= =

×
×

=−
VD

ν
4 244 0 3

0 25 10
50928

4

Since Re > 4000, the flow is turbulent.

f = = =
0 0791 0 0791

50928
0 00526

0 25 0 25

.

Re

.
.

. .

h
fLV

gDf = =
× × ×

× ×
=

4

2

4 0 00526 500 4 244

2 9 81 0 3

2 2. .

. .
32.192 m

P
gQhf= =

× × ×
=

ρ
1000

750 9 81 0 3 32 192

1000

. . .
71.056 kW

 Example 14.3  Using Manning’s formula, find the head lost due to friction in a pipe of diameter 0.2 m and length  
1000 m carrying water at rate of 0.05 m3/s when Manning’s roughness is 0.016.

Solution
Let D = 0 2. m, L = 1000 m, Q = 0 05. m /s3  and n = 0 016. .

V
Q

A

Q

D
= = =

×
=

( / )

.

( / ) .
.

π π4

0 05

4 0 2
1 59

2 2
m/s

m
A

P

D

D

D
= = = = =

( / ) .π
π
4

4

0 2

4
0

2

.05 m

Since V
n

m i
n

m
h

L

f= =
⎛

⎝⎜
⎞

⎠⎟
1 12 3 1 2 2 3

1 2
/ / /

/

Thus 1 59
1

0 016
0 05

1000
2 3

1 2

.
.

. /
/

= × ×
⎛

⎝⎜
⎞

⎠⎟
hf

∴ = ×
×⎡

⎣
⎢

⎤

⎦
⎥ =hf 1000

1 59 0 016

0 052 3

2
. .

. /
35.135 m

 Example 14.4  Using Hazen-William’s formula find the head lost due to friction in a pipe of diameter 0.1 m and length 
1000 m carrying water at rate of 0.02 m3/s. Take k = 100.

Solution
Let D = 0 1. m, L = 1000 m, Q = 0 02. m /s3  and k = 100.
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V
Q

A

Q

D
= = =

×
=

( / )

.

( / ) .π π4

0 02

4 0 12 2
2.5465 m/s

m
A

P

D

D

D
= = = = =

( / ) .π
π
4

4

0 1

4

2

0.025 m

Since V km i k m
h

L

f= =
⎛

⎝⎜
⎞

⎠⎟
0 848 0 8480 63 0 54 0 63

0 54

. .. . .
.

Thus 2 5465 0 848 100 0 025
1000

0 63
0 54

. . . .
.

= × × ×
⎛

⎝⎜
⎞

⎠⎟
hf

∴ = ×
× ×

⎡

⎣
⎢

⎤

⎦
⎥ =hf 1000

2 5465

0 848 100 0 0250 63

1 0 54
.

. . .

/ .

112.128 m

 Example 14.5  A pipe of diameter 0.3 m and length 2000 m carries water at the rate of 0.05 m3/s. Find the head loss in 
pipe if coefficient of friction is given by f = +[ . ( . / Re )].0 002 0 09 0 5  and kinematic viscosity of water is 0.012 stoke.

Solution
Let D = 0 3. m, L = 2000 m , Q = 0 02. m /s3 , f = +[ . ( . / Re )].0 002 0 09 0 5  and ν = = × −0 012 0 012 10 4. .stoke m /s2 .

V
Q

A

Q

D
= = =

×
=

( / )

.

( / ) .
.

π π4

0 05

4 0 3
0 707

2 2
m/s

Re
. .

.
= =

×
×

=−
VD

ν
0 707 0 3

0 012 10
176750

4

f = + = + =0 002
0 09

0 002
0 09

176750
0 002214

0 5 0 5
.

.

Re
.

.
.

. .

h
fLV

gDf = =
× × ×

× ×
=

4

2

4 0 002214 2000 0 707

2 9 81 0 3

2 2. .

. .
1.5041 m

 Example 14.6  A hostel consisting of 1000 students is supplied water by a pumping station situated at 2500 m from the 
hostel. The total amount of water required is to be supplied within 8 hours and each student requires 200 litres of water per 
day. If the friction loss through pipe is 40 m of water, then find the diameter of the pipe required. Use Darcy’s formula and 
take f = 0 001. .

Solution
Let n = 1000 , L = 2500 m, t = 8 hours , q l= =200 0 2/day m /day3. , hf = 40 m and f = 0 001. .

Let Q be the maximum flow per second and D  be the required diameter of the pipe.

Q
qn

t
= =

×
×

=
0 2 1000

8 3600
0 006944

.
. m /s3

V
Q

A D D
= = =

0 006944

4

0 00884
2 2

.

( / )

.

π
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14.6 Chapter 14

Since h
fLV

D gf =
×

4

2

2

Thus 40
4 0 001 2500

2 9 81

0 00884
2

2

=
× ×

× ×
× ⎛

⎝⎜
⎞
⎠⎟

.

.

.

D D

D5
2

74 0 001 2500 0 00884

2 9 81 40
9 9574 10=

× × ×
× ×

= × −. .

.
.

∴ = × =−D ( . ) /9 9574 10 7 1 5 0.06304 m

14.4 ❐ MINOR ENERGY LOSSES IN PIPES
The minor energy losses (or head losses) are caused due to change in magnitude or direction of velocity of flowing fluid. 
The minor head losses are also known as secondary losses. The minor head losses include (i) loss of head due to sudden 
enlargement, (ii) loss of head due to sudden contraction, (iii) loss of head at the entrance of a pipe, (iv) loss of head at the 
exit of a pipe, (v) loss of head due to obstruction in a pipe, (vi) loss of head due to bend in a pipe and (vii) loss of head in 
various pipe fittings.

The expressions for the above mentioned minor head losses are derived in the following sections.

14.4.1 Loss of Head Due to Sudden Enlargement
Consider that a fluid flows through a pipe in which there is a sudden enlargement of cross section from A1 to A2 as shown 
in Figure 14.1. Due to sudden change in the cross-sectional area of the flow passage, the flow separates from the boundary. 
It forms regions of separation in which turbulent eddies are formed which results in the loss of energy.

Consider section 1–1 and section 2–2 before and 
after the enlargement respectively. Let p1, V1 and A1 be 
the pressure, velocity and area, respectively, at section 
1–1 and p2, V2 and A2 be the corresponding values 
at section 2–2 and ( )hL e be the loss of head due to 
sudden enlargement. Experimentally, the intensity of 
pressure of the eddies ( )po  in area ( )A A2 1−  is found 
equal to pressure p1.

Apply Bernoulli’s equation to sections 1–1 and 
2–2, we get:

p

g

V

g

p

g

V

g
hL e

1 1
2

2 2
2

2 2ρ ρ
+ = + + ( )   [ ]∵ z z1 2=

( )h
p p

g

V V

gL e =
−⎛

⎝⎜
⎞
⎠⎟

+
−⎛

⎝
⎜

⎞

⎠
⎟1 2 1

2
2

2

2ρ
 (i)

For the control volume between sections 1–1 and 2–2, the force applied in the direction of flow is equal to the rate of change 
of momentum, i.e., F Q V V= −ρ ( )2 1 .

Thus p A p A p A A Q V Vo1 1 2 2 2 1 2 1− + − = −( ) ( )ρ

p A p A p A A Q V V1 1 2 2 1 2 1 2 1− + − = −( ) ( )ρ   [ ]∵ p po = 1

p A p A p A p A A V V V1 1 2 2 1 2 1 1 2 2 2 1− + − = −ρ ( )  [ ]∵Q A V= 2 2

p1A1 p2A2
V1 V2

2

1

1

2

Figure 14.1 Sudden enlargement in a pipe
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 Flow Through Pipes 14.7

Rearranging and dividing both sides by g , we get:

	

p p

g

V V V

g
1 2 2 2 1−

=
−

ρ
( )

 (ii)

Substituting expression (ii) in expression (i), we get:

( )
( )

h
V V V

g

V V

g

V V V V V

gL e =
−

+
−⎛

⎝
⎜

⎞

⎠
⎟ =

− + −2 2 1 1
2

2
2

2
2

1 2 1
2

2
2

2

2 2

2

Thus ( )
( )

h
V V V V

g

V V

gL e =
+ −

=
−1

2
2

2
1 2 1 2

22

2 2  (14.7)

The Equation (14.7) is also sometimes known as Borda–Carnot equation for head loss and the expression is given below.

	
( )h

V

g

A

A

V

g

A

AL e = −
⎛
⎝⎜

⎞
⎠⎟

= −
⎛
⎝⎜

⎞
⎠⎟

1
2

1

2

2
2

2
2

1

2

2
1

2
1   [ ]∵ AV A V1 1 2 2=  (14.8)

 Example 14.7  A horizontal pipe of diameter 0.2 m is suddenly enlarged to 0.3 m. If the rate of flow of water through 
the pipe is 0.2 m3/s and the intensity of pressure in the smaller pipe is 100 kPa, then find (i) the head loss due to sudden 
enlargement, (ii) power loss due to enlargement and (iii) intensity of pressure in the larger diameter pipe.

Solution
Let D1 0 2= . m, D2 0 3= . m, Q = 0 2. m /s3  and p1 100= kPa.

 (i) V
Q

A

Q

D
1

1 1
2 24

0 2

4 0 2
6 3662= = =

×
=

( / )

.

( / ) .
.

π π
m/s

V
Q

A

Q

D
2

2 2
2 24

0 2

4 0 3
= = =

×
=

( / )

.

( / ) .π π
2.83 m/s

( )
( ) ( . . )

.
h

V V

gL e =
−

=
−

×
=1 2

2 2

2

6 3662 2 83

2 9 81
0.6373 m

  (ii) P
gQ hw L e= =

× × ×
=

ρ ( ) . . .

1000

1000 9 81 0 2 0 6373

1000
1.2504 kW

 (iii) 
p

g

V

g
z

p

g

V

g
z h

w w
L e

1 1
2

1
2 2

2

22 2ρ ρ
+ + = + + + ( )   [Bernoulli’s equation]

p g
p

g

V

g

V

g
hw

w
L e2

1 1
2

2
2

2 2
= + − −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

ρ
ρ

( )   [ ]∵ z z1 2=

  Thus p2

3 2 2

1000 9 81
100 10

1000 9 81

6 3662

2 9 81

2 83

2 9 81
0= × ×

×
×

+
×

−
×

−.
.

.

.

.

.
.66373

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

∴ = ≈p2 3

110007 9

10

.
110.01 kPa
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14.8 Chapter 14

 Example 14.8  For sudden expansion in a pipe flow, workout the optimum ratio between the diameter of the pipe before 
expansion and the diameter of pipe after expansion so that the pressure rise is maximum.

Solution
From Bernoulli’s theorem, we get:

p

g

p

g

V

g

V

g
hL e

2 1 1
2

2
2

2 2ρ ρ
− = − − ( )   [ ]∵ z z1 2=

p p g
V

g

V

g

V V

g2 1
1
2

2
2

1 2
2

2 2 2
− = − −

−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

ρ
( )

  [Substitute value of ( )hL e]

V
A

A
V

D

D
V

D

D
V k V2

1

2
1

1
2

2
2 1

1

2

2

1
2

1
4

4
= = =

⎛
⎝⎜

⎞
⎠⎟

=
( / )

( / )

π
π

  [From Continuity equation]

Thus p p p g
V

g

k V

g

V k V

g2 1
1
2 2

1
2

1
2

1
2

2 2 2
− = = − −

−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Δ ρ
( ) ( )

Δp g
V

g
k k= − − −ρ 1

2
4 2 2

2
1 1[ ( ) ]

For maximum pressure rise: d p dk( ) /Δ = 0

d

dk
g

V

g
k kρ 1

2
4 2 2

2
1 1 0{ ( ) }− − −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=

Thus − − − − =4 2 1 2 03 2k k k( )( )

4 8 03k k− =

4 1 2 02k k( )− =

( )1 2 02− =k   [ ]∵k ≠ 0

k =
1

2
  [Neglect –ve root]

∴
⎛
⎝⎜

⎞
⎠⎟

=
D

D
1

2

1

2

 Example 14.9  An oil of specific gravity 0.8 flows in 80 mm diameter pipeline. A sudden enlargement occurs into a sec-
ond pipeline of such a diameter that maximum pressure rise is obtained. If the oil flow rate through the pipeline is 0.0125 
m3/s, then find (i) the loss of energy in the sudden enlargement and (ii) differential gauge length showed by an oil-mercury 
manometer connected between the two pipes.

Solution
Let Soil = 0 8. , D1 80 0 08= =mm m.  and Q = 0 0125. m /s3 .

M14 Fluid Mechanics and Hydraulic Machines XXXX 01_Final.indd   8 4/19/2019   2:18:52 PM

Download more at Learnclax.com



 Flow Through Pipes 14.9

 (i) V
Q

A

Q

D
1

1 1
2 24

0 0125

4 0 08
2 487= = =

×
=

( )

.

( ) .
.

π π/ /
m/s

  Diameter of the second pipe for maximum pressure rise is given from previous example.

D D2 12 2 0 08= × = × =. 0.11314 m

V
Q

A

Q

D
2

2 2
2 24

0 0125

4 0 11314
= = =

×
=

( / )

.

( / ) .π π
1.243 m/s

( )
( ) ( . . )

.
h

V V

gL e =
−

=
−

×
=1 2

2 2

2

2 487 1 243

2 9 81
0.0789 m

 (ii) From Bernoulli’s theorem, we get:

p p

g

V V

g
hL e

2 1 1
2

2
2 2 2

2

2 487 1 243

2 9 81
0 0789

−
=

−
− =

−
×

− =
ρ

( )
. .

.
. 0.1576 m

  Let y  be the reading of the U-tube oil-mercury manometer.

p p

g
y

S

S
m2 1 1

−
= −

⎛
⎝⎜

⎞
⎠⎟ρ oil

0 1576
13 6

0 8
1.

.

.
= −⎛

⎝⎜
⎞
⎠⎟

y

∴ = =y
0 1576

16

.
0.00985 m

14.4.2 Loss of Head Due to Sudden Contraction
Consider a fluid flowing through a pipe in which 
there is a sudden contraction of cross section from A1 
to A2 as shown in Figure 14.2. Due to sudden reduc-
tion in the cross-sectional area of the flow passage, 
the streamlines converge to a minimum cross sec-
tion known as vena-contracta (section C–C) and then 
expand to fill the downstream pipe flow. Consider sec-
tion 1–1 and section 2–2 before and after the contrac-
tion, respectively. Let p1, V1 and A1 be the pressure, 
velocity and area, respectively, at section 1–1 and p2,  
V2 and A2 be the corresponding values at the section 
2–2 and Vc and Ac be the velocity and area of the flow 
at section C–C and ( )hL c be the loss of head due to 
sudden contraction.

The loss of head is negligible during contraction of the flow (i.e., from section 1-1 to section C-C) and thus, the main 
loss of head is due to the sudden enlargement beyond the vena-contracta (i.e., from section C-C to section 2-2). In fact, 
( )hL c is the loss of head due to sudden enlargement from section C-C to the section 2-2 and it is given from Equation (14.7) 
as follows.

	
( )

( )
h

V V

g

V

g

V

VL c
c c=

−
= −

⎛
⎝⎜

⎞
⎠⎟

2
2

2
2

2

2

2 2
1  (i)

p1A1

p2A2

1

1

2

2

C

C

V1
V2

Figure 14.2 Sudden contraction in a pipe
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14.10 Chapter 14

A V A Vc c = 2 2   [Continuity equation]

V

V

A

A A A C
c

c c c2

2

2

1 1
= = =

( / )

Thus V
V

Cc
c

= 2

Substituting this value of V V Cc c= ( )2 /  in expression (i), we get:

	 ( )h
V

g

V

C V

V

g CL c
c c

= −
⎛
⎝⎜

⎞
⎠⎟

= −
⎛
⎝⎜

⎞
⎠⎟

2
2

2

2

2
2

2 2

2
1

2

1
1  (14.9)

	 ( )h
kV

gL c = 2
2

2
 (14.9a)

Here, k
Cc

= −
⎛
⎝⎜

⎞
⎠⎟

1
1

2

For Cc = 0 62. , k = 0 376.

	 ( ) .h
V

gL c = 0 376
2
2

2

 (14.10)

However, if value of Cc is not given, then assume k = 0 5. , then Equation (14.9a) is written as follows.

	 ( ) .h
V

gL c = 0 5
2
2

2

 (14.11)

 Example 14.10  A pipe carrying 0.12 m3/s of water suddenly reduces from 0.4 m to 0.2 m diameter. If the loss of head 
is 0.3 m, then find the coefficient of contraction.

Solution
Let Q = 0 12. m /s3 , D1 0= .4 m, D2 0= .2 m and ( )hL c = 0.3 m.

V
Q

A

Q

D
2

2 2
2 24

0 12

4 0 2
= = =

×
=

( / )

.

( / ) .π π
3.82 m/s

Since ( )h
V

g CL c
c

= −
⎛
⎝⎜

⎞
⎠⎟

2
2 2

2

1
1

Thus 0 3
3 82

2 9 81

1
1

2 2

.
.

.
=

×
× −

⎛
⎝⎜

⎞
⎠⎟Cc

1 0 3 2 9 81

3 82
1 1 63511

2Cc
=

× ×
+ =

. .

.
.

∴ = =Cc
1

1 63511.
0.6116
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 Flow Through Pipes 14.11

 Example 14.11  The diameter of a horizontal pipe suddenly reduces from 0.4 m to 0.2 m due to which pressure changes 
from 125 kN/m2 to 105 kN/m2. If the coefficient of contraction is 0.62, then find the flow rate of water.

Solution
Let D1 0 4= . m, D2 0 2= . m, p1 125= kN/m2 , p2 105= kN/m2  and Cc = 0 62. .

( )
.

.h
V

g C

V

g

V

gL c
c

= −
⎛
⎝⎜

⎞
⎠⎟

= −⎛
⎝⎜

⎞
⎠⎟

=2
2 2

2
2 2

2
2

2

1
1

2

1

0 62
1 0 376

2

From continuity equation, we get:

V
A V

A

D

D
V

D

D
V V1

2 2

1

2
2

1
2 2

2

1

2

2

2

2
4

4

0 2

0 4
= = =

⎛
⎝⎜

⎞
⎠⎟

= ⎛
⎝⎜

⎞
⎠⎟

( / )

( / )

.

.

π
π

==
V2

4

Applying Bernoulli’s theorem, we get:

p

g

V

g

p

g

V

g
h

w w
L c

1 1
2

2 2
2

2 2ρ ρ
+ = + + ( )   [ ]∵ z z1 2=

Thus 
125 10

1000 9 81

4

2

105 10

1000 9 81 2
0 376

3
2

2 3
2

2
2

2×
×

+ =
×
×

+ +
.

( / )

.
.

V

g

V

g

V

22g

12 7421
16 2

10 7034 1 376
2

2
2

2
2

. . .+
×

= +
V

g

V

g

1 3135
2

2 03872
2

. .
V

g
=

∴ =
×

=
× ×

=V
g

2
2 0387 2

1 3135

2 0387 2 9 81

1 3135
5 5184

.

.

. .

.
. m/s

Q A V D V= = × = × × =2 2 2
2

2
2

4 4
0 2 5 5184

π π
. . 0.1734 m /s3

 Example 14.12  The diameter of a horizontal pipe suddenly reduces from 0.5 m to 0.25 m due to which pressure 
changes from 135 kN/m2 to 110 kN/m2. If the flow rate of water is 0.325 m3/s, then find the coefficient of contraction.

Solution
Let D1 0 5= . m , D2 0= .25 m , p1 135= kN/m2 , p2 110= kN/m2  and Q = 0 325. m /s3 .

V
Q

A

Q

D
1

1 1
2 24

0 325

4 0 5
1 6552= = =

×
=

( / )

.

( / ) .
.

π π
m/s

From continuity equation, we get:

V
A V

A

D

D
V

D

D
V V1

2 2

1

2
2

1
2 2

2

1

2

2

24

4

0 25

0 5
= = =

⎛
⎝⎜

⎞
⎠⎟

= ⎛
⎝⎜

⎞
⎠⎟

( / )

( / )

.

.

π
π

22
2

4
=

V

Thus V V2 14 4 1 6552 6 6208= = × =. . m/s

M14 Fluid Mechanics and Hydraulic Machines XXXX 01_Final.indd   11 4/19/2019   2:19:12 PM

Download more at Learnclax.com



14.12 Chapter 14

Applying Bernoulli’s theorem, we get:

p

g

V

g

p

g

V

g
h

w w
L c

1 1
2

2 2
2

2 2ρ ρ
+ = + + ( )   [ ]∵ z z1 2=

p

g

V

g

p

g

V

g

V

g Cw w c

1 1
2

2 2
2

2
2 2

2 2 2

1
1

ρ ρ
+ = + + −

⎛
⎝⎜

⎞
⎠⎟

  [Substituting the value of ( )hL c]

Thus 
135 10

1000 9 81

1 6552

2 9 81

110 10

1000 9 81

6 6208

2 9

3 2 3 2×
×

+
×

=
×
×

+
×.

.

. .

.

..

.

.81

6 6208

2 9 81

1
1

2 2

+
×

× −
⎛
⎝⎜

⎞
⎠⎟Cc

13 7615 0 13964 11 21305 2 2342 2 2342
1

1
2

. . . . .+ = + + × −
⎛
⎝⎜

⎞
⎠⎟Cc

1 0 45389

2 2342
1 1 45073

Cc
= + =

.

.
.

∴ = =Cc
1

1 45073.
0.6893

 Example 14.13  A horizontal pipeline carrying water suddenly contracts from a diameter of 0.65 m to 0.4 m. After a 
short distance, it suddenly enlarges to its original diameter. The pressure values at sections before contraction and at the 
middle of the contracted region were measured as 120 kPa and 75 kPa, respectively. If the coefficient of contraction is 0.64, 
then determine the flow rate through the pipe and the pressure of water after enlargement.

Solution
Refer Figure 14.3. Let D D1 3= = 0.65 m, D2 = 0.4 m, p1 120= kPa, 

p2 7= 5 kPa and Cc = 0 64. .

From continuity equation, we get:

V
A V

A

D

D
V

D

D
V V1

2 2

1

2
2

1
2 2

2

1

2

2

24

4

0 4

0 65
= = =

⎛
⎝⎜

⎞
⎠⎟

= ⎛
⎝⎜

⎞
⎠⎟

( / )

( / )

.

.

π
π

22 20 3787= . V

( )
. .

.h
V

g C

V
VL c

c
= −

⎛
⎝⎜

⎞
⎠⎟

=
×

× −⎛
⎝⎜

⎞
⎠⎟

=2
2 2

2
2 2

22

1
1

2 9 81

1

0 64
1 0 01613 22

Applying Bernoulli’s theorem between sections 1 and 2, we get:

p

g

V

g

p

g

V

g
h

w w
L c

1 1
2

2 2
2

2 2ρ ρ
+ = + + ( )   [ ]∵ z z1 2=

120 10

10 9 81

0 3787

2 9 81

75 10

10 9 81 2 9 81

3

3
2

2 3

3
2

2×
×

+
×

=
×
×

+
×.

( . )

. . .

V V
++ 0 01613 2

2. V

12 23241 0 0073 7 64526 0 05097 0 016132
2

2
2

2
2. . . . .+ = + +V V V

0 0598 4 587152
2. .V =

p1

Q

1

1

2

2

3

3

p2

p3

D1 D3D2

Figure 14.3
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 Flow Through Pipes 14.13

∴ = =V2
4 58715

0 0598
8 7583

.

.
. m/s

Q A V D V= = × = × × =2 2 2
2

2
2

4 4
0 4 8 7583

π π
. . 1.101 m /s3

Now V V1 20 3787 0 3787 8 7583 3 317= = × =. . . . m/s

Thus V V1 3 3 317= = . m/s   [ ]∵ D D1 3=

Applying Bernoulli’s equation between section 2 and 3, we get:

p

g

V

g

p

g

V

g
h

w w
L e

2 2
2

3 3
2

2 2ρ ρ
+ = + + ( )   [ ]∵ z z2 3=

p

g

V

g

p

g

V

g

V V

gw w

2 2
2

3 3
2

2 3
2

2 2 2ρ ρ
+ = + +

−( )
  [Substituting the value of ( )hL e]

p

g

p

g

V

g

V

g

V V

gw w

3 2 2
2

3
2

2 3
2

2 2 2ρ ρ
= + − −

−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

( )

Thus 
p3

3

3

3

2 2

10 9 81

75 10

10 9 81

8 7583

2 9 81

3 317

2 9 81

8 75

×
=

×
×

+
×

−
×

−
. .

.

.

.

.

( . 883 3 317

2 9 81

2−
×

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

. )

.

∴ = × + − − =p3 9810 7 6452 3 9097 0 5608 1 509[ . . . . ] 93.05 kN/m2

14.4.3 Loss of Head at the Inlet (Entrance) of a Pipe
When fluids from a large reservoir enter into a pipe, the streamlines first contract and then expand and thereby, it results in 
the loss of head. It can be considered as a loss of head due to sudden contraction which is denoted by ( )hL i  and its value 
is given below.

	 ( )h k
V

gL i =
2

2
 (14.12)

Here, V  is the mean velocity of liquid in the pipe and k  is a constant whose value depends on shape at the entry. For a bell 
mouthed entry k = 0 04. , for conical entry (with included angle 30° to 60°) k = 0 18.  and for a sharp edged mouthpiece 
k = 0 5. . However, in general, the expression for loss of head at the inlet of a pipe is given below.

	 ( ) .h
V

gL i = 0 5
2

2

 (14.13)

14.4.4 Loss of Head at the Outlet (Exit) of a Pipe
This loss occurs due to sudden expansion when the liquid comes out of a pipe and enters into a tank or discharges into the 
form of a free jet. It is denoted by ( )hL o. If V  is the mean velocity of liquid at the outlet of the pipe, then the expression for 
this loss is given below.

	 ( )h
V

gL o =
2

2
 (14.14)
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14.4.5 Loss of Head Due to Obstruction in a Pipe
When a liquid in a pipe flows past any obstruction, there will be a loss of head due to sudden enlargement of the area of 
flow beyond the obstruction. A vena-contracta is formed beyond section 1–1 (Figure 14.4) after which the velocity of flow 
at section 2–2 becomes uniform and equals the velocity in the pipe.

Let V  be the mean velocity of flow in the main pipe at section 2–2, Vc be the velocity of flow at vena-contracta at section 
C–C, A be the area of cross section of the main pipe at section 2–2, a be the maximum area of obstruction at section 1–1, 
( )A a− 	be the area of pipe at section 1–1, Ac be the area of cross section at the vena-contracta, C A A ac c= −[ ( )]/  be the 
coefficient of contraction and ( )hL obs  be the loss of head due to obstruction.

A C A ac c= −( )   [ / ( )]∵C A A ac c= −

	 A V AVc c =   [Continuity equation]

	 C A a V AVc c( )− =

Thus V
AV

C A ac
c

=
−( )

The loss of head due to obstruction is equal to the loss of head due to sudden 
enlargement from vena-contracta at section C–C to section 2–2 and the expression 
is given below.

	
( )

( )
h

V V

gL
c

obs =
− 2

2
 (i)

Substituting the value of Vc in expression (i), we get:

	 ( )
( ) ( )

h
g

AV

C A a
V

V

g

A

C A aL
c c

obs =
−

−
⎡

⎣
⎢

⎤

⎦
⎥ =

−
−

⎡

⎣
⎢

⎤

⎦
⎥

1

2 2
1

2 2 2

 (14.15)

The value of Cc depends on the type of obstruction and generally, it varies from 0.60 to 0.66.

14.4.6 Loss of Head Due to Bend in a Pipe
The loss of head due to bend in a pipe ( )hL b is due to the separation of flow from the boundary and the formation of eddies 
resulting in the dissipation of energy in turbulence. The expression for loss due to bend in a pipe is given below.

	 ( )h k
V

gL b =
2

2
 (14.16)

Here, V  is the mean velocity of liquid in the pipe and k  is a constant whose value depends on the angle of the bend, radius 
of curvature of the bend and the diameter of the pipe. The value of k  ranges from 0.19 to 0.42 and it is equal to 0.5 for 
right-angled bend.

14.4.7 Loss of Head in Various Pipe Fittings
All pipe fittings such as valves and couplings inserted into a pipe cause obstruction to flow and thus, it results in loss of 
head. The loss of head due to various pipe fittings is denoted by ( )hL f  and the expression is given below.

	 ( )h k
V

gL f =
2

2
 (14.17)

Here, V  is the mean velocity of liquid in the pipe and k  is a constant whose value mainly depends on the type of fitting. The 
value of k  for various valves ranges from 0.1 to 10.

1

1

2

2

V
a

Vc

Obstruction

C

C

Figure 14.4  Flow through a pipe 

having an obstruction
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 Flow Through Pipes 14.15

 Example 14.14  A pipe of length 100 m and diameter 200 mm carries water with a velocity of 4 m/s. For the pipe,  
if coefficient of friction is f = 0.002, then determine the total head loss in it.

Solution
Let L = 100 m, D = =200 0 2mm m. , V = 4 m/s and f = 0 002. .

Since h h h h
V

g

fLV

gD

V

g

V

g

fL

DL L i f L o= + + = + + = + +⎡
⎣⎢

⎤
( ) ( ) . .0 5

2

4

2 2 2
0 5

4
1

2 2 2 2

⎦⎦⎥

∴ =
×

× +
× ×

+⎡
⎣⎢

⎤
⎦⎥

=hL
4

2 9 81
0 5

4 0 002 100

0 2
1

2

.
.

.

.
4.4852 m

 Example 14.15  Water contained in a tank to a depth of 4 m above the entrance of a 0.3 m diameter pipe discharged 
through the end of the pipe is 75 m long. Determine the discharge if the pipe is laid with a slope of 1 in 100 and the friction 
coefficient is f = 0 01. .

Solution
Refer Figure 14.5. Let h1 4= m, D = 0 3. m, L = 75 m, i = ( )1 100/  and 
f = 0 01. .

z i L1
1

100
75= × = × = 0.75 m

Applying Bernoulli’s equation to the points 1 and 2 taking x–x as datum, 
we get:

z h z h z h h h z
V

g

fLV

gD

V

gL L i f L o1 1 2 2 2

2 2 2

0 5
2

4

2 2
+ = + = + + + = + + +

⎡

⎣
[( ) ( ) ] .⎢⎢

⎢

⎤

⎦
⎥
⎥

z h z
V

g

fL

D1 1 2

2

2
0 5

4
1+ = + + +⎡

⎣⎢
⎤
⎦⎥

.

Thus 0 75 4 0
2 9 81

0 5
4 0 01 75

0 3
1

2

.
.

.
.

.
+ = +

×
× +

× ×
+⎡

⎣⎢
⎤
⎦⎥

V

4 75
11 5

19 62

2

.
.

.
=

V

∴ =
×

=V
4 75 19 62

11 5
2 847

. .

.
. m/s

Q AV D V= = × = × × =
π π
4 4

0 3 2 8472 2. . 0.20124 m /s3

 Example 14.16  A pipe of diameter 30 mm from a large reservoir runs 5 m, then it suddenly enlarges to 60 mm and it 
runs 3 m, and then discharges as free jet with a velocity of 1.5 m/s. Determine the required height of water surface above 
the point of discharge if the friction coefficient f = 0 008. .

Solution
Refer Figure 14.6. Let D1 30 0 03= =mm m. , L1 5= m, D2 60 0 06= =mm m. , L2 3= m, V2 1 5= . m/s and f = 0 008. .

1

2z1

h1Tank

Datum
x x

Figure 14.5
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V
A V

A

D

D
V1

2 2

1

2
2

1
2 2

2

2

4

4

0 06

0 03
1 5= = = × =

( / )

( / )

.

.
.

π
π

6 m/s  [From Continuity equation]

Total head loss ( )hL  will be equal to the difference in reservoir level and the 
point of discharge as given in the below expression.

h h h h h hL L i f L e f L o= + + + +( ) ( ) ( )1 2

or h
V

g

fL V

gD

V V

g

fL V

gD

V

gL = + +
−

+ +0 5
2

4

2 2

4

2 2
1
2

1 1
2

1

1 2
2

2 2
2

2

2
2

.
( )

Thus hL =
×

×
+

× × ×
× ×

+
−
×

+
×0 5 6

2 9 81

4 0 008 5 6

2 9 81 0 03

6 1 5

2 9 81

4 02 2 2.

.

.

. .

( . )

.

.. .

. .

.

.

008 3 1 5

2 9 81 0 06

1 5

2 9 81

2 2× ×
× ×

+
×

∴ = + + + + =hL 0 9174 9 786 1 0321 0 1835 0 1147. . . . . 12.0337 m

 Example 14.17  Two water tanks are connected by a pipeline of diameter 0.4 m and length 200 m. If the flow rate 
through the pipe is 0.35 m3/s and the friction coefficient is f = 0 009. , then determine the difference in head between the 
two tanks.

Solution
Refer Figure 14.7. Let D = 0.4 m, L = 200 m, Q = 0 35. m /s3  and 
f = 0 009. .

Let h1 and h2 be the heights of water in the first and second tanks, 
respectively, above the centre of the pipe.

V
Q

A

Q

D
= = =

×
=

( / )

.

( / ) .π π4

0 35

4 0 42 2
2.7852 m/s

Difference between two reservoir level ( )h h1 2−  will be equal to the total 
head loss ( )hL .

h h h h
V

g

fLV

gD

V

g

V

g

f
L L i f L o= + + = + +

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= +( ) ( ) . .0 5
2

4

2 2 2
0 5

42 2 2 2 LL

D
+⎡

⎣⎢
⎤
⎦⎥

1

∴ − =
×

× +
× ×

+⎡
⎣⎢

⎤
⎦⎥

=( )
.

.
.

.

.
h h1 2

22 7852

2 9 81
0 5

4 0 009 200

0 4
1 7.71 m

 Example 14.18  A water tank is maintained at constant head of 5 m. The 
water is discharged through a horizontal pipe of diameter 0.1 m and length 50 
m fitted with a valve at the end of the pipe. If the flow rate through the valve 
when half open is 0.016 m3/s and the friction coefficient f  is 0.008, then deter-
mine the value of loss coefficient of the valve.

Solution
Refer Figure 14.8. Let h = 5 m, D = 0.1 m, L = 50 m, Q = 0 016. m /s3  and 
f = 0 008. .

Let k  be the loss coefficient of the valve fitted to the pipe.

h

Reservoir

1
2D1

D2

V2
V1

V2

L1 L2

Figure 14.6

h1

Tank
L

1 Tank 2

D

V

h2

Figure 14.7

h

Tank
L

D

V

Valve

Figure 14.8
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V
Q

A

Q

D
= = =

×
=

( / )

.

( / ) .π π4

0 016

4 0 12 2
2.037 m/s

Total head ( )h  available at the tank will be equal to the total head loss ( )hL  in the pipe.

h h h h h
V

g

fLV

gD
k

V

g

V

gL L i f L o= = + + = + +
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=( ) ( ) . .0 5
2

4

2 2 2
0 5

2 2 2 2

++ +⎡
⎣⎢

⎤
⎦⎥

4 fL

D
k

Thus 5
2 037

2 9 81
0 5

4 0 008 50

0 1

2

=
×

× +
× ×

+⎡
⎣⎢

⎤
⎦⎥

.

.
.

.

.
k

5 0 2115 16 5= × +[ ]. . k

∴ = − =k
5

0 2115
16 5

.
. 7.1407

14.5 ❐ HYDRAULIC GRADIENT LINE AND TOTAL ENERGY LINE
The concept of hydraulic gradient line (H.G.L.) and total energy line (T.E.L.) is a graphical representation of the sum of 
different heads along the length of the pipe and is quite useful in the study of flow through the pipes.

Hydraulic gradient line It is the line joining the piezometric heads (i.e., the sum of pressure head and datum head) at 
various points in a flow along the length of the pipe with respect to some reference line. Sometimes, the hydraulic gradient 
line is also known as piezometric head line. The mathematical expression for piezometric head is [ / ( ) ]p g zρ + .

Total energy line It is the line joining the total heads (i.e., the sum of pressure head, kinetic head and datum head) at 
various points in a flow along the length of the pipe with respect to some reference line. The total energy line is also known 
as energy gradient line. The mathematical expression for total head is [ / ( ) / ( ) ]p g V g zρ + +2 2 .

The hydraulic and energy gradient lines can be obtained as described in the following problems.

 Example 14.19  A water tank is maintained at a constant head of 4 m. Water is discharged to the atmosphere through a 
horizontal pipe of diameter 0.25 m and length 60 m connected to the tank. If the friction coefficient f  = 0.008, then draw 
the total energy line and hydraulic gradient line.

Solution

Refer Figure 14.9. Let h = 4 m, D = 0.25 m, L = 60 m and f = 0 008. .
Total head ( )h  available at the tank will be equal to the total head 

loss ( )hL  in the pipe.

h h h h h
V

g

fLV

gD

V

g

V

g

L L i f L o= = + + = + +
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= +

( ) ( ) .

.

0 5
2

4

2 2

2
0 5

2 2 2

2 44
1

fL

D
+⎡

⎣⎢
⎤
⎦⎥

Thus 4
2 9 81

0 5
4 0 008 60

0 25
1

2

=
×

× +
× ×

+⎡
⎣⎢

⎤
⎦⎥

V

.
.

.

.

O

A

4 m
D

B

3.347 m

C

E

0.436 m

0.218 m

Tank

T.E.L.
H.G.L.

Figure 14.9 (Not to the scale)
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4 0 4679 2= . V

∴ = =V
4

0 4679.
2.924 m/s

( )
. . .

.
h

V

gL i = =
×
×

=
0 5

2

0 5 2 924

2 9 81

2 2

0.218 m

h
fLV

gDf = =
× × ×

× ×
=

4

2

4 0 008 60 2 924

2 9 81 0 25

2 2. .

. .
3.347 m

Procedure for drawing total energy line:

 (i) Take OA = 0.218 m as the head loss at the inlet.

 (ii) Draw a dotted horizontal line AB through point ‘A’ equal to the length of the pipe. Locate a point C vertically below B 
taking BC equal to the loss of head due to friction in the pipe, i.e., 3.347 m.

 (iii) Join AC and thus, OAC is the required total energy line.

Procedure for drawing hydraulic gradient line (H.G.L.) Hydraulic gradient line can be obtained by subtracting the 
velocity head from total energy line.

 (i) Take AD
V

g
= = =

×
=Velocity head 0.436 m

2 2

2

2 924

2 9 81

.

.
.

 (ii) Draw DE parallel to AC which represents the hydraulic gradient line.

 Example 14.20  A horizontal pipeline of length 40 m is connected to a water tank at one end and discharges freely 
into the atmosphere at the other end. For the first 25 m of its length from the tank, the pipe is 150 mm in diameter and its 
diameter is suddenly enlarged to 300 mm. The height of water level in the tank is 8 m above the centre of the pipe. Take the 
friction coefficient f  = 0.01 for both the sections and draw the total energy line and hydraulic gradient line.

Solution
Refer Figure 14.10. Let L = 40 m, L1 = 25 m, L2 40 25= − = 15 m, D1 150 0 15= =mm m. , D2 300 0 3= =mm m. , h = 8 m 
and f = 0 01. .

V
A V

A

D

D
V V V1

2 2

1

2
2

1
2 2

2

2 2
4

4

0 3

0 15
= = = =

( / )

( / )

.

.

π
π

4 m/s2   [From Continuity equation]

6.735 m

T.E.L.

Tank

O

A
B

C

D E

F

0.568 m
0.126 mG

H

J

I

8 m

1.01 m

H.G.L.

L1 L2

D1 D2V1
V2

Figure 14.10 (Not to the scale)
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Total head loss ( )hL  will be equal to the difference in reservoir level and the point of discharge as given in the below 
expression.

h h h h h h hL L i f L e f L o= = + + + +( ) ( ) ( )1 2

or h
V

g

fL V

gD

V V

g

fL V

gD

V

g
= + +

−
+ +

0 5

2

4

2 2

4

2 2
1
2

1 1
2

1

1 2
2

2 2
2

2

2
2. ( )

Thus 8
0 5 4

2

4 0 01 25 4

2 0 15

4

2

4 0 012
2

2
2

2 2
2

=
×

+
× × ×

×
+

−
+

× ×. ( ) . ( )

.

( ) .V

g

V

g

V V

g

115

2 0 3 2
2

2
2

2×
×

+
V

g

V

g.

8
8

2

106 67

2

9

2

2

2 2
2

2
2

2
2

2
2

2
2

2

= + + + +
V

g

V

g

V

g

V

g

V

g

.

8 2 126 67 2
2× =g V.

∴ =
× ×

=V2
8 2 9 81

126 67

.

.
1.113 m/s

Thus V V1 24 4 1 113= = × =. 4.452 m/s

( )
. . .

.
h

V

gL i = =
×
×

=
0 5

2

0 5 4 452

2 9 81
1
2 2

0.505 m

h
fL V

gDf 1
1 1

2

1

24

2

4 0 01 25 4 452

2 9 81 0 15
= =

× × ×
× ×

=
. .

. .
6.735 m

( )
( ) ( . . )

.
h

V V

gL e =
−

=
−

×
=1 2

2 2

2

4 452 1 113

2 9 81
0.568 m

h
fL V

gDf 2
2 2

2

2

24

2

4 0 01 15 1 113

2 9 81 0 3
= =

× × ×
× ×

. .

. .
=0.126 m

( )
.

.
h

V

gL o = =
×

=2
2 2

2

1 113

2 9 81
0.063 m

Velocity head 01 m= =
×

=
V

g
1
2 2

2

4 452

2 9 81
1

.

.
.

Procedure for drawing total energy line (T.E.L.):

 (i) From point ‘O’ lying on the free surface of water, take OA = 0.505 m as the head loss at the inlet.

 (ii) Draw a dotted horizontal line AB through point ‘A’ equal to the length of the pipe (i.e., 25 m). Locate a point C verti-
cally below B taking BC equal to the loss of head due to friction in the pipe, i.e., 6.735 m.

 (iii) Join AC. From C, draw a line vertically downward CD = 0.568 m as the head loss due to enlargement.

 (iv) Draw a dotted horizontal line DE equal to the length of the pipe (i.e., 15 m). From E, draw a line vertically downward 
EF = 0.126 m which is equal to the loss of head due to friction in the pipe, i.e., 0.126 m.

 (v) Thus OACDF is the required total energy line.
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Procedure for drawing hydraulic gradient line (H.G.L.) Hydraulic gradient line can be obtained by subtracting the 
velocity head from total energy line.

 (i) Take AG = velocity head = 1.01 m.

 (ii) Draw GH parallel to AC.

 (iii) From point J which is the midpoint of the exit pipe (where potential head is zero), draw JI parallel to FD. Join IH.

 (iv) Thus, GHIJ represents the required hydraulic gradient line.

 Example 14.21  The water tanks are connected by a pipeline consisting of two pipes, one of 0.14 m diameter and length 
5 m and the other of diameter 0.21 m and 15 m length. Draw the energy gradient line and hydraulic gradient line, if the 
difference of water levels in the two tanks is 6 m and the coefficient of friction f = 0.04.

Solution
Refer Figure 14.11. Let D1 0 14= . m, L1 5= m, D2 0= .21 m, L2 15= m, h = 6 m and f = 0 04. .

V
A V

A

D

D
V V V1

2 2

1

2
2

1
2 2

2

2 2
4

4

0 21

0 14
= = = =

( / )

( / )

.

.

π
π

2.25 m/s2   [From Continuity equation]

Total head loss ( )hL  will be equal to the difference in water levels of the tanks.

h h h h h h hL L i f L e f L o= = + + + +( ) ( ) ( )1 2

or h
V

g

fL V

gD

V V

g

fL V

gD

V

g
= + +

−
+ +

0 5

2

4

2 2

4

2 2
1
2

1 1
2

1

1 2
2

2 2
2

2

2
2. ( )

6
0 5 2 25

2

4 0 04 5 2 25

2 0 14

2 25

2
2

2
2

2
2 2

2

=
×

+
× × ×

×
+

−. ( . ) . ( . )

.

( . )V

g

V

g

V V

g
++

× ×
×

+
4 0 04 15

2 0 21 2
2

2
2

2.

.

V

g

V

g

6
2 53125

2

28 9286

2

1 5625

2

11 4286

2 2
2

2
2

2
2

2
2

2
2

2

= + + + +
. . . .V

g

V

g

V

g

V

g

V

g

6 2 45 451 2
2× =g V.

T.E.L.

Tank 1

O

A
B

C
D E

F
G

6 m

0.334 m

L1 L2

D1 D2 Tank 2

3.822 m

0.2064 m

1.51 m

0.132 m

H

I

J

H.G.L.

V1
V2 V2

Figure 14.11 (Not to the scale)

M14 Fluid Mechanics and Hydraulic Machines XXXX 01_Final.indd   20 4/19/2019   2:20:14 PM

Download more at Learnclax.com



 Flow Through Pipes 14.21

∴ =
× ×

=V2
6 2 9 81

45 451

.

.
1.61 m/s

V V1 22 25 2 25 1 61= = × =. . . 3.6225 m/s

( )
. . .

.
h

V

gL i = =
×
×

=
0 5

2

0 5 3 6225

2 9 81
1
2 2

0.334 m

h
fL V

gDf 1
1 1

2

1
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2

4 0 04 5 3 6225

2 9 81 0 14
= =

× × ×
× ×

=
. .

. .
3.822 m

( )
( ) ( . . )

.
h

V V

gL e =
−

=
−

×
=1 2

2 2

2

3 6225 1 61

2 9 81
0.2064 m

h
fL V

gDf 2
2 2

2

2

24

2

4 0 04 15 1 61

2 9 81 0 21
= =

× × ×
× ×

=
. .

. .
1.51 m

( )
.

.
h

V

gL o = =
×

=2
2 2

2

1 61

2 9 81
0.132 m

Procedure for drawing total energy line (T.E.L.):

 (i) From point ‘O’ lying on the free surface of water, take OA = 0.334 m as the head loss at the inlet.

 (ii) Draw a dotted horizontal line AB through point ‘A’ equal to the length of the pipe (i.e., 5 m). Locate a point C vertically 
below B taking BC equal to the loss of head due to friction in the pipe, i.e., 3.822 m.

 (iii) Join AC. From C, draw a line vertically downward CD = 0.2064 m as the head loss due to enlargement.

 (iv) Draw a dotted horizontal line DE equal to the length of the pipe (i.e., 15 m). From E, draw a line vertically downward 
EF = 1.51 m which is equal to the loss of head due to friction in the pipe, i.e., 1.51 m. Join DF.

 (v) From point F, draw a line vertically downward FG = 0.132 m which is equal to the loss at the exit of the pipe.

 (v) Thus, OACDFG is the required total energy line.

Procedure for drawing hydraulic gradient line (H.G.L.) Hydraulic gradient line can be drawn by subtracting 
V g1

2 2/ ( ) and V g2
2 2/ ( ) from total energy line.

 (i) Vertical depth of H.G.L. from AC 0.669= =
×

=
V

g
1
2 2

2

3 6225

2 9 81

.

.
mm

  Thus, draw HI parallel to AC.

 (ii) Vertical depth of H.G.L. from DF 0.132 m= =
×

=
V

g
2

2 2

2

1 61

2 9 81

.

.

  Thus, draw JG parallel to DF and join IJ.

 (iii) The line HIJG represents the required hydraulic gradient line.

 Example 14.22  The water is pumped at a flow rate of 20 litres per second into a pipeline ABC of length 200 m which 
is laid on an upward slope of 1 in 40. The length AB = 100 m and its diameter is 0.1 m and length BC = 100 m and its 
diameter is 0.2 m. The change in diameter at B is sudden. If the pressure of water at the entry point A is 196.2 kPa, and the 
coefficient of friction f = 0.008, then determine the pressure of water at point C. Also draw the total gradient and hydraulic 
gradient lines.
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Solution
Refer Figure 14.12. Let Q l= =20 0 02/s m /s3. , L = 200 m, i = 1 40in , L1 10= 0 m, D1 0 1= . m , L2 100= m, D2 0 2= . m,  
p1 196 2= . kPa and f = 0 008. .

V
Q

A

Q

D
1

1 1
2 24

0 02

4 0 1
= = =

×
=

( / )

.

( / ) .π π
2.55 m/s

V
Q

A

Q

D
2

2 2
2 24

0 02

4 0 2
= = =

×
=

( / )

.

( / ) .π π
0.64 m/s

Since h h h h h hL L i f L e f L o= + + + +( ) ( ) ( )1 2

Thus h
V

g

fL V

gD

V V

g

fL V

gD

V

gL = + +
−

+ +
0 5

2

4

2 2

4

2 2
1
2

1 1
2

1

1 2
2

2 2
2

2

2
2. ( )

=
×
×

+
× × ×

× ×
+

−0 5 2 55

2 9 81

4 0 008 100 2 55

2 9 81 0 1

2 55 0 64

2

2 2 2. .

.

. .

. .

( . . )

××
+

× × ×
× ×

+
×9 81

4 0 008 100 0 64

2 9 81 0 2

0 64

2 9 81

2 2

.

. .

. .

.

.

∴ = + + + + =hL 0 166 10 605 0 186 0 334 0 021. . . . . 11.312 m

Applying Bernoulli’s equation to the points A and C, we get:

p

g

V

g
z

p

g

V

g
z h

w w
L

1 1
2

1
2 2

2

22 2ρ ρ
+ + = + + +

196 2 10

10 9 81

2 55

2 9 81
0

10 9 81

0 64

2 9 81

1

40

3

3

2
2

3

2.

.

.

. .

.

.

×
×

+
×

+ =
×

+
×

+
p

××⎛
⎝⎜

⎞
⎠⎟

+200 11 312.

20 0 331
9810

0 021 5 11 3122+ = + + +. . .
p

P

A

B

C

1

2

Q

R

S T

U

V

W
X

Y

T.E.L.

H.G.L.

D1

D2

V1

V2

20.331 m

10.605 m

0.186 m 0.334 m

0.021 m

0.331 m

z2

Figure 14.12 (Not to the scale)
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p2

9810
20 331 16 333 3 998= − =. . .

∴ =
×

=p2 3

3 998 9810

10

.
39.2204 kPa

( )
. . .

.
h

V

gL i = =
×
×

=
0 5

2

0 5 2 55

2 9 81
01

2 2

.166 m

h
fL V

gDf 1
1 1

2

1

24

2

4 0 008 100 2 55

0 1 2 9 81
= =

× × ×
× ×

=
. .

. .
10.605 m

( )
( ) ( . . )

.
h

V V

gL e =
−

=
−

×
=1 2

2 2

2

2 55 0 64

2 9 81
0.186 m

h
fL V

gDf 2
2 2

2

2

24

2

4 0 008 100 0 64

0 2 2 9 81
= =

× × ×
× ×

=
. .

. .
0.334 m

Let datum line passes through point ‘A’, then total energy at point ‘A’( )E1  is given in the below expression.

E
p

g

V

g
z

w
1

1 1
2

1

3

3

2

2

196 2 10

10 9 81

2 55

2 9 81
0= + + =

×
×

+
×

+ =
ρ

.

.

.

.
20.331 m

Total energy at point ‘B’ ( )E2  is given by,

E E hf2 1 1 20 331 10 605= − = − =. . 9.726 m

Procedure for drawing total energy line (T.E.L.):

 (i) The point C lies at a height of [( / ) ]1 40 200 5× = m from the datum line x-x passing through point A. Draw a vertical 
line AP equal to the total energy at point A, i.e., AP = 20.331 m.

 (ii) Draw a dotted horizontal line through P which meets the vertical line through B at Q. From Q, take QR = 10.605 m in 
the vertical downward direction as frictional head loss in pipe AB.

 (iii) From R, locate S such that RS = 0.186 m which represents the head loss due to sudden enlargement.

 (iv) Through S, draw a dotted horizontal line which meets the vertical line through C at T. Below point T, locate a point U 
such that TU = 0.334 m which is equal to the frictional head loss in pipe BC.

 (v) Join PRSU which represents the required total energy line.

Procedure for drawing hydraulic gradient line (H.G.L.) Hydraulic gradient line can be drawn by subtracting 
V g1

2 2/ ( ) and V g2
2 2/ ( ) from total energy line.

 (i) Vertical depth of H.G.L. from PR is given by,

= =
×

=
V

g
1
2 2

2

2 55

2 9 81

.

.
0.331 m

 (ii) Vertical depth of H.G.L. from SU is given by,

= =
×

=
V

g
2

2 2

2

0 64

2 9 81

.

.
0.021 m

 (iii) Join W to Y. Thus, the line VWYX represents the hydraulic gradient line.
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14.6 ❐ PIPES IN SERIES (COMPOUND PIPES)
The pipes of different diameters and lengths connected end to end to from a pipeline are termed as pipes in series or 
 compound pipes as shown in Figure 14.13.

Let water flow from tank A to tank B through a compound pipe consisting of pipes 1, 2 and 3. Let D1, D2 and D3 be the 
diameters of pipes 1, 2 and 3, respectively, L1, L2 and L3 be their corresponding lengths, V1, V2 and V3 be the corresponding 
velocity of flow, f1, f2, and f3 be the corresponding coefficient of frictions and h be the difference of water level in the 
two tanks.

For a steady flow, the discharge through each pipe is same as given below.

Q AV A V A V= = =1 1 2 2 3 3

Also the difference in water surface level will be equal to the sum of various head losses in the pipe as given below.

h h h h h h h h hL L i f L c f L e f L o= = + + + + + +( ) ( ) ( ) ( )1 2 3

Thus h
V

g

f L V

gD

V

g

f L V

gD

V V

g
= + + + +

−
+

0 5

2

4

2

0 5

2

4

2 2

41
2

1 1 1
2

1

2
2

2 2 2
2

2

2 3
2. . ( ) ff L V

gD

V

g
3 3 3

2

3

3
2

2 2
+

	
(14.18)

When minor losses are not considered then Equation (14.18) becomes,

	 h
f L V

gD

f L V

gD

f L V

gD
= + +

4

2

4

2

4

2
1 1 1

2

1

2 2 2
2

2

3 3 3
2

3
 (14.19)

If f f f f1 2 3= = = , then Equation (14.19) is written as follows.

	 h
f

g

L V

D

L V

D

L V

D
= + +

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

4

2
1 1

2

1

2 2
2

2

3 3
2

3
 (14.20)

 Example 14.23  Three pipes connected in series have diameters as 0.3 m, 0.2 m and 0.4 m and lengths as 400 m,  
200 m and 300 m and coefficients of friction as 0.007, 0.0072 and 0.0074, respectively. If the pipes join two water reser-
voirs A and B having a difference in water surface levels as 15 m, then determine the discharge of water considering minor 
energy losses and neglecting minor energy losses.

A
1

V2

V1

L1, D1, f1 L2, D
2, f2

L3, D3, f3

h

B

2

3

V3

Figure 14.13 Pipes in series (compound pipes)
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Solution
Refer Figure 14.13. Let D1 0 3= . m, D2 0 2= . m, D3 0 4= . m, L1 40= 0 m, L2 200= m, L3 30= 0 m, f1 0 007= . , f2 0 0072= . , 

f3 0 0074= .  and h = 15 m.

AV A V A V1 1 2 2 3 3= =   [Continuity equation]

V
AV

A

D

D
V V V2

1 1

2

1
2

2
2 1

2

2 1 1
4

4

0 3

0 2
2 25= = = =

( / )

( / )

.

.
.

π
π

V
AV

A

D

D
V V V3

1 1

3

1
2

3
2 1

2

2 1 1
4

4

0 3

0 4
0 5625= = = =

( / )

( / )

.

.
.

π
π

 (i) Considering minor energy losses, we get:

( )
.

h
V

gL i =
0 5

2
1
2

h
f L V

gD

V

g

V

gf 1
1 1 1

2

1

1
2

1
24

2

4 0 007 400

2 0 3
37 33

2
= =

× × ×
×

=
.

.
.

( )
. . ( . )

.h
V

g

V

g

V

gL c = =
×

=
0 5

2

0 5 2 25

2
2 53

2
2

2
1

2
1
2

h
f L V

gD

V

g

V

gf 2
2 2 2

2

2

1
2

1
24

2

4 0 0072 200 2 25

2 0 2
145 8

2
= =

× × ×
×

=
. ( . )

.
.

( )
( ) ( . . )

.h
V V

g

V V

g

V

gL e =
−

=
−

=2 3
2

1 1
2

1
2

2

2 25 0 5625

2
2 85

2

h
f L V

gD

V

g

V

gf 3
3 3 3

2

3

1
2

1
24

2

4 0 0074 300 0 5625

2 0 4
7 02

2
= =

× × ×
×

=
. ( . )

.
.

( )
( . )

.h
V

g

V

g

V

gL o = = =3
2

1
2

1
2

2

0 5625

2
0 32

2

  Total head loss ( )hL  will be equal to the difference in water levels of the tanks.

h h h h h h h h hL L i f L c f L e f L o= = + + + + + +( ) ( ) ( ) ( )1 2 3

  Thus 15 0 5
2

37 33
2

2 53
2

145 8
2

2 85
2

7 021
2

1
2

1
2

1
2

1
2

= + + + + +. . . . . .
V

g

V

g

V

g

V

g

V

g

VV

g

V

g
1
2

1
2

2
0 32

2
+ .

15
2

0 5 37 33 2 53 145 8 2 85 7 02 0 321
2

= + + + + + +[ ]V

g
. . . . . . .

15 2 196 35 1
2× =g V.
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∴ =
× ×

=V1
15 2 9 81

196 35

.

.
1.224 m/s

Q AV D V= = × = × × =1 1 1
2

1
2

4 4
0 3 1 224

π π
. . 0.08652 m /s3

 (ii) Neglecting minor energy losses, we get:

h h h h hL f f f= = + +1 2 3

  Thus 15 37 33
2

145 8
2

7 02
2

1
2

1
2

1
2

= + +. . .
V

g

V

g

V

g

15
2

37 33 145 8 7 021
2

= + +[ ]V

g
. . .

15 2 190 15 1
2× =g V.

∴ =
× ×

=V1
15 2 9 81

190 15

.

.
1.244 m/s

Q AV D V= = × = × × =1 1 1
2

1
2

4 4
0 3 1 244

π π
. . 0.08793 m /s3

14.7 ❐ EQUIVALENT PIPE
A pipe of uniform diameter having loss of head and discharge equal to the loss of head and discharge of a compound 
pipe made of several pipes of different diameters and lengths is called an equivalent pipe. The uniform diameter of the 
equivalent pipe is known as the equivalent diameter (or size) of the compound pipe. The size of the equivalent pipe may 
be determined as follows.

Let a compound pipe consisting of pipes 1, 2 and 3 of diameters D1, D2 and D3, respectively and lengths L1, L2 and L3, 
velocities of flow V1, V2 and V3, coefficient of frictions f1, f2 and f3, and Q be the discharge through it.

Let D  be the diameter of the equivalent pipe, L be its length, V  be the velocity of flow through it, h be the total head loss 
and f f f f= = =1 2 3 be its friction coefficient then it would carry the same discharge Q.

Neglecting minor losses, then for an equivalent pipe of a compound pipe, the total head loss due to friction remains the 
same.

Head loss in the equivalent pipe = Head loss in the compound pipe

Thus 
4

2

4

2

4

2

4

2

2
1 1 1

2

1

2 2 2
2

2

3 3 3
2

3

fLV

gD

f L V

gD

f L V

gD

f L V

gD
= + +

	

LV

D

L V

D

L V

D

L V

D

2
1 1

2

1

2 2
2

2

3 3
2

3
= + +

	 	
[ ]∵ f f f f= = =1 2 3  (i)

Q AV AV A V A V= = = =1 1 2 2 3 3  [ ]∵Q remains same
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From expression (i), we get:

L

D

Q

A

L

D

Q

A

L

D

Q

A

L

D

Q

A

⎛
⎝⎜

⎞
⎠⎟

=
⎛
⎝⎜

⎞
⎠⎟

+
⎛
⎝⎜

⎞
⎠⎟

+
⎛
⎝⎜

⎞
⎠⎟

2
1

1 1

2
2

2 2

2
3

3 3

2

L

D

Q

D

L

D

Q

D

L

D

Q

D( / ) ( / ) ( / )π π π4 4 42

2
1

1 1
2

2

2

2 2
2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+
⎡

⎣
⎢⎢
⎢

⎤

⎦
⎥
⎥

+
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

3

3 3
2

2

4

L

D

Q

D( / )π

	
L

D

L

D

L

D

L

D5
1

1
5

2

2
5

3

3
5

= + +  (14.21)

The Equation (14.21) is known as Dupuit’s equation that can be used to determine the size of the equivalent pipe, i.e., 
diameter D  of the equivalent pipe can be determined when D1, D2, D3 and L L L L= + +( )1 2 3  are known.

 Example 14.24  Three pipes connected in series have diameters of 0.6 m, 0.5 m and 0.4 m and are of lengths 400 m, 
250 m and 200 m, respectively. If these pipes are to be replaced by an equivalent pipe of length 850 m, then determine its 
diameter.

Solution
Let D1 0 6= . m , D2 0 5= . m, D3 0 4= . m , L1 400= m, L2 250= m, L3 200= m and L = 850 m.

Since 
L

D

L

D

L

D

L

D5
1

1
5

2

2
5

3

3
5

= + +

Thus 
850 400

0 6

250

0 5

200

0 4
32675 283

5 5 5 5D
= + + =

. . .
.

∴ = ⎛
⎝⎜

⎞
⎠⎟

=D
850

32675 283

1 5

.

/

0.482 m

14.8 ❐ PIPES IN PARALLEL
When a pipeline divides into two or more branches which again join together into a single pipe, the flow of liquid through 
the branch pipes is known as parallel flow as shown in Figure 14.14. The main pipe AB divides into two branches BCE and 
BDE. Let Q1, D1, L1, V1 and f1 refer to branch pipe BCE and Q2, D2, L2, V2 and f2 refer to branch pipe BDE.

Q

Q1

Q2

Q

D

BA

C

E

D1, L1, V1

D2, L2, V2

Branch pipe 1

Branch pipe 2

Figure 14.14 Pipes in parallel
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The discharge in the main pipe ( )Q  is equal to the sum of discharges ( and )Q Q1 2  through the parallel pipes as given below.

	 Q Q Q= +1 2 (14.22)

Since the flow of liquid in pipes BCE and BDE occurs under the difference of head between the sections B and E and hence, 
the head loss in each branch pipes must be same.

Thus h hf f1 2=

	
4

2

4

2
1 1 1

2

1

2 2 2
2

2

f L V

gD

f L V

gD
=  (14.23)

	

L V

D

L V

D
1 1

2

1

2 2
2

2
=   [ ]When f f1 2= 	  (14.23a)

Generally, the parallel arrangement is used in water supply system when discharge is to be required to increase through  
the main supply.

 Example 14.25  A main pipe divides into two parallel branch pipes and again forms one pipeline. The diameter and 
length of parallel pipes are 0.8 m and 1200 m and 0.6 m and 1200 m, respectively. Calculate the flow rate in each parallel 
pipes if the total flow in the main pipe is 3 m3/s and the friction coefficients for the first and second parallel pipes are 0.005 
and 0.006, respectively.

Solution
Refer Figure 14.14. Let D1 = 0.8 m , L1 12= 00 m , D2 0 6= . m , L2 1200= m , Q = 3 m /s3 , f1 0 005= .  and f2 0 006= . .

Since 
4

2

4

2
1 1 1

2

1

2 2 2
2

2

f L V

gD

f L V

gD
=

Thus 
4 0 005 1200

2 9 81 0 8

4 0 006 1200

2 9 81 0 6
1
2

2
2× × ×

× ×
=

× × ×
× ×

.

. .

.

. .

V V

∴ =
×
×

×⎛
⎝⎜

⎞
⎠⎟

=V V V1 2
2

1 2

2
0 006 0 8

0 005 0 6
1 265

. .

. .
.

/

Since Q Q Q D V D V= + = +1 2 1
2

1 2
2

24 4

π π

Thus 3
4

0 8 1 265
4

0 6 0 91862
2

2
2 2= × × + × × =

π π
. . . .V V V

∴ = =V2
3

0 9186
3 266

.
. m/s

V V1 21 265 1 265 3 266= = × =. . . 4.1315 m/s

Q D V1 1
2

1
2

4 4
0 8 4 1315= = × × =

π π
. . 2.077 m /s3

Q Q Q2 1 3 2 08= − = − =. 0.92 m /s3
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 Flow Through Pipes 14.29

 Example 14.26  Two pipes each of length 300 m are available for connecting to a reservoir from which a flow of  
0.06 m3/s is required. If the diameters of the two pipes are 0.15 m and 0.25 m, respectively, then find the ratio of the head 
lost when the pipes are connected in series to the head lost when they are connected in parallel. Neglect the minor losses 
and take the friction coefficient as f = 0 0025.  in Darcy’s formula.

Solution
Let L L L1 2 300= = = m, Q Q Q= = =1 2 0 06. m /s3 , D1 0 1= . 5 m, D2 0 2= . 5 m  and f = 0 0025. .

The head lost due to friction when the pipes are connected in series is given below.

( )h h h
fLQ

gD

fLQ

gD

fLQ

g D
f f fseries = + = + =1 2

2

2
1
5

2

2
2

5

2

2
1
5

32 32 32 1

π π π
++

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1

2
5D

∴ =
× × ×

×
× +

⎡

⎣
⎢

⎤

⎦
⎥( )

. .

. . .
hf series

32 0 0025 300 0 06

9 81

1

0 15

1

0 25

2

2 5 5π
== 12.6652 m

Since Q Q Q= +1 2   (For parallel pipes)

Thus Q Q1 2 0 06+ = .  (i)

Since h hf f1 2=   (For parallel pipes)

Thus 
32 321

2

2
1
5

2
2

2
2

5

fLQ

gD

fLQ

gDπ π
=

	
∴ =

⎛
⎝⎜

⎞
⎠⎟

= ⎛
⎝⎜

⎞
⎠⎟

=Q
D

D
Q Q Q2

2

1

5 2

1

5 2

1 1
0 25

0 15
3 5861

/ /.

.
.  (ii)

Solving expressions (i) and (ii), we get:

Q Q1 13 5861 0 06+ =. .

∴ = =Q1
0 06

4 5861

.

.
0.0131 m /s3

Q Q Q2 1 0 06 0 0131 0= − = − =. . .0469 m /s3

Head lost for the parallel pipes is given by,

( )
. .

.
h h

fLQ

gD
f fparallel = = =

× × ×
×

1
1
2

2
1
5

2

2

32 32 0 0025 300 0 0131

9 8π π 11 0 155×
=

.
0.5602 m

( )

( )

.

.

h

h

f

f

series

parallel
= =

12 6652

0 5602
22.61

 Example 14.27  A pipeline of diameter 0.6 m and length 1500 m carries water from a tank in which the height of water 
is maintained at 0.3 m above the axis of the pipe. To increase the discharge, another pipe of the same diameter is connected 
parallel to original pipe in the second half of the length. If the coefficient of friction for both pipes is f = 0 01.  and minor 
losses are neglected, then determine the increase in discharge.
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14.30 Chapter 14

Solution
Refer Figure 14.15. Let D D D= = =1 2 0.6 m, L = 1500 m, h hf= = 0 3. m, L L L1 2 2 1500 2= = = =/ / 750 m( )  and 
f f f= = =1 2 0 01. .

Case I: When there is only one pipeline of diameter 0.6 m and length 1500 m. Refer Fig 14.15 (a). Let Qs be the discharge 
through main single pipe.

∵h
fLQ

gD
f

s=
32 2

2 5π

Thus 0 3
32 0 01 1500

9 81 0 6

2

2 5
.

.

. .
=

× × ×

× ×

Qs

π

∴ =
× × ×

× ×
=Q ls

0 3 9 81 0 6

32 0 01 1500

2 5. . .

.

π
0.0686 m /s or 68.6 /s3

Case II: When another pipe of diameter 0.6 m is connected in parallel to the second half. Refer Figure 14.15(b). Let Q be 
the total discharge, Q1 and Q2 be the discharge through first and second parallel pipes, respectively.

Q Q Q= +1 2

Q Q
Q

1 2 2
= =   (Since parallel pipes)

L L LAB = − = − =1 1500 750 750 m

The head lost due to friction for the pipe ABC (or pipe ABD) is given by,

h h h h h
fL Q

gD

fL Q

gD
f f AB f BC f AB f

AB= + = + = +( ) ( ) ( ) 1

2

2 5
1 1

2

2
1
5

32 32

π π

A B C

DQ2

Q1Q

A D = 0.6 m

D = 0.6 m D1 = 0.6 m, L1 = 750 m

D2 = 0.6 m, L2 = 750 m

L = 1500 m
0.3 m

0.3 m

BQs Qs

L1 = L2

L = 1500 m

LAB

(a)

(b)

Q

Figure 14.15
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Thus 0 3
32 0 01 750

9 81 0 6

32 0 01 750 2

9 81 0

2

2 5

2

2
.

.

. .

. ( / )

.
=

× × ×
× ×

+
× × ×

× ×
Q Q

π π ..65

0 3 31 878 7 9694 39 84742 2 2. . . .= + =Q Q Q

∴ = =Q l
0 3

39 8474
0 0868

.

.
. m /s or 86.8 /s3

The increase in discharge is given by,

Q Q Qsincrease = − = − =86 8 68 6. . 18.2 /sl

 Example 14.28  Two pipes of diameters D  and d  of equal length L are considered. When the pipes are arranged in 
parallel, the loss of head for either pipe when a total quantity of water Q flows through them is h but when the pipes are 
arranged in series the loss of head is H . If d D= ( / )2 , then find the percentage of total flow through each pipe when placed 
in parallel and the ratio of H  to h. Neglect minor losses and assume friction coefficients to be constants.

Solution
Let D D1 = , D d2 = , L L L1 2= = , ( )h hf parallel = , ( )h Hf series = , d D= ( )/2  and f f f= =1 2.

Case I: Refer Figure 14.16(a), when the pipes are connected in parallel.

	 Q Q Q= +1 2  (i)

and h hf f1 2=

32 321
2

2
1
5

2
2

2
2

5

fLQ

gD

fLQ

gDπ π
=

Q

Q1

Q2

Q

(a)

Q Q

(b)

D1

D2

D1

D2

L L

L

Figure 14.16
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Q

Q

D

D

D

D
1

2

1

2

5 2 5 2

2
5 657=

⎛
⎝⎜

⎞
⎠⎟

= ⎛
⎝⎜

⎞
⎠⎟

=
/ /

/
.

	 ∴ =Q Q1 25 657.  (ii)

Solving expressions (i) and (ii), we get:

5 657 2 2. Q Q Q+ =

Q
Q

2 6 657
= =

.
0.1502Q

Q Q Q Q Q1 2 0 1502= − = − =. 0.8498Q

	
h h h

fLQ

gD

fL Q

gD
f f= = = = =( )

( . )
.parallel 1

1
2

2
1
5

2

2 5

32 32 0 8498
0 722

π π
22

32 2

2 5
×

fLQ

gDπ
 (iii)

Case II: Refer Figure 14.16(b), when the pipes are connected in series.

H h h h
fLQ

gD

fLQ

gD

fLQ

gD
f f f= = + = + =( )series 1 2

2

2
1
5

2

2
2

5

2

2 5

32 32 32

π π π
++

32 2

2 5

fLQ

gdπ

Thus H
fLQ

gD

fLQ

g D

fLQ

g D D
= + = +⎡

⎣⎢
⎤
⎦⎥

= ×
32 32

2

32 1 32
33

32

2 5

2

2 5

2

2 5 5π π π( / )

22 2

2 5

fLQ

gDπ
 (iv)

Dividing expression (iv) by expression (iii), we get:

H

h

fLQ

gD

gD

fLQ
= × × × = =33

32 1

0 7222 32

33

0 7222

2

2 5

2 5

2π
π

. .
45.694

 Example 14.29  A pumping plan forces water through a 0.6 m main, the friction head being 27 m. In order to reduce 
power consumption, it is proposed to lay another main of appropriate diameter alongside the existing one so that the two 
pipes may work in parallel for the entire length and reduce the friction head to 9 m only. Find the diameter of the new main 
if with the exception of the diameter it is similar to the existing one in every aspect.

Solution
Let D1 0 6= . m, ( )hf single m= 27  and ( )hf parallel m= 9 .

Case I: For single pipe conveying discharge, we get:

( )h
fLQ

gD
f single =

32 2

2
1
5π

	

32

0 6
27

2

2 5

fLQ

gπ ×
=

.
 (i)

Case II: Refer Figure 14.16(a), when second pipe of diameter D2 is connected in parallel.

Q Q Q= +1 2
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and h hf f1 2 9= =

32 32
91

2

2
1
5

2
2

2
2

5

fLQ

g D

fLQ

gDπ π×
= =

Thus 
32

0 6

32
91

2

2 5
2

2

2
2

5

fLQ

g

fLQ

gDπ π×
= =

. 	 	 [ ]∵ f Land are same  (ii)

	

Q

Q

D2

1

2
5 2

0 6
= ⎛

⎝⎜
⎞
⎠⎟.

/

 (iii)

Dividing expression (i) by expression (ii), we get:

	

32

0 6

0 6

32

27

9

2

2 5

2 5

1
2

fLQ

g

g

fLQπ
π

×
×

×
=

.

.

Thus 
Q

Q

2

1
2

3=  or Q
Q

1
2

2

3
=

∴ = =Q
Q

Q1
3

0 5773.

Q Q Q Q Q Q2 1 0 57735 0 42265= − = − =. .

Substituting the values of Q1 and Q2 in expression (iii), we get:

0 42265

0 57735 0 6
2

5 2
.

. .

/
Q

Q

D
= ⎛

⎝⎜
⎞
⎠⎟

∴ = × ⎛
⎝⎜

⎞
⎠⎟

=D2

2 5

0 6
0 42265

0 57735
.

.

.

/

0.5296 m

 Example 14.30  Two tanks having a difference in water level of 8.4 m are connected by pipelines. First a pipe of diam-
eter 0.5 m and length 1500 m connects the first tank at one end and its other end connects to a junction from which two 
parallel pipes of lengths 750 m and diameter 0.25 m connects to another tank placed at lower level. If the coefficient of 
frictions ‘f’ for the first pipe is 0.01 and for both the parallel pipes are 0.006, then determine the total discharge through the 
pipe from the first to the second water tank.

Solution
Refer Figure 14.17. Let h hf= = 8 4. m, D1 0 5= . m, L1 1500= m, L L2 3 750= = m , D D2 3 0 25= = . m, f1 0 01= .  and 
f f2 3 0 006= = . .

Let Q1 be the total discharge through the main pipe, Q2 and Q3 be the discharges through the parallel pipes.

Since                                    h hf f2 3=   (Parallel pipes) 

Thus  
4

2

4

2
2 2 2

2

2

3 3 3
2

3

f L V

gD

f L V

gD
=
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∴ =V V2 3  [ , ]∵ f L D and are equal

Thus Q Q2 3= 	
Now Q Q Q Q1 2 3 22= + =   [ ]∵Q Q2 3= 	

Q
Q

2
1

2
=

The friction loss through pipe ABCE (or ABDE) is given by,

	
h h h h h h

f L Q

gD

f L Q

gD
f f AB f BCE f f= = + = + = +( ) ( ) 1 2

1 1 1
2

2
1
5

2 2 2
2

2
2

32 32

π π 55

8 4
32 0 01 1500

9 81 0 5

32 0 006 750 2

9

1
2

2 5
1

2

2
.

.

. .

. ( / )

.
=

× × ×

× ×
+

× × ×

×

Q Q

π π 881 0 25
539 39

5 1
2

×
=

.
. Q

∴ = =Q1
8 4

539 39

.

.
0.1248 m /s3

 Example 14.31  Two tanks having a difference of water level 20 m are connected by a pipe of diameter 0.5 m and length 
3000 m. If the pipe is tapped at a distance of 1000 m from the beginning of pipe and water is drawn at a rate of 0.2 m3/s, 
then determine the rate of flow of water into the lower tank. Take f = 0 005.  and neglect minor losses.

Solution
Refer Figure 14.18. Let h hf= = 20 m, D D1 2 0 5= = . m, L = 3000 m, L1 100= 0 m, L2 3000 1000= − =2000 m, 
q = 0 2. m /s3  and f f1 2 0 005= = . .

A
B

C

20 mL1, D
1

L2, D
2

Q
1

Q
2

Figure 14.18

A

B
C

ED

8.4 m

L2, D2, Q2

L1, D1, Q1

L3, D3, Q3

Figure 14.17

M14 Fluid Mechanics and Hydraulic Machines XXXX 01_Final.indd   34 4/19/2019   2:22:05 PM

Download more at Learnclax.com



 Flow Through Pipes 14.35

Let Q1 and Q2 be the discharges through main pipe before and after tapping.

Q Q q Q2 1 1 0 2= − = −( . ) m /s3

The head lost due to friction for the pipe ABC is given by,

h h h h h
f L Q

gD

f L Q

gD
f f AB f BC f f= + = + = +( ) ( ) 1 2

1 1 1
2

2
1
5

2 2 2
2

2
2

5

32 32

π π

Thus 20
32 0 005 1000

9 81 0 5

32 0 005 2000 0 21
2

2 5
1

2

2
=

× × ×

× ×
+

× × × −.

. .

. ( . )Q Q

π π ×× ×9 81 0 55. . 	

20 52 8812 105 7624 0 21
2

1
2= + −. . ( . )Q Q

20 52 8812 105 7624 4 2305 42 3051
2

1
2

1= + + −. . . .Q Q Q

158 6436 42 305 15 7695 01
2

1. . .Q Q− − =

∴ =
± + × ×

×
=Q1

242 305 42 305 4 158 6436 15 7695

2 158 6436
0 47565

. . . .

.
. m /3 ss

∴ = − = − =Q Q2 1 0 2 0 47565 0 2. . . 0.27565 m /s3

 Example 14.32  For the distribution main of a city water supply, a pipe of diameter 0.3 m and length L metre is required. 
As pipes above 0.25 m diameter are not readily available, it is decided to lay two parallel pipes of the same diameter and of 
length L m. Determine the diameter of the parallel pipes if the total discharge in the parallel pipes is same as in the single 
main pipe and the coefficient of friction is same for all the pipes.

Solution
Let D = 0 3. m, L L L1 2= = , D D1 2= , Q Q Q= +( )1 2  and f f f1 2= = , where Q and V  is the discharge and velocity, 
respectively, in the single main pipe, Q1, Q2 and V1, V2	are the discharges and velocities in the parallel pipes, respectively.

Q Q Q Q= + =1 2 12   [ ]∵Q Q2 1=

Thus AV AV= 2 1 1	
π π
4

2
4

2
1
2

1D V D V× = × ×

	

V

V

D

D1

1
2

2
2=  (i)

Now h hf f= 1	

Thus 
4

2

4

2

2
1
2

1

fLV

gD

fLV

gD
=

	

	

V

V

D

D1

2

1

⎛
⎝⎜

⎞
⎠⎟

=  (ii)

Thus 2 1
2

2

2

1

D

D

D

D

⎛

⎝
⎜

⎞

⎠
⎟ =  [Substitute (i) in (ii)]
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4 1
4

4
1

D

D

D

D
=

D
D

1
5

5

4
=

∴ = × ⎛
⎝⎜

⎞
⎠⎟

= × ⎛
⎝⎜

⎞
⎠⎟

=D D1

1 5 1 5
1

4
0 3

1

4

/ /

. 0.22736 m

14.9 ❐ BRANCHED PIPE SYSTEM
In a branched pipe system, three or more reservoirs having different free surface liquid levels are connected by means of 
pipes (main pipe and branches) which meet at a junction. The Figure 14.19 illustrates a branched pipe system in which 
three reservoirs A, B and C are connected to a junction D by means of three long pipes, namely 1, 2 and 3.

For solving branched pipe problems the assumptions are (i) the reservoirs are assumed large so that its liquid surface 
levels remain constant, (ii) the lengths, diameters and friction factors of pipes are known, (iii) flow is steady and (iv) minor 
losses are neglected. The three basic equations, namely continuity equation, Bernoulli’s equation and Darcy–Weisbach 
equation are employed to solve branched pipes problems.

Let zA, zB and zC  be the heights of liquid free surface in the reservoirs A, B and C, respectively, zD  be the height of 
junction D from the datum and p gD / ( )ρ  be the pressure head at the junction D. Let L1, L2 and L3 be the lengths, D1, D2 
and D3 be the diameters, V1, V2 and V3 be the velocities, Q1, Q2 and Q3 be the discharges, and hf 1, hf 2 and hf 3 be the loss 
of heads due to friction in the pipes 1, 2 and 3, respectively.

Considering that the flow is occurring from reservoir A to B and C. The flow from reservoir A occurs to junction D and 
then from junction D to reservoirs C and B. The flow from junction D to reservoir B will occur only if piezometric head at 
D, i.e., [ / ( ) ]p g zD Dρ +  is more than the piezometric head at B, i.e., zB.

Applying Bernoulli’s equation between the reservoir A and the junction D,

	 z
p

g
z hA

D
D f= +

⎛
⎝⎜

⎞
⎠⎟

+
ρ 1 (14.24)

L
1 , D

1

L2, D2

L
3 , D

3Q
3 , V

3

Q2, V2

Q
1 , V

1

A

B

C

DPipe 1
Pipe 2

Pipe 3Datum line

hf1

hf 2

hf 3

g

pD

ρ

zA

zB

zC

zD

h1

h2

Figure 14.19 Branched pipe system
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Applying Bernoulli’s equation between junction D and the reservoir B,

	
p

g
z z hD

D B fρ
+

⎛
⎝⎜

⎞
⎠⎟

= + 2 (14.25)

Applying Bernoulli’s equation between junction D and the reservoir C,

	
p

g
z z hD

D C fρ
+

⎛
⎝⎜

⎞
⎠⎟

= + 3 (14.26)

From continuity equation, we get:

	 Q Q Q1 2 3= +  (14.27)

Equations (14.24) to (14.27) are used for determining the four unknowns, namely Q1, Q2, Q3 and p gD / ( )ρ .
The difference in levels of liquid surfaces between the tanks A and B is given as h h hf f1 1 2= +  and the difference in 

levels of liquid surfaces between the tanks A and C is given as h h hf f2 1 3= + .
It is to be noted that when the piezometric head at D, i.e., [ / ( ) ]p g zD Dρ +  is less than zB then the liquid flows from 

reservoir B to junction D. In that case, both the reservoirs A and B would supply water to the reservoir C and hence, the 
equations will change accordingly.

 Example 14.33  Three reservoirs A, B and C are connected by a piping system as shown in Figure 14.19. The lengths 
and diameters of pipes 1, 2 and 3 are (1250 m, 0.3 m), (650 m, 0.2 m) and (850 m, 0.3 m), respectively. Determine the 
discharge into or from reservoirs B and C if the discharge from reservoir A is 65 litres per second and the heights of liquid 
free surface from the datum in the reservoirs A and B are 40 m and 38 m, respectively. Take f = 0 006.  for all pipes and 
neglect minor losses. Also determine the height of water level in the reservoir C.

Solution
Refer Figure 14.19. Let L1 1250= m, D1 0 3= . m, L2 65= 0 m , D2 0 2= . m, L3 850= m, D3 0 3= . m, Q1 = 65 l/s = 

0 065. m /s3 , zA = 40 m, zB = 38 m and f = 0 006. .

V
Q

A

Q

D
1

1

1

1

1
2 24

0 065

4 0 3
= = =

×
=

( / )

.

( / ) .π π
0.92 m/s

h
fL V

gDf 1
1 1

2

1

24

2

4 0 006 1250 0 92

2 9 81 0 3
= =

× × ×
× ×

=
. .

. .
4.314 m

Applying Bernoulli’s equation between the reservoir A and the junction D, we get:

z z
p

g
hA D

D

w
f= + +

ρ 1

40 4 314= + +z
p

gD
D

wρ
.

Thus z
p

gD
D

w
+ = − =

ρ
( . )40 4 314 35.686 m

	

As piezometric head at D, i.e., [ /( )] 35.686 mz p gD D w++ ==ρρ  is less than zB == 38 m and therefore, water flows from 
reservoir B to junction D.

Applying Bernoulli’s equation between the reservoir B and the junction D, we get:

z z
p

g
hB D

D

w
f= + +

ρ 2
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38 35 686 2= +. hf

∴ = − =hf 2 38 35 686 2 314( . ) . m

But h
fL V

gDf 2
2 2

2

2

4

2
=

	

Thus 2 314
4 0 006 650

2 9 81 0 2
2

2

.
.

. .
=

× × ×
× ×

V

	

∴ =
× × ×

× ×
=V2

2 314 2 9 81 0 2

4 0 006 650

. . .

.
0.763 m/s

Q A V D V2 2 2 2
2

2
2

4 4
0 2 0 763= = × = × × =

π π
. . 0.02397 m /s3

∴ = + = + =Q Q Q3 1 2 0 065 0 02397. . 0.08897 m /s3

V
Q

A

Q

D
3

3

3

3

3
2 24

0 08897

4 0 3
= = =

×
=

( / )

.

( / ) .π π
1.259 m/s

Applying Bernoulli’s equation between the junction D and reservoir C, we get:

z
p

g
z hD

D

w
C f+ = +

ρ 3

z
p

g
z

fL V

gDD
D

w
C+ = +

ρ
4

2
3 3

2

3

Thus 35 686
4 0 006 850 1 259

2 9 81 0 3

2

.
. .

. .
= +

× × ×
× ×

zC
	

35 686 5 494. .= +zC

∴ = − =zC ( . . )35 686 5 494 30.192 m

 Example 14.34  If the data in a branched pipe system shown in Figure 14.19 are L1 1000= m, D1 0 1= . 6 m , 
L2 800= m, D2 0 2= . m, L3 600= m, D3 0 24= . m , Q2 0 32= . m /s3 , Q3 0 24= . m /s3  and for all the pipes f = 0 01. , then 
determine the difference in levels of water surfaces between the tanks A and B, and A and C.

Solution
Refer Figure 14.19. Let L1 1000= m, D1 0 16= . m , L2 800= m, D2 0 2= . m, L3 600= m, D3 0= .24 m , Q2 0 32= . m /s3 ,  
Q3 0 24= . m /s3  and f = 0 01. .

Let h1 be the difference of water surface between tank A and B and h2 be the difference of water surface levels between 
tank A and C.

Q Q Q1 2 3 0 32 0 24 0 56= + = + =. . . m /s3

∵h h h
fL Q

gD

fL Q

gD
f f1 1 2

1 1
2

2
1
5

2 2
2

2
2

5

32 32
= + = +

π π
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∴ =
× × ×

× ×
+

× × ×
×

h1

2

2 5

2

2

32 0 01 1000 0 56

9 81 0 16

32 0 01 800 0 32

9

. .

. .

. .

.π π 881 0 25×
=

.
10730.66 m

∵h h h
fL Q

gD

fL Q

gD
f f2 1 3

1 1
2

2
1
5

3 3
2

2
3
5

32 32
= + = +

π π

∴ =
× × ×

× ×
+

× × ×
×

h2

2

2 5

2

2

32 0 01 1000 0 56

9 81 0 16

32 0 01 600 0 24

9

. .

. .

. .

.π π 881 0 245×
=

.
10028.01 m

 Example 14.35  A pipeline of diameter 0.5 m and length 4000 m connects two reservoirs P and Q whose constant dif-
ference of water level is 10 m. At a distance of 1500 m from reservoir P, a 1000 m long branched pipe leads to reservoir R 
whose water level is 15 m below that of reservoir P. If the flow into both the reservoirs Q and R is same, then determine the 
diameter of the branched pipe. Take f = 0 0075.  for all pipes and neglect minor losses.

Solution
Refer Figure 14.20. Let D D1 2= = 0.5 m, L = 4000 m, h1 10= m, L1 1500= m, L2 4000 1500 2500= − = m, L3 1000= m, 
h2 15= m, Q Q2 3=  and f = 0 0075. .
Let D3 be the diameter of the branched pipe.

Q Q
Q

2 3
1

2
= =

∵h h h
fL Q

gD

fL Q

gD
f f1 1 2

1 1
2

2
1
5

2 2
2

2
2

5

32 32
= + = +

π π

Thus 10
32 0 0075 1500

9 81 0 5

32 0 0075 2500 21
2

2 5
1

2

2
=

× × ×

× ×
+

× × ×.

. .

. ( / )Q Q

π π ×× ×9 81 0 55. . 	

10 168 56 1
2= . Q

∴ = =Q1
10

168 56.
0.2436 m /s3

∴ = = =Q Q2 3
0 2436

2

.
0.1218 m /s3

A

Q

R

Q
1

Q
2

L
2 , D

2

L
1 , D

1P

L 3
, D

3

Q 3

B

C

D

h1
h2

Figure 14.20
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∵h h h
fL Q

gD

fL Q

gD
f f2 1 3

1 1
2

2
1
5

3 3
2

2
3
5

32 32
= + = +

π π

Thus 15
32 0 0075 1500 0 2436

9 81 0 5

32 0 0075 1000 0 1212

2 5
=

× × ×
× ×

+
× × ×. .

. .

. .

π
88

9 81

2

2
3
5π × ×. D 	

15 7 0605
0 036774

3
5

= +.
.

D

∴ =
−

⎛
⎝⎜

⎞
⎠⎟

=D3

1 5
0 036774

15 7 0605

.

.

/

0.34131 m

14.10 ❐ SIPHON
A siphon is a long bent pipe used to carry water from one reservoir at a higher level to another reservoir at a lower level 
when the two reservoirs are separated by a hill or high level ground. For some length, from the entrance section, a siphon 
will rise above the water level in the upper reservoir and then for the remaining length it gets down and connects the lower 
reservoir as shown in Figure 14.21.

The rising portion of the siphon is known as the inlet limb (or inlet leg). The highest point (S) of the siphon is known 
as summit. The portion between the summit and the lower reservoir is known as outlet limb (or outlet leg). The pressure 
at point S is less than the pressure at point A since it is above point A. Thus, pressure at summit is below the atmospheric 
pressure. Theoretically, the pressure at S may be reduced to -10.3 m of water. However, at -7.6 m of water head (i.e., 10.3 -	
7.6 = 2.7 m absolute), the dissolved air and gases would come out from water and collect at summit to form airlock and 
thereby, obstruct the flow. Therefore, the siphon should be laid so that no section of the pipe will be more than 7.6 m above 
the hydraulic gradient line at the section. Moreover, to limit the reduction of the pressure at point S, the length of inlet limb 
is to be shortened which decreases the frictional losses.

 Example 14.36  A siphon of diameter 0.2 m and length 1500 m connects two tanks having a difference in water level 
of 20 m. The summit is 4 m above the water level in the upper tank. Determine the maximum length of the siphon from 
the upper tank to the summit if separation occurs at 2.74 m of water absolute. Neglect minor losses, take the coefficient of 
friction f = 0 005.  and atmospheric pressure = 10.33 m of water.

Solution
Refer Figure 14.21. Let D = 0 2. m, L = 1500 m, h1 20= m, h = 4 m, p gS w/ 2.74 m( )ρ = , f = 0 00. 5 m, and 
p gA w/ m( ) .ρ = 10 33 .

Let L1 be the maximum length of the siphon from the upper tank to the summit.

A

S

B

h

Siphonh1

Figure 14.21 Siphon
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Applying Bernoulli’s equation to points A and B and assuming B as datum, we get:

p

g

V

g
z

p

g

V

g
z hA

w

A
A

B

w

B
B f ABρ ρ

+ + = + + +
2 2

2 2
( )

Thus 10 33 0 20 10 33 0 0. . ( )+ + = + + + hf AB   [ ]∵ z hA = 1 	

∴ =( )hf AB 20

Thus 
4

2
20

2fLV

gD
=

	
4 0 005 1500

2 9 81 0 2
20

2× × ×
× ×

=
.

. .

V

∴ =
× × ×
× ×

=V
20 2 9 81 0 2

4 0 005 1500

. .

.
1.6174 m/s

Now applying Bernoulli’s equation to points A and S and assuming A as datum, we get:

	

p

g

V

g
z

p

g

V

g
z hA

w

A
A

S

w
S f ASρ ρ

+ + = + + +
2 2

2 2
( )   [ ]∵V VS = 	

Thus 10 33 0 0 2 74
1 6174

2 9 81
4

4

2

2
1

2

. .
.

.
+ + = +

×
+ +

fL V

gD
  [ ]∵ z hS = 	

10 33 6 8733
4 0 005 1 6174

2 9 81 0 2
1

2

. .
. .

. .
= +

× × ×
× ×

L

0 01333 10 33 6 8733 3 45671. . . .L = − =

∴ = =L1
3 4567

0 01333

.

.
259.32 m

 Example 14.37  Two reservoirs are connected by a siphon of diameter 0.2 m and length 2000 m whose surface level dif-
fers by 25 m. The pipeline crosses a ridge whose summit is 8 m above the level of water and 300 m distant from the higher 
reservoir. Determine the minimum depth of pipe below the summit of ridge in order that pressure at the apex does not fall 
7.4 m below atmospheric pressure. Take coefficient of friction f = 0 007.  and neglect minor energy losses. Also determine 
the discharge through the syphon.

Solution
Refer Figure 14.22. Let D = 0 2. m, L = 2000 m, h hf1 25= = m, HS = 8 m , L1 300= m, p gc w/ m( ) . . .ρ = − =10 3 7 4 2 9  
and f = 0 007. .

Let hS  be the minimum depth of pipe below the summit of ridge.

Since h
fLV

gDf =
4

2

2

	

Thus                                           
4 0 007 2000

2 9 81 0 2
25

2× × ×
× ×

=
.

. .

V

	

∴ =
× × ×
× ×

=V
25 2 9 81 0 2

4 0 007 2000

. .

.
1.3235 m/s
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	Q AV D V= = × = × × =
π π
4 4

0 2 1 32352 2. . 0.0416 m /s3

Applying Bernoulli’s equation to points A and C and assuming A as datum, we get:

p

g

V

g
z

p

g

V

g
z hA

w

A
A

c

w
c f ACρ ρ

+ + = + + +
2 2

2 2
( )   [ ]∵V Vc =

Thus 10 3 0 0 2 9
1 3235

2 9 81

4

2

2
1

2

. .
.

.
+ + = +

×
+ +h

fL V

gDc   [ ]∵ z hc c= 	

10 3 2 9 0 0893
4 0 007 300 1 3235

2 9 81 0 2

2

. . .
. .

. .
= + + +

× × ×
× ×

hc

∴ = − + + =hc 10 3 2 9 0 0893 3 7497. ( . . . ) 3.561 m

h H hS S c= − = − =8 3 561. 4.439 m

14.11 ❐ POWER TRANSMISSION THROUGH PIPES
The pipes carrying water under pressure may be utilized to transmit hydraulic power. This type of transmission is commonly 
used for the working of several hydraulic machines. The power transmitted depends on the discharge passing through the pipe 
and the total head available at the end of the pipe. When water flows along the pipe it is subjected to frictional resistance which 
causes loss of head due to friction. Consider that a pipe is connected to a high level storage tank as shown in Figure 14.23.

Let H  be the total head at the source, hf  be the loss of head due to friction, f  be the coefficient of friction, L be the 
length of the pipe, D  be the diameter of the pipe, V  be the velocity of flow in the pipe, P  be the power available at the outlet 
of the pipe and neglecting minor head losses.

Net head = = − = −h H h H
fLV

gDf
4

2

2

H
V

L

D

Figure 14.23

A

C

B

hc

Siphon

Summit

Ridge

Hs

hs

h1

Figure 14.22
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P gQ H
fLV

gDw= × = −
⎛

⎝
⎜

⎞

⎠
⎟Weight of water per second  Net head ρ 4

2

2

	 P g D V H
fLV

gDw= × × −
⎛

⎝
⎜

⎞

⎠
⎟ρ π

4

4

2
2

2

 (14.28)

The condition for maximum power transmitted may be obtained by differentiating Equation (14.28) with respect to V  and 
equating it to zero, we get the following expression.

dP

dV

d

dV
gD VH

fLV

gDw= × −
⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=π ρ
4

4

2
02

3

H
fLV

gD
− × =3

4

2
0

2

H hf− × =3 0

	 ∴ =h
H

f 3  (14.29)

The Equation (14.29) shows that the power transmitted through a pipe is maximum when the loss of head due to friction is 
one third of the total head at the inlet of the pipe.

The efficiency of power transmission ( )η  through the pipe is given by,

η = =
−Power available at the outlet

Power available at the inlet

H h

H

f

For maximum power transmission, h Hf = ( / )3  and thus, from the above expression, maximum efficiency ( )maxη  is given 
below.

	 ηmax
( / )

. %=
−

=
H H

H

3 2

3
66 7or  (14.30)

 Example 14.38  Water is being supplied to a turbine through a 400 m long horizontal pipe for generating 860 kW of 
power at 80% efficiency. If water is available at a head of 120 m and the friction coefficient f = 0 005. , then calculate the 
required discharge and minimum diameter of pipe to maintain the flow rate.

Solution
Let L = 400 m, P1 860= kW, η = 80 % , H = 120 m and f = 0 005. . Let Q be the required discharge and D  be the mini-
mum diameter of the pipe. For minimum diameter of pipe or for maximum transmission of power, we get:

h
H

f = = =
3

120

3
40 m

h H hf= − = − =120 40 80 m

P
P

= = =1 860

0 8η .
1075 kW

Since  P
gQhw=

ρ
1000

kW
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Thus 1075
1000 9 81 80

1000
=

× × ×. Q

	

∴ =
×

× ×
=Q

1075 1000

1000 9 81 80.
1.3698 m /s3

Since h
fLQ

gD
f =

32 2

2 5π 	

Thus 40
32 0 005 400 1 3698

9 81

2

2 5
=

× × ×
×

. .

.π D 	

∴ =
× × ×

× ×

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=D
32 0 005 400 1 3698

9 81 40

2

2

1 5
. .

.

/

π
0.4992 m

 Example 14.39  It is desired to transmit 130 kW power through a 2800 m long pipeline. If the pressure at the inlet of 
the pipe is 4512.6 kN/m2, then the pressure drop over the full length of pipe is 833.85 kN/m2 and the friction coefficient 
f = 0 006. , calculate the diameter of the pipe and the efficiency of transmission.

Solution
Let P = 130 kW, L = 2800 m, p = 4512 6. kN/m2, pd = 833 85. kN/m2 and f = 0 006. . Let D  be the diameter and η be the 
efficiency of transmission.

H
p

gw
= =

×
×

=
ρ

4512 6 10

1000 9 81
4

3.

.
60 m

h
p

gf
d

w
= =

×
×

=
ρ

833 85 10

1000 9 81

3.

.
85 m

h H hf= − = − =460 85 375 m

Since P
gQhw=

ρ
1000

kW
	

Thus 130
1000 9 81 375

1000
=

× × ×. Q

	

∴ =
×

× ×
=Q

130 1000

1000 9 81 375.
0.03534 m /s3

Since h
fLQ

gD
f =

32 2

2 5π 	

Thus 85
32 0 006 2800 0 03534

9 81

2

2 5
=

× × ×
× ×

. .

.π D 	

∴ =
× × ×

× ×

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=D
32 0 006 2800 0 03534

9 81 85

2

2

1 5
. .

.

/

π
0.1522 m

η =
−

=
−

=
H h

H

f 460 85

460
0.8152 or 81.52%
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14.12 ❐ FLOW THROUGH NOZZLES
A gradually converging short tube called nozzle fitted at the exit of the pipe converts the total energy of the flowing liquid 
into velocity energy. Nozzles are used where higher velocity of liquid flow is required such as in fire extinguisher and in 
Pelton turbine. 

14.12.1 Discharge through Nozzle 
Consider a nozzle fitted at the end of a pipe connected to a reservoir as shown in Figure 14.24.

Let H  be the total head at the source, hf  be the loss of head due to friction, f  be the coefficient of friction, L be the 
length of the pipe, D  be the diameter of the pipe, d  be the diameter of the nozzle, V  be the velocity of flow in the pipe , Vo 
be the velocity of flow at the exit of the nozzle , A be the area of pipe or nozzle inlet, a be the area of the nozzle exit, P  be 
the power transmitted by the jet issued from the nozzle and neglecting minor head losses.

Head at inlet of nozzle = = − = −h H h H
fLV

gDi f
4

2

2

Head at outlet of nozzle = =h
V

go
o

2

2

When head losses in the nozzle are neglected, h hi o= 	and the expressions are given below.

	 H
fLV

gD

V

g
o− =

4

2 2

2 2

 (14.31)

	 H
V

g

fLV

gD
o= +

2 2

2

4

2
 (14.31a)

V
aV

A
o=   [From continuity equation]

Substituting this value of V  in expression (14.31a), we get:

H
V

g

fL

gD

aV

A

V

g

fLa

DA

o o o= + ⎛
⎝⎜

⎞
⎠⎟

= +
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2 2 2 2

22

4

2 2
1

4

	 ∴ =

+ ⎛
⎝⎜

⎞
⎠⎟

V
gH

fL

D

a

A

o
2

1
4

2
 (14.32)

Discharge through the nozzle is given by,

 q aV d
gH

fL

D

a

A

o= = ×

+ ⎛
⎝⎜

⎞
⎠⎟

π
4

2

1
4

2
2

 (14.33)

H

V

L

D Vo

Nozzle
d

Pipe

Figure 14.24
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14.12.2 Efficiency of Power Transmission through Nozzle
The kinetic energy (K.E.) of the jet coming out of the nozzle is equal to the power available at its exit.

Power available at nozzle exit: P mV aV Vo o o o= = ×
1

2

1

2
2 2ρ

Power available at nozzle inlet: WattsP gqHi = ρ

Efficiency of power transmission through the nozzle is given by,

η
ρ
ρ

ρ
ρ

= =
×

=
×

× ×
=

P

P

aV V

gqH

aV V

g aV H

V

gH
o

i

o o o o

o

o( / ) ( / )1 2 1 2

2

2 2 2

Substituting the value of Vo from Equation (14.32) in the above expression, we get:

	 η =

+ ⎛
⎝⎜

⎞
⎠⎟

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

+ ⎛
⎝⎜

⎞
⎠⎟

1

2

2

1
4

1

1
4

2

2

2gH

gH

fL

D

a

A

fL

D

a

A

 (14.34)

14.12.3 Condition for Maximum Power through Nozzle
From Equation (14.31), we get:

V g H
fLV

gD
g H

fL

gD

aV

Ao
o2

2 2

2
4

2
2

4

2
= −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= − ⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  [ ]∵V aV Ao= /

The power transmitted through the nozzle is given by,

P aV V aV g H
fL

gD

aV

Ao o o
o= × = × − ⎛

⎝⎜
⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1

2

1

2
2

4

2
2

2

ρ ρ

Thus P ag V H
fLa V

gDA
o

o= −
⎛

⎝
⎜

⎞

⎠
⎟ρ

4

2

2 3

2

For maximum power transmission, ( )dP dVo/ = 0 and the expression is as follows.

d

dV
ag V H

fLa V

gDAo
o

oρ −
⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
4

2
0

2 3

2

H
fL

gD

a V

A

o− × × =3
4

2
0

2 2

2

H
fL

gD
V− × × =3

4

2
02   [ ]∵V aV Ao= /

H hf− × =3 0
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	 ∴ =h
H

f 3
 (14.35)

The Equation (14.35) shows that the power transmitted by a nozzle is maximum when the head lost due to friction in pipe 
is one third to the total head supplied at the inlet of the pipe.

14.12.4 Diameter of Nozzle for Maximum Power Transmission through Nozzle
From Equation (14.35), we get:

H h
fLV

gDf= × = ×3 3
4

2

2

Also H
V

g

fLV

gD
o= +

2 2

2

4

2
  [Equation (14.31a)]

Thus 3
4

2 2

4

2

2 2 2

× = +
fLV

gD

V

g

fLV

gD
o

8

2 2

2 2fLV

gD

V

g
o=

8

2 2

2 2

2

2fL

gD

a V

A

V

g
o o× =   [ / ]∵V aV Ao=

	
A

a

fL

D

⎛
⎝⎜

⎞
⎠⎟

=
2 8

 (14.36)

( / )

( / )

π
π

4

4

82

2

2
D

d

fL

D

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=

D

d

fL

D

4

4

8
=

	 ∴ =
⎛

⎝
⎜

⎞

⎠
⎟d

D

fL

5 1 4

8

/

 (14.37)

Thus, from Equation (14.37), the diameter of the nozzle can be determined.

 Example 14.40  Find the maximum power transmitted by a jet of water discharging freely out of nozzle fitted to a pipe 
300 m long and 100 mm diameter with coefficient of friction as 0.01. The available head at the base of nozzle is 90 m.

Solution
Let L = 300 m, D = =100 0 1mm m. , f = 0 01.  and h = 90 m.

d
D

fL
=

⎛

⎝
⎜

⎞

⎠
⎟ =

× ×

⎛

⎝
⎜

⎞

⎠
⎟ =

5 1 4 5 1 4

8

0 1

8 0 01 300

/ /
.

.
0.02541 m

h
V

g
o= =

2

2
90
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∴ = × = × × =V go 90 2 90 2 9 81. 42.02 m/s

q d Vo= = × × =
π π
4 4

0 02541 42 022 2. . 0.02131 m /s3

P
gqhw= =

× × ×
=

ρ
1000

1000 9 81 0 02131 90

1000

. .
18.8146 kW

 Example 14.41  A nozzle with effective diameter 40 mm and coefficient of velocity 0.97 is fitted at the discharge end of 
a pipe of diameter 0.2 m and length 1000 m. If the coefficient of friction for the pipe is 0.006 and the head of water at its 
inlet is 150 m, then determine (i) the actual velocity of the jet (ii) discharge and (iii) power produced by the jet.

Solution
Let d = =40 0 04mm m. , Cv = 0 97. , D = 0 2. m, L = 1000 m, f = 0 006.  and h H= = 150 m.

 (i) 
a

A

d

D

⎛
⎝⎜

⎞
⎠⎟

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
×
×

⎡

⎣
⎢

2 2

2

2 2

2

4

4

4 0 04

4 0 2

( / )

( / )

( / ) .

( / ) .

π
π

π
π⎢⎢

⎤

⎦
⎥
⎥

=
2

0 0016.

V
gH

fL

D

a

A

o =

+ ⎛
⎝⎜

⎞
⎠⎟

=
× ×

+ × × ×
=

2

1
4

2 9 81 150

1
4 0 006 1000

0 2
0 0016

4
2

.
.

.
.

99 69. m/s

V C Vv oactual = = × =0 97 49 69. . 48.2 m/s

 (ii) q aV d V= = × = × × =actual actual
π π
4 4

0 04 48 22 2. . 0.06057 m /s3

 (iii) P
gqhw= =

× × ×
=

ρ
1000

1000 9 81 0 06057 150

1000

. .
89.129 kW

 Example 14.42  Find the maximum power transmitted by a jet of water discharging freely out of a nozzle fitted to a pipe 
of length 200 m and diameter 100 mm with coefficient of friction as 0.008. Also determine the diameter of the nozzle if the 
available head at the inlet of the pipe is 126 m. Take the coefficient of velocity as 0.97.

Solution
Let L = 200 m, D = =100 0 1mm m. , f = 0 008. , H = 126 m  and Cv = 0 97. .

d
D

fL
=

⎛

⎝
⎜

⎞

⎠
⎟ =

× ×

⎛

⎝
⎜

⎞

⎠
⎟ =

5 1 4 5 1 4

8

0 1

8 0 008 200

/ /
.

.
0.02973 m

h H h H
H

f= − = − = − =
3

126
126

3
84 m   [For maximum power]

V C gho v= = × × × =2 0 97 2 9 81 84. . 39.38 m/s

q d Vo= × = × × =
π π
4 4

0 02973 39 38 0 027342 2. . . m /s3

P
gqhw= =

× × ×
=

ρ
1000

1000 9 81 0 02734 84

1000

. .
22.529 kW
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14.13 ❐ WATER HAMMER
The phenomenon of sudden rise in pressure in the pipe is called water hammer. It happens when the flowing water is 
suddenly brought to rest by closing the valve (or by any similar cause) and thereby, momentum of the moving water gets 
destroyed. Thus, a wave of high pressure transmits along the pipe and has the effect of hammering action on the wall of the 
pipe. In some cases, the rise in pressure may be so large that the pipe may even burst. The magnitude of the pressure rise 
depends on (i) speed at which the valve is closed, (ii) velocity of flow, (iii) length of the pipe and (iv) elastic properties of 
the pipe material as well as that of the flowing fluid. In this section, water hammer during gradual closure of valve, sudden 
closure of valve in a rigid pipe and sudden closure of valve in an elastic pipe have been discussed.

14.13.1 Gradual Closure of Valve
Consider a long pipe of length L through which water is flowing at a uniform velocity V and a valve is fitted at its end 
(Figure 14.25). Let A be the cross-sectional area of the pipe, p be the increase in pressure, t be the time in seconds required 
to close the valve and C  be the velocity of pressure wave.

Since the valve is closed gradually, the velocity of water decreases from V  to zero in time t seconds.

Retardation (or acceleration) of water = 
V

t

V

t

−
=

0

Retarding force = × = ×Mass  Retardaion ρw AL
V

t

Force due to increase in pressure due to pressure wave = pA
Equating the two forces, we get:

ρw AL
V

t
pA× =

	 p
LV

t
w=

ρ
 (14.38)

The pressure head is given by,

	 H
p

g

LV

gt

LV

gtw

w

w
= = =

ρ
ρ
ρ

 (14.39)

The valve closure is said to be gradual when 

 t
L

C
>

2
 (14.40)

The valve closure is said to be sudden when 

 t
L

C
<

2
 (14.41)

14.13.2 Sudden Closure of Valve in a Rigid Pipe
In a perfectly long rigid pipe (Figure 14.25) when the valve is closed suddenly, the kinetic energy of the flowing water 
converts into its strain energy if the effect of friction is neglected. Let A be the cross-sectional area of the pipe, p be the 
increase in pressure, C  be the velocity of pressure wave and K  be the bulk modulus of elasticity of water.

Loss of K.E. of water = Gain of strain energy of water

1

2

1

2
2

2

mV
p

K
=

⎛

⎝
⎜

⎞

⎠
⎟ × Volume

H
V

L

D

Figure 14.25
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1

2

1

2
2

2

ρw ALV
p

K
AL=

⎛

⎝
⎜

⎞

⎠
⎟

p KVw
2 2= ρ

p V K V
K

w
w

w
= =ρ

ρ
ρ

2

  [Multiply and divide by ρw]

But 
K

C
wρ

=

	 ∴ =p VCwρ  (14.42)

14.13.3 Sudden Closure of Valve in an Elastic Pipe
Due to sudden closure of the valve, the longitudinal stress ( )σ l  and circumferential stress ( )σc  are produced in the walls of 
an elastic pipe. Thus, some of the kinetic energy of water is absorbed by the pipe as strain energy. Let D  be the diameter of 
pipe, A be its cross-sectional area, t p be the thickness of the pipe wall, E  be the modulus of elasticity, ν p be the Poisson’s 
ratio of the pipe material, p be the increase in pressure, C  be the velocity of pressure wave and K  be the bulk modulus of 
elasticity of water.

The strain energy per unit volume stored in the pipe material is given by,

e
Es l c p l c= + −
1

2
22 2[ ]σ σ ν σ σ

But σ l ppD t= ( ) ( )/ 4  and σc ppD t= ( ) / ( )2 , the above expression becomes,

e
E

pD

t

pD

t

pD

t

pD

ts
p p

p
p p

=
⎛

⎝
⎜

⎞

⎠
⎟ +

⎛

⎝
⎜

⎞

⎠
⎟ − × ×

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1

2 4 2
2

4 2

2 2

ν

e
E

p D

t

p D

t

p D

t
s

p p p

= + − × ×
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1

2 16 4
2 0 25

8

2 2

2

2 2

2

2 2

2
.   [ . ]Take ν p = 0 25

Thus e
p D

Et
s

p

=
2 2

28

Volume of the pipe material = π DLt p

The total strain energy of the pipe material is given by,

E
p D

Et
DLt

p DL

Et
D

p DLA

Ets
p

p
p p

= × = × =
2 2

2

2
2

2

8 2 4 2
π π

  [ ( ) ]∵ A D= π /4 2

Since loss of kinetic energy of water is equal to the sum of gain of strain energy in water and strain energy stored in pipe 
material.

Thus 
1

2

1

2 2
2

2 2

ρw
p

ALV
p

K
AL

p DLA

Et
=

⎛

⎝
⎜

⎞

⎠
⎟ +
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Diving both sides by ( )1 2/ AL, we get:

ρw
p p

V
p

K

p D

Et
p

K

D

Et
2

2 2
2 1

= + = +
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

	 ∴ =
+

=
+

p
V

K

D

Et

V

K

D

Et

w

p

w

p

ρ ρ2

1 1
 (14.43)

For a rigid pipe, E =∝	and thus, Equation (14.43) becomes p V Kw= ρ , i.e., increase in pressure due to sudden closure 
of the valve in a rigid pipe.

If poisons ratio ( )ν p  is also considered, then Equation (14.43) is written as follows.

	 p V

K

D

Et

w

p
p

=
+ −

ρ

ν1
1 25( . )

 (14.44)

14.13.4  Time Taken by Pressure Wave to Travel from Valve  
to the Tank and from Tank to Valve

Let L be the length of the pipe and C  be the velocity of pressure wave. Time taken ( )t  by the pressure wave to travel from 
the valve to the tank and from the tank to the valve is given below.

	
t =

Distance travelled from valve to tank and back

Velocity of ppressure wave
=

+
=

L L

C

L

C

2
 (14.45)

 Example 14.43  The water flows through a pipe of diameter 0.5 m and length 3200 m with a velocity of 2.4 m/s. If a 
valve is provided at the end of the pipe and the velocity of pressure wave is 1600 m/s, then determine the rise in pressure 
when valve is closed in 20 seconds.

Solution
Let D = 0 5. m, L = 3200 m, V = 2 4. m/s and C = 1600 m/s .

t = 20 s

2 2 3200

1600

L

C
=

×
= 4 s

Since t
L

C
>

2
, the valve closure is gradual. Therefore, the expression for rise in pressure is given below.

p
LV

t
w= =

× ×
=

ρ 1000 3200 2 4

20

.
384000 N/m2

 Example 14.44  A water main of diameter 0.3 m and length 3500 m discharges water into a reservoir at a rate of 

0.1414 m3/s. If the pipeline is gradually closed in 24 seconds by operating a valve at the reservoir end and test pressure for 
concrete main is 30.73 m, then state whether there is any chance of bursting of the pipe.

Solution
Let D = 0 3. m, L = 3500 m, Q = 0 1414. m /s3 , t = 24 s  and Ht = 30 73. m.
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V
Q

A

Q

D
= = =

×
=

( / )

.

( / ) .π π4

0 1414

4 0 32 2
2 m/s

Since the valve closure is gradual, the rise in pressure is given by,

p
LV

t
w= =

× ×
=

ρ 1000 3500 2

24
291666 67. N/m2

H
p

gw
= =

×
=

ρ
291666 67

1000 9 81
29 73

.

.
. m

Since H Ht<< , there is no chance of bursting of the pipe

 Example 14.45  The water flows through a steel pipe of diameter 0.5 m, length 2000 m and wall thickness 10 mm with 
a velocity of 2.1 m/s. A valve provided at the end of the pipe is suddenly closed, the time of closure is 1.6 s. Determine the 
rise in pressure if the pipe is considered elastic and its modulus of elasticity is 200 GN/m2. Take bulk modulus of elasticity 
of water as 2 GN/m2.

Solution
Let D = 0 5. m, L = 2000 m, t p = =10 0 01mm m. , V = 2 1. m/s, t = 1 6. s , E = = ×200 200 109GN/m N/m2 2 and 

K = = ×2 2 109GN/m N/m2 2.

C
K

w
= =

×
=

ρ
2 10

1000
1414 21

9

. m/s

2 2 2000

1414 21
2 8

L

C
=

×
=

.
. 3 s

Since t
L

C
<

2
, the valve closure is sudden and therefore, the expression for rise in pressure is given below.

p V

K

D

Et

w

p

=
+

= ×

×
+

× ×

=
ρ

1
2 1

1000
1

2 10

0 5

200 10 0 019 9

.
.

.

2424871.13 N/m2

Summary

 1. The major loss of energy which is caused by friction is meas-
ured by the following formulae:

    (i)  Darcy–Weisbach formula:

         h
fLV

gD

fLQ

gD
f = =

4

2

322 2

2 5π
,

           here L is the length of the pipe, D is the diameter of the 
pipe, V  is the average flow velocity, Q  is the discharge 
and f  is the coefficient of friction.

   (ii)  Chezy’s formula: V C m i= , here m A P= ( )/  and 
i h Lf= ( )/

  (iii)  Manning’s formula: V n m i= ( ) ,/ /1 2 3 1 2/  here n is the 
Manning’s roughness.

  (iv)  Hazen William’s formula: V k m i= 0 848 0 63 0 54. ,. .  here 
k  is the coefficient.

 2. Minor energy losses which occur due to change in the veloc-
ity of flowing fluid in magnitude or direction in a pipe is 
measured by the following formulae.

    (i)  Loss of head due to sudden enlargement: 

( ) ( ) ( )h V V gL e = −1 2
2 2/

   (ii)  Loss of head due to sudden contraction: 

( )h
V

g CL c
c

= −
⎛
⎝⎜

⎞
⎠⎟

2
2 2

2

1
1

   (iii) Loss of head at the inlet of a pipe: ( ) . ( )h V gL i = 0 5 22 /
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   (iv) Loss of head at the outlet of a pipe: ( ) ( )h V gL o = 2 2/

    (v) Loss of head due to obstruction: 

( )
( )

h
V

g

A

C A aL
c

obs =
−

−
⎡

⎣
⎢

⎤

⎦
⎥

2 2

2
1 ,

            here A is the area of cross section of the main pipe and 
a  is the maximum area of obstruction.

   (vi) Loss of head due to bend: ( ) ( )h kV gL b = 2 2/

  (vii) Loss of head in various pipe fittings:

 ( ) ( )h kV gL f = 2 2/

 3. Hydraulic gradient line is the line joining the piezometric 
heads while total energy line is the line joining the total 
heads at various points in a flow along the length of the pipe 
with respect to some reference line.

 4. The pipes of different diameters and lengths connected end 
to end to form a pipeline are termed as pipes in series or 
compound pipes.

 5. A pipe of uniform diameter having loss of head and dis-
charge equal to the loss of head and discharge of a com-
pound pipe made of several pipes of different diameters and 
lengths is called an equivalent pipe.

 6. Dupuit’s equation: 
L

D

L

D

L

D

L

D5
1

1
5

2

2
5

3

3
5

= + +

 7. When a pipeline divides into two or more branches which 
again join together into a single pipe, the flow of liquid 
through the branch pipes is known as parallel flow.

 8. In a branched pipe system, three or more reservoirs having 
different free surface levels are connected by means of pipes 
having one or more junctions between them.

 9. A siphon is a long bent pipe used to carry water from one 
reservoir at a higher level to another reservoir at a lower level 
when the two reservoirs are separated by a hill or high level 
ground.

 10. The power transmitted through a pipe is maximum when the 
loss of head ( )hf  due to friction is one third of the total head 
( )H  at the inlet of the pipe, i.e., h Hf = /3.

 11. Efficiency of power transmission ( )η  through the pipe: 

η =
−H h

H
f

 12. Maximum efficiency through a pipe: ηmax ( ) . %= 2 3 66 7/ or

 13. Velocity of water at the nozzle exit: 

V gH
fL

D

a

Ao = + ⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

( )2 1
4

2

  Here, H  is the total head, f  is the coefficient of friction, D is 
the diameter of the pipe, A is the area of pipe or nozzle inlet 
and a  is the area of the nozzle exit.

 14. Efficiency of power transmission through the nozzle: 

η = + ⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1 1
4

2
fL

D

a

A

 15. Power transmitted by a nozzle is maximum when the head 
lost due to friction in pipe is one third to the total head sup-
plied at the inlet of the pipe, i.e., h Hf = /3.

 16. Diameter of the nozzle: d D fL= ⎡
⎣

⎤
⎦

5 1 4
8/( )

/

 17. The phenomenon of sudden rise in pressure in the pipe is 
called water hammer.

 18. The valve closure is said to be gradual when t L C> ( ).2 /

 19. The valve closure is said to be sudden when t L C< ( ).2 /

 20. The increase in pressure due to gradual valve closure is 
p LV tw= ( ) .ρ /

 21. Velocity of pressure wave: C K w= /ρ , here K  is bulk 
modulus of elasticity.

 22. Increase in pressure due to sudden valve closure for rigid 
pipe is p VCw= ρ .

 23. Increase in pressure due to sudden valve closure for an elas-
tic pipe is

p V
K

D

Etw
p

= +
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

ρ 1

 24. Time taken by pressure wave to travel from valve to the tank 
and from tank to valve is t L C= 2 / .

Multiple-choice Questions

 1. The head loss in turbulent flow in pipes varies
(a) Directly as velocity.
(b) Inversely as square of the velocity.
(c) Inversely as square of diameter.
(d) Approximately as the square of the velocity.

 2. In networks of pipes
(a) Head loss in all the circuits is the same.
(b) Head loss around each elementary circuit must be zero.
(c) Elementary circuits are replaced by equivalent pipes.
(d) None of the above
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 3. Discharge in laminar flow through pipes varies
(a) Inversely as pressure drop.
(b) Directly with viscosity.
(c) Inversely with viscosity.
(d) As the square of radius.

 4. When the pipes are connected in parallel, the total head loss
(a) Is equal to the inverse of the sum of head in each pipe.
(b) Is equal to the sum of loss of head in each pipe.
(c) Is same in each pipe.
(d) Is half that of in each pipe.

 5. Maximum efficiency of power transmission through a pipe  
is
(a) 56.67%.
(b) 66.67%.
(c) 76.67%.
(d) 86.67%.

 6. In a siphon, to avoid interruption, an air vessel is used
(a) At the summit.
(b) At the inlet.
(c) At the outlet.
(d) None of the above.

 7. Which of the following relation may be used to replace a 
pipe of diameter D by n parallel pipes of diameter d?
(a) d nD= .
(b) d n D= / .

(c) d D n= / 0 25. .

(d) d D n= / 0 4. .

 8. The hydraulic mean depth for a circular pipe of diameter D 
is
(a) 2D.
(b) D/2.
(c) D/3.
(d) D/4.

 9. The total energy line lies over the hydraulic gradient line by 
an amount equal to
(a) Velocity head.
(b) Pressure head.
(c) Sum of velocity and pressure heads.
(d) None of the above.

 10. The hydraulic gradient line for a flow through a pipe is 
always
(a) Below the total energy line.
(b) Above the total energy line.
(c) Above the axis of the pipe.
(d) None of the above.

 11. The magnitude of water hammer depends on
(a) Speed with which the valve is closed.
(b) Diameter of the pipe.
(c) Elastic properties of pipe and the liquid.
(d) All the above.

 12. The speed of pressure wave depends on
(a) Diameter of pipe.
(b) Density of liquid.
(c) Viscosity of liquid.
(d) None of the above.

 13. The frictional resistance in a pipe during flow of liquid varies 
approximately with
(a) Velocity.
(b) Pressure.
(c) Square of velocity.
(d) Square of pressure.

 14. Maximum head loss occurs in
(a) U-bend.
(b) 30° bend.
(c) 60° bend.
(d) 90° bend.

 15. Water hammer is caused due to
(a) Friction.
(b) Incompressibility.
(c) Sudden enlargement.
(d) Sudden closure of the valve.

 16. Loss of head at entrance of a pipe in terms of mean velocity 
of liquid ( )V  in the pipe is

(a) ( . ) ( )0 5 22V g/ .

(b) V g2 2/( ).

(c) V g2 / .

(d) ( . ) ( )0 2 22V g/ .

 17. Loss of head at the exit of a pipe in terms of mean velocity 
of liquid ( )V  at the outlet of pipe is

(a) ( . ) ( )0 5 22V g/ .

(b) V g2 2/( ).

(c) V g2 / .

(d) ( . ) ( )0 2 22V g/ .

 18. A pipe is said to be equivalent to another pipe if
(a) Length and discharge is same.
(b) Length and diameter are same.
(c) Velocity and diameter are same.
(d) Discharge and pressure head loss are same.
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Review Questions

 1. Define major and minor energy losses in pipes.

 2. Derive expressions for the calculation of loss of head due to 
(i) sudden enlargement and (ii) sudden contraction.

 3. What is a compound pipe? What will be the loss of head 
when pipes are connected in series?

 4. Briefly explain an equivalent pipe.

 5. What is a siphon? Where it is used and how it works?

 6. Derive an expression for power transmission through pipes. 
Also derive the condition for maximum efficiency and cor-
responding efficiency of transmission.

 7. Derive expressions for discharge through the nozzle and 
efficiency of power transmission through the nozzle. Also 
obtain expression for the condition for maximum power 
through the nozzle.

 8. Derive an expression for diameter of nozzle for maximum 
power transmission through it.

 9. What do you mean by water hammer? Derive an expres-
sion for the rise of pressure when the valve is closed 
gradually.

 10. Derive an expression for the rise of pressure when the valve 
is closed suddenly and the pipe is rigid.

 11. Derive an expression for the rise of pressure when the valve 
is closed suddenly and the pipe is an elastic one.

Problems

 1. In a pipe of diameter 30 cm and length 50 m water flows with 
a mean velocity of 3.2 m/s. Determine the head loss due to 
friction using (i) Darcy-Weisbach and (ii) Chezy’s formula 
for which C = 60 . Take ν = 0 01. stoke.

[Ans. 0.88 m, 1.89 m]

 2. Using Chezy’s formula, find the loss of head due to friction 
in a pipe of diameter 0.3 m and length 100 m , if the average 
velocity of flow is 3 m/s and C = 55.

[Ans. 3.97 m]

 3. An oil of specific gravity 0.72 flows through a pipe of diame-
ter 0.2 m and length 800 m. If the oil flow rate is 0.2 m3/s and 
kinematic viscosity of oil is 0.26 stokes, then find the head lost 
due to friction and the power required to maintain this flow.

[Ans. 176.04 m, 248.68 kW]

 4. Water is flowing with a velocity of 5.2 m/s through a pipe 
of diameter of 0.3 m and length 10 m. Determine the head 
lost due to friction if the coefficient of friction is given by 
f = +0 015 0 08 0 3. ( . Re ),./  where Re is the Reynolds number. 
Take kinematic viscosity of water as 0.01 stoke.

[Ans. 2.96 m]

 5. Water is supplied to a city of population 4 × 105. The reser-
voir is 6.5 km away from the city and friction head loss in the 
pipeline is limited to 15 m. Each person consumes 0.18 m3 
of water per day. If coefficient of friction for pipeline is 
0.0075 and half of the daily supply is pumped in 8 hours, 
then determine the size of the supply main.

[Ans. 1.11 m]

 6. A pipeline of diameter 0.24 m and length 1000 m carries 
water from one end to the other. Determine the flow rate 
through the pipe if coefficient of friction f = 0.009 and the 

pressures measured at the inlet and outlet of the pipeline are 
15 kN/m2 and 3 kN/m2, respectively.

[Ans. 0.0181 m3/s]

 7. Water flows through a 2000 m long pipe with a velocity of 
1.5 m/s. If the head loss through the pipe is 15 m of water 
and coefficient of friction f = 0.008, then determine the min-
imum diameter of the pipe.

[Ans. 0.49 m]

 8. Determine the loss of head when a pipe of diameter 0.2 m is 
suddenly enlarged to a diameter of 0.4 m and the rate of flow 
of water through the pipe is 300 litres per second.

[Ans. 2.613 m]

 9. The diameter of a horizontal pipe 0.2 m is suddenly enlarged 
to 0.4 m. The rate of flow of water through this pipe is 
250  litres per second. If the intensity of pressure in the 
smaller pipe is 120 kN/m2, then calculate (i) the loss of head 
due to sudden enlargement, (ii) power lost due to enlarge-
ment and (ii) pressure intensity in the large pipe.

[Ans. 1.816 m, 4.4537 kW, 131.886 kN/m2]

 10. At a sudden enlargement of water main from 200 mm to  
400 mm diameter, the hydraulic gradient rises by 8 mm. 
Determine the rate of flow of water through the pipe.

[Ans. 0.02036 m3/s]

 11. The water flow through a horizontal pipe at a rate of 60 litres 
per second. If the diameter of the pipe which is 15 cm is 
suddenly enlarged to 22.5 cm, then determine (i) the loss of 
head due to sudden expansion, (ii) pressure difference in the 
two pipes and (iii) change in pressure if the change of section 
is gradual without any loss.

[Ans. 0.1814 m, 0.2901 m, 0.4716 m]

M14 Fluid Mechanics and Hydraulic Machines XXXX 01_Final.indd   55 4/19/2019   2:25:29 PM

Download more at Learnclax.com



14.56 Chapter 14

 12. In a pipe of diameter 100 mm an oil of specific gravity 0.78 
flows at a rate of 20 litres per second. If a sudden enlarge-
ment occurs in the second pipe so that maximum pressure 
rise is obtained, then determine (i) the loss of energy in sud-
den expansion and (ii) differential gauge length indicated by 
an oil-mercury manometer connected between the two pipes.

[Ans. 0.0825 m, 0.01 m]

 13. A horizontal pipe of diameter 0.6 m is suddenly contracted 
to a diameter of 0.3 m. The pressure intensities in the large 
and smaller pipe is measured as 100 kPa and 80 kPa, respec-
tively. If the coefficient of contraction is 0.62, then determine 
the discharge through the pipe.

[Ans. 0.39 m3/s]

 14. A pipe of diameter 0.15 m reduces in diameter to 0.1 m sud-
denly and it carries water at a rate of 40 litres per second.  
If the coefficient of contraction is 0.6, then find the pressure 
loss across the contraction.

[Ans. 16.171 kN/m2]

 15. Two pipes of diameters 0.2 m and 0.125 m are connected by 
means of a flange such that the axes of the two pipes are in 
straight line. Water flows from the larger pipe to the smaller 
pipe at a rate of 50 litres per second. The differential pres-
sure reading on a water-mercury manometer between the 
two pipes read 7.8 cm. Determine the loss of head due to 
contraction and the coefficient of contraction.

[Ans. 0.2658 m, 0.641]

 16. When a sudden contraction is introduced in a horizontal 
pipeline from 0.5 m diameter to 0.25 m diameter, the pres-
sure changes from 105 kPa to 69 kPa. If the coefficient of 
contraction is 0.65, then find the water flow rate. Following 
this if there is a sudden enlargement from 0.25 m to 0.5 m 
and if the pressure at the 0.25 m section is 69 kPa, then what 
is the pressure at the 0.5 m enlarged portion?

[Ans. 0.376 m3/s, 80 kPa]

 17. The one end of a horizontal pipe of diameter 25 cm and 
length 50 m is connected to a large reservoir and the other 
end is open to the atmosphere. If the height of water in the 
tank is maintained constant at 3 m above the centre line of 
the pipe and friction coefficient f = 0.009, then determine the 
discharge through the pipe in litres per second.

[Ans. 127.6 l/s]

 18. In a horizontal pipe of diameter 0.1 m, water flows at a veloc-
ity of 2.5 m/s. If a solid plate of diameter 75 mm obstruct the 
flow and the coefficient of contraction is 0.62, then deter-
mine the loss of head due to obstruction.

[Ans. 2.31 m]

 19. The two tanks are connected by a horizontal pipe of diameter 
0.2 m and length 100 m. If the discharge through the pipe is 
200 litres per second and friction coefficient f = 0.008, then 
determine the difference in elevations between the water sur-
faces in the tanks.

[Ans. 36.19 m]

 20. A pipe of length 40.5 m connected to a large reservoir at one 
end discharges water to the atmosphere at the other end. The 
diameter of the pipe is 0.15 m for the first 25 m length and 
then its diameter is suddenly enlarged to 0.3 m. If the height 
of water level in the reservoir is maintained at 8 m level and 
friction coefficient f = 0.01, then determine the rate of flow 
through the pipe.

[Ans. 78.7 l/s]

 21. A pipe of diameter 0.2 m and length 1.6 km connecting two 
water reservoirs has a slope of 1 in 100. The level of water 
in the first reservoir is 12 m above the inlet pipe and in the 
second tank 3 m above the outlet of the pipe. If the friction 
coefficient f = 0.005, then determine the rate of flow through 
the pipe.

[Ans. 54. 76 l/s]

 22. A pipe of diameter 40 mm takes off abruptly from a large 
reservoir and runs 6 m, then expands abruptly to 80 mm 
diameter and runs 45 m, and next discharges directly into 
the open air with a velocity of 2 m/s. Determine the required 
height of water surface above the point of discharge if the 
friction coefficient f = 0.009.

[Ans. 25.413 m]

 23. Determine the water level to be maintained in the tank for 
discharging 0.75 litres per second of water through a pipe 
connected to a tank. The diameter and length of the horizon-
tal pipe are respectively 30 mm and 30 m, and the friction 
coefficient f = 0.005.

[Ans. 1.231 m]

 24. Two tanks with a difference in elevation of 15 m are con-
nected by three pipes in series. The pipes are 300 m long of 
diameter 0.3 m, 150 m long of diameter 0.2 m, and 200 m 
long of diameter 0.25 m, respectively. The friction factor 
f f  in the relation h f LV gDf f= 2 2/( ) for the three pipes 
is 0.018, 0.020, and 0.019, respectively, which account for 
friction losses. If the sudden contraction coefficient is 0.24, 
then determine the flow rate.

[Ans. 0.1064 m3/s]

 25. Three pipes of diameters 0.4 m, 0.2 m and 0.3 m of lengths 
of 400 m, 200 m and 300 m, respectively, are connected 
in series. The compound pipe connects two water tanks 
having a difference of water level of 25 m. Determine the 
discharge through the compound pipe neglecting minor 
losses when the coefficient of friction for the compound 
pipe is 0.006.

[Ans. 0.1257 m3/s]

 26. A compound piping system consists of 1.8 km of 0.5 m 
diameter, 1.2 km of 0.4 m and 0.6 km of 0.3 m diameter 
pipes of the same material connected in series. Determine 
the equivalent length of a 0.4 m diameter pipe.

[Ans. 4.318 km]

 27. A main pipe divides into two parallel pipes which again 
forms one pipe. The lengths and diameters for the first and 
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second parallel pipes are (2000 m, 1 m) and (2000 m, 0.8 m), 
respectively, then find the rate of flow in litres per second in 
each parallel pipe, if total flow in the main is 2500 litres per 
second and the coefficient of friction ‘f  ’ for each parallel 
pipe is 0.006.

[Ans. 1590 l/s, 910 l/s]

 28. Two pipes each of length 300 m are available for connect-
ing to a tank from which a flow of 85 litres per second is 
required. If the diameters of the two pipes are 0.3 m and 
0.15 m, respectively, then find the ratio of the head lost when 
the pipes are connected in series to the head lost when they 
are connected in parallel. Neglect minor losses.

[Ans. 45.7]

 29. If a pipeline of diameter 0.3 m and length 1540 m connects 
two tanks having a difference of water level 20 m, then deter-
mine the discharge through the pipe. If an additional pipe 
of the same diameter and length 540 m is attached parallel 
to the last 540 m length of the existing pipe then determine 
the increase in discharge. Take f = 0 01.  and neglect minor 
losses.

[Ans. 97.72 l/s, 16.1 l/s]

 30. Two pipes of diameters 50 mm and 100 mm and each 200 m 
in length are connected parallel between two reservoirs hav-
ing a water level difference of 12 m. If the two pipes are to 
be replaced by a single pipe supplying the same quantity of 
water, then determine the required diameter. Take f = 0.01 
for all pipes and neglect minor losses.

[Ans. 106.7 mm]

 31. Two water tanks are connected by three parallel pipes of 
equal length L and of diameters d, 3d and 5d. Determine 
the flow through the largest pipe when the flow through the 
smallest pipe is 40 litres per second and the coefficient of 
friction ‘f’ is same for all the pipes. Neglect minor losses.

[Ans. 2236.4 l/s]

 32. A compound piping system consists of 1800 m of 0.6 m, 
1200 m of 0.5 m and 600 m of 0.4 m connected in series. 
Convert this system into (i) an equivalent length of 0.4 m 
pipe and (ii) equivalent size pipe of length 3600 m.

[Ans. 1230.25 m, 0.496 m]

 33. If 220.725 kW power is to be transmitted through a 2000 m 
long pipe in which a pressure of 9810 kN/m2 is maintained 
at its inlet. If there is a pressure drop of 1962 kN/m2 over the 
entire length of the pipe and coefficient of friction is 0.0065, 
then determine the diameter of the pipe and the efficiency of 
power transmission.

[Ans. 0.1112 m, 80%]

 34. Power is to be transmitted to a hydraulic accumulator along 
a distance of 5000 m through a number of 0.1 m diameter 
horizontal pipes laid in parallel with an efficiency of 92%. 
If the pressure at the discharge end is maintained constant 
at 6670.8 kN/m2, the power transmitted is 140 kW and the 
coefficient of friction is 0.008, then determine the minimum 
number of pipes required.

[Ans. 3]

 35. If the pressure of water at the inlet to a pipe of length 300 m 
and diameter 0.2 is 104 kN/m2, then determine the maxi-
mum rate at which power can be transmitted at the outlet 
from the pipe. Take coefficient of friction f = 0.01.

[Ans. 2206.668 kW]

 36. For maximum power transmission, find the diameter of a 
nozzle fitted at the end of a pipe of diameter 0.1 m and length 
300 m if f = 0.01.

[Ans. 0.0254 m]

ANSWERS TO MULTIPLE-CHOICE QUESTIONS

 1. (d) 2. (b) 3. (c) 4. (c) 5. (b)
 6. (a) 7. (d) 8. (d) 9. (a) 10. (a)
 11. (d) 12. (b) 13. (c) 14. (d) 15. (d)
 16. (a) 17. (b) 18. (d)
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15.1 ❐ INTRODUCTION
A real fluid (viscous fluid) consists of adjacent layers piled on top of each other. When it flows over a solid surface, the 
velocity of the particles in the first fluid layer adjacent to the surface becomes zero due to no-slip condition. This motionless 
layer slows down the particles of the adjacent layer of the fluid due to friction. This layer then slows down the molecules of 
the next layer and so on. Therefore, in the immediate vicinity of the boundary surface, a small region develops in which the 
velocity of flowing fluid increases gradually from zero at the boundary surface to the velocity of mainstream. This region 
is known as boundary layer.

The concept of boundary layer introduced by Ludwig Prandtl (a German engineer) in 1904 permits the solution of 
 viscous flow problems that would have been impossible through the application of Navier-Stokes equations to the  complete 
flow field. According to Prandtl, the flow may be considered of two regions, namely thin boundary layer region and 
freestream region. In thin boundary layer region, appreciable viscous forces are produced due to large velocity gradient 
even if viscosity may be small. In freestream region (i.e., outside the boundary layer zone) viscous forces are negligible and 
thus, the flow may be treated as non-viscous and the theory of ideal flow may be used for analysing the problems.

The velocity gradient in boundary layer is considerably large and the fluid flowing over the surface exerts a large shear 
stress along the direction of motion. As a result, the shear force acts on the solid surface and it is known as viscous shear 
force or drag force. The theory dealing with this phenomenon is called boundary layer theory. In this chapter, the concepts 
regarding estimation of boundary layer thickness parameters, the shear stress and the associated drag on the flat plate 
 surface is briefly discussed.

15.2 ❐ DESCRIPTION OF BOUNDARY LAYER
Boundary layer is a narrow region near the solid surface over which velocity gradients and shear stresses are large.  Consider 
the parallel flow of a fluid over a thin stationary flat plate as shown in Figure 15.1. The x-coordinate is measured along the 
plate surface from the leading edge of the plate in the direction of flow and y  is measured from the surface in the normal 
direction.

The fluid approaches the plate in the x-direction with a uniform upstream velocity u which is nearly equal to the 
freestream velocity U  over the plate away from the surface. At the leading edge of the plate, the thickness of the  boundary 
layer is zero, but its thickness increases with distance from the leading edge. The fluid in contact with the boundary 
has zero velocity and at some distance d from the boundary, the velocity is nearly U . Thus, a velocity gradient is set up 
which develops shear resistance to the flow and thus, it slows down the motion of the fluid. Due to continued action of 
shear resistance, a large group of fluid particles is retarded when this retarded layer of fluid moves downstream. Thus, the 

Chapter 15
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15.2 Chapter 15

 thickness of the boundary layer  d goes on increasing in the downstream direction. This is also referred to as the growth 
of the boundary layer. The shear resistance acting in between the adjacent flowing layers is responsible for rotational flow 
within the boundary layer.

The parameters which affect the boundary layer thickness are (i) increase in distance x from the leading edge increases d, 
(ii) increase in kinematic viscosity ( )ν  of the fluid increases d, (iii) increase in the velocity of flow ( )U  of the approaching 
fluid decreases δ  and (iv) the presence of negative pressure gradient ( )−∂ ∂p x/  decreases δ  and vice-versa.

The wall shear stress ( )τ  decreases along the length of the plate as the velocity gradient at the wall decreases downstream.

15.2.1 Laminar Boundary Layer
Whether the flow of the incoming fluid stream is laminar or turbulent, up to a certain distance from the leading edge; the 
flow in the boundary layer is always laminar. This is known as laminar boundary layer which is shown by AB in Figure 15.1 
and the length along the plate up to which it exists is called the laminar region which is shown by AE. For the flow over 
a flat plate, the length of the laminar region is obtained from the fact that for laminar flow the Reynolds number is equal 
to 5 105× , which is also known as critical Reynolds number (Re )x c. The mathematical expression for critical Reynolds 
number is given below.

(Re )x c
Ux

= = ×
ν

5 105

Thus, if the values of U  and ν  are known, then the distance x can be evaluated up to which the laminar boundary layer 
exists. When the length of the plate is less than x, then the boundary layer will be fully laminar. The velocity distribution in 
a laminar boundary layer is parabolic.

15.2.2 Transition Region
If the plate is long enough (i.e., more than x), then beyond some distance from the leading edge, the laminar boundary layer 
becomes unstable and the flow in the boundary layer shows the characteristics between those of laminar and turbulent flow. 
In other words, the laminar flow undergoes a change in its flow structure at certain point, which is known as the transition 
point (point B in Figure 15.1) and referred to as transition flow. Generally, this region of the boundary layer is small and is 
known as transition region which is shown by EF in Figure 15.1.

15.2.3 Turbulent Boundary Layer
After the transition region, the flow in the boundary layer becomes turbulent and there is a rapid increase in its thickness. 
This is known as turbulent boundary layer which is shown by CD in Figure 15.1 and the length along the plate up to which 
it exists is called the turbulent region which is shown by FG. The velocity distribution in a turbulent boundary layer is either 
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Figure 15.1 Boundary layer for flow over a flat plate and different flow regime
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 Boundary Layer Theory 15.3

logarithmic or it follows one-seventh power law. The boundary changes from laminar to turbulent when Rex > ×5 105, i.e., 
when Re (Re )x x c> . In real engineering flows, the transition to turbulent flow occurs more abruptly. Here, transition is 

ignored by treating the first part of transition as laminar and the remaining part as turbulent.

15.2.4 Laminar Sublayer
In turbulent boundary layer region, there is a very thin layer just adjacent to the boundary in which the flow is laminar. 
This thin layer is known as laminar sublayer and its thickness is denoted by ′δ  (HFGI in Figure 15.1). The velocity 
 distribution in a laminar sublayer is parabolic, but its thickness is very small and thus, a linear distribution is considered, 
i.e., ( ) ( )du dy u y/ /= . Therefore, velocity gradient is considered to be constant and the shear stress would be equal to the 
boundary shear stress ( )τo , where its expression is given below.

	 τ μ μo
y

du

dy

u

y
=

⎛
⎝⎜

⎞
⎠⎟

=
=0

 (15.1)

According to Nikuradse, the expression for thickness of laminar sublayer ( )′δ  is given below.

	 ′ = =δ ν
τ ρ

ν11 6 11 6. .

o su/
 (15.2)

Here, us o= τ ρ/  is the shear velocity (friction velocity) and in some books, it is denoted by u*.

15.3 ❐ BOUNDARY LAYER PARAMETERS

15.3.1 Boundary Layer Thickness
The velocity within the boundary layer increases from zero at the boundary surface to the velocity of the mainstream 
asymptotically. Therefore, the thickness of the boundary layer, δ  is arbitrarily defined as the distance from the boundary 
surface in which the velocity ( )u  reaches 99% of the velocity of the mainstream ( )U . Thus, δ  is defined as the distance y  
from the surface at which u U= 0 99. . This definition provides the approximate value of the boundary layer thickness and 
hence, δ  is generally known as nominal thickness.

To accurately measure the effect of boundary layer on the flow, the boundary layer can be defined in terms of the 
 displacement thickness ( )δd , the momentum thickness ( )δm  and the energy thickness ( )δe .

15.3.2 Displacement Thickness (dd) 
The retardation of flow in the boundary layer causes decrease in mass flow rate as compared to the flow which would 
have been in the absence of the boundary layer. Displacement thickness can be defined as the distance perpendicular to 
the boundary surface to which the boundary surface has to be displaced into the flow to compensate for reduction in the 
discharge due to the formation of boundary layer. Displacement thickness is denoted by ( )δd . In some books, it is denoted 
by δ*.

Consider a freestream of an incompressible fluid of density ρ  flowing with a velocity U  over a thin smooth plate as 
shown in Figure 15.2. Consider an elementary strip of thickness dy  at a distance y  from the surface of the plate and 
 assuming unit width of the plate.

The mass of fluid per second flowing through the strip with the velocity of the mainstream (i.e., when the plate is not 
there) is given below.

m U dy Udy1 1= × × × =ρ ρ

The mass of fluid per second flowing through the strip is given by,

m u dy udy2 1= × × × =ρ ρ
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15.4 Chapter 15

The reduction in mass flow rate is given by,

m m Udy udy U u dy1 2− = − = −ρ ρ ρ( )

Total reduction in mass flow rate ( )mR  is given by integrating the above expression.

m U u dy U u dyR = − = −∫ ∫ρ ρ
δ δ

( ) ( )
0 0

When the plate is displaced by an amount δd , the flow through the displaced volume must be equal to the reduction in mass 
flow rate as given below.

ρ δ ρ ρ
δ δ

U U u dy U
u

U
dyd = − = −⎛

⎝⎜
⎞
⎠⎟∫ ∫( )

0 0

1

Thus δ
δ

d
u

U
dy= −⎛

⎝⎜
⎞
⎠⎟∫ 1

0

 (15.3)

15.3.3 Momentum Thickness (dm)
Due to retardation of flow in the boundary layer, there is a reduction of the momentum flux. The momentum thickness may 
be defined as the perpendicular distance by which the boundary should be displaced to compensate for the reduction in 
momentum of the flowing fluid on account of the boundary layer formation. The momentum thickness is denoted by δm.  
In some books, it is denoted by θ . Assuming unit width of the plate and let δm be the distance by which the plate is 
 displaced when the fluid is moving with freestream velocity U .

The reduction of momentum per second of fluid flowing through δm with freestream velocity U  is given by,

	 M U U UR m m1
2= × = × =Mass Velocity ( )ρ δ ρδ  (i)

The mass flow per second through the elementary strip (Refer Figure 15.2) is given by,

m udy= ρ

Momentum per second of the above mass of fluid before entering the boundary layer is given by,

M udy U Uudy1 = × =ρ ρ

Momentum per second of the fluid inside the boundary layer is given by,

M udy u u dy2
2= × =ρ ρ

U

Boundary
layer

0.99 U

udy

y

U

Velocity distribution

Plate

Figure 15.2 Displacement thickness
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 Boundary Layer Theory 15.5

Reduction in momentum per second is given by,

M M Uudy u dy u U u dy1 2
2− = − = −ρ ρ ρ ( )

Total reduction in momentum per second ( )MR2  is given by,

	
M M M u U u dy U u

u

U
dyR2 1

0
2

0 0

1= − = − = −⎛
⎝⎜

⎞
⎠⎟∫ ∫ ∫

δ δ δ
ρ ρ( )  (ii)

Equating expressions (i) and (ii), we get:

ρδ ρ
δ

mU U u
u

U
dy2

0

1= −⎛
⎝⎜

⎞
⎠⎟∫

	 ∴ = −⎛
⎝⎜

⎞
⎠⎟∫δ

δ

m
u

U

u

U
dy1

0

 (15.4)

The ratio of displacement thickness to momentum thickness is known as shape factor. It is denoted by H  and the expression 
is given below.

	 H d

m
=

δ
δ

 (15.5)

The shape factor for laminar flow is approximately 2.6 and for turbulent flow, it is about 1.4. Thus, higher the value of shape 
factor, smoother is the velocity profile.

15.3.4 Energy Thickness (de)
The energy thickness may be defined as the perpendicular distance by which the boundary should be displaced to 
 compensate for the reduction in energy of the flowing fluid on account of the boundary layer formation. It is denoted  

by δe. In some books, it is denoted by δ**. Assuming unit width of the plate and let δe be the distance by which the plate 
is displaced when the fluid is moving with freestream velocity U .

The reduction in kinetic energy per second of fluid flowing through δe with freestream velocity U  is given by,

	
( ) ( )K.E. R emv U U1

2 21

2

1

2
= = ρ δ  (i)

The mass flow per second through the elementary strip (Refer Figure 15.2) is given by,

m udy= ρ

Kinetic energy per second of the above mass of fluid before entering the boundary layer is given by,

( ) ( )K.E. 1
21

2
= ρudy U

Kinetic energy per second of the fluid inside the boundary layer is given by,

( ) ( )K.E. 2
2 21

2

1

2
= =mv udy uρ

Reduction in kinetic energy per second is given by,

( ) ( ) ( )K.E. K.E.1 2
2 21

2
− = −ρu U u dy
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15.6 Chapter 15

Total reduction in K.E. per second [( ) ]K.E. R2  may be obtained by integrating the above expression as given below.

	
( ) ( )K.E. R u U u dy U u

u

U
dy2

2 2

0

2
2

2
0

1

2

1

2
1= − = −

⎛

⎝
⎜

⎞

⎠
⎟∫ ∫ρ ρ

δ δ
 (ii)

Equating expressions (i) and (ii), we get:

1

2

1

2
12 2

2

2
0

( )ρ δ ρ
δ

U U U u
u

U
dye × = −

⎛

⎝
⎜

⎞

⎠
⎟∫

	 ∴ = −
⎛

⎝
⎜

⎞

⎠
⎟∫δ

δ

e
u

U

u

U
dy1

2

2
0

 (15.6)

The reduction in mass, momentum and energy takes place because the streamlines are effectively displaced outwards due 
to flow retardation near solid surface.

 Example 15.1  The velocity distribution in the boundary layer is given by ( ) ( )u U y/ /= δ , where u is the velocity at a 
distance y  from the plate, δ  is the boundary layer thickness and u U=  at y = δ . Determine (i) the displacement thickness
( )δd , (ii) momentum thickness ( )δm , (iii) energy thickness ( )δe  and (iv) value of ( )δ δd m/ .

Solution

Let ( ) ( )u U y/ /= δ  and u U=  at y = δ .

 (i) δ
δ δ

δ δ
δ

δδ δ

d
u

U
dy

y
dy y

y
= −⎛

⎝⎜
⎞
⎠⎟

= −⎛
⎝⎜

⎞
⎠⎟

= −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= −∫∫ 1 1
2 2

00

2

0

2⎡⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
δδ
2

 (ii) δ
δ δ δ δ

δ δ δ

m
u

U

u

U
dy

y y
dy

y y
dy= −⎛

⎝⎜
⎞
⎠⎟

= −⎛
⎝⎜

⎞
⎠⎟

= −
⎛

⎝
⎜

⎞

⎠
⎟∫ ∫ ∫1 1

0 0

2

2
0

∴ = −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= − =δ
δ δ

δ
δ

δ
δ

δ δ
δ

m
y y2 3

2
0

2 3

22 3 2 3 2 3

δδ
6

 (iii) δ
δ δ δ δ

δ δ

e
u

U

u

U
dy

y y
dy

y y
dy= −

⎛

⎝
⎜

⎞

⎠
⎟ = −

⎛

⎝
⎜

⎞

⎠
⎟ = −

⎛

⎝
⎜

⎞

⎠
⎟∫ ∫1 1

2

2
0

2

2
0

3

3
00

δ

∫

∴ = −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= − =δ
δ δ

δ
δ

δ
δ

δ δ
δ

e
y y2 4

3
0

2 4

32 4 2 4 2 4

δδ
4

 (iv) H d

m
= = =

δ
δ

δ
δ

( )

( )

/

/

2

6
3

 Example 15.2  If the velocity distribution in the boundary layer is given by ( ) [ ( ) ( ) ],u U y y/ / /= −2 2δ δ  where d is 
the boundary layer thickness, determine (i) the displacement thickness ( )δd , (ii) momentum thickness ( )δm , (iii) energy 
 thickness ( )δe  and (iv) shape factor ( )δ δd m/ .
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 Boundary Layer Theory 15.7

Solution
Let ( ) [ ( ) ( ) ]u U y y/ / /= −2 2δ δ  and u U=  at y = δ .

 (i) δ
δ δd

u

U
dy

y y
dy= −⎛

⎝⎜
⎞
⎠⎟

= − ⎛
⎝⎜

⎞
⎠⎟

− ⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1 1 2
2

0

δδδ

∫∫
0

∴ = − +
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= − +
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= − +⎛
⎝⎜

⎞δ
δ δ

δ δ
δ

δ
δ

δ δ δ
δ

d y
y y2

2 3 3 3

2 3

2
0

2 3

2 ⎠⎠⎟
=

δδ
3

 (ii) δ
δ δ δ δ

δ

m
u

U

u

U
dy

y y y y
= −⎛

⎝⎜
⎞
⎠⎟

= −
⎛

⎝
⎜

⎞

⎠
⎟ − −

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1
2

1
22

2

2

2
0
∫∫∫ dy

0

δ

= −
⎛

⎝
⎜

⎞

⎠
⎟ − +

⎛

⎝
⎜

⎞

⎠
⎟ = − + − +∫

2
1

2 2 4 22

2

2

2
0

2

2

3

3

2

2

y y y y
dy

y y y y

δ δ δ δ δ δ δ δ

δ
22 3

3

4

4
0

y y
dy

δ δ

δ
−

⎛

⎝
⎜

⎞

⎠
⎟∫

= − + −
⎛

⎝
⎜

⎞

⎠
⎟ = − + −∫

2 5 4 2

2

5

3

4

4 5

2

2

3

3

4

4
0

2 3

2

4

3

5

4

y y y y
dy

y y y y

δ δ δ δ δ δ δ δ

δ ⎡⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥0

δ

∴ = − + −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= − + −⎡
⎣⎢

⎤
⎦⎥

=δ δ
δ

δ
δ

δ
δ

δ
δ

δ δ δ δ
m

2 3

2

4

3

5

4

5

3 5

5

3 5

2

15
δδ

 (iii) δ
δ δ δ δ

e
u

U

u

U
dy

y y y y
= −

⎛

⎝
⎜

⎞

⎠
⎟ = −

⎛

⎝
⎜

⎞

⎠
⎟ − −

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣

⎢
⎢

⎤

⎦

⎥1
2

1
22

2

2

2

2

2

2

⎥⎥∫∫
00

δδ
dy

= −
⎛

⎝
⎜

⎞

⎠
⎟ − − +

⎛

⎝
⎜

⎞

⎠
⎟∫

2
1

4 42

2

2

2

4

4

3

3
0

y y y y y
dy

δ δ δ δ δ

δ

= − − + − + + −
⎛

⎝
⎜

⎞

⎠
⎟∫

2 8 2 8 4 43

3

5

5

4

4

2

2

4

4

6

6

5

5
0

y y y y y y y y
dy

δ δ δ δ δ δ δ δ

δ

= − − + − +
⎛

⎝
⎜

⎞

⎠
⎟∫

2 8 6 123

3

5

5

4

4

2

2

6

6
0

y y y y y y
dy

δ δ δ δ δ δ

δ

= − − + − +
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

2

8

4

6

6

12

5 3 7

2 4

3

6

5

5

4

3

2

7

6
0

y y y y y y

δ δ δ δ δ δ

δ

= − − + − +
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

2

8

4

6

6

12

5 3 7

2 4

3

6

5

5

4

3

2

7

6

δ
δ

δ
δ

δ
δ

δ
δ

δ
δ

δ
δ

∴ = − − + − +⎡
⎣⎢

⎤
⎦⎥

=δ δ δ δ δ δ δ
e 2

12

5 3 7

22

105
δδ

 (iv) H d

m
= = =

δ
δ

δ
δ

( )

( )

/

/

3

2 15

5

2
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15.8 Chapter 15

 Example 15.3  The velocity distribution in the boundary layer is given by ( ) ( ) .u U y/ /= δ 0 22. At a section, the freestream 
velocity ( )U  is measured to be 20 m/s and the boundary layer thickness ( )δ  was estimated as 30 mm. If the discharge  passing 
over the spillway was 2 m3/s per metre length of spillway, then calculate (i) the displacement thickness, (ii)  momentum 
thickness, (iii) energy thickness and (iv) loss of energy up to the section under consideration in terms of metres of head.

Solution
Let ( ) ( ) .u U y/ /= δ 0 22, U = 20 m/s , δ = 30 mm and Q = 2 m /s3 .

 (i) δ
δ

δδ

d
u

U
dy

y
dy y

y
= −⎛

⎝⎜
⎞
⎠⎟

= − ⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= −∫∫ 1 1
1 22

0 22

00

1 22. .

. δδ
δ δ

δ

δ

0 22
0

1 22

0 221 22.

.

..

