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The subject of digital image processing has migrated from a graduate to a junior 
or senior level course as students become more proficient in mathematical 
background earlier in their college education. With that in mind, Introduction 
to Digital Image Processing is simpler in terms of mathematical derivations 
and eliminates derivations of advanced subjects. Most importantly, the textbook 
contains an extensive set of programming exercises for students.

The textbook examines the basic technologies needed to support image 
processing applications, including the characterization of continuous images, 
image sampling and quantization techniques, and two-dimensional signal 
processing techniques. It then covers the two principle areas of image processing: 
image enhancement and restoration techniques and extraction of information 
from an image. It concludes with discussions of image and video compression.

Features:

•	 Covers the mathematical representation of continuous images and 
discrete images

•	 Discusses the psychophysical properties of human vision
•	 Analyzes and compares linear processing techniques implemented by 

direct convolution and Fourier domain filtering
•	 Details restoration models, point and spatial restoration and geometrical 

image modification
•	 Includes morphological image processing, edge detection, image feature 

extraction, image segmentation, object shape analysis, and object 
detection

•	 Describes coding technique applicable to still image and video coding 
based upon point and spatial processing

•	 Outlines the widely adopted JPEG and MPEG still image and video 
coding standards

•	 Text supported by a website, Pixel Soft, which provides downloading of 
software documentation, demonstration programs, programming exercise 
executables and image databases.

The author’s accessible style provides historical background on the development 
of image processing techniques as well as a theoretical exposition. The inclusion 
of numerous exercises fully prepares students for further study.
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PREFACE

In January 1978, I began the preface to the first of four editions of the book Digital
Image Processing with the following statement:

“The field of image processing has grown considerably during the past
decade with the increased utilization of imagery in myriad applications
coupled with improvements in the size, speed and cost effectiveness of dig-
ital computers and related signal processing technologies. Image process-
ing has found a significant role in scientific, industrial, space and
government applications.”

As I write this preface to this new book Introduction to Digital Image Processing,
I find the quoted statement still to be valid. Originally many image processing tech-
niques were of academic interest only; their execution was too slow and too costly.
Today, thanks to algorithmic and implementation advances, image processing has
become a vital cost-effective technology in a host of applications. Consequently,
there has been an explosive growth of the field of digital image processing.  This has
been the motivation to write the second (1991), third (2000) and fourth (2006) edi-
tions of Digital Image Processing. These editions sought to correct defects in the
earlier editions, delete content of marginal interest and add discussions of new,
important topics.

The first four editions of Digital Image Processing were intended to be an “indus-
trial strength” exposition to digital image processing to be used as a text for an elec-
trical engineering or computer science graduate course in the subject. Also, the
books were intended to  be used as a reference manual for scientists who are
engaged in image processing research, developers of image processing hardware
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and software systems, and practicing engineers and scientists who use image pro-
cessing as a tool in their applications. Mathematical derivations were provided for
most algorithms. The reader was assumed to have a basic background in linear sys-
tem theory, vector space algebra and random processes.

In 2010, it became evident to me that the subject of digital image processing was
migrating from a graduate course to a junior or senior level course as students
became proficient in mathematical background earlier in their college education.
This observation became the motivation for the development of an introductory
textbook on the subject of digital image processing, which, not surprisingly, is being
titled Introduction to Digital Image Processing. This textbook is lighter in terms of
mathematical derivations. It also eliminates derivations of advanced subjects. Most
importantly, the textbook contains an extensive set of programming exercises for the
student. 

The textbook is divided into six parts. The first three parts cover the basic tech-
nologies that are needed to support image processing applications. Part 1 contains
three chapters concerned with the characterization of continuous images. Topics
include the mathematical representation of continuous images, the psychophysical
properties of human vision, and photometry and colorimetry. In Part 2, image sam-
pling and quantization techniques are explored along with the mathematical repre-
sentation of discrete images. Part 3 discusses two-dimensional signal processing
techniques, including general linear operators and unitary transforms such as the
Fourier, Hadamard and Karhunen–Loeve transforms plus wavelet transforms. The
final chapter in Part 3 analyzes and compares linear processing techniques imple-
mented by direct convolution and Fourier domain filtering.

The next two parts of the book cover the two principal application areas of image
processing. Part 4 presents a discussion of image enhancement and restoration tech-
niques, including restoration models, point and spatial restoration and geometrical
image modification. Part 5, entitled “Image Analysis,” concentrates on the extrac-
tion of information from an image. Specific topics include morphological image
processing, edge detection, image feature extraction, image segmentation, object
shape analysis and object detection.

Part 6 discusses image and video compression. Chapters 19 and 20 describe cod-
ing technique applicable to still image coding based upon point and spatial process-
ing. Topics include run length, predictive, unitary transform and wavelet coding of
monochrome and color images. This chapter also describes the widely adopted
JPEG and JPEG2000 still image coding standards. Chapter 21 discusses compres-
sion techniques for temporal video sequences. The chapter describes unitary trans-
form and wavelet methods applied to video sequences. The chapter also describes
the MPEG video coding standards.

My writing style is to provide a historical background of the development of
image processing techniques as well as a theoretical exposition. This is accom-
plished through a liberal number of historical references.

Image processing exercises are included at the end of each chapter as English
language narratives of image processing operations and algorithms, which are to be
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programmed by students. These exercises can be implemented using the PIKS API
(a C language image processing library) or by PIKSTool (a graphical user interface,
for developing image processing programs without the need for program compila-
tion) or by MATLAB (a C language based commercially available software pack-
age) or with any other full featured image processing software package. The
Preamble to this book and Annexes 1, 2 and 3 contain examples of an image pro-
cessing program implemented by PIKS API, PIKSTool and MATLAB.

Introduction to Digital Image Processing is supported by a website, pixel-
soft.com. This website provides downloading of software documentation, demon-
stration programs, programming exercise executables and image data bases.

The reader should be aware that this textbook only provides an introduction to
the subject of digital image processing. The textbook does not attempt to describe
high-end or complex algorithms and programs. The website is meant to be a reposi-
tory for the description of such techniques.

Although readers should find this book reasonably comprehensive, many impor-
tant topics allied to the field of digital image processing have been omitted to limit
the size and cost of the book. Among the most prominent omissions are the topics of
pattern recognition, image reconstruction from projections, image understanding,
scientific visualization and computer graphics. References to some of these topics
are provided in the bibliography.

June 2013 William K. Pratt
Los Altos, California
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Introduction to Digital Image Processing is meant to be a teaching aid for the
subject. Accordingly, image processing programming exercises are included at the
end of each chapter. These exercises can be fulfilled by development of a C
language program using: (a) the PIKS API or; (b) the PIKSTool graphical user
interface (GUI) or; (c) the PIKSTool Chain command string interpreter or; (d) the
MATLAB software package. Alternatively, the exercises may be implemented by
homemade or commercially available image processing software packages.

Annex 1 describes the PixelSoft image processing software, which can be freely
down loaded from the pixelsoft.com web site. This software package includes the
PIKS API executables and the PIKSTool scripts of the programming exercises. The
PIKS source files of the exercises can be obtained by teaching instructors from
PixelSoft upon request. The MATLAB M-files of the programming exercises can
also be supplied to teaching instructors from PixelSoft upon request. 

The exercises at the end of each chapter are presented as a narrative script to be
followed by a reader for some software language or GUI or command string
interpreter. As an example, consider the implementation of an unsharp mask
operator on a source image. With this operator, a detail sharpened image is
generated by subtracting an amplitude weighted version of a blurred source image
from a weighted source image. Equation 10.4-2 defines the unsharp mask operation
on a monochrome source image as

G j k,( ) c
2c 1–
---------------F j k,( ) 1 c–

2c 1–
---------------L j k,( )–=
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where c is a weighting constant and L(j,k) is a low pass filtered version of the source
image obtained by convolution of the source image with a low pass filter impulse
response array. The narrative for this operator follows.

 Develop a program that performs unsharp masking on an unsigned integer, 8-bit,
monochrome image. Steps:
(a) Import and display the source image.
(b) Select the weighting factors.
(c) Generate or import a 5x5 uniform impulse response array.
(d) Convert the source image to floating point data class.
(e) Weight the source image.
(f) Blur the source image by convolution with the impulse response array.
(g) Weight the blurred source image.
(h) Form the destination difference image.
(i) Clipped the destination image to the range 0 to 255 for display.
(j) Convert the destination image to 8-bit data class.
(k) Display the 8-bit destination image.

Annex 2 contains a PIKS source program, which implements the unsharp mask
operator. Annex 2 also contains a screen dump of the source image and the
sharpened output image.

Annex 3 contains a series of screen dumps of a PIKSTool session, which
implements the unsharp mask operator.

Annex 4 provides a PIKSTool Chain command string for the execution of the
unsharp mask operator.

Annex 5 provides a MATLAB command string for the execution of the unsharp
mask operator.
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NOTATION

The mathematical and digital notation utilized in this book is summarized below.

 denotes a one-dimensional function over the range   printed in 10
point, italic, Times New Roman font.

 denotes a two-dimensional function over the range  printed in
10 point, italic, Times New Roman font.

 denotes a one-dimensional spatial frequency function over the range

  printed in 10 point, italic,  French Script MT font.

 denotes a two-dimensional spatial frequency function over the range

printed in 10 point, italic, French Script MT font

 denotes a one-dimensional array over the range  printed in 10 point,
italic, Times New Roman font.

 denotes a two-dimensional array over the range  printed in  10

point, italic, Times New Roman font.

f denotes a column vector printed in 10 point, bold, Times New Roman font.

f x( ) ∞– x ∞< <

F x y,( ) ∞– x y, ∞< <

f ω( )
∞– ω ∞< <

F ωx ωy,( )

∞– ωx ωy, ∞< <

f n( ) 1 n N< <

F n1 n2,( ) 1 ni Ni< <

N 1×
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F denotes a matrix printed in 10 point bold, Times New Roman font.

f denotes a column vector of unitary transform coefficients printed in 10 point
bold, italic, Times New Roman font.

F denotes a matrix of unitary transform coefficients printed in 10 point bold,
italic Times New Roman font.

Library calls to PIKS API executables in the programming exercises at the end of
each chapter are printed in 10 point courier font, e.g.:

example_complement_monochrome_ND.

In many of the text chapters, references are made to the book Digital Image
Processing, Fourth Edition written by William K. Pratt and published by John
Wiley and Sons. For simplicity, these references are made as: Pratt (4Ed., n1 -  nN)
where ni is a page number.

M N×

N 1×

M N×
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PART 1

CONTINUOUS IMAGE 
CHARACTERIZATION

Although this book is concerned primarily with digital, as opposed to analog, image
processing techniques. It should be remembered that most digital images represent
continuous natural images. Exceptions are artificial digital images such as test
patterns that are numerically created in the computer and images constructed by
tomographic systems. Thus, it is important to understand the “physics” of image
formation by sensors and optical systems including human visual perception.
Another important consideration is the measurement of light in order quantitatively
to describe images. Finally, it is useful to establish spatial and temporal
characteristics of continuous image fields which, provide the basis for the
interrelationship of digital image samples. These topics are covered in the following
chapters.
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1

Introduction to Digital Image Processing by William K. Pratt
Copyright © 2013 by CRC Press

CONTINUOUS IMAGE 
MATHEMATICAL CHARACTERIZATION

In the design and analysis of image processing systems, it is convenient and often
necessary mathematically to characterize the image to be processed. There are two
basic mathematical characterizations of interest: deterministic and statistical. In
deterministic image representation, a mathematical image function is defined and
point properties of the image are considered. For a statistical image representation,
the image is specified by average properties. The following sections develop the
deterministic and statistical characterization of continuous images. Although the
analysis is presented in the context of visual images, many of the results can be
extended to general two-dimensional time-varying signals and fields.

1.1. IMAGE REPRESENTATION

Let  represent the spatial energy distribution of an image source of radi-
ant energy at spatial coordinates (x, y), at time t and wavelength . Because light
intensity is a real positive quantity, that is, because intensity is proportional to the
modulus squared of the electric field, the image light function is real and nonnega-
tive. Furthermore, in all practical imaging systems, a small amount of background
light is always present. The physical imaging system also imposes some restriction
on the maximum intensity of an image, for example, image sensor saturation. Hence
it is assumed that

(1.1-1)

C x y t λ, , ,( )
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4 CONTINUOUS IMAGE MATHEMATICAL CHARACTERIZATION

where A is the maximum image intensity. A physical image is necessarily limited in
extent by the imaging system and image recording media. For mathematical sim-
plicity, all images are assumed to be nonzero only over a rectangular region for
which

(1.1-2a)

(1.1-2b)

The physical image is, of course, observable only over some finite time interval.
Thus, let

(1.1-2c)

The image light function  is, therefore, a bounded four-dimensional
function with bounded independent variables. As a final restriction, it is assumed
that the image function is continuous over its domain of definition.

The intensity response of a standard human observer to an image light function is
commonly measured in terms of the instantaneous luminance of the light field as
defined by

(1.1-3)

where  represents the relative luminous efficiency function, that is, the average
spectral response of human vision. Similarly, the color response of a standard
observer is commonly measured in terms of a set of tristimulus values that are lin-
early proportional to the amounts of red, green and blue light needed to match a col-
ored light. For an arbitrary red–green–blue coordinate system, the instantaneous
tristimulus values are

(1.1-4a)

(1.1-4b)

(1.1-4c)

where , ,  are spectral tristimulus values for the set of red, green
and blue primaries. The spectral tristimulus values are, in effect, the tristimulus
values required to match a unit amount of narrowband light at wavelength . In a
multispectral imaging system, the image field observed is modeled as a spectrally
weighted integral of the image light function. The ith spectral image field is then
given as

Lx– x Lx≤ ≤

Ly– y Ly≤ ≤

T– t T≤ ≤

C x y t λ, , ,( )

Y x y t, ,( ) C x y t λ, , ,( )V λ( ) λd
0

∞

=

V λ( )
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∞
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G x y t, ,( ) C x y t λ, , ,( )GS λ( ) λd
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∞
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TWO-DIMENSIONAL SYSTEMS 5

(1.1-5)

where  is the spectral response of the ith sensor.
For notational simplicity, a single image function  is selected to repre-

sent an image field in a physical imaging system. For a monochrome imaging sys-
tem, the image function  nominally denotes the image luminance, or some
converted or corrupted physical representation of the luminance, whereas in a color
imaging system,  signifies one of the tristimulus values, or some function
of the tristimulus value. The image function  is also used to denote general
three-dimensional fields, such as the time-varying noise of an image scanner.

In many imaging systems, such as image projection devices, the image does not
change with time, and the time variable may be dropped from the image function.
For other types of systems, such as movie pictures, the image function is time sam-
pled. It is also possible to convert the spatial variation into time variation, as in tele-
vision, by an image scanning process. In the subsequent discussion, the time
variable is dropped from the image field notation unless specifically required.

1.2. TWO-DIMENSIONAL SYSTEMS

A two-dimensional system, in its most general form, is simply a mapping of some
input set of two-dimensional functions F1(x, y), F2(x, y),..., FN(x, y) to a set of out-
put two-dimensional functions G1(x, y), G2(x, y),..., GM(x, y), where 
denotes the independent, continuous spatial variables of the functions. This mapping
may be represented by the operators  for m = 1, 2,..., M, which relate the
input to output set of functions by the set of equations

   (1.2-1)

In specific cases, the mapping may be many-to-few, few-to-many, or one-to-one.
The one-to-one mapping is defined as

.  (1.2-2)

To proceed further with a discussion of the properties of two-dimensional systems, it
is necessary to direct the discourse toward specific types of operators.

Fi x y t, ,( ) C x y t λ, , ,( )Si λ( ) λd
0

∞

=

Si λ( )
F x y t, ,( )

F x y t, ,( )

F x y t, ,( )
F x y t, ,( )

∞ x y, ∞< <–( )

Om ·{ }

G1 x y,( ) O1 F1 x y,( ) F2 x y,( ) … FN x y,( ), ,,{ }=

Gm x y,( ) Om F1 x y,( ) F2 x y,( ) … FN x y,( ), ,,{ }=

GM x y,( ) OM F1 x y,( ) F2 x y,( ) … FN x y,( ), ,,{ }=

…
…

G x y,( ) O F x y,( ){ }=
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6 CONTINUOUS IMAGE MATHEMATICAL CHARACTERIZATION

1.2.1. Singularity Operators

Singularity operators are widely employed in the analysis of two-dimensional
systems, especially systems that involve sampling of continuous functions. The two-
dimensional Dirac delta function is a singularity operator that possesses the follow-
ing properties:

for  (1.2-3a)

. (1.2-3b)

In Eq. 1.2-3a,  is an infinitesimally small limit of integration; Eq. 1.2-3b is called
the sifting property of the Dirac delta function.

The two-dimensional delta function can be decomposed into the product of two
one-dimensional delta functions defined along orthonormal coordinates. Thus

(1.2-4)

where the one-dimensional delta function satisfies one-dimensional versions of Eq.
1.2-3. The delta function also can be defined as a limit on a family of functions.
General examples are given in References 1 and 2.

1.2.2. Additive Linear Operators

A two-dimensional system is said to be an additive linear system if the system obeys
the law of additive superposition. In the special case of one-to-one mappings, the
additive superposition property requires that

(1.2-5)

where a1 and a2 are constants that are possibly complex numbers. This additive
superposition property can easily be extended to the general mapping of Eq. 1.2-1.

A system input function F(x, y) can be represented as a sum of amplitude-
weighted Dirac delta functions by the sifting integral, 

(1.2-6)

where  is the weighting factor of the impulse located at coordinates  in
the x–y plane, as shown in Figure 1.2-1. If the output of a general linear one-to-one
system is defined to be

.  (1.2-7)

δ x y,( ) xd yd
ε–

ε


ε–

ε

 1= ε 0>

F ξ η,( )δ x ξ– y η–,( ) ξd ηd
∞–

∞
∞–

∞
 F x y,( )=

ε

δ x y,( ) δ x( )δ y( )=

O a1F1 x y,( ) a2F2 x y,( )+{ } a1O F1 x y,( ){ } a2O F2 x y,( ){ }+=

F x y,( ) F ξ η,( )δ x ξ– y η–,( ) ξd ηd
∞–

∞


∞–

∞

=

F ξ η,( ) ξ η,( )

G x y,( ) O F x y,( ){ }=
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TWO-DIMENSIONAL SYSTEMS 7

then

 (1.2-8a)

or

. (1.2-8b)

In moving from Eq. 1.2-8a to Eq. 1.2-8b, the application order of the general lin-
ear operator  and the integral operator have been reversed. Also, the linear
operator has been applied only to the term in the integrand that is dependent on the

spatial variables (x, y). The second term in the integrand of Eq. 1.2-8b, which is
redefined as

 (1.2-9)

is called the impulse response of the two-dimensional system. In optical systems, the
impulse response is often called the point spread function of the system. Substitu-
tion of the impulse response function into Eq. 1.2-8b yields the additive superposi-
tion integral

.  (1.2-10)

FIGURE1.2-1. Decomposition of image function.

G x y,( ) O F ξ η,( )δ x ξ– y η–,( ) ξd ηd
∞–

∞
∞–

∞


 
 
 

=

G x y,( ) F ξ η,( )O δ x ξ– y η–,( ){ } ξd ηd
∞–

∞
∞–

∞
=

O ⋅{ }

H x y ξ η,;,( ) O δ x ξ– y η–,( ){ }≡
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∞
=
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8 CONTINUOUS IMAGE MATHEMATICAL CHARACTERIZATION

An additive linear two-dimensional system is called space invariant (isoplanatic) if
its impulse response depends only on the factors  and . In an optical sys-
tem, as shown in Figure 1.2-2, this implies that the image of a point source in the
focal plane will change only in location, not in functional form, as the placement of
the point source moves in the object plane. For a space-invariant system

(1.2-11)

and the superposition integral reduces to the special case called the convolution inte-
gral, given by

. (1.2-12a)

Symbolically,

. (1.2-12b)

FIGURE 1.2-2. Point-source imaging system.

denotes the convolution operation. The convolution integral is symmetric in the
sense that

. (1.2-13)

x ξ– y η–

H x y ξ η,;,( ) H x ξ– y η–,( )=

G x y,( ) F ξ η,( )H x ξ– y η–,( ) ξd ηd
∞–

∞
∞–

∞
=

G x y,( ) F x y,( ) H x y,( )O∗=

G x y,( ) F x ξ– y η–,( )H ξ η,( ) ξd ηd
∞–

∞
∞–

∞
=
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TWO-DIMENSIONAL SYSTEMS 9

Figure 1.2-3 provides a visualization of the convolution process. In Figure 1.2-3a
and b, the input function F(x, y) and impulse response are plotted in the dummy
coordinate system . Next, in Figures 1.2-3c and d, the coordinates of the
impulse response are reversed, and the impulse response is offset by the spatial val-
ues (x, y). In Figure 1.2-3e, the integrand product of the convolution integral of
Eq. 1.2-12 is shown as a crosshatched region. The integral over this region is the
value of G(x, y) at the offset coordinate (x, y). The complete function F(x, y) could,
in effect, be computed by sequentially scanning the reversed, offset impulse
response across the input function and simultaneously integrating the overlapped
region.

1.2.3. Differential Operators

Edge detection in images is commonly accomplished by performing a spatial dif-
ferentiation of the image field followed by a thresholding operation to determine
points of steep amplitude change. Horizontal and vertical spatial derivatives are
defined as

(l.2-14a)

FIGURE 1.2-3. Graphical example of two-dimensional convolution.

ξ η,( )

dx
F x y,( )∂

x∂
--------------------=
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10 CONTINUOUS IMAGE MATHEMATICAL CHARACTERIZATION

. (l.2-14b)

The directional derivative of the image field along a vector direction z subtending an
angle  with respect to the horizontal axis is given by (3, p. 106)

. (l.2-15)

The gradient magnitude is then

. (l.2-16)

Spatial second derivatives in the horizontal and vertical directions are defined as

(l.2-17a)

. (l.2-17b)

The sum of these two spatial derivatives is called the Laplacian operator:

. (l.2-18)

1.3. TWO-DIMENSIONAL FOURIER TRANSFORM

The two-dimensional Fourier transform of the image function F(x, y) is defined as
(1,2)

(1.3-1)

where  and  are spatial frequencies and . Notationally, the Fourier
transform is written as

. (1.3-2)

In general, the Fourier coefficient  is a complex number that may be repre-
sented in real and imaginary form, 

dy
F x y,( )∂

y∂
--------------------=

φ

F x y,( ){ }∇ F x y,( )∂
z∂

-------------------- dx φcos dy φsin+= =

F x y,( ){ }∇ dx
2

dy
2

+=

dxx

2F x y,( )∂

x
2∂

----------------------=

dyy

2F x y,( )∂

y
2∂

----------------------=

F x y,( ){ }∇2
2
F x y,( )∂

x
2∂

----------------------
2
F x y,( )∂

y
2∂

----------------------+=

F ωx ωy,( ) F x y,( ) i ωxx ωyy+( )–{ }exp xd yd
∞–

∞
∞–

∞
=

ωx ωy i 1–=

F ωx ωy,( ) OF F x y,( ){ }=

F ωx ωy,( )
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TWO-DIMENSIONAL FOURIER TRANSFORM 11

(1.3-3a)

or in magnitude and phase-angle form,

(1.3-3b)

where

(1.3-4a)

. (1.3-4b)

The input function F(x, y) can be recovered from its Fourier transform by the inver-
sion formula

(1.3-5a)

or in operator form

. (1.3-5b)

The functions F(x, y) and  are called Fourier transform pairs.
The two-dimensional Fourier transform can be computed in two steps as a result

of the separability of the kernel. Thus, let

(1.3-6)

then 

. (1.3-7)

Several useful properties of the two-dimensional Fourier transform are stated
below. Proofs are given in References 1 and 2.

Separability. If the image function is spatially separable such that

(1.3-8)

then

(1.3-9)

F ωx ωy,( ) R ωx ωy,( ) iI ωx ωy,( )+=

F ωx ωy,( ) M ωx ωy,( ) iΦ ωx ωy,( ){ }exp=

M ωx ωy,( ) R2 ωx ωy,( ) I2 ωx ωy,( )+[ ]
1 2⁄

=

Φ ωx ωy,( ) arc
I ωx ωy,( )
R ωx ωy,( )
-------------------------

 
 
 

tan=

F x y,( ) 1

4π2
--------- F ωx ωy,( ) i ωxx ωyy+( ){ }exp ωxd ωyd

∞–

∞
∞–

∞
=

F x y,( ) OF
1– F ωx ωy,( ){ }=

F ωx ωy,( )

Fy ωx y,( ) F x y,( ) i ωxx( )–{ }exp xd
∞–

∞

=

F ωx ωy,( ) Fy ωx y,( ) i ωyy( )–{ }exp yd
∞–

∞

=

F x y,( ) fx x( )fy y( )=

F ωx ωy,( ) fx ωx( )fy ωy( )=
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12 CONTINUOUS IMAGE MATHEMATICAL CHARACTERIZATION

where  and  are one-dimensional Fourier transforms of  and ,
respectively. Also, if  and  are two-dimensional Fourier transform
pairs, the Fourier transform of  is . An asterisk * used as a
superscript denotes complex conjugation of a variable (i.e. if , then

. Finally, if  is symmetric such that , then
.

Linearity. The Fourier transform is a linear operator. Thus

(1.3-10)

where a and b are constants.

Scaling. A linear scaling of the spatial variables results in an inverse scaling of the
spatial frequencies as given by

. (1.3-11)

Hence, stretching of an axis in one domain results in a contraction of the corre-
sponding axis in the other domain plus an amplitude change.

Shift. A positional shift in the input plane results in a phase shift in the output
plane:

. (1.3-12a)

Alternatively, a frequency shift in the Fourier plane results in the equivalence

. (1.3-12b)

Convolution. The two-dimensional Fourier transform of two convolved functions
is equal to the products of the transforms of the functions. Thus

. (1.3-13)

The inverse theorem states that

. (1.3-14)

Parseval’s Theorem. The energy in the spatial and Fourier transform domains is
related by

fx ωx( ) fy ωy( ) fx x( ) fy y( )
F x y,( ) F ωx ωy,( )

F∗ x y,( ) F ∗ ω– x ω– y,( )
F A iB+=

F∗ A iB )–= F x y,( ) F x y,( ) F x– y–,( )=
F ωx ωy,( ) F ω– x ωy–,( )=

OF aF1 x y,( ) bF2 x y,( )+{ } aF1 ωx ωy,( ) bF2 ωx ωy,( )+=

OF F ax by,( ){ } 1
ab
---------F

ωx

a
------

ωy

b
------, 

 =

OF F x a– y b–,( ){ } F ωx ωy,( ) i ωxa ωyb+( )–{ }exp=

OF
1– F ωx a– ωy b–,( ){ } F x y,( ) i ax by+( ){ }exp=

OF F x y,( ) H x y,( )O∗
 
 
 

F ωx ωy,( )H ωx ωy,( )=

OF F x y,( )H x y,( ){ } 1

4π2
---------F ωx ωy,( ) HO∗ ωx ωy,( )=
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. (1.3-15)

Autocorrelation Theorem. The Fourier transform of the spatial autocorrelation of a
function is equal to the magnitude squared of its Fourier transform. Hence

. (1.3-16)

Spatial Differentials. The Fourier transform of the directional derivative of an
image function is related to the Fourier transform by

(1.3-17a)

. (1.3-17b)

Consequently, the Fourier transform of the Laplacian of an image function is equal to

. (1.3-18)

The Fourier transform convolution theorem stated by Eq. 1.3-13 is an extremely
useful tool for the analysis of additive linear systems. Consider an image function

 that is the input to an additive linear system with an impulse response
. The output image function is given by the convolution integral

. (1.3-19)

Taking the Fourier transform of both sides of Eq. 1.3-19 and reversing the order of
integration on the right-hand side results in

.

 (1.3-20)

By the Fourier transform shift theorem of Eq. 1.3-13, the inner integral is equal to
the Fourier transform of  multiplied by an exponential phase-shift factor.
Thus

F x y,( ) 2
xd yd

∞–

∞
∞–

∞


1

4π2
--------- F ωx ωy,( ) 2 ωxd ωyd

∞–

∞
∞–

∞
=

OF F α β,( )F∗ α x– β y–,( ) αd βd
∞–

∞
∞–

∞


 
 
 

F ωx ωy,( ) 2
=

OF
F x y,( )∂

x∂
--------------------

 
 
 

i– ωxF ωx ωy,( )=
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F x y,( )∂

y∂
--------------------

 
 
 

i– ωyF ωx ωy,( )=

OF

2F x y,( )∂

x
2∂

----------------------
2F x y,( )∂

y
2∂

----------------------+
 
 
 

ωx
2 ωy

2
+( )– F ωx ωy,( )=

F x y,( )
H x y,( )

G x y,( ) F α β,( )H x α– y β–,( ) αd βd
∞–

∞
∞–

∞
=

G ωx ωy,( ) F α β,( ) H x α– y β–,( ) i ωxx ωyy+( )–{ }exp xd yd
∞–

∞


∞–

∞

 αd βd
∞–

∞
∞–

∞
=

H x y,( )
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14 CONTINUOUS IMAGE MATHEMATICAL CHARACTERIZATION

.  (1.3-21)

Performing the indicated Fourier transformation gives

.  (1.3-22)

Then an inverse transformation of Eq. 1.3-22 provides the output image function

. (1.3-23)

Equations 1.3-19 and 1.3-23 represent two alternative means of determining the out-
put image response of an additive, linear, space-invariant system. The analytic or
operational choice between the two approaches, convolution or Fourier processing,
is usually problem dependent.

1.4. IMAGE STOCHASTIC CHARACTERIZATION

The following presentation on the statistical characterization of images assumes gen-
eral familiarity with probability theory, random variables and stochastic processes.
References 2 and 4 to 7 can provide suitable background. The primary purpose of the
discussion here is to introduce notation and develop stochastic image models.

It is often convenient to regard an image as a sample of a stochastic process. For
continuous images, the image function F(x, y, t) is assumed to be a member of a con-
tinuous three-dimensional stochastic process with space variables (x, y) and time
variable (t).

The stochastic process F(x, y, t) can be described completely by knowledge of its
joint probability density

      

for all sample points J, where (xj, yj, tj) represent space and time samples of image
function Fj(xj, yj, tj). In general, high-order joint probability densities of images are
usually not known, nor are they easily modeled. The first-order probability density
p(F; x, y, t) can sometimes be modeled successfully on the basis of the physics of the
process or histogram measurements. For example, the first-order probability density
of random noise from an electronic sensor is usually well modeled by a Gaussian
density of the form

 (1.4-1)

G ωx ωy,( ) F α β,( )H ωx ωy,( ) i ωxα ωyβ+( )–{ }exp αd βd
∞–

∞
∞–

∞
=

G ωx ωy,( ) H ωx ωy,( )F ωx ωy,( )=

G x y,( ) 1

4π2
--------- H ωx ωy,( )F ωx ωy,( ) i ωxx ωyy+( ){ }exp ωxd ωyd

∞–

∞


∞–

∞

=

p F1 F2… FJ x1 y1 t1 x2 y2 t2 … xJ yJ tJ, , , , , , , , ,;,,{ }

p F x y t, ,;{ } 2πσF
2

x y t, ,( )[ ]
1– 2⁄ F x y t, ,( ) ηF x y t, ,( )–[ ]2

2σF
2

x y t, ,( )
------------------------------------------------------------–

 
 
 

exp=
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IMAGE STOCHASTIC CHARACTERIZATION 15

where the parameters  and  denote the mean and variance of the
process. The Gaussian density is also a reasonably accurate model for the probabil-
ity density of the amplitude of unitary transform coefficients of an image. The
probability density of the luminance function must be a one-sided density because
the luminance measure is positive. Models that have found application include the
Rayleigh density,

 (1.4-2a)

the log-normal density,

(1.4-2b)

and the exponential density,

 (1.4-2c)

all defined for where  is a constant. The two-sided, or Laplacian density,

 (1.4-3)

where  is a constant, is often selected as a model for the probability density of the
difference of image samples. Finally, the uniform density

(1.4-4)

for  is a common model for phase fluctuations of a random process.
Another means of describing a stochastic process is through computation of its

ensemble averages. The first moment or mean of the image function is defined as

 (1.4-5)

where  is the expectation operator, as defined by the right-hand side of Eq.
1.4-5.

The second moment or autocorrelation function is given by

 (1.4-6a)

or in explicit form

ηF x y t, ,( ) σF
2

x y t, ,( )

p F x y t, ,;{ } F x y t, ,( )
α2

--------------------- F x y t, ,( )[ ]2

2α2
-----------------------------–

 
 
 

exp=

p F x y t, ,;{ } 2πF
2

x y t, ,( )σF
2

x y t, ,( )[ ]
1– 2⁄ F x y t, ,( ){ }log ηF x y t, ,( )–[ ]2

2σF
2

x y t, ,( )
---------------------------------------------------------------------------–

 
 
 

exp=

p F x y t, ,;{ } α α F x y t, ,( )–{ }exp=

F 0≥ α

p F x y t, ,;{ } α
2
--- α F x y t, ,( )–{ }exp=

α

p F x y t, ,;{ } 1
2π
------=

π– F π≤ ≤

ηF x y t, ,( ) E F x y t, ,( ){ } F x y t, ,( )p F x y t, ,;{ } Fd
∞–

∞

= =

E ·{ }

R x1 y1 t1 x2 y2 t2, ,;, ,( ) E F x1 y1 t1, ,( )F∗ x2 y2 t2, ,( ){ }=
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16 CONTINUOUS IMAGE MATHEMATICAL CHARACTERIZATION

 (1.4-6b)

The autocovariance of the image process is the autocorrelation about the mean,
defined as

(1.4-7a)

or

.

(1.4-7b)

Finally, the variance of an image process is

.  (1.4-8)

An image process is called stationary in the strict sense if its moments are unaf-
fected by shifts in the space and time origins. The image process is said to be sta-
tionary in the wide sense if its mean is constant and its autocorrelation is dependent
on the differences in the image coordinates, x1 – x2, y1 – y2, t1 – t2, and not on their
individual values. In other words, the image autocorrelation is not a function of
position or time. For stationary image processes,

 (1.4-9a)

.  (1.4-9b)

The autocorrelation expression may then be written as

.  (1.4-10)

Because

 (1.4-11)

then for an image function with F real, the autocorrelation is real and an even func-
tion of . The power spectral density, also called the power spectrum, of a

R x1 y1 t1 x2 y2 t2, ,;, ,( ) F x1 x1 y1, ,( )F∗ x2 y2 t2, ,( )
∞–

∞


∞–

∞

=

p F1 F2 x1 y1 t1 x2 y2 t2, , , , ,;,{ } F1d F2d×

K x1 y1 t1 x2 y2 t2, ,;, ,( ) E F x1 y1 t1, ,( ) ηF x1 y1 t1, ,( )–[ ] F∗ x2 y2 t2, ,( ) η∗F x2 y2 t2, ,( )–[ ]{ }=

K x1 y1 t1 x2 y2 t2, ,;, ,( ) R x1 y1 t1 x2 y2 t2, ,;, ,( ) ηF x1 y1 t1, ,( ) η∗F x2 y2 t2, ,( )–=

σF
2

x y t, ,( ) K x y t x y t, ,;, ,( )=

E F x y t, ,( ){ } ηF=

R x1 y1 t1 x2 y2 t2, ,;, ,( ) R x1 x2– y1 y2– t1 t2–, ,( )=
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stationary image process is defined as the three-dimensional Fourier transform of its
autocorrelation function as given by

.

(1.4-12)

In many imaging systems, the spatial and time image processes are separable so
that the stationary correlation function may be written as

.  (1.4-13)

Furthermore, the spatial autocorrelation function is often considered as the product
of x and y axis autocorrelation functions, 

 (1.4-14)

for computational simplicity. For scenes of manufactured objects, there is often a
large amount of horizontal and vertical image structure, and the spatial separation
approximation may be quite good. In natural scenes, there usually is no preferential
direction of correlation; the spatial autocorrelation function tends to be rotationally
symmetric and not separable. In the following, the spatial and time processes are
considered to be separable.

An image field is often modeled as a sample of a first-order Markov process for
which the correlation between points on the image field is proportional to their geo-
metric separation. The autocovariance function for the two-dimensional Markov
process is

 (1.4-15)

where C is an energy scaling constant and  and  are spatial scaling constants.
The corresponding power spectrum is

.  (1.4-16)

As a simplifying assumption, the Markov process is often assumed to be of separa-
ble form with an autocovariance function

.  (1.4-17)

The power spectrum of this process is
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.  (1.4-18)

The moments of the output of a system can be obtained directly from knowledge
of the output probability density, or in certain cases, indirectly in terms of the system
operator. For example, if the system operator is additive linear, the mean of the sys-
tem output is

.  (1.4-19)

Consider an additive linear space-invariant system whose output is described by
the two-dimensional convolution integral

 (1.4-20)

where H(x, y) is the system impulse response. The mean of the output is then

. (1/4-21)

 If the input image field is stationary, its mean  is a constant that may be brought 

outside the integral. As a result,

(1.4-22)

where  is the transfer function of the linear system evaluated at the origin in
the spatial-time frequency domain. Following the same techniques, it can easily be
shown that the autocorrelation functions of the system input and output are related
by

.  (1.4-23)

Taking Fourier transforms on both sides of Eq. 1.4-23 and invoking the Fourier
transform convolution theorem, one obtains the relationship between the power
spectra of the input and output image,

.  (1.4-24)

This result is found useful in analyzing the effect of noise in imaging systems.
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1.5. PROGRAM GENERATION EXERCISES

E1.1 Develop a program that:

(a) Opens a program session.

(b) Reads an unsigned integer, 8-bit, monochrome source image from a
file.

(c) Displays the parameters of the source image.

(d) Displays the source image.

(e) Creates a destination image, which is the complement of the source
image.

(f) Displays the destination image.

(g) Closes the program session.

The PIKS API executable example_complement_monochrome_ND per-
forms this exercise.

E1.2 Develop a program that:

(a) Creates, in application space, an unsigned integer, 8-bit,  pixel array of a
source ramp image whose amplitude increases from left-to-right from 0
to 255.

(b) Imports the source image for display.

(c) Creates a destination image by adding value 100 to each pixel

(d) Displays the destination image

The PIKS API executable example_import_ramp performs this exercise.
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PSYCHOPHYSICAL VISION 
PROPERTIES

For efficient design of imaging systems for which the output is a photograph or dis-
play to be viewed by a human observer, it is obviously beneficial to have an under-
standing of the mechanism of human vision. Such knowledge can be utilized to
develop conceptual models of the human visual process. These models are vital in
the design of image processing systems and in the construction of measures of
image fidelity and intelligibility.

2.1. LIGHT PERCEPTION

Light, according to Webster's Dictionary (1), is “radiant energy which, by its action
on the organs of vision, enables them to perform their function of sight.” Much is
known about the physical properties of light, but the mechanisms by which light
interacts with the organs of vision is not as well understood. Light is known to be a
form of electromagnetic radiation lying in a relatively narrow region of the electro-
magnetic spectrum over a wavelength band of about 350 to 780 nanometers (nm). A
physical light source may be characterized by the rate of radiant energy (radiant
intensity) that it emits at a particular spectral wavelength. Light entering the human
visual system originates either from a self-luminous source or from light reflected
from some object or from light transmitted through some translucent object. Let

 represent the spectral energy distribution of light emitted from some primary
light source, and also let  and  denote the wavelength-dependent transmis-
sivity and reflectivity, respectively, of an object. Then, for a transmissive object, the

E λ( )
t λ( ) r λ( )
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22 PSYCHOPHYSICAL VISION PROPERTIES

observed light spectral energy distribution is

(2.1-1)

and for a reflective object

. (2.1-2)

Figure 2.1-1 shows plots of the spectral energy distribution of several common
sources of light encountered in imaging systems: sunlight, a tungsten lamp, a

FIGURE 2.1-1. Spectral energy distributions of common physical light sources.

C λ( ) t λ( )E λ( )=

C λ( ) r λ( )E λ( )=
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LIGHT PERCEPTION 23

light-emitting diode, a mercury arc lamp and a helium–neon laser (2). A human
being viewing each of the light sources will perceive the sources differently. Sun-
light appears as an extremely bright yellowish-white light, while the tungsten light
bulb appears less bright and somewhat yellowish. The light-emitting diode appears
to be a dim green; the mercury arc light is a highly bright bluish-white light; and the
laser produces an extremely bright and pure red beam. These observations provoke
many questions. What are the attributes of the light sources that cause them to be
perceived differently? Is the spectral energy distribution sufficient to explain the dif-
ferences in perception? If not, what are adequate descriptors of visual perception?
As will be seen, answers to these questions are only partially available.

There are three common perceptual descriptors of a light sensation: brightness,
hue and saturation. The characteristics of these descriptors are considered below.

If two light sources with the same spectral shape are observed, the source of
greater physical intensity will generally appear to be perceptually brighter. How-
ever, there are numerous examples in which an object of uniform intensity appears
not to be of uniform brightness. Therefore, intensity is not an adequate quantitative
measure of brightness.

The attribute of light that distinguishes a red light from a green light or a yellow
light, for example, is called the hue of the light. A prism and slit arrangement
(Figure 2.1-2) can produce narrowband wavelength light of varying color. However,
it is clear that the light wavelength is not an adequate measure of color because
some colored lights encountered in nature are not contained in the rainbow of light
produced by a prism. For example, purple light is absent. Purple light can be pro-
duced by combining equal amounts of red and blue narrowband lights. Other coun-
ter examples exist. If two light sources with the same spectral energy distribution are
observed under identical conditions, they will appear to possess the same hue. How-
ever, it is possible to have two light sources with different spectral energy distribu-
tions that are perceived identically. Such lights are called metameric pairs.

The third perceptual descriptor of a colored light is its saturation, the attribute
that distinguishes a spectral light from a pastel light of the same hue. In effect, satu-
ration describes the whiteness of a light source. Although it is possible to speak of
the percentage saturation of a color referenced to a spectral color on a chromaticity
diagram of the type shown in Figure 3.3-3, saturation is not usually considered to be
a quantitative measure.

FIGURE 2.1-2. Refraction of light from a prism.
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As an aid to classifying colors, it is convenient to regard colors as being points in
some color solid, as shown in Figure 2.1-3. The Munsell system of color
classification actually has a form similar in shape to this figure (3). However, to be
quantitatively useful, a color solid should possess metric significance. That is, a unit
distance within the color solid should represent a constant perceptual color
difference regardless of the particular pair of colors considered. The subject of
perceptually significant color solids is considered later.

2.2. EYE PHYSIOLOGY

A conceptual technique for the establishment of a model of the human visual system
would be to perform a physiological analysis of the eye, the nerve paths to the brain,
and those parts of the brain involved in visual perception. Such a task, of course, is
presently beyond human abilities because of the large number of infinitesimally
small elements in the visual chain. However, much has been learned from physio-
logical studies of the eye that is helpful in the development of visual models (4–7).

FIGURE 2.1-3. Perceptual representation of light.
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Figure 2.2-1 shows the horizontal cross section of a human eyeball. The front  of
the eye is covered by a transparent surface called the cornea. The remaining outer
cover, called the sclera, is composed of a fibrous coat that surrounds the choroid, a
layer containing blood capillaries. Inside the choroid is the retina, which is com-
posed of two types of receptors: rods and cones. Nerves connecting to the retina
leave the eyeball through the optic nerve bundle. Light entering the cornea is

FIGURE 2.2-1. Eye cross section.

FIGURE 2.2-2. Sensitivity of rods and cones based on measurements by Wald.
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focused on the retina surface by a lens that changes shape under muscular control to
perform proper focusing of near and distant objects. An iris acts as a diaphragm to
control the amount of light entering the eye.

The rods in the retina are long, slender receptors; the cones are generally shorter
and thicker in structure. There are also important operational distinctions. The rods
are more sensitive than the cones to light. At low levels of illumination, the rods
provide a visual response called scotopic vision. Cones respond to higher levels of
illumination; their response is called photopic vision. Figure 2.2-2 illustrates the rel-
ative sensitivities of rods and cones as a function of illumination wavelength (7,8).
An eye contains about 6.5 million cones and 100 million rods distributed over the
retina (4). Figure 2.2-3 shows the distribution of rods and cones over a horizontal
line on the retina (4). At a point near the optic nerve called the fovea, the density of
cones is greatest. This is the region of sharpest photopic vision. There are no rods or
cones in the vicinity of the optic nerve, and hence the eye has a blind spot in this
region.

FIGURE 2.2-3. Distribution of rods and cones on the retina.
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In recent years, it has been determined experimentally that there are three basic
types of cones in the retina (9, 10). These cones have different absorption character-
istics as a function of wavelength with peak absorptions in the red, green and blue
regions of the optical spectrum. Figure 2.2-4 shows curves of the measured spectral
absorption of pigments in the retina for a particular subject (10). Two major points
of note regarding the curves are that the  cones, which are primarily responsible
for blue light perception, have relatively low sensitivity, and the absorption curves
overlap considerably. The existence of the three types of cones provides a physio-
logical basis for the trichromatic theory of color vision.

When a light stimulus activates a rod or cone, a photochemical transition occurs,
producing a nerve impulse. The manner in which nerve impulses propagate through
the visual system is presently not well established. It is known that the optic nerve
bundle contains on the order of 800,000 nerve fibers. Because there are over
100,000,000 receptors in the retina, it is obvious that in many regions of the retina,
the rods and cones must be interconnected to nerve fibers on a many-to-one basis.
Because neither the photochemistry of the retina nor the propagation of nerve
impulses within the eye is well understood, a deterministic characterization of the
visual process is unavailable. One must be satisfied with the establishment of mod-
els that characterize, and hopefully predict, human visual response. The following
section describes several visual phenomena that should be considered in the model-
ing of the human visual process.

2.3. VISUAL PHENOMENA

The visual phenomena described below are interrelated, in some cases only mini-
mally, but in others, to a very large extent. For simplification in presentation and, in
some instances, lack of knowledge, the phenomena are considered disjoint.

FIGURE 2.2-4. Typical spectral absorption curves of pigments of the retina.

α
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. 

Contrast Sensitivity. The response of the eye to changes in the intensity of illumina-
tion is known to be nonlinear. Consider a patch of light of intensity  surrounded
by a background of intensity I (Figure 2.3-1a). The just noticeable difference  is to
be determined as a function of I. Over a wide range of intensities, it is found that the
ratio , called the Weber fraction, is nearly constant at a value of about 0.02
(11,12, p. 62). This result does not hold at very low or very high intensities, as illus-
trated by Figure 2.3-1a (13). Furthermore, contrast sensitivity is dependent on the
intensity of the surround. Consider the experiment of Figure 2.3-1b, in which two
patches of light, one of intensity I and the other of intensity , are surrounded
by light of intensity . The Weber fraction  for this experiment is plotted in
Figure 2.3-1b as a function of the intensity of the background. In this situation, it is
found that the range over which the Weber fraction remains constant is reduced con-
siderably compared to the experiment of Figure 2.3-1a. The envelope of the lower
limits of the curves of Figure 2.3-lb is equivalent to the curve of Figure 2.3-1a.
However, the range over which  is approximately constant for a fixed back-
ground intensity  is still comparable to the dynamic range of most electronic
imaging systems.

FIGURE 2.3-1. Contrast sensitivity measurements.
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FIGURE 2.3-2. Mach band effect.
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Because the differential of the logarithm of intensity is

(2.3-1)

equal changes in the logarithm of the intensity of a light can be related to equal just
noticeable changes in its intensity over the region of intensities, for which the Weber
fraction is constant. For this reason, in many image processing systems, operations are
performed on the logarithm of the intensity of an image point rather than the intensity.

Mach Band. Consider the set of gray scale strips shown in of Figure 2.3-2a. The
reflected light intensity from each strip is uniform over its width and differs from its
neighbors by a constant amount; nevertheless, the visual appearance is that each
strip is darker at its right side than at its left. This is called the Mach band effect (14).
Figure 2.3-2c is a photograph of the Mach band pattern of Figure 2.3-2d. In the pho-
tograph, a bright bar appears at position B and a dark bar appears at D. Neither bar
would be predicted purely on the basis of the intensity distribution. The apparent
Mach band overshoot in brightness is a consequence of the spatial frequency
response of the eye. As will be seen shortly, the eye possesses a lower sensitivity to
high and low spatial frequencies than to midfrequencies. The implication for the
designer of image processing systems is that perfect fidelity of edge contours can be
sacrificed to some extent because the eye has imperfect response to high-spatial-
frequency brightness transitions.

Simultaneous Contrast. The simultaneous contrast phenomenon (7) is illustrated in
Figure 2.3-3. Each small square is actually the same intensity, but because of the dif-
ferent intensities of the surrounds, the small squares do not appear equally bright.
The hue of a patch of light is also dependent on the wavelength composition of sur-
rounding light. A white patch on a black background will appear to be yellowish if
the surround is a blue light.

Chromatic Adaption. The hue of a perceived color depends on the adaption of a
viewer (15). For example, the American flag will not immediately appear red, white
and blue if the viewer has  been subjected to high-intensity red light before viewing the
flag. The colors of the flag will appear to shift in hue toward the red complement, cyan.

FIGURE 2.3-3. Simultaneous contrast.

d Ilog( ) dI
I
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Color Blindness. Approximately 8% of the males and 1% of the females in the
world population are subject to some form of color blindness (16, p. 405). There are
various degrees of color blindness. Some people, called monochromats, possess
only rods or rods plus one type of cone, and therefore are only capable of monochro-
matic vision. Dichromats are people who possess two of the three types of cones.
Both monochromats and dichromats can distinguish colors insofar as they have
learned to associate particular colors with particular objects. For example, dark
roses are assumed to be red, and light roses are assumed to be yellow. But if a red
rose were painted yellow such that its reflectivity was maintained at the same value,
a monochromat might still call the rose red. Similar examples illustrate the inability
of dichromats to distinguish hue accurately.

2.4. MONOCHROME VISION MODEL

One of the modern techniques of optical system design entails the treatment of an
optical system as a two-dimensional linear system that is linear in intensity and can
be characterized by a two-dimensional transfer function (17). Consider the linear
optical system of Figure 2.4-1. The system input is a spatial light distribution
obtained by passing a constant-intensity light beam through a transparency with a
spatial sine-wave transmittance. Because the system is linear, the spatial output inten-
sity distribution will also exhibit sine-wave intensity variations with possible changes
in the amplitude and phase of the output intensity compared to the input intensity. By
varying the spatial frequency (number of intensity cycles per linear dimension) of the
input transparency, and recording the output intensity level and phase, it is possible,
in principle, to obtain the optical transfer function (OTF) of the optical system.

Let  represent the optical transfer function of a two-dimensional linear
system where  and  are angular spatial frequencies with
spatial periods  and  in the x and y coordinate directions, respectively. Then,
with  denoting the input intensity distribution of the object and 

FIGURE 2.4-1. Linear systems analysis of an optical system.
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representing the output intensity distribution of the image, the frequency spectra of
the input and output signals are defined as

(2.4-1)

. (2.4-2)

The input and output intensity spectra are related by

. (2.4-3)

The spatial distribution of the image intensity can be obtained by an inverse Fourier
transformation of Eq. 2.4-2, yielding

. (2.4-4)

In many systems, the designer is interested only in the magnitude variations of the
output intensity with respect to the magnitude variations of the input intensity, not
the phase variations. The ratio of the magnitudes of the Fourier transforms of the
input and output signals,

(2.4-5)

is called the modulation transfer function (MTF) of the optical system.
Much effort has been given to application of the linear systems concept to the

human visual system (18–24). A typical experiment to test the validity of the linear
systems model is as follows. An observer is shown two sine-wave grating transpar-
encies, a reference grating of constant contrast and spatial frequency and a variable-
contrast test grating whose spatial frequency is set at a value different from that of
the reference. Contrast is defined as the ratio

where max and min are the maximum and minimum of the grating intensity,
respectively. The contrast of the test grating is varied until the brightnesses of the
bright and dark regions of the two transparencies appear identical. In this manner, it
is possible to develop a plot of the MTF of the human visual system. Figure 2.4-2a is
a hypothetical plot of the MTF as a function of the input signal contrast. Another
indication of the form of the MTF can be obtained by observation of the composite
sine-wave grating of Figure 2.4-3, in which spatial frequency increases in one
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FIGURE 2.4-2. Hypothetical measurements of the spatial frequency response of the human 
visual system.

FIGURE 2.4-3. MTF measurements of the human visual system by modulated sine-wave 
grating.

(a) Sine wave grating

(b) Exponential sine wave grating
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coordinate direction and contrast increases in the other direction. The envelope of the
visible bars generally follows the MTF curves of Figure 2.4-2a (23).

Referring to Figure 2.4-2a, it is observed that the MTF measurement depends on
the input contrast level. Furthermore, if the input sine-wave grating is rotated rela-
tive to the optic axis of the eye, the shape of the MTF is altered somewhat. Thus it
can be concluded that the human visual system, as measured by this experiment, is
nonlinear and anisotropic (rotationally variant).

It has been postulated that the nonlinear response of the eye to intensity varia-
tions is logarithmic in nature and occurs near the beginning of the visual information
processing system, that is, near the rods and cones, before spatial interaction occurs
between visual signals from individual rods and cones. Figure 2.4-4 shows a simple
logarithmic eye model for monochromatic vision. If the eye exhibits a logarithmic
response to input intensity, then if a signal grating contains a recording of an expo-
nential sine wave, that is, , the human visual system can be linear-
ized. A hypothetical MTF obtained by measuring an observer's response to an
exponential sine-wave grating (Figure 2.4-2b) can be fitted reasonably well by a sin-
gle curve for low- and mid-spatial frequencies. Figure 2.4-5 is a plot of the measured
MTF of the human visual system obtained by  Davidson (25) for an exponential
sine-wave test signal. The high-spatial-frequency portion of the curve has been extrap-
olated for an average input contrast.

FIGURE 2.4-4. Logarithmic model of monochrome vision.

FIGURE 2.4-5. MTF measurements with exponential sine-wave grating.
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The logarithmic/linear system eye model of Figure 2.4-4 has proved to provide a
reasonable prediction of visual response over a wide range of intensities. However,
at high spatial frequencies and at very low or very high intensities, observed
responses depart from responses predicted by the model. To establish a more accu-
rate model, it is necessary to consider the physical mechanisms of the human visual
system.

The nonlinear response of rods and cones to intensity variations is still a subject
of active research. Hypotheses have been introduced suggesting that the nonlinearity
is based on chemical activity, electrical effects and neural feedback. The basic loga-
rithmic model assumes the form

(2.4-6)

where the  are constants and  denotes the input field to the nonlinearity
and  is its output. Another model that has been suggested (7, p. 253) follows
the fractional response

(2.4-7)

where  and  are constants. Mannos and Sakrison (26) have studied the effect
of various nonlinearities employed in an analytical visual fidelity measure. Their
results, which are discussed in greater detail in Chapter 3, establish that a power law
nonlinearity of the form

(2.4-8)

where s is a constant, typically 1/3 or 1/2, provides good agreement between the
visual fidelity measure and subjective assessment. The three models for the nonlin-
ear response of rods and cones defined by Eqs. 2.4-6 to 2.4-8 can be forced to a rea-
sonably close agreement over some mid-intensity range by an appropriate choice of
scaling constants.

The physical mechanisms accounting for the spatial frequency response of the eye
are partially optical and partially neural. As an optical instrument, the eye has limited
resolution because of the finite size of the lens aperture, optical aberrations and the
finite dimensions of the rods and cones. These effects can be modeled by a low-pass
transfer function inserted between the receptor and the nonlinear response element.
The most significant contributor to the frequency response of the eye is the lateral
inhibition process (27). The basic mechanism of lateral inhibition is illustrated in
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Figure 2.4-6. A neural signal is assumed to be generated by a weighted contribution
of many spatially adjacent rods and cones. Some receptors actually exert an inhibi-
tory influence on the neural response. The weighting values are, in effect, the
impulse response of the human visual system beyond the retina. The two-dimen-
sional Fourier transform of this impulse response is the post retina transfer function.

When a light pulse is presented to a human viewer, there is a measurable delay in
its perception. Also, perception continues beyond the termination of the pulse for a
short period of time. This delay and lag effect arising from neural temporal response
limitations in the human visual system can be modeled by a linear temporal transfer
function.

Figure 2.4-7 shows a model for monochromatic vision based on results of the
preceding discussion. In the model, the output of the wavelength-sensitive receptor
is fed to a low-pass type of linear system that represents the optics of the eye. Next
follows a general monotonic nonlinearity that represents the nonlinear intensity
response of rods or cones. Then the lateral inhibition process is characterized by a
linear system with a bandpass response. Temporal filtering effects are modeled by
the following linear system. Hall and Hall (28) have investigated this model exten-
sively and have found transfer functions for the various elements that accurately
model the total system response. The monochromatic vision model of Figure 2.4-7,
with appropriately scaled parameters, seems to be sufficiently detailed for most
image processing applications. In fact, the simpler logarithmic model of Figure
2.4-4 is probably adequate for the bulk of applications.

FIGURE 2.4-6. Lateral inhibition effect.
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2.5. COLOR VISION MODEL

There have been many theories postulated to explain human color vision, beginning
with the experiments of Newton and Maxwell (29–32). The classical model of
human color vision, postulated by Thomas Young in 1802 (31), is the trichromatic
model in which it is assumed that the eye possesses three types of sensors, each sen-
sitive over a different wavelength band. It is interesting to note that there was no
direct physiological evidence of the existence of three distinct types of sensors until
about 1960 (9,10).

Figure 2.5-1 shows a color vision model proposed by Frei (33). In this model,
three receptors with spectral sensitivities , which represent the
absorption pigments of the retina, produce signals

(2.5-1a)

(2.5-1b)

(2.5-1c)

where  is the spectral energy distribution of the incident light source. The three
signals  are then subjected to a logarithmic transfer function and combined
to produce the outputs

(2.5-2a)

(2.5-2b)

(2.5-2c)

FIGURE 2.4-7. Extended model of monochrome vision.

s1 λ( ) s2 λ( ) s3 λ( ),,
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C λ( )
e1 e2 e3, ,

d1 e1log=

d2 e2log e1log–
e2

e1
-----log= =
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e3

e1
-----log= =
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38 PSYCHOPHYSICAL VISION PROPERTIES

Finally, the signals  pass through linear systems with transfer functions
, ,  to produce output signals  that provide

the basis for perception of color by the brain.
In the model of Figure 2.5-1, the signals  and  are related to the chromaticity

of a colored light while signal  is proportional to its luminance. This model has
been found to predict many color vision phenomena quite accurately, and also to sat-
isfy the basic laws of colorimetry. For example, it is known that if the spectral
energy of a colored light changes by a constant multiplicative factor, the hue and sat-
uration of the light, as described quantitatively by its chromaticity coordinates,
remain invariant over a wide dynamic range. Examination of Eqs. 2.5-1 and 2.5-2
indicates that the chrominance signals  and  are unchanged in this case, and
that the luminance signal  increases in a logarithmic manner. Other, more subtle
evaluations of the model are described by Frei (33).

As shown in Figure 2.2-4, some indication of the spectral sensitivities  of
the three types of retinal cones has been obtained by spectral absorption measure-
ments of cone pigments. However, direct physiological measurements are difficult
to perform accurately. Indirect estimates of cone spectral sensitivities have been
obtained from measurements of the color response of color-blind people by Konig
and Brodhun (34). Judd (35) has used these data to produce a linear transforma-
tion relating the spectral sensitivity functions  to spectral tristimulus values
obtained by colorimetric testing. The resulting sensitivity curves, shown in Figure
2.5-2, are unimodal and strictly positive, as expected from physiological consider-
ations (34).

The logarithmic color vision model of Figure 2.5-1 may easily be extended, in
analogy with the monochromatic vision model of Figure 2.4-7, by inserting a linear
transfer function after each cone receptor to account for the optical response of the
eye. Also, a general nonlinearity may be substituted for the logarithmic transfer
function. It should be noted that the order of the receptor summation and the transfer
function operations can be reversed without affecting the output, because both are

FIGURE 2.5-1 Color vision model.

d1 d2 d3, ,
H1 ωx ωy,( ) H2 ωx ωy,( ) H3 ωx ωy,( ) g1 g2 g3, ,

d2 d3
d1

d2 d3
d1

si λ( )

si λ( )
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linear operations. Figure 2.5-3 shows the extended model for color vision. It is
expected that the spatial frequency response of the  neural signal through the
color vision model should be similar to the luminance spatial frequency response
discussed in Section 2.4.

2.6. IMAGE MANIPULATION EXERCISES

E2.1 Develop a program that passes a monochrome image through the log part of
the monochrome vision model of Figure 2.4-4. Steps:

(a) Convert an unsigned integer, 8-bit, monochrome source image to float-
ing point datatype.

(b) Scale the source image over the range 1.0 to 100.0.

FIGURE 2.5-2. Spectral sensitivity functions of retinal cones based on Konig’s data.

FIGURE 2.5-3. Extended model of color vision.

g1
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(c) Compute the source image logarithmic lightness function of Eq. 5.3-4.

(d) Scale the log source image for display.

The PIKS API executable example_monochrome_vision performs this exer-
cise.

E2.2 Develop a program that passes an unsigned integer, monochrome image
through a lookup table with a square root function. Steps:

(a) Read an unsigned integer, 8-bit, monochrome source image from a file.

(b) Display the source image.

(c) Allocate a 256 level lookup table.

(d) Load the lookup table with a square root function.

(e) Pass the source image through the lookup table.

(f) Display the destination image.

The PIKS API executable example_lookup_monochrome_ND performs this
exercise.

E2.3 Develop a program that passes a signed integer, monochrome image through
a lookup table with a square root function. Steps:

(a) Read a signed integer, 16-bit, monochrome source image from a file.

(b) Linearly scale the source image over its maximum range and display it.

(c) Allocate a 32,768 level lookup table.

(d) Load the lookup table with a square root function over the source image
maximum range.

(e) Pass the source image through the lookup table.

(f) Linearly scale the destination image over its maximum range and display
it.

The PIKS API executable example_lookup_monochrome_SD performs this
exercise.
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PHOTOMETRY AND COLORIMETRY

Chapter 2 dealt with human vision from a qualitative viewpoint in an attempt to
establish models for monochrome and color vision. These models may be made
quantitative by specifying measures of human light perception. Luminance mea-
sures are the subject of the science of photometry, while color measures are treated
by the science of colorimetry.

3.1. PHOTOMETRY

A source of radiative energy may be characterized by its spectral energy distribution
, which specifies the time rate of energy the source emits per unit wavelength

interval. The total power emitted by a radiant source, given by the integral of the
spectral energy distribution,

(3.1-1)

is called the radiant flux of the source and is normally expressed in watts (W).
A body that exists at an elevated temperature radiates electromagnetic energy

proportional in amount to its temperature. A blackbody is an idealized type of heat
radiator whose radiant flux is the maximum obtainable at any wavelength for a body

C λ( )

P C λ( ) λd
0

∞

=

Download more at Learnclax.com



44 PHOTOMETRY AND COLORIMETRY

at a fixed temperature. The spectral energy distribution of a blackbody is given by
Planck’s law (1):

(3.1-2)

where  is the radiation wavelength, T is the temperature of the body and  and 
are constants. Figure 3.1-1a is a plot of the spectral energy of a blackbody as a func-
tion of temperature and wavelength. In the visible region of the electromagnetic
spectrum, the blackbody spectral energy distribution function of Eq. 3.1-2 can be
approximated by Wien’s radiation law (1):

. (3.1-3)

Wien’s radiation function is plotted in Figure 3.1-1b over the visible spectrum.
The most basic physical light source, of course, is the sun. Figure 2.1-1a shows a

plot of the measured spectral energy distribution of sunlight (2). The dashed line in
this figure, approximating the measured data, is a 6000 kelvin (K) blackbody curve.
Incandescent lamps are often approximated as blackbody radiators of a given tem-
perature in the range 1500 to 3500 K (3).

The Commission Internationale de l'Eclairage (CIE), which is an international
body concerned with standards for light and color, has established several standard
sources of light, as illustrated in Figure 3.1-2 (4). Source SA is a tungsten filament
lamp. Over the wavelength band 400 to 700 nm, source SB approximates direct sun-
light and source SC approximates light from an overcast sky. A hypothetical source,
called Illuminant E, is often employed in colorimetric calculations. Illuminant E is
assumed to emit constant radiant energy at all wavelengths.

FIGURE 3.1-1. Blackbody radiation functions.

(a) Planck’s law (b) Wien’s law
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PHOTOMETRY 45

Cathode ray tube (CRT) phosphors have often been utilized as light sources in
image processing systems. Figure 3.1-3 describes the spectral energy distributions of
common phosphors (5). Monochrome television receivers generally use a P4 phos-
phor, which provides a relatively bright blue-white display. Color television displays
utilize cathode ray tubes with red, green and blue emitting phosphors arranged in
triad dots or strips. The P22 phosphor is typical of the spectral energy distribution of
commercial phosphor mixtures. Liquid crystal displays (LCDs) typically project a
white light through red, green and blue vertical strip pixels. Figure 3.1-4 is a plot of
typical color filter transmissivities (6).
 

FIGURE 3.1-2. CIE standard illumination sources.

FIGURE 3.1-3. Spectral energy distribution of CRT phosphors.

P4 phosphor P22 phosphor
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Photometric measurements seek to describe quantitatively the perceptual bright-
ness of visible electromagnetic energy (7,8). The link between photometric mea-
surements and radiometric measurements (physical intensity measurements) is the
photopic luminosity function, as shown in Figure 3.1-5a (9). This curve, which is a
CIE standard, specifies the spectral sensitivity of the human visual system to optical
radiation as a function of wavelength for a typical person referred to as the standard
observer. In essence, the curve is a standardized version of the measurement of cone
sensitivity given in Figure 2.2-2 for photopic vision at relatively high levels of illu-
mination. The standard luminosity function for scotopic vision at relatively low
levels of illumination is illustrated in Figure 3.1-5b. Most imaging system designs
are based on the photopic luminosity function, commonly called the relative lumi-
nous efficiency.

The perceptual brightness sensation evoked by a light source with spectral energy
distribution  is specified by its luminous flux, as defined by

(3.1-4)

where  represents the relative luminous efficiency and  is a scaling con-
stant. The modern unit of luminous flux is the lumen (lm), and the corresponding
value for the scaling constant is  = 685 lm/W. An infinitesimally narrowband

FIGURE 3.1-4. Transmissivities of LCD color filters.
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source of 1 W of light at the peak wavelength of 555 nm of the relative luminous
efficiency curve therefore results in a luminous flux of 685 lm.

3.2. COLOR MATCHING

The basis of the trichromatic theory of color vision is that it is possible to match
an arbitrary color by superimposing appropriate amounts of three primary colors
(10–14). In an additive color reproduction system such as color television, the
three primaries are individual red, green and blue light sources that are projected
onto a common region of space to reproduce a colored light. In a subtractive color
system, which is the basis of most color photography and color printing, a white
light sequentially passes through cyan, magenta and yellow filters to reproduce a
colored light.

3.2.1. Additive Color Matching

An additive color-matching experiment is illustrated in Figure 3.2-1. In Figure
3.2-1a, a patch of light (C) of arbitrary spectral energy distribution , as shown
in Figure 3.2-2a, is assumed to be imaged onto the surface of an ideal diffuse
reflector (a surface that reflects uniformly over all directions and all wavelengths).
A reference white light (W) with an energy distribution, as in Figure 3.2-2b, is
imaged onto the surface along with three primary lights (P1), (P2), (P3) whose
spectral energy distributions are sketched in Figure 3.2-2c to e. The three primary
lights are first overlapped and their intensities are adjusted until the overlapping
region of the three primary lights perceptually matches the reference white in terms
of brightness, hue and saturation. The amounts of the three primaries ,

,  are then recorded in some physical units, such as watts. These are
the matching values of the reference white. Next, the intensities of the primaries
are adjusted until a match is achieved with the colored light (C), if a match is pos-
sible. The procedure to be followed if a match cannot be achieved is considered
later. The intensities of the primaries , ,  when a match is

FIGURE 3.1-5. Relative luminous efficiency functions.

(a) Photopic luminosity function (b) Scotopic luminosity function

C λ( )

A1 W( )
A2 W( ) A3 W( )
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obtained are recorded, and normalized matching values , , ,
called tristimulus values, are computed as

, , . (3.2-1)

If a match cannot be achieved by the procedure illustrated in Figure 3.2-1a, it is 
often possible to perform the color matching outlined in Figure 3.2-1b. One of the

FIGURE 3.2-1. Color matching.

(c) One primary match

(b) Two primary match

(a) Three primary match

T1 C( ) T2 C( ) T3 C( )

T1 C( )
A1 C( )
A1 W( )
----------------= T2 C( )

A2 C( )
A2 W( )
----------------= T3 C( )

A3 C( )
A3 W( )
----------------=
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primaries,  say (P3), is superimposed with the light (C), and the intensities of all
three primaries are adjusted until a match is achieved between the overlapping
region of primaries (P1) and (P2) with the overlapping region of (P3) and (C). If
such a match is obtained, the tristimulus values are

, , . (3.2-2)

In this case, the tristimulus value  is negative. If a match cannot be achieved
with this geometry, a match is attempted between (P1) plus (P3) and (P2) plus (C). If
a match is achieved by this configuration, tristimulus value  will be negative.
If this configuration fails, a match is attempted between (P2) plus (P3) and (P1) plus
(C). A correct match is denoted with a negative value for .

FIGURE 3.2-2. Spectral energy distributions.
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Finally, in the rare instance in which a match cannot be achieved by either of the
configurations of Figure 3.2-1a or b, two of the primaries are superimposed with (C)
and an attempt is made to match the overlapped region with the remaining primary.
In the case illustrated in Figure 3.2-1c, if a match is achieved, the tristimulus values
become

, , . (3.2-3)

If a match is not obtained by this configuration, one of the other two possibilities
will yield a match.

The process described above is a direct method for specifying a color quantita-
tively. It has two drawbacks: The method is cumbersome and it depends on the per-
ceptual variations of a single observer. In Section 3.3, standardized quantitative
color measurement is considered in detail.

3.2.2. Subtractive Color Matching

A subtractive color-matching experiment is shown in Figure 3.2-3. An illumina-
tion source with spectral energy distribution  passes sequentially through
three dye filters that are nominally cyan, magenta and yellow. The spectral absorp-
tion of the dye filters is a function of the dye concentration. It should be noted that
the spectral transmissivities of practical dyes change shape in a nonlinear manner
with dye concentration.

 In the first step of the subtractive color-matching process, the dye concentrations
of the three spectral filters are varied until a perceptual match is obtained with a refer-
ence white (W). The dye concentrations are the matching values of the color match

, , . Next, the three dye concentrations are varied until a match is
obtained with a desired color (C). These matching values , are
then used to compute the tristimulus values , , , as in  Eq. 3.2-
1.

FIGURE 3.2-3. Subtractive color matching.
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It should be apparent that there is no fundamental theoretical difference between
color matching by an additive or a subtractive system. In a subtractive system, the
yellow dye acts as a variable absorber of blue light, and with ideal dyes, the yellow
dye effectively forms a blue primary light. In a similar manner, the magenta filter
ideally forms the green primary, and the cyan filter ideally forms the red primary.
Subtractive color systems ordinarily utilize cyan, magenta and yellow dye spectral
filters rather than red, green and blue dye filters because the cyan, magenta and yel-
low filters are notch filters, which permit a greater transmission of light energy than
do narrowband red, green and blue bandpass filters. In color printing, a fourth filter
layer of variable gray level density is often introduced to achieve a higher contrast in
reproduction because common dyes do not possess a wide density range.

3.2.3. Axioms of Color Matching

The color-matching experiments described for additive and subtractive color match-
ing have been performed quite accurately by a number of researchers. It has been
found that perfect color matches sometimes cannot be obtained at either very high or
very low levels of illumination. Also, the color matching results do depend to some
extent on the spectral composition of the surrounding light. Nevertheless, the simple
color matching experiments have been found to hold over a wide range of condi-
tions.

Grassman (15) has developed a set of eight axioms that define trichromatic color
matching and that serve as a basis for quantitative color measurements. In the
following presentation of these axioms, the symbol  indicates the set intersec-
tion; the symbol  indicates a color match; the symbol  indicates an additive color
mixture; the symbol  indicates units of a color. These axioms are:

1. Any color can be matched by a mixture of no more than three colored lights.

2. A color match at one radiance level holds over a wide range of levels.

3. Components of a mixture of colored lights cannot be resolved by the human eye.

4. The luminance of a color mixture is equal to the sum of the luminance of its
components.

5. Law of addition. If color (M) matches color (N) and color (P) matches color (Q),
then color (M) mixed with color (P) matches color (N) mixed with color (Q):

. (3.2-4)

6. Law of subtraction. If the mixture of (M) plus (P) matches the mixture of (N)
plus (Q) and if (P) matches (Q), then (M) matches (N):

. (3.2-5)

7. Transitive law. If (M) matches (N) and if (N) matches (P), then (M) matches (P):

. (3.2-6)

∩
 ⊕

•

M( ) N( ) P( ) Q( ) M( ) P( )⊕[ ] N( ) Q( )⊕[ ]∩

M( ) P( )⊕[ ] N( ) Q( )⊕[ ] P( ) Q( )[ ]∩ M( ) N( )

M( ) N( )[ ] N( ) P( )[ ]∩ M( ) P( )
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8. Color matching. (a) c units of (C) matches the mixture of m units of (M) plus
n units of (N) plus p units of (P): 

. (3.2-7)

or (b) a mixture of c units of C plus m units of M matches the mixture of n
units of N plus p units of P:

. (3.2-8)

or (c) a mixture of c units of (C) plus m units of (M) plus n units of (N) matches
p units of P:

. (3.2-9)

With Grassman's laws now specified, consideration is given to the development of a
quantitative theory for color matching.

3.3. COLORIMETRY CONCEPTS

Colorimetry is the science of quantitatively measuring color. In the trichromatic
color system, color measurements are in terms of the tristimulus values of a color or
a mathematical function of the tristimulus values.

Referring to Section 3.2.3, the axioms of color matching state that a color C can
be matched by three primary colors P1, P2, P3. The qualitative match is expressed as

. (3.3-1)

where , ,  are the matching values of the color (C). Because the
intensities of incoherent light sources add linearly, the spectral energy distribution
of a color mixture is equal to the sum of the spectral energy distributions of its
components. As a consequence of this fact and Eq. 3.3-1, the spectral energy dis-
tribution  can be replaced by its color-matching equivalent according to the
relation

. (3.3-2)

Equation 3.3-2 simply means that the spectral energy distributions on both sides of
the equivalence operator  evoke the same color sensation. Color matching is usu-
ally specified in terms of tristimulus values, which are normalized matching values,
as defined by

c C• m M( )•[ ] n N( )•[ ] p P( )•[ ]⊕ ⊕

c C( )•[ ] m M( )•[ ] n N( )•[ ] p P( )•[ ]⊕⊕

c C( )•[ ] m M( )•[ ] n N( )•[ ]⊕ ⊕ p P( )•[ ]

C( ) A1 C( ) P1( )•[ ] A2 C( ) P2( )•[ ] A3 C( ) P3( )•[ ]⊕ ⊕

A1 C( ) A2 C( ) A3 C( )

C λ( )

C λ( ) A1 C( )P1 λ( ) A2 C( )P2 λ( ) A3 C( )P3 λ( )+ + Aj C( )Pj λ( )
j 1=

3

=
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(3.3-3)

where  represents the matching value of the reference white. By this substitu-
tion, Eq. 3.3-2 assumes the form

. (3.3-4)

From Grassman’s fourth law, the luminance of a color mixture Y(C) is equal to
the luminance of its primary components. Hence

(3.3-5a)

or

(3.3-5b)

where  is the relative luminous efficiency and  represents the spectral
energy distribution of a primary. Equations 3.3-4 and 3.3-5 represent the quantita-
tive foundation for colorimetry.1

3.3.1. Tristimulus Value Calculation

It is possible indirectly to compute the tristimulus values of an arbitrary color for
a particular set of primaries if the tristimulus values of the spectral colors (nar-
rowband light) are known for that set of primaries. Figure 3.3-1 is a typical
sketch of the tristimulus values required to match a unit energy spectral color
with three arbitrary primaries. These tristimulus values, which are fundamental
to the definition of a primary system, are denoted as , , ,
where  is a particular wavelength in the visible region. A unit energy spectral
light ( ) at wavelength  with energy distribution  is matched accord-
ing to the equation

. (3.3-6)

1.In Digital Image Processsing, Fourth Edition, Pratt shows that the color vision
model presented in Section 2.5 satisfies the axioms of color matching.
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Now, consider an arbitrary color (C) with spectral energy distribution . At
wavelength ,  units of the color are matched by , ,

 tristimulus units of the primaries as governed by

. (3.3-7)

Integrating each side of Eq. 3.3-7 over  and invoking the sifting integral gives the
cone signal for the color (C). Thus

.

(3.3-8)

The tristimulus values of (C) must be equivalent to the second integral on the right
of Eq. 3.3-8. Hence

. (3.3-9)

From Figure 3.3-1 it is seen that the tristimulus values may be negative at some
wavelengths. Because the tristimulus values represent units of energy, the physical
interpretation of this mathematical result is that a color match can be obtained by
adding the primary with negative tristimulus value to the original color and then
matching this resultant color with the remaining primary. In this sense, any color can
be matched by any set of primaries. However, from a practical viewpoint, negative
tristimulus values are not physically realizable, and hence there are certain colors
that cannot be matched in a practical color display (e.g., a color television receiver)
with fixed primaries. Fortunately, it is possible to choose primaries so that most
commonly occurring natural colors can be matched.

FIGURE 3.3-1. Tristimulus values of typical red, green and blue primaries required to match 
unit energy throughout the spectrum.
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The three tristimulus values T1, T2, T'3 can be considered to form the three axes of a
color space as illustrated in Figure 3.3-2. A particular color may be described as a
vector in the color space, but it must be remembered that it is the coordinates of the
vectors (tristimulus values), rather than the vector length, that specify the color. In
Figure 3.3-2, a triangle, called a Maxwell triangle, has been drawn between the three
primaries. The intersection point of a color vector with the triangle gives an indica-
tion of the hue and saturation of the color in terms of the distances of the point from
the vertices of the triangle.

Often the luminance of a color is not of interest in a color match. In such situa-
tions, the hue and saturation of color (C) can be described in terms of chromaticity
coordinates, which are normalized tristimulus values, as defined by

FIGURE 3.3-2. Color space for typical red, green and blue primaries.

FIGURE 3.3-3. Chromaticity diagram for typical red, green and blue primaries.
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, (3.3-10a)

, (3.3-10b)

. (3.3-10c)

Clearly, , and hence only two chromaticity coordinates are necessary
to describe a color match. Figure 3.3-3 is a plot of the chromaticity coordinates of
the spectral colors for typical primaries. Only those colors within the triangle
defined by the three primaries are realizable by physical primary light sources.

3.3.2. Luminance Calculation

The tristimulus values of a color specify the amounts of the three primaries
required to match a color where the units are measured relative to a match of a
reference white. Often, it is necessary to determine the absolute rather than the
relative amount of light from each primary needed to reproduce a color match.
This information is found from luminance measurements of calculations of a
color match.

From Eq. 3.3-5 it is noted that the luminance of a matched color Y(C) is equal to
the sum of the luminances of its primary components according to the relation

. (3.3-11)

The integrals of Eq. 3.3-11,

(3.3-12)

are called luminosity coefficients of the primaries. These coefficients represent the
luminances of unit amounts of the three primaries for a match to a specific reference
white. Hence, the luminance of a matched color can be written as

. (3.3-13)

Multiplying the right and left sides of Eq. 3.3-13 by the right and left sides, respec-
tively, of the definition of the chromaticity coordinate

(3.3-14)
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and rearranging gives

. (3.3-15a)

Similarly,

(3.3-15b)

. (3.3-15c)

Thus, if the tristimulus values are known for a given set of primaries, conversion to
another set of primaries merely entails a simple linear transformation of coordinates
(16).

3.4. COLOR SPACES

It has been shown that a color (C) can be matched by its tristimulus values ,
,  for a given set of primaries. Alternatively, the color may be specified

by its chromaticity values ,  and its luminance Y(C). Appendix 2 presents
formulas for color coordinate conversion between tristimulus values and chromatic-
ity coordinates for various representational combinations. A third approach in speci-
fying a color is to represent the color by a linear or nonlinear invertible function of
its tristimulus or chromaticity values.

In this section, several standard and nonstandard color spaces for the representa-
tion of color images are described. They are categorized as colorimetric, subtractive,
video or nonstandard. Figure 3.4-1 illustrates the relationship between these color
spaces. The figure also lists several example color spaces.

Natural color images, as opposed to computer-generated images, usually origi-
nate from a color scanner or a color video camera. These devices incorporate three
sensors that are spectrally sensitive to the red, green and blue portions of the light
spectrum. The color sensors typically generate red, green and blue color signals that
are linearly proportional to the amount of red, green and blue light detected by each
sensor. These signals are linearly proportional to the tristimulus values of a color at
each pixel. As indicated in Figure 3.4-1, linear RGB images are the basis for the gen-
eration of the various color space image representations.

T1 C( )
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--------------------------------------------------------------------------------------------------=
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3.4.1. Colorimetric Color Spaces

The class of colorimetric color spaces includes all linear RGB images and the stan-
dard colorimetric images derived from them by linear and nonlinear intercomponent
transformations.

FIGURE 3.4-1. Relationship of color spaces.

FIGURE 3.4-2. Tristimulus values of CIE spectral primaries required to match unit energy 
throughout the spectrum. Red = 700 nm, green = 546.1 nm and blue = 435.8 nm.
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RCGCBC Spectral Primary Color Coordinate System. In 1931, the CIE developed
a standard primary reference system with three monochromatic primaries at wave-
lengths: red = 700 nm; green = 546.1 nm; blue = 435.8 nm (11). The units of the tris-
timulus values are such that the tristimulus values RC, GC, BC are equal when
matching an equal-energy white, called Illuminant E, throughout the visible spectrum.
The primary system is defined by tristimulus curves of the spectral colors, as shown in
Figure 3.4-2. These curves have been obtained indirectly by experimental color-
matching experiments performed by a number of observers. The collective color-
matching response of these observers has been called the CIE Standard Observer. Fig-
ure 3.4-3 is a chromaticity diagram for the CIE spectral coordinate system.
 

RNGNBN NTSC Receiver Primary Color Coordinate System. When the United
Sates color television system was standardized in 1953 (14), commercial television
receivers employed a cathode ray tube with three phosphors that glow in the red, green
and blue regions of the visible spectrum. Although the phosphors of commercial
television receivers differ from manufacturer to manufacturer,  it is common prac-
tice to reference them to the National Television Systems Committee (NTSC) receiver
phosphor standard (14). The standard observer data for the CIE spectral primary sys-
tem is related to the NTSC primary system by a pair of linear coordinate conversions.

Figure 3.4-4 is a chromaticity diagram for the NTSC primary system. In this
system, the units of the tristimulus values are normalized so that the tristimulus

FIGURE 3.4-3. Chromaticity diagram for CIE spectral primary system.
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values are equal when matching the Illuminant C white reference. The NTSC
phosphors are not pure monochromatic sources of radiation, and hence the gamut
of colors producible by the NTSC phosphors is smaller than that available from the
spectral primaries. This fact is clearly illustrated by Figure 3.4-3, in which the
gamut of NTSC reproducible colors is plotted in the spectral primary chromaticity
diagram (11). In modern practice, the NTSC chromaticities are combined with
Illuminant D65.

REGEBE EBU Receiver Primary Color Coordinate System. The European Broa-
dcast Union (EBU) has established a receiver primary system whose chromatici-
ties are close in value to the CIE chromaticity coordinates, and the reference
white is Illuminant C (17). The EBU chromaticities are also combined with the
D65 illuminant.

RRGRBR CCIR Receiver Primary Color Coordinate Systems. In 1990, the Inter-
national Telecommunications Union (ITU) issued its Recommendation 601, which

specified the receiver primaries for standard resolution digital television (18). Also,
in 1990, the ITU published its Recommendation 709 for digital high-definition
television systems (19). Both standards are popularly referenced as CCIR Rec. 601
and CCIR Rec. 709, abbreviations of the former name of the standards committee,
Comité Consultatif International des Radiocommunications.

RSGSBS SMPTE Receiver Primary Color Coordinate System. The Society of
Motion Picture and Television Engineers (SMPTE) has established a standard
receiver primary color coordinate system with primaries that match modern receiver

FIGURE 3.4-4. Chromaticity diagram for NTSC receiver phosphor primary system.
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phosphors better than did the older NTSC primary system (20). In this coordinate
system, the reference white is Illuminant D65.

XYZ Color Coordinate System. In the CIE spectral primary system, the tristimulus
values required to achieve a color match are sometimes negative. The CIE has
developed a standard artificial primary coordinate system in which all tristimulus
values required to match colors are positive (4). These artificial primaries are
shown in the CIE primary chromaticity diagram of Figure 3.4-3 (11). The XYZ sys-
tem primaries have been chosen so that the Y tristimulus value is equivalent to the
luminance of the color to be matched. Figure 3.4-5 is the chromaticity diagram for
the CIE XYZ primary system referenced to equal-energy white (4).

The linear transformations between RCGCBC and XYZ are given by

(3.4-1a)

FIGURE 3.4-5. Chromaticity diagram for CIE XYZ primary system.

X

Y

Z

0.49018626 0.30987954 0.19993420

0.17701522 0.81232418 0.01066060

0.00000000 0.01007720 0.98992280

RC

GC

BC

=
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. (3.4-1b)

The color conversion matrices of Eq. 3.4-1 and those color conversion matrices
defined later are quoted to eight decimal places (21,22). In many instances, this quo-
tation is to a greater number of places than the original specification. The number of
places has been increased to reduce computational errors when concatenating trans-
formations between color representations.

The color conversion matrix between XYZ and any other linear RGB color space
can be computed by the following algorithm.

1. Compute the colorimetric weighting coefficients a(1), a(2), a(3) from

(3.4-2a)

where xk, yk, zk are the chromaticity coordinates of the RGB primary set.

2. Compute the RGB-to-XYZ conversion matrix.

. (3.4-2b)

The XYZ-to-RGB conversion matrix is, of course, the matrix inverse of . Table
3.4-1 lists the XYZ tristimulus values of several standard illuminates. The XYZ
chromaticity coordinates of the standard linear RGB color systems are presented in
Table 3.4-2.

From Eqs. 3.4-1 and 3.4-2 it is possible to derive a matrix transformation
between RCGCBC and any linear colorimetric RGB color space. Reference (22) lists
the transformation matrices between the standard RGB color coordinate systems
and XYZ and UVW, defined below.

RC
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BC

2.36353918 0.89582361– 0.46771557–
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UVW Uniform Chromaticity Scale Color Coordinate System. In 1960, the CIE
adopted a coordinate system, called the Uniform Chromaticity Scale (UCS), in
which, to a good approximation, equal changes in the chromaticity coordinates
result in equal, just noticeable changes in the perceived hue and saturation of a
color. The V component of the UCS coordinate system represents luminance. The
u, v chromaticity coordinates are related to the x, y chromaticity coordinates by the
relations (23):

TABLE 3.4-1. XYZ Tristimulus Values of Standard Illuminates

Illuminant X0 Y0 Z0

A 1.098700 1.000000 0.355900

C 0.980708 1.000000 1.182163

D50 0.964296 1.000000 0.825105

D65 0.950456 1.000000 1.089058

E 1.000000 1.000000 1.000000

TABLE 3.4-2. XYZ Chromaticity Coordinates of Standard Primaries

Standard x y z

CIE   RC 0.640000 0.330000 0.030000

 GC 0.300000 0.600000 0.100000

BC 0.150000 0.06000 0.790000

NTSC  RN 0.670000 0.330000 0.000000

GN 0.210000 0.710000 0.080000

BN 0.140000 0.080000 0.780000

SMPTE RS 0.630000 0.340000 0.030000

GS 0.310000 0.595000 0.095000

BS 0.155000 0.070000 0.775000

EBU RE 0.640000 0.330000 0.030000

GE 0.290000 0.60000 0.110000

BE 0.150000 0.060000 0.790000

CCIR RR 0.640000 0.330000 0.030000

GR 0.30000 0.600000 0.100000

BR 0.150000 0.060000 0.790000
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(3.4-3a)

(3.4-3b)

(3.4-3c)

(3.4-3d)

Figure 3.4-6 is a UCS chromaticity diagram.
The tristimulus values of the uniform chromaticity scale coordinate system UVW

are related to the tristimulus values of the spectral coordinate primary system by

(3.4-4a)

. (3.4-4b)

FIGURE 3.4-6. Chromaticity diagram for CIE uniform chromaticity scale primary system.
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U*V*W* Color Coordinate System. The U*V*W* color coordinate system, adopted
by the CIE in 1964, is an extension of the UVW coordinate system in an attempt to
obtain a color solid for which unit shifts in luminance and chrominance are uniformly
perceptible. The U*V*W* coordinates are defined as (24)

(3.4-5a)

(3.4-5b)

(3.4-5c)

where the luminance Y is measured over a scale of 0.0 to 1.0 and uo and vo are the
chromaticity coordinates of the reference illuminant.

The UVW and U*V*W* coordinate systems were rendered obsolete in 1976 by
the introduction by the CIE of the more accurate L*a*b* and L*u*v* color coordi-
nate systems. Although depreciated by the CIE, much valuable data has been col-
lected in the UVW and U*V*W* color systems.

L*a*b* Color Coordinate System. The L*a*b* cube root color coordinate system
was developed to provide a computationally simple measure of color in agreement
with the Munsell color system (25). The color coordinates are:

for (3.4-6a)

for (3.4-6b)

(3.4-6c)

(3.4-6d)

where

for (3.4-6e)

for (3.4-6f)

The terms Xo, Yo, Zo are the tristimulus values for the reference white. Basically, L*
is correlated with brightness, a* with redness-greenness and b* with yellowness-
blueness. The inverse relationship between L*a*b* and XYZ is
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(3.4-7a)

(3.4-7b)

(3.4-7c)

where

for (3.4-7d)

for (3.4-7e)

L*u*v* Color Coordinate System. The L*u*v* coordinate system (26), which has
evolved from the L*a*b* and the U*V*W* coordinate systems, became a CIE stan-
dard in 1976. It is defined as

for (3.4-8a)

for (3.4-8b)

 (3.4-8c)

(3.4-8d)

where

(3.4-8e)

(3.4-8f)

and  and  are obtained by substitution of the tristimulus values Xo, Yo, Zo for
the reference white. The inverse relationship is given by:

(3.4-9a)

(3.4-9b)
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(3.4-9c)

where

(3.4-9d)

. (3.4-9e)

Figure 3.4-7 shows the linear RGB components of an NTSC receiver primary
color image. If printed properly, the color image and its monochromatic component
images will appear to be of “normal” brightness. When displayed electronically, the
linear images will appear too dark. Section 3.4.3 discusses the proper display of
electronic images. Figures 3.4-8 to 3.4-10 show the XYZ, Yxy and L*a*b* compo-
nents of Figure 3.4-7. Section 10.1.1 describes amplitude-scaling methods for the dis-
play of image components outside the unit amplitude range. The amplitude range of
each component is printed below each photograph.

3.4.2. Subtractive Color Spaces

The color printing and color photographic processes are based on a subtractive
color representation. In color printing, the linear RGB color components are trans-
formed to cyan (C), magenta (M) and yellow (Y) inks, which are overlaid at each
pixel on a, usually, white paper. The simplest transformation relationship is:

(3.4-10a)

(3.4-10b)

(3.4-10c)

where the linear RGB components are tristimulus values over [0.0, 1.0]. The inverse
relations are:

(3.4-11a)

(3.4-11b)

. (3.4-11c)

Z Y
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In high-quality printing systems, the RGB-to-CMY transformations, which are usu-
ally proprietary, involve color component cross-coupling and point nonlinearities.

To achieve dark black printing without using excessive amounts of CMY inks, it
is common to add a fourth component, a black ink, called the key (K) or black com-
ponent. The black component is set proportional to the smallest of the CMY compo-
nents as computed by Eq. 3.4-10. The common RGB-to-CMYK transformation,
which is based on the undercolor removal algorithm (27), is:

FIGURE 3.4-7. Linear RGB components of the dolls_linear color image. For mono-
chrome printers and displays, see the web site for a color representation of this figure.

