ASTRUCTION: DO NOT WRITE WITH PENCIL; ANY CANCELLATION VOIDS THE ANSWER; NOTA=	
Which of these is not true? (a) has critical temperature above room temperature exist in the atmosphere as vapour (b) Substances with critical temperature above room temperature exist in the atmosphere as vapour (c) Nitrogen gas has critical temperature above room temperature (d) Substances with critical temperature above room temperature are liquefiable by compression only	
 2. 27g of acetylene dissolves in 1L of acetone at 1.0 aim pressure. If the partial pressure of acetylene is increased to 12 aim, what is the solubility in acetone? (a) 3.24 x 10²g (b) 4.8g (c) 2.25g (d) 13.8g [] 	
What is the partial vapour pressure of benzene in a solution containing 0.70 mole fraction benzene and 0.30 mole fraction of toluene? (vapour pressure of benzene and toluene are 75mmHg and 22mmHg respectively) (a) 6.6mmHg (b) 52.5mmHg (c) 59.1mmHg (d) 2.6mmHg []	
4. How many grams of glucose are required to lower the freezing 1. Int of 100cm ³ of water by 0.70°C? (k _f of water= 186°C/m; density of water= 1.0g/cm ³ ; C=12; H=1; O=15) (a) 19.6g (b) 1.96g (c) 6.78g (d) 1.8g []	
5. Which of these is true of the effect of a solute that associates in solution? (a) the molecular weight increases (b) the vapour pressure lowering increases (c) the freezing point depression increases (d) the boiling point elevation increases []	
6. Which of the following is true for free energy? (a) $\Delta A = 0$ (b) $\Delta G < 0$ (c) $\Delta G = 0$ (d) $\Delta A < 0$ []	
 7. Calculate the standard free energy change for the reaction: CuO₍₀₎+C_(s)→Cu₍₀₎ +CO₍₃₎ and predict the spontaneity of the reaction. (ΔGr (CO) = -137.3kJmol⁻¹; ΔGr (CuO) = -127.2kJmol⁻¹) (a)-10.1 kJmol⁻¹; non-spontaneous (b) + 10.1 kJmol⁻¹; non-spontaneous (c)-101.1 kJmol⁻¹; spontaneous (d)-10.1 kJmol⁻¹; spontaneous [] 8. Which of the following is true for non spontaneous process at high temperature? (a) ΔG=-ve, ΔH=+ve, ΔS=+ve (b) ΔG=-ve, ΔH=-ve, ΔS=-ve [] (b) ΔG=+ve, ΔH=-ve, ΔS=-ve [] 	
9. Which of the following is true for change in internal energy at constant entropy and volume? (a) $\Delta E \ge 0$ (b) $\Delta E = 0$ (c) $\Delta E < 0$ (d) $\iota \ge 0$ []	
10. Calculate the standard entropy change for the reaction: N ₂ +O ₂ -+2NO, given that the standard molar entropies of N ₂ = 191JK ⁻¹ mol ⁻¹ , O ₂ =205.0 JK ⁻¹ mol ⁻¹ , NO=210.6 JK ⁻¹ mol ⁻¹ (a)+24.7 JK ⁻¹ mol ⁻¹ (b) +247kJmol ⁻¹ (c) +24.7kJmol ⁻¹ (d) -24JK-1mol ⁻¹ [
11. Calculate K _x for the reaction: N ₂ O _{4(s)} 2NO _{2(g)} taking place at 300°C and 10atm, given that K _p is 0.571 (a) 0.157 (b) 0.571 (c) 0.0571 (d) NOTA (j)	
12. Consider the reaction. A + B $\frac{k_1}{k_2}$ C ; if $K_2 = 1.8 \times 10^{-3}$, find the inverse of K_1 . (a) 1.8×10^{-3} (b) 555.6 (c) 1.8×10^3 (d) 3.2×10^{-6}	
13. Which of the following is both a Bronsted-Lowry base as well as an acid. (a) NH ₄ ⁺ (b) H ₂ O (c) H ₃ O ⁺ (d) NH ₃ [
14. If the solubility of silver chromate in water at 25° C is 3.5×10^{-5} , calculate its solubility product (c) 1.3×10^{-9} (d) 1.7×10^{-13}	