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

∴ = −⎡
⎣⎢

⎤
⎦⎥

= = × =δ δ δd 1
1

1 22
0 1803 0 1803 30

.
. . 5.41 mm

 (ii) δ
δ δ

δ δ

m
u

U

u

U
dy

y y
= −⎛

⎝⎜
⎞
⎠⎟

= ⎛
⎝⎜

⎞
⎠⎟

− ⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥∫ ∫1 1

0

0 22 0 22

0

. .

ddy
y y

dy= −
⎛

⎝
⎜

⎞

⎠
⎟∫

0 22

0 22

0 44

0 44
0

.

.

.

.δ δ

δ

= −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= −
y y1 22

0 22

1 44

0 44
0

1 22

0 22

1

1 22 1 44 1 22

.

.

.

.

.

.. . .δ δ
δ

δ
δ

δ ..

..

44

0 441 44δ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

∴ = −⎡
⎣⎢

⎤
⎦⎥

= = × =δ δ δm
1

1 22

1

1 44
0 1252 0 1252 30

. .
. . 3.756 mm

 (iii) δ
δ δ

δ

e
u

U

u

U
dy

y y
= −

⎛

⎝
⎜

⎞

⎠
⎟ = ⎛

⎝⎜
⎞
⎠⎟

− ⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥∫ 1 1

2

2
0

0 22 0 44

0

. .δδ δ

δ δ∫ ∫= ⎛
⎝⎜

⎞
⎠⎟

− ⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

dy
y y

dy
0 22 0 66

0

. .

= −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= −
y y1 22

0 22

1 66

0 66
0

1 22

0 22

1

1 22 1 66 1 22

.

.

.

.

.

.. . .δ δ
δ

δ
δ

δ ..

..

66

0 661 66δ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

∴ = −⎡
⎣⎢

⎤
⎦⎥

= = × =δ δ δe
1

1 22

1

1 66
0 2173 0 2173 30

. .
. . 6.519 mm

 (iv) The energy loss per metre length of spillway is given by,

E m U v U AU Uw wloss = × × = × × = × × ×
1

2

1

2

1

2
2 2 2( ) ( )ρ ρ

  Thus E U Uw e w eloss = × × × × =
1

2
1

1

2
3 3ρ δ ρ δ( )   [ ]∵ A e= ×δ 1

∴ = × × × =Eloss Nm/s
1

2
1000

6 519

1000
20 260763.

  Energy loss per metre of length in terms of metres of head is given by,

E gQhwloss = ρ
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 Boundary Layer Theory 15.9

  Thus 26076 1000 9 81 2= × × ×. h

∴ =
× ×

=h
26076

1000 9 81 2.
1.329 m

15.4 ❐  DRAG FORCE ON A FLAT PLATE (VON KARMAN  
MOMENTUM INTEGRAL EQUATION)

Consider the parallel flow of a fluid with velocity U over a thin stationary flat plate as shown in Figure 15.3. Consider a 
small length dx  of the plate at a distance x from the leading edge as shown in Figure 15.3(a) whose enlarged view is shown 
in Figure 15.3(b). Assume unit width of the plate as perpendicular to the direction of flow.

Let ABCD be the control volume of the small element of the boundary layer and u be the velocity at any point within 
the boundary layer.

Mass flow rate of fluid entering through AD is given by,

m u dy udyAD = × × × =∫ ∫ρ ρ
δ δ

1
0 0

Mass flow rate of fluid leaving through BC is given by,

m m
m

x
dx udy

x
udy dxBC AD

AD= +
∂

∂
= +

∂
∂

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥∫ ∫

( )
ρ ρ

δ δ

0 0

Since ( )m m mAD DC BC+ =   [Mass conservation law]

Therefore, mass flow rate of fluid entering through DC is given by,

m m m udy
x

udy dx udy
x

udyDC BC AD= − = +
∂
∂

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

− =
∂
∂∫ ∫ ∫ρ ρ ρ ρ

δ δ δ δ

0 0 0 0
∫∫

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

dx

Momentum flux entering through AD is given by,

M m u u dyAD AD= × = ∫ ρ
δ

2

0

U

Boundary
layer

udy

y
A B

CD

A B

C

D

δ

x dx dx

oτ

(a) (b)

Plate

Figure 15.3 Drag force on a flat plate
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15.10 Chapter 15

Momentum flux leaving through BC is given by,

M m u u dy
x

u dy dxBC BC= × = +
∂
∂

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥∫ ∫ρ ρ

δ δ
2

0

2

0

The fluid enters through side DC with a uniform velocity U  and thus, momentum flux entering through DC is given by,

M m U
x

udy dx U
x

uUdy dxDC DC= × =
∂
∂

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

× =
∂
∂

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥∫ ∫ρ ρ

δ δ

0 0

Therefore, the rate of change of momentum of control volume ABCD is given by,

= − − = +
∂
∂

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

− −
∂
∂∫ ∫ ∫M M M u dy

x
u dy dx u dy

x
uBC AD DC ρ ρ ρ ρ

δ δ δ
2

0

2

0

2

0

UUdy dx
0

δ

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
∂
∂

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−
∂
∂

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
∂
∂

−∫ ∫x
u dy dx

x
uUdy dx

x
u dy uUρ ρ ρ ρ

δ δ
2

0 0

2( ddy dx
0

δ

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
∂
∂

−
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥∫ρ

δ

x
u uU dy dx( )2

0

  [∵ρ = Constant]  (15.7)

According to the principle of momentum, the total force on the control volume ABCD must be equal to the rate of change of 
momentum in the same direction. The only external force on the control volume is the shear force on the boundary surface 
AB in the opposite direction, i.e., from B to A. The value of this force is given in the below expression.

ΔF dx dxD o o= × × =τ τ1

Thus, external force in the direction of rate of change in momentum is given by,

	 = − = −ΔF dxD oτ  (15.8)

Now simplifying Equations (15.7) and (15.8), we get:

− =
∂
∂

−
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥∫τ ρ

δ

odx
x

u uU dy dx( )2

0

τ ρ ρ ρ
δ δ

o x
u uU dy

x
uU u dy U= −

∂
∂

−
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
∂
∂

−
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
∂

∫ ∫( ) ( )2

0

2

0

2

∂∂
−

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥∫x

u

U

u

U
dy

2

2
0

δ

Thus 
τ

ρ

δ
o

U x

u

U

u

U
dy

2
0

1=
∂
∂

−⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥∫  (15.9)

Since δ
δ

m
u

U

u

U
dy= −⎛

⎝⎜
⎞
⎠⎟∫ 1

0

	 ∴ =
∂
∂

τ
ρ

δo m

U x2
 (15.9a)
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 Boundary Layer Theory 15.11

The Equation (15.9a) is known as von Kármán momentum integral equation for boundary layer flow which is applicable 
to the following parameters.

 1. Steady laminar boundary layers

 2. Time averaged turbulent layers

 3. Two-dimensional incompressible flows

 4. For flows in which ( )dp dx/ = 0 , i.e., pressure gradient is zero in the direction of flow.

From this equation, the value of shear stress ( )τo  can be determined for a given velocity profile in laminar, transition or 
turbulent region of a boundary layer. If b is the width of the plate, then drag force on a small length dx  can be determined 
by the following expression.

ΔF bdxD o= τ

Thus, total drag on the plate of length l on one side can be given by,

	 F F bdxD D

l

o

l

= =∫ ∫Δ
0 0

τ  (15.10)

 1. Boundary conditions: The following boundary conditions must be satisfied by any velocity profile.

   (i) At y = 0, u = 0 and 
du

dy
 has some finite value.

  (ii) At y = δ , u U=  and 
du

dy
= 0.

 2. Local coefficient of drag (or skin friction coefficient): It is defined as the ratio of the local wall shear stress ( )τo  to 
the dynamic pressure of the uniform flow stream. It is denoted by Cf . The mathematical expression for local coefficient 
of drag is given below.

	 C
U

f
o=

τ
ρ( )1 2 2/

 (15.11)

  Here, ρ  is the mass density of fluid and U  is the freestream velocity.

 3. Average coefficient of drag: It is defined as the ratio of the total drag force ( )FD  to the quantity ( )1 2 2/ ρAU . It is also 
known as coefficient of drag and it is denoted by CD . The mathematical expression for average coefficient of drag is 
given below.

	 C
F

AU
D

D=
( )1 2 2/ ρ

 (15.12)

  Here, A is the surface area of the plate surface.

15.5 ❐ PRANDTL’S BOUNDARY LAYER EQUATIONS
Introducing the following simplifying assumptions:

 (i) The body force is neglected, i.e., Bx, By  and Bz are negligible,

 (ii) The boundary is two-dimensional, i.e., w = 0 and 
∂
∂

=
( )

.
z

0

 (iii) The flow is steady, i.e., 
∂
∂

=
∂
∂

=
u

t

v

t
0.
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15.12 Chapter 15

By applying the above assumptions, the Navier-Stokes equations [i.e., Equation (12.3)] for constant properties derived in 
Chapter 12 are given below.

	 u
u

x
v

u

y

p

x

u

x

u

y

∂
∂

+
∂
∂

⎛
⎝⎜

⎞
⎠⎟

= −
∂
∂

+
∂
∂

+
∂
∂

⎛

⎝
⎜

⎞

⎠
⎟

1 2

2

2

2ρ
ν  (15.13)

	 u
v

x
v

v

y

p

y

v

x

v

y

∂
∂

+
∂
∂

⎛
⎝⎜

⎞
⎠⎟

= −
∂
∂

+
∂
∂

+
∂
∂

⎛

⎝
⎜

⎞

⎠
⎟

1 2

2

2

2ρ
ν  (15.14)

The Equations (15.13) and (15.14) can be further simplified by considering the relative order of magnitude of each term 
and dropping the small order terms.

 (i) u and x are of the order of magnitude one and thus, ( )∂ ∂u x/  and ( )∂ ∂2 2u x/  are also of the order of magnitude unity.

 (ii) y  is of the order of magnitude δ  and thus, ( ) ~ ( )∂ ∂u y/ /1 δ  and ( ) ~ ( )∂ ∂2 2 21u y/ /δ .

 (iii) The continuity equation is 
∂
∂

+
∂
∂

=
u

x

v

y
0. Since ( )∂ ∂u x/  is of the order of unity, the term ( / )∂ ∂v y  is also of the order of 

magnitude one. Therefore, ( ) ~ ( ) ~∂ ∂v y/ /δ δ 1 and ( ) ~ ( ) ~ ( )∂ ∂2 2 2 1v y/ / /δ δ δ . Also ( )∂ ∂v x/  and ( )∂ ∂2 2v x/  are of the 
order of magnitude δ .

 (iv) Since δ ν∝ , ν  is of the order of magnitude δ 2.

  Now u
u

x
v

u

y

p

x

u

x

u

y

∂
∂

+
∂
∂

⎛
⎝⎜

⎞
⎠⎟

= −
∂
∂

+
∂
∂

+
∂
∂

⎛

⎝
⎜

⎞

⎠
⎟

1 2

2

2

2ρ
ν

1 1 1 1 12 2δ δ δ δ/ /

  In the above equation, the term ν ∂
∂

2

2

u

x
 is small when compared to other terms and it can be dropped.

  Thus u
u

x
v

u

y

p

x

u

y

∂
∂

+
∂
∂

⎛
⎝⎜

⎞
⎠⎟

= −
∂
∂

+
∂
∂

1 2

2ρ
ν  (15.15)

  Now u
v

x
v

v

y

p

y

v

x

v

y

∂
∂

+
∂
∂

⎛
⎝⎜

⎞
⎠⎟

= −
∂
∂

+
∂
∂

+
∂
∂

⎛

⎝
⎜

⎞

⎠
⎟

1 2

2

2

2ρ
ν

1 1 12δ δ δ δ δ/

  In Equation (15.14), all terms except −
∂
∂

1

ρ
p

y
 are small and it can be neglected.

  Thus −
∂
∂

=
1

0
ρ

p

y

  or 
∂
∂

=
p

y
0  (15.16)
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 Boundary Layer Theory 15.13

  It means p f x= ( ) only and therefore, 
∂
∂

=
p

x

dp

dx
.

  From Equation (15.15), we get:

	 u
u

x
v

u

y

dp

dx

u

y

∂
∂

+
∂
∂

⎛
⎝⎜

⎞
⎠⎟

= − +
∂
∂

1 2

2ρ
ν  (15.17)

  The Equations (15.16) and (15.17) are referred to as Prandtl’s boundary layer equations for two-dimensional steady 
flow of incompressible fluids.

15.6 ❐ BLASIUS SOLUTION FOR LAMINAR BOUNDARY LAYER FLOWS
Blasius has obtained a solution for the Prandtl’s boundary layer equations by exact analytical method. In the laminar 
 boundary layer, the expression for thickness δ  is given below.

	 δ
ν

= =
5 5x

Ux

x

x( ) Re/
 (15.18)

Skin friction coefficient or local drag coefficient ( )C f  is given by,

	 C f
x

=
0 664.

Re
 (15.19)

Average drag coefficient or coefficient of drag ( )CD  is given by,

	 C UlD
l

l= =
1 328.

Re
, Re ( )where /ν  (15.20)

Thus, the total drag force ( )FD  on one side of the plate can be obtained by the below expression.

	 F C U A C U blD D D= =
1

2

1

2
2 2ρ ρ  (15.21)

From the exact analytical solution of the boundary layer equations by Blasius, the following expressions for displacement 
thickness and momentum thickness have been obtained.

	 δd
x

x
=

1 729.

Re
 (15.22)

	 δm
x

x
=

0 664.

Re
 (15.23)

15.7 ❐ VELOCITY PROFILES FOR LAMINAR BOUNDARY LAYER
The equations for the boundary layer along a flat plate can also be derived by using Equation (15.9). For this, it is essential 
to assume a suitable velocity distribution for the boundary layer. The velocity distribution within the laminar boundary 
layer is of the form ( ) ( ),u U f/ = η  where η δ= ( )y/  and f ( )η  is a polynomial. This may be approximated by the parabolic 
equation given in Table 15.1 for various velocity profiles along with the values of boundary layer thickness ( )δ , local 
 coefficient of drag ( )C f  and drag coefficient ( )CD  in terms of Reynolds number.
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15.14 Chapter 15

Table 15.1 Values of d, Cf  and CD  in terms of Reynolds number

S. no. Velocity profile d Cf CD

1.
u

U

y y
= ⎛

⎝⎜
⎞
⎠⎟

− ⎛
⎝⎜

⎞
⎠⎟

2
2

δ δ

5 48.

Re

x

x

0 73.

Rex

1 46.

Rel

2.
u

U

y y
= ⎛

⎝⎜
⎞
⎠⎟

− ⎛
⎝⎜

⎞
⎠⎟

3

2

1

2

3

δ δ

4 64.

Re

x

x

0 646.

Rex

1 292.

Rel

3.
u

U

y y y
= ⎛

⎝⎜
⎞
⎠⎟

− ⎛
⎝⎜

⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

2 2
3 4

δ δ δ

5 84.

Re

x

x

0 686.

Rex

1 372.

Rel

4.
u

U

y
= ⎛

⎝⎜
⎞
⎠⎟

sin
π

δ2

4 795.

Re

x

x

0 654.

Rex

1 31.

Rel

5. Blasius solution (Re . )< ×3 2 105 5x

xRe

0 664.

Rex

1 328.

Rel

 Example 15.4  Determine the expressions for boundary layer thickness ( )δ , shear stress ( )τo , local coefficient of drag 
( )C f  and coefficient of drag ( )CD  in terms of Reynolds number for the velocity profile of laminar boundary layer given 

by ( ) ( ) ( )u U y y/ / /= −2 2δ δ .

Solution

Let 
u

U

y y
= − ⎛

⎝⎜
⎞
⎠⎟

2
2

δ δ
 or 

u

U

y y
= −

2 2

2δ δ
 (i)

 (i) 
τ

ρ δ δ

δ
o

U x

u

U

u

U
dy

x

y y
2

0

2

2
1

2
1=

∂
∂

−⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
∂
∂

−
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
−∫

22 2

2
0

y y
dy

δ δ

δ
−

⎛

⎝
⎜

⎞

⎠
⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥∫

=
∂
∂

− + − + −
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥∫x

y y y y y y
dy

2 4 2 22

2

3

3

2

2

3

3

4

4
0

δ δ δ δ δ δ

δ

=
∂
∂

− + −
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
∂
∂

−∫x

y y y y
dy

x

y2 5 4 2

2

52

2

3

3

4

4
0

2

δ δ δ δ δ

δ
yy y y3

2

4

3

5

4
03

4

4 5δ δ δ

δ

+ −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  Thus 
τ

ρ
δ
δ

δ
δ

δ
δ

δ
δ

δ δ δ δo

U x x2

2 3

2

4

3

5

4

5

3 5

5

3 5
=

∂
∂

− + −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
∂
∂

− + −⎡
⎣⎢

⎤
⎦⎥

==
∂
∂

2

15

δ
x

	
∴ =

∂
∂

τ ρ δ
o U

x

2

15
2  (ii)

  Now u U
y y

= −
⎛

⎝
⎜

⎞

⎠
⎟

2 2

2δ δ
 [From expression (i)]

du

dy
U

y
= −

⎛
⎝⎜

⎞
⎠⎟

2 2
2δ δ

 [∵U = Constant]
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 Boundary Layer Theory 15.15

du

dy
U

U

y

⎛
⎝⎜

⎞
⎠⎟

= −
⎡

⎣
⎢

⎤

⎦
⎥ =

=0
2

2 2 0 2

δ δ δ
( )

  Thus τ μ μ
δ

μ
δo

y

du

dy

U U
=

⎛
⎝⎜

⎞
⎠⎟

= =
=0

2 2
 (iii)

  Simplifying expressions (ii) and (iii), we get:

2

15

22ρ δ μ
δ

U
x

U∂
∂

=

δ δ μ
ρ

d
U

dx=
15

  [ ( ) ]∵δ = f x only

  Integrating on both sides, we get:

δ μ
ρ

2

2

15
= +

U
x k   [∵k = Constant]

  Applying boundary condition: At x = 0, δ = 0 and thus, k = 0.

  Thus 
δ μ

ρ

2

2

15
=

x

U

∴ = =
×

×
= =δ μ

ρ
μ

ρ ρ μ
30 30 30 2x

U

x x

U x

x

Ux( ) /

5.48

Re

x

x

 (ii) τ μ
δ

μ
o

x

U U

x
= = =

2 2

5 48( . ) Re/
0.365 Re

μμU

x x

 (iii) C
U

U x

U Uxf
o x x= = =

τ
ρ

μ

ρ ρ μ( )

. {( ) } Re

( )
.

Re

( )/1 2

0 365

1 2
0 73

2 2/

/

/

  ∴ = =C f
x

x
0 73.

Re

Re

0.73

Rex

	 	 [ Re ( ) ]∵ x Ux= ρ μ/

 (iv) F bdx
U

x
bdxD o

l

x

l

= =∫ ∫τ μ

0 0

0 365. Re

= =∫ ∫ −0 365 0 365
0

1 2

0

. . /μ ρ
μ

μ ρ
μ

U

x

Ux
bdx Ub

U
x dx

l l

  Thus F Ub
U x

Ub
U

l Ub
Ul

D

l

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= =0 365
1 2

0 73 0 73
1 2

0

.
( / )

. .
/

μ ρ
μ

μ ρ
μ

μ ρ
μ

  Now C
F

AU

Ub Ul

lb U l U
D

D= = =
( / )

. ( ) /

( / ) ( )

.

1 2

0 73

1 2

1 46
2 2ρ

μ ρ μ

ρ

μ
ρ

∴ = =C
Ul

D
1 46.

( )ρ μ/
1.46

Rel

  [ Re / ]∵ l Ul= ρ μ
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15.16 Chapter 15

 Example 15.5  Determine the expressions for boundary layer thickness ( )δ , shear stress ( )τo , local coefficient of drag 
( )C f  and coefficient of drag ( )CD  in terms of Reynolds number for the velocity profile of laminar boundary layer given 

by ( ) ( )( ) ( )( )u U y y/ / / / /= −3 2 1 2 3δ δ .

Solution

Let ( ) ( )( ) ( )( )u U y y/ / / / /= −3 2 1 2 3δ δ  or 
u

U

y y
= −

3

2 2

3

3δ δ
 (i)

 (i) 
τ

ρ δ δ

δ
o

U x

u

U

u

U
dy

x

y y
2

0

3

3
1

3

2 2
=

∂
∂

−⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
∂
∂

−
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
∫ 11

3

2 2

3

3
0

− −
⎛

⎝
⎜

⎞

⎠
⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥∫

y y
dy

δ δ

δ

=
∂
∂

− + − + −
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

⎡

⎣
∫x

y y y y y y
dy

3

2

9

4

3

4 2

3

4 4

2

2

4

4

3

3

4

4

6

6
0

δ δ δ δ δ δ

δ
⎢⎢
⎢

⎤

⎦
⎥
⎥

=
∂
∂

− + − −
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥∫x

y y y y y
dy

3

2

9

4

6

4 2 4

2

2

4

4

3

3

6

6
0

δ δ δ δ δ

δ

=
∂
∂

− + − −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥x

y y y y y3

4

9

12

6

20 8 28

2 3

2

5

4

4

3

7

6
0

δ δ δ δ δ

δ

=
∂
∂

− + − −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥x

3

4

9

12

6

20 8 28

2 3

2

5

4

4

3

7

6

δ
δ

δ
δ

δ
δ

δ
δ

δ
δ

  Thus 
τ

ρ
δ δ δ δ δ δo

U x x2

3

4

3

4

3

10 8 28

39

280
=

∂
∂

− + − −⎡
⎣⎢

⎤
⎦⎥

=
∂
∂

	
∴ =

∂
∂

τ ρ δ
o U

x

39

280
2  (ii)

u U
y y

= −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

3

2 2

3

3δ δ
  [From expression (i)]

du

dy
U

y
= −

⎛

⎝
⎜

⎞

⎠
⎟

3

2

3

2

2

3δ δ
  [ ]∵U = Constant

du

dy
U

U

y

⎛
⎝⎜

⎞
⎠⎟

= −
⎛

⎝
⎜

⎞

⎠
⎟ =

=0

2

3

3

2

3 0

2

3

2δ δ δ
( )

  Thus τ μ μ
δ

μ
δo

y

du

dy

U U
=

⎛
⎝⎜

⎞
⎠⎟

= =
=0

3

2

3

2
 (iii)

  Simplifying expressions (ii) and (iii), we get:

39

280

3

2
2ρ δ μ

δ
U

x

U∂
∂

=

δ δ μ
ρ

d
U

dx=
140

13
  [ ( ) ]∵δ = f x only
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 Boundary Layer Theory 15.17

  Integrating on both sides, we get:

δ μ
ρ

2

2

140

13
= +

U
x k   [∵k = Constant]

  Applying boundary condition: At x = 0, δ = 0 and thus, k = 0.

  Thus 
δ μ

ρ

2

2

140

13
=

x

U

∴ = =
×
×

= =δ μ
ρ

μ
ρ ρ μ

280

13

280

13

280

13

2x

U

x x

U x

x

Ux( )/

4.64

Re

x

x

 (ii) τ μ
δ

μ
o

x

U U

x
= =

×
=

3

2

3

2 4 64[( . ) Re )]/
0.323 Re

μμU

x x

 (iii) C
U

U x

U Uxf
o x x= = =

τ
ρ

μ

ρ ρ μ( )

. {( ) } Re

( )
.

Re

( )1 2

0 323

1 2
0 646

2 2/

/

/ /

  ∴ = =C f
x

x
0 646.

Re

Re

0.646

Rex

  [ Re ( ) ]∵ x Ux= ρ μ/

 (iv) F bdx
U

x
bdx

U

x

Ux
bdxD o

l

x

l l

= = × =∫ ∫ ∫τ μ μ ρ
μ

0 0 0

0 323 0 323. Re .

= =
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−∫0 323 0 323
1 2

1 2

0

1 2

0

. .
( / )

/
/

μ ρ
μ

μ ρ
μ

Ub
U

x dx Ub
U x

l l

  Thus F Ub
U

l Ub
Ul

D = =0 646 0 646. .μ ρ
μ

μ ρ
μ

  Now C
F

AU

Ub Ul

lb U l U
D

D= = =
( )

. ( )

( ) ( )

.

1 2

0 646

1 2

1 292
2 2/

/

/ρ

μ ρ μ

ρ

μ
ρ

∴ = =C
Ul

D
1 292.

( )ρ μ/
1.292

Rel

  [ Re / ]∵ l Ul= ρ μ

 Example 15.6  Determine the expressions for boundary layer thickness ( )δ , shear stress ( )τo , local coefficient of drag 
( )C f  and coefficient of drag ( )CD  in terms of Reynolds number for the velocity profile of laminar boundary layer given 

by ( ) ( ) ( ) ( )u U y y y/ / / /= − +2 2 3 4δ δ δ .

Solution

Let ( ) ( ) ( ) ( )u U y y y/ / / /= − +2 2 3 4δ δ δ  or 
u

U

y y y
= − +

2 2 3

3

4

4δ δ δ
 (i)
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15.18 Chapter 15

 (i) 
τ

ρ δ δ δ

δ
o

U x

u

U

u

U
dy

x

y y y
2

0

3

3

4

4
1

2 2
=

∂
∂

−⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
∂
∂

− +
⎧
⎨
⎪

⎩⎪

⎫
∫ ⎬⎬

⎪

⎭⎪
− − +

⎛

⎝
⎜

⎞

⎠
⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥∫ 1

2 2 3

3

4

4
0

y y y
dy

δ δ δ

δ

=
∂
∂

− + − − − + −
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪x

y y y y y y y y2 4 9 4 2 4 42

2

4

4

5

5

3

3

6

6

7

7

8

8δ δ δ δ δ δ δ δ
ddy

0

δ

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
∂
∂

− + − − − + −
⎡

x

y y y y y y y y2

2

4

3

9

5

4

6

2

4

4

7

4

8 9

2 3

2

5

4

6

5

4

3

7

6

8

7

9

8δ δ δ δ δ δ δ δ⎣⎣
⎢
⎢

⎤

⎦
⎥
⎥0

δ

=
∂
∂

− + − − − + −
⎡

x

2

2

4

3

9

5

4

6

2

4

4

7

4

8 9

2 3

2

5

4

6

5

4

3

7

6

8

7

9

8

δ
δ

δ
δ

δ
δ

δ
δ

δ
δ

δ
δ

δ
δ

δ
δ⎣⎣

⎢
⎢

⎤

⎦
⎥
⎥

  Thus 
τ

ρ
δ δ δ δ δ δ δ δ δo

U x x2

4

3

9

5

4

6

2

4

4

7

4

8 9

37

315
=

∂
∂

− + − − − + −⎡
⎣⎢

⎤
⎦⎥

=
∂
∂

	
∴ =

∂
∂

τ ρ δ
o U

x

37

315
2  (ii)

u U
y y y

= − +
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2 2 3

3

4

4δ δ δ
  [From expression (i)]

du

dy
U

y y
= − +

⎛

⎝
⎜

⎞

⎠
⎟

2 6 42

3

3

4δ δ δ
  [∵U = Constant]

du

dy
U

U

y

⎛
⎝⎜

⎞
⎠⎟

= − +
⎛

⎝
⎜

⎞

⎠
⎟ =

=0

2

3

3

4

2 6 0 4 0 2

δ δ δ δ
( ) ( )

  Thus τ μ μ
δ

μ
δo

y

du

dy

U U
=

⎛
⎝⎜

⎞
⎠⎟

= =
=0

2 2
 (iii)

  Simplifying expressions (ii) and (iii), we get:

37

315

22ρ δ μ
δ

U
x

U∂
∂

=

δ δ μ
ρ

d
U

dx=
630

37
  [ ( ) ]∵δ = f x only

  Integrating on both sides, we get:

δ μ
ρ

2

2

630

37
= +

U
x k   [∵k = Constant]

  Applying boundary condition: At x = 0, δ = 0 and thus, k = 0.

  Thus 
δ μ

ρ

2

2

630

37
=

x

U

δ μ
ρ

μ
ρ ρ μ

= =
×
×

= =
1260

37

1260

37

1260

37

2x

U

x x

U x

x

Ux( )/

5.84

Re

x

x
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 (ii) τ μ
δ

μ
o

x

U U

x
= = =

2 2

5 84( . ) Re/
0.343 Re

μμU

x x

 (iii) C
U

U x

U Uxf
o x x= = =

τ
ρ

μ

ρ ρ μ( )

. {( ) } Re

( )
.

Re

( )1 2

0 343

1 2
0 686

2 2/

/

/ /

	
 ∴ = =C f

x

x
0 686.

Re

Re

0.686

Rex

  [ Re ( ) ]∵ x Ux= ρ μ/

 (iv) F bdx
U

x
bdx

U

x

Ux
bdxD o

l

x

ll

= = × =∫ ∫∫τ μ μ ρ
μ

0 00

0 343 0 343. Re .

= =
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=−∫0 343 0 343
1 2

0 681 2

0

1 2

0

. .
( / )

./
/

μ ρ
μ

μ ρ
μ

Ub
U

x dx Ub
U x

l l

66μ ρ
μ

Ub
U

l

Thus F Ub
Ul

D = 0 686. μ ρ
μ

Now C
F

AU

Ub Ul

lb U l U
D

D= = = =
( )

. ( )

( ) ( )

. .

1 2

0 686

1 2

1 372 1 372
2 2/

/

/ρ

μ ρ μ

ρ

μ
ρ (( )ρ μUl /

∴ =CD
1.372

Rel

  [ Re ]∵ l Ul= ρ μ/

 Example 15.7  Determine the expressions for boundary layer thickness ( )δ , shear stress ( )τo , local coefficient of drag 
( )C f  and coefficient of drag ( )CD  in terms of Reynolds number for the velocity profile of laminar boundary layer given 

by ( ) sin[( ) ]u U y/ /= π δ2 .

Solution

Let 
u

U

y
= sin

π
δ2

 (i)

 (i) 
τ

ρ
π

δ
πδ

o

U x

u

U

u

U
dy

x

y y
2

0

1
2

1=
∂
∂

−⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
∂
∂

⎛
⎝⎜

⎞
⎠⎟

−∫ sin sin
22

0
δ

δ ⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎩

⎫
⎬
⎭

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥∫ dy

=
∂
∂

⎛
⎝⎜

⎞
⎠⎟

− ⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎩

⎫
⎬
⎭

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥∫x

y y
dysin sin

π
δ

π
δ

δ

2 2
2

0

=
∂
∂

⎛
⎝⎜

⎞
⎠⎟

−
−⎧

⎨
⎩

⎫
⎬
⎭

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥∫x

y y
dysin

cos{( ) ( )}π
δ

π δδ

2

1 2 2

2
0

/

=
∂
∂

⎛
⎝⎜

⎞
⎠⎟

− +
⎧
⎨
⎩

⎫
⎬
⎭

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥∫x

y y
dysin

cos{( ) }π
δ

π δδ

2

1

2 2
0

/
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=
∂
∂

−
− +

⎡

⎣
⎢

⎤

⎦
⎥x

y y ycos{( ) ( )}

)

sin{( ) )}

( )

π δ
π δ

π δ
π δ

δ
/

/(

/

/

2

2 2 2 0

=
∂
∂

−
− + +

x

cos{( ) ( )}

( )

sin{( ) }

( )

cos( )

(

π δ δ
π δ

δ π δ δ
π δ π δ

/

/

/

/ /

2

2 2 2

0

2 ))

sin( )

( )
−

⎡

⎣
⎢

⎤

⎦
⎥

0

2π δ/

  Thus 
τ

ρ
δ

π δ
δ

π
δ π

π
o

U x x2
0

2
0

1

2
0

2

2

4

2
=

∂
∂

− + + −
⎡

⎣
⎢

⎤

⎦
⎥ =

∂
∂

−⎛
⎝⎜

⎞
⎠⎟

=
−⎛

⎝⎜
⎞
⎠( / ) ⎟⎟

∂
∂
δ
x

	
∴ =

−⎛
⎝⎜

⎞
⎠⎟

∂
∂

τ π
π

ρ δ
o U

x

4

2
2  (ii)

u U
y

= ⎛
⎝⎜

⎞
⎠⎟

sin
π

δ2
  [From expression (i)]

du

dy
U

y
= ⎛

⎝⎜
⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ ×cos

π
δ

π
δ2 2

  [∵U = Constant]

du

dy
U

U

y

⎛
⎝⎜

⎞
⎠⎟

= ⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ × =

=0

0

2 2 2
cos

δ
π
δ

π
δ

  Thus τ μ μ π
δ

μπ
δo

y

du

dy

U U
=

⎛
⎝⎜

⎞
⎠⎟

= =
=0 2 2

 (iii)

  Simplifying expressions (ii) and (iii), we get:

4

2 2
2−⎛

⎝⎜
⎞
⎠⎟

∂
∂

=
π

π
ρ δ μπ

δ
U

x

U

δ δ μπ
ρ

π
π

μ
ρ

d
U

dx
U

dx=
−

⎛
⎝⎜

⎞
⎠⎟

=
2

2

4
11 5.   [ ( ) ]∵δ = f x only

  Integrating on both sides, we get:

δ μ
ρ

2

2
11 5= +.

U
x k   [ ]∵k = Constant

  Applying boundary condition: At x = 0, δ = 0 and thus, k = 0.

  Thus  
δ μ

ρ

2

2

11 5
=

. x

U

δ μ
ρ

μ
ρ ρ μ

= =
×

×
= =

23 23 23 2x

U

x x

U x

x

Ux( )/

4.795

Re

x

x

 (ii) τ μπ
δ

μπ
o

x

U U

x
= =

×
=

2 2 4 795{( . ) Re }/
0.327 Re

μμU

x x
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 Boundary Layer Theory 15.21

 (iii) C
U

U x

U Uxf
o x x= = =

τ
ρ

μ

ρ ρ μ( )

. {( ) } Re

( )
.

Re

( )1 2

0 327

1 2
0 654

2 2/

/

/ /

∴ = =C f
x

x
0 654.

Re

Re

0.654

Rex

  [ Re ( ) ]∵ x Ux= ρ μ/

 (iv) F bdx
U

x
bdx

U

x

Ux
bdxD o

l

x

l l

= = × =∫ ∫ ∫τ μ μ ρ
μ

0 0 0

0 327 0 327. Re .

= =
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−∫0 327 0 327
1 2

1 2

0

1 2

0

. .
( / )

/
/

μ ρ
μ

μ ρ
μ

Ub
U

x dx Ub
U x

l l

  Thus F Ub
U

l Ub
Ul

D = =0 654 0 654. .μ ρ
μ

μ ρ
μ

  Now C
F

AU

Ub Ul

lb U l U
D

D= = = =
( )

. ( )

( ) ( )

. .

(1 2

0 654

1 2

1 31 1 31
2 2/

/

/ρ

μ ρ μ

ρ

μ
ρ ρUUl)/μ

∴ =CD
1.31

Rel

  [ Re ]∵ l Ul= ρ μ/

 Example 15.8  A plate of length 0.5 m and width 0.25 m is placed longitudinally in a fluid of specific gravity 0.9 and of 
kinematic viscosity one stoke. If the fluid is moving with a velocity of 5 m/s, then determine (i) friction drag on the plate, 
(ii) thickness of boundary layer and (iii) shear stress at the trailing edge of the plate. Use Blasius solution.

Solution
Let l = 0 5. m , b = 0 25. m, Sfluid = 0 9. , ν = = −1 10 4stoke m /s2  and U = 5 m/s.

 (i) ρ ρ= = × =S wfluid
3kg/m0 9 1000 900.

Re
.

.l
Ul

= =
×

= ×−ν
5 0 5

10
2 5 10

4
4

  Since Rel < ×5 105, the flow over the plate is entirely laminar.

  Using Blasius solution, we get:

CD
l

= =
×

=
1 328 1 328

2 5 10
0 0084

4

.

Re

.

.
.

  Drag on one side of the plate is given by,

F
C U bl

ND
D= =

× × × ×
=

ρ 2 2

2

0 0084 900 5 0 25 0 5

2
11 8125

. . .
.

  Since the plate is wetted on both sides, the total drag is given by,

∴ = = × =( ) .F FD Dtotal 2 2 11 8125 23.625 N
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 (ii) δ = =
×

×
=

5 5 0 5

2 5 104

x

xRe

.

.
0.0158 m or 15.8 mm

 (iii) τ ρ ρ
o f

l

C
U U

= = =
×

×
×

=
2 2

4

2

2

0 664

2

0 664

2 5 10

900 5

2

.

Re

.

.
47.244 N/ m2

 Example 15.9  Atmospheric air with kinematic viscosity of 15.5 ×	10-6 m2/s flows parallel to a flat plate at a velocity of 
2.5 m/s. Determine the boundary layer thickness and the local skin friction coefficient at x = 1.2 m from the leading edge 
of the plate using Blasius solution. Also compare the corresponding values obtained for these parameters by von Kármán 
integral technique for cubic velocity profile.

Solution
Let ν = × −15 5 10 6. m /s2 , U = 2 5. m/s and x = 1 2. m.

 (i) Re
. .

.
.x

Ux
= =

×
×

=−ν
2 5 1 2

15 5 10
193548 4

6

δ = =
×

=
5 5 1 2

193548 4

x

xRe

.

.
0.01364 m or 13.64 mm

C f
x

= = =
0 664 0 664

193548 4

.

Re

.

.
1.5093 10 3×× −−

 (ii) Approximate solution for cubic profile is given by,

δ = =
×

=
4 64 4 64 1 2

193548 4

.

Re

. .

.

x

x

0.01266 m or 12.66 mm

C f
x

= = = × −0 646 0 646

193548 4
1 4684 10 3.

Re

.

.
.

  Let Δδ  and ΔC f
 be the deviations for δ  and C f , respectively.

∴ =
−

× =Δδ
13 64 12 66

13 64
100

. .

.
7.18%

∴ =
− ×

×
× =

−

−ΔC f

( . . )

.

1 5093 1 4684 10

1 5093 10
100

3

3
2.71%

 Example 15.10  Atmospheric air with kinematic viscosity of 15 ×	10-6 m2/s flows parallel to a flat plate at a velocity of 
8 m/s. The length and width of the plate are 1 m and 0.75 m, respectively. If the laminar boundary layer exist up to a value 
of Rex = ×2 105 and the velocity profile is given by the relation ( ) ( ) ( )u U y y/ / /= −2 2δ δ , then determine the maximum 
distance from the leading edge up to which the laminar boundary layer exists. Also determine the maximum thickness of 
laminar boundary layer.

Solution
Let ν = × −15 10 6 m /s2 , U = 8 m/s, l = 1 m, b = 0 7. 5 m, Rex = ×2 105 and ( ) ( ) ( )u U y y/ / /= −2 2δ δ .

If Rex = ×2 105, then x is the distance from leading edge up to which laminar boundary layer exists.

Rex
Ux

=
ν
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 Boundary Layer Theory 15.23

  Thus 2 10
8

15 10

5
6

× =
×

× −
x

∴ =
× × ×

=
−

x
2 10 15 10

8

5 6

0.375 m or 375 mm

  Maximum thickness of the boundary layer is given by,

δ = =
×

×
=

5 48 5 48 0 375

2 105

.

Re

. .x

x

0.00459 m or 4.59 mm

 Example 15.11  Atmospheric air with kinematic viscosity of 15 ×	10-6 m2/s flows parallel to a flat plate at a velocity of  
3 m/s. The length and width of the plate are 0.6 m and 0.5 m, respectively. If ρ = 1 24. kg/m3 and the velocity profile is given 
by the relation ( ) sin[( ) ( )]u U y/ /= π δ2 , determine (i) the boundary layer thickness at the end of the plate, (ii) shear stress 
at 0.2 m from the leading edge and (iii) drag force on one side of the plate.

Solution

Let ν = × −15 10 6 m /s2 , U = 3 m/s, l = 0 6. m, b = 0 5. m, ρ = 1 24. kg/m3, ( ) sin[( ) ( )]u U y/ /= π δ2  and x = 0 2. m.

 (i) Re
.

.l
Ul

= =
×
×

= ×−ν
3 0 6

15 10
1 2 10

6
5

  Since Rel < ×5 105, the flow over the plate is entirely laminar.

∴ = =
×

×
=δ 4 795 4 795 0 6

1 2 105

.

Re

. .

.

l

l

0.0083 m or 8.3 mm

 (ii) Re
.

x
Ux

= =
×
×

= ×−ν
3 0 2

15 10
4 10

6
4

C f
x

= =
×

=
0 654 0 654

4 10
0 00327

4

.

Re

.
.

τ ρo fC U= × = × × × =
1

2
0 00327

1

2
1 24 32 2. . 0.01825 N/m2

 (iii) CD
l

= =
×

=
1 31 1 31

1 2 10
0 00378

5

.

Re

.

.
.

F
C U bl

D
D= =

× × × ×
=

ρ 2 2

2

0 00378 1 24 3 0 5 0 6

2

. . . .
0.00633 N

 Example 15.12  Calculate the thickness of the boundary layer and the shear stress at 1.3 m from the leading edge of a 
plate for which the velocity profile is given by the relation ( ) ( )( ) ( )( )u U y y/ / / / /= −3 2 1 2 3δ δ . The plate is 1.8 m long and 
1.2 m wide and it is placed in water which is moving with a velocity of 0.18 metres per second. Also find the total drag 
force on the plate if dynamic viscosity for water is 0.01 poise.

Solution
Let x = 1 3. m, ( ) ( )( ) ( )( )u U y y/ / / / /= −3 2 1 2 3δ δ , l = 1 8. m , b = 1 2. m, U = 0 18. m/s  and μ = =0 01 0 001. .poise Ns/m2.
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  Re
. .

.
.x

wUx
= =

× ×
= ×

ρ
μ

1000 0 18 1 3

0 001
2 34 105

  Since Rex < ×5 105, the flow over the plate is entirely laminar.

∴ = =
×

×
=δ 4 64 4 64 1 3

2 34 105

.

Re

. .

.

x

x

0.01247 m or 12.47 mm

C f
x

= =
×

=
0 646 0 646

2 34 10
0 001335

5

.

Re

.

.
.

τ ρo f wC U= × = × × × =
1

2
0 001335

1

2
1000 0 182 2. . 0.02163 N/m2

Re
. .

.
.l

wUl
= =

× ×
= ×

ρ
μ

1000 0 18 1 8

0 001
3 24 105

CD
l

= =
×

=
1 292 1 292

3 24 10
0 00227

5

.

Re

.

.
.

F
C U bl

D
D w= =

× × × ×
=

ρ 2 2

2

0 00227 1000 0 18 1 2 1 8

2
0 079432

. . . .
. N

∴ = = × =( ) .F FD Dtotal 2 2 0 079432 0.158864 N

 Example 15.13  Find the ratio of friction drag on the front two-third and rear one-third of a flat plate kept in a uniform 
stream at zero incidence, if the boundary layer is laminar over the whole plate.

Solution
Let ( )FD front and ( )FD rear be the skin friction drag on the front two-third and rear one-third of the plate, respectively.

For the front two-third portion of the plate, we get:

(Re )
( )

x
Uxl U l

front
/

= =
ν ν

2 3

( )
.

Re

.

( ){( ) }

.

( )
C

Ul Ul
D

x
front

/ / /
= = =

1 328 1 328

2 3

1 6265

ν ν

Since F C
U

blD D= × ×
ρ 2

2

Thus, drag for the front two-third portion of the plate is given by,

	
( )

.

( )

.

( )
F

Ul

U
b

l U bl

Ul
D front

/ /
= × × × =

1 6265

2

2

3

0 54222 2

ν
ρ ρ

ν
 (i)

Similarly, the drag for the entire plate is given below.

F
Ul

U
bl

U bl

Ul
D = × =

1 328

2

0 6642 2.

( )

.

( )/ /ν
ρ ρ

ν
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Thus ( ) ( )F F FD D Drear front= −

	
∴ = − =( )

.

( )

.

( )

.

(
F

U bl

Ul

U bl

Ul

U bl

U
D rear

/ /

0 664 0 5422 0 12182 2 2ρ
ν

ρ
ν

ρ
ll)/ν

 (ii)

Now dividing (i) by (ii), we get:

( )

( )

.

( )

( )

.

F

F

U bl

Ul

Ul

U bl

D

D

front

rear /

/
= × =

0 5422

0 1218

2

2

ρ
ν

ν

ρ
4.45

 Example 15.14  A smooth flat plate is placed in a uniform fluid stream. Find the fraction of the length from the leading 
edge where the drag force is equal to half of the total drag force on one side of the plate if the boundary layer is laminar.

Solution
Let ( )FD x and ( )FD l  be the skin friction drags over the lengths x and l, respectively.

( )
( )

F
F

D x
D l=
2

Substituting the values of ( )FD x and ( )FD l , we get:

1 328

2

1

2

1 328

2

2 2.

( )

.

( )Ux

U
b x

Ul

U
b l

/ /ν
ρ

ν
ρ

× × × = × × × ×

x l=
1

2

∴ =x
l

4

15.8 ❐ TURBULENT BOUNDARY LAYER
The turbulent boundary layers are thicker than laminar boundary layer. The velocity distribution in turbulent boundary 
layers is more uniform than in laminar ones. The velocity profile for a turbulent boundary layer is given below.

	
u

U

y
n

= ⎛
⎝⎜

⎞
⎠⎟δ

 (15.24)

Here, n = ( )1 7/  for 5 10 105 7× < <Re  and therefore, Equation (15.24) is written as follows.

	
u

U

y
= ⎛

⎝⎜
⎞
⎠⎟δ

1 7/

 (15.25)

The Equation (15.25) is known as one-seventh power law which satisfactorily describes the velocity distribution for most of 
the region of turbulent boundary layer but it cannot be applied at the boundary itself. This is because ( )∂ ∂ = ∞u y/  at y = 0.  
There is a laminar sublayer just immediately adjacent to the boundary which is so thin that its velocity profile is taken as 
linear.

The viscous shear stress ( )τo  for the flat plate was given by Blausius as follows.

	 τ ρ μ
ρ δo U
U

=
⎛
⎝⎜

⎞
⎠⎟

0 0225 2
1 4

.
/

 (15.26)

The values of δ τ, , ,o f D DC F Cand  for the velocity profile according to Equation (15.25) in the turbulent boundary layer 

are evaluated in terms of Reynolds number as given below.
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 (i) Boundary layer thickness d

τ
ρ

δ
o

U x

u

U

u

U
dy

2
0

1=
∂
∂

−⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥∫   [Equation (15.9)]

  Substituting ( ) ( ) /u U y/ /= δ 1 7 in the above equation, we get:

τ
ρ δ δ

δ
o

U x

y y
dy

2

1 7 1 7

0

1=
∂
∂

⎛
⎝⎜

⎞
⎠⎟

− ⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
∂

∫
/ /

∂∂
⎛
⎝⎜

⎞
⎠⎟

− ⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥∫x

y y
dy

δ δ

δ 1 7 2 7

0

/ /

=
∂
∂

−
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
∂
∂

−
x

y y

x

7

8

7

9

7

8

7

9

8 7

1 7

9 7

2 7
0

8 7

1 7

9 7

2

/

/

/

/

/

/

/

δ δ
δ
δ

δ
δ

δ

//7

7

8

7

9

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
∂
∂

−⎡
⎣⎢

⎤
⎦⎥x

δ δ

  Thus 
τ

ρ
δo

U x2

7

72
=

∂
∂

	
∴ =

∂
∂

τ ρ δ
o U

x

7

72
2  (15.27)

  Also τ ρ μ
ρ δo U
U

=
⎛
⎝⎜

⎞
⎠⎟

0 0225 2
1 4

.
/

  [Eq. (15.26)]

Simplifying Equations (15.27) and (15.26), we get:

7

72
0 02252 2

1 4

ρ δ ρ μ
ρ δ

U
x

U
U

∂
∂

=
⎛
⎝⎜

⎞
⎠⎟

.
/

7

72
0 0225

1 4∂
∂

=
⎛
⎝⎜

⎞
⎠⎟

δ μ
ρ δx U

.
/

δ δ μ
ρ

1 4
1 4

0 0225
72

7
/

/

.∂ = ×
⎛
⎝⎜

⎞
⎠⎟

∂
U

x

  Integrating both sides and simplifying, we get:

4

5
0 23145 4

1 4

δ μ
ρ

/
/

.=
⎛
⎝⎜

⎞
⎠⎟

+
U

x k

  Here, k  is a constant and applying boundary condition at x = =0 0, δ  and thus, k = 0.

  Thus 
4

5
0 23145 4

1 4

δ μ
ρ

/
/

.=
⎛
⎝⎜

⎞
⎠⎟U

x

δ μ
ρ

μ
ρ

= ×
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
⎛
⎝⎜

⎞
⎠⎟

0 2314
5

4
0 371

1 4 4 5 1 5
4 5. .

/ / /
/

U
x

U
x

	
∴ =

⎡

⎣
⎢

⎤

⎦
⎥ =δ

ρ μ
0 371

1 0 371
1 5

4 5 1 5
1 5

.
( ) /

.

(Re )

/
/ /

/Ux
x x

x

x

 (15.28)
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 Boundary Layer Theory 15.27

 (ii) Shear stress (to) Substituting the value of δ  from Equation (15.28) in Equation (15.26), we get:

τ ρ μ
ρo

x

U
U x

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=0 0225
1

0 371

0 0225

0 371

2
1 5

1 4

1
.

{( . ) Re }

.

./

/

// 44
2 1 5

1 4

ρ μ
ρ

U
Ux x(Re ) /

/⎡

⎣
⎢

⎤

⎦
⎥

  Multiplying and dividing the above expression by 2 and substituting Re ( )x Ux= ρ μ/ , we get:

	
τ ρ ρ

o
x

x x

U
U

= ×
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
2

2
0 0288

2

0 05762
1 5 1 4

2

1 5
.

(Re )

Re

.

(Re )

/ /

/
 (15.29)

 (iii) Local coefficient of drag (Cf)

τ ρ
o fC

U
=

2

2
  [From Equation (15.11)]

  Simplifying the above equation with Equation (15.29), we get:

C
U U

f
x

ρ ρ2 2

1 52 2

0 0576
=

.

(Re ) /

	
∴ =C f

x

0 0576
1 5

.

(Re ) /
 (15.30)

 (iv) Drag force (FD) The total drag force on one side of the plate is given by,

F bdx
U

bdxD o
x

ll

= = ∫∫τ ρ 2

1 5
00

2

0 0576.

(Re ) /

= =∫ −ρ
ρ μ

ρ
ρ μ

U

Ux
bdx

U

U
b x d

l 2

1 5
0

2

1 5
1 5

2

0 0576

2

0 0576.

{( ) }

.

{( ) }/ /
/

/ /
xx

l

0
∫

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
ρ

ρ μ
ρ

ρ μ
U

U
b

x U

U

l2

1 5

4 5

0

2

2

0 0576

4 5 2

0 0576.

{( ) }

.

{( )/

/

/ / / }} /
/

1 5
4 55

4
b l×

=
ρ

ρ μ
U

Ul
bl

2

1 52

0 072.

{( ) } //
  [Multiply and divide by l1 5/ ]

	 ∴ =F
U

blD
l

ρ 2

1 52

0 072.

(Re ) /
 (15.31)

 (v) Coefficient of drag (CD) The coefficient of drag is given by,

C
F

AU

F

lbU
D

D D= =
( ) ( )1 2 1 22 2/ /ρ ρ

  [Eq. (15.12)]

  Substituting Equation (15.31) in the above equation, we get:

	
C

U
bl

lbU
D

l l

= × =
ρ

ρ

2

1 5 2 1 52

0 072 1

1 2

0 072.

(Re ) ( )

.

(Re )/ //
 (15.32)
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The Equation (15.32) is valid for 5 10 105 7× < <Rel .

If 10 107 9< <Re ,l  then the relation given by Schlichting is used for determining CD  as follows.

	 CD
l

=
0 455

10
2 58

.

(log Re ) .
 (15.33)

 Example 15.15  A smooth flat plate of length 5 m and width 2 m moves with a velocity of 5 m/s in a uniform stationary 
air stream. Find (i) the thickness of the boundary layer at the trailing edge of the plate if kinematic viscosity and density of 
air are 15 × 10-6 m2/s and 1.23 kg/m3, respectively. Also determine (ii) the coefficient of drag, (iii) total drag on one side 
of the plate if the boundary layer is turbulent from the very beginning, (iv) shear stress and (v) the thickness of laminar 
sublayer.

Solution
Let l = 5 m, b = 2 m, U = 5 m/s, ν = × −15 10 6 m /s2  and ρ = 1 23. kg/m3.

 (i) Re .l
Ul

= =
×

×
= ×−ν

5 5

15 10
16 67 10

6
5

  Since Rel > ×5 105, the boundary layer is turbulent at the trailing edge. The expression for boundary layer thickness 
for turbulent boundary layer at the trailing edge of the plate is given below.

δ = =
×

×
=

0 371 0 371 5

16 67 101 5 5 1 5

.

(Re )

.

( . )/ /

l

l

0.1057 m or 105.7 mm

 (ii) CD
l

= =
×

=
0 072 0 072

16 67 101 5 5 1 5

.

(Re )

.

( . )/ /
0.0041

 (iii) F
U C bl

D
D= =

× × × ×
=

ρ 2 2

2

1 23 5 0 0041 2 5

2

. .
0.6304 N

 (iv) τ ρ
o

x

U
= =

×
×

×
=

2

1 5

2

5 1 52

0 0576 1 23 5

2

0 0576

16 67 10

.

(Re )

. .

( . )/ /
0.050455 N/m2

 (v) ′ = =
× ×

=
−

δ ν
τ ρ

11 6 11 6 15 10

0 05045 1 23

6. .

. / .o /
0.00086 m or 0.86 mm

 Example 15.16  Find the ratio of friction drag on the front half and rear half of a flat plate kept in a uniform stream at 
zero incidence, if the boundary layer is turbulent over the whole plate.

Solution
Let ( )FD front and ( )FD rear be the skin friction drag on the front half and rear half of the plate, respectively.

For the front half portion of the plate, we get:

( )
.

Re

.

[( ) ]

.

[{ ( )} / ]/ / /
C

Ux U l
D

x
front

/ /
= = =

0 072 0 072 0 072

21 5 1 5 1ν ν 55 1 5

0 0827
=

.

[( ) ] /Ul /ν

Thus, drag for the front half portion of the plate is given by,

( )
.

[( ) ]

.

[(/
F

C U b l U b

Ul

l U bl
D

D
front

/
= = =

ρ ρ
ν

ρ2 2

1 5

2

2 2

0 0827

2 2

0 0207

UUl) ] //ν 1 5
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Similarly, drag for the entire plate is given by,

F
Ul

U bl
U bl

Ul
D = =

1

2

0 072 0 036
1 5

2
2

1 5

.

[( ) ]

.

[( ) ]/ // /ν
ρ ρ

ν

Thus ( ) ( )
.

[( ) ]

.

[(/
F F F

U bl

Ul

U bl

U
D D Drear front

/
= − = −

0 036 0 02072

1 5

2ρ
ν

ρ
ll

U bl

Ul) ]

.

[( ) ]/ // /ν
ρ
ν1 5

2

1 5

0 0153
=

∴ = ×
( )

( )

.

[( ) ]

[( ) ]

./

/F

F

U bl

Ul

UlD

D

front

rear /

/0 0207

0 015

2

1 5

1 5ρ
ν

ν
33 2ρU bl

= 1.353

 Example 15.17  A ship of 5 m draft and 125 m long needs 500 kW of power at a speed of 20 km per hour. If the density 
and kinematic viscosity of sea water is 1025 kg/m3 and 10-6 m2/s, respectively, then find the combined wave and form 
resistance of the ship. Assume that boundary layer is turbulent from the very beginning.

Solution
Let b = 5 m , l = 125 m, P = 500 kW , U = 20 km/hr, ρ = 1025 kg/m3 and ν = −10 6 m /s2 .

U =
×

=
20 1000

3600
5 555. m/s

Re
.

.l
Ul

= =
×

= ×−ν
5 555 125

10
6 944 10

6
8

Since 10 107 9< <Rel

Thus CD
l

= =
×

= ×
0 455 0 455

6 944 10
1 644 1

10
2 58

10
8 2 58

.

(log Re )

.

[log ( . )]
.

. .
00 3−

Since the ship is wetted on both sides, the total friction drag is given by,

( )F
C lbU

C lbUD
D

Dfriction = × =2
2

2
2ρ

ρ

∴ = × × × × × =−( ) . . .FD friction N1 644 10 1025 125 5 5 555 32499 293 2

Total drag is given by,

F
P

UD = =
×

=
500 10

5 555
90009

3

.
N

Also F F F FD = + +form wave friction

∴ + = − = − =( ) .F F F FDform wave friction 90009 32499 29 57509.71 N

 Example 15.18  A cylindrical shaped submarine with rounded nose is 4 m in diameter and 40 m long. If the density 
and kinematic viscosity of sea water is 1025 kg/m3 and 10-6 m2/s, respectively, then find the power required to overcome 
the boundary friction if the submarine moves at a speed of 25.2 km/h and the boundary layer is turbulent from the very 
beginning.

Solution
Let d = 4 m, l = 40 m, ρ = 1025 kg/m3, ν = −10 6 m /s2  and U = 25 2. km/hr .
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U =
×

=
25 2 1000

3600

.
7 m/s

Re .l
Ul

= =
×

= ×−ν
7 40

10
2 8 10

6
8

Since 10 107 9< <Rel

Thus CD
l

= =
×

=
0 455 0 455

2 8 10
0 00185

10
2 58

10
8 2 58

.

(log Re )

.

[log ( . )]
.

. .

A dl= = × × =π π 4 40 502 655. m2

Drag force is given by,

F C
AU

D D= = ×
× ×

=
ρ 2 2

2
0 00185

1025 502 655 7

2
23352 41.

.
. N

Total power required to overcome boundary friction is given by,

P
F UD= =

×
=

1000

23352 41 7

1000

.
163.467 kW

15.9 ❐ TOTAL DRAG DUE TO LAMINAR AND TURBULENT LAYERS
Combined relations are required when for some distance from the leading edge of the plate, the boundary layer is laminar 
and it becomes turbulent for the remaining portion of the plate. For such cases, Prandtl proposed the following relation for 
computing the average drag coefficient.

	 C
A

D
l l

= −
0 074

1 5
1.

Re Re/
 (15.34)

The constant A1 in Equation (15.34) depends on the critical Reynolds number (Re )x c at which the laminar boundary layer 

becomes turbulent. In most of the cases, the value of (Re )x c is taken as 5 105×  for which A1 1700=  and thus Equation 
(15.34) is written as follows.

	 CD
l l

= −
0 074 1700

1 5

.

Re Re/
 (15.35)

For (Re )x c = ×3 105, A1 1050=  and for (Re )x c = 106, A1 3300= . The Equation (15.35) is applicable for values of Rel up 

to 107.
The Prandtl-Schlichting equation given below is used for Rel ranging from 107 to 109.

	 C
A

D
l l

= −
0 455

10
2 58

1.

(log Re ) Re.
 (15.36)

In Equation (15.36), the value of A1 again depends on the value of (Re )x c and it is the same as discussed above. Thus, for 
(Re )x c = ×5 105, A1 1700=  and therefore, Equation (15.36) is written as follows.

	 CD
l l

= −
0 455 1700

10
2 58

.

(log Re ) Re.
 (15.37)

The Equation (15.36) is valid in the entire range of 5 10 105 9× < <Rel  and it agrees with the equation (15.34) up to 
Rel = 107.
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 Example 15.19  Determine the power required to propel a submarine at a speed of 16.2 km/hour in water having density 
and kinematic viscosity as 1000 kg/m3 and 10-6 m2/s, respectively. The length of the hull of a submarine is 80 m and its 
surface area is 2000 m2. The boundary layer at the leading edge is laminar and the critical Reynolds number at which the 
flow in boundary layer changes from laminar to turbulent is 5×105.

Solution
Let U = 16 2. km/hr , ρw = 1000 kg/m3, ν = −10 6 m /s2 , l = 80 m, A = 2000 m2 and (Re )x c = ×5 105.

U =
×

=
16 2 1000

3600
4 5

.
. m/s

Re
.

.l
Ul

= =
×

= ×−ν
4 5 80

10
3 6 10

6
8

Since at leading edge, the boundary layer is laminar which changes from laminar to turbulent on the surface of the submarine.

Thus CD
l l

= − =
×

−
×

=
0 074 1700 0 074

3 6 10

1700

3 6 10
1 434

1 5 8 1 5 8

.

Re Re

.

( . ) .
.

/ /
×× −10 3

F
C AU

D
D w= =

× × × ×
=

−ρ 2 3 2

2

1 434 10 1000 2000 4 5

2
29038 5

. .
. N

Power required to propel the submarine is given by,

P
F UD= =

×
=

1000

29038 5 4 5

1000

. .
130.67325 kW

 Example 15.20  A small submarine moves in fresh water at a speed of 10.8 km/hour and experiences a total drag of 
65 N. If the length of its hull is 3 m and its surface area is 3 m2, then find (i) the skin friction drag, (ii) wave drag and 
(iii) wave drag coefficient. Take the density and kinematic viscosity of water as 1000 kg/m3 and 10-6 m2/s, respectively. The 
boundary layer at the leading edge is laminar and the critical Reynolds number at which the flow in boundary layer changes 
from laminar to turbulent is 5 ×	105. Neglect the form resistance.

Solution
Let U = 10 8. km/hr, ( )FD total N= 65 , l = 3 m, A = 3 m2, ρw = 1000 kg/m3, ν = −10 6 m /s2  and (Re )x c = ×5 105.

 (i) U =
×

=
10 8 1000

3600
3

.
m/s

Rel
Ul

= =
×

= ×−ν
3 3

10
9 10

6
6

  Since at leading edge, the boundary layer is laminar which changes from laminar to turbulent on the surface of the 
submarine.

  Thus CD
l l

= − =
×

−
×

= × −0 074 1700 0 074

9 10

1700

9 10
2 82 10

1 5 6 1 5 6
3.

Re Re

.

( )
.

/ /

( )
.

F
C AU

D
D w

skin = =
× × × ×

=
−ρ 2 3 2

2

2 82 10 1000 3 3

2
38.07 N

 (ii) ( ) ( ) ( ) .F F FD D Dwave total skin= − = − =65 38 07 26.93 N

 (iii) ( )
( )

( )

.

( )
C

F

AU
D

D

w
wave

wave

/ /
= =

× × ×
=

1 2

26 93

1 2 1000 3 32 2ρ
1.995 10×× −−33
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 Example 15.21  A barge with bottom surface in rectangular shape is 25 m long and 10 m wide, which is travelling 
down a river with a velocity of 0.7 m/s. A laminar boundary layer is existed up to a Reynolds number equivalent to 5 ×	
105 and subsequently, abrupt transition occurs to turbulent boundary layer. If the density and kinematic viscosity of water 
are 998  kg/m3 and 10-6 m2/s, respectively, then determine (i) the maximum distance from the leading edge up to which 
the laminar boundary persists and the maximum boundary layer thickness at that point, (ii) the total drag force on the flat 
bottom surface of the barge and (iii) power required to push the bottom surface through water at the given velocity.

Solution
Let l = 25 m, b = 10 m, U = 0 7. m/s, (Re )x c = ×5 105 , ρw = 998 kg/m3 and ν = −10 6 m /s2 .

 (i) Let xc  be the distance from the leading edge up to which the laminar boundary persists and δ  be the maximum 
 boundary layer thickness.

A lb= = × =25 10 250 2m

(Re )x c
cUx

= = ×
ν

5 105

∴ =
× ×

=
× ×

=
−

x
Uc

5 10 5 10 10

0 7

5 5 6ν
.

0.7143 m

δ = =
×

×
=

5 5 0 7143

5 105

xc

xRe

.
5.05 10 m or 5.05 mm3×× −−

 (ii) Re
.

.l
Ul

= =
×

= ×−ν
0 7 25

10
1 75 10

6
7

  Since at leading edge, the boundary layer is laminar which changes from laminar to turbulent on the surface of the 
barge, we get the following result.

CD
l l

= − =
×

−
0 455 1700 0 455

1 75 10

17

10
2 58

10
7 2 58

.

(log Re ) Re

.

(log . ). .

000

1 75 10
2 653 10

7
3

.
.

×
= × −

F
C AU

D
D w= =

× × × ×
=

−ρ 2 3 2

2

2 653 10 998 250 0 7

2

. .
162.17 N

(iii) The power required to push the bottom surface through water is given by,

P F UD= = × =162 17 0 7. . 113.519 W

 Example 15.22  A streamlined train is 240 m long with a typical cross section having a perimeter of 8.5 m above the 
wheels. If the boundary layer changes from laminar to turbulent on the train surface and the density and kinematic viscosity 
of air are 1.24 kg/m3 and 1.5×10-5 m2/s, respectively, then determine the approximate surface drag (friction drag) of the 
train when running at 84 km/hr.

Solution
Let l = 240 m, p = 8 5. m, ρ = 1 24. kg/m3, ν = × −1 5 10 5. m /s2  and U = 84 km/hr .

U =
×

=
84 1000

3600
23 33. m/s

Re
.

.
.l

Ul
= =

×
×

= ×−ν
23 33 240

1 5 10
3 73 10

5
8
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Thus, the boundary layer is turbulent and assuming abrupt transition from laminar to turbulent on the surface of the train, 
we get the following value.

CD
l l

= − =
×

−
0 455 1700 0 455

3 73 10

17

10
2 58

10
8 2 58

.

(log Re ) Re

.

(log . ). .

000

3 73 10
1 776 10

8
3

.
.

×
= × −

Frictional drag force on the train surface is given by,

F C AU
C pl U

D D
D= × =

1

2 2
2

2

ρ
ρ( )

∴ =
× × × × ×

=
−

FD
1 776 10 1 24 8 5 240 23 33

2

3 2. . ( . ) .
1222.63 N

15.10 ❐  BOUNDARY LAYER SEPARATION, ITS EFFECTS,  
AND CONTROL

The pressure gradient (∂ ∂p x/ ) in the direction of flow greatly affects the boundary layer thickness. If the pressure gradient 
is zero, then the boundary layer continues to grow in thickness along a flat plate. If the pressure gradient is negative (i.e., 
pressure decreases in the direction of flow), then the boundary layer reduces in thickness and is held in place. The transfer 
of momentum from the main flow to the boundary layer will sustain the flow in the boundary layer. However, if the pressure 
gradient is positive or adverse (i.e., pressure increases in the direction of flow), then the boundary layer thickens rapidly, the 
flow decelerates and the velocity pattern reverses or back flow sets in. The flow near the boundary is continuously retarded 
and a point is reached when the flow starts separating from the boundary. The point at which the flow separates from the 
boundary is called separation point. The positive pressure gradient reduces the momentum of flow of the fluid within the 
boundary layer due to higher shear stresses and causes separation from the solid surface.

Consider the flow past a curved surface (i.e., converging-diverging boundary surface) as shown in Figure 15.4.
As fluid flows in the region of converging boundary ABC, it is accelerated and the velocity becomes maximum at C 

where pressure is minimum. Thus, the pressure decreases in the direction of flow (i.e., pressure gradient becomes negative) 
which pushes high pressure region to the low pressure region. Therefore, the boundary layer remains thin and is held in 
place on the solid surface.

pmin

A
B

C
D

E

Boundary layer

Separation streamline

Wake

Pressure distribution

U

( )y = 0 < 0/∂∂ yu
( )y = 0 > 0/∂∂ yu

( )y = 0 = 0/∂∂ yu

( ) > 0/∂∂ xp( ) < 0/∂∂ xp

Curved solid 
surface

Figure 15.4 Separation of boundary layer
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In the diverging portion CDE, the flow is decelerated and pressure increases in the direction of flow (i.e., pressure 
gradient becomes positive). As a result, the net pressure force in an element of fluid in the boundary layer opposes the 
forward flow. Thus, at a certain distance, on the downstream of point C, the fluid near the boundary surface is soon brought 
to a standstill. The value of the velocity gradient ( )∂ ∂u y/  at the boundary surface is then zero (at point D) and the fluid 
no longer follows the contour of the curved surface and it separates from it. This point D is known as separation point.  
On downstream of separation point, a further retardation of the fluid close to the boundary has a reverse or back flow in the 
separated region known as wake. If all the points below which a reverse flow occurs are joined by a smooth curve, then a 
line dividing the forward and reverse flows is obtained which is known as separation streamline. Large irregular eddies and 
turbulence developed in the wake causes loss of energy and decrease in efficiency.

The flow separation depends on the curvature of the surface, the Reynolds number of the flow and the roughness of the 
boundary surface. The following conditions determine the boundary layer separation.

 (i) If 
∂
∂

⎛
⎝⎜

⎞
⎠⎟ =

u

y y 0

 is positive, then there is no separation and thus, the flow is attached.

 (ii) If 
∂
∂

⎛
⎝⎜

⎞
⎠⎟

=
=

u

y y 0

0, then the flow is on the verge of separation.

 (iii) If 
∂
∂

⎛
⎝⎜

⎞
⎠⎟ =

u

y y 0

 is negative, then the flow is separated.

15.10.1 Effects of Boundary Layer Separation
The boundary layer separation is unstable and it is an inefficient process. For external boundary layer separation, it leads 
to increase in pressure drag which is much more than frictional drag. For internal flows, boundary layer separation causes 
increase in flow losses. It occurs in diffusers, turbine blades, fans, pumps, aerofoils, etc.

15.10.2 Methods of Controlling Separation
The methods which are generally adopted to retard the flow separation is as follows.

 1. Streamlining of body shapes shifts the point of separation downstream and thereby, reduces the wake region.

 2. Suction of the retarded layers by suction slots.

 3. Artificial roughening of the boundary surface produces an early onset of turbulence which resists the separation.

 4. Providing small divergence in a diffuser.

 5. Acceleration of the fluid in the boundary layer.

 6. Motion of solid boundary.

 7. Guidance of flow in a confined passage.

 8. Providing a rotating cylinder near the leading edge which induces Magnus effect and the fluid remains attached to the 
upper surface of the body for its full length.

 Example 15.23  State whether the flow is separated or on the verge of separation or not separated for the following 
velocity profiles in the boundary layer.

 (i) ( ) ( ) ( )u U y y/ / /= −2 2δ δ

 (ii) ( ) ( ) ( )u U y y/ / /= −2 2 3δ δ

 (iii) ( ) ( ) ( )u U y y/ / /= − +2 2δ δ
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Solution

 (i) 
u

U

y y
u U

y y
= ⎛

⎝⎜
⎞
⎠⎟

− ⎛
⎝⎜

⎞
⎠⎟

⇒ = ⎛
⎝⎜

⎞
⎠⎟

− ⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2 2
2 2

δ δ δ δ

∂
∂

= −
⎡

⎣
⎢

⎤

⎦
⎥

u

y
U

y2 2
2δ δ

∂
∂

⎛
⎝⎜

⎞
⎠⎟

= −
⎡

⎣
⎢

⎤

⎦
⎥ =

=

u

y
U

U

y 0
2

2 2 0 2

δ δ δ
( )

  Since ∂∂ ∂∂u y
y

/ =0( )  is positive, the flow is not separated.

 (ii) 
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  Since ∂∂ ∂∂u y
y

/ =0( )  is zero, the flow is on the verge of separation.

 (iii) 
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  Since ∂∂ ∂∂u y
y

/ =0( )  is negative, the flow is separated.

Summary

 1. Boundary layer is a narrow region near the solid surface over 
which velocity gradients and shear stresses are large.

 2. For a flat plate, the length of the laminar zone is obtained 
for laminar flow from the critical Reynolds number 

(Re ) [( ) ]x c Ux= = ×/ν 5 105, here U  is the freestream veloc-
ity, x  is the distance from leading edge and ν  is the kine-
matic viscosity of fluid.

 3. In turbulent boundary layer region, there is a very thin layer 
just adjacent to the boundary in which the flow is laminar. 
This thin layer is known as laminar sublayer and its thickness 

is given as ′ = =δ ν
τ ρ

ν11 6 11 6. .

o su/
.

 4. The thickness of the boundary layer ( )δ  is arbitrarily defined 
as the distance from the boundary surface in which the 
velocity reaches 99% of the velocity of the mainstream. 
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Thus, d is defined as the distance y from the surface at which 
u U= 0 99. .

 5. Displacement thickness ( )δd  can be defined as the distance 
perpendicular to the boundary surface to which the bound-
ary surface has to be displaced into the flow to compensate 
for reduction in the discharge due to the formation of the 
boundary layer.

 6. The momentum thickness ( )δm  may be defined as the per-
pendicular distance by which the boundary should be dis-
placed to compensate for the reduction in momentum of the 
flowing fluid on account of the boundary layer formation.

 7. The energy thickness ( )δe  may be defined as the perpendic-
ular distance by which the boundary should be displaced to 
compensate for the reduction in energy of the flowing fluid 
on account of the boundary layer formation.

 8. δ
δ

d
u

U
dy= −⎛

⎝⎜
⎞
⎠⎟∫ 1

0

; δ
δ

m
u

U

u

U
dy= −⎛

⎝⎜
⎞
⎠⎟∫ 1

0

; 

  δ
δ

e
u

U

u

U
dy= −

⎛

⎝
⎜

⎞

⎠
⎟∫ 1

2

2
0

 9. Shape factor: H d m= δ δ/
 10. The von Karman momentum integral equation for boundary 

layer flow which is applicable for both laminar and turbulent 

flows is 
τ

ρ
δo m

U x2
=

∂
∂

.

 11. The local coefficient of drag or skin friction coefficient ( )C f  

is defined as the ratio of the local wall shear stress ( )τo  to the 
dynamic pressure of the uniform flow stream and is given by 

C Uf o= τ ρ/ /[( ) ]1 2 2 , here ρ is the mass density of fluid and 

U  is the freestream velocity.

 12. The average coefficient of drag ( )CD  is defined as the ratio 
of the total drag force ( )FD  to the quantity ( )1 2 2/ ρAU .  
It is also known as coefficient of drag and is given by 
C F AUD D= / /[( ) ]1 2 2ρ , here A is the surface area of the 
plate surface.

 13. The Prandtl’s boundary layer equations for two-dimensional  

steady flow of incompressible fluids is 
∂
∂

=
p

y
0 and 

u
u

x
v

u

y

dp

dx

u

y

∂
∂

+
∂
∂

⎛
⎝⎜

⎞
⎠⎟

= − +
∂
∂

1 2

2ρ
ν .

 14. Blasius solution: δ =
5x

xRe
, C f

x

=
0 664.

Re
, and CD

l

=
1 328.

Re

 15. The values of δ τ, ,o f DC Cand  for the velocity profile 
according to one-seventh power law for the turbulent bound-
ary layer evaluated in terms of Reynolds number are:

δ =
0 371

1 5

.

Re /

x

x

, τ ρ
o

x

U
=

2

1 52

0 0576.

Re /
, C f

x

=
0 0576

1 5

.

Re /
 and CD

l

=
0 072

1 5

.

Re /

 16. Prandtl proposed the following relation for computing the 
average drag coefficient due to laminar and turbulent layers 

when the value of (Re )x c = ×5 105 : CD
l l

= −
0 074 1700

1 5

.

Re Re
.

/

 17. Prandtl-Schlichting equation for 10 < Re < 107 9: 

CD
l l

= −
0 455 1700

10
2 58

.

(log Re ) Re.

 18. The conditions for boundary layer separation is (i) if 
( )∂ ∂ =u y y/ 0 is positive, then there is no separation and thus, 
the flow is attached, (ii) if ( )∂ ∂ ==u y y/ 0 0, then the flow is 

on the verge of separation and (iii) if ( )∂ ∂ =u y y/ 0 is negative, 
then the flow is separated.

Multiple-choice Questions

 1. In laminar boundary layer, the nominal thickness ( )δ  varies 
with longitudinal distance ( )x  as

(a) x2 .
(b) 1 2/x .
(c) x1 2/ .
(d) x−1 2/ .

 2. The laminar sublayer exists
(a) Only in smooth turbulent boundary layers.
(b) Only in laminar boundary layer.
(c) Only in rough fully developed turbulent boundary layers.
(d) In all turbulent boundary layers.

 3. The thickness of laminar sublayer ( )′δ  in terms of kinematic 
viscosity ( )ν  and friction velocity ( )us  is equal to

(a) ( . )11 6ν /us.
(b) ( . )11 6us /ν .

(c) 11 6. ν / us .

(d) ( . )11 6 us /ν.

 4. The boundary layer exists due to
(a) Gravitational force.
(b) Surface tension.
(c) Density of fluid.
(d) Viscosity of fluid.

 5.  The local thickness of turbulent boundary layer varies with 
longitudinal distance ( )x  as

(a) x1 7/ .
(b) x1 5/ .
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 Boundary Layer Theory 15.37

(c) x4 5/ .
(d) None of the above

 6. The von Karman momentum integral equation is applicable 
to
(a) Laminar, transition and turbulent boundary layer flows.
(b) Only laminar boundary layer flow.
(c) Only turbulent boundary layer flow.
(d) None of the above.

 7. The velocity ( )u  in turbulent boundary layer varies as 
one-seventh power law and the growth of the boundary layer 
thickness ( )δ /x  varies as

(a) Re /
x
1 2.

(b) Re /
x

−1 2.

(c) Re /
x
1 5

(d) Re /
x

−1 5.

.
Review Questions

 1. Explain the boundary layer for flow over a flat plate. Also 
discuss the different flow regimes.

 2. Define and derive expressions for (i) displacement thickness, 
(ii) momentum thickness and (iii) energy thickness.

 3. Derive von Karman momentum integral equation for bound-
ary layer.

 4. Derive Prandtl’s boundary layer equations for two-dimen-
sional steady flow of incompressible fluids.

 5. What do you mean by boundary layer separation? What is 
the effect of pressure gradient on boundary layer separation? 

Also state the different methods of preventing the separation 
of boundary layer.

 6. What is meant by boundary layer? How will you decide 
whether a boundary layer flow is attached flow, detached 
flow or on the verge of separation?

 7. Derive the expressions for (i) boundary layer thickness, 
(ii) shear stress, (iii) local coefficient of drag, (iv) drag force 
and (v) coefficient of drag for one-seventh power law veloc-
ity profile for turbulent boundary layer flow.

 8. Explain the characteristics of laminar and turbulent bound-
ary layers.

Problems

 1. The velocity distribution in the boundary layer is 
( ) ( . ) ( )u U y y/ / /= −1 5 22 2δ δ , where δ  is the boundary layer 
thickness. Determine (i) the ratio of displacement thickness 
to boundary layer thickness and (ii) ratio of momentum 
thickness to boundary layer thickness.

[Ans. (5/12), (19/120)]

 2. The velocity distribution in the boundary layer is (u/U) = 
( ) ( ) /u U y/ /= δ 1 7 , where δ  is the boundary layer thickness. Deter-

mine (i) the displacement thickness, (ii) momentum thick-
ness, (iii) shape factor, (iv) energy thickness and (v) energy 
loss due to boundary layer if at a section the boundary layer 
thickness is 40 mm and the freestream velocity is 20 m/s. If 
the discharge through the boundary layer region is 5 m3/s per 
metre width, then express this energy loss in terms of metres 
of head when density is 1.2 kg/m3.

[Ans. δ δ δ/ / / m8 7 72 1 286 7 40 0 571, ( ) , . , ( ) , . ]

 3. The velocity distribution in the boundary layer over the face 

of a spillway is ( ) ( ) /u U y/ /= δ 11 50, where δ  is the bound-
ary layer thickness. Determine the displacement thickness, 
energy thickness and energy loss up to a particular section 
if the freestream velocity U  is 20 m/s, boundary layer thick-
ness is 50 mm and the discharge through the boundary layer 
region is 5 m3/s per metre length of spillway.

[Ans. 9 016 10 86 0 8856. , . , .mm mm m]

 4. The boundary layer thickness at a distance of 1 m from the 
leading edge of a flat plate kept over zero angle of incidence 
to the flow direction is 1 mm. If the velocity outside the 
boundary layer is 25 m/s, then determine the boundary layer 
thickness at a distance of 4 m.

[Ans. 2 mm]

 5. A smooth plate of length 2.5 m and width 2 m immersed in 
oil of specific gravity 0.8 moves with a velocity of 1.5 m/s 
along its length. If the kinematic viscosity of oil is 10-4 m2/s, 
then determine the thickness of boundary layer and shear 
stress at the trailing edge of the plate.

[Ans. 64.5 mm, 3.086 N/m2]

 6. A thin plate of length 0.6 m and width 0.5 m moves in still 
atmospheric air at a velocity of 7.5 m/s. If the density and 
kinematic viscosity of air is 1.24 kg/m3 and 0.15 stokes, 
respectively, then find the thickness of the boundary layer at 
the end of the plate and drag force on one side of the plate.

[Ans. 5.48 mm, 0.02532 N]

 7. A plate of size 0.45 m × 0.15 m placed longitudinally in a 
stream of crude oil of specific gravity 0.925 and kinematic 
viscosity of 0.9 stoke flows with a velocity of 6 m/s. Deter-
mine (i) the friction drag on the plate, (ii) thickness of the 
boundary layer at the trailing edge and (iii) shear stress at the 
trailing edge.

[Ans. 8.62 N, 13 mm, 63.829 N/m2]
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 8. Find the thickness of boundary layer at the end of the plate 
and the drag force on one side of a plate of length 1.5 m and 
width 1 m when immersed in water flowing with a velocity 
of 0.1 m/s. If the velocity profile for laminar boundary is 
given by the relation ( ) ( ) ( )u U y y/ / /= −2 2δ δ  and the vis-
cosity of water is 0.001 Ns/m2, then calculate the value of 
coefficient of drag.

[Ans. 21.2 mm, 0.0283 N, 0.00377]

 9. Find the thickness of boundary layer and the shear stress 1.5 
m from the leading edge of the plate. A plate of length 2.2 m 
and width 1.5 m is immersed in water flowing with a velocity 
of 200 mm/s. If the velocity profile for laminar boundary is 
given by the relation ( ) ( )( ) ( )( )u U y y/ / / / /= −3 2 1 2 3δ δ  and 
the viscosity of water is 0.001 Ns/m2, then find the total drag 
force on the plate.

[Ans. 12.7 mm, 0.0235 N/m2, 0.257 N]

 10. Find the ratio of friction drag on the front half and rear half 
of the plate kept at zero incidence in a stream of uniform 
velocity, if the boundary layer is laminar over the whole 
plate.

[Ans. 2.414]

 11. Find the ratio of friction drag on the front two-third and rear 
one-third of the flat plate kept at zero incidence in a stream 
of uniform velocity, if the boundary layer is turbulent over 
the entire plate.

[Ans. 2.61]

 12. A plate of width 0.5 m and length 5 m is kept parallel to the 
flow of water with freestream velocity 3 m/s. Determine the 
drag force on both sides of the plate if the boundary layer is 
turbulent from the very beginning and kinematic viscosity of 
water is 0.01 stokes.

[Ans. 59.175 N]

 13. Air flows past a 0.15 m long flat plate in a wind tunnel at 
a speed of 207.07 m/s. If the boundary layer is turbulent 
over the entire length of the plate and the density and kine-
matic viscosity of air are 1.18 kg/m3 and 15.53 ×	10-6 m2/s, 
respectively, then determine (i) the boundary layer thickness, 
(ii) wall shear stress at the trailing edge and total drag per 
unit width of the plate.

[Ans. 3.06 mm, 80.04 N/m2, 30.02 N]

 14. Determine the power required to propel a submarine at a 
speed of 18 km/hour in water having the density and kine-
matic viscosity as 1000 kg/m3 and 10-6 m2/s, respectively. 
The length of the hull of a submarine is 100 m and its surface 
area is 5000 m2. The boundary layer at the leading edge is 
laminar and the critical Reynolds number at which the flow in 
boundary layer changes from laminar to turbulent is 5 ×	105.

[Ans. 419.9375 kW]

 15. A barge of a rectangular bottom 25 m long and 8 m wide 
moves with a velocity of 2 m/s. If the density and dynamic 
viscosity of water are 1025 kg/m3 and 0.001 Ns/m2, respec-
tively and the boundary is smooth, then determine the fric-
tional drag on the bottom of the barge.

[Ans. 947.1 N]

 16. A streamlined train is 200 m long with a typical cross section 
having a perimeter of 9 m above the wheels. If the bound-
ary layer changes from laminar to turbulent on the train sur-
face and the density and kinematic viscosity of water are  
1.24 kg/m3 and 1.5	×	10-5 m2/s, respectively, then determine 
the approximate surface drag (friction drag) of the train 
when running at 90 km/hr.

[Ans. 1255.5 N]

ANSWERS TO MULTIPLE-CHOICE QUESTIONS

 1. (c) 2. (d) 3. (a) 4. (d) 5. (c)
 6. (a) 7. (d)
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16.1 ❐ INTRODUCTION
We often encounter problems related to completely submerged (immersed) bodies in a fluid and having motion relative 
to the fluid. In several engineering problems, either the body moves through a stationary fluid or the fluid moves over the 
stationary body or both the body and fluid remains in motion. For example, aeroplanes, submarines, automobiles, ships, all 
kinds of turbines, etc., move through air or water, and structures like buildings, bridges, etc., remains submerged in air or 
water. For designing such objects, the knowledge of the forces exerted on them by the fluid is of significant importance. The 
design of turbine blades, compressor blades and pump impeller blades are some of the other areas that requires knowledge 
of the phenomenon involved. When a body moves through the stationary fluid or the fluid moves over the stationary body, 
a force is exerted on the body and it is known as the drag force.

Generally, the force exerted by the fluid on the moving body can be made to incline to the direction of motion. Thus, 
this force has one of the components in the direction of motion and another perpendicular to the direction of motion. The 
component of the force in the direction of motion is called the drag force and the component perpendicular to the direction 
of motion is called lift force. However, if the lift force is zero, then only drag force acts on the body. Analytical methods 
for the determination of drag are limited to a few simple shaped bodies. Thus, experiments are to be performed in the 
wind tunnels to determine the drag. This chapter sheds light on the simple approach of analysing such forces acting on the 
 submerged moving bodies, such as plates, circular cylinders, spheres and airfoils.

16.2 ❐ DRAG AND LIFT
A body submerged in a real fluid and having relative motion may be subjected to two types of forces, namely drag force 
and lift force. For example, an airplane moving at a constant velocity U  is shown in Figure 16.1(a).

 1. Drag Force: The component of force in the direction of flow on the submerged body is called drag force, which is 

denoted by FD.

 2. Lift Force: The component of force perpendicular to the direction of flow is called lift force, which is denoted by FL.

However, for a submerged symmetrical body like sphere or a cylinder, facing the flow symmetrically, there is no lift and 
thus, the total force exerted by the fluid is equal to the drag on the body.

Chapter 16

Drag and Lift on 
Submerged Bodies
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16.2 Chapter 16

16.2.1 Types of Drag

 1. Shear drag (surface or skin friction drag): In the boundary layer zone, considerable shearing stresses are caused due 
to large velocity gradients. These shear stresses exerts a tangential force on the body which is termed as shear or skin 
friction drag.

 2. Pressure drag (form drag): When fluid flows past a submerged body, it causes a region of low pressure (wake) on the 
downstream side of the body. On account of separation of flow, there exists a pressure difference between the upstream 
and downstream sides. The pressure difference so created results in producing a drag on the body, which is known as 
pressure drag or form drag.

 3. Wave drag: The drag resulted from the waves set up due to the motion of a ship or a boat on the surface of water is 
called wave drag.

 4. Induced drag: The drag force produced by the lift force in an airfoil (blade) of finite span is called induced drag.

 5. Profile drag or boundary drag: If the wave drag and induced drag are neglected, then the total drag is equal to the 
sum of skin friction drag and pressure drag. The sum of skin friction drag and pressure drag is called profile drag or 
boundary drag.

16.2.2 Expression for Drag and Lift
Consider a randomly shaped body held stationary in a fluid moving with a uniform velocity U  as shown in Figure 16.1(b). 
Consider an elemental area dA on the surface of the body. Let p be the pressure intensity and τ  be the shear stress acting 
on the area dA. The force due to pressure intensity pdA acts normal to the surface and is inclined at an angle α  with the 
vertical axis (Figure 16.1(c)). The force due to the shear stress τ dA acts tangentially to the surface. The components of 
these two forces in the direction of motion and perpendicular to the direction of motion gives rise to drag force and lift 
force on the area dA.

The drag force dFD  acting on the small area dA is the sum of pressure force and shear force in the direction of fluid 
motion and the expression is given below.

	 dF pdA dAD = +sin cosα τ α  (16.1)

U

FD

FL

FR
τ

p

dAτ
pdA

dA

dA

α

αpdA sin

αpdA cos

α

ατ dA cos

ατ dA sin

FD

FR
FL

Airplane

U

Direction
of flight

(a) (b)

(c)

U

Equivalent
free stream

Figure 16.1 Drag and lift forces
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The total drag force ( )FD  acting on the body can be obtained by integrating Equation (16.1) as given below.

	 F p dAD
A

= +∫ ( sin cos )α τ α  (16.2)

The first term in Equation (16.2) is called pressure drag and the second term is called friction drag and the respective 
expressions are given below.

	 Pressure drag = ∫ p dA
A

sinα  (16.3)

	 Friction drag = ∫ τ αcos
A

dA (16.4)

The relative magnitude of the pressure drag and friction drag depends upon the shape and position of the submerged body. 
If the body is a thin plate and if it is held parallel to the flow, then the pressure drag will be zero and the total drag will be 
only the frictional drag. However, if the plate is held perpendicular to the flow direction, then the friction drag will be zero 
and the total drag will be the pressure drag.

Similarly, the lift force dFL acting on the small area dA is given by,

dF pdA dAL = − +cos sinα τ α
Thus, the total lift force ( )FL  is given by,

	 F p dAL
A

= − +∫ ( cos sin )α τ α  (16.5)

For a body moving through a fluid of mass density ρ  at a uniform velocity U , the mathematical expressions for the 
 calculation of the drag and the lift may be given as follows.

	 F C A
U

D D=
ρ 2

2
 (16.6)

	 F C A
U

L L=
ρ 2

2
 (16.7)

In Equations (16.6) and (16.7), CD  and CL are the drag coefficient and lift coefficient, respectively, A is the  characteristic 
area which is usually taken as either the largest projected area of the submerged body or the projected area of the  submerged 
body on a plane perpendicular to the direction of fluid flow and the term [( ) ]ρU 2 2/  is the dynamic pressure of the flowing 
fluid.

The resultant force ( )FR  on the body is given by,

	 F F FR D L= +2 2  (16.8)

The drag and lift coefficients can be defined as the ratios of corresponding forces to the dynamic forces on the projected 
area. The mathematical expressions for these coefficients are given below.

	 C
F

AU
D

D=
( )1 2 2/ ρ

 (16.9)

	 C
F

AU
L

L=
( )1 2 2/ ρ

 (16.10)

From Equations (16.9) and (16.10), we get:

	
C

C

F

F
L

D

L

D
=  (16.11)

The Equation (16.11) shows that the ratio of lift force to drag force is same as the ratio of the coefficient of lift to the 
 coefficient of drag.
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16.2.3 Dimensional Analysis of Drag and Lift
Usually, it is not possible to predict the total drag on a body merely by analytical method. Thus, various experiments are 
conducted to determine these forces and the analysis of the results may be obtained on the basis of dimensional  analysis. 
Consider a body of characteristic length L, moving with a velocity U , through a fluid of mass density ρ , viscosity μ, 
 modulus of elasticity E  and acceleration due to gravity g . Let η be the dimensionless shape factor which represents the 
effect of the shape of the body on the force acting on it. The expression for force exerted on the body is given below.

	 F f L U E g= ( , , , , , , )ρ μ η  (16.12)

Using Buckingham pi theorem, Equation (16.12) may be rewritten as follows.

	
F

U L
f

UL U

E

U

gL( )
, , ,

1 2 2 2/ /ρ
ρ

μ ρ
η=

⎛

⎝
⎜

⎞

⎠
⎟  (16.13)

The non-dimensional parameters in the above equation are (i) Reynolds number, Re ( )= ρ μUL / , (ii) Mach number, 

Ma U E= / /( )ρ  and (iii) Froude number, Fr U gL= / .

Thus 
F

U L
f Ma Fr

( )
(Re, , , )

1 2 2 2/ ρ
η=  (16.14)

The Equation (16.14) is applicable to the drag as well as the lift force as given below.

	 C f Ma FrD = (Re, , , )η  (16.15)

	 C f Ma FrL = (Re, , , )η  (16.16)

The Equations (16.15) and (16.16) indicate that the drag and lift coefficients depends upon certain parameters, such as 
Reynolds number, Mach number, Froude number and shape factor. The shape factor describes the geometry of the body. 
The Reynolds number represents the effect of viscosity and it is predominant if the body is completely submerged in a 
fluid and the fluid is incompressible. Mach number represents the effect of elasticity of the fluid and it is predominant if the 
body is completely submerged in a fluid and the fluid is compressible. Froude number represents the effect of gravity and 
is predominant if the body remains partly submerged in the liquid and partly outside the liquid. For most of the problems, 
the gravity and compressibility effects are not significant. Thus, Equations (16.15) and (16.16) can be written as follows.

	 C fD = (Re, )η  (16.17)

	 C fL = (Re, )η  (16.18)

 Example 16.1  Air of density 1.2 kg/m3 moves at a speed of 40 km/hr in a stationary flat plate of size 1 m × 1 m. If the 
drag and lift coefficients are 0.16 and 0.8, respectively, then determine (i) the drag force, (ii) lift force, (iii) resultant force 
and its direction and (iv) power required to hold the plate stationary.

Solution
Let ρ = 1 2. kg/m3, U = 40 km/hr, size m m= ×1 1 , CD = 0 16.  and CL = 0 8. .

A = × =1 1 1 m2

U =
×

=
40 1000

3600
11 11. m/s

 (i) F
C A U

D
D= =

× × ×
=

ρ 2 2

2

0 16 1 1 2 11 11

2

. . .
11.85 N

 (ii) F
C A U

L
L= =

× × ×
=

ρ 2 2

2

0 8 1 1 2 11 11

2

. . .
59.25 N
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 Drag and Lift on Submerged Bodies 16.5

 (iii) F F FR D L= + = + =2 2 2 211 85 59 25. . 60.42 N

α =
⎛
⎝⎜

⎞
⎠⎟

= ⎛
⎝⎜

⎞
⎠⎟

=− −tan tan
.

.
1 1 59 25

11 85

F

F
L

D
78.69°°

 (iv) P F UD= = × =11 85 11 11. . 131.6535 W

 Example 16.2  A truck having a projected area of 6.5 m2 travelling at 70 km/hr has a total resistance of 2000 N. Of this 
20% is due to rolling friction and 10% is due to surface friction. The rest is due to form drag. If the density of air is 1.24 kg/m3,  
then determine the coefficient of form drag.

Solution
Let mA = 6 5 2. , U = 70 km/hr, Ftotal N= 2000 , F Frolling totalof= 20% , F Fsurface totalof= 10% , F F Fform total rolling= − − 

Fsurface and ρ = 1 24. kg/m3.

U =
×

=
70 1000

3600
19 444. m/s

Frolling N= × =
20

100
2000 400

Fsurface N= × =
10

100
2000 200

F F F Fform total rolling surface N= − − = − − =2000 400 200 1400

Also F C A UDform =
1

2
2ρ

Thus 1400
1

2
6 5 1 24 19 4442= × × ×CD . . .

∴ =
×

× ×
=CD

1400 2

6 5 1 24 19 4442. . .
0.919

 Example 16.3  A man weighing 640 N jumps out of an aeroplane due to emergency with the help of a hemispherical 
shaped parachute. Find the diameter of the parachute if the man comes down with a velocity of 16 m/s, the coefficient of 
drag is 0.54 and the density of air is 1.2 kg/m3.

Solution
Refer Figure 16.2. Let W FDman N= = 640 , U = 16 m/s, CD = 0 54.  and ρ = 1 2. kg/m3.

Let D  be the diameter of the parachute.

Since F C A U C D UD D D= = ⎛
⎝⎜

⎞
⎠⎟

1

2

1

2 4
2 2 2ρ π ρ

Thus 640
1

2
0 54

4
1 2 162 2= × × × × ×. .

π
D

∴ =
× ×

× × ×
=D

640 2 4

0 54 1 2 162. .π
3.1344 m

D

Wman = 640 N

FD

Figure 16.2
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16.6 Chapter 16

 Example 16.4  A man descends down from an aeroplane under emergency with the help of a hemispherical shaped 
parachute of diameter 3 m and weight 30 N. Find the weight of the man if the man comes down with a velocity of 20 m/s, 
the coefficient of drag is 0.6 and the density of air is 1.21 kg/m3.

Solution
Let D = 3 m, Wp = 30 N, U = 20 m/s , CD = 0 6.  and ρ = 1 21. kg/m3.

Let Wm be the weight of the descending man.

F W W C A U C D UD p m D D= + = = ⎛
⎝⎜

⎞
⎠⎟

1

2

1

2 4
2 2 2ρ π ρ

Thus 30
1

2
0 6

4
3 1 21 202 2+ = × × × × ×Wm . .

π

∴ = − =Wm 1026 36 30. 996.36 N

 Example 16.5  A jet plane of weight 25 kN has a wing area of 20.4 m2. The plane flies at a velocity of 900 km/hr and its 
engine delivers 7500 kW power. If 64% of the power is used to overcome the drag resistance of the wing, then determine 
the coefficients of drag and lift for the wing. Take density of air as 1.2 kg/m3.

Solution
Let Wplane kN= 25 , A = 20 4. m2 , U = 900 km/hr, P = 7500 kW, P Pdrag of= 64%  and ρ = 1 2. kg/m3.

U =
×

=
900 1000

3600
250 m/s

Pdrag kW= × =
64

100
7500 4800

Also P
F UD

drag =
1000

Thus 4800
250

1000
=

×FD

∴ =
×

=FD
4800 1000

250
19200 N

Also F C A UD D=
1

2
2ρ

19200
1

2
20 4 1 2 2502= × × ×CD . .

∴ =
×

× ×
=CD

19200 2

20 4 1 2 2502. .
0.0251

The lift force should be equal to the weight of the plane and it is calculated as follows.

F W C A UL L= =plane
1

2
2ρ

25 10
1

2
20 4 1 2 2503 2× = × × ×CL . .

∴ =
× ×

× ×
=CL

25 10 2

20 4 1 2 250

3

2. .
0.0327
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 Drag and Lift on Submerged Bodies 16.7

 Example 16.6  A kite weighing 9 N and an area of 0.9 m2 makes an angle of 7° to the horizontal when it flies in a wind 
speed of 30 km/hr. Calculate the drag and lift coefficients if pull on the string attached to the kite is 35 N and it is inclined 
to the horizontal at 45°. Take density of air as 1.2 kg/m3.

Solution
Refer Figure 16.3. Let W = 9 N , A = 0 9. m2, α = °7 , U = 30 km/hr, P = 35 N, β = °45  and ρ = 1 2. kg/m3.

y

x
FD

FL

P

Kite

String

W

U

T

α
β

β
βP cos

βP sin

Figure 16.3

U =
×

=
30 1000

3600
8 333. m/s

F xD = Force exerted by wind in direction of motion, i.e., -direction

F xD = Component of pull along -direction

Thus F PD = = ° =cos cos .β 35 45 24 75 N

Also F C A UD D=
1

2
2ρ

24 75
1

2
0 9 1 2 8 3332. . . .= × × ×CD

∴ =
×

× ×
=CD

24 75 2

0 9 1 2 8 3332

.

. . .
0.66

Now F yL = ⊥Force exerted by wind to direction of motion, i.e., -direction

F WL = +Component of pull in vertically downward direction

Thus F P WL = + = ° + =sin sin .β 35 45 9 33 75 N

Also F C A UL L=
1

2
2ρ

33 75
1

2
0 9 1 2 8 3332. . . .= × × ×CL

∴ =
×

× ×
=CL

33 75 2

0 9 1 2 8 3332

.

. . .
0.9
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16.8 Chapter 16

 Example 16.7  A kite weighing 7 N and surface area of 0.81 m2 makes an angle at 10° to the horizontal when flying in 
the wind. Calculate the wind speed and the tension in the string if it is inclined to the horizontal at 45° and the drag and lift 
coefficients are 0.6 and 0.8, respectively. Take density of air as 1.2 kg/m3.

Solution
Refer Figure 16.3. Let W = 7 N , A = 0 81. m2, α = °10 , β = °45 , CD = 0 6. , CL = 0 8.  and ρ = 1 2. kg/m3.

Let the speed of wind be U  and T  be the tension in string.

F xD = Force exerted by wind in direction of motion, i.e., -direction

Thus F x P PD = = = °Component of pull along -direction cos cosβ 45

Also F C A UD D=
1

2
2ρ

	
P U Ucos . . . .45

1

2
0 6 0 81 1 2 0 29162 2° = × × × × =  (i)

Now F yL = ⊥Force exerted by wind to direction of motion, i.e., -direction

F WL = +Component of pull in vertically downward direction

Thus F P W PL = + = ° +sin sinβ 45 7

Also F C A UL L=
1

2
2ρ

Thus P U Usin . . . .45 7
1

2
0 8 0 81 1 2 0 38882 2° + = × × × × =

Thus P Usin .45 0 3888 72° = −  (ii)

P Pcos sin45 45° = °

Thus 0 2916 0 3888 72 2. .U U= −

( . . )0 3888 0 2916 72− =U

∴ =
−

=U
7

0 3888 0 2916
8 486

. .
. m/s

or U =
×

=
8 486 3600

1000

.
30.5496 km/hr

Substituting the value of U = 8 486. m/s  in expression (i), we get:

P cos . .45 0 2916 8 4862° = ×

P =
×

°
=

0 2916 8 486

45
29 697

2. .

cos
. N

∴ = =T P 29.697 N

 Example 16.8  Air with a velocity of 0.8 m/s flows over a cylinder of 60 mm diameter. If the length of the cylinder is 
1 m, ( ) .CD total = 1 5, ( ) .CD shear = 0 2 and ρ = 1 2. kg/m3, then determine the total drag, shear drag and pressure drag.
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 Drag and Lift on Submerged Bodies 16.9

Solution
Let U = 0 8. m/s , D = =60 0 06mm m. , L = 1 m, ( ) .CD total = 1 5, ( ) .CD shear = 0 2 and ρ = 1 2. kg/m3.

A LD= = × =1 0 06 0 06 2. . m

( )
( ) . . . .

F
C A U

D
D

total
total= =

× × ×
=

ρ 2 2

2

1 5 0 06 1 2 0 8

2
0.03456 N

( )
( ) . . . .

F
C A U

D
D

shear
shear= =

× × ×
=

ρ 2 2

2

0 2 0 06 1 2 0 8

2
0.00461 N

( ) ( ) ( ) . .F F FD D Dpressure total shear= − = − =0 03456 0 00461 0.02995 N

 Example 16.9  The total aerodynamic force acting on the rectangular wing of a small aeroplane is 24000 N when it 
flies horizontally at a speed of 210 km/hr. If the lift-drag ratio is 10, the span and chord of the wing are 10 m and 1.6 m, 
 respectively and ρ = 1 2. kg/m3, then determine (i) the lift and drag coefficients, (ii) total weight of the aeroplane and 
(iii) power required for flight.

Solution
Let FL = 24000 N , U = 210 km/hr, ( )F FL D/ = 10, L = 10 m, C = 1 6. m  and ρ = 1 2. kg/m3.

Let W  be the weight of the plane and P  be the power.

 (i) U =
×

=
210 1000

3600
58 333. m/s

A LC= = × =10 1 6 16. m2

  Since F C A UL L=
1

2
2ρ

  Thus 24000
1

2
16 1 2 58 3332= × × ×CL . .

∴ =
×

× ×
=CL

24000 2

16 1 2 58 3332. .
0.735

  Since 
C

C

F

F
L

D

L

D
=

∴ = = =C
C

F FD
L

L D( )

.

/

0 735

10
0.0735

 (ii) Since the aeroplane can carry a maximum weight equal to the lift force, we get the following value.

∴ = =W FL 24000 N

 (iii) F
F

D
L= = =

10

24000

10
2400 N

P
F UD= =

×
=

1000

2400 58 333

1000

.
139.9992 kW
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16.10 Chapter 16

 Example 16.10  A car travelling with a speed of 60 km/hr has a projected area of 1.6 m2. (i) Determine the power 
required to overcome wind resistance by the car if the drag coefficient is 0.36. (ii) For using the same power, also determine 
the percentage change in speed of the car when the drag coefficient is reduced to 0.3 by streamlining the car body. Take 
density of air as ρ = 1 2. kg/m3.

Solution
Let km/hrU = 60 , A = 1 6 2. m , CD = 0 36 0 3. .and  and ρ = 1 2. kg/m3.

 (i) U =
×

=
60 1000

3600
16 67. m/s

F
C A U

D
D= =

× × ×
=

ρ 2 2

2

0 36 1 6 1 2 16 67

2
96 04

. . . .
. N

P F UD= = × =96 04 16 67. . 1600.9868 W

 (ii) P F U C A U UD D= = ×
1

2
2ρ

  Thus 1600 9868
1

2
0 3 1 6 1 2 3. . . .= × × × ×U

∴ =
×

× ×
⎛
⎝⎜

⎞
⎠⎟

=U
1600 9868 2

0 3 1 6 1 2
17 715

1 3.

. . .
.

/

m/s

Percentage increase in speed =
−

× =
17 715 16 67

16 67
100

. .

.
6.27%

16.3 ❐ STREAMLINED AND BLUFF BODIES

16.3.1 Streamlined Body
A streamlined body is a body whose surface coincides with the streamlines when the body is held in the flow. Some of the 
examples of streamlined bodies are thin airfoil, aeroplane, submarine and spaceship. In this case, flow separation takes 
place only at the trailing edge, the wake formation zone will be very small and consequently, the pressure drag will be 
very small. Therefore, the total drag will only be due to friction. Streamlined bodies (airfoil and cylinder) are shown in 
Figure 16.4(a). The streamlined bodies are employed to provide lift. Since the drag on a streamlined body is low, the ratio 
of lift force to drag force ( )F FL D/  is high. The flight of birds is attributed to the generation of high value of F FL D/  by 
virtue of their wings.

Cylinder

Vertical flat plate

Small
wake

Large
wake

(a) Streamlined bodies (b) Blu� body

+
+

+
+

+

+

Positive
pressure

_
_
_
_
_
_

Negative
pressure

_ _ _ _ _

+ + + + +

Negative
pressure

Positive 
pressure

Airfoil

Streamlines

Figure 16.4 Streamlined and bluff bodies
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 Drag and Lift on Submerged Bodies 16.11

16.3.2 Bluff Body
A bluff body is a body whose surface does not coincide with the streamlines and the flow is separated from the beginning 
of the leading edge itself. Some examples of bluff bodies are chimneys, tall buildings and advertising boards. In this case, 
there is a large wake zone due to which the pressure drag is very large in comparison to friction drag. The drag on a bluff 
body is mainly due to the eddy formation and wake effect. Thus, a body for which pressure drag is very large as compared 
to friction drag is termed as bluff bodies. A bluff body (vertical flat plate) is shown in Figure 16.4(b). A bluff body is used 
to promote turbulence and the mixing of flow to accelerate the diffusion process in a combustion chamber.

16.4 ❐ DRAG ON A SPHERE (STOKES’ LAW)
The drag force on the sphere is a function of Reynolds number which is defined as the ratio of inertia force to the  viscous 
force of the fluid and is given by Re ( )= ρ μUD / . Here, D  is the diameter of the sphere, ρ  and μ are the density and 
 viscosity of the flowing fluid respectively with a velocity U . When the velocity of flow is very small and Re .< 0 2, Stokes 
 theoretically analysed the flow around a sphere and found that the total drag force acting on the sphere is given as follows.

	 F DUD = 3π μ  (16.19)

Although Equation (16.19) for drag force on a sphere was derived for a case with Re .< 0 2, but it turns out that the 
 approximation is reasonable up to Re ≅ 1.

Stokes further mentioned that out of the total drag given by Equation (16.19), two-thirds of the drag is contributed by 
skin friction and the remaining one-third is due to pressure difference. The expressions for skin friction drag, ( )FD skin  and 
pressure drag, ( )FD pressure are given below.

( )F DU DUD skin = × =
2

3
3 2πμ πμ

( )F DU DUD pressure = × =
1

3
3πμ πμ

	 C
F

AU

DU

D U UD UDD
D= = = = =

( ) ( ) ( ) ( ) Re1 2

3

1 2 4

24 24 24
2 2 2/ / / /ρ

πμ
ρ π

μ
ρ ρ μ

 (16.20)

Generally, the Equation (16.20) is designated as Stokes law. Oseen, a Swedish physicist improved Stokes’ analysis by partly 
taking into account the inertia terms and gave the following relation which is valid for 0 2 2. Re< < .

	 CD = +⎛
⎝⎜

⎞
⎠⎟

24
1

3

16Re Re
 (16.21)

The values of CD  for different ranges of Reynolds number are (i) CD = 0 4.  when 5 103< <Re , (ii) CD = 0 5.  when 

10 103 5< <Re  and (ii) CD = 0 2.  when Re > 105.

16.5 ❐ TERMINAL VELOCITY OF A BODY
If a body falls down from rest into a fluid, then it starts accelerating in the fluid due to gravitational force. As velocity 
increases, the drag on the body also increases. At one stage, the sum of drag force ( )FD  and buoyant force ( )FB  acting 
upwards becomes equal to the weight of the body ( )W  acting downwards and the net force acting on the body becomes 
zero. In this condition, while the body comes down, it does not accelerate any more. It starts moving down with a constant 
maximum velocity which is known as terminal velocity.

The Stokes law is also applicable to spherical particles of diameter D  settling under gravity in viscous fluids. The 
 terminal velocity ( )U  can be calculated as follows.

W F FD B= +
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16.12 Chapter 16

Let ws and w f  be the specific weights of the particles and the fluid, respectively.

π πμ π
6

3
6

3 3D w DU D ws f= +

3
6

3πμ π
DU D w ws f= −( )

	 ∴ =
−

U
w w Ds f( ) 2

18μ
 (16.22)

 Example 16.11  A metallic ball of diameter 3 mm having a specific gravity of 12 falls in a fluid of specific gravity 0.85 
and viscosity 15 poise. Calculate (i) drag on the ball, (ii) pressure drag and the skin drag, and (iii) terminal velocity of the 
ball in the fluid.

Solution

Let D = =3 0 003mm m. , Sb = 12, S f = 0 85.  and μ = =15 1 5poise Ns/m2. .

 (i) w S gb b w= = × × =ρ 12 10 9 81 1177203 . N/m3

w S gf f w= = × × =ρ 0 85 10 9 81 8338 53. . . N/m3

  Weight of the ball ( )W  is given by the product of volume ( )v  and specific weight as given below.

W v w D wb b= × = × = × × = × −π π
6 6

0 003 117720 1 6642 103 3 3. . N

  Buoyant force ( )FB  is given by,

F w D wB f f= × = = × × = × −Volume N
π π
6 6

0 003 8338 5 0 1179 103 3 3. . .

F W FD B= − = × − × =− −1 6642 10 0 1179 103 3. . 1.5463 10 N3×× −−

 (ii) ( )
.

F
F

D
D

pressure = =
×

=
−

3

1 5463 10

3

3

5.1543 10 N4×× −−

( ) .F FD Dskin = = × × =−2

3

2

3
1 5463 10 3 1.0309 10 N3×× −−

 (iii) F DUD = 3πμ

  Thus 1 5463 10 3 1 5 0 0033. . .× = × ×− π U

∴ =
×

× ×
=

−
U

1 5463 10

3 1 5 0 003

3.

. .π
0.03646 m/s

Re
. . .

.
.= = =

× × ×
=

ρ
μ

ρ
μ

UD S UDl w 0 85 1000 0 03646 0 003

1 5
0 062

  Since Re .< 0 2, use of the expression F DUD = 3πμ  is valid.
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 Drag and Lift on Submerged Bodies 16.13

 Example 16.12  If the density and kinematic viscosity of air are 1.2 kg/m3 and 0.15 ×	10-4 m2/s, respectively, then using 
Stokes’ law, determine the velocity of raindrops of diameter 0.25 mm falling from the atmosphere.

Solution
Let ρ = 1 2. kg/m3, ν = × −0 15 10 4. m /s2  and D = =0 25 0 00025. .mm m.

w gs w= = × =ρ 10 9 81 98103 3. N/m

w gf = = × =ρ 1 2 9 81 11 772 3. . . N/m

μ ρν= = × × = ×− −1 2 0 15 10 1 8 104 5 2. . . Ns/m

U
w w Ds f=

−
=

− ×
× ×

=−

( ) ( . ) .

.

2 2

518

9810 11 772 0 00025

18 1 8 10μ
1.89 m/s

 Example 16.13  A ball of diameter 80 mm is supported in the air when air is flowing vertically up with a velocity of 
12 m/s. If the density and kinematic viscosity of air are 1.2 kg/m3 and 0.15 ×	10-4 m2/s, respectively and the buoyancy 
force of air is neglected, then determine (i) the weight of the ball and (ii) density of its material.

Solution
Let D = =80 0 08mm m. , U = 12 m/s, ρ = 1 2. kg/m3

	and ν = × −0 15 10 4. m /s2 .

Let W  be the weight of the ball and ρb  be its density.

 (i) Since the ball is suspended in equilibrium, we get the below value.

W F C A U C D UD D D= = = ⎛
⎝⎜

⎞
⎠⎟

1

2

1

2 4
2 2 2ρ π ρ

Re
.

.
= =

×
×

=−
UD

ν
12 0 08

1 5 10
6400

4

  Since 10 6400 103 5< < , CD = 0 5. .

∴ = × × × × × =W
1

2
0 5

4
0 08 1 2 122 2. . .

π
0.21715 N

 (ii) W g D gb b= × =Volume ρ π ρ
6

3

0 21715
6

0 08 9 813. . .= × × ×
π ρb

∴ =
×

× ×
=ρ

π
b

0 21715 6

0 08 9 813

.

. .
82.57 kg/m3

 Example 16.14  Determine the viscosity of the liquid when a metallic ball of diameter 75 mm having a specific gravity 
of 7.8 falls in a liquid of specific gravity 0.85 with a velocity of 0.06 m/s.

Solution
Let mm mD = =75 0 075. , Sb = 7 8. , Sl = 0 85.  and U = 0 06. m/s. Let W  be the weight of the ball, FD be the drag force, 

FB be the buoyancy force and μ be the viscosity of liquid.
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16.14 Chapter 16

ρ ρb b wS= = × =7 8 10 78003. kg/m3

ρ ρl l wS= = × =0 85 10 8503. kg/m3

Since W F FD B= +  [Equilibrium condition]

Thus 
π ρ πμ π ρ
6

3
6

3 3D g DU D gb l= +

∴ =
−

=
× × −
× ×

=μ
ρ ρD g

DU
b l

3 3

18

0 075 9 81 7800 850

18 0 075 0 06

( ) . . ( )

. .
355.11 Ns/m2

 Example 16.15  A metallic ball of diameter 40 mm and of specific gravity 8 is dropped in water. If the coefficient of drag 
on the ball in water is 0.52, then determine the terminal velocity of the ball moving through the water.

Solution
Let mm mD = =40 0 04. , Sb = 8 and CD = 0 52. . Let U  be the terminal velocity of the ball, FD be the drag force, FB be 

the buoyancy force and ρw be the density of water.

ρ ρb b wS= = × =8 10 80003 kg/m3

W F FD B= +  [Equilibrium condition]

π ρ ρ π ρ
6

1

2 6
3 2 3D g C A U D gb D w w= +

Thus U
D g

C A

D g

C

b w

D w

b w

D

=
−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
−( ) ( )

( )

( )

( )

/
π ρ ρ

ρ
π ρ ρ

π
/

/ /

6

1 2 3 4

3 1 2 3

DD w
2

1 2

ρ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

/

∴ =
× × × −
× × × ×

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

U
π

π
0 04 9 81 8000 1000

3 0 52 4 0 04 1000

3

2

. . ( )

. ( / ) .

11 2/

= 2.654 m/s

 Example 16.16  A metallic spherical ball of diameter 0.003 m falls in a fluid at a terminal velocity of 0.04 m/s. If the 
specific weights of steel and fluid are 75000 N/m3 and 12500 N/m3, respectively, then using Stokes’ law calculate (i) the 
dynamic viscosity of fluid, (ii) drag force and (iii) drag coefficient for the ball.

Solution
Let mD = 0 003. , U = 0 04. m/s, wb = 75000 3N/m  and w f = 12500 3N/m .

 (i) Weight of the ball is given by,

W w D wb b= × = = × × =Volume N
π π
6 6

0 003 75000 0 001063 3. .

  Buoyant force is given by,

F w D wB f f= × = = × × =Volume N
π π
6 6

0 003 12500 0 0001773 3. .

F DUD = = × × × =3 3 0 003 0 04 0 001131πμ π μ μ. . .

  Since W F FD B= +
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  Thus 0 00106 0 001131 0 000177. . .= +μ

∴ =
−

=μ 0 00106 0 000177

0 001131

. .

.
0.781 Ns/m2

Re
( ) ( . ) . .

.
.= = =

× ×
=

ρ
μ μ
UD w g UDf / /12500 9 81 0 04 0 003

0 781
0 196

  Since Re .< 0 2, use of the expression F DUD = 3πμ  is valid.

 (ii) F DUD = = × × × =3 3 0 781 0 003 0 04πμ π . . . 0.00088 N

 (iii) CD = = =
24 24

0 196Re .
122.45

16.6 ❐ DRAG ON A CYLINDER
When a real fluid moving with velocity U  flows past a cylinder of diameter D  and length L placed such that its length is 
perpendicular to the direction of flow, the followings observations are made.

 (i) For Re < 1, F UD ∝  and CD ∝
1

Re
.

 (ii) For Re = 1 to 2000, CD  decreases and attains a minimum value of 0.95 at Re = 2000.

 (iii) For Re = ×2000 3 104to , CD  increases and attains a maximum value of 1.2 at Re = ×3 104.

 (iv) For Re = × ×3 10 3 104 5to , CD  decreases and attains a minimum value of 0.3 at Re = ×3 105.

 (v) For Re > ×3 106, CD  increases and attains a value of 0.7 in the end.

The flow pattern during the flow of a real fluid around an infinitely long circular cylinder placed perpendicular to the 
 direction of flow changes significantly with the Reynolds number.

 (i) For Re .< 0 5, the inertia forces are negligible relative to the viscous forces and therefore, the flow is wholly  laminar. 
The flow pattern around the cylinder will be symmetrical about the horizontal and vertical axes as shown in  
Figure 16.5(a) and the drag on the cylinder is due to the viscous shearing at its surface.

 (ii) For Re in the range of 2 to 30, the laminar flow separates symmetrically at stagnation points S1 and S2 and two weak 
eddies (vortices) are formed which rotates in opposite direction as shown in Figure 16.5(b). It is the initial stage for the 
development of the wake. The separated boundary layers come close to each other and join, thereby limiting the size 
of the wake.

 (iii) For Re ,> 40  the eddying motion is no more stable. For Re ranging about 40 to 70, the pair of vortices as well as the 
wake becomes quite distinct. The size of eddies enlarges and eventually, breaks off from the cylinder. At Re ≈ 90, the 
periodic oscillation of the wake is observed as shown in Figure 16.5(c).

 (iv) For Re > 90, the alternate breaking and washing away of the eddies can be noticed. This process of the formation of 
the vortices and their washing away from the two sides of the cylinder continues. Consequently, two rows of vortices 
moving in the downward direction with very small velocity are formed in the wake as shown in Figure 16.5(d). The 
configuration or arrangement of vortices in two rows rotating in opposite direction is called Karman vortex trails or 
Karman vortex street named after von Karman. As per Karman, the configuration of vortices may be symmetrical  
or staggered. The staggered configuration of vortices is shown in Figure 16.5(d). The alternate shedding of the 
 vortices starts at Re ≈ 45 and it can be seen only at Re ≈ 120, but it continues up to Re ≈ 105. Karman proved that the  
configuration of vortices is stable only when the ratio of transverse spacing ( )h  to the longitudinal spacing ( )l  is equal 
to 0.281, i.e., h l/ .= 0 281.
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16.16 Chapter 16

 (v) Strouhal number ( )Sn  can be given by Sn fD U= ( ) / , here f  is the frequency with which the vortices are shed alter-
nately from the cylinder on the downstream side, D  is the diameter of cylinder and U 	 is the velocity of flow. The 
frequency f  can be determined by the relation Sn = −0 198 1 19 7. [ ( . / Re)].

 (vi) The alternate shedding of the vortices causes periodic transverse forces on the cylinder and thus, it produces transverse 
oscillations. The closeness of natural frequency of vibration of the cylinder to the frequency of the vortex shedding can 
cause damage due to resonance. This consideration is very important to the design of elastic structures that are exposed 
to high winds, like cylindrical chimneys, towers, suspension bridges, etc. Alternate shedding of vortices from the two 
sides of a cylinder give rise to the phenomenon of singing of telephone or power lines in the wind, fluttering of wires 
and poles.

16.7 ❐ CIRCULATION AND LIFT ON A CYLINDER
When an ideal fluid flows over a stationary cylinder of radius R with a uniform velocity U , the streamlines will be 
 symmetrical on the front and the rear sides of the cylinder (Figure 16.6(a)). The flow first stagnates at S1, accelerates 
to a maximum velocity at the top and bottom and decelerates to a second stagnation point S2. Again the flow from S2 
 accelerates away from the cylinder and merges with the main flow.

Let α  be the angle made by the point on the circumference of the cylinder with the direction of flow. The expression for 
velocity uα  at any point on the surface of the cylinder is given below.

	 u Uα α= 2 sin  (16.23)

The pressure distribution at the front and rear of the cylinder is symmetrical and equal on the upper and lower halves of the 
cylinder. Thus, no unbalanced force act on the cylinder and eventually, the drag and the lift acting on the cylinder is zero.

When a constant circulation ( )Γ  is imparted to this cylinder, the streamlines takes the form of concentric circles and the 
flow pattern so formed is illustrated in Figure 16.6(b). The expression for peripheral velocity ( )uc  on the surface of cylinder 
is given below.

	 u
Rc =

Γ
2π

 (16.24)

Cylinder

(a) Re < 0.5 (b) Re = 2 to 30 (c) Re about 90

Oscillating wake

S1

S2

S1 S2

(d) Karman vortex street

Clockwise
vortices

Anti-clockwise
vortices

l

hU

Figure 16.5 Flow past an infinitely long circular cylinder
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A composite flow pattern shown in Figure 16.6(c) is obtained by superimposing the above two flow patterns. The result-
ant velocity ( )u  at any point on the surface of the cylinder is obtained by adding Equations (16.23) and (16.24) as given 
below.

	 u U
R

= +2
2

sinα
π
Γ

 (16.25)

The flow pattern so obtained is unsymmetrical about the horizontal axis. The circulation is taken clockwise and thus, the 
superimposition causes higher velocity around the upper half portion of the cylinder than that of the lower one. Since α  
varies from 0° to 180° for the upper half portion of the cylinder, 2U sinα  has a positive value. However, for lower half of 
the cylinder, α  varies from 180° to 360° for which the value of 2U sinα  would be negative. Thus, the value of resultant 
velocity given by Equation (16.25) will be higher around the upper half portion of the cylinder than the lower half. Thus, 
according to Bernoulli’s theorem, the pressure on the lower half portion of the cylinder will be more than the pressure on 
the upper half portion of the cylinder. Due to this pressure difference on the two halves of the cylinder, a force acts on 
the cylinder in the direction perpendicular to the flow direction. This upward force is known as lift force ( )FL . However, 
since the flow is symmetrical about the vertical axis, no unbalanced forces act on the cylinder and hence, the drag is zero. 
Such a phenomenon of generation of lift by a spinning cylinder in a fluid stream is known as Magnus effect. This effect 
was named after the German scientist Heinrich Magnus (1802–1870), who was the first to study the lift of rotating bodies 
(Figure 16.6(c)). This effect can be observed in bullets fired from rifle. Magnus effect can be used in ‘rotor sails’ of ships 
(Flettner design) by employing rotating cylinder to produce a propulsive force (Figure 16.7(a)). The Flettner design is not 
so popular, but it is of considerable scientific interest. The Magnus effect can also be productively used in changing the 
flight of balls in different ball games, like cricket, table tennis, golf and tennis. The Figure 16.7(b) shows the type of spin 
given to the ball to achieve a drop, rise and curve in their trajectories.

Cylinder
(a) (b)

R

S1 S2

R

R
uc = π2

Γ

Cylinder

Cylinder

R

FL

(c)

α

α

α

ααu = 2U sin

M N

High velocity
low pressure

Low velocity
high pressure

Lift

S1 S2

Figure 16.6 Flow pattern over a stationary and rotating cylinder
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Direction of
propulsion

Cylinders

U

Direction
of throw

(a) Flettner’s rotorship (b) E�ect of spin on the flight of a ball 

Rise Drop Curve

Figure 16.7 Examples of Magnus effect

Since at the stagnation points u = 0, the Equation (16.25) can be written as follows.

2
2

0U
R

sinα
π

+ =
Γ

	 ∴ = −sinα
π
Γ

4 RU
 (16.26)

The location of stagnation points on the surface of the cylinder can be known from Equation (16.26) which has been 
 discussed in Section 9.6.6 (Chapter 9).

16.8 ❐ EXPRESSION FOR LIFT ON A ROTATING CYLINDER
Let a cylinder rotate in a uniform flow field. Consider a small elemental length ds on the surface of the cylinder which 
makes an angle dα  at the centre of the cylinder as shown in Figure 16.8.

Let po and U  be the pressure and the velocity of the fluid far away from the cylinder, respectively, p and u be the 
 pressure and the velocity on the surface of the element, respectively, L and R be the length and radius of the cylinder, 
respectively and ds Rd= α be the length of the element.

Applying Bernoulli’s equation between any point far away from the cylinder and at any point on the surface of the 
 cylinder, we get the below expression.

p U p uo + = +
1

2

1

2
2 2ρ ρ

R FD

FL

U

Rotating cylinder
in a uniform flow

αd

α

αα cospRd

αα sinpRd

αpRd

α
ds

Figure 16.8 Lift on a rotating cylinder
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Substituting u U R= +2 2sin ( )α πΓ /  from Equation (16.25) in the above equation, we get:

p U p U
Ro + = + +

⎛
⎝⎜

⎞
⎠⎟

1

2

1

2
2

2
2

2

ρ ρ α
π

sin
Γ

Thus p p U
URo= + − +

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1

2
1 2

2
2

2

ρ α
π

sin
Γ

 (16.27)

Assuming unit length of the cylinder, the force acting on the element dF  is given by,

dF pRd= α

By resolving this force into horizontal and vertical directions, the drag force dFD  and lift force dFL can be respectively 
obtained as follows.

dF pRdD = α αcos

dF pRdL = − α αsin

The total drag and lift on the cylinder can be obtained by integrating the above expressions over the entire surface of the 
cylinder.

Since the flow pattern for a rotating cylinder in a uniform flow is symmetrical with respect to vertical axis, there is no 

drag on the cylinder, i.e., pR d FDcosα α
π

= =∫
0

2

0. This concept of zero drag on bodies immersed in a steady flow of ideal 

fluid is called D’Alembert’s paradox.

Now F pR dL = − ∫ sinα α
π

0

2

 

Substituting the value of p from Equation (16.27) in the above expression, we get:

F R p d U d U
URL o= − + − +⎛

⎝⎜
⎞
⎠⎟∫ ∫sin sin sinα α ρ α α ρ α

π

π π

0

2
2

0

2
2

2

0

1

2

1

2
2

2

Γ22π
α α∫

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

sin d

F R

p d U d

U d
UR

L

o

= −

+

− +

∫ ∫sin sin

sin sin

α α ρ α α

ρ α α
π

α

π π

0

2
2

0

2

2 3 2

1

2

1

2
4

2Γ
dd

U R
dα

π
α α

π ππ

0

2 2

2 2 2
0

2

0

2

4
∫ ∫∫ +

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

Γ
sin

If n is an odd number, then sinn dα α
π

0

2

0∫ = , and the above expression reduces to the following expression.

F R U
UR

d
U

dL = ⎛
⎝⎜

⎞
⎠⎟

=
−⎛

⎝⎜
⎞
⎠⎟∫ ∫

1

2

2 1 2

2
2 2

0

2

0

2

ρ
π

α α ρ
π

α α
π πΓ Γ

sin
cos

∴ = −⎡
⎣⎢

⎤
⎦⎥

=F
U

UL
ρ

π
α α ρ

πΓ
Γ

1

2

2

2 0

2sin
 per unit length of cylinder
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Thus, the total lift of a cylinder of length L is given by,

	 F LUL = ρ Γ  (16.28)

The Equation (16.28) is known as Kutta-Joukowski equation which is applicable to all types of bodies of any shape 
 including airfoils.

16.8.1 Expression for Lift Coefficient for a Rotating Cylinder
The lift force can also be given by Equation (16.7) as follows.

F C A
U

L L=
ρ 2

2

Substituting the values of FL from Equation (16.28) and A RL= 2  in the above expression, we get:

ρ ρ
LU C RL

U
LΓ = ( )2

2

2

	 ∴ = =C
LU

RL U RUL
ρ

ρ
Γ Γ
2

 (16.29)

Now 
Γ
R

uc= 2π   [ ( )]∵u Rc = Γ / 2π

 ∴ =C
u

UL
c2π

 (16.30)

 Example 16.17  Find the rotational speed of a cylinder of diameter 1.4 m and length 10 m rotating in the air stream. The 
cylinder axis is perpendicular to the air stream flowing with a velocity of 55 m/s and the lift produced is 7000 N per metre 
length of the cylinder. Take density of air as 1.2 kg/m3.

Solution
Let D = 1 4. m , L = 10 m, U = 55 m/s , ( )F LL / N/m= 7000  and ρ = 1 2 3. kg/m .

R
D

= = =
2

1 4

2
0 7

.
. m

Since 
F

L
U U Ru U R

RNL
c= = = ×ρ ρ π ρ π π

Γ ( ) ( )2 2
2

60

∴ =
×

=
×

× × × ×
=N

F L

U R

L( )

. .

/ 60

4

7000 60

4 1 2 55 0 72 2 2 2ρ π π
328.965 rpm

 Example 16.18  A cylinder of diameter 1.6 m and length 10 m rotates at 350 rpm with its axis normal to the flow 
 direction. Determine the theoretical circulation around the cylinder, lift coefficient and lift force if air flows with a velocity 
of 10 m/s and its density is 1.2 kg/m3.

Solution
Let D = 1 6. m , L = 10 m, N = 350 rpm , U = 10 m/s and ρ = 1 2. kg/m3.

u
DN

c = =
× ×

=
π π

60

1 6 350

60
29 32

.
. m/s

Γ = = × × =π πDuc 1 6 29 32 147 38. . . m /s2
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C
u

UL
c= =

×
=

2 2 29 32

10
18 422

π π .
.

F LUL = = × × × =ρ Γ 1 2 10 10 147 38. . 17685.6 N

 Example 16.19  As an application of Magnus effect, a ship is built having two vertical rotors 10 m high and 3 m in 
 diameter. The rotors are spun at 250 rpm. On a day when the air temperature is 20°C and relative motion of the air to ship 
results in 54 km per hour wind, calculate the force emitted by the spinning rotors on the ship. Take density of air as 1.25 kg/m3.

Solution
Let n = 2, L = 10 m, D = 3 m, N = 250 rpm, U = 54 km/hr and ρ = 1 25. kg/m3.

U =
×

=
54 1000

3600
15 m/s

u
DN

c = =
× ×

=
π π

60

3 250

60
39 27. m/s

Γ = = × × =π πDuc 3 39 27 370 11. . m /s2

F n LUL = = × × × × =ρ Γ 2 1 25 10 15 370 11. . 138791.25 N

 Example 16.20  Air having a velocity of 40 m/s is flowing over a cylinder of radius 0.75 m and length 10 m, when the 
axis of the cylinder is perpendicular to the air stream. (i) Calculate the speed at which the cylinder is to be rotated about 
its axis so that a lift force of 7 kN/m length of the cylinder is developed. (ii) Also find the location of the stagnation points. 
Take density of air as 1.25 kg/m3.

Solution
Let U = 40 m/s , R = 0 75. m, L = 10 m, ( )F LL / kN/m N/m= =7 7000  and ρ = 1 25. kg/m3.

 (i) 
F

L
U U Ru U R

RNL
c= = = ×ρ ρ π ρ π π

Γ ( ) ( )2 2
2

60

∴ =
×

=
×

× × × ×
=N

F L

U R

L( )

. .

/ 60

4

7000 60

4 1 25 40 0 752 2 2 2ρ π π
378.266 rpm

 (ii) Γ = =
×

=
( )

.

F L

U
L /

m /s2

ρ
7000

1 25 40
140

sin
.

.α
π π

= − = −
× ×

= −
Γ

4

140

4 0 75 40
0 3714

RU

  or sin sin( . )α = − °21 8

  Thus sin sin( . ) sin( . )α = + ° − °180 21 8 360 21 8and

∴ =α 201.8 and 338.2°° °°

 Example 16.21  A cylinder whose axis is perpendicular to the stream of air having a velocity of 20 m/s rotates at 
300 rpm. The cylinder is 2 m in diameter and 10 m long. Find (i) the circulation, (ii) theoretical lift force per unit length, 
(iii) position of stagnation points, (iv) actual lift, drag and direction of resultant force. For determining actual drag and lift, 
assume ( ) .u Uc / = 1 57, CL = 3 4.  and CD = 0 65. . Take density of air as 1.24 kg/m3. (v) Also determine the speed of rotation 
of the cylinder which yields only a single stagnation point.
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Solution
Let U = 20 m/s , N = 300 rpm , D = 2 m, L = 10 m, ( ) .u Uc / = 1 57, CL = 3 4. , CD = 0 65.  and ρ = 1 24. kg/m3.

R
D

= = =
2

2

2
1 m

 (i) u
DN

c = =
× ×

=
π π

60

2 300

60
31 416. m/s

Γ = = × × =π πDuc 2 31 416. 197.3925 m /s2

 (ii) 
F

L
UL = = × × =ρ Γ 1 24 20 197 3925. . 4895.334 N

 (iii) sin
.

.α
π π

= − = −
× ×

= −
Γ

4

197 3925

4 1 20
0 7854

RU

  or sin sin( . )α = − °51 76

  Thus sin sin( . ) sin( . )α = + ° − °180 51 76 360 51 76and

∴ =α 231.76 and 308.24°° °°

 (iv) F C U LDL L= × = × × × × × =
1

2
3 4

1

2
1 24 20 10 22 2ρ . . 16864 N

F C U LDD D= × = × × × × × =
1

2
0 65

1

2
1 24 20 10 22 2ρ . . 3224 N

  Thus, the resultant force ( )F  is given by,

F F FL D= + = + =2 2 2 216864 3224 17169.411 N

  If the inclination of the resultant force with the horizontal is α , then its value is given below.

α =
⎛
⎝⎜

⎞
⎠⎟

= ⎛
⎝⎜

⎞
⎠⎟

=− −tan tan1 1 16864

3224

F

F
L

D
79.18°°

 (v) For a single stagnation point, we get:

Γ = = × × =4 4 1 20 251 33π πRU . m /s2

u
Rc = =

×
=

Γ
2

251 33

2 1
40

π π
.

m/s

  Also u
DN

c =
π

60

∴ = =
×
×

=N
u

D
c60 60 40

2π π
381.972 rpm

16.9 ❐ BASIC TERMINOLOGY FOR AN AIRFOIL
An airfoil (aerofoil) is a streamlined body which may be either symmetrical or unsymmetrical as shown in Figure 16.9. 
Since a considerable power is wasted in overcoming the drag force, the drag should be reduced. A streamlined body has 
either no separation or the separation is limited to a small section near the rear part of the body and thus, it reduces the drag. 
The applications of airfoils are widely used in airplanes and turbomachinery.
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α
Chord line

Camber line

Trailing edge

Leading edge

L

C

Symmetrical
airfoil

Unsymmetrical
airfoil

Figure 16.9 Types of airfoils

Some of the important terms related to an airfoil are defined below.

 1. Leading edge: The front edge of the blade on thicker side is termed as leading edge.

 2. Trailing edge: The back edge of the blade on thinner side is termed as trailing edge.

 3. Chord: The line joining the leading (front) and trailing (rear) edges in a direction perpendicular to the two edges is 
known as chord and it is denoted by C .

 4. Span: The overall length of the airfoil is known as span and it is denoted by L.

 5. Aspect ratio: It is the ratio of the span to the chord, i.e., ( / )L C .

 6. Camber line: The line joining the midpoints of the profile of the airfoil is known as camber line.

 7. Angle of attack: The angle between the chord line and direction of the fluid stream is called the angle of attack and it 
is denoted by α .

 8. Stall: If the angle of attack of an airfoil is greater than the angle of attack for maximum lift, then the airfoil is said to 
be operating under the stall condition. Under stall condition, the flow separates from the airfoil and eddies are formed. 
Therefore, the drag coefficient increases considerably.

16.10 ❐ CIRCULATION AND LIFT ON AN AIRFOIL
As airfoil is a streamlined body, the drag force on it is always small. The lift on an airfoil is due to negative pressure 
 generated on its upper side. Theoretically, the expression for circulation (G) developed on the airfoil is given below.

	 Γ = π αCU sin  (16.31)

	 F LU LU CU CLUL = = × =ρ ρ π α πρ αΓ sin sin2  (16.32)

Also F C A U C CL UL L L= =
1

2

1

2
2 2ρ ρ( )  (16.33)

Simplifying Equations (16.32) and (16.33), we get:

1

2
2 2C CL U CLUL ( ) sinρ πρ α=

	 ∴ = =C
CLU

CL U
L

2
2

2

2

πρ α
ρ

π αsin
sin  (16.34)

M16 Fluid Mechanics and Hydraulic Machines XXXX 01.indd   23 4/19/2019   3:00:19 PM

Download more at Learnclax.com



16.24 Chapter 16

It can be seen from Equation (16.34) that the lift of an airfoil increases as the angle of attack ( )α  increases. Practically, the 
lift coefficient ( )CL  increases up to a certain angle of attack, beyond which it decreases drastically. This point is known 
as the stalling point. In practice, the operating point of airfoil always lies below the stalling point. Figure 16.10 shows the 
variation trend of lift and drag coefficients for varying values of angle of attack.

For equilibrium, the weight ( )W  of an airplane (a flying object) is equal to the lift force ( )FL  in its airfoils, whereas the 
thrust ( )P  developed by its engine is equal to the drag force ( )FD  as  schematically shown in Figure 16.11.

 Example 16.22  An aeroplane flying in a horizontal direction at 324 km/hr weighs 35 kN. Determine the lift coefficient, 
circulation and power required to drive the plane if it spans 16 m, its wing surface area is 36 m2, drag coefficient is 0.04 
and density of air is 1.2 kg/m3.

Solution
Let U = 324 km/hr, W = = ×35 35 103kN N , L = 16 m, A = 36 2m , CD = 0 04.  and ρ = 1 2 3. kg/m .

U =
×
×

=
324 1000

60 60
90 m/s

For equilibrium in vertical direction, the lift equals the weight of aeroplane, where the expression is given below.

W C AUL=
1

2
2ρ

Angle of attack

Stalling point

0.2

–0.4
16°–8°

)(α

CL

CD

1.0

1.8

10.5°

L
if

t a
nd

 d
ra

g 
co

e�
ci

en
ts

Figure 16.10 Variation of lift and drag coefficients with angle of attack

Thrust, P Drag force, FD

Weight, W

Lift force, FL Airplane

Figure 16.11 Equilibrium position of an airplane
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35 10
1

2
1 2 36 903 2× = × × × ×CL .

∴ =
× ×
× ×

=CL
35 10 2

1 2 36 90

3

2.
0.2

Γ = =
×

× ×
=

F

LU
L

ρ
35 10

1 2 16 90

3

.
20.255 m /s2

F C AUD D= = × × × × =
1

2

1

2
0 04 1 2 36 90 6998 42 2ρ . . . N

Power = =
×

=
F UD

1000

6998 4 90

1000

.
629.856 kW

 Example 16.23  An aeroplane flying in a horizontal direction at 720 km/hr having a wing area of 26 m2 weighs 25 kN. 
Determine the lift and drag coefficients, if its engine delivers 6000 kW and 60% of its power is used to overcome the drag 
resistance of the wing. Take density of air as 1.2 kg/m3.

Solution
Let U = 720 km/hr, A = 26 m2, W kN= = ×25 25 103 N, Pt = 6000 kW , P Ptdrag of= 60%  and ρ = 1 2 3. kg/m .

U =
×
×

=
720 1000

60 60
200 m/s

For equilibrium in vertical direction, the lift equals the weight of aeroplane, where the expression is given below.

W C AUL=
1

2
2ρ

25 10
1

2
1 2 26 2003 2× = × × × ×CL .

∴ =
× ×

× ×
=CL

25 10 2

1 2 26 200

3

2.
0.04

Pdrag kW= × =
60

100
6000 3600

Also P F U C AU U C AUD D Ddrag = = × =
1

2

1

2
2 3ρ ρ

Thus 3600 10
1

2
1 2 26 2003 3× = × × × ×CD .

∴ =
× ×

× ×
=CD

3600 10 2

1 2 26 200

3

3.
0.029

M16 Fluid Mechanics and Hydraulic Machines XXXX 01.indd   25 4/19/2019   3:00:37 PM

Download more at Learnclax.com



16.26 Chapter 16

Summary

 1. A body submerged in a real fluid and having relative motion 
may be subjected to two types of forces, namely drag and lift 
forces.

 2. The component of force in the direction of flow on the 
submerged body is called drag force, which is given by 
F C A UD D= ( )1 2 2/ ρ , here CD is the drag coefficient, A is the 
projected area of the body, ρ is the density of fluid and U  is 
freestream velocity.

 3. The component of force perpendicular to the direction of 
flow is called lift force and it is given by F C A UL L= ( )1 2 2/ ρ ,  
here CL is the lift coefficient.

 4. A streamlined body is a body whose surface coincides with 
the streamlines when the body is held in the flow.

 5. A bluff body is a body whose surface does not coincide with 
the streamlines and the flow is separated from the beginning 
of the leading edge itself.

 6. For Re .< 0 2, Stokes found that the total drag force acting on 
the sphere is given by F DUD = 3πμ  out of which two-thirds 
of the drag is contributed by skin friction and remaining one-
third is due to pressure difference.

 7. The Stokes law is given by CD = 24/ Re, here Re is the 
Reynolds number.

 8. Terminal velocity is the maximum constant velocity attained 
by a falling body. At the terminal velocity, the weight of the 
body ( )W  is equal to the drag force ( )FD  plus the buoyant 
force ( )FB , i.e., W F FD B= + .

 9. The velocity uα  at any point on the surface of the cylinder 
is given by u Uα α= 2 sin , here α  is the angle made by the 
point on the circumference of the cylinder with the direction 
of flow.

 10. The peripheral velocity ( )uc  on the surface of cylinder is 
u Rc = Γ /( )2π , here Γ  is the circulation provided to the cyl-
inder and R is its radius.

 11. The resultant velocity at any point on the surface of cylinder 
is u U R= +2 2sin ( )α πΓ / , here U  is the uniform velocity of 
the fluid.

 12. The position of stagnation point on the surface of cylinder is 
sin ( ).α π= −Γ / 4 RU

 13. The total lift on a rotating cylinder of length L is given 
by F LUL = ρ Γ which is also known as Kutta-Joukowski 
equation.

 14. The lift coefficient for a rotating cylinder is C u UL c= ( )2π / .

 15. The line joining the leading (front) and trailing (rear) edges 
in a direction perpendicular to the two edges are known as 
chord ( )C .

 16. The angle between the chord line and direction of the fluid 
stream is called the angle of attack ( )α .

 17. The circulation ( )Γ  developed on the airfoil is Γ = π αCU sin .

 18. The lift coefficient for an airfoil is CL = 2π αsin .

 19. For equilibrium, the weight of an airplane (a flying object) is 
equal to the lift force in its airfoils, whereas the thrust devel-
oped by its engine is equal to the drag force.

Multiple-choice Questions

 1. The terminal velocity of a falling body is equal to
(a) Half of maximum velocity.
(b) Maximum constant velocity with which body falls.
(c) Maximum velocity with which body falls.
(d) None of the above.

 2. Total drag on a body is the sum of
(a) Velocity drag and pressure drag.
(b) Velocity drag and friction drag.
(c) Pressure drag and friction drag.
(d) None of the above.

 3. The lift force produced on the cylinder due to its rotation in 
a uniform flow is caused by
(a) Symmetrical streamline patterns.
(b) Shear stress.
(c) Pressure difference between the two halves, the bottom- 

half being subjected to a higher pressure.
(d) None of the above.

 4. A body is called bluff body if the surface of the body
(a) Is rough.
(b) Is smooth.
(c) Coincides with the streamlines.
(d) Does not coincide with the streamlines.

 5. A body is called streamlined body when it is placed in a flow 
and the surface of the body
(a) Is rough.
(b) Is smooth.
(c) Coincides with the streamlines.
(d) Does not coincide with the streamlines.

 6. The lift coefficient ( )CL  for an airfoil in terms of angle of 
attack ( )α  is equal to
(a) 2 2π αsin .
(b) 2π αsin .
(c) 2 2π αsin .
(d) 2sinα .
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 7. The velocity at the top of a spinning ball is
(a) Equal to that at the bottom.
(b) Independent of spinning.
(c) Less than at the bottom.
(d) Greater than at the bottom.

 8. The tangential velocity ( )uα  of ideal fluid at any point on the 
surface of the cylinder in terms of velocity ( )U  and angle ( )α  
is equal to

(a) ( sin )U α /2.
(b) U 2 sinα .
(c) 2U sinα .
(d) None of the above.

 9. Pressure drag results from
(a) Breakdown of flow near the forward stagnation point.
(b) Skin friction.
(c) Occurrence of waves setup during motion.
(d) Occurrence of wake.

 10. For a sphere falling at terminal velocity in the Stokes law 
range, the drag coefficient ( )CD  in terms of Reynolds num-
ber (Re)  is equal to
(a) 24Re.
(b) Re /24 .
(c) 24/ Re .
(d) None of the above.

Review Questions

 1. What do you mean by drag force and lift force of an object 
submerged in a fluid?

 2. Briefly discuss the types of drag.

 3. Derive expressions for the drag and lift force acting on a sta-
tionary object immersed in a moving fluid with a velocity U.

 4. Differentiate between a streamlined body and a bluff body.

 5. Give the expression for drag on a sphere when the Reynolds 
number (Re)  is up to 0.2. Also derive the expression for coef-
ficient of drag for the sphere as CD = ( Re)24/

 
for the given 

range of Reynolds number.

 6. Define terminal velocity of a body.

 7. Discuss the variation of drag coefficient for a cylinder over  
a wide range of Reynolds number.

 8. Derive an expression for the lift produced on a rotating 
 cylinder placed in a uniform flow field such that the axis of 
the cylinder is perpendicular to the direction of flow. Also 
derive an expression for the lift coefficient.

 9. Define stagnation points. How its position for a rotating 
 cylinder in a uniform flow is determined? Also give the con-
ditions for single stagnation point.

 10. Discuss the basic terminology for an airfoil. Also derive an 
expression for the lift coefficient of an airfoil.

Problems

 1. The experiments were performed in a wind tunnel with a 
wind speed of 40 km/hr on a flat plate of dimensions 2 m 
long and 1 m wide. If the coefficients of drag and lift are 0.15 
and 0.75, respectively and the density of air is 1.15 kg/m3, 
then determine (i) the drag force, (ii) lift force, (iii) resultant 
force and its direction and (iv) power exerted by air on the 
plate.

[Ans. 21.29 N, 106.46 N, 108.57 N, 78.69°, 236.53 W]

 2. If the density of air is 1.2 kg/m3 and drag coefficient is 1.25, 
then find the diameter of a hemispherical parachute used for 
dropping an object of mass 90 kg with a speed of 5 m/s.

[Ans. 7.743 m]

 3. A car having frontal projected area of 2 m2 travels at a speed 
of 72 km/hr. If the coefficient of drag is 0.38, then determine 
the power required to overcome wind resistance by the car. 
Also determine the change in speed of the car if the power 
developed remains same and the drag coefficient is reduced 
from 0.38 to 0.32 by streamlining the car. Take density of air 
as 1.2 kg/m3.

[Ans. 3.648 kW, 76.248 km/hr]

 4. A kite weighing 9.8 N and having an area of 1 m2 makes 
an angle of 7° to the horizontal when flying in a wind speed 
of 36 km/hr. If the pull on the string attached to the kite is 
49 N and it is inclined to the horizontal at 45°, then deter-
mine the lift and drag coefficients when the density of air is  
1.2 kg/m3.

[Ans. 0.577, 0.741]

 5. A small jet plane engine has a mechanical efficiency of 0.6 
and develops 5.1 MW power. The plane has a wing area of 
20 m2 and it weighs 25 kN. If the specific weight of the air is 
12 N/m3 and the plane flies at 900 km/hr speed, then deter-
mine the lift and drag coefficients.

[Ans. 0.0327, 0.0267]

 6. A light plane has a wing span of 10 m and a chord of 2 m for 
the aerofoil section. What are the lift and drag forces during 
take-off at a speed of 194.4 km/hr, if the coefficients of lift 
and drag are 0.9 and 0.07, respectively. Take density of air as 
1.25 kg/m3.

[Ans. 32.805 kN, 2.5515 kN]
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 7. A ball of diameter 6 cm is supported in a vertical air stream 
which is flowing at a velocity of 6 m/s. If the density and 
kinematic viscosity of air are 1.25 kg/m3 and 1.4 stokes, 
respectively, then determine the weight of the ball.

[Ans. 0.03184 N]

 8. A metallic ball of diameter 0.004 m drops in a fluid of spe-
cific gravity 0.9 and viscosity 15 poise. If the density of ball 
material is 12000 kg/m3, then determine (i) the drag force 
on the ball, (ii) pressure drag and skin drag and (iii) terminal 
velocity of the ball.

[Ans. 0.003649 N, 0.00122 N, 0.00243 N, 0.0645 m/s]

 9. A steel ball of diameter 4 cm and of specific gravity 8.5 is 
dropped in water. If the coefficient of drag is 0.5, then deter-
mine the terminal velocity of the ball in water.

[Ans. 2.8 m/s]

 10. A cylinder of diameter 1.6 m and length 12 m rotates at 
242 rpm with its axis perpendicular to the stream of water 
flowing at a velocity of 16 m/s. Find the circulation, theo-
retical lift, position of stagnation points and the rpm of the 
cylinder for a single stagnation point.

[Ans. 101.89 m2/s, 19.56×106 N, 219.3°  
and 320.7°, 381.97 rpm]

 11. The air flows with a velocity of 40 m/s over a cylinder of 
diameter 1.4 m and length 10 m. The cylinder develops a 
lift of 6.8 kN/m when it rotates about its axis. If the cylinder 

is perpendicular to the air stream and the density of air is 
1.2 kg/m3, then determine the speed of rotation and the loca-
tion of stagnation points.

[Ans. 439.4 rpm, 203.74°, 336.26°]

 12. The span and chord of a rectangular wing of an aeroplane 
are 10 m and 1.6 m, respectively. The lift force acting on the 
wing during a horizontal flight at 198 km/hr is 25 kN. Deter-
mine the coefficients of drag and lift, weight of the aeroplane 
and power required for the flight if the lift drag ratio is 10 
and density of air is 1.2 kg/m3.

[Ans. 0.086, 0.86, 25 kN, 137.5 kW]

 13. The angle of attack for an airfoil of chord length 2.2 m and 
span 16 m is 7°. Find the weight of the airfoil and the power 
required to drive if it moves with a velocity of 75 m/s. Take 
the density of air as 1.24 kg/m3, the coefficients of lift and 
drag as 0.6 and 0.04, respectively.

[Ans. 73656 N, 368.28 kW]

 14. A jet plane weighing 29500 N having a wing area of 20 m2 
flies at a velocity of 252 km/hr. If the engine delivers 
7500 kW and 65% of the power is used to overcome the drag 
resistance of the wing, then determine the coefficients of lift 
and drag. Take density of air as 1.2 kg/m3.

[Ans. 0.502, 1.184]

ANSWERS TO MULTIPLE-CHOICE QUESTIONS

 1. (b) 2. (c) 3. (c) 4. (d) 5. (c)
 6. (b) 7. (d) 8. (c) 9. (c) 10. (c)
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17.1 ❐ INTRODUCTION
Compressible flow is defined as the flow in which the density of fluid does not remain constant. In earlier chapters, the 
density of the fluid flow was assumed to be constant and this is true for all liquids which are considered incompressible. 
However, in the case of flow of gases, the density changes with pressure and temperature. Therefore, the basic equations 
which are developed earlier on the assumption of constant density cannot be applied to compressible fluid flow. Some of 
the examples where compressible flow occurs are flow of gases in orifices and nozzles, gas flow in turbines, compressors 
and in rockets, flight of aircraft and projectiles with very high speed at high altitude, water hammer problems, etc.

In compressible flow, the thermodynamic behaviour of fluid is to be considered, since the change in density of fluid 
is always accompanied by changes in pressure and temperature. Compressibility becomes predominant when velocity 
becomes equal to or more than the velocity of sound in the fluid medium. In this chapter, the basic equations have been 
developed by considering the change of density in fluid flow and it is applied for the analysis of the fluid flowing through 
many devices. The effect of changing density of the flowing fluid in the analysis of fluid through nozzles, rotary machines 
and projectiles is also discussed in this chapter.

17.2 ❐ CONTINUITY EQUATION
According to the principle of conservation of mass, in one-dimensional steady flow, the mass flow rate is constant and the 
expression is given below.

	 ρAV C=  (17.1)

Here, ρ  be the mass density of fluid, A be the area of cross section of passage, V  be the velocity of fluid and C  be the 
constant.

Differentiating Equation (17.1), we get:

d AV( )ρ = 0

ρ ρd AV AVd( ) + = 0

ρ ρ ρAdV VdA AVd+ + = 0

Dividing by ρAV , we get:

	
dV

V

dA

A

d
+ + =

ρ
ρ

0  (17.2)

The Equation (17.2) is the differential form of the continuity equation in compressible flow.

Chapter 17

Compressible Fluid Flow
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17.2 Chapter 17

17.3 ❐ BERNOULLI’S EQUATION (ENERGY EQUATION)
For steady compressible fluid flow, the Euler’s equation can be obtained as derived for incompressible flow in Chapter 7 
and it is given below.

dp
gdz VdV

ρ
+ + = 0

Integrating the above equation, we get:

dp
gdz VdV C

ρ∫ ∫ ∫+ + = , here C  is a constant

	
dp

gz
V

C
ρ∫ + + =

2

2
 (17.3)

In the case of compressible flow, ρ  is not a constant and thus, it cannot be taken outside the integration sign of  
Equation (17.3). For compressible fluids, the pressure ( )p  changes with change in density ( )ρ  and it depends upon the 
type of process. Therefore, the Bernoulli’s equation will be different for isothermal process and for adiabatic process as 
derived below.

17.3.1 Bernoulli’s Equation for Isothermal Process
For an isothermal process, we have,

p
k

ρ
=  or ρ =

p

k
, here k  is a constant

Thus        
dp dp

p k
k p

p
p

ρ ρ∫ ∫= = =
( / )

ln ln
	

Substituting the value 
dp

ρ∫  in Equation (17.3), we get:

p
p gz

V
C

ρ
ln + + =

2

2

Dividing both sides by g , we get:

	
p

g
p z

V

g
C

ρ
ln + + =

2

12
, here C1 = Constant  (17.4)

The Equation (17.4) is the Bernoulli’s equation for compressible flow undergoing isothermal process.

17.3.2 Bernoulli’s Equation for Adiabatic Process
For an adiabatic process, we have,

p
k

ργ =  or ρ
γ

= ⎛
⎝⎜

⎞
⎠⎟

p

k

1/

, here k  = Constant

Thus 
dp dp

p k
k p dp

p p

ρ ρ γγ
γ γ

γ

γ γ

∫ ∫ ∫= = =
⎛

⎝
⎜

⎞

⎠
⎟ ×

−
−

− +

( / ) ( / )/
/ /

/ ( / )

1
1 1

1 1 1

1 ++1

dp p
p

p

ρ ρ
γ

γ
γ

γ ργ

γ
γ γ∫ =

⎛

⎝
⎜

⎞

⎠
⎟ ×

−
=

−
⎛
⎝⎜

⎞
⎠⎟

−
1

1

1 1

/
( )/
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Substituting the value dp

ρ∫  in Equation (17.3), we get:

γ
γ ρ−

⎛
⎝⎜

⎞
⎠⎟

+ + =
1 2

2p
gz

V
C

Dividing both sides by g , we get:

	
γ

γ ρ−
⎛
⎝⎜

⎞
⎠⎟

+ + =
1 2

2

1
p

g
z

V

g
C , here C1 = Constant (17.5)

The Equation (17.5) is the Bernoulli’s equation for compressible flow undergoing adiabatic process.

 Example 17.1  A gas flows isothermally through a horizontal pipe with a mass flow rate of 0.5 kg/s. The cross-sectional 
area, temperature and pressure at section 1–1 is observed to be 0.004 m2, 20°C and 4 bar (abs), respectively. If at section 
2–2, the area of cross-section and pressure are measured as 0.002 m2 and 3 bar (abs), respectively, then determine the 
velocities of the gas at the given sections assuming R = 287 J/kg K.

Solution
Let m = 0 5. kg/s, A1

20 004= . m , T T1 2 20 20 273 15 293 15= = = + =°C K. . , p1 4= bar, A2
20 002= . m , p2 3= bar  and 

R = 287 J/kg K.

ρ1
1

1

54 10

287 293 15
4 754= =

×
×

=
p

RT .
. kg/m3

V
m

A1
1 1

0 5

4 754 0 004
= =

×
=

ρ
.

