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Preface

Studying from this book will help both electrical technology and electrical
engineering students learn circuit analysis with, it is hoped, less effort and more
understanding. Since this book begins with the analysis of dc resistive circuits
and continues to that of ac circuits, as do the popular circuit analysis textbooks,
a student can, from the start, use this book as a supplement to a circuit analysis
textbook.

The reader does not need a knowledge of differential or integral calculus
even though this book has derivatives in the chapters on capacitors, inductors,
and transformers, as is required for the voltage-current relations. The few problems
with derivatives have clear physical explanations of them, and there is not a single
integral anywhere in the book. Despite its lack of higher mathematics, this book can
be very useful to an electrical engineering reader since most material in an electrical
engineering circuit analysis course requires only a knowledge of algebra. Where there
are different definitions in the electrical technology and engineering fields, as for
capacitive reactances. phasors, and reactive power, the reader is cautioned and the
various definitions are explained.

One of the special features of this book is the presentation of PSpice, which
s a computer circuit analysis or simulation program that is suitable for use on
personal computers (PCs). PSpice is similar to SPICE, which has become the
standard for analog circuit simulation for the entire electronics industry. Another
special feature is the presentation of operational-amplifier (op-amp) circuits. Both
of these topics are new to this second edition. Another topic that has been added
is the use of advanced scientific calculators to solve the simultaneous equations
that arise in circuit analyses. Although this use requires placing the equations
in matrix form, absolutely no knowledge of matrix algebra is required. Finally,
there are many more problems involving circuits that contain dependent sources
than there were in the first edition.

I wish to thank Dr. R. L. Sullivan, who, while I was writing this second edition,
was Chairman of the Department of Electrical Engineering at the University of
Florida. He nurtured an environment that made it conducive to the writing of
books. Thanks are also due to my wife, Lois Anne, and my son Mathew for their
constant support and encouragement without which I could not have written this
second edition.

JounN R. O’'MALLEY
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Chapter 1

Basic Concepts

DIGIT GROUPING

To make numbers easier to read, some international scientific committees have recommended
the practice of separating digits into groups of three to the right and to the left of decimal points,
as in 64 325473 53. No separation is necessary, however, for just four digits, and they are preferably
not separated. For example. either 4138 or 4 138 is acceptable, as 1s 0.1278 or 0.127 8, with 4138
and 0.1278 preferred. The international committees did not approve of the use of the comma to
separate digits because in some countries the comma is used in place of the decimal point. This
digit grouping is used throughout this book.

INTERNATIONAL SYSTEM OF UNITS

The International System of Units ( S1) 1s the international measurement language. SI has nine base
units, which are shown in Table 1-1 along with the unit symbols. Units of all other physical quantities
are derived from these.

Table 1-1

Physical

Quantity Unit Symbol
length meter m
mass kilogram kg
time second s
current ampere A
temperature kelvin K
amount of substance mole mol
luminous intensity candela cd
plane angle radian rad
solid angle steradian sr

There is a decimal relation, indicated by prefixes, among multiples and submultiples of each base
unit. An SI prefix is a term attached to the beginning of an SI unit name to form either a decimal
multiple or submultiple. For example, since “kilo” is the prefix for one thousand, a kilometer equals
1000 m. And because “micro” is the SI prefix for one-millionth, one microsecond equals 0.000 001 s.

The SI prefixes have symbols as shown in Table 1-2, which also shows the corresponding powers
of 10. For most circuit analyses, only mega, kilo, milli, micro, nano, and pico are important. The proper
location for a prefix symbol is in front of a unit symbol, as in km for kilometer and cm for centimeter.

ELECTRIC CHARGE

Scientists have discovered two kinds of electric charge: positive and negative. Positive charge is carried
by subatomic particles called protons, and negative charge by subatomic particles called elecrrons. All
amounts of charge are integer multiples of these elemental charges. Scientists have also found that charges

1
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Table 1-2
Multiplier Prefix Symbol Multiplier Prefix Symbol
108 exa E 10! deci d
10! peta P 102 centi ¢
10*2 tera T 10 3 milli m
10° giga G 107° micro I
10¢ mega M 10°° nano n
103 kilo k 10712 pico P
102 hecto h 107198 femto f
10! deka da 10718 atto a

produce forces on each other: Charges of the same sign repel each other, but charges of opposite sign
attract each other. Moreover, in an electric circuit there is conservation of charge, which means that the
net electric charge remains constant—charge is neither created nor destroyed. (Electric components
interconnected to form at least one closed path comprise an electric circuit or network.)

The charge of an electron or proton is much too small to be the basic charge unit. Instead. the SI
unit of charge is the coufomb with unit symbol C. The quantity symbol 1s Q for a constant charge and
q for a charge that varies with time. The charge of an electron is — 1.602 x 10 '? C and that of a proton is
1.602 x 107!? C. Put another way, the combined charge of 6.241 x 10'? electrons equals —1 C. and
that of 6.241 x 10'® protons equals 1 C.

Each atom of matter has a positively charged nucleus consisting of protons and uncharged particles
called neutrons. Electrons orbit around the nucleus under the attraction of the protons. For an
undisturbed atom the number of electrons equals the number of protons, making the atom clectrically
neutral. But if an outer electron receives energy from, say, heat, it can gain enough energy to overcome
the force of attraction of the protons and become a free electron. The atom then has more positive than
negative charge and is a positive ion. Some atoms can also “capture” free electrons to gain a surplus of
negative charge and become negative ions.

ELECTRIC CURRENT

Electric current results from the movement of electric charge. The SI unit of current is the amipere
with unit symbol A. The quantity symbol is I for a constant current and i for a time-varying current. If
a steady flow of 1 C of charge passes a given point in a conductor in | s, the resulting current is | A.
In general,

1
Hamperes) = 2coulombs)
t(seconds)

in which ¢ is the quantity symbol for time.

Current has an associated direction. By convention the direction of current flow is in the direction
of positive charge movement and opposite the direction of negative charge movement. In solids only
free electrons move to produce current flow--the ions cannot move. But in gases and liquids, both
positive and negative ions can move to produce current flow. Since electric circuits consist almost entirely
of solids, only electrons produce current flow in almost all circuits. But this fact 1s seldom important in
circuit analyses because the analyses are almost always at the current level and not the charge level.

In a circuit diagram each [ (or i) usually has an associated arrow to indicate the current reference
direction, as shown in Fig. 1-1. This arrow specifies the direction of positive current flow, but not
necessarily the direction of actual flow. If, after calculations, I is found to be positive, then actual current
flow is in the direction of the arrow. But if I is negative, current flow is in the opposite direction.
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Fig. 1-1
Fig. 1-2

A current that flows in only one direction all the time is a direct current (dc), while a current that
alternates in direction of flow is an alternating current (ac). Usually, though, direct current refers only
to a constant current, and alternating current refers only to a current that varies sinusoidally with time.

A current source is a circuit element that provides a specified current. Figure 1-2 shows the circuit
diagram symbol for a current source. This source provides a current of 6 A in the direction of the arrow
irrespective of the voltage (discussed next) across the source.

VOLTAGE

The concept of voltage involves work, which in turn involves force and distance. The SI unit of work
is the joule with unit symbol J, the SI unit of force is the newron with unit symbol N, and of course the
ST unit for distance is the meter with unit symbol m.

Work is required for moving an object against a force that opposes the motion. For example, lifting
something against the force of gravity requires work. In general the work required in joules is the product
of the force in newtons and the distance moved in meters:

W(joules) = F(newtons) x s(meters)

where W, F, and s are the quantity symbols for work, force, and distance, respectively.

Energy is the capacity to do work. One of its forms is potential energy, which is the energy a body
has because of its position.

The voltage difference (also called the potential difference) between two points is the work in joules
required to move 1 C of charge from one point to the other. The SI unit of voltage is the vol/r with unit
symbol V. The quantity symbol is V or v, although E and e are also popular. In general,

Wi(joules)

14 =
(volts) Q(coulombs)

The voltage quantity symbol V sometimes has subscripts to designate the two points to which the
voltage corresponds. If the letter a designates one point and b the other, and if W joules of work are
required to move Q coulombs from point b to q, then V,, = W/Q. Note that the first subscript is the
point to which the charge is moved. The work quantity symbol sometimes also has subscripts as in
Vap = Wap/Q.

If moving a positive charge from b to a (or a negative charge from a to b) actually requires work,
the point a is positive with respect to point b. This is the voltage polarity. In a circuit diagram this voltage
polarity is indicated by a positive sign (+) at point a and a negative sign (—) at point b, as shown in
Fig. 1-3a for 6 V. Terms used to designate this voltage are a 6-V veltage or potential rise from b to a
or, equivalently, a 6-V voltage or potential drop from a to b.

6 V Vub
+ _ —
a D b a B b
(a) (b)
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If the voltage is designated by a quantity symbol as in Fig. 1-3h, the positive and negative signs are
reference polarities and not necessarily actual polarities. Also, if subscripts are used. the positive polarity
sign is at the point corresponding to the first subscript (¢ here) and the negative polarity sign is at the
point corresponding to the second subscript (b here). If after calculations, V,, is found to be positive,
then point a is actually positive with respect to point b, in agreement with the reference polarity signs.
But if V,, is negative, the actual polarities are opposite those shown.

A constant voltage is called a dc voltage. And a voltage that varies sinusoidally with time is called
an ac voltage.

A rvoltaye source, such as a battery or generator, provides a voltage that, ideally, does not depend
on the current flow through the source. Figure 1-4u shows the circuit symbol for a battery. This source
provides a dc voltage of 12 V. This symbol is also often used for a dc voltage source that may not be
a battery. Often, the + and — signs are not shown because, by convention, the long end-line designates
the positive terminal and the short end-line the negative terminal. Another circuit symbol for a dc voltage
source is shown in Fig. 1-4h. A battery uses chemical energy to move negative charges from the attracting
positive terminal, where there is a surplus of protons, to the repulsing negative terminal, where there is
a surplus of electrons. A voltage generator supplies this energy from mechanical energy that rotates a
magnet past coils of wire.

L
T 12V 12v
(a) »

Fig. 1-4

DEPENDENT SOURCES

The sources of Figs. 1-2 and 1-4 are independent sources. An independent current source provides a
certain current, and an independent voltage source provides a certain voltage, both independently of
any other voltage or current. In contrast, a dependent source (also called a controlled source) provides
a voltage or current that depends on a voltage or current elsewhere in a circuit. In a circuit diagram, a
dependent source is designated by a diamond-shaped symbol. For an iltustration, the circuit of Fig. 1-5
contains a dependent voltage source that provides a voltage of 5V, which is five times the voltage V|
that appears across a resistor elsewhere in the circuit. (The resistors shown are discussed in the next
chapter.) There are four types of dependent sources: a voltage-controlled voliage source as shown in
Fig. 1-5, a current-controlled voltage source, a voltage-controlled current source, and a current-controlled
current source. Dependent sources are rarely separate physical components. But they are important
because they occur in models of electronic components such as operational amplifiers and transistors.

5K,

|1+
M-

Fig. 1-5
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POWER

The rate at which something either absorbs or produces energy is the power absorbed or produced.
A source of energy produces or delivers power and a load absorbs it. The SI unit of power is the wart
with unit symbol W. The quantity symbol is P for constant power and p for time-varying power. If 1J
of work is either absorbed or delivered at a constant rate in 1 s, the corresponding power is 1 W. In
general,
W(joules)
P(watts) = - s
t(seconds)

The power absorbed by an electric component is the product of voltage and current if the current
reference arrow is into the positively referenced terminal, as shown in Fig. 1-6;

P(watts) = V(volts) x I{amperes)

Such references are called associated references. (The term passive sign convention is often used instead
of “associated references.”) If the references are not associated (the current arrow is into the negatively

referenced terminal), the power absorbedis P = — VI
1 + VvV -
— ] [ L_
"—| |'—‘ Pm——l m IF { » | [ » b= » =P
Fig. 1-6 Fig. 1-7

If the calculated P is positive with either formula, the component actually absorbs power. But if P
1s negative, the component produces power it is a source of electric energy.

The power output rating of motors is usually expressed in a power unit called the horsepower (hp)
even though this is not an SI unit. The relation between horsepower and watts is 1 hp = 745.7 W,

Electric motors and other systems have an efficiency (n) of operation defined by

ower output P
Efficiency = P PUt  100% or p=""x 100%

power input in
Efficiency can also be based on work output divided by work input. In calculations, efficiency is
usually expressed as a decimal fraction that is the percentage divided by 100.
The overall efficiency of a cascaded system as shown in Fig. 1-7 is thc product of the individual
efficiencies:

out

P,

m

=MNans

ENERGY
Electric energy used or produced is the product of the electric power input or output and the time over
which this input or output occurs:
W (joules) = P(watts) x t(seconds)

Electric energy is what customers purchase from electric utility companies. These companies do not
use the joule as an energy unit but instead use the much larger and more convenient kilowatthour (kWh)
even though it is not an SI unit. The number of kilowatthours consumed equals the product of the power
absorbed in kilowatts and the time in hours over which it is absorbed:

W(kilowatthours) = P(kilowatts) x t(hours)
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Solved Problems

Find the charge in coulombs of (a) 5.31 x 10%¢ electrons, and (h) 2.9 x 10?2 protons.
(@) Since the charge of an electron is —1.602 x 10 '° C, the total charge is

—1.602 x 10°'°C
5.31 x 1020 eleetrom® x = —8S.1C
| eleetrom

(b) Similarly, the total charge is
1.602 x 107! C

29 x 10*2 pretots x —— - ———  ~— = 4.65kC
1 proten

How many protons have a combined charge of 6.8 pC?

Because the combined charge of 6.241 x 10'® protons is | C. the number of protons is

6.241 x 10'® protons -
6.8 x 107’2¢ X — ,\7,],¢ protons =424 x [0 protons

Find the current flow through a light bulb from a steady movement of (¢) 60 C inds, (M) 15C
in 2 min, and (c¢) 10?2 electrons in 1 h.

Current is the rate of charge movement in coulombs per second. So.

60 C
(@) l=9=—‘—i—=15C,’s=15A
t S

1I5C L
x
2.mm 60s

1022 clectrons 1 1602 x 1071°C
_ 10 lesteons 1R 1602 X 107C s C— 0445 A
| 3600s 1 eleetrom

b I=

=0125C/s =0.125 A

© 1

The negative sign in the answer indicates that the current flows in a direction opposite that of ¢lectron
movement. But this sign is unimportant here and can be omitted because the problem statement does not
specify the direction of electron movement.

Electrons pass to the right through a wire cross section at the rate of 6.4 x 10°' electrons per
minute. What is the current in the wire?

Because current is the rate of charge movement in coulombs per second.

6.4 x 10*' eloetrons -1C 1w .
I= - X — x — = —171Cs= —171A
1o 6.241 x 10'8eleetrons 605

The negative sign in the answer indicates that the current is to the left. opposite the direction of clectron
movement.

In a liquid, negative ions, each with a single surplus electron, move to the left at a steady rate of
2.1 x 10%° ions per minute and positive ions, each with two surplus protons, move to the right
at a steady rate of 4.8 x 10'? ions per minute. Find the current to the right.

The negative ions moving to the left and the positive ions moving to the right both produce a current
to the right because current flow is in a direction opposite that of negative charge movement and the same
as that of positive charge movement. For a current to the right, the movement of electrons to the left is a
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1.6

1.7

1.8

1.9

1.10

negative movement. Also, each positive ion, being doubly ionized. has double the charge of a proton. So,

2.1 x 10%%cleetrons  —1.602 x 107'9C  lamim 2 x 4.8 x 10 protens™  1.602 x 107!°C
, x w

= - X +
1 i 1 elestrom 60s 1o | protor

Will a 10-A fuse blow for a steady rate of charge flow through it of 45000 C/h?
The current is

45000C 1A

2 = 125A
1K 3600s

which is more than the 10-A rating. So the fuse will blow.

Assuming a steady current flow through a switch, find the time required for (a) 20 C to flow if
the current is 15 mA, (b) 12 xC to flow if the current is 30 pA, and (c) 2.58 x 10'® electrons to
flow if the current is —64.2 nA.

Since [ = Q/t solved for t is t = Q/1,

20 .
(@ t=-—— - =133 x10°s=222min
15 x 1073
12 x 107¢
by 1=  _4x10°s=111h
30 x 107142
2.58 x 10" elgetroms™ —-1C
(@ =" S — 644 x 10%s = 1.79h

< _
~642 x 107%A 6.241 x 10'8 eleetroms”

The total charge that a battery can deliver is usually specified in ampere-hours (Ah). An
ampere-hour is the quantity of charge corresponding to a current flow of 1 A for 1 h, Find the
number of coulombs corresponding to 1 Ah.

Since from Q = I, 1 C is equal to onc ampere second (As),

3600 s
Q=1Ay(x-ly

= 3600 As = 3600 C

A certain car battery is rated at 700 Ah at 3.5 A, which means that the battery can deliver 3.5 A
for approximately 700/3.5 = 200 h. However, the larger the current, the less the charge that can
be drawn. How long can this battery deliver 2 A?

The time that the current can flow is approximately equal to the ampere-hour rating divided by the
current:

,_ 700 #h
= A
Actually, the battery can deliver 2 A for longer than 350 h because the ampere-hour rating for this smaller
current is greater than that for 3.5 A.

=350h

Find the average drift velocity of electrons in a No. 14 AWG copper wire carrying a 10-A current,
given that copper has 1.38 x 102 free electrons per cubic inch and that the cross-sectional area of
No. 14 AWG wire is 3.23 x 103 in?,
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The average drift velocity (0) equals the current divided by the product of the cross-sectional arca and
the clectron density:
e [ et 0.0254 m I eleetrorr

[ x X x X
Is  323% 10 Y 138 x 107 cleetroms 1y S L602 x [0 ¢

= —356 % 10 *ms

The negative sign in the answer indicates that the clectrons move in a direction opposite that of current
flow. Notice the low velocity. An electron travels only 1.28 man 1 h. on the average. even though the electric
impulses produced by the electron movement travel at near the speed of light (2998 x 10% m ).

Find the work required to lift a 4500-kg elevator a verucal distance of S0 m.

The work required is the product of the distance moved and the foree needed to overcome the weight
of the clevator, Since this weight in newtons is 9.8 times the mass in kilograms,

W~ Fs = (9.8 x 4300)50) ] = 2.2 M)

Find the potential energy in joules gained by a I80-Ib man in climbing a 6-ft ladder.
The potential energy gained by the man equals the work he had 1o do to climb the ladder. The force

invalved is s weight. and the distance is the height of the Tadder. The conversion factor from weight in
pounds to a force in newtons is 1 N = 0.225 |b. Thus,

I'N 1230 0.0254m

x x i =146 x 10°Nm = | 46k}
RELYT R 1

W= 180K = 651 x
(

How much chemical energy must a 12-V car battery expend in moving 893 x 107" electrons
from its positive terminal to its negative terminal?

The appropriate formulais W= Q1 Although the signs of Q and 1 are important. obviously here the
product of these guantities must be positive because energy 1s required to move the electrons. So. the casiest
approach is to ignore the signs of @ and 17 Or af signs are used, s negative because the charge moves to
a more negative terminal, and of course @ is negative because electrons have a negative charge. Thus,

-1 C

B o= QP = 893 % 107" clectrons x (- 12 V) x =172 x 10°VC = 1.72kJ
6.241 x 10" cleetrors

If moving 16 C of positive charge from point b to point « requires 0.8 1. find 1. the voltage
drop from point « to point h.
COM, 08 )
b, = = =005V
Q 16

In moving from point ¢ to point b, 2 x 10" clectrons do 4 ) of work. Find 1. the voltage drop
from point a to point h.

Work done by the clectrons is equivalent to negative work done o the electrons, and voltage depends

on work done on charge. So, B, = -4 ). but W, = --H,, = 3] Thus
, ", 4 6.241 x 10" cleetrons
o = . x = 1251 C=-125V
Q2 x 10" cleetrons —-1C

The negative sign indicates that there is a voltage rise from ¢ to b instead of a voltage drop. In other
words, point b 1s more positive than point «.
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1.16 Find V,,. the voltage drop from point a to point b, if 24 ] are required to move charges of

1.17

1.18

1.19

1.20

1.21

122

(@) 3C. (h) =4 C. and ()20 x 10" electrons from point ¢ to point b,

If 24 J are required to move the charges from point ¢ 1o point b, then —24 ] are required to move
them from point b to point «. In other words, W, = —24 ]. So.

W, 24
o 3
The negative sign in the answer indicates that point @ is more negative than point b there is a voltage
rise from a to b.

() V, = -8V

W, -4

b V= “="""-6vV
b 0 4
W, _24) 6.241 x 10 S ,
€ V= "= x , — 0749 V
QO 20 x 10" cleetromy -1C

Find the encrgy stored in a 12-V car battery rated at 650 Ah.
From W = QV and the fact that 1 As = 1 C,

3600 s
W = 650 Ay( X ly( x 12V =234 x 10" As x 12V = 2808 MJ

Find the voltage drop across a light bulb if a 0.5-A current flowing through it for 4 s causes the
light bulb to give off 240 I of light and heat energy.
Since the charge that flows s Q =11 = 05 x 4 =2 C,
W 240

F=" =2 =120V
0 2

Find the average input power to a radio that consumes 3600 J in 2 min.
Woo3600) 1w
- -

t 2amim 60

=30Js=30W

How many joules does a 60-W light bulb consume in 1 h?
From rearranging P = W'r and from the fact that 1 Ws =11,

) 3600 s
W="P=60W x I){x--W=216000Ws=216kJ

How long docs a 100-W light bulb take to consume 13 kJ?
From rearranging P = W,

W 13000
r=- = = 1305
P 100

How much power does a stove clement absorb if it draws 10 A when connected toa 115-V line?

P=1I=115x10W=115kW
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What current does a 1200-W toaster draw from a 120-V line?
From rearranging P = VI,

P 1200

STU=10A
Vo120

Figure 1-8 shows a circuit diagram of a voltage source of V' volts connected to a current source
of I amperes. Find the power absorbed by the voltage source for

@ V=2V, I=4A
() V=3V, I=—-2A
) V=-6V, I=-8A

Fig. 1-8

Because the reference arrow for / is into the positively referenced terminal for I the current and voltage
references for the voltage source are associated. This means that there is a positive sign (or the absence of
a negative sign) in the relation between power absorbed and the product of voltage and current: P = }].
With the given values inserted,

(a P=VI=2x4=8W
by P=VIi=3x(-2)=-6W

The negative sign for the power indicates that the voltage source delivers rather than absorbs power.

¢y P=VIi=—-6x(—-8=48W

Figure 1-9 shows a circuit diagram of a current source of I amperes connected to an independent
voltage source of 8 V and a current-controlled dependent voltage source that provides a4 voltage
that in volts is equal to two times the current flow in amperes through it. Determine the power
P, absorbed by the independent voltage source and the power P, absorbed by the dependent

voltage source for (@) I =4 A, () =5mA, and ()= —-3A.
8V f
1hl h—
li—
Pl
1 P, 21
Fig. 1-9

Because the reference arrow for J is directed into the negative terminal of the 8-V source. the
power-absorbed formula has a negative sign: P, = —8/. For the dependent source. though, the voltage
and current references are associated, and so the power absorbed is P, = 2/(J) = 2I%. With the given current
values inserted,
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P, =—-84)=—32W and P, =2(4)? =32W. The negative power for the independent source

1.26

1.27

1.28

indicates that it is producing power instead of absorbing it.

() P,=—-85x10"%)=—-40x10*W=—-40mW
P,=2(5x 10732 =50 x 10°*W = 50 uW

(¢) P,=—8(—=3)=24W and P,=2-3)? =18 W. The power absorbed by the dependent source re-
mains positive because although the current reversed direction, the polarity of the voltage did also, and
so the actual current flow is still into the actual positive terminal.

Calculate the power absorbed by each component in the circuit of Fig. 1-10.

] 6V
e B
+16V P, l6A
P, 10 A P, T nv p, <l> 041
Fig. 1-10

Since for the 10-A current source the current flows out of the positive terminal, the power it absorbs
is P, = —16(10) = — 160 W. The negative sign indicates that this source is not absorbing power but rather
is delivering power to other components in the circuit. For the 6-V source, the 10-A current flows into the
negative terminal, and so P, = —6(10) = —60 W. For the 22-V source, P, = 22(6) = 132 W. Finally,
the dependent source provides a current of 0.4(10) = 4 A. This current flows into the positive terminal
since this source also has 22 V, positive at the top, across it. Consequently, P, = 22(4) = 88 W. Observe that

PL+P,+P; +P,=—-160-60+132+88=0W

The sum of 0 W indicates that in this circuit the power absorbed by components is equal to the power
delivered. This result is true for every circuit.

How long can a 12-V car battery supply 250 A to a starter motor if the battery has 4 x 10° J of
chemical energy that can be converted to electric energy?

t = W/P. Here,
P=VI=12x 250 = 3000 W

The best approach is to use

And so

W 4 x 10
t= =
P

= 1333335 = 22.2 min

Find the current drawn from a 115-V line by a dc electric motor that delivers 1 hp. Assume
100 percent efficiency of operation.

From rearranging P = VI and from the fact that 1 W/V =1 A,
P 1 745.7 W
=- = jﬁ x ———— =648 W/V =648 A
V. SV Lhp
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Find the cfliciency of operation of an electric motor that dehivers | hp while absorbing an input
of 900 W,

P Ty 74570
N = x 100" = X
P 900 W 1 s

m

x 100% = 82.9%,

What is the operating efficiency of a fully loaded 2-hp dc electric motor that draws 19 A at
100 V? (The power rating of a motor specifies the output power and not the input power.)
Since the input power is
Po=F1=100 x 19 = 1900 W
the efficiency is
P 2hy TSI

n= " 1000, =

= X
P 00w 1y

in

x 100% = 783%,

Find the input power to a fully loaded 5-hp motor that operates at 80 percent etliciency.
For almost all calculations. the elficiency is better expressed as a decimal fraction that 1s the percentage
divided by 100. which is 0.8 here. Then from 5 = P, Pi..

P 5 7457 W
p,= "= ol = 4.66 kW

n 08 2508

Find the current drawn by a dc electric motor that delivers 2 hp while operating at 85 percent
efficiency from a 110-V hne.

From P, =11 =P, 1.

out
Poi  2by HITW

- x 1595 A
gl 0RS x 1OV Ly

Maximum received solar power is about 1 kW m*. If solar pancls. which convert solar energy to
electric energy. are 13 percent efficient, how many square meters of solar cell panels are needed
to supply the power to a 1600-W toaster?

The power from cach square meter of solar panels is

P =P, =013 x 1000 = [30W

ot in

So. the total solar pancl arca needed is

5

I'm
Arca = 1600.W x = 123m’
130.W

What horsepower must an clectric motor develop to pump water up 401t at the rate of 2000
gallons per hour (gal ‘h) if the pumping system operates at 80 percent efficiency?

One way to solve for the power is to use the work done by the pump in 1 h. which is the weight of the
water lifted in 1 h times the height through which it is lifted. This work divided by the time taken is the
power output of the pumping system. And this power divided by the cfficiencey is the input power to the
pumping system. which is the required output power of the electric motor. Some needed data are that 1 gal
of water weighs 833 Ib. and that 1 hp = 550 {ft - Ib) s. Thux,

p 2000 gat 1 L 833 I hp

x 40 f( x X x x =042h
Pg K 0.8 3600% 1gat S50 (- |K) ¥ :
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1.35

1.36

1.37

1.38

1.39

1.40

1.41

1.42

1.43

1.44

Two systems are in cascade. One operates with an efficiency of 75 percent and the other with an
efficiency of 85 percent. If the input power is 5 kW, what is the output power?

P = mn2 P, = 0.750.85)5000) W = 319 kW

out

Find the conversion relation between kilowatthours and joules.

The approach here is to convert from kilowatthours to watt-seconds, and then use the fact that
1J=1Ws:

T kWh = 1000 W x 3600 s = 3.6 x 10° Ws = 3.6 MJ

For an electric rate of 7¢ kilowatthour, what does it cost to leave a 60-W light bulb on for 8 h?

The cost equals the total energy used times the cost per energy unit:

1k T¢
WA 136

Cost = 60 W 'x 84 x S— X o=
1000 W | kWK

An electric motor delivers 5 hp while operating with an efficiency of 85 percent. Find the cost for
operating it continuously for one day (d) if the electric rate is 6¢ kilowatthour.

The total energy used is the output power times the time of operation. all divided by the efficiency. The
product of this energy and the clectric rate is the total cost:

6¢ 0.7457 kW~ 240
: X

1
Cost = 5.hp x 1d7x x X - = 632¢ = $6.32
085 1 kWA L hp” Ld

Supplementary Problems

Find the charge in coulombs of (a) 6.28 x 10%! clectrons and  (h) 8.76 x 102" protons.

Ans. (a) —1006 C, (b) 140 C

How many electrons have a total charge of —4 nC?

Ans. 2.5 x 10'° electrons

Find the current flow through a switch from a steady movement of (a) 90C in 65, (h) 900C in
20 min, and (c) 4 x 102* clectrons in 5 h.

Ans. (@) 15 A, (B)0T5 AL (1356 A

A capacitor is an electric circuit component that stores electric charge. If a capacitor charges at a steady rate to

10 mC in 0.02 ms, and if it discharges in 1 us at a steady rate. what are the magnitudes of the charging and
discharging currents?

Ans. 500 A, 10 000 A

In a gas. if doubly ionized negative ions move to the right at a steady rate of 3.62 x 10°® jons per minute and if
singly ionized positive ions move to the left at a steady rate of 5.83 x 10°® jons per minute, find the current to
the right.

Ans. —349A
Find the shortest time that 120 C can flow through a 20-A circuit breaker without tripping it.

Ans. 65
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If a steady current flows to a capacitor, find the time required for the capacitor to  {u) charge to 2.5 mC if the
current is 35 mA, (b) charge to 36 pC if the current is 18 pA, and (c¢) store 9.36 x 10" ¢clectrons if the
current is 85.6 nA.

Ans. (@) T4 ms, (b)2ps, (c)203d

How long can a 4.5-Ah, 1.5-V flashlight battery deliver 100 mA?
Ans. 45 h

Find the potential energy in joules lost by a 1.2-1b book in falling off a desk that is 31 in high.
Ans. 4.21]

How much chemical energy must a 1.25-V flashlight battery expend in producing a current flow of 130 mA
for $ min?

Ans. 488]

Find the work done by a 9-V battery in moving 5 x 102 electrons from its positive terminal to its negative
terminal.

Ans. 7211

Find the total energy available from a rechargeable 1.25-V flashlight battery with a 1.2-Ah rating.

Ans. 54 kJ

If all the energy in a -V transistor radio battery rated at 0.392 Ah is used to Iift a 150-1b man. how high in fect
will he be lifted?

Ans. 625 ft
If a charge of —4 C in moving from point a to point b gives up 20 J of encrgy. what is 1,”

Ans. -5V

Moving 6.93 x 10'° electrons from point b to point a requires 98 J of work. Find 1/,

Ans. —883V

How much power does an electric clock require if it draws 27.3 mA from a 110-V line?

Ans. 3 W

Find the current drawn by a 1000-W steam iron from a 120-V line.

Ans. 833 A

For the circuit of Fig. 1-11, find the power absorbed by the current source for (q) }'=4 V. [ =2 mA:
ByV=—-50V,I=—-150uA; (V=10mV,I=—-15mA; () V =—-120mV.] =80 mA.

Ans. (a) ~8 mW, (b) —7.5mW, (c) 150 uW, (d) 9.6 mW

Fig. 1-11
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1.62

1.63

For the circuit of Fig. 1-12, determine P, P,, P4, which are powers absorbed, for (@) I =2 A, (b1 =
20mA. and ()= -3A.

Ans. {a) P, =16 W, P, = —-24 W, P,

. —20W; (b) P,=0.16 W, P,= —24 mW, P, = —02 W;
()P = -24W.Py,= —54W. P, =30

=

P, I

J||L —_—
I i
8V

I P, <:> 6!
P,
‘ll 1

] L
10V

Fig. 1-12

Calculate the power absorbed by each component in the circuit of Fig. 1-13.

Ans. P, =16 W, P,=—48W, P, = —48W, P,=80W

P, 1
. JllL -~
—I[F
I 12V ~1 »,
P, 0.51 P, = 8V 20V 4A
ﬁm ;
Fig. 1-13

Find the average input power to a radio that consumes 4500 J in 3 min.

Ans. 25 W

Find the voltage drop across a toaster that gives off 7500 J of heat when a 13.64-A current flows through
it for §s.

Ans. 110V
How many joules does a 40-W light bulb consume in 1 d?
Ans. 346 MJ

How long can a 12-V car battery supply 200 A to a starter motor if the battery has 28 MJ of chemical energy
that can be converted to electric energy?

Ans. 324 h
How long does it take a 420-W color TV set to consume (a) 2 kWh and (b) 15 kJ?
Ans. (u)y 476 h, (b)35.7s
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Find the current drawn by a [10-V dc clectric motor that delivers 2 hp. Assume 100 percent efficiency of
operation.

Ans. 136 A

Find the efficiency of operation of an electric motor that detivers 5 hp while absorbing an input of 4190 W.
Ans. 89 percent

What is the operating efficiency of a dc electric motor that delivers 1 hp while drawing 7.45 A from a 115-V
line?

Ans. 87 percent

Find the current drawn by a 100-V dc clectric motor that operates at 85 percent efficiency while delivering
0.5 hp.

Ans. 439 A

What is the horsepower produced by an automobile starter motor that draws 250 A from a 12-V battery while
operating at an efficiency of 90 percent?

Ans.  3.62 hp

What horsepower must an electric motor develop to operate a pump that pumps water at a rate of 24 000

liters per hour (L-h) up a vertical distance of 50 m if the cfliciency of the pump is 90 percent? The gravitational
force on 1 L of water is 9.78 N.

Ans. 4.86 hp
An ac electric motor drives a dc electric voltage gencrator. If the motor operates at an efficiency of 90 percent

and the generator at an efficiency of 80 percent. und if the input power to the motor 1s S kW, find the vutput
power from the generator.

Ans. 3.6 kW
Find the cost for one year (365 d) to operate a 20-W transistor FM-AM radio 5 h a day if electrical energy
costs 8¢ kilowatthour.

Ans. %292

For a cost of $5. how long can a fully loaded 3-hp clectric motor be run if the motor operates at an efficiency of
85 percent and if the clectric rate is 6¢ kilowatthour?

Ans. 19h

If electric energy costs 6¢ kilowatthour. calculate the utility bill for one month for operating cight 100-W
light bulbs for 50 h each, ten 60-W light bulbs for 70 h cach. one 2-kW air conditioner for 80 h, one 3-kW
range for 45 h. one 420-W color TV sct for 180 h. and one 300-W refrigerator for 75 h.

Ans.  $28.51.



Chapter 2

Resistance

OHM'S LAW

In flowing through a conductor. free clectrons collide with conductor atoms and lose some kinetic
energy that is converted into heat. An applied voltage will cause them to regain energy and speed. but
subsequent collisions will slow them down again. This speeding up and slowing down occurs continually
as free electrons move among conductor atoms.

Resistance 1s this property of materials that opposes or resists the movement of electrons and makes
it necessary to apply a voltage to cause current to flow. The SI unit of resistance is the o/on with symbol
Q. the Greek uppercase letter omega. The quantity symbol 1s R.

In metallic and some other tyvpes of conductors. the current is proportional to the applied voltage:
Doubling the voltage doubles the current. tripling the voltage triples the current. and so on. If the applied
voltage V and resulting current 1 have assoctated references. the relation between Fand [ s

V (volts)
Iamperes) =
R(ohms)
in which R is the constant of proportionality. This relation i1s known as Ofun's law. For time-varying
voltages and currents, @ = ¢ R. And for nonassociated references, I'= —1"Ror i= —r R

From Ohm’s law 1t is evident that. the greater the resistance. the less the current for any applied
voltage. Also, the electric resistance of a conductor is 1 Qif an applied voltage of 1 V causes a current
of 1 A to flow.

The inverse of resistance is often useful. It is called conductance and its quantity symbol is G. The
SI unit of conductance is the siemens with symbol S. which is replacing the popular non-SI unit nifo
with symbol U (inverted omega). Since conductance is the inverse of resistance, ¢ = 1 R. In terms of
conductance. Ohm’s law is

Itamperces) = G(siemens) x F(volts)

which shows that the greater the conductance of a conductor. the greater the current for any applied
voltage.

RESISTIVITY

The resistance of a conductor of uniform cross section is directly proportional to the length of the
conductor and inversely proportional to the cross-sectional area. Resistance is also a function of the
temperature of the conductor. as is explained in the next section. At a fixed temperature the resistance
of a conductor 1s

R=p p

where ! 1s the conductor length in meters and A4 is the cross-sectional area in square meters. The constant
of proportionality p, the Greek lowercase letter rho, is the quantity symbol for resistiviry. the factor that
depends on the type of material.

The SI unit of resistivity ts the ofim-ineter with unit symbol Q'm. Table 2-1 shows the resistivities
of some materials at 20 C.

A good conductor has a resistivity close to 10 ® Q-m. Silver. the best conductor. is too expensive
for most uses. Copper 1s a common conductor, as is aluminum. Materials with resistivities greater than
10'° Q:m are insulators. They can provide physical support without significant current leakage. Also.

17
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Table 2-1
Material Resistivity (£2'm at 20 C) Material Resistivity ({:m at 20 C)
Silver 1.64 x 1078 Nichrome 100 x 10 *#
Copper, annealed .72 x 10°® Silicon 2500
Aluminum 283 x 10 ® Paper 10'¢
Iron 123 x 1078 Mica s x 10
Constantan 49 x 1078 Quartz 1017

insulating coatings on wires prevent current leaks between wires that touch. Materials with resistivities
in the range of 10 * to 10~ 7 Q'm are semiconductors, from which transistors are made.
The relationship among conductance, length, and cross-sectional area is

where the constant of proportionality o, the Greek lowercase sigma, is the quantity symbol for
conductivity. The S1 unit of conductivity is the siemens per meter with symbol S'm !,

TEMPERATURE EFFECTS

The resistances of most good conducting materials increase almost linearly with temperature over
the range of normal operating temperatures, as shown by the solid line in Fig. 2-1. However, some
materials, and common semiconductors in particular, have resistances that decrease with temperature

Increases.
If the straight-line portion in Fig. 2-1 is extended to the left, it crosses the temperature axis at a

temperature T, at which the resistance appears to be zero. This temperature T, is the inferred zero
resistance temperature. (The actual zero resistance temperature is —273 C.) If T, 1s known and if the
resistance R, at another temperature T, is known, then the resistance R, at another temperature T; is,
from straight-line geometry,

R,=2*-°R
2 T - T, 1
Table 2-2 has inferred zero resistance temperatures for some common conducting materials.
A different but equivalent way of finding the resistance R, is from

R, =R|[1 +2(T, — TY)]
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Table 2-2 Table 2-3
Inferred Temperature coefficient
Z€ro resistance Material (°C~" at 20°C)
Material temperature ( C)

Tungsten 0.0045
Tungsten —202 Copper 0.00393
Copper —2345 Aluminum 0.003 91
Aluminum —236 Silver 0.0038
Silver —243 Constantan 0.000 008
Constantan — 125000 Carbon —0.0005

where z,, with the Greek lowercase alpha, is the temperature coefficient of resistance at the temperature
T,. Often T, is 20 C. Table 2-3 has temperature coefficients of resistance at 20°C for some common
conducting materials. Note that the unit of x is per degree Celsius with symbol °C ™!,

RESISTORS

In a practical sense a resistor is a circuit component that is used because of its resistance.
Mathematically, a resistor is a circuit component for which there is an algebraic relation between its
instantaneous voltage and instantaneous current such as v = iR, the voltage-current relation for a
resistor that obeys Ohm’s law  a linear resistor. Any other type of voltage-current relation (v = 4i* + 6,
for example) is for a nonlinear resistor. The term “resistor” usually designates a linear resistor. Nonlinear
resistors are specified as such. Figure 2-2a shows the circuit symbol for a linear resistor, and Fig. 2-2b

that for a nonlinear resistor.

(a) (b)
Fig, 2-2

RESISTOR POWER ABSORPTION

Substitution from V¥V =R into P = VI gives the power absorbed by a linear resistor in terms
of resistance:

VZ
P=— =R
R

Every resistor has a power rating, also called wattage rating, that is the maximum power that the resistor
can absorb without overheating to a destructive temperature.

NOMINAL VALUES AND TOLERANCES

Manufacturers print resistance values on resistor casings either in numerical form or in a color code.
These values, though, are only nominal values: They are only approximately equal to the actual
resistances. The possible percentage variation of resistance about the nominal value is called the tolerance.
The popular carbon-composition resistors have tolerances of 20, 10, and 5 percent, which means that
the actual resistances can vary from the nominal values by as much as +20, +10, and + 35 percent of
the nominal values.



20 RESISTANCE [CHAP. 2

COLOR CODE
The most popular resistance color code has nominal resistance values and tolerances indicated by

the colors of either three or four bands around the resistor casing, as shown in Fig. 2-3.

First Second Number of zeros
digit digit or multiplier Tolerance

Fig. 2-3

Each color has a corresponding numerical value as specified in Table 2-4. The colors of the first
and second bands correspond, respectively, to the first two digits of the nominal resistance value. Because
the first digit is never zero, the first band is never black. The color of the third band, except for silver
and gold. corresponds to the number of zeros that follow the first two digits. A third band of silver
corresponds to a multiplier of 10 2, and a third band of gold to a multiplier of 10 '. The fourth band
indicates the tolerance and is either gold- or silver-colored, or is missing. Gold corresponds to a tolerance
of 5 percent, silver to [0 percent, and a missing band to 20 percent.

Table 2-4
Color Number Color Number

Black 0 Blue 6
Brown 1 Violet 7

Red 2 Gray 8
Orange 3 White 9
Yellow 4 Gold 0.1
Green S Silver 0.01

OPEN AND SHORT CIRCUITS

An open circuit has an infinite resistance, which means that it has zero current flow through it for
any finite voltage across it. On a circuit diagram it 1s indicated by two terminals not connected to
anything no path is shown for current to flow through. An open circuit i1s sometimes called an open.

A short circuit is the opposite of an open circuit. It has zero voltage across it for any finite current
flow through it. On a circuit diagram a short circuit is designated by an ideal conducting wire a wire
with zero resistance. A short circuit is often called a short.

Not all open and short circuits are desirable. Frequently, one or the other is a circuit defect that
occurs as 4 result of a component failure from an accident or the misuse of i circuit.

INTERNAL RESISTANCE

Every practical voltage or current source has an internal resistance that adversely affects the operation
of the source. For any load except an open circuit, a voltage source has a loss of voltage across its
internal resistance. And except for a short-circuit load, a current source has a loss of current through
its internal resistance.
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In a practical voltage source the internal resistance has almost the same effect as a resistor in series
with an ideal voltage source, as shown in Fig. 2-4¢. (Components in series carry the same current) In
a practical current source the internal resistance has almost the same effect as a resistor in parallel with
an ideal current source, as shown in Fig. 2-4h. (Components in parallel have the same voltage across
them.)

Practical voltage source Practical current source
——,—— e e — — o ———— e ——— — 1
: Internal | ( |
resistance | | |
: AN + T [ —+
Ideal | | . |
l —L | I S I Ideal Internal I inal
— voltage Terminals current resistance Terminals
] source | | source ’ |
| | | |
1 | | |
d e e - d
(@) (h)

Fig. 2-4

Solved Problems
21 If an oven has a 240-V heating element with a resistance of 24 Q. what is the minimum rating
of a fuse that can be used in the lines to the heating element?
The fuse must be able to carry the current of the heating element:
o240
I= = =10A
R 24
2.2 What is the resistance of a soldering iron that draws 0.8333 A at 120 V?

b 120

2.3 A toaster with 8.27 Q of resistance draws 139 A, Find the applied voltage.
' V= IR=139 x 827 = 115V

24 What is the conductance of a 560-kQ resistor?

I
R~ 560 x 10°

G =

S=179.8

25 What is the conductance of an ammeter that indicates 20 A when 0.01 V is across it?

. 20
G=- = _---=20008
o 0.01
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Find the resistance at 20°C of an annealed copper bus bar 3 m in length and 0.5cm by 3 ¢m in
rectangular cross section.

The cross-sectional area of the bar is (0.5 x 10723 x 1073} = 1.5 x 10" * m2. Table 2-1 huas the
resistivity of annealed copper: 1.72 x 107 Q'm at 20 C. So,
[ (172 x 10°83)

R=p-

4 isxip e 2T

Finc the resistance of an aluminum wire that has a length of 1000 m and a diameter of
1.626 mm. The wire is at 20°C.

The cross-sectional area of the wire is nr2, in which  r = d/2 = 1.626 x 10732 = 0.813 x 10 *m. From
Table 2-1 the resistivity of aluminum is 2.83 x 108 Q:m. So,
! _(2.83 x 103X 1000)

it - =136Q

R=p—-= - -
pA n(0.813 x 10 )

The resistance of a certain wire is 15 Q. Another wire of the same material and at the same
temperature has a diameter one-third as great and a length twice as great. Find the resistance of
the second wire.

The resistance of a wire is proportional to the length and inversely proportional to the area. Also, the
area is proportional to the square of the diameter. So, the resistance of the second wire 1s

What is the resistivity of platinum if a cube of it | cm along each edge has a resistance of 10 uQ
across opposite faces?

From R =pliA andthefactthat A =102 x10"2=10 *m? and [=10?m.

RA (10 x 10 6§10 %
po RA U0 KD D 0% 1074 om
! 1072

A 15-ft length of wire with a cross-sectional area of 127 cmils has a resistance of 8.74 Q at 20°C.
What material is the wire made from?

The material can be found from calculating the resistivity and comparing it with the resistivities given
in Table 2-1. For this calculation it is convenient to use the fact that, by the definition of a circular mil. the
corresponding area in square inches is the number of circular mils times 74 x 10" ®. From rearranging
R = pl/A,

AR [127(n/4 x 10 ©)j®](8.74Q)  1jr 0.0254m
p = —— = - - - x -

] 1580 250 1

Since iron has this resistivity in Table 2-1, the material must be iron.

=123 x 10 *Qm

What is the length of No. 28 AWG (0.000 126 in? in cross-sectional area) Nichrome wire required
for a 24-Q resistor at 20°C?
From rearranging R = pl/A and using the resistivity of Nichrome given in Table 2-1.
[ AR _ (0000 126in")24 ) 002545 00254 m
= - bl A VI ool

T T 100 x 1078 g TR

1.95m
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A certain aluminum wire has a resistance of 5 Q at 20°C. What is the resistance of an annealed
copper wire of the same size and at the same temperature?

For the copper and aluminum wires, respectively,

l !
R=p.— and S5=p, -
pA /A

Taking the ratio of the two equations causes the length and area quantities to divide out. with the result
that the ratio of the resistances is equal to the ratio of the resistivities:
R .
=P or R=""xs
5P Pa

Then with the insertion of resistivities from Table 2-1,

1.72 x 1078
R = ——x5=3040Q
283 x 1078

A wire 50 m in length and 2 mm? in cross section has a resistance of 0.56 Q. A 100-m length of
wire of the same material has a resistance of 2 Q at the same temperature. Find the diameter of
this wire.

From the data given for the first wire, the resistivity of the conducting material is
_RA 0562 x107°)

: 224 x 1078 Q'm
l 50

P

Therefore the cross-sectional area of the second wire is

[ (224 x 107 8X100
A=%=( XT‘i"’J=l.12X 107®m?

and, from A = n(d/2)?. the diameter is
A 112 x 107°¢ ,
d=2[-=2 /- = - =119x1073m=119mm
n n

A wire-wound resistor is to be made from 0.2-mm-diameter constantan wire wound around a
cylinder that is | cm in diameter. How many turns of wire are required for a resistance of 50 Q
at 20°C?

The number of turns equals the wire length divided by the circumference of the cylinder. From R =
pl/A and the resistivity of constantan given in Table 2-1, the length of the wire that has a resistance of 50 Qs

_Ra Rnr? _50m(0.1 x 10~ 3?2 B

{ —- — — =321m
P P 49 x 1078

The circumference of the cylinder is 2ar, in which  r = 1072/2 = 0.005 m, the radius of the cylinder. So. the
number of turns is

! 21
— = ———— = 102 turns
2nr  2n(0.005)

A No. 14 AWG standard annealed copper wire is 0.003 23 in? in cross section and has a resistance
of 2.58 mQ/ft at 25°C. What is the resistance of 500 ft of No. 6 AWG wire of the same material
at 25°C? The cross-sectional area of this wire is 0.0206 in?.
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Perhaps the best approach is to calculate the resistance of a 500-ft length of the No. 14 AWG wire,
(2.58 x 1073)1500) = 1.29Q

and then take the ratio of the two R = pl A4 equations. Since the resistivities and lengths are the same, they
divide out. with the result that
R 0.003 23 0.003 23

= : = x 1.29 =0.202Q
1.29  0.0206 0.0206

The conductance of a certain wire 1s 0.5 S. Another wire of the same material and at the same
temperature has a diameter twice as great and a length three times as great. What is the
conductance of the second wire?

The conductance of a wire i1s proportional to the area and inversely proportional to the length. Also,
the area is proportional to the square of the diameter. Therefore the conductance of the second wire is

05
G="

22
- =0.6678

"‘)ix

Find the conductance of 100 ft of No. 14 AWG iron wire, which has a diameter of 64 mils, The
temperature is 20 C.

The conductance formula is G =640, in which o=1p and A= nr({d2)? Of course, the re-
sistivity of iron can be obtained from Table 2-1. Thus,
A 1 S 64 x 1073 jr2)? 1A 00254 p7

G=a = - = - X - - = X - ox - - 2 =0.5548

I 123 x 10 *pr 100 i 12 40 1 gt

The resistance of a certain copper power line is 100 Q at 20 C. What is its resistance when the
sun heats up the line to 38 C?

From Table 2-2 the inferred absolute zero resistance temperature of copper is —234.5 C, which is T,
in the formula R, = R{(T, — T AT, — T,). Also. from the given data. T, =38 C. R, =100 Q, and
T, = 20 C. So, the wire resistance at 38 Cis

T, - T, 38 - (—=2345)

R, = Ro=_ = 27 %100 = 107 Q
T, - T, 20 - (-234.5)

When 120 V is applied across a certain light bulb, a 0.5-A current flows, causing the temperature
of the tungsten filament to increase to 2600 C. What is the resistance of the light bulb at the
normal room temperature of 20 C?

The resistance of the energized light bulb is  120:0.5 = 240 Q. And since from Table 2-2 the inferred
zero resistance temperature for tungsten is — 202 C, the resistance at 20 C is
17, -1, 20 — (-202)

- - - x 240 =19Q
2600 — (—202)

A certain unenergized copper transformer winding has a resistance of 30 Q at 20 C. Under rated
operation, however, the resistance increases to 35 Q. Find the temperature of the energized
winding.

The formula R, = R|(T, — T,) (T} — T;,) solved for T, becomes

RyT, - T,
7, = Rz ol o

1
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From the specified data, R, =35Q.7, =20 C, and R, = 30Q. Also. from Table 2-2, T, = -2345C.
So,

_35[20 — (- 234.5)]
- 30

) —2345=624C

The resistance of a certain aluminum power line is 150 Q at 20°C. Find the line resistance when
the sun heats up the line to 42°C. First use the inferred zero resistance temperature formula and
then the temperature coefficient of resistance formula to show that the two formulas are equivalent.

From Table 2-2 the zero resistance temperature of aluminum is — 236 C. Thus.
T,-T, 42 — (—236)

Ry=-2 "R/ = - °
T, - T, 20 — (—236)

x 150 = 163 Q
From Table 2-3 the temperature coefficient of resistance of aluminum is 0.00391 C ! at 20 C. So.

R, = R,[1 + 2,(Ty — T,)] = 150[1 + 0.00391(42 — 20)] = 163 Q

Find the resistance at 35°C of an aluminum wire that has a length of 200 m and a diameter of  mm.

The wire resistance at 20 C can be found and used in the temperature coefficient of resistance formula.
(Alternatively, the inferred zero resistance temperature formula can be used.) Since the cross-sectional area
of the wire is n(d:2)’, where d =10 "*m, and sincc from Table 2-1 the resistivity of aluminum is
2.83 x 1078 Q'm, the wire resistance at 20 C is

9

L =721Q
n(10° 3 2)?

l
R=p  =(283x10 % x
A
The only other quantity needed to calculate the wire resistance at 35 C is the temperature coefficient of
resistance of aluminum at 20°C. From Table 2-3 it is 0.00391 C !, So,

R, = R,[1 + AT, — T))] = 7.21[1 + 0.003 91(35 — 20)] = 7.63 Q

Derive a formula for calculating the temperature coefficient of resistance from the temperature
T, of a material and T, its inferred zero resistance temperature.

In R,=R,[1+a(T,—T,)] select T,=T,. Then R,=09Q, by definition. The result is 0=
R\t + 2,(T, — T})], from which

Calculate the temperature coefficient of resistance of aluminum at 30 C and use it to find the
resistance of an aluminum wire at 70°C if the wire has a resistance of 40 Q at 30-C.

From Table 2-2, aluminum has an inferred zero resistance temperature of —236 C. With this value

inserted, the formula derived in the solution to Prob. 2.23 gives

1 1
———=_ = =0003759°C"!
T, —-T, 30—(-236)

So Ry = R[1 + 2T, — T,)] = 40[1 + 0.003 75%70 — 30)] = 46 Q

X3¢ =

Find the resistance of an electric heater that absorbs 2400 W when connected to a 120-V line.
From P = V%/R,
Vo120t

=" =60
P 2400
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Find the internal resistance of a 2-kW water heater that draws 8.33 A.
From P = I*R.

P

1?8332

=1288Q

What is the greatest voltage that can be applied across a §-W, 2.7-MQ resistor without causing
it to overheat?
From P = V2R,

P~

V=RP=_127x10°%} = 581 V

If a nonlinear resistor has a voltage-current relation of V= 3I? + 4, what current does it draw
when energized by 61 V? Also, what power does it absorb?

Inserting the applied voltage into the nonlinear equation results in 61 = 3/2 + 4. from which
61 — 4
= [ =436A

P =61 x 436 = 266 W

Then from P = VI,

At 20°C a pn junction silicon diode has a current-voltage relation of I = 107 '¥¢*"Y — 1), What
is the diode voltage when the current 1s 50 mA?
From the given formula,
50 x 107° = 107 3 — 1)
Multiplying both sides by 10’* and adding | to both sides results in
50 x 10% 4 1 = ™Y
Then from the natural logarithm of both sides,

V=,4Ins0x 10" + Hh=073V

What is the resistance range for (a) a 10 percent, 470-Q resistor, and (b) a 20 percent, 2.7-MQ
resistor? (Hint: 10 percent corresponds to 0.1 and 20 percent to 0.2))

() The resistance can be as much as 0.1 x 470 = 47 Q) from the 470-Q nominal value. So. the resistance
can be as small as 470 — 47 =423 Q  or as great as 470 + 47 = 517 Q.

(h) Since the maximum resistance vdariation {rom the nominal value is 0.2(2.7 + 10%) = 0.54 MQ. the
resistance can be as small as 2.7 — 0.54 = 2.16 MQ or as great as 2.7 + 0.54 = 3.24 MQ}.

A voltage of 110 V is across a 5 percent, 20-kQ) resistor. What range must the current be in”
(Hint: 5 percent corresponds to 0.05))
The resistance can be as much as  0.05(20 x 10%) = 10° Q from the nominal value. which means that

the resistance can be as small as 20 — 1 = 19 kQ  oras great as 20 + 1 = 21 kQ. Therefore, the current
can be as small as

10
S =524mA
21 x 103
or as great as
110
L =579mA
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What are the colors of the bands on a 10 percent, 5.6-Q resistor?

Since 5.6 = 56 x 0.1, the resistance has a first digit of 5, a second digit of 6. and a multiplier of 0.1.
From Table 2-4, green corresponds to 5, blue to 6. and gold to 0.1. Also. silver corresponds to the 10 percent
tolerance. So, the color bands and arrangement are green-blue-gold-silver from an end to the middle of the

resistor casing.

Determine the colors of the bands on a 20 percent, 2.7-MQ resistor.

The numerical value of the resistance is 2 700 000, which is a 2 and a 7 followed by five zeros. From
Table 2-4 the corresponding color code is red for the 2, violet for the 7, and green for the five zeros. Also.
there is a missing color band for the 20 percent tolerance. So. the color bands from an end of the resistor
casing to the middle are red-violet-green-missing.

What are the nominal resistance and tolerance of a resistor with color bands in the order of
green-blue-yellow-silver from an end of the resistor casing toward the middle?

From Table 2-4, green corresponds to 5, blue to 6, and yellow to 4. The 5 is the first digit and 6 the
second digit of the resistance value, and 4 is the number of trailing zeros. Consequently. the resistance 1s
560 000 Q or 560 kQ. The silver band designates a 10 percent tolerance.

Find the resistance corresponding to color bands in the order of red-yellow-black-gold.

From Table 2-4. red corresponds to 2, yellow to 4, and black to 0 (no trailing zeros). The fourth band
of gold corresponds to a 5 percent tolerance. So, the resistance is 24 Q with a 5 percent tolerance.

If a 12-V car battery has a 0.04-Q internal resistance, what is the battery terminal voltage when
the battery delivers 40 A?

The battery terminal voltage is the generated voltage minus the voltage drop across the internal
resistance:

V=12—-1R =12 — 40(0.04) = 104 V

If a 12-V car battery has a 0.1-Q internal resistance, what terminal voltage causes a 4-A current
to flow into the positive terminal?

The applied voltage must equal the battery generated voltage plus the voltage drop across the internal
resistance:

V=12+IR=12+40.1)= 124V

If a 10-A current source has a 100-Q internal resistance, what is the current flow from the source
when the terminal voltage is 200 V?
The current flow from the source is the 10 A minus the current flow through the internal resistance:
200

Vv
I=10-—=10-"—-=8A
R 100

Supplementary Problems

What is the resistance of a 240-V clectric clothes dryer that draws 23.3 A?

Ans. 103 Q
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If a voltmeter has 500 kQ of internal resistance, find the current flow through it when it indicates 86 V.

Ans. 172 uA

If an ammeter has 2 mQ of internal resistance, find the voltage across it when it indicates 10 A.

Ans. 20 mV

What is the conductance of a 39-Q resistor?

Ans. 256 mS

What is the conductance of a voltmeter that indicates 150 V when 0.3 mA flows through it?

Ans. 248

Find the resistance at 20 C of an annealed copper bus bar 2 m long and 1 cm by 4 ¢cm in rectangular cross
section.

Ans. 86 uQ

What is the resistance of an annealed copper wire that has a length of 500 m and a diameter of 0.404 mm?

Ans. 671 Q

The resistance of a wire is 25 Q. Another wire of the same material and at the same temperature has a
diameter twice as great and a length six times as great. Find the resistance of the second wire.

Ans. 37.5Q

What is the resistivity of tin if a cube of it 10 cm along cach edge has a resistance of 1.15 uQ across opposite
faces?

Ans. 115 x 1078 Qm

A 40-m length of wire with a diameter of 0.574 mm has a resistance of 75.7 Q at 20 C. What matenal is
the wire made from?

Ans.  Constantan

What is the length of No. 30 AWG (10.0-mil diameter) constantan wire at 20 C required for a 200-Q resistor?
Ans. 207 m

I No. 29 AWG annealed copper wire at 20 C has a resistance of 83.4 Q per 1000 ft, what 1s the resistance
per 100 ft of Nichrome wire of the same size and at the same temperature?

Ans. 485 Q per 100 ft

A wire with a resistance of 5.16 Q has a diameter of 45 mils and a length of 1000 ft. Another wire of the

same material has a resistance of 16.5 Q and a diameter of 17.9 mils. What is the length of this second wire
if both wires are at the same temperature?

Ans. 506 ft

A wirewound resistor is to be made from No. 30 AWG (10.0-mil diameter) constantan wire wound around
a cylinder that is 0.5 cm in diameter. How many turns are required for a resistance of 25 Q at 20 C?

Ans. 165 turns

The conductance of a wire is 2.5 S. Another wire of the same material and at the same temperature has a
diamcter one-fourth as great and a length twice as great. Find the conductance of the second wire,

Ans. 78.1 mS
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Find the conductance of 5 m of Nichrome wire that has a diameter of | mm.

Ans. 157 mS

If an aluminum power line has a resistance of 80 Q at 30°C, what is its resistance when cold air lowers its
temperature to — 10°C?