	(a) $p^{kw} = p^{Kh} \cdot P^{kb}$ (b) $p^{kb} = p^{kw} + p^{kh}$ (c) $p^{kw} = p^{kb} - p^{kb}$ (d) $p^{kh} = p^{kw} - p^{kb}$ [
*:	16. Boyle's and Charles's laws are obeyed by gases at the following conditions: (a) low temperature and low pressure (b) high temperature and high pressure (c) low temperature and high pressure (d) high temperature and low pressure. []					
	17. What volume would 8.0g of hydrogen occupy at 2.0atm and 127°C? (R = 0.082dm³atmmol⁻¹K⁻¹). (a) 60.0dm³ (b) 62.1dm³ (c) 63.0dm³ (d) 65.6dm³ []					
ľ	18. Calculate the temperature at which molecules of nitrogen gas would have same most probable speed as molecules of oxygen at 0°C (a) 240K (b) 260K (c) 300K (d) 320K					
*	19. The negative deviation observed in compressibility chart is caused by: (a) pressure effect. (b) volume effect. (c) to pressure effect.					
	20. At what temperature would one mole of nitrogen gas contained in a 20 dm ³ yessel behave ideally, (z = 1) at pressure of 1 atm?					
	(a) 230K (b) 244K (c) 255K (d) 240K []					
	21. For the reaction: $A \xrightarrow{A} B$, what is the differential equation for the formation of B (a) $\frac{d[A]}{dt} = -K[A]$ (b) $\frac{d[B]}{dt} = K[A]$					
	(c) $\frac{d[B]}{dt} = K[B]$ (d) $\frac{d[B]}{dt} = -K[A]$					
	22. Which of the following equations represent the equation of the first order reaction?					
	(a) $x_0 - x = k_1 t$ (b) $\log (a - x) = \frac{-K_1 t}{2^2 303} + \log a$					
	(c) $-\log(a-x) = \frac{K_1 t}{2.303} + \log a$ (d) $\log(x_0 - x) = k_1 t$					
	23. The rate for the product P is represented as					
	(a) $\frac{d[p]}{dt} = K'[M][N]$ (b) $\frac{d[p]}{dt} = K'[M][N]$					
1	(c) $\frac{dl}{d[b]} = -K_1 \frac{[WN_{\pm}]}{[W][N]}$ (d) $\frac{dl}{d[b]} = \kappa_1 K_1[W][N]$ []					
	24. The stoichiometry of the reaction describes (a) A set of elementary reaction (b) The rate of a chemical reaction (c) The mechanism of a reaction (d) How many moles of each reactant needed to form each mole of product.					
	25. Which of the following is a first order reaction? (a) $2NOCl_{(g)} \rightarrow 2NO_{(g)} + Cl_{2(g)}$ (b) $2HI_g \leftrightarrow H_{2(g)} + I_{2(g)}$ (c) $2N_2O_{5(g)} \leftrightarrow 4NO_{2(g)} + O_{2(g)}$ (d) $H_2 + I_2 \leftrightarrow 2HI_{(g)}$					
	26. A system is confined by (a) Closed metal can (b) Volatile liquid (c) Thermally isolated vessel (d) Boundary []					
	 27. When only P-V work is done, heat absorbed in a process at constant pressure is equal to the change in enthalpy. We can represent this statement as follows: (a) q_p = PΔV (b) q_p = ΔE 					
	(c) $q_p = \Delta H$ (d) $\Delta H = \Delta E + P \Delta V$					
28. Compute the energy in joules necessary to increase the volume of a gas by 10cm ³ against a press atmospheres. (Take 1atm = 1.0135 x 10 ⁵ Nic. ⁻²)						
	(a) 1011 (b) 0.1011 (c) 1.011 (d) 10.11 []					
	 29. What is the work done in kilojoules when 40 moles of a gas expands isothermally and irreversibly at 25°C from 15 to 50dm³? (Take R = 8.314JMol⁻¹K⁻¹) (a) 119KJ (b) 119.34KJ (c) 1193.4KJ (d) 11.9KJ [] 					
	30. For the same process, the heat absorbed at constant pressure and the heat absorbed at constant volume are					
	related thus: (a) $q_v = q_p + P\Delta V$ (b) $q_p = \Delta H$ (c) $q_p = q_v - P\Delta V$ (d) $q_p = q_v + P\Delta V$ [