. .
26.294 m/s

ρ2
2

2

53 10

287 293 15
3 566= =

×
×

=
p

RT .
. kg/m3

V
m

A2
2 2

0 5

3 566 0 002
= =

×
=

ρ
.

. .
70.11 m / s

 Example 17.2  Air flows with a velocity of 320 m/s adiabatically through a horizontal pipe. The pressure and temper-
ature at section 1–1 are observed to be 0.78 bar (abs) and 40°C, respectively. The pipe changes in diameter and at this 
section 2–2, the pressure is measured as 1.17 bar (abs), respectively. Determine the velocity of air at section 2–2 assuming 
R = 287 J/kg K and γ = 1 4. .

Solution
Let V1 320= m/s, p1 0 78= . bar, T1 40 40 273 15 313 15= ° = + =C K. . , p2 1 17= . bar , R = 287 J/kg K and γ = 1 4. .

p
RT1

1
1 287 313 15 89874 05

ρ
= = × =. .

γ
γ ρ

γ
γ ρ−

⎛
⎝⎜

⎞
⎠⎟

+ + =
−

⎛
⎝⎜

⎞
⎠⎟

+ +
1 2 1 2

1

1
1

1
2

2

2
2

2
2p

g
z

V

g

p

g
z

V

g
 [Bernoulli’s equation]

	

V

g

p

g

p

g

V

g
2

2
1

1

2

2

1
2

2 1 2
=

−
⎛
⎝⎜

⎞
⎠⎟

−
⎛
⎝⎜

⎞
⎠⎟

+
γ

γ ρ ρ
  [ ]∵ z z1 2= 	
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V p p

p

V2
2

1

1

2

1

1

2

1
2

2 1
1

2
=

−
⎛
⎝⎜

⎞
⎠⎟

−
⎛
⎝⎜

⎞
⎠⎟

+
γ

γ ρ
ρ
ρ

 (i)

Since 
ρ
ρ

γ
1

2

1

2

1

=
⎛
⎝⎜

⎞
⎠⎟

p

p

/

 (ii)

Thus 
V p p

p

p

p

V2
2

1

1

2

1

1

2

1
1
2

2 1
1

2
=

−
⎛
⎝⎜

⎞
⎠⎟

−
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+
γ

γ ρ

γ/

 [Substitute (ii) in (i)]

V
p p

p
V2

2 1

1

2

1

1
1

1
22

1
1=

−
⎛
⎝⎜

⎞
⎠⎟

−
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

+
−

γ
γ ρ

γ

Thus V2
2

1
1

1 4
2

1 4

1 4 1
89874 05 1

1 17

0 78
= ×

−
⎛
⎝⎜

⎞
⎠⎟

× × − ⎛
⎝⎜

⎞
⎠⎟

⎡

⎣

⎢
⎢
⎢

⎤−.

.
.

.

.
.

⎦⎦

⎥
⎥
⎥

+ 3202

∴ = =V2 25129 158.52 m/s

17.4 ❐ VELOCITY OF SOUND IN A FLUID MEDIUM
Each molecule of a fluid has to travel through a small distance to transmit the disturbance to the next molecule. The distance 
between the molecules depends upon the elastic properties (density and pressure) of the fluid. When pressure at a point of 
any fluid is changed, the new pressure of the fluid is transmitted to the rest of the fluid with a velocity called pressure wave 
velocity and it travels with the velocity of sound (or sonic velocity). In order to find an expression for the pressure wave 
velocity or velocity of sound in the fluid medium, consider a long rigid tube of cross section area A fitted with a piston at 
one end and containing a compressible fluid initially at rest as illustrated in Figure 17.1. If the piston suddenly moves, then 
a pressure wave propagates through the fluid with sonic velocity.

Let Vp be the velocity of the piston, C  be the pressure wave velocity or velocity of sound in the fluid medium in time 

dt, dx V dtp=  be the distance travelled by the piston, dL Cdt=  be the distance travelled by the pressure wave, p be the 
pressure of the fluid at rest, ( )p dp+  be the pressure after compression, ρ  be the density of the fluid at rest and ( )ρ ρ+ d  be 

(dL = Cdt)

dx = Vpdt

Vp C

(dL − dx)

Wave frontRigid tubePiston

Figure 17.1 Pressure wave propagation
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 Compressible Fluid Flow 17.5

the density after compression. Applying continuity equation, i.e., mass of the fluid in the tube before compression will be 
equal to the mass of fluid after compression.

ρ ρ ρ( ) ( )[ ( )]AdL d A dL dx= + −

ρ ρ ρdL d dL dx= + −( )( )

ρ ρ ρ ρ ρCdt d Cdt V dt d C V dtp p= + − = + −( )( ) ( )( )

ρ ρ ρ ρ ρC C V Cd V dp p= − + −

	
Cd V V dp pρ ρ ρ− − = 0 (i)

Since C Vp>> , neglecting the term ( )V dp ρ
	
and expression (i) becomes,

Cd Vpρ ρ=

	
C

V

d

p=
ρ

ρ
 (ii)

When piston moves with velocity Vp for time dt, the fluid which was initially at rest also moves with the same velocity Vp 
and pressure in the fluid increases from p to ( )p dp+ . Applying impulse-momentum equation, i.e., force on the compressed 
fluid will be equal to the rate of change of momentum.

( )p dp A pA+ − = ×Mass per second  Change of velocity

dpA
AdL

dt
Vp= −

ρ
( )0

dp
dL

dt
V

Cdt

dt
V CVp p p= = =

ρ ρ ρ( )
 [ ]∵dL Cdt=

 C
dp

Vp
=

ρ
 (iii)

Multiplying expressions (ii) and (iii), we get:

C
V

d

dp

V

dp

d

p

p

2 = × =
ρ

ρ ρ ρ

Thus C
dp

d
=

ρ
 (17.6)

Thus, Equation (17.6) gives the velocity of sound wave in a fluid medium.

17.4.1 Velocity of Sound in Terms of Bulk Modulus
The mathematical expression for bulk modulus of elasticity ( )K  is given by Equation (1.22) as follows.

	

K
dp

dv
=

⎛
⎝⎜

⎞
⎠⎟

= −
Change in pressure

Change in volume

Original volume vv
⎛
⎝⎜

⎞
⎠⎟

 (iv)

We know that mass of a fluid is constant and thus,

ρv k= , here k  = constant
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17.6 Chapter 17

Differentiating on both sides, we get:

ρ ρ ρ ρdv vd dv vd+ = ⇒ = −0

	
− =

dv

v

dρ
ρ

 (v)

Substituting expression (v) in expression (iv), we get:

K
dp

d

dp

d

K
= ( ) ⇒ =

ρ ρ ρ ρ/

From Equation (17.6), we get:

	 C
dp

d

K
= =

ρ ρ
 (17.7)

The Equation (17.7) gives the velocity of sound wave in terms of bulk modulus of elasticity and density.

17.4.2 Velocity of Sound for Isothermal Process
For isothermal process, we know that,

p
k

ρ
=  or p kρ− =1 , here k  = Constant

Differentiating, we get:

p d dp( )− + =− −1 02 1ρ ρ ρ

− + =−p d dpρ ρ1 0

dp

d

p

ρ ρ
=

dp

d

p
RT

ρ ρ
= =  [Using Equation 1.11(a)]

Substituting the above value in Equation (17.7), we get:

	 C
p

RT= =
ρ

 (17.8)

17.4.3 Velocity of Sound for Adiabatic Process
For adiabatic process, we know that,

p
k

ργ =  or p kρ γ− = , here k  = Constant

Differentiating, we get:

p d dp( )− + =− − −γ ρ ρ ργ γ1 0

− + =−p d dpγρ ρ1 0

dp

d

p

ρ
γ

ρ
=

dp

d
RT

ρ
γ=  [Using Equation 1.11(a)]
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 Compressible Fluid Flow 17.7

Substituting this value ( )dp d RT/ ρ γ=  in Equation (17.7), we get:

	 C RT= γ  (17.9)

Generally, for sound wave propagation in air, the process is considered to be adiabatic, since the velocity of the pressure 
wave is very high and there is no appreciable heat transfer.

17.5 ❐ MACH NUMBER
Mach number ( )M  is defined as the square root of the ratio of the inertia force ( )Fi  to the elastic force ( )Fe . The mathe-
matical expression for Mach number is given below.

	 M
F

F

L V

KL

V

K

V

K

V

C
i

e
= = = = = =

ρ
ρ ρ

2 2

2

2

/ /

Speed of flow

Speed of sound
 (17.10)

Here, C K= /ρ  represents the velocity of sound in that fluid medium whose properties K  and ρ  are being taken. The 
value of the sound in air at room temperature at sea level is 346 m/s. At a smaller value of Mach number (less than 0.3 for 
gas flows), the compressibility effect is neglected. Therefore, the compressibility effects of air can be neglected at speeds 
below 100 m/s. For analysis of systems that involve high speed gas flows, such as rockets and spacecrafts, the flow speed is 
generally expressed in terms of Mach number. A flow is called sonic when M = 1, subsonic when M < 1, supersonic when 
M > 1 and hypersonic when M >> 1.

 Example 17.3  An aeroplane is flying at a height of 15 km where temperature is −43°C. Find the speed of the plane 
corresponding to Mach number equal to 1.8. Assuming R = 287 J/kg K and γ = 1 4. .

Solution
Let h = 15 km, T = − ° = − + =43 43 273 15 230 15C K. . , M = 1 8. , R = 287 J/kg K and γ = 1 4. .

Assume adiabatic process, we get:

C RT= = × × =γ 1 4 287 230 15 304 09. . . m/s

Since M
V

C
=

Thus 1 8
304 09

.
.

=
V

∴ = × =V 1 8 304 09 547 362. . . m/s

V =
×

=
547 362 3600

1000

.
1970.5032 km / hr

17.6 ❐  PROPAGATION OF PRESSURE WAVE IN A  
COMPRESSIBLE FLUID

A disturbance is created when an object moves in a stationary compressible fluid. This disturbance generates elastic or 
pressure waves which are transmitted radially in all directions with a velocity equal to that of sound in the compressible 
fluid. In order to study the pattern of pressure waves, consider a tiny projectile which moves in a straight line with a velocity 
V  through the stationary compressible fluid. Let at time t = 0, the object is at position A, then in time t  it will move through 
a distance AB equal to Vt. Let C  be the velocity of sound in the compressible fluid medium. Thus, during time t, the wave 
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A B

a
b

c

d

A B

a
b

c

d

A

B
d

c
b

a

Zone of
action

Zone of
silence

(a) (b)

(c)

T1

T2

α

C

M < 1; V < C M = 1; V = C

M > 1; V > C

1st disturbance 

2nd disturbance 
3rd disturbance 

4th disturbance 

1st disturbance 

2nd disturbance 

3rd disturbance 

1st disturbance 

2nd disturbance 

3rd disturbance 

4th disturbance 

4th disturbance

V

Figure 17.2 Pressure wave propagation in a compressible fluid

(1st disturbance) which originated at position A will grow into the surface of sphere of radius Ct a= ( )assume  as shown 
in Figure 17.2. The growth of the other waves (2nd disturbance, 3rd disturbance and 4th disturbance) originated from the 
object at every ( / )t 4  interval of time for radii ( ) ( )3 4/ assumeCt b= , ( ) ( )1 2/ assumeCt c=  and ( / ) ( )1 4 Ct d= assume  as 
the object moves from A to B is also illustrated in Figure 17.2.

Different pressure wave patterns will develop depending upon the magnitude of the Mach number ( )M  as discussed 
below.

Case I: When M < 1 (or V C< ): In this case as V C< , the pressure waves travel ahead of the object towards position B 
( )AB Ct< . Thus, the object at point B is inside the sphere of radius a and also inside the other spheres formed by the waves 
started at intermediate positions of radii b, c and d  as shown in Figure 17.2(a).

Case II: When M = 1 (or V C= ): In this case as V C= , both the pressure wave and the object reaches point B at the same 
instant of time ( )AB Ct= . Thus, the object at point B lies on the periphery of the sphere of radius Ct . Also for the waves 
started at intermediate positions, the point B will lie on the periphery of the other spheres of radii b, c and d  as shown in 
Figure 17.2(b).
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 Compressible Fluid Flow 17.9

Case III: When M > 1 (or V C> ): In this case as V C> , the object moves faster than the pressure wave. Hence, the 
 distance AB Ct>  and thus, the point B remains outside the spheres of radii a, b, c and d  at any instant of time as shown 
in Figure 17.2(c). When common tangents BT1 and BT2 are drawn, they become tangents to all the spheres of radii a, b, c  
and d . These common tangents form a cone (conical wave front) at point B which is termed as Mach cone. The semi-vertex 
angle (α ) of this cone is called the Mach angle and the expression is given below.

	 sin
( / )

α = = = = =
AC

AB

Ct

Vt

C

V V C M

1 1
 (17.11)

The lines BT1 and BT2 are called as Mach line. The region inside the Mach cone is known as zone of action. The region (or 
atmosphere) outside the cone is termed as zone of silence and thus, the sound of jet plane is heard after it passes forward. 
In this case, the body travels faster than the message and reaches at point B unannounced. Fluid ahead of the Mach cone 
is undisturbed, but it suddenly undergoes changes in pressure, temperature and density as it passes through the cone. This 
sudden change in pressure, temperature and density is known as shock wave.

 Example 17.4  Determine the velocity of bullet fired in standard air if the Mach angle is 35°. Take other data for air as 

temperature is 12°C, R = 287 J/kg K and γ = 1 4. .

Solution
Let α = 35° , T = = + =12 12 273 15 285 15°C K. . , R = 287 J/kg K and γ = 1 4. .

Assume adiabatic process, we get:

C RT= = × × =γ 1 4 287 285 15 338 49. . . m/s

Since sinα =
C

V

Thus sin
.

35
338 4

° =
V

∴ = =V
338 4

35

.

sin °
589.9824 m / s

 Example 17.5  A projectile travels in air having pressure and temperature as 88.3 kPa and −2°C. If the Mach angle is 

40°, then find the velocity of the projectile. Take R = 287 J/kg K and γ = 1 4. .

Solution
Let p = 88 3. kPa , T = − = − + =2 2 273 15 271 15°C K. . , α = 40° , R = 287 J/kg K and γ = 1 4. .

Assume adiabatic process, we get:

C RT= = × × =γ 1 4 287 271 15 330 073. . . m/s

Since sinα =
C

V

Thus sin
.

40
330 073

° =
V

∴ = =V
330 073

40

.

sin °
513.5 m / s
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17.10 Chapter 17

17.7 ❐ STAGNATION PROPERTIES
The point in a fluid stream where the velocity of flow becomes zero and kinetic energy is converted into pressure energy is 
called stagnation point. At this point, the values of pressure, density and temperature are called stagnation pressure ( )ps , 
stagnation density ( )ρs  and stagnation temperature ( ),Ts  respectively.

17.7.1 Stagnation Pressure
Let a compressible fluid flow past an immersed body under frictionless  adiabatic (isentropic) conditions and two points 1 
and 2 lie on a streamline as shown in Figure 17.3.

Let us consider that point 1 is far away from the body and point S is the stag-
nation point where the flow velocity is zero. Let V1, p1 and ρ1 be the velocity, 
pressure and density, respectively, of the approaching fluid at point 1 and V2, p2 
and ρ2  be the corresponding quantities at the stagnation point, i.e., at point 2. 
Applying  Bernoulli’s equation for adiabatic flow at point 1 and 2, we get the below 
expression.

γ
γ ρ

γ
γ ρ−

⎛
⎝⎜

⎞
⎠⎟

+ + =
−

⎛
⎝⎜

⎞
⎠⎟

+ +
1 2 1 2

1

1
1

1
2

2

2
2

2
2p

g
z

V

g

p

g
z

V

g

	

γ
γ ρ

γ
γ ρ−

⎛
⎝⎜

⎞
⎠⎟

+ =
−

⎛
⎝⎜

⎞
⎠⎟

+
1 2 1 2

1

1

1
2

2

2

2
2p V p V

	
[ ]∵ z z1 2=  

At stagnation point 2, V2 0= , p ps2 = , ρ ρ2 = s and thus, the above expression becomes,

γ
γ ρ

γ
γ ρ−

⎛
⎝⎜

⎞
⎠⎟

+ =
−

⎛
⎝⎜

⎞
⎠⎟1 2 1

1

1

1
2p V ps

s

γ
γ ρ ρ−

⎛
⎝⎜

⎞
⎠⎟

−
⎛
⎝⎜

⎞
⎠⎟

= −
1 2

1

1

1
2p p Vs

s

γ
γ ρ

ρ
ρ−

⎛
⎝⎜

⎞
⎠⎟

−
⎛
⎝⎜

⎞
⎠⎟

= −
1

1
2

1

1 1

1 1
2p p

p

Vs

s

Now 
p ps

s

1

1ρ ργ γ=  or 
ρ
ρ

γ
1 1

1

s s

p

p
=

⎛
⎝⎜

⎞
⎠⎟

/

  [ ( / ) ]∵ p kργ = 	

Thus 
γ

γ ρ

γ

−
⎛
⎝⎜

⎞
⎠⎟

−
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= −
1

1
2

1

1 1

1
1

1
2p p

p

p

p

Vs

s

/

γ
γ ρ

γ

−
⎛
⎝⎜

⎞
⎠⎟

−
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= −
−

1
1

2
1

1 1 1

1
1
2p p

p

p

p

Vs s
/

γ
γ ρ

γ

−
⎛
⎝⎜

⎞
⎠⎟

−
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= −
−

1
1

2
1

1 1

1
1

1
2p p

p

Vs

S

Streamlines

Body21

Figure 17.3 Stagnation properties
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1
2

1

1

1

1
2

1

1
−

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= −
−⎛

⎝⎜
⎞
⎠⎟

−
p

p

V

p
s

γ
γ γ

γ
ρ

p

p

V

p
s

1

1

1
2

1

1
1

2

1⎛
⎝⎜

⎞
⎠⎟

= +
−⎛

⎝⎜
⎞
⎠⎟

−γ
γ γ

γ
ρ

Now C RT
p

= =γ γ
ρ 	

 [ / ]∵ RT p= ρ 	

Thus C
p

1
1

1
= γ

ρ
 or C

p
1
2 1

1
= γ

ρ

Thus 
p

p

V

C

s

1

1

1
2

1
2

1
2

1
1⎛

⎝⎜
⎞
⎠⎟

= + −( )
−γ
γ

γ

	

p

p

Ms

1

1

1
2

1
2

1
⎛
⎝⎜

⎞
⎠⎟

= + −( )
−γ
γ

γ   [ ( / ) ]∵ V C M1
2

1
2

1
2= 	

 
p

p
Ms

1
1
2 1

1
1

2
= +

−( )⎡

⎣
⎢

⎤

⎦
⎥

−γ
γ

γ
 (17.12)

Thus p p Ms = +
−( )⎡

⎣
⎢

⎤

⎦
⎥

−
1 1

2 1
1

1

2

γ
γ

γ
 (17.13)

In Equation (17.13), for Mach number less than one, the term [( ) ] /γ −1 21
2M  will be less than one and thus, the R.H.S. of 

this equation can be expanded by using the Binomial theorem as given below.

p p M Ms = +
−

⎛
⎝⎜

⎞
⎠⎟

−( )
+

−
⎛
⎝⎜

⎞
⎠⎟ −

−
⎛
⎝⎜

⎞
⎠⎟

−
1 1

2
1
21

1

1

2

1

2 1 1
1

1

2

γ
γ

γ γ
γ

γ
γ

γ⎛⎛
⎝⎜

⎞
⎠⎟

+
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

...

p p M M p p M Ms = + + +⎡
⎣⎢

⎤
⎦⎥

= + + +⎡
⎣⎢

⎤
⎦⎥1 1

2
1
4

1 1 1
2

1
41

2 8 2 8

γ γ γ γ
... ...

p p

p
M M M Ms −

= + +⎡
⎣⎢

⎤
⎦⎥

= + +⎡
⎣⎢

⎤
⎦⎥

1

1
1
2

1
4

1
2

1
2

2 8 2
1

1

4

γ γ γ
... ...

If one more term is considered in expansion, then we have,

p p

p
M M Ms −

= + +
−

+⎡
⎣⎢

⎤
⎦⎥

1

1
1
2

1
2

1
4

2
1

1

4

2

24

γ γ( )
...

	

p p

p

V

C
M Ms −

= + +
−

+⎡
⎣⎢

⎤
⎦⎥

1

1

1
2

1
2 1

2
1
4

2
1

1

4

2

24

γ γ( )
...   [ / ]∵ M V C1

2
1
2

1
2= 	
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p p

p

V

p
M Ms −

= + +
−

+⎡
⎣⎢

⎤
⎦⎥

1

1

1
2

1 1
1
2

1
4

2
1

1

4

2

24

γ
γ ρ

γ
( ) /

( )
...  [ ( ) / ]∵C p1

2
1 1= γ ρ 	

	 p p V M Ms − = + +
−

+⎡
⎣⎢

⎤
⎦⎥1 1 1

2
1
2

1
41

2
1

1

4

2

24
ρ γ( )

...  (17.14)

	 ∴ = + + +
−

+⎡
⎣⎢

⎤
⎦⎥

p p V M Ms 1 1 1
2

1
2

1
41

2
1

1

4

2

24
ρ γ( )

...  (17.15)

In Equation (17.15), the bracketed term may be considered as a compressibility factor. In this equation for small value of  
V1 compared to C1, the value of M1 will be very small and thus, the bracketed term (i.e., compressibility factor) will be 
nearly equal to 1. Therefore, this equation reduces as given below.

	 p p Vs = +1 1 1
21

2
ρ  (17.16)

The velocity at a point in an incompressible fluid measured by a pitot tube can be given by V gh= 2 , here h is the differ-
ence in two heads. However, if we have to measure the velocity at any point in a compressible fluid, then the actual pressure 
difference has to be multiplied by a compressibility correction factor or compressibility factor for obtaining the correct 
velocity at that point. The expression for compressibility correction factor ( )CCF  is given below.

CCF M M= + +
−

+⎡
⎣⎢

⎤
⎦⎥

1
1

4

2

241
2

1
4( )

...
γ

17.7.2 Stagnation Density

	

p ps

s

1

1ρ ργ γ=  or 
ρ
ρ

γ
s sp

p1 1

1

=
⎛
⎝⎜

⎞
⎠⎟

/

  [ ( / ) ]∵ p kργ = 	

ρ ρ
γ

s
sp

p
=

⎛
⎝⎜

⎞
⎠⎟1

1

1/

Substituting the value of ( )p ps / 1  from Equation (17.12) in the above expression, we get:

	 ρ ρ
γ

ρ
γ

γ
γ

γ

s M M= +
−( )⎛

⎝⎜
⎞
⎠⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= +
−( )⎡

⎣
⎢

⎤

⎦

−
1 1

2 1

1

1 1
21

1

2
1

1

2

/

⎥⎥
−
1

1γ
 (17.17)

17.7.3 Stagnation Temperature
For stagnation point, the equation of state is as follows.

	

p
RTs

s
sρ

=   [ ( / ) ]∵ p RTρ = 	

T
p

Rs
s

s
=

ρ
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Substituting the value of ps and ρs from Equations (17.13) and (17.17) in the above expression, we get:

T
R

p M

M

R

p
s =

+
−( )⎡

⎣
⎢

⎤

⎦
⎥

+
−( )⎡

⎣
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⎦
⎥
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−

−

1
1

1

2

1
1

2

1
1 1

2 1

1 1
2

1

1
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γ

ρ
γ

ρ

γ
γ

γ

11
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2 1
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1

1
+

−( )⎡

⎣
⎢

⎤

⎦
⎥

−
−

−γ
γ

γ γ
M

	
= +

−( )⎡

⎣
⎢

⎤

⎦
⎥ = +

−( )⎡

⎣
⎢

⎤

⎦
⎥

1
1

1

2

1
1

1

2
1

1
1
2

1 1
2

R

p
M

R
RT M

ρ
γ γ

 [ ( / ) ]∵ p RT1 1 1ρ = 	

Thus T T Ms = +
−( )⎡

⎣
⎢

⎤

⎦
⎥1 1

21
1

2

γ
 (17.18)

 Example 17.6  For an aeroplane flying at 820.8 km/hour through still air having a pressure of 80 kPa and temperature 
−9°C, determine the stagnation pressure, temperature and density at the nose of the plane if R = 287 J/kg K and γ = 1 4. .

Solution
Let V1 820 8= . km/hr , p = 80 kPa , T T= = − ° = − + =1 9 9 273 15 264 15C K. . , R = 287 J/kg K and γ = 1 4. .

V1
820 8 1000

3600
228=

×
=

.
m/s

Assume adiabatic process, we get:

C RT1 1 4 287 264 15 325 784= = × × =γ . . . m/s

M
V

C1
1

1

228

325 784
0 7= = =

.
.

p p Ms = +
−⎡

⎣⎢
⎤
⎦⎥

= × +
−

×⎡
⎣⎢

⎤
⎦⎥

− −
1 1

2 1 2

1 4

1 4
1

1

2
80 1

1 4 1

2
0 7

( ) ( . )
.

.

.γ
γ

γ 11 = 110.97 kPa

T T Ms = +
−⎡

⎣⎢
⎤
⎦⎥

= × +
−

×⎡
⎣⎢

⎤
⎦⎥

=1 1
2 21

1

2
264 15 1

1 4 1

2
0 7

( )
.

( . )
.

γ
290.04 KK

ρs
s

s

p

RT
= =

×
×

=
110 97 10

287 290 04

3.

.
1.333 kg / m3

 Example 17.7  Determine the stagnation pressure for air at a pressure of 215 kPa and temperature 25°C moving at 
a velocity of 200 m/s if (i) compressibility is considered and (ii) compressibility is neglected. Take R = 287 J/kg K and 
γ = 1 4. .

Solution
Let p1 215= kPa, T1 25 25 273 15 298 15= ° = + =C K. . , V1 200= m/s, R = 287 J/kg K and γ = 1 4. .

 (i) When compressibility is considered, we get:

M
V

RT
1

1

1

200

1 4 287 298 15
0 578= =

× ×
=

γ . .
.
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17.14 Chapter 17

ρ1
1

1

3215 10

287 298 15
2 513= =

×
×

=
p

RT .
. kg/m3

  Since p p
V M M

s = + + +
−

+
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1
1 1

2
1
2

1
4

2
1

4

2

24

ρ γ( )
...

  Thus ps = +
×

× × + +
− ×

+
⎡

⎣
⎢
⎢

−215
2 513 200

2
10 1

0 578

4

2 1 4 0 578

24

2
3

2 4. . ( . ) .
...

⎤⎤

⎦
⎥
⎥ 	

∴ =ps 269.598 kPa

 (ii) When compressibility is neglected, the stagnation pressure is given by,

p p Vs = + = +
×

× =−
1 1 1

2
2

31

2
215

2 513 200

2
10ρ .

265.26 kPa

17.8 ❐  AREA AND VELOCITY RELATIONSHIP  
FOR COMPRESSIBLE FLOW

The continuity equation for compressible flow is given by,

dV

V

dA

A

d
+ + =

ρ
ρ

0  [Equation (17.2)]

The Euler’s equation for compressible flow is given by,

dp
gdz VdV

ρ
+ + = 0

Assuming horizontal flow and neglecting the z  term, we get:

dp
VdV

ρ
+ = 0

Dividing and multiplying by dρ, we get:

dp

d

d
VdV

ρ
ρ

ρ
+ = 0

But 
dp

d
C

ρ
= 2 [From Equation (17.6)] 

Thus C
d

VdV2 0
ρ

ρ
+ =

d VdV

C

ρ
ρ

= −
2

Substituting this value of ( / )dρ ρ  in Equation (17.2), we get:

dV

V

dA

A

VdV

C
+ − =

2
0
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dA

A

VdV

C

dV

V

dV

V

V

C
= − = −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥2

2

2
1

	 ∴ = −⎡
⎣

⎤
⎦

dA

A

dV

V
M 2 1  (17.19)

The following conclusions can be drawn from Equation (17.19).

Case I: Accelerated flow This type of flow takes place in nozzles. Along the flow direction, pressure decreases and velocity 
increases. Based on the velocity of the fluid, two conditions arise for change in cross section.

 (i) When M V C< <1 ( )i.e.,  and ( )dA A ve/ = − : For subsonic flow, the nozzle must be convergent nozzle and these  nozzles 

are called subsonic nozzles. However, when M V C= =1, ( )i.e.,  and ( )dA A/ = 0, the throat of the nozzle is reached and 
the flow is sonic.

 (ii) When M V C> >1 ( )i.e., 	and ( )dA A ve/ = + : For supersonic flow, the nozzle must be divergent nozzle. These nozzles 
are called supersonic nozzles or diverging nozzles.

Case II: Decelerated (retarded) flow This type of flow takes place in diffusers. The diffuser converts kinetic energy into 
pressure energy. Along the flow direction, pressure increases and velocity decreases. Based on the velocity of the fluid, 
again two conditions arise for change in cross section.

 (i) When M V C< <1 ( )i.e.,  and ( )dA A ve/ = + : For subsonic flow, the diffuser must be divergent. However, when 

M V C= =1 ( )i.e.,  and ( / )dA A = 0, the throat of the diffuser is reached and the flow is sonic.

 (ii) When M V C> >1 ( )i.e.,  and ( )dA A ve/ = − : For supersonic flow, the diffuser must be convergent.

17.9 ❐  COMPRESSIBLE FLUID FLOW THROUGH  
A CONVERGENT NOZZLE

Figure 17.4 illustrates a large tank containing a compressible 
fluid fitted with a small convergent nozzle. Assuming that there 
is large pressure drop during the flow through the nozzle and the 
process is adiabatic.

Consider two points 1 and 2 inside the tank and exit of the 
nozzle, respectively. Let p1, V1, T1 and ρ1 be the pressure, veloc-
ity, temperature and density of fluid at point 1 and p2, V2, T2 and 
ρ2  be the corresponding values at point 2. Applying Bernoulli’s 
equation for adiabatic flow at point 1 and 2, we get the below 
expression.

γ
γ ρ

γ
γ ρ−

⎛
⎝⎜

⎞
⎠⎟

+ + =
−

⎛
⎝⎜

⎞
⎠⎟

+ +
1 2 1 2

1

1
1

1
2

2

2
2

2
2p

g
z

V

g

p

g
z

V

g

γ
γ ρ

γ
γ ρ−

⎛
⎝⎜

⎞
⎠⎟

=
−

⎛
⎝⎜

⎞
⎠⎟

+
1 1 2

1

1

2

2

2
2p p V

  [ ]∵ z z V1 2 1 0= =and

V p p2
2

1

1

2

22 1
=

−
⎛
⎝⎜

⎞
⎠⎟

−
⎛
⎝⎜

⎞
⎠⎟

γ
γ ρ ρ

1
2

Nozzle

1, T1p1, ρ 2 , T2, V2p2, ρ

Tank
V1 = 0

Figure 17.4 Fluid flow through a convergent nozzle
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Thus V
p p p p

p2
1

1

2

2

1

1

2

2

1

1

2

1

2

1
1=

−
⎛
⎝⎜

⎞
⎠⎟

−
⎛
⎝⎜

⎞
⎠⎟

=
−

⎛
⎝⎜

⎞
⎠⎟

−
⎛
⎝⎜

γ
γ ρ ρ

γ
γ ρ ρ

ρ ⎞⎞
⎠⎟

 (17.20)

Since 
ρ
ρ

γ
1

2

1

2

1

=
⎛
⎝⎜

⎞
⎠⎟

p

p

/

 (i)

Thus V
p p

p

p

p2
1

1

2

1

1

2

1
2

1
1=

−
⎛
⎝⎜

⎞
⎠⎟

−
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

γ
γ ρ

γ/

	 ∴ =
−

⎛
⎝⎜

⎞
⎠⎟

−
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−

V
p p

p2
1

1

2

1

1
2

1
1

γ
γ ρ

γ γ( )/

 (17.21)

Let ( )p p pr2 1/ =  be the pressure ratio, then the above expression becomes,

	 V
p

pr2
1

1

12

1
1=

−
⎛
⎝⎜

⎞
⎠⎟

− ( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−γ
γ ρ

γ
γ  (17.21a)

The mass flow rate ( )m  of fluid is given by,

m A V A
p

pr= =
−

⎛
⎝⎜

⎞
⎠⎟

− ( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−
ρ ρ γ

γ ρ

γ
γ2 2 2 2 2

1

1

12

1
1

Thus m A
p

pr=
−

⎛
⎝⎜

⎞
⎠⎟

− ( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−

2
1

1
2

2
12

1
1

γ
γ ρ

ρ
γ
γ  (ii)

From expression (i), we get:

ρ ρ ρ
γ

γ
2 1

2

1

1

1
1=

⎛
⎝⎜

⎞
⎠⎟

= ( )p

p
pr

/
/

ρ ρ γ
2

2
1
2 2= ( )pr

/

Substituting this value of ρ2
2 in expression (ii), we get:

m A
p

p pr r=
−

⎛
⎝⎜

⎞
⎠⎟

( ) − ( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−

2
1

1
1
2

2 12

1
1

γ
γ ρ

ρ γ
γ
γ

	 m A p p pr r=
−

⎛
⎝⎜

⎞
⎠⎟

( ) − ( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+

2 1 1

2 12

1

γ
γ

ρ γ
γ
γ  (17.22)

In Equation (17.22), all the other quantities except pr are constant and the expression for maximum value of the mass flow 
rate ( )maxm  is given below.

dm

dpr
= 0
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 Compressible Fluid Flow 17.17

or 
d

dp
p p

r
r r( ) − ( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
+2 1

0γ
γ
γ

2 1
0

1

2

2
1

1
1

2 1

γ
γ

γ
γ

γ
γ
γ

γ
γ γp p p pr r r r( ) −

+ ( ) = ⇒ ( ) =
+ ( )− + − −

p p pr r r( ) =
+⎛

⎝⎜
⎞
⎠⎟

⇒ ( ) =
+⎛

⎝⎜
⎞
⎠⎟

− − −2 2 11

2

1

2
γ

γ
γ

γγ γ

p pr r( ) =
+⎛

⎝⎜
⎞
⎠⎟

⇒ ( ) =
+

⎛
⎝⎜

⎞
⎠⎟

− −1 11

2

2

1
γ

γ
γ

γγ
γ

	 ∴ =
+

⎛
⎝⎜

⎞
⎠⎟

−
pr

2

1

1

γ

γ
γ

 (17.23)

Thus, for obtaining mmax , substituting Equation (17.23) in Equation (17.22), we get:

m A pmax =
−

⎛
⎝⎜

⎞
⎠⎟ +

⎛
⎝⎜

⎞
⎠⎟

−
+

⎛
⎝⎜

⎞
⎠⎟

−
×

−
× +

2 1 1
1

2

1

1

2

1

2

1

2

1

γ
γ

ρ
γ γ

γ
γ γ

γ
γ

γ
γγ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

m A pmax =
−

⎛
⎝⎜

⎞
⎠⎟ +

⎛
⎝⎜

⎞
⎠⎟

−
+

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣

⎢
⎢
⎢

−
+
−

2 1 1

2

1

1

12

1

2

1

2

1

γ
γ

ρ
γ γ

γ
γ
γ

⎤⎤

⎦

⎥
⎥
⎥

For air, γ = 1 4.  and thus, the value of mmax can be given by,

m A pmax
..

. . .
=

×
−

⎛
⎝⎜

⎞
⎠⎟ +

⎛
⎝⎜

⎞
⎠⎟

−
+

⎛
⎝⎜

⎞
⎠⎟

−
2 1 1

2

1 4 12 1 4

1 4 1

2

1 4 1

2

1 4 1
ρ

11 4 1

1 4 1

.

.

+
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

	 ∴ =m A pmax .0 685 2 1 1ρ  (17.24)

and p
p

pr = =
+

⎛
⎝⎜

⎞
⎠⎟

=
+

⎛
⎝⎜

⎞
⎠⎟

=
− −2

1

1
1 4

1 4 12

1

2

1 4 1
0 528

γ

γ
γ

.
.

.

.
 (17.25)

Now for obtaining velocity at the outlet of nozzle for maximum flow rate of fluid, substituting Equation (17.23) in  
Equation (17.21(a)), we get the below expression.

V
p

2
1

1

1

1

2

1
1

2

1

2

1
=

−
⎛
⎝⎜

⎞
⎠⎟

−
+

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
−

⎛
⎝⎜

−
× −

γ
γ ρ γ

γ
γ

γ
γ

γ
γ ⎞⎞

⎠⎟
−

+
⎡

⎣
⎢

⎤

⎦
⎥

p1

1
1

2

1ρ γ

=
−

⎛
⎝⎜

⎞
⎠⎟

−
+

⎛
⎝⎜

⎞
⎠⎟

=
+

⎛
⎝⎜

⎞
⎠⎟

2

1

1

1

2

1
1

1

1

1

γ
γ ρ

γ
γ

γ
γ ρ

p p
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=
+

⎛
⎝⎜

⎞
⎠⎟

=
+

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

−
2

1

2

1
1

2

2

2

2

1

2

2

2

1

1
2

1

γ
γ ρ

ρ
ρ

γ
γ ρ

p

p

p p p

p

p

p⎜⎜
⎞
⎠⎟

1/γ

=
+

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

=
+

⎛
⎝⎜

⎞
⎠⎟

( )
− −2

1

2

1
2

2

2

1

1
1

2

2

1γ
γ ρ

γ
γ ρ

γ γ
γ

p p

p

p
pr

	
=

+
⎛
⎝⎜

⎞
⎠⎟ +

⎛
⎝⎜

⎞
⎠⎟

−
× −

2

1

2

1
2

2

1

1

γ
γ ρ γ

γ
γ

γ
γp

 [Substitute Equation (17.23)]

	 ∴ =
+

⎛
⎝⎜

⎞
⎠⎟ +

⎛
⎝⎜

⎞
⎠⎟

= = =
−

V
p p

RT C2
2

2

1
2

2
2 2

2

1

2

1

γ
γ ρ γ

γ
ρ

γ  (17.26)

The Equation (17.26) indicates that the velocity at the outlet of the nozzle for maximum flow rate is equal to the sound 
velocity.

A passage in which the sonic velocity has been reached and the mass 
flow rate is maximum is called choked passage or passage operating 
under choking conditions.

A plot of the mass flow rate per unit area ( )m A/ 2  versus pressure ratio 
( )p p2 1/  for air is shown in Figure 17.5. The pressure ratio at which the 
mass rate of flow is maximum ( / )maxm A2  is called the critical pressure 
ratio which is equal to 0.528. It can be seen that when the pressure ratio 
is more than 0.528, the mass flow rate decreases. It can also be seen from 
Figure 17.5 that the theoretical mass flow rate decreases for the val-
ues ( / ) .p p2 1 0 528< . However, in actual terms, it remains constant and 
would always be equal to the mass flow rate corresponding to pressure 
ratio equal to 0.528. This is because the critical conditions (for example, 
sonic velocity) are reached at throat and any further lowering of the exit 
pressure is not felt upstream, where it is being in the zone of silence.

 Example 17.8  Determine the velocity of air flowing through a nozzle of diameter 10 mm at the outlet fitted to a large 
tank containing air at a pressure of 30 bar (abs) and at a temperature of 25°C. The pressure at the exit of the nozzle is 20 bar 
(abs). Also determine the maximum flow rate of air if the atmospheric pressure is 1 bar. Take R = 287 J/kg K and γ = 1 4. .

Solution
Let d = =10 0 01mm m. , p1 30= bar , T1 25 25 273 15 298 15= ° = + =C K. . , p2 20= bar , patm bar= 1 , R = 287 J/kg K 

and γ = 1 4. .

ρ1
1

1

5
330 10

287 298 15
35 06= =

×
×

=
p

RT .
. kg/m

Since V
p p

p2
1

1

2

1

1
2

1
1=

−
⎛
⎝⎜

⎞
⎠⎟

× −
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−
γ

γ ρ

γ γ( )/

∴ =
×

−
⎛
⎝⎜

⎞
⎠⎟

×
×

× − ⎛
⎝⎜

⎞
⎠⎟

⎡

⎣

−
V2

5 1 4 1 1 42 1 4

1 4 1

30 10

35 06
1

20

30

.

. .

( . )/ .

⎢⎢
⎢

⎤

⎦
⎥
⎥

= 255.97 m / s

Theoretical mass
flow rate

0.528

Actual mass
flow rate

10

A2

mmax

A2

m

p1

p2

Figure 17.5  Variation of mass flow rate  
versus pressure ratio
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A d2 2

2 2 2

4 4
0 01 0 00007854= = × =

π π
. . m

  
[ ]d d2 =

	

Since m A pmax .= 0 685 2 1 1ρ

∴ = × × × × =mmax . . .0 685 0 00007854 30 10 35 065 0.55176 kg /s

 Example 17.9  Air discharges through a convergent nozzle of tip diameter 25 mm fitted to a large vessel. The barometric 
pressure is 101 kPa. The pressure and temperature in the vessel is 700 kPa and 40°C, respectively. Determine the flow rate 
when the pressure outside the jet is 200 kPa. Also determine the pressure, temperature, velocity and sonic velocity at the 
nozzle tip for the given flow rate. Take R = 287 J/kg K and γ = 1 4. .

Solution
Let d = =25 0 025mm m. , patm kPa= 101 , p1 700 101 801= + =( ) kPa, T1 40 40 273 15 313 15= ° = + =C K. . , p2 = (200 + 

101) = 301 kPa, R = 287 J/kg K and γ = 1 4. .

	
A d2 2

2 2 2

4 4
0 025 0 000491= = × =

π π
. . m

	 	
[ ]d d2 =  

	
ρ1

1

1

3801 10

287 313 15
8 9125= =

×
×

=
p

RT .
. kg/m3

Since 
p

p
2

1

301

801
0 376 0 528= = <. .

Thus m A pmax .= 0 685 2 1 1ρ

	 ∴ = × × × × =mmax . . .0 685 0 000491 801 10 8 91253 0.8986 kg / s 	

p p2 10 528 0 528 801= × = × =. . 422.928 kPa
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⎛
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⎞
⎠⎟

= × ⎛
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⎞
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=
− −( )/ ( . )/ .

.
γ γ

236.776 K

17.10 ❐ COMPRESSIBLE FLUID FLOW THROUGH A VENTURIMETER
Consider an adiabatic flow of a compressible fluid through a horizontal venturimeter. Assume two points 1 and 2 at the inlet 
and throat of the venturimeter, respectively, as shown in Figure 17.6.
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17.20 Chapter 17

Let p1, V1, A1 and ρ1 be the pressure, velocity, area and density 

at point 1 and p2, V2, A2 and ρ2  be the corresponding values at  

point 2. Applying Bernoulli’s equation for adiabatic flow at point 1 
and 2, we get the below expression.
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Substituting (ii) in (i), we get:
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Figure 17.6 Horizontal venturimeter carrying  
compressible fluid
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Thus, the mass flow rate ( )m  through the venturimeter is given as m A V= ρ2 2 2.
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In Equation (17.27), the value of pressure ratio ( )p p2 1/  must be greater than the critical value (i.e., 0.528) for the flow.

 Example 17.10  The inlet and throat diameters of a horizontal venturimeter are 0.32 m and 0.16 m, respectively. The 
pressure and temperature of air at the inlet section of the venturimeter are 140 kPa (abs) and 17°C, respectively. If pressure 
at the throat section is 130 kPa, then determine the mass flow rate of air through the venturimeter. Take R = 287 J/kg K 
and γ = 1 4. .

Solution
Let D1 0 32= . m, D2 0 16= . m, p1 140= kPa, T1 17 290 15= =°C K. , p2 130= kPa , R = 287 J/kg K and γ = 1 4. .
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∴ =m 3.6469 kg / s
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17.11 ❐ SHOCK WAVES
The abrupt transformation of supersonic flow into subsonic flow causes a pressure wave called the shock wave. It results 
in a sudden rise in pressure, density, temperature and entropy, but a drop in Mach number and velocity across a shock. 
The shock wave has a finite thickness of the order of 10−3 mm in the atmospheric pressure. Shock waves may occur in 
the diverging section of a convergent-divergent nozzle, in pipes and in front of a blunt-nosed body. This process of the 
formation of shock waves in a compressible fluid is analogous to the formation of hydraulic jump in open channels. With 
respect to the direction of flow, the shock waves are of two types, namely normal shock waves and oblique shock waves. 
As the name indicates, the normal shocks are almost perpendicular to the flow, whereas oblique shocks are inclined to the 
flow direction.

17.11.1 Normal Shock Wave
Consider a control surface (in a uniform duct) that includes a normal shock (Figure 17.7). The fluid is assumed to be in 
thermodynamic equilibrium upstream and downstream of the shock and its properties are designated by the subscripts 1 
and 2, respectively. Let the duct has constant flow area, i.e., A A A1 2= =  and it is horizontal, i.e., z z1 2= .

Let p1 be the pressure, ρ1 be the density, T1 be 
the temperature, V1 be the velocity and M1 1>  be 

the Mach number (supersonic flow) upstream of 

the shock and p2, ρ2 , T2, V2 and M2 1<  (subsonic 

flow) be the corresponding values downstream of 
the shock. For the analysis of a normal shock wave 
continuity equation, momentum equation and energy 
equation have been considered.

For constant flow area, the continuity equation is 
written as follows.

	 ρ ρ1 1 2 2V V=  (i)

Substitute ρ = p RT/ ( ) and V MC M RT= = γ  in the above expression, we get:
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When the effects of boundary friction are neglected, the momentum equation becomes,
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Since M V C= /  and C RT= γ , the above expression is written as follows.
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Fluid flow

Normal shock

2, T2p2, ρ1, T1p1, ρ

M1 > 1; V1 > C1 M2 < 1; V2 < C2

21

Duct

Figure 17.7 Normal shock wave
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 Compressible Fluid Flow 17.23

Since for a shock M1 1>  and M2 1<  and from Equation (17.29), it can be observed that p p2 1> , i.e., static pressure 
increases across a shock wave.

When flow across the shock wave is considered adiabatic, the energy equation is written as follows.
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	 (iii)

By combining expressions (i) and (ii) and rearranging, we get:

	 p
V

p
V

1
1 1

2

1
2

2 2
2

2
+ = +

( ) ( )ρ
ρ

ρ
ρ

 (17.30)

The Equation (17.30) is known as Rankine line equation.

By combining expressions (i) and (iii) and rearranging, we get:
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The Equation (17.31) is known as Fanno line equation.
By combining expressions (i), (ii) and (iii) and solving for ( )p p2 1/  and ( ),ρ ρ2 1/  respectively, we get the following 

expressions.
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 (17.32)
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The Equations (17.32) and (17.33) are called Rankine–Hugoniot equations.

In terms of Mach number, ( )T T2 1/  can be expressed as follows.
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The relationship for the Mach number upstream and downstream of a normal shock wave can be expressed as given below.
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The ratio of fluid properties in terms of Mach number upstream can be given by,
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The shock strength gives a measure of the strength of a shock and it can be defined as the ratio of the pressure rise across 
the shock to the upstream pressure. The mathematical expression for shock strength is given below.

Shock strength =
−

= −
p p

p

p

p
2 1

1

2

1
1

Substitute Equation (17.36) in the above expression, we get:
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2γ γ

γ
γ

γ
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M  (17.39)

17.11.2 Oblique Shock Wave
An oblique shock wave is one that is inclined with respect to the flow direc-
tion. Such a shock wave is formed when a supersonic flow is made to change 
direction near a sharp corner. The oblique shock wave in a two-dimensional 
flow over a concave corner is shown in Figure 17.8.

It can be seen that the streamlines after the shock remain parallel to each 
other but gets deflected by an angle α, i.e., angle made by the surface with 
original horizontal direction. The conical wave front (Mach cone) created by 
a supersonic body flowing through a stagnant fluid medium is called oblique 
shock wave. Since the losses for the case of oblique shock waves are much 
less than those of normal shock, a design is made sometimes in such a way 
that an oblique shock occurs instead of a normal shock. It is the main reason 
for making the nose angle of the fuselage of a supersonic aircraft small.

Oblique shock

α

Supersonic flow 

Sharp corner

Figure 17.8  Oblique shock wave over a 

concave corner

Summary

 1. In a compressible flow, the density of fluid does not remain 
constant.

 2. Differential form of the continuity equation in compress-
ible flow:

( ) ( ) ( )dV V dA A d/ / /+ + =ρ ρ 0

 3. Bernoulli’s equation for isothermal process: 

p

g
p z

V

g
C

ρ
ln + + =

2

2

 4. Bernoulli’s equation for adiabatic process: 

γ
γ ρ−

⎛
⎝⎜

⎞
⎠⎟

+ + =
1 2

2p

g
z

V

g
C

 5. Velocity of sound wave in a fluid medium:

    (i) C dp d K= =/ /ρ ρ 	 (In terms of bulk modulus)

   (ii) C p RT= =/ρ  (For isothermal process)

  (iii) C RT= γ  (For adiabatic process)

 6. Mach number (M): M
V

C
= =

Speed of flow

Speed of sound

  (i) For sonic flow: M = 1, (ii) for subsonic flow: M < 1,  
(iii) for supersonic flow: M > 1 and (iv) for hypersonic flow: 
M >> 1.

 7. (i) When M < 1 (or V C< ), the pressure waves travel ahead 
of the object, (ii) when M = 1 (or V C= ), both the pres-
sure wave and object reach at the same instant of time and  
(iii) when M > 1 (or V C> ), the object moves faster than the 
pressure wave.

 8. The point in a fluid stream where the velocity of flow 
becomes zero and the kinetic energy converts into pressure 
energy is called stagnation point. The stagnation pressure 

ps, stagnation density ρs and stagnation temperature Ts are 

given below.
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 9. Area velocity relationship for compressible flow: 
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 10. Velocity through a nozzle fitted to a large tank:
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( )/

  Here, p1 and ρ1 be the pressure and density inside the tank.

 11. Mass flow rate through the nozzle: 

m A p p pr r=
−

⎛
⎝⎜

⎞
⎠⎟

( ) − ( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+

2 1 1

2 12

1

γ
γ

ρ γ
γ
γ

  Here, A2 be the area of the nozzle tip at its outlet.

 12. Maximum mass flow rate through the nozzle: 

m A pmax .= 0 685 2 1 1ρ

 13. The velocity at the outlet of the nozzle for maximum flow 
rate is equal to the sound velocity.

 14. Mass flow rate (m) through the venturimeter:

m A
p p

p

p

p
=

−
⎛
⎝⎜

⎞
⎠⎟

−
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−
⎛
⎝⎜

⎞−

ρ γ
γ ρ

γ γ

2 2
1

1

2

1

1
2

1

2

1
1 1

( )/

⎠⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2
2

2

1
2

/γ
A

A

 15. The abrupt change of supersonic flow into subsonic flow 
causes a pressure wave called the shock wave.

 16. Rankine line equation: p V p V1 1 1
2

1 2 2 2
2

2+ = +( ) ( )ρ ρ ρ ρ/ /

 17. Fanno line equation:

γ
γ ρ

ρ
ρ

γ
γ ρ

ρ
ρ−

⎛
⎝⎜

⎞
⎠⎟

+ =
−

⎛
⎝⎜

⎞
⎠⎟

+
1 2 1 2

1

1

1 1
2

1
2

2

2

2 2
2

2
2

p V p V( ) ( )

 18. Rankine–Hugoniot equations:
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1
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⎠⎟

−
⎡

⎣
⎢

⎤

⎦
⎥
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⎠⎟

+
⎡

⎣
⎢

⎤

⎦
⎥

V

V

p

p

p

p

 19. Shock strength is the ratio of the pressure rise across 
the shock to the upstream pressure and it is equal to 

2 1 11
2γ γ( ) ( )M − +/ .

Multiple-choice Questions

 1. The compressibility effects can be considered negligible 
when Mach number is
(a) 0.1.
(b) 1.
(c) 0.5.
(d) 0.3.

 2. The flow is said to be supersonic when Mach number is
(a) Less than one.
(b) Equal to one.
(c) Greater than one.
(d) None of the above.

 3. The flow is said to be subsonic when Mach number is
(a) Less than one.
(b) Equal to one.
(c) Greater than one.
(d) None of the above.

 4. The velocity of sound is large in
(a) Steel.
(b) Water.
(c) Air.
(d) Milk.

 5. The speed of sound in air varies as

(a) p.

(b) ρ .

(c) T .
(d) None of the above.

 6. For accelerated flow, when M < 1, the nozzle is called
(a) Sonic.
(b) Subsonic.
(c) Supersonic.
(d) None of the above.

 7. For accelerated flow when M > 1, the nozzle is called
(a) Sonic.
(b) Subsonic.
(c) Supersonic.
(d) None of the above.

 8. The critical pressure ratio for adiabatic flow of air is equal to
(a) 0.628.
(b) 0.528.
(c) 0.428.
(d) 0.328.
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Review Questions

 1. What do you mean by compressible flow? When a liquid is 
treated as a compressible fluid? Also define Mach number.

 2. Derive expressions for Bernoulli’s equation for (i) isother-
mal process and (ii) adiabatic process.

 3. Derive an expression for velocity of sound wave in a com-
pressible fluid medium in terms of change of pressure and 
density.

 4. Derive an expression for velocity of sound wave in a com-
pressible fluid medium in terms of bulk modulus of elasticity 
and density.

 5. Derive expressions for velocity of sound wave in a com-
pressible fluid medium for (i) isothermal process and  
(ii) adiabatic process.

 6. Explain the propagation of pressure wave in a compressi-
ble fluid with suitable diagrams when the Mach number is  
(i) less than one, (ii) equal to one and (iii) more than one.

 7. Define stagnation pressure. Also derive an expression for the 
same in terms of approaching Mach number, pressure and 
specific heat ratio.

 8. Derive an expression for stagnation density and stagnation 
temperature in terms of approaching Mach number, density 
and specific heat ratio.

 9. Derive an expression for area velocity relationship for a com-
pressible fluid in terms of area, velocity and Mach number.

 10. Derive an expression for mass flow rate of a compressible 
fluid through a nozzle fitted to a large tank. Also give the 
conditions for maximum rate of flow.

 11. Show that the velocity at the outlet of the nozzle for maxi-
mum flow rate is equal to the sound velocity.

 12. Derive an expression for the maximum mass flow rate of a 
compressible fluid through a nozzle fitted to a large tank.

 13. Derive an expression for the mass flow rate through a hori-
zontal venturimeter.

Problems

 1. A pipe of diameter 10 cm suddenly reduces to 5 cm . It car-
ries air isothermally at 25°C. If the absolute pressures meas-
ured at the two sections just before and after the contraction 
are 4.75 bar and 3.8 bar, respectively, then determine the den-
sity and velocity at the two sections. Also determine the mass 
flow rate through the pipe. Take gas constant as 287 J/kg K.

[Ans. 5.551 kg/m3, 4.441 kg/m3, 39.89 m/s,  
199.45 m/s, 1.74 kg/s]

 2. Air with a velocity of 300 m/s flows through a horizontal 
pipe at a section where pressure is 78 kN/m2 (abs) and tem-
perature is 40°C. The pipe changes in its diameter and at 
this section, the pressure is 117 kN/m2 (abs). Determine the 
velocity of air at this section if the flow of gas is adiabatic, 
the gas constant is 287 J/kg K and specific heat ratio is 1.4.

[Ans. 112.82 m/s]

 3. The pressure, velocity and temperature at the upstream sec-
tion of a horizontal pipe carrying air are 40 kN/m2, 35 m/s 
and 147°C, respectively. Determine the pressure and the 
temperature at the downstream section if velocity at this sec-
tion is 155 m/s and the process is adiabatic. Take the gas 
constant as 287 J/kg K and specific heat ratio as 1.4.

[Ans. 36.4 kN/m2, 408.97 K]

 4. Find the sonic velocity for the following given fluids,  
(i) crude oil of specific gravity 0.8 and bulk modulus 1.54 GN/
m2 and (ii) mercury having a bulk modulus of 27.2 GN/m2.

[Ans. 1387.44 m/s, 1414.21 m/s]

 5. An aeroplane is flying at a height of 15 km where tempera-
ture is −50°C. Find the speed of the plane corresponding to 
Mach number equal to 1.8. Take specific heat ratio as 1.4 and 
gas constant as 287 J/kg K.

[Ans. 1940.3 km/hr]

 6. An aircraft is flying at a speed of 900 km/hr where air tem-
perature is 7°C. Find the Mach number of the aircraft when 
specific heat ratio is 1.4 and gas constant is 287 J/kg K.

[Ans. 0.745]

 7. A projectile travels in air having pressure and temperature as 
1.011 bar and 10°C, respectively, at a speed of 1512 km/hr. 
Find the Mach number and Mach angle if R = 287 J/kg K  and 
γ = 1 4. .

[Ans. 1.245, 53.44°]

 8. Find the velocity of a bullet fired in standard air if its Mach 
angle is 38° and temperature is 15°C. Take R = 287 J/kg K  
and γ = 1 4. .

[Ans. 552.67 m/s]

 9. Air has a velocity of 1000 km/hr at a pressure of 9.81 kPa 
(vacuum) and a temperature of 47°C. Determine its stagna-
tion pressure, temperature, density and the local Mach num-
ber, if atmospheric pressure is 98.1 kPa, R = 287 J/kg K  and 
γ = 1 4. . Also determine the compressibility correction factor 
for a pitot-static tube to measure the velocity at a Mach num-
ber of 0.8.

[Ans. 131.26 kPa, 358.56 K, 1.2755 kg/m3, 1.17]
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 Compressible Fluid Flow 17.27

 10. An aeroplane flies at 849.6 km/hr through still air having 
a pressure of 78.5 kPa (abs) and temperature −8°C. Deter-
mine the stagnation properties if for air R = 287 J/kg K  and 
γ = 1 4. .

[Ans. 111.18 kPa, 292.87 K, 1.323 kg/m3]

 11. Air flows from a large vessel through a nozzle of diame-
ter 25 mm fitted to the vessel. If the temperature of air is 
30°C and its flow is adiabatic, then find the mass flow rate 
of air through the nozzle when pressure of air in the ves-
sel is (i) 0.39 bar (gauge) and (ii) 3.35 bar (gauge). Take 
R = 287 J/kg K , γ = 1 4.  and atmospheric pressure as  
1.01 bar (abs).

[Ans. 0.1457 kg/s, 0.4969 kg/s]

 12. Air flows from a large tank through a nozzle of diam-
eter 20 mm fitted to it. If the pressure and temperature of 
air in the tank is 385 kPa (gauge) and 25°C, respectively, 
then find the maximum flow rate of air through the nozzle. 
Take R = 287 J/kg K , γ = 1 4.  and atmospheric pressure as  
100 kPa.

[Ans. 0.3568 kg/s]

 13. A large tank containing air at a pressure of 2550 kPa (abs) 
and temperature of 22°C is fitted with a nozzle. Determine 
the velocity of air through the nozzle if the pressure of air at 
its exit is 1750 kPa, R = 287 J/kg K  and γ = 1 4. .

[Ans. 245.92 m/s]

 14. A vessel containing air at a temperature of 22°C is fitted with 
a convergent nozzle of tip diameter 30 mm. Assuming adi-
abatic flow, determine the mass flow rate of air through the 
nozzle to the atmosphere when the pressure in the tank is  
(i) 150 kPa (abs) and (ii) 300 kPa. Take R = 287 J/kg K , 
γ = 1 4.  and atmospheric pressure as 101.325 kPa.

[Ans. 0.2371 kg/s, 0.4991 kg/s]

 15. The inlet and throat diameters of a horizontal venturimeter 
are 300 mm and 150 mm, respectively. The pressure and 
temperature of air at the inlet section of the venturimeter are 
1.37 bar (abs) and 15°C, respectively. If pressure at the throat 
section is 1.27 bar (abs), then determine the mass flow rate 
of air through the venturimeter. Take R = 287 J/kg K  and 
γ = 1 4. .

[Ans. 3.179 kg/s]

ANSWERS TO MULTIPLE-CHOICE QUESTIONS

 1. (d) 2. (c) 3. (a) 4. (a) 5. (c)
 6. (b) 7. (c) 8. (b)
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18.1 ❐ INTRODUCTION
A channel may be considered as a passage through which water flows under atmospheric pressure. The flow of liquid 
(water) through a passage in which free liquid surface is open to atmosphere is called open channel flow. This type of flow 
is maintained due to gravity, i.e., flow takes place due to the downward slope of the channel bed. In case of flow of water 
through the pipe, there is no free surface as water flows under pressure. However, if the flow of water through a pipe is at 
atmospheric pressure or pipe does not run full, then the flow is considered similar to an open channel flow.

Generally, the cross section of pipes is circular and the flowing liquid fills the flow passages, whereas the open channels 
have a free surface open to atmosphere and may have any shape. Some of the examples of open channel flow are flow in 
canals, rivers and drainage channels. In this chapter, the basic concepts, which are used to describe and analyse flow in open 
channels pertaining to steady flow under uniform and non-uniform flow conditions are briefly discussed.

18.2 ❐ GEOMETRICAL PARAMETERS FOR OPEN CHANNELS
Some of the basic geometrical parameters of open channels are defined below (Figure 18.1).

 1. Depth of flow: It is the vertical distance of the lowest point of a channel section from the free surface. It is denoted by y .

 2. Top width: It is the width of the channel section at the free surface. It is denoted by T .

 3. Wetted area: It is the cross-sectional area of the flow section of the channel. It is denoted by A.

 4. Wetted perimeter: It is the length of the channel boundary in contact with the flowing water at any section. It is 
denoted by P .

 5. Hydraulic radius (or hydraulic mean depth): It is the ratio of the wetted area to its wetted perimeter. It is denoted 
by m or R . Mathematically, it is given as m A P= ( )/ .

 6. Hydraulic depth: It is the ratio of the wetted area to the top width. It is denoted by D . Mathematically, it is given as 
D A T= ( )/ .

18.3 ❐ TYPES OF FLOW IN OPEN CHANNELS
Depending upon the change in the depth of flow with respect to space and time, the flow in open channel can be classified as

 (i) steady and unsteady flow, 

 (ii) uniform and non-uniform flow, 

Chapter 18

Flow in Open Channels
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18.2 Chapter 18

 (iii) laminar and turbulent flow, and 

 (iv) sub-critical, critical and super critical flow. These various types of flows are discussed below.

 1. Steady and unsteady flow: When the flow characteristics such as depth of flow ( )y , velocity of flow ( )V  and the rate 

of flow ( )Q  at any point in the flow do not change with respect to time ( )t , then the flow is called steady. The expression 
for steady and unsteady flow is mathematically given below.

∂
∂

=
y

t
0, 

∂
∂

=
V

t
0  and 

∂
∂

=
Q

t
0

  However, when these flow parameters change with time, then the flow is called unsteady.

∂
∂

≠
y

t
0, 

∂
∂

≠
V

t
0  and 

∂
∂

≠
Q

t
0

 2. Uniform and non-uniform flow: When the depth ( )y , slope, cross section and the velocity of flow ( )V  for a given 
length of a channel ( )s Lor  remain constant, then the flow is called uniform. The mathematical expression for uniform 
flow is given below.

∂
∂

=
y

s
0 and 

∂
∂

=
V

s
0

  However, when these parameters change along the length of the channel, the flow is said to be non-uniform. A non- 
uniform flow is also known as varied flow and its mathematical expression is given below.

∂
∂

≠
y

s
0 and 

∂
∂

≠
V

s
0

  Non-uniform flow can be classified as gradually varied flow and rapidly varied flow.

  (a)  Gradually varied flow: If the change in depth of flow is gradual over a long length of channel, then it is known as 
gradually varied flow.

  (b)  Rapidly varied flow: If the change in the depth of flow is abrupt in a small length of channel, then it is called 
rapidly varied flow.

W

i W sin i

i

L1

1

2

2

Flow direction

T

y
Area A

P

x

x

Cross-section at x-x

Free surface Free surface

Figure 18.1 Uniform flow in an open channel
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 Flow in Open Channels 18.3

 3. Laminar and turbulent flow: Reynolds number (Re) is defined as the ratio of inertia force to viscous force. In an 
open channel, Reynolds number can be given as Re [( ) / ]= ρ μVm , here ρ  is the density of the liquid, V  is the average 
or mean velocity of flow, μ is the viscosity of the liquid and m is the hydraulic radius (hydraulic mean depth).

  (a) Laminar flow: When Re < 500, the flow is called laminar.

  (b) Turbulent flow: When Re ,> 2000  the flow is called turbulent.

  (c) Transitional flow: When 500 2000< <Re , the flow is called transitional.

 4. Sub-critical, critical and super critical flow: The flow in a channel is caused due to gravitational force. Froude 
number ( )Fr  is an important parameter for analysing open channel flows. The ratio of inertia force to gravity force is 

called Froude number and it is given as Fr V g D= [ / ] , here V  is the mean velocity of flow, g  is acceleration due to 
gravity and D  is the hydraulic depth of channel section.

  (a) Sub-critical flow: When Fr < 1, the flow is called sub-critical (streaming or tranquil).

  (b) Critical flow: When Fr = 1, the flow is called critical.

  (c) Supercritical flow: When Fr > 1, the flow is called supercritical (rapid or shooting or torrential).

18.4 ❐ DISCHARGE THROUGH OPEN CHANNELS (CHEZY’S FORMULA)
Consider uniform flow through a longitudinal section of an open channel (Figure 18.1). Consider sections 1–1 and 2–2 in 
the direction of flow. Let L be the length of channel, A be the wetted cross-sectional area of channel, V  be the mean velocity 
of flow, i  be the slope of the bed, P  be the wetted perimeter of the channel, f be the frictional resistance per unit velocity 
per unit area and w be the specific weight of water.

As the depths of water at the two sections are same, the pressure forces (F1 and F2) on the two sections are equal and 
acts in the opposite directions. Thus, the forces F1 and F2  cancel each other. As the flow is uniform, the velocity of flow 
is constant and therefore, no acceleration acts on the water and the resultant force acting in the direction of flow is zero.

The weight of water ( )W  between sections 1–1 and 2–2 is given by,

W w AL= × = ×Specific weight  Volume

Component of  in flow direction  W wAL i= sin

The frictional resistance ( )F  against the motion of water is given by,

F f V fPLV= × × = Surface area 2 2

By resolving all forces in the direction of flow, we get:

wAL i fPLVsin = 2

V
wAL i

fPL

w

f

A

P
i2 = = ×

sin
sin

Thus V
w

f

A

P
i= sin

Here, C w f= /  is the Chezy’s constant which depends upon the roughness of the channel surface and the Reynolds num-
ber and m A P= ( / ) is the hydraulic radius.

For small values of i , we know that sin tani i i≈ ≈  and thus, we get the below expression.

 V C mi=  (18.1)

The Equation (18.1) is known as Chezy’s formula which was developed by French engineer Antoine Chezy in 1775.
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18.4 Chapter 18

Discharge ( )Q  through the channel is given by,

 Q AV A C mi AC m i K i= = × = × =  (18.2)

Here, K AC m= ( ) is called the conveyance of the channel section which measures the carrying capacity of the channel. 
For a channel of constant slope, the conveyance is directly proportional to discharge.

The Chezy’s constant ( )C  is not a dimensionless coefficient and its value depends on the system of units. Its dimensions 
can be given below.

C
V

mi

LT

L
L T= = =

−
−[ ]

[ ]
[ ]/

1
1 2 1

The value of C  can be determined by the following empirical formulae.

 1. Bazin formula: According to this formula, the Chezy’s constant expressed as C  is given below.

 C
k m

=
+
157 6

1 81

.

. ( )/
 (18.3)

  Here, k  is the Bazin’s constant whose value depends upon the surface roughness. Some of the typical values of k  for 
various surface materials are given in Table 18.1.

Table 18.1 Values of Bazin’s constant (k) for different surface materials

Surface of channel Value of k

Very smooth cement or planed wood 0.11

Concrete or brick or unplanned wood 0.21

Ashlar, rubble masonry or poor brick work 0.83

Earth channel in very good condition 1.54

Earth channel in ordinary condition 2.36

Earth channel in rough condition 3.17

 2. Kutter’s formula: Two Swiss engineers Ganguillet and Kutter proposed the following formula in 1869 for the deter-
mination of Chezy’s constant ( )C .

 C
i N

i N m
=

+ +
+ + ×

23 0 00155 1

1 23 0 00155

( . ) ( )

[ ( . )] ( )

/ /

/ /
 (18.4)

  Here, N  is the Kutter’s constant whose value depends upon the channel surface and its condition. Some of the typical 
values of N  for different surface materials are given in Table 18.2.

Table 18.2 Values of Kutter’s constant (N) for different surface materials

Surface of channel Value of N

Very smooth surface like plastic, glass, brass 0.010

Very smooth concrete and planned timber 0.011

Smooth concrete 0.012

Ordinary concrete lining, glazed brick work 0.013

(Continued)

M18 Fluid Mechanics and Hydraulic Machines XXXX 01.indd   4 4/5/2019   12:35:06 PM

Download more at Learnclax.com



 Flow in Open Channels 18.5

Surface of channel Value of N

Good wood 0.014

Earth channel in best condition 0.017

Straight unlined earth canals in good condition 0.020

Earth channel in ordinary condition 0.027

Earth channel with dense weed 0.035

 3. Manning’s formula: An Irish engineer Robert Manning proposed the following formula in 1889 for the determination 
of Chezy’s constant ( )C .

 C
N

m=
1 1 6/  (18.5)

  Here, N  is the Manning’s constant which has the same value as Kutter’s constant given in Table 18.2.

 Example 18.1  Determine the flow rate for a rectangular channel of width 6 m for uniform flow at a depth of 1 m if the 
bed slope is 1 vertical to 1000 horizontal. Also determine the conveyance for the given channel and comment on the state 
of flow. Take Chezy’s constant as 60.

Solution
Let b = 6 m, y = 1 m, i = =( / ) .1 1000 0 001 and C = 60.

A by= = × =6 1 6 2m

P b y= + = + × =2 6 2 1 8 m

m
A

P
= = =

6

8
0 75.

V C mi= = × × =60 0 75 0 001 1 6432. . . m/s

Q AV= = × =6 1 6432. 9.8592 m / s3

K AC m= = × × =6 60 0 75. 311.77

Fr
V

gy
= =

×
=

1 6432

9 81 1
0 525

.

.
.

Since Fr << 1 , the flow in the channel is of tranquil nature.

 Example 18.2  Using Kutter’s formula determine the flow rate for a rectangular channel having depth of water 2 m, 
width 5 m, bed slope 1 in 2000 and Kutter’s constant N = 0 027. .

Solution
Let y = 2 m, b = 5 m, i = =( / ) .1 2000 0 0005 and N = 0 027. .

A by= = × =5 2 10 2m

P b y= + = + × =2 5 2 2 9 m

m
A

P
= = =

10

9
1 11.

M18 Fluid Mechanics and Hydraulic Machines XXXX 01.indd   5 4/5/2019   12:35:15 PM

Download more at Learnclax.com



18.6 Chapter 18

Since C
i N

i N m
=

+ +
+ + ×

23 0 00155 1

1 23 0 00155

( . / ) ( / )

[ ( . / )] ( / )

∴ =
+ +

+ + ×
C

23 0 00155 0 0005 1 0 027

1 23 0 00155 0 0005 0

( . / . ) ( / . )

[ ( . / . )] ( .. / . )
.

027 1 11
37 832=

Q AC mi= = × × × =10 37 832 1 11 0 0005. . . 8.913 m /s3

 Example 18.3  A triangular gutter, whose sides include an angle of 60o conveys water at a uniform depth of 250 mm.  
If the discharge is 0.04 m3/s, then determine the gradient of the trough (bed slope). Take Chezy’s constant as 52.

Solution
Refer Figure 18.2. Let ∠ =ADB 60°, y CD= = =250 0 25mm m. , Q = 0 04. m /s3  and C = 52.

AD BD
CD

= =
°

=
°

=
cos

.

cos
.

30

0 25

30
0 2887 m

AC CD= ° = ° =tan . tan .30 0 25 30 0 1443 m

Thus AB AC= = × =2 2 0 1443 0 2886. . m

A AB CD= × = × × =
1

2

1

2
0 2886 0 25 0 0361 2. . . m

P AD BD= + = + =0 2887 0 2887 0 5774. . . m

m
A

P
= = =

0 0361

0 5774
0 06252

.

.
.

Since Q AC mi=

Thus 0 04 0 0361 52 0 06252. . .= × × × i

∴ =
×

⎛
⎝⎜

⎞
⎠⎟

× =i
0 04

0 0361 52

1

0 06252

1

137 7

2.

. . .

Thus, the gradient of the trough is 1 in 137.7.

 Example 18.4  If an earthen channel of ordinary surface of width 3 m has depth of water 2 m and bed slope as 1 in 
1500, then determine the discharge through the rectangular channel by taking suitable constants in (i) Bazin’s formula and 
(ii) Manning’s formula.

Solution
Let b = 3 m, y = 2 m and i = ( / )1 1500 .

A by= = × =3 2 6 2m

P b y= + = + × =2 3 2 2 7 m

m
A

P
= = =

6

7
0 857.

60°30°

A B
C

D

250 mm

Figure 18.2
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 Flow in Open Channels 18.7

 (i) For an earthen channel of ordinary surface taking Bazin’s constant as k = 2 36. .

  
C

k m
=

+
=

+
=

157 6

1 81

157 6

1 81 2 36 0 857
36 1526

.

. ( )

.

. ( . / . )
.

/

Q AC mi= = × × =6 36 1526
0 857

1500
.

.
5.1848 m / s3

 (ii) For an earthen channel of ordinary surface taking Manning’s constant as N = 0 027. .

C
m

N
= = =

1 6 1 60 857

0 027
36 097

/ /.

.
.

Q AC mi= = × × =6 36 097
0 857

1500
.

.
5.1769 m / s3

 Example 18.5  Determine the flow rate of water in a channel having semi-circular bottom of diameter 1.2 m and the 
two sides as vertical when the depth of flow is 1.2 m. Take Chezy’s constant equal to 60 and slope of the bed of channel as 
1 in 1000.

Solution
Refer Figure 18.3. Let AB CD d= = = 1 2. m, y = 1 2. m, C = 60 
and i = =( ) .1 1000 0 001/ .

A ABDC CED= +

= × + × =

Area Area

m2

( ) ( )

. . . .1 2 0 6
1

2
0 6 1 28552π

P AC CED DB= + + = + + =0 6 0 6 0 6 3 085. . . .π m

m
A

P
= = =

1 2855

3 085
0 4167

.

.
.

Q AC mi= = × × × =1 2855 60 0 4167 0 001. . . 1.5745 m / s3

 Example 18.6  A circular sewer pipe is laid at a slope of 1 in 6000 and carries a discharge of 600 litres of water per 
second when flowing half full. Determine the diameter of the pipe if the Manning’s constant is 0.017.

Solution
Let i = ( / )1 6000 , Q = =600 0 6l /s m /s3. , d D= ( )/2  and N = 0 017. .

Let D  be the diameter of the pipe.

A D
D

= × =
1

2 4 8
2

2π π

P
D

=
π
2

m
A

P

D

D

D
= = =

( )

( )

1 8

1 2 4

2/

/

π
π

Q AC mi A
m

N
mi A

m

N
i= = × × = × ×

1 6 2 3/ /

 

A B

C D

E

0.6 m

0.6 m

1.2 m

Figure 18.3
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Thus 0 6
8

4

0 017

1

6000
0 11835

2 2 3
8 3.

( / )

.
.

/
/= × × =

π D D
D

∴ = ⎛
⎝⎜

⎞
⎠⎟

=D
0 6

0 11835

3 8.

.

/

1.8381 m

 Example 18.7  The base width of a trapezoidal channel section is 4 m and the side slopes are 1 2:  (i.e., 1 vertical to 2 
horizontal). The depth of water is 2 m. Determine the discharge through the channel when Chezy’s constant is given 50 and 
the bed slope of the channel is 1 in 1000. Also find the shear stress at the channel boundary.

Solution
Refer Figure 18.4. Let AB = 4 m, side slopes = 1 2: , AL BM= = 2 m, 

C = 50 and i = =( / ) .1 1000 0 001.

Let F  be the shear stress at the channel boundary.

tanα = =
CL

AL

2

1

Thus CL AL= = × =2 2 2 4 m

CD AB CL= + = + × =2 4 2 4 12 m

A AB CD AL= + × = + × =
1

2

1

2
4 12 2 16 2( ) ( ) m

AC AL CL= + = + =2 2 2 22 4 4 472. m

P AC AB BD= + + = + + =4 472 4 4 472 12 944. . . m

m
A

P
= = =

16

12 944
1 2361

.
.

Q AC mi= = × × × =16 50 1 2361 0 001. . 28.1266 m / s3

Under equilibrium position, the frictional resistance to flow ( )FLP  equals the weight of liquid acting along the line of fluid 
motion ( sin )wAL α and the expression is given below.

FLP wAL wAL i= = ×sinα   [ sin ]∵ i = α

∴ = ⎛
⎝⎜

⎞
⎠⎟

= × × = × × =F w
A

P
i w m i 9810 1 2361 0 001. . 12.126 N / m2

18.5 ❐ MOST ECONOMICAL SECTION OF CHANNELS
The flow rate through a channel is given by Equation (18.2) as follows.

Q AC mi AC
A

P
i= = ×

A B

C DL M

4 m

2 mα

Figure 18.4
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 Flow in Open Channels 18.9

It can be seen from the above equation that the discharge for a given channel slope, roughness and cross-sectional area 
would be maximum when the wetted perimeter is minimum. For the most economical shape of a channel the conditions are 
(i) maximum discharge, (ii) minimum excavation and lining, and (iii) least wetted perimeter. As mentioned above the dis-
charge will be maximum when the wetted perimeter is minimum. Therefore, the channel cross section corresponding to the 
minimum perimeter for a given flow area is called the most economical section (or the most efficient or the best section).

In the following section, the conditions for the most economical section for the channels of rectangular, trapezoidal and 
circular sections have been discussed.

18.5.1 Most Economical Rectangular Channel Section
Consider a rectangular channel of width b and depth of flow y  as shown in Figure 18.5. Let A be the area of flow and P  
be the wetted perimeter.

A by=

P b y= + 2

or P
A

y
y= + 2   [ ]∵b A y= /

For the most economical section, the wetted perimeter must be minimum.

dP

dy
= 0

d

dy

A

y
y

A

y
+

⎡

⎣
⎢

⎤

⎦
⎥ = ⇒ − + =2 0 2 0

2

A y= 2 2

or by y= 2 2
  [ ]∵ A by=

 y b b y= =( )/ or2 2  (18.6)

Hydraulic radius (or hydraulic mean depth) is given by,

 m
A

P

by

b y

y y

y y

y

y

y
= =

+
=

×
+

= =
2

2

2 2

2

4 2

2

 [ ]∵b y= 2  (18.7)

Thus, the rectangular channel section will be most economical when the depth of flow is equal to half the base width or the 
hydraulic radius is equal to half the depth of flow.

 Example 18.8  Find the most economical section of a rectangular channel having bed slope of 1 in 1000 and carrying 
water at a rate of 300 litres per second. Take Chezy’s constant as 55.

Solution
Let i = ( / )1 1000 , Q l= =300 0 3/s m /s3.  and C = 55.

Let b be the width and y  be the depth of flow. We know that for most economical rectangular section, b y= 2  and 
m y= /2.

A by y y y= = × =2 2 2

Since Q AC mi=

b

y

Figure 18.5 Rectangular channel
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Thus 0 3 2 55
2

1

1000
2 45972 5 2. . /= × × × =y

y
y

∴ = ⎛
⎝⎜

⎞
⎠⎟

=y
0 3

2 4597

2 5.

.

/

0.431 m

b y= = × =2 2 0 431. 0.862 m

 Example 18.9  A rectangular channel of width 4 m has depth of water 1.5 m. The slope of the bed of the channel is 
1 in 1000 and the value of Chezy’s constant is 55. It is desired to increase the discharge to a maximum by changing the 
dimensions of the section for constant area of cross section, slope of the bed and roughness of the channel. Find the new 
dimensions of the channel and increase in discharge.

Solution
Let b = 4 m, y = 1 5. m, i = =( / ) .1 1000 0 001 and C = 55.

A by= = × =4 1 5 6. m2

P b y= + = + × =2 4 2 1 5 7. m

m
A

P
= = =

6

7
0 857.

Q AC mi= = × × × =6 55 0 857 0 001 9 6606. . . m /s3

For determining maximum discharge ( )Q1 , for a given area of cross section, slope of the bed and roughness of the chan-
nel, let b1 be the new width of the channel and y1 be the new depth of flow. For maximum discharge through a rectangular 
channel, we know that b y1 12= .

A b y1 1 1
26= = m   [∵Area = Constant]

or 2 61 1y y× =

y1
2 3=

∴ = =y1 3 1.732 m

b y1 12 2 1 732= = × =. 3.464 m

P b y1 1 12 3 464 2 1 732 6 928= + = + × =. . . m

m
A

P1
1

1

6

6 928
0 866= = =

.
.

Q AC m i1 1 6 55 0 866 0 001 9 7112= = × × × =. . . m /s3

Therefore, the increase in discharge ( )ΔQ  is given by,

ΔQ Q Q= − = − =1 9 7112 9 6606. . 0.0506 m / s3
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 Flow in Open Channels 18.11

18.5.2 Most Economical Trapezoidal Channel Section
Consider a trapezoidal channel of base width b and depth of flow y  as shown in Figure 18.6. Let α  be the angle made by 
the sides with the horizontal and the side slope as one vertical to n horizontal as shown in Figure 18.6. Let A be the area 
of flow and P  be the wetted perimeter.

 
A

BC AD
y

b b ny
y b ny y=

+⎛
⎝⎜

⎞
⎠⎟

=
+ +

= +
2

2

2

( )
( )  (i)

 
b

A

y
ny= −  (ii)

P AB BC CD BC CD= + + = + 2  [ ]∵ AB CD=

But CD CE DE n y y y n= + = + = +2 2 2 2 2 2 1

Thus P b y n= + +2 12  (iii)

Now substituting Equation (ii) in Equation (iii), we get:

 
P

A

y
ny y n= − + +2 12  (iv)

For the most economical section, the wetted perimeter must be minimum.

dP

dy

d

dy

A

y
ny y n= ⇒ − + +

⎡

⎣
⎢

⎤

⎦
⎥ =0 2 1 02

− − + + =
A

y
n n

2
22 1 0

−
+

− + + =
( )b ny y

y
n n

2
22 1 0  [Substitute (i)]

( )b ny ny

y
n

+ +
= +2 12

 
b ny

y n
+

= +
2

2
12  (18.8)

. b

y

ny ny

(b + 2ny)
A

B C

D

E
αα

Figure 18.6 Trapezoidal channel
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Thus, half of the top width is equal to one of the sloping sides.
From Equation (18.8), we get:

 b ny y n+ = +2 2 12  (v)

The hydraulic radius (or hydraulic mean depth) is given by,

 m
A

P

b ny y

b y n

b ny y

b b ny

b ny y

b ny

y
= =

+

+ +
=

+
+ +

=
+

+
=

( ) ( ) ( )

( )2 1 2 2 22
 (18.9)

Thus, for a most economical trapezoidal section, the hydraulic radius is half of the flow depth.
Figure 18.7 illustrates a trapezoidal channel of most econom-

ical section in which a circle drawn with centre O and radius 
equal to the depth of the flow will be tangential to the three sides 
of it. Let OL be the perpendicular to the sloping side CD.

From triangle DEC, we get:

sinα = =
+

=
+

DE

DC

y

y n y n2 2 2 2

1

1

From triangle OLD, we get:

 OL OD= sinα

But OD y n= +2 1 [From Equation (18.8)]

 
∴ = + ×

+
=OL y n

n
y2

2
1

1

1

Thus, if a circle is drawn with O as centre and radius equal to the depth of flow y, then the three sides of the most econom-
ical trapezoidal channel will be tangential to the circle.

Best side slope for most economical trapezoidal channel For minimum wetted perimeter, n can be determined 
from ( )dP dn/ = 0, taking A and y  as constants.

Thus 
d

dn

A

y
ny y n− + +

⎡

⎣
⎢

⎤

⎦
⎥ =2 1 02

− + × + × =
−

y y n n2
1

2
1 2 02

1

2( )

− +
+

= ⇒ = +y
ny

n
n n

2

1
0 2 1

2

2

( )
( )

4 1 3 12 2 2n n n= + ⇒ =

 ∴ =n
1

3
 (18.10)

tan tanα = = = = °
y

ny n

1
3 60

b

y

ny

A

B C

D

E

O

L

M

α

α

Figure 18.7  Trapezoidal channel of most  
economical section
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 Flow in Open Channels 18.13

Thus α = °60
Thus, the best slope is at 60° to the horizontal.

For the most economical trapezoidal section, using Equation (18.8), we get:

b ny
y n

+
= +

2

2
12

Substitute n = 1 3/  [Equation (18.10)] in the above equation, we get:

b y
y

+ ×
= +

2 1 3

2
1 3 12( / )

( / )

3 2 2 3
2

3
b y y+ = ×

3 2 4b y y+ =

Thus b
y

=
2

3
 (18.11)

Now P b y n= + +2 12

Substituting Equations (18.10) and (18.11) in the above expression, we get:

 P
y

y
y

y
y y

b= +
⎛
⎝⎜

⎞
⎠⎟

+ = + × = =
⎛
⎝⎜

⎞
⎠⎟

=
2

3
2

1

3
1

2

3
2

2

3

6

3
3

2

3
3

2

 (18.12)

 Example 18.10  A trapezoidal channel has side slopes of 3 horizontal to 4 vertical and the slope of its bed is 1 in 2000. 
Determine the optimum dimensions of the channel, if it is to carry water at 0.6 m3/s. Take Chezy’s constant as 75.

Solution

Let n = =
Horizontal

Vertical

3

4
, i = ( )1 2000/ , Q = 0 6. m /s3  and C = 75.

Since 
b ny

y n
+

= +
2

2
12   [Most economical section]

Thus 
b y

y
+ ×

= ⎛
⎝⎜

⎞
⎠⎟

+
2 3 4

2

3

4
1

2( / )

b y
y b y y

+
= ⇒ + =

1 5

2
1 25 1 5 2 5

.
. . .

∴ =b y

m
y

=
2

  [Most economical section]

A b ny y y y y y= + = +⎛
⎝⎜

⎞
⎠⎟

=( ) .
3

4
1 75 2

Since Q AC mi=
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Thus 0 6 1 75 75
2

1

2000
2 0752452 5 2. . . /= × × × =y

y
y

∴ = ⎛
⎝⎜

⎞
⎠⎟

=y
0 6

2 075245
0 609

2 5.

.
.

/

m

∴ = =b y 0.609 m

 Example 18.11  A trapezoidal channel having side slope equal to 60° with the horizontal and laid on a slope of 1 in 850 
carries a discharge of 6 m3/s. Determine the width at the base and depth of flow for most economical cross section. Take 
Chezy’s constant as 55.

Solution

Let α = °60 , i = ( )1 850/ , Q = 6 m /s3  and C = 55.

Since tan tanα = ° = =60 3
1

n
  [Most economical section]

Thus n =
1

3

Since 
b ny

y n
+

= +
2

2
12

Thus 
b y

y
+

=
⎛
⎝⎜

⎞
⎠⎟

+
2 1 3

2

1

3
1

2
( / )

3 2

2 3

2

3
3 2 4

b y y
b y y

+
= ⇒ + =

∴ =b y
2

3

A b ny y y y y y= + = +
⎛
⎝⎜

⎞
⎠⎟

=( )
2

3

1

3
3 2

m
y

=
2

  [Most economical section]

Since Q AC mi=

Thus 6 3 55
2

1

850
2 31052 5 2= × × × =y

y
y. /

∴ = ⎛
⎝⎜

⎞
⎠⎟

=y
6

2 3105

2 5

.

/

1.465 m

b y= = × =
2

3

2

3
1 465. 1.692 m
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 Flow in Open Channels 18.15

 Example 18.12  A power canal of trapezoidal section having side slope equal to 60° with the horizontal and laid on a 
slope of 1 in 2500 carries a discharge of 14 m3/s. Determine the width at the base and depth of flow for most economical 
cross section. Take Manning’s constant as 0.02.

Solution
Let α = °60 , i = ( )1 2500/ , Q = 14 m /s3  and N = 0 02. .

Since tan tanα = ° = =60 3
1

n
  [Most economical section]

Thus n =
1

3

Since 
b ny

y n
+

= +
2

2
12

Thus 
b y

y
+

=
⎛
⎝⎜

⎞
⎠⎟

+
2 1 3

2

1

3
1

2
( / )

3 2

2 3

2

3
3 2 4

b y y
b y y

+
= ⇒ + =

∴ =b y
2

3

A b ny y y y y y= + = +
⎛
⎝⎜

⎞
⎠⎟

=( )
2

3

1

3
3 2

m
y

=
2

  [Most economical section]

C
m

N

y
y= = =

1 6 1 6
1 62

0 02
44 545

/ /
/( / )

.
.

Since Q AC mi=

Thus 14 3 44 545
2

1

2500
2 1 6= × × ×y y

y
. /

14 1 09 8 3= . /y

∴ = ⎛
⎝⎜

⎞
⎠⎟

=y
14

1 09

3 8

.

/

2.605 m

b y= = × =
2

3

2

3
2 605. 3.01 m

 Example 18.13  A trapezoidal channel with side slopes of 1:1 has to be designed to convey 10 m3/s of water at a velocity 
of 2 m/s so that the amount of concrete lining for the bed and sides is minimum. Determine the area of lining for one metre 
length of the canal.
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Solution
Let n = 1, Q = 10 m /s3  and V = 2 m/s .

A
Q

V
= = =

10

2
5 m2

Since 
b ny

y n
+

= +
2

2
12   [Most economical section]

Thus 
b y

y
+ × ×

= +
2 1

2
1 12

b y y+ =2 2 2

∴ = − =b y y( ) .2 2 2 0 828

A b ny y y y y y= + = + =( ) ( . ) .0 828 1 828 2

Thus 5 1 828 2= . y

∴ = =y
5

1 828.
1.654 m

b y= = × =0 828 0 828 1 654. . . 1.3695 m

Area of lining required for one metre length of canal is given by,

a P b y n= × = + + = + × × + =1 2 1 1 3695 2 1 654 1 12 2( ) ( . . ) 6.048 m

18.5.3 Most Economical Circular Channel Section
Figure 18.8 shows a circular channel through which water is flowing. Let R be the radius of the channel, D  be its diameter, 
y  be the depth of flow, 2α  be the angle in radians subtended by water surface AB at the centre, P  be the wetted perimeter, 
A be the wetted area and i  be the slope of the bed.

 
P

R
R= = × =Length of arc

2

2
2 2

π
π

α α  (18.13)

 A ACBA OACB OAB= = −Area Area of Area ofsec Δ

 
A

R
AB OM R MB OM= × − × = − × ×

π
π

α α
2

2

2
2

1

2

1

2
2  [ ]∵ AB MB= 2

Now MB R= sinα  and OM R= cosα

Thus A R R R R R= − × × = − ×2 2 21

2
2

1

2
2α α α α α αsin cos sin cos

 A R R R= − = −⎛
⎝⎜

⎞
⎠⎟

2 2 21

2
2

2

2
α α α α

sin
sin

 (18.14)

y

A B

C

O

M

R

αα2

Figure 18.8 Circular channel
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Hydraulic radius is given by,

 m
A

P

R

R

R
= =

−⎛
⎝⎜

⎞
⎠⎟

= −⎛
⎝⎜

⎞
⎠⎟

2 2

2

2 2

2

2

α α

α α
α α

sin
sin

 (18.15)

The discharge is given by,

Q AC mi=

For a circular pipe, the shape of the flow area varies with the depth of flow. Thus, both the wetted area as well as the wetted 
perimeter varies with the depth of flow and the condition of area of flow being constant cannot be applied. Therefore, in 
the case of circular pipes two separate conditions, namely maximum velocity of flow and maximum discharge are to be 
derived.

 (i) Condition for maximum velocity: The velocity of flow is given by Equation (18.1) as follows.

V C mi C
A

P
i= = ×

  For a given value of C  and i, the velocity will be maximum when ( )A P/  is maximum which varies with α .

  Thus 
d A P

d

( )/

α
= 0  (i)

P
dA

d
A

dP

d

P

α α
−

=
2

0

  or P
dA

d
A

dP

dα α
− = 0 (ii)

  Differentiating Equation (18.14), we get:

dA

d
R

α
α= −( )2 1 2cos

  Differentiating Equation (18.13), we get:

dP

d
R

α
= 2

  Substituting the values of P , ( )dA d/ α , A and ( )dP d/ α  in expression (ii), we get:

2 1 2
2

2
2 02 2R R R Rα α α α

[ ( cos )]
sin

− − −⎛
⎝⎜

⎞
⎠⎟

=

2 1 2 2
2

2
03 3R Rα α α α

( cos )
sin

− − −⎛
⎝⎜

⎞
⎠⎟

=

α α α α
( cos )

sin
1 2

2

2
0− − −⎛

⎝⎜
⎞
⎠⎟

=

M18 Fluid Mechanics and Hydraulic Machines XXXX 01.indd   17 4/5/2019   12:37:24 PM

Download more at Learnclax.com



18.18 Chapter 18

α α α α α
− − + =cos

sin
2

2

2
0

α α α α
α

αcos
sin sin

cos
2

2

2

2

2
2= ⇒ =

tan 2 2α α=

  By hit and trial method, the solution is given by,

2 257 5 128 75α α= ° ⇒ =. . °

  Now y OC OM R R R= − = − = −cos ( cos )α α1

  Thus y R R D= − ° ≈ ≈( cos . ) . .1 128 75 1 62 0 81  (18.16)

  In other words, maximum velocity will occur when the depth of flow is 0.81 times the diameter of the circular pipe.

 α π
= ° = × =128 75 128 75

180
2 247. . . radians  (18.17)

  Hydraulic radius for maximum velocity is given by substituting the values of α  in Equation (18.15) as follows.

 m
R

R D=
×

× − °⎛
⎝⎜

⎞
⎠⎟

≈ ≈
2 2 247

2 247
257 5

2
0 6 0 3

.
.

sin .
. .  (18.18)

  Thus, in a circular channel for maximum velocity, the hydraulic radius is equal to 0.3 times of its diameter.

 (ii) Condition for maximum discharge: The discharge is given by Equation (18.2) as follows.

Q AC mi C
A

P
i= = ×

3

  [ ]∵m A P= /

  For a given value of C  and i, the discharge will be maximum when ( )A P3 /  is maximum which varies with α .

  Thus 
d A P

d

( )3

0
/

α
=

P A
dA

d
A

dP

d

P

× −
=

3
0

2 3

2
α α

  or 3 02 3PA
dA

d
A

dP

dα α
− =

 
3 0P

dA

d
A

dP

dα α
− =  (i)

  Differentiating Equation (18.14), we get:

dA

d
R

α
α= −( )2 1 2cos
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 Flow in Open Channels 18.19

  Differentiating Equation (18.13), we get:
dP

d
R

α
= 2

  Substituting values of P , ( )dA d/ α , A and ( )dP d/ α  in expression (i), we get:

3 2 1 2
2

2
2 02 2× − − −⎛

⎝⎜
⎞
⎠⎟

=R R R Rα α α α
[ ( cos )]

sin

6 1 2 2
2

2
03 3R Rα α α α

( cos )
sin

− − −⎛
⎝⎜

⎞
⎠⎟

=

3 1 2
2

2
0α α α α

( cos )
sin

− − −⎛
⎝⎜

⎞
⎠⎟

=

3 3 2
2

2
0α α α α α

− − + =cos
sin

2 3 2
2

2
0α α α α

− + =cos
sin

4 6 2 2 0α α α α− + =cos sin

  By hit and trial method, the solution is given by,

2 308 154α α= ° ⇒ = °

  Now y OC OM R R R= − = − = −cos ( cos )α α1

  Thus y R R D= − ° ≈ ≈( cos ) . .1 154 1 9 0 95  (18.19)

  In other words, maximum discharge will occur when the depth of flow is 0.95 times the diameter of the circular pipe.

 α π
= ° = × =154 154

180
2 6878. radians  (18.20)

  Hydraulic radius for maximum discharge is given by substituting the values of α  in Equation (18.15) as follows.

 m
R

R D=
×

× − °⎛
⎝⎜

⎞
⎠⎟

≈ ≈
2 2 6878

2 6878
308

2
0 58 0 29

.
.

sin
. .  (18.21)

  Thus, in a circular channel for maximum discharge, the hydraulic radius is equal to 0.29 times of its diameter.

 Example 18.14  A circular pipe of diameter 4 m is laid at a slope of 1 in 1200. Determine the discharge through the pipe 
if the depth of water in it is 1.5 m and Chezy’s constant is 65.

Solution
Refer Figure 18.8. Let D = 4 m, i = ( )1 1200/ , MC y= = 1 5. m and C = 65.

R
D

= = =
2

4

2
2 m

OM OC MC R= − = − = − =1 5 2 1 5 0 5. . . m
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cos
.

.α = = =
OM

OB

0 5

2
0 25

∴ = = ° = × =−α π
cos ( . ) . . .1 0 25 75 52 75 52

180
1 3181 radians

P R= = × × =2 2 2 1 3181 5 2724α . . m

A R= −⎛
⎝⎜

⎞
⎠⎟

= × −
× °⎡

⎣⎢
⎤
⎦⎥

=2 22

2
2 1 3181

2 75 52

2
4 304α αsin

.
sin( . )

. m2

m
A

P
= = =

4 304

5 2724
0 8163

.

.
.

Q AC mi= = × × =4 304 65
0 8163

1200
.

.
7.2966 m /s3

 Example 18.15  Determine the velocity and discharge for the conditions of maximum velocity and maximum discharge 
for a concrete lined circular channel of diameter 4 m having a bed slope of 1 in 750. Take Chezy’s constant as 55.

Solution
Let D = 4 m, i = ( )1 750/  and C = 55.

R
D

= = =
2

4

2
2 m

 (i) For maximum velocity, we get:

α π
= ° = × =128 75 128 75

180
2 2471. . . radians

P R= = × × =2 2 2 2 2471 8 9884α . . m

A R= −⎛
⎝⎜

⎞
⎠⎟

= × −
× °⎡

⎣⎢
⎤
⎦⎥

=2 22

2
2 2 2471

2 128 75

2
10 941α αsin

.
sin( . )

. m22

m
A

P
= = =

10 941

8 9884
1 2172

.

.
.

V C mi= = × =55
1 2172

750

.
2.2157 m/s

Q AV= = × =10 941 2 2157. . 24.242 m /s3

 (ii) For maximum discharge, we get:

α π
= ° = × =154 154

180
2 68781. radians

A R= −⎛
⎝⎜

⎞
⎠⎟

= × −
× °⎡

⎣⎢
⎤
⎦⎥

=2 2 22

2
2 2 68781

2 154

2
12 3273α αsin

.
sin( )

. m
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 Flow in Open Channels 18.21

P R= = × × =2 2 2 2 68781 10 75124α . . m

m
A

P
= = =

12 3273

10 75124
1 1466

.

.
.

V C mi= = × =55
1 1466

750

.
2.1505 m/s

Q AV= = × =12 3273 2 1505. . 26.51 m /s3

18.6 ❐ NON-UNIFORM FLOW THROUGH OPEN CHANNELS
In non-uniform flow, the water surface in the open channels does not remain parallel to the bed and the velocity varies from 
section to section. A non-uniform flow is also known as the varied flow (or the flow of varying depth) and it may be rapidly 
varied flow (R.V.F.) or gradually varied flow (G.V.F.). A flow is called rapidly varied flow when the depth of flow changes 
abruptly over a small length of the channel, whereas a flow is said to be gradually varied flow when the depth of flow in a 
channel changes gradually over a long length of channel.

18.6.1 Specific Energy Curve
The curve showing the variation of specific energy with the depth of flow is called specific energy curve. The specific 
energy ( )e  is the total energy of flow per unit weight with the channel bed taken as the datum and it is given by the follow-
ing expression.

 e e e y
V

gp k= + = + = +P.E. of flow K.E. of flow
2

2
 (18.22)

Here, y  is the depth of flow and V  is the average velocity of flow.
Consider a steady but non-uniform flow through a rectangular section of width b and depth of flow y .
The discharge ( )Q  through the channel is given by,

Q AV by V= = ×

The discharge per unit width is given by,

 q
Q

b

byV

b
yV= = =  (18.23)

V
Q

A

Q

by

q

y
= = =

Substituting the value of V q y= ( )/  in Equation (18.22), we get:

 e y
q y

g
y

q

gy
= + = +

( / )2 2

22 2
 (18.24)

The Equation (18.24) gives the variation of specific energy with the depth of flow. This equation can also be represented 
graphically as a plot of specific energy versus the depth of flow as shown in Figure 18.9. Such a plot is called specific 
energy curve.
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18.22 Chapter 18

The specific energy curve may also be obtained by first drawing a curve for potential energy ( )ep  which is a straight line 
passing through the origin at 45o with the x-axis and then drawing another curve for kinetic energy ( )ek  which will be a 
parabola. By combining these two curves the resultant curve called specific energy curve can be obtained (Figure 18.9). 
Generally, for a particular value of specific energy, there are two values of the depth which are known as alternate or con-
jugate depths. There is a certain depth at which the specific energy is minimum which is known as critical depth ( )yc  and 
the corresponding velocity is known as critical velocity ( )Vc .

18.6.2 Critical Depth
The critical depth ( )yc  can be obtained from Equation (18.24) as given below.

d e

dy

d

dy
y

q

gy

[ ]
= +

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
2

22
0

1 0
2

3
3

2

− = ⇒ =
q

gy
y

q

g

y
q

g
=

⎛

⎝
⎜

⎞

⎠
⎟

2 1 3/

Thus y
q

gc =
⎛

⎝
⎜

⎞

⎠
⎟

2 1 3/

 (18.25)

18.6.3 Critical Velocity
The critical velocity can be obtained as given below.

 y
q

gc
3

2

=  (18.26)

gy qc
3 2=

y

e

Specific
energy curve

ep
ek

emin

yc
y1

y2
e

45°

Figure 18.9 Specific energy curve
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gy y Vc c c
3 2= ( )   [ ]∵q y Vc c=

V gyc c
2 =

 
∴ =V gyc c  (18.27)

V

gy
c

c

= 1

Thus Fr
V

gy
c

c

= = 1 (18.28)

Therefore, the Froude number for critical flow is unity.

18.6.4 Sub-Critical Flow
The flow is sub-critical (or streaming or tranquil) when the depth of flow in a channel is more than the critical depth. For 
this type of flow Fr < 1.

18.6.5 Super-Critical Flow
The flow is super-critical (or shooting or torrential) when the depth of flow in a channel is less than the critical depth. For 
this type of flow Fr > 1.

18.6.6 Minimum Specific Energy in Terms of Critical Depth
When specific energy is minimum, the depth of flow is critical and thus, the minimum specific energy ( )mine  can be 
expressed in terms of critical depth from Equation (18.24) as given below.

e y
q

gy
c

c
min = +

2

22

Substituting Equation (18.26) in the above expression, we get:

 e y
y

y
y

y
yc

c

c
c

c
cmin .= + = + =

3

22 2
1 5   [ / ]∵ y q gc

3 2=  (18.29)

18.6.7 Condition for Maximum Discharge for a Given Value of Specific Energy
The specific energy is given by Equation (18.24) as follows.

e y
q

gy
y

Q

b gy
y

Q

gb y
= + = + ⎛

⎝⎜
⎞
⎠⎟

= +
2

2

2

2

2

2 22

1

2 2
  [ / ]∵q Q b=

Thus Q e y gb y b g ey y= − = −( ) ( )2 22 2 2 3

For maximum discharge, the term ( )ey y2 3−  in the above expression should be maximum and it is given below.

d

dy
ey y ey y[ ]2 3 20 2 3 0− = ⇒ − =

M18 Fluid Mechanics and Hydraulic Machines XXXX 01.indd   23 4/5/2019   12:38:03 PM

Download more at Learnclax.com



18.24 Chapter 18

2 3 0e y− =

 ∴ =e y1 5.  (18.30)

Thus, the specific energy is 1.5 times of the depth of flow. However, from Equation (18.29), we can see that specific energy 
is minimum when it is equal to 1.5 times the value of depth of critical flow. Hence, the condition for maximum discharge 
for a given value of specific energy is that the depth of flow should be critical.

 Example 18.16  The flow of water through a 6 m wide channel is 15 m3/s. If the depth of water in the channel is 0.5 m, 
then determine (i) the specific energy of the flow, (ii) critical depth, (iii) critical velocity and (iv) minimum specific energy. 
(v) Also state whether the flow is sub-critical or super-critical.

Solution
Let b = 6 m, Q = 15 m /s3  and y = 0 5. m.

 (i) q
Q

b
= = =

15

6
2 5. m /s per m3

V
q

y
= = =

2 5

0 5
5

.

.
m/s

e y
V

g
= + = +

×
=

2 2

2
0 5

5

2 9 81
.

.
1.7742 m

 (ii) y
q

gc =
⎛

⎝
⎜

⎞

⎠
⎟ =

⎛

⎝
⎜

⎞

⎠
⎟ =

2 1 3 2 1 3
2 5

9 81

/ /
.

.
0.8605 m

 (iii) V gyc c= = × =9 81 0 8605. . 2.9054 m/s

 (iv) e ycmin . . .= = × =1 5 1 5 0 8605 1.29075 m

 (v) Fr
V

gy
= =

×
=

5

9 81 0 5
2 258

. .
.

  Since Fr >> 1 , thus flow is super-critical.

 Example 18.17  Determine the maximum possible discharge if the specific energy for a 4 m wide channel is to be  
4 Nm/N.

Solution
Let b = 4 m and e = 4 Nm/N.

y ec = = × =
2

3

2

3
4 2 667. m

V gyc c= = × =9 81 2 667. . 5.115 m/s

Q by Vc cmax . .= = × × =4 2 667 5 115 54.56682 m /s3

 Example 18.18  Water flows at a steady and uniform depth of 2 m in an open channel of rectangular cross section having 
base width equal to 5 m and laid at a slope of 1 in 1000. It is desired to obtain critical flow in the channel by providing a 
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 Flow in Open Channels 18.25

hump in the bed. Calculate the height of the hump. Consider the value of Manning’s rugosity coefficient as 0 02.  for the 
channel surface.

Solution
Let y = 2 m, b = 5 m, i = ( )1 1000/  and N = 0 02. .

Let h be the height of hump.

A by= = × =5 2 10 2m

P b y= + = + × =2 5 2 2 9 m

m
A

P
= = =

10

9
1 111. m

Since Q AC mi A
m

N
mi A

m

N
i= = × × = × ×

1 6 2 3/ /

∴ = × × =Q 10
1 111

0 02

1

1000
16 961

2 3.

.
.

/

m /s3

V
Q

A
= = =

16 961

10
1 6961

.
. m/s

q
Q

b
= = =

16 961

5
3 3922

.
. m /s per m3

∴ =
⎛

⎝
⎜

⎞

⎠
⎟ =

⎛

⎝
⎜

⎞

⎠
⎟ =y

q

gc

2 1 3 2 1 3
3 3922

9 81

/ /
.

.
1.0546 m

e ycmin . . .= = × =1 5 1 5 1 0546 1.5819 m

e y
V

g
= + = +

×
=

2 2

2
2

1 6961

2 9 81

.

.
2.1466 m

h e e= − = − =min . .2 1466 1 5819 0.5647 m

18.7 ❐ HYDRAULIC JUMP
It can be seen from the specific energy curve (Figure 18.9) that for a particular specific energy ( ),e  there are two possi-
ble depths y1 and y2 such that y yc1 <  and y yc2 > , here yc is the critical depth. The flow will be shooting flow when 
y yc< , whereas it will be streaming flow when y yc> . Such flows occur when the water flows over a dam as shown in  
Figure 18.10.

The shooting flow (supercritical flow) is unstable and always has a tendency to convert itself into stable streaming flow 
(sub-critical flow) by increasing its depth on the downstream side. This phenomenon of sudden increase in depth of water 
flow is termed as hydraulic jump. Due to its wave motion and stationary position, the hydraulic jump is also known as 
standing wave. In practice, hydraulic jump occurs at the toe of spillways or below a sluice gate.
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18.7.1 Depth of Hydraulic Jump
The assumptions for the analysis of hydraulic jump are (i) the friction at the walls and channel bed is negligible, (ii) the slope 
of the channel bed is small and thus, the component of the weight of fluid in the flow direction is neglected and (iii) the flow 
is uniform and pressure distribution is hydrostatic before and after the jump.

Consider the sections 1–1 and 2–2 before and after the hydraulic jump, respectively, as shown in Figure 18.10. Let y1 
be the depth of flow, V1 be the velocity of flow, A1 be the cross-sectional area, F1 be the pressure force and yG1 be the depth 
of centroid of area below free water surface at section 1–1 and y2, V2, A2, F2  and yG2  be the corresponding values at  
section 2–2.

Discharge per unit of width ( )q  is given by,

q V y V y= =1 1 2 2

Thus V q y1 1= ( )/  and V q y2 2= ( )/

The pressure forces at sections 1–1 and 2–2 are respectively given by,

F gA y g y
y

gyw G w w1 1 1 1
1

1
21

2

1

2
= = × × × =ρ ρ ρ( )

F gA y g y
y

gyw G w w2 2 2 2
2

2
21

2

1

2
= = × × × =ρ ρ ρ( )

Thus, net force F F F= −( )2 1  acting on the mass of water between sections 1-1 and 2-2 is given below.

 
F gy gy g y yw w w= − = −

1

2

1

2

1

22
2

1
2

2
2

1
2ρ ρ ρ ( )  (i)

Dam

y1 < yc

y2 > yc

F1

F2

Supercritical
flow

Sub-critical
flow

Transition

Free water surface

yj

lj

1

1

2

2

Figure 18.10 Hydraulic jump
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Rate of change of momentum in the direction of force is given by,

= ×Mass of water per second Change in velocity in direction of force

 = × × × − = − = −
⎛
⎝⎜

⎞
⎠⎟

( ) ( ) ( )ρ ρ ρw w wq V V q V V q
q

y

q

y
1 1 2 1 2

1 2
 (ii)

According to impulse-momentum equation, the net force acting on the mass of water is equal to the rate of change of 
momentum in the direction of force. Thus, by equating the expressions (i) and (ii), we get the below expression.

1

2 2
2

1
2

1 2
ρ ρw wg y y q

q

y

q

y
( )− = −

⎛
⎝⎜

⎞
⎠⎟

1

2 2 1 2 1
2 2 1

1 2
g y y y y q

y y

y y
( )( )+ − =

−⎛
⎝⎜

⎞
⎠⎟

g
y y

q

y y2 2 1

2

1 2
( )+ =

 ( )y y
q

gy y2 1

2

1 2

2
+ =  (iii)

y y y q gy2
2

1 2
2

12+ = [( ) / ( )]  [Multiplying both sides byy2]

y y y q gy2
2

1 2
2

12 0+ − =[( ) / ( )]

Thus y
y y q gy

2
1 1

2 2
14 1 2

2 1
=

− ± + × ×
×

[( ) / ( )]

 
Neglecting negative root, we get:

y
y y q

gy

y y V y

gy2
1 1

2 2

1

1 1
2

1 1
2

12 4

2

2 4

2
=

−
+ + =

−
+ +

( )

 ∴ =
−

+ +y
y y V y

g2
1 1

2
1
2

1

2 4

2
 (18.31)

Thus, the depth (height) of hydraulic jump ( )y j  is given by,

 y y yj = −2 1  (18.32)

The upstream Froude number ( )Fr1  is given by,

Fr
V

gy
1

1

1

=  or ( )Fr
V

gy1
2 1

2

1
=

Thus, Equation (18.31) can also be expressed in terms of upstream Froude number ( )Fr1  as given below.

y
y y V y

g

y y V

gy

y y
Fr2

1 1
2

1
2

1 1 1 1
2

1

1 1
1
2

2 4

2

2 2
1

8

2 2
1 8=

−
+ + =

−
+ + =

−
+ +( )
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or y
y

Fr2
1

1
2

2
1 8 1= + −⎡

⎣⎢
⎤
⎦⎥

( )  (18.33)

Strength of the jump is given by,

 y
y

ys = 2

1
 (18.34)

18.7.2 Length of Hydraulic Jump
The distance between the sections over which the hydraulic jump takes place is known as length of the hydraulic jump ( )l j  
as shown in Figure 18.10. The length of the hydraulic jump for rectangular channels with horizontal floor varies from 5 to 
7 times of the depth of the hydraulic jump, i.e., l yj j= 5 7to .

18.7.3 Loss of Energy Due to Hydraulic Jump
During hydraulic jump, eddying turbulence causes considerable head or energy losses ( )eL  from the flowing water. This 
energy loss would be equal to the difference of specific energies at the upstream section (section 1–1) and downstream 
section (section 2–2) of the jump, i.e., e e eL = −( )1 2 . Thus, the expression for energy loss due to hydraulic jump is given 
below.

e e e y
q

gy
y

q

gy

q

g y y
L = − = +

⎛

⎝
⎜

⎞

⎠
⎟ − +

⎛

⎝
⎜

⎞

⎠
⎟ = −

⎡

⎣
1 2 1

2

1
2 2

2

2
2

2

1
2

2
22 2 2

1 1
⎢⎢
⎢

⎤

⎦
⎥
⎥

− −( )y y2 1

Substitute q gy y y y2
1 2 2 11 2= +( / ) ( ) obtained from (iii) in the above expression, we get:

e
gy y y y

g

y y

y y
y yL =

+ −⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

− −
( / ) ( )

( )
1 2

2
1 2 2 1 2

2
1
2

1
2

2
2 2 1

e
y y y y y y

y y
y y y y

y y

y yL =
+

×
+ −

− − = −
+( ) ( )( )

( ) ( )
( )2 1 2 1 2 1

1 2
2 1 2 1

2 1
2

14 4 22
1−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

e y y
y y y y y y

y y
y y

y y
L = −

+ + −⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= −
+ −

( ) ( )2 1
2

2
1
2

2 1 1 2

1 2
2 1

2
2

1
22 4

4

22

4
2 1

1 2

y y

y y

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 ∴ = −
−

=
−

e y y
y y

y y

y y

y yL ( )
( ) ( )

2 1
2 1

2

1 2

2 1
3

1 24 4
 (18.35)

Power dissipated in hydraulic jump is given by,

 P
gQe

kWw L=
ρ

1000
 (18.36)

 Example 18.19  A 2.5 m wide rectangular channel conveys 7.2 m3/s of water. If the velocity of water before the jump 
is 4.8 m/s, then find (i) the condition for hydraulic jump to happen (ii) the height, length and strength of the jump and  
(iii) the loss of energy per kg of water.
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 Flow in Open Channels 18.29

Solution
Let b = 2 5. m, Q = 7 2. m /s3  and V1 4 8= . m/s.

 (i) q
Q

b
= = =

7 2

2 5
2 88

.

.
. m /s per m3

y
q

V1
1

2 88

4 88
0 5902= = =

.

.
. m

y
q

gc =
⎛

⎝
⎜

⎞

⎠
⎟ =

⎛

⎝
⎜

⎞

⎠
⎟ =

2 1 3 2 1 3
2 88

9 81
0 9456

/ /
.

.
. m

  Since y yc1 << , a jump would occur.

 (ii) Fr
V

gy
1

1

1

4 8

9 81 0 5902
1 995= =

×
=

.

. .
.

y
y

Fr2
1

1
2 2

2
1 8 1

0 5902

2
1 8 1 995 1 1 396= + − = × + × − =[ ( ) ]

.
[ ( . ) ] . m

∴ = − = − =y y yj 2 1 1 396 0 5902. . 0.8058 m

∴ ≈ = × =l yj j6 6 0 8058. 4.8348 m

y
y

ys = = =2

1

1 396

0 5902

.

.
2.3653

 (iii) e
y y

y yL =
−

=
−

× ×
=

( ) ( . . )

. .
2 1

3

1 2

3

4

1 396 0 5902

4 0 5902 1 396
0.159 m

 Example 18.20  A hydraulic jump takes place in a 0.6 m wide rectangular channel at a point where the depth of water 
flow is 0.16 m and the Froude number is 2.4. Find (i) the specific energy, (ii) critical and sequent depth, (iii) loss of head 
and (iv) power dissipated in jump.

Solution
Let b = 0 6. m , y1 0 16= . m and Fr1 2 4= . .

Since Fr
V

gy
1

1

1

=

∴ = × = × × =V Fr gy1 1 1 2 4 9 81 0 16. . . 3.01 m/s

q V y= = × =1 1 3 01 0 16. . 0.4816 m /s per m3

 (i) e y
V

g1 1
1
2 2

2
0 16

3 01

2 9 81
= + = +

×
=.

.

.
0.6218 m

M18 Fluid Mechanics and Hydraulic Machines XXXX 01.indd   29 4/5/2019   12:38:48 PM

Download more at Learnclax.com



18.30 Chapter 18

 (ii) y
q

gc =
⎛

⎝
⎜

⎞

⎠
⎟ =

⎛

⎝
⎜

⎞

⎠
⎟ =

2 1 3 2 1 3
0 4816

9 81

/ /
.

.
0.287 m

  Sequent depth ( )y2  is given as,

y
y

Fr2
1

1
2 2

2
1 8 1

0 16

2
1 8 2 4 1= + − = × + × − =[ ( ) ]

.
[ ( . ) ] 0.4689 m

(iii) e
y y

y yL =
−

=
−

× ×
=

( ) ( . . )

. .
2 1

3

1 2

3

4

0 4689 0 16

4 0 16 0 4689
0.0982 m

 (iv) Q A V by V= × = × = × × =1 1 1 1 0 6 0 16 3 01. . . 0.289 m /s3

∴ = =
× × ×

=P
gQew Lρ

1000

1000 9 81 0 289 0 0982

1000

. . .
0.2784 kW

Summary

 1. The flow of water through a passage in which free liquid 
surface is open to atmosphere is called open channel flow.

 2. When the flow characteristics at any point in the flow do not 
change with respect to time, then the flow is called steady. 
Otherwise, it is called unsteady flow.

 3. When the depth, slope, cross section, and the velocity of 
flow for a given length of a channel remain constant, then the 
flow is called uniform. Otherwise, it is called non-uniform 
flow.

 4. Reynolds number (Re)  can be given as Re [( ) ]= ρ μVm / , here 
ρ is the density of the liquid, V  is the average velocity of 
flow, μ  is the viscosity of the liquid and m  is the hydraulic 
radius that can be defined as the ratio of cross-sectional area 
of flow to the wetted perimeter, i.e., m A P= ( )/ .

 5. In open channel flow, (i) for laminar flow: Re < 500,  
(ii) for turbulent flow: Re > 2000 , (iii) for transitional flow: 
500 2000< <Re .

 6. Froude number can be given as Fr V gD= [ ]/ , here V  is the 
mean velocity of flow, g is acceleration due to gravity and D 
is the hydraulic depth of channel section which is defined as 
the ratio of wetted area to the top width of the channel, i.e., 
D A T= ( )/ .

 7. (i) For sub-critical flow: Fr < 1, (ii) for critical flow: Fr = 1, 
(iii) for supercritical flow: Fr > 1.

 8. Discharge ( )Q  through the channel is given by Chezy’s for-

mula as Q AC mi= , here A is the wetted cross-sectional 
area of channel, C  is the Chezy’s constant, m A P= ( )/  is the 
hydraulic radius and i is the slope of the bed of the channel.

 9. The value of C  can be determined by the following empirical 
formulae:

    (i) C
k m

=
+
157 6

1 81

.

. ( )/
 (Bazin formula)

       Here, k  is the Bazin’s constant.

   (ii) C
i N

i N m
=

+ +
+ + ×

23 0 00155 1

1 23 0 00155

( . ) ( )

[ ( . )] ( )

/ /

/ /
 (Kutter’s formula)

       Here, N  is the Kutter’s constant

  (iii) C m N= 1 6/ /  (Manning’s formula)

      Here, N  is the Manning’s constant

 10. The channel cross section corresponding to the minimum 
perimeter for a given flow area is called the most economical 
section.

 11. The rectangular channel section will be most economical 
when the depth of flow is equal to half the base width or the 
hydraulic radius is equal to half the depth of flow.

 12. The trapezoidal channel section will be most economical 
when half of the top width is equal to one of the sloping 

sides, i.e., ( )b ny y n+ = +2 2 12/  and the hydraulic radius 
is half of the flow depth, i.e., m y= /2.

 13. The best side slope for trapezoidal channel section is at 60° 
to the horizontal.

 14. Maximum velocity through a circular channel will occur 
when the depth of flow is 0.81 times the diameter of the cir-
cular pipe and m D= 0 3. .
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 Flow in Open Channels 18.31

 15. Maximum discharge through a circular channel will occur 
when the depth of flow is 0.95 times the diameter of the cir-
cular pipe and m D= 0 29. .

 16. Specific energy curve: Curve showing specific energy vari-
ation with depth of flow.

 17. Specific energy: e y q gy= + 2 22/( ), here q  is the discharge 
per unit width.

 18. Critical depth: y q gc = ( )2 1 3
/

/
 and

  critical velocity: V gyc c=

 19. Minimum specific energy: e ycmin .= 1 5

 20. Condition for maximum discharge for a given value of spe-
cific energy: e y= 1 5.  or the depth of flow should be critical

 21. The phenomenon of sudden increase in depth of water 
flow due to conversion of shooting flow (supercritical flow) 
into stable streaming flow (sub-critical flow) is termed as  
hydraulic jump.

 22. The depth (height) of hydraulic jump ( )y j  is given as 
y y yj = −2 1 , here y1 is the depth of flow upstream to the 
jump and y2 is the depth of flow downstream to the jump 
and it given by the following expressions.

y
y y V y

g2
1 1

2
1
2

1

2 4

2
=

−
+ +  and y

y
Fr2

1
1
2

2
1 8 1= +( ) −⎡

⎣⎢
⎤
⎦⎥

 23. Strength of the jump is given by y y ys = 2 1/ .

 24. The distance between the sections over which the hydraulic 
jump takes place is known as length of the hydraulic jump 
( )l j . For rectangular channels with horizontal floor, it is 
given by l yj j= 5 7to .

 25. Energy loss due to hydraulic jump: e y y y yL = −( ) ( )2 1
3

1 24/

 26. Power dissipated in hydraulic jump:

   P gQew L= [( ) ]ρ / kW1000

Multiple-choice Questions

 1. In an open channel, the conjugate depths of flow are the 
depths
(a) At which total energy is same.
(b) Of same specific force.
(c) Which occur at the same specific energy.
(d) None of the above.

 2. The specific energy at the critical depth will be
(a) Unity.
(b) Minimum.
(c) Maximum.
(d) None of the above.

 3. The channel flow is sub-critical when Froude number ( )Fr
(a) Fr > 1.

(b) Fr = 1.

(c) Fr < 1.
(d) None of the above.

 4. In most economical rectangular channel section, the depth is 
kept equal to
(a) Hydraulic mean depth.
(b) One third of the width.
(c) One fourth of the width.
(d) Half the width.

 5. When Froude number is equal to unity, the flow in open 
channel is

(a) Tranquil flow.
(b) Streaming flow.
(c) Shooting flow.
(d) Critical flow.

 6. The best side slope with the horizontal for the most econom-
ical trapezoidal channel is
(a) 60°.
(b) 45°.
(c) 30°.
(d) None of the above.

 7. The discharge through a trapezoidal channel is maximum 
when
(a) Half of top width is equal to sloping side.
(b) Top width is equal to half of sloping side.
(c) Top width is 1.5 times the sloping side.
(d) None of the above.

 8. The wetted perimeter for a circular channel in terms of 
radius ( )R  and angle ( )α  is equal to
(a) Rα .

(b) 2Rα .

(c) Rα /2 .

(d) 3Rα .

Review Questions

 1. What do you mean by flow in open channel? What are the 
types of flow in open channels? Why bed slope is provided 
in open channels?

 2. Define the following terms, (i) depth of flow, (ii) top width, 
(iii) wetted area, (iv) wetted perimeter, (v) hydraulic radius 
and (vi) hydraulic depth.
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18.32 Chapter 18

 3. Derive an expression for the Chezy’s formula.

 4. Define the term most economical section of a channel. How 
it is determined for rectangular channel section?

 5. Show that the hydraulic mean depth of a trapezoidal channel 
having the best proportion is half of the minimum depth.

 6. Prove that for the trapezoidal channel of most economical 
section half of top width is equal to length of one of the 
sloping side.

 7. Derive the condition for the best side slope of the most eco-
nomical trapezoidal channel section.

 8. State and prove the conditions of maximum discharge and 
maximum velocity for circular channel section.

 9. What do you mean by specific energy? Also explain a spe-
cific energy curve.

 10. Derive expressions for critical depth and critical velocity.

 11. Derive an expression for minimum specific energy in terms 
of critical depth.

 12. Derive an expression for conditions of maximum discharge 
for a given value of specific energy.

 13. Define hydraulic jump. Derive expressions for height of 
hydraulic jump and energy loss during it.

Problems

 1. Calculate the rate of flow and conveyance for a rectangular 
channel 7 m wide and at a depth of 2 m for uniform flow. 
The bed slope of the channel is 1 in 1000 and the Chezy’s 
constant is 55. Also state whether the flow is tranquil or rapid 
in nature.

[Ans. 27.468 m3/s, 868.77, tranquil]

 2. Determine the discharge through a rectangular channel 3 m 
wide if the depth of water is 2 m and the bed slope is 1 in 
2000. Take the value of Bazin’s constant as 2.36.

[Ans. 4.49 m3/s]

 3. Using Kutter’s formula, determine the flow rate for a rec-
tangular channel having depth of water 3 m, width 4 m, bed 
slope 1 in 2000 and Kutter’s constant N = 0 03. .

[Ans. 10.185 m3/s]

 4. Find the discharge through a rectangular channel if its width 
is 2 m, bed slope is 1 in 1500, depth of flow is 1.5 m and the 
Manning’s constant is 0.012.

[Ans. 4.5924 m3/s]

 5. Calculate the bed slope of a trapezoidal channel 5 m wide at 
base and having 3 m depth of water if the side slope is 2 hori-
zontal to 3 vertical and the discharge through the channel is 
25 m3/s. Use Manning’s formula and take constant as 0.03.

[Ans. 1/1612.9]

 6. A rectangular channel is to be dug in the rocky portion of a 
soil. Determine its most economical section if it is to carry 
10000 litres of water per second with an average velocity of 
4 m/s. Take Chezy’s constant as 50.

[Ans. 2.236 m, 1.118 m, (1/87.34)]

 7. A rectangular channel having a bed slope of 1 in 2000 is 
3 m wide. Determine the maximum discharge through the 
channel if Chezy’s constant is 50.

[Ans. 4.357 m3/s]

 8. Determine the most economical section of rectangular chan-
nel carrying water at a rate of 0.5 m3/s when bed slope is 1 
in 2000 and Chezy’s constant is 50.

[Ans. 0.631 m, 1.262 m]

 9. A trapezoidal channel has side slopes of 3 horizontal to  
4 vertical and the slope of its bed is 1 in 2000. Determine the 
optimum dimensions of the channel, if it is to carry water at 
0.5 m3/s. Take Chezy’s constant as 80.

[Ans. 0.55 m]

 10. A trapezoidal channel having the side slope equal to 60° 
with the horizontal and laid on a slope of 1 in 750, carries 
a discharge of 10 m3/s. Determine the width at the base 
and depth of flow for most economical cross section. Take 
Chezy’s constant as 66.

[Ans. 1.63 m, 1.88 m]

 11. An open channel of most economical section having the 
form of a half hexagon with horizontal bottom is required to 
give a maximum discharge of 8.5 m3/s of water. The slope of 
the channel bottom is 1 in 2500. Determine the dimensions 
of the cross section taking Chezy’s constant as 60.

[Ans. 2.02 m, 2.33 m]

 12. A trapezoidal channel is designed to carry 2.4 m3/s of water 
for minimum cross section. Determine the bottom width and 
depth if the bed slope is 1 in 1000, the side slopes are at 45° 
and the Chezy’s coefficient is 56.

[Ans. 1.02 m, 0.844 m]

 13. A trapezoidal channel has side slopes of 1 horizontal to 2 
vertical and the slope of the bed is 1 in 1500. The area of the 
section is 40 m2. Determine the dimensions of the section 
if it is most economical. Also find the discharge of the most 
economical section when the Chezy’s constant is 54.

[Ans. 4.8 m, 5.93 m, 86.4 m3/s]

M18 Fluid Mechanics and Hydraulic Machines XXXX 01.indd   32 4/5/2019   12:39:11 PM

Download more at Learnclax.com



 Flow in Open Channels 18.33

 14. A pipe of 2 m diameter is laid down with 5° inclination to the 
horizontal ground. Determine the discharge through the pipe 
when the depth of water in the pipe is 0.8 m. Take Chezy’s 
constant as 70.

[Ans. 19.53 m3/s]

 15. Find the discharge through a pipe of diameter 3 m, if the 
depth of water in the pipe is 2.5 m and it is laid at a slope of 
1 in 1000. Take Chezy’s constant as 65.

[Ans. 8.973 m3/s]

 16. The discharge of water through a pipe of diameter 60 cm is 
0.15 m3/s. Determine the slope of the bed of the channel for 
maximum velocity when the Chezy’s constant is 50.

[Ans. 1 in 1177]

 17. Determine the maximum discharge of water through a cir-
cular channel of diameter 1.5 m when the bed slope of the 
channel is 1 in 1000. Take Chezy’s constant as 55.

[Ans. 1.5674 m3/s]

 18. A concrete lined circular channel of diameter 3 m has a bed 
slope of 1 in 500. Determine the velocity and flow rate for 
the conditions maximum velocity and maximum discharge. 
Assume Chezy’s constant as 50.

[Ans. 9.536 m3/s, 11.406 m3/s]

 19. The specific energy for a 3 m wide channel is to be 3 Nm/N. 
What would be the maximum possible discharge?

[Ans. 26.58 m3/s]

 20. An open channel of rectangular cross section 4 m wide is 
laid at a slope of 1 in 800. The depth of water in the channel 
is 2 m. To obtain critical flow, a hump is proposed in its bed. 
Find the height of the hump if the value of Manning’s rugos-
ity coefficient is 0.02.

[Ans. 0.533 m]

 21. A sluice gate discharges water into horizontal rectangular 
channel with a velocity of 12 m/s and depth of flow of 1.2 m. 
Calculate (i) the depth of flow of water after the jump and  
(ii) consequent loss in total head.

[Ans. 5.366 m, 2.807 m]

 22. A sluice gate discharges water with a velocity of 6.2 m/s and 
depth of flow 0.42 m into a horizontal rectangular channel 
of width 8.2 m. Find the condition for hydraulic jump, its 
height, loss of energy per kg of water and the power lost in 
the jump.

[Ans. 1.196 m, 0.63 m-kg/kg of water, 131.967 kW]

ANSWERS TO MULTIPLE-CHOICE QUESTIONS

 1. (c) 2. (b) 3. (c) 4. (d) 5. (d)
 6. (a) 7. (a) 8. (b)
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19.1 ❐ INTRODUCTION
Dimensional analysis is a powerful mathematical tool for engineers and scientists. It combines the dimensional variables, 
non-dimensional variables and dimensional constants into non-dimensional parameters. Thus, it also reduces the number 
of necessary independent parameters in a problem and it systematically arranges them into dimensionless groups. Dimen-
sional analysis finds applications in all fields of engineering. Especially, it is very useful when it is necessary to design 
and perform experiments. There are two commonly used dimensional analysis methods, namely Rayleigh method and 
Buckingham π  method.

Generally, the model is a small scale replica of the actual machine or turbine. The actual machine is called a prototype. 
The study to determine the performance of machines (turbines) by conducting various tests on their models is called model 
analysis. The similarity between the model and its prototype is known as similitude. The results obtained from experiments 
in a model can be applied to its prototype only if a complete similarity exists between them. For existing complete simi-
larity between the model and its prototype, three types of similarities are to be established, namely geometric similarity, 
kinematic similarity and dynamic similarity.

19.2 ❐ DIMENSIONS AND UNITS OF PHYSICAL QUANTITIES
All physical quantities are expressed by magnitudes and units. A dimension is a measure of physical quantity without 
numerical values (i.e., qualitative characteristics), while a unit is a method to assign a number to that dimension (i.e., quan-
titative characteristics). For example, length is a dimension, but metre is a unit.

Various physical quantities independent of each other, which is used to describe a phenomenon are called primary quan-
tities (also called fundamental or basic quantities). According to SI system, there are seven primary quantities, namely mass, 
length, time, temperature, electric current, amount of substance and luminous intensity. Generally, the primary quantities, 
such as mass, length and time are used in fluid mechanics, and are assigned the dimensions of [M], [L] and [T], respectively.

All other physical quantities such as velocity, force, work and power can be expressed in terms of primary quantities and 
they are called secondary or derived quantities. For example, the dimensions of velocity are determined by the following 
expression.

Velocity
Distance

Time
= = = −L

T
LT[ ]1

The dimensions of various physical quantities in M-L-T system used in fluid mechanics are presented in Table 19.1.

Chapter 19

Dimensional Analysis 
and Model Similitude
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19.2 Chapter 19

 Example 19.1  Find the dimensions of the following physical quantities: (i) force (F), (ii) pressure (p), (iii) dynamic 
viscosity ( )μ , (iv) surface tension ( )σ , (v) work, (vi) momentum (M), (vii) discharge (Q), (viii) kinematic viscosity (v), 
(ix) power (P) and (x) modulus of elasticity (E).

Table 19.1 Dimensions of various physical quantities

Quantity Dimensions Quantity Dimensions

Mass (m) [M] Momentum (M) [ ]MLT −1

Length (L) [L] Power (P) [ ]ML T2 3−

Time (t) [T] Frequency (n) [ ]T −1

Temperature (T) [ ]θ Pressure (p), stress 
( )τ [ ]ML T− −1 2

Diameter, radius [L] Velocity potential [ ]L T2 1−

Area (A) [L2] Surface tension ( σ ) [ ]MT −2

Volume (v) [L3] Dynamic viscosity ( μ ) [ ]ML T− −1 1

Speed, velocity (V) [ ]LT −1  Kinematic viscosity (v) [ ]L T2 1−

Angular speed ( ω ) [ ]T −1 Moment of inertia (I) [ ]L4

Acceleration (a) [ ]LT −2 Discharge (Q) [ ]L T3 1−

Angular acceleration ( α ) [ ]T −2 Gravitational acceleration (g) [ ]LT −2

Density ( ρ ) [ ]ML−3 Specific weight (w) [ ]ML T− −2 2

Impulse [ ]MLT −1 Modulus of elasticity (E) [ ]ML T− −1 2

Force, thrust (F) [ ]MLT −2 Compressibility (1/E) [ ]M LT−1 2

Weight (W) [ ]MLT −2 Gas constant (R) [ ]L T2 2 1− −θ

Angular momentum [ ]ML T2 1− Vorticity ( Ω ) [ ]T −1

Moment, torque (T) [ ]ML T2 2− Stream function (ψ ) [ ]L T2 1−

Work, energy [ ]ML T2 2− Circulation ( Γ ) [ ]L T2 1−

Enthalpy, quantity of heat [ ]ML T2 2− Thermal conductivity (k) [ ]MLT − −3 1θ

Specific heat [ ]L T2 2− θ Entropy (s) [ ]ML T2 2 1− −θ
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Solution

   (i) F ma M LT MLT= = =− −[ ][ ] [ ]2 2

   (ii) p
MLT

L
ML T= = =

−
− −Force

Area

[ ]

[ ]
[ ]

2

2
1 2

 (iii) μ τ
=

∂ ∂
=

∂ ∂
= =

−

−
−

( / ) ( / )

[ ] / [ ]

[ ] / [ ]
[

u y u y

MLT L

LT L
ML T

Force/Area 2 2

1
1 −−1]

 (iv) σ = = =
−

−Force

Length

[ ]

[ ]
[ ]

MLT

L
MT

2
2

  (v) Work Force Distance= × = =− −[ ][ ] [ ]MLT L ML T2 2 2

 (vi) M M LT MLT= × = =− −Mass Velocity [ ][ ] [ ]1 1

 (vii) Q
L

T
L T= = = −Volume

Time

[ ]

[ ]
[ ]

3
3 1

(viii) ν μ
ρ

= = =
− −

−
−[ ]

[ ]
[ ]

ML T

ML
L T

1 1

3
2 1

 (ix) P
ML T

T
ML T= = =

−
−Work

Time

[ ]

[ ]
[ ]

2 2
2 3

  (x) E
MLT

L
ML T= = = =

−
− −Stress

Strain

Force

Area

[ ]

[ ]
[ ]

2

2
1 2

19.3 ❐ DIMENSIONAL HOMOGENEITY
The law of dimensional homogeneity states that every additive term in an equation must have the same dimensions. In other 
words, two quantities may be added or subtracted only when they have the same dimensions. According to this law, any 
mathematical equation which correctly expresses a physical phenomenon should be dimensionally homogeneous. There-
fore, the dimensions of the terms on the left hand side of the equation are identical as in its right hand side. A dimensional 
homogeneous equation is true and can be used for all systems of units without any modification.

Let us consider the equation for the time of swing of a simple pendulum as given below.

T
l

g
= 2π

Dimensions of the L.H.S. = [T]

On the R.H.S. of the equation, 2π  is a constant and therefore, it has no dimension.

Dimensions of the R.H.S. = ⎡
⎣⎢

⎤
⎦⎥

=−
L

LT
T

2

1 2/

[ ]

As the dimensions of the terms on both sides of the equation are same, it is dimensionally homogeneous and can be used 
in any system of units.
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19.4 Chapter 19

There are many equations which are dimensionally non-homogeneous and are applicable to a flow system. However, 
such equations will be valid only in a particular system of units.

Applications of principle of dimensional homogeneity The applications of dimensional homogeneity is used in the 
following ways.

 (i) It helps in determining the dimensions of a physical quantity.

 (ii) It helps in the conversion of units from one system to another.

 (iii) It checks whether an equation is dimensionally homogeneous or not.

19.4 ❐ METHODS OF DIMENSIONAL ANALYSIS
Generally, there are two commonly used methods of dimensional analysis, namely Rayleigh method and Buckingham 
π-method.

19.4.1 Rayleigh Method
This method was proposed by Lord Rayleigh in 1899 for determining the effect of temperature on the viscosity of a gas. 
This method is also known as method of indices. It is used to determine the expression for a variable which depends upon 
maximum three or four variables only. It becomes difficult to obtain an expression for dependent variables when the num-
bers of independent variables are more than four. In this method, a functional relationship of some variables is expressed 
in the form of an exponential equation which must be dimensionally homogeneous.

Let x be a variable which depends upon x1, x2 and x3 variables. The functional relation can be written as given below.

x f x x x= ( , , )1 2 3

The above equation can also be written as given below.

x C x x xa b c= ( )1 2 3

In the above expression, C is a dimensionless constant which is either determined from physical characteristics of the 
 problem or from experimental results and a, b and c are arbitrary powers.

The values of a, b and c are obtained by comparing the powers of the basic dimensions on both sides. Thus, the 
 expression for the dependent variable can be obtained.

Consider the problem of the pendulum time period (T) which depends on the length of the pendulum (l) and acceleration 
due to gravity (g). The functional relationship for T can be written as follows.

T f l g= ( , )

According to Rayleigh method, the above equation may be expressed in exponential form as follows.

 T C l ga b= ( . )  (i)

Here, C is a dimensionless constant.
Substituting the dimensions for each variable on both sides, we get:

[ ] [ ][ ] [ ]T L LTa b= −1 2

The dimension of C being a constant is considered as unity.
For dimensional homogeneity, the powers of each dimension on both sides of the equation must be same.

For T b: 1 2= −  (ii)

For L a b: 0 = +  (iii)
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 Dimensional Analysis and Model Similitude 19.5

From expressions (ii) and (iii), we get:

b = −( / )1 2 , a b= − = ( / )1 2

Substituting the values of a band  in expression (i) and rearranging, we get:

T C L g= −( )/ ( / )1 2 1 2

Thus T C
l

g
=

Here, C = 2π ,  which is determined experimentally.

 Example 19.2  Find an expression for the drag force F on smooth sphere of diameter D, moving with a uniform velocity 
V in a fluid of density ρ  and dynamic viscosity μ. Apply Rayleigh method of dimensional analysis.

Solution
The functional relationship for the drag force F can be given by,

F f D V= ( , , , )ρ μ

According to Rayleigh method, the above equation may be expressed in exponential form as given below.

 F C D Va b c d= ( )ρ μ  (i)

Here, C is a dimensionless constant.
Substituting the dimensions for each variable on both sides, we get:

[ ] [ ] [ ] [ ] [ ] [ ]MLT L LT ML ML Ta b c d− − − − −=2 1 3 1 11

The dimension of C being a constant is considered as unity.
For dimensional homogeneity, the powers of each dimension on both sides of the equation must be same.

For M c d: 1 = +  (ii)

For L a b c d: 1 3= + − −  (iii)

For T b d: − = − −2  (iv)

There are four variables and we have three equations. Therefore, expressing a, b and c in terms of d, we get the following 
expressions.

 c d= −1 , b d= −2  and

 a b c d d d d d= − + + = − − + − + = −1 3 1 2 3 1 2( ) ( )  
Substituting these values in the expression (i) and rearranging, we get:

 
F C D V C D V

VD
d d d d

d

= =
⎛
⎝⎜

⎞
⎠⎟

− − −( )2 2 1 2 2ρ μ ρ μ
ρ  

∴ =
⎡

⎣
⎢

⎤

⎦
⎥F ρρ ϕϕ μμ

ρρ
D V

VD
2 2

 Example 19.3  The efficiency η  of a fan depends on the density ρ , the dynamic viscosity μ  of the fluid, the angular 
velocity ω , diameter D of the rotor and the discharge Q. Express η  in terms of dimensionless parameters using Rayleigh 
method of dimensional analysis.
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19.6 Chapter 19

Solution
The functional relationship for efficiency η  is given by,

η ρ μ ω= f D Q( , , , , )

According to Rayleigh method, the above equation may be expressed in exponential form as given below.

 η ρ μ ω= C D Qa b c d e( )  (i)

Here, C is a dimensionless constant.
Substituting the dimensions for each variable on both sides, we get:

[ ] [ ] [ ] [ ] [ ] [ ] [ ]M L T ML ML T T L L Ta b c d e0 0 0 3 1 1 1 3 11= − − − − −

The dimension of C being a constant is considered as unity.
For dimensional homogeneity, the powers of each dimension on both sides of the equation must be same.

For M a b: 0 = +  (ii)

For L a b d e: 0 3 3= − − + +  (iii)

For T b c e: 0 = − − −  (iv)

There are five variables and we have three equations. In the given problem, viscosity and discharge are more important. 
Therefore, expressing a, b and c in terms of b and e, we get the following expressions.

 a b= − , c b e= − −  and

 d a b e b b e b e= + − = − + − = − −3 3 3 3 2 3( )  
Substituting these values in expression (i) and rearranging, we get:

 

η ρ μ ω μ
ρω ω

= =
⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

− − − − −C D Q C
D

Q

D

b b b e b e e
b e

( )2 3
2 3

 

 
∴ =

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

η ϕϕ μμ
ρρωω ωωD

Q

D2 3
,

 Example 19.4  The thrust F of a propeller depends on its diameter D, the flow velocity V, the fluid density ρ , the rev-
olution per minute N and the viscosity of the fluid μ . Obtain an expression for F in terms of given parameters by using 
Rayleigh method of dimensional analysis.

Solution
The functional relationship for thrust F is given by,

F f D V N= ( , , , , )ρ μ

According to Rayleigh method, the above equation may be expressed in exponential form as given below.

 F C D V Na b c d e= ( )ρ μ  (i)

Here, C is a dimensionless constant.
Substituting the dimensions for each variable on both sides, we get:

[ ] [ ] [ ] [ ] [ ] [ ] [ ]MLT L LT ML T ML Ta b c d e− − − − − −=2 1 3 1 1 11

The dimension of C being a constant is considered as unity.
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 Dimensional Analysis and Model Similitude 19.7

For dimensional homogeneity, the powers of each dimension on both sides of the equation must be same.

For M c e: 1 = +  (ii)

For L a b c e: 1 3= + − −  (iii)

For T b d e: − = − − −2  (iv)

There are five variables and we have three equations. Therefore, expressing a, b and c in terms of d and e, we get the fol-
lowing expressions.

 c e= −1 , b d e= − −2  and

 a b c e d e e e d e= − + + = − − − + − + = + −1 3 1 2 3 1 2( ) ( )  
Substituting these values in the expression (i) and rearranging, we get:

 
F C D V N C D V

VD

DN

V
d e d e e d e

e d

= =
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

+ − − − −( )2 2 1 2 2ρ μ ρ μ
ρ  

 
∴ =

⎡

⎣
⎢

⎤

⎦
⎥

F

D Vρ 2 2
ϕϕ μμ

ρρVD

DN

V
,

19.4.2 Buckingham π Method
When the number of variables in a phenomenon becomes considerably large, the Rayleigh method becomes tedious. This 
difficulty can be avoided by using Buckingham π  method. This method was proposed in 1914 by E. Buckingham and is 
now known as the Buckingham Pi theorem. This theorem states that if there are n dimensional variables (dependent or inde-
pendent) involved in a dimensional homogeneous equation which contains m fundamental quantities, then the variables can 
be grouped into ( )n m−  dimensionless and independent terms. These independent dimensionless terms are called π  terms.

Let x1 be a variable which depends on independent variables x x x xn2 3 4, , ..... . The functional relation can be written as 
given below.

 x f x x x xn1 2 3 4= ( , , , ......... )  (i)

The above equation can also be written as follows.

 f x x x x xn1 1 2 3 4 0( , , , , ......... ) =  (ii)

It is a dimensionally homogenous equation containing n variables. If there are m fundamental quantities (such as M, L, T), 
then according to Buckingham π  theorem, equation (ii) can be represented in ( )n m−  number of π  terms. Thus, equation 
(ii) is expressed as follows.

 f n m1 1 2 3 4 0( , , , , ......... )π π π π π − =  (iii)

Each dimensionless π  term is formed by combining m variables out of the total n variables with one of the remaining 
( )n m−  variables. It means each π  term contains ( )m +1  variables. The m variables which is repeatedly used in π  terms 
are called repeating variables. The repeating variables should be such that they together involve all the m fundamental 
quantities and they themselves do not form a dimensionless parameter. Let x2, x3 and x4 be the repeating variables and 
m M L T( , , )and = 3 . Thus, the different π  terms can be expressed as given below.

 π1 2 3 4 1
1 1 1= x x x xa b c

 π2 2 3 4 5
2 2 2= x x x xa b c

 ……………………

 πn m
a b c

nx x x xn m n m n m
− = − − −

2 3 4
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19.8 Chapter 19

The exponents a b c a b c etc1 1 1 2 2 2, , , , ....., .and and  in the above equations are determined by considering dimensional 
homogeneity for each equation so that each π  term is dimensionless. The final general equation for the phenomenon is 
represented by expressing any one of the π  term as a function of the others or any other required relationship may also be 
obtained.

 π π π π1 1 2 3= −f n m( , ,...... )

 π π π π2 1 1 3= −f n m( , ,...... )

The limitation of this method is that the exact functional relationship in Equation (iii) cannot be obtained from the analysis. 
Generally, the functional relationship can be obtained by experimental results.

Selection of repeating variables While selecting repeating variables, the following points should be considered.

 1. The chosen repeating variables must represent all the fundamental dimensions involved in the problem and should not 
have the same dimensions.

 2. Never select the dependent variable as repeating variables.

 3. The repeating variables should be chosen in such a way that one variable contains geometric property (Example: 
L, D, H, etc.), other variable contains flow property (Example: V, a, etc.) and the third variable contains fluid prop-
erty (Example: ρ μ, , etc.). A clever choice of the repeating variables for most of the problems may be (i) L V, , ρ   
(ii) D V, , ρ  (iii) L V, , μ  and (iv) D V, , μ .

Procedure for Buckingham Pi theorem Typically, the following five steps are involved in Buckingham Pi theorem.

 1. List and count the n variables involved in the problem. If any variables are missing, then the dimensional analysis will 
fail. Express the variables in terms of primary dimensions.

 2. Out of the n variables select m variables which will be used as repeating variables.

 3. Write the general equations for different pi terms which may be expressed as the product of the repeating variables each 
raised to an unknown exponent and one of remaining variables, which is taken in turn and usually, has power as one.

 4. Write the dimensional equations for the equations of the π terms. Evaluate the values of the unknown exponents by 
equating the exponents of the respective fundamental dimensions on both sides of each of the dimensional equation 
and obtain the different dimensionless groups.

 5. Write the final general equation for the phenomenon in terms of π  terms.

Suggestions for finding the final expression In order to obtain the final expression in the desired form, some of the 
useful suggestions are given below.

 1. Any π  term may be replaced by any power of that term. For example, π1  may be replaced by π π π1
1

1
2

1
1 2− −, , / .

 2. Any π  term may be replaced by multiplying it with a numerical constant. For example, π1  may be replaced by 2 1π .

 3. Any π  term may be replaced by another π  term obtained by adding or subtracting an absolute numeral from it.

 4. Any π term may be replaced by multiplying or dividing it by another π  term to get a single π  term. For example, π1  
may be replaced by ( )π π1 2×  or ( / )π π1 2 .

 5. A dimensionless quantity is a π term.

 6. The ratio of two quantities with same dimensions will be one of the π terms.

An illustration for the procedure of solving problems by Buckingham π theorem We shall illustrate the Buck-
ingham pi theorem by considering the problem, where ‘The resistance R of a partially submerged body moving in water to 
its motion depends on the density ρw , viscosity μ  of water, length L of the body, velocity V of the body and the accelera-
tion due to gravity g. Express the functional relationship between the given variables and the resistance R’.
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 Dimensional Analysis and Model Similitude 19.9

Solution
The following steps may be adopted to solve it by Buckingham π method.

Step 1: The problem can be expressed as,

 R f L V gw= ( , , , , )ρ μ  (i)

 or f R L V gw1 0( , , , , , )ρ μ =  (ii)

 Total number of variables: n = 6
 Writing dimensions of each term, we get:

R MLT ML ML T L L V LT g LTw= = = = = =− − − − − −[ ]; [ ]; [ ]; [ ]; [ ]; [ ]2 3 1 1 1 2ρ μ

 Thus, the fundamental dimensions in the problem are M, L, T and hence, m = 3

 Therefore, number of π terms = n m− = − =6 3 3

 Thus, three π  terms say π π π1 2 3, and  are formed.

 Thus, Equation (i) may be written as,

 f1 1 2 3 0( , , )π π π =  (iii)

Step 2:  Since m = 3 , we have to choose 3 repeating variables. R is a dependent variable and thus, it cannot be selected as a 
repeating variable. Out of the remaining five variables, the repeating variables should be chosen in such a way that 
they contain all the three fundamental dimensions and they themselves do not form a dimensionless parameter. 
Therefore, choosing length L, velocity V and density ρw  as the repeating variables.

Step 3: Each π  term contains ( )m +1  variables and it is given by,

 π ρ1
1 1 1= L V Ra b

w
c  (a)

 π ρ μ2
2 2 2= L Va b

w
c  (b)

 π ρ3
3 3 3= L V ga b

w
c  (c)

Step 4: Expressing each π  term in terms of M-L-T system and solving it by the principle of dimensional homogeneity.

  (i) For π1 term:

 π ρ1
1 1 1= L V Ra b

w
c  (a)

 M L T L LT ML MLTa b c0 0 0 1 3 21 1 1= − − −[ ] [ ] [ ] [ ]  

  or M L T M L Tc a b c b0 0 0 1 3 1 21 1 1 1 1= + + − + − −

  Equating the exponents of M, L and T, respectively, we get:

 0 1 0 3 1 0 21 1 1 1 1= + = + − + = − −c a b c b, ,

  Solution: c b a1 1 11 2 2= − = − = −, and

  Substituting the values of a1, b1 and c1 in Equation (a) and rearranging, we get:

π ρ
ρ

1
2 2 1

2 2
= =− − −L V R

R

L V
w

w
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19.10 Chapter 19

  (ii) For π2 term:

 π ρ μ2
2 2 2= L Va b

w
c  (b)

 M L T L LT ML ML Ta b c0 0 0 1 3 1 12 2 2= − − − −[ ] [ ] [ ] [ ]  
  Equating the exponents of M, L and T, respectively, we get:

0 1 0 3 1 0 12 2 2 2 2= + = + − − = − −c a b c b, ,

  Solution gives: c b a2 2 21 1 1= − = − = −, and

  Substituting the values of a2, b2 and c2 in Equation (b) and rearranging, we get:

 
π ρ μ μ

ρ2
1 1 1= =− − −L V

L Vw
w

  (iii) For π3 term:

 π ρ3
3 3 3= L V ga b

w
c  (c)

 M L T L LT ML LTa b c0 0 0 1 3 23 3 3= − − −[ ] [ ] [ ] [ ]  
  Equating the exponents of M, L and T, respectively, we get:

0 0 3 1 0 23 3 3 3 3= = + − + = − −c a b c b, ,

  Solution: c b a3 3 30 2 1= = − =, and

  Substituting the values of a3, b3 and c3 in Equation (c) and rearranging, we get:

π ρ3
1 2 0

2
= =−L V g

Lg

V
w

Step 5:  For obtaining the functional relationship, substituting the values of π π π1 2 3, and  in Equation (iii), we get the 
below expression.

f
R

L V L V

Lg

Vw w
1 2 2 2

0
ρ

μ
ρ

, ,
⎛

⎝
⎜

⎞

⎠
⎟ =

 Since expression is required for resistance R, we get:

R

L V LV

Lg

Vw w
2 2 2ρ

ϕ μ
ρ

=
⎛
⎝⎜

⎞
⎠⎟

,

 The reciprocal of π  term and its square root is non-dimensional, we get:

 

R

L V

VL V

Lgw

w
2 2 ρ

ϕ
ρ

μ
=

⎛

⎝
⎜

⎞

⎠
⎟,

 

 
∴ =R L V

VL V

L g
w

w2 2ρρ ϕϕ
ρρ

μμ
,

⎛⎛

⎝⎝
⎜⎜

⎞⎞

⎠⎠
⎟⎟

19.4.3 Advantages and Limitations of Dimensional Analysis
Advantages

 (i) It gives a relationship between the variables involved in a problem in terms of dimensionless parameters which helps 
in performing tests on the models.
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 Dimensional Analysis and Model Similitude 19.11

 (ii) It gives rapid analysis without going into deep mathematics required for the formation of fundamental equations and 
thus, considerably saves work and time.

 (iii) It suggests small number of experiments and simultaneously, gives reliable results.

Limitations

 (i) Before applying this method, all variables must be known. Dimensional analysis only suggests a relationship between 
parameters and does not provide information about the nature of phenomena.

 (ii) It does not give the values of coefficients in the functional relationship which can be known only by conducting 
experiments.

 (iii) If wrong variables are taken or any variable is missing, then the correct non-dimensional group will not be formed 
means the relationship will be erroneous.

 Example 19.5  The velocity through a circular orifice depends on the head H causing the flow, diameter of the orifice 
D, coefficient of viscosity μ , mass density ρ  and the acceleration due to gravity g. Using Buckingham pi theorem, obtain 
an expression for V.

Solution
The problem can be expressed as,

 V f H D g= ( , , , , )μ ρ  (i)

or f V H D g1 0( , , , , , )μ ρ =  (ii)

Total number of variables:  n = 6
Writing the dimensions of each term, we get:

V LT H L D L ML T ML g LT= = = = = =− − − − −[ ], [ ], [ ], [ ], [ ], [ ]1 1 1 3 2μ ρ

Thus, fundamental dimensions in the problem are M, L, T and hence, m = 3.

Therefore, the number of π terms = n m− = − =6 3 3.

The three π  terms say π π π1 2 3, and  are formed.

Equation (ii) may be written as,

 f1 1 2 3 0( , , )π π π =  (iii)

Since m = 3 , choosing H, g and ρ  as the repeating variables.
Each π  term contains ( )m +1  variables and can be written as,

 π ρ1
1 1 1= H g Va b c  (a)

 π ρ2
2 2 2= H g Da b c  (b)

 π ρ μ3
3 3 3= H ga b c  (c)

For π1 term:

 π ρ1
1 1 1= H g Va b c  (a)

 M L T L LT ML LTa b c0 0 0 2 3 11 1 1= − − −[ ] [ ] [ ] [ ]  
Equating the exponents of M, L and T, respectively, we get:

0 0 3 1 0 2 11 1 1 1 1= = + − + = − −c a b c b, ,

Solution: c b a1 1 10 1 2 1 2= = − = −, ( / ) ( / )and
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Substituting the values of a1, b1 and c1 in Equation (a) and rearranging, we get:

π ρ1
1 2 1 2 0= =− −H g V

V

gH
( / ) ( / )

For π2 term:

 π ρ2
2 2 2= H g Da b c  (b)

 M L T L LT ML La b c0 0 0 2 32 2 2= − −[ ] [ ] [ ] [ ]

Equating the exponents of M, L and T, respectively, we get:

0 0 3 1 0 22 2 2 2 2= = + − + = −c a b c b, ,

Solution: c b a2 2 20 0 1= = = −, and
Substituting the values of a2, b2 and c2 in Equation (b) and rearranging, we get:

π ρ2
1 0 0= =−H g D

D

H
For π3 term:

 π ρ μ3
3 3 3= H ga b c  (c)

 M L T L LT ML ML Ta b c0 0 0 2 3 1 13 3 3= − − − −[ ] [ ] [ ] [ ]  
Equating the exponents of M, L and T, respectively, we get:

0 1 0 3 1 0 2 13 3 3 3 3= + = + − − = − −c a b c b, ,

Solution: c b a3 3 31 1 2 3 2= − = − = −, ( / ) ( / )and

Substituting the values of a3, b3 and c3 in Equation (c) and rearranging, multiplying and dividing by V, we get:

π ρ μ μ
ρ

μ
ρ

π3
3 2 1 2 1

3 2 1= = =− − −H g
H g H V

( / ) ( / )
/

For obtaining the functional relationship, substituting the values of π π π1 2 3, and  in Equation (iii), we get:

f
V

gH

D

H H V1 1 0, ,
μ
ρ

π
⎛

⎝
⎜

⎞

⎠
⎟ =

Since expression is required for velocity V, we get:

 

V

gH

D

H H V
=

⎛
⎝⎜

⎞
⎠⎟

ϕ μ
ρ

π, 1

 
∴ =

⎛
⎝⎜

⎞
⎠⎟

V gH
D

H H V
ϕϕ μμ

ρρ
ππ, 1

 Example 19.6  Derive on the basis of dimensional analysis suitable parameters to present the thrust developed by a pro-
peller. Given that the thrust P depends upon the angular velocity ω , speed of advance V, diameter D, dynamic viscosity μ, 
mass density ρ , elasticity of the fluid medium which can be denoted by the speed of sound C in the medium.