(a) Linear color (b) Linear R, 0.000 to 0.965

(c) Linear G, 0.000 to 1.000 (d) Linear B, 0.000 to 0.965
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(3.4-12a)

(3.4-12b)

(3.4-12c)

(3.4-12d)

where

. (3.4-12e)

FIGURE 3.4-8. XYZ components of the dolls_linear color image.

C 1.0 R– uKb–=

M 1.0 G– uKb–=

Y 1.0 B– uKb–=

K bKb=

Kb MIN 1.0 R 1.0 G 1.0 B–,–,–{ }=
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and  is the undercolor removal factor and  is the blackness
factor. Figure 3.4-11 presents the CMY components of the color image of Figure 3.4-7.

3.4.3. Video Color Spaces

The red, green and blue signals from video camera sensors typically are linearly pro-
portional to the light striking each sensor. However, the light generated by cathode
tube displays is approximately proportional to the display amplitude drive signals

FIGURE 3.4-9. Yxy components of the dolls_linear color image.

0.0 u 1.0≤ ≤ 0.0 b 1.0≤ ≤
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raised to a power in the range 2.0 to 3.0 (28). To obtain a good-quality display, it is
necessary to compensate for this point nonlinearity. The compensation process, called
gamma correction, involves passing the camera sensor signals through a point nonlin-
earity with a power, typically, of about 0.45. In television systems, to reduce receiver
cost, gamma correction is performed at the television camera rather than at the
receiver. A linear RGB image that has been gamma corrected is called a gamma RGB
image. Liquid crystal displays are reasonably linear in the sense that the light gener-
ated is approximately proportional to the display amplitude drive signal. But because
LCDs are used in lieu of CRTs in many applications, they usually employ circuitry to
compensate for the gamma correction at the sensor.

FIGURE 3.4-10. L*a*b* components of the dolls_linear color image.
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In high-precision applications, gamma correction follows a linear law for low-
amplitude components and a power law for high-amplitude components according
to the relations (22)

for (3.4-13a)

for (3.4-13b)

where K denotes a linear RGB component and  is the gamma-corrected compo-
nent. The constants ck and the breakpoint b are specified in Table 3.4-3 for the

FIGURE 3.4-11. CMY components of the dolls_linear color image.

K̃ c1K
c2 c3+= K b≥

K̃ c4K= 0.0 K b<≤

K̃
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general case and for conversion to the SMPTE, CCIR and CIE lightness compo-
nents. Figure 3.4-12 is a plot of the gamma correction curve for the CCIR Rec.
709 primaries.

The inverse gamma correction relation is:

for (3.4-14a)

for (3.4-14b)

TABLE 3.4-3. Gamma Correction Constants

General SMPTE CCIR CIE L*

c1 1.00 1.1115 1.099 116.0

c2 0.45 0.45 0.45 0.3333

c3 0.00 −0.1115 −0.099 −16.0

c4 0.00 4.0 4.5 903.3

b 0.00 0.0228 0.018 0.008856

FIGURE 3.4-12. Gamma correction curve for the CCIR Rec. 709 primaries.
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Figure 3.4-13 shows the gamma RGB components of the color image of Figure 3.4-7.
The gamma color image is printed in the color insert. The gamma components have
been printed as if they were linear components to illustrate the effects of the point
transformation. When viewed on an electronic display, the gamma RGB color image
will appear to be of “normal” brightness.

YIQ NTSC Transmission Color Coordinate System. In the development of the
color television system in the United States, the NTSC formulated a color coordi-
nate system for transmission composed of three values, Y, I, Q (14). The Y value,
called luma, is proportional to the gamma-corrected luminance of a color. The
other two components, I and Q, called chroma, jointly describe the hue and saturation

FIGURE 3.4-13. Gamma RGB components of the dolls_gamma color image. For mono-
chrome printers and displays, see the web site for a color representation of this figure.

(a) Gamma color (b) Gamma R, 0.000 to 0.984

(c) Gamma G, 0.000 to 1.000 (d) Gamma B, 0.000 to 0.984
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attributes of an image. The reasons for transmitting the YIQ components rather than
the gamma-corrected  components directly from a color camera were two
fold: The Y signal alone could be used with existing monochrome receivers to dis-
play monochrome images; and it was found possible to limit the spatial bandwidth
of the I and Q signals without noticeable image degradation. As a result of the latter
property, a clever analog modulation scheme was developed such that the bandwidth
of a color television carrier could be restricted to the same bandwidth as a mono-
chrome carrier.

The YIQ transformations for an Illuminant C reference white are given by:

(3.4-15a)

(3.4-15b)

where the tilde denotes that the component has been gamma corrected.
Figure 3.4-14 presents the YIQ components of the gamma color image of Figure

3.4-13.

YUV EBU Transmission Color Coordinate System. In the PAL and SECAM
color television systems (29) used in many countries, the luma Y and two color
differences,

(3.4-16a)

(3.4-16b)

are used as transmission coordinates, where  and  are the gamma-corrected
EBU red and blue components, respectively. The YUV coordinate system was ini-
tially proposed as the NTSC transmission standard but was later replaced by the YIQ
system because it was found (4) that the I and Q signals could be reduced in band-
width to a greater degree than the U and V signals for an equal level of visual qual-
ity. The I and Q signals are related to the U and V signals by a simple rotation of
coordinates in color space:

R̃NG̃NB̃N

Y

I

Q

0.29889531 0.58662247 0.11448223

0.59597799 0.27417610– 0.32180189–

0.21147017 0.52261711– 0.31114694

R̃N

G̃N

B̃N

=

R̃N

G̃N

B̃N

1.00000000 0.95608445 0.62088850

1.00000000 0.27137664– 0.64860590–

1.00000000 1.10561724– 1.70250126

Y

I

Q

=

U
B̃E Y–
2.03

----------------=

V
R̃E Y–
1.14

----------------=

R̃E B̃E
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(3.4-17a)

. (3.4-17b)

It should be noted that the U and V components of the YUV video color space are not
equivalent to the U and V components of the UVW uniform chromaticity system.

YCbCr CCIR Rec. 601 Transmission Color Coordinate System. The CCIR Rec.
601 color coordinate system YCbCr is defined for the transmission of luma and
chroma components coded in the integer range 0 to 255. The YCbCr transformations
for unit range components are defined as (28)

FIGURE 3.4-14. YIQ componets of the gamma corrected dolls_gamma color image.

I U– 33°sin V 33°cos+=

Q U 33°cos V 33°sin+=
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(3.4-18a)

. (3.4-18b)

where the tilde denotes that the component has been gamma corrected.

Photo YCC Color Coordinate System. The Eastman Kodak company has devel-
oped an image storage system, called PhotoCD, in which a photographic negative is
scanned, converted to a luma/chroma format similar to Rec. 601 YCbCr, and
recorded in a proprietary compressed form on a compact disk. The PhotoYCC for-
mat and its associated RGB display format have become defacto standards. Pho-
toYCC employs the CCIR Rec. 709 primaries for scanning. The conversion to YCC
is defined as (27,28,30):

. (3.4-19a)

Transformation from PhotoCD components for display is not an exact inverse of
Eq. 3.4-19a, in order to preserve the extended dynamic range of film images. The
YC1C2-to-RDGDBD display components is given by:

(3.4-19b)

3.4.4. Nonstandard Color Spaces

Several nonstandard color spaces used for image processing applications are described
in this section.

IHS Color Coordinate System. The IHS coordinate system (31) has been used
within the image processing community as a quantitative means of specifying the
intensity, hue and saturation of a color. It is defined by the relations

Y

Cb

Cr

0.29900000 0.58700000 0.11400000

0.16873600– 0.33126400– 0.50000000

0.50000000 0.4186680– 0.08131200–

R̃S

G̃S

B̃S

=

R̃S

G̃S

B̃S

1.00000000 0.0009264– 1.40168676

1.00000000 0.34369538– 0.71416904–

1.00000000 1.77216042 0.00099022

Y

Cb

Cr

=

Y

C1

C2

0.299 0.587 0.114

0.299– 0.587– 0.500

0.500 0.587– 0.114

R̃709

G̃709

B̃709

=

RD

GD

BD

0.969 0.000 1.000

0.969 0.194– 0.509–

0.969 1.000 0.000

Y

C1

C2

=
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(3.4-20a)

(3.4-20b)

. (3.4-20c)

By this definition, the color blue is the zero reference for hue. The inverse relation-
ship is:

(3.4-21a)

(3.4-21b)

. (3.4-21c)

Figure 3.4-15 shows the IHS components of the gamma RGB image of Figure
3.4-13.

Karhunen–Loeve Color Coordinate System. Typically, the R, G and B tristimulus
values of a color image are highly correlated with one another (32). In the develop-
ment of efficient quantization, coding and processing techniques for color images,
it is often desirable to work with components that are uncorrelated. If the second-
order moments of the RGB tristimulus values are known, or at least estimable, it
is possible to derive an orthogonal coordinate system, in which the components are
uncorrelated, by a Karhunen–Loeve (K-L) transformation of the RGB tristimulus
values. The K-L color transform is defined as:
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(3.4-22a)

(3.4-22b)

FIGURE 3.4-15. IHS components of the dolls_gamma color image.
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80 PHOTOMETRY AND COLORIMETRY

where the transformation matrix with general term  composed of the eigenvec-
tors of the RGB covariance matrix with general term . The transformation matrix
satisfies the relation:

(3.4-23)

where , ,  are the eigenvalues of the covariance matrix and

(3.4-24a)

(3.4-24b)

(3.4-24c)

(3.4-24d)

(3.4-24e)

. (3.4-24f)

In Eq. 3.4-23,  is the expectation operator and the overbar denotes the mean
value of a random variable.

Retinal Cone Color Coordinate System. As indicated in Chapter 2, in the discus-
sion of models of the human visual system for color vision, indirect measurements
of the spectral sensitivities , ,  have been made for the three types
of retinal cones. It has been found that these spectral sensitivity functions can be lin-
early related to spectral tristimulus values established by colorimetric experimenta-
tion. Hence, a set of cone signals T1, T2, T3 may be regarded as tristimulus values in
a retinal cone color coordinate system. The tristimulus values of the retinal cone
color coordinate system are related to the XYZ system by the coordinate conversion
matrix (33):

(3.4-25)

mij
uij

m11 m12 m13

m21 m22 m23

m31 m32 m33

u11 u12 u13

u12 u22 u23

u13 u23 u33

m11 m21 m31

m12 m22 m32

m13 m23 m33

λ1 0 0

0 λ2 0

0 0 λ3

=

λ1 λ2 λ3

u11 E R R–( )2{ }=

u22 E G G–( )2{ }=

u33 E B B–( )2{ }=

u12 E R R–( ) G G–( ){ }=

u13 E R R–( ) B B–( ){ }=

u23 E G G–( ) B B–( ){ }=

E ·{ }

s1 λ( ) s2 λ( ) s3 λ( )

T1

T2

T3

0.000000 1.000000 0.000000

0.460000– 1.359000 0.101000

0.000000 0.000000 1.000000

X

Y

Z

=
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3.5. COLOR SPACE EXERCISES

E3.1 Develop a program that converts a linear RGB unsigned integer, 8-bit, color
image to the XYZ color space and converts the XYZ color image back to the RGB
color space. Steps:

(a) Display the RGB source linear color image.

(b) Display the R, G and B components as monochrome images.

(c) Convert the source image to unit range.

(d) Convert the RGB source image to XYZ color space.

(e) Display the X, Y and Z components as monochrome images.

(f) Convert the XYZ destination image to RGB color space.

(g) Display the RGB destination image.

The executable PIKS API example_colour_conversion_RGB_XYZ performs
this exercise.1

E3.2 Develop a program that converts a linear RGB color image to the L*a*b*
color space and converts the L*a*b* color image back to the RGB color space.
Steps:

(a) Display the RGB source linear color image.

(b) Display the R, G and B components as monochrome images.

(c) Convert the source image to unit range.

(d) Convert the RGB source image to L*a*b* color space.

(e) Display the L*, a* and b* components as monochrome images.

(f) Convert the L*a*b* destination image to RGB color space.

(g) Display the RGB destination image.

The PIKS API executable example_colour_conversion_RGB_Lab performs
this exercise.

E3.3 Develop a program that converts a linear RGB color image to a gamma cor-
rected RGB color image and converts the gamma color image back to the linear
RGB color space. Steps:

(a) Display the RGB source linear color image.

(b) Display the R, G and B components as monochrome images.

(c) Convert the source image to unit range.

(d) Perform gamma correction on the linear RGB source image.

1.The PIKS API standard utilizes the British version of English language
spelling, e.g. colour instead of color.

Download more at Learnclax.com



82 PHOTOMETRY AND COLORIMETRY

(e) Display the gamma corrected RGB destination image.

(f) Display the R, G and B gamma corrected components as monochrome
images.

(g) Convert the gamma corrected destination image to linear RGB color
space.

(h) Display the linear RGB destination image.

The PIKS API executable example_colour_gamma_correction performs
this exercise.

E3.4 Develop a program that converts a gamma RGB color image to the YCbCr
color space and converts the YCbCr color image back to the gamma RGB color
space. Steps:

(a) Display the RGB source gamma color image.

(b) Display the R, G and B components as monochrome images.

(c) Convert the source image to unit range.

(d) Convert the RGB source image to YCbCr color space.

(e) Display the Y, Cb and Cr components as monochrome images.

(f) Convert the YCbCr destination image to gamma RGB color space.

(g) Display the gamma RGB destination image.

The PIKS API executable example_colour_conversion_RGB_YCbCr per-
forms this exercise.

E3.5 Develop a program that converts a gamma RGB color image to the IHS color
space and converts the IHS color image back to the gamma RGB color space. Steps:

(a) Display the RGB source gamma color image.

(b) Display the R, G and B components as monochrome images.

(c) Convert the source image to unit range.

(d) Convert the RGB source image to IHS color space.

(e) Display the I, H and S components as monochrome images.

(f) Convert the IHS destination image to gamma RGB color space.

(g) Display the gamma RGB destination image.

The PIK API executable example_colour_conversion_RGB_IHS performs 
this exercise.
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PART 2

DIGITAL IMAGE CHARACTERIZATION

Digital image processing is based on the conversion of a continuous image field to
equivalent digital form. This part of the book considers the image sampling and
quantization processes that perform the analog image to digital image conversion.
The inverse operation of producing continuous image displays from digital image
arrays is also analyzed.

Download more at Learnclax.com



86

Download more at Learnclax.com



87

4

Introduction to Digital Image Processing by William K. Pratt
Copyright © 2013 by CRC Press

IMAGE SAMPLING AND 
RECONSTRUCTION

In digital image processing systems, one usually deals with arrays of numbers
obtained by spatially sampling points of a physical image. After processing, another
array of numbers is produced, and these numbers are then used to reconstruct a con-
tinuous image for viewing. Image samples nominally represent some physical mea-
surements of a continuous image field, for example, measurements of the image
intensity or photographic density. Measurement uncertainties exist in any physical
measurement apparatus. It is important to be able to model these measurement
errors in order to specify the validity of the measurements and to design processes
for compensation of the measurement errors. Also, it is often not possible to mea-
sure an image field directly. Instead, measurements are made of some function
related to the desired image field, and this function is then inverted to obtain the
desired image field. Inversion operations of this nature are discussed in the chapter
on image restoration. In this chapter, the image sampling and reconstruction process
is considered for both theoretically exact and practical systems.

4.1. IMAGE SAMPLING AND RECONSTRUCTION CONCEPTS 

In the design and analysis of image sampling and reconstruction systems, input images
are usually regarded as deterministic fields (1–5). However, in some situations it is
advantageous to consider the input to an image processing system, especially a noise
input, as a sample of a two-dimensional random process (5–7). Both viewpoints are
developed here for the analysis of image sampling and reconstruction methods.
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4.1.1. Sampling Deterministic Fields

Let  denote a continuous, infinite-extent, ideal image field representing the
luminance, photographic density or some desired parameter of a physical image. In
a perfect image sampling system, spatial samples of the ideal image would, in effect,
be obtained by multiplying the ideal image by a spatial sampling function

(4.1-1)

composed of an infinite array of Dirac delta functions arranged in a grid of spacing
 as shown in Figure 4.1-1. The sampled image is then represented as

(4.1-2)

where it is observed that  may be brought inside the summation and evalu-
ated only at the sample points . It is convenient, for purposes of analysis,
to consider the spatial frequency domain representation  of the sampled
image obtained by taking the continuous two-dimensional Fourier transform of the
sampled image. Thus

. (4.1-3)

FIGURE 4.1-1. Dirac delta function sampling array.
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By the Fourier transform convolution theorem, the Fourier transform of the sampled
image can be expressed as the convolution of the Fourier transforms of the ideal
image  and the sampling function  as expressed by

. (4.1-4)

The two-dimensional Fourier transform of the spatial sampling function is an infi-
nite array of Dirac delta functions in the spatial frequency domain as given by
(4, p. 22)

(4.1-5)

where  and  represent the Fourier domain sampling fre-
quencies. It will be assumed that the spectrum of the ideal image is bandlimited to
some bounds such that  for  and . Performing the
convolution of Eq. 4.1-4 yields

. (4.1-6)

Upon changing the order of summation and integration and invoking the sifting
property of the delta function, the sampled image spectrum becomes

. (4.1-7)

As can be seen from Figure 4.1-2, the spectrum of the sampled image consists of the
spectrum of the ideal image infinitely repeated over the frequency plane in a grid of
resolution . It should be noted that if  and  are chosen too
large with respect to the spatial frequency limits of , the individual spectra
will overlap.

A continuous image field may be obtained from the image samples of  by
linear spatial interpolation or by linear spatial filtering of the sampled image. Let

 denote the continuous domain impulse response of an interpolation filter and
 represent its transfer function.
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Then, the reconstructed image is obtained by a convolution of the samples with the
reconstruction filter impulse response. The reconstructed image then becomes

. (4.1-8)

Upon substituting for  from Eq. 4.1-2 and performing the convolution, one
obtains

. (4.1-9)

Thus, it is seen that the impulse response function  acts as a two-dimensional
interpolation waveform for the image samples. The spatial frequency spectrum of
the reconstructed image obtained from Eq. 4.1-8 is equal to the product of the recon-
struction filter transform and the spectrum of the sampled image,

(4.1-10)

or, from Eq. 4.1-7,

.

(4.1-11)

FIGURE 4.1-2. Typical sampled image spectra.
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It is clear from Eq. 4.1-11 that if there is no spectrum overlap and if  fil-
ters out all spectra for , the spectrum of the reconstructed image can be made
equal to the spectrum of the ideal image, and, therefore, the images themselves can
be made identical. The first condition is met for a bandlimited image if the sampling
period is chosen such that the rectangular region bounded by the image cutoff
frequencies  lies within a rectangular region defined by one-half the sam-
pling frequency. Hence

(4.1-12a)

or, equivalently,

. (4.1-12b)

In physical terms, the sampling period must be equal to or smaller than one-half the
period of the finest detail within the image. This sampling condition is equivalent to
the one-dimensional sampling theorem constraint for time-varying signals that
requires a time-varying signal to be sampled at a rate of at least twice its highest-fre-
quency component. If equality holds in Eq. 4.1-12, the image is said to be sampled
at its Nyquist rate; if  and  are smaller than required by the Nyquist criterion,
the image is called oversampled; and if the opposite case holds, the image is unders-
ampled.

If the original image is sampled at a spatial rate sufficient to prevent spectral
overlap in the sampled image, exact reconstruction of the ideal image can be
achieved by spatial filtering the samples with an appropriate filter. For example, as
shown in Figure 4.1-3, a filter with a transfer function of the form

for  and (4.1-13a)

otherwise (4.1-13b)

where K is a scaling constant, satisfies the condition of exact reconstruction if
 and . The point-spread function or impulse response of this recon-

struction filter is

 (4.1-14)
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With this filter, an image is reconstructed with an infinite sum of  func-
tions, called sinc functions. Another type of reconstruction filter that could be
employed is the cylindrical filter with a transfer function

for   (4.1-15a)

otherwise  (4.1-15b)

provided that . The impulse response for this filter is

FIGURE 4.1-3. Sampled image reconstruction filters.
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(4.1-16)

where  is a first-order Bessel function. There are a number of reconstruction
filters or, equivalently, interpolation waveforms, that could be employed to provide
perfect image reconstruction. In practice, however, it is often difficult to implement
optimum reconstruction filters for imaging systems.

4.1.2. Sampling Random Image Fields

In the previous discussion of image sampling and reconstruction, the ideal input
image field has been considered to be a deterministic function. It has been shown
that if the Fourier transform of the ideal image is bandlimited, then discrete image
samples taken at the Nyquist rate are sufficient to reconstruct an exact replica of the
ideal image with proper sample interpolation. It will now be shown that similar
results hold for sampling two-dimensional random fields.

Let  denote a continuous two-dimensional stationary random process
with known mean  and autocorrelation function

(4.1-17)

where  and . This process is spatially sampled by a Dirac
sampling array yielding

.

(4.1-18)

The autocorrelation of the sampled process is then

(4.1-19)

.

The first term on the right-hand side of Eq. 4.1-19 is the autocorrelation of the
stationary ideal image field. It should be observed that the product of the two Dirac
sampling functions on the right-hand side of Eq. 4.1-19 is itself a Dirac sampling
function of the form

. (4.1-20)
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Hence, the sampled random field is also stationary with an autocorrelation function

. (4.1-21)

Taking the two-dimensional Fourier transform of Eq. 4.1-21 yields the power spec-
trum of the sampled random field. By the Fourier transform convolution theorem

(4.1-22)

where  and  represent the power spectral densities of the
ideal image and sampled ideal image, respectively, and  is the Fourier
transform of the Dirac sampling array. Then, by the derivation leading to Eq. 4.1-7,
it is found that the spectrum of the sampled field can be written as

. (4.1-23)

Thus, the sampled image power spectrum is composed of the power spectrum of the
continuous ideal image field replicated over the spatial frequency domain at integer
multiples of the sampling spatial frequency . If the power spectrum
of the continuous ideal image field is bandlimited such that  for

 and , where  and are  cutoff frequencies, the individual
spectra of Eq. 4.1-23 will not overlap if the spatial sampling periods are chosen such
that  and . A continuous random field  may be recon-
structed from samples of the random ideal image field by the interpolation formula

(4.1-24)

where  is the deterministic interpolation function. The reconstructed field and
the ideal image field can be made equivalent in the mean-square sense (5, p. 284),
that is,

(4.1-25)

if the Nyquist sampling criteria are met and if suitable interpolation functions, such
as the sinc function or Bessel function of Eqs. 4.1-14 and 4.1-16, are utilized.
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The preceding results are directly applicable to the practical problem of sampling
a deterministic image field plus additive noise, which is modeled as a random field.
Figure 4.1-4 shows the spectrum of a sampled noisy image. This sketch indicates a
significant potential problem. The spectrum of the noise may be wider than the ideal
image spectrum, and if the noise process is undersampled, its tails will overlap into
the passband of the image reconstruction filter, leading to additional noise artifacts.
A solution to this problem is to prefilter the noisy image before sampling to reduce
the noise bandwidth.

4.2. MONOCHROME IMAGE SAMPLING SYSTEMS

In a physical monochrome image sampling system, the sampling array will be of
finite extent, the sampling pulses will be of finite width, and the image may be
undersampled. The consequences of nonideal sampling are explored next.

As a basis for the discussion, Figure 4.2-1 illustrates a generic optical image
scanning system. In operation, a narrow light beam is scanned directly across a pos-
itive monochrome photographic transparency of an ideal image. The light passing
through the transparency is collected by a condenser lens and is directed toward the
surface of a photo detector. The electrical output of the photo detector is integrated
over the time period during which the light beam strikes a resolution cell.

FIGURE 4.1-4. Spectra of a sampled noisy image.

(a) Signal

(b) Noise

(c) Sampled signal

(d) Sampled noise
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In the analysis, it will be assumed that the sampling is noise-free. The results
developed in Section 4.1 for sampling noisy images can be combined with the
results developed in this section quite readily.

4.2.1. Sampling Pulse Effects

Under the assumptions stated above, the sampled image function is given by

(4.2-1)

where the sampling array

(4.2-2)

is composed of (2J + 1)(2K + 1) identical pulses  arranged in a grid of spac-
ing . The symmetrical limits on the summation are chosen for notational
simplicity. The sampling pulses are assumed scaled such that

. (4.2-3)

For purposes of analysis, the sampling function may be assumed to be generated by
a finite array of Dirac delta functions  passing through a linear filter with
impulse response . Thus

(4.2-4)

FIGURE 4.2-1. Optical image scanning system.
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where

(4.2-5)

Combining Eqs. 4.2-1 and 4.2-2 results in an expression for the sampled image
function,

(4.2-6)

The spectrum of the sampled image function is given by

(4.2-7)

where  is the Fourier transform of . The Fourier transform of the
truncated sampling array is found to be (5, p. 105)

.  (4.2-8)

Figure 4.2-2 depicts . In the limit as J and K become large, the right-hand
side of Eq. 4.2-7 becomes an array of Dirac delta functions.

FIGURE 4.2-2. Truncated sampling train and its Fourier spectrum.
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In an image reconstruction system, an image is reconstructed by interpolation of
its samples. Ideal interpolation waveforms such as the sinc function of Eq. 4.1-14 or
the Bessel function of Eq. 4.1-16 generally extend over the entire image field. If the
sampling array is truncated, the reconstructed image will be in error near its bound-
ary because the tails of the interpolation waveforms will be truncated in the vicinity
of the boundary (8,9). However, the error is usually negligibly small at distances of
about 8 to 10 Nyquist samples or greater from the boundary.

The actual numerical samples of an image are obtained by a spatial integration of
 over some finite resolution cell. In the scanning system of Figure 4.2-1, the

integration is inherently performed on the photo detector surface. The image sample
value of the resolution cell (j, k) may then be expressed as

(4.2-9)

where Ax and Ay denote the maximum dimensions of the resolution cell. It is
assumed that only one sample pulse exists during the integration time of the detec-
tor. If this assumption is not valid, consideration must be given to the difficult prob-
lem of sample crosstalk. In the sampling system under discussion, the width of the
resolution cell may be larger than the sample spacing. Thus, the model provides for
sequentially overlapped samples in time.

By a simple change of variables, Eq. 4.2-9 may be rewritten as

. (4.2-10)

Because only a single sampling pulse is assumed to occur during the integration
period, the limits of Eq. 4.2-10 can be extended infinitely. In this formulation, Eq.
4.2-10 is recognized to be equivalent to a convolution of the ideal continuous image

 with an impulse response function  with reversed coordinates, fol-
lowed by sampling over a finite area with Dirac delta functions. Thus, neglecting the
effects of the finite size of the sampling array, the model for finite extent pulse sam-
pling becomes

. (4.2-11)

In most sampling systems, the sampling pulse is symmetric, so that .
Equation 4.2-11 provides a simple relation that is useful in assessing the effect of

finite extent pulse sampling. If the ideal image is bandlimited and Ax and Ay satisfy
the Nyquist criterion, the finite extent of the sample pulse represents an equivalent
linear spatial degradation (an image blur) that occurs before ideal sampling. Part 4
considers methods of compensating for this degradation. A finite-extent sampling
pulse is not always a detriment, however. Consider the situation in which the ideal
image is insufficiently bandlimited so that it is undersampled. The finite-extent
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pulse, in effect, provides a low-pass filtering of the ideal image, which, in turn,
serves to limit its spatial frequency content, and hence to minimize aliasing error.

4.2.2. Aliasing Effects

To achieve perfect image reconstruction in a sampled imaging system, it is neces-
sary to bandlimit the image to be sampled, spatially sample the image at the Nyquist
or higher rate, and properly interpolate the image samples. Sample interpolation is
considered in the next section; an analysis is presented here of the effect of unders-
ampling an image.

If there is spectral overlap resulting from undersampling, as indicated by the
shaded regions in Figure 4.2-3, spurious spatial frequency components will be intro-
duced into the reconstruction. The effect is called an aliasing error (10,11). Aliasing
effects in an actual image are shown in Figure 4.2-4. Spatial undersampling of the
image creates artificial low-spatial-frequency components in the reconstruction. In
the field of optics, aliasing errors are called moiré patterns.

From Eq. 4.1-7 the spectrum of a sampled image can be written in the form

(4.2-12)

where  represents the spectrum of the original image sampled at period
. 

FIGURE 4.2-3. Spectra of undersampled two-dimensional function.
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FIGURE 4.2-4. Example of aliasing error in a sampled image.
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The term

(4.2-13)

for  and  describes the spectrum of the higher-order components of the
sampled image repeated over spatial frequencies  and . If
there were no spectral fold over, optimal interpolation of the sampled image
components could be obtained by passing the sampled image through a zonal low-
pass filter defined by

for  and (4.2-14a)

otherwise (4.2-14b)

where K is a scaling constant. 

Applying this interpolation strategy to an undersampled image yields a recon-
structed image field

(4.2-15)

where

(4.2-16)

represents the aliasing error artifact in the reconstructed image. The factor K has
absorbed the amplitude scaling factors. Figure 4.2-5 shows the reconstructed image
spectrum that illustrates the spectral fold over in the zonal low-pass filter passband.
The aliasing error component of Eq. 4.2-16 can be reduced substantially by low-
pass filtering before sampling to attenuate the spectral fold over.

FIGURE 4.2-5. Reconstructed image spectrum.
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Figure 4.2-6 shows a model for the quantitative analysis of aliasing effects. In
this model, the ideal image  is assumed to be a sample of a two-dimensional
random process with known power-spectral density . The ideal image is
linearly filtered by a presampling spatial filter with a transfer function .
This filter is assumed to be a low-pass type of filter with a smooth attenuation of
high spatial frequencies (i.e., not a zonal low-pass filter with a sharp cutoff). The fil-
tered image is then spatially sampled by an ideal Dirac delta function sampler at a
resolution . Next, a reconstruction filter interpolates the image samples to pro-
duce a replica of the ideal image. From Eq. 1.4-27, the power spectral density at the
presampling filter output is found to be

(4.2-17)

and the Fourier spectrum of the sampled image field is

. (4.2-18)

Figure 4.2-7 shows the sampled image power spectral density and the fold over
aliasing spectral density from the first sideband with and without presampling low-
pass filtering.

It is desirable to isolate the undersampling effect from the effect of improper
reconstruction. Therefore, assume for this analysis that the reconstruction filter

 is an optimal filter of the form given in Eq. 4.2-14. The energy passing
through the reconstruction filter for j = k = 0 is then

. (4.2-19)

Ideally, the presampling filter should be a low-pass zonal filter with a transfer func-
tion identical to that of the reconstruction filter as given by Eq. 4.2-14. In this case,
the sampled image energy would assume the maximum value

(4.2-20)

FIGURE 4.2-6. Model for analysis of aliasing effect.
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Image resolution degradation resulting from the presampling filter may then be
measured by the ratio

(4.2-21)

The aliasing error in a sampled image system is generally measured in terms of
the energy, from higher-order sidebands, that folds over into the passband of the
reconstruction filter. Assume, for simplicity, that the sampling rate is sufficient so
that the spectral foldover from spectra centered at  is negligible
for  and . The total aliasing error energy, as indicated by the doubly cross-
hatched region of Figure 4.2-7, is then

(4.2-22)

where

(4.2-23)

denotes the energy of the output of the presampling filter. The aliasing error is
defined as (10)

(4.2-24)

Aliasing error can be reduced by attenuating high spatial frequencies of 
with the presampling filter. However, any attenuation within the passband of the

FIGURE 4.2-7. Effect of presampling filtering on a sampled image.
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reconstruction filter represents a loss of resolution of the sampled image. As a result,
there is a trade-off between sampled image resolution and aliasing error.

The analysis of sampling pulse and aliasing effects presented in this section has
been derived for the optical image scanning system of Figure 4.2-1. This analysis is
easily extended to the physical image sampling systems of Table 4.2-1. In this table,
the flying spot scanner, microdensitometer scanner and the vidicon camera have
been included in the table for historical consistency. These technologies have been
obsoleted by the solid state sensing technologies: Charge Coupled Device (CCD);
Complementary Metal-Oxide Semiconductor (CMOS): Contact Image Sensor (CIS).
Reference (13) provides a survey of the operating principles of the CCD, CMOS and
CIS scanners and cameras.

Pratt (4Ed., 108-110) has analyzed the aliasing error versus resolution perfor-
mance of several practical types of presampling filters implemented as finite size
scanning spots.

4.3. MONOCHROME IMAGE RECONSTRUCTION SYSTEMS

In Section 4.1, the conditions for exact image reconstruction were stated: The origi-
nal image must be spatially sampled at a rate of at least twice its highest spatial fre-
quency, and the reconstruction filter, or equivalent interpolator, must be designed to
pass the spectral component at j = 0, k = 0 without distortion and reject all spectra
for which . With physical image reconstruction systems, these conditions are
impossible to achieve exactly. Consideration is now given to the effects of using
imperfect reconstruction functions.

TABLE 4.2-1. Spot Shape of Image Scanners and Systems

System Spot Shape

Flying Spot Scanner Gaussian

Microdensitometer Scanner Square

CCD Line Scanner Square

CIS Scanner Square

Orthicon Camera Gaussian

Vidicon Camera Gaussian

CCD Camera Square

CMOS Camera Square

CIS Camera Square

j k, 0≠
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4.3.1. Image Reconstruction Implementation Techniques

In most digital image processing systems, electrical image samples are sequentially
output from the processor in a normal raster scan fashion. A continuous image is
generated from these electrical samples by driving an optical display such as a cath-
ode ray tube (CRT) or liquid crystal display (LCD) with the intensity of each point
set proportional to the image sample amplitude. The light array can then be viewed
directly or imaged onto photographic film for recording. Images can be recorded
directly using laser printer or inkjet recording technologies. These systems are only
capable of recording bi-level images. In order to achieve gray level recording, it is
necessary to employ halftoning (14), as is done in newspaper printing of photo-
graphs. Reference (13) describes the operating principles of LCD displays, laser
printers and inkjet printers. 

A common means of image reconstruction is by use of electro-optical techniques.
For example, image reconstruction can be performed quite simply by electrically
defocusing the writing spot of a CRT display. The drawback of this technique is the
difficulty of accurately controlling the spot shape over the image field. For record-
ing purposes, a CRT or LCD display can be projected onto photographic film with a
slightly out of focus lens. The resulting image reconstruction is simple to perform,
but far from optimal.

If a small display spot can be achieved with an image display, it is possible
approximately to synthesize any desired interpolation by subscanning a resolution
cell, as shown in Figure 4.3-1.

The following subsections introduce several one- and two-dimensional interpola-
tion functions and discuss their theoretical performance. Chapter 12 presents meth-
ods of digitally implementing image reconstruction systems.
 

FIGURE 4.3-1. Image reconstruction by subscanning.
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4.3.2. Interpolation Functions

Figure 4.3-2 illustrates several one-dimensional interpolation functions. As stated
previously, the sinc function provides an exact reconstruction, but it cannot be
physically generated by an incoherent optical filtering system. It is possible to
approximate the sinc function by truncating it and then performing subscanning
(Figure 4.3-1). The simplest interpolation waveform is the square pulse function,
which results in a zero-order interpolation of the samples. It is defined mathemati-
cally as

for (4.3-1)

and zero otherwise, where, for notational simplicity, the sample spacing is assumed
to be of unit dimension. A triangle function, defined as

FIGURE 4.3-2. One-dimensional interpolation waveforms.
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for (4.3-2a)

for (4.3-2b)

provides the first-order linear sample interpolation with triangular interpolation
waveforms. Figure 4.3-3 illustrates one-dimensional interpolation using sinc, square
and triangle functions.

The triangle function may be considered to be the result of convolving a square
function with itself. Convolution of the triangle function with the square function
yields a bell-shaped interpolation waveform (in Figure 4.3-2d). It is defined as

for (4.3-3a)

for (4.3-3b)

for . (4.3-3c)

FIGURE 4.3-3. One-dimensional interpolation.
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This process quickly converges to the Gaussian-shaped waveform of Figure 4.3-2f.
Convolving the bell-shaped waveform with the square function results in a third-
order polynomial function called a cubic B-spline (15-17). It is defined mathemati-
cally as

for (4.3-4a)

for . (4.3-4b)

The cubic B-spline is a particularly attractive candidate for image interpolation
because of its properties of continuity and smoothness at the sample points. It can be
shown by direct differentiation of Eq. 4.3-4 that R3(x) is continuous in its first and
second derivatives at the sample points.

As mentioned earlier, the sinc function can be approximated by truncating its
tails. Typically, this is done over a four-sample interval. The problem with this
approach is that the slope discontinuity at the ends of the waveform leads to ampli-
tude ripples in a reconstructed function. This problem can be eliminated by generat-
ing a cubic convolution function (18,19), which forces the slope of the ends of the
interpolation to be zero. The cubic convolution interpolation function can be
expressed in the following general form:

for (4.3-5a)

for (4.3-5b)

where Ai, Bi, Ci, Di are weighting factors. The weighting factors are determined by
satisfying two sets of extraneous conditions:

1.  at x = 0, and  at x = 1, 2.

2. The first-order derivative  at x = 0, 1, 2.

These conditions result in seven equations for the eight unknowns and lead to the
parametric expression

for (4.3-6a)

for (4.3-6b)

where  of Eq. 4.3-5 is the remaining unknown weighting factor. Rifman (18)
and Bernstein (19) have set , which causes  to have the same slope,
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minus 1, at x = 1 as the sinc function. Keys (19) has proposed setting ,
which provides an interpolation function that approximates the original unsampled
image to as high a degree as possible in the sense of a power series expansion. The
factor a in Eq. 4.3-6 can be used as a tuning parameter to obtain a best visual inter-
polation (21, 22). Reichenbach and Geng (23) have developed a method of non-sep-
arable, two-dimensional cubic convolution. They report a slight improvement in
interpolation accuracy in comparison to separable cubic convolution.

Table 4.3-1 defines several orthogonally separable two-dimensional interpolation
functions for which . The separable square function has a square

TABLE 4.3-1. Two-Dimensional Interpolation Functions

Function Definition

Separable sinc

Separable square

Separable triangle

Separable bell

Separable cubic B-spline

Gaussian

a 1 2⁄–=
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=
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R x y,( ) 2πσw
2[ ]

1– x
2

y
2

+
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peg shape. The separable triangle function has the shape of a pyramid. Using a trian-
gle interpolation function for one-dimensional interpolation is equivalent to linearly
connecting adjacent sample peaks as shown in Figure 4.3-3c. The extension to two
dimensions does not hold because, in general, it is not possible to fit a plane to four
adjacent samples. One approach, illustrated in Figure 4.3-4a, is to perform a planar
fit in a piecewise fashion. In region I of Figure 4.3-4a, points are linearly interpo-
lated in the plane defined by pixels A, B, C, while in region II, interpolation is per-
formed in the plane defined by pixels B, C, D. A computationally simpler method,
called bilinear interpolation, is described in Figure 4.3-4b. Bilinear interpolation is
performed by linearly interpolating points along separable orthogonal coordinates of
the continuous image field. The resultant interpolated surface of Figure 4.3-4b, con-
necting pixels A, B, C, D, is generally nonplanar. Chapter 11 shows that bilinear
interpolation is equivalent to interpolation with a pyramid function.

The performance of practical image reconstruction systems has been analyzed by
Pratt (4Ed., 117-120).

FIGURE 4.3-4. Two-dimensional linear interpolation.

4.4. COLOR IMAGE SAMPLING SYSTEMS

There are two generic methods of sampling a color image: the tri-filter method;  and
the Bayer color filter array method.

4.4.1. Tri-Filter Method

Figure 4.4-1 shows a conceptual tri-filter color image sampling system. In opera-
tion, a lens images a scene to an upper beam splitter, which splits the light beam
through a blue filter onto a CCD or CMOS array sensor. The light beam also strikes
the lower beam splitter, which splits the light beam through a red filter and a green
filter  to  red  and  green  sensor  arrays.  The  three  sensor  arrays  must be aligned 

(a) Piecewise linear interpolation (b) bilinear interpolation
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spatially to prevent color artifacts. Most high-end digital color cameras are based
upon this method. Its disadvantage, with respect to the other methods, is the cost of
three sensors.

4.4.2. Bayer Color Filter Array Method

The Bayer color filter array sensor, named after its inventor (24), is a CCD or
CMOS sensor chip containing M columns and N rows (25-31). A color filter is
affixed to the sensor as shown below

G R G R G. . .

B G B G B. . .

G R G R G. . .

. . . . . . . . . . . . 

FIGURE 4.4-1. Tri-filter color image sampling method.
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where the letters R, G and B denote red, green and blue color filters placed over the
sensor pixels.1 Electrically, the sensor chip produces an  array ,
whose values are linearly proportional to the luminance of light incident upon each
sensor pixel. Each

G R
B G

quad corresponds to a one half-resolution white pixel.

Some form of spatial interpolation is necessary to generate  full resolution

RGB arrays ,  and . This interpolation process is often called

demosaicking in the literature. Consider a  pixel array surrounding a 
pixel quad, as shown below.

It is assumed that, as shown above,  corresponds to a green filter color pixel
,  corresponds to the red filter pixel , 

corresponds to the blue filter pixel  and  corresponds to
the green color pixel . 

The simplest form of interpolation is nearest neighbor interpolation, for which
the center RGB pixel quad is generated from the center quad of the P array accord-
ing to the following relations.

(4.4-1a)

(4.4-1b)

(4.4-1c)

(4.4-1d)

(4.4-2a)

(4.4-2b)

(4.4-2c)

(4.4-2d)

1.  In the literature, the Bayer color filter array is also represented with R and B along the positive diagonal.

M N× P x y,( )

M N×
R x y,( ) G x y,( ) B x y,( )

4 4× 2 2×

P x 1 y 1–,–( ) P x y 1–,( ) P x 1+ y 1–,( ) P x 2+ y 1–,( )

P x 1 y,–( ) P x y,( ) P x 1+ y,( ) P x 2+ y,( )

P x 1 y 1+,–( ) P x y 1+,( ) P x 1+ y 1+,( ) P x 2+ y 1+,( )

P x 1 y 2+,–( ) P x y 2+,( ) P x 1+ y 2+,( ) P x 2+ y 2+,( )

P x y,( )
G x y,( ) P x 1+ y,( ) R x 1+ y,( ) P x y 1+,( )

B x y 1+,( ) P x 1+ y 1+,( )
G x 1+ y 1+,( )

R x y,( ) P x 1+ y,( )=

R x 1+ y,( ) P x 1+ y,( )=

R x y 1+,( ) P x 1+ y,( )=

R x 1+ y 1+,( ) P x 1+ y,( )=

G x y,( ) P x y,( )=

G x 1+ y,( ) P x y,( )=

G x y 1+,( ) P x 1+ y 1+,( )=

G x 1+ y 1+,( ) P x 1+ y 1+,( )=
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(4.4-3a)

(4.4-3b)

(4.4-3c)

(4.4-3d)

Better results can be obtained by averaging neighboring pixels of the same color
according to the following relations.

(4.4-4a)

(4.4-4b)

(4.4-4c)

(4.4-4d)

(4.4-5a)

(4.4-5b)

(4.4-5c)

(4.4-5d)

(4.4-6a)

(4.4-6b)

(4.4-6c)

(4.4-6d)

B x y,( ) P x y 1+,( )=

B x 1+ y,( ) P x y 1+,( )=

B x y 1+,( ) P x y, 1+( )=

B x 1+ y 1+,( ) P x y 1+,( )=

R x y,( ) P x 1– y,( ) P x 1+ y,( )+
2

-----------------------------------------------------------=

R x 1+ y,( ) P x 1+ y,( )=

R x y 1+,( ) P x 1– y,( ) P x 1+ y,( ) P x 1– y 2+,( ) P x 1+ y 2+,( )+ + +
4

-----------------------------------------------------------------------------------------------------------------------------------------------=

R x 1+ y 1+,( ) P x 1+ y,( ) P x 1+ y 2+,( )+
2

--------------------------------------------------------------------=

G x y,( ) P x y,( )=

G x 1+ y,( ) P x 1+ y 1–,( ) P x y,( ) P x 1+ y 1+,( ) P x 2+ y,( )+ + +
4

--------------------------------------------------------------------------------------------------------------------------------------=

G x y 1+,( ) P x y,( ) P x 1– y 1+,( ) P x 1+ y 1+,( ) P x y 2+,( )+ + +
4

--------------------------------------------------------------------------------------------------------------------------------------=

G x 1+ y 1+,( ) P x 1+ y 1+,( )=

B x y,( ) P x y 1–,( ) P x y 1+,( )+
2

-----------------------------------------------------------=

B x 1+ y,( ) P x y 1–,( ) P x 2+ y 1–,( ) P x y 1+,( ) P x 2+ y 1+,( )+ + +
4

-----------------------------------------------------------------------------------------------------------------------------------------------=

B x y 1+,( ) P x y 1+,( )=

B x 1+ y 1+,( ) P x y 1+,( ) P x 2+ y 1+,( )+
2

--------------------------------------------------------------------=
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Special cases exist when the RGB pixel quad is at the edge of the P array. It should
be noted that neighbor average interpolation can be computed with a set of four

 impulse response arrays. Figure 4.4-3 shows the interpolation differences of
the dolls_gamma RGB image for nearest neighbor and neighbor average interpo-
lation. References (32-39) discuss more complex image-dependent interpolation
schemes to reduce interpolation error.

(a) Red, nearest neighbor (b) Red, neighbor average

(c) Green, nearest neighbor (d) Green, neighbor average
z

(e) Blue, nearest neighbor (f) Blue, neighbor average

FIGURE 4.4-3. Bayer interpolation differences with nearest neighbor and neighbor average 
interpolation for the dolls_gamma image; clipped squared image display.

3 3×
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4.5. IMAGE MEASUREMENT EXERCISES

E4.1 Develop a program that computes the extrema of the RGB components of an
unsigned integer, 8-bit, color image. Steps:

(a) Display the source color image.

(b) Compute extrema of the color image and print results for all bands.

The PIKS API executable example_extrema_colour performs this exercise. 

E4.2 Develop a program that computes the mean and standard deviation of an
unsigned integer, 8-bit, monochrome image. Steps:

(a) Display the source monochrome image.

(b) Compute moments of the monochrome image and print results.

The PIKS API executable example_moments_monochrome performs this
exercise.

E4.3 Develop a program that computes the first-order histogram of an unsigned
integer, 8-bit, monochrome image with 16 amplitude bins. Steps:

(a) Display the source monochrome image.

(b) Compute the histogram of the source image.

(c) Display or printout the histogram.

The PIKS API executable example_histogram_monochrome performs this
exercise.

REFERENCES

1. F. T. Whittaker, “On the Functions Which Are Represented by the Expansions of the
Interpolation Theory,” Proc. Royal Society of Edinburgh, A35, 1915, 181–194.

2. C. E. Shannon, “Communication in the Presence of Noise,” Proc. IRE, 37, 1, January
1949, 10–21.

3. H. J. Landa, “Sampling, Data Transmission and the Nyquist Rate,” Proc. IEEE, 55, 10,
October 1967, 1701–1706.

4. J. W. Goodman, Introduction to Fourier Optics, Second Edition, McGraw-Hill, New
York, 1996.

5. A. Papoulis, Systems and Transforms with Applications in Optics, McGraw-Hill, New
York, 1966.

6. S. P. Lloyd, “A Sampling Theorem for Stationary (Wide Sense) Stochastic Processes,”
Trans. American Mathematical Society, 92, 1, July 1959, 1–12.

7. H. S. Shapiro and R. A. Silverman, “Alias-Free Sampling of Random Noise,” J. SIAM,
8, 2, June 1960, 225–248.

8. J. L. Brown, Jr., “Bounds for Truncation Error in Sampling Expansions of Band-Limited
Signals,” IEEE Trans. Information Theory, IT-15, 4, July 1969, 440–444.

Download more at Learnclax.com



116 IMAGE SAMPLING AND RECONSTRUCTION

9. H. D. Helms and J. B. Thomas, “Truncation Error of Sampling Theory Expansions,”
Proc. IRE, 50, 2, February 1962, 179–184.

10. J. J. Downing, “Data Sampling and Pulse Amplitude Modulation,” in Aerospace Teleme-
try, H. L. Stiltz, Ed., Prentice Hall, Englewood Cliffs, NJ, 1961.

11. D. G. Childers, “Study and Experimental Investigation on Sampling Rate and Aliasing in
Time Division Telemetry Systems,” IRE Trans. Space Electronics and Telemetry, SET-8,
December 1962, 267–283.

12. E. L. O'Neill, Introduction to Statistical Optics, Addison-Wesley, Reading, MA, 1963.

13. M. Vrhel, E. Saber and H. J. Trussell, Color Image Generation and Display Technolo-
gies, IEEE Signal Processing Magazine, 22, 1, January 2005, 23–33. 

14. J. P. Allebach, Digital Halftoning, MS154, SPIE Press, Bellingham, WA, 1999.

15. H. S. Hou and H. C. Andrews, “Cubic Splines for Image Interpolation and Digital Filter-
ing,” IEEE Trans. Acoustics, Speech and Signal Processing, ASSP-26, 6, December
1978, 508–517.

16. T. N. E. Greville, “Introduction to Spline Functions,” in Theory and Applications of
Spline Functions, T. N. E. Greville, Ed., Academic Press, New York, 1969.

17. M. Unser, “Splines — A Perfect Fit for Signal and Image Processing,” IEEE Signal and
Image Processing, 16, 6, November 1999, 22–38.

18. S. S. Rifman, “Digital Rectification of ERTS Multispectral Imagery,” Proc. Sympo-
sium on Significant Results Obtained from ERTS-1 (NASA SP-327), I, Sec. B, 1973,
1131–1142.

19. R. Bernstein, “Digital Image Processing of Earth Observation Sensor Data,” IBM J.
Research and Development, 20, 1976, 40–57.

20. R. G. Keys, “Cubic Convolution Interpolation for Digital Image Processing,” IEEE Trans.
Acoustics, Speech and Signal Processing, AASP-29, 6, December 1981, 1153–1160.

21. K. W. Simon, “Digital Image Reconstruction and Resampling of Landsat Imagery,”
Proc. Symposium on Machine Processing of Remotely Sensed Data, Purdue University,
Lafayette, IN, IEEE 75, CH 1009-0-C, June 1975, 3A-1–3A-11.

22. S. K. Park and R. A. Schowengerdt, “Image Reconstruction by Parametric Cubic Con-
volution,” Computer Vision, Graphics and Image Processing, 23, 3, September 1983,
258–272.

23. S. E. Reichenbach, “Two-Dimensional Cubic Convolution,” IEEE Transactions on
Image Processing, 12, 8, August 2003, 857–865.

24. B. E. Bayer, “Color Imaging Array,” U.S. Patent 3,971,065, July 20, 1976.

25. P. L. P. Dillon and B. E. Bayer, “Signal Processing for Discrete-Sample-Type-Color-
Video Signal,” U.S. Patent 4,176,373, November 27, 1979.

26. D. R. Cok, “Signal Processing Method and Apparatus for Sampled Image Signals,” U.S.
Patent 4,630,307, December 16, 1986.

27. D. R. Cok, “Signal Processing Method and Apparatus for Producing Interpolated Chro-
minance Values in a Sampled Color Image Signal,” U.S. Patent 4,642,678, February 10,
1987.

28. C. A. Laroche and M. A. Prescott, “Apparatus and Method for Adaptively Interpolating
a Full Color Image Utilizing Chrominance Gradients,” U.S. Patent 5,373,322, December
13, 1994.

Download more at Learnclax.com



REFERENCES 117

29. R. H. Hibbard, “Apparatus and Method for Adaptively Interpolating a Full Color Image
Utilizing Luminance Gradients,” U.S. Patent 5,382,976, January 17, 1995.

30. J. E. Adams, Jr. and J. F. Hamilton, Jr., “Adaptive Color Plan Interpolation in Single Sen-
sor Color Electronic Camera,” U.S. Patent 5,506,619, April 9, 1996.

31. J. F. Hamilton, Jr. and J. E. Adams, Jr., “Adaptive Color Plane Interpolation in Single
Sensor Color Electronic Camera,” U.S. Patent 5,629,734, May 13, 1997.

32. R. Kimmel, “Demosaicing: Image Reconstruction from CCD Samples,” IEEE Transac-
tions on Image Processing, 8, 8, August 1999, 1221–1228.

33. H. J. Trussell and R. E. Hartwig, “Mathematics for Demosaicing,” IEEE Transactions on
Image Processing, 11, 4, April 2002, 485–592.

34. B. K. Gunturk, Y. Altunbasak and R. M. Mersereau, “Color Plane Interpolation Using
Alternating Projections,” IEEE Transactions on Image Processing, 11, September 2002,
997–1013.

35. B. Bahadir et al., “Demosaicking: Color Filter Array Interpolation,” IEEE Signal Pro-
cessing Magazine, 44, 1, January 2005, 44–54.

36. D. D. Muresan and T. W. Parks, “Demosaicing Using Optimal Recovery,” IEEE Trans-
actions on Image Processing, 14, 2, February 2005, 267–278.

37. K. Hirakawa and T. W. Parks, “Adaptive Homogeneity-Directed Demosaicing Algo-
rithm,” IEEE Transactions on Image Processing, 14, 3, March 2005, 360–369.

38. D. Allysson, S. Susstrunk and J. Herault, “Linear Demosaicing Inspired by the Human
Visual System,” IEEE Transactions on Image Processing, 14, 4, April 2005, 439–449.

39. L. Zhang and X. Wu, “Color Demosaicking Via Directional Linear Mean Square-Error
Estimation, IEEE Transactions on Image Processing, 14, 12, December 2005, 2167–2178.

Download more at Learnclax.com



118 IMAGE SAMPLING AND RECONSTRUCTION

Download more at Learnclax.com



119

5

Introduction to Digital Image Processing by William K. Pratt
Copyright © 2013 by CRC Press

IMAGE QUANTIZATION

Any analog quantity that is to be processed by a digital computer or digital system
must be converted to an integer number proportional to its amplitude. The conver-
sion process between analog samples and discrete-valued samples is called quanti-
zation. The following section includes an analytic treatment of the quantization
process, which is applicable not only for images but for a wide class of signals
encountered in image processing systems. Section 5.2 considers the processing of
quantized variables. The last section discusses the subjective effects of quantizing
monochrome and color images.

5.1. SCALAR QUANTIZATION

Figure 5.1-1 illustrates a typical example of the quantization of a scalar signal. In the
quantization process, the amplitude of an analog signal sample is compared to a set
of decision levels. If the sample amplitude falls between two decision levels, it is
quantized to a fixed reconstruction level lying in the quantization band. In a digital
system, each quantized sample is assigned a binary code. An equal-length binary
code is indicated in the example.

For the development of quantitative scalar signal quantization techniques, let f
and  represent the amplitude of a real, scalar signal sample and its quantized value,
respectively. It is assumed that f is a sample of a random process with known  prob-

f̂
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ability density . Furthermore, it is assumed that f is constrained to lie in the
range

(5.1-1)

where  and  represent upper and lower limits.
Quantization entails specification of a set of decision levels  and a set of recon-

struction levels  such that if

(5.1-2)

the sample is quantized to a reconstruction value . Figure 5.1-2a illustrates the
placement of decision and reconstruction levels along an image row for J quantiza-
tion levels. The staircase representation of Figure 5.1-2b is another common form of
description.

Decision and reconstruction levels are chosen to minimize some desired quanti-
zation error measure between f and . The quantization error measure usually
employed is the mean-square error because this measure is tractable, and it usually

FIGURE 5.1-1. Sample quantization.

p f( )

aL f aU≤ ≤

aU aL
dj

rj

dj f dj 1+<≤

rj

f̂
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correlates reasonably well with subjective criteria. For J quantization levels, the
mean-square quantization error is

. (5.1-3)

For a large number of quantization levels J, the probability density may be repre-
sented as a constant value  over each quantization band. Hence,

(5.1-4)

which evaluates to

. (5.1-5)

The optimum placing of the reconstruction level  within the range  to  can
be determined by minimization of  with respect to . Setting

(5.1-6)

FIGURE 5.1-2. Quantization decision and reconstruction levels.
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yields 

. (5.1-7)

Therefore, the optimum placement of reconstruction levels is at the midpoint
between each pair of decision levels. Substitution for this choice of reconstruction
levels into the expression for the quantization error yields

. (5.1-8)

The optimum choice for decision levels may be found by minimization of  in Eq.
5.1-8 by the method of Lagrange multipliers. Following this procedure, Panter and
Dite (1) found that the decision levels may be computed to a good approximation
from the integral equation

(5.1-9a)

where

(5.1-9b)

for j = 0, 1,..., J. If the probability density of the sample is uniform, the decision lev-
els will be uniformly spaced. For nonuniform probability densities, the spacing of
decision levels is narrow in large-amplitude regions of the probability density func-
tion and widens in low-amplitude portions of the density. Equation 5.1-9 does not
reduce to closed form for most probability density functions commonly encountered
in image processing systems models, and hence, the decision levels must be
obtained by numerical integration.

If the number of quantization levels is not large, the approximation of Eq. 5.1-4
becomes inaccurate, and exact solutions must be explored. From Eq. 5.1-3, setting
the partial derivatives of the error expression with respect to the decision and recon-
struction levels equal to zero yields

(5.1-10a)

. (5.1-10b)
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Upon simplification, the set of equations

(5.1-11a)

(5.1-11b)

is obtained. Recursive solution of these equations for a given probability distribution
 provides optimum values for the decision and reconstruction levels. Max (2)

has developed a solution for optimum decision and reconstruction levels for a
Gaussian density and has computed tables of optimum levels as a function of the
number of quantization steps.

If the decision and reconstruction levels are selected to satisfy Eq. 5.1-11, it can
easily be shown that the mean-square quantization error becomes

. (5.1-12)

In the special case of a uniform probability density, the minimum mean-square
quantization error becomes

. (5.1-13)

Quantization errors for most other densities must be determined by computation.
It is possible to perform nonlinear quantization by a companding operation, as

shown in Figure 5.1-3, in which the sample is transformed nonlinearly, linear quanti-
zation is performed, and the inverse nonlinear transformation is taken (3). In the com-
panding system of quantization, the probability density of the transformed samples is
forced to be uniform. Thus, from Figure 5.1-3, the transformed sample value is

(5.1-14)

FIGURE 5.1-3. Companding quantizer.
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where the nonlinear transformation  is chosen such that the probability density
of g is uniform. Thus

(5.1-15)

for . If f is a zero mean random variable, the proper transformation func-
tion is (4)

. (5.1-16)

That is, the nonlinear transformation function is equivalent to the cumulative proba-
bility distribution of f. It should be noted that nonlinear quantization by the com-
panding technique is an approximation to optimum quantization, as specified by the
Max solution. The accuracy of the approximation improves as the number of quanti-
zation levels increases.

5.2. PROCESSING QUANTIZED VARIABLES

Numbers within a digital computer that represent image variables, such as lumi-
nance or tristimulus values, normally are input as the integer codes corresponding to
the quantization reconstruction levels of the variables, as illustrated in Figure 5.1-1.
If the quantization is linear, the jth integer value is given by

(5.2-1)

where J is the maximum integer value, f is the unquantized pixel value over a
lower-to-upper range of  to , and  denotes the nearest integer value of the
argument. The corresponding reconstruction value is

. (5.2-2)

Hence,  is linearly proportional to j. If the computer processing operation is itself
linear, the integer code j can be numerically processed rather than the real number

. However, if nonlinear processing is to be performed, for example, taking the log-
arithm of a pixel, it is necessary to process  as a real variable rather than the inte-
ger j because the operation is scale dependent. If the quantization is nonlinear, all
processing must be performed in the real variable domain.

In a digital computer, there are two major forms of numeric representation: real
and integer. Real numbers are stored in floating-point form, and typically have a
large dynamic range with fine precision. Integer numbers can be strictly positive or
bipolar (negative or positive). The two's complement number system is
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commonly used in computers and digital processing hardware for representing
bipolar integers. The general format is as follows:

S.M1,M2,...,MB-1

where S is a sign bit (0 for positive, 1 for negative), followed, conceptually, by a
binary point, Mb denotes a magnitude bit, and B is the number of bits in the com-
puter word. Table 5.2-1 lists the two's complement correspondence between inte-
ger, fractional and decimal numbers for a 4-bit word. In this representation, all pixels

TABLE 5.2-1. Two’s Complement Code for 4-Bit Code Word

Code
Fractional

Value
Decimal

Value

0.111 + +0.875

0.110 + +0.750

0.101 + +0.625

0.100 + +0.500

0.011 + +0.375

0.010 + +0.250

0.001 + +0.125

0.000  0  0.000

1.111 – –0.125

1.110 – –0.250

1.101 – –0.375

1.100 – –0.500

1.011 – –0.625

1.010 – –0.750

1.001 – –0.875

1.000 – –1.000

7
8
---

6
8
---

5
8
---

4
8
---

3
8
---

2
8
---

1
8
---

1
8
---

2
8
---

3
8
---

4
8
---

5
8
---

6
8
---

7
8
---

8
8
---
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are scaled in amplitude between –1.0 and . One of the advantages of
this representation is that pixel scaling is independent of precision in the sense that a
pixel  is bounded over the range

regardless of the number of bits in a word.

5.3. MONOCHROME AND COLOR IMAGE QUANTIZATION

This section considers the subjective and quantitative effects of the quantization of
monochrome and color images.

5.3.1. Monochrome Image Quantization

Monochrome images are typically input to a digital image processor as a sequence
of uniform-length binary code words. In the literature, the binary code is often
called a pulse code modulation (PCM) code. Because uniform-length code words
are used for each image sample, the number of amplitude quantization levels is
determined by the relationship

(5.3-1)

where B represents the number of code bits allocated to each sample.
A bit rate compression can be achieved for PCM coding by the simple expedient

of restricting the number of bits assigned to each sample. If image quality is to be
judged by an analytic measure, B is simply taken as the smallest value that satisfies
the minimal acceptable image quality measure. For a subjective assessment, B is
lowered until quantization effects become unacceptable. The eye is only capable of
judging the absolute brightness of about 10 to 15 shades of gray, but it is much more
sensitive to the difference in the brightness of adjacent gray shades. For a reduced
number of quantization levels, the first noticeable artifact is a gray scale contouring
caused by a jump in the reconstructed image brightness between quantization levels
in a region where the original image is slowly changing in brightness. The minimal
number of quantization bits required for basic PCM coding to prevent gray scale
contouring is dependent on a variety of factors, including the linearity of the image
display and noise effects before and after the image digitizer.

Assuming that an image sensor produces an output pixel sample proportional to
the image intensity, a question of concern then is: Should the image intensity itself,
or some function of the image intensity, be quantized? Furthermore, should the quan-
tization scale be linear or nonlinear? Linearity or nonlinearity of the quantization
scale can be viewed as a matter of implementation. A given nonlinear quantization
scale can be realized by the companding operation of Figure 5.1-3, in which a non-
linear amplification weighting of the continuous signal to be quantized is performed,

1.0 2
B 1–( )–

–

F j k,( )

1.0– F j k,( ) 1.0<≤

L 2
B

=
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followed by linear quantization, followed by an inverse weighting of the quantized
amplitude. Consideration is limited here to linear quantization of companded pixel
samples.

There have been many experimental studies to determine the number and place-
ment of quantization levels required to minimize the effect of gray scale contouring
(5–8). Goodall (5) performed some of the earliest experiments on digital television
and concluded that 6 bits of intensity quantization (64 levels) were required for good
quality and that 5 bits (32 levels) would suffice for a moderate amount of contour-
ing. Other investigators have reached similar conclusions. In most studies, however,
there has been some question as to the linearity and calibration of the imaging sys-
tem. As noted in Section 3.5.3, most television cameras and monitors exhibit a non-
linear response to light intensity. Also, the photographic film that is often used to
record the experimental results is highly nonlinear. Finally, any camera or monitor
noise tends to diminish the effects of contouring.

Figure 5.3-1 contains photographs of an image linearly quantized with a variable
number of quantization levels. The source image is a split image in which the left
side is a luminance image and the right side is a computer-generated linear ramp. In
Figure 5.3-1, the luminance signal of the image has been uniformly quantized with
from 8 to 256 levels (3 to 8 bits). Gray scale contouring in these pictures is apparent
in the ramp part of the split image for 6 or fewer bits. The contouring of the lumi-
nance image part of the split image becomes noticeable for 5 bits.

As discussed in Section 2.4, it has been postulated that the eye responds logarith-
mically or to a power law of incident light amplitude. There have been several
efforts to quantitatively model this nonlinear response by a lightness function

, which is related to incident luminance. Priest et al. (9) have proposed a square-
root nonlinearity

(5.3-2)

where  and . Ladd and Pinney (10) have suggested a cube-
root scale

(5.3-3)

A logarithm scale

(5.3-4)

where  has also been proposed by Foss et al. (11). Figure 5.3-2 com-
pares these three scaling functions.

 

Λ

Λ 100.0Y( )1 2⁄
=

0.0 Y 1.0≤ ≤ 0.0 Λ 10.0≤ ≤

Λ 2.468 100.0Y( )1 3⁄
1.636–=

Λ 5.0 10 100.0Y{ }log[ ]=

0.01 Y 1.0≤ ≤
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FIGURE 5.3-1. Uniform quantization of the peppers_ramp_luminance monochrome 
image.
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In an effort to reduce the gray scale contouring of linear quantization, it is reason-
able to apply a lightness scaling function prior to quantization, and then to apply its
inverse to the reconstructed value in correspondence to the companding quantizer of
Figure 5.1-3. Figure 5.3-3 presents a comparison of linear, square-root, cube-root
and logarithmic quantization for a 4-bit quantizer. Among the lightness scale quan-
tizers, the gray scale contouring appears least for the square-root scaling. The light-
ness quantizers exhibit less contouring than the linear quantizer in dark areas but
worse contouring for bright regions.

5.3.2. Color Image Quantization

A color image may be represented by its red, green and blue source tristimulus val-
ues or any linear or nonlinear invertible function of the source tristimulus values.
If the red, green and blue tristimulus values are to be quantized individually, the
selection of the number and placement of quantization levels follows the same
general considerations as for a monochrome image. The eye exhibits a nonlinear
response to spectral lights as well as white light, and, therefore, it is subjectively
preferable to compand the tristimulus values before quantization. It is known,
however, that the eye is most sensitive to brightness changes in the blue region of
the spectrum, moderately sensitive to brightness changes in the green spectral
region and least sensitive to red changes. Thus, it is possible to assign quantization
levels on this basis more efficiently than simply using an equal number for each
tristimulus value.

FIGURE 5.3-2. Lightness scales.
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Figure 5.3-4 is a general block diagram for a color image quantization system. A
source image described by source tristimulus values R, G, B is converted to three
components x(1), x(2), x(3), which are then quantized. Next, the quantized compo-
nents , ,  are converted back to the original color coordinate system,
producing the quantized tristimulus values , , . The quantizer in Figure 5.3-4
effectively partitions the color space of the color coordinates x(1), x(2), x(3) into
quantization cells and assigns a single color value to all colors within a cell. To be
most efficient, the three color components x(1), x(2), x(3) should be quantized jointly.
However, implementation considerations often dictate separate quantization of the
color components. In such a system, x(1), x(2), x(3) are individually quantized over

FIGURE 5.3-3. Comparison of lightness scale quantization of the peppers_ramp
_luminance image for 4 bit quantization.

x̂ 1( ) x̂ 2( ) x̂ 3( )
R̂ Ĝ B̂
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their maximum ranges. In effect, the physical color solid is enclosed in a rectangular
solid, which is then divided into rectangular quantization cells.

If the source tristimulus values are converted to some other coordinate system for
quantization, some immediate problems arise. As an example, consider the
quantization of the UVW tristimulus values. Figure 5.3-5 shows the locus of
reproducible colors for the RGB source tristimulus values plotted as a cube and the
transformation of this color cube into the UVW coordinate system. It is seen that
the RGB cube becomes a parallelepiped. If the UVW tristimulus values are to be
quantized individually over their maximum and minimum limits, many of the
quantization cells represent non reproducible colors and hence are wasted. It is only
worthwhile to quantize colors within the parallelepiped, but this generally is a
difficult operation to implement efficiently.

In the present analysis, it is assumed that each color component is linearly quan-
tized over its maximum range into  levels, where B(i) represents the number of
bits assigned to the component x(i). The total number of bits allotted to the coding is
fixed at

. (5.3-5)

FIGURE 5.3-4 Color image quantization model.

FIGURE 5.3-5. Loci of reproducible colors for RNGNBN and UVW coordinate systems.

2
B i( )

BT B 1( ) B 2( ) B 3( )+ +=
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Let  represent the upper bound of x(i) and  the lower bound. Then each
quantization cell has dimension

. (5.3-6)

Any color with color component x(i) within the quantization cell will be quantized
to the color component value . The maximum quantization error along each
color coordinate axis is then

. (5.3-7)

FIGURE 5.3-6. Chromaticity shifts resulting from uniform quantization of the 
smpte_girl_linear  color image.

aU i( ) aL i( )

q i( )
aU i( ) aL i( )–

2
B i( )

--------------------------------=

x̂ i( )

ε i( ) x i( ) x̂ i( )–
aU i( ) aL i( )–

2
B i( ) 1+

--------------------------------= =
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Thus, the coordinates of the quantized color become

(5.3-8)

subject to the conditions . It should be observed that the values of
 will always lie within the smallest cube enclosing the color solid for the given

color coordinate system. Figure 5.3-6 illustrates chromaticity shifts of various colors
for quantization in the RN GN BN and Yuv coordinate systems (12).

Jain and Pratt (12) have investigated the optimal assignment of quantization deci-
sion levels for color images in order to minimize the geodesic color distance
between an original color and its reconstructed representation. Interestingly enough,
it was found that quantization of the RN GN BN color coordinates provided better
results than for other common color coordinate systems. The primary reason was
that all quantization levels were occupied in the RN GN BN system, but many levels
were unoccupied with the other systems. This consideration seemed to override the
metric non uniformity of the RN GN BN color space. Sharma and Trussell (13) have
surveyed color image quantization for reduced memory image displays.

5.4. IMAGE QUANTIZATION EXERCISES

E5.1 Develop a program that re-quantizes an unsigned integer, 8-bit, monochrome
image linearly to three bits per pixel and reconstructs it to eight bits per pixel. Steps:

(a) Display the source image.

(b) Perform a right overflow shift by five bits on the source image1.

(c) Perform a left overflow shift by five bits on the right bit-shifted source
image.

(d) Scale the reconstruction levels to 3-bit values.

(e) Display the destination image.

The PIKS API executable example_linear_quantizer performs this exer-
cise. 

E5.2 Develop a program that quantizes an unsigned integer, 8-bit, monochrome
image according to the cube root lightness function of Eq. 6.3-4 and reconstructs it
to eight bits per pixel. Steps:

(a) Display the source image.

(b) Scale the source image to unit range.

(c) Perform the cube root lightness transformation.

1. The right bit of an unsigned integer is its least significant bit. The left bit
of an unsigned integer is its most significant bit.

x̂ i( ) x i( ) ε i( )±=

aL i( ) x̂ i( ) aU i( )≤ ≤
x̂ i( )
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(d) Scale the lightness function image to 0 to 255.

(e) Perform a right overflow shift by five bits on the source image.

(f) Perform a left overflow shift by five bits on the right bit-shifted source
image.

(g) Scale the reconstruction levels to 3-bit values.

(h) Scale the reconstruction image to the lightness function range.

(i) Perform the inverse lightness function.

(j) Scale the inverse lightness function to the display range.

(k) Display the destination image.

The PIKS API executable example_lightness_quantizer performs this
exercise.

E5.3 Develop a program that re-quantizes an unsigned integer, 8-bit, color image
linearly to three bits per pixel per component and reconstructs it to eight bits per
pixel per component. Steps:

(a) Display the source image.

(b) Perform a right overflow shift by five bits of all components of the
source image.

(c) Perform a left overflow shift by five bits on the right bit-shifted source
image.

(d) Display the destination image.

The PIKS API executable example_linear_quantizer_colour performs
this exercise. 

REFERENCES

1. P. F. Panter and W. Dite, “Quantization Distortion in Pulse Code Modulation with Non-
uniform Spacing of Levels,” Proc. IRE, 39, 1, January 1951, 44–48.

2. J. Max, “Quantizing for Minimum Distortion,” IRE Trans. Information Theory, IT-6, 1,
March 1960, 7–12.

3. V. R. Algazi, “Useful Approximations to Optimum Quantization,” IEEE Trans. Commu-
nication Technology, COM-14, 3, June 1966, 297–301.

4. R. M. Gray, “Vector Quantization,” IEEE ASSP Magazine, April 1984, 4–29.

5. W. M. Goodall, “Television by Pulse Code Modulation,” Bell System Technical J.,
January 1951.

6. R. L. Cabrey, “Video Transmission over Telephone Cable Pairs by Pulse Code Modula-
tion,” Proc. IRE, 48, 9, September 1960, 1546–1551.

7. L. H. Harper, “PCM Picture Transmission,” IEEE Spectrum, 3, 6, June 1966, 146.

Download more at Learnclax.com



REFERENCES 135

8. F. W. Scoville and T. S. Huang, “The Subjective Effect of Spatial and Brightness Quanti-
zation in PCM Picture Transmission,” NEREM Record, 1965, 234–235.

9. I. G. Priest, K. S. Gibson, and H. J. McNicholas, “An Examination of the Munsell Color
System, I. Spectral and Total Reflection and the Munsell Scale of Value,” Technical
Paper 167, National Bureau of Standards, Washington, DC, 1920.

10. J. H. Ladd and J. E. Pinney, “Empherical Relationships with the Munsell Value Scale,”
Proc. IRE (Correspondence), 43, 9, 1955, 1137.

11. C. E. Foss, D. Nickerson and W. C. Granville, “Analysis of the Oswald Color System,”
J. Optical Society of America, 34, 1, July 1944, 361–381.

12. A. K. Jain and W. K. Pratt, “Color Image Quantization,” IEEE Publication 72 CH0
601-5-NTC, National Telecommunications Conference 1972 Record, Houston, TX,
December 1972.

13. G. Sharma and H. J. Trussell, “Digital Color Imaging,” IEEE Trans. Image Processing,
6, 7, July 1997, 901–932.

Download more at Learnclax.com



136 IMAGE QUANTIZATION

Download more at Learnclax.com



137

PART 3

DISCRETE TWO-DIMENSIONAL 
PROCESSING

Part 3 of the book is concerned with a unified analysis of discrete two-dimensional
processing operations. Vector-space methods of image representation are developed
for deterministic and stochastic image arrays. Several forms of discrete two-
dimensional superposition and convolution operators are developed and related to
one another. Two-dimensional unitary transforms, such as the Fourier, Hartley,
cosine and Karhunen–Loeve transforms, are introduced along with wavelet
transforms. Consideration is given to the utilization of two-dimensional transforms
as an alternative means of achieving convolutional processing more efficiently.
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DISCRETE IMAGE MATHEMATICAL 
CHARACTERIZATION

Chapter 1 presented a mathematical characterization of continuous image fields.
This chapter develops a vector-space algebra formalism for representing discrete
image fields from a deterministic and statistical viewpoint. Appendix 1 presents a
summary of vector-space algebra concepts.

6.1. VECTOR-SPACE IMAGE REPRESENTATION

In Chapter 1, a generalized continuous image function F(x, y, t) was selected to
represent the luminance, tristimulus value, or some other appropriate measure of a
physical imaging system. Image sampling techniques, discussed in Chapter 4,
indicated means by which a discrete array F(j, k) could be extracted from the contin-
uous image field at some time instant over some rectangular area ,

. It is often helpful to regard this sampled image array as a 
element matrix

(6.1-1)

for  where the indices of the sampled array are reindexed for consistency
with standard vector-space notation. Figure 6.1-1 illustrates the geometric relation-
ship between the Cartesian coordinate system of a continuous image and its matrix
array of samples. Each image sample is called a pixel.

J– j J≤ ≤
K– k K≤ ≤ N1 N2×

F F n1 n2,( )[ ]=

1 ni Ni≤ ≤
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For purposes of analysis, it is often convenient to convert the image matrix to
vector form by column (or row) scanning F, and then stringing the elements together
in a long vector (1). An equivalent scanning operation can be expressed in quantita-
tive form by the use of a  operational vector  and a  matrix 
defined as

. (6.1-2)

Then, the vector representation of the image matrix F is given by the stacking
operation

. (6.1-3)

In essence, the vector  extracts the nth column from F and the matrix  places
this column into the nth segment of the vector f. Thus, f contains the column-scanned
elements of F. The inverse relation of casting the vector f into matrix form is obtained
from

FIGURE 6.1-1. Geometric relationship between a continuous image and its matrix array of        
samples.
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. (6.1-4)

With the matrix-to-vector operator of Eq. 6.1-3 and the vector-to-matrix operator of
Eq. 6.1-4, it is now possible easily to convert between vector and matrix representa-
tions of a two-dimensional array. The advantages of dealing with images in vector
form are a more compact notation and the ability to apply results derived previously
for one-dimensional signal processing applications. It should be recognized that Eqs
6.1-3 and 6.1-4 represent more than a lexicographic ordering between an array and a
vector; these equations define mathematical operators that may be manipulated ana-
lytically. Numerous examples of the applications of the stacking operators are given
in subsequent sections. 

6.2. GENERALIZED TWO-DIMENSIONAL LINEAR OPERATOR

A large class of image processing operations are linear in nature; an output image
field is formed from linear combinations of pixels of an input image field. Such
operations include superposition, convolution, unitary transformation, wavelet
transformation and discrete linear filtering.

Consider the  element input image array . A generalized linear
operation on this image field results in a  output image array  as
defined by

(6.2-1)

where the operator kernel  represents a weighting constant, which,
in general, is a function of both input and output image coordinates (1).

For the analysis of linear image processing operations, it is convenient to adopt
the vector-space formulation developed in Section 6.1. Thus, let the input image
array  be represented as matrix F or alternatively, as a vector f obtained by
column scanning F. Similarly, let the output image array  be represented
by the matrix P or the column-scanned vector p. For notational simplicity, in the
subsequent discussions, the input and output image arrays are assumed to be square
and of dimensions  and , respectively. Now, let T
denote the  matrix performing a linear transformation on the  input
image vector f yielding the  output image vector

. (6.2-2)

The matrix T may be partitioned into  submatrices  and written as

F Nn
T
fvn

T

n 1=

N2

=

N1 N2× F n1 n2,( )
M1 M2× P m1 m2,( )

P m1 m2,( ) F n1 n2,( )O n1 n2 m1 m2,;,( )
n2 1=
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n1 1=
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=
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. (6.2-3)

From Eq. 6.1-3, it is possible to relate the output image vector p to the input image
matrix F by the equation

. (6.2-4)

Furthermore, from Eq. 6.1-4, the output image matrix P is related to the input image
vector p by

. (6.2-5)

Combining the above yields the relation between the input and output image matrices,

(6.2-6)

where it is observed that the operators  and  simply extract the partition 
from T. Hence,

. (6.2-7)

If the linear transformation is separable such that T may be expressed in the
direct product form (See Appendix A1.1-15.)

(6.2-8)

where  and  are row and column operators on F, then

(6.2-9)
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As a consequence,

(6.2-10)

Hence, the output image matrix P can be produced by sequential row and column
operations.

In many image processing applications, the linear transformations operator T is
highly structured, and computational simplifications are possible. Special cases of
interest are listed below and illustrated in Figure 6.2-1 for the case in which the
input and output images are of the same dimension, .

1. Column processing of F:

(6.2-11)

where  is the transformation matrix for the jth column.

2. Identical column processing of F:

(6.2-12)

FIGURE 6.2-1. Structure of linear operator matrices.
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where  is a  identity matrix. (See Appendix A1.1-6.)

3. Row processing of F:

(6.2-13)

where  is the transformation matrix for the jth row.

4. Identical row processing of F:

(6.2-14a)

and

. (6.2-14b)

5. Identical row and identical column processing of F:

. (6.2-15)

The number of computational operations for each of these cases is tabulated in Table
6.2-1.

Equation 6.2-10 indicates that separable two-dimensional linear transforms can
be computed by sequential one-dimensional row and column operations on a data
array. As indicated by Table 6.2-1, a considerable savings in computation is possible
for such transforms: computation by Eq 6.2-2 in the general case requires 
operations; computation by Eq. 6.2-10, when it applies, requires only 
operations. Furthermore, F may be stored in a serial memory and fetched line by
line. With this technique, however, it is necessary to transpose the result of the col-
umn transforms in order to perform the row transforms. References 2 and 3 describe
algorithms for line storage matrix transposition.

   

TABLE 6.2-1. Computational Requirements for Linear Transform Operator.

Case
Operations

(Multiply and Add)

General N4

Column processing N3

Row processing N3

Row and column processing 2N3– N2

Separable row and column processing matrix form 2N3

IN N N×

Tmn diag TR1 m n,( ) TR2 m n,( ) … TRN m n,( ), , ,[ ]=
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6.3. IMAGE STATISTICAL CHARACTERIZATION

The statistical descriptors of continuous images presented in Chapter 1 can be
applied directly to characterize discrete images. In this section, expressions are
developed for the statistical moments of discrete image arrays. Joint probability den-
sity models for discrete image fields are described in the following section. Refer-
ence 4 provides background information for this subject.

The moments of a discrete image process may be expressed conveniently in
vector-space form. The mean value of the discrete image function is a matrix of the
form

. (6.3-1)

If the image array is written as a column-scanned vector, the mean of the image vec-
tor is

. (6.3-2)

The correlation function of the image array is given by

(6.3-3)

where the  represent points of the image array. Similarly, the covariance function
of the image array is

.

(6.3-4)

Finally, the variance function of the image array is obtained directly from the cova-
riance function as

. (6.3-5)

If the image array is represented in vector form, the correlation matrix of f can be
written in terms of the correlation of elements of F as

(6.3-6a)

or

. (6.3-6b)
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The term

(6.3-7)

is the  correlation matrix of the mth and nth columns of F. Hence, it is possi-
ble to express  in partitioned form as

. (6.3-8)

The covariance matrix of f can be found from its correlation matrix and mean vector
by the relation

. (6.3-9)

A variance matrix  of the array  is defined as a matrix whose elements
represent the variances of the corresponding elements of the array. The elements of
this matrix may be extracted directly from the covariance matrix partitions of .
That is,

. (6.3-10)

If the image matrix F is wide-sense stationary, the correlation function can be
expressed as

(6.3-11)

where  and . Correspondingly, the covariance matrix parti-
tions of Eq. 6.3-9 are related by

(6.3-12a)

(6.3-12b)

where . Hence, for a wide-sense-stationary image array

(6.3-13)

E Fvmvn
T
F∗T

 
 
 

Rmn=

N1 N1×
Rf

Rf

R11 R12 … R1N2

R21 R22 … R2N2

RN21 RN22 … RN2N2

= … … …

Kf Rf ηfηf
∗T

–=

VF F n1 n2,( )

Kf

VF n1 n2,( ) Kn2 n2, n1 n1,( )=

R n1 n2 n3 n4,;,( ) R n1 n3– n2 n4–,( ) R j k,( )= =

j n1 n3–= k n2 n4–=

Kmn Kk= m n≥

K∗mn K∗
k= m n<

k m n– 1+=

Kf

K1 K2 … KN2

K∗
2 K1 … KN2 1–

K∗
N2

K∗
N2 1– … K1

= … … …
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The matrix of Eq. 6.3-13 is of block Toeplitz form (5). Finally, if the covariance
between elements is separable into the product of row and column covariance func-
tions, then the covariance matrix of the image vector can be expressed as the direct
product of row and column covariance matrices. Under this condition

(6.3-14)

where  is a  covariance matrix of each column of F and  is a 
covariance matrix of the rows of F.

As a special case, consider the situation in which adjacent pixels along an image
row have a correlation of  and a self-correlation of unity. Then the
covariance matrix reduces to

(6.3-15)

where  denotes the variance of pixels along a row. This is an example of the
covariance matrix of a Markov process, analogous to the continuous autocovariance
function .

Figure 6.3-1 contains a plot by Davisson (6) of the measured covariance of pixels
along an image row of the monochrome image of Figure 6.3-2. The data points can
be fit quite well with a Markov covariance function with . Similarly, the
covariance between lines can be modeled well with a Markov covariance function
with . If the horizontal and vertical covariances were exactly separable,
the covariance function for pixels along the image diagonal would be equal to the
product of the horizontal and vertical axis covariance functions. In this example, the
approximation was found to be reasonably accurate for up to five pixel separations.

The discrete power-spectral density of a discrete image random process may be
defined, in analogy with the continuous power spectrum of Eq. 1.4-13, as the two-
dimensional discrete Fourier transform of its stationary autocorrelation function.
Thus, from Eq. 6.3-11

. (6.3-16)

Kf KC KR⊗

KR 1 1,( )KC KR 1 2,( )KC … KR 1 N2,( )KC

KR 2 1,( )KC KR 2 2,( )KC … KR 2 N2,( )KC

KR N2 1,( )KC KR N2 2,( )KC … KR N2 N2,( )KC

= = … … …

KC N1 N1× KR N2 N2×

0.0 ρR 1.0≤ ≤( )

KR σR
2

1 ρR … ρR
N2 1–

ρR 1 … ρR
N2 2–

ρR
N2 1– ρR

N2 2– … 1

= …… …

σR
2

α– x( )exp

ρ 0.953=

ρ 0.965=

W u v,( ) R j k,( ) 2πi ju
N1
------ kv

N2
------+ 

 –
 
 
 

exp

k 0=

N2 1–


j 0=

N1 1–

=
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FIGURE 6.3-1. Covariance measurements of the smpte_girl_luminance 
monochrome image. 

FIGURE 6.3-2. Photograph of smpte_girl_luminance image.
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Figure 6.3-3 shows perspective plots of the power-spectral densities for separable
and circularly symmetric Markov processes.

FIGURE 6.3-3. Power spectral densities of Markov process sources; N = 256, log magnitude 
displays.
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6.4. IMAGE PROBABILITY DENSITY MODELS

A discrete image array  can be completely characterized statistically by its
joint probability density, written in matrix form as

(6.4-1a)

or in corresponding vector form as

(6.4-1b)

where  is the order of the joint density. If all pixel values are statistically
independent, the joint density factors into the product

(6.4-2)

of its first-order marginal densities.
The most common joint probability density is the joint Gaussian, which may be

expressed as

(6.4-3)

where  is the covariance matrix of f,  is the mean of f and  denotes the
determinant of . The joint Gaussian density is useful as a model for the density of
unitary transform coefficients of an image. However, the Gaussian density is not an
adequate model for the luminance values of an image because luminance is a posi-
tive quantity and the Gaussian variables are bipolar.

Expressions for joint densities, other than the Gaussian density, are rarely found
in the literature. Huhns (7) has developed a technique of generating high-order den-
sities in terms of specified first-order marginal densities and a specified covariance
matrix between the ensemble elements.

In Chapter 5, techniques were developed for quantizing variables to some dis-
crete set of values called reconstruction levels. Let  denote the reconstruction
level of the pixel at vector coordinate (q). Then the probability of occurrence of the
possible states of the image vector can be written in terms of the joint probability
distribution as

(6.4-4)

where  Normally, the reconstruction levels are set identically for
each vector component and the joint probability distribution reduces to

. (6.4-5)

F n1 n2,( )

p F( ) p F 1 1,( ) F 2 1,( ) … F N1 N2,( ), ,,{ }≡

p f( ) p f 1( ) f 2( ) … f Q( ), ,,{ }≡

Q N1 N2⋅=

p f( ) p f 1( ){ }p f 2( ){ }…p f Q( ){ }≡

p f( ) 2π( ) Q 2⁄–
Kf

1 2⁄– 1
2
---– f ηf–( )TKf

1–
f ηf–( )

 
 
 

exp=

Kf ηf Kf
Kf

rjq
q( )

P f( ) p f 1( ) rj1
1( )={ }p f 2( ) rj2

2( )={ }…p f Q( ) rjQ
Q( )={ }=

0 jq jQ≤ ≤ J 1.–=

P f( ) p f 1( ) rj1
={ }p f 2( ) rj2

={ }…p f Q( ) rjQ
={ }=
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Probability distributions of image values can be estimated by histogram measure-
ments. For example, the first-order probability distribution

(6.4-6)

of the amplitude value at vector coordinate q can be estimated by examining a large
collection of images representative of a given image class (e.g., chest x-rays, aerial
scenes of crops). The first-order histogram estimate of the probability distribution is
the frequency ratio

(6.4-7)

where  represents the total number of images examined and  denotes the
number of occurrences for which  for j = 0, 1,..., J – 1. If the image source
is statistically stationary, the first-order probability distribution of Eq. 6.4-6 will be
the same for all vector components q. Furthermore, if the image source is ergodic,
ensemble averages (measurements over a collection of pictures) can be replaced by
spatial averages. Under the ergodic assumption, the first-order probability distribu-
tion can be estimated by measurement of the spatial histogram

(6.4-8)

where  denotes the number of pixels in an image for which  for
 and . For example, for an image with 256 gray levels, 

denotes the number of pixels possessing gray level j for .
Figure 6.4-1 shows first-order histograms of the red, green and blue components

of a color image. Most natural images possess many more dark pixels than bright
pixels, and their histograms tend to fall off exponentially at higher luminance levels.

Estimates of the second-order probability distribution for ergodic image sources
can be obtained by measurement of the second-order spatial histogram, which is a
measure of the joint occurrence of pairs of pixels separated by a specified distance.
With reference to Figure 6.4-2, let  and  denote a pair of pixels
separated by r radial units at an angle  with respect to the horizontal axis. As a
consequence of the rectilinear grid, the separation parameters may only assume cer-
tain discrete values. The second-order spatial histogram is then the frequency ratio

(6.4-9)

where  denotes the number of pixel pairs for which  and
. The factor QT in the denominator of Eq. 6.4-9 represents the total

number of pixels lying in an image region for which the separation is .
Because of boundary effects, QT < Q.

P f q( )[ ] PR f q( ) rj=[ ]=

HE j q;( )
Np j( )

Np
--------------=

Np Np j( )
f q( ) rj=

HS j( )
NS j( )

Q
-------------=

NS j( ) f q( ) rj=
1 q Q≤ ≤ 0 j J 1–≤ ≤ HS j( )

0 j 255≤ ≤

F n1 n2,( ) F n3 n4,( )
θ

HS j1 j2 r θ,;,( )
NS j1 j2,( )

QT
------------------------=

NS j1 j2,( ) F n1 n2,( ) rj1
=

F n3 n4,( ) rj2
=

r θ,( )
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Second-order spatial histograms of a monochrome image are presented in Figure
6.4-3 as a function of pixel separation distance and angle. As the separation
increases, the pairs of pixels become less correlated and the histogram energy tends
to spread more uniformly about the plane.

FIGURE 6.4-1. Histograms of the red, green and blue components of the smpte_girl 
_linear color image.
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6.5. LINEAR OPERATOR STATISTICAL REPRESENTATION

If an input image array is considered to be a sample of a random process with known
first and second-order moments, the first- and second-order moments of the output
image array can be determined for a given linear transformation. First, the mean of
the output image array is

. (6.5-1a)

FIGURE 6.4-2. Geometric relationships of pixel pairs.

FIGURE 6.4-3. Second-order histogram of the smpte_girl_luminance monochrome 
image;  and .r 1= θ 0=

E P m1 m2,( ){ } E F n1 n2,( )O n1 n2 m1 m2,;,( )

n2 1=

N2


n1 1=

N1


 
 
 
 
 

=
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Because the expectation operator is linear,

. (6.5-1b)

The correlation function of the output image array is

(6.5-2a)

or in expanded form

. (6.5-2b)

After multiplication of the series, and performance of the expectation operation, one
obtains

(6.5-3)

where  represents the correlation function of the input image array.
In a similar manner, the covariance function of the output image is found to be

. (6.5-4)

If the input and output image arrays are expressed in vector form, the formulation of
the moments of the transformed image becomes much more compact. The mean of
the output vector p is

(6.5-5)

and the correlation matrix of p is

E P m1 m2,( ){ } E F n1 n2,( ){ }O n1 n2 m1 m2,;,( )
n2 1=

N2


n1 1=
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n2 1=

N2


n1 1=

N1

 ×







=

F∗ n3 n4,( )O∗ n3 n3 m3 m4,;,( )
n4 1=
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n3 1=
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. (6.5-6)

Finally, the covariance matrix of p is

. (6.5-7)

Applications of this theory to superposition and unitary transform operators are
given in following chapters.