Ans. 68 Q

If the resistance of a constantan wire is 2 MQ at — 150°C, what is its resistance at 200 C?
Ans.  2.006 MQ

The resistance of an aluminum wire is 2.4 Q at — 5 C. At what temperature will it be 2.8 Q?

Ans. 33.5°C

What is the resistance at 90 C of a carbon rod that has a resistance of 25 Q at 20 C?

Ans. 241 Q)

Find the temperature coefficient of resistance of iron at 20 C if iron has an inferred zero resistance
temperature of —162°C.

Ans.  0.0055°C!
What is the maximum current that a 1-W, 56-k€ resistor can safely conduct?

Ans. 423 mA

What is the maximum voltage that can be safely applied across a }-W. 91-Q resistor?

Ans. 675V

What is the resistance of a 240-V, 5600-W electric heater?
Ans. 103 Q

A nonlinear resistor has a voltage-current relation of ¥ = 272 + 3/ + 10. Find the current drawn by this
resistor when 37 V is applied across it.

Ans. 3 A

I a diode has a current-voltage relation of I = 107 '%¢*™ — 1).  what is the diode voltage when the current
1s 150 mA?

Ans. 0758 V

What is the resistance range for a S percent, 75-kQ resistor?

Ans.  71.25 1o 78.75 kQ

A 12.1-mA current flows through a 10 percent, 2.7-kQ resistor. What range must the resistor voltage be in?

Ans. 294t 359V

What are the resistor color codes for tolerances and nominal resistances of (a) 10 percent, 0.18 Q: (b) 5
percent, 39 kQ; and (c¢) 20 percent, 20 MQ?

Ans.  (a) Brown-gray-silver-silver, (b) orange-white-orange-gold. {¢) red-black-blue-missing

Find the tolerances and nominal resistances corresponding to color codes of (¢) brown-brown-silver-
gold, (b) green-brown-brown-missing, and (c) blue-gray-green-silver.

Ans.  (a) 5 percent, 0.11 Q; (b) 20 percent, 510 Q: (c¢) 10 percent, 6.8 MQ
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A battery provides 6 V on open circuit and it provides 54 V when delivering 6 A. What is the internal
resistance of the battery?

Ans. 0.1 Q
A 3-hp automobile electric starter motor operates at 85 percent efficiency from a 12-V battery. What is the
battery internal resistance if the battery terminal voltage drops to 10 V when energizing the starter motor?

Ans.  7.60 mQ

A short circuit across a current source draws 20 A. When the current source has an open circuit across it.
the terminal voltage is 600 V. Find the internal resistance of the source.

Ans. 30 Q

A short circuit across a current source draws 15 A, If a 10-Q resistor across the source draws 13 A, what 1s

the internal resistance of the source?

Ans. 65 Q



Chapter 3

Series and Parallel DC Circuits

BRANCHES, NODES, LOOPS, MESHES, SERIES- AND PARALLEL-CONNECTED
COMPONENTS

Strictly speaking, a branch of a circuit is a single component such as a resistor or a source.
Occasionally, though, this term is applied to a group of components that carry the same current, especially
when they are of the same type.

A node s a connection point between two or more branches. On a circuit diagram a node is sometimes
indicated by a dot that may be a solder point in the actual circuit. The node also includes all wires
connected to the point. In other words, it includes all points at the same potential. If a short circuit
connects two nodes, these two nodes are equivalent to and in fact are just a single node, even if two
dots are shown.

A loop is any simple closed path in a circuit. A mesh is a loop that does not have a closed path in
its interior. No components are inside a mesh.

Components are connected in series if they carry the same current.

Components are connected in parallel if the same voltage is across them.

KIRCHHOFF’S VOLTAGE LAW AND SERIES DC CIRCUITS

Kirchhoff's voltuge law, abbreviated KVL, has three equivalent versions: At any instant around a
loop, in either a clockwise or counterclockwise direction,

1. The algebraic sum of the voltage drops is zero.
2. The algebraic sum of the voltage rises is zero.
3. The algebraic sum of the voltage drops equals the algebraic sum of the voltage rises.

In all these versions, the word “algebraic” means that the signs of the voltage drops and rises are
included in the additions. Remember that a voltage rise is a negative voltage drop, and that a voltage
drop is a negative voltage rise. For loops with no current sources, the most convenient KVL version is
often the third one, restricted such that the voltage drops are only across resistors and the voltage rises
are only across voltage sources.

In the application of KVL, a loop current is usually referenced clockwise, as shown in the series
circuit of Fig. 3-1, and KVL 1s applied in the direction of the current. (This is a series circuit because
the same current I flows through all components.) The sum of the voltage drops across the resistors,
V, + V, + V3, issetequalto the voltage rise Vs across the voltage source: V| + V, + V; = V. Then the
IR Ohm’s law relations are substituted for the resistor voltages:

Vi=V,+V,+ V,=IR, + IR, + IRy = I(R, + R, + R,) = IR,

from which I =V, /R; and R; =R, + R, + R;. This Ry is the total resistance of the series-
connected resistors. Another term used is equivalent resistance, with symbol R, .

Fig. 3-1

31



32 SERIES AND PARALLEL DC CIRCUITS [CHAP. 3

From this result it should be evident that, in general, the total resistance of series-connected resistors
(series resistors) equals the sum of the individual resistances:

RT2R1+R2+R3+"'

Further, if the resistances are the same (R), and if there are N of them, then R; = NR. Finding the
current in a series circuit is easier using total resistance than applying KVL directly.
If a series circuit has more than one voltage source, then

IRy + R, + Ry + )=V, + Vg, + V5, + -

in which each ¥ term is positive for a voltage rise and is negative for a voltage drop in the direction of 1.
KVL is seldom applied to a loop containing a current source because the voltage across the current
source is not known and there is no formula for it.

VOLTAGE DIVISION

The voltage division or voltage divider rule applies to resistors in series. It gives the voltage across
any resistor in terms of the resistances and the total voltage across the series combination—the step of
finding the resistor current is eliminated. The voltage division formula is easy to find from the circuit
shown in Fig. 3-1. Consider finding the voltage V,. By Ohm’s law, V, =1IR,. Also, I =
Vs/(R, + R, + R;). Eliminating [ results in

In general, for any number of series resistors with a total resistance of R, and with a voltage of V across
the series combination, the voltage ¥y across one of the resistors Ry is

R
V= 2V

R,

This is the formula for the voltage division or divider rule. For this formula, 5 and Vy must have
opposing polarities; that 1s, around a closed path one must be a voltage drop and the other a voltage
rise. If both are rises or both are drops, the formula requires a negative sign. The voltage Vi need not
be that of a source. It is just the total voltage across the series resistors.

KIRCHHOFF’S CURRENT LAW AND PARALLEL DC CIRCUITS

Kirchhoff's current law, abbreviated KCL, has three equivalent versions:
At any instant in a circuit,

1. The algebraic sum of the currents leaving a closed surface is zero.
2. The algebraic sum of the currents entering a closed surface is zero.
3. The algebraic sum of the currents entering a closed surface equals the algebraic sum of those leaving.

The word “algebraic™ means that the signs of the currents are included in the additions. Remember that
a current entering is a negative current leaving, and that a current leaving is a negative current entering.

In almost ali circuit applications, the closed surfaces of interest are those enclosing nodes. So, there
1s little loss of generality in using the word “node” in place of “closed surface™ in each KCL version.
Also, for a node to which no voltage sources are connected the most convenient KCL version is often
the third one, restricted such that the currents entering are from current sources and the currents leaving
are through resistors.
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In the application of KCL, one node is selected as the grownd or reference or dutum node. which is
often indicated by the ground symbol ( <= ). Usually, the node at the bottom of the circuit is the ground
node, as shown in the parallel circuit of Fig. 3-2. (This is a parallel circuit because the same voltage
is across all circuit components.) The voltages on other nodes are almost always referenced positive with
respect to the ground node. At the nongrounded node in the circuit shown in Fig. 3-2, the sum of the
currents leaving through resistors, I, + I, + I, equals the current I, entering this node from the current
source: I, + I, +1; =1I;. The substitution of the I =GV Ohm’s law relations for the resistor
currents results in

Is=1,+1,41,=G,V+G,V+G,V=(G, + G, + G}V = G, V

from which V=1I3/G; and G, =G, +G, + G;=1/R, + I'R, + 1:R;. This G is the rotal con-
ductance of the circuit. Another term used is equivalent conductance, with symbol G.,,.

G

GI GI G

|||—-<| |

Fig. 3-2

From this result it should be evident that, in general, the total conductance of parallel-connected
resistors (parallel resistors) equals the sum of the individual conductances:

Gy =G, +G,+ Gy + -

If the conductances are the same (G), and if there are N of them, then G, = NG and R, =1G, =
1/NG = R/N. Finding the voltage in a parallel circuit is easier using total conductance than applying
KCL directly.

Sometimes working with resistances is preferable to conductances. Then from R, =16, =
10G, + G, + Gy + ),

Rpy=—o— - —
LR, + 1/R, + I/Ry + -+

An important check on calculations with this formula is that R; must always be less than the least

resistance of the parallel resistors.

For the special case of just two parallel resistors,
R. = R _ R(R,
"7 1R, + /R, R, +R,

So, the total or equivalent resistance of two parallel resistors is the product of the resistances divided
by the sum.

The symbol | as in R,[R, indicates the resistance of two parallel resistors: R, R, = R\R,
(R, + R,). It is also sometimes used to indicate that two resistors are in parallel.

If a parallel circuit has more than one current source,

(G + Gy + Gy + - W=lg + 1, + 15+

in which each /g term 1s positive for a source current entering the nongrounded node and is negative
for a source current leaving this node.

KCL is seldom applied to a node to which a voltage source is connected. The reason is that the
current through a voltage source is not known and there is no formula for it.
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CURRENT DIVISION

The current division or current divider rule applies to resistors in parallel. It gives the current through
any resistor in terms of the conductances and the current into the parallel combination -the step of
finding the resistor voltage is eliminated. The current division formula is easy to derive from the circuit
shown in Fig. 3-2. Consider finding the current I,. By Ohm’s law, [, =G,V. Also, V=
141G, + G, + G;). Eliminating V results in

G,

Iy = ——==—="1I
In general, for any number of parallel resistors with a total conductance G and with a current I entering
the parallel combination, the current [, through one of the resistors with conductance Gy is
G
[x = - ’x Is
r

This is the formula for the current division or divider rule. For this formula, I and Iy must be
referenced in the same direction, with I referenced away from the node of the parallel resistors that I
is referenced into. If both currents enter this node, then the formula requires a negative sign. The current
I need not be that of a source. It 1s just the total current entering the parallel resistors.

For the special case of two parallel resistors, the current division formula s usually expressed in
resistances instead of conductances. If the two resistances are R, and R, the current I, in the resistor
with resistance R, 1s

G, IR, R,
G, +G, ° VR, + 1R,

1y $

= IA
R, + R,
In general, as this formula indicates, the current flowing in one of two parallel resistors equals the

resistance of the other resistor divided by the sum of the resistances, all times the current flowing into
the parallel combination.

KILOHM-MILLIAMPERE METHOD

The basic equations V=RI, I =GV, P=VI, P=V?R, and P=1I’R are valid, of
course, for the units of volts (V), amperes (A), ohms (), siemens (S), and watts (W). But they are equally
valid for the units of volts (V), milliamperes {mA), kilohms (kQ), millisiemens (mS), and milliwatts (mW),
the use of which is sometimes referred to as the kilohm-milliampere method. In this book, this second set
will be used almost exclusively in the writing of network equations when the network resistances are in the
kilohm range, because with it the writing of powers of 10 can be avoided.

Solved Problems

31 Determine the number of nodes and branches in the circuit shown in Fig. 3-3.

Dots 1 and 2 are one node, as are dots 3 and 4 and also dots § and 6, all with connecting wires. Dot
7 and the two wires on both sides are another node, as are dot 8 and the two wires on both sides of it. So,
there are five nodes. Each of the shown components 4 through H is a branch —eight branches in all.
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Fig. 3-3 Fig. 3-4

Which components in Fig. 3-3 are in series and which are in parallel?

Components F, G, and H are in series because they carry the same current. Components A and B, being
connected together at both ends, have the same voltage and so are in parallel. The same 1s true for components
C. D, and E- they are in parallel. Further, the parallel group of 4 and B is in series with the parallel group
of C, D, and E, and both groups arc in series with components F. G, and H.

Identify all the loops and all the meshes for the circuit shown in Fig. 3-4. Also, specify which
components are in series and which are in parallel.

There are three loops: one of components 4, E, F, D, and C; a second of components B, H, G, F, and
E; and a third of A, B, H, G, D, and C. The first two loops are also meshes, but the third is not because
components E and F are inside it. Components A4, C, and D are in scries because they carry the same current.
For the same reason, components E and F are in series, as also are components B, H, and G. No components
are in parallel.

Repeat Prob. 3.3 for the circuit shown in Fig. 3-5.

The three loops of components A, B, and C; C, D, and E; and F, D, and B are also meshes -the only
meshes. All other loops are not meshes because components are inside them. Components A, B, D, and E
form one of these other loops: components A4, F, and E another one; components 4, F, D, and C a third:
and components F, E, C, and B a fourth. The circuit has three meshes and seven loops. No components are
in series or in parallel.

What is ¥ across the open circuit in the circuit shown in Fig. 3-6”?
The sum of the voltage drops in a clockwise direction is, starting from the upper left corner,
60-40+V—-10+20=0 from which V=-30V

In the summation, the 40 and 10 V are negative because they are voltage rises in a clockwise direction. The
negative sign in the answer indicates that the actual open-circuit voltage has a polarity opposite the shown
reference polarity.

1 ' -
L |-

60V 40V

20V

< + +

v _
s h{

Fig. 3-6
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Find the unknown voltages in the circuit shown in Fig. 3-7. Find V| first.

The basic KVL approach is to use loops having only one unknown voltage apiece. Such a loop for V,
includes the 10-, 8-, and 9-V components. The sum of the voltage drops in a clockwise direction around
this loop 1s

100-8+9-V, =0 from which Vi=11V
Similarly, for V; the sum of the voltage drops clockwise around the top mesh is
V,+8—-10=0 from which V, =2V
Clockwise around the bottom mesh, the sum of the voltage drops is
-8+9+ 1V, =0 from which Vi= -1V

The negative sign for V; indicates that the polarity of the actual voltage 1s opposite the reference polarity.

A

Fig. 3-7

What is the total resistance of 2-, 5-, 8-, 10-, and 17-Q resistors connected in series?

The total resistance of series resistors is the sum of the individual resistances: R, =2+ 5+ 8 + 10 +
17=42Q.

What is the total resistance of thirty 6-Q resistors connected in series?

The total resistance is the number of resistors times the common resistance of 6 Q: R, = 30 x 6 = 180 Q.

What is the total conductance of 4-, 10-, 16-, 20-, and 24-S resistors connected in series?

The best approach is to convert the conductances to resistances, add the resistances to get the total
resistance, and then invert the total resistance to get the total conductance:

R'l'=i+i1()+lL(v+_216+2L4:0‘5040

and

A string of Christmas tree lights consists of eight 6-W, 15-V bulbs connected in series. What
current flows when the string is plugged into a 120-V outlet, and what is the hot resistance of
each bulb?

The total poweris P, =8 x 6 =48 W. From P, = VI  thecurrentis [ =P,V =48120=04A.
And from P = I2R. the hot resistance of each bulbis R = P-1? = 6;04% = 37.5 Q.
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A 3-V, 300-mA flashlight bulb is to be used as the dial light in a 120-V radio. What is the resistance
of the resistor that should be connected in series with the flashlight bulb to limit the current?

Since 3 V is to be across the flashlight bulb, there will be 120 — 3 = 117V across the series resistor.
The current is the rated 300 mA. Consequently. the resistance is  117-0.3 = 390 Q.

A person wants to move a 20-W FM-AM transistor radio from a junked car with a 6-V battery
to a new car with a 12-V battery. What is the resistance of the resistor that should be connected
in series with the radio to limit the current, and what is its minimum power rating?

From P = VI, the radio requires 20/6 = 3.33 A. The resistor. being in series. has the same current.
Also, it has the same voltage because 12 — 6 =6 V. Asaresult. R =6 333 = 1.8 Q. With the same voltage
and current, the resistor must dissipate the same power as the radio, and so has a 20-W minimum power
rating.

A series circuit consists of a 240-V source and 12-, 20-, and 16-Q resistors. Find the current out
of the positive terminal of the voltage source. Also find the resistor voltages. Assume associated
references, as should always be done when there is no specification of references.

The current is the applied voltage divided by the equivalent resistance:
240
TR2+204+16
Each resistor voltage is this current times the corresponding resistance: }, =5x 12 =60V,

Vip= 5x20=100 V, and V,,=5x16=280 V. As a check. the sum of the resistor voltages is
60 + 100 + 80 = 240 V, the same as the applicd voltage.

A resistor in series with an 8-Q resistor absorbs 100 W when the two are connected across a 60-V
line. Find the unknown resistance R.

The total resistance is 8 + R, and thus the current is 6048 + R). From [’R = P,

60 \?
(-ﬁ~) R = 100 or 3600R = 100(8 + R)?
8+ R

which simplifies to  R? — 20R + 64 = 0. The quadratic formula can be used to find R. Recall that for the

equation ax? + bx + ¢ =0, this formula is
—b+ /b* — 4ac

2a
—(=20) + J(— 207 —4(1X64) 20 + 12
So =702 -‘/—;(-]-)—-’ ZANsd) =, T=16Q0r40

A resistor with a resistance of either 16 or 4 Q will dissipate 100 W when connected in series with an 8-Q
resistor across a 60-V line.

This particular quadratic equation can be factored without using the quadratic formula. By in-
spection, R? —20R + 64 =(R — 16{R —4) =0, from which R=16 Q or R=4Q. the same as
before.

Resistors R,, R,, and R; are in series with a 100-V source. The total voltage drop across R, and
R, 1s 50 V, and that across R, and R; i1s 80 V. Find the three resistances if the total resistance
is 50 Q.

The current is the applied voltage divided by the total resistance: [ = 100 50 = 2 A. Since the voltage
across resistors R, and R, is 50 V, there must be 100 — 50 = 50 V  across R,. By Ohm's law, R; = 50,2 =
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25Q. Resistors R, and R, have 80 V across them, leaving 100 — 80 =20V across R,. Thus, R, =
202 =10Q. The resistance of R, is the total resistance minus the resistances of R, and R;: R, =
SO0-10-25=15Q.

What is the maximum voltage that can be applied across the series combination of a 150-Q, 2-W
resistor and a 100-Q, 1-W resistor without exceeding the power rating of either resistor?

From P =I?R. the maximum safe current for the 150-Q resistoris I = /P/R = _/2/150 = 0.115 A.

That for the 100-Q resistor is \/T/IFO = 0.1 A. The maximum current cannot exceed the lesser of these two
currents and so 1s 0.1 A. For this current, V= IR, + R;) = 0.1{150 + 100} =25 V.

In a series circuit, a current flows from the positive terminal of a 180-V source through two
resistors, one of which has 30 Q of resistance and the other of which has 45 V across it. Find the
current and the unknown resistance.

The 30-Q resistor has 180 — 45 = 135V across it and thus a 135/30 = 4.5-A  current through it.
The other resistance is  45/4.5 = 10 .

Find the current and unknown voltages in the circuit shown in Fig. 3-8.

The total resistance is the sum of the resistances: 10+ 15+ 6 + 8 + 11 = 50 Q. The total voltage rise
from the voltage sources in the direction of Iis 12 — 5 + 8 = 15 V. The current [ is this voltage divided by
the total resistance: 1 =15:50 =03 A. By Ohm's law, 1V, =03 x10=3V. V,=03x15=45V,
by=—-03x6=—-18V, V,=03x8=24V, and V;= -03 x 11 = —3.3V. The equations for V,
and V5 have negative signs because the references for these voltages and the reference for I are not associated.

Find the voltage V,, in the circuit shown in Fig. 3-8.

Vs i1s the voltage drop from node ¢ to node b, which is the sum of the voltage drops across the
components connected between nodes a and b either to the right or to the left of node a. It is convenient
to choose the path to the right because this is the direction of the [ = 0.3-A current found in the solution
of Prob. 3.18. Thus,

Ve =(03 x 15+ 5+ (03 x 6)+ (03 x8) —8=57V
Note that an IR drop is always positive in the direction of 1. A voltage reference, and that of ¥, in particular

here, has no effect on this.

Find I,, I,. and V in the circuit shown in Fig. 3-9.

\'0 _ V. 15Q

a
v T ot
=3V
—e
- =90V
! T 10 Q

Fig. 3-8 Fig. 3-9
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Since the 90-V source is across the 10-Q resistor, I, =90/10 = 9 A. Around the outside loop in a
clockwise direction, the voltage drop across the two resistors is (25 + 15)/, = 40/,. This is equal to the
sum of the voltage rises across the voltage sources in this outside loop:

401, = —30 + 90 from which 1, =60/40=15A

The voltage V is equal to the sum of the drops across the 25-Q resistor and the 30-V source: V=
(1.5 x 25) + 30 = 67.5 V. Notice that the parallel 10-Q resistor does not affect /,. In general, resistors in
parallel with voltage sources that have zero internal resistances (ideal voltage sources) do not affect currents
or voltages elsewhere in a circuit. They do, however, cause an increase in current flow in these voltage sources.

A 90-V source is in series with five resistors having resistances of 4, 5, 6, 7, and 8 Q. Find the
voltage across the 6-Q resistor. (Here “voltage” refers to the positive voltage, as it will in later
problems unless otherwise indicated. The same is true for current.)

By the voltage division formula, the voltage across a resistor in a series circuit equals the resistance of
that resistor times the applied voltage divided by the total resistance. So,

6

= x90=18V
4+54+46+7+8

Ve

Use voltage division to determine the voltages ¥, and V; in the circuit shown in Fig. 3-8.

The total voltage applied across the resistors equals the sum of the voltage rises from the voltage sources,
preferably in a clockwise direction: 12 — 5 + 8 = 15V. The polarity of this net voltage is such that it
produces a clockwise current flow. In this sum the 5V is negative because it is a drop, and rises are being
added. Put another way, the polarity of the 5-V source opposes the polarities of the 12- and 8-V sources.
The V, voltage division formula should have a positive sign because V, is a drop in the clockwise direction—it
opposes the polarity of the net applied voltage:

8 8§
= x15=—x15=24V
10+15+6+8+11 50

Vs

The voltage division formula for V; requires a negative sign because both Vy and the net source voltage
are rises in the clockwise direction:

11
Vi=— - x15= 33V
50

Find the voltage V,, across the open circuit in the circuit shown in Fig. 3-10.

The 10-€Q resistor has zero current flowing through it because it is in series with an open circuit. (Also,
it has zero volts across it.) Consequently, voltage division can be used to obtain V,. The result is

60
v, = x 100 =60V
60 + 40

Then, a summation of voltage drops around the right-hand half of the circuit gives 0—30+ V,, +
10 — 60 = 0. Therefore, V,, =80V,

400 100Q v
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For the circuit of Fig. 3-11, calculate I and the power absorbed by the dependent sounce.

A good first step is to solve for the controlling quantity ¥, in terms of 1. Applying Ohn's law to the
4-Q resistor gives ¥, = 4I. Consequently, in the direction of I, the voltage rise across the dependent seuree
is 4.5(4I1) = 18]. Then by KVL,

4l + 20 — 18] = 24 and so [=24/(—12)= —2A

The negative sign indicates that the 2-A current flows counterclock wise, opposite the reference direction Ior
Since the current and voltage references for the dependent source are not associated. the power abserbad
formula has a negative sign:

= —4.5V,(I) = —4.5@IX]) = — 1812

But I=—-2A, and so P= —18(~2)> = —72 W. The presence of the negative sign means that the
dependent source is supplying power instead of absorbing it.

2Q ]

40
ANNV———N—
[
.T24V

—> 4.5V,
+

Fig. 3-11

In the circuit of Fig. 3-11, determine the resistance “seen™ by the independent voltage souree.

The resistance “seen” by the source is equal to the ratio of the source voltage to the current thin Hews
out of the positive terminal of the source:
24 24
R= = —=-12Q
1 =2
The negative sign of the resistance is a result of the action of the dependent source. 1t indicates that the
remainder of the circuit supplies power to the independent source. Actually, it is the dependent ~cvree dlone
that supplies this power, as well as the power to the two resistors.

Find V, in the circuit of Fig. 3-12.

First observe that no current flows in the single wire connecting the two halves of this circwt ws 1s
evident from enclosing either half in a closed surface. Then only this single wire would cross this suiface.
and since the sum of the currents leaving any closed surface must be zero, the current in this wire must be
zero. From another point of view, there is no return path for a current that would flow in ths wire
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From KVL applied to the left-hand half of the circuit, 16/, + 4V, = 24. And for the right-hand half
of the circuit, Ohm’s law gives

V, = —051,(4) = —2I, or I, = —0.5¥,
Then, substituting for /, in the KVL equation produces
16(—0.5V,) + 4V, =24 and so V,=-6V

Calculate I and V,, in the circuit of Fig. 3-13.

Because of the open circuit between nodes a and b, the middle branch has no effect on the current /.
Consequently, / can be obtained by applying KVL to the outside loop. The total resistance of this loop
is 24+8+5+4+9=24 Q And in the direction of I, the sum of the voltage rises from voltage sources
is 100+20=120V.So, [=120/24 =5A.

From the summing of voltage drops across the right-hand branch, the voltage drop, top to bottom,
across the middle branch is  5(5) — 20 + 5(9) = 50 V. Consequently, V,, = 50 — 30 = 20 V because there
is zero volts across the 10-Q resistor.

8Q 5Q
AN— 'A%

— 0V L
20V

MV
S
i

100

é—:noov aO+ 9Q
‘lr Var

Fig. 3-13

Determine the voltage drop V,, across the open circuit in the circuit of Fig. 3-14.

Because of the open circuit, no current flows in the 9-Q and 13-} resistors and so there is zero volts
across each of them. Also, then, all the 6-A source current flows through the 10-Q resistor and all the 8-A

100 50
+‘\/>/\f_ +'\M_
1 VZ
o—+¢
¢ 6A 8A
+ 40 : : 1naQ
Vs 18Q
VY
- 1310 90
hO aAAY AN~
15V

___.M}__

Fig. 3-14
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source current flows through the 5-Q resistor, making V, = —6(10)= —60V and V, =851 =40V, re-
spectively. So, V,,, the voltage drop from node a to b, is from summing voltage drops,

V=V, +V,+0-1540=—60+40—15= —35V

The 4-, 11-, 9-, 18-, and 13-Q resistors have no effect on this result.

Find the unknown currents in the circuit shown in Fig. 3-15. Find I, first.

The basic KCL approach is to find closed surfaces such that only one unknown current flows across
each surface. In Fig. 3-15, the large dashed loop represents a closed surface drawn such that I, is the only
unknown current flowing across it. Other currents flowing across it are the 10-, 8-, and 9-A currents. I, and
the 9-A currents leave this closed surface, and the 8-A and 10-A currents enter it. By KCL, the sum of the
currents leaving is zero: I, +9 -8 —-10=0, orl, =9 A. [, is readily found from summing the currents
leaving the middle top node: [, —8 —10=0, or /I, =18 A. Similarly. at the right top node. I, + 8 —
9 =0, and I; =1A. Checking at the left topnode: 10—/, — 1, =10—-9 —1=0, as it should be.

] S
10 A “ N 8A
_.,‘/ ’-\ \ :D.I_:E\
’/ NLT oy N
L\
L
\ |
\ /
9 A
<—I—I \ / —
\\'/'
Fig. 3-15

Find [ for the circuit shown in Fig. 3-16.

Since I is the only unknown current flowing across the shown dashed loop. it can be found by setting
to zero the sum of the currents leaving this loop: 7 —16-8-9+3+2 10=0, from which
I=38A.

Find the short-circuit current I, for the circuit shown in Fig. 3-17.

The short circuit places the 100 V of the left-hand voltage source across the 20-Q resistor. and it places
the 200V of the right-hand source across the 25-Q resistor. By Ohm’s law. [, = 10020 =5A and
I, = —200/25 = —8 A. The negative sign occurs in the I, formula because of nonassociated references.

- e e s e ew e - —,

-
7 16 A ~

200 I . 25Q
—

=10V l

Fig. 3-17
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From KCL applied at the top middle node, I, =171, + 1, =5— 8= —3 A, Of course the negative sign in
the answer means that 3 A actually flows up through the short circuit, opposite the direction of the I
current reference arrow.

Calculate V in the circuit of Fig. 3-18.

The short circuit places all 36 V of the voltage source across the 20-kQ resistor. So, by Ohm’s
law, I, = 36/20 = 1.8 mA. (The kilohm-milliampere method was used in finding I,.) Applying KCL to the
top middle node gives

I,=1,+10I, =18 + 10], and therefore I,=-02mA
Finally, by Ohm’s law,
V=-510l)= -5-2)=10V

101,
6V llz 5kQ é v

Fig. 3-18

Find the total conductance and resistance of four parallel resistors having resistances of 1, 0.5,
0.25, and 0.125 Q.

The total conductance is the sum of the individual conductances:
1 i 1 1
Gr=-+—+—+——-=14+2+4+8=158
1 05 025 0.125

The total resistance is the inverse of this total conductance: R; = 1/G; = 1/15 = 0.0667 Q.

Find the total resistance of fifty 200-Q resistors connected in parallel.

The total resistance equals the common resistance divided by the number of resistors: 200/50 = 4 Q.

A resistor is to be connected in parallel with a 10-kQ resistor and a 20-kQ resistor to produce a
total resistance of 12 k€. What is the resistance of the resistor?

Assuming that the added resistor is a conventional resistor, no added parallel resistor will give a total
resistance of 12 k€ because the total resistance of parallel resistors is always less than the least individual
resistance, which is 10 kQ. With transistors, however, it is possible to make a component that has a negative
resistance and that in parallel can cause an increase in total resistance. Generally, however, the term resistor
means a conventional resistor that has only positive resistance.

Three parallel resistors have a total conductance of 1.75 S. If two of the resistances are 1 and 2 Q,
what is the third resistance?

The sum of the individual conductances equals the total conductance:
1+1+G,=175 or G;=175-15=0258

The resistance of the third resistor is the inverse of this conductance: R, =1/G, =1/0.25=4Q.
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Without using conductances, find the total resistance of two parallel resistors having resistances
of Sand 20 Q.

The total resistance equals the product of the individual resistances divided by the sum: R, =
(5 x 20)/(5 + 20) = 100/25 =4 Q.

Repeat Prob. 3.37 for three parallel resistors having resistances of 12, 24, and 32 Q.

One approach is to consider the resistances two at a time. For the 12- and the 24-Q resistances, the
equivalent resistance is

12 x 24 288
="-30
12+24 36

This combined with the 32-€ resistance gives a total resistance of

8 x 32 256
p=—— —=—=640
8+32 40

A 60-W, a 100-W, and a 200-W light bulb are connected in parallel across a 120-V line. Obtain
the equivalent hot resistance of this combination from the individual hot resistances of the bulbs.

From R = V?/P, the individual resistances are 120260 = 2409, 1202100 = 144Q, and
1202/200 = 72 Q. The 72- and 144-Q) resistances have an equivalent resistance of (72 x 144)/(72 + 144) =
48 Q. The equivalent resistance of this and the 240-Q resistance is the total equivalent hot resistance:
(240 x 48)/(240 x 48) = 40 Q. As a check, from the total power of 360 W, R, = V2 P = 120%:360 = 40 Q.

Determine Ry in Ry = (4 + 24)12)16.

It is essential to start evaluating inside the parentheses, and then work out. By definition, the term
241112 = (24 x 12)/(24 + 12) = 8. This adds to the 4: 4 + 8= 12. The expression reduces to 12, 6, which is
(12 x 6)/(12 + 6) = 4. Thus, R; =4Q.

Find the total resistance Ry of the resistor ladder network shown in Fig. 3-19.

To find the equivalent resistance of a ladder network by combining resistances, always start at the end
opposite the input terminals. At this end, the series 4- and 8- resistors have an equivalent resistance of
12 Q. This combines in parallel with the 24-Q resistance: (24 x 12)/(24 + 12) = 8 Q. This adds to the 3 and
the 9Q of the series resistors for a sum of 8 + 3 + 9 =20Q. This combines in parallel with the 5-Q
resistance: (20 x 5)/(20 + 5) = 4 Q. R, is the sum of this resistance and the resistances of the series 16- and
14-Q resistors: R;y=4+16 + 14 =34 Q.

In the circuit shown in Fig. 3-20 find the total resistance R; with terminals ¢ and b (a)
open-circuited, and (b) short-circuited.

16 30 80
o— N W—r— N—p— AN o—
Ry Rt
O—AAA——AAA—S o—

140 90 10Q

Fig. 3-19 Fig. 3-20
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343

3.44

345

{(a) With terminals a and b open, the 40- and 90-Q resistors are in series, as are the 60- and 10-Q
resistors. The two series combinations are in parallel; so
(40 + 9060 + 10)

=—————————"=4550Q
40 + 90 + 60 + 10

T

(b) For terminals a and b short-circuited, the 40- and 60-Q resistors are in parallel, as are the 90- and 10-Q
resistors. The two parallel combinations are in series, making

40x60+90x10_
T 40+60 904+ 10

T

A 90-A current flows into four parallel resistors having resistances of S, 6, 12, and 20 Q. Find the
current in each resistor.

The total resistance is
1

- S ¥ o
1/5 + 176 + 1/12 + 1/20

This value times the current gives the voltage across the parallel combination: 2 x 90 = 180 V. Then by
Ohm’s law, [;=180/5=36A, I,=180/6=30A, [,,=180:12=15A, and [,,=180/20=9A.

Find the voltage and unknown currents in the circuit shown in Fig. 3-21.

I

'V ! n ‘h 1n

190 A 6S 50 A 1% 128 248 60 A 8S

MV

Fig. 3-21

Even though it has several dots, the top line is just a single node because the entire line is at the same
potential. The same is true of the bottom line. Thus, there are just two nodes and one voltage V. The total
conductance of the parallel-connected resistors is G =6+ 12 + 24 + 8 = 50 S. Also, the total current
entering the top node from current sources is 190 — 50 + 60 = 200 A. This conductance and current can be
used in the conductance version of Ohm's law, [ = GV, to obtain the voltage: V=1.G =200:50=4V.
Since this is the voltage across each resistor, the resistor currentsare 1, =6 x4 =24 A, I, = —12x4=
—48 A, I; =24 x4=96A, and I,= —8 x 4= —32A. The negative signs are the result of non-
associated references. Of course, all the actual resistor currents leave the top node.

Note that the parallel current sources have the same effect as a single current source, the current of
which is the algebraic sum of the individual currents from the sources.

Use current division to find the currents I, and I, in the circuit shown in Fig. 3-21.

The sum of the currents from current sources into the top node is 190 — 50 + 60 = 200 A. Also, the
sum of the conductances is 6 + 12 + 24 + 8 = 50 S. By the current division formula,
12 24
I,=——x200=—-48A and Iy =—x200=96A
50 50
The formula for I, has a negative sign because I, has a reference into the top node, and the sum of the
currents from current sources is also into the top node. For a positive sign, one current in the formula must
be into a node and the other current must be out of the same node.
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A 90-A current flows into two parallel resistors having resistances of 12 and 24 Q. Find the current
in the 24-Q resistor.

The current in the 24-Q resistor equals the resistance of the other parallel resistor divided by the sum
of the resistances, all times the input current:
12
Iy=--—--x90=30A
12 + 24
As a check, this current results in a voltage of 30 x 24 = 720V, which is also across the 12-Q resistor.
Thus, 1,,=720/12=60A, and I, +1,, =30+ 60 =90 A, which is the input current.

Calculate V, and V, in the circuit of Fig. 3-22.

A good first step is to solve for the controlling current J in terms of V,: I = V| 5. Thus, the dependent
source current is, in terms of V;, 3(V,;5) = 0.6V, dirccted downward. Then. KCL applied at the top
right-hand node gives

vV, V, .

—+—=+06V,=9 from which V=1V

5 10

The voltage drop across the 12-Q resistor is  9(12) = 108 V. Finally, KVL applied around the outside

loop results in ¥, = 108 + 10 = 118 V. Observe that the 12-Q resistor has no eflect on I, but it does have
an effect on V,.

i
12 = 90V '
AMN—9 4
" b v Sk § 20k
+
v, 9A s 10Q M
|4 40 mA
Fig. 3-22 Fig. 3-23

Calculate I and Vin the circuit of Fig. 3-23.
The source current of 40 mA flows into the parallel resistors. So, by current division,

20
2045

Then by KVL, V= —900 + 32(5) = —740 V. Observe that although the voltage-sourcc voltage has an
effect on the current-source voltage, it has no effect on the resistor current /.

x 40 = 32 mA

Use voltage division twice to find V| in the circuit shown in Fig. 3-24.

Clearly, V, can be found from V, by voltage division. And V, can be found from the source voltage by
voltage division used with the equivalent resistance to the right of the 16-Q resistor. This resistance 1s

(54 + 18X36)
S T 240
54 + 18 + 36
By voltage division,
24 18
= x 80 =48V and Vp=-— - x48=12V
16 + 24 54 +18

A common error in finding V, is to neglect the loading of the resistors to the right of the ¥, node.
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3.50

3.51

352

353

80
—\ NN\
16 0 54 ) 36 A
MV y
+ + :_4 200
b 'A'A s
=80V V.36 0 1802V I 60
—
AN N\—4 q
- - 1I| 50
AN
Fig. 3-24 Fig. 3-25

Use current division twice to find I, in the circuit shown in Fig. 3-25.

Obviously I, can be found from I, by current division. And, if the total resistance of the bottom three
branches is found, current division can be used to find I, from the input current. The needed total resistance is

By the two-resistance form of the current division formula,

x 16 =128 A

8 20
I, = x36=16A and I, =
10+ 8 2045

Supplementary Problems
Determine the number of nodes, branches, loops, and meshes in the circuit shown in Fig. 3-26.
Ans. 6 nodes, 8 branches, 7 loops, 3 meshes
Find V|, V;, and V, for the circuit shown in Fig. 3-26.
Ans. V=26V, V,= =21V, V,=2V

Four resistors in series have a total resistance of 500 Q. If three of the resistors have resistances of 100, 150,
and 200 Q, what is the resistance of the fourth resistor?

Ans. 50Q
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Find the total conductance of 2-, 4-) 8-, and 10-S resistors connected in series.

Ans. 1038

A 60-W, 120-V light bulb is to be connected in series with a resistor across a 277-V line. What is the resistance
and minimum power rating of the resistor required if the light bulb is to operate under rated conditions?

Ans. 314Q, 785W

A series circuit consists of a dc voltage source and 4-, 5-, and 6-Q resistors. If the current is 7 A, find the
source voltage.

Ans. 105V

A 12-V battery with a 0.3-Q internal resistance is to be charged from a 15-V source. If the charging current

should not exceed 2 A, what is the minimum resistance of a scries resistor that will limit the current to this
safe value?

Ans. 120

A resistor in series with a 100-Q resistor absorbs 80 W when the two are connected across a 240-V line.
Find the unknown resistance.

Ans. 20 0or 500Q

A series circuit consists of a 4-V source and 2-, 4-, and 6-Q resistors. What is the minimum power rating of
each resistor if the resistors are available in power ratings of § W, | W, and 2 W?

Ans. P, =31W, P, =1W, P =1W

Find V,, in the circuit shown in Fig. 3-27.

Ans. 20V
10 20 5V
—A\ Vv !
R
WVE Var 0
-Qb
P I T |
Jj— Jifr
40 10V 15V
Fig. 3-27

Use voltage division to find the voltage V, in the circuit shown in Fig. 3-27.

Ans. -8V

A series circuit consists of a 100-V source and 4-, 5-, 6-, 7-, and 8-Q resistors. Use voltage division to
determine the voltage across the 6-Q resistor.

Ans. 20V

Determine [ in the circuit of Fig. 3-28.

Ans. 3 A

Find V across the open circuit in the circuit of Fig. 3-29.

Ans. —45V
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20 60
= AAN/ " AN
=12V v, 20,
Fig. 3-28
AN
IkQ 10kQ Ska
, . I
l W\I W 4 mA +
— B0V 5kQ ( ) ‘ v
T 15V _
- i —0
Fig. 3-29

3.65 Find the indicated unknown currents in the circuits shown in Fig. 3-30.

SA/S
—AAN

ZAl T,‘

AA"A%
/1. \:k

Ans. I, =2A, I,= —6A, I,=—S5A, I,=3A

(a) (b)
Fig. 3-30
3.66 Find the short-circuit current [ in the circuit shown in Fig. 3-31.
Ans. 3 A
20

—ANA
I L

8 A 19 l ¥ v

Fig. 3-31
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T”

2

0.5V, 2
4kQ § v,

Fig. 3-32

Calculate ¥, in the circuit of Fig. 3-32.
Ans. 96V

What are the different resistances that can be obtained with three 4-Q resistors?

Ans. 1.33,2,267,4,6,8, and 12Q

A 100-€2 resistor and another resistor in parallel have an equivalent resistance of 75 Q. What is the resistance
of the other resistor?

Ans. 300Q

Find the equivalent resistance of four parallel resistors having resistances of 2, 4, 6, and 8 .

Ans. 096 Q

Three parallel resistors have a total conductance of 2 mS. If two of the resistances are 1 and § kQQ, what is
the third resistance?

Ans. 125kQ

The equivalent resistance of three parallel resistors is 10 Q. If two of the resistors have resistances of 40 and
60 €, what is the resistance of the third resistor?

Ans. 17.1Q

Determine R; in Ry = (24148 + 24)|10.
Ans. 8Q

Determine Ry in Ry = (6]/12 + 10]|40))i(6 + 2).
Ans. 48Q
Find the total resistance R of the resistor ladder network shown in Fig. 3-33.

Ans. 26.6 kQ

15 k2 6 k2 J k2

4 k0

6 k{1 2k} S k1
Fig. 3-33
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376  Repeat Prob. 3.75 with all resistances doubled.
Ans. 53.2kQ

377  In the circuit shown in Fig. 3-34, find R; with terminals a and b (a) open-circuited, and (b) short-
circuited.

Ans. (a) 18.2Q, (b) 18.1Q

74
o—AA\ A\~
30 80
L 10 Q O .
50 4Q
8 Q1
o—AAN\NV
Fig. 3-34

3.78 A 15-mA current flows into four parallel resistors having resistances of 4, 6, 8, and 12 kQ. Find each resistor
current.

Ans. I,=6mA, I,=4mA, I,=3mA, I,,=2mA

3.79  Repeat Prob. 3.78 with all resistances doubled.

Ans. Same currents

380 Find the unknown currents in the circuit shown in Fig. 3-35.

Ans. I, = —10A, I, = —8A. I,=6A, I,=—2A, I,=12A
lll 240
|
SAd 240 43 A CTBsA §zon
8 Q 24 )
i
"T lh
Fig. 3-35

381 Find R, and R, for the circuit shown in Fig. 3-36.
Ans. R, =20Q, R,=5Q

3.82 In the circuit shown in Fig. 3-36,let R, =6 Q and R, =12 Q. Then use current division to find the
new current in the R, resistor.

Ans. 133 A
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A 60-A current flows into a resistor network described by R, = 40||(12 + 40]j10). Find the current in the
10-Q resistor.

Ans. 32A

A 620-V source connected to a resistor network described by Ry = 50 + R}:20 provides 120 V to the 20-Q
resistor. What is R?

Ans. 30Q

Find I in the circuit shown in Fig. 3-37.

Ans. 4A
120 40 Q) 60
A >
8 Q 48 Q 100

4 b

] 40 Q 55 Q

=240V

60 0 J TV&
Fig. 3-37 Fig. 3-38

In the circuit shown in Fig. 3-38 there is a 120-V, 60-W light bulb. What must be the supply voltage Vs for
the light bulb to operate under rated conditions?

Ans. 285V

In the circuit of Fig. 3-39, calculate [ and also the power absorbed by the dependent source.
Ans. 2 A, 560 W

16 A 14Q 21 70Q

Fig. 3-39

Use voltage division twice to find the voltage V in the circuit shown in Fig. 3-40.

Ans. 36V
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389 In the circuit shown in Fig. 3-41, use current division twice to calculate the current / in the load resistor
R for (R, =00, (R, =5Q,and ()R, =20 Q.

Ans. (a) 16 A, (B)996 A, (c)467 A

8 Q
% A AN~ 5
-
——ﬂl
6 (1 20 Q
L AM—— AN——4
R, I
N
Fig. 341

390  Use repeated current division in finding 7 in the circuit of Fig. 3-42.

Ans. 4 mA

100 kQ
Vv
3KkQ 25kQ
AN 'A'A%
60 kQ
AN
10kQ
= us5v L—AA—te
7] ;] 30kQ
— AN~

Fig. 3-42



Chapter 4

DC Circuit Analysis

CRAMER’S RULE

A knowledge of determinants is necessary for using Cramer’s rule, which is a popular method for
solving the simultaneous equations that occur in the analysis of a circuit. A determinant is a square

arrangement of numbers between two vertical lines, as follows:

ayy Qg2 43
ayy dyy Ay,
a3y 43z 4z,

in which each a is a number. The first and second subscripts indicate the row and column, respectively,
that each number is in.

A determinant with two rows and columns is a second-order determinant. One with three rows and
columns is a third-order determinant, and so on.

Determinants have values. The value of the second-order determinant

is a,,a,;, — a,,4,,, which is the product of the numbers on the principal diagonal minus the product of
the numbers on the other diagonal:

a4 /alz
a3z Ay
For example, the value of
8 -2
6 —4

is 8(—4)—6(—2)=—-32+12=-20.

A convenient method for evaluating a third-order determinant is to repeat the first two columns to
the right of the third column and then take the sum of the products of the numbers on the diagonals
indicated by downward arrows, as follows, and subtract from this the sum of the products of the numbers
on the diagonals indicated by upward arrows. The result is

Qy145,033 + 4(,05303; + A138;,03; — A3,4;413 — 8338538 ~ d3305,4y;

For example, the value of

2 -3 4
6 10 8
7 -5 9

54
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from
2800 —80 —162

6 10

180 —168 =120

is 180 — 168 — 120 — (280 — 80 — 162) = — 146.

Evaluations of higher-order determinants require other methods that will not be considered here.

Before Cramer’s rule can be applied to solve for the unknowns in a set of equations, the equations
must be arranged with the unknowns on one side, say the left, of the equal signs and the knowns on
the right-hand side. The unknowns should have the same order in each equation. For example, I, may
be the first unknown in each equation, I, the second, and so on. Then, by Cramer’s rule, each unknown
is the ratio of two determinants. The denominator determinants are the same, being formed from the
coefficients of the unknowns. Each numerator determinant differs from the denominator determinant in
only one column. For the first unknown, the numerator determinant has a first column that is the
right-hand side of the equations. For the second unknown, the numerator determinant has a second
column that is the right-hand side of the equations, and so on. As an illustration, for

101, — 2I,— 4I,= 32
—2, + 121, = 9, = —43

—41, — 91, + 151, = 13

32 -2 -4 10 32 -4 10 -2 32

—43 12 -9 -2 —43 -9 -2 12 -4
- 13 -9 15 1_—4 1315 P 13
! 10 -2 —4 2 10 -2 —4 3 10 -2 -4
-2 12 -9 -2 12 -9 -2 12 -9

-4 -9 15 -4 -9 15 -4 -9 15

CALCULATOR SOLUTIONS

Although using Cramer’s rule is popular, a much better way to solve the simultaneous equations of
interest here is to use an advanced scientific calculator. No programming is required, the equations are
easy to enter, and solutions can be obtained just by pressing a single key. Typically the equations must
be first placed in matrix form. But no knowledge of matrix algebra is required.

To be placed in matrix form, the equations must be arranged in exactly the same form as for using
Cramer's rule, with the unknowns being in the same order in each equation. Then, three matrices are
formed from these equations. As an illustration, for the following previously considered equations,

101, — 21, — 4l,= 32
2, + 121, — 91, = —43

—4I, — 91, +15I,= 13
the corresponding matrix equation is

10 -2 —471, 327

-2 12 -9f1,|=|-43

-4 -9 151, 13

Incidentally, a matrix comprising a single column is usually referred to as a vector.
The elements of the three-by-three matrix are just the coefficients of the unknowns and are identical
to the elements in the denominator determinant of Cramer’s rule. The adjacent vector has elements that
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are the unknowns being solved for, and the vector on the right-hand side has elements that consist of
the right-hand sides of the original equations.

The elements of the vector on the right-hand side and the elements of the coeflicient matrix are then
entered into a calculator. The exact method of entering the elements depends on the calculator used but
should be simple to do. Typically, the solutions are returned in a vector, and they appear in the same
order as the corresponding quantity symbols in the vector of unknowns.

The calculator method cannot be too strongly recommended. The decrease in errors and the time
saved will quickly compensate the user for the little additional cost that was required to purchase such
a calculator. The calculator should also be capable of solving simultancous equations that have complex,
instead of just real, coefficients, as will be required later for the analysis of sinusoidally excited circuits.

SOURCE TRANSFORMATIONS

Depending on the type of analysis, a circuit with cither no voltage sources or no current sources
may be preferable. Because a circuit may have an undesired type of source. it 1s convenient to be able
to transform voltage sources to equivalent current sources. and current sources to equivalent voltage
sources. For a transformation, each voltage source should have a series internal resistance, and each
current source a parallel internal resistance.

Figure 4-1a shows the transformation from a voltage source to an equivalent current source. and
Fig. 4-1h the transformation from a current source to an equivalent voltage source. This equivalence
applies only to the external circuit connected to these sources. The voltages and currents of this external
circuit will be the same with either source. Internally, the sources are usually nor equivalent.

R R
a <- O a ——Oua a
—_— v R I R —_— =
—_— ) E — IR
L——Ob ——O b : 0 b ‘lr_@b
(a) (b)
Fig. 4-1

As shown, in the transformation of a voltage source to an equivalent current source. the same resistor
is in parallel with the current source, and the source current equals the original source voltage divided
by thc resistance of this resistor. The current source arrow is directed toward the terminal nearest the
positive terminal of the voltage source. In the transformation from a current source to an equivalent voltage
source, the same resistor is in series with the voltage source, and the source voltage equals the original
source current times the resistance of this resistor. The positive terminal of the voltage source is nearest
the terminal toward which the arrow of the current source is directed. This same procedure applies to
the transformations of dependent sources.

MESH ANALYSIS

In mesh analvsis, KVL is applied with mesh currents, which are currents assigned to meshes, and
preferably referenced to flow clockwise, as shown in Fig. 4-2a.

KVL is applied to each mesh, one at a time, using the fact that in the direction of a current [, the
voltage drop across a resistor 1s /R, as shown in Fig. 4-2b. The voltage drops across the resistors taken
in the direction of the mesh currents are set equal to the voltage rises across the voltage sources. As an
tlustration. tn the circuit shown in Fig. 4-2q, around mesh | the drops across resistors R, and R; are
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R, R:

NN~ AVAYAY;
R;
i I
v, = ('\ 2 = R
—A—

M =V, — + —

esh | 1‘ Mesh 2 I IR

(a) (b)
Fig. 42

IR, and (I, — I,)R;, respectively, the latter because the current through R; in the direction of I, is
I, — I,. The total voltage rise from voltage sources is V, —- V4, in which 1 has a negative sign because
it is a voltage drop. So, the mesh equation for mesh 1 is

LR+, —1L)Ry=V, -V or (Ri + Ryl — Ry, =V, ~ 1,

Notice that R, + R, the coefficient of I,, is the sum of the resistances of the resistors in mesh |I.
This sum is called the self-resistance of mesh 1. Also, — Ry, the coeflicient of I,, is the negative of the
resistance of the resistor that is common to or mutual to meshes 1 and 2. R, is called the murual resistance.
In mesh equations, mutual resistance terms always have negative signs because the other mesh currents
always flow through the mutual resistors in directions opposite to those of the principal mesh currents.

It is easier to write mesh equations using self-resistances and mutual resistances than it is to directly
apply KVL. Doing this for mesh 2 results in

—R;I, + (R, + Ryl =V, -V,

In a mesh equation, the voltage for a voltage source has a positive sign if the voltage source aids
the flow of the principal mesh current -- that is, if this current flows out of the positive terminal  because
this aiding is equivalent to a voltage rise. Otherwise, a source voltage has a negative sign.

For mesh analysis, the transformation of all current sources to voltage sources is usually preferable
because there is no formula for the voltages across current sources. If, however, a current source is
positioned at the exterior of a circuit such that only one mesh current flows through it, that current
source can remain because the mesh current through it is known it is the source current or the negative
of it, depending on direction. KVL is not applied to this mesh.

The number of mesh equations equals the number of meshes minus the number of current sources,
if there are any.

LOOP ANALYSIS

Loop analysis is similar to mesh analysis, the principal difference being that the current paths selected
are loops that are not necessarily meshes. Also, there is no convention on the direction of loop currents:
they can be clockwise or counterclockwise. As a result, mutual terms can be positive when KVL is
applied to the loops.

For loop analysis, no current source need be transformed to a voltage source. But each current
source should have only one loop current flowing through it so that the loop current is known. Also,
then KVL is not applied to this loop because the current source voltage is unknown.

Obviously, the loops for the loop currents must be selected such that every component has at least
one loop current flowing through it. The number of these loops equals the number of meshes if the
circuit is planar- -that is, if the circuit can be drawn on a flat surface with no wires crossing. In general.
the number of loop currents required is B — N + 1, where B is the number of branches and N is the
number of nodes.



38 DC CIRCUIT ANALYSIS [CHAP. 4

If the current through only one component is desired, the loops should be selected such that only
one loop current flows through this component. Then, only one current has to be solved for. In contrast,
for mesh analysis, finding the current through an interior component requires solving for two mesh
currents.

NODAL ANALYSIS

For nodal analysis, preferably all voltage sources are transformed to current sources and all
resistances are converted to conductances. KCL is applied to all nodes but the ground node, which is
often indicated by a ground symbol at the bottom node of the circuit, as shown in Fig. 4-3a. As mentioned
in Chap. 3, almost always the bottom node is selected as the ground node even though any node can
be. Conventionally, voltages on all other nodes are referenced positive with respect to the ground node. As
a consequence, showing node voltage polarity signs is not necessary.

I
v, '\/V\: 21 V2
G le
] Cf) G G L s
v G
: T _

(a) )
Fig. 4-3

In nodal analysis, KCL is applied to each nongrounded node, one at a time, using the fact that in
the direction of a voltage drop V, the current in a resistor is GV, as shown in Fig. 4-3b. The currents
leaving a node through resistors are set equal to the currents entering the node from current sources.
As an illustration, in the circuit shown in Fig. 4-3a, the current flowing down through the resistor with
conductance G, is G, V,. The current to the right through the resistor with conductance G, is G,(V, — V,).
This current is equal to the conductance times the voltage at the node at which the current enters the
resistor minus the voltage at the node at which the current leaves the resistor. The quantity (V, — V,) is,
of course, just the resistor voltage referenced positive at the node at which the current enters the resistor
and negative at the node at which the current leaves the resistor, as is required for associated references.
The current entering node 1 from current sources is I, — [, in which /; has a negative sign because it
1s actually leaving node 1. So, the nodal equation for node 1 is

GV, +G(V, - Vy))=1 -1, or (G, + GV, — GV, =1, — I

Notice that the V| coefficient of G, + G, is the sum of the conductances of the resistors connected
to node 1. This sum is called the self-conductance of node 1. The coefficient of V; is — G, the negative
of the conductance of the resistor connected between nodes 1 and 2. G, is called the mutual conductance
of nodes 1 and 2. Mutual conductance terms always have negative signs because all nongrounded node
voltages have the same reference polarity —all are positive.

It is easier to write nodal equations using self-conductances and mutual conductances than it is to
directly apply KCL. Doing this for node 2 results in

_G]Vl +(Gz +Gs)V2=12 +13

The transformation of all voltage sources to current sources is not absolutely essential for nodal
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analysis, but is usually preferable for the shortcut approach with self-conductances and mutual
conductances. The problem with voltage sources is that there is no formula for the currents flowing
through them. Nodal analysis, though, is fairly easy to use with circuits having grounded voltage sources,
each of which has a terminal connected to ground. Such voltage sources give known voltages at their
nongrounded terminal nodes, making it unnecessary to apply KCL at these nodes. Other voltage
sources—floating voltage sources—can be transformed to current sources.

The number of nodal equations equals the number of nongrounded nodes minus the number of
grounded voltage sources.

DEPENDENT SOURCES AND CIRCUIT ANALYSIS

Mesh, loop, and nodal analyses are about the same for circuits having dependent sources as for
circuits having only independent sources. Usually, though, there are a few more equations. Also, positive
terms may appear in the circuit equations where only negative mutual resistance or conductance terms
appear for circuits having no dependent sources. Almost always, a good first step in the analysis of a
circuit containing dependent sources is to solve for the dependent source controlling quantities in terms
of the mesh or loop currents or node voltages being solved for.

Solved Problems

4.1 Evaluate the following determinants:
=2

I PR

-5 6
e

(a) The product of the numbers on the principal diagonal is 1 x 4 =4, and for the numbers on the
other diagonal is —2 x 3 = —6. The value of the determinant is the first product minus the second
product: 4 — (—6) = 10.

(b) Similarly, the value of the second determinant is —5(—8) — 7(6) = 40 — 42 = —2.

42  Evaluate the following determinant:

8§ -9 4
3 -2 1
6 5 —4

One method of evaluation is to repeat the first two columns to the right of the third column and then
find the products of the numbers on the diagonals, as indicated:

—48 40 108

The value of the determinant is the sum of the products for the downward-pointing arrows minus
the sum of the products for the upward-pointing arrows:

(64 — 54 + 60) — (—48 + 40 + 108) = — 30
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4.3 Use Cramer’s rule to solve for the unknowns in
5V, + 41, = 31
—4V, + 8V, =20

Il

The first unknown }, equals the ratio of two determinants. The denominator determinant has elements
that are the coeflicients of ¥, and V. The numerator determinant differs only in having the first column

replaced by the right-hand sides of the equations:

3oa
:1 20 x‘: 3R — 2004 ;1(»8:“
LS 4l s — (= S6
48

The denominator determinant for 1, has the same value of 56, In the numerator determinant
the second column. instead of the first. is replaced by the right-hand sides of the equations:
‘ S 31
—4 20 §20) — (=431 224
V, = ‘ - = =4V
56 56 56

4.4 Use Cramer’s rule to solve for the unknowns in
or — 21, — 4i, 10
=21, + 121, — 6l,=—-34
—41, — 61, + 141, 40

I

Il

All three unknowns have the same denominator determinuant of cocetticients. which evaluates to

192 360 56

1680 —48 —48
1680 — 48 — 48 — (192 + 360 + 56) = 976

In the numerator determinants, the right-hand sides of the equations replace the first column
for 1,. the second column for 7,. and the third column for 1;:

0 - 4 00 -4
312 6 BT VR
1 S B L R 14! 976
te 976 T 976 T 976 T o976
10 =2 10 ]
T T Tt
_4 —6 40| 2938
I, = T A
976 976

45  Transform the voltage sources shown in Fig. 4-4 to current sources.

{a) The current of the equivalent current source equals the voltage of the original voltage source divided
by the resistance: 21 3 = 7 A The current direction is toward node ¢ because the positive terminal
of the voltage source is toward that node. The parallel resistor is the same 3-Q resistor of the
original voltage source. The equivalent current source is shown in Fig. 4-5q.
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—ANN—0a ——" "N \\—0a a
- 1
NVE oy = 81,
Y —  Ob - 0b h
{a) (b) (c)
Fig, 4-4
~0 a -9 -0 a
7A 3N SA 80
: -Ob . —Ob
(@) (b)
—0 a
4, 20
O b
()
Fig. 4-5

(b} The current of the current source is

40.8 = S A. It is directed toward node b because the positive

terminal of the voltage source is toward that node. The parallel resistor is the same 8-Q resistor of the

voltage source. Figure 4-5b shows the equivalent current source.

() The current of the current sourceis 87,2 = 41,,

with a direction toward node ¢ because the positive

terminal of the voltage source is toward that node. The parallel resistor is the same 2-Q resistor of the

voltage source. Figure 4-5¢ shows the equivalent current source.