Solution
The problem can be expressed as,

 P f V D C= ( , , , , , )ω μ ρ  (i)

or f P V D C1 0( , , , , , , )ω μ ρ =  (ii)
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Total number of variables: n = 7
Writing the dimensions of each term, we get:

P MLT T V LT D L ML T ML C L= = = = = = =− − − − − −[ ], [ ], [ ], [ ], [ ], [ ], [2 1 1 1 1 3ω μ ρ TT −1]

Thus, the fundamental dimensions in the problem are M, L, T and hence, m = 3.

Therefore, the number of π  terms = n m− = − =7 3 4.

There are four π  terms say π π π π1 2 3 4, , and  are formed.

Equation (ii) may be written as,

 f1 1 2 3 4 0( , , , )π π π π =  (iii)

Since m = 3 , choosing D, V and ρ  as the repeating variables.

Each π  term contains ( )m +1  variables and can be written as,

 π ρ1
1 1 1= D V Pa b c  (a)

 π ρ ω2
2 2 2= D Va b c  (b)

 π ρ μ3
3 3 3= D Va b c  (c)

 π ρ4
4 4 4= D V Ca b c  (d)

For π1 term:

 π ρ1
1 1 1= D V Pa b c  (a)

 M L T L LT ML MLTa b c0 0 0 1 3 21 1 1= − − −[ ] [ ] [ ] [ ]  
Equating the exponents of M, L and T, respectively, we get:

0 1 0 3 1 0 21 1 1 1 1= + = + − + = − −c a b c b, ,

Solution: c b a1 1 11 2 2= − = − = −, and

Substituting the values of a1, b1 and c1 in Equation (a) and rearranging, we get:

π ρ
ρ

1
2 2 1

2 2
= =− − −D V P

P

D V
For π2 term:

 π ρ ω2
2 2 2= D Va b c  (b)

 M L T L LT ML Ta b c0 0 0 1 3 12 2 2= − − −[ ] [ ] [ ] [ ]  
Equating the exponents of M, L and T, respectively, we get:

0 0 3 0 12 2 2 2 2= = + − = − −c a b c b, ,

Solution: c b a2 2 20 1 1= = − =, and

Substituting the values of a2, b2 and c2 in Equation (b) and rearranging, we get:

π ρ ω ω
2

1 1 0= =−D V
D

V
For π3 term:

 π ρ μ3
3 3 3= D Va b c  (c)

 M L T L LT ML ML Ta b c0 0 0 1 3 1 13 3 3= − − − −[ ] [ ] [ ] [ ]  
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Equating the exponents of M, L and T, respectively, we get:

0 1 0 3 1 0 13 3 3 3 3= + = + − − = − −c a b c b, ,

Solution: c b a3 3 31 1 1= − = − = −, and

Substituting the values of a3, b3 and c3 in Equation (c) and rearranging, we get:

π ρ μ μ
ρ3

1 1 1= =− − −D V
DV

For π4 term:

 π ρ4
4 4 4= D V Ca b c  (d)

 M L T L LT ML LTa b c0 0 0 1 3 14 4 4= − − −[ ] [ ] [ ] [ ]  
Equating the exponents of M, L and T, respectively, we get:

0 0 3 1 0 14 4 4 4 4= = + − + = − −c a b c b, ,

Solution: c b a4 4 40 1 0= = − =, and

Substituting the values of a4, b4 and c4 in Equation (d) and rearranging, we get:

π ρ4
0 1 0= =−D V C

C

V

For obtaining the functional relationship, substituting the values of π π π π1 2 3 4, , and  in Equation (iii), we get:

 
f

P

D V

D

V DV

C

V1 2 2
0

ρ
ω μ

ρ
, , ,

⎛

⎝
⎜

⎞

⎠
⎟ =

 

 

P

D V

D

V DV

C

Vρ
ϕ ω μ

ρ2 2
=

⎛
⎝⎜

⎞
⎠⎟

, ,

 

∴ =
⎛
⎝⎜

⎞
⎠⎟

P ρρ ϕϕ ωω μμ
ρρ

D V
D

V DV

C

V
2 2 , ,

 Example 19.7  Derive a suitable form of the equation to represent the discharge Q through a sharp-edged triangular 
notch by using Buckingham pi theorem. Given that the discharge Q depends on the mass density ρ , head H, gravitational 
acceleration g, dynamic viscosity μ, surface tension σ  of the fluid and the central angle α  of the notch.

Solution
The problem can be expressed as,

 Q f H g= ( , , , , , )ρ μ σ α  (i)

or f Q H g1 0( , , , , , , )ρ μ σ α =  (ii)

Total number of variables: n = 7
Writing dimensions of each term, we get:

Q L T ML H L g LT

ML T MT

= = = =

= = =

− − −

− − −

[ ], [ ], [ ], [ ],

[ ], [ ], [

3 1 3 2

1 1 2

ρ

μ σ α MM L T0 0 0 ]

Thus, the fundamental dimensions in the problem are M, L, T and hence, m = 3.

Therefore, the number of π  terms = n m− = − =7 3 4.

Thus, the four π  terms say π π π π1 2 3 4, , and  are formed.
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 Dimensional Analysis and Model Similitude 19.15

Equation (ii) may be written as,

 f1 1 2 3 4 0( , , , )π π π π =  (iii)

Since m = 3, choosing ρ , g and H as the repeating variables.
Each π  term contains ( )m +1  variables and can be written as,

 π ρ1
1 1 1= a b cg H Q  (a)

 π ρ μ2
2 2 2= a b cg H  (b)

 π ρ σ3
3 3 3= a b cg H  (c)

 π α4 =  (d)

For π1 term:

 π ρ1
1 1 1= a b cg H Q  (a)

 M L T ML LT L L Ta b c0 0 0 3 2 3 11 1 1= − − −[ ] [ ] [ ] [ ]  
Equating the exponents of M, L and T, respectively, we get:

0 0 3 3 0 2 11 1 1 1 1= = − + + + = − −a a b c b, ,

Solution: a b c1 1 10 1 2 5 2= = − = −, ( / ) ( / )and

Substituting the values of a1, b1 and c1 in Equation (a) and rearranging, we get:

π ρ1
0 1 2 5 2

1 2 5 2
= =− −g H Q

Q

g H

( / ) ( / )
/ /

For π2 term:

 π ρ μ2
2 2 2= a b cg H  (b)

 M L T ML LT L ML Ta b c0 0 0 3 2 1 12 2 2= − − − −[ ] [ ] [ ] [ ]  
Equating the exponents of M, L and T, respectively, we get:

0 1 0 3 1 0 2 12 2 2 2 2= + = − + + − = − −a a b c b, ,

Solution: a b c2 2 21 1 2 3 2= − = − = −, ( / ) ( / )and

Substituting the values of a2, b2 and c2 in Equation (b) and rearranging, we get:

π ρ μ μ
ρ

2
1 1 2 3 2

1 2 3 2
= =− − −g H

g H

( / ) ( / )
/ /

For π3 term:

 π ρ σ3
3 3 3= a b cg H  (c)

 M L T ML LT L MTa b c0 0 0 3 2 23 3 3= − − −[ ] [ ] [ ] [ ]  
Equating the exponents of M, L and T, respectively, we get:

0 1 0 3 0 2 23 3 3 3 3= + = − + + = − −a a b c b, ,

Solution: a b c3 3 31 1 2= − = − = −, and

Substituting the values of a3, b3 and c3 in Equation (c) and rearranging, we get:

π ρ σ σ
ρ

3
1 1 2

2
= =− − −g H

g H
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For π4 term:

 π α4 =  (d)

For obtaining the functional relationship, substituting the values of π π π π1 2 3 4, , and  in Equation (iii), we get:

 
f

Q

g H g H g H
1 1 2 5 2 1 2 3 2 2

0
/ / / /

, , ,
μ

ρ
σ

ρ
α

⎛

⎝
⎜

⎞

⎠
⎟ =

Q

g H g H g H1 2 5 2 1 2 3 2 2/ / / /
, ,=

⎛

⎝
⎜

⎞

⎠
⎟ϕ μ

ρ
σ

ρ
α

∴ =
⎛

⎝
⎜

⎞

⎠
⎟Q g H

g H g H

1/2 5/2 ϕϕ μμ
ρρ

σσ
ρρ

αα
1/2 3/2 2

, ,

or Q CH= 5 2/

C g
g H g H

=
⎛

⎝
⎜

⎞

⎠
⎟

1 2
1 2 3 2 2

/
/ /

, ,ϕ μ
ρ

σ
ρ

α

 Example 19.8  The resisting force F during the flight of a supersonic plane depends upon the length of aircraft L, 
 velocity V, dynamic viscosity μ, mass density ρ  and bulk modulus of air K. Express the functional relationship between 
the variables and the resisting force using Buckingham pi theorem.

Solution
The problem can be expressed as,

 F f L V K= ( , , , , )μ ρ  (i)

or f F L V K1 0( , , , , , )μ ρ =  (ii)

Total number of variables: n = 6
Writing the dimensions of each term, we get:

F MLT L L V LT ML T ML K ML T= = = = = =− − − − − − −[ ], [ ], [ ], [ ], [ ], [ ]2 1 1 1 3 1 2μ ρ

Thus, the fundamental dimensions in the problem are M, L, T and hence, m = 3.

Therefore, the number of π  terms = n m− = − =6 3 3.

The three π  terms say π π π1 2 3, and  are formed.

Equation (ii) may be written as,

 f1 1 2 3 0( , , )π π π =  (iii)

Since m = 3, choosing L, V and ρ  as the repeating variables.

Each π  term contains ( )m +1  variables and can be written as,

 π ρ1
1 1 1= L V Fa b c  (a)

 π ρ μ2
2 2 2= L Va b c  (b)

 π ρ3
3 3 3= L V Ka b c  (c)
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For π1 term:

 π ρ1
1 1 1= L V Fa b c  (a)

 M L T L LT ML MLTa b c0 0 0 1 3 21 1 1= − − −[ ] [ ] [ ] [ ]  
Equating exponents of M, L and T, respectively, we get:

0 1 0 3 1 0 21 1 1 1 1= + = + − + = − −c a b c b, ,

Solution: c b a1 1 11 2 2= − = − = −, , and

Substituting the values of a1, b1 and c1 in Equation (a) and rearranging, we get:

π ρ
ρ

1
2 2 1

2 2
= =− − −L V F

F

L V
For π2 term:

 π ρ μ2
2 2 2= L Va b c  (b)

 M L T L LT ML ML Ta b c0 0 0 1 3 1 12 2 2= − − − −[ ] [ ] [ ] [ ]  
Equating the exponents of M, L and T, respectively, we get:

0 1 0 3 1 0 12 2 2 2 2= + = + − − = − −c a b c b, ,

Solution: c b a2 2 21 1 1= − = − = −, and

Substituting the values of a2, b2 and c2 in Equation (b) and rearranging, we get:

π ρ μ μ
ρ2

1 1 1= =− − −L V
LV

For π3 term:

 π ρ3
3 3 3= L V Ka b c  (c)

 M L T L LT ML ML Ta b c0 0 0 1 3 1 23 3 3= − − − −[ ] [ ] [ ] [ ]  
Equating the exponents of M, L and T, respectively, we get:

0 1 0 3 1 0 23 3 3 3 3= + = + − − = − −c a b c b, ,

Solution: c b a3 3 31 2 0= − = − =, and

Substituting the values of a3, b3 and c3 in Equation (c) and rearranging, we get:

π ρ
ρ

3
0 2 1

2
= =− −L V K

K

V

For obtaining the functional relationship, substituting the values of π π π1 2 3, and  in Equation (iii), we get:

 
f

F

L V LV

K

V
1 2 2 2

0
ρ

μ
ρ ρ

, ,
⎛

⎝
⎜

⎞

⎠
⎟ =

F

L V LV

K

V2 2 2ρ
ϕ μ

ρ ρ
=

⎛

⎝
⎜

⎞

⎠
⎟,

∴ =
⎛

⎝
⎜

⎞

⎠
⎟F L V

LV

K

V

2 2 ,ρρ ϕϕ μμ
ρρ ρρ2

M19 Fluid Mechanics and Hydraulic Machines XXXX 01.indd   17 4/5/2019   2:11:06 PM

Download more at Learnclax.com



19.18 Chapter 19

 Example 19.9  In a centrifugal pump, the rate of discharge Q is assumed to depend on the mass density ρ  of fluid, speed 
of the pump N, the diameter of impeller D, acceleration due to gravity g, head H and dynamic viscosity μ  of the fluid. 

Using Buckingham pi theorem show that Q N D
gH

N D N D
=

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

3
2 2 2

ϕ ν
, , where v is the kinematic viscosity of the fluid.

Solution
The problem can be expressed as,

 Q f N D g H= ( , , , , , )ρ μ  (i)

or f Q N D g H1 0( , , , , , , )ρ μ =  (ii)

Total number of variables: n = 7
Writing the dimensions of each term, we get:

Q L T ML N T D L g LT H L ML T= = = = = = =− − − − − −[ ], [ ], [ ], [ ], [ ], [ ], [3 1 3 1 2 1 1ρ μ ]]

Thus, the fundamental dimensions in the problem are M, L, T and hence, m = 3.
Therefore, the number of π  terms = n m− = − =7 3 4.
The four π  terms say π π π π1 2 3 4, , and  are formed.
Equation (ii) may be written as,

 f1 1 2 3 4 0( , , , )π π π π =  (iii)

Since m = 3 , choosing D, N and ρ  as the repeating variables.
Each π  term contains ( )m +1  variables and can be written as,

 π ρ1
1 1 1= D N Qa b c  (a)

 π ρ2
2 2 2= D N ga b c  (b)

 π ρ3
3 3 3= D N Ha b c  (c)

 π ρ μ4
4 4 4= D Na b c  (d)

For π1 term:

 π ρ1
1 1 1= D N Qa b c  (a)

 M L T L T ML L Ta b c0 0 0 1 3 3 11 1 1= − − −[ ] [ ] [ ] [ ]  
Equating the exponents of M, L and T, respectively, we get:

0 0 3 3 0 11 1 1 1= = − + = − −c a c b, ,

Solution: c b a1 1 10 1 3= = − = −, and

Substituting the values of a1, b1 and c1 in Equation (a) and rearranging, we get:

π ρ1
3 1 0

3
= =− −D N Q

Q

N D
For π2 term:

 π ρ2
2 2 2= D N ga b c  (b)

 M L T L T ML LTa b c0 0 0 1 3 22 2 2= − − −[ ] [ ] [ ] [ ]  
Equating the exponents of M, L and T, respectively, we get:

0 0 3 1 0 22 2 2 2= = − + = − −c a c b, ,
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Solution: c b a2 2 20 2 1= = − = −, , and

Substituting the values of a2, b2 and c2 in Equation (b) and rearranging, we get:

π ρ2
1 2 0

2
= =− −D N g

g

DN
For π3 term:

 π ρ3
3 3 3= D N Ha b c  (c)

 M L T L T ML La b c0 0 0 1 33 3 3= − −[ ] [ ] [ ] [ ]  

Equating the exponents of M, L and T, respectively, we get:

0 0 3 1 03 3 3 3= = − + = −c a c b, ,

Solution: c b a3 3 30 0 1= = = −, and

Substituting the values of a3, b3 and c3 in Equation (c) and rearranging, we get:

π ρ3
1 0 0= =−D N H

H

D
For π4 term:

 π ρ μ4
4 4 4= D Na b c  (d)

 M L T L T ML ML Ta b c0 0 0 1 3 1 14 4 4= − − − −[ ] [ ] [ ] [ ]  
Equating the exponents of M, L and T, respectively, we get:

0 1 0 3 1 0 14 4 4 4= + = − − = − −c a c b, ,

Solution: c b a4 4 41 1 2= − = − = −, and

Substituting the values of a4, b4 and c4 in Equation (d) and rearranging, we get:

π ρ μ μ
ρ

4
2 1 1

2
= =− − −D N

D N

For obtaining the functional relationship, substituting the values of π π π π1 2 3 4, , and  in Equation (iii), we get:

 
f

Q

N D

g

DN

H

D D N
1 3 2 2

0, , ,
μ

ρ

⎛

⎝
⎜

⎞

⎠
⎟ =

or f
Q

N D

gH

N D D N
1 3 2 2 2

0, ,
μ

ρ

⎛

⎝
⎜

⎞

⎠
⎟ =     [ ]Multiply andπ π2 3

or 
Q

N D

gH

N D D N3 2 2 2
=

⎛

⎝
⎜

⎞

⎠
⎟ϕ μ ρ

,
/

 
∴ =

⎛

⎝
⎜

⎞

⎠
⎟Q N D

gH

N D ND

3
2 2 2

ϕ ν
,

     
[ ]∵( / )μ ρ ν=

Hence proved.
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 Example 19.10  The pressure drop Δp  in a pipe of diameter D and length L depends on the velocity of flow V, dynamic 
viscosity μ, mass density ρ  and roughness k. Obtain an expression for Δp  using Buckingham pi theorem.

Solution
The problem can be expressed as,

 Δp f D L V k= ( , , , , , )μ ρ  (i)

or f p D L V k1 0( , , , , , , )Δ μ ρ =  (ii)

Total number of variables: n = 7
Writing the dimensions of each term, we get:

Δp ML T D L L L V LT ML T ML k= = = = = = =− − − − − −[ ], [ ], [ ], [ ], [ ], [ ], [1 2 1 1 1 3μ ρ LL]

Thus, the fundamental dimensions in the problem are M, L, T and hence, m = 3.
Therefore, the number of π  terms = n m− = − =7 3 4.
The four π  terms say π π π π1 2 3 4, , and  are formed.
Equation (ii) may be written as,

 f1 1 2 3 4 0( , , , )π π π π =  (iii)

Since m = 3 , choosing D, V and ρ  as the repeating variables.
Each π  term contains ( )m +1  variables and can be written as,

 π ρ1
1 1 1= D V pa b c Δ  (a)

 π ρ2
2 2 2= D V La b c  (b)

 π ρ μ3
3 3 3= D Va b c  (c)

 π ρ4
4 4 4= D V ka b c  (d)

For π1 term:

 π ρ1
1 1 1= D V pa b c Δ  (a)

 M L T L LT ML ML Ta b c0 0 0 1 3 1 21 1 1= − − − −[ ] [ ] [ ] [ ]  
Equating the exponents of M, L and T, respectively, we get:

0 1 0 3 1 0 21 1 1 1 1= + = + − − = − −c a b c b, ,

Solution: c b a1 1 11 2 0= − = − =, and

Substituting the values of a1, b1 and c1 in Equation (a) and rearranging, we get:

π ρ
ρ

1
0 2 1

2
= =− −D V p

p

V
Δ

Δ

For π2 term:

 π ρ2
2 2 2= D V La b c  (b)

 M L T L LT ML La b c0 0 0 1 32 2 2= − −[ ] [ ] [ ] [ ]  
Equating the exponents of M, L and T, respectively, we get:

0 0 3 1 02 2 2 2 2= = + − + = −c a b c b, ,

Solution: c b a2 2 20 0 1= = = −, and
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Substituting the values of a2, b2 and c2 in Equation (b) and rearranging, we get:

π ρ2
1 0 0= =−D V L

L

D
For π3 term:

 π ρ μ3
3 3 3= D Va b c  (c)

 M L T L LT ML ML Ta b c0 0 0 1 3 1 13 3 3= − − − −[ ] [ ] [ ] [ ]  
Equating the exponents of M, L and T, respectively, we get:

0 1 0 3 1 0 13 3 3 3 3= + = + − − = − −c a b c b, ,

Solution: c b a3 3 31 1 1= − = − = −, and

Substituting the values of a3, b3 and c3 in Equation (c) and rearranging, we get:

π ρ μ μ
ρ3

1 1 1= =− − −D V
DV

For π4 term:

 π ρ4
4 4 4= D V ka b c  (d)

 M L T L LT ML La b c0 0 0 1 34 4 4= − −[ ] [ ] [ ] [ ]  
Equating the exponents of M, L and T, respectively, we get:

0 0 3 1 04 4 4 4 4= = + − + = −c a b c b, ,

Solution: c b a4 4 40 0 1= = = −, and

Substituting the values of a4, b4 and c4 in Equation (d) and rearranging, we get:

π ρ4
1 0 0= =−D V k

k

D

For obtaining the functional relationship, substituting the values of π π π π1 2 3 4, , and  in Equation (iii), we get:

 
f

p

V

L

D DV

k

D1 2
0

Δ
ρ

μ
ρ

, , ,
⎛

⎝
⎜

⎞

⎠
⎟ =

 
∴ =

⎛
⎝⎜

⎞
⎠⎟

Δp

Vρ 2
ϕϕ μμ

ρρ
L

D DV

k

D
, ,

Experiments indicate that the drop in pressure Δp  is a function of (L/D)

 

Δp

V

L

D DV

k

Dρ
ϕ μ

ρ2
=

⎛
⎝⎜

⎞
⎠⎟

,

 

Δp

g

V

g

L

D DV

k

Dρ
ϕ μ

ρ
=

⎛
⎝⎜

⎞
⎠⎟

2

,     [Divide both sides by g]

 

Δp

g

V

g

L

D
f f

DV

k

Dρ
ϕ μ

ρ
= =

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

4

2

2

where ,

 
(Multiplication or division by any constant does not change the π  term)

∴ = =
Δp

g
h

fLV

gDfρ
4

2

2
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 Example 19.11  Show by the use of Buckingham pi theorem that the power P developed in the hydraulic turbine is given 

by, P N D
D

B

D N ND

gH
w

w=
⎛

⎝
⎜

⎞

⎠
⎟ρ ϕ

ρ
μ

3 5
2

, ,  where ρw  is the mass density of water, N is the speed, D is the diameter, B is 

the width of the runner, μ  is dynamic viscosity, H is the head and g is the gravitational acceleration.

Solution
The problem can be expressed as,

 P f N D B H gw= ( , , , , , , )ρ μ  (i)

or f P N D B H gw1 0( , , , , , , , )ρ μ =  (ii)
Total number of variables:  n = 8

Writing the dimensions of each term, we get:

P ML T ML N T D L

B L ML T H L

w= = = =

= = =

− − −

− −

[ ], [ ], [ ], [ ],

[ ], [ ], [ ]

2 3 3 1

1 1

ρ

μ ,, [ ]g LT= −2

Thus, the fundamental dimensions in the problem are M, L, T and hence, m = 3.

Therefore, the number of π  terms = n m− = − =8 3 5.

The five π  terms say π π π π π1 2 3 4 5, , , and  are formed.

Equation (ii) may be written as,

 f1 1 2 3 4 5 0( , , , , )π π π π π =  (iii)

Since m = 3 , choosing D, N and ρw  as the repeating variables.
Each π  term contains ( )m +1  variables and can be written as,

 π ρ1
1 1 1= D N Pa b

w
c  (a)

 π ρ2
2 2 2= D N Ba b

w
c  (b)

 π ρ μ3
3 3 3= D Na b

w
c  (c)

 π ρ4
4 4 4= D N Ha b

w
c  (d)

 π ρ5
5 5 5= D N ga b

w
c  (e)

For π1  term:

 π ρ1
1 1 1= D N Pa b

w
c  (a)

 M L T L T ML ML Ta b c0 0 0 1 3 2 31 1 1= − − −[ ] [ ] [ ] [ ]  
Equating the exponents of M, L and T, respectively, we get:

0 1 0 3 2 0 31 1 1 1= + = − + = − −c a c b, ,

Solution: c b a1 1 11 3 5= − = − = −, and

Substituting the values of a1, b1 and c1 in Equation (a) and rearranging, we get:

π ρ
ρ

1
5 3 1

3 5
= =− − −D N P

P

N D
w

w
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For π2 term:

 π ρ2
2 2 2= D N Ba b

w
c  (b)

 M L T L T ML La b c0 0 0 1 32 2 2= − −[ ] [ ] [ ] [ ]  
Equating the exponents of M, L and T, respectively, we get:

0 0 3 1 02 2 2 2= = − + = −c a c b, ,

Solution: c b a2 2 20 0 1= = = −, , and

Substituting the values of a2, b2 and c2 in Equation (b) and rearranging, we get:

π ρ2
1 0 0= =−D N B

B

Dw

For π3 term:

 π ρ μ3
3 3 3= D Na b

w
c  (c)

 M L T L T ML ML Ta b c0 0 0 1 3 1 13 3 3= − − − −[ ] [ ] [ ] [ ]  
Equating the exponents of M, L and T, respectively, we get:

0 1 0 3 1 0 13 3 3 3= + = − − = − −c a c b, ,

Solution: c b a3 3 31 1 2= − = − = −, and

Substituting the values of a3, b3 and c3 in Equation (c) and rearranging, we get:

π ρ μ μ
ρ

3
2 1 1

2
= =− − −D N

D N
w

w
For π4 term:

 π ρ4
4 4 4= D N Ha b

w
c  (d)

 M L T L T ML La b c0 0 0 1 34 4 4= − −[ ] [ ] [ ] [ ]  
Equating the exponents of M, L and T, respectively, we get:

0 0 3 1 04 4 4 4= = − + = −c a c b, ,

Solution: c b a4 4 40 0 1= = = −, and

Substituting the values of a4, b4 and c4 in Equation (d) and rearranging, we get:

π ρ4
1 0 0= =−D N H

H

Dw

For π5 term:

 π ρ5
5 5 5= D N ga b

w
c  (e)

 M L T L T ML LTa b c0 0 0 1 3 25 5 5= − − −[ ] [ ] [ ] [ ]  
Equating the exponents of M, L and T, respectively, we get:

0 0 3 1 0 25 5 5 5= = − + = − −c a c b, ,

Solution: c b a5 5 50 2 1= = − = −, and
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Substituting the values of a5, b5 and c5 in Equation (e) and rearranging, we get:

π ρ5
1 2 0

2
= =− −D N g

g

DN
w

For obtaining the functional relationship, substituting the values of π π π π π1 2 3 4 5, , , and  in Equation (iii), we get:

f
P

N D

B

D D N

H

D

g

DNw w
1 3 5 2 2

0
ρ

μ
ρ

, , , ,
⎛

⎝
⎜

⎞

⎠
⎟ =

or f
P

N D

B

D D N

gH

N Dw w
1 3 5 2 2 2

0
ρ

μ
ρ

, , ,
⎛

⎝
⎜

⎞

⎠
⎟ =     [ ]Multiply andπ π4 5

or f
P

N D

B

D D N

gH

ND
w w

1 3 5 2
0

ρ
μ

ρ
, , ,

⎛

⎝
⎜

⎞

⎠
⎟ =

or f
P

N D

B

D

D N ND

gHw

w
1 3 5

2

0
ρ

ρ
μ

, , ,
⎛

⎝
⎜

⎞

⎠
⎟ =

 

P

N D

D

B

D N ND

gHw

w

ρ
ϕ

ρ
μ3 5

2

=
⎛

⎝
⎜

⎞

⎠
⎟, ,

 
∴ =

⎛

⎝
⎜

⎞

⎠
⎟P N D

D

B

D N ND

gH
w

wρ ϕ
ρ

μ
3 5

2

, ,

Hence proved.

 Example 19.12  The discharge Q in a device is a function of diameter D, speed N, mass density ρ , dynamic viscosity 
μ , surface tension σ  and specific weight w. Obtain an expression for Q using Buckingham pi theorem.

Solution
The problem can be expressed as,

 Q f D N w= ( , , , , , )ρ μ σ  (i)

or f Q D N w1 0( , , , , , , )ρ μ σ =  (ii)

Total number of variables: n = 7
Writing the dimensions of each term, we get:

Q L T D L N T ML

ML T MT w M

= = = =

= = =

− − −

− − −

[ ], [ ], [ ], [ ],

[ ], [ ], [

3 1 1 3

1 1 2

ρ

μ σ LL T− −2 2 ]

Thus, the fundamental dimensions in the problem are M, L, T and hence, m = 3.

Therefore, the number of π  terms = n m− = − =7 3 4.

The four π  terms say π π π π1 2 3 4, , and  are formed.
Equation (ii) may be written as,

 f1 1 2 3 4 0( , , , )π π π π =  (iii)

Since m = 3 , choosing D, N and ρ  as the repeating variables.
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Each π  term contains ( )m +1  variables and can be written as,

 π ρ1
1 1 1= D N Qa b c  (a)

 π ρ μ2
2 2 2= D Na b c  (b)

 π ρ σ3
3 3 3= D Na b c  (c)

 π ρ4
4 4 4= D N wa b c  (d)

For π1 term:

 π ρ1
1 1 1= D N Qa b c  (a)

 M L T L T ML L Ta b c0 0 0 1 3 3 11 1 1= − − −[ ] [ ] [ ] [ ]  
Equating the exponents of M, L and T, respectively, we get:

0 0 3 3 0 11 1 1 1= = − + = − −c a c b, ,

Solution: c b a1 1 10 1 3= = − = −, , and

Substituting the values of a1, b1 and c1 in Equation (a) and rearranging, we get:

π ρ1
3 1 0

3
= =− −D N Q

Q

D N
For π2 term:

 π ρ μ2
2 2 2= D Na b c  (b)

 M L T L T ML ML Ta b c0 0 0 1 3 1 12 2 2= − − − −[ ] [ ] [ ] [ ]  
Equating the exponents of M, L and T, respectively, we get:

0 1 0 3 1 0 12 2 2 2= + = − − = − −c a c b, ,

Solution: c b a2 2 21 1 2= − = − = −, , and

Substituting the values of a2, b2 and c2 in Equation (b) and rearranging, we get:

π ρ μ μ
ρ

2
2 1 1

2
= =− − −D N

ND
For π3 term:

 π ρ σ3
3 3 3= D Na b c  (c)

 M L T L T ML MTa b c0 0 0 1 3 23 3 3= − − −[ ] [ ] [ ] [ ]  
Equating the exponents of M, L and T, respectively, we get:

0 1 0 3 0 23 3 3 3= + = − = − −c a c b, ,

Solution: c b a3 3 31 2 3= − = − = −, , and

Substituting the values of a3, b3 and c3 in Equation (c) and rearranging, we get:

π ρ σ σ
ρ

3
3 2 1

3 2
= =− − −D N

D N
For π4 term:

 π ρ4
4 4 4= D N wa b c  (d)

 M L T L T ML ML Ta b c0 0 0 1 3 2 24 4 4= − − − −[ ] [ ] [ ] [ ]  
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Equating the exponents of M, L and T, respectively, we get:

0 1 0 3 2 0 24 4 4 4= + = − − = − −c a c b, ,

Solution: c b a4 4 41 2 1= − = − = −, and

Substituting the values of a4, b4 and c4 in Equation (d) and rearranging, we get:

π ρ
ρ

4
1 2 1

2
= =− − −D N w

w

DN

For obtaining the functional relationship, substituting the values of π π π π1 2 3 4, , and  in Equation (iii), we get:

 
f

Q

D N ND D N

w

DN
1 3 2 3 2 2

0, , ,
μ

ρ
σ

ρ ρ

⎛

⎝
⎜

⎞

⎠
⎟ =

 

Q

D N ND D N

w

DN3 2 3 2 2
=

⎛

⎝
⎜

⎞

⎠
⎟ϕ μ

ρ
σ

ρ ρ
, ,

 
∴ =

⎛

⎝
⎜

⎞

⎠
⎟Q D N

ND D N

w

DN

3
2 3 2 2

, ,ϕϕ μμ
ρρ

σσ
ρρ ρρ

19.5 ❐ MODEL STUDIES
Before the actual construction of the hydraulic structures (dams, spillways, etc.) or hydraulic machines (turbines, pumps, 
etc.) their models are made and tested to obtain the desired information. Such experimental investigation is also required 
when the problems cannot be solved by theoretical analysis. The model is a small scale replica of the actual structure or the 
machine while the actual structure or machine is called the prototype. In many cases, the models are much smaller than its 
prototypes, whereas in some cases the models may be larger than the prototypes. For example, investigation of a carburetor 
and a wrist watch is carried out in a large scale model.

Applications of Model Studies
Model studies find applications in various branches of engineering. Some of the important applications in different fields 
are given below.

 (i) To determine the full size of civil engineering structures, such as dams, spillways, etc.

 (ii) To predict the performance of mechanical engineering devices, such as turbines, pumps, compressors, etc.

 (iii) To predict the behaviour of naval engineering devices, such as ships, submarines, etc.

 (iv) To predict the stability characteristics and wind loads of tall buildings in architectural engineering.

 (v) To predict the performance of aviation engineering equipment and devices, such as aeroplanes, rockets and missiles.

Importance of Model Studies
The advantages of model studies are given below.

 (i) The model tests are quite economical and convenient because without incurring much expenditure, the design of the 
model may be changed until the most suitable design is obtained.

 (ii) Model testing can also be used to incorporate required modifications in an existing prototype.

 (iii) Based on the final results obtained from the model test, the performance and behaviour of the prototype can be 
easily predicted in advance. In order to achieve this there should be a complete similarity between the model and 
prototypes.
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19.6 ❐ SIMILITUDE-TYPES OF SIMILARITIES
Similitude means the complete similarity between the model and its prototype. The results obtained from experiments on 
models can be applied to the prototype only if a complete similarity exists between them. For establishing a complete sim-
ilarity between the model and its prototype, three type of similarities are to be established, namely (i) geometric similarity, 
(ii) kinematic similarity and (iii) dynamic similarity.

19.6.1 Geometric Similarity
Geometric similarity exists between the model and its prototype when the ratios of their corresponding linear dimensions 
are equal. The ratio is known as scale ratio. Thus, for geometric similarity, the model must be of the same shape as the 
prototype, but it may be scaled by some constant scale factor. In other words, two geometric similar systems may differ in 
size but they will be identical in shape.

Let L B D H A vm m m m m m, , , , and  be the length, breadth, diameter, height, area and volume of the model, respectively 

and L B D H A vp p p p p p, , , , and  be the corresponding length, breadth, diameter, height, area and volume of the prototype, 

respectively. The length scale ratio (Lr), area scale ratio (Ar) and volume scale ratio (vr) are respectively given as follows.

 
L

L

L

B

B

D

D

H

Hr
m

p

m

p

m

p

m

p
= = = =

 
A

A

A

L B

L B
Lr

m

p

m m

p p
r= =

⎛

⎝
⎜

⎞

⎠
⎟ = 2

 
v

v

v

L B H

L B H
Lr

m

p

m m m

p p p
r= =

⎛

⎝
⎜

⎞

⎠
⎟ = 3

Thus, the geometric similarity implies that the corresponding areas are related by the square of the scale factor and the 
corresponding volumes by the cube of the scale factor. It means if the model and the prototype are geometrically similar, 
then they can be superimposed by merely changing the scale.

19.6.2 Kinematic Similarity
Kinematic similarity is the similarity of motion between the model and the prototype. Kinematic similarity exists when 
the velocities at the points in the model have a constant ratio to the velocities at the corresponding points in the prototype 
and their relative directions are also same. Geometric similarity is a prerequisite for kinematic similarity. Thus, kinematic 
similarity implies geometric similarity and in addition, similarity in the flow. The velocity triangles, speed ratio and 
the flow ratio for the model and the prototype will be equal. The kinematic similarity may be considered as time scale 
equivalence.

Let T L V a Qm m m m m, , , and  be the time, length, velocity, acceleration and discharge, respectively, for the model at any 

point and T L V a Qp p p p p, , , and  be the corresponding time, length, velocity, acceleration and discharge, respectively, for 

the prototype at the corresponding point. The time scale ratio (Tr), velocity scale ratio (Vr), acceleration scale ratio (ar) and 
discharge scale ratio (Qr) are respectively given as follows.

 
T

T

Tr
m

p
=

 
V

V

V

L T

L T

L

Tr
m

p

m m

p p

r

r
= =

⎛

⎝
⎜

⎞

⎠
⎟ =

/

/
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a
a

a

L T

L T

L

T
r

m

p

m m

p p

r

r

= =
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=
/

/

2

2 2

 

Q
Q

Q

L T

L T

L

Tr
m

p

m m

p p

r

r
= =

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=
3

3

3/

/

19.6.3 Dynamic Similarity
Dynamic similarity is the similarity of forces between the model and the prototype. Dynamic similarity exists when all 
forces at the points in the model have a constant ratio to the corresponding forces at the corresponding points in the pro-
totype. The directions of the corresponding forces at the corresponding points should also be same. Thus, dynamic simi-
larity implies similarity in the magnitude and directions of forces acting on the model and the prototype at all points. Both 
geometric and kinematic similarities are a prerequisite for dynamic similarity.

The forces acting on a fluid particle may be any one or a combination of the following forces.

 (i) Gravitational force (Fg) = Mass × Acceleration due to gravity of the flowing fluid

 (ii) Friction or viscous force (Fv) = Shear stress due to viscosity × Area of the flow

 (iii) Pressure force (Fp)= Pressure intensity × Cross-sectional area of the flowing fluid.

 (iv) Elastic force (Fe)= Elastic stress × Area of the flowing fluid

 (v) Surface tension force (Fs)= Surface tension × Length of surface of the flowing fluid.

 (vi) Inertia force (Fi) = Mass × Acceleration of the flowing fluid.

Inertia force is the resistive force which is due to the mass of the fluid particles and its direction is opposite to that of the 
fluid particles. The magnitude of inertia force is equal to the product of the mass of the particles (m) and acceleration (a) 
and it is given below.

F ma F F F F Fi g v p e s= = + + + +

Let the subscripts m and p denotes the model and prototype, respectively.
The dynamic similarity force ratio (Fr) is given by,

F
F

F

ma

ma

F F F F F

F F F F Fr
i m

i p

m

p

g v p e s m

g v p e s
= = =

+ + + +

+ + + +
( )

( )

( )

( )

( )

( ) pp

m

p

F

F
=

∑
∑

( )

( )

For complete dynamic similarity, the ratios of the individual component forces must also be equal to the ratio of inertia 
forces.

F
F

F

F

F

F

F

F

F

F

Fr
i m

i p

g m

g p

v m

v p

p m

p p

e m

e p
= = = = = =

( )

( )

( )

( )

( )

( )
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( )

( )

( )

(( )

( )

F

F
s m

s p

Thus

 
F

F

F

F
i

g m

i

g p

⎛

⎝
⎜

⎞

⎠
⎟ =

⎛

⎝
⎜

⎞

⎠
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F

F

F

F
i

v m

i

v p

⎛
⎝⎜

⎞
⎠⎟

=
⎛
⎝⎜

⎞
⎠⎟

; 
F

F

F

F
i

p m

i

p p

⎛

⎝
⎜

⎞

⎠
⎟ =

⎛

⎝
⎜

⎞

⎠
⎟ ;

 

F

F

F

F
i

e m

i

e p

⎛
⎝⎜

⎞
⎠⎟

=
⎛
⎝⎜

⎞
⎠⎟

 and 
F

F

F

F
i

s m

i

s p

⎛
⎝⎜

⎞
⎠⎟

=
⎛
⎝⎜

⎞
⎠⎟

These force ratios are dimensionless numbers which appear in the fluid flow analysis.
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19.7 ❐ DIMENSIONLESS NUMBERS AND THEIR SIGNIFICANCE
In a fluid flow phenomenon, due to the motion of fluid particles, inertia force always exists. The dimensionless numbers are 
obtained by dividing the inertia force by any of the remaining forces, namely gravitational force, viscous force, pressure 
force, elastic force and surface tension force. These force ratios are dimensionless and are also termed as non-dimensional 
parameters. The important dimensionless numbers are given below.

19.7.1 Reynolds Number
It is defined as the ratio of inertia force (Fi) to the viscous force (Fv). The expression for Reynolds number (Re) is given 
below.

F Q V AV V L Vi = × × = × × =ρ ρ ρ 2 2

Here, L is the characteristic length.

F A
du

dy
A

V

L
L VLv = × =

⎛
⎝⎜

⎞
⎠⎟

× = ⎛
⎝⎜

⎞
⎠⎟

× =τ μ μ μ2

Thus Re = = = =
F

F

L V

VL

VL VLi

v

ρ
μ

ρ
μ ν

2 2

    [ / ]∵ν μ ρ=

In case of pipe flows, L is replaced by pipe diameter D, we get:

 
Re = =

ρ
μ ν
VD VD

 (19.1)

Reynolds number is the key parameter to determine the flow regime in pipes. It is named in the honour of Osborne Reyn-
olds (1842-1912), a British physicist. This number signifies the relative predominance of the inertia force to the viscous 
force. At large Reynolds number, the inertia forces are large relative to the viscous forces which cause random and rapid 
fluctuations and thus, the flow is turbulent. At small Reynolds number, the viscous forces are large which keep the fluid 
in-line and thus, the flow is laminar.

This number is taken as a criterion of dynamic similarity in the flow situations where viscous forces predominate. For 
examples, flow through pipes, orificemeter, venturimeter, flow through low speed turbo machines and flow over submerged 
bodies.

19.7.2 Froude Number
It is defined as the square root of the ratio of the inertia force (Fi) to the gravity force (Fg). The expression for Froude 
number (Fr) is given below.

 F L Vi = ρ 2 2

 
F g L gg = × × = × ×ρ ρVolume 3

Thus Fr
F

F

L V

L g

V

Lg
i

g
= = =

ρ
ρ

2 2

3
 (19.2)

The Froude number is significant in free surface flows only and it governs the dynamic similarity of the flow where grav-
itational forces are predominant. Some of the examples are flow over spillways, weirs and notches and flow through open 
channels.
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19.7.3 Euler Number
It is defined as the square root of the ratio of the inertia force (Fi) to the pressure force (Fp). The expression for Euler 
number (Eu) is given below.

 F L Vi = ρ 2 2

 
F p A p Lp = × = × = ×pressure area 2

Thus Eu
F

F

L V

pL

V

p
i

p
= = =

ρ
ρ

2 2

2 /
 (19.3)

The Euler number may be considered in a fluid when its pressure drops low enough to cause vapour formation. This 
 number becomes important when pressure changes in fluid flows are predominant and the other forces, such as viscous 
forces, gravity forces and surface tension forces are absent. Some examples of such flow may be pressure rise due to sudden 
closure of a valve, water hammer in pipes and discharge through orifice.

19.7.4 Weber Number
It is defined as the square root of the ratio of the inertia force (Fi) to the force of surface tension (Fs). The expression for 
Weber number (We) is given below.

 F L Vi = ρ 2 2

 F Ls = × = ×Surface tension Length σ

Thus We
F

F

L V

L

V

L
i

s
= = =

ρ
σ σ ρ

2 2

/( )
 (19.4)

The Weber number is significant only when it has a smaller value in the order of unity or less which shows the predomi-
nance of surface tension force. It assumes importance in flow situations, such as droplets, capillary flows, blood flows in 
veins and arteries, and ripple waves.

19.7.5 Mach Number
It is defined as the square root of the ratio of the inertia force (Fi) to the elastic force (Fe). The expression for Mach number 
(M) is given below.

 F L Vi = ρ 2 2

 F K A K Le = × = × = ×Bulk modulus of elasticity Area 2

Thus M
F

F

L V

KL

V

K

V

K

V

C
i

e
= = = = = =

ρ
ρ ρ

2 2

2

2

/ /

Speed of flow

Speed of sound
 (19.5)

Here, C K= / ρ  represents the velocity of sound in that fluid medium whose properties K and ρ  are being taken. A 

flow is called sonic when M = 1 , subsonic when M < 1 , supersonic when M > 1  and hypersonic when M >> 1 . A higher 
Mach number signifies the predominance of the effect of compressibility of the fluid. At a smaller value of Mach number 
(less than 0.3 for gas flows), the compressibility effect is neglected.

The Mach number is significant when there is substantial change in the density of a fluid due to pressure changes. This 
number is used in the analysis of systems involving high speed flows, spacecraft, rockets, water hammer problems, aero-
dynamic testing and compressor testing.
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19.8. ❐ SIMILARITY LAWS OR MODEL LAWS
The ratios of forces given in Section 19.6.3 are non-dimensional numbers. For dynamic similarity, these ratios for model 
and prototype should be same. However, it is not possible to satisfy all the non-dimensional numbers. Thus, the model 
is generally designed on the basis of predominant force only. The various model laws are developed on the basis of each 
dimensionless number as described below.

19.8.1 Reynolds Model Law
This law states that for dynamic similarity, the Reynolds number of the model should be equal to the Reynolds number of 
the prototype. It is applicable in the flow problems where viscous force is predominant in addition to inertia force. Accord-
ing to this law, we get the below expression.

 
(Re) (Re)m p=

 

ρ
μ

ρ
μ

m m m

m

p p p

p

V L V L
=  (19.6)

 

ρ
μ

r r r

r

V L
= 1  (19.7)

Here, ρ ρ ρr m p= ( / ) , V V Vr m p= ( / ) , L L Lr m p= ( / )  and μ μ μr m p= ( / )  are the scale ratios of density, velocity, length 
and viscosity, respectively.

The expressions for time scale ratio (Tr), acceleration scale ratio (ar), discharge scale ratio (Qr) and force scale ratio (Fr) 
for this model are given below.

 
T

L

Vr
r

r
=

 
a

V

Tr
r

r
=

 Q AV L Vr r r r r= =( )ρ ρ 2

 F m a L ar r r r r r= = ρ 3 , where m Lr r r= ρ 3

This law is used as similarity criterion in the phenomena like (i) incompressible fluid flow in pipe, (ii) motion of air planes, 
(iii) flow around completely immersed bodies under moving fluid and (iv) motion of submarines completely under water.

 Example 19.13  A liquid of specific gravity 0.925 and viscosity 0.032 poise is to be transported through a pipe of 
diameter 1 m at the rate of 2250 litres per second. Tests were performed on a 10 cm diameter pipe using water at ambient 
conditions. If the viscosity and density of water at the given conditions is 0.01 poise and 1000 kg/m3,  respectively, then 
determine the velocity and rate of flow in the model.

Solution
Let Sp = 0 925. , μ p = 0 032. poise, Dp = 1 m, Q lp = =2250 2 25/s m /s3. , Dm = =10 0 1cm m. , μm = 0 01. poise and 

ρm = 1000 kg/m3.
Let Vm and Qm be the velocity and rate of flow in the model, respectively.

 
ρ ρp p wS= = × =0 925 1000 925. kg/m3

 

V
Q

A

Q

D
p

p

p

p

p

= = =
×

=
( / )

.

( / )
.

π π4

2 25

4 1
2 865

2 2
m/s
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For dynamic similarity of the pipe flow: (Re) (Re)m p=

 

ρ
μ

ρ
μ

ρ
ρ

μ
μ

m m m

m

p p p

p
m

p

m

m

p

p

m
p

V D V D
V
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D
V= ⇒ = × × ×

 
∴ = × × × =Vm

925

1000

0 01

0 032

1

0 1
2 865

.

. .
. 8.282 m/s

 
Q A V D Vm m m m m= = × = × × =π π

4 4
0 1 8 2822 2. . 0.06505 m /s3

 Example 19.14  A wind tunnel is used to test 5 : 1 scale model of a car. The velocity with prototype is 60 km/hr and for 
the dynamic similar conditions, the model drag is 240 N. If air is used with model as well as the prototype, then determine 
the drag and the power required for the prototype.

Solution
Let L Lp m/ := 5 1 , Vp = 60 km/hr  and Fm = 240 N .

Let Fp and Pp be the drag and the power required for the prototype.

For dynamic similarity, the Reynolds model is used, i.e., (Re) (Re)m p= .

Thus 
ρ

μ
ρ

μ
m m m

m

p p p

p

V L V L
=

As air is used for both model and prototype, ρ ρ μ μm p m p= =and .

Thus 
V

V

L

L
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p

p

m
= = 5

 
∴ = = × =V Vm p5 5 60 300 km/hr
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5

1
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300⎝⎝⎜
⎞
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=
2

240 N

∴ = × = × × =P F Vp p p
240 60 1000

3600
4000 Watts

 Example 19.15  A ship of length 300 m moves in sea water whose density is 1030 kg/m3. A 1 : 100 model of this ship 
is to be tested in a wind tunnel. The velocity of air in the wind tunnel around the model is 30 m/s and the resistance of the 
model is 60 N. Determine the velocity of ship and its resistance in sea water. The density of air is given as 1.24 kg/m3. Take 
the kinematic viscosities of sea water and air as 0.012 stokes and 0.018 stokes, respectively.

Solution
Let mLp = 300 , ρp = 1030 kg/m3 , L Lm p/ /= 1 100 , Vm = 30 m/s , Fm = 60 N , ρm = 1 24. kg/m3 , ν p = 0 012. stokes  

and νm = 0 018. stokes . Let Vp and Fp be the velocity and resistance of the ship, respectively.
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For dynamic similarity, the Reynolds model is used, i.e., (Re) (Re)m p= .

Thus 
V L V L

m m

m

p p

pν ν
=

 
∴ = × × = × × =V V

L

Lp m
p

m

m

p

ν
ν

30
0 012

0 018

1

100

.

.
0.2 m/s

Since F F
L

L

V

Vp m
p

m

p

m

p

m
= × ×

⎛

⎝⎜
⎞

⎠⎟
×

⎛

⎝⎜
⎞

⎠⎟
ρ
ρ

2 2

 
∴ = × ×⎛

⎝⎜
⎞
⎠⎟

×⎛
⎝⎜

⎞
⎠⎟

=Fp 60
1030

1 24

100

1

0 2

30

2 2

.

.
22150.54 N

19.8.2 Froude Model Law
According to this law, for the similarity of the flow, the Froude number of the model should be equal to the Froude number 
of the prototype. It finds applications in the flow problems where gravitational force is predominant which controls the 
motion in addition to inertia force. According to this law, we get the following expression.

 
( ) ( )Fr Frm p=

 
V

L g

V

L g
m

m m

p

p p

=  (19.8)

 
V

L g
r

r r

= 1  (19.9)

Practically, the two sites of model and prototype testing have equal values of acceleration due to gravity. Thus, gr = 1  and 
Equation (19.9) is simplified as follows.

 
V

L
r

r

= 1  or V Lr r=  (19.10)

Here, V V Vr m p= ( / )  and L L Lr m p= ( / )  are the scale ratios of velocity and length, respectively. The Equation (19.10) 

may be used to obtain other scale ratios.
For this model, the time scale ratio (Tr), acceleration scale ratio (ar), discharge scale ratio (Qr), force scale ratio (Fr), pres-

sure scale ratio (pr), work (energy) scale ratio (wr) and power scale ratio (Pr) in terms of the length scale ratio is given below.

 
T

L

V

L

L
Lr

r

r

r

r
r= = =

 
a

V

T

L

L
r

r

r

r

r

= = = 1

 Q A V L L Lr r r r r r r= = =ρ 2 2 5.

When the same fluid is used in model and prototype, ρr  is equal to one.

 F L a L Lr r r r r r= = × × =ρ 3 3 31 1

 
p

F

A

L

L
Lr

r

r

r

r
r= = =

3

2
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 w F L L L Lr r r r r r= = =3 4

 
P

F L

T

L L

L
Lr

r r

r

r r

r
r= = =

3
3 5.

The similitude based on this law finds applications in (i) free surface flows, such as flow over spillways and sluices, (ii) flow 
of jet from a nozzle or an orifice, (iii) flow problems in which waves are likely to be formed on the surface and (iv) flow 
problems in which fluids of different mass densities flow over one another.

 Example 19.16  In 1 in 30 model of a spillway, the velocity and discharge are 1.5 m/s and 2 m3/s, respectively. Deter-
mine the corresponding velocity and discharge in the prototype.

Solution

Let L L Lr m p= =/ /1 30 , Vm = 1 5. m/s  and Qm = 2 m /s3 .

Let Vp and Qp be the velocity and discharge, respectively, in the prototype.

Since 
V

L

V

L
m

m

p

p

=     [Froude model law]

 
∴ = × = × =V V

L

Lp m
p

m
30 1 5. 8.216 m/s

Since Q
Q

Q
Lr

m

p
r= = 2 5.

 
∴ = = =Q

Q

L
p

m

r
2 5 2 5

2

1 30. .( / )
9859.01 m /s3

 Example 19.17  A 5 m ship model was tested in water having density as 1000 kg/m3. The measurements showed a 
resistance of 60 N when the model moved at 2.5 m/s. Determine the velocity of 80 m prototype and the force required to 
drive the prototype at this speed through sea water having density as 1025 kg/m3.

Solution
Let mLm = 5 , ρm = 1000 kg/m3 , Fm = 60 N , Vm = 2 5. m/s , Lp = 80 m  and ρp = 1025 kg/m3 .

L
L

Lr
m

p
= = =

5

80

1

16
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V

L

V

L
m

m

p

p

=     [Froude model law]
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L
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L
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251904 N
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 Example 19.18  A 7.2 m high and 15 m long spillway discharges 94 m3/s discharge under a head of 2 m. If 1 : 9 scale 
model of this spillway is to be constructed, then determine the model dimensions, head over spillway model and the model 
discharge. If the model experiences a force of 7500 N, then determine the force on the prototype.

Solution
Let mhp = 7 2. , Lp = 15 m , Qp = 94 m /s3 , H p = 2 m , L L Lr m p= =/ /1 9 , and Fm = 7500 N .

 
L

h

h

L

Lr
m

p

m

p
= = =

1

9

Height of the model is given by,

 
h h Lm p r= × = × =7 2

1

9
. 0.8 m

Length of the model is given by,

 
L L Lm p r= × = × =15

1

9
1.67 m

Head over the model is given by,

 
H H Lm p r= × = × =2

1

9
0.222 m

Discharge through the model is given by,

 
Q Q Lm p r= × = ×⎛

⎝⎜
⎞
⎠⎟

=2 5
2 5

94
1

9
.

.

0.387 m /s3

Force on the prototype is given by,

 
F

F

L
p

m

r

= = =
3 3

7500

1 9( / )
5467500 N

19.8.3 Euler Model Law
According to this law, for the similarity of the flow, the Euler number of the model should be equal to the Euler number of 
the prototype. It finds applications in the flow problems where pressure force is predominant in addition to inertia force. 
According to this law, we get the following expression.

 
( ) ( )Eu Eum p=

 
V

p

V

p
m

m m

p

p p/ /ρ ρ
=  (19.11)

If the same fluid is used in model and prototype, then ρ ρm p=  and we get the below expressions.

 
V

p

V

p
m

m

p

p

=  (19.12)

or 
V

p
r

r

= 1  (19.13)

Euler model law is used as similarity criterion for the flow in an enclosed fluid system in which turbulence is fully devel-
oped, so that the viscous forces are insignificant and the other forces, such as gravity and surface tension are absent. It is 
also applicable in the flow problems where cavitation occurs.
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19.8.4 Weber Model Law
For the similarity of the flow, the Weber number of the model should be equal to the Weber number of the prototype. It finds 
applications in the flow problems where surface tension effects predominate in addition to inertia force. According to this 
law, we get the following expressions.

 
( ) ( )We Wem p=

 
V

L

V

L
m

m m m

p

p p pσ ρ σ ρ/ /( ) ( )
=  (19.14)

If the same fluid is used in model and prototype, then ρ ρm p=  and we get the below expressions.

 
V

L

V

L
m

m m

p

p pσ σ/ /
=  (19.15)

or 
V

L
r

r rσ /
= 1  (19.16)

Weber model law is used as similarity criterion for the flow where surface tension forces dominate. This law finds appli-
cation in problems like (i) flow over weirs for very low heads, (ii) very thin sheets of liquid flowing over a surface, (iii) 
capillary waves in channels and (iv) capillary rise in narrow passages.

19.8.5 Mach Model Law
According to this law, for the similarity of the flow, the Mach number of the model should be equal to the Mach number of 
the prototype. It finds applications in the flow problems where forces from elastic compression are significant in addition 
to inertia force. According to this law, we get the following expressions.

 
( ) ( )M Mm p=

 
V

K

V

K
m

m m

p

p p/ /ρ ρ
=  (19.17)

 
V

K
r

r r/ ρ
= 1  (19.18)

For dynamic similarity, the Mach model law finds application in (i) aerodynamic testing, (ii) in the flow phenomena involv-
ing velocities exceeding the speed of sound, (iii) hydraulic model testing for water flow problems and (iv) water testing of 
torpedoes.

 Example 19.19  In an aeroplane model of size 1/20 of its prototype, the pressure drop is 5 kN/m2. Find the correspond-
ing pressure drop in the prototype if the model is tested in water. Assume the densities of air and water as 1.24 kg/m3 and 
1000 kg/m3, respectively and the viscosities of air and water as 1.8×10-4 poise and 1.0×10-2 poise, respectively.

Solution
Let ( / ) ( / )L Lm p = 1 20 , pm = 5 kN/m2 , ρp = 1 24. kg/m3 , ρm = 1000 kg/m3 , μ p = × −1 8 10 4. poise  and 

μm = × −1 0 10 2. poise .

Let pp  be the corresponding pressure drop in the prototype.

It is known that this problem involves pressure and viscous forces and therefore, Euler’s and Reynolds numbers are to 
be considered for dynamic similarity.
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Since 
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3.266 N/m2

 Example 19.20  A 1 : 30 model of a sea water flying boat when moved through fresh water at 2 m/s has a drag of 8 N. For 

calculating the skin resistances, use the relation F fAVf = 2, where f is the skin drag coefficient having values for model 

and prototype as 0.025 and 0.0018, respectively. The wetted surface area of the model is 20 m2. Find the total drag on the 
prototype and the power required to drive it. Assume sea water and fresh water densities as 1025 kg/m3 and 1000 kg/m3, 
respectively.

Solution
Let L L Lr m p= =/ /1 30 , Vm = 2 m/s , ( )Fw m = 8 N , F fAVf = 2 , fm = 0 025. , f p = 0 0018. ,  Am = 20 m2 , 

ρp = 1025 kg/m3  and ρm = 1000 kg/m3 .

According to Reynolds model law, we get:
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According to Froude model law, we get:
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Skin drag on prototype is given by,

( ) . . .F f A Vf p p p p= = × × =2 20 0018 18000 10 954 3887 68 N
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Total drag on prototype is given by,

F F Fp w p f p= + = + =( ) ( ) .221400 3887 68 225287.68 N

Power required to drive the prototype is given by,

P
F V

p
p p= = × =

1000

225287 68 10 954

1000

. .
2467.8 kW

19.9 ❐ TYPES OF MODELS
The models used for testing can be classified into two broad categories, namely undistorted models and distorted models. 
These models are described below.

 1. Undistorted Models: These models are geometrically similar to their prototypes. Therefore, scale ratios for corre-
sponding linear dimensions of the model and its prototype are same. Due to perfect similitude, the behaviour of the 
prototype can be easily and accurately predicted from the results obtained by testing the undistorted model.

 2. Distorted Models: A model which is not similar to its prototype is called a distorted model. In these models, one or 
more terms of the model are not identical with their counterparts in the prototype. In distorted models, different scale 
ratios are adopted for the linear dimensions. Some of the examples for which distorted models are to be prepared are 
rivers, dams across very wide rivers, estuaries and harbours. A distorted model may have the following distortions.

  (a)  Geometrical distortion: This distortion can be either of varying dimensions or that of configuration. It results due 
to the adoption of different scales for vertical and horizontal dimensions. Distortion of dimensions is frequently 
used in river models where a different scale ratio for depth is taken. The distortion of configuration results when the 
configuration of the model does not resemble to its prototype. In such distortion, the model is geometrically sim-
ilar but its bed slope is increased by keeping it in tilted position when compared to the position of the prototype.

  (b)  Material distortion: This distortion results when the materials in both the model and prototype do not satisfy the 
similitude conditions.

  (c)  Hydraulic distortion: Such distortion occurs due to change in some uncontrollable hydraulic quantities, such as 
time, velocity and discharge.

Reasons for adopting distorted models Some of the reasons for adopting distorted models are (i) to maintain accu-
racy in vertical measurements, (ii) to maintain turbulent flow, (iii) to obtain suitable roughness condition, (iii) to obtain 
suitable bed material and its adequate movement and (iv) to accommodate the available facilities, for example, money, 
space, time and water supply.

Merits of distorted models Some of the merits of distorted models are (i) accurate measurements can be made easily 
due to increase in the depth of fluid or magnification of wave heights in models, (ii) model size can be sufficiently reduced 
and thereby, the cost is considerably lowered and its operation is simplified, (iii) considerably increased Reynolds number is 
possible and the surface tension can be lowered and thereby, better results can be obtained and (iv) sufficient tractive force 
can be developed to produce adequate bed movement.

Demerits of distorted models Some of the demerits of distorted models are (i) pressure and velocity may not be cor-
rectly reproduced in magnitude and direction, (ii) slopes, cuts, and bends in a river cannot be truly produced in sand or other 
erodible material, (iii) a model wave may differ from that of the prototype and (iv) results obtained from a distorted model 
are difficult to extrapolate and interpolate.

Even though when distorted models have many drawbacks, if sufficient allowances are made judiciously in the interpre-
tation of their results, then very useful information can be obtained.
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19.10 ❐ SCALE EFFECTS IN MODELS
Always some discrepancy or deviations remains between the results obtained from the prototype and its model when com-
plete similarity does not exist between them. This discrepancy is called scale effect. Some of the factors which result scale 
effects are discussed below.

In a certain fluid flow problem, several forces exist. The complete similarity can be obtained only if all the pertinent 
model laws are simultaneously satisfied. However, it is very difficult to satisfy all the model laws involved in a phenomenon 
and thus, complete similarity cannot be achieved. Under such circumstances, the forces which have secondary influence on 
the fluid flow phenomenon are neglected, so that the number of model laws to be satisfied is reduced. By neglecting these 
forces, some discrepancy or scale effect would be developed between the results obtained from the model tests and those 
of prototype.

The scale effect may also be developed in cases where the forces which have practically no effect on the behaviour of the 
prototype significantly affects the behaviour of its model. It may also not be possible to correctly simulate all the conditions 
in the model as that of the prototype which may also result scale effect.

In order to know the scale effects, the models with different scales should be tested. The observations collected from 
different scales models can be used to develop an empirical relation between scale effects and the size of model. This factor 
may be utilized to correct the results of the model tests.

Summary

 1. The law of dimensional homogeneity states that every addi-
tive term in an equation must have the same dimensions.

 2. Rayleigh method is used for determining the expression for 
a variable which depends upon maximum three or four varia-
bles only.

 3. Buckingham π  theorem states that if there are n dimensional 
variables involved in a dimensional homogeneous equation 
which contains m fundamental quantities, then the variables 
can be grouped into (n-m) dimensionless terms called π  
terms.

 4. The model is a small scale replica of the actual structure or 
the machine while the actual structure or machine is called 
prototype.

 5. Similitude means the complete similarity between the model 
and its prototype.

 6. Geometric similarity: Ratios of corresponding linear dimen-
sions of model and its prototype are equal.

 7. Kinematic similarity: Similarity of motion between the 
model and the prototype.

 8. Dynamic similarity: Similarity of forces between the model 
and the prototype.

 9. Reynolds number: Re = = =
Inertia force

Viscous force

ρ
μ ν
VL VL

, 

replace L by D for a pipe.

 10. Froude number is defined as the square root of the ratio of the 

inertia force to the gravity force and is given by Fr V Lg= / .

 11. Euler number is defined as the square root of the ratio 
of the inertia force to the pressure force and is given by 
Eu V p= / /ρ .

 12. Weber number is defined as the square root of the ratio of the 
inertia force to the force of surface tension and is given by 
We V L= / /σ ρ( ) .

 13. Mach number is defined as the square root of the ratio 
of the inertia force to the elastic force and is given by 

M
V

K

V

C
= =

/ρ
.

 14. Scale effect: Discrepancy between results obtained from 
 prototype and its model.

Multiple-choice Questions

 1. Flow has Froude number less than one if
(a) Normal depth is less than critical depth.
(b) Normal depth is greater than critical depth.
(c) Normal depth is equal to critical depth.
(d) None of the above.

 2. The force scale ratio for Reynolds model law using the same 
fluid both in the model and prototype is equal to

(a) Lr (b) Lr
2

(c) Lr
3 2/

 (d) 1
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 1. What do you understand by dimensional analysis? What are 
its uses?

 2. Explain the principle of dimensional homogeneity with suit-
able examples.

 3. Explain the methods of dimensional analysis along with 
advantages and limitations.

 4. Describe Rayleigh’s method for dimensional analysis.

 5. Describe Buckingham pi theorem, why it is preferred over 
Rayleigh’s method?

 6. Define repeating variables. How these are selected for dimen-
sional analysis?

 7. What is a model study? Also give its applications and 
importance.

 8. What do you understand by similitude? Describe its types.

 9. What is meant by geometric, kinematic and dynamic similar-
ities? Are these similarities truly attainable? Explain.

 10. Give the physical significance of Reynolds number, Froude 
number, Euler number, Weber number and Mach number for 
fluid flow problems.

 11. Discuss different laws on which models are designed for 
dynamic similarity.

 12. Define distorted and undistorted models. Also give their 
 merits and demerits.

 13. Discuss scale effect in model testing. How is it detected?

 3. The discharge scale ratio for Froude model law is given by

(a) Lr
1 2/

 (b) Lr
3 2/

(c) Lr
2

 (d) Lr
5 2/

 4. In the study of forces acting on aeroplane flying with super-
sonic velocity, which of the following number plays signifi-
cant role?
(a) Weber number. (b) Reynolds number.
(c) Mach number . (d) None of the above.

 5. The time scale ratio for a model based on Froude model law 
in terms of length scale ratio L L Lr m p= ( )/  is

(a) Lr  
(b) 1/ Lr

(c) Lr
3 2/

 (d) None of the above

 6. The acceleration ratio for a model based on Froude model law 
is equal to

(a) Lr  
(b) 1/ Lr

(c) Lr
2

 (d) 1

 7. Model analysis of free surface flow is based on
(a) Euler number. (b) Reynolds number.
(c) Mach number. (d) Froude number.

 8. The scale effect in models can be
(a) Negative only . (b) Positive only.
(c) Both negative and positive. (d) None of the these.

 9. Distorted models are used for
(a) Rivers.
(b) Harbours.
(c) Dams across very wide rivers.
(d) All the above.

 10. Principle of similitude forms the basis of
(a) Comparing two identical equipments.
(b) Designing models so that the results can be converted  

to prototype.
(c) Comparing similarity between design and actual 

 equipment.
(d) Hydraulic designs.

 11. An orificemeter to carry water is calibrated with air in a 
geometrically similar model at 1/5 prototype scale. If the ratio 
of kinematic viscosity of air to water is 12.5, then dynamic 
similar flow will be obtained when the discharge ratio (air to 
water) is
(a) 0.4. (b) 2.5.
(c) 62.5. (d) None of the above.

Review Questions

Problems

 1. Due to viscous flow the pressure difference δ p  in a pipe of 
diameter D and length l depends upon velocity V, density 
ρ  and viscosity μ  of the fluid. Express the functional rela-
tionship between these variables and δ p  by using Rayleigh 
method of dimensional analysis.

[Ans. δ μ ϕ ρ μp V D l D VD= [ ]{( ) } ( ), ( )/ / / ]

 2. The power P developed by a hydraulic pump depends on 
the head H, the discharge Q and specific weight w of the  
fluid. Derive an expression for the power developed and  
the given variables by Rayleigh method of dimensional 
analysis.

[Ans. P C HQw= ( ) ]
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 3. Using Buckingham pi theorem, show that the veloc-

ity through an orifice is given by V gH D H VH V H= ⎡
⎣

⎤
⎦2 2ϕ μ ρ σ ρ( ), ( ), ( )/ / /

V gH D H VH V H= ⎡
⎣

⎤
⎦2 2ϕ μ ρ σ ρ( ), ( ), ( )/ / /  where H is the head causing flow, ρ  

is the mass density, σ  is the surface tension, μ  is the coeffi-
cient of viscosity, D is the diameter of the orifice and g is the 
gravitational acceleration.

 4. The lift FL on airfoil depends on the mass density ρ , velocity 
V, characteristic depth d, angle of incidence α  and coefficient 
of viscosity μ  of the fluid. By using Buckingham pi theorem, 
obtain an expression for FL in terms of other given parameters.

[Ans. F V d VDL = ρ ϕ μ ρ α2 2 [ ( ), ]/ ]

 5. Using Buckingham pi theorem, show that the pressure 
difference Δp  in a pipe is given by Δp = {(mV)/D}(L/D)
ϕ ρ μ[( ) ],DV /  where D is the diameter of pipe, L is the 
length of pipe, ρ  is the mass density, V is the velocity and 
μ  is the viscosity.

 6. In film lubricated journal bearings, the frictional torque T is 
found to depend on the speed of rotation N, viscosity of the 
oil μ , the load on the projected area P, and the diameter 
D. Find the dimensionless parameters for application to such 
bearings in general.

[Ans. T N D P N= μ ϕ μ3 [ ( )]/ ]

 7. Obtain an expression for the efficiency, 

η ϕ μ ρ ω ω= [ ( ), ( )]/ /D Q D2 2  of a fan in terms of dimen-
sionless parameters when it depends on the discharge Q, 
runner diameter D, angular velocity ω , mass density ρ  and 
dynamic viscosity μ .

 8. In a flow through a sudden contraction in a circular duct, the 
head loss H is found to depend on the inlet velocity V, diam-
eters D and d and the fluid properties density ρ , viscosity μ  
and acceleration due to gravity g. Obtain an expression for 
the ratio H/D.

[Ans. ( ) [( ), ( ) , ( ) ]H D d D DV gD V/ / / /= ϕ ρ μ 2 ]

 9. Using Buckingham pi theorem, show that the frictional torque 

T of a disc is given by T D N ND= 5 2 2ρϕ μ ρ[ ( )],/  where D is 
the diameter of disc, N is the speed, ρ  is the density and  
μ  is the viscosity of the fluid.

 10. The discharge Q over a rectangular weir depends on the 
head H, acceleration due to gravity g, length of the weir 
crest L, height h and the kinematic viscosity v. Using the 
method of dimensional analysis obtain an expression for Q as 

Q g H g H L H h H= −5 2 1 2 3 2/ / /[ ( ), ( ), ( )]ϕ ν / / / .

 11. The capillary rise h is observed to be influenced by the tube 
diameter D, density ρ , acceleration due to gravity g and sur-
face tension σ . Find the dimensionless parameters for the 
correlation of experimental results.

[Ans. ( ) [ ( )]h D D g/ /= ϕ σ ρ2 ]

 12. Determine the form of equation for the discharge Q through 
a sharp edged triangular notch that depends upon the notch 
head H, velocity of approach V, central angle α  and 

gravitational acceleration g. Using Buckingham pi theorem, 

show that Q g H V g H= 5 2 1 2 1 2/ / /[ ( ), ]ϕ α/ .

 13. The thermal boundary layer thickness δt  is influenced by 
the parameters, namely viscosity μ , thermal conductivity k, 
density ρ , specific heat of the fluid c, velocity of flow V and 
distance from leading edge x. Using Buckingham pi theorem, 
show that ( ) [( ) , ( ) ]δ ϕ ρ μ μt x xV c k/ / /= .

 14. The water is flowing through a pipe of diameter 24 cm at a 
velocity of 4 m/s. Determine the velocity of oil flowing in 
another pipe of diameter 8 cm, if the condition of dynamic 
similarity is existing between the two pipes. The viscosity of 
water and oil is given as 1 × 10-3 Ns/m2 and 2.5 × 10-3 Ns/m2.  
The specific gravity of oil is given as 0.8.

[Ans. 37.5 m/s]

 15. A wind tunnel is used to test 5 : 1 scale model of a car. The 
velocity with prototype is 75 km/hr and for dynamic simi-
lar conditions, the model drag is 300 N. If air is used with 
model as well as the prototype, then determine the drag and 
the power required for the prototype.

[Ans. 300 N, 6.25 kW]

 16. A model of submarine is scaled down to 1/10 of the proto-
type and is to be tested in a wind tunnel where free stream 
pressure is 2 × 103 kN/m2 and absolute temperature is 50°C. 
The speed of the prototype is 7.72 m/s. Find the free stream 
velocity of air and the ratio of the drags between model and 
prototype. Take kinematic viscosity and density of sea water 
as 1.4 × 10-6 m2/s and 1025 kg/m3 and viscosity of air as 
0.0184 centipoise.

[Ans. 47.04 m/s, 7.81×10-3]

 17. A pipeline of 4 m diameter is to be designed to carry oil at 
the rate 5 m3/s having specific gravity as 0.92 and viscosity 
as 0.04 poise. Tests were conducted using a pipe of 40 cm 
diameter and water as a liquid. Determine the velocity and 
rate of flow required for the model pipe. Take the viscosity of 
water as 0.01 poise.

[Ans. 0.398 m/s, 0.115 m3/s]

 18. The water having kinematic viscosity of 1.2 × 10-6 m2/s and a 
mass density of 1000 kg/m3 flows at a mean speed of 1.6 m/s 
through a 50 mm diameter pipeline. What corresponding vol-
umetric rate (measured at atmospheric pressure) of air flow 
through this pipeline would give rise to essentially similar 
dynamical flow conditions and what would this be so? The 
air has kinematic viscosity of 14 7 10 6. × − m /s2  and a mass 
density of 1.23 kg/m3. Determine for each fluid, the pressure 
drop which would occur in 5 m length of this pipeline. Take 
Darcy’s coefficient of friction as f = 0 005.  for both fluids.

[Ans. 2560.41 N/m2, 472.52 N/m2]

 19. The characteristics of a propeller of 1.8 m diameter and rota-
tional speed 60 rpm are examined by means of a geometri-
cally similar model of 22.5 cm diameter. When the model is 
run at 240 rpm by a torque of 15 Nm, the thrust developed is 
150 N and the speed of advance is 1.6 m/s. Find the following 
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19.42 Chapter 19

for the full scale propeller, such as (i) speed of advance, 
(ii) thrust, (iii) efficiency of the full scale propeller and  
(iv) torque when its efficiency is equal to that of the model.

[Ans. 3.2 m/s, 38.4 kN, 63.66%, 30.721 kNm]

 20. A ship model 1/49 is towed through sea water at a speed of 
2 m/s and a force of 4 N is required to tow the model. Find  
the speed of ship and the force on the ship when the prototype 
is subjected to wave resistance only.

[Ans. 14 m/s, 470.596 kN]

 21. In the model test of a spillway, the velocity and discharge 
are 1.5 m/s and 2.5 m3/s, respectively. Determine the corre-
sponding velocity and discharge over the prototype which is 
36 times the model size.

(Ans. 9 m/s, 19440 m3/s)

 22. In a geometrically similar model of spillway, the discharge 
per metre length is 0.25 m3/s. If the scale of the model is 1/36, 
then find the discharge per metre run of the prototype.

[Ans. 54 m3/s]

 23. A spillway model is to be built to a geometrically similar 
scale of 1/50 across a flume of 600 mm width. The prototype 
is 15 m high and maximum head on it is expected to be 1.5 m. 
(i) What height of the model and what head on the model 
should be used? (ii) If the flow over the model at a particular 
head is 12 litres per second, what flow per metre length of 
the prototype is expected? (iii) If the negative pressure in the 
model is 200 mm, what is the negative pressure in prototype? 
Is it practicable?

[Ans. 0.3 m, 0.03 m, 7071.07 l/s, -10 m, not practicable]

 24. A model of a torpedo is tested in a towing tank at a velocity 
of 36 m/s whilst the prototype is to run at 6 m/s. (i) What 
model scale has been used? For water, take kinematic viscos-
ity as 1.13 × 10-6 m2/s. (ii) What would be the model speed, 
if tested in wind tunnel under a pressure of 1950 kPa and a 
constant temperature of 25 oC. The absolute viscosity of air 
under these conditions is 1.85 × 10-4 poise and gas constant 
is 0.287 kJ/kg K.

[Ans. 1 : 6, 25.85 m/s]

ANSWERS TO MULTIPLE-CHOICE QUESTIONS

 1. (b) 2. (d) 3. (d) 4. (c) 5. (a)
  6. (d) 7. (d) 8. (c) 9. (d) 10. (c)
  11. (b).
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20.1 ❐ INTRODUCTION
The jet of water discharging from a nozzle in atmosphere is called a free jet, i.e., a jet having constant pressure throughout. 
The jet coming out of the nozzle has certain amount of kinetic energy. When this jet strikes a vane (flat or curved plate), 
it exerts a force on it. This impressed force is known as impact of the jet which is designated as hydrodynamic force. This 
force is due to fluid motion which always involves change in momentum. It can be obtained from impulse-momentum 
principle or from Newton’s second law of motion.

Turbine is the most important and satisfactory prime mover that produces mechanical power (i.e., shaft power). The 
working fluid in a turbine may be water, steam, gas, wind and refrigerants. The power consuming devices, such as 
 compressors, pumps, fans, blowers, etc., raise the pressure or velocity of working fluid. The turbines, compressors and 
pumps are used in electric power generation, aircraft propulsion, ship propulsion, and a wide variety of medium and 
heavy industries.

In this chapter, different cases of force exerted by free water jet on stationary and moving vanes of different shapes are 
discussed. The propulsion of ship by the reaction of jet and basics of fluid machines are also discussed.

20.2 ❐ IMPULSE-MOMENTUM PRINCIPLE
Impulse-momentum principle is a modified form of Newton’s second law of motion which states that the resultant external 
force acting on anybody in any direction is equal to the rate of change of momentum of the body in that direction.

Let m be the mass of fluid, V be the velocity of fluid and F be the force.
According to Newton’s second law of motion, we get:

	 F
d mV

dt
= = × −

( ) Mass

Time
(Initial velocity Final velocity)  (20.1)

Equation (20.1) is known as impulse-momentum principle which can also be written as follows.

	 F dt d mV⋅ = ( )  (20.2)

Equation (20.2) is known as impulse-momentum equation in which F. dt is impulse and d(mV) is the resulting change in 
momentum in the direction of force.

Chapter 20

Impact of Free Jets and 
Basics of Fluid Machines
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20.2 Chapter 20

20.3 ❐  FORCE EXERTED BY A JET ON A STATIONARY  
VERTICAL FLAT PLATE

Consider a jet of water coming out from the nozzle and strikes a 
flat vertical plate as shown in Figure 20.1. Assume that the plate is 
smooth and the loss of energy due to impact of the jet is zero.

Let ρw  be the mass density of water, V be the velocity of the jet, 
d be the diameter of the jet and A d= ( )π /4 2  be the area of the jet.

The quantity of water striking the plate per second is given by,

Q  A V= ×

Mass of water striking the flat plate per second = × =ρ ρw wQ AV

Applying impulse-momentum principle, we get:

Fx = × −
Mass

Time
Initial velocity in jet direction Final velocity in( jjet direction)  

Since the jet gets deflected through 90° after striking the plate, the component of the velocity of the jet leaving the plate in 
the direction of the jet will be zero.

	 ∴ = × − =F AV V AVx w wρ ρ( )0 2  (20.3)

Since the plate is stationary, i.e., u = 0, the work done per second by the jet on the plate is given below.

	 w F u Fx x= × = × = × =Force Velocity 0 0 	

 Example 20.1  A jet of water of diameter 50 mm having a velocity of 35 m/s strikes a flat smooth plate normally. 
 Determine the force exerted by the jet on the plate if the plate is stationary and also find the work done.

Solution
Let d = =50 0 05mm m. , V = 35 m/s and u = 0.

	
A d= = × =

π π
4 4

0 05 0 00196352 2. . m2

	 F AVx w= = × × =ρ 2 21000 0 0019635 35. 2405.29 N 	

	 w F ux= × = × =2405 29 0. 0

20.4 ❐  FORCE EXERTED BY A JET ON A MOVING  
VERTICAL FLAT PLATE

Consider a jet of water coming out from the nozzle with a velocity 
V and it strikes a flat vertical plate which is moving with a uniform 
velocity u away from the jet as shown in Figure 20.2. Assume that the 
plate is smooth and loss of energy due to the impact of jet is zero. The 
jet strikes the plate with a relative velocity which is equal to ( )V u− . 
Let ρw  be the mass density of water, d be the diameter of the jet and 

A d= ( )π /4 2  be the area of the jet.
The quantity of water striking the plate per second is given by,

Q A V u= −( )

Jet of water

Nozzle

x

y

Stationary
flat plate

V

V

V

Figure 20.1  Jet striking a stationary vertical  

flat plate

Nozzle

Jet of water

V u

(V – u)

(V – u)Moving flat plate

x

y

Figure 20.2  Jet striking a vertical flat  

moving plate
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 Impact of Free Jets and Basics of Fluid Machines 20.3

	 Mass of water striking the plate per second = × = −ρ ρw wQ A V u( ) 	
Applying impulse-momentum principle, we get:

Fx = × −
Mass

Time
Initial velocity in jet direction Final velocity in( jjet direction)

	 ∴ = − × − − = −F A V u V u A V ux w wρ ρ( ) [( ) ] ( )0 2  (20.4)

Work done per second by the jet on the moving plate is given by,

	 w F u A V u ux w= × = − ×ρ ( )2  (20.5)

Efficiency of the jet is the ratio of output to the input, i.e., the ratio of work done per second by the jet (w) to the kinetic 
energy of the jet per second (K.E.).

Thus η
ρ

ρ
= =

− ×
=

+ −
=

+ −w A V u u

AV V

V u uV u

V

V u uw

w
K.E. /

( )

( )( )

( ) (2

2

2 2

3

2 3

1 2

2 2 2 22 2

3

Vu

V

)

For a given jet velocity, the efficiency will be maximum when ( / )d duη = 0 .

	

d

du V
V u u Vu

2
2 0

3
2 3 2( )+ −

⎡

⎣
⎢

⎤

⎦
⎥ =

	

	

2
3 4 0

3
2 2

V
V u Vu( )+ − =

	 ( )V u Vu2 23 4 0+ − =   [ ( / ) ]∵ 2 03V ≠

	 ( )V Vu Vu u2 23 3 0− − + =

	 V V u u V u( ) ( )− − − =3 3 0

	 ( ) ( )V u V u− − =3 0

	 ∴ = =V u V uor 3

If V = u, then w from Equation (20.5) becomes,

w A u u uw= − × =ρ ( )2 0

For maximum efficiency, we get:

V u u
V

= =3
3

or

Maximum work done per second can be obtained by substituting u V= ( )/3  in Equation (20.5).

∴ = −⎛
⎝⎜

⎞
⎠⎟

× =w A V
V V

AVw wmax ρ ρ
3 3

4

27

2
3

Maximum efficiency is given by,

η
ρ

ρ
max

max ( )

( ) ( )
. %= =

× ×
=

w AV

AV V

w

w
K.E.

/

/
or

4 27

1 2

8

27
29 63

3

2
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20.4 Chapter 20

 Example 20.2  The diameter of the nozzle fitted at the end of pipe is 75 mm through which water is flowing and the head 
of water at the centre of nozzle is 200 m. The jet strikes the plate perpendicular to it. Determine the force exerted by the jet 
of water on the plate if the plate is moving away from the jet with a velocity of 10 m/s. Also find the work done per second 
on the plate and the efficiency of the jet. The coefficient of velocity is given as 0.95.

Solution
Let d = =75 0 075mm m. , H = 200 m, u = 10 m/s and Cv = 0 95. .

	
A d= = × =

π π
4 4

0 075 0 0044182 2. . m2

	 V C gHv= = × × × =2 0 95 2 9 81 200 59 51. . . m/s

	 F A V ux w= − = × × − =ρ ( ) . ( . )2 21000 0 004418 59 51 10 10829.58 N

	 w F ux= × = × =10829 58 10. 108295.8 Nm/s

	
η

ρ
= =

× × ×
× =w

AVw( )

.

( ) . .1 2

108295 8

1 2 1000 0 004418 59 51
100

3 3/ /
23.26%%

	

20.5 ❐  FORCE EXERTED BY JET ON A STATIONARY  
INCLINED FLAT PLATE

Consider a flat stationary plate inclined at an angle α  to the direction of flow of water jet as shown in Figure 20.3. Assume 
that the plate is smooth and loss of energy due to the impact of jet is zero.

Let V be the absolute velocity of the jet, d be the diameter of the jet, A d= ( )π /4 2 be the area of the jet, Q =	AV be the 
quantity of water striking the plate per second and ρw  be the mass density of the water.

Mass of water striking the plate per second = × =ρ ρw wQ AV

Applying impulse-momentum principle, we get:

	 F = −
Mass

Time
Initial jet velocity in normal direction Final jet vel( oocity in normal direction)

	

 ∴ = × ° − − =F AV V AVw wρ α ρ α[ cos( ) ] sin90 0 2  (20.6)

This force F can be resolved into two components, one in the direction of the jet (i.e., along x-axis) denoted by Fx and the 
other component perpendicular to the direction of flow (i.e., along y-axis) denoted by Fy.

x

y

Nozzle

V, Q1

V, Q2

V

Fx

Fy
F

(90 –   )α

(90 –   )α

(90 –   )α

α α

α

V cos (90° –   )α

V
 s

in
 (9

0°
 –

   
)αV cos (90° –   )α

V

Figure 20.3 Jet striking an inclined stationary flat plate
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 Impact of Free Jets and Basics of Fluid Machines 20.5

	 F F AV AVx w w= ° − = × =cos( ) ( sin ) sin sin90 2 2 2α ρ α α ρ α  (20.7)

	 F F AV AVy w w= ° − = × =sin( ) ( sin ) cos sin cos90 2 2α ρ α α ρ α α  (20.8)

Since the plate is stationary, work done per second by the jet on the plate will be zero.
Let the total discharge (Q) of the jet divides into two portions Q1 and Q2 parallel to the plate surface. This division of 

discharge may be calculated by applying the condition that there is no resultant force acting in the direction parallel to the 
plate because there is no pressure change and no frictional resistance. According to momentum equation, the direction of 
discharge Q1 is given below.

Final momentum rate − Initial momentum rate = Force

or ( ) cosρ ρ ρ αw w wQ V Q V QV1 2 0− − =

	 Q Q Q1 2− = cosα  (i)

Since Q Q Q= +1 2  (ii)

By solving the expressions (i) and (ii), the values of Q1 and Q2 are obtained as follows.

	 Q
Q

1 2
1= +( cos )α  (20.9)

	 Q
Q

2 2
1= −( cos )α  (20.10)

Ratio of discharges is given by,

	
Q

Q
1

2

1

1
=

+
−

cos

cos

α
α

 (20.11)

 Example 20.3  A 25 mm diameter water jet exerts a force of 883 N in the direction of flow on a flat plate which is held 
inclined at an angle of 30° with the axis of stream. Find the rate of flow of water.

Solution
Let d = =25 0 025mm m. , Fx = 883 N and α = °30 .

A d= = × =
π π
4 4

0 025 0 0004912 2. . m2

Since F AVx w= ρ α2 2sin

	 883 1000 0 000491 302 2= × × °. sinV

	
∴ =

× °
=V

883

1000 0 000491 30
84 814

2. sin
. m/s

	

	 Q AV= = × =0 000491 84 814. . 0.041644 m /s3

20.6 ❐  FORCE EXERTED BY A JET ON A MOVING  
INCLINED FLAT PLATE

Consider a smooth flat plate inclined at an angle of α  to the direction of jet flow and is moving with a uniform velocity  
in the direction of jet as shown in Figure 20.4.
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20.6 Chapter 20

Let V be the absolute velocity of the jet, d be the diameter of the jet, A d= ( )π /4 2 be the area of the jet, u be the velocity 
of the inclined flat plate and ρw  be the mass density of the water. The jet strikes the plate with a relative velocity which is 
equal to (V − u).

The quantity of water striking the plate per second is given by,

Q A V u= −( )

Mass of water striking the plate per second = × = −ρ ρw wQ A V u( )

The force exerted by the jet on the plate in the direction normal to the plate is given by the impulse-momentum principle 
as follows.

	 F = −
Mass

Time
Initial jet velocity in normal direction Final jet vel( oocity in normal direction)

 ∴ = − × − ° − − = −F A V u V u A V uw wρ α ρ α( ) [( ) cos( ) ] ( ) sin90 0 2  (20.12)

This force F can be resolved into two components, one in the direction of the jet (i.e., along x-axis) denoted by Fx and the 
other component perpendicular to the direction of flow (i.e., along y-axis) denoted by Fy.

	 F F A V u A V ux w w= = − × = −sin [ ( ) sin ] sin ( ) sinα ρ α α ρ α2 2 2  (20.13)

	 F F A V u A V uy w w= = − × = −cos [ ( ) sin ] cos ( ) sin cosα ρ α α ρ α α2 2  (20.14)

Work done per second by the jet on the plate is given by,

	 w F u A V u ux w= × = − ×ρ α( ) sin2 2  (20.15)

Efficiency of the jet is the ratio of work done per second by the jet (w) to the kinetic energy of the jet per second (K.E.).

	 ∴ = =
− ×

× ×
=

−η
ρ α

ρ
αw A V u u

AV V

u V u

V

w

w
K.E. /

( ) sin

( ) ( )

( ) sin2 2

2

2 2

31 2

2
 (20.16)

 Example 20.4  A 75 mm diameter water jet having a velocity of 25 m/s strikes a flat plate, the normal of which is 
inclined at 45° to the axis of the jet. Find the normal force exerted on the plate (i) when plate is stationary and (ii) when 
plate is moving with a velocity of 15 m/s in the direction of jet away from the jet. Also determine the power and efficiency 
of the jet when the plate is moving.

Solution
Let d = =75 0 075mm m. , V = 25 m/s, angle = °45  and u = 15 m/s.

(90 –   )α

α

x

y

V u

(V − u)(V − u)
   cos (90° –   )α

(V − u)

(V − u) (V − u)

Nozzle

Figure 20.4 Jet striking to an inclined moving flat plate
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 Impact of Free Jets and Basics of Fluid Machines 20.7

A d= = × =
π π
4 4

0 075 0 0044182 2. . m2

Angle between the jet and the plate: α = ° − ° = °90 45 45

 (i) The normal force on an inclined stationary flat plate is given by,

F AVw= = × × ° =ρ α2 21000 0 004418 25 45sin . sin 1952.5 N

 (ii) When the plate is moving in the direction of jet, the normal force is given by,

F A V uw= − = × × − ° =ρ α( ) sin . ( ) sin2 21000 0 004418 25 15 45 312.4 N

  Force in the direction of jet is given by,

F A V ux w= − = × × − ° =ρ α( ) sin . ( ) sin2 2 2 21000 0 004418 25 15 45 220.9 N

	
P

F ux=
×

= × =
1000

220 9 15

1000

.
3.3135 kW

	
η

ρ
= =

× × ×
× =

w

AVw( )

.

( ) .1 2

3313 5

1 2 1000 0 004418 25
100

3 3/ /
9.6%

 Example 20.5  Derive an expression for the normal force exerted by the water jet on the inclined flat plate when the plate 
is moving with a uniform velocity parallel to itself and in direction of the normal to its surface. A 75 mm diameter jet of 
water having a velocity of 30 m/s strikes a flat plate, the normal of which is inclined at 30° to the axis of the jet. Calculate 
the normal force exerted on the plate when the plate is moving with a velocity of 5 m/s parallel to itself and in the direction 
of the normal to its surface. Also calculate the work done, power and efficiency of the jet.

Solution
Refer Figure 20.5. Let d = =75 0 075mm m. , V = 30 m/s, α = °30  and u = 5 m/s.

Let V be the absolute velocity of the jet, d be the diameter of the jet, A d= ( )π /4 2 be the area of the jet, u be the velocity 
of the flat plate, ρw  be the mass density of the water and α  be the angle of inclination of the normal to the axis of the jet.

Mass of the water issued by the jet per second =	 ρw AV , plate velocity in the jet direction =	 u/ cosα  and jet striking 

with a relative velocity to the plate in the jet direction = −V u( cos )./ α
Quantity of water striking the plate per second is given by,

Q A V
u

= × = × −⎛
⎝⎜

⎞
⎠⎟

Area Velocity
cosα

α

αAV

u

u

B

Moving inclined plate

Jet of water

Nozzle

x

y

Normal to plate

Figure 20.5 Jet striking to moving inclined flat plate parallel to itself
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20.8 Chapter 20

Mass of water actually striking the plate per second is given by,

Mass/Second = × = × −⎛
⎝⎜

⎞
⎠⎟

=
−⎛

⎝⎜
⎞
⎠⎟

ρ ρ
α

ρ α
αw w wQ A V

u
A

V u

cos

cos

cos

Initial component of velocity normal to the plate =	V cosα , final velocity normal to the plate =	u and change of velocity 
normal to the plate =	 ( cos )V uα − .

Force normal to the plate is given by,

	 F = ×( )Mass/Second Change in velocity

	 ∴ =
−⎛

⎝⎜
⎞
⎠⎟

× − =F A
V u

V uwρ α
α

αcos

cos
( cos )

ρρ αα
αα

w A V u( cos )

cos

2−−
 (20.17)

Equation (20.17) is the required expression for normal force exerted by the water jet on the inclined plate when the plate is 
moving with a uniform velocity parallel to itself and in direction of the normal to its surface.

A d= = × =
π π
4 4

0 075 0 0044182 2. . m2

	 α = °30

Substituting the above values in Equation (20.17), we get:

F = × × ° −
°

=1000 0 004418 30 30 5

30

2. ( cos )

cos
2245.63 N

The work done is given by,

	 w F u= × = × =2245 63 5. 11228.15 Nm/s

	
P

w= = =
1000

11228 15

1000

.
11.22815 kW

	
η

ρ
= =

× × ×
× =w

AVw( / )

.

( / ) .1 2

11228 15

1 2 1000 0 004418 30
100

3 3
18.82%

	

20.7 ❐ FORCE EXERTED BY A JET ON A SERIES OF FLAT PLATES
In actual engineering applications, a large number of plates are mounted on the circumference of a wheel at a fixed distance 
apart as shown in Figure 20.6. The water jet strikes a plate and exerts force on the plate which causes the wheel to rotate. 
As the wheel rotates, the second plate mounted on the wheel appears before the jet which again exerts force on the second 
plate. Thus, each plate appears successively before the jet and it exerts force on each plate. This force causes to move the 
plates with uniform velocity.

x

y

V

Jet of water

Flat plates

Wheel

Nozzle

u

Figure 20.6 Jet striking a series of flat plates
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 Impact of Free Jets and Basics of Fluid Machines 20.9

Let V be the absolute velocity of the jet, d be the diameter of the jet, A d= ( )π /4 2 be the area of the jet, u be the  velocity 
of the flat plate and ρw  be the mass density of the water. When all plates are considered, the plate will continuously 
 intercept the jet and hence, in this case the plates will always be in contact with the jet. Therefore, the mass of water per 
second striking the series of plates is ( )mass/sec = ρw AV .

Applying impulse-momentum principle, we get:

Fx = −
Mass

Time
Initial velocity in jet direction Final velocity in j( eet direction)

	 ∴ = × − − = −F AV V u AV V ux w wρ ρ[( ) ] ( )0  (20.18)

Work done by the jet on the series of plates per second is given by,

	 w F u AV V u ux w= × = − ×ρ ( )  (20.19)

Efficiency of the jet is the ratio of output to the input, i.e., the ratio of work done per second by the jet (w) to the kinetic 
energy of the jet per second (K.E.).

	 η
ρ

ρ
= = =

− ×

× ×
=

−output

input K.E. /

w AV V u u

AV V

u V u

V

w

w

( )

( ) ( )

( )

1 2

2
2 2

 (20.20)

For a given jet velocity, the efficiency will be maximum when ( / )d duη = 0 and it is expressed below.

d

du

u V u

V

2
0

2

( )−⎡

⎣
⎢

⎤

⎦
⎥ =

2 4
0

2

V u

V

−
=

Thus 2 4 0V u− =   [ ( ) ]∵ 1 02/V ≠

 ∴ =u
V

2
 (20.21)

Maximum efficiency can be obtained by substituting u V= ( / )2 in Equation (20.20) and we get the below expression.

	 ηmax
( )[ ( )] ( )

%=
−

= =
2 2 2 2 1

2
50

2 2

V V V

V

V V

V

/ / /
or  (20.22)

 Example 20.6  A jet of water 50 mm in diameter with a velocity of 25 m/s impinges on a series of plates. The plates are 
so arranged that each plate appears successively before the jet in the same direction and always moves with a velocity of 
8 m/s. Find the force on the plate, work done per second, power and efficiency of the system.

Solution
Let d = =50 0 05mm m. , V = 25 m/s and u = 8 m/s.

	
A d= = × =

π π
4 4

0 05 0 00196352 2. . m2

F AV V ux w= − = × × × − =ρ ( ) . ( )1000 0 0019635 25 25 8 834.49 N

	 w F ux= × = × =834 49 8. 6675.92 Nm/s

	
P

w= = =
1000

6675 92

1000

.
6.676 kW

η
ρ

= =
× × ×

× =w

AVw( )

.

( ) .1 2

6675 92

1 2 1000 0 0019635 25
100

3 3/ /
43.52%
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20.10 Chapter 20

20.8 ❐ FORCE EXERTED BY A JET ON STATIONARY CURVED VANE
Three cases of the stationary curved vane are considered, such as (i) jet strikes the symmetrical curved vane at the centre, 
(ii) jet strikes the symmetrical curved vane at one end tangentially and (iii) jet strikes the unsymmetrical curved vane at 
one end tangentially.

20.8.1  Force Exerted on a Stationary Symmetrical Curved Vane  
When the Jet Strikes at the Centre of Vane

Consider a jet of water coming out from the nozzle striking a symmetrical curved vane at its centre on the concave side 
as shown in Figure 20.7. Assume that the vane is smooth and loss of energy due to the impact of jet is zero. Hence, the 
velocity of the leaving jet will be same. Let the curved vane be symmetrical about x-axis, α  be the angle between leaving 

jet and x-axis at the outer tip, V be the absolute velocity of the jet, d be the diameter of the jet, A d= ( )π /4 2 be the area of 
the jet, ρw  be the mass density of the water, Q AV=  be the quantity of water striking per second to the vane and the mass 

of water striking the vane per second = × =ρ ρw wQ AV .
The velocity at the outlet of the plate can be resolved into two components, one in the direction of the jet and the other 

perpendicular to the direction of jet. The velocity at the outlet is in opposite direction to the jet of water coming out from 
the nozzle. Hence, the component of velocity in the direction of jet will be negative.

Component of velocity in the direction of jet = −V cosα
Component of velocity perpendicular to the jet = V sinα
Force exerted by the jet in the direction of the jet can be given by impulse-momentum principle as follows.

Fx = −
Mass

Time
Initial velocity in jet direction Final velocity in j( eet direction)

	 ∴ = × − − = +F AV V V AVx w wρ α ρ α[ ( cos )] ( cos )2 1  (20.23)

If there is any loss of energy either due to impact of the jet or due to frictional resistance on the vane, then relative velocity 
at the outlet tip will be kV, where k is the vane coefficient having value less than unity. Thus, Equation (20.23) is written 
as follows.

	 F AV kx w= +ρ α2 1( cos )  (20.23a)

Force exerted by the jet in the direction perpendicular to the jet is given by,

V

V

V

Nozzle

Jet of water
Angle of
deflection

Fixed curved vane

Tangent to the vane
at outlet tip

x

y

α

α

α

α

αV sin

V cos )(180° −α

Figure 20.7 Jet striking a fixed symmetrical curved vane at its centre
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 Impact of Free Jets and Basics of Fluid Machines 20.11

F y yy = −
Mass

Time
Initial velocity in -direction Final velocity in -( ddirection)

	 ∴ = × − = −F AV V AVy w wρ α ρ α( sin ) sin0 2  (20.24)

Negative sign indicates that the force is acting in downward direction.
Work done per second by the jet on the stationary curved vane will be zero.

Limiting cases
Case I: When α = °90 , the vane becomes a flat plate and Equation (20.23) is written as follows.

	 F AV AVx w w= + ° =ρ ρ2 21 90( cos )  (20.25)

Thus, it is same as that for a flat plate held normal to the jet direction.

Since [ ( cos )]ρ α ρw wAV AV2 21+ > , the force exerted on a curved vane is always greater than that on a flat plate.

Case II: When α = °0 , the vane becomes semicircular and Equation (20.23) can be written as follows.

	 F AV AVx w w= + ° =ρ ρ2 21 0 2( cos )  (20.26)

Equation (20.26) shows that the force exerted on the semicircular vane will be twice than that exerted on the flat plate.

 Example 20.7  A jet of water 75 mm diameter having velocity 35 m/s strikes a curved fixed symmetrical vane at the 
centre. If the jet is deflected through an angle of 165° at the outlet of the curved vane, then find the force exerted by the jet 
of water in the direction of the jet when (i) vane is smooth and (ii) when coefficient of friction is 0.85.

Solution
Let d = =75 0 075mm m. , V = 35 m/s, ( )180 165° − = °α  and k = 0 85. .

	
A d= = × =

π π
4 4

0 075 0 0044182 2. . m2

	
	 180 165 15° − = ° ⇒ = °α α
 (i) Force exerted by jet on the smooth curved vane in the direction of the jet is given by,

	 F AVx w= +ρ α2 1( cos )

∴ = × × × + ° =Fx 1000 0 004418 35 1 152. ( cos ) 10639.69 N

 (ii) Force exerted by the jet on the curved vane when coefficient of friction k is given by,

	 F AV kx w= +ρ α2 1( cos ) 	

∴ = × × × + ° =Fx 1000 0 004418 35 1 0 85 152. ( . cos ) 9855.543 N

20.8.2  Force Exerted on a Stationary Curved Vane When the Jet Strikes  
the Symmetrical Curved Vane at One End Tangentially

The jet of water striking the curved vane at one end tangentially is shown in Figure 20.8. The curved vane is symmetrical 
about x-axis. Thus, the angle at the inlet tip and the outlet tip of the vane will be equal. Assume that the vane is smooth and 
loss of energy due to the impact of jet is zero. Hence, the velocity at inlet and outlet of vane will be same. Let α  be the 
angle made by the jet with the x-axis at the inlet of the curved vane, V be the absolute velocity of the jet, d be the diameter 
of the jet, A d= ( )π /4 2 be the area of the jet, ρw  be the mass density of the water and mass of water striking the vane per 
second = ρw AV .
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20.12 Chapter 20

Force exerted by the jet in x-direction is given by impulse-momentum 
 principle as follows.

F x xx = −
Mass

Time
Initial velocity in -direction Final velocity in -( ddirection)

	 	 ∴ = × − − =F AV V V AVx w wρ α α ρ α[ cos ( cos )] cos2 2  (20.27)

Force exerted by the jet in y-direction is given by impulse-momentum prin-
ciple as follows.

F y yy = −
Mass

Time
Initial velocity in -direction Final velocity in -( ddirection)

∴ = × − =F AV V Vy wρ α α( sin sin ) 0  (20.28)

As the vane is stationary, work done per second by the jet on the curved vane 
is zero.

20.8.3  Force Exerted on a Stationary Curved Vane When the Jet Strikes  
the Unsymmetrical Curved Vane at One End Tangentially

Consider that water jet strikes the unsymmetrical curved vane at one end 
 tangentially as shown in Figure 20.9. The curved vane is unsymmetrical 
about x-axis. Thus, the angle at the inlet tip and outlet tip of the vane will 
not be equal. Assume that the vane is smooth and loss of energy due to the 
impact of jet is zero. Hence, velocity at the inlet and outlet of vane will 
be equal. Let α  be the angle made by the jet with x-axis at the inlet of 
the curved vane, β  be the angle made by the tangent at the outlet tip with 
x-axis, V be the absolute velocity of the jet, d be the diameter of the jet, 
A d= ( )π /4 2  be the area of the jet, ρw  be the mass density of the water and 
mass of water striking the vane per second = ρw AV .

Force exerted by the jet in x-direction is given by impulse-momentum 
principle as follows.

F x xx = −
Mass

Time
Initial velocity in -direction Final velocity in -( ddirection)

∴ = × − − = +F AV V V AVx w wρ α β ρ α β[ cos ( cos )] (cos cos )2  (20.29)

Force exerted by the jet in y-direction is given by impulse-momentum principle as follows.

	
F y yy = −

Mass

Time
Initial velocity in -direction Final velocity in -( ddirection)

	 ∴ = × − = −F AV V V AVy w wρ α β ρ α β( sin sin ) (sin sin )2  (20.30)

Work done by the jet on stationary unsymmetrical curved vane will be zero.

 Example 20.8  A 25 mm diameter jet of water strikes a symmetrical stationary curved vane tangentially at one end and 
leaves at the other end with a velocity of 15 m/s. Determine the force exerted by the jet on the plate in the horizontal and 
vertical directions if the jet gets deflected through 150° by the vane.

Solution
 Let mm md = =25 0 025. , V = 15 m/s and ( )180 150° °− =α .

Fixed
symmetrical
curved vane

x

y

Nozzle

V

V

αV cos

αV cos

αV sin

αV sin

α

α

Figure 20.8

V

Fixed
unsymmetrical

curved vane

Nozzle

V

αV cos

βV cos

αV sin

βV sin

α

β

Figure 20.9
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 Impact of Free Jets and Basics of Fluid Machines 20.13

A d= = × =
π π
4 4

0 025 0 0004912 2. . m2

	 180 150 30° °− = ⇒ = °α α

The force exerted by the jet of water in x-direction is given by,

F AVx w= = × × × ° =2 2 1000 0 000491 15 302 2ρ αcos . cos 191.35 N

The force exerted by the jet of water in y-direction is given by,

Fy = 0

 Example 20.9  A jet of water with diameter 50 mm moving with a velocity of 35 m/s strikes a curved fixed vane tangen-
tially at one end at an angle of 30° to the horizontal. The jet leaves the vane at an angle of 20° to the horizontal. Find the 
force exerted by the jet on the plate in the horizontal and vertical directions.

Solution

 Let mm md = =50 0 05. , V = 35 m/s, α = 30° and β = 20°.

A d= = × =
π π
4 4

0 05 0 00196352 2. . m2

The force exerted by the jet of water in x-direction is given by,

	 F AVx w= +ρ α β2(cos cos )

∴ = × × × ° + ° =Fx 1000 0 0019635 35 30 202. (cos cos ) 4343.271 N

The force exerted by the jet of water in y-direction is given by,

	
F AVy w= −ρ α β2(sin sin )

∴ = × × × ° − ° =Fy 1000 0 0019635 35 30 202. (sin sin ) 379.987 N

20.9 ❐ FORCE EXERTED BY JET ON MOVING CURVED VANE
Four cases of the moving curved vane are considered, such as (i) jet striking a single symmetrical moving curved vane at 
the centre, (ii) jet striking a series of symmetrical moving curved vanes at the centre, (iii) jet striking an unsymmetrical 
moving curved vane tangentially at the tip and (iv) jet striking a series of radial curved vanes.

20.9.1  Force Exerted on a Single Symmetrical Moving Curved Vane  
When the Jet Strikes at the Centre of Vane

Let a jet of water strikes a curved vane at the centre which is moving with a uniform velocity in the direction of the jet as 
shown in Figure 20.10. The vane is symmetrical about x-axis. Assume that the vane is smooth and loss of energy due to 
the impact of jet is zero. Let α  be the angle made by the jet with x-axis at the inlet of the curved vane, V be the absolute 
velocity of the jet, u be the uniform velocity of vane in the direction of jet, d be the diameter of the jet, A d= ( )π /4 2  be the 
area of the jet and ρw  be the mass density of the water.

Here, the jet strikes the vane with a relative velocity which is equal to ( ).V u−
This velocity can be resolved into two components, one in the direction of the jet along x-axis and the other perpendic-

ular to the direction of the jet along y-axis.
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20.14 Chapter 20

The quantity of water striking the vane per second is given by,

	 Q A V u= −( )

Mass of the water striking the vane per second = = −ρ ρw wQ A V u( ))

Force exerted by the jet in the direction of the jet is given by,

Fx = −
Mass

Time
Initial velocity in jet direction Final velocity in j( eet direction)

Thus F A V u V u V ux w= − × − − − −ρ α( ) [( ) { ( ) cos }]

	 ∴ = − +F A V ux wρ α( ) ( cos )2 1  (20.31)

If there is any loss of energy either due to the impact of jet or due to frictional resistance on the vane, then relative velocity 
at the outlet tip will be k V u( )− , where k is vane coefficient having a value less than unity. Thus, Eq. (20.31) can be written 
as follows.

	 F A V u kx w= − +ρ α( ) ( cos )2 1  (20.32)

Force exerted by the jet in y-direction is given by,

	 F A V u V u A V uy w w= − × − − = − −ρ α ρ α( ) [ ( )sin ] ( ) sin0 2  (20.33)

The negative sign indicates that the force is acting in downward direction.
Work done by the jet on the vane per second is given by,

	 w F u A V u ux w= × = − + ×ρ α( ) ( cos )2 1  (20.34)

Efficiency of the jet is the ratio of work done per second by the jet (w) to the kinetic energy of the jet per second (K.E.).

	 η
ρ α

ρ
α

= =
− + ×

× ×
=

− +w A V u u

AV V

u V uw

w
K.E. /

( ) ( cos )

( ) ( )

( ) ( cos2

2

21

1 2

2 1 ))

V 3
 (20.35)

V u

Jet of water

Nozzle

x

y

Moving curved vane

α

α

α

α(V – u) cos

α(V – u) sin

)(180° − α

(V – u)

(V – u)

(V – u)

Figure 20.10 Jet striking a symmetrical curved moving vane at its centre
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Since V and α  are constants, the efficiency will be maximum when ( ) .d duη/ = 0

	

d

du

u V u

V

2 1
0

2

3

( ) ( cos )− +⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
α

	

d

du

u V u Vu

V

2 2 1
0

2 2

3

( ) ( cos )+ − +⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
α

	

	

d

du V
V u u Vu

2
2 1 0

3
2 3 2( )( cos )+ − +

⎡

⎣
⎢

⎤

⎦
⎥ =α

	

	

2
1 3 4 0

3
2 2

V
V u Vu( cos )( )+ + − =α

Thus V u Vu2 23 4 0+ − =   [ ( / )( cos ) ]∵ 2 1 03V + ≠α

	 V Vu Vu u2 23 3 0− − + =

	 V V u u V u( ) ( )− − − =3 3 0

	 ( ) ( )V u V u− − =3 0

	 ∴ = =V u or V u3

If V = u then from Equation (20.34), we get the below expression.

w A V V Vw= − + × =ρ α( ) ( cos )2 1 0

Hence, for maximum efficiency ( ηmax ), V u= 3 , then from Equation (20.35), we get the below expression.

	 η α αmax
( ) ( cos )

( )
( cos )=

− +
= +

2 3 1

3

8

27
1

2

3

u u u

u
 (20.36)

or η α α
max cos cos= ⎛

⎝⎜
⎞
⎠⎟

=
8

27
2

2

16

27 2
2 2  (20.36a)

When α = 0° , the curved vanes become semicircular, then ηmax from Equation (20.36) is given below.

ηmax ( cos ) ( ) . . %= + = + = =
8

27
1 0

8

27
1 1

16

27
0 5926 59 26° or

 Example 20.10  A jet of water with diameter 100 mm strikes a curved vane at its centre with a velocity of 25 m/s. The 
curved vane is moving with a velocity of 5 m/s in the direction of the jet. The jet is deflected through an angle of 160°. 
Assume that the plate is smooth. Calculate (i) the force exerted on the vane in the direction of jet, (ii) work done per 
 second by the jet on the vane, (iii) power of the jet, (iv) efficiency of the jet and (v) maximum efficiency of the jet. (vi) Also 
 calculate the force exerted on the vane in the direction of jet whose coefficient of friction is 0.9.

Solution
Let d = =100 0 1mm m. , V = 25 m/s, u = 5 m/s, ( )180 160° − = °α  and k = 0 9. .

A d= = × =
π π
4 4

0 1 0 0078542 2. . m2

180 160 20° − = ° ⇒ = °α α
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20.16 Chapter 20

 (i) F A V ux w= − +ρ α( ) ( cos )2 1

	 ∴ = × × − × + ° =Fx 1000 0 007854 25 5 1 202. ( ) ( cos ) 6093.74 N

 (ii) w F ux= × = × =6093 74 5. 30468.7 Nm/s

 (iii) P
w= = =

1000

30468 7

1000

.
30.4687 kW

 (iv) η α= − + = × × − × + ° × =2 1 2 5 25 5 1 20

25
100

2

3

2

3

u V u

V

( ) ( cos ) ( ) ( cos )
49.66%

 (v) η αmax ( cos ) ( cos )= + = × + °⎡
⎣⎢

⎤
⎦⎥

× =8

27
1

8

27
1 20 100 57.47%

 (vi) F A V u kx w= − +ρ α( ) ( cos )2 1

	 ∴ = × × − × + ° =Fx 1000 0 007854 25 5 1 0 9 202. ( ) ( . cos ) 5798.52 N

20.9.2  Force On a Series of Symmetrical Moving Curved Vanes  
When the Jet Strikes at the Centre of Vanes

The single vane system is practically not feasible because the distance between the vane and the nozzle issuing the jet will 
be constantly increasing as it requires continuous lengthening of the jet. Therefore, for actual engineering applications, 
a series of curved vanes is mounted on the circumference of a wheel at a fixed distance apart. The water jet strikes the 
vane and it exerts force on the vane, and this force causes the wheel to rotate. When the wheel rotates, each vane appears 
 successively before the jet and thereby, force is exerted on each vane which causes to move the vane with a uniform velocity.

Let α  be the angle between the leaving jet and x-axis at the outer tip, V be the absolute velocity of the jet, u be the 
uniform velocity of vane in the direction of jet, d be the diameter of the jet, A d= ( )π /4 2  be the area of the jet and ρw  be 
the mass density of the water.

When all the vanes are considered, the vanes will always be in contact with the jet. Hence, the entire fluid coming out of 
nozzle will be utilized. Thus, the mass of water striking the vane per second is ρw AV .

The force exerted by the jet in the direction of motion of the jet is given by,

Fx = −
Mass

Time
Initial velocity in jet direction Final velocity in j( eet direction)

Thus F AV V u V ux w= × − − − −ρ α[( ) ( ( ) cos )]

	 ∴ = − +F AV V ux wρ α( )( cos )1  (20.37)

When coefficient of friction for vanes (k) is given, then Equation (20.37) is written as follows.

	 F AV V u kx w= − +ρ α( )( cos )1  (20.38)

Work done per second on the wheel is given by,

	 w F u AV V u ux w= × = − + ×ρ α( )( cos )1  (20.39)

When there is any energy loss, then work done is given by,

	 w AV V u k uw= − + ×ρ α( )( cos )1  (20. 40)

Efficiency of the jet is the ratio of work done per second by the jet (w) to the kinetic energy of the jet per second (K.E.).
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Thus η
ρ α

ρ
α

= =
− + ×

× ×
=

− +w AV V u u

AV V

u V uw

w
K.E.

( )( cos )

( / ) ( )

( )( cos )1

1 2

2 1
2 VV 2

 (20.41)

The efficiency will be maximum when ( )d duη/ = 0  and we get the below expression.

	

d

du

u V u

V

2 1
0

2

( )( cos )− +⎡

⎣
⎢

⎤

⎦
⎥ =

α

d

du V
Vu u

2
1 0

2
2( cos ) ( )+ −

⎡

⎣
⎢

⎤

⎦
⎥ =α

	

2
1 2 0

2V
V u( cos ) ( )+ − =α

Thus V u− =2 0   [ ( / )( cos ) ]∵ 2 1 02V + ≠α

	 ∴ =V u2

Hence, maximum efficiency can be obtained by substituting V = 2u in Equation (20.41) as given below.

	 η α α
max

( ) ( cos )

( )

cos
=

− +
=

+2 2 1

2

1

22

u u u

u
 (20.42)

Case I: When α = 0°, the curved vanes will become semicircular. Thus, maximum efficiency from Equation (20.42) is 
obtained as follows.

ηmax
cos

%=
+

=
1 0

2
1 100

°
or

This is the theoretical value of maximum efficiency for a wheel provided with semicircular vanes mounted on its periphery. 
This concept is used in the design of buckets for Pelton turbine.

Case II: When α = 90°, the curved vanes reduce to flat plates mounted on the periphery of a wheel, then maximum 
 efficiency from Equation (20.42) is obtained as follows.

ηmax
cos

%=
+

=
1 90

2

1

2
50

°
or

This is same as derived previously in Section 20.7.

 Example 20.11  A jet of water with diameter 0.1 m strikes on a series of symmetrical hemispherical curved vanes at 
the centre attached to the circumference of a wheel with a velocity of 15 m/s. The linear velocity of the vane is 5 m/s in 
the direction of the jet. Assuming that the vane is smooth, find (i) the force exerted on the vane in the direction of the jet,  
(ii) work done per second and (iii) efficiency of the jet.

Solution
Let md = 0 1. , α = °0 (hemispherical vanes), V = 15 m/s and u = 5 m/s.

A d= = × =
π π
4 4

0 1 0 0078542 2. . m2

 (i) F AV V ux w= − +ρ α( ) ( cos )1

∴ = × × × − × + ° =Fx 1000 0 007854 15 15 5 1 0. ( ) ( cos ) 2356.2 N

 (ii) w F ux= × = × =2356 2 5. 11781 Nm/s

 (iii) η α= − + = × × − × + ° × =2 1 2 5 15 5 1 0

15
100

2 2

u V u

V

( )( cos ) ( ) ( cos )
88.9%

M20 Fluid Mechanics and Hydraulic Machines XXXX 01.indd   17 4/5/2019   12:53:10 PM

Download more at Learnclax.com



20.18 Chapter 20

20.9.3  Force Exerted by a Jet on an Unsymmetrical Moving Curved Vane  
When the Jet Strikes Tangentially at One of the Tips

Consider a jet of water striking a moving curved vane tangentially at one of its tips as shown in Figure 20.11. The vane is 
moving in x-direction. Since the jet is striking tangentially, the loss of energy due to the impact of jet will be zero. Since the 
vane is moving, the effective velocity of the jet entering the vane will be equal to relative velocity of the jet with respect to 
the vane and it is given by the vector difference of the jet velocity and vane velocity at the inlet.

Let Vi and Vo be the absolute velocities of the jet at the inlet and outlet, respectively, 
ui and uo be the velocities of the vane at the inlet and outlet, respectively,
Vri and Vro be the relative velocities of the jet and vane at the inlet and outlet, respectively,
 Vwi and Vwo be the velocities of whirl at the inlet and outlet, respectively, (i.e., components of velocities Vi and Vo 
respectively, in the direction of motion of vane),
 Vfi and Vfo be the velocities of flow at the inlet and outlet, respectively, (i.e., components of velocities of Vi and Vo 
respectively, perpendicular to the direction of motion of vane),

	α  and β  be the angles made by absolute velocities with the direction of the vane at the inlet and outlet, respectively. 
The angle α  is also known as guide blade angle.

	θ  and ϕ  be the angles made by the relative velocities with the direction of motion of the vane at the inlet and outlet, 
respectively. The angles θ  and ϕ  are also known as vane angle at the inlet and outlet, respectively.

The triangles ABD and EFH are called the velocity triangles at the inlet and outlet, respectively.

Inlet velocity triangle Referring to Figure 20.11, draw AD to represent the velocity Vi in magnitude and direction to 
some convenient scale. Draw DC to represent the velocity ui in magnitude and direction to the same scale. Here, CA 
 represents the relative velocity Vri between the jet and the vane in magnitude and direction to the same scale. In order that 
the jet enters the vane smoothly without any shock, CA must be parallel to the tangent to the vane at its inlet tip. From A 
draw a perpendicular which meets DC at B when produced. Thus, AD represents Vi, AC represents Vri, DC represents ui, 
BD represents Vwi, AB represents Vfi, ∠ADB  represents α  and ∠ACB  represents θ .

)(180° − ϕ

x

y

θ

θ

α

βϕ

ϕ

Angle of deflection

A

BCD

E

FGH

Vro
Vo Vfo

Vfi

Vwi

Vri

Vi

u

Inlet

Outlet

ui

Vwouo

Figure 20.11 Jet strikes tangentially at the tip of moving unsymmetrical curved vane
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 Impact of Free Jets and Basics of Fluid Machines 20.19

Outlet velocity triangle Referring to Figure 20.11, draw EH to represent the relative velocity Vro in magnitude and 
direction to some convenient scale. If the jet is to leave the vane without shock, then Vro must be parallel to the tangent to 
the vane at outlet tip. Draw HG to represent the velocity of vane uo to the same scale in magnitude and direction. Draw a 
perpendicular EF to HG which meets at F when produced. Thus, EH representsVro, HG represents uo, EG represents Vo, 
EF represents Vfo, FG represents Vwo, ∠EHG  represents ϕ  and ∠EGF  represents β .

Consider that the vane is smooth and the loss of energy due to friction is zero. Therefore, the velocity in the direction of 
motion at inlet and outlet are equal, i.e., u u ui o= =  and also relative velocity of the jet at inlet and outlet are equal, i.e., 
V Vri ro= . Let ρw  be the mass density of water, d be the diameter of the jet, A d= ( )π /4 2  be the area of the jet and mass 
of the water striking the vane per second = ρw riAV .

The force exerted by the jet in the direction of motion of the jet is given by,

Fx = −
Mass

Time
Initial velocity in jet direction Final velocity in j( eet direction)

Initial velocity of the jet with which it strikes the vane in the direction of motion = component of velocity Vri in the 
 direction of motion = BC = V V uri wi icos ( ).θ = −

Final velocity in the direction of motion equals the component of velocity Vro in the direction of motion = FH =	
− = − +V u Vro o wocos ( )ϕ .

(The negative sign has been taken because the direction of this component is opposite to that of the motion of the vane.)

Thus F AV V u u Vx w ri wi i o wo= × −( ) − − +( ){ }⎡⎣ ⎤⎦ρ  

Since u u ui o= =

	 ∴ = +F AV V Vx w ri wi woρ ( )  (20.43)

Equation (20.43) gives the force exerted on the vane in the direction of motion of vane for β < ° 90  (i.e., β  is an acute angle).
When β  is a right angle (i.e., β =  90°), Vwo = 0, then Equation (20.43) is written as follows.

	 F AV Vx w ri wi= ρ  (20.43a)

When β  is an obtuse angle (i.e., β > °90 ), then Equation (20.43) becomes,

	 F AV V Vx w ri wi wo= −ρ ( )  (20.43b)

The general expression for Fx  is given by,

	 F AV V Vx w ri wi wo= ±ρ ( )  (20.44)

Work done per second on the vane by jet is given by,

	 w F u AV V V ux w ri wi wo= × = ± ×ρ ( )  (20.45)

Work done per second per unit weight of water striking per second is given by,

	 w
AV V V u

AV g

V V u

g
w ri wi wo

w ri

wi wo=
± ×

=
±ρ

ρ
( )

( )

( )
Nm/N  (20.46)

Work done per second per unit mass of water striking per second is given by,

	 w
AV V V u

AV
V V uw ri wi wo

w ri
wi wo=

± ×
= ±

ρ
ρ
( )

( ) Nm/kg  (20.47)

Efficiency of the jet is the ratio of work done per second by the jet (w) to the kinetic energy of the jet per second (K.E.).

Thus η
ρ

ρ
ρ

= =
± ×

× ×
=

±w AV V V u

AV V

AV V Vw ri wi wo

w i i

w ri wi wo

K.E. /

( )

( ) ( )

(

1 2

2
2

))u

Vi
3

 (20.48)
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If there is no friction at the vane surface, then work done equals the change in kinetic energy. Thus, work done is given 
below.

w V Vi o= × × −
1

2
2 2( ) ( )mass/sec

Efficiency of the jet is given by,

	 η = =
−

=
−w V V

V

V Vi o

i

i o

K.E.

/ mass/sec

/ mass/sec

( )( )( )

( )( )

1 2

1 2

2 2

2

2 2

VV

V

V
i

o

i
2

2

1= −
⎛
⎝⎜

⎞
⎠⎟

 (20.48a)

 Example 20.12  A jet of water having a velocity of 25 m/s strikes a smooth curved vane which is moving with a velocity 
of 5 m/s. The jet makes an angle of 15° with the direction of motion of vane at inlet and leaves at an angle of 120° to the 
direction of motion of the vane at outlet. Find (i) the vane angle, so that water enters and leaves the vane without shock,  
(ii) work done per second per unit weight of water striking the vane per second and (iii) work done per second per unit of 
mass of water striking the vane per second and (iv) efficiency.

Solution

Refer Figure 20.12. Let Vi = 25 m/s, since vane is smooth, u u ui o= = = 5 m/s and V Vri ro= , α = °15  and ( )180 120° − = °β .

180 120 60° ° °− = ⇒ =β β

 (i) From inlet velocity triangle, we get:

	
V Vfi i= = =sin sin .α 25 15 6 47° m/s

	 V Vwi i= = =cos cos .α 25 15 24 15° m/s

θ =
−

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ =

−
⎛
⎝⎜

⎞
⎠⎟

=− −tan tan
.

.
1 1 6 47

24 15 5

V

V u

fi

wi i
18.67°°

x

y

θα

βϕ

A

BCD

E

FGH

u

Inlet

Outlet

120°
Vro

Vo
Vfo

Vfi

Vwi

Vri

Vi

ui

Vwouo

Figure 20.12
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V
V

ri
fi= = =

sin

.

sin .
.

θ
6 47

18 67
20 21

°
m/s

	 ∴ = =V Vri ro 20 21. m/s

  Applying sine rule to Δ EGH ,	we get:

V uro o

sin ( ) sin( )

.

sin ( ) sin( )180

20 21

180 60

5

60° −
=

−
⇒

° − °
=

° −β β ϕ ϕ

  sin ( )
sin

.
.60

5 120

20 21
0 2143° − =

°
=ϕ

60 0 2143 12 371° − = = °−ϕ sin ( . ) .

∴ = ° − ° =ϕ 60 12 37. 47.63°°

 (ii) From outlet velocity triangle, we get:

V V uwo ro o= − = ° − =cos . cos . .ϕ 20 21 47 63 5 8 62 m/s

  Work done per unit weight per second is given by,

w
V V u

g
wi wo=

+
= + × =

( ) ( . . )

.

24 15 8 62 5

9 81
16.702 Nm/N

 (iii) Work done per second per unit mass of water striking the vane per second is given by,

w V V uwi wo= + = + × =( ) ( . . )24 15 8 62 5 163.85 Nm/kg

 Example 20.13  A jet of water having a velocity of 30 m/s strikes a smooth curved vane which is moving with a velocity 
of 10 m/s. The jet makes an angle of 30° with the direction of motion of vane at the inlet and leaves at an angle of 90° to 
the direction of motion of vane at the outlet. Draw the velocity triangles at the inlet and outlet. Also determine (i) the vane 
angles at inlet and outlet so that water enters and leaves the vane without shock and (ii) work done per second per unit 
weight of water striking the vane per second.

Solution
Refer Figure 20.13. Let Vi = 30 m/s, since vane is smooth, u u ui o= = = 10 m/s  

and V Vri ro= , α = 30°, ( )180 90° °− =β .

180 90 90o − = ⇒ =β β° °

 (i) From inlet velocity triangle, we get:

V Vfi i= = ° =sin sinα 30 30 15 m/s

V Vwi i= = ° =cos cos .α 30 30 25 981 m/s

θ =
−

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ =

−
⎛
⎝⎜

⎞
⎠⎟

=− −tan tan
.

1 1 15

25 981 10

V

V u

fi

wi i
43.19°°

V
V

ri
fi= = =

sin sin .
.

θ
15

43 19
21 92

°

∴ = =V Vro ri 21 92. m/s

x

y

θα

ϕ

A

BCD

E

FH

Vi

Vri

Vf  i

uo

Vwi

u

Vo = Vfo
Vro

Inlet

Outlet

ui

Figure 20.13
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ϕ =
⎛
⎝⎜

⎞
⎠⎟

= ⎛
⎝⎜

⎞
⎠⎟

=− −cos cos
.

1 1 10

21 92

u

V
o

ro
62.86°°

 (ii) Work done per second per unit weight of water is given by,

w
V u

g
wi= = × =25 981 10

9 81

.

.
26.4842 Nm/N

 Example 20.14  A jet of water with diameter 40 mm having a velocity of 15 m/s strikes a smooth curved vane which is 
moving with a velocity of 7.5 m/s in the direction of jet. The jet leaves the vane at an angle of 60° to the direction of motion 
of vane at the outlet. Determine (i) the force exerted by the jet on the vane in the direction of motion, (ii) work done per 
second by the jet and (iii) efficiency of the jet.

Solution
Refer Figure 20.14. Let d = =40 0 04mm m. , Vi = 15 m/s, since vane is smooth u u ui o= = = 7 5. m/s  and V Vri ro=  and 
( )180 60° °− =β .

A d= = × =
π π
4 4

0 04 0 0012572 2. . m2

Since jet and vane move in the same direction, α = 0° and θ = 0° .

180 60 120° ° °− = ⇒ =β β

From the inlet velocity triangle, which is a straight line, we get the following values.

	 V V uri i i= − = − =15 7 5 7 5. . m/s ,

V Vwi i= = 15 m/s 

and  V Vro ri= = 7 5. m/s 	
From the outlet triangle EGH, we get:

∠ = − + ° = ° −GEH 180 60 120° ( ) ( )ϕ ϕ
Applying sine rule, we get:

EH GH

sin sin ( )

.

sin

.

sin ( )60 120

7 5

60

7 5

120°
=

° −
⇒

°
=

° −ϕ ϕ

ACD

Vwi = Vi

x

y

u

β
ϕ

F GH

VoVro

Vfo

60°

60°

E

uo

Inlet

Outlet

Vwo

Vriui

Figure 20.14

M20 Fluid Mechanics and Hydraulic Machines XXXX 01.indd   22 4/5/2019   12:54:01 PM

Download more at Learnclax.com



 Impact of Free Jets and Basics of Fluid Machines 20.23

	 sin ( ) sin120 60 120 60 60° − = ° ⇒ ° − = ° ⇒ = °ϕ ϕ ϕ

	 V u Vwo o ro= − = − ° =cos . . cos .ϕ 7 5 7 5 60 3 75 m/s

 (i) Force exerted on the vane in the direction of motion of vane for β > °90  is given by,

F AV V Vx w ri wi wo= − = × × × − =ρ ( ) . . ( . )1000 0 001257 7 5 15 3 75 106.06 N

 (ii) w F ux= × = × =106 06 7 5. . 795.45 Nm/s

 (iii) η
ρ

= =
× × ×

× =w

AVw i( / )

.

( / ) .1 2

795 45

1 2 1000 0 001257 15
100

3 3
37.5%

 Example 20.15  A jet of water having a velocity of 25 m/s strikes a smooth curved vane which is moving with a velocity 
of 6 m/s in the direction as that of the jet at inlet. The vane is so shaped that the jet is deflected through 140°. The diameter 
of the jet is 75 mm. Assume the vane to be smooth, then find (i) the force exerted by the jet on the vane in the direction of 
motion, (ii) work done per second, (iii) power of the jet and (iv) efficiency.

Solution
Refer Figure 20.15. Let Vi = 25 m/s, since vane is smooth, u u ui o= = = 6 m/s and V Vri ro= , ( )180 140° − = °ϕ  and 
d = =75 0 075mm m. .

A d= = × =
π π
4 4

0 075 0 004422 2. . m2

Since jet and vane move in the same direction, α θ= ° = °0 0and .

180 140 40° − = ° ⇒ = °ϕ ϕ

From the inlet velocity triangle, which is a straight line, we get the below values.

V V uri i i= − = − =25 6 19 m/s

and V Vwi i= = 25 m/s

From the outlet velocity triangle EFH, we get:

	 V Vri ro= = 19 m/s

and V V uwo ro o= − = ° − =cos cos .ϕ 19 40 6 8 555 m/s

βϕ

E

FGH

VoVro
Vfo

ACD

Vwi = Vi

x

y

u

140°

Angle of deflection

ϕ

Inlet

Outlet

uo Vwo

Vriui

Figure 20.15

M20 Fluid Mechanics and Hydraulic Machines XXXX 01.indd   23 4/5/2019   12:54:16 PM

Download more at Learnclax.com



20.24 Chapter 20

 (i) F AV V Vx w ri wi wo= + = × × × + =ρ ( ) . ( . )1000 0 00442 19 25 8 555 2817.95 N

 (ii) w F ux= × = × =2817 95 6. 16907.7 Nm/s

 (iii) P
w= = =

1000

16907 7

1000

.
16.9077 kW

 (iv) η
ρ

= =
× × ×

× =w

AVw i( )

.

( ) .1 2

16907 7

1 2 1000 0 00442 25
100

3 3/ /
48.96%

 Example 20.16  A jet of water moving at 15 m/s impinges on a symmetrical smooth curved vane shaped to deflect the 
jet through 140°. If the vane is moving at 6 m/s, then find the angle of the jet so that there is no shock at the inlet. Also 
determine the absolute velocity of exit in magnitude and direction and the work done per unit weight of water. Assume the 
vane to be smooth.

Solution
Refer Figure 20.16. Let Vi = 15 m/s, 140 180° = ° − +( )θ ϕ , since vane is smooth, u u ui o= = = 6 m/s and V Vri ro= .
Since vane is symmetrical, θ ϕ=

Since 140 180 40 20° = ° − + ⇒ + = ° ⇒ = = °( )θ ϕ θ ϕ θ ϕ   [ ]∵θ ϕ=

Applying sine rule to ΔADC,	we get:

AD DC

sin( ) sin( ) sin ( ) sin( )180

15

180 20

6

20° −
=

−
⇒

° − °
=

° −θ θ α α

	
sin ( ) sin .20

6

15
160 0 13681° − = × ° =α

	 20 0 13681 7 861° − = = °−α sin ( . ) .

∴ = ° − ° = °α 20 7 86 12 14. .

x

y

θα

βϕ

A

BCD

E

FGH

Vi

VoVro

Vri

Vfo

Vf i

Vwi

u
140°ϕ

θ
θ

1β

Inlet

Outlet

ui

Vwouo

Figure 20.16
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Again applying sine rule to ΔADC, we get:

AD AC Vri

sin( ) sin sin( ) sin .180

15

180 20 12 14° −
= ⇒

° − °
=

°θ α

	
∴ =

°
°

=Vri
15 12 14

160
9 223

sin .

sin
. m/s

	 ∴ = =V Vro ri 9 223. m/s

From the outlet velocity ΔEHF , we get:

V V uwo ro o= − = ° − =cos . cos .ϕ 9 223 20 6 2 67 m/s

	
V Vfo ro= = ° =sin . sin .ϕ 9 223 20 3 154 m/s

In right angled ΔEFG, we get:

V V Vo fo wo= + = + =2 2 2 23 154 2 67. . 4.132 m/s

	
β =

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ = ⎛

⎝⎜
⎞
⎠⎟

=− −tan tan
.

.
1 1 3 154

2 67

V

V

fo

wo
49.75°°

Angle made by absolute velocity at the outlet with the direction of motion is given by,

	 β β1 180 180 49 75 130 25= ° − = ° − ° = °. .

V Vwi i= = ° =cos cos .α 15 12 14 14.664 m/s

Work done per unit weight of water striking the vane per second is given by,

w
V V u

g
wi wo=

+
= + × =

( ) ( . . )

.

14 664 2 67 6

9 81
10.602 Nm/N

20.9.4 Force Exerted by a Jet on a Series of Radial Curved Vanes
Consider a series of vanes mounted on a wheel as shown in Figure 20.17.

The jet of water strikes the vanes and the wheel starts rotating at a constant angular speed. All the notations used in 
previous Section 20.9.3 remains same. Let N be the speed of wheel in rpm, ω π= ( )2 60N /  be the angular speed of the 
wheel, Ri and Ro be the radii of the wheel at the inlet and outlet of the vane, respectively, ui and uo be the velocity of vane 
at the inlet and outlet, respectively.

As the blades are situated radially around the wheel, velocity of the blades at the inlet and outlet tips of the vane will be 
different, i.e., u Ri i= ω  and u Ro o= ω .

The mass of water striking per second for a series of vanes is equal to the mass of water coming out from the nozzle per 

second, i.e., ( econd)Mass/S = ρw iAV .

Momentum of water striking in the tangential direction per second at the inlet

= ×( )Mass/Second Component of in tangential directionVi

	 = × =ρ α ρw i i w i wiAV V AV V( cos )   [ cos ]∵V Vwi i= α
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Momentum of water at the outlet per second

= ×( )Mass/Second Component of in tangential directionVo

= × − = −ρ β ρw i o w i woAV V AV V( cos )   [ cos ]∵V Vwo o= β

Negative sign is taken because Vo at the outlet is in opposite direction.

Angular momentum per second at the inlet = Momentum at inlet × Radius at inlet

	 = ρw i wi iAV V R×

Angular momentum per second at outlet = Momentum at outlet × Radius at outlet

	 = − ×ρw i wo oAV V R

Hence, torque exerted by the water on the wheel is given below.
 T = Rate of change of angular momentum

	 = (Initial angular momentum per second − Final angular momentum per second)

	 = − − = +[ ( )] ( )ρ ρ ρ ρw i wi i w i wo o w i wi i w i wo oAV V R AV V R AV V R AV V R

Thus T AV V R V Rw i wi i wo o= +ρ ( )

Work done per second on the wheel is given by,

w AV V R V Rw i wi i wo o= × = + ×Torque Angular speed ρ ω( )

	 ∴ = + = +w AV V R V R AV V u V uw i wi i wo o w i wi i wo oρ ω ω ρ( ) ( )  (20.49)

Vro

Vri

Vfo

Vfi

Vwi

A

BCD
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FGH
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βϕ
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y
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wheel at A

Tangent to
wheel at E
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Wheel
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Outlet
Ri
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uo Vwo

ui

Figure 20.17 Series of curved vanes mounted radially on a wheel
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If angle β  is obtuse, then work done per second is given below.

	 w AV V u V uw i wi i wo o= −ρ ( )  (20.50)

Thus, by combining Equations (20.49) and (20.50), the general expression for the work done on the wheel per second is 
given below.

	 w AV V u V uw i wi i wo o= ±ρ ( )  (20.51)

Equation (20.51) is known as Euler’s momentum equation.

For radial discharge at the outlet tip of the vane β = ° =90 0and Vwo , then from Equation (20.51), work done on wheel 
per second is given below.

	 w AV V uw i wi i= ρ ( )  (20.52)

Work done on the wheel per second per unit weight of the water is given by,

	 w
AV V u V u

AV g

V u V u

g
w i wi i wo o

w i

wi i wo o=
±

=
±ρ

ρ
( )

 (20.53)

Work done per second per unit mass of the water is given by,

	 w
AV V u V u

AV
V u V uw i wi i wo o

w i
wi i wo o=

±
= ±

ρ
ρ

( )
( )  (20.54)

Efficiency of the radial curved vanes is the ratio of work done per second by the jet (w) to the initial kinetic energy per 
second of the jet (K.E.).

Thus η
ρ

ρ
= =

±

× ×
=

±w AV V u V u

AV V

V u V uw i wi i wo o

w i i

wi i wo o

K.E. /

( )

( ) ( )

( )

1 2

2
2 VVi

2
 (20.55)

If there is no loss of energy, then work done on the wheel per second is also equal to the change in kinetic energy of the jet 
per second. Hence, work done per second is given below.

 
w V V AV V Vi o w i i o= − = × × −

1

2

1

2
2 2 2 2( )( ) ( ) ( )mass/sec ρ

	 η
ρ

ρ
= =

−

× ×
=

−
=

w

K E

AV V V

AV V

V V

V

w i i o

w i i

i o

i
. .

( / )( )( )

( / ) ( )

1 2

1 2

2 2

2

2 2

2
11

2

−
⎛
⎝⎜

⎞
⎠⎟

V

V
o

i
 (20.56)

It can be seen from Equation (20.56) that for a given value of the initial jet velocityVi, the efficiency will be maximum 
when Vo has minimum value. However, Vo cannot be zero as in that case there will be no flow. But Vo can be reduced by 
keeping the angle of vane at the outlet ( )ϕ  minimum. Equation (20.55) shows that the efficiency will be maximum when 
β  is an acute angle, so that there will be positive sign between Vwi and Vwo. For maximum efficiency, Vwo should also be 
maximum. This is possible only if β = 0, then V Vwo o=  and ϕ = 0. But in actual practice, ϕ  has some value and it cannot 
be zero. Thus, it may be concluded that smaller the value of ϕ, higher is the efficiency.

 Example 20.17  A jet of water with diameter 100 mm having a velocity of 25 m/s strikes a series of curved vanes 
mounted on a wheel which is rotating at 200 rpm. The jet makes an angle of 25° with the tangent to wheel at the inlet and 
leaves the wheel with a velocity of 5 m/s at an angle of 120° to the tangent to the wheel at outlet. Water is flowing from 
outward in a radial direction. The outer and inner radii of the wheel are 0.5 m and 0.25 m, respectively. Determine (i) the 
vane angle at inlet and outlet, (ii) work done per second, (iii) work done per second per kg of water and (iv) efficiency of 
the wheel.
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Solution
Refer Figure 20.18. Let d = =100 0 1mm m. , Vi = 25 m/s, N = 200 rpm, α = °25 , Vo = 5 m/s, ( )180 120° − = °β , 

Ri = 0 5. m  and Ro = 0 25. m .

A d= = × =
π π
4 4

0 1 0 0078542 2. . m2

ω π π
= =

×
=

2

60

2 200

60
20 944

N
. rad/s

u Ri i= = × =ω 20 944 0 5 10 472. . . m/s

u Ro o= = × =ω 20 944 0 25 5 236. . . m/s

	 180 120 60° − = ° ⇒ = °β β

 (i) From inlet velocity triangle, we get:

	 V Vwi i= = ° =cos cos .α 25 25 22 66 m/s

	
V Vfi i= = ° =sin sin .α 25 25 10 565 m/s

θ =
−

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ =

−
⎛
⎝⎜

⎞
⎠⎟

=− −tan tan
.

. .
1 1 10 565

22 66 10 472

V

V u

fi

wi i
40.992°°

Vro

Vri

Vfo

Vf  i

Vwi

A

BCD

E

FGH

Centre of wheel

θ

βϕ

α

x

y

Tangent to
wheel at A

Tangent to
wheel at E

Vo

Vi

Wheel
Radial

curved vane

120°

Inlet

Outlet
Ri

Ro

ui

Vwouo

Figure 20.18
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  From outlet velocity triangle, we get:

	 V Vwo o= = ° =cos cos .β 5 60 2 5 m/s

	
V Vfo o= = ° =sin sin .β 5 60 4 33 m/s

ϕ =
+

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ =

+
⎛
⎝⎜

⎞
⎠⎟

=− −tan tan
.

. .
1 1 4 33

2 5 5 236

V

V u

fo

wo o
29.24°°

 (ii) Work done per second on the wheel is given by,

	 w AV V u V uw i wi i wo o= +ρ ( )

∴ = × × × × + × =w 1000 0 007854 25 22 66 10 472 2 5 5 236. ( . . . . ) 49163.197 Nm/s

 (iii) Work done per second per kg of water is given by,

w V u V uwi i wo o= + = × + × =( ) ( . . . . )22 66 10 472 2 5 5 236 250.385 Nm/kg

 (iv) η =
+

= × + × × =
2 2 22 66 10 472 2 5 5 236

25
100

2 2

( ) ( . . . . )V u V u

V

wi i wo o

i

80.12%%

20.10 ❐ FORCE EXERTED BY A JET ON A HINGED PLATE
Consider a jet of water striking a vertical flat plate of uniform thickness at the centre which is hinged at point A as shown 
in Figure 20.19.

Due to the force exerted by the jet on the plate, the plate will swing freely through an angle about the hinged point A. 
Let ρw  be the mass density of water, A be the area of the jet, V be the velocity of the jet, l be the distance of the centre of 
jet from hinged point A, α  be the angle of swing about hinge and W be the weight of plate acting at the centre of gravity 
of the plate.

Vx

y
Nozzle

Jet of water

B

D G

A

F

C

l

l

W

α

α

αV cos

Hinged plate

Figure 20.19 Force on a hinged plate

M20 Fluid Mechanics and Hydraulic Machines XXXX 01.indd   29 4/5/2019   12:55:22 PM

Download more at Learnclax.com



20.30 Chapter 20

When the jet strikes the plate, the point B on the plate shifts to point G. Thus, the distance AB AG l= = .
The following two forces are acting on the plate:

 (i) Force due to jet of water normal to the plate is equal to the rate of change of momentum in normal direction as given 
below.

	 F = −
Mass

Time
Initial velocity in normal direction Final velocity i( nn normal direction)

 ∴ = × − =F AV V AVw wρ α ρ α( cos ) cos0 2  (20.57)

 (ii) Weight of the plate W is acting vertically downward at the centre of gravity of the plate.

Under equilibrium conditions, the moments of these forces about the hinge point of the plate must be zero. Thus, 
moment of force F about hinge point A is equal to the moment of weight W about hinge point A.

∴ × = ×F AC W GDLength Length

  Since AC
AB l

= =
cos cosα α

 and GD AG l= =sin sinα α

  Thus ρ α
α

αw AV
l

W l2 cos
cos

sin× = ×

	 ρ αw AV W2 = sin

	 ∴ =sinα
ρw AV

W

2

 (20.58)

 Example 20.18  A jet of water with 30 mm diameter moving with a velocity of 20 m/s strikes a hinged square plate of 
weight 420 N at the centre of the plate. The plate is of uniform thickness. Find the angle through which the plate will swing.

Solution
Let d = =30 0 03mm m. , V = 20 m/s and W = 420 N.

A d= = × =
π π
4 4

0 03 0 0007072 2. . m2

Since α
ρ

=
⎛

⎝
⎜

⎞

⎠
⎟−sin 1

2
w AV

W
  [From Equation (20.58)]

∴ = × ×⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ =−α sin

.1
21000 0 000707 20

420
43.32°°

 Example 20.19  A metal plate of 12 mm thickness and 220 mm square is hung so that it can swing freely about the upper 
horizontal edge. A horizontal jet of water of 25 mm diameter impinges with its axis perpendicular and 55 mm below the 
edge of the hinge, and keeps steadily inclined at 30° to the vertical. Find the velocity of the jet if the specific weight of the 
metal is 80 kN/m3.

Solution
Refer Figure 20.20. Let t = =12 0 012mm m. , b = =220 0 22mm m. , d = =25 0 025mm m. , AB = =55 0 055mm m. , 

α = °30  and w = 80 3kN/m .

Let W be the weight of the plate and v be its volume.
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	 A d= = × =
π π
4 4

0 025 0 0004912 2 2. . m

	 v b b t= × × = × × = × −0 22 0 22 0 012 5 808 10 4. . . . m3

	 W v w= × = × × × =−5 808 10 80 10 46 4644 3. . N

F AV Vw= = × × ° =ρ α2 2 21000 0 000491 30 0 4252cos . cos . V

The moments of force F about hinge point A is given by,

= × = × = ×
°

=F AC F
AB

V
cos

.
.

cos
.

α
0 4252

0 055

30
0 0272 2V

The moment of weight W about hinge point A is given by,

⇒ × = × = × ° =W GD W AG sin . . sin .α 46 464 0 110 30 2 55552

Since Moment of F about A = Moment of W about A  [Under equilibrium]

Thus 0 027 2 555522. .V =

	
∴ = =V

2 55552

0 027

.

.
9.73 m/s

 Example 20.20  A rectangular plate weighing 60 N is suspended vertically by a hinge on the top horizontal edge. The 
centre of gravity of the plate is 10 cm from the hinge. A horizontal jet of water of 2.5 cm diameter, whose axis is 15 cm 
below the hinge, impinges normally to the plate with a velocity of 5 m/s. Find the horizontal force applied at the centre of 
gravity to maintain the plate in vertical position. Find the change in velocity of the jet if the plate is deflected by 30° and 
the same horizontal force continues to act at the centre of gravity of the plate.

Solution
Refer Figure 20.21. Let W = 60 N , AG = =10 0 1cm m. , d = =2 5 0 025. .cm m , AB = =15 0 15cm m.  and α = °30 .

V

55 mm

B C

F G

A

D

220 m
m

110 m
mNozzle

Jet of water

W

α

α

Hinged plate

Figure 20.20
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A d= = × =
π π
4 4

0 025 0 0004912 2. . m2

 (i) Let the force applied at the centre of gravity of the plate to keep the plate in vertical position be F1 as shown in 
Fig. 20.21(a).

F AVw= = × × =ρ 2 21000 0 000491 5 12 275. . N

  Let F1 be the force applied at the centre of gravity to maintain the plate in vertical position. Taking moments about the 
hinge point ‘A’, we get the following expression.

F AB F AG× = ×1

12 275 0 15 0 11. . .× = ×F

∴ =
×

=F1
12 275 0 15

0 1
18 4125

. .

.
. N

 (ii) The plate is deflected through an angle of 30° as shown in Figure 20.21(b), the plate is in equilibrium under the action 
of three forces, such as (a) weight of the plate, W acting at G at a distance 10 cm from A, (b) horizontal force acting at 
G, F N1 14 4125= .  and (c) normal force, Fn on the plate due to jet of water.

  Since F AV V AVn w w= − =ρ α ρ α( cos ) cos0 2

  Thus F V Vn = × × ° =1000 0 000491 30 0 425222 2. cos .

  Taking moments of all forces about hinge A, we get:

	 F AC F AD W DGn × = × + ×1

	
F

AB
F AG W AGn ×

°
= × ° + × °

cos
cos sin

30
30 301

0 42522
0 15

30
14 4125 0 10 30 60 0 10 302.

.

cos
. . cos . sinV ×

°
= × ° + × °

	 0 07365 4 248162. .V =

A

G

10 cm

V

15 cm

V

G

C

A

D

B

30°

30°

Fn

(a) (b)

W

BF

F1F1

Nozzle

Figure 20.21
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∴ = =V

4 24816

0 07365
7 595

.

.
. m/s

	 ∴ = − = Change in velocity 7 595 5. 2.595 m/s (Increase)

20.11 ❐ JET PROPULSION OF SHIPS
Jet propulsion of ship means the propulsion or movement of the ship. It is one of the applications of the impulse- 
momentum principle wherein the reaction of a high velocity jet coming out from a nozzle is used to move the ship. This 
principle is also used to propel the aircrafts and missiles. Based on the position of the inlet orifices to the direction of the 
motion of the ship, two cases are considered, such as (i) inlet orifices at right angle to the motion of the ship and (ii) inlet 
orifices facing the direction of the ship.

20.11.1 Inlet Orifices at Right Angle to the Motion of the Ship
The Figure 20.22 illustrates the propulsion of ship in which the inlet orifices are provided at right angles to the direction 
of motion of the ship. The orifices are provided in the middle of the ship (amidships). The ship carries a centrifugal pump 
which draws water from the surrounding sea and discharges it through a nozzle at the rear of the ship (also called stern).

Let u be the velocity of the ship, A be the area of orifice, V be the absolute velocity of the jet coming out from the stern 
and ρw  be the mass density of water. The velocity V and u are in opposite direction and therefore, relative velocity of the 
jet with respect to ship is V V u V ur = − − = +( ) ( ).

Mass of the water coming out from the orifice per second at the back of ship is given by,

Mass/Second = = +ρ ρw r wAV A V u( )

Force exerted on the ship = Mass flow rate of water × Change in velocity

Here, change in velocity is the difference between the relative velocity of the jet with respect to ship (Vr) and velocity of 
ship (u).

	 ∴ = + × + − = +F A V u V u u A V u Vw wρ ρ( ) [( ) ] ( )  (20.59)

Work done on the ship by jet per second is given by,

	 w F u A V u V uw= × = + ×ρ ( )  (20.60)

V

u

u

V

Stern or back

Jet of water

Inlet orifice

Inlet orifice

Bow or front

Ship

Pipe

Centrifugal pump

Jet of water

Direction of ship

Figure 20.22 Inlet orifices at right angle to the motion of the ship
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Efficiency of the propulsion is the ratio of work done per second by the jet (w) to the initial kinetic energy per second of 
the jet (K.E.).

Thus η
ρ
ρ

= =
+

× + × +
=

+
w A V u Vu

A V u V u

Vu

V u

w

w
K.E. /

( )

( ) ( ) ( ) ( )1 2

2
2 2

 (20.61)

For maximum efficiency, ( )d duη/ = 0 and we get the following result.

d

du

Vu

V u

2
0

2( )+

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=

( ) ( )

( )

V u V Vu V u

V u

+ × − × +
+

=
2

4

2 2 2
0

( ) ( )V u V Vu V u+ × − × + =2 2 2 2 0

( )[( ) ]V u V u V Vu+ + × − =2 4 0

2 2 0V V u u[( ) ]+ − =   [ ]∵V u≠ −

( )V u u+ − =2 0   [ ]∵2 0V ≠

	 ∴ =u V  (20.62)

For obtaining maximum efficiency, substituting V u=  in Equation (20.61), we get:

	 ηmax
( )

( )
. %=

+
= =

2 2

4
0 5 50

2

2

2

u u

u u

u

u
or  (20.63)

20.11.2 Inlet Orifices Face the Direction of Motion of the Ship
The Figure 20.23 shows an arrangement in which the inlet orifices face the direction of the motion of the ship. In this case, 
water is drawn in the pipe from the bow (front) of the ship and gets discharged at the stern.

The expressions for propelling force and work done per second are same as for the previous case and are respectively 
given below.

Centrifugal pump

V

u

u V

Jet of water

Jet of water

SternBow

Direction of ship

Figure 20.23 Inlet orifices face the direction of motion of the ship

M20 Fluid Mechanics and Hydraulic Machines XXXX 01.indd   34 4/5/2019   12:56:14 PM

Download more at Learnclax.com



 Impact of Free Jets and Basics of Fluid Machines 20.35

F A V u Vw= +ρ ( )

w A V u V uw= + ×ρ ( )

In this case, water enters with a velocity equal to the velocity of the ship. Thus, the energy supplied by the jet per second 
(K.E.) is different and it is given below.

	
K.E. = + + −

1

2
2 2ρw A V u V u u( )[( ) ]

or K.E. = + + + − = + +
1

2
2

1

2
22 2 2 2ρ ρw wA V u V u Vu u A V u V Vu( )( ) ( )( )

Efficiency of propulsion is given by,

	 η
ρ

ρ
= =

+

+ +
=

+
=

+
w A V u Vu

A V u V Vu

Vu

V V u

u

V u
w

w
K.E.

( )

( / ) ( )( ) ( )1 2 2

2

2

2

22
 (20.64)

Normally, u V< and therefore, the limiting value of u is equal to V. For this case, it is not practically feasible and it is a 
theoretical consideration only. Thus, the maximum possible value of propulsive efficiency can be obtained by substituting 
u = V in Equation (20.64) as given below.

η =
+

= =
2

2

2

3
66 67

V

V V
. %

 Example 20.21  A jet propelled boat draws water amidship and discharges it through a jet of cross-sectional area 
0.024 m2 at the back with an absolute velocity of 25 m/s. If the boat moves with a speed of 36 km/hr, then determine (i) the 
force exerted on the boat, (ii) work done on the boat, (iii) power of the motor required to work the pump and (iv) efficiency 
of propulsion.

Solution

Let A = 0 024. m2, V = 25 m/s and u = 36 km/hr.

 (i) u =
×
×

=
36 1000

60 60
10 m/s

	 F A V u Vw= + = × × + × =ρ ( ) . ( )1000 0 024 25 10 25 21000 N

 (ii) w F u= × = × =21000 10 210000 Nm/s

 (iii) P
w= = =

1000

210000

1000
210 kW

 (iv) η =
+

= × ×
+

× =2 2 25 10

25 10
100

2 2

Vu

V u( ) ( )
40.82%

 Example 20.22  A ship propelled by reaction jets and discharging astern has a resistance to its motion of 3000 N when 
moving with a speed of 25 km/hr. The velocity of jet relative to the ship is 15 m/s and the area of each jet is 0 0067 2. m . 
Determine (i) the number of jets and (ii) power required to drive the pump. Determine the efficiency of the jet propulsion 
for both the arrangement of inlet orifices.

Solution
Let NF = 3000 , u = 25 km/hr, V V ur = + = 15 m/s and a = 0 0067. m2. Let n be the number of jets.
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 (i) u =
×
×

=
25 1000

60 60
6 944. m/s

	 V V ur= − = − =15 6 944 8 056. . m/s

Since  F A V u Vw= +ρ ( )

Thus 3000 1000 15 8 056= × × ×A .

	
∴ =

× ×
=A

3000

1000 15 8 056
0 02483

.
. m2

n
A

a
= = = = ≈total area of jets

area of each jet

0 02483

0 0067
3 706

.

.
. 4

 (ii) P
F u= × = × =
1000

3000 6 944

1000

.
20.832 kW

  This will remain same for both the arrangements of inlet orifices.

 (iii) When the inlet orifices are at right angles to the motion of the ship, then efficiency is obtained as given below.

η =
+

= × × × =2 2 8 056 6 944

15
100

2 2

Vu

V u( )

. .
49.72%

 (iv) When the inlet orifices face the direction of motion of the ship, then efficiency is obtained as given below.