A special case of the general linear transformation , of fundamental
importance, occurs when the covariance matrix of Eq. 6.5-7 assumes the form

(6.5-8)

where  is a diagonal matrix. In this case, the elements of p are uncorrelated. From
Appendix A1.2, it is found that the transformation T, which produces the diagonal
matrix , has rows that are eigenvectors of . The diagonal elements of  are the
corresponding eigenvalues of . This operation is called both a matrix diagonal-
ization and a principal components transformation.

6.6. REGION-OF-INTEREST EXERCISES

E6.1 Develop a program that forms the complement of an unsigned integer, 8-bit,
512 x 512, monochrome, image under region-of-interest control (8,9).

Case 1: Full source and destination ROIs.

Case 2: Rectangular source ROI, upper left corner at (50, 100), lower
right corner at (300, 350) and full destination ROI.

Case 3: Full source ROI and rectangular destination ROI, upper left cor-
ner at (150, 200), lower right corner at (400, 450).

Case 4: Rectangular source ROI, upper left corner at (50, 100), lower
right corner at (300, 350) and rectangular destination ROI, upper left
corner at (150, 200), lower right corner at (400, 450).

Steps:

(a) Display the source monochrome image.

(b) Create source and destination ROIs.

(c) Complement the source image into the destination image.

(d) Display the destination image.

(e) Create a constant destination image of value 150.

(f) Bind the source ROI to the source image.

Rp E pp∗T{ } E Tff∗T
T∗T{ } TRfT∗

T
= = =

Kp TKfT∗
T

=

p Tf=

Kp TKfT∗
T Λ= =

Λ

Λ Kf Λ
Kf
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(g) Complement the source image into the destination image.

(h) Display the destination image.

(i) Create a constant destination image of value 150.

(j) Bind the destination ROI to the destination image.

(k) Complement the source image into the destination image.

(l) Display the destination image.

(m) Create a constant destination image of value 150.

(n) Bind the source ROI to the source image and bind the destination ROI
to the destination image.

(o) Complement the source image into the destination image.

(p) Display the destination image.

The PIKS API executable example_complement_monochrome_roi per-
forms this exercise.
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SUPERPOSITION 
AND CONVOLUTION

In Chapter 1, superposition and convolution operations were derived for continuous
two-dimensional image fields. This chapter provides a derivation of these operations
for discrete two-dimensional images. Three types of superposition and convolution
operators are defined: finite area, sampled image and circulant area. The finite-area
operator is a linear filtering process performed on a discrete image data array. The
sampled image operator is a discrete model of a continuous two-dimensional image
filtering process. The circulant area operator provides a basis for a computationally
efficient means of performing either finite-area or sampled image superposition and
convolution.

7.1. FINITE-AREA SUPERPOSITION AND CONVOLUTION

Mathematical expressions for finite-area superposition and convolution are devel-
oped below for both series and vector-space formulations.

7.1.1. Finite-Area Superposition and Convolution: Series Formulation

Let  denote an image array for n1, n2 = 1, 2,..., N. For notational simplicity,
all arrays in this chapter are assumed square. In correspondence with Eq. 1.2-6, the
image array can be represented at some point  as a sum of amplitude
weighted Dirac delta functions by the discrete sifting summation

F n1 n2,( )

m1 m2,( )
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. (7.1-1)

The term

if  and (7.1-2a)

otherwise (7.1-2b)

is a discrete delta function. Now consider a spatial linear operator  that pro-
duces an output image array

(7.1-3)

by a linear spatial combination of pixels within a neighborhood of . From
the sifting summation of Eq. 7.1-1,

(7.1-4a)

or

(7.1-4b)

recognizing that  is a linear operator and that  in the summation of
Eq. 7.1-4a is a constant in the sense that it does not depend on . The term

 for  is the response at output coordinate  to a
unit amplitude input at coordinate . It is called the impulse response function
array of the linear operator and is written as

for  (7.1-5)

and is zero otherwise.
In Eq. 7.1-5, it is assumed that the impulse response array is of limited spatial

extent. This means that an output image pixel is influenced by input image pixels
only within some finite area  neighborhood of the corresponding output image
pixel. The output coordinates  in Eq. 7.1-5 following the semicolon indicate
that in the general case, called finite area superposition, the impulse response array
can change form for each point  in the processed array .  

F m1 m2,( ) F n1 n2,( )δ m1 n1 1+– m2 n2 1+–,( )
n2


n1

=

δ m1 n1 1+– m2 n2 1+–,( )
1

0





=

m1 n1= m2 n2=

O ·{ }

Q m1 m2,( ) O F m1 m2,( ){ }=

m1 m2,( )

Q m1 m2,( ) O F n1 n2,( )δ m1 n1 1+– m2 n2 1+–,( )
n2


n1


 
 
 

=

Q m1 m2,( ) F n1 n2,( )O δ m1 n1 1+– m2 n2 1+–,( ){ }
n2


n1

=

O ·{ } F n1 n2,( )
m1 m2,( )

O δ t1 t2,( ){ } ti mi ni 1+–= m1 m2,( )
n1 n2,( )

δ m1 n1 1+– m2 n2 1 m1 m2,;+–,( ) O δ t1 t2,( ){ }= 1 t1 t2, L≤ ≤

L L×
m1 m2,( )

m1 m2,( ) Q m1 m2,( )
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 Following this nomenclature, the finite area superposition operation is defined as

. (7.1-6)

The limits of the summation are

 (7.1-7)

where  and  denote the maximum and minimum of the argu-
ments, respectively. Examination of the indices of the impulse response array at its
extreme positions indicates that M = N + L - 1, and hence, the processed output array
Q is of larger dimension than the input array F. Figure 7.1-1 illustrates the geometry
of finite-area superposition. If the impulse response array H is spatially invariant,
the superposition operation reduces to the convolution operation.

. (7.1-8)

Figure 7.1-2 presents a graphical example of convolution with a  impulse
response array.

Equation 7.1-6 expresses the finite-area superposition operation in left-justified
form in which the input and output arrays are aligned at their upper left corners. It
is often notationally convenient to utilize a definition in which the output array is

FIGURE 7.1-1. Relationships between input data, output data and impulse response arrays 
for finite-area superposition; upper left corner justified array definition.

Q m1 m2,( ) F n1 n2,( )H m1 n1 1+– m2 n2 1 m1 m2,;+–,( )
n2


n1

=

MAX 1 mi L 1+–,{ } ni MIN N mi,{ }≤ ≤

MAX a b,{ } MIN a b,{ }

Q m1 m2,( ) F n1 n2,( )H m1 n1 1+– m2 n2 1+–,( )
n2


n1

=

3 3×
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centered with respect to the input array. This definition of centered superposition is
given by

(7.1-9)

where  and . The limits of the summa-
tion are

. (7.1-10)

Figure 7.1-3 shows the spatial relationships between the arrays F, H and Qc for cen-
tered superposition with a  impulse response array.

In digital computers and digital image processors, it is often convenient to restrict
the input and output arrays to be of the same dimension. For such systems, Eq. 7.1-9
needs only to be evaluated over the range  . When the impulse response

FIGURE 7.1-2. Graphical example of finite-area convolution with a 3 ´ 3 impulse response 
array; upper left corner justified array definition.

Qc j1 j2,( ) F n1 n2,( )H j1 n1 Lc+– j2 n2 Lc j1 j2,;+–,( )
n2


n1

=

L 3–( ) 2⁄– ji N L 1–( ) 2⁄+≤ ≤ Lc L 1+( ) 2⁄=

MAX 1 ji L 1–( ) 2⁄–,{ } ni MIN N ji L 1–( ) 2⁄+,{ }≤ ≤

5 5×

1 ji N≤ ≤
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array is located on the border of the input array, the product computation of Eq.
7.1-9 does not involve all of the elements of the impulse response array. This situa-
tion is illustrated in Figure 7.1-3, where the impulse response array is in the upper
left corner of the input array. The input array pixels “missing” from the computation
are shown crosshatched in Figure 7.1-3. Several methods have been proposed to
deal with this border effect. One method is to perform the computation of all of the
impulse response elements as if the missing pixels are of some constant value. If the
constant value is zero, the result is called centered, zero padded superposition. A
variant of this method is to regard the missing pixels to be mirror images of the input
array pixels, as indicated in the lower left corner of Figure 7.1-3. In this case, the
centered, reflected boundary superposition definition becomes

(7.1-11)

where the summation limits are

(7.1-12)

FIGURE 7.1-3. Relationships between input data, output data and impulse response arrays 
for finite-area superposition; centered array definition.

Qc j1 j2,( ) F n′1 n′2,( )H j1 n1 Lc+– j2 n2 Lc j1 j2,;+–,( )
n2


n1

=

ji L 1–( ) 2⁄– ni ji L 1–( ) 2⁄+≤ ≤
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and

for (7.1-13a)

for (7.1-13b)

for . (7.1-13c)

In many implementations, the superposition computation is limited to the range
, and the border elements of the  array Qc are set

to zero. In effect, the superposition operation is computed only when the impulse
response array is fully embedded within the confines of the input array. This region
is described by the dashed lines in Figure 7.1-3. This form of superposition is called
centered, zero boundary superposition.

If the impulse response array H is spatially invariant, the centered definition for
convolution becomes

. (7.1-14)

The  impulse response array, which is called a small generating kernel (SGK),
is fundamental to many image processing algorithms (1). When the SGK is totally
embedded within the input data array, the general term of the centered convolution
operation can be expressed explicitly as

(7.1-15)

for . Pratt(4Ed., 241-243) shows that convolution with arbitrary-size
impulse response arrays can be achieved by sequential convolutions with SGKs.

The four different forms of superposition and convolution are each useful in var-
ious image processing applications. The upper left corner–justified definition is
appropriate for computing the correlation function between two images. The cen-
tered, zero padded and centered, reflected boundary definitions are generally
employed for image enhancement filtering. Finally, the centered, zero boundary def-
inition is used for the computation of spatial derivatives in edge detection. In this
application, the derivatives are not meaningful in the border region.
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3 3×
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Figure 7.1-4 shows computer printouts of pixels in the upper left corner of a
convolved image for the four types of convolution boundary conditions. In this
example, the source image is constant of maximum value 1.0. The convolution
impulse response array is a  uniform array.

7.1.2. Finite-Area Superposition and Convolution: Vector-Space Formulation

If the arrays F and Q of Eq. 7.1-6 are represented in vector form by the  vec-
tor f and the  vector q, respectively, the finite-area superposition operation
can be written as (2)

(7.1-16)

where D is a  matrix containing the elements of the impulse response. It is
convenient to partition the superposition operator matrix D into submatrices of
dimension . Observing the summation limits of Eq. 7.1-7, it is seen that

. (7.1-17)

FIGURE 7.1-4 Finite-area convolution boundary conditions, upper left corner of convolved 
image.

5 5×
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1×
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q Df=
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2×

M N×
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DL 1, DL 2, DM L– 1 N,+

0 DL 1+ 1,
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=

…
…

… … …

… …
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The general nonzero term of D is then given by

 (7.1-18)

Thus, it is observed that D is highly structured and quite sparse, with the center band
of submatrices containing stripes of zero-valued elements.

If the impulse response is position invariant, the structure of D does not depend
explicitly on the output array coordinate . Also,

(7.1-19)

As a result, the columns of D are shifted versions of the first column. Under these
conditions, the finite-area superposition operator is known as the finite-area con-
volution operator. Figure 7.1-5a contains a notational example of the finite-area
convolution operator for a  (N = 2) input data array, a  (M = 4) output
data array and a  (L = 3) impulse response array. The integer pairs (i, j) at
each element of D represent the element (i, j) of . The basic structure of D
can be seen more clearly in the larger matrix depicted in Figure 7.l-5b. In this
example, M = 16, N = 8, L = 9, and the impulse response has a symmetrical
Gaussian shape. Note that D is a 256 x 64 matrix in this example.

FIGURE 7.1-5 Finite-area convolution operators: (a) general impulse array, M = 4, N = 2,    
L = 3; (b) Gaussian-shaped impulse array, M = 16, N = 8, L = 9.

Dm2 n2, m1 n1,( ) H m1 n1– 1+ m2 n2 1 m1 m2,;+–,( )=

m1 m2,( )

Dm2 n2, Dm2 1+ n2 1+,=

2 2× 4 4×
3 3×

H i j,( )
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Following the same technique as that leading to Eq. 6.2-7, the matrix form of the
superposition operator may be written as

(7.1-20)

If the impulse response is spatially invariant and is of separable form such that

(7.1-21)

where  and  are column vectors representing row and column impulse responses,
respectively, then

 (7.1-22)

The matrices  and  are  matrices of the form

(7.1-23)

The two-dimensional convolution operation may then be computed by sequential
row and column one-dimensional convolutions. Thus,

. (7.1-24)

In vector form, the general finite-area superposition or convolution operator requires
 operations if the zero-valued multiplications of D are avoided. The separable

operator of Eq. 7.1-24 can be computed with only  operations.

Q Dm n, Fvnum
T

n 1=
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=

H hChR
T

=

hR hC

D DC DR⊗=

DR DC M N×
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hR 1( ) 0 … 0

hR 2( ) hR 1( )

hR 3( ) hR 2( ) … 0

hR 1( )

hR L( )

0

0 … 0 hR L( )

=
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…
…

……

Q DCFDR
T

=

N
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7.2. SAMPLED IMAGE SUPERPOSITION AND CONVOLUTION

Many applications in image processing require a discretization of the superposition
integral relating the input and output continuous fields of a linear system. For exam-
ple, image blurring by an optical system, sampling with a finite-area aperture or
imaging through atmospheric turbulence, may be modeled by the superposition inte-
gral equation

(7.2-1a)

where  and  denote the input and output fields of a linear system,
respectively, and the kernel  represents the impulse response of the linear
system model. In this chapter, a tilde over a variable indicates that the spatial indices
of the variable are bipolar; that is, they range from negative to positive spatial limits.
In this formulation, the impulse response may change form as a function of its four
indices: the input and output coordinates. If the linear system is space invariant, the
output image field may be described by the convolution integral

. (7.2-1b)

For discrete processing, physical image sampling will be performed on the output
image field. Numerical representation of the integral must also be performed in
order to relate the physical samples of the output field to points on the input field.

Numerical representation of a superposition or convolution integral is an impor-
tant topic because improper representations may lead to gross modeling errors or
numerical instability in an image processing application. Also, selection of a numer-
ical representation algorithm usually has a significant impact on digital processing
computational requirements.

As a first step in the discretization of the superposition integral, the output image
field is physically sampled by a  array of Dirac pulses at a resolu-
tion  to obtain an array

(7.2-2)

where . Equal horizontal and vertical spacing of sample pulses is assumed
for notational simplicity. It should be noted that the physical sampling is performed
on the observed image spatial variables (x, y); physical sampling does not affect the
dummy variables of integration .

Next, the impulse response must be truncated to some spatial bounds. Thus, let

(7.2-3)

G̃ x y,( ) F̃ α β,( )J̃ x y α β,;,( ) αd βd
∞–

∞
∞–

∞
=

F̃ x y,( ) G̃ x y,( )
J̃ x y α; β,,( )

G̃ x y,( ) F̃ α β,( )J̃ x α– y β–,( ) αd βd
∞–

∞
∞–

∞
=

2J 1+( ) 2J 1+( )×
ΔS

G̃ j1 ΔS j2 Δ S,( ) F̃ α β,( )J̃ j1 ΔS j2 ΔS α β,;,( ) αd βd
∞–

∞
∞–

∞
=

J– ji J≤ ≤

α β,( )

J̃ x y α β,;,( ) 0=
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for  and . Then,

. (7.2-4)

Truncation of the impulse response is equivalent to multiplying the impulse
response by a window function V(x, y), which is unity for  and  and
zero elsewhere. By the Fourier convolution theorem, the Fourier spectrum of G(x, y)
is equivalently convolved with the Fourier transform of , which is a two-
dimensional sinc function. This distortion of the Fourier spectrum of G(x, y) results
in the introduction of high-spatial-frequency artifacts (a Gibbs phenomenon) at spa-
tial frequency multiples of . Truncation distortion can be reduced by using a
shaped window, such as the Bartlett, Blackman, Hamming or Hanning window (3),
as specified in Section 9.4.2, which smooth the sharp cutoff effects of a rectangular
window. This step is especially important for image restoration modeling because
ill-conditioning of the superposition operator may lead to severe amplification of the
truncation artifacts.

In the next step of the discrete representation, the continuous ideal image array
 is represented by mesh points on a rectangular grid of resolution  and

dimension . This is not a physical sampling process, but merely
an abstract numerical representation whose general term is described by

(7.2-5)

where , with  and  denoting the upper and lower index limits.
If the ultimate objective is to estimate the continuous ideal image field by pro-

cessing the physical observation samples, the mesh spacing  should be fine
enough to satisfy the Nyquist criterion for the ideal image. That is, if the spectrum of
the ideal image is band limited and the limits are known, the mesh spacing should be
set at the corresponding Nyquist spacing. Ideally, this will permit perfect interpola-
tion of the estimated points  to reconstruct .

The continuous integration of Eq. 7.2-4 can now be approximated by a discrete
summation by employing a quadrature integration formula (4). The physical image
samples may then be expressed as

(7.2-6)

where  is a weighting coefficient for the particular quadrature formula
employed. Usually, a rectangular quadrature formula is used, and the weighting
coefficients are unity. In any case, it is notationally convenient to lump the weight-
ing coefficient and the impulse response function together so that

. (7.2-7)

x T> y T>

G̃ j1 ΔS j1 ΔS,( ) F̃ α β,( ) J̃ j1 ΔS j2 ΔS α β,;,( ) αd βd
j2ΔS T–

j2ΔS T+


j1ΔS T–

j1ΔS T+

=

x T< y T<

V x y,( )

2π T⁄

F̃ α β,( ) ΔI
2K 1+( ) 2K 1+( )×

F̃ k1 ΔI k2 ΔI,( ) F̃ α β,( )δ α k1 ΔI α k2 ΔI–,–( )=

KL ki KU≤ ≤ KU KL

ΔI

F̃ k1 ΔI k2 ΔI,( ) F̃ x y,( )

G̃ j1 ΔS j2 ΔS,( ) F̃ k1 Δ I k2 Δ I,( )W̃ k1 k2,( ) J̃ j1 Δ S j2 ΔS k1 ΔI k2 Δ I,;,( )

k2 KL=

KU


k1 KL=

KU

=

W̃ k1 k2,( )

H̃ j1 ΔS j2 ΔS k1 ΔI k2 ΔI,;,( ) W̃ k1 k2,( )J̃ j1ΔS j2 ΔS k1ΔI k2 ΔI,;,( )=

Download more at Learnclax.com



168 SUPERPOSITION AND CONVOLUTION

Then,

.. 

(7.2-8)

Again, it should be noted that  is not spatially discretized; the function is simply
evaluated at its appropriate spatial argument. The limits of summation of Eq. 7.2-8 are

(7.2-9)

where  denotes the nearest integer value of the argument.
Figure 7.2-1 provides an example relating actual physical sample values

 to mesh points  on the ideal image field. In this exam-
ple, the mesh spacing is twice as large as the physical sample spacing. In the figure,
the values of the impulse response function that are utilized in the summation of
Eq. 7.2-8 are represented as dots.

FIGURE 7.2-1. Relationship of physical image samples to mesh points on an ideal image 
field for numerical representation of a superposition integral.

G̃ j1 ΔS j2 ΔS,( ) F̃ k1 ΔI k2 ΔI,( )H̃ j1 ΔS j2 ΔS k1 ΔI k2 ΔI,;,( )
k2 KL=
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k1 KL=
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=

H̃

KL ji
ΔS
ΔI
------- T

ΔI
------–

N
= KU ji

ΔS
ΔI
------- T

ΔI
------+

N
=

·[ ]N

G̃ j1 Δ S j2 ΔS,( ) F̃ k1 ΔI k2 ΔI,( )
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An important observation should be made about the discrete model of Eq. 7.2-8
for a sampled superposition integral; the physical area of the ideal image field

 containing mesh points contributing to physical image samples is larger than
the sample image  regardless of the relative number of physical sam-
ples and mesh points. The dimensions of the two image fields, as shown in Figure
7.2-2, are related by

(7.2-10)

to within an accuracy of one sample spacing.
At this point in the discussion, a discrete and finite model for the sampled super-

position integral has been obtained in which the physical samples 
are related to points on an ideal image field  by a discrete mathemati-
cal superposition operation. This discrete superposition is an approximation to con-
tinuous superposition because of the truncation of the impulse response function

 and quadrature integration. The truncation approximation can, of
course, be made arbitrarily small by extending the bounds of definition of the
impulse response, but at the expense of large dimensionality. Also, the quadrature
integration approximation can be improved by use of complicated formulas of
quadrature, but again the price paid is computational complexity. It should be noted,
however, that discrete superposition is a perfect approximation to continuous super-
position if the spatial functions of Eq. 7.2-1 are all bandlimited and the physical
sampling and numerical representation periods are selected to be the corresponding
Nyquist period (5).

FIGURE 7.2-2. Relationship between regions of physical samples and mesh points for 
numerical representation of a superposition integral.

F̃ x y,( )
G̃ j1 ΔS j2 ΔS,( )

J ΔS T+ K ΔI=

G̃ j1 ΔS j2 ΔS,( )
F̃ k1 ΔI k2 ΔI,( )

J̃ x y α β,;,( )
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It is often convenient to reformulate Eq. 7.2-8 into vector-space form. Toward
this end, the arrays  and  are reindexed to  and  arrays, respectively,
such that all indices are positive. Let

(7.2-11a)

where  and let

(7.2-11b)

where . Also, let the impulse response be redefined such that

. (7.2-11c)

Figure 7.2-3 illustrates the geometrical relationship between these functions.
The discrete superposition relationship of Eq. 7.2-8 for the shifted arrays

becomes

(7.2-12)

for  where

Following the techniques outlined in Chapter 6, the vectors g and f may be formed
by column scanning the matrices G and F to obtain

(7.2-13)

where B is a  matrix of the form

(7.2-14)

G̃ F̃ M M× N N×
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The general term of B is defined as

(7.2-15)

for  and  where  represents the nearest
odd integer dimension of the impulse response in resolution units . For descrip-
tional simplicity, B is called the blur matrix of the superposition integral.

If the impulse response function is translation invariant such that

(7.2-16)

then the discrete superposition operation of Eq. 7.2-12 becomes a discrete convolu-
tion operation of the form

.

(7.2-17)

If the physical sample and quadrature mesh spacings are equal, the general term
of the blur matrix assumes the form

. (7.2-18)

In Eq. 7.2-18, the mesh spacing variable  is understood. In addition,

. (7.2-19)

FIGURE 7.2-3. Sampled image arrays.

Bm2 n2, m1 n1,( ) H m1 ΔS m2 ΔS n1 ΔI n2 ΔI,;,( )=
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=

Bm2 n2, m1 n1,( ) H m1 n1– L m2 n2 L+–,+( )=

ΔI

Bm2 n2, Bm2 1 n2 1+,+=
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Consequently, the rows of B are shifted versions of the first row. The operator B
then becomes a sampled infinite area convolution operator, and the series form rep-
resentation of Eq. 7.2-17 reduces to

(7.2-20)

where the sampling spacing is understood.
Figure 7.2-4a is a notational example of the sampled image convolution operator

for a  (N = 4) data array, a  (M = 2) filtered data array, and a 
(L = 3) impulse response array. An extension to larger dimension is shown in Figure
7.2-4b for M = 8, N = 16, L = 9 and a Gaussian-shaped impulse response.

When the impulse response is spatially invariant and orthogonally separable,

(7.2-21)

where  and  are  matrices of the form

(7.2-22)

FIGURE 7.2-4. Sampled infinite area convolution operators: (a) General impulse array,       
M = 2, N = 4, L = 3; (b) Gaussian-shaped impulse array, M = 8, N = 16, L = 9.
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The two-dimensional convolution operation then reduces to sequential row and col-
umn convolutions of the matrix form of the image array. Thus

. (7.2-23)

The superposition or convolution operator expressed in vector form requires 
operations if the zero multiplications of B are avoided. A separable convolution
operator can be computed in matrix form with only  operations.

7.3. CIRCULANT SUPERPOSITION AND CONVOLUTION

In circulant superposition (2), the input data, the processed output and the impulse
response arrays are all assumed spatially periodic over a common period. To unify
the presentation, these arrays will be defined in terms of the spatially limited arrays
considered previously. First, let the  data array  be embedded in the
upper left corner of a  array  of zeros, giving

for (7.3-1a)

for . (7.3-1b)

In a similar manner, an extended impulse response array is created by embedding
the spatially limited impulse array in a  matrix of zeros. Thus, let

for (7.3-2a)

for . (7.3-2b)

Periodic arrays  and  are now formed by replicating the
extended arrays over the spatial period J. Then, the circulant superposition of these
functions is defined as

.

(7.3-3)

Similarity of this equation with Eq. 7.1-6 describing finite-area superposition is evi-
dent. In fact, if J is chosen such that J = N + L – 1, the terms 
for . The similarity of the circulant superposition operation and the sam-
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pled image superposition operation should also be noted. These relations become
clearer in the vector-space representation of the circulant superposition operation.

Let the arrays FE and KE be expressed in vector form as the  vectors fE and
kE, respectively. Then, the circulant superposition operator can be written as

(7.3-4)

where C is a  matrix containing elements of the array HE. The circulant
superposition operator can then be conveniently expressed in terms of  subma-
trices Cmn as given by

(7.3-5)

where

(7.3-6)

for  and  with modulo J and HE(0, 0) = 0. It
should be noted that each row and column of C contains L nonzero submatrices. If
the impulse response array is spatially invariant, then

(7.3-7)

and the submatrices of the rows (columns) can be obtained by a circular shift of the
first row (column). Figure 7.3-la illustrates the circulant convolution operator for

 (J = 4) data and filtered data arrays and for a  (L = 3) impulse response
array. In Figure 7.3-lb, the operator is shown for J = 16 and L = 9 with a Gaussian-
shaped impulse response.
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FIGURE 7.3-1. Circulant convolution operators: (a) General impulse array, J = 4, L = 3;    
(b) Gaussian-shaped impulse array, J = 16, L = 9.
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Finally, when the impulse response is spatially invariant and orthogonally sep-
arable,

(7.3-8)

where  and  are  matrices of the form

. (7.3-9)

Two-dimensional circulant convolution may then be computed as

. (7.3-10)

7.4. SUPERPOSITION AND CONVOLUTION OPERATOR RELATIONSHIPS

The elements of the finite-area superposition operator D and the elements of the
sampled image superposition operator B can be extracted from circulant superposi-
tion operator C by use of selection matrices defined as (2)

(7.4-1a)

(7.4-1b)

where  and  are  matrices, IK is a  identity matrix and  is a
 matrix.

Examination of the structure of the various superposition operators indicates that

(7.4-2a)

. (7.4-2b)
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That is, the matrix D is obtained by extracting the first M rows and N columns of sub-
matrices Cmn of C. The first M rows and N columns of each submatrix are also
extracted. A similar explanation holds for the extraction of B from C. In Figure 7.3-1,
the elements of C to be extracted to form D and B are indicated by boxes.

Pratt (4Ed., 184-186) has shown that

(7.4-3)

and

. (7.4-9)

Figure 7.4-1 illustrates the locations of the elements of G and Q extracted from KE
for finite-area and sampled infinite-area superposition.

In summary, it has been shown that the output data vectors for either finite-area
or sampled image superposition can be obtained by a simple selection operation on
the output data vector of circulant superposition. Computational advantages that can
be realized from this result are considered in Chapter 9.

7.5. CONVOLUTION EXERCISES

E7.1 Develop a program that convolves a test image with a  uniform impulse
response array for three convolution boundary conditions. Steps:

(a) Create a  pixel, real datatype test image consisting of a 
cluster of amplitude 1.0 pixels in the upper left corner and a single pixel
of amplitude 1.0 in the image center. Set all other pixels to 0.0.

(b) Create a  uniform impulse response array.

FIGURE 7.4-1. Location of elements of processed data Q and G from KE.

Q S1J
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=
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(c) Convolve the source image with the impulse response array for the fol-
lowing three boundary conditions: enclosed array, zero exterior,
reflected exterior.

(d) Print a  pixel image array about the upper left corner and image
center for each boundary condition and explain the results.

The PIKS API executable example_convolve_boundary performs this exer-
cise.

E7.2 Develop a program that convolves an unsigned integer, 8-bit, color image
with a  uniform impulse response array. Steps:

(a) Display the source color image.

(b) Fetch the impulse response array from a data object repository.

(c) Convolve the source image with the impulse response array.

(d) Display the destination image.

The PIKS API executable example_repository_convolve_colour per-
forms this exercise.

REFERENCES

1. J. F. Abramatic and O. D. Faugeras, “Design of Two-Dimensional FIR Filters from
Small Generating Kernels,” Proc. IEEE Conference on Pattern Recognition and Image
Processing, Chicago, May 1978.

2. W. K. Pratt, “Vector Formulation of Two Dimensional Signal Processing Operations,”
Computer Graphics and Image Processing, 4, 1, March 1975, 1–24.

3. A. V. Oppenheim and R. W. Schaefer (Contributor), Digital Signal Processing, Prentice
Hall, Englewood Cliffs, NJ, 1975.

4. T. R. McCalla, Introduction to Numerical Methods and FORTRAN Programming, Wiley,
New York, 1967.

5. A. Papoulis, Systems and Transforms with Applications in Optics, Second Edition,
McGraw-Hill, New York, 1981.

5 5×

5 5×

Download more at Learnclax.com



179

8

Introduction to Digital Image Processing by William K. Pratt
Copyright © 2013 by CRC Press

UNITARY AND WAVELET TRANSFORMS

Two-dimensional unitary and wavelet transforms have found two major applications
in image processing. Transforms have been utilized to extract features from images.
For example, with the Fourier transform, the average value or DC term is propor-
tional to the average image amplitude, and the high-frequency terms (AC term) give
an indication of the amplitude and orientation of edges within an image. Dimension-
ality reduction in computation is a second image processing application. Stated sim-
ply, those transform coefficients that are small may be excluded from processing
operations, such as filtering, without much loss in processing accuracy. Another
application in the field of image coding is transform image coding, in which a band-
width reduction is achieved by discarding or grossly quantizing low-magnitude
transform coefficients. In this chapter, consideration is given to the properties of
unitary and wavelet transforms commonly used in image processing.

8.1. GENERAL UNITARY TRANSFORMS

A unitary transform is a specific type of linear transformation in which the basic
linear operation of Eq. 6.2-1 is exactly invertible and the operator kernel satisfies
certain orthogonality conditions (1,2). The forward unitary transform of the

 image array  results in a  transformed image array as
defined by
N1 N2× F n1 n2,( ) N1 N2×
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180 UNITARY AND WAVELET TRANSFORMS

(8.1-1)

where  represents the forward transform kernel. A reverse or
inverse transformation provides a mapping from the transform domain to the image
space as given by

(8.1-2)

where  denotes the inverse transform kernel. The transformation is
unitary if the following orthonormality conditions are met:

(8.1-3a)

(8.1-3b)

(8.1-3c)

. (8.1-3d)

The transformation is said to be separable if its kernels can be written in the form

(8.1-4a)

(8.1-4b)

where the kernel subscripts indicate row and column one-dimensional transform
operations. A separable two-dimensional unitary transform can be computed in two
steps. First, a one-dimensional transform is taken along each column of the image,
yielding

. (8.1-5)

Next, a second one-dimensional unitary transform is taken along each row of
, giving

F m1 m2,( ) F n1 n2,( )A n1 n2 m1 m2,;,( )
n2 1=

N2


n1 1=

N1

=

A n1 n2 m1 m2,;,( )

F n1 n2,( ) F m1 m2,( )B n1 n2 m1 m2,;,( )
m2 1=

N2


m1 1=

N1

=

B n1 n2 m1 m2,;,( )

A n1 n2 m1 m2,;,( )A∗ j1 j2 m1 m2,;,( )
m2


m1

 δ n1 j1– n2 j2–,( )=

B n1 n2 m1 m2,;,( )B∗ j1 j2 m1 m2,;,( )
m2


m1

 δ n1 j1– n2 j2–,( )=

A n1 n2 m1 m2,;,( )A∗ n1 n2 k1 k2,;,( )
n2


n1

 δ m1 k1– m2 k2–,( )=

B n1 n2 m1 m2,;,( )B∗ n1 n2 k1 k2,;,( )
n2


n1

 δ m1 k1– m2 k2–,( )=

A n1 n2 m1 m2,;,( ) AC n1 m1,( )AR n2 m2,( )=

B n1 n2 m1 m2,;,( ) BC n1 m1,( )BR n2 m2,( )=

P m1 n2,( ) F n1 n2,( )AC n1 m1,( )
n1 1=

N1

=

P m1 n2,( )
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. (8.1-6)

Unitary transforms can conveniently be expressed in vector-space form (3). Let F
and f denote the matrix and vector representations of an image array, and let  and

 be the matrix and vector forms of the transformed image. Then, the two-dimen-
sional unitary transform written in vector form is given by

(8.1-7)

where A is the forward transformation matrix. The reverse transform is

(8.1-8)

where B represents the inverse transformation matrix. It is obvious then that

. (8.1-9)

For a unitary transformation, the matrix inverse is given by

(8.1-10)

and A is said to be a unitary matrix. A real unitary matrix is called an orthogonal
matrix. For such a matrix,

. (8.1-11)

If the transform kernels are separable such that

(8.1-12)

where  and  are row and column unitary transform matrices, then the trans-
formed image matrix can be obtained from the image matrix by

. (8.1-13a)

The inverse transformation is given by

(8.1-13b)

where  and .
Separable unitary transforms can also be expressed in a hybrid series–vector

space form as a sum of vector outer products. Let  and  represent rows

F m1 m2,( ) P m1 n2,( )AR n2 m2,( )
n2 1=

N2

=

F
f

f Af=

f Bf=

B A
1–

=

A
1–

A∗T
=

A
1–

A
T

=

A AC AR⊗=

AR AC

F ACFAR
T

=

F BC F BR
T

=

BC AC
1–

= BR AR
1–

=

aC n1( ) aR n2( )
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182 UNITARY AND WAVELET TRANSFORMS

n1 and n2 of the unitary matrices AR and AR, respectively. Then, it is easily verified
that

. (8.1-14a)

Similarly,

. (8.1-14b)

where  and  denote rows m1 and m2 of the unitary matrices BC and
BR, respectively. The vector outer products of Eq. 8.1-14 form a series of matrices,
called basis matrices, that provide matrix decompositions of the image matrix F or
its unitary transformation F.

There are several ways in which a unitary transformation may be viewed. An
image transformation can be interpreted as a decomposition of the image data into a
generalized two-dimensional spectrum (4). Each spectral component in the trans-
form domain corresponds to the amount of energy of the spectral function within the
original image. In this context, the concept of frequency may now be generalized to
include transformations by functions other than sine and cosine waveforms. This
type of generalized spectral analysis is useful in the investigation of specific decom-
positions that are best suited for particular classes of images. Another way to visual-
ize an image transformation is to consider the transformation as a multidimensional
rotation of coordinates. One of the major properties of a unitary transformation is
that measure is preserved. For example, the mean-square difference between two
images is equal to the mean-square difference between the unitary transforms of the
images. A third approach to the visualization of image transformation is to consider
Eq. 8.1-2 as a means of synthesizing an image with a set of two-dimensional mathe-
matical functions  for a fixed transform domain coordinate .
In this interpretation, the kernel  is called a two-dimensional basis
function and the transform coefficient  is the amplitude of the basis function
required in the synthesis of the image.

In the remainder of this chapter, to simplify the analysis of two-dimensional uni-
tary transforms, all image arrays are considered square of dimension N. Further-
more, when expressing transformation operations in series form, as in Eqs. 8.1-1
and 8.1-2, the indices are renumbered and renamed. Thus, the input image array is
denoted by F(j, k) for j, k = 0, 1, 2,..., N − 1, and the transformed image array is rep-
resented by  for u, v = 0, 1, 2,..., N − 1. With these definitions, the forward
unitary transform becomes

(8.1-15a)

F F n1 n2,( )aC n1( )aR
T

n2( )
n2 1=

N2


n1 1=

N1

=

F F m1 m2,( )bC m1( )bR
T

m2( )
m2 1=

N2


m1 1=

N1

=

bC m1( ) bR m2( )

B n1 n2 m1 m2,;,( ) m1 m2,( )
B n1 n2 m1 m2,;,( )
F m1 m2,( )

F u v,( )

F u v,( ) F j k,( )A j k u v,;,( )
k 0=

N 1–


j 0=

N 1–

=
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and the inverse transform is

. (8.1-15b)

8.2. FOURIER TRANSFORM

The discrete two-dimensional Fourier transform of an image array is defined in
series form as (5–10)

(8.2-1a)

where , and the discrete inverse transform is given by

. (8.2-1b)

The indices (u, v) are called the spatial frequencies of the transformation in analogy
with the continuous Fourier transform. It should be noted that Eq. 8.2-1 is not univer-
sally accepted by all authors; some prefer to place all scaling constants in the inverse
transform equation, while still others employ a reversal in the sign of the kernels.

Because the transform kernels are separable and symmetric, the two dimensional
transforms can be computed as sequential row and column one-dimensional trans-
forms. The basis functions of the transform are complex exponentials that may be
decomposed into sine and cosine components. The resulting Fourier transform pairs
then become

(8.2-2a)

. (8.2-2b)

Figure 8.2-1 shows plots of the sine and cosine components of the one-dimen-
sional Fourier basis functions for N = 16. It should be observed that the basis func-
tions are a rough approximation to continuous sinusoids only for low frequencies;
in fact, the highest-frequency basis function is a square wave. Also, there are obvi-
ous redundancies between the sine and cosine components.

F j k,( ) F u v,( )B j k u v,;,( )
v 0=

N 1–


u 0=

N 1–

=

F u v,( ) 1
N
---- F j k,( ) 2πi–

N
----------- uj vk+( )

 
 
 

exp

k 0=

N 1–


j 0=

N 1–

=

i 1–=

F j k,( ) 1
N
---- F u v,( ) 2πi

N
-------- uj vk+( )

 
 
 

exp

v 0=

N 1–


u 0=

N 1–

=

A j k u v,;,( ) 2πi–
N

----------- uj vk+( )
 
 
 

exp
2π
N
------ uj vk+( )

 
 
 

cos i
2π
N
------ uj vk+( )

 
 
 

sin–= =

B j k u v,;,( ) 2πi
N

-------- uj vk+( )
 
 
 

exp
2π
N
------ uj vk+( )

 
 
 

cos i
2π
N
------ uj vk+( )

 
 
 

sin+= =
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184 UNITARY AND WAVELET TRANSFORMS

The Fourier transform plane possesses many interesting structural properties.
The spectral component at the origin of the Fourier domain

(8.2-3)

is equal to N times the spatial average of the image plane. Making the substitutions
,  in Eq. 8.2-1, where m and n are constants, results in

FIGURE 8.2-1 Fourier transform basis functions, N = 16.

(a) Sine component (b) Cosine component

F 0 0,( ) 1
N
---- F j k,( )

k 0=

N 1–


j 0=

N 1–

=

u u mN+= v v nN+=
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.

(8.2-4)

For all integer values of m and n, the second exponential term of Eq. 8.2-5 assumes
a value of unity, and the transform domain is found to be periodic. Thus, as shown in
Figure 8.2-2a,

(8.2-5)

for .
The two-dimensional Fourier transform of an image is essentially a Fourier series

representation of a two-dimensional field. For the Fourier series representation to be
valid, the field must be periodic. Thus, as shown in Figure 8.2-2b, the original image
must be considered to be periodic horizontally and vertically. The right side of the
image therefore abuts the left side, and the top and bottom of the image are adjacent.
Spatial frequencies along the coordinate axes of the transform plane arise from these
transitions.

If the image array represents a luminance field,  will be a real positive
function. However, its Fourier transform will, in general, be complex. Because the
transform domain contains  components, the real and imaginary, or phase and
magnitude components, of each coefficient, it might be thought that the Fourier
transformation causes an increase in dimensionality. This, however, is not the case
because  exhibits a property of conjugate symmetry. From Eq. 8.2-4, with m
and n set to integer values, conjugation yields

FIGURE 8.2-2. Periodic image and Fourier transform arrays.

F u mN+ v nN+,( ) 1
N
---- F j k,( ) 2πi–

N
----------- uj vk+( )

 
 
 

exp 2πi– mj nk+( ){ }exp

k 0=

N 1–


j 0=

N 1–

=

F u mN+ v nN+,( ) F u v,( )=

m n, 0 1 2 …,±,±,=

F j k,( )

2N
2

F u v,( )
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. (8.2-6)

By the substitution  and  it can be shown that

(8.2-7)

for . As a result of the conjugate symmetry property, almost one-
half of the transform domain samples are redundant; that is, they can be generated
from other transform samples. Figure 8.2-3 shows the transform plane with a set of
redundant components crosshatched. It is possible, of course, to choose the left half-
plane samples rather than the upper plane samples as the non redundant set.

Figure 8.2-4 shows a monochrome test image and various versions of its Fourier
transform, as computed by Eq. 8.2-1a, where the test image has been scaled over
unit range . Because the dynamic range of transform components
is much larger than the exposure range of photographic film, it is necessary to com-
press the coefficient values to produce a useful display. Amplitude compression to a
unit range display array  can be obtained by clipping large-magnitude values
according to the relation

FIGURE 8.2-3. Fourier transform frequency domain.

F* u mN+ v nN+,( ) 1
N
---- F j k,( ) 2πi–

N
----------- uj vk+( )

 
 
 

exp

k 0=

N 1–


j 0=

N 1–

=

u u–= v v–=

F u v,( ) F * u– mN+ v– nN+,( )=

n 0 1 2 …,±,±,=

0.0 F j k,( ) 1.0≤ ≤

D u v,( )
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if (8.2-8a)

if (8.2-8b)

where  is the clipping factor and  is the maximum coefficient
magnitude. Another form of amplitude compression is to take the logarithm of each
component as given by

. (8.2-9)

FIGURE 8.2-4. Fourier transform of the smpte_girl_luma image.

D u v,( ) 1.0= F u v,( ) c Fmax≥

D u v,( ) F u v,( )
c Fmax

---------------------= F u v,( ) c Fmax<

0.0 c< 1.0≤ Fmax

D u v,( ) a b F u v,( )+{ }log
a b Fmax+{ }log

-------------------------------------------------=
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188 UNITARY AND WAVELET TRANSFORMS

where a and b are scaling constants. Figure 8.2-4b is a clipped magnitude display of
the magnitude of the Fourier transform coefficients. Figure 8.2-4c is a logarithmic
display for a = 1.0 and b = 100.0.

In mathematical operations with continuous signals, the origin of the transform
domain is usually at its geometric center. Similarly, the Fraunhofer diffraction pat-
tern of a photographic transparency of transmittance  produced by a coherent
optical system has its zero-frequency term at the center of its display. A computer-
generated two-dimensional discrete Fourier transform with its origin at its center
can be produced by a simple reordering of its transform coefficients. Alternatively,
the quadrants of the Fourier transform, as computed by Eq. 8.2-la, can be reordered
automatically by multiplying the image function by the factor  prior to the
Fourier transformation. The proof of this assertion follows from Eq. 8.2-4 with the
substitution . Then, by the identity 

(8.2-10)

Eq. 8.2-5 can be expressed as

(8.2-11)

Figure 8.2-4d contains a log magnitude display of the reordered Fourier compo-
nents. The conjugate symmetry in the Fourier domain is readily apparent from the
photograph.

The Fourier transform written in series form in Eq. 8.2-1 may be redefined in
vector-space form as

(8.2-12a)

. (8.2-12b)

where f and  are vectors obtained by column scanning the matrices F and F,
respectively. The transformation matrix A can be written in direct product form as

(8.2-13)

where

F x y,( )

1–( )j k+

m n 1
2
---= =

iπ j k+( ){ }exp 1–( ) j k+
=

F u N 2⁄+ v N 2⁄+,( ) 1
N
---- F j k,( ) 1–( )j k+ 2πi–

N
----------- uj vk+( )

 
 
 

exp

k 0=

N 1–


j 0=

N 1–

=

f Af=

f A∗T
f=

f

A AC AR⊗=
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(8.2-14)

with . As a result of the direct product decomposition of A, the
image matrix and transformed image matrix are related by

(8.2-15a)

. (8.2-15b)

The properties of the Fourier transform previously proved in series form obviously
hold in the matrix formulation.

One of the major contributions to the field of image processing was the discovery
(5) of an efficient computational algorithm for the discrete Fourier transform (DFT).
Brute-force computation of the discrete Fourier transform of a one-dimensional
sequence of N values requires on the order of  complex multiply and add opera-
tions. A fast Fourier transform (FFT) requires on the order of  operations.
For large images the computational savings are substantial. The original FFT algo-
rithms were limited to images whose dimensions are a power of 2 (e.g.,

). Modern algorithms exist for less restrictive image dimensions.
Although the Fourier transform possesses many desirable analytic properties, it

has a major drawback: Complex, rather than real number computations are neces-
sary. Also, for image coding it does not provide as efficient image energy compac-
tion as other transforms.

8.3. COSINE, SINE AND HARTLEY TRANSFORMS

The cosine, sine and Hartley transforms are unitary transforms that utilize sinusoidal
basis functions, as does the Fourier transform. The cosine and sine transforms are
not simply the cosine and sine parts of the Fourier transform. In fact, the cosine and
sine parts of the Fourier transform, individually, are not orthogonal functions. The
Hartley transform jointly utilizes sine and cosine basis functions, but its coefficients
are real numbers, as contrasted with the Fourier transform whose coefficients are, in
general, complex numbers.

AR AC

W
0

W
0

W
0 … W

0

W
0

W
1

W
2 … W

N 1–

W
0

W
2

W
4 … W

2 N 1–( )

W
0 · · … W

N 1–( )2

= =

… …

W 2πi– N⁄{ }exp=

F ACFAR=

F AC
∗F AR

∗=

N
2

N Nlog

N 2
9

512= =
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FIGURE 8.3-1. Cosine transform basis functions, N = 16.

8.3.1. Cosine Transform

The cosine transform, discovered by Ahmed et al. (12), has found wide application
in transform image coding. In fact, it is the foundation of the JPEG standard (13) for
still image coding and the MPEG standard for the coding of moving images (14).
The cosine transform pair is defined as (12)

(8.3-1a)

.

(8.3-1b)

F u v,( ) 2
N
---- C u( ) C v( ) F j k,( ) π

N
---- u j 1

2
---+( )[ ]

 
 
 

cos
π
N
---- v k 1

2
---+( )[ ]

 
 
 

cos

k 0=

N 1–


j 0=

N 1–

=

F j k,( ) 2
N
---- C u( ) C v( )F u v,( ) π

N
---- u j 1

2
---+( )[ ]

 
 
 

cos
π
N
---- v k 1

2
---+( )[ ]

 
 
 

cos

v 0=

N 1–


u 0=

N 1–

=
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where  and  for w = 1, 2,..., N – 1. It has been observed
that the basis functions of the cosine transform are actually a class of discrete Che-
byshev polynomials (12).

FIGURE 8.3-2. Cosine, sine and Hartley transforms of the smpte_girl_luma  image,
log magnitude displays.

Figure 8.3-1 is a plot of the cosine transform basis functions for N = 16. A photo-
graph of the cosine transform of the test image of Figure 8.2-4a is shown in Figure
8.3-2a. The origin is placed in the upper left corner of the picture, consistent with
matrix notation. It should be observed that, as with the Fourier transform, the image
energy tends to concentrate toward the lower spatial frequencies.

The cosine transform of a  image can be computed by reflecting the image
about its edges to obtain a  array, taking the FFT of the array and then
extracting the real parts of the Fourier transform (15). Algorithms also exist for the

C 0( ) 2( ) 1– 2⁄
= C w( ) 1=

N N×
2N 2N×
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direct computation of each row or column of Eq. 8.3-1 with on the order of 
real arithmetic operations (12,16).

8.3.2. Sine Transform

The sine transform, introduced by Jain (17), as a fast algorithmic substitute for the
Karhunen–Loeve transform of a Markov process, is defined in two-dimensional
form as

(8.3-2)

for u, j = 0, 1, 2,..., N – 1. Its inverse is of identical form.

FIGURE 8.3-3. Sine transform basis functions, N = 15.

N Nlog

F u v,( ) 2
N 1+
------------- F j k,( ) j 1+( ) u 1+( )π

N 1+
--------------------------------------

 
 
 

sin
k 1+( ) v 1+( )π

N 1+
-------------------------------------

 
 
 

sin

k 0=

N 1–


j 0=

N 1–

=
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Sine transform basis functions are plotted in Figure 8.3-3 for N = 15. Figure
8.3-2b is a photograph of the sine transform of the test image. The sine transform
can also be computed directly from Eq. 8.3-2, or efficiently with a Fourier transform
algorithm (17).

8.3.3. Hartley Transform

Bracewell (19,20) has proposed a discrete real-valued unitary transform, called the
Hartley transform, as a substitute for the Fourier transform in many filtering appli-
cations. The name derives from the continuous integral version introduced by Hart-
ley in 1942 (21). The discrete two-dimensional Hartley transform is defined by the
transform pair

(8.3-3a)

. (8.3-3b)

where . The structural similarity between the Fourier and Hartley
transforms becomes evident when comparing Eq. 8.3-3 and Eq. 8.2-2.

It can be readily shown (17) that the  function is an orthogonal function.
Also, the Hartley transform possesses equivalent but not mathematically identical
structural properties of the discrete Fourier transform (20). Figure 8.3-2c is a photo-
graph of the Hartley transform of the test image.

The Hartley transform can be computed efficiently by a FFT-like algorithm (20).
The choice between the Fourier and Hartley transforms for a given application is
usually based on computational efficiency. In some computing structures, the Hart-
ley transform may be more efficiently computed, while in other computing environ-
ments, the Fourier transform may be computationally superior.

8.4. HADAMARD, HAAR AND DAUBECHIES TRANSFORMS

The Hadamard, Haar and Daubechies transforms are related members of a family of
non sinusoidal transforms.

8.4.1. Hadamard Transform

The Hadamard transform (22,23) is based on the Hadamard matrix (24), which is a
square array of plus and minus ones whose rows and columns are orthogonal. A nor-
malized  Hadamard matrix satisfies the relation

. (8.4-1)

F u v,( ) 1
N
---- F j k,( ) cas

2π
N
------ uj vk+( )

 
 
 

k 0=

N 1–


j 0=

N 1–

=

F j k,( ) 1
N
---- F u v,( ) cas

2π
N
------ uj vk+( )

 
 
 

v 0=

N 1–


u 0=

N 1–

=

casθ θcos θsin+≡

cas θ

N N×

HH
T

I=
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The smallest orthonormal Hadamard matrix is the  Hadamard matrix given by

. (8.4-2)

It is known that if a Hadamard matrix of size N exists (N > 2), then N = 0 modulo 4
(22). The existence of a Hadamard matrix for every value of N satisfying this
requirement has not been shown, but constructions are available for nearly all per-
missible values of N up to 200. The simplest construction is for a Hadamard matrix
of size N = 2n, where n is an integer. In this case, if  is a Hadamard matrix of size
N, the matrix

(8.4-3)

is a Hadamard matrix of size 2N. Figure 8.4-1 shows Hadamard matrices of size 4
and 8 obtained by the construction of Eq. 8.4-3.

Harmuth (25) has suggested a frequency interpretation for the Hadamard matrix
generated from the core matrix of Eq. 8.4-3; the number of sign changes along each
row of the Hadamard matrix divided by 2 is called the sequency of the row. It is pos-

FIGURE 8.4-1. Nonordered Hadamard matrices of size 4 and 8.

2 2×

H2
1

2
------- 1 1

1 1–
=

HN

H2N
1

2
-------

HN HN

HN HN–
=
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sible to construct a Hadamard matrix of order  whose number of sign changes
per row increases from 0 to N – 1. This attribute is called the sequency property of the
unitary matrix.

The rows of the Hadamard matrix of Eq. 8.4-3 can be considered to be samples
of rectangular waves with a subperiod of 1/N units. These continuous functions are
called Walsh functions (26). In this context, the Hadamard matrix merely performs
the decomposition of a function by a set of rectangular waveforms rather than the
sine–cosine waveforms with the Fourier transform. A series formulation exists for
the Hadamard transform (23). 

FIGURE 8.4-2. Hadamard transform basis functions, N = 16.

N 2
n

=
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Hadamard transform basis functions for the ordered transform with N = 16 are
shown in Figure 8.4-2. The ordered Hadamard transform of the test image in shown
in Figure 8.4-3a. 

8.4.2. Haar Transform

The Haar transform (1,26,27) is derived from the Haar matrix. The following are
 and  orthonormal Haar matrices:

(8.4-4)

. (8.4-5)

Extensions to higher-order Haar matrices follow the structure indicated by Eqs. 8.4-4
and 8.4-5. Figure 8.4-4 is a plot of the Haar basis functions for .

FIGURE 8.4-3. Hadamard and Haar transforms of the smpte_girl_luma image, log
magnitude displays.

4 4× 8 8×

H4
1
2
---

1 1 1 1

1 1 1– 1–

2 2– 0 0

0 0 2 2–

=

H8
1

8
-------

1 1 1 1 1 1 1 1

1 1 1 1 1– 1– 1– 1–

2 2 2– 2– 0 0 0 0

0 0 0 0 2 2 2– 2–

2 2– 0 0 0 0 0 0

0 0 2 2– 0 0 0 0

0 0 0 0 2 2– 0 0

0 0 0 0 0 0 2 2–

=

N 16=
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The Haar transform can be computed recursively (29) using the following 
recursion matrix

(8.4-6)

where  is a  scaling matrix and  is a  wavelet matrix
defined as

(8.4-7a)

FIGURE 8.4-4. Haar transform basis functions, N = 16.

N N×

RN
VN

WN

=

VN N 2⁄ N× WN N 2⁄ N×

VN
1

2
-------

1 1 0 0 0 0 … 0 0 0 0

0 0 1 1 0 0 … 0 0 0 0

0 0 0 0 0 0 … 1 1 0 0

0 0 0 0 0 0 … 0 0 1 1

=
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. (8.4-7b)

The elements of the rows of  are called first-level scaling signals, and the
elements of the rows of  are called first-level Haar wavelets (29).

The first-level Haar transform of a  vector  is

(8.4-8)

where

(8.4-9a)

. (8.4-9b)

The vector  represents the running average or trend of the elements of , and the
vector  represents the running fluctuation of the elements of . The next step in
the recursion process is to compute the second-level Haar transform from the trend
part of the first-level transform and concatenate it with the first-level fluctuation
vector. This results in

(8.4-10)

where

(8.4-11a)

(8.4-11b)

are  vectors. The process continues until the full transform

(8.4-12)

is obtained where . It should be noted that the intermediate levels are unitary
transforms.

The Haar transform can be likened to a sampling process in which rows of the
transform matrix sample an input data sequence with finer and finer resolution
increasing in powers of 2. In image processing applications, the Haar transform pro-
vides a transform domain in which a type of differential energy is concentrated in
localized regions.

WN
1

2
-------

1 1– 0 0 0 0 … 0 0 0 0

0 0 1 1– 0 0 … 0 0 0 0

0 0 0 0 0 0 … 1 1– 0 0

0 0 0 0 0 0 … 0 0 1 1–

= … …
VN

WN
N 1× f

f1 RNf a1 d1[ ]T= =

a1 VNf=

d1 WNf=

a1 f
d1 f

f2 a2 d2 d1[ ]T=

a2 VN 2⁄ a1=

d2 WN 2⁄ a1=

N 4⁄ 1×

f fn≡ an dn dn 1– … d1[ ]T=

N 2
n

=
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8.4.3. Daubechies Transforms

Daubechies (30) has discovered a class of transforms that utilize running averages
and running differences of the elements of a vector, as with the Haar transform. The
difference between the Haar and Daubechies transforms is that the averages and dif-
ferences are grouped in four or more elements.

The Daubechies transform of support four, called Daub4, can be defined in a
manner similar to the Haar recursive generation process. The first-level scaling and
wavelet matrices are defined as

(8.4-13a)

WN = (8.4-13b)

where

(8.4-14a)

(8.4-14b)

(8.4-14c)

. (8.4-14d)

In Eqs. 8.4-13a and 8.4-13b, the row-to-row shift is by two elements, and the last
two scale factors wrap around on the last rows. Following the recursion process of
the Haar transform results in the Daub4 transform final stage:

. (8.4-15)

VN

α1 α2 α3 α4 0 0 … 0 0 0 0

0 0 α1 α2 α3 α4 … 0 0 0 0

0 0 0 0 0 0 … α1 α2 α3 α4

α3 α4 0 0 0 0 … 0 0 α1 α2

= … … … … …… … … … …

β1 β2 β3 β4 0 0 … 0 0 0 0

0 0 β1 β2 β3 β4 … 0 0 0 0

0 0 0 0 0 0 … β1 β2 β3 β4

β3 β4 0 0 0 0 … 0 0 β1 β2

… … … … …… … … ……

α1 β4– 1 3+

4 2
----------------= =

α2 β3
3 3+

4 2
----------------= =

α3 β– 2
3 3–

4 2
----------------= =

α4 β1
1 3–

4 2
----------------= =

f fn≡ an dn dn 1– … d1[ ]T=
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Daubechies has extended the concept to higher degrees of support, 6, 8, 10,..., by
straightforward extension of Eq. 8.4-13 (29). Daubechies also has also constructed
another family of wavelets, called coiflets, after a suggestion of Coifman (29). Sec-
tion 8.6 generalizes the development of Daubechies transforms to a class of wavelet
transforms, which are based upon sub-band coding.

8.5. KARHUNEN–LOEVE TRANSFORM

Techniques for transforming continuous signals into a set of uncorrelated represen-
tational coefficients were originally developed by Karhunen (31) and Loeve (32).
Hotelling (33) has been credited (34) with the conversion procedure that transforms
discrete signals into a sequence of uncorrelated coefficients. However, most of the
literature in the field refers to both discrete and continuous transformations as either
a Karhunen–Loeve transform or an eigenvector transform.

The Karhunen–Loeve transformation is a transformation of the general form

(8.5-1)

for which the kernel A(j, k; u, v) satisfies the equation

(8.5-2)

where  denotes the covariance function of the image array and 
is a constant for fixed (u, v). The set of functions defined by the kernel are the eigen-
functions of the covariance function, and  represents the eigenvalues of the
covariance function. It is usually not possible to express the kernel in explicit form.  

If the covariance function is separable such that

(8.5-3)

then the Karhunen-Loeve kernel is also separable and

. (8.5-4)

The row and column kernels satisfy the equations

(8.5-5a)

F u v,( ) F j k,( )A j k u v,;,( )
k 0=

N 1–


j 0=

N 1–

=

λ u v,( )A j k u v,;,( ) KF j k j′ k′,;,( ) A j′ k′ u v,;,( )
k ′ 0=

N 1–


j ′ 0=

N 1–

=

KF j k j′ k′,;,( ) λ u v,( )

λ u v,( )

KF j k j′ k′,;,( ) KC j j′,( )KR k k′,( )=

A j k u v,;,( ) AC u j,( )AR v k,( )=

λR u( )AR v k,( ) KR k k′,( )AR v k′,( )
k′ 0=

N 1–

=
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. (8.5-5b)

In the special case in which the covariance matrix is of separable first-order Markov
process form, the eigenfunctions can be written in explicit form (35,36).

If the image array and transformed image array are expressed in vector form, the
Karhunen–Loeve transform pairs are

(8.5-6)

. (8.5-7)

The transformation matrix A satisfies the relation

(8.5-8)

where  is the covariance matrix of f, A is a matrix whose rows are eigenvectors of
, and  is a diagonal matrix of the form

. (8.5-9)

If  is of separable form, then

(8.5-10)

where AR and AC satisfy the relations

(8.5-11a)

(8.5-11b)

and  for u, v = 1, 2,..., N.
Figure 8.5-1 is a plot of the Karhunen–Loeve basis functions for a one-dimensional

Markov process with adjacent element correlation .
The Karhunen-Loeve transform previously developed in this section applies to a

transform of spatial data. The concept applies also to a transform across spectral
bands of images or a transform of a temporal sequence of correlated images. Equa-
tion 3.4-22a defines the K-L transform of a RGB color image. If the number of spec-
tral bands or the number of temporal images is large, brute force computation of the
K-L transform may become very time consuming. Levy and Lindenbaum (37) have
developed a fast sequential K-L transform algorithm based upon the Singular Value

λC v( )AC u j,( ) KC j j′,( )AC u j′,( )
j ′ 0=

N 1–

=

f Af=

f A
T
f=

AKf ΛA=

Kf
Kf Λ

Λ

λ 1( ) 0 … 0

0 λ 2( )
… 0

0 … 0 λ N
2( )

= …

…

Kf

A AC AR⊗=

ARKR ΛRAR=

ACKC ΛCAC=

λ w( ) λR v( )λC u( )=

ρ 0.9=
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Decomposition (SVD) of the transform matrix. See Appendix A1.2 for a defini-
tion of the SVD.

FIGURE 8.5-1. Karhunen–Loeve transform basis functions, N = 16.
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8.6. WAVELET TRANSFORMS

A discrete Wavelet Transform (DWT) is a member of a class of transforms based
upon a family of transformation kernels, which employ expansions of small duration
waves called wavelets (29,38). Figure 8.6-1 shows a comparison between a one-
dimensional continuous wave and a wavelet , which is  a basis function called a
mother wavelet.

Wave Wavelet

FIGURE 8.6-1. Continuous one-dimensional wave and wavelet.

The Continuous Wavelet Transform (CWT) of a continuous, one-dimensional signal
 is defined as (29,38)

. (8.6-1)

In this equation,  represents a translation (time shifting) of the mother wavelet and
s is scaling parameter (dilation or compression) of the mother wavelet. The scale
parameter s is inversely related to the frequency of . Large scale values (low fre-
quencies) dilate the signal, while small scale values (high frequencies) compress the
signal, and  provide  global  information  about  it. The wavelet  transform of Eq.
8.6-1 is a convolution of a signal and its basis function.

As noted in Eq. 8.6-1, the CWT is dependent upon the structure of the mother
wavelet chosen for analysis as well as the translation and scaling factors. As a con-
sequence, it is not possible to formulate the CWT by a pair of forward and inverse
transforms, as is possible for unitary transforms.

A wavelet series can be obtained by straight forward sampling of the CWT. How-
ever, this approach is not computationally efficient. Mallat (39) has developed an
efficient Discrete Wavelet Transform (DWT), which is based upon sub-band coding.
It can be computed by successive low pass and high pass filtering of a discrete time
domain signal as shown in Figure 8.6-2 for three transformation stages or levels. In

ψ t( )

x t( )

y τ s,( ) 1

s
------ x t( )ψ t τ–

s
---------- 
  td=

τ

x t( )
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the literature, this decomposition is called a Mallat tree decomposition. In the figure,
the signal is denoted by the sequence  where n is an integer. The low-pass filter
impulse response array is  and the high pass filter impulse response array is .
At each level of the decomposition, a high-pass filter produces detail data 
while the low-pass filter, associated with scaling, produces coarse approximation
data . At each level, each half band filter produces a signal spanning half its fre-
quency band. This permits subsampling by a factor of two (all even numbered sam-
ples are deleted, as indicated by the down arrow) without any loss of information.
The filtering and decimation process is continued until a desired result is achieved.
For a 512 point signal, the maximum number of levels is nine.

Figure 8.6-2. Three-level wavelet decomposition of a one-dimensional signal.

Figure 8.6-3 describes the reconstruction process of the three-level wavelet
decomposition. The approximation and detail coefficients at each level are upsam-
pled by a factor of two (zeros  are interspersed  between adjacent  samples.) At each 

Figure 8.6-3. Three-level wavelet reconstruction of a one-dimensional signal.

x n( )
hL hH

d n( )

a n( )
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level, the upsampled signals are convolved with high-pass and low-pass filters with
impulse response arrays and , respectively, and added together. The pro-
cess is continued until the original signal is obtained. It should be noted that the
number of levels processed can be terminated before the decomposition limit is
reached.

The decomposition (analysis) and reconstruction (synthesis) high-pass and low-
pass filters of Figures 8.6-2 and 8.6-3 are not necessarily the same in some DWT
applications. To achieve perfect reconstruction, the analysis and synthesis filters
have to satisfy certain orthogonality conditions (38).

A two-dimensional DWT can be achieved by wavelet transforming an image
array along its rows, and then transforming along the columns of the previous result
(40, p 246). This is possible because the wavelet function is orthogonally separable
in the same sense as the transformation kernel of a Fourier transform. Figure 8.6-4
contains a block diagram of the first level, two-dimensional decomposition. In this
figure, the array coordinates follow the matrix notation of an image array.

 represents the approximation image array from the previous level,
 represents the present approximation array and , ,  are the

horizontal, vertical and diagonal detail coefficients. In order to avoid border distor-
tions between adjacent image quadrants, it is necessary to pad each quadrant array
by a mirror reflection of length and width of one-half the convolution array size.

Figure 8.6-5 shows the first level decomposition of a  image using
 and  Haar wavelet impulse response arrays  and

. The upper left corner approximation array is the source for the
next decomposition level.

Figure 8.6-4. First-level wavelet decomposition of a two-dimensional signal.
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Figure 8.6-5. First level decomposition of the smpte_girl_luma image.

8.7. UNITARY AND WAVELET TRANSFORM EXERCISES

E8.1 Develop a program that generates the Fourier transform log magnitude
ordered display of Figure 8.2-4d for the smpte_girl_luma image. Steps:

(a) Display the source monochrome image.

(b) Scale the source image to unit amplitude.

(c) Perform a two-dimensional Fourier transform on the unit amplitude
source image with the ordered display option.

(d) Scale the log magnitude according to Eq. 8.2-9 where a = 1.0 and
b = 100.0.

(e) Display the Fourier transformed image.

The PIKS API executable example_transform_fourier performs this exer-
cise.

E8.2 Develop a program that generates the Hartley transform log magnitude
ordered display of Figure 8.3-2c for the smpte_girl_luma image by manipula-
tion of the Fourier transform coefficients of the image. Steps:

(a) Display the source monochrome image.

(b) Scale the source image to unit amplitude.
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(c) Perform a two-dimensional Fourier transform on the unit amplitude
source image with the dc term at the origin option.

(d) Extract the Hartley components from the Fourier components.

(e) Scale the log magnitude according to Eq. 8.2-9 where a = 1.0 and b =
100.0.

(f) Display the Hartley transformed image.

The PIKS API executable example_transform_hartley performs this exer-
cise.

E8.3 Develop a program that generates the Hadamard transform  in  pixel
blocks for the smpte_girl_luma image. Steps:

(a) Display the source monochrome image.

(b) Scale the source image to unit amplitude.

(c) Perform a two-dimensional Hadamard transform in  pixel blocks on
the unit amplitude source image.

(d) Display the Hadamard transformed image.

The PIKS API executable example_transform_hadamard performs this
exercise.

E8.4 Develop a program that generates the Haar wavelet transform for the
smpte_girl_luma image following Figure 8.6-4. Steps:

(a) Display the source monochrome image.

(b) Create the Haar low-pass filter impulse array as [0.707 0.707]

(c) Create the Haar high-pass filter impulse array as [-0.707 0.707]

(d) Convolve the rows of the source image with the high-pass filter and subs
ample each row by 2.

(e) Convolve the rows of the source image with the low-pass filter and subs
ample each row by 2.

(f) Convolve the columns of the upper path array with the high-pass filter
and subsample each column by 2 to produce the array .

(g) Convolve the columns of the upper path array with the low-pass filter
and subsample each column by 2 to produce the array .

(h) Convolve the columns of the lower path array with the high-pass filter
and subsample each column by 2 to produce the array .

(i) Convolve the columns of the lower path array with the low-pass filter
and subsample each column by 2 to produce the array .

(j) Compose the four output arrays into a destination image.

(k) Display the scaled magnitude of the destination image.

8 8×

8 8×
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W
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The PIKS API executable example_haar_wavelet performs this exercise.
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LINEAR PROCESSING TECHNIQUES

Most discrete image processing computational algorithms are linear in nature; an
output image array is produced by a weighted linear combination of elements of an
input array. The popularity of linear operations stems from the relative simplicity of
spatial linear processing as opposed to spatial nonlinear processing. However, for
image processing operations on large image arrays, conventional linear processing
is often computationally infeasible without efficient computational algorithms. This
chapter considers indirect computational techniques that permit more efficient linear
processing than by conventional methods.

9.1. TRANSFORM DOMAIN PROCESSING

Two-dimensional linear transformations have been defined in Section 5.2 in series
form as

(9.1-1)

and defined in vector form as

. (9.1-2)

P m1 m2,( ) F n1 n2,( )T n1 n2 m1 m2,;,( )
n2 1=

N2


n1 1=

N1

=

p Tf=
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It will now be demonstrated that such linear transformations can often be computed
more efficiently by an indirect computational procedure utilizing two-dimensional
unitary transforms than by the direct computation indicated by Eq. 9.1-1 or 9.1-2.

Figure 9.1-1 is a block diagram of the indirect computation technique called gen-
eralized linear filtering (1). In the process, the input array  undergoes a
two-dimensional unitary transformation, resulting in an array of transform coeffi-
cients . Next, a linear combination of these coefficients is taken according
to the general relation

(9.1-3)

where  represents the linear filtering transformation function.
Finally, an inverse unitary transformation is performed to reconstruct the processed
array . If this computational procedure is to be more efficient than direct
computation by Eq. 9.1-1, it is necessary that fast computational algorithms exist for
the unitary transformation, and also the kernel  must be reasonably
sparse; that is, it must contain many zero elements, which can be passed over in the
computation.

The generalized linear filtering process can also be defined in terms of vector-
space computations as shown in Figure 9.1-2. For notational simplicity, let N1 = N2
= N and M1 = M2 = M. Then, the generalized linear filtering process can be
described by the equations

(9.1-4a)

(9.1-4b)

. (9.1-4c)

FIGURE 9.1-1. Direct processing and generalized linear filtering; series formulation.

F n1 n2,( )

F u1 u2,( )

F̃ w1 w2,( ) F u1 u2,( )T u1 u2 w1 w2,;,( )
u2 1=

M2


u1 1=

M1

=

T u1 u2 w1 w2,;,( )

P m1 m2,( )

T u1 u2 w1 w2,;,( )

f A
N 2[ ]f=

f̃ Tf=

p A
M

2[ ] 1–
f̃=
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where  is a  unitary transform matrix, T is a  linear filtering
transform operation and  is a  unitary transform matrix. From Eq. 9.1-4,
the input and output vectors are related by

. (9.1-5)

Therefore, equating Eqs. 9.1-2 and 9.1-5 yields the relations between T and T given
by

(9.1-6a)

. (9.1-6b)

If direct processing is employed, computation by Eq. 9.1-2 requires 
operations, where  is a measure of the sparseness of T. With the general-
ized linear filtering technique, the number of operations required for a given opera-
tor are:

Forward transform:  by direct transformation

  by fast transformation

Filter multiplication:

Inverse transform:  by direct transformation

  by fast transformation

FIGURE 9.1-2. Direct processing and generalized linear filtering; vector formulation.
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where  is a measure of the sparseness of T. If  and direct unitary
transform computation is performed, it is obvious that the generalized linear filter-
ing concept is not as efficient as direct computation. However, if fast transform
algorithms, similar in structure to the fast Fourier transform, are employed, general-
ized linear filtering will be more efficient than direct processing if the sparseness
index satisfies the inequality

. (9.1-7)

In many applications, T will be sufficiently sparse such that the inequality will be
satisfied. In fact, unitary transformation tends to decorrelate the elements of T caus-
ing T to be sparse. Also, it is often possible to render the filter matrix sparse by
setting small-magnitude elements to zero without seriously affecting computational
accuracy (1).

In subsequent sections, the structure of superposition and convolution opera-
tors is analyzed to determine the feasibility of generalized linear filtering in these
applications.

9.2. TRANSFORM DOMAIN SUPERPOSITION

The superposition operations discussed in Chapter 7 can often be performed more
efficiently by transform domain processing rather than by direct processing. Figure
9.2-1a and b illustrate block diagrams of the computational steps involved in direct
finite area or sampled image superposition. In Figure 9.2-1d and e, an alternative
form of processing is illustrated in which a unitary transformation operation is per-
formed on the data vector f before multiplication by a finite area filter matrix D or
sampled image filter matrix B. An inverse transform reconstructs the output vector.
From Figure 9.2-1, for finite-area superposition, because

(9.2-1a)

and

(9.2-1b)

then clearly the finite-area filter matrix may be expressed as

. (9.2-2a)

0 kT 1≤ ≤ kT 1=

kT kP
2

M
2

------- 2Nlog–
2

N
2

------ 2Mlog–<

q Df=

q A
M

2[ ] 1–
D A

N
2[ ]f=

D A
M2[ ]D A

N2[ ] 1–
=
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FIGURE 9.2-1. Data and transform domain superposition.
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Similarly,

. (9.2-2b)

If direct finite-area superposition is performed, the required number of
computational operations is approximately , where L is the dimension of the
impulse response matrix. In this case, the sparseness index of D is

. (9.2-3a)

Direct sampled image superposition requires on the order of  operations, and
the corresponding sparseness index of B is

. (9.2-3b)

Figure 9.2-1f is a block diagram of a system for performing circulant superposition
by transform domain processing. In this case, the input vector kE is the extended
data vector, obtained by embedding the input image array  in the left cor-
ner of a  array of zeros and then column scanning the resultant matrix. Follow-
ing the same reasoning as above, it is seen that

(9.2-4a)

and hence,

. (9.2-4b)

As noted in Chapter 7, the equivalent output vector for either finite-area or sampled
image superposition can be obtained by an element selection operation on kE. For
finite-area superposition,

(9.2-5a)

and for sampled image superposition

. (9.2-5b)

Also, the matrix form of the output for finite-area superposition is related to the
extended image matrix KE by

. (9.2-6a)

B A
M2[ ]B A

N2[ ] 1–
=

N
2
L

2

kD
L
N
---- 

  2
=

M
2
L

2

kB
L
M
----- 

  2
=

F n1 n2,( )
J J×

kE CfE A
J

2[ ] 1–
C A

J
2[ ]f= =

C A
J2[ ]C A

J2[ ] 1–
=

q S1J
M( )

S1J
M( )⊗[ ]kE=

g S2J
M( )

S2J
M( )⊗[ ]kE=

Q S1J
M( )[ ]KE S1J

M( )[ ]
T

=
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For sampled image superposition,

. (9.2-6b)

The number of computational operations required to obtain kE by transform domain
processing is given by the previous analysis for M = N = J:

Direct transformation

Fast transformation: .

If C is sparse, many of the  filter multiplication operations can be avoided.
From the discussion above, it can be seen that the secret to computationally effi-

cient superposition is to select a transformation that possesses a fast computational
algorithm that results in a relatively sparse transform domain superposition filter
matrix. As an example, consider finite-area convolution performed by Fourier
domain processing (2,3). Referring to Figure 9.2-1, let

(9.2-7)

where

          with 

for x, y = 1, 2,..., K. Also, let  denote the  vector representation of the
extended spatially invariant impulse response array of Eq. 7.3-2 for J = K. The Fou-
rier transform of  is denoted as

. (9.2-8)

These transform components are then inserted as the diagonal elements of a 
matrix

. (9.2-9)

Then, it can be shown, after considerable manipulation, that the Fourier transform
domain superposition matrices for finite area and sampled image convolution can be
written as (4)

(9.2-10)

for N = M – L + 1 and

(9.2-11)

G S2J
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=
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AK
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--------W

x 1–( ) y 1–( )
= W
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hE
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=
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where N = M + L + 1 and

(9.2-12a)

. (9.2-12b)

Thus, the transform domain convolution operators each consist of a scalar weighting
matrix  and an interpolation matrix  that performs the dimensionality con
version between the - element input vector and the - element output vector.
Generally, the interpolation matrix is relatively sparse, and therefore, transform domain
superposition is quite efficient.

Now, consider circulant area convolution in the transform domain. Following the
previous analysis it is found (4) that the circulant area convolution filter matrix
reduces to a scalar operator

. (9.2-13)

Thus, as indicated in Eqs. 9.2-10 to 9.2-13, the Fourier domain convolution filter
matrices can be expressed in a compact closed form for analysis or operational stor-
age. No closed-form expressions have been found for other unitary transforms.

Fourier domain convolution is computationally efficient because the convolution
operator C is a circulant matrix, and the corresponding filter matrix C is of diagonal
form. Actually, as can be seen from Eq. 9.1-6, the Fourier transform basis vectors
are eigenvectors of C (5). This result does not hold true for superposition in general,
nor for convolution using other unitary transforms. However, in many instances, the
filter matrices D, B and C are relatively sparse, and computational savings can often
be achieved by transform domain processing.

Figure 9.2-2 shows the Fourier and Hadamard domain filter matrices for the three
forms of convolution for a one-dimensional input vector and a Gaussian-shaped
impulse response (6). As expected, the transform domain representations are much
more sparse than the data domain representations. Also, the Fourier domain
circulant convolution filter is seen to be of diagonal form. Figure 9.2-3 illustrates the
structure of the three convolution matrices for two-dimensional convolution (4).

9.3. FAST FOURIER TRANSFORM CONVOLUTION

As noted previously, the equivalent output vector for either finite-area or sampled
image convolution can be obtained by an element selection operation on the
extended output vector kE for circulant convolution or its matrix counterpart KE.
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---------

1 WM
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–

1 WM
u 1–( )–

– WN
v 1–( )–

–
---------------------------------------------------------------=
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1 WN
v 1–( )– L 1–( )

–

1 WM
u 1–( )–
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2

C JH
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This result, combined with Eq. 9.2-13, leads to a particularly efficient means of con-
volution computation indicated by the following steps:

1. Embed the impulse response matrix in the upper left corner of an all-zero
 matrix,  for finite-area convolution or  for sampled

infinite-area convolution, and take the two-dimensional Fourier transform
of the extended impulse response matrix, giving

. (9.3-1)

FIGURE 9.2-2. One-dimensional Fourier and Hadamard domain convolution matrices.

J J× J M≥ J N≥

HE AJHEAJ=
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2. Embed the input data array in the upper left corner of an all-zero  matrix,
and take the two-dimensional Fourier transform of the extended input data
matrix to obtain

. (9.3-2)

FIGURE 9.2-3. Two-dimensional Fourier domain convolution matrices.

J J×

FE AJFEAJ=
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3. Perform the scalar multiplication

(9.3-3)

where .

4. Take the inverse Fourier transform

. (9.3-4)

5. Extract the desired output matrix

(9.3-5a)

           or

. (9.3-5b)

It is important that the size of the extended arrays in steps 1 and 2 be chosen large
enough to satisfy the inequalities indicated. If the computational steps are performed
with J = N, the resulting output array, shown in Figure 9.3-1, will contain erroneous
terms in a boundary region of width L – 1 elements, on the top and left-hand side of
the output field. This is the wraparound error associated with incorrect use of the
Fourier domain convolution method. In addition, for finite area (D-type) convolu-
tion, the bottom and right-hand-side strip of output elements will be missing. If the
computation is performed with J = M, the output array will be completely filled with
the correct terms for D-type convolution. To force J = M for B-type convolution, it is
necessary to truncate the bottom and right-hand side of the input array. As a conse-
quence, the top and left-hand-side elements of the output array are erroneous.

Figure 9.3-2 illustrates the Fourier transform convolution process with proper
zero padding. The example in Figure 9.3-3 shows the effect of no zero padding. In
both examples, the image has been filtered using a  uniform impulse
response array. The source image of Figure 9.3-3 is  pixels. The source
image of Figure 9.3-2 is  pixels. It has been obtained by truncating the bot-
tom 10 rows and right 10 columns of the source image of Figure 9.3-3. Figure 9.3-4
shows computer printouts of the upper left corner of the processed images. Figure
9.3-4a is the result of finite-area convolution. The same output is realized in Figure
9.3-4b for proper zero padding. Figure 9.3-4c shows the wraparound error effect for
no zero padding.

KE m n,( ) JHE m n,( )FE m n,( )=

1 m n, J≤ ≤
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2[ ] 1–
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2[ ] 1–

=
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M( )[ ]
T
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G S2J
M( )[ ]KE S2J

M( )[ ]
T

=

11 11×
512 512×
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In many signal processing applications, the same impulse response operator is
used on different data, and hence step 1 of the computational algorithm need not be
repeated. The filter matrix HE may be either stored functionally or indirectly as a
computational algorithm. Using a fast Fourier transform algorithm, the forward and
inverse transforms require on the order of  operations each. The scalar
multiplication requires  operations, in general, for a total of  oper-
ations. For an  input array, an  output array and an  impulse
response array, finite-area convolution requires  operations, and sampled
image convolution requires  operations. If the dimension of the impulse
response L is sufficiently large with respect to the dimension of the input array N,
Fourier domain convolution will be more efficient than direct convolution, per-
haps by an order of magnitude or more. Figure 9.3-5 is a plot of  versus  for
equality between direct and Fourier domain finite area convolution. The jaggedness of
the plot, in this example, arises from discrete changes in J (64, 128, 256,...) as N
increases.

FIGURE 9.3-1. Wraparound error effects.
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2Jlog
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2
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N

2
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L N
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FIGURE 9.3-2. Fourier transform convolution of the candy_502_luma image with 
proper zero padding, clipped magnitude displays of Fourier images.
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FIGURE 9.3-3. Fourier transform convolution of the candy_512_luma image with 
improper zero padding, clipped magnitude displays of Fourier images.
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Fourier domain processing is more computationally efficient than direct process-
ing for image convolution if the impulse response is sufficiently large. However, if
the image to be processed is large, the relative computational advantage of Fourier
domain processing diminishes. Also, there are attendant problems of computational
accuracy with large Fourier transforms. Both difficulties can be alleviated by a

FIGURE 9.3-4. Wraparound error for Fourier transform convolution, upper left 
corner of processed image.
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block-mode filtering technique in which a large image is separatively processed in
adjacent overlapped blocks (2, 7-9).

9.4 FOURIER TRANSFORM FILTERING

The discrete Fourier transform convolution processing algorithm of Section 9.3 is
often utilized for computer simulation of continuous Fourier domain filtering. In this
section, discrete Fourier transform filter design techniques are considered.

9.4.1. Transfer Function Generation

The first step in the discrete Fourier transform filtering process is generation of the
discrete domain transfer function. For simplicity, the following discussion is limited
to one-dimensional signals. The extension to two dimensions is straightforward.

Consider a one-dimensional continuous signal  of wide extent, which is band
limited such that its Fourier transform  is zero for  greater than a cutoff fre-
quency . This signal is to be convolved with a continuous impulse function 
whose transfer function  is also band limited to . From Chapter 1 it is known
that the convolution can be performed either in the spatial domain by the operation

(9.4-1a)

or in the continuous Fourier domain by

(9.4-1b)

Chapter 7 has presented techniques for the discretization of the convolution inte-
gral of Eq. 9.4-1. In this process, the continuous impulse response function 
must be truncated by spatial multiplication of a window function y(x) to produce the
windowed impulse response

(9.4-2)

where y(x) = 0 for . The window function is designed to smooth the truncation
effect. The resulting convolution integral is then approximated as

. (9.4-3)

fC x( )
fC ω( ) ω
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∞–

∞
=
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∞
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Next, the output signal  is sampled over 2J + 1 points at a resolution
, and the continuous integration is replaced by a quadrature summation at

the same resolution , yielding the discrete representation

(9.4-4)

where K is the nearest integer value of the ratio .
Computation of Eq. 9.4-4 by discrete Fourier transform processing requires

formation of the discrete domain transfer function . If the continuous domain
impulse response function  is known analytically, the samples of the
windowed impulse response function are inserted as the first L = 2K + 1 elements of
a J-element sequence and the remaining J – L elements are set to zero. Thus, let

(9.4-5)

 L terms

where . The terms of  can be extracted from the continuous
impulse response function  and the window function by the sampling
operation

. (9.4-6)

The next step in the discrete Fourier transform convolution algorithm is to perform a
discrete Fourier transform of  over P points to obtain

(9.4-7)

where .
If the continuous domain transfer function  is known analytically, then

 can be obtained directly. It can be shown that

(9.4-8a)

(9.4-8b)

for u = 0, 1,..., P/2, where

(9.4-8c)
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and  is the continuous domain Fourier transform of the window function y(x). If
 and  are known analytically, then, in principle,  can be obtained

by analytically performing the convolution operation of Eq. 9.4-8c and evaluating
the resulting continuous function at points . In practice, the analytic convo-
lution is often difficult to perform, especially in two dimensions. An alternative is to
perform an analytic inverse Fourier transformation of the transfer function  to
obtain its continuous domain impulse response  and then form  from the
steps of Eqs. 9.4-5 to 9.4-7. Still another alternative is to form  from 
according to Eqs. 9.4-8a and 9.4-8b, take its discrete inverse Fourier transform, win-
dow the resulting sequence, and then form  from Eq. 9.4-7.

9.4.2. Windowing Functions

The windowing operation performed explicitly in the spatial domain according to
Eq. 9.4-6 or implicitly in the Fourier domain by Eq. 9.4-8 is absolutely imperative if
the wraparound error effect described in Section 9.3 is to be avoided. A common
mistake in image filtering is to set the values of the discrete impulse response func-
tion arbitrarily equal to samples of the continuous impulse response function. The
corresponding extended discrete impulse response function will generally possess
nonzero elements in each of its J elements. That is, the length L of the discrete
impulse response embedded in the extended vector of Eq. 9.4-5 will implicitly be set
equal to J. Therefore, all elements of the output filtering operation will be subject to
wraparound error.

A variety of window functions have been proposed for discrete linear filtering
(10–12). Several of the most common are listed in Table 9.4-1 and sketched in
Figure 9.4-1. Figure 9.4-1 shows plots of the transfer functions of these window
functions. The window transfer functions consist of a main lobe and side lobes
whose peaks decrease in magnitude with increasing frequency. Examination of the
structure of Figure 9.4-8 indicates that the main lobe causes a loss in frequency
response over the signal passband from 0 to , while the side lobes are responsible
for an aliasing error because the windowed impulse response function  is not
band limited. A tapered window function reduces the magnitude of the side lobes
and consequently attenuates the aliasing error, but the main lobe becomes wider,
causing the signal frequency response within the passband to be reduced. A design
trade-off must be made between these complementary sources of error. Both sources
of degradation can be reduced by increasing the truncation length of the windowed
impulse response, but this strategy will either result in a shorter length output
sequence or an increased number of computational operations.

The window functions in Table 9.4-1 tend to over attenuate an image. It is
common practice to stretch a window function such that the left and right sides
extend L pixels and the window center is unity in value.

y ω( )
hC ω( ) y ω( ) hC ω( )

2πu PΔ⁄

hC ω( )
hC x( ) bD u( )

bD u( ) hC ω( )

bD u( )

ω0
bC ω( )
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TABLE 9.4-1. Window Functionsa

Function Definition

Rectangular w(n) = 1

Barlett (triangular) w(n) = 

Hanning w(n) = 

Hamming w(n) = 0.54 - 0.46 cos 

Blackman

w(n) = 0.42 – 0.5 cos 

Kaiser

a  is the modified zeroth-order Bessel function of the first kind and  is a design parameter.

9.4.3. Discrete Domain Transfer Functions

In practice, it is common to define the discrete domain transform directly in the
discrete Fourier transform frequency space. The following are definitions of sev-
eral widely used transfer functions for a  pixel image. Applications of these
filters are presented in Chapter 10.
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1. Zonal low-pass filter:

 and 

and 

  and 

  and (9.4-9a)

otherwise (9.4-9b)

where C is the filter cutoff frequency for . Figure 9.4-3 illus-
trates the low-pass filter zones.

2. Zonal high-pass filter:

(9.4-10a)

and 

and 

  and 

  and (9.4-10b)

 otherwise (9.4-10c)

FIGURE 9.4-1. One-dimensional window functions.
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FIGURE 9.4-2. Transfer functions of one-dimensional window functions.

3. Gaussian filter:

and 

and 

and 

 and (9.4-11a)

where

(9.4-11b)

and su and sv are the Gaussian filter spread factors.
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FIGURE 9.4-3. Zonal filter transfer function definition.

4. Butterworth low-pass filter:

and

and

and

and (9.4-12a)

where

(9.4-12b)

where the integer variable n is the order of the filter. The Butterworth low-pass filter
provides an attenuation of 50% at the cutoff frequency .
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5. Butterworth high-pass filter:

  and

 and

 and

 and (9.4-13a)

where

(9.4-13b)

Figure 9.4-4 shows the transfer functions of zonal and Butterworth low-pass and
high-pass filters for a  pixel image.

9.5. LINEAR PROCESSING EXERCISES

E9.1 Develop a program that performs fast Fourier transform convolution follow-
ing the steps of Section 9.3. Execute this program using an  uniform impulse
response array on an unsigned integer, 8-bit,  monochrome image without
zero padding. Steps:

(a) Display the source monochrome image.

(b) Scale the source image to unit range.

(c) Perform a two-dimensional Fourier transform of the source image.

(d) Display the clipped magnitude of the source Fourier transform.

(e) Create an  uniform impulse response array.

(f) Convert the impulse response array to an image and embed it in a
 zero background image.

(g) Perform a two-dimensional Fourier transform of the embedded impulse
image.

(h) Display the clipped magnitude of the embedded impulse Fourier trans-
form.

(i) Multiply the source and embedded impulse Fourier transforms.

(j) Perform a two-dimensional inverse Fourier transform of the product
image.
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(k) Display the destination image.

(l) Printout the erroneous pixels along a mid image row.

The PIKS API executable example_fourier_filtering performs this exer-
cise.

E9.2 Develop a program that performs Fourier transform filtering of an unsigned
integer, 8-bit, 512 × 512 monochrome image with a Gaussian low-pass filter.
Steps:

(a) Display the source monochrome image.

FIGURE 9.4-4. Zonal and Butterworth low- and high-pass transfer functions; 512 × 512 images; 
cutoff frequency = 64.
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(b) Create a Gaussian low-pass filter transfer function or fetch it from a
repository.

(c) Perform Fourier transform linear filtering on the source image.

(f) Display the filtered destination image.

The PIKS API executable example_gaussian_low_pass_filtering per-
forms this exercise.
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PART 4

IMAGE IMPROVEMENT

The use of digital processing techniques for image improvement has received much
interest with the publicity given to applications in space imagery and medical
research. Other applications include image improvement for photographic surveys
and industrial radiographic analysis. 

Image improvement is a term coined to denote three types of image manipulation
processes: image enhancement, image restoration and geometrical image modi-
fication. Image enhancement entails operations that improve the appearance to a
human viewer, or operations to convert an image to a format better suited to
machine processing. Image restoration has commonly been defined as the
modification of an observed image in order to compensate for defects in the imaging
system that produced the observed image. Geometrical image modification includes
image magnification, minification, rotation and nonlinear spatial warping.

Chapter 10 describes several techniques of monochrome and color image
enhancement. The chapter that follows develops models for image formation and
image restoration. The final chapter of this part considers geometrical image modifi-
cation.
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IMAGE ENHANCEMENT

Image enhancement processes consist of a collection of techniques that seek to
improve the visual appearance of an image or to convert the image to a form better
suited for analysis by a human or a machine. In an image enhancement system, there
is no conscious effort to improve the fidelity of a reproduced image with regard to
some ideal form of the image, as is done in image restoration. Actually, there is
some evidence to indicate that often a distorted image, for example, an image with
amplitude overshoot and undershoot about its object edges, is more subjectively
pleasing than a perfectly reproduced original.

For image analysis purposes, the definition of image enhancement stops short of
information extraction. As an example, an image enhancement system might
emphasize the edge outline of objects in an image by high-frequency filtering. This
edge-enhanced image would then serve as an input to a machine that would trace the
outline of the edges, and perhaps make measurements of the shape and size of the
outline. In this application, the image enhancement processor would emphasize
salient features of the original image and simplify the processing task of a data-
extraction machine.

