UNIVERSITY OF NIGERIA, NSUKKA.
Faculty of Physical Sciences
Department of Mathematics.
2017/2018 First semester Examination
MTH 211: Sets, Logic and Algebra.

INSTUCTIONS: Answer Question 1 and any other Two questions.

TIME: 2 HOURS

- 1. (a) Given that $U=\{1,2,...,6\}$ $X=\{x: x^2-5x+6=0\}$, $Y=\{x: x^2-6x+9=0\}$ and $Z=\{1,2,3,5\}$. Find (i) $X \cap Y$ (ii) $X \cap Z$ (iii) $X \cup Y$ (iv) $Y \cup Z$ (v) $N(X \cup Y)$ (vi) $N\{Y \cup Z\}$ (vii) $X \triangle Y$ (viii) $X' \cup Y'$ (ix) Z' (x) P(Y).
- (b) (i) When is a relation R on a non empty set X said to be an equivalence relation? (ii) Let $X = \{1,2,3\}$ and a relation R on X be defined as $R = \{(1,1),(1,2),(2,1),(2,2),(3,3)\}$. Verify if R is an equivalence relation.
- 2. Let (X,*) and (Y,+) be two groups. What do you understand by saying that a function $f:(X,*) \rightarrow (Y,+)$ is a homeomorphism?
- (b) When do we say that a homeomorphism is (i) monomorphism (ii) isomorphism?
- (c) Let $f:(R,+) \to (R\setminus\{0\},*)$ be defined by $f(n)=3^n$. Show that f is a monomorphism but not isomorphism.
- (d). (i) When do we say that (X,*) is a groupoid?
 - (ii) Let S=R\{1} and define a binary operation * on S as follows: x*y=x+y+xy for all $x,y \in S$. Show that (S,*) is a groupoid and find the identity element of (S,*).
- 3. Consider the set S={a,b,c,d,e,f} and the relation * defined on S by the table below;

*	е	а	b	С	d	f
е	е	а	b	С	d	f
а	а	b	е	d	f	С
b	b	е	а	f	С	d
С	С	f	d	е	b	а
d	d	С	f	а	е	b
f	f	d	С	b	а	е

- (a). Find (i) the identity element of the algebraic system A,S. (ii) the inverse of each element of the 3set S. (iii) show that the above A,S is associative.
- (b). The above A,S is a group. Justify.
- (c). What do you understand by the statement "the operation * is distributive over the operation of + on the set X?
- 4. Let R={u, v, w, x} and define addition + and multiplication * on R by means of the following tables;

+	u	V	w	x
u	u	v	w	х
V	V	u	х	w
W	w	х	u	V
х	х	w	v	u

*	u	v	w	х
u	u	u	u	u
V	u	V	w	х
W	u	w	w	u
х	u	х	u	х

- (a). (R,+,*) is a ring. Justify.
- (b). What is the unity of the ring?
- (c). What is the zero of the ring?
- (d). If a binary operation * on a set of real numbers is defined by $x*y=\frac{1}{2}(x+y)$, show that this binary operation (*) is commutative but not associative on R.
- 5. (a). What do you understand by a word "proposition"?
- (b). Consider P,Q,R,S as four propositional variables. Find , in a tabular form, all the possible truth combinations of the above variables.
- (c). Use truth table to show that $P \cup (Q \cap R) \Leftrightarrow (P \cup Q) \cap (P \cup R)$ is a tautology.
- (d). Let B be the set of mappings from $X \rightarrow X$, and n be a fixed non negative integer. If f and g are in B, define a relation R on B as

$$f R g \text{ iff } \lim_{t\to 0} t \to 0$$
 $\frac{f(t) - g(t)}{t^n} = 0$

Show that R is an equivalence relation on B.