η =
+

= ×
+ ×

× =2

2

2 6 944

8 056 2 6 944
100

u

V u

.

. .
63.29%

 Example 20.23  A jet propelled ship discharges water through a jet of area 0.02 m2. The water is drawn from inlet 
 orifices facing the direction of motion of the ship. The total drag is estimated to be 20 u2 Nm,  where u is the speed of 
the ship in m/s. If the ship moves with a speed of 60 km/hr, then determine (i) the relative velocity of the jet, (ii) energy 
 supplied by the jet, (iii) power of the motor required to work the pump and (iv) jet propulsion efficiency. Assume the 
 efficiency of pump and the density of water as 0.75 and 1020 kg/m3, respectively.

Solution

Let m2A = 0 02. , F u= 20 2 , u = 60 km/hr , ηp = 0 75.  and ρw = 1020 kg/m3 .

 (i) u =
×
×

=
60 1000

60 60
16 667. m/s

  Since F AV V u uw r r= − =ρ ( ) 20 2

  Thus 1020 0 02 16 667 20 16 6672× × × − = ×. ( . ) .V Vr r

	 V Vr r
2 16 667 272 342 0− − =. .

	
∴ = ± + ×

×
=Vr

16 667 16 667 4 272 342

2 1

2. . .
26.821 m/s

 (ii) Kinetic energy supplied by the jet per second is given by,

	
K.E. = −

1

2
2 2( )( )ρw r rAV V u

	
∴ = × × × − =K.E.

1020 0 02 26 821 26 821 16 667

2

2 2. . ( . . )
120804.12 Nm/s
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 (iii) Power of the motor is given by,

P
p

= =
×

=K.E.

1000

120804 12

1000 0 75η
.

.
161.0722 kW

 (iv) η =
+

=
+

= ×
+

× =2

2

2 2 16 667

26 821 16 667
100

u

V u

u

V ur

.

. .
76.65%

20.12 ❐ FLUID MACHINES
Fluid machines include all machines or devices which handle fluids (i.e., liquids and gases) and convert either fluid power 
into shaft power or shaft power into fluid power. Fluid machines which convert fluid power into shaft power are called 
 turbines while fluid machines which convert shaft power into fluid power are called pumps, fans, blowers or compressors. 
A general classification of fluid machines is given below.

 1. Turbomachines: A turbomachine is a power or head generating machine which employs the dynamic action of a 
rotary element called the rotor. The action of the rotor changes the energy levels of the continuously flowing fluid 
through the turbomachines. Turbines, pumps, compressors, blowers and fans are some examples of turbomachines and 
they are also known as rotodynamic machines. The turbomachines may be classified on the following basis.

    (i) Based on quantity of fluid

    (a)  Machines which influence an indefinite quantity of fluid are known as open turbomachines. Examples: 
 Windmills, unshrouded fans, electric fans, etc.

    (b)  Machines in which a finite quantity of fluid is affected are called closed turbomachines. Examples: Turbines, 
compressors, etc.

   (ii) Based on power

    (a)  Machines which absorb power to increase the energy level of the working fluid. Examples: Pump, compressor, 
etc.

    (b)  Machines which produces power by decreasing the energy level of the working fluid. Examples: Hydraulic 
turbine, steam turbine and gas turbine.

  (iii)  Based on the type of fluid handled

    (a) Machines which handle water, such as hydraulic turbines and pumps.

    (b) Machines which handle steam, such as steam turbines and steam engines.

    (c) Machines which handle gas, such as compressors, gas turbines and air turbines.

  (iv) Based on the nature of flow path in moving over blade rows

    (a)  When the working fluid flows through the runner along the direction parallel to the axis of rotation of the 
runner, then the turbomachines are known as axial flow turbomachines.

    (b)  When the working fluid flows in the radial direction through the runner, then the turbomachines are known as 
radial flow turbomachines. The radial machines may be inward radial flow machines or outward radial flow 
machines.

    (c)  When the working fluid flows through the runner in the radial direction but leaves in the direction parallel to 
the axis of rotation of the runner, then the turbomachines are known as mixed flow turbomachines.

   (v) Based on pressure changes

    (a)  If there is any pressure change when the moving fluid passes over moving blades, then the machine is called 
a reaction turbomachine.

    (b) If there is no pressure change, then the machine is called an impulse turbomachine.

M20 Fluid Mechanics and Hydraulic Machines XXXX 01.indd   37 4/5/2019   12:56:39 PM

Download more at Learnclax.com



20.38 Chapter 20

  (vi) Based on the type of flow within it

    (a)  If the density of the fluid does not change appreciably through the machine, then it is called an incompressible 
flow machine. For example, all types of hydraulic machines, such as turbines and pumps are incompressible flow 
machines.

    (b)  If the density of the fluid changes appreciably through the machine, then it is called a compressible flow 
machine.

   Mach number (M) is defined as the square root of the ratio of the inertia force to the elastic force. Based on 
the value of Mach number, compressible machines are classified as subsonic flow machines ( )M < 1 , transonic 
flow machines ( )M ≈ 1 , supersonic flow machines ( )M > 1  and hypersonic flow machines ( )M >> 1 .

 2. Reciprocating machines The reciprocating machines are also known as positive displacement machines. Examples 
of these machines are reciprocating pumps and compressors.

 3. Various water lifting devices Some of the water lifting devices are jet pump, air lift pump and hydraulic ram.

 4. Pumps transmitting oils These devices use oil under pressure to operate and control systems, for example, gear 
pumps, constant delivery pumps, variable delivery pumps, various appliances and accessories relating to fluid systems.

20.13 ❐ HYDRAULIC MACHINES AND ITS MAIN PARTS
In this book, only closed type hydraulic machines, such as hydraulic turbines and pumps have been discussed. The main 
parts of these machines are discussed in this section.

 1.  Shaft: Power generating hydraulic machines have only output shaft, for example, hydraulic turbines. However, power 
absorbing hydraulic machines have only input shaft, for example, hydraulic pumps. Power transmitting hydraulic 
machines have both input and output shafts, for example, hydraulic coupling and hydraulic torque converter.

 2. Runner or impeller or rotor: The rotating element having blades or vanes on its periphery fitted on the shaft is called 
runner or impeller or rotor. In case of radial flow hydraulic turbines and pumps, it is called runner, impeller in the case 
of centrifugal pumps and rotor in the case of axial flow gas and steam turbines.

 3.  Guide blade or nozzle: It is not a compulsory part of every hydraulic machine. Guide blades are provided in radial 
flow and in axial flow reaction turbines while nozzle is provided in impulse turbines.

 4.  Casing: It is also not a compulsory part of every hydraulic machine. A hydraulic machine with casing is called a closed 
machine. The volute casing is used in hydraulic turbines (radial flow and axial flow reaction turbines) to increase the 
velocity of fluid before it enters the runner. The volute casing is also provided in centrifugal pumps to increase the 
pressure of the water flowing through it.

 5.  Draft tube: A tube of gradually increasing area (also called diffuser) is used for discharging water from the exit of the 
hydraulic reaction turbines to the tail race.

 6.  Penstock: A penstock is a pipe of large diameter which carries water under pressure from the storage reservoir to the 
hydraulic turbines.

 7. Cylinder and piston arrangement: This arrangement is required in reciprocating pumps.

 8. Suction and delivery pipes: These pipes are fitted in reciprocating as well as centrifugal pumps. One end of the 
 suction pipe is connected to the inlet of the pump and the other end dips into water in the sump, whereas one end of 
the delivery pipe is connected to the outlet of the pump and the other end delivers water at the required height.

M20 Fluid Mechanics and Hydraulic Machines XXXX 01.indd   38 4/5/2019   12:56:42 PM

Download more at Learnclax.com



 Impact of Free Jets and Basics of Fluid Machines 20.39

Summary

 1. The jet of water discharging from a nozzle in atmosphere is 
called free jet and the force exerted by it on a vane is called 
impact of jet.

 2. F dt d mV⋅ = ( ) is called impulse-momentum equation in 
which F	⋅	dt is impulse and d(mV ) is the resulting change in 
momentum in the direction of force.

 3. The force exerted by jet of water in a stationary flat vertical 

plate: F AVx w= ρ 2

4. Inclined stationary flat plate Inclined moving flat plate

Force exerted by jet (F) ρ αw AV 2 sin ρ αw A V u( ) sin− 2

Force in direction of jet (Fx) ρ αw AV 2 2sin ρ αw A V u( ) sin− 2 2

Force ⊥  to flow direction (Fy) ρ α αw AV 2 sin cos ρ α αw A V u( ) sin cos− 2

Work done per second (w) 0 [ ( ) sin ]ρ αw A V u u− 2 2

5. Moving flat vertical plate Series of flat plates

Force exerted by jet (Fx) ρw A V u( )− 2 ρw AV V u( )−

Work done per second by jet (w) ρw A V u u( )− 2 ρw AV V u u( )−

Efficiency of the jet ( )η ( )( )2 23 2 3 2/V V u u Vu+ − [ ( )]2 2u V u V− /

Condition for ηmax V u u V= =3 3or / u V= /2

Maximum efficiency ( )maxη 8 27 29 63/ or . % 1 2 50/ or %

6. Stationary curved vanes

Jet strikes at the centre Jet strikes symmetrical 
vane tangentially

Jet strikes unsymmetrical vane 
tangentially

Force exerted in jet 
direction (Fx) 

ρ αw AV 2 1( cos )+ 2 2ρ αw AV cos ρ α βw AV 2(cos cos )+

Force exerted in ⊥
direction (Fy) 

−ρ αw AV 2 sin 0 − −ρ α βw AV 2(sin sin )

7. Moving symmetrical curved vanes

 Jet strikes at the centre of  
single vane 

Jet strikes at the centre of  
a series of vanes

Force exerted by the jet (Fx) ρ αw A V u( ) ( cos )− +2 1 ρ αw AV V u( )( cos )− +1

Work done by the jet (w) ρ αw A V u u( ) ( cos )− +2 1 ρ αw AV V u u( )( cos )− +1
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Efficiency ( )η [ ( ) ( cos )]2 12 3u V u V− + α / [ ( ) ( cos )]2 1 2u V u V− + α /

Condition for ηmax u V= /3 u V= /2

Maximum efficiency ( )maxη ( )( cos )8 27 1/ + α ( )( cos )1 2 1/ + α

8.
Jet strikes an unsymmetrical 
 moving curved vane tangentially

Jet strikes a series of radial  
curved vanes

Force (Fx) or torque (T) exerted F AV V Vx w ri wi wo= ±ρ ( )

(+ve for β < °90 ; −ve for β > °90 )

T AV V R V Rw i wi i wo o= ±ρ ( )

Work done per second (w) ρw ri wi woAV V V u( )±

(+ve for β < °90 ; −ve for β > °90 )

ρw i wi i wo oAV V u V u( )±

Work done per second per unit weight (w) [( ) ]V V u gwi wo± / [( )]V u V u gwi i wo o± /

Work done per second per unit mass (w) ( )V V uwi wo± ( )V u V uwi i wo o±

Efficiency ( )η [ ( ) ] [( ) ]ρ ρw ri wi wo w iAV V V u AV± / /1 2 3 2 2[ ]V u V u Vwi i wo o i± /

9. Propulsion of ship means the movement of ship with the help of jet

Inlet orifices at right angle to 
 the motion of the ship

Inlet orifices face the direction  
of motion of the ship

Force exerted on ship (F) ρwa V u V( )+ ρwa V u V( )+

Work done on the ship (w) ρwa V u Vu( )+ ρwa V u Vu( )+

Efficiency η ( ) ( )2 2Vu V u/ + 2 2u V u/( )+

Condition for ηmax  u V= u V=

Maximum efficiency ( )maxη 50% 66 67. %

 10. Angle of swing of the hinged plate: sin ( )α ρ= w AV W2 /

 11. Fluid machines include turbomachines, reciprocating machines, 
various water lifting devices and pumps transmitting oils.

 12. Turbomachine is a power or head generating machine by 
employing a rotor.

 13. The main parts of hydraulic machines are shaft, runner, guide 
blades, casing, draft tube, cylinder and piston arrangement 
and suction and delivery pipes.
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Multiple-choice Questions

 1. Force exerted by a water jet on a fixed vertical plate in the jet 
direction in terms of mass density of water ( )ρw , area of jet 
(A) and velocity of jet (V) is equal to

(a) ρw AV 3.	   (b) ρw AV .

(c) ( )ρw A V/ 2.	 	 (d) ρw AV 2.

 2. Force exerted by a water jet on a fixed inclined plate in the jet 
direction in terms of mass density of water ( )ρw , area of jet 
(A), velocity of jet (V) and angle of inclination of the plate 
( )α  is equal to

(a) ρ αw AV 2 2sin .	 (b) ρ αw AV ( sin )1+ .

(c) ρ αw AV 2 21( cos )+ .	 (d) ρ αw AV 2 1( sin )+ .

 3. Maximum efficiency in the case of a flat moving plate is given by
(a) (8/25).   (b) (4/27).
(c) (16/27).   (d) (8/27).

 4. Maximum possible efficiency for a jet striking a series of flat 
plate is
(a) 1. (b) 0. (c) 0.75. (d) 0.5.

 5. Force exerted on a stationary semicircular vane when the jet 
strikes at its centre is
(a) Twice than that on a flat plate.
(b) Half than that on a flat plate.
(c) Equal to than that on a flat plate.
(d) None of the above.

 6. Maximum efficiency in the case of a single symmetrical mov-
ing curved vane when the jet strikes at the centre of vane is 
equal to

(a) ( )( cos )8 27 1/ − α .	 (b) ( )( cos )16 27 1/ + α .

(c) ( )( cos )8 27 1/ + α .	 (d) ( )8 27/ .

 7. Maximum possible efficiency in the case of a single semicir-
cular vane when the jet strikes at the centre of vane will be
(a) 49% 	   (b) 49 2. %
(c) 59% 	 	 	 (d) 59 2. %

 8. Maximum efficiency ( )maxη  when the jet strikes at the  centre 
of a series of symmetrical moving curved vanes is equal to

(a) ( cos )1 2− α / .  (b) ( cos )1 2+ α / .

(c) cos α /2.	 	 	 (d) ( sin )1 2+ α / .

 9. For maximum efficiency, when the jet strikes at the centre of 
a series of symmetrical moving curved vanes, the absolute 
velocity of the jet V relative to the velocity of vane u will be
(a) Half.   (b) Twice.
(c) One third.   (d) Equal.

 10. In actual practice, for obtaining maximum efficiency, vane 
angle at the outlet ϕ  for the series of radial curved vanes 
should be
(a) Maximum.  (b) Minimum.
(c) 0°.   (d) None of the above.

Review Questions

 1. What do you mean by fluid machines? How will you classify 
them?

 2. Discuss the main parts of hydraulic machines. Also derive 
Euler’s equation applied to fluid machines.

 3. Define free jet, impact of jet, jet propulsion and impulse- 
momentum equation.

 4. Derive an expression for the force exerted by a water jet on a 
fixed vertical plate in the direction of jet.

 5. Derive an expression for the force exerted by a water jet on a 
moving flat plate. Also derive an expression for its maximum 
efficiency.

 6. Derive an expression for the distribution of flow in the two 
directions parallel to the plate when a jet of water impinges 
on a plate at an angle α . Assume that friction between the 
fluid and plate is negligible.

 7. Derive an expression for the force F exerted by a jet of area 
A which strikes a flat plate at an angle α  to the normal of the 
plate with velocity V. The plate itself is moving with velocity 
u in the direction of normal to the plate surface.

 8. Show that the force exerted by a jet of water in an 
inclined fixed plate in the direction of the jet is given by 

F AVx w= ρ α2 2sin ,  where ρw  is the mass density of water, 

A is the area of the jet, V is the velocity of the jet and α  is the 
inclination of the plate with the jet.

 9. Derive an expression for the efficiency when a water jet 
strikes a series of flat plates. Also show that the efficiency can 
never exceed 50%.

 10. Show that when a jet of water impinges on a series of curved 
vanes, maximum efficiency is obtained when the vane is sem-
icircular in section and the velocity of vane is half that of jet.

 11. Derive expressions for the force exerted by a jet on stationary 
curved plate with conditions, such as (i) when the jet strikes 
the curved plate at the centre and (ii) when the jet strikes the 
curved plate at one end tangentially under symmetrical and 
unsymmetrical condition of plate.

 12. Show that the force exerted by a jet of water striking at the 
centre on a fixed semi-circular plate in the direction of the jet 
is twice the force exerted by the jet on a fixed vertical plate.
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 13. Derive the given expression for the efficiency when a fluid 
jet strikes a series of radial curved vanes, η = {2(Vwi ui ± 

η = ±{ ( )} /2 2V u V u Vwi i wo o i .

 14. Prove that the maximum efficiency when a jet strikes 
the series of symmetrical vanes at their centre is given by 
η αmax ( cos )= +1 2/ , where α  is the angle made by the jet 
with x-axis at the inlet of the curved vane.

 15. A jet having a velocity V strikes a single curved vane moving 
in the jet direction with velocity u so that velocity of jet rela-
tive to vane is ( )V u− . The vane causes the jet to be reversed 
in direction. Show that maximum efficiency is obtained when 
V u= 3 . Also find the resultant maximum efficiency.

 16. Derive expressions for efficiency of propulsion of ship when 
(i) the inlet orifices at right angle to the motion of ship and 
(ii) inlet orifices face the direction of ship motion.

 17. Show that the force exerted by a jet of fluid on a moving 
inclined plate in the direction of the jet is given by Fx =  
rA(V − u)2sin2 a, where A is the area of the jet, V is the velocity  
of the jet and α  is the inclination of the plate with the jet.

 18. Establish the ratio of force exerted by a water jet when it 
strikes (i) a stationary flat plate, (ii) a flat plate moving in 
direction of jet at one-third of velocity of jet, and (iii) a series 
of flat plates mounted on a wheel and moving at one-third the 
velocity of jet.

 19. Derive an expression for the angle of swing of a vertical 
hinged plate.

 20. Show that the maximum efficiency is slightly less than 60% 
when a jet strikes tangentially a smooth curved vane moving 
in the same direction as the jet and jet gets reversed in the 
direction.

Problems

 1. Find the force exerted by a jet of water of diameter 50 mm on 
a stationary flat plate, when the jet strikes the plate normally 
with a velocity of 10 m/s. Also find the work done.

[Ans. 196 N, 0]

 2. A jet of water cross-sectional area 40 cm2 functions with a 
velocity of 25 m/s and strikes a stationary flat plate held at 
30° to the axis of jet. Find the force exerted by the jet on 
the plate (i) in the direction normal to the plate, (ii) in the 
direction of the jet and (iii) in the direction perpendicular to 
the flow. (iv) Find how the discharge gets distributed after 
striking the plate.

[Ans. 1250 N, 625 N, 1082.53 N, 13.93]

 3. A jet of water of diameter 75 mm having a velocity of 20 m/s 
strikes normally a flat smooth plate. Determine the thrust on 
the plate (i) if the plate is at rest and (ii) if the plate is moving 
in the same direction as the jet with a velocity of 5 m/s. Also 
determine the work done per second on the plate in each case 
and the efficiency of the jet when the plate is moving.

[Ans. 1767.14 N, 994.02 N, 0, 4970.1 Nm, 28.12%]

 4. A square plate weighing 110 N and of uniform thickness and 
30 cm edge is hung so that horizontal jet 20 mm diameter and 
having a velocity of 10 m/s impinges on the plate. The centre 
line of the jet is 150 mm below the upper edge of the plate and 
when the plate is vertical, the jet strikes the plate normally at 
its centre. Find what force must be applied at the lower edge 
of the plate in order to keep the plate vertical. If the plate is 
allowed to swing freely, then find the inclination to the verti-
cal which the plate will assume under the action of jet.

[Ans. 15.7 N, 16.59°]

 5. A jet of water of diameter 75 mm having a velocity of 25 m/s 
strikes a flat smooth plate normally. Determine the force 
exerted by the jet on the plate (i) if the plate is stationary 
and (ii) if the plate is moving in the direction of the jet with a 

velocity of 5 m/s. Also find the work done per second on the 
plate in each case and the efficiency of the jet when the plate 
is moving.

[Ans. 2761.16 N, 0, 1767.14 N, 8835.7 Nm, 25.6%]

 6. A jet of water having a velocity of 12 m/s strikes a curved 
vane which is moving with a velocity of 4 m/s. The vane 
is symmetrical and it is so shaped that the jet is deflected 
through 120°. Find the angle of the jet at inlet so that there is 
no shock. What is the absolute velocity of the jet at outlet in 
magnitude and direction and the work done per unit weight of 
water? Assume the vane to be smooth.

[Ans. 20.41°, 5.29 m/s, 52.87°, 127.87°, 5.91 Nm/N]

 7. A jet of water having a velocity of 30 m/s strikes a series of 
curved vanes which are moving with a velocity of 10 m/s in 
the same direction as that of the jet at inlet. The vanes are so 
shaped that the jet is deflected through 130°. The diameter 
of the jet is 100 mm. Assume that the vanes are smooth, find 
(i) the force exerted by the jet on the vane in the direction of 
motion, (ii) work done, (iii) power exerted on the vane and 
(iv) the efficiency of the vane.

[Ans. 7740.12 N, 77401.2 Nm/s, 77.4 kW, 73%]

 8. A water jet with diameter 50 mm having a velocity of 35 m/s 
strikes a flat plate, the normal of which is inclined at 30° to 
the axis of the jet. Calculate the normal force exerted on the 
plate, (i) when the plate is stationary and (ii) when the plate is 
moving with a velocity of 10 m/s in the direction of jet. Also 
calculate the work done, power and efficiency of the jet when 
the plate is moving.

[Ans. 1202.64 N, 613.59 N, 3067.9 Nm/s, 3.07 kW, 7.29%]

 9. A jet of water moving at 12 m/s impinges on a vane shaped 
to deflect the jet through 120° when stationary. If the vane is 
moving at 5 m/s, then find the angle of the jet so that there is 
no shock at the inlet. What is the absolute velocity of the jet at 
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exit in magnitude and direction and the work done per second 
per unit weight of water striking per second? Assume that the 
vane is smooth and symmetrical.

[Ans. 30°, 17.98°, 110.93°, 3.97 m/s, 6.54 Nm/N]

 10. A water jet of diameter 5 cm strikes a curved plate at its 
centre with a velocity of 25 m/s. The curved plate is moving 
with a velocity of 10 m/s in the direction of the jet. The jet is 
deflected through an angle of 165°. Assume that the plate is 
smooth, find (i) the force exerted on the plate in the direction 
of jet, (ii) power of the jet and (iii) efficiency of the jet.

[Ans. 868.52 N, 8.67 kW, 56.62%]

 11. A water jet of diameter 5 cm impinges on a curved vane and 
is deflected through an angle of 175°. The vane moves in the 
same direction as that of the jet with a velocity of 35 m/s.  
If the rate of flow is 170 litres per second, then determine the 
component of force on the vane in the direction of motion. 
How much would be the power developed by the vane and 
what would be the vane efficiency? Neglect friction. How 
these parameters would change if instead of one vane there is 
a series of vanes fixed to a wheel and moving in the direction 
of jet with a velocity of 35 m/s?

[Ans. 10432.9 N, 365.15 kW, 57.31%,  
17510 N, 612.85 kW, 96.13%]

 12. A 6 cm diameter jet having a velocity of 25 m/s strikes a flat 
plate, the normal of which is inclined at 45° to the axis of the 
jet. Find the normal pressure on the plate (i) when the plate is 
stationary and (ii) when the plate is moving with a velocity of 
10 m/s in the direction of jet. Also determine the power and 
efficiency of system when the plate is moving.

[Ans. 1249.56 N, 450.25 N, 3.184 kW, 14.4%]

 13. A circular water jet having a cross-sectional area of 25 cm2 
moves with a velocity of 35 m/s and strike a curved symmet-
rical plate at its centre. The angle of curvature of plate at the 
outlet with x-axis direction is 120°. Find the force exerted by 
the jet on the plate in x-direction, (i) when the plate is station-
ary and (ii) when the plate is moving in the direction of jet 
with a velocity of 15 m/s.

[Ans. 4593.75 N, 1500 N]

 14. A water jet of diameter 2 cm strikes a 20 cm × 20 cm square 
plate of uniform thickness with a velocity of 10 m/s at the 
centre of the plate which is suspended vertically by a hinge 
on its top horizontal edge. The weight of the plate is 49 N. 
The jet strikes normal to the plate. Determine (i) what force 
must be applied at the lower edge of the plate so that the plate 
is kept vertical and (ii) if the plate is allowed to deflect freely 
and then what will be the inclination of the plate with vertical 
due to the force exerted by the jet of water?

[Ans. 15.7 N, 39.85°]

 15. A stationary vane having an inlet angle of zero degree and 
an outlet angle of 25° receives water at a velocity of 50 m/s.  
Determine the components of force acting on it in the 

direction of jet velocity and normal to it. Also find the result-
ant force in magnitude and direction per kg of flow per sec-
ond. If the vane stated above is moving with a velocity of 
20 m/s in the direction of the jet, then determine the force 
components in the direction of the vane velocity and across it, 
also the resultant force in magnitude and direction. Calculate 
the work done and power developed per kg of flow.

[Ans. 95.315 N, −21.13 N, 97.63 N, 12.5°, 57.19 N,  
−12.67 N, 58.57 N, 12.5°, 1143.8 Nm/s, 1.144 kW]

 16. A jet propelled ship discharges water through a jet area of 
0.02 m2. The water is drawn from inlet orifices facing the 
direction of motion of the ship. The total drag is estimated to 
be 17 2u Nm, where u is the speed of the ship in m/s. If the 
ship moves with a speed of 54 km/hr, then determine (i) the 
relative velocity of the jet, (ii) energy supplied by the jet, 
(iii) power of the motor required to work the pump and (iv) 
the jet propulsion efficiency. Assume the efficiency of pump 
and the density of water as 0.75 and 1020 kg/m3, respectively.

[Ans. 23.11 m/s, 72855.09 Nm/s, 97.14 kW, 78.72%]

 17. A jet propelled boat draws water amidship and discharges 
it through a jet of cross-sectional area 0.02 m2 at the back 
with an absolute velocity of 10 m/s. If the boat moves with a 
speed of 15 km/hr, then determine (i) the force exerted on the 
boat, (ii) power of the motor required to work the pump and 
(iii) efficiency of propulsion.

[Ans. 2834 N,11.82 kW, 41.54%]

 18. A ship propelled by reaction jets and discharging astern has a 
resistance to its motion of 3500 N when moving with a speed 
of 8.33 m/s. The velocity of jet relative to the ship is 18 m/s 
and the area of each jet is 100 cm2. Determine the number of 
jets and the power required to drive the pump. Also determine 
the efficiency of the jet propulsion for both the arrangement 
of inlet orifices.

[Ans. 2, 29.16 kW, 50%, 63.3%]

 19. A jet of water having a velocity of 25 m/s strikes a series of 
radial curved vanes mounted on a wheel which is rotating at 
200 rpm. The jet makes an angle of 20° with the tangent to 
the wheel at the inlet and leaves the wheel with a velocity of 
5 m/s at an angle of 130° to the tangent to the wheel at outlet. 
Water is flowing from outward in a radial direction. The outer 
and inner radii of the wheel are 0.5 m and 0.25 m, respec-
tively. Determine (i) the vane angles at the inlet and outlet, 
(ii) work done per unit weight of water and (iii) efficiency of 
the wheel.

[Ans. 33.29°, 24.38°, 26.78 Nm/N, 84.08%]

 20. A jet of water from a nozzle is deflected through 60° from 
its original direction by a curved plate which it enters tan-
gentially without shock with a velocity of 30 m/s and leaves 
with a mean velocity of 25 m/s. If the discharge from nozzle 
is 1 kg/s, then calculate the magnitude and direction of the 
resultant force on the stationary vane.

[Ans. 27.84 N, 51.05°]
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 21. A water jet of diameter 50 mm strikes a smooth curved vane 
at its centre with a velocity of 15 m/s. The curved vane is 
moving with a velocity of 5 m/s in the direction of the jet. The 
jet is deflected through an angle of 165°. Find thrust on the 
plate in the direction of jet, power and efficiency of the jet.

[Ans. 385.32 N, 1.927 kW, 58.25%]

 22. A jet of water having a velocity of 45 m/s impinges without 
shock on a series of vanes moving at 15 m/s. The direction of 
motion of the vanes is inclined at 20° to that of jet, the rela-
tive velocity at outlet is 0.9 times that of at inlet and absolute 
velocity of water at exit is to be normal to the vanes. Deter-
mine the vane angles, work done on vanes per unit weight of 
water supplied and efficiency of the jet.

[Ans. 29.4°, 57.9°, 64.7 Nm/N, 62.6%]

 23. A jet of water having a velocity of 40 m/s strikes a curved 
vane, which is moving with a velocity of 20 m/s. The jet 
makes an angle of 30° with the direction of vane at the inlet 
and leaves at an angle of 90° to the direction of motion of 

vane at outlet. Determine the vane angles so that water enters 
and leaves the vane without shock.

[Ans. 53.8°, 36.2°]

 24. A jet of diameter 50 mm impinges on a curved vane and is 
deflected through an angle of 175°. The vane moves in the 
same direction as that of jet with a velocity of 35 m/s. Deter-
mine the power developed and the efficiency of the jet if the 
rate of flow is 170 litres per second.

[Ans. 365.15 kW, 57.3%]

 25. A water jet of diameter 50 mm strikes a curved vane at its 
centre with a velocity of 30 m/s. The curved vane is moving 
with a velocity of 10 m/s in the direction of jet. The jet is 
deflected through an angle of 150°. Assuming that the vane is 
smooth, find (i) the force exerted on the vane in the direction 
of jet, (ii) work done per second, (iii) power of the jet and 
(iv) efficiency. Also calculate the force exerted on the vane in 
the direction of jet whose coefficient of friction is 0.9.

[Ans. 1465.57 N, 14655.73 Nm/s, 14.656 kW,  
55.29%, 1397.55 N]

ANSWERS TO MULTIPLE-CHOICE QUESTIONS

 1. (d) 2. (a) 3. (d) 4. (d) 5. (a)
 6. (c) 7. (d) 8. (b) 9. (b) 10. (b)
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21.1 ❐ INTRODUCTION
Hydraulic energy means the energy possessed by water in the form of potential energy, kinetic energy and intermolecular 
energy. The power transmitted by a rotating shaft is usually known as mechanical energy. The hydraulic machines are 
energy conversion devices in which hydraulic energy is either converted into mechanical energy or mechanical energy 
is converted into hydraulic energy. The hydraulic machines which convert hydraulic energy into mechanical energy are 
known as turbines, whereas the hydraulic machines which convert mechanical energy into hydraulic energy are known as 
pumps.

A hydraulic turbine consists of a wheel called runner (or rotor) having a number of evenly spaced vanes (blades or 
 buckets) on its periphery. When water falls from certain height, its potential energy is converted into kinetic energy, which 
is further converted into mechanical energy by allowing the water to flow through the turbine runner. The mechanical 
energy so developed is utilized to run an electric generator which is coupled to the turbine shaft and thus, electric energy is 
generated. The electric power which has been obtained from hydraulic energy is known as hydroelectric power.

In impulse turbines, the entire pressure energy of water is converted into kinetic energy by passing it through a 
 nozzle. Thus, the energy available at the inlet of an impulse turbine is only kinetic energy. The Pelton turbine is the only 
impulse hydraulic turbine which is now commonly used. Some important Pelton turbine installations in India are Mandi 
 hydroelectric project (Himachal Pradesh), Mahatma Gandhi hydroelectric project (Karnataka), Koyna hydroelectric project 
 (Maharashtra), Pykara hydroelectric scheme (Tamil Nadu), Kundah hydroelectric project (Chennai) and Pallivasal power 
station (Kerala). In this chapter, the characteristics and properties of Pelton turbine is briefly explained.

21.2 ❐ CLASSIFICATION OF HYDRAULIC TURBINES
The hydraulic turbines are classified as follows:

 1. According to the type of energy available at the inlet.

   (i)  Impulse turbine: At the inlet of the turbine, water has only kinetic energy. For example: Pelton turbine, Banki 
turbine and Jonval turbine.

  (ii)  Reaction turbine: At the inlet of the turbine, water has both kinetic energy and pressure energy. For example: 
Francis turbine, propeller and Kaplan turbines.

Chapter 21

Pelton Turbine  
(Impulse Turbine)
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21.2 Chapter 21

 2. According to the direction of flow through the runner.

     (i)  Tangential flow turbine: Water flows along the tangent to the axis of rotation of the runner. For example: Pelton 
wheel.

    (ii)  Radial flow turbine: Water flows in the radial direction through the runner. The radial flow turbine is either 
inward radial flow type or outward radial flow type.

    (a)  Inward radial flow turbine: Water enters at the outer circumference and flows inwards radially towards the 
centre of the runner. For example: Old Francis turbine and Thomson turbine.

    (b)  Outward radial flow turbine: Water enters at the centre and flows radially towards the outer periphery of the 
runner. For example: Fourneyron turbine.

  (iii)  Axial flow turbine: Water flows through the runner along the direction parallel to the axis of rotation of the 
 runner. For example: Propeller turbine, Kaplan turbine and Jonval turbine.

   (iv)  Mixed flow turbine: Water enters the runner at the outer periphery in the radial direction and leaves it at the 
centre in the direction parallel to the axis of rotation of the runner. For example: Modern Francis turbine.

 3. According to the head available at the inlet of turbine.

    (i)  High head turbine: High head turbines are capable of working under very high heads usually more than 250 m. 
For example: Pelton turbine and it requires relatively less quantity of water only.

   (ii)  Medium head turbine: These turbines are capable of working under medium heads ranging from 60 m to 250 m. 
For example: Modern Francis turbine and it requires relatively large quantity of water.

  (iii)  Low head turbine: These turbines are capable of working under heads less than 60 m. For example: Kaplan and 
propeller turbines and it requires large quantity of water.

 4. According to the specific speed of the turbine.

   Specific speed is the speed of a geometrically similar turbine which would develop unit power when working under 
unit head. It is denoted by Ns and it is given by the following expression.

	
N

N P

H
s =

5 4/
 (21.1)

  Here, N is the normal working speed in rpm, P is the power output of the turbine in kW and H is the net head in metres. 
Based on the specific speed of the turbines, the following classification is made.

    (i)  Low specific speed turbine: Specific speed of these turbines varies from 8.5 to 50. If the specific speed of 
 turbines varies from 8.5 to 30, then it will be Pelton wheel with single jet and if it varies from 30 to 50, then it will 
be Pelton wheel with double jet.

   (ii)  Medium specific speed turbine: Specific speed of these turbines varies from 50 to 255. For example: Francis 
turbine.

  (iii)  High specific speed turbine: Specific speed of these turbines varies from 255 to 860. For example: Kaplan and 
propeller turbines.

 5. According to the name of the originator.

    (i)  Pelton turbine: It is named after Lester A. Pelton, an American engineer. It is the only impulse type of turbine 
which is commonly used for high head and low discharge.

   (ii)  Francis turbine: It is named in the honour of James B. Francis, an American engineer, who developed an inward 
radial flow turbine but later on it was modified. The modern Francis turbine is a mixed flow reaction turbine which 
is used for medium head and medium discharge.

  (iii)  Kaplan turbine: It is named after the Austrian engineer V. Kaplan. It is an axial flow reaction turbine that is used 
for low heads. It requires large quantity of water to produce large amount of power.

 6. According to the disposition of the turbine shaft.

   The turbines may be disposed with either vertical or horizontal shafts. Commonly, the vertical disposition of shafts 
is used for turbines. Pelton wheel is an example of horizontal shaft, whereas Kaplan turbine is a vertical shaft turbine.
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 Pelton Turbine   21.3

21.3 ❐ IMPULSE TURBINE OPERATION PRINCIPLE
The operation principle of impulse turbines is schematically shown in Figure 21.1. In impulse turbines, the available 
hydraulic energy is converted into kinetic energy by passing through a nozzle fitted at the end of the penstock. High 
 velocity jet of water coming out from the nozzle strikes a series of suitably shaped vanes mounted on the periphery of 
the runner (or wheel). The vanes change the direction of the jet without changing its pressure. The resulting change in 
momentum causes the rotation of the vanes and the runner. The runner revolves freely in air and thus, mechanical energy is 
obtained at the turbine shaft. The water coming out of the nozzle operates under atmospheric pressure throughout its action 
on the runner and its subsequent flow to the tail race. Thus, these turbines are also termed as free jet turbines.
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Nozzle

Blade
Blade

Wheel

Blade

Bearing
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Vo

u

W
ate
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Nozzle

Water
Wheel

Wheel

Figure 21.1 Principle of impulse turbine

Some of the important impulse turbines are Pelton turbine (or Pelton wheel), Turgo impulse wheel, Girard turbine, 
Banki turbine and Jonval turbine. Pelton turbine is the only impulse turbine type which is now commonly used.

21.4 ❐ GENERAL LAYOUT OF A HYDROELECTRIC POWER PLANT
Figure 21.2 shows a general layout of a hydroelectric power plant. A hydroelectric power plant consists of the following 
components.
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Figure 21.2 General layout of a hydroelectric power plant
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21.4 Chapter 21

 1. Dam: It is a structure which is built across a river at an appropriate site for impounding river water for its storage and 
to create the head. The height through which water is stored behind the dam above the turbine level is called head of 
water. The water surface of the stored water in a reservoir is called head race level or simply head race.

 2. Penstocks: These are pipes of large diameters which carry water under pressure from the storage reservoir to the 
 turbine. Penstocks are usually made of steel, wood or reinforced concrete.

 3. Turbines: Turbines are machines which converts hydraulic energy into mechanical energy. These are also termed as 
hydraulic motors or prime movers. The turbines have two main components, namely stator and rotor. Stator means a 
nozzle or a row of guide or fixed blades which convert potential energy of water into kinetic energy. The rotor or runner 
is a wheel which is free to rotate about an axis and a number of blades are mounted on its periphery. It rotates under 
the dynamic action of water flowing over its blades.

 4. Tail race: It is a passage for discharging water after it has passed through the turbines into the river. The water surface 
in the tail race channel is called tail race level or simply tail race.

 5. Forebay: It is a smaller reservoir which temporarily stores water at the head of the penstocks and supplies water when 
required. It may be constructed at a short distance downstream of the main reservoir. No forebay is required when the 
power house is located at the base of the dam. The forebays are constructed in installations where the power house is 
located at a far distance from the storage reservoir. The use of forebay is common in high head hydroelectric power 
plants (i.e., head about >250 m).

 6. Surge tank: It is a reservoir which is fitted at some opening before the turbine to receive the rejected flow when 
the pipeline is suddenly closed by a valve at its steep end. The rapid velocity fluctuation due to sudden closure and 
 opening sets up large magnitude pressure transients. These excessive pressures may lead to bursting of the pipe and 
this  phenomenon is called water hammer. The sudden surge of water in penstock is taken by the surge tank when the 
water requirement reduces suddenly. The surge tank also supplies additional water required by the turbine due to the 
sudden increase in demand, before the water comes from the reservoir.

21.5 ❐ HEADS AND EFFICIENCIES OF A HYDRAULIC TURBINE
The heads and important hydraulic turbine efficiencies are given below.

 1. Gross head: Gross head is the difference between the head race level and the tail race level when no water is flowing 
(Figure 21.2). It is denoted by Hg .

 2. Net head: It is the head available at the inlet of the turbine and it is also known as effective head. When water flows 
from the head race to the turbine inlet, certain head loss occurs mainly due to friction between water and the penstocks.  
If hf  is the head loss due to friction then the net head is given by the following expression.

	 H H h H
fLV

gD
H

f LV

gDg f g g
f= − = − = −

4

2 2

2 2

 (21.2)

  Here, f = coefficient of friction, 4f = ff = friction factor, L = length of penstock, V = velocity of flow in penstock,  

D = diameter of penstock and g = gravitational acceleration.

 3. Hydraulic efficiency (ηh): It is defined as the ratio of power developed by the turbine runner (R.P.) to the power 
 supplied by the water jet at the inlet of the turbine (W.P.). It represents the effectiveness with which energy is  transferred 
from the water to the runner. The hydraulic losses are taken into account by the hydraulic efficiency of a turbine and it 
is given by the following relation.

	 ηh = =
Runner power

Water power

R.P.

W.P.
 (21.3)

  The hydraulic losses mainly occur due to blade friction, eddy formation and change of direction of flow when water 
flows from inlet to the exit of the turbine.
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 Pelton Turbine   21.5

  The water power (W.P.) can be evaluated by the product of weight of water striking the vanes of the turbine per second 
( )ρwQg  and the net head (H) as expressed below.

W.P. kW=
×ρwQg H

1000
, where Q is the volume of water per second.

 4. Mechanical efficiency (ηm): Due to mechanical losses, the power available at the shaft for use is always less than the 
power produced by the runner. Thus, mechanical efficiency is defined as the ratio of the power available at the turbine 
shaft (S.P.) to the power developed by the runner (R.P.). The mechanical losses (e.g., bearing friction) are taken into 
account by the mechanical efficiency. The mathematical expression for mechanical efficiency is represented below.

	 ηm = =
Shaft power

Runner power

S.P.

R.P.
 (21.4)

  Depending upon the size and capacity of the Pelton turbine, the values of mechanical efficiency generally varies from 
97% to 99%.

 5. Volumetric efficiency (ηv): When water enters the turbine, there is a possibility that some amount of water may go to 
the tail race without striking the runner blades. Thus, volumetric efficiency is defined as the ratio of the volume of the 
water actually striking the runner to the volume of water supplied to the turbine by the jet. The leakage losses are taken 
into account by volumetric efficiency. The volumetric efficiency is mathematically represented as shown below.

	 ηv =
Volume of water actually striking the runner

Volume of water suppllied to the jet
 (21.5)

  For Pelton turbine, the volumetric efficiency generally varies from 97% to 99%.

 6. Overall efficiency (ηo): It is defined as the ratio of power available at the turbine shaft (S.P.) to the power available 
from the water jet at the turbine inlet (W.P.). The judgment of the performance of a hydraulic turbine is made by its 
overall efficiency. Generally, shaft power (P) is taken in kW and water power is given by [( ) ]ρw gQH / kW.1000  Thus, 
the overall efficiency is mathematically represented as given below.

	 η
ρo

w

P

gQ H
= = =

Shaft power

Water power

S.P.

W.P.

1000
 (21.6)

	
Q

P

g Hw o
=

1000

ρ η
 [From Equation (21.6)] 

  Multiply and divide Equation (21.6) by R.P., we get:

	 η η ηo m h
S P

R P

R P

W P
= × = ×

.

.

.

.
 (21.7)

  When volumetric efficiency ( )ηv  is also considered, the overall efficiency is expressed as given below.

	 η η η ηo m h v= × ×  (21.8)

  If ηg  is the efficiency of the generator, then plant efficiency ( )ηp  and power output of hydro unit (Po) is given by the 

following expression.

	 η η ηp g o = ×  (21.9)

	 P
gQH gQH

o
p w g o w= =

η ρ η η ρ
1000 1000

 (21.10)
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21.6 Chapter 21

21.6 ❐ WATERWHEEL
Waterwheel is the oldest form of water turbine. It converts the energy of free-flowing or falling water into useful form 
of power. In olden days, waterwheels were used in a watermill and nowadays, it is not commonly used. The waterwheel 
 consists of large wooden or metal wheel which is provided with blades or buckets around its periphery. Generally, the wheel 
is mounted vertically on a horizontal axle. The water is delivered to the wheel at some point on its circumference striking 
one or more buckets at a time. Waterwheels can be classified on the basis of water applied to the wheel relative to the wheel 
axle. The three main types of waterwheels are shown in Figure 21.3.

Head
race

Wheel
Blade

Head raceWheel

Tail
race

Tail
race

(a) Undershot wheel (b) Breastshot wheel (c) Overshot wheel

Tail 
race

Head
race

Figure 21.3 Types of water wheel

 1. Undershot wheel: An undershot wheel is rotated due to striking of the water to the blades at the bottom of the wheel as 
shown in Figure 21.3(a). It is the least efficient and oldest type of wheel. Its efficiency varies from about 35% to 45%. 
The subtypes of this waterwheel, namely Poncelet wheel and Sagebien wheel provide greater efficiency than it.

 2. Breastshot wheel: A breastshot wheel is rotated by falling water striking the buckets near the centre of the wheel’s 
edge or just above it as shown in Figure 21.3(b). These wheels are more efficient than the undershot wheels.  
Its  efficiency varies from about 50% to 60%. The breastshot and undershot wheels can be used in rivers and in places 
where high volume of water flows in a large reservoir.

 3. Overshot wheel: An overshot wheel is rotated by falling water striking the buckets near the top of the wheel as shown 
in Figure 21.3(c). These are more efficient than breastshot and undershot wheels. Its efficiency varies from about 65% 
to 85%. The overshot wheels are suitable for small reservoir and where a small stream with a height difference more 
than 2 m is available.

21.7 ❐ PELTON TURBINE (PELTON WHEEL)
The Pelton turbine (or Pelton wheel) is a tangential flow impulse turbine. It is the only impulse type turbine which is 
now commonly used and it is named after L. A. Pelton, an American Engineer. This turbine is used for high heads and 
is  generally used for heads in excess of 250 m. So far, Pelton turbine has been used under a head of 1770 m developing 
23080 kW power when running at 750 rpm and it is installed at Reisseck (Austria). The largest Pelton turbine of the world 
is in Italy which produces 110.25 MW power under a head of 711 m when running at 300 rpm. The main parts of the Pelton 
turbine are shown in Figure 21.4.

 1. Penstock: It is a large sized pipe through which water flows from the reservoir to the turbine. On the basis of available 
water head, a penstock may consist of wood, concrete or steel. It is equipped with screens called trash racks at the inlet 
which prevents the debris from entering into it. For regulating the flow from the reservoir to the turbine, the penstocks 
are fitted with control valves.

 2. Spear and nozzle arrangement: The nozzle fitted at the end of the penstock is provided with a spear which controls 
the quantity of water striking the buckets of runner as shown in Figure 21.4. The spear is a conical needle having 
streamlined head. The axial movement of spear in case of smaller units is controlled by a wheel while in the case of 

M21 Fluid Mechanics and Hydraulic Machines XXXX 01.indd   6 4/5/2019   12:59:46 PM

Download more at Learnclax.com



 Pelton Turbine   21.7

larger units it is controlled automatically by a governor. When the spear moves in forward direction, the flow area 
decreases and thus, the amount of water striking the runner is reduced. On the other hand, if the spear moves in 
 backward direction, then the flow area increases, as a result, the amount of water striking the runner increases.

   Usually, the shaft of a Pelton turbine is horizontal. When the Pelton turbine shaft is horizontal, then no more than 
two jets are used. However, for vertical shaft turbine it is limited to six numbers of jets. The number of nozzles depends 
upon the specific speed and these are spaced that a jet, after striking a bucket does not interfere with another jet.

 3. Runner with buckets: The runner consists of a large circular disc in which a number of buckets (always ≥ 15) are 
evenly spaced round its periphery as shown in Figure 21.4. The buckets take a shape of double hemispherical cup or 
bowl as shown in Figure 21.5.

   Each bucket is divided into two symmetrical parts by a sharp edged ridge called a splitter. The jet of water strikes 
on the splitter, which divides the jet into two equal parts, each of which after flowing round the inner smooth bucket 
surface leaves at its outer edge as shown in Figure 21.5. The advantage of double shaped buckets is that the axial 
thrust produced by the water in each half neutralizes each other. Thus, the bearings supporting the wheel shaft are not 
 subjected to any axial or end thrust. The buckets are so shaped that the jet of water gets deflected through 160° to 170°. 
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Figure 21.5 Bucket of Pelton turbine
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For obtaining maximum change in momentum of the fluid, the deflection of water should be 180°. However, in practice 
the deflection is limited to about 165° so that water leaving a bucket does not hit the back of the following bucket. 
Depending upon the head at the inlet of turbine, the buckets are made of different materials. Generally, for low heads, 
the buckets are made of cast iron, whereas for higher heads these are made of cast steel, bronze or stainless steel. The 
buckets are properly polished to avoid erosion in its surface. In large turbines, the buckets are bolted to the runner 
by which the damaged bucket can be replaced easily. Many manufacturers believe that all the buckets wear out at the 
same time. Thus, it is more economical to cast the buckets and the disc as a single unit. Based on the specific speed, 
the runners may be classified as shown below with varying speeds.

    (i) Slow runner: Specific speed varies from 8.5 to 20.

   (ii) Normal runner: Specific speed varies from 20 to 28.

  (iii) Fast runner: Specific speed varies from 28 to 35.

 4. Casing: In Pelton turbine, the casing does not perform any hydraulic function. It is provided only to prevent splashing 
of water and to guide it to the tail race. It also acts as a safeguard against accidents. It is made of cast iron or fabricated 
steel plates. Generally, it is made in two parts so that it can be easily erected and assembled.

 5. Braking jet: In order to shut down the turbine, the nozzle is completely closed by moving the spear in the forward 
direction. Thus, the amount of water striking the runner becomes zero. However, the runner still goes on revolving for 
a long time due to inertia. To stop the runner in a short time, a small brake nozzle is provided which directs the jet of 
water on the back of the buckets. This jet of water is called braking jet which is shown in Figure 21.4.

21.8 ❐ GOVERNING OF HYDRAULIC TURBINES
All modern hydraulic turbines are directly coupled to the electric generators. The generator must run at constant speed, so 
that the electricity is produced at constant frequency. The speed of the generator is given by the following relation.

 N
f

p
=

60
 (21.11)

Here, f  is the frequency for power generated in cycles per second and p is the number of pairs of poles for the generator. 
Usually,  f = 50 Hz and therefore, from Equation (21.11), we derive the following expression.

	 N
p

=
3000

 (21.11a)

The speed of the turbine runner has to be maintained constant so that the generator always runs at constant speed under 
all working conditions. This speed of the runner is called synchronous speed for which it is designed. It can be achieved 
by regulating the quantity of water flowing through the runner according to the changing load conditions on the turbine. 
Such an operation by which the speed of the turbine is kept constant under all working conditions is known as governing 
of a turbine. The quantity of water flowing through the runner is controlled by varying the area of flow at the turbine inlet. 
In Pelton turbines, the flow area is changed by moving the spear inside the nozzle and in reaction turbines, it is varied by 
rotating the guide vanes with the help of a governor.

21.9 ❐ GOVERNING OF PELTON TURBINES
The governing of a Pelton turbine is usually done automatically by means of oil pressure governor as shown in Figure 21.6.  
The main parts used in Pelton turbines are (i) relay cylinder (or servomotor), (ii) relay valve (or control valve), (iii)  centrifugal 
governor which is driven by the turbine main shaft, (iv) oil sump, (v) oil pump (or gear pump) which is driven by belt 
 connected to the turbine main shaft, (vi) oil supply pipes connecting the oil sump with relay valve and the relay valve with 
the servomotor, (vii) spear and spear rod and (viii) deflector.
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21.9.1 Working of the Governor
When load on the generator increases, the speed of the turbine runner decreases. As a result, the speed of the centrifugal 
governor connected to the turbine main shaft also decreases. Thereby, the fly balls of the governor move inwards due to the 
decreased centrifugal force on them. This results in the downward movement of the sleeve due to which the left hand end of 
the main lever gets lowered by turning about the fulcrum. This pulls the piston rod of relay valve in the upward direction. As 
a result, the piston of the relay valve closes the valve V2 and opens the valve V1. The oil pump supplies oil under  pressure 
to the relay cylinder through the valve V1. The oil exerts a force on the face F1 of the piston of relay cylinder which results 
in the movement of the spear towards left. This increases the area of flow of water at the nozzle outlet and thereby, allows 
a larger quantity of water to strike the runner. Consequently, the runner speed increases till the normal speed of the turbine 
is restored.

When load on the generator decreases, the speed of the turbine runner increases. Due to this sudden increase, the fly balls 
move outward resulting in the upward movement of the sleeve. The right hand end of the main lever gets lowered which 
pushes the piston of the relay valve in the downward direction. This closes the valve V1 and opens the valve V2. The oil pump 
supplies oil under pressure to the relay cylinder through valve V2. The oil exerts force on the face F2 of the piston of relay 
 cylinder which results in the movement of the piston towards right. This decreases the area of flow of water at the nozzle outlet 
and thereby, allows a smaller quantity of water to strike the runner and the normal speed of the turbine runner is thus restored.

Modern Pelton turbines are provided with double regulation, i.e., the combined spear and deflector control. Deflectors 
are used along with the spear to prevent water hammer issues due to rapid closing of the nozzle during sudden fall of load. 
Deflectors are plates simply connected to the spear rod by means of levers. A deflector deflects the jet of water so that 
the entire flow does not reach the bucket when the load on the turbine suddenly decreases. The motion of the fly balls is 
transmitted to the bell crank lever and it rotates anticlockwise. The roller on the cam is raised and the deflector is brought 
between the nozzle and the buckets. Thus the control of the deflector is directly linked to the governor. The deflected water 
goes waste into the tail race. The spear is then moved to its new position, where it reduces the rate of flow by closing the 
opening of nozzle gradually and therefore, it avoids the undue rise of pressure. The deflector remains engaged until the 
spear is adjusted to a new position of equilibrium.

21.10 ❐  VELOCITY TRIANGLES, WORK DONE AND EFFICIENCY  
OF THE PELTON TURBINE

The jet of water from the nozzle strikes the bucket at the splitter which splits up the jet into two parts. The parts of the jet 
glide over the inner surfaces and come out at the outer edge. The splitter is the inlet tip and the outer edge of the bucket is 
the outer tip of the bucket. Figure 21.7 shows the velocity triangles at the tips of the bucket of a Pelton turbine.
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Figure 21.6 Governing mechanism of Pelton turbine
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Figure 21.7 Velocity triangles of Pelton turbine

Let d be the diameter of the jet and A d= ( )π /4 2  be the area of the jet,
D be the diameter of the wheel and N be its speed in rpm,
Vi and Vo be the absolute velocities of the jet at the inlet and outlet, respectively,
ui and uo be the velocities of bucket at the inlet and outlet, respectively,
Vri and Vro be the relative velocities of the jet and bucket at the inlet and outlet, respectively,
Vwi and Vwo be the velocities of whirl at the inlet and outlet, respectively,
Vfi and Vfo be the velocities of flow at the inlet and outlet, respectively,

a and b be the angles between the direction of jet and direction of motion of the bucket at inlet and outlet, respectively. 
Angle a is also known as guide blade angle.

q and f be the vane angles at inlet and outlet, respectively or the angles made by relative velocities with the direction of 
motion at inlet and outlet, respectively. Angle f is also known as clearance angle.

Since the inlet and outlet tips of the bucket are at the same radial distance and therefore, the tangential velocity of the 
bucket at both the tips is same as shown below.

u u u
DN

i o= = =
π

60

Since the velocities Vi and ui are collinear, the velocity triangle at the inlet tip of the bucket is a straight line. Thus,  
Vwi = Vi , α = 0, θ = 0, and

	 V V u V uri i i wi= − = −( ) ( )  (i)

Since the bucket surfaces are perfectly smooth (i.e., friction is neglected) and energy losses due to impact of jet at the 
 splitter are neglected, Vri = Vro. However, when fiction is considered V Vro ri<  and thus, Vro = k Vri , here k is the bucket 
friction factor (or blade friction factor) and it will be slightly less than unity.

From the velocity triangle at outlet ( ),β < °90  we get:

	 V V u V uro wo o wocos ( ) ( )ϕ = + = +  (ii)

The force exerted by the jet of water in the direction of motion of bucket is given by,

	 	 		
Fx = −

Mass

Time
Initial velocity in jet direction Final veloci( tty in jet direction)

	 	 		F AV V V AV V u V ux w i ri ro w i wi wo= × − − = × − − − +ρ ϕ ρ[ ( cos )] [( ) { ( )}]

	 ∴ = × +F AV V Vx w i wi woρ ( )  (21.12)

Depending upon the magnitude of the peripheral speed (u), the runner may be classified as listed below.
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 1. Slow runner (β < °90 and is negative):Vwo F AV V Vx w i wi wo= +ρ ( )

 2. Medium runner ( ) :β = ° =90 0and Vwo F AV Vx w i wi= ρ

 3. Fast runner (β > °90 and is positive):Vwo F AV V Vx w i wi wo= −ρ ( )

The work done by the jet on the runner per second is given by,

	 w F u AV V V ux w i wi wo= × = + ×ρ ( ) Nm/s  (21.13)

Power given to the runner by the jet becomes,

	 P
w AV V V u Q V V uw i wi wo w wi wo= =

+ ×
=

+
1000 1000 1000

ρ ρ( ) ( )
kW  (21.14)

Since  weight of water striking per second = ρw iAV g 	
Thus, work done per second per unit weight of water striking per second is given by the following expression.

	 w
AV V V u

AV g

V V u

g
w i wi wo

w i

wi wo=
+

=
+ρ

ρ
( ) ( )

 (21.15)

Hydraulic efficiency is the ratio of work done per second by the jet on the runner to the initial kinetic energy of the jet.

	 ∴ =
+

× ×
=
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 (21.16)

Now V Vwi i= , V V V uri ro i= = −( ) , and V V u V u uwo ro i= − = − −cos ( ) cosϕ ϕ

Substituting the values of V Vwi woand  in Equation (21.16), we get:

η
ϕ ϕ

h
i i

i

i i

i

V V u u u

V

V u V u u

V
=

+ − −
=

− + −2 2
2 2

[ {( ) cos }] [( ) ( ) cos ]

	 ∴ =
− +

η
ϕ

h
i

i

V u u

V

2 1
2

( )( cos )
 (21.17)

When the effect of friction is considered then Equation (21.17) is derived as follows.

	
η

ϕ
h

i

i

V u k u

V
=

− +2 1
2

( )( cos )
 (21.17a)

For maximum efficiency, ( ) .d duhη / = 0

By differentiating Equation (21.17), we get:

d

du

V u u

V

i

i

2 1
0

2

( )( cos )− +⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
ϕ

1
2 2 0

2
2+⎛

⎝
⎜

⎞

⎠
⎟ − =

cos
( )

ϕ
V

d

du
uV u

i
i

1
2 4 0

2

+⎛

⎝
⎜

⎞

⎠
⎟ − =

cos
( )

ϕ
V

V u
i

i
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21.12 Chapter 21

Thus 2 4 0V ui − =  [ ( cos ) / ]∵ 1 02+ ≠ϕ Vi 	

∴ =u
Vi

2

Therefore, the hydraulic efficiency is maximum when the bucket 
speed is half of the velocity of jet. The variation of hydraulic 
 efficiency with speed ratio is parabolic as illustrated in Figure 21.8.

Theoretically, the maximum efficiency occurs at ( ) . ,u Vi/ = 0 5  
whereas in actual practice the maximum value of efficiency occurs 
when ( ) . .u Vi/ = 0 46

By substituting u Vi= ( )/2  in Equation (21.17), the maximum 
hydraulic efficiency is derived as follows.

( )
[ ( / )]( cos )( / ) ( cos )

maxη
ϕ ϕ

h
i i i

i

V V V

V
=

− +
=

+2 2 1 2 1

22
 (21.18)

When the bucket friction factor (k) is considered, then we derive 
maximum efficiency as follows.

( )
( cos )

maxη ϕ
h

k
=

+1

2
 (21.18a)

It can be seen from Figure 21.8 that the efficiency becomes zero when u = 0 and u = Vi. In the first case, when u = 0, the 
wheel is at rest. In the second case, when u = Vi , the wheel runs at the highest speed. This speed of the wheel is known 
as runaway speed or racing speed. It is the speed at no load or when the wheel is running away from the jet with the 
same velocity as that of the jet. For safe design, all the rotating components must be designed for the runaway speed. The 
 runaway speed in terms of normal working speed (N) for various types of turbines is listed below.

 1. Pelton turbine: Runaway speed ranges from 1.8 to 1.9 times its normal speed.

 2. Francis turbine: Runaway speed ranges from 2 to 2.2 times its normal speed.

 3. Kaplan turbine: Runaway speed ranges from 2.5 to 3 times its normal speed.

The exact value of runaway speed for any turbine can be predicted from the model tests performed in the laboratory.

21.11 ❐ DESIGN ASPECTS OF THE PELTON TURBINE

21.11.1 Working Proportions of the Pelton Turbine
The following points should be considered while designing a Pelton turbine.

 1. Number of jets: It is obtained by dividing the total water flow rate through the turbine (Q) by the water flow rate 
through a single jet (q). It is denoted by n and relatively expressed as shown below.

n
Q

q
=

  Ordinarily, a Pelton turbine has one jet. However, a number of jets may be employed for providing more power with 
the same turbine. Such a turbine having more than one jet spaced around its runner is called multi-jet Pelton wheel. 
Theoretically, six jets can be used with one Pelton turbine.

0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.46

)max( hη

hη

(u/Vi)

Ideal

Actual

0.0
0.0

0.2 0.5

)max at u = Vi/2( hη

u = Vi

 Figure 21.8  Hydraulic efficiency versus speed 

ratio
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 Pelton Turbine   21.13

 2. Jet ratio: It is defined as the ratio of pitch diameter (D) of the Pelton wheel to the jet diameter (d). It is denoted by m 
and relatively expressed as shown below.

	 m
D

d
=  (21.19)

  For maximum efficiency the jet ratio varies from 11 to 14 but in practice for most of the cases it is taken as 12.

 3. Number of buckets: The number of buckets for a Pelton turbine should be such that no water escapes without striking 
the buckets. The number of buckets is usually more than 15. For determining the number of buckets, Taygun empirical 
formula is widely used and it is given by the following expression.

	 Z
D

d
m= + = +15

2
15 0 5.  (21.20)

  Here, Z = number of buckets, D = pitch diameter of the Pelton wheel, d = jet diameter and m = jet ratio = (D/d). The 
Taygun formula holds good for m varying from 6 to 35.

 4. Size of buckets: Depth, width, and length of the bucket are expressed in terms of jet diameter as,

  Depth of bucket (T) varies from 0.8 d to 1.2 d but in general it is taken as 1.2 d.

  Width of bucket (B) varies from 4 d to 5 d but in general it is taken as 5 d.

  Length of bucket (L) varies from 2.4 d to 3.2 d.

 5. Speed ratio: It is defined as the ratio of peripheral (linear) velocity of buckets to the theoretical (spouting) velocity 
of the jet. The value of speed ratio varies from 0.43 to 0.47. It is denoted by Ku (or f). Speed ratio is mathematically 
given by,

	 K
u

gH
u =

2
 (21.21)

  Here, H = net head and u DN= π /60.

 6. Velocity of jet: Due to friction loss, the velocity of jet at the inlet (Vi) will be slightly less than the theoretical velocity 
in the nozzle. The velocity of jet at the inlet is given by the following expression.

	 V C gHi v= 2  (21.22)

  Here, Cv  = coefficient of velocity (vary from 0.97 to 0.99) and H = net head.

 Example 21.1  A Pelton wheel is having a mean bucket diameter of 0.9 m and is running at 900 rpm. The net head on 
the Pelton wheel is 600 m. If the side clearance angle is 15° and discharge is 0.09 m3/s, then find (i) power available at the 
nozzle and (ii) hydraulic efficiency of the turbine. Take coefficient of velocity as 0.98.

Solution
Let D = 0 9. m, N = 900 rpm, H = 600 m, ϕ = °15 , Q = 0 09. m /s3  and Cv = 0 98. .

u
DN

= =
× ×

=
π π

60

0 9 900

60
42 41

.
. m/s

V C gHi v= = × × × =2 0 98 2 9 81 600 106 33. . . m/s

 (i) W P
gQHw.

. .= = × × × =
ρ

1000

1000 9 81 0 09 600

1000
529.74 kW

 (ii) η
ϕ

h
i

i

V u u

V
=

− +2 1
2

( )( cos )

∴ = × − × + ° × × =ηh
2 106 33 42 41 1 15 42 41

106 33
100

2

( . . ) ( cos ) .

.
94.27%
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21.14 Chapter 21

 Example 21.2  The mean bucket speed of a Pelton turbine is 12 m/s. The rate of flow of water supplied by the jet under 
a head of 46 m is 850 litres per second. If the jet is deflected by the buckets at an angle of 165°, then find the power and 
efficiency of the turbine. Assume the coefficient of velocity as 0.985.

Solution
Refer Figure 21.9. Let u u ui o= = = 12 m/s, H = 46 m, Q l= =850 0 85/s m /s3. , ( )180 165° − = °ϕ  and Cv = 0 985. .

D C A
ui Vri

Vi = Vwi ϕ

Angle of
deflection

ϕ β

E

H G F

Vro

Vo

Vfo

x

y

)(180° − ϕ

Inlet

Outlet

uo Vwo

Figure 21.9

180 165 180 165 15° − = ° ⇒ = ° − ° = °ϕ ϕ

V C gHi v= = × × × =2 0 985 2 9 81 46 29 59. . . m/s

V V uri i= − = − =29 59 12 17 59. . m/s

V Vwi i= = 29 59. m/s

V Vro ri= = 17 59. m/s

V V uwo ro= − = ° − =cos . cos .ϕ 17 59 15 12 4 99 m/s

P
Q V V uw wi wo=

+
= × × + × =

ρ ( ) . ( . . )

1000

1000 0 85 29 59 4 99 12

1000
352.716 kWW

ηh
wi wo

i

V V u

V
=

+
= × + × × =

2 2 29 59 4 99 12

29 59
100

2 2

( ) ( . . )

.
94.79%

 Example 21.3  The penstock supplies water from a reservoir to the Pelton wheel with a gross head of 510 m. One third 
of the gross head is lost in friction in the penstock. The rate of flow through the nozzle fitted at the end of the penstock is 
1.9 m3/s. The angle of deflection of the jet is 165°. Determine the power given by the water to the runner and the hydraulic 
efficiency of the Pelton wheel. Take speed ratio as 0.46 and the coefficient of velocity as 0.99.

Solution
Refer Figure 21.9. Let Hg = 510 m, h Hf g= ( )/3 , Q = 1 9 3. m /s, ( )180 165° − = °ϕ , Ku = 0 46.  and Cv = 0 99. .

h
H

f
g= = =

3

510

3
170 m
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 Pelton Turbine   21.15

H H hg f= − = − =510 170 340 m

180 165 180 165 15° − = ° ⇒ = ° − ° = °ϕ ϕ

V C gHi v= = × × × =2 0 99 2 9 81 340 80 86. . . m/s

u u u K gHi o u= = = = × × × =2 0 46 2 9 81 340 37 57. . . m/s

V V uri i= − = − =80 86 37 57 43 29. . . m/s

V Vwi i= = 80 86. m/s

V Vro ri= = 43 29. m/s

V V uwo ro= − = ° − =cos . cos . .ϕ 43 29 15 37 57 4 245 m/s

P
Q V V uw wi wo=

+
= × × + × =

ρ ( ) . ( . . ) .

1000

1000 1 9 80 86 4 245 37 57

1000
6075.005 kW

ηh
wi wo

i

V V u

V
=

+
= × + × × =

2 2 80 86 4 245 37 57

80 86
100

2 2

( ) ( . . ) .

.
97.8%

 Example 21.4  A Pelton wheel is to be designed for the following specifications, such as shaft power =	11700 kW,  
head = 375 m, speed = 700 rpm and overall efficiency = 85%. Jet diameter is not to exceed one sixth of the wheel diameter. 
Determine (i) wheel diameter, (ii) diameter of the jet and (iii) number of jets required. Take C Kv u= =0 99 0 46. . .and

Solution
Let P = 11700 kW, H = 375 m, N = 700 rpm, ηo = 0 85. , d D= /6, Cv = 0 99.  and Ku = 0 46. .

 (i) V C gHi v= = × × × =2 0 99 2 9 81 375 84 92. . . m/s

u K gHu= = × × × =2 0 46 2 9 81 375 39 46. . . m/s

  Since u
DN

=
π

60

39 46
700

60
. =

× ×π D

∴ = ×
×

=D
39 46 60

700

.

π
1.077 m

 (ii) d
D= = =
6

1 077

6

.
0.1795 m

 (iii) q d Vi= × = × × =
π π
4 4

0 1795 84 92 2 1492 2. . . m /s3

Q
P

gHw o
= =

×
× × ×

=
1000 1000 11700

1000 9 81 375 0 85
3 742

ρ η . .
. m /s3

n
Q

q
= = = ≈3 742

2 149
1 74

.

.
. 2
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21.16 Chapter 21

 Example 21.5  A Pelton wheel develops 2.5 MW of power while operating at 260 rpm and working under a head 
of 250  m. The diameter of the nozzle is 15 cm and the coefficient of velocity is 0.98. The blade outlet angle is 15° 
and the speed ratio is 0.46. Determine (i) the turbine efficiency, (ii) wheel diameter at the pitch circle of the blades and 
(iii)  hydraulic efficiency.

Solution
Let P = = ×2 5 2 5 103. .MW kW, N = 260 rpm, H = 250 m, d = =15 0 15cm m. , Cv = 0 98. , ϕ = °15  and Ku = 0 46. .

 (i) V C gHi v= = × × × =2 0 98 2 9 81 250 68 635. . . m/s

Q AV d Vi i= = × = × × =
π π
4 4

0 15 68 635 1 2132 2. . . m /s3

η
ρo

w

P

gQH
= = × ×

× × ×
× =1000 1000 2 5 10

1000 9 81 1 213 250
100

3.

. .
84.04%

 (ii) K
u

V
u Vu

i
i= = ⇒ = = × =0 46 0 46 0 46 68 635 31 5721. . . . . m/s

  Since u
DN

=
π

60

31 5721
260

60
. =

× ×π D

∴ = ×
×

=D
31 5721 60

260

.

π
2.32 m

 (iii) η
ϕ

h
i

i

V u u

V
=

− +2 1
2

( )( cos )

∴ = × − × + ° × × =ηh
2 68 635 31 5721 1 15 31 5721

68 635
100

2

( . . ) ( cos ) .

.
97.67%%

 Example 21.6  Two jets strike the bucket of a Pelton wheel which is having shaft power as 16500 kW. The diameter of 
each jet is given as 190 mm. If the net head on the turbine is 450 m, then find the overall efficiency of the turbine. Assume 
coefficient of velocity as 0.985.

Solution
Let n = 2, S.P. kW= 16500 , d = =190 0 19mm m. , H = 450 m and Cv = 0 985. .

V C gHi v= = × × × =2 0 985 2 9 81 450 92 553. . . m/s

q d Vi= × = × × =
π π
4 4

0 19 92 553 2 6242 2. . . m /s3

Q n q= × = × =2 2 624 5 248. . m /s3

W.P. kW= =
× × ×

=
ρw gQH

1000

1000 9 81 5 248 450

1000
23167 296

. .
.

ηo = = × =S.P.

W.P.

16500

23167 296
100

.
71.22%
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 Pelton Turbine   21.17

 Example 21.7  A double jet Pelton wheel operates under 50 m head and develops 750 kW brake power when running 
at 475 rpm. Evaluate the flow rate and the diameter of the nozzle jet if the overall efficiency and coefficient of velocity are 
86% and 0.98, respectively.

Solution
Let n = 2, H = 50 m, P = 750 kW, N = 475 rpm , ηo = 0 86.  and Cv = 0 98. .

Q
P

gHw o
= = ×

× × ×
=1000 1000 750

1000 9 81 50 0 86ρ η . .
1.778 m /s3

V C gHi v= = × × × =2 0 98 2 9 81 50 30 694. . . m/s

Since Q n A V n d Vi i= × × = × ×
π
4

2

1 778 2
4

30 6942. .= × × ×
π

d

∴ = ×
× ×

=d
1 778 4

2 30 694

.

.π
0.192 m or 19.2 cm

 Example 21.8  A set of data is obtained from a test on a Pelton wheel, such as head at the base of the nozzle = 40 m, 
 discharge of the nozzle = 0.2 m3/s, area of the jet = 7550 mm2, power available at the shaft = 60 kW and mechanical 
 efficiency = 94%. Calculate the power lost (i) in the nozzle, (ii) in the runner and (iii) in the mechanical friction.

Solution
Let H = 40 m, Q = 0 2. m /s3 , A = =7550 0 007552mm m2. , S.P. kW= 60  and ηm = 0 94. .

Power at the base of nozzle is given by,

W.P. kW= =
× × ×

=
ρw gQH

1000

1000 9 81 0 2 40

1000
78 48

. .
.

Velocity of the nozzle is given by,

V
Q

Ai = = =
0 2

0 00755
26 49

.

.
. m/s

Power at the exit of nozzle is given by,

P
AV V AVw i i w i

Exit K.E. of jet kW= =
× ×

=
×

( / )1 2

1000 2 1000

2 3ρ ρ

∴ =
× ×

×
=PExit kW

1000 0 00755 26 49

2 1000
70 172

3. .
.

Power lost in the nozzle W.P. Exit= − = − =P 78 48 70 172. . 8.308 kW

Power supplied to the runner = K.E. of the jet = PExit = 70.172 kW

R.P.
S.P.

kW= = =
ηm

60

0 94
63 83

.
.

Power lost in the runner R.P.Exit= − = − =P 70 172 63 83. . 6.342 kW

Power lost in mechanical friction R.P. S.P.= − = − =63 83 60. 3.83 kW
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 Example 21.9  A Pelton wheel of mean bucket diameter 1.2 m works under a head of 650 m. The jet deflection is 165° 
and its relative velocity is reduced over the buckets by 15% due to friction. If the water is to leave the bucket without any 
whirl, then determine (i) the rotational speed of the wheel, (ii) ratio of bucket speed to jet velocity, (iii) impulsive force and 
the power developed by the wheel, (iv) available power and the power input to buckets and (v) efficiency of the wheel with 
power input to buckets as reference input. Take coefficient of velocity as 0.97 and diameter of jet as 100 mm.

Solution
Refer Figure 21.10. Let D = 1 2. m, H = 650 m, ( )180 165° − = °ϕ , k = 0 85. , Vwo = 0, Cv = 0 97.  and d = =100 0 1mm m. .

Let N be the rotational speed of the wheel.

D C A
ui Vri

Vi = Vwi ϕ

Angle of
deflection

ϕ

E

H F

Vro

x

y

Vo = Vfo

)(180° − ϕ

Inlet

Outlet

uo

Figure 21.10

 (i) V C gHi v= = × × × =2 0 97 2 9 81 650 109 54. . . m/s

180 165 180 165 15° − = ° ⇒ = ° − ° = °ϕ ϕ

  From inlet velocity triangle, we get:

V V u uri i= − = −109 54.  [ ]∵u u ui o= =

V Vwi i= = 109 54. m/s

  From outlet velocity triangle, we get:

	 V kV uro ri= = −0 85 109 54. ( . )  (i)

	 V uro cos ϕ =  (ii)

  Thus 0 85 109 54 15. ( . ) cos− ° =u u  [Substitute (i) in (ii)] 

89 9364 0 821. .− =u u

∴ = =u
89 9364

1 821
49 39

.

.
. m/s

  Since u
DN

=
π

60

49 39
1 2

60
.

.
=

× ×π N

∴ = ×
×

=N
49 39 60

1 2

.

.π
786.07 rpm
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 Pelton Turbine   21.19

 (ii) 
u

Vi
= =49 39

109 54

.

.
0.451

 (iii) A d= = × =
π π
4 4

0 1 0 0078542 2. . m2

F AV Vx w i wi= = × × × =ρ 1000 0 007854 109 54 109 54. . . 94240.24 N

P
F ux= = × =

1000

94240 24 49 39

1000

. .
4654.525 kW

 (iv) W.P. kW= =
ρ ρw w igQH g AV H

1000 1000

( )

∴ = × × × × =W.P.
1000 9 81 0 007854 109 54 650

1000

. . .
5485.876 kW

  Power inputs to buckets is given by,

P
AV V AV

i
w i i w i=

× ×
=

×
( / )1 2

1000 2 1000

2 3ρ ρ
kW

∴ = × ×
×

=Pi
1000 0 007854 109 54

2 1000

3. .
5161.538 kW

 (v) η = = × =P

Pi

4654 525

5161 538
100

.

.
90.18%

 Example 21.10  A Pelton wheel having semicircular buckets functions under a head of 150 m and consumes 50 litres 
per second of water. If 60 cm diameter wheel turns 600 rpm, then calculate (i) the power available at the nozzle and  
(ii) hydraulic efficiency of the wheel. Take coefficient of velocity as 0.99.

Solution
Let ϕ = 0 (semicircular buckets), H = 150 m, Q l= =50 0 05/s m /s3. , D = =60 0 6cm m. , N = 600 rpm  and Cv = 0 99. .

u
DN

= =
× ×

=
π π

60

0 6 600

60
18 85

.
. m/s

 (i) W.P. = = × × × =
ρw gQH

1000

1000 9 81 0 05 150

1000

. .
73.575 kW

 (ii) V C gHi v= = × × × =2 0 99 2 9 81 150 53 71. . . m/s

  Since η
ϕ

h
iV u u

V
=

− +2 1

1
2

( )( cos )

∴ = × − × + ° × × =ηh
2 53 71 18 85 1 0 18 85

53 71
100

2

( . . ) ( cos ) .

.
91.11%

 Example 21.11  The jet water of diameter 150 mm strikes the buckets of the wheel which is working under a gross head 
of 402 m. The water is supplied from a lake to the turbine through a penstock of diameter 0.95 m and length 4000 m. The 
jet deflection is 165° and its relative velocity is reduced over the buckets by 15% due to friction inside surface of the bucket 
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21.20 Chapter 21

and water. Determine (i) the runner power, (ii) shaft power, (iii) hydraulic efficiency and (iv) overall efficiency. Assume 
coefficient of friction for the penstock as 0.009, velocity of buckets as 0.45 times the jet velocity at inlet and mechanical 
efficiency as 86%.

Solution
Refer Figure 21.11. Let d = =150 0 15mm m. , Hg = 402 m, D1 0 95= . m, L = 4000 m, ( )180 165° − = °ϕ , k = 0 85. , 

f = 0 009. , u Vi= 0 45.  and ηm = 0 86. .

D C A
ui Vri

Vi = Vwi ϕ

Angle of
deflection

ϕ β

E

H G F

Vro

Vo

Vfo

x

y

)(180° ϕ−

Inlet

Outlet

Vwouo

Figure 21.11

Let V1 be the velocity of water in the penstock of diameter D1 and Vi be the velocity of water jet of diameter d.

AV AV D V d Vi i1 1 1
2

1
2

4 4
= ⇒ =

π π
 [Continuity equation]

∴ =
⎛
⎝⎜

⎞
⎠⎟

= ⎛
⎝⎜

⎞
⎠⎟

=V
d

D
V V Vi i i1

1

2 20 15

0 95
0 024931

.

.
.

Applying Bernoulli’s equation to free surface of water in the lake and outlet of the nozzle and neglecting the head lost in 
nozzle, we derive the following relation.

Head at lake Kinetic head of water jet Head lost due to friction in pe= + nnstock

H
V

g

fLV

gDg
i= +
2

1
2

12

4

2

Thus 402
2 9 81

4 0 009 4000 0 024931

2 9 81 0 95

2 2

=
×

+
× × ×

× ×
V Vi i

.

. ( . )

. .

402 0 05577
402

0 05577
84 92= ⇒ = =.

.
.V Vi i m/s

u Vi= = × =0 45 0 45 84 9 38 205. . . . m/s
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From inlet velocity triangle, we get:

V V uri i= − = − =84 9 38 205 46 695. . . m/s  [ ]∵u u ui o= =

V Vwi i= = 84 9. m/s

180 165 15° − = ° ⇒ = °ϕ ϕ

From outlet velocity triangle, we get:

V kVro ri= = × =0 85 46 695 39 691. . . m/s

V V uwo ro= − = ° − =cos . cos . .ϕ 39 691 15 38 205 0 1336 m/s

Q d Vi= × = × × =
π π
4 4

0 15 84 9 1 52 2. . . m /s3

 (i) R.P. kW=
+ρw wi woQ V V u( )

1000

∴ = × × + × =R.P.
1000 1 5 84 9 0 1336 38 205

1000

. ( . . ) .
4873.063 kW

 (ii) S.P. R.P.= × = × =ηm 0 86 4873 063. . 4190.8342 kW

 (iii) ηh
wi wo

i

V V u

V
=

+
= × + × × =

2 2 84 9 0 1336 38 205

84 9
100

2 2

( ) ( . . ) .

.
90.14%

 (iv) η η ηo h m= × = × × =0 9014 0 86 100. . 77.5204%

 Example 21.12  A double overhang Pelton wheel unit is coupled to a generator producing 30000 kW under an effective 
head of 300 m at the base of the nozzle. Find the size of the jet, mean diameter of runner, synchronous speed and  specific 
speed of each wheel. Assume generator efficiency as 93%, overall efficiency of turbine as 85%, coefficient of nozzle  velocity 
as 0.97, speed ratio as 0.46, frequency of generator as 50 cycles per second, pair of poles as 16 and the jet ratio as 12.

Solution
Let n = 2, P1 30000= kW , H = 300 m, ηg = 0 93. , ηo = 0 85. , Cv = 0 97. , Ku = 0 46. , f Hz= 50 , p = 16 and m = 12.

Power supplied to generator by the runners is given by,

P
P

t
g

= = =1 30000

0 93
32258 064

η .
. kW

Power output by single runner is given by,

P
P

n
t= = =

32258 064

2
16129 032

.
. kW

Q
P

gHo w
= =

×
× × ×

=
1000 1000 16129 032

0 85 1000 9 81 300
6 448 3

η ρ
.

. .
. m /s

V C gHi v= = × × × =2 0 97 2 9 81 300 74 42. . . m/s

Since Q AV d Vi i= = ×
π
4

2

6 448
4

74 422. .= ×
π

d
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∴ = ×
×

=d
6 448 4

74 42

.

.π
0.3321 m

D m d= × = × =12 0 3321 3 9852. . m 	 [ ]∵m D d= /

u K gHu= = × × × =2 0 46 2 9 81 300 35 29. . . m/s

Since u
DN

=
π

60

35 29
3 9852

60
.

.
=

× ×π N

∴ = ×
×

=N
35 29 60

3 9852

.

.π
169.12 rpm

Speed of the generator is given by,

N
f

p
= =

×
=

60 60 50

16
187 5. rpm

Since u
DN

= =
π

60
35 29. m/s

Therefore, it remains constant and so, the revised diameter of the wheel is derived as follows.

D
N

=
×

=
×

×
=

35 29 60 35 29 60

187 5
3 595

. .

.
.

π π
m

Specific speed of the wheel is given by,

N
N P

H
s = = × =

5 4 5 4

187 5 16129 032

300/ /

. .
19.072

 Example 21.13  The water available for a Pelton wheel is 4.4 m3/s and the total head from the reservoir to the nozzle is 
250 m. The turbine has two runners with two jets per runner. All the four jets have the same diameters. The pipeline is 3 km 
long. The efficiency of power transmission through the pipeline and the nozzle is 91% and the efficiency of each runner 
is 90%. The velocity coefficient of each nozzle is 0.975 and friction factor for the pipe is 0.0045. Determine (i) the power 
developed by the turbine, (ii) diameter of the jet and (iii) diameter of the pipeline.

Solution
Let Q = 4 4. m /s3 , Hg = 250 m , n = × =2 2 4, L = =3 3000km m , ηt = 0 91. , η = 0 9. , Cv = 0 975.  and f f = 0 0045. .

Let P be the power developed, d be the diameter of the jet and D1 be the diameter of the pipeline.

 (i) ηt
g f

g

H h

H
=

−

0 91
250

250
250 0 91 250 22 5. . .=

−
⇒ = − × =

h
h

f
f m

H H hg f= − = − =250 22 5 227 5. . m

V C gHi v= = × × × =2 0 975 2 9 81 227 5 65 14. . . . m/s

W.P.
/

kW=
× ×

=
× ×

×
=

( ) . .
.

1 2

1000

1000 4 4 65 14

2 1000
9335 083

2 2ρw iQ V
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  Power developed by the wheel is given by,

P = × = × =η W.P. 0 9 9335 083. . 8401.5747 kW

 (ii) Discharge per jet is given by,

q
Q

n
= = =

4 4

4
1 1

.
. m /s3

q d Vi= ×
π
4

2

1 1
4

65 142. .= ×
π

d

∴ = ×
×

=d
1 1 4

65 14

.

.π
0.1466 m

 (iii) h
f LV

gD

f L

gD

Q

A

f L

gD

Q

D
f

f f f= =
⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=1
2

1 1 1

2

1 1
2

2

2 2 2 4( / )π

88 2

2
1
5

f LQ

g D

f

π

∴ =
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= × × ×
× ×

⎡
D

f LQ

g h

f

f
1

2

2

1 5
2

2

8 8 0 0045 3000 4 4

9 81 22 5π π

/
. .

. .⎣⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
1 5/

0.992 m

 Example 21.14  A single jet Pelton wheel runs at 300 rpm under a head of 510 m. The jet diameter is 200 mm. The 
jet deflects inside the bucket by 165o and its relative velocity is reduced over the buckets by 15% due to friction. The 
 mechanical losses are 3% of the power supplied. The values for the coefficient of velocity and speed ratio are given as 0.98 
and 0.46, respectively. Determine (i) the water power, (ii) resultant force on the bucket, (iii) brake power and (iii) overall 
efficiency.

Solution
Refer Figure 21.12. Let N = 300 rpm , H = 510 m, d = =200 0 2mm m. , ( )180 165° − = °ϕ , V Vro ri= 0 85. , ηm = 0 97. , 

Cv = 0 98.  and Ku = 0 46. .

D C A
ui Vri

Vi = Vwi ϕ

Angle of
deflection

ϕ

E

H F

uo

Vro

x

y

Vfo

G

Vo β

Inlet

Outlet

)(180° ϕ−

Vwo

Figure 21.12
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 (i) V C gHi v= = × × × =2 0 98 2 9 81 510 98 03. . . m/s

Q d Vi= = × × =
π π
4 4

0 2 98 03 3 082 2. . . m /s3

W.P. = = × × × =
ρw gQH

1000

1000 9 81 3 08 510

1000

. .
15409.548 kW

 (ii) u K gHu= = × × × =2 0 46 2 9 81 510 46 01. . . m/s

  From inlet velocity triangle, we get:

V V uri i= − = − =98 03 46 01 52 02. . . m/s  [ ]∵u u ui o= =

V Vwi i= = 98 03. m/s

180 165 15° − = ° ⇒ = °ϕ ϕ

V Vro ri= = × =0 85 0 85 52 02 44 217. . . . m/s

Vro cos . cos .ϕ = ° =44 217 15 42 71 m/s

Since ( cos )V uro ϕ <

∴ > °β 90 (i.e., fast runner) as shown in outlet velocity triangle in Figure 21.12.

Thus V u Vwo ro= − = − =cos . . .ϕ 46 01 42 71 3 3 m/s

F Q V Vx w wi wo= − = × × − =ρ ( ) . ( . . )1000 3 08 98 03 3 3 291768.4 N

 (iii) S.P. = = × × =
ηm xF u

1000

0 97 291768 4 46 01

1000

. . .
13021.5362 kW

 (iv) ηo = = × =S.P.

W.P.

13021 5362

15409 548
100

.

.
84.5%

 Example 21.15  Design a Pelton wheel working under a head of 70 m. It develops 100 kW shaft power when it runs at 
220 rpm. Assume the speed ratio as 0.45, coefficient of velocity as 0.98 and overall efficiency as 85%.

Solution

Let H = 70 m, S P. . = 100 kW , N = 220 rpm, Ku = 0 45. , Cv = 0 98.  and ηo = 0 85. .

 (i) V C gHi v= = × × × =2 0 98 2 9 81 70 36 318. . . m/s

u K gHu= = × × × =2 0 45 2 9 81 70 16 677. . . m/s

  Since u
DN

=
π

60

   16 677
220

60
. =

× ×π D

∴ = ×
×

=D
16 677 60

220

.

π
1.448 m
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 (ii) Q
P

gHw o
= =

×
× × ×

=
1000 1000 100

1000 9 81 70 0 85
0 17132

ρ η . .
. m /s3

Q AV d Vi i= = ×
π
4

2

0 17132
4

36 3182. .= ×
π

d

∴ = ×
×

=d
0 17132 4

36 318

.

.π
0.0775 m or 77.5 mm

m
D

d
= = =

1 448

0 0775
18 684

.

.
.

 (iii) B d= = × =5 5 77 5. 387.5 mm

T d= = × =1 2 1 2 77 5. . . 93 mm

L d= = × =3 2 3 2 77 5. . . 248 mm

Z = + = + × = ≈15 0 5 15 0 5 18 684 24 342. . . .m 25

 Example 21.16  A Pelton wheel produces 10 MW under a head of 360 m when running at a speed of 450 rpm. If the 
diameter of the jet is not to exceed one tenth of the wheel diameter, then determine (i) the diameter of wheel, (ii) diameter 
of jet, (iii) quantity of flow, (iv) number of jets and (v) size of buckets. Assume speed ratio as 0.46, coefficient of velocity 
as 0.98 and overall efficiency as 88%.

Solution

Let S.P. MW kW= = ×10 10 103 , H = 360 m, N = 450 rpm, d D= /10, Ku = 0 46. , Cv = 0 98.  and ηo = 0 88. .

 (i) V C gHi v= = × × × =2 0 98 2 9 81 360 82 362. . . m/s

u K gHu= = × × × =2 0 46 2 9 81 360 38 66. . . m/s

  Since u
DN

=
π

60

38 66
450

60
. =

× ×π D

∴ = ×
×

=D
38 66 60

450

.

π
1.641 m

 (ii) d
D= = =
10

1 641

10

.
0.1641 m

 (iii) Q
P

gHw o
= = × ×

× × ×
=1000 1000 10 10

1000 9 81 360 0 88

3

ρ η . .
3.218 m /s3

 (iv) Q n A V n d Vi i= × × = × ×
π
4

2
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  Thus 3 218
4

0 1641 82 3622. . .= × × ×n
π

∴ = ×
× ×

= ≈n
3 218 4

0 1641 82 362
1 8474

2

.

. .
.

π
2

  Therefore, the revised jet diameter is obtained as follows.

3 218 2
4

82 3622. .= × ×
π

d

∴ =
×

× ×
=d

3 218 4

2 82 362
0 1577 157 7

.

.
. .

π
m or mm

(v) Width (B), depth (T) and radial length (L) of the buckets are derived as follows.

B d= = × =5 5 157 7. 788.5 mm

T d= = × =1 2 1 2 157 7. . . 189.24 mm

L d= = × =3 2 3 2 157 7. . . 504.64 mm

 Example 21.17  A pipeline 1250 m long supplies water to 3 single jet Pelton wheels. The head above the nozzle is 
373 m. The head lost due to friction in the pipeline is 13 m. The value of friction factor ff  for the pipeline is 0.02 and the 
velocity coefficient for the nozzle is 0.98. The specific speed of each turbine is 16.5 and the operating speed of each turbine 
is 565 rpm. If the turbine efficiency based on the head at the nozzle is 0.86, then determine (i) the total power developed, 
(ii) volume of water used per second, (iii) diameter of each nozzle and (iv) diameter of the pipeline.

Solution
Let L = 1250 m, n = 3, Hg = 373 m, hf = 13 m, f f = 0 02. , Cv = 0 98. , Ns = 16 5. , N = 565 rpm and ηo = 0 86. .

Let D1 be the diameter of the pipe and d be the diameter of the jet.

 (i) H H hg f= − = − =373 13 360 m

  Since N
N P

H
s =

5 4/

P
N H

N
s=

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
×⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
5 4 2

5 4 2
16 5 360

565
2097 14

/ /.
. kW

  Therefore, the total power developed by three turbines is derived as shown below.

P n Pt = × = × =3 2097 14. 6291.42 kW

 (ii) q
P

g Hw o
= =

×
× × ×

=
1000 1000 2097 14

1000 9 81 360 0 86
0 6905 3

ρ η
.

. .
. m /s

  Therefore, the total volume of water used by three turbines is derived below.

Q n q= × = × =3 0 6905. 2.0715 m /s3
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 (iii) V C gHi v= = × × × =2 0 98 2 9 81 360 82 362. . . m/s

  Since q A V d Vi i= × = ×
π
4

2

   0 6905
4

82 3622. .= ×
π

d

∴ = ×
×

=d
0 6905 4

82 362

.

.π
0.1033 m or 103.3 mm

 (iv) h
f LV

gD

f L

gD

Q

A

f L

gD

Q

D
f

f f f= =
⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=1
2

1 1

2

1 1
2

2

2 2 2 4

8

( / )π

ff LQ

g D

f
2

2
1
5π

	 	∴ =
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= × × ×
× ×

⎡

⎣
D

f LQ

g h

f

f
1

2

2

1 5
2

2

8 8 0 02 1250 2 0715

9 81 13π π

/
. .

.
⎢⎢
⎢

⎤

⎦
⎥
⎥

=
1 5/

0.9263 m

Summary

 1. Hydraulic turbines convert hydraulic energy into mechanical 
energy.

 2. Impulse turbines have only kinetic energy at its inlet, whereas 
reaction turbines have both kinetic and pressure energy at its 
inlet.

 3. Gross head (Hg) is the difference between the head race and 
tail race levels.

 4. Net head (H) is the head available at the inlet of the turbine. 
If hf is the head loss due to friction in penstock, then net head 
is given by H H hg f= −( ).

 5. The head loss due to friction is h fLV gDf = ( ) ( )4 22 / , here  
f = coefficient of friction, L = length of penstock, V = velocity 
of flow in penstock, D = diameter of penstock and g = gravi-
tational acceleration.

 6. Hydraulic efficiency ( )ηh  is the ratio of runner power to 
water power.

 7. Mechanical efficiency ( )ηm  is the ratio of shaft power to run-
ner power.

 8. Overall efficiency ( )ηo is the ratio of shaft power to water 
power. Also η η ηo m h= , when the volumetric efficiency ( )ηv  
is also considered, η η η ηo m h v= .

 9. The Pelton turbine is a tangential flow impulse turbine. It is 
used for high heads generally heads in excess of 250 m.

 10. In the governing of a turbine, its speed is kept constant 
under all working conditions with the help of an oil pressure 
governor.

 11. The velocity of jet at inlet is V C gHi v= 2 .

 12. Discharge through the Pelton turbine is Q d Vi= ( )π /4 2 ,  
here d is the jet diameter.

 13. Work done per second per unit weight per second: 

w V V u gwi wo= +[( ) ]/

 14. Force exerted by water jet in direction of motion of bucket: 
F AV V Vx w i wi wo= ±ρ ( )

 15. Hydraulic efficiency of the Pelton wheel: 

η ϕh i iV u u V= − +[ ( )( cos ) ]2 1 2/

 16. Condition for maximum efficiency of the Pelton wheel: u Vi= /2.

 17. Maximum efficiency: ( ) ( cos )maxη ϕh = +1 2/ , here ϕ  is  
the clearance angle.

 18. Jet ratio: m D d= / , where D is the pitch diameter and d is 
the jet diameter.

 19. Number of buckets (Z ) for a Pelton turbine: Z D d m= + = +15 2 15 0 5/( ) .
Z D d m= + = +15 2 15 0 5/( ) .

 20. Size of the buckets: Depth of bucket = 1.2 d, width of bucket 
= 5 d and length of bucket = 3.2 d.
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 21. Runaway speed is the maximum speed attained by the runner 
under maximum head at full gate opening, when the external 
load suddenly becomes zero.

 22. Speed ratio: K u gHu = / 2

 23. Specific speed is the speed of a geometrically similar turbine 
working under unit head and developing unit power. It is 

given by N N P Hs = ( ) ,// 5 4  here N is the normal working 
speed in rpm, P is the power output of the turbine in kW and 
H is the net head in metres.

Multiple-choice Questions

 1. Pure reaction turbine is
(a) Kaplan turbine.
(b) Lawn sprinkler.
(c) Francis turbine.
(d) None of the above.

 2. Pelton turbine ideally suits
(a) Low head and low discharge.
(b) High head and high discharge.
(c) High head and low discharge.
(d) Medium head and medium discharge.

 3. For maximum efficiency of a Pelton turbine, the blade veloc-
ity is
(a) Half of jet velocity.
(b) Double the jet velocity.
(c) Equal to jet velocity.
(d) None of the above.

 4. The number of buckets (Z) in a Pelton wheel in terms of jet 
ratio (m) is equal to

(a) 15 0 5+ . m.

(b) 15 0 5− . m.

(c) 0 5 15. − m.

(d) None of the above.

 5. The coefficient of velocity in the nozzle for a Pelton wheel 
lies in the range of
(a) 0.5 to 0.7.
(b) 0.75 to 0.85.
(c) 0.86 to 0.95.
(d) 0.97 to 0.99.

 6. In general, the sequence of dimensions for the depth, width 
and length of a bucket respectively in terms of jet diameter d 
are
(a) 1.2 d, 5 d and 3.2 d.
(b) 3.2 d, 5 d and 1.2 d.
(c) 5 d, 1.2 d and 3.2 d.
(d) None of the above.

 7. The Taygun formula for number of buckets in Pelton turbine 
holds good for the values of jet ratio varying from
(a) 3 to 10.
(b) 0 to 3.
(c) 6 to 35.
(d) >35.

 8. The hydraulic efficiency is always
(a) Greater than mechanical efficiency.
(b) Lesser than mechanical efficiency.
(c) Lesser than overall efficiency.
(d) None of the above.

 9. The forces on the buckets of Pelton turbines are determined 
by
(a) Force balance.
(b) Energy equation.
(c) Continuity equation.
(d) Momentum equation.

 10. In Pelton turbines, as flow takes place, there is change in
(a) Velocity only.
(b) Pressure only.
(c) Both velocity and pressure.
(d) None of the above.

 11. In Pelton turbines, the specific speed of slow, normal and fast 
runners in sequence are
(a) 28–35, 8.5–20, 20–28
(b) 20–28, 28–35, 8.5–20
(c) 8.5–20, 20–28, 28–35
(d) None of the above

 12. The efficiency of an impulse turbine
(a) May approach 100% for hemispherical bucket vanes.
(b) May exceed 50% with inclined flat plate vanes.
(c) May never be beyond 50% even theoretically.
(d) May approach 100% for frictionless vanes.

Review Questions

 1. What do you mean by hydraulic turbines? How will you clas-
sify these turbines?

 2. Give a general layout of a hydroelectric power plant. Also 
define the terms gross head and net head.

 3. Give comparisons between impulse turbine and reaction 
turbine.

 4. Define the hydraulic efficiency, mechanical efficiency, volu-
metric efficiency and overall efficiency of a turbine.
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 5. Explain the construction and working of a Pelton turbine with 
a neat diagram.

 6. Define governing of turbines. Explain the governing 
 mechanisms of impulse hydraulic turbines. Clearly state the 
function of a deflector in a Pelton turbine.

 7. Explain the characteristic features of the cup of a Pelton tur-
bine. What are the limitations in keeping the deflection angle 
of the cup as 180°?

 8. Prove that the work done per second per unit weight of water 
in a Pelton wheel is given by w g V V uwi wo= +( ) [ ] .1/

 9. Draw the inlet and outlet velocity triangles for a Pelton tur-
bine. Also derive an expression for maximum efficiency of 
the Pelton wheel giving the relationship between the jet speed 
and bucket speed.

Problems

 1. A Pelton wheel is to be designed for the following specifica-
tions, such as shaft power = 6000 kW, head = 300 m, speed =  
550 rpm, overall efficiency = 85%. Jet diameter is not to 
exceed one tenth of the wheel. Determine the number of jets, 
diameter of the jet, wheel diameter and quantity of water 
required. Take Cv = 0.98 and Ku = 0.46.

[Ans. 3, 0.1225 m, 1.225 m, 2.398 m3/s]

 2. The following data were obtained from a test on a Pelton 
wheel, such as head at the base of the nozzle = 70 m, discharge 
of the nozzle = 0.25 m3/s, diameter of the jet = 95 mm, power 
available at the shaft = 140 kW, power absorbed in mechanical 
resistance = 2.5 kW. Calculate (i) the power lost in nozzle and 
(ii) power lost due to hydraulic resistance in the runner.

[Ans. 16.67 kW, 14.97 kW]

 3. The nozzle diameter of a Pelton wheel is 200 mm and it 
works under a head of 220 m. The wheel operates at 250 rpm 
and develops 3.8 MW. The blade outlet angle is 15° and the 
speed ratio is 0.45. If the coefficient of velocity is 0.99, then 
calculate the overall efficiency of the turbine.

[Ans. 86.18%]

 4. A Pelton wheel is having a mean bucket diameter of 1.2 m 
and is running at 1200 rpm. The net head on the Pelton wheel 
is 850 m. If the side clearance angle is 15° and discharge 
is 0.15 m3/s, then find the power available at the nozzle and 
hydraulic efficiency of the turbine. Take coefficient of veloc-
ity as unity.

[Ans. 1250.77 kW, 95.56%]

 5. A Pelton wheel is to be designed for the following specifica-
tions, such as shaft power =10,000 kW, head = 350 m, speed =  
700 rpm, overall efficiency = 88%. Jet diameter is not to 
exceed one sixth of the wheel. Determine the wheel diameter, 
number of jets required and diameter of the jet. Take Cv = 
0.985 and Ku = 0.45.

[Ans. 1.02 m, 2, 0.17 m]

 6. Two jets strike the bucket of a Pelton wheel which is having 
shaft power as 6500 kW. The diameter of each jet is given as 
100 mm. If the net head on the turbine is 500 m, then find the 
overall efficiency of the turbine. Assume coefficient of veloc-
ity as unity.

[Ans. 85.16%]

 7. A double jet Pelton wheel operates under 75 m head and 
develops 1000 kW brake power when running at 525 rpm. 
Evaluate the flow rate and the diameter of the nozzle jet if 
the overall efficiency and coefficient of velocity are 85% and 
0.98, respectively.

[Ans. 1.599 m3/s, 0.1645 m]

 8. A jet of water coming out of 0.2 m diameter nozzle strikes the 
buckets of Pelton wheel and jet is deflected through an angle 
165°. Determine the force exerted by the jet of water in the 
direction of motion of bucket and the power developed when 
head = 500 m, coefficient of velocity = 0.975, speed ratio = 
0.46 and reduction in relative velocity at exit of the bucket = 
15%.

[Ans. 281813.03 N, 12839.402 kW]

 9. A Pelton wheel produces 6 MW under a head of 300 m when 
running at a speed of 550 rpm. If the jet ratio is 10, then 
determine (i) the diameter of wheel, (ii) diameter of jet,  
(iii) quantity of water required and (iv) number of jets. 
Assume speed ratio as 0.46, coefficient of velocity as 0.98 
and overall efficiency as 85%.

[Ans. 1.225 m, 0.1225 m, 2.398 m3/s, 3, 0.1162 m]

 10. A double overhang Pelton wheel unit is coupled to a gen-
erator producing 42 MW under an effective head of 400 m. 
Find the size of the jet, mean diameter of runner, synchronous 
speed and specific speed of each wheel. Assume generator 
efficiency and mechanical efficiency both as 96%, hydraulic 
efficiency of turbine as 90%, coefficient of nozzle velocity as 
0.99, speed ratio as 0.46, frequency of generator as 50 cycles 
per second and jet ratio as 12.

[Ans. 0.306 m, 3.672 m, 200 rpm, 3.891 m, 16.53]

 11. A Pelton wheel develops 4.2 MW at 405 rpm when oper-
ates under a head of 355 m. There are two equal jets and 
the bucket deflection angle is 165°. Determine the cross- 
sectional area of each jet, the bucket pitch circle diameter and 
the hydraulic efficiency of the turbine. Assume that overall 
efficiency is 86%, coefficient of velocity is 0.975, the speed 
ratio is 0.46 and the relative velocity of water at exit from the 
bucket is 0.85 times the relative velocity at inlet.

[Ans. 8.615×10-3 m2, 1.81 m, 90.76%]
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 12. A Pelton wheel works under a head of 425 m and rotating at 
720 rpm. Determine the power produced and the hydraulic 
efficiency when the discharge through the machine is 0.3 m3/s 
and the jet is deflected by 165°. Also find the jet ratio and 
overall efficiency. Assume coefficient of velocity as 0.97, 
speed ratio as 0.46 and the blade velocity coefficient as 0.9.

[Ans. 1096.83 kW, 93.21%, 16.95, 87.69%]

 13. Water available under a head of 275 m is delivered to the 
power house at a hydroelectric power plant through three 
pipes each 3000 m long. Friction loss through the pipes 
is found to be 25 m. In this project a total shaft output of 
13.25 MW is to be produced by installing a number of single 
jet Pelton wheels whose specific speed is not to exceed 35. 
Determine (i) the number of Pelton wheels to be employed, 
(ii) diameter of wheel, (iii) jet diameter and (iv) diameter of 
supply pipes. The other relevant data are speed = 600 rpm, 
ratio of bucket speed to jet speed = 0.46, overall efficiency =  
86%, for nozzle coefficient of discharge, Cd = 0.94 and 
coefficient of velocity, Cv = 0.97 and coefficient of friction,  

f = 0.006 in the formula h fLV gDf = ( ) ( ).4 22 /

[Ans. 4, 0.99472 m, 0.1743 m, 1.01 m]

 14. A power house has five Pelton turbines and each turbine has 
two runners. Each runner is fitted with two nozzles. Total 
discharge trough the turbines is 24 m3/s. The head on the 
turbine is 200 m and the length of penstock is 2500 m. By 
assuming the efficiency of transmission through the penstock 
and nozzle as 90%, the coefficient of friction as 0.009, coeffi-
cient of velocity as 0.98 and the hydraulic efficiency as 88%, 
determine (i) the power developed, (ii) diameter of jet and 
(iii) diameter of penstock.

[Ans. 37293.696 kW, 0.162 m, 2.925 m]

 15. A Pelton wheel is to be designed for a head of 60 m while run-
ning at 200 rpm and developing 1 MW shaft power. Assume 
the velocity of the buckets as 0.45 times the velocity of the 
jet, overall efficiency as 0.85 and coefficient of the velocity as 
0.97.

[Ans. 1.43 m, 0.2765 m, 1.3825 m, 331.8 mm, 18]

 16. A Pelton turbine is required to operate under the following 
conditions, such as total output = 32.72 MW, gross head = 
252 m, speed = 376 rpm, two jets per wheel, coefficient of 
velocity for nozzle = 0.97, ratio of bucket velocity to jet 
velocity = 0.46, overall efficiency = 82%, head loss in fric-
tion in pipeline 500 m long = 12 m, value of friction factor 
4f = 0.025. If the specific speed of the turbine is 36, then 

determine (i) the number of wheel required, (ii) jet diameter, 
(iii)  wheel diameter, (iv) pipe diameter, (v) hydraulic effi-
ciency when the buckets deflect the jet through 165° and the 
blade velocity coefficient is 0.85 and (vi) power wasted with 
the discharge.

[Ans. 4, 0.201 m, 1.555 m, 1.899 m, 90.47%, 540.88 MW]

 17. The three-jet Pelton turbine is required to develop 10 MW 
under a net head of 400 m. The blade angle at outlet is 15° 
and the reduction in the relative velocity while passing over 
the blade is 5%. If the speed ratio is 0.45, coefficient of veloc-
ity is 0.97 and the overall efficiency is 82%, then determine 
(i) the total flow in m3/s, (ii) the diameter of the jet and (iii) 
force exerted by a jet on the buckets. Also find the speed of 
the turbine for a frequency of 50 cycles per second and the 
corresponding wheel diameter if the jet ratio is not to be less 
than 10.

[Ans. 3.11 m3/s, 124 mm, 91.884 kN, 613.93 rpm, 1.27 m]

 18. A pipeline 1225 m long supplies water to 3 single jet Pelton 
wheels. The head above the nozzle is 365 m. The head lost 
due to friction in the pipeline is 15 m. The value of friction 
factor 4f for the pipeline is 0.02 and the velocity coefficient 
for the nozzle is 0.985. The specific speed of each turbine is 
17 and the operating speed of each turbine is 565 rpm. If the 
turbine efficiency based on the head at the nozzle is 0.86, then 
determine (i) the total power developed, (ii) diameter of each 
nozzle, (iii) diameter of the pipeline and (iv) volume of water 
used per second.

[Ans. 6224.31 kW, 0.1087 m, 0.7895 m, 2.2725 m3/s]

 19. Prove that the maximum efficiency of a Pelton turbine 
occurs when the ratio of bucket speed (u) to the jet veloc-
ity (Vi) is given by the expression (u/Vi) = (1 - cos q	+ k1)/
[2(1 - cos q	)	+ k1	+ k2],  where k1 and k2 are the constants 
and bucket angle at outlet θ ϕ= ° −( )180 . Neglect all volu-
metric losses. Loss due to bucket friction and shock is given 

by k V u gi1
2 2× −[( ) ( )]/  and that due to bearing friction and 

windage losses as, k u g2
2 2× { ( )}/ .

 20. A Pelton wheel 0.91 m in diameter works under a head of 
145 m. It develops 675.2 kW when running at 500 rpm. The 
rate of flow of water through the nozzle is 550 litres per sec-
ond, the angle of deflection of the jet is 165° and the coef-
ficient of velocity is 0.97. Obtain an energy balance of the 
turbine if the friction and windage losses are 5% of the veloc-
ity head of the jet.

[Ans. Accountable loss = 18.5 m, unaccountable loss = 1.36 m]

ANSWERS TO MULTIPLE-CHOICE QUESTIONS

 1. (b) 2. (c) 3. (a) 4. (a) 5. (d)
 6. (a) 7. (c) 8. (a) 9. (d) 10. (a)
 11. (c) 12. (a)
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22.1 ❐ INTRODUCTION
Generally, the reaction turbine differs from impulse turbine with inlet water condition. In reaction turbines, the water from 
the penstock passes through a row of fixed blades (guide blades) which converts a part of the total available hydraulic 
energy (or pressure energy) into kinetic energy before water enters the runner. Thus, the water entering the runner  possesses 
both kinetic energy as well as pressure energy. The pressure at the inlet to the runner is higher than the pressure at the outlet. 
When water flows through the runner, the water is under pressure and there is a gradual conversion of pressure into kinetic 
energy. The rotation of the runner is partly due to impulse action and partly due to change in pressure over the runner 
blades. Thus, this type of turbine is called a reaction turbine. 

Since the pressure inside the turbine is different than at the inlet, there is a possibility of water flowing through some 
 passage other than the runner and it escapes without doing any work. Therefore, the runner of a reaction turbine is 
 completely enclosed in an air-tight casing and the runner and casing completely remains full of water throughout the 
 operation of the turbine. 

After the utilization of whole pressure energy of water in the runner, it is discharged into a closed tube of gradually 
enlarging section called draft tube. The free end of the draft tube is submerged deep into the tail race. Thus, the entire water 
passage from the head race to the tail race is totally closed. Due to the gradually increasing cross section of the draft tube, 
the discharge velocity is partly converted into useful pressure head and the water is discharged at a relatively low velocity 
to the tail water.

Some of the reaction turbines are propeller turbine, Kaplan turbine, Francis turbine, Fourneyron turbine and Thomson 
turbine. Out of these turbines, Francis and Kaplan turbines are widely used at present. The principle of operation of reaction 
turbines is illustrated schematically in Figure 22.1. 

The water enters the hollow wheel (or disc) through a hollow shaft. The wheel has four radial openings through tubes. 
The ends of the tubes are shaped as nozzles. When water escapes through these nozzles, then its pressure energy decreases 
and kinetic energy increases. The resulting reaction force causes the rotation of the wheel. The wheel and the shaft rotate 
in a direction opposite to the direction of water jet.

Hydroelectric power is a significant contributor to the sources of energy. In India, a number of hydroelectric power 
plants have been installed to harness the water power by using Francis turbine. Some important Francis turbine installations 
in India are Bhakra Dam Project (Punjab), Cauvery Hydroelectric Scheme (Karnataka), Hirakud Dam Project (Orissa), 
Rihand Dam Scheme (Uttar Pradesh), Chambal Hydroelectric Scheme (Rajasthan) and Ganderbal Hydro-station (Jammu 
and Kashmir). In this chapter, the characteristics of radial flow reaction turbines are discussed.

Chapter 22

Francis Turbine (Radial Flow 
Reaction Turbines)
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22.2 Chapter 22

22.2 ❐ RADIAL FLOW REACTION TURBINES
In radial flow turbines, the water flows in radial direction through the runner. The radial flow turbine is either inward or 
outward radial flow type. A schematic view of the radial flow reaction turbine is shown in Figure 22.2.

The main parts of the radial flow reaction turbine are given below. 

 1. Scroll casing: The water from the penstock is supplied to the scroll casing (or casing) of the turbine. It surrounds the 
runner of the turbine. It is of spiral shape in which the area decreases along the flow direction.

 2. Guide mechanism: It consists of a number of stationary guide vanes fixed in the guide wheel around the runner. The 
guide vanes allow the water to enter into the moving vanes of the runner without shock at the inlet. The guide vanes 
are adjustable, which means the width of water passage between two consecutive vanes can be altered. Thus, the water 
flow rate supplied to the runner can be regulated as per the load requirement.

 3. Runner: It is a circular wheel in which a series of smooth radial vanes are fitted. It is mounted on the turbine shaft. 
The vanes are so shaped that water enters and leaves the runner without shock.

 4. Draft tube: Generally, the pressure of water coming out from the runner of a reaction turbine is less than atmospheric 
pressure. Thus, it cannot be directly discharged to the tail race. Therefore, a diverging tube or pipe called draft tube is 
fitted at the exit of the turbine. The diverging passage of the pipe increases the pressure of the exit water. 

Water from reservoir

BearingBearing

Disc

Hollow shaft

Moving nozzle

Water jet

Figure 22.1 Operation principle of reaction turbine 

Tail race

Draft tube

Guide vanes
Guide wheel

Scroll casing

Runner vanes

Runner

Penstock

Figure 22.2 Radial flow reaction turbine 
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  22.3 Francis Turbine 

22.2.1 Inward Radial Flow Reaction Turbine
Water enters at the outer circumference and flows inwards radially towards the centre of the runner, for example, old 
 Francis turbine and Thomson turbine. 

The configuration of an inward radial flow reaction turbine is shown in Figure 22.3(a). The water from the casing 
enters the stationary guide vanes fixed on the guiding wheel. The guide vanes direct the water to enter the moving vanes 
of the runner. The water flows over the moving vanes in the inward radial direction and is discharged at the inner diameter 
of the runner. Therefore, in the inward radial flow reaction turbine, the outer diameter of the runner (Di) is the inlet and 
inner diameter (Do) is the exit for water. The hydraulic efficiency of an inward radial flow reaction turbine varies from 
80% to 90%.

22.2.2 Outward Radial Flow Reaction Turbine
Water enters at the centre and flows radially outwards to the outer periphery of the runner, for example, Fourneyron 
turbine. 

Figure 22.3(b) shows a schematic view of an outward radial flow reaction turbine. The water from the casing enters the 
stationary guide vanes fixed in the guide wheel. The guide vanes direct the water to enter into the runner wheel surrounding 
the stationary guide wheel. The water flows through the runner vanes in the outward radial direction and is discharged at 
the outer diameter of the runner. So, in this case the inner diameter of the runner (Di) is the inlet and outer diameter (Do) 
is the outlet for water.

Shaft

Guide
vanes

Runner

Guide
wheel

Guide
vanes

Runner
vanes

Shaft

Runner

Guide
wheel

Runner
vanes

Guide
vanes

Runner

Guide
wheel Guide

wheel

Runner

Runner

Guide vanes

(a) (b)

Do

Di

Di

Do

Figure 22.3 Inward and outward radial flow reaction turbines 
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22.4 Chapter 22

22.3 ❐ COMPARISONS BETWEEN IMPULSE AND REACTION TURBINES

Impulse turbine Reaction turbine

All the available hydraulic energy is converted into kinetic 
energy by a nozzle.

Only a part of the available hydraulic energy is converted into 
kinetic energy before the water enters the runner of the turbine.

Impulse turbines operate under atmospheric conditions and thus, 
the pressure remains constant throughout the action of water on 
the runner.

Reaction turbines operate under varying pressures different from 
the atmospheric pressure and the water pressure drops partly in 
the rotor blades and partly in the stator blades.

It is not essential to have a casing as it does not perform any 
hydraulic function.

Air and water tight casing is quint-essential which maintains the 
pressure in the turbine passage.

Water may be allowed to enter a part or whole of the wheel 
circumference.

Water is admitted over the whole circumference of the wheel. 

Air has free access to the runner as it does not run full. Air has no access to the runner as all the passages are  
completely filled by water.

It is always installed above the tail race and it does not require 
any draft tube.

It is connected to the tail race through a draft tube and it may be 
installed above or below the tail race. 

Flow regulation is attained by means of a needle valve (spear) 
fitted into the nozzle which is possible without any loss.

Flow regulation is attained by means of guide vane assembly 
which is always accompanied by loss.

The relative velocity of water either remains constant or reduces 
slightly due to the presence of blade friction.

The relative velocity of water increases due to continuous drop 
in pressure during flow through the blades.

These turbines are suitable for high head, low discharge and low 
specific speed conditions.

These turbines are suitable for low to medium head and specific 
speed, and high discharge.

Some of the impulse turbines are Pelton wheel, Banki turbine, 
Jonval turbine, Girard turbine and Turgo-impulse wheel.

 Some of the reaction turbines are propeller turbine, Kaplan tur-
bine, Francis turbine, Fourneyron turbine and Thomson turbine. 

22.4 ❐  DIFFERENCES BETWEEN INWARD AND OUTWARD 
RADIAL FLOW REACTION TURBINES

Inward radial flow reaction turbine Outward radial flow reaction turbine

Water enters at the outer circumference and flows inwards radi-
ally towards the centre of the runner.

Water enters at the centre and flows radially outwards to the 
outer periphery of the runner.

The discharge does not increase. The discharge increases.

Speed control is easy and effective. It is very difficult to control the speed.

It is good for medium and high heads. It is suitable for large 
output units.

It is good for low or medium heads. 

Centrifugal head imparted to water is negative. Centrifugal head imparted to water is positive.

If the turbine speed increases due to any reason, then wheel  
tendency to race is nil. The turbine adjusts the speed by itself.

If turbine speed increases, then wheel tends to race. The turbine 
cannot adjust the speed by itself.

It is generally used for power projects. It has become practically obsolete.

D D u ui o i o> >and  D D u uo i o i> >and
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  22.5 Francis Turbine 

22.5 ❐ FRANCIS TURBINE 
The Francis turbine is named in the honour of J. B. Francis, an American engineer, who was the first to develop an inward 
radial flow type of reaction turbine as shown in Figure 22.4. Later on, it was modified in which water enters the runner 
radially at its outer periphery and leaves axially at its centre. Thus, the modern Francis turbine is a mixed flow type turbine. 
It is a reaction turbine and hence, only a part of the available head is converted into the velocity head before water enters 
the runner. The pressure head goes on decreasing as water flows over the runner blades. The static pressure at the runner 
exit may be less than the atmospheric pressure and as such, water completely fills all the passages of the runner. A typical 
large Francis turbine can achieve a hydraulic efficiency from 90% to 95%.

Francis turbines may either have a horizontal shaft or a vertical shaft arrangement. The vertical shaft arrangement is 
widely used, especially in large sizes as it helps in the economy of building space. A Francis turbine is most suitable for 
medium heads (60 m to 250 m) and requires a relatively large quantity of water. Francis turbine is a medium specific speed 
turbine which varies from 50 to 255. The main parts of a Francis turbine are (1) penstock, (2) scroll casing, (3) guide 
 mechanism, (4) runner, (5) draft tube and (6) governing mechanism.

 1. Penstock: It is a large sized conduit which conveys water from reservoir to the runner. Trash racks are commonly 
 provided at the inlet of penstock to obstruct the entry of debris and other foreign matter into the turbine. Penstock 
is also provided with the control valves to control the quantity of water. In Francis turbines, large size penstocks are 
required due to large volume of water flow.

 2. Scroll casing: The water from the penstock enters the scroll casing which is of spiral shape, so it is also known as 
spiral casing. It completely surrounds the runner of the turbine and maintains the even distribution of water around the 
circumference of the runner. The area of scroll casing goes on decreasing gradually which keeps the velocity of water 
constant throughout its path around the runner. In Francis turbines, the casing and runner are always full of water. 
The casing is made of cast steel, concrete or plate steel. A plate steel scroll casing is commonly provided for turbines 
working under a head of about 30 m to 100 m. For heads up to about 30 m, it is made of concrete and for more than 
100 m heads, it is fabricated from cast steel.

 3. Guide mechanism: Water from the casing flow through a speed ring (or stay ring) having fixed stay vanes which direct 
the water to the guide vanes. Generally, the number of stay vanes is taken as half of the number of guide vanes. The 
stay ring is provided in big units only. From stay ring, water passes through a series of guide vanes. 

From penstock

Runner vanes

Speed ring

Stay vane

Scroll casing

Guide vane

Scroll casingGuide vaneShaft

Stay vane

Draft tube

Runner vane

Tail race

Figure 22.4 Francis turbine
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22.6 Chapter 22

   The guide vanes are adjustable and are also known as wicket gates. The guide vanes are airfoil shaped (Figure 22.5(a)) 
so that the flow remains smooth without any separation. The guide vanes behave like nozzles. These are fixed on a 
stationary circular wheel (guide wheel) all around the periphery of the turbine runner. The guide vanes direct the water 
to strike the vanes fixed on the runner without shock at the inlet. Each guide vane can rotate about its pivot centre as 
shown in Figure 22.5(b). Thus, the flow cross-sectional area can be varied between two adjacent vanes either by means 
of a wheel or automatically by a governor. Thus, the guide vanes can also regulate the quantity of water supplied to the 
runner by changing the width of flow between them. The guide vanes may be made of cast steel, plate steel or stainless 
steel.

 4. Runner: It is also known as rotor. Runner is a circular wheel in which a series of radial curved vanes are evenly fixed. 
Generally, the number of vanes varies in between 16 to 24. The radial curved vanes are so shaped that water enters 
the runner radially at the outer periphery and leaves axially at the inner periphery without shock. In order to minimize 
the frictional resistance, the surfaces of these vanes are made very smooth. The direction of water flow in the runner 
changes from radial to axial. Due to this change in direction of flow, a circumferential force is produced on the runner 
which makes the runner to rotate. The runner is keyed to the turbine shaft which is further coupled to the generator 
shaft. In the recent past, Francis runners as large as 7.5 m in diameter have been manufactured. The runners are made 
of stainless steel, cast iron or cast steel. The turbine shaft is made of forged steel.

   The width of the runner depends on the specific speed. The high specific speed runner has to work with a large quan-
tity of water. Thus, these runners will be wider than the low specific speed runner and the runners may be classified as 
follows. 

    (i) Slow runner: Specific speed varies from 60 to 120. 

   (ii) Normal runner: Specific speed varies from 120 to 180. 

  (iii) Fast runner: Specific speed varies from 180 to 300.

 5. Draft tube: A draft tube is a pipe of gradually increasing cross-sectional area. It is considered as an integral part of the 
turbine. One end of the draft tube is connected to the runner exit, while the other end is submerged deep into the tail 
race. The draft tube should be drowned about one metre below the tail race level. The water after passing through the 
runner is discharged to the tail race through the draft tube. So, a draft tube is an outlet conduit from a turbine which 
acts as a diffuser. It is made of welded steel plate pipe or a concrete tunnel.

 6. Governing mechanism: The quantity of water in a Francis turbine is controlled by varying the area of flow between 
adjacent guide vanes by rotating them. These guide vanes are pivoted and connected by levers and links to the  regulating 
ring. The regulating ring is connected to the regulating shaft through regulating lever and two regulating rods as shown 
in Figure 22.6. The regulating shaft is connected to the servomotor. The servomotor, control valve, oil sump and piping 
system, etc., are similar to that in Pelton wheel. However, these components are relatively stronger as greater energy is 
required to move the guide vanes.

With variation in load, the speed of the turbine changes which causes the movement of servomotor piston either to the 
left or to the right. This rotates the regulating lever clockwise or anticlockwise. This rotation is further transmitted to the 

Regulating ring

Guide blade
Guide blade

Guide wheel

Pivot

Closing
position

(a) (b)

Figure 22.5 Guide vanes and guide wheel 
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  22.7 Francis Turbine 

regulating ring through regulating rods. The regulating ring rotates in the same direction as the regulating lever and thus, it 
closes or opens the passage between the two adjacent guide vanes as per requirement. 

The rapid closure of guide vanes is not desirable because a sudden reduction of flow rate in the penstock may result in 
serious water hammer problems. The penstock is provided with a pressure regulator or relief valve which has to perform 
the same function as that of deflector in Pelton turbine. When there is a sudden decrease in load on the turbine, the relief 
valve opens and diverts the water to the tail race and thus, it prevents the sudden closure of guide vanes. Therefore, the 
double regulation, which is the simultaneous operation of two elements, is accomplished by moving the guide vanes and 
relief valve with the help of the governor.

22.6 ❐  VELOCITY TRIANGLES, WORK DONE AND EFFICIENCY OF 
RADIAL FLOW REACTION TURBINES AND FRANCIS TURBINE 

The velocity triangles at the inlet and outlet for an inward radial flow reaction turbine are shown in Figure 22.7. In Chapter 20 
(Section 20.9.4), the force exerted by the water on the radial curved vanes fixed on a wheel have already been discussed. 
However, for maintaining the continuity, this section is elaborated briefly here. 

Let Ri and Ro be the radii of wheel at the inlet and outlet of the vane, respectively, w be the angular speed of the wheel, 
then u Ri i= ω  and u Ro o= ω . All other notations are usual as given for Pelton Turbine.

The mass of the water striking per second for series of vanes = ρw iAV
Momentum of water striking in the tangential direction per second at the inlet

	 = ×m ViComponent of in tangential direction 	

	 = =ρ α ρw i i w i wiAV V AV V( cos )   [ cos ]∵V Vwi i= α 	

Momentum of water at the outlet per second

	 = ×m VoComponent of in tangential direction

	 = − = −ρ β ρw i o w i woAV V AV V( cos )   [ cos ]∵V Vwo o= β 	

From penstock
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Servomotor

Piston
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Regulating
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Figure 22.6 Governing mechanism of Francis turbine 
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22.8 Chapter 22

Negative sign is taken because Vo at the outlet is in opposite direction.

Angular momentum per second at the inlet = ρw i wi iAV V R

Angular momentum per second at the outlet = − ρw i wo oAV V R

Torque exerted by the water on the wheel is given by, 

 T = Rate of change of angular momentum 

 T AV V R AV V R AV V R V Rw i wi i w i wo o w i wi i wo o= − − = +ρ ρ ρ( ) ( )  

Work done per second on the wheel is given by, 

 w T AV V R V R AV V R V Rw i wi i wo o w i wi i wo o= = + = +ω ρ ω ρ ω ω( ) ( )  

 ∴ = +w AV V u V uw i wi i wo oρ ( )  

If the angle β > °90 , the work done will be given by,

 w AV V u V uw i wi i wo o= −ρ ( ) 	
Therefore, the general expression for work done per second is given by,

 w AV V u V u Q V u V uw i wi i wo o w wi i wo o= ± = ±ρ ρ( ) ( )   [ ]∵ AV Qi = 	

Work done per second per unit weight of water striking per second is given by,

 w
Q V u V u

Qg

V u V u

g
w wi i wo o

w

wi i wo o=
±

=
±ρ

ρ
( )

  (22.1)

The Equation (22.1) is known as Euler’s momentum equation which is the fundamental equation of hydrodynamic 
machines. This equation is extensively used in fluid power engineering. It helps in the determination of torque or power 
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Figure 22.7 Velocity triangles
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  22.9 Francis Turbine 

exchanged between the water and the runner when water flows through the vane passages. In case of hydraulic turbines 
(i.e., power producing machines), the Euler’s equation represents the head utilized in performing work. In case of pumps 
(i.e., power consuming machine), it represents the head imparted to the fluid by rotating vanes.

If the discharge is radial at outlet, then β = °90  and the output will be maximum. Therefore, work done per second per 
unit weight/second is given below. 

 w
V u

g
wi i=  (22.2)

Hydraulic efficiency is given by, 

	 η
ρ

ρh
w wi i wo o

w

wi i wo oQ V u V u

QgH

V u V u

gH
=

±
=

±( )
 (22.3)

The inward radial flow reaction turbine having radial discharge at the outlet is known as Francis turbine. For radial flow at 
outlet, Vwo = 0 and therefore, the hydraulic efficiency of Francis turbine is given below. 

	 ηh
wi iV u

gH
=   (22.4)

The hydraulic efficiency of the Francis turbine varies from 85% to 90%.

22.6.1  Change of Kinetic Energy and Pressure Energy in the Runner 
of a Radial Flow Reaction Turbine 

Work done per second per unit weight of the water striking the runner per second is given by Equation (22.1). This equation 
represents the total energy change per unit weight in the runner which is given in the below expression. 

 w E
V u V u

gt
wi i wo o= =

±
 (22.1a)

From inlet velocity triangle (Figure 22.7), we get:

 V V u Vri wi i fi
2 2 2= − +( ) 	

	 ( ) ( )V u V V V V Vwi i ri fi ri i wi− = − = − −2 2 2 2 2 2   [ ]∵V V Vfi i wi
2 2 2= − 	

 V u V u V V Vwi i wi i ri i wi
2 2 2 2 22+ − = − + 	

	 2 2 2 2V u u V Vwi i i ri i= − +

	 V u u V Vwi i i ri i= − +
1

2
2 2 2( )  (i)

From outlet velocity triangle (Figure 22.7), we get:

V V Vwo o fo
2 2 2= −

But V V u Vfo ro o wo
2 2 2= − +( )

Thus V V V u V V V u V V uwo o ro o wo o ro o wo wo o
2 2 2 2 2 2 2 2 2= − − + = − + + +[ ( ) ]

	 2 2 2 2V u V V uwo o ro o o= − − 	

	 V u V V uwo o ro o o= − −
1

2
2 2 2( )  (ii)
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22.10 Chapter 22

Substituting the values of the expressions (i) and (ii) in Equation 22.1(a) in which considering +ve sign, (i.e., β < °90 ), we 
get the below expression.

	 w E
g

u V V V V ut i ri i ro o o= = − + + − −⎡
⎣⎢

⎤
⎦⎥

1 1

2

1

2
2 2 2 2 2 2( ) ( )  

 = − + − + −⎡
⎣

⎤
⎦

1

2
2 2 2 2 2 2

g
V V u u V Vi o i o ro ri( ) ( ) ( ) 	

	 ∴ = =
−

+
−

+
−

w E
V V

g

u u

g

V V

gt
i o i o ro ri
2 2 2 2 2 2

2 2 2
 (22.5)

The Equation (22.5) gives the total energy change per unit weight in the runner. In this equation, the first term 
[( ) ( )]V V gi o

2 2 2− /  represents the change in kinetic energy of the water per unit weight. The second term [( ) ( )]u u gi o
2 2 2− /  

represents the change of energy per unit weight due to centrifugal action which is a form of pressure energy. The third term 
[( ) ( )]V V gro ri

2 2 2− /  represents the change in static pressure energy per unit weight. Therefore, the sum of second and third 
terms represents the change in pressure energy inside the runner per unit weight.

22.6.2 Degree of Reaction 
Degree of reaction (R) is defined as the ratio of pressure energy change in the runner to the total energy change in the 
stator and the runner. In a reaction turbine, a part of pressure change occurs in the stator and remaining in the runner. 
 Mathematically, the relation for degree of reaction is expressed as follows.

	 R =
Change of pressure energy in the runner

Change of total energy in thee stator and runner
	

The change in pressure energy of the water in the runner can be obtained by subtracting the change in its kinetic energy 
from the total energy released. 

	
R

g u u V V

g V V u u

i o ro ri

i o i

=
− + −

− + −

[ / ( )][( ) ( )]

[ / ( )][( ) (

1 2

1 2

2 2 2 2

2 2 2
oo ro riV V2 2 2) ( )]+ − 	

	
=

− + −

− + − + −

( ) ( )

( ) ( ) ( )

u u V V

V V u u V V

i o ro ri

i o i o ro ri

2 2 2 2

2 2 2 2 2 2
	

	
=

− + − + − − −

− +

[( ) ( ) ( )] ( )

( ) (

V V u u V V V V

V V u

i o i o ro ri i o

i o i

2 2 2 2 2 2 2 2

2 2 2 −− + −u V Vo ro ri
2 2 2) ( ) 	

	 ∴ = −
−

− + − + −
R

V V

V V u u V V

i o

i o i o ro ri

1
2 2

2 2 2 2 2 2

( )

( ) ( ) ( )
 (22.6)

From Equation (22.5), we get:

( ) ( ) ( )V V u u V V gEi o i o ro ri t
2 2 2 2 2 2 2− + − + − =

	 ∴ = −
−

R
V V

gE
i o

t
1

2

2 2( )
 (22.6a)

Case I: Degree of reaction for a Pelton turbine. 
In the case of a Pelton turbine, V V u uri ro i o= =and .  From Equation (22.6), we get:

	 R
V V

V V

i o

i o

= −
−

− + +
= − =1

0 0
1 1 0

2 2

2 2

( )

( )
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  22.11 Francis Turbine 

Case II: Degree of reaction for a reaction turbine. 

For radial discharge at the outlet, β = °90  and Vwo = 0. Thus, the output will be 

maximum. Assuming that there is not much change in the velocity of flow, we get 

V Vfi fo= . The velocity triangles at the inlet and outlet are shown in Figure 22.8.
From Equation 22.1(a), we get: 

	 w E
V u

gt
wi i= =   [ ]∵Vwo = 0  (22.1b)

But ηh
wi iV u

gH
=

Thus w E Ht h= = η

From Equation 22.6(a), the degree of reaction becomes,

 R
V V

g H
i o

h
= −

−
1

2

2 2( )

η
 (22.6b)

From inlet velocity triangle (Figure 22.8), we get:

	 V Vwi fi= cot α   (iii)

	 u V V V Vi wi fi fi fi= − = −cot cot cotθ α θ  (iv)

Substituting the expressions (iii) and (iv) in Equation 22.1(b), we get:

	 		E
V V V

g

V

gt
fi fi fi fi=

−
=

−( cot )( cot cot ) cot (cot cot )α α θ α α θ2

 (v)

Now V V V Vi o fi fo
2 2 2 2− = −( )cosecα   [ ]∵V Vo fo=

	
	 V V Vi o fi

2 2 2 2 1− = −( )cosec α   [ ]∵V Vfi fo= 	

	 V V Vi o fi
2 2 2 2− = cot α  (vi)

Substituting the expressions (v) and (vi) in Equation 22.6(a), we get:

	 R
V g

gV

fi

fi

= −
×

−
= −

−
1

2
1

2

2 2

2

cot

cot (cot cot )

cot

(cot cot )

α

α α θ
α

α θ
 (22.6c)

The degree of reaction lies between 0 and 1. A turbine with zero degree of reaction is called an impulse turbine, for 
 example, Pelton turbine and a conventional wind mill. The degree of reaction of unity is not possible in the turbines. Most 
of the reaction turbines have degree of reaction from 0.4 to 0.6, for example, Francis and Kaplan turbines.

22.7 ❐  DEFINITIONS AND WORKING PROPORTIONS OF A FRANCIS 
TURBINE AND RADIAL FLOW REACTION TURBINES

 1. Speed ratio: It is defined as the ratio of tangential velocity (peripheral speed) at the inlet of the wheel to the spouting 
velocity. The value of speed ratio for Francis turbine varies from 0.6 to 0.9. If ui is the tangential velocity of the wheel 
at the inlet and H is the net head on the turbine, then the speed ratio (Ku) is given below. 

 K
u

gH
u

i=
2

 (22.7)

A

B

Vwi

Vf iVri

Vi

ϕ

uo

Vfo = VoVro

C D

E

G H

α θ

β

Inlet

Outlet

ui

Figure 22.8 Velocity triangles
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22.12 Chapter 22

 2. Flow ratio: The flow ratio is defined as the ratio of the flow velocity at the inlet of the vane to the spouting velocity. 
The value of flow ratio for Francis turbine varies from 0.15 to 0.30. If Vfi is the velocity of flow at the inlet and H is the 
net head on the turbine, then the flow ratio (Kf) is given below. 

 K
V

gH
f

fi=
2

 (22.8)

 3. Ratio of width to diameter (Breadth ratio): The ratio of width of the wheel (Bi) to its diameter (Di) is given as 
n B Di i= ( )/ . For Francis turbine, n varies from 0.1 to 0.45.

 4. Discharge of the turbine: The discharge through a Francis turbine is given by,

 Q D B Vi i fi= π   (22.9)

  Here, Di = diameter of runner at the inlet, Bi = width of runner at the inlet and Vfi = velocity of flow at the inlet.

  If the thickness of vanes (t) and its number (z) is taken into account, then discharge becomes,

	 Q D zt B V k nD Vi i fi i fi= − =( )π π 2  [ ]∵ B nDi i=  (22.10)

  Here, k is a factor which allows for the thickness of the vanes and it is known as vane thickness coefficient.

  The discharge through a radial flow reaction turbine is given by,

 Q D B V D B Vi i fi o o fo= =π π   (22.11)

  Here, Do = diameter of runner at the outlet, Bo = width of runner at the outlet and Vfo = velocity of flow at the  
outlet.

  5. Head on the turbine: The head (H) acting on the turbine is given by,

 H
p

g

V

g
i

w

i= +
ρ

2

2
 (22.12)

  Here, pi is the pressure at the inlet.

  When water flows through the vane without any energy loss and Vo is the discharge velocity, then the head is  
given by,

 H
V

g

V u V u

g
o wi i wo o− =

±2

2
 (22.13)

 6. Radial discharge: Radial discharge at the outlet means β = °90  and Vwo = 0, while radial discharge at the inlet means 
α = °90  and Vwi = 0.

22.8 ❐ DESIGN OF FRANCIS TURBINE RUNNER 
A Francis turbine runner is designed to develop a known power P, when running at a known speed N rpm  under a known 
head H. The design of the runner involves the determination of the size and the vane angles for which the following steps 
are to be followed.

 1. Assume the probable values of overall efficiency (ηo), hydraulic efficiency (ηh), ratio of width of the wheel to its 
 diameter (n) and flow ratio (Kf).

 2. Find out the required discharge (Q) as Q
P

g Hw o
=

1000

ρ η

 3. Determine the diameter (D) and width (B) of the runner as explained below. 
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  22.13 Francis Turbine 

    Let Di be the diameter, Bi be the width of the runner and ti be 
the thickness of the vanes at the inlet as shown in Figure 22.9.

   If there are z number of vanes, then the area of flow at the 
 runner inlet is given by,

 A D z t B k D Bi i i i ti i i= − =( )π π 	

  Here, kti is the vane thickness factor. Its value will always be 
less than unity and it is usually taken as 0.95. 

	 V
Q

A

Q

k D B

Q

k nD
fi

i ti i i ti i

= = =
π π 2

  [ ]∵ B nDi i=

  Also V K gHfi f= 2  

  Thus 
Q

k nD
K gH

ti i
f

π 2
2=  

	

∴ =
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

D
Q

k nK gH
i

ti fπ 2

1 2/

 B nDi i=

 4. Determine the tangential velocity or rim velocity (ui) as u
D N

i
i=

π
60

 5. Determine the velocity of whirl at the inlet (Vwi) from Equation (22.4) as V
gH

uwi
h

i
=

η

 6. Determine the guide vane angle ( )α  and the runner vane angle ( )θ  from the inlet velocity triangle as

 α =
⎛

⎝⎜
⎞

⎠⎟
−tan 1 V

V

fi

wi
 and θ =

−
⎛

⎝⎜
⎞

⎠⎟
−tan 1 V

V u

fi

wi i
	

 7. The outer runner diameter Do varies from ( )Di /3  to ( )2 3Di /  and it is usually taken as ( )Di /2 . Therefore, D Do i= ( )/2  
and u uo i= ( )/2 .

 8. If Bo be the width of the runner and to be the thickness of the vanes at the outlet, then 

Q D Zt B V k D B Vo o o fo to o o fo= − =( )π π

  Now Q k D B V k D B Vti i i fi to o o fo= =π π   [By continuity equation]

	

V

V

k D B

k D B

fi

fo

to o o

ti i i
=

π
π

  Generally, V Vfi fo=  and k kti to=  and D Do i= /2, then we have B Bo i= 2 .  

 9. Assuming radial discharge at the runner exit in which Vwo = 0  and β = °90 . Determine the runner vane angle at exit 
( )ϕ  from the outlet velocity triangle by the following relation.

 ϕ = ( )−tan 1 V ufo o/   

 10. Generally, the number of runner vanes varies from 16 to 24. In order to avoid periodic impulse, the number of runner 
vanes should be either one more or one less than the number of guide vanes. 

Bi

Vfi

Vfo
Bo

Di

Do

Runner Shaft axis
Runner vane

Figure 22.9 Flow entry to runner vane 
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22.14 Chapter 22

22.8.1 Shape of Francis Turbine Runner
The power produced by a turbine is proportional to the product of discharge (Q) and the head (H). As the head decreases, 
the discharge must increase to produce the same power. Thus, a Francis turbine runner of a given diameter Di working 
under low head should be designed so that comparatively large quantity of water is supplied to develop the required 
power. This can be achieved either by increasing the flow ratio (Kf) or the ratio n B Di i= ( )/ . Increase in the value of flow 
ratio means a high value of flow velocity (Vfi). A large value of Vfi at the outlet causes wastage of large quantity of kinetic 
energy rejected by the runner. Therefore, Kf cannot be increased to any amount and its value should be kept as low as 
possible. On the other hand, increase in the value of n results in a higher value of Bi for a given diameter Di. This will 
result in larger inlet area which must be accompanied by a larger outlet area for discharging all the water freely. A larger 
outlet area can be obtained by making the discharge axial at the runner outlet. Thus, the modern Francis turbine runner is 
of mixed flow type. 

 Example 22.1  A reaction turbine works at 450 rpm under a head of 120 m. Its diameter at the inlet is 1.2 m and the 
flow area is 0.4 m2. The angles made by the absolute and relative velocities at the inlet are 20° and 60°, respectively with 
the tangential velocity. If whirl at the outlet is zero, then determine (i) the volume flow rate, (ii) power developed and  
(iii) hydraulic efficiency. 

Solution
Refer Figure 22.10. Let N = 450 rpm, H = 120 m, Di = 1 2. m, πD Bi i = 0 4 2. m , 

α = °20 , θ = °60  and Vwo = 0.

 u
D N

i
i= =

× ×
=

π π
60

1 2 450

60
28 274

.
. m/s  

 V V V Vfi wi wi wi= = ° =tan tan .α 20 0 364  

Since tan θ =
−

V

V u

fi

wi i
	

Thus tan
.

.
60

0 364

28 274
° =

−
V

V
wi

wi
 

 1 732 28 274 0 364. ( . ) .V Vwi wi− =   

 1 732 0 364 1 732 28 274. . . .V Vwi wi− = × 	

 ∴ =
×
−

=Vwi
1 732 28 274

1 732 0 364
35 8

. .

. .
. m/s 	

	 V Vfi wi= = × =0 364 0 364 35 8 13 03. . . . m/s 	

 (i)  Q D B Vi i fi= × = × =π 0 4 13 03. . 5.212 m /s3  

 (ii)  P
QV uw wi i= = × × × =

ρ
1000

1000 5 212 35 8 28 274

1000

. . .
5275.634 kW  

 (iii)  ηh
wi iV u

gH
= = ×

×
× =35 8 28 274

9 81 120
100

. .

.
85.98%  

 Example 22.2   An inward flow reaction turbine develops 320 kW shaft power with an overall efficiency of 85% when 
working under a net head of 72 m. The hydraulic efficiency of the turbine is 95% and the runner speed is 650 rpm. The 
ratio of wheel width to wheel diameter at the inlet is 0.1 and the ratio of inner diameter to outer diameter is 0.5. If the flow 

A

B

Vwi

Vf iVri

Vi

ϕ

uo

Vfo = VoVro

C D

E

G H

α θ

β

Inlet

Outlet

ui

Figure 22.10
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  22.15 Francis Turbine 

ratio is 0.17 and flow velocity is constant, then determine the dimensions and blade angles of the turbine. Assume radial 
discharge at the outlet and neglect area blockage by blades.

Solution
Refer Figure 22.10. Let P = 320 kW , ηo = 0 85. , H = 72 m, ηh = 0 95. , N = 650 rpm , ( ) .B Di i/ = 0 1, ( ) .D Do i/ = 0 5, 

K f = 0 17. , V Vfi fo=  and Vwo = 0. 

V V K g Hfi fo f= = = × × × =2 0 17 2 9 81 72 6 39. . . m/s

 Q
P

gHw o
= =

×
× × ×

=
1000 1000 320

1000 9 81 72 0 85
0 533

ρ η . .
. m /s3   

Since Q D B Vi i fi= π 	

Thus 0 533 0 1 6 39 0 639 2. ( . ) . .= × × =π πD D Di i i   [ . ]∵ B Di i/ = 0 1 	

 ∴ = ⎛
⎝⎜

⎞
⎠⎟

=Di
0 533

0 639

1 2
.

.

/

π
0.5153 m   

	 D Do i= = × =0 5 0 5 0 5153. . . 0.25765 m   

 B Di i= = × =0 1 0 1 0 5153. . . 0.05153 m   

Since π πD B V D B Vi i fi o o fo=  

 ∴ = = = = × =B
D B

D

D B

D
Bo

i i

o

i i

i
i0 5

2 2 0 05153
.

. 0.10306 m 	

 u
D N

i
i= =

× ×
=

π π
60

0 5153 650

60
17 54

.
. m/s  

Since ηh
wi iV u

gH
=

	

	 ∴ = =
× ×

=V
gH

uwi
h

i

η 0 95 9 81 72

17 54
38 256

. .

.
. m/s  

	 α =
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ = ⎛

⎝⎜
⎞
⎠⎟

=− −tan tan
.

.
1 1 6 39

38 256

V

V

fi

wi
9.48°°   

 θ =
−

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ =

−
⎛
⎝⎜

⎞
⎠⎟

=− −tan tan
.

. .
1 1 6 39

38 256 17 54

V

V u

fi

wi i
17.14°°°°   

 u
D N

o
o= =

× ×
=

π π
60

0 25765 650

60
8 77

.
. m/s  

	 ϕ =
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ = ⎛

⎝⎜
⎞
⎠⎟

=− −tan tan
.

.
1 1 6 39

8 77

V

u

fo

o
36.08°°   

Since discharge is radial, the value of β = 90°°.

 Example 22.3  A Francis turbine with an overall efficiency of 75% is required to produce 150 kW power. It is working 

under a head of 10 m. The peripheral velocity = 0 25 2. gH  and the radial velocity of flow at inlet = 0 95 2. gH . The 
wheel runs at 200 rpm and the hydraulic losses in the turbine are 20% of the available energy. Assuming radial discharge, 
determine (i) the guide blade angle, (ii) wheel vane angle at the inlet, (iii) diameter of the wheel at the inlet and (iv) width 
of the wheel at the inlet. 
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Solution
Refer Figure 22.11. Let ηo = 0 75. , P = 150 kW, H = 10 m, u gHi = 0 25 2. ,  

V gHfi = 0 95 2. , N = 200 rpm, hydraulic loss of H= =20 0 2% .H  and Vwo = 0.

 u gHi = = × × × =0 25 2 0 25 2 9 81 10 3 5. . . . m/s

	 V gHfi = = × × × =0 95 2 0 95 2 9 81 10 13 31. . . . m/s

 ηh =
−

=
Total head at the inlet Hydraulic loss

Total head at the inlet

HH H

H

−
=

0 2
0 8

.
.

Also ηh
wi iV u

gH
= 	

 ∴ = =
× ×

=V
gH

uwi
h

i

η 0 8 9 81 10

3 5
22 423

. .

.
. m/s

	

 (i) α =
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ = ⎛

⎝⎜
⎞
⎠⎟

=− −tan tan
.

.
1 1 13 31

22 423

V

V

fi

wi
30.69°°  

 (ii) θ =
−

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ =

−
⎛
⎝⎜

⎞
⎠⎟

=− −tan tan
.

. .
1 1 13 31

22 423 3 5

V

V u

fi

wi i
35.13°°

 (iii) ∵u
D N

i
i=

π
60

	 	∴ = = ×
×

=D
u

Ni
i60 60 3 5

200π π
.

0.3342 m  

 (iv) Q
P

gHw o
= =

×
× × ×

=
1000 1000 150

1000 9 81 10 0 75
2 039

ρ η . .
. m /s3  

  Since Q D B Vi i fi= π

  ∴ = =
× ×

=B
Q

D Vi
i fiπ π

2 039

0 3342 13 31

.

. .
0.1459 m   

 Example 22.4   The following data is given for a Francis turbine, such as net head = 65 m, speed = 500 rpm, shaft 
power = 300 kW, overall efficiency = 80%, hydraulic efficiency = 90%, flow ratio = 0.2, breadth ratio = 0.1, outer diameter 
of  runner = 2 times inner diameter of runner, thickness of vanes occupy 6% of circumferential area of runner, velocity of 
flow is  constant at the inlet and outlet and discharge is radial at the outlet. Determine (i) the diameter of runner at the inlet 
and outlet, (ii) width of wheel at the inlet, (iii) guide blade angle and (iv) runner vane angle at the inlet and outlet.

Solution

Refer Figure 22.11. Let H = 65 m, N = 500 rpm , P = 300 kW , ηo = 0 8. , ηh = 0 9. , K f = 0 2. , ( ) .B Di i/ = 0 1, D Di o= 2 , 

A D Bt i i= 0 06. π , V Vfi fo=  and Vwo = 0.

 (i) V V K gHfi fo f= = = × × × =2 0 2 2 9 81 65 7 1423. . . m/s

  Q
P

gHw o
= =

×
× × ×

=
1000 1000 300

1000 9 81 65 0 8
0 5881

ρ η . .
. m /s3

A

B

Vwi

Vf iVri

Vi

ϕ

uo

Vfo = VoVro

C D

E

G H

α θ

β

Inlet

Outlet

ui

Figure 22.11
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  22.17 Francis Turbine 

  Since A D Bt i i= 0 06. π

  The actual area of flow is given by,

	 		 A D B D D Da i i i i i= = × =0 94 0 94 0 1 0 094 2. . . .π π π   [ . ]∵ B Di i= 0 1

  Since Q A V D Va fi i fi= × = ×0 094 2. π

   ∴ = =
×

=D
Q

Vi
fi0 094

0 5881

0 094 7 1423.

.

. .π π
0.528 m

	 		
D

D
o

i= = =
2

0 528

2

.
0.264 m

 (ii)  B Di i= = × =0 1 0 1 0 528. . . 0.0528 m or 52.8 mm  

 (iii)  u
D N

i
i= =

× ×
=

π π
60

0 528 500

60
13 823

.
. m/s

  Since ηh
wi iV u

gH
=

   ∴ = =
× ×

=V
gH

uwi
h

i

η 0 9 9 81 65

13 823
41 517

. .

.
. m/s

	 		
α =

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ = ⎛

⎝⎜
⎞
⎠⎟

=− −tan tan
.

.
1 1 7 1423

41 517

V

V

fi

wi
9.76°°

 (iv)  θ =
−

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ =

−
⎛
⎝⎜

⎞
⎠⎟

=− −tan tan
.

. .
1 1 7 1423

41 517 13 823

V

V u

fi

wi i
14..46°°

  u
D N

o
o= =

× ×
=

π π
60

0 264 500

60
6 91

.
. m/s

  ϕ =
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ = ⎛

⎝⎜
⎞
⎠⎟

=− −tan tan
.

.
1 1 7 1423

6 91

V

u

fo

o
45.95°°

 Example 22.5  An inward flow reaction turbine has an external and internal 
diameter as 1 m and 0.5 m, respectively. The turbine is running at 180 rpm and the 
width of turbine at the inlet is 250 mm. The velocity of flow through the  runner 
is constant and it is equal to 2 m/s. The guide blade makes an angle of 10° to 
the tangent of the wheel and the discharge at the outlet is radial. If the net head 
on the turbine is 15 m, then determine (i) the absolute velocity of water at the 
inlet of runner, (ii) velocity of whirl at the inlet, (iii) relative velocity at the inlet, 
(iv) runner blade angles, (v) width of the runner at the outlet, (vi) mass of water 
flowing through the runner per second, (vii) power developed and (viii) hydraulic 
efficiency.

Solution
Refer Figure 22.12. Let Di = 1 m, Do = 0 5. m , N = 180 rpm, Bi = 250 mm = 
0.25 m, V Vfi fo= = 2 m/s, α = °10 , Vwo = 0 and H = 15 m.
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B

Vwi

Vf iVri

Vi

ϕ

uo
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Figure 22.12
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22.18 Chapter 22

 (i) u
D N

i
i= =

× ×
=

π π
60

1 180

60
9 425. m/s

   u
D N

o
o= =

× ×
=

π π
60

0 5 180

60
4 712

.
. m/s

  V
V

i
fi= =

°
=

sin sinα
2

10
11.52 m/s   

 (ii)  V Vwi i= = ° =cos . cosα 11 52 10 11.345 m/s   

 (iii) V V V uri fi wi i= + − = + − =2 2 2 22 11 345 9 425( ) ( . . ) 2.772 m/s  

 (iv) θ =
−

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ =

−
⎛
⎝⎜

⎞
⎠⎟

=− −tan tan
. .

1 1 2

11 345 9 425

V

V u

fi

wi i
46.17°°    

  ϕ =
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ = ⎛

⎝⎜
⎞
⎠⎟

=− −tan tan
.

1 1 2

4 712

V

u

fo

o
23°°

 (v)  ∵ π πD B V D B Vi i fi o o fo=   

	 		
∴ = = × =B

D B

Do
i i

o

1 0 25

0 5

.

.
0.5 m   [ ]∵V Vfi fo=

 (vi)  Q D B Vi i fi= = × × × =π π 1 0 25 2 1 571. . m /s3

   Therefore, mass per second is given by,

	 		 m Qw= = × =ρ 1000 1 571. 1571 kg/s

  (vii)  P
QV uw wi i= = × × × =

ρ
1000

1000 1 571 11 345 9 425

1000

. . .
167.982 kW  

 (viii) ηh
wi iV u

gH
= = ×

×
× =11 345 9 425

9 81 15
100

. .

.
72.66%  

 Example 22.6   An inward flow reaction turbine has external and internal diameters as 1 m and 0.6 m, respectively. The 
head on the turbine is 35 m and the velocity of flow at the outlet is 2.3 m/s. The hydraulic efficiency of the turbine is 88%. 
If the vane angle at the outlet is 14° and the width of the wheel is 110 mm at the inlet and outlet, then determine (i) the 
speed of the turbine, (ii) guide blade and vane angles at the inlet, (iii) volume flow rate of turbine and (iv) power developed. 
Assume radial discharge at the outlet.

Solution
Refer Figure 22.12. Let Di = 1 m, Do = 0 6. m, H = 35 m, V fo = 2 3. m/s, ηh = 0 88. , ϕ = °14 , B Bi o= = =110 0 11mm m.  
and Vwo = 0.

 (i) u
V

o
fo= =

°
=

tan

.

tan
.

ϕ
2 3

14
9 225 m/s

  Since u
D N

o
o=

π
60

   ∴ = = ×
×

=N
u

D
o

o

60 60 9 225

0 6π π
.

.
293.64 rpm

M22 Fluid Mechanics and Hydraulic Machines XXXX 01.indd   18 4/5/2019   2:15:44 PM

Download more at Learnclax.com



  22.19 Francis Turbine 

 (ii) u
D N

i
i= =

× ×
=

π π
60

1 293 64

60
15 375

.
. m/s

  Since ηh
wi iV u

gH
=

   ∴ = =
× ×

=V
gH

uwi
h

i

η 0 88 9 81 35

15 375
19 652

. .

.
. m/s

  Since π πD B V D B Vi i fi o o fo=

	 		 ∴ = =
×

=V
D V

Dfi
o fo

i

0 6 2 3

1
1 38

. .
. m/s  [ ]∵ B Bi o=

   α =
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ = ⎛

⎝⎜
⎞
⎠⎟

=− −tan tan
.

.
1 1 1 38

19 652

V

V

fi

wi
4.02°°

   θ =
−

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ =

−
⎛
⎝⎜

⎞
⎠⎟

=− −tan tan
.

. .
1 1 1 38

19 652 15 375

V

V u

fi

wi i
17.888°°

 (iii) Q D B Vi i fi= = × × × =π π 1 0 11 1 38. . 0.4769 m /s3

 (iv) P
QV uw wi i= = × × × =

ρ
1000

1000 0 4769 19 652 15 375

1000

. . .
144.095 kW

 Example 22.7   An outward flow reaction turbine is running at 275 rpm. The internal and external diameters of the 
 turbine are 2 m and 2.75 m, respectively. The width of the runner is constant at the inlet and outlet and it is equal to 275 mm. 
The head on the turbine is 180 m and the rate of flow through the turbine is 6 m3/s. If the discharge at the outlet is radial, 
then determine (i) the velocity of flow at the inlet and outlet of the runner and (ii) vane angles.

Solution
Refer Figure 22.13. Let N = 275 rpm, Di = 2 m, Do = 2 75. m, B Bi o= = =275 0 275mm m. , H = 180 m, Q = 6 m /s3 , 

V V Vwo o fo= =0 and thus, .

 (i) u
D N

i
i= =

× ×
=

π π
60

2 275

60
28 8. m/s

  u
D N

o
o= =

× ×
=

π π
60

2 75 275

60
39 6

.
. m/s

  Since Q D B V D B Vi i fi o o fo= =π π

   ∴ = =
× ×

=V
Q

D Bfi
i iπ π

6

2 0 275.
3.472 m/s  

   ∴ = =
× ×

=V
Q

D Bfo
o oπ π

6

2 75 0 275. .
2.525 m/s  

 (ii) H
V

g

V u

g

fo wi i− =
2

2
  [From Equation (22.13)] 

  Thus 180
2 52

2 9 81

28 8

9 81

2

−
×

=
×.