There is no general unifying theory of image enhancement at present because
there is no general standard of image quality that can serve as a design criterion for
an image enhancement processor. Consideration is given here to a variety of tech-
niques that have proved useful for human observation improvement and image
analysis.
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10.1. CONTRAST MANIPULATION

One of the most common defects of photographic or electronic images is poor con-
trast resulting from a reduced, and perhaps nonlinear, image amplitude range. Image
contrast can often be improved by amplitude rescaling of each pixel (1,2). Figure
10.1-1a illustrates a transfer function for contrast enhancement of a typical continu-
ous amplitude low-contrast image. For continuous amplitude images, the transfer
function operator can be implemented by photographic techniques, but it is often
difficult to realize an arbitrary transfer function accurately. For quantized amplitude
images, implementation of the transfer function is a relatively simple task. However,
in the design of the transfer function operator, consideration must be given to the
effects of amplitude quantization. With reference to Figure l0.l-lb, suppose that an
original image is quantized to J levels, but it occupies a smaller range. The output
image is also assumed to be restricted to J levels, and the mapping is linear. In the
mapping strategy indicated in Figure 10.1-1b, the output level chosen is that level
closest to the exact mapping of an input level. It is obvious from the diagram that the
output image will have unoccupied levels within its range, and some of the gray
scale transitions will be larger than in the original image. The latter effect may result
in noticeable gray scale contouring. If the output image is quantized to more levels
than the input image, it is possible to approach a linear placement of output levels,
and hence, decrease the gray scale contouring effect.

FIGURE 10.1-1. Continuous and quantized image contrast enhancement.
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10.1.1. Amplitude Scaling

A digitally processed image may occupy a range different from the range of the
original image. In fact, the numerical range of the processed image may encompass
negative values, which cannot be mapped directly into a light intensity range. Figure
10.1-2 illustrates several possibilities of scaling an output image back into the
domain of values occupied by the original image. By the first technique, the pro-
cessed image is linearly mapped over its entire range, while by the second technique,
the extreme amplitude values of the processed image are clipped to maximum and
minimum limits. The second technique is often subjectively preferable, especially
for images in which a relatively small number of pixels exceed the limits. Contrast
enhancement algorithms often possess an option to clip a fixed percentage of the
amplitude values on each end of the amplitude scale. In medical image enhancement
applications, the contrast modification operation shown in Figure 10.1-2b, for ,
is called a window-level transformation. The window value is the width of the linear
slope, ; the level is located at the midpoint c of the slope line. The third
technique of amplitude scaling, shown in Figure 10.1-2c, utilizes an absolute value
transformation for visualizing an image with negatively valued pixels.  This
is a useful transformation for systems that utilize the two's complement numbering

FIGURE 10.1-2. Image scaling methods.

a 0≥

b a–
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convention for amplitude representation. In such systems, if the amplitude of a pixel
overshoots +1.0 (maximum luminance white) by a small amount, it wraps around by
the same amount to –1.0, which is also maximum luminance white. Similarly, pixel
undershoots remain near black.

Figure 10.1-3 illustrates the amplitude scaling of the Q component of the YIQ
transformation, shown in Figure 3.5-14, of a monochrome image containing nega-
tive pixels. Figure 10.1-3a presents the result of amplitude scaling with the linear
function of Figure 10.1-2a over the amplitude range of the image. In this example,
the most negative pixels are mapped to black (0.0), and the most positive pixels are
mapped to white (1.0). Amplitude scaling in which negative value pixels are clipped
to zero is shown in Figure 10.1-3b. The black regions of the image correspond to
negative pixel values of the Q component. Absolute value scaling is presented in
Figure 10.1-3c.

FIGURE 10.1-3. Image scaling of the Q component of the YIQ representation of the 
dolls_gamma color image.
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Figure 10.1-4 shows examples of contrast stretching of a poorly digitized original
satellite image along with gray scale histograms of the original and enhanced pictures.

FIGURE 10.1-4. Window-level contrast stretching of an earth satellite image.
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In Figure 10.1-4c, the clip levels are set at the histogram limits of the original while in
Figure 10.1-4e, the clip levels truncate 5% of the original image upper and lower level
amplitudes. It is readily apparent from the histogram of Figure 10.1-4f that the con-
trast-stretched image of Figure 10.1-4e has many unoccupied amplitude levels. Gray
scale contouring is at the threshold of visibility.

10.1.2. Contrast Modification

Section 10.1.1 dealt with amplitude scaling of images that do not properly utilize the
dynamic range of a display; they may lie partly outside the dynamic range or occupy
only a portion of the dynamic range. In this section, attention is directed to point
transformations that modify the contrast of an image within a display’s dynamic
range.

Figure 10.1-5a contains an original image of a jet aircraft that has been digi-
tized to 256 gray levels and numerically scaled over the range of 0.0 (Black) to
1.0 (White). The histogram of the image is shown in Figure 10.1-5b. Examination

FIGURE 10.1-5. Window-level contrast stretching of the jet_mon image.

(a) Original (b) Original histogram

(c) Transfer function (d) Contrast stretched
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of the histogram of the image reveals that the image contains relatively few low-
or high-amplitude pixels. Consequently, applying the window-level contrast
stretching function of Figure 10.1-5c results in the image of Figure 10.1-5d, which
possesses better visual contrast but does not exhibit noticeable visual clipping. 

Consideration will now be given to several nonlinear point transformations, some
of which will be seen to improve visual contrast, while others clearly impair visual
contrast. Figures 10.1-6 and 10.1-7 provide examples of power law point transfor-
mations in which the processed image is defined by

(10.1-1)

where  represents the original image and p is the power law vari-
able. It is important that the amplitude limits of Eq. 10.1-1 be observed; processing
of the integer code (e.g., 0 to 255) by Eq. 10.1-1 will give erroneous results. The

FIGURE 10.1-6. Square and cube contrast modification of the jet_mon image.

G j k,( ) F j k,( )[ ]p=

0.0 F≤ j k,( ) 1.0≤
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square function provides the best visual result. The rubber band transfer function
shown in Figure 10.1-8a provides a simple piecewise linear approximation to the
power law curves. It is often useful in interactive enhancement machines in which
the inflection point is interactively placed. 

The Gaussian error function behaves like a square function for low-amplitude
pixels and like a square root function for high-amplitude pixels. It is defined as

. (10.1-2a)

FIGURE 10.1-7. Square root and cube root contrast modification of the jet_mon image.
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where

(10.1-2b)

and a is the standard deviation of the Gaussian distribution.
The logarithm function is useful for scaling image arrays with a very wide

dynamic range. The logarithmic point transformation is given by

(10.1-3)

under the assumption that  where a is a positive scaling factor. Fig-
ure 8.2-4 illustrates the logarithmic transformation applied to an array of Fourier
transform coefficients.

There are applications in image processing in which monotonically decreas-
ing and nonmonotonic amplitude scaling is useful. For example, contrast reverse
and contrast inverse transfer functions, as illustrated in Figure 10.1-9, are often
helpful in visualizing detail in dark areas of an image. The reverse function is
defined as

(10.1-4)

where .

FIGURE 10.1-8. Rubber-band contrast modification of the jet_mon image.

erf x{ } 2

π
------- y

2
–{ }exp yd

0
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The inverse function

for (10.1-5a)

for (10.1-5b)

is clipped at the 10% input amplitude level to maintain the output amplitude within
the range of unity.

Amplitude-level slicing, as illustrated in Figure 10.1-10, is a useful interactive
tool for visually analyzing the spatial distribution of pixels of certain amplitude
within an image. With the function of Figure 10.1-10a, all pixels within the ampli-
tude passband are rendered maximum white in the output, and pixels outside the
passband are rendered black. Pixels outside the amplitude passband are displayed in
their original state with the function of Figure 10.1-10b.

FIGURE 10.1-9. Reverse and inverse function contrast modification of the jet_mon image.

G j k,( ) 1.0= 0.0 F j k,( ) 0.1<≤

G j k,( ) 0.1
F j k,( )
----------------= 0.1 F j k,( ) 1.0≤ ≤
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In many imaging applications, a source image sensor may have a much greater
dynamic range than an associated display device. In such instances, application of
the contrast modification procedures presented previously fail to adequately display
both low-amplitude and high-amplitude image detail simultaneously. Pardo and
Sapiro (3) have proposed a different approach for the visualization of wide dynamic
source images in which the source image is sequentially divided into N amplitude
ranges by an amplitude segmentation process, and window-level scaling is per-
formed to produce N output images. For N = 3, their procedure produces a low--
amplitude, a mid-amplitude and a high-amplitude image. Pratt (4Ed., 257,258) con-
tains an example of this procedure.

FIGURE 10.1-10. Level slicing contrast modification functions.
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10.2. HISTOGRAM MODIFICATION

The luminance histogram of a typical natural scene that has been linearly quan-
tized is usually highly skewed toward the darker levels; a majority of the pixels
possess a luminance less than the average. In such images, detail in the darker
regions is often not perceptible. One means of enhancing these types of images is
a technique called histogram modification, in which the original image is rescaled
so that the histogram of the enhanced image follows some desired form. Andrews,
Hall and others (4-6) have produced enhanced imagery by a histogram equaliza-
tion process for which the histogram of the enhanced image is forced to be uni-
form. Frei (7) has explored the use of histogram modification procedures that
produce enhanced images possessing exponential or hyperbolic-shaped histo-
grams. Ketcham (8) and Hummel (9) have demonstrated improved results by an
adaptive histogram modification procedure.
 

10.2.1. Nonadaptive Histogram Modification

Figure 10.2-1 gives an example of histogram equalization. In the figure,  for
c = 1, 2,..., C, represents the fractional number of pixels in an input image whose
amplitude is quantized to the cth reconstruction level. Histogram equalization
seeks to produce an output image field G by point rescaling such that the
normalized gray-level histogram  for d = 1, 2,..., D. In the example
of Figure 10.2-1, the number of output levels is set at one-half of the number of

FIGURE 10.2-1. Approximate gray level histogram equalization with unequal number of
quantization levels.

HF c( )

HG d( ) 1 D⁄=
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input levels. The scaling algorithm is developed as follows. The average value of
the histogram is computed. Then, starting at the lowest gray level of the original, the
pixels in the quantization bins are combined until the sum is closest to the average.
All of these pixels are then rescaled to the new first reconstruction level at the mid-
point of the enhanced image first quantization bin. The process is repeated for
higher-value gray levels. If the number of reconstruction levels of the original image
is large, it is possible to rescale the gray levels so that the enhanced image histogram
is almost constant. It should be noted that the number of reconstruction levels of the
enhanced image must be less than the number of levels of the original image to pro-
vide proper gray scale redistribution if all pixels in each quantization level are to be
treated similarly. This process results in a somewhat larger quantization error. It is
possible to perform the gray scale histogram equalization process with the same
number of gray levels for the original and enhanced images, and still achieve a con-
stant histogram of the enhanced image, by randomly redistributing pixels from input
to output quantization bins

The histogram modification process can be considered to be a monotonic
point transformation  for which the input amplitude variable

 is mapped into an output variable  such that the output
probability distribution  follows some desired form for a given input
probability distribution  where ac and bd are reconstruction values of
the cth and dth levels. Clearly, the input and output probability distributions must
each sum to unity. Thus,

(10.2-1a)

(10.2-1b)

Furthermore, the cumulative distributions must equate for any input index c. That is,
the probability that pixels in the input image have an amplitude less than or equal to
ac must be equal to the probability that pixels in the output image have amplitude
less than or equal to bd, where  because the transformation is mono-
tonic. Hence,

(10.2-2)

The summation on the right is the cumulative probability distribution of the input
image. For a given image, the cumulative distribution is replaced by the cumulative
histogram to yield the relationship

gd T fc{ }=
f1 fc fC≤ ≤ g1 gd gD≤ ≤

PR gd bd={ }
PR fc ac={ }

PR fc ac={ }

c 1=

C

 1=

PR gd bd={ }
d 1=

D

 1=

bd T ac{ }=

PR gn bn={ }
n 1=

d

 PR fm am={ }
m 1=

c

=
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. (10.2-3)

Equation 10.2-3 now must be inverted to obtain a solution for gd in terms of fc. In
general, this is a difficult or impossible task to perform analytically, but certainly
possible by numerical methods. The resulting solution is simply a table that indi-
cates the output image level for each input image level.

The histogram transformation can be obtained in approximate form by replacing
the discrete probability distributions of Eq. 10.2-2 by continuous probability densi-
ties. The resulting approximation is

(10.2-4)

where  and  are the probability densities of f and g, respectively. The
integral on the right is the cumulative distribution function  of the input vari-
able f. Hence

. (10.2-5)

In the special case, for which the output density is forced to be the uniform density,

(10.2-6)

for , the histogram equalization transfer function becomes

. (10.2-7)

Table 10.2-1 lists several output image histograms and their corresponding transfer
functions.
    Figure 10.2-2 provides an example of histogram equalization for an x-ray of a
projectile. The original image and its histogram are shown in Figure 10.2-2a and b,
respectively. The transfer function of Figure 10.2-2c is equivalent to the cumulative
histogram of the original image. In the histogram  equalized result of Figure 10.2-2,
ablating material from the projectile, not seen in the original, is clearly visible. The
histogram of the enhanced image appears peaked, but close examination reveals that
many gray level output values are unoccupied. If the high occupancy gray levels
were to be averaged with their unoccupied neighbors, the resulting histogram would
be much more uniform.
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FIGURE 10.2-2. Histogram equalization of the projectile image.
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Histogram equalization usually performs best on images with detail hidden in
dark regions. Good-quality originals are often degraded by histogram equalization.
As an example, Figure 10.2-3 shows the result of histogram equalization on the jet
image

Frei (7) has suggested the histogram hyperbolization procedure listed in Table
10.2-1 and described in Figure 10.2-4. With this method, the input image histogram
is modified by a transfer function such that the output image probability density is of
hyperbolic form. Then the resulting gray scale probability density following the
assumed logarithmic or cube root response of the photoreceptors of the eye model
will be uniform. In essence, histogram equalization is conceptually performed after
the cones of the retina.

.

FIGURE 10.2-3. Histogram equalization of the jet_mon image.
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10.2.2. Adaptive Histogram Modification

The histogram modification methods discussed in Section 10.2.1 involve applica-
tion of the same transformation or mapping function to each pixel in an image. The
mapping function is based on the histogram of the entire image. This process can be
made spatially adaptive by applying histogram modification to each pixel based on
the histogram of pixels within a moving window neighborhood. This technique is
obviously computationally intensive, as it requires histogram generation, mapping
function computation and mapping function application at each pixel.

Pizer et al. (10) have proposed an adaptive histogram equalization technique in
which histograms are generated only at a rectangular grid of points and the map-
pings at each pixel are generated by interpolating mappings of the four nearest grid
points. Figure 10.2-5 illustrates the geometry. A histogram is computed at each grid
point in a window about the grid point. The window dimension can be smaller or
larger than the grid spacing. Let M00, M10, M01, M11 denote the histogram modifica-
tion mappings generated at four neighboring grid points. The mapping to be applied
at pixel F(j, k) is determined by a bilinear interpolation of the mappings of the four
nearest grid points as given by

(10.2-8a)

where

FIGURE 10.2-4. Histogram hyperbolization

M 1 a–( ) 1 b–( )M00 a 1 b–( )M10 1 a–( )bM01 abM11+ ++=
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(10.2-8b)

. (10.2-8c)

Pixels in the border region of the grid points are handled as special cases of
Eq. 10.2-8. Equation 10.2-8 is best suited for general-purpose computer calculation.
For parallel processors, it is often more efficient to use the histogram generated in
the histogram window of Figure 10.2-5 and apply the resultant mapping function
to all pixels in the mapping window of the figure. This process is then repeated at all
grid points. At each pixel coordinate , the four histogram modified pixels
obtained from the four overlapped mappings are combined by bilinear interpolation.
Figure 10.2-6 presents a comparison between nonadaptive and adaptive histogram
equalization of a monochrome image. In the adaptive histogram equalization exam-
ple, the histogram window is .

Images generated by the adaptive histogram equalization process sometimes can
be harsh in visual appearance. Stark (11) has proposed adaptive blurring of the win-
dow histogram prior to forming the cumulative histogram as a means of improving
image quality.

FIGURE 10.2-5. Array geometry for interpolative adaptive histogram modification. 
Grid point; • pixel to be computed.

a
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10.3. NOISE CLEANING

An image may be subject to noise and interference from several sources, including
electrical sensor noise, photographic grain noise and channel errors. These noise
effects can be reduced by classical statistical filtering techniques to be discussed in
Chapter 12. Another approach, discussed in this section, is the application of ad hoc
noise cleaning techniques.

Image noise arising from a noisy sensor or channel transmission errors usually
appears as discrete isolated pixel variations that are not spatially correlated. Pixels
that are in error often appear visually to be markedly different from their neighbors.
This observation is the basis of many noise cleaning algorithms (12–15). In this sec-
tion, several linear and nonlinear techniques that have proved useful for noise reduc-
tion are described.

FIGURE 10.2-6. Nonadaptive and adaptive histogram equalization of the brainscan image.
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Figure 10.3-1 shows two test images, which will be used to evaluate noise clean-
ing techniques. Figure 10.3-1b has been obtained by adding uniformly distributed
noise to the original image of Figure 10.3-1a. In the impulse noise example of
Figure 10.3-1c, maximum-amplitude pixels replace original image pixels in a spa-
tially random manner.

10.3.1. Linear Noise Cleaning

Noise added to an image generally has a higher-spatial-frequency spectrum than the
normal image components because of its spatial decorrelatedness. Hence, simple
low-pass filtering can be effective for noise cleaning. Consideration will now be
given to convolution and Fourier domain methods of noise cleaning.

FIGURE 10.3-1. Noisy test images derived from the peppers_mon image.
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Spatial Domain Processing. Following the techniques outlined in Chapter 7, a
spatially filtered output image  can be formed by discrete convolution of an
input image  with a  impulse response array  according to the
relation

(10.3-1)

where C = (L + 1)/2. Equation 10.3-1 utilizes the centered convolution notation
developed by Eq. 7.1-14, whereby the input and output arrays are centered with
respect to one another, with the outer boundary of  of width  pixels
set to zero.

For noise cleaning, H should be of low-pass form, with all positive elements.
Several common  pixel impulse response arrays of low-pass form are listed
below.

Mask 1: (10.3-2a)

Mask 2: (10.3-2b)

Mask 3: (10.3-2c)

These arrays, called noise cleaning masks, are normalized to unit weighting so that
the noise-cleaning process does not introduce an amplitude bias in the processed
image. The effect of noise cleaning with the arrays on the uniform noise and impulse
noise test images is shown in Figure 10.3-2. Mask 1 and 3 of Eq. 10.3-2 are special
cases of a  parametric low-pass filter whose impulse response is defined as

. (10.3-3)
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FIGURE 10.3-2. Noise cleaning with 3 × 3 low-pass impulse response arrays on the noisy 
test images.
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The concept of low-pass filtering noise cleaning can be extended to larger
impulse response arrays. Figures 10.3-3 and 10.3-4 present noise cleaning results for
several  impulse response arrays for uniform and impulse noise. As expected,
use of a larger impulse response array provides more noise smoothing, but at the
expense of the loss of fine image detail.

Fourier Domain Processing. It is possible to perform linear noise cleaning in the
Fourier domain (15) using the techniques outlined in Section 9.3. Properly executed,
there is no difference in results between convolution and Fourier filtering; the
choice is a matter of implementation considerations.

High-frequency noise effects can be reduced by Fourier domain filtering with a
zonal low-pass filter with a transfer function defined by Eq. 9.4-9. The sharp cutoff
characteristic of the zonal low-pass filter leads to ringing artifacts in a filtered
image. This deleterious effect can be eliminated by the use of a smooth cutoff filter,

FIGURE 10.3-3. Noise cleaning with 7 × 7 impulse response arrays on the noisy test image 
with uniform noise.
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such as the Butterworth low-pass filter whose transfer function is specified by Eq.
9.4-12. Figure 10.3-5 shows the results of zonal and Butterworth low-pass filtering
of noisy images.

Unlike convolution, Fourier domain processing, often provides quantitative and
intuitive insight into the nature of the noise process, which is useful in designing
noise cleaning spatial filters. As an example, Figure 10.3-6a shows an original
image subject to periodic interference. Its two-dimensional Fourier transform,
shown in Figure 10.3-6b, exhibits a strong response at the two points in the Fourier
plane corresponding to the frequency response of the interference. When multiplied
point by point with the Fourier transform of the original image, the bandstop filter of
Figure 10.3-6c attenuates the interference energy in the Fourier domain. Figure
10.3-6d shows the noise-cleaned result obtained by taking an inverse Fourier trans-
form of the product.

FIGURE 10.3-4. Noise cleaning with 7 × 7 impulse response arrays on the noisy test image 
with impulse noise.
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Homomorphic Filtering. Homomorphic filtering (16) is a useful technique for
image enhancement when an image is subject to multiplicative noise or interference.
Figure 10.3-7 describes the process. The input image  is assumed to be mod-
eled as the product of a noise-free image  and an illumination interference
array . Thus,

. (10.3-4)

Ideally,  would be a constant for all . Taking the logarithm of Eq. 10.3-4
yields the additive linear result

. (10.3-5)

FIGURE 10.3-5. Noise cleaning with zonal and Butterworth low-pass filtering on the noisy 
test images; cutoff frequency = 64.
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Conventional linear filtering techniques can now be applied to reduce the log
interference component. Exponentiation after filtering completes the enhance-
ment process. Figure 10.3-8 provides an example of homomorphic filtering. In
this example, the illumination field   increases from left to right from a
value of 0.1 to 1.0.

FIGURE 10.3-6. Noise cleaning with Fourier domain band stop filtering on the parts 
image with periodic interference.

FIGURE 10.3-7. Homomorphic filtering.

I j k,( )
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Therefore, the observed image appears quite dim on its left side. Homomorphic fil-
tering (Figure 10.3-8c) compensates for the nonuniform illumination.

10.3.2. Nonlinear Noise Cleaning

The linear processing techniques described previously perform reasonably well
on images with continuous noise, such as additive uniform or Gaussian distrib-
uted noise. However, they tend to provide too much smoothing for impulse like
noise. Nonlinear techniques often provide a better trade-off between noise
smoothing and the retention of fine image detail. Several nonlinear techniques
are presented below. Mastin (17) has performed subjective testing of several of
these operators.

FIGURE 10.3-8. Homomorphic filtering on the washington_ir image with a 
Butterworth high-pass filter; cutoff frequency = 4.
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Outlier. Figure 10.3-9 describes a simple outlier noise cleaning technique in which
each pixel is compared to the average of its eight neighbors. If the magnitude of the
difference is greater than some threshold level, the pixel is judged to be noisy, and it
is replaced by its neighborhood average. The eight-neighbor average can be com-
puted by convolution of the observed image with the impulse response array

. (10.3-6)

Figure 10.3-10 presents the results of outlier noise cleaning for a threshold level
of 10%.

FIGURE 10.3-9. Outlier noise cleaning algorithm.

FIGURE 10.3-10. Noise cleaning with the outlier algorithm on the noisy test images.
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The outlier operator can be extended straight forwardly to larger windows. Davis
and Rosenfeld (18) have suggested a variant of the outlier technique in which the
center pixel in a window is replaced by the average of its k neighbors whose ampli-
tudes are closest to the center pixel. Lee has proposed another variant of the outlier
algorithm, called the sigma filter (19). With the sigma filter, the neighborhood sum
includes only those pixels in an amplitude range of  where  is the standard
deviation of the corrupting Gaussian noise. Kenny et al. (20) have proposed the use
of the Fisher discriminant to determine a “peer group” of neighboring pixels to be
used in the neighbor average. 

Median Filter. Median filtering is a nonlinear signal processing technique devel-
oped by Tukey (21) that is useful for noise suppression in images. In one-dimen-
sional form, the median filter consists of a sliding window encompassing an odd
number of pixels. The center pixel in the window is replaced by the median of the
pixels in the window. The median of a discrete sequence a1, a2,..., aN for N odd is
that member of the sequence for which (N – 1)/2 elements are smaller or equal in
value and (N – 1)/2 elements are larger or equal in value. For example, if the values
of the pixels within a window are 0.1, 0.2, 0.9, 0.4, 0.5, the center pixel would be
replaced by the value 0.4, which is the median value of the sorted sequence 0.1, 0.2,
0.4, 0.5, 0.9. In this example, if the value 0.9 were a noise spike in a monotonically
increasing sequence, the median filter would result in a considerable improvement.
On the other hand, the value 0.9 might represent a valid signal pulse for a wide-
bandwidth sensor, and the resultant image would suffer some loss of resolution.
Thus, in some cases the median filter will provide noise suppression, while in other
cases it will cause signal suppression.

Figure 10.3-11 illustrates some examples of the operation of a median filter and a
mean (smoothing) filter for a discrete step function, ramp function, pulse function
and a triangle function with a window of five pixels. It is seen from these examples
that the median filter has the usually desirable property of not affecting step func-
tions or ramp functions. Pulse functions, whose periods are less than one-half the
window width, are suppressed. But the peak of the triangle is flattened.

Operation of the median filter can be analyzed to a limited extent. It can be
shown that the median of the product of a constant K and a sequence  is

. (10.3-7)

However, for two arbitrary sequences  and , it does not follow that the
median of the sum of the sequences is equal to the sum of their medians. That is, in
general,

. (10.3-8)

The sequences 0.1, 0.2, 0.3, 0.4, 0.5 and 0.1, 0.2, 0.3, 0.2, 0.1 are examples for
which the additive linearity property does not hold.
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There are various strategies for application of the median filter for noise sup-
pression. One method would be to try a median filter with a window of length 3.
If there is no significant signal loss, the window length could be increased to 5
for median filtering of the original. The process would be terminated when the
median filter begins to do more harm than good. It is also possible to perform
cascaded median filtering on a signal using a fixed-or variable-length window. In
general, regions that are unchanged by a single pass of the filter will remain
unchanged in subsequent passes. Regions in which the signal period is lower
than one-half the window width will be continually altered by each successive
pass. Usually, the process will continue until the resultant period is greater than
one-half the window width, but it can be shown that some sequences will never
converge (22).

The concept of the median filter can be extended easily to two dimensions by uti-
lizing a two-dimensional window of some desired shape such as a rectangle or dis-
crete approximation to a circle. It is obvious that a two-dimensional  median
filter will provide a greater degree of noise suppression than sequential processing
with  median filters, but two-dimensional processing also results in greater sig-
nal suppression. Figure 10.3-12 illustrates the effect of two-dimensional median

FIGURE 10.3-11. Median filtering on one-dimensional test signals.
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filtering of a spatial peg function with a  square filter and a  plus sign–
shaped filter. In this example, the square median has deleted the corners of the peg,
but the plus median has not affected the corners.

Figures 10.3-13 and 10.3-14 show results of plus sign-shaped median filtering on
the noisy test images of Figure 10.3-1 for impulse and uniform noise, respec-
tively. In the impulse noise example, application of the  median significantly
reduces the noise effect, but some residual noise remains. Applying two 
median filters in cascade provides further improvement. The  median filter
removes almost all of the impulse noise. There is no visible impulse noise in the

 median filter result, but the image has become somewhat blurred. In the case
of uniform noise, median filtering provides little visual improvement.

Huang et al. (23) and Astola and Campbell (24) have developed fast median fil-
tering algorithms. The latter can be generalized to implement any rank ordering.

FIGURE 10.3-12. Median filtering on two-dimensional test signals.
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Median filtering is computationally intensive; the number of operations grows
exponentially with window size. Pratt et al. (25) have proposed a computationally
simpler operator, called the pseudomedian filter, which possesses many of the prop-
erties of the median filter. See Pratt(4Ed., 280-283) for a derivation of the pseudo-
median filter.

Wavelet Denoising. Section 8.4-3 introduced wavelet transforms. The usefulness of
wavelet transforms for image coding derives from the property that most of the
energy of a transformed image is concentrated in the trend transform coefficients
rather than the fluctuation coefficients (26). The fluctuation coefficients may be
grossly quantized without serious image degradation. This energy compaction prop-
erty can also be exploited for noise removal. The basic concept, called wavelet
denoising (26,27), is quite simple. The wavelet transform coefficients are thresh-
olded such that the presumably noisy, low-amplitude coefficients are set to zero.

FIGURE 10.3-13. Median filtering on the noisy test image with uniform noise.
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Zhong and Ning (28) have developed a method of classifying wavelet coeffi-
cients as being edge-related, regular coefficients or irregular coefficients based upon
a measurement of the local statistical self-similarity at different resolution scales.
The irregular coefficients are denoised using a minimum mean-squared error esti-
mation method; the edge-related, regular coefficients are processed by a fuzzy
weighted mean filter. Balster et al. (29) have proposed a two-threshold wavelet coef-
ficient selection method. The first threshold is used to distinguish coefficients of
large magnitude, and the second threshold is used to distinguish coefficients of spa-
tial regularity, which are then selected for reconstruction. Both algorithms have been
reported to provide good denoising results (28,29).

FIGURE 10.3-14. Median filtering on the noisy test image with uniform noise.
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Adaptive Processing. Several methods of adaptive denoising have been developed.
Eng and Ma (30) employ a first stage noise detection process to identify pixels that
are to undergo no filtering, standard median filtering or fuzzy weighted median fil-
tering in the second stage. Chan et al. (31) have proposed a two-stage scheme in
which an adaptive median filter is used to identify pixels that are likely to have been
contaminated by noise. In the second stage, the noise candidates are smoothed using
a regularization algorithm.

10.4. EDGE CRISPENING

Psychophysical experiments indicate that a photograph or visual signal with
accentuated or crispened edges is often more subjectively pleasing than an exact
photometric reproduction. Edge crispening can be accomplished in a variety of ways.

10.4.1. Linear Edge Crispening

Edge crispening can be performed by discrete convolution, as defined by Eq. 10.3-1,
in which the impulse response array H is of high-pass form. Several common 
high-pass masks are given below (32-34).

Mask 1:

(10.4-1a)

Mask 2:

(10.4-1b)

Mask 3:

(10.4-1c)

These masks possess the property that the sum of their elements is unity, to avoid
amplitude bias in the processed image. Figure 10.4-1 provides examples of edge
crispening on a monochrome image with the masks of Eq. 10.4-1. Mask 2 appears to
provide the best visual results.

3 3×

H
0 1– 0

1– 5 1–

0 1– 0

=

H
1– 1– 1–

1– 9 1–

1– 1– 1–

=

H
1 2– 1

2– 5 2–

1 2– 1

=

Download more at Learnclax.com



274 IMAGE ENHANCEMENT

          

To obtain edge crispening on electronically scanned images, the scanner signal
can be passed through an electrical filter with a high-frequency bandpass character-
istic. Another possibility for scanned images is the technique of unsharp masking
(35,36). In this process, the image is effectively scanned with two overlapping aper-
tures, one at normal resolution and the other at a lower spatial resolution, which
upon sampling produces normal and low-resolution images  and ,
respectively. An unsharp masked image

(10.4-2)

is then generated by forming the weighted difference between the normal and low-
resolution images, where c is a weighting constant. Typically, c is in the range 3/5 to
5/6, so that the ratio of normal to low-resolution components in the masked image is

FIGURE 10.4-1. Edge crispening with 3 × 3 masks on the chest_xray  image.
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from 1.5:1 to 5:1. Figure 10.4-2 illustrates typical scan signals obtained when scan-
ning over an object edge. The masked signal has a longer-duration edge gradient as
well as an overshoot and undershoot, as compared to the original signal. Subjec-
tively, the apparent sharpness of the original image is improved. Figure 10.4-3
presents examples of unsharp masking in which the low-resolution image is
obtained by convolution with a uniform  impulse response array. The sharpen-
ing effect is stronger as L increases and c decreases.

          

Edge crispening using an unsharp masking operator is sensitive to image noise.
Polesel et al. (37) have developed an adaptive unsharp masking filter in which con-
trast enhancement occurs in high detail regions of an image; little or no image sharp-
ening occurs in smooth areas.

Linear edge crispening can be performed by Fourier domain filtering. A zonal
high-pass filter with a transfer function given by Eq. 9.4-10 suppresses all spatial
frequencies below the cutoff frequency except for the dc component, which is nec-
essary to maintain the average amplitude of the filtered image. Figure 10.4-4 shows
the result of zonal high-pass filtering of an image. Zonal high-pass filtering often
causes ringing in a filtered image. Such ringing can be reduced significantly by uti-
lization of a high-pass filter with a smooth cutoff response. One such filter is the
Butterworth high-pass filter, whose transfer function is defined by Eq. 9.4-13.

FIGURE 10.4-2. Waveforms in an unsharp masking image enhancement system.
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Figure 10.4-4 shows the results of zonal and Butterworth high-pass filtering. In
both examples, the filtered images are biased to a mid gray level for display.

10.4.2. Statistical Differencing

Another form of edge crispening, called statistical differencing (38, p. 100),
involves the generation of an image by dividing each pixel value by its estimated
standard deviation  according to the basic relation

(10.4-3)

where the estimated standard deviation

FIGURE 10.4-3. Unsharp mask processing for L × L uniform low-pass convolution on the 
chest_xray image.
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(10.4-4)

is computed at each pixel over some  neighborhood where W = 2w + 1. The
function  is the estimated mean value of the original image at point ,
which is computed as

. (10.4-5)

The enhanced image  is increased in amplitude with respect to the original at
pixels that deviate significantly from their neighbors, and is decreased in relative
amplitude elsewhere. The process is analogous to automatic gain control for an
audio signal.

Wallis (39) has suggested a generalization of the statistical differencing operator
in which the enhanced image is forced to a form with desired first- and second-order
moments. The Wallis operator is defined by

(10.4-6)

where Md and Dd represent desired average mean and standard deviation factors,
 is a maximum gain factor that prevents overly large output values when

 is small and  is a mean proportionality factor controlling the
background flatness of the enhanced image.

FIGURE 10.4-4. Zonal and Butterworth high-pass filtering on the chest_xray image; 
cutoff frequency = 32.
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The Wallis operator can be expressed in a more general form as

(10.4-7)

where  is a spatially dependent gain factor and  is a spatially depen-
dent background factor. These gain and background factors can be derived directly
from Eq. 10.4-6, or they can be specified in some other manner. For the Wallis oper-
ator, it is convenient to specify the desired average standard deviation Dd such that
the spatial gain ranges between maximum Amax and minimum Amin limits. This can
be accomplished by setting Dd to the value

(10.4-8)

where Dmax is the maximum value of . The summations of Eqs. 10.4-4 and
10.4-5 can be implemented by convolutions with a uniform impulse array. But,
overshoot and undershoot effects may occur. Better results are usually obtained with
a pyramid or Gaussian-shaped array.

Figure 10.4-5 shows the mean, standard deviation, spatial gain and Wallis statis-
tical differencing result on a monochrome image. Figure 10.4-6 presents a medical
imaging example.

10.5. COLOR IMAGE ENHANCEMENT

The image enhancement techniques discussed previously have all been applied to
monochrome images. This section considers the enhancement of natural color
images and introduces the pseudocolor and false color image enhancement methods.
In the literature, the terms pseudocolor and false color have often been used improp-
erly. Pseudocolor produces a color image from a monochrome image, while false
color produces an enhanced color image from an original natural color image or
from multispectral image bands.

10.5.1. Natural Color Image Enhancement

The monochrome image enhancement methods described previously can be
applied to natural color images by processing each color component individu-
ally. This comprises the class of intra-component processing algorithms. There
is also a class of inter-component processing algorithms in which color pixels
are combined on a pixel-by-pixel basis. Finally, there is a class of vector pro-
cessing algorithms.
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FIGURE 10.4-5. Wallis statistical differencing on the bridge image for Md = 0.45,              
Dd = 0.28, p = 0.20, Amax = 2.50, Amin = 0.75 using a 9 × 9 pyramid array.
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Intra-component Processing. Typically, color images are processed in the RGB
color space. This approach works quite well for noise cleaning algorithms in which
the noise is independent between the R, G and B components. Edge crispening can
also be performed on an intra-component basis, but better, and more efficient,
results, are often obtained by processing in other color spaces. Contrast manipula-
tion and histogram modification intra-component algorithms often result in severe
shifts of the hue and saturation of color images. Hue preservation can be achieved
by using a single point transformation for each of the three RGB components (40).
For example, form a sum image , and then compute a histogram
equalization function, which is used for each RGB component.

For some image enhancement algorithms, there are computational advantages to
processing in a luma-chroma space, such as , or a lightness-chrominance
space, such as . As an example, if the objective is to perform edge crispening
of a color image, it is usually only necessary to apply the enhancement method to
the luma or lightness component. Because of the high-spatial-frequency response
limitations of human vision, edge crispening of the chroma or chrominance compo-
nents may not be perceptible.

Faugeras (41) has investigated color image enhancement in a perceptual space
based on a color vision model similar to the model presented in Figure 2.5-3. The
procedure is to transform a RGB tristimulus value original image according to
the color vision model to produce a set of three perceptual space images that, ide-
ally, are perceptually independent. Then, an image enhancement method is applied
independently to the perceptual space images. Finally, the enhanced perceptual
space images are subjected to steps that invert the color vision model and produce
an enhanced color image represented in RGB color space.

FIGURE 10.4-6. Wallis statistical differencing on the chest_xray image for Md = 0.64, 
Dd = 0.22, p = 0.20, Amax = 2.50, Amin = 0.75 using a 11 × 11 pyramid array.
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Inter-component Processing. The intra-component processing algorithms previ-
ously discussed provide no means of modifying the hue and saturation of a pro-
cessed image in a controlled manner. One means of doing so is to transform a source
RGB image into a three component image, in which the three components form sep-
arate measures of the brightness, hue and saturation (BHS) of a color image. Ideally,
the three components should be perceptually independent of one another. Once the
BHS components are determined, they can be modified by amplitude scaling meth-
ods, as described, in Sec. 10.1.1.

The IHS color coordinate system defined by Eq. 3.5-20 has been proposed for
non-standard color images. There are no standard colorimetric definitions for hue
and saturation measures. However, the following ad hoc definition for the 
color coordinate system of Eq. 3.5-6 can be utilized:

(10.5-1a)

(10.5-1b)

. (10.5-1c)

Color Vector Processing. As shown in Figure 3.3-2, a color vector 
can be formed in three-dimensional color space based upon the R, G and B color
components at each pixel . Now consider a moving window about the 
pixel, which contains a sequence of color vectors v1, v2,...,vN. For example, for a

 window, the neighborhood array is:

For natural, noise-free images with a relatively small window, the vectors vn will
be similar in magnitude and direction. For images subject to noise, some of the
vectors may differ significantly from one another. Astola, Haavisto and Neuvo
(42) have proposed a vector median filter (VMF) as a means of color image
denoising. The vector in the window center is replaced by the median of all of the
vectors in the window. References 42 to 44 discuss various sorting algorithms for
computation of the VMF.

10.5.2. Pseudocolor

Pseudocolor (45–47) is a color mapping of a monochrome image array which is
intended to enhance the detectability of detail within the image. The pseudocolor
mapping of an array  is defined as
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(10.5-2a)

(10.5-2b)

(10.5-2c)

where , ,  are display color components and ,
,  are linear or nonlinear functional operators. This mapping

defines a path in three-dimensional color space parametrically in terms of the array
. Figure 10.5-1 illustrates the RGB color space and two color mappings that

originate at black and terminate at white. Mapping A represents the achromatic path
through all shades of gray; it is the normal representation of a monochrome image.
Mapping B is a spiral path through color space.

Another class of pseudocolor mappings includes those mappings that exclude
all shades of gray. Mapping C, which follows the edges of the RGB color cube, is
such an example. This mapping follows the perimeter of the gamut of reproduc-
ible colors as depicted by the uniform chromaticity scale (UCS)  chromaticity
chart shown in Figure 10.5-2. The luminances of the colors red, green, blue, cyan,
magenta and yellow that lie along the perimeter of reproducible colors are noted
in the figure. It is seen that the luminance of the pseudocolor scale varies between
a minimum of 0.114 for blue to a maximum of 0.886 for yellow. A maximum
luminance of unity is reached only for white. In some applications, it may be
desirable to fix the luminance of all displayed colors so that discrimination along
the pseudocolor scale is by hue and saturation attributes of a color only. Loci of
constant luminance are plotted in Figure 10.5-2.

FIGURE 10.5-1. Black-to-white and RGB perimeter pseudocolor mappings.
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Figure 10.5-2 also includes bounds for displayed colors of constant luminance.
For example, if the RGB perimeter path is followed, the maximum luminance of
any color must be limited to 0.114, the luminance of blue. At a luminance of 0.2,
the RGB perimeter path can be followed except for the region around saturated

FIGURE 10.5-2. Luminance loci for NTSC colors.
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blue. At higher luminance levels, the gamut of constant luminance colors becomes
severely limited. Figure 10.5-2b is a plot of the 0.5 luminance locus. Inscribed
within this locus is the locus of those colors of largest constant saturation. A
pseudocolor scale along this path would have the property that all points differ
only in hue.

With a given pseudocolor path in color space, it is necessary to choose the
scaling between the data plane variable and the incremental path distance. On the
UCS chromaticity chart, incremental distances are subjectively almost equally
noticeable. 

Therefore, it is reasonable to subdivide geometrically the path length into equal
increments. Figure 10.5-3 shows examples of pseudocoloring of a gray scale chart
image and a seismic image.

FIGURE 10.5-3. Pseudocoloring of the gray_chart and seismic images. For mono-
chrome printers and displays, see the website for a color representation of this figure.

(b) Pseudocolor of chart(a) Gray scale chart

(c) Seismic (b) Pseudocolor of seismic

Download more at Learnclax.com



COLOR IMAGE ENHANCEMENT 285

10.5.3. False Color

False color is a point-by-point mapping of an original color image, described by its
three primary colors, or of a set of multispectral image planes of a scene, to a color
space defined by display tristimulus values that are linear or nonlinear functions of
the original image pixel values (48,49). A common intent is to provide a displayed
image with objects possessing different or false colors from what might be
expected. For example, blue sky in a normal scene might be converted to appear
red, and green grass transformed to blue. One possible reason for such a color map-
ping is to place normal objects in a strange color world so that a human observer
will pay more attention to the objects than if they were colored normally.

Another reason for false color mappings is the attempt to color a normal scene to
match the color sensitivity of a human viewer. For example, it is known that the
luminance response of cones in the retina peaks in the green region of the visible
spectrum. Thus, if a normally red object is false colored to appear green, it may
become more easily detectable. Another psychophysical property of color vision
that can be exploited is the contrast sensitivity of the eye to changes in blue light. In
some situations it may be worthwhile to map the normal colors of objects with fine
detail into shades of blue.

A third application of false color is to produce a natural color representation of a
set of multispectral images of a scene. Some of the multispectral images may even
be obtained from sensors whose wavelength response is outside the visible wave-
length range, for example, infrared or ultraviolet.

In a false color mapping, the red, green and blue display color components are
related to natural or multispectral images Fi by

(10.5-3a)

(10.5-3b)

(10.5-3c)

where , ,  are general functional operators. As a simple exam-
ple, the set of red, green and blue sensor tristimulus values ( , ,

) may be interchanged according to the relation

. (10.5-4)

Green objects in the original will appear red in the display, blue objects will appear
green and red objects will appear blue. A general linear false color mapping of natu-
ral color images can be defined as

RD OR F1 F2 …, ,{ }=

GD OG F1 F2 …, ,{ }=

BD OB F1 F2 …, ,{ }=

OR ·{ } OR ·{ } OB ·{ }
RS F1= GS F2=

BS F3=

RD

GD

BD

0 1 0

0 0 1

1 0 0

RS

GS

BS

=
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. (10.5-5)

This color mapping should be recognized as a linear coordinate conversion of colors
reproduced by the primaries of the original image to a new set of primaries.
Figure 10.5-4 provides examples of false color mappings of a pair of images.

10.6. MULTISPECTRAL IMAGE ENHANCEMENT

Enhancement procedures are often performed on multispectral image bands of a
scene in order to accentuate salient features to assist in subsequent human interpre-
tation or machine analysis (43-45). These procedures include individual image

FIGURE 10.5-4. False coloring of multispectral images. For monochrome printers and dis-
plays, see the website for a color representation of this figure.

RD

GD

BD

m11 m12 m13

m21 m22 m21

m23 m32 m33

RS

GS

BS

=

(b) Blue band(a) Infrared band

(c) R = infrared, G = 0, B = blue (d) R = infrared, G = 1/2 [infrared + blue], B = blue
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band enhancement techniques, such as contrast stretching, noise cleaning and edge
crispening, as described earlier. Other methods, considered in this section, involve
the joint processing of multispectral image bands.

Multispectral image bands can be subtracted in pairs according to the relation

(10.6-1)

in order to accentuate reflectivity variations between the multispectral bands. An
associated advantage is the removal of any unknown but common bias components
that may exist. Another simple but highly effective means of multispectral image
enhancement is the formation of ratios of the image bands. The ratio image between
the mth and nth multispectral bands is defined as

(10.6-2)

It is assumed that the image bands are adjusted to have nonzero pixel values. In many
multispectral imaging systems, the image band  can be modeled by the prod-
uct of an object reflectivity function  and an illumination function that
is identical for all multispectral bands. Ratioing of such imagery provides an auto-
matic compensation of the illumination factor. The ratio ,
for which  represents a quantization level uncertainty, can vary considerably if

 is small. This variation can be reduced significantly by forming the logarithm
of the ratios defined by 

. (10.6-3)

There are a total of N(N – 1) different difference or ratio pairs that may be formed
from N multispectral bands. To reduce the number of combinations to be consid-
ered, the differences or ratios are often formed with respect to an average image
field:

. (10.6-4)

Unitary transforms between multispectral planes have also been employed as a
means of enhancement. For N image bands, a  vector

(10.6-5)

Dm n, j k,( ) Fm j k,( ) Fn j k,( )–=

Rm n, j k,( )
Fm j k,( )
Fn j k,( )
--------------------=

Fn j k,( )
Rn j k,( ) I j k,( )

Fm j k,( ) Fn j k,( ) Δ j k,( )±[ ]⁄
Δ j k,( )

Fn j k,( )

Lm n, j k,( ) Rm n, j k,( ){ }log Fm j k,( ){ } Fn j k,( ){ }log–log= =

A j k,( ) 1
N
---- Fn j k,( )

n 1=

N

=

N 1×

x

F1 j k,( )

F2 j k,( )
·

·

·

FN j k,( )

=
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is formed at each coordinate (j, k). Then, a transformation

(10.6-6)

is formed where A is a  unitary matrix. A common transformation is the prin-
cipal components decomposition, described in Appendix A1.2, in which the rows of
the matrix A are composed of the eigenvectors of the covariance matrix Kx between
the bands. The matrix A performs a diagonalization of the covariance matrix Kx
such that the covariance matrix of the transformed imagery bands

(10.6-7)

is a diagonal matrix  whose elements are the eigenvalues of Kx arranged in
descending value. The principal components decomposition, therefore, results in a
set of decorrelated data arrays whose energies are ranged in amplitude. This process,
of course, requires knowledge of the covariance matrix between the multispectral
bands. The covariance matrix must be either modeled, estimated or measured. If the
covariance matrix is highly nonstationary, the principal components method
becomes difficult to utilize.

Figure 10.6-1 contains a set of four multispectral images, and Figure 10.6-2
exhibits their corresponding log ratios (50). Principal components bands of these
multispectral images are illustrated in Figure 10.6-3 (50).

10.7. IMAGE ENHANCEMENT EXERCISES

E10.1 Develop a program that displays the Q component of a YIQ color image over
its full dynamic range. Steps:

(a) Display the source monochrome RGB image.

(b) Scale the RGB image to unit range and convert it to the YIQ space.

(c) Extract the Q component image.

(d) Compute the amplitude extrema.

(e) Display the Q component.

The PIKS API executable example_Q_display performs this exercise.

E10.2 Develop a program to histogram equalize an unsigned integer, 8-bit, mono-
chrome image. Steps:

(a) Display the source monochrome image.

(b) Compute the image histogram.

(c) Compute the image cumulative histogram.

(d) Load the image cumulative histogram into a lookup table.

y Ax=

N N×

Ky AKxA
T Λ= =

Λ
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(e) Pass the image through the lookup table.

(f) Display the enhanced destination image.

The PIKS API executable example_histogram_equalization performs
this exercise.

E10.3 Develop a program to perform outlier noise cleaning of the unsigned inte-
ger, 8-bit, monochrome image peppers_replacement_noise following
the algorithm of Figure 10.3-9. Steps:

(a) Display the source monochrome image.

(b) Compute a  neighborhood average image by convolution with a
uniform impulse array.

FIGURE 10.6-1. Multispectral images.

3 3×
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FIGURE 10.6-2. Logarithmic ratios of multispectral images.
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(c) Display the neighborhood image.

(d) Create a magnitude of the difference image between the source image
and the neighborhood image.

(e) Create a Boolean mask image which is TRUE if the magnitude differ-
ence image is greater than a specified error tolerance, e.g. 15%.

(f) Convert the mask image to a ROI and use it to generate the outlier desti-
nation image.

(g) Display the destination image.

The PIKS API executable example_outlier performs this exercise.

FIGURE 10.6-3. Principal components of multispectral images.
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E10.4 Develop a program that performs linear edge crispening of an unsigned inte-
ger, 8-bit, color image by convolution. Steps:

(a) Display the source color image.

(b) Import the Mask 3 impulse response array defined by Eq.10.4-1c.

(c) Convert the source image to 16-bit or larger integer or real datatype.

(d) Convolve the color image with the impulse response array.

(e) Clip the convolved image over the dynamic range of the source image to
avoid amplitude undershoot and overshoot.

(f) Display the clipped destination image.

The executable example_edge_crispening performs this exercise.

E10.5 Develop a program that performs  plus-shape median filtering of the
unsigned integer, 8-bit, monochrome image peppers_replacement_noise.
Steps:

(a) Display the source monochrome image.

(b) Create a  Boolean mask array.

(c) Perform median filtering.

(d) Display the destination image.

The PIKS API executable example_filtering_median_plus7 performs
this exercise.

E10.6 Develop a program that generates a pseudocolor display of the ramp image
Steps:

(a) Display the source monochrome image.

(b) Create the pseudocolor lookup table with six segments starting at blue
and ending at magenta.

(c) Pass the source image through the LUT.

(d) Display the destination image.

The PIKS API executable example_pseudocolor performs this exercise.

E10.7 Develop a program that generates a false color display of an infrared image
and a blue image. Steps:

(a) Display the landsat_ir  infrared band monochrome image.

(b) Display the landsat_blue blue band monochrome image.

(c) Copy the landsat infrared band to the red band of a false color image.

(d) Copy the landsat blue band to the blue band of the false color image.

7 7×

7 7×
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(e) Create a hybrid image: 0.5[infrared + blue].

(f) Copy the landsat hybrid image to the green band of the false color image.

(g) Display the false color destination image.

The PIKS API executable example_false_color performs this exercise.
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IMAGE RESTORATION

Image restoration may be viewed as an estimation process in which operations are
performed on an observed or measured image field to estimate the ideal image field
that would be observed if no image degradation were present in an imaging system.
Mathematical models are described in the first section of this chapter for image deg-
radation in general classes of imaging systems. These models are then utilized in the
following sections as a basis for the development of image restoration techniques.

This chapter develops fundamental concepts for image restoration. Advanced
image restoration techniques are described in Pratt(4Ed., 369-379). 

11.1. IMAGE RESTORATION MODELS

In order effectively to design a digital image restoration system, it is necessary
quantitatively to characterize the image degradation effects of the physical imaging
system, the image digitizer and the image display. Basically, the procedure is to
model the image degradation effects and then perform operations to undo the model
to obtain a restored image. It should be emphasized that accurate image modeling is
often the key to effective image restoration. There are two basic approaches to the
modeling of image degradation effects: a priori modeling and a posteriori model-
ing. In the former case, measurements are made on the physical imaging system,
digitizer and display to determine their response for an arbitrary image field. In
some instances, it will be possible to model the system response deterministically,
while in other situations it will only be possible to determine the system response in 
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a stochastic sense. The a posteriori modeling approach is to develop the model for
the image degradations based on measurements of a particular image to be restored.
Basically, these two approaches differ only in the manner in which information is
gathered to describe the character of the image degradation. 

Figure 11.1-1 shows a general model of a digital imaging system and restoration
process. In the model, a continuous image light distribution  dependent on
spatial coordinates (x, y), time (t) and spectral wavelength  is assumed to exist as
the driving force of a physical imaging system subject to point and spatial degradation
effects and corrupted by deterministic and stochastic disturbances. Potential degrada-
tions include diffraction in the optical system, sensor nonlinearities, optical system
aberrations, film nonlinearities, atmospheric turbulence effects, image motion blur
and geometric distortion. Noise disturbances may be caused by electronic imaging
sensors or film granularity. In this model, the physical imaging system produces a set
of output image fields  at time instant  described by the general relation

(11.1-1)

where  represents a general operator that is dependent on the space coordi-
nates (x, y), the time history (t), the wavelength  and the amplitude of the light
distribution (C). For a monochrome imaging system, there will only be a single out-
put field, while for a natural color imaging system,  may denote the red,
green and blue tristimulus bands for i = 1, 2, 3, respectively. Multispectral imagery
will also involve several output bands of data.

In the general model of Figure 11.1-1, each observed image field  is
digitized, following the techniques outlined in Part 2, to produce an array of image
samples  at each time instant . The output samples of the digitizer
are related to the input observed field by

(11.1-2)

FIGURE 11.1-1. Digital image restoration model.
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where  is an operator modeling the image digitization process.
A digital image restoration system that follows produces an output array

 by the transformation

(11.1-3)

where  represents the designed restoration operator. Next, the output samples
of the digital restoration system are interpolated by the image display system to pro-
duce a continuous image estimate . This operation is governed by the
relation

(11.1-4)

where  models the display transformation.
The function of the digital image restoration system is to compensate for degra-

dations of the physical imaging system, the digitizer and the image display system to
produce an estimate of a hypothetical ideal image field  that would be
displayed if all physical elements were perfect. The perfect imaging system would
produce an ideal image field modeled by

(11.1-5)

where  is a desired temporal and spectral response function, T is the observa-
tion period and  is a desired point and spatial response function.

Usually, it will not be possible to restore perfectly the observed image such that
the output image field is identical to the ideal image field. The design objective of
the image restoration processor is to minimize some error measure between

 and . The discussion here is limited, for the most part, to a
consideration of techniques that minimize the mean-square error between the ideal
and estimated image fields as defined by

(11.1-6)

where  denotes the expectation operator. Often, it will be desirable to place
side constraints on the error minimization, for example, to require that the image
estimate be strictly positive if it is to represent light intensities that are positive.

Because the restoration process is to be performed digitally, it is often more con-
venient to restrict the error measure to discrete points on the ideal and estimated
image fields. These discrete arrays are obtained by mathematical models of perfect
image digitizers that produce the arrays
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(11.1-7a)

. (11.1-7b)

It is assumed that continuous image fields are sampled at a spatial period  satisfy-
ing the Nyquist criterion. Also, quantization error is assumed negligible. It should be
noted that the processes indicated by the blocks of Figure 11.1-1 above the dashed
division line represent mathematical modeling and are not physical operations per-
formed on physical image fields and arrays. With this discretization of the continu-
ous ideal and estimated image fields, the corresponding mean-square restoration
error becomes

. (11.1-8)

With the relationships of Figure 11.1-1 quantitatively established, the restoration
problem may be formulated as follows:

Given the sampled observation  expressed in terms of the image

light distribution , determine the transfer function  that mini-

mizes the error measure between  and  subject to desired

constraints.

There are no general solutions for the restoration problem as formulated above
because of the complexity of the physical imaging system. To proceed further, it is
necessary to be more specific about the type of degradation and the method of resto-
ration. The following sections describe models for the elements of the generalized
imaging system of Figure 11.1-1.

This chapter began with an introduction to a general model of an imaging system
and a digital restoration process. Now, the discussion turns to the development of
several discrete image restoration models. In the development of these models, it is
assumed that the spectral wavelength response and temporal response characteris-
tics of the physical imaging system can be separated from the spatial and point char-
acteristics. The following discussion considers only spatial and point characteristics.

After each element of the digital image restoration system of Figure 11.1-1 is
modeled, following the techniques described previously, the restoration system may
be conceptually distilled to three equations:

Observed image:

(11.1-9a)
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Compensated image:

(11.1-9b)

Restored image:

(11.1-9c)

where FS represents an array of observed image samples, FI and  are arrays of
ideal image points and estimates, respectively, FK is an array of compensated
image points from the digital restoration system, Ni denotes arrays of noise samples
from various system elements, and , ,  represent general trans-
fer functions of the imaging system, restoration processor and display system,
respectively. Vector-space equivalents of Eq. 11.1-9 can be formed for purposes of
analysis by column scanning of the arrays of Eq. 11.1-9. These relationships are
given by

(11.1-10a)

(11.1-10b)

. (11.1-10c)

Several estimation approaches to the solution of 11.1-9 or 11.1-10 are described in
the following sections. Unfortunately, general solutions have not been found;
recourse must be made to specific solutions for less general models.

The most common digital restoration model is that of Figure 11.1-2a, in which
a continuous image field is subjected to a linear blur, the electrical sensor
responds nonlinearly to its input intensity, and the sensor amplifier introduces
additive Gaussian noise independent of the image field. The physical image digi-
tizer that follows may also introduce an effective blurring of the sampled image as
the result of sampling with extended pulses. In this model, display degradation is
ignored.

Figure 11.1-2b shows a restoration model for the imaging system. It is assumed
that the imaging blur can be modeled as a superposition operation with an impulse
response J(x, y) that may be space variant. The sensor is assumed to respond non-
linearly to the input field FB(x, y) on a point-by-point basis, and its output is sub-
ject to an additive noise field . The effect of sampling with extended
sampling pulses, which are assumed symmetric, can be modeled as a convolution
of FO(x, y) with each pulse P(x, y) followed by perfect sampling.

FK k1 k2,( ) OR FS m1 m2,( ){ }=

FI
ˆ n1 n2,( ) OD FK k1 k2,( ){ }=
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OM ·{ } OR ·{ } OD ·{ }
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N x y,( )
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The objective of the restoration is to produce an array of samples  that
are estimates of points on the ideal input image field FI(x, y) obtained by a perfect
image digitizer sampling at a spatial period . To produce a digital restoration
model, it is necessary quantitatively to relate the physical image samples 
to the ideal image points  following the techniques outlined in Section 7.2.
This is accomplished by truncating the sampling pulse equivalent impulse response
P(x, y) to some spatial limits , and then extracting points from the continuous
observed field FO(x, y) at a grid spacing . The discrete representation must then
be carried one step further by relating points on the observed image field FO(x, y) to
points on the image field FP(x, y) and the noise field N(x, y). The final step in the
development of the discrete restoration model involves discretization of the super-
position operation with J(x, y). There are two potential sources of error in this mod-
eling process: truncation of the impulse responses  and , and
quadrature integration errors. Both sources of error can be made negligibly small by
choosing the truncation limits TB and TP large, and by choosing the quadrature
spacings  and  small. This, of course, increases the sizes of the arrays, and
eventually, the amount of storage and processing required. Actually,  as is subse-
quently shown, the numerical stability of the restoration estimate may be impaired
by improving the accuracy of the discretization process!

The relative dimensions of the various arrays of the restoration model are impor-
tant. Figure 11.1-3 shows the nested nature of the arrays. The image array observed,

, is smaller than the ideal image array, , by the half-width of the
truncated impulse response J(x, y). Similarly, the array of physical sample points

FIGURE 11.1-2. Imaging and restoration models for a sampled blurred image with additive 
noise.
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FS(m1, m2) is smaller than the array of image points observed, , by the
half-width of the truncated impulse response .

It is convenient to form vector equivalents of the various arrays of the restoration
model in order to utilize the formal structure of vector algebra in the subsequent res-
toration analysis. Again, following the techniques of Section 7.2, the arrays are rein-
dexed so that the first element appears in the upper-left corner of each array. Next,
the vector relationships between the stages of the model are obtained by column
scanning of the arrays to give

(11.1-11a)

(11.1-11b)

(11.1-11c)

. (11.1-11d)

where the blur matrix BP contains samples of P(x, y) and BB contains samples of
J(x, y). The nonlinear operation of Eq. 1 l.1-11c is defined as a point-by-point non-
linear transformation. That is,

. (11.1-12)

FIGURE 11.1-3. Relationships of sampled image arrays.
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Equations 11.1-11a to 11.1-11d can be combined to yield a single equation for
the observed physical image samples in terms of points on the ideal image:

. (11.1-13)

Several special cases of Eq. 11.1-13 will now be defined. First, if the point non-
linearity is absent,

(11.1-14)

where B = BPBB and nB = BPn. This is the classical discrete model consisting of a
set of linear equations with measurement uncertainty. Another case that will be
defined for later discussion occurs when the spatial blur of the physical image digi-
tizer is negligible. In this case,

(11.1-15)

where B = BB is defined by Eq. 7.2-15.

Computer Simulation Image Model. The following sections contain results for sev-
eral image restoration experiments based on the restoration model defined by Eq.
11.1-14. An artificial image has been generated for these computer simulation experi-
ments. The original image used for the analysis of under determined restoration tech-
niques, shown in Figure 11.1-4a, consists of a  pixel square of intensity 245
placed against an extended background of intensity 10 referenced to an intensity
scale of 0 to 255. All images are zoomed for display purposes. The Gaussian-shaped
impulse response function is defined as

. (11.1-16)

In the computer simulation restoration experiments, the observed blurred image
model has been obtained by multiplying the column-scanned original image of
Figure 11.1-4a by the blur matrix B. Next, additive white Gaussian observation
noise has been simulated by adding output variables from an appropriate random
number generator to the blurred images. For display, all image points restored are
clipped to the intensity range 0 to 255.

11.2. SENSOR AND DISPLAY POINT NONLINEARITY CORRECTION

A common defect in imaging systems is unwanted nonlinearities in the sensor and
display systems. Post processing correction of sensor signals and pre-processing
correction of display signals can reduce such degradations substantially (1). Such
point restoration processing is usually relatively simple to implement.This section
considers methods for compensation of point nonlinearities of sensors and displays.
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11.2.1. Sensor Point Nonlinearity Correction

In imaging systems in which the source degradation can be separated into cascaded
spatial and point effects, it is often possible directly to compensate for the point deg-
radation (2). Consider a physical imaging system that produces an observed image
field  according to the separable model

(11.2-1)

where  is the spectral energy distribution of the input light field, 

represents the point amplitude response of the sensor and  denotes the spatial
and wavelength responses. Sensor luminance correction can then be accomplished

FIGURE 11.1-4. Image arrays for under determined model.

FO x y,( )

FO x y,( ) OQ OD C x y λ, ,( ){ }{ }=
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by passing the observed image through a correction system with a point restoration
operator  ideally chosen such that

. (11.2-2)

For continuous images in optical form, it may be difficult to implement a desired
point restoration operator if the operator is nonlinear. Compensation for images in
analog electrical form can be accomplished with a nonlinear amplifier, while digital
image compensation can be performed by arithmetic operators or by a table look-up
procedure.

Figure 11.2-1 is a block diagram that illustrates the point luminance correction
methodology. The sensor input is a point light distribution function C that is con-
verted to a binary number B for eventual entry into a computer or digital proces-
sor. In some imaging applications, processing will be performed directly on the
binary representation, while in other applications, it will be preferable to convert
to a real fixed-point computer number linearly proportional to the sensor input
luminance. In the former case, the binary correction unit will produce a binary
number  that is designed to be linearly proportional to C, and in the latter case,
the fixed-point correction unit will produce a fixed-point number  that is
designed to be equal to C.

A typical measured response B versus sensor input luminance level C is shown in
Figure 11.2-2a, while Figure 11.2-2b shows the corresponding compensated
response that is desired. The measured response can be obtained by scanning a gray
scale test chart of known luminance values and observing the digitized binary value
B at each step. Repeated measurements should be made to reduce the effects of
noise and measurement errors. For calibration purposes, it is convenient to regard
the binary-coded luminance as a fixed-point binary number. As an example, if the
luminance range is sliced into 4096 levels and coded with 12 bits, the binary repre-
sentation would be

B = b8 b7 b6 b5 b4 b3 b2 b1. b–1 b–2 b–3 b–4 (11.2-3)

FIGURE 11.2-1. Point luminance correction for an image sensor.
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The whole-number part in this example ranges from 0 to 255, and the fractional part
divides each integer step into 16 subdivisions. In this format, the scanner can pro-
duce output levels over the range

(11.2-4)

After the measured gray scale data points of Figure 11.2-2a have been obtained, a
smooth analytic curve

(11.2-5)

is fitted to the data. The desired luminance response in real number and binary number
forms is

(11.2-6a)

FIGURE 11.2-2. Measured and compensated sensor luminance response.

0.0 B 255.9375≤ ≤

C g B{ }=

C̃ C=
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. (11.2-6b)

Hence, the required compensation relationships are 

(11.2-7a)

. (11.2-7b)

The limits of the luminance function are commonly normalized to the range 0.0
to 1.0.

To improve the accuracy of the calibration procedure, it is first wise to per-
form a rough calibration and then repeat the procedure as often as required to
refine the correction curve. It should be observed that because B is a binary num-
ber, the corrected luminance value  will be a quantized real number. Further-
more, the corrected binary coded luminance  will be subject to binary roundoff
of the right-hand side of Eq. 11.2-7b. As a consequence of the nonlinearity of the
fitted curve  and the amplitude quantization inherent to the digitizer, it
is possible that some of the corrected binary-coded luminance values may be
unoccupied. In other words, the image histogram of  may possess gaps. To min-
imize this effect, the number of output levels can be limited to less than the num-
ber of input levels. For example, B may be coded to 12 bits and  coded to only
8 bits. Another alternative is to add pseudorandom noise to  to smooth out the
occupancy levels.

Many image scanning devices exhibit a variable spatial nonlinear point lumi-
nance response. Conceptually, the point correction techniques described previously
could be performed at each pixel value using the measured calibrated curve at that
point. Such a process, however, would be mechanically prohibitive. An alternative
approach, called gain correction, that is often successful is to model the variable
spatial response by some smooth normalized two-dimensional curve G(j, k) over the
sensor surface. Then, the corrected spatial response can be obtained by the operation

(11.2-8)

where  and  represent the raw and corrected sensor responses,
respectively.

Figure 11.2-3 provides an example of adaptive gain correction of a charge cou-
pled device (CCD) camera. Figure 11.2-3a is an image of a spatially flat light box
surface obtained with the CCD camera. A line profile plot of a diagonal line through
the original image is presented in Figure 11.2-3b. Figure 11.2-3c is the gain-cor-
rected original, in which  is obtained by Fourier domain low-pass filtering
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of the original image. The line profile plot of Figure 11.2-3d shows the “flattened”
result.
 

11.2.2. Display Point Nonlinearity Correction

Correction of an image display for point luminance nonlinearities is identical in
principle to the correction of point luminance nonlinearities of an image sensor. The
procedure illustrated in Figure 11.2-4 involves distortion of the binary coded image
luminance variable B to form a corrected binary coded luminance function  so that
the displayed luminance  will be linearly proportional to B. In this formulation,
the display may include a photographic record of a displayed light field. The desired
overall response is

. (11.2-9)

Normally, the maximum and minimum limits of the displayed luminance func-
tion  are not absolute quantities, but rather are transmissivities or reflectivities
normalized over a unit range. The measured response of the display and image
reconstruction system is modeled by the nonlinear function

(11.2-10)

FIGURE 11.2-3. Gain correction of a CCD camera image.

(a) Original (b) Line profile of original

(c) Gain correction (d) Line profile of gain corrected
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Therefore, the desired linear response can be obtained by setting

(11.2-11)

where  is the inverse function of .
The experimental procedure for determining the correction function  will

be described for the common example of producing a photographic print from an
image display. The first step involves the generation of a digital gray scale step
chart over the full range of the binary number B. Usually, about 16 equally spaced
levels of B are sufficient. Next, the reflective luminance must be measured over
each step of the developed print to produce a plot such as in Figure 11.2-5. The
data points are then fitted by the smooth analytic curve , which forms
the desired transformation of Eq. 11.2-10. It is important that enough bits be allo-
cated to B so that the discrete mapping  can be approximated to sufficient
accuracy. Also, the number of bits allocated to  must be sufficient to prevent
gray scale contouring as the result of the nonlinear spacing of display levels. A
10-bit representation of B and an 8-bit representation of  should be adequate in
most applications.

FIGURE 11.2-4. Point luminance correction of an image display.

FIGURE 11.2-5. Measured image display response.
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Image display devices such as cathode ray tube and liquid crystal displays often
exhibit spatial luminance variation. Typically, a displayed image is brighter at the
center of the display screen than at its periphery. Correction techniques, as described
by Eq. 11.2-8, can be utilized for compensation of spatial luminance variations.

11.3. CONTINUOUS IMAGE SPATIAL FILTERING RESTORATION

For the class of imaging systems in which the spatial degradation can be modeled
by a linear-shift-invariant impulse response and the noise is additive, restoration of
continuous images can be performed by linear filtering techniques1. Figure 11.3-1
contains a block diagram for the analysis of such techniques. An ideal image

 passes through a linear spatial degradation system with an impulse
response  and is combined with additive noise . The noise is
assumed to be uncorrelated with the ideal image. The image field observed can be
represented by the convolution operation as

(11.3-1a)

or 

. (11.3-1b)

The restoration system consists of a linear-shift-invariant filter defined by the
impulse response . After restoration with this filter, the reconstructed image
becomes 

(11.3-2a)

or

. (11.3-2b)

1. References 3 to 7 contain surveys of spatial image restoration methods.

FIGURE 11.3-1. Continuous image restoration model.
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Substitution of Eq. 11.3-lb into Eq. 11.3-2b yields

. (11.3-3)

It is analytically convenient to consider the reconstructed image in the Fourier trans-
form domain. By the Fourier transform convolution theorem,

(11.3-4)

where , , , ,  are the two-

dimensional Fourier transforms of , , , , ,

respectively.

The following sections describe various types of continuous image restoration
filters.

11.3.1. Inverse Filter

The earliest attempts at image restoration were based on the concept of inverse fil-
tering, in which the transfer function of the degrading system is inverted to yield a
restored image (8–12). If the restoration inverse filter transfer function is chosen so
that

(11.3-5)

then the spectrum of the reconstructed image becomes

. (11.3-6)

Upon inverse Fourier transformation, the restored image field

(11.3-7)

is obtained. In the absence of source noise, a perfect reconstruction results, but if
source noise is present, there will be an additive reconstruction error whose value
can become quite large at spatial frequencies for which  is small. Typi-
cally,  and  are small at high spatial frequencies; hence image
quality becomes severely impaired in high-detail regions of the reconstructed image.
Figure 11.3-2 shows typical frequency spectra involved in inverse filtering.
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The presence of noise may severely affect the uniqueness of a restoration esti-
mate. That is, small changes in  may radically change the value of the esti-
mate . For example, consider the dither function  added to an ideal
image to produce a perturbed image

. (11.3-8)

There may be many dither functions for which

. (11.3-9)

For such functions, the perturbed image field  may satisfy the convolution
integral of Eq. 11.3-1 to within the accuracy of the observed image field. Specifi-
cally, it can be shown that if the dither function is a high-frequency sinusoid of arbi-
trary amplitude, then in the limit 

. (11.3-10)

For image restoration, this fact is particularly disturbing, for two reasons. High-fre-
quency signal components may be present in an ideal image, yet their presence may

FIGURE 11.3-2. Typical spectra of an inverse filtering image restoration system.
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be masked by observation noise. Conversely, a small amount of observation noise
may lead to a reconstruction of  that contains very large amplitude high-fre-
quency components. If relatively small perturbations  in the observation
result in large dither functions for a particular degradation impulse response, the
convolution integral of Eq. 11.3-1 is said to be unstable or ill conditioned. This
potential instability is dependent on the structure of the degradation impulse
response function.

There have been several ad hoc proposals to alleviate noise problems inherent to
inverse filtering. One approach (10) is to choose a restoration filter with a transfer
function

(11.3-11)

where  has a value of unity at spatial frequencies for which the expected
magnitude of the ideal image spectrum is greater than the expected magnitude of the
noise spectrum, and zero elsewhere. The reconstructed image spectrum is then

. (11.3-12)

The result is a compromise between noise suppression and loss of high-frequency
image detail.

Another fundamental difficulty with inverse filtering is that the transfer function
of the degradation may have zeros in its passband. At such points in the frequency
spectrum, the inverse filter is not physically realizable, and therefore the filter must
be approximated by a large value response at such points.

11.3.2. Wiener Filter

It should not be surprising that inverse filtering performs poorly in the presence of
noise because the filter design ignores the noise process. Improved restoration qual-
ity is possible with Wiener filtering techniques, which incorporate a priori statistical
knowledge of the noise field (9–13).

In the general derivation of the Wiener filter, it is assumed that the ideal image
 and the observed image  of Figure 11.3-1 are samples of two-

dimensional, continuous stochastic fields with zero-value spatial means. The
impulse response of the restoration filter is chosen to minimize the mean-square
restoration error

. (11.3-13)

It can be shown Pratt(4Ed., 338-339) that the Wiener filter transfer function for
the additive noise model of Figure 11.3-1 is
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(11.3-14a)

or

(11.3-14b)

where  is the power spectrum of the ideal image and  is the
power spectrum of the additive noise. In the latter formulation, the transfer function
of the restoration filter can be expressed in terms of the signal-to-noise power ratio

(11.3-15)

at each spatial frequency. Figure 11.3-3 shows cross-sectional sketches of a typical
ideal image spectrum, noise spectrum, blur transfer function and the resulting Wie-
ner filter transfer function. As noted from the figure, this version of the Wiener filter
acts as a bandpass filter. It performs as an inverse filter at low spatial frequencies,
and as a smooth roll off low-pass filter at high spatial frequencies.

Equation 11.3-14 is valid when the ideal image and observed image stochastic
processes are zero mean. In this case, the reconstructed image Fourier transform is

(11.3-16)

If the ideal image and observed image means are nonzero, the proper form of the
reconstructed image Fourier transform is

(11.3-17a)

where

(11.3-17b)

and  and  are the two-dimensional Fourier transforms of 

the means of the ideal image and noise, respectively. It should be noted that Eq. 
11.3-17 accommodates spatially varying mean models. In practice, it is common 
to estimate the mean of the observed image by its spatial average  and 

apply  the  Wiener  filter  of  Eq. 11.3-14  to   the    observed   image    difference 
, and then add back the ideal image mean  to the Wie-

ner filter result.
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It is useful to investigate special cases of Eq. 11.3-14. If the ideal image is
assumed to be uncorrelated with unit energy, , and the Wiener filter
becomes

. (11.3-18)

This version of the Wiener filter provides less noise smoothing than does the general
case of Eq. 11.3-14. If there is no blurring of the ideal image, , and
the Wiener filter becomes a noise smoothing filter with a transfer function

. (11.3-19)

FIGURE 11.3-3. Typical spectra of a Wiener filtering image restoration system.
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In many imaging systems, the impulse response of the blur may not be fixed;
rather, it may change shape in a random manner. A practical example is the blur
caused by imaging through a turbulent atmosphere. Obviously, a Wiener filter
applied to this problem would perform better if it could dynamically adapt to the
changing blur impulse response. If this is not possible, a design improvement in
the Wiener filter can be obtained by considering the impulse response to be a
sample of a two-dimensional stochastic process with a known mean shape and
with a random perturbation about the mean modeled by a known power spectral
density. Transfer functions for this type of restoration filter have been developed
by Slepian (14).

11.3.3. Parametric Estimation Filters

Several variations of the Wiener filter have been developed for image restoration.
Some techniques are ad hoc, while others have a quantitative basis.

Cole (19) has proposed a restoration filter with a transfer function

. (11.3-20)

The power spectrum of the filter output is

(11.3-21)

where  represents the power spectrum of the observation, which is
related to the power spectrum of the ideal image by

. (11.3-22)

Thus, it is easily seen that the power spectrum of the reconstructed image is identical
to the power spectrum of the ideal image field. That is,

. (11.3-23)

For this reason, the restoration filter defined by Eq. 11.3-20 is called the image
power spectrum filter. In contrast, the power spectrum for the reconstructed
image as obtained by the Wiener filter of Eq. 11.3-14 is

. (11.3-24)
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In this case, the power spectra of the reconstructed and ideal images become identi-
cal only for a noise-free observation. Although equivalence of the power spectra
of the ideal and reconstructed images appears to be an attractive feature of the
image power spectrum filter, it should be realized that it is more important that the
Fourier spectra (Fourier transforms) of the ideal and reconstructed images be iden-
tical because their Fourier transform pairs are unique, but power-spectra transform
pairs are not necessarily unique. Furthermore, the Wiener filter provides a mini-
mum mean-square error estimate, while the image power-spectrum filter may result
in a large residual mean-square error. 

Cole (15) has also introduced a geometrical mean filter, defined by the transfer
function

(11.3-25)

where  is a design parameter. If  and , the geometrical
mean filter reduces to the image power-spectrum filter as given in Eq. 11.3-20.

Hunt (16) has developed another parametric restoration filter, called the con-
strained least-squares filter, whose transfer function is of the form

(11.3-26)

where  is a design constant and  is a design spectral variable. If 
and  is set equal to the reciprocal of the spectral signal-to-noise power
ratio of Eq. 11.3-15, the constrained least-squares filter becomes equivalent to the
Wiener filter of Eq. 11.3-14b. The spectral variable can also be used to minimize
higher-order derivatives of the estimate.

11.3.4. Application to Discrete Images

The inverse filtering, Wiener filtering and parametric estimation filtering tech-
niques developed  for  continuous  image  fields  are  often applied to the restora-
tion of discrete images. The common procedure has been to replace each of the
continuous spectral functions involved in the filtering operation by its discrete two-
dimensional Fourier transform counterpart. However, care must be taken in this
conversion process so that the discrete filtering operation is an accurate representa-
tion of the continuous convolution process and that the discrete form of the restora-
tion filter impulse response accurately models the appropriate continuous filter
impulse response.

Figures 11.3-4 to 11.3-7 present examples of continuous image spatial filtering
techniques by discrete Fourier transform filtering. The original image of Figure
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11.3-4a has been blurred with a Gaussian-shaped impulse response with  to
obtain the blurred image of Figure 11.3-4b. White Gaussian noise has been added to
the blurred image to give the noisy blurred image of Figure l1.3-4c, which has a sig-
nal-to-noise ratio of 10.0.

Figure 11.3-5 shows the results of inverse filter image restoration of the
blurred and noisy-blurred images. In Figure 11.3-5a, the inverse filter transfer
function follows Eq. 11.3-5 (i.e., no high-frequency cutoff). The restored image for the  

noise-free observation is corrupted completely by the effects of computational
error. The computation was performed using 32-bit floating-point arithmetic. In
Figure 11.3-5c, the inverse filter restoration is performed with a circular cutoff
inverse filter as defined by Eq. 11.3-11 with  for the  pixel

FIGURE 11.3-4. Blurred test images.

b 2.0=

C 200= 512 512×
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noise-free observation. Some faint artifacts are visible in the restoration. In Figure
11.3-5e, the cutoff frequency is reduced to . The restored image appears
relatively sharp and free of artifacts. Figure 11.3-5b, d and f show the result of
inverse filtering on the noisy-blurred observed image with varying cutoff frequen-
cies. These restorations illustrate the trade-off between the level of artifacts and
the degree of deblurring.

Figure 11.3-6 shows the results of Wiener filter image restoration. In all
cases, the noise power spectral density is white and the signal power spectral
density is circularly symmetric Markovian with a correlation factor . For the
noise-free observation, the Wiener filter provides restorations that are free of
artifacts but only slightly sharper than the blurred observation. For the noisy
observation, the restoration artifacts are less noticeable than for an inverse
filter.

Figure 11.3-7 presents restorations using the power spectrum filter. For a
noise-free observation, the power spectrum filter gives a restoration of similar
quality to an inverse filter with a low cutoff frequency. For a noisy observation,
the power spectrum filter restorations appear to be grainier than for the Wiener
filter.

The continuous image field restoration techniques derived in this section are
advantageous in that they are relatively simple to understand and to implement
using Fourier domain processing. However, these techniques face several important
limitations. First, there is no provision for aliasing error effects caused by physical
under sampling of the observed image. Second, the formulation inherently assumes
that the quadrature spacing of the convolution integral is the same as the physical
sampling. Third, the methods only permit restoration for linear, space-invariant deg-
radation. Fourth, and perhaps most important, it is difficult to analyze the effects of
numerical errors in the restoration process and to develop methods of combatting
such errors. For these reasons, it is necessary to turn to the discrete model of a sam-
pled blurred image developed in Section 7.2, and then reformulate the restoration
problem on a firm numeric basic. This is the subject of the remaining sections of the
chapter.

11.4. PSEUDOINVERSE SPATIAL IMAGE RESTORATION

The matrix pseudoinverse defined in Appendix 1 can be used for spatial image
restoration of digital images when it is possible to model the spatial degradation as
a vector-space operation on a vector of ideal image points yielding a vector of
physical observed samples obtained from the degraded image (17–19).

C 150=

ρ
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FIGURE 11.3-5. Inverse filter image restoration on the blurred test images.
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FIGURE 11.3-6. Wiener filter image restoration on the blurred test images; SNR = 10.0.

(a) Noise-free, ρ = 0.9 (b) Noisy, ρ = 0.9

(c) Noise-free, ρ = 0.5 (d) Noisy, ρ = 0.5

(e) Noise-free, ρ = 0.0 (f) Noisy, ρ = 0.0
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11.4.1. Pseudoinverse: Image Blur

The first application of the pseudoinverse to be considered is that of the restoration
of a blurred image described by the vector-space model

(11.4-1)

as derived in Eq. 11.1-14, where g is a  vector  containing the 
physical samples of the blurred image, f is a  vector  containing

 points of the ideal image and B is the  matrix whose elements are
points on the impulse function. If the physical sample period and the quadrature
representation period are identical, P will be smaller than Q, and the system of

FIGURE 11.3-7. Power spectrum filter image restoration on the blurred test images;       
SNR = 10.0.

(a) Noise-free, ρ = 0.5 (b) Noisy, ρ = 0.5

(c) Noisy, ρ = 0.5 (d) Noisy, ρ = 0.0
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equations will be under determined. By oversampling the blurred image, it is possi-
ble to force  or even . In either case, the system of equations is called
overdetermined. An overdetermined set of equations can also be obtained if some
of the elements of the ideal image vector can be specified through a priori knowl-
edge. For example, if the ideal image is known to contain a limited size object
against a black background (zero luminance), the elements of f beyond the limits
may be set to zero.

In discrete form, the restoration problem reduces to finding a solution  to Eq.
11.4-1 in the sense that

. (11.4-2)

Because the vector g is determined by physical sampling and the elements of B are
specified independently by system modeling, there is no guarantee that a  even
exists to satisfy Eq. 11.4-2. If there is a solution, the system of equations is said to be
consistent; otherwise, the system of equations is inconsistent.

In Appendix 1, it is shown that inconsistency in the set of equations of Eq. 11.4-1
can be characterized as

(11.4-3)

where  is a vector of remainder elements whose value depends on f. If the set
of equations is inconsistent, a solution of the form

(11.4-4)

is sought for which the linear operator W minimizes the least-squares modeling
error

(11.4-5)

This error is shown, in Appendix 1, to be minimized when the operator W = B$ is
set equal to the least-squares inverse of B. The least-squares inverse is not necessar-
ily unique. It is also proved in Appendix 1 that the generalized inverse operator
W = B–, which is a special case of the least-squares inverse, is unique, minimizes
the least-squares modeling error, and simultaneously provides a minimum norm
estimate. That is, the sum of the squares of  is a minimum for all possible mini-
mum least-square error estimates. For the restoration of image blur, the generalized
inverse provides a lowest-intensity restored image.

If Eq. 11.4-1 represents a consistent set of equations, one or more solutions may
exist for Eq. 11.4-2. The solution commonly chosen is the estimate that minimizes
the least-squares estimation error defined in the equivalent forms

(11.4-6a)
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. (11.4-6b)

In Appendix 1, it is proved that the estimation error is minimum for a generalized
inverse (W = B–) estimate. The resultant residual estimation error then becomes

(11.4-7a)

or

. (11.4-7b)

The estimate is perfect, of course, if B–B = I.
Thus, it is seen that the generalized inverse is an optimal solution, in the sense

defined previously, for both consistent and inconsistent sets of equations modeling
image blur. From Appendix 1, the generalized inverse has been found to be algebra-
ically equivalent to

(11.4-8a)

if the  matrix B is of rank Q. If B is of rank P, then

. (11.4-8b)

For a consistent set of equations and a rank Q generalized inverse, the estimate

(11.4-9)

is obviously perfect. However, in all other cases, a residual estimation error may
occur. Clearly, it would be desirable to deal with an overdetermined blur matrix of
rank Q in order to achieve a perfect estimate. Unfortunately, this situation is rarely
achieved in image restoration. Oversampling the blurred image can produce an
overdetermined set of equations , but the rank of the blur matrix is likely
to be much less than Q because the rows of the blur matrix will become more lin-
early dependent with finer sampling.

A major problem in application of the generalized inverse to image restoration is
dimensionality. The generalized inverse is a  matrix where P is equal to the
number of pixel observations and Q is equal to the number of pixels to be estimated
in an image. It is usually not computationally feasible to use the generalized inverse
operator, defined by Eq. 11.4-8, over large images because of difficulties in reliably
computing the generalized inverse and the large number of vector multiplications
associated with Eq. 11.4-4. Computational savings can be realized if the blur matrix
B is separable such that

(11.4-10)
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where BC and BR are column and row blur operators. In this case, the generalized
inverse is separable in the sense that

(11.4-11)

where  and  are generalized inverses of BC and BR, respectively. Thus when
the blur matrix is of separable form, it becomes possible to form the estimate of the
image by sequentially applying the generalized inverse of the row blur matrix to
each row of the observed image array, and then using the column generalized
inverse operator on each column of the array.

Figure 11.4-1a shows a blurred image based on the model of Figure 11.1-4.
Figure 11.4-1b shows a restored image using generalized inverse image restoration.
In this example, the observation is noise free and the blur impulse response function
is Gaussian shaped, as defined in Eq. 11.1-15, with bR = bC = 1.2. Only the center

 region of the  blurred picture is displayed, zoomed to an image size of
 pixels. The restored image appears to be visually improved compared to

the blurred image, but the restoration is not identical to the original unblurred image
of Figure 11.1-4a. The figure also gives the percentage least-squares error (PLSE) as
defined in Appendix 2, between the blurred image and the original unblurred image,
and between the restored image and the original. The restored image has less error
than the blurred image.

11.4.2. Pseudoinverse: Image Blur Plus Additive Noise

In many imaging systems, an ideal image is subject to both blur and additive noise;
the resulting vector-space model takes the form

(11.4-12)

FIGURE 11.4-1. Pseudoinverse image restoration for test image blurred with Gaussian 
shape impulse response. M = 8, N = 12, L = 5; bR = bC = 1.2; noise-free observation. 
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where g and n are  vectors of the observed image field and noise field, respec-
tively, f is a  vector of ideal image points, and B is a  blur matrix. The
vector n is composed of two additive components: samples of an additive external
noise process and elements of the vector difference  arising from modeling
errors in the formulation of B. As a result of the noise contribution, there may be no
vector solutions  that satisfy Eq. 11.4-12. However, as indicated in Appendix 1, the
generalized inverse B– can be utilized to determine a least-squares error, minimum
norm estimate. In the absence of modeling error, the estimate

(11.4-13)

differs from the ideal image because of the additive noise contribution . Also,
for the under determined model,  will not be an identity matrix. If B is an over-
determined rank Q matrix, as defined in Eq. 11.4-8a, then , and the resulting
estimate is equal to the original image vector f plus a perturbation vector .
The perturbation error in the estimate can be measured as the ratio of the vector
norm of the perturbation to the vector norm of the estimate. It can be shown (21, p.
52) that the relative error is subject to the bound 

. (11.4-14)

The product , which is called the condition number C{B} of B, deter-
mines the relative error in the estimate in terms of the ratio of the vector norm of the
noise to the vector norm of the observation. The condition number can be computed
directly or found in terms of the ratio

(11.4-15)

of the largest W1 to smallest WN singular values of B. The noise perturbation error
for the under determined matrix B is also governed by Eqs. 11.4-14 and 11.4-15 if
WN is defined to be the smallest nonzero singular value of B (21, p. 41). Obviously,
the larger the condition number of the blur matrix, the greater will be the sensitivity
to noise perturbations.

Figure 11.4-2 contains image restoration examples for a Gaussian-shaped blur
function for several values of the blur standard deviation and a noise variance of
10.0 on an amplitude scale of 0.0 to 255.0. As expected, observation noise
degrades the restoration. Also as expected, the restoration for a moderate degree
of blur is worse than the restoration for less blur. However, this trend does not
continue; the restoration for severe blur is actually better in a subjective sense than
for moderate blur. This seemingly anomalous behavior, which results from spatial
truncation of the point-spread function, can be explained in terms of the condition
number of the blur matrix. Figure 11.4-3 is a plot of the condition number of the
blur matrix of the previous examples as a function of the blur coefficient (17). For
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small amounts of blur, the condition number is low. A maximum is attained for
moderate blur, followed by a decrease in the curve for increasing values of the
blur coefficient. The curve tends to stabilize as the blur coefficient approaches
infinity. This curve provides an explanation for the previous experimental results.
In the restoration operation, the blur impulse response is spatially truncated over a
square region of  quadrature points. As the blur coefficient increases, for
fixed M and N, the blur impulse response becomes increasingly wider, and its tails
become truncated to a greater extent. In the limit, the nonzero elements in the blur
matrix become constant values, and the condition number assumes a constant
level. For small values of the blur coefficient, the truncation effect is negligible,
and the condition number curve follows an ascending path toward infinity with the
asymptotic value obtained for a smoothly represented blur impulse response. As
the blur factor increases, the number of nonzero elements in the blur matrix
increases, and the condition number stabilizes to a constant value. In effect, a
trade-off exists between numerical errors caused by ill-conditioning and model-
ing accuracy. Although this conclusion is formulated on the basis of a particular
degradation model, the inference seems to be more general because the inverse of
the integral operator that describes the blur is unbounded. Therefore, the closer the
discrete model follows the continuous model, the greater the degree of ill-condi-
tioning. A move in the opposite direction reduces singularity but imposes model-
ing errors. This inevitable dilemma can only be broken with the intervention of
correct a priori knowledge about the original image.

11.4.3. Pseudoinverse Computational Algorithms

Efficient computational algorithms have been developed by Pratt and Davarian (18) for
pseudoinverse image restoration for space-invariant blur. To simplify the explanation
of these algorithms, consideration will initially be limited to a one-dimensional exam-
ple.

Let the vector fT and the vector be formed by selecting the cen-
ter portions of f and g, respectively. The truncated vectors are obtained by drop-
ping  elements at each end of the appropriate vector. Figure 11.4-4a
illustrates the relationships of all vectors for N = 9 original vector points, M = 7
observations and an impulse response of length L = 3.

The elements  and  are entries in the adjoint model

. (11.4-16a)
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FIGURE 11.4-2. Pseudoinverse image restoration for test image blurred with Gaussian 
shape impulse response. M = 8, N = 12, L = 5; noisy observation, Var = 10.0.
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where the extended vectors ,  and  are defined in correspondence with

(11.4-16b)

where g is a  vector,  and  are  vectors and C is a  matrix. As
noted in Figure 11.4-4b, the vector q is identical to the image observation g over its

 center elements. The outer elements of q can be approximated by

FIGURE 11.4-3. Condition number curve.

FIGURE 11.4-4. One-dimensional sampled continuous convolution and discrete convolution.
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(11.4-17)

where E, called an extraction weighting matrix, is defined as

(11.4-18)

where a and b are  submatrices, which perform a windowing function similar
to that described in Section 9.4.2 (18).