o. what separates the system from the surroundings?		
(a) thermally isolated vessel (b) Boundary		
(c) closed metal can (d) volatile liquid	[]	
17. Assuming that only P-V work is done, heat absorbed in a process at constant enthalpy. This statement can be represented thus:	pressure equals the cha-	nge in
(a) $q_p = P\Delta V$ (b) $q_p = \Delta E$ (c) $\Delta H = \Delta E + P\Delta V$ (d) $q_p = \Delta H$	[]	
 What amount of energy in joules is required to increase the volume of a ga of 10 atmospheres? (Take latm = 1.0135 x10⁵NM²). (a) 1.011 (b) 10.11 (c) 0.1011 (d) 1011 	s by 10cm ³ against a pr	essure
*** **********************************	k 1	
19 Compute the work done in kilojoules for the expansion of 40moles of nitrog thermally and irreversibly at 25°C. (R= 8.314Jmol ⁻¹ K ⁻¹).	en gas from 15 to 50 da	n¹ia a
(a) 112kJ (b) 1193.4kJ (c) 119kJ (d) 119.34kJ	[]	
20. The relationship between the heat absorbed at constant volume for the stations.	ame process can be su	nted as
(a) $q_p = q_v + \Gamma \Delta V$ (b) $q_p = q_v + P \Delta V$ (c) $q_p = \Delta H$ (d) $q_v = q_p + P \Delta V$	[]	
21 Which of these is not true? (a) Dipole-dipole attraction is strongly independent of temperature	€	
(b) Induction force is small and independent of the temperature		
(c) London forces is independent of temperature (d) H ₂ O has a higher boiling point than H ₂ Se	()	
		A (= 17)
22. 27g of ethene dissolves in 1L of acetone at latm pressure. If the partial pressure atm. What is its solubility in acetone?	ure is ethene is increase	0 10 12
(a) 2.28g (b) 4.8g (c) 0.324 x 10 ³ g (d) NOTA	, ()	
23. What is the partial vapour pressure of toluene in a solution containing 0.76 0.30 mole fraction of toluene? (vapour pressure of benzene and toluene respectively.		
(a) 6.6mmHg (b) 52.5mmHg (c) 59.1mmHg (d) 2.28mmHg	1 1	
24 What is the molar mass of the solute if the osmotic pressure of the solution co 20 atm at 25°C? (R= 0.08212atmK ⁻¹ mol ⁻¹)		solute is
(a) 6 02g/mol (b) 24.47g/mol (c) 47.48g/mol (d) 14.48g/mol	[]	
25. Which of these is not true? (a) acetic acid in benzene forms dimer due to hydrogen bond	<i>X</i>	
(b) increase in pressure decreases the melting point of water		
(c) solution of benzene and methylbenzene is ideal		
Idi NOTA	[]	
26 Which of the following is true for free energy of a reversible process at constant $AA < 0$ (b) $\Delta G < 0$ (c) $\Delta G = 0$ (d) $\Delta A = 0$	ant temperature and vo	lume?
24 Culculate the standard free energy change for the reaction: Fe ₃ O ₄₍₅₎ + 4C ₀	\rightarrow 3Fe _(i) + 4CO ₍₂₎ and	i predict
whether the reaction is spontaneous or not. $(\Delta \overline{G}_t^0)$ (Fe ₃ O ₄) = -1014.2kJmol ⁻¹ (a) +465kJmol ⁻¹ ; non-spontaneous (b) -465kJmol ⁻¹ ; spontaneous	; ΔG [°] (CO)= - 137.3kJ	moi ⁻¹)
(c) 4655kJmol-1; spontaneous (d) + 4655kJmol-1; non-spontaneous	[]	
28. Which of the following conditions of enthalpy and entropy is true for	a spontaneous proces	s at low
temperature? (a) $\Delta H > T\Delta S$ (b) $T\Delta S = \Delta H$ (c) $\Delta H < T\Delta S$ (d) NOTA	[]	
29. Which of the following is true for entropy change of the universe for a spont (a) $\Delta S < 0$ (b) $\Delta S > 0$ (c) $\Delta S = 0$ (d) $\Delta S \le 0$	aneous process?	
30. Calculate the standard entropy change for the reaction: $2SO_{2(g)} + O_{2(g)} \rightarrow 2SO_{2(g)} + O_{2(g)} + O_{2(g)} + O_{2(g)} \rightarrow 2SO_{2(g)} + O_{2(g)} + O_{2$	$SO_{3(g)}$, if the $\Delta \tilde{S}^{o}(SO_{3})$	= 256.DV-
$[mol^{-1}; \Delta \overline{S}^{\circ}] (SO_2) = 248JK^{-1}mol^{-1}; \Delta \overline{S}^{\circ}] (O_2) = 205JK^{-1}mol^{-1}$ (a) + 189 [K-1] mol ⁻¹ (c) - 189JK ⁻¹ mol ⁻¹ (d) - 189kJK-1mol ⁻¹	Ĩ I	15