.

.

.

Vwi

A

B

Vwi

VfiVri

Vi

ϕ

uo

Vfo = VoVro

C D

E

G H

α θ

β

Inlet

Outlet

ui
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22.20 Chapter 22

  ∴ = × −
×

⎛

⎝
⎜

⎞

⎠
⎟ =Vwi

9 81

28 8
180

2 525

2 9 81
61 2

2.

.

.

.
. m/s

  θ =
−

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ =

−
⎛
⎝⎜

⎞
⎠⎟

=− −tan tan
.

. .
1 1 3 472

61 2 28 8

V

V u

fi

wi i
6.12°°

  ϕ =
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ = ⎛

⎝⎜
⎞
⎠⎟

=− −tan tan
.

.
1 1 2 525

39 6

V

u

fo

o
3.65°°    

 Example 22.8   The following data pertains to an inward flow reaction turbine, where whirl velocity at the inlet to the 

runner = 3 05. H m/s, whirl velocity at the outlet to the runner in the same direction as at the inlet = 0 2. H m/s, flow 

velocity at the inlet = 1 02. H m/s, flow velocity at the outlet = 0 8. H m/s, where H is the head in metres. The inner 
diameter of the runner = 0.5 times the outer diameter. If hydraulic efficiency of the turbine is 85%, then determine the 
angles of the runner vanes at the inlet and exit and the guide blade angle.

Solution

Refer Figure 22.14. Let V Hwi = 3 05. m/s, V Hwo = 0 2. m/s, V Hfi = 1 02. m/s, V Hfo = 0 8. m/s, D Do i= 0 5.  and 

ηh = 0 85. .

Since 
u

D

u

D
i

i

o

o
=   [Speed ∝  Diameter] 

 ∴ = × = × =u
D

D
u

D

D
u uo

o

i
i

i

i
i i

0 5
0 5

.
.  

Since ηh
wi i wo oV u V u

gH
=

−
	

Thus   0 85
3 05 0 2 0 5

9 81

2 95

9 81
.

. . .

.

.

.
=

× − ×
×

=
×H u H u

H

H u

H
i i i

	 ∴ =
×

=u
H

H
Hi

0 85 9 81

2 95
2 827

. .

.
. 	

 u u H Ho i= = × =0 5 0 5 2 827 1 4135. . . . 	

Since u Vo wo> , β > °90  as shown in Figure 22.14.

	 α =
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ =

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ =− −tan tan

.

.
1 1 1 02

3 05

V

V

H

H

fi

wi
18.49°°   

 θ =
−

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ =

−

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ =− −tan tan

.

. .
1 1 1 02

3 05 2 827

V

V u

H

H H

fi

wi i
77..67°°   

 ϕ =
−

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ =

−

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ =− −tan tan

.

. .
1 1 0 8

1 4135 0 2

V

u V

H

H H

fo

o wo
33.339°°   

ϕ

uo

Vro

E

G H

β

F

Vfo Vo

A

Vwi

VfiVri

Vi

C D

α θ

B

Inlet

Outlet

ui

Vwo
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  22.21 Francis Turbine 

 Example 22.9  A Francis turbine of specific speed 100 develops 15 2 103. × kW  under a head of 200 m. The overall 
efficiency is 0.86 and the velocity of flow is constant and is equal to 10 m/s. The hydraulic efficiency is 0.89, the ratio of 
width to diameter of wheel at the inlet is equal to 0.1 and the area occupied by the thickness of the blades is equal to 5% 
of the area of water way. Workout the area, guide blade angle, vane angle, peripheral velocity and velocity of whirl at the 
inlet. Assume axial discharge.

Solution
Refer Figure 22.15. Let Ns = 100, P = ×15 2 103. kW, H = 200 m, ηo = 0 86. ,  

V Vfi fo= = 10 m/s, ηh = 0 89. , ( ) .B Di i/ = 0 1, A D Bt i i= 0 05. π  and Vwo = 0. 

Since N
N P

H
s =

5 4/
	

	 ∴ = =
×

×
=N

N H

P
s

5 4 5 4

3

100 200

15 2 10
610 05

/ /

.
. rpm  

 Q
P

gHw o
= =

× ×
× × ×

=
1000 1000 15 2 10

1000 9 81 200 0 86
9 01

3

ρ η
.

. .
. m /s3  

Since A D Bt i i= 0 05. π 	
The actual area of flow is given by, 

	 A D B D D Da i i i i i= = × =0 95 0 95 0 1 0 095 2. . . .π π π 	 	 [ . ]∵ B Di i= 0 1 	

	
Q A V D Da fi i i= × = × =0 095 10 0 952 2. .π π

	
∴ = = =D

Q
i 0 95

9 01

0 95.

.

.π π
1.7375 m  

 B Di i= = × =0 1 0 1 1 7375 0 17375. . . . m   

	 A Da i= = × =0 095 0 095 1 73752 2. . .π π 0.901 m2  

 u
D N

i
i= = × × =

π π
60

1 7375 610 05

60

. .
55.5 m/s   

Since ηh
wi iV u

gH
= 	

	
∴ = = × × =V

gH

uwi
h

i

η 0 89 9 81 200

55 5

. .

.
31.463 m/s  

As u Vi wi> , velocity triangle at the inlet will be as shown in Figure 22.15.

	 α =
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ = ⎛

⎝⎜
⎞
⎠⎟

=− −tan tan
.

1 1 10

31 463

V

V

fi

wi
17.63°°   

 tan tan( )
. .

.θ θ1 180
10

55 5 31 463
0 416= − =

−
=

−
=ο V

u V

fi

i wi
 

Thus ( ) tan ( . ) .180 0 416 22 591° − = = °−θ  

	 ∴ = ° − ° =θ 180 22 59. 157.41°°  

A

B

ui

Vfi
Vri

Vi

ϕ

uo

Vfo = VoVro

C D

E

G H

α θ

β

1θInlet

Outlet

Vwi
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22.22 Chapter 22

 Example 22.10   The following data pertains to an inward flow reaction turbine, such as shaft power = 185.5 kW, head  

= 10 m, speed = 250 rpm, peripheral velocity of the runner = 0 9 2. gH m/s, radial velocity of flow = 0 3 2. gH m/s,  
 overall efficiency of the turbine = 78 6. %, hydraulic losses = 10%  of total head, where H is the effective head on the 
 turbine in meters. If discharge at the outlet is radial, then determine (i) the diameter of the runner, (ii) width of the runner, 
(iii) guide blade angle and (iv) vane inlet angle of the runner.

Solution
Refer Figure 22.15. Let P = 185 5. kW, H = 10 m, N = 250 rpm, u gHi = 0 9 2. , V gHfi = 0 3 2. , ηo = 0 786. , 

hydraulic losses H= 0 1.  and Vwo = 0.

 (i) u gHi = = × × × =0 9 2 0 9 2 9 81 10 12 61. . . . m/s

  Since u
D N

i
i=

π
60

	 		 ∴ = = ×
×

=D
u

Ni
i60 60 12 61

250π π
.

0.9633 m

 (ii) V gHfi = = × × × =0 3 2 0 3 2 9 81 10 4 2. . . . m/s

  Q
P

gHw o
= =

×
× × ×

=
1000 1000 185 5

1000 9 81 10 0 786
2 406

ρ η
.

. .
. m /s3

  Since Q D B Vi i fi= π

	 		 ∴ = =
× ×

=B
Q

D Vi
i fiπ π

2 406

0 9633 4 2

.

. .
0.1893 m  

 (iii) Head supplied = Work done + Hydraulic losses [Energy balance]

  H
V u

g
wi i= + 0 1. H

  Thus 
V u

g
wi i = 0 9. H

   ∴ =
×

=
× ×

=V
H g

uwi
i

0 9 0 9 10 9 81

12 61
7

. . .

.
m/s

  Since V uwi i< , the velocity triangle will be as shown in Figure 22.15.

	 		 α =
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ = ⎛

⎝⎜
⎞
⎠⎟

=− −tan tan
.1 1 4 2

7

V

V

fi

wi
30.96°°

 (iv) tan tan( )
.

.
.θ θ1 180

4 2

12 61 7
0 7487= ° − =

−
=

−
=

V

u V

fi

i wi

  Thus ( ) tan ( . ) .180 0 7487 36 821° − = = °−θ  

	 		 ∴ = ° − ° =θ 180 36 82. 143.18°°  
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  22.23 Francis Turbine 

 Example 22.11   For a Francis turbine, derive an expression for hydraulic efficiency as a function of guide blade angle α  
and runner vane inlet angle θ  when the velocity of flow is constant and the turbine has radial discharge at the outlet. Also 
show that hydraulic efficiency of the turbine is given by η αh = +[ ( tan )]2 2 2/  if the vanes are radial at the inlet. 

Solution
Refer Figure 22.16. 

 V Vfi wi= tan α  (i)

 V u
V V

wi i
fi wi− = =

tan

tan

tanθ
α

θ
 

Thus u V
V

Vi wi
wi

wi= − = −⎛
⎝⎜

⎞
⎠⎟

tan

tan

tan

tan

α
θ

α
θ

1  (ii)

Since discharge is radial, Vwo = 0 and V Vo fo= .

The velocity of flow is constant and therefore, V V Vo fo fi= = .

 H
V u

g

V

g
wi i fi= +

2

2
 [From Equation (22.13)] (iii)

Substituting Vfi and ui from expressions (i) and (ii) in expression (iii), we get:

	 H
V

g
V

V

g

V

g
wi

wi
wi wi= −⎛

⎝⎜
⎞
⎠⎟

+ = − +1
2

1
2 2tan

tan

( tan ) tan

tan

tanα
θ

α α
θ

22

2

α⎛

⎝
⎜

⎞

⎠
⎟  (iv)

Now ηh
wi iV u

gH
=  (v)

Substituting the values of ui and H in expression (v), we get:

	 	
η

α θ

α θ
h

wi wi

wi

V V

g V g
=

× −[ ]
× − +

1

1 1 22

(tan tan )

( )[ (tan tan ) ( ) tan

/

/ / / 22 α]

∴ =
−[ ]

− +
=η

α θ

α θ α
h

1

1 1 2 2

(tan tan )

[ (tan tan ) ( ) tan ]

/

/ /

1

1 +
(1/2) tan2αααα

αα θθ[1 (tan /tan )]–

If vanes are radial at the inlet, then θ = °90 . 
Substituting this value in the above expression, we get:

	

η
α

α
α

h =
+

− °

=
+

−

=
+

1

1
1 2

1 90

1

1
1 2

1 0

1

1
2 2( ) tan

[ (tan tan )]

( ) tan

[ ]

ta/

/

/ nn2

2

α

	
∴ =

+
η

α
h

2

2 2tan
 

Hence proved. 

 Example 22.12   An outward flow reaction turbine works under a head of 7.5 m and running at a speed of 250 rpm. It has 
internal and external diameters of the runner as 0.5 m and 1 m, respectively. The guide blade angle is 20°. The velocity of 
flow through the runner is constant and equal to 3.5 m/s and the flow rate is 300 litres per second. If discharge at the outlet 

A
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Vwi

VfiVri

Vi
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uo

Vfo = VoVro
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α θ
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Figure 22.16
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22.24 Chapter 22

is radial, then determine (i) the runner vane angle at the inlet, (ii) runner vane angle at the outlet, (iii) work done by the 
runner per second per unit weight of water striking per second, (iv) power produced by the runner, (v) hydraulic efficiency 
and (vi) degree of reaction.

Solution
Refer Figure 22.16. Let H = 7 5. m, N = 250 rpm, Di = 0 5. m, Do = 1 m , α = °20 , V Vfi fo= = 3 5. m/s, Q = 300 l/s = 

0.3 m3/s and Vwo = 0.

 u
D N

i
i= =

× ×
=

π π
60

0 5 250

60
6 545

.
. m/s   

 u
D N

o
o= =

× ×
=

π π
60

1 250

60
13 09. m/s  

 V
V

wi
fi= = =

tan

.

tan
.

α
3 5

20
9 62ο m/s  

 (i) θ =
−

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ =

−
⎛
⎝⎜

⎞
⎠⎟

=− −tan tan
.

. .
1 1 3 5

9 62 6 545

V

V u

fi

wi i
48.7°°  

 (ii) ϕ =
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ = ⎛

⎝⎜
⎞
⎠⎟

=− −tan tan
.

.
1 1 3 5

13 09

V

u

fo

o
14.97°°  

 (iii) w
V u

g
wi i= = × =9 62 6 545

9 81

. .

.
6.418 Nm/N  

 (iv) P
QV uw wi i= = × × × =

ρ
1000

1000 0 3 9 62 6 545

1000

. . .
18.889 kW   

 (v) ηh
wi iV u

gH
= = ×

×
× =9 62 6 545

9 81 7 5
100

. .

. .
85.58%  

 (vi) R = −
−

= −
−

=1
2

1
20

2 20 48 7

cot

(cot cot )

cot

(cot cot . )

α
α θ

ο

ο ο
0.265  

 Example 22.13   The runner diameter of a reaction turbine is 3 m at the 
inlet and 2 m at the outlet. The width of the wheel is constant. The discharge 
through the turbine is 75 m3/s and is radial at the outlet having a velocity 
of 12 m/s. The angle of the vanes at the inlet is 120°. If the working head is 
160 m and the hydraulic efficiency of the turbine is 0.9, then determine its 
speed and power produced. 

Solution
Refer Figure 22.17. Let Di = 3 m, Do = 2 m, B Bi o= , Q = 75 m /s3 , Vwo = 0,  

V Vo fo= = 12 m/s, θ = °120 , H = 160 m and ηh = 0 9. .

Since  Q D B V D B Vi i fi o o fo= =π π 	

Thus V
D

D
Vfi

o

i
fo= × = × =

2

3
12 8 m/s   [ ]∵ B Bi o=

B

ϕ
uo

Vro
E

GH

= 120°θ

A

ui

Vfi
Vri

Vi

C D

α 1θ

Vo = Vfo

Inlet

Outlet

Vwi

Figure 22.17
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  22.25 Francis Turbine 

 θ θ1 180 180 120 60= ° − = ° − ° = ° 	

 u V
V

i wi
fi− = =

°
=

tan tan
.

θ1

8

60
4 62 m/s 	

or V uwi i= −( . )4 62 m/s  

Since ηh
wi iV u

gH
= 	

Thus u
gH

V ui
h

wi i
= =

× ×
−

η 0 9 9 81 160

4 62

. .

.
	

 u ui i
2 4 62 1412 64 0− − =. . 	

 ∴ =
± + ×

=ui
4 62 4 62 4 1412 64

2
39 97

2. . .
. m/s   [Take positive value] 

Since u
D N

i
i=

π
60

	

	 ∴ = = ×
×

=N
u

D
i

i

60 60 39 97

3π π
.

254.46 rpm  

 V uwi i= − = − =4 62 39 97 4 62 35 35. . . . m/s 	

P
QV uw wi i= = × × × =

ρ
1000

1000 75 35 35 39 97

1000

. .
105970.4625 kW  

Summary

 1. Reaction turbines: Water entering the runner possesses both 
kinetic as well as pressure energy.

 2. Radial flow turbine: Water flows in the radial direction 
through the runner.

 3. In inward radial flow reaction turbine, water enters at the 
outer circumference and flows inwards radially towards the 
centre of the runner, whereas in outward radial flow turbine 
water enters at the centre and flows radially outwards.

 4. Euler’s momentum equation: w V u V u gwi i wo o= ±( )/

 5. Radial discharge: At outlet is β = °90  and Vwo = 0. At inlet 
is α = °90  and Vwi = 0.

 6. Francis turbine: Inward radial flow reaction turbine with 
radial discharge at the outlet. 

 7. Work done per second per unit weight of water in Francis 
turbine: w V u gwi i= /

 8. Hydraulic efficiency of the Francis turbine: ηh wi iV u gH= ( )/

 9. Degree of reaction (R): Ratio of pressure energy change in 
the runner to the total energy change in the stator and the 
runner. 

 10. Degree of reaction: R = − −1 2[cot (cot cot )]α α θ/

 11. Speed ratio: K u gHu i= / 2  and for Francis turbine it varies 
from 0.6 to 0.9.

 12. Flow ratio: K V gHf fi= / 2 and for Francis turbine it varies 

from 0.15 to 0.3.

 13. Ratio of width to the diameter of wheel is n B Di i= / , its 
value varies from 0.1 to 0.45.

 14. Discharge through a Francis turbine: Q = pDiBiVf i = pDoBoVfo 

 15. Head on the turbine: H V g V u V u go wi i wo o− = ±2 2/ /( ) ( )
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 1. The value of speed ratio and flow ratio in case of Francis 
 turbine, respectively ranges from 
(a) 0.2 to 0.3 and 0.35 to 0.5. 
(b) 0.4 to 0.5 and 0.6 to 0.9. 
(c) 0.6 to 0.9 and 0.15 to 0.30. 
(d) None of the above.

 2. In all reaction turbines, for maximum efficiency 
(a) The whirl velocity must be zero at entry. 
(b) The whirl velocity must be zero at exit. 
(c) The flow velocity must be zero at entry. 
(d) The flow velocity must be zero at exit.

 3. Specific speed of a fluid machine is 
(a) Specific to the particular machine. 
(b) A type number representative of its performance. 
(c) The speed of a machine of unit dimensions. 
(d) None of the above.

 4. The reaction turbines as compared to impulse turbines have 
(a) Low speed.
(b) High speed.
(c) Equal speed.
(d) None of the above.

 5. Most of the reaction turbines have degree of reaction between 
(a) 0.1 to 0.3.
(b) 0.4 to 0.6.
(c) 0.7 to 0.9.
(d) None of the above.

 6. The degree of reaction for a Pelton turbine is 
(a) Half.
(b) Equal to a Francis turbine.
(c) Equal to jet velocity.
(d) Zero.

 7. Dimensionless specific speeds of Pelton, Francis and Kaplan 
turbines in sequence are 
(a) 0.02, 0.6, 0.9.   (b) 0.2, 6, 9. 
(c) 2, 60, 90.    (d) 20, 600, 900.

 8. A low specific speed Francis turbine is respectively 
(a) Tangential flow turbine and mixed flow turbine.
(b) Mixed flow turbine and radial flow turbine.
(c) Radial flow turbine and axial flow turbine.
(d) Axial flow turbine and tangential flow turbine.

Multiple-choice Questions

Review Questions

 1. Give comparisons between (i) impulse and reaction turbines 
and (ii) inward and outward radial flow reaction turbines.

 2. Explain the construction, working and governing mecha-
nisms of a Francis turbine. 

 3. Define speed and flow ratios. Also give their role in design of 
a Francis turbine.

 4. Derive Euler’s equation for hydraulic machines.

 5. Derive an expression for change in kinetic and pressure 
energy of water in the runner of a Francis turbine.

 6. Define the term degree of reaction in hydraulic turbines. In 
a Francis turbine, the velocity of flow through the runner 
is constant and discharge is radial. Show that the degree of 

reaction R is given by R = − −1 2[cot { (cot cot )}],α α θ/  where  
α θand  are guide blade angle and vane angle at the inlet of 
the runner. Neglect the losses in runner and neglect the differ-
ences in elevation at the inlet and outlet.

 7. Obtain the following expressions for hydraulic efficiency for 
a Francis turbine in terms of guide blade angle ( )α  and vane 
angle ( )θ  at the inlet as follows.

   (i) η α
α θh = +

−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−

1
1 2

1

2 1
( ) tan

(tan tan )

/

/
 and

  (ii) η
α α θh = −

+ −
⎡

⎣
⎢

⎤

⎦
⎥1

1

1 2cot (cot cot )

Problems

 1. A Francis turbine works at 500 rpm under a head of 150 m. 
Its diameter at the inlet is 1 m and the flow area is 0.3 m2. 
The guide blade and vane angles at the inlet are 15° and 60°, 
respectively. Determine (i) the volume flow rate, (ii) power 
developed and (iii) hydraulic efficiency. Assume whirl veloc-
ity zero at the outlet.

[Ans. 2.49 m3/s, 2.02 MW, 55.09 %] 

 2. A turbine rotates at 200 rpm working under a discharge 
of 10 m3/s and a head of 30 m. If the overall efficiency of 
the turbine is 90%, then determine (i) the specific speed,  
(ii) power developed under the head of 25 m and (iii) type 
of turbine.

[Ans. 146.6, 2207.25 kW, Francis turbine] 
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  22.27 Francis Turbine 

 3. A Francis turbine working under a head of 7.5 m is required 
to produce 140 kW power with an overall efficiency of 76%. 
The wheel runs at 155 rpm and the hydraulic losses in the 
turbine are 20% of the available energy. The peripheral veloc-
ity and the radial velocity of flow at the inlet are 0 25 2. gH  
and 0 95 2. ,gH  respectively. Determine (i) the guide blade 
angle, (ii) wheel vane angle at the inlet, (iii) diameter of the 
wheel at the inlet and (iv) width of the wheel at the inlet. 
Assume radial discharge at the outlet.

[Ans. 30.68°, 35.1°, 0.3733 m, 0.1853 m] 

 4. An outward radial flow reaction turbine is running at 200 rpm. 
The inner and outer diameters of the runner are 0.5 m and 
1 m, respectively. The inlet guide vane angle is 15° and the 
discharge is radial. The head available on the turbine is 12 m. 
The velocity of flow is constant and it is equal to 5 m/s. If the 
water flow rate through the turbine is 0.25 m3/s, then deter-
mine (i) the runner vane angle at the inlet and outlet, (ii) power 
developed by the turbine, (iii) and hydraulic efficiency.

[Ans. 20.42°, 25.55°, 24.4 kW, 82.9%] 

 5. An inward flow reaction turbine has an external diameter of  
1 m and its breadth at the inlet is 0.25 m. The velocity of flow 
at the inlet is 1.9 m/s and 6% of the area of flow is blocked by 
blade thickness. If speed of the runner is 190 rpm and guide 
blades make an angle of 10° to the wheel tangent, then find 
(i) velocity of wheel at the inlet, (ii) mass of water passing 
per second through the runner, (iii) runner vane angle at the 
inlet, (iv) absolute velocity of water leaving guide vanes, and 
(v) relative velocity of water entering runner blade.

[Ans. 9.95 m/s, 1403 kg/s, 66.53°, 10.942 m/s, 2.07 m/s] 

 6. Design a Francis turbine runner with the following data, such 
as net head = 68.5 m, speed = 750.2 rpm, output power = 
330 kW, hydraulic efficiency = 0.945, overall efficiency = 0.85,  
flow ratio = 0.15, breadth ratio = 0.1, and inner diameter of 
runner is half of outer diameter. Also assume 6% of circum-
ferential area of the runner is occupied by the thickness of the 
vanes. Velocity of flow remains constant throughout and the 
flow is radial at exit.

[Ans. 0.597 m, 0.2985 m, 11.46°, 56.53°, 25.09°] 

 7. The internal and external diameters of outward radial flow 
reaction turbine are 1 m and 1.5 m, respectively. The water 
flow rate through the turbine is 3 m3/s. The widths of the run-
ner at the inlet and outlet are same and equal to 0.2 m. The 
head on the turbine is 100 m and it is running at 300 rpm. 
If the discharge is radial, then find out (i) the runner blade 
angles at the inlet and outlet, (ii) velocity of flow at the inlet 
and outlet, (iii) power developed by the turbine. Neglect the 
blade thickness.

[Ans. 5.87°, 7.69°, 4.77 m/s, 3.18 m/s, 2.93 MW] 

 8. An inward flow reaction turbine working under a head of 
8.2 m is required to produce 150.6 kW power with an over-
all efficiency of 80.5%. The wheel runs at 150 rpm and 

the hydraulic losses in the turbine are 20% of the available 
energy. The peripheral velocity and the radial velocity of flow 
at the inlet are 0 35 2. gH  and 0 97 2. gH  respectively. If 
discharge is radial at the outlet, then determine (i) the guide 
blade angle, (ii) wheel vane angle at the inlet, (iii) diameter of 
the wheel at the inlet and (iv) width of the wheel at the inlet.

[Ans. 40.33°, 147.87°, 1.57 m, 0.1062 m] 

 9. The external and internal diameters of an inward flow reac-
tion turbine are 1 m and 0.6 m, respectively. The hydraulic 
efficiency of the turbine is 90% when the head on the turbine 
is 36 m and discharge is radial at the outlet. The velocity of 
flow at the outlet is 2.5 m/s. If the vane angle at the outlet is 
15° and width of the wheel is 100 mm at the inlet and out-
let, then determine (i) the guide blade angle, (ii) speed of the 
turbine, (iii) vane angle of the runner at the inlet, (iv) volume 
flow rate of turbine and (v) power developed.

[Ans. 4.19°, 296.98 rpm, 17.05°, 0.4712 m3/s, 149.76 kW]

 10. The following data pertains to an inward flow reaction tur-
bine, such as net head = 60 m, speed = 650 rpm, brake power 
= 275 kW, ratio of wheel width to wheel diameter at the inlet =  
0.1, ratio of inner diameter to outer diameter = 0.5, flow ratio 
= 0.17, hydraulic efficiency of the turbine = 95% and overall 
efficiency = 85%. The flow velocity remains constant and the 
discharge is radial. Neglect area blockage by blades, workout 
the dimensions and blade angles of the turbine.

[Ans. 0.548 m, 0.274 m, 27.4 mm, 54.8 mm, 11°, 27.23°, 32.03°]

 11. In an outward radial flow reaction turbine, the rim speed at 
the inlet is 22.5 m/s and the diameter ratio is 0.8. The vane 
angle at the inlet and exit are 90° and 20°, respectively. If 
radial velocity at the inlet is 7.5 m/s and discharge is radial, 
then determine (i) the guide blade angle, (ii) velocity of water 
from guide blades, (iii) pressure head at the inlet to the runner 
and (iv) hydraulic efficiency. Neglect the frictional losses in 
the runner.

[Ans. 18.44°, 23.72 m/s, 10.23 m/s, 56.94 m, 90.63%]

 12. The following data pertains to a Francis turbine, such as net 
head = 110 m, speed = 275 rpm, brake power = 14.99 MW, 
ratio of wheel width to wheel diameter at the inlet = 0.15, 
ratio of inner diameter to outer diameter = 1.8, flow ratio = 
0.2, hydraulic efficiency of the turbine = 90% and overall effi-
ciency = 85%. The flow velocity remains constant and the 
discharge is radial. Neglect area blockage by blades, deter-
mine (i) the inlet and outlet diameter, (ii) guide blade angle 
and (iii) vane angles.

[Ans. 1.932 m, 1.073 m, 14.9°, 52.65°, 31.02°]

 13. A modern Francis turbine works under a head of 182 m while 
rotating at 452 rpm. The runner diameter at the inlet is 1.5 m 
and width at the inlet is 0.15 m. If the guide blade angle is 14° 
and the vane angle at the inlet is 45°, then determine (i) the 
power developed and (ii) hydraulic efficiency.

[Ans. 13.99 MW, 94.03%]
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 14. An inward radial flow reaction turbine is working under a 
head of 18 m. The external and internal diameters of this tur-
bine are 1.2 m and 0.6 m, respectively. The velocity of flow 
through the runner remains constant and it is equal to 2 m/s. 
The guide blade angle is given as 10° and the runner vanes 
are radial at the inlet. Determine (i) the speed of the turbine, 
(ii) vane angle at the outlet of the runner and (iii) hydraulic 
efficiency. Assume that discharge at the outlet is radial.

[Ans. 180.48 rpm, 19.43°, 72.82%]

 15. The inlet and outlet diameters of the runner of an inward 
flow reaction turbine are 1.45 m and 0.9 m, respectively. The 
width of the runner is constant and it is equal to 150 mm. 
The hydraulic efficiency of the turbine is 90% and it works 
under a head of 110 m. If the discharge velocity is 5.9 m/s, 
then determine (i) the speed of the turbine, (ii) guide blade 
angle, (iii) blade angles and (iii) power produced. Take radial 
discharge at the outlet and blade angle at the exit as 15°.

[Ans. 467.28 rpm, 7.61°, 155.71°, 2.429 MW]

 16. An inward radial flow reaction turbine is working under a head 
of 15 m and the water is supplied at a rate of 0.3 m3/s. The inlet 
diameter is twice the outer diameter and the vanes are radial 
at the inlet. The runner completes 350 rpm and the velocity of 
flow is constant and it is equal to 1.8 m/s. There are no losses 
in the runner and the discharge is radial. If speed ratio is equal 
to 0.8, then determine (i) the guide vane angle, (ii) inlet and 
outlet diameters of the runner and (iii) width of the runner at 
the inlet and exit. Neglect the thickness of the vanes.

[Ans. 7.46°, 0.749 m, 0.374 m, 0.0708 m, 0.1416 m]

 17. An inward radial flow reaction turbine works under a head of 
25 m. The velocity of wheel periphery at the inlet is 10 m/s. 
The outlet pipe of the turbine is 0.25 m in diameter. If the 
turbine is supplied with 0.2 m3/s, then determine (i) the vane 
angle at the inlet, (ii) guide vane angle and (iii) power of the 
turbine. Assume the radial velocity of flow through the wheel 
equal to the velocity in outlet pipe and neglect the friction.

[Ans. 22.146°, 16.56°, 47.382 kW]

 18. The following data pertains to a vertical shaft Francis turbine, 
such as diameter of the runner at the inlet = 2 m, width of the 
runner at the inlet = 0.27 m, speed = 420 rpm, discharge = 
15 m3/s, velocity at the inlet = 10 m/s, pressure head at the 
inlet = 230 m, elevation above the tail race = 5 m, hydraulic  
efficiency = 98% and overall efficiency = 92%. Find out (i) the 
total head across the turbine, (ii) power output, (iii)  guide 
blade angle and (iv) vane angle at the inlet.

[Ans. 240.09 m, 32.5 MW, 62.13°, 167.33°]

 19. The following particulars are given for an inward radial flow 
reaction turbine, such as head = 24 m, discharge = 10 m3/s, 
speed = 225 rpm, inlet angle of the runner vane = 110° meas-
ured from the direction of runner rotation, entry of water to 
the runner is without shock and with a velocity of flow =  
6 m/s, and to the draft tube is without whirl and with a veloc-
ity = 5.5 m/s, discharge velocity from the exit of draft tube = 
2.2 m/s, mean height of the runner entry surface = 1.5 m, and 
the entrance to the draft tube = 1.2 m above the tail race level. 
If both hydraulic and overall efficiencies are 92%, then deter-
mine (i) the diameter of the runner at entry surface, (ii) pres-
sure head at entry to the runner and at entrance to the draft 
tube when the friction loss in the runner is 0.7 m and that in 
the draft tube is 0.5 m of water, (iii) shaft power of the turbine 
and (iii) specific speed of the turbine.

[Ans. 1.345 m, 11.14 m of water, -1.522 m of water,  
2.166 MW, 197.13]

 20. The following data pertains to a Francis turbine, such as 
head = 100 m, overall efficiency = 86%, hydraulic efficiency =  
92%, speed = 500 rpm, shaft power = 2500 kW, flow ratio =  
0.16, outer diameter = 2 × Inner diameter, ratio of wheel 
width to its diameter at the inlet = 0.1 and the flow velocity is 
constant. Find out the main dimensions of the given turbine.

[Ans. 1.153 m, 0.1153 m, 0.5765 m, 0.231 m,  
13.34°, 92.3°, 25.17°]

ANSWERS TO MULTIPLE-CHOICE QUESTIONS

 1. (c) 2. (b) 3. (b) 4. (b) 5. (b)
 6. (d) 7. (a) 8. (a)
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23.1 ❐ INTRODUCTION
When water flows parallel to the axis of the rotation of the shaft, the turbine is called axial flow turbine. The runner of axial 
flow turbine works under the pressure, since the head at the inlet of the turbine is the sum of pressure energy and kinetic 
energy. When water flows through the runner, a part of pressure energy is converted into kinetic energy. Thus, these turbines 
are called axial flow reaction turbines. The most widely used axial flow reaction turbines are propeller and Kaplan turbines.

In a Francis turbine, the number of blades is more due to which the contact surface with water is more and thus, a high 
value of frictional resistance is offered. The blades also receive water in radial direction and discharge it in axial direction, 
i.e., there is 90° bend to water. These are the main sources of hydraulic losses in a Francis turbine. These losses have been 
overcome in axial flow reaction turbines.

When the head on a turbine decreases, the discharge must increase to produce the required power. Since propeller 
and Kaplan turbines are low head turbines, a large quantity of water is required to flow through its runner to produce the 
required amount of power. The axial flow reaction turbines are designed to have minimum number of blades which reduce 
the frictional losses. Further, water enters the blades in axial direction from one side and leaves axially through the other 
side so that large quantity of water flows through the runner.

The shaft of axial flow reaction turbines is vertical. The lower end of the shaft is made larger and it is known as hub. 
The vanes are mounted on the hub and it acts as a runner for axial flow reaction turbines. The runner of an axial flow 
 turbine usually has only three to eight blades. When the vanes are fixed and non-adjustable, the turbine is known as 
 propeller turbine. The Kaplan turbine is just a propeller turbine in which the runner blades are made adjustable. Some 
of the important Kaplan turbine installations in India are Bhakra Nangal project (Punjab), Hirakud dam project (Orissa), 
Radhanagari  hydroelectric scheme (Maharashtra), Nizam Sagar project (Andhra Pradesh) and Tungabhadra hydroelectric 
scheme (Karnataka).

In this chapter, the characteristic properties of propeller and Kaplan turbines are discussed, which are particularly suited 
for low head and high discharge installations. Draft tube which is an integral part of the Francis and Kaplan turbines and 
cavitation in reaction turbines is discussed. A brief description of the new types of turbines, namely Deriaz (or diagonal), 
tubular and bulb turbines is also given.

23.2 ❐ PROPELLER AND KAPLAN TURBINES
The propeller and Kaplan turbines are the important types of axial flow reaction turbines. Due to the highest specific speed 
(up to 860), these turbines are suitable for low heads (up to 30 m) and large flow of water. In these turbines, water flows 
parallel to the axis of the rotation of the shaft. The shaft of axial flow turbine is vertical. The lower end of the shaft is made 

Chapter 23

Propeller and Kaplan Turbines 
(Axial Flow Reaction Turbines)
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23.2 Chapter 23

larger which is known as ‘hub’ or ‘boss’. The hub of these turbines either has fixed blades or variable pitch blades and it 
acts as a runner for axial flow turbine.

If the blades are fixed to the hub and non-adjustable, then it is known as propeller turbine. However, if the blades are of 
variable pitch and they are adjustable on the hub, then it is known as Kaplan turbine, which is named after Dr. V. Kaplan, 
an Austrian engineer. Due to the adjustable pitch of the blades, the Kaplan turbine can deal with a wide range of operating 
heads. Practically, all Kaplan turbines have single runner. The runners of a Kaplan turbine and propeller turbine are shown 
in Figure 23.1. The efficiency of propeller and Kaplan turbines may be achieved as high as 94%.

The propeller turbines are easy to construct but their efficiency falls sharply at reduced loads. Therefore, these turbines 
should be kept fully loaded for maximum efficiency. A propeller turbine is most suitable when load on the turbine remains 
constant. In propeller turbines, as in the Francis turbine, the runner blades are fixed. So, water enters with a shock and 
eddies are formed which reduces the efficiency under part load condition.

The main parts of a Kaplan turbine are (1) scroll casing, (2) stay ring (only in big units), (3) guide vanes mechanism,  
(4) hub with vanes or runner of the turbine and (5) draft tube. The schematic view of a Kaplan turbine is shown in 
Figure 23.2.

The casing, stay ring, guide mechanism and draft tube are similar to that of a Francis turbine. The Kaplan turbine also 
runs full, which means it is a reaction type of turbine and it operates in a closed conduit from the inlet to the tail race.  
A space has been provided between the ends of guide vanes and the leading edges of the runner. This space is called whirl 
chamber in which the direction of flow changes from radial to axial. Thus, the runner of a Kaplan turbine varies from the 
runner of a Francis turbine based on the following points.

 1. In a Kaplan turbine, water enters the runner axially, while in a Francis turbine it enters radially.

 2. The number of blades in the Kaplan turbine varies from 3 to 8, whereas in the Francis turbine it varies from 16 to 24.

 3. The blades of the Kaplan turbine are made hollow and it is made of stainless steel. The blades are attached to the hub 
in such a way that they are able to move on their axis.

The water from the penstock enters the scroll casing and then moves to the guide vanes. From the guide vanes, water turns 
through 90° and flows axially through the runner as shown in Figure 23.2. The discharge through the runner is given by the 
following expression.

	 Q D D Vo b fi= −
π
4

2 2( )  (23.1)

Here, Do is the outer diameter of the runner, Db is the diameter of the hub or boss and Vfi is the velocity of flow at inlet.

Shaft

Hub or boss

Adjustable vanes

(a) For Kaplan turbine (b) For propeller turbine

Fixed vanes

Shaft

Hub or boss

Figure 23.1 Runners of Kaplan and propeller turbines

M23 Fluid Mechanics and Hydraulic Machines XXXX 01.indd   2 4/6/2019   12:10:24 PM

Download more at Learnclax.com



  23.3 Propeller and Kaplan Turbines 

The inlet and outlet velocity triangles are drawn at the extreme edge (i.e., outer periphery) of the runner blade 
 corresponding to the points ‘i’ and ‘o’ as shown in Figure 23.2. It should be observed that the peripheral speed of the runner 
blades varies with the radial distance from the axis of rotation. Therefore, the inlet and outlet velocity triangles are different 
at different sections. Similarly, the vane angles at inlet and outlet are made different at different sections. Therefore, the 
vanes are twisted to permit shockless entry of water to the runner.

The Kaplan turbine is often known as variable pitch propeller turbine. The runner blades of a Kaplan turbine can be 
turned about their own axis, so that their angle of inclination may be adjusted while the turbine is in motion. The pitch of 
the runner blades is automatically adjusted by the governor through the action of a servomotor operating inside the hollow 
coupling of turbine and generator shaft. Under part load condition, when a lower discharge is flowing through a Kaplan 
turbine, high efficiency can be attained by the proper adjustment of blades during its operation. Due to the adjustment of 
blade angles, water under all working conditions flows through the runner blades without shock. Thus, the eddy losses 
which occur in Francis and propeller turbines are eliminated in a Kaplan turbine. Therefore, high efficiency can be attained 
in case of a Kaplan turbine working over a wide range of operating conditions.

23.2.1 Governing of Kaplan Turbine
In case of a Kaplan turbine, in addition to the guide vanes, the runner vanes are also adjustable. Therefore, the governor 
is required to operate both sets of vanes simultaneously. The runner vanes are also operated by a separate servomotor 
 mechanism. The servomotor mechanisms for both runner and guide vanes are interconnected to ensure that for a given 
guide vane opening, there shall be a definite runner vane inclination. Kaplan turbines are called double regulated because 
the flow rate is controlled in two ways, i.e., by turning the wicket gates and by adjusting the pitch on the runner blades. 

Runner of the turbine

Hub

Outlet to blade

Runner blade

Inlet to blade

Db

Shaft

Do

Tail race

Guide vaneWhirl chamber

Scroll casing

Runner blade

Draft tube

Shaft

Hub

Water inlet

Runner blade

Guide wheel

Guide blade

‘o’

‘i’

Figure 23.2 Kaplan turbine and its runner
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23.4 Chapter 23

Propeller turbines are single regulated, i.e., the flow rate is regulated only by the wicket gates. The important differences 
between governing operation of Francis and Kaplan turbine are given below.

 1. In a Kaplan turbine, there is double regulation, which means the guide vanes and the runner vanes regulation is done. 
Therefore, two servomotors are always required, where one servomotor controls the guide vanes and the other controls 
the runner vanes.

   In a Francis turbine, there is single regulation, which means the guide vanes regulation is done. Therefore, usually, 
one servomotor is required to control the guide vanes.

 2. In a Kaplan turbine, correct disposition of the guide and moving blades is attained at any load, whereas in a Francis 
turbine it is attained at full load only.

 3. In a Kaplan turbine, high efficiency is attained even at reduced load since both guide vanes and runner vanes are 
 controlled simultaneously. However, in a Francis turbine, high efficiency is attained only at full load since only guide 
vanes are controlled.

 4. In a Kaplan turbine, heavy duty governor is required, whereas in a Francis turbine ordinary governor is required.

23.3 ❐  WORKING PROPORTIONS OF KAPLAN  
AND PROPELLER TURBINES

The expressions for the work done, efficiency and power developed by propeller and Kaplan turbines are same as that 
of a Francis turbine. The main dimensions of the runner are obtained by a procedure similar to that of a Francis runner. 
 However, the following main deviations occur.

 1. Velocity of flow remains constant, i.e., V V V K gHfi fo f f= = = 2 , here Kf is the flow ratio which has a value of 
around 0.7.

 2. The ratio of the hub diameter (Db) to runner diameter (Do) usually varies from 0.35 to 0.6 and it is given by the relation 
n D Db o= ( )/ .

 3. The discharge (Q) flowing through the runner remains constant and it is given by,

	 Q D D Vo b f= −
π
4

2 2( )  (23.2)

V K gHf f= 2

	 Q D D K gHo b f= −
π
4

22 2( )  (23.2a)

n
D

D
b

o
=

	 Q D n K gHo f= −
π
4

1 22 2( )  (23.2b)

 4. The peripheral velocity at inlet and outlet are equal and it is given by,

	 u u
D N

i o
o= =

π
60

 (23.3)

  Also u K gHi u= 2 , here Ku is the speed ratio.

 5. Area of flow is constant, i.e., area of flow at inlet is equal to area of flow at outlet.

	 A A D Di o o b= = −
π
4

2 2( )  (23.4)
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  23.5 Propeller and Kaplan Turbines 

23.4 ❐ DIFFERENCE BETWEEN FRANCIS AND KAPLAN TURBINES

Francis turbine Kaplan turbine

It is a mixed flow turbine. It is a purely axial flow turbine.

It has large number of blades in runner and it varies from  
16 to 24.

It has small number of blades in runner and it varies from  
3 to 8.

The runner blades are not adjustable. The runner blades are adjustable.

The disposition of shaft may be horizontal or vertical. The disposition of shaft is always vertical.

It is a medium head turbine and the head varies between 60 m 
to 250 m.

It is a low head turbine and it is capable to work under the head 
less than 60 m.

It works under medium discharge. It works under high discharge.

Its specific speed varies from 50 to 255. Its specific speed varies from 255 to 860.

Resistance to overcome is large due to large number of vanes 
and greater area of contact with water.

Resistance to overcome is less due to small number of vanes and 
less contact area.

Ordinary governor is used for its governing. Heavy duty governor is used for its governing.

For the same power, it is less compact. For the same power, it is more compact. 

 Example 23.1  A Kaplan turbine develops 50 103× kW under a net head of 30 m with an overall efficiency of 85%. 
Taking the value of speed ratio = 2, flow ratio = 0.6 and diameter of the hub = 0.35 times of the diameter of the runner, then 
calculate (i) the diameter of the runner, (ii) speed of the turbine and (iii) specific speed of the turbine.

Solution
Let P = ×50 103 kW, H = 30 m, ηo = 0 85. , Ku = 2, K f = 0 6.  and D Db o= 0 35. .

 (i) u K gHi u= = × × × =2 2 2 9 81 30 48 522. . m/s

V K gHfi f= = × × × =2 0 6 2 9 81 30 14 56. . . m/s

Q
P

gHw o
= =

× ×
× × ×

=
1000 1000 50 10

1000 9 81 30 0 85
199 876

3
3

ρ η . .
. m /s

Q D D Vo b fi= −
π
4

2 2( )

199 876
4

0 35 14 562 2. [ ( . ) ] .= × − ×
π

D Do o

10 034 199 8762. .Do =

∴ = =Do
199 876

10 034

.

.
4.4632 m

 (ii) u
D N

i
o=

π
60

∴ = = ×
×

=N
u

D
i

o

60 60 48 522

4 4632π π
.

.
207.63 rpm

 (iii) N
N P

H
s = = × × =

5 4

3

5 4

207 63 50 10

30/ /

.
661.26
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23.6 Chapter 23

 Example 23.2  A Kaplan turbine working under a head of 25 m develops 11.8 MW shaft power. The outlet diameter 
of the runner is 3 m and the hub diameter is 1.5 m. The guide blade angle at the extreme edge of the runner is 30°. The 
hydraulic and overall efficiency of the turbines are 95% and 90%, respectively. If the velocity of whirl is zero at outlet, then 
determine the runner vane angles at the extreme edge of the runner and speed of the turbine.

Solution
Refer Figure 23.3. Let H = 25 m, P = = ×11 8 11 8 103. .MW kW, Do = 3 m, Db = 1 5. ,m  α = °30 , ηh = 0 95. , ηo = 0 9.  
and Vwo = 0.

Q
P

gHw o
= =

× ×
× × ×

=
1000 1000 11 8 10

1000 9 81 25 0 9
53 46

3
3

ρ η
.

. .
. m /s

Also Q D D Vo b fi= −
π
4

2 2( )

53 46
4

3 1 52 2. ( . )= × − ×
π

V fi

∴ = =
×

× −
=V Vfi fo

53 46 4

3 1 5
10 08

2 2

.

( . )
.

π
m/s

V
V

wi
fi= =

°
=

tan

.

tan
.

α
10 08

30
17 46 m/s

Since ηh
wi iV u

gH
=

∴ = = =
× ×

=u u
gH

Vi o
h

wi

η 0 95 9 81 25

17 46
13 344

. .

.
. m/s

θ =
−

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ =

−
⎛
⎝⎜

⎞
⎠⎟

=− −tan tan
.

. .
1 1 10 08

17 46 13 344

V

V u

fi

wi i
67.799°°

ϕ =
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ = ⎛

⎝⎜
⎞
⎠⎟

=− −tan tan
.

.
1 1 10 08

13 344

V

u

fo

o
37.07°°

Since u
D N

i
o=

π
60

∴ = = ×
×

=N
u

D
i

o

60 60 13 344

3π π
.

84.95 rpm

 Example 23.3  The hub diameter of a Kaplan turbine working under a head of 15 m is 0.3 times the diameter of the 
runner. The turbine is running at 90 rpm and the velocity of whirl at outlet is zero. If the vane angle of the extreme edge of 
the runner at outlet is 15° and the flow ratio is 0.6, then determine (i) the diameter of runner, (ii) the diameter of boss and 
(iii) discharge through the runner.

Solution
Refer Figure 23.3. Let H = 15 m, D Db o= 0 3. , N = 90 rpm, Vwo = 0, ϕ = °15  and K f = 0 6. .

A

B

ui
Vwi

VfiVri

Vi

ϕ

uo

Vfo = VoVro

C D

E

G H

α θ

β

Figure 23.3
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  23.7 Propeller and Kaplan Turbines 

 (i) V V K gHfi fo f= = = × × × =2 0 6 2 9 81 15 10 293. . . m/s

u u
V

i o
fo= = =

°
=

tan

.

tan
.

ϕ
10 293

15
38 414 m/s

  Since u
D N

i
o=

π
60

∴ = = ×
×

=D
u

No
i60 60 38 414

90π π
.

8.152 m

 (ii) D Db o= = × =0 3 0 3 8 152. . . 2.4456 m

 (iii) Q D D Vo b fi= − = × − × =π π
4 4

8 152 2 4456 10 2932 2 2 2( ) ( . . ) . 488.88 m /s3

 Example 23.4  A propeller turbine runner has outer diameter of 4.5 m and the diameter of the hub is 2 m. It is required 
to develop 25 MW when running at 160 rpm under a head of 25 m. If the hydraulic efficiency is 94% and overall efficiency 
is 89%, then evaluate the runner angles at inlet and exit at the mean diameter of the vanes. Also evaluate the specific speed 
of the turbine.

Solution
Let Do = 4 5. ,m  Db = 2 m, P = = ×25 25 103MW kW, N = 160 rpm, H = 25 m, ηh = 0 94.  and ηo = 0 89. . Let Dm be 
the mean diameter.

Q
P

gHw o
= =

× ×
× × ×

=
1000 25 10 1000

1000 9 81 25 0 89
114 536

3
3

ρ η . .
. m /s

Also Q D D Vo b fi= −
π
4

2 2( )

114 536
4

4 5 22 2. ( . )= × − ×
π

V fi

∴ = =
×

× −
=V Vfi fo

114 536 4

4 5 2
8 974

2 2

.

( . )
.

π
m/s

D
D D

m
o b=

+
=

+
=

2

4 5 2

2
3 25

.
. m

u u
D N

i o
m= = =

× ×
=

π π
60

3 25 160

60
27 23

.
. m/s

ηh
wi iV u

gH
=

∴ = =
× ×

=V
gH

uwi
h

i

η 0 94 9 81 25

27 23
8 47

. .

.
. m/s

M23 Fluid Mechanics and Hydraulic Machines XXXX 01.indd   7 4/6/2019   12:10:44 PM

Download more at Learnclax.com
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Since u Vi wi> , the velocity triangle at inlet will be as shown in Figure 23.4.

tan tan( )
.

. .
.θ θ1 180

8 974

27 23 8 47
0 47836= ° − =

−
=

−
=

V

u V

fi

i wi

Thus ( ) tan ( . ) .180 0 47836 25 561° − = = °−θ

∴ = ° − ° =θ 180 25 56. 154.44°°

ϕ =
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ = ⎛

⎝⎜
⎞
⎠⎟

=− −tan tan
.

.
1 1 8 974

27 23

V

u

fo

o
18.24°°

N
N P

H
s = = × × =

5 4

3

5 4

160 25 10

25/ /
452.55

 Example 23.5  A Kaplan turbine has been designed to develop 22.5 MW under a head of 20.5 m whilst running at 
150 rpm. The other relevant data are overall efficiency = 87%, hydraulic efficiency = 94%, outer diameter of runner = 4.6 m 
and diameter of the hub = 2.1 m. If the turbine discharges without whirl at exit, then determine (i) the runner vane angles 
at the hub, (ii) the runner vane angles at the outer periphery and (iii) specific speed of the turbine.

Solution
Refer Figure 23.4. Let P = = ×22 5 22 5 103. . ,MW kW  H = 20 5. ,m  N = 150 rpm, ηo = 0 87. , ηh = 0 94. , Do = 4 6. ,m  

Db = 2 1. m  and Vwo = 0.

Q
P

gHw o
= =

× ×
× × ×

=
1000 1000 22 5 10

1000 9 81 20 5 0 87
128 6

3
3

ρ η
.

. . .
. m /s

Also Q D D Vo b fi= −
π
4

2 2( )

128 6
4

4 6 2 12 2. ( . . )= × − ×
π

V fi

∴ = =
×

× −
=V Vfi fo

128 6 4

4 6 2 1
9 775

2 2

.

( . . )
.

π
m/s

 (i) u u
D N

i o
b= = =

× ×
=

π π
60

2 1 150

60
16 493

.
. m/s

ηh
wi iV u

gH
=

∴ = =
× ×

=V
gH

uwi
h

i

η 0 94 9 81 20 5

16 493
11 462

. . .

.
. m/s

  Since u Vi wi> , the velocity triangle at inlet will be as shown in Figure 23.4.

tan tan( )
.

. .
.θ θ1 180

9 775

16 493 11 462
1 943= ° − =

−
=

−
=

V

u V

fi

i wi

A

B

ui

Vwi

Vfi

Vri
Vi

ϕ

uo

Vfo = VoVro

C D

E

G H

α θ

β

1θ

Figure 23.4
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  23.9 Propeller and Kaplan Turbines 

( ) tan ( . ) .180 1 943 62 771° − = = °−θ

∴ = ° − ° =θ 180 62 77. 117.23°°

ϕ =
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ = ⎛

⎝⎜
⎞
⎠⎟

=− −tan tan
.

.
1 1 9 775

16 493

V

u

fo

o
30.65°°

 (ii) u u
D N

i o
o= = =

× ×
=

π π
60

4 6 150

60
36 13

.
. m/s

V
gH

uwi
h

i
= =

× ×
=

η 0 94 9 81 20 5

36 13
5 232

. . .

.
. m/s

tan tan( )
.

. .
.θ θ1 180

9 775

36 13 5 232
0 3164= ° − =

−
=

−
=

V

u V

fi

i wi

( ) tan ( . ) .180 0 3164 17 561° − = = °−θ

∴ = ° − ° =θ 180 17 56. 162.44°°

ϕ =
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ = ⎛

⎝⎜
⎞
⎠⎟

=− −tan tan
.

.
1 1 9 775

36 13

V

u

fo

o
15.14°°

 (iii) N
N P

H
s = = × × =

5 4

3

5 4

150 22 5 10

20 5/ /

.

.
515.81

 Example 23.6  For a Kaplan turbine with a runner diameter 6.5 m, the discharge is 250 m3/s and the hydraulic efficiency 
is stated to be 91%. The diameter of boss is 0.35 times the runner diameter. It develops 22.5 MW under a head of 12.5 m 
while running at 75 rpm. If the turbine discharges without whirl at exit, then determine (i) the overall efficiency of the 
turbine, (ii) flow ratio, (iii) speed ratio, (iv) degree of reaction and (v) specific speed of the turbine.

Solution
Refer Figure 23.4. Let Do = 6 5. ,m  Q = 250 3m /s, ηh = 0 91. , D Db o= 0 35. , P = = ×22 5 22 5 103. .MW kW, H = 12 5. ,m  

N = 75 rpm  and Vwo = 0.

 (i) η
ρo

w

P

gQH
= =

× ×
× × × ×

× =
1000 1000 22 5 10

1000 9 81 250 12 5 100
100

3.

. .
73.399%

 (ii) Q D D V D D Vo b fi o o fi= − = −
π π
4 4

0 352 2 2 2( ) [ ( . ) ]

  Thus 250
4

6 5 0 35 6 52 2= × − × ×
π

[ . ( . . ) ] V fi

∴ = =
×

× − ×
=V Vfi fo

250 4

6 5 0 35 6 5
8 586

2 2π [ . ( . . ) ]
. m/s

K
V

gH
f

fi= =
× ×

=
2

8 586

2 9 81 12 5

.

. .
0.55

M23 Fluid Mechanics and Hydraulic Machines XXXX 01.indd   9 4/6/2019   12:10:58 PM

Download more at Learnclax.com



23.10 Chapter 23

(iii) u
D N

i
o= =

× ×
=

π π
60

6 5 75

60
25 525

.
. m/s

K
u

gH
u

i= =
× ×

=
2

25 525

2 9 81 12 5

.

. .
1.63

 (iv) ∵ηh
wi iV u

gH
=

∴ = =
× ×

=V
gH

uwi
h

i

η 0 91 9 81 12 5

25 525
4 372

. . .

.
. m/s

  Since u Vi wi> , the velocity triangle at inlet will be as shown in Figure 23.4.

V V Vi fi wi= + = + =2 2 2 28 586 4 372 9 635. . . m/s

V V Vo fo fi= = = 8 586. m/s

R
V V

g H
i o

h
= −

−
= − −

× × ×
=1

2
1

9 635 8 586

2 9 81 0 91 12 5

2 2 2 2

η
. .

. . .
0.9143

 (v) N
N P

H
s = = × × =

5 4

3

5 4

75 22 5 10

12 5/ /

.

.
478.65

 Example 23.7  A Kaplan turbine has certain specifications, such as discharge = 67.5 m3/s, hydraulic and mechanical 
efficiencies = 95%, runner diameter = 4.5 m, diameter of boss = 0.35 times the runner diameter, speed ratio = 2, there is no 
swirl at outlet and the discharge is free. Determine (i) the net head available on the turbine, (ii) power developed, (iii) runner 
speed and (iii) specific speed of the turbine.

Solution
Let Q = 67 5 3. ,m /s  η ηh m= = 0 95. , Do = 4 5. ,m  D Db o= 0 35. , Ku = 2 and Vwo = 0.

Since Q D D V D D Vo b fi o o fi= − = −
π π
4 4

0 352 2 2 2( ) [ ( . ) ]

Thus 67 5
4

4 5 0 35 4 52 2. [ . ( . . ) ]= × − × ×
π

V fi

∴ =
×

× − ×
=V fi

67 5 4

4 5 0 35 4 5
4 84

2 2

.

[ . ( . . ) ]
.

π
m/s

Since there is no swirl at outlet and we get V V Vfi fo o= = = 4 84. .m/s

 (i) H
V

g

V u

g
Ho wi i

h− = =
2

2
η

  Thus H H−
×

=
4 84

2 9 81
0 95

2.

.
.

H H− =0 95 1 194. .

∴ = =H
1 194

0 05

.

.
23.88 m
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 (ii) P
gQH gQHw o w h m= =

ρ η ρ η η
1000 1000

( )

∴ = × × × × × =P
1000 9 81 67 5 23 88 0 95 0 95

1000

. . . . .
14270.997 kW

(iii) u K gHi u= = × × × =2 2 2 9 81 23 88 43 29. . . m/s

  Since u
D N

i
o=

π
60

∴ = = ×
×

=N
u

D
i

o

60 60 43 29

4 5π π
.

.
183.73 rpm

 (iv) N
N P

H
s = = × =

5 4 5 4

183 73 14270 997

23 88/ /

. .

.
415.78

 Example 23.8  The following data pertain to a propeller turbine with specifications, such as power developed = 85 MW, 
head = 25 m, speed = 200 rpm, overall efficiency = 86%, diameter of boss = 30% of external diameter of the runner, speed 
ratio = 2.06 and flow ratio = 0.67. Determine (i) the diameter of the runner, (ii) discharge through the turbine, (iii) number 
of turbines and (iii) specific speed of the turbine.

Solution
Let Pt = = ×85 85 103MW kW, H = 25 m, N = 200 rpm, ηo = 0 86. , D Db o= 0 3. , Ku = 2 06.  and K f = 0 67. .

Let nt be the number of turbines.

 (i) u K gHi u= = × × × =2 2 06 2 9 81 25 45 623. . . m/s

  Since u
D N

i
o=

π
60

∴ = = ×
×

=D
u

No
i60 60 45 623

200π π
.

4.357 m

 (ii) V K gHfi f= = × × × =2 0 67 2 9 81 25 14 84. . . m/s

  Since Q D D V D D Vo b fi o o fi= − = −
π π
4 4

0 32 2 2 2( ) [ ( . ) ]

∴ = × − × × =Q
π
4

4 357 0 3 4 357 14 842 2[ . ( . . ) ] . 201.345 m /s3

 (iii) P
gQHw o= =

× × × ×
=

ρ η
1000

1000 9 81 201 345 25 0 86

1000
42466 681

. . .
. kW

n
P

Pt
t= = × =85 10

42466 681

3

.
2

 (iv) N
N P

H
s = = × =

5 4 5 4

200 42466 681

25/ /

.
737.27
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23.5 ❐ DRAFT TUBE
A draft tube is an airtight pipe of gradually increasing cross-sectional area. It is an important part of a reaction turbine. 
Here, one end of the draft tube is connected to the runner exit while the other end is sub-merged deep into the tail race 
under all operating conditions. The water after passing through the runner is discharged to the tail race through the draft 
tube. The draft tube should be submerged to about one metre below the tail race level and it is made of cast steel, plate 
steel or concrete. In addition to provide a passage for water discharge, a draft tube has to perform the following functions.

 1. When water is discharged freely from the runner, the turbine works under a head equal to the height of the head race 
level above the runner outlet. However, when a draft tube connects the runner to the tail race, the workable head 
increases by an amount equal to the height of the runner outlet above the tailrace.

   Thus, the incorporation of a draft tube permits the turbine runner to be installed above the tail race without any loss 
of available head by maintaining a negative or suction head at the outlet of the runner. Eventually, it causes increase in 
the net head and thereby, the output of the turbine. It also helps to carry out inspection and repair work of the turbine 
easily.

 2. The water leaving the runner possesses high velocity which would be lost if it is discharged freely. A draft tube reduces 
the velocity of the discharged water by which the loss of kinetic energy at the runner outlet minimizes and as a result, 
the pressure head increases. In other words, a large proportion of kinetic energy rejected at the runner exit is converted 
into useful pressure energy by which the efficiency of the turbine increases.

23.5.1 Types of Draft Tubes
The important type of draft tubes which are commonly employed in reaction turbines are given below.

 1. Conical draft tube or straight divergent tube: The shape of a conical draft tube (Figure 23.5(a)) is that of the  frustum 
of a cone. The central cone angle is kept less than 8o so as to prevent the flow separation. Generally, it is employed for 
vertical shaft Francis turbines having low specific speed. The conical draft tube is the most efficient and its maximum 
efficiency varies from 85% to 90%.

 2. Moody’s spreading tube or the hydracone: Moody’s spreading draft tube (Figure 23.5(b)) is provided with a solid 
central core of conical shape and thus, it allows a large exit area without excessive length. The central cone  arrangement 
reduces the whirling action of discharged water and the efficiency of such a draft tube is about 85%.

 3. Simple elbow tube: The vertical length of the draft tube is reduced to save the cost of excavation. However, simple 
elbow draft tube (Figure 23.5(c)) requires relatively lesser excavation for its installation. In a simple elbow tube, there 
is a loss of head due to bend. Thus, its efficiency is low which is of the order of 60%.

 4. Elbow tube having circular inlet and rectangular outlet: The elbow tube having circular inlet and rectangular outlet 
is shown in Figure 23.5(d). Evidently, the elbow tube is widely employed in many turbine installations. It is designed to 
turn the water from the vertical to the horizontal direction with a minimum depth of excavation and at the same time, 
it gives high efficiency of the order of 85%. It also requires relatively lesser excavation for its installation.

(a) (b) (c) (d)

Figure 23.5 Draft tubes
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  23.13 Propeller and Kaplan Turbines 

23.5.2 Draft Tube Theory
Consider a turbine fitted with a conical draft tube as shown in Figure 23.6 in which section 2–2 corresponds to the runner 
exit (or draft tube inlet) and section 3–3 corresponds to the draft tube exit.

Let Hs be the height of runner exit above tail race level which is called the static suction head of draft tube, y be the 
distance of the bottom of draft tube from tail race level, pa be the atmospheric pressure at the surface of tail race, hf  be the 
hydraulic energy loss in draft tube between sections 2–2 and 3–3, section 3–3 be the datum line, p2 and V2 be the pressure 
and velocity at point 2 and p3 and V3 be the pressure and velocity at point 3.

Applying Bernoulli’s equation between sections 2–2 and 3–3, we get:

	

p

g

V

g
H y

p

g

V

g
h

w
s

w
f

2 2
2

3 3
2

2 2
0

ρ ρ
+ + + = + + +( )  (i)

But 
p

g

p

g
y

w

a

w

3

ρ ρ
= +

p

g

V

g
H y

p

g
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V

g
h

w
s

a

w
f

2 2
2

3
2

2 2ρ ρ
+ + + = +

⎛
⎝⎜

⎞
⎠⎟
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	 ∴ = − −
−

−
⎛

⎝
⎜

⎞

⎠
⎟

p

g

p

g
H

V V

g
h

w

a

w
s f

2 2
2

3
2

2ρ ρ
 (23.5)

If energy loss in draft tube is neglected, then Equation (23.5) is given by,

	
p

g

p

g
H

V V

gw

a

w
s

2 2
2

3
2

2ρ ρ
= − −

−⎛

⎝
⎜

⎞

⎠
⎟  (23.6)

Here, Hs is the static suction head and [( ) / ]V V g2
2

3
2 2−  is the dynamic suction head of the draft tube.

In Equation (23.6), [ / ( )]p gw2 ρ  is less than atmospheric pressure head. It shows that by providing a draft tube, the 

turbine can be installed above the tail race level without any loss in the static head and a part of the kinetic energy which is 
discharged as a waste is recovered in the form of pressure energy.

Turbine casing

Draft tube

Inlet of draft tube

Outlet of draft tube

2 2

3 3

Tail race level

Hs

y

V2

V3

pa

Figure 23.6 Draft tube theory
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23.5.3 Efficiency of Draft Tube
The efficiency of a draft tube ( )ηd  is defined as the ratio of actual regain of pressure head to the kinetic head at entrance 
to the draft tube.

Actual regain of pressure head =
−

−
V V

g
hf

2
2

3
2

2

Kinetic head at entrance to draft tube =
V

g
2

2

2

	 ∴ =
− −

ηd
fV V g h

V g

[( ) ( )]

( )

2
2

3
2

2
2

2

2

/

/
 (23.7)

If energy loss in draft tube is neglected, then Equation (23.7) is given by,

	 ηd
V V g

V g

V V

V

V

V
=

−
=

−
= −

⎛
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⎠⎟
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/

/
 (23.8)

 Example 23.9  A conical draft tube of length 5.5 m has a diameter of 2 m at its top. The water discharges through it 
with a flow rate of 20 m3/s and 1.2 m/s velocity at the outlet. If the pressure head at the top is 6 m of water (vacuum) and 
atmospheric pressure head is 10.3 m of water, then determine the length of the tube immersed in water. Neglect the friction 
losses between the inlet and outlet of the draft tube.

Solution
Refer Figure 23.6. Let ( ) . ,H ys + = 5 5 m  d2 2= m, Q = 20 3m /s, V3 1 2= . ,m/s  [ ( )]p gw2 6/ m (vac)ρ =  and 

[ ( )] .p ga w/ mρ = 10 3 .

Let y be the length of the tube immersed in water.

V
Q

A

Q

d
2

2 2
2 24

20

4 2
6 37= = =

×
=

( ) ( )
.

π π/ /
m/s

p

gw

2 10 3 6 4 3
ρ

= − =. . m (abs)

p

g

p

g
H

V V

gw

a

w
s

2 2
2

3
2

2ρ ρ
= − −

−⎛

⎝
⎜

⎞

⎠
⎟

Thus 4 3 10 3
6 37 1 2

2 9 81

2 2

. .
. .

.
= − −

−
×

⎛

⎝
⎜

⎞

⎠
⎟Hs

4 3 10 3 1 995. . .= − −Hs

∴ = − − =Hs 10 3 1 995 4 3 4 005. . . . m

Since ( ) .H ys + = 5 5 m

∴ = − = − =y Hs5 5 5 5 4 005. . . 1.495 m
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 Example 23.10  A Kaplan turbine working under a head of 5.5 m develops 2950 kW. It is fitted with a draft tube having 
inlet diameter 3 m and it is placed 1.6 m above the tail race level. The vacuum gauge connected to the inlet of draft tube 
reads 5 m of water. If the efficiency of draft tube is 75%, then determine the efficiency of the turbine. Take atmospheric 
pressure head as 10.3 m of water.

Solution
Refer Figure 23.6. Let H = 5 5. ,m  P = 2950 kW,  d2 3= m,  Hs = 1 6. ,m  [ ( )] ( ),p gw2 5/ m vacρ =  ηd = 0 75.  and 

[ ( )] . .p ga w/ mρ = 10 3

p

gw

2 10 3 5 5 3
ρ

= − =. . ( )m abs
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p

g

p

g
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w
s
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⎠
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/
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∴ =
×

=
× ×

=V
g

2
3 4 2

0 75

3 4 2 9 81

0 75
9 43

.

.

. .

.
. m/s
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4 4
3 9 43 66 657

π π
. . m /s

η
ρo

w

P

gQH
= = ×

× × ×
× =1000 1000 2950

1000 9 81 66 657 5 5
100

. . .
82.02%

 Example 23.11  A Kaplan turbine develops 1800 kW with an overall efficiency of 85% while working under a head 
of 7 m. The turbine is set 2 m above the tail race level. The vacuum gauge fitted at the turbine exit reads a suction head of 
3.1 m. If the inlet diameter of draft tube is 2.8 m and the loss of head due to friction in the tube is equal to 0.2 × kinetic 
head at the exit, then determine (i) the loss of head due to friction and (ii) the efficiency of the draft tube. Take atmospheric 
pressure head as 10.3 m of water.

Solution
Refer Figure 23.7. Let P = 1800 kW, ηo = 0 85. , H = 7 m, Hs = 2 m, p gw2 3 1/ m vac( ) . ( ),ρ =  d2 2 8= . ,m  

h V gf = 0 2 23
2. [ ( )]/  and p ga w/ m( ) . .ρ = 10 3
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 (i) Q
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 Example 23.12  A conical draft tube having inlet and outlet diameters 1.2 m and 1.8 m discharges water at outlet with a 
velocity of 2.8 m/s. The total length of the draft tube is 6.5 m and 1.2 m as the length of the draft tube is immersed in water. 
If loss of head due to friction in the draft tube is equal to 0.2 × velocity head at the outlet of the tube, then determine (i) the 
pressure head at inlet and (ii) efficiency of the draft tube. Take atmospheric pressure head as 10.3 m of water.

Solution
Refer Figure 23.7. Let d2 1 2= . ,m  d3 1 8= . ,m  V3 2 8= . ,m/s  ( ) . ,H ys + = 6 5 m  y = 1 2. ,m  h V gf = 0 2 23

2. [ ( )]/  and 
p ga w/ m( ) . .ρ = 10 3

H ys = − = − =6 5 6 5 1 2 5 3. . . . m

Q A V d V= = × = × × =3 3 3
2

3
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4 4
1 8 2 8 7 125

π π
. . . m /s

V
Q

A

Q

d
2

2 2
2 24

7 125

4 1 2
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×
=

( )
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( ) .
.

π π/ /
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Figure 23.7
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 (i) 
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 Example 23.13  A water turbine has a velocity of 6 m/s at the entrance to the draft tube and a velocity of 1.2 m/s at the 
outlet. For the frictional losses of 0.1 m and tail water 5 m below the entrance to the draft tube, find the pressure head at 
the entrance.

Solution
Refer Figure 23.7. Let V2 6= m/s, V3 1 2= . ,m/s  hf = 0 1. m and Hs = 5 m.
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2ρ ρ
= − −

−
−

⎛

⎝
⎜

⎞

⎠
⎟

If p ga w/ ( )ρ = 0, then p gw2 /( )ρ  will be the vacuum pressure head at the inlet of draft tube as given below.

p
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2
2 2
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2 9 81
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⎡

⎣
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⎤

⎦
⎥
⎥
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.
. −−6.66 m

If p ga w/ m of water( ) .ρ = 10 3 , then p gw2 /( )ρ  will be the absolute pressure head at the inlet of draft tube as given below.

p
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.
. 3.64 m

 Example 23.14  A Kaplan turbine operating under a head of 6 m develops 2000 kW with an overall efficiency of 86%. 
The draft tube has an efficiency of 75%. The inlet diameter of the tube is 2.4 m and the pressure at its entry should not fall 
more than 5.5 m below atmospheric pressure. Determine the height at which the runner may be set above the tail race level.

Solution
Refer Figure 23.8. Let H = 6 m, P = 2000 kW, ηo = 0 86. , ηd = 0 75. , d2 2 4= . m and [( ) ( )] . .p p ga w− =2 5 5/ mρ

Q
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π π
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Since 
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 [From Equation (23.5)]
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23.6 ❐ CAVITATION IN TURBINES
The pressure at any point inside the turbine should not be less than the vapour pressure of water. Otherwise, vaporization 
of water starts and a number of bubbles will form in the low pressure region. These bubbles formed on account of low 
pressures are carried away by the stream to higher pressure zones where the vapours condense and the bubbles suddenly 
collapse. This results in the formation of cavity and the surrounding liquid rushes to fill it. The liquid moving from all 
directions collides at the centre of cavity and it creates very high local pressure which may be as high as 7000 atmospheres. 
This cycle of cavity formation and high pressure is repeated with a high frequency (about 2500 cycles per second). The 
metallic surface in the vicinity of this region is also subjected to this intense pressure. This may cause severe damage to 
the surface which ultimately fails by fatigue and the surface becomes badly pitted and scored. Therefore, this phenomenon 
is called cavitation.

Generally, cavitation occurs in reaction turbines at the runner exit or at the inlet of the draft tube. The turbine parts 
should be properly designed to avoid cavitation. Due to cavitation, the metallic surfaces are damaged and cavities are 
formed. The pitting alters the streamline pattern of the blade contours which reduces the torque produced and also the 
power. Due to cavitation, the metal of the runner vanes and the draft tube is gradually eaten away, which eventually lowers 
the efficiency of the turbine. Cavitation also causes a considerable vibration and noise.

The effects of cavitation can be reduced by following specific methods, such as (i) setting the turbine near the tail race 
level, (ii) by using cavitation resistant materials, like aluminium-bronze, stainless steel and nickel steel for manufacturing 
of blades and (iii) by applying coatings of cavitation resistant materials over the place where cavitation is likely to occur.

In order to determine the zone where turbine can work without being affected from cavitation, Prof. D. Thoma of 
 Germany suggested a dimensionless parameter called Thoma’s cavitation factor, which is denoted by σ  and its value is 
given below.

	 σ =
−

=
− −

=
H H

H

H H H

H

H

H
b s a v s ts( )

 (23.9)

Here, Hb is the barometric pressure head in m of water, Ha is the atmospheric pressure head in m of water, Hv is the vapour 
pressure head in m of water, Hs is the suction pressure head in m of water, (or height of the runner outlet above tail race), 
H is the working head of the turbine in m of water and Hts is the total suction head.

The value of cavitation factor σ  depends on the specific speed of the turbine denoted by Ns. For a turbine of known Ns, 
the factor σ  can be reduced up to a certain value up to which its efficiency remains constant. Further decrease in its value 
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Outlet
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Tail race level
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Figure 23.8
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causes sharp fall in efficiency. This limiting value of σ  is called critical cavitation factor and it is denoted by σc ,  which 
is different for different turbines. The value of σc  for different turbines may be calculated from the following empirical 
relationships.

For Francis turbine: 

 σc sN= ×0 044 0 01 2. ( . )  (23.10)

For propeller turbine: 

 σc sN= + ×[ . . ( . ) ].0 3 0 0032 0 01 2 73  (23.11)

For Kaplan turbine: 

 σc sN= × + ×1 1 0 3 0 0032 0 01 2 73. [ . . ( . ) ].  (23.12)

 Example 23.15  A Francis turbine works under a head of 25 m and produces 11750 kW while operating at 120 rpm. The 
turbine has been installed at a suction where atmospheric pressure is 10 m of water and vapour pressure is 0.25 m of water. 
Determine the maximum height of the straight draft tube for the turbine.

Solution
Let H = 25 m,  P = 11750 kW, N = 120 rpm, Ha = 10 m and Hv = 0 25. .m 	 Let Hs be the maximum height of the 

straight draft tube for the turbine.

N
N P

H
s = =

×
=

5 4 5 4

120 11750

25
232 69

/ /
.

σc sN= = × × =0 044 0 01 0 044 0 01 232 69 0 2382 2. ( . ) . ( . . ) .

To avoid cavitation, the cavitation factor ( )σ  must be equal to at leastσc  as expressed below.

σc
a v sH H H

H
=

− −( )

Thus 0 238
10 0 25

25
.

.
=

− − Hs

∴ = − − × =Hs 10 0 25 0 238 25. . 3.8 m

23.7 ❐ NEW TYPES OF TURBINES
Some of the new types of turbines are (i) Deriaz or diagonal turbine, (ii) tubular turbine, and (iii) bulb turbine. The 
 characteristic properties of these turbine types are discussed below.

23.7.1 Deriaz or Diagonal Turbine
Deriaz turbine is named in the honour of its inventor P. Deriaz. He utilized the idea of Kaplan turbine in which  maximum 
efficiency is attained under variable load conditions by the use of movable blade runner. The Deriaz turbine is an  intermediate 
between the mixed flow and the axial flow turbines. In a Deriaz turbine, the blades are inclined to the hub at an angle of 45° 
and thus, it is also known as diagonal turbine. The blades are adjustable like a Kaplan turbine and its numbers vary from 
10 to 12. The blades are movable, so its runner has no outer rim to connect them. A schematic view of a Deriaz turbine is 
shown in Figure 23.9.

Its blades are simpler than the Kaplan turbine but the basic difference lies in its design. In closed position, the vanes of 
Deriaz turbine come in contact with each other at the periphery as well as near the hub. Thereby, the whole cross-sectional 
area can be recovered. However, in Kaplan turbines, the vanes come in contact with each other at the periphery only and a 
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large gap remains between them near the hub. The feature of complete closure of the vanes causes simplification in  operation, 
reduction in the overall size of the machine, easy starting and reduction in cost of power house structure. The other parts of 
this turbine, such as scroll casing, stay vanes, guide vanes and draft tubes are similar to Kaplan turbine (reaction turbine).

A Deriaz turbine is suitable for the head range between Kaplan and Francis turbine. It is particularly suitable for medium 
head ranging from 30 m to 150 m. Its runner is so shaped that it can be used both as a turbine as well as a pump. Thus, it is 
also known as a reversible type turbine. It is economical to use this turbine as a turbine or a pump working in pump storage 
plants. Some of the advantages of this turbine are low starting torque, over load capacity, improved part load efficiency and 
stability of operation during starting.

23.7.2 Tubular Turbine
The efficiency of a Kaplan turbine under low heads is less due to excessive loss at the bends. Moreover, deep excavation 
increases overall cost of the plant. These two facts lead to the development of low head turbines, such as tubular and bulb 
 turbines. Tubular turbine was developed by Arno Fischer (Germany) in 1937. This turbine is a modified axial flow turbine 
and it has no scroll casing. The runner is fitted in a tube extending from the head water to the tail water, so it is given the 
name tubular turbine. Its blades may be adjustable or non-adjustable. Thus, it is similar to Kaplan and propeller turbines. 
These  turbines may have either vertical or horizontal or inclined disposition of shaft and are capable to work under the heads 
 ranging from 3 m to 15 m. The schematic views of vertical shaft and inclined shaft tubular turbines are shown in Figure 23.10.

23.7.3 Bulb Turbine
A turbo-generator set having a tubular turbine and the generator housed in a bulb shaped watertight casing is called a bulb 
set which remains submerged in the stream of water. The tubular turbine with horizontal disposition of shaft used for the 
set is called a bulb turbine. A schematic view of a bulb turbine is shown in Figure 23.11.

Spiral casing

Stay vane

Guide vane

Draft tube

Shaft
Adjustable

inclined vane

Hub

Figure 23.9 Deriaz (or diagonal) turbine

(a) Vertical shaft turbine (b) Inclined shaft turbine

Generator

Turbine

Valve

Tail race

Head race

Turbine

Head race

Tail race

Generator

Figure 23.10 Tubular turbine

M23 Fluid Mechanics and Hydraulic Machines XXXX 01.indd   20 4/6/2019   12:12:07 PM

Download more at Learnclax.com



  23.21 Propeller and Kaplan Turbines 

The horizontal positioning of the shaft results in a reduced size when compared to the vertical shaft arrangement. The 
bulb could be either upstream or downstream of the runner. Mostly, the bulb remains upstream of the runner and the axis 
of rotation coincides with the axis of passage of water, which generally remains straight. The outer surface of the bulb is 
streamlined to minimize the loss of energy during the flow of water from the head pond to the turbine. Generally, there are 
two types of bulb sets, namely large bulb and small bulb sets. Large bulb sets are utilized to harness tidal power, whereas 
small bulb sets are employed for irrigation channels.

In a bulb turbine, the straight line flow appreciably increases the hydraulic efficiency in comparison with a Kaplan 
turbine. On the intake side of a bulb turbine, the spiral casing is replaced by straight convergent intake duct which is 
favourable for the runner operation. In its downstream side, the straight conical draft tube replaces the elbow type draft 
tube. Therefore, much more of the kinetic energy can be recovered at the discharge side of the turbine and thus, the turbine 
efficiency is improved.

The bulb turbine is a small axial flow reaction turbine which is used for extremely low heads varying from 3 m to  
15 m. A bulb turbine has less advantage in comparison to the Kaplan turbine beyond the mentioned head. It has higher 
full-load efficiency and higher flow capacity as compared to the Kaplan turbine. The bulb turbine is quite suitable for tidal 
power plants. It is considered as the best selection for exploitation of hydraulic power with extremely low water head and 
extremely large discharge. It has high specific speed, high efficiency and large discharge. Moreover, it needs less excavation 
in civil works.

In a bulb turbine, the bulb set is completely submerged under pressure. This leads to water leakage into the generator 
chamber and condensation, which are the main source of trouble. In this turbine, the erection technique also involves 
 considerable amount of time. In India, bulb turbines are being used in power stations, such as in Gandak Western Canal 
House and the Kosi East Canal Power House.

Turbine runnerBulb

Tail raceConical draft tubeGenerator

Head race

Adjustable guide vanes

Figure 23.11 Bulb turbine

Summary

 1. Axial flow turbines: Water flows parallel to the axis of rota-
tion of the vertical shaft.

 2. Propeller turbine: The runner blades are fixed and 
non-adjustable.

 3. Kaplan turbine: The runner blades are made adjustable. It 
has twisted runner vanes due to which its part load efficiency 
is higher than Francis turbine.

 4. Discharge (Q) through Kaplan and propeller turbines: 

Q D D Vo b fi= −( / )( )π 4 2 2

 5. Velocity of flow: V V V K gHfi fo f f= = = 2

 6. A draft tube is an airtight pipe of gradually increasing 
cross-sectional area. It is used in reaction turbines for dis-
charging water. One end of the draft tube is connected to the 
runner exit and the other is submerged into the tail race.

 7. Efficiency of a draft tube: ηd
fV V g h

V g
=

− −[( ) ( )]

( )

2
2

3
2

2
2

2

2

/

/

 8. The phenomenon where the formation of vapour bubbles in 
the low pressure zone and sudden collapsing of these bubbles 
in the high pressure zone may cause severe damage to the 
surfaces is called cavitation.
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 9. Thoma’s cavitation factor: σ = − −( )H H H Ha v s / . The lim-
iting value of σ  up to which it can be decreased but efficiency 
remains constant is called critical cavitation factor ( )σc .

σc sN= ×0 044 0 01 2. ( . )        (For Francis turbine)

σc sN= + ×[ . . ( . ) ].0 3 0 0032 0 01 2 73  (For propeller turbine)

σc sN= × + ×1 1 0 3 0 0032 0 01 2 73. [ . . ( . ) ].

(For Kaplan turbine)

 10. The Deriaz turbine is an intermediate between the mixed flow 
and the axial flow turbines and it is also known as diagonal 
turbine.

 11. Tubular turbine is a modified axial flow turbine whose runner 
is fitted in a tube extending from the head water to the tail 
water.

 12. The tubular turbine with horizontal disposition of shaft used 
for the bulb set is called a bulb turbine. It is used for extremely 
low heads ranging from 3 to 15 m.

Multiple-choice Questions

 1. The dimensionless specific speed of a Kaplan turbine is about
(a) 9.
(b) 0.
(c) 0.9.
(d) None of the above

 2. The value of flow ratio in case of Kaplan turbine is
(a) 0.4 and 0.5.
(b) 0.5 and 0.
(c) 0.6 and 1.
(d) 0.7 and 1.5.

 3. The number of blades in a Kaplan turbine are
(a) 2 to 4.
(b) 3 to 8.
(c) 8 to 12.
(d) 12 to 15.

 4. In Kaplan turbines, the ratio of the hub diameter to runner 
diameter usually varies from
(a) 0.1 to 0.3.
(b) 0.35 to 0.6.
(c) 0.65 to 0.8.
(d) None of the above.

 5. All reaction turbines become susceptible to cavitation when
(a) Pressure becomes high.
(b) Velocity becomes high.

(c) Pressure falls below the vapour pressure.
(d) None of the above.

 6. The degree of reaction of a Kaplan turbine is
(a) 1.
(b) Less than 1.
(c) 0.
(d) Less than 1 but greater than 0.5.

 7. Which of the following statement is incorrect for a Kaplan 
turbine?
(a) It has blades of small chamber to avoid separation.
(b) It has adjustable blades.
(c) It has large guide blade angles than of a Francis turbine.
(d) It has mixed flow velocity.

 8. The pressure of water acting on the runner vanes of a reaction 
turbine is
(a) Below atmospheric.
(b) Equal atmospheric.
(c) Above atmospheric.
(d) None of the above.

 9. The following draft tube is the most efficient
(a) Moody’s spreading.
(b) Conical type.
(c) Elbow type.
(d) Elbow tube having circular inlet and rectangular outlet.

Review Questions

 1. How is a Kaplan turbine different from a propeller turbine? 
Explain the characteristic features of the Kaplan turbine.

 2. Draw a schematic view of a Kaplan turbine and explain 
briefly its construction and working principle. Also compare 
Francis and Kaplan turbines.

 3. Explain the governing mechanism of a Kaplan turbine. Also 
clearly state how it differs from the governing mechanism of 
a Francis turbine.

 4. What is a draft tube? Also derive an expression for its 
efficiency.

 5. Give functions of a draft tube and discuss some typical draft 
tubes with diagrams.

 6. Describe the Deriaz turbine with a suitable sketch and also 
give its advantages.

 7. Write short note on the following: (i) tubular turbine and 
(ii) bulb turbine.

 8. Define cavitation. Why does it occur and what are its effects?
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  23.23 Propeller and Kaplan Turbines 

Problems

 1. A Kaplan turbine develops 20 MW at an average head of 30 m 
with an overall efficiency of 90%. Taking the value of speed 
ratio = 2, flow ratio = 0.6 and diameter of the hub = 0.35 times 
of the diameter of the runner, calculate (i) the diameter of the 
runner, (ii) speed of the turbine and (iii) specific speed of the 
turbine.

[Ans. 2.743 m, 337.83 rpm, 680.47]

 2. A propeller turbine has been designed to develop 22 MW 
under a head of 20 m whilst running at 150 rpm. The other 
relevant data are overall efficiency = 88.3%, hydraulic effi-
ciency = 95.2%, outer diameter of runner = 5 m, diameter 
of the hub = 2.5 m. If the turbine discharges without whirl 
at exit, then determine the runner vane angles at the hub and 
at the outer periphery. Also determine the specific speed of 
the turbine.

[Ans. 139.58°, 23.71°, 165.98°, 12.38°, 526.03]

 3. A Kaplan turbine runner is to be designed to develop 9 MW 
under a net head of 5.5 m with an overall efficiency of 88%. 
If the diameter of the boss is one third of the diameter of the 
runner, the speed ratio is 2.09 and flow ratio is 0.68, then 
calculate (i) the diameter of the runner, (ii) speed of the 
runner and (iii) specific speed of the turbine.

[Ans. 6.2 m, 66.9 rpm, 753.52]

 4. The hub diameter of a Kaplan turbine working under a head 
of 10 m is 0.3 times the diameter of the runner. The turbine is 
running at 100 rpm. The velocity of whirl at outlet is zero. If 
the vane angle of the extreme edge of the runner at outlet is 
15° and the flow ratio is 0.62, then determine the diameter of 
runner and the boss and discharge through the runner.

[Ans. 6.19 m, 1.86 m, 237.62 m3/s]

 5. A Kaplan turbine runner is to be designed to develop 7350 kW 
shaft power. The net available head is 5.6 m. Assume that the 
speed ratio is 2.05 and flow ratio is 0.67, and the overall effi-
ciency is 60.5%. The diameter of the boss is one third of the 
diameter of the runner. Find the diameter of the runner and 
the boss, runner speed and specific speed.

[Ans. 6.72 m, 2.24 m, 61.07 rpm, 607.77]

 6. A Kaplan turbine runner has outer diameter of 4.6 m and 
the diameter of the hub is 2.1 m. It is required to develop 
20.62   MW when running at 150.2 rpm, under a head of 
21.2 m. If the hydraulic efficiency is 94.5% and overall effi-
ciency is 88.5%, then evaluate (i) the runner angles at inlet 
and exit at the mean diameter of the vanes and (ii) the run-
ner angles at inlet and exit at two sections near the hub and 
the outer periphery. Also evaluate the specific speed of the 
turbine.

[Ans. 155.72°, 17.92°, 121.44°, 24.54°,  
166.22°, 11.77°, 474.13]

 7. The runner and boss diameters of a Kaplan turbine are 6 m 
and 2 m, respectively. The discharge through the turbine is 
200 m3/s. The hydraulic and mechanical efficiencies of the 
turbine are 90% and 95%, respectively. Assuming that dis-
charge is free and there is no swirl at outlet, determine (i) the 
head, (ii) brake power developed by the turbine, (iii) runner 
speed if the speed ratio is 2.09 and (iv) specific speed.

[Ans. 32.29 m, 54166.798 kW, 167.43 rpm, 506.25]

 8. A propeller turbine of runner diameter 4.5 m is running at 
45 rpm. The guide blade angle at inlet is 145° and the runner 
blade angle at outlet is 25° to the direction of vane. The axial 
flow area of water through runner is 30 m2. If the runner blade 
angle at inlet is radial, then determine (i) the hydraulic effi-
ciency of the turbine, (ii) discharge through the turbine and 
(iii) power developed by the turbine.

[Ans. 57.32%, 222.66 m3/s, 1252.136 kW]

 9. A Kaplan turbine has the following specifications, such as 
discharge = 60.5 m3/s, hydraulic efficiency = 90.4%, mechan-
ical efficiency = 94.5%, runner diameter = 4 m, diameter of 
boss = 0.3 times the runner diameter, speed ratio = 2, there is 
no swirl at outlet and discharge is free. Determine (i) the net 
head available on the turbine, (ii) power developed, (iii) run-
ner speed and (iii) specific speed of the turbine.

[Ans. 14.86 m, 7534.31 kW, 163.05 rpm, 485.09]

 10. An axial flow bulb turbine operates at 6 MW generator. The 
other relevant data are speed = 140 rpm, head = 6 m, run-
ner tip diameter = 5.5 m, hub diameter = 3 m, generator effi-
ciency = 95%, overall efficiency = 89%, hydraulic efficiency 
= 93%. If there is no exit whirl, then determine the runner 
vane angles at the inlet and exit at the outer periphery. Also 
determine the specific speed of the turbine.

[Ans. 169.5°, 10.15°, 1184.82]

 11. The following data are given for a propeller turbine, such as 
head = 14.5 m, speed = 150 rpm, runner mean diameter = 
1.6 m, water leaves the guide vanes at an angle = 15° with 
the peripheral speed, moving blade outlet angle = 25°, kinetic 
energy coefficient for the moving blades = 0.94, and losses 
in the penstock and the guide vane account for = 10% of the 
total head available. Determine (i) the inlet angle of the mov-
ing blade, (ii) axial and whirl velocities at inlet and outlet, 
(iii) magnitude and direction of the absolute velocity at outlet 
and (iv) hydraulic efficiency.

[Ans. 55.17°, 4.14 m/s, 15.45 m/s, 2.07 m/s,  
8.4 m/s, 14.27°, 64.6%]

 12. A Kaplan turbine develops 2.8 MW while operating under a 
head of 5.2 m. It is fitted with a draft tube with its inlet set 1.8 m  
above the tail race level. A vacuum gauge connected to the 
draft tube indicates a reading of 5.2 m of water. If the inlet 
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diameter of the draft tube is 3 m and its efficiency is 75%, 
then determine the overall efficiency of the turbine.

[Ans. 82.35%]

 13. A conical draft tube of 5 m height and 2 m in diameter at 
the top discharges water with a velocity of 1.5 m/s with a 
rate of 30 m3/s. Find the height of tube immersed in water 
if the pressure head at the inlet is 7.5 m of water (vacuum), 
the atmospheric pressure is 10.3 m of water and there is no 
pressure loss.

[Ans. 2.03 m]

 14. Determine the efficiency of a Kaplan turbine developing 
3000 kW under a net head of 5.2 m. It is fitted with a draft 
tube with its inlet diameter 3 m set placed 1.5 m above the 
tail race level. A vacuum gauge connected to the inlet of draft 
tube indicates a reading of 5 m of water. Assume the draft 
tube efficiency as 80%.

[Ans. 87.39%]

 15. A Kaplan turbine develops 1500 kW under a head of 6 m. 
The turbine is set at 2.5 m above water level. A vacuum gauge 
inserted at the turbine outlet records a suction head of 3.1 m. 
If the turbine efficiency is 85%, then what is the efficiency of 
the draft tube having inlet diameter of 3 m?

[Ans. 65.48%]

 16. A Francis turbine provided with a cylindrical draft tube of 
diameter 2 m works under a static head of 5 m. It develops 
300 kW at an overall efficiency of 86%. If a tapered draft tube 
with inlet and outlet diameters as 2 m and 3.5 m, respectively 
and having an efficiency of conversion of 92% is substituted 
for the cylindrical one, then determine the increase in effi-
ciency and power of the turbine. It is given that head, speed 
and discharge remains constant.

[Ans. 4.3%, 15 kW]

 17. A Kaplan turbine is fitted with an elbow type draft tube with 
a circular inlet of 2 m diameter. It develops 1900 kW under a 
net head of 8.5 m. The inlet is set at a height of 1.2 m above 
the tail race level. A vacuum gauge connected to draft tube 
inlet measures a reading of 35 02 2. kN/m . If the efficiency 
of the draft tube is 76%, then determine the efficiency of the 
turbine. If the ratio of area of circular inlet and rectangular 
exit of the draft tube is 1 : 4, then determine the power lost 
due to friction in the tube. If the turbine output is reduced to 
900 kW and speed remains unchanged, then determine the 
vacuum gauge reading.

[Ans. 92.93%, 0.55 m, -1.303 m]

 18. A Kaplan turbine develops 1550 kW under a head of 6.2 m. 
The turbine is set 1.5 m above the tail race level. A vacuum 
gauge inserted at the turbine outlet records a suction head of 
3 m. If the hydraulic efficiency is 85%, then what would be 
the efficiency of draft tube having inlet diameter of 2.5 m? 
What will be the reading of suction gauge if power developed 
is reduced to 775 kW, where the head, efficiency and speed 
remains constant.

[Ans. 79.35%, 1.876 m]

 19. The axis of a Francis turbine and its draft tube is vertical. 
The pressure head in the spiral casing at inlet is 42 m above 
atmosphere and the speed of water is 5.5 m/s. The water flow 
rate through the turbine is 2 m3/s. The hydraulic and overall 
efficiencies of the turbine are 86% and 82%, respectively. The 
top of the draft tube is 1 m below the centre line of the casing 
and the tail race is 3.5 m below the top of the draft tube. If 
the diameter of the draft tube at its exit is 1.15 m, then deter-
mine (i) the total head across the turbine, (ii) power output, 
(iii)  head lost in friction in the turbine and draft tube, and 
(iv) the power lost in mechanical friction.

[Ans. 48.04 m, 772.89 kW, 6.5356 m, 37.692 kW]

ANSWERS TO MULTIPLE-CHOICE QUESTIONS

 1. (c) 2. (d) 3. (b) 4. (b) 5. (c)
 6. (d) 7. (d) 8. (c) 9. (a)
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24.1 ❐ INTRODUCTION
The turbines are designed for specific operating conditions also known as the design conditions. The turbines produce 
maximum efficiency while operating in these conditions. However, turbines are required to work under varying conditions 
of head, speed, power output and gate openings. The variations involved in the operating conditions of a turbine are as 
 follows. In such conditions, (i) the power output may vary by the movements of the wicket gates or the spear while the head 
and speed remains constant, (ii) the head and the power output of the turbine may vary, the speed is adjusted to maintain 
the same efficiency and the gate opening remains constant, (iii) the head and speed may vary which generally happens in 
low head units and (iv) the speed may vary by adjusting the load on the turbine, while the head and gate opening remains 
constant.

In order to predict the behaviour and to establish a comparison between the performances of the turbines of the same 
type operating under varying conditions, the results are presented in terms of unit quantities, such as unit speed, unit 
 discharge and unit power. These quantities are obtained by reducing the head to unity. Similarly, to establish a comparison 
between different types of turbines irrespective of their sizes and specific quantities, such as specific speed will be helpful.

The exact behaviour of the turbines operating under varying conditions can be determined by performing various tests 
either on the prototypes or on their small scale models. The test results are graphically plotted and the resulting curves 
are called characteristic curves. These curves are plotted in terms of unit quantities. The characteristic curves are of three 
types, namely constant head characteristic curves (or main characteristic curves), constant speed characteristic curves (or 
operating characteristic curves) and constant efficiency curves (or Muschel curves).

24.2 ❐ UNIT QUANTITIES
A turbine designed for specific operating conditions is often required to work under varying conditions of head, speed, 
output and gate opening. To predict the behaviour of a turbine and to establish a comparison between the performances of 
the turbines of the same type but of different sizes, the results are expressed in terms of unit quantities. The unit quantities 
are obtained when the head on the turbine is reduced to unity. For obtaining unit quantities, the efficiency of the turbine 
is assumed as constant, which is possible when the velocity triangles under working head and unit head are geometrically 
similar so that the water enters the turbine without shock. The important unit quantities are unit speed, unit power and unit 
discharge.

Chapter 24

Performances of Hydraulic 
Turbines
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24.2 Chapter 24

24.2.1 Unit Speed
It is defined as the speed of the turbine working under unit head and it is denoted by Nu. Let H be the head under which the 
turbine is working, N be the speed of the turbine and u be the tangential velocity.

Since u V H∝ ∝   [ ]∵V C gHv= 2

∴ ∝u H

Also u N∝ , D = Constant for a given turbine [ / ]∵u DN= π 60 �

∴ ∝N H

or N k H= 1  [k1 = Constant]  (i)

If head on the turbine becomes unity ( ),H = 1 m  then N Nu= . Thus, from Equation (i), we get the following expression.

� N k ku = =1 11  (ii)

N N Hu=   [Substitute (ii) in (i)]

�
∴ =N

N

H
u  (24.1)

24.2.2 Unit Discharge
It is defined as the discharge passing through a turbine which is working under a unit head and it is denoted by Qu. Let H 
be the head under which turbine is working and Q be the discharge through the turbine. The discharge through the turbine 
is given by the product of area and velocity as given below.

Q AV=

Since V H∝  and A = Constant for a given turbine �

Thus Q H∝ �

or Q k H= 2   [k2 = Constant]  (i)

If head on the turbine becomes unity ( ),H = 1 m  then Q Qu= . Thus, from Equation (i), we get the following expression.

� Q k ku = =2 21  (ii)

Q Q Hu=   [Substitute (ii) in (i)]

�
∴ =Q

Q

H
u  (24.2)

24.2.3 Unit Power
It is defined as the power developed by a turbine working under a unit head and it is denoted by Pu. Let H be the head under 
which turbine is working, P be the power developed by the turbine and Q be the discharge through the turbine.
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P
gQHo w=

η ρ
1000

or P QH∝  [ , ,ρ ηw og = Constant] �

or P H H∝ ×   [ ]∵Q H∝ �

or P H∝ 3 2/ �

or P k H= 3
3 2/   [ ]k3 = Constant  (i)

If head on the turbine becomes unity ( )H = 1 m , then P Pu= . Thus, from Equation (i), we get the following expression.

� P k ku = =3
3 2

31( ) /  (ii)

P P Hu= 3 2/  [Substitute (ii) in (i)]

�
∴ =P

P

H
u 3 2/

 (24.3)

24.2.4 Use of Unit Quantities
When a turbine works under different heads, its behaviour can be easily known from the value of the unit quantities. 
Let H1 and H2 be the heads under which turbine works, Q1 and Q2 be the corresponding discharges, N1 and N2 be the 
 corresponding speeds, and P1 and P2 be the corresponding powers developed. By using Equations (24.1), (24.2), and 
(24.3), respectively, we get the following expressions.

�
N

N

H

N

H
u = =1

1

2

2

 (24.4)

�
Q

Q

H

Q

H
u = =1

1

2

2

 (24.5)

�
P

P

H

P

H
u = =1

1
3 2

2

2
3 2/ /

 (24.6)

 Example 24.1  A turbine is to operate under a head of 25 m at 200 rpm. The discharge is 9 m3/s. If the efficiency is 90%, 
then determine the performance of turbine under a head of 20 m.

Solution

Let H1 25= m, N1 200= rpm, Q1 9= m /s3 , ηo = 0 9.  and H2 20= m.

P
gQ Ho w

1
1 1

1000

0 9 1000 9 81 9 25

1000

1986 525

= =
× × × ×

=

η ρ . .

. kW
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24.4 Chapter 24

Since 
N

H

N

H
1

1

2

2

=

∴ = = × =N
N H

H
2

1 2

1

200 20

25
178.885 rpm

Since 
Q

H

Q

H
1

1

2

2

=

∴ = = × =Q
Q H

H
2

1 2

1

9 20

25
8.05 m /s3

Since 
P

H

P

H

1

1
3 2

2

2
3 2/ /

=

∴ = = × =P
P H

H
2

1 2
3 2

1
3 2

3 2

3 2

1986 525 20

25

/

/

/

/

.
1421.4416 kW

24.3 ❐ SPECIFIC SPEED
It is defined as the speed of a geometrically similar turbine (i.e., a turbine which is identical in shape, dimensions, blade 
angles, gate openings, etc.) to the actual turbine but of such a size that under corresponding conditions it will develop unit 
power when working under unit head. The value of specific speed (Ns) for a turbine is given below.

P
gQHo w=

η ρ
1000

  (Shaft power of the actual turbine)

or P QH∝   [ , ,ρ ηw og = Constant]  (i)

Since u V H∝ ∝

Thus u H∝

Also u DN∝   [ / ]∵u DN= π 60 �

Thus DN H∝

or D
H

N
∝  (ii)

The discharge through the turbine is given by,

Q AV=

But A BD D∝ ∝ 2   [ ]∵ B D∝ �
and V H∝

Thus Q D H∝ 2  (iii)
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Q
H

N
H∝

⎛

⎝⎜
⎞

⎠⎟

2

 [Substitute (ii) in (iii)]

or Q
H

N
∝

3 2

2

/

Substituting the value of Q in expression (i), we get:

P
H

N
H∝ ×

3 2

2

/

or P
H

N
∝

5 2

2

/

Thus P k
H

N
=

5 2

2

/

  [k = Constant]  (iv)

By definition: When H = 1 and P = 1, then N Ns= . By substituting these values in Equation (iv), we get the following 
result.

1
15 2

2
= k

Ns

/

� N ks
2 =  (v)

Thus P N
H

N
s= 2

5 2

2

/

 [Substitute (v) in (iv)] 

N
N P

H
s
2

2

5 2
=

/

�
∴ =N

N P

H
s 5 4/

 (24.7)

It is observed from Equation (24.7) that the specific speed is independent of the dimensions or size of the turbines (model 
or prototype). Therefore, all geometrically similar turbines working under the same head, having the same speed ratio (Ku) 
and flow ratios (Kf) and thus, having the same efficiency will have the same specific speed irrespective of its sizes and 
powers developed under different heads. Usually, the specific speed is evaluated for working conditions corresponding to 
maximum efficiency. It is pertinent to mention here that specific speed signifies the shape rather than the size of a machine. 
Thus, it is evident that actual turbines of different shapes will have different specific speeds.

24.3.1 Significance of Specific Speed
The specific speed plays a significant role in the selection of the turbine types. The performance of a turbine can also 
be predicted by knowing the specific speed of the turbine. The higher specific speed of a turbine results in the reduction 
of runner diameter as well as the overall size of the runner. Thus, the weight and cost of the runner can also be reduced. 
 Therefore, from economic perspective, a turbine runner with the highest possible specific speed should be selected. The 
types of turbine for different specific speeds are given below.
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24.6 Chapter 24

 1. Pelton wheel with single jet: 8.5 to 30

 2. Pelton wheel with two or more jets: 30 to 50

 3. Francis turbine: 51 to 255

 4. Propeller and Kaplan turbine: 255 to 860

24.4 ❐ SUCTION SPECIFIC SPEED
The suction specific speed (Nsu) may be defined as the speed of geometrically similar turbine such that when it is  developing 
one kilowatt power, the total suction head is equal to one metre. The expression for suction specific speed may be obtained 
by replacing the total head or working head of the turbine (H) in Equation (24.7) by the total suction head (Hts). Therefore, 
suction specific speed is given in the following expression.

�
N

N P

H
su

ts

=
5 4/

 (24.8)

The suction specific speed provides very useful criterion for establishing similarity with regard to cavitation in the turbines 
in addition to Thoma’s cavitation factor (σ ).

Now recalling Equation (23.9), the total suction head is given by,

� H Hts = σ  (24.9)

By combining equations (24.8) and (24.9), we get:

N
N P

H
su =

( ) /σ 5 4

Thus σ =
⎛
⎝⎜

⎞
⎠⎟

N

N
s

su

4 5/

 (24.10)

Equation (24.10) is useful to establish a similarity with respect to cavitation in the model and prototype turbines.

 Example 24.2  A turbine is to operate under a head of 30 m at 190 rpm and the discharge is 8 m3/s. If the efficiency is 
85%, then determine (i) the power generated, (ii) specific speed of the turbine, (iii) type of turbine and (iv) the performance 
of turbine under a head of 20 m.

Solution
Let H1 30= m, N1 190= rpm, Q1 8= m /s3 , ηo = 0 85.  and H2 20= m.

 (i) P
gQ Ho w

1
1 1

1000

0 85 1000 9 81 8 30

1000
= = × × × × =

η ρ . .
2001.24 kW

 (ii) N
N P

H
s = = × =1 1

1
5 4 5 4

190 2001 24

30/ /

.
121.06

 (iii) Since specific speed lies in the range of 51 to 255, it is a Francis turbine.

 (iv) From Equations (24.4), (24.5) and (24.6), respectively, we get the following results.
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N
N H

H
2

1 2

1

190 20

30
= = × = 155.13 rpm

Q
Q H

H
2

1 2

1

8 20

30
= = × = 6.532 m /s3

P
P H

H
2

1 2
3 2

1
3 2

3 2

3 2

2001 24 20

30
= = × =

/

/

/

/

.
1089.34 kW

 Example 24.3  In a hydroelectric station, water is available at the rate of 175 m3/s under a head of 18 m. The turbine 
runs at a speed of 150 rpm with an overall efficiency of 82%. Find the number of turbines required if they have maximum 
specific speed of 460.

Solution

Let Q = 175 m /s3 , H = 18 m, N = 150 rpm, ηo = 0 82.  and Ns = 460. Let n be the number of turbines.

Since N
N P

H
s =

5 4/

∴ =
⎛

⎝
⎜

⎞

⎠
⎟ =

×⎛

⎝
⎜

⎞

⎠
⎟ =P

N H

N
s

5 4 2
5 4 2

460 18

150
12927 5

/ /

. kW

The total power available from these turbines is given by,

P
gQH

t
o w= =

× × × ×
=

η ρ
1000

0 82 1000 9 81 175 18

1000
25339 23

. .
. kW

∴ = = = ≈n
P

P
t 25339 23

12927 5
1 96

.

.
. 2

24.5 ❐ SPECIFIC SPEED IN TERMS OF KNOWN COEFFICIENTS

24.5.1 Specific Speed of Pelton Turbine
The specific speed of the Pelton turbine may be expressed in terms of Cv (or Kv), Ku (or ϕ ), ηo  and m as given below.

Since u K gH
DN

u= =2
60

π

Thus N
K gH

D

K H

D
u u= =

60 2 84 6

π
.

 (i)

Since P
gHQ gH AV gH d C gHo w o w o w v= = =

×η ρ η ρ η ρ π
1000 1000

4 2

1000

2( ) [( / ) ]

 ∴ =P d C H kWo v34 13 2 3 2. ( )/η  (ii)
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�
N

N P

H

K H d C H

D H
s

u o v= =
×

×5 4

1 2 2 3 2 1 2

5 4

84 6 34 13
/

/ / /

/

. ( . ) ( )η
 [Substitute (i) and (ii)] 

�
∴ = =N

K C

D d

K C

ms
u o v u o v494 24 494 241 2 1 2. ( )

( / )

. ( )/ /η η
 (24.7.1)

Considering usual values of the coefficients K Cu v o= = =0 46 0 98 0 85. , . .and η , we get:

�
N

m ms =
× × ×

=
494 24 0 46 0 85 0 98 207 51 2. . ( . . ) ./

 (24.7.1a)

Equation (24.7.1a) signifies the relationship between specific speed (Ns) and jet ratio (m) for a single jet Pelton wheel. For 
maximum efficiency, the jet ratio varies from 11 to 14, but in practice for most of the cases it is taken as 12. However, in 
some exceptional cases, an abnormally low value of m = 7 has also been used. The value of specific speed is observed 
to have a narrow range of variation which varies from about 30 to 17 for the values of jet ratio varying from 7 to 12. For 
multiple jets Pelton turbine with n jets, the Equation (24.7.1a) for specific speed is given below.

�
N

n

ms =
207 5.

 (24.7.1b)

24.5.2 Specific Speed of Francis Turbine
The specific speed of the Francis turbine may be expressed in terms of Ku, Kf , ηo  and n as given below.

Since u K gH
D N

i u
i= =2

60

π

Thus N
K gH

D

K H

D
u

i

u

i
= =

60 2 84 6

π
.

 (i)

Since P
gHQ gH AV gH k nD K gH

o w o w o w i f= = =
×η ρ η ρ η ρ π

1000 1000

2

1000

2
( ) ( )

 

 P knD K H kWo i f= 136 51 2 3 2. ( )/η  (ii)

N
N P

H

K H knD K H

D H
s

u o i f

i

= =
×

×5 4

1 2 2 3 2 1 2

5 4

84 6 136 51

/

/ / /

/

. ( . ) [ ]η
 [Substitute (i) and (ii)]

�
∴ =N K knKs u f o988 45. η  (24.7.2)

Generally, the overall efficiency ( )ηo  and the vane thickness factor (k) have constant values. Thus, the Equation (24.7.2) 
indicates that specific speed Ns for the Francis turbines depends upon the speed ratio (Ku), flow ratio (Kf ) and breadth 
ratio (n). In general, Ku ranges from 0.6 to 0.9, Kf ranges from 0.15 to 0.30 and n ranges from 0.10 to 0.45. The variation 
in any or all of these parameters change Ns and hence, a much greater range of Ns is available for Francis turbines (51 to 
255) when compared to that for Pelton wheel (8.5 to 50).
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 Performances of Hydraulic Turbines 24.9

24.5.3 Specific Speed of Kaplan and Propeller Turbines
The specific speed of the Kaplan and propeller turbine may be expressed similarly as that of Francis turbines. It may be 
obtained in terms of Ku and Kf as given below.

Since u u K gH
D N

i o u
o= = =2

60

π

Thus N
K gH

D

K H

D
u

o

u

o
= =

60 2 84 6.
 (i)

P
gHQ gH AV gH D n K gH

o w o w o w o f= = =
× − ×η ρ η ρ η ρ π

1000 1000

4 1 2

10

2 2
( ) ( / ) ( )

000

�
P D n K Ho o f= −34 13 12 2 3 2. [ ( ) ]/η  (ii)

�
N

N P

H

K H D n K H

D H
s

u o o f

o

= =
× −

×5 4

1 2 2 2 3 2 1 2

5 4

84 6 34 13 1

/

/ / /

/

. ( . ) [ ( ) ]η
 [Substitute (i) and (ii)] 

�
∴ = −N K n Ks u f o494 24 1 2. ( ) η  (24.7.3)

If ηo b on D D= = =0 9 0 35. ( / ) .and , then Equation (24.7.3) is given by,

�
N K K K Ks u f u f= − × =494 24 1 0 35 0 9 439 222. ( . ) . .  (24.7.3a)

24.6 ❐ MODEL RELATIONSHIP AND TESTING OF TURBINES
The model is a small scale replica of the actual machine or the prototype. For complete similarity to exist between the 
model and the prototype turbines, the following conditions may be satisfied. The subscripts m and p used in the following 
discussion denote the model and the prototype turbines, respectively.

24.6.1 Head Coefficient
Since u V H∝ ∝

u H∝

Also u DN∝   [ ]∵u DN= π /60 �

� ND H∝  (i)

�

ND

H
= Constant  (24.11)

�
∴ =

H

N D2 2
Constant  (24.11a)
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Thus 
H

N D

H

N Dm p
2 2 2 2

⎛
⎝⎜

⎞
⎠⎟

=
⎛
⎝⎜

⎞
⎠⎟

 (24.11b)

The parameter [ ( )]H N D/ 2 2  is called head coefficient.

The scale ratio is the ratio of diameter of turbine model and the prototype of turbine. The scale ratio for a turbine may 
be expressed as shown below. 

From Equation (i), we get:

D N

D N

H

H
m m

p p

m

p

=

�
∴ =

D

D

N

N

H

H
m

p

p

m

m

p
 (24.12)

24.6.2 Capacity or Flow Coefficient
The discharge through the turbine is given by the following expression.

Q AV=

Since A D V H∝ ∝2 and

∴ ∝Q D H2

Q D ND∝ 2 ( )  [ ]∵ ND H∝

Q ND∝ 3

�
∴ =

Q

ND3
Constant  (24.13)

Thus 
Q

ND

Q

NDm p
3 3

⎛
⎝⎜

⎞
⎠⎟

=
⎛
⎝⎜

⎞
⎠⎟

 (24.13a)

The parameter [ ( )]Q ND/ 3  is called the capacity or flow coefficient.

24.6.3 Power Coefficient
The power at the shaft of a turbine is given by the following expression.

P
gQHo w=

η ρ
1000

P QH∝  [ , ,∵ρ ηw og = Constant]

Since Q ND H ND∝ ∝3 and

P ND N D∝ ( )( )3 2 2

P N D∝ 3 5

M24 Fluid Mechanics and Hydraulic Machines XXXX 01.indd   10 4/5/2019   1:36:07 PM

Download more at Learnclax.com



 Performances of Hydraulic Turbines 24.11

�
∴ =

P

N D3 5
Constant  (24.14)

Thus 
P

N D

P

N Dm p
3 5 3 5

⎛
⎝⎜

⎞
⎠⎟

=
⎛
⎝⎜

⎞
⎠⎟

 (24.14a)

The parameter [ / ( )]P N D3 5  is called the power coefficient.

24.6.4 Model Testing of Turbines
The numerous variables involved in the analysis of model testing of turbines are discharge (Q), head (H), speed (N), runner 
diameter (D), power output (P), mass density ( )ρ  and viscosity ( )μ  of the fluid used. With the help of dimensional analysis, 
these variables may be grouped into the following dimensionless numbers.

Q

ND

gH

N D

P

gHND ND3 2 2 3 2
, , ,

ρ
μ

ρ

The last term is the expression of Reynolds number which does not affect the performance of turbines when the flow is 
turbulent. In most of the problems, the value of acceleration due to gravity and the density are same in the model and the 
prototype. Therefore, we have the following groups.

Q

ND

H

N D

P

HND3 2 2 3
1 2 3( ), ( ), ( )st nd rdgroup group group

By combining 1st  and 2nd  groups, we get:

1

2
3

2 2

2

st

nd

group

group
= × =

Q

ND

N D

H

Q

D H

Thus 
Q

D H

Q

D Hm p
2 2

⎛
⎝⎜

⎞
⎠⎟

=
⎛
⎝⎜

⎞
⎠⎟

 (24.15)

By combining 2nd  and 3rd  groups, we get:

3

2
3

2 2

2 3 2

rd

nd

group

group
= × =

P

HND

N D

H

P

D H /

Thus 
P

D H

P

D Hm p
2 3 2 2 3 2/ /

⎛
⎝⎜

⎞
⎠⎟

= ⎛
⎝⎜

⎞
⎠⎟

 (24.16)

By combining 2nd  and 3rd  groups, the specific speed for turbines can be obtained as given below.

3

2 3 4 3

2 2 3 4

5 4

rd

nd

group

group( ) /

/

/
= ×

⎛

⎝
⎜

⎞

⎠
⎟ = =

P

HND

N D

H

N P

H
Ns
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Thus 
N P

H

N P

Hm p
5 4 5 4/ /

⎛

⎝⎜
⎞

⎠⎟
=

⎛

⎝⎜
⎞

⎠⎟
 or N Ns m s p( ) = ( )  (24.17)

With the use of above relations, it is possible to present the behaviour of a prototype from the test conducted on geometri-
cally similar model which is assumed to have the same values of speed ratio, flow ratio and specific speed. Geometrically, 
similar machines have the same values of head, capacity and power coefficients or their combinations.

24.6.5 Scale Effect
For complete similarity to exist between the model and the prototype turbines, it is assumed that their efficiencies are equal. 
However, the efficiencies of the model and the prototype turbines are not equal. This is due to the surface roughness which 
causes more energy losses in the model than its prototype. Moreover, disproportionate leakage, mechanical and exit losses 
tend to cause different efficiencies. Thus, the efficiency of the model turbine is generally lower than that of its prototype. 
This aspect is referred to as scale effect that measures the error in predicting the performance of prototype turbine on the 
basis of the model test results. The overall efficiency of the prototype turbine is given by the following expression.

ηop
L

p

H h

H
=

−⎛
⎝⎜

⎞
⎠⎟

Here, H and hL are the head and the loss of head, respectively.
Thus, the net effective head available for the prototype turbine is given by,

( ) ( )H h HL p op p− = η

The overall efficiency of the model turbine is given by,

ηom
L

m

H h

H
=

−⎛
⎝⎜

⎞
⎠⎟

Thus, the net effective head available for the model turbine is given by,

( ) ( )H h HL m om m− = η

By considering the above values of the head in place of H in Equations (24.11b), (24.15), (24.16) and (24.17), the following 
expressions can be obtained.

�

η ηo

m

o

p

H

N D

H

N D2 2 2 2

⎛
⎝⎜

⎞
⎠⎟

=
⎛
⎝⎜

⎞
⎠⎟

 (24.11c)

�

Q

D H

Q

D Ho m o p
2 2η η

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

=
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

 (24.15a)

�

P

D H

P

D Ho m o p
2 3 2 2 3 2( ) ( )/ /η η

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 (24.16a)

�

N P

H

N P

Ho m o p
( ) ( )/ /η η5 4 5 4

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 (24.17a)
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It is important to note that Lewis Ferry Moody suggested an expression which is generally used to determine the efficiency 
of a prototype turbine from the efficiency obtained for its model given by the following expression.

�

1

1

0 2
−

−
=

⎛

⎝
⎜

⎞

⎠
⎟

η
η

op

om

m

p

D

D

.

 (24.18)

Here, Dp and Dm are the respective diameters of their runners.

Equation (24.18) is applicable to the reaction turbines working under a head less than 150 m. The following  equation is 
applicable for head more than 150 m.

�

1

1

0 25 0 1
−

−
=

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

η
η

op

om

m

p

m

p

D

D

H

H

. .

 (24.19)

Here, Hp and Hm are the heads acting on the prototype and model turbines, respectively.
No scale effect is observed for the impulse turbine which means the efficiency of an impulse turbine is equal to that of 

its model.

 Example 24.4  A one fifth scale model of a Francis turbine develops 4.5 kW under a head of 2 m and 425 rpm. Find the 
speed and power of the Francis turbine working under a head of 30 m.

Solution
Let D Dm p/ /= 1 5, Pm = 4 5. kW, Hm = 2 m, Nm = 425 rpm and H p = 30 m.

D

D

N

N

H

H
N N

D

D

H

H
m

p

p

m

m

p
p m

m

p

p

m
= × ⇒ = × ×

∴ = × × =N p 425
1

5

30

2
329.2 rpm

N P

H

N P

H
P

N

N

H

H
P

m p
p

m

p

p

m
m5 4 5 4

5 4

/ /

/⎛

⎝⎜
⎞

⎠⎟
=

⎛

⎝⎜
⎞

⎠⎟
⇒ = ×

⎛

⎝⎜
⎞

⎠⎟
×

⎡

⎣

⎢
⎢

⎤

⎦

⎥⎥
⎥

2

∴ = ×⎛
⎝⎜

⎞
⎠⎟

×
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=Pp
425

329 2

30

2
4 5

5 4 2

.
.

/

6535.8 kW

 Example 24.5  A hydraulic turbine generates 0.13 MW at 230 rpm while operating under a head of 16 m. Calculate the 
scale ratio and the speed of a similar turbine which will develop 0.65 MW when operating under a head of 25 m.

Solution
Let P1 0 13= . MW , N1 230= rpm, H1 16= m, P2 0 65= . MW and H2 25= m.

P

D H

P

D H

D

D

P H

P H

1

1
2

1
3 2

2

2
2

2
3 2

2

1

2 1
3 2

1 2
3 2

1 2

/ /

/

/

/

= ⇒ =
⎛

⎝
⎜

⎞

⎠
⎟

∴ = ×
×

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ =

D

D
2

1

3 2

3 2

1 2
0 65 16

0 13 25

.

.

/

/

/

1.6
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H

N D

H

N D
N

H N D

H D

1

1
2

1
2

2

2
2

2
2 2

2 1
2

1
2

1 2
2

1 2

= ⇒ =
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

/

∴ =
×⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=N
D

D
2

2
1
2

1
2

1 2
25 230

16 1 6( . )

/

179.69 rpm

 Example 24.6  A hydraulic turbine delivering 10 MW power is to be tested with the help of a geometrically similar 1 : 8 
model, which runs as the same speed as the prototype. Determine (i) the power developed by the model assuming that the 
efficiencies of the model and the prototype are equal and (ii) the ratio of the heads and the ratio of mass flow rates between 
the prototype and the model.

Solution
Let Pp = 10 MW, D Dm p/ /= 1 8  and N Nm p= . Let m be the mass flow rate.

 (i) 
P

N D

P

N D
P P

N

N

D

Dm p
m p

m

p

m

p
3 5 3 5

3 5
⎛
⎝⎜

⎞
⎠⎟

=
⎛
⎝⎜

⎞
⎠⎟

⇒ = ×
⎛

⎝
⎜

⎞

⎠
⎟ ×

⎛

⎝
⎜

⎞

⎠
⎟

∴ = × ×( ) ×⎛
⎝⎜

⎞
⎠⎟

=Pm 10 10 1
1

8
6 3

5

305.176 W

 (ii) 
H

N D

H

N D

H

H

N

N

D

Dm p

p

m

p

m

p

m
2 2 2 2

2 2
⎛
⎝⎜

⎞
⎠⎟

=
⎛
⎝⎜

⎞
⎠⎟

⇒ =
⎛

⎝⎜
⎞

⎠⎟
×

⎛

⎝⎜
⎞

⎠⎟

∴ = ( ) ×⎛
⎝⎜

⎞
⎠⎟

=
H

H

p

m
1

8

1
2

2

64

Q

ND

Q

ND

Q

Q

N

N

D

Dm p

p

m

p

m

p

m
3 3

3
⎛
⎝⎜

⎞
⎠⎟

=
⎛
⎝⎜

⎞
⎠⎟

⇒ =
⎛

⎝⎜
⎞

⎠⎟
×

⎛

⎝⎜
⎞

⎠⎟

∴ = = ( )×⎛
⎝⎜

⎞
⎠⎟

=
m

m

Q

Q

p

m

p

m
1

8

1

3

512

 Example 24.7  A hydraulic turbine is to develop 1000 kW when running at 150 rpm under a head of 10 m. Determine the 
specific speed and maximum flow rate for the turbine if the overall efficiency is 90%. In order to predict its  performance, a 
1 : 10 scale model is tested under a head of 6 m. Determine the speed, water consumption and power output of the model 
if it runs under the conditions similar to the prototype?

Solution
Let Pp = 1000 kW, N p = 150 rpm , H p = 10 m, ηop = 0 9. , D Dm p/ /= 1 10  and Hm = 6 m.

Q
P

gHp
p

w p op
= = ×

× × ×
=

1000 1000 1000

1000 9 81 10 0 9ρ η . .
11.33 m /s3

( )
/ /

N
N P

H
s p

p p

p

= = × =
5 4 5 4

150 1000

10
266.74
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The two runners will be similar if head coefficient, flow coefficient and power coefficient are equal.

H

N D

H

N D
N N

D

D

H

Hm p
m p

p

m

m

p
2 2 2 2

1 2
⎛
⎝⎜

⎞
⎠⎟

=
⎛
⎝⎜

⎞
⎠⎟

⇒ = ×
⎛

⎝⎜
⎞

⎠⎟
×

⎛

⎝
⎜

⎞

⎠
⎟

/

∴ = ×⎛
⎝⎜

⎞
⎠⎟
×⎛

⎝⎜
⎞
⎠⎟

=Nm 150
10

1

6

10

1 2/

1161.9 rpm

Q

ND

Q

ND
Q Q

N

N

D

Dm p
m p

m

p

m

p
3 3

3
⎛
⎝⎜

⎞
⎠⎟

=
⎛
⎝⎜

⎞
⎠⎟

⇒ = ×
⎛

⎝
⎜

⎞

⎠
⎟ ×

⎛

⎝
⎜

⎞

⎠
⎟

∴ = ×⎛
⎝⎜

⎞
⎠⎟
×⎛

⎝⎜
⎞
⎠⎟

=Qm 11 33
1161 9

150

1

10

3

.
.

0.088 m /s3

P

N D

P

N D
P P

N

N

D

Dm p
m p

m

p

m

p
3 5 3 5

3 5
⎛
⎝⎜

⎞
⎠⎟

=
⎛
⎝⎜

⎞
⎠⎟

⇒ = ×
⎛

⎝
⎜

⎞

⎠
⎟ ×

⎛

⎝
⎜

⎞

⎠
⎟

∴ = ×⎛
⎝⎜

⎞
⎠⎟

×⎛
⎝⎜

⎞
⎠⎟

=Pm 1000
1161 9

150

1

10

3 5
.

4.65 kW

 Example 24.8  A hydraulic turbine with specific speed 180 is to develop 25000 kW when running at 150 rpm.  
An experimental model is prepared to work under a head of 5 m with a flow rate of 0.5 m3/s. Determine the speed, power 
and scale ratio for the model if the efficiency of turbine and its model is given 86%. Also determine the flow rate of the 
turbine.

Solution
Let ( )Ns p = 180, Pp = 25000 kW , N p = 150 rpm , Hm = 5 m, Qm = 0 5. m /s3  and ηo = 0 86. .

P
gQ H

m
o w m m= = × × × × =

η ρ
1000

0 86 1000 9 81 0 5 5

1000

. . .
21.0915 kW

Since 
N P

H

N P

Hm p
5 4 5 4

180
/ /

⎛

⎝⎜
⎞

⎠⎟
=

⎛

⎝⎜
⎞

⎠⎟
=

∴ = = × =N
H

P
m

m

m

180 180 5

21 0915

5 4 5 4/ /

.
293.04 rpm

∴ =
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=
×⎛

⎝⎜
⎞

⎠⎟
=H

N P
p

p p

180

150 25000

180
49 64

4 5 4 5/ /

. m

D

D

N

N

H

H
m

p

p

m

m

p
= × = × =150

293 04

5

49 64. .
0.1624

Q
P

gHp
p

w p o
= = ×

× × ×
=

1000 1000 25000

1000 9 81 49 64 0 86ρ η . . .
59.6954 m /3 ss
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 Example 24.9  A model of Francis turbine that is one-fourth of full size develops 2.5 kW at 300 rpm working under a 
head of 1.6 m. Determine the speed and power of full size turbine operating under a head of 5.5 m, if (i) the efficiency of the 
model and the full size turbine are same and (ii) the efficiency of the model turbine is 75% and the scale effect is considered.

Solution
Let D Dm p/ = 1 4/ , Pm = 2 5. kW, Nm = 300 rpm, Hm = 1 6. m, H p = 5 5. m, η ηom op=  and ηom = 0 75. .
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 Example 24.10  In a hydroelectric generating plant there are four similar turbines of total output 220000 kW. Each 
 turbine is 90% efficient and it runs at 100 rpm under a head of 65 m. It is proposed to test the model of the above turbine 
in a flume where discharge is 0.4 m3/s under a head of 4 m. Determine the size (scale ratio) of the model and also calculate 
the model speed and power results expected from the model.

Solution
Let n = 4, ( )Pp t = 220000 kW, ηop = 0 9. , N p = 100 rpm , H p = 65 m, Qm = 0 4. m /s3  and Hm = 4 m .
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24.7 ❐ CHARACTERISTIC CURVES
Generally, the hydraulic turbines are designed for specific conditions given by six important parameters, namely (i) head (H),  
(ii) discharge (Q), (iii) speed (N), (iv) power (P), (v) gate opening (G.O.) and (vi) efficiency ( )ηo  which are known as the 
design conditions. Turbines produce maximum efficiency while operating at design conditions, but these are required to 
operate under different conditions. Thus, it becomes necessary to determine the exact behaviour of the turbines working 
under varying conditions by conducting tests on the prototypes or their models. The results obtained from the experiments 
are graphically plotted by means of curves which are termed as characteristic curves. These curves are plotted in terms 
of unit quantities. Among the six given parameters, H, Q and N are termed as independent parameters. Out of the three  
independent parameters (H, Q and N), one of the parameters (assume H) is kept constant and the variations of the  remaining 
parameters with respect to any one of the two independent parameters (assume Q and N) are plotted and thus, various  
characteristic curves can be obtained. The important characteristic curves of a turbine are listed below.

 1. Main characteristic curves (or constant head characteristic curves): The turbines are tested at constant head.  
Here, Q and P are plotted against varying N, for a fixed G.O.

 2. Operating characteristic curves (or constant speed characteristic curves): The turbines are tested at constant 
speed. Here, P is measured against varying Q. H remains constant but it may vary.

 3. Muschel curves (or constant efficiency curves or iso-efficiency curves).
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24.7.1 Main Characteristic Curves (or Constant Head Characteristic Curves)
Main characteristic curves are obtained by maintaining a constant head and a constant gate opening on the turbine. The 
speed of the turbine is varied by changing the load on the turbine. For each value of speed, the corresponding values of 
discharge and output power are measured. A series of such tests are conducted by varying the gate opening but keeping the 
head constant at the previous value. The values of Nu, Qu, Pu and ηo  for each gate opening is calculated. By taking Nu as 
abscissa, the values of Qu, Pu and ηo  are plotted for each gate opening. The main characteristic curves for four different 
gate openings of the Pelton turbine and reaction turbines (Francis and Kaplan turbines) are shown in Figures 24.1 and 24.2, 
respectively.

The main characteristics curves provide the following information:

 1. Qu versus Nu curves for Pelton turbine are horizontal straight lines which indicate that Qu depends only on the gate 
opening and it is independent of Nu.

 2. Qu versus Nu curves for Francis turbine are drooping curves. This indicates that as the speed increases, the discharge 
through the turbine decreases. This is due to the presence of centrifugal head acting against the flow which increases 
with speed and thus, it reduces the flow.

 3. Qu versus Nu curves for Kaplan turbine are rising curves which indicate that unit discharge increases with increase in 
unit speed.

 4. Pu versus Nu and ηo  versus Nu curves are parabolic in nature for different turbines.

 5. The maximum efficiency of a Pelton turbine for each gate opening occurs at the same speed which corresponds to 
( ) . .u Vi/ = 0 46

 6. The maximum efficiency for a reaction turbine for each gate opening attains at different values of speed.

Qu Pu

Nu Nu Nu

oη

Full G.O.

3/4 G.O.

1/2 G.O.

1/4 G.O.

Full G.O.

3/4 G.O.

1/2 G.O.

1/4 G.O.

Full G.O.

3/4 G.O.
1/2 G.O.

1/4 G.O.

H = Constant H = Constant H = Constant

Figure 24.1 Main characteristic curves for the Pelton turbine
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3/4 G.O.

1/2 G.O.
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Figure 24.2 Main characteristic curves for reaction turbines
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24.7.2 Operating Characteristic Curves (or Constant Speed Characteristic Curves)
The operating characteristic curves are obtained as given below.

 1. The turbines are operated at constant speed which is maintained by regulating the gate opening. Thus, the discharge 
flowing through the turbines varies as the load varies. The head may remain constant. The power developed for each 
gate opening is measured by means of a dynamometer and the corresponding values of overall efficiency are  calculated. 
The ratio of measured power to full load known as percentage of full load is calculated. The results are then graphically 
illustrated by plotting ηo  versus full load.

   Figure 24.3(a) shows the curves between percentages of full load versus ηo  for the four different types of turbines. 
The overall efficiency increases as the percentage full load increases and it is near about maximum at 100 per cent full 
load for all the turbines. The maximum overall efficiency is observed about 85% in all cases. It is also observed that 
the Kaplan and Pelton turbines produce high efficiency over a long range of the part load in comparison to the Francis 
and propeller turbines.

 2. For obtaining operating characteristics curves, N and H are maintained at constant and the variation of P and ηo with 
respect to Q are also plotted as shown in Figure 24.3(b). The power and efficiency curves are slightly away from the 
 origin as some discharge is required to initiate the motion of the runner from its state of rest. It is observed that P 
versus Q is a straight line which shows that the power output is directly proportional to the discharge when head is 
constant. The plot between ηo  and Q is curvilinear. The overall efficiency increases with discharge and it remains 
constant beyond a particular value of discharge.

24.7.3 Muschel Curves (or Constant Efficiency Curves or Iso-efficiency Curves)
Muschel curves are obtained from ηo  versus Nu and Q Pu u( )or  versus Nu curves plotted at different gate openings. These 
curves are also known as universal characteristic curves of the turbine as it shows the efficiencies of a turbine for all 
 conditions of running. From ηo  versus Nu curves, it can be seen that there exists two speeds for one value of efficiency for 
each G.O. Corresponding to these speed values, there are two values of discharge at Qu versus Nu curves for a particular 
G.O. and for a given efficiency. Thus, there are two values of speeds and two values of discharge for a particular G.O. and 
a given efficiency except for maximum efficiency that occurs at one speed only.
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Percentage of full load

20
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80

100
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Figure 24.3 Operating characteristic curves
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A horizontal line is drawn for a given value of efficiency (assume 0.2) which intersects ηo  versus Nu curves for  different 
gate openings. Thus, two speeds for one value of efficiency are obtained from the points of intersection. These values of 
speeds are then transferred to the main curve Qu versus Nu for the corresponding gate openings. The points having the 
same efficiency are joined by a smooth curve to get a constant efficiency curve as shown in Figure 24.4. This  procedure is 
repeated for different gate openings and thus, other constant efficiency curves are obtained. These smooth curves  represent 
the iso-efficiency curves. By joining the peak points of these iso-efficiency curves, a curve for best performance is obtained. 
The constant efficiency curves are helpful in locating the zones where the turbine would work with highest efficiency. 
Sometimes, the diagram showing iso-efficiency curves is also known as Hill diagram.

24.8 ❐ SELECTION OF TURBINES
The following factors should be considered while selecting the right type of hydraulic turbine.

 1. Specific speed: As a general rule, it may be stated that as far as possible a turbine with highest permissible specific 
speed should be chosen. It is not only inexpensive but its relatively small size and high rotational speed will reduce 
the size of the generator as well as power house. However, higher specific speed is responsible for cavitation which 
should be avoided. The specific speed should be high when the head is low and output is large. The types of turbine 
for different specific speed are (i) Pelton wheel: 8.5 to 50, (ii) Francis turbine: 51 to 255 and (iii) propeller and Kaplan 
turbine: 255 to 860.
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Figure 24.4 Constant efficiency curves
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  Francis turbine runs at a higher speed than the Pelton turbine. Therefore, under similar operating conditions, the size 
of a Francis turbine will be smaller than those of the Pelton turbine and it should be preferred.

 2. Rotational speed: The turbines are directly coupled to the generator which has to operate at its synchronous speed. 
High synchronous speed of generator reduces the number of poles and thus its size. Therefore, the value of the specific 
speed of turbines should be such that it gives synchronous speed of the generator. High rotational speed results in 
smaller size of the turbine and the generator. Thus, the overall cost of the plant reduces.

 3. Head: The selection of the turbine depends upon the power and speed desired as well as the head also. The range of 
head for which each type of turbine is suitable is listed below.

     (i) Pelton wheel single or multiple jets (very high head turbines): 300 m or more

   (ii) Pelton or Francis turbine (high head turbines): 150 m to 300 m

  (iii) Francis turbine (medium head turbines): 60 m to 150 m

   (iv) Kaplan or propeller turbine (low heads turbines): Less than 60 m

    (v) Bulb turbines (very low heads turbines): 2 m to 15 m

  The given range of heads is flexible. It simply illustrates the general idea of the ranges of heads to which a particular 
turbine is considered.

 4. Part load operation: The load at which a turbine provides maximum efficiency is called full load. Any load that 
is above is called overload and below than that is called part load. The turbines are required to work under variable 
load conditions. As the load varies from the normal working load, the efficiency would also vary. At part load, the 
 performance of Kaplan and Pelton turbines is better in comparison to that of Francis and propeller turbines. For higher 
range of heads (i.e., 150 m to 300 m), Pelton turbine is preferable for part load operation in comparison to Francis 
turbine. For heads below 30 m, Kaplan turbine is preferable in comparison to propeller turbine.

 5. Disposition of turbine shaft: Generally, vertical shaft arrangement is preferable for large sized reaction turbine which 
is almost universally adopted. In case of a large sized impulse turbine, horizontal shaft arrangement is employed.

 6. Overall cost: The overall cost which includes the initial cost and the running cost should also be considered while 
selecting a turbine. The turbine should be designed to generate the power with minimum cost.

 7. Cavitation: The alternate formation and collapse of vapour bubbles in a flowing fluid due to local fall in fluid pressure 
is called cavitation. It is likely to occur when the pressure at the runner outlet equals the vapour pressure. Cavitation 
may cause severe damage to the surface. The surface becomes badly scored and pitted which ultimately fails by 
fatigue. A turbine should be installed closer to the tail race with a minimum cost of excavation for the draft tube.

Pelton turbine is free from cavitation because the pressure at runner outlet is atmospheric. However, there may be a 
 possibility of cavitation occurring at the nozzle. In reaction turbines, the cavitation commences at the top portion of the 
draft tubes. The installation of hydraulic reaction turbines over the tail race is affected by cavitation. Due to cavitation, the 
Francis turbines cannot be employed for very high heads.

According to Prof. Thoma, cavitation can be avoided if the turbine is installed in such a way that the cavitation factor 
( )σ  is always greater than its critical value ( )σc . Here, σc is found to be a function of the specific speed of the turbine and 
its value for different turbines may be calculated by different empirical relations.

24.9 ❐ SURGE TANKS
A surge tank is a reservoir in the form of a large diameter tank which is generally open to atmosphere at the top. It is fitted 
at some opening before the turbine to receive the rejected flow when the pipeline is suddenly closed by a valve at its steep 
end. Rapid velocity fluctuation of water in a penstock is due to (i) sudden closure and opening of valves or wicket gates and 
(ii) the start and shut down of a turbine that set up large magnitude pressure transients. The excessive pressures may cause 
water hammer which may lead to bursting of the pipe. The sudden surge of water in a penstock is taken by the surge tank 
when the water requirement reduces suddenly. Surge tank also supplies additional water required by the turbine due to the 
sudden increase in demand, before the water comes from the reservoir.
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Ideally, a surge tank should be fitted near to the turbine and its height should be more than the available head race level 
to avoid any water spilling. In practice, the surge tank is located at the junction of penstock and supply pipe as shown in 
Figure 24.5.

When the turbine works under steady load, the flow through the penstock remains uniform. The water level in the surge 
tank remains lower than that in the supply reservoir by an amount equal to the friction head loss in the pipe connecting the 
reservoir and the surge tank.

When the load on turbine decreases, the governor mechanism partially closes the gate openings of the turbine for 
 reducing the flow of water to the runner to maintain constant speed. The rejected quantity of water get stored in the surge 
tank and its water level rises. Thus, the surge tank decelerates (or retards) the flow from supply reservoir and it reduces the 
velocity of flow in the pipeline corresponding to the reduced discharge required by the turbine.

When the load on turbine increases, the governor opens the gate openings of the turbine to increase the flow of water 
to the runner to maintain constant speed. The increased demand by the turbine is partly fulfilled by water stored in the 
surge tank and thus, its water level falls. Thus, the surge tank accelerates the flow from supply reservoir and it increases the 
 velocity of flow in the pipeline to a value corresponding to the increased discharge required by the turbine.

24.9.1 Types of Surge Tanks
The various types of surge tanks schematically shown in Figure 24.6 are discussed below.

 1. Open conical surge tank: It remains open to atmosphere at the top and is directly connected to the penstock. It is slow 
in action and nowadays, it is seldom used.

 2. Closed cylindrical surge tank: Its top is closed and the space above water contains air supplied from a compressor.  
It has an internal bell mouth spillway which permits the overflow to be easily disposed of. The size of a closed 
 cylindrical surge tank is smaller than that of an open one under same working conditions.

Overflow Orifice Riser

Ports

Open conical
surge tank

Closed
surge tank

Restricted orifice
surge tank Di�erential

surge tank

Figure 24.6 Surge tanks

Surge tank

Penstock
Supply reservoir

Head race

Supply pipe

Water jet
to turbine

Figure 24.5 Surge tank and its location
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 3. Restricted orifice surge tank: It is connected to the penstock through an orifice fitted at the base of the tank and it is 
also called throttled surge tank. It is less effective in speed regulation under small and rapid changes. Its design is much 
complicated and hence, it is not much popular.

 4. Differential surge tank: This surge tank is provided with a small vertical pipe called central riser having small holes 
(ports) at its lower end. It quickly develops the accelerating and retarding heads required. For the same stabilizing 
effects, its capacity is less than the cylindrical surge tanks and no water is spilled to waste from it.

Summary

 1. Unit speed: N N Hu = / , Unit discharge: Q Q Hu = /  and  

Unit power: P P Hu = / 3 2/ .

 2. Specific speed: N N P Hs = ( ) .// 5 4

 3. Head coefficient: H N D/( ),2 2  Flow coefficient: Q ND/( )3  

and Power coefficient: P N D/( ).3 5

 4. Due to surface roughness, the efficiency of prototype will be 
different from the corresponding model efficiency which is 
referred to as scale effect.

 5. The results obtained from the tests conducted on turbines 
or their models are graphically plotted by means of curves 
called characteristic curves.

 6. The important characteristic curves are main characteristic 
curves (or constant head characteristic curves), operating 
characteristic curves (or constant speed characteristic curves) 
and Muschel curves (or constant efficiency curves or iso- 
efficiency curves).

 7. A surge tank is a reservoir in the form of a large diameter tank 
which takes the sudden surge of water in a penstock when the 
water requirement reduces suddenly and it also supplies addi-
tional water required by the turbine due to sudden increase in 
demand.

Multiple-choice Questions

 1. If H is the available head for a hydraulic turbine, the power, 
speed and discharge, respectively are proportional to

(a) H H H3 2 5 2 1 2/ / /, ,

(b) H H H3 2 1 2 1 2/ / /, ,

(c) H H H1 2 5 2 1 2/ / /, ,

(d) H H H5 2 3 2 1 2/ / /, ,

 2. Which of the following two relations are necessary for 
homologous turbines when P is the power, Q is the discharge, 
H is the head and C is the constant?

(a) P QH C H N D C/ and /( ) ( ) .= =2 2

(b) H ND C Q N D C/ and /( ) ( ) .3 2 2= =

(c) ( ) ( ) .. /N Q H C N P H C/ and /1 5 3 4= =

(d) None of the above.

 3. If n is the number of jets in a Pelton wheel, then its specific 
speed is proportional to
(a) n

(b) n5 2/

(c) n3 2/

(d) n

 4. The unit discharge and unit speed curves for the Kaplan, 
Francis and Pelton turbines in sequence are
(a) Rising curves, drooping curves and straight line.
(b) Drooping curves, straight line and rising curves.
(c) Straight line, rising curves and drooping curves.
(d) None of the above.

 5. Which of the following statement is correct?
(a) Curves at constant efficiency are called main characteris-

tic curves.
(b) Curves at constant efficiency are called operating charac-

teristic curves.
(c) Curves at constant head are called main characteristics 

curves.
(d) Curves at constant speed are called main characteristics 

curves.

 6. For a given diameter, the ratio between the model and pro-
totype, the relation between power (P) and head (H) is given 
by

(a) P Hα 1 2/

(b) P Hα 3 2/

(c) P Hα 5 2/

(d) None of the above.
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 7. The specific speed of a turbomachine
(a) Is the speed of a machine having unit dimension.
(b) Has the dimension of rotational speed.
(c) Remains unchanged under different conditions of 

operation.
(d) Relates the shape rather than the size of the machine.

 8. For a hydraulic turbine, the shape number also known as 
dimensionless form of specific speed given by the following 

expression when N is the speed, H is the head, P is the power, 

ρw is the density of water and g is acceleration due to gravity is

(a) ( ) .N P H/ /5 4  (b) ( ) ./N P Hw/ /ρ 5 4

(c) ( ) .N P g H/ / � (d) ( ) .N P gHw/ρ 2

Review Questions

 1. Define the terms unit speed, unit discharge and unit power 
for a hydraulic turbine. Also derive expressions for each of 
them.

 2. Define and derive an expression for specific speed of a 
 turbine. What is the physical significance of it?

 3. Derive expressions for specific speed of the Pelton, Francis 
and Kaplan turbines in terms of known coefficients.

 4. Explain various dimensionless numbers used to show the 
relationship of model and prototype.

 5. Write short notes on: (i) model testing of turbines and  
(ii) scale effect.

 6. Discuss the performance characteristics of hydraulic turbines.

 7. Discuss the important points which should be considered 
while selecting hydraulic turbines for a hydroelectric power 
plant.

 8. What is a surge tank? Briefly explain its necessity and work-
ing operation in the penstock of a turbine. Also discuss its 
types.

Problems

 1. In a hydroelectric station, water is available at the rate of 
30.6  m3/s under a head of 60.2 m. The turbine runs at a 
speed of 550.5 rpm with an efficiency of 85.4%. If maxi-
mum specific speed is 210, then find the number of turbines 
required.

[Ans. 4]

 2. If a turbine has specific speed of 240 operating under a head 
of 25 m at a speed of 135 rpm, then determine the power 
developed by it.

[Ans. 9876.54 kW]

 3. A Francis turbine runner of 1.2 m diameter working under a 
head of 5.2 m produces 75.6 kW power at a speed of 212 rpm 
when the water flow rate is 1.85 m3/s. If the head is raised to 
16.5 m, then find its new speed, discharge and power.

[Ans. 377.64 rpm, 3.295 m3/s, 427.31 kW]

 4. A hydraulic turbine develops 13.5 MW power operating 
under a head of 300 m at a speed of 425 rpm. Determine the 
specific speed, speed of the turbine and power when it oper-
ates under a head of 140 m.

[Ans. 39.55, 290.33 rpm, 4303.72 kW]

 5. A Francis turbine works under a head of 30 m and produces 
2.7 kW while running at 300 rpm. Determine the power and 
speed of this turbine under unit head.

[Ans. 0.0164 kW, 54.77 rpm]

 6. A hydraulic turbine develops 100 kW power under a head of 
50 m. Determine the percentage increase in its speed when 
the head is increased by 100 m.

[Ans. 41.42%]

 7. A Kaplan turbine develops 9 MW when running at 100 rpm. 
The head on the turbine is 30 m. If the head on the turbine is 
reduced to 20 m, then determine the speed and power devel-
oped by the turbine.

[Ans. 81.65 rpm, 4898.98 kW]

 8. A water turbine works under a head of 25.6 m and runs at 
100.2 rpm. It develops 6.65 MW power. Determine the speed 
and power when it works under a head of 15 m. Also suggest 
the type of turbine.

[Ans. 76.7 rpm, 2982.62 kW]

 9. A turbine is running at a speed of 150 rpm and it develops 
2 MW power while operating under a head of 36 m. Deter-
mine its speed and power output if operating head is changed 
to 25 m.

[Ans. 125 rpm, 1157.41 kW]

 10. A hydraulic turbine is to develop 1025 kW when running 
at 120 rpm under a head of 12 m. If the overall efficiency 
is given 92%, then find the specific speed and maximum 
flow rate for the turbine. In order to predict its performance,  
a 1 : 10 scale model is tested under a head of 7.2 m. Determine 
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the speed, power output and water consumption of the model 
if it runs under the conditions similar to the prototype.

[Ans. 172.01, 9.464 m3/s, 929.5 rpm,  
4.763 kW, 0.0733 m3/s]

 11. A Kaplan turbine develops 60.2 MW when running at 
90.5 rpm. The head on the turbine is 16.4 m and discharge 
is 600.5 m3/s. Determine the unit speed, unit discharge, unit 
power and specific speed of the turbine.

[Ans. 22.35 rpm, 148.28 m3/s, 906.42 kW, 672.81]

 12. Determine the unit discharge, unit power and unit speed when 
a Pelton turbine develops 5 MW under a head of 230 m at 
an overall efficiency of 82% and revolving at a speed of 205 
rpm. If the head on the turbine falls to 140 m, then determine 
discharge, power and speed for this turbine. Assume periph-
eral coefficient as constant.

[Ans. 0.178 m3/s, 1.433 kW, 13.52 rpm,  
2.108 m3/s, 2374.49 kW, 159.94 rpm]

 13. A prototype turbine develops 40 MW at 81 m head while run-
ning at a speed of 150 rpm. Its model develops 36 kW at 8 m 

head. Determine the speed of the model runner and the scale 
ratio between the prototype and the model.

[Ans. 276.83 rpm, 5.88]

 14. A Pelton turbine develops 5800 kW at a speed of 205 rpm 
under a head of 225 m. If overall efficiency of the turbine at 
best operating point is 85%, then determine the unit speed, 
unit discharge and unit power. It is tested at a site where the 
maximum supply head is 150 m. Find the discharge, power 
and speed for this turbine.

[Ans. 13.67 rpm, 0.206 m3/s, 1.718 kW,  
2.523 m3/s, 3157.12 kW, 171.46 rpm]

 15. A model of Francis turbine that is one-fifth of full size devel-
ops 3 kW at 320 rpm under a head of 1.5 m. Determine the 
speed and power of full size turbine operating under a head of 
5 m if (i) efficiency of the model and the full size turbine are 
same and (ii) efficiency of the model turbine is 75% and the 
scale effect is considered.

[Ans. 116.85 rpm, 456.46 kW, 149.53 rpm, 498.33 kW]

ANSWERS TO MULTIPLE-CHOICE QUESTIONS

 1. (b) 2. (a) 3. (d) 4. (a) 5. (c)
 6. (b) 7. (d) 8. (b)

M24 Fluid Mechanics and Hydraulic Machines XXXX 01.indd   25 4/5/2019   1:37:22 PM

Download more at Learnclax.com



M24 Fluid Mechanics and Hydraulic Machines XXXX 01.indd   26 4/5/2019   1:37:22 PM

This page is intentionally left blank

Download more at Learnclax.com



25.1 ❐ INTRODUCTION
Pumps are mechanical devices which convert mechanical energy into hydraulic energy in the form of pressure energy. 
Pump lifts liquids from a lower level to a higher level by absorbing power. Therefore, a pump is a power absorbing device 
which is used to increase the pressure energy of a liquid and it is subsequently converted into potential energy as the liquid 
is raised from a lower level to a higher level. 

Centrifugal pumps are rotodynamic type of pumps in which a dynamic pressure is generated which lifts the liquid to 
a higher level. A centrifugal pump works on the principle of forced vortex flow. The pump works when a certain mass of 
liquid is rotated by an external force where it is thrown away from the central axis of rotation and a centrifugal head acts on  
the liquid which raises it to a higher level. The rise in pressure head can be given by V g r g2 2 22 2/ /= ( )ω , here V is the 
tangential velocity of liquid. When more liquid is constantly added to the centre of rotation, a continuous supply of liquid 
is maintained at a higher level. 

The rotating component called impeller (or rotor) is the main element of a centrifugal pump which imparts momentum 
to the liquid. In these pumps, the liquid is lifted due to centrifugal action, and hence, they are called centrifugal pumps.  
In addition to centrifugal action, when liquid passes through the impeller, its angular momentum changes which also 
increase the liquid pressure. The centrifugal pumps closely resemble reaction turbines. It acts as reverse of inward radial 
flow reaction turbines. Thus, the flow in centrifugal pumps is in the radial outward direction. 

The liquid is more often water in the domestic and agriculture domains. Generally, pump is widely used in many 
 applications, such as in the fields of agriculture and irrigation works, water supply plants, sewage and drainage system, 
steam power plants, oil refineries, chemical plants and steel mills, food processing industries, transport, mines, and many 
other utility services and industries in which fluids are pumped.

This chapter highlights the key components, classification, basic terminology, theoretical analysis for determining 
power requirements and other associated problems related to centrifugal pumps.

25.2 ❐ BRIEF HISTORICAL DEVELOPMENT OF CENTRIFUGAL PUMPS
The idea of lifting water by centrifugal force was given by Leonardo Da Vinci (1452–1519). The first centrifugal pump 
having impeller with blades and a volute was built by Denis Papin (French physicist in 1705). However, reciprocating 
pumps were popular at that time. The first centrifugal pump in USA was built by Massachusetts pump factory. The first 
three stage pump was built in 1846 by Johnson (USA). The guide vanes were developed in 1850 by James Thomson (UK). 
A pump with diffusion vanes was built by Osborne Reynolds in 1875 and the manufacturing of such pumps were started in 
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UK by Mather and Platt in 1893. The multistage pump by using the impellers in series was first introduced by W. J. Johnson 
(America). After systematic and scientific investigation, Sulzer brothers (Switzerland) started manufacturing pumps in 
1890 and thereby, the design of mixed flow and axial flow pumps were evolved.

25.3 ❐ CLASSIFICATION OF PUMPS
Pumps can be broadly classified into two categories, namely rotodynamic pumps (or dynamic pressure pumps) and positive 
displacement pumps.

25.3.1 Rotodynamic Pumps (or Dynamic Pressure Pumps or Rotary Pumps)
The rotodynamic pumps have a rotating element called impeller. When liquid flows through the impeller, its angular 
momentum changes, as a result, pressure energy of the liquid increases. According to the general flow direction of liquid 
within the passage of the impeller, the rotodynamic pumps can be classified into three types, (i) centrifugal flow pumps, 
(ii) axial flow (or propeller) pumps and (iii) mixed flow (half axial or screw) pumps. 

 1. Centrifugal flow pumps: In a centrifugal flow pump, liquid enters axially (i.e., in the same direction as the axis of 
the rotating shaft) in the centre of the pump and it is discharged radially (or tangentially) along the outer radius of 
the pump casing (Figure 25.1a). Thus, these pumps are also known as radial flow pumps. These pumps handle lower 
volumes at higher pressures. The centrifugal pumps are the most common examples of rotodynamic pumps in which 
liquid flows in the outward radial direction. It means that the action of a centrifugal pump is the reverse of a radially 
inward flow reaction turbine. 

 2. Axial flow pumps: In axial flow pumps, liquid flows in axial direction only (Figure 25.1b). The action of axial flow 
pumps is the reverse of propeller or Kaplan turbines. Axial flow pumps can handle very large volume but at limited 
pressures.

 3. Mixed flow pumps: Mixed flow pumps are intermediate between centrifugal and axial flow pumps. It means, in mixed 
flow pumps, liquid flows through the impeller axially as well as radially (Figure 25.1c). The action of mixed flow 
pumps is the reverse of Francis turbines or mixed flow type turbines. Mixed flow pumps handle comparatively larger 
volumes at medium range of pressures.

Also there are some non-rotary dynamic pumps, such as jet pumps and electromagnetic pumps.

25.3.2 Positive Displacement Pumps
In positive displacement pumps, liquid is sucked and actually pushed or bodily displaced due to the thrust exerted on it by 
a moving member which lifts the liquid to the required height. The liquid inside the positive displacement pumps may be 

Impeller

Impeller

Impeller

(a) (b) (c)

Figure 25.1
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subjected either to a reciprocating motion or to a rotary (or circular) motion. So, based on the motion of the liquid, these 
pumps are classified into two types, namely reciprocating pumps and rotary positive displacement pumps.

 1. Reciprocating pumps: The most common example of the positive displacement pumps is reciprocating pump. 
 Reciprocating pumps first trap the liquid in a cylinder by suction and then push the liquid against pressure. Thus, the 
discharge of liquid pumped by these pumps fully depends on the speed. These pumps are limited by the low speed of 
operation and small volume it handles.

 2. Rotary positive displacement pumps: Rotary positive displacement pumps also trap the liquid in a volume and push 
the same out against pressure. These pumps are limited by lower pressures of operation and small volume it handles. 
Its main types are gear pump, vane pump, screw pump and lobe pump.

25.3.3 Classification of Centrifugal Pumps
Centrifugal pumps may be classified into several ways, such as on the basis of their characteristic features, utility, design 
and constructional features. Centrifugal pumps may be classified into eight ways as given below. First classification is 
a commercial classification from the point of utility of the pumps. However, the second to seventh classifications are 
 practical considerations which govern important constructional features of the pump. Eventually, the last classification is a 
 theoretical aspect which provides a sound basis for absolute classification of the pumps.

  1. On the basis of working head.

  (a) Low head pump: These pumps work against heads up to 15 m and below.

  (b) Medium head pump: These pumps work between ranges from 15 m to 40 m.

  (c) High head: These pumps are used to build up heads more than 40 m.

 2. On the basis of casing type as (a) volute pump, (b) volute pump with vortex chamber and (c) diffuser or turbine pumps.

 3. On the basis of relative direction of flow through impeller.

  (a) Radial flow pump: Liquid flows through the impeller in radial direction only.

  (b) Axial flow pump: Liquid flows through the impeller in axial direction only.

  (c) Mixed flow pump: Liquid flows through the impeller axially as well as radially.

 4.  On the basis of number of stages as single stage pump and multistage pump. 
   If a centrifugal pump consists of two or more impellers, then the pump is called multistage centrifugal pump. The 

impellers may be mounted on the same shaft or on different shafts. Multistage pumps are required to produce high 
head or to discharge large quantity of water. To develop a high head, the impellers are connected in series or mounted 
on the same shaft, whereas for discharging large quantity of water, the impellers are connected in parallel.

   These pumps are used essentially for high heads. The number of stages depends on the head required and may be 
employed up to 10. 

  5.  On the basis of liquid handled as (a) closed impeller pump, (b) semi-open impeller pump and (c) open impeller pump.

 6.  On the basis of number of entrances to the impeller (Figure 25.2).

  (a)  Single entry or single suction pump: Liquid is admitted from a suction pipe from one side of the impeller as 
shown in Figure 25.2(a).

  (b)  Double entry or double suction pump: Liquid enters from both sides of the impeller as shown in Figure 25.2(b).

 7.  On the basis of disposition of shaft.

   (a) Horizontal shafts: Generally, pumps have horizontal shafts.