Combining Eqs. 11.4-17 and 11.4-18, an estimate of fT can be obtained from

(11.4-19)

Equation 11.4-19 can be solved efficiently using Fourier domain convolution
techniques, as described in Section 9.3. Computation of the pseudoinverse by
Fourier processing requires on the order of  operations in two
dimensions; spatial domain computation requires about  operations. As an
example, for M = 256 and L = 17, the computational savings are nearly 1750:1
(18).

Figure 11.4-5 is a computer simulation example of the operation of the pseudoin-
verse image restoration algorithm for one-dimensional blur of an image. In the first step
of the simulation, the center K pixels of the original image are extracted to form the set
of truncated image vectors  shown in Figure 11.4-5b. Next, the truncated image vec-
tors are subjected to a simulated blur with a Gaussian-shaped impulse response with
bR = 1.5 to produce the observation of Figure 11.4-5c. Figure 11.4-5d shows the result
of the extraction operation on the observation. Restoration results without and with the
extraction weighting operator E are presented in Figure 11.4-5e and f, respectively.

These results graphically illustrate the importance of the extraction operation. With-
out weighting, errors at the observation boundary  completely destroy the estimate
in  the boundary region, but with weighting the restoration is subjectively satisfy-
ing, and the restoration error is significantly reduced. Figure 11.4-6 shows simula-
tion results for the experiment of Figure 11.4-5 when the degree of blur is increased
by setting bR = 2.0. The higher degree of blur greatly increases the ill-conditioning
of the blur matrix, and the residual error in  formation of the modified observation
after weighting leads to the disappointing estimate of Figure 11.4-6b. Figure 11.4-6c
and d illustrate the restoration improvement obtained with the pseudoinverse algo-
rithm for horizontal image motion blur. In this example, the blur impulse response is
constant, and the corresponding blur matrix is better conditioned than the blur
matrix for Gaussian image blur. Reeves (20) has developed a similar method of FFT
processing without boundary artifacts.

q q̃≈ Eg=

E
a 0 0

0 I 0

0 0 b

=

L L×

f̂E C
1–
q̂E=

J
2

1 4 2 Jlog+( )
M

2
N

2

fT

Download more at Learnclax.com



332 IMAGE RESTORATION

FIGURE 11.4-5. Pseudoinverse image restoration for small degree of horizontal blur,         
bR  = 1.5. 

Download more at Learnclax.com



PSEUDOINVERSE SPATIAL IMAGE RESTORATION 333

11.4.4. SVD Pseudoinverse Spatial Image Restoration

In Appendix 1, it is shown that any matrix can be decomposed into a series of eigen-
matrices by the technique of singular value decomposition. For image restoration,
this concept has been extended (21–26) to the eigen decomposition of blur matrices
in the imaging model

. (11.4-20)

From Eq. A1.2-3, the blur matrix B may be expressed as

(11.4-21)

FIGURE 11.4-6. Pseudoinverse image restoration for moderate and high degrees of hori-
zontal blur.
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where the  matrix U and the  matrix V are unitary matrices composed of
the eigenvectors of BBT and BTB, respectively and  is a  matrix whose diag-
onal terms  contain the eigenvalues of BBT and BTB. As a consequence
of the orthogonality of U and V, it is possible to express the blur matrix in the series
form

(11.4-22)

where  and  are the ith columns of U and V, respectively, and R is the rank of
the matrix B.

From Eq. 11.4-21, because U and V are unitary matrices, the generalized inverse
of B is

. (11.4-23)

Figure 11.4-7 shows an example of the SVD decomposition of a blur matrix. The
generalized inverse estimate can then be expressed as

(11.4-24a)

or, equivalently,

(11.4-24b)

recognizing the fact that the inner product  is a scalar. Equation 11.4-24 pro-
vides the basis for sequential estimation; the kth estimate of f in a sequence of esti-
mates is equal to

. (11.4-25)

One of the principal advantages of the sequential formulation is that problems of
ill-conditioning generally occur only for higher-order singular values. Thus it is
possible interactively to terminate the expansion before numerical problems
occur.

Figure 11.4-8 shows an example of sequential SVD restoration for the under
determined model example of Figure 11.1-4 with a poorly conditioned Gauss-
ian blur matrix. A one-step pseudoinverse would have resulted in the final
image estimate that is totally overwhelmed by numerical errors. The sixth step,
which is the best subjective restoration, offers a considerable improvement over
the blurred original, but the lowest least-squares error occurs for three singular
values.
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FIGURE 11.4-7. SVD decomposition of a blur matrix for bR = 2.0, M = 8, N = 16, L = 9.
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The major limitation of the SVD image restoration method formulation in Eqs.
11.4-25 and 11.4-26 is computational. The eigenvectors  and  must first be
determined for the matrix BBT and BTB. Then the vector computations of Eq 11.4-
25 or 11.4-26 must be performed. Even if B is direct-product separable, permitting
separable row and column SVD pseudo inversion, the computational task is stagger-
ing in the general case.

Pratt(4Ed., 361-364) has developed a fast computational algorithm for SVD
pseudoinverse image restoration. Figure 11.4-9 shows an example of SVD pseudo-
inverse image restoration for one-dimensional Gaussian image blur with bR = 3.0. It
should be noted that the restoration attempt with the standard pseudoinverse shown
in Figure 11.4-9b was subject to severe ill-conditioning errors at a blur spread of bR
= 2.0.

11.5. STATISTICAL ESTIMATION SPATIAL IMAGE RESTORATION

A fundamental limitation of pseudoinverse restoration techniques is that observation
noise may lead to severe numerical instability and render the image estimate unusable.
This problem can be alleviated in some instances by statistical restoration techniques
that incorporate some a priori statistical knowledge of the observation noise (17).

11.5.1. Wiener Estimation Spatial Image Restoration

With statistical techniques of spatial image restoration, the noise field is modeled as
a sample of a two-dimensional random process with a known mean and covariance
function. Wiener estimation techniques assume, in addition, that the ideal image is
also a sample of a two-dimensional random process with known first and second
moments (27,28).

Wiener Estimation: General Case. Consider the general discrete model of Figure
11.5-1 in which a image vector f is subject to some unspecified type of point
and spatial degradation resulting in the vector of observations g. An estimate
of f is formed by the linear operation

(11.5-1)

where W is a  restoration matrix and b is a bias vector. The objective of
Wiener estimation is to choose W and b to minimize the mean-square restoration
error, which may be defined as

(11.5-2a)

or

. (11.5-2b)

ui vi

Q 1×
P 1×

f̂ Wg b+=

Q P× Q 1×

E E f f̂–[ ]
T

f f̂–[ ]{ }=

E tr E f f̂–[ ] f f̂–[ ]
T

{ }{ }=
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FIGURE 11.4-8. SVD restoration for test image blurred with a Gaussian-shaped impulse 
response. bR   = bC = 1.2, M = 8, N = 12, L = 5; noisy observation, Var = 10.0.
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FIGURE 11.4-9. Sequential SVD pseudoinverse image restoration for horizontal Gaussian 
blur, bR = 3.0, L = 23, J = 256.

FIGURE 11.5-1. Wiener estimation for spatial image restoration.
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Equation 11.5-2a expresses the error in inner-product form as the sum of the squares
of the elements of the error vector , while Eq. 11.5-2b forms the covariance
matrix of the error, and then sums together its variance terms (diagonal elements) by
the trace operation. Minimization of Eq. 11.5-2 in either of its forms can
be accomplished by differentiation of  with respect to . An alternative
approach, which is of quite general utility, is to employ the orthogonality principle
(29, p. 219) to determine the values of W and b that minimize the mean-square
error. In the context of image restoration, the orthogonality principle specifies two
necessary and sufficient conditions for the minimization of the mean-square restora-
tion error:

1. The expected value of the image estimate must equal the expected value of
the image

(11.5-3)

2. The restoration error must be orthogonal to the observation about its mean

. (11.5-4)

From condition 1, one obtains

(11.5-5)

and from condition 2

. (11.5-6)

Upon substitution for the bias vector b from Eq. 11.5-5 and simplification, Eq. 11.5-
6 yields

(11.5-7)

where  is the  covariance matrix of the observation vector (assumed nons-
ingular) and  is the  cross-covariance matrix between the image and obser-
vation vectors. Thus the optimal bias vector b and restoration matrix W may be
directly determined in terms of the first and second joint moments of the ideal image
and observation vectors. It should be noted that these solutions apply for nonlinear
and space-variant degradations. Subsequent sections describe applications of Wie-
ner estimation to specific restoration models.

Wiener Estimation: Image Blur with Additive Noise. For the discrete model for a
blurred image subjected to additive noise given by 

(11.5-8)

f f̂–[ ]

E f̂
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the Wiener estimator is composed of a bias term

(11.5-9)

and a matrix operator

. (11.5-10)

If the ideal image field is assumed uncorrelated,  where  represents
the image energy. Equation 11.5-6 then reduces to

. (11.5-11)

For a white-noise process with energy , the Wiener filter matrix becomes

. (11.5-12)

As the ratio of image energy to noise energy  approaches infinity, the
Wiener estimator of Eq. 11.5-1 becomes equivalent to the generalized inverse esti-
mator.

Figure 11.5-2 shows restoration examples for the model of Figure 11.2-3 for a
Gaussian-shaped blur function. Wiener restorations of large size images are given in
Figure 11.5-3 using a fast computational algorithm developed by Pratt and Davarian
(18). In the example of Figure 11.5-3a illustrating horizontal image motion blur, the
impulse response is of rectangular shape of length L = 11. The center pixels have
been restored and replaced within the context of the blurred image to show the
visual restoration improvement. The noise level and blur impulse response of the
electron microscope original image of Figure 11.5-3c were estimated directly from
the photographic transparency using blind image restoration techniques described
by Pratt(4Ed., 373-379. The parameters were then utilized to restore the center pixel
region, which was then replaced in the context of the blurred original.

11.6. MULTI-PLANE IMAGE RESTORATION

A multi-plane image, also called a multi-channel image, consists of a set of two or
more related pixel planes. Examples include:

color image, e.g. RGB, CMYK, YCbCr, L*a*b*;

multispectral image sequence;

volumetric image, e.g. computerized tomography;

temporal image sequence.
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FIGURE 11.5-2. Wiener estimation for test image blurred with Gaussian-shaped impulse 
response. M = 8, N = 12, L = 5.
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This classification is limited to three-dimensional images.1

The monochrome image restoration techniques previously discussed in this chap-
ter can be applied independently to each pixel plane of a multi-plane image. How-
ever, with this strategy, the correlation between pixel planes is ignored; the
restoration results, on a theoretical basis, will be sub-optimal compared to joint pro-
cessing of all of the bands (30–33).

FIGURE 11.5-3. Wiener image restoration.

1. The PIKS image processing software application program interface de-
fines a five-dimensional image space with indies x, y for space, z for depth,
t for time and b for spectral band. 
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11.6.1 Color Image Restoration Methods.

The multi-plane image restoration methods previously discussed can be applied to
color images independently band-by-band. But such methods ignore the perceptual
significance of the color planes.

If a multi-plane restoration method is to be applied to a RGB color image, care
should be taken that the red, green and blue sensor signals are not gamma cor-
rected.This is especially true when using a linear restoration filter, such as a Wiener
filter, because the filter is designed to work on a linear blur plus additive noise
model without point nonlinearities. If the gamma value is known, then inverse
gamma processing following Eq. 12.7-2 can be performed directly; otherwise the
gamma value can be estimated from the gamma corrected image using, for example,
a  method developed by Farid (34).

In their paper (30), Hunt and Kubler proposed the use of a Karhunen-Loeve (K-
L) transformation across color image planes, to produce three bands K1, K2, K3,
which are spatially filtered independently. A problem with this approach is the
amount of computation associated with the estimation of the inter-plane covariance
matrix  and the K-L transformation itself. Hunt and Kubler have substituted a
RGB to YIQ luma/chroma transformation for the K-L transform. They found that the
YIQ transformation was almost as good as the K-L transform in performing inter-
plane decorrelation. They also obtained good experimental results by deblurring
only the Y plane.

Altunbasak and Trussell (33) have performed a comprehensive evaluation of
multi-plane Wiener filtering color image restoration for three, four and five color
filter bands, various size blur impulse response arrays and a range of noise levels
for K-L and independent color plane processing. Their experimental results indi-
cate that the usage of more than three bands only achieves slight mean square
error and visual improvement. Also, their studies showed that K-L processing
was more effective than independent plane processing in terms of mean square
error in Lab space.

11.6.2. Temporal Averaging. Temporal redundancy of scenes in real-time televi-
sion systems can be exploited to perform image restoration indirectly. As an illus-
tration, consider the ith continuous domain observed image frame

(11.6-1)

of a video sequence in which  is an ideal image and  is an additive
noise field independent of the ideal image. If the ideal image remains constant over
a sequence of M frames, then temporal summation of the observed images yields the
relation

. (11.6-2)
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The value of the noise term on the right side will tend toward its ensemble average
 for M large. In the common case of zero-mean white Gaussian noise,

the ensemble average is zero at all (x, y), and it is reasonable to form the estimate as

(11.6-3)

11.7.  IMAGE RESTORATION EXERCISES

E11.1 Develop a program that creates an unsigned integer, 8-bit, monochrome
image with zero mean, additive, uniform noise with a signal-to-noise ratio of 10.0.
The program should execute for arbitrary size source images. Steps:

(a) Display the source monochrome image.

(b) In application space, create a unit range noise image array using, for
example, the C math.h function rand.

(c) Import the noise image array.

(d) Display the noise image array.

(e) Scale the noise image array to produce a noise image array with zero
mean and a SNR of 10.0.

(f) Compute the mean and standard deviation of the noise image.

(g) Read an unsigned integer, 8-bit monochrome image source image file
and normalize it to unit range.

(h) Add the noise image to the source image and clip to unit range.

(i) Display the noisy source image.

The PIKS API executable example_additive_noise performs this exercise. 

E11.2 Develop a program that creates an unsigned integer, 8-bit, monochrome
image with replacement impulse noise. The program should execute for arbitrary
size source images. Steps:

(a) Display the source monochrome image.

(b) In application space, create a unit range noise image array using, for
example,  the C math.h function rand.

(c) Import the noise image array.

(d) Read a source image file and normalize to unit range.

E N x y,( ){ }

F̂I x y,( ) 1
M
----- Gi x y,( )

i 1=

M

=

Download more at Learnclax.com



REFERENCES 345

(e) Replace each source image pixel with 0.0 if the noise pixel is less than
1.0%, and replace each source image pixel with 1.0 if the noise pixel is
greater than 99%. The replacement operation can be implemented by
image copying under ROI control.

(f) Display the noisy source image.

The PIKS API executable example_replacement_noise performs this exer-
cise.

E11.3 Develop a program that computes a 512 × 512 Wiener filter transfer function
for the blur impulse response array (Mask 3) of Eq. 10.3-2c and white noise with a
SNR of 10.0. Steps:

(a) Create the impulse response array or fetch it from a repository.

(b) Convert the impulse response array to an image and embed it in a
512 × 512 zero background array.

(c) Compute the two-dimensional Fourier transform of the embedded
impulse response array to obtain .

(d) Form the Wiener filter transfer function according to Eq. 11.2-18:

(e) Display the magnitude of the Wiener filter transfer function.

The PIKS API executable example_wiener_filter performs this exercise.
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GEOMETRICAL IMAGE MODIFICATION

One of the most common image processing operations is geometrical modification
in which an image is spatially translated, scaled in size, rotated or nonlinearly
warped (1).

12.1. BASIC GEOMETRICAL METHODS

Image translation, size scaling and rotation can be analyzed from a unified stand-
point. Let  for  and  denote a discrete destination
image that is created by geometrical modification of a discrete source image 
for  and . In this derivation, the source and destination
images may be different in size. Geometrical image transformations are usually
based on a Cartesian coordinate system representation in which pixels are of unit
dimension, and the origin  is at the center of the upper left corner pixel of an
image array. The relationships between the Cartesian coordinate representations and
the discrete image array of the destination image  are illustrated in Figure
12.1-1. The destination image array indices are related to their Cartesian coordinates
by

 (12.1-1a)

. (12.1-1b)

D j k,( ) 0 j J 1–≤ ≤ 0 k K 1–≤ ≤
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Similarly, the source array relationship is given by

(12.1-2a) 

. (12.1-2b)

12.1.1. Translation

Translation of  with respect to its Cartesian origin to produce 
involves the computation of the relative offset addresses of the two images. The
translation address relationships are

(12.1-3a) 

(12.1-3b)

where  and  are translation offset constants. There are two approaches to this
computation for discrete images: forward and reverse address computation. In the
forward approach,  and  are computed for each source pixel  and
substituted into Eq. 12.1-3 to obtain  and . Next, the destination array
addresses  are computed by inverting Eq. 12.1-1. The composite computation

FIGURE 12.1-1. Relationship between discrete image array and Cartesian coordinate repre-
sentation of a destination image D(j, k).
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reduces to

(12.1-4a)

(12.1-4b)

where the prime superscripts denote that  and  are not integers unless  and 
are integers. If  and  are rounded to their nearest integer values, data voids can
occur in the destination image. The reverse computation approach involves calcula-
tion of the source image addresses for integer destination image addresses. The
composite address computation becomes

(12.1-5a)

(12.1-5b)

where again, the prime superscripts indicate that  and  are not necessarily inte-
gers. If they are not integers, it becomes necessary to interpolate pixel amplitudes of

 to generate a resampled pixel estimate , which is transferred to
. The geometrical resampling process is discussed in Section 12.3.

12.1.2. Scaling

Spatial size scaling of an image can be obtained by modifying the Cartesian coordi-
nates of the source image according to the relations

(12.1-6a)

(12.1-6b)

where  and  are positive-valued scaling constants, but not necessarily integer
valued. If  and  are each greater than unity, the address computation of Eq.
12.1-6 will lead to magnification. Conversely, if  and  are each less than unity,
minification results. The reverse address relations for the source image address are
found to be

(12.1-7a)

. (12.1-7b)

As with generalized translation, it is necessary to interpolate  to obtain
.
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12.1.3. Rotation

Rotation of an input image about its Cartesian origin can be accomplished by the
address computation

(12.1-8a)

(12.1-8b)

where  is the counterclockwise angle of rotation with respect to the horizontal axis
of the source image. Again, interpolation is required to obtain . Rotation of a
source image about an arbitrary pivot point can be accomplished by translating the
origin of the image to the pivot point, performing the rotation, and then translating
back by the first translation offset. Equation 12.1-8 must be inverted and substitu-
tions made for the Cartesian coordinates in terms of the array indices in order to
obtain the reverse address indices . This task is straightforward but results in
a messy expression. A more elegant approach is to formulate the address computa-
tion as a vector-space manipulation.

12.1.4. Generalized Linear Geometrical Transformations

The vector-space representations for translation, scaling and rotation are given
below. 

Translation: (12.1-9)

Scaling: (12.1-10)

Rotation: (12.1-11)

Now, consider a compound geometrical modification consisting of translation, fol-
lowed by scaling, followed by rotation. The address computations for this com-
pound operation can be expressed as

(12.1-12a)

or upon consolidation

. (12.1-12b)
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Equation 12.1-12b is, of course, linear. It can be expressed as

(12.1-13a)

in one-to-one correspondence with Eq. 12.1-12b. Equation 12.1-13a can be rewrit-
ten in the more compact form

. (12.1-13b)

As a consequence, the three address calculations can be obtained as a single linear
address computation. It should be noted, however, that the three address calculations
are not commutative. Performing rotation followed by minification followed by transla-
tion results in a mathematical transformation different than Eq. 12.1-12. The overall
results can be made identical by proper choice of the individual transformation parame-
ters.

To obtain the reverse address calculation, it is necessary to invert Eq. 12.1-13b to
solve for  in terms of . Because the matrix in Eq. 12.1-13b is not
square, it does not possess an inverse. Although it is possible to obtain  by a
pseudoinverse operation, as described in Appendix 1, it is convenient to augment the
rectangular matrix as follows:

. (12.1-14)

This three-dimensional vector representation of a two-dimensional vector is a
special case of a homogeneous coordinates representation (2–4).

The use of homogeneous coordinates enables a simple formulation of concate-
nated operators. For example, consider the rotation of an image by an angle  about
a pivot point  in the image. This can be accomplished by

(12.1-15)

which reduces to a single  transformation:
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. (12.1-16)

The reverse address computation for the special case of Eq. 12.1-16, or the
more general case of Eq. 12.1-13, can be obtained by inverting the  transfor-
mation matrices by numerical methods. Another approach, which is more compu-
tationally efficient, is to initially develop the homogeneous transformation matrix
in reverse order as

(12.1-17)

where for translation

(12.1-18a)

(12.1-18b)

(12.1-18c)

(12.1-18d)

(12.1-18e)

(12.1-18f)

and for scaling 

(12.1-19a)

(12.1-19b)

(12.1-19c)

(12.1-19d)

(12.1-19e)

(12.1-19f)

and for rotation 

(12.1-20a)

(12.1-20b)
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(12.1-20c)

(12.1-20d)

(12.1-20e)

(12.1-20f)

Address computation for a rectangular destination array  from a rectan-
gular source array  of the same size results in two types of ambiguity: some
pixels of  will map outside of ; and some pixels of  will not
be mappable from  because they will lie outside its limits. As an example,
Figure 12.1-2 illustrates clockwise rotation of an image by 45° about its center. If
the desire of the mapping is to produce a complete destination array , it is
necessary to access a sufficiently large source image  to prevent mapping
voids in . This is accomplished in Figure 12.1-2d by embedding the origi-
nal image of Figure 12.1-2a in a zero background that is sufficiently large to
encompass the rotated original.

FIGURE 12.1-2. Image rotation by -45° on the washington_ir image about its center.
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12.1.5. Affine Transformation

The geometrical operations of translation, size scaling and rotation are special cases
of a geometrical operator called an affine transformation. It is defined by Eq. 12.1-
13b, in which the constants ci and di are general weighting factors. The affine trans-
formation is not only useful as a generalization of translation, scaling and rotation. It
provides a means of image shearing in which the rows or columns are successively
uniformly translated with respect to one another. Figure 12.1-3 illustrates image
shearing of rows of an image. In this example, , , 
and .

12.1.6. Separable Rotation

The address mapping computations for translation and scaling are separable in the
sense that the horizontal output image coordinate xj depends only on up, and yk
depends only on vq. Consequently, it is possible to perform these operations separa-
bly in two passes. In the first pass, a one-dimensional address translation is per-
formed independently on each row of an input image to produce an intermediate
array . In the second pass, columns of the intermediate array are processed
independently to produce the final result .

Referring to Eq. 12.1-8, it is observed that the address computation for rotation
is of a form such that xj is a function of both up and vq; and similarly for yk. One
might then conclude that rotation cannot be achieved by separable row and col-
umn processing, but Catmull and Smith (5) have demonstrated otherwise. In the
first pass of the Catmull and Smith procedure, each row of  is mapped into

FIGURE 12.1-3. Horizontal image shearing on the washington_ir image.
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the corresponding row of the intermediate array  using the standard row
address computation of Eq. 12.1-8a. Thus,

. (12.1-21)

Then, each column of  is processed to obtain the corresponding column of
 using the address computation 

. (12.1-22)

Substitution of Eq. 12.1-21 into Eq. 12.1-22 yields the proper composite y-axis
transformation of Eq. 12.1-8b. The “secret” of this separable rotation procedure is
the ability to invert Eq. 12.1-21 to obtain an analytic expression for up in terms of xj.
In this case,

(12.1-23)

when substituted into Eq. 12.1-21, gives the intermediate column warping function
of Eq. 12.1-22.

The Catmull and Smith two-pass algorithm can be expressed in vector-space
form as

. (12.1-24)

The separable processing procedure must be used with caution. In the special case
of a rotation of 90°, all of the rows of  are mapped into a single column of

, and, hence, the second pass cannot be executed. This problem can be
avoided by processing the columns of  in the first pass. In general, the best
overall results are obtained by minimizing the amount of spatial pixel movement.
For example, if the rotation angle is +80°, the original should be rotated by +90°
by conventional row–column swapping methods, and then that intermediate image
should be rotated by -10° using the separable method.

Figure 12.1-4 provides an example of separable rotation of an image by 45°.
Figure 13.l-4a is the original, Figure 12.1-4b shows the result of the first pass and
Figure 12.1-4c presents the final result.

Separable, two-pass rotation offers the advantage of simpler computation com-
pared to one-pass rotation, but there are some disadvantages to two-pass rotation.
Two-pass rotation causes loss of high spatial frequencies of an image because
of the intermediate scaling step (6), as seen in Figure 12.1-4b. Also, there is the
potential of increased aliasing error (6,7), as discussed in Section 12.3.
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FIGURE 12.1-4. Separable two-pass image rotation on the washington_ir  image.

Several authors (6,8,9) have proposed a three-pass rotation procedure in which there is no
scaling step and, hence, no loss of high-spatial-frequency content with proper interpola-
tion. The vector-space representation of this procedure is given by

. (12.1-25)

This transformation is a series of image shearing operations without scaling. Figure
12.1-5 illustrates three-pass rotation for rotation by 45°.
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12.2. SPATIAL WARPING

The address computation procedures described in the preceding section can be
extended to provide nonlinear spatial warping of an image. In the literature, this
process is often called rubber-sheet stretching (16,17). Let

(12.2-1a)

(12.2-1b)

FIGURE 12.1-5. Separable three-pass image rotation on the washington_ir image.

x X u v,( )=

y Y u v,( )=
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denote the generalized forward address mapping functions from an input image to
an output image. The corresponding generalized reverse address mapping functions
are given by

(12.2-2a)

(12.2-2b)

For notational simplicity, the  and  subscripts have been dropped from
these and subsequent expressions. Consideration is given next to some examples
and applications of spatial warping.

The reverse address computation procedure given by the linear mapping of Eq.
12.1-17 can be extended to higher dimensions. A second-order polynomial warp
address mapping can be expressed as

(12.2-3a)

. (12.2-3b)

In vector notation,

 . (12.2-3c)

For first-order address mapping, the weighting coefficients  can easily be related
to the physical mapping as described in Section 12.1.  There is no simple physical
counterpart for second address mapping. Typically, second-order and higher-order
address mapping are performed to compensate for spatial distortion caused by a
physical imaging system. For example, Figure 12.2-1 illustrates the effects of imag-
ing a rectangular grid with an electronic camera that is subject to nonlinear pincush-
ion or barrel distortion.

Figure 12.2-2 presents a generalization of the problem. An ideal image  is
subject to an unknown physical spatial distortion. The observed image is measured
over a rectangular array . The objective is to perform a spatial correction
warp to produce a corrected image array . Assume that the address mapping
from the ideal image space to the observation space is given by

(12.2-4a)

. (12.2-4b)
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where  and  are physical mapping functions. If these mapping
functions are known, then Eq. 12.2-4 can, in principle, be inverted to obtain the
proper corrective spatial warp mapping. If the physical mapping functions are not
known, Eq. 12.2-3 can be considered as an estimate of the physical mapping functions
based on the weighting coefficients . These polynomial weighting coefficients
are normally chosen to minimize the mean-square error between a set of observation
coordinates  and the polynomial estimates  for a set  of
known data points  called control points.

.

FIGURE 12.2-1. Geometric distortion.

FIGURE 12.2-2. Spatial warping concept.
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It is convenient to arrange the observation space coordinates into the vectors

 (12.2-5a)

. (12.2-5b)

Similarly, let the second-order polynomial coefficients be expressed in vector form as

(12.2-6a)

. (12.2-6b)

The mean-square estimation error can be expressed in the compact form

(12.2-7)

where

(12.2-8)

From Appendix 1, it has been determined that the error will be minimum if

(12.2-9a)

(12.2-9b)

where A– is the generalized inverse of A. If the number of control points is chosen
greater than the number of polynomial coefficients, then

(12.2-10)

provided that the control points are not linearly related. Following this proce-
dure, the polynomial coefficients  can easily be computed, and the
address mapping of Eq. 12.2-1 can be obtained for all  pixels in the cor-
rected image. Of course, proper interpolation is necessary.

Equation 12.2-3 can be extended to provide a higher-order approximation to the
physical mapping of Eq. 12.2-3. However, practical problems arise in computing
the pseudoinverse accurately for higher-order polynomials. For most applications,
second-order polynomial computation suffices. Figure 12.2-3 presents an example
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of second-order polynomial warping of an image. In this example, the mapping of
control points is indicated by the graphics overlay.

The spatial warping techniques discussed in this section have application for two
types of geometrical image manipulation: image mosaicing and image blending.
Image mosaicing involves the spatial combination of a set of partially overlapped
images to create a larger image of a scene. Image blending is a process of creating a
set of images between a temporal pair of images such that the created images form a
smooth spatial interpolation between the reference image pair. References 11 to 15
provide details of image mosaicing and image blending algorithms.

e

FIGURE 12.2-3. Second-order polynomial spatial warping on the mandrill_mon image. 
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12.3. GEOMETRICAL IMAGE RESAMPLING

As noted in the preceding sections of this chapter, the reverse address computation
process usually results in an address result lying between known pixel values of an
input image. Thus, it is necessary to estimate the unknown pixel amplitude from its
known neighbors. This process is related to the image reconstruction task, as
described in Chapter 4, in which a space-continuous display is generated from an
array of image samples. However, the geometrical resampling process is usually not
spatially regular. Furthermore, the process is discrete to discrete; only one output
pixel is produced for each input address.

In this section, consideration is given to the general geometrical resampling
process in which output pixels are estimated by interpolation of input pixels.
The special, but common, case of image magnification by an integer zooming
factor is also discussed. In this case, it is possible to perform pixel estimation by
convolution.

12.3.1. Interpolation Methods

The simplest form of resampling interpolation is to choose the amplitude of an out-
put image pixel to be the amplitude of the input pixel nearest to the reverse address.
This process, called nearest-neighbor interpolation, can result in a spatial offset
error by as much as  pixel units. The resampling interpolation error can be sig-
nificantly reduced by utilizing all four nearest neighbors in the interpolation. A com-
mon approach, called bilinear interpolation, is to interpolate linearly along each row
of an image and then interpolate that result linearly in the columnar direction. Figure
12.3-1 illustrates the process. The estimated pixel is easily found to be

(12.3-1)

where  and .  Although the horizontal and vertical interpolation
operations are each linear, in general, their sequential application results in a nonlin-
ear surface fit between the four neighboring pixels. 

The expression for bilinear interpolation of Eq. 12.3-1 can be generalized for any
interpolation function  that is zero-valued outside the range of  sample
spacing. With this generalization, interpolation can be considered as the summing of
four weighted interpolation functions as given by

.

(12.3-2)
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FIGURE 12.3-1. Bilinear interpolation.

In the special case of linear interpolation, , where  is defined in
Eq. 4.3-2. Making this substitution, it is found that Eq. 12.3-2 is equivalent to the
bilinear interpolation expression of Eq. 12.3-1.

Figure 12.3-2 defines a generalized interpolation neighborhood for support 2, 4
and 8 interpolation in which the pixel  is the nearest neighbor to the pixel to
be interpolated.

Typically, for reasons of computational complexity, resampling interpolation is
limited to a  pixel neighborhood. For this case, the interpolated pixel may be
expressed in the compact form

(12.3-3)

where  denotes a bicubic interpolation function such as a cubic B-spline or
cubic interpolation function, as defined in Section 4.3-2.

12.3.2. Convolution Methods

When an image is to be magnified by an integer zoom factor, pixel estimation can be
implemented efficiently by convolution (18). As an example, consider image magni-
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fication by a factor of 2:1. This operation can be accomplished in two stages. First,
the input image is transferred to an array in which rows and columns of zeros are
interleaved with the input image data as follows:

input image zero-interleaved 

               

FIGURE 12.3-2. Support 2, 4 and 8 interpolation.
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C D

A 0 B

0 0 0

C 0 D
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Next, the zero-interleaved neighborhood image is convolved with one of the dis-
crete interpolation kernels listed in Figure 12.3-3. Figure 12.3-4 presents the
magnification results for several interpolation kernels. The inevitable visual
trade-off between the interpolation error (the jaggy line artifacts) and the loss of
high spatial frequency detail in the image is apparent from the examples.

FIGURE 12.3-3. Interpolation kernels for 2:1 magnification.

This discrete convolution operation can easily be extended to higher-order
magnification factors. For N:1 magnification, the core kernel is a  peg
array. For large kernels it may be more computationally efficient in many cases,
to perform the interpolation indirectly by Fourier domain filtering rather than by
convolution.

N N×
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FIGURE 12.3-4. Image interpolation on the mandrill_mon image for 2:1 magnification.
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For color images, the geometrical image modification methods discussed in
this chapter can be applied separately to the red, green and blue components of
the color image. Vrhel (19) has proposed converting a color image to luma/
chroma (or lightness/chrominance) color coordinates and performing the geo-
metrical modification in the converted color space. Large support interpolation
is then performed on the luma or lightness component, and nearest neighbor
interpolation is performed on the luma/chrominance components. After the geo-
metrical processing is completed, conversion to RGB space is performed. This
type of processing takes advantage of the tolerance of the human visual system
to chroma or chrominance errors compared to luma/lightness errors.

12.4. GEOMETRICAL IMAGE MODIFICATION EXERCISES

E12.1 Develop a program that minifies an unsigned integer, 8-bit, monochrome
image by a factor of two and rotates the minified image by 45 degrees  clockwise
about its center using bilinear interpolation. Steps:

(a) Display the source monochrome image

(b) Minify the source image into the center of a zero valued work image of
the same size as the source image using bilinear interpolation.

(c) Rotate the work image clockwise about its center into a destination
image using bilinear interpolation.

(d) Display the destination image.

The PIKS API  executable example_minify_rotate  performs this exercise.

E12.2 Develop a program that performs shearing of the rows of an unsigned integer,
8-bit, monochrome image using bilinear interpolation such that the last image row is
shifted 10% of the row width and all other rows are shifted proportionally. Steps:

(a) Display the source monochrome image.

(b) Shear the source image into a destination image using bilinear interpola-
tion.

(c) Display the destination image.

The PIKS API executable example_shear performs this exercise.

E12.3 Develop a program that performs clockwise rotation of an unsigned integer,
8-bit, monochrome image by 45 degrees using the Catmull and Smith two-pass
algorithm. Steps:

(a) Display the source monochrome image.

(b) Perform shearing of each row of the source image into a work image
using bilinear interpolation.
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(c) Perform shearing of each column of the work image into a destination
image using bilinear interpolation.

(d) Display the destination image.

The PIKS API executable example_rotate_two-pass performs this exercise.

E12.4 Develop a program that magnifies an unsigned integer, 8-bit, monochrome
image source image by a factor of 2:1 using both nearest neighbor and bilinear inter-
polation. Compare the results. Steps:

(a) Display the source monochrome image.

(b) Magnify the source image by 2:1 into a work image using nearest neigh-
bor interpolation.

(c) Magnify the source image by 2:1 into a work image using bilinear inter-
polation.

(d) Subtract the two magnified images and display the absolute value of the
difference.

The PIKS API executable example_magnify_interpolate performs this
exercise.
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PART 5

IMAGE ANALYSIS

Image analysis is concerned with the extraction of measurements, data or informa-
tion from an image by automatic or semiautomatic methods. In the literature, this
field has been called image data extraction, scene analysis, image description, auto-
matic photo interpretation, image understanding and a variety of other names. 

Image analysis is distinguished from other types of image processing, such as
coding, restoration and enhancement, in that the ultimate product of an image analy-
sis system is usually numerical output rather than a picture. Image analysis also
diverges from classical pattern recognition in that analysis systems, by definition,
are not limited to the classification of scene regions to a fixed number of categories,
but rather are designed to provide a description of complex scenes whose variety
may be enormously large and ill-defined in terms of a priori expectation.
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MORPHOLOGICAL IMAGE 
PROCESSING

Morphological image processing is a type of processing in which the spatial form or
structure of objects within an image are modified. Dilation, erosion and skeletoniza-
tion are three fundamental morphological operations. With dilation, an object grows
uniformly in spatial extent, whereas with erosion an object shrinks uniformly. Skel-
etonization results in a stick figure representation of an object.

The basic concepts of morphological image processing trace back to the research
on spatial set algebra by Minkowski (1) and the studies of Matheron (2) on topology.
Serra (3–5) developed much of the early foundation of the subject. Steinberg (6,7)
was a pioneer in applying morphological methods to medical and industrial vision
applications. This research work led to the development of the cytocomputer for
high-speed morphological image processing (8,9).

In the following sections, morphological techniques are first described for binary
images. Then these morphological concepts are extended to gray scale images.

13.1. BINARY IMAGE CONNECTIVITY

Binary image morphological operations are based on the geometrical relationship or
connectivity of pixels that are deemed to be of the same class (10,11). In the binary
image of Figure 13.1-1a, the ring of black pixels, by all reasonable definitions of
connectivity, divides the image into three segments: the white pixels exterior to the
ring, the white pixels interior to the ring and the black pixels of the ring itself. The
pixels within each segment are said to be connected to one another. This concept of 
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connectivity is easily understood for Figure 13.1-1a, but ambiguity arises when con-
sidering Figure 13.1-1b. Do the black pixels still define a ring, or do they instead
form four disconnected lines? The answers to these questions depend on the defini-
tion of connectivity.

Consider the following neighborhood pixel pattern:

in which a binary-valued pixel , where X = 0 (white) or X = 1 (black) is
surrounded by its eight nearest neighbors . An alternative nomencla-
ture is to label the neighbors by compass directions: north, northeast and so on:

Pixel X is said to be four-connected to a neighbor if it is a logical 1 and if its east,
north, west or south  neighbor is a logical 1. Pixel X is said to be
eight-connected if it is a logical 1 and if its north, northeast, etc. 
neighbor is a logical 1.

The connectivity relationship between a center pixel and its eight neighbors can
be quantified by the concept of a pixel bond, the sum of the bond weights between
the center pixel and each of its neighbors. Each four-connected neighbor has a bond
of two, and each eight-connected neighbor has a bond of one. In the following
example, the pixel bond is seven.

FIGURE 13.1-1. Connectivity.
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Under the definition of four-connectivity, Figure 13.1-1b has four disconnected
black line segments, but with the eight-connectivity definition, Figure 13.1-1b has a
ring of connected black pixels. Note, however, that under eight-connectivity, all
white pixels are connected together. Thus, a paradox exists. If the black pixels are to
be eight-connected together in a ring, one would expect a division of the white pix-
els into pixels that are interior and exterior to the ring. To eliminate this dilemma,
eight-connectivity can be defined for the black pixels of the object, and four-connec-
tivity can be established for the white pixels of the background. Under this defini-
tion, a string of black pixels is said to be minimally connected if elimination of any
black pixel results in a loss of connectivity of the remaining black pixels. Figure
13.1-2 provides definitions of several other neighborhood connectivity relationships
between a center black pixel and its neighboring black and white pixels.

The preceding definitions concerning connectivity have been based on a discrete
image model in which a continuous image field is sampled over a rectangular array
of points. Golay (12) has utilized a hexagonal grid structure. With such a structure,
many of the connectivity problems associated with a rectangular grid are eliminated.
In a hexagonal grid, neighboring pixels are said to be six-connected if they are in the
same set and share a common edge boundary. Algorithms have been developed for
the linking of boundary points for many feature extraction tasks (13). However, two
major drawbacks have hindered wide acceptance of the hexagonal grid. First, most
image scanners are inherently limited to rectangular scanning. The second problem
is that the hexagonal grid is not well suited to many spatial processing operations,
such as convolution and Fourier transformation.

FIGURE 13.1-2. Pixel neighborhood connectivity definitions.
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13.2. BINARY IMAGE HIT OR MISS TRANSFORMATIONS

The two basic morphological operations, dilation and erosion, plus many variants
can be defined and implemented by a hit-or-miss transformation (3). The concept is
quite simple. Conceptually, a small odd-sized mask, typically , is scanned over
a binary image. If the binary-valued pattern of the mask matches the state of the pix-
els under the mask (hit), an output pixel in spatial correspondence to the center pixel
of the mask is set to some desired binary state. For a pattern mismatch (miss), the
output pixel is set to the opposite binary state. For example, to perform simple
binary noise cleaning, if the isolated  pixel pattern

is encountered, the output pixel is set to zero; otherwise, the output pixel is set to the
state of the input center pixel. In more complicated morphological algorithms, a
large number of the  possible mask patterns may cause hits. 

It is often possible to establish simple neighborhood logical relationships that
define the conditions for a hit. In the isolated pixel removal example, the defining
equation for the output pixel  becomes

(13.2-1)

where  denotes the intersection operation (logical AND) and  denotes the
union operation (logical OR). For complicated algorithms, the logical equation
method of definition can be cumbersome. It is often simpler to regard the hit masks
as a collection of binary patterns.

Hit-or-miss morphological algorithms are often implemented in digital image
processing hardware by a pixel stacker followed by a look-up table (LUT), as shown
in Figure 13.2-1 (14). Each pixel of the input image is a positive integer, represented
by a conventional binary code, whose most significant bit is a 1 (black) or a 0
(white). The pixel stacker extracts the bits of the center pixel X and its eight neigh-
bors and puts them in a neighborhood pixel stack. Pixel stacking can be performed
by convolution with the  pixel kernel

.

The binary number state of the neighborhood pixel stack becomes the numeric input
address of the LUT whose entry is Y. For isolated pixel removal, integer entry 256,
corresponding to the neighborhood pixel stack state 100000000, contains Y = 0; all
other entries contain Y = X. 
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13.

Several other  hit-or-miss operators are described in the following sub-
sections.

13.2.1. Additive Operators

Additive hit-or-miss morphological operators cause the center pixel of a 
pixel window to be converted from a logical 0 state to a logical 1 state if the
neighboring pixels meet certain predetermined conditions. The basic operators
are now defined.

Interior Fill. Create a black pixel if all four-connected neighbor pixels are black.

(13.2-2)

Diagonal Fill. Create a black pixel if creation eliminates the eight-connectivity of
the background.

(13.2-3a)

where

FIGURE 13.2-1. Look-up table flowchart for binary unconditional operations.

3 3×

3 3×

G j k,( ) X X0 X2 X4 X6∩ ∩ ∩[ ]∪=

G j k,( ) X P1 P2 P3 P4∪ ∪ ∪[ ]∪=
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(13.2-3b)

(13.2-3c)

(13.2-3d)

(13.2-3e)

In Eq. 13.2-3, the overbar denotes the logical complement of a variable.

Bridge. Create a black pixel if creation results in connectivity of previously uncon-
nected neighboring black pixels.

(13.2-4a)

where

(13.2-4b)

(13.2-4c)

(13.2-4d)

(13.2-4e)

(13.2-4f)

(13.2-4g)

and

(13.2-4h)

(13.2-4i)

(13.2-4j)

(13.2-4k)

(13.2-4l)

The following is one of 119 qualifying patterns

P1 X X0 X1 X2∩ ∩ ∩=

P2 X X2 X3 X4∩ ∩ ∩=

P3 X X4 X5 X6∩ ∩ ∩=

P4 X X6 X7 X0∩ ∩ ∩=

G j k,( ) X P1 P2
… P6∪ ∪ ∪[ ]∪=

P1 X2 X6 X3 X4 X5∪ ∪[ ] X0 X1 X7∪ ∪[ ] PQ∩ ∩ ∩ ∩=

P2 X0 X4 X1 X2 X3∪ ∪[ ] X5 X6 X7∪ ∪[ ] PQ∩ ∩ ∩ ∩=

P3 X0 X6 X7 X2 X3 X4∪ ∪[ ]∩ ∩ ∩=

P4 X0 X2 X1 X4 X5 X6∪ ∪[ ]∩ ∩ ∩=

P5 X2 X4 X3 X0 X6 X7∪ ∪[ ]∩ ∩ ∩=

P6 X4 X6 X5 X0 X1 X2∪ ∪[ ]∩ ∩ ∩=

PQ L1 L2 L3 L4∪ ∪ ∪=

L1 X X0 X1 X2 X3 X4 X5 X6 X7∩ ∩ ∩ ∩ ∩ ∩ ∩ ∩=

L2 X X0 X1 X2 X3 X4 X5 X6 X7∩ ∩ ∩ ∩ ∩ ∩ ∩ ∩=

L3 X X0 X1 X2 X3 X4 X5 X6 X7∩ ∩ ∩ ∩ ∩ ∩ ∩ ∩=

L4 X X0 X1 X2 X3 X4 X5 X6 X7∩ ∩ ∩ ∩ ∩ ∩ ∩ ∩=
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A pattern such as

does not qualify because the two black pixels will be connected when they are
on the middle row of a subsequent observation window if they are indeed
unconnected.

Eight-Neighbor Dilate. Create a black pixel if at least one eight-connected neigh-
bor pixel is black.

(13.2-5)

This hit-or-miss definition of dilation is a special case of a generalized dilation
operator that is introduced in Section 13.4. The dilate operator can be applied recur-
sively. With each iteration, objects will grow by a single pixel width ring of exterior
pixels. Figure 13.2-2 shows dilation for one and for three iterations for a binary
image. In the example, the original pixels are recorded as black, the background pix-
els are white and the added pixels are mid gray.

Fatten. Create a black pixel if at least one eight-connected neighbor pixel is black,
provided that creation does not result in a bridge between previously unconnected
black pixels in a  neighborhood. 

The following is an example of an input pattern in which the center pixel would
be set black for the basic dilation operator, but not for the fatten operator.

There are 132 such qualifying patterns. This stratagem will not prevent connection
of two objects separated by two rows or columns of white pixels. A solution to this
problem is considered in Section 13.3. Figure 13.2-3 provides an example of
fattening.

1 0 0

1 0 1

0 0 1

0 0 0

0 0 0

1 0 1

G j k,( ) X X0
… X7∪ ∪ ∪=

3 3×

0 0 1

1 0 0

1 1 0
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13.2.2. Subtractive Operators

Subtractive hit-or-miss morphological operators cause the center pixel of a 
window to be converted from black to white if its neighboring pixels meet predeter-
mined conditions. The basic subtractive operators are defined below.

Isolated Pixel Remove. Erase a black pixel with eight white neighbors.

(13.2-6)

Spur Remove. Erase a black pixel with a single eight-connected neighbor.

FIGURE 13.2-2. Dilation of a binary image.

3 3×

G j k,( ) X X0 X1
… X7∪ ∪ ∪[ ]∩=
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The following is one of four qualifying patterns:

Interior Pixel Remove. Erase a black pixel if all four-connected neighbors are
black.

(13.2-7)

There are 16 qualifying patterns.

H-Break. Erase a black pixel that is H-connected. 
There are two qualifying patterns.

Eight-Neighbor Erode. Erase a black pixel if at least one eight-connected neighbor
pixel is white.

(13.2-8)

FIGURE 13.2-3. Fattening of a binary image.

0 0 0

0 1 0

1 0 0

G j k,( ) X X0 X2 X4 X6∪ ∪ ∪[ ]∩=

1 1 1

0 1 0

1 1 1

1 0 1

1 1 1

1 0 1

G j k,( ) X X0
… X7∩ ∩ ∩=

Download more at Learnclax.com



384 MORPHOLOGICAL IMAGE PROCESSING

A generalized erosion operator is defined in Section 13.4. Recursive applica-
tion of the erosion operator will eventually erase all black pixels. Figure 13.2-4
shows results for one and three iterations of the erode operator. The eroded pix-
els are mid gray. It should be noted that after three iterations, the ring is totally
eroded.

13.2.3. Majority Black Operator

The following is the definition of the majority black operator: 

Majority Black. Create a black pixel if five or more pixels in a  window are
black; otherwise, set the output pixel to white. 

The majority black operator is useful for filling small holes in objects and closing
short gaps in strokes. An example of its application to edge detection is given in
Chapter 14.

FIGURE 13.2-4. Erosion of a binary image.

3 3×
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13.3. BINARY IMAGE SHRINKING, THINNING, SKELETONIZING AND
THICKENING

Shrinking, thinning, skeletonizing and thickening are forms of conditional erosion
in which the erosion process is controlled to prevent total erasure and to ensure con-
nectivity.

13.3.1. Binary Image Shrinking

The following is a definition of shrinking: 

Shrink. Erase black pixels such that an object without holes erodes to a single pixel
at or near its center of mass, and an object with holes erodes to a connected ring
lying midway between each hole and its nearest outer boundary. 

A  pixel object will be shrunk to a single pixel at its center. A  pixel
object will be arbitrarily shrunk, by definition, to a single pixel at its lower right corner.

It is not possible to perform shrinking using a single-stage pixel hit-or-
miss transform of the type described in the previous section. The  window
does not provide enough information to prevent total erasure and to ensure con-
nectivity. A  hit-or-miss transform could provide sufficient information to
perform proper shrinking. But such an approach would result in excessive com-
putational complexity (i.e., 225 possible patterns to be examined!). References 15
and 16 describe two-stage shrinking and thinning algorithms that perform a con-
ditional marking of pixels for erasure in a first stage, and then examine neighbor-
ing marked pixels in a second stage to determine which ones can be
unconditionally erased without total erasure or loss of connectivity. The follow-
ing algorithm developed by Pratt and Kabir (17) is a pipeline processor version
of the conditional marking scheme.

In the algorithm, two concatenated  hit-or-miss transformations are per-
formed to obtain indirect information about pixel patterns within a  window.
Figure 13.3-1 is a flowchart for the look-up table implementation of this algorithm.
In the first stage, the states of nine neighboring pixels are gathered together by a
pixel stacker, and a following look-up table generates a conditional mark M for pos-
sible erasures. Table 13.3-1 lists all patterns, as indicated by the letter S in the table
column, which will be conditionally marked for erasure. In the second stage of the
algorithm, the center pixel X and the conditional marks in a  neighborhood cen-
tered about X are examined to create an output pixel. The shrinking operation can be
expressed logically as

(13.3-1)

where  is an erasure inhibiting logical variable, as defined in Table
13.3-2. The first four patterns of the table prevent strokes of single pixel width from  

3 3× 2 2×

3 3×
3 3×

5 5×

3 3×
5 5×

3 3×

G j k,( ) X M P M M0 … M7, , ,( )∪[ ]∩=

P M M0 … M7, , ,( )
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being totally erased. The remaining patterns inhibit erasure that would break object
connectivity. There are a total of 157 inhibiting patterns. This two-stage process
must be performed iteratively until there are no further erasures. As an example, the

 square pixel object

results in the following intermediate array of conditional marks

The corner cluster pattern of Table 13.3-2 gives a hit only for the lower right corner
mark. The resulting output is

FIGURE 13.3-1. Look-up table flowchart for binary conditional mark operations.

2 2×

1 1

1 1

M M

M M

0 0
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TABLE 13.3-1. Shrink, Thin and Skeletonize Conditional Mark Patterns [M = 1 if hit]

Table Bond Pattern

0 0 1 1 0 0 0 0 0 0 0 0

S 1 0 1 0 0 1 0 0 1 0 0 1 0

0 0 0 0 0 0 1 0 0 0 0 1

0 0 0 0 1 0 0 0 0 0 0 0

S 2 0 1 1 0 1 0 1 1 0 0 1 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 1 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S 3 0 1 1 0 1 0 0 1 0 1 1 0 1 1 0 0 1 0 0 1 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1

0 1 0 0 1 0 0 0 0 0 0 0

TK 4 0 1 1 1 1 0 1 1 0 0 1 1

0 0 0 0 0 0 0 1 0 0 1 0

0 0 1 1 1 1 1 0 0 0 0 0

STK 4 0 1 1 0 1 0 1 1 0 0 1 0

0 0 1 0 0 0 1 0 0 1 1 1

1 1 0 0 1 0 0 1 1 0 0 1

ST 5 0 1 1 0 1 1 1 1 0 0 1 1

0 0 0 0 0 1 0 0 0 0 1 0

0 1 1 1 1 0 0 0 0 0 0 0

ST 5 0 1 1 1 1 0 1 1 0 0 1 1

0 0 0 0 0 0 1 1 0 0 1 1

1 1 0 0 1 1

ST 6 0 1 1 1 1 0

0 0 1 1 0 0

1 1 1 0 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1

STK 6 0 1 1 0 1 1 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1

0 0 0 0 0 1 0 0 0 1 0 0 1 1 0 1 1 1 1 1 1 0 1 1

(Continued)
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TABLE 13.3-1. (Continued)

Figure 13.3-2 shows an example of the shrinking of a binary image for four and
13 iterations of the algorithm. No further shrinking occurs for more than 13 itera-
tions. At this point, the shrinking operation has become idempotent (i.e., reapplica-
tion evokes no further change. This shrinking algorithm does not shrink the
symmetric original ring object to a ring that is also symmetric because of some of
the conditional mark patterns of Table 13.3-2, which are necessary to ensure that
objects of even dimension shrink to a single pixel. For the same reason, the shrunk
ring is not minimally connected.

13.3.2. Binary Image Thinning

The following is a definition of thinning:

Thin. Erase black pixels such that an object without holes erodes to a minimally
connected stroke located equidistant from its nearest outer boundaries, and an object
with holes erodes to a minimally connected ring midway between each hole and its
nearest outer boundary.

Table Bond Pattern

1 1 1 1 1 1 1 0 0 0 0 1

STK 7 0 1 1 1 1 0 1 1 0 0 1 1

0 0 1 1 0 0 1 1 1 1 1 1

0 1 1 1 1 1 1 1 0 0 0 0

STK 8 0 1 1 1 1 1 1 1 0 1 1 1

0 1 1 0 0 0 1 1 0 1 1 1

1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 1

STK 9 0 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1

0 1 1 1 1 1 1 0 0 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 0 1

STK 10 0 1 1 1 1 1 1 1 0 1 1 1

1 1 1 1 0 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 0 0 1 1

K 11 1 1 1 1 1 1 1 1 1 1 1 1

0 1 1 1 1 0 1 1 1 1 1 1
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TABLE 13.3-2. Shrink and Thin Unconditional Mark Patterns 
[P(M, M0, M1, M2, M3, M4, M5, M6, M7) = 1 if hit] a

Pattern

Spur Single 4-connection
0 0 M M 0 0 0 0 0 0 0 0
0 M 0 0 M 0 0 M 0 0 M M
0 0 0 0 0 0 0 M 0 0 0 0

L Cluster 
0 0 M 0 M M M M 0 M 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 M M 0 M 0 0 M 0 M M 0 M M 0 0 M 0 0 M 0 0 M M
0 0 0 0 0 0 0 0 0 0 0 0 M 0 0 M M 0 0 M M 0 0 M

4-Connected offset
0 M M M M 0 0 M 0 0 0 M
M M 0 0 M M 0 M M 0 M M
0 0 0 0 0 0 0 0 M 0 M 0

Spur corner cluster
0 A M M B 0 0 0 M M 0 0
0 M B A M 0 A M 0 0 M B
M 0 0 0 0 M M B 0 0 A M

Corner cluster
M M D
M M D
D D D

Tee branch
D M 0 0 M D 0 0 D D 0 0 D M D 0 M 0 0 M 0 D M D
M M M M M M M M M M M M M M 0 M M 0 0 M M 0 M M
D 0 0 0 0 D 0 M D D M 0 0 M 0 D M D D M D 0 M 0

Vee branch
M D M M D C C B A A D M
D M D D M B D M D B M D
A B C M D A M D M C D M

Diagonal branch
D M 0 0 M D D 0 M M 0 D
0 M M M M 0 M M 0 0 M M
M 0 D D 0 M 0 M D D M 0

      A B C∪ ∪ 1=a
D 0 1∪= A B∪ 1.=
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The following is an example of the thinning of a  pixel object without holes

before after

A  object is thinned as follows:

before after

Table 13.3-1 lists the conditional mark patterns, as indicated by the letter T in the
table column, for thinning by the conditional mark algorithm of Figure 13.3-1. The
shrink and thin unconditional patterns are identical, as shown in Table 13.3-2. 

Figure 13.3-3 contains an example of the thinning of a binary image for four and
eight iterations. Figure 13.3-4 provides an example of the thinning of an image of a
printed circuit board in order to locate solder pads that have been deposited improp-
erly and that do not have holes for component leads. The pads with holes erode to a
minimally connected ring, while the pads without holes erode to a point.

Thinning can be applied to the background of an image containing several
objects as a means of separating the objects. Figure 13.3-5 provides an example of
the process. The original image appears in Figure 13.3-5a, and the background-
reversed image is Figure 13.3-5b. Figure 13.3-5c shows the effect of thinning the
background. The thinned strokes that separate the original objects are minimally

FIGURE 13.3-2. Shrinking of a binary image.
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connected, and, therefore, the background of the separating strokes is eight-con-
nected throughout the image. This is an example of the connectivity ambiguity dis-
cussed in Section 13.1. To resolve this ambiguity, a diagonal fill operation can be
applied to the thinned strokes. The result, shown in Figure 13.3-5d, is called the
exothin of the original image. The name derives from the exoskeleton, discussed in
the following section.

13.3.3. Binary Image Skeletonizing

A skeleton or stick figure representation of an object can be used to describe its
structure. Thinned objects sometimes have the appearance of a skeleton, but they are
not always uniquely defined. For example, in Figure 13.3-3, both the rectangle and
ellipse thin to a horizontal line. 

FIGURE 13.3-3. Thinning of a binary image.

FIGURE 13.3-4. Thinning of a printed circuit board image.
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Blum (18) has introduced a skeletonizing technique called medial axis transfor-
mation that produces a unique skeleton for a given object. An intuitive explanation
of the medial axis transformation is based on the prairie fire analogy (19–22). Con-
sider the circle and rectangle regions of Figure 13.3-6 to be composed of dry grass
on a bare dirt background. If a fire were to be started simultaneously on the perime-
ter of the grass, the fire would proceed to burn toward the center of the regions until
all the grass was consumed. In the case of the circle, the fire would burn to the cen-
ter point of the circle, which is the quench point of the circle. For the rectangle, the
fire would proceed from each side. As the fire moved simultaneously from left and
top, the fire lines would meet and quench the fire. The quench points or quench lines
of a figure are called its medial axis skeleton. More generally, the medial axis skele-
ton consists of the set of points that are equally distant from two closest points of an
object boundary. The minimal distance function is called the quench distance of
the object. From the medial axis skeleton of an object and its quench distance, it is

FIGURE 13.3-5. Exothinning of a binary image.
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possible to reconstruct the object boundary. The object boundary is determined by
the union of a set of circular disks formed by circumscribing a circle whose radius is
the quench distance at each point of the medial axis skeleton.

A reasonably close approximation to the medial axis skeleton can be implemented
by a slight variation of the conditional marking implementation shown in Figure 13.3-
1. In this approach, an image is iteratively eroded using conditional and unconditional
mark patterns until no further erosion occurs. The conditional mark patterns for skele-
tonization are listed in Table 13.3-1 under the table indicator K. Table 13.3-3 lists the
unconditional mark patterns. At the conclusion of the last iteration, it is necessary to
perform a single iteration of bridging as defined by Eq. 13.2-4 to restore connectivity,
which will be lost whenever the following pattern is encountered:

Inhibiting the following mark pattern created by the bit pattern above:

will prevent elliptically shaped objects from being improperly skeletonized.

FIGURE 13.3-6. Medial axis transforms.

1 1 1 1 1

1 1 1 1 1

M M

M M
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TABLE 13.3-3. Skeletonize Unconditional Mark Patterns 
[P(M, M0, M1, M2, M3, M4, M5, M6, M7) = 1 if hit]a     

Pattern

Spur

0 0 0 0 0 0 0 0 M M 0 0

0 M 0 0 M 0 0 M 0 0 M 0

0 0 M M 0 0 0 0 0 0 0 0

Single 4-connection

0 0 0 0 0 0 0 0 0 0 M 0

0 M 0 0 M M M M 0 0 M 0

0 M 0 0 0 0 0 0 0 0 0 0

L corner

0 M 0 0 M 0 0 0 0 0 0 0

0 M M M M 0 0 M M M M 0

0 0 0 0 0 0 0 M 0 0 M 0

Corner cluster

M M D D D D

M M D D M M

D D D D M M

Tee branch

D M D D M D D D D D M D

M M M M M D M M M D M M

D D D D M D D M D D M D

Vee branch

M D M M D C C B A A D M

D M D D M B D M D B M D

A B C M D A M D M C D M

Diagonal branch

D M 0 0 M D D 0 M M 0 D

0 M M M M 0 M M 0 0 M M

M 0 D D 0 M 0 M D D M 0

A B C∪ ∪ 1 D 0 1.∪= =
a
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Figure 13.3-7 shows an example of the skeletonization of a binary image. The
eroded pixels are mid gray. It should be observed that skeletonizing gives different
results than thinning for many objects. Prewitt (23, p.136) has coined the term exo-
skeleton for the skeleton of the background of an object in a scene. The exoskeleton
partitions each objects from neighboring object, as does the thinning of the back-
ground.

13.3.4. Binary Image Thickening

In Section 13.2.1, the fatten operator was introduced as a means of dilating objects
such that objects separated by a single pixel stroke would not be fused. But the fat-
ten operator does not prevent fusion of objects separated by a double width white
stroke. This problem can be solved by iteratively thinning the background of an
image, and then performing a diagonal fill operation. This process, called thicken-
ing, when taken to its idempotent limit, forms the exothin of the image, as discussed
in Section 13.3.2. Figure 13.3-8 provides an example of thickening. The exothin
operation is repeated three times on the background reversed version of the original
image. Figure 13.3-8b shows the final result obtained by reversing the background
of the exothinned image.

FIGURE 13.3-7. Skeletonizing of a binary image.
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The binary thinning and skeletonizing methods presented in this section are
based upon the conditional erosion concept. They are well suited for implementation
on a pipeline processor because they can be computed by scanning an image with a

 pixel processing window (17). A drawback of the methods is that the pro-
cessed images are not always minimally connected. Also, the thinned or skeleton-
ized images are sometimes asymmetric even when the source image is symmetric.
Chapter 18 presents some algorithms, which are based upon contour following of
binary objects. These algorithms often avoid the problems associated with condi-
tional erosion methods. 

13.4. BINARY IMAGE GENERALIZED DILATION AND EROSION

Dilation and erosion, as defined earlier in terms of hit-or-miss transformations, are
limited to object modification by a single ring of boundary pixels during each itera-
tion of the process. The operations can be generalized. 

Before proceeding further, it is necessary to introduce some fundamental con-
cepts of image set algebra that are the basis for defining the generalized dilation and
erosions operators. Consider a binary-valued source image function . A pixel
at coordinate  is a member of , as indicated by the symbol , if and
only if it is a logical 1. A binary-valued image  is a subset of a binary-valued
image , as indicated by , if for every spatial occurrence of a
logical 1 of ,  is a logical 1. The complement  of  is a
binary-valued image whose pixels are in the opposite logical state of those in

. Figure 13.4-1 shows an example of the complement process and other
image set algebraic operations on a pair of binary images. A reflected image 

FIGURE 13.3-8. Thickening of a binary image.

3 3×

F j k,( )
j k,( ) F j k,( ) ∈

B j k,( )
A j k,( ) B j k,( ) A j k,( )⊆

A j k,( ) B j k,( ) F j k,( ) F j k,( )

F j k,( )
F̃ j k,( )
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is an image that has been flipped from left to right and from top to bottom. Figure
13.4-2 provides an example of image complementation. Translation of an image, as
indicated by the function

(13.4-1)

consists of spatially offsetting  with respect to itself by r rows and c col-
umns, where  and . Figure 13.4-2 presents an example of the
translation of a binary image.

13.4.1. Generalized Dilation

Generalized dilation is expressed symbolically as

(13.4-2)

FIGURE 13.4-1. Image set algebraic operations on binary arrays.

G j k,( ) Tr c, F j k,( ){ }=

F j k,( )
R– r R≤ ≤ C– c C≤ ≤

G j k,( ) F j k,( ) H j k,( )⊕=
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where  for  is a binary-valued image and  for ,
where L is an odd integer, is a binary-valued array called a structuring element. For
notational simplicity,  and  are assumed to be square arrays. General-
ized dilation can be defined mathematically and implemented in several ways. The
Minkowski addition definition (1) is

(13.4-3)

It states that  is formed by the union of all translates of  with respect
to itself in which the translation distance is the row and column index of pixels of

 that is a logical 1. Figure 13.4-3 illustrates the concept. Equation 13.4-3
results in an  output array  that is justified with the upper left corner
of the input array . The output array is of dimension M = N + L – 1, where L
is the size of the structuring element. In order to register the input and output images
properly,  should be translated diagonally right by  pixels.
Figure 13.4-3 shows the exclusive-OR difference between  and the translate
of . This operation identifies those pixels that have been added as a result of
generalized dilation.

An alternative definition of generalized dilation is based on the scanning and pro-
cessing of  by the structuring element . With this approach, general-
ized dilation is formulated as (17)

(13.4-4)

FIGURE 13.4-2. Reflection and translation of a binary array.

F j k,( ) 1 j k, N≤ ≤ H j k,( ) 1 j k, L≤ ≤

F j k,( ) H j k,( )

G j k,( ) Tr c,∪∪ F j k,( ){ }=

    

r c,( ) H∈

G j k,( ) F j k,( )

H j k,( )
M M× G j k,( )

F j k,( )

F j k,( ) Q L 1–( ) 2⁄=
G j k,( )

F j k,( )

F j k,( ) H j k,( )

G j k,( ) F m n,( ) H j m 1+– k n 1+–,( )∩
n
∪

m
∪=
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With reference to Eq. 7.1-7, the spatial limits of the union combination are

(13.4-5a)

(13.4-5b)

FIGURE 13.4-3. Generalized dilation computed by Minkowski addition.

MAX 1 j L– 1+,{ } m MIN N j,{ }≤ ≤

MAX 1 k L– 1+,{ } n MIN N k,{ }≤ ≤
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Equation 13.4-4 provides an output array that is justified with the upper left corner
of the input array. In image processing systems, it is often convenient to center the
input and output images and to limit their size to the same overall dimension. This
can be accomplished easily by modifying Eq. 13.4-4 to the form

(13.4-6)

where  and, from Eq. 7.1-10, the limits of the union combination are

(13.4-7a)

(13.4-7b)

where . Equation 13.4-6 applies for  and 
elsewhere. The Minkowski addition definition of generalized dilation given in
Eq. 13.4-2 can be modified to provide a centered result by taking the translations
about the center of the structuring element. In the following discussion, only the
centered definitions of generalized dilation will be utilized. In the special case for
which L = 3, Eq. 13.4-6 can be expressed explicitly as

(13.4-8)

If  for , then , as computed by Eq. 13.4-8, gives the
same result as hit-or-miss dilation, as defined by Eq. 13.2-5.

It is interesting to compare Eqs. 13.4-6 and 13.4-8, which define generalized
dilation, and Eqs. 7.1-14 and 7.1-15, which define convolution. In the generalized
dilation equation, the union operations are analogous to the summation operations of
convolution, while the intersection operation is analogous to point-by-point
multiplication. As with convolution, dilation can be conceived as the scanning and
processing of  by  rotated by 180°.

13.4.2. Generalized Erosion

Generalized erosion is expressed symbolically as

(13.4-9)

G j k,( ) F m n,( ) H j m S+– k n S+–,( )∩
n
∪

m
∪=

S L 1–( ) 2⁄=

MAX 1 j Q–,{ } m MIN N j Q+,{ }≤ ≤

MAX 1 k Q–,{ } n MIN N k Q+,{ }≤ ≤

Q L 1–( ) 2⁄= S j k, N Q–≤ ≤ G j k,( ) 0=

G j k,( )( ) =

H 3 3,( ) F j 1 k 1–,–( )∩[ ] H 3 2,( ) F j 1 k,–( )∩[ ]∪ H 3 1,( ) F j 1 K 1+,–( )∩[ ]∪
H 2 3,( ) F j k 1–,( )∩[ ] H 2 2,( ) F j k,( )∩[ ] H 2 1,( ) F j k 1+,( )∩[ ]∪ ∪ ∪
H 1 3,( ) F j 1 k 1–,+( )∩[ ] H 1 2,( ) F j 1 k,+( )∩[ ] H 1 1,( ) F j 1 k 1+,+( )∩[ ]∪ ∪ ∪

H j k,( ) 1= 1 j k, 3≤ ≤ G j k,( )

F j k,( ) H j k,( )

G j k,( ) F j k,( ) H j k,( )O−=
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where again  is an odd size  structuring element. Serra (3) has adopted,
as his definition for erosion, the dual relationship of Minkowski addition given by
Eq. 13.4-1, which was introduced by Hadwiger (24). By this formulation, general-
ized erosion is defined to be

. (13.4-10)

The meaning of this relation is that erosion of  by  is the intersection
of all translates of  in which the translation distance is the row and column
index of pixels of  that are in the logical one state. Steinberg et al. (6,25)
have adopted the subtly different formulation

(13.4-11)

introduced by Matheron (2), in which the translates of are governed by the
reflection  of the structuring element rather than by  itself.

Using the Steinberg definition,  is a logical 1 if and only if the logical
ones of  form a subset of the spatially corresponding pattern of the logical
ones of  as  is scanned over . It should be noted that the logi-
cal zeros of  do not have to match the logical zeros of . With the
Serra definition, the statements above hold when  is scanned and processed
by the reflection of the structuring element. Figure 13.4-4 presents a comparison of
the erosion results for the two definitions of erosion. Clearly, the results are incon-
sistent.

Pratt (26) has proposed a relation, which is the dual to the generalized dilation
expression of Eq. 13.4-6, as a definition of generalized erosion. By this formulation,
generalized erosion in centered form is

(13.4-12)

where , and the limits of the intersection combination are given by
Eq. 13.4-7. In the special case for which L = 3, Eq. 13.4-12 becomes

(13.4-13

H j k,( ) L L×

G j k,( ) Tr c,∩∩ F j k,( ){ }=

    

r c,( ) H∈

F j k,( ) H j k,( )
F j k,( )
H j k,( )

G j k,( ) Tr c,∩∩ F j k,( ){ }=

    

r c,( ) H̃∈

F j k,( )
H̃ j k,( ) H j k,( )

G j k,( )
H j k,( )
F j k,( ) H j k,( ) F j k,( )

H j k,( ) F j k,( )
F j k,( )

G j k,( ) F m n,( ) H j m– S k n– S+,+( )∪
n
∩

m
∩=

S L 1–( ) 2⁄=

G j k,( ) =

H 3 3,( ) F j 1 k 1–,–( )∪[ ] H 3 2,( ) F j 1 k,–( )∪[ ] H 3 1,( ) F j 1 k 1+,–( )∪[ ]∩ ∩

H 2 3,( ) F j k 1–,( )∪[ ] H 2 2,( ) F j k,( )∪[ ] H 2 1,( ) F j k 1+,( )∪[ ]∩ ∩∪

H 1 3,( ) F j 1 k 1–,+( )∪[ ] H 1 2,( ) F j 1 k,+( )∪[ ] H 1 1,( ) F j 1 k 1+,+( )∪[ ]∩ ∩ ∩
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If  for , Eq. 13.4-13 gives the same result as hit-or-miss
eight-neighbor erosion as defined by Eq. 13.2-8. Pratt's definition is the same as the
Serra definition. However, Eq. 13.4-12 can easily be modified by substituting the
reflection  for  to provide equivalency with the Steinberg definition.
Unfortunately, the literature utilizes both definitions, which can lead to confusion.
The definition adopted in this book is that of Hadwiger, Serra and Pratt, because the
defining relationships (Eq. 13.4-1 or 13.4-12) are duals to their counterparts for gen-
eralized dilation (Eq. 13.4-3 or 13.4-6).

Figure 13.4-5 shows examples of generalized dilation and erosion for a symmet-
ric  structuring element.

13.4.3. Properties of Generalized Dilation and Erosion

Consideration is now given to several mathematical properties of generalized dila-
tion and erosion. Proofs of these properties are found in Reference 25. For nota-
tional simplicity, in this subsection, the spatial coordinates of a set are dropped, i.e.,
A( j, k) = A.

FIGURE 13.4-4. Comparison of erosion results for two definitions of generalized erosion.

H j k,( ) 1= 1 j k, 3≤ ≤

H̃ j k,( ) H j k,( )

5 5×
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Dilation is commutative:

(13.4-14a)

But, in general, erosion is not commutative:

(13.4-14b)

Dilation and erosion are increasing operations in the sense that if , then

FIGURE 13.4-5. Generalized dilation and erosion for a 5 x 5 structuring element.

A B⊕ B A⊕=

A BO− B AO−≠

A B⊆
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(13.4-15a)

. (13.4-15b)

Dilation and erosion are opposite in effect; dilation of the background of an object
behaves like erosion of the object. This statement can be quantified by the duality
relationship

. (13.4-16)

For the Steinberg definition of erosion, B on the right-hand side of Eq. 13.4-16
should be replaced by its reflection . Figure 13.4-6 contains an example of the
duality relationship.

The dilation and erosion of the intersection and union of sets obey the following
relations:

(13.4-17a)

(13.4-17b)

(13.4-17c)

(13.4-17d)

FIGURE 13.4-6. Duality relationship between dilation and erosion.

A C⊕ B C⊕⊆

A CO− B CO−⊆

A BO− A B⊕=

B̃

A B∩[ ] C⊕ A C⊕[ ] B C⊕[ ]∩⊆

A B∩ ] CO− A CO−[ ] B CO−[ ]∩=

A B∪[ ] C⊕ A C⊕[ ] B C⊕[ ]∪=

A B∪[ ] CO− A CO−[ ] B CO−[ ]∪⊇
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The dilation and erosion of a set by the intersection of two other sets satisfy these
containment relations:

(13.4-18a)

. (13.4-18b)

On the other hand, dilation and erosion of a set by the union of a pair of sets are gov-
erned by the equality relations 

(13.4-19a)

. (13.4-19b)

The following chain rules hold for dilation and erosion.

(13.4-20a)

. (13.4-20b)

13.5. BINARY IMAGE CLOSE AND OPEN OPERATIONS

Dilation and erosion are often applied to an image in concatenation. Dilation fol-
lowed by erosion is called a close operation. It is expressed symbolically as

(13.5-1a)

where  is a  structuring element. In accordance with the Serra formula-
tion of erosion, the close operation is defined as

(13.5-1b)

where it should be noted that erosion is performed with the reflection of the structur-
ing element. Closing of an image with a compact structuring element without holes
(zeros), such as a square or circle, smooths contours of objects, eliminates small
holes in objects and fuses short gaps between objects.

An open operation, expressed symbolically as

(13.5-2a)

consists of erosion followed by dilation. It is defined as

(13.5-2b)

A B C∩[ ]⊕ A B⊕[ ] A C⊕[ ]∩⊆

A B C∩[ ]O− A BO−[ ] A CO−[ ]∪⊇

A B C∪[ ]⊕ A B⊕[ ] A C⊕[ ]∪=

A B C∪[ ]O− A BO−[ ] A CO−[ ]∪=

A B C⊕[ ]⊕ A B⊕[ ] C⊕=

A B C⊕[ ]O− A BO−[ ] CO−=

G j k,( ) F j k,( ) H j k,( )•=

H j k,( ) L L×

G j k,( ) F j k,( ) H j k,( )⊕[ ] H̃ j k,( )O−=

G j k,( ) F j k,( ) °H j k,( )=

G j k,( ) F j k,( ) H̃ j k,( )O−[ ] H j k,( )⊕=
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where again, the erosion is with the reflection of the structuring element. Opening of
an image smooths contours of objects, eliminates small objects and breaks narrow
strokes.

The close operation tends to increase the spatial extent of an object, while the
open operation decreases its spatial extent. In quantitative terms

(13.5-3a)

. (13.5-3b)

It can be shown that the close and open operations are stable in the sense that (25)

(13.5-4a)

. (13.5-4b)

Also, it can be easily shown that the open and close operations satisfy the following
duality relationship:

. (13.5-5)

Figure 13.5-1 presents examples of the close and open operations on a binary
image.

13.6. GRAY SCALE IMAGE MORPHOLOGICAL OPERATIONS

Morphological concepts can be extended to gray scale images, but the extension
often leads to theoretical issues and to implementation complexities. When applied
to a binary image, dilation and erosion operations cause an image to increase or
decrease in spatial extent, respectively. To generalize these concepts to a gray scale
image, it is assumed that the image contains visually  distinct  gray  scale objects  set
against a gray background. Also, it is assumed that the objects and background
are both relatively spatially smooth. Under these conditions, it is reasonable
to ask: Why not just threshold the image and perform binary image morphol-
ogy? The reason for not taking this approach is that the thresholding operation
often introduces significant error in segmenting objects from the background.
This is especially true when the gray scale image contains shading caused by
nonuniform scene illumination.
 

F j k,( ) H j k,( )• F j k,( )⊇

F j k,( ) °H j k,( ) F j k,( )⊆

F j k,( ) H j k,( )•[ ] H j k,( )• F j k,( ) H j k,( )•=

F j k,( ) °H j k,( )[ ] ° H j k,( ) F j k,( ) ° H j k,( )=

F j k,( ) H j k,( )• F j k,( ) °H j k,( )=
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FIGURE 13.5-1. Close and open operations on a binary image.
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13.6.1. Gray Scale Image Dilation and Erosion

Dilation or erosion of an image could, in principle, be accomplished by hit-or-miss
transformations in which the quantized gray scale patterns are examined in a 
window and an output pixel is generated for each pattern. This approach is, how-
ever, not computationally feasible. For example, if a look-up table implementation
were to be used,  the table  would  require   entries for 256-level quantization of
each pixel! The common alternative is to use gray scale extremum operations over a

 pixel neighborhoods.
Consider a gray scale image  quantized to an arbitrary number of gray

levels. According to the extremum method of gray scale image dilation, the dilation
operation is defined as

(13.6-1)

where  generates the largest-amplitude pixel of the nine pixels in
the neighborhood. If  is quantized to only two levels, Eq. 13.6-1 provides the
same result as that using binary image dilation as defined by Eq. 13.2-5.

By the extremum method, gray scale image erosion is defined as

(13.6-2)

where  generates the smallest-amplitude pixel of the nine pixels in
the  pixel neighborhood. If  is binary-valued, then Eq. 13.6-2 gives the
same result as hit-or-miss erosion as defined in Eq. 13.2-8.

In Chapter 10, when discussing the pseudomedian, it was shown that the MAX
and MIN operations can be computed sequentially. As a consequence, Eqs. 13.6-1
and 13.6-2 can be applied iteratively to an image. For example, three iterations gives
the same result as a single iteration using a  moving-window MAX or MIN
operator. By selectively excluding some of the terms  of Eq. 13.6-1 or
13.6-2 during each iteration, it is possible to synthesize large non square gray scale
structuring elements in the same manner as illustrated in Figure 13.4-7 for binary
structuring elements. However, no systematic decomposition procedure has yet been
developed. 

Figures 13.6-1 and 13.6-2 show the amplitude profile of a row of a gray scale image
of a printed circuit board (PCB) after several dilation and erosion iterations. The row
selected is indicated by the white horizontal line in Figure 13.6-la. In Figure 13.6-2,
two-dimensional gray scale dilation and erosion are performed on the PCB image.

13.6.2. Gray Scale Image Close and Open Operators

The close and open operations introduced in Section 13.5 for binary images can eas-
ily be extended to gray scale images. Gray scale closing is realized by first perform-
ing gray scale dilation with a gray scale structuring element, then gray scale erosion
with the same structuring element. Similarly, gray scale opening is accomplished by

3 3×

272

3 3×
F j k,( )

G j k,( ) MAX F j k,( ) F j k 1+,( ) F j 1 k 1+,–( ) … F j 1 k 1+,+( ), ,,,{ }=

MAX S1 … S9, ,{ }
F j k,( )

G j k,( ) MIN F j k,( ) F j k 1+,( ) F j 1 k 1+,–( ) … F j 1 k 1+,+( ), ,,,{ }=

MIN S1 … S9, ,{ }
3 3× F j k,( )

7 7×
S1 … S9, ,
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gray scale erosion followed by gray scale dilation. Figures 13.6-3a and b give exam-
ples of gray scale image closing and opening.

FIGURE 13.6-1. One-dimensional gray scale image dilation on a printed circuit board image.
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Steinberg (26) has introduced the use of three-dimensional structuring elements
for gray scale image closing and opening operations. Although the concept is well
defined mathematically, it is simpler to describe in terms of a structural image
model. Consider a gray scale image to be modeled as an array of closely packed
square pegs, each of which is proportional in height to the amplitude of a corre-
sponding pixel. Then a three-dimensional structuring element, for example a sphere,
is placed over each peg. The bottom of the structuring element, as it is translated
over the peg array, forms another spatially discrete surface, which is the close array
of the original image. A spherical structuring element will touch pegs at peaks of
the original peg array, but will not touch pegs at the bottom of steep valleys. Conse-
quently, the close surface “fills in” dark spots in the original image. The opening of
a gray scale image can be conceptualized in a similar manner. An original image is
modeled as a peg array in which the height of each peg is inversely proportional to
the  amplitude of  each  corresponding  pixel  (i.e.,  the  gray  scale  is  subtractively

FIGURE 13.6-2. One-dimensional gray scale image erosion on a printed circuit board 
image.
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FIGURE 13.6-3. Two-dimensional gray scale image dilation, erosion, close and open on a 
printed circuit board image.
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inverted). The translated structuring element then forms the open surface of the orig-
inal image. For a spherical structuring element, bright spots in the original image are
made darker.

13.6.3. Conditional Gray Scale Image Morphological Operators

There have been attempts to develop morphological operators for gray scale images
that are analogous to binary image shrinking, thinning, skeletonizing and thicken-
ing. The stumbling block to these extensions is the lack of a definition for connec-
tivity of neighboring gray scale pixels. Serra (4) has proposed approaches based on
topographic mapping techniques. Another approach is to iteratively perform the
basic dilation and erosion operations on a gray scale image, and then use a binary
thresholded version of the resultant image to determine connectivity at each
iteration.

13.7. MORPHOLOGICAL IMAGE PROCESSING EXERCISES

E13.1 Develop a program that reads the , Boolean test image
boolean_test and dilates it by one and two iterations with a  structuring
element. Steps:

(a) Read the source image and zoom it by a factor of 8:1.

(b) Create a  structuring element array.

(c) Dilate the source image with one iteration.

(d) Display the zoomed destination image.

(e) Dilate the source image with two iterations.

(f) Display the zoomed destination image.

The PIKS API executable example_boolean_dilation performs this exer-
cise.

E13.2 Develop a program that reads the , Boolean test image boolean_
test and erodes it by one and two iterations with a  structuring element.
Steps:

(a) Read the source image and zoom it by a factor of 8:1.

(b) Create a  structuring element array.

(c) Erode the source image with one iteration.

(d) Display the zoomed destination image.

(e) Erode the source image with two iterations.

(f) Display the zoomed destination image.

64 64×
3 3×

3 3×

64 64×
3 3×

3 3×
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The PIKS API executable example_boolean_erosion performs this exercise. 

E13.3 Develop a program that performs gray scale dilation on an unsigned integer,
8-bit, monochrome image with a  zero-value structuring element and a

 TRUE state mask. Steps:

(a) Display the source image.

(b) Create a  Boolean mask.

(c) Perform grey scale dilation on the source image.

(d) Display the destination image.

The PIKS API executable example_dilation_grey_ND performs this exer-
cise.

E13.4 Develop a program that performs gray scale erosion on an unsigned integer,
8-bit, monochrome image with a  zero-value structuring element and a 
TRUE state mask. Steps:

(a) Display the source image.

(b) Create a  Boolean mask.

(c) Perform grey scale erosion on the source image.

(d) Display the destination image.

The PIKS API executable example_erosion_grey_ND performs this exercise.
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EDGE DETECTION

Changes or discontinuities in an image amplitude attribute such as luminance or tri-
stimulus value are fundamentally important primitive characteristics of an image
because they often provide an indication of the physical extent of objects within the
image. Local discontinuities in image luminance from one level to another are called
luminance edges. Global luminance discontinuities, called luminance boundary seg-
ments, are considered in Section 16.4. In this chapter, the definition of a luminance
edge is limited to image amplitude discontinuities between reasonably smooth
regions. Discontinuity detection between textured regions is considered in Section
16.5. This chapter also considers edge detection in color images, as well as the
detection of lines and spots within an image.

14.1. EDGE, LINE AND SPOT MODELS

Figure 14.1-1a is a sketch of a continuous domain, one-dimensional ramp edge
modeled as a ramp increase in image amplitude from a low to a high level, or vice
versa. The edge is characterized by its height, slope angle and horizontal coordinate
of the slope midpoint. An edge exists if the edge height is greater than a specified
value. An ideal edge detector should produce an edge indication localized to a single
pixel located at the midpoint of the slope. If the slope angle of Figure 14.1-1a is 90°,
the resultant edge is called a step edge, as shown in Figure 14.1-1b. In a digital
imaging system, step edges usually exist only for artificially generated images such
as test patterns and bi-level graphics data. Digital images, resulting from digitization 
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of optical images of real scenes, generally do not possess step edges because the anti-
aliasing low-pass filtering prior to digitization reduces the edge slope in the digital
image caused by any sudden luminance change in the scene. The one-dimensional
profile of a line is shown in Figure 14.1-1c. In the limit, as the line width w
approaches zero, the resultant amplitude discontinuity is called a roof edge.

Continuous domain, two-dimensional models of edges and lines assume that the
amplitude discontinuity remains constant in a small neighborhood orthogonal to the
edge or line profile. Figure 14.1-2a is a sketch of a two-dimensional edge. In addi-
tion to the edge parameters of a one-dimensional edge, the orientation of the edge
slope with respect to a reference axis is also important. Figure 14.1-2b defines the
edge orientation nomenclature for edges of an octagonally shaped object whose
amplitude is higher than its background.

FIGURE 14.1-1. One-dimensional, continuous domain edge and line models.
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Figure 14.1-3 contains step and unit width ramp edge models in the discrete
domain. The vertical ramp edge model in the figure contains a single transition pixel
whose amplitude is at the mid value of its neighbors. This edge model can be obtained
by performing a  pixel moving window average on  the vertical step edge
model. The figure also contains two versions of a diagonal ramp edge. The single-
pixel transition model contains a single mid value transition pixel between the
regions of high-amplitude and low-amplitude; the smoothed transition model is gen-
erated by a  pixel moving window average of the diagonal step edge model.
Figure 14.1-3 also presents models for a discrete step and ramp corner edge. The
edge location for discrete step edges is usually marked at the higher-amplitude side
of an edge transition. For the single-pixel transition model and the smoothed transi-
tion vertical and corner edge models, the proper edge location is at the transition
pixel. The smoothed transition diagonal ramp edge model has a pair of adjacent pix-
els in its transition zone. The edge is usually marked at the higher-amplitude pixel of
the pair. In Figure 14.1-3, the edge pixels are italicized.

FIGURE 14.1-2. Two-dimensional, continuous domain edge model.
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Discrete two-dimensional single-pixel line models are presented in Figure 14.1-4
for step lines and unit width ramp lines. The single-pixel transition model has a mid
value transition pixel inserted between the high-value of the line plateau and the
low-value background. The smoothed transition model is obtained by performing a

 pixel moving window average on the step line model.
A spot, which can only be defined in two dimensions, consists of a plateau of

high amplitude against a lower amplitude background, or vice versa. Figure 14.1-5
presents single-pixel spot models in the discrete domain.

There are two generic approaches to the detection of edges, lines and spots in a
luminance image: differential detection and model fitting. With the differential detec-
tion approach, as illustrated in Figure 14.1-6, spatial processing is performed on an
original image  to produce a differential image  with accentuated spa-
tial amplitude changes. Next, a differential detection operation is executed to deter-
mine the pixel locations of significant differentials. The second general approach to

FIGURE 14.1-3. Two-dimensional, discrete domain edge models.
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edge, line or spot detection involves fitting of a local region of pixel values to a
model of the edge, line or spot, as represented in Figures 14.1-1 to 14.1-5. If the fit is
sufficiently close, an edge, line or spot is said to exist, and its assigned parameters
are those of the appropriate model. A binary indicator edge map  is often
generated to indicate the position of edges, lines or spots within an image. Typi-
cally, edge, line and spot locations are specified by black pixels against a white back-
ground.

There are two major classes of differential edge detection: first- and second-order
derivative. For the first-order class, some form of spatial first-order differentiation is
performed, and the resulting edge gradient is compared to a threshold value. An
edge is judged present if the gradient exceeds the threshold. For the second-order
derivative class of differential edge detection, an edge is judged present if there is a
significant spatial change in the polarity of the second derivative.

FIGURE 14.1-4. Two-dimensional, discrete domain line models.

E j k,( )
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FIGURE 14.1-5. Two-dimensional, discrete domain single pixel spot models.

FIGURE 14.1-6. Differential edge, line and spot detection.
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Sections 14.2 and 14.3 discuss the first-order and second-order derivative forms
of edge detection, respectively. Edge fitting methods of edge detection are consid-
ered in Section 14.4.

14.2. FIRST-ORDER DERIVATIVE EDGE DETECTION

There are two fundamental methods for generating first-order derivative edge gradi-
ents. One method involves generation of gradients in two orthogonal directions in an
image; the second utilizes a set of directional derivatives.

14.2.1. Orthogonal Gradient Generation

An edge in a continuous domain edge segment , such as the one depicted in
Figure 14.1-2a, can be detected by forming the continuous one-dimensional gradi-
ent  along a line normal to the edge slope, which is at an angle  with respect
to the horizontal axis. If the gradient is sufficiently large (i.e., above some threshold
value), an edge is deemed present. The gradient along the line normal to the edge
slope can be computed in terms of the derivatives along orthogonal axes according
to the following: (1, p. 106)

. (14.2-1)

Figure 14.2-1 describes the generation of an edge gradient  in the discrete
domain1 in terms of a row gradient  and a column gradient . The
spatial gradient amplitude is given by

. (14.2-2)

1.  The array nomenclature employed in this chapter places the origin in the upper left corner of the
array with j increasing horizontally and k increasing vertically.

FIGURE 14.2-1. Orthogonal gradient generation.

F x y,( )

G x y,( ) θ

G x y,( ) F x y,( )∂
x∂

-------------------- θcos
F x y,( )∂

y∂
-------------------- θsin+=

G x y,( )
GR j k,( ) GC j k,( )

G j k,( ) GR j k,( )[ ]2 GC j k,( )[ ]2+[ ]
1 2⁄

=

Download more at Learnclax.com



422 EDGE DETECTION

For computational efficiency, the gradient amplitude is sometimes approximated by
the magnitude combination

. (14.2-3)

The orientation of the spatial gradient with respect to the row axis is

. (14.2-4)

The remaining issue for discrete domain orthogonal gradient generation is to choose
a good discrete approximation to the continuous differentials of Eq. 14.2-1.

Small Neighborhood Gradient Operators. The simplest method of discrete gradi-
ent generation is to form the running difference of pixels along rows and columns of
the image. The row gradient is defined as

(14.2-5a)

and the column gradient is2

(14.2-5b)

As an example of the response of a pixel difference edge detector, the following
is the row gradient along the center row of the vertical step edge model of Figure
14.1-3:

In this sequence, h = b – a is the step edge height. The row gradient for the vertical
ramp edge model is

For ramp edges, the running difference edge detector cannot localize the edge to a
single pixel. Figure 14.2-2 provides examples of horizontal and vertical differencing
abolute value gradients of the monochrome peppers image. In this and subsequent
gradient display photographs, the gradient range has been scaled over the full con-
trast range of the photograph. It is visually apparent from the photograph that the

2.  These definitions of row and column gradients, and subsequent extensions, are chosen such that
GR and GC are positive for an edge that increases in amplitude from left to right and from bottom to
top in an image.

G j k,( ) GR j k,( ) GC j k,( )+=
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running difference technique is highly susceptible to small fluctuations in image
luminance and that the object boundaries are not well delineated.

Diagonal edge gradients can be obtained by forming running differences of diag-
onal pairs of pixels. This is the basis of the Roberts (2) cross-difference operator,
which is defined in magnitude form as

(14.2-6a)

and in square-root form as

(14.2-6b)

FIGURE 14.2-2. Horizontal and vertical differencing gradients of the peppers_mon image.
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where

(14.2-6c)

. (14.2-6d)

The edge orientation with respect to the row axis is

. (14.2-7)

Figure 14.2-3 presents the edge gradients of the peppers image for the Roberts oper-
ators. Visually, the objects in the image appear to be slightly better distinguished
with the Roberts square-root gradient than with the magnitude gradient. In Section
14.5, a quantitative evaluation of edge detectors confirms the superiority of the
square-root combination technique.