Download more at Learnclax.com

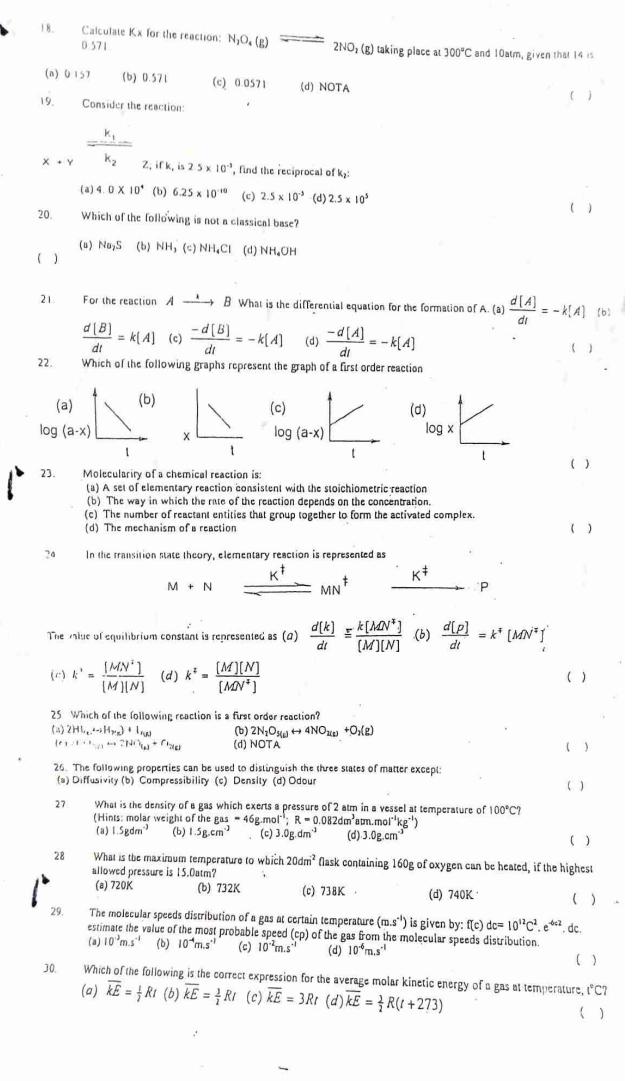
	University of Nigeria, Nsukka	
	1.7C (1991 (1992 (1912 (
	2012/2013 Second Semester Examination REG NO	
	Instructions: Attempt all questions. Any answer written in pencil or mutilated/cancelled is void	led
	I if a certain coaction is written in pencil or mutilateo/cancers	the
	I If a certain reaction has a specific rate constant of 0.002/s at 27 °C and 0.0013 /s at 1.	7"C, what is tire
	activation energy for the reaction?	
	The second secon	9 9
	a)418.9kJ/mol b)41.84 kJ/mol c)102kJ/mol d)23kcal/mol	1 1
10		
Ł	2. For the reaction, $H_1O_2 = H_2 + O_2$, the concentration of H_2O_2 that remained after 65min	was 9 50mi
•	while the initial concentration was \$7.90ml. Calculate the rate constant.	
	. Solution of the late constant	
	a) -0.0078/min b) 0.0726/h c) 1.66/min d) 0.02	76/min []
	0/ 0.0/20/III C) 1.00/IIIII	
	Which of the following is correct about Raoul"s law?	
	A P COLLECT ADOUT LYON ?	
	14) AP /X = P° (B) AB = B° V (C) AB (B (B) B(B)	1 1
	(A) $\Delta P / X_2 = P^{\circ}$ (B) $\Delta P = P^{\circ} X_1$ (C) $\Delta P / P = X_1$ (D) $P^{\circ} / P = 1 - X_2$	
	4. A solution contains 15.8g of glucose, C ₆ H ₁₂ C ₆ dissolved in 125g of water. What is the point of the solution, given that the ebullioscopic constant is 0.45°C.	gniliod Ismron
	(A)	1 1
	(A) 373.54K (B) 373.32K (C) 373.68K (D) 0.32K	3 ×
	5. Which one of these is TRUE?	T T
	A. $V = 0.921U$ B. $C = \frac{2}{3}U$ C. $U = \sqrt{\frac{3RT}{M}}$ D. AOTA	4 b
	$U = \sqrt{\frac{M}{M}}$	7 atm? [R=8 31
	6. Calculate the root mean square speed of nitrogen molecules in a tank at 21 °C and 15.	A COMPANY OF THE COLUMN
	$kg.m^2s^{-2}K^{-1}Mol^{-1}; N=14$	
		1
	A. 479 ms ⁻¹ B. 147 ms ⁻¹ C. 200 ms ⁻¹ D. 512 ms ⁻¹	j. j.
10		
į.	7. An isolated system under investigation is	
10	7. All isolated system one	ade up of the
	A. Made up of the system alone B. Made up of the surrounding and the universe C. N	1 1
	A. Made up of the system D. Made up of the system and the surrounding	1 1
	 Using the standard free energies, calculate the equilibrium constant (K_P) for the follow 25°C given that the standard free energy formation of HCl is 92.27 kJ/mol. Take R to t 2HCl (E) → H_{2(E)} + Cl_{2(E)} 	ne 8 314 J/K moi
	a 9:	9: 1
	A 7X10-5" B. 190.54X10-54 C. 3 98X10-6 D3.98X10-54	- (
	A. 7X10 8" B. 190.54X10 C. 3 90X10	0 2
	9. Which of the following is true of the effect of temperature on degree of dissociations and the following is true of the effect of temperature on degree of dissociations and the following is true of the effect of temperature on degree of dissociations and the following is true of the effect of temperature on degree of dissociations and the following is true of the effect of temperature on degree of dissociations are the following in the effect of temperature on degree of dissociations are the following in the effect of temperature on degree of dissociations are the following in the effect of temperature on degree of dissociations are the following in the effect of temperature on degree of dissociations are the following in the effect of temperature on degree of dissociations are the following in the effect of temperature on degree of dissociations are the effect of the	ition?
	9. Which of the following is true of the	i z granan –
	9. Which of the following 45 dide of the dissociation. b) It always increases the degree of dissociation a) It always lowers the percent degree of dissociation process is not endothermic. d) None of the above affect the degree of dissociation if the dissolution process is not endothermic.	
	affect the degree of dissociation for a solution of pOH 7.3 if the ko is 7.2 x 10. Find the percent degree of dissociation for a solution of pOH 7.3 if the ko is 7.2 x 10.	lassnue
	10. Find the percent degree extreme dilution].	
	a c 70	- WO - W
	a 0.06 b 0.60 c.6.0 d.6.70	[1
	a. 0.06 b 0.00	
	a. 0.06 11. For a Pure gas, the number of degrees of freedom, F is equal to (d 6)	
1.	11. For a Pure gas, (the Hornos	[]
į.	(a) 2 (b) 1 (c) 3	14
	(a) 2 (b) 1 12 The actual volume of I molecule of a gas is less than the excluded volume by a factor (c) Twelve (d) Fight	oſ
	12 The actual volume of the color (c) Twelve (d) Fight	
	(a) Four (b) Ten (CITWIN	