4.6  Transform the current sources shown in Fig. 4-6 to voltage sources.

~O a —O a
5A 41 6 A 5Q
¢ O b 2 O b
(a) {b)
! 3 —O
3, 60Q
—& —O0 b
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(a) The voltage of the equivalent voltage source equals the current of the original current source times
the resistance: 5 x 4 =20 V. The positive terminal is toward node a because the direction of the
current of the original current source is toward that node. Of course, the source resistance remains 4 Q,
but is in series instead of in parallel. Figure 4-7a shows the equivalent voltage source.

(b) The voltage is 6 x 5= 30V, positive toward node b because the direction of the current of the
original current source is toward that node. The source resistance is the same 5 Q, but is in series. The
equivalent voltage source is shown in Fig. 4-7b.

() The voltage is 31, x 6 = 18I, positive toward node a because the direction of the current of the

current source is toward that node. The source resistance is the same 6 Q but is in series. The equivalent
voltage source is shown in Fig. 4-7c.

4Q 5q
A AAY: —O0a AN\ Oa
=V = 30V
.]- ob ob
(a) b)
60
aQ
181,
b
(©)
Fig. 4-7

Find the currents down through the resistors in the circuit shown in Fig. 4-8. Then transform
the current source and 2-{ resistor to an equivalent voltage source and again find the resistor
currents. Compare results.

By current division, the current down through the 2-Q resistor is

_& x 16=12A

2+6
The remainder of the source current (16 — 12 =4 A) flows down through the 6-Q resistor.

Transformation of the current source produces a voltage source of 16 x 2 =32V in series with a 2-Q

resistor, all in series with the 6-Q resistor, as shown in the circuit of Fig. 4-9. In this circuit, the same
current 32/(2+ 6) =4 A flows through both resistors, The 6-Q resistor current is the same as for the
original circuit, but the 2-Q resistor current is different. This result illustrates the fact that although a
transformed source produces the same voltages and currents in the circuit exterior to the source, the voltages
and currents inside the source usually change.

PR

16 A 20 60 TSZV 60

Fig. 4-8 Fig. 4-9
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48

49

For the circuit of Fig. 4-10, use repeated source transformations to obtain a single mesh circuit,
and then find the current /.

Fig. 4-10 Fig. 4-11

The first step is to transform the voltage source and series resistor into a current source and parallel
resistor. The resistance does not change, but the source current is 37.5/5 =7.5A directed upward. The
5-Q resistor from the source transformation is in parallel with the 20-Q resistor. Consequently, the combined
resistance is (5 x 20)/(5 + 20) = 4 Q. The next step is to transform the 7.5-A current source and the parallel
4-Q) resistor into a series voltage source and resistor. The resistance remains the same, and the voltage of
the voltage source is 4(7.5) = 30 V, positive upward, as shown in the circuit of Fig. 4-11, which is a single
mesh circuit.

The KVL equation for this circuit is 312+ 9/ — 30 =0, from which the current / can be obtained

by applying the quadratic formula:
[ = -9+ /9% —43)-30)
- 203)

The solutionsare IT=2A and I = —5A.Onlythe I=2A isphysically possible. The current must
be positive since in the circuit of Fig. 4-11 there is only one source, and current must flow out of the positive
terminal of this source.

Find the mesh currents in the circuit shown in Fig. 4-12.

The self-resistance of mesh 1is 5+ 6 = 11 Q, and the resistance mutual with mesh 2 is 6 Q. The sum
of the source voltage rises in the direction of I, is 62 — 16 =46 V. So, the mesh 1 KVL equation
is 11, —6I, =46

No KVL equation is needed for mesh 2 because /, is the only current flowing through the 4-A current
source, with the result that I, = —4 A. The current I, is negative because its reference direction is down
through the current source, but the 4-A source current actually flows up. Incidentally, a KVL equation
cannot be written for mesh 2 without introducing a variable for the voltage across the current source because
this voltage is unknown.

The substitution of I, = —4 A into the mesh 1 equation results in
22
111, — 6(—4) = 46 and I = 1 =2A
16V
‘[—'\N\« [ — y
L
— 62V 60 4A
2

Fig. 4-12
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4.10  Determine the mesh currents in the circuit shown in Fig. 4-13.

IZQ

= q0v % =uyv
S o

Fig. 4-13

The self-resistance of mesh 1is 6 + 4 = 10Q, the mutual resistance with mesh 2 is 4 {2, and the sum
of the source voltage rises in the direction of I, is 40 — 12 =28 V. So, the mesh 1 KVL equation is
101, — 41, = 28.

Similarly, for mesh 2 the self-resistance 1s 4 4+ 12 = 16 Q, the mutual resistance is 4 Q. and the sum
of the voltage rises from voltage sourcesis 24 + 12 = 36 V. These give a mesh 2 KVL equation of —4/, +
161, = 36.

i Placing the two mesh equations together shows the symmetry of coefficients (here —4) about
the principal diagonal as a result of the common mutual resistance:

101, — 4f, =28
—al, + 161, = 36

A good way to solve these two equations is to add four times the first equation to the second equation 1o
eliminate {,. The result is

148
401, — 41, = 112 + 36 from which ll——3€=4.llA
This substituted into the second equation gives
52.44
—44.11) + 161, = 36 and 12:‘7176—7:3.28/\

4.11  Obtain the mesh currents in the circuit of Fig. 4-14.

8Q 2Q

P

-J LI L

Fig. 4-14

A good first step is to solve for the controlling quantity V, in terms of the mesh current I,.
Clearly, V, =41,. and consequently the voltage of the dependent sourceis 0.5V, = 0.5(41,) = 2/,. Then,
the application of KVL to the meshes gives

(8 + 6), — 61, — 21, = ~120
120 ~ 60

It

and 6+ 2+ i, — 61,
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4.12

In matrix form, these simplify to

14 871, —120
—6 1245, | e0
1
In the matrix of coefficients. the lack of symmetry about the principal diagonal is the result of the action

of the dependent source. The solutions can be obtained by wsing Cramer’s rule or, preferably, by using a
calculator. The mesh currents are J, = =8 A and [, =1 A

Find the mesh currents in the circuit shown in Fig. 4-15.

40 60 4Q 60
A +—AAA
50
A h I Lo I, A
=15V 50 13 A =uv =15iyv =y
| 3 2 I 1 —T'(’SV >
Fig. 4-15 Fig. 4-16

One analysis approach is to transform the 13-A current source and parallel 5-Q resistor into a voltage
source, as shown in the circuit of Fig. 4-16.

The self-resistance of mesh 1is 4+ 5=9Q. and that of mesh 245 6 + 5 =11 Q. The mutual
resistance is 5 Q. The voltage rises from sourcesare 75 — 65 = 10V formeshland 65 - 13=52V for
mesh 2. The corresponding mesh equations are

91, — 51, =10
-5+ 11, =152
Muluplying the first equation by 5 and the second by 9 and then adding them eliminates I:
. S8
— 251, + 997, = 50 + 468 from which 1, = 24 =T7A
This substituted into the first equation produces
10 + 35
91, — 5(7) = 10 or I = =5A

9

From the original ctreuit shown in Fig. 4-15, the current through the current sourcets 1, — 1, = 13 A,
and so
I,=1, —13=7—13= —6A

Another approach is to use the so-called supermesh method. which 1s applicable when a circuit
contains internal current sources. Mesh currents are used. but for cach internal current source. KVL is
applied to the loop that would be a mesh if the current source were removed. For the circuit of Fig. 4-185.
this loop (supermesh) comprises the 5-Q and 6-Q resistors and the 13-V source. The KVL equation
is S5(Iy —1,)+ 61, = —13. This, with the mesh 1 equation of 97, — 51, =75, comprises two equations
with three unknowns. The required third equation can be obtained by applying KCL to either node of the
current source, or, more simply. by noting that the current up through the current source in terms of mesh
currents is /, — I;. This current must, of course, be equal to the 13 A of the source. So. the two KVL
equations are augmented with the single KCL equation [T, — Iy = 13, In matrix form these equations are

-5 6 5|, ~13
9 0 -sfin|=] 7
0 1 -1, 13

The solutions are the same as obtained before: I, =SA. I, =7A. and I,=—-6A
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In general, for the supermesh approach, the KVL equations must be augmented with KCL equations,
the number of which is equal to the number of internal current sources.

4.13 Find the mesh currents in the circuit shown in Fig. 4-17.

30 s 51V 70
ANN— AN All‘ﬁ 4 ANV
av = : 0 . o . l av
| . I
] V= 2 V= 3
T )|
Fig. 4-17

The self-resistances are 3+4=7Q for mesh I, 4+54+6=15Q for mesh 2, and 6+ 7 =
13Q for mesh 3. The mutual resistances are 4 Q for meshes 1 and 2, 6 Q for meshes 2 and 3, and 0 Q for
meshes 1 and 3. The aiding source voltages are 42+ 25=67V for mesh 1. —-25-57-70=
—152V formesh 2, and 70 + 4 =74V for mesh 3. So, the mesh equations arc
= 67
= —152
74

I

Notice the indicated symmetry of the mutual coefficients about the principal diagonal, shown as a dashed
line. Because of the common mutual resistances, this symmetry always occurs -unless a circuit has dependent
sources. Also, notice for each mesh that the self-resistance is equal to or greater than the sum of the mutual
resistances because the self-resistance includes the mutual resistances.

By Cramer's rule,

67 -4 0] | 7 67 0
152 15 —6] 4 152 —6
74 —6 13| 4s2s 0 74 13| —7240
[ A L L. o L=t R TR0 e
7 —4 0| 905 905 905
—4 15 —6
0 —6 13
7 _4 67
_4 15 152
0 -6 74| 1810
= — " 9
905 905

4.14 Find the mesh currents in the circuit shown in Fig. 4-18.

The self-resistancesare 3 +4 + 5=12Q formeshl, 5+6+7=18Q formesh2 and 6+ 4 +
8 = 18Q for mesh 3. The mutual resistances are 5 Q for meshes 1 and 2, 6 Q for meshes 2 and 3. and 4 Q for
meshes 1 and 3. The aiding source voltages are 150 — 100 — 74 = ~24V for mesh 1. 74 + 15 + 23 =

112V for mesh 2, and 100 — 191 — 15 = — 106 V for mesh 3. So, the mesh equations arc
121, — SI,— 4l,= -24
—S5I, + 181, — 6I,= 112
—4], — 6I,+ 181, = —106

For a check, notice the symmetry of the coefficients about the principal diagonal.
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191V

8§ 0
hit

aQ 100 V 60 1SV

AN it % AAA——1 }-—%
30
I,

150V = 1 4V = 2 T

[

Fig. 4-18
By Cramer’s rule,
-24 -5 -4 12 -24 -4
112 18 -6 -5 112 -6
—106 -6 18 —4956 -4 —106 18{ 9912
11 = = —2A 12 = = — =
12 -5 -4 2478 2478 2478
-5 18 -6
-4 -6 I8
12 -5 -2
-5 18 112
; -4 -6 —106| —12390
: 2478 Co2478

4.15 Use mesh analysis in determining the power absorbed by the dependent voltage source in the
circuit of Fig. 4-19.
In terms of mesh currents, the dependent source controlling quantity [, is [ =1, —I,. So, the

dependent source provides a voltage of 20/, = 20{(/, — I,). In writing mesh equations for a circuit that
has dependent sources, a good approach is to temporarily ignore the dependent sources, write the mesh

130 ‘J“V
ANV hi-
1
201,

11Q
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cquations using the self- and mutual-resistance approach, and then add the dependent source expressions
to the pertinent equations. The result of doing that here is

700, — 351, — 151, + 2001, — I,) = 10 + 16
— 351, + 641, — 181, =7 — 16 — 20
— 151, — 181, + 461, — 20(I, — 1,) = 20 — 14

which simplify to

90 —55 —15| 1, 26
35 64 —18|1,|=|—-29
35 2 461, 6

The solutions are T, =0.148 A, [, = —03A, and I;=0256A. Finally, the power absorbed by the
dependent source is equal to the source voltage times the current flow into the positive-referenced
terminal:

P =200, — I,NI, — I,) = 20{0.148 + 0.3)(0.148 — 0.256) = — 0.968 W

4.16 Use mesh analysis in finding V; in the circuit of Fig. 4.20.

4.17

5Q

10Q 40Q |

—_— 0V

As always for a circuit containing dependent sources, a good first step is to solve for the dependent
source controlling quantities in terms of the quantities being solved for, which are mesh currents here.
Obviously. [, =1,—1, and V,=35I,. So. the dependent current source provides a current of
1.5, = 1.5(1, — I,) and the dependent voltage source provides a voltage of 6V, = 6(5/,) = 301,.

The KVL equation for mesh | is (10 + 40)/, — 401, + 301; = 20. Preferably, KVL should not be
applied to meshes 2 and 3 because of the dependent current source that is in these meshes. But a good
approach to use is the supermesh method presented in Prob. 4.12. Applying KVL to the mesh obtained by
deleting this current source gives the equation  —30/, + 401, — I) + 51, + 51; = 0. The necessary third
independent equation. 1.5(/, — I;) =1, — I,, isobtained by applying KCL at a terminal of the dependent
current source. These three equations simplify to, in matrix form,

50 —40 301, 20
—40 a5 25l 1= o
15 —05 —tf1, 0

Then Cramer's rule or, preferably, a calculator can be used to obtain the current [, = 0.792 A. Finally,
Vo = 51y = 5(0.792) = 396 V.

Use loop analysis to find the current flowing to the night through the 5-kQ resistor in the circuit
shown in Fig. 4-21.

Three loop currents are required because the circuit has three meshes. Only one loop current should
flow through the 5-kQ2 resistor so that only one current needs to be solved for. The paths for the two other
loop currents can be selected as shown, but there are other suitable paths.
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1 kQ2

Fig. 4-21

As has been mentioned, since working with kilohms is inconvenient, 4 common practice is to drop
those units- to divide each resistance by 1000. But then the current answers will be in milhamperes. With
this approach, and from self-resistances. mutual resistances. and aiding source voltages. the loop equations are

1851, — 131, + 1351, = 0
—13, + 161, — 151, =26
1350, — 151, + 195, = 0

Notice the symmetry of the I coefficients about the principal diagonal. just as for mesh equations. But there
1s the difference that some of these cocflicients arc positive. This is the result of two loop currents flowing
through a mutual resistor in the same direction something that cannot happen in mesh analysis if all mesh
currents are selected in the clockwise direction, as is conventional.

From Cramer’s rule,

0 —13 135

2% 16 —15

0 —15 1951 1326
185 —13 13.5|: 663
—13 16 15
135 —15 19.5'

=2mA

4.18 Use loop analysis to find the current down through the 8-Q resistor in the circuit shown in Fig,
4-22.

Because the circuit has three meshes. the analysis requires three loop currents. The loops can be selected
as shown, with only one current I, flowing through the 8-Q resistor so that only one current needs to be

ba [See

BV = =6V

Fig. 4-22



70

4.19

4.20

DC CIRCUIT ANALYSIS [CHAP. 4

solved for. Also, only one loop current should flow through the 7-A source so that this loop current is
known, making it unnecessary to apply KVL to the corresponding loop. There are other ways of selecting
the loop current paths to satisfy these conditions.

The self-resistance of the first loop is 6 + 8 = 14Q, and the resistance mutual with the second
loop is 6 Q. The 7-A current flowing through the 6-Q resistor produces a 42-V drop in the first
loop. The resulting loop equation is

141, + 61, +42 =8 or 141, + 61, = —34

The 6 coefficient of I, is positive because I, flows through the 6-Q resistor in the same direction
as l,.

For the second loop, the self-resistance is 6 + 10 = 16 Q, of which 6 Q is mutual with the first loop.
The second loop equation is

6/, +16/,+42=8+6 or 6f, + 161, = 28
The two loop equations together are
141, + 61, = —34
6I, + 161, = —28

Multiplying the first equation by 8 and the second by —3 and then adding them eliminates I,:

188
1120, — 18], = —272 + 84 from which I,=—-—-=-2A
! ! 94

Two 12-V batteries are being charged (rom a 16-V generator. The internal resistances are 0.5 and
0.8 Q for the batteries and 2 Q for the generator. Find the currents flowing into the positive
battery terminals.

The arrangement is basically parallel, with just two nodes. If the voltage at the positive node with
respect to the negative node is called V, the current flowing away from the positive node through the sources is

V—-12 V-12 V-16

—_— =0

0.5 08 2

Multiplying by 4 produces

188
8V —96+ 5V —60+2V—-32=0 or 1SV = 188 and V= s =12533V

Consequently, the current into the 12-V battery with 0.5-Q internal resistance is (12.533 — 12)/0.5 = 1.07
A, and the current into the other 12-V battery is  (12.533 — 12)/0.8 = 0.667 A.

Determine the node voltages in the circuit shown in Fig. 4-23,
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4.21

4.22

Using self-conductances and mutual conductances is almost always best for getting the nodal equations.
The self-conductance of node 1 is 5+ 8 =13S, and the mutual conductance is 8 S. The sum of the
currents from current sources into this node is 36 + 48 =84 A. So, the node | KCL equation is
13V, — 8V, = 84.

No KCL equation is needed for node 2 because a grounded voltage source is connected to it, making
V, = —5V. Anyway, a KCL equation cannot be written for this node without introducing a variable for
the current through the 5-V source because this current is unknown.

The substitution of ¥, = —5V into the node 1 equation results in

44
13V, —8(-5)=84 and V,=— =338V

13
Find the node voltages in the circuit shown in Fig. 4-24.

15 A

Vil JV\/\: 21{ V,
6S

57 A 45 8S %A
ne
Fig. 4-24

The self-conductance of node 1is 6 + 4 = 10 S. The conductance mutual with node 2 is 6 S, and the
sum of the currents into node | from current sources is 57 — 15 = 42 A. So. the node 1| KCL equation is
10V, — 6V, = 42.

Similarly, for node 2 the self-conductanceis 6 + 8 = (4§, the mutual conductance is 6 S, and the sum
of the input currents from current sources is 39 + 15 = 54 A, These give a node 2 KCL equation of
-6V, + 14V, = 54.

Placing the two nodal equations together shows the symmetry of the coefficients (— 6 here) about the
principal diagonal as a result of the same mutual conductance coefficient in both equations:

10V, — 6V, =42
—6V, + 14V, = 54

Three times the first equation added to five times the second eliminates V,. The result is

396
—18V¥, + 70V, = 126 + 270 from which v, = % =762V
This substituted into the first equation gives
87.7
10V, — 6(7.62) = 42 and W= ST 877V

Use nodal analysis in finding / in the circuit of Fig. 4-25.

The controlling quantity I in terms of node voltages is [ = V,/6. Consequently, the dependent current
source provides a current of 0.5/ = 0.5(V,/6) = V,/12, and the dependent voltage source provides a voltage
of 12 = 12(V,/6) = 2V,.
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| ) )ik
\—_7 121
<T> ns 120 b A 6Q
150

Fig. 4-25

Because of the presence of the dependent sources. it may be best to apply KCL at nodes |
and 2 on a branch-to-branch basis instcad of attempting to use a shortcut method. Doing this gives

L I I R L
T+ o+ = -6 and + T+ =6
12 12 6 6 6 18
These simplify to
R TN | ER ) and B P S T
Adding these equations climinates 1y and resultsin 21, =36 or 1, = 18 V. Finally.
b, I8
I= "= =13A
6 6

Find the node voltages in the circuit shown in Fig. 4-26.

Fig. 4-26 Fig. 4-27

One analysis approach is to transform the voltage source and series resistor to a current source and
parallel resistor, as shown in the circuit of Fig. 4-27.

The self-conductance of node 1is 4+ 5=9S. and that of node 2is S+ 6 =11 S. The mutual
conductance i1s 5 S. The sum of the currents into node | from current sources is 75 - 65 = 10 A, and
that into node 2 is 65 — 13 = 52 A, Thus. the corresponding nodal equations are

91, — 515 =10
—SE, 4+ 111, = 52

Except for V's instead of I's, these are the same equations as for Prob. 4.12. Conscquently, the answers are
the same: V, =5V and V, =7 V. Circuits having such similar equations are called duals.

From the original circuit shown in Fig. 4-26. the 13-V source makes 1y 13V more negative than
Vo Vy=V,—13=7—13=—6V.
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4.24

4.25

Another approach is to apply the so-called supernode method, which is applicable for the nodal analyses
of circuits that contain floating voltage sources. (A voltage source is floating if neither terminal i1s connected
to ground.) For this method, each floating voltage source is enclosed in a separate loop, or closed surface,
as shown in Fig. 4-26 for the 13-V source. Then KCL is applied to each closed surface as well as to the
nongrounded nodes to which no other voltage sources are connected.

For the circuit of Fig. 4-26, KCL can be applied to node 1 in the usual fashion. The result
is 9V, — 5V, = 75. For a supernode, it is best not to use any shortcuts but instead to consider each branch
current. For the supernode shown this gives 6V, + 5(V; — ;) = —13. Another independent equation is
needed. It can be obtained from the voltage drop across the floating voltage source:  V, — V; = 13. So, the
two KCL equations are augmented with a single KVL equation. In matrix form these equations are

9 0 -5V 75
-5 6 S{{v, =] —13
01 —1{IW 13
The solutions are, of course. the same: V, =5V, V, =7V, and V,=—-6V.

In general, for the supernode approach, the KCL equations must be augmented with KVL equations,
the number of which is equal to the number of floating voltage sources.

Use nodal analysis to obtain the node voltages V, and V; in the circuit of Fig. 4-28.

50
A
e | 400 1, ,
L 2
—A\V >
l v, v,
T 20V 6V2¢ éw, 50
Fig. 4-28

The controlling current I, expressed in terms of node voltagesis I, = (V, — 6F,) 40. So, the dependent
current source provides a current of 1.5, = 1.5(V, — 6V,)/40. Applying KCL to nodes | and 2 produces

V=20 V, -V v, =6V, vV, -V, 1.5(V, — 6V, V.
T R R C and Y2 1 ( 1 2_) s 2-0
10 5 40 5 40 5

These simplify to
13V, — 14V, = 80 and =95V, + 25V, =0

which have solutions of ¥; =104V and V, =396V, as can easily be obtained.

The circuit of Fig. 4-28 is the same as that of Fig. 4-20 of Prob. 4.16 in which mesh analysis
was used. Observe that nodal analysis is casier to apply than mesh analysis since there is one less equation
and the equations are easier to obtain. Often, but not always, one analysis method is best. The ability to
select the best analysis method comes mostly from experience. The first step should always be to check the
number of required equations for the various analysis methods: mesh, loop. and nodal.

Obtain the nodal equations for the circuit shown in Fig. 4-29.

The self-conductances are 3 +4=7S fornode !, 4+5+6=15S fornode 2 and 6+ 7=
13S for node 3. The mutual conductances are 4 S for nodes 1 and 2. 6 S for nodes 2 and 3. and 0S for
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42 A

Fig. 4-29

nodes 1 and 3. The currents flowing into the nodes from current sources are 42 + 25 = 67 A for node 1,
—25-57-70= —152A fornode2 and 70+ 4 =74A for node 3. So. the nodal ecquations are
WV, — 4V, — OV, = 67
—4V, + 15V, — 6V, = —152
oV, — 6V, + 131, 74

Notice the symmetry of coefficients about the principal diagonal. This symmetry always occurs for circuits
that do not have dependent sources.

Since this set of equations is the same as that for Prob. 4.13, except for having Vs instead of
I's, the answers are the same: V, =5V, V,= -8V, and V,=2V.

Obtain the nodal equations for the circuit shown in Fig. 4-30.

4s

[0 ]

5§ 6S
\7 VZ Vi
150 A 3S 74 A 78 23A 15A 8S 191 A

H

Fig. 4-30

The self-conductances are 3 +4 +5=12S fornodel, 5+6+7=18S fornode 2. and 6 +
4+ 8 =185 for node 3. The mutual conductances are 5S for nodes 1 and 2. 6 S for nodes 2 and 3, and
4 S for nodes 1 and 3. The currents into the nodes from current sources are 150 — 100 — 74 = —24 A for
node I, 74 +15+23=112A for node 2. and 100 — 19! —- 15 = —106 A for node 3. So. the nodal

equations are
12V, — SV, - 4V, = —24
—5V, + 18V, — 6V, 112
—4V, — 6V, + 18V, = — 106

I

I

As a check, notice the symmetry of the coefficients about the principal diagonal.
Since these equations are basically the samc as those in Prob. 4.14, the answers are the same:
Vi=-2V, V,=4V, and Vy,=-5V.
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4.27 Figure 4-31 shows a transistor with a bias circuit. If /. =50/ andif Vg =07V, find V.

4.28

4.29

4.30

3kO

700

Perhaps the best way to find V. is to first find I and I, and from them the voltage drops across the
1.5-kQ2 and 250-Q resistors. Then, use KVL on the right-hand mesh and obtain V.; from 9 V minus these
two drops.

I can be found from the two left-hand meshes. The current through the 250-Q resistor is I + Iz =
501 + Iz = 511y, giving a voltage drep of (S11,)250). This drop added to Vg, is the drop across the 700-Q
resistor. Thus, the current through this resistor is [0.7 + (5115K250)],700. From KCL applied at the
left-hand node, this current plus I is the total current flowing through the 3-kQ resistor. The voltage drop
across this resistor added to the drop across the 700-€2 resistor equals 9 V. as is evident from the outside loop:

0.7 + (511gK250)
700
From this, Iz =753 puA.So, I.=350lg=2376 mA and
Veg =9 — 15000 — 250(1- + Ig) =239V

+ 1,,](3000) + 0.7 + (517,4250) = 9

Supplementary Problems

Evaluate the following determinants:

@ ] 4 3| ) 8§ -30
a
-2 -6 42 56
Ans. (a) —18, (b) 1708
Evaluate the following determinants:
16 0 -25 =27 33 45
(@ [—-32 15 —-19 b)) | —-52 64 —73
13 21 —18 18 —-92 46
Ans. (a) 23739, (b) —26022
Use Cramer’s rule to solve for the unknowns in
@ 26V, — 18V, = —124 w16 12= 560
~18V, + 30V, = 156 —121, + 211, = — 708

Ans. @V, = -2V, V, =4V, ()l =17A I,= —24 A
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431  Without using Cramer's rule or the matrix-calculator approach, solve for the unknowns in
441, — 281, = — 704 62V, — 421, = 694

(a) h . .
—281, + 37, = 659 421, + 771, = 161

Ans. (@1, = —=9A. 1, =11A; (MF, =20V, ¥, =13V

432  Use Cramer's rule to solve for the unknowns in

261, — 111, — 91, = —166
11V, + 45K, — 23, = 1963
— 91, — 231, + 561, = — 2568

Ans. Vy= 11V, }, =21V, ¥, = -39V
4.33  What is the current-source equivalent of a 12-V battery with a 0.5-Q internal resistance?
Auws. IT=24A R=05Q

434  What is the voltage-source equivalent of a 3-A current source 1n parallel with a 2-kQ resistor?

Ans. V=6kV, R=2kQ

4.35  Use repeated source transformations in obtaining [ in the circuit of Fig. 4-32.

Ans. 2A

ERY 1A 64 V=210

Fig. 4-32

436  Find the mesh currents in the aircuit shown in Fig, 4-33.
Ans. I, =3A, I,=-8A 1,=T7A
4.37  Solve for the mesh currents in the circuit shown in Fig. 4-34.

Ans. I, =5mA, I,= -2mA

4 k{}

I
20V =
T BV 1
Bl

Fig. 4-33 Fig. 4-34

4V

i
1

—>
20
>
[

()
T\

Q 2kQ 7k}
% — AN\
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4.38  Repeat Prob. 4.37 with the 24-V source changed to —1 V.
Ans. 1, =TmA, I, =1mA

439  Two 12-V batteries in parallel provide current to a light bulb that has a hot resistance of 0.5 Q. If the battery
internal resistances are 0.1 and 0.2 Q, find the power consumed by the light bulb.

Ans. 224 W

440 Determine [ in the circuit of Fig. 4-35.
Ans. —486 mA

Fig. 4-35

441  Calculate the mesh currents in the circuit of Fig. 4-36.

Ans. 1, =2mA, I,= —3mA, I, =4mA
2kQ 3kQ
AN *+ * VWY
uv= 4k D TmAa J_;_.xv
F -
Fig. 4-36
442 Find the mesh currents in the circuit shown in Fig. 4-37.
Ans. I, = -2mA, I,=6mA, I,=4mA
10 k(2 a8V
ANV —iji—
LD
4kt 8 k2
‘L—_-‘VV\I NN—
1 ) 6 kQ L 1
100 V ? = 1nyv
=176 V
2k0 T ' j
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4.4

4.45

4.46

4.47

448

4.49
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Double the voltages of the voltage sources in the circuit shown in Fig. 4-37 and redetermine the mesh
currents. Compare them with the original mesh currents.

Ans. I, = —4mA, I,=12mA, I,=8mA. double

Double the resistances of the resistors in the circuit shown in Fig. 4-37 and redetermine the mesh currents.
Compare them with the original mesh currents.

Ans. I, = —1mA, I,=3mA, I;=2mA, half
Repeat Prob. 442 with the three voltage-source changes of 176 to 108 V. 112 to 110 V, and 48 to 66 V.
Ans. 1, =3mA, I,=4mA, I,=5mA

For a certain three-mesh circuit, the self-resistances are 20, 25, and 32 Q for meshes 1, 2, and 3, respectively.
The mutual resistances are 10 Q for meshes | and 2, 12 Q for meshes 2 and 3. and 6 Q for meshes | and 3.
The aiding voltages from voltage sources are —74, 227, and —234 V for meshes 1, 2. and 3. respectively.

Find the mesh currents.
Ans. [, = -3A, I,=5A I;=-6A

Repeat Prob. 4.46 for the same self-resistances and mutual resistances. but for aiding source voltages of
146, —273, and 182 V for meshes 1, 2, and 3, respectively.

Ans. 1, =5A, 1I,=-TA [I;=4A
Obtain the mesh currents in the circuit of Fig. 4-38.
Ans. I, = -0879mA, [,=-634mA, I,=-101mA

4kQ 60V
AN\ —|i|-
2 kQ RIVAY 1kQ 40V
——AAW—])| — |

8 kQ 7kQ
I:
1rgov 2y, irxov

Fig. 4-38

Determine the mesh currents in the circuit of Fig. 4-39.

Ans. I, = -326mA, I,=—199mA, [,=182mA

mh'A'AY
J
.
a, I u)uzgzl;

5kQ $kQ 1,

10V =
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4.52

453

4.54
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Use loop analysis to find the current flowing down through the 6-Q resistor in the circuit shown in Fig. 4-33.

Ans. 11 A

Use loop analysis to find the current flowing to the right through the 8-kQ resistor in the circuit shown in
Fig. 4-37.

Ans. 2mA

Use loop analysis to find the current [ in the circuit shown in Fig. 4-40.

0375 A

Ans.

Vv, 6S v 8S Vi
_7[8 v 28 40 A 7v T
ne
Fig. 4-40 Fig. 4-41

Obtain the node voltages in the circuit shown in Fig. 4-41.

Ans. Vy= -8V, V,=3V, V,=7V

Find the node voltages in the circuit shown in Fig. 4-42.

Ans. V, =5V, V,= -2V

20 A

T )
Fig. 4-42

Double the currents from the current sources in the circuit shown in Fig. 4-42 and redetermine the node
voltages. Compare them with the original node voltages.

Ans. V; =10V, V,=—4V. double

Double the conductances of the resistors in the circuit shown in Fig. 4-42 and redetermine the node voltages.
Compare them with the original node voltages.
Ans.

V,=25V. V= —LV. half
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457  Repeat Prob. 4.54 with the 24-A source changed to —1 A,
Ans. V=7V, V,=1V

458 Find V, for the circuit shown in Fig. 4-43.

Ans. =50V
2 k0 1,
AAAY ,
+
0.3 V'_J——: 0.004V, 251 40 kQ 10 kﬂg v,
Fig. 4-43
50 1 10 02
ANN—— AN
+
-
sovE 200 3T 25V
Fig. 4-44

459 Find V in the circuit shown in Fig. 4-44.
Ans. 180V

4.60 Calculate the node voltages in the circuit of Fig. 4-45.
Ans. V,= —63.5V. V, =1059V

20kQ
MV
12 mA
by v,
o (__,) i
i
10 kQ 0.81
§ 30 k2

Fig. 4-45

4.61  Find the voltages V,, V;, and V; in the circuit shown in Fig. 4-46.
Ans. V, =5V, V,= -2V, V, =13V
4.62  Find the node voltages in the circuit shown in Fig. 4-47.

Ans. V= =2V, V,=6V, V; =4V
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SV 108 ny
v 8 g A
1 I
8S
2A 48 128 24 A
Vi
108 48 A

4.64

4.65

4.66

4.67

¥a gzs

Repeat Prob. 4.62 with the three current-source changes of 176 to 108 AL 112 to 110 AL and 48 to 66 A.

Fig. 4-47

Ans. V=3V, 1, =4V, 1, =5V

For a certain four-node circuit, including a ground node. the self-conductances are 40. 50, and 64 S for
nodes 1, 2, and 3. respectively. The mutual conductances are 20°S for nodes 1 and 2. 24 S for nodes 2 and
3.and 128 for nodes 1 and 3. Currents flowing in current sources connected to these nodes are 74 A away

from node 1. 227 A into node 2. and 234 A away from node 3. Find the node voltages.

Ans. By = 1SV, 1, =25V, 1, = -3V

Repeat Prob. 4.64 for the same self-conductances and mutual conductances. but for source currents of 292 A
into node . 546 A away from node 2, and 364 A into node 3.

Ans. Vi=5V. V.= -7V, by =4V
In the circuit shown in Fig. 4-48 find 1., if /.= 30l, and 1}, =0.7V.

Ans. 368V

Fig. 4-48

Repeat Prob. 4.66 with the de voltage source changed to 9V and the collector resistor changed from 2 kQ
to 2.5kQ.

Ans. 289V



Chapter 5

DC Equivalent Circuits,
Network Theorems,
and Bridge Circuits

INTRODUCTION

Network theorems are often important aids for network analyses. Some theorems apply only to
linear, bilateral circuits, or portions of them. A linear electric circuit is constructed of linear electric
elements as well as of independent sources. A linear electric element has an excitation-response relation
such that doubling the excitation doubles the response, tripling the excitation triples the response, and
so on. A bilateral circuit is constructed of bilateral elements as well as of independent sources. A bilateral
element operates the same upon reversal of the excitation, except that the response also reverses. Resistors
are both linear and bilateral if they have voltage-current relations that obey Ohm’s law. On the other
hand, a diode, which is a common electronic component, is neither linear nor bilateral.

Some theorems require deactivation of independent sources. The term deactivation refers to replacing
all independent sources by their internal resistances. In other words, all ideal voltage sources are replaced
by short circuits, and all ideal current sources by open circuits. Internal resistances are not affected, nor
are dependent sources. Dependent sources are never deactivated in the application of any theorem.

THEVENIN’S AND NORTON’S THEOREMS

Thévenin's and Norton’s theorems are probably the most important network theorems. For the
application of either of them, a network is divided into two parts, 4 and B, as shown in Fig. 5-1q, with
two joining wires. One part must be linear and bilateral, but the other part can be anything.

a Rm a
O] _L “NN—O-
A B Vn-—.'L B
s —
(a) (b)
Fig. 5-1

Thévenin’s theorem specifies that the linear, bilateral part, say part A, can be replaced by a
Thévenin equivalent circuit consisting of a voltage source and a resistor in series, as shown in Fig.
5-1b, without any changes in voltages or currents in part B. The voltage V4, of the voltage source is
called the Thévenin voltage, and the resistance Ry, of the resistor is called the Thévenin resistance.

As should be apparent from Fig. 5-1b, V4, is the voltage across terminals a and b if part B is replaced
by an open circuit. So, if the wires are cut at terminals ¢ and b in either circuit shown in Fig. 5-1, and
if a voltmeter is connected to measure the voltage across these terminals, the voltmeter reading is V.
This voltage is almost always different from the voltage across terminals a and b with part B connected.
The Thévenin or open-circuit voltage Vy, is sometimes designated by V.

With the joining wires cut, as shown in Fig. 5-2a, Ry, is the resistance of part A with all independent
sources deactivated. In other words, if all independent sources in part 4 are replaced by their internal
resistances, an ohmmeter connected to terminals a and b reads Thévenin’s resistance.

82
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a l‘
b———0a
1 A +
- Ry, ¥y
Independent sources Independent sources
deactivated ob deactivated
h
(a) (b)

Fig. 5-2

If in Fig. 5-2a the resistors in part A are in a parallel-series configuration, then Ry, can be obtained
readily by combining resistances. If, however, part 4 contains dependent sources (remember, they are
nor deactivated), then, of course, resistance combination is not applicable. But in this case the approach
shown in Fig. 5-2b can be used. An independent source is applied, cither voltage or current and of any
value, and Ry, obtained from the resistance “seen” by this source. Mathematically,

R = I
So, if a source of voltage V; is apphed, then I is calculated for this ratio. And if a source of current
I, is applied, then V| is calculated. The preferred source. if any. depends on the configuration of part 4.

Thévenin's theorem guarantees only that the voltages and currents in part B do not change when
part A is replaced by its Thévenin equivalent circuit. The voltages and currents in the Theévenin
circuit itself are almost always different from those in the original part A, except at terminals @ and b
where they are the same. of course.

Although Ry, 1s often determined by finding the resistance at terminals a and b with the connecting
wires cut and the independent sources deactivated, it can also be found from the current I that flows
in a short circurt placed across terminals ¢ and b, as shown in Fig. 5-3a. As is apparent from Fig. 5-3b,
this short-circuit current from terminal ¢ to b is related to the Thévenin voltage and resistance.
Specifically.

7/

RTh=*'

sC

So, Ry, is equal to the ratio of the open-circuit voltage at terminals ¢ and b and the short-circuit
current between them. With this approach to determining Ry,. no sources are deactivated.

a R a

A VSC L l[sc

=Vnm

(a) (b)
Fig. 5-3

From Vg, = I5Rq,, 1t is evident that the Thévenin equivalent can be obtained by determining
any two of the quantities V. I, and Ry,. Common sense dictates that the two used should be the
two that are the eastest to determine.

The Norton cquiralent circuit can be derived by applying a source transformation to the Thévenin
equivalent circuit, as illustrated in Fig. 5-4a. The Norton equivalent circuit is sometimes tllustrated as
in Fig. 5-4b, in which I, = V;, Ry, and Ry = Ry,. Notice that, if a short circuit is placed across
terminals ¢ and b in the circuit shown in Fig. 5-4b, the short-circuit current I from terminal a to b is
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Ren
I—M—C“ —Oa 04d
Vin = — X—TT: R In Rn
L_ob : —20b 3 ©ob
(a) (b)

Fig. 5-4

equal to the Norton current [. Often in circuit diagrams, the notation I 1s used for the source current
instead of I. Also. often Ry, is used for the resistance instead of R,.

In electronic circuit literature, an electronic circuit with a load is often described as having an ourput
resistance R, If the load is disconnected and if the source at the input of the electronic circuit is replaced
by its internal resistance, then the output resistance R, of the electronic circuit is the resistance “looking
in” at the load terminals. Clearly, it is the same as the Thévenin resistance.

An electronic circuit also has an input resistance R,,, which is the resistance that appears at the
input of the circuit. In other words, it 1s the resistance “seen™ by the source. Since an clectronic circuit
typically contains the equivalent of dependent sources, the input resistance is determined in the same
way that a Thévenin resistance is often obtained by applying a source and determining the ratio
of the source voltage to the source current.

MAXIMUM POWER TRANSFER THEOREM

The maximum power transfer theorem specifies that a resistive load receives maximum power from
a linear, bilateral dc circuit if the load resistance equals the Thévenin resistance of the circuit as
“seen” by the load. The proof is based on calculus. Selecting the load resistance to be equal to the circuit
Thévenin resistance 1s called matching the resistances. With matching, the load voltage is Vy, 2. and
so the power consumed by the load is  (Vy, 2)° Ry, = Vin 4Ry,

SUPERPOSITION THEOREM

The superposition theorem specifies that, in a linear circuit containing several independent sources,
the current or voltage of a circuit element equals the alyebraic sum of the component voltages or currents
produced by the independent sources acting alone. Put another way, the voltage or current contribution
from each independent source can be found separately, and then all the contributions algebraically added
to obtain the actual voltage or current with all independent sources in the circuit.

This theorem applies only to independent sources not to dependent ones. Also. it applies only to
finding voltages and currents. In particular, it cannot be used to find power in dc circuits. Additionally,
the theorem applies to each independent source acting alone, which means that the other independent
sources must be deactivated. In practice, though, it is not essential that the independent sources be
considered one at a time; any number can be considered simultaneously.

Because applying the superposition theorem requires several analyses, more work may be done than
with a single mesh, loop, or nodal analysis with all sources present. So, using the superposition theorem
tn a dc analysis is seldom advantageous. It can be useful, though. in the analyses of some of the
operational-amplifier circuits of the next chapter.

MILLMAN’S THEOREM

Millman’s theorem is a method for reducing a circuit by combining parallel voltage sources into a
single voltage source. It is just a special case of the application of Thévenin's theorem.
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- - Oa . . . . ~ —0a
R, R: R: ,
G)GIVI G = R, G:V, G = % GV, G = Ri:
T T T
* +> b : ¢ . 3 Ob
(a) (b)
Oa
P
7 G +G:+ G
AN —oa
} Javi+ Gvi+ G, G+ G: + G _[_ ‘
Ly, = GV, + G:V: + GiV,
_‘[ G+ G: + G
—0b —o0 b
(c) (d)
Fig. 5-§

Figure 5-5 illustrates the theorem for only three parallel voltage sources. but the theorem apphes
to any number of such sources. The derivation of Millman’s theorem is simple. If the voltage sources
shown in Fig. 5-S¢ are transformed to current sources (Fig. 5-5h) and the currents added. and if the
conductances are added. the result 1s a single current source of G}, + G, V5 + G, 1 in parallel with a
resistor having a conductance of G, + G, + G, (Fig. 5-5¢). Then. the transformation of this current
source 1o a voltage source gives the final result indicated in Fig. 5-5d. In general. for N parallel voltage
sources the Millman voltage source has a voltage of

GVy+ Goba o+ Gyl
M= . . .
G, + G, + -+ Gy
and the Millman series resistor has a resistance of
1

Ry= . - .
G, +(_11 + -+ Gy

Note from the voltage source formula that. if all the sources have the same voltage, this voltage is
also the Millman source voltage.

Y-A AND A-Y TRANSFORMATIONS

Figure 5-6¢ shows a Y (wye) resistor circuit and Fig. 5-6h a A (delta) resistor circuit. There are other
names. If the Y circuit is drawn in the shape of a T, it is also called a T (tce) circuit. And if the A circuit
is drawn in the shape of a T1, it 1s also called a IT (p1) circuit.

A

(a) {h)
Fig. 5-6
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It is possible to transform a Y to an equivalent A and also a A to an equivalent Y. The corresponding
circuits are equivalent only for voltages and currents exzernal to the Y and A circuits. Internally, the
voltages and currents are different.

Transformation formulas can be found from equating resistances between two linestoa Aanda Y
when the third line to each is open. This equating i1s done three times, with a different line open each
time. Some algebraic manipulation of the results produces the following A-to-Y transformation formulas:

RlR2 R2R3 R1R3

AT R, + R, + R, R, + R, + R, R, + R, + R,

Also produced are the following Y-to-A transformation formulas:
R,Rg+ R, R + RzR, _ RuRg+ R, R¢ + RgR, _ R4Rp + RyRc+ RgR,

R, =—A=BT "a7c T ThC R R, =
! R, 2 R, 3 R,

Notice in the A-to-Y transformation formulas that the denominators are the same: R, + R, +
R,, the sum of the A resistances. In the Y-to-A transformation formulas, the numerators are the
same: R, Ry + R,R-+ RzRc, the sum of the different products of the Y resistances taken two at a
time.

Drawing the Y inside the A, as in Fig. 5-7, 1s a good aid for remembering the numerators of the
A-to-Y transformation formulas and the denominators of the Y-to-A transformation formulas. For each
Y resistor in the A-to-Y transformation formulas, the two resistances in each numerator product are
those of the two A resistors adjacent to the Y resistor being found. In the Y-to-A transformation formulas,
the single Y resistance in each denominator is that of the Y resistor opposite the A resistor being found.

If it happens that each Y resistor has the same value Ry, then each resistance of the corresponding
A is 3Ry, as the formulas give. And if each A resistance is R,, then each resistance of the corresponding
Y is R,/3. So, in this special but fairly common case, R, = 3R, and, of course, Ry = R,/3.

BRIDGE CIRCUITS

As illustrated in Fig. 5-8a, a bridge resistor circuit has two joined A’s or, depending on the point of
view, two joined Y's with a shared branch. Although the circuit usually appears in this form, the forms
shown in Fig. 5-8b and ¢ are also common. The circuit illustrated in Fig. 5-8¢ is often called a lattice.
If a A part of a bridge is transformed to a Y, or a Y part transformed to a A, the circuit becomes
series-parallel. Then the resistances can be easily combined, and the circuit reduced.

A bridge circuit can be used for precision resistance measurements. A Wheatstone bridge has a center
branch that is a sensitive current indicator such as a galvanometer, as shown in Fig. 5-9. Three of the
other branches are precision resistors, one of which is variable as indicated. The fourth branch is the
resistor with the unknown resistance Ry that is to be measured.
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O— .
R| RZ
R:
Rs
Rs
R; R,
R.
o— o—+ AYAYAY:
(b) (c)
Fig. 5-8

-

Fig. 59

For a resistance measurement, the resistance R, of the variable resistor is adjusted until the
galvanometer needle does not deflect when the switch in the center branch is closed. This lack of deflection
is the result of zero voltage across the galvanometer, and this means that, even with the switch open,
the voltage across R, equals that across R,, and the voltage across R, equals that across Ry. In this
condition the bridge is said to be balanced. By voltage division,

R,V R,V d R,V R,V
e AR A an e . A
R, +R; R, + Ry R, +R; R, + Ry
Taking the ratio of the two equations produces the bridge balance equation:
R,R
R, = 27
R,

Presumably, R, and R; are known standard resistances and a dial connected to R, gives this resistance
so that R, can be solved for. Of course, a commercial Wheatstone bridge has dials that directly indicate
Ry upon balance.

A good way to remember the bridge balance equation is to equate products of the resistances of
opposite branch arms: R,;R, = R,R;. Another way is to equate the ratio of the top and bottom
resistances of one side to that of the other: R,/R; = R,/Ry.

Solved Problems

5.1 A car battery has an open-circuit terminal voltage of 12.6 V. The terminal voltage drops to
10.8 V when the battery supplies 240 A to a starter motor. What is the Thévenin equivalent circuit
for this battery?
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The Thévenin voltage is the 12.6-V open-circuit voltage (V;, = 12.6 V). The voltage drop when
the battery supplies 240 A is the same drop that would occur across the Thévenin resistor in the
Thévenin equivalent circuit because this resistor is in series with the Thévenin voltage source. From
this drop,

126 — 10.8

—_ =75mQ
240

™ =

Find the Thévenin equivalent circuit for a dc power supply that has a 30-V terminal voltage
when delivering 400 mA and a 27-V terminal voltage when delivering 600 mA.

For the Thévenin equivalent circuit, the terminal voltage is the Thévenin voltage minus the drop
across the Thévenin resistor. Consequently, from the two specified conditions of operation,

Ve, — (400 x 107 *)Rq,, = 30
Vip — (600 x 107 3Ry, =27
Subtracting,
—(400 x 107 3Ry, + (600 x 10™ %Ry, = 30 — 27

=150

from which Ry, =
200 x 107

This value of Ry, substituted into the first equation gives

Vi — (400 x 107 3)(15) = 30 or Vip = 36V

Find the Thévenin equivalent circuit for a battery box containing four batteries with their
positive terminals connected together and their negative terminals connected together. The
open-circuit voltages and internal resistances of the batteries are 12.2V and 0.5 Q, 12.1 V and
010,124V and 0.16Q, and 124V and 0.2 Q.

The first step is to transform cach voltage source 1o a current source. The result is four ideal current
sources and four resistors, all in parallel. The next step is to add the currents from the current sources and
also to add the conductances of the resistors, the effect of which is to combine the current sources into a
single current source and the resistors into a single resistor. The final step is to transform this source and
resistor to a voltage source in series with a resistor to obtain the Thévenin equivalent circuit.

The currents of the equivalent sources are

12.2 12.1 12.4 124

—— =244A —=121A —=775A — =62A
0.5 0.1 0.16 0.2

which add to
244 + 121 + 775+ 62 =2849 A

The conductances add to

1 1 1 1
s - 4 = 23258
05 01 016 02
From this current and conductance, the Thévenin voltage and resistance are
284.9

1
=——=123V and Ryy=—==0043Q
2325

I
V= —
™G 2325

Find the Norton equivalent circuit for the power supply of Prob. 5.2 if the terminal voltage is
28 V instead of 27 V when the power supply delivers 600 mA.
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5.5

For the Norton equivalent circuit, the load current is the Norton current minus the loss of current
through the Norton resistor. Consequently, from the two specified conditions of operation,

30 4
Iy — — =400 x 10

Ry

28 )
In—— =600x 1073

Ry

Subtracting,

30 28 _ -
— =+ - =400 x 107* - 600 x 10°*
N N

2 - ) 2
or ——=-200x10"? from which Ry=———==10Q

N 200 x 1073
Substituting this into the first equation gives

30
!N—E=400><10'3 and so Iy=34A

What resistor draws a current of 5 A when connected across terminals a and b of the circuit
shown in Fig. 5-10?

50 60
AN—1 NMN—0a

100 V =

L1 .

Fig. 5-10

A good approach is to use Thévenin’s theorem to simplify the circuit to the Thévenin equivalent
of a ¥y, voltage source in series with an Ry, resistor. Then the load resistor R is in series with these, and
Ohm’s law can be used to find R:

Vin Vin

5= from which R=——-Rqy
Ry, + R 5

The open-circuit voltage at terminals a and b is the voltage across the 20-Q resistor since there is
0V across the 6-Q resistor because no current flows through it. By voltage division this voltage is
20

= x 100 =80V
20+ 5

VTh

Ry, is the resistance at terminals a and b with the 100-V source replaced by a short circuit. This short
circuit places the 5- and 20-Q resistors in parallel for a net resistance of 5/20 = 4Q.80, Rp,,=6+4=10Q
With Vq, and Ry, known, the load resistance R for a 5-A current can be found from the previously
derived equation:
Viy, 80

R=T"_R,="_10=60Q
5 ™ s
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56 In the circuit shown in Fig. 5-11, find the base current I if I = 30igz. The base current is
provided by a bias circuit consisting of 54- and 9.9-kQ resistors and a 9-V source. There is a
0.7-V drop from base to emitter.

Fig. 5-11

One way to find the base current is to break the circuit at the base lead and determine the Thévenin
equivalent of the bias circuit. For this approach it helps to consider the 9-V source to be two 9-V sources,
one of which is connected to the 1.6-kQ collector resistor and the other of which is connected to the 54-kQ
bias resistor. Then the bias circuit appears as illustrated in Fig. 5-124. From it, the voltage Vi, is, by voltage
division,

9.9

99 + 54

x9=1394V

Vin

Replacing the 9-V source by a short circuit places the 54- and 9.9-kQ resistors in parallel for an Ry, of

9.9 x 54
= - --=837kQ
99 + 54

Th

and the circuit simplifies to that shown in Fig. 5-12b.
From KVL applied to the base loop, and from the fact that I+ I5 =31/, flows through the 540-Q
emitter resistor,
1.394 = 83715 + 0.7 + 0.54 x 31/,

from which

0.694
Ig= —— =00277mA = 27.7 yA

25.1

Of course, the simplifying kilohm-milliampere method was used in some of the calculations.

54 k)

AA'AY

o
<
it

9.9 k2

AN~

II!——
lllr

(a) (b)
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5.7

58

Find the Thévenin equivalent circuit at terminals a and b of the circuit with transistor model
shown in Fig. 5-13.

The open-circuit voltage is 500 x 30/ = 15000/, positive at terminal b. From the base circuit,
Iy = 10/1000 A = 10 mA. Substituting in for I gives

Ve = 15000010 x 1073 = 150 V

The best way to find Ry, 15 to deactivate the independent 10-V source and determine the resistance
at terminals a and b. With this source deactivated, Iz =0A, and so 30/ =0A, which means that
the dependent current source acts as an open circuit— -it produces zero current regardless of the voltage
across it. The result is that the resistance at terminals ¢ and b is just the shown S00 Q.

The Thévenin equivalent circuit is a 500-Q resistor in series with a 150-V source that has its positive
terminal toward terminal b, as shown in Fig. 5-14.

C 500 Q1
. o——0a r\/\/\,—On
301 500 0 150 v=
E L&
——O——4 > Ob b
Fig. 5-13 Fig. 5-14

What is the Norton equivalent circuit for the transistor circuit shown in Fig. 5-15?

2k} B Is C
— ' —-0——O0a
+
=1v 0.0004 V¢ 2515 40 k0 Ve
T E _
‘——o0—4 ' —Ob

Fig. 5-15

A good approach is to first find s, which is the Norton current Iy; next find V.. which is the
Thévenin voltage V;y,: and then take their ratio to obtain the Norton resistance Ry. which is the same
as Rq,.

Placing a short circuit across terminals a and b makes V. = 0 V, which in turn causes the dependent
voltage source in the base circuit to be a short circuit. As a result, Iz = 1/2000 A = 0.5 mA. This short
circuit also places 0 V across the 40-kQ2 resistor, preventing any current flow through it. So, all the 257, =
25 x 0.5 =125mA current from the dependent current source flows through the short circuit in a direction
from terminal b to terminal a: Iy = Iy = 12.5 mA.

The open-circuit voltage is more difficult to find. From the collector circuit, V. = (— 2515440 000) =
—10%/5. This substituted into the KVL equation for the base circuit produces an equation in which I is
the only unknown:

1 = 20001, 4+ 0.0004V,. = 20001 + 0.0004( —1061,) = 16001,

So. I5;=1/1600A = 0.625mA, and V.= —10%7T5 = —10°0.625 x 1073) = — 625 V. The result is that
Voc = 625 V. positive at terminal b.

In the calculation of Ry, signs are important when, as here, a circuit has dependent sources that can
cause Ry, to be negative. From Fig. 5-3b, Ry, = Ry is the ratio of the open-circuit voltage referenced positive
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at terminal ¢ and the short-circuit current referenced from terminal ¢ to terminal b. Alternatively, both
references can be reversed, which is convenient here. So,

Ve 625
Ry=-2=_—"" __-50kQ
I 125 x 1073
The Norton equivalent circuit is a 50-k€Q resistor in paralle] with a 12.5-mA current source that is directed
toward terminal b, as shown in Fig. 5-16.

Oa

12.5 mA 50 k2

ob
Fig. 5-16

5.9 Directly find the output resistance of the circuit shown in Fig. 5-15.

Figure 5-17 shows the circuit with the |-V independent source deactivated and a 1-A current source
applied at the output ¢ and b terminals. From Ohm’s law applied to the base circuit,

Nodal analysis applied to the top node of the collector circuit gives

V..
—————— + 2505 =1 or L p25(—2 %107V =1
40 000 40 000
upon substitution for Iz The solution s V. =50000V, and so R_, = Ry, =50 kQ. This checks
with the Ry = Ry, answer from the Prob. 5.8 solution in which the Ry = Ry, = V¢ [y approach was
used.

— a
+
0.0004V 251 40 kN2 Ve 1A
E -
o . b
Fig. 5-17
5.10 Find the Thévenin equivalent of the circuit shown in Fig. 5-18.
100 BV 80
ANN— " —A—A\A—o0a
40
00V sq 400 v
20 A
+ ¢ — —0b

Fig. 5-18
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5.11

The Thévenin or open-circuit voltage, positive at terminal a, is the indicated V plus the 30V of
the 30-V source. The 8-Q resistor has no effect on this voltage because there is zero current flow through it
as a result of the open circuit. With zero current there is zero voltage. ¥ can be found from a single nodal
equation:

Multiplying by 40 and simplifying produces
SV = 400 — 800 from which V=-80V

So, Vi, = —80 + 30 = —50 V. Notice that the 5-Q and 4-Q resistors have no effect on Vy,.

Figure 5-19a shows the circuit with the voltage sources replaced by short circuits and the current source
by an open circuit. Notice that the 5-Q resistor has no effect on Ry, because it is shorted, and neither does
the 4-Q resistor because it is in series with an open circuit, Since the resistor arrangement in Fig. 5-19a is
series-parallel, Ry, 1s easy to calculate by combining resistances: Ry, =8 + 40110 = 16 QL

Figure 5-19b shows the Thévenin equivalent circuit.

100 8 Q 16 1
AN N A N0 a a

$oo

40

400 =

S0V
_’_

e —ob I—Ob

(a) (b)
Fig. 5-19

A

The fact that neither the 5-Q nor the 4-Q resistor has an effect on Vy, and Ry, leads to the
generalization that resistors in parallel with ideal voltage sources, and resistors in series with ideal current
sources, have no effect on voltages and currents elsewhere in a circuit,

Obtain the Thévenin equivalent of the circuit of Fig. 5-20a.

By inspection, Vi, =0V because the circuit does not contain any independent sources. For a
determination of Ry, it is necessary to apply a source and calculate the ratio of the source voltage to the
source current. Any independent source can be applied, but often a particular one is best. Here, if a 12-V
voltage source is applied positive at terminal g, as shown in Fig. 5-20b, then | = 12/12=1A, which is
the most convenient current. As a result, the dependent source provides a voltage of 8/ = 8 V. So, by KCL,

12 12 12-8
1, = Lo

=+ — + 4A
12 6 4
v, 12
Finally, Ry=—"=—-=30
y Th I 3
40 4Q a Is
AV * ,- 0 a MA— +—o0—7
81 60 120 8! 6Q 12Q '—"T—_—"rzv
! /!
& —O h e -O—-
b
(a) (b)

Fig. 5-20
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5.12 For the circuit of Fig. 5-21, obtain the Thévenin equivalent to the left of the a-b terminals.
Then use this equivalent in determining [.

12Q
a I
s —— o0 —>
\_©_J !
Jgfr/ =8I+ 16/
0.05¥; ~
—0
b
Fig. 5-21

The Thévenin equivalent can be obtained by determining any two of V,, Ry, and Igc. By inspection,
it appears that the two easiest to determine are Vy, and Ryy,.

If the circuit is opened at the g-b terminals, all 24 A of the independent current source must
flow through the 10-Q resistor, making V, = 10(24) = 240 V. Consequently, the dependent current source
provides a current of 0.05V, = 0.05(240) = 12 A, all of which must flow through the 12-Q resistor. As a
result, by KVL,

Vi = Vip = —12(12) + 240 = 96 V

Because of the presence of the dependent source, Ry, must be found by applying a source and
determining the ratio of the source voltage to the source current. The preferable source to apply is a current
source, as shown in Fig. 5-22q. If this source is 1 A, then V, =10(1)= 10V, and consequently the
dependent current source provides a current of 0.05(10) = 0.5 A. Since this is one-half the source current,
the other half must flow through the 12-Q resistor. And so, by KVL,

V,=05(12) + 1(10) = 16 V

V, 16
Then, Ry, = N = N =16 Q

3

Figure 5-22b shows the Thévenin equivalent connected to the nonlinear load of the original circuit. The
current /I is much easier to calculate with this circuit. By KVL,

161 + 817 + 161 =96 or I*+41 -12=0
12Q
AN~
16 Q) a 1
—-
| +
+
v, 109 =96V Jg;/= 817 + 161
B 0.05V, -[ _
b
(@) (b)
Fig. §-22
Applying the quadratic formula gives
-4+ /16 +48 —44+8
| = v = =2A or —6A

2 2

Only the 2-A current is physically possible because current must flow out of the positive terminal of the
Thévenin voltage source, which means that I must be positive. So, I =2 A.
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5.13  Figure 5-23a shows an emitter-follower circuit for obtaining a low output resistance for resistance
matching. Find R,,,.

Because the circuit has a dependent source but no independent sources, R,,, must be found by applying
a source at the output terminals, preferably a 1-A current source as shown in Fig. 5-23b.

I I E

L, B E _ . L

+

Row

1kQ § 501s 250 0 — § 1k 5015 250 0 % 1A

C c _

-O0— é —0 —O- i
(a) (b)
Fig. 5-23

From KCL applied at the top node,

v 14
— 50l +— =1
1000 250

But from Ohm's law applied to the 1-k€ resistor, Iy = —1/1000. With this substitution the equation

becomes

v 4 Vv
=0~ 135) * 250
1000 1000 250
from which V=182 V. Then R, = V1 =182, which is much smaller than the resistance of either
resistor in the circuit.