The pixel difference method of gradient generation can be modified to localize
the edge center of the ramp edge model of Figure 14.1-3 by forming the pixel differ-
ence separated by a null value. The row and column gradients then become

(14.2-8a)

. (14.2-8b)

FIGURE 14.2-3. Roberts gradients of the peppers_mon image.
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The row gradient response for a vertical ramp edge model is then

Although the ramp edge is properly localized, the separated pixel difference gradi-
ent generation method remains highly sensitive to small luminance fluctuations in
the image. This problem can be alleviated by using two-dimensional gradient forma-
tion operators that perform differentiation in one coordinate direction and spatial
averaging in the orthogonal direction simultaneously.

Prewitt (1, p. 108) has introduced a  pixel edge gradient operator described
by the pixel numbering convention of Figure 14.2-4. The Prewitt operator square
root edge gradient is defined as

(14.2-9a)

with

(14.2-9b)

. (14.2-9c)

where K = 1. In this formulation, the row and column gradients are normalized to
provide unit-gain positive and negative weighted averages about a separated edge
position. The Sobel operator edge detector (3, p. 271) differs from the Prewitt edge
detector in that the values of the north, south, east and west pixels are doubled (i.e.,
K = 2). The motivation for this weighting is to give equal importance to each pixel
in terms of its contribution to the spatial gradient. Frei and Chen (4) have proposed
north, south, east and west weightings by  so that the gradient is the same
for horizontal, vertical and diagonal edges. The edge gradient  for these three

FIGURE 14.2-4. Numbering convention for 3 x 3 edge detection operators.
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operators along a row through the single pixel transition vertical ramp edge model
of Figure 14.1-3 is:

Along a row through the single transition pixel diagonal ramp edge model, the gra-
dient is

In the Frei–Chen operator, with , the edge gradient is the same at the edge
center for the single-pixel transition vertical and diagonal ramp edge models.
The Prewitt gradient for a diagonal edge is 0.94 times that of a vertical edge. The
corresponding factor for a Sobel edge detector is 1.06. Consequently, the Prewitt
operator is more sensitive to horizontal and vertical edges than to diagonal edges;
the reverse is true for the Sobel operator. The gradients along a row through the
smoothed transition diagonal ramp edge model are different for vertical and diago-
nal edges for all three of the  edge detectors. None of them are able to localize
the edge to a single pixel.

Figure 14.2-5 shows examples of the Prewitt, Sobel and Frei-Chen gradients of
the peppers image. The reason that these operators visually appear to better delin-
eate object edges than the Roberts operator is attributable to their larger size, which
provides averaging of small luminance fluctuations.

The row and column gradients for all the edge detectors mentioned previously in
this subsection involve a linear combination of pixels within a small neighborhood.
Consequently, the row and column gradients can be computed by the convolution
relationships

(14.2-10a)

(14.2-10b)

where  and  are  row and column impulse response
arrays, respectively, as defined in Figure 14.2-6. It should be noted that this
specification of the gradient impulse response arrays takes into account the 180°
rotation of an impulse response array inherent to the definition of convolution in
Eq. 7.1-14.
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Large Neighborhood Gradient Operators. A limitation common to the edge gra-
dient generation operators previously defined is their inability to detect accurately
edges in high-noise environments. This problem can be alleviated by properly
extending the size of the neighborhood operators over which the differential gradi-
ents are computed. As an example, a Prewitt-type  operator has a row gradient
impulse response of the form

FIGURE 14.2-5.  Prewitt, Sobel and Frei–Chen gradients of the peppers_mon  image.
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(14.2-11)

An operator of this type is called a boxcar operator. Figure 14.2-7 presents the box-
car gradient of a  array.

FIGURE 14.2-6. Impulse response arrays for 3 x 3 orthogonal differential gradient edge 
operators.
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FIGURE 14.2-7. Boxcar, truncated pyramid, Argyle, Macleod and FDOG gradients of the 
peppers_mon image.
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Abdou (5) has suggested a truncated pyramid operator that gives a linearly
decreasing weighting to pixels away from the center of an edge. The row gradient
impulse response array for a  truncated pyramid operator is given by

 . (14.2-12)

Argyle (6) and Macleod (7,8) have proposed large neighborhood Gaussian-shaped
weighting functions as a means of noise suppression. Let

(14.2-13)

denote a continuous domain Gaussian function with standard deviation s. Utilizing
this notation, the Argyle operator horizontal coordinate impulse response array can
be expressed as a sampled version of the continuous domain impulse response

for (14.2-14a)

for (14.2-14b)

where s and t are spread parameters. The vertical impulse response function can be
expressed similarly. The Macleod operator horizontal gradient impulse response
function is given by

. (14.2-15)

The Argyle and Macleod operators, unlike the boxcar operator, give decreasing
importance to pixels far removed from the center of the neighborhood. Figure
14.2-7 provides examples of the Argyle and Macleod gradients.

Extended-size differential gradient operators can be considered to be compound
operators in which a smoothing operation is performed on a noisy image followed
by a differentiation operation. The compound gradient impulse response can be
written as

(14.2-16)

where  is one of the gradient impulse response operators of Figure 14.2-6
and  is a low-pass filter impulse response. For example, if  is the

 Prewitt row gradient operator and , for all , is a  uni-
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form smoothing operator, the resultant  row gradient operator, after normaliza-
tion to unit positive and negative gain, becomes

. (14.2-17)

The decomposition of Eq. 14.2-16 applies in both directions.
A well-known example of a compound gradient operator is the first derivative of

Gaussian (FDOG) operator, in which Gaussian-shaped smoothing is followed by
differentiation (9). The FDOG continuous domain horizontal impulse response is

(14.2-18a)

which upon differentiation yields

(14.2-18b)

Figure 14.2-7e presents an example of the FDOG gradient.

Canny Gradient Operators. All of the differential edge enhancement operators
presented previously in this subsection have been derived heuristically. Canny (9)
has taken an analytic approach to the design of such operators. Canny's development
is based on a one-dimensional continuous domain model of a step edge of amplitude
s plus additive white Gaussian noise with standard deviation . It is assumed that
edge detection is performed by convolving a one-dimensional continuous domain
noisy edge signal  with an anti-symmetric impulse response function ,
which is of zero amplitude outside the range . An edge is marked at the
local maximum of the convolved gradient . The Canny operator contin-
uous domain impulse response  is chosen to satisfy the following three criteria.

1. Good detection. The amplitude signal-to-noise ratio (SNR) of the gradient is max-
imized to obtain a low probability of failure to mark real edge points and a low
probability of falsely marking non-edge points. The SNR for the model is  (9)

(14.2-19a)
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which reduces to (10)

(14.2-19b)

2. Good localization. Edge points marked by the operator should be as close to
the center of the edge as possible. The localization factor is defined as (9)

(14.2-20a)

which reduces to (10)

(14.2-20b)

where  is the derivative of .

3. Single response. There should be only a single response to a true edge. The
distance between peaks of the gradient when only noise is present, denoted as
xm, is set to some fraction k of the operator width factor W. Thus

(14.2-21)

Canny has combined these three criteria by maximizing the product of SNR and LOC
subject to the constraint of Eq. 14.2-21. Because of the complexity of the formula-
tion, no analytic solution has been found, but a variational approach has been devel-
oped. Figure 14.2-8 contains plots of the Canny impulse response functions in terms
of xm. As noted from the figure, for low values of xm, the Canny function resembles a
boxcar function, while for xm large, the Canny function is closely approximated by a
FDOG impulse response function. Demigny and Kamle (10) have developed a dis-
crete version of Canny’s three criteria.

Tagare and deFugueiredo (11) have questioned the validity of Canny’s approxi-
mations leading to the localization measure LOC of Eq. 14.2-20. Koplowitz and
Greco (12) and Demigny and Kamle (10) have also investigated the accuracy of the
Canny localization measure. Tagare and deFugueiredo (11) have derived the follow-
ing localization measure.
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Using this measure, they have determined that the first derivative of Gaussian
impulse response function is optimal for gradient edge detection of step edges.

There have been a number of extensions of Canny’s concept of edge detection.
Bao, Zhang and Wu (13) have used Canny’s impulse response functions at two or
more scale factors, and then formed products of the resulting gradients before
thresholding. They found that this approach improved edge localization with only a
small loss in detection capability. Petrou and Kittler (14) have applied Canny’s
methodology to the detection of ramp edges. Demigny (15) has developed discrete
impulse response function versions of Canny’s detection and localization criteria for
the detection of pulse edges.

Discrete domain versions of the large operators defined in the continuous
domain can be obtained by sampling their continuous impulse response functions
over some  window. The window size should be chosen sufficiently large
that truncation of the impulse response function does not cause high-frequency
artifacts.

FIGURE 14.2-8. Comparison of Canny and first derivative of Gaussian impulse response 
functions.
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14.2.2. Edge Template Gradient Generation

With the orthogonal differential edge enhancement techniques discussed previously,
edge gradients are computed in two orthogonal directions, usually along rows and
columns, and then the edge direction is inferred by computing the vector sum of the
gradients. Another approach is to compute gradients in a large number of directions
by convolution of an image with a set of template gradient impulse response arrays.
The edge template gradient is defined as

(14.2-22a)

where

(14.2-22b)

is the gradient in the mth equi-spaced direction obtained by convolving an image
with a gradient impulse response array . The edge angle is determined by the
direction of the largest gradient.

Figure 14.2-9 defines eight gain-normalized compass gradient impulse response
arrays suggested by Prewitt (1, p. 111). The compass names indicate the slope
direction of maximum response. Kirsch (16) has proposed a directional gradient
defined by

(14.2-23a)

where

(14.2-23b)

(14.2-23c)

The subscripts of  are evaluated modulo 8. It is possible to compute the Kirsch
gradient by convolution as in Eq. 14.2-22b. Figure 14.2-9 specifies the gain-normal-
ized Kirsch operator impulse response arrays. This figure also defines two other sets
of gain-normalized impulse response arrays proposed by Robinson (17), called the
Robinson three-level operator and the Robinson five-level operator, which are
derived from the Prewitt and Sobel operators, respectively. Figure 14.2-10 provides
a comparison of the edge gradients of the peppers image for the four  template
gradient operators.
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FIGURE 14.2-9. Template gradient 3 x 3 impulse response arrays.
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Nevatia and Babu (18) have developed an edge detection technique in which the
gain-normalized  masks defined in Figure 14.2-11 are utilized to detect edges
in 30° increments. Figure 14.2-12 shows the template gradients for the peppers
image. Larger template masks will provide both a finer quantization of the edge ori-
entation angle and a greater noise immunity, but the computational requirements
increase. Paplinski (19) has developed a design procedure for n-directional template
masks of arbitrary size.

14.2.3. Threshold Selection

After the edge gradient is formed for the differential edge detection methods, the
gradient is compared to a threshold to determine if an edge exists. The threshold
value determines the sensitivity of the edge detector.  For noise-free images, the

FIGURE 14.2-10. 3 x 3 template gradients of the peppers_mon image.
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FIGURE 14.2-11. Nevatia–Babu template gradient impulse response arrays.
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threshold can be chosen such that all amplitude discontinuities of a minimum con-
trast level are detected as edges, and all others are called non-edges. With noisy
images, threshold selection becomes a trade-off between missing valid edges and
creating noise-induced false edges.

Edge detection can be regarded as a hypothesis-testing problem to determine if
an image region contains an edge or contains no edge (20). Let P(edge) and P(no-
edge) denote the a priori probabilities of these events. Then the edge detection pro-
cess can be characterized by the probability of correct edge detection,

(14.2-24a)

and the probability of false detection,

(14.2-24b)

where t is the edge detection threshold and p(G|edge) and p(G|no-edge) are the con-
ditional probability densities of the edge gradient . Figure 14.2-13 is a sketch
of typical edge gradient conditional densities. The probability of edge misclassifica-
tion error can be expressed as

(14.2-25)

FIGURE 14.2-12.  Nevatia–Babu gradient of the peppers_mon image.
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This error will be minimum if the threshold is chosen such that an edge is deemed
present when

(14.2-26)

and the no-edge hypothesis is accepted otherwise. Equation 14.2-26 defines the
well-known maximum likelihood ratio test associated with the Bayes minimum error
decision rule of classical decision theory (21). Another common decision strategy,
called the Neyman–Pearson test, is to choose the threshold t to minimize  for a
fixed acceptable  (21). 

Application of a statistical decision rule to determine the threshold value requires
knowledge of the a priori edge probabilities and the conditional densities of the edge
gradient. The a priori probabilities can be estimated from images of the class under
analysis. Alternatively, the a priori probability ratio can be regarded as a sensitivity
control factor for the edge detector. The conditional densities can be determined, in
principle, for a statistical model of an ideal edge plus noise. Abdou (5) has derived
these densities for  and  edge detection operators for the case of a ramp
edge of width w = 1 and additive Gaussian noise. Henstock and Chelberg (22) have
used gamma densities as models of the conditional probability densities.

There are two difficulties associated with the statistical approach of determining
the optimum edge detector threshold: reliability of the stochastic edge model and
analytic difficulties in deriving the edge gradient conditional densities. Another
approach, developed by Abdou and Pratt (5,20), which is based on pattern recogni-
tion techniques, avoids the difficulties of the statistical method. The pattern recog-
nition method involves creation of a large number of prototype noisy image
regions, some of which contain edges and some without edges. These prototypes
are then used as a training set to find the threshold that minimizes the
classification error. Details of the design procedure  are found  in Reference  5. 

FIGURE 14.2-13. Typical edge gradient conditional probability densities.

p G edge( )
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FIGURE 14.2-14. Edge map threshold sensitivity of the Sobel and first derivative of Gauss-
ian edge detectors for the peppers_mon image.
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442 EDGE DETECTION

Table 14.2-1 provides a tabulation of the optimum threshold for several  and
 edge detectors for an experimental design with an evaluation set of 250 proto-

types not in the training set (20). The table also lists the probability of correct and
false edge detection as defined by Eq. 14.2-24 for theoretically derived gradient
conditional densities. In the table, the threshold is normalized such that ,
where  is the maximum amplitude of the gradient in the absence of noise. The
power signal-to-noise ratio is defined as where h is the edge height
and  is the noise standard deviation. In most of the cases of Table 14.2-1, the opti-
mum threshold results in approximately equal error probabilities (i.e.,

). This is the same result that would be obtained by the Bayes design
procedure when edges and non-edges are equally probable. The tests associated with
Table 14.2-1 were conducted with relatively low signal-to-noise ratio images. Sec-
tion 14.5 provides examples of such images. For high signal-to-noise ratio images,
the optimum threshold is much lower. As a rule of thumb, under the condition that

, the edge detection threshold can be scaled linearly with signal-to-
noise ratio. Hence, for an image with SNR = 100, the threshold is about 10% of the
peak gradient value.

Figure 14.2-14 shows the edge map generation threshold sensitivity for the 
Sobel and the  FDOG edge detectors for the peppers image, which is a rela-
tively high signal-to-noise ratio image. For both edge detectors, variation of the
threshold provides a trade-off between delineation of strong edges and definition of
weak edges.

The threshold selection techniques described in this subsection are spatially
invariant. Rakesh et al. (23) have proposed a spatially adaptive threshold selection
method in which the threshold at each pixel depends upon the statistical variability
of the row and column gradients. They report improved performance with a variety
of non-adaptive edge detectors.

14.2.4. Morphological Post Processing

It is possible to improve edge delineation of first-derivative edge detectors by apply-
ing morphological operations on their edge maps. Figure 14.2-15 provides examples
for the  Sobel and  FDOG edge detectors. In the Sobel example, the
threshold is lowered slightly to improve the detection of weak edges. Then the mor-
phological majority black operation is performed on the edge map to eliminate
noise-induced edges. This is followed by the thinning operation to thin the edges to
minimally connected lines. In the FDOG example, the majority black noise smooth-
ing step is not necessary.

2 2×
3 3×

tN t GM⁄=
GM

SNR h σn⁄( )2=
σn

PF 1 PD–=

PF 1 PD–=

3 3×
11 11×

3 3× 11 11×
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FIGURE 14.2-15. Morphological thinning of edge maps for the peppers_mon image.
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14.3. SECOND-ORDER DERIVATIVE EDGE DETECTION

Second-order derivative edge detection techniques employ some form of spatial sec-
ond-order differentiation to accentuate edges. An edge is marked if a significant spa-
tial change occurs in the second derivative. Two types of second-order derivative
methods are considered: Laplacian and directed second derivative.

14.3.1. Laplacian Generation

The edge Laplacian of an image function  in the continuous domain is
defined as

(14.3-1a)

where, from Eq. 1.2-17, the Laplacian is

. (14.3-1b)

The Laplacian  is zero if  is constant or changing linearly in ampli-
tude. If the rate of change of  is greater than linear,  exhibits a sign
change at the point of inflection of . The zero crossing of  indicates
the presence of an edge. The negative sign in the definition of Eq. 14.3-la is present
so that the zero crossing of  has a positive slope for an edge whose amplitude
increases from left to right or bottom to top in an image.

Torre and Poggio (24) have investigated the mathematical properties of the
Laplacian of an image function. They have found that if  meets certain
smoothness constraints, the zero crossings of  are closed curves.

In the discrete domain, the simplest approximation to the continuous Laplacian is
to compute the difference of slopes along each axis:

. (14.3-2)

This four-neighbor Laplacian (1, p. 111) can be generated by the convolution operation

(14.3-3)

with

(14.3-4a)
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or

(14.3-4b)

where the two arrays of Eq. 14.3-4a correspond to the second derivatives along
image rows and columns, respectively, as in the continuous Laplacian of Eq. 14.3-lb.
The four-neighbor Laplacian is often normalized to provide unit-gain averages of the
positive weighted and negative weighted pixels in the  pixel neighborhood. The
gain-normalized four-neighbor Laplacian impulse response is defined by

. (14.3-5)

Prewitt (1, p. 111) has suggested an eight-neighbor Laplacian defined by the gain-
normalized impulse response array 

. (14.3-6)

This array is not separable into a sum of second derivatives, as in Eq. 14.3-4a. A
separable eight-neighbor Laplacian can be obtained by the construction

(14.3-7)

in which the difference of slopes is averaged over three rows and three columns. The
gain-normalized version of the separable eight-neighbor Laplacian is given by

. (14.3-8)

It is instructive to examine the Laplacian response to the edge models of Figure
14.1-3. As an example, the separable eight-neighbor Laplacian corresponding to the
center row of the vertical step edge model is
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where  is the edge height. The Laplacian response of the vertical ramp
edge model is

For the vertical edge ramp edge model, the edge lies at the zero crossing pixel
between the negative- and positive-value Laplacian responses. In the case of the step
edge, the zero crossing lies midway between the neighboring negative and positive
response pixels; the edge is correctly marked at the pixel to the right of the zero
crossing. The Laplacian response for a single-transition-pixel diagonal ramp edge
model is

and the edge lies at the zero crossing at the center pixel. The Laplacian response for
the smoothed transition diagonal ramp edge model of Figure 14.1-3 is

In this example, the zero crossing does not occur at a pixel location. The edge
should be marked at the pixel to the right of the zero crossing. Figure 14.3-1 shows
the Laplacian response for the two ramp corner edge models of Figure 14.1-3. The
edge transition pixels are indicated by line segments in the figure. A zero crossing
exists at the edge corner for the smoothed transition edge model, but not for the sin-
gle-pixel transition model. The zero crossings adjacent to the edge corner do not
occur at pixel samples for either of the edge models. From these examples, it can be
concluded that zero crossings of the Laplacian do not always occur at pixel samples.
But for these edge models, marking an edge at a pixel with a positive response that
has a neighbor with a negative response identifies the edge correctly.

Figure 14.3-2 shows the Laplacian responses of the peppers image for the three
types of  Laplacians. In these photographs, negative values are depicted as
dimmer than mid gray and positive values are brighter than mid gray.

Marr and Hildrith (25) have proposed the Laplacian of Gaussian (LOG) edge
detection operator in which Gaussian-shaped smoothing is performed prior to appli-
cation of the Laplacian. The continuous domain LOG gradient is

(14.3-9a)

where
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. (14.3-9b)

is the impulse response of the Gaussian smoothing function as defined by Eq.
14.2-13. As a result of the linearity of the second derivative operation and of the lin-
earity of convolution, it is possible to express the LOG response as

(14.3-10a)

where

. (14.3-10b)

Upon differentiation, one obtains

. (14.3-11)

FIGURE 14.3-1. Separable eight-neighbor Laplacian responses for ramp corner models; all 
values should be scaled by h/8.
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Figure 14.3-3 is a cross-sectional view of the LOG continuous domain impulse
response. In the literature, it is often called the Mexican hat filter. It can be shown
(26,27) that the LOG impulse response can be expressed as

.(14.3-12)

Consequently, the convolution operation can be computed separably along rows and
columns of an image. It is possible to approximate the LOG impulse response closely
by a difference of Gaussians (DOG) operator. The resultant impulse response is

. (14.3-13)

FIGURE 14.3-2.  Laplacian responses of the peppers_mon image.

H x y,( ) 1

πs
2

-------- 1 y
2

s
2

-----–
 
 
 

g x s,( )g y s,( ) 1

πs
2

-------- 1 x
2

s
2

-----–
 
 
 

g x s,( )g y s,( )+=

H x y,( ) g x s1,( )g y s1,( ) g x s2,( )g y s2,( )–=

Download more at Learnclax.com



SECOND-ORDER DERIVATIVE EDGE DETECTION 449

where . Marr and Hildrith (25) have found that the ratio  provides
a good approximation to the LOG.

A discrete domain version of the LOG operator can be obtained by sampling the
continuous domain impulse response function of Eq. 14.3-11 over a  window.
To avoid deleterious truncation effects, the size of the array should be set such that
W = 3c, or greater, where  is the width of the positive center lobe of the
LOG function (27). Figure 14.3-2d shows the LOG response of the peppers image
for a  operator.

14.3.2. Laplacian Zero-Crossing Detection

From the discrete domain Laplacian response examples of the preceding section, it
has been shown that zero crossings do not always lie at pixel sample points. In fact,
for real images subject to luminance fluctuations that contain ramp edges of varying
slope, zero-valued Laplacian response pixels are unlikely.

A simple approach to Laplacian zero-crossing detection in discrete domain
images is to form the maximum of all positive Laplacian responses and to form the
minimum of all negative-value responses in a  window. If the magnitude of the
difference between the maxima and the minima exceeds a threshold, an edge is
judged present.

Huertas and Medioni (27) have developed a systematic method for classifying
 Laplacian response patterns in order to determine edge direction. Figure

14.3-4 illustrates a somewhat simpler algorithm. In the figure, plus signs denote
positive-value Laplacian responses, and negative signs denote negative Laplacian
responses. The algorithm can be implemented efficiently using morphological
image processing techniques.

FIGURE 14.3-3. Cross section of continuous domain Laplacian of Gaussian impulse 
response.
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14.3.3. Directed Second-Order Derivative Generation

Laplacian edge detection techniques employ rotationally invariant second-order dif-
ferentiation to determine the existence of an edge. The direction of the edge can be
ascertained during the zero-crossing detection process. An alternative approach is
first to estimate the edge direction and then compute the one-dimensional second-
order derivative along the edge direction. A zero crossing of the second-order
derivative specifies an edge.

The directed second-order derivative of a continuous domain image 
along a line at an angle  with respect to the horizontal axis is given by

. (14.3-14)

It should be noted that, unlike the Laplacian, the directed second-order derivative is
a nonlinear operator. Convolving a smoothing function with  prior to differ-
entiation is not equivalent to convolving the directed second derivative of 
with the smoothing function.

FIGURE 14.3-4. Laplacian zero-crossing patterns.
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A key factor in the utilization of the directed second-order derivative edge detec-
tion method is the ability to determine its suspected edge direction accurately. One
approach is to employ some first-order derivative edge detection method to estimate
the edge direction, and then compute a discrete approximation to Eq. 14.3-14.
Another approach, proposed by Haralick (28), called facet modeling, involves
approximating  by a two-dimensional Chebshev polynomial, from which the
directed second-order derivative can be determined analytically. Pratt(4Ed., 500-
506) describes this technique.

14.4. EDGE-FITTING EDGE DETECTION

Ideal edges may be viewed as one- or two-dimensional edges of the form sketched
in Figure 14.1-1. Actual image data can then be matched against, or fitted to, the
ideal edge models. If the fit is sufficiently accurate at a given image location, an
edge is assumed to exist with the same parameters as those of the ideal edge
model.

FIGURE 14.4-1. One- and two-dimensional edge fitting.

F x y,( )
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In the one-dimensional edge-fitting case described in Figure 14.4-1, the image
signal f(x) is fitted to a step function

for (14.4-1a)

for . (14.4-1b)

An edge is assumed present if the mean-square error

(14.4-2)

is below some threshold value. In the two-dimensional formulation, the ideal step
edge is defined as

for (14.4-3a)

for (14.4-3b)

where  and  jointly specify the polar distance from the center of a circular test
region to the normal point of the edge. The edge-fitting error is

(14.4-4)

where the integration is over the circle in Figure 14.4-1.
Hueckel (29) has developed a procedure for two-dimensional edge fitting in

which the pixels within the circle of Figure 14.4-1 are expanded in a set of two-
dimensional basis functions by a Fourier series in polar coordinates. Let 
represent the basis functions. Then, the weighting coefficients for the expansions of
the image and the ideal step edge become

(14.4-5a)

. (14.4-5b)

In Hueckel's algorithm, the expansion is truncated to eight terms for computational
economy and to provide some noise smoothing. Minimization of the mean-square-error
difference of Eq. 14.4-4 is equivalent to minimization of  for all coefficients.
Hueckel has performed this minimization, invoking some simplifying approximations,
and has formulated a set of nonlinear equations expressing the estimated edge parame-
ter set in terms of the expansion coefficients .

Nalwa and Binford (30) have proposed an edge-fitting scheme in which the edge
angle is first estimated by a sequential least-squares fit within a  region. Then,
the image data along the edge direction is fit to a hyperbolic tangent function
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(14.4-6)

as shown in Figure 14.4-2.

14.5. LUMINANCE EDGE DETECTOR PERFORMANCE

Relatively few comprehensive studies of edge detector performance have been
reported in the literature (15,31-35). A performance evaluation is difficult because
of the large number of methods proposed, problems in determining the optimum
parameters associated with each technique and the lack of definitive performance
criteria.

In developing performance criteria for an edge detector, it is wise to distinguish
between mandatory and auxiliary information to be obtained from the detector.
Obviously, it is essential to determine the pixel location of an edge. Other informa-
tion of interest includes the height and slope angle of the edge as well as its spatial
orientation. Another useful item is a confidence factor associated with the edge deci-
sion, for example, the closeness of fit between actual image data and an idealized
model. Unfortunately, few edge detectors provide this full gamut of information.

The next sections discuss several performance criteria. No attempt is made to
provide a comprehensive comparison of edge detectors.

14.5.1. Edge Detection Probability

The probability of correct edge detection PD and the probability of false edge detection
PF, as specified by Eq. 14.2-24, are useful measures of edge detector performance. The
trade-off between PD and PF can be expressed parametrically in terms of the detection
threshold. Figure 14.5-1 presents analytically derived plots of PD versus PF for several
differential operators for vertical and diagonal edges and a signal-to-noise ratio of 1.0
and 10.0 (20). From these curves, it is apparent that the Sobel and Prewitt  opera-
tors are superior to the Roberts  operators. The Prewitt operator is better than the
Sobel operator for a vertical edge. But for a diagonal edge, the Sobel operator is supe-

FIGURE 14.4-2. Hyperbolic tangent edge model.
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rior. In the case of template-matching operators, the Robinson three-level and five-
level operators exhibit almost identical performance, which is superior to the Kirsch
and Prewitt compass gradient operators. Finally, the Sobel and Prewitt differential
operators perform slightly better than the Robinson three-level and Robinson five-
level operators. It has not been possible to apply this statistical approach to any of the
larger operators because of analytic difficulties in evaluating the detection probabili-
ties.

FIGURE 14.5-1. Probability of detection versus probability of false detection for 2 × 2 and 
3 × 3 operators.
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14.5.2. Edge Detection Orientation

An important characteristic of an edge detector is its sensitivity to edge orientation.
Abdou and Pratt (20) have analytically determined the gradient response of 
template matching edge detectors and  and  orthogonal gradient edge
detectors for square-root and magnitude combinations of the orthogonal gradients.
Figure 14.5-2 shows plots of the edge gradient as a function of actual edge orienta-
tion for a unit-width ramp edge model. The figure clearly shows that magni-
tude combination of orthogonal gradients is inferior to square-root combination.

Figure 14.5-3 is a plot of the detected edge angle as a function of the actual orien-
tation of an edge. The Sobel operator provides the most linear response. Laplacian
edge detectors are rotationally symmetric operators, and, hence, are invariant to
edge orientation. The edge angle can be determined to within 45° increments during
the  pixel zero-crossing detection process.   

14.5.3. Edge Detection Localization

Another important property of an edge detector is its ability to localize an edge.
Abdou and Pratt (20) have analyzed the edge localization capability of several first
derivative operators for unit width ramp edges. Figure 14.5-4 shows edge models in
which the sampled continuous ramp edge is displaced from the center of the
operator.

Figure 14.5-5 shows plots of the gradient response as a function of edge dis-
placement distance for vertical and diagonal edges for  and  orthogonal
gradient and  template matching edge detectors. All of the detectors, with the
exception of the Kirsch operator, exhibit a desirable monotonically decreasing
response as a function of edge displacement. If the edge detection threshold is set at
one-half the edge height, or greater, an edge will be properly localized in a noise-

FIGURE 14.5-2. Edge gradient response as a function of edge orientation for 2 × 2 and 3 × 3 
first derivative operators.

3 3×
2 2× 3 3×

3 3×

2 2× 3 3×
3 3×

Download more at Learnclax.com



456 EDGE DETECTION

free environment for all of the operators, with the exception of the Kirsch operator,
for which the threshold must be slightly higher.

FIGURE 14.5-3. Detected edge orientation as a function of actual edge orientation for 2 × 2 
and 3 × 3 first derivative operators.

FIGURE 14.5-4. Edge models for edge localization analysis.
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Figure 14.5-6 illustrates the gradient response of boxcar operators as a function of
their size (5). A gradient response comparison of  orthogonal gradient operators
is presented in Figure 14.5-7. For such large operators, the detection threshold must be
set relatively high to prevent smeared edge markings. Setting a high threshold will, of
course, cause low-amplitude edges to be missed. 

Ramp edges of extended width can cause difficulties in edge localization. For
first-derivative edge detectors, edges are marked along the edge slope at all points
for which the slope exceeds some critical value. Raising the threshold results in the
missing of low-amplitude edges. Second derivative edge detection methods are
often able to eliminate smeared ramp edge markings. In the case of a unit width
ramp edge, a zero crossing will occur only at the midpoint of the edge slope.
Extended-width ramp edges will also exhibit a zero crossing at the ramp midpoint
provided that the size of the Laplacian operator exceeds the slope width. Figure
14.5-8 illustrates Laplacian of Gaussian (LOG) examples (27).

FIGURE 14.5-5. Edge gradient response as a function of edge displacement distance for
2 × 2 and 3 × 3 first derivative operators.

7 7×

Download more at Learnclax.com



458 EDGE DETECTION

Berzins (36) has investigated the accuracy to which the LOG zero crossings
locate a step edge. Figure 14.5-9 shows the LOG zero crossing in the vicinity of a
corner step edge. A zero crossing occurs exactly at the corner point, but the zero-
crossing curve deviates from the step edge adjacent to the corner point. The maxi-
mum deviation is about 0.3s, where s is the standard deviation of the Gaussian
smoothing function.

FIGURE 14.5-6. Edge gradient response as a function of edge displacement distance for 
variable-size boxcar operators.

FIGURE 14.5-7 Edge gradient response as a function of edge displacement distance for sev-
eral 7 × 7 orthogonal gradient operators.
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14.5.4. Edge Detector Figure of Merit

There are three major types of error associated with determination of an edge: (1)
missing valid edge points, (2)  failure to localize edge points and (3) classification of
noise fluctuations as edge points. Figure 14.5-10 illustrates a typical edge segment in a
discrete image, an ideal edge representation and edge representations subject to var-
ious types of error.

A common strategy in signal detection problems is to establish some bound on
the probability of false detection resulting from noise and then attempt to maximize
the probability of true signal detection. Extending this concept to edge detection

FIGURE 14.5-8. Laplacian of Gaussian response of continuous domain for high- and low- 
slope ramp edges.

FIGURE 14.5-9. Locus of zero crossings in vicinity of a corner edge for a continuous Lapla-
cian of Gaussian edge detector.
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simply involves setting the edge detection threshold at a level such that the probabil-
ity of false detection resulting from noise alone does not exceed some desired value.
The probability of true edge detection can readily be evaluated by a coincidence
comparison of the edge maps of an ideal and an actual edge detector. The penalty for
non-localized edges is somewhat more difficult to access. Edge detectors that pro-
vide a smeared edge location should clearly be penalized; however, credit should be
given to edge detectors whose edge locations are localized but biased by a small
amount. Pratt (37) has introduced a figure of merit that balances these three types of
error. The figure of merit is defined by

(14.5-1)

where  and  and  represent the number of ideal and actual
edge map points, a is a scaling constant and d is the separation distance of an actual
edge point normal to a line of ideal edge points. The rating factor is normalized so

FIGURE 14.5-10. Indications of edge location.
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that R = 1 for a perfectly detected edge. The scaling factor may be adjusted to
penalize edges that are localized but offset from the true position. Normalization by
the maximum of the actual and ideal number of edge points ensures a penalty for
smeared or fragmented edges. As an example of performance, if , the rat-
ing of a vertical detected edge offset by one pixel becomes R = 0.90, and a two-pixel
offset gives a rating of R = 0.69. With , a smeared edge of three pixels
width centered about the true vertical edge yields a rating of R = 0.93, and a five-
pixel-wide smeared edge gives R = 0.84. A higher rating for a smeared edge than for
an offset edge is reasonable because it is possible to thin the smeared edge by mor-
phological postprocessing.

The figure-of-merit criterion described above has been applied to the assessment
of some of the edge detectors discussed previously, using a test image consisting of
a  pixel array with a vertically oriented edge of variable contrast and slope
placed at its center. Independent Gaussian noise of standard deviation  has been
added to the edge image. The signal-to-noise ratio is defined as 
where h is the edge height scaled over the range 0.0 to 1.0. Because the purpose of
the testing is to compare various edge detection methods, for fairness it is important
that each edge detector be tuned to its best capabilities. Consequently, each edge
detector has been permitted to train both on random noise fields without edges and
the actual test images before evaluation. For each edge detector, the threshold
parameter has been set to achieve the maximum figure-of-merit subject to the maxi-
mum allowable false detection rate.

Figure 14.5-11 shows plots of the figure of merit for a vertical ramp edge as a
function of signal-to-noise ratio for several edge detectors (5). The figure of merit is
also plotted in Figure 14.5-12 as a function of edge width. The figure-of-merit
curves in the figures follow expected trends: low for wide and noisy edges; and high
in the opposite case. Some of the edge detection methods are universally superior to
others for all test images. As a check on the subjective validity of the edge location
figure of merit, Figures 14.5-13 and 14.5-14 present the edge maps obtained for sev-
eral high-and low-ranking edge detectors. These figures tend to corroborate the util-
ity of the figure of merit. A high figure-of-merit generally corresponds to a well-
located edge upon visual scrutiny, and vice versa.

14.5.5. Subjective Assessment

In many, if not most applications in which edge detection is performed to outline
objects in a real scene, the only performance measure of ultimate importance is how
well edge detector markings match with the visual perception of object boundaries.
A human observer is usually able to discern object boundaries in a scene quite accu-
rately in a perceptual sense. However, most observers have difficulty recording their
observations by tracing object boundaries. Nevertheless, in the evaluation of edge
detectors, it is useful to assess them in terms of how well they produce outline draw-
ings of a real scene that are meaningful to a human observer.

The peppers image of Figure 14.2-2 has been used for the subjective assessment
of edge detectors. The peppers in the image are visually distinguishable objects, but
shadows and nonuniform lighting create a challenge to edge detectors, which by

a 1 9⁄=

a 1 9⁄=

64 64×
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SNR h σn⁄( )2=
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FIGURE 14.5-11. Edge location figure of merit for a vertical ramp edge as a function of sig-
nal-to-noise ratio for h = 0.1 and w = 1.

FIGURE 14.5-12. Edge location figure of merit for a vertical ramp edge as a function of sig-
nal-to-noise ratio for h = 0.1 and SNR = 100.
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FIGURE 14.5-13. Edge location performance of Sobel edge detector as a function of signal-
to-noise ratio, h = 0.1, w = 1, a = 1/9.
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FIGURE 14.5-14. Edge location performance of several edge detectors for SNR = 10,           
h = 0.1, w = 1, a = 1/9.
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definition do not utilize higher-order perceptive intelligence. Figures 14.5-15 and
14.5-16 present edge maps of the peppers image for several edge detectors. The

FIGURE 14.5-15. Edge maps of the peppers_mon image for several small edge detectors.
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parameters of the various edge detectors have been chosen to produce the best visual
delineation of objects.

FIGURE 14.5-16. Edge maps of the peppers_mon image for several large edge detectors.
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Heath et al. (34) have performed extensive visual testing of several complex edge
detection algorithms, including the Canny and Nalwa–Binford methods, for a num-
ber of natural images. The judgment criterion was a numerical rating as to how well
the edge map generated by an edge detector allows for easy, quick and accurate rec-
ognition of objects within a test image.

14.6. COLOR EDGE DETECTION

In Chapter 3, it was established that color images may be described quantitatively at
each pixel by a set of three tristimulus values T1, T2, T3, which are proportional to
the amount of red, green and blue primary lights required to match the pixel color.
The luminance of the color is a weighted sum  of the tris-
timulus values, where the  are constants that depend on the spectral characteristics
of the primaries.

Several definitions of a color edge have been proposed (38,39). An edge in a
color image can be said to exist if and only if its luminance representation contains a
monochrome edge. This definition ignores discontinuities in hue and saturation that
occur in regions of constant luminance. Figure 2 of reference 39 shows an artificial
image, which consists of a checkerboard grid of three different color squares of
identical luminance but differing hue and saturation. The color squares are visually
distinct but the color image contains no luminance edges.

Another definition is to judge a color edge present if an edge exists in any of its
constituent tristimulus components. A third definition is based on forming the sum
of the magnitudes

(14.6-1a)

or the vector sum

(14.6-1b)

of the gradients  of the three tristimulus values or some linear or nonlinear
color components. A color edge exists if the gradient  exceeds a threshold.

With the tri-component definitions of color edges, results are dependent on the
particular color coordinate system chosen for representation. Figure 14.6-1 is a color
photograph of the peppers image and monochrome photographs of its red, green and
blue components. The YIQ and L*a*b* coordinates are shown in Figure 14.6-2.
Edge maps of the individual RGB components are shown in Figure 14.6-3 for Sobel
edge detection. This figure also shows the logical OR of the RGB edge maps plus
the edge maps of the gradient sum and the vector sum. The RGB gradient vector
sum edge map provides slightly better visual edge delineation than that provided by
the gradient sum edge map; the logical OR edge map tends to produce thick edges
and numerous isolated edge points. Sobel edge maps for the YIQ and the L*a*b*
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color components are presented in Figures 14.6-4 and 14.6-5. The YIQ gradient vec-
tor sum edge map gives the best visual edge delineation, but it does not delineate
edges quite as well as the RGB vector sum edge map. Edge detection results for the
L*a*b* coordinate system are quite poor because the a* component is very noise
sensitive.

Koschan and Abidi (39) have reviewed the investigation, performed by Kanade
(40), for using the Canny operator for color edge detection. The first step in this
application is to determine the best row and column impulse response functions that
satisfy the three Canny criteria for each color component. These functions are then
applied to each component to determine the edge direction and edge magnitude
Then the color gradient is found using Eq. 14.6-1 or some other combination func-
tion. Finally, the color gradient is thresholded to create a composite edge map.
Kanade observed that the color edges better describe the visual object geometry than
the luminance edges.

FIGURE 14.6-1.  The peppers_gamma  color image and its RGB color components. For 
monochrome printers and displays, see the web site for a color representation of this figure.

(b) Red component(a) Color representation

(d) Blue component(c) Green component
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FIGURE 14.6-2. YIQ and L*a*b* color components of the peppers_gamma image.
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FIGURE 14.6-3. Sobel edge maps for edge detection using the RGB color components of 
the peppers_gamma image.
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FIGURE 14.6-4. Sobel edge maps for edge detection using the YIQ color components of the 
peppers_gamma image.
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FIGURE 14.6-5. Sobel edge maps for edge detection using the L*a*b* color components of 
the peppers_gamma image.
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14.7. LINE AND SPOT DETECTION

A line in an image could be considered to be composed of parallel, closely spaced
edges. Similarly, a spot could be considered to be a closed contour of edges.  This
method of line and spot detection involves the application of scene analysis tech-
niques to spatially relate the constituent edges of the lines and spots. The approach
taken in this chapter is to consider only small-scale models of lines and edges and to
apply the detection methodology developed previously for edges.

Figure 14.1-4 presents several discrete models of lines. For the unit-width line
models, line detection can be accomplished by threshold detecting a line gradient

(14.7-1)

where  is a  line detector impulse response array corresponding to a
specific line orientation. Figure 14.7-1 contains two sets of line detector impulse
response arrays, weighted and unweighted, which are analogous to the Prewitt and
Sobel template matching edge detector impulse response arrays. The detection of
ramp lines, as modeled in Figure 14.1-4, requires  pixel templates.

FIGURE 14.7-1. Line detector 3 × 3 impulse response arrays.
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Unit-width step spots can be detected by thresholding a spot gradient

(14.7-2)

where  is an impulse response array chosen to accentuate the gradient of a
unit-width spot. One approach is to use one of the three types of  Laplacian
operators defined by Eq. 14.3-5, 14.3-6 or 14.3-8, which are discrete approxima-
tions to the sum of the row and column second derivatives of an image. The gradient
responses to these impulse response arrays for the unit-width spot model of Figure
14.1-6a are simply replicas of each array centered at the spot, scaled by the spot
height h and zero elsewhere. It should be noted that the Laplacian gradient responses
are thresholded for spot detection, whereas the Laplacian responses are examined
for sign changes (zero crossings) for edge detection. The disadvantage to using
Laplacian operators for spot detection is that they evoke a gradient response for
edges, which can lead to false spot detection in a noisy environment. This problem
can be alleviated by the use of a  operator that approximates the continuous
cross second derivative . Prewitt (1, p. 126) has suggested the following
discrete approximation:

 . (14.7-3)

The advantage of this operator is that it evokes no response for horizontally or ver-
tically oriented edges, however, it does generate a response for diagonally oriented
edges. The detection of unit-width spots modeled by the ramp model of Figure
14.1-5 requires a  impulse response array. The cross second derivative opera-
tor of Eq. 14.7-3 and the separable eight-connected Laplacian operator are decep-
tively similar in appearance; often, they are mistakenly exchanged with one another
in the literature. It should be noted that the cross second derivative is identical to
within a scale factor with the ninth Chebyshev polynomial impulse response array
described by Pratt(4Ed., 503).

Cook and Rosenfeld (41) and Zucker et al. (42) have suggested several algo-
rithms for detection of large spots. In one algorithm, an image is first smoothed with
a  low-pass filter impulse response array. Then the value of each point in the
averaged image is compared to the average value of its north, south, east and west
neighbors spaced W pixels away. A spot is marked if the difference is sufficiently
large. A similar approach involves formation of the difference of the average pixel
amplitude in a  window and the average amplitude in a surrounding ring
region of width W. 

Chapter 18 considers the general problem of detecting objects within an image by
template matching. Such templates can be developed to detect large spots.
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14.8. EDGE DETECTION EXERCISES

E14.1 Develop a program that generates the Sobel edge gradient according to Fig-
ure 14.2-1 using a square root sum of squares gradient combination. Steps:

(a) Display the source image.

(b) Generate the horizontal and vertical Sobel impulse response arrays or
fetch them from a repository.

(c) Convolve the source image with the horizontal Sobel.

(d) Display the Sobel horizontal gradient.

(e) Convolve the source image with the vertical Sobel.

(f) Display the Sobel vertical gradient.

(g) Form the square root sum of squares of the gradients.

(h) Display the Sobel gradient.

The PIKS API executable example_sobel_gradient performs this exercise.

E14.2 Develop a program that generates the Laplacian of Gaussian gradient for a
impulse response array and a standard deviation of 2.0. Steps:

(a) Display the source image.

(b) Generate the Laplacian of Gaussian impulse response array.

(c) Convolve the source image with the Laplacian of Gaussian impulse
response array.

(d) Display the Laplacian of Gaussian gradient.

The PIKS API executable example_LoG_gradient performs this exercise.
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IMAGE FEATURE EXTRACTION

An image feature is a distinguishing primitive characteristic or attribute of an image.
Some features are natural in the sense that such features are defined by the visual
appearance of an image, while other, so called, artificial features result from specific
manipulations of an image. Natural features include the luminance of a region of
pixels and gray scale textural regions. Image amplitude histograms and spatial fre-
quency spectra are examples of artificial features.

Image features are of major importance in the isolation of regions of common
property within an image (image segmentation) and subsequent identification or
labeling of such regions (image classification). Image segmentation is discussed in
Chapter 16. References 1 to 4 provide information on image classification tech-
niques.

This chapter describes several types of image features that have been proposed
for image segmentation and classification. Before introducing them, however, meth-
ods of evaluating their performance are discussed.

15.1. IMAGE FEATURE EVALUATION

There are two quantitative approaches to the evaluation of image features: prototype
performance and figure-of-merit. In the prototype performance approach for image
classification, a prototype image with regions (segments) that have been indepen-
dently categorized is classified by a classification procedure using various image
features to be evaluated. The classification error is then measured for each feature
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set. The best set of features is, of course, that which results in the least classification
error. The prototype performance approach for image segmentation is similar in
nature. A prototype image with independently identified regions is segmented by a
segmentation procedure using a test set of features. Then, the detected segments are
compared to the known segments, and the segmentation error is evaluated. The
problems associated with the prototype performance methods of feature evaluation
are the integrity of the prototype data and the fact that the performance indication is
dependent not only on the quality of the features but also on the classification or
segmentation ability of the classifier or segmenter.

The figure-of-merit approach to feature evaluation involves the establishment of
some functional distance measurements between sets of image features such that a
large distance implies a low classification error, and vice versa. Faugeras and Pratt
(5) have utilized the Bhattacharyya distance (3) figure-of-merit for texture feature
evaluation. The method is extensible for other features as well. The Bhattacharyya
distance (B-distance for simplicity) is a scalar function of the probability densities of
features of a pair of classes defined as

(15.1-1)

where x denotes a vector containing individual image feature measurements with
conditional density . It can be shown (3) that the B-distance is related mono-
tonically to the Chernoff bound for the probability of classification error using a
Bayes classifier. The bound on the error probability is

(15.1-2)

where  represents the a priori class probability. For future reference, the Cher-
noff error bound is tabulated in Table 15.1-1 as a function of B-distance for equally
likely feature classes.

For Gaussian densities, the B-distance becomes

(15.1-3)

where ui and  represent the feature mean vector and the feature covariance matrix
of the classes, respectively. Calculation of the B-distance for other densities is gen-
erally difficult. Consequently, the B-distance figure of merit is applicable only for
Gaussian-distributed feature data, which fortunately is the common case. In prac-
tice, features to be evaluated by Eq. 15.1-3 are measured in regions whose class has
been determined independently. Sufficient feature measurements need be taken so
that the feature mean vector and covariance can be estimated accurately.
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15.2. AMPLITUDE FEATURES

The most basic of all image features is some measure of image amplitude in terms of
luminance, tristimulus value, spectral value or other units. There are many degrees
of freedom in establishing image amplitude features. Image variables such as lumi-
nance or tristimulus values may be utilized directly, or alternatively, some linear,
nonlinear, or perhaps non-invertible transformation can be performed to generate
variables in a new amplitude space. Amplitude measurements may be made at spe-
cific image points, e.g., the amplitude  at pixel coordinate , or over a
neighborhood centered at . For example, the average or mean image amplitude
in a  pixel neighborhood is given by

(15.2-1)

where W = 2w + 1. An advantage of a neighborhood, as opposed to a point measure-
ment, is a diminishing of noise effects because of the averaging process. A disadvantage
is that object edges falling within the neighborhood can lead to erroneous measure-
ments.

The median of pixels within a  neighborhood can be used as an alternative
amplitude feature to the mean measurement of Eq. 15.2-1, or as an additional
feature. The median is defined to be that pixel amplitude in the window for which
one-half of the pixels are equal or smaller in amplitude, and one-half are equal or
greater in amplitude. Another useful image amplitude feature is the neighborhood
standard deviation, which can be computed as

. (15.2-2)

TABLE 15.1-1. Relationship of Bhattacharyya Distance 
and Chernoff Error Bound

B Error Bound

 1 1.84 x 10–1

 2 6.77 x 10–2

 4 9.16 x 10–3

 6 1.24 x 10–3

 8 1.68 x 10–4

10 2.27 x 10–5

12 2.07 x 10–6
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In the literature, the standard deviation image feature is sometimes called the image
dispersion. Figure 15.2-1 shows an original image and the mean, median and stan-
dard deviation of the image computed over a small neighborhood.

The mean and standard deviation of Eqs. 15.2-1 and 15.2-2 can be computed
indirectly in terms of the histogram of image pixels within a neighborhood. This
leads to a class of image amplitude histogram features. Referring to Section 5.4, the
first-order probability distribution of the amplitude of a quantized image may be
defined as

(15.2-3)

where  denotes the quantized amplitude level for . The first-order his-
togram estimate of P(b) is simply

FIGURE 15.2-1. Image amplitude features of the  washington_ir image.
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(15.2-4)

where M represents the total number of pixels in a neighborhood window centered
about , and  is the number of pixels of amplitude  in the same window.

The shape of an image histogram provides many clues as to the character of the
image. For example, a narrowly distributed histogram indicates a low-contrast
image. A bimodal histogram often suggests that the image contains an object with a
narrow amplitude range against a background of differing amplitude. The following
measures have been formulated as quantitative shape descriptions of a first-order
histogram (6).

Mean:

(15.2-5)

Standard deviation:

(15.2-6)

Skewness:

(15.2-7)

Kurtosis:

(15.2-8)

Energy:

(15.2-9)

Entropy:

(15.2-10)
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The factor of 3 inserted in the expression for the Kurtosis measure normalizes SK to
zero for a zero-mean, Gaussian-shaped histogram. Another useful histogram shape
measure is the histogram mode, which is the pixel amplitude corresponding to the
histogram peak (i.e., the most commonly occurring pixel amplitude in the window).
If the histogram peak is not unique, the pixel at the peak closest to the mean is usu-
ally chosen as the histogram shape descriptor.

Second-order histogram features are based on the definition of the joint proba-
bility distribution of pairs of pixels. Consider two pixels  and  that
are located at coordinates  and , respectively, and, as shown in Figure
15.2-2, are separated by r radial units at an angle  with respect to the horizontal
axis. The joint distribution of image amplitude values is then expressed as

(15.2-11)

where  and  represent quantized pixel amplitude values. As a result of the dis-
crete rectilinear representation of an image, the separation parameters  may
assume only certain discrete values. The histogram estimate of the second-order dis-
tribution is

(15.2-12)

where M is the total number of pixels in the measurement window and 
denotes the number of occurrences for which  and .

If the pixel pairs within an image are highly correlated, the entries in  will
be clustered along the diagonal of the array. Various measures, listed below, have
been proposed (6,7) as measures that specify the energy spread about the diagonal of

.

Autocorrelation:

(15.2-13)

FIGURE 15.2-2. Relationship of pixel pairs.
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Covariance:

(15.2-14a)

where

(15.2-14b)

(15.2-14c)

Inertia:

(15.2-15)

Absolute value:

(15.2-16)

Inverse difference:

(15.2-17)

Energy:

(15.2-18)

Entropy:

(15.2-19)

The utilization of second-order histogram measures for texture analysis is consid-
ered in Section 15.6.
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15.3. TRANSFORM COEFFICIENT FEATURES

The coefficients of a two-dimensional transform of a luminance image specify the
amplitude of the luminance patterns (two-dimensional basis functions) of a trans-
form such that the weighted sum of the luminance patterns is identical to the image.
By this characterization of a transform, the coefficients may be considered to indi-
cate the degree of correspondence of a particular luminance pattern with an image
field. If a basis pattern is of the same spatial form as a feature to be detected within
the image, image detection can be performed simply by monitoring the value of the
transform coefficient. The problem, in practice, is that objects to be detected within
an image are often of complex shape and luminance distribution, and hence do not
correspond closely to the more primitive luminance patterns of most image trans-
forms.

Lendaris and Stanley (8) have investigated the application of the continuous two-
dimensional Fourier transform of an image, obtained by a coherent optical proces-
sor, as a means of image feature extraction. The optical system produces an electric
field radiation pattern proportional to

(15.3-1)

where  are the image spatial frequencies. An optical sensor produces an out-
put

(15.3-2)

proportional to the intensity of the radiation pattern. It should be observed that
 and  are unique transform pairs, but  is not uniquely

related to . For example,  does not change if the origin of 
is shifted. In some applications, the translation invariance of  may be a
benefit. Angular integration of  over the spatial frequency plane pro-
duces a spatial frequency feature that is invariant to translation and rotation. Repre-
senting  in polar form, this feature is defined as

(15.3-3)

where  and . Invariance to changes in scale is an
attribute of the feature

(15.3-4)
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The Fourier domain intensity pattern  is normally examined in spe-
cific regions to isolate image features. As an example, Figure 15.3-1 defines regions
for the following Fourier features:

Horizontal slit:

(15.3-5)

Vertical slit:

(15.3-6)

Ring:

(15.3-7)

Sector:

(15.3-8)

FIGURE 15.3-1. Fourier transform feature masks.

M ωx ωy,( )

S1 m( ) M ωx ωy,( ) ωx ωydd
ωy m( )

ωy m 1+( )

∞–

∞
=

S2 m( ) M ωx ωy,( ) ωx ωydd
∞–

∞
ωx m( )

ωx m 1+( )

=

S3 m( ) M ρ θ,( ) ρ θdd
0

2π
ρ m( )

ρ m 1+( )
=

S4 m( ) M ρ θ,( ) ρ θdd
θ m( )

θ m 1+( )


0

∞
=

Download more at Learnclax.com



488 IMAGE FEATURE EXTRACTION

For a discrete image array , the discrete Fourier transform

(15.3-9)

for  can be examined directly for feature extraction purposes. Hor-
izontal slit, vertical slit, ring and sector features can be defined analogous to Eqs.
15.3-5 to 15.3-8. This concept can be extended to other unitary transforms, such as
the Hadamard and Haar transforms.

15.4. TEXTURE CHARACTERIZATION

Many portions of images of natural scenes are devoid of sharp edges over large
areas. In these areas, the scene can often be characterized as exhibiting a consistent
structure analogous to the texture of cloth. Image texture measurements can be used
to segment an image and classify its segments.

Several authors have attempted qualitatively to define texture. Pickett (9) states
that “texture is used to describe two-dimensional arrays of variations.. . The ele-
ments and rules of spacing or arrangement may be arbitrarily manipulated, provided
a characteristic repetitiveness remains.” Hawkins (10) has provided a more detailed
description of texture: “The notion of texture appears to depend upon three ingredi-
ents: (1) some local ‘order’ is repeated over a region which is large in comparison to
the order’s size, (2) the order consists in the nonrandom arrangement of elementary
parts and (3) the parts are roughly uniform entities having approximately the same
dimensions everywhere within the textured region.” Although these descriptions of
texture seem perceptually reasonable, they do not immediately lead to simple quan-
titative textural measures in the sense that the description of an edge discontinuity
leads to a quantitative description of an edge in terms of its location, slope angle and
height.

Texture is often qualitatively described by its coarseness in the sense that a
patch of wool cloth is coarser than a patch of silk cloth under the same viewing
conditions. The coarseness index is related to the spatial repetition period of the
local structure. A large period implies a coarse texture; a small period implies a
fine texture. This perceptual coarseness index is clearly not sufficient as a quanti-
tative texture measure, but can at least be used as a guide for the slope of texture
measures; that is, small numerical texture measures should imply fine texture, and
large numerical measures should indicate coarse texture. It should be recognized
that texture is a neighborhood property of an image point. Therefore, texture mea-
sures are inherently dependent on the size of the observation neighborhood.
Because texture is a spatial property, measurements should be restricted to regions
of relative uniformity. Hence it is necessary to establish the boundary of a uniform
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textural region by some form of image segmentation before attempting texture
measurements.

Texture may be classified as being artificial, natural or stochastic. Artificial
textures consist of arrangements of symbols, such as line segments, dots and stars
placed against a neutral background. Several examples of artificial texture are
presented in Figure 15.4-1 (9). As the name implies, natural textures are images
of natural scenes containing semi-repetitive arrangements of pixels. Examples
include photographs of brick walls, terrazzo tile, sand and grass. Brodatz (11)
has published an album of photographs of naturally occurring textures. Figure
15.4-2 shows several natural texture examples obtained by digitizing photo-
graphs from the Brodatz album.

A discrete stochastic field is an array of numbers that are randomly distributed in
amplitude and governed by some joint probability density (12,13). When converted
to light intensities, such fields can be made to approximate natural textures surpris-
ingly well by control of the generating probability density. This technique is useful
for generating realistic appearing artificial scenes for applications such as airplane
flight simulators. Stochastic texture fields are also an extremely useful tool for
investigating human perception of texture as a guide to the development of texture
feature extraction methods.

In the early 1960s, Julesz (14) attempted to determine the parameters of stochas-
tic texture fields of perceptual importance. This study was extended later by Julesz
et al. (15–17). Further extensions of Julesz’s work have been made by Pollack (18)
Purks and Richards (19) and Pratt et al. (13,20). These studies have provided valu-
able insight into the mechanism of human visual perception and have led to some
useful quantitative texture measurement methods.

Figure 15.4-1 is a model for stochastic texture generation. In this model, an array
of independent, identically distributed random variables  passes through a
linear or nonlinear spatial operator  to produce a stochastic texture array

. By controlling the form of the generating probability density  and the
spatial operator, it is possible to create texture fields with specified statistical prop-
erties. Consider a continuous amplitude pixel  at some coordinate  in

. Let the set  denote neighboring pixels but not necessarily
nearest geometric neighbors, raster scanned in a conventional top-to-bottom, left-to-
right fashion. The conditional probability density of  conditioned on the state of
its neighbors is given by

. (15.4-1)

The first-order density  employs no conditioning, the second-order density
 implies that J = 1, the third-order density implies that J = 2, and so on.
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FIGURE 15.4-1. Artificial texture.
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FIGURE 15.4-3. Stochastic texture field generation model.

FIGURE 15.4-2. Brodatz texture fields.
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15.4.1. Julesz Texture Fields

In his pioneering texture discrimination experiments, Julesz utilized Markov process
state methods to create stochastic texture arrays independently along rows of the
array. The family of Julesz stochastic textures are described in Pratt(4Ed., 548-549).

Figure 15.4-4 contains several examples of Julesz texture field discrimination
tests performed by Pratt et al. (20). In these tests, the textures were generated
according to the presentation format of Figure 15.4-5. In these and subsequent
visual texture discrimination tests, the perceptual differences are often small. Proper
discrimination testing should be performed using high-quality photographic trans-
parencies, prints or electronic displays. The following moments were used as simple
indicators of differences between generating distributions and densities of the sto-
chastic fields.

(15.4-2a)

(15.4-2b)

(15.4-2c)

(15.5-2d)

The examples of Figure 15.4-4a and b indicate that texture field pairs differing
in their first- and second-order distributions can be discriminated. The example of
Figure 15.4-4c supports the conjecture, attributed to Julesz, that differences in
third-order, and presumably, higher-order distribution texture fields cannot be
perceived provided that their first-order and second-order distributions are pair-
wise identical.

15.4.2. Pratt, Faugeras and Gagalowicz Texture Fields

Pratt et al. (20) have extended the work of Julesz et al. (14–17) in an attempt to
study the discrimination ability of spatially correlated stochastic texture fields. A
class of Gaussian fields was generated according to the conditional probability den-
sity of Eq. 15.4-1 where the covariance matrix of the Gaussian process is of the
parametric form

(15.4-3)
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FIGURE 15.4-4. Field comparison of Julesz stochastic fields; .ηA ηB 0.500= =

Download more at Learnclax.com



494 IMAGE FEATURE EXTRACTION

FIGURE 15.4-5. Presentation format for visual texture discrimination experiments.

FIGURE 15.4-6. Row correlation factors for stochastic field generation. Dashed line, field 
A; solid line, field B.
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where  denote correlation lag terms. Figure 15.4-6 presents an example of
the row correlation functions used in the texture field comparison tests described
below.

Figures 15.4-7 and 15.4-8 contain examples of Gaussian texture field comparison
tests. In Figure 15.4-7, the first-order densities are set equal, but the second-order
nearest neighbor conditional densities differ according to the covariance function plot
of Figure 15.4-6a. Visual discrimination can be made in Figure 15.4-7, in which the
correlation parameter differs by 20%. Visual discrimination has been found to be
marginal when the correlation factor differs by less than 10% (20). The first- and
second-order densities of each field are fixed in Figure 15.4-8, and the third-order

conditional densities differ according to the plan of Figure 15.4-6b. Visual dis-
crimination is possible. The test of Figure 15.4-8 seemingly provides a counter-
example to the Julesz conjecture. In this test,  and

, but . However, the general
second-order density pairs  and  are not necessarily equal for
an arbitrary neighbor , and therefore the conditions necessary to disprove
Julesz’s conjecture are violated.

To test the Julesz conjecture for realistically appearing texture fields, it is nec-
essary  to generate a pair of fields with identical first-order densities, identical
Markovian type second-order densities, and differing third-order densities for every
pair of similar observation points in both fields. An example of such a pair of fields
is presented in Figure 15.4-9 for a non-Gaussian generating process (19). In this
example, the texture appears identical in both fields, thus supporting the Julesz
conjecture.

FIGURE 15.4-7. Field comparison of Gaussian stochastic fields with different second-order 
nearest neighbor densities; .
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Gagalowicz has succeeded in generating a pair of texture fields that disprove the
Julesz conjecture (21). However, the counterexample, shown in Figure 15.4-10,
is not very realistic in appearance. Thus, it seems likely that if a statistically based 

FIGURE 15.4-8. Field comparison of Gaussian stochastic fields with different third-order 
nearest neighbor densities; .

FIGURE 15.4-9. Field comparison of correlated Julesz stochastic fields with identical first- 
and second-order densities, but different third-order densities.

ηA ηB 0.500 σA, σB 0.167 αA, αB 0.750= = = = = =
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texture measure can be developed, it need not utilize statistics greater than
second-order.

Because a human viewer is sensitive to differences in the mean, variance and
autocorrelation function of the texture pairs, it is reasonable to investigate the
sufficiency of these parameters in terms of texture representation. Figure 15.4-11
presents examples of the comparison of texture fields with identical means, vari-

FIGURE 15.4-10. Gagalowicz counterexample.

FIGURE 15.4-11. Field comparison of correlated stochastic fields with identical means,
variances and autocorrelation functions, but different nth-order probability densities gener-
ated by different processing of the same input field. Input array consists of uniform random
variables raised to the 256th power. Moments are computed.
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ances and autocorrelation functions, but different nth-order probability densities.
Visual discrimination is readily accomplished between the fields. This leads to the
conclusion that these low-order moment measurements, by themselves, are not
always sufficient to distinguish texture fields.

15.5. TEXTURE FEATURES

As noted in Section 15.4, there is no commonly accepted quantitative definition of
visual texture. As a consequence, researchers seeking a quantitative texture measure
have been forced to search intuitively for texture features, and then attempt to evalu-
ate their performance by techniques such as those presented in Section 15.1. The
following subsections describe several texture features of historical and practical
importance. References 22 to 24 provide surveys on image texture feature extrac-
tion. Randen and Husoy (25) have performed a comprehensive study of many tex-
ture feature extraction methods.

15.5.1. Fourier Spectra Methods

Several studies (8,26,27) have considered textural analysis based on the Fourier
spectrum of an image region, as discussed in Section 15.2. Because the degree of
texture coarseness is proportional to its spatial period, a region of coarse texture
should have its Fourier spectral energy concentrated at low spatial frequencies. Con-
versely, regions of fine texture should exhibit a concentration of spectral energy at
high spatial frequencies. Although this correspondence exists to some degree, diffi-
culties often arise because of spatial changes in the period and phase of texture pat-
tern repetitions. Experiments (10) have shown that there is considerable spectral
overlap of regions of distinctly different natural texture, such as urban, rural and
woodland regions extracted from aerial photographs. On the other hand, Fourier
spectral analysis has proved successful (28,29) in the detection and classification of
coal miner’s black lung disease, which appears as diffuse textural deviations from
the norm.

15.5.2. Edge Detection Methods

Rosenfeld and Troy (30) have proposed a measure of the number of edges in a
neighborhood as a textural measure. As a first step in their process, an edge map
array  is produced by some edge detector such that  for a detected
edge and  otherwise. Usually, the detection threshold is set lower than
the normal setting for the isolation of boundary points. This texture measure is
defined as

(15.5-1)
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where  is the dimension of the observation window. A variation of this
approach is to substitute the edge gradient  for the edge map array in
Eq. 15.5-1. A generalization of this concept is presented in Section 15.5.4.

15.5.3. Autocorrelation Methods

The autocorrelation function has been suggested as the basis of a texture measure
(30). Although it has been demonstrated in the preceding section that it is possible to
generate visually different stochastic fields with the same autocorrelation function,
this does not necessarily rule out the utility of an autocorrelation feature set for nat-
ural images. The autocorrelation function is defined as

(15.5-2)

for computation over a  window with  pixel lags. Presumably, a
region of coarse texture will exhibit a higher correlation for a fixed shift  than
will a region of fine texture. Thus texture coarseness should be proportional to the
spread of the autocorrelation function. Faugeras and Pratt (5) have proposed the fol-
lowing set of autocorrelation spread measures:

(15.5-3a)

where

(15.5-3b)

. (15.5-3c)

In Eq. 15.5-3, computation is only over one-half of the autocorrelation function
because of its symmetry. Features of potential interest include the profile spreads
S(2, 0) and S(0, 2), the cross-relation S(1, 1) and the second-degree spread S(2, 2).

Figure 15.5-1 shows perspective views of the autocorrelation functions of the
four Brodatz texture examples (5). Bhattacharyya distance measurements of these
texture fields, performed by Faugeras and Pratt (5), are presented in Table 15.5-1.
These B-distance measurements indicate that the autocorrelation shape features are
marginally adequate for the set of four shape features, but unacceptable for fewer
features.  Tests by Faugeras and Pratt (5) verify that the B-distances are low for
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the stochastic field pairs of Figure 15.4-119, which have the same autocorrelation
functions but are visually distinct.

15.5.4. Decorrelation Methods

Stochastic texture fields generated by the model of Figure 15.4-3 can be described
quite compactly by specification of the spatial operator  and the stationary

FIGURE 15.5-1. Perspective views of autocorrelation functions of Brodatz texture fields.

TABLE 15.5-1. Bhattacharyya Distance of Texture Feature Sets for Prototype Texture
Fields: Autocorrelation Features

Field Pair Set 1a Set 2b Set 3c

Grass – sand 5.05 4.29 2.92

Grass – raffia 7.07 5.32 3.57

Grass – wool 2.37 0.21 0.04

Sand – raffia 1.49 0.58 0.35

Sand – wool 6.55 4.93 3.14

Raffia – wool 8.70 5.96 3.78

Average 5.21 3.55 2.30

 a1: S(2, 0), S(0, 2), S(1, 1), S(2,2).
 b2: S(1,1), S(2,2).
 c3: S(2,2).

O ·{ }
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first-order probability density p(W) of the independent, identically distributed gener-
ating process . This observation has led to a texture feature extraction proce-
dure, developed by Faugeras and Pratt (5), in which an attempt has been made to
invert the model and estimate its parameters. Figure 15.5-2 is a block diagram of
their decorrelation method of texture feature extraction. In the first step of the
method, the spatial autocorrelation function  is measured over a texture
field to be analyzed. The autocorrelation function is then used to develop a whiten-
ing filter, with an impulse response , using techniques described in Section
18.2. The whitening filter is a special type of decorrelation operator. It is used to
generate the whitened field

. (15.5-4)

This whitened field, which is spatially uncorrelated, can be utilized as an
estimate of the independent generating process  by forming its first-order
histogram. If  were known exactly, then, in principle, it could be used
to identify  from the texture observation . But, the whitened field
estimate  can only be used to identify the autocorrelation function,
which, of course, is already known. As a consequence, the texture generation
model cannot be inverted. However, the shape of the histogram of 
augmented by the shape of the autocorrelation function have proved to be useful
texture features.

Figure 15.5-3 shows the whitened texture fields of the Brodatz test images.
Figure 15.5-4 provides plots of their histograms. The whitened fields are observed
to be visually distinctive; their histograms are also different from one another.
Tables 15.5-2 and 15.5-3 list, respectively, the B-distance measurements for
histogram shape features alone, and histogram and autocorrelation shape features.
The B-distance is relatively low for some of the test textures for histogram-only
features. A combination of the autocorrelation shape and histogram shape features
provides good results, as noted in Table 15.5-3.

FIGURE 15.5-2. Decorrelation method of texture feature extraction.

W j k,( )

AF m n,( )

HW j k,( )

Ŵ j k,( ) F j k,( ) HW j k,( )O∗=

W j k,( )
W j k,( )

O ·{ } F j k,( )
Ŵ j k,( )

Ŵ j k,( )
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An obvious disadvantage of the decorrelation method of texture
measurement, as just described, is the large amount of computation involved in
generating the whitening operator. An alternative is to use an approximate
decorrelation operator. Two candidates, investigated by Faugeras and Pratt (5),
are the Laplacian and Sobel gradients. Figure 15.5-5 shows the resultant
decorrelated fields for these operators. The B-distance measurements using the
Laplacian and Sobel gradients are presented in Tables 15.5-2 and 15.5-3. These
tests indicate that the whitening operator is superior, on average, to the
Laplacian operator. But the Sobel operator yields the largest average and largest
minimum B-distances.

FIGURE 15.5-3. Whitened Brodatz texture fields.
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15.5.5. Dependency Matrix Methods

Haralick et al. (7) have proposed a number of textural features based on the joint
amplitude histogram of pairs of pixels. If an image region contains fine texture, the
two-dimensional histogram of pixel pairs will tend to be uniform, and for coarse tex-
ture, the histogram values will be skewed toward the diagonal of the histogram.
Consider the pair of pixels  and  that are separated by r radial units at
an angle  with respect to the horizontal axis. Let  represent the
two-dimensional histogram measurement of an image over some  window
where each pixel is quantized over a range . The two-dimensional his-
togram can be considered as an estimate of the joint probability distribution

. (15.5-5)

For each member of the parameter set , the two-dimensional histogram
may be regarded as a  array of numbers relating the measured statistical
dependency of pixel pairs. Such arrays have been called a gray scale dependency
matrix or a co-occurrence matrix. Because a  histogram array must be
accumulated for each image point  and separation set  under
consideration, it is usually computationally necessary to restrict the angular and
radial separation to a limited number of values. Figure 15.5-6 illustrates geometrical
relationships of histogram measurements made for four radial separation points and
angles of  radians under the assumption of angular symmetry.

FIGURE 15.5-4. First-order histograms of whitened Brodatz texture fields.

F j k,( ) F m n,( )
θ P a b j k r θ, , ,;,( )

W W×
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FIGURE 15.5-5. Laplacian and Sobel gradients of Brodatz texture fields.

FIGURE 15.5-6. Geometry for measurement of gray scale dependency matrix.
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To obtain statistical confidence in estimation of the joint probability distribution, the
histogram must contain a reasonably large average occupancy level. This can be
achieved either by restricting the number of amplitude quantization levels or by
utilizing a relatively large measurement window. The former approach results in a
loss of accuracy in the measurement of low-amplitude texture, while the latter
approach causes errors if the texture changes over the large window. A typical
compromise is to use 16 gray levels and a window of about 30 to 50 pixels on each
side. Perspective views of joint amplitude histograms of two texture fields are
presented in Figure 15.5-7.

For a given separation set , the histogram obtained for fine texture tends to
be more uniformly dispersed than the histogram for coarse texture. Texture coarse-
ness can be measured in terms of the relative spread of histogram occupancy cells
about the main diagonal of the histogram. Haralick et al. (7) have proposed a num-
ber of spread indicators for texture measurement. Several of these have been
presented in Section 15.2. As an example, the inertia function of Eq. 15.2-15 results
in a texture measure of the form

. (15.5-6)

If the textural region of interest is suspected to be angularly invariant, it is reason-
able to average over the measurement angles of a particular measure to produce the
mean textural measure (23)

(15.5-7)

where the summation is over the angular measurements, and  represents the num-
ber of such measurements. Similarly, an angular-independent texture variance may
be defined as

. (15.5-8)

Another useful measurement is the angular independent spread defined by

(15.5-9)

r θ,( )
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=
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15.5.6. Microstructure Methods

Examination of the whitened, Laplacian and Sobel gradient texture fields of Figures
15.5-3 and 15.5-5 reveals that they appear to accentuate the microstructure of the
texture. This observation was the basis of a texture feature extraction scheme devel-
oped by Laws (31), and described in Figure 15.5-8. Laws proposed that the set of
nine  pixel impulse response arrays  shown in Figure 15.5-9, be con-
volved with a texture field to accentuate its microstructure. The ith microstructure
array is defined as

. (15.6-10)

FIGURE 15.5-7. Perspective views of gray scale dependency matrices for , .

3 3× Hi j k,( )

Mi j k,( ) F j k,( ) Hi j k,( )O∗=

r 4= θ 0=
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Then, the energy of these microstructure arrays is measured by forming their mov-
ing window standard deviation  according to Eq. 15.2-2, over a window that
contains a few cycles of the repetitive texture.

FIGURE 15.5-8. Laws microstructure texture feature extraction method.

FIGURE 15.5-9. Laws microstructure impulse response arrays.

Ti j k,( )
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Figure 15.5-10 shows a mosaic of several Brodatz texture fields that have been
used to test the Laws feature extraction method. Note that some of the texture fields
appear twice in the mosaic. Figure 15.5-11 illustrates the texture arrays . In
classification tests of the Brodatz textures performed by Laws (31), the correct tex-
ture was identified in nearly 90% of the trials.

Many of the microstructure detection operators of Figure 15.5-9 have been
encountered previously in this book: the pyramid average, the Sobel horizontal and
vertical gradients, the weighted line horizontal and vertical gradients and the cross
second derivative.

 

Ade (34) has suggested a microstructure texture feature extraction procedure
similar in nature to the Laws method, which is based on a principal components
transformation of a texture sample. Manian et al. (36) have also developed a vari-
ant of the Laws microstructure. 

FIGURE 15.5-10. Mosaic of Brodatz texture fields.

Ti j k,( )
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FIGURE 15.5-11. Laws microstructure texture features.
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15.5.7. Gabor Filter Methods

The microstructure method of texture feature extraction is not easily scalable. Micro-
structure arrays must be derived to match the inherent periodicity of each   texture to be
characterized. Bovik et al. (37–39) have utilized Gabor filters (40) as an efficient means
of scaling the impulse response function arrays of Figure 15.5-8 to the texture periodicity.

A two-dimensional Gabor filter is a complex field sinusoidal grating that is
modulated by a two-dimensional Gaussian function in the spatial domain (38).
Gabor filters have tunable orientation and radial frequency passbands and tunable
center frequencies. A special case of the Gabor filter is the daisy petal filter, in
which the filter lobes radiate from the origin of the spatial frequency domain. The
continuous domain impulse response function of the daisy petal Gabor filter is
given by (38)

FIGURE 15.5-11. (continued) Laws microstructure texture features.
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 (15.5-11)

where F is a scaling factor and . The Gaussian component is

 (15.5-12)

where  is the Gaussian spread factor and  is the aspect ratio between the x and y
axes. The rotation of coordinates is specified by

(15.5-13)

where  is the orientation angle with respect to the x axis. The continuous domain
filter transfer function is given by (38)

 . (15.5-14)

Figure 15.5-14 shows the relationship between the real and imaginary compo-
nents of the impulse response array  and the magnitude of the transfer
function (38). The impulse response array is composed of sine-wave gratings
within the elliptical region. The half energy profile of the transfer function is
shown in gray.

Grigorescu et al. (41) have performed a comprehensive comparison of Gabor
filter texture features. In the comparative study of texture classification methods
by Randen and Husoy (25), the Gabor filter method, like many other methods,
gave mixed results. It performed well on some texture samples, but poorly on
others.

15.5.8. Transform and Wavelet Methods

The Fourier spectra method of texture feature extraction can be generalized to other
unitary transforms. The concept is straightforward. A  texture sample is subdi-
vided into  pixel arrays, and a unitary transform is performed for each array
yielding a  feature vector. The window size needs to large enough to contain
several cycles of the texture periodicity.

Mallat (42) has used the discrete wavelet transform, based on Haar wavelets
(see Section 8.4.2) as a means of generating texture feature vectors. Improved
results have been obtained by Unser (43), who has used a complete Haar-based
wavelet transform for a  window. In their comparative study of texture clas-
sification, Randen and Husoy (25) used several types of Daubechies transforms
up to size 10 (see Section 8.4-4).

The transform and wavelet methods provide reasonably good classification for
many texture samples (25). However, the computational requirement is high for
large windows.
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15.5.9. Singular-Value Decomposition Methods

Ashjari (44) has proposed a texture measurement method based on the singular-
value decomposition of a texture sample. In this method, a  texture sample is
treated as a  matrix X, and the amplitude-ordered set of singular values s(n)
for n = 1, 2,. . . , N is computed, as described in Appendix A1.2. If the elements of X
are spatially unrelated to one another, the singular values tend to be uniformly dis-
tributed in amplitude. On the other hand, if the elements of X are highly structured,
the singular-value distribution tends to be skewed such that the lower-order singular
values are much larger than the higher-order ones.

Figure 15.5-15 contains measurements of the singular-value distributions of the
four Brodatz textures performed by Ashjari (44). In this experiment, the 

FIGURE 15.5-14. Relationship between impulse response array and transfer function of a 
Gabor filter.

N N×
N N×

512 512×
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pixel texture originals were first subjected to a statistical rescaling process to pro-
duce four normalized texture images whose first-order distributions were Gauss-
ian with identical moments. Next, these normalized texture images were
subdivided into 196 non-overlapping  pixel blocks, and a SVD transforma-
tion was taken of each block. Figure 15.5-14 is a plot of the average value of each
singular value. The shape of the singular-value distributions can be quantified by
the one-dimensional shape descriptors defined in Section 15.2. Table 15.5-4 lists
Bhattacharyya distance measurements obtained by Ashjari (44) for the mean, stan-
dard deviation, skewness and kurtosis shape descriptors. For this experiment, the
B-distances are relatively high, and therefore good classification results should be
expected.

FIGURE 15.5-15. Singular-value distributions of Brodatz texture fields.

TABLE 15.5-4. Bhattacharyya Distance of SVD Texture     
Feature Sets for Prototype Texture Fields: SVD Features

Field Pair B-distance

Grass – sand 1.25

Grass – raffia 2.42

Grass – wool 3.31

Sand – raffia 6.33

Sand – wool 2.56

Raffia – wool 9.24

Average 4.19

32 32×
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15.6. SCALE-INVARIANT FEATURES

Many sophisticated computer vision applications, such as object recognition, image
stitching and video tracking, require the matching of an image pair, which is subject
to differences in translation, scale and rotation. Chapter 18 describes methods to
accommodate these differences singularly. This Section discusses methods in which
all mismatches are jointly handled through the use of scale invariant features.

In 1999, Lowe (45-47) developed an algorithm called Space-Invariant Feature
Transform (SIFT), which can be used to match image pairs for all three spatial dif-
ferences. Surf (48) has been developed as a faster version of SIFT.

SIFT is a relatively complex algorithm, which is beyond the scope of this book.
Reference 47 provides details of its implementation. The following is a summary of
its structure.

SIFT Algorithm Steps

1.   Construct an image scale space, which consists of a first octave, one-dimen-
sional array  of an original image  convolved with K (typically
5) Gaussian shape impulse blur functions . Minify the original image
by one-half its height, and create S images with increasing Gaussian blur. This
produces the second array octave. Repeat the procedure for, typically, four
octaves.

2.   Perform Difference of Gaussians on image scale space along each octave.

where  and  are scale factors.

3.   Find keypoints of DoG images, which are their maxima and minima.

4.   Eliminate keypoints of strong edges and low contrast regions.

5.   Assign keypoints orientation.

6.  Generate key point features.

15.7. IMAGE FEATURE EXTRACTION EXERCISES

E15.1 Develop a program that generates the  moving window mean and stan-
dard deviation features of an unsigned integer, 8-bit, monochrome image. Steps:

(a) Display the source image.

(b) Scale the source image to unit range.

L x y kσ, ,( ) I x y,( )
G x y kσ, ,( )

D x y σ, ,( ) L x y kiσ, ,( ) L x y kjσ, ,( )–=

ki kj

7 7×

Download more at Learnclax.com



REFERENCES 517

(c) Create a  uniform impulse response array.

(d) Compute the moving window mean with the uniform impulse response
array.

(e) Display the moving window mean image.

(f) Compute the moving window standard deviation with the uniform
impulse response array.

(g) Display the moving window standard deviation image.

The PIKS API executable example_amplitude_features performs this
exercise.

E15.2 Develop a program that computes the mean, standard deviation, skewness,
kurtosis, energy, and entropy first-order histogram features of an unsigned integer,
8-bit, monochrome image. Steps:

(a) Display the source image.

(b) Compute the histogram of the source image.

(c) Export the histogram and compute the histogram features.

The PIKS API executable example_histogram_features performs this
exercise.

E15.3 Develop a program that computes the nine Laws texture features of an
unsigned integer, 8-bit, monochrome image. Use a  moving window to com-
pute the standard deviation. Steps:

(a) Display the source image.

(b) Generate the nine Laws impulse response arrays or fetch them from a
repository.

(c) For each Laws array:

convolve the source image with the Laws array.

compute the moving window mean of the Laws convolution.

compute the moving window standard deviation of the Laws

     convolution image.

display the Laws texture features.

The PIKS API executable example_laws_features performs this exercise.
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IMAGE SEGMENTATION

Segmentation of an image entails the division or separation of the image into
regions of similar attribute. The most basic attribute for segmentation is image lumi-
nance amplitude for a monochrome image and color components for a color image.
Image edges and texture are also useful attributes for segmentation.

The definition of segmentation adopted in this chapter is deliberately restrictive;
no contextual information is utilized in the segmentation. Furthermore, segmenta-
tion does not involve classifying each segment. The segmenter only subdivides an
image; it does not attempt to recognize the individual segments or their relationships
to one another.

There is no theory of image segmentation. As a consequence, no single standard
method of image segmentation has emerged. Rather, there are a collection of ad hoc
methods that have received some degree of popularity. Because the methods are ad
hoc, it would be useful to have some means of assessing their performance. Haralick
and Shapiro (1) have established the following qualitative guideline for a good
image segmentation: “Regions of an image segmentation should be uniform and
homogeneous with respect to some characteristic such as gray tone or texture.
Region interiors should be simple and without many small holes. Adjacent regions
of a segmentation should have significantly different values with respect to the char-
acteristic on which they are uniform. Boundaries of each segment should be simple,
not ragged, and must be spatially accurate.” Unfortunately, no quantitative image
segmentation performance metric has been developed.

Several generic methods of image segmentation are described in the following
sections. Because of their complexity, it is not feasible to describe all the details of
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the various algorithms. Early surveys of image segmentation methods are given in
References 2 to 8.

16.1. AMPLITUDE SEGMENTATION

This section considers several image segmentation methods based on the thresholding
of luminance or color components of an image. An amplitude projection segmentation
technique is also discussed.

16.1.1. Bilevel Luminance Thresholding

Many images can be characterized as containing some object of interest of reason-
ably uniform brightness placed against a background of differing brightness. Typical
examples include handwritten and typewritten text, microscope biomedical samples
and airplanes on a runway. For such images, luminance is a distinguishing feature
that can be utilized to segment the object from its background. If an object of inter-
est is white against a black background, or vice versa, it is a trivial task to set a mid
gray threshold to segment the object from the background. Practical problems occur,
however, when the observed image is subject to noise and when both the object and
background assume some broad range of gray scales. Another frequent difficulty is
that the background may be nonuniform.

Figure 16.1-1a shows a digitized typewritten text consisting of dark letters
against a lighter background. A gray scale histogram of the text is presented in
Figure 16.1-1b. The expected bimodality of the histogram is masked by the rela-
tively large percentage of background pixels. Figure 16.1-1c to e are threshold
displays in which all pixels brighter than the threshold are mapped to unity dis-
play luminance and all the remaining pixels below the threshold are mapped to
the zero level of display luminance. The photographs illustrate a common prob-
lem associated with image thresholding. If the threshold is set too low, portions
of the letters are deleted (the stem of the letter “p” is fragmented). Conversely, if
the threshold is set too high, object artifacts result (the loop of the letter “e” is
filled in).

Several analytic approaches to the setting of a luminance threshold have been
proposed (3,9). One method is to set the gray scale threshold at a level such that
the cumulative gray scale count matches an a priori assumption of the gray scale
probability distribution (10). For example, it may be known that black charac-
ters cover 25% of the area of a typewritten page. Thus, the threshold level on the
image might be set such that the quartile of pixels with the lowest luminance are
judged to be black. Another approach to luminance threshold selection is to set
the threshold at the minimum point of the histogram between its bimodal peaks
(11). Determination of the minimum is often difficult because of the jaggedness
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FIGURE 16.1-1. Luminance thresholding segmentation of typewritten text.
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of the histogram. A solution to this problem is to fit the histogram values
between the peaks with some analytic function, and then obtain its minimum by
differentiation. For example, let y and x represent the histogram ordinate and
abscissa, respectively. Then the quadratic curve

(16.1-1)

where a, b, and c are constants provides a simple histogram approximation in the
vicinity of the histogram valley. The minimum histogram valley occurs for

. Papamarkos and Gatos (12) have extended this concept for threshold
selection.

A global threshold can be determined by minimization of some difference mea-
sure between an image to be segmented and its test segments. Otsu (13) has devel-
oped a thresholding algorithm using the Euclidean difference. Sahoo et al. (6)
have reported that the Otsu method is the best global thresholding technique
among those that they tested.

Weska et al. (14) have suggested the use of a Laplacian operator to aid in
luminance threshold selection. As defined in Eq. 15.3-1, the Laplacian forms
the spatial second partial derivative of an image. Consider an image region in
the vicinity of an object in which the luminance increases from a low plateau
level to a higher plateau level in a smooth ramp like fashion. In the flat regions
and along the ramp, the Laplacian is zero. Large positive values of the Lapla-
cian will occur in the transition region from the low plateau to the ramp; large
negative values will be produced in the transition from the ramp to the high pla-
teau. A gray scale histogram formed of only those pixels of the original image
that lie at coordinates corresponding to very high or low values of the Laplacian
tends to be bimodal with a distinctive valley between the peaks. Figure 16.1-1f
shows the histogram of the text image of Figure 16.1-1a after the Laplacian
mask operation.

If the background of an image is nonuniform, it often is necessary to adapt the
luminance threshold to the mean luminance level (15,16). This can be accom-
plished by subdividing the image into small blocks and determining the best thresh-
old level for each block by the methods discussed previously. Threshold levels for
each pixel may then be determined by interpolation between the block centers.
Yankowitz and Bruckstein (17) have proposed an adaptive thresholding method in
which a threshold surface is obtained by interpolating an image only at points
where its gradient is large.

16.1.2. Multilevel Luminance Thresholding

Effective segmentation can be achieved in some classes of images by a recursive
multilevel thresholding method suggested by Tomita et al. (18). In the first stage
of the process, the image is thresholded to separate brighter regions from darker 

y ax
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FIGURE 16.1-2. Multilevel luminance thresholding image segmentation of the peppers_ 
mon image; first-level segmentation.
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regions by locating a minimum between luminance modes of the histogram. Then,
histograms are formed of each of the segmented parts. If these histograms are not
uni-modal, the parts are thresholded again. The process continues until the histo-
gram of a part becomes unimodal. Figures 16.1-2 to 16.1-4 provide an example of
this form of amplitude segmentation in which the peppers image is segmented into
four gray scale segments.

Several methods have been proposed for the selection of multilevel thresholds.
The methods of Reddi et al. (19) and Kapur et al. (20) are based upon image histo-
grams. References 21 to 23 are more recent proposals for threshold selection.

FIGURE 16.1-3. Multilevel luminance thresholding image segmentation of the peppers_ 
mon image; second-level segmentation, 0 branch.
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16.1.3. Multilevel Color Component Thresholding

The multilevel luminance thresholding concept can be extended to the segmentation
of color and multispectral images. Ohlander et al. (24,25) have developed a segmen-
tation scheme for natural color images based on multi-dimensional thresholding of
color images represented by their RGB color components, their luma/chroma YIQ
components and by a set of nonstandard color components, loosely called intensity,
hue and saturation. Figure 16.1-5 provides an example of the property histograms
of these nine color components for a scene. The histograms, have been measured
over those parts of the original scene that are relatively devoid of texture: the non-
busy parts of the scene. This important step of the segmentation process is necessary
to avoid false segmentation of homogeneous textured regions into many isolated
parts. If the property histograms are not all unimodal, an ad hoc procedure is

FIGURE 16.1-4. Multilevel luminance thresholding image segmentation of the peppers_ 
mon image; second-level segmentation, 1 branch.
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invoked to determine the best property and the best level for thresholding of that
property. The first candidate is image intensity. Other candidates are selected on a
priority basis, depending on contrast level and location of the histogram modes.
After a threshold level has been determined, the image is subdivided into its seg-
mented parts. The procedure is then repeated on each part until the resulting
property histograms become unimodal or the segmentation reaches a reasonable
stage of separation under manual surveillance. Ohlander’s segmentation technique
using multidimensional thresholding aided by texture discrimination has proved
quite effective in simulation tests. However, a large part of the segmentation control
has been performed by a human operator; human judgment, predicated on trial
threshold setting results, is required for guidance.

FIGURE 16.1-5. Typical property histograms for color image segmentation.
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In Ohlander’s segmentation method, the nine property values are obviously
interdependent. The YIQ and intensity components are linear combinations of
RGB; the hue and saturation measurements are nonlinear functions of RGB. This
observation raises several questions. What types of linear and nonlinear transfor-
mations of RGB are best for segmentation? Ohta et al. (26) suggest an approxima-
tion to the spectral Karhunen–Loeve transform. How many property values should
be used? What is the best form of property thresholding? Perhaps answers to
these last two questions maybe forthcoming from a study of clustering techniques
in pattern recognition (27). 

Property value histograms are really the marginal histograms of a joint histo-
gram of property values. Clustering methods can be utilized to specify multidi-
mensional decision boundaries for segmentation. This approach permits utilization
of all the property values for segmentation and inherently recognizes their respec-
tive cross correlation. The following section discusses clustering methods of
image segmentation.

16.1.4. Amplitude Projection

Image segments can sometimes be effectively isolated by forming the average
amplitude projections of an image along its rows and columns (28,29). The horizon-
tal (row) and vertical (column) projections are defined as

(16.1-2)

and

. (16.1-3)

Figure 16.1-6 illustrates an application of gray scale projection segmentation of an
image. The rectangularly shaped segment can be further delimited by taking projec-
tions over oblique angles.

16.2. CLUSTERING SEGMENTATION

One of the earliest examples of image segmentation, by Haralick and Kelly (30)
using data clustering, was the subdivision of multispectral aerial images of agricul-
tural land into regions containing the same type of land cover. The clustering seg-
mentation concept is simple; however, it is usually computationally intensive.