   (b) Vertical shafts: For deep wells and mines, pumps have vertical shafts.

 8.  On the basis of specific speed.

   (a) Low speed radial flow pump: Specific speed varies from 10 to 30.

   (b) Medium speed radial flow pump: Specific speed varies from 30 to 50.
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   (c) High speed radial flow pump: Specific speed varies from 50 to 80.

  (d) Mixed flow pump: Specific speed varies from 80 to 160.

  (e) Axial flow pump: Specific speed varies from 100 to 450.

25.4 ❐ CONSTRUCTION AND WORKING OF CENTRIFUGAL PUMPS
The function of centrifugal pumps is mainly considered because energy is imparted to the fluid by centrifugal action of 
moving blades from the inner radius to the outer radius. In general, all the rotodynamic pumps resemble the reaction type 
of hydraulic turbines. Therefore, these types of pumps may be known as reversed reaction turbines. The action of the 
 centrifugal pump is just the reverse of an inward flow reaction turbine. Hence, the flow in centrifugal pumps is in the radial 
outward direction.

25.4.1 Main Parts of a Centrifugal Pump
The Figure 25.3 illustrates the main parts of a centrifugal pump. 

Casing

Impeller

Delivery valve

Delivery pipe

Suction pipe

Sump

Foot valve and strainer

Delivery

Hs

hs

hd

Figure 25.3 Main parts of a centrifugal pump 

Impeller

Casing

Inlet
Inlet Inlet

(a) Single entry (b) Double entry

Figure 25.2 Single and double suction pumps
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The main parts of a centrifugal pump are (i) impeller, (ii) casing, (iii) suction pipe with a foot valve and a strainer, and 
(iv) delivery pipe and delivery valve. 

 1. Impeller: It is a wheel or rotor having a series of backward curved vanes (or blades) which usually varies from 6 to 
12. Thus, impeller is a rotating part of a centrifugal pump. It is mounted on a shaft which is coupled to the shaft of an 
electric motor. The impellers are of three types (Figure 25.4), namely (i) shrouded or closed impeller, (ii) semi-open 
impeller and (iii) open impeller.

    (i)  Shrouded or closed impeller: A shrouded or closed impeller is that whose vanes are covered on both sides with 
metal plates as shown in Figure 25.4(a). These metal plates or shrouds are known as crown plate and base plate. 
The closed impeller is more efficient and provides better guidance to the liquid. This type of impeller is most 
suited when the liquid to be pumped is pure, free from debris and have low viscosity, such as ordinary water, hot 
water, hot oils and acids. The materials of the impeller are selected based on the type of liquid used.

   (ii)  Semi-open impeller: If the vanes have only the base plate and no crown plate, then the impeller is known as 
semi-open type impeller as shown in Figure 25.4(b). Such an impeller can be used even if the liquid contains 
some debris, such as sewage water, paper pulp and sugar molasses. In order to avoid any clogging of the impeller, 
its number of vanes is reduced and their height is increased.

  (iii)  Open impeller: An open impeller is that whose vanes have neither the crown plate nor the base plate, i.e., vanes 
are open on both sides as shown in Figure 25.4(c). Such impellers are used for pumping the liquids containing 
suspended solid matter, such as paper pulp, sewage and water containing sand, grit, pebbles and clay. Generally, 
this impeller is made of forged steel, as it has to perform very rough duty.

 2. Casing: It is an airtight chamber which surrounds the impeller. It is similar to the casing of a reaction turbine. It is 
designed in such a way that the kinetic energy of the water discharged at the outlet of the impeller is converted into 
pressure energy before the water leaves the casing and enters the delivery pipe. The three types of casing, namely 
volute casing, vortex casing and casing with guide blades (Figure 25.5) are commonly used and the pump is named 
after the casing it uses.

    (i)  Volute casing: The volute casing (Figure 25.5(a)) is of spiral shape in which the area of flow increases gradually 
from the impeller outlet to the delivery pipe. The increase in area of flow decreases the velocity of flow with 
 corresponding increase in the pressure of water flowing through the casing. Single stage pumps are mostly  having 
volute casing. The volute casing has higher eddy losses which results in lower overall efficiency. The pumps 
 having volute casing are known as volute pump.

   (ii)  Vortex casing: If a circular chamber is provided between the impeller and the casing as shown in Figure 25.5(b), 
then such casing is known as vortex casing. The circular chamber is also known as vortex or whirlpool chamber. 
The vortex chamber reduces the eddy formation to a considerable extent. Thus, the efficiency of these pumps will 
be more than that of volute casing pumps. The pumps using vortex casing are known as volute pump with vortex 
chamber.

  (iii)  Casing with guide blades: The impeller is surrounded by a series of fixed guide blades which are mounted on 
a ring known as diffuser as shown in Figure 25.5(c). The guide vanes are designed in such a way that the water 
from the impeller enters in it without shock. The liquid leaving the impeller passes through the passage between 

(a) (b) (c)

Both sides
shrouded

Plate on
one side

Vane
Vane

Figure 25.4 Types of Impeller
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the guide vanes whose area increases. This reduces the velocity of flow through guide vanes and consequently, 
increases the pressure of water. The water from the guide vanes then passes through the casing which is in most of 
the cases will be concentric with the impeller. The pumps having guide vanes are called diffuser pumps. The guide 
vanes resemble a reversed turbine and hence, they are also called turbine pumps. Casing with guide blades pumps 
may be either vertical or horizontal shaft type. The vertical shaft type occupies very less space and is suitable in 
deep well installations and in narrow wells and mines, etc. These pumps have maximum efficiency but are less 
satisfactory when a wide range of operating condition is required.

 3. Suction pipe with foot valve and a strainer: It is a pipe whose upper end is connected to the inlet of the pump (or to 
the centre of the impeller which is known as eye) and the lower end dips into liquid in the sump from which the liquid is 
to be pumped. The lower end of the suction pipe is fitted with a foot valve and a strainer. The foot valve is a non-return 
or one way valve which opens in the upward direction only. It does not allow the liquid to flow in downward direction 
back to the sump. The liquid first enters the strainer which removes the debris. The suction pipe should always be fitted 
in such a way that water always flows in the upward direction and all the pipe fittings must be air tight so that no air 
pockets are formed and the pump works smoothly.

 4. Delivery pipe and delivery valve: It is a pipe whose lower end is connected to the outlet of the pump and its upper 
end delivers liquid to the required height. Just near the outlet of the pump on delivery pipe, a regulating valve is fitted 
which controls the flow of liquid from the pump into the delivery pipe.

25.4.2 Working of a Centrifugal Pump
The stepwise working of a centrifugal pump is explained below.

 1.  The first step in the working operation of a centrifugal pump is priming. During the priming operation, the delivery 
valve is kept closed. Priming is the operation in which the suction pipe, casing of the pump and the portion of the 
delivery pipe up to the delivery valve are completely filled with the liquid which is to be pumped so that no air pocket is 
left. The presence of even a small air pocket in any part of the pump may cause no delivery of the liquid from the pump. 
The pressure generated in a centrifugal pump is proportional to the density of the fluid it handles. Very small pressure 
will develop if the impeller rotates in the presence of air. Thus, no liquid will be lifted up by the pump. Therefore, it is 
essential to properly prime a pump before it can be started.

 2. The electric motor is started to rotate the impeller and the delivery valve is still kept closed to reduce the starting 
torque.

 3. The rotation of the impeller in the casing full of liquid produces a forced vortex which provides a centrifugal head to 
the liquid and thus, it results in increase of pressure throughout the liquid. The rise in pressure head at any point of 
the rotating liquid is proportional to the square of the tangential velocity of the liquid at that point and the distance 
of the point from the axis of rotation. Thus, if the speed of the impeller of the pump is high enough, then the pressure 
of the liquid surrounding the impeller increases considerably. When the delivery valve is opened, the liquid flows in an 
outward radial direction and leaves the vanes of the impeller at the outer radius with high velocity and pressure.

Impeller

Di�user

Guide vanes

Discharge

Vortex
chamber

Impeller

Casing

Volute
casing

(a) Volute casing (b) Vortex casing (c) Casing with guide blades

Impeller

Casing

Discharge Discharge

Figure 25.5 Types of casing
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 4. The rotation of the impeller due to centrifugal action causes a partial vacuum at its eye which causes the suction of the 
liquid from the sump through the suction pipe. The sucked liquid replaces the liquid which is being discharged from 
the whole circumference of the impeller.

 5.  The high pressure of the liquid leaving the impeller is utilized in lifting the liquid to the required height.

25.4.3 Priming Devices
Small pumps are primed by pouring liquid into the casing through a funnel. The air vent is kept open during the filling 
operation to escape the air through it. The air vent is closed after ensuring that all the air has escaped from the suction pipe, 
impeller and casing. Large pumps are primed by evacuating the casing and the suction pipe with the help of a vacuum pump 
or a steam ejector. Thus, the liquid is sucked into the suction pipe and the pump is filled with it. However, some pumps are 
self-primed pumps in which a special arrangement containing a supply of liquid is provided in the suction pipe which does 
the automatic priming of the pump. 

25.5 ❐  VELOCITY TRIANGLES AND WORK DONE BY  
CENTRIFUGAL PUMP

The expression for work done by the impeller in water is obtained by drawing velocity triangles at the inlet and outlet of the 
impeller in the same way as for a turbine. For drawing the velocity triangles, the same notations are used as that of turbines. 
The velocity triangles at the inlet and outlet tips of a vane of the impeller are shown in Figure 25.6. 

The velocity triangles also known as Euler’s velocity triangles have been drawn by assuming that there are infinite 
numbers of blades in the impeller. The other assumptions are (i) flow is steady and one dimensional, (ii) there is no 
energy loss in the impeller due to friction and eddy formation and (iii) there is no energy loss due to shock at entry of 
the impeller.

Let N be the speed in rpm,

     ω π= ( )2 60N / rad/s  be the angular velocity,

    Ri and Ro be the radii of the impeller at the inlet and 
outlet, respectively,

    Di and Do be the diameters of impeller at the inlet and 
outlet, respectively,

    Bi and Bo be the widths of impeller at the inlet and  outlet, 
respectively,

    A D Bi i i= π  and A D Bo o o= π  be the areas of impeller at 
the inlet and outlet, respectively,

     u R N Ri i i= =2 60π ω/  and u R N Ro o o= =2 60π ω/  be 
the tangential velocities of the impeller at the inlet and outlet, 
respectively,

    Vi and Vo be the absolute velocities of the water at the 
inlet and outlet, respectively, 

    Vri and Vro be the relative velocities of the water at the 
inlet and outlet, respectively,

    Vwi and Vwo be the velocities of whirl at the inlet and 
outlet, respectively, 

    V fi and V fo be the velocities of flow at the inlet and outlet, respectively, 

    α  and β  be the angles made by absolute velocities at the inlet and outlet, respectively, 

    θ  and ϕ  be the vane angles at the inlet and outlet, respectively.

α
θ

ϕβ

Tangent to impeller
at outlet

O

A
B

C

E

D

FG

Inlet

Outlet

uo

Vfo
Vro

Vo

Ro

Ri

Vri

ui

Vi = Vfi

Vwo

Figure 25.6  Velocity triangles at inlet and outlet of a 
centrifugal pump
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For best efficiency of the pump, the water is assumed to enter the impeller radially at the inlet. This means the whirl 
 component Vwi is equal to zero and the flow component Vfi equals the absolute velocity Vi. In other words, α = °90 , Vwi = 0 

and V Vfi i= . A centrifugal pump is the reverse of a radially inward flow reaction turbine. In the case of radially inward flow 
reaction turbine, the work done by water on the runner per second per unit weight is given by Euler’s equation as follows. 

 w
V u V u

g
wi i wo o

turbine =
−

 

Therefore, work done by impeller in water per second per unit weight of water striking per second is given below. 

 w w
V u V u

g

V u V u

g
wi i wo o wo o wi i= − = −

−⎛
⎝⎜

⎞
⎠⎟

=
−

turbine  (25.1)

Since water enters radially, Vwi = 0 and therefore, Equation (25.1) is written as follows.  

 w
V u

g
wo o=  (25.2)

Equation (25.2) represents the head imparted by the impeller to the water or energy imparted by impeller to the liquid per 
unit weight per second which is also known as Euler head or theoretical head (He). It tells that for delivering water at high 
heads, the peripheral velocity (uo) must be high and whirl velocity (Vwo) must also be large. For obtaining high values of 
uo, the impeller diameter and its speed of rotation should be increased. For large values of Vwo the number of vanes should 
be adequate and should be of suitable size and shape.

Work done by impeller in water per second is given by,

 w
W

g
V u QV uwo o w wo o= =( ) ρ  (25.3)

Here, W = weight of water per second = rw gQ and Q is the volume of water per second that is given as Q = p DiBiVfi = 
p DoBoVfo.

Torque exerted by the impeller on the water is equal to the rate of change of angular momentum as expressed below.

 T QV Rw wo o= ρ  (25.4) 

Thus, power at the impeller (Pim) or work done by impeller per second in water is given below.

 P T QV R
QV u

kWim w wo o
w wo o= = =ω ρ ω

ρ
1000

  [ ]∵u Ro o= ω  (25.5)

From outlet velocity triangle, we get:

 V V u Vfo ro o wo
2 2 2= − −( )  (i)

Also V V Vfo o wo
2 2 2= −  (ii)

From expressions (i) and (ii), we get:

 V u V V Vro o wo o wo
2 2 2 2− − = −( )  

V u V u V V Vro o wo o wo o wo
2 2 2 2 22− + − = −( )

Thus u V V u Vo wo o o ro= + −
1

2
2 2 2( ) (iii)
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 Centrifugal Pumps 25.9

By drawing inlet velocity triangle considering whirl velocity component at the inlet, similarly, we get the below expression. 

 u V V u Vi wi i i ri= + −
1

2
2 2 2( ) (iv)

Substituting expressions (iii) and (iv) in Equation (25.1) and rearranging, we get:

  w H
V V

g

u u

g

V V

ge
o i o i ri ro= =

−
+

−
+

−2 2 2 2 2 2

2 2 2
 (25.6)

Equation (25.6) gives the work done on the liquid per second per unit weight of liquid. Equations (25.2) and (25.6) 
 represent the head imparted by the impeller to the water only if there are infinite numbers of blades in the impeller and it is 
generally termed as Euler head (or theoretical head). Usually, Equation (25.6) is known as Euler’s equation and sometimes 
it is also called the fundamental equation of centrifugal pump. In this equation, the first term [( ) ( )]V V go i

2 2 2− /  represents 
the dynamic head or an increase in kinetic energy. The second term [( ) ( )]u u go i

2 2 2− /  represents the effect of centrifugal 
head. The third term [( ) ( )]V V gri ro

2 2 2− /  represents the change in static pressure energy. Here, the losses in the impeller 
and the effect of difference in elevations of the inlet and outlet points of the impeller are neglected. 

25.6 ❐ HEAD OF A CENTRIFUGAL PUMP
The head of a centrifugal pump are expressed in the following ways.

 1. Suction head: It is the vertical height of the centre line of the pump shaft above the water surface in the sump from 
which water is being lifted (Figure 25.3). It is also known as static suction lift and it is denoted by hs. 

 2. Delivery head: It is the vertical height of the water surface in the tank to which the water is delivered above the centre 
line of the pump shaft (Figure 25.3). It is also known as static delivery lift and it is denoted by hd.

 3. Static head: It is the vertical distance between the water surface in the sump and the tank to which the water is being 
delivered by the pump. Thus, static head is the sum of suction head and delivery head. It is denoted by Hs and it is given 
by the below expression. 

 H h hs s d= +  (25.7)

 4. Manometric head: Manometric head (Hm) is the head against which a centrifugal pump has to work. It is measured 
across the pump inlet and outlet flanges. If there are no energy losses in the pump (i.e., in the impeller and casing), then 
manometric head will be equal to the energy given to water by the impeller, i.e., ( )H Hm e= . Thus, the expression for 
manometric head is given below.

 H
V u

gm
wo o=  (25.8)

  If the loss of head (hf) in the impeller and casing of the pump are considered, then we get the below expression.

 H
V u

g
hm

wo o
f= −  (25.9)

  The manometric head may also be given by the following expressions. 

   (i) H h h h h
V

gm s d fs fd
d= + + + +

2

2
 (25.10)

      Here, hs is the suction head, hd is the delivery head, hfs is the frictional head loss in the suction pipe, hfd is the 
frictional head loss in the delivery pipe and Vd is the velocity of water in the delivery pipe.
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25.10 Chapter 25

      If the velocity head in the delivery pipe [ ( )]V gd
2 2/  is relatively small, it may be neglected and Equation (25.10) 

can be written as follows. 

 H h h h hm s d fs fd= + + +   (25.10a)

  (ii) Hm = Total head at the outlet of the pump - Total head at the inlet of the pump

      Thus H
p

g

V

g
z

p

g

V

g
zm

o

w

o
o

i

w

i
i= + +

⎛

⎝
⎜

⎞

⎠
⎟ − + +

⎛

⎝
⎜

⎞

⎠
⎟ρ ρ

2 2

2 2
 (25.11)

       Here, p g ho w d/( )ρ =  = pressure head at the outlet of the pump, V g V go d
2 22 2/ /( ) ( )=  = velocity head at the outlet 

of the pump = velocity head in the delivery pipe and zo= datum head at the outlet of the pump or vertical height 
of the pump outlet from the datum line, and p gi w/( )ρ , V gi

2 2/( ) and zi are the corresponding values of pressure 
head, velocity head and datum head at the inlet of the pump, respectively.

25.7 ❐ PRESSURE RISE IN THE IMPELLER
Assuming radial entry of water and there is no gravitational and frictional losses. Applying Bernoulli’s theorem between 
the inlet and outlet edges of the impeller. Let i and o be the inlet and outlet points for the impeller. 

 Energy at the inlet Energy at the outlet Work input= −  

 
p

g

V

g

p

g

V

g

V u

g
i

w

i o

w

o wo o

ρ ρ
+ = +

⎛

⎝
⎜

⎞

⎠
⎟ −

2 2

2 2
 

Therefore, pressure rise is given by,

 
p p

g

V

g

V

g

V u

g
o i

w

i o wo o−
= − +

ρ

2 2

2 2
 (i)

From inlet velocity triangle (Figure 25.6), we get:

 V Vi fi=  (ii)

From outlet velocity triangle (Figure 25.6), we get:

 V V Vo fo wo
2 2 2= +  (iii) 

and V u Vwo o fo= − cot ϕ  (iv)

Thus V V u Vo fo o fo
2 2 2= + −( cot )ϕ

 

or V V V u u Vo fo fo o o fo
2 2 2 2 2 2= + + −cot cotϕ ϕ  (v)

or V V u u Vo fo o o fo
2 2 2 21 2= + + −( cot ) cotϕ ϕ

 

or V V u u Vo fo o o fo
2 2 2 2 2= + −cosec ϕ ϕcot   (vi) 
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 Centrifugal Pumps 25.11

Substituting the expressions (ii), (iv) and (vi) in expression (i), we get:

p p

g

V

g g
V u u V

u V
o i

w

fi
fo o o fo

o fo−
= − + − +

−

ρ
ϕ ϕ

2
2 2 2

2

1

2
2( cot )

( cot
cosec

ϕϕ)u

g

o

= − − + + −
1

2
2 2 22 2 2 2 2

g
V V u u V u u Vfi fo o o fo o o fo( cot cot )cosec ϕ ϕ ϕ

  ∴
−

= + −
p p

g g
V u Vo i

w
fi o foρ

ϕ1

2
2 2 2 2( )cosec  (25.12)

The manometric head (Hm) is given by the pressure rise through the impeller with a certain percentage of kinetic head at 
the impeller exit which is recovered in the volute chamber when any loss of head in the pump is also neglected.

Thus H
p p

g

kV

gm
o i

w

o=
−

+
ρ

2

2
  (vii)

Substituting Equation (25.12) and expression (v) in expression (vii), we get:

H
g

V u V
k

g
V V u u Vm fi o fo fo fo o o fo= + − + + + −

1

2 2
22 2 2 2 2 2 2 2( ) ( cotcosec ϕ ϕ ccot )ϕ

H
g

u k ku V V k Vm o o fo fo fi= + − + − +
1

2
1 22 2 2 2 2[ ( ) cot ( cot ) ]ϕ ϕ ϕcosec

Assuming flow velocity as constant, i.e., V V Vfi fo f= = , we get:

H
g

u k ku V V k Vm o o f f f= + − + − +
1

2
1 22 2 2 2 2[ ( ) cot ( cot ) ]ϕ ϕ ϕcosec

H
g

xu yu V zVm o o f f= + +
1

2
2 2( )

Here, x k= +( )1 , y k= −2 cot ϕ  and z k= + −( cot ).1 2 2ϕ ϕcosec  

Since u No α  and V Qf α    [ ]∵u D N V Q Ao o f= =π / and /60  

 ∴ = + +H
g

AN BNQ CQm
1

2
2 2( ) (25.13)

Here, A B C, and  are constants. The Equation (25.13) gives the head delivery law for a particular pump at a particular 
speed. 

 Example 25.1  The external and internal diameters of the impeller of a centrifugal pump are 0.4 m and 0.2 m,  respectively. 
The centrifugal pump runs at 1200 rpm and its vanes at the exit are set back at an angle of 25°. If a constant radial flow 
through the impeller is maintained at 2.5 m/s, then determine (i) the inlet vane angle, (ii) angle made by absolute velocity 
at the outlet and (iii) work done by the impeller per unit weight of water. 

Solution
Refer Figure 25.7. Let Do = 0 4. m, Di = 0 2. m, N = 1200 rpm, ϕ = °25  and V Vfi fo= = 2 5. m/s . Let w be the work done 
by impeller per unit weight of water.
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25.12 Chapter 25

 (i) u
D N

i
i= = × × =

π π
60

0 2 1200

60
12 57

.
. m/s

  θ =
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ = ⎛

⎝⎜
⎞
⎠⎟

=− −tan tan
.

.
1 1 2 5

12 57

V

u

fi

i
11.25°°

 (ii) u
D N

o
o= =

× ×
=

π π
60

0 4 1200

60
25 13

.
. m/s

  V u
V

wo o
fo= − = −

°
=

tan
.

.

tan
.

ϕ
25 13

2 5

25
19 77 m/s

  β =
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ = ⎛

⎝⎜
⎞
⎠⎟

=− −tan tan
.

.
1 1 2 5

19 77

V

V

fo

wo
7.2°°

 (iii)  w
V u

g
wo o= = × =19 77 25 13

9 81

. .

.
50.644 Nm/N  

 Example 25.2  The internal and external diameters of a centrifugal pump are 10 cm and 20 cm, respectively. It runs at 
2800 rpm and delivers 0.105 m3/s of water. The widths of impeller at the inlet and outlet are 2 cm and 1 cm, respectively. 
The water enters the impeller radially at the inlet and impeller blade angle at the exit is 45°. Determine the pressure rise in 
the impeller by assuming that flow velocity as constant and neglecting losses through it. 

Solution
Let cm mDi = =10 0 1. , Do = =20 0 2cm m. , N = 2800 rpm, Q = 0 105. m /s3 , Bi = =2 0 02cm m. , Bo = =1 0 01cm m. , 
Vwi = 0, ϕ = °45  and V Vfi fo= .

Since Q D B Vo o fo= π  

  ∴ = =
× ×

=V
Q

D Bfo
o oπ π

0 105

0 2 0 01
16 7

.

. .
. 1 m/s 

Thus V Vfi fo= = 16 71. m/s 

 u
D N

o
o= =

× ×
=

π π
60

0 2 2800

60
29 3

.
. 2 m/s 

Since 
p p

g

V u V

g
o i

w

fi o fo−
=

+ −

ρ
ϕ( )2 2 2 2

2

cosec

 

∴
−

= + − °
×

=
p p

g
o i

wρ
( . . . )

.

16 71 29 32 16 71 45

2 9 81

2 2 2 2cosec
29.584 m

25.8 ❐ LOSSES, POWER AND EFFICIENCIES OF CENTRIFUGAL PUMPS

25.8.1 Losses in Centrifugal Pumps
The various losses occurring during the operation of a centrifugal pump are hydraulic losses, mechanical losses and 
 leakage losses. These losses are schematically illustrated in Figure 25.8.

 1. Mechanical losses: The mechanical losses occur due to (a) disc friction between the impeller and the water which fills 
the clearance space between the impeller and the casing and (b) mechanical friction of the main bearing and glands.

Vo
Vro

Vfo
ϕβ

uo

D

E FG

Outlet

ui

Vri
Vi = Vfi

θ
A

B

C

Inlet
α

Vwo

Figure 25.7
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 Centrifugal Pumps 25.13

 2. Hydraulic losses: The hydraulic losses decreases the 
head developed by the impeller. Hydraulic losses in the 
pump include the shock and friction losses. For the given 
values (or design values) of the blade angles and speed 
of rotation, there will be only one rate of discharge which 
ensures tangential entry to the impeller and  tangential 
exit from it.  Generally, the pumps operate at off design 
conditions which results in the variation in the rate of 
discharge. Thus, shock losses occur at the entry and exit 
of the impeller. At the exit from the impeller, energy 
loss also occurs due to change in angles of the water as 
it enters the casing. Friction losses in the impeller and 
 friction and eddy losses in the guide vanes and casing 
are also considered as hydraulic losses. 

   The other hydraulic losses include friction and other 
minor losses in the suction and delivery pipes.

 3. Leakage loss: A certain amount of water always leaks from the high pressure region to the low pressure region and 
wastes its energy in the form of eddies. The loss of energy due to leakage of water is known as the leakage loss.

25.8.2 Power of Centrifugal Pumps

 1. Shaft power: It is the power supplied by the motor (or prime mover) to the pump shaft and it is denoted by P.

 2. Impeller power: It is the power available at the impeller and will be equal to the work done per second by the impeller 
on water. It is denoted by Pim and from Equation (25.5), it is given below. 

P
QV u

im
w wo o=

ρ
1000

kW

 3. Power output: It is the power output from the pump that is available at casing exit. It is denoted by Po and it is given 
below. 

    P
H WH gQ H

o
m m w m=

×
= =

×Weight of water lifted per second 

1000 1000 1

ρ
0000

kW  (25.14)

 4. Static power: It is the power available at delivery exit of the pump. It is denoted by Ps and it is expressed below.

 P
H WH gQ H

s
s s w s=

×
= =

×Weight of water lifted per  second

1000 1000 10

ρ
000

kW  (25.15)

25.8.3 Efficiencies of Centrifugal Pumps

 1. Manometric efficiency: It is defined as the ratio of manometric head developed by the pump to the head imparted by 
the impeller to the water. Manometric efficiency takes into account the hydraulic losses in the pump. It is denoted by 
ηman and the expression is given below. 

 ηman
Manometric head developed

Head imparted by impeller to water
= =

HH

V u g

gH

V u
m

wo o

m

wo o( )/
=  (25.16)

  The manometric efficiency is also defined as the ratio of power given to water at the outlet of the pump (Po) to the 
power available at the impeller (Pim).

Shaft
power

(P)
Impeller
power
(Pim)

Power
output
(Po)

Static
power
(Ps)

Mechanical
losses

Hydraulic
losses Other hydraulic

losses

Figure 25.8 Losses in centrifugal pumps
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25.14 Chapter 25

  Thus η
ρ
ρman

o

im

w m

w wo o

m

wo o

P

P

gQH

QV u

gH

V u
= = =

( )

( )

/

/

1000

1000
 [Same as Equation (25.16)]

  Manometric efficiency becomes equal to hydraulic efficiency ( )ηh  when the vane efficiency ( )ε  approaches unity (For 
details refer Section 25.10).

 2. Volumetric efficiency: A certain amount of liquid say q slips (or leaks) from the outlet of the impeller (high pressure 
zone) to the eye of the impeller (low pressure zone) through the clearances between the impeller and the casing. Thus, 
volumetric efficiency is defined as the ratio of actual discharge (Q) from the pump to the total discharge per second 
through the impeller. It is denoted by ηv and its expression is given below. 

 ηv
Q

Q q
= =

+
Actual discharge

Total discharge
 (25.17)

  Here, q is the amount of water leakage per second from the impeller.

  Generally, the value of volumetric efficiency of centrifugal pumps ranges from 97% to 98%.

 3. Mechanical efficiency: An electric motor is used to give the power input to the pump shaft which is more than the 
power delivered by the impeller to the water. Mechanical efficiency is defined as the ratio of the power available at the 
impeller (Pim) to the power at the shaft (P) of the centrifugal pump. It is denoted by ηm and its expression is given 
below.

 η
ρ

m
im w wo oP

P

QV u

P
= = =

Power at the impeller

Power at theshaft 1000
 (25.18)

  But when q is considered, Equation (25.18) becomes,

  η
ρ

m
w wo oQ q V u

P
=

+( )

1000
  (25.18a)

  Generally, the mechanical efficiency of centrifugal pump ranges from 95% to 98%.

 4. Overall efficiency: It is defined as the ratio of power output of the pump (Po) to the power input to the pump (P). It is 
denoted by ηo and its expression is given below. 

  η
ρ

o
o m w mP

P

WH

P

gQ H

P
= = =

×
1000 1000

 (25.19)

  Also  η η η
ρ ρ

o m
m

wo o

w wo o w mgH

V u

QV u

P

gQH

P
= × = × =man 1000 1000

  (25.19a) 

  When volumetric efficiency is also considered, then overall efficiency becomes,

 η η η η
ρ ρ

o m v
m

wo o

w wo o w mgH

V u

Q q V u

P

Q

Q q

gQH

P
= × × = ×

+
×

+
=man

( )

1000 1000
  (25.19b)

  Generally, the overall efficiency of a centrifugal pump ranges from 70% to 86%.

25.9 ❐  EFFECT OF OUTLET VANE ANGLE ON MANOMETRIC 
EFFICIENCY

The energy supplied to the impeller is ( )V u gwo o / . The water leaving the impeller has a pressure energy (Hm) and kinetic 

energy V go
2 2/( ). If the loss of head in the pump is neglected, then we get the below expression.

V u

g
H

V

g
wo o

m
o= +

2

2
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 Centrifugal Pumps 25.15

Thus H
V u

g

V

gm
wo o o= −

2

2
 (25.20)

From the outlet velocity triangle shown in Figure 25.6, we get:

 V V Vo wo fo
2 2 2= +  and V u Vwo o fo= − cot ϕ  

Thus H
u V u

g

u V V

g

u V

gm
o fo o o fo fo o fo=

−
−

− +
=

−( cot ) ( cot )ϕ ϕ ϕ2 2 2 2 2

2 2

cosec
 (25.21)

Thus under ideal conditions the manometric efficiency of the centrifugal pump becomes,

 η
ϕ
ϕman

cosec
= =

−

−
gH

V u

u V

u u V
m

wo o

o fo

o o fo

( )

( cot )

2 2 2

2
 (25.22)

The value of ηman  evaluated from Equation (25.22) is observed to increase from 47% to 73% for different values of f 
decreasing from 90° to 20° and for flow ratio Kf  is equal to 0.25. It is also observed that a further decrease in the value 

of f increases the efficiency. However, it is unfeasible to have the value of f less than 20° because it results in the long 
and  narrow passages which produce high frictional losses. Thus, the value of f is not decreased below 20°. However, by 
employing guide vanes, a part of the velocity energy is converted into useful pressure energy and efficiency of the pump 
is increased.

25.10 ❐  EFFECT OF NUMBER OF VANES OF IMPELLER  
ON HEAD AND EFFICIENCY

The vanes are designed on the basis of Euler’s velocity triangles which are drawn by assuming infinite number of vanes 
in the impeller. As the impeller has a finite number of vanes, the actual velocity triangles differ than the Euler’s velocity 
triangles. Due to secondary flow (or circulatory flow), the actual velocity of whirl (Vwo) is always less than that in the 
 Euler’s velocity triangles. As a result, the actual head (Hi) imparted by the impeller with finite number of vanes to the water 
is always less than the Euler’s head (He). The ratio of actual head to the Euler’s head is known as vane efficiency (or vane 
effectiveness). It is denoted by ε  and it is mathematically expressed as follows. 

 ε =
H

H
i

e
 (25.23)

Experimentally, it is found that as the number of vanes is increased, the value of vane efficiency ( )ε  increases and approaches 
unity. It means that the actual head imparted by the impeller to the water approaches Euler’s head as the number of vanes 
are increased. The value of vane efficiency also depends on the shape of vane and the outlet vane angle ( )ϕ . Generally, for 
radial flow pumps, the vane efficiency is found to increase from 60% to 80% as the number of vanes is increased from 4 
to 12. For impellers having vanes more than 24, the value of ε  is taken as unity. Unless otherwise mentioned, the value of 
ε  is also taken as unity.

A portion of the actual head imparted by the impeller with finite number of vanes to the water is lost in the pump say hf . 
Thus, the manometric head available from the pump is given below. 

 H H hm i f= −  

The ratio of manometric head to the actual head is known as hydraulic efficiency ( )ηh  of the pump and its expression is 
given below. 

 ηh
m

i

H

H
=  (25.24)
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The manometric efficiency in Equation (25.16) and Equation (25.2) is given by, 

    ηman /
= =

H

V u g

H

H
m

wo o

m

e( )
 (25.25)

Thus, by combining the Equations (25.23), (25.24), and (25.25), we get:

  η η εman
m

i

i

e
h

H

H

H

H
= × =  (25.26)

For ε = 1, H Hi e=  and η ηman = h .

25.11 ❐ SLIP FACTOR
The slip factor (σ) is defined as the ratio of actual outlet whirl velocity to the blade velocity at the outlet. The slip factor is 
mathematically expressed as follows. 

  σ = =
Actual outlet whirl velocity

Blade tip velocity at outlet

V

u
wo

o
  (25.27)

The value of slip factor depends on the number of vanes. The greater the number of vanes, the smaller the slip, i.e., more 
nearly Vwo approaches uo and thus, larger the slip factor. Stanitz (in 1952) suggested an appropriate empirical formula to 
determine the slip factor for a radial vane impeller in terms of number of vanes (n) as given below.

 σ π
= −1

0 63.

n
  (25.28)

Generally, the value of slip factor is about 0.9 when the number of vanes varies from 19 to 21. 

25.12 ❐ LOSS OF HEAD DUE TO REDUCED OR INCREASED FLOW
When a pump operates at its designed values of discharge and speed, it gives maximum efficiency. Due to increased 
or decreased flow rate, there will be loss of head due to shock at the entrance to the impeller. The head loss lowers the 
 efficiency of the pump. Let ABC be the inlet velocity triangle for a centrifugal pump when it runs under normal conditions 
as shown in Figure 25.9(a).

The vanes at inlet tip will remain along the relative velocity represented by AC. When the flow rate decreases (or 
increases) the flow velocity decreases (or increases) from BC to BD. While the pump speed remains the same and the 
 velocity triangle is shown by ABD. The new relative velocity AD no longer remains parallel to the vane and thus, shock 

ui

Vri

θ
A

C

θ
BE

D Vfi′
Vfi

(a) (b)

Vri

θ
A

C

θ

BE

D

Δu
uiΔu

Vfi′
Vfi

Figure 25.9 Inlet velocity triangles with decreased and increased flow
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 Centrifugal Pumps 25.17

occurs at entry. Now flow velocity BD is fixed and also the water flow along the vane. Thus, the velocity triangle will 
become EBD and ED is parallel to AC. A sudden tangential change of velocity AE ( )Δu  results in a shock causing the head 
loss. The head loss (hf) due to sudden change in velocity is given below. 

  h
u

g

u V

gf
i fi= =

− ′( )

2

( )

2

2 2
Δ cotθ

 (25.29)

Effect of the increased flow is shown in Figure 25.9(b) and the loss of head becomes,

 h
V u

gf
fi i=
′ −( )

2

2cotθ
  (25.30)

 Example 25.3  A centrifugal pump is to discharge 0.118 m3/s at a speed of 1450 rpm against a head of 25 m. The 
 impeller diameter is 250 mm, its width at the outlet is 50 mm and manometric efficiency is 75%. Determine the vane angle 
at the outer periphery of the impeller. 

Solution
Refer Figure 25.10. Let Q = 0 118. m /s3 , N = 1450 rpm, Hm = 25 m, Do = =250 0 25mm m. , Bo = =50 0 05mm m.  
and ηman = 0 75. .

u
D N

o
o= =

× ×
=

π π
60

0 25 1450

60
18 98

.
. m/s

Since Q D B Vo o fo= π

∴ = =
× ×

=V
Q

D Bfo
o oπ π

0 118

0 25 0 05
3

.

. .
m/s

Since ηman =
gH

V u
m

wo o

∴ = =
×

×
=V

gH

uwo
m

oηman
m/s

9 81 25

0 75 18 98
17 23

.

. .
.

ϕ =
−

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ =

−
⎛
⎝⎜

⎞
⎠⎟

=− −tan tan
. .

1 1 3

18 98 17 23

V

u V

fo

o wo
59.74°°  

 Example 25.4  The following data are given for a centrifugal pump, such as outer diameter = 2 × internal diameter, 
speed = 3000 rpm, internal diameter = 0.1 m, impeller width at outlet = 0.02 m, vane angle at outlet = 30°, constant flow 
velocity = 3 m/s, manometric efficiency = 0.8 and overall efficiency = 0.7. Calculate (i) vane angle at the inlet, (ii) rate of 
discharge, (iii) manometric head, (iv) shaft power and (v) torque. 

Solution
Refer Figure 25.10. Let D Do i= 2 , N = 3000 rpm , Di = 0 1. m, Bo = 0 02. m, ϕ = °30 , V Vfi fo= = 3 m/s , ηman = 0 8.  and  
ηo = 0 7. .

 (i) u
D N

i
i= =

× ×
=

π π
60

0 1 3000

60
15 71

.
. m/s

   θ =
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ = ⎛

⎝⎜
⎞
⎠⎟

=− −tan tan
.

1 1 3

15 71

V

u

fi

i
10.81°°

Vo
Vro

Vfo
ϕβ

uo

D

E FG

Outlet

ui

Vri
Vi = Vfi

θ
A

B

C

Inlet
α

Vwo

Figure 25.10
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 (ii) D Do i= = × =2 2 0 1 0 2. . m

    Q D B Vo o fo= = × × × =π π 0 2 0 02 3. . 0.0377 m /s3

 (iii) u
D N

o
o= =

× ×
=

π π
60

0 2 3000

60
31 416

.
. m/s

  V u
V

wo o
fo= − = −

°
=

tan
.

tan
.

ϕ
31 416

3

30
26 22 m/s

  Since ηman =
gH

V u
m

wo o

   ∴ = = × × =H
V u

gm
wo oηman 0 8 26 22 31 416

9 81

. . .

.
67.174 m

 (iv)  ∵η
ρ

o
w mgQH

P
=

1000

   ∴ = = × × ×
×

=P
gQHw m

o

ρ
η1000

1000 9 81 0 0377 67 174

1000 0 7

. . .

.
35.491 kW

 (v)  P
gQH

o
w m= =

× × ×
=

ρ
1000

1000 9 81 0 0377 67 174

1000
24 843

. . .
. kW

  Since P
NT

o =
2

60

π

   ∴ = = × ×
× ×

=T
P

N
o60

2

60 24 843 10

2 3000

3

π π
.

79.08 Nm   

 Example 25.5  The impeller of a centrifugal pump is of 0.3 m diameter, 0.05 m width at the periphery and has 
blades whose tip angle inclines backwards 60° from the radius. The pump delivers 15 m3/min and the impeller rotates at  
1000 rpm. Assume that the pump is designed to admit radially and calculate (i) the speed and direction of water as it leaves 
the impeller, (ii) torque exerted by the impeller in water, (iii) shaft power required and (iv) lift of the pump. Take mechanical 
efficiency as 95% and hydraulic efficiency as 75%. 

Solution
Refer Figure 25.11. Let Do = 0 3. m, Bo = 0 05. m , ϕ = °60 , Q = =15 0 25m / m /s3 3min . , N = 1000 rpm, Vwi = 0, ηm = 0 95.  
and ηh = 0 75. .

u
D N

o
o= =

× ×
=

π π
60

0 3 1000

60
15 71

.
. m/s

Since Q D B Vo o fo= π

∴ = =
× ×

=V
Q

D Bfo
o oπ π

0 25

0 3 0 05
5 3

.

. .
. m/s

Since tanϕ =
−

V

u V

fo

o wo

Thus V u Vwo o fo= − = − ° =cot . . cot .ϕ 15 71 5 3 60 12 65 m/s

Vo
Vro

Vfo
ϕβ

uo

D

E FG

Outlet

ui

Vri
Vi = Vfi

θ
A

B

C

Inlet
α

Vwo

Figure 25.11
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 (i) V V Vo fo wo= + = + =2 2 2 25 3 12 65. . 13.715 m/s  

   ∴ =
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ = ⎛

⎝⎜
⎞
⎠⎟

=− −β tan tan
.

.
1 1 5 3

12 65

V

V

fo

wo
22.73°°   

 (ii) Torque exerted by the impeller on the water is given by,

  T QV Rw wo o= = × × × =ρ 1000 0 25 12 65 0 15. . . 474.375 Nm

 (iii)  P T
NT

im = = =
× ×

×
=ω π π2

60

2 1000 474 375

60 1000
49 676

.
. kW

   ∴ = = =P
Pim

mη
49 676

0 95

.

.
52.29 kW   

  (iv)  η
ρ

h
o

im

w m

im

P

P

gQH

P
= =

1000
  [ ]∵η ηh man=

  ∴ = = × ×
× ×

=H
P

gQm
h im

w

1000 1000 0 75 49 676

1000 9 81 0 25

η
ρ

. .

. .
15.1914 m  

 Example 25.6  A centrifugal pump is required to discharge 60 litres per second water against a head of 12 m, when 
running at a speed of 750 rpm. The manometric efficiency is to be 80%, the loss of head in the pump being assumed as 
0 025 2. Vo  of water, where Vo is the absolute velocity of water leaving the impeller. Water enters the impeller without whirl 
and the velocity of flow at the exit is 3 m/s. Determine (i) the impeller diameter and outlet area, (ii) vane angle at the outlet 
edge of the impeller and (iii) angle made by absolute velocity of water leaving the vane with the direction of motion at the 
outlet. 

Solution
Refer Figure 25.12. Let Q l= =60 0 06/s m /s3. , Hm = 12 m, N = 750 rpm, 

ηman = 0 8. , head loss = 0 025 2. Vo , Vwi = 0 and V fo = 3 m/s.

u
D N D

Do
o o

o= =
× ×

=
π π

60

750

60
39 27. m/s

Head developed m
man

= = =
Hm

η
12

0 8
15

.

Head loss m= − =15 12 3  

Thus 0 025 32. Vo =

∴ = =Vo
3

0 025
10 954

.
. m/s

V V Vwo o fo= − = − =2 2 2 210 954 3 10 535. . m/s

Since ηman
m

wo o

gH

V u
=

Thus 0 8
9 81 12

10 535 39 27
.

.

. .
=

×
× Do

Vo
Vro

Vfo
ϕβ

uo

D

E FG

Outlet

ui

Vri
Vi = Vfi

θ
A

B

C

Inlet
α

Vwo
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∴ = ×
× ×

=Do
9 81 12

10 535 39 27 0 8

.

. . .
0.356 m

u Do o= = × =39 27 39 27 0 356 13 98. . . . m/s

A
Q

Vo
fo

= = =0 06

3

.
0.02 m2

ϕ =
−

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ =

−
⎛
⎝⎜

⎞
⎠⎟

=− −tan tan
. .

1 1 3

13 98 10 535

V

u V

fo

o wo
41.05°°

β =
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ = ⎛

⎝⎜
⎞
⎠⎟

=− −tan tan
.

1 1 3

10 535

V

V

fo

wo
15.89°°

 Example 25.7  A centrifugal pump has an impeller of 0.75 m diameter and it delivers 1000 litres per second against a 
head of 65 m. The impeller runs at 1000 rpm and the width at the outlet is 6 cm. If the leakage loss is 3.5% of the discharge, 
then the external mechanical loss is 15 kW and the manometric efficiency is 85%. Determine (i) the blade angle at the 
outlet, (ii) power required and (iii) efficiency of the pump. 

Solution
Refer Figure 25.13. Let Do = 0 75. m , Q la = =1000 1/s m /s3 , Hm = 65 m, N = 

1000 rpm, Bo = 6 cm = 0.06 m, leakage loss = 3 5. % of Qa, mechanical loss kW=15  

and ηman = 0 85. .

 (i) Let Qth and Qa be the theoretical and actual discharges, respectively.

  Q Q Q Qth a a a= + × = = × =3 5 1 035 1 035 1 1 035. % . . . m /s3

  Since   Q D B Va o o fo= π

∴ = =
× ×

=V
Q

D Bfo
a

o oπ π
1

0 75 0 06
7 07

. .
. m/s

u
D N

o
o= =

× ×
=

π π
60

0 75 1000

60
39 27

.
. m/s

  Since  ηman =
gH

V u
m

wo o

∴ = =
×

×
=V

gH

uwo
m

man oη
9 81 65

0 85 39 27
19 1

.

. .
. m/s

ϕ =
−

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ =

−
⎛
⎝⎜

⎞
⎠⎟

=− −tan tan
.

. .
1 1 7 07

39 27 19 1

V

u V

fo

o wo
19.32°°  

 (ii)  Theoretical power = =
× × ×

=
ρw th mgQ H

1000

1000 9 81 1 035 65

1000
659

. .
.9968 kW 

  Actual power input = Theoretical power + Mechanical loss

  ∴ = + =Actual power input 659 968 15. 674.968 kW

Vo
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Vfo
ϕβ

uo
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Outlet

ui

Vri
Vi = Vfi
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(iii)  Actual power output k= =
× × ×

=
ρw a mgQ H

1000

1000 9 81 1 65

1000
637 65

.
. WW

  η = = × =Actual power output

Actual power input

637 65

674 968
100

.

.
994.47%

 Example 25.8  A centrifugal pump is required to deliver 0.03 m3/s of water to a height of 25 m through a 12 cm  diameter 
pipe and 110 m long. Determine the power required to drive the pump if its overall efficiency is 72%. Take  coefficient of 
friction f = 0 01.  for the pipe line. 

Solution
Let Q = 0 03. m /s3 , ( )h hs d+ = 25 m, D = =12 0 12cm m. , L = 110 m, ηo = 0 72.  and f = 0 01. . Let V V Vs d= =  be the 
velocity of water in pipe and P  be the power required by the pump.

V V
Q

A

Q

D
d= = = =

×
=

( )

.

( ) .
.

π π/ /
m/s

4

0 03

4 0 12
2 652

2 2

( )
. .

. .
.h h

fLV

gDfs fd+ = =
× × ×

× ×
=

4

2

4 0 01 110 2 652

2 9 81 0 12
13 144

2 2

m

H h h h h
V

gm s d fs fd
d= + + + + = + +

×
=

2 2

2
25 13 144

2 652

2 9 81
38 5.

.

.
. m

P
gQHw m

o
= = × × ×

×
=

ρ
η1000

1000 9 81 0 03 38 5

1000 0 72

. . .

.
15.737 kW

 Example 25.9  The discharge from a centrifugal pump running at 750 rpm is 0.25 m3/s and the head developed is 12 m. 
The inner and outer diameters of the impeller are 0.2 m and 0.4 m, respectively. The blade outlet angle is 30° to the tangent. 
The flow area is constant as 0.08 m2. If the flow at the inlet is radial, then determine (i) the manometric efficiency of the 
pump, (ii) vane angle at the inlet and (iii) loss of head at the inlet to impeller when the discharge is reduced by 40% without 
changing the speed. 

Solution
Refer Figure 25.14(a). Let N = 750 rpm, Q = 0 25. m /s3 , Hm = 12 m, Di = 0 2. m, Do = 0 4. m, ϕ = °30 , A = 0 08. m2, 

Vwi = 0 and  discharge reduced by 0%4 . Let hf be the loss of head.

(a) (b)

Vo
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Vfo
ϕβ

uo

D

E FG

Outlet

ui

Vri
Vi = Vfi

θ
A

B

C
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ui

Vri

θ
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Figure 25.14
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 (i) V V
Q

Afi fo= = = =
0 25

0 08
3 125

.

.
. m/s

    u
D N

i
i= =

× ×
=

π π
60

0 2 750

60
7 854

.
. m/s

   u
D N

o
o= =

× ×
=

π π
60

0 4 750

60
15 71

.
. m/s

   V u
V

wo o
fo= − = −

°
=

tan
.

.

tan
.

ϕ
15 71

3 125

30
10 297 m/s

 
 ηman = = ×

×
× =

gH

V u
m

wo o

9 81 12

10 297 15 71
100

.

. .
72.77%  

  (ii) θ =
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ = ⎛

⎝⎜
⎞
⎠⎟

=− −tan tan
.

.
1 1 3 125

7 854

V

u

fi

i
21.7°°   

 (iii) When the flow rate is reduced, the velocity of flow is reduced. However, the blade angle remains same. The water 
suddenly drops in velocity by CX as shown in Figure 25.14(b).

  New discharge is given by,

Q  new
3 0.6 0.25  0.15 m /s= × =

∴ ′ = = =V
Q

Af i
new m/s

0 15

0 08
1 875

.

.
.

  Drop in velocity is given by, 

Δu u
V

i
f i= −
′

= −
°

=
tan

.
θ

 .854
1.875

tan21.7
m/s7 3 142

∴ = =
×

=h
u

gf
Δ 2 2

2

3 142
  

2 9.81

.
0.5032 m  

 Example 25.10  The head capacity characteristics of a centrifugal pump running at constant speed is given by 

H Q Q= + −30 40 750 98 2. , where H is the total head generated in m and Q is the discharge in m /s3 . The pump is required 
to discharge water through a pipeline 1000 m long and 30 cm diameter. The static lift is 20 m. Determine the operating head 
and discharge rate of the pump. Also determine the power required to drive the pump if it has an overall efficiency of 76% 
for the particular operating point. Neglect velocity head and take pipe friction coefficient as f = 0 002. .

Solution
Let H Q Q= + −30 40 750 98 2. , L = 1000 m, D = =30 0 3cm m. , static lift m= 20 , ηo = 0 76.  and f = 0 002. . Head devel-

oped by the pump is equal to the sum of static head and the head lost in pipe friction. 

Thus 30 40 750 98 20
4

2
2

2

+ − = +Q Q
fLV

gD
.   

Since V
Q

A

Q

D

Q

D
= = =

( )π π/4

4
2 2

 

30 40 750 98 20
4

2

42
2

2

+ − = + ×
⎛
⎝⎜

⎞
⎠⎟

Q Q
fL

gD

Q

D
.

π
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30 40 750 98 20
4 0 002 1000 16

2 9 81 0 3 0 3

2
2

2 4
+ − = +

× × ×
× × × ×

Q Q
Q

.
.

. . .π

30 40 750 98 20 272 022 2+ − = +Q Q Q. .

1023 40 10 02Q Q− − =

∴ = ± + × ×
×

=Q
40 40 4 1023 10

2 1023

2
0.1203 m /s3

 

Since H Q Q= + −30 40 750 98 2.  

 ∴ = + × − × =H 30 40 0 1203 750 98 0 12032. . . 23.944 m   

P
gQHw

o
= = × × ×

×
=

ρ
η1000

1000 9 81 0 1203 23 944

1000 0 76

. . .

.
37.181 kW

25.13 ❐ MINIMUM STARTING SPEED
Recalling the fundamental equation (Euler equation) of centrifugal pump [Equation (25.6)], we get the below expression.

 w H
V V

g

u u

g

V V

ge
o i o i ri ro= =

−
+

−
+

−2 2 2 2 2 2

2 2 2
  

The water velocities at the start time of a centrifugal pump are negligible. Thus, the heads due to kinetic energy and relative 

velocity are not present. Therefore, only centrifugal or pressure head [( ) ( )]u u go i
2 2 2− /  caused by the centrifugal force on 

the rotating water will be available. The water will start flowing only when the centrifugal head is more than or equal to 
manometric head (Hm). Thus, the pump starting condition will be as follows. 

  
( )u u

g
Ho i

m

2 2

2

−
≥  (25.31)

Thus, for minimum speed, we must have,

 
( )u u

g
Ho i

m

2 2

2

−
=  (25.32)

Since H
V u

gm
man wo o=

η
  [From Equation (25.16)] 

Thus 
u u

g

V u

g
o i man wo o

2 2

2

−
=

η
 

 
1

2 60 60 60

2 2

g

D N D N V

g

D No i man wo oπ π η π⎛
⎝⎜

⎞
⎠⎟

− ⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= ⎛
⎝⎜

⎞
⎠⎟⎟
 

 
π ηN

D D V Do i man wo o120
2 2( )− =  

  ∴ =
−

N
V D

D D

man wo o

o i

120
2 2

η
π( )

 (25.33)

The Equation (25.33) represents minimum starting speed of a centrifugal pump to maintain continuous discharge of water.
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 Example 25.11  A centrifugal pump has diameters at the outlet and inlet as 0.5 m and 0.25 m, respectively. The vanes 
outlet angle is 45°. If the velocity of flow at the outlet is 2.5 m/s and the manometric efficiency of the pump is 75%, then 
determine its minimum starting speed. 

Solution
Refer Figure 25.15. Let Do = 0 5. m , Di = 0 25. m, ϕ = °45 , V fo = 2 5. m/s and 

ηman = 0 75. . Let N be the minimum  starting speed.

u
D N N

o
o= =

× ×
=

π π
60

0 5

60
0 0262

.
. N

V u
V

N Nwo o
fo= − = −

°
= −

tan
.

.

tan
( . . )

ϕ
0 0262

2 5

45
0 0262 2 5 m/s

N
V D

D D

Nman wo o

o i

=
−

=
× × − ×

−

120 120 0 75 0 0262 2 5 0 5

0 52 2 2

η
π π( )

. ( . . ) .

( . 00 25
2 190 986

2. )
.= −N

∴ =N 190.986 rpm  

 Example 25.12  A centrifugal pump has the following particulars, such as outer diameter = 1.2 m, inlet diameter = 
0.6 m, speed = 200 rpm, discharge = 1.88 m3/s, average lift and head = 6 m, vane outlet angle = 26° and velocity of flow =  
2.5 m/s. Determine manometric efficiency, least speed to start pumping action and power required to drive the pump 
 impeller if mechanical efficiency is given as 95%. 

Solution
Refer Figure 25.15. Let Do = 1 2. m, Di = 0 6. m, N = 200 rpm, Q = 1 88. m /s3 , Hm = 6 m, ϕ = °26 , V fo = 2 5. m/s and 

ηm = 0 95. . 

u
D N

o
o= =

× ×
=

π π
60

1 2 200

60
12 566

.
. m/s

V u
V

wo o
fo= − = −

°
=

tan
.

.

tan
.

ϕ
12 566

2 5

26
7 44 m/s

ηman
m

wo o

gH

V u
= = ×

×
× =9 81 6

7 44 12 566
100

.

. .
62.96%

Since 
( )u u

g
Ho i

m

2 2

2

−
=   [For minimum speed] 

But u
u

i
o=
2

  [ ]∵ D Di o= /2  

Thus 
u uo o

2 22

2 9 81
6

−
×

=
( )

.

/
 

 
3

4
6 2 9 812uo = × × .  

 uo =
× × ×

=
6 2 9 81 4

3
12 528

.
. m/s 
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Since u
D N

o
o=

π
60

 

  ∴ = = ×
×

=N
u

D
o

o

60 60 12 528

1 2π π
.

.
199.39 rpm   

  P
QV uw wo o

m
= = × × ×

×
=

ρ
η1000

1000 1 88 7 44 12 566

1000 0 95

. . .

.
185.014 kW   

25.14 ❐ DESIGN CONSIDERATIONS

 1. Speed ratio (Ku): The ratio of tangential velocity at the outlet to the theoretical jet velocity corresponding to 
 manometric head is known as speed ratio. Generally, its value for impellers varies from 0.95 to 1.25. The expression 
for speed ratio is given below.

 K
u

gH
u

o

m

=
2

  (25.34)

 2. Flow ratio (Kf ): The flow ratio is defined as the ratio of flow velocity at the outlet (Vfo) to the theoretical jet velocity 
corresponding to manometric head. The usual range of Kf for impeller is 0.1 to 0.25. The expression for flow ratio is 
given below. 

 K
V

gH
f

fo

m

=
2

  (25.35)

 3. Outlet diameter of impeller (Do): 

 u
D N

o
o=

π
60

, also u K gHo u m= 2  

  Thus 
π D N

K gHo
u m60

2=

  ∴ =D
K gH

No
u m60 2

π
 (25.36)

  If Do and N are known, then by Equation (25.36), the head which can be developed by a pump can be determined. This 
will serve as a check for the given pump.

 4. Inlet diameter of impeller (Di ): Based on the specific speed or manometric head, the inlet diameter Di is kept in the 
range of ( )Do /3  to ( )2 3Do / . However, it is usually taken as D Di o= /2.

 5. Least diameter of impeller: To determine the least diameter of the pump impeller, we have to consider that the water 
will start flowing only when the centrifugal head is equal to manometric head (Hm). 

  Thus 
( )u u

g
Ho i

m

2 2

2

−
=

  or 
π πD N D N

gHo i
m60 60

2
2 2⎛

⎝⎜
⎞
⎠⎟

− ⎛
⎝⎜

⎞
⎠⎟

=

  Taking D Di o= /2 and rearranging, we get:

 D
H

No
m=

97 68.
 (25.37)
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 6. Diameter of suction pipe (ds): The discharge of a centrifugal pump is given by,

 Q d Vs s= ×
π
4

2  

 ∴ =d
Q

Vs
s

4

π
 (25.38)

  Here, Vs is the velocity of flow in the suction pipe which varies from 1.5 to 3 m/s.

 7. Diameter of delivery pipe (dd): The diameter of the delivery pipe is given by, 

 d
Q

Vd
d

=
4

π
 (25.39)

  Here, Vd is the velocity of flow in the delivery pipe which varies from 1.5 to 3.5 m/s.

25.15 ❐ MULTISTAGE PUMPS
A multistage pump consists of two or more identical impellers mounted on the same shaft or on different shafts. A multi-
stage pump performs the following functions.

 1. To produce heads greater than that permissible with a single impeller, discharge remaining constant. This task is 
accomplished by series arrangement in which two or more impellers are mounted on the same shaft and enclosed in 
the same casing. A multistage pump is known as two stage, three stage, etc., according to the number of impellers fitted 
in the casing. A two stage pump is shown in Figure 25.16. 

   The discharge with increased pressure from the first impeller passes through the connecting passages to the inlet of 
the second impeller and so on. Finally, the discharge from the last impeller passes on the delivery pipe. Impellers in 
series are employed for delivering a relatively small quantity of liquid against very high heads (>100 m).

   Let n be the number of identical impellers mounted on the same shaft and Hm be the head developed by each 
 impeller, the total head (Ht) developed by multistage pump is given below. 

 H nHt m=  (25.40)

  The discharge of a multistage pump is same as the discharge capacity of one impeller.

1st impeller

2nd impeller

Shaft

Connecting passage

From suction pipe

To delivery pipe

Figure 25.16 Impellers in series
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 2. To discharge a large quantity of water, head remaining constant. When a large quantity of liquid is required to pump 
against a relatively small heads, two or more pumps mounted on separate shafts are used which separately lifts the 
liquid from a common sump and delivers it to a common collecting pipe as shown in Figure 25.17. 

   Let n be the number of identical impellers mounted on separate shafts and arranged in parallel and Q be the 
 discharging capacity which is same for each pump, the total discharge (Qt) delivered by this arrangement is given 
below.

 Q nQt =  (25.41)

  In this case, each of the pumps delivers the liquid against the same head.

 Example 25.13  A three stage centrifugal pump delivers water at the rate of 0.06 m3/s. Each impeller is 0.42 m in 
 diameter and 0.024 m wide at the outlet. The speed of the impellers is 950 rpm. The vanes are curved back at the outlet at 
an angle of 45° and reduce the circumferential area by 10%. The overall efficiency is 78% and the manometric efficiency 
is 88%. Determine the head generated and the power consumed.

Solution
Refer Figure 25.18. Let n = 3, Q = 0 06. m /s3 , Do = 0 42. m, Bo = 0 024. m, 

N = 950 rpm, ϕ = °45 , k = − =1 0 1 0 9. . , ηo = 0 78.  and ηman = 0 88. .

Since Q k D B Vo o fo= π

∴ = =
× ×

=V
Q

k D Bfo
o oπ π

0 06

0 9 0 42 0 024
2 105

.

. . .
. m/s

u
D N

o
o= =

× ×
=

π π
60

0 42 950

60
20 892

.
. m/s

V u
V

wo o
fo= − = −

°
=

tan
.

.

tan
.

ϕ
20 892

2 105

45
18 787 m/s

Since ηman
m

wo o

gH

V u
=

∴ = =
× ×

=H
V u

gm
wo oηman m

0 88 18 787 20 892

9 81
35 21

. . .

.
.

Vo
Vro

Vfo
ϕβ

uo

D

E FG

Outlet

ui

Vri
Vi = Vfi

θ
A

B

C

Inlet
α

Vwo

Figure 25.18

1st pump 2nd pump

Q1 Q2

Q1 + Q2

Common collecting pipe

Sump

Delivery pipe Delivery pipe

Figure 25.17 Impellers in parallel
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H nHt m= = × =3 35 21. 105.63 m  

P
gQHw m

o
= = × × ×

×
=

ρ
η1000

1000 9 81 0 06 105 63

1000 0 78

. . .

.
79.71 kW

25.16 ❐ SPECIFIC SPEED OF CENTRIFUGAL PUMPS
The specific speed (Ns) of a centrifugal pump is defined as the speed of a geometrically similar pump which would deliver 
1 m3 of liquid per second against a head of 1 m. Specific speed is used for the classification of pumps on the basis of their 
performance and dimensions regardless of their actual size or speed at which they operate. 

Specific speed may be derived as follows: 

Since Q DBV f= π  

Thus Q DBV f∝   

But B D∝  

Thus Q D V f∝ 2    (i) 

Since u
DN

=
π

60
 

Thus u DN∝   

Also  u V Hf m∝ ∝  

Thus DN H D
H

Nm
m∝ ⇒ ∝  

Substituting the values of D V fand  in expression (i), we get:

 Q
H

N
Hm

m∝
⎛

⎝
⎜

⎞

⎠
⎟

2

  

 Q
H

N

m∝
3 2

2

/

 

 Q k
H

N

m=
3 2

2

/

   [k = Constant]   (ii) 

As per definition: If H Q N Nm s= = =1 m m /s then3, ,1  and expression (ii) can be written as follows. 

1
13 2

2
= k

Ns

/

Thus k Ns= 2 

Substituting the value of k in expression (ii), we get:

Q N
H

N
s

m= 2
3 2

2

/
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N
N Q

H
s

m

2
2

3 2
=

/

  ∴ =N
N Q

H
s

m
3 4/

  (25.42)

It is to be noted that in Equation (25.42), the value of Hm for a multistage pump is obtained by dividing the total head 
 developed by the number of stages. For a double suction pump, half the actual discharge delivered by the pump is taken 
as Q.

25.17 ❐ MODEL TESTING OF CENTRIFUGAL PUMPS
The model is a small scale replica of the actual machine or the prototype. The pumps are manufactured only after  testing 
their small scale models. From the test results, the performance of the prototype can be predicted in advance and the 
required changes in the prototype can also be made. For complete similarity to exist between the model and the prototype 
pumps, the following conditions may be satisfied. The subscripts m and p used in the following discussion specify the 
model and the prototype pumps, respectively. For geometrically similar pumps, the subscripts m and p have been replaced 
by 1 and 2, respectively. 

 1. Capacity or flow coefficient 

  Since Q DBV f= π

  Q DBV D Vf f∝ ∝ 2    [ ]∵ B D∝  

  Since V u DNf ∝ ∝

  Thus Q D DN∝ ×2

 Q D N∝ 3  

 ∴ =
Q

ND3
Constant  

  The parameter [ ( )]Q ND/ 3  called the capacity or flow coefficient of the model and prototype is equal as given below. 

 
Q

ND

Q

NDm p
3 3

⎛
⎝⎜

⎞
⎠⎟

=
⎛
⎝⎜

⎞
⎠⎟

 (25.44)

 
Q

ND

Q

ND3
1

3
2

⎛
⎝⎜

⎞
⎠⎟

=
⎛
⎝⎜

⎞
⎠⎟

 (For geometrically similar pumps)  (25.44a)

 2. Head coefficient

  Since u
DN

=
π

60

  Thus u DN∝

  Also  u Hm∝
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  Thus H NDm ∝

H

ND
m = Constant

  Thus 
H

N D

m
2 2

= Constant  (25.45)

  The parameter [ ( )]H N Dm / 2 2  called the head coefficient of the model and prototype is equal as given below. 

 
H

N D

H

N D

m

m

m

p
2 2 2 2

⎛
⎝⎜

⎞
⎠⎟

=
⎛
⎝⎜

⎞
⎠⎟

 (25.46)

 
H

N D

H

N D

m m
2 2

1
2 2

2

⎛
⎝⎜

⎞
⎠⎟

=
⎛
⎝⎜

⎞
⎠⎟

 (For geometrically similar pumps)  (25.46a)

 3. Power coefficient 

 η
ρ ρ

ηo
w m w m

o

gQH

P
P

gQH
= ⇒ =

1000 1000
 

  Thus P Q H D N N Dm∝ × ∝ ×3 2 2 [ , and∵ρ ηw og = Constant] 

  or P N D∝ 3 5

  Thus 
P

N D3 5
= Constant

  The parameter [ ( )]P N D/ 3 5  called the power coefficient of the model and prototype is equal as given below. 

  
P

N D

P

N Dm p
3 5 3 5

⎛
⎝⎜

⎞
⎠⎟

=
⎛
⎝⎜

⎞
⎠⎟

 (25.47)

 
P

N D

P

N D3 5
1

3 5
2

⎛
⎝⎜

⎞
⎠⎟

=
⎛
⎝⎜

⎞
⎠⎟

 (For geometrically similar pumps)  (25.47a)

  For determining the performance of one particular pump, the capacity, head and power coefficients are simplified as 
follows.

 
Q

N

⎛
⎝⎜

⎞
⎠⎟

= Constant  or 
Q

N

Q

N

⎛
⎝⎜

⎞
⎠⎟

= ⎛
⎝⎜

⎞
⎠⎟1 2

 (25.48)

 
H

N

m
2

⎛
⎝⎜

⎞
⎠⎟

= Constant  or 
H

N

H

N

m m
2

1
2

2

⎛
⎝⎜

⎞
⎠⎟

=
⎛
⎝⎜

⎞
⎠⎟

 (25.49)

 
P

N 3

⎛
⎝⎜

⎞
⎠⎟

= Constant  or 
P

N

P

N3
1

3
2

⎛
⎝⎜

⎞
⎠⎟

=
⎛
⎝⎜

⎞
⎠⎟

 (25.50)

 4. Specific speed of model = Specific speed of prototype

 ( ) ( )N Ns m s p=   

 
N Q

H

N Q

Hm m m p
3 4 3 4/ /

⎛

⎝
⎜

⎞

⎠
⎟ =

⎛

⎝
⎜

⎞

⎠
⎟  (25.51)
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 Example 25.14  Determine the specific speed of a centrifugal pump which delivers water at the rate of 2 m3/s under a 
head of 20 m while running at 3500 rpm and operating at a maximum efficiency of 85%. Also determine the discharge, 
head and power input to the pump at the speed of 2500 rpm assuming that the efficiency remains constant at all the speeds.

Solution

Let Q1 2= m /s3 , H Hm = =1 20 m, N1 3500= rpm, ηo = 0 85.  and N2 2500= rpm.

N
N Q

H
s

m

= = × =1 1
3 4 3 4

3500 2

20/ /
523.372 rpm 

P
gQ Hw

o
1

1 1

1000

1000 9 81 2 20

1000 0 85
461 647= =

× × ×
×

=
ρ

η
.

.
. kW

Since 
Q

N

Q

N

⎛
⎝⎜

⎞
⎠⎟

= ⎛
⎝⎜

⎞
⎠⎟1 2

 

∴ = = × =Q
Q N

N2
1 2

1

2 2500

3500
1.4286 m /s3  

Since 
H

N

H

N2
1

2
2

⎛
⎝⎜

⎞
⎠⎟

=
⎛
⎝⎜

⎞
⎠⎟

 

∴ = = × =H
H N

N
2

1 2
2

1
2

2

2

20 2500

3500
10.204 m

Since 
P

N

P

N3
1

3
2

⎛
⎝⎜

⎞
⎠⎟

=
⎛
⎝⎜

⎞
⎠⎟

∴ = = × =P
P N

N
2

1 2
3

1
3

3

3

461 647 2500

3500

.
168.239 kW

 Example 25.15  A five stage centrifugal pump delivers water at the rate of 6.5 m3 per minute against a net pressure 
rise of 4500 kN/m2. Determine the specific speed of the pump if it runs at 1500 rpm. Also comment upon the type of the 
impeller. 

Solution
Let n = 5, Q = =6 5 0 1083. .m /min m /s3 3 , p = 4500 kN/m2 and N = 1500 rpm. Let Hm be the head developed per stage.

  H
p

gt
w

= =
×
×

=
ρ

4500 10

1000 9 81
458 715

3

.
. m of water  

H
H

nm
t= = =

458 715

5
91 743

.
. m of water

N
N Q

H
s

m

= = × =
3 4 3 4

1500 0 1083

91 743/ /

.

.
16.652  

Since the specific speed lies in the range of 10 to 30, the pump is a slow speed radial flow impeller.
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 Example 25.16  A multistage centrifugal pump lifts water through a total head of 100 m. It delivers water at the rate of 

0.25 m3 per second while running at 900 rpm. Find the number of stages required when specific speed of each stage is 30. 
Also comment upon the arrangement of impellers.

Solution

Let mHt = 100 , Q = 0 25. m /s3 , N = 900 rpm and Ns = 30. Let Hm be the head developed per stage and n be the number 
of stages.

Since N
N Q

H
s

m

=
3 4/

 

∴ =
⎛

⎝
⎜

⎞

⎠
⎟ =

×⎛

⎝⎜
⎞

⎠⎟
=H

N Q

Nm
s

4 3 4 3
900 0 25

30
36 993

/ /
.

. m

n
H

H
t

m
= = = ≈100

36 993
2 7

.
. 3  

The total head is more than the head developed by one pump, so the pumps are to be connected in series.

 Example 25.17  Two geometrically similar pumps run at the same speed of 1200 rpm. One pump with impeller diameter 
of 0.4 m delivers water at the rate of 0.03 m3/s against the head of 20 m. Determine the diameter and head delivered by the 
other pump if it has to deliver 50% discharge of the first pump. 

Solution

Let rpmN N1 2 1200= = , D1 0 4= . m , Q1 0 03= . m /s3 , H1 20= m and Q Q2 10 5= . .

Since 
Q

ND

Q

ND3
1

3
2

⎛
⎝⎜

⎞
⎠⎟

=
⎛
⎝⎜

⎞
⎠⎟

 

  ∴ =
⎛

⎝
⎜

⎞

⎠
⎟ × = × =D

Q

Q
D2

2

1

1 3

1
1 30 5 0 4

/
/. . 0.3175 m  

Since 
H

N D

H

N D2 2
1

2 2
2

⎛
⎝⎜

⎞
⎠⎟

=
⎛
⎝⎜

⎞
⎠⎟

 

 
∴ =

⎛

⎝
⎜

⎞

⎠
⎟ × = ⎛

⎝⎜
⎞
⎠⎟

× =H
D

D
H2

2

1

2

1

2
0 3175

0 4
20

.

.
12.6 m  

25.18 ❐  PERFORMANCE CHARACTERISTICS OF CENTRIFUGAL 
PUMPS

A pump provides maximum efficiency when it operates at designed values of speed, discharge and head. In actual  
practice, a pump has to operate at different conditions than the designed ones under which the behaviour of the pump 
may be different. In order to predict the behaviour and performance of a pump under varying conditions, various tests are 
 performed and the results of the tests are plotted in the form of curves. These curves are known as the characteristic curves 
of the pump. The important characteristic curves of a pump are (i) main characteristic curves, (ii) operating characteristic 
curves, (iii) constant efficiency or Muschel curves, and (iv) constant head and constant discharge characteristic curves.
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25.18.1 Main Characteristic Curves
In order to obtain the test data for main characteristic curves, the pump is operated at a constant speed and the discharge is var-
ied over the required range by means of a valve. For each value of discharge (Q), the corresponding values of head (Hm) and 
shaft power (P) are measured and the overall efficiency ( )ηo  of the pump is calculated. This procedure is repeated by keeping 
the speed constant at different values. The curves are then plotted for Hm, P and ηo versus Q for different speeds of the pump. 
These curves represent the main characteristics of a pump, which indicate the performance of a pump at different speed. The 
main characteristics of a pump for an arbitrary set of speeds varying from 650 rpm to 850 rpm are shown in Figure 25.19.

From P versus Q curves (Figure 25.19b), it can be seen that as the discharge increases, the power input also increases. 
These curves do not pass through the origin as some power is used in overcoming the mechanical losses. However, ηo 
versus Q curves (Figure 25.19c) pass through the origin as efficiency is zero when there is no discharge.

25.18.2 Operating Characteristic Curves
During the operation, a pump is generally required to run at constant 
speed, which is its designed speed (same as the speed of the driving 
motor). In order to obtain maximum efficiency, a pump is required to run 
at its designed speed. The values of the head and discharge  corresponding 
to the maximum efficiency are known as the normal (or designed) head 
and  discharge of the pump. A particular set of main characteristic curves 
corresponding to the design speed are called the  operating characteristic 
curves (Figure 25.20). These curves give an idea about the size of the 
prime mover required to drive the pump. The head corresponding to zero 
or no discharge is known as the shut-off head of the pump. The input 
power curve is away from the origin, since even at zero discharge some 
power is required to overcome the mechanical losses. 

25.18.3 Constant Efficiency Curves (Muschel Curves)
The constant efficiency or iso-efficiency curves are also known as Muschel curves. These curves can be drawn from Hm 
versus Q and ηo versus Q curves. For a given efficiency, there will be two values of discharge at a constant speed and 
corresponding to these discharge values, there will be two different values of head. For a particular efficiency, a horizontal 
line is drawn which intersects the curves for different pump speeds on the ηo versus Q curves and two values of discharge 
are obtained for each speed. These values are transferred to Hm versus Q curves for the corresponding speeds. The points 
corresponding to the same efficiency are then joined by a smooth curve which represents the iso-efficiency curve. Similarly 
for other values of efficiency, the points are obtained and projected. The points corresponding to the same efficiency are 
smoothly joined to obtain iso-efficiency curves. From these curves, the line of maximum efficiency is obtained by joining 
the peak points of various iso-efficiency curves as shown in Figure 25.21. These curves help in locating the regions where 
the pump operates with maximum efficiency. 

Q

P
oη

Design discharge

D
es

ig
n 

he
ad

Maximum e�ciency

Po

Hm

oHm, P, η
N = constant

Figure 25.20 Operating characteristic curves 

Q

650 rpm

750 rpm

850 rpm

Q

P oη

Q

650 rpm
750 rpm

850 rpm

650 rpm
750 rpm

850 rpm

(a) (b) (c)

Hm

Figure 25.19 Main characteristic curves
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25.18.4 Constant Head and Constant Discharge Characteristics
These curves help in determining the performance of variable speed pump for which speed is constantly varying. The 
 following curves may be plotted as shown in Figure 25.22. 

 1. Q versus N curves: When manometric head (Hm) is maintained constant and speed varies, the discharge also varies. 
A plot between Q and N can be plotted which helps in determining the speed required to give varying discharge at a 
constant pressure head. From Equation (25.48), it can be observed that Q N∝  and thus, Q versus N curve is linear as 
shown in Figure 25.22. 

 2. Hm versus N curves: When discharge is maintained constant and speed varies, the manometric head also varies. A plot 
between N and Hmcan be plotted which helps in determining the speed required to give certain amount of discharge at 
different pressure heads. From Equation (25.49), it is observed that H Nm ∝ 2 and thus, Hm versus N plot is a parabolic 
curve as shown in Figure 25.22. 

Q

oη

Q

550 650 750
850 rpm

550 rpm

650 rpm

750 rpm

850 rpm

60

60

80 80
70

70

%oη
Line of maximum e�ciency

Iso-e�ciency curves

Hm

Figure 25.21 Constant efficiency curves

N

Hm, P, Q

∝ N (Hm = Constant)Q
(Q = Constant)

∝ N2Hm

∝ N 3 (Hm and Q = Constant)P

Figure 25.22 Constant head, discharge, and power curves
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 3. P versus N curves: When manometric head and discharge are maintained constant and speed varies, the power also 
varies. From Equation (25.50), it is observed that P N∝ 3 and thus, P versus N plot is a cubic curve as shown in 
Figure 25.22. 

25.19 ❐ MAXIMUM SUCTION LIFT (OR SUCTION HEIGHT) 
Consider a centrifugal pump which lifts liquid from a sump open to atmosphere as shown in Figure 25.23. Let hs be the 
suction height (or lift) which is the vertical distance between the centre line of the pump and the free liquid surface of the 
sump and Vs be the velocity of liquid in the suction pipe. 

Applying Bernoulli’s equation to the free surface of liquid and centre 
of the impeller (i.e., section 1–1), and taking the free surface of liquid as 
datum, we get the below expression.

p

g

V

g
Z

p

g

V

g
Z ha a

a lρ ρ
+ + = + + +

2
1 1

2

12 2

Here, pa is the atmospheric pressure, Va is the velocity of liquid at the 
free surface = 0, Za is the height of free surface from datum line = 0, p1 is 
the absolute pressure at the inlet of the pump (section 1–1), V Vs1 =  is the 
velocity of liquid through the suction pipe, Z hs1 =  is the height of inlet of 
the pump from datum line and h hl fs=  is the loss of head in the suction 
pipe. Therefore, we get the following expression.

 
p

g

p

g

V

g
h ha s

s fsρ ρ
= + + +1

2

2
 (25.52)

To avoid cavitation, the pressure at the inlet of the pump (p1) should not fall below the vapour pressure of the liquid (pv). 
Thus, for a limiting case, taking p pv1 = , we get the following expression. 

p

g

p

g

V

g
h ha v s

s fsρ ρ
= + + +

2

2

or H H
V

g
h ha v

s
s fs= + + +

2

2
 

Here, H p g H p ga a v v= =/ and /( ) ( )ρ ρ  are the atmospheric and vapour pressure heads in terms of meters of liquid, 
respectively. Therefore, the expression for maximum suction lift of a centrifugal pump is given below. 

  h H H
V

g
hs a v

s
fs= − − −

2

2
 (25.53)

Thus, the suction height of any pump should not be greater than that given by Equation (25.53). A greater value of suction 
lift may result in a rapid vaporization of the liquid due to the reduction of pressure, which may ultimately lead to cavitation 
and there will not be any flow of the liquid. Generally, the suction lift of centrifugal pumps is restricted to about 6 m to 8 m.

25.20 ❐ NET POSITIVE SUCTION HEAD (NPSH)
Net positive suction head (NPSH) is defined as the available suction head at the pump inlet above the vapour pressure 
head corresponding to the temperature of the liquid pumped. The term NPSH is very commonly used in pump industry. 
 Generally, the minimum suction conditions for the pumps are specified in terms of NPSH. The NPSH is given as the 
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Figure 25.23 
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 absolute pressure head at the inlet to the pump minus the vapour pressure head in absolute units plus the velocity head. The 
mathematical expression for NPSH is given below. 

NPSH Abssolute pressure head at inlet Vapour pressure head in abso= − llute units Velocity head+

Thus NPSH = − +
p

g

p

g

V

g
v s1

2

2ρ ρ
 (25.54)

But 
p

g

p

g

V

g
h ha s

s fs
1

2

2ρ ρ
= − + +

⎛

⎝
⎜

⎞

⎠
⎟  [From Equation (25.52)] 

Thus NPSH = − + +
⎛

⎝
⎜

⎞

⎠
⎟ − +

p

g

V

g
h h

p

g

V

g
a s

s fs
v s

ρ ρ

2 2

2 2
 

  NPSH = − − − = − − −
p

g

p

g
h h H H h ha v

s fs a v s fsρ ρ
 

  ∴ = − − −NPSH ( )H h h Ha s fs v  (25.55)

The right hand side of Equation (25.55) also represents the total suction head Hs and its expression is given below. 

 H H h h Hs a s fs v= − − −( )  

 ∴ =NPSH Hs (25.55a)

Therefore, NPSH may also be defined as the head required to make the liquid flow through the suction pipe to the impeller. 
For any pump installation, a distinction is made between the required NPSH and the available NPSH. The available 

NPSH for a pump is calculated from Equation (25.55). The required NPSH varies with the pump design, speed of the pump 
and its capacity. The required NPSH is usually provided by the manufacturer of the pump which may also be determined 
experimentally. In order to have cavitation free operation of a centrifugal pump, the available NPSH should always be 
greater than the required NPSH. 

25.21 ❐ CAVITATION IN CENTRIFUGAL PUMPS
When the pressure at the suction side of the pump impeller falls below the vapour pressure of the liquid, some of the liquid 
vaporizes and bubbles of the vapour is carried along with the liquid. These vapour bubbles condense and collapse rapidly 
on reaching to high pressure zone (near the impeller exit). This process continues and creates high pressure which may 
damage the impeller. This phenomenon is called cavitation which is highly undesirable. At the inlet of the impeller, the 
pressure remains lowest on the underside of vanes from where cavitation commences and the vanes tips at impeller exit are 
the most common site for cavitation attack. The cavitation can be noticed by a sudden drop in efficiency and head.

To indicate whether cavitation will occur, the Thoma’s cavitation factor ( )σ  is used and the expression is given below. 

 σ =
− − −

= =
H H h h

H H

H

H

a v s fs

m m

s

m

NPSH
 (25.56)

When the value of σ  is less than the critical value ( )σc , then cavitation occurs in the pumps. The value of σc depends on 
the specific speed (Ns) of a pump. The value of σc can be determined by the following relation. 

 σc sN= × −1 03 10 3 4 3. ( ) /  (25.57)
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Suction specific speed Suction specific speed (Nsu) is a cavitation parameter which is also used to know about the 
occurrence of cavitation. It is obtained by replacing the manometric head in the expression of specific speed of pump 
[i.e., Equation (25.42)] by the total suction head (Hs). Therefore, the expression for suction specific speed is given 
below. 

 N
N Q

H
su

s

=
3 4/

 (25.58)

By combining Equations (25.42), (25.56) and (25.58), we get the below expression. 

 σ =
⎛
⎝⎜

⎞
⎠⎟

N

N
s

su

4 3/

 (25.59)

Generally, in centrifugal pumps, for cavitation free flow, the limiting value of the suction speed is 175.

The cavitation in pumps can be avoided by the following factors

 1. By reducing the suction lift that increases the value of σ  which ensures sufficient availability of NPSH. 

 2. By reducing the velocity in the suction pipe. 

 3. By avoiding the bends. 

 4. By reducing hfs in suction pipe. 

 5. By selecting the pump of lower specific speed.

Cavitation is undesirable due to the following harmful effects

 1. A large number of vapour bubbles formed suddenly collapse in a high pressure region which causes the rush of 
 surrounding liquid and results in shock, noise and vibration. This phenomenon is called water hammer.

 2. The continuous water hammering action of collapsing bubbles causes pitting and erosion of the surface.

 3. The water hammer causes fatigue of the metal parts and reduces their lifetime. 

 4. Cavitation causes sudden drop in head and efficiency.

25.22 ❐  TROUBLES IN CENTRIFUGAL PUMPS  
AND THEIR CAUSES 

Some of the common troubles with their causes in centrifugal pumps are given below.

 1. Pump fails to start pumping when (i) pump is not properly primed, (ii) suction height is too high, (iii) total static head 
is much higher than the designed value, (iv) wrong direction of the pump impeller, (v) impeller, strainer or suction line 
may be clogged and (vi) low impeller speed.

 2. Pump delivers less liquid than the desired quantity when (i) leakage occurs in pump, (ii) foot valve is not submerged 
fully in the liquid or it is of smaller size and (iii) impeller is damaged or bearings worn out.

 3. Pump does not develop enough pressure when (i) air in liquid, (ii) speed is too low, (iii) wrong direction of the pump 
impeller and (iv) some of the parts are damaged due to wear and tear. 

 4. Pump works for a while and stops pumping when (i) the pump is not properly primed or there is leakage in the suction 
line, (ii) air pockets in the suction line and (iii) suction lift is too high.

 5. Pump consumes much power, noisy in operation and has low efficiency when (i) cavitation occurs, (ii) head may be too 
low and pump delivers too much liquid, (iii) pump may be operating in wrong direction, (iv) liquid may have too high 
specific gravity, (v) suction lift is too high and (vi) rotating parts are loose, impeller may rubbing on casing, bearing 
worn out and misalignment of shaft.
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 Example 25.18  Determine the height from water surface a centrifugal pump should be installed to avoid cavitation 
when atmospheric pressure (abs) is 101.325 kPa, vapour pressure is 2.5 kPa (abs), the inlet and other losses in suction pipe 
are 1.5 m, effective head of the pump is 50 m and cavitation factor is 0.115. 

Solution
Let kPapa = 101 325. , pv = 2 5. kPa, hfs = 1 5. m, Hm = 50 m and σ = 0 115. .

Since σ =
− − −H H h h

H

a v s fs

m
 

 ∴ = − − −h H H h Hs a v fs mσ  

or h
p

g

p

g
h Hs

a

w

v

w
fs m= − − −

ρ ρ
σ  

 ∴ = ×
×

− ×
×

− − × =hs
101 325 10

1000 9 81

2 5 10

1000 9 81
1 5 0 115 50

3 3.

.

.

.
. . 2.8224 m   

 Example 25.19  The following particulars are given for a centrifugal pump, such as discharge = 0.15 m3/s of water, 
manometric head = 35 m, speed of the pump = 1150 rpm, atmospheric pressure (abs) = 1.01325 bar, vapour pressure at the 
temperature of water pumped = 3.5 kPa (abs), inlet and other losses in suction pipe = 0.25 m of water. Determine minimum 
NPSH and maximum allowable height of the pump from the free surface of water in the pump.

Solution

Let Q = 0 15. m /s3 , Hm = 35 m, N = 1150 rpm, pa = 1 01325. bar , pv = 3 5. kPa  and hfs = 0 25. m. 

Since σc
mH

=
( )minNPSH

 

Thus ( )minNPSH = σc mH  

But σc sN= × −1 03 10 3 4 3. ( ) /  

Thus ( ) . ( ) .min
/

/

/

NPSH = × = ×
⎛

⎝
⎜

⎞

⎠
⎟− −1 03 10 1 03 103 4 3 3

3 4

4 3

N H
N Q

H
Hs m

m
m 

∴ = × ×⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ × =−( ) .

.
min /

/

NPSH 1 03 10
1150 0 15

35
353

3 4

4 3

3.503 m  

The maximum suction height (hs) can be obtained when NPSH is minimum and, thus, we get the below expression.

 ( ) ( )minNPSH = − − −H h h Ha s fs v  

Thus h H H hs a v fs= − − − ( )minNPSH  

or h
p

g

p

g
hs

a

w

v

w
fs= − − −

ρ ρ
( )minNPSH  

 ∴ = ×
×

− ×
×

− − =hs
1 01325 10

1000 9 81

3 5 10

1000 9 81
0 25 3 503

5 3.

.

.

.
. . 6.22 m   
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25.23 ❐ AXIAL FLOW PUMP
The axial flow pumps do not utilize centrifugal forces. The impeller 
blades behave like the wing of an airplane producing lift by  changing 
the momentum of the fluid as they rotate. These pumps are often 
known as propeller pumps because its impeller somewhat resembles 
a marine propeller. The impeller comprises of a central hub in which 
a number of vanes (2 to 6) are mounted. The impeller rotates inside a 
casing. Generally, for the sake of compactness, the axial flow pumps 
are designed to operate with vertical shaft. The guide vane sets are 
provided at the inlet and the outlet of the impeller. Figure 25.24 shows 
a schematic view of an axial flow pump. The axial flow pumps are the 
converse of propeller or Kaplan turbines.

The flow ratio for axial flow pumps varies from 0.25 to 0.6 and 
the speed ratio varies from 2 to 2.7. The hub to tip ratio lies in the 
range of 0.3 to 0.6. These pumps have high specific speed (100 to 450) 
and are used where large discharge at low delivery head (under 12 m) 
is required. They are suitable for irrigation, drainage, sewage, flood 
 control, purification, etc. 

25.24 ❐  DEEP WELL (VERTICAL TURBINE PUMP)  
AND SUBMERSIBLE PUMPS

Deep well pumps are generally multistage centrifugal pumps assembled in series and are keyed to the lower end of a 
 vertical shaft which is further coupled to a line shaft. The line shaft refers to sections of shaft between the impeller shaft 
and the inner shaft passing through the driven hollow shaft. The number of stages depends on the head required. All the 
impellers and at least three metres of suction pipe with a strainer and foot valve at the end are placed below the water level. 
This is the sole reason for such pumps to be known as deep well pumps or borehole pumps. The pump is connected to an 
electric motor usually placed above the ground level. A schematic view of deep well pump is shown in Figure 25.25(a). The 
water conducts to the surface through the rising main pipe which connects the impeller with the outlet. In these pumps, only 
closed or semi-open types of impellers are used. The pump shaft is aligned with bronze bearings placed at suitable interval 
along the shaft which prevents vibration and whip. The bearings may be lubricated either by oil or water.

Deep well pumps belong to the category of rotodynamic pumps. These pumps are used to lift drinking water which 
is available at a depth of about 100 metres or more below the ground. The action of these pumps is reverse of a reaction 
turbine and thus, it is also known as turbine pumps.

Vertical turbine pumps driven by submersible motors fitted at the bottom of the pumps are known as submersible 
pumps. The motor is completely insulated, enclosed and oil filled. The pump suction is through a perforated strainer (or 
inlet screen) located between the motor and first stage impeller as shown in Figure 25.25(b). There is no suction pipe and 
also there is no shaft above the pump. The pump unit is supported by the discharge pipe only. Submersible pumps are self-
primed, if they do not run dry. The power is delivered through a heavily insulated electricity cable. 

Submersible centrifugal pumps are used for residential, commercial, municipal and industrial water extraction, water 
wells and in oil wells. The range of depth for submersible pumps varies from 7 m to 200 m or more. It is able to produce 
efficiency in the range of 40% to 70%. The main advantage of this type of pump is that it prevents cavitation, a prob-
lem associated with a high elevation difference between pump and the fluid surface. The main limitations of submers-
ible  centrifugal pumps are its price, the need to maintain a reliable supply of electricity and high level of technology 
involved. 

Suction pipe

Inlet

Outlet
Outlet guide blades

Inlet guide blades

Impeller blades

Hub

Thrust bearing

Figure 25.24 Axial flow pump
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Summary

 1. Work done by impeller per second per unit weight of 
water: w V u gwo o= ( )/

 2. Euler’s equation: 

w H
V V

g

u u

g

V V

ge
o i o i ri ro= =

−
+

−
+

−2 2 2 2 2 2

2 2 2

 3. Pressure rise in a centrifugal pump: 

p p

g

V u V

g
o i

w

fi o fo−
=

+ −
ρ

ϕ2 2 2 2

2

cosec
 

 4. Manometric head (Hm): Head against which a centrifugal 
pump has to work. 

    (i) H V u gm wo o= / ,

   (ii) H h h h h V gm s d fs fd d= + + + + 2 2/( )

   (iii) H
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⎢
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 5. Shaft power (P) is the power supplied by the motor to the 
pump shaft.

 6. Impeller power: P
QV u

im
w wo o=

ρ
1000

kW

 7. Power output: 

P
H

WH gQH

o
m

m w m

=
×

= =

Weight of water lifted per second

1000

1000 100

ρ
00

kW

 8. Manometric efficiency: ηman
o

im

m

wo o

P

P

gH

V u
= =

 9. Mechanical efficiency:

η
ρ

m
im w wo oP

P

QV u

P
= = =

Power at the impeller

Power at theshaft 1000

 10. Volumetric efficiency: ηv
Q

Q q
= =

+
Actual discharge

Total discharge
, q is 

the leakage per second.

 11. Overall efficiency: η
ρ

o
o w mP

P

gQH

P
= =

1000
 also η η η ηo m v= man

 12. Minimum starting speed: N
V D

D D
man wo o

o i

=
−

120
2 2

η
π( )

 13. Specific speed of a centrifugal pump: N N Q Hs m= ( ) // 3 4

 14. For complete similarity to exist between the model and the 
prototype pumps, the capacity coefficient [ ( )],Q ND/ 3  head 

coefficient [Hm /(N 2D2)] and power coefficient [ ( )]P N D/ 3 5  
of the model and prototype are equal.

 15. Maximum suction lift of a centrifugal pump is hs = Ha -  
h H H V g hs a v s fs= − − −2 2/( ) .

 16. NPSH = − − −( )H h h Ha s fs v  

 17. When the pressure at the suction side of the pump impeller 
falls below the vapour pressure of the liquid, some of the 
liquid vaporizes and bubbles of the vapour is carried along 
with the liquid to high pressure zone (near the impeller exit), 
where these vapour bubbles condense and collapse rapidly to 
create high pressure. This phenomenon is called cavitation.
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Multiple-choice Questions

 1. Generally, the vanes of a centrifugal pump are 
(a) Twisted.
(b) Curved forward.
(c) Radial.
(d) Curved backward.

 2. The series operation of a pump results in 
(a) Reduced power.
(b) Higher discharge.
(c) Low speed.
(d) High head.

 3. Which of the following two relations are necessary for 
homologous pumps, when Q is the discharge, N is the speed, 
P is the power, D is the diameter and C is the constant? 

(a) [ ( )] [ ( )]Q ND C H N D Cm/ and /3 2 2= = .

(b) [ ( )] [ ( )]H ND C Q N D Cm / and /3 2 2= = .

(c) ( ) ( ). /N Q H C N P H Cm m/ and /1 5 3 4= = .

(d) None of the above. 

 4. For a given centrifugal pump, which of the following one 
is correct when Q is the discharge, N is the speed, P is the 
power and H is the head? 

(a) Q Nα .

(b) Q Nα 2.

(c) H Nm α ( )1 2/ .

(d) P Nα 5.

 5. A pump with specific speed of 100 to 450 indicates that 
pump is 
(a) Radial flow.
(b) Mixed flow.
(c) Axial flow.
(d) None of the above.

 6. For a centrifugal pump, 
(a) Discharge varies inversely as the speed. 
(b) Pressure gain in the diffusion section is more than that in 

the impeller. 
(c) Slip factor is minimum when the vanes are radial. 
(d) None of the above.

 7. When the diameter of a centrifugal pump impeller is doubled 
but the discharge is to remain same, then the head needs to 
be reduced by 
(a) 4 times.
(b) 16 times.
(c) 8 times.
(d) None of the above.

 8. If discharge is kept constant, the variation of power (P) with 
speed (N) and manometric head (Hm) with speed (N) is 
respectively given as 

(a) P N∝  and H Nm ∝ .

(b) P N∝ 2 and H Nm ∝ 3.

(c) P N∝ 3 and H Nm ∝ 2.

(d) P N∝ 5 and H Nm ∝ ( )1/ .

 9. An impeller with backward curved vanes 
(a) Has a falling head characteristic. 
(b) Has a rising head characteristic. 
(c) Has a constant head characteristic. 
(d) None of the above.

 10. A fast centrifugal pump impeller has 
(a) Propeller type blade. 
(b) Radial blades. 
(c) Forward facing blades. 
(d) Backward facing blades.

 11. In a centrifugal pump, the inlet angle is designed to have 
(a) Absolute velocity in the radial direction. 
(b) Relative velocity in the radial direction. 
(c) Flow velocity is zero. 
(d) Tangential velocity is zero.

 12. Which of the following type of impeller is used in centrifu-
gal pump to deal with mud? 
(a) Two sides shrouded.
(b) One sided shrouded.
(c) Double suction.
(d) Open.

 13. The flow in the volute casing outside the running impeller is 
(a) Axial flow.
(b) Free vortex flow.
(c) Radial flow.
(d) Forced vortex flow.

Review Questions

 1. Describe the principle, constructional and working details of 
a centrifugal pump.

 2. Derive Euler’s equation applied to centrifugal pumps. 

 3.  Derive an expression for pressure rise in the impeller of a 
centrifugal pump.

 4. Define heads, losses, power and efficiencies associated with 
centrifugal pumps.
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 5. Discuss the effect of number of vanes of impeller of a cen-
trifugal pump on head and efficiency. Also define slip factor.

 6. Derive an expression for minimum starting speed of a cen-
trifugal pump to maintain continuous discharge of water.

 7. Define specific speed of a centrifugal pump and derive its 
expression. 

 8. Explain the properties for a centrifugal pump, such as (i) 
main characteristics curves, (ii) operating characteristics 
curves and (iii) Muschel curves.

 9. Derive an expression for maximum possible suction lift.

 10. Define NPSH of a centrifugal pump? How is it related to 
cavitation in pumps? 

 11. What is cavitation its causes? How it can be prevented in 
centrifugal pumps? 

 12. What is priming? Why is it necessary? Also briefly discuss 
the priming devices.

Problems

 1. The following data are given for a centrifugal pump, such 
as outer diameter = 500 mm, internal diameter = 250 mm, 
speed = 1250 rpm, manometric head = 45 m, constant veloc-
ity of flow through impeller = 2.75 m/s, vanes exit angle = 
30°, impeller width at outlet = 0.05 m. Calculate (i) vane 
angle at the inlet, (ii) work done by impeller in water per 
second and (iii) manometric efficiency.

[Ans. 9.54°, 197.52 kNm/s, 48.25%] 

 2.  The outer diameter of an impeller of a centrifugal pump 
is 0.4 m and outlet width is 0.05 m. The pump is working 
against a total head of 15 m and running at 800 rpm. If its 
manometric efficiency is 0.8 and the vanes angle at the outlet 
is 40°, then find (i) velocity of flow at the outlet, (ii) velocity 
of water leaving the vane and angle made by the absolute 
velocity at the outlet with the direction of motion at the out-
let and (iii) discharge of the pump.

 [Ans. 4.84 m/s, 11.99 m/s, 23.79°, 0.3041 m3/s] 

 3. The internal and external diameters of the impeller of a cen-
trifugal pump are 0.5 m and 1 m, respectively. The velocity 
of flow is given constant through the impeller of the pump. 
The vane angles at the inlet and outlet are 30° and 45°, 
respectively. If the impeller is running at 1200 rpm and flow 
through the pump is 0.25 m3/s, then determine the minimum 
power required to run the pump.

 [Ans. 701.32 kW]

 4. A centrifugal pump has inlet and outlet diameters as 0.2 m 
and 0.4 m, respectively. The vane angles at the inlet and out-
let are 0.4 radians and 0.2 radians, respectively. The width 
of the impeller at the inlet and outlet is same and equal 
to 0.05  m. If the impeller is running at 109.9 radians per 
 second, then find (i) the discharge and (ii) head developed by 
the pump. Assume shockless entry to the pump.

 [Ans. 0.1461 m3/s, 23.55 m]

 5. An impeller of a centrifugal pump has inlet and outlet diam-
eters as 0.2 m and 0.5 m, respectively. The exit vane angle is 
30°. The impeller is running at 1000 rpm. Take radial flow 
through the impeller and flow velocity as 3 m/s. Find (i) the 
inlet vane angle, (ii) outlet angle of water and (iii) power 
required to run the impeller, if the mechanical efficiency 

is 90% and water flow through the impeller is 1.65 m3 per 
minute. 

[Ans. 15.99°, 8.14°, 16.783 kW]

 6. An impeller of a centrifugal pump has inlet and outlet diam-
eters as 0.15 m and 0.3 m, respectively. The both inlet and 
exit vane angles are 30°. The water flow rate is 0.05 m3/s and 
the impeller inlet area is 0.025 m2. Take radial flow through 
the impeller and flow velocity as constant. Find (i) the speed 
of the impeller and (ii) torque produced.

 [Ans. 440.54 rpm, 25.875 Nm]

 7. The following particulars are related to a centrifugal pump, 
such as impeller diameter = 250 mm, width of impeller at 
its periphery = 50 mm, outlet vane angle = 60°, discharge = 
0.25 m3/s, speed of the impeller = 900 rpm, mechanical 
efficiency = 0.9, and hydraulic efficiency = 0.75. Determine 
(i) the speed and direction of water as it leaves the impeller, 
(ii) torque exerted by the impeller, (iii) shaft power required 
and (iv) lift of the pump.

[Ans. 10.3 m/s, 38.18°, 253.125 Nm, 26.511 kW, 7.3 m]

 8. A centrifugal pump running at 1000 rpm has internal and 
external diameters as 0.25 m and 0.5 m, respectively. The 
angle of backward curved vanes at the outlet is 30°. The 
radial velocity of flow is 2 m/s and it remains constant 
throughout the impeller. Find the angle of vanes at the inlet, 
the velocity and direction of water at the outlet and rise in 
pressure head in the impeller.

 [Ans. 8.69°, 5.03°, 60.6 m]

 9. The internal and external diameters of an impeller of a cen-
trifugal pump are 0.25 m and 0.5 m, respectively. The dis-
charge through the pump is 0.05 m3/s. It runs at 950 rpm 
and the velocity of flow is constant and equal to 2.5 m/s. 
The diameters of the suction and delivery pipes are 16 cm 
and 10 cm, respectively. The suction and delivery heads are 
7 m (abs) and 32 m (abs) of water, respectively. The outlet 
vane angle is 45° and power required to drive the pump is 
20.5 kW. Find (i) the vane angle of the impeller at the inlet, 
(ii) overall efficiency of the pump and (iii) manometric effi-
ciency of the pump.

 [Ans. 11.37°, 64%, 47.16%] 
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 10. The following particulars are related to a centrifugal pump, 
such as impeller diameter = 300 mm, width of impeller at 
its periphery = 50 mm, outlet vane angle = 30°, discharge = 
0.2  m3/s, speed of the impeller = 1000 rpm, thickness of 
vanes occupies = 12% of the peripheral area and flow 
 velocity = constant. Determine (i) the pressure rise in the 
impeller and (ii) percentage of total work converted to 
kinetic head. 

[Ans. 9.03 m of water, 33.45%]

 11. A centrifugal pump runs at 1000 rpm and discharge 250 litres 
per second. It raises the head of water by 30.2 m. The outlet 
angle of the backward curved vanes is 30° and the velocity 
of flow at the outlet is 2.85 m/s. If the hydraulic efficiency of 
the pump is 80%, find the diameter and width of the impeller 
at the outlet. 

[Ans. 0.4177 m, 0.0668 m]

 12. The discharge through a centrifugal pump is 0.2 m3/s. It 
works against a head of 20.5 m. The pump runs at a speed 
of 900 rpm. The vane angle at the exit of the impeller is 45° 
and flow velocity at the outlet is 2.5 m/s. If the manometric 
efficiency of the pump is 80.5%, find the diameter and width 
of the impeller at its outlet.

 [Ans. 0.3629 m, 0.0702 m]

 13. A centrifugal pump is required to discharge 0.25 m3/s 
against a head of 25 m when the impeller rotates at a speed 
of 1440 rpm. The loss of head in pump in metres due to fluid 
resistance is 0 025 2. Vo , where Vo m/s is the absolute veloc-
ity of water leaving the impeller, the area of the impeller 
outlet surface is 1 25 2. ,Do  where Do is the impeller diam-
eter in m, and water enters the impeller without whirl. If 
the manometric efficiency is given 80%, determine (i) the 
impeller diameter and (ii) vane angle at the outlet edge of the 
impeller. 

[Ans. 0.2619 m, 34.74°]

 14. A three-stage centrifugal pump has impeller 0.4 m in diam-
eter and 2 cm wide. The vane angle at outlet is 45° and the 
area occupied by the thickness of the vanes is 8% of the total 
area. The other particulars are mechanical efficiency = 88%, 
manometric efficiency = 77%, discharge = 0.06 m3/s and 
speed = 925 rpm. Find the manometric head and power of 
the pump. 

[Ans. 76.53 m, 66.48 kW]

 15. A centrifugal pump discharges 0.15 m3/s of water against 
a head of 13 m. The speed of rotation of the impeller is 
600 rpm. The outer and inner diameters of the impeller are 
0.5 m and 0.25 m, respectively. The vanes are bent back at 
an angle of 35° to the tangent at exit. The area of flow is con-
stant and equal to 0.07 m2 from inlet to outlet of the impeller. 
Determine (i) the manometric efficiency, (ii) vane angle at 
inlet, and (iii) loss of head at the inlet to the impeller when 
discharge is reduced by 40%. 

[Ans. 64.26%, 15.25°, 0.502 m of water]

 16. The impeller of a centrifugal pump has an outer diameter 
of 0.25 m and an effective area of 0.017 m2. The vanes are 
bent backwards so that the direction of outlet relative veloc-
ity makes an angle of 148° with the tangent drawn in the 
direction of impeller rotation. The diameters of suction and 
delivery pipes are 0.15 m and 0.1 m, respectively. The pump 
delivers 31 litres per second at 1450 rpm when the gauge 
points on the suction and delivery pipes close to the pump 
show heads of 4.6 m below and 18 m above atmosphere, 
respectively. The head losses in the suction and delivery 
pipes are 2 m and 2.9 m, respectively. The motor driving the 
pump delivers 8.67 kW. If the water enters the pump without 
shock and whirl, then determine the manometric efficiency 
and the overall efficiency of the pump. 

[Ans. 74.7%, 81.48%]

 17. Water flows through an impeller of a centrifugal pump at 
the rate of 0.015 m3/s. The outlet and inlet diameters of the 
impeller are 0.4 m and 0.2 m, respectively and the widths of 
the impeller at outlet and inlet are 0.5 cm and 1 cm, respec-
tively. The pump is running at a speed of 1200 rpm. Neglect 
losses through the impeller. If the water enters the impeller 
radially at the inlet and impeller vane angle at the outlet is 
45°, then determine the rise in pressure in the impeller.

 [Ans. 31.89 m]

 18. Calculate the discharge given by the centrifugal pump which 
runs at a speed of 1200 rpm and works against a head of 
20 m. The diameter and width of the impeller at the outlet is 
450 mm and 50 mm, respectively. The vanes of the impeller 
are curved back at an angle of 25° and manometric efficiency 
of the pump is 85%. 

[Ans. 0.663 m3/s]

 19. A centrifugal pump has the following particulars, such as 
outer diameter of the impeller = 0.8 m, width of impeller 
vanes at outlet = 0.1 m, angle of impeller vanes at outlet = 
45°, speed = 550 rpm, discharge = 1 cubic metres of water 
per second, effective head = 35 m. If water enters the impel-
ler vanes radially at the inlet and a 500 kW motor is used to 
drive the pump, then determine the manometric, mechanical 
and overall efficiencies of the pump.

 [Ans. 78.19%, 87.82%, 68.67%]

 20. A centrifugal pump with 1 m diameter runs at 200 rpm. It 
pumps 1.88 m3/s and the average lift is 6 m. The angle which 
the vanes make at exit with the tangent to the impeller is 30°. 
The radial velocity of flow is 2.5 m/s. Determine the mano-
metric efficiency and the least speed to start pumping action 
against a head of 6 m when the inner diameter of the impeller 
being 0.5 m.

 [Ans. 91.56%, 239.3 rpm]
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ANSWERS TO MULTIPLE-CHOICE QUESTIONS

 1. (d) 2. (d) 3. (a) 4. (a) 5. (c)
 6. (c) 7. (b) 8. (c) 9. (a) 10. (d)
 11. (a) 12. (d) 13. (b)
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26.1 ❐ INTRODUCTION
The reciprocating pumps are positive displacement pumps in which a certain volume of liquid is taken in an enclosed volume 
and then it is forced out against pressure to the required application. The mechanical energy is converted into pressure energy 
by sucking the liquid into a cylinder in which a piston is reciprocating which exerts the thrust on the liquid and increases 
its pressure energy. The cylinder is alternately filled and emptied by drawing and forcing the liquid by mechanical motion. 

Reciprocating pumps are now obsolete due to their high capital and maintenance cost relative to the centrifugal pumps. 
Reciprocating pumps are being replaced by centrifugal pumps where large quantities of liquid are to be handled. However, 
reciprocating pumps are preferred where low quantity and high pressure are required. Reciprocating pumps are still used 
for oil drilling industries, light oil pumping and where there is no electricity. These are also used for pneumatic pressure 
systems.

Reciprocating pumps, its classification, basic terminology, working principle, indicator diagrams, theoretical analysis 
of air vessels, effects of acceleration, and friction, and its characteristic curves are discussed briefly in this chapter. A brief 
introduction to rotary positive displacement pumps, namely vane pump, lobe pump, axial piston pump, gear pump, screw 
pump and radial piston pump is also given.

26.2 ❐ CLASSIFICATION OF RECIPROCATING PUMPS 
The reciprocating pumps may be classified into two categories as given below.

 1. According to the water being in contact with piston.
   (i)  Single acting pump: If the water (liquid) is in contact with one side of piston, then the pump is known as single 

acting pump.
  (ii)  Double acting pump: If the water is in contact with both sides of the piston, then the pump is known as double 

acting pump.

 2. According to the number of cylinders provided.
   (i)  Single cylinder pump: A reciprocating pump having only one cylinder is known as single cylinder pump. A  single 

cylinder pump may be single acting or double acting.
  (ii)  Multi-cylinder pump: Generally, the reciprocating pumps having more than one cylinder are known as multi- 

cylinder pumps. For example, double cylinder pump, triple cylinder pump, duplex double acting pump and 
 quintuplex pump.

Chapter 26

Reciprocating 
Pumps
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26.2 Chapter 26

     (a)  Double cylinder pumps: A double cylinder pump (or two throw pump) has two single acting cylinders and 
two pistons working with two connecting rods fitted to the crank at 180°. Each cylinder is equipped with a 
suction pipe and a delivery pipe with appropriate valves. The schematic view of a double cylinder pump is 
shown in Figure 26.1(a).

     (b)  Triple cylinder pumps: In the case of triple cylinder pumps (or three throw pumps), there will be three 
 cylinders and three pistons working with three connecting rods fitted to the crank at 120°. The schematic view 
of three cylinder pump is shown in Figure 26.1(b). Double and triple cylinder pumps provide more uniform 
discharge in comparison to a single cylinder pump. 

     (c)  Duplex double acting pumps: Duplex double acting pumps (or four throw pumps) are a combination of in 
line two double acting single cylinder pumps driven by a crank or in line two double acting double cylinder 
pumps driven by two cranks set at 90°.

     (d)  Quintuplex pump: A quintuplex (or five throw pump) has five single acting cylinders driven from cranks set 
at 72°.

26.3 ❐ MAIN PARTS AND WORKING OF A RECIPROCATING PUMP 

26.3.1 Main Parts of a Reciprocating Pump
The main parts of a reciprocating pump are (i) cylinder, (ii) piston (or plunger), (iii) piston rod, (iv) crank, (v) connecting 
rod, (vi) suction pipe and suction valve, and (vii) delivery pipe and delivery valve which are shown in Figure 26.2(a).

26.3.2 Working of a Single Acting Reciprocating Pump
Figure 26.2(a) shows a single acting reciprocating pump in which water is acting on one side of the piston only. It consists 
of a piston (or plunger) which moves to and fro in a close fitting cylinder. The cylinder is connected to the suction and 

(a) (b)

1

2

1

2

1

2

3

3

120°

120°

120°

Piston

Cylinder

Bearing

Bearing

Piston

Cylinder

Bearing

Crank

Crank

1 2
180°

Figure 26.1 (a) Double cylinder pump (b) Triple cylinder pumps
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 Reciprocating Pumps 26.3

delivery pipes, each of which is provided with a one way valve called suction valve and delivery valve, respectively. The 
suction valve allows water from the suction pipe to the cylinder while delivery valve allows water from the cylinder to 
delivery pipe. The piston is connected to a crank by means of a connecting rod. The action of reciprocating pump is similar 
to that of reciprocating engines. When the crank is rotated by a driving engine or motor, the piston moves to and fro in the 
cylinder. When the crank rotates from α = °0  [i.e., crank at the inner dead centre (I.D.C.)] to α = °180  [i.e., crank at the 
outer dead centre (O.D.C.)], the piston which is at the extreme left position ‘A’ moves to extreme right position ‘B’. This 
outward movement of the piston from position ‘A’ to position ‘B’ is called suction stroke. Due to outward movement of the 
piston, partial vacuum is created inside the cylinder. Since atmospheric pressure is acting on the surface of liquid in the 
sump which is more than the pressure inside the cylinder. Thus, liquid is forced in the suction pipe which opens the suction 
valve and fills the cylinder.

When crank is further rotated from α = °180  (i.e., crank at the O.D.C.) to α = °360  (i.e., crank at the I.D.C.), the 
piston moves inwardly from position ‘B’ to position ‘A’. This inward movement of the piston raises the pressure of the 
liquid inside the cylinder above the atmospheric pressure due to which the suction valve closes and the delivery valve 
opens. Thus, the liquid is then forced into delivery pipe and raised to the required height. This inward movement of the 
piston which causes the delivery of the liquid to the required height is known as delivery stroke. At the end of the delivery 
stroke, the piston is at position ‘A’ and the crank is at α = °0  or 360° (i.e., crank is at the I.D.C.). Thus, the crank has 
completed one full revolution and both the valves are closed. This cycle is repeated as the crank rotates and pump works 
continuously.

There are intermittent delivery strokes and thus, a single acting reciprocating pump gives non-uniform discharge. The 
variation of discharge (Q) through delivery pipe with crank angle ( )α  is shown in Figure 26.2(b). 

26.3.3  Discharge, Work Done and Power Required for Driving a Single  
Acting  Reciprocating Pump

Consider a single acting reciprocating pump as shown in Figure 26.2(a). Let r be the radius of crank, N be the crank speed 
in rpm, L r= 2  be the length of the stroke or cylinder, D be the diameter of the cylinder, A D= ( )π /4 2 be the area of the 

A B

Piston rod Connecting
rod Crank

Cylinder

Piston

Discharge

Discharge pipe

Delivery
valve

Suction
valve

Sump Suction pipe

hs

hd

I.D.C. O.D.C.

(a) (b)

Q

0° 90° 180° 270° 360°

Suction Delivery 

α

α

Figure 26.2 (a) Main parts of a reciprocating pump (b) Variation of discharge

M26 Fluid Mechanics and Hydraulic Machines XXXX 01.indd   3 4/19/2019   2:36:20 PM

Download more at Learnclax.com



26.4 Chapter 26

piston or cylinder, hs be the suction head or height of the axis of the cylinder from water surface in sump and hd be the 
delivery head or height of delivery outlet above the cylinder axis. 

 Volume of water sucked in during suction stroke: v AL=  

 Numbers of crank revolution per second =
N

60
	

Theoretical discharge of the pump per second is given by, 

 Q
ALN

th =
60

  (26.1)

Weight of water discharged per second is given by, 

 W gQ
g ALN

w th
w= =ρ

ρ
60

  (26.2)

Work done per second (w) is given by the product of weight of water per second and the total height through which water 
is lifted.

 ∴ =
+

=w
g ALN h h

gQ Hw s d
w th

ρ
ρ

( )

60
 (26.3)

Here H h hs d= +  

Theoretical power required for driving the pump is given by, 

 P
g ALN h h gQ H

th
w s d w th=

+
×

=
ρ ρ( )

60 1000 1000
kW  (26.4)

26.3.4 Working of a Double Acting Reciprocating Pump
Figure 26.3(a) shows a schematic diagram of a double acting reciprocating pump in which both sides of the piston are used 
for suction and delivery of the water (or liquid). Therefore, separate suction and delivery valves are provided for the front 
as well as back sides of the piston.

In a double acting reciprocating pump, when there is a suction stroke on one side of the piston, at the same time there is 
delivery stroke on the other side of the piston. When crank rotates from I.D.C. (inner dead centre) in the clockwise  direction 
(i.e., piston moves towards crank side also known as forward stroke), a vacuum is created on the left side of the piston and 
the liquid is sucked in from the sump through the suction valve SV1 fitted to the suction pipe SP1. Simultaneously, the liquid 
taken in towards the backside of the piston is pressed and a high pressure causes the delivery valve DV2 to open and the 
liquid is discharged through the discharge pipe DP2. This operation continues till the piston reaches the head side, i.e., the 
crank moves to O.D.C. (outer dead centre). 

With further rotation, the crankshaft moves towards I.D.C. (i.e., piston moves away from the crank also known as 
backward stroke) which presses the liquid and discharges it through the delivery valve DV1 fitted to the delivery pipe DP1. 
Simultaneously, a vacuum is created on the right side of the piston and the liquid is sucked in from the sump through the 
suction valve SV2 fitted to the suction pipe SP2. When the crank reaches I.D.C., the piston reaches to its initial position and 
thus, the cycle is completed. As the crank rotates, the processes towards front and back sides of the piston are repeated and 
the pump works continuously. 

There are continuous delivery strokes and thus, a double acting reciprocating pump gives more uniform discharge than 
a single acting reciprocating pump. The variation of discharge (Q) through delivery pipe with crank angle ( )α  is shown in 
Figure 26.3(b).
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 Reciprocating Pumps 26.5

26.3.5  Discharge, Work Done and Power Required for Driving a Double  
Acting Reciprocating Pump

Consider a double acting reciprocating pump as shown in Figure 26.3. Let D be the diameter of the piston, d be the diameter 

of the piston rod, A D= ( )π /4 2 be the area of one side of the piston, A D d A Ap1
2 24= − = −( ) ( )π /  be the area on the other 

side of the piston where piston rod is connected to the piston and Ap is the area of cross section of the piston rod. 

Theoretical volume of water sucked in during suction stroke is given by, 

 v AL A A L A A Lp p= + − = −( ) ( )2  

 Numbers of crank revolution per second =
N

60
 

Theoretical discharge of the pump per second is given by, 

 Q
A A LN

th
p=

−( )2

60
  

If area of the piston rod is neglected, then theoretical discharge of the pump per second is given below. 

 Q
ALN

th =
2

60
  (26.5)

From Equation (26.5), it can be seen that the theoretical discharge of a double acting pump is twice that of a single acting 
pump. 

Weight of water discharged per second is given by, 

 W gQ
g ALN

w th
w= =ρ

ρ2

60
  

(a) (b)

Piston rod

Piston
Crank
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rod
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hd
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DP2
DP1

SV2
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DV1

Q

0° 90° 180° 270° 360°

Suction Delivery 

α

α

Figure 26.3 (a) Double acting reciprocating pump (b) Variation of discharge
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26.6 Chapter 26

Work done per second (w) is given by the product of weight of liquid per second and the total height through which liquid 
is lifted.

 ∴ =
+

=w
g ALN h h

gQ Hw s d
w th

2

60

ρ
ρ

( )
  (26.6)

Theoretical power required for driving the pump is given by, 

 P
g ALN h h gQ H

th
w s d w th=

+
×

=
2

60 1000 1000

ρ ρ( )
kW  (26.7)

26.4 ❐  COEFFICIENT OF DISCHARGE AND SLIP  
OF RECIPROCATING PUMP

26.4.1 Coefficient of Discharge
Due to leakage and imperfect operation of the valves, the actual discharge (Qact) of a pump is less than the theoretical 
discharge (Qth). The ratio of actual discharge to theoretical discharge is known as coefficient of discharge which is denoted 
by Cd .

Thus C
Q

Qd = act

th
 (26.8)

When the coefficient of discharge is expressed in percentage, it is known as volumetric efficiency of the pump which is 
denoted by ηv . The volumetric efficiency depends on the dimensions of the pump and generally, its value varies from 85% 
to 98%. 

26.4.2 Slip of the Reciprocating Pump
In most of the reciprocating pumps, actual discharge is less than theoretical discharge. The difference between the theoret-
ical discharge (Qth) and actual discharge (Qact) is known as slip (S). 

Thus S Q Q= −th act   (26.9)

Generally, the slip is expressed as percentage slip and its expression is given below. 

	 % ( )S
Q Q

Q

Q

Q
Cd=

−
× = −

⎛
⎝⎜

⎞
⎠⎟

× = − ×th act

th

act

th
100 1 100 1 100   (26.10)

Generally, for pumps maintained in good condition, percentage slip is of the order of about 2% or even less. 

26.4.3 Negative Slip of the Reciprocating Pump
In some reciprocating pumps, actual discharge may be more than the theoretical discharge. Thus, the slip of the pump will 
become negative. A reciprocating pump with a long suction pipe and a short delivery pipe operating at high speeds would 
be operating with a negative slip. In such cases, inertia of the liquid in the suction pipe would be large which opens the 
delivery valve before completion of the suction stroke. So, some of the liquid displaces to the delivery pipe even before the 
commencement of the delivery stroke. This results in more actual discharge than the theoretical discharge.
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 Reciprocating Pumps 26.7

26.5 ❐  COMPARISONS OF RECIPROCATING  
AND CENTRIFUGAL PUMPS

Centrifugal pumps Reciprocating pumps

The centrifugal pumps run at higher speeds and thus, the dis-
charge capacity is high. 

The speed is less and thus, the discharge capacity is low. 

Suitable for large volumes of discharge at moderate  pressures in 
a single stage.

Suitable for fairly low volumes of flow at high pressures.

As there are no valves, these pumps can handle highly  viscous 
liquids, grit, slurry, oils, paper pulp, etc.

These pumps can handle only pure water and less viscous liquids 
free from impurities.

The wear and tear is less because of less moving parts. The wear and tear is more because of more moving parts.

Simple in construction and its initial cost is low (about 4 to  
5 times low).

More complex due to several moving parts and its initial cost is 
high.

Discharge is continuous. Its operation is smooth and without 
much noise.

Discharge is fluctuating. Its operation is complicated and with 
much noise.

Requires less maintenance cost and occupies less space. Requires high maintenance cost and occupies more space.

They are compact and occupy less space. They occupy large space (about 5 to 8 times more than a  
centrifugal pump).

The efficiency is high and torque is uniform. The efficiency is low and torque is not uniform.

It needs priming. It does not need priming. 

The delivery valve should be closed before switching on the 
pump.

The delivery valve should not be closed before switching on the 
pump.

It can be operated at very high speeds without any danger of 
separation and cavitation.

The maximum speed is limited from the considerations of  
separation and cavitation.

No air vessel is required. Air vessel is essential.

Its weight is less for same discharge. Its weight is more for same discharge.

 Example 26.1  A single acting reciprocating pump delivers 9 litres per second of water against a suction head of 4 m 
and a delivery head of 16 m while running at a speed of 60 rpm. The diameter and stroke of the piston are 200 mm and 
300 mm, respectively. Determine (i) the theoretical discharge, (ii) coefficient of discharge, (iii) slip, (iv) percentage slip and 
(v) power required to drive the pump. 

Solution

Let Q lact
3/s m /s= =9 0 009. , hs = 4 m, hd = 16 m, N = 60 rpm , D = =200 0 2mm m.  and L = =300 0 3mm m. . 

 (i)  Q
ALN D LN

th = = ×
×

= × × ×
×

=
60 4 60

0 2 0 3 60

4 60

2 2π π . .
0.009425 m /s3

 

 (ii) C
Q

Qd
act

th
= = =0 009

0 009425

.

.
0.955  

 (iii) S Q Qth act= − = − =0 009425 0 009. . 0.000425 m /s3  

 (iv) %
.

.
S

Q Q

Q
th act

th
=

−
× = × =100

0 0425

0 009425
100 4.51%  
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26.8 Chapter 26

 (v) H h hs d= + = + =4 16 20 m 

  P
gQ H

th
w th= = × × × =

ρ
1000

1000 9 81 0 009425 20

1000

. .
1.8492 kW   

 Example 26.2  A double acting reciprocating pump operating at 55 rpm has a piston diameter of 0.2 m and piston rod 
of diameter 40 mm which is on one side only. The stroke of the piston is 0.3 m. The suction and delivery heads are 5 m and 
20 m, respectively. Determine (i) the theoretical discharge and (ii) power required to drive the pump.

Solution
Let N = 55 rpm, D = 0 2. m, d = =40 0 04mm m. , L = 0 3. m, hs = 5 m and hd = 20 m. 

 (i) A D= = × =
π π
4 4

0 2 0 0314162 2 2. . m  

  A dp = = × =
π π
4 4

0 04 0 0012572 2. . m2 

  Q
A A LN

th
p=

−
= × − × × =

( ) ( . . ) .2

60

2 0 031416 0 001257 0 3 55

60
0.01693 m /s3

 

 (ii) H h hs d= + = + =5 20 25 m 

  P
gQ H

th
w th= = × × × =

ρ
1000

1000 9 81 0 01693 25

1000

. .
4.1521 kW   

26.6 ❐  EFFECT OF ACCELERATION OF PISTON ON VELOCITY  
AND PRESSURE IN THE SUCTION AND DELIVERY PIPES

When the crank rotates, the piston reciprocates in the cylinder. During a stroke (suction or delivery stroke), the velocity of 
the piston does not remain same. At the start of each stroke, the velocity of piston is zero. The velocity increases during the 
first half of each stroke and reaches to its maximum value at the centre of the cylinder. Thus, it decreases during the latter 
half of stroke and again becomes zero at the end of each stroke. Therefore, the reciprocating motion of the piston causes 
acceleration during the beginning of each stroke and retardation at the end of each stroke. Since the water flowing through 
the pump remains in contact with the piston, the acceleration and retardation effects transmit to the water flowing through 
the suction and delivery pipes. It means the velocity of water flowing through the suction and delivery pipes is not uniform 
due to the action of accelerative or retarding head. These variations in the velocities of water in the suction and delivery 
pipes give rise to inertia pressures which causes a variation of pressure in the cylinder. 

If the ratio of the length of connecting rod to the radius of crank is very large, then the piston is assumed to move 
with simple harmonic motion. A schematic view of a single cylinder and single acting reciprocating pump is shown in 
Figure 26.4. 

Let ω π= 2 60N /  be the angular speed of the crank in radian per second, A be the area of the cylinder, a be the area of 
the suction or delivery pipe, l be the length of the suction or delivery pipe and r be the radius of the crank, V be the velocity 
of water in the cylinder and Vp be the velocity of water in the pipe.

Let the crank turn through an angle α  in time t seconds from its I.D.C. (inner dead centre) during suction stroke.

Then α ω π= =t N t( )2 60/  

If x is the distance moved by the piston as shown in Figure 26.4, then we get the below expression. 

 x r r r r t= − = −cos cosα ω    [ ]∵α ω= t  
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 Reciprocating Pumps 26.9

 V
dx

dt
r t= = ω ωsin  (26.11)

From continuity equation, we get:

 V
A

a
V

A

a
r tp = × = ω ωsin   (26.11a)

The acceleration of water in pipe is given by,

	 a
dV

dt

A

a
r tw

p= = ω ω2 cos  (26.12)

The mass of water in pipe is given by,

 m alw w= × = ×Density Volume ρ  

Force required to accelerate the water in the pipe is given by,

 F m a al
A

a
r tw w w= = ×ρ ω ω2 cos  

Thus F lA r tw= ρ ω ω2 cos  

The intensity of pressure due to acceleration is given by,

	 p
F

a
l

A

a
ra w= = ρ ω α2 cos   [ ]∵α ω= t  

The pressure head due to acceleration is given by,

 h
p

g

l

g

A

a
ra

a

w
= =

ρ
ω α2 cos  (26.13)

The pressure head due to acceleration in the suction and delivery pipes is given by using subscripts ‘s’ and ‘d’, respectively 
in Equation (26.13) as given below.

	 h
l

g

A

a
ras

s

s
= ω α2 cos  (26.14)

	 h
l

g

A

a
rad

d

d
= ω α2 cos  (26.15)

Connecting rod

Crank

ω
x

x

α

Figure 26.4 Schematics of single cylinder single acting reciprocating pump
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It can be seen from Equation (26.13), that the pressure head developed due to acceleration acting on the piston varies 
with crank angle ( )α . The values of pressure head due to acceleration (ha) for different values of α  can be obtained from 
 Equation (26.13) as given below. 

 (a) When α = °0  (beginning of stroke), cos 0 1° =  and therefore, h
l

g

A

a
ra = ω2 . (26.16)

 (b) When α = °90  (mid of stroke), cos 90 0° =  and therefore, ha = 0.  (26.17)

 (c) When α = °180  (end of stroke), cos180 1° = −  and therefore, h
l

g

A

a
ra = − ω2 .  (26.18)

Thus, the maximum accelerative pressure head ( ) .maxh
l

g

A

a
ra = ω2  (26.19)

The Equations (26.16) to (26.19) are equally applicable to both the suction and delivery strokes.

It has been observed that for 0 90° < < °α , ha has positive values and for 90 180° < < °α , ha has negative values, which 
indicate that for the first half of the stroke, there is accelerative head and for the latter half of the stroke, there is retardation 
head.

Now if the ratio of the length of connecting rod to the radius of crank (i.e., n) is not very large, then the assumption of 
simple harmonic motion is not valid and in that case the expression for pressure head is given below.

 h
l

g

A

a
r

na = +⎛
⎝⎜

⎞
⎠⎟

ω α α α2 2
cos cos

cos
 (26.20)

From Equation (26.20), the following expressions can be worked out.

 (a) When α = °0  (beginning of stroke): h
l

g

A

a
r

na = +⎛
⎝⎜

⎞
⎠⎟

ω2 1
1

 (26.21)

 (b) When α = °90  (mid of stroke): ha = 0  (26.22)

 (c) When α = °180  (end of stroke): h
l

g

A

a
r

na = −⎛
⎝⎜

⎞
⎠⎟

ω2 1
1

 (26.23)

26.7 ❐  EFFECT OF VARIATION OF VELOCITY IN THE SUCTION  
AND DELIVERY PIPES

The frictional resistance offered to the water flowing through suction and delivery pipes causes the head loss. This loss of 
head due to friction is given by Darcy-Weisbach equation as expressed below. 

 h
f lV

gdf
p=

4

2

2

 (i)

Here, f is the coefficient of friction, l is the length of pipe, d is the diameter of pipe and Vp is the velocity of water in pipe.
By substituting V A a rp = ( ) sin/ ω α  in expression (i), we get:

 h
f l

gd

A

a
rf = ⎛

⎝⎜
⎞
⎠⎟

4

2

2

ω αsin  (26.24)
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 Reciprocating Pumps 26.11

The variation of hf with α  is parabolic. The values of hf for suction and delivery pipes are given by using subscripts ‘s’ and 
‘d ’, respectively in Equation (26.24) as given below.

	 h
f l

gd

A

a
rfs

s

s s
=

⎛
⎝⎜

⎞
⎠⎟

4

2

2

ω αsin  (26.25)

	 h
f l

gd

A

a
rfd

d

d d
=

⎛
⎝⎜

⎞
⎠⎟

4

2

2

ω αsin  (26.26)

The variation of hf with α  from Equation (26.24) is given below. 

 (a) When α = °0 , sin 0 0° =  and therefore, hf = 0.  (26.27)

 (b) When α = °90 , sin 90 1° =  and therefore, h
f l

gd

A

a
rf = ⎛

⎝⎜
⎞
⎠⎟

4

2

2

ω .  (26.28)

 (c) When α = °180 , sin180 0° =  and therefore, hf = 0. (26.29)

  Thus, the maximum friction head loss ( ) .maxh
f l

gd

A

a
rf  is 

4

2

2

ω⎛
⎝⎜

⎞
⎠⎟

 (26.30)

  The Equations (26.27) to (26.30) are equally applicable to both the suction and delivery strokes.

 Example 26.3  A single acting reciprocating pump having a cylinder diameter of 0.15 m and stroke of 0.3 m is used to 
raise the water through a height of 20 m. Its crank rotates at 60 rpm. Find the theoretical power required to run the pump 
and theoretical discharge. If the actual discharge is 5 litres per second, then find the percentage slip. If the delivery pipe is 
0.1 m in diameter and is 15 m long, then find the acceleration head at the beginning and mid of the stroke.

Solution
Let D = 0 15. m, L = 0 3. m, H = 20 m, N = 60 rpm , Q lact

3/s m /s= =5 0 005. , dd = 0 1. m  and ld = 15 m.

 A D= = × =
π π
4 4

0 15 0 017672 2 2. . m  

 Q
ALN

th = = × × =
60

0 01767 0 3 60

60

. .
0.005301 m /s3

 

 P
gQ H

th
w th= = × × × =

ρ
1000

1000 9 81 0 005301 20

1000

. .
1.04 kW   

 %
. .

.
S

Q Q

Q
=

−
× = − × =th act

th
100

0 005301 0 005

0 005301
100 5.68%  

 a dd d= = × =
π π
4 4

0 1 0 0078542 2. . m2 

	 ω π π π= =
× ×

=
2

60

2 60

60
2

N
rad/s 

	 r
L

= = =
2

0 3

2
0 15

.
. m 
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26.12 Chapter 26

The pressure head due to acceleration in the delivery pipe is given by,

 h
l

g

A

a
rad

d

d
= = × × × =ω α π α2 215

9 81

0 01767

0 007854
2 0 15 20cos

.

.

.
( ) . cos .. cos371 α  

At the beginning of delivery stroke: α = °0  and had = ° =20 371 0. cos 20.371 m  

At the mid of delivery stroke: α = °90  and had = ° =20 371 90. cos 0  

 Example 26.4  Both the diameter and stroke of a single acting reciprocating pump are 0.35 m and both the suction and 
delivery pipes are 0.2 m in diameter. The vertical lengths of the suction and delivery pipes are 5 m and 25 m, respectively. 
If the pump runs at 30 rpm and the coefficient of friction in the pipe is 0.02, then find the power required to run the pump. 

Solution

Let L D= = 0 35. m, d ds d= = 0 2. m, ls = 5 m, ld = 25 m, N = 30 rpm  and f = 0 02. . 

 Q
ALN D LN

th = =
×

×
=

× × ×
×

=
60 4 60

0 35 0 35 30

4 60
0 016837

2 2π π . .
. m /s3  

Since h
f l

gd

A

a
r

f l

gd

D

d

N L
fs

s

s s

s

s s

=
⎛
⎝⎜

⎞
⎠⎟

= × ×
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

4

2

4

2

2

60 2

2 2

2

2

ω π
 

 ∴ =
× ×

× ×
× ×

×
×

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=hfs
4 0 02 5

2 9 81 0 2

0 35

0 2

2 30

60

0 35

2
0

2

2

2
.

. .

.

.

.π
..289 m 

Since h
f l

gd

A

a
r

f l

gd

D

d

N L
fd

d

d d

d

d d

=
⎛
⎝⎜

⎞
⎠⎟

= × ×
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

4

2

4

2

2

60 2

2 2

2

2

ω π
 

 ∴ =
× ×
× ×

× ×
×

×
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=hfd
4 0 02 25

2 9 81 0 2

0 35

0 2

2 30

60

0 35

2

2

2

2
.

. .

.

.

.π
11 445. m 

 H l l h hs d fs fd= + + + = + + + =5 25 0 289 1 445 31 73. . . m 

 P
gQ H

th
w th= = × × × =

ρ
1000

1000 9 81 0 016837 31 73

1000

. . .
5.241 kW  

26.8 ❐ INDICATOR DIAGRAMS 
The indicator diagram is obtained by using an indicator fitted on the cylinder and thus, it is called an indicator diagram. 
In this diagram, the pressure head on the piston is plotted along the ordinate and the stroke length (L) along the abscissa. 
The work input to pump as given by Equation (26.3) can be calculated directly from the indicator diagram which shows the 
pressure of water in the cylinder corresponding to any crank position during the suction and delivery strokes.

26.8.1 Theoretical Indicator Diagram 
The Figure 26.5 shows the theoretical indicator diagram of a single cylinder single acting reciprocating pump which has 
been drawn under ideal conditions. Therefore, this diagram is also known as ideal indicator diagram. It represents the 
work done by the pump during one complete cycle. The indicator diagram is obtained by neglecting the loss of head due to 
 friction and the pressure head due to acceleration of water in the suction and delivery pipes. 
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 Reciprocating Pumps 26.13

Let hs be the suction head, hd be the delivery head, Hatm be the atmospheric pressure head which is equal to 10.3 m of 
water, L be the stroke length and ai be the area of indicator diagram. 

In Figure 26.5, the horizontal line EF represents the atmospheric pressure head (Hatm). The pressure head in the cylinder 
during suction stroke is constant and equal to suction head (hs). The line AB represents the pressure head in the cylinder 
during the suction stroke, which is below the atmospheric pressure by an amount equal to suction head (hs). The pressure 
head in the cylinder during delivery stroke is constant and equal to delivery head (hd). The line CD represents the pressure 
head in the cylinder during the delivery stroke, which is above the atmospheric pressure by an amount equal to delivery 
head (hd). 

The area ABFE represents the work done by the piston during the suction stroke and the area CDEF represents the work 
done by the piston during the delivery stroke. The total work done by the piston during complete revolution of the crank is 
then represented by the area ABCD which is equal to ( )h h Ls d+ .

The work input to drive a single cylinder single acting reciprocating pump is given by Equation (26.3) as follows.

	 w
gAN

h h L
gAN

a kaw
s d

w
i i= + = ⎛

⎝⎜
⎞
⎠⎟

=
ρ ρ

60 60
[( ) ]  (26.31)

Here, k gANw= ( )ρ /60 and ai is the area of indicator diagram. 

Thus, the work done by the pump is proportional to the area of indicator diagram. 
For double acting pump, this diagram represents the pressure head on one side of the piston only. Therefore, the work 

done per revolution is represented by twice the area of this diagram when the area of piston rod is not considered. 

26.8.2 Effect of Acceleration in Suction and Delivery Pipes on Indicator Diagram 
The Figure 26.6 shows the indicator diagram that includes the effect of acceleration.

Effect of acceleration during suction stroke The acceleration head in the pipe during suction stroke (has) is given by 
Equation (26.14) as follows.

	 h
l

g

A

a
ras

s

s
= ω α2 cos  

At the beginning of the suction stroke: α = °0  and h
l

g

A

a
ras

s

s
= ω2 . (26.32)

Stroke length

L

P
re

ss
ur

e 
he

ad

A B

CD

E F

Hatm = 10.3 m

hd

hs

= 0°α

= 0°α

= 90°α

= 90°α

= 180°α

= 180°α

Delivery stroke

Suction stroke

Figure 26.5 Theoretical (or ideal) indicator diagram
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26.14 Chapter 26

Thus, at the beginning of the suction stroke, the acceleration head has is positive. As at the beginning of the stroke, 
the liquid in the suction pipe is to be accelerated which requires an additional pressure drop in the cylinder. Therefore, the 
acceleration effect results in an increased suction from EA to EA′ . Thus, the relation for pressure head in the cylinder at 
the beginning of suction stroke is given below,

 = + = − +( ) [ ( )]h h H h hs as atm s asBelow atmospheric head (vac) Absoluute  

At the middle of the suction stroke, α = °90  and thus, cos .90 0° =  Therefore, the acceleration head has = 0. At the middle 
of the suction stroke, the pressure head will be only hs below the atmospheric pressure head. 

At the end of the suction stroke: α = °180  and h
l

g

A

a
ras

s

s
= − ω2 . (26.33)

Thus, at the end of the suction stroke, the acceleration head has is negative. As at the end of the suction stroke, the liquid 
in the suction pipe is to be retarded. For this, there should be pressure rise in the cylinder. Therefore, the acceleration effect 
results in a reduced vacuum from FB to FB′. Thus, the relation for pressure head in the cylinder at the end of suction stroke 
is given below.

 = − = − −( ) [ ( )]h h H h hs as s asBelow atmospheric head (vac) Absolatm uute  

The base of the indicator diagram for the suction stroke is changed from AB to ′ ′A B  and the work done during suction 
stroke is represented by ′ ′A B FE . However, area ABFE  is equal to the area ′ ′A B FE . It means the net work done during 
the suction stroke is not changed on account of accelerating effects in the suction pipe. 

Effect of acceleration during delivery stroke The acceleration head in the pipe during delivery stroke (had) is given 
by Equation (26.15) as follows.

	 h
l

g

A

a
rad

d

d
= ω α2 cos  

At the beginning of the delivery stroke: α = °0  and h
l

g

A

a
rad

d

d
= ω2 . (26.34)

Stroke length

L

P
re

ss
ur

e 
he

ad

A B

D

E F

Delivery

Suction Hatm = 10.3 m

hd

hs

had

had

has

has

= 0°α

= 0°α

= 90°α

= 90°α

= 180°α

= 180°α
C ′

C

D′

A′

B′

Figure 26.6 Effect of acceleration on indicator diagram
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 Reciprocating Pumps 26.15

At the beginning of the delivery stroke, the acceleration head had  is positive. As at the beginning of the delivery stroke, 
the liquid in the delivery pipe is to be accelerated. For this, an additional pressure head should be developed in the cylinder. 
Therefore, the acceleration effect results in an increased pressure from FC  to FC ′. Thus, pressure head in the cylinder at 
the beginning of delivery stroke is given below.

 = + = + +( ) [ ( )]h h H h hd ad d adAbove atmospheric head (gauge) Absatm oolute  

At the middle of the delivery stroke, α = °90  and thus, cos .90 0° =  Therefore, the acceleration head had = 0. Thus, at the 
middle of the delivery stroke, the pressure head will be only hd above the atmospheric pressure head. 

At the end of the delivery stroke: α = °180  and h
l

g

A

a
rad

d

d
= − ω2 .  (26.35)

Thus, at the end of the delivery stroke, the acceleration head had is negative. As at the end of the delivery stroke, 
the  liquid in the delivery pipe is to be retarded. For this, there should be a pressure drop in the cylinder. Therefore, the 
 acceleration effect causes drop in pressure head from DE to ′D E. Thus, pressure head in the cylinder at the end of delivery 
stroke is given below.

 = − = + −( ) [ ( )]h h H h hd ad d adAbove atmospheric head (gauge) Absatm oolute  

The base of the indicator diagram for the delivery stroke is changed from CD to ′ ′C D  and the work done during delivery 
stroke is represented by ′ ′C D EF . However, area CDEF is equal to the area ′ ′C D EF . It means the net work done during 
the delivery stroke is not changed on account of accelerating effects in the delivery pipe. 

From Figure 26.6, it can be seen that due to acceleration in suction and delivery pipes, the indicator diagram has changed 
from ABCD to ′ ′ ′ ′A B C D . However, the area of indicator diagram remains unaltered and hence, the work done remains 
same. Thus, it is inferred that the inertia pressure developed in the suction and delivery pipes does not affect the work input 
but it causes only a variation of pressure in the cylinder. The straight lines ′ ′A B  and ′ ′C D  in the indicator  diagram will be 
slightly curved when the piston does not move with simple harmonic motion.

The acceleration head limits the performance of a reciprocating pump as (i) it limits the suction height and increases the 
frictional losses and (ii) to get higher flow rate, the speed cannot be increased due to separation.

26.8.3 Maximum Speed of a Reciprocating Pump 
The maximum speed of a reciprocating pump depends on the phenomenon of cavitation which occurs when the pressure 
in the cylinder during suction and delivery strokes falls below the vapour pressure of the liquid flowing through the suction 
and delivery pipes. Cavitation causes discontinuity of the flow, i.e., the separation of the liquid takes place. The pressure 
at which the separation takes place is called separation pressure and the head is called separation pressure head which is 
denoted by hsep. For water, the separation pressure head is about 2.5 m of water absolute or (10.3 −	2.5) = 7.8 m of water 
below atmospheric pressure head.

Maximum speed during suction stroke It can be seen from Figure 26.6 that the minimum pressure head during 
suction stroke occurs at the beginning of the stroke which corresponds to the point ′A . During suction stroke, when the 
suction pressure falls below the separation pressure, it can separate at point ′A . Thus, the separation of flow can take place 
at the beginning of the stroke only. Therefore, to avoid separation, the absolute pressure head at the point ′A  given as 
[ ( )]H h hatm s as− +  must not fall below the separation pressure head (hsep). 

 H h h hatm s as sep− − >  (26.36)

In the limiting condition, we get:

 H h h hatm s as sep− − =  
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 H h
l

g

A

a
r hatm s

s

s
sep− − =ω2  [Substitute Equation (26.32)]

Thus 
l

g

A

a

N
r H h hs

s
atm s sep

2

60

2π⎛
⎝⎜

⎞
⎠⎟

= − −  (26.37)

The maximum speed of the reciprocating pump without separation during suction stroke can be calculated from 
Equation (26.37). 

Maximum speed during delivery stroke It can be seen from Figure 26.6 that the minimum pressure head during 
 delivery stroke occurs at the end of the stroke which corresponds to the point ′D . Therefore, to avoid separation, the 
 absolute pressure head at the point ′D  given as [ ( )]H h hatm d ad+ −  must not fall below the absolute separation pressure 
head (hsep). 

 H h h hatm d ad sep+ − >  (26.38)

Thus H h h hatm d ad sep+ − =  [Limiting condition]

 H h
l

g

A

a
r hatm d

d

d
sep+ − =ω2  [Substitute Equation (26.34)]

Thus 
l

g

A

a

N
r H h hd

d
atm d sep

2

60

2π⎛
⎝⎜

⎞
⎠⎟

= + −  (26.39)

The maximum speed of the reciprocating pump without separation during delivery stroke can be calculated from 
Equation (26.39). 

The minimum of the two speeds given by Equations (26.37) and (26.39) is the maximum speed of the reciprocating 
pump without separation during suction and delivery strokes. 

The delivery pipe of a reciprocating pump may have two arrangements with possible regions of separation as shown in 
Figure 26.7. 

 (i) In the arrangement shown in Figure 26.7(a), the delivery pipe is first vertical and then horizontal. 

	 Absolute pressure head at the inlet of the delivery pipe = HH h hatm d ad+ −  

	 Pressure head at the bend  = + − − = −( )H h h h H hatm d ad d atm ad  (i)

(Chance
of separation

at bend)

Separation point

(a) (b)

(No chance
of separation

at bend)

(Hatm + hd – had)

(Hatm + hd – had)(Hatm + hd – had)

hd

(Hatm – had)

Figure 26.7 Arrangements of delivery pipes
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 Reciprocating Pumps 26.17

 (ii) In the arrangement shown in Figure 26.7(b), the delivery pipe is first horizontal and then vertical. 

	 Pressure head at the bend   = + −H h hatm d ad  (ii)

From the expressions (i) and (ii), it is clear that the pressure head at the bend is lower in the first arrangement. Therefore, 
there are more chances of separation to occur in the first arrangement.

 Example 26.5  The diameter and stroke of single acting reciprocating pump are 0.15 m and 0.35 m, respectively. Both 
the suction and delivery pipes are 0.1 m in diameter. The lengths of the suction and delivery pipes are 5 m and 30 m, 
 respectively. The centre of the pump is 4 m above the water surface in the sump and 25 m below the delivery water level. If 
the pump is working at 30 rpm and atmospheric pressure is 76 cm of mercury, then find (i) the pressure heads on the piston 
at the beginning, middle and end of the suction stroke, (ii) pressure heads on the piston at the beginning, middle and end 
of the delivery stroke and (iii) power required to run the pump.

Solution
Let D = 0 15. m, L = 0 35. m, d ds d= = 0 1. m, ls = 5 m, ld = 30 m, hs = 4 m, hd = 25 m, N = 30 rpm  and patm = 76 cm 
of Hg.

 (i) Hatm m of water=
× ×

=
76 10 13 6

1000
10 336

.
.  

  Acceleration head in the pipe during suction stroke (has) is given by,

	 h
l

g

A

a
r

l

g

D

d

N L
as

s

s

s

s

= = ⎛
⎝⎜

⎞
⎠⎟

ω α π α2
2

2

22

60 2
cos cos  

  At the beginning of the delivery stroke: α = °0  

  ∴ = × ×
×⎛

⎝⎜
⎞
⎠⎟

× ° =has
5

9 81

0 15

0 1

2 30

60

0 35

2
0 1 981

2

2

2

.

.

.

.
cos .

π
m  

  Thus, pressure head in the cylinder at the beginning of suction stroke is given by,

 = + = − +( ) [ ( )]h h H h hs as atm s as(vac) m of water (abs) 

	 = − + =10 336 4 1 981. ( . ) 4.355 m of water (abs)  

  At the middle of the delivery stroke: α = °90 	and has = 0. 

  Thus, the pressure head at the middle of the suction stroke is given by, 

  = + = = = − =( ) .h h hs as s 4 10 336 4m (vac) 6.336 m of water (abs)  

  At the end of the suction stroke: α = °180  

	 ∴ = × ×
×⎛

⎝⎜
⎞
⎠⎟

× ° = −has
5

9 81

0 15

0 1

2 30

60

0 35

2
180 1 981

2

2

2

.

.

.

.
cos .

π
m of wwater  

  Thus, pressure head in the cylinder at the end of suction stroke is given by,

 = − = − −( ) [ ( )]h h H h hs as atm s asbelow atmospheric head (vac) absoluute 

	 = − − =10 336 4 1 981. ( . ) 8.317 m of water (abs)  
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 (ii) Acceleration head in the pipe during delivery stroke (had) is given by,

	 h
l

g

A

a
r

l

g

D

d

N L
ad

d

d

d

d

= = ⎛
⎝⎜

⎞
⎠⎟

ω α π α2
2

2

22

60 2
cos cos  

  At the beginning of the suction stroke: α = °0  

  ∴ = × ×
×⎛

⎝⎜
⎞
⎠⎟

× ° =had
30

9 81

0 15

0 1

2 30

60

0 35

2
0 11 884

2

2

2

.

.

.

.
cos .

π
m  

  Thus, pressure head in the cylinder at the beginning of delivery stroke is given by,

= + = + +( ) ( ) [ ( )]h h H h hd ad atm d adgauge absolute

	 = + + =10 336 25 11 884. ( . ) 47.22 m of water (abs)  

  At the middle of the suction stroke: α = °90 	and had = 0. 

  Thus, the pressure head at the middle of the delivery stroke is given by, 

  = + = = = + =( ) .h h hd ad d 25 10 336 25m (gauge) 35.336 m of water (abs)  

  At the end of the delivery stroke: α = °180  

	 ∴ = × ×
×⎛

⎝⎜
⎞
⎠⎟

× ° = −had
30

9 81

0 15

0 1

2 30

60

0 35

2
180 11 884

2

2

2

.

.

.

.
cos .

π
m oof water  

  Thus, pressure head in the cylinder at the end of delivery stroke is given by,

 = + = + +( ) [ ( )]h h H h hd ad atm d ad(gauge) abs

	 = + − =10 336 25 11 884. ( . ) 23.452 m of water (abs)  

 (iii)  Q
ALN D LN

th = =
×

×
=

× × ×
×

= × −
60 4 60

0 15 0 35 30

4 60
3 0925 10

2 2
3π π . .

. m /s3  

 H h hs d= + = + =4 25 29 m 

	 P
gQ H

th
w th= = × × × × =

−ρ
1000

1000 9 81 3 0925 10 29

1000

3. .
0.8798 kW   

 Example 26.6  For a single acting reciprocating pump, the diameter and the length of the suction pipe are 5 cm and 
6 m and that of delivery pipe is 4 cm and 18 m, respectively. The diameter of the piston and stroke length is 0.124 m and 
0.224 m, respectively. The centre of the pump is 4 m above the water level in the sump and the delivery tank is 16 m above 
the centre line of the pump. The separation of water occurs at 7.8 m below the atmospheric pressure head. Determine the 
maximum speed at which the pump can run without separation.

Solution
Let ds = =5 0 05cm m. , ls = 6 m, dd = =4 0 04cm m. , ld = 18 m, D = 0 124. m , L = 0 224. m , hs = 4 m, hd = 16 m 

and h Hsep atm= −( . ) (7 8 m abs).

During suction stroke, the absolute pressure head is minimum at the beginning of the stroke and thus, separation can 
takes place at the beginning of the stroke only. 
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Thus 
l

g

A

a
r H h hs

s
atm s sepω2 = − −  

or 
l

g

D

d

N L
H h hs

s
atm s sep

2

2

22

60 2

π⎛
⎝⎜

⎞
⎠⎟

= − −  

	
6

9 81

0 124

0 05

2

60

0 224

2
4 7 8

2

2

2

.

.

.

.
( . )× × ⎛

⎝⎜
⎞
⎠⎟

× = − − −
π N

H Hatm atm  

4 62 10 3 83 2. .× =− N

∴ =
×

=−N
3 8

4 62 10
28 68

3

.

.
. rpm

During delivery stroke, the absolute pressure head is minimum at the end of the stroke and thus, separation can takes place 
at the end of the stroke only. 

Thus 
l

g

A

a
r H h hd

d
atm d sepω2 = + −  

or 
l

g

D

d

N L
H h hd

d
atm d sep

2

2

22

60 2

π⎛
⎝⎜

⎞
⎠⎟

= + −  

	
18

9 81

0 124

0 04

2

60

0 224

2
16 7 8

2

2

2

.

.

.

.
( . )× × ⎛

⎝⎜
⎞
⎠⎟

× = + − −
π N

H Hatm atm  

0 022 23 82. .N =

∴ = =N
23 8

0 022
32 89

.

.
. rpm

The maximum speed of the pump without separation during suction and delivery stroke will be a minimum of 28 68. rpm 
and 32 89. rpm.
	 ∴ =Maximum speed 28.68 rpm  

 Example 26.7  A single acting reciprocating pump delivers water at a height of 20 m through a delivery pipe 30 m long 
and 0.125 m in diameter. The diameter of the piston and stroke length is 0.225 m and 0.42 m, respectively. The atmospheric 
pressure head is 10.3 m of water and the cavitation occurs at 2.5 m of water absolute. Determine the maximum speed at 
which the pump can run without separation on the delivery side if (i) pipe runs first horizontally and then vertically upwards 
and (ii) pipe raise first vertically and then runs horizontally. 

Solution
Let hd = 20 m, ld = 30 m, dd = 0 125. m, D = 0 225. m, L = 0 42. m, Hatm = 10 3. m and hsep = 2 5. (m abs). 

 (i) Pressure head at the bend = + −H h hatm d ad 

  To avoid separation, the pressure head at the bend must be equal to or greater than separation head. At this limit, we 
get the following expression.

 H h h h h H h hatm d ad sep ad atm d sep+ − = ⇒ = + −  

  or 
l

g

A

a
r H h hd

d
atm d sepω2 = + −  
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  or 
l

g

D

d

N L
H h hd

d
atm d sep

2

2

22

60 2

π⎛
⎝⎜

⎞
⎠⎟

= + −  

30

9 81

0 225

0 125

2

60

0 42

2
10 3 20 2 5

2

2

2

.

.

.

.
. .× × ⎛

⎝⎜
⎞
⎠⎟

× = + −
π N

0 02282 27 82. .N =

∴ = =N
27 8

0 02282

.

.
34.9 rpm

 (ii) Pressure head at the bend  = −H hatm ad  

  To avoid separation, the pressure head at the bend must be equal to or greater than separation head. At this limit, we 
get the following expression.

H h h h H hatm ad sep ad atm sep− = ⇒ = −

  or 
l

g

A

a
r H hd

d
atm sepω2 = −

  or 
l

g

D

d

N L
H hd

d
atm sep

2

2

2
2

60 2

π⎛
⎝⎜

⎞
⎠⎟

= −

30

9 81

0 225

0 125

2

60

0 42

2
10 3 2 5

2

2

2

.

.

.

.
. .× × ⎛

⎝⎜
⎞
⎠⎟

× = −
π N

	 0 02282 7 82. .N =  

	 ∴ = =N
7 8

0 02282

.

.
18.49 rpm  

26.8.4 Effect of Friction in Suction and Delivery Pipes  
on Indicator Diagram 

The head loss due to friction in suction and delivery pipes is given by Equations (26.25) and (26.26), respectively as follows.

	 h
f l

gd

A

a
rfs

s

s s
=

⎛
⎝⎜

⎞
⎠⎟

4

2

2

ω αsin  and h
f l

gd

A

a
rfd

d

d d
=

⎛
⎝⎜

⎞
⎠⎟

4

2

2

ω αsin  

From these equations, it can be seen that the variation of hfs or hfd with α  is parabolic. The change in pressure head during 
suction and delivery stroke inside the cylinder is given below. 

 (a) When α = °0 , sin 0 0° =  and therefore, h hfs fd= =0 0and . 

 (b) When α = °90 , sin 90 1° =  and thus, h
f l

gd

A

a
rfs

s

s s
=

⎛
⎝⎜

⎞
⎠⎟

4

2

2

ω  and h
f l

gd

A

a
rfd

d

d d
=

⎛
⎝⎜

⎞
⎠⎟

4

2

2

ω .  

 (c) When α = °180 , sin180 0° =  and therefore, h hfs fd= =0 0and . 

Therefore, it can be seen that the frictional losses are zero at the beginning and end of the suction as well as delivery 
strokes. The effect of hfs and hfd on the indicator diagram is shown in Figure 26.8. It can be seen that the area of the diagram 
increases in comparison to the ideal indicator diagram by the amount AGBA and CIDC.
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The area of the parabola AGB represents the work done against the friction in suction pipe. 

 Area AGBA AB GH L h L
f l

gd

A

a
rfs

s

s s
= × = × = ×

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

3

2

3

2

3

4

2

2

ω  

Similarly, the area of the parabola CID represents the work done against the friction in delivery pipe. 

 Area CIDC CD IJ L h L
f l

gd

A

a
rfd

d

d d
= × = × = ×

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

3

2

3

2

3

4

2

2

ω  

26.8.5  Effect of Acceleration and Friction in Suction and Delivery  
Pipes on Indicator Diagram 

The acceleration head (ha) and friction head (hf) at any moment of flow in suction and delivery pipes is given by Equations 
(26.13) and (26.24), respectively as follows.

	 h
l

g

A

a
ra = ω α2 cos  and h

f l

gd

A

a
rf = ⎛

⎝⎜
⎞
⎠⎟

4

2

2

ω αsin  

 (a)  Change in pressure head during suction stroke The pressure head on the piston or plunger during suction 
stroke for any angle of crank is equal to h h hs as fs+ + .