13 Which of the following is true for work done by the system (expansion)?	
(A) dw<0 (B)dw>0 (C) dw=0 (D) NOTA	f I
14. How many Joules of heat would be required to vaporize one mole of emanol at its bolling (78.5°C)? Specific heat of ethanol is 2.431 Jg deg (C=12, H=1, O=16)	g ponti
(A) 393 06 klmol ⁻¹ (B) 29 6klmol ⁻¹ (C)2 96klmol ⁻¹ (D)39 3klmol ⁻¹	1,1
15. Suppose at 100° C and at equilibrium a chemical reaction is represented by the following $A(g) + 2B(g) \Longrightarrow 3C(g) + 4D(g)$	equa(lor
If the equilibrium concentration, (A), (B), (C), and (D) are 1.5, 2.0, 2.5 and 3.0 moles/dm respectively, calculate the equilibrium constant.	
A.210.94 B.0.21 C.2.11 D.21.09	1.1
16. The following equilibrium reactions, $A \leftarrow K_1 \rightarrow B$; $C \leftarrow K_2 \rightarrow D$; $A+C \leftarrow K_3 \rightarrow B+D$,	
gave $K_1 = 1.6 \times 10^{-4}$ and $K_2 = 1.2 \times 10^{5}$; what is the value of K_3 ?	
A 19.2 B 1.92 C 1.9 D 192	1 1
17. The equation that shows how the rate of reaction varies with the concentration of reacta products is the equation, a) elementary b) order c) rate law d) integral rate law	1 1
18. The osmotic pressure of a solution made by dissolving 0.75g of a solutein 80cm ³ of a solve is 2.85atm. Calculate the molecular weight of the solute	ent at 2 ^{re} C
(A) 88 (B) 78 (C) 81 8 (D) 150	1.
19. How many gram of oxygen molecule are there in a 25 litre tank at 100 °C when the oxygen pres [R=0.082 dm³ atm K⁻¹Mol⁻¹, O = 16]	isure is 15 aim ^q
A. 104 g B. 200 g C 143 g D. 392 g	t i
20. From the reaction $H_{2(g)} + Br_{2(g)} = 2HBr_{(g)}$, the entropy change of the system is A. Zero B. Negative C. Positive D. None of the above	f t
 Given a solution of molality 20.0moles/Kg, calculate the number of moles of dissociation contained in 50g of solution if the percent degree of dissociation is 0.1%. 	ted solute
a. 1.0×10^{-3} b. 2.0×10^{-3} c. 1.0×10^{-4} d. 2.0×10^{-4}	$L^{-}J$
22. Which of the following is true about phase rule. (a) $C = S - n - m$ (b) $S = C - n - m$ (c) $m = C - S - n$ (d) $n = C - S - n$	\tilde{I}
23. Which of the following explains a closed system? (A)Mass remains constant but energy may change (B) Exchanges both matter and en and matter cannot be exchanged (D) NOTA	ergy (C)Energy
24. At 100° C the chemical reaction A(g) + 2B(g) = 3 C(g) + 4D(g) has the equilibrian A, B, C, and D as 1.5, 2.0, 2.5 and 3.0 moleS/dm³ respectively. Calculate the eq	ium concentrations o uilibrium constant