Consider a vector  of measurements at each pixel coordinate
 in an image. The measurements could be point multispectral values, point

color components or derived color components, as in the Ohlander approach
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described previously, or they could be neighborhood feature measurements such as
the moving window mean, standard deviation and mode, as discussed in Section
16.2. If the measurement set is to be effective for image segmentation, data collected
at various pixels within a segment of common attribute should be similar. That is,
the data should be tightly clustered in an N-dimensional measurement space. If this
condition holds, the segmenter design task becomes one of subdividing the N-
dimensional measurement space into mutually exclusive compartments, each of
which envelops typical data clusters for each image segment. Figure 16.2-1 illus-
trates the concept for two features. In the segmentation process, if a measurement
vector for a pixel falls within a measurement space compartment, the pixel is
assigned the segment name or label of that compartment.

Coleman and Andrews (31) have developed a robust and relatively efficient
image segmentation clustering algorithm. Figure 16.2-2 is a flowchart that describes
a simplified version of the algorithm for segmentation of monochrome images.

FIGURE 16.1-6. Gray scale projection image segmentation of a toy tank image.

Download more at Learnclax.com



CLUSTERING SEGMENTATION 531

The first stage of the algorithm involves feature computation. In one set of experi-
ments, Coleman and Andrews used 12 mode measurements in square windows of size
1, 3, 7 and 15 pixels. The next step in the algorithm is the clustering stage, in which the
optimum number of clusters is determined along with the feature space center of each
cluster. In the segmenter, a given feature vector is assigned to its closest cluster center.

The cluster computation algorithm begins by establishing two initial trial cluster
centers. All feature vectors of an image are assigned to their closest cluster center.
Next, the number of cluster centers is successively increased by one, and a cluster-
ing quality factor  is computed at each iteration until the maximum value of  is
determined. This establishes the optimum number of clusters. When the number of
clusters is incremented by one, the new cluster center becomes the feature vector
that is farthest from its closest cluster center. The  factor is defined as

(16.2-1)

where  and  are the within-cluster and between-cluster scatter matrices,
respectively, and  denotes the trace of a matrix. The within-cluster scatter
matrix is computed as

FIGURE 16.2-1. Data clustering for two feature measurements.

FIGURE 16.2-2. Simplified version of Coleman–Andrews clustering image segmentation 
method.
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(16.2-2)

where K is the number of clusters, Mk is the number of vector elements in the kth
cluster, xi is a vector element in the kth cluster,  is the mean of the kth cluster and
Sk is the set of elements in the kth cluster. The between-cluster scatter matrix is
defined as

(16.2-3)

where  is the mean of all of the feature vectors as computed by

(16.2-4)

where M denotes the number of pixels to be clustered. Coleman and Andrews (31)
have obtained subjectively good results for their clustering algorithm in the segmen-
tation of monochrome and color images.

16.3. REGION SEGMENTATION

The amplitude and clustering methods described in the preceding sections are based
on point properties of an image. The logical extension, as first suggested by Muerle
and Allen (32), is to utilize spatial properties of an image for segmentation.

16.3.1. Region Growing

Region growing is one of the conceptually simplest approaches to image segmenta-
tion; neighboring pixels of similar amplitude are grouped together to form a
segmented region. However, in practice, constraints, some of which are reasonably
complex, must be placed on the growth pattern to achieve acceptable results.

Brice and Fenema (33) have developed a region-growing method based on a set
of simple growth rules. In the first stage of the process, pairs of pixels are combined
together in groups called atomic regions if they are of the same amplitude and are
four-connected. Two heuristic rules are next invoked to dissolve weak boundaries
between atomic boundaries. Referring to Figure 16.3-1, let R1 and R2 be two
adjacent regions with perimeters P1 and P2, respectively, which have previously
been merged. After the initial stages of region growing, a region may contain previ-
ously merged subregions of different amplitude values. Also, let C denote the
length of the common boundary and let D represent the length of that portion of C
for which the amplitude difference Y across the boundary is smaller than a signifi-
cance factor . The regions R1 and R2 are then merged if
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(16.3-1)

where  is a constant typically set at . This heuristic prevents merger of
adjacent regions of the same approximate size, but permits smaller regions to be
absorbed into larger regions. The second rule merges weak common boundaries
remaining after application of the first rule. Adjacent regions are merged if

(16.3-2)

where  is a constant set at about . Application of only the second rule
tends to overmerge regions.

The Brice and Fenema region growing method provides reasonably accurate
segmentation of simple scenes with few objects and little texture (33-35) but,
does not perform well on more complex scenes. Yakimovsky (36) has attempted
to improve the region-growing concept by establishing merging constraints based
on estimated Bayesian probability densities of feature measurements of each
region.

Adams and Bischof (37) have proposed a seeded region growing algorithm in
which a user manually selects a set of seeds  that are placed in areas of
visual homogeneity. The seeds can be single pixels for nearly noise free-images, or
they can be small clusters of pixels to provide some degree of noise tolerance for
noisy images. Then, conventional region growing proceeds with one new pixel
added to each of the n seeded regions. The process proceeds until adjacent regions
meet at a common boundary.

FIGURE 16.3-1. Region-growing geometry.
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An adaptive region growing algorithm has been developed by Chang and Li
(38). With this algorithm, an unspecified feature histogram analysis is performed
on each pair of regions, which are candidates for merging. If the feature means of
the candidate regions are within a dynamic tolerance range, the candidates are
merged.

Hojjatoleslami and Kittler (39) have proposed a novel region growing method in
which a single unassigned pixel is added to an existing region if a pair of contrast
measures are satisfied. Consider an existing region, which is surrounded by unas-
signed pixels or pixels from some other region. The internal boundary of the region
is the set of connected outermost pixels of the region. The current boundary is the
set of connected pixels adjacent to the internal boundary. In Figure 16.3-2, the inter-
nal boundary is formed by connected pixels just inside the solid line while the cur-
rent boundary is formed by connected pixels just outside the solid line. The average
contrast measure is defined to be the difference between the average grey level of
the region and the average of its current boundary pixels. The peripheral contrast
measure is defined as the difference of the grey level average of the internal bound-
ary and the average of the current boundary. Together, these two contrast measures
determine if a pixel is to be included into the current region. A single border pixel
will be subsumed into the current region if it is the maximum of its nearest neigh-
bors and if the last local maximum of the peripheral contrast occurs before the max-
imum of the average contrast measure.

Most region growing techniques have an inherent dependence upon the location
of seeds for each region. As a consequence, the segmented result is sensitive to the
location and ordering of seeds. Wan and Higgins (40) have proposed a set of region
growing algorithms, called symmetric region growing, which are insensitive to the
location of seeds.

16.3.2. Split and Merge

Split and merge image segmentation techniques (41) are based on a quad tree data
representation whereby a square image segment is broken (split) into four quadrants
if the original image segment is nonuniform in attribute. If four neighboring squares
are found to be uniform, they are replaced (merge) by a single square composed of
the four adjacent squares.

In principle, the split and merge process could start at the full image level and
initiate split operations. This approach tends to be computationally intensive.
Conversely, beginning at the individual pixel level and making initial merges
has the drawback that region uniformity measures are limited at the single pixel
level. Initializing the split and merge process at an intermediate level enables
the use of more powerful uniformity tests without excessive computation.

The simplest uniformity measure is to compute the difference between the largest
and smallest pixels of a segment. Fukada (42) has proposed the segment variance as
a uniformity measure. Chen and Pavlidis (43) suggest more complex statistical mea-
sures of uniformity. The basic split and merge process tends to produce rather
blocky segments because of the rule that square blocks are either split or merged.
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Horowitz and Pavlidis (44) have proposed a modification of the basic process
whereby adjacent pairs of regions are merged if they are sufficiently uniform. Tyagi
and Bayoumi (45) have developed a parallel processing architecture in which split
and merge operations can be performed in parallel.

16.3.3. Watershed

Topographic and hydrology concepts have proved useful in the development of
region segmentation methods (46–49). In this context, a monochrome image is
considered to be an altitude surface in which high-amplitude pixels correspond to
ridge points, and low-amplitude pixels correspond to valley points. If a drop of
water were to fall on any point of the altitude surface, it would move to a lower
altitude until it reached a local altitude minimum. The accumulation of water in  the
vicinity of a local minimum is called a catchment basin. All points that drain
into a common catchment basin are part of the same watershed. A valley is a
region that is surrounded by a ridge. A ridge is the loci of maximum gradient of
the altitude surface.

Figure 16.3-2. Rainfall watershed.
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There are two basic algorithmic approaches to the computation of the watershed
of an image: rainfall and flooding.

In the rainfall approach, local minima are found throughout the image. Each
local minima is given a unique tag. Adjacent local minima are combined with a
unique tag. Next, a conceptual water drop is placed at each un tagged pixel. The
drop moves to its lower-amplitude neighbor until it reaches a tagged pixel, at which
time it assumes the tag value. Figure 16.3-2 illustrates a section of a digital image
encompassing a watershed in which the local minimum pixel is black and the
dashed line indicates the path of a water drop to the local minimum.

In the flooding approach, conceptual single pixel holes are pierced at each local
minima, and the amplitude surface is lowered into a large body of water. The water
enters the holes and proceeds to fill each catchment basin. If a basin is about to over-
flow, a conceptual dam is built on its surrounding ridge line to a height equal to the
highest altitude ridge point. Figure 16.3-3 shows a profile of the filling process of a
catchment basin (50). Figure 16.3-4 is an example of watershed segmentation pro-
vided by Moga and Gabbouj (51).

FIGURE 16.3-3. Profile of catchment basin filling.
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FIGURE 16.3-4. Watershed image segmentation of the peppers_mon image. Courtesy of
Alina N. Moga and M. Gabbouj, Tampere University of Technology, Finland.

Simple watershed algorithms tend to produce results that are over segmented
(52). Najman and Schmitt (50,53,54) have applied morphological methods in their
watershed algorithm to reduce over segmentation. Wright and Acton (55) have per-
formed watershed segmentation on a pyramid of different spatial resolutions to
avoid over segmentation. Jackway (56) has investigated gradient watersheds. Refer-
ences 57 to 61 describe extensions and improvements to the basic watershed image
segmentation method.

16.4. BOUNDARY SEGMENTATION

It is possible to segment an image into regions of common attribute by detecting the
boundary of each region for which there is a significant change in attribute across
the boundary. Boundary detection can be accomplished by means of edge detection
as described in Chapter 15. Figure 16.4-1 illustrates the segmentation of a projectile
from its background. In this example, a  derivative of Gaussian edge detec-
tor is used to generate the edge map of Figure 16.4-1b. Morphological thinning of
this edge map results in Figure 16.4-1c. The resulting boundary appears visually to
be correct when overlaid on the original image. If an image is noisy or if its region
attributes differ by only a small amount between regions, a detected boundary may
often be broken. Edge linking techniques can be employed to bridge short gaps in
such a region boundary.

The following sections describe a number of boundary segmentation techniques.

11 11×
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16.4.1. Curve-Fitting Edge Linking

In some instances, edge map points of a broken segment boundary can be linked
together to form a closed contour by curve-fitting methods. If a priori information is
available as to the expected shape of a region in an image (e.g., a rectangle or a cir-
cle), the fit may be made directly to that closed contour. For more complex-shaped
regions, as illustrated in Figure 16.4-2, it is usually necessary to break up the sup-
posed closed contour into chains with broken links. One such chain, shown in
Figure 16.4-2 starting at point A and ending at point B, contains a single broken link.
Classical curve-fitting methods (41) such as Bezier polynomial or spline fitting can
be used to fit the broken chain.

In their book, Duda and Hart (62) credit Forsen as being the developer of a sim-
ple piecewise linear curve-fitting procedure called the iterative endpoint fit. In the

FIGURE 16.4-1. Boundary detection image segmentation of the projectile image.
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first stage of the algorithm, illustrated in Figure 16.4-3, data endpoints A and B are
connected by a straight line. The point of greatest departure from the straight-line
(point C) is examined. If the separation of this point is too large, the point becomes
an anchor point for two straight-line segments (A to C and C to B). The procedure
then continues until the data points are well fitted by line segments. The principal
advantage of the algorithm is its simplicity; its disadvantage is error caused by
incorrect data points. Ramer (63) has used a technique similar to the iterated end-
point procedure to determine a polynomial approximation to an arbitrary-shaped
closed curve. Pavlidis and Horowitz (64) have developed related algorithms for
polygonal curve fitting.

Wang et al. (65) have developed a complex, but effective, method of gap filling
of edge fragments. The method, called ratio contour, involves three steps:

preprocess an edge detector output to produce a set of topologically uncon-
nected edge fragments;

smooth the edge fragments to minimize noise effects;

estimate a curved gap filling segment between pairs of fragments.

The third step is accomplished by minimizing the following boundary cost function
(65)

                                                                                                  (16.4-1)

where W(B) is a weighted sum of the total gap length and curvature along a
boundary B and L(B) is the length of the boundary B. The minimization is accom-
plished  using  a  spline-based  curve  smoothing  algorithm (65).  Wang et al. 

FIGURE 16.4-2. Region boundary with missing links indicated by dashed lines.
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have compared their gap filling method to related algorithms (66-68) for numerous
test images, and determined that the ratio contour approach achieves as good or bet-
ter than the alternate approaches (65).

 The curve-fitting method is reasonably effective for simply structured objects.
Difficulties occur when an image contains many overlapping objects and its corre-
sponding edge map contains branch structures.

16.4.2. Heuristic Edge-Linking Methods

The edge segmentation technique developed by Roberts (69) is typical of the philos-
ophy of many heuristic edge-linking methods. In Roberts’ method, edge gradients
are examined in  pixels blocks. The pixel whose magnitude gradient is largest
is declared a tentative edge point if its magnitude is greater than a threshold value.
Then north-, east-, south- and west-oriented lines of length 5 are fitted to the gradient

FIGURE 16.4-3. Iterative endpoint curve fitting.
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data about the tentative edge point. If the ratio of the best fit to the worst fit, mea-
sured in terms of the fit correlation, is greater than a second threshold, the tentative
edge point is declared valid, and it is assigned the direction of the best fit. Next,
straight lines are fitted between pairs of edge points if they are in adjacent 
blocks and if the line direction is within  degrees of the edge direction of either
edge point. Those points failing to meet the linking criteria are discarded. A typical
boundary at this stage, shown in Figure 16.4-4a, will contain gaps and multiply con-
nected edge points. Small triangles are eliminated by deleting the longest side; small 

rectangles are replaced by their longest diagonal, as indicated in Figure 16.4-4b.
Short spur lines are also deleted. At this stage, short gaps are bridged by straight-line
connection. This form of edge linking can be used with a wide variety of edge detec-
tors. Nevatia (70) has used a similar method for edge linking of edges produced by a
Heuckel edge detector.

Robinson (71) has suggested a simple but effective edge-linking algorithm in
which edge points from an edge detector providing eight edge compass directions
are examined in  blocks as indicated in Figure 16.4-5. The edge point in the
center of the block is declared a valid edge if it possesses directional neighbors in

FIGURE 16.4-4. Roberts edge linking.
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the proper orientation. Extensions to larger windows should be beneficial, but the
number of potential valid edge connections will grow rapidly with window size.

16.4.3. Hough Transform Edge Linking

The Hough transform (72–74) can be used as a means of edge linking. The Hough
transform involves the transformation of a line in Cartesian coordinate space to a
point in polar coordinate space. With reference to Figure 16.4-6a, a straight line can
be described parametrically as

(16.4-1)

where  is the normal distance of the line from the origin and  is the angle of the
origin with respect to the x axis. The Hough transform of the line is simply a point at
coordinate  in the polar domain as shown in Figure 16.4-6b. A family of lines
passing through a common point, as shown in Figure 16.4-6c, maps into the con-
nected set of  points of Figure 16.4-6d. Now, consider the three colinear points
of Figure 16.4-6e. The Hough transform of the family of curves passing through the
three points results in the set of three parametric curves in the  space of Figure
16.4-6f. These three curves cross at a single point  corresponding to the
dashed line passing through the colinear points.

FIGURE 16.4-5. Edge linking rules.
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Duda and Hart Version. Duda and Hart (73) have adapted the Hough transform
technique for line and curve detection in discrete binary images. Each nonzero data
point in the image domain is transformed to a curve in the  domain, which
is quantized into cells. If an element of a curve falls in a cell, that particular cell is
incremented by one count. After all data points are transformed, the  cells are
examined. Large cell counts correspond to colinear data points that may be fitted by
a straight line with the appropriate  parameters. Small counts in a cell generally
indicate isolated data points that can be deleted.

FIGURE 16.4-6. Hough transform.
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Figure 16.4-7a presents the geometry utilized for the development of an algo-
rithm for the Duda and Hart version of the Hough transform. Following the notation
adopted in Section 13.1, the origin of the image is established at the upper left cor-
ner of the image. The discrete Cartesian coordinates of the image point ( j, k) are

(16.4-3a)

(16.4-3b)

Consider a line segment in a binary image , which contains a point at coordi-
nate (j, k) that is at an angle  with respect to the horizontal reference axis. When
the line segment is projected, it intersects a normal line of length  emanating from
the origin at an angle  with respect to the horizontal axis. The Hough array

 consists of cells of the quantized variables  and . It can be shown that

(16.4-4a)

(16.4-4b)

where

. (16.4-4c)

FIGURE 16.4-7. Geometry for Hough transform computation.
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For ease of interpretation, it is convenient to adopt the symmetrical limits of Figure
16.4-7b and to set M and N as odd integers so that the center cell of the Hough array
represents  and . The Duda and Hart (D & H) Hough transform algo-
rithm follows.

1. Initialize the Hough array to zero. 

2. For each ( j, k) for which , compute

(16.4-5a)

where

(16.4-5b)

is incremented over the range  under the restriction that

(16.4-6)

where

(16.4-7)

3. Determine the m index of the quantized rho value.

(16.4-8)

where  denotes the nearest integer value of its argument.

4. Increment the Hough array.

. (16.4-9)

It is important to observe the restriction of Eq. 16.4-6; not all  combinations are
legal for a given pixel coordinate (j, k).

Computation of the Hough array requires on the order of N evaluations of Eqs.
16.4-4 to 16.4-9 for each nonzero pixel of . The size of the Hough array is not
strictly dependent on the size of the image array. However, as the image size
increases, the Hough array size should also be increased accordingly to maintain
computational accuracy of rho and theta. In most applications, the Hough array size
should be set at least one quarter the image size to obtain reasonably accurate results.

Figure 16.4-8 presents several examples of the D & H version of the Hough trans-
form. In these examples,   and  . The Hough arrays
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have been flipped bottom to top for display purposes so that the positive rho and
positive theta quadrant is in the normal Cartesian first quadrant (i.e., the upper right
quadrant).

O’Gorman and Clowes Version. O’Gorman and Clowes (75) have proposed a
modification of the Hough transformation for linking edge points in an image. In
their procedure, the angle  for entry in  space is obtained from the gradient
direction of an edge. The corresponding  value is then computed from Eq. 16.4-4
for an edge coordinate (j, k). However, instead of incrementing the  cell by
unity, the cell is incremented by the edge gradient magnitude in order to give greater
importance to strong edges than weak edges.

The following is an algorithm for computation of the O’Gorman and Clowes (O
& C) version of the Hough transform. Figure 16.4-7a defines the edge angles refer-
enced in the algorithm.

1. Initialize the Hough array to zero.

2. Given a gray scale image , generate a first-order derivative edge gra-
dient array  and an edge gradient angle array  using one of the
edge detectors described in Section 15.2.1.

3. For each (j, k) for which , where T is the edge detector threshold
value, compute

(16.4-10)

where

 for (16.4-11a)

for (16.4-11b)

with                      (16.4-12)

and

for (16.4-13a)

for (16.4-13b)

for (16.4-13c)
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FIGURE 16.4-8.  Duda and Hart version of the Hough transform.
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4. Determine the m and n indices of the quantized rho and theta values.

(16.4-14a)

. (16.4-14b)

5. Increment the Hough array. 

. (16.4-15)

Figure 16.4-9 gives an example of the O’Gorman and Clowes version of the
Hough transform. The original image is  pixels, and the Hough array is of
size  cells. The Hough array has been flipped bottom to top for display.

Kesidis and Papamarkos (76) have developed an algorithm for computing an
inverse Hough transform (IHT) of a binary image. The algorithm detects peaks of
the sinusoidal curves in the Hough transform (HT) space and decomposes each sinu-
soid to produce an image identical to the original image except for relatively minor
quantization error effects. They propose filtering in the HT space as a means of
extracting image edges on the basis of their size, orientation and location.

The task of detecting straight lines in a gray scale image has been formulated
by Aggarwal and Karl (77) as an inverse problem. This formulation, based upon
an inverse Radon transformation,1 relates the location and orientation of image
lines to the input image such that constraints can be established to suppress
image noise.

Hough Transform Edge Linking.  The Hough transform can be used for edge link-
ing in the following manner. Each  cell whose magnitude is sufficiently large
defines a straight line that passes through the original image. If this line is overlaid
with the image edge map, it should cover the missing links of straight-line edge seg-
ments, and therefore, it can be used as a mask to fill-in the missing links using some
heuristic method, such as those described in the preceding section. Another
approach, described below, is to use the line mask as a spatial control function for
morphological image processing.

1. S. R. Deans (78) has proved that a Hough transform can be computed as a special case of the
Radon transform.
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Figure 16.4-10 presents an example of Hough transform morphological edge
linking. Figure 16.4-10a is an original image of a noisy octagon, and Figure 16.4-
10b shows an edge map of the original image obtained by Sobel edge detection fol-
lowed by morphological thinning, as defined in Section 14.3. Although this form of
edge detection performs reasonably well, there are gaps in the contour of the object
caused by image noise. Figure 16.4-10c shows the D & H version of the Hough
transform. The eight largest cells in the Hough array have been used to generate the
eight Hough lines shown as gray lines overlaid on the original image in Figure 16.4-
10d. These Hough lines have been widened to a width of 3 pixels and used as a
region-of-interest (ROI) mask that controls the edge linking morphological process-
ing such that the processing is performed only on edge map pixels within the ROI.
Edge map pixels outside the ROI are left unchanged. The morphological processing
consists of three iterations of  pixel dilation followed by five iterations of 
pixel thinning. The linked edge map is presented in Figure 16.4-10f.

FIGURE 16.4-9.  O’Gorman and Clowes version of the Hough transform of the building
image.
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FIGURE 16.4-10. Hough transform morphological edge linking.
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16.4.4. Snakes Boundary Detection

Snakes, developed by Kass et al. (79), is a method of molding a closed contour to
the boundary of an object in an image. The snake model is a controlled continuity
closed contour that deforms under the influence of internal forces, image forces and
external constraint forces. The internal contour forces provide a piecewise smooth-
ness constraint. The image forces manipulate the contour toward image edges. The
external forces are the result of the initial positioning of the contour by some a priori
means.

Let  denote a parametric curve in the continuous domain
where s is the arc length of the curve. The continuous domain snake energy is
defined as (79)

(16.4-16)

where  denotes the internal energy of the contour due to bending or discontinui-
ties,  represents the image energy and  is the constraint energy. In the discrete
domain, the snake energy is

(16.4-17)

where  for  represents the discrete contour. The location
of a snake corresponds to the local minima of the energy functional of Eq. 16.4-16.

Kass et al. (79) have derived a set of N differential equations whose solution min-
imizes the snake energy. Samadani (80) has investigated the stability of these snake
model solutions. The greedy algorithm (81,82) expresses the internal snake energy
in terms of its continuity energy  and curvature energy  as

(16.4-18)

where  and  control the elasticity and rigidity of the snake model. The
continuity energy is defined as

(16.4-19)

and the curvature energy is defined as

(16.4-19)
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where d is the average curve length and  represents the eight neighbors of a
point  for .

The conventional snake model algorithms suffer from the inability to mold a
contour to severe object concavities. Another problem is the generation of false
contours due to the creation of unwanted contour loops. Ji and Yan (83) have devel-
oped a loop-free snake model segmentation algorithm that overcomes these prob-
lems. Figure 16.4-11 illustrates the performance of their algorithm. Figure 16.4-11a
shows the initial  contour around the  pliers object, Figure 16.4-11b is the seg-
mentation using the greedy algorithm and Figure 16.4-11c is the result with the
loop-free algorithm.

Brigger, Hoeg and Unser (84) and Sakalli, Lam and Yan (85) have proposed
refinements that improve the speed of the snakes algorithm. A problem with the
basic snake algorithm is that it sometimes converges to a local minima, which is
not on the true boundary of an object. Park and Keller (86) have combined the
snake method with watershed segmentation as a means of avoiding local min-
ima. Nguyn, Worring and van den Boomgaard (87) have also combined the
snake algorithm with watershed segmentation to obtain smoother contours of
segmented objects. Xie and Mirmehdi (88) have combined the snake algorithm
with a form of region segmentation to create a segmentation method, which is
more tolerant to weak edges and image noise.

16.5. TEXTURE SEGMENTATION

It has long been recognized that texture should be a valuable feature for image seg-
mentation. Putting this proposition to practice, however, has been hindered by the
lack of a reliable and computationally efficient means of texture measurement.

One approach to texture segmentation, fostered by Rosenfeld et al. (89–91), is to
compute some texture coarseness measure at all image pixels and then detect
changes in the coarseness of the texture measure. In effect, the original image is pre-
processed to convert texture to an amplitude scale for subsequent amplitude seg-
mentation. A major problem with this approach is that texture is measured over a
window area, and therefore, texture measurements in the vicinity of the boundary
between texture regions represent some average texture computation. As a result, it
becomes difficult to locate a texture boundary accurately.

Another approach to texture segmentation is to detect the transition between
regions of differing texture. The basic concept of texture edge detection is identical
to that of luminance edge detection; the dissimilarity between textured regions is
enhanced over all pixels in an image, and then the enhanced array is thresholded to
locate texture discontinuities. Thompson (92) has suggested a means of texture
enhancement analogous to the Roberts gradient presented in Section 15.2. Texture
measures are computed in each of four adjacent  pixel subregions scanned
over the image, and the sum of the cross-difference magnitudes is formed and thres-
holded to locate significant texture changes. This method can be generalized to
include computation in adjacent windows arranged in  groups. Then, the result-
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ing texture measures of each window can be combined in some linear or nonlinear
manner analogous to the  luminance edge detection methods of Section 14.2.

Zucker et al. (93) have proposed a histogram thresholding method of texture seg-
mentation based on a texture analysis technique developed by Tsuji and Tomita (94).
In this method, a texture measure is computed at each pixel by forming the spot gra-
dient followed by a dominant neighbor suppression algorithm. Then a histogram is
formed over the resultant modified gradient data. If the histogram is multimodal,
thresholding of the gradient at the minimum between histogram modes should pro-
vide a segmentation of textured regions. The process is repeated on the separate
parts until segmentation is complete.

Section 16.6.7 has discussed the utilization of tunable Gabor filters as a means
of texture analysis. Bovik et al. (95) have proposed using a bank of Gabor filters
of multiple narrow spatial frequency and orientation for texture segmentation.
Boundaries between adjacent textural regions can be detected by comparing
changes in the channel amplitude responses (95). Dunn and Higgins (96) have

FIGURE 16.4-11. Snakes image segmentation of the pliers image. Courtesy of Lilian Ji 
and Hong Yan, University of Sydney, Australia.
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developed a design procedure for determining optimal Gabor filter parameters
for texture segmentation.

Texture feature extraction using a wavelet transform has been introduced in
Section 16.6.8. Unser (97) has suggested a method of texture segmentation using
wavelets in which the wavelet variances are estimated. Hsin (98) has proposed a
modulated wavelet transform as an improvement of the basic wavelet transform.

Rushing et al. (99) have developed a novel texture segmentation method based
upon association rules. In data mining applications, association rules are used to
determine relationships between items in large data sets. For example, items might
be books of a certain topic that a buyer orders from an internet bookstore. If a buyer
purchases a book of that topic (Digital Image Processing), the buyer is likely to buy
another book of that topic. Rushing et al. have developed association rules that cap-
ture frequently occurring local intensity variations in textural images.There have
been several proposals for hybrid texture segmentation schemes, which utilize some
combination of edge, amplitude boundary, texture gradient, Gabor filter or active
contours methods. Ma and Manjunath (100) have proposed a method, called Edge-
Flow, in which the direction of change in amplitude and texture at each pixel is used
to guide the segmentation. Hill et al. (101) have developed a hybrid method in
which a wavelet transform is used to obtain a texture gradient. A watershed trans-
form is applied to the texture gradient to obtain a segmentation. Sagiv et al. (102)
have used Gabor filters to generate feature vectors, which are processed by a geode-
sic active contours algorithm. All three schemes have reported good texture segmen-
tation, but on different data sets; so that a performance comparison is not possible.

The texture segmentation methods, previously presented, have all been applied to
gray scale images. They can be applied to color images, simplistically, by combin-
ing the red, green and blue components to form a luminance-like image, and then
segmenting the luminance image. Alternatively, texture segmentation can be per-
formed separately on the RGB components, and the three segmentations can be
combined is some heuristic manner. In the following, three non-simplistic color tex-
ture segmentation methods are described at a high (non detailed) level.

Mirmehdi and Petrou (103) have developed a complex, but effective, color tex-
ture segmentation algorithm. Its key point is that the RGB image to be segmented is
linearly transformed to obtain three color components that represent the luminance,
the red-green and the blue-yellow content of the image. In subsequent steps, the
three color components are processed in parallel. The next step is to smooth the
color components to several levels of coarse to fine resolution. The red-green and
blue-yellow components are blurred more than the luminance component. The
remaining steps in the algorithm, described in detail in reference 103, consist of
clustering segmentation at different blur levels followed by multi scale probabilistic
relaxation.

Deng and Manjunath have proposed an algorithm that first performs a gross color
re-quantization that produces color class maps. Region growing is performed on the
class maps to effect the segmentation.

Chen et al. (104) have developed an algorithm in which a luminance compo-
nent is derived from a RGB image. Gray scale feature extraction is then per-
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formed on the luminance image. In parallel, a small set of dominant color features
are extracted from the RGB image. Then a crude segmentation is performed using
the two sets of features. Finally, an iterative border process is performed to refine
the segmentation. See reference 103 for details. All three color texture segmenta-
tion algorithms perform well on experimental images. As with the gray level
methods, the test data sets are different. So a relative performance assessment is
not possible.

In summary, a relatively large number of heuristic texture segmentation
methods have been described in order from simple to complex. As might be
expected, the simpler methods do not perform very well on cluttered images.
The more complex methods fare better on cluttered images, but they require
considerable computation.

16.6. SEGMENT LABELING

The result of any successful image segmentation is the unique labeling of each pixel
that lies within a specific distinct segment. One means of labeling is to append to
each pixel of an image the label number or index of its segment. A more succinct
method is to specify the closed contour of each segment. If necessary, contour filling
techniques (41) can be used to label each pixel within a contour. The following
describes two common techniques of contour following.

The contour following approach to image segment representation is commonly
called bug following. In the binary image example of Figure 16.6-1, a conceptual
bug begins marching from the white background to the black pixel region indicated
by the closed contour. When the bug crosses into a black pixel, it makes a left turn

FIGURE 16.6-1. Contour following.
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and proceeds to the next pixel. If that pixel is black, the bug again turns left, and if
the pixel is white, the bug turns right. The procedure continues until the bug returns
to the starting point. This simple bug follower may miss spur pixels on a boundary.
Figure 16.6-2a shows the boundary trace for such an example. This problem can be
overcome by providing the bug with some memory and intelligence that permit the
bug to remember its past steps and backtrack if its present course is erroneous.

Figure 16.6-2b illustrates the boundary trace for a backtracking bug follower. In
this algorithm, if the bug makes a white-to-black pixel transition, it returns to its pre-
vious starting point and makes a right turn. The bug makes a right turn whenever it
makes a white-to-white transition. Because of the backtracking, this bug follower
takes about twice as many steps as does its simpler counterpart.

While the bug is following a contour, it can create a list of the pixel coordinates
of each boundary pixel. Alternatively, the coordinates of some reference pixel on the
boundary can be recorded, and the boundary can be described by a relative move-
ment code. One such simple code is the crack code (106), which is generated for
each side p of a pixel on the boundary such that C(p) = 0, 1, 2, 3 for movement to the
right, down, left, or up, respectively, as shown in Figure 16.6-3. The crack code for
the object of Figure 16.6-2 is as follows:

FIGURE 16.6-2. Comparison of bug follower algorithms.

FIGURE 16.6-3. Crack code definition.
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p: 1 2 3 4 5 6 7 8 9 10 11 12

C(p):    0 1 0 3 0 1 2 1 2 2 3 3

Upon completion of the boundary trace, the value of the index p is the perimeter of
the segment boundary. Section 18.2 describes a method for computing the enclosed
area of the segment boundary during the contour following.

Freeman (107,108) has devised a method of boundary coding, called chain cod-
ing, in which the path from the centers of connected boundary pixels are represented
by an eight-element code. Figure 16.6-4 defines the chain code and provides an
example of its use. Freeman has developed formulas for perimeter and area calcula-
tion based on the chain code of a closed contour.

Zingaretti et al. (109) have developed a fast, single pass algorithm for the coding
of region boundaries.

FIGURE 16.6-4. Chain coding contour coding.
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16.7. IMAGE SEGMENTATION EXERCISES

E16.1 Develop a program that thresholds the monochrome image parts and dis-
plays the thresholded image. Determine the threshold value that provides the best
visual segmentation. Steps:

(a) Display the source image.

(b) Threshold the source image into a Boolean destination image.

(c) Display the destination image.

The PIKS API executable example_threshold performs this exercise.

E16.2 Develop a program that locates and tags the watershed segmentation local
minima in the monochrome image segmentation_test. Steps:

(a) Display the source image.

(b) Generate a 3 x 3 Boolean mask.

(c) Erode the source image into a work image with the Boolean mask.

(d) Compute the local minima of the work image.

(e) Display the local minima image.

The PIKS API executable example_watershed performs this exercise.
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SHAPE ANALYSIS

Several qualitative and quantitative techniques have been developed for characteriz-
ing the shape of objects within an image. These techniques are useful for classifying
objects in a pattern recognition system, and for symbolically describing objects in an
image understanding system. Some of the techniques apply only to binary-valued
images; others can be extended to gray level images.

17.1. TOPOLOGICAL ATTRIBUTES

Topological shape attributes are properties of a shape that are invariant under rubber-
sheet transformation (1–3). Such a transformation or mapping can be visualized as
the stretching of a rubber sheet containing the image of an object of a given shape to
produce some spatially distorted object. Mappings that require cutting of the rubber
sheet or connection of one part to another are not permissible. Metric distance is
clearly not a topological attribute because distance can be altered by rubber-sheet
stretching. Also, the concepts of perpendicularity and parallelism between lines are
not topological properties. Connectivity is a topological attribute. Figure 17.1-1a is
a binary-valued image containing two connected object components. Figure 17.1-1b
is a spatially stretched version of the same image. Clearly, there are no stretching
operations that can either increase or decrease the connectivity of the objects in the
stretched image. Connected components of an object may contain holes, as illus-
trated in Figure 17.1-1c. The number of holes is obviously unchanged by a topolog-
ical mapping.
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There is a fundamental relationship between the number of connected object
components C and the number of object holes H in an image called the Euler num-
ber, as defined by

. (17.1-1)

The Euler number is also a topological property because C and H are topological
attributes.

Irregularly shaped objects can be described by their topological constituents. Con-
sider the tubular-shaped object letter R of Figure 17.1-2a, and imagine a rubber band
stretched about the object. The region enclosed by the rubber band is called the con-
vex hull of the object. The set of points within the convex hull, which are not in the
object, form the convex deficiency of the object. There are two types of convex
deficiencies: regions totally enclosed by the object, called lakes; and regions lying
between the convex hull perimeter and the object, called bays. In some applications,
it is simpler to describe an object indirectly in terms of its convex hull and convex
deficiency. For objects represented over rectilinear grids, the definition of the convex
hull must be modified slightly to remain meaningful. Objects such as discretized cir-
cles and triangles clearly should bejudged as being convex even though their
boundaries are jagged. This apparent difficulty can be handled by considering a rub-
ber band to be stretched about the discretized object. A pixel lying totally within the
rubber band, but not in the object, is a member of the convex deficiency. Sklansky et
al. (4,5) have developed practical algorithms for computing the convex attributes of
discretized objects.

17.2. DISTANCE, PERIMETER AND AREA MEASURES

This section develops shape analysis measures based upon distance measurements.

FIGURE 17.1-1. Topological attributes.

E C H–=

Download more at Learnclax.com



DISTANCE, PERIMETER AND AREA MEASURES 567

17.2.1. Distance Measures

Distance is a real-valued function  of two image points 
and  satisfying the following properties (6):

 (17.2-1a)

 (17.2-1b)

 . (17.2-1c)

There are a number of distance functions that satisfy the defining properties. The
most common measures encountered in image analysis are the Euclidean distance,

 (17.2-2a)

the magnitude distance also called the city block distance,

 (17.2-2b)

and the maximum value distance also called the chessboard distance,

 . (17.2-2c)

In discrete images, the coordinate differences  and  are integers,
but the Euclidean distance is usually not an integer.

Voronoi Tesselation. Voronoi tesselation is an important tool in image analysis
(7). The Voronoi tesselation process accepts a zero background value image,
which contains feature seeds of unit amplitude scattered throughout its area. The
placing of the seeds is determined by some other means. All background pixels
are assigned to the nearest seed in a geometric distance sense except for the skele-
ton of nearly equi-distant region border pixels. The result of the tesselation pro-
cess is the production of a Voronoi diagram in which all pixels are uniquely

FIGURE 17.1-2. Definitions of convex shape descriptors.
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labeled. Rosenfeld and Pfaltz (8) are credited with the first Voronoi tesselation
algorithm. Breu et al. (9) and Guan and Ma (10) have developed more efficient
algorithms. Most Voronoi tesselation algorithms use the Euclidean distance mea-
sure because the separating skeleton is rotation invariant. It is possible to use mor-
phological dilation algorithms, such as the thickening operator defined in Section
14.3.4, to create a Voronoi diagram. Using a rhombus structuring element in the
dilation process is equivalent to using a city block distance measure. Likewise use
of a square structuring element gives the same result as with a chessboard distance
measure. Figure 17.2-1 contains a combined Voronoi diagram and a distance
transform of an image containing 50 randomly placed seeds. In the figure, the
white lines delineate the Voronoi regions.

Distance Transform. The distance transform, also called the distance map, is
another useful distance measuring tool (11, p 489). Consider a binary image for
which the Voronoi diagram exists. At each pixel within a Voronoi region, the dis-
tance to the nearest seed pixel is recorded in a distance map image at the corre-
sponding pixel (8). In the example of Figure 17.2-1, the brightness of a pixel is
proportional to the distance to the nearest seed. Computing the Euclidean distance at
each pixel is time consuming. Danielsson (12) has developed an efficient, but
approximate, distance transform algorithm based upon neighborhood measure-
ments. Maurer (13) has proposed a sequential algorithm base upon a partial Voronoi
construction, which operates in linear time.

FIGURE 17.2-1. Example of a Voronoi diagram and a distance transform. Courtesy 
of S. Ma.
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17.2.2. Perimeter and Area Measures

Perimeter and area measurements are meaningful only for binary images. Consider a
discrete binary image containing one or more objects, where  if a pixel
is part of the object and  for all non-object or background pixels.

The perimeter of each object is the count of the number of pixel sides traversed
around the boundary of the object starting at an arbitrary initial boundary pixel and
returning to the initial pixel. The area of each object within the image is simply the
count of the number of pixels in the object for which . As an example,
for a  pixel square, the object area is  and the object perimeter is

. An object formed of three diagonally connected pixels possesses 
and .

The enclosed area of an object is defined to be the total number of pixels for which
 or 1 within the outer perimeter boundary PE of the object. The enclosed

area can be computed during a boundary-following process while the perimeter is
being computed (14,15). Assume that the initial pixel in the boundary-following pro-
cess is the first black pixel encountered in a raster scan of the image. Then, proceed-
ing in a clockwise direction around the boundary, a crack code C(p), as defined in
Section 17.6, is generated for each side p of the object perimeter such that C(p) = 0, 1,
2, 3 for directional angles 0, 90, 180, 270°, respectively. The enclosed area is

(17.2-3a)

where PE is the perimeter of the enclosed object and

(17.2-3b)

with j(0) = 0. The delta terms are defined by

if (17.2-4a)

if  or 2 (17.2-4b)

if (17.2-4c)

if (17.2-4d)

if  or 3 (17.2-4e)

if . (17.2-4f)
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Table 17.2-1 gives an example of computation of the enclosed area of the following
four-pixel object:

TABLE 17.2-1. Example of Perimeter and Area Computation

17.2.3. Bit Quads

Gray (16) has devised a systematic method of computing the area and perimeter of
binary objects based on matching the logical state of regions of an image to binary
patterns. Let  represent the count of the number of matches between image
pixels and the pattern Q within the curly brackets. By this definition, the object area
is then

. (17.2-5)

If the object is enclosed completely by a border of white pixels, its perimeter is
equal to

. (17.2-6)

p C(p)  j(p)  k(p) j(p) A(p)

1 0 0 1 0 0

2 3 –1 0 –1 0

3 0 0 1 –1 –1

4 1 1 0 0 –1

5 0 0 1 0 –1

6 3 –1 0 –1 –1

7 2 0 –1 –1 0

8 3 –1 0 –2 0

9 2 0 –1 –2 2

10 2 0 –1 –2 4

11 1 1 0 –1 4

12 1 1 0 0 4

0 0 0 0 0

0 1 0 1 0

0 1 1 0 0

0 0 0 0 0

Δ Δ

n Q{ }

AO n 1{ }=

PO 2n 0 1{ } 2n
0

1 
 
 

+=
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Now, consider the following set of  pixel patterns called bit quads defined in
Figure 17.2-2. The object area and object perimeter of an image can be expressed in
terms of the number of bit quad counts in the image as

(17.2-7a)

. (17.2-7b)

These area and perimeter formulas may be in considerable error if they are utilized
to represent the area of a continuous object that has been coarsely discretized. More
accurate formulas for such applications have been derived by Duda (17):

(17.2-8a)

FIGURE 17.2-2. Bit quad patterns.

2 2×
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. (17.2-8b)

Bit quad counting provides a very simple means of determining the Euler number of
an image. Gray (16) has determined that under the definition of four-connectivity,
the Euler number can be computed as

(17.2-9a)

and for eight-connectivity

. (17.2-9b)

It should be noted that although it is possible to compute the Euler number E of an
image by local neighborhood computation, neither the number of connected compo-
nents C nor the number of holes H, for which E = C – H, can be separately computed
by local neighborhood computation.

17.2.4. Geometric Attributes

With the establishment of distance, area and perimeter measurements, various geo-
metric attributes of objects can be developed. In the following, it is assumed that the
number of holes with respect to the number of objects is small (i.e., E is approxi-
mately equal to C).

The circularity of an object is defined as

. (17.2-10)

This attribute is also called the thinness ratio. A circle-shaped object has a circular-
ity of unity; oblong-shaped objects possess a circularity of less than 1. 

If an image contains many components but few holes, the Euler number can be
taken as an approximation of the number of components. Hence, the average area
and perimeter of connected components, for E > 0, may be expressed as (16)

(17.2-11)

. (17.2-12)

For images containing thin objects, such as typewritten or script characters, the
average object length and width can be approximated by
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(17.2-13)

. (17.2-14)

These simple measures are useful for distinguishing gross characteristics of an
image. For example, does it contain a multitude of small point like objects, or fewer
blob like objects of larger size; are the objects fat or thin? Figure 17.2-3 contains
images of playing card symbols. Table 17.2-2 lists the geometric attributes of these
objects.

TABLE 17.2-2. Geometric Attributes of Playing Card Symbols

17.3. SPATIAL MOMENTS

From probability theory, the (m, n)th moment of the joint probability density 
is defined as

. (17.3-1)

The central moment is given by 

(17.3-2)

where  and  are the marginal means of . These classical relationships
of probability theory have been applied to shape analysis by Hu (18) and Alt (19).
The concept is quite simple. The joint probability density  of Eqs. 17.3-1
and 17.3-2 is replaced by the continuous image function . Object shape is

Attribute Spade Heart Diamond Club

Outer perimeter 652 512 548 668

Enclosed area 8,421 8,681 8.562 8.820

Average area 8,421 8,681 8,562 8,820

Average perimeter 652 512 548 668

Average length 326 256 274 334

Average width 25.8 33.9 31.3 26.4

Circularity 0.25 0.42 0.36 0.25
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characterized by a few of the low-order moments. Abu-Mostafa and Psaltis
(20,21) have investigated the performance of spatial moments as features for
shape analysis.

17.3.1. Discrete Image Spatial Moments

The spatial moment concept can be extended to discrete images by forming spatial
summations over a discrete image function . The literature (22–24) is nota-
tionally inconsistent on the discrete extension because of the differing relationships
defined between the continuous and discrete domains. Following the notation estab-
lished in Chapter 12, the (m, n)th spatial geometric moment is defined as

FIGURE 17.2-3. Playing card symbol images.

F j k,( )
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(17.3-3)

where, with reference to Figure 12.1-1, the scaled coordinates are

(17.3-4a)

. (17.3-4b)

The origin of the coordinate system is the upper left corner of the image. This for-
mulation results in moments that are extremely scale dependent; the ratio of second-
order (m + n = 2) to zero-order (m = n = 0) moments can vary by several orders of
magnitude (25). The spatial moments can be restricted in range by spatially scaling
the image array over a unit range in each dimension. The (m, n)th scaled spatial geo-
metric moment is then defined as

. (17.3-5)

Clearly,

. (17.3-6)

It is instructive to explicitly identify the lower-order spatial moments. The zero-
order moment

(17.3-7)

is the sum of the pixel values of an image. It is called the image surface. If  is
a binary image, its surface is equal to its area. The first-order row moment is

(17.3-8)

and the first-order column moment is

. (17.3-9)
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Table 17.3-1 lists the scaled spatial moments of several test images. These
images include unit-amplitude gray scale versions of the playing card symbols of
Figure 17.2-2, several rotated, minified and magnified versions of these symbols, as
shown in Figure 17.3-1, as well as an elliptically shaped gray scale object shown in
Figure 17.3-2. The ratios

(17.3-10a)

(17.3-10b)

of first-order to zero-order spatial moments define the image centroid. The centroid,
called the center of gravity, is the balance point of the image function  such
that the mass of  left and right of  and above and below  is equal.

With the centroid established, it is possible to define the scaled spatial central
moments of a discrete image, in correspondence with Eq. 17.3-2, as

. (17.3-11)

For future reference, the (m, n)th unscaled spatial central moment is defined as

(17.3-12)

where

(17.3-13a)

(17.3-13b)
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FIGURE 17.3-1. Rotated, magnified and minified playing card symbol images. 
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It is easily shown that

(17.3-14)

The three second-order scaled central moments are the row moment of inertia,

(17.3-15)

the column moment of inertia,

(17.3-16)

and the row–column cross moment of inertia,

. (17.3-17)

FIGURE 17.3-2. Elliptically shaped object image.
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The central moments of order 3 can be computed directly from Eq. 17.3-11 for
m + n = 3, or indirectly according to the following relations:

(17.3-18a)

(17.3-18b)

(17.3-18c)

. (17.3-18d)

Table 17.3-2 presents the horizontal and vertical centers of gravity and the scaled
central spatial moments of the test images.

The three second-order moments of inertia defined by Eqs. 17.3-15, 17.3-16 and
17.3-17 can be used to create the moment of inertia covariance matrix,

. (17.3-19)

Performing a singular-value decomposition of the covariance matrix results in the
diagonal matrix

(17.3-20)

where the columns of

(17.3-21)

are the eigenvectors of U and

(17.3-22)

contains the eigenvalues of U. Expressions for the eigenvalues can be derived
explicitly. They are
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(17.3-23a)

.

(17.3-23b)

Let  and , and let the orientation angle 
be defined as

if (17.3-24a)

if (17.3-24b)

The orientation angle can be expressed explicitly as

. (17.3-24c)

The eigenvalues  and  and the orientation angle  define an ellipse, as shown
in Figure 17.3-2, whose major axis is  and whose minor axis is . The major
axis of the ellipse is rotated by the angle  with respect to the horizontal axis. This
elliptically shaped object has the same moments of inertia along the horizontal and
vertical axes and the same moments of inertia along the principal axes as does an
actual object in an image. The ratio

(17.3-25)

of the minor-to-major axes is a useful shape feature.
Table 17.3-3 provides moment of inertia data for the test images. It should be

noted that the orientation angle can only be determined to within plus or minus 
radians.
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TABLE 17.3-3. Moment of Inertia Data of Test Images

17.3.2. Hu’s Invariant Moments

Hu (18) has proposed a normalization of the unscaled central moments, defined by
Eq. 17.3-12, according to the relation

(17.3-26a)

where

(17.3-26b)

for m + n = 2, 3,...    These normalized central moments have been used by Hu to
develop a set of seven compound spatial moments that are invariant in the continu-
ous image domain to translation, rotation and scale change. The Hu invariant
moments are defined below.

(17.3-27a)

(17.3-27b)

(17.3-27c)

(17.3-27d)

Image
Largest

Eigenvalue
Smallest

Eigenvalue
Orientation
(radians)

Eigenvalue
Ratio

Spade 33.286 16.215 –0.153 0.487

Rotated spade 33.223 16.200 –1.549 0.488

Heart 36.508 16.376 1.561 0.449

Rotated heart 36.421 16.400 –0.794 0.450

Magnified heart 589.190 262.290 1.562 0.445

Minified heart 2.165 0.984 1.560 0.454

Diamond 42.189 13.334 1.560 0.316

Rotated diamond 42.223 13.341 –0.030 0.316

Club 37.982 21.831 –1.556 0.575

Rotated club 38.073 21.831 0.802 0.573

Ellipse 47.149 11.324 0.785 0.240

V m n,( )
UU m n,( )

M 0 0,( )[ ]α
---------------------------=

α m n+
2

------------- 1+=

h1 V 2 0,( ) V 0 2,( )+=

h2 V 2 0,( ) V 0 2,( )–[ ]2 4 V 1 1,( )[ ]2+=

h3 V 3 0,( ) 3V 1 2,( )–[ ]2 V 0 3,( ) 3V 2 1,( )–[ ]2+=

h4 V 3 0,( ) V 1 2,( )+[ ]2 V 0 3,( ) V 2 1,( )–[ ]2+=
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(17.3-27e)

(17.3-27f)

(17.3-27g)

Table 17.3-4 lists the moment invariants of the test images. As desired, these
moment invariants are in reasonably close agreement for the geometrically modified
versions of the same object, but differ between objects. The relatively small degree
of variability of the moment invariants for the same object is due to the spatial dis-
cretization of the objects.

The terms of Eq. 17.3-27 contain differences of relatively large quantities, and
therefore, are sometimes subject to significant roundoff error. Liao and Pawlak (26)
have investigated the numerical accuracy of geometric spatial moment measures.

TABLE 17.3-4. Invariant Moments of Test Images

Image

Spade 1.920 4.387 0.715 0.295 0.123 0.185 –14.159

Rotated spade 1.919 4.371 0.704 0.270 0.097 0.162 –11.102

Heart 1.867 5.052 1.435 8.052 27.340 5.702 –15.483

Rotated heart 1.866 5.004 1.434 8.010 27.126 5.650 –14.788

Magnified heart 1.873 5.710 1.473 8.600 30.575 6.162 0.559

Minified heart 1.863 4.887 1.443 8.019 27.241 5.583 0.658

Diamond 1.986 10.648 0.018 0.475 0.004 0.490 0.004

Rotated diamond 1.987 10.663 0.024 0.656 0.082 0.678 –0.020

Club 2.033 3.014 2.313 5.641 20.353 3.096 10.226

Rotated club 2.033 3.040 2.323 5.749 20.968 3.167 13.487

Ellipse 2.015 15.242 0.000 0.000 0.000 0.000 0.000

h5 V 3 0,( ) 3V 1 2,( )–[ ] V 3 0,( ) V 1 2,( )+[ ] V 3 0,( ) V 1 2,( )+[ ]2 3 V 0 3,( ) V 2 1,( )+[ ]2–[ ]=

3V 2 1,( ) V 0 3,( )–[ ] V 0 3,( ) V 2 1,( )+[ ] 3 V 3 0,( ) V 1 2,( )+[ ][ 2
+

V 0 3,( ) V 2 1,( )+[ ]2– ]

h6 V 2 0,( ) V 0 2,( )–[ ] V 3 0,( ) V 1 2,( )+[ ]2 V 0 3,( ) V 2 1,( )+[ ]2–[ ]=

4V 1 1,( ) V 3 0,( ) V 1 2,( )+[ ] V 0 3,( ) V 2 1,( )+[ ]+

h7 3V 2 1,( ) V 0 3,( )–[ ] V 3 0,( ) V 1 2,( )+[ ] V 3 0,( ) V 1 2,( )+[ ]2 3 V 0 3,( ) V 2 1,( )+[ ]2–[ ]=

3V 1 2,( ) V 3 0,( )–[ ] V 0 3,( ) V 2 1,( )+[ ] 3 V 3 0,( ) V 1 2,( )+[ ]2[+

V 0 3,( ) V 2 1,( )+[ ]2– ]

h1 10
1× h2 10

3× h3 10
3× h4 10

5× h5 10
9× h6 10

6× h7 10
1×
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17.3.3. Non-Geometric Spatial Moments

Teage (27) has introduced a family of orthogonal spatial moments based upon
orthogonal polynomials. The family includes Legendre, Zernike and pseudo
Zernike moments as defined in reference 28 in the continuous domain. Khotanzad
and Hong (29) and Lia and Pawlak (30) have investigated Zernike spatial
moments for spatial invariance. Teh and Chin (28) have analyzed these orthogo-
nal spatial moments along with rotational and complex spatial moments as candi-
dates for invariant moments. They concluded that the Zernike and pseudo Zernike
moments out performed the others in terms of noise sensitivity and information
redundancy.

The polynomials previously discussed for spatial moment computation are
defined in the continuous domain. To use them for digital images requires that the
polynomials be discretized. This introduces quantization error, which limits their
usage. Mukundan, Ong and Lee (31) have proposed the use of Tchebichef polyno-
mials, which are directly defined in the discrete domain, and therefore, are not sub-
ject to quantization error. Yap, Paramesran and Ong (32) have suggested the use of
Krawtchouk polynomials, which also are defined in the discrete domain. Their stud-
ies show that the Krawtchouk moments are superior to moments based upon the
Zernike, Legendre and Tchebichef moments.

17.4. SHAPE ORIENTATION DESCRIPTORS

The spatial orientation of an object with respect to a horizontal reference axis is the
basis of a set of orientation descriptors developed at the Stanford Research Institute
(33). These descriptors, defined below, are described in Figure 17.4-1.

1. Image-oriented bounding box: the smallest rectangle oriented along the rows
of the image that encompasses the object

2. Image-oriented box height: dimension of box height for image-oriented box

3. Image-oriented box width: dimension of box width for image-oriented box
  

FIGURE 17.4-1. Shape orientation descriptors.

Download more at Learnclax.com



586 SHAPE ANALYSIS

4. Image-oriented box area: area of image-oriented bounding box

5. Image oriented box ratio: ratio of box area to enclosed area of an object for
an image-oriented box

6. Object-oriented bounding box: the smallest rectangle oriented along the
major axis of the object that encompasses the object

7. Object-oriented box height: dimension of box height for object-oriented box

8. Object-oriented box width: dimension of box width for object-oriented box

9. Object-oriented box area: area of object-oriented bounding box

10. Object-oriented box ratio: ratio of box area to enclosed area of an object for
an object-oriented box

11. Minimum radius: the minimum distance between the centroid and a perimeter
pixel

12. Maximum radius: the maximum distance between the centroid and a perime-
ter pixel

13. Minimum radius angle: the angle of the minimum radius vector with respect
to the horizontal axis

14. Maximum radius angle: the angle of the maximum radius vector with respect
to the horizontal axis

15. Radius ratio: ratio of minimum radius angle to maximum radius angle

Table 17.4-1 lists the orientation descriptors of some of the playing card symbols.

TABLE 17.4-1. Shape Orientation Descriptors of the Playing Card Symbols

Descriptor Spade
Rotated 
Heart

Rotated 
Diamond

Rotated 
Club

Row-bounding box height 155 122 99 123

Row-bounding box width 95 125 175 121

Row-bounding box area 14,725 15,250 17,325 14,883

Row-bounding box ratio 1.75 1.76 2.02 1.69

Object-bounding box height 94 147 99 148

Object-bounding box width 154 93 175 112

Object-bounding box area 14,476 13,671 17,325 16,576

Object-bounding box ratio 1.72 1.57 2.02 1.88

Minimum radius 11.18 38.28 38.95 26.00

Maximum radius 92.05 84.17 88.02 82.22

Minimum radius angle –1.11 0.35 1.06 0.00

Maximum radius angle –1.54 –0.76 0.02 0.85
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17.5. FOURIER DESCRIPTORS

The perimeter of an arbitrary closed curve can be represented by its instantaneous
curvature at each perimeter point. Consider the continuous closed curve drawn on
the complex plane of Figure 17.5-1, in which a point on the perimeter is measured
by its polar position  as a function of arc length s. The complex function 
may be expressed in terms of its real part  and imaginary part  as

. (17.5-1)

The tangent angle defined in Figure 17.5-1 is given by

(17.5-2)

and the curvature is the real function

(17.5-3)

The coordinate points [x(s), y(s)] can be obtained from the curvature function by the
reconstruction formulas

(17.5-4a)

(17.5-4b)

where x(0) and y(0) are the starting point coordinates.

FIGURE 17.5-1. Geometry for curvature definition.
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Because the curvature function is periodic over the perimeter length P, it can be
expanded in a Fourier series as

(17.5-5a)

 where the coefficients  are obtained from

(17.5-5b)

This result is the basis of an analysis technique developed by Cosgriff (34) and Brill
(35) in which the Fourier expansion of a shape is truncated to a few terms to produce
a set of Fourier descriptors. These Fourier descriptors are then utilized as a symbolic
representation of shape for subsequent recognition. 

If an object has sharp discontinuities (e.g., a rectangle), the curvature function is
undefined at these points. This analytic difficulty can be overcome by the utilization
of a cumulative shape function

(17.5-6)

proposed by Zahn and Roskies (36). This function is also periodic over P and can
therefore be expanded in a Fourier series for a shape description.

Bennett and MacDonald (37) have analyzed the discretization error associated
with the curvature function defined on discrete image arrays for a variety of connec-
tivity algorithms. The discrete definition of curvature is given by

(17.5-7a)

(17.5-7b)

(17.5-7c)

where  represents the jth step of arc position. Figure 17.5-2 contains results of the
Fourier expansion of the discrete curvature function.

Bartolini et al. (38) have developed a Fourier descriptor-based shape matching
technique called WARP in which a dynamic time warping distance is used for shape
comparison.
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17.6. THINNING AND SKELETONIZING

Sections 13.3.2 and 13.3.3 have previously discussed the usage of morphological
conditional erosion as a means of thinning or skeletonizing, respectively, a binary
object to obtain a stick figure representation of the object. There are other non-mor-
phological methods of thinning and skeletonizing. Some of these methods create thin-
ner, minimally connected stick figures. Others are more computationally efficient.

FIGURE 17.5-2. Fourier expansions of curvature function.
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Thinning and skeletonizing algorithms can be classified as sequential or parallel
(39,40). In a sequential algorithm, pixels are examined for deletion (erasure) in a fixed
sequence over several iterations of an algorithm. The erasure of a pixel in the nth iter-
ation depends on all previous operations performed in the (n-1)th iteration plus all
pixels already processed in the incomplete nth iteration. In a parallel algorithm, era-
sure of a pixel in the nth iteration only depends upon the result of the (n-1)th iteration.
Sequential operators are, of course, designed for sequential computers or pipeline pro-
cessors, while parallel algorithms take advantage of parallel processing architectures.

Sequential algorithms can be classified as raster scan or contour following. The
morphological conditional erosion operators (41) described in Sections 14.3.2 and
14.3.3 are examples of raster scan operators. With these operators, pixels are exam-
ine in a  window, and are marked for erasure or not for erasure. In a second
pass, the conditionally marked pixels are sequentially examined in a  window.
Conditionally marked pixels are erased if erasure does not result in the breakage of a
connected object into two or more objects.

In the contour following algorithms, an image is first raster scanned to identify
each binary object to be processed. Then, each object is traversed about its periphery
by a contour following algorithm, and the outer ring of pixels is conditionally
marked for erasure. This is followed by a connectivity test to eliminate erasures that
would break connectivity of an object. Rosenfeld (42) and Arcelli and di Bija (43)
have developed some of the first connectivity tests for contour following thinning
and skeletonizing. 

More than one hundred papers have been published on thinning and skeletoniz-
ing algorithms. No attempt has been made to analyze these algorithms; rather, the
following references are provided. Lam et al. (39) have published a comprehensive
survey of thinning algorithms. The same authors (40) have evaluated a number of
skeletonization algorithms. Lam and Suen (44) have evaluated parallel thinning
algorithms. Leung et al. (45) have evaluated several contour following algorithms.
R. Kimmel et al. (46) have used distance maps for skeletonization. References 47
and 48 describe a rotation-invariant, rule-based thinning method.

17.6. SHAPE ANALYSIS EXERCISES

E17.1 Develop a program that computes the scaled second-order central moments
of the monochrome image ellipse. Steps:

(a) Display the source image.

(b) Normalize the source image to unit range.

(c) Export the source image and perform the computation in application
space in double precision.

The PIKS API executable example_spatial_moments performs this exercise.

3 3×
3 3×
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E17.2 Develop a program that computes the crack code of the binarized mono-
chrome image ellipse. Steps:

(a) Display the source image.

(b) Threshold the source image to binary range.

(c) Compute the crack code and enclosed perimeter of the binary format
ellipse.

The PIKS API executable example_ellipse_perimeter performs this exer-
cise.
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Introduction to Digital Image Processing by William K. Pratt
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IMAGE DETECTION AND 
REGISTRATION

This chapter covers two related image analysis tasks: detection and registration.
Image detection is concerned with the determination of the presence or absence of
objects suspected of being in an image. Image registration involves the spatial align-
ment of a pair of views of a scene.

18.1. TEMPLATE MATCHING

One of the most fundamental means of object detection within an image field is by
template matching, in which a replica of an object of interest is compared to all
unknown objects in the image field (1–4). If the template match between an
unknown object and the template is sufficiently close, the unknown object is labeled
as the template object.

As a simple example of the template-matching process, consider the set of binary
black line figures against a white background as shown in Figure 18.1-1a. In this
example, the objective is to detect the presence and location of right triangles in the
image field. Figure 18.1-1b contains a simple template for localization of right trian-
gles that possesses unit value in the triangular region and zero elsewhere. The width
of the legs of the triangle template is chosen as a compromise between localization
accuracy and size invariance of the template. In operation, the template is sequen-
tially scanned over the image field, and the common region between the template
and image field is compared for similarity.
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A template match is rarely ever exact because of image noise, spatial and ampli-
tude quantization effects and a priori uncertainty as to the exact shape and structure
of an object to be detected. Consequently, a common procedure is to produce a dif-
ference measure  between the template and the image field at all points of
the image field where  and  denote the trial offset. An object
is deemed to be matched wherever the difference is smaller than some established
level . Normally, the threshold level is constant over the image field. The
usual difference measure is the mean-square difference or error as defined by

(18.1-1)

where  denotes the image field to be searched and  is the template.
The search, of course, is restricted to the overlap region between the translated tem-
plate and the image field. A template match is then said to exist at coordinate  if

. (18.1-2)

Now, let Eq. 18.1-1 be expanded to yield

(18.1-3)

FIGURE 18.1-1. Template-matching example.
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where

(18.1-4a)

(18.1-4b)

. (18.1-4c)

The term  represents a summation of the template energy. It is constant val-
ued and independent of the coordinate . The image energy over the window
area represented by the first term  generally varies rather slowly over the
image field. The second term should be recognized as the cross correlation

 between the image field and the template. At the coordinate location of a
template match, the cross correlation should become large to yield a small differ-
ence. However, the magnitude of the cross correlation is not always an adequate
measure of the template difference because the image energy term  is posi-
tion variant. For example, the cross correlation can become large, even under a con-
dition of template mismatch, if the image amplitude over the template region is high
about a particular coordinate . This difficulty can be avoided by comparison
of the normalized cross correlation

(18.1-5)

to a threshold level . A template match is said to exist if

(18.1-6)

The normalized cross correlation has a maximum value of unity that occurs if and
only if the image function under the template exactly matches the template. Figure
18.1-2 provides an example of normalized cross-correlation template matching of a
binary image containing a L-shaped object, which is translated and rotated.

Rosenfeld (5) has proposed using the following absolute value difference as a
template matching difference measure.

. (18.1-7)
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(a) Source image (b) Template image

(c) Numerator image (d) Denominator image

(e) Cross-correlation image (f) Thresholded c-c image, T = 0.78

FIGURE 18.1-2. Normalized cross-correlation template matching of the L_source image.
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For some computing systems, the absolute difference computes faster than the
squared difference. Rosenfeld (5) also has suggested comparing the difference mea-
sure of Eq. 18.1-7 to a relatively high threshold value during its computation. If the
threshold is exceeded, the summation is terminated. Nagel and Rosenfeld (6) have
proposed to vary the order in which template data is accessed rather than the con-
ventional row by row access. The template data fetching they proposed is deter-
mined by a probability estimate of . Atallah (7) has developed a Monte
Carlo algorithm for the computation of the absolute value difference, which is faster
than brute force computation.

One of the major limitations of template matching is that an enormous number of
templates must often be test matched against an image field to account for changes
in rotation and magnification of template objects. For this reason, template matching
is usually limited to smaller local features, which are more invariant to size and
shape variations of an object. Such features, for example, include edges joined in a
Y or T arrangement.

18.2. MATCHED FILTERING OF CONTINUOUS IMAGES

Matched filtering, implemented by electrical circuits, is widely used in one-dimen-
sional signal detection applications such as radar and digital communication (8–10).
It is also possible to detect objects within images by a two-dimensional version of
the matched filter (11–15).

In the context of image processing, the matched filter is a spatial filter that pro-
vides an output measure of the spatial correlation between an input image and a ref-
erence image. This correlation measure may then be utilized, for example, to
determine the presence or absence of a given input image, or to assist in the spatial
registration of two images. This section considers matched filtering of deterministic
and stochastic images.

18.2.1. Matched Filtering of Deterministic Continuous Images

As an introduction to the concept of the matched filter, consider the problem of
detecting the presence or absence of a known continuous, deterministic signal or ref-
erence image  in an unknown or input image  corrupted by additive,
stationary noise  independent of . Thus,  is composed of the
signal image plus noise

(18.2-1a)

or noise alone

. (18.2-1b)
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The unknown image is spatially filtered by a matched filter with impulse response
 and transfer function  to produce an output

(18.2-2)

The matched filter is designed so that the ratio of the signal image energy to the
noise field energy at some point  in the filter output plane is maximized.

The instantaneous signal image energy at point  of the filter output in the
absence of noise is given by

(18.2-3)

with  and . By the convolution theorem,

(18.2-4)

where  is the Fourier transform of . The additive input noise com-
ponent  is assumed to be stationary, independent of the signal image, and
described by its noise power-spectral density . From Eq. 1.4-24, the total
noise power at the filter output is

. (18.2-5)

Then, forming the signal-to-noise ratio, one obtains

. (18.2-6)

This ratio is found to be maximized when the filter transfer function is of the form
(8,11)

. (18.2-7)

If the input noise power-spectral density is white with a flat spectrum,
, the matched filter transfer function reduces to

(18.2-8)
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and the corresponding filter impulse response becomes

. (18.2-9)

In this case, the matched filter impulse response is an amplitude scaled version of
the complex conjugate of the signal image rotated by 180°.

For the case of white noise, the filter output can be written as

(18.2-10a)

or

. (18.2-10b)

If the matched filter offset  is chosen to be zero, the filter output

(18.2-11)

is then seen to be proportional to the mathematical correlation between the input image
and the complex conjugate of the signal image. Ordinarily, the parameters  of the
matched filter transfer function are set to be zero so that the origin of the output plane
becomes the point of no translational offset between  and .

If the unknown image  consists of the signal image translated by dis-
tances  plus additive noise as defined by

(18.2-12)

the matched filter output for ,  will be

.

(18.2-13)

A correlation peak will occur at ,  in the output plane, thus indicating
the translation of the input image relative to the reference image. Hence, the
matched filter is translation invariant. It is, however, not invariant to rotation of the
image to be detected.

The basic limitation of the normal matched filter, as defined by Eq. 18.2-7, is that
the correlation output between an unknown image and an image signal to be
detected is primarily dependent on the energy of the images rather than their spatial
structure. For example, consider a signal image in the form of a bright hexagonally
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shaped object against a black background. If the unknown image field contains a cir-
cular disk of the same brightness and area as the hexagonal object, the correlation
function resulting will be very similar to the correlation function produced by a per-
fect match. In general, the normal matched filter provides relatively poor discrimi-
nation between objects of different, but of similar size or energy content. This
drawback of the normal matched filter is overcome somewhat with the derivative
matched filter (11), which makes use of the edge structure of an object to be
detected. The transfer function of the pth-order derivative matched filter is given by

(18.2-14)

where p is an integer. If p = 0, the normal matched filter

(18.2-15)

is obtained. With p = 1, the resulting filter

(18.2-16)

is called the Laplacian matched filter. Its impulse response function is

. (18.2-17)

The pth-order derivative matched filter transfer function is

. (18.2-18)

Hence, the derivative matched filter may be implemented by cascaded operations
consisting of a generalized derivative operator whose function is to enhance the
edges of an image, followed by a normal matched filter.

18.2.2. Matched Filtering of Stochastic Continuous Images

In the preceding section, the ideal image  to be detected in the presence of
additive noise was assumed to be deterministic. If the state of  is not known
exactly, but only statistically, the matched filtering concept can be extended to the
detection of a stochastic image in the presence of noise (16). Even if  is
known deterministically, it is often useful to consider it as a random field with a
mean . Such a formulation provides a mechanism for incorpo-
rating a priori knowledge of the spatial correlation of an image in its detection. Con-
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ventional matched filtering, as defined by Eq. 18.2-7, completely ignores the spatial
relationships between the pixels of an observed image.

For purposes of analysis, let the observed unknown field

(18.2-19a)

or noise alone

(18.2-19b)

be composed of an ideal image , which is a sample of a two-dimensional sto-
chastic process with known moments, plus noise  independent of the image,
or be composed of noise alone. The unknown field is convolved with the matched
filter impulse response  to produce an output modeled as

. (18.2-20)

The stochastic matched filter is designed so that it maximizes the ratio of the average
squared signal energy without noise to the variance of the filter output. This is simply
a generalization of the conventional signal-to-noise ratio of Eq. 18.2-6. In the
absence of noise, the expected signal energy at some point  in the output field is

. (18.2-21)

By the convolution theorem and linearity of the expectation operator,

. (18.2-22)

The variance of the matched filter output, under the assumption of stationarity and
signal and noise independence, is

(18.2-23)

where  and  are the image signal and noise power spectral
densities, respectively. The generalized signal-to-noise ratio of the two equations
above, which is of similar form to the specialized case of Eq. 18.2-6, is maximized
when

. (18.2-24)
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Note that when  is deterministic, Eq. 18.2-24 reduces to the matched filter
transfer function of Eq. 18.2-7.

The stochastic matched filter is often modified by replacement of the mean of the
ideal image to be detected by a replica of the image itself. In this case, for

,

 . (18.2-25)

A special case of common interest occurs when the noise is white,
, and the ideal image is regarded as a first-order nonseparable

Markov process, as defined by Eq. 1.4-16, with power spectrum

(18.2-26)

where  is the adjacent pixel correlation. For such processes, the resultant
modified matched filter transfer function becomes

. (18.2-27)

At high spatial frequencies and low noise levels, the modified matched filter defined
by Eq. 18.2-27 becomes equivalent to the Laplacian matched filter of Eq. 18.2-16.

A matched filter for object detection can be defined for discrete as well as con-
tinuous images. One approach is to perform discrete linear filtering using a dis-
cretized version of the matched filter transfer function of Eq. 18.2-7 following the
techniques outlined in Section 9.4. Alternatively, the discrete matched filter can be
developed by a vector-space formulation (16,17). The latter approach is described
by Pratt (18).

18.3. IMAGE REGISTRATION

In many image processing applications, it is necessary to form a pixel-by-pixel com-
parison of two images of the same object field obtained from different sensors, or of
two images of an object field taken from the same sensor at different times. To form
this comparison, it is necessary to spatially register the images and, thereby, to cor-
rect for relative translation shifts, rotational differences, scale differences and even
perspective view differences. Often, it is possible to eliminate or minimize many of
these sources of misregistration by proper static calibration of an image sensor.
However, in many cases, a posteriori misregistration detection and subsequent cor-
rection must be performed. Chapter 12 considered the task of spatially warping an
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image to compensate for physical spatial distortion mechanisms. This section con-
siders means of detecting the parameters of misregistration.

Consideration is given first to the common problem of detecting the translational
misregistration of two images. Techniques developed for the solution to this prob-
lem are then extended to other forms of misregistration.

18.3.1. Translational Misregistration Detection

The classical technique for registering a pair of images subject to unknown transla-
tional differences is to: (a) form the normalized cross correlation function between
the image pair; (b) determine the translational offset coordinates of the correlation
function peak; and (c) translate one of the images with respect to the other by the
offset coordinates (19,20). This subsection considers the generation of the basic
cross correlation function and several of its derivatives as means of detecting the
translational differences between a pair of images.

Basic Correlation Function. Let  and  for  and ,
represent two discrete images to be registered.  is considered to be the refer-
ence image, and

(18.3-1)

is a translated version of  where  are the offset coordinates of the
translation. The normalized cross correlation between the image pair is defined as

(18.3-2)

for m = 1, 2,. . . , M and n = 1, 2,. . . , N, where M and N are odd integers. This formu-
lation, which is a generalization of the template matching cross correlation expres-
sion, as defined by Eq. 18.1-5, utilizes an upper left corner–justified definition for
all of the arrays. The dashed-line rectangle of Figure 18.3-1 specifies the bounds of
the correlation function region over which the upper left corner of  moves in
space with respect to . The bounds of the summations of Eq. 18.3-2 are
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. (18.3-3b)
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FIGURE 18.3-1. Geometrical relationships between arrays for the cross correlation of an 
image pair.

These bounds are indicated by the shaded region in Figure 18.3-1 for the trial offset
(a, b). This region is called the window region of the correlation function computa-
tion. The computation of Eq. 18.3-2 is often restricted to a constant-size window
area less than the overlap of the image pair in order to reduce the number of
calculations. This  constant-size window region, called a template region, is
defined by the summation bounds

(18.3-4a)

. (18.3-4b)

The dotted lines in Figure 18.3-1 specify the maximum constant-size template
region, which lies at the center of . The sizes of the  correlation func-
tion array, the  search region and the  template region are related by

(18.3-5a)

. (18.3-5b)

For the special case in which the correlation window is of constant size, the cor-
relation function of Eq. 18.3-2 can be reformulated as a template search process. Let

 denote a  search area within  whose upper left corner is at the
offset coordinate . Let  denote a  template region extracted from

 whose upper left corner is at the offset coordinate . Figure 18.3-2
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relates the template region to the search area. Clearly,  and . The nor-
malized cross correlation function can then be expressed as

(18.3-6)

for m = 1, 2, . . . , M and n = 1, 2, . . . , N where

(18.3-7a)

(18.3-7b)

The summation limits of Eq. 18.3-6 are

(18.3-8a)

. (18.3-8b)

Computation of the numerator of Eq. 18.3-6 is equivalent to raster scanning the
template  over the search area  such that the template always resides
within , and then forming the sum of the products of the template and the
search area under the template. The left-hand denominator term is the square root of
the sum of the terms  within the search area defined by the template posi-
tion. The right-hand denominator term is simply the square root of the sum of the
template terms  independent of . It should be recognized that the
numerator of Eq. 18.3-6 can be computed by convolution of  with an impulse

FIGURE 18.3-2. Relationship of template region and search area.
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response function consisting of the template  spatially rotated by 180°. Simi-
larly, the left-hand term of the denominator can be implemented by convolving the
square of  with a  uniform impulse response function. For large tem-
plates, it may be more computationally efficient to perform the convolutions indi-
rectly by Fourier domain filtering.

Statistical Correlation Function. There are two problems associated with the
basic correlation function of Eq. 18.3-2. First, the correlation function may be
rather broad, making detection of its peak difficult. Second, image noise may
mask the peak correlation. Both problems can be alleviated by extending the cor-
relation function definition to consider the statistical properties of the pair of
image arrays.

The statistical correlation function (17) is defined as

(18.3-9)

The arrays  are obtained by the convolution operation

(18.3-10)

where  is the spatial average of  over the correlation window. The
impulse response functions  are chosen to maximize the peak correlation
when the pair of images is in best register. The design problem can be solved by
recourse to the theory of matched filtering of discrete arrays developed by Pratt (18). 

Computation of the statistical correlation function requires calculation of two
sets of eigenvectors and eigenvalues of the covariance matrices of the two images to
be registered. If the window area contains  pixels, the covariance matrices K1
and K2 will each be  matrices. For example, if P = Q = 16, the cova-
riance matrices K1 and K2 are each of dimension . Computation of the
eigenvectors and eigenvalues of such large matrices is numerically difficult. How-
ever, in special cases, the computation can be simplified appreciably (17). For
example, if the images are modeled as separable Markov process sources, and there
is no observation noise, the convolution operators of Eq. 18.3-10 reduce to the sta-
tistical mask operator

(18.3-11)
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where  denotes the adjacent pixel correlation (21). If the images are spatially
uncorrelated, then  = 0, and the correlation operation is not required. At the other
extreme, if  = 1, then

(18.3-12)

This operator is an orthonormally scaled version of the cross second derivative spot
detection operator of Eq. 14.7-3. In general, when an image is highly spatially
correlated, the statistical correlation operators  produce outputs that are large in
magnitude only in regions of an image for which its amplitude changes significantly
in both coordinate directions simultaneously.

Figure 18.3-3 provides computer simulation results of the performance of the
statistical correlation measure for registration of the toy tank image of Figure
16.1-6b. In the simulation, the reference image  has been spatially offset hor-
izontally by three pixels and vertically by four pixels to produce the translated image

. The pair of images has then been correlated in a window area of 
pixels over a search area of  pixels. The curves in Figure 18.3-3 represent the
normalized statistical correlation measure taken through the peak of the correlation
function. It should be noted that for  = 0, corresponding to the basic correlation
measure, it is relatively difficult to distinguish the peak of . For  or
greater,  peaks sharply at the correct point.

The correlation function methods of translation offset detection defined by Eqs.
18.3-2 and 18.3-9 are capable of estimating any translation offset to an accuracy of

½ pixel. It is possible to improve the accuracy of these methods to subpixel levels
by interpolation techniques (22). One approach (23) is to spatially interpolate the
correlation function and then search for the peak of the interpolated correlation
function. Another approach is to spatially interpolate each of the pair of images and
then correlate the higher-resolution pair.

A common criticism of the correlation function method of image registration is
the great amount of computation that must be performed if the template region and
the search areas are large. Several computational methods that attempt to overcome
this problem are presented next.
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Two-State Methods. Rosenfeld and Vandenburg (24,25) have proposed two effi-
cient two-stage methods of translation offset detection. In one of the methods, called
coarse–fine matching, each of the pair of images is reduced in resolution by conven-
tional techniques (low-pass filtering followed by subsampling) to produce coarse
representations of the images. Then the coarse images are correlated and the result-
ing correlation peak is determined. The correlation peak provides a rough estimate
of the translation offset, which is then used to define a spatially restricted search
area for correlation at the fine resolution of the original image pair. The other
method, suggested by Vandenburg and Rosenfeld (25), is to use a subset of the pix-
els within the window area to compute the correlation function in the first stage of
the two-stage process. This can be accomplished by restricting the size of the win-
dow area or by performing subsampling of the images within the window area. Gos-
htasby et al. (26) have proposed random rather than deterministic subsampling. The
second stage of the process is the same as that of the coarse–fine method; correlation
is performed over the full window at fine resolution. Two-stage methods can pro-
vide a significant reduction in computation, but they can produce false results.

FIGURE 18.3-3. Statistical correlation misregistration detection.
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Sequential Search Method. With the correlation measure techniques, no decision
can be made until the correlation array is computed for all  elements. Further-
more, the amount of computation of the correlation array is the same for all degrees
of misregistration. These deficiencies of the standard correlation measures have led
to the search for efficient sequential search algorithms. 

An efficient sequential search method has been proposed by Barnea and Silver-
man (27). The basic form of this algorithm is deceptively simple. The absolute value
difference error

(18.3-13)

is accumulated for pixel values in a window area. If the error exceeds a predeter-
mined threshold value before all  pixels in the window area are examined, it is
assumed that the test has failed for the particular offset , and a new offset is
checked. If the error grows slowly, the number of pixels examined when the thresh-
old is finally exceeded is recorded as a rating of the test offset. Eventually, when all
test offsets have been examined, the offset with the largest rating is assumed to be
the proper misregistration offset.

Phase Correlation Method. Consider a pair of continuous domain images

(18.3-14)

that are translated by an offset with respect to one another. By the Fourier trans-
form shift property of Eq. 1.3-13a, the Fourier transforms of the images are related by

. (18.3-15)

The exponential phase shift factor can be computed by the cross-power spectrum
(28) of the two images as given by

. (18.3-16)

Taking the inverse Fourier transform of Eq. 18.3-16 yields the spatial offset in the
space domain.

. (18.3-17)

The cross-power spectrum approach can be applied to discrete images by utiliz-
ing discrete Fourier transforms in place of the continuous Fourier transforms in Eq.
18.3-16. However, care must be taken to prevent wraparound error. Figure 18.3-4
presents an example of translational misregistration detection using the phase corre-
lation method. Figure 18.3-4a and b show translated portions of a scene embedded
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in a zero background. The scene in Figure 18.3-4a was obtained by extracting the
first 480 rows and columns of the  washington_ir source image. The
scene in Figure 18.3-4b consists of the last 480 rows and columns of the source
image. Figure 18.4-4c and d are the logarithm magnitudes of the Fourier transforms
of the two images, and Figure 18.3-4e is the inverse Fourier transform of the cross-
power spectrum of the pair of images. The white pixel in the upper left corner of
Figure 18.3-4e, located at coordinate (20,20), is the correlation peak.

18.3.2. Scale and Rotation Misregistration Detection

The phase correlation method for translational misregistration detection has been
extended to scale and rotation misregistration detection (28,29). Consider a a pair of
images in which a second image is translated by an offset  and rotated by an
angle  with respect to the first image. Then,

. (18.3-18)

Taking Fourier transforms of both sides of Eq. 18.3-18, one obtains the relationship
(28)

.

(18.3-19)

The rotation component can be isolated by taking the magnitudes  and
 of both sides of Eq. 18.3-15. By representing the frequency variables in

polar form,

(18.3-20)

the phase correlation method can be used to determine the rotation angle .
If a second image is a size-scaled version of a first image with scale factors (a, b),

then from the Fourier transform scaling property of Eq. 1.3-12,

. (18.3-21)

By converting the frequency variables to a logarithmic scale, scaling can be con-
verted to a translational movement. Then

. (18.3-22)

Now, the phase correlation method can be applied to determine the unknown scale
factors (a,b).
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FIGURE 18.3-4. Translational misregistration detection on the washington_ir1 and
washington_ir2 images using the phase correlation method. There is a dim white pixel
in the upper left corner of (e).
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18.4. IMAGE DETECTION AND REGISTRATION EXERCISES

E18.1 Develop a program that performs normalized cross-correlation template
matching of the monochrome source image L_source and the monochrome tem-
plate image L_template using the convolution operator as a means of correlation
array computation. Steps:

(a) Display the source image.

(b) Display the template image.

(c) Rotate the template image 180 degrees and convert it to an impulse
response array.

(d) Convolve the source image with the impulse response array to form the
numerator of the cross-correlation array.

(e) Display the numerator image.

(f) Square the source image and compute its moving window average
energy by convolution with a rectangular impulse response array to
form the denominator of the cross-correlation array.

(g) Display the denominator image.

(h) Form the cross-correlation array image.

(i) Display the cross-correlation array image.

(j) Threshold the cross-correlation array image.

(k) Display the thresholded cross-correlation array image.

Note, it is necessary to properly scale the source and template images to obtain valid
results. The PIKS API executable example_template performs this exercise.

E18.2 Develop a program that executes the cross-correlation operator on the
monochrome source image washington_ir1 and the monochrome source image
washington_ir2 using the cross-correlation operator. Steps:

(a) Display the first source image.

(b) Display the second source image.

(c) Execute the cross-correlation operator.

(d) Convert the cross-correlation to a destination image.

(e) Display the destination image.

The PIKS API executable example_cross_correlation performs this exer-
cise.

Download more at Learnclax.com



REFERENCES 615

REFERENCES

1. R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis, Wiley-Inter-
science, New York, 1973.

2. W. H. Highleyman, “An Analog Method for Character Recognition,” IRE Trans. Elec-
tronic Computers, EC-10, 3, September 1961, 502–510.

3. L. N. Kanal and N. C. Randall, “Recognition System Design by Statistical Analysis,”
Proc. ACM National Conference, 1964.

4. J. H. Munson, “Experiments in the Recognition of Hand-Printed Text, I. Character Rec-
ognition,” Proc. Fall Joint Computer Conference, December 1968, 1125–1138.

5. A. Rosenfeld, Picture Processing by Computer, Academic Press, New York, 1969.

6. R. N. Nagel and A. Rosenfeld, Ordered Search Techniques in Template Matching,”
Proc. IEEE, February 1972, 242–244.

7. M. J. Atallah, “Faster Image Template Matching in the Sum of the Absolute Value of
Difference Measure,” IRE Trans. Image Processing, 10, 4, April 2001, 659–663.

8. G. L. Turin, “An Introduction to Matched Filters,” IRE Trans. Information Theory, IT-6,
3, June 1960, 311–329.

9. C. E. Cook and M. Bernfeld, Radar Signals, Academic Press, New York, 1965. 

10. J. B. Thomas, An Introduction to Statistical Communication Theory, John Wiley and
Sons, New York, 1965, 187–218.

11. H. C. Andrews, Computer Techniques in Image Processing, Academic Press, New York,
1970, 55–71.

12. L. J. Cutrona, E. N. Leith, C. J. Palermo and L. J. Porcello, “Optical Data Processing and
Filtering Systems,” IRE Trans. Information Theory, IT-6, 3, June 1960, 386–400.

13. A. Vander Lugt, F. B. Rotz and A. Kloester, Jr., “Character-Reading by Optical Spatial
Filtering,” in Optical and Electro-Optical Information Processing, J. Tippett et al., Eds.,
MIT Press, Cambridge, MA, 1965, 125–141.

14. A. Vander Lugt, “Signal Detection by Complex Spatial Filtering,” IEEE Trans. Informa-
tion Theory, IT-10, 2, April 1964, 139–145.

15. A. Kozma and D. L. Kelly, “Spatial Filtering for Detection of Signals Submerged in
Noise,” Applied Optics, 4, 4, April 1965, 387–392.

16. A. Arcese, P. H. Mengert and E. W. Trombini, “Image Detection Through Bipolar Corre-
lation,” IEEE Trans. Information Theory, IT-16, 5, September 1970, 534–541.

17. W. K. Pratt, “Correlation Techniques of Image Registration,” IEEE Trans. Aerospace
and Electronic Systems, AES-1O, 3, May 1974, 353–358.

18. W. K. Pratt,  Digital Image Processing, Fourth Edition, Wiley-Interscience, New York.

19. W. Meyer-Eppler and G. Darius, “Two-Dimensional Photographic Autocorrelation of
Pictures and Alphabet Letters,” Proc. 3rd London Symposium on Information Theory,
C. Cherry, Ed., Academic Press, New York, 1956, 34–36.

20. P. F. Anuta, “Digital Registration of Multispectral Video Imagery,” SPIE J., 7,
September 1969, 168–178.

21. J. M. S. Prewitt, “Object Enhancement and Extraction,” in Picture Processing and Psy-
chopictorics, B. S. Lipkin and A. Rosenfeld, Eds., Academic Press, New York, 1970.

22. Q. Tian and M. N. Huhns, “Algorithms for Subpixel Registration,” Computer Graphics,
Vision and Image Processing, 35, 2, August 1986, 220–233.

Download more at Learnclax.com



616 IMAGE DETECTION AND REGISTRATION

23. P. F. Anuta, “Spatial Registration of Multispectral and Multitemporal Imagery Using
Fast Fourier Transform Techniques,” IEEE Trans. Geoscience and Electronics, GE-8,
1970, 353–368.

24. A. Rosenfeld and G. J. Vandenburg, “Coarse–Fine Template Matching,” IEEE Trans.
Systems, Man and Cybernetics, SMC-2, February 1977, 104–107.

25. G. J. Vandenburg and A. Rosenfeld, “Two-Stage Template Matching,” IEEE Trans.
Computers, C-26, 4, April 1977, 384–393.

26. A. Goshtasby, S. H. Gage and J. F. Bartolic, “A Two-Stage Cross-Correlation Approach
to Template Matching,” IEEE Trans. Pattern Analysis and Machine Intelligence, PAMI-
6, 3, May 1984, 374–378.

27. D. I. Barnea and H. F. Silverman, “A Class of Algorithms for Fast Image Registration,”
IEEE Trans. Computers, C-21, 2, February 1972, 179–186.

28. B. S. Reddy and B. N. Chatterji, “An FFT-Based Technique for Translation, Rotation and
Scale-Invariant Image Registration,” IEEE Trans. Image Processing, IP-5, 8, August
1996, 1266–1271.

29. E. De Castro and C. Morandi, “Registration of Translated and Rotated Images Using
Finite Fourier Transforms,” IEEE Trans. Pattern Analysis and Machine Intelligence,
PAMI-9, 5, September 1987, 700–703.

Download more at Learnclax.com



617

PART 6

IMAGE AND VIDEO COMPRESSION

During the past fifty years there have been significant, and largely successful,
efforts toward the development of efficient digital still image and video coding sys-
tems. The design objective of these, so called, compression systems, generally, has
been the representation of images with acceptable fidelity and as small a number of
coded bits as possible. For still images, reducing the number of coded bits permits
more compact image storage. For video, bit rate reduction allows video image
frames to be transmitted faster and permits more parallel  channels to be transmitted
over a communication link.

Chapters 19 and 20 provide descriptions of still image compression methods
including the JPEG standards, while Chapter 21 describes video compression sys-
tems including the MPEG family of video compression standards. Appendix 3 pro-
vides a summary of the capability of the JPEG and MPEG standards and their
development history.
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POINT PROCESSING IMAGE COMPRESSION

This chapter covers still image compression using coding methods for monochrome
and color  images, which are based upon point processing. In the early days of still
image coding research, techniques were limited to point processing because of
implementation restrictions. As will be seen, point processing by itself does not pro-
vide significant bit rate compression. However, these techniques have been proven
to be important sub systems for spatial processing methods to be discussed in the
following chapters. References 1 to 8 provide useful historical background informa-
tion on the subject of image and video data compression.

19.1. PULSE CODE MODULATION CODING OF MONOCHROME
IMAGES

In a basic pulse code modulation (PCM) image coding system, a continuous ampli-
tude image signal is sampled and quantized. Each quantized sample is then assigned
a constant-length group of bits, called a code word. A bit rate reduction can be
achieved by reducing the number of quantization levels. For an imaging system
whose quality is assessed by some analytic measure, the number of quantization lev-
els is taken as the smallest value that satisfies the measure of image quality. The
number  of quantization levels must be kept large enough to prevent a noticeable
gray scale contouring effect caused by a jump in the reconstructed image luminance
between quantization levels in a region where the original image is slowly changing
in amplitude. For monochrome images, 50 or more levels are usually required to
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prevent noticeable gray scale contouring. Consequentially, in a PCM image coder,
the image luminance is usually quantized from 64 to 256 levels corresponding to a 6
to 8 bit per pixel code (9-11).

19.2. STATISTICAL CODING OF MONOCHROME IMAGES

Statistical measurements of the pixel amplitude distribution of digital images indi-
cates that natural images contain a large amount of redundancy. In this context,
redundancy can be defined as the total number of PCM code bits minus the theoreti-
cal coding limit, called the entropy, of the coding process.