5.14  Find the input resistance R;, of the circuit shown in Fig. 5-24.

I
—
o
Rl’l
— 250 151 50 0
o——4 4

Fig. 5-24

Since this circuit has a dependent source but no independent sources, the approach to finding the input
resistance is to apply a source at the input. Then the input resistance is equal to the input voltage divided
by the input current. A good source to apply is a 1-A current, as shown in Fig. 5-25.

I
——t-
+
1A v 2541 1.51 50Q

Yy
>

Fig. 5-25
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By nodal analysis,

4 Vv
— =151+ —=1
25 50

But from the right-hand branch, I = V/50. With this substitution the equation becomes

the solution to which is  V = 33.3 V. So, the input resistance is

Vo333
=, == 333Q

Find the input resistance of the circuit shown in Fig. 5-24 if the dependent current source has a
current of 5I instead of 1.51.

For a 1-A current source applied at the input terminals, the nodal equation at the top node is

But, from the right-hand branch, I = 1/50. With this substitution the equation is
|4 Vv v
=54~ =1
25 50 S0
from which ¥V = —25 V. Thus, the input resistance is R;, = —25/1 = =25 Q.
A negative resistance may be somewhat disturbing to the mind when first encountered, but it is physically
real even though it takes a transistor circuit, an operational amplifier, or the like to obtain it. Physically, a

negative input resistance means that the circuit supplies power to whatever source is applied at the input,
with the dependent source being the source of power.

Figure S-26a shows an emitter-follower circuit for obtaining a large input resistance for resistance
matching. The load is a 30-Q resistor, as shown. Find the input resistance R,,.

Because the circuit has a dependent source and no independent sources, the preferable way to find R
is from the input voltage when a 1-A current source is applied, as shown in Fig. 5-26b. Here, [z =1 A, and
so the total current to the parallel resistors is g + 100/g = 10115 = 101 A, and the voltage V' is

V = 101{(250}130) V = 2.7 kV
The input resistance is R, = ¥/1 = 2.7 k€, which is much greater than the 30 Q of the load.

Is B E

—

1A v 100l; <2500 §3on

(b)
Fig. 5-26
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5.17

5.18

5.19

What is the maximum power that can be drawn from a 12-V battery that has an internal resistance
of 0.25 Q?

A resistive load of 0.25 © draws maximum power because it has the same resistance as the Thévenin
or internal resistance of the source. For this load, half the source voltage drops across the load, making the
power 6%/0.25 = 144 W.

What is the maximum power that can be drawn by a resistor connected to terminals ¢ and b of
the circuit shown in Fig. 5-15?

In the solution to Prob. 5.8, the Thévenin resistance of the circuit shown in Fig. 5-15 was found to
be 50 k2 and the Norton current was found to be 12.5 mA. So, a load resistor of 50 kQ absorbs maximum
power. By current division, half the Norton current flows through it, producing a power of

12.5 2
ES x 1073 ] (50 x 10 = 1.95W
In the circuit of Fig. 5-27, what resistor R, will absorb maximum power and what is this power?

— 4

10/
8 A 00 00 §RL

B¢

Fig. 5-27

For maximum power transfer. R, = Ry, and P, = Vi {4R.,). So. il is necessary to obtain the
Thévenin equivalent of the portion of the circuit 1o the left of the a and b terminals.
If R, is replaced by an open circuit, then the current [ is, by current division,
40

= ——— x8=64A
40 + 10

Consequently, the dependent voltage source provides a voltage of 10(6.4) = 64 V. Then, by KVL,
Vop = Vi, =64 + 10(6.4) = 128 V

It is convenient to use the short-circuit current approach in determining Rq,. If a short circuit
is placed across terminals ¢ and b, all components of the circuit of Fig. 5-27 are in parallel. Consequently,
the voltage drop, top to bottom, across the 10-Q resistor of 10/ is equal to the — 107 voltage drop across
the dependent voltage source. Since the solution to 10/ = —10I is [ =0 A, there is a zero voltage
drop across both resistors, which means that all the 8 A of the current source must low down through the
short circuit. So, I =8 A and

Ry = Vo = 1—28 =16Q
Ise 8

Thus, R, =16 Q for maximum power absorption. Finally, this power is

Vi o 1282
Prw=—1" = =25%W
4Ry,  4(16)
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In the circuit of Fig. 5-28, what resistor R will absorb maximum power and what is this power?

6Q u
AN— * —0-
+
K240
+ -
()or o, 3,
80
-0
b
Fig. 5-28

It is, of course, necessary to obtain the Thévenin equivalent to the left of the @ and b terminals. The
Thévenin voltage V;, will be obtained first. Observe that the voltage drop across the 4-Q resistor is V,,
and that this resistor is in series with an 8-Q resistor. Consequently, by voltage division performed in a reverse
manner, the open-circuit voltage is  Vq,, = V,, = 3V,. Next, with R, removed, applying KCL at the node
that includes terminal a gives

3V, -90 v,
s e = — 0125V, =0
6 4

the solution to whichis V, =24 V. So, Vp, =3V, =3(24)="72 V.

By inspection of the circuit, it should be fairly apparent that it is easier to use Iy to obtain
Ry, than it is to determine Ry, directly. If a short circuit is placed across terminals a¢ and b, then
V. =0 V, and so no current flows in the 4-Q resistor and there is no current flow in the dependent
current source. Consequently, Ig. = 90/6 = 15 A. Then,

Vi 72

Rpy=—=-—"2480Q
LT

which is the resistance that R, should have for maximum power absorption. Finally,
vz, 722

=T 0w
4R,, 448)

man

Use superposition to find the power absorbed by the 12-Q resistor in the circuit shown in Fig. 5-29.

60 I
ANNN -
100 V-T 6A 20
Fig. 5-29

Superposition cannot be used to find power in a dc circuit because the method apphes only to linear
quantities, and power has a squared voltage or current relation instead of a linear one. To illustrate, the
current through the 12-Q resistor from the 100-V source is, with the 6-A source replaced by an open
circuit, 100/(12 + 6) = 5.556 A. The corresponding power is 5.5562 x 12 = 370 W. With the voltage
source replaced by a short circuit, the current through the 12-Q resistor from the 6-A current source is, by
current division, [6/(12 + 6)](6) = 2 A. The corresponding power is 22 x 12 = 48 W. So, if superposition
could be applied to power, the result would be 370 + 48 = 418 W for the power dissipated in the 12-Q
resistor.
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522

5.23

Superposition does, however, apply to currents. So, the total current through the 12-Q resistor
is 5556 +2=7556A, andthepowerconsumedis 7.556% x 12 = 685 W, which is much different than
the 418 W found by erroneously applying superposition to power.

In the circuit shown in Fig. 5-29, change the 100-V source to a 360-V source, and the 6-A current
source to an 18-A source, and use superposition to find the current [.

Figure 5-30a shows the circuit with the current source replaced by an open circuit. Obviously, the
component I, of I from the voltage source is I, = —360/(6 + 12) = — 20 A. Figure 5-30b shows the circuit
with the voltage source replaced by a short circuit. By current division, I, the current-source component
of I, is I.=[12/(12 + 6)](18) = 12 A. The total current is the algebraic sum of the current compo-
nents: I=1,+1=-20+12=-8A.

61 4_11 60 I
VvV l A'A'A%

120 18 A 120

360V

=it
AN
AN

i

(a) (b)
Fig. 5-30

For the circuit shown in Fig. 5-18, use superposition to find ¥y, referenced positive on terminal a.

Clearly, the 30-V source contributes 30 V to V7, because this source, being in series with an open circuit,
cannot cause any currents to flow. Zero currents mean zero resistor voltage drops, and so the only voltage
in the circuit is that of the source.

Figure 5-31a shows the circuit with all independent sources deactivated except the 100-V source. Notice
that the voltage across the 40-Q resistor appears across terminals a and b because there is a zero voltage
drop across the 8-Q resistor. By voltage division this component of ¥y, is

40

=———x100=80V
40 + 10

Thy

Figure 5-31b shows the circuit with the current source as the only independent source. The voltage
across the 40-Q resistor is the open-circuit voltage since there is a zero voltage drop across the 8-Q resistor.
Note that the short circuit replacing the 100-V source prevents the 5-Q resistor from having an effect, and
also it places the 40- and 10-Q resistors in parallel for a net resistance of 40|10 = 8 Q. So, the component

of V;, from the current source is Vm.= —20 x 8§ = —160 V.
10 Q) 80 10 801
a
+
40
§5 Q 400 Vine
20 A
—o -0 b
(b)

Fig. 5-31
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Vin is the algebraic sum of the three components of voltage:
Vip=30+80 - 160= —-50V

Notice that finding V;, by superposition requires more work than finding it by nodal analysis, as
was done in the solution to Prob. 5.10.

Use superposition to find Vg, for the circuit shown in Fig. 5-15.

Although this circuit has three sources, superposition cannot be used since two of the sources are
dependent. Only one source is independent. The superposition theorem does not apply to dependent sources.

Use Millman’s theorem to find the current flowing to a 0.2-Q resistor from four batteries operating
in parallel. Each battery has a 12.8-V open-circuit voltage. The internal resistances are 0.1, 0.12,
0.2, and 0.25 Q.

Because the battery voltages are the same, being 12.8 V, the Millman voltage is
Millman resistance is the inverse of the sum of the conductances:

Vi =128 V. The

= Q =366 mQ
1/0.1 + 1/0.12 + 1/0.2 + 1/0.25

Ry

Of course, the resistor current equals the Millman voltage divided by the sum of the Millman
and load resistances:
Vu 12.8

I= = = 541A
Ry+ R 02+ 00366

Use Miliman’s theorem to find the current drawn by a 5-Q resistor from four batteries operating
in parallel. The battery open-circuit voltages and internal resistances are 18 V and 1 Q, 20 V and
20Q,22Vand 5Q,and 24 V and 4 Q.

The Miliman voltage and resistance are
Ve, = (INI8) + (1/2X20) + (1/5K22) + (1/4X24)
1+ 172+ 15+ 1/4
1
T2+ 15+ 18

=197V

0.513Q

Ry

The current is, of course, the Millman voltage divided by the sum of the Millman and load resistances:

i Ve 197
T Ry+R 051345

357A

Use Miliman’s theorem to find I for the circuit shown in Fig. 5-32.

50 ﬂ% 250 %4{) 0
T T
53

100
250

150 v

il

|

Fig. §-32
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The Millman voltage and resistance are

V. = (1/’SQXZOO) + (1725 — 100) + (1:40(150) + (1,104 —75) _

M —2027V
1/50 + 1,25 + 1:40 + 1/10
1
Ry = - - =541Q
1/50 + 1/25 + 1,40 + 1/10
1% ~20.27
And so I M = —0.667 A

TRy + R S4l+25

5.28 Transform the A shown in Fig. 5-33a to the Y shown in Fig. 5-33bfor (@) R, = R, = R; =36 Q,
and (b)) R; =20Q,R,=30Q, and R;=50QQ.
(@) For A resistances of the same value, Ry = R,/3. So, here, R, = Rz =R, =363 =12Q.

(b) The denominators of the Ry formulas are the same: R, + R, + Ry =20 + 30 + 50 = 100 Q. The
numerators are products of the adjacent resistor resistances if the Y is placed inside the A:

R,R, 20x 30 R,R; 30 x 50 R,R, 20 x50
Rjy=——=——=6Q Ry = = -—— =150 R = = =10Q

100 100 100 100 100 100
AO

R R:
R
C o A
B o—
(a) (b)

Fig. 5-33

529 Transform the Y shown in Fig. 5-33b to the A shown in Fig. 5-33afor (@) R, =Rz=R =5Q,
and )R, =109, Rz=5Q, R =20Q.

(a) For Y resistances of the same value: R, = 3R,.So.here, R,=R,=R;=3x5=15Q.

(b) The numerators of the R, formulas are the same: R, Rg+ R, R+ RgR =10 x 5+ 10 x 20 +
5 x 20 = 350. The denominators of the R, formulas are the resistances of the Y arms opposite the A
arms if the Y is placed inside the A. Thus,

_ 350 350 350 350 350 350

=270 R, — =175Q R,

R, =" = =
Ry, 5 R. 20 R, 10

5§30 Usea A-to-Y transformation in finding the currents /|, I,, and I for the circuit shown in Fig. 5-34.

The A of 15-Q resistors transforms to a Y of 15;3 = 5-Q resistors that are in parallel with the Y of
20-Q resistors. It is not obvious that they are in parallel, and in fact they would not be if the resistances for
each Y were not all the same value. When, as here, they are the same value, an analysis would show that the
middle nodes are at the same potential, just as if a wire were connected between them. So, corresponding
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L 40
NV~
I 15 Q
V=
=
L 60 200 209
150
200
P
150
L 80
\AA'
Fig. 5-34

40

40 4Q

(a) (b)
Fig. 5-35

resistors of the two Y's are in parallel, as shown in Fig. 5-354. The two Y's can be reduced to the single Y
shown in Fig. 5-35b, in which each Y resistanceis 5|20 = 4Q. With this Y replacing the A-Y combination,
the circuit is as shown in Fig. 5-35¢.

With the consideration of I, and I, as loop currents, the corresponding KVL equations are

30 = 181, + 101, and 40 = 101, + 221,

the solutions to which are [, =088A and [;=142A. Then, from KCL applied at the right-hand
node, I, =—I, ~1;=-23A.

5§31 Using a Y-to-A transformation, find the total resistance Ry of the circuit shown in Fig. 5-36,
which has a bridged-T attenuator.

800 O
AN
200 2 200
O——4
Rr
— 1.6 kQ 1 k)
c_

Fig. 5-36
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R: 800 O
— AAA——
200 O 200 N2 4250
o AVAAY,
R R, 3.4k0 34k §| k2
o— 4 .
(a) (b)
Fig. 5-37

Figure 5-37a shows the T part of the circuit inside a A as an aid in finding the A resistances. From the
Y-to-A transformation formulas,

_ 200(200) + 200{1600) + 200{1600) _ 680000
B 200 200

R, = R, =34kQ

680 000
R, = =425Q
1600

As a result of this transformation, the circuit becomes series-parallel as shown in Fig. 5-37b, and the
total resistance is easy to find:

R = 3400((800]425 + 3400|i1000) = 3400| 1050 = 802 Q

5.32 Find I for the circuit shown in Fig, 5-38 by using a A-Y transformation.

1 80N
= — AN
140 10 2
o =N
V =
196 V =
1.6Q 20 0
Fig. 5-38

The bridge simplifies to a series-parallel configuration from a transformation of either the top or bottom
A to a Y, or the left- or right-hand Y to a A. Perhaps the most common approach is to transform one of
the A's to a Y, although the work required is about the same for any type of transformation. Figure 5-39a
shows the top A enclosing a Y as a memory aid for the transformation of this A to a Y. All three Y formulas
have the same denominator: 14 + 10 + 6 = 30. The numerators, though, are the products of the re-
sistances of the adjacent A resistors:
10 x 14 14x6 6 x 10

=4670Q Ry = =280 Rc =
30 30 30

2Q

With this transformation the circuit simplifies to that shown in Fig. 5-39h in which all the resistors are
in series-parallel. From it,

196
I= =12A
8+467+(28+16)1(2+20)
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8Q I 4.67 0
—

14 Q 100

(a) (b)
Fig. 5-39

5.33 In the circuit shown in Fig. 5-38, what resistor R replacing the 20-Q resistor causes the bridge to
be balanced? Also, what i1s I then?
For balance, the product of the resistances of opposite bridge arms are equal:

16
Rx14=16x10 from which R = 1—4 =1.14Q

With the bridge in balance, the center arm can be considered as an open circuit because it carries no
current. This being the case, and because the bridge is a series-parallel arrangement, the current [ is

[=——— — 20 . = 135A
8+ (14 + 1.6)i (10 + 1.14)
Alternatively, the center arm can be considered to be a short circuit because both ends of it are at the same
potential. From this point of view,
196
! = - e - =135A
8+ 1410 + 1.611.14

which is, of course. the same.

5.34 The slide-wire bridge shown in Fig. 5-40 has a uniform resistance wire that is 1 m long. If balance
occurs with the slider at 24 cm from the top, what is the resistance of R.?
Let R, be the total resistance of the resistance wire. Then the resistance from the top of the wire to the

slider is {24:100)R,, = 0.24R . That from the slider to the bottom of the wire is  (76.100)R,. = 0.76R,,. So.
the bridge resistances are 0.24R . 0.76R,, 30 Q. and R . These inserted into the bridge balance equation give

0.76R,,
T 0.24R,,

x 30 =95Q

X

100 V

Resistance wire

Fig. 5-40
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Supplementary Problems

535 A car battery has a 12.1-V terminal voltage when supplying 10 A to the car lights. When the starter motor
1s turned over, the extra 250 A drawn drops the battery terminal voltage to 10.6 V. What is the Thévenin
equivalent circuit of this battery?

Ans. 6 mQ, 12,16 V

5.36  In full sunlight a 2- by 2-cm solar cell has a short-circuit current of 80 mA, and the current is 75 mA for a
terminal voltage of 0.6 V. What is the Norton equivalent circuit?

Ans. 120 Q, 80 mA

5.37  Find the Thévenin equivalent of the circuit shown in Fig. 5-41. Reference Vy, positive toward terminal a.

O ir

Ans. 12Q 12V

—48V

Fig. 5-41

5.38 In the circuit shown in Fig. 5-41. change the 5-A current source to a 7-A current source. the 12-Q resistor
to an 18-Q resistor. and the 48-V source to a 96-V source. Then find the Norton equivalent circuit with the
current arrow directed toward terminal a.

Ans. 125Q,324 A
5.39  For the circuit shown in Fig. 5-42, find the Norton equivalent with I, referenced positive toward terminal «.

Ans. 4Q, —3A

60 40
AAA———AAA— Oa
]
60V = 120 8N 8 A
[ | ..
Fig. 5-42

5.40  Find the Norton equivalent of the circuit of Fig. 5-43. Reference [ up.

Ans. 8Q.8A
a0 Q

.- ————O0 u

5kQ

+
C— 80V 0Q 1000 V éIOQ

6A

O h

Fig. 5-43
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541  Determine the Norton equivalent of the circuit of Fig. 5-44. Reference [y up.

Ans. 78 €, 184 A

00 50 sV
_|_ AMN————ANW—|——o0 ¢
=6V 00
T 200
AR
2A 45Q
15Q 8 Q N
———AN—}} o b
Fig. 5-44

542 Find the Thévenin equivalent of the grounded-base transistor circuit shown in Fig. 5-45. Reference Vi,
positive toward terminal a.

Ans. 4kQ. 39V

Fig. 5-45

5.43  In the transistor circuit shown in Fig. 5-46, find the base current I, if I = 40/,. There 1s a 0.7-V drop from
base to emitter.

Ans.  90.1 uA

Ik B Is c
60 ki) = , ' o—O0a
T +
In B
. 307, 5kQ Ve

iw kQ

5.44 Find the Thévenin equivalent of the transistor circuit shown in Fig. 5-47. Reference }y, positive toward
terminal a.

Ans. 588kQ, —294V

Fig. 5-46 Fig. 5-47
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545  Find I in the circuit shown in Fig. 5-48, which contains a nonlinear element having a V-] relation of V= 372,
Use Thévenin's theorem and the quadratic formula.

Ans. 2A
49 30 _i,
' —AN VvV
fVVV .
RV=E 4A 60 ‘gfv=31’
Fig. 5-48

546  Find the Thévenin equivalent of the circuit of Fig. 5-49. Reference V;, positive toward terminal a.

Ans. 187 Q,26 V

8V 10V
f———|I -0 a

16 Q

§uen
81
80

 AMN—oO

Fig. 549

5.47  Obtain the Thévenin equivalent of the circuit of Fig. 5-50.
Ans. —15Q,0V

40 25Q
AAN— —WW\—oa
+
v, &40 0.75¥,
—Ob
Fig. 5-50

548  Find the input resistance at terminals 1 and 1’ of the transistor circuit shown in Fig. 5-51 if a 2-kQ resistor
is connected across terminals 2 and 2'.

Ans. 88.1kQ
Is B 1 kQ E
lo———o0—AAA—1 ’ o -02
601 5k
' o0— &< —o2

Fig. 5-51
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5.49

5.50

5.51

5.52

5.53

5.54

5.55
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Find the output resistance at terminals 2 and 2 of the transistor circuit shown in Fig. 5-51 if a source with
a [-kQ internal resistance is connected to terminals 1 and 1. In finding the output resistance remember to
replace the source by its internal resistance.

Ans. 326 Q

Find the input resistance at terminals | and 17 of the transistor arcuit shown in Fig. 5-52 if a 5-kQ load
resistor is connected between terminals 2 and 2, from collector to emitter.

Ans. 760 Q
I
8 B 1 kQ C
1 o -O— 02
+
0.003V 201y 20 k) Ve
E _
1o O —0 2
Fig. 5-52

Find the output resistance at terminals 2 and 2’ of the transistor circuit shown in Fig. 5-52 if a source with
a 500-Q internal resistance 1s connected to terminals 1 and 17,

Ans. 100 kQ
What resistor connected between terminals o and b in the bridge circuit shown in Fig. 5-53 absorbs maximum
power and what 1s this power’

Ans. 267k, 425 mW

20V =

Fig. 5-53

What will be the reading of a zero-resistance ammeter connected across terminals ¢ and b of the bridge
circuit shown in Fig. 5-537 Assume that the ammeter is connected to have an upscale reading. What will
be the reading if a 1-kQ resistor is in series with the ammeter?

Ans. 252 mA, 1.83 mA
Some solar cells are interconnected for increased power output. Each has the specifications given in Prob.
5.36. What area of solar cells is required for a power output of 1 W? Assume a matching load.

Ans. 208 cm?

In the circuit of Fig. 5-54, what resistor R; will absorb maximum power, and what is this power?

Ans. 333Q, 480 W
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5.56

5.57

5.58

5.59

5.60

5.61

5.62

5.63

50
AW—- —t
i 15Q
= 120V N 0.2V, R,
e 5o
Fig. 5-54

In the circuit of Fig. 5-55. what resistor connected across terminals ¢ and b will absorb maximum power,
and what is this power?

Ans. 100 kQ. 62.5 uW

6 kQ )
AM— +——0u
+
.
_;"__BmV 0.0002V,, 1007 75kQ V.
—O b

Fig. 5-55

For the circuit shown in Fig. 5-41, use superposition to find the contribution of cach source to Vpy, if it 1s
referenced positive toward terminal a.

Ans. 32V from the 48-V source, —20 V from the 5-A source

For the circuit shown in Fig. 5-42. usc superposition to find the contribution of each source to the current
in a short circuit connected between terminals ¢ and b. The short-circuit current reference is from terminal

a to terminal b.

Ans. S A from the 60-V source, —8 A from the 8-A source

In the circuit shown in Fig. 5-48, replace the nonlinear resistor with an open circuit and use superposition
to find the contribution of each source to the open-circuit voltage referenced positive at the top.

Ans.  13.2 V from the 22-V source, 9.6 V from the 4-A source

An automobile generator operating in parallel with a battery energizes a 0.8-Q load. The open-circuit voltages
and internal resistances are 14.8 V and 0.4 Q for the generator, and 12.8 V and 0.5 Q for the battery. Use
Millman’s theorem to find the load current.

Ans. 136 A

For the automobile circuit of Prob. 5.60 use superposition to find the load current contribution from each
source.

Ans. 804 A from the generator, 5.57 A from the battery

Transform the A shown in Fig. 5-56a to the Y in Fig. 5-56hfor R, = 2kQ. R, =4kQ. and R;=6kQ.
Ans. R, =667Q, Rg=2kQ. R,=1kQ

Repeat Prob. 5.62for R, =8Q., R, =5Q, and R;=7Q.

Ans. R, =2€Q, Ry;=175Q. R.=28Q
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5.65

5.66

5.67

5.68
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Fig. 5-56

Transform the Y shown in Fig. 5-56b to the A in Fig. 5-56ufor R, =12Q, Ry=15Q, and R, = 18¢.
Ans. R, =444Q, R,=37Q, R;=555Q

Repeat Prob. 564 for R, =10kQ, Ry,=18kQ, and R, =12kQ
Ans. R, =287k, R,=43kQ, R;=516kQ

For the lattice circuit shown in Fig. 5-57, use a A-Y transformation to find the ¥ that makes I = 3 A,

Ans. 177V

A wa 400
M
=y 50
{ 60 0
VYV
40 0
Fig. 5-57

Use a A-Y transformation to find the currents in the circuit shown in Fig. 5-58.

Ans. I, =772A, I,= —036A, I,=-736A

Use a A-to-Y transformation in finding the voltage V that causes 2 A 1o flow down through the 3-Q resistor
in the circuit shown in Fig. 5-59.

Ans. 178V
I 60
AN~
80
| y o
=60V
[ 20 10 0
I 80 ANVN——AANN~
== AN 60
1 =y 40 30
=sov
6Q
_l:_> 100
ahYA'AY

Fig. 5-58 Fig. 5-59
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5.69

5.70

5.71

5.72

573

In the lattice circuit shown in Fig. 5-57, what resistor substituted for the top 40-Q resistor causes zero current
flow in the 50-Q resistor?

Ans. 90 Q

If in the slide-wire bridge shown in Fig. 5-40, balance occurs with the slider at 67 cm from the top, what is
the resistance R,?

Ans. 148 Q

Use a A-Y transformation to find ! in the circuit shown in Fig. 5-60. Remember that for a A-Y transformation,

only the voltages and currents external to the A and Y do not change.

Ans. 0334 A

w»
=]

50
100 V =
Q

40 3

Fig. 5-60

In the circuit of Fig. 5-61, what resistor R; will absorb maxitaum power, and what is this power?

Ans. 12Q,192 W
7Q 15Q
9%V =
120 18Q
M

R,
Fig. 5-61

In the circuit of Fig. 5-62, what resistor R, will absorb maximum power, and what is this power?
Ans. 300,148 W
kli¥ e

300 50Q
120V —
300 200

Fig. 5-62




Chapter 6

Operational-Amplifier Circuits

INTRODUCTION

Operational amplifiers, usually called op amps, are important components of electronic circuits.
Basically, an op amp is a very high-gain voltage amplifier, having a voltage gain of 100 000 or more.
Although an op amp may consist of more than two dozen transistors, one dozen resistors, and perhaps
one capacitor, it may be as small as an individual resistor. Because of its small size and relatively simple
external operation, for purposes of an analysis or a design an op amp can often be considered as a
single circuit element.

Figure 6-1a shows the circuit symbol for an op amp. The three terminals are an inverting input
terminal a (marked —), a noninverting input terminal b (marked +), and an output terminal ¢. But a
physical operational amplifier has more terminals. The extra two shown in Fig. 6-1b are for dc power
supply inputs, which are often +15 V and —15 V. Both positive and negative power supply voltages
are required to enable the output voltage on terminal ¢ to vary both positively and necgatively with
respect to ground.

U Q———> uo———J_
€ ¢
» o—t h O———
(a)

I

(b

R

Fig. 6-1

OP-AMP OPERATION

The circuit of Fig. 6-2a, which is a model for an op amp, illustrates how an op amp operates as a
voltage amplifier. As indicated by the dependent voltage source, for an open-circuit load the op amp
provides an output voltage of t, = A(t, — v_), whichis A times the difference in input voltages. This
A 1s often referred to as the open-loop roltage gain. From A(r, — v ), observe that a positive voltage v,
applied to the noninverting input terminal b tends to make the output voltage positive, and a positive
voltage v applied to the inverting input terminal ¢ tends to make the output voltage negative.

The open-loop voltage gain A is typically so large (100 000 or more) that it can often be approximated
by infinity (), as is shown in the simpler model of Fig. 6-2h. Note that Fig. 6-2b does not show the
sources or circuits that provide the input voltage v, and v_ with respect to ground. Instead, just the
voltages v, and v _ are shown. Doing this simplifies the circuit diagrams without any loss of information.

In Fig. 6-2q, the resistors shown at the input terminals have such large resistances (megohms) as
compared to other resistances (usually kilohms) in a typical op-amp circuit, that they can be considered
to be open circuits, as is shown in Fig. 6-2b. As a consequence, the input currents to an op amp are
almost always negligibly small and assumed to be zero. This approximation is important to remember.

The output resistance R, may be as large as 75 Q or more, and so may not be negligibly small.
When, however, an op amp 1s used with negative-feedback components (as will be explained), the effect
of R, i1s negligible, and so R, can be replaced by a short circuit, as shown in Fig. 6-2h. Except for a few
special op-amp circuits, negative feedback is always used.

12
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(a)

o o
¥ +
- §— v,
. s, =) °
9 i i
L
)

Fig. 6-2

The simple model of Fig. 6-2b is adequate for many practical applications. However, although not
indicated, there is a limit to the output voltage: It cannot be greater than the positive supply voltage or
less than the negative supply voltage. In fact, it may be several volts less in magnitude than the magnitude
of the supply voltages, with the exact magnitude depending upon the current drawn from the output
terminal. When the output voltage is at either extreme, the op amp is said to be saturated or to be in
saturation. An op amp that is not saturated is said to be operating linearly.

Since the open-loop voltage gain A is so large and the output voltage is limited in magnitude, the
voltage v, — v_ across the input terminals has to be very small in magnitude for an op amp to operate
linearly. Specifically, it must be less than 100 4V in a typical op-amp application. (This small voltage is
obtained with negative feedbuck, as will be explained.) Because this voltage is negligible compared to the
other voltages in a typical op-amp circuit, this voltage can be considered to be zero. This is a valid
approximation for any op amp that is not saturated. But if an op amp is saturated, then the voltage
difference v, — v_ can be significantly large, and typically is.

Of less importance is the imit on the magnitude of the current that can be drawn from the op-amp
output terminal. For one popular op amp this output current cannot exceed 40 mA.

The approximations of zero input current and zero voltage across the input terminals, as shown in
Fig. 6-3, are the bases for the following analyses of popular op-amp circuits. In addition, nodal analysis
will be used almost exclusively



114 OPERATIONAL-AMPLIFIER CIRCUITS [CHAP. 6

0A
—
+ +
oV
- —
0A
Fig. 6-3

POPULAR OP-AMP CIRCUITS

Figure 6-4 shows the inverting amplifier, or simply inverter. The input voltage is v, and the output
voltage is v,. As will be shown, ¢, = Gv; in which G is a negative constant. So, the output voltage z,
is similar to the input voltage v; but is amplified and changed in sign (inverted).

R)’
AWV~
R;
l’.l
+ +

—o
..|_l

Fig. 6-4

As has been mentioned, it is negative feedback that provides the almost zero voltage across the input
terminals of an op amp. To understand this, assume that in the circuit of Fig. 6-4 v; is positive. Then a
positive voltage appears at the inverting input because of the conduction path through resistor R, . As
a result, the output voltage v, becomes negative. Because of the conduction path back through resistor
R/, this negative voltage also affects the voltage at the inverting input terminal and causes an almost
complete cancellation of the positive voltage there. If the input voltage v; had been negative instead
then the voltage fed back would have been positive and again would have produced almost complete
cancellation of the voltage across the op-amp input terminals.

This almost complete cancellation occurs only for a nonsaturated op amp. Once an op amp becomes
saturated, however, the output voltage becomes constant and so the voltage fed back cannot increase
in magnitude as the input voltage does.

In every op-amp circuit in this chapter, each op amp has a feedback resistor connected between the
output terminal and the inverting input terminal. Consequently, in the absence of saturation, all the op
amps in these circuits can be considered to have zero volts across the input terminals. They can also be
considered to have zero currents into the input terminals because of the large input resistances.

The best way to obtain the voltage gain of the inverter of Fig. 6-4 is to apply KCL at the inverting
input terminal. Before doing this, though, consider the following. Since the voltage across the op-amp
input terminals is zero, and since the noninverting input terminal is grounded, it follows that the inverting
input terminal is also effectively at ground. This means that all the input voltage v, is across resistor R;
and that all the output voltage ¢, is across resistor R;. Consequently, the sum of the currents entering
the inverting input terminal is

hl + L 0 and therefore v, = — & L;

R, R; R,
So, the voltage gain is G = —(R,/R;), which is the negative of the resistance of the feedback
resistor divided by the resistance of the input resistor. This is an important formula to remember for
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analyzing an op-amp inverter circuit or for designing one. (Do not confuse this gain G of the inverter
circuit with the gain A of the op amp itself.)

It should be apparent that the input resistance is just R;. Additionally, although the load resistor
R, affects the current that the op amp must provide, it has no effect on the voltage gain.

The summing amplifier, or summer, is shown in Fig. 6-5. Basically, a summer is an inverter circuit
with more than one input. By convention, the sources for providing the input voltages v,, v,, and ¢, are
not shown. If this circuit is analyzed with the same approach used for the inverter, the result is

R R R
to=— (Lo, + Lo+ v()
Ra Rb Rc
For the special case of all the resistances being the same, this formula simplifies to
v, = —(t,+ v, +10)

There is no special significance to the inputs being three in number. There can be two, four, or more
inputs.

3

Rf
M~
+

R, r,

Fig. 6-5

Figure 6-6 shows the noninverting voltage amplifier. Observe that the input voltage ¢, is applied at
the noninversting input terminal. Because of the almost zero voltage across the input terminals, ¢; is also
effectively at the inverting input terminal. Consequently, the KCL equation at the inverting input terminal
is

T . . R,
St R =0 which results in t,=114+ -
R, R, R,
o— +
+
r R, *
, I\/\A! R, g r,

? !
'I|—0—’\;\°/\r

Fig. 66
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Since the voltage gain of 1/(1 + R/R,) does not have a negative sign, there is no inversion
with this type of amplifier. Also, for the same resistances, the magnitude of the voltage gain is slightly
greater than that of the inverter. But the big advantage that this circuit has over the inverter is 4 much
greater input resistance. As a result, this amphfier will readily amplify the voltage from a source that
has a large output resistance. In contrast, if an inverter is used, almost all the source voltage will be lost
across the large output resistance of the source, as should be apparent from voltage division.

The buffer amplifier, also called the voltage follower or unity-gain amplifier, is shown in Fig. 6-7. It
is basically a noninverting amplifier in which resistor R, is replaced by an open circuit and resistor R,
by a short circuit. Because there is zero volts across the op-amp input terminals, the output voltage is
equal to the input voltage: v, = ¢,. Therefore, the voltage gain is 1. This amplifier is used solely because
of its large input resistance, in addition to the typical op-amp low output resistance.

O +
+ . O
v,
I'H
o- 1 —o
Fig. 6-7

There are applications, in which a voltage signal is to be converted to a proportional output current
such as, for example, in driving a deflection coil in a television set. If the load is floating (neither end
grounded), then the circuit of Fig. 6-8 can be used. This is sometimes called a voltage-to-current converter.
Since there is zero volts across the op-amp input terminals, the current in resistor Rjis i, = r;’R,, and
this current also flows through the load resistor R, . Clearly. the load current i; 18 proportional to the
signal voltage v;.

+

Fig. 6-8

The circuit of Fig. 6-8 can also be used for applications in which the load resistance R; varies but
the load current i; must be constant. r; is made a constant voltage and v; and R, are selected such that
v;/R, 1s the desired current i;. Consequently, when R, varies, the load current i; does not change. Of
course, the load current cannot exceed the maximum allowable op-amp output current, and the load
voltage plus the source voltage cannot exceed the maximum obtainable output voltage.

CIRCUITS WITH MULTIPLE OPERATIONAL AMPLIFIERS

Often, op-amp circuits are cascaded, as shown, for example, in the circuit of Fig. 6-9. In a cascade
arrangement, the input to each op-amp stage is the output from a preceding op-amp stage, except. of



CHAP. 6] OPERATIONAL-AMPLIFIER CIRCUITS 117

6 kQ 10kQ
AN AN
20
o—A\VVWY > _J——— h 5kQ
+ ._._l\ A A — 4
+ —_
. +
t ———AAN—
l a4kQ 20 kQ § v,
2kQ % -
> I -
Fig. 6-9

course, for the first op-amp stage. Cascading is often used to improve the frequency response, which is
a subject beyond the scope of the present discussion.

Because of the very low output resistance of an op-amp stage as compared to the input resistance
of the following stage, there is no loading of the op-amp circuits. In other words, connecting the op-amp
circuits together does not affect the operation of the individual op-amp circuits. This means that the
overall voltage gain G is equal to the product of the individual voltage gains G,,G,,G,,...; that
is, Gr=G,;G;G,....

To verify this formula, consider the circuit of Fig. 6-9. The first stage is an inverting amplifier, the
second stage is a noninverting amplifier, and the last stage is another inverting amplifier. The output

voltage of the first inverter is —(6/2)r; = —3r,, which is the input to the noninverting amplifier.
The output voltage of this amplifier is (1 + 4/2)(—3¢;) = —9¢;.  And this is the input to the inverter
of the last stage. Finally, the output of this stage is ¢, = —9¢(—10/5) = 18¢;. So, the overall voltage
gain is 18, which is equal to the product of the individual voltage gains: G, = (—3)}3—2) = 18.

If a circuit contains multiple op-amp circuits that are not connected in a cascade arrangement,
then another approach must be used. Nodal analysis is standard in such cases. Voltage variables are
assigned to the op-amp output terminal nodes, as well as to other nongrounded nodes, in the usual
manner. Then nodal equations are written at the nongrounded op-amp inmpur terminals to take
advantage of the known zero input currents. They are also written at the nodes at which the voltage
variables are assigned, except for the nodes that are at the outputs of the op amps. The reason for this
exception is that the op-amp output currents are unknown and if nodal equations are written at these
nodes, additional current variables must be introduced, which increases the number of unknowns.
Usually, this is undesirable. This standard analysis approach applies as well to a circuit that has just a
single op amp.

Even if multiple op-amp circuits are not connected in cascade, they can sometimes be treated as if
they were. This should be considered especially if the output voltage is fed back to op-amp inputs. Then
the output voltage can often be viewed as another input and inserted into known voltage-gain formulas.

Solved Problems

6.1 Perform the following for the circuit of Fig. 6-10. Assume no saturation for parts (a) and (b).
(a) Let R, =12kQ, V,=2V, and V, =0V. Determine ¥, and I,. (b} Repeat part (a) for
R, =9kQ, V,=4V, and V,=2V. (¢) Let V,=5V and V,=3V and determine the
minimum value of R, that will produce saturation if the saturation voltage levels are V, =
+14 V.
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3IkQ
VW

‘ +
Sy,
::l:_—%

Fig. 6-10

=

M

(@) Since for V¥, =0V the circuit is an inverter, the inverter voltage-gain formula can be used to
obtain ¥,.

Then KCL applied at the output terminal gives
I,=-8-%=_-26TmA

(b) Because of the zero voltage across the op-amp input terminals, V_ = ¥, = 2 V. Then, by KCL applied
at the inverting op-amp input terminal,

4-2 v,-2
=0

3 9

The solution is ¥, = —4 V. Another approach is to use superposition. Since the circuit is an inverter
as regards V, and is a noninverting amplifier as regards ¥, the output voltage is

V,= -3(4)+(1 +32)=—-12+8= -4V
With ¥, known, KCL can be applied at the output terminal to obtain

4 —4-2
+ — -

{¢) By superposition,
R, R,
Vaz— 3(5)+ l+—3“(3)=3‘—0667RI

Since R, must be positive, the op amp can saturate only at the specified — 14-V saturation voltage
level. So,

—14 =3 — 0.667R,

the solution to which is R, = 25.5 k. This is the minimum value of R, that will produce saturation.
Actually the op amp will saturate for R; > 25.5 kQ.

6.2  Assume for the summer of Fig. 6-5 that R, = 4 k). Determine the values of R,, R_, and R, that
will provide an output voltage of ¢, = —(3v, + St + 2v,).

First, determine R . The contribution of v, to v, is —(R/R,)v,. Consequently, for a voitage gain of —3
and with R, =4 kQ,

-1 - _3 and thus R, =12kQ

Next, determine R,. The contribution of v, to v, is —(R;/Ryu,. So, with R, =12kQ and for a
voltage gain of — 5,

12
- —= -5 and therefore R, = 0 =24KkQ
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Finally, the contribution of v, to v, is —(R/R)r,. So, with R, = 12kQ and for a voltage gain of —2.

12
R -

-2 which gives R.=6kQ

<

In the circuit of Fig. 6-11, first find V, and I, for V,=4V. Then assume op-amp voltage
saturation levels of V, = +12V and determine the range of V, for linear operation.

12kQ
4xQ AN
AM—
_ 1,
J 6 kQ — |
V, '_‘_ + +
T
= 10V 10 kQ v,
Fig. 6-11
Because this circuit is a summer,
V,= —[Z®H+2-100] =8V and L=%+&=14TmA

Now, finding the range of V, for linear operation,
£12= [V + E(—10)] = =3V, + 20

Therefore, V, =(20 + 12)/3. So, for linear operation, ¥, must be less than (20 + 12)/3 =107V and
greater than (20 — 12)/3=267V: 267V <V, < 10.7V.

Calculate V, and I, in the circuit of Fig. 6-12.

2kQ
MV
4kQ
lZV:J:F_‘ J‘—'\/\/\/—4 _‘L_J +
=6V TSV b

Fig. 6-12

Because of the zero voltage drop across the op-amp input terminals, the voltage with respect to ground
at the inverting input terminal is the same 5V that is at the noninverting input terminal. With this
voltage known, the voltage V, can be determined from summing the currents flowing into the inverting

input terminal:
12-5 —-6-5 V¥ —5

+
2 4 12

Thus, V¥, = —4 V. Finally, applying KCL at the output terminal gives

-4 —4-5
I=—+4-— "= _142mA
6 12
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In the circuit of Fig. 6-13a, a 10-kQ load resistor is energized by a source of voltage ¢, that has
an internal resistance of 90 kQ. Determine v;, and then repeat this for the circuit of Fig. 6-13b.

90 kQ
90 k2 M +

S *
" 10kQ<
—+

(2]
Fig. 6-13

Voltage division applied to the circuit of Fig. 6-13a gives

10 0.1
0t T
So, only 10 percent of the source voltage reaches the load. The other 90 percent is lost across the
internal resistance of the source.

For the circuit of Fig. 6-13b, no current flows in the signal source because of the large op-amp
input resistance. Consequently, there is a zero voltage drop across the source internal resistance, and
the entire source voltage appears at the noninverting input terminal. Finally, since there is zero volts
across the op-amp input terminals, v, =r,. So, the insertion of the voltage follower results in an
increase in the load voltage from 0.1¢, to ¢,.

Note that although no current flows in the 90-k€2 resistor in the circuit of Fig. 6-13b, there is
current flow in the 10-kQ resistor, the path for which is not evident from the circuit diagram. For a
positive ¢,, this current flows down through the 10-kQ resistor to ground, then through the op-amp
power supplies {not shown), and finally through the op-amp internal circuitry to the op-amp output

terminal.

Obtain the input resistance R,, of the circuit of Fig. 6-14a.

The input resistance R;, can be determined in the usual way, by applying a source and obtaining the
ratio of the source voltage to the source current that flows out of the positive terminal of the source.
Figure 6-14b shows a source of voltage V, applied. Because of the zero current flow into the op-amp
noninverting input terminal, all the source current I, flows through R,, thereby producing a voltage
of I,R, across it, as shown. Since the voltage across the op-amp input terminals is zero, this voltage is
also across R, and results in a current flow to the right of I,R,/R,. Because of the zero current flow

Ry R,
VW
I.R,
ll
OT + WA——’. +

R, R,
.+ b
R, —» "—VV\"‘—J W= ANN—

n

R, R,

{a) (b)
Fig. 6-14
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6.7

6.8

into the op-amp inverting input terminal, this current also flows up through R,, resulting in a voltage
across it of I,R,R,/R,, positive at the bottom. Then, KVL applied to the left-hand mesh gives
I.R/R, _ v, 3 R,R,

V,+0+ ———=90 and so Rn,=—=
R I R

a s e

The input resistance being negative means that this op-amp circuit will cause current to flow into the
positive terminal of any voltage source that is connected across the input terminals, provided that the
op amp is not saturated. Consequently, the op-amp circuit supplies power to this voltage source. But,
of course, this power is really supplied by the dc voltage sources that energize the op amp.

For the circuit of Fig. 6-14a, let R, =6kQ, R,=4kQ, and R,=8kQ, and determine
the power that will be supplied to a 4.5-V source that is connected across the input terminals.

From the solution to Prob. 6.6,

R/R 4

in R

Therefore, the current that flows into the positive terminal of the source is  4.5/3 = 1.5 mA. Consequently,
the power supplied to the source is  4.5(1.5) = 6.75 mW.

Obtain an expression for the voltage v, in the circuit of Fig. 6-15.

R
o ’\/\/\F
+
R

VW : N

R
o——AW /
Y + ‘ R, +
v, v, )———/\/\/\,——— R, § Vo
Yy
§ Ra _
Fig. 6-15

Clearly, in terms of v, this circuit is a noninverting amplifier. So,

R
v, = <1 + J)v,
Ra

The voltage v, can be found by applying nodal analysis at the noninverting input terminal.

vy =P, D, — U, Uy — U,

+ +
R R R

=0 from which vy =3, + vy +ry)
Finally, substituting for v, yields

l<1+R’)( + 0, + 03)
U, == —~ Koy +v, + 0
3 Ra 1 2 3

From this result it is evident that the circuit of Fig. 6-15 is a noninverting summer. The number of inputs

is not limited to three. In general,
1 R,
v,= {1+ —=Ne, +uva+ - +01,)
n R,

in which n is the number of inputs.
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In the circuit of Fig. 6-15, assume that R, = 6 kQ and then determine the values of the other
resistors required to obtain v, = 2(v, + v, + t3).

From the solution to Prob. 6.8, the multiplier of the voltage sum is

1 6
3 (l + -——> = the solution to which is R,=12kQ

As long as the value of R is reasonable, say in the kilohm range, it does not matter much what the
specific value is. Similarly, the specific value of R, does not affect v, provided R, is in the kilohm range or
greater.

Obtain an expression for the voltage gain of the op-amp circuit of Fig. 6.16.

Fig. 6-16

Superposition is a good approach to use here. If v, =0V, then the voltage at the noninverting input
terminal is zero, and so the amplifier becomes an inverting amplifier. Consequently, the contribution of ¢,
to the output voltage vy is —(R,/R,)t,. On the other hand, if ¢, =0V, the circuit becomes a noninverting
amplifier that amplifies the voltage at the noninverting input terminal. By voltage division, this voltage is
R./(R, + R). Therefore, the contribution of r, to the output voltage ¢, is

R, R R(R, + R))
(1402,

— =, = v
R, + R, R R(R, + R

b
a

Finally, by superposition the output voltage is
R(R,+R,) R,

Uy = L —
RAR, + R) R,

a

This voltage-gain formula can be simplified by the selection of resistances such that R,‘R, = R,/R,.
The result is
R
t, ==L (v, — vl
a
in which case the output voltage v, is a constant times the difference v, — v, of the two input voltages. This
constant can, of course, be made 1 by the selection of R, = R,. For obvious reasons the circuit of Fig.

6-16 is called a difference amplifier.

For the difference amplifier of Fig. 6-16, let R, = 8kQ and then determine values of R,, R,,
and R, to obtain v, = 4(v, — v,).

From the solution to Prob. 6.10, the contribution of —4¢, to r, requires that R,/R, = 8/R, =4, and
so R, =2kQ. For this value of R, and for R, =8k, the multiplier of ¢, becomes

R, 8 R, 4
—— (1 +-}=4 or - =-
R, + R, 2 R,+R. 5§
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Inverting results in

R, 5 R, 1
—+1=- or — ==
R, 4

c ¢

Therefore, R.= 4R, gives the desired response, and obviously there is no unique solution, as is typical
of the design process. So, if R, is selected as 1 k), then R, =4kQ. Andfor R,=2kQ, R.=8kQ, and
so on.

6.12 Find V, in the circuit of Fig. 6-17.

2kQ
—VW—
1kQ V_
VYWV -
il ——o
- + +
6k e 8 kQ

O
Fig. 6-17
By nodal analysis at the noninverting input terminal,
V., V.-V, V,-6
—_—— — = 4 - — = =0
12 8 6
which simplifies to ¥V, = 3V, — 8. But by voltage division.
4
Vo= Vo=V, =3,
4+2
And so,
V,=3(3V,)— 8 from which V,=8V

6.13  For the op-amp circuit of Fig. 6-18, calculate V,. Then assume op-amp saturation voltages of
114V, and find the resistance of the feedback resistor R that will result in saturation of the op
amp.

Fig. 6-18
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6.15
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By voltage division,
4
V,= — x5=2V
4+6

Then since V_ =V, =2V, the node-voltage equation at the inverting input terminal is

5-2 V-2 . }
: =0 which results in V,= -10V

—_— + - -
3 12
Now, R, is to be changed to obtain saturation at one of the two voltage saturation levels. From KCL
applied at the inverting input terminal,
5-2 V,-2
—e = - =0 or R, +V,-2=0
3 R,

So, R, =2-V,. Clearly, for a positive resistance value of R,, the saturation must be at the negative
voltage level of —14 V. Consequently, R, =2 —(—14) = 16 kQ. Actually, this is the minimum value of
R, that gives saturation. There is saturation for R, > 16 kQ.

For the circuit of Fig. 6-19, calculate the voltage V, and the current /.

4k
M
J; V*
6V =
1’ 9

16 kQ

12kQ

he

Fig. 6-19

In Fig. 6-19, observe the lack of polarity references for V. and V,. Polarity references are not essential
because these voltages are always referenced positive with respect to ground. Likewise the polarity reference
for V¥, could have been omitted.

By voltage division,

12
V.=V = —"V, =06V,
12 + 8

With V_ = 0.6¥,, the node-voltage equation at the inverting input terminal is

v, — 0.6V, . ) .

— =t = e =) which simplifies to V,=12V
4 16

The current I, can be obtained from applying KCL at the op-amp output terminal:

12 12 12 — 0.6(12)
= ———— =21mA

L=+ —— %
10 8+ 12 16

Determine ¥V, and I, in the circuit of Fig. 6-20.

The voltage ¥, can be found by writing nodal equations at the inverting input terminal and at the V,
node and using the fact that the inverting input terminal is effectively at ground. From summing currents
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10 kQ

[P

=
Fig. 6-20

2V

into the inverting input terminal and away from the V| node, these equations are

2 W
— =0 and

Mot Kok
10 20 20 S 4

o=0

which simplify to
Vi= -4V and 10V, - 5V, =0
Consequently,
V,=2V,=2(-4)= -8V

Finally, I, is equal to the sum of the currents flowing away from the op-amp output terminal through
the 8-k and 4-kQ resistors:

-8 —8—(—4)
L="—+"""""< _2mA
8 4

6.16 Find V, in the circuit of Fig. 6-21.

8 kQ

4k | 25kQ

9kQ
5kQ § 75k L———-’\/\/\,————‘

1 +
}

<

—iif

Fig. 6-21

The node-voltage equation at the V| node is

( 1 N 1 . 1 N 1>V 1 v 4
5 4 25+75 8/ 8° 4
which upon multiplication by 40 becomes 27V, — 5V, = 40. Also, by voltage division,

7.5
V,=—"—V, =075V,
75+25
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Further, since the op amp and the 9-kQ and 3-kQ resistors form a noninverting amplifier.
V, = (1 + :0.75V,) = 3V, or v, =1y,

Finally, substitution for V| in the node-voltage equation yields

|2
27(;")—51{,:40 and so V,=10V

Determine V, in the circuit of Fig. 6-22.

6kQ
ANN—2
12kQ
8kQ2 4kQ
v, V.
A% A2 =
b—————O
+ +
Y = )
I 2kQ v,
, . 0

Fig. 6-22

Since V_ =0V, the node-voltage equations at the V| and inverting-input terminal nodes are

i i -8 V¥V, -\ i W
+ +——=0 and —+ ==
2 4 8 6 4 12

Multiplying the first equation by 24 and the second equation by 12 gives
25V, —4V, =24 and 3Vi+V,=0
from which V¥, can be readily obtained: V, = —195 V.

Assume for the op amp in the circuit of Fig. 6-23 that the saturation voltages are V, =
+14V and that R, = 6kQ. Then determine the maximum resistance of R, that results in the
saturation of the op amp.

The circuit of Fig. 6-23 is a noninverting amplifier, the voltage gain of whichis G=1+6/2 =4
Consequently, V, =4V,, and for saturation at the positive level (the only saturation possible), V, =
14/4 = 3.5 V. The resistance of R, that will result in this voltage can be obtained by using voltage division:

10

V.= -~ - x49=35 or 49 = 35 + 3.5R,
10 + R,

a9V = 10kQ v

2kQ
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6.19

6.20

and thus
14
R,=— =4kQ
35

This is the maximum value of resistance for R, for which there is saturation. Actually, saturation occurs
for R, <4kQ

In the circuit of Fig. 6-23, assume that R, =2k, and then find what the resistance of R,
must be for the op amp to operate in the linear mode. Assume saturation voltagesof V,= +14V.

With R, = 2k, the voltage V, is, by voltage division,

10
V, =——x49 =408V
10 +2

Then for V¥, =14V, the output voltage equation is
R,
14 =408 1+ 5 )= 4.08 + 2.04R,

Therefore,

_ 14 -408

;= = 4.86 kQ
2.04

Clearly, then, for ¥, to be less than the saturation voltage of 14 V, the resistance of the feedback resistor
R, must be less than 4.86 kQ.

Obtain the Thévenin equivalent of the circuit of Fig. 6-24 with V;, referenced positive at
terminal a.

1kQ

AM-

+ v, 4kQ
»—'\/\A,——J a

LSV = —AVW— 2kQ
| 22.5kQ
2.5kQ %
- -~ — O h
Re
Fig. 6-24

By inspection, the part of the circuit comprising the op amp and the 2.5-kQ and 22.5-kQ resistors is a

noninverting amplifier. Consequently,
225
Vi=[{1+ —}x15=15V
25

Since V;, = V,,, the node voltage equation at terminal a is
v Vin — 1.5 Vg, — 15
_T_h + Th + Th -
2 1 4

0 and so Vin =3V
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If a short circuit is placed across terminals a and b, then

1.5 15
Isc = ’ab=T+z—=525mA

Consequently, v 3
Ry =2 =-"_=0571kQ
I 5.25

sc

6.21 Calculate V, in the circuit of Fig. 6-25.

35k

18 kQ2

0kQ SV,

Fig. 6-25

Although nodal analysis can be applied, it is simpler to view this circuit as a summer cascaded with a
noninverting amplifier. The summer has two inputs, ¥, and 4 V. Consequently, through use of the summer
and noninverting voltage formulas,

7 7 18
Ve ~{—xd4+-¥V|{1+—)=-32-70
35 4 6

8V, = —32 and V,= -4V

o

So,

6.22 Find V, in the circuit of Fig. 6-26.

The circuit of Fig. 6-26 can be viewed as two cascaded summers, with V, being one of the two inputs
to the first summer. The other input is 3 V. Then, the output V, of the first summer is

Vi=-[#03)+ V)= -18-2V,

6kQ

12kQ 24 kQ

= 8kQ +
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6.23

6.24

The output V, of the second summer is
Vo= —[¥(-2+ HV]=6-2V,
Substituting for V| gives
V,=6—2(—18-2V) =64+ 36 + 4},
Finally, V,= —%1= —14V.

Determine V, in the circuit of Fig. 6-27.

4kQ
2kQ v,
s
v, + +
f I
2kQ =2V

L] |
. —0

=

Fig. 6-27

In this cascaded arrangement, the first op-amp circuit is an inverting amplifier. Consequently, the
op-amp output voltage is —(6/2X —3) = 9 V. For the second op amp, observe that V_ =V, = 2 V. Thus,
the nodal equation at the inverting input terminal is

9-2 V,-2

0 and so V.=—-12V
2 4

Perhaps a better approach for the second op-amp circuit is to apply superposition, as follows:

V= —49) + (1 + 2= —18+6=—12V

Find V;, and V,, in the circuit of Fig. 6-28.

10kQ

8V =

b

%1001(9
—T
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Before starting the analysis, observe that because of the zero voltages across the op-amp input terminals,
the inverting input voltages are V,_ =8V and V,. =4V. The two equations needed to relate the
output voltages can be obtained by applying KCL at the two inverting input terminals. These equations are

4=V, 4 4-8

8—Vlo 8—V20 84
— = e e
50 100 40

+—=+ —-=0 and
10 20 40

These equations simplify to
4V, + 2V,, =52 and 2V, =2

The solutions to these equations are V,, =125V and V,, =1V,

lo

For the circuit of Fig. 6-29, calculate V,,, V,,. I, and I,. Assume that the op-amp saturation
voltages are +14 V.

Fig. 6-29

Observe that op amp | has no negative feedback and so is probably in saturation, and it is saturated
at 14 V because of the 5 V applied to the noninverting input terminal. Assume this is so. Then this 14 V is
an input to the circuit portion containing op amp 2, which is an inverter. Consequenily, V,, =
—(3/12X14) = —3.5 V. And, by voltage division,

12

= - (=35)=-2625V
12+ 4

Since this negative voltage is applied to the inverting input of op amp 1, both inputs to this op amp tend
to make the op-amp output positive. Also, the voltage across the op-amp input terminals is not approximately
zero. For both of these reasons, the assumption is confirmed that op amp 1 is saturated at the positive
saturation level. Therefore, V,,=14V and V,, = —3.5V. Finally, by KCL,

14 —-35 -35 -
I,= -=117TmA and I,= ——+ - - = —139mA
12 3 4+ 12

Supplementary Problems

Obtain an expression for the load current i, in the circuit of Fig. 6-30 and show that this circuit is a
voltage-to-current converter, or a constant current source, suitable for a grounded-load resistor.

Ans. i, = —v/R; i is proportional to ¢; and is independent of R,
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R
MWV~
R
—AM——
O "
lil
Ry R
{
=
Fig. 6-30
6.27 Find ¥, in the circuit of Fig. 6-31.
Ans. —~4V
)
6 kQ
A\
12kQ 10 kQ

I
Fig. 6-31

6.28  Assume for the summer of Fig. 6-5 that R, = 12kQ, and obtain the values of R,, R, and R, that will
result in an output voltage of ¢, = —(8t¢, + 4¢, + 6v,).

Ans. R,=6kQ, R =8kQ R,=48kQ

6.29  In the circuit of Fig. 6-32, determine V, and I, for V,=6V and V,=0V.
Ans. -5V, —0.625mA

6.30 Repeat Prob. 629 for V, =16V and V,=4V.
Ans. 10V, .08 mA

Fig. 6-32
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6.34
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6.36
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For the circuit of Fig. 6-32, assume that the op-amp saturation voltages are +14V and that V, =0 V.
Determine the range of V, for linear operation.

Ans. —661V <V, <12V

For the difference amplifier of Fig. 6-16,let R, = 12kQ, and determine the values of R,. R, and R, to ob-
tain v, =, — 2v,.

Ans. R, =6kQ; R, and R_have resistances such that R, = 2R,

In the circuit of Fig. 6-33, let V¥, =4V and calculate V, and I,.
Ans. 72V, 18mA

For the op-amp circuit of Fig. 6-33, find the range of ¥, for linear operation if the op-amp saturation voltages
are V,=+14V,

Ans. =78V <V, <778V

For the circuit of Fig. 6-34, calculate V, and I, for V,=0V and ¥, =12V.
Ans. —12V, —74mA

&t

e A,
f’\/\/\r %3“) 5k0§

Fig. 6-34

Repeat Prob. 6.35for V, =4V and },=8V.
Ans. 8V,327mA

Determine ¥, and !/, in the circuit of Fig. 6-35for V,=15V and ¥, =0V.
Ans. —11V, —65mA
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12kQ 8 kQ
— VWV

l

AN

4xQ
\ I,
/

2kl Y,

-

i

b

Fig. 6-35
6.38 Recpeat Prob. 637 for V,=5V and V,=3V.
Ans. —567V, —342 mA

6.39  Obtain V, and /, in the circuit of Fig. 6-36 for V, =12V and ¥, =0V.
Ans. 108V, 405 mA

-~
i+

4kQ

Fig. 6-36

6.40  Repeat Prob. 6.39for V,=4V and V,=2V.
Ans. —148V, —7.05 mA

6.41  In the circuit of Fig. 6-37, calculate V, if V, =4V,
Ans. =310V

8kQ

12kQ
2kQ 6kQ

Fig. 6-37
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6.42

6.43

6.44

6.45

6.46

6.47

6.48

OPERATIONAL-AMPLIFIER CIRCUITS [CHAP. 6

Assume for the circuit of Fig. 6-37 that the op-amp saturation voltages are V, = + 14 V. Determine the
minimum positive value of ¥, that will produce saturation,

Ans. 181V
Assume for the op-amp in the circuit of Fig. 6-38 that the saturation voltages are V,= +14V and
that R, = 12 kQ. Calculate the range of values of R, that will result in saturation of the op amp.