Download more at Learnclax.com

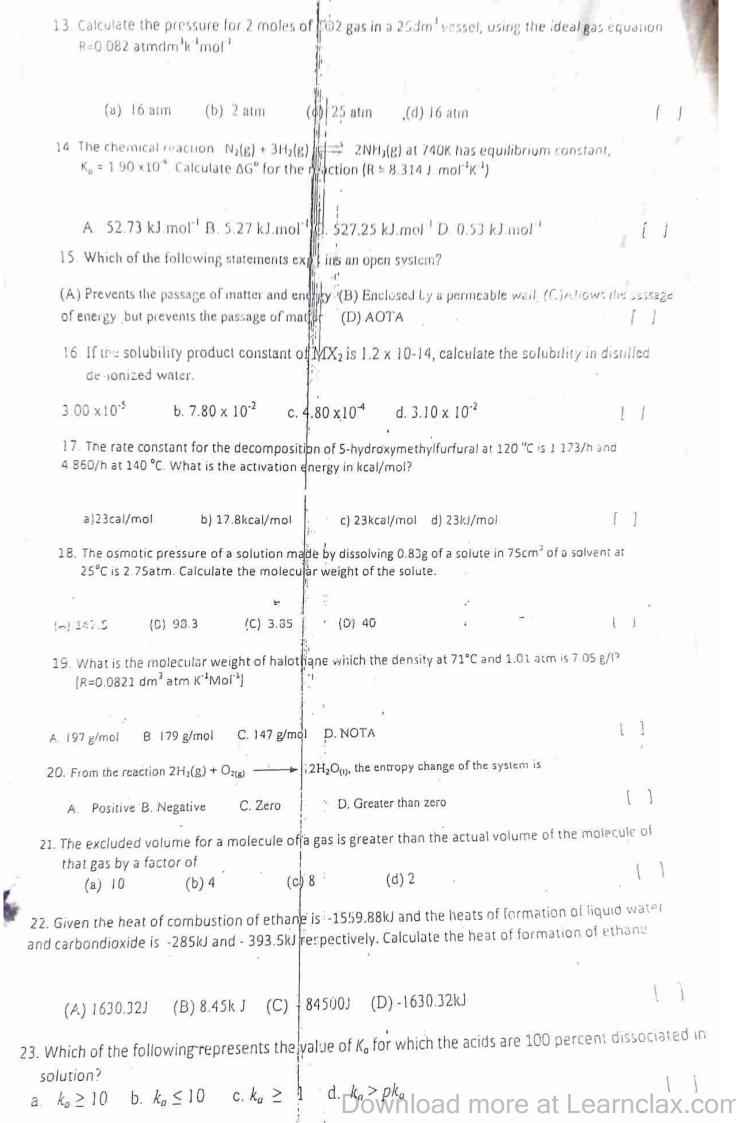
D 2.11

C. 210.94


B 21.09

A 0.21

germ, reamen	5714	
Department of Pure & Ind. Chemistry.	DEFT	
1.144.112 Basic Principles of Physical Chemistry	REG. NO.	
2012/2013 Second Semester Examination	President Control of the Control of	
. Instructions Attempt all questions. Any answer writte	to in pencil or mutilated/carrelled in	
I for a certain race and	7, 22, 22, 12, 01, 01	ia /
 For a certain zero order reaction, the rate const found to be 244min, calculate the initial concent 	ant was 1.76×10^{3} mol/dm 3 per h. If the reactant	tiall life was
a)1 4 x10 'mol/dm'/h b) 1 4 x10 'mol/dm'/min c) 1	76 x10 ³mol/dm ³/h d) 1 39×10 °mol/dm	³/h 1
2 A certain reaction was first order. After 19min, 4 rate constant for the reaction	2% of the reactant remained. Calculate (he specific
a) 4.6x10 ⁻³ b) 0.096/min c) 9.6x10 ⁻³ d) (0.046	
A STATE OF THE STA		1 1
 The half-life of a which reaction order reaction is reactants. 	directly dependent on the initial concent	ration of
a) zero b) first c) second d) NOTA		E.E.
4 Calculate the root mean square speed of carbon r	monoxide gas in a tank at 21 °C and 20 atr	m?
[R=8 31 kg m ² s 2 K $^{-1}$ MoI 3 ; C=12, O = 16]		
A 420 ms ⁻¹ B 147 ms ⁻¹ C 512 ms ⁻¹ D 138 n	os ⁻¹	1.1
5 How many gram of oxygen molecule are there in a 15 atm? [R=0.082 dm ³ atm K ⁻¹ Mol ⁻¹ ; O = 16]	a 25 litre tank at 100 °C when the oxygen	pressure is
A 104 g B 200 g C 143 g D 392 g	# 12	A _{to} (P)
6 Which one of these is FALSE? A $U = 0.921V$ B. $C = \frac{2}{3}U$ C. $U = \sqrt{\frac{3}{M}}$	D. 12.00	1.1
1, 100	W. 1112	
 Calculate the quantity of heat liberated if tempers 48°C. Specific heat of aluminum is 0.8954 Jg. deg. 	ature of 250g of aluminum is changed fro	om 22°C to
(A) 69631kJ. (B) 66931J (C) 65.6141	(D) 66931kJ	1 1
8. Which of the following statements explains an iso	plated system?	
(A) Enclosed by an adiabatic wall (B) Neither (C) dq=0 (D) AOTA	energy nor mass can be exchanged	:- VE (V)
(0) 4014		k
9 Which of the following is true for an isothermal p	process?	
(A) dT>0 (B) dT=0 (C) dT<0 (D) NO)TA	1 1
10 A concentrated solution of HCl in water has a condensity of the solution is 2.735 gcm ⁻³ , calculate to		acid If the
×		4 (8)
(A) 27 (B) 32 22 (C) 0.80 (D) 0.48		4 1
2 8 8 10 W		
 Which of the following evpresses a colligative p ΔT₁ = K₁ x w₂/M₂ x w₁/1000 (B) ΔT₁ , K₁ x 10 	000m (C) $\Delta P = w_3/w_1 \times M_1/M_2 \times P''$ (D)) DT = K1 m /]
12 A solution contains 21.8g of glucose, C ₆ H ₁₂ O ₆	dissolved in 120e of water. What	s the normal boiling
point of the solution, given that the ebullioscopic	constant is 0.57°C.	
(A) 373 42K (B) 0.58K (C) 373.54K (D)	373.58K	1 1