19.2.1. Single Pixel Coding.

The simplest type of statistical coder is one in which each pixel is individually
assigned a code group from a code book based upon its quantized amplitude. For
efficient coding, the code assignment should be such that pixel values with a high
likelihood of occurrence should be assigned code groups with a small number of
bits. Conversely, rarely occurring pixel values should be assigned longer code
groups. If this process is performed efficiently, the average length of a code group
will be equal to the single pixel entropy of the image.

As a starting point for the code development, it is necessary to model, estimate or
measure the probability of occurrence of each pixel value for the class of images to
be encoded. Suppose that the probability that a quantized pixel amplitude is equal to
the ith reconstruction level ri is given by

. (19.2-1)

In the coding process, a code word of bi bits is assigned to each quantized level

resulting in an average code length

(19.2-2)

for Q quantization levels. The single pixel entropy is defined as

(19.2-3)

where the logarithm is taken to the base of 2.
Huffman (12) has developed a coding method, which results in a minimal length

code book for a given set of symbol probabilities. Table 19.2-1 provides a compari-

pi Pr F j k,( ) ri={ }=

Lc pibi

i 0=

Q 1–

=
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i 0=

Q 1–
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son between PCM coding and Huffman coding for 8-level gray scale quantization.
Appendix 4 describes the generation of this code book. The average code length for
this example is  and the entropy for the probability set is . 

Table 19.2-1. Comparison of PCM and Huffman codes

In general, Huffman codes are variable in length. Thus, it becomes necessary to
provide data buffer storage to collect the variable bit rate code bits and transmit or
store them at some slower average rate. There is another problem associated with
the use of statistical source codes. The codes are matched to an assumed set of
source probabilities. If the actual source probabilities differ from the assumed
source probabilities, the coder performance can be degraded drastically. In fact, a
mismatched coder can result in an increased bit requirement compared to PCM cod-
ing.

For typical natural monochrome images, the single pixel entropy ranges from
about 5 to 7 bits per pixel. This relatively small amount of redundancy compared to
PCM coding is seldom worth the penalty of increased implementation requirements.

19.2.2 Previous Pixel Coding.

Because adjacent pixels along an image row are highly correlated in natural images,
there is a high degree of redundancy between pixel pairs along an image  row. A sta-
tistical coder to take advantage of the previous pixel redundancy is simple in princi-
ple. For each of the Q quantized levels of a previous pixel, there is an associated
conditional probability distribution P(j|k) and a corresponding code word. Thus, in
operation, the coder selects one of Q2 codes. For 256 quantization levels, the code
book would contain 65,536 entries.

Amplitude
Index

Probability
PCM
code

Huffman
code

0 0.20 000 00

1 0.20 001 10

2 0.25 010 01

3 0.15 011 011

4 0.10 100 0111

5 0.05 101 01111

6 0.03 110 011111

7 0.02 111 111111

Lc 2.70= H 2.68=
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A simpler variant of previous pixel coding is to code the differences in pixel val-
ues after the first pixel along a row (13,14). If each pixel is quantized to Q levels,
then the pixel difference may assume  values. Because the probability of
occurrence of large differences is relatively small, it is possible to simplify the coder
considerably without a great loss in performance. The coding strategy is as follows:
small differences receive individual code words; if the difference exceeds some
specified level, the actual pixel value is coded and appended to a prefix code that
distinguishes the total code word from the coded differences. Table 19.21-2 illus-
trates a pixel difference code book.

19.3. PREDICTIVE CODING OF MONOCHROME IMAGES

In a predictive coding system, as shown in Figure 19.3-1, the value of each raster
scanned pixel is predicted based upon some previous history of scanned pixels.
Then, the predicted estimate is subtracted from the present pixel value. The differ-
ence signal is then quantized and coded. At the decoder, the quantized difference
signal is used to form a reconstruction of the image. A bandwidth reduction is possi-
ble by coarsely quantizing the difference signal.

Table 19.2-2. Example of pixel difference coding

Difference, D Code

0 1

+1 0100

-1 0101

+2 0110

-2 0111

+3 00100

-3 00101

+4 00110

-4 00111

|D| =>5 0000 + 8 bit pixel

2Q 1–

Download more at Learnclax.com



PREDICTIVE CODING OF MONOCHROME IMAGES 623

FIGURE 19.3-1. Predictive image coding system.

19.3.1 Differential Pulse Code Modulation Coding

The general concept of linear predictive coding has developed from an invention by
Cutler (13) of the differential pulse code modulation (DPCM) system. In Cutler’s
original 1952 patent, it was proposed that integrators be employed to predict the
present sample based upon the previous sample value along a scan line, and that the
difference between  the present sample and its estimate be quantized and coded for
transmission or storage.

Figure 19.3-2 contains a block diagram of a DPCM image coding system. In
such a system, the continuous image signal is sampled, and the difference between
an actual pixel and its estimate is quantized and coded for transmission or storage.
Usually the difference signal is quantized to eight levels and coded with a three bit
code (14,15). Thus the bandwidth reduction is from the 6 to 8 bits per pixel of con-
ventional PCM to 3 bits per pixel for DPCM. In a basic DPCM coder, the prediction
is based upon the quantized difference signal of the previously scanned pixel along
an image row. At the decoder, the decoded difference is reconstructed and combined
with an estimate from a predictor identical to the one at the coder to provide a recon-
struction of the source image.
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FIGURE 19.3-2. DPCM image coding system

In 1958, Graham (16) proposed the use of a tapered quantizer scale in which the
quantization levels are placed nonlinearly as shown in Figure 19.4-3. With a tapered
quantizer, the subjective quality of the reconstructed image is improved substan-
tially. However, in most applications, it has been found that at least eight quantiza-
tion levels are still required.

Harrison (17), in 1952, extended the basic DPCM concept by forming the predic-
tion signal from a linear combination of several previously scanned pixels along a
row and from previous rows. Both theoretical and experimental studies have found
that the mean square error measure subjective quality can be improved by utilizing
more information in the prediction (18,19). Figure 19.3-4 contains a generalized
block diagram for a spatial predictive coding system. A standard DPCM coder,
which utilizes the previously scanned pixel (S1) along an image row as the basis of

its prediction of S0 is often referred to as a first-order predictor. Following this

nomenclature, a second-order predictor would utilize the two previously scanned
pixels along a row (S1 and S2) or perhaps the previous pixel along the row (S1) and

the nearest pixel from the previous row (S2). A third order predictor might employ

(S1, S2, S4) as the basis for its prediction. Pixel S6 is often used for prediction

because S6 provides a good indication of vertical edge structure.
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FIGURE 19.3-3. Tapered DPCM quantizer scale.

Pratt (20) has developed a design procedure for linear predictive image coders.
This procedure concludes, not surprisingly, that the neighboring pixel values used in
the prediction should have the highest correlation with the pixel to be predicted.
Also, it was found that the prediction difference variance diminishes rapidly beyond
a third-order prediction system.

19.4. POINT PROCESSING COLOR IMAGE CODING

The point processsing image coding techniques previously described for mono-
chrome images can be applied individually to the red, green and blue components of
a color image. This straight forward approach results in a coding rate that is three
times that of a monochrome image. It is possible to perform a point-wise linear or
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nonlinear transformation of a color image to a colorimetric color space such  as
L*a*b* or to a video color space such as YIQ, as defined in Chapter 3. Experiments
(21-23) indicate that the chromaticity or chrominance color components can be
more coarsely quantized than the luminance or luma color components. This results
in a somewhat lower coding rate than RGB coding. However, in order to exploit the
spatial frequency limitations of human vision, it is necessary to perform spatial pro-
cessing forms of image coding, as described in the next chapter.

FIGURE 19.3-4. Spatial predictive image coding system.

19.5.  JPEG LOSSLESS IMAGE CODING

As described in Appendix 3, the JPEG still image coding standard supports four
operational modes, one of which is a point processing lossless image coder (24, 25).
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In this context, lossless image coding means, quite simply, that the image to be
coded and the resultant image reconstruction are identical at the bit level.

Figure 19.4-1 is a simplified block diagram of the JPEG lossless encoder. In
operation, a pixel  enters a predictor element, which produces a prediction of
the present scanned pixel based upon the previously predicted pixels A, B and C, as
shown below.

FIGURE 19.4-1. JPEG lossless image encoder.

A prediction difference  is formed between  and its predicted value

, which enters an entropy encoder. Huffman and arithmetic encoders (25) are
supported by the standard. JPEG lossless supports seven prediction rules, as defined
in Table 19.4-1. The prediction rule is sent to the decoder in a session header.

TABLE 19.4-1.  Prediction Options

C B

A F(j, k)

Option Prediction Rule

1 A

2 B

3 C

4 A + B - C

5 A + (B - C)/2

6 B + (A - C)/2

7 (A + B)/2

F j k,( )

SUM

predictor

+

-

P(j, k)

D(j, k)F(j, k) entropy

encoder

to decoder

D j k,( ) F j k,( )
P j k,( )
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The JPEG lossless standard accomodates source pixel values in the precision
range of 2 to 16 bits. In the standard, arithmetic operations are of 16-bit precision
such that the reconstructed image has the same amplitude value as the source image
i.e. no computational errors occur. Direct entropy coding of  at full arithmetic
precision would require an  extremely large entropy code table. The JPEG lossless
standard has adopted a clever code assignment procedure. The code table is divided
into 17 categories, called SSSS in the standard document. As shown in Table 19.4-2,
each category provides a pointer to a nested set of difference values. For example,
category 3 specifies the set of prediction difference code symbols values:

-7, -6, -5, -4, +4, +5, +6, +7

one of which is selected for encoding. The category values are encoded by an arith-
metic or Huffman encoder. The difference value of the category is binary encoded
and appended to the category code.

On typical gray scale images, the JPEG lossless coder achieves about a 2:1 com-
pression ratio compared to PCM coding. In comparison, the JPEG baseline lossy
algorithm discussed in the next chapter provides about a 20:1 compression ratio (25,
p. 78).

19.6. POINT PROCESSING IMAGE COMPRESSION EXERCISES

E19.1 Develop a program that generates the Huffman code book for a set of eight
symbols. See Appendix 4. Steps:

(a) Read a user generated set of symbol probabilities.

(b) Compute the Huffman code word corresponding to each symbol using
the code tree algorithm of Appendix 4.

(c) Print the Huffman code table.

(d) Compute the code book average code length and entropy.

The PIKS API executable example_huffman_code_table performs this
exercise for the example of Appendix 4.

E19.2 Develop a program that computes the entropy of the lena_mon image.
Steps:

(a) Display the source image.

(b) Compute the histogram of the source image.

(c) Estimate the grey level probabilities for an eight-level re-quantization of
the source image based upon its histogram.

(d) Compute the entropy of the re-quantized source image.

D j k,( )
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The PIKS API executable example_lena_entropy performs this exercise.

E19.3 Develop a program that emulates the DPCM image coding system of Figure
19.3-2 using an 8 level tapered quantizer implemented by a lookup table. Process
the lena_mon image with the emulated coding system. Steps:

(a) Display the source image.

(b) Generate the quantizer lookup table with decision levels of: 0, 8, 16 and
32 and quantization levels of: 4, 12, 24 and 48.

(c) Create the destination image with the emulator.

(d) Display the destination image.

The PIKS API executable example_DPCM performs this exercise.

TABLE 19.4-2. JPEG lossless coding difference symbol codes

SSSS D(j,k)

0 0

1 -1 1

2 -3 -2 2 3

3 -7 ........ -4 4 ........ 7

4 -15 ........ -8 8 ........ 15

5 -31 ........ -16 16 ........ 31

6 -63 ........ -32 32 ........ 63

7 -127 ........ -64 64 ........ 127

8 -255 ........ -128 128 ........ 255

9 -511 ........ -256 256 ........ 511

10 -1023 ........ -512 512 ........ 1023

11 -2047 ........ -1024 1024 ........ 2047

12 -4095 ........ -2048 2048 ........ 4095

13 -8191 ........ -4096 4096 ........ 8191

14 -16383 ........ -8192 8192 ........ 16383

15 -32767 ........ -16384 16384 ........ 32767

16 32768
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SPATIAL PROCESSING IMAGE COMPRESSION

This chapter covers still image compression using coding methods for monochrome
and color images, which are based upon spatial processing of image bands. The
chapter also describes two international standards for still image compression: the
JPEG baseline coding system based upon the Discrete Cosine Transform (DCT) and
the JPEG 2000 coding system based upon wavelet coding.

20.1. RUN CODING OF MONOCHROME IMAGES

Run coding (1-8) is a relatively simple coding technique in which the amplitudes of
adjacent pixels along an image row are compared. If a significant change in ampli-
tude (an edge) occurs, a run is said to exist. Either a function of the amplitude of the
pixel at the end of the run, or a function of the amplitude of the difference of adja-
cent pixels  is coded along with an indication of the location of the run end. If the
location of the end of a run is determined by counting the number of pixels from the
beginning of the row to the occurrence of the end of the run, the coding system is
called run end coding. The location of the end of a run can also be specified in terms
of the relative distance from the previous end. This coding system is called run
length coding.

The run end coding system has the disadvantage of requiring a large fixed num-
ber of bits to describe each run position. The run length coding system requires
shorter groups of bits to specify the position of a run on average. However, the vari-
able length of the position code presents some implementation problems in terms of
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long position code words. A variation of the position encoding method is to limit the
length of the position code describing the run length to a uniform fixed length. If no
natural run ends occur within the maximum run length interval, a “pseudo” run is
formed and coded. The pseudo run signifies a run of zero amplitude (i.e. no run
end). This technique has the disadvantage of requiring a larger number of runs to
code an image. However, a judicious choice  of the length of the maximum run
length based upon image statistics can minimize the coding system redundancy. Fig-
ure 20.1-1 illustrates the theoretical performance of a run length coding system for

  pixel amplitude bits and a pseudo run length of M pixels (7).

FIGURE 20.1-1. Theoretical run length coding performance for a monochrome
image.

Run length coding is most practical for images with few gray scales  For black or
white facsimile images, it is only necessary to code the changes in amplitude level
after the first pixel along an image row is coded. Compression ratios of about 8:1
have been achieved for facsimile images  (9). For monochrome images, the compro-
mise between gray scale fidelity and coding performance is not favorable compared
to alternate coding methods to be described subsequently. However, the run length
coding concept has been very successful as a sub system coder for transform image
coding.

A 3=
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20.2. INTERPOLATION CODING OF MONOCHROME IMAGES

Interpolative coding systems are based on numerical representation or approxima-
tion techniques whereby a sequence or plane of pixel values is “fitted”  by continu-
ous functions. In an interpolative coding system, the amplitude values of an image
are approximated by continuous functions within some permissible error band (10-
14). Interpolation may be performed along a row or over areas of an image.

FIGURE 20.2-1. Zero-order interpolation.

Figure 20.2-1a illustrates the operation of a zero-order interpolator. In this exam-
ple, an error tolerance band is established about each pixel value, and maximal
length horizontal line segments are fitted within the error band without any con-
straints as to the start and stop coordinates. Each pixel is spanned by a horizontal
line segment. The vertical coordinate and sample spacing length of each horizontal
line segment is then coded. At the decoder,  pixel values are reconstructed to the
amplitude of the horizontal line segment. This type of interpolation permits the
greatest amount of freedom possible in fitting the horizontal line segments to the
image data, and thus provides the most efficient representation in terms of minimiz-
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ing the horizontal line lengths. However, the computation involved in the line fitting
process is often excessive. Figure 20.2-lb describes a simplified zero-order interpo-
lator in which the horizontal line segments are restricted to begin at a pixel sample
value and to end at a sample time. This simplified form of a zero-order interpolator
is equivalent to a run length encoder.

FIGERE 20.2-2. First-order interpolation.
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The operation of several first-order interpolators is presented in Figure 20.2-2. In
the interpolator of Figure 20.2-2a, straight line segments spanning all pixel values
are fitted within the error tolerance without restrictions as to the start and stop coor-
dinates of the line segments. The computational task of line segment fitting can be
simplified somewhat by anchoring the starting point of a line segment to the stop-
ping point of the previous line segment, as shown in Figure 20.2-2b. A still simpler
version, described in Figure 20.2-2c, restricts the start and stop line segment coordi-
nates to pixel values. This type of interpolator is often called a fan interpolator.

Higher-order polynomial functions, such as cubic spline functions, can be utilized
for interpolative coding, but the computation involved in the interpolation process
grows rapidly with the degree of the fitting polynomial. Two-dimensional versions
of zero-order and first-order interpolators can also be formulated. But again, the
attendant implementation task is formidable.

There have been some analytical studies (15,16) of zero-order and first-order
interpolation for very simple interpolation algorithms. However, analysis for the
general algorithms with few constraints is a formidable task. Simulation studies
(11,12) indicate that monochrome image coding down to about 1.0 bits per pixel
with a relatively low peak error can be achieved with first-order interpolation, but
the coding systems are generally quite complex.

20.3. UNITARY TRANSFORM CODING OF MONOCHROME IMAGES

Transform image coding represents a radical departure from the classical forms of 
image coding such as DPCM, predictive coding, run length coding and interpolative 
coding in which the image signal is directly coded. The unitary transform image 
coding process is indirect. A unitary mathematical transform is performed on the 
image data to produce a set of transform coefficients, which are then quantized and 
coded for transmission or storage. Transform coding has proved to be an effective 
and practical means of coding for monochrome, color and multispectral images for 
both still images and real-time video.

In 1968, the concept of coding the two-dimensional Fourier transform of a mono-
chrome image, rather than the image itself, was introduced by Andrews and Pratt
(17). The basic concept of the Fourier transform coding process is that, for most nat-
ural images, many of the transform coefficients are of relatively low magnitude.
These coefficients often can be discarded entirely, or coded with a small number of
code symbols with only negligible image distortion (18). Pratt, Andrews and Kane
(19) found, in 1969, that the Hadamard transform could be utilized in place of the
Fourier transform with a considerable decrease in computational requirements for
many applications (20,21). Investigations then began into application of other uni-
tary transforms such as the discrete Karhunen-Loeve (22) and Haar transforms for
image coding (23,24). The Karhunen-Loeve transform, also known as the Hoetell-
ing transform, provides minimum mean-square error coding performance, but
unfortunately requires statistical knowledge of the image source. Also, it does not
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possess a fast computational algorithm. On the other hand, the Haar transform has
the attribute of an extremely efficient computational algorithm, but usually results in
a relatively large coding error. Shibata and Enomoto introduced orthogonal trans-
forms containing a slant basis vector for data of vector lengths of four and eight in
1971 (25). The slant vector, a discrete sawtooth waveform decreasing in uniform
steps over its length, is suitable for efficiently representing gradual brightness
changes in an image line. Ahmed, et al. (26) have shown that the cosine transform,
which possesses a fast algorithm, approaches the efficiency of the Karhunen-Loeve
transform for Markov process image data. Jain has suggested a sine transform with
similar properties (27).

The basic premise of a monochrome image transform coding system is that the
two-dimensional transform of an image has an energy distribution more suitable for
coding than the spatial domain representation (28,29). As a result of the inherent
pixel-to-pixel correlation of natural monochrome images, the energy in the trans-
form domain tends to be clustered into a relatively small number of transform sam-
ples. To achieve a coding compression, low-magnitude transform samples can be
discarded or grossly quantized without introducing serious image degradation.

One of the drawbacks of transform coding of a monochrome image is the large
size of the transform domain array — the size of the spatial domain image itself.
Habibi and Wintz (22) and Woods and Huang (21) have proposed the division of a
source image into small blocks, e.g. the  block size in the JPEG baseline stan-
dard (23). As will be seen, the coding compression quality is compromised by the
restriction to small blocks. However, the smaller size blocks are amenable to adap-
tive coding schemes.

Figure 20.3-1 contains a block diagram of a transform coding system for mono-
chrome images. In operation, a two-dimensional transform is taken of the image
pixels over the entire image, or repeatedly over subsections of the image called
blocks. Let  denote a  block of pixels. For a two dimensional unitary
transform that is orthogonally separable, the transform coefficients are described by

(20.3-1)

where  and  represent the row and column kernels, respectively, and
 is a  array of transform coefficients. Next, the transform domain sam-

ples are operated on by a sample selector that decides which samples are to be
coded.  For a digital communication link or digital storage unit, the selected samples
are quantized and coded in binary form. At the decoder, the incoming data is
decoded, and an inverse transform is performed to reconstruct the original image.
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Figure 20.3-1. Monochrome image transform image coding system.

There are two basic strategies of sample selection: zonal sampling and threshold
sampling (28). In zonal sampling, the reconstruction is made with a subset of trans-
form samples lying in certain pre-specified geometric zones, usually the low-fre-
quency coefficients. Each component in a zone is quantized and assigned a binary
code word. The number of quantization levels is usually made proportional to the
estimated variance of the component, and the number of code bits made propor-
tional to its expected probability of occurrence. With threshold sampling, the image
reconstruction is made with a subset of the samples that are larger than a specified
threshold.

20.3.1. Zonal Sampling.

The sample selection process for two zones can be analyzed conveniently by defin-
ing a transform domain sampling function , which takes on the value unity
for samples to be transmitted and zero for samples to be discarded. The recon-
structed image then becomes

. (20.3-2)

There are several types of zones that could logically be employed for zonal sam-
pling. For example, a rectangular, elliptical or triangular zone. Both analytic and
experimental studies (29) have indicated that the optimum zone for a mean square
error criterion is the so-called maximum variance zone in which   is chosen
to be unity for those transform samples having the largest variance for a given cova-
riance model of the original image. Consequently, the mean square error  for trans-
form zonal sampling is equal to the energy of the discarded coefficients:

. (20.3-3)
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Hence, the mean-square error performance of a unitary transform is determined by
its degree of cumulative energy packing. In this regard, it has been shown (30,31)
that the Karhunen-Loeve (K-L) transform results in the smallest mean-square error
for all unitary transforms.

Figure 20.3-2. Zonal sampling mean square error performance of image transforms
as a function of block size.
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Figure 20.3-2 contains a plot of mean square error versus block size determined
by evaluation of Eq. 20.3-3 for a transform zonal sampled image field statistically
modeled as a two-dimensional Markov process with . In this plot,
the 25% of the transform coefficients with the largest variances have been selected,
and the remainder discarded. From the figure, it is seen that the Karhunen-Loeve
transform provides the lowest mean square error. For a first-order Markov process,
the mean-square error obtained by the cosine transform or by the sine transform is
nearly identical to that of the optimal KL transform. Also, to be noted from the fig-
ure is that, except for the Fourier transform, the rate of decrease in mean square
error for large block sizes becomes quite small after a block size of about  is
reached. The mean square error level of the Fourier transform converges relatively
slowly to that of the K-L transform for large block sizes.

20.3.2 Zonal Coding

In the zonal transform coding system, a set of zones is established in each transform
block. Transform samples in each zone are then quantized with the same number of
quantization levels set proportional to the expected variance of the transform coeffi-
cients. For a constant word length code,  code bits are assigned to each
coefficient, resulting in

(20.3-4)

quantization levels. A total of

(20.3-5)

bits are then required to code the image. Pratt (4Ed., 673) describes an algorithm for
optimal bit assignment. Figure 20.3-3 illustrates a typical bit assignment for coding
in  pixel blocks.

Figure 20.3-4 contains a plot of the mean square error for several transforms for
coding of a two-dimensional Markov process array for  with an
average of 1.5 bits per pixel. It is possible to achieve a lower mean square error for a
given channel rate by employing Huffman coding of the quantized coefficients
rather than constant word length coding, but the coder will be more complex to
implement.

20.3.3. Threshold Coding

In a threshold coding system, each sample whose magnitude is greater than a given
threshold level is quantized with a fixed number of levels, and its amplitude is
coded. It is necessary to code the position of each significant sample in the trans-
form plane. A simple, but quite efficient, technique for position coding is to code the
number of non-significant samples between significant samples. This run length
coding scheme can be implemented as follows:

ρR ρC 0.95= =

16 16×

NB u v,( )

Q u v,( ) 2
NB u v,( )

=

TB NB u v,( )
v


u
=

16 16×

ρR ρC 0.95= =

Download more at Learnclax.com



642 SPATIAL PROCESSING IMAGE COMPRESSION

FIGURE 20.3-3. Typical bit assignments for transform zonal coding in 
pixel blocks at a rate of 1.5 bits per pixel.

FIGURE 20.3-4. Zonal coding mean square error performance of image transforms
as a function of block size for 1.5 bits/pixel and  .
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1. The first sample along each row in a block is coded regardless of its magni-
tude. A position code word of all zeros or all ones affixed to the amplitude pro-
vides a row synchronization code group;

2. The amplitude of the second run-length code word is the coded amplitude of
the next significant sample. The position code is the binary count of the num-
ber of samples of the significant sample from the previous significant sample;

3. If a significant sample is not encountered after scanning the maximum run
length of samples, the position and amplitude code bits are set to a unique code
word to indicate a maximum run length.

The advantage of including a row synchronization code group is that it becomes
unnecessary to code the row number, and the propagation of channel errors over
more than one row is prevented. However, there is a coding overhead associated
with this coding technique. Tescher (32) has proposed a zigzag coding of the trans-
form coefficients in each block, as shown in Figure 20.3-5 for progressive raster
scanning. This results in a one-dimensional ordering of transform coefficients as an
approximate spatial frequency ordering. Pratt and Chen (33) have utilized Huffman
coding of the zigzag coefficient amplitudes and run lengths.

 As expected, because the coding process is adaptive, its performance is some
what better than the simpler zonal coding process. With standard threshold coding,
the number of coefficients, and, therefore, the number of code bits, transmitted is
image dependent. A variation of threshold coding, called N-largest coding (34), has
been developed for communication links in which the transmission bit rate and pic-
ture transmission rate is fixed. With this coding algorithm, the N-largest coefficients
in a block are coded regardless of their values. In effect, the threshold is adaptively
set for each block to achieve the desired transmission rate.

FIGURE 20.3-5. Zigzag scanning of transform coefficients.
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20.4. WAVELET CODING OF MONOCHROME IMAGES

Figure 20.4-1 contains a simplified block diagram of a wavelet transform mono-
chrome image coding system. In operation, a positive integer input image is level

shifted by subtracting  from each input image pixel where Q is the number of
gray levels of the input image. Next, the level shifted image undergoes a two-dimen-
sional wavelet transformation of the type described in Chapter 8. Then, the trans-
form coefficients are quantized over a coarse-to-fine range based upon the scale
level of the wavelet transform. The quantized coefficients are coded by an entropy-
based symbol encoder. At the decoding system, the compressed image is decoded,
and the result is subjected to an inverse wavelet transform. Finally, the image data is
restored to its original range by an inverse level shifter.

FIGURE 20.4-1. Wavelet monochrome image coding system.

Conceptually, wavelet transform image coding, at the block diagram level, is vir-
tually identical to unitary transform coding. Both techniques perform a linear trans-
formation, which seeks to decorrelate and energy-compact its input image pixels in
order to more efficiently quantize and code the transform coefficients on an individ-
ual basis.

The wavelet transform and inverse wavelet transform of Figure 20.4-1 are typi-
cally computed in sequential scale levels. For most image coding applications, each
level is a biorthogonal transform, which produces four half-resolution subbands: a
new approximation image derived from the approximation array of the previous
level; a horizontal detail subimage, a vertical detail subimage; and a diagonal detail
subimage. At each scale level, the wavelet transform only acts on the previous
approximation image array.

Figure 20.4-2 demonstrates the nested nature of the wavelet transform for two
scale levels. Typically, the quantization process is adapted to each subband array.
Section 20.7 describes the functionality of the JPEG 2000 version of wavelet trans-
form coding.
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FIGURE 20.4-2. Wavelet transform coefficient regions for two scale levels.

20.5. SPATIAL PROCESSING COLOR IMAGE CODING

The spatial processing image coding techniques described in this chapter for mono-
chrome images can be applied directly to the red, green and blue components of a
color image. The resultant coding rate for a RGB color image will simply be three
times that of a monochrome image. Improved results can be easily obtained by con-
verting the RGB components to luminance (or luma) and chrominance (or chroma)
components. The improvement can be realized by spatial subsampling  every other
row and column of the chrominance (or chroma) components with or without spatial
averaging. Examples are provided for the following sections on JPEG and JPEG
2000 image coding.

C1HL(u, v)

C1HH(u, v)C1LH(u, v)

C2LL(u, v) C2HL(u, v)

C2LH(u, v) C2HH(u, v)
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20.6.  JPEG BASELINE IMAGE CODING STANDARD

A simplified block diagram of the JPEG baseline color image coding system is
shown in Figure 20.6-1. In the diagram, the input and reconstructed images are of 8-
bit precision. The first step in the diagram is to level shift each input image pixel by
subtracting integer 128 from it to create a two’s complement image representation.
The internal data paths are of 11-bit precision. Next, non-overlapping  pixel
blocks are extracted from the YCbCr components of the color image. Each block
then undergoes a  discrete cosine transform.

Figure 20.6-1. JPEG baseline color image coding system.

The transform coefficients  of Figure 20.6-1 are quantized by division by
a  quantization array  to produce the quantized coefficients

(20.6-1)

where  indicates a nearest integer rounding operation. Figure 20.6-2 shows the

baseline default luminance quantization array (35-37). Scaling of  provides
control over the degree of data compression.  Figure 20.6-3 presents the JPEG base-
line default chrominance array for a YCbCr color image. This array provides for a
coarser quantization of DCT coefficients than for a luminance quantization array.

The next step in the encoder diagram is symbol coding of the quantized coeffi-
cients. This step is followed by Huffman entropy coding of the coefficient symbols
to create the compressed image.
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FIGURE 20.6-2. JPEG baseline default luminance quantization array, taken from
Annex K1 of reference 35.

FIGURE 20.6-3. JPEG baseline default chrominance quantization array, taken from
Annex K2 of reference 35.

At the decoding system, the Huffman encoded coefficient symbols are sequen-
tially decoded, and the reconstructed pixels are generated by inverse scaling of the
quantization process according to the relation

. (20.6-2)

An inverse DCT is followed by a composition of the reconstructed pixel blocks into
a reconstructed image after an inverse level shift.

Symbol encoding is a two part process: coding of the DC and the AC coefficients
of . The following sections describe the symbol and entropy coding pro-
cesses in greater detail.
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20.6.1. DC coefficient encoding

The symbol coding process for DC coefficients begins with the generation of the
difference  of the DC coefficient of the present block from the DC coeffi-
cient of the corresponding previously processed block of the same video type. Table
20.6-1 contains a classification of the DC difference categories. There are 12 differ-
ence categories, denoted by the four bit index SSSS in the JPEG baseline standard.
This table is a subset of the JPEG lossless code table of Table 19.4-2. The DC differ-
ence  can be coded by a category index Huffman code appended by an addi-
tional bits code, which specifies the position within a category of a given DC
difference value. As an example, the category 4 entry is listed below. If  is
equal to four, the additional bits code word is 1010.

SSSS difference
range

additional bits

4 -15, ... ,-8, 8, ..., 15 0000, ... ,0111,1000, ... ,1111

TABLE 20.6-1. JPEG baseline difference categories for DC coding taken
from Annex F1 of reference 34.

SSSS D(0,0)

0 0

1 -1 1

2 -3 -2 2 3

3 -7 ........ -4 4 ........ 7

4 -15 ........ -8 8 ........ 15

5 -31 ........ -16 16 ........ 31

6 -63 ........ -32 32 ........ 63

7 -127 ........ -64 64 ........ 127

8 -255 ........ -128 128 ........ 255

9 -511 ........ -256 256 ........ 511

10 -1023 ........ -512 512 ........ 1023

11 -2047 ........ -1024 1024 ........ 2047

D 0 0,( )

D 0 0,( )

D 0 0,( )
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A category Huffman code table can be created by measuring or modelling of the
probability of occurrence of each category value. The JPEG baseline standard con-
tains suggested Huffman code tables for luminance and chrominance DC differ-
ences, as shown in Table 20.6-2.

20.6.2. AC coefficient encoding

The symbol coding process for AC coefficients begins with the formation of a one-
dimensional array of the 63 AC coefficients by zigzag scanning of a block of DCT
coefficients according to the order of Figure 20.3-2. The non-zero coefficients are
run length coded to produce a code pair RRRR/SSSS where RRRR denotes the run
length of zeros before the next non-zero coefficients, and SSSS is the size of the
next non-zero coefficient as specified in Table 20.6-2. This table specifies the addi-
tional bits required to specify the coefficient value in a similar fashion to the addi-
tional bits for DC coefficients. Conceptually, it is convenient to consider that AC
coefficient symbols to be entries of RRRR/SSSS pairs in a two-dimensional array of
RRRR = 16 rows and 10 columns augmented by two special event symbols: EOB
and ZRL. The symbol EOB indicates to the decoder that the last non-zero AC coef-
ficient has been processed in a block scan. ZRL denotes a zero run length event.

Table 20.6-2. Luminance and chrominance DC difference Huffman codes
taken from Table K1 and K2 of reference 34.

Category Luminance code Chrominance code

0 00 00

1 010 01

2 011 10

3 100 110

4 101 1110

5 110 11110

6 1110 111110

7 11110 1111110

8 111110 11111110

9 1111110 111111110

10 11111110 1111111110

11 111111110 11111111110
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Once this augmented array has been established, it is possible to assign a probability
of occurrence of each of 162 entries, and subsequently, to assign a Huffman code to
each entry. The JPEG standard document (35) specifies suggested Huffman code
Table K5 for luminance blocks and Table K6 for chrominance blocks.

TABLE 20.6-2. JPEG baseline categories for AC coding

20.7.  JPEG2000 IMAGE CODING STANDARD

For purposes of analysis, the JPEG2000 still image coding standard can be consid-
ered to be a specialization of the wavelet monochrome coding system of Figure
20.4-1 in terms of the wavelet structure, quantization strategy and encoding method

20.7.1 JPEG2000 Discrete Wavelet Filters

The JPEG2000 standard (38) specifies low pass and high pass analysis and synthesis
finite impulse response (FIR) filters. They are the so called Daubechies (9,7) 9-tap
and 7-tap FIR biorthogonal spline filters. Following the nomenclature of Chapter 8,
the filters are defined below as convolution impulse response arrays.

SSSS F(u,v)

1 -1 1

2 -3 -2 2 3

3 -7 ........ -4 4 ........ 7

4 -15 ........ -8 8 ........ 15

5 -31 ........ -16 16 ........ 31

6 -63 ........ -32 32 ........ 63

7 -127 ........ -64 64 ........ 127

8 -255 ........ -128 128 ........ 255

9 -511 ........ -256 256 ........ 511

10 -1023 ........ -512 512 ........ 1023
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9-tap low-pass analysis filter: [hL(-4) ... hL(0) ... hL(4)]

where hL(-4) = hL(4) = +0.026748757410810
hL(-3) = hL(3) = - 0.016864118442875
hL(-2) = hL(2) = - 0.078223266528988
hL(-1) = hL(1) = +0.266964118442872
              hL(0) = +0.602949018236358

7-tap high-pass analysis filter: [hH(-3) ... hH(0) ... hH(3)]

where hH(-3) = hH(3) = +0.091271763114249
hH(-2) = hH(2) = - 0.057543526228500
hH(-1) = hH(1) = - 0.591271763114247
              hH(0) = +1.115087052456994

7-tap low-pass synthesis filter: [gL(-3) ... gL(0) ... gL(3)]

where gL(-3) = gL(3) = - 0.0912717631142495
gL(-2) = gL(2) = - 0.057543526228500
gL(-1) = gL(1) = +0.591271763114247
              gL(0) = +1.115087052456994

9-tap high-pass synthesis filter: [gH(-4) ... gH(0) ... gH(4)]

where gH(-4) = gH(4) = +0.026748757410810
gH(-3) = gH(3) = +0.016864118442875
gH(-2) = gH(2) = - 0.078223266528988
gH(-1) = gH(1) = - 0.266864118442872
              gH(0) = +0.602949028236358

20.7.2. JPEG2000 Coefficient Quantization

The JPEG 2000 standard specifies uniform scalar quantization of subband coeffi-
cients  with a step size of  and a zero-level step dead-zone width of .
The quantization operation is governed by (40)

(20.7-1)

where  denotes the floor rounding down operation on its argument. After quan-

tization, the quantized coefficients are converted to sign-magnitude format for
entropy encoding.

The standard (38) defines the step size formation in terms of an exponent  and
a mantissa  according to the relation

Cb u v,( ) Δb 2Δb

Qb Cb u v,( ){ }sgn
Cb u v,( )
Δb

----------------------
F

=

[ ]F

εb

μb
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(20.7-2)

where

(20.7-3a)

and

. (20.7-3b)

20.7.3. JPEG2000 Entropy Encoding

The JPEG standard requires the use of bit-plane coding techniques as a form of
entropy coding. The standardized specification is effective, but of complexity
beyond this text. Reference 39 provides a detailed presentation of the standard
entropy coding specification.

20.8. SPATIAL PROCESSING IMAGE COMPRESSION EXERCISES

E20.1 Develop a program that computes the discrete cosine transform of the
lenna_mon image in  pixel blocks. Steps:

(a) Display the source image.

(b) Compute the  pixel DCT.

(c) Display the magnitude of the DCT.

The PIKS API executable example_8x8_cosine_transform performs this
exercise.

E20.2 Develop a program that simulates the JPEG DCT monochrome image coding
system of Figure 20.6-1 without symbol and entropy coding and decoding for the
lena_mon image. Steps:

(a) Display the source image.

(b) Extract each  pixel block.

(c) Level shift each block.

(d) Perform a DCT of each block.

(e) Quantize each coefficieent block using the luminance quantization array
of Figure 20.6-2.

(f) Perform quantization reconstruction on each quantized coefficient block.

(g) Perform an inverse DCT on each reconstructed coefficient block.

(h) Inverse level shift each reconstructed image block.

Δb 2
εb–

1
μb

2
11

-------+=

0 εb 2
5<≤

0 εb 2
11<≤

8 8×

8 8×

8 8×
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(i) Compose each reconstructed image block to a reconstructed image.

(j) Display the reconstructed image.

The PIKS API executable example_8x8_DCT_quantization performs this
exercise.

E20.3 Develop a program that performs run length coding on the Boolean image
L_array. Steps:

(a) Display the source image.

(b) Compress the source image into a work file using run length coding with
a maximum run length of 16.

(c) Decompress the work file to create the reconstructed image,

(d Display the reconstructed image.

(e) Compute the compression ratio from the source image pixel count and
the work file bit count.

The PIKS API executable example_run_length performs this exercise.
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VIDEO COMPRESSION

This chapter provides a historical summary of the spatial and temporal coding tech-
nology employed in video compression techniques. Following these sections are
descriptions of three MPEG standards: MPEG-1, MPEG-2 and MPEG-4.

21.1. SPATIAL VIDEO CODING TECHNIQUES

Conceptually, the simplest form of video compression is to perform two-dimen-
sional image coding independently on each frame of a video temporal sequence.
Chapter 21 has presented descriptions of several image coding methods based upon
spatial processing. Among these candidates, JPEG (1) and JPEG2000 (2) appear to
be the best choices for reasons of performance.

The JPEG baseline standard has been widely used as a means of video compres-
sion. In this application, the video compression technique has become to be known
as Motion JPEG. It should be understood that Motion JPEG is not an international
standard, and therefore, there is no guarantee of compatibility between various
implementations.

JPEG2000, which was standardized over a decade later than JPEG baseline, has
created a file format in Part 3 of the standard. When followed, it provides Motion
JPEG2000 compatibility.

The choice between the two standards is a trade off between performance and
implementation complexity. JPEG2000 provides about a 10% improvement in cod-
ing rate over JPEG, but JPEG2000 is considerably more complex to implement.
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21.2. SPATIAL/TEMPORAL VIDEO CODING TECHNIQUES

This section presents a summary of the development of spatial/temporal video cod-
ing techniques leading to the MPEG-1 and MPEG-2 standards.

21.2.1. Frame Replenishment Coding

A large potential bandwidth reduction exists in the removal of redundancy between
adjacent frames of television pictures. In most scenes, there is relatively little
change in detail between adjacent frames. Thus, by only transmitting the change in
detail referenced to an initially transmitted frame, a significant bandwidth reduction
can be achieved.

If pixel differences are formed between adjacent frames, it is found that a major-
ity of the pixels are virtually unchanged. This observation has led to the develop-
ment of a frame-to-frame coding technique, by Mounts et al. (3-6), called frame
replenishment coding, as shown in Figure 21.2-1. In operation, each source frame is
digitized to 8 bits per pixel, and the first frame is stored in a reference frame mem-
ory. In subsequent frames, each pixel is compared to its counterpart in the frame
memory. If a significant difference exists, the new pixel value replaces the stored
value in the frame memory, and it is also placed in a buffer memory for transmis-
sion. It is also necessary to identify the position of the significant change along a
scan line by its horizontal code coordinate. The first pixel along a scan line is also
coded to provide a line count. An improvement in coding efficiency can be obtained
by coding frame difference in clusters rather than individually.

Figure 21.2-1. Frame replenishment image coding system.

DIP 1, Figure 22.4-1
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Simulation studies (6) indicate that good visual quality can be obtained at a cod-
ing rate of 1.0 bits per pixel except for picture regions containing violent motion.

21.2.2. Differential Frame Coding

It is possible to extend the technique of predictive coding, shown in Figure 19.3-1,
to utilize the redundancy between frames (6). Mounts (7) has implemented a frame-
to-frame differential PCM predictive coder that derives its prediction value from a
previous frame only. The performance of this coder is about the same as for a differ-
ential PCM coder using the previous pixel along a line: 3.0 bits per pixel. The frame
differential coder is subject to a temporal overload error analogous to the slope
overload error of DPCM.

21.2.3. Unitary Transform Interframe Coding

In most natural television imagery, there is a great deal of correlation in the temporal
direction between frames as well as spatial correlation. Three-dimensional unitary
transform coding can be utilized to provide decorrelation and energy compaction
between frames as well as within each frame.

Let  denote a block of  pixels extracted from a sequence of I
image frames. The separable three-dimensional unitary transform of this block is
defined as

(21.2-1)

where ,  and  are the column, row and temporal transform
kernels, respectively. In an interframe unitary transform coding system, each coeffi-
cient is coded following a zonal sampling, zonal coding or threshold strategy using
design techniques similar to those of two-dimensional transform coding. The recon-
structed transform coefficients at the decoder  are then inverse trans-
formed to produce a reconstructed image block . Figure 21.2-2 contains
plots of the mean square coding error for interframe cosine transform coding of a
three-dimensional Markov process image source with  as a
function of block size for zonal coding (8). Roese et al. (9) have investigated three-
dimensional cosine transform coding over  pixel cubes. Excellent
results have been obtained at coding rates down to 0.25 bits per pixel. The drawback
of three-dimensional interframe transform coding is the large amount of frame stor-
age at the coder.

21.2.4. Motion Compensation Interframe Coding

The coding rate of interframe coding techniques is usually limited because small
movements of objects in a scene or camera movements create relatively large inter-
frame pixel differences. This problem can be overcome by motion compensation.
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Figure 21.2-2. Zonal coding mean square error as a function of frame block size for
interframe cosine transform coding.

In 1969, Rocca (10) introduced the concept of motion compensation for the cod-
ing of interframe differences. The concept, which is illustrated in Figure 21.2-3, fol-
lowing the notation of Section 18.3, consists of the search of a candidate template
region T extracted from a current video frame over a search window S in a reference
frame. The best match region is used to form the subsequent frame difference. Typi-
cally, the normalized cross correlation function of Eq. 18.3-6 is used as a measure of
best fit.

As will be seen in the following sections, motion estimation and motion compen-
sation play a major role in the MPEG standards.

21.3. MPEG-1 VIDEO CODING STANDARD

MPEG-1, an acronym for Moving Picture Experts Group,  is the common name for
an international standard for the digital transmission and storage of moving pictures
and accompanying audio. This standard specifies the digital video and audio com-
pression methodologies that provide storage of a video sequence on a compact disc
read only device (CD-ROM) or similar bandwidth device (11). Appendix AP3.3
summarizes the standardization process of MPEG-1.

DIP 1, Figure 23.2-14
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Figure 21.2-3. Video motion estimation.

This section of the book presents a high-level overview of the MPEG-1 video
standard. References 12 and 13, as well as the standard itself (11), provide details
about the implementation of MPEG-1, which is a relatively complex processor.

21.3.1. MPEG-1 Video Data Structure

MPEG-1 has established a hierarchical layered data structure for compression of a
temporal video sequence, as shown in Figure 21.3-1. At each stage of the structure,
from the video sequence to the small block level, a color picture is defined by an
embedded luminance array  and two chrominance arrays  and .
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search
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best
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Figure 21.3-1. MPEG-1 hierarchial video data structure.

The following are definitions of the MPEG-1 data structures.

A Video Sequence is a temporal collection of one or more MPEG-1 Groups of
Pictures.

A Group of Pictures is a temporal collection of one or more MPEG-1 Pictures
(15). It begins with an I-picture or a B-picture. Figure 21.3-2 illustrates a typi-
cal Group of Pictures in display order.

There are four types of MPEG-1 pictures, which are defined as follows.

An I-picture is a MPEG-1 picture in which all  luminance and chromi-
nance blocks are intraframe coded using a discrete cosine transformation, linear
quantization and variable length encoding process. I-pictures can be used to
predict P-pictures and B-pictures.

....

  Video Sequence

....

      Group of Pictures

  Picture

 Slice

16 x 16
Macroblock 

 8 x 8
Block

8 8×
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Figure 21.3-2. Example of a MPEG-1 Group of Pictures.

A P-picture is a MPEG-1 picture in which all  luminance and chromi-
nance blocks are coded using motion compensated forward prediction from a
previous I-picture or P-picture. P-pictures pass through the feedback loop.
They can be used for predicting P-pictures and B-pictures.

A B-picture is a MPEG-1 picture in which all  luminance and chromi-
nance blocks are coded using a past and, or, future picture as a reference by
bidirectional motion compensation prediction. B-pictures are not allowed as a
reference for any other pictures.

A D-picture is a MPEG-1 picture in which only the DC coefficients of all 
luminance and chrominance blocks are coded. This compressed video provides
a simple and fast method for displaying a fast-forward version of a video
sequence.

A MPEG-1 Slice is a contiguous sequence of Microblocks in raster scan order
starting at a specified address in a picture. The slice height is 16 pixels. At the
picture edge, the slice may wrap around to the next microblock row. The pur-
pose of a slice is to permit on the fly changes in the encoder algorithm. It is also
useful for error recovery.

A MPEG-1 Macroblock consists of an array of  luminance pixels
 and two  chrominance arrays  and . The luminance

array is embedded into four  arrays for encoding. The  luminance
microblock can be used for motion estimation.

8 8×

8 8×

8 8×

16 16×
Y j k,( ) 8 8× Cb j k,( ) Cr j k,( )

8 8× 16 16×
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A MPEG-1 Block is a  array of pixels used for encoding luminance and
chrominance data.

21.3.2. MPEG-1 Video Encoding System

The MPEG-1 standard does not mandate specific designs for the video encoder and
decoder. However, the encoder must satisfy the syntax and semantics of the standard
in terms of the composition of the compressed video data stream. Likewise, the
decoder must be able to reconstruct a reasonable replica of the video source from the
compressed video data stream.

For educational purposes, it is useful to describe a generic encoder and decoder,
which could be implemented to satisfy the MPEG-1 standard. Figure 21.3-3 pro-
vides a simplified  block diagram of a generic MPEG-1 encoder and decoder based
upon references 12 and 14. In the figure, deletion of the shaded blocks results in an
encoder whose coded data stream satisfies the MPEG standard for I-pictures for a
macroblock input frame F(n) and its reconstructed output . If the
shaded blocks are included, the block diagram satisfies the MPEG-1 standard for P-
pictures and B-pictures.

The following subsections provide simplified descriptions of the encoding pro-
cesses for MPEG-1, which are conceptually similar to those of  JPEG.

I-picture encoding. For intraframe encoding, the four luminance   blocks
and two  chrominance blocks of a macroblock are sequentially extracted from
frame F(n)  and input to the Discrete Cosine Transform box. The DCT coefficient
array is quantized by division of a quantization array and rounding of the dividend
to its nearest integer value. The MPEG-1 standard provides the single quantization
array shown in Figure 21.3-41. Next, the quantized coefficients are symbol and
entropy coded in two parallel paths. In the symbol encoder, the DC coefficient of the
present frame is subtracted by the corresponding DC coefficient of the previous
frame, and the difference is fed to an entropy encoder. The AC block coefficients are
sent to a symbol coder, which performs a zigzag scanning of the 63 AC coefficients,
and performs run length coding of the non-zero AC coefficients.

Tables 21.3-1 and 21.3-2 provide the default Huffman code assignments for DC
and AC I-picture encoding (11). For brevity, the AC table is abbreviated as shown.
In Table 21.3-2, the sign bit, s, is 0  for a positive quantity and 1 for a negative quan-
tity. As with JPEG, it is necessary to append the Huffman codes with additional bits
words. Table 21.3-2 contains two special code symbols EOB and ESC. EOB
informs the decoder that there are no non-zero coefficients in the zigzag scan after
the last one coded. ESC is an escape code word, which indicates that a run/level pair
is not in the table, and the next 16-bit word specifies the value of the pair.

1. JPEG provides default quantization arrays for luminance and
chrominance blocks

8 8×

E n( ) F̂ n( )=

8 8×
8 8×
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Figure 21.3-3. MPEG-1 video generic encoding system. Legend: DCT = Discrete
Cosine Transform; Q = Quantizer; R = Reconstructor; IDCT = Inverse DCT;
ME = Motion Estimate; MC = Motion Compensate; SEC = Symbol and
Entropy Coder; SED = Symbol and Entropy and Decoder.

FIGURE 21.3-4. MPEG-1 I-picture quantization array.
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At the video decoder, shown in Figure 21.3-4b, The Entropy Decoder decodes
the coded bit stream to create the quantized coefficient symbols After symbol
decoding, the quantized coefficients are reconstructed and subject to an inverse
DCT. This produces the macroblock, which is embedded in the coded frame ,
which is an estimate of F(n).

P-picture and B-picture coding. Figure 21.3-3, with the shaded boxes included,
serves as a generic model for the coding of I-pictures and B-pictures. In the diagram,
the present frame F(n)  is compared to the previous reference frame F(n-1) over a
macroblock luminance area. Conceptually, the macroblock of the present frame is
shifted horizontally and vertically until a best fit of the shifted macroblock is
achieved. The shift is recorded as a motion vector, MV. Next, the MV  is fed to a
motion compensation box, which creates a prediction macroblock array P(n) that is
subtracted from the F(n) macroblock to obtain a difference macroblock array D(n).

Each   luminance quadrant and associated  chrominance block of the
difference macroblock is transformed by the DCT box. Next, each transformed
block is quantized by a quantization array, which, for P-pictures and B-pictures, is of
constant value 16. The quantized coefficients are then symbol and entropy encoded
to create the video part of the coded data stream. For P-pictures and B-pictures, all
transform coefficients are treated as AC coefficients and coded by the Huffman code
Table 23.3-2. In the table, the last bit s denotes the sign bit of the lrvel. The coded
video is combined with the motion vector for transmission to the decoder.

Table 21.3-1. MPEG-1 DC coefficient luminance and chrominance I-picture 
codes

size coefficient range Y code C code

0 0 100 00

1 -1,1 00 01

2 -3...-2,2...3 01 10

3 -7...-4,4...7 101 110

4 -15...-8,8...15 110 1110

5 -31...-16,16...31 1110 1111 0

6 -63...-32,32...63 1111 0 1111 10

7 -127...-64,64...127 1111 10 1111 110

8 -255...-128,128...255 1111 110 1111 1110

F̂ n( )

8 8× 8 8×
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Meanwhile, at the video encoder, the quantized coefficients are reconstructed,
inverse transformed and added to the prediction array, which is generated from the
previous reference frame using the motion vector to create a new reconstructed
frame macroblock array . The same reconstruction process occurs at the video
decoder.

Table 21.3-2. MPEG-1 AC coefficient Huffman codes

run/level code

0/1 1s (first)

0/1 11s (next)

0/2 0100 s

0/3 0010 1s

0/4 0000 110s

0/5 0010 0110 s

0/6 0010 0001 s

0/7 0000 0010 10s

0/8 0000 0001 1101 s

. .

. .

26/1 0000 0000 1101 1s

27/1 0000 0000 0001 1111 s

28/1 0000 0000 0001 1110 s

29/1 0000 0000 0001 1101 s

30/1 0000 0000 0001 1100 s

31/1 0000 0000 0001 1011 s

EOB 10

ESC 0000 01

F̂ n( )
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21.4. MPEG-2 VIDEO CODING STANDARD

MPEG-2 can be considered to be a superset of MPEG-1 in terms of generic design
and additional features. MPEG-2 is forward compatible in the sense that a MPEG-2
compliant standard decoder can decode the compressed bit stream of a standard
MPEG-1 encoder. This desirable property of MPEG-2 has been achieved by reliance
upon a generic coding system, such as that of Figure 21.3-3, for both MPEG-1 and
MPEG-2.

Appendix 3.4 lists some of the enhancements of MPEG-1 that MPEG-2 provides
(12,13,16). In addition to these enhancements, MPEG-2 permits greater flexibility
in the usage of control data and control parameters, e.g. customized DC coefficient
precision rather than fixed value. References 12, 13 and 16 provide implementation
details.

21.5. MPEG-4 VIDEO CODING STANDARDS

MPEG-4 comprises a group of standards for video and associated audio data1. Part 2
of the standard, called MPEG-4 Visual, was conceived in 1993 as a video standard
for low bit rate video compression. During its standardization process, MPEG-4
Visual was substantially enlarged in its scope to encompass state of the art video
compression technology. MPEG-4 Visual was standardized as an International Stan-
dards Organization document in 1999 (17). In a parallel effort, the International
Telecommunications Union started the standardization efforts for H.264, a video
compression standard for efficient low bit rate video compression.

The MPEG-4 Visual standard has adopted a “tool kit” approach to the application
of video compression functionality for a wide variety of video data. This tool kit
supports:

conventional rectangular video frames as in MPEG-1 and MPEG-2;

video objects of arbitrarily shaped regions within a scene;

conventional still images as in JPEG and JPEG2000;

still images including texture images

hybrid images consisting of natural and computer-generated content;

2D and 3D mesh objects:

1. During the time that MPEG-2 was being standardized, there was a paral-
lel effort to standardize MPEG-3 for the coding of high definition television
(HDTV). This effort was abandoned when it was determined that MPEG-2
could support HDTV.
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The MPEG-4 Visual tools can be invoked for video data, which is scalable over a
range of spatial resolutions and video quality.

The H.264 standard has been drafted, intentionally, so as to minimize flexibility
in favor of better coding performance. H.264 also has chosen to stress transmission
issues for a range of communication channels and networks. Table 21.5-1 provides a
summary comparison between MPEG-4 Visual and H.264 (14, p 95).

In 2001, the MPEG and VCEG expert groups agreed to develop a new video
compression technology to be called Advanced Video Coding, (AVC), which is to be
based upon the H.264 technology. This standard was published in 2003 by the joint
documents H.264 and MPEG-4 Part 10 (18). The AVC standard has three profiles:
Baseline Profile, which is sufficient for video telephony, video teleconferencing and
mobile computing; Main Profile, which supports interlace scan, and is suitable for
television broadcasting and video archiving; and Extended Profile, which is tailored
for streaming video applications.

The video coding system presented in Figure 21.3.-3 is applicable for AVC
encoding with one major change. The encoder needs to provide a choice between
intra frame prediction or inter frame prediction. An application driven switch at the
encoder directs the decision, and transmits the choice to the decoder. The decoder
then chooses between intra frame and inter frame prediction.

The AVC standard requires complex processing to implement its functionality.
Further description is beyond the scope of this book. Richardson (14) provides an
excellent guide to the implementation of the AVC standard.

Table 21.5-1. Comparison of MPEG-4 Visual and H.264

Comparison MPEG-4 Visual H.264

data types rectangular fields and frames,
video objects, still images,
synthetic-natural hybrids,
2D and 3D mesh objects

rectangular fields and frames

profiles 19 3

compression efficiency medium high

motion compensation
 block size

8 x 8 4 x 4

motion vector half or quarter pixel quarter pixel

transform 8 x 8 DCT 4 x 4 DCT approximation

deblocking filter no yes
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APPENDIX 1

Introduction to Digital Image Processing by William K. Pratt
Copyright © 2013 by CRC Press.

VECTOR-SPACE ALGEBRA CONCEPTS

This appendix contains reference material on vector-space algebra concepts used in
the book.

AP1.1. VECTOR ALGEBRA

This section provides a summary of vector and matrix algebraic manipulation proce-
dures utilized in the book. References 1 to 5 may be consulted for formal derivations
and proofs of the statements of definition presented here.

Vector. An column vector f is a one-dimensional vertical arrangement,

(AP1.1-1)

N 1×

f

f 1( )

f 2( )

f n( )

f N( )

=

…
…
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of the elements f (n), where n = 1, 2,..., N. An  row vector h is a one-dimen-
sional horizontal arrangement

(AP1.1-2)

of the elements h(n), where n = 1, 2,..., N. In this book, unless otherwise indicated,
all boldface lowercase letters denote column vectors. Row vectors are indicated by
the transpose relation

(AP1.1-3)

Matrix. An  matrix F is a two-dimensional arrangement

(AP1.1-4)

of the elements F(m, n) into rows and columns, where m = 1, 2,..., M and n = 1, 2,...,
N. The symbol 0 indicates a null matrix whose terms are all zeros. A diagonal matrix
is a square matrix, M = N, for which all off-diagonal terms are zero; that is,
F(m, n) = 0 if . An identity matrix denoted by I is a diagonal matrix whose
diagonal terms are unity. The identity symbol is often subscripted to indicate its
dimension:  is an  identity matrix. A submatrix  is a matrix partition of
a larger matrix F of the form

(AP1.1-5)

Identity Matrix. A square matrix with ones along the diagonal and zeros elsewhere.

Matrix Addition. The sum of two matrices is defined only for matrices
of the same size. The sum matrix C is an  matrix whose elements are

.

Matrix Multiplication. The product of two matrices is defined only when
the number of columns of A equals the number of rows of B. The  product
matrix C of the matrix A and the  matrix B is a matrix whose general element
is given by

1 N×

h h 1( ) h 2( ) … h n( ) … h N( )=

f
T

f 1( ) f 2( ) … f n( ) … f N( )=

M N×

F

F 1 1,( ) F 1 2,( ) … F 1 N,( )
F 2 1,( ) F 2 2,( ) … F 2 N,( )

F M 1,( ) F M 2,( ) … F M N,( )

= … … …

m n≠

IN N N× Fpq

F
F11 F12

… F1Q

FP1 FP2
… FPQ

= … … …

C A B+=
M N×

C m n,( ) A m n,( ) B m n,( )+=

C AB=
M N×

P N×
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(AP1.1-6)

Matrix Inverse. The matrix inverse, denoted by A–1, of a square matrix A has the
property that  and . If such a matrix  exists, the matrix A is
said to be nonsingular; otherwise, A is singular. If a matrix possesses an inverse, the
inverse is unique. The matrix inverse of a matrix inverse is the original matrix. Thus,

(AP1.1-7)

If matrices A and B are nonsingular,

(AP1.1-8)

If matrix A is nonsingular, and the scalar , then

(AP1.1-9)

Inverse operators of singular square matrices and of nonsquare matrices are consid-
ered in Section AP1.3. The inverse of the partitioned square matrix

(AP1.1-10)

may be expressed as

(AP1.1-11)

provided that  and  are nonsingular.

Matrix Transpose. The transpose of an matrix A is a  matrix denoted
by AT, whose rows are the columns of A and whose columns are the rows of A. For
any matrix A,

(AP1.1-12)

If A = AT, then A is said to be symmetric. The matrix products  and  are
symmetric. For any matrices A and B,

(AP1.1-13)

If A is nonsingular, then  is nonsingular and

C m n,( ) A m p,( )B p n,( )
p 1=

P

=

AA
1–

I= A
1–
A I= A

1–

A
1–[ ]

1–
A=

AB[ ] 1–
B

1–
A

1–
=

k 0≠

kA[ ] 1
k
---A

1–
=

F
F11 F12

F21 F22

=

F
1– F11 F12F22

1–
F21–[ ]

1–
F11

1–
– F12 F22 F21F11

1–
F12–[ ]

1–

F22
1–

– F21 F11 F12F22
1–
F21–[ ]

1–
F22 F21F11

1–
F12–[ ]

1–
=

F11 F22

M N× N M×

A
T[ ]

T
A=

AA
T

A
T
A

AB[ ]T B
T
A

T
=

A
T
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(AP1.1-14)

Matrix Direct Product. The left direct product of a  matrix A and an 
matrix B is a  matrix defined by

(AP1.1-15)

A right direct product can also be defined in a complementary manner. In this book,
only the left direct product will be employed. The direct products  and 
are not necessarily equal. The product, sum, transpose, and inverse relations are:

(AP1.1-16)

(AP1.1-17)

(AP1.1-18)

(AP1.1-19)

Matrix Trace. The trace of an  square matrix F is the sum of its diagonal ele-
ments denoted as

(AP1.1-20)

If A and B are square matrices,

(AP1.1-21)

The trace of the direct product of two matrices equals

(AP1.1-22)

Vector Norm. The Euclidean vector norm of the  vector f is a scalar defined as

(AP1.1-23)

Matrix Norm. The Euclidean matrix norm of the  matrix F is a scalar defined
as

(AP1.1-24)

A
T[ ]

1–
A

1–[ ]
T

=

P Q× M N×
PM QN×

C A B⊗

B 1 1,( )A B 1 2,( )A … B 1 N,( )A

B 2 1,( )A B 2 2,( )A … B 2 N,( )A

B M 1,( )A … … B M N,( )A

= =

… … …

A B⊗ B A⊗

A B⊗[ ] C D⊗[ ] AC[ ] BD[ ]⊗=

A B+[ ] C⊗ A C⊗ B C⊗+=

A B⊗[ ]T A
T

B
T⊗=

A B⊗[ ] 1–
A

1–
B

1–⊗[ ]=

N N×

tr F{ } F n n,( )
n 1=

N

=

tr AB{ } tr BA{ }=

tr A B⊗{ } tr A{ }tr B{ }=

N 1×

f f
T
f=

M N×

F tr F
T
F[ ]=
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Matrix Rank. An  matrix A is a rank R matrix if the largest nonsingular
square submatrix of A is an  matrix. The rank of a matrix is utilized in the
inversion of matrices. If matrices A and B are nonsingular, and C is an arbitrary
matrix, then

(AP1.1-25)

The rank of the product of matrices A and B satisfies the relations

(AP1.1-26a)

(AP1.1-26b)

The rank of the sum of matrices A and B satisfies the relations

(AP1.1-27)

Vector Inner Product. The inner product of the  vectors f and g is a scalar

(AP1.1-28)

where

(AP1.1-29)

Vector Outer Product. The outer product of the  vector g and the  vec-
tor f is a matrix

(AP1.1-30)

where .

Quadratic Form. The quadratic form of an  vector f is a scalar

(AP1.1-31)

where A is an  matrix. Often, the matrix A is selected to be symmetric.

Vector Differentiation. For a symmetric matrix A, the derivative of the quadratic
form  with respect to x is

(AP1.1-32)

N N×
R R×

rank C{ } rank AC{ } rank CA{ } rank ACB{ }= = =

rank AB{ } rank A{ }≤

rank AB{ } rank B{ }≤

rank A B+{ } rank A{ } rank B{ }+≤

N 1×

k g
T
f=

k g n( )f n( )

n 1=

N

=

M 1× N 1×

A gf
T

=

A m n,( ) g m( )f n( )=

N 1×

k f
T
Af=

N N×

x
T
Ax

x
T
Ax[ ]∂
x∂

--------------------- 2Ax=
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AP1.2. SINGULAR-VALUE MATRIX DECOMPOSITION

Any arbitrary  matrix F of rank R can be decomposed into the sum of a
weighted set of unit rank  matrices by a singular-value decomposition (SVD)
(6–8).

 According to the SVD matrix decomposition, there exist an  unitary
matrix U and an  unitary matrix V for which

(AP1.2-1)

where

(AP1.2-2)

is an  matrix with a general diagonal entry  called a singular value of
F. Because U and V are unitary matrices,  and . Consequently,

(AP1.2-3)

The columns of the unitary matrix U are composed of the eigenvectors  of the
symmetric matrix FFT. The defining relation is

(AP1.2-4)

where  are the nonzero eigenvalues of FFT. Similarly, the columns of V are the
eigenvectors of the symmetric matrix  as defined by

(AP1.2-5)

where the  are the corresponding nonzero eigenvalues of FTF. Consistency is
easily established between Eqs. AP1.2-3 to AP1.2-5. It is possible to express the
matrix decomposition of Eq. AP1.2-3 in the series form

M N×
M N×

M M×
N N×

U
T
FV Λ1 2⁄

=

Λ1 2⁄
λ1 2⁄

1( ) … 0

···
λ1 2⁄

1( )
0 … 0

= … …

M N× λ1 2⁄
j( )

UU
T

IM= VV
T

IN=

F UΛ1 2⁄
V

T
=

um

U
T

FF
T[ ]U

λ 1( ) … 0

···
λ R( )

0 … 0

= … …

λ j( )
vn F

T
F

V
T

F
T
F[ ]V

λ 1( ) … 0

··· λ R( )
0 … 0

= … …

λ j( )
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(AP1.2-6)

The outer products  of the eigenvectors form a set of unit rank matrices each of
which is scaled by a corresponding singular value of F. The consistency of Eq.
AP1.2-6 with the previously stated relations can be shown by its substitution into
Eq. AP1.2-1, which yields

(AP1.2-7)

It should be observed that the vector product  is a column vector with unity in
its jth elements and zeros elsewhere. The row vector resulting from the product 
is of similar form. Hence, upon final expansion, the right-hand side of Eq. AP1.2-7
reduces to a diagonal matrix containing the singular values of F.

The SVD matrix decomposition of Eq. AP1.2-3 and the equivalent series repre-
sentation of Eq. AP1.2-6 apply for any arbitrary matrix. Thus, the SVD expansion
can be applied directly to discrete images represented as matrices. Another applica-
tion is the decomposition of linear operators that perform superposition, convolution
or general transformation of images in vector form.

AP1.3. PSEUDOINVERSE OPERATORS

A common task in linear signal processing is to invert the transformation equation

(AP1.3-1)

to obtain the value of the  input data vector f, or some estimate  of the data
vector, in terms of the  output vector p. If T is a square matrix, obviously

(AP1.3-2)

provided that the matrix inverse exists. If T is not square, a  matrix pseudoin-
verse operator T+ may be used to determine a solution by the operation 

 = T+p (AP1.3-3)

If a unique solution does indeed exist, the proper pseudoinverse operator will pro-
vide a perfect estimate in the sense that . That is, it will be possible to extract
the vector f from the observation p without error. If multiple solutions exist, a pseu-
doinverse operator may be utilized to determine a minimum norm choice of solu-
tion. Finally, if there are no exact solutions, a pseudoinverse operator can provide a
best approximate solution. This subject is explored further in the following sections.

F λ1 2⁄
j( )ujvj

T

j 1=

R

=

ujvj
T

Λ1 2⁄
U

T
FV λ1 2⁄

j( )UT
ujvj

T
V

j 1=

R

= =

U
T
uj

vj
T
V

p Tf=

Q 1× f̂
P 1×

f̂ T[ ] 1–
p=

Q P×

f̂

f̂ f=
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References 5, 6 and 9 provide background and proofs of many of the following
statements regarding pseudoinverse operators.

The first type of pseudoinverse operator to be introduced is the generalized
inverse T –, which satisfies the following relations:

TT – = [TT–]T (AP1.3-4a)

T –T = [T –T]T (AP1.3-4b)

TT – T = T (AP1.3-4c)

T – TT – = T – (AP1.3-4d)

The generalized inverse is unique. It may be expressed explicitly under certain cir-
cumstances. If , the system of equations of Eq. AP1.3-1 is said to be overde-
termined; that is, there are more observations p than points f to be estimated. In this
case, if T is of rank Q, the generalized inverse may be expressed as

T – = [TTT]–1TT (APP1.3-5)

At the other extreme, if , Eq. AP1.3-1 is said to be underdetermined. In this
case, if T is of rank P, the generalized inverse is equal to

T – = TT[TTT] –1 (AP1.3-6)

It can easily be shown that Eqs. AP1.3-5 and AP1.3-6 satisfy the defining relations
of Eq. AP1.3-4. A special case of the generalized inverse operator of computational
interest occurs when T is direct product separable. Under this condition

 (AP1.3-7)

where  and  are the generalized inverses of the row and column linear oper-
ators.

Another type of pseudoinverse operator is the least-squares inverse T$, which
satisfies the defining relations

TT$T = T (AP1.3-8a)

TT$ = [TT$]T (AP1.3-8b)

Finally, a conditional inverse T# is defined by the relation

TT#T = T (AP1.3-9)

Examination of the defining relations for the three types of pseudoinverse operators
reveals that the generalized inverse is also a least-squares inverse, which in turn is
also a conditional inverse. Least-squares and conditional inverses exist for a given

P Q>

P Q<

T
–

TC
–

TR
–⊗=

TR
–

TC
–
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linear operator T; however, they may not be unique. Furthermore, it is usually not
possible to explicitly express these operators in closed form.

The following is a list of useful relationships for the generalized inverse operator
of a  matrix T.

Generalized inverse of matrix transpose:

[TT] – = [T –]T (AP1.3-10)

Generalized inverse of generalized inverse:

[T –] – = T (AP1.3-11)

Rank:

rank{T –} = rank{T} (AP1.3-12)

Generalized inverse of matrix product:

[TTT] – = [T] –[TT] – (AP1.3-13)

Generalized inverse of orthogonal matrix product:

[ATB] – = BTT –AT (AP1.3-14)

where A is a  orthogonal matrix and B is a  orthogonal matrix.
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APPENDIX 2

Introduction to Digital Image Processing by William K. Pratt
Copyright © 2013 by CRC Press.

IMAGE ERROR MEASURES

In the development of image enhancement, restoration and coding techniques, it is
useful to have some measure of the difference between a pair of similar images. The
most common difference measure is the mean-square error. The mean-square error
measure is popular because it correlates reasonable with subjective visual quality
tests and it is mathematically tractable.

Consider a discrete F (j, k) for j = 1, 2,..., J and k = 1, 2,..., K, which is regarded as
a reference image, and consider a second image  of the same spatial dimen-
sions as F (j, k) that is to be compared to the reference image. Under the assumption
that F (j, k) and  represent samples of a stochastic process, the mean-square
error between the image pair is defined as 

(AP2-1)

where  is the expectation operator. The normalized mean-square error is

(AP2-2)

Error measures analogous to Eqs. AP2-1 and AP3-2 have been developed for deter-
ministic image arrays. The least-squares error for a pair of deterministic arrays is
defined as

(AP2-3)

F̂ j k,( )

F̂ j k,( )

ξMSE E F j k,( ) F̂ j k,( )– 2{ }=

E ·{ }

ξNMSE
E F j k,( ) F̂ j k,( )– 2{ }

E F j k,( ) 2{ }
------------------------------------------------------=

ξLSE
1

JK
------- F j k,( ) F̂ j k,( )–

2

k 1=

K


j 1=

J

=
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and the normalized least-squares error is

(AP2-4)

Another common form of error normalization is to divide Eq. AP2-3 by the squared
peak value of F(j, k). This peak least-squares error measure is defined as

(AP2-5)

In the literature, the least-squares error expressions of Eqs. AP2-3 to AP2-5 are
sometimes called mean-square error measures even though they are computed from
deterministic arrays. Image error measures are often expressed in terms of a signal-
to-noise ratio (SNR) in decibel units, which is defined as

(AP2-6)

A common criticism of mean-square error and least-squares error measures is
that they do not always correlate well with human subjective testing. In an attempt
to improve this situation, a logical extension of the measurements is to substitute
processed versions of the pair of images to be compared into the error expressions.
The processing is chosen to map the original images into some perceptual space in
which just noticeable differences are equally perceptible. One approach is to per-
form a transformation on each image according to a human visual system model
such as that presented in Chapter 2.
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IMAGE AND VIDEO COMPRESSION 
STANDARDS DEVELOPMENT

This appendix summarizes the development of several widely used image and video
compression standards.

AP3.1  JPEG STILL IMAGE COMPRESSION STANDARD

In 1982, a group of digital photographic experts was formed under the auspices of
the International Standards Organization ISO/TC97/SC2 WG8 with the intention of
creating a standard for still image digital coding. The ISO group merged in 1986
with the CCITT SGV111 Special Rapporteurs Group. The merged group adopted
the informal group name Joint Photographic Expert Group (JPEG). Definition of the
JPEG JPEG baseline standard was begun in 1989. In 1966, the international stan-
dard was adopted with the publication of ISO/IEC 10918-1 ITU-T Rec. T.84, Infor-
mation Technology - Digital Compression and Coding of Continuous Tone Still
Images.

The JPEG standard specifies four coding modes:

Sequential Lossless — Single scan compression based upon predictive
entropy encoding such that the reconstructed image is an exact replica of
the source image.

Download more at Learnclax.com



684 IMAGE AND VIDEO COMPRESSION STANDARDS DEVELOPMENT

Sequential Lossy — Single scan compression based upon Discrete Cosine
Transform (DCT) Huffman or arithmetic entropy encoding such that the
reconstructed image is a close approximation to the source image.

Progressive — DCT-based compression and decompression of a source
image in multiple scans such that each successive scan results in a better
quality reconstruction.

Hierarchical — DCT-based or predictive-based encoding such that a
source image is compressed at multiple resolutions to accommodate differ-
ent resolution displays.

The JPEG standard specifies a baseline operation in which Huffman entropy encod-
ing is supported.

AP3.2.  JPEG2000 STILL IMAGE COMPRESSION STANDARD

JPEG2000 is a standard for still image compression1. It has been jointly developed
by the International Organization for Standardization (ISO) and the International
Electrotechnical Commission (IEC). The standardization effort was begun with a
ISO/IEC New Work Item Proposal seeking the development of a wavelet transform
based image compression system2. The standard was published in the year 2000.

The functionality of JPEG2000 has been specified by the following set of desired
features3.

Superior low bit-rate performance

Continuous-tone and bi-level compression

Progressive transmission by pixel accuracy and resolution

Lossless and lossy compression

Random code stream access and processing

Robustness to bit errors

Sequential build-up capability

1. New Work Item Proposal: JPEG2000 Image Coding System, Technical
Report N390, ISO/IEC JTC!/SC29/WG1, June 1996.

2. ISO/IEC 15444-1, Information Technology — JPEG2000 Image Coding
System — Part 1: Core Coding System, 2000.

3.D. S. Taubman and M. W. Marcellin, JPEG2000 Image Compression
Fundamentals, Standards and Practice, Springer, New York, 2002.
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AP3.3.  MPEG-1 VIDEO COMPRESSION STANDARD

In October 1988, an ad hoc group of digital audio and video experts was formed
under the auspices of the International Standards Organization (ISO) and the Inter-
national Electrotechnical Commission (IEC) with the intention of developing a stan-
dard for CD-ROM storage. In November of 1992, the MPEG-1 standard was
published as document IS 11172 in three parts: Part 1 Systems, Part 2 Video and Part
3 Audio. MPEG-1 Video was deliberatively crafted so as to not specify the encoding
process. It only specifies the syntax and semantics necessary to define the com-
pressed video data stream and the inherent decoder signal processing. This design
strategy permits the development of relatively low complexity MPEG-1 decoders
without placing implementation restrictions on the design of encoders.

AP3.4.  MPEG-2 VIDEO COMPRESSION STANDARD

The following is a list of enhancements to MPEG-1 that are supported in MPEG-2.

coding rate MPEG-1 provides a coding bit rate of up to about 1.9 Mbps, while
MPEG-2 supplies coding up to 100 Mbps.

picture size MPEG-1 is usually used for encoding pictures of 288 rows and 352 col-
umns at 24 or 30 frames per second. MPEG-2 supports , ,

 and .

interlace video scanning MPEG-2 supports interlace scanning, which is the scan
mode for commercial television systems. MPEG-1 only accommodates progressive
scanning.

chrominance sampling MPEG-1 supports 4:2:0 chrominance sampling while
MPEG-2 handles 4:2:0, 4:2:2 and 4:4:4 chrominance sampling.

profiles and levels MPEG-2 provides five implementation profiles with up to four
levels in each profile. MPEG-2 provides none.

AP3.5.  MPEG-4 VIDEO COMPRESSION STANDARDS

Richardson1 provides a clear description of the development path of the MPEG-4
standards.

1. I. E. G. Richardson, H.264 and MPEG-4 Video Compression, John Wiley
and Suns, Hoboken New Jersey, 2003.

288 352× 576 720×
1152 1440× 1152 1920×
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HUFFMAN CODING EXAMPLE

A Huffman code can be generated by the development of a code tree for a given set
of symbols and their probabilities of occurrence. The following is an example of
code tree development for  symbols.

Step 1: List the Q symbols as tree nodes in descending probability order.

Step 2: Combine the two nodes with the lowest probabilities to create a replace-
ment node whose probability is the sum of its branch probabilities.

Step 3: Repeat Step 2 for the remaining  nodes.

Step 4: Continue the combination processing until there remains a single root
node.

Step 5: Label all branches of the nodes with bit 0 or 1 on the upper path and bit 1
or 0 on the lower path.

Step 6: Concatenate all branch codes from the root node to each symbol to obtain
the symbol code word.

The following figure  is the code tree for the example. The table lists the Huffman
code assignment for the example.

Q 8=

Q 1–
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Huffman code tree example

Huffman code table example

symbol probability code length

1 0.200 00 2

2 0.200 10 2

3 0.250 01 2

4 0.150 011 3

5 0.100 0111 4

6 0.050 01111 5

7 0.030 011111 6

8 0.020 111111 6

       .20

       .20

        .25

        .15

        .10

        .05

        .03

        .02

.05

.10

.20

.35

.60

.40
1.00

probability

0

1

0

1

0

1
0

1
0

1
0

1
0

1
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PIXELSOFT WEB SITE DOWN LOADABLE 
FILES

This annex contains a listing of down loadable files from the PixelSoft, Inc. web site
pixelsoft.com. These files support software development for the CRC Press text-
book  Introduction to Digital Image Processing by William K. Pratt.

PDF FILE FORMAT DOCUMENTATION

PIKS Image Processing Software Tutorial

PixelSoft PIKS Scientific API Programmer’s Manual

PIKSTool Scientific User’s Manual

IMAGE DATABASES

PixelSoft Source Images In PIKS File Format.

PixelSoft Source Images In TIFF File Format

Selected TIFF Images from Introduction to Digital Image Processing
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IMAGE PROCESSING SOFTWARE PACKAGES

PixelSoft PIKS API Software

PixelSoft PIKSTool Software

DEMONSTRATION EXAMPLES

PIKS API Examples

PIKSTool GUI Examples

PIKSTool Chain Examples

MATLAB Examples

C LANGUAGE EXECUTABLE PROGRAMMING EXERCISES

PIKS API Exercises

C LANGUAGE SOURCE PROGRAMMING EXERCISES1

PIKS API Exercises

PIKSTool Graphical User Interface Exercises

PIKSTool Chain Exercises

MATLAB Exercises

1. Software source files available to course instructors.
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PIKS API IMAGE PROCESSING EXAMPLE

This appendix contains an example of an unsharp mask operation on a monochrome
image using the PIKS application program interface software.

Equation 10.4-2 defines the unsharp mask operation on a monochrome source
image as

where c is a weighting constant and  is low pass filtered version of the
source image obtained by convolution of the source image with a low pass filter
impulse response array.

The PIKS version of the unsharp mask operator is given by

where a1 and a2  are weighting constants and b is a bias factor.

F j k,( )

G j k,( ) c
2c 1–
---------------F j k,( ) 1 c–

2c 1–
---------------FL j k,( )–=

FL j k,( )

G j k,( ) a1F j k,( ) a2FL j k,( ) b+ +=
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AN2.1. UNSHARP MASK PIKS API C PROGRAM LISTING

The following is a C program listing of the unsharp masking operation on a mono-
chrome image with a1 = 3.0, a2 = -2.0, b = 0.0 and the impulse response array is a
5x5 uniform array.

/*** Program:

 ***

 *** example_unsharp_mask.c 

 ***

 *** Function:

 ***

 *** Apply unsharp masking to a monochrome image.

 ***

 *** Operational steps:

 ***

 *** Read monochrome source image file information.

 *** Allocate source image

 *** Read source image from file

 *** Display source image

 *** Perform unsharp making on source image

 *** Display destination image

 ***

 *** History:

 ***

 *** Created 4 June 2010 W. K. Pratt

 *** Revised 17 February 2011 WKP

 ***/

/*

** Includes 

*/

#include <stdio.h>

#include <stdlib.h>

#include <piks.h>

/*

** Defines 

*/

#define ND_PRECISION 8

#define RD_PRECISION 32

/*
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** Main 

*/

main(int argc, char **argv)

{

/*

** Local entities 

*/

char err_name[] = "piks_errors";

char filename[256];

char  hdr_name[256];

char  datafile[256];

void *tnWindow1, *tnWindow2;

FILE  *in_file;

        

/*

** PIKS entities 

*/

Idnimage nSrcND, nDstND, nDstRD;

Idnimage nDisplay1, nDisplay2;

Idnnbhood nImpulse;

Ipnerror nErrorFile;

Ipsobject snObject;

Ipsparameter_arith  stAbove, stBelow, stWidth, stLevel;

Ipfloat rWeight1 = 3.0;

Ipfloat rWeight2 = -2.0;

Ipfloat rBias = 0.0;

Ipfloat rMin;

Ipfloat rMax;

Ipfloat rAbove = 255.0;

Ipfloat rBelow = 0.0;

Ipfloat rWidth, rLevel;

Ipuint uSrcWidth, uSrcHeight, uSrcDept,

uSrcTime, uSrcBands;

 Ipuint uSrcPrecision, uSrcType,

uSrcOrganization;

Ipuint uX, uY;

/*

** Open PIKS session 

*/

if((nErrorFile = (Ipnerror)fopen(err_name, "w")) == NULL)
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exit(1);

IvOpenPIKS(nErrorFile);

/*

** Read source image header file information

*/

if (argc == 1) {

printf("Enter ND monochrome image filename (brain) \n");

scanf("%s", filename);

}

else {

sprintf (filename, "%s", argv[1]);

printf ("Image File: %s %s\n", filename, argv[1]);

}

sprintf(hdr_name,"%s.header", filename);

if ((in_file = fopen(hdr_name, "r")) == NULL) {

fprintf(stderr, "Could not open %s\n", hdr_name);

return 0;

}

fscanf(in_file,"%d%d%d%d%d%d%d%d", &uSrcWidth, &uSrcHeight,

&uSrcDepth, &uSrcTime, &uSrcBands,&uSrcPrecision,

&uSrcType, &uSrcOrganization);

fscanf(in_file, "%s", datafile);

fclose(in_file);

printf("image width = %u\n", uSrcWidth);

printf("image height = %u\n", uSrcHeight);        

printf("image bands = %u\n", uSrcBands);        

printf("image precision = %u\n", uSrcPrecision);

        

if(uSrcBands != 1) {

printf("not a monochrome image\n");

exit(1);

}

if(uSrcPrecision != ND_PRECISION) {

        printf("not an 8-bit unsigned integer image\n");

        exit(1);

}
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uX = uSrcWidth;

uY = uSrcHeight;        

/*

** Allocate images 

*/

nSrcND = InPrepareMonochromeImage(uX,uY,

IDATA_TYPE_INTERNAL_ND,ND_PRECISION);

nDstND = InPrepareMonochromeImage(uX,uY,

IDATA_TYPE_INTERNAL_ND, ND_PRECISION);

nDstRD = InPrepareMonochromeImage(uX,uY

IDATA_TYPE_INTERNAL_RD, RD_PRECISION);

/*

** Read source image file

*/

InInputImageFile(filename, nSrcND);

/*

** Display source image 

*/

tnWindow1 = ItnOpenTitledWindow(uX, uY, uSrcBands, 1, 1,

filename);

nDisplay1 = InAllocateDisplayImage(tnWindow1);

printf("Source image \n");

printf("Press any key in window to continue \n");

InMonochromeDisplay(nSrcND, nDisplay1);

/*

** Extract impulse response array from repository

*/

nImpulse = InReturnRepositoryId(IR_UNIFORM_5x5,

IREPOSITORY_IMPULSE);

/*

** Perform unsharp masking

*/

InUnsharpMask(nSrcND, nDstRD, nImpulse, rWeight1, rWeight2,

rBias);

InConvertImageDatatype(nDstRD, nDstND);

/*
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** Display destination image 

*/

tnWindow2 = ItnOpenTitledWindow(uX, uY, uSrcBands,

uX+30, 1, unsharp mask");

nDisplay2 = InAllocateDisplayImage(tnWindow2);

printf("Destination image \n");

printf("Press any key in window to continue \n");

IvExtrema(nDstRD, &rMin, &rMax, IPROCESS_MODE_0, -1, NULL);

printf("W(x,y) = %5.2f to %5.2f\n", rMin, rMax);

stAbove.trArithFloat = &rAbove;

stBelow.trArithFloat = &rBelow;

stWidth.trArithFloat = &rWidth;

stLevel.trArithFloat = &rLevel;

rWidth = 255.0;

rLevel = (float)(rWidth/2.0);

InWindowLevel(nDstRD, nDstRD, stAbove, stBelow,

stWidth, stLevel);

InConvertImageDatatype(nDstRD, nDstND);

InMonochromeDisplay(nDstND, nDisplay2);

printf("Press any key in window to continue \n");

IvEventDelay(tnWindow2);

/*

** Check for warnings 

*/

fclose(nErrorFile);

if(IbErrorTest())

printf("Warning exists, check log\n");

/*

** Close PIKS session

*/

snObject.nImage = nDisplay1;
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IvDeallocateDataObject(snObject);

IvCloseWindow(tnWindow1);

snObject.nImage = nDisplay2;

IvDeallocateDataObject(snObject);

IvCloseWindow(tnWindow2);

IvClosePIKS();

printf("Example completed\n");

return 1;

}

AN2.2. UNSHARP MASK PIKS API OPERATION

The following screen dump shows the result of window/level scaling of an unsharp
masking operation on a monochrome image.
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PIKSTOOL GUI IMAGE PROCESSING

EXAMPLE

This appendix contains an example of an unsharp mask operation on a monochrome
image using the PIKSTool graphical user interface software.

AN3.1.  UNSHARP MASK PIKSTool COMMAND SCRIPT

The following is a script for the unsharp mask operation using the PIKSTool GUI.

1.  From the File option, select Open Input Image, choose the image “brain,” and
click Open to view the source image in Screen 1.

2. From the Operators option, select Enhancement and unsharp_mask to view
Screen 2.

3. In the Unsharp Mask dialog box, select From Repository. Leave unchanged the
default values (3,  -2, 0) of the First Weight Factor, Second Weight Factor and Bias
Factor, and click OK to view Screen 3.

4. In the Repository Impulse Response Kernels pull down window, select the “088
UNIFORM 5x5” object and click OK to view the unsharp mask image in Screen 4.

5. From the Operators option, select Point and window_level to view Screen 5.
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6. In the Window Level dialog box, set the Above Window and Below Window
clip values to 255 and 0, respectively. Set the Width to 255, set the level to 127 and
click OK to view Screen 6.

7. In the Select Source Image dialog box, leave unchanged the default of Destina-
tion, and click OK to view the output image in Screen 7.

AN3.2.  UNSHARP MASK PIKSTool GUI OPERATION

The following screen dumps show the results of the unsharp masking operation on a
monochrome image.
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Screen 1
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Screen 2
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Screen 3
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Screen 4
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Screen 5
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Screen 6
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Screen 7
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PIKSTOOL CHAIN IMAGE PROCESSING 
EXAMPLE

This annex contains an example of an unsharp mask operation on a monochrome
image using the PIKSTool Chain command string interpretive software.

AN4.1. UNSHARP MASK PIKSTOOL CHAIN COMMAND STRING 
LISTING

The following section provides a command string listing of the unsharp masking
operation on a monochrome image executed with the PIKSTool Chain software.

AN4.2. UNSHARP MASK PIKSTOOL CHAIN OPERATION

The following screen dump shows the before and after result of the unsharp masking 
operation on a monochrome image.
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!PIKSTool Chain example unsharp
!Test Image Filename: brain
!Convert ND to SD
convert_image_datatype (3, Src1IMG, New)
!Multiply SD image by 3
monadic_arithmetic (3, 7, DstIMG, New)
!Save result as temporary image
save_image (Wrk1.header)
!Convolve 3xSD image with UNIFORM_5x5 array and 
enclosed_array covolution option
convolve_2d (2, 88, None, DstIMG, New)
!Divide convolved image by 25
Pause
monadic_arithmetic (25, 3, DstIMG, New)
!and multiply convolved image by 2
monadic_arithmetic (2, 7, DstIMG, New)
!Subtract convolved and scaled image from 3xSD image
dyadic_arithmetic (9, Wrk1.header, DstIMG, New)
Pause
!Clip differenced image to original range
window_level (255, 0, 255, 127)
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MATLAB IMAGE PROCESSING EXAMPLE

This annex contains an example of an unsharp mask operation on a monochrome
image using the MATLAB command string interpretive software.

AN5.1. UNSHARP MASK MATLAB COMMAND STRING LISTING

The following section provides a command string listing of the unsharp masking
operation on a monochrome image executed with the MATLAB software1.

AN5.2. UNSHARP MASK MATLAB OPERATION

The following screen dump shows the before and after result of the unsharp masking
operation on a monochrome image executed with the MATLAB software.

1.The MATLAB command figure places the destination image over the
source image. The two images must be separated manually to view both im-
ages simultaneously.
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% MATLAB example_unsharp

% performs unsharp mask sharpening on a monochrome image

% read 8-bit source

SrcU8 = imread('brain.tif');

%   display 8-bit source

imshow(SrcU8, [0 255]); title('source image');

pause

% convert source to double

Src = double(SrcU8);

% specify first weight factor

wgt1 = 3.0;

% weight source

Wrk1 = times(wgt1, Src);

% 5x5 moving window average array

avg = ones(5);

% perform averaging on source

Wrk2 = imfilter(Src, avg);

% compute average array scale factor

scale = 1.0 / 25.0;

% scale work image 2

Wrk2 = times(scale, Wrk2);

% specify second weight factor

wgt2 = 2.0;

% weight work 2

Wrk2 = times(wgt2, Wrk2);

% form destination

Dst = imsubtract(Wrk1, Wrk2);

% convert destination to 8-bit with 0 to 255 clipping

DstU8 = uint8(Dst);

% display 8-bit destination

imshow(SrcU8); title('source image'),

figure, imshow(DstU8); title('unsharp image');
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The subject of digital image processing has migrated from a graduate to a junior 
or senior level course as students become more proficient in mathematical 
background earlier in their college education. With that in mind, Introduction 
to Digital Image Processing is simpler in terms of mathematical derivations 
and eliminates derivations of advanced subjects. Most importantly, the textbook 
contains an extensive set of programming exercises for students.

The textbook examines the basic technologies needed to support image 
processing applications, including the characterization of continuous images, 
image sampling and quantization techniques, and two-dimensional signal 
processing techniques. It then covers the two principle areas of image processing: 
image enhancement and restoration techniques and extraction of information 
from an image. It concludes with discussions of image and video compression.

Features:

•	 Covers the mathematical representation of continuous images and 
discrete images

•	 Discusses the psychophysical properties of human vision
•	 Analyzes and compares linear processing techniques implemented by 

direct convolution and Fourier domain filtering
•	 Details restoration models, point and spatial restoration and geometrical 

image modification
•	 Includes morphological image processing, edge detection, image feature 

extraction, image segmentation, object shape analysis, and object 
detection

•	 Describes coding technique applicable to still image and video coding 
based upon point and spatial processing

•	 Outlines the widely adopted JPEG and MPEG still image and video 
coding standards

•	 Text supported by a website, Pixel Soft, which provides downloading of 
software documentation, demonstration programs, programming exercise 
executables and image databases.

The author’s accessible style provides historical background on the development 
of image processing techniques as well as a theoretical exposition. The inclusion 
of numerous exercises fully prepares students for further study.
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