Ans. R, =>7kQ

Fig. 6-38

Assume for the op-amp circuit of Fig. 6-38 that R, =10kQ and that the op-amp saturation voltages
are V¥, = +13 V. Determine the range of resistances of R, that will result in linear operation.

Ans. 0Q < R, <8.625kQ

Obtain the Thévenin equivalent of the circuit of Fig. 6-39 for V¥, =4V and R, =8kQ. Reference
Vi positive toward terminal a.

Ans. 533V, 133kQ

2kQ2

+ 6 kQ u

1|||
S|
=
o]

3‘6

RS

Fig. 6-39

Repeat Prob. 645for V., =5V and R, =6kQ
Ans. 611V, 1.33kQ

Calculate V, in the circuit of Fig. 6-40 with R, replaced by an open circuit.
Ans. 8V

Repeat Prob. 6.47 for R, = 4 kQ.
Ans. —48YV
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R!
W
akQ
—VW——
4xQ
2kQ AA A ¢
—VWV\— -
> 6 kQ
+
1sv= 9kQ +
— AAA
10kQ § Ve
IkQ % ~
=
Fig. 6-40

649 Calculate V, in the circuit of Fig. 6-41 for V, =2V and V,=0V.
Ans. 12V

650 Repeat Prob. 649 for V, =3V and V,=2V.
Ans. 213V

6.51  Determine V,, and V,, in the circuit of Fig 6-42.
Ans. Vi,=16V, V¥, =105V

20kQ2

%IOkQ I
— —L 1 5



Chapter 7

PSpice DC Circuit Analysis

INTRODUCTION

PSpice, from MicroSim Corporation, is 4 computer program that can be used on many personal
computers (PCs) for the analyses of electric circuits. PSpice is a derivative of SPICE which is a circuit
simulation program that was developed in the 1970s at the University of California at Berkeley. SPICE
is an acronym for Simulation Program with Integrated Circuit Emphasis. PSpice was the first derivative
of SPICE that was suitable for use on PCs. PSpice and SPICE, which are similar in use, are both used
extensively in industry. There are various versions of each.

Principally, only the creation of a PSpice circuit file (also called source file) is presented in this
chapter. (But much of this material applies as well to the creation of a SPICE circuit file.) This creation
requires the use of a text editor. Typically there are two text editors that can be used, one of which 1s
in what is called the PSpice Control Shell.

The PSpice Control Shell is a menu system that includes a built-in text editor. The Control Shell
can be run by simply typing PS at the DOS prompt (perhaps C:>), and then pressing the Enter key.
After a few seconds, a menu appears. Menu items can be selected by using either the keyboard, mouse,
or arrow keys to move horizontally and vertically within the menus. Running PSpice interactively using
the Control Shell requires some study, at least for most PSpice users. The MicroSim Corporation has
a User's Guide that includes an explanation of the Control Shell, among many other features. And there
are circuit analysis textbooks that explain its use. But no explanation will be given here.

Instead of editing via the Control Shell, some PSpice users may prefer to use an ASCII text editor,
assuming one has been installed to be accessed from PSpice. In this case, the first step to utilizing PSpice
might be at the DOS prompt to type CD PSPICE and then press the Enter key to change to the PSpice
directory. Then, depending on the particular ASCII text editor, the next step may be to just type ED
EEL.CIR and enter it. The ED is the code for edit, and EEL.CIR is the name of the circuit file. Another
name such as EE.CIR is as suitable, but the extension .CIR must be included. Now the editing process
can be begun and the circuit file created.

After the creation of the circuit file, the computer must be instructed to run the PSpice program
with the particular circuit file. If the Control Shell is being used, then the Analysis menu item can be
selected for doing this. If it is not being used, then all that is necessary is to type PSPICE followed by
the name of the circuit file. The computer then runs the program and places the results in an output file
that has the same name as the circuit file except that the extension .OUT replaces the extension .CIR.

Assuming no error notification, the final step is to print the output file. If the Control Shell is being
used, this printing can be obtained via the Quit menu item. If it is not being used. then the printout can
be obtained by typing PRINT followed by the name of the output file.

BASIC STATEMENTS

A specific PSpice circuit file will be presented before a general consideration of the basic statements.
Below is the circuit file for the circuit of Fig. 7-1.

1 4Q 2 7Q 3
. A -
R1 R3
R4 90
VI = RV II<T>5A R2 6 4 RS;IOQ 12 6A
V2=28V
[ o T
Fig. 7-1
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CIRCUIT FILE FOR THE CIRCUIT OF FIG. 7-1
V1 0
R1
I1
R2
R3
R4
V2
R5
I2
. END

[
O XU WU b ®

WO WO
QO & & wWwoOrnw

In this circuit file, the first line, which is called a title line, identifies the circuit being analyzed. The
last line is an .END line and is required complete with the period. The lines in between define the circuit,
with one component per line. Each of these lines begins with a unique component name, the first letter
of which identifies the type of component. Following each name are the numbers of the two nodes
between which the component is connected. And following these node numbers is the electrical value of
the component.

If PSpice is run with this circuit file, the following appears in the output file:

NODE  VOLTAGE NODE  VOLTAGE NODE  VOLTAGE NODE  VOLTAGE
(1) 8.0000 (2) 8.4080 (3) -16.0690 (4) -8.0000

VOLTAGE SOURCE CURRENTS

NAME CURRENT
Vi 1.020E-01
V2 8.965E-01

TOTAL POWER DISSIPATION -7.99E+00 WATTS

This printed output includes node voltages and voltage-source currents. The directions of these
currents are into the first specified nodes of the voltage sources. The specified total power dissipation is
the total power provided by the two voltage sources. Since this power is negative, these sources absorb
the indicated 7.99 W. The E designates a power of 10, as often does a D in a SPICE output. In a SPICE
output, though, the total power dissipation is the net power generated by «/l the independent sources,
both voltage and current.

Now consider PSpice circuit file statements in general. The first line in the circuit file must be a title
statement. Any comments can be put in this line. For future reference, though, it is a good idea to identify
the circuit being analyzed. No other such line is required, but if another is desired, one can be obtained
by starting the line with an asterisk (*) in column 1. Although not recommended, the title line can be
left blank. But the circuit description (the component lines) cannot start in the first line.

Between the title line and the .END line are the component or element lines, which can be in any
order. Each consists of three fields: a name field, a node field, and a valuc field. Spaces must appear
between the fields and also between the node numbers within the node field. The number of spaces 1s
not critical.

In the name field the first letter designates the type of component: R for resistor, V for independent
voltage source, and I for independent current source. The letters do not have to be capitalized. Each R,
V, or I designator is followed by some label to identify the particular component. A label can consist
of letters as well as numbers, with a limit of seven in SPICE. .

Each node field comprises two nonnegative integers that identify the two nodes between which the
particular circuit component is connected. For a resistor, it does not matter which node label is placed
first. For a voltage source, the first node label must be the node at which the voltage source has its
positive polarity marking. For a current source, the first node label must be for the node at which the
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current enters the current source. Note that this node arrangement pertains when positive voltages or
currents are specified, as is usual. If negative values are specified, the node arrangement is reversed.

As regards node numbers, there must be a 0 node. This is the node which PSpice considers to be
the ground node. The other nodes are preferably identified by positive integers, but these integers need
not be sequential.

The value field is simply the value positive or negative of the component in ohms, volts, or
amperes, whichever applies. The resistances must be nonzero. Note that the values must not contain
commas.

A comment can be inserted in a component line by placing a semicolon after the value field. then
the comment is inserted after the semicolon.

As another illustration, consider the circuit of Fig. 7-2. A suitable circuit file 1s

CIRCUIT FILE FOR THE CIRCUIT OF FIG. 7-2
Vi 4 0 2E3

Rl 4 9 30K
R2 0 9 40MEG
I1 0% 70M
.END
4 30 kQ 9
R1
VI = 2kv R2<40MQ NI 70 mA

In this circuit file, observe the use of suffix letters in the value ficld to designate powers of 10. The
2E3 for the V1 statement could as well be 2K. Following is a complete listing of PSpice suffix letters
and scale factors.

F 10" U 10°° MEG 10°
P 1072 M 10 *? G 10°
N 10° K 10* T 10'2

These suffix letters do not have to be capitalized; PSpice makes no distinction between uppercase
and lowercase letters.

DEPENDENT SOURCES

All four dependent sources are available in PSpice. Their identifiers are E for a voltage-controlled
voltage source, F for a current-controlled current source, G for a voltage-controlled current source, and
H for a current-controlled voltage source.

For an illustration of dependent source statements, consider the circuit of Fig. 7-3, and the
corresponding circuit file below.

In Fig. 7-3 the two “dummy " voltage sources VD! and VD2, with zero in the value field, arc needed
because of the PSpice requirement that for a current to be a controlling quantity. it must flow through
an independent voltage source. If no such source is present, then a “dummy™ voltage source of zero
volts must be inserted. The voltage is made zero to avoid aflecting the circuit operation. The 0 need not
be specified, though, because PSpice will use a default of 0 V.
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20001, 3,
| VDI, ke 4 13 kQ 14kQ
J.|| Y+ - -
-~ +
ov I R2
HI
17kQ SR3
VZ
01<T RI§6kQ +5 Fi l>3/, 8 Vs =30V
8 x 1073V, €
12kQ S R, VD2 = oV

Fig. 7-3

CIRCUIT FILE FOR THE CIRCUIT OF FIG. 7-3

Gl 01 4 0 8M
R1 10 6K

vbDl 2 1 0

R2 3 2 12K

H1 3 4 VD2 2K
R3 4 5 17K

R4 5 0 12K

F1 4 0 VD1 3
RS 4 6 13K

El 67 50 3
R6 8 7 15K

vD2 O 8 0

R7 7 9 14K

Vs 9 0 30

.END

For each dependent source statement, the first two nodes specified are the nodes between which the
dependent source is positioned. Further, the arrangement of these nodes is the same as for an independent
source with regard to voltage polarity or current direction.

For a voltage-controlled dependent source, there is a second pair of specified nodes. These are the
nodes across which the controlling voltage occurs, with the first node being the node at which the
controlling voltage is referenced positive. For a current-controlled dependent source, there is an
independent voltage source designator instead of a second pair of nodes. This is the name of the
independent voltage source through which the controlling current flows from the first specified node of
the voltage source to the second. The last field in each dependent source statement is for the scale factor
or multiplier.

PSpice does not have a built-in component for an ideal operational amplifier. From the model shown
in Fig. 6-2b, though, it should be apparent that all that is required to effectively obtain an ideal op amp
is a single voltage-controlled voltage source with a huge voltage gain, say 500 000 or more. If a nonideal
op amp is desired, resistors can be included as shown in Fig. 6-2a.

.DC AND .PRINT CONTROL STATEMENTS

So far, the only voltages and currents obtained have been node voltages and independent voltage
source currents. Obtaining others requires the inclusion of a .DC control statement, and also a .PRINT
statement in the source file.
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If a circuit had. say, a 30-V dc voltage source named V1, a suitable .DC control statement would be
.DC vl 30 30 1

(V1 was selected for purposes of illustration, but any independent voltage or current source can be
used as a .DC control statement.) Note that two value specifications are necessary, which are both 30
here. The reason for having two of them is to allow for a variation in voltage. If, for example, three
analyses were desired, one for V1 =30V, anotherfor VI =35V, andathirdfor V1 =40V, the
statement would be

.DC vl 30 40 5

where 30 i1s the first voltage variation, 40 is the last one, and 5 is the voltage increment between
the variations.

Now, suppose it is desired to obtain the voltage on node 4 with respect to ground, the voltage across
nodes 2 and 3 with node 2 referenced positive, the voltage across resistor R6 with the positive reference
at the first specified node of that resistor, and the current through resistor R2 with the reference direction
of the current being into the first specified node of that resistor. The required .PRINT statement would be

.PRINT DC V(4) V(2.,3) V(R6) I(R2)

When a .PRINT statement is used, only the voltages and currents specified in that statement will
appear in the output.

The DC must be included in the PRINT statement to specify the type of analysis. Further, although
optional, a DC specification is often included in cach dc independent source statement between the node
and value fields as in, for example.

vi 3 4 ©DC 10.

With some versions of SPICE. only currents flowing through voltage sources can be specified as in,
for example, (V2). Also, voltages must be specitied across nodes and not components.

RESTRICTIONS

PSpice requires a de path to ground from each node. This is seldom a problem for dc circuits, but
must be considered for some other circuits, as will be scen. Resistors and voltage sources (and also
inductors) provide dc paths, but current sources (and capacitors) do not. A resistor of huge resistance
can always be inserted between a node and ground to provide a dc path. The resistance should be large
enough that the presence of the resistor does not significantly affect the circuit operation.

Each node must have at least two circuit components connected to it. This restriction poses a slight
problem at an open circuit. One simple solution is to insert a resistor of huge resistance across the open
circuit.

Finally, PSpice will not allow a loop of voltage sources (or of inductors). The insertion of a resistor
in series with one of the voltage sources will eliminate this problem. The resistance should be small
enough that the presence of the resistor does not significantly affect the circuit operation.

Solved Problems

7.1 Repeat Prob. 4.11 using PSpice. Specifically, find the mesh currents I, and I, in the circuit of
Fig. 4-14.

Figure 7-4 is Fig. 4-14 (redrawn and labeled for PSpice). Such a circuit will be referred to as a PSpice
circuit. Following are the corresponding circuit file and the printed output obtained from running PSpice
with this circuit file. Observe that I, =1(RI)= -8 A and [, =1R3)=1A are in agreement with
the answers 1o Prob. 4.11.
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| R1 ) R3 .
AW v AV
80 20 +
R2S6Q 0SSy
R4S
El 0sy, 3 I 5
Vi=— 120V VZ—_'T-()OV
0
Fig. 7-4

CIRCUIT FILE FOR THE CIRCUIT OF FIG. 7-4

El 10 45 0.5
RT 12 8

R2 2 3 6

vi 3 0 120

R3 2 4 2

R4 4 5 4

v2 5 0 60

.DC V1 120 120 1
.PRINT DC I(R1) I(R3)

.END
khkkkdkhhhdhhhhhkhhhhkhhhhdhhkhhkkkhhkhkhkhhhhbhhhhhrhbhkkhhkhhkhhhkhr kb khkkdkk

Vi I(R1) I(R3)
1.200E+02 -8.000E+00  1.000E+00

7.2 Repeat Prob. 4.15 using PSpice. Specifically. find the power absorbed by the dependent source
in the circuit of Fig. 4-19.

Figure 7.5 is the PSpice circuit corresponding to the circuit of Fig. 4-19.

130 9 14V
A > J|| —
Ro6 V6
Iy
6 18Q
n|»—~—'vv\,——<»7
Vi —-lOV \’5—7V

ZTG

0
Fig. 7-5

Since PSpice does not provide a power output except for the total power produced by independent
voltage sources, the power absorbed by the dependent source must be calculated by hand after PSpice is
used to obtain the voltage across the dependent source and the current flowing into the positive terminal
of this source.

In the following circuit file, observe in the V2 statement (V2 5§ 0 —16) that node 5 is the first
specified node, which in turn means that the specified voltage must be negative since node 5 is not the
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positive node. Node 5 should be the first specified node because the controfling current I, flows into it
Remember that a controlling current must flow through an independent voltage source

CIRCUIT FILE FOR THE CIRCUIT OF FIG. 7-5

Rl 10 20
vi 21 10
R2 2 3 15
H1 3 4 V2 20
R3 4 5 35
V2 5 0 -16
Vi 4 6 20
R4 6 7 18
vs 8 7 7
RS 8 0 11
R6é 2 9 13
vée 9 7 14

.DC V1 10 10 1
.PRINT DC V(H1) TI(H1)

.END
P de e de ok e vk d e d e Ik vk vk de sk ok vk ok vk ok ok vk ke kR gk Kk ok % ok vk ok R d vk vk e ok e ok e vk e vk ke ke o ok ok ok ke vk ke ok ok ok v ke ke ok

V1 V(H1) I (H1)
1.000E+01 8.965E+00 -1.080E-01

The power absorbed by the dependent source can be obtained from the printed output:
P = V(HI} x {H1) = 8965(—0.108) = — 0.968 W

which agrees with the answer to Prob. 4.15.

7.3 Repeat Prob. 4.22 using PSpice. Specifically, determine the current [ in the circuit of Fig. 4-25.

Figure 7-6 is the PSpice circuit corresponding to the circuit of Fig. 4-25. This PSpice circuit. though,
has an added dummy voltage source VD. It is the current in this source that is the controlling current for
the two dependent sources. Again, remember that a controlling current must flow through an independent
voltage source.

Below is the corresponding circuit file along with the printed output obtained when this file 1s run
with PSpice. The output I(R3) =3 A agrees with the answer to Prob. 4.21.

R2
1 69 2
1 l'
L———{:::}———- 1 Se0 HI 127
F1 0.51 RICI2N 6 A 3 4
VD=0V R4 180
0
- L

Fig. 7-6
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FILE FOR THE CIRCUIT OF FIG. 7-6
vD 0.5

12

6

6

6

<
o

12

[
[oe)

6 6 1

.PRINT DC I(R3)

.END

% % de do & kg %k & ok e ek vk ke B ok ke ok gk 3k ok ok ke 3k vk ok ok dk ok ok ok kb ok ok ok ke ke ok e sk ok vk ok e ok ok sk ok bk Aok

11

6.000E+00

I(R3)
3.000E+00

Repeat Prob. 4.49 using PSpice. Specifically, determine the mesh currents I, I,, and I, in the
circuit of Fig. 4-39,

Figure 7-7 1s the PSpice circuit corresponding to the circuit of Fig. 4-39. A dummy voltage source V2
has been included for the controlling current I, to flow through.
Following is the corresponding circuit file along with the printed output obtained when this file

1s run with PSpice. The currents I(R1) =/, = — 3260 mA, I(R4)=1,= — 1989 mA, and(R3)=1, =
1.823 mA  agree within three significant digits with the answers to Prob. 4.49,
2?IV 5 6 kQ
——————AW
Vi R4

10V = Vi

37

. 10m§n3
3

CIRCUIT

V1
R1
R2
El
V2
F1
R3
V3
R4

1

NGO & WK

TN O OO~ WNO

.DC V1
.PRINT DC TI(R1) TI(R4) TI(R3)

. END

FILE FOR THE CIRCUIT OF FIG. 7-7
10
5K
8K
6 0 2

vz 3
10K

20

6K

10 10 1

LR R R AR SRR RS EE R R E R XY R R SR R SR SRR YT T

Vi

1.000E+01

I(R1) I(R4) I(R3)
-3.260E-03 -1.989E-03  1.823E-03
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75 Repeat Prob. 5.11 using PSpice. In other words, obtain the Thévenin equivalent of the circuit
of Fig. 5-20a.

Figure 7-8 is the PSpice circuit corresponding to the circuit of Fig. 5-20a. This PSpice circuit has a
dummy voltage source V1 inscrted for sensing the controlling current /1.

48 2
o » -0 a
RI
RIS2Q
HI 81 R2260 !
VIE= ov
] | I
0

Fig. 7-8

(V]

CIRCUIT FILE FOR THE CIRCUIT OF FIG. 7-8
H1 10 Vi 8

RL 12 4

R2 20 6

R3 2 3 12

Vi 30

.TF Vv(2,0) Vi1

.END
I R R R R R 2R R R R 2222222233223 XXX2XXSREXSR RS2 22222 2 X2 R 2 22 24
NODE  VOLTAGE NODE  VOLTAGE NODE  VOLTAGE

(1) 0.0000 (2) 0.0000 (3) 0.0000

*k SMALL-SIGNAL CHARACTERISTICS

V(2,0)/Vl = -2.500E-01

INPUT RESISTANCE AT V1 = 9.600E+00

OUTPUT RESISTANCE AT V(2,0) = 3.000E+00

Above is the corresponding circuit file along with the PSpice output. In the circuit file a ' TF statement
has been included to obtain the Thévenin resistance. The format of this statement is

.TF (output variable) (independent source)
The resulting output consists of three parts:

1. The ratio of the output variable to the specified source quantity. For example. in the case in which the
independent source provides an input voltage and the output is the output voltage, this ratio is the
voltage gain of the circuit.

2. The second is the resistance “seen” by the independent source. It is the ratio of the source voltage to
the source current flowing out of the positive source terminal with the other independent sources
deactivated. In an electronic circuit, this resistance may be the input resistance.

3. The final output part consists of the output resistance at the terminals of the output variable,
and includes the resistance of any resistor connected across these terminals. For the present case, this
output resistance is the Thévenin resistance, which is the desired quantity.

The voltage gain and the input resistance parts of the output are not of interest. The printed output resistance
of 3 Q. the Thévenin resistance, agrees with the answer to Prob. 5.11. The Thévenin voltage is zero, of course,
as is specified by the printed node 2 voltage.
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7.6 Repeat Prob. 5.46 using PSpice. Specifically, obtain the Thévenin equivalent of the circuit of Fig.
5-49 to the left of terminals ¢ and b.

Figure 7-9 is the PSpice circuit corresponding to the circuit of Fig. 5-49. A resistor R3 has been inscrted
across the open circuit at terminals a and b to satisfy the PSpice requirement that at least two components
must be connected to each node. Howcver. the resistance of R3 is so large that the presence of this resistor will
not significantly affect the circuit operation.

Below is the corresponding circuit file along with the resulting output. A . TF statement has been included
in the circuit file to obtain the Thévenin resistance. No .DC or .PRINT statements have been included

Vi / 5 V% 4
M . ¥ {|r ﬁj a
48 V 10V
R2 16 Q
RI1 16 Q 3 R3§ 10 MQ
Hi 81
80 J
L AM—O
0 R4 5
Fig. 7-9

CIRCUIT FILE FOR THE CIRCUIT OF FIG. 7-9
R1 16

V1 -48

R2 16

H1 vVl 8

V2 10

R3 10MEG

R4 8

.TF V(4,5) V1

.END
de de e e e e ke ek vk ok ok ok ok ok ok ok ke ok Kk ke ok ok ok ok ok ok ok ok ok ok ok ok ok ok e ok Tk ok ok ok ok ke ok ok ok ok ok ke ok ok ke ok ok ok sk ok ok ok sk ok ok ok ok ok

VB s ONE
cCUNWWNO

NODE  VOLTAGE NODE  VOLTAGE NODE  VOLTAGE NODE  VOLTAGE
(1) =32.0000 (2) 16.0000 (3) -16.0000 (4) 26.0000

(5) 20.80E-06

VOLTAGE SOURCE CURRENTS

NAME CURRENT
Vi 2.000E+00
V2 -2.600E-06

TOTAL POWER DISSIPATION 9.60E+01 WATTS

ok SMALL-SIGNAL CHARACTERISTICS
V(4,5)/Vl1 = -3.333E-01
INPUT RESISTANCE AT V1 = 2.400E+01

OUTPUT RESISTANCE AT V(4,5) = 1.867E+01
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because the node voltages will be printed out automatically. Observe that node voltage 4 is essentially the
same as the voltage across terminals 4 and 5, the Theévenin voltage, because the voltage drop across resistor
R4 is negligible. The obtained node 4 voltage value of 26 V and the output resistance value of 18.67 Q, which
are the Thévenin quantities, agree with the answers to Prob. 5.46.

7.7 Repeat the first part of Prob. 6.13 using PSpice. Specifically, compute ¥, in the circuit of Fig. 6-18.

Figure 6-18 i1s redrawn in Fig. 7-10q, for convemence. Figure 7-10h shows the corresponding PSpice
circuit. Observe that the op amp has been deleted, and a model for it included. This model E1 is simply 4
voltage-controlled voltage source connected across the terminals that were the op-amp output terminals.
The 10° voltage gain of this source is not critical.

Following is the corresponding circuit file along with the pertinent part of the output obtained
when PSpice is run with this circuit file. Here, V, = V(4) = — 10V, which is the same as the answer to
the first part of Prob. 6.13.

+
v,
3JkQ 12kQ
— MW
R3
R
I 2 N
6 k2 4 v,
SV E= VI R2 S4KQEI 1%V, — V) R4§2ORQ
0
(b)
Fig. 7-10
CIRCUIT FILE FOR THE CIRCUIT OF FIG. 7-10b
Vi 10 5
Rl 12 6K
R2 2 0 4K
R3 13 3K
RF 3 4 12K
R4 4 0 20K
El 40 2 3 1MEG
.END
ARE KRR AR AR AR AT AR AN AR AR AR AR R RARARARNINAAARAR R AR AR AR A AR AR Rk kR khkhkhkhk
NODE  VOLTAGE NODE  VOLTAGE NODE  VOLTAGE NODE  VOLTAGE

(1) 5.0000 (2) 2.0000 (3) 2.0000 (4) -10.0000
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7.8  Repeat Prob. 6.20 using PSpice. Specifically, obtain the Thévenin equivalent of the circuit of
Fig. 6-24.

Figure 7-11u is the same as Fig. 6-24. and is included here for convenience. Figure 7-11b is the
corresponding PSpice circuit in which the op amp has been replaced by a model El that is a voltage-
controlled voltage source.

Below is the corresponding circuit file along with the pertinent portion of the output file. Node
voltage V(3) = 3V isthe Thévenin voltage, and the output resistance of 571.4 Q is the Thévenin resistance.
Both values agrec with the answers to Prob. 6.20,

1kQ
A'Aam

h v, 4kQ a

_ +

15V =
225kQ 2kQ
2.5kQ
+ — — 0

L b
(a)

RS

(b)
Fig. 7-11

CIRCUIT FILE FOR FIG. 7-11b

Vi 10 1.5

Rl 1 3 1K

R2 2 0 2.5K

R3 2 4 22.5K

El 4 0 1 2 1MEG

R4 4 3 4K

RS 3 0 2K

.TF V(3) V1

.END
kkdkhkhhdkhkhkhkhkhkhkhkhkkkhkhkhkhkkhkhhkhkrhkkhkhhhkhkhdkkhkhkhkhkhkhkhkkhhkkhkhhkkkdkkhkdhkhkhkdkkkkkkkkk
NODE  VOLTAGE NODE  VOLTAGE NODE  VOLTAGE NODE  VOLTAGE
(1) 1.5000 (2) 1.5000 (3) 3.0000 (4 ) 15.0000

OUTPUT RESISTANCE AT V(3) = 5.714E+02
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7.9

VI =
s

PSPICE DC CIRCUIT ANALYSIS [CHAP. 7

Repeat Prob. 6.24 using PSpice. Specifically, obtain the voltages V,, and V,, in the circuit of Fig.
6-28.

Figure 7-12a is the same as Fig. 6-28 and is included solely for convenience. Figure 7-12b is the
corresponding PSpice circuit in which the two op amps have been replaced by models El and E2, which
are voltage-controlled voltage sources.

Following is the corresponding circuit file and the pertinent part of the output file. The results
of Vi)y=V¥,,=125V and V@)=V, =1V agree with the answers to Prob. 6.24.

100 kQ2 I
~ +—0

R3 £ 10kQ

[ )
lasl
<i:>>
=
o
=
-
[
-
To
=

R4  20kQ .
RIS 10MQ Va ,
+ O~ lIu
A .
40 kQ § R2
+
E2 H0S[1(6) ~ F(5)] 0 MQ§ .
v 4
vaEav
SN
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CIRCUIT FILE FOR THE CIRCUIT OF FIG. 7-12b

Vi 10 8
Rl 1 0 10MEG
R2 2 5 40K
R3 3 2 10K
R4 2 4 20K
RS 4 5 50K
R6 5 0 100K
R7 6 0 10MEG
V2 60 4
El 30 12 1MEG
E2 40 65 1MEG
.END
AEEEXARRAARRAR AT AR RARRAANKR AR AR AAA AR AR ARANAARRT AR AR AR ARARAAA A AARAAR A RAR A A AR AR
NODE  VOLTAGE NODE  VOLTAGE NODE  VOLTAGE NODE  VOLTAGE
(1) 8.0000 (2)°  8.0000 (3) 12.5000 (4) 1.0000
(5) 4.0000 (6) 4.0000

7.10

7.11

712

7.13

7.14

7.1

7.16

Supplementary Problems
Use PSpice to compute I, in the circuit of Fig. 4-28.
Ans. —0.333 A
Use PSpice to determine [ in the circuit of Fig. 4-45.
Ans. =353 mA

Use PSpice to find the Thévenin voltage at terminals g and b in the circuit of Fig. 5-44. Reference 15,
positive at terminal a.

Ans. 1433V

Use PSpice to obtain V, in the circuit of Fig. 6-21.

Ans. 10V

Use PSpice to find V, in the circuit of Fig. 6-22.

Ans. —195V

Use PSpice to determine V,, and V,, in the circuit of Fig. 6-42.
Ans. 16V 105V

Without using PSpice. determine the output corresponding to the following circuit file.

CIRCUIT FILE FOR PROB. 7.16
vi 1 0 12

R1 2 2
R2 2 3 3
vz 3 0 10
R3 2 4 4
Vi 0 4 20

.DC Vvl 12 12 1
.PRINT DC I(R1l)
. END

Ans. 4 A
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7.17  Without using PSpice, determine the output corresponding to the following circuit file.

Ans.

7.18  Without using PSpice. determine the output corresponding to the following circuit file.

Ans.

7.19  Without using PSpice, determine the output corresponding to the following circuit file.

Ans.

7.20 Without using PSpice, determine the output corresponding to the following circuit file.

Ans.

4A

6V

1.6 A

JA

PSPICE DC CIRCUIT ANALYSIS

CIRCUIT
vi 10
R1 1
R2 2
ve 3
R3 2
R4 4
vy 0

0

.PRINT
. END

CIRCUIT
Vi1
R1
R2
R3
R4
G1
.DC V1
.PRINT

. END

O N WN =
NOOWNO

CIRCUIT
Il 1
R1
V1
R2
H1
R3
.DC
. PRINT
-.END

WWwrENEO

2
0
0
1
0
11

CIRCUIT
Fl 1
R1
R2
I1
R3
H1
V1
R4
.DC I
. PRINT
. END

BN WN O

2
2
3
0
4
0
1

FILE FOR PROB. 7.17
27

3

4

29

5

6

53

5

27 27 1
DC I(R3)

FILE FOR PROB. 7.18

45 45 1
DC V(R2)

FILE FOR PROB. 7.19

4
5

20

Vi S
8

4 4 1

DC I(R1)

FILE FOR PROB. 7.20
vl 0.5

6

3

6

9

vVl 6

3
6 6 1
DC I(R4)

[CHAP. 7
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7.21  Without using PSpice. determine the output corresponding to the following circuit file.

Ans.

I{(R4) = 6.95 mA.

CIRCUIT FILE FOR PROB. 7.21
vi 1 0 20
R1 1 2 6K

R2 2 3 3K
vz 3 4 40
R3 4 5 2K
V3 5 0 60
R4 4 6 8K
v4 7 6 30
RS 7 8 5K
VS 0 8 45
R6 2 9 9K
ve 9 7 15

.DC V1 20 20 1
.PRINT DC I(R4) TI(R3) I(R5)
.END

I{R3) = —14.6 mA. [(R5)= 10.0 mA

7.22  Without using PSpice, determine the output corresponding to the following circuit file.

Ans.

-2V

CIRCUIT FILE FOR PROB. 7.22

I1. 01 60

Rl 1 0 0.14286
Rz 12 0.2

I2 21 22

I3 2 0 34

R3 2 0 0.25

R4 2 3 0.16667
R5 3 0 0.16667
R6 1 3 0.125
.DC I1 60 60 1
-PRINT DC V(2)
. END

7.23  Without using PSpice. determine the output corresponding to the following circuit file. (Hinr: Consider an

op-amp circuit.)

CIRCUIT FILE FOR PROB. 7.23

vi 1 0 6

R1 1 2 4K

vz 0 3 15

R2 3 2 6K

R3 2 4 12K

El 4 0 0 2 1MEG

.DC V1 6 6 1
.PRINT DC V(4)
.END
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7.24  Without using PSpice, determine the output corresponding to the following circuit file. (Hint: Consider an
op-amp circuit.)

CIRCUIT FILE FOR PROB. 7.24

Vi 10 9

Rl 1 2 9K

R2 2 0 18K

R3 2 3 12K

R4 4 O 6K

RS 4 3 3K

El 30 2 4 1MEG

.DC V1 99 1
.PRINT DC V(3)
.END



Chapter 8

Capacitors and Capacitance

INTRODUCTION

A capacitor consists of two conductors separated by an insulator. The chief feature of a capacitor
is its ability to store electric charge, with negative charge on one of its two conductors and positive
charge on the other. Accompanying this charge is energy, which a capacitor can release. Figure 8-1
shows the circuit symbol for a capacitor

o—f—o

Fig. 8-1

CAPACITANCE

Capacitance, the electrical property of capacitors, is a measure of the ability of a capacitor to store
charge on its two conductors. Specifically, if the potential difference between the two conductors is V
volts when there is a positive charge of @ coulombs on one conductor and a negative charge of the same
amount on the other, the capacitor has a capacitance of

C ="
vV

where C is the quantity symbol of capacitance.
The SI unit of capacitance is the furad, with symbol F. Unfortunately, the farad is much too large
a unit for practical applications, and the microfarad (¢F) and picofarad (pF) are much more common.

CAPACITOR CONSTRUCTION

One common type of capacitor is the parallel-plate capacitor of Fig. 8-2a. This capacitor has two
spaced conducting plates that can be rectangular, as shown, but that often are circular. The insulator
between the plates is called a dielectric. The dielectric is air in Fig. 8-2a. and is a slab of solid insulator

in Fig. 8-2b.
j ]

i _ J S

/ Dielectric @
OO
1

—i|i

+ + J
@0
, ele
] | ]
(a) (b)
Fig. 8-2 Fig. 8-3

A voltage source connected to a capacitor, as shown in Fig. 8-3, causes the capacitor to become
charged. Electrons from the top plate are attracted to the positive terminal of the source, and they pass
through the source to the negative terminal where they are repelled to the bottom plate. Because each
electron lost by the top plate is gained by the bottom plate, the magnitude of charge Q is the same on
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both plates. Of course, the voltage across the capacitor from this charge exactly equals the source voltage.
The voltage source did work on the electrons in moving them to the bottom plate, which work becomes
energy stored in the capacitor.

For the parallel-plate capacitor, the capacitance in farads is

C=¢
d
where A is the area of either plate in square meters, d is the separation in meters, and ¢ is the
permittivity in farads per meter (F/m) of the dielectric. The larger the plate area or the smaller the plate
separation, or the greater the dielectric permittivity, the greater the capacitance.

The permittivity ¢ relates to atomic effects in the dielectric. As shown in Fig. 8-3, the charges on the
capacitor plates distort the dielectric atoms, with the result that there is a net negative charge on the
top dielectric surface and a net positive charge on the bottom dielectric surface. This dielectric charge
partially neutralizes the effects of the stored charge to permit an increase in charge for the same voltage.

The permittivity of vacuum, designated by ¢, is 8.85 pF-m. Permittivities of other dielectrics are
related to that of vacuum by a factor called the dielectric constant or relative permittivity, designated by
¢,. The relation is ¢ = ¢,64. The dielectric constants of some common dielectrics are 1.0006 for air, 2.5
for paraffined paper, 5 for mica, 7.5 for glass, and 7500 for ceramic.

TOTAL CAPACITANCE

The total or equivalent capacitance (Cy or C,,) of parallel capacitors, as seen in Fig. 8-4a. can be
found from the total stored charge and the @ = CV formula. The total stored charge Q4 equals the
sum of the individual stored charges: Q. =Q, + @, + Q;. With the substitution of the appropriate
Q = CV for each Q, this equation becomes C,V=CV + C,V + C;¥V. Upon division by V. it
reducesto C; = C, + C, + C;. Because the number of capacitors is not significant in this derivation,
this result can be generalized to any number of parallel capacitors:

Cr=Ci+C,+Cy+Cy+ -

So, the total or equivalent capacitance of parallel capacitors is the sum of the individual capacitances,

) o v, C
l G - J_ l = I
—- ’1: Cy /[Cz (&) Vs _1 —) VzIC2
+
: T VzTC\

(a) (b)
Fig. 8-4

Ul

For series capacitors, as shown in Fig. 8-4h, the formula for the total capacitance is derived by
substituting @/C for each V in the KVL equation. The Q in each term is the same. This is because the
charge gained by a plate of any capacitor must have come from a plate of an adjacent capacitor. The
KVL equation for the circuit shown in Fig. 8-4b is V=V, + V, + V. With the substitution of the
appropriate Q/C for each V. this equation becomes

0 Q Q Q l, 1 1 1
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upon division by Q. This can also be written as
1

Cy= .
1C,+1C,+1C,

Generalizing,
1
C, =
1C,+1Co+ 1 Cy+ 1:Cy + -

which specifies that the total capacitance of serics capacitors equals the reciprocal of the sum of the
reciprocals of the individual capacitances. Notice that the total capacitance of series capacitors is found
in the same way as the total resistance of parallel resistors.

For the special case of N series capacitors having the same capacitance C, this formula simplifies
to C,= C-N. And for two capacitors in series it is  Cp = C,C,(C) + C,).

ENERGY STORAGE
As can be shown using calculus, the energy stored in a capacitor is
W, =4icvy:

where W, is in joules, C is in farads. and V is in volts. Notice that this stored energy does not depend
on the capacitor current.

TIME-VARYING YOLTAGES AND CURRENTS

In dc resistor circuits, the currents and voltages arc constant never varying. Even if switches are
included, a switching operation can, at most, cause 4 voltage or current to jump from one constant level
to another. {The term “jump ™ means a change from one value to another in zero time.) When capacitors
are included, though, almost never does a voltage or a current jump from one constant level to another
when switches open or close. Some voltages or currents may initially jump at switching. but the jumps
are almost never to final values. Instead, they are to values from which the voltages or currents change
exponentially to their final values. These voltages and currents vary with time  they are rime-varying.

Quantity symbols for time-varying quantities are distinguished from those for constant quantities
by the use of lowercase letters instead of uppercase letters. For example, ¢ and i are the quantity symbols
for time-varying voltages and currents. Sometimes. the lowercase ¢, for time. is shown as an argument
with lowercase quantity symbols as in (1) and i(z). Numerical values of v and i are called instantancous
values, or instantaneous voltages and currents, because these values depend on (vary with) exact instants
of time.

As explained in Chap. 1, a constant current is the quotient of the charge Q passing a point in a wire
and the time T required for this charge to pass: I = Q/T. The specific time T is not important because
the charge in a resistive dc circuit flows at a steady rate. This means that doubling the time T doubles
the charge Q, tripling the time triples the charge, and so on, keeping I the same.

For a time-varying current, though, the value of i usually changes from instant to instant. So, finding
the current at any particular time requires using a very short time interval Ar. If Ag is the small charge
that flows during this time interval. then the current is approximately Ay At. For an exact value of
current, this quotient must be found in the limit as At approaches zero (At — 0}

Ay dyg

i= lim =
Ar 20O Af (1{

This limit, designated by dq dt, is called the derivative of charge with respect to time.
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CAPACITOR CURRENT

An equation for capacitor current can be found by substituting ¢ = Cr into i = dg/dr:
dg d
i=— =—(Ct
de dt :
But C is a constant, and a constant can be factored from a derivative. The result is
dv
i=C-—
dt

with associated references assumed. If the references are not associated, a negative sign must be
included. This equation specifies that the capacitor current at any time equals the product of the
capacitance and the time rate of change of voltage at that time. But the current does not depend on the
value of voltage at that time.

If a capacitor voltage is constant, then the voltage is not changing and so dv/dt is zero, making the
capacitor current zero. Of course, from physical considerations, if a capacitor voltage is constant, no
charge can be entering or leaving the capacitor, which means that the capacitor current is zero. With a
voltage across it and zero current flow through it, the capacitor acts as an open circuit: a capacitor is
an open circuit to de. Remember, though, it is only after a capacitor voltage becomes constant that the
capacitor acts as an open circuit. Capacitors are often used in electronic circuits to block dc currents
and voltages.

Another important fact from i = Cde/dt or i~ CAv/At isthata capacitor voltage cannot jump.
If, for example, a capacitor voltage could jump from 3V to 5V or, in other words, change by 2V in
zero time, then Ar would be 2 and Ar would be 0, with the result that the capacitor current would be
infinite. An infinite current is impossible because no source can deliver this current. Further, such a
current flowing through a resistor would produce an infinite power loss, and there are no sources of
infinite power and no resistors that can absorb such power. Capacitor current has no similar restriction.
It can jump or even change directions, instantaneously. Capacitor voltage not jumping means that a
capacitor voltage immediately after a switching operation is the same as immediately before the operation.
This is an important fact for resistor-capacitor (RC) circuit analysis.

SINGLE-CAPACITOR DC-EXCITED CIRCUITS

When switches open or close in a dc RC circuit with a single capacitor, all voltages and currents
that change do so exponentially from their initial values to their final constant values, as can be shown
from differential equations. The exponential terms in a voltage or current expression are called transient
terms because they eventually become zero in practical circuits.

Figure 8-5 shows these exponential changes for a switching operation at t = 0 s. In Fig. 8-5a the
initial value is greater than the final value, and in Fig. 8-5b the final value is greater. Although both
initial and final values are shown as positive, both can be negative or one can be positive and the other
negative.

The voltages and currents approach their final values asymptotically, graphically speaking, which
means that they never actually reach them. As a practical matter, however, after five ime constants
{defined next) they are close enough to their final values to be considered to be at them.

Time constant, with symbol 7, is a measure of the time required for certain changes in voltages and
currents. For a single-capacitor RC circuit, the time constant of the circuit is the product of the
capacitance and the Thévenin resistance as “seen” by the capacitor:

RC time constant = 1 = Ry, C
The expressions for the voltages and currents shown in Fig. 8-5 are
v(t) =v(x) + [v(04+) — v(x)]}e™ "V
iy =ix)+[{0+)—i(xx)]e™ ' A
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vori vori

Initial Final
value value

Initial
value

(a) (b)
Fig. 8-5

Final
value

for all time greater than zero (r> 0s). In these equations, ®(0+) and i(0+) are initial values
immediately after switching; v(=) and i(x) are final values; e = 2.718, the base of natural logarithms:
and 1 is the time constant of the circuit of interest. These equations apply to all voltages and currents
in a linear, RC, single-capacitor circuit in which the independent sources, if any, are all dc.

By letting ¢ =t in these equations, it is easy to see that, in a time equal to one time constant,
the voltages and currents change by 63.2 percent of their total change of t{x) — {0+ ) or i(x) — {0 +).
And by letting t = 57, it is easy to see that, after five time constants, the voltages and currents change
by 99.3 percent of their total change, and so can be considered to be at their final values for most
practical purposes.

RC TIMERS AND OSCILLATORS

An important use for capacitors is in circuits for measuring time timers. A simple timer consists
of a switch, capacitor, resistor, and dc¢ voltage source, all in series. At the beginning of a time interval
to be measured, the switch is closed to cause the capacitor to start charging. At the end of the time
interval, the switch is opened to stop the charging and “trap™ the capacitor charge. The corresponding
capacitor voltage is a measure of the time interval. A voltmeter connected across the capacitor can have
a scale calibrated in time to give a direct time measurement.

As indicated in Fig. 8-5, for times much less than one time constant, the capacitor voltage changes
almost linearly. Further, the capacitor voltage would get to its final value in one time constant if the
rate of change were constant at its initial value. This linear change approximation is valid if the time to
be measured is one-tenth or less of a time constant, or, what amounts to the same thing, if the voltage
change during the time interval is one-tenth or less of the difference between the initial and final voltages.

A timing circuit can be used with a gas tube to make an oscillator a circuit that produces 4 repeating
waveform. A gas tube has a very large resistance —approximately an open circuit—- for small voltages.
But at a certain voltage it will fire or, in other words, conduct and have a very low resistance -approx-
imately a short circuit for some purposes. After beginning to conduct, it will continue to conduct even
if its voltage drops, provided that this voltage does not drop below a certain low voltage at which the
tube stops firing (extinguishes) and becomes an open circuit again.

The circuit illustrated in Fig. 8-6a i1s an oscillator for producing a sawtooth capacitor voltage as
shown in Fig. 8-6b. If the firing voltage V- of the gas tube is one-tenth or less of the source voltage Vg,
the capacitor voltage increases almost linearly, as shown in Fig. 8-6h, to the voltage Vi, at which time
T the gas tube fires. If the resistance of the conducting gas tube is small and much less than that of the
resistor R, the capacitor rapidly discharges through the tube until the capacitor voltage drops to V. the
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(a) b)
Fig. 8-6

extinguishing voltage, which is not great enough to keep the tube conducting. Then the tube cuts off.
the capacitor starts charging again, and the process keeps repeating indefinitely. The time T for one
charging and discharging cycle is called a period.

Solved Problems

8.1 Find the capacitance of an initially uncharged capacitor for which the movement of 3 x 10'°
electrons from one capacitor plate to another produces a 200-V capacitor voltage.

From the basic capacitor formula € = Q:}, in which @ is in coulombs,

—3 x 1015 cleetrons™ —-1C .
—_— Sx —— = e oo = =24 x |0 *F =24 uF
200V 6.241 x 10'% gleetrons

82  What is the charge stored on a 2-uF capacitor with 10 V across it?
From C = @'V,
Q=CV=2x10°10)C = 20 uC

8.3  What is the change of voltage produced by 8 x 10° electrons moving from one plate to the other
of an initially charged 10-pF capacitor?
Since C = Q;V is a lincar relation, C also relates changes in charge and voltage: € = AQ AV, In
this equation. AQ is the change in stored charge and AV is the accompanying change in voltage. From this,
AQ -8 x 10° clectrons —-1C
_8¢_ =128V

AV . X
C 10 x 10 ** F 6.241 x 10'® cleetrons

8.4 Find the capacitance of a parallel-plate capacitor if the dimensions of each rectangular plate is
1 by 0.5cm and the distance between plates is 0.1 mm. The dielectric is air. Also, find the
capacitance if the dielectric is mica instead of air.

The dielectric constant of air is so close to 1 that the permittivity of vacuum can be used for that of
air in the parallel-plate capacitor formula:

. A {885 x 10713107 240.5 x 1073y | )
C=el =200 P B2 00 e a43pk
d 0.1 x 101

Because the dielectric constant of mica i1s 5. a mica dielectric increases the capacitance by a factor of
5: C=5x443 =221pF.
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85

8.6

8.7

88

8.9

Find the distance between the plates of a 0.01-uF parallel-plate capacitor if the area of each plate
is 0.07 m? and the dielectric is glass.
From rearranging C =«¢A d and using 7.5 for the dielectric constant of glass,

A 7.5(8.85 x 10 12)0.07)
d=--=- —— - — — — ——m = 0465mm

A capacitor has a disk-shaped dielectric of ceramic that has a 0.5-cm diameter and is 0.521 mm
thick. The disk is coated on both sides with silver, this coating being the plates. Find the
capacitance.

With the ceramic dielectric constant of 7500 in the parallel-plate capacitor formula,

A 7500(8.85 x 107137 x (0.25 x 10° 2)?2]
T L S F = 2500 pF

d 0.521 x 1073

= = —— -

A 1-F parallel-plate capacitor has a ceramic dielectric 1 mm thick. If the plates are square, find
the length of a side of a plate.

Because each plate is square. a length Jof a side is | = A. From this and  C = ¢4 d.

O s
(= fC_ [ a0tx L =123m
vV & 7500(8.85 x 10719

Each side is 123 m long or. approximately. 1.3 times the length of a football field. This problem
demonstrates that the farad is an extremely large unit.

What are the different capacitances that can be obtained with a 1- and a 3-uF capacitor?

The capacitors can produce | and 3 uF individually: | + 3 =4xF inparallel;and (1 x 3)(1 + 3) =
0.75 uF  1n series

Find the total capacitance C; of the circuit shown in Fig. 8-7.

60 uF 90 uF
Cr ‘
n—- 10 uF

Fig. 8-7

30 uF
—

25 uF :'1‘-:60“!7

At the end opposite the input, the series 30- and 60-uF capacitors have a total capacitance of 30 x
6030 + 60) = 20 uF. This adds to the capacitance of the parallel 25-uF capacitor for a total of 45 uF to
the right of the 90-uF capacitor. The 45- and 90-uF capacitances combine to 45 x 90(45 + 90) = 30 uF.
This adds to the capacitance of the parallel 10-uF capacitor for a total of 30 + 10 = 40 uF to the night
of the 60-uF capacitor. Finally.

60 x 40

y=———=24uF
60 + 40
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8.10

8.11

8.12

8.13

CAPACITORS AND CAPACITANCE [CHAP. 8

A 4-uF capacitor, a 6-uF capacitor, and an 8-uF capacitor are in parallel across a 300-V source.

Find (a) the total capacitance, (b)the magnitude of charge stored by each capacitor, and (c) the

total stored energy.

(a) Because the capacitors are in parallel, the total or equivalent capacitance is the sum of the individual
capacitances: C, =446+ 8 = 18 uF.

th) The three charges are, from Q= CV. (4 x 107°4300) C = 1.2mC. (6 x 107°}300) C = 1.8 mC,
and (8 x 107°}300) C = 24 mC for the 4-, 6-, and 8-uF capacitors, respectively.

(¢) The total capacitance can be used to obtain the total stored energy:

W=1C, ¥ =05(18 x 107°x300)* = 0.81 ]
2

Repeat Prob. 8.10 for the capacitors in series instead of in parallel, but find each capacitor voltage
instead of each charge stored.

(a) Because the capacitors are in series. the total capacitance is the reciprocal of the sum of the
reciprocals of the individual capacitances:

1
= —— = 1.846 uF
14+ 16 + 1/8

Cr
(h  The voltage across each capacitor depends on the charge stored, which is the same for each capacitor.
This charge can be obtained from the total capacitance and the applied voltage:
0 =C,V =1(1846 x 10 *}300) C = 554 uC
From V=@ C, the individual capacitor voltages are

554 x 10°° 554 x 10°°
. =1385V - =923V

554 x 10°°
4x10°° 6 x 107° 8 x 10 ¢

-=692V
for the 4-, 6-. and 8-uF capacitors, respectively.
(¢) The total storcd energy is

W=1C;V?=0.51.846 x 107 °4300)2J = 83.1 mJ

A 24-V source and two capacitors are connected in series. If one capacitor has 20 pF of capacitance
and has 16 V across it, what is the capacitance of the other capacitor?

By KVL, the other capacitor has 24 — 16 =8 V across it. Also, the charge on it is the same as that
on the other capacitor: @ = CV = (20 x 107°K16)C = 320uC.So, C=@'V= 1320 x 107*8F = 40 uF.

Find each capacitor voltage in the circuit shown in Fig. §-8.

The approach is to find the equivalent capacitance. use it to find the charge, and then use this charge
to find the voltages across the 6- and 12-uF capacitors, which have this same charge because they are in
series with the source.

6 uF 12 uF
—h -
+ - + N +
7 v
=100V 5 uF %) 1 uF

Fig. 8-8
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At the end opposite the source, the two parallel capacitors have an equivalent capacitance of 5 + 1 =
6 uF. With this reduction, the capacitors are in serics, making

Cp=-— ————=24uF
16+ 112 +

The desired charge is
Q=CV=(24 x107°(100) C = 240 uC
which is the charge on the 6-uF capacitor as well as on the 12-uF capacitor. From V= Q C,

240 x 107° 240 x 10°°

L= =40V V, = =20V
6x10°° 12 x 107°

and, by KVL, ¥V, =100--¥, =V, =40 V.

8.14 Find each capacitor voltage in the circuit shown in Fig. 8-9.

20 uF
K 30 uF
— - AL
+ V| " 1T
I\Y + +
-

il
g
<
&
'
ke s}
=
l)
L -]
b
e 5]
|.<
3
*
T

Fig. 8-9

A good analysis method is to reduce the circuit to a series circuit with two capacitors and the voltage
source, find the charge on each reduced capacitor, and from it find the voltages across these capacitors.
Then the process can be partially repeated to find all the capacitor voltages in the original circuit.

The parallel 20- and 40-uF capacitors reduce to a single 60-uF capacitor. The 30- and 70-uF
capacitors reduce to a 30 x 70/30 + 70) = 21-uF capacitor in parallel with the 9-uF capacitor. So. all
three of these capacitors reduce to a 21 + 9 = 30-uF capacitor that is in scries with the reduced
60-uF capacitor, and the total capacitance at the source terminalsis 30 x 60.(30 + 60) = 20 uF. The desired
charge is

Q=CrV=(20 x 107°§400) C = 8 mC
This charge can be used to obtain V| and V;:
8§ x 1073 8 x 1073
, = — =133V and V, = —
60 x 10°¢ 30 x 107°

Alternatively, V¥, =400 — V; =400 — 133 =267 V.
The charge on the 30-uF capacitor and also on the series 70-uF capacitor is the 8 mC minus
the charge on the 9-uF capacitor:

8 x 1073 —(9 x 107°)267)C = 5.6 mC

=267V

Consequently, from V = Q/C,
56 x 1073
T 30x10°°

Asacheck V,+ V, =187 +80 =267V =V,

56 % 10°°
= -_ =80V

187V d v, = -
an “T30x10 "

3
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A 3-pF capacitor charged to 100 V is connected across an uncharged 6-uF capacitor. Find the
voltage and also the initial and final stored energies.

The charge and capacitance are needed to find the voltage from 1'= Q C. Initially. the charge on the
¥ capacitoris Q@ = CV =(3 x 10 ®}100) C = 0.3 mC. When the capacitors are connected together. this
charge distributes over the two capacitors, but does not change. Since the same voltage is across both
capacitors, they are in parallel. So. ¢, =3+ 6 =9 uF. and

0.3 x 10°
= ¢ = - - =333V
C, 9x10 °

The initial encrgy is all stored by the 3-uF capacitor: YCF = 0.53 x 10 °N100)2 ) = 15 mJ. The tinal

energy is stored by both capacitors:  0.59 x 10 “¥33.3)7 J =S m).

Repeat Prob. 8.15 for an added 2-k€ series resistor in the circuit.

The resistor has no effect on the final voltage, which is 33.3 V. because this voltage depends only on
the equivalent capacitance and the charge stored. neither of which are affected by the presence of the resistor.
Since the final voltage is the same, the final energy storage is the same: 5 mlJ. Of course. the resistor has no
effect on the initial 15 mJ stored. The resistor will, however, sfow the time taken for the voltage to reach its
final value, which time is five time constants after the switching. This time is zero if the resistance is zero.
The presence of the resistor also makes it casier to account for the 10-m) decrease in stored energy it is
dissipated in the resistor.

A 2-uF capacitor charged to 150 V and a 1-uF capacitor charged to 50 V are connected together
with plates of opposite polarity joined. Find the voltage and the initial and final stored energies.

Because of the opposite polarnty conncction. some of the charge on one capacitor cancels that on the
other. The initial charges are (2 x 10 ®150) C = 300 C  for the 2-uF capacitorand {1 x 10 *}50)C =
50 uC  for the 1-uF capacitor. The final charge distributed over both capacitors is the difference of these
two charges: 300 — 50 = 250 pxC. It produces a voltage of
9] 250 x 10 °

V=" = P L
C, 2x10 "4 1x10 ¢

=833V

The initial stored energy is the sum of the energics stored by both capacitors:
0.5(2 x 10 M50 + 051 x 10 “)50)° = 23.8 mJ
The final stored energy is

YO HE =053 x 10 *)483.3)° ) =104 m)

What 1s the current flowing through a 2-uF capacitor when the capacitor voltage is 10 V?

There is not enough information to find the capuacitor current. This current depends on the rate of
change of capacitor voltage and nor the voltage value, and this rate is not given.

If the voltage across a 0.1-uF capacitor is 3000t V. find the capacitor current.
The capacitor current equals the product of the capacitance and the time derivative of the voltage.

Since the time derivative of 3000r 1s 3004,

l.
i = (“" (0.1 x 10 *)Y3000) A = 0.3 mA
({14

which is a constant value.
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The capacitor current can also be found from i = C Ar At becausc the voltage is increasing lincarly.
If A7 is taken as, say. 2 s, from (0 to 2 s, the corresponding Ar is  3000A1 = 3000{2 — 0) = 6000 V. So.

Ar (0.1 x 1()"‘)(6000)A

i= - = =0.3mA
At 2

Sketch the waveform of the current that flows through a 2-uF capacitor when the capacitor
voltage is as shown in Fig. 8-10. As always, assume associated references because there is no
statement to the contrary.

Graphically, the dv drin i = C dv di is the sfope of the voltage graph. For straight lines this slope
is the same as Ar-At. For this voltage graph. the straight line for the intervalof 1=0s to t=1pus has
aslope of (20 — 0)(1 x 10 ® —0)V.s =20 MV:s. which is the voltage at ¢ =1 s minus the voltage
at t=0s, divided by the time at =1 us minus the time at =0 s. As a result, during this time
interval the current is i = C dr dr = (2 x 107%)(20 x 10%) = 40 A.

From t=1pus to ¢=4pus the voltage graph is horizontal. which means that the slope and.
consequently, the current arc zero: { = 0 A.

For the time interval from (=4 us to 1 =6 us. the straight line has a slope of (—20 — 20)
(6x107°-4x10"%Vs= —-20MVs. This change in voltage produces a current of = C drdt =
(2 x 107°(—20 x 10° = —40 A,

Finally, from t=6 us to t =8 us. the slope of the straight line is [0 — (—20)]/(8 x 107¢ —
6 x 107%) Vs = 10 MV s and the capacitor currentis i = Cdv dt = (2 x 107910 x 10%) = 20 A.

Figurc 8-11 is a graph of the capacitor current. Notice that, unlike capacitor voltage, capacitor
current can jump, as it does at 1.4, and 6 us. In fact, at 6 us the current reverses direction instantancously.

v (V) i (A)
)
30 E%) L_
0~ 10—
0 | 1 1 1 \ | ] 0 1 ] 1 1 1
1 2 3 4 S 6 7 8 t(us) 1 23 4 ] 6 7 8 t (us)
-10 [~ w0
-20 20
-0 -30
—40 -
Fig. 8-10 Fig. 8-11
Find the time constant of the circuit shown in Fig. 8-12.
30 k2 9k
4AAY; ' AAYAY
8 k(2
.
250 V—=— 70 k2 20 kQ2
T 6 uF

Fig. 8-12
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The time constant is t = Ry, (. where Ry, is the Thévenin resistance at the capacitor terminals.
Here,

Ry, =8 + 2049 + 70130) = 8§ + 20i 30 = 20 kQ

and so the time constant is  © = Ry, C = (20 x 10%)(6 x 107°%) = 0.12 s,

How long does a 20-uF capacitor charged to 150 V take to discharge through a 3-M(Q resistor?
Also, at what time does the maximum discharge current occur and what is its value?

The discharge is considered to be completed after five time constants:
5t = 5RC = 5(3 x 10°%20 x 107 %) = 300s

Since the current decreases as the capacitor discharges, it has a graph as shown in Fig. 8-Sa
with a maximum value at the time of switching, ¢ =0s here. In this circuit the current has an
initial value of 15043 x 10°) A = 50 uA  becausc initially the capacitor voltage of 150 V. which cannot
jump, is across the 3-MQ resistor.

At 1 =0s, a 100-V source is switched in series with a 1-kQ resistor and an uncharged 2-uF
capacitor. What are (a) the initial capacitor voltage, (b) the initial current, (c) the initial rate of
capacitor voltage increase, and (d) the time required for the capacitor voltage to reach its
maximum value?

(@) Since the capacitor voltage is zero before the switching, it is also zero immediately after the switching &
capacitor voltage cannot jump: {0+)=0V.

(h) By KVL,at t1=0+ s the 100V of the sourtce is all across the 1-kQ resistor because the capacitor
voltage is 0 V. Consequently, i(0+)= 100:10" A = 100 mA.

(¢) As can be seen [rom Fig. 8-5h, the initial rate of capacitor voltage increase equals the total change in
capacitor voltage divided by the circuit time constant. In this circuit the capacitor voltage eventually
equals the 100 V of the source. Of course, the initial value 1s 0 V. Also. the time constantis v = RC =
1032 x 10 ®)s = 2 ms. So, the initial rate of capacitor voltage increase is  100/(2 x 1073) = 50000 V5.