	13. How does the entropy change in evaporati	ing a b	eaker of liqui	d bromine at i	room temperat	nte 3	
	Λ 5/3=25°C B ΔS=0 C. ΔS			O ΔS>0		1.1	-
	(d) From the reaction $N_{2(g)} + O_{2(g)} \longrightarrow 2NO_{(g)}$, the er	tropy change o	of the system is			
	A Zero B Negative C Positive		None of the abo			f 3	
	15. Using the standard enthalpies of formation (H OH = -10.9, and H ₂ O = 70) of the following the reaction at 25°C taking R to be 8 314 J/K	Leactar	H = -230, and h	-(10 = -285 8) as 5, calculate the e	nd standard entro .guilibrium const	ppies (H'=0. ant (K _P) for	
	H* (eq) + OH (eq) + H2O(f)			D 1.01	× 10.14	1 1	
	A 201 X 10 " B -2.01 X 10 "	C.	-1.01 X 10 ⁻¹⁴	, 0 1.01	7 10		
	16 Calculate the volume of 2 moles of oxyg ideal gas equation. R=0.082 atindm ³ k ⁻¹ m (a) 312 dm ³ (b) 25 dm ³ (c) 36dm ³			ire of 40°c and	2 ann pressure		
	17. Which of the following is not true? (a) Induction force is small and independent of temp (c) London force than H ₂ Se	JC3 13 11	шоропи	oole -Dipole att Temp (d) H ₂ O	raction is strong has a higher boi	gly ling point []	
	18. All of the following are modes of coolin(a) Expansion against a pressure gr(c) Increase in volume of the gas	(d) Low	vering the temp			T I	
	19. At equilibrium, a chemical reaction at $A(g) + 2B(g) \longrightarrow 3C(g) + 4D(g)$. Suppose are 1.5, 2.0, 2.5 and 3.0 moles/dm ³ respec	the eq	s represented I juilibrium conc calculate the e	by the equation entrations of th quilibrium cons	i: ie species A, B, (stant of the read	C, and D ction	
	4 21 09 B 210 94 C	0.21	D 2.11	1		[]	
٠	71) The chemical reaction N ₂ O(g)	≥ 2NC tm mo	$V_{2}(g)$ gave $K_{c} = 7$	7.65 x 10 ^{·3} mol ^{·3}	, T = 500K at 1 a	itm. What	
	A 0.313 B. 31.13 C	2. 3.13	D. 31	3.65		[]	
	A. 0.313 B. 31.13 21. For a certain zero order reaction, the inhalf life was found to be 244min, calculated as a series of the control of th	aitial c	oncentration (of the reactant nt for the react	was 0.860 mol/ tion.	/dm³. If the	
	a) 1.39×10 ⁻⁴ mol/dm³/h b)1.76 ×10 ⁻³ mol/	/dm³/m	nin c) 1.76 x10 ⁻³	mol/dm³/h d) 1.	39x10 ⁻³ mol/dm ³	/mio (
	22. A certain reaction was first order. Afte rate constant for the reaction.	er 9mir	n, 24% of the r	eactant remai	ned. Calculate	the specific	
	a) 0.1586 b) 0.046/min c) 0.096/r		d) 0.0264/mi		v.	1 1	
	23. What is the molecular weight of haloti $(R=0.0821 \text{ dm}^3 \text{ atm } \text{K}^{-1}\text{Mol}^{-1})$	hane v	vhich the den	sity at 100 °C	and 2 atm is 5	.12 g/\?	
	A 116 g/mol B. 78 g/mol C. 197 g	/mol	D. 147 g/mol	Í	9	1	1
	(A) Neither energy nor mass can (C) encloses an isolated system	D6 6X	r a permeabl changed (B) NOTA	le wall? encloses an o	pen system •	J	1

ob9/201	I, BASIC PRIN. OF PHY. CHEM. 0 SECOND SEMESTER EXAMINATION	S/N	
INSTRI	LLOWED: 1 FIR 30 MINS JETION: DO NOT WRITE WITH PENCIL. ANY NONE OF THE ABOVE	CANCELLATION VOIDS TH	E ANSWER,
Ť.	Every system must have a	(d) Thermally isolated vessel	
2.	Heat absorbed in a process at constant pressure is equal can be represented thus:	ual to the change in enthalpy if onl	y P-V work is done. This
	(a) $\Delta H = \Delta E + P \Delta V$ (b) $q_p = \Delta H$ (c) $q_p = \Delta H$	ΔΕ (d) q _p =PΔV	()
3.	Assuming that only P-V work is done, heat absorbed this statement can be represented thus.		quals the change in enthalpy
	(a) $qp=P\Delta V$ (b) $q_p=\Delta E$ (c) $\Delta H=\Delta E+P\Delta V$	(d) q _p =ΔH	()
4.	Calculate the work done in kilojoules when 40 moles 15 to 50 dm ³ (Take R=8.314Jmol ^{-k} k ⁻¹) (a) 11.9kJ (b) 1193.4kJ (c) 119.34kJ (d) 119		ind irreversibly at 25°C from
5	What is the relationship between the heat absorbed in	at constant pressure and the heat abs	orbed at constant volume for
	the same process? (a)q_= $E_p+P\Delta V$ (b) $E_p=E_V+P\Delta V$ (c))	$E_P=E_V-P\Delta V$ (d) $E_P=\Delta H$	()
	Which of the following is true for free energy of an (a)ΔA < 0 (b)ΔG= 0 (c))ΔA= 0 Calculate the standard free energy change for the responsancity of the reaction.	(d)) $\Delta G < 0$ eaction CH _(g) +2O _{2(g)} \rightarrow CO _{2(g)} +	2H ₂ O _(I) and predict the
l	$[\Delta \overrightarrow{G}_{f}(CH_{4}) = -50.8 l J mol^{-1}; \Delta \overrightarrow{G}_{f}(CO_{2}) =$ (a) -81.80 k J mol'; spontaneous (b) + 8180.0 k J mol'; non-spontaneous	spontaneous (c) -818.0kJmol ⁻ '; spon	taneous (d) 818:005mor.
E .	S. Which of following conditions of enthalpy and entrangle (a) ΔH = TΔS (b) ΔH < TΔS (c) TΔS < ΔH (c)	d) NOTA	s at high temperature?
1	9. Which of following is true for entropy change of (a) $\Delta S > O$ (b) $\Delta S = O$ (c) $\Delta S \leq O$	(d) AS < O	()
	Calculate the standard entropy change for the read entropies of Fe = $27JK^{-1}$; Fe ₃ O ₃ = $90JK^{-1}$ (a) +543JK ⁻¹ (b) -0.543JK ⁻¹ (c) -543JK ⁻¹ (d)		ren that the standard motar ()
	Which one of these is not true (a) for two miscible liquids, C = 2, and P = 1 (b) For saturated solution of a gas in a liquid, C = 2	, P=3	
	(c) For the reaction CaCO _{3 (s)} , CaO _(s) + (d) The number of components in a system is given by	P = 3 C = 2 by the expression, $C = S-n-m$.	()
•	12. 27g of methane dissolves in IL of acetone at 1.0 atm; what is its solubility in acetone.	atm pressure. If the partial pressure o	
	(a) 3.7g (b) 4.8g (c) 2.25g	(d) 324g	()
(What is total vapour pressure of the solution cont toluene (vapour pressure of benzene and toluene a) 59 ImmHg (b) 52.5mmHg (c)	are / Smmrig and ZZming respective	2.89mmHg ()
fa)	- 1 0 c/c m² / (° = 1 / H = 1 ()	= (6)	ater? K_b of water = 0.52°C/m; 100°C ()
15 (a)	The vapour pressure lowering increases (b) the medepression increases (d) the boiling point elevation	notecular weight estimation increa- ion increases	* * *
16.	Magnesium hydroxide has solubility product of 9 (a) 3.6 x 10° (b) 6.3 x 10° (c) 6.3 x 10° (d) 3	.8 x 10^{-10} , calculate its solubility i .1 x 10^{-5} .	n water.
17.	Which of the following is not correct? (a) $k_w = k_b k_b$ (b) $k_w = k_b/k_b$ (c) k_b	$k_b = k_b/k_b$ (d) NOTA	()
	2-01		