   (i)  At the beginning of the suction stroke, α = °0  and thus, from Equations (26.13) and (26.24), we get the below 
expressions.

	 h
l

g

A

a
r has

s

s
fs= =ω2 0and  

   Thus, pressure head in the cylinder is given by,

	 =	 ( ) [ ( )]h h H h hs as atm s as+ = − +below atmospheric pressure head absoolute 

Suction stroke

Delivery stroke

Stroke length

L

P
re

ss
ur

e 
he

ad

A B

CD

E F

G

H

I

J

Hatm = 10.3 m

hs

hfs

hfd

hd

= 0°α

= 0°α

= 90°α

= 90°α

= 180°α

= 180°α

Figure 26.8 Effect of friction on indicator diagram
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   (ii)  At the middle of the suction stroke, α = °90  and thus, from Equations (26.13) and (26.24), we get the below 
expressions.

 h h
f l

gd

A

a
ras fs

s

s s
= =

⎛
⎝⎜

⎞
⎠⎟

0
4

2

2

and ω  

   Thus, pressure head in the cylinder is given by,

	 =	 ( ) [ ( )]h h H h hs fs atm s fs+ = − +below atmospheric pressure head absoolute 

  (iii)  At the end of the suction stroke, α = °180  and thus, from Equations (26.13) and (26.24), we get the below 
expressions.

 h
l

g

A

a
r has

s

s
fs= − =ω2 0and  

   Thus, pressure head in the cylinder is given by,

	 =	 ( ) [ ( )]h h H h hs as atm s as− = − −below atmospheric pressure head absoolute 

 (b)  Change in pressure head during delivery stroke The pressure head on the piston or plunger during delivery 
stroke for any angle of crank is equal to h h hd ad fd+ + .

   (i)  At the beginning of the delivery stroke α = °0  and thus, from Equations (26.13) and (26.24), we get the below 
expressions.

	 h
l

g

A

a
r had

d

d
fd= =ω2 0and  

   Thus, pressure head in the cylinder is given by, 

	 =	 ( ) [ ( )h h H h hd ad d ad+ = + +above the atmospheric pressure head atm ]] absolute  

  (ii)  At the middle of the delivery stroke, α = °90  and thus, from Equations (26.13) and (26.24), we get the below 
expressions.

 h h
f l

gd

A

a
rad fd

d

d d
= =

⎛
⎝⎜

⎞
⎠⎟

0
4

2

2

and ω  

   Thus, pressure head in the cylinder is given by,

	 =	 ( ) [ ( )h h H h hd fd atm d fd+ = + +above the atmospheric pressure head ]] absolute 

  (iii)  At the end of the delivery stroke, α = °180  and thus, from Equations (26.13) and (26.24), we get the below 
expressions.

 h
l

g

A

a
r had

d

d
fd= − =ω2 0and  

   Thus, pressure head in the cylinder is given by,

	 =	 ( ) [ ( )h h H h hd ad atm d ad− = − −above the atmospheric pressure head ]] absolute 

The Figure 26.9 shows the combined effect of acceleration and friction in suction and delivery pipes.
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The parabola ′ ′ ′A GB A  represents the work done against friction in suction pipe and the parabola ′ ′ ′C ID C  represents 
the work done against friction in delivery pipe. The total work done is represented by the area ′ ′ ′ ′ ′A GB C ID A .

Area of indicator diagram during suction stroke is given by,

 = ′ ′ ′ = ′ ′ ′ + ′ ′ ′Area Area AreaA GB FEA A B FEA A GB A  

 = + ′ ′ ′ = + = +⎛
⎝⎜

⎞
⎠⎟

Area AreaABFEA A GB A h L h L h h Ls fs s fs
2

3

2

3
 (i)

Area of indicator diagram during delivery stroke is given by,

 = ′ ′ = ′ ′ + ′ ′ ′Area Area AreaFC ID EF EFC D C ID C  

 = + ′ ′ ′ = + = +⎛
⎝⎜

⎞
⎠⎟

Area AreaEFCDE C ID C h L h L h h Ld fd d fd
2

3

2

3
 (ii)

Area of indicator diagram = + + +⎛
⎝⎜

⎞
⎠⎟

h h h h Ls d fs fd
2

3

2

3
  [Add (i) and (ii)]

The work done by the pump is proportional to the area of the indicator diagram. 

Thus w h h h h Ls d fs fd ∝ + + +⎛
⎝⎜

⎞
⎠⎟

2

3

2

3
 

 ∴ = + + +⎛
⎝⎜

⎞
⎠⎟

w k h h h h Ls d fs fd 
2

3

2

3
   [k = Constant] 

For a single acting reciprocating pump, we get:

 k
ANw=

ρ g

60
 

Hatm = 10.3 m

hfd

hfs
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hd

had
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Figure 26.9 Effect of acceleration and friction on indicator diagram

M26 Fluid Mechanics and Hydraulic Machines XXXX 01.indd   23 4/19/2019   2:37:54 PM

Download more at Learnclax.com



26.24 Chapter 26

For a double acting reciprocating pump, we get:

 k
ANw=

2ρ g

60
 

Therefore, work done per second by a single acting pump is given by,

 w
AN

h h h h Lw
s d fs fd 

g

60
= × + + +⎛

⎝⎜
⎞
⎠⎟

ρ 2

3

2

3
  (26.40)

Work done per second by a double acting pump is given by,

 w
AN

h h h h Lw
s d fs fd 

g

60
= × + + +⎛

⎝⎜
⎞
⎠⎟

2 2

3

2

3

ρ
  (26.41)

 Example 26.8  A single acting reciprocating pump has a stroke length of 0.15 m. The suction pipe is 7 m long and the 
ratio of suction pipe diameter to the piston diameter is 3 : 4. The water level in the sump is 2.5 m below the axis of the 
pump cylinder and the pipe connecting the sump and pump cylinder is 7.5 cm in diameter. If the crank is running at 75 rpm, 
then find the pressure head on the piston at the beginning, middle and end of the suction stroke. Take friction coefficient as 
f = 0 01.  and atmospheric pressure head as 10.3 m of water. 

Solution
Let L = 0 15. m, ls = 7 m, d Ds / /= 3 4, hs = 2 5. m, ds = =7 5 0 075. .cm m, N = 75 rpm, f = 0 01.  and Hatm = 10 3. m. 

r
L

= = =
2

0 15

2
0 075

.
. m

A

a

D

ds s

= = =
( )

( )

π
π

/

/

4

4

4

3

16

9

2

2

2

2

ω π π
= =

× ×
=

2

60

2 75

60
7 854

N
. rad/s

 h
l

g

A

a
ras

s

s
= = × × × =ω α α α2 27

9 81

16

9
7 854 0 075 5 87cos

.
. . cos . cos  (i)

Since h
f l

gd

A

a
rfs

s

s s
=

⎛
⎝⎜

⎞
⎠⎟

4

2

2

ω αsin  

 ∴ =
× ×

× ×
× × ×⎛

⎝⎜
⎞
⎠⎟

=hfs
4 0 01 7

0 075 2 9 81

16

9
7 854 0 075 0 209

2.

. .
. . sin .α ssin2 α  (ii)

 (i) At the beginning of the suction stroke, α = °0  and thus, from expressions (i) and (ii), we obtain the following result.

	 has = ° =5 87 0 5 87. cos .  and hfs = ° =0 209 0 02. sin  

  Pressure head on the piston in the beginning of suction stroke is given by,

	 =	 ( ) [ ( )]h h H h hs as atm s as+ = − +below atmospheric pressure head absollute 

	 = − + =10 3 2 5 5 87. ( . . ) 1.93 m (abs)  
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 (ii) At the middle of the suction stroke, α = °90  and thus, from expressions (i) and (ii), we obtain the following data.

	 has = ° =5 87 90 0. cos  and hfs = ° =0 209 90 0 2092. sin .  

  Thus, pressure head in the cylinder is given by,

	 =	 ( ) [ ( )]h h H h hs fs atm s fs+ = − +below atmospheric pressure head absoolute 

	 = − + =10 3 2 5 0 209. ( . . ) 7.591 m (abs)  

 (iii) At the end of the suction stroke, α = °180  and thus, from expressions (i) and (ii), we obtain the following results.

	 has = ° = −5 87 180 5 87. cos .  and hfs = ° =0 209 180 02. sin  

  Thus, pressure head in the cylinder is given by,

	 =	 ( ) [ ( )]h h H h hs as atm s as− = − −below atmospheric pressure head absoolute 

	 = − − =10 3 2 5 5 87. ( . . ) 13.67 m (abs)  

26.9 ❐ AIR VESSELS 
An air vessel is a closed chamber which contains compressed air at its top portion and liquid (water) being pumped at 
the bottom portion of the chamber. There is an opening at the base of the chamber through which water may flow into the 
vessel or it may flow out from the vessel. The air is compressed when the water enters the vessel and it expands when the 
water flows out from the vessel. One air vessel is fitted to the suction pipe and another is fitted to the delivery pipe at the 
points near the cylinder of a reciprocating pump as shown in Figure 26.10. The following are the functions of an air vessel.

 1. It reduces the possibility of separation in suction pipe. 

 2. Pump can run at higher speeds and gives higher discharge. 

hs

hd

ld

ls

Air vessel

Air vessel

Air

Air

Piston

Cylinder

Sump

ls1

ld1

Piston rod

Figure 26.10 A reciprocating pump with air vessels
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 3. Length of suction pipe below the air vessel can be increased. 

 4. A large amount of work in overcoming the frictional resistance in suction and delivery pipes can be saved. 

 5. It gives uniform discharge from the pump. 

An air vessel in a reciprocating engine acts like an intermediate reservoir to absorb pressure fluctuations and performs like 
a flywheel of an engine. 

During the first half of the suction stroke, the piston moves with acceleration. This forces the water in the suction pipe 
to move with a velocity greater than the mean velocity of flow. Therefore, the flow rate of water entering the cylinder may 
be more than the mean discharge. This excess quantity of water required due to accelerating effects will be supplied from 
the air vessel. Thus, the velocity of flow of water in suction pipe below the point at which air vessel is fitted will be equal 
to the mean velocity of flow.

During the second half of the suction stroke, the piston moves with retardation. So, the water in the suction pipe also 
retards. Thus, the velocity of water flowing in the suction pipe is less than the mean velocity. Thereby, the water flow rate 
entering the cylinder is less than the mean discharge. Due to air vessel, the velocity of water in the suction pipe below the 
point at which air vessel is fitted is equal to the mean velocity of flow. As the flow required in the cylinder is less than the 
mean flow, the excess quantity of water flowing through the suction pipe will be stored in the air vessel which compresses 
the air inside the vessel. This stored water will be supplied during the first half of the next suction stroke and the same cycle 
will be repeated.

During the first half of the delivery stroke, the piston moves with acceleration and hence, the water is forced into the 
delivery pipe at a rate of flow greater than the mean discharge. The quantity of water in excess of average discharge flows 
into the air vessel and thereby, it compresses the air.

During the second half of the delivery stroke, the piston moves with retardation and hence, the piston velocity drops 
below than the mean velocity of water. Therefore, water forced in the delivery pipe from the cylinder is less than the mean 
discharge. The compressed air in the air vessel then forces excess stored water into the delivery pipe and thus, it maintains 
the constant rate of water flow in the delivery pipe.

It is inferred that an air vessel maintains a uniform velocity of flow in the portion of the suction pipe below the point 
at which the air vessel is fitted. However, the fluctuations in the velocity of flow due to accelerating effects occurs in the 
portion of the suction pipe between the cylinder and the point at which the air vessel is connected to the suction pipe, i.e., 
length ls1. Similarly, an air vessel fitted to the delivery pipe also maintains the uniform rate of flow of water in the delivery 
pipe beyond the point at which the air vessel is fitted. However, the velocity of flow fluctuates due to accelerating effects 
in the portion of the delivery pipe between the cylinder and the point at which the air vessel is fitted to the delivery pipe, 
i.e., length ld1. The acceleration pressure heads develop in the lengths ls1 and ld1 in suction and delivery pipes, respectively 
due to fluctuations in the velocity of flow. These acceleration pressure heads may be considerably reduced by fitting the air 
vessels to the suction and delivery pipes at a point very close to the cylinder. 

26.10 ❐ THEORETICAL ANALYSIS OF AIR VESSELS
Let  N be the crank speed in rpm and ω π= 2 60N /  be the angular speed, 

 L r= 2  be the length of the stroke or cylinder, here r be the radius of crank, 

 A D= ( )π /4 2  be the area of cylinder, here D is the diameter of the cylinder, 

	 a d= ( )π /4 2  be the area of the suction or delivery pipe, here d is the diameter of the suction or delivery pipe, 

 hs and hd be the suction and delivery heads, respectively,
 ls be the length of suction pipe below air vessel, 
 ls1 be the length of suction pipe between cylinder and air vessel, 
 ld be the length of delivery pipe beyond air vessel, 
 ld1 be the length of delivery pipe between cylinder and air vessel, 
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 has and had be the pressure head due to acceleration in the suction and delivery pipes, respectively, 
 hfs and hfd be the pressure head loss in the suction and delivery pipes due to friction, respectively, 
 hfs1 be the pressure head loss in the portion ls1 of suction pipe due to friction and
 hfd1 be the pressure head loss in the portion ld1 of delivery pipe due to friction. 

Theoretical discharge of a single acting pump per second is given by Equation (26.1) as follows.

 Q
ALN

th =
60

  

Mean velocity in the suction or delivery pipe is given by,

 V
Q

a

ALN

am
th= =

60
 

Since N =
60

2

ω
π

 and L r= 2  

	 ∴ =
×
×

× =V
A r

a

A r

am
2

60

60

2

ω
π

ω
π

 (26.42)

The velocity of liquid in the lengths portion ls1 and ld1 of suction and delivery pipes is given from Equation (26.11a) as follows.

 V
A

a
rp = ω αsin   [ ]α ω= t  

26.10.1 Water Flow Rate In and Out of Air Vessel 

 (i)  For single acting reciprocating pump The velocity of water in the cylinder of a single acting pump at any instant 
is given from Equation (26.11) as follows.

	 V r= ω αsin   [ ]α ω= t  

 The discharge at any instant to or from the cylinder is given by,

 Q VA r Ai = = ×ω αsin  (26.43)

 The mean discharge in the suction or delivery pipe is given by,

 Q V a
A r

a
a

A r
m m= = ⎛

⎝⎜
⎞
⎠⎟

=
ω

π
ω
π

 (26.44)

  The difference of the above two discharges given by Equations (26.43) and (26.44) will give the water flow rate in or 
out of the air vessel.

 Therefore, the rate of flow of water into the air vessel is given by,

	 = × − = −⎛
⎝⎜

⎞
⎠⎟

ω α ω
π

ω α
π

r A
A r

A rsin sin
1

 (26.45)

  Now considering that the air vessel is fitted to the delivery pipe. If Equation (26.45) is positive, then it means the water 
is flowing into the air vessel fitted to the delivery pipe. However, if Equation (26.45) is negative, then it means that the 
water is flowing from the air vessel. 

  When air vessel is considered to be fitted to the suction pipe, then the above condition will be reversed. If Equation 
(26.45) is positive, then it means the water is flowing from the air vessel. In case, if Equation (26.45) is negative, then 
it means that the water is flowing into the air vessel fitted to the suction pipe. 
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 There is no flow of water into or from the air vessel when,

 A rω α
π

sin −⎛
⎝⎜

⎞
⎠⎟

=
1

0 

 Thus sinα
π

α= ⇒ = ° ′ ° ′
1

18 34 161 26or  

 Therefore, for crank angle ( )α  equal to 18 34 161 26° ′ ° ′and , there will be no flow into or from the air vessel.

 (ii)  For double acting reciprocating pump In the case of double acting reciprocating pump, the water flow rate into 
the pipe at any instant remains same and is given by Equation (26.43). However, the mean discharge is double that of 
the single acting pump and it is given by two times of Equation (26.44) as follows.

 Q
A r

m =
2 ω

π
 

 Thus, the rate of flow of water into the air vessel is given by,

	 = × − = −⎛
⎝⎜

⎞
⎠⎟

ω α ω
π

ω α
π

r A
A r

A rsin sin
2 2

 (26.46)

   Considering that air vessel is fitted to the delivery pipe. Again if Equation (26.46) is positive, then it means the 
water is flowing into the air vessel fitted to the delivery pipe. If Equation (26.46) is negative, then it means that the 
water is flowing from the air vessel. 

   When air vessel is considered to be fitted to the suction pipe then the above condition will be reversed. If Equation 
(26.46) is positive, then it means the water is flowing from the air vessel. In case, if Equation (26.46) is negative, then 
it means that the water is flowing into the air vessel fitted to the suction pipe. 

 There is no flow of water into or from the air vessel when,

 A rω α
π

sin −⎛
⎝⎜

⎞
⎠⎟

=
2

0 

 Thus sinα
π

α= ⇒ = ° ′ ° ′
2

39 32 140 28or

 Therefore, for crank angle ( )α  equal to 39 32 140 28° ′ ° ′or , there will be no flow into or from the air vessel.

26.10.2  Pressure Heads in the Cylinder During Suction Stroke  
of a Reciprocating Pump with Air Vessel

The pressure head due to acceleration in the suction pipe for the length ls1 is given from Equation (26.14) as follows. 

	 h
l

g

A

a
ras

s

s
1

1 2= ω αcos  (26.47)

Since V
A

a
rs

s
= ω αsin  

Thus, the loss of head due to friction in the suction pipe for the length ls1 is given by, 

 h
f l V

gd

f l

gd

A

a
rfs

s s

s

s

s s
1

1
2

1
2

4

2

4

2
= =

⎛
⎝⎜

⎞
⎠⎟

ω αsin  (26.48)
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Since V
A r

ams
s

=
ω

π
 

Thus, the loss of head due to friction in the suction pipe for the length ls, i.e., below the air vessel is given by,

 h
f l V

gd

f l

gd

A r

afs
s ms

s

s

s s
= =

⎛
⎝⎜

⎞
⎠⎟

4

2

4

2

2 2
ω

π
 (26.49)

Thus, total suction pressure head developed during suction stroke of a reciprocating pump with air vessel for any crank 
angle α  is given by the summation of the static suction head, accelerating head between cylinder and air vessel, friction 
head loss between cylinder and air vessel, uniform frictional head loss below air vessel, and mean velocity head.

 ∴ = + + + +H h h h h
V

gs s as fs fs
ms

1 1

2

2
 (26.50)

When the length ls1 is negligible then the second and third terms in Equation (26.50) can be neglected. Sometimes, velocity 
head is also neglected. Thus, Equation (26.50) is written as follows. 

 H h hs s fs= +  (26.51)

Now substituting Equations (26.47), (26.48), (26.49), and (26.42) in Equation (26.50), we get:

	 H h
l

g

A

a
r

f l

gd

A

a
r

f l

gd

A r
s s

s

s

s

s s

s

s
= + +

⎛
⎝⎜

⎞
⎠⎟

+1 2 1
2

4

2

4

2
ω α ω α ω

cos sin
ππ

ω
πa g

A r

as s

⎛
⎝⎜

⎞
⎠⎟

+
⎛
⎝⎜

⎞
⎠⎟

2 2
1

2
 (26.52)

Thus, the values of pressure head in the cylinder for different values of α  are obtained from Equation (26.52) as follows.

 (i) When α = °0  (beginning of stroke), cos 0 1° =  and sin .0 0° =  

	 ∴ = + +
⎛
⎝⎜

⎞
⎠⎟

+
⎛
⎝⎜

⎞
⎠⎟

H h
l

g

A

a
r

fl

gd

A r

a g

A r

as s
s

s

s

s s s

1 2
2 2

4

2

1

2
ω ω

π
ω

π
 (26.53)

 (ii) When α = °90  (mid of stroke), cos 90 0° =  and sin .90 1° =  

	 ∴ = +
⎛
⎝⎜

⎞
⎠⎟

+
⎛
⎝⎜

⎞
⎠⎟

+H h
f l

gd

A

a
r

f l

gd

A r

a g

A r
s s

s

s s

s

s s

4

2

4

2

1

2
1

2 2

ω ω
π

ω
π aas

⎛
⎝⎜

⎞
⎠⎟

2

 (26.54)

 (iii) When α = °180  (end of stroke), cos180 1° = −  and sin .180 0° =  

	 ∴ = − +
⎛
⎝⎜

⎞
⎠⎟

+
⎛
⎝⎜

⎞
⎠⎟

H h
l

g

A

a
r

f l

gd

A r

a g

A r

as s
s

s

s

s s s

1 2
2 2

4

2

1

2
ω ω

π
ω

π
 (26.55)

  The terms 
l

g

A

a
rs

s

1 2ω  and 
4

2
1

2
f l

d g

A

a
rs

s s
ω

⎛
⎝⎜

⎞
⎠⎟

 can be neglected in Equations (26.53) to (26.55). 

26.10.3  Pressure Heads in the Cylinder During Delivery Stroke  
of a Reciprocating Pump with Air Vessel

The same analysis applied for the suction stroke is used to find the pressure heads developed during the delivery stroke. The 
corresponding relations for delivery stroke may be given by replacing subscript ‘s’ by ‘d’ in Equations (26.47) to (26.55). 
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Thus, total delivery pressure head developed during delivery stroke of a reciprocating pump with air vessel for any crank 
angle α  is given by the summation of the static delivery head, accelerating head between cylinder and air vessel, friction 
head loss between cylinder and air vessel, uniform frictional head loss beyond air vessel and mean velocity head.

	 ∴ = + + + +H h h h h
V

gd d ad fd fd
md

1 1

2

2
 (26.56)

When the length ld1 is negligible then the second and third terms in Equation (26.56) can be neglected. Sometimes, velocity 
head is also neglected. Thus, Equation (26.56) is written as follows. 

 H h hd d fd= +  (26.57)

Now substituting various values in Equation (26.56), we get:

	 H h
l

g

A

a
r

f l

gd

A

a
r

f l

gd

A r
d d

d

d

d

d d

d

d
= + +

⎛
⎝⎜

⎞
⎠⎟

+1 2 1
2

4

2

4

2
ω α ω α ω

cos sin
ππ

ω
πa g

A r

ad d

⎛
⎝⎜

⎞
⎠⎟

+
⎛
⎝⎜

⎞
⎠⎟

2 2
1

2
 (26.58)

Thus, the values of pressure head in the cylinder for different values of α  are obtained from Equation (26.58) as follows.

 (i) When α = °0 , (beginning of stroke), cos 0 1° =  and sin .0 0° =  

	 ∴ = + +
⎛
⎝⎜

⎞
⎠⎟

+
⎛
⎝⎜

⎞
⎠⎟

H h
l

g

A

a
r

f l

gd

A r

a g

A r

ad d
d

d

d

d d d

1 2
2 2

4

2

1

2
ω ω

π
ω

π
 (26.59)

 (ii) When α = °90  (mid of stroke), cos 90 0° =  and sin .90 1° =  

	 ∴ = +
⎛
⎝⎜

⎞
⎠⎟

+
⎛
⎝⎜

⎞
⎠⎟

+H h
f l

gd

A

a
r

f l

gd

A r

a g

A r
d d

d

d d

d

d d

4

2

4

2

1

2
1

2 2

ω ω
π

ω
π aad

⎛
⎝⎜

⎞
⎠⎟

2

 (26.60)

 (iii) When α = °180  (end of stroke), cos180 1° = −  and sin .180 0° =  

	 ∴ = − +
⎛
⎝⎜

⎞
⎠⎟

+
⎛
⎝⎜

⎞
⎠⎟

H h
l

g

A

a
r

f l

gd

A r

a g

A r

ad d
d

d

d

d d d

1 2
2 2

4

2

1

2
ω ω

π
ω

π
 (26.61)

  The terms 
l

g

A

a
rd

d

1 2ω  and 
4

2
1

2
f l

d g

A

a
rd

d d
ω

⎛
⎝⎜

⎞
⎠⎟

 can be neglected in Equations (26.59) to (26.61). 

26.10.4  Work Done by a Reciprocating Pump with Air Vessel  
and Its Effect on  Indicator Diagram

The theoretical work done per second by a pump fitted with air vessels to both the suction and delivery pipes is given by, 

	 w
gALN

h h h h h h
V V

g
w

s d fs fd fs fd
ms md= + + + + + +

+⎡

⎣
⎢
⎢

⎤ρ
60

2

3 21 1

2 2

( ) ( ) ( )
⎦⎦
⎥
⎥
 (26.62)

When the small quantities are neglected, then we get,

	 w
g ALN

h h h hw
s d fs fd= + + +

ρ
60

[( ) ( )] (26.63)
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Thus, the theoretical power required to drive the pump fitted with air vessels is given by,

 P
g ALN

h h h hw
s d fs fd=

×
+ + +

ρ
60 1000

[( ) ( )] kW (26.64)

The modified indicator diagram incorporating the effect of air vessels is illustrated in Figure 26.11(a). The shape of the 
indicator diagram will become rectangular when the small quantities are neglected as shown in Figure 26.11(b). 

Thus, the Equation (26.63) can also be written as,

 w
gAN

h h h h L
gANw

s d fs fd
w= + + + = ×

ρ ρ
60 60

[( ) ] (Area of indicator diagramm) 

26.10.5 Maximum Speed of a Reciprocating Pump with Air Vessel 
The maximum permissible speed of a reciprocating pump is limited by the drop of pressure in the cylinder at the beginning 
of the suction stroke. Therefore, to avoid separation the absolute pressure head at the beginning of stroke (i.e., when α = °0 )  
should not fall below the separation head.

 [ ]H H hatm s sep− >  

Substituting Equation (26.53) in the above expression, we get:

  H h
l

g

A

a
r

f l

gd

A r

a g

A r

aatm s
s

s

s

s s s
− + +

⎛
⎝⎜

⎞
⎠⎟

+
⎛
⎝⎜

⎞
⎠⎟

⎧
1 2

2 2
4

2

1

2
ω ω

π
ω

π⎨⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
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⎦
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⎥
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Figure 26.11 Indicator diagram for a reciprocating pump with air vessels
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In the limiting condition, we get:

	 h H h
l

g

A

a
r

f l

gd

A r

a g

A r

asep atm s
s

s

s

s s s
= − − −

⎛
⎝⎜

⎞
⎠⎟

−
⎛
⎝⎜

1 2
2

4

2

1

2
ω ω

π
ω

π
⎞⎞
⎠⎟

2

 (26.65)

or h H h
l

g

A

a

N
r

f l

gd

A N r

asep atm s
s

s

s

s s
= − − ⎛

⎝⎜
⎞
⎠⎟

−
⎛
⎝⎜

⎞
⎠⎟

1
2

2

60

4

2

2

60

π π
π

22 2
1

2

2

60
−

⎛
⎝⎜

⎞
⎠⎟g

A N r

as

π
π

 (26.65a)

If the small quantities are neglected, then the limiting speed may be calculated from the following expression as given 
below.

 h H h
f l

gd

AN r

asep atm s
s

s s
= − −

⎛
⎝⎜

⎞
⎠⎟

4

2

2

60

2

 (26.66)

During the delivery stroke, the value of accelerating head between the cylinder and air vessel, i.e., had1 is very small. Thus, 
there is least possibility of falling pressure below the separation pressure.

26.10.6 Work Saved Against Friction by Fitting Air Vessel 
Air vessels fitted in a reciprocating pump eliminates the fluctuations in the velocity of flow in suction and delivery pipes. 
This reduces the head loss due to friction in suction and delivery pipes and thus, it saves certain amount of energy. This 
can be determined by finding the difference between the work done against friction without air vessel and with air vessel.

 (i)  For single acting reciprocating pump The following analysis is applicable to both the suction as well as delivery 
stroke of the reciprocating pump. The velocity of flow in suction and delivery pipes is given from Equation (26.11a) 
as follows.

 V
A

a
r= ω αsin  

 The loss of head due to friction is given by,

 h
f lV

gd

f l

gd

A

a
rf = = ⎛

⎝⎜
⎞
⎠⎟

4

2

4

2

2 2

ω αsin  

  As variation of hf with α  is parabolic in nature, the indicator diagram for the loss of head due to friction is a parabola. 
The work done by the pump against friction per stroke is given by the area of the indicator diagram due to friction.

 Therefore, the work done by pump against friction without air vessel is given by,

 w Lhf1
2

3
=    [i.e., area of the parabola] 

 Here, hf is the height at α = °90  and thus, we have,

 w L
f l

gd

A

a
r1

2
2

3

4

2
= × ⎛

⎝⎜
⎞
⎠⎟

ω  (26.67) 

  When the air vessel is fitted to the reciprocating pump, the velocity of flow through the pipes is the mean velocity of 
flow which is given by Equation (26.42) as follows.

 V
A r

am =
ω

π
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 The loss of head due to friction is given by,

 h
f lV

gd

f l

gd

A r

af
m= = ⎛

⎝⎜
⎞
⎠⎟

4

2

4

2

2 2ω
π

 (26.68)

  As the hf is independent of α , the work done against friction with air vessel will be the area of rectangle (refer Figure 
26.11b). 

 w L h L
f l

gd

A r

af2

24

2
= × = × ⎛
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⎞
⎠⎟

ω
π

 

 Thus, work saved is given by, 
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2
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π
 

 Now the percentage of work saved is given by,

	 %w
w
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a
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  Therefore, by using air vessels in single acting reciprocating pump, 84.8% of the work done against friction can be 
saved. 

 (ii)  For double acting reciprocating pump In case of double acting reciprocating pump without air vessel, the 
work lost in friction per stroke remains same as given in case of single acting reciprocating pump which is given by 
 Equation (26.67) as follows. 

 w L
f l

gd

A

a
r1

2
2

3

4

2
= × ⎛

⎝⎜
⎞
⎠⎟

ω  

  When the air vessel is fitted to the double acting reciprocating pump, the velocity of flow through the pipes is the mean 
velocity of flow as given below.

 V
Q

a

ALN

am
th= =

2

60
 

 Since N =
60

2

ω
π

 and L r= 2  

	 ∴ =
×

× =V
A r

a

A r

am
2 2

60

60

2

2ω
π
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π

 (26.69)

 The loss of head due to friction for double acting pump is given by,

 h
f lV

gd

fl
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A r
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m= =
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⎝⎜

⎞
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2
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π

 (26.70)
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  As hf is independent of α , the work done against friction with air vessel will be the area of rectangle (refer 
 Figure 26.11b). 
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 Thus, work saved is given by, 
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 Now percentage of work saved is given by,
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  Therefore, by using air vessels in the double acting reciprocating pump, 39.2% of the work done against friction can 
be saved.

 Example 26.9  The diameter and stroke of a single acting reciprocating pump are 0.15 m and 0.3 m, respectively. When 
the pump runs at 35 rpm, it lifts water through a head of 14 m above the centre of pump. The length and diameter of deliv-
ery pipe are 20 m and 0.1 m, respectively. When an air vessel is fitted on the delivery side 1.5 m above the centre of the 
pump and f = 0 009. , determine the total pressure in the cylinder at the beginning and mid of the delivery stroke. 

Solution
Let D = 0 15. m, L = 0 3. m, N = 35 rpm, hd = 14 m, ld = 20 m , dd = 0 1. m , ld1 1 5= . m  and f = 0 009. .

 r
L

= = =
2

0 3

2
0 15

.
. m  

	 A D= = × =
π π
4 4

0 15 0 017672 2. . m2  

	 a dd d= = × =
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=
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.
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1

2

1

2 9 81

0 01767 3 6652 0 15

0 007854

2

g

A r

ad

ω
π π

⎛
⎝⎜

⎞
⎠⎟

=
×

×
× ×

×
⎛
⎝⎜

⎞
.

. . .

. ⎠⎠⎟
=

2

0 0079.  

The total pressure at the beginning of delivery stroke is given by, 

	 H h
l

g

A

a
r

f l

gd

A r

a g

A r

ad d
d

d

d

d d d
= + +

⎛
⎝⎜

⎞
⎠⎟

+
⎛
⎝⎜

⎞
⎠⎟

1 2
2 2

4

2

1

2
ω ω

π
ω

π
 

	 ∴ = + + + =Hd 14 0 6932 0 0569 0 0079. . . 14.758 m  

Now 
4

2

4 0 009 1 5

0 1 2 9 81

0 01767

0 00785
1

2
f l

gd

A

a
rd

d d
ω

⎛
⎝⎜

⎞
⎠⎟

=
× ×

× ×
×

. .

. .

.

. 44
3 6652 0 15 0 0421

2

× ×⎛
⎝⎜

⎞
⎠⎟

=. . .  

The total pressure at the mid of delivery stroke is given by, 

	 H h
f l

gd

A

a
r

f l

gd

A r

a g

A r

ad d
d

d d

d

d d
= +

⎛
⎝⎜

⎞
⎠⎟

+
⎛
⎝⎜

⎞
⎠⎟

+
4

2

4

2

1

2
1

2 2

ω ω
π

ω
π dd

⎛
⎝⎜

⎞
⎠⎟

2

 

	 ∴ = + + + =Hd 14 0 0421 0 0569 0 0079. . . 14.1069 m  

 Example 26.10  A single acting reciprocating pump of diameter and stroke as 0.25 m and 0.46 m, respectively runs at 
55 rpm. The length and diameter of delivery pipe are 50 m and 0.12 m, respectively. The pump is fitted with an air vessel 
on the delivery side at the centre line of the pump. Determine the power saved in overcoming friction in the delivery pipe 
if the piston executes a simple harmonic motion and f = 0 009. . 

Solution
Let D = 0 25. m, L = 0 46. m , N = 55 rpm, ld = 50 m, dd = 0 12. m	and f = 0 009. .

r
L

= = =
2

0 46

2
0 23

.
. m  

A D= = × =
π π
4 4

0 25 0 04912 2. . m2

a dd d= = × =
π π
4 4

0 12 0 011312 2. . m2

ω π π
= =

× ×
=

2

60

2 55

60
5 76

N
. rad/s

Loss of head due to friction without air vessel is given by, 

	 h
f l

gd

A r

afd
d

d d
=

⎛
⎝⎜

⎞
⎠⎟

=
× ×

× ×
×

×4

2

4 0 009 50

0 12 2 9 81

0 0491 5 76
2

ω .

. .

. . ××⎛
⎝⎜

⎞
⎠⎟

=
0 23

0 01131
25 29

2.

.
. m 

Power required to overcome friction without air vessel is given by,

	 P
gALN

hw
fd1 60 1000

2

3

1000 9 81 0 0491 0 46 55

60 1000

2

3
=

×
× =

× × × ×
×

× ×
ρ . . .

225 29 3 424. .= kW  
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Loss of head due to friction with air vessel is given by, 

	 h
f l

gd

A r

afd
d

d d
=

⎛
⎝⎜

⎞
⎠⎟

=
× ×

× ×
×

×4

2

4 0 009 50

0 12 2 9 81

0 0491 5 7
2

ω
π

.

. .

. . 66 0 23

0 01131
2 562

2×
×

⎛
⎝⎜

⎞
⎠⎟

=
.

.
.

π
m 

Power required to overcome friction with air vessel is given by,

	 P
gALNhw fd

2 60 1000

1000 9 81 0 0491 0 46 55 2 562

60 1000
=

×
=

× × × × ×
×

=
ρ . . . .

00 52. kW  

	 Power saved = − = − =P P1 2 3 424 0 52. . 2.904 kW  

 Example 26.11  A double acting reciprocating pump has a bore of 0.15 m and stroke of 0.46 m. The diameter and length 
of suction pipe are 10 cm and 6.5 m, respectively and the suction lift is 4 m. Assume that the pump has a simple harmonic 
motion, atmospheric pressure head is 10.3 m of water and separation takes place at 2.5 m of water absolute. If f = 0 02. ,  
then find the maximum speed at which the said pump can be operated (i) without any air vessel on the suction side and  
(ii) with a large air vessel on the suction side close to the pump.

Solution
Let D = 0 15. m, L = 0 46. m , ds = =10 0 1cm m. , ls = 6 5. m, hs = 4 m, Hatm = 10 3. m, hsep = 2 5. m and f = 0 02. . 

	 r
L

= = =
2

0 46

2
0 23

.
. m  

 (i) The maximum speed of the reciprocating pump without separation during suction stroke can be calculated from 
 Equation (26.37) as follows. 

	
l

g

A

a

N
r H h hs

s
atm s sep

2

60

2π⎛
⎝⎜

⎞
⎠⎟

= − −  

  Thus 
6 5

9 81

0 15

0 1

2

60
0 23 10 3 4 2 5

2

2

2.

.

.

.
. . .× × ⎛

⎝⎜
⎞
⎠⎟

× = − −
π N

 

	 0 00376 3 8
3 8

0 00376
2. .

.

.
N N= ⇒ = = 31.79 rpm  

 (ii) The maximum speed of the reciprocating pump without separation during suction stroke when air vessel is used can 
be calculated from Equation (26.65) as follows.

  h H h
l

g

A

a
r

f l

d g

A r

a g

A r

asep atm s
s

s

s

s s s
= − − −

⎛
⎝⎜

⎞
⎠⎟

−
⎛
⎝⎜

1 2
2

4

2

1

2
ω ω

π
ω

π
⎞⎞
⎠⎟

2

 

 h H h
f l

d g

A r

a g

A r

asep atm s
s

s s s
= − − −

⎛
⎝⎜

⎞
⎠⎟

−
⎛
⎝⎜

⎞
⎠⎟

0
4

2

1

2

2 2
ω

π
ω

π
 

	 h H h
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a
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s

s

s
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⎛
⎝⎜

⎞
⎠⎟

+
⎛
⎝⎜

⎞
⎠⎟

1

2

4
1

2
ω

π
 

  Thus 2 5 10 3 4
1

2 9 81

4 0 15 0 23

4 0 1

2

2

2

. .
.

( / ) . .

( / ) .
= − −

×
×

× × ×
× ×

⎡

⎣
⎢
⎢

⎤

⎦
⎥
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π ω
π π

××
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+⎛
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⎞
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0 1
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	 8 5746 10 10 3 4 2 5 3 83 2. . . .× = − − =− ω  

	 ∴ =
×

=−ω 3 8

8 5746 10
21 05

3

.

.
. rad/s 

  Thus  
2

60
21 05

π N
= .  

 ∴ = ×
×

=N
21 05 60

2

.

π
201.01 rpm  

 Example 26.12  A single acting reciprocating pump is to raise a liquid of density 1200 kg/m3 through a vertical height 
of 11.5 m from 2.5 m below pump axis to 9 m above it. The plunger moves with simple harmonic motion has diameter 
0.125 m and stroke 0.225 m. The suction and delivery pipes are of 75 mm diameter and 3.5 m and 13.5 m long, respectively. 
A large size air vessel is fitted to the delivery pipe only near the pump axis. If separation takes place at 0.88 bar below 
atmospheric pressure, then find (i) the maximum speed with which the pump can run without separation taking place and 
(ii) power required to drive the pump, if f = 0 02. . Neglect slip for the pump.

Solution

Let ρ = 1200 kg/m3, ( ) .h hs d+ = 11 5 m, hs = 2 5. m, hd = 9 m, D = 0 125. m, L = 0 225. m, d ds d= = =75 0 075mm m. , 

ls = 3 5. m, ld = 13 5. m, hsep = 0 88. bar  and f = 0 02. .

	 hsep =
×
×

=
0 88 10

1200 9 81
7 47

5.

.
. m 

	 r
L

= = =
2

0 225

2
0 1125

.
. m 

 (i) A D= = × =
π π
4 4

0 125 0 01232 2. . m2 

	 a a ds d s= = = × =
π π
4 4

0 075 0 004422 2. . m2 

  Limiting condition for no separation is given by,

	 h h h hs as sep as+ = ⇒ + =2 5 7 47. .  

	 ∴ = − =has 7 47 2 5 4 97. . . m 

  Maximum speed of pump without separation during suction stroke can be determined by,

	 h
l

g

A

a
r

l

g

A

a

N
ras

s

s

s

s
= = ⎛

⎝⎜
⎞
⎠⎟

ω π2
22

60
 

  Thus 
3 5

9 81

0 0123

0 00442

2

60
0 1125 4 97

2.

.

.

.
. .× × ⎛

⎝⎜
⎞
⎠⎟

× =
π N

 

	 ∴ = × × ×
× × ×

=N
4 97 9 81 0 00442 60

3 5 0 0123 2 0 1125

2

2

. . .

. . ( ) .π
63.7 rpm  
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 (ii)  Q
ALN

th = =
× ×

= × −
60

0 0123 0 225 63 7

60
2 938 10 3. . .

. m /s3  

  Thus  V
Q

amd
th

d
= =

×
=

−2 938 10

0 00442
0 665

3.

.
. m/s 

  The loss of head due to friction in delivery pipe is given by,

	 h
f l V

gdfd
d md

d
= =

× × ×
× ×

=
4

2

4 0 02 13 5 0 665

2 9 81 0 075
0 324

2 2. . .

. .
. m 

  Maximum value of hfs during suction stroke is given by,

	 h
f l

gd

A r

a

f l

gd

A N r

afs
s

s s

s

s s
=

⎛
⎝⎜

⎞
⎠⎟

= × ×
×

⎛
⎝⎜

⎞
⎠⎟
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2

4

2

2

60
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ω π
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× ×

× ×
×

× × × ×
×

hfs
4 0 02 3 5

0 075 2 9 81

0 0123 2 63 7 0 1125

0 00442

. .

. .

. . .

.

π
660

0 83
2⎛

⎝⎜
⎞
⎠⎟

= . m  

  Power required to drive the pump is given by,

 P
gQ

h h h hth
s d fs fd= + + +⎛

⎝⎜
⎞
⎠⎟

ρ
1000

2

3
kW  

	 ∴ = × × × × + + × +⎛
⎝⎜

⎞
⎠⎟

=
−

P
1200 9 81 2 938 10

1000
2 5 9

2

3
0 83 0 324

3. .
. . . 0.42881 kW  

26.11 ❐ CHARACTERISTIC CURVES OF A RECIPROCATING PUMP
The constant speed characteristic curves for a reciprocating pump are obtained by plotting its discharge (Q), power input 
(P) and overall efficiency ( )η  against the head (H) developed by keeping the speed (N) constant. For obtaining the  variable 
speed characteristic curves, the pump is operated at different speeds and its discharge is plotted against the speed by 
 keeping the head constant. The characteristic curves of a reciprocating pump are shown in Figure 26.12. 

 1. Q versus H curve: It can be seen that the discharge of a reciprocating pump operating at constant speed slightly 
decreases as the head developed by the pump increases as shown in Figure 26.12(a). However, under ideal conditions, 
it is found to be independent of the head developed by the pump.

Q

H

Ideal discharge

Actual discharge

H

P

N = Constant

Input power

H

η

E�ciency

(a) (b) (c) (d)

Q

Discharge

N

N = Constant N = Constant H = Constant

Figure 26.12 Operating characteristic curves of a reciprocating pump
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 2. P versus H curve: The input power curve starts away from the origin because even at zero discharge, some power is 
required to overcome the mechanical losses. The input power curve is observed to increase almost linearly with the 
increase in head developed by the pump as shown in Figure 26.12(b).

 3. η versus H curve: The overall efficiency curve of a reciprocating pump is also found to increase with the increase in 
head developed by the pump as shown in Figure 26.12(c).

 4. Q versus N curve: The discharge is observed to increase almost linearly with the increase in speed of the pump as 
shown in Figure 26.12(d).

26.12 ❐ ROTARY POSITIVE DISPLACEMENT PUMPS 
Rotary positive displacement pumps were developed to avoid the complexity of construction and restriction on speeds of 
the reciprocating pumps. These may be constant delivery pump or variable delivery pump. Due to complex construction, 
the variable delivery pump are expensive than constant delivery pumps. The rotary positive displacement pumps have a 
stationary housing in which a power driven unit rotates and displaces the liquid and it also controls the opening and closing 
of suction and delivery ports. These pumps have the advantage of both the reciprocating and centrifugal pumps and it can 
produce moderately high pressure while running at higher speeds. These pumps are mainly used for pumping lubricant 
to the motors, engines, turbines and various machine tools. These are also used in oil hydraulic control systems but these 
pumps are not suitable for pumping of water. 

Some of the rotary positive displacement pumps, namely vane pump, lobe pump, axial piston pump, gear pump, screw 
pump and radial piston pump are briefly discussed in this section. These rotary positive displacement pumps give  continuous 
discharge of liquid at a uniform rate of flow and they are also known as constant delivery pumps. These pumps can also 
be used to give variable delivery by using variable speed control mechanism or by regulating the flow of liquid by valves. 

26.12.1 Vane Pump
A vane pump consists of a hollow rotor which is eccentrically mounted in the casing as shown schematically in  Figure 26.13. 
The hollow rotor disc has equispaced radial slots each fitted with a sliding vane. These vanes are free to slide radially. The 
vanes are kept pressed on the casing by means of springs and thus, it provides proper sealing between the  suction and dis-
charge connections. The liquid is trapped between the vanes and the casing. When the rotor rotates, the trapped liquid is 
forced to the delivery side (or pressure side). The theoretical volume displaced by these pump per second is given as follows.

 Q eb R e nt
N

th = − − ×2 2
60

[ ( ) ]π  (26.71)

Here, e is the eccentricity between the rotor and the casing, b is the width of vane, R is the inner radius of the casing, n is 
the number of vanes, t is the thickness of vane and N is the rotor speed in rpm.

Suction Discharge

Rotor

Casing

Vane

Eccentricity

Slot

Figure 26.13 Vane pump
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A single stage pump is able to develop pressures varying from 1.75 MPa to 7 MPa. For obtaining higher pressures, 
more than one stage can also be employed. The vane pump units find wide range of applications in machine tools and other 
industrial applications. Its volumetric efficiency varies from 82% to 92%, mechanical efficiency typically varies from 90% 
to 95% and overall efficiency varies from 80% to 95%.

26.12.2 Lobe Pump
The schematic view of two lobed and three lobed pumps are shown in Figure 26.14(a) and 26.14(b), respectively. The lobes 
form a liquid tight joint at each meshing point with the pump casing. Both the rotors do not contact each other and are 
driven externally. The liquid is to be filled before starting the pump. The liquid continuously traps in the pockets formed 
between the lobes and the pump casing. When the rotor rotates, the trapped oil is forced to the delivery side. Generally, 
these pump units are used with oil. These pumps have higher capacity and are less noisy than the gear pumps. These units 
give smooth but non-uniform flow rate of liquid. Due to smaller number of mating elements, these pump units have a 
greater amount of pulsation in its output. 

26.12.3 Axial Piston Pump
It consists of a cylinder block which contains a number of cylinders bored in it along a circle. Each cylinder houses a  
piston as schematically shown in Figure 26.15. 

Casing

Suction Suction

Delivery Delivery

Lobe Lobe

(a) (b)

Casing

Figure 26.14 Lobe pumps

Swash plate

Cylinder block

Suction

Discharge

Piston

Rotating shaft

Spring

Figure 26.15 Axial piston pump
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The cylinder block is fixed to the driving shaft. The pistons are spring loaded and are butt against the swash plate. When 
the cylinder block rotates, the pistons move in and out according to the distance between the swash plate and the cylinder 
block. There are two ports separated from each other towards the head side of the block. One port is connected to the 
 suction side and the other to the discharge side. The sliding movements of the pistons produce the suction and compression 
in the  cylinder. The tilting of swash plate is used to adjust the displacement of the pump. These pumps are reversible and 
can develop pressures up to 200 bar. Its overall efficiency varies from 90% to 98%.

26.12.4 Gear Pump
The gear pumps can be external gear pump or internal gear pump. The external gear pump is discussed in the next chapter. 
Here, internal gear pump is explained whose schematic view is shown in Figure 26.16. 

It consists of an internal gear (or an idler), an outer driving spur gear and an external casing. The internal gear is fitted 
 eccentrically to the outer spur gear. The space between the outside diameter of driving gear and the inside diameter of idler is 
sealed by a crescent shape projection which entraps the liquid to be pumped. When the driving gear gets its motion from the 
motor, the teeth come out of the mesh and there is an increase in volume. This creates a vacuum and thus, it draws liquid from 
the reservoir. The liquid fills in the space between the teeth of the driving gear and idler. As the driving gear keeps on rotating, 
the teeth mesh and the entrapped liquid is forced out to the delivery side. Typically its volumetric efficiency varies from 80% 
to 90%.

26.12.5 Screw Pumps
A screw pump is an axial flow type pump. It consists of a screw which rotates in a closely fitted cylindrical housing. The 
casing has suction and delivery ports. There may be one, two or three screws. In a two screw pump, one will be the rotor and 
the other will be an idler, whereas in a three screw pump there will be two idlers on either side of the rotor. Two idlers act 
as seal to the power rotor and are driven by fluid pressure. One screw and two screws pumps are shown in Figure 26.17(a) 
and 26.17(b), respectively. 

The screw may be single helical or double helical. The double helical screws are more balanced and give more  discharge 
than single helical screws. The liquid is carried forward to the discharge side along the rotor in pockets formed between 
teeth and the casing, like a nut on the power screw. These pumps deliver non-pulsating continuous flow. Also large  discharge 
and high pressure are possible with these units.

Suction

Discharge

Internal gear

Casing

Crescent seal

Spur gear

Figure 26.16 Internal gear pump
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26.12.6 Radial Piston Pump
The schematic view of a radial piston pump is illustrated in Figure 26.18. 

It consists of a cylindrical rotating block which carries the pistons radially. It rotates about an axis offset from the fixed 
ring (or reaction ring) fixed to the casing. The pump gets its power from motor through the shaft. It rotates the cylinder 
block due to which the pistons move in and out. The pistons always remain in contact with the fixed ring due to centrifugal 
force. The inlet and outlet ports are at the centre of the cylinder block. The suction and discharge lines connect to the side 
of the casing.

As the shaft rotates, the pistons on the suction side move away and suck liquid while diametrically opposite pistons move 
inside and increase pressure which forces out the liquid. The theoretical discharge by this pump is given below.

 Q end
N

th = ×π 2

60
 (26.72)

Here, e is the eccentricity of the fixed ring and the casing, n is the number of pistons, d is the diameter of piston and  
N is the rotating block speed in rpm. 

Rotating blockInlet port

Outlet portPistons

Fixed ring

D
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Figure 26.18 Radial piston pump
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Casing
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Figure 26.17 Screw pumps
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Summary

 1. Theoretical discharge of the reciprocating pump per second 
is given by,

   (i) Q ALNth = ( )/60  (Single acting)

  (ii) Q ALNth = ( )2 60/  (Double acting)

  Here, A is the area of the piston or cylinder, L is the length of 
the stroke or cylinder and N is the crank speed in rpm.

 2. Work done per second:

   (i) w g ALN h hw s d= × +[ ( )]ρ /60  (Single acting pump)

  (ii) w gALN h hw s d= × +[ ( )]2 60ρ /  (Double acting pump)

  Here, hs is the suction head and hd is the delivery head.

 3. The difference between the theoretical discharge (Qth) and 
actual discharge (Qact) is known as slip (S). 

 4. The pressure head due to acceleration in the suction and 
delivery pipes is given by, 

h
l

g

A

a
ras

s

s
= ω α2 cos  (Suction) 

h
l

g

A

a
rad

d

d
= ω α2 cos  (Delivery)

  Here, l is the length of the suction or delivery pipe, a is the 
area of the suction or delivery pipe, r is the radius of the 
crank, a is the crank angle and w is the angular speed of 
crank.

 5. Maximum pressure head due to acceleration:

( )maxh
l

g

A

a
ra = ω2

 6. The loss of head due to friction in suction and delivery pipe 
is given by,

h
f l

gd

A

a
rfs

s

s s
=

⎛
⎝⎜

⎞
⎠⎟

4

2

2

ω αsin  and h
f l

gd

A

a
rfd

d

d d
=

⎛
⎝⎜

⎞
⎠⎟

4

2

2

ω αsin

 7. Maximum value of head loss due to friction:

( )maxh
f l

gd

A

a
rf = ⎛

⎝⎜
⎞
⎠⎟

4

2

2

ω

 8. In the indicator diagram, the pressure head on the piston is 
plotted along the ordinate and the stroke length (L) along the 
abscissa. The work done by the pump is proportional to the 
area of indicator diagram.

 9. Maximum speed of the reciprocating pump without sepa-
ration during suction and delivery stroke can be calculated 
from the following equations. 

l

g

A

a

N
r H h hs

s
atm s sep

2

60

2π⎛
⎝⎜

⎞
⎠⎟

= − −  (During suction stroke)

l

g

A

a

N
r H h hd

d
atm d sep

2

60

2π⎛
⎝⎜

⎞
⎠⎟

= + −  (During delivery stroke)

  Here, Hatm is the atmospheric pressure head and hsep is the 
separation pressure head. 

 10. Work done per second due to acceleration and friction in 
 suction and delivery pipes is given by,

   (i)  w
AN

h h h h Lw
s d fs fd 

g

60
= + + +⎛

⎝⎜
⎞
⎠⎟

ρ 2

3

2

3

	 	    (Single acting pump)

  (ii) w
AN

h h h h Lw
s d fs fd 

g

60
= + + +⎛

⎝⎜
⎞
⎠⎟

2 2

3

2

3

ρ

     (Double acting pump)

  Here, hfs and hfd is the head loss due to friction in suction 
and delivery pipes, respectively.

 11. An air vessel is a closed chamber which contains compressed 
air at its top portion and liquid (water) being pumped at the 
bottom portion of the chamber. A large amount of work in 
overcoming the frictional resistance in suction and delivery 
pipes can be saved by using an air vessel. 

 12. The rate of flow of water into the air vessel: = Aw	r[sin a − 
(1/p)] (single acting pump) and = −A rω α π[sin ( )]2/ 	
( double acting pump)

 13. Mean velocity in the suction or delivery pipe: Vm = 
Aw	r/p	a

 14. The theoretical work done per second by a pump fitted 
with air vessels to both the suction and delivery pipes: 

w
g ALN

h h h hw
s d fs fd= + + +

ρ
60

[( ) ( )]

 15. Maximum speed of the reciprocating pump with air 
 vessel without separation during suction stroke:

h H h
f l

gd

AN r

asep atm s
s

s s
= − −

⎛
⎝⎜

⎞
⎠⎟

4

2

2

60

2

These pumps are considered as an ideal pump for use in heavy duty machines, such as control systems of aircraft, 
 governors of hydraulic turbines, gas turbines and steam turbines, heavy duty earth moving equipments. These units are 
capable of developing pressure as high as 400 MPa. Its overall efficiency varies from 85% to 95%.
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 16. In single acting reciprocating pump, 84.8% of the work 
done against friction can be saved by using air vessels while 
in double acting reciprocating pump 39.2% work can be  
saved.

 17.  Rotary positive displacement pumps were developed to 
avoid the complexity of construction and restriction on 
speeds of the reciprocating pumps. Constant delivery pumps 
are vane pump, lobe pump, axial piston pump, gear pump, 
screw pump and radial piston pump.

Multiple-choice Questions

 1. Generally, reciprocating pumps are best suited for 
(a) Where constant heads are required despite fluctuation in 

discharge.
(b) Where constant supplies are required despite fluctuation 

in pressure.
(c) For pumping large liquid flows for medium heads at 

high speeds. 
(d) None of the above.

 2. The limiting value of separation pressure head for water in 
absolute unit is 
(a) 10.3 m.
(b) 7.3 m.
(c) 3.5 m.
(d) 2.5 m.

 3. In a reciprocating pump, the minimum absolute pressure 
during suction and delivery strokes occurs, respectively at 
the 
(a) End of suction stroke and end of delivery stroke. 
(b) Mid of suction stroke and beginning of delivery stroke.
(c) Beginning of suction stroke and end of delivery stroke. 
(d) None of the above.

 4. The reciprocating pump cannot run at high speed due to 
(a) High rate of pulsation in flow. 
(b) Increased acceleration head. 
(c) Increased possibility of cavitation. 
(d) All the above.

 5. The slip for reciprocating pump may be 
(a) −ve.
(b) +ve.
(c) +ve or −ve.
(d) Zero.

 6. Air vessels in a reciprocating pump are used 
(a) To increase the pump head. 
(b) To smoothen the flow. 
(c) To increase the efficiency. 
(d) To reduce the acceleration heads to minimum.

 7. In suction and delivery pipes, maximum head loss due to 
friction occurs at 
(a) The beginning of the stroke. 
(b) The mid of the stroke. 

(c) At the end of the stroke. 
(d) None of the above.

 8. The work saved by fitting an air vessel to a single and double 
acting reciprocating pump is respectively 
(a) 92.3% and 48.8%.
(b) 84.8% and 39.2%.
(c) 48.8% and 92.3%.
(d) 39.2% and 84.8%.

 9. In negative slip of a reciprocating pump, the actual discharge 
as compared to theoretical discharge is 
(a) Equal. 
(b) Less. 
(c) More. 
(d) None of the above.

 10. For pumping highly viscous liquids, which of the following 
pump is to be used? 
(a) Turbine pump.
(b) Centrifugal pump.
(c) Plunger pump.
(d) Screw pump.

 11. Which one of the following statement is false? 
(a) Generally, axial piston pump have odd number of cylin-

ders to give uniform flow. 
(b) Axial piston pumps have better performance than gear 

and vane pumps. 
(c) A gear pump can operate at higher pressures than an 

axial piston pump. 
(d) None of the above.

 12. Which of the following is the rotary positive displacement 
pump? 
(a) Screw pump.
(b) Vane pump.
(c) Gear pump.
(d) All the above.

 13. Which one of the following can generate the highest 
pressure? 
(a) Lobe pump.
(b) Vane pump.
(c) Screw pump.
(d) Gear pump.
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Review Questions

 1. Describe the principle, constructional and working details of 
a reciprocating pump. Also determine the discharge, work 
and power input for it.

 2. Differentiate between the single acting and double acting 
reciprocating pumps. Also discuss the working principle, 
discharge, work and power required for a double acting 
reciprocating pump.

 3.  Define slip, coefficient of discharge and negative slip of a 
reciprocating pump.

 4. Give comparisons between centrifugal and reciprocating 
pumps.

 5. How the acceleration of the piston of a reciprocating pump 
affects the velocity and acceleration of the water in suc-
tion and delivery pipes? Also derive an expression for the 
pressure head developed due to acceleration of the piston. 
Assume that the piston has simple harmonic motion.

 6.  Define indicator diagram. Show that work done by the recip-
rocating pump is proportional to the area of the indicator 
diagram.

 7. Discuss the effects of acceleration on the indicator diagram 
with a neat graph during both suction and delivery strokes. 

 8. Derive expressions for maximum speed of reciprocating 
pump without separation during both suction and delivery 
strokes.

 9. What is an air vessel? Also give its function for reciprocating 
pump.

 10. Show from the first principle that the work saved in a single 
acting and double acting reciprocating pump by fitting an air 
vessel is 84.8% and 39.2%, respectively. 

 11. Derive expressions for water flow rate in and out of air ves-
sel for single and double acting reciprocating pumps. Also 
determine the crank angle for which there will be no flow 
into or from the air vessel.

 12. Discuss the pressure heads in cylinder during delivery stroke 
of a reciprocating pump with air vessel for different values of 
crank angles.

 13. Derive an expression for the work done by a reciprocating 
pump with air vessel and also discuss its effect in indicator 
diagram.

 14. Derive an expression for the maximum speed of a recipro-
cating pump with air vessel during suction stroke.

 15. Explain the characteristic curves of reciprocating pump with 
neat sketches.

 16. What do you mean by rotary positive displacement pumps? 
Explain the constructional and working of a vane and inter-
nal gear pumps.

 17. Briefly discuss (i) radial piston pump, (ii) lobe pump and 
(iii) axial piston pump. 

Problems

 1. A single acting reciprocating pump running at 100 rpm 
delivers 15 l /s water. The diameter and stroke of the cylin-
der are 200 mm and 300 mm, respectively. Determine (i) the 
coefficient of discharge and (ii) percentage slip.

 [Ans. 0.9554, 4.46%] 

 2. A double acting reciprocating pump running at 50 rpm 
takes water from 3 m and delivers at 40 m. The diameter 
and stroke of the piston are 0.18 m and 0.36 m, respectively. 
Determine the power required to drive the pump if mechan-
ical efficiency is 0.86. Also determine the discharge of the 
pump neglecting the area of the piston rod.

 [Ans. 7.505 kW, 0.0153 m3/s] 

 3. The stroke and piston area of a single acting reciprocating 
pump are 0.3 m and 0.15 m2, respectively. The water is lifted 
through a total head of 12 m while the pump is running at 
50 rpm. If the actual discharge of the pump is 36.5 litres 
per second and its mechanical efficiency is 88%, then find 
(i)  the coefficient of discharge, (ii) percentage of slip and 
(iii) power required to drive the pump.

[Ans. 0.9733, 2.67%, 4.883 kW]

 4. The diameter of piston and piston rod of a double acting 
reciprocating pump are 250 mm and 50 mm, respectively. 
The suction and delivery heads are 5 m and 17.5 m, respec-
tively. If the mean piston speed is 0.5 m/s, then find (i) the 
discharge and (ii) force required to push the piston in and out 
strokes. 

[Ans. 0.024 m3/s, 10.48 kN, 10.72 kN]

 5. A single acting reciprocating pump having a cylinder diame-
ter of 170 mm and stroke of 250 mm is used to raise the water 
through a total height of 30 m. Its crank rotates at 60 rpm. 
Find the theoretical power required to run the pump and the-
oretical discharge. If the actual discharge is 5.35 litres per 
second, then find the percentage slip. If the delivery pipe is 
100 mm in diameter and is 20 m long, then find the accelera-
tion head at the beginning and middle of the delivery stroke. 

[Ans. 1.669 kW, 0.00567 m3/s, 5.64%, 29.05 m, 0]

 6. A single acting reciprocating pump operating at 50 rpm has 
a piston diameter of 120 mm and stroke of 200 mm. The 
suction and delivery heads are 3 m and 12 m, respectively. 
Determine (i) the theoretical discharge, (ii) force required 
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for working the piston during the suction stroke, (iii) force 
required for working the piston during the delivery strokes if 
the efficiencies of suction and delivery strokes are 70% and 
75%, respectively and (iv) the power required to drive the 
pump.

 [Ans. 0.00188 m3/s, 0.4755 kN, 1.775 kN, 0.374 kW]

 7. The diameter and stroke of a single acting reciprocating 
pump are 150 mm and 300 mm, respectively. The pump is 
4 m above the water surface. The diameter and length of a 
suction pipe are 100 mm and 5 m, respectively. If the pump is 
running at 40 rpm and atmospheric pressure head is 10.3 m 
of water, then find (i) the pressure head due to acceleration 
at the beginning of the suction stroke, (ii) maximum pressure 
head due to acceleration, and (iii) pressure head in the cylin-
der at the beginning and end of the suction stroke.

 [Ans. (i) 3.02 m, 3.02 m, 3.28 m of water abs,  
9.32 m of water abs]

 8. If in the problem 7, the delivery pipe diameter is 100 mm and 
length is 30 m and the water is delivered in the tank which 
is 25 m above the centre of the pump, then determine (i) the 
pressure head due to acceleration at the beginning and end 
of delivery stroke and (ii) pressure head in the cylinder at the 
beginning and end of delivery stroke.

 [Ans. (i) 18.12 m, 53.42 m of water abs,  
−18.12 m, 17.18 m of water abs]

 9. The diameter and stroke of single acting reciprocating pump 
are 150 mm and 300 mm, respectively. Both the suction and 
delivery pipes are 100 mm in diameter. The lengths of the 
suction and delivery pipes are 5 m and 30 m, respectively. 
The centre of the pump is 3 m above the water surface in the 
sump and 20 m below the delivery water level. If the pump 
is working at 35 rpm and atmospheric pressure is given as 
10.3 m of water, then find (i) the pressure heads on the pis-
ton at the beginning, middle and end of the suction stroke, 
(ii) pressure heads on the piston at the beginning, middle, 
and end of the delivery stroke and (iii) power required to run 
the pump.

 [Ans. (i) 4.99, 7.3, 9.61 m of water abs (ii) 44.16, 30.3,  
16.44 m of water abs, (iii) 0.6972 kW]

 10. The bore and stroke of a single acting reciprocating pump 
are 150 mm and 300 mm, respectively. The total head is 
20 m. The diameter and length of delivery pipe are 100 mm 
and 22 m, respectively. If the pump is working at 50 rpm, 
then determine (i) the theoretical power required to run the 
pump and (ii) acceleration head at the beginning, middle and 
end of the delivery stroke in the cylinder.

 [Ans. 0.8668 kW, (ii) 20.75 m, 0 m, −20.75 m]

 11. For a single acting reciprocating pump, the diameter and the 
length of the suction pipe are 4.5 cm and 6.5 m and that of 
delivery pipe are 3.5 cm and 18.5 m, respectively. The diam-
eter of the piston and stroke length is 10.5 cm and 20.5 cm, 
respectively. The centre of the pump is 4.5 m above the water 

level in the sump and the delivery tank is 14.5 m above the 
centre line of the pump. The separation of water occurs at 
8  N/cm2 below the atmospheric pressure head. Determine 
the maximum speed at which the pump can run without sep-
aration when atmospheric pressure head is 10.3 m of water. 

[Ans. 19 rpm]

 12. The diameter and stroke of a single acting reciprocating pump 
are 120 mm and 300 mm, respectively. The water is lifted by 
a pump through a total head of 30 m. The diameter and the 
length of delivery pipe are 100 mm and 20 m, respectively. 
Determine (i) the theoretical discharge and theoretical power 
required to run the pump if its speed is 40 rpm, (ii) percent-
age slip if the actual discharge is 2.21 litres per second and  
(iii) acceleration head at the beginning and middle of the 
delivery stroke. 

[Ans. 2.262 litres/s, 0.6657 kW, 2.29%, 7.73 m, 0 m]

 13. A single acting reciprocating pump has a diameter of 10 cm 
and stroke length 20 cm. The diameter and length of the suc-
tion pipe are 5 cm and 6.5 m, respectively. The suction lift 
of the pump is 3.2 m and the separation occurs when the 
pressure in the pump falls below 2.5 m of water absolute. If 
the atmospheric pressure head is 10.3 m of water, then deter-
mine the maximum speed at which pump can run without 
separation in the suction pipe. 

[Ans. 39.82 rpm]

 14. A single acting reciprocating pump drawing water from a 
sump and delivering to a tank has a cylinder of diameter of 
100 mm and a stroke length of 200 mm. The water level in 
the sump is 4.5 m below the centre line of the pump and 
in the tank water level is 13 m above the pump centre. The 
diameter and length of the suction pump are 40 mm and 
5 m while that of delivery pipe the diameter and length are 
30 mm and 20 m, respectively. If atmospheric pressure head 
is 762 mm of mercury and the separation occurs at 2.5 m of 
water absolute, then find the maximum speed of the pump.

 [Ans. 28.98 rpm]

 15. A three throw pump has cylinder of 22.5 cm diameter and 
stroke of 45 cm each. The pump delivers water at rate of 
0.075 cubic metres per second at a head of 81 m. Friction 
losses in the suction and delivery pipes are 1 m and 18 m, 
respectively. If the velocity of water in the delivery pipe is 
0.9 m/s, overall efficiency is 80% and slip is 3%, then find 
the speed of the pump and power required to drive the pump.

 [Ans. 86.4 rpm, 73.575 kW]

 16. A single acting reciprocating pump delivers water at a height 
of 25 m through a delivery pipe 40 m long and 140 mm 
in diameter. The diameter of the piston and stroke length is 
250 mm and 440 mm, respectively. The atmospheric pres-
sure head is 10.3 m of water and the cavitation occurs at 
2.5 m of water absolute. Determine the maximum speed at 
which the pump can run without separation on the delivery 
side if (i) the pipe runs first horizontally and then vertically 
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upwards and (ii) the pipe raise first vertically and then runs 
horizontally.

[Ans. 32.34 rpm, 15.77 rpm]

 17. The bore and stroke of a reciprocating pump are 25 cm 
and 50 cm, respectively. The pump delivers water through 
a 10 cm delivery pipe to a tank located at 15 m above it and 
28  m horizontally from it. The atmospheric pressure head 
is 10.3 m of water and connecting rod - crank ratio is 5. If 
separation occurs at a pressure of 22.4 kN/m2 absolute, then 
determine the safe speed at which pump should run for the 
following arrangements of delivery pipe, such as (a) the 
delivery pipe is horizontal from the pump and then vertical 
up to the tank and (b) the delivery pipe is vertical from the 
pump and then horizontal up to the tank. 

[Ans. 19.57 rpm, 11.54 rpm, case (i)]

 18. A single acting reciprocating pump has a stroke length of 
0.2  m. The suction pipe is 8.5 m long and its diameter is 
7.5 cm. The ratio of piston diameter to the suction pipe diam-
eter is 4 : 3. The pump is 3.5 m above the water level in the 
sump. If the crank is running at 40 rpm, then find the pres-
sure head on the piston at the beginning, middle and end of 
the suction stroke. Take friction coefficient as f = 0 009. .

 [Ans. 6.2 m, 3.615 m, 9.5 m]

 19. A double acting reciprocating pump running at 30 rpm has a 
stroke length and diameter as 0.4 m and 0.2 m, respectively. 

The pump sucks water from a sump 1.2 m below through 
a suction pipe of length and diameter as 2.6 m and 0.1 m, 
respectively. The water is delivered 25 m above the pump 
through a delivery pipe 0.1 m in diameter and 35 m long. 
When the piston has moved through a distance of 0.1 m from 
the inner dead centre, then find (a) the force on the piston 
from suction side, (b) force on the piston from delivery side 
and (c) net force due to fluid pressure on the piston. Assume 
simple harmonic motion, friction coefficient as f = 0 009.  
and atmospheric pressure head = 10.3 m of water.

 [Ans. 2410.05 N, 7475.77 N, 5065.72 N]

 20. A single acting reciprocating pump running at 30 rpm has a 
stroke length and diameter as 0.21 m and 0.105 m, respec-
tively. The lengths of suction and delivery pipes are 9 m and 
27 m, respectively. The diameters of both the suction and 
delivery pipes are 85 mm. The suction and delivery heads 
are 5 m and 16 m, respectively. Find (i) the pressure head in 
the cylinder at the beginning, middle and end of the suction 
stroke, (ii) pressure head in the cylinder at the beginning, 
middle and end of the delivery strokes and (iii) also deter-
mine the power required for driving the pump. Take fric-
tion coefficient f = 0 01.  and atmospheric pressure head = 
10.3 m of water.

 [Ans. 3.849 m, 5.245 m, 6.751 m, 30.652 m,  
26.4641 m, 21.948 m, 0.18861 kW]

ANSWERS TO MULTIPLE-CHOICE QUESTIONS

 1. (b) 2. (d) 3. (c) 4. (d) 5. (c)
 6. (d) 7. (b) 8. (b) 9. (c) 10. (d)
 11. (c) 12. (d) 13. (c)
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27.1 ❐ INTRODUCTION
There are various hydraulic systems and devices which are used to transmit power with the help of an incompressible fluid 
under pressure. In these machines, hydraulic energy is transmitted through the liquid medium for which water or oil is used. 
Generally, these devices are based on the principles of hydrostatics and hydrokinetics (or rotodynamic). These devices 
either store hydraulic energy and then transmit this energy when required or magnify the hydraulic energy many times and 
then transmit the same. Some of these devices are (i) hydraulic press, (ii) hydraulic accumulator, (iii) hydraulic intensifier, 
(iv) hydraulic ram, (v) hydraulic lift, (vi) hydraulic crane, (vii) hydraulic coupling, (viii) hydraulic torque converter, (ix) air 
lift pump, (x) jet pump and (xi) gear pump. In this chapter, the function, construction and working details of the above 
mentioned hydraulic devices are described.

27.2 ❐ HYDRAULIC PRESS
The hydraulic press is a device used for lifting heavy loads by the application of much smaller force. The first hydraulic 
press was built in 1795 by Joseph Bramah and it is still in use. It is based on Pascal’s law which states that intensity of 
pressure is transmitted equally in all directions through a mass of fluid at rest.

27.2.1 Working Principle
The working principle of a hydraulic press may be explained with the help of Figure 27.1(a). The hydraulic press system 
consists of two cylinders say C1 and C2 of different diameters. The larger diameter cylinder C1 has a ram while the smaller 
diameter cylinder C2 has a plunger. These two cylinders are connected by a chamber that contains fluid in it through which 
pressure is transmitted.

When a small force F is applied on the plunger in the downward direction, a pressure is produced on the liquid in contact 
with the plunger. This pressure is transmitted equally in all directions and it acts on the ram in the upward direction. Thus, 
the heavier load placed on the ram is lifted up.

Let W be the weight to be lifted, F be the force applied on the plunger, A D= ( )π /4 2
 be the area of ram, a d= ( / )π 4 2 

be the area of plunger and p F a= ( )/  be the pressure intensity produced by force.
According to Pascal’s law, the pressure intensity (p) will be equally transmitted in all directions and it is given below.

p
F

a
=  also p

W

A
=

Thus 
W

A

F

a
=  (i)

Chapter 27

Hydraulic Systems
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∴ = ×W F

A

a
 (27.1)

The mechanical advantage is given by the following relation.

	
M.A.

Load lifted

Force applied
= = =

W

F

A

a
 (27.2)

If a force is applied by the lever on a plunger, then a force F1 smaller than F can lift the load W as shown in Figure 27.1(b).
Taking moments about A, we get:

F L F l1 × = ×

	 ∴ = ×F F
L

l1  (27.3)

Substituting the value of F in Equation (27.1), we get:

 W F
L

l

A

a
= × ×1  (27.4)

	 ∴ = = ×MA
W

F

L

l

A

a1
 (27.5)

Here, ( )L l/  is called the leverage of the hydraulic press.
The effective force transmitted to generate pressure on the liquid is reduced by the amount lost in friction. The pressure 

intensity in a static mass of fluid is also same throughout. If the percentage packing friction for each ram and plunger is 
denoted by k, then expression (i) is written as follows.

	
F

a

k W

A k
× −⎡

⎣⎢
⎤
⎦⎥

=
× −

1
100 1 100[ ( )]/

 (27.6)

Plunger

Cylinder (C2)

Ram

Cylinder (C1)

A

L

l

(a) (b)

Chamber

F
F

F1W

Figure 27.1 Working of a hydraulic press
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Thus W F
A

a

k
F

L

l

A

a

k
= × × −⎡

⎣⎢
⎤
⎦⎥

= × × × −⎡
⎣⎢

⎤
⎦⎥

1
100

1
100

2

1

2

 [Substitute Equation (27.3)]

∴ = = × × −⎡
⎣⎢

⎤
⎦⎥

M.A.
W

F

L

l

A

a

k

1

2

1
100

The volume of liquid displaced by the plunger (Q) is equal to that reaches to the ram area. If h is the stroke of the plunger, 
n is the number of strokes made per second and H is the lift of the ram in a second then the expression is given below.

Q a h n A H= × × = ×

	 ∴ =
×
×

=
×
×

=
×
×

n
A H

a h

D H

d h

D H

d h

( )

( )

π
π
/

/

4

4

2

2

2

2
 (27.7)

If n numbers of strokes are completed in t seconds, then work supplied by the plunger is given below.

	 w
F h n

t

W H

t
=

× ×
=

×
 (27.8)

Thus, the power required to drive the plunger is P w= ( )/ kW1000 .

27.2.2 Actual Hydraulic Press
The simplest form of an actual hydraulic press is shown in Figure 27.2 and it consists of a ram sliding in a fixed cylinder. 
A movable plate is attached to the lower end of the ram which moves up and down with the ram between two fixed plates. 
The upper and lower fixed plates are joined by columns. The ram is operated by liquid under pressure which is supplied 
by a pump. Usually, a hydraulic accumulator is provided between the press and the pump, where it stores high pressure 
liquid while the press is at rest. When liquid under pressure is supplied to the cylinder, then the ram moves in the downward 
direction. It exerts a force on any material placed between the lower fixed plate and the movable plate. Thus, the material 
gets pressed or any desired mechanical operation is performed. To bring back the ram in its initial position, the liquid from 
the cylinder is removed. As a result, the ram along with the movable plate moves up by the action of return weights.

Lower
fixed plate

Fixed cylinderHigh pressure liquid

Upper
fixed plate

Return
weight

Pulley

Ram

Movable plate
Column

Figure 27.2 Actual hydraulic press
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27.2.3 Applications
Hydraulic press is used to complete the jobs which require tremendous pressure. Generally, electrically driven pumps are 
used to supply oil under pressure to these devices. In hydraulic presses, a total thrust ranging from about 50 MN to 100 MN 
can be produced. Commonly, the hydraulic presses are used in (i) sheet metal press work, (ii) die  sinking, (iii) cotton 
press, (iv) forging press, (v) bakelite press, (vi) plate press, (vii) metal pushing press, (viii) packing press, (ix) filter press, 
(x) drawing and pushing rods and (xi) punching, bending, drawing, straightening operations of any metal piece.

 Example 27.1  A hydraulic press has a ram of 250 mm diameter and a plunger of 25 mm diameter. (i) If the applied force 
on the plunger is 40 N, then determine the weight lifted. (ii) If a lever with a leverage of 10 is used for applying force on 
the plunger, then determine the force needed at the end of the lever.

Solution
Let D = =250 0 25mm m. , d = =25 0 025mm m. , F = 40 N  and L l/ = 10.

Let W be the weight lifted and F1 be the force needed at the end of the lever.

 (i) W
F A

a

F D

d
= × = × = × =

2

2

2

2

40 0 25

0 025

.

.
4000 N

 (ii) F W
l

L

a

A
W

l

L

d

D
1

2

2

2

2
4000

1

10

0 025

0 25
= × × = × × = × × =.

.
4 N

 Example 27.2  A hydraulic press has a ram of 10 cm diameter and a plunger of 1.25 cm. What force will be required 
on the plunger to lift a load of 25 kN? If the plunger has a stroke of 20 cm, then how many strokes will be required to lift 
the load by 55 cm? Also determine the volume of additional liquid required. Further, if the time taken to lift the load is 
8 minutes and the frictional effects are neglected, then what would be the power required by the motor to drive the plunger?

Solution
Let D = =10 0 1cm m. , d = =1 25 0 0125. .cm m , W = = ×25 25 103kN N, h = =20 0 2cm m. , H = =55 0 55cm m.  and 

t = =8 480min s .

Let F be the force required on the plunger, n be the number of strokes of the plunger, v be the volume of additional liquid 
and P be the power of the motor.

F
W a

A

W d

D
= × = × = × × =

2

2

3 2

2

25 10 0 0125

0 1

.

.
390.625 N

n
D H

d h
= ×

×
= ×

×
=

2

2

2

2

0 1 0 55

0 0125 0 2

. .

. .
176

v D H= × = × × =π π
4 4

0 1 0 552 2. . 0.00432 m3

P
W H

t
= ×

×
= × ×

×
=

1000

25 10 0 55

1000 480

3 .
0.0286 kW

 Example 27.3  The diameters of ram and plunger of a hydraulic press are 0.25 m and 30 mm, respectively, and the 
 leverage of the handle is 10 : 1. The press can lift a load of 200 kN through 1.25 m in 2 minutes with a plunger stroke of 
250 mm. Determine (i) the force applied at the end of lever, (ii) the number of strokes completed by the plunger per second 
and (iii) the power required to drive the plunger of the press. Assume the packing friction of the plunger as well as the ram 
equal to 4% of the load.
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 Hydraulic Systems 27.5

Solution
Let D = 0 25. m, d = =30 0 03mm m. , L l/ = 10 1: , W = = ×200 200 103kN N, H = 1 25. m, t = =2 120min s, h = 250 mm =  

0.25 m and k = 4%.

Let F be the force on the plunger, F1 be the force needed at the end of the lever, n be the number of strokes of the  
plunger and P be the power required to drive the plunger.

 (i) 
F

a
k

W

A k
× −[ ] =

× −
1 100

1 100
( )

[ ( )]
/

/

   F
W a

A k

W d

D k
=

×
× −

=
×

× −[ ( )] [ ( )]1 100 1 1002

2

2 2/ /

∴ =
× ×
× −

=F
200 10 0 03

0 25 1 4 100
3125

3 2

2 2

.

. [ ( / )]
N

F F
l

L1 3125
1

10
= × = × = 312.5 N

 (ii) n
D H

d h
= ×

×
= ×

×
= ≈

2

2

2

2

0 25 1 25

0 03 0 25
347 22

. .

. .
. 348

 (iii) P
F h n

t
= × ×

×
= × ×

×
=

1000

3125 0 25 348

1000 120

.
2.266 kW

27.3 ❐ HYDRAULIC ACCUMULATOR
The hydraulic accumulator temporarily stores the energy of liquid under pressure and supplies it for any sudden or 
 intermittent requirement. The hydraulic machines such as lifts or cranes require large amount of energy in the form of 
 liquid under pressure during upward motion of the load only. This energy is supplied from the hydraulic accumulator. When 
these devices move in the downward direction, no energy is practically used. At that time, the energy supplied by the pump 
is stored in the accumulator. Therefore, an accumulator stores energy during the idle period of the machine and supplies 
it along with the uniform supply from the pump to the machine during its working stroke when large quantity of liquid 
under pressure is required. Thus, it acts as a pressure regulator, which means it damps out pressure surges and shocks in the 
hydraulic system. This function is analogous to that of an electric storage battery and the flywheel of a reciprocating engine.

27.3.1 Simple Hydraulic Accumulator
A simple hydraulic accumulator is illustrated in Figure 27.3. It consists 
of a fixed vertical cylinder containing a sliding ram or plunger. The 
 bottom end of the cylinder has two openings, namely inlet and outlet 
of the cylinder. A heavy load is placed on the top of the ram to generate 
pressure inside the cylinder chamber. The inlet of the cylinder is con-
nected to the pump which continuously supplies liquid under pressure 
to the cylinder. The outlet of the cylinder is connected to the machine 
which may be lift, crane, press, etc.

Initially, the ram is at its lowermost position. When liquid is not 
required by the machine, the pump delivers the liquid under pressure to 
the cylinder. It raises the loaded ram till it reaches its uppermost position 
in the cylinder. This constitutes the upward stroke of the ram. Now at this 

p

Outlet to machineInlet from
pump

Fixed
cylinder

Sliding
ram

Load

Figure 27.3 Simple hydraulic accumulator
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27.6 Chapter 27

position, the cylinder is full of liquid under pressure and hence, the  accumulator has stored maximum amount of energy. 
Later on, when the machine requires a large amount of energy during its  working stroke, then the  hydraulic accumulator 
supplies the stored energy. Thus, the ram gradually moves in the downward  direction. It constitutes the downward stroke of 
the ram during which the liquid under pressure is delivered to the machine.

27.3.2 Capacity of Accumulator
The maximum amount of hydraulic energy that the accumulator can store is known as the capacity of the accumulator.

Let L be the stroke or lift of the ram, D be the diameter of the sliding ram, A D= ( )π /4 2 be the area of the sliding ram, 
(AL) be the volume of accumulator, p be the pressure intensity of liquid supplied by the pump and W be the total weight of 
the loaded ram (including the weight of the ram) as given in the following expression.

W p A= ×
The work done in lifting the ram is given by,

	 w W WL pA L= × = = ×Stroke of the ram  (27.9)

The work done in lifting the ram is equal to the energy stored in the accumulator. Thus, the capacity of accumulator is  
given by the following expression.

	 C W L pA L p= × = × = ×  Volume of accumulator  (27.10)

 Example 27.4  An accumulator has a ram of 0.2 m diameter and lift of 6.5 m. If the liquid is supplied at a pressure of 

5000 kN/m2, then determine (i) the load on the ram and (ii) capacity of the accumulator in kWh.

Solution
Let mD = 0 2. , L = 6 5. m and p = 5000 kN/m2. Let W be the load on the ram and C be the capacity of the accumulator.

 (i) W p A p D= × = × = × × =π π
4

5000
4

0 22 2. 157.08 kN

 (ii) 1 kWh Nm= × × = ×1000 60 60 3 6 106.

C
W L= ×

×
= × ×

×
=

3 6 10

157 08 10 6 5

3 6 106

3

6.

. .

.
0.28362 kWh

 Example 27.5  The ram of an accumulator is 0.35 m diameter and it weighs 50 kN. Determine the additional weight to 
be placed over it to develop a pressure of 4 MPa.

Solution
Let mD = 0 35. , W = 50 kN and p = = ×4 4 106 2MPa N/m .

A D= = × =
π π
4 4

0 35 0 096212 2 2. . m

Pressure N/m= =
×

=
W

A

50 10

0 09621
519696 5

3
2

.
.

Required pressure N/m= × − =4 10 519696 5 3480303 56 2. .

Required extra load Required pressure  Area= ×

∴ = × =Wextra
3480303 5 0 09621

103

. .
334.84 kN
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 Hydraulic Systems 27.7

 Example 27.6  The ram of an accumulator is 0.5 m diameter and it is loaded with 30 kN including its own weight.  
If the frictional resistance against the movement of the ram is 4% of the total weight, then determine the intensity of liquid 
pressure when the ram is moving up and down with uniform velocity.

Solution

Let mD = 0 5. , W = = ×30 30 103kN N and F Wf = 4% of .

 (i) When the ram is moving up with a uniform velocity, we get:

A D= = × =
π π
4 4

0 5 0 196352 2 2. . m

Ff = × × =
4

100
30 10 12003 N

  Thus, total force on the ram is given by,

Ft = + =30000 1200 31200 N

p
F

A
t= =

×
=31200

0 19635 103.
158.9 kN/m2

 (ii) When the ram is moving down with a uniform velocity, we get:

F Nt = − =30000 1200 28800

p
F

A
t= =

×
=28800

0 19635 103.
146.68 kN/m2

 Example 27.7  An accumulator is loaded with 40 kN weight. The ram has a diameter of 0.3 m and stroke of 6 m. Its 
friction may be assumed as 5% of the total load. It takes two minutes to fall through its full stroke. Find the total work 
supplied and power delivered to the hydraulic machine by the accumulator, when 0.0075 m3/s water is being delivered by 
a pump, while accumulator descends with the stated velocity.

Solution
Let W = 40 kN , D = 0 3. m, L = 6 m, F Wf = 5% of , t = =2 120min s and Q = 0 0075. m /s3 .

A D= = × =
π π
4 4

0 3 0 0706862 2. . m2

Ff = × × =
5

100
40 10 20003 N

The net force is given by,

Fnet N= − =40000 2000 38000

Work supplied by the accumulator per second is given by,

w
F L

tacc =
×

=
×

=net Nm/s
38000 6

120
1900

p
F

A
= =

×
=net 2kN/m

38000

0 070686 10
537 59

3.
.

H
p

gw
= =

×
×

=
ρ

537 59 10

1000 9 81
54 8

3.

.
. m
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27.8 Chapter 27

Work supplied by the pump per second is given by,

w gQHp w= = × × × =ρ 1000 9 81 0 0075 54 8 4031 91. . . . Nm/s

Total work supplied per second to the machine is given by,

w w wacc ptotal = + = + =1900 4031 91. 5931.91 Nm/s

Power total= = =
w

1000

5931 91

1000

.
5.932 kW

27.3.3 Differential Hydraulic Accumulator
The differential hydraulic accumulator is another form of accumulator in which the liquid is stored at a high pressure by a 
comparatively small load on the ram. It is also known as Tweddell’s differential accumulator and it is shown in Figure 27.4. 
It consists of a fixed vertical ram which has central liquid passage of small diameter through which the liquid supplied from 
the pump enters the cylinder. The fixed vertical ram is surrounded by a closely fitting brass bush (or sleeve). The bush is 
surrounded by an inverted sliding cylinder having a circular collar projecting outwards at the base. The weights are placed 
on the collar to load the cylinder. The passages for liquid to enter and leave the sliding cylinder are provided in the fixed 
ram and are connected to the inlet and outlet pipes. The liquid supplied from the pump enters the inverted cylinder through 
the central vertical passage provided in the fixed ram. The liquid exerts an upward force on the internal annular area of 
the inverted sliding cylinder which is equal to the horizontal cross-sectional area of the brass bush. This causes the loaded 
cylinder to move upwards and thus, the hydraulic energy is stored in the accumulator.

Let L be the vertical lift of the moving cylinder, D be the external diameter of the brass bush, d be the diameter of fixed 
ram, a D d= −( )( )π /4 2 2  be the annular area of the cylinder or area of the bush, (aL) be the volume of the accumulator,  
p be the pressure intensity of liquid supplied by the pump, W be the total weight of the sliding cylinder (including the 
weight placed on the cylinder) and t be the time in seconds.

	 p
W

a
=  (27.11)

LoadLoad

Fixed ram

Sliding cylinder

Outlet to
machine

Inlet from
pump

Brass bush

Figure 27.4 Differential hydraulic accumulator
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 Hydraulic Systems 27.9

From Equation (27.11), it is observed that pressure intensity can be increased with a small load ‘W ’ by making the area of 
the bush ‘a’ small.

Energy stored in the accumulator Capacity of accumulator Total we= = iight Vertical lift×

Therefore, the capacity of accumulator is given by,

	 C W L pa L p= × = × = × Volume of accumulator  (27.12)

The work done by the accumulator is given by,

w =
×Total weight  Stroke of the ram

Time

	 ∴ =
×

=
− ×

w
W L

t

p D d L

t

( / )( )π 4 2 2

 (27.13)

 Example 27.8  The diameters of two portions of the ram of a differential accumulator are 0.15 m and 0.14 m,  respectively. 
The stroke of the accumulator is 1 m and it is supplied with water at a pressure of 1000 m of water. Evaluate the load on 
the ram and the capacity of the accumulator.

Solution
Let mD = 0 15. , d = 0 14. m, L = 1 m and H = 1000 m of water .

p Hw= = × × = ×ρ g 1000 9.81 1000 9.81 10 N/m6 2

W p D d= × − = × × × − =π π
4

9 81 10
4

0 15 0 142 2 6 2 2( ) . ( . . ) 22343.79 N

C
WL=
×

= ×
×

=
3 6 10

22343 79 1

3 6 106 6.

.

.
6.207 10 kWh3×× –

27.4 ❐ HYDRAULIC INTENSIFIER
The hydraulic intensifier is a device which is used to increase the intensity of pressure of the liquid or water. It is  accomplished 
by utilizing the hydraulic energy of a larger quantity of liquid at low pressure. This device is required when the hydraulic 
machines, such as hydraulic press, hydraulic crane and hydraulic lift needs liquid at very high pressure which may not be 
directly available from a pump. It is possible by using an intensifier between the pump and the machine.

A hydraulic intensifier consists of a fixed ram through which the high pressure liquid is supplied to the machine. The 
fixed ram is surrounded by a sliding cylinder which contains high pressure liquid. The sliding cylinder is surrounded by a 
fixed inverted cylinder which contains the low pressure liquid from the main supply as shown in Figure 27.5. The valves V1 
and V4 allow low pressure liquid from the supply, valve V3 discharges low pressure liquid to exhaust and valve V2 allows 
high pressure liquid to the machine.

Initially, when the sliding cylinder is at its bottom-most position, the fixed cylinder is full of low pressure liquid. Now 
the valves V2 and V4 are closed and the valve V1 is opened. It permits low pressure liquid into the sliding cylinder and 
meanwhile valve V3 is also opened. It allows low pressure liquid from the fixed cylinder to the exhaust and the sliding 
cylinder moves upwards. When the sliding cylinder reaches its topmost position, the inside of the sliding cylinder is full of 
low pressure liquid. Now the valves V1 and V3 are closed and the valves V2 and V4 are opened. Therefore, the low pressure 
liquid from the supply enters the fixed cylinder which forces the sliding cylinder to move downwards. As a result, the liquid 
in the sliding cylinder gets compressed and its pressure increases. Thus, the high pressure liquid is forced out of the sliding 
cylinder through the fixed ram to the machine. A hydraulic intensifier can raise the pressure intensity of liquid up to about 
160 MN/m2.
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27.10 Chapter 27

Let p1 be the intensity of pressure of low pressure liquid in the fixed cylinder, D be the external diameter of the sliding 
cylinder, A D= ( )π /4 2  be the area of the sliding cylinder, p2 be the intensity of pressure of high pressure liquid inside the 
sliding cylinder, d be the diameter of the fixed ram and a d= ( )π /4 2  be the area of the fixed ram.

The total upward force equals total downward force and therefore, by neglecting friction effects, we derive the following 
expression.

	 p A p a1 2× = ×

	 ∴ = × = × =
×

p p
A

a
p

D

d

p D

d
2 1 1

2

2
1

2

2

4

4

( )

( )

π
π

/

/
 (27.14)

If the friction effects are considered and k is the percentage of friction loss at each packing of the intensifier, then we get 
the following expression.

p A
k p a

k1
21

100 1 100
−⎡

⎣⎢
⎤
⎦⎥

=
−[ ( / )]

	 ∴ = × −⎡
⎣⎢

⎤
⎦⎥

= × −⎡
⎣⎢

⎤
⎦⎥

p
p A

a

k p D

d

k
2

1
2

1
2

2

2

1
100

1
100

 (27.14a)

The intensifier described above supplies high pressure liquid during the downward stroke only and thus, it is single acting. 
However, double acting intensifiers are also made which supply high pressure liquid continuously.

 Example 27.9  The hydraulic intensifier receives low pressure water at a pressure of 4500 kN/m2 and delivers it to the 
device at a pressure of 18000 kN/m2. Determine the diameters of the fixed ram and the sliding cylinder of the intensifier if 
it has a capacity of 0.02 m3 and stroke of 1.2 m.

Low pressure liquid from supply

To exhaust

Low pressure
liquid from supply

High pressure liquid to machine

High pressure
liquid

Low pressure
liquid

Fixed ram

Sliding
cylinder

Fixed
cylinder

V1

V2

V3

V4

Figure 27.5 Hydraulic intensifier
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 Hydraulic Systems 27.11

Solution

Let kN/mp1
24500= , p2

218000= kN/m , C = 0 02 3. m  and L = 1 2. m . Let the diameters of the fixed ram and sliding 

cylinder be d and D, respectively.

Capacity Area of fixed ram Stroke length= ×

or C d L= ×
π
4

2

Thus 0 02
4

1 22. .= ×
π

d

∴ = ×
×

=d
4 0 02

1 2

.

.π
0.1457 m

From Equation (27.14) we get:

D
p d

p
=

×
= × =2

2

1

218000 0 1457

4500

.
0.2914 m

 Example 27.10  A hydraulic intensifier receives water into the fixed cylinder from an overhead tank through a pipeline 
60 mm in diameter, 90 m long and with friction coefficient of 0.01 under a head of 15 m. The diameter of sliding cylinder 
is given 300 mm while that of fixed ram is 120 mm. The sliding cylinder moves 0.9 m in 30 seconds during the working 
stroke. Calculate the pressure head and the power delivered at the outlet of the fixed ram.

Solution
Let mm md1 60 0 06= = . , l = 90 m, f = 0 01. , H = 15 m, D = =300 0 3mm m. , d = =120 0 12mm m. , L = 0 9. m and 

t = 30 s .

Area of sliding cylinder is given by,

A D= = × =
π π
4 4

0 3 0 07072 2 2. . m

Area of fixed ram is given by,

a d= = × =
π π
4 4

0 12 0 011312 2 2. . m

The discharge of low pressure liquid entering the fixed cylinder is given by,

Q
A L

t1
30 0707 0 9

30
2 121 10=

×
=

×
= × −. .

. m /s3

V
Q

d
= =

×
×

=
−

1

1
2

3

24

2 121 10

4 0 06
0 75

( / )

.

( / ) .
.

π π
m/s

The head loss due to friction in the supply pipe is given by,

h
flV

gdf = =
× × ×

× ×
=

4

2

4 0 01 90 0 75

2 9 81 0 06
1 72

2

1

2. .

. .
. m

The pressure head of the low pressure water in the fixed cylinder is given by,

H1 15 1 72 13 28= − =. . m
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Therefore, the pressure head delivered at the outlet of the fixed ram is given by,

H
H A

a2
1 13 28 0 0707

0 01131
=

×
= × =. .

.
83.015 m

Discharge of the high pressure water delivered at the outlet of the fixed ram is given by,

Q
Q a

A2
1

3
4 32 121 10 0 01131

0 0707
3 393 10=

×
=

× ×
= ×

−
−. .

.
. m

Power delivered by the intensifier at the outlet of the fixed ram is given by,

P
gQ Hw= = × × × × =

−ρ 2 2
4

1000

1000 9 81 3 393 10 83 015

1000

. . .
0.27632 kW

27.5 ❐ HYDRAULIC RAM
The hydraulic ram is a type of pump which lifts a small quantity of water to a greater height from large quantity of water 
available at a smaller height. The hydraulic ram lifts water without the use of any external power. The schematic diagram of 
a typical hydraulic ram and its main components are illustrated in Figure 27.6. It consists of a valve chamber connected to 
the supply tank by an inclined supply pipe. The valve chamber is provided with a waste valve V1 and a  delivery valve V2. 
Both these valves are non-return valves that permit the flow in one direction only. The waste valve V1 opens inwards while 
the delivery valve V2 opens outwards. The delivery valve V2

 connects the valve chamber to the air vessel which is connected 
to the delivery tank through the delivery pipe.

It works on the principle of water hammer. When a flowing liquid is suddenly brought to rest, the change in momentum 
of liquid mass causes a sudden rise in pressure. This rise in pressure is utilized to raise a portion of the liquid to higher 
levels.

When the supply valve fitted to the supply pipe is opened, water starts flowing from the supply tank to the valve chamber. 
The level of water rises in the valve chamber and the waste valve starts moving upwards. The waste valve V1 being open, the 
water flows through it to the waste water channel. As the rate of discharge after the waste valve increases, the flow of water 
in the supply pipe accelerates. With increase in the velocity of flow in the supply pipe, dynamic pressure on the underside 
of the waste valve reaches to a stage which suddenly closes the waste valve. Due to the sudden closure of waste valve, water 
in the supply pipe is suddenly brought to rest which creates high pressure inside the valve chamber. This high pressure lifts 
the delivery valve V2 and a part of water from the valve chamber enters the air vessel and compresses the air inside it. This 
compressed air exerts force on the water in the air vessel and a small quantity of water is supplied through the delivery pipe 
to the delivery tank placed to a greater height.

Delivery tank

Supply tank

Supply pipe

Supply valve

Air vessel

Waste
valve (V1)

Delivery valve (V2)

Valve chamber

Delivery pipe
h

H

(H − h)

Figure 27.6 Hydraulic ram
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When the water in the valve chamber loses its momentum, the waste valve V1 opens. Now the flow of water from supply 
tank starts flowing to the valve chamber and this cycle is repeated.

The hydraulic ram works with water streams of 1 m3/s to 40 m3/s, fall heads of 1.5 m to 30 m, and lifts water up to 
heights about 300 m.

Let Q be the discharge through supply pipe, q be the discharge through delivery pipe, h be the height of water in supply 
tank above the valve chamber and H be the height of water raised from the valve chamber.

Energy supplied to the ram g= ρw Qh

Energy supplied by the ram g= ρw qH

The efficiency of hydraulic ram is given by,

	 η
ρ
ρD

w

w

qH

Qh
= =

Energy supplied by the ram

Energy supplied to the ram

g

g
==

×
×

q H

Q h
 (27.15)

The above expression for efficiency was suggested by D’Aubuisson and thus, it is known as D’Aubuisson’s efficiency.
Rankine suggested another form of the above efficiency and hence, it is called Rankine efficiency. It is defined on the 

basis of the difference of water head in the discharge and the supply tank. The Rankine’s efficiency is mathematically 
expressed as given below.

	 ηR
q H h

Q q h
=

× −
− ×
( )

( )
 (27.16)

The above two efficiencies, in terms of weight are given by,

	 ηD
w H

W h
=

×
×

 (27.17)

	 ηR
w H h

W w h
=

× −
− ×
( )

( )
 (27.18)

Here, w is the weight of water delivered per second by the ram and W is the weight of water flowing from supply tank to 
the valve chamber per second.

Due to several energy losses, the maximum efficiency of hydraulic ram is usually limited to only about 75%. The main 
causes of energy losses are (i) friction and secondary losses which occur in the supply pipe, delivery pipe and in the valves 
and (ii) the velocity energy carried away by the water leaving the waste valve.

Some of the characteristic features of hydraulic ram are (i) it is suitable to pump water from streams for irrigation 
 purposes and supplying water to houses in hilly and remote areas, (ii) it is quiet in operation and works automatically,  
(iii) it requires very little maintenance and running costs, (iv) it has no moving parts, so frequent oiling is not required,  
(v) it does not require any external source of energy to pump water but it needs large quantity of water at low heads.

 Example 27.11  A hydraulic ram raises 0.005 m3/s of water to a height 25 m above the ram through a 100 m long and 
65 mm diameter delivery pipe. If the supply tank is 4 m above the ram and supplies 0.06 m3/s of water, then determine the 
efficiency of the ram. Assume coefficient of friction as f = 0.009.

Solution

Let q = 0 005. m /s3 , H = 25 m, l = 100 m, d = =65 0 065mm m. , h = 4 m, Q = 0 06. m /s3  and f = 0 009. .

Velocity of water in the delivery pipe is given by,

V
q

a

q

d
= = =

×
=

( )

.

( ) .
.

π π/ /
m/s

4

0 005

4 0 065
1 507

2 2
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The head loss due to friction in the delivery pipe is given by,

h
f lV

gdf = =
× × ×

× ×
=

4

2

4 0 009 100 1 507

2 9 81 0 065
6 411

2 2. .

. .
. m

Therefore, the effective head developed by the ram is given by,

H H he f= + = + =25 6 411 31 411. . m

D’Aubuisson’s efficiency is given by,

ηD
eq H

Q h
=

×
×

= ×
×

× =0 005 31 411

0 06 4
100

. .

.
65.44%

Rankine’s efficiency is given by,

	
ηR

eq H h

Q q h
=

× −
− ×

= × −
− ×

× =
( )

( )

. ( . )

( . . )

0 005 31 411 4

0 06 0 005 4
100 62.3%%

 Example 27.12  The parameters given for a hydraulic ram are supply head = 4 m, length of supply pipe = 6 m, diameter 
of supply pipe = 26 mm, delivery head = 8 m, length of delivery pipe = 15 m, diameter of delivery pipe = 13 mm, time 
taken to supply 14 N of water = 34 s and water wasted during the given time = 62 N. Determine the Rankine efficiency of 
the ram if coefficient of friction is f = 0.009.

Solution
Let h = 4 m, ls = 6 m, ds = =26 0 026mm m. , H = 8 m, ld = 15 m, dd = =13 0 013mm m. , q1 14= N, t = 34 s, 

q2 62= N  and f = 0 009. .

The total quantity of water supplied in 34 s is N.Qt = + =62 14 76

Q
Q

gt
t

w
= =

× ×
= × −

ρ
76

1000 9 81 34
2 2786 10 4

.
. m /s3

Velocity of water flowing through supply pipe is given by,

V
Q

d
s

s

= =
×

×
=

−

( / )

.

( / ) .
.

π π4

2 2786 10

4 0 026
0 429

2

4

2
m/s

The head loss due to friction in the supply pipe is given by,

h
f l V

gdfs
s s

s
= =

× × ×
× ×

=
4

2

4 0 009 6 0 429

2 9 81 0 026
0 078

2 2. .

. .
. m

Effective supply head is given by,

h h he fs= − = − = m4 0 078 3 922. .

q
q

gtw
= =

× ×
= × −1 514

1000 9 81 34
4 1974 10

ρ .
. m /s3

Velocity of water flowing through delivery pipe is given by,

V
q

d
d

d

= =
×

×
=

−

( )

.

( ) .
.

π π/ /
m/s

4

4 1974 10

4 0 013
0 316

2

5

2
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 Hydraulic Systems 27.15

The head loss due to friction in the delivery pipe is given by,

h
f l V

gdfd
d d

d
= =

× × ×
× ×

=
4

2

4 0 009 15 0 316

2 9 81 0 013
0 211

2 2. .

. .
. m

Effective head developed is given by,

H H he fd m= + = + =8 0 211 8 211. .

ηR
e e

e

q H h

Q q h
=

× −
− ×

= × × −
×

−

−
( )

( )

. ( . . )

( .

4 1974 10 8 211 3 922

2 2786 10

5

4 −− × ×
× =

−4 1974 10 3 922
100

5. ) .
24.7%

27.6 ❐ HYDRAULIC LIFT
The hydraulic lift is a device which is used for carrying 
people or goods from one floor to another in a multi- 
storeyed building. The hydraulic lifts are of two types, 
namely direct acting hydraulic lift and suspended hydraulic 
lift.

27.6.1 Direct Acting Hydraulic Lift
It consists of a ram sliding in a fixed cylinder as shown 
in Figure 27.7. A cage or platform is fitted at the end of 
the ram where the passengers may stand or goods may 
be placed. When the fluid under pressure is admitted into 
the cylinder, the ram moves vertically up and the cage is 
lifted to any required height. The lift of the cage is equal 
to the stroke of the ram. The cage moves in the downward 
 direction by removing the liquid from the fixed cylinder.

27.6.2 Suspended Hydraulic Lift
The suspended hydraulic lift is a modified form of direct acting hydraulic lift. Generally, the modern lifts are  suspended 
type and it has high velocity ratio. It consists of a cage which is suspended by wire ropes, a jigger consists of a fixed 
cylinder, a sliding ram and a set of two pulleys, namely fixed pulley block and movable pulley block as shown in  
Figure 27.8.

The lift cage runs between guides of round steel. It is suspended with four wire lifting ropes, each one with sufficient 
strength to support the load. When liquid under pressure is admitted into the fixed cylinder of the jigger, the sliding ram is 
forced to move towards left. The movable pulley block which is connected to the sliding ram also moves towards left. This 
increases the gap between the two pulley blocks. As a result, the wire rope connected to the cage is pulled and the cage is 
lifted up.

When the liquid from the fixed cylinder is removed, the cage is lowered. The removal of liquid causes the movement of 
the sliding ram towards right. This decreases the gap between the two blocks and thus, the cage is lowered due to increase 
in the length of the rope.

The lifting speeds of these lifts vary from 100 m/min to 200 m/min. The hydraulic lifts have been replaced by electric 
lifts which have become quite common these days. However, the hydraulic lifts are usually preferred when there is danger 
due to fire or explosion. These are used as standby units along with electric lifts.

Cage or platform

Liquid under pressure

Ground floor

1st floor

2nd floor

Sliding ram

Fixed cylinder

Figure 27.7 Direct acting hydraulic lift
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 Example 27.13  A hydraulic lift is located at a distance of 725 m from the accumulator. It is supplied with water under 
pressure from the accumulator through a hydraulic main of diameter 90 mm. The accumulator maintains a steady pressure 
of 7 MPa. The lift ram is 200 mm in diameter. The load on the ram inclusive of its own weight is 120 kN. The friction of 
the ram is assumed equivalent to an addition of 5% of gross load on the ram. If the friction coefficient for the main is given 
as 0.009, then evaluate the speed at which the lift will ascend.

Solution
Let l = 725 m, d = =90 0 09mm m. , p = 7 MPa , D = =200 0 2mm m. , W1 120= kN , f WR = 5 1% of  and f = 0 009. .

Let V be the velocity of flow in the main and Vlift be the speed at which the lift ascends.
The head loss due to friction in the main is given by,

h
flV

gd

V
f = =

× × ×
× ×

=
4

2

4 0 009 725

2 9 81 0 09
14 781

2 2
2.

. .
. V

The total load is given by,

W W fR= + = + × =1 120
5

100
120 126 kN

Pressure head due to total load is given by,

h
W A

g

W

D gw w

= = =
× ×

× × ×
=

( )

. .
.

/
m

ρ π ρ π
4 4 126 10

0 2 1000 9 81
408 84

2

3

2

Pressure head of water in the accumulator is given by,

H
p

gw
= =

×
×

=
ρ

7 10

1000 9 81
713 56

6

.
. m

Liquid under pressure Fixed pulley block

Fixed cylinder

Wire rope

Guide pulleys

Sliding ram

Ground floor

Cage

Movable pulley
block

Jigger

1st floor

2nd floor

Figure 27.8 Suspended hydraulic lift
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Since h h Hf + =

14 781 408 84 713 562. . .V + =

∴ =
−

=V
713 56 408 84

14 781
4 54

. .

.
. m/s

Discharge from main Discharge into the lift ram cylinder=

π π
4 4

2 2d V D V× = × lift

∴ = × = × =V
d V

D
tlif

2

2

2

2

0 09 4 54

0 2

. .

.
0.92 m/s

 Example 27.14  A hydraulic lift is required to lift a load of 100 kN through a height of 18 m once in every 2 minutes. 
The lift travels up at the rate of 1.2 m per second. During working stroke of the lift, the water is supplied to it from the 
accumulator and from the pump at a pressure intensity of 3.5 MPa. If the efficiency of the lift is 80% and that of pump is 
85%, then evaluate the power required to drive the pump and the minimum capacity of the accumulator. Neglect friction 
losses in the pipe.

Solution
Let W = 100 kN, H = 18 m, t = 2 min, V = 1 2. m/s, p = 3 5. MPa , ηl = 0 8.  and ηp = 0 85. .

The power supplied to the lift by the pump and accumulator is given by,

P
W V

l
=

×
=

×
=

η
10 2

kW
0 1

0 8
150

.

.

Working period of the lift is given by,

t
H

Vw = = =
18

1 2
15

.
s

Idle period of the lift is given by,

t t ti w= − = − =120 15 105 s

During idle period, the energy Ea is stored in the accumulator. If P1 is the power output of the pump in kW, then the energy 
is given below.

E P Pa = × =1 1105 105 kNm

This energy is supplied to the lift during its working period of 15 seconds.
Therefore, power supplied by the accumulator is given by,

P
P

Pa = =
105

15
71

1 kW

Therefore, total power supplied by the accumulator and pump to the lift is given below.

P P P P= + =7 81 1 1 kW

Thus 8 1501P =

∴ = =P1
150

8
18 75. kW
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Power required for driving the pump is given by,

P
P

p
p

= = =1 18 75

0 85η
.

.
22.06 kW

Power stored in the accumulator = × ×3 5 106. Capacity

3 5 10 1056
1. × × =Capacity P

∴ =
×

= × ×
×

=Capacity
105P1

6

3

63 5 10

105 18 75 10

3 5 10.

.

.
0.5625 m3

27.7 ❐ HYDRAULIC CRANE
The hydraulic crane is a device which is used to lift heavy loads. It can lift loads as high as 50 tons to about 100 tons. It is 
widely used in warehouses, workshops, docks for loading and unloading ships, railways for lifting wagons and in heavy 
industries. Figure 27.9 shows a schematic view of a conventional hydraulic crane. It consists of a central pedestal, a mast, 
jib, tie, guide pulley and a jigger. The central pedestal supports a mast to which the jib (or arm) and tie is attached. The jib 
can be raised or lowered in order to increase or decrease the radius of action of the crane. The pedestal along with the mast 
can revolve about a vertical axis and the jib swings with the mast. By revolving the pedestal and lowering the jib, the load 
attached to the rope can be transferred to the desired place within the crane’s area of action. The jigger that consists of a ram 
sliding in a fixed cylinder is used to lift or lower the load and it is attached to the mast. One end of the ram is fixed to a set 
of movable pulley block and the other is in contact with water. Another pulley block called fixed pulley block is attached 
to the fixed cylinder. A wire rope with one end fixed to a movable pulley (which is attached to the movable ram) is taken 
round all the pulleys of the two sets of the pulleys and finally, it is taken over the guide pulley attached to the jib. The other 
end of the rope is hooked to lift the load.

To lift the load with the help of crane, high pressure water is admitted in the cylinder of the jigger. The water forces 
the sliding ram to move vertically up. The movable pulley block attached with the ram also moves with it in the upward 
direction. This increases the distance between two pulley blocks which results in winding of the wire rope over the guide 
pulleys by the jigger. Thus, the load is lifted up.

To lower the load by the crane, the water from the cylinder of the jigger is removed through the outlet valve and this 
causes the ram to move down. Thereby, the distance between the two sets of pulley is reduced, which results in releasing 
more length of the wire rope. Thus, the load is lowered.

Guide pulley
Tie

Jib
Load

Mast
Jigger

Ram

Fixed cylinder

Movable pulley
block fixed to ram

Fixed pulley block
fixed to cylinder

Water
inlet 

Wire rope

Figure 27.9 Hydraulic crane

M27 Fluid Mechanics and Hydraulic Machines XXXX 01.indd   18 4/5/2019   1:50:30 PM

Download more at Learnclax.com



 Hydraulic Systems 27.19

Let p be the pressure force on the ram, W be the weight lifted, x be the distance moved by the weight which will be 
equal to the total height through which the load can be lifted, i.e., h and y be the distance moved by the force which will  
be equal to the stroke of the ram, i.e., L.

The efficiency of the crane is given by,

	 η = =
×
×

Output

Input

Weight Distance moved by weight

Force Distancee moved by force
=

×
×

W x

p y
 (27.19)

Velocity ratio is given by,

	 V.R.
Distance moved by weight

Distance moved by force
= = =

x

y

h

L
 (27.20)

	 ∴ = ×η W

p
VR  (27.21)

The velocity ratio of the crane hook to the ram of jigger depends on the number of pulleys in each set. If there are four 
 pulleys in a set, then the velocity ratio will be 4 to one, which means that the load on the wire rope moves four times 
faster to the speed of the ram of the jigger. The lifting speed of a modern hydraulic crane may be about 75 m per minute. 
 Nowadays hydraulic cranes have been replaced by electric cranes.

 Example 27.15  A hydraulic crane utilizes 0.04 m3 of water at 6 MPa to lift a load of 10 kN through a height of 12 m. 
Determine the efficiency of the crane.

Solution

Let Q = 0 04 3. m , p = = ×6 6 106MPa Pa, W = = ×10 10 103kN N  and x = 12 m.

Power supplied to the crane is given by,

P p Qs = × = × × =6 10 0 04 2400006 . Nm

Power produced by the crane is given by,

P W xp = × = × × =10 10 12 1200003 Nm

η = = × =
P

P

p

s

120000

240000
100 50%

 Example 27.16  A hydraulic crane lifts a load through a height of 12 m. The diameter of the ram is 0.16 m and the jigger 
has a velocity ratio of 6. The water is supplied by a pump at a pressure of 1 MPa to the cylinder. Calculate the weight lifted 
by the crane, stroke of the ram and the volume of water required to lift the weight if the efficiency is 55%.

Solution
Let h = 12 m, D = 0 16. m , VR = 6, p1

61 10= =MPa Pa and η = 0 55. .

A D= = × =
π π
4 4

0 16 0 02010622 2. . m2

Pressure force on the ram is given by,

p p A= × = × =1
610 0 0201062 20106 2. . N

Since η = ×
W

p
VR
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Thus 0 55
20106 2

6.
.

= ×
W

∴ =
×

=W
0 55 0106 2

6
1843 07

. .
.

2
N

L
h

VR
= = =12

6
2 m   [ ]∵VR h L= /

Volume of water is given by,

v A L= × = × =0 0201062 2. 0.0402124 m3

 Example 27.17  An accumulator supplies water at a pressure of 5 106× Pa  to a crane which lifts a weight of 12 kN 
through a height of 10 m. The weight moves with a speed of 20 m per minute once in every two minutes. The water is 
supplied to the accumulator by a pump. If the efficiency of crane is 75%, then determine (i) the capacity of jigger cylinder, 
(ii) capacity of the accumulator and (iii) minimum power required to run the pump.

Solution

Let Pap1
65 10= × , W = = ×12 12 103kN N, x = 10 m, V = 20 m/ min, t = 2 min and η = 0 75. .

 (i) Capacity = ×
×

= × ×
× ×

=W x

p1

3

6

12 10 10

5 10 0 75η .
0.032 m3

 (ii) Total work input to the crane is given by,

win = × × =5 10 0 032 1600006 . Nm

win / Nm/min min= =
160000

2
80000

Time to lift the weight by crane = = =
x

V

10

20
0 5. min

  Work done by the pump to lift the weight is given by,

w winpump / Time to lift the weight Nm= × = × =min .80000 0 5 40000

  Energy supplied by the accumulator to the crane is given by,

E w ws in= − = − =pump Nm160000 40000 120000

	 Es = × = × ×Pressure Capacity Capacity5 106

  Thus 5 106× × =Capacity 120000

∴ =
×

=Capacity
120000

5 106
0.024 m3

 (iii) Minimum power required to run the pump is given by,

P
win

min
sec

= =
×

=
/

10

80000

60 103 3
1.3333 kW
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27.8 ❐ HYDRAULIC COUPLING
The hydraulic coupling (or fluid coupling) is a device which is 
used to transmit power from driving shaft (input shaft) to driven 
shaft (output shaft) through a liquid medium (generally oil). There 
is no mechanical or rigid connection between the two shafts. The 
 schematic view of a typical hydraulic coupling is shown in Figure 
27.10. It consists of a radial pump impeller keyed to the driving 
shaft ‘A’ and a radial flow turbine runner keyed to the driven shaft 
‘B’. Both the impeller and runner are identical in shape and size. 
These two units are kept very close with their ends facing each 
other and are enclosed in a casing. The casing is completely filled 
with ordinary mineral lubricating oil. The oil in the casing transmits 
the torque from the pump impeller to the turbine runner.

Initially, both the shafts ‘A’ and ‘B’ are stationary. When the 
shaft ‘A’ is rotated by the prime mover (engine or a motor), the 
pump impeller causes the oil to flow from its inner radius (eye) 
to the outer radius. This oil of increased energy enters the turbine 
runner vanes at its outer radius and flows inwardly to its inner 
radius and thus, it exerts a force on the runner vanes. As the speed 
of the  driving shaft ‘A’ increases, the torque on the turbine runner 
increases. Eventually, the magnitude of the torque overcomes the 
inertia of the driven unit. Thus, the turbine runner and the driven 
shaft ‘B’ starts rotating. The oil from the runner flows back into the 
pump impeller and thus, it makes a continuous circulation.

Let T be the torque which remains equal on driving shaft (impeller) and driven shaft (runner), ω p  be the angular speed 
of the pump impeller or driving shaft A, ωt  be the angular speed of the turbine runner or driven shaft B.

Efficiency of the coupling is given by,

	  
Power output

Power input
η

ω
ω

ω
ω

= =
×
×

=
T

T
t

p

t

p
 (27.22)

Therefore, this ratio (ωt/ω p) is known as speed ratio.
Slip (s) of hydraulic coupling is defined by,

	 s
p t

p

t

p
=

−
= − = −

ω ω
ω

ω
ω

η1 1  (27.23)

Generally, the efficiency of a hydraulic coupling is more than 94%. A typical efficiency versus speed ratio curve for a 
hydraulic coupling is shown in Figure 27.11(a). The efficiency starts at zero and increases uniformly with the speed ratio 
until it reaches to 95% and then, it reduces to zero.

The stall is the condition when the speeds of both the shafts ‘A’ and ‘B’ becomes equal due to which the slip becomes 
zero and efficiency becomes unity. Under such conditions, there is no flow of oil and hence, the coupling does not work.

The variation of driving shaft input torque with the driving shaft speed for different values of slip are parabolic curves 
which are illustrated in Figure 27.11(b). The input torque increases with the cube of driving speed for a given slip. Thus, 
the power transmitted also varies with the cube of speed for a given slip. In order to reduce the input torque, the slip must 
be of a smaller value.

Hydraulic couplings have low value of transmission efficiency in comparison to mechanical couplings. However, these 
are widely used in automobiles, marine engines, ropeway cable drive units, power driven excavators and agricultural 
machinery to transmit torque ranging from 0.7 kW to 26500 kW. The hydraulic couplings are very useful where smooth 
shock free operations are required and where large initial loads are involved.

Turbine
runner

Pump impeller

Driven
shaft ‘B’

Driving
shaft ‘A’

Casing

Figure 27.10 Hydraulic coupling
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27.9 ❐ HYDRAULIC TORQUE CONVERTER
The hydraulic torque converter is a device which is used to transmit increased or decreased torque at the driven shaft.  
In case of hydraulic coupling, the torque output is equal to the torque input, but in case of hydraulic torque converter, the 
torque output can be increased or decreased. Usually, the torque converters are used to increase the torque at the driven 
shaft. The torque may be increased about five times the torque available at the driving shaft with an efficiency of about 90%. 
The hydraulic torque converters are used in automobile power transmission units, diesel locomotives and earth moving 
machinery.

It consists of a pump impeller mounted on the driving shaft (input shaft), a turbine runner fixed on the driven shaft 
(output shaft) and stationary guide vanes (also called stator or reaction member) fixed to the casing are provided between 
the impeller and the runner as shown in Figure 27.12(a). The construction of a hydraulic converter is similar to hydraulic 
coupling, except for a series of fixed guide vanes which are provided between the impeller and the runner.

E
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%
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Figure 27.12 Hydraulic torque converter and its characteristics
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Figure 27.11 Performance characteristics of a hydraulic coupling
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The liquid flowing from the impeller goes to the runner and to a series of guide vanes. The guide vanes change the 
direction of liquid, as a result of which the torque delivered increases many times. By suitable design of the guide vanes, the 
torque transmitted to the driven shaft can be increased or decreased. Therefore, hydraulic torque converter is comparable 
to an electric transformer.

Let Tt be the torque transmitted to the turbine runner (driven shaft), Tp is the torque of the pump impeller (driving shaft), 
Tv is the variation of torque caused by guide vanes, ω p is the angular speed of the pump impeller (driving shaft), ωt  is the 

angular speed of the turbine runner (driven shaft) and ( )ω ωt p/ is the speed ratio.
The torque relationship is given by,

	 T T Tt p v= +  (27.24)

The efficiency of the converter is given by,

 η
ω

ω
ω
ω

= =
+ ×

×
= × +

⎛

⎝
⎜

⎞

⎠

Power output

Power input

( )T T

T

T

T

p v t

p p

t

p

v

p
1 ⎟⎟  (27.25)

From Equation (27.25), it can be seen that if Tv is zero (i.e., when there is no stationary guide vanes), then the torque 
 converter reduces to hydraulic coupling and we have η ω ω= ( )t p/ . If slip is considered, then η = −( )1 s .

In Equation (27.25), if Tv is positive, then increased torque is obtained at the driven shaft. To achieve this, guide 
vanes are to be designed to receive the torque from the liquid in a direction opposite to that exerted on the driven shaft. 
 Conversely, if Tv is negative, then reduced torque is obtained at the driven shaft. This is accomplished by designing the 
guide vanes to receive a torque from the liquid in the same sense as that of driven shaft.

In order to obtain a large reduction in speed and a large torque magnification, the hydraulic torque converters have two 
or more sets of turbine runners and fixed guide vanes.

The efficiency versus speed ratio curve for hydraulic torque converter at a given pump torque (Tp) is illustrated in  
Figure 27.12(b). It can be seen that efficiency increases with increase in speed ratio and it becomes maximum when speed 
ratio is approximately 0.5, but the efficiency drops at higher speed ratios. It is also observed that the efficiency of a torque 
converter is higher than a fluid coupling at lower speed ratios. Conversely, the coupling is more economical than a converter 
when the speed ratio approaches unity. Thus, the advantages of both the converter and the coupling can be obtained in a 
transmission system by designing it in such a way that it acts as a converter at low speed ratios and as a coupling at high 
speed ratios.

27.10 ❐ AIR LIFT PUMP
The air lift pump is a device which is used to lift water from a deep well or sump by using compressed air. It consists of a 
source of compressed air (air compressor), air supply pipe fitted with a set of air nozzles, and a rising main (or a delivery 
pipe) as shown in Figure 27.13. The compressed air is introduced through the nozzles fitted at the bottom of the air supply 
pipe. It mixes with water in the form of fine spray at the bottom of the rising main fixed in the well from which water is 
to be lifted. Thus, a mixture of air and water is formed within the rising main. The density of air water mixture is much 
less than that of pure water. Thus, a very small column of pure water can balance a very long column of air water mixture. 
Therefore, the flow of air water mixture begins through the rising main and it will be discharged at its top. The flow will 
continue as long as the supply of compressed air is maintained.

If h is the submergence (i.e., the height of static water level in the well above the tip of the nozzle) and H is the height 
of the point to which water is lifted above the tip of the nozzle, then ( )H h−  is called useful lift. It has been observed that 
best results are obtained if the useful lift is less than submergence, i.e., ( )H h h− < . Generally, the ratio ( )H h h− /  varies 
from 0.25 to 1 for the values of h ranging from about 30 m to 90 m.

Some of the advantages of air lift pump are (i) it has no moving parts below the water level and therefore, no wear and 
tear of the pump due to suspended solid particles, (ii) it can raise more water through a bore hole of given diameter than 
any other pump, and (iii) it is suitable for draining water from the mines.

The efficiency of the air lift pump is low which varies from 20% to 40% and it may further impaired due to air leakage.
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27.11 ❐ JET PUMP
Jet pump is a device which is used for lifting water from deep well or sump by utilizing energy of water. It consists of a 
nozzle and a diffuser assembly mounted on a mixing chamber as shown in Figure 27.14. A stream of high pressure water 
from the delivery pipe of the pump is allowed to flow through the nozzle at the throat of the diffuser. The pressure energy 
of water converts into kinetic energy. This causes the pressure drop due to which suction is created and water is sucked 
in from the sump. A large supply of low pressure water is ensured. In the mixing zone, the streams of different velocities 
mix and there occurs some pressure rise. After mixing zone, the pressure of water mixture further recovers in the diffuser 
section due to decrease in velocity.

The jet pump can lift water up to a height of about 6 m. Its capacity ranges up to about 50 litres per second and they are 
used in mines. The jet pumps are also used for pumping oil or petroleum.

Sump

Centrifugal
pump

Delivery pipe

Di�user

Nozzle

Q1

Qs

Foot valve

Strainer

Figure 27.14 Jet pump

Air nozzle

H

h

Air compressor

Rising main

Water
outlet

Deep well

Air supply pipe

Figure 27.13 Air lift pump
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27.12 ❐ EXTERNAL GEAR PUMP
It is a constant delivery pump which gives a continuous discharge 
of oil at a uniform rate. An external gear pump unit consists of two 
identical intermeshing spur gears working with a fine clearance 
inside a closely fitting stationary casing as shown in Figure 27.15. 
One of the gears is keyed to the driving shaft of a motor. The other 
gear is idle and it revolves due to driving gear. Both gears rotate in 
the opposite direction. The oil is trapped between the teeth and the 
casing and carried round between the gears from the suction port 
to the discharge port. The oil pushed into the discharge port cannot 
slip back into the suction port due to the perfect meshing of the 
gears which acts as a seal.

Let n be the number of teeth in each gear, N be the speed in revolutions per minute, l be the axial length of teeth and a 
be the area enclosed between two adjacent teeth and casing.

Volume of oil pumped in one revolution = 2aln

Therefore, the theoretical discharge per second is given by,

	 Q al n
N

th = ×( )2
60

 (27.26)

The actual discharge will be less than the theoretical discharge. If ηvol  is the volumetric efficiency, then the actual  discharge 
is given below.

	 Q al n
N

a vol= × ×( )2
60

η  (27.27)

The volumetric efficiency of gear pumps varies from 70% to 90%. Generally, these pumps are used for relatively low 
pressure applications up to 10 bar. These find applications in the supply of cooling water and supply of pressure oil 
for  lubrication purposes of machine tools drives, turbines, etc. Gear pumps are noisy in operation and it requires more 
maintenance.

Casing

Suction Delivery

Driving gear

Driven gear

Figure 27.15 External gear pump

Summary

 1. Hydraulic press is used for lifting heavy loads by the applica-
tion of a much smaller force. It works on the basis of Pascal’s 
law.

 2. Hydraulic accumulator is used for storing the energy of liquid 
under pressure temporarily and supplies it for any sudden or 
intermittent requirement.

 3. Capacity of the accumulator = pAL , here p is the liquid 
 pressure supplied by the pump, A is the area of sliding ram 
and L is the stroke or lift of the ram.

 4. Differential hydraulic accumulator is another form of accu-
mulator in which the liquid is stored at a high pressure by a 
comparatively small load on the ram.

 5. Hydraulic intensifier increases the intensity of pressure of the 
liquid by utilizing the energy of a larger quantity of liquid at 
low pressure.

 6. Hydraulic ram is a pump which lifts a small quantity of water 
to a greater height from large quantity of water available at a 
smaller height. The efficiency of hydraulic ram is expressed 
in two ways as shown below.

   (i) D’ Aubuisson’s efficiency:

ηD
qH

Qh
=  or ηD

w H

W h
=

×
×

  (ii) Rankine’s efficiency:

ηR
q H h

Q q h
=

× −
− ×
( )

( )
 or ηR

w H h

W w h
=

× −
− ×
( )

( )

  Here, Q is the discharge through supply pipe, q is the 
 discharge through delivery pipe, h is the height of water 
in supply tank above the valve chamber, H is the height of 
water raised from the valve chamber, w is the weight of water 
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 delivered per second by the ram and W is the weight of water 
flowing from supply tank to the valve chamber per second.

 7. Hydraulic lift is used for carrying people or goods from one 
floor to another in a multi-storeyed building. These are of 
two types, namely direct acting and suspended hydraulic lift. 
Modern lifts are generally of suspended type.

 8. Hydraulic crane is used to lift heavy loads as high as 50 tons 
to about 100 tons.

 9. Hydraulic coupling (or fluid coupling) is a device used to 
transmit power from driving shaft to driven shaft through oil. 
There is no mechanical connection between the two shafts 
and torque remains equal on both shafts.

 10. The hydraulic torque converter is a device used to transmit 
increased or decreased torque at the driven shaft. Usually, the 
torque converters are used to increase the torque at the driven 
shaft.

 11. The air lift pump is used to lift water from a deep well by 
using compressed air.

 12. Jet pump is used for lifting water from deep well by utilizing 
energy of water.

 13. Gear pump is a constant delivery pump consisting of two 
identical intermeshing spur gears working with a fine clear-
ance inside a casing.

Multiple-choice Questions

 1. In a hydraulic ram,
(a) Rankine efficiency < D’Aubuisson efficiency.
(b) Rankine efficiency = D’Aubuisson efficiency.
(c) Rankine efficiency > D’Aubuisson efficiency.
(d) None of the above.

 2. Hydraulic ram works on the
(a) Principle of centrifugal action.
(b) Principle of water hammer.
(c) Principle of reciprocating action.
(d) None of the above.

 3. Which of the following device is used for transmitting 
increased torque to the driven shaft?
(a) Hydraulic coupling.
(b) Hydraulic ram.
(c) Hydraulic intensifier.
(d) Hydraulic torque converter.

 4. Hydraulic coupling is used for:
(a) Transmitting increased torque to the driven shaft.
(b) Transmitting same torque to the driven shaft.
(c) Transmitting decreased torque to the driven shaft.
(d) None of the above.

 5. Maximum efficiency of hydraulic ram is limited to about
(a) 75%.
(b) 50%.
(c) 25%.
(d) None of the above.

 6. The lifting speed of suspended hydraulic lift varies from
(a) 0 to100 m/min.
(b) 100 to 200 m/min.
(c) 200 to 300 m/min.
(d) None of the above.

 7. Hydraulic crane can lift loads up to about
(a) 100 tons.
(b) 200 tons.
(c) 300 tons.
(d) None of the above.

 8. The lifting speed of modern hydraulic crane may be about
(a) 25 m/min.
(b) 50 m/min.
(c) 75 m/min.
(d) None of the above.

 9. Maximum efficiency of a hydraulic torque converter will be 
when speed ratio is about
(a) 0.3.
(b) 0.5.
(c) 0.7.
(d) 0.9.

 10. The efficiency of a hydraulic coupling will be zero when 
speed ratio is
(a) 0.6.
(b) 0.8.
(c) 1.0.
(d) None of the above.

Review Questions

 1. Explain the constructional and working details of a hydraulic 
press with the help of a neat sketch. Also give the mechanical 
advantage and leverage of the press.

 2. Describe with the aid of neat sketch the working of a hydrau-
lic accumulator. Also obtain an expression for the capacity of 
a hydraulic accumulator.

 3. Describe with a neat sketch the construction and working 
operation of a differential hydraulic accumulator. Also dis-
cuss how does it differ from a simple hydraulic accumulator?

 4. Explain the constructional and working details of a hydraulic 
intensifier. Also mention some of the systems in which it is 
used.
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 5. Explain the construction and working of a hydraulic ram with 
a neat diagram. Also obtain the expressions for its efficiencies.

 6. Explain with the help of a neat sketch the principle and work-
ing of a modern hydraulic lift.

 7. Draw a neat diagram and explain the principle and working of 
a hydraulic crane.

 8. Describe with the help of a neat sketch the constructional and 
working details of a hydraulic coupling. Also discuss its char-
acteristics, merits and applications.

 9. Explain the torque converter and its characteristics with neat 
sketches. Also give the difference between a fluid coupling 
and a fluid converter.

 10. Write short note on (i) air lift pump and (ii) jet pump.

 11. Explain the construction and working details of an external 
gear pump with the help of a diagram.

Problems

 1. A hydraulic press has a ram of 200 mm diameter and plunger 
of 40 mm diameter with a stroke length of 275 mm. The 
weight exerted by press ram amounts to 10 kN and distance 
moved is 1 m in 3 minutes. Find (i) the force applied on the 
plunger, (ii) number of strokes performed by the plunger, 
(iii) work done by the press ram and (iv) power required to 
drive the plunger.

[Ans. 0.4 kN, 91, 10 kNm, 0.055 kW]

 2. A hydraulic press has a ram of 12 cm diameter and a plunger 
of 2 cm. What force will be required on the plunger to lift a 
load of 35 kN? If the plunger has a stroke of 35 cm, then how 
many strokes will be required to lift the load by 75 cm? Also 
determine the volume of additional liquid required. Further if 
the time taken to lift the load is 5 minutes and the frictional 
effects are neglected, then what would be the power of the 
motor required to drive the plunger?

[Ans. 971.71 N, 78, 0.00848 m3, 26250 Nm, 0.0875 kW]

 3. A hydraulic press has a ram of 150 mm diameter and plunger 
of 30 mm diameter. The stroke length of the plunger is 
200 mm and weight lifted is 900 N. If the distance moved 
by the weight is 1 m in 15 minutes, then determine (i) the 
force applied on the plunger, (ii) power required to drive 
the plunger and (iii) number of strokes performed by the 
plunger.

[Ans. 36 N, 10-3 kW, 125]

 4. The ram and plunger of a hydraulic press are 300 mm and 
40 mm, respectively, and the leverage of the handle is 10 : 1.  
The press can lift a load of 200 kN through 1.5 m in 94 sec-
onds with a plunger stroke of 300 mm. Determine (i) the 
force applied at the end of lever, (ii) the number of strokes 
completed by the plunger per second and (iii) power required 
to drive the plunger of the press. Assume the packing friction 
of the plunger as well as the ram as 5% of the load.

[Ans. 0.3941 kN, 282, 3.547 kW]

 5. If the diameter of the ram of an accumulator is 0.3 m and 
displacement is 105 litres, then find its stroke.

[Ans. 1.485 m]

 6. The liquid is supplied at a pressure of 150 kN/m2 to an accu-
mulator having a plunger of diameter 1.2 m. Determine the 

capacity of the accumulator and total weight placed on the 
ram (including the weight of ram) when total lift of the ram is 
given as 7.5 m.

[Ans. 1272.375 kNm, 169.65 kN]

 7. An accumulator has a ram diameter 300 mm and a lift of 6 m. 
The total weight on the accumulator is 80 kN. The packing 
friction is 5% of the load on the ram. Determine the power 
delivered to the machine if ram falls through the full height in 
90 seconds and at the same time pump delivers 30 litres per 
second through the accumulator.

[Ans. 37.325 kW]

 8. A hydraulic accumulator has sliding ram of 460 mm diam-
eter which slides through 8.5 m in 3.5 minutes during its 
working stroke, while weight on the ram including its self-
weight is equivalent to 350 kN. The pump supplies water at 
a rate of 10  litres per second and packing friction amounts 
to 5% of total load. Determine (i) the pressure intensity of 
water, (ii) power delivered by accumulator to the machine and 
(iii) power required to drive the pump having efficiency 75%.

[Ans. 2000.6 kN/m2, 33.47 kW, 26.675 kW]

 9. The diameters of two parts of the ram of a differential accu-
mulator are 160 mm and 130 mm. The stroke is 1.25 m. If the 
pressure of water is 5000 kN/m2 when the load is at rest at 
the upper end of the stroke or when the load is moving with 
uniform velocity, then what will be the weight of the loaded 
cylinder? How much energy can be stored in the accumu-
lator? What will be the diameter of the ram of an ordinary 
accumulator to move the same load with the help of the same 
water pressure?

[Ans. 34165 N, 42706.25 Nm, 0.0933 m]

 10. The pressure intensity of liquid supplied to an intensifier 
is 250 kN/m2 while the pressure intensity of water leaving 
the intensifier is 1250 kN/m2. Determine the diameter of the 
fixed ram of the intensifier if the external diameter of the slid-
ing cylinder is 0.25 m.

[Ans. 0.1118 m]

 11. A hydraulic intensifier gets low pressure liquid at a pressure 
of 5.2 MPa and delivers it to the machine at a pressure of 
20.8 MPa. If the intensifier has a capacity of 0.035 m3 and 
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stroke 1.5 m, then determine the diameters of the fixed ram 
and the sliding cylinder to be used for the intensifier.

[Ans. 0.1711 m, 0.3422 m]

 12. A hydraulic intensifier has a ram diameter of 0.16 m and a 
sliding cylinder diameter of 0.8 m. Find the pressure on the 
low pressure side of the intensifier if the pressure at the outlet 
of the intensifier is 16 MPa. The loss due to friction at each 
packing of the intensifier is given 5% of the total force on 
each of the packing.

[Ans. 0.709 MPa]

 13. The water is supplied at the rate of 2500 litres per minute 
from a height of 5 m to a hydraulic ram, which lifts 250 litres 
per minute to a height of 30 m from the ram. The length and 
diameter of the delivery pipe is 80 m and 60 mm, respec-
tively. Determine the efficiency of the hydraulic ram if the 
coefficient of friction is 0.009.

[Ans. 70.64%, 67.38%]

 14. The following particulars are given for a hydraulic ram, such 
as supply head = 5 m, delivery head = 25 m and ratio of water 
lifted to water wasted by the ram = 1 : 10. Determine the effi-
ciency of the ram.

[Ans. 45.45%, 40%]

 15. A hydraulic lift is required to lift a load of 90 kN through a 
height of 15 m once in every 1.75 minutes. The lift travels 
up at the rate of 1.2 m/s. During working stroke of the lift, 
the water is supplied to it from the accumulator and from the 
pump at a pressure intensity of 4000 kN/m2. If the efficiency 
of the lift is 75% and that of pump is 80%, then calculate the 
power required to drive the pump and the minimum capacity 
of the accumulator. Neglect friction losses in the pipe.

[Ans. 21.43 kW, 0.3964 m3]

ANSWERS TO MULTIPLE-CHOICE QUESTIONS

 1. (a) 2. (b) 3. (d) 4. (b) 5. (a)
 6. (b) 7. (a) 8. (c) 9. (b) 10. (c)
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Index

A

Absolute pressure, 2.5
Accelerated flow, 17.15
Actual hydraulic press, 27.3
Advective acceleration, 6.9
Aerodynamics, 1.1
Air lift pump, 27.23
Air vessel, 26.25
Angle of attack, 16.23
Angular deformation, 6.25
Archimedes’ principle, 5.1
Aspect ratio, 16.23
A timeline, 6.6
Atmospheric pressure, 2.5
Average coefficient of drag, 15.11
Axial flow pumps, 25.39
Axial piston pump, 26.40

B

Bazin formula, 11.7, 18.4
Bellows pressure gauge, 2.27
Bernoulli’s equation, 7.4, 17.2
Bingham plastic, 1.8
Bluff body, 16.11
Borda–Carnot equation, 14.7
Borda’s mouthpiece, 10.24
Boss, 23.2
Boundary layer, 15.1
Boundary layer thickness, 15.3
Bourdon tube pressure gauge, 2.26
Boussinesq’s theory, 13.8
Braking jet, 21.8

Breadth ratio, 22.12
Breastshot wheel, 21.6
Broad-crested weir, 11.18
Buckingham π method, 19.7
Bulb turbine, 23.20
Bulk modulus of elasticity, 

1.25, 17.5
Buoyancy, 5.1
Buoyant force, 5.1

C
Camber line, 16.23
Capacity of accumulator, 27.6
Capillarity, 1.23
Capillary depression, 1.23
Capillary rise, 1.23
Capillary tube viscometer, 12.36
Casing, 21.8, 25.5
Casing with guide blades, 25.5
Cauchy–Riemann equations, 6.36
Cavitation, 1.29, 23.18, 25.36
Centre of buoyancy, 5.1
Centre of gravity, 3.2
Centre of pressure, 3.1
Characteristic curves, 24.17
Characteristic curves for a 

reciprocating pump, 26.38
Chezy’s formula, 14.2, 18.3
Choked passage, 17.18
Chord, 16.23
Cipolletti Weir or Notch, 11.15
Circular channel, 18.16
Circulation, 6.28, 16.23

Clinging nappe, 11.22
Closed cylindrical surge tank, 24.22
Closed turbomachines, 20.37
Coefficient of contraction, 10.3
Coefficient of discharge, 10.3, 26.6
Coefficient of friction, 13.2
Coefficient of resistance, 10.3
Coefficient of velocity, 1.6, 10.2
Collar bearing, 12.33
Compound manometer, 2.16
Compound pipes, 14.24
Compressibility, 1.25
Compressibility correction factor, 

17.12
Compressibility factor, 17.12
Compressible flow, 6.3, 17.1
Compressible flow machine, 20.38
Continuity equation, 6.14, 17.1
Continuity equation in 

three-dimensions, 6.18
Continuum, 1.3
Convergent-divergent mouthpiece, 

10.19, 10.22
Convergent mouthpiece, 10.19
Convergent nozzle, 17.15
Conveyance, 18.4
Couette flow, 12.27
Covective acceleration, 6.9
Crest, 11.1
Crest height, 11.1
Critical cavitation factor, 23.19
Critical depth, 18.22
Critical flow, 18.3
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Critical pressure ratio, 17.18
Critical Reynolds number, 12.2
Critical velocity, 18.22
Cylindrical mouthpiece, 10.19
Cylindrical vortex flow, 8.2

D

D’Alembert’s principle, 4.1
Darcy coefficient of friction, 13.2
Darcy friction factor, 12.9
Darcy-Weisbach equation, 12.9, 13.2, 

14.2
Dashpot, 12.35
D’Aubuisson’s efficiency, 27.13
Dead weight pressure gauge, 2.27
Decelerated (retarded) flow, 17.15
Deep well pumps, 25.39
Degree of reaction, 22.10
Degree of turbulence, 13.5
Delivery head, 25.9
Depressed nappe, 11.22
Depth of bucket, 21.13
Depth of flow, 18.1
Depth of hydraulic jump, 18.26
Deriaz turbine, 23.19
Derived quantities, 19.1
Diaphragm pressure gauge, 2.27
Differential hydraulic 

accumulator, 27.8
Differential manometer, 2.9, 2.18
Differential surge tank, 24.23
Dilatancy, 6.26
Dilatant, 1.8
Dimension, 19.1
Dimensional homogeneity, 19.3
Direct acting hydraulic lift, 27.15
Displacement thickness, 15.3
Distorted models, 19.38
Divergent mouthpiece, 10.19
Double acting pump, 26.1
Double acting reciprocating 

pump, 26.4
Double cylinder pumps, 26.2
Doublet, 9.19
Doublet strength, 9.19
Draft tube, 22.2, 23.12
Draft tube theory, 23.13
Drag force, 16.1
Drowned weir, 11.20

Duplex double acting pumps, 26.2
Dupuit’s equation, 14.27
Dynamic similarity, 19.28
Dynamic viscosity, 1.6

E
Eddy viscosity, 13.8
Efficiency of a draft tube, 23.14
Efficiency of the converter, 27.23
Efficiency of the coupling, 27.21
Efflux viscometer, 12.40
Energy loss due to hydraulic jump, 

18.28
Energy thickness, 15.5
Equation of motion, 7.2
Equivalent pipe, 14.26
Euler head, 25.8
Eulerian method, 6.7
Euler model law, 19.35
Euler number, 19.30
Euler’s equation, 25.9
Euler’s equation of motion, 7.2
Euler’s momentum equation, 20.27, 

22.8
Euler’s velocity triangles, 25.7
Extensive properties, 1.3
External gear pump, 27.25
External mouthpiece, 10.19

F
Falling sphere viscometer, 12.38
Fanning equation, 12.10
Fanning friction factor, 12.10
Fanno line equation, 17.23
Fast runner, 21.8, 21.11
First moment of area, 3.2
Flow coefficient, 24.10, 25.29
Flow net, 6.36
Flow ratio, 22.12, 25.25
Fluid dynamics, 1.1
Fluid kinematics, 1.1
Fluid statics, 1.1
Foot step bearing, 12.32
Forced vortex flow, 8.1
Forebay, 21.4
Francis’s formula, 11.6
Francis turbine, 22.5
Free jet, 20.1
Free liquid jet, 7.32

Free nappe, 11.21
Free vortex flow, 8.2, 9.7
Friction factor, 12.9
Friction velocity, 13.3
Froude model law, 19.33
Froude number, 19.29
Fully submerged orifice, 10.11

G

Gas constant, 1.17
Gas dynamics, 1.1
Gauge pressure, 2.5
Gear pump, 26.41
Geometric similarity, 19.27
Governing of a turbine, 21.8
Governing of Kaplan turbine, 23.3
Governing of Pelton turbines, 21.8
Gradual closure of valve, 14.49
Gradually varied flow, 18.2
Gross head, 21.4

H

Hagen-Poiseuille equation, 12.9
Hazen William’s formula, 14.3
Head coefficient, 24.9, 25.29
Hinged plate, 20.29
Hub, 23.2
Hydraulic accumulator, 27.5
Hydraulic coefficients, 10.2
Hydraulic coupling, 27.21
Hydraulic crane, 27.18
Hydraulic depth, 18.1
Hydraulic efficiency, 21.4, 25.15
Hydraulic gradient line, 14.17
Hydraulic intensifier, 27.9
Hydraulic jump, 18.25
Hydraulic lift, 27.15
Hydraulic losses, 25.13
Hydraulic mean depth, 14.2, 18.1
Hydraulic press, 27.1
Hydraulic radius, 14.2, 18.1
Hydraulic ram, 27.12
Hydraulics, 1.1
Hydraulic torque converter, 27.22
Hydrodynamics, 1.1
Hydroelectric power plant, 21.3
Hydrostatic law, 2.3
Hydrostatic paradox, 2.4
Hypersonic flow, 6.3
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I

Ideal fluid, 1.7
Ideal plastic fluid, 1.8
Impact of the jet, 20.1
Impeller, 25.5
Impeller power, 25.13
Impulse-momentum equation, 

7.38, 20.1
Impulse-momentum principle, 20.1
Impulse turbine, 21.1, 21.3
Impulse turbomachine, 20.37
Inclined venturimeter, 7.14
Incompressible flow, 6.3
Incompressible flow machine, 20.38
Indicator diagram, 26.12
Induced drag, 16.2
Intensive properties, 1.3
Internal mouthpiece, 10.19, 10.24
Irrotational flow, 6.4
Isentropic process, 1.19
Isobaric process, 1.18
Isothermal process, 1.18

J

Jet propulsion of ship, 20.33
Jet pump, 27.24
Jet ratio, 21.13
Journal bearing, 12.31

K

Kaplan turbine, 23.2
Karman-Prandtl equation, 13.14
Karman-Prandtl resistance equation, 

13.22
Karman universal constant, 13.10
Karman vortex street, 16.15
Karman vortex trails, 16.15
Kinematic similarity, 19.27
Kinematic viscosity, 1.7
Kinetic energy correction factor, 7.28
Kinetic energy of turbulence, 13.6
Kinetic head, 7.1
Kutta-Joukowski equation, 16.20
Kutter’s formula, 18.4

L

Lagrangian method, 6.7
Laminar boundary layer, 15.2

Laminar flow, 6.3, 18.3
Laminar sublayer, 15.3
Large rectangular orifice, 10.10
Leading edge, 16.23
Leakage loss, 25.13
Length of bucket, 21.13
Length of hydraulic jump, 18.28
Leverage of the hydraulic press, 27.2
Lift force, 16.1
Linear deformation, 6.25
Linear translation, 6.25
Lobe pump, 26.40
Local acceleration, 6.9
Local coefficient of drag, 15.11
Lock gates, 3.34

M

Mach angle, 17.9
Mach cone, 17.9
Mach model law, 19.36
Mach number, 6.3, 17.7, 19.30, 20.38
Magnus effect, 9.33, 16.17
Main characteristic curves, 24.18, 25.33
Major loss, 14.1
Manning’s formula, 14.2, 18.5
Manometers, 2.9
Manometric efficiency, 25.13
Manometric head, 25.9
Mass density, 1.3
Maximum suction lift, 25.35
Mechanical efficiency, 21.5, 25.14
Mechanical losses, 25.12
Medium runner, 21.11
Metacentre, 5.9
Metacentric height, 5.9
Metacentric radius, 5.11
Micromanometer, 2.25
Minimum starting speed, 25.23
Minor energy losses, 14.6
Minor losses, 14.1
Mixing length, 13.9
Model studies, 19.26
Moment of inertia, 3.2
Moment of momentum equation, 7.46
Momentum correction factor, 7.29
Momentum diffusivity, 1.7
Momentum thickness, 15.4
Moody diagram, 13.20
Mouthpiece, 10.1, 10.19

Mouthpiece running free, 10.19
Mouthpiece running full, 10.19
Multi-cylinder pump, 26.1
Multistage pump, 25.26
Muschel curves, 24.19, 25.33

N

Nappe, 11.1, 11.21
Narrow-crested weir, 11.20
Navier-Stokes equation, 7.2, 

13.7, 12.5
Negative slip, 26.6
Net head, 21.4
Net positive suction head, 25.35
Neutral equilibrium, 5.17
Newtonian fluid, 1.6, 1.8
Newton’s law of viscosity, 1.6
Newton’s second law of motion, 20.1
Non-Newtonian fluids, 1.6, 1.8
Non-uniform flow, 6.3, 18.2
Normal acceleration, 6.13
Normal runner, 21.8
Normal shock wave, 17.22
Notch, 11.1

O

Oblique shock wave, 17.24
Ogee Weir, 11.20
One-dimensional flow, 6.3
One-seventh power law, 15.25
Open channel flow, 18.1
Open conical surge tank, 24.22
Open turbomachines, 20.37
Operating characteristic curves, 

24.19, 25.33
Orifice, 10.1
Orificemeter, 7.22
Overall efficiency, 21.5, 25.14
Overshot wheel, 21.6

P

Partially submerged orifice, 10.12
Pascal’s law, 2.2
Pathline, 6.5
Pelton turbine, 21.6
Piezometer, 2.9
Pitching, 5.32
Pitot-static tube, 7.27
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Pitot tube, 7.26
Positive displacement machines, 

20.38
Positive displacement pumps, 25.2
Potential head, 7.1
Power coefficient, 24.10, 25.30
Power dissipated in hydraulic 

jump, 18.28
Power law of velocity 

distribution, 13.20
Prandtl’s boundary layer 

equation, 15.13
Pressure coefficient, 9.13, 9.26
Pressure drag, 16.2
Pressure head, 7.2
Primary quantities, 19.1
Priming, 25.6
Priming devices, 25.7
Profile drag, 16.2
Propeller turbine, 23.2
Prototype, 19.26
Pseudo-plastic fluids, 1.8

Q

Quintuplex pump, 26.2

R

Racing speed, 21.12
Radial discharge, 22.12
Radial piston pump, 26.42
Rankine efficiency, 27.13
Rankine half body, 9.11
Rankine–Hugoniot equations, 17.23
Rankine line equation, 17.23
Rapidly varied flow, 18.2
Rate of shear strain, 1.6
Rayleigh method, 19.4
Reaction turbine, 21.1
Reaction turbomachine, 20.37
Real fluids, 1.7
Rectangular channel, 18.9
Rectangular notch or weir, 11.2, 11.22
Rehbock’s formula, 11.7
Relative density, 1.4
Restricted orifice surge tank, 24.23
Reversible adiabatic process, 1.19
Reynolds equation of motion, 7.2
Reynolds equations, 13.7
Reynolds experiments, 12.1

Reynolds model law, 19.31
Reynolds number, 12.2, 19.29
Reynolds stresses, 13.7, 13.8
Rheopectic, 1.8
Rolling, 5.32
Rotary positive displacement 

pumps, 26.39
Rotating cylinder viscometer, 12.37
Rotation, 6.27
Rotational flow, 6.4
Rotodynamic pumps, 25.2
Rotor, 20.38
Rough boundary, 13.12
Runaway speed, 21.12

S

Saturation pressure, 1.28
Saturation temperature, 1.28
Scale effect, 19.39, 24.12
Screw pumps, 26.41
Scroll casing, 22.2
Second moment of area, 3.2
Separation point, 15.33
Shape factor, 15.5
Shear drag, 16.2
Shear velocity, 13.3
Shock strength, 17.24
Shock wave, 17.9, 17.22
Sill, 11.1
Similarity laws, 19.31
Similitude, 19.27
Simple hydraulic accumulator, 27.5
Simple manometers, 2.9
Single acting pump, 26.1
Single acting reciprocating 

pump, 26.2
Single cylinder pump, 26.1
Sink flow, 9.6
Siphon, 14.40
Skin friction coefficient, 15.11
Slip, 26.6
Slip factor, 25.16
Slow runner, 21.8, 21.11
Smooth boundary, 13.12
Sonic flow, 6.3
Source flow, 9.4
Span, 16.23
Specific energy curve, 18.21
Specific gravity, 1.4
Specific speed, 24.4, 25.28

Specific volume, 1.4
Specific weight, 1.4
Speed ratio, 21.13, 22.11, 25.25
Spiral vortex flow, 8.2
Stability of a floating body, 5.17
Stability of a submerged body, 5.17
Stable equilibrium, 5.16
Stagnation density, 17.12
Stagnation point, 9.11
Stagnation pressure, 7.26, 17.10
Stagnation temperature, 17.12
Stall, 16.23, 27.21
Standing wave, 18.25
Stanton diagram, 13.20
Static head, 25.9
Static power, 25.13
Stay ring, 23.2
Steady and unsteady flow, 18.2
Steady flow, 6.2
Stepped notch, 11.17
Stokes’ law, 16.11
Stratosphere, 2.28
Streakline, 6.6
Stream function, 6.35
Streamline, 6.4
Streamlined body, 16.10
Stream-tube, 6.5
Strength of the jump, 18.28
Strouhal number, 16.16
Sub-critical flow, 18.3, 18.23
Submerged orifices, 10.11
Submersible centrifugal 

pumps, 25.39
Subsonic flow, 6.3
Suction height, 25.35
Suction lift, 25.9
Suction specific speed, 24.6, 25.37
Sudden closure of valve, 14.49
Supercritical flow, 18.3, 18.23
Superimposed flow, 9.10
Supersonic flow, 6.3
Suppressed weir, 11.21
Surface tension, 1.19
Surge tank, 21.4, 24.21
Suspended hydraulic lift, 27.15

T

Tail race, 21.4
Tangential acceleration, 6.13
Taygun formula, 21.13
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Temporal acceleration, 6.9
Terminal velocity, 16.11
Thixotropic fluids, 1.8
Thoma’s cavitation factor, 23.18
Three-dimensional flow, 6.4
Top width, 18.1
Torricellian vacuum, 2.5
Torricelli’s equation, 10.2
Total acceleration, 6.9
Total energy line, 14.17
Total pressure, 3.1
Trailing edge, 16.23
Transitional flow, 18.3
Trapezoidal channel, 18.11
Trapezoidal notch or weir, 11.14
Triangular notch or weir, 11.10, 11.23
Triple cylinder pumps, 26.2
Troposphere, 2.28
Tubular turbine, 23.20
Turbines, 21.1
Turbomachines, 20.37
Turbulence, 13.4
Turbulence constant, 13.9
Turbulent boundary layer, 15.2, 15.25
Turbulent flow, 6.3, 18.3
Turbulent stresses, 13.7
Two-dimensional flow, 6.4
Types of draft tubes, 23.12

U

Undershot wheel, 21.6
Undistorted models, 19.38
Uniform flow, 6.3, 9.1, 18.2
Unit, 19.1
Unit discharge, 24.2
Unit power, 24.2
Unit quantities, 24.1
Unit speed, 24.2
Universal gas constant, 1.18
Unstable equilibrium, 5.16
Unsteady flow, 6.2
Upstream Froude number, 18.27
U-tube manometer, 2.10

V

Vacuum pressure, 2.5
Vane efficiency, 25.15
Vane pump, 26.39
Vapour pressure, 1.28
Variable pitch propeller turbine, 23.3
Vein, 11.1
Velocity defect, 13.11
Velocity defect law, 13.11
Velocity gradient, 1.6
Velocity of approach, 11.3

Velocity of sound wave, 17.5
Velocity potential function, 6.34
Velocity ratio, 27.19
Venturimeter, 7.12
Viscometer, 12.36
V-notch, 11.10
Volumetric efficiency, 21.5, 25.14
Volute casing, 25.5
von Kármán momentum integral 

equation, 15.11
Vortex casing, 25.5
Vortex flow, 8.1
Vorticity, 6.27

W

Water hammer, 14.49
Water power, 21.5
Waterwheel, 21.6
Wave drag, 16.2
Weber model Law, 19.36
Weber number, 19.30
Weight density, 1.4
Weir, 11.1
Wetted area, 18.1
Wetted perimeter, 18.1
Width of bucket, 21.13
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