This initial rate can also be found from = Cdv/dt evaluated at t =0+ s:
dr i0+) 100x 1073
0+)= = - =50000V:s
dt C 2x 1076

(d) 1t takes five time constants, 5 x 2= 10ms, for the capacitor voltage to reach its final value
of 100 V.,

Repeat Prob. 8.23 for an initial capacitor charge of 50 uC. The positive plate of the capacitor is
toward the positive terminal of the 100-V source.

(a) The initial capacitor voltage is V=0, C =(50 x 10 )42 x 107 %) =25 V.

(h) At =0+ s, the voltage across the resistor is, by KVL, the source voltage minus the initial
capacitor voltage. This voltage difference divided by the resistance is the initial current: {0+) =
(100 — 25)/10° A = 75 mA.

(¢} The initial rate of capacitor voltage increase equals the total change in capacitor voltage divided by
the time constant: 7542 x 1073 = 37 500 Vs,

(d) The initial capacitor voltage has no effect on the circuit time constant and so also not on the time

required for the capacitor voltage to reach its final value. This time is 10 ms, the same as for the circuit
discussed in Prob. 8.23.

In the circuit shown in Fig. 8-13, find the indicated voltages and currents at ¢t =0+ s, imme-
diately after the switch closes. The capacitors are initially uncharged. Also, find these voltages
and currents “a long time” after the switch closes.
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i 25 Q) i i 50 Q0
-— - —

—AANA- A A

— vz + I + v -

+ — +J
100} 7] 1 uF ve 7~ 3 uF
li: =100V
Fig. 8-13

At =0+ s, thecapacitors have 0V across them because the capacitor voltages cannot jump from
the 0-V values that they have at t=0-— s, immediately beforc the switching: ¢ (0+)=0V and
v4(0+) = 0 V. Further, with 0 V across them, the capacitors act like short circuits at 1 =0+ s, with the
result that the 100 V of the source is across both the 25-Q and 50-Q resistors: {0 +) = r3(0+) = 100 V.
Three of the initial currents can be found from these voltages:

100

0 1
i0+)=_ =0A i0+) = 0 4a iW0+)= =2A
10 25 50

The remaining initial current, i,{0+). can be found by applying KCL at the node at the top of the 1-uF
capacitor:
i{0+)=i30+)—i(0+)=4-0=4A

A “long time™ after the switch closes means more than five time constants later. At this time the capacitor
voltages are constant, and so the capacitors act like open circuits, blocking i, and i;: i)(>) =i x)=0A.
With the [-uF capacitor acting like an open circuit, the 10-Q and 25-Q resistors are in series across the 100-V
source, and so i (oc) =1f,(c) = 100/35 = 2.86 A. From the resistances and the calculated currents, v ()=
10 x 286 =286V, 1,(x)=25x286=714V, and vy x)=0x50=0V. Finally. from the night-
hand mesh,

t(x) =100 — r3(x) =100 -0 =100V

A 2-uF capacitor, initially charged to 300 V, is discharged through a 270-kQ resistor. What is
the capacitor voltage at 0.25 s after the capacitor starts to discharge?

The voltage formula is © = 1{x) + [(0+) — {oc)]e ™" Since the time constant is 1= RC =
(270 x 10%}2 x 107%) = 0.54 s, the initial capacitor voltage is ©(0+) =300V, and the final capacitor
voltage is 1) =0V, it follows that the equation for the capacitor voltage is

oty = 0 + (300 — 0)e "0-5% = 3000~ 185V for 1>0s
From this. 1(0.25) = 300~ 185025 - 189 V.

Closing a switch connects in series a 200-V source, a 2-MQ resistor, and an uncharged 0.1-uF
capacitor. Find the capacitor voltage and current at 0.1 s after the switch closes.

The voltage formulais ¢ = (o) + [(0+) — o(xc)])e™™.  Here, {x)=200V, (0+)=0V, and
7=(2 x 10°(0.1 x 1078 =0.2s. So,

ot) = 200 + [0 — 200]e %2 = 200 — 200e " V for t>0s
Substitution of 0.1 to ¢ gives ©(0.1):
©(0.1) =200 — 200e~ %3 =787V

Similarly, i=i(oc)+[i0+)—i(x)]e™"", inwhich i0+) =200 x 105 A =0.1mA. i(x)=0A,
and of course 1 = 0.2 s. With these values inserted,

iN=0+(01—-0% *=01e *mA for 1>0s
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From this, i(0.1) = 0.le "* mA = 60.7 uA. This current can also be found by using the voltage across the
resistor at ¢ =0.1s: #(0.1) = (200 — 78.7) (2 x 10°) A = 60.7 pA.

For the circuit used in Prob. 8.27, find the time required for the capacitor voltage to reach 50 V.
Then find the time required for the capacitor voltage to increase another 50 V, from 50 to 100 V.,

Compare times.

From the solution to Prob. 8.27. (1) = 200 — 200¢ *' V. To find the time at which the voltage 1s 50 V,
it is only necessary to substitute 50 for v(¢) and solve for 11 50 = 200 — 200¢ ¥ or ¢ ¥ = 150200 =
0.75. The exponential can be eliminated by taking the natural logarithm of both sides:

Ine ¥ =1n075 from which -5t = —0.288 and r=02885s=575ms

The same procedure can be used to find the time at which the capacitor voltage is 100 V: 100 =
200 — 200e "™ or e % =100/200 = 0.5. Further.

Ine ¥ =1In0.5 from which -5t = —0.693 and t=0693 55 =1386ms

The voltage required 57.5 ms to reach 50 V, and 138.6 — 57.5 = 81.1 ms to increase another S0V,
which verifies the fact that the rate of increase becomes less and less as time increases.

In the circuit shown in Fig. 8-14. the switch closes at 1 =0s. Find ¢, and i for t>0s
if v(0)=100V.

16 N

=~ 2.5 mF

Fig. 8-14

All that are needed for the ¢ and i formulas are v (0+). v {%). {0O+). i(»). and 1=RuyC Of
course, ¢ (0+}) =100V because the capacitor voltage cannot jump. The voltage t{ ») is the same as
the voltage across the 60-Q resistor a long time after the switch closes, because at this time the capacitor
acts like an open circuit. So. by voltage division,

60
cd ) = x 300 = 180 V
60 + 40

Also, (7)) =rf{7)60=18060=3A It is casy to obtain {0+) from v(0+). which can be solved
for using a nodal equation at the middle top node for the time 1 =0+ s:
0+) =300 (0+) (O+)— 100
oL + -4 . - =0
40 60 16
from which «(0+)=132V. So, {(0+)= 13260 = 2.2 A. Since the Thévenin resistance at the capacitor

terminals is 16 + 60140 = 40 Q, the time constant is 1= RC = 4025 x 10" *1=0.1s.
With these quantities substituted 1nto the v and 1 formulas,

rdty = vl 7)) 4 [ed0+) — vl 2 ))e P =180 + (100 — 180)¢ ' = 180 - 8Q¢ '™V for t>0s

W =dx)+[H0+)—i(r))e ""=34+22 -3 "M=3-08 '""A for t>0s

The switch is closed at t = 0 s in the circuit shown in Fig. 8-15. Find i for 1 > 0 s. The capacitor
1s initially uncharged.
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WkO 5 6kQ ok,
—\VVV *+ '\/\/\:——r—’\/\/\r
50 uF
100V = 60 k2 I 20 k0 20 mA
P
1

<
Fig. 8-15

The quantities (O + ). { ). and 1 are needed for the current formula
P=itr)+ [H0+) —i(x)]e 'F

At t =0+ s, the short-ctreuiting action of the capacitor prevents the 20-mA current source from
affecting i{0+). Also. it places the 6-kQ resistor in parallel with the 60-kQ resistor. Consequently, by current

division.
6 100
I(U +)= . — = | =0.2mA
60 + 6/\40 + 6 60

in which the simplifying kilohm-milliampere method is used.
After five time constants the capacitor no longer conducts current and can be considered to be an open
circuit and so neglected in the calculations. By nodal analysis,
- L Y0 1,00 i YRS
(o + a0 + d00(7 ) = sl ) =1 — a0+ L # splralx) = =20

from which ¢ (%z)= —6267V.So. i(z)= —6267(60 x 10 A = —1.04 mA.
The Thévenin resistance at the capacitor terminals is {6 + 40 60) (40 + 20) = 20 kQ. This can be used
to find the time constant:

=R, C=1(20x 10*HS0 x 10 ) =15
Now that i(0+). i = ). and 1 are known. the current ¢ ¢can be found:

i= =104+ [02—(-104)]¢ "= —1.04 + 1.24¢ "' mA for 1>0s

After a long time in position 1, the switch in the circuit shown in Fig. 8-16 is thrown to position
2at t=0s foraduration of 30 s and then returned to position 1. (a) Find the equations for r
for t>0s. (W)Findvrat t=35s andat 1 =40s. (¢)Makeasketchofrfor 0s <t <80s.

(¢} At the time that the switch 1s thrown to position 2. the initial capacitor voltage 1s 20 V. the same
as immediately before the switching: the finul capacitor voltage 18 70 V. the voltage of the source
in the circuit: and the time constant is (20 x 10°)}2 x 10~ %) = 40 s, Consequently, while the switch is
In position 2,

r=70 4+ (20 — 700 40 = 70 — 50¢ 02V

SMO 1 2 20 M2

20V = + =0V

UTZ}LF

Fig. 8-16
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Of course, the capacitor voltage never reaches the “final voltage™ because a switching operation
interrupts the charging. but the circuit does not “know™ this ahead of time.

When the swilch is returned to position 1. the circuit changes. and so the cquation for © changes.
The initial voltage at this = 30-s switching can be found by substituting 30 for 1 in the equation
for v that was just calculated: ©(30) = 70 — 50¢ 02339 =< 464 V. The final capacitor voltage is
20 V. and the time constant is (S x 1092 x 1079 = 10s. For these values, the basic voltage formula
must be modified since the switching occurs at 1 =30 s instead of at 1 =0+ s. The modified
formula is

o(t) = v(x) + [t30+) — o x)]e " MV for r>30s

The 1 — 30 is necessary in the exponent to account for the time shift. With the values inscrted into this
formula, the capacitor voltage is

t{f) = 20 + (46.4 — 20)e =1 20 = D) 4 2640 M0 2OV for 1> 30s

(b)) Forevat t=35s. the first voltage cquation must be used because it is the one that is valid for the
first 308 (S) =70 — S0¢ "0 =259V, Forrat t=40s. the second cquation must be used
because it is the one that is valid after 30 s:  ¢(40) = 20 + 26,407 1130 30 =207y,

(¢) Figure 8-17 shows the voltage graph which is based on the two voltage equations. The voltage
rises exponentially to 464V at = 30s. heading toward 70 V. After 30s. the voltage decays
exponentially to the final value of 20 V. reaching it at 80s. five time constants after the switch
returns to position 1.

v (V)
50— 464V

=]
P
o -
sk
-
2|
i

70 L] £ (s)

Fig. 8-17

8.32 A simple RC timer has a switch that when closed connects in series a 300-V source, a 16-MQ

8.33

resistor, and an uncharged 10-uF capacitor. Find the time between the closing and opening of
the switch if the capacitor charges to 10 V during this time.

Because 10 V is less than one-tenth of the final voltage of 300 V., a lincar approximation can be used.
In this approximation the rate of voltage change is considered to be constant at its wnitial value. Although
not needed. this rate is the quotient of the possible total voltage change of 300V and the time constant
of RC=(16 x 10°)(10 x 10 *)=160s. Sincc the voltage that the capacitor charges to is 1 30th of the
possible total voltage change. the time required for this charging i1s approximately 1 30th of the time
constant: 1~ 160.30 = 533 5.

This time can be found more accurately. but with more effort. from the voltage formula. For
i, ®0+)=0V. (x)=300V, and rt = 160s. With these valucs inserted, the capacitor voltage equa-
tion is © =300 - 300¢ ''*°. For r =10V, it becomes 10 =300~ 300¢ ''*°  from which t =
160 In(300°290) = 542 s. The approximation of 5.33 s is within 2 percent of this formula value of 542 5.

Repeat Prob. 8.32 for a capacitor voltage of 250 V.

The approximation cannot be used since 250 V is more than one-tenth of 300 V. The exact formula
must be used. From the solution to Prob. 832, ¢ =300 - 300¢ "'*". For ©=250V. it becomes
250 = 300 — 300¢ " '*°.  which simplifies to ¢ = 160 In(300 50} = 287 s. By comparison. the linear approx-
imation gives ¢ = {250-300)160) = 133 s, which is considerably in error.
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For the oscillator circuit shown in Fig. 8-18, find the period of oscillation if the gas tube fires at
90 V and extinguishes at 10 V. The gas tube has a 50-Q resistance when firing and a 10'°-Q
resistance when extinguished.

looov‘_—l:—/\N\( ‘i‘ZuF
L1

Fig. 8-18

When extinguished, the gas tube has such a large resistance (10'¢ Q) compared to the 1-M£ resistance
of the resistor that it can be considered to be an open circuit and neglected during the charging time of the
capacitor. During this time, the capacitor charges from an initial 10 V toward the 1000 V of the source, but
stops charging when its voltage reaches 90 V. at which time the tube fires. Although this voltage change
is 90 — 10 =80V, the initial circuit action is as if the total voltage change will be 1000 — 10 = 990 V.
Since 80 V is less than one-tenth of 990 V. a linear approximation can be used to find the proportion that
the charging time is of the time constant of 10%2 x 10 "®) = 2 s, The proportionality is 1 2 = 80990,
from which 1= 160990 = 0.162 s. If an exact analysis 1s made. the result is 0.168 52 s.

When the tube fires, its 50-Q resistance is so small compared to the 1-MQ resistance of the
resistor that the resistor can be considered to be an open circuit and neglected along with the voltage source.
So, the discharging circuit i1s essentially an inttially charged 2-uF capacitor and a 50-Q resistor, until the
voltage drops from the 90-V initial voltage to the 10-V extinguishing voltage. The time constant of this
circuit is just (2 x 10 "°)50)s = 0.1 ms. This is so short compared to the charging time that the discharging
time can usually be neglected cven if five time constants are used for the discharge time. If an exact analysis
is made. the result is a time of 0.22 ms for the capacitor to discharge from 90 to 10V,

In summary, by approximations the period is T=0.162 + 0 =0.162 s. as compared to the exact-
method result of 7= 0.168 52 + 0.00022 =0.168 74s or 0.169 s to three significant digits. Note that the
approximate result is within about 4 percent of the actual result. This is usually good enough. especially in
view of the fact that in the actual circuit the component values probably differ from the specified values by
more than this.

Repeat Prob. 8.34 with the source voltage changed from 1000 V to 100 V.

During the charge cycle the capacitor charges toward 100V from an initial 10 V. the same as if the
total voltage change will be 100 — 10 = 90 V. Since the actual voltage change of 90 — 10 =80V s
considerably more than one-tenth of 90 V, a linear approximation is not valid. The exact method must be
used. For this, (%) =100V, ¢{0+)=10V. and 7 =2s. The corresponding voltage formula is

=100+ (10 — 100)¢™ "2 =100 — 90 "2 V

The desired time is found by letting v =90V, and solving for r: 90 = 100 — 90e™ ' 2, which simplifies
to t=21In(90/10) = 4.39 s. This is the period because the discharge time, which is the same as that found
in the solution to Prob. 8.34, is negligible compared to this time.

Supplementary Problems

What electron movement between the plates of a 0.1-uF capacitor produces a 110-V change of voltage?

Ans.  6.87 x 10'3 electrons
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8.37  If the movement of 4.68 x 10'* clectrons between the plates of a capacitor produces a 150-V change in
capacitor voltage. find the capacitance.

Ans. 0.5 uF
8.38  What change in voltage of a 20-uF capacitor is produced by a mosement of 9 x 10" clectrons between
plates?

Ans. 721V

8.39 A tubular capacitor consists of two sheets of aluminum foi! 3 em wide and 1 m long. rolled into a tube with
separating sheets of waxed paper of the same size. What is the capacitance if the paper s 0.1 mm thick and
has a dielectric constant of 3.5?

Ans.  9.29 nF

840  Find the area for cach plate of a 10-uF parallel-plate capacitor that has a ceramic diclectric 0.5 mm thick.
Ans. 00753 m?

8.41  Find the thickness of the mica dicleetric of a 10-pF parallel-plate capacitor if the arca of cach plate s 10 * m?,
Ans.  0.443 mm

842  Find the diameter of a disk-shaped 0.001-pF capacitor that has a ceramie dielectric | mm thick.
Ans. 438 mm

843  What are the different capacitances that can be obtained with a I-pb capacitor. a 2-ul capacitor. and a
3-uF capacitor?

Ans.  0.545 uF. 0.667 uF. 075 puF. Y b0 L2 b0 2 b 222 b0 275 bl 3 b 367 gkl 3 pbl S pb 6 ub

8.44  Find the total capacitance C, of the circuit shown in Fig. 8-19.

Ans. 248 pF

7 uF 4 uF 2 uF
o —t——
C—T> :jl:by.F 9:3;1}7 ms
8 uF S uF
R
Fig. 8-19

845 A S5-. a7- and a 9-uF capacitor are in parallel across a 200-V source. Find the magnitude of charge stored
by each capacitor and the total energy stored.

Ans. Qs=1mC. Q0-=14mC, Q,=18mC. 042]

846 A 6- a 16-, and a 48-uF capacitor are in serics with a 180-V source. Find the voltage across cach capacitor
and the total energy stored.
Ans. V, =120V, ¥, =45V, 1, =15V, 648 ml

847  Two capacitors are in series across a 50-V source. If one is a [-pF capacitor with 16 V across i, what 1s
the capacitance of the other?

Ans. 0471 ubF
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8.48

8.49

8.50

8.51

8.52

8.53

8.54

8.56

Find each capacitor voltage in the circuit shown in Fig. 8-20.

Ans. 1, =200V. 1, =100V, 1,=40V. 1, =601

300 pF 1200 pF
+ V- + (.T—-
\Z Vi
+ +
300 V =< \£ 120 pF V. =< 800 pF
Fig. 8-20

A 0.1-uF capacitor charged to 100V and a 0.2-uF capacitor charged to 60V are connected together with
plates of the same polarity joined. Find the voltage and the initial and final stored encrgies.

Ans. 733V 860 4. 807 1dJ

Repeat Prob. 8.49 for plates of opposite polarity joined.

Ans.  6.67V_ 860 jl. 6.67 1)

Find the voltage across a 0.1-uF capacitor when the capacitor current is 0.5 mA.
Ans.  There is not enough information to determine a4 unique value,

Repeat Prob. 8.51 if the capacitor voltageis 6 Vat = 0s  and if the 0.5-mA capacitor current 1s constant.
Of course. assume associated references.

Ans. 6 4+ 5000 V

If the voltage across a 2-uF capacitor 1s 200/ V for 1 < 15, 200V for 1s <t <5s. and 3200 — 600r V
for 1> S5s. find the capacitor current.

Ans. 04 mAforr<ls., OAforls<r<Ss. —12mAforr>355

Find the time constant of the circuit shown in Fig. 8-21.

Ans. 60 us
60 60 4k 9 kO
+
=ev 40 0.1A T”F =gy 6k 0.0003v v == 10 uF
Fig. 8-21 Fig. 8-22

Find the time constant of the circuit shown in Fig, 8-22.

Ans. 663 ms

How long docs it take a 10-uF capacitor charged to 200 V 1o discharge through a 160-kQ resistor, and
what is the total encrgy dissipated in the resistor?

Ans. 85,02
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8.58

8.59

8.60

8.61

8.62

8.63

8.64
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At 1 =05 the closing of 4 switch conneets in series a 150-V source, a 1.6-k€2 resistor, and the parallel
combination of a 1-kQ resistor and an uncharged 0.2-pF capacitor. Find (a) the initial capacitor
current.  (h) the initial and final 1-kQ resistor currents,  (¢) the final capacitor voltage. and  {(d) the time
required for the capacitor voltage to reach its final value.

Ans. (@) 938 mA. (MO A and 57.7 mA. () 57710 () 0.615 ms

Repeat Prob. 8.57 for a 200-V source and an initial capacitor voltage of 50 V opposed in polarity to that
of the source.
Any. (u) 43.8 mA. (b)) SOmA and 769 mA. (¢) 769 V. (d)0.615 ms

In the circuit shown in Fig. 8-23, find the indicated voltages and currents at 1 = 0+ s, immediately after
the switch closes. Notice that the current source is active in the circuit before the switch closes.

Ans. v (0+4)=,(04)=20V i0+)= —-0106 A
HO+)=1A 0+1=017A
iH0+)=0.106 A i(0+)=638mA
300 i3 50 2 is
NN—"—1 AMN——=
b
+ 40 )

+
.
a()  gme e oo

=3V

Fig. 8-23

In the circuit shown in Fig. 8-23. find the indicated voltages and currents a long time after the switch closes.
Ans. (%) =222V ifx)=111A ix)=—0I11TA isl£)=0A

ralx) =256V i(ri=0A ifx)=011A
A 0.1-uF capacitor, inttially charged to 230 V_ is discharged through a 3-MQ resistor. Find the capacitor
voltage 0.2 s after the capacitor starts to discharge.

Ans. 118V

For the circuit described in Prob. 8.61, how long does it take the capacitor to discharge to 40 V?
Ans. 0525 s
Closing a switch connects in series a 300-V source, a 2.7-MQ resistor. and a 2-uF capacitor charged to

50 V with its positive plate toward the positive terminal of the source. Find the capacitor current 3 s after the
switch closes. Also, find the time required for the capacitor voltage to increase to 250 V.

Ans. 531 uA, 8.69 s

The switch is closed at 1 = 0s in the circuit shown in Fig. 8-24. Find v and i for 1t > 0 s. The capacitor
is initially uncharged.

Ans. 61 —e Y V.l —04e 'mA
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8.65

8.66

8.67

8.68

8.69

8.70

30 k12 30 kO

Repeat Prob. 8.64 for t{0+) =20V and for the 60-kQ resistor replaced by a 70-kQ resistor.
Ans. 63 —43¢719%V, 09 - 0.253¢ 71" mA

After a long time in position 1, the switch in the circuit shown in Fig. 8-25 is thrown to position 2 for 2 s,
after which it is returned to position 1. Find v for 1 > 0s.

Ans. =200+ 300¢ %YV for Os <1<2s; 100 —-544e 9202 =100 —81.1e" ¥V for 1>2s

05MQ | 2 1MQ

100 V= + =200V
LT ]
Fig. 8-25

After a long time in position 2, the switch in the circuit shown in Fig. 8-25 is thrown at 1 =0s to position
1 for 45, after which 1t is returned to position 2. Find v for 1 > 0s.

Ans. 100 —300e °'V for Os<t<ds: —200+ 165¢ %" ¥ = 200 + 246¢ """V for r>4s
A simple RC timer has a 50-V source, a switch, an uncharged 1-uF capacitor, and a resistor. all in series.

Closing the switch and then opening it 5 s later produces a capacttor voltage of 3 V. Find the resistance of
the resistor.

Ans. 833 MQ approximately. 80.8 MQ more exactly
Repeat Prob. 8.68 for a capacitor voltage of 40 V.
Ans. 311 MQ

In the oscillator circuit shown in Fig. 8-18, replace the 1-MQ resistor with a 4.3-MQ resistor and the 1000-V
source with a 150-V source and find the period of oscillation.

Ans. 729 s



Chapter 9

Inductors, Inductance, and PSpice
Transient Analysis

INTRODUCTION

The following material on inductors and inductance is similar to that on capacitors and capacitance
presented in Chap. 8. The reason for this similarity is that, mathematically speaking, the capacitor and
inductor formulas are the same. Only the symbols differ. Where one has v, the other has i, and vice
versa; where one has the capacitance quantity symbol C, the other has the inductance quantity symbol
L; and where one has R, the other has G. It follows then that the basic inductor voltage-current formula
is = Ldi/dt inplaceof i= Cdrdr. thattheencrgy stored is L7 instead of }Cv°. that. inductor
currents, instead of capacitor voltages, cannot jump, that inductors are short circuits. instead of open
circuits, to dc, and that the time constant is LG = L/R instead of CR. Although it is possible to
approach the study of inductor action on the basis of this duality. the standard approach is to use
magnetic flux.

This chapter also includes material on using PSpice to analyze transient circuits.

MAGNETIC FLUX

Magnetic phenomena are explained using mugnetic flux. or just flux. which relates to magnetic lines
of force that, for a magnet, extend in continuous lines from the magnetic north pole to the south pole
outside the magnet and from the south pole to the north pole inside the magnet. as s shown in Fig.
9-1a. The SI unit of flux is the weber, with unit symbol Wb. The quantity symbol i1s @ for a constant
flux and ¢ for a time-varying flux.

— -
/N 7~N\

\ /N ~
0 AL Ve
TRIEIR ;e
STt ve — \
L I l%
| It 4 ll
\ gt l’ \ / <T
\\\\ LS| 4/ N

T

\\ /Y

\\J/ &

(a) (b)

Fig. 9-1

Current flowing in a wire also produces flux, as shown in Fig. 9-1b. The relation between the direction
of flux and the direction of current can be remembered from one version of the right-hand rule. 1f the
thumb of the right hand is placed along the wire in the direction of the current flow, the four fingers of
the right hand curl in the direction of the flux about the wire. Coiling the wire enhances the flux, as does
placing certain material, called ferromagnetic material, in and around the coil. For example. a current
flowing in a coil wound on an iron cylindrical core produces more flux than the same current flowing
in an identical coil wound on a plastic cylinder.

Permeability, with quantity symbol g, is a measure of this flux-enhancing property. It has an SI unit
of henry per meter and a unit symbol of H/m. (The henry, with unit symbol H, is the SI unit of inductance.)
The permeability of vacuum, designated by p,, 1s 0.4n uH /m. Permeabilities of other materials are related

174
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to that of vacuum by a factor called the relative permeability, with symbol y,. The relation is g = p .
Most materials have relative permeabilities close to 1, but pure iron has them in the range of 6000 to
8000, and nickel has them in the range of 400 to 1000. Permalloy, an alloy of 78.5 percent nickel and
21.5 percent iron, has a relative permeability of over 80 000.
If a coil of N turns is linked by a ¢ amount of flux, this coil has a flux linkage of N¢. Any change
in flux linkages induces a voltage in the coil of
r= lim AN¢ = Lll(N(/)) = Nd—d)
Ao Al dt dt
This is known as Faraday's law. The voltage polarity i1s such that any current resulting from this
voltage produces a flux that opposes the original change in flux.

INDUCTANCE AND INDUCTOR CONSTRUCTION

For most coils, a current { produces a flux linkage N ¢ that is proportional to i. The equation relating
N¢ and i has a constant of proportionality L that is the quantity symbol for the inductance of the coil.
Specifically, Li= N¢ and [. = N¢ i. The Sl unit of inductance is the henry, with unit symbol H. A
component designed to be used for its inductance property is called an inductor. The terms “coil” and
“choke” are also used. Figure 9-2 shows the circuit symbol for an inductor.

The inductance of a coil depends on the shape of the coil, the permeability of the surrounding
material, the number of turns, the spacing of the turns, and other factors. For the single-layer coil shown
in Fig. 9-3, the inductance is approximately L = N?uA‘l. where N is the number of turns of wire, 4
1s the core cross-sectional area in square meters, ! is the coil length in meters, and u is the core
permeability. The greater the length to diameter, the more accurate the formula. For a length of 10 times
the diameter, the actual inductance is 4 percent less than the value given by the formula.

et ——

T . "
Core o
Fig. 9-2 Fig. 9-3

INDUCTOR VOLTAGE AND CURRENT RELATION

Inductance instead of flux 1s used in analyzing circuits containing inductors. The equation relating
inductor voltage, current, and inductance can be found from substituting N¢ = Li into ¢ =
d(N¢):dt. The result is = L di;dr, with associated references assumed. If the voltage and current
references are not associated, a negative sign must be included. Notice that the voltage at any instant
depends on the rate of change of inductor current at that instant, but not at all on the value of current
then.

One important fact from ¢ = L di/dt is that if an inductor current is constant, not changing, then
the inductor voltage is zero because di:dt = 0. With a current flowing through it, but zero voltage
across it, an inductor acts as a short circuit: An inductor is a short circuit to de. Remember, though, that
it 1s only after an inductor current becomes constant that an inductor acts as a short circuit.

The relation v = L di‘dt ~ LAi At also means that un inductor current cannot jump. For a jump to
occur, Ai would be nonzero while At was zero, with the result that Ai;Ar would be infinite, making the
inductor voltage infinite. In other words, a jump in inductor current requires an infinite inductor voltage.
But. of course, there are no sources of infinite voltage. Inductor voltage has no similar restriction. It can
jump or even change polarity instantaneously. Inductor currents not jumping means that inductor
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currents immediately after a switching operation are the same as immediately before the operation. This
is an important fact for RL (resistor-inductor) circuit analysis.

TOTAL INDUCTANCE

The total or equivalent inductance (L or L,,) of inductors connected in series, as in the circuit shown
in Fig. 9-4a, can be found from KVL: v, =1t + v, + v;. Substituting from v = L di/dt results in

NI
dt dt dt dt
which upon division by di/dt reduceste L, = L, + L, + L. Since the number of series inductors is not
significant in this derivation, the resuit can be generalized to any number of series inductors:
Ly=Li+Ly+Ly+Ly+

which specifies that the total or equivalent inductance of series inductors is equal to the sum of the
individual inductances.

(a) (b)
Fig. 94

The total inductance of inductors connected in parallel, as in the circuit shown in Fig. 9-4b, can be
found starting with the voltage-current equation at the source terminals: v = L,di/di, and substitut-
ngin i, =iy + i, + iy

L d(_ fhaiy=L dil+di2+di3
t=Ly— (i i i) = B Tl
Ta' YT e T de dr

Each derivative can be eliminated using the appropriate di/dt = v/L:
L,=LT(1+"+") o oL .t
Ll LZ LJ LT Ll LZ LJ
which can also be written as

1

1/L, + /L, + /L,

L=

Generalizing,

1
T VL, + 1/L, + 1Ly + 1/Lg + -

LT
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which specifies that the total inductance of parallel inductors equals the reciprocal of the sum of the recip-
rocals of the individual inductances. For the special case of N parallel inductors having the same induct-
ance L, this formula simplifies to Ly = L/N. And for two parallel inductorsitis Ly = L,L,AL, + L,).
Notice that the formulas for finding total inductances are the same as those for finding total resistances.

ENERGY STORAGE
As can be shown by using calculus, the energy stored in an inductor is
w, = 3 Li?

in which w, is in joules, L is in henries, and i is in amperes. This energy is considered to be stored
in the magnetic field surrounding the inductor.

SINGLE-INDUCTOR DC-EXCITED CIRCUITS

When switches open or close in an RL dc-excited circuit with a single inductor, all voltages and
currents that are not constant change exponentially from their initial values to their final constant values,
as can be proved from differential equations. These exponential changes are the same as those illustrated
in Fig. 8-5 for capacitors. Consequently, the voltage and current equations are the same: v =v(x) +
[v0+)—w(x)]e ™"V and i=1i(x)+ [i(0+)—i{x)]e '* A. The time constant t, though, is different.
Itis t=L/Ry,, in which Ry, is the circuit Thévenin resistance at the inductor terminals. Of course,
in one time constant the voltages and currents change by 63.2 percent of their total changes, and after
five time constants they can be considered to be at their final values.

Because of the similarity of the RL and RC equations, it is possible to make RL timers. But,
practically speaking, RC timers are much better. One reason is that inductors are not nearly as ideal as
capacitors because the coils have resistances that are seldom negligible. Also, inductors are relatively
bulky, heavy, and difficult to fabricate using integrated-circuit techniques. Additionally, the magnetic
fields extending out from the inductors can induce unwanted voltages in other components, The problems
with inductors are significant enough that designers of electronic circuits often exclude inductors entirely
from their circuits,

PSPICE TRANSIENT ANALYSIS

The PSpice statements for inductors and capacitors are similar to those for resistors but instead of
an R, they begin with an L for aninductor and a C for acapacitor. Also, nonzero initial inductor currents
and capacitor voltages must be specified in these statements. For example, the statement

L1 34 S5M 1IC = 6M

specifies that inductor L1 is connected between nodes 3 and 4, that its inductance is S mH. and that
it has an initial current of 6 mA that enters at node 3 (the first specified node). The statement

c2 7 2 8u 1IC =9

specifies that capacitor C2 is connected between nodes 7 and 2, that its capacitance is 8 uF, and that
it has an initial voltage of 9 V positive at node 7 (the first specified node).
For PSpice to perform a transient analysis. the circuit file must include a statement having the form

.TRAN TSTEP TSTOP uI1c
in which TSTEP and TSTOP specify times in seconds. This statement might be, for example,

.TRAN 0.02 4 UIcC
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in which 0.02 corresponds to TSTEP, 4 to TSTOP, and UIC to UIC, which means “use initial
conditions.” The TSTEP of 0.02 s is the printing or plotting increment for the printer output, and the
TSTOP of 4 s 1s the stop time for the analysis. A good value for TSTOP is four or five time constants.
For the specified TSTEP and TSTOP times. the first output printed 1s for 1 =0s, the second
for t=002s, thethird for t=0.04s, and so on up to the last one for t =4s.

The .PRINT statement for a transient analysis is the same as that for a dc analysis except that
TRAN replaces DC. The resulting printout consists of a table of columns. The first column consists of
the times at which the outputs are to be specified. as directed by the specifications of the TRAN statement.
The second column comprises the values of the first specified output quantity in the .PRINT statement,
which values correspond to the times of the first column. The third column comprises the values of the
second specitied output quantity, and so on.

With a plot statement, a plot of the output quantities versus time can be obtained. A plot statement
is similar to a print statement except that it begins with .PLOT instead of .PRINT.

Improved plots can be obtained by running the graphics postprocessor Probe which is a separate
executable program that can be obtained with PSpice. Probe is one of the menu items of the Control
Shell. If the Control Shell is not being used, the statement .PROBE must be included in the circuit file
for the use of Probe. Then, the PROBE mode may be automatically entered into after the running of
the PSpice program.

With Probe. various plots can be obtained by responding to the menus that appear at the bottom
of the screen. These menus are fairly self-explanatory and can be mastered with a little experimentation
and tnial-and-error.

For transient analysis. PSpice has five special time-dependent sources. only two of which will be
considered here: the periodic-pulse source and the piecewise-lineur source.

Figure 9-5 shows the general form of the pulse for the periodic-pulse source. This pulse can be
periodic, but does not have to be and will not be for present purposes. The parameters signify V1 for
the initial value, V2 for the pulsed value, TD for time delay. TR for rise time, TF for fall time, PW for
pulse width, and PER for period. For a pulse voltage source VI that is connected between nodes 2 and
3, with the positive reference at node 2, the corresponding PSpice statement has the form

vl 2 3 PULSE(Vl1l, V2, TD, TR, TF, PW, PER)

The commas do not have to be included. Also, if a pulse 1s not periodic, no PER parameter is
specified. PSpice then assigns a default value, which is the TSTOP value in the TRAN statement.

vs §
PER

kTD~- TR

PW

—TF—

Fig. 9-5

If a zero rise or fall time is specified, PSpice will use a default value equal to the TSTEP value in
the .TRAN statement. Since this value 1s usually too large. nonzero but insignificant rise and fall times
should be specified, such as one-millionth of a time constant.

The piecewise-linear source can be used to obtain a voltage or a current that has a waveform
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comprising only straight lines. It applies. for example, to the pulse of Fig. 9-5. The corresponding PSpice
statement for it is

vl 2 3 PWL(O, V1, Tt, Vi, T2, V2, T3, V2, T4, V1)

Again, the commas are optional. The entries within the parentheses are in pairs specifying the corners
of the waveform, where the first specification is time (0, T1, T2, etc.) and the second is the voltage at
that time (VI, V2, V3, ctc.). The times must continually increase, even if by very small increments- no
two times can be exactly the same. If the last time specified in the PWL statement is less than TSTOP
in the . TRAN statement, the pulse remains at its last specified valuc until the TSTOP time.

PWL statements can be used to obtain sources of voltage and current that have a much greater
variety of waveforms than those that can be obtained with PULSE statements. However, PULSE
statements apply to periodic waveforms while PWL statements do not.

Solved Problems

9.1 Find the voltage induced in a 50-turn coil from a constant flux of 10* Wb, and also from a
changing flux of 3 Wb,

A constant flux linking a coil dBes not induce any voltage only a changing flux does. A changing flux
of 3 Wb s induces a voltagc of =N dp di =50 x 3 =150V.

9.2 What is the rate of change of flux linking a 200-turn coil when 50 V is across the coil?

This rate of change is the d¢ di in ¢ = N d¢ di:
dp v 50
- = -=--=025Wbs
dt N 200

93 Find the number of turns of a coil for which a change of 0.4 Wb's of flux linking the coil induces

a coil voltage of 20 V.
This number of turns is the N in ¢ = N d¢ di:
r 20
N=-—-=-"=50turns
dpdi 04

94 Find the inductance of a 100-turn coil that is linked by 3 x 10"* Wb when a 20-mA current
flows through it.

The pertinent formula is L= N¢. Thus.

Nep 10033 x 1079
L= - = -=15H
i 20 x 1073

95 Find the approximate inductance of a single-layer coil that has 300 turns wound on a plastic
cylinder 12 cm long and 0.5 cm in diameter.

The rclative permeability of plastic is so nearly 1 that the permeability of vacuum can be used in the
inductance formula for a single-layer cylindrical coil:

NIA 300%04n x 10 4)[x x (0.25 x 107 7)?
A 300704 > 10 Ax x 023 x 10T g g

L hi
/ 12 x 107~
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Find the approximate inductance of a single-layer 50-turn coil that is wound on a ferromagnetic
cylinder 1.5 cm long and 1.5 mm in diameter. The ferromagnetic material has a relative perme-
ability of 7000.

NuA  S0H7000 x 0.4 10 9 x (0.75 x 1073)?
L ‘fi" _. 3077000 x ¢ ___ﬂ_xl_s___%q_;__ >0 ) s mu
X

A 3-H inductor has 2000 turns. How many turns must be added to increase the inductance to 5 H?
In general. inductance is proportional to the square of the number of turns. By this proportionality.

5 N? 5
= or N = 2000 /- = 2582 turns
320007 3

So, 2582 — 2000 = 582 turns must be added without making any other changes.

Find the voltage induced in a 150-mH coil when the current is constant at 4 A. Also, find the
voltage when the current is changing at a rate of 4 A/s.

If the current is constant, di-dt =0 and so the coil voltage is zero. For a rate of change of di dr =
4 AJs,

di )
l‘=l_.d = (150 x 10 *¥4) =06V
t

Find the voltage induced in a 200-mH coil at ¢ = 3 ms if the current increases uniformly from
30mAat r=2ms to%0 mAat (=35ms
Because the current increases uniformly. the induced voltage is constant over the time interval. The rate

of increase is Ai‘At, where Af is the current at the end of the time interval minus the current at the beginning
of the time interval: 90 — 30 = 60 mA. Of course, Ar is the time interval: 5 — 2 = 3 ms. The voltage is

Ai (200 x 10 *}60 x 107

t=L - =———~ - —— - — =4V for Ims<t<Sms

At Ix 103

What is the inductance of a coil for which a changing current increasing uniformly from 30 mA
to 80 mA in 100 us induces 50 mV in the coil?

Because the increase is uniform (linear), the time derivative of the current equals the quotient of the
current change and the time interval:

di Al 80 x10*-30x10°

e = —— = . - . =500AS
dr At 100 x 10°¢
Then, from ¢ = L di.dt.
r S0 x 1073
[=- - =——e---H=100uH
dizdt 500

Find the voltage induced in a 400-mH coil from O s to § ms when the current shown in Fig. 9-6
flows through the coil.

The approach is to find di dt, the slope, from the graph and insert it into ¢ = L di dt for the various
time intervals. For the first millisecond, the current decreases uniformly from 0 A to —40 mA. So. the slope
is (—40 x 1073 - 0)/(1 x 10 *) = —40 A;s, which is the change in current divided by the corresponding
change in time. The resulting voltage is ¢ = L di‘dt = (400 x 10"} —40) = —16 V. For the next three
milliseconds, the slope is [20 x 107% — (=40 x 10 )3 x 1073 =20A s and the voltage is =
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Fig. 9-6 Fig. 9-7

(400 x 1073)420) =8 V. For the next two milliseconds, the current graph is horizontal. which mecans
that the slope is zero. Consequently, the voltage is zero: v = 0 V. For the last two milliseconds. the slope
IS0-20x 10732 x107%)=—=10As and r=(400 x 10" % —-10)= —4V.

Figure 9-7 shows the graph of voltage. Notice that the inductor voltage can jump and can even
instantaneously change polarity.

Find the total inductance of three parallel inductors having inductances of 45, 60, and 75 mH.

]

- L - =191 mH
145+ 1,60+ 1775

L,

Find the inductance of the inductor that when connected in parallel with a 40-mH inductor
produces a total inductance of 10 mH.

As has been derived, the reciprocal of the total inductance equals the sum of the reciprocals
of the inductances of the individual parallel inductors:

1 1

1 |
= + - from which - = 0075 and L=133mH
10 40 L L

Find the total inductance Ly of the circuit shown in Fig. 9-8.

S mH 9 mH

30 mH

Fig. 9-8

The approach, of course, is to combine inductances starting with inductors at the end opposite the
terminals at which Ly is to be found. There. the parallel 70- and 30-mH inductors have a total inductance
of 70(30)/(70 + 30) = 21 mH. This adds to the inductance of the 9-mH series inductor: 21 + 9 = 30 mH.
This combines with the inductance of the parallel 60-mH inductor:  60(30)/(60 + 30) = 20 mH. And, finally.
this adds with the inductances of the series 5- and 8-mH inductors: L, =204+ 5 + 8 = 33 mH.
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Find the energy stored in a 200-mH inductor that has 10 V across it.

Not enough information is given to determine the stored cnergy. The inductor current is needed. not
the voltage. and there is no way of finding this current from the specified voltage.

A current =032t A flows through a 150-mH inductor. Find the energy stored at t =4 s.
At t=4s theinductor currentis =032 x4 =128 A and so the stored energy is

w=LLi2 = 05150 x 10 }1.28)° = 0.123)

Find the time constant of the circuit shown in Fig. 9-9.

S0 k2 14 k0
VYV — VvV

100 V = 20 kQ 75 kQ 150 kQ2
-[ 30 kO 50 mH
Fig. 9-9

The time constant is L Ry,. where R, is the Thévenin resistance of the circuit at the inductor
terminals. For this circuit.

Ry, = (50 + 30) 20 4 14 + 75 150 = 80 kQ
andso t =(50 x 10 %) (80 x 10%)s = 0.625 ps.

What is the energy stored in the inductor of the circuit shown in Fig. 9-97?

The inductor current is needed. Presumably, the circuit has been constructed long enough (57 = 5 x
0.625 = 3.13 us) for the inductor current to become constant and so for the inductor to be a short circuit.
The current in this short circuit can be found from Theévenin's resistance and voltage. The Thévenin
resistance is 80 kQ, as found in the solution to Prob. 9.17. The Thévenin voltage is the voltage across
the 20-kQ resistor if the inductor is replaced by an open circuit. This voltage will appear across the open
circuit since the 14-, 75-, and 150-kQ resistors will not carry any current. By voltage division, this voltage is

20
Vin = . x 100 =20V
20 + 50 + 30
Because of the short-circuit inductor load, the inductor current is ¥y, (R, + 0) = 20 80 = 0.25 mA, and
the stored energy is  0.5(50 x 10 *X0.25 x 10 *}1*J = 1.56 nl.

Closing a switch connects in series a 20-V source, a 2-Q resistor, and a 3.6-H inductor. How long
does it take the current to get to its maximum value, and what is this value?

The current reaches its maximum value Hve time constants after the switch closes: SL-R =
5(3.6):2 = 9s. Since the inductor acts as a short circutt at that time. only the resistance limits the
current: %) =202=10A.

Closing a switch connects in series a 21-V source, a 3-() resistor, and a 2.4H inductor. Find (a) the
initial and final currents, (b) the initial and final inductor voltages, and (¢) the nitial rate of
current increase.
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(a) Immediately after the switch closes, the inductor current is 0 A because it was 0 A immediately
before the switch closed. and an inductor current cannot jump. The current increases from 0 A
until it reaches its maximum value five time constants (5 x 2.4 3 =45) after the switch closes.
Then, because the current is constant. the inductor becomes a short aircuit. and so {x}= 'R =
213 =TA.

(b) Since the current is zero immediately after the switch closes. the resistor voltage is 0 V. which means,
by KVL. that all the source voltage is across the inductor: The mnitial inductor voltage is 21 V. Of
course, the final inductor voltage is zero because the inductor is a short circuit to de after five time
constants.

(¢) As can be seen from Fig. 8-5h, the current inttially increases at a rate such that the final current value
would be reached in one time constant if the rate did not change. This initial rate is

{rx)—i0+) 7-0
S e L 2RT5A s
T 0.8

Another way of finding this initial rate. which is didr at 1 =0+. is from the initial inductor

voltage:

di di H0+) 2
1‘1,(0+]=1.~'(0+l or J(0+):l"1 ): 2
t{[ (11 L 214

A closed switch connects a 120-V source to the field coils of a dc motor. These coils have 6 H
of inductance and 30 Q of resistance. A discharge resistor in parallel with the coil limits the
maximum coil and switch voltages at the instants at which the switch is opened. Find the
maximum value of the discharge resistor that will prevent the coil voltage from exceeding 300 V.

With the switch closed, the current in the coils is 120 30 =4 A because the inductor part of the coils
is a short circuit. Immediately after the switch is opened. the current must still be 4 A because an inductor
current cannot jump- the magnetic ficld about the coil will change to produce whatever coil voltage is
necessary to maintain this 4 A. In fact. if the discharge resistor were not present. this voltage would become
great enough- thousands of volts  to produce arcing at the switch contacts to provide a current path to
enable the current to decrease continuously. Such a large voltage might be destructive to the switch contacts
and to the coil insulation. The discharge resistor provides an alternative path for the inductor current, which
has a maximum value of 4 A. To limit the coil voltage to 300 V, the maximum value of discharge resistance
1s 3004 = 75 Q. Of course. any value less than 75 Q will limit the voltage to less than 300 V. but a smaller
resistance will result in more power disstpation when the switch is closed.

In the circuit shown in Fig. 9-10, find the indicated currents a long time after the switch has been
in position 1.
The inductor is. of course, a short circuit. and shorts out the 20-Q resistor. As a result, i, = 0 A. This

short circuit also places the 18-Q resistor in parallel with the 12-Q resistor. Together they have a total
resistance of  18(12):(18 + 12) = 7.2 Q. This adds to the resistance of the series 6.8-Q resistor to produce

6.8 1
o o\ 180 | i
2
+
- 120 60
1oV = 00 2HI
i
l =sov h -
7 }
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7.2 + 6.8 = 14 Q at the source terminals. So, the source current is 140:14 = 10 A. By current division,

o= e x10=4A and iy=----—-x10=6A
+

For the circuit shown in Fig. 9-10, find the indicated voltage and currents immediately after the
switch is thrown to position 2 from position 1, where it has been a long time.

As soon as the switch leaves position 1, the left-hand side of the circuit is isolated, becoming a series
circuit in which i, = 140/(6.8 + 12) = 7.45 A. In the other part of the circuit, the inductor current cannot
jump. and is 4 A, as was found in the solution to Prob. 9.22: i, = 4 A. Since this is a known current, it can
be considered to be from a current source, as shown in Fig. 9-11. Remember, though. that this circuit is
valid only for the one instant of time immediately after the switch is thrown to position 2. By nodal analysis.
v v —50 )
—+--——+4=0 from which r=-209V
20 6+ 18

And i, =120 = -209/20 = —1.05 A.

This technique of replacing inductors in a circuit by current sources is completely general for
an analysis at an instant of time immediately after a switching operation. (Similarly, capacitors can be
replaced by voltage sources.) Of course, if an inductor current is zero, then the current source carries 0 A
and so is equivalent to an open circuit.

(X1

S0V = lil -

Fig. 9-11
A short is placed across a coil that at the time is carrying 0.5 A. If the coil has an inductance of

0.5 H and a resistance of 2 Q, what is the coil current 0.1 s after the short is applied?

The current equation is needed. For the basic formula i =ilx) + [(0+) —i(x)]e ‘. the initial
current is  {0+)=0.5A because the inductor current cannot jump. the final current s {(x)=
0 A becausc the current will decay to zero after all the initially stored cnergy 1s dissipated in the resistance,
and the time constantis t= LR =0.52=0255s So.

(N =04+(05—-0) 925 =05 "*A
and i(0.1) = 0.5¢ *%! = 0335 A.

A coil for a relay has a resistance of 30 Q and an inductance of 2 H. If the relay requires 250 mA
to operate, how soon will it operate after 12 V is applied to the coil?

For the current formula, 0+)=0A. i{x)=1230=04A. and 7=230=1 155 So.
i=044+(0-—-04)e =041 —-¢ YA

The time at which the current is 250 mA = 0.25 A can be found by substituting 0.25 for i and solving
for t:

025 =041 —¢ '™ or e '3 =0375
Taking the natural logarithm of both sides results in

Ine ' =1n0.375 from which — 15t = —0.9809 and { = 654 ms
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For the circuit shown in Fig. 9-12, find vand ifor ¢t >0s ifat t=0s the switch is thrown
to position 2 after having been in position 1 for a long time.

The switch shown is a make-before-break switch that makes contact at the beginning of position 2
before breaking contact at position 1. This temporary double contacting provides a path for the inductor
current during switching and prevents arcing at the switch contacts. To find the voltage and current, it is
only necessary to get their initial and final values, along with the time constant, and insert these into the
voltage and current formulas. The initial current i(0+) is the same as the inductor current immediately
before the switching operation, with the switch in position 1: (0+) = 50/(4 + 6) = 5 A. When the switch
is in position 2, this current produces initial voltage drops of 5 x 6 =30V and 14 x 5§ =70V across the
6- and 14-Q resistors, respectively. By KVL, 30 + 70 + 1(0+) = 20, from which ©(0+)= = —80V.For
the final values, clearly (x)=0V and i(ax)=20/(14 + 6) =1 A. The time constant is 4,20 = 0.2 s.
With these values inserted, the voltage and current formulas are

t=0+(—80—0)e 02 = —80e 3V for 1>0s
i=14+(5-—1e "% =14+4e"%A for t>0s
300 60 N
W+ é ANN—
40 1 . —
i 4H
—_—
2 ‘ + v —
120 mH
- \' —
T 140 §6n =%V . T_ASV
ln
=2V
1 100
Fig. 9-12 -
Fig. 9-13

For the circuit shown in Fig. 9-13, find i for t > 0s if the switch is closed at r=0s after
being open for a long time.

A good approach is to use the Thévenin equivalent circuit at the inductor terminals. The Thévenin
resistance is easy to find because the resistors are in serics-parallel when the sources are deacti-
vated: Ry, = 10 + 30[60 = 30 Q. The Thévenin voltage is the indicated V with the center branch removed
because replacing the inductor by an open circuit prevents the center branch from affecting this voltage. By
nodal analysis,

V~90+V—(—45)_
30 60

0 from which V=45V

So, the Thévenin equivalent circuit is a 30-Q resistor in series with a 45-V source, and the polarity
of the source is such as to produce a positive current i. With the Thévenin circuit connected to the
inductor, it should be obvious that i(0+)=0A, i{oc)=4530=15A, 7=(120 x 107%,30 = 4 x
10735, and 1/t = 250. These values inserted into the current formula result in i= 15— 1.5¢" 250 A
for t>0s.

In the circuit shown in Fig. 9-14, switch S, is closed at t =05, and switch S, is opened at
t = 3s. Find i(2) and i(4), and make a sketch of i for t > 0 s.

Two equations for i are needed: one with both switches closed, and the other with switch S, closed
and switch S, open. At the time that S, is closed, i(0+) = 0 A, and i starts increasing toward a final value
of i(xc) = 6/(0.1 + 0.2) = 20 A. The time constant is 1.2/(0.1 + 0.2) = 4 s. The 1.2-Q resistor does not affect
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i (A)
) nk 10.55 A
0.1 0 Si
AAA ey 10
) 1,' 9l
120 : - 7.87 A
020 ol 5.88 A
1 st
=6V
- 4 r[
3
éLZH L
1
o l 1 1 L 1
0 1 2 3 4 S & 7 t(s)
Fig. 9-14 Fig. 9-15

the current or time constant because this resistor is shorted by switch §,. So. for the first three seconds.
i=20~ 20e "* A, and from this, i(2) = 20 — 20e "2 * = 787 A.

After switch S, opens at ¢ = 3 s, the equation for i must change because the circuit changes as a result
of the insertion of the 1.2-Q resistor. With the switching occurring at ¢ = 3s instead of at ¢t =05, the
basic formulaforiis 7= (=) + [i34+) — i(=)]e " " A.Thecurrent {3+ ) can be calculated from the first
i equation since the current cannot jump at = 3s: i(3+) =20~ 20¢ **=10.55A. Of course, i(x)
=601 +12+02)=4A and =1215=08s With thesc values inscrted. the current formula is

i=4 4+ (1055 —4)e """ H08 - 4 4 §55¢ 1250 b p for t>3s

from which i(4) = 4 + 6.55¢ 1354 ° 3 = 588 A,
Figure 9-15 shows the graph of current based on the two current equations,

Use PSpice to find the current i in the circuit of Fig. 9-16.
i 6Q
) o ———A\

3

12V =

§[.5H

The time constantis t= L/R = 1.5;6 = 0.25 5. S0, a suitable value for TSTOP in the TRAN statement
is 4t =1s because the current is at approximately its final value then. The number of time steps will be
selected as only 20, for convenience. Then, TSTEP in the TRAN statement is TSTOP 20 = 0.05s. Even
though the initial inductor current is zero, a UIC specification is nceded in the . TRAN statement. Otherwise.
only the final value of 2 A will be obtained. A .PLOT statement will be included to obtain a plot. Because
a table of values will automatically be obtained with this plot. no .PRINT statement is needed. Probe will
also be used to obtain a plot to demonstrate the superiority of its plot. Following i1s a suitable circuit file.

Fig. 9-16

CIRCUIT FILE FOR THE CIRCUIT OF FIG. 9-16
Vi 10 DC 12

Rl 12 6

Ll 20 1.5

.TRAN 0.05 1 UIC

.PLOT TRAN I(L1)

.PROBE

.END
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When PSpice is run with this circuit file, the plots of Figs. 9-17a and 9-17h are obtained from
the .PLOT and .PROBE statements, respectively. The Probe plot required a little additional effort
in responding to the menus at the bottom of the screen. The first column at the left-hand side of
Fig. 9-17a gives the times al which the current is evaluated. and the second column gives the current values
at these times. The values arc plotted with the time axis being the vertical axis and the current axis the
horizontal axis. The Probe plot of Fig. 9-17h is obviously superior in appearance, but it does not contain
the current values explicitly at the various times as does the table with the other plot. But values can be
obtained from the Probe plot by using the cursor feature which is included in the menus.

TIME I(L1)
(*)—mme—me e~ 0.0000E+00  S.0000E-01  1.0000E+00 1.5000E+00  2.0000E+00
0.000E+00 1.278E-06 * _~ ~ ~ ~ ~~ -~ -~ "~~~ ~"“~ =~~~ —°- =777
5.000E-02 3.618E-01 .
1.000E-01 6.588E-01 * .
1.500E-01 9.022E-01 * .
2.000E-01 1.101E+00 .
2.500E-01 1.264E+00 * . .

3.000E-01 1.398E+00 *

3.500E-01 1.507E+00 *

4.000E-01 1.596E+00 * .
4.500E-01 1.670E+00 . * }
5.000E-01 1.730E+00 . *
5.500E-01 1.779E+00 . * .
6.000E-01 1.819E+00 . * .
6.500E-01 1.852E+00 . *
7.000E-01 1.879E+00 *
7.500E-01 1.901E+00 . o
8.000E-01 1.919E+00 . *
8.500E-01 1.933E+00 *
9.000E-01 1.945E+00 . x,
9.500E-01 1.955E+00 . *,
1.000E+00 1.963E+00 ] *,
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9.30 In the circuit of Fig. 9-18, the switch is moved to position 1 at ¢ =0s and then to position 2
at (= 2s. The initial capacitor voltageis 1{0) =20 V. Find vt for ¢t >0s by hand and also
by using PSpice.

i 100kQ

Fig. 9-18

The time constant is
t=RC=(100 x 10310 x 107 %) =15
Also, {0) =20V, and for the switch in position 1 the final voltage is 1{x) = 100 V. Therefore,
o) = () + [0 = vfx)]e ' =100 + (20 — 100)e ' = 100 — 80e ™' V O0s<i1<2s
At =25,
1(2) = 100 — 80¢ "2 = 89.2 V

So, fort>2s, ult)=2892¢ " 2 =6589 'V.

For the PSpice circuit file, a suitable value for TSTOP is 5s, which is three ime constants after the
second switching. This time is not critical, of course, and perhaps a preferable time would be 6 s, which is
four time constants after the second switching. But 5 s will be used. The number of time steps is not critical
either. For convenience, 20 will be used. Then,

TSTEP = TSTOP/20 = 5/20 = 0.25 s

To obtain the effects of switching, a PULSE source will be used, with 0 V being one value and 100 V the
other. The time duration of the 100 V is 2 s, of course. Alternatively, a PWL source could be used. A PRINT
statement will be included to generate a table of values, and a .PROBE statement to obtain a plot. Following
is a suitable circuit file.

CIRCUIT FILE FOR THE CIRCUIT OF FIG. 9-18
Vi 1 0 PULSE(O, 100, 0, 1U, 1U, 2)

Rl 1 2 100K

Cl1 20 10U IC = 20

.TRAN 0.25 5 UIC

.PRINT TRAN V(C1)

.PROBE V(C1)

.END

If a PWL source were used instead of the PULSE source, the V1 statement would be
Vi 1 0 PWL{O O 1U 100 2 100 2.000001 0)

The V(C1) specification is included in the PROBE statement so that Probe will store the V(2) node voltage
under this name. Alternatively, this specification could be omitted and a trace of V(2) specified in the Probe

mode.
When PSpice is run with this circuit file, the .PRINT statement generates the table of Fig. 9-19a, and

the .PROBE statement generates Fig. 9-194. Notice that the voltage value at r=2s is 89.2 V. which
completely agrees with the value obtained by hand.
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TIME
0.000E+00
2.500E-01
5.000E-01
7.500E-01
1.000E+00
1.250E+00
1.500E+00
1.750E+00
2.000E+00
2.250E+00
2.500E+00
2.750E+00
3.000E+00
3.250E+00
3.500E+00
3.750E+00
4.000E+00
4.250E+00
4.500E+00
4.750E+00
5.000E+00

V(C1l)
2.000E+01
3.766E+01
5.144E+01
6.221E+01
7.057E401
7.709E+01
8.216E+01
8.611E+01
8.920E+01
6.951E+01
5.413E+01
4.213E+401
3.282E+01
2.554E+01
1.989E+01
1.548E+01
1.206E+01
9.386E+00
7.310E+00
5.689E+00
4.429E+00
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Supplementary Problems

Find the voltage induced in a 500-turn coil when the flux changes uniformly by 16 x 10~ °* Wb in 2 ms.

Ans.

Find the change in flux linking an 800-turn coil when 3.2 V is induced for 6 ms.

Ans.

40V

24 uWb
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What is the number of turns of a coil for which a flux change of 40 x 10 * Wb in 0.4 ms induces 70 V in
the coil?

Ans. 700 turns

Find the flux linking a 500-turn, 0.1-H coil carrying a 2-mA current.

Ans. 04 uWb

Find the approximate inductance of a single-layer, 300-turn air-core coil that is 3in long and 0.25in in
diameter.

Ans. 47 uH

Find the approximate inductance of a single-layer 500-turn coil that is wound on a ferromagnetic cylinder
that is 1in long and 0.1 in in diameter. The ferromagnetic material has a relative permeability of 8000.

Ans. 0.501 H

A 250-mH inductor has 500 turns. How many turns must be added to increase the inductance to 400 mH?
Ans. 132 turns

The current in a 300-mH inductor increases umformly from 0.2 to [ A in 0.5 s. What is the inductor voltage
for this time?

Ans. 048V

If a change in current in a 0.2-H inductor produces a constant 5-V inductor voltage, how long does the
current take to increase from 30 to 200 mA?