Univers	sity of Nigeria, Nsukka	
Depart	ment of Pure & Ind. Chemistry DEPT	
CHM	1.12: Basic Principles of Physical Chemistry REG NO	
	NICIN	
Instruc	2013 Second Semester Examination ctions: Attempt all questions. Any answer written in pencil or mutilated/cancelled is voided.	v
1 Cal	iculate the half life of a zero order resolution with a specific rate constant of 8 2×10^{-6} mol/and initial concentration of 0.470 mc/ dm^3 .	dm³/
11001		
a) 2	2.866x10 ² h b) 2.866x10 ² min c) 0.286 x10 ² d) 5.73 x10 ² h	1.7
3	A solution contains 19.5g of glucose, C_6 $I_{12}O_5$ dissolved in 120g of water. What is the normalist of the solution, given that the ebull-becopic constant is 0.75°C.	ial boiling
		1 1
	(A) 0.68K (B) 372.32K (C) 373.68K (D) 273.68K	8 6
	(A) Usak (b) 37234 (7)	R=8.31
3	(A) 0.68k (b) 372.52k (c) 3. Calculate the root mean square speed of oxygen molecules in a tank at 21 °C and 15.7 atm? $(A) = 0.68k (b) 372.52k (c)$ $(B) = 0.68k (c) 372.52k (c)$ $(C) = 0.68k (c)$	150 W
	200 P. 179 ms. C. 183 ms. D. NOTA	[]
		nlution?
	4. How does the entropy of a system change forming sucrose crystals from a supersaturated so A. ΔS<0 B. ΔS>0 C. ΔS=0 D. None of the above	1.1
	5 Which of the following equation is correct for compressibility factor (a) Z = (b) Z = v° m/pvM (c) Z = v m/v° m (d) Z = v° m/v° m (e) Z = v m/v° m (f) Z = v m/v° m (g) Z = v m/v° m (h) Z = v m m (h)	1 1
	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	dın atın
	6. Calculate K _c for the reaction N ₂ O(g) \longrightarrow 2NO ₂ (g) with K _p = 0.357 at 400K and 1 atm (R = 0.082 mol K ¹)	
r	A. 1 088 x 10 ⁻⁵ mol.dm ⁻³ B. 1.08 x 10 ⁻⁴ mol.dm ⁻³ C. 1.09 x 10 ⁻³ mol.dm ⁻³ B. 1.09 x 10 ⁻² mol.dm ⁻³	[]
	7 Which of the following is true for heat absorbed by a system?	
	I I I I I I I I I I I I I I I I I I I	[]
	(A) dq=0 (B) dq>0. (C) = 1	at .
	depression is 0.0193°C and the moial rectang power	
	3.76×10^{-2} b. 1.88×10^{-2} c. 5.64×10^{-2} d. 1.25×10^{-2}	1
	9. The nature of a reaction is not fully understood until its' is known	
	a) molecularity b) rate constant c) mechanism d) activation energy	[]
	70 Which of the following equation is correct about a very dilute solution?	
	(A) W_1/w_2 is large (b) w_2/w_1 is small (C) w_2+w_1 is small (D) $W_2=W_1$	L I
ľ	11. Which one of these is TRUE?	
	A) All forms of matter obey the ideal gas laws B) All gases obey Boyle's law at very high pressure C) All gases obey Boyle's law at very low pressure and very low temperature D) All gases obey Boyle's law at very low pressure and very low temperature	ey []
	12. Using the standard free energies, calculate the equilibrium constant (K_P) for the following regiven that the standard free energy formation of water is 237.2 kJ/mol. Take R to be 8.314 J/K $2H_{Rg1} + O_{Rg2}$	

A 7X10" B.-7X10" c.10000wnload more at Learnclax.com