Ans. 6.8 ms

What is the inductance of a coil for which a changing current increasing uniformly from 150 to 275 mA in
300 us induces 75 mV in the coil?

Ans. 180 uH

Find the voltage induced in a 200-mH coil from 0 to 5 ms when a current ¢ described as follows flows

through the coil: i=250tA forO0s<:<lms, i=250mA for Ims<!:<2 ms and =416 —
83000t mA for 2ms <t < 5 ms.

Ans. r=50Vfor0s<t<lIlms; OViorilms<i<2ms; —166Vfor2ms<i!<S5ms

Find the total inductance of four parallel inductors having inductances of 80. 125. 200. and 350 mH.

Ans. 353 mH

Find the total inductance of a 40-mH inductor in series with the parallel combination of a 60-mH inductor,
an 80-mH inductor, and a 100-mH inductor.

Ans. 655 mH

A 2-H inductor, a 430-Q resistor, and a 50-V source have been connected in series for a long time. What is
the energy stored in the inductor?

Ans. 13.5m)

A current i =0.56r A flows through a 0.5-H inductor. Find the energy stored at 1 = 6s.
Ans. 2.82)
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9.50

9.51

9.52

9.53

What is the ¢nergy stored by the inductor in the circuit shown in Fig. 9201 R =20Q7?

Ans. 667 m}
R 61

=100V 300 120 mH

Fig. 9-20

Find the time constant of the circuit shown in Fig. 9-20 for R = 90 Q.

Ans. 421 ms

How long after a short circuit is placed across a coil carrying a current of 2 A does the current go to zero
if the coil has 1.2 H of inductance and 40 Q of resistance? Also, how much energy is dissipated?

Ans. 0.15s,24])

A switch closing connects in series a 10-V source, an 8.2-Q resistor, and a 1.2-H inductor. How long does
the current take to reach its maximum value, and what is this value?

Ans. 732ms, 1.22 A

In closing, a switch connects a 100-V source with 5 Q of internal resistance across the parallel combination
of a 20-Q) resistor and a 0.4-H inductor. What are the initial and final source currents, and what is the initial
rate of inductor current increase?

Ans. 4 A 20 A, 200 A-s

In the circuit shown in Fig. 9-21, the switch is thrown at t = 0s from an open position to position 1. Find
the indicated currents at ¢t =0+ s and also at a long time later.

Ans. i {0+)=357T A, H0+)=0A, i[(x)=2TA, ix)=243A

Fig. 9-21

In the circuit shown in Fig. 9-21, the switch is thrown at ¢ =0s to position 2 from position | where it has
becn a long time. Find the indicated currents at =0+ s and also at a long time later.

Ans. i(0+)= 564 A, i,(04+)=243 A, i(x)= —343 A, ifx)=—309A

A switchclosingat t =0s connectsa 20-mH inductor to a 40-V source that has 10 Q of internal resistance.
Find the inductor voltage and current for > 0s.

Ans. v =40e 00V = 4(] — ¢ 300y A
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954 A switch closing at 1 =0s connects a 100-V source with a 15-Q internal resistance to a coil that has
200 mH of inductance and 5 Q of resistance. Find the coil voltage for t > 0s.

Ans. 25 + 75e¢ !0y

9.55 A coil for a relay has a resistance of 20 Q and an inductance of 1.2 H. The relay requires 300 mA to operate.
How soon will the relay operate after a 20-V source with S Q of internal resistance is applied to the coil?

Ans. 226 ms

956 For the circuit shown in Fig. 9-22, find i as a function of time after the switch closes at ¢ =0s.

Ans. 0.04(1 — e %) A

140 N 18 0 60 N3

02 H
oY= 0 1200

—|l
VAAAS T

Fig. 9-22
9.57  Assume that the switch in the circuit shown in Fig. 9-22 has been closed a long time. Find i as a function
of time after the switch opens at t =0s.

Ans. 0.04e7336 A

9.58  In the circuit shown in Fig. 9-23, the switch is thrown to position 1 at t =0s after being open a long time.
Then it is thrown to position 2 at t=25s Findifor t>0s.

Ans. SOl —e ®Y")A for Os<t<25s; —20+4311e700U"29A for 1 >25s

158 1 2 o0s@
—ANVWW—0 o— AN/

4h|
8
<
8
<
=l

050

Fig. 9-23

9.59  Obtain the expression for the response for ¢ > 0s corresponding to the following circuit file. Also, from
this expression, determine the 11th value that will be printed.

CIRCUIT FILE FOR PROB. 9.59
Vi 10 120

Rl 1 2 40K

C1 20 50U IC = 30

.TRAN 0.25 10 UIC

.PRINT TRAN V(C1)

.END

Ans. 120 —90e °%V, 942 V
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9.60  Obtain the expression for the responsc for t > 0s corresponding to the following circuit file. Also. from

9.61

9.62

this expression, determine the 9th value that will be printed.

CIRCUIT FILE FOR PROB. 9.60
Vi 10 60

R1 12 20

Ll 20 2 IC= -2

.TRAN 0.02 0.5 UIC
.PRINT TRAN I(R1)

.END

Ans. 3 —5¢ '1"A 199 A

Obtain the expressions for the responsc for 1 > 0s corresponding to the following circuit file. Also, from

these expressions, determine the 17th value that will be printed.

CIRCUIT FILE FOR PROB. 9.61
Vi 1 0 PULSE(0, 120, O, 1U, 1U, 20M)
Rl 1 2 300

R2 2 0 600

Cl 20 50U IC = -50

.TRAN 2M 50M UIC

.PRINT TRAN V(C1)

.END

Ans. 80 — 130e 1'%V for 0s<t<0.02s; 624¢ '000-000y {5 1>002s: 188V

Obtain the expressions for the response for 1 > 0s corresponding to the following circuit file. Also. from

these expressions, determine the 13th value that will be printed.

CIRCUIT FILE FOR PROB. 9.62

I1. 01 PWL(O ©0 11U 0.1 0.032 0.1 0.032000001
Rl 1 0 300

R2 1 2 200

R3 2 0 500

L1 20 4 IC = -30M

.TRAN 0.004 0.08 UIC
.PRINT TRAN I(L1)
.END

Ans. 60 —90e >3 mA for 0s<it<32ms; 47.8¢ 623070030 A for 1> 32 ms:

0)

17.6 mA



Chapter 10

Sinusoidal Alternating Voltage and Current

INTRODUCTION

In the circuits considered so far, the independent sources have all been dc. From this point on, the
circuits have alternating-current (ac) sources.

An ac voltage (or ac current) varies sinusoidally with time, as shown in Fig. 10-1a. This is a periodic
voltage since it varies with time such that it continually repeats. The smallest nonrepeatable portion of
a periodic waveform is a cyele, and the duration of a cycle is the period T of the wave. The reciprocal
of the period. and the number of cycles in a period. 1s the frequency. which has a quantity symbol [

|
N[-Mf
FISE .
STk
|
[~
o=
ﬂ
e
)]

(a) (b)

|~
~

{c) (d)
Fig. 10-1

In these definitions, notice the terms wave and wareform. They do not refer to the same thing. A
wave is a varying voltage or current, but a waveform is a graph of such a voltage or current. Often,
however, these terms are used interchangeably..

Although the sine ware of Fig. 10-1a is by far the most common periodic wave, there are other
common ones: Figure 10-1b shows a square wave, Fig. 10-1¢ a sawtooth wave, and Fig. 10-1d a triangular
wave. The dashed lines at both ends indicate that the waves have no beginnings and no ends, as is strictly
required for periodic waves. But, of course, all practical voltages and currents have beginnings and ends.
When a wave i1s obviously periodic, these dashed lines are often omitted.

The voltage waveforms shown in Fig. 10-14 and b are negative or below the time axis for part of
each period. During these times, the corresponding voltages have polarities opposite the reference
polarities. Of course, when the waveforms are above the time axis, these voltages have the same polarities
as the references. For similar graphs of currents. the currents flow in the current reference directions
when the waveforms are above the time axis, and in opposite directions when the wavelorms are below
that axis.

194



CHAP. 10] SINUSOIDAL ALTERNATING VOLTAGE AND CURRENT 195

SINE AND COSINE WAVES

Figure 10-2 shows the basics of an ac generator or alternator for generating a sinusoidal voltage.
The conductor, which in practice is a coil of wire, is rotated by a steam turbine or by some other source
of mechanical energy. This rotation causes a continuous change of magnetic flux linking the conductor,
thereby inducing a sine wave voltage in the conductor. This change of flux, and so the induced voltage,
varies from zero when the conductor is horizontal to a maximum when the conductor is vertical.
If 1=0s correspondstoatime when the conductor is horizontal and the induced voltage is increasing,
the induced voltage is ¢ = V¥, sinwi, where V,, is the peak value or amplitude, sin is the operation
designator for a sine wave, wt is the argument, and o is the quantity symbol for the radian frequency of
the voltage. (Some authors use the terms “angular velocity™ or “angular frequency™ instead of radian
frequency.) The SI unit of radian frequency is radian per second, and the unit symbol is rad/s. The
frequency f and the radian frequency o are related by

w = 2nf
N
\\ Conductor
\\
|
SN __\_P C
Jr“j \ 2R iw Y l‘ 1\' v Circuit

Slip rings Brushes

Fig. 10-2

The radian in radian per second is an SI angular unit, with symbol rad, and it is an alternative to
degrees. A radian is the angle subtended by an arc on the circumference of a circle if the arc has a length
equal to the radius. Since the circumference of a circle equals 2nr, where r is the radius, it follows that
2n rad equals 360" or

360°  180°

lrad=— = — = 57.3°
n n

This relation is useful for converting from degrees to radians and from radians to degrees. Specifically,

. n .
Angle in radians = 180° x angle in degrees

18
and Angle in degrees = — x angle in radians
n

But, of course, a scientific calculator will perform either conversion at the press of a key. The waveform
of sin wt has the shape shown in Fig. 10-1a. In each cycle it varies from O to a positive peak or maximum
of 1, back to 0, then to a negative peak or minimum of — 1, and back to 0 again. For any value of the
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argument i, sin wt can be evaluated with a calculator operated in the radians mode. Alternatively, the
argument can be converted to degrees and the calculator operated in the more popular decimal degrees
mode. For example, sin (n/6) = sin 30° = 0.5.

The abscissa of a graph of a sine wave can be expressed in radians, degrees, or time. Sometimes,
when time is used, it is in fractions of the period T, as in Fig. 10-1a. Usually, determining what the
fractions should be is obvious from the corresponding proportions of a cycle.

Consider the graphing of one cycle of a specific ac voltage: v, = 20sin 377t V. The peak value or
amplitude is 20 V because sin 377t has a maximum value of 1. The radian frequency is «w = 377 rad/s,
which corresponds to  f = w/2n = 60 Hz, the frequency of the electrical power systems in the United

vy (V)
2
TR DT RN R Y R ST PR R TR R N SR S R W §
1.67 417 8.3 167 t (ms)
0.628 1§7=" " W 470 = 157 v wi (rad)
36° 2 180° 1607
o 270 360
-20 -
(a)
TR S SR B IZJ
833 12.5 16.7 t (ms)
(b)
l - l L 1
417 83} 125 16.7 t (ms)
~20 b~
(c)

Fig. 10-3
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States. The period is T= 1/60 = 16.7 ms. A cycle of this voltage can be plotted by substituting, into
20 sin 377t, different times for t from the time interval of r=0s to = 16.7 ms. Figure 10-3a shows
the results of evaluating this sine wave at 21 different times and drawing a smooth curve through the
plotted points. For comparison purposes, all three abscissa units seconds, radians, and degrees are
shown.

Figure 10-3h shows a graph of one cycle of r, =20sin(377t + 30 ) V. Notice that the argu-
ment 377t + 30° is the sum of two terms, the first of which is in radians and the second of which 1s
in degrees. Showing such an addition is common despite the fact that before the terms can be added,
either the first term must be converted to degrees or the second term must be converted to radians. The
30° in the argument is called the phase angyle.

The cosine wave, with designator cos, is as important as the sine wave. Its waveform has the same
shape as the sine waveform, but is shifted 90  a fourth of a period ahead of it. Sine and cosine waves
are so similar that the same term “sinusoid™ is applied to both as well as to phase-shifted sine and cosine
waves. Figure 10-3c is a graph of ¢ = 205sin (377t + 90 ) = 20 cos 377t V. Notice that the values of
the cosine wave t, occur one-fourth period earlier than corresponding ones for the sine wave r,.

Some sine and cosine identities are important in the study of ac circuit analysis:

sin(—x)= —sin x cos (—X) = cos x sin(x + 90 ) = cos x
sin (x — 90%) = —cos x cos(x +90 )= —sinx cos(x —90)=sinx
1 — 2x
sin (x + 180°) = —sin x cos(x + 180°) = —cos x sin® x = --—%—\
5 1 + cos 2x . . .
COs$“ X = - sin (x + y) = sin x cos ¥ + sin y cos X

2

sin (x — y) = sIn X cos )’ — sin y co$ x
€Os(x + ¥) = €OS X COS y — Sin X sin y
COS(x — y) =cOsXCOSy + sinxsiny

sin x = sin (x + N x 3607) and cosx =cos(x + N x 360) for any integer N

PHASE RELATIONS

Sinusoids of the same frequency have phase relations that have to do with the angular difference of
the sinusoidal arguments. For example, because of the added 30 in its argument, r, =
20sin (377t + 30°) V  of the last section leads |, =20sin 377t V by 30 . Alternatively, r, lags r, by
30". This means that the peaks, zeros, and other values of r, occur earlier than those of ¢, by a time
corresponding to 30°. Another but less specific way of expressing this phase relation is to say that ¢,
and v, have a 30° phase difference or that they are 30° out of phase. Similarly, the cosine wave r, leads
the sine wave v, by 90" or v, lags v by 90°. They have a phase difference of 90 ; they are 90" out of
phase. Sinusoids that have a 0° phase difference are said to be in phase. Figure 10-4a shows sinusoids
that are in phase, and Fig. 10-4b shows sinusoids that are 180" out of phase.

N\ \
\ \
~n \\

P :/ ,/ e
/ /

(a) (b)
Fig. 10-4
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The phase difference between two sinusoids can be found by subtracting the phase angle of one from
that of the other, provided that both sinusoids have either the sine form or the cosine form, and that
the amplitudes have the same sign both positive or both negative. Additionally. of course. the two
sinusoids must have the same frequency.

AVERAGE VALUE

The average value of a periodic wave 1s a quotient of area and time the area being that between
the corresponding waveform and the time axis for one period, and the time being one period. Areas
above the ime axis are positive, and areas below are negative. The areas must be algebraically added
(signs must be included) to obtain the total area between the waveform and time axis for one period.
(The average value of a periodic wave is always assumed to be calculated over a period unless otherwise
specified.)

The average value of a sinusoid 1s zero because over one period the positive and negative areas
cancel in the sum of the two areas. For some purposes, though, a nonzero “average™ is used. By definition,
it is the average of a positive half-cycle. From calculus. this average1s 2 n = 0.637 times the peak value.

RESISTOR SINUSOIDAL RESPONSE

If a resistor of R ohms has a voltage ¢ = V,sin(wt + )} across it, the current is. by Ohm’s
law, =1 R =(V, R)sin(mt + 0). The multiplier V,, R is the current peak /,,: [, = V,, R. Notice that
the current is in phase with the voltage. To repeat, ¢ resistor current and voltage are in phase. (The
references are, of course, assumed to be associated.)

Instantaneous resistor power dissipation varies with time because the instantaneous voltage and
current vary with time, and the power is the product of the two. Specifically,

p=rvi=[V,sin(or + O][1,, sin(wt + O] = V1, sin? (ot + )

which shows that the peak poweris P, = V, I, . and it occurs each time that sin(wt + ()= +1.
From the identity sin? x = (1 — cos 2x) 2.
v V.1

mem mem

5

P cos (2wt + 20)
which is a constant plus a sinusoid of twice the frequency of the voltage and current. This instantaneous
power is zero each time that the voltage and current are zero, but it is never negative because the positive
first term is always equal to or greater than the second term, which is negative half the time. The fact
that the power is never negative means that a resistor never delivers power to a circuit. Rather, it
dissipates as heat all the energy it receives.
The average power supplied to a resistor is just the first term: P, = VI, 2. because the average

value of the second term is zero. From V,, = I R,

v, Vi ILR
==k

P ="
2R 2

ayv

These formulas differ from the corresponding dc formulas by a factor of 1.

EFFECTIVE OR RMS VALUES

Although periodic voltages and currents vary with time, it is convenient to associate with them
specific values called effective vralues. Effective voltages are used, for example, in the rating of electrical
appliances. The 120-V rating of an electric hair dryer and the 240-V rating of an electric clothes dryer
are effective values. Also, most ac ammeters and voltmeters give readings in effective values.
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By definition. the effective value of a periodic voltage or current (¥ or I ) 15 the positive dc voltage
or current that produces the same average power loss in a resistor: P, = Vi R and P, =I%R.
Since for a sinusoidal voltage the average power lossis P, = V'2 2R,

for Vrzn Von

p = from which Veig =

= 0.707V,,
R 2R .

u\:

Similarly, I =1, 2=0.7071,. So, the cffective value of a sinusoidal voltage or current equals the
peak value divided by | 2.

Another name for effective value is root mean square (rms). The corresponding voltage and current
notations are V. and I,.., which are the same as V, and I,. This name stems from a procedure for
finding the effective or rms value of any periodic voltage or current - not just sinusoids. As can be derived
using calculus, this procedure is to

1. Square the periodic voltage or current.
2. Find the average of this squared wave over one penod. Another name for this average is the mean.

3. Find the positive square roor of this average.

Unfortunately, except for square-type waves, finding the area in step 2 requires calculus. Incidentally, if
this procedure is applied to a sawtooth and a triangular wave, the result is the same effective value---the

peak value divided by .. 3.

INDUCTOR SINUSOIDAL RESPONSE

If an inductor of L henries has a current i = I, sin (o + 0} flowing through it. the voltage across
the inductor 1s

{
c=L5 = LE I sin(or + )] = oLl cos (ot + 0)
di di
The multipher LI, is the peak voltage V,: V,=wlLl, and I, =V, ol From a comparison
of I,=V,oL and [, =V, R, clearly oL has a current-limiting action similar to that of R.
The quantity oL is called the inductive reactance of the inductor. Its quantity symbol is X :

X, =wL

It has the same ohm unit as resistance. Unlike resistance, though, inductive rcactance depends on
frequency—the greater the frequency the greater its value and so the greater its current-limiting action.
For sinusoids of very low frequency, approaching 0 Hz or dc, an inductive reactance is almost zero,
which means that an inductor is almost a short circuit to such sinusoids, in agreement with dc results.
At the other frequency extreme, for sinusoids of very high frequencies, approaching infinity, an inductive
reactance approaches infinity. which means that an inductor is almost an open circuit to such sinusoids.

From a comparison of the inductor current and voltage sinusoids, it can be seen that the inductor
voltage leads the inductor current by 90 or the inductor current lags the inductor voltage by 90 .

The instantaneous power absorbed by an inductor is

p=vi=[V,cos(wt + N[, sin(wt + O] =V, 1, cos(wt + 0)sin (ot + )
which from sine and cosine identities reduces to

|

m

p= —2'" sin (2wt + 20) = Vel e sin (20t + 20)

This power is sinusoidal at twice the voltage and current frequency. Being sinusoidal, its average
value is zero - «a sinusoidally excited inductor absorbs zero average power. In terms of energy. at the times
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when p is positive, an inductor absorbs energy. And at the times when p is negative, an inductor returns
energy to the circuit and acts as a source. Over a period. it delivers just as much encrgy as it receives.

CAPACITOR SINLSOIDAL RESPONSE

If a capacitor of C farads has u voltage ¢ =1, sin (e + () across it. the capacitor current 1s
. o .
i=( = ( | [V, sin{ewt + )] = wCl, cos (et + (1)
dat

The multiplier «Cl,, is the peak current [, [, = oCl, and 1, I, =1« So. a capacitor has
a current-himiting action similar to that of a resistor, with 1 «C corresponding to R. Because of this,
some electric circuits books define capacitive reactance as 1 €. However. almost all electrical engineering
circuits books include a negative sign and define capacitive reactance as

1

X = —
¢ o C

The negative sign relates to phase shift, as will be explained in Chap. 12, Of course, the gquantity
symbol for capacitive reactance 1s X and the unmit is the ohm.

Because 1 «C is inversely proportional to frequency. the greater the frequency the greater the current
for the same voltage peak. For high-frequency sinusoids, a capacitor is almost a short circuit, and for
low-frequency sinusoids approaching 0 Hz or de, a capacitor is almost an open circuit.

From a comparison of the capacitor voltage and current sinusoids. it can be seen that the capacitor
current leads the capacitor voltage by 90 or the capacitor voltage lags the capacitor current by 90 . This
15 the opposite of the inductor voltage and current phase relation.

The instantancous power absorbed by a capacitor is

m Iln

p=rvi= [}, sin{mt + W], cos (ot + 0] = sin (2o + 200)

the same as for an inductor. The instantancous power absorbed is sinusoidal at twice the voltage
and current frequency and has a zero average value. So. a capacitor absorbs zero average power. Over a
period a capacitor dehivers just as much energy as 1t absorbs,

Solved Problems

10.1  Find the periods of periodic voltages that have frequencies of () 0.2 Hz. (A) 12 kHz, and  (¢)
4.2 MHz.
w) From T=1f T=102=Ss
(bt Similarly, T =1{12 x 10%) s = 83.3 s
(¢ T =1(42x 10%s =238 ns

10.2  Find the frequencies of periodic currents that have periods of () S0 us. (h)42ms. and () ! h.

() From [ =171 [ =1(30x10 “yHs =20kH,
(M Similarly. f = 142 x 10 Y1 =238 Hz
1 1 ¥

= % =278 x 10 *Hs = 0278 mH/
L 3600 s

() f
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What are the period and frequency of a periodic voltage that has 12 cycles in 46 ms?

The period is the time taken for one cycle. which can be found by dividing the 12 cycles into the time
that it takes for them to occur (46 ms): T = 46:12 = 3.83 ms. Of course, the frequency is the reciprocal
of the period: f = 1/(3.83 x 10~ %) = 261 Hz. Alternatively, but what amounts to the samec thing. the

frequency is the number of cycles that occur in 1's: [ = 12:46 x 107 = 261 Hz.

Find the period, the frequency, and the number of cycles shown for the periodic wave illustrated
in Fig. 10-5.

i (A)

6
[ 41/1L11111
4

-0 -8 <6 -4

t (us)

Fig. 10-5

The wave has one positive peak at 2 us and another positive peak at 14 us. between which times there
is one cycle. So, the period is T =14 — 2 =12 ps, and the frequency is [ =1 T =1.(12 x 10" Hz =
83.3 kHz. There is one other cycle shown- from —10 to 2 ps.

Convert the following angles in degrees to angles in radians: (a)49°, (b) —130°, and (c)435".

(@ 49" x —— = 0.855 rad
180

(h) —130 x - - = —227 rad

180

(©) 435 x - =759 rad
180

(a) n/18 rad, (b) —0.562 rad, and

Convert the following angles in radians to angles in degrees:

(¢) 4 rad.
r 180

(a) - x -~ =10
18 n

180
(h) —0.562 x — = —322
n

180° ,
(¢) 4x——=229
n
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Find the periods and frequencies of sinusoidal currents that have radian frequencies of
(a) 9n rad/s, (b) 0.042 rad/s, and (c) 13 Mrad/s.
From f=w/2n and T = I/,
(@) f=9n2n =45Hz, T=145=02225s
(h) f =00422n Hz =668 mHz, T =1(668 x 10" = 1505
(¢} f=13x10°2nHz=207MHz, T=1(207 x 10%s =0483 us

Find the radian frequencies of sinusoidal voltages that have periods of (a) 45, (h) 6.3 ms.
and (¢) 7.9 ps.
From w=2nf =2n/T,
(@) = 2n/4=15Trad’s
b)) @=2m/(6.3 x 1073 = 997 rad/s
(¢©) @ =2/79 x 107°) rad/s = 0.795 Mrad/s

Find the amplitudes and frequencies of (a)42.1sin (377t + 30') and (h) —6.39 cos (10°t — 20 ).

(a) The amplitude is the magnitude of the multiplier: |42.1| = 42.1. Note the vertical lines about 42.1 for
designating the magnitude operation, which removes a negative sign, if there is one. The radian frequency
is the multiplier of t: 377 rad/s. From it, and f = w;2n. the frequency is | = 377 2n = 60 Hz.

(b) Similarly, the amplitude is | —6.39| = 6.39. Theradian frequencyis 10%rad ‘s, from which f= ¢ 21 =
10°2n Hz = 159 kHz

Find the instantaneous value of t =70sin400mtV at ¢ = 3 ms.

Substituting for t: 3 ms) = 70 sin (4007 x 3 x 10 *) = 70sin 1.27 V. Since the 1.2n sinusoidal argu-
ment is in radians, a calculator must be operated in the radians mode for this evaluation. The result 1s
—41.1 V. Alternatively, the angle can be converted to degrees. 1.2zn x 180 n =216 . and a calculator
operated in the more popular decimal degrees mode: {3 ms) = 70sin 216 = —41.1V,

A current sine wave has a peak of S8 mA and a radian frequency of 90rad s. Find the
instantaneous current at ¢t = 23 ms.

From the specified peak current and frequency. the expression for the current s i = 58 sin 90r mA.
For =23 ms, this evaluates to

{23 ms) = 58 sin (90 x 23 x 10 %) = 58 sin 2.07 = 509 mA

Of course, the 2.07 in radians could have been converted to degrees: 2.07 x 180 7 = 118.6 . and then
58 sin 118.6" evaluated.

Evaluate (a) ¢ =200sin (3393t + i/7YV and (b} i = 67 cos (30161 — 42 ymA atr=1.1ms.

From substituting 1.1 x 107 ? for ¢,
(@ v(l.1 ms)=200sin(3393 x 1.1 x 10" % + 7/7) =200sin4.18 = — 172V

Operating a calculator in the radians mode is convenient for this calculation because both parts of the
sinusoidal argument are in radians.

(b)) (1.1 ms)=67cos(3016 x 1.1 x 107* —42') =67 cos(190 — 42} = —569 mA

Note that the first term was converted from radians to degrees so that it could be added to the second
term. Alternatively, the second term could have been converted to radians.

Find expressions for the sinusoids shown in Fig. 10-6.
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10.14

f=60Hz

-s 10 \/ t (ms) ‘\ \/0.71r \/w! (rad)
/, /

(a) (b)
Fig. 10-6

The sinusoid shown in Fig. 10-6¢ can be considered 1o be cither a phasc-shifted sine wave or a
phase-shifted cosine wave it does not make any difference. For the sclection of a phase-shifted sine wave,
the general expression is ¢ = 12sin (ot + ). since the peak value 1s shown as 12, The radian frequency
w can be found from the period. One-fourth of a period occurs in the 15-ms time interval from — 5 to 10 ms,
which means that T =4 x 15=60ms. and so =2 T =2n{60 x 10 *)=104.7rads. From the
zero value at 1 = —S5ms and the fact that the waveform is going from negative to positive then, just as a
sine wave does for a zero argument, the argument can be zero at this time: 104.7(—5 x 107 + # = 0,
from which 0 = 0.524 rad = 30 . The result is v = 12sin (104.7t + 0.524) = 12sin (104.71 + 30 ) V.

Now consider the equation for the current shown in Fig. 10-6h. From « = 2nf = 2n(60) = 377 rad s
and the peak value of 10mA. i = 10c¢os (3771 + ) mA. with the arbitrary selection of a phase-shifted
cosine wave. The angle # can be determined from the zero value at o1 = 0.7z For this valuc of «t, the
phase-shifted cosine argument can be 1.5z rad because at 1.5z rad = 270 a cosine waveform is zero and
going from negative to positive. as can be seen from Fig. 10-3¢. So. for wr = 0.72. the argument can
be wt+0=0Tn+0=135n from which 0=08rrad=144 . The result is i=10cos(377t + 0.8n) =

10 cos (377t + 144 ) mA.

Sketch a cycle of ©=30sin(754t + 60 )V for the period beginning at 1 = 0s. Have all three
abscissa units of time, radians, and degrees.

A fairly accurate sketch can be made from the initial value. the peaks of 30 and —30 V. and the times
at which the waveform is zero and at its peaks. Also needed is the period. whichis T=2n @ = 2n 754 =
833 ms. The tnitial valuec can be found by substituting 0 for ¢ in the argument. The result is ¢ =
30sin 60 = 26 V. The waveform is zero for the first time when the argument is & radians since sinn = 0.
This time can be found from the argument with the 60 converted to n 3radians: 754t + -3 = n,  from
which ¢ = 2.78 ms. The next zero is half a period later: 2.78 + 8.33°2 = 6.94 ms. The positive peak for
this cycle occurs at a time when the sinusoidal argument is 7. 2: 7541 + .3 = 2, from which =
0.694 ms. The negative peak is half a period later: 1 = 0.694 + 8.33 2 = 4.86 ms. The radian units for these
times can be found from i = 754r = 240nt. Of course. the corresponding degree units can be found by

converting from radians to degrees. Figure 10-7 shows the sinusoid.

v (V)
w0l
26
1 |
0.694 833t (ms)
w6 2r  wt (rad)
¢ 360°

Fig. 10-7
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What is the shortest time required for a 2.1 krad s sinusoid to increase from zero to four-fifths
of its peak value?

For convenience. the expression for the sinusoid can be considered to be 1, sin (2.1 x 10%1). The time
required for this wave to equal 0.8 1, can be found from 1, sin (2.1 x 0% = 0.8 1, which simplifies
1o sin (2.1 x 10%) — 0.8, This can be evaluated for ¢ by taking the inverse sine. called the wresine, of both
sides. This operation causes the sin operation o be canceled. leaving the argument. On a calculator. the
arcsine may be designated by “sin ' or Tasin.” Taking the aresine of both sides produces

sin P [sin (20 x 10%)] = sin ' OR
which simplifics to - 2.1 x 10% = sin ' 0.8, from which

sin 1 0.8 0.9273
! = — s = 0442 ms
20 x 1Y 20 x 107

The 0.9273 is. of course. n radians.

If 50 V is the peak voltage induced in the conductor of the alternator shown in Fig. 10-2. find
the voltage induced after the conductor has rotated through an angle of 35 from its vertical
position.

When the conductor is in a vertical position, the induced voltage s a maximum in magmitude, but can
be cither positive or negative. The vertical position can. for convenience, be considered to correspond to 0 .
Then, since the induced voltage is sinusoidal. and since the cosine wave has a peak at 0. the voltage can
be considered to be ¢ = +S50cos (), in which #is the angle of the conductor from the vertical. So. with
the conductor at 35 from the vertical. the induced voltage 1s ¢ = +30cos 35 = +41 V.

If the conductor in the alternator shown in Fig. 10-2 is rotating at 60 Hz. and if the induced
voltage has a peak of 20 V. find the induced voltage 20 ms after the conductor passes through a
horizontal position if the voltage is incrcasing then.

The simplest expression for the induced voltage s +=20sin 377tV if 1 =0s corresponds to the
time at which the conductor 1s in the specified horizontal position. This is the voltage expression because
the induced voltage is sinusoidal, 20 V is specified as the peak. 377 rad s corresponds to 60 Hz, and sin ot
15 zero at 1 =0s and 1s increasing. So.,

t20 x 107 Y = 2080 (377 x 20 x 10 *) = 20sin 7.54 = 205in 432 = 19V

Find the periods of {a) 7 — d cos (400t + 30 ). (h) 3 sin? 4. and (¢} 4 cos 3t sin 31

{a¢) The expression 7 — dcos (400t + 30 ) s a sinusoid of —Jdcos (400 + 30 ) “nding™ on a con-
stant 7. Since only the sinusoid contributes to the varations of the wave. only it deternunes the
period: T =2n =21400s = 15.7 ms.

{h) Because of the square. it is not immediately obvious what the period is. The identity  sin v =
(I —cos2x) 2 can be used to chiminate the square:

1 —cos(2 x 4rn)

Y

Isin i = 3[ ]— 1.5(1 — cos 81)

From the cosine wave portion, the periodis T = 2rn o =2 8 = 0.785 s

(¢} Because of the product of the sinusoids in - 4 cos 3rsin 31, some simplification must be done before
the period can be determined. The identity  sin(x + y) =sin xcos v + sinyeos X can be used for
this by setting v = x. The result is

SIN (X + X) = $IN X COS X + $IN X COS \ or sin 2y = 2sin v cos v
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from which sin x cos x = (sin 2x):2. Here, x = 3r, and so

. sin (2 x 31)
4cos3rsin3t =4 ——2

:|=25in61

From this, the period is T = 2n/w = 2n/6 = 1.05s.

Find the phase relations for the following pairs of sinusoids:

(@) t=60sin(377t + S0)V, i=3sin(754r— 10) A

b) v, =64sin(7.1nt +30)V, v, =73sin(7.1nt —10)V

() v=423sin(400t + 60°)V, i= —4.1s1n(400t — 50°) A

(a) There is no phase relation because the sinusoids have different frequencies.

(b) The angle by which v, leads r, is the phase angle of v, minus the phase angle of r,: ang v, — angr, =
300 — (—10°) = 40°. Alternatively, r, lags r, by 40 .

(¢) The amplitudes must have the same sign before a phase comparison can be made. The negative sign
of i can be eliminated by using the identity —sin x = sin(x + 180°). The positive sign in + is more
convenient because, as will be seen, it leads to a phase difference of the smallest angle, as is generally
preferable. The result is

i= —4.15in(400r — 50 ) = 4.1 sin (4001 — 50 + 180 ) = 4.1 5in (400t + 130)A

The angle by which ¢ leads i is the phase angle of r minus the phase angle of
iz angr —angi=60 — 130" = —70 . The negative sign indicates that r lags, instead of leads, i by
70°. Alternatively, i leads ¢ by 70 . If the negative sign in + had been used. the result would have been
that ¢ leads i by 290, which is equivalent to —70 because 360 can be subtracted from (or added to)
a sinusoidal angle without affecting the value of the sinusoid.

Find the angle by which i, = 3.1 sin(754t — 20')mA leads i, = —2.4cos (754t + 30") mA.

Before a phase comparison can be made, both amplitudes must have the same sign. and both sinusoids
must be of the same form: either phase-shifted sine waves or phase shifted cosine waves. The negative sign
of i, can be eliminated by using the identity —cos x = cos (x + 180'). At this point it is not clear whether
the positive or negative sign is preferable, and so both will be kept:

i = 24 cos (754t + 210 ) = 2.4 cos {7541 — 150 ) mA

Both of these phase-shifted cosine waves can be converted to phase-shifted sine waves by using the
identity cos x =sin{x + 90 ):

i, = 2.4sin (754t + 300") = 2.4 sin (754t — 60 ) mA

Now a phase angle comparison can be made: i, lcads i; by —20 — 300 = —320 from the first i,
expression, or by —20° — (—60) =40 from the second i, expression. Being smaller in magnitude, the
40° lead is preferable to a — 320 lead. But both are equivalent.

Find the average values of the periodic waveforms shown in Fig. 10-8.

The waveform shown in Fig. 10-8a is a sinusoid “riding™ on top of a constant 3 V. Since the average
value of the sinusoid is zero, the average value of the waveform equals the constant 3 V.

The average value of the waveform shown in Fig. 10-8b, and of any waveform, is the area under the
waveform for one period, divided by the period. Since for the cycle beginning at ¢ = 0s. the waveform
is at 8 V for half a period and is at 1 V for the other half-period, the area underneath the curve for this one
cycle is, from the height-times-base formula for a rectangular arca. 8 x T:2 + 1 x T2 = 4.5T. So, the
average value is 4.5T/T=4.5V. Note that the average value does not depend on the period. This s

generally true.
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Fig. 10-8

The cycle of the waveform shown in Fig. 10-8¢ beginning at 71 =05 is a triangle with a height of 10
and a base of T. The area under the curve for this one cycle is. from the triangular arca formula of one-half
the height times the base, 0.5 x 10 x T =5T. And so the average valucis 5T T=3V.

10.22 What are the average values of the periodic waveforms shown in Fig. 10-9?

i (A) i (A}
8
6 -
L L 1
t , ! 2 3 4 S t{s)
--4. L. .
) 1. | |
(a) (b)
Fig. 10-9

For the cycle starting at ¢ =0s, the i, waveform shown in Fig. 10-94 1s at 8 A Tor half & pernod and
is at —3 A for the next half-period. So, the area for this cycle is 8T 2) + (- 3T 2) = 2.5T. and the
average valueis 25T/ T=25A.

The i, waveform shown in Fig. 10-9b has a complete cycle from ¢ =0s to = 5s. For the first 25
the area under the curve is 6 x 2 = 12, For the next sccond itis =2 x 1 = —2. And for the last 2s it is
—4 x 2 = —8. The algebraic sum of these arcas is 12 —2 — 8 =2, which divided by the period of §
results in an average value of 2/5 =04 A.

10.23 What is the average power absorbed by a circuit component that has a voltage ¢ =
6sin (377t + 10°) V. across it when a current i = 0.3sin (377t — 20 ) A flows through 11?7 As-
sume associated references since there is no statement to the contrary.

The average power is, of course, the average value of the instantancous power p:
p=vi=[6sin(377t + 10)][03sin (377t — 20 )] = 1.8sin (377t + 10 )sin (377t — 20 )W

This can be simplified using a sine-cosine identity derived by subtracting cos{x + y) = cos x cos y —
sinxsiny from cos{(x —y)=cosxcosy+sinxsiny. The result 1is the identity sinxsiny=
0.5[cos (x — y) —cos (x + y}]. Here, x =377t + 10 and y =377t - 20 . So.
p=05[18cos(377t + 10 — 377t +20)— 1.8cos (377t + 10 + 377t — 20 1]
=09c¢cos30 —09cos (754t — 10 )W
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Since the second term is a sinusoid. and so has an average value of zero, the average power equals the
first term:

P,.=09cos30 =079 W

Note in particular that the average power is not cqual to the product of the average voltage
(0 V) and the average current (0 A). nor is it equal to the product of the effective value of voltage

(6:+, E) and the effective value of current (0.3 2).

If the voltage across a single circuit component is ¢ = 40sin (4001 + 10°) V  for a current
through it of i = 34.1sin(400f + 10 YmA, and if the references are associated, as should be
assumed, what is the component?

Since the voltage and current are in phasc, the component is a resistor. The resistance is R =
V., =401341 x 1073 Q = 1.17 k.

The voltage across a 62-Q resistor is = 30 sin (200nr + 30°) V. Find the resistor current and
plot one cycle of the voltage and current waveforms on the same graph.

From i=u¢'R. i=[30sn(200nt + 30 )] 62 = 0484 sin (20077 + 30 ) A. Of course, the period is
T =2n:w = 2n.200n s = 10 ms. For both waves, the curves will be plotted from the initial, peak, and zero
values and the times at which they occur. At ¢ =0s, ¢ =30sin30" =15V and = 0484sin30° =
0.242 A. The positive peaks of 30 V and 0.484 A occur at a time t, corresponding to 60° since the sinusoidal
arguments are 90" then. From the proportionality 1,/T = 60'/360°, the peak timeis ¢, = 10/6 = 1.67 ms.
Of course, the negative peaks occur at a half-period later, at  1.67 + 5 = 6.67 ms. The first zero values occur
at a time corresponding to 150 because the sinusoidal arguments are 180" then. Using a proportionality
again, this time is (150:360X10) = 4.17 ms. The next zeros occur one half-period later, at 417 + 5 =
9.17 ms. The voltage and current waveforms are shown in Fig. 10-10. The relative heights of the voltage and
current peaks should not be of concern. because they are in different units.

30V

ISV
0242 A /

| { | i 1 1

5 6 7 8 9 10 t (ms)
=

-0.484 A
) -0V
Fig. 10-10

10.26 A 30-Q resistor has a voltage of v = 1705sin (377t + 30°) V  across it. What is the average power

dissipation of the resistor?
Vi o 1707
P,=-"=-—"— =482 W
2R 2 x 30

10.27 Find the average power absorbed by a 2.7-Q resistor when the current = 1.2sin(377t +

30)A flows through it.

P, ='I2R = 0512427 = 194 W
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What is the peak voltage at a 120-V electric outlet?

The 120V is the effective value of the sinusoidal voltage at the outlet. Since for a sinusoid the peak
is |, 2 times the effective value, the peak voltage at the outlet is /2 x 120 = 170 V.

What is the reading of an ac voltmeter connected across a 680-Q resistor that has a current
of i=62cos(377t —20°)mA flowing through it?

The voltmeter reads the effective value of the resistor voltage, which can be found from I, and R.
Since V,, = I,R. then V,//2=(1,//20R) or V. = IR So,

Ve = [(6:2 x 1072)° 2)(680) = 2.98 V

What is the reading of an ac voltmeter connected across a 10-€) resistor that has a peak power
dissipation of 40 W?

7Tfht peak voltage ¥, can be found from the peak power: P, = Vi, = V2/R (rom which ¥, =

\//P,,,R = \,"40(10)= 20 V. The effective or rms voltage, which is the voltmeter reading, is Vm‘,\’Z =
20//2 =141 V.

What is the expression for a 240-Hz sine wave of voltage that has an rms value of 120 V?

Since the peak voltage is 120 x 2=170V and the radian frequency is  2n x 240 = 1508 rads.
the sine wave is ¢ = 170 sin 1508: V.

Find the effective value of a periodic voltage that has a value of 20V for one half-period
and — 10V for the other half-period.

The first step is 1o square the wave. The result is 400 for the first half-period and (—10)? = 100 for
the second half-period. The next step is to find the average of the squares from the area divided by the
period: (400 x T2 + 100 x T:2);T = 250. The last step i1s to find the square root of this average:

Vie = /250 = 158 V.

(3

Find the effective value of the periodic current shown in Fig. 10-11a.

i (A) it
16 - ——
kY o °r
et
3 4 6 8t (s) L 6 8 tls)
_‘ -—
(a) (b)

Fig. 10-11
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The first step is 1o square the wave. which has a period of 8. The squared wave is shown in Fig
10-11h. The next step is 1o find the average of the squared wave. which can be found by dividing the arca
by the period:  [16(3) + 96 - 4)] 8 = .25, The last step is (o find the square root of this average: 1, -
\ 825 =287A.

Find the reactances of 4 120-mH inductor at  (¢) O Hz (dc). (P 40rad s, (¢) 60 Hz, and  (d)
30 kHz.
From X, = al =27/l
(@) X, =2m0)120 x 10 ) =0Q
(hy X, =40120 x 10 ) =480
() X, =2m60K120 x 10 %) =4520Q
() X, =2m30 x 105120 x 10 %) Q = 22.6 kQ

Find the inductances of the inductors that have reactances of () 3Qat 377 rad s, (M 1.2KQ at
30kHz. and (¢) 1.6 MQ at 22.5 Mhz.

Solving for Lin X, =@l resultsin L. =X, w=X, 2af So.
{a) L=5377H =133mH

() L=(12x10%2n x 30 x 10)H = 6.37mH
(€) L=(L6x10%(2r x 225 x 10 H = 11.3mH

Find the frequencies at which a 250-mH inductor has reactances of 30 € and 50 kQ.
From X, =L =2rfl. the frequency is f= X, 2l and so
30 50 x 10°

fi==— -~ _ - - — =191Hz and f,= A  Hz = 318 kHy
2 x 250 x 10} 2aox 250 x 10

What is the voltage across a 30-mH inductor that has a 40-mA, 60-Hz current flowing through 1t?
The specified current is. of course. the effective value, and the desired voltage is the effective value of
voltage. although not spectfically stated. In generall the ac current and voltage values given are effective

values unless otherwise specified. Because X, = V) I,. itfollows that X, = (1, 211, ( 20 = by Ty
So. here. Vo = 1,X, =40 x 107 *}27 x 60)30 x 10 4} = 0452 V.

The voltage ¢ = 30sin (2007 + 30 )V is across an inductor that has a reactance of 62 Q. Find
the inductor current and plot one cycle of the voltage and current on the same graph.

The current peak equals the voltage peak divided by the reactance: 71, = 30 62 — 0484 A, And. since
the current lags the voltage by 90 |

i = 0484 sin (200r: + 30 — 90 ) = 0.484 5in (20071 - 60 ) A

The voltage graph is the sume as that shown in Fig. 10-10. The current graph for these values, though.
differs from that in Fig. 10-10 by a shift right by a time corresponding to 90°. which time is one-fourth of a
period: 10 4 = 2.5 ms. The waveforms are shown in Fig. 10-12,
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0V

t (ms)

-3V

Fig. 10-12

10.39 Find the voltages across a 2-H inductor for the following currents:

(@) 10 A, (b)10sin (377t + 10 YA, and (¢} 10cos (10%r — 20) A. As always, assume associated

references because there is no statement to the contrary.

(@) The inductor voltage is zero because the current is a4 constant and the time derivative of a constant
is zero: ¢ = 2d(10) dr = 0 V. From another point of view. the reactance is 0 Q because the frequency
isO0Hz, and so V1, =1,X, =100)=0V.

(M The voltage peak equals the current peak times the reactance of 377 x 2 = 754 Q:

bo=1,X, =10 x 754V = 7.54kV
Since the voltage leads the current by 90 and since  sin{x + 90 ) = cos x.
r=754s5n(377t + 10 + 901 =754 cos (377t + 10 kV
() Similarly, ¥V, =1,X, = 10010* x 2) V=02MV. and

m

= 02cos(10% — 20 + 90 ) = 0.2 cos (10% + 70 } MV

10.40 Find the reactances of a 0.1-uF capacitor at (a) 0 Hz (dc), (b) 377 rad's, (¢) 30kHz, and

() 100 MHz.
From X = —10C= —12afC.
@ Xe=lim RN Ao (an open circuit)
( ‘ -0 0.1 x 1079 an open circu
-1
b Xe = 0= 265k
377101 x 107)
-1
o Q= -5310Q

X.= - - - . o
7T 230 x 10%40.1 x 10 ©)

-1
(dy X¢= Q=-159mQ

T 22100 x 106401 x 10 ©)

10.41 Find the capacitances of capacitors that have a reactance of =500Q at  (u)377 rad:s. (h) 10 kHz,
and (¢) 22.5 MHz.

Solving for Cin Xy = —1 wC resultsin C = —1 wX, = ~1{2af x X¢). So,

(@) C=-: - - F=531puF
377(~500)
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-1
b €= F = 0.0318 uF
2010 x 103 — 500)

—1

€@ C=ce oo o~ F=l41pF
27(22.5 x 108} — 500)

Find the frequencies at which a 2-uF capacitor has reactances of —0.1 and —2500 Q.
From X,.= —1wC= —12n/C. the frequencyis f= —1.(X, x 2r(C). So,
- -1

fi=-—————- ———— Hz =796 kHz and fi= -
’ T -2500x 2z x 2 x 10°°

: - =318 Hz
01l x2rx2x10"°

What current flows through a 0.1-uF capacitor that has 200 V at 400 Hz across it?

Although not specifically stated. it should be understood that the effective capacitor voltage is specified
and the eflective capacitor current is 1o be found. If both sides of I, = «CV, are divided by {2, the

resultis 1, 2=mCl, 2 or I =aCV. So,

I = 2n(400)(0.1 x 107°¥200) A = 50.3 mA

What is the voltage across a capacitor that carries a 120-mA current if the capacitive reactance
is —230Q7?
From the solution to Prob. 10.43. [ = wCV., or Ve = {1 'wC). Since 1:wC is the magnitude of

capacitive reactance, the effective voltage and current of a capacitor have a relation of Vo =1 Xl
Consequently, here. V., = (120 x 10" )| =230| = 27.6 V.

The voltage ¢ = 30sin(200nr + 30 )}V  is across a capacitor that has a reactance of —62 €.
Find the capacitor current and plot one cycle of the voltage and current on the same graph.

From V¥, 1,=1®C =1X,]. the current peak equals the voltage peak divided by the magnitude of
capacitive reactance: [, = 30 | —62] = 0.484 A. And. since the current leads the voltage by 90,

i =0484sin (200rt + 30 + 90') = 0.484 cos (200nr + 30 ) A

Notice that the current sinusoid has the same phasc angle as the voltage sinusoid, but, because of the
90 lcad. is a phase-shifted cosinc wave instead of the phase-shifted sine wave of the voltage.

The voltage graph is the same as that in Fig. 10-10. The current graph differs from that in
Fig. 10-10 by a shift left by a time corresponding to 90°, which time is one-fourth of a period: 104 =
2.5 ms. The waveforms are shown in Fig. 10-13.

0V

0419 A
15V

t (ms)

=30V

Fig. 10-13
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10.46 What currents flow through a 2-uF capacitor for voltages of (¢) r = 5sin (377t + 10 )V and
(b) v = 12 cos (10* — 20°) V?

(a) The current peak equals «C times the voltage peak:
Ip=wCV, =372 x 107°X5)A =377 mA

Also, because the capacitor current leads the capacitor voltage by 90 and the voltage is a phase-shifted
sine wave, the current can be expressed as a phase-shifted cosine wave with the same phase angle:
i=377cos (377t + 10°) mA.

(b) The current peak is

I,=0CV,=10%2 x 107°12) =024 A

m

Also, the current leads the voltage by 90 . As a result,

i=024cos(10* —20 +90)=0.24cos(10% + 70 )A

Supplementary Problems

10.47 Find the periods of periodic currents that have frequencies of (q) 1.2mHz. (b)) 231 kHz, and (¢)
16.7 MHz.

Ans. (a) 833s, (b) 433 us, (¢) 599 ns

1048 What are the frequencies of periodic voltages that have periods of (a) 183 ps. (h) 423 s, and () 1d?
Ans. (a) 546 GHz (gigahertz- ie., 10° Hz), (b) 23.6 mHz, (¢) 11.6 uHz

1049 What are the period and frequency of a4 periodic current for which 423 cycles occur in 6.19 ms?

Ans. 14.6 ps, 68.3 kHz

1050 Convert the following angles in degrees to angles in radians: (a) —40 . (b) —1123, and ({(¢) 78 .
Ans. (a) —0.698 rad, (b} —19.6 rad, (¢} 1.36 rad

10.51 Convert the following angles in radians to angles in degrees: (4) 134 rad. (b) 0.675rad, and (o)
—11.7 rad.

Ans. (a) 7687, (b) 38.7. (¢) —670

10.52 Find the periods of sinusoidal voltages that have radian frequencies of (a) 120nrad-s, (h) 0.625 rad:s,
and (c) 62.1 krad;s.

Ans. (a) 16.7ms, (b) 10.1s, (¢) 101 us

10.53 Find the radian frequencies of sinusoidal currents that have periods of () 17.6 us. (h)4.12ms. and (¢)
1d.

Ans. (a) 357 krad’s, (b) 1.53 krad/s, (c) 72.7 urad’s

10.54 What are the amplitudes and frequencies of (a) —63.7 cos (754t — 50"} and (b) 429 sin (40007 + 157)?
Ans. (a) 63.7, 120 Hz; (b) 429, 637 Hz

10.55 Find the instantaneous value of i =80sin500tmA at (a)r=4ms and (b)t =21s.

Ans. (a) 727 mA, (b) 52 mA
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10.56 What is the frequency of a sine wave of voltage which has a 45-V peak and which contmuously increases

10.57

10.58

10.59

10.60

10.61

10.62

10.63

10.64

10.65

10.66

10.67

fromOVat r=0s to24Vat (=462my"

Ans. 194 Hz

If a voltage cosine wave has a peak value of 20V at ¢ = 0. and 1f it takes @ mmimum of 0123 s for this
voltage to decrease from 20 to 17 V. find the voltage at 1= 4.2

Ans. 193V,

What is the instantaneous valuc of i =132cos (37714 S0 TmA  at {)r=--421ms and (h)r=673s"

Ans. (a) —10mA. (h) 791 mA

Find an expression for a 400-Hz sinusoidal current that has a 2.3-A positne peak at 1= - 045 ms.

Ans. i =23cos(800nr + 64.8 ) A

Find an expression for a sinusoidal voltage that is OV at ¢ = —8.13mxs.  after which 1t increases 1o a
peak of 15V at =678 ms.

Ans. v =15sin(1051 +49.1 )V

What is the shortest time required for a 4.3-krad s sinusoid to inerease from two-lifths to four-tifths of its
peak value?

Ans. 120 ps
11 43.7 V is the peak voltage induced in the conductor of the alternator shown in Fig. 10-2, ind the voltage
induced after the conductor has rotated through an angle of 43 from its honzontal position.

Ans. +298V

If the conductor of the alternator in Fig. 10-2 is rotating at 400 Hz, and if the induced voltage has a 23-V
peak, find the induced voltage 0.23 ms after the conductor passes through its vertical position.

Ans. +193V

Find the periods of (4) 4 + 3sin (8007 — 15 ). (b 8.1 cos* 9m. and  (¢) 8 sin 167 cos 161
Ans. (@) 2.5ms, () 111 ms. (¢) 196 ms

Find the phase relations for the following pairs of sinusoids:
@) =630 —40 )V, = 10sim{30 — 7 I mA
thy v, = —8sm(40r — 80 )V, r, = - 10sin(40r — 50 )V
(¢) iy =4cos(70r —40 )ymA. i, = —6cos(70r + 80 ymA
(d) v=—4sin(451 +5)V. i=7Tcos(45 + R0 )mA

Ans. (a)vleads iby 20 0 (MY v, lags v, by 30 . (¢} i) leads i, by 60 . (d) r leads i by 158
Find the average valuc of a half-wave rectified sinusoidal voltage that has a peak of 12 V. This wave consists

only of the positive half-cycles of the sinusoidal voltage. 1t is zero during the times that the sinusoidal is
negative.

Ans. 382V

Find the average values of the periodic waveforms shown in Fig. 10-14.

Ans. (a) 3.5, (M 4. (¢} 18
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(a) (b) (c)
Fig. 10-14

What is the average power absorbed by a circuit component that has a voltage =10V across it when
acurrent i=5+6¢os33 A fows through it?

Ans. S0 W

Find the average power absorbed by a circuit component that has a voltage ¢ =203 cos(754r — 10)V
across it when a current i = 15.6 cos(754t — 30 ymA  flows through it.

Ans. 149 mW
What is the conductance of a resistor that has a voltage ¢ == S0.1 sin (200nr + 30 )V across it when a
current = 6.78 sin (2001 + 30 )mA  flows through it?

Ans. 13548

If the voltage o = 150cos (377¢ + 45 )V s across a 33-kQ resistor. what is the resistor current?

Ans. i =455cos (3771 + 45 )ymA

Find the average power absorbed by an 82-Q resistor that has a voltage ¢ = 311 ¢os (3771 — 45}V across
it.

Ans. 590 W

What is the average power absorbed by a 910-Q resistor that has a current =976 sin (7541 — 36 ) mA
flowing through it?

Ans. 433 mW

Find the average power absorbed by a resistor having a voltage ¢ = 87.7cos (400 — 15 )V across it
and a current  § = 272cos (400nt — 15 ymA  flowing through it.

Ans. 119 mW

What is the reading of an ac ammeter that is in series with a 470-Q resistor that has a voltage ¢ =
150 cos (377t + 30 )V across it?

Ans. 226 mA

What is the reading of an ac ammeter that is in series with a 270-Q resistor that has a peak power dissipation
of 10 W?

Ans. 136 mA
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What is the expression for a 400-Hz current cosine wave that has an effective value of 13.2 mA?

Ans. i = 18.7 cos 800mnt mA

Find the effective value of ¢ =3 + 2sin4¢ V. (Hinr: Use a sinusoidal identity in finding the average value
of the squared voltage.)

Ans. 332V

Find the effective value of a periodic current that has a value of 40 mA for two-thirds of a period and 25 mA
for the remaining one-third of the period. Would the effective value be different if the current were — 25 mA
instead of 25 mA for the one-third period?

Ans. 357 mA. no

Find the effective value of a periodic current that in a 20-ms period has a value of 0.761 A for 4 ms. 0 A for
2ms. —0.925 A for 8§ ms, and 1.23 A for the remaining 6 ms. Would the effective value be different if the
time segments were in scconds instead of in milliseconds?

Ans. 0955 A, no

Find the reactances of a 180-mH inductor at (a) 754 rad's. (h) 400 Hz. and (c¢) 250 kHz.
Ans. (a) 136 Q. (h)452Q. () 283 kQ

Find the inductances of the inductors that have rcactances of  (a)72.1 Qat 754 rad s. (b)) 11.9 Q at 12 kHz,
and (c) 42.1 kQ at 2.1 MHz.

Ans. (a)95.6 mH, (b) 158 uH. (¢) 3.19mH
What are the frequencies at which a 120-mH inductor has reactances of (@) 45Q and (b) 97.1 kQ?

Ans. (a) 59.7 Hz, (b) 129 kHz

What current flows through an 80-mH inductor that has 120 V at 60 Hz across it?

Ans. 398 A

What is the inductance of the inductor that will draw a current of 250 mA when connected to a 120-V.
60-Hz voltage source?!

Ans. 127H

What are the currents that flow in a 500-mH inductor for voltages of (a) r = 170sin (400t + 7 6) V and
(b} v = 156 cos (10007 + 10 ) V?

Ans. () i =085sin (400t — 60 YA, (h)i=0.312sin(1000t + 10 ) A
Find the reactances of a 0.25-uF capacitor at  (a) 754 rad/s, (b) 400 Hz, and {¢) 2 MHz.
Ans. (a) =531kQ, (b) —1.59kQ, (c) —0.318Q

Find the capacitances of the capacitors that have reactances of (a) —700 Q at 377 rad s. (h) —450 Q at
400 Hz, and (c) —1.23 kQ at 25 kHz.

Ans. (a) 379 uF, (b) 0.884 uF, (c) 5.18 nF

Find the frequency at which a 0.1-pF capacitor and a 120-mH inductor have the same magnitude of reactance.
Ans. 1.45kHz

What is the capacitance of a capacitor that draws 150 mA when connected to a 100-V, 400-Hz voltage source?

Ans.  0.597 pF



216

1091

10.92

SINUSOIDAL ALTERNATING VOLTAGE AND CURRENT LCHAP. 10

What are the currents that flow in a 0.5-uF capacitor for capacitor voltages of (a)v = 190sin (377t + 15)V
and (h) v = 200 cos (1000r — 40°) V?

Ans. (a)i=358cos(377t + 15°)mA, (b)i=0.1cos(1000t + S07) A

What are the voltages across a 2-uF capacitor for currents of (d) i =7sin(754t + 15)mA and
(b) i =250cos (103 — 30°) mA?

Ans. (a) v = 4.645sin (754t — 757}V, (b) v = 125sin (10% - 30)V



Chapter 11

Complex Algebra and Phasors

INTRODUCTION

The best way to analyze almost all ac circuits is by using complex algebra. Complex algebra is an
extension of the algebra of real numbers—the common algebra. In complex algebra, though, complex
numbers are included along with their own special rules for addition, multiplication, subtraction, and
division. As is explained in Chaps. 12 and 13, in ac circuit analysis, sinusoidal voltages and currents are
transformed into complex numbers called phasors; resistances, inductances, and capacitances are
transformed into complex numbers called impedances; and then complex algebra is applied in much the
same way that ordinary algebra is applied in dc circuit analysis.

A scientific calculator will operate on complex numbers as readily as on real numbers. But still it
is important to know how to perform the various operations on complex numbers without the use of a
calculator.

IMAGINARY NUMBERS

The common numbers that everyone uses are real numbers. But these are not the only kind of
numbers. There are also imaginary numbers. The name “imaginary™ is misleading because it suggests
that these numbers are only in the imagination, when actually they are just as much numbers as the
common real numbers. Imaginary numbers were invented when it became necessary to have numbers
that are square roots of negative numbers (no real numbers are). This inventing of numbers was not
new since it had been preceded by the inventions of noninteger real numbers and negative real numbers.

Imaginary numbers need to be distinguished from real numbers because different rules must be
applied in the mathematical operations involving them. There is no one universally accepted way of
representing imaginary numbers. In the electrical field, however, it is standard to use the letter j, as in
J2,j0.01, and —j5.6.

The rules for adding and subtracting imaginary numbers are the same as those for adding and
subtracting real numbers except that the sums and differences are imaginary. To illustrate,

349 =j12 j12.5 — j3.4 = 9.1 j6.25 — j84 = — j2.15

The multiplication rule, though, is different. The product of two imaginary numbers is a rea/ number
that is the negative of the product that would be found if the numbers were real numbers instead. For
example,

j2j6) = —12 jA(—j3) =12 —j5(—j4) = —20

Also, jl(ji1)= —1, from which jl =./~—1. Likewise, j2 = \/_——4 Jj3= V"'T9. and so forth.

Sometimes powers of j1 appear in calculations. These can have values of 1, — 1, j1, and —jl, as can
be shown by starting with (j1)* =j1(j1) = —1 and then progressively multiplying by j1 and evalua-
ting. As an illustration, (j1)® =j1(j1)2 =jl(—=1) = —j1 and (j1)* =j1(j1)} =jl(—jl) = 1.

The product of a real number and an imaginary number is an imaginary number that, except for
being imaginary, is the same as if the numbers were both real. For example, 3(j5) =15 and
~j5.1(4) = —j204.

In the division of two imaginary numbers, the quotient is real and the same as if the numbers were
real. As an illustration,

]—8 =2 and jzAO

- —— = —02
j4 —j100
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A convenient memory aid for division is to treat the j's as if they are numbers and to divide them out as in
416
42
This should be viewed as a memory aid only, because j just designates a number as being imaginary
and is not a number itself. However, treating j as a number in division, as well as in the other mathematical
operations, is often done because of convenience and the fact that it does give correct answers.

If an imaginary number is divided by a real number, the quotient is imaginary but otherwise the
same as for real numbers. For example,

8

24

— =j4 and S =
/ —06

—j4

The only difference if the denominator is imaginary and the numerator is real is that the quotient is the
negative of the above. To illustrate,

I " 4 — 100 "
—=— an ——-=
T 0 7
The basis for this rule can be shown by multiplying a numerator and denominator by jl, as in
225 225 x ji j225 )
= T = o= —Jj4s
J5 JS x jl -5

Muitiplying to make the denominator real, as here, is called rationalizing.

COMPLEX NUMBERS AND THE RECTANGULAR FORM

If a real number and an imaginary number are added, as in 3 + j4, or subtracted, as in 6 — /8, the
result is considered to be a single complex number in rectungular form. Other forms of complex numbers
are introduced in the next section.

A complex number can be represented by a point on the complex plune shown in Fig. 11.1. The
horizontal axis, called the real axis, and the vertical axis, called the imaginary axis, divide the complex

Imaginary axis

-4 + j4
[ ] f4 -
j { drant
2nd quadrant e Ist quadran
2 F )
4+ j2
J1 T
__‘ i ! 1 ‘ 1 . 1 ‘ ]
s 4 3 2 10 1 2 3 a4 5 Real axis
il
g 4-j2
" °
2-43 7
[ ] j3
3rd quadrant 4 4th quadrant

Fig. 11-1
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plane into four quadrants, as labeled. Both axes have the same scale. The points for real numbers are
on the real axis because a real number can be considered to be a complex number with a zero imaginary
part. Figure 11-1 has four of these points: —5. — 1. 2, and 4. The points for imaginary numbers are on
the imaginary axis because an imaginary number can be considered to be a complex number with a zero
real part. Figure 11-1 has four of these points: j3.j1. —j2, and —j4. Other complex numbers have nonzero
real and imaginary parts, and so correspond to points off the axes. The real part of each number gives
the position to the right or to the left of the vertical axis, and the imaginary part gives the position
above or below the horizontal axis. Figure 11-1 has four of these numbers, one in each quadrant.

In Fig. 11-1 the complex numbers 4 + j2 and 4 — j2 have the same real part, and they also have the
same imaginary part -except for sign. A pair of complex numbers having this relation are said to be
conjuguates:. 4 + j2 is the conjugate of 4 — j2, and also 4 — ;2 is the conjugate of 4 + j2. Points for conjugate
numbers have the same horizontal position but opposite vertical positions, being equidistant on opposite
sides of the real axis. If lines are drawn from the origin to these points, both lines will have the same
length, and, except for sign, the same angle from the positive real axis. (Angles are positive if measured
in a counterclockwise direction from this axis. and negative if measured in a clockwise direction.) These
graphical relations of conjugates are important for the polar form of complex numbers presented in the
next section.

The rectangular form is the only practical form for addition and subtraction. These operations
are applied separately to the real and imaginary parts. As an illustration. (3 + j4) 4+ (2 + j6) =
5+ 10 and (6 —j7)—(4—j2)=2—j5.

In the multiplication of complex numbers in the rectangular form, the ordinary rules of algebra are
used along with the rules for imaginary numbers. For example,

(24703 +jS) =23+ 2(jS) + jAU3) + j4j5) =6 + j10 + j12 — 20 = — 14 + j22

It follows from this multiplication rule that if a complex number is multiplied by its conjugate, the
product is real and is the sum of the real part squared and the imaginary part squared. To illustrate,

(3 + j4X3 — j4) = 33) + 3 —j4) + j43) + jAH —j4) =9 — 12 + j12+ 16 = O + 16 = 3% + 42 = 25

In the division of complex numbers in rectangular form. the numerator and denominator are first
multiplied by the conjugate of the denominator to make the denominator real, or rationalized. so that
the division will be straightforward. As an example of this operation, consider

10+24 _ (104 2406 — jd) _ 156 + /104 _ 1564 104 _
=S =t = - =342

6+ 4 (64464  6*+42 52

POLAR FORM

The polar form of a complex number is a shorthand for the cxponential form. Polar or exponential
forms are usually the best forms for multiplying and dividing, but arc not useful for adding and subtracting
unless done graphically, which is rarely done. Typically, though, a scientific calculator can add and
subtract complex numbers in polar form as well as in rectangular form. The exponential form is Ae’,
where A4 is the maynitude and 0 is the angle of the complex number. Also, ¢ =2.718... is the base of
the natural logarithm. The polar shorthand for Ae’® is A/0 as in  4¢/** =4/45° and in —8¢/®° =
—8/60°. Although both forms are equivalent, the polar form is much more popular because it is easier
to write.

That a number such as 5¢/°° is a complex number is evident from Euler’s identity: ' = cos 0 +
jsin 0. As an illustration, 7¢/*® = 7/30" = 7cos 30 + j7sin 30 = 6.06 + j3.5. This use of Euler's
identity not only shows that a number such as Ae” = 4/0 is a complex number. but also gives a
method for converting a number from exponential or polar form to rectangular form.
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Another use of Euler’s identity is for deriving formulas for converting a complex number from
rectangular form to the exponential and polar forms. Suppose that x and y are known in x + jy,
and that 4 and 0 are to be found such that x + jy = Ae’’ = A/0. By Euler’s identity, x + jy =
Acos l + jA sin 6. Since two complex numbers are equal only if the real parts are equal and if the
imaginary parts are equal, it follows that x = Acos0 and y = Asin@. Taking the ratio of these
equations eliminates A:

Asin 0 —tan0 =72 from which f=tan 'L

_Acos O X X
(Note that if x is negative, 180° must be either added to or subtracted from ().) So, ) can be found from
the arctangent of the ratio of the imaginary part to the real part. With ¢ known, 4 can be found by
substituting 8 into either x = Acos@ orinto 3= Asind.

Another popular way of finding A is from a formula based on squaring both sides of A4 cos 0 = x
and of Asinf =y and adding:

A% cos? 0 4+ A%sin? 0 = A*(cos® O + sin® () = x? + y?
But since, from trigonometry, cos’0 +sin?6 =1, it follows that A?=x>+)? and A=

\/tvc_2 + y2. So, the magnitude of a complex number equals the square root of the sum of the squares of
the real and imaginary parts. Most scientific calculators have a built-in feature for converting between
rectangular and polar forms.

This conversion can also be understood from a graphical consideration. Figure 11-2a shows a
directed line from the origin to the point for the complex number x + jy. As shown in Fig. 11-2b, this
line forms a right triangle with its horizontal and vertical projections. From elementary trigonom-

etry, x=Acosf, y=Asinf, and A= Vf/x7+ %, in agreement with the results from Euler's
identity. Often this line, instead of the point, is considered to correspond to a complex number because its
length and angle are the amplitude and angle of the complex number in poler form.

x +jy

Imaginary axis

Real axis

(a)

Fig. 11-2

As has been mentioned, the conjugate of a complex number in rectangular form differs only in the
sign of the imaginary part. In polar form this difference appears as a difference in sign of the angle, as
can be shown by converting any two conjugates to polar form. For example, 6 + 5 = 7.81/39.8
and its conjugate is 6 — j5 = 7.81/—39.8".

As stated, the rectangular form is best for adding and subtracting, and the polar form is often best
for multiplying and dividing. The multiplication and division formulas for complex numbers in polar
form are easy to derive from the corresponding exponential numbers and the law of exponents. The
product of the complex numbers 4¢’® and Be/® is  (Ae®)Be/®) = ABe/®*®,  which has a magnitude AB
that is the product of the individual magnitudes and an angle 0 + ¢ that, by the law of exponents, is
the sum of the individual angles. In polar form this is A/0 x B/¢ = AB/0 + ¢.
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For division the result is

Ae?® A4 ) A/ A
— = which in polar form is e _ g
Be’* B B/¢ B
So, the magnitude of the quotient is the quotient 4/B of the magnitudes, and the angle of the quotient
is, by the law of exponents, the difference 0 — ¢ of the numerator angle minus the denominator angle.

PHASORS

By definition, a phasor is a complex number associated with a phase-shifted sine wave such that,
if the phasor is in polar form, its magnitude 1s the effective (rms) value of the voltage or current
and its angle is the phase angle of the phase-shifted sine wave. For example, V =3/45"V
is the phasor for v=3/2sin(377t +45)V and 1=0439/-27°A is the phasor for i=
0.621 sin (754t — 27°) A. Of course, 0.621 = \/’2(0.439).

Note the use of the boldface letters V and I for the phasor voltage and current quantity symbols.
It is conventional to use boldface letter symbols for all complex quantities. Also, a superscript asterisk
is used to designate a conjugate. As an illustration, if V= —6+j10=11.7/121°V, then V* =
—6 — j10 = 11.7/—121° V. The magnitude of a phasor variable is indicated by using lightface, and the
magnitude of a complex number is indicated by using parailel lines. For example, if 1=13 +j4 =
5/53.1° A, then I =3+ j4]=|5/53.1°|=5A.

A common error is to equate a phasor and its corresponding sinusoid. They cannot be equal because
the phasor is a complex constant, but the sinusoid is a real function of time. In short, it is wrong to
write something like 3/30" = 3\/5 sin (wt + 30°).

Phasors are usually shown in the polar form for convenience. But the rectangular form is just as
correct because, being a complex number, a phasor can be expressed in any of the complex number
forms. Not all complex numbers, though, are phasors—-just those corresponding to sinusoids.

There is not complete agreement on the definition of a phasor. Many electrical engineers use the
sinusoidal peak value instead of the effective value. Also, they use the angle from the phase-shifted cosine
wave instead of the sine wave.

One use of phasors is for summing sinusoids of the same frequency. If each sinusoid is
transformed into a phasor and the phasors added and then reduced to a single complex number, this
number is the phasor for the sum sinusoid. As an illustration, the single sinusoid corresponding to ¢ =
3sin (2t + 30°) + 2sin (2t — 15°) V  can be found by adding the corresponding phasors,

V= -3--@” + —-2—: [—15° = f‘f:@z_.zs \Y
V2 V2 NE

and then transforming the sum phasor to a sinusoid. The result is ¢ = 4.64sin (2t + 12.2°) V. This

procedure works for any number of sinusoids being added and subtracted, provided that all have the

same frequency.

Notice that using \/5 did not contribute anything to the final resuit. The \/'2 was introduced in
finding the phasors, and then deleted in transforming the sum phasor to a sinusoid. When the problem
statement is in sinusoids and the answer is to be a sinusoid, it is easier to neglect the Vf'E and use phasors
that are based on peak values instead of rms values.

Phasors are sometimes shown on a complex plane in a diagram called a phasor diagram. The phasors
are shown as arrows directed out from the origin with lengths corresponding to the phasor magnitudes,
and arranged at angles that are the corresponding phasor angles. Such diagrams are convenient for
showing the angular relations among voltages and currents of the same frequency. Sometimes they are
also used for adding and subtracting, but not if accuracy is important.

Another diagram, called a funicular diagram, is more convenient for graphical addition and
subtraction. In this type of diagram the adding and subtracting are the same as for vectors. For adding,
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the arrows of the phasors are placed end to end and the sum phasor is found by drawing an arrow from
the tail of the first arrow to the tip of the last. If a phasor is to be subtracted, its arrow is rotated 180
(reversed) and then added.

11.1

11.2

11.3

Solved Problems

Perform the following operations:
| j100

(d)

(@) j2+3-j6—j8 (b)) jA-3)j4N—j6)  (0) j0.25 78

(a) The rules for adding and subtracting imaginary numbers are the same as for adding and subtracting
real numbers, except that the result is imaginary. So,
J2+j3—j6—j8 =j5—-jl4= -9
{b) The numbers can be multiplied two at a time, with the result
[j2 -3 —jo)] = 6(24) = 144

Alternatively, j1 can be factored from each factor and a power of j1 found times a product of real
numbers:

JA=3KJA—j6) = (j1*[2(= 3NN - 6)] = 1(144) = 144

(¢) The denominator can be made real by multiplying the numerator and denominator by j1, and then
division performed as if the numbers were real- -except that the quotient is imaginary:

1 15D jl
025 j025(j1)  -025  °
Alternatively, since  1/j1 = —jl,
1 1 1
025 ji (635) - =

(d) For convenience, the j's can be considered to be numbers and divided out:

Add or subtract as indicated, and express the results in rectangular form:
(@) (6.21 +j3.24) + (4.13 — j9.47)
(b) (7.34 — j1.29) — (5.62 + j8.92)
(©) (24 +j12) — (=36 —j16) — (17 — j24)
The real and imaginary parts are separately added or subtracted:
(@) (621 + j3.24) + (4.13 — j9.47) = (621 + 4.13) + j(3.24 — 9.47) = 10.34 — j6.23
(b) (7.34 —j1.29) — (5.62 + jB.92) = (7.34 — 5.62) — j(1.29 + 8.92) = 1.72 — j10.21
(c) (=24 +12) — (=36 —j16)— (17 —j24)=(—24 + 36 - 17) +j(i2 + 16 + 24) = —5 + j52

Find the following products and express them in rectangular form:

(@ (@+23+j4) (b)) (6+2K3 —j5K2 —j3)
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11.5

11.6

In the multiplication of complex numbers in rectangular form, the ordinary rules of algebra are used
along with the rules for imaginary numbers:

(@ G +723+j8=43)+44)+ 23 +20j4) =12 +j16 + j6 — 8 =4 + 22
(b) 1Tt is best to multiply two numbers at a time:
(6 + j2H3 — j5N2 — j3) = [6(3) + 6(—75) + j2(3) + 2 =52 — j3) = (18 — j30 + j6 + 10)2 — j3)
= (28 — j24)2 — j3) = 28(2) + 28(—j3) + (—j24K2) + (—j24X—,3)
=56 - j84 —j48 — 72 = —16 —j132

Multiplying three or more complex numbers in rectangular form usually requires more work than does
converting them to polar form and multiplying.

Evaluate

4+j3 =52
—j2 5-j6

The value of this second-order determinant equals the product of the elements on the principal diagonal
minus the product of the elements on the other diagonal, the same as for one with real elements:

4+j3 -2 . ) . . . . .
. =@+ —jO) = (=2 —j2)=20—- 24+ j15+ 18 + 4 =42~ /9
—j2 5-j6
Evaluate
4+ j6 —j4 -2
—j4 6+j10 -3
-2 -3 2+l

The evaluation of 4 third-order determinant with complex elements is the same as for one with real
elements:

= (4 4+ jOX6 + JION2 + j1) + (—j4N —3N—2) + (=20 —j4N—3) — (= 2)6 + j10X —2)
= (=3)—3X4 +j6) — (2 + jIN—j4N—j4)
= —148 + j116 — j24 — j24 — 24 — j40 — 36 — j54 + 32 + jl6 = — 176 — 10
Although this procedure is straightforward, it is difficult to do without making errors. Using a calculator
1s much better.

Find the following quotients in rectangular form:

I 14 + j5
b /2

@ ——— -
0.2 4,05 4 —jl

For division in the rectangular form, the numerator and denominator should be multiplied by the
conjugate of the denominator to make the denominator real. Then the division is straightforward. Doing
this results in

1 02-j05 02-j05 02-j05 02 05
el P2 BTl T T 069 — 12

X ==
02+j05 02-,j05 022+05° 0.29 0.29 0.29

(a)

14+jS 4+j1  51+j34
) TS AR S
4—j1 " a4jl 17
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Convert the following numbers to polar form:
(@ 6+ )9 () —214+ /333 {¢c) —0.521 —jl.42 (d) 4.23 +j4.23

If a calculator is used that does not have a rectangular-to-polar conversion feature, then a complex

number x + jy can be converted to its equivalent Aﬂ) with the formulas A4 = Xy v oand 0=
tan ! (y/x). With this approach

(@ 6+j9 =6 +9%/tan"' (9/6) = 10.8/56.3

() —21.4 + /333 = /(—21.4) + 3337 ftan" ' [33.3/(—21.4)] = 39.6/122.7
Typically, a calculator will give tan '(—33.3/21.4) = —57.3°, which differs from the correct angle by
180 . For such a calculator, this error of 180° always occurs in a rectangular-to-polar form conversion
whenever the real part of the complex number is negative. The solution, of course. is to change the
calculator angle by either positive or negative 180", whichever is more convenient.

(€) —0521 —j142 = (—0521)* + (- 1.42)% ftan "' [ - 1.42/(—0.521)] = 1.51/— 110
Again, because the real part is negative, a calculator may not give an angle of — {10, but
tan ! (1.42/0.521) = 70°, instead,

(d) 423 +j423 = /423 + 4237 /tan”* (4.23/4.23) = \/6(4.23){tan" 1 = 598/45°
As can be generalized from this result, when the magnitudes of the real and imaginary parts are equal,

the polar magnitude is \/'3 times this magnitude. Also, the angle is 45 if the number is in the first
quadrant of the complex plane. 135 if it is in the second, — 135" if it is in the third, and —45 if it is
in the fourth.

Convert the following numbers to rectangular form:

(@) 102/20° (b) 641/=30 () —142/—80.3 (d) 142/-260.3° (e) —142/—440.3

If a calculator is used that does not have a polar-to-rectangular conversion feature. then Euler’s identity
can be used: A@ = Acos @ + jA sin ). With this approach
(@) 10.2/20 = 10.2cos 20" + j10.25in 20 = 9.58 + j3.49
(b) 6.41/=30 = 6.41cos(—30) + j6.41 sin (—30") = 5.55 — j3.21
(¢} —142/-803 = —142cos(—80.3') — j142sin{—80.3") = —23.9 + 140
(d) 142/—260.3" = 142 cos (—260.3 ) + j142sin (—260.3') = —23.9 + j140
(¢) —142/-4403 = —142cos(—440.3") — jl42sin(—4403) = —239 + ji40

Parts (¢) and (d} show that an angular difference of 180" corresponds to multiplying by — 1. And parts
(c) and (¢) show that an anguiar difference of 360 has no effect. So, in general, A/0 + 180 =

~A/0 and A/0 + 360 = A/0.

Find the following products in polar form:
(a) (3/25°X4/—=60"}—5/120°K —6/—210) (b) (0.3 + jO.4N~5 + j6XT/35°N —8 — j9)

(@) When all the factors are in polar form, the magnitude of the product is the product of the individual
magnitudes along with negative signs, if any, and the angle of the product is the sum of the individual
angles. So,

(3/25-X4/ —60°X —5/120 X —6/—210") = 34X — 5K —6)/25" — 60" + 120" — 210" = 360/ —125°
{b) The numbers in rectangular form must be converted to polar form before being multiplied:

(0.3 + jOAX—5 + jONT/3S X —8 — j9) = (0.5/53.1'X7.81/129.8°X7/35"K12.04/ — 131.6")
= 0.5(7.81(7X12.04)/53.1° + 129.8° + 35" — 131.6" = 329/86.3"

11.10 Find the quotients in polar form for (a) (81&”)/(3@‘)) and (b) (~9.1/20/(—4 + j7).
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{a)  When the numerator and denominator are in polar form, the magnitude of the quotient is the quotient
of the magnitudes. and the angle of the quotient is the angle of the numerator minus the angle of the
denominator. So,

81/45 81
81/45 = /45 —16 =27/29
316 3

(») The denominator should be converted to polar form as a first step:

-9.1/200 -9.1/20 9
—E— 20 _ —~—— /200 —119.7 = —1.13/=99.7 = 1.13/=99.7 + 180 = 1.13/80.3

—4+47  806/1197 806

Find the following quotient:
(1.2/35°)*4.2/=20)°
2.1/ =10 =3 + j6)°
Since each exponent of a number indicates how many times the number is to be multiplied by itself,
the effect of an exponent is to raise the number magnitude to this exponent and to multiply the number

angle by this exponent. Thus,
(1,2@‘)3(4.2(—20‘)" (1.2@’)3(4.2(—20“]" B 1.2%4.2)%/3(35 ) — 6(20 )

21/=1004=3 +j6)°  (21/=10)%6.71/117 )* ~ 2.1%6.71)3/4(=10 ) + 5(117 )
1.73(5489)/ =15 9.49 x 10%/—15
_LTHSABNLZS 949 x 107/ =18 0.0359/ =558 =0.0359/—198 = —0.0359/- 18’

T 19.4(13584)/543  2.64 x 105/543

Find the corresponding phasor voltages and currents for the following:
(a) v= \/5(50) sin (377t — 35)V {¢) v =2836cos(400t - 15V
) i= ﬁ(90.4) sin (754t + 48°) mA (d) i=2346cos (815t +30)A

A phasor in polar form has a magnitude that is the effective value of the corresponding sinusoidal
voltage or current, and an angle that is the phase angle of the sinusoid if it is in phase-shifted sine-wave
form. So,
(@ ©=250)sin(377t —=35)V - V=50/-35V
(b) i=./2904)sin (754 + 48 )mA — 1=904/48 mA
() v =836cos(400t — 15 ) = 83.6sin (4001 — 15" + 90') = 83.6s5in (400t + 75)V

-V =(836//2)/75 =59.1/75° V

(d) i=2346cos (815t + 30°) = 3.46 sin (815t + 30° + 90°) = 3.46 sin (8151 + 120°) A

—~ I=(3.46//2)/120° = 2.45/120° A

-

Find the voltages and currents corresponding to the following phasor voltages and currents (each
sinusoid has a radian frequency of 377 rad/s):

(@) V=20/35°V () 1=102/-41"mA (¢©) V=4—-j6V dy I=-3+j1A4
If a phasor is in polar form, the corresponding voltage or current is a phase-shifted sine wave that has
a phase angle that is the phasor angle, and a peak value that is the \/5 times the phasor magnitude. Thus,
(@ V=235V - r= 20\5 sin {377t + 35) = 283sin (377t + 357}V
(h) 1=102/-4I"mA - i= \/5(!0.2) sin (377t — 41°) = 14.4sin (377t — 41" )mA
() V=4-j6=721/-563'V - r= \/5(7.21) sin (377t — 56.37) = 10.25in (3771 — 56.3°)} V
d L= -34j1=316/161.6 A — = \/'5(3.16) sin (377t + 161.6 ) = 447sin (3771 + 161.6 ) A
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Find a single sinusoid that is the equivalent of cach of the following:

{t) 6.23 sinwt + 9.34 cos ot
(h) Ssin(dr—20)+6sin(dt +45)— Tcos(dt —60 )+ 8cos (4t + 30)
(¢} S5sin 377t + 6 cos 754t

A phasor approach can be used since the terms are sinusoids. The procedure is to find the phasor
corresponding to each sinusoid, add the phasors to obtain a single complex number. and then find the
sinusoid corresponding to this number. Preferably the phasors are based on peak values because there is
no advantage in introducing a factor of 2 since the problems statements are in sinusoids and the answers
are to be in sinusoids. Thus,
@) 623sinwt +93dcosen - 623/0 +934/90 =11.2/563 - 112sin(mr + 56.3)
{hy Ssin(dr —20 )+ 6sin{dr +45)— Tcos(d — 60 )+ Kcostdr + 30)

S5/ =20 +6/45 —7/30 4 8/120 =607/100.7 = —607/=793 - —607sin(d —793)

{¢)  The sinusoids cannot be combined because they have different frequencies.

For the circuit shown in Fig. 113, find ¢¢ f ¢, =102sn(754t +30)V, ¢, =
149sin (754t — 10 )V, and ;=161 cos (754t —25)V.

By KVL, rg=1v, —v,+ 1y, =102s5in(754t + 30 ) - 149sm (7541 — 10 ) + 16.1 cos (7541 — 25)V
The sum sinusoid can be found by using phasors:

, o102, 149 6.1, 23,
Ve=V —Vy+ Vo= /30 — /10« J65 =TT /875 v
<2 <2 2 2

= rg=223sn (7541 + 875)V

Since the problem statement is in sinusoids and the final result is a sinusoid. finding the solution would
have been slightly easier using phasors based on peak rather than rms values.

Fig. 11-3 Fig. 11-4

In the circuit shown in Fig. 11-4, voltmeters VM, and VM, have readings of 40 and 30 V.,
respectively. Find the reading of voltmeter VM ,.

It is tempting to conclude that, by KVL, the reading of voltmeter F'AM, 1s the sum of the readings of
voltmeters ¥M, and VM,. But this is wrong because KVL applies to phasor voltages and not to the rms
voltages of the voltmeter readings. The rms voltages. being positive real constants. do not have the angles
that the phasor voltages have.

For the phasors required for KVL, angles must be associated with the given rms voltages. One angle
can be arbitrarily selected because only the magnitude of the sum is desired. [f O is selected for the resistor
voltage phasor, this phasor s 40@ V and then that for the inductor voltage must be 30790 V. The inductor
voltage phasor has a 90 greater angle because this voltage leads the current by 90 . but the resistor voltage
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is in phase with the current. By KVL, the phasor voltage for the source is 40 + 30@’ =40 + j30 =
50/36.9V, which has an rms value of 50V. So, the reading of voltmeter VM; is 50V, and not
the 30 + 40 =70V that might at first be supposed.

11.17 Find v for the circuit shown in Fig. 11-5.

The voltage vg can be determined from vg = vg + t; + v after these component voltages are found.
By Ohm’s law,

rg = [0.234 sin (3000 — 10°)}(270) = 63.2 5in (3000t — 107) V

The inductor voltage v; leads the current by 90 and has a peak value of wL = 3000(120 x 1073 = 360
times the peak value of the current:

r, = 360{0.234) sin (3000; — 10 + 90') = 84.2 sin (3000 + 80') V

The capacitor voltage v lags the current by 90" and has a peak value that is 1/wC = 1/(3000 x
6 x 107°%) = 55.6 times the peak value of the current:

te = 55.6(0.234) sin (3000t — 10 — 90°) = 13 sin (30001 — 100") V
Phasors, which are conveniently based on peak values, can be used to find the sum sinusoid:
Vs=Ve 4V, + V. =632/-10 + 84.2/80" + 13/-100" = 95.2/384" V
— g =952sin (3000 + 384)V

270 0 120 mH L
TV M 'l,-, 'l.-,, |
+
vs <T> 0.234 sin (3000t — 10°) A vc 6 uF 150 sin (2500t ~ 34°) V 100 6 mH T 20 uF
Fig. 11-5 Fig. 11-6

11.18 Find i for the circuit shown in Fig. 11-6.
The current ig can be determined from i =ig + i; + i after these component currents are found.
By Ohm’s law,
_ 1505sin (2500t — 34°)

fg = = = 15 8in 25000 — 34 A

The inductor current i, lags the voltage by 90° and has a peak value that is ljwL=1/(2500 x 6 x
1077%) = 1/15 times the peak value of the voltage:

150 (25000 — 34 — 90°)
= 15

The capacitor current i leads the voltage by 90" and has a peak value that is C = 2500{20 x
107 = 0.05 times the peak value of the voltage:

ic = 0.05(150) sin (2500t — 34 + 90°) = 7.5s5in (25001 + 567) A

= 10sin (2500 — 1247} A

Phasors, which are conveniently based on peak values, can be used to find the sum sinusoid:

g =g+ I, +1c=15/-34 +10/—124 +7.5/56 =152/—435 A — is=152sin (25001 — 43.5)A
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If two currents have phasors of 10/0" and 7/30" mA, what is the angle and rms value of the
current that is the sum of these currents? Solve by using a funicular diagram. Check the answer
by using complex algebra.

Figure 11-7 shows the tail of the 7-mA phasor at the tip of the 10-mA phasor, as required for vector
addition. The sum phasor, extending from the tail of the 10-mA phasor to the tip of the 7-mA phasor, has

a length corresponding to approximately 16.5 mA and an angle of approximately 13°. In comparison, the
result from complex algebra is

10/0° + 7/30 =10 + 6.06 + j3.5 = 16,06 + 3.5 = 16.4/12.3 mA

which is, of course, considerably more accurate than the graphical result.

Synchronous motor current phasor
[l 4 1 L L L 1 1 3

-50°

Induction motor
current phasor

16.5/13° mA

7[30° mA Total current phasor

10/0° mA

Fig. 11-7 Fig. 11-8

A synchronous motor draws a 9-A current from a 240-V, 60-Hz source. A parallel induction
motor draws 8 A. If the synchronous motor current leads the applied voltage by 20", and if the
induction motor current lags this voltage by 30", what is the total current drawn from the source?
Find this current graphically and algebraically.

The choice of the reference phasor- the onc arranged horizontally at 0" - is somewhat arbitrary. The
voltage phasor or either current phasor could be used. In fact, no phasor has to be at 0", but it is usually
convenient to have one at this angle. In Fig. 11-8 the synchronous motor current phasor is arbitrarily
positioned horizontally, and the induction motor current phasor at its tip is positioned at an angle of - 50°
with it since thereis a 20 — (—30) =50 phase angle difference between the two currents. Also shown
is the sum phasor, which has a measured length corresponding to 15.4 A. In comparison, from complex
algebra,

=9/0° +8/-50 =9+ 514 —j6.13=14.14 — j6.13 = 154/ 234 A
and =1 =|154/-234°] = 154 A

in agreement with the graphical result to three significant digits. Usually, agreement to only two significant
digits should be expected because of the comparative lack of accuracy with the graphical approach.

Supplementary Problems

Perform the following operations:
—j100 8
@ J6~77+H=B+P ) GRBN-BO9 @ @
—J

Ans. (a)j4, (b} —604.8, () —j20, (d)j2
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11.26

11.27

11.28

11.29

11.30

Perform the following operations and express the results in rectangular form:
(a) (4.59 + j6.28) + (5.21 — j4.63)

(h) (8.21 + j4.31) — (4.92 — j6.23) — (—5.16 + j7.21)

() 34+4j4—-5+j6—-T7+j8—9+j10-11

Ans. (a) 9.8 + j1.65, (b) 845+ 333, () —29 + 28

Find the following products and express them in rectangular form:
(@) (6 —j7N4 +2)

b)) S+IK=T7—j4—6 + j9)

(€©) (=24 j6)(—4 — ja —6 + j8XT + j3)

Ans.  (a) 38 —j16, (b) 429 — 117, (¢} —1504 + j2272

Find the following products and express them in rectangular form:
(a) (4+/3%4 737 (b) (0.6 —j03)(=2 + jay

Ans.  (a) 625, (b) 18 — j36

6 —j8 2-3
Evaluate .
—44+j2 —-54+/9
Ans. 44 + j78
6+j5 —j2 -4
Evaluate | —j2 10—;8 -6
-4 -6 S5-—j6

Ans. 156 — j762

10-j2 -2+ -3-j4
Evaluate | —2 + j1 9—j8 —6+,2{.
-3—-j4 —6+j2 12-j4

Ans.  —65 — j1400

Find the following quotients in rectangular form:
1 1 72
SR O B
0.1 —j04 —0.4 + jO.5 6—j3
Ans.  (a) 0.588 + j2.35, (b) —0.976 — j1.22, {c) 1.07 + /0.2

(a)

Convert each of the following to polar form:
(@) 8.1+ 1t (€©) —334 4147  (e) 162 +j16.2
by 163 —j12.2 (d) —12.7-j17.3 (f) =19.1 +j19.1

Ans. (a) 13.7/53.6° (b) 20.4/—36.8°, (c) 36.5/156°, (d) 21.5/—126° () 22.9/45°, (f)27/135°

Convert each of the following to rectangular form:
(@ 11.8&‘" (c) 15.8/215° (e) —169/—-36°
(by 13.7/142° (d) 274/ =173 () —24.1/-1200°

Ans. (a) 7.43 +j9.17, (b) —10.8 + j843, (c) —12.9 — j9.06, (d) 8.01 — j26.2, (e} —13.7 + j9.93,
(f) 12.1 + j20.9
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Perform the following operations and express the results in polar form:
(@) 631 — 823 + 7.14/23.1 — 892/ 475
{hy 4§ 7"/—146 — 68. 9/ 76.3 — 489’!"]
() —56.1/-49.8 +73.1/-742 —8 —j6

Ans. {«) 695/9.51 . (h) 46.5(’ —L14. (c}41.4/-126

Find the following products in polar form:

(@ (5.21/=36.1 0.141/ ]l())( 611’7 16 )(172/21())
(h) (5 +j3(—6+ 14023/ -17.1)

() (0.2 = jO.SKT4 — jOT2( =23 + jL3IN—1.62 —j1.13)

Ans. (@) 797/ 121 (h) —8.16/44 . (c) 442/ -90

Find the following quotients in polar form:

17’4(62 4.13 —ﬂ ’1 20.1/37.6
(a) (b) (0 - ==
389/ 141 —7. 17{23 —-491 — j5.32

Ans. (@) 4.45/76.2 0 (b —0735/=61 . () - 3.61/=9.5

Find the following quotients in polar form:

6.21 — 9“)477’1 +j3.62021.3/ ?S) )

(@) -
(— 14,1 + j6.82)(697/68 N10.2/ =41 )
5] (6; =45 N3 — j8) — (=7 + j4N8 - j4%3.62/70 )

(=41 + j2K34 + jo. N1 —27)

Ans. {a) 172/ —a88 . (h) —0.665/—4.14

—_

Find the following quotient in polar form:
(—6.29/~70.1 l*(84L B.1/44 ) -
1124 —16 ) (—6’9 '~ 107 )(07"9 93 )t}
Ans. 260/80.6

Find the corresponding phasor voltages and currents of the following in polar form:
{@) r= 242.1)sn (400t — 30 )V (d)y = —381cos(754r —72)A

(h) = 2369 sin(6000r + 7T2)VA /s  {¢) = —B64cos (672 + 34V

() vt=—=643sm (3771 — 34V

Ans. @) V=421/-30 V. (h1=369/72 A. ()V=—455/=34 V. (d)1=—269/I18 A (V=
61.1/=56 V

i

Find the voltages and currents corresponding to the following phasor voltages and currents (each sinusoid
has a radian frequency of 754 rad/s):

(@ V=151/62 V () V=—-143/=697V () V= -T—j8V

(h) 1=962/-31 A () I=4—j6A (f) b= —896+,761A
Ans. (@) v =214sin(7541 + 62)V () §=102sin(754r — 563 ) A
(h) i=136sin(754 —31)A (e} = —15sin(754t + 488 )V

(¢} r=-=202sm(754 — 697}V ([} i= —166sin(754t — 403 )A
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Find a single sinusoid that is the equivalent of cach of the following:

(@) 7.21 sin ot + 11.2cos ot

(b} —8.63sin 377t — 4.19 cos 37Tt

(¢) 4.12sin(641 — 10) — 6.23sin (64t — 35 ) + 7.26 cos (641 — 35 ) — 892 cos (64t + 17 )

Ans. (a) 133sin(wr + 57.2°). (b)) —=9.59sin (3771 + 25.9), (¢} 5.73sin (641 + 2.75)

In Fig. 119, find i, if i, =146sin(37771 - 15)ymA. i, =213sin(3771 + 30 )ymA. and i, =
13.7cos (377t + 15') mA.

Ans. i, = —277cos (377t + 88.3' )mA

(D)
o

Fig. 11-9 Fig. 11-10

In the circuit shown in Fig. 11-10, ammeters 4, and 4, have rcadings of 4 and 3 A. respectively. What is
the reading of ammeter 4,7

Ans. 2.65A

A current = 0.621sin (400 + 30 ) mA  flows through a 3.3-k€Q resistor in series with a 0.5-uF capacitor.
Find the voltage across the series combination. Of course. as always, assume associated references when, as
here. there is no statement to the contrary.

Ans. v =2372sin (4001 — 26.6 |V

A voltage = 240sin(400r + 10 )V 15 across a 680-Q resistor in parallel with a 1-H inductor. Find the
current flowing into this parallel combination.

Ans. i =0.696sin (400t — 49.5)A

Acurrent | =0248cos(377t — 15 )A flows through the serics combination of a 91-Q resistor, a 120-mH
inductor, and a 20-uF capacitor. Find the voltage across the series combination.

Ans. v =313sin(377¢t + 312V

The voltage ¢ = 120sin (1000: + 20 )V is across the parallel combination of a 10-kQ resistor. a 100-mH

inductor, and a 10-uF capacitor. Find the total current i, flowing into the parallel combination. Also. find
the inductor current i, and compare peak values of i, and i;.

Ans. ip=0012sin (1000t + 20 )A and i, = 1.25sin (1000t — 70 ) A. The inductor current peak is 100
times the tnput current peak.



Chapter 12

Basic AC Circuit Analysis,
Impedance, and Admittance

INTRODUCTION

In the analysis of an ac circuit, voltage and current phasors are used with resistances and reactances
in much the same way that voltages and currents are used with resistances in the analysis of a dc circuit.
The original ac crcuit, called a time-domain circuit, 1s transformed into a phasor-domain circuit that has
phasors instead of sinusoidal voltages and currents, and that has reactances instead of inductances and
capacitances. Resistances remain unchanged. The phasor-domain circuit 1s the circuit that is actually
analyzed. It has the advantage that the resistances and reactances have the same ohm unit and so can
be combined similarly to the way that resistances can be combined in a dc circuit analysis. Also, the
analysis of the phasor-domain circuit requires no calculus, but only complex algebra. Finally, all the dc
circuit analysis concepts for finding voltages and currents apply to the analysis of a phasor-domain
circuit. but, of course. complex numbers are uscd instead of real numbers.

PHASOR-DOMAIN CIRCUIT ELEMENTS

The transformation of a time-domain circuit into a phasor-domain circuit requires relations between
the voltage and current phasors for resistors, inductors, and capacitors. First, consider obtaining this
relation for a resistor of R ohms. For a current i =1, sin (et + (), the resistor voltage is, of
course. v = RI, sin (e + ). with associated references assumed. The corresponding phasors are

1, . RI
I= "/0 A and v=""/0 Vv
2 2
N N e
Dividing the voltage equation by the current equation eliminates [,,. ). and 2 and produces a relation
between the voltage and current phasors:

% _U,R N 2),& _Rr
I (lm\ 2)&

This result shows that the resistance R of a resistor relates the resistor voltage and current phasors
in the same way that it relates the resistor voltage and current (R = ¢ i). Because of this similarity, the
relation ¥/l = R can be represented in a phasor-domain circuit in the same way that vi=R 1is
represented in the original time-domain circuit. Figure 12-1 shows this.

i + v I + ¥V _
o= _TAAA o0 ~— o= AAN— o
R R
Fig. 12-1

Next. consider an inductor of L henries. As shown in Chap. 10. for a current i = 1_sin (wt + ),

the inductor voltage 1s v = wLI, cos (it + ) = LI, sin(or + 0+ 90 ). The corresponding phasors
are
1 LI
1=""/0 A and v=""""/1+90 V
) )
N vV

(8]
(o]
19
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Dividing the voltage equation by the current equation results in a phasor relation of

V rL] N ) + 90 ,
V_te Lf-—mL@

NG

This result of wL /90° in polar form is jwL in rectangular form. Since wL is the inductive reactance X ;.
as defined in Chap. 10, then

\ .
T=J¢UL=}X1.

Note that jwL relates the inductor voltage and current phasors in the same way that R relates the
resistor voltage and current phasors. Consequently, jwL has a similar current-limiting action and the
same ohm unit. In addition, because of its j1 multiplier, it produces a phase shift of 90" (j1 = 1/90°).

From the resistor discussion and the similarity of V/I =R and V/I =jwl, the time-domain
circuit to phasor-domain circuit transformation for an inductor, as shown in Fig. 12-2, should be
apparent. The usual inductor circuit symbol is used in the phasor-domain circuit, but it is associated
with joL ohms instead of with the L henries of the original time-domain circuit. The inductor voltage
and current are transformed, of course, into corresponding phasors.

iy v 1 + Vo
O YVt 0 = G—’ Fa's'a"a -0
L joL
Fig. 12-2

The same approach can be used for a capacitor. For a voltage © =V, sin(wr + 6), a capacitor
of C farads has a current of i = wCV,, sin(wr + @ + 90°). The corresponding phasors are

v,
V=-"/§ V and 1= %m0 1 000 A
V2 NE

A N T S U )
I (wCVy/2) [0 +90° wCH0°  joC  oC

As defined in Chap. 10, — l/wC is the reactance X of a capacitor. Therefore,

and

A% —11 X
I oC =JAc

(Remember that many circuits books have capacitive reactance defined as X, = l/wC, in which
case V/I = —jX.)The —jl/wC quantity has a current-limiting action similar to that of a resistance. In
addition, the —j1 multiplier produces a —90° phase shift.

Figure 12-3 shows the time-domain circuit to phasor-domain circuit transformation for a capacitor.
In the phasor-domain circuit the conventional capacitor circuit symbol is used, but it is associated
with —j1/wC ohms instead of with the C farads of the onginal time-domain circuit.

i v 1 A
+p - 47—
¢ -
wC
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AC SERIES CIRCUIT ANALYSIS

A method for analyzing a series ac circuit can be understood from a simple exampie. Suppose that
the sinusoidal current i is to be found in the series circuit shown in Fig. 12-4q, in which the source has
a radian frequency of = 4 rad/s. The first step is to draw the corresponding phasor-domain circuit
shown in Fig. 12-4b, in which the current and voltages are replaced by corresponding phasors, the
inductance is replaced by

jal = jd(2) = j8 Q

and the capacitance is replaced by

—jl —j1
R
wC  41/16)
The resistance, of course, is not changed.
60N 2 H 8 Q0
’\N\, ’\/\N YL
+ - S
I 1
vs = 40V2 sin (41 + 209 V (\ ‘l\ Vs = 40/20° V \'8 T -jaQ
(b)
Fig. 12-4

The next step is to apply KVL to this phasor-domain circuit. Although it is not obvious, KVL
applies to voltage phasors as well as to voltages because it applies to the sinusoidal voltages. and these
sinusoids can be summed using phasors. (For similar reasons, KCL applies to the current phasors of
phasor-domain circuits.) The result of applying KVL is

Vi=Va+V, +V,

The third step is to substitute for the V's using Vg=40/20. Vp=6l. V, =8l and
V. = —j4l. With these substitutions the KVL equation becomes

40/20° = 6l + j81 — j4l = (6 + j4)I

4020 40/20

f hich == = t=_ . _5547/-137 A
rom whie 6+j4  7211/337

and i = 5.547./2sin (4t — 13.7) = 7.84sin (41 — 13.7 ) A
IMPEDANCE

The KVL analysis method of the last section requires much more work than is necessary. Some of
the initial steps can be eliminated by using impedance. Impedance has the quantity symbol Z and the
unit ohm (Q). For a two-terminal circuit with an input voltage phasor V and an input current phasor
I, as shown in Fig. 12-5, the impedance Z of the circuit is defined as

Z:
i

For this impedance to exist, the circuit cannot have any independent sources, although it can have
any number of dependent sources. This impedance is often called the roral or equivalent impedance. 1t
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Fig. 12.5

1s also called the input impedance, especially for a circuit that has dependent sources or transformers.
(Transformers will be discussed in Chap. 16.)
In general, and not just for series circuits,

Z=R+jX

in which R, the real part, is the resistance and X, the imaginary part, is the reactance of the impedance.
For the series phasor-domain circuit shown in Fig. 12-4b, R=6Q and X =8 — 4 =4Q. For this
circuit, the resistance R depends only on the resistance of the resistor, and the reactance X depends only
on the reactances of the inductor and capacitor. But for a more complex circuit, R and X are usually
both dependent on the individual resistances and rcactances.

Being a complex quantity, impedance can be expressed in polar form. From complex algebra,

Z=R+jX=_R +X/tan "(XR)

. . 5y vl > ) ‘ . .
in which “R?*+ X? =|Z|=Z2 is the magnitude of impedance and tan™' (X R) is the angle of
impedance.

As should be evident from Z = V:I, the impedance angle is the angle by which the input voltage
leads the input current, provided that this angle is positive. If it i1s negative, then the current leads the
voltage. A circuit with a positive impedance angle i1s sometimes called an inductive circuit because the
inductive reactances dominate the capacitive reactances to cause the input current to lag the input
voltage. Similarly, a circuit that has a negative impedance angle is sometimes called a capacitive circuit.

Because impedances relate to voltage and current phasors in the same way that resistances relate
to dc voltages and currents, it follows that impedances can be combined in the same way as resistances.
Consequently, the total impedance Z, of electrical components connected in series equals the sum of
the impedances of the individual components:

2, =2, +7,+Z;+ -+ 7,
And, for two parallel components with impedances Z., and Z,,
7.7,
"Tz,+2,

Often, the T subscript in Z, is omitted.

The total impedance of an ac circuit is used in the same way as the total resistance of a dc circuit.
For example, for the circuit shown in Fig. 12-4q4. the first step after drawing the phasor-domain circuit
illustrated in Fig. 12-4b is to find the impedance of the circuit at the terminals of the source. This being
a series circuit, the total impedance is equal to the sum of the individual impedances:

Z=6+ji8—-4)=6+j4=7211/337 Q
Then, this is divided into the voltage phasor of the source to obtain the current phasor:
v 40/20

T 7 7211/337

And, of course, the current i can be found from its phasor 1, as has been done.
An impedance diagram is an aid to understanding impedance. This diagram is constructed on an
impedance plane which, as illustrated in Fig. 12-6, has a horizontal resistance axis designated by R and

=5547/-137 A
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iX m){
2nd quadrant Ist quadrant

sE - - - - - — — —

R ()

3rd quadrant 4th quadrant
Fig. 12-6

a4 vertical reactance axis designated by jX. Both axes have the same scale. Shown i1s a diagram
of Z,=6+;5=781/39.8 Q for an inductive circuit and Z,=8—j6 =10/—36.9 Q for a capac-
itive circuit. An inductive circuit has an impedance diagram in the first quadrant and a capacitive circuit
has one in the fourth quadrant. For a diagram to be in either the second or third quadrant, a circuit
must have a negative resistance, which may occur if a circuit contains dependent sources.

An impedance triangle 1s often a more convenient graphical representation. The triangle contains
vectors corresponding to R, jX, and Z. with the vector for jX drawn at the end of the R vector and the
vector for Z drawn as the sum of these two vectors, as tn Fig. 12-7a. Figure 12-7h shows an impedance
triangle for 7 =6 + j8 = 10,53.1 Q and Fig. 12-7conefor Z =6 —j8 = 10/-53.1 Q.

60

4

Z - 10/53.1°0

80 -8 0

iX

Z=10/-53.1°Q

53.0°

R 60
(a) (b) (c)

Fig. 12-7

VOLTAGE DIVISION

The voltage division or divider rule for ac circuits should be apparent from this rule for dc circuits.
Of course, voltage phasors must be used instead of voltages and impedances instead of resistances. So,
for a series circuit energized by an applied voltage with phasor Vg, the voltage phasor Vy across a
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component with impedance Zy is

in which Z; is the sum of the impedances. A negative sign must be included if V, and Vg do not
have opposing polarities.

AC PARALLEL CIRCUIT ANALYSIS

A method for analyzing a parallel ac circuit can be illustrated by a simple example. Suppose that
the sinusoidal voltage v is to be found in the parallel circuit shown in Fig. 12-84. With the techniques
presented so far, the first step in finding ¢ is to draw the corresponding phasor-domain circuit shown in
Fig. 12-8b, using the source frequency of 5000 rad/s. The next step is to apply KCL to this circuit:

IS=IR+IL+I(~

The third step is to substitute for the I's, using 13 = 10/0°, 1 = V/1000, 1, = V/j2500, and 1. =
V/(—j1000). With these substitutions, the equation becomes

v v v
o0 = Yo Yo
1000 " j2500 © --j1000
which simplifies to 10/0° = (0.001 + j0.0006)V
10/0° 10/0°
from which \4 [0 £ V =286/—31"kV

T 0.001 + j0.0006  0.001 166/31°
The corresponding voltage is
v= 8.6\/5 sin (5000t — 317) = 12 sin (5000r — 317")kV

Since this voltage lags the input current, the circuit is capacitive. This is the result of the capacitive
reactance being smaller than the inductive reactance- -directly opposite the effect for a series circuit.

'li. T Jie

is = 10V2 sin 5000t A > 1000 05 H ~L 0.2 uF

(a)
lh + .lll, l"
Is = 100° A 100002 4 j2500 © == ~1000 €
(b)

Fig. 12-8
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ADMITTANCE

The analysis method of the last section can be improved upon by using admittunce. which has the
quantity symbol Y and the unit siemens (S). By definition. admittance is the reciprocal of impedance:

Y =
YA

From this it follows that

I=YV

Also, it follows that the admittance of a resistor is Y = 1;R = G, that of an inductor is Y =
l/jwL = —jl/wL, and that of a capacitoris Y = 1/(—jl/wC) = jwuC.

Being the reciprocal of impedance, the admittance of an ac circuit corresponds to the conductance
of a dc resistive circuit. Consequently, admittances of parallel components can be added:

Y=Y, +Y,+ Y, + - +Y,
In general, and not just for parallel circuits,
Y=G+ /B

in which G, the real part, is the conductance and B, the imaginary part. 1s the susceptance of the
admittance. For the parallel phasor-domain circuit shown in Fig. 12-8b,

1 1
Y 500 +j2500 + 600 0.001 + j0.0006 S
from which G=0001S and B =00006S. For this simple parallel circuit, the conductance G
depends only on the conductance of the resistor, and the susceptance B depends only on the susceptances
of the inductor and capacitor. But for a more complex circuit, both G and B usually depend on the
individual conductances and susceptances.
Being a complex quantity, admittance can be expressed in polar form. From complex algebra,

Y =G +jB=G*+ B}tan ' (B,G)

in which G? + B*=|Y| =Y is the magnitude and tan '(B:G) is the angle of admittance.

Since admittance is the reciprocal of impedance, the angle of an admittance is the negative of the
angle for the corresponding impedance. Consequently, an admittance angle 1s positive for a capacitive
circuit and negative for an inductive circuit. Also, B, the susceptance, has these same signs.

The total admittance of an ac circuit is used in the same way as the total conductance of a d¢ circuit.
To illustrate, for the circuit shown in Fig. [2-84, the first step after drawing the phasor-domain circuit
illustrated in Fig. 12-86 is to find the admittance of the circuit at the terminals of the source. As has
been found, Y = 0.001 + j0.0006 = 0.001 166/31 S. Then, this is divided into the current phasor to
obtain the voltage phasor:

I 10/0

== = . y=86/-31 kV
Y 0001 166/31

Finally, the voltage v can be determined from its phasor V, as has been done.

As should be expected from the discussion of an impedance diagram, there is an udmittance diagram
that can be constructed on an admittance plane that has a horizontal conductance axis G and a vertical
susceptance axis jB. There is also an admittance triangle that is used similarly to the impedance triangle.
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CURRENT DIVISION

Current division applies to ac phasor-domain circuits in the same way as to dc resistive circuits. So,
if a parallel phasor-domain circuit has a current phasor I directed into it, the current phasor Iy for a
branch that has an admittance Y, is

=21
X YT S

in which Y, is the sum of the admittances. A negative sign must be included if I, and Ig do not have
opposite reference directions into one of the nodes. For the special case of two parallel branches with
impedances Z., and Z.,. this formula reduces to

in which 1, is the current phasor for the Z, branch.

For convenience, from this point on the word “phasor” in voltage phasor and current phasor will
often be omitted. That is, the V’s and I's will often be referred to as voltages and currents, respectively,
as is common practice.

Solved Problems

12.1 Find the total impedance in polar form of a 0.5-H inductor and a series 20-Q resistor at (@) O Hz,
(h) 10 Hz, and (¢) 10kHz.
The total impedanceis Z = R + jwL = R + j2nfL.
(a) For f =0Hz
Z = 20 + 27(0)0.5) = 20 = 20/0° Q

The impedance is purely resistive because 0 Hz corresponds to dc, and an inductor is a short
circuit to dec.

(h) For [ =10Hz
7 =20 + j2n(1040.5) = 20 + j31.4 = 37.2/51.5°Q
{¢) For f =10kHz,
Z =20 + j2r(10*X0.5) = 20 + j3.14 x 10* Q = 31.4/89.96° kQ

At 10kHz the reactance is so much larger than the resistance that the resistance is negligible
for most purposes.

122 A 200-Q resistor, a 150-mH inductor, and a 2-uF capacitor are in series. Find the total impedance
in polar form at 400 Hz. Also, draw the impedance diagram and the impedance triangle.
The total impedance is
. —jl ) _ —jl
Z =R+ 2nfL + —— = 200 + j2n(400)150 x 1073 4 — —
2nfC 2n(400X2 x 10°%)
=200 + /377 — j199 = 200 + j178 = 268/41.7° Q

The impedance diagram is shown in Fig. 12-9a4 and the impedance triangle is shown in Fig. 12-9b. In
the impedance diagram, the end point for the Z arrow is found by starting at the origin and moving up the
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iX (@)
ool _
1 I
oo |- :
|
o} !
jtoo |- Z=26841.7 0 7 _ ga1.7°0) 178 0
4.7 41.7°
{ al
0 220 R (M) 200
N
1o L (b)
-j200 Y- (a)
Fig. 12-9

vertical axis to j377 Q (jX ), then moving horizontally right to over 200 Q (R), and finally moving vertically
down by 199 Q, the magnitude of the capacitive reactance (| X{). The impedance triangle construction is
obvious from the calculated R =200Q and X =178Q.

A 2000-Q resistor, a 1-H inductor, and a 0.01-uF capacitor are in series. Find the total impedance
in polar form at (a) S krad/s, (b) 10 krad/s, and (c¢) 20 krad/s.

The formula for the total impedance is Z = R + jwL — jl;wC. So,

jl :
Z = 2000 + jSOOO(1) —  ° = 2000 —j15000Q = 15.1/—82.4 kQ
(@) j5000(1) S000(10- %) J
. j1 ,
b) Z=2000+,10000(1) — > - =200090 =2/0"kQ
() SO0 = o010 - &
ji .
) Z = 2000 + 20 000(1) — ————— = 2000 + j15000Q = 15.1/82.4 kQ
() 420 000(1) 3000010 ®) J

Notice that for @ = 10krad/s in part (b), the impedance is purely resistive because the inductive and
capacitive terms cancel. This is the resonant radian frequency of the circuit. For lower frequencies, the circuit
is capacitive, as is verificd in part {a). For higher frequencies, the circuit is inductive, as is verified in part (¢).

A coil energized by 120 V at 60 Hz draws a 2-A current that lags the applied voltage by 40"
What are the coil resistance and inductance?

The magnitude of the impedance can be found by dividing the rms voltage by the rms cur-
rent: Z = 120/2 = 60 Q. The angle of the impedance is the 40° angle by which the voltage leads the current.
Consequently, Z = 60/40° = 46 + j38.6 Q. From the real part, the resistance of the coil is 46 Q, and from
the imaginary part, the reactance i1s 38.6 Q. Since @L is the reactance, and «© = 2n(60) = 377 rad’s, the
inductance is L = 38.6/377 = 0.102 H.

A load has a voltage of V =120/30"V and a current of 1=30/50"A at a frequency of
400 Hz. Find the two-element series circuit that the load could be. Assume associated references,
of course.

The impedance is

vV 120/30

Z - = =4/-20"= 376 —j1.37Q

1~ 30/50
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12.6

127

12.8

Because the imaginary part is negative. the cieeuit is capacitive. which means that the two series clements
are a resistor and a capacitor. The real part s the resistance of the resistor: R = 376 Q. The imaginary
part is the reactance of the capacitor. -1 «(C — - 1.37. from which

1 1

C = - F o= 291 ub
1370 137124400)

A 20-Q resistor 1s in series with a O.1-pF capacitor. At what radian frequency are the circutt
voltage and current out of phase by 40 ?

A good approach is to find the reactance from the impedance angle and the resistance. and then tind
the radian frequency from the reactance and the capuacitance. The impedance angle has a magnitude of 40
because this 1s the phase angle difference between the voltage and the current. Also. the angle s negative
because this is a capacitive circuit. So. 1 = —40 . As should be apparent from the impedance tnangle
shown in Fig. 12-7a, and also from the complex algebra presentation, reactance and resistance are related
by the tangent of the impedance angle: X = Rtan(. Here. X, =201an(—-40 )= —168Q. Finally.
from X,= —1.wC,

-1 — 1
=- . = R - rad s = 0.596 Mrad s
CXe 10 7(=168)

)

A 200-mH inductor and a resistor in scries draw 0.6 A when 120V at 100 Hz is applied. Find
the impedance in polar form.

The magnitude of the impedance can be found by dividing the voltage by the current: Z =
120:0.6 = 200 Q. The angle of the impedance is ) =sin ' (X, Z). as is cvident from the impedance
triangle shown in Fig. 12-7a. Here,

X, 2r(10060.2)

- 027 and so =sin '02rn = 389
VA 200

The impedance is  Z = 200/38.9 Q.

What capacitor in series with a 750-Q resistor limits the current to 0.2 A when 240 V at 400 Hz is
applied?

When the capacitor is in the circuit. the impedance has 4 magnitude of  Z = 17 =240 0.2 = 1200 Q.
This is related to the resistance and reactance by  Z = R* + X7 If both sides are squared and X' solved
for. the result is

X?=Z7Z'-R'wX=1+ 2 -R

The negative sign must be selected because the circuit is capacitive and therefore has a negative reactance.
Substituting for Z and R gives

X = ZP =R = —_ 1200 — 750> = —9370Q

Finally, since X = —1 (.
—1 —1
mX  2m(400) —937)

F=0425uF

Incidentally, another way of finding X is from the impedance magnitude times the sine of the impedance
angle:

R 750
X=2Zsin| -cos ' -)=1200sin{ —cos ! - = —937Q
VA 1200,
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A capacitor is in series with a coil that has 1.5 H of inductance and 5 Q of resistance. Find the
capacitance that makes the combination purely resistive at 60 Hz.

For the circuit to be purely resistive, the reactances must add to zero. And since the reactance of the
inductoris  2r(60K1.5) = 565 Q. the reactance of the capacitor mustbe — 565 Q. From X, = —1 (.
1 -1

C= - = . . F = 4.69 uF
mX e 2m(60) — 565)

Three circuit elements in series draw a current of 10sin(400r + 70 ) A in response to an
applied voltage of 50sin (400t + 15 ) V. If one element is a 16-mH inductor, what are the two
other elements?

The unknown elements can be found from the impedance. Tt has a magnitude that is equal to the voltage
peak divided by the current peak: Z = 5010 = 5Q. and an angle that is the voltage phase angle minus
the current phase angle: 0 =15 —70 = —55. Therefore. the impedance is Z = 5& =287 -
j4.1 Q. The real part must be produced by a 2.87-Q resistor. The third element must be a capacitor because
the imaginary part, the reactance, is negative. Of course. the capacitive reactance plus the inductive reactance
equals the impedance reactance:

—1
—— +400(16 x 10 )= —4.1 from which C =238 uF
400C

Find the input impedance at 5 krad s of the circuit shown in Fig. 12-10«.

1000 2uF 1000 1000
- v + + - v +
Zln
3e 10 A Vo — v
12 mH ~ j60 0
o 1YY O YL
(a) (b)
Fig. 12-10

The first step is to use joL, —jl-wC. and phasors to construct the corresponding phasor-domain
circuit that is shown in Fig. 12-10b along with a source of l[(_)‘ A. The presence of the dependent source
makes it necessary to apply a source to find Z,,, and the best source is a current source of IA) A because with
. Z,=V, 1@ = V,,. Note that the controlling voltage for the dependent source 15 the voltage drop
across the resistor and capacitor:

V= —(1/0 X100 — j100) = — 100 + j100 V
The initial negative sign is required because the voltage and current references are not associated. By KVL,

Voo = (1/0 X100) + (1/0 ) —j100) + 3= 100 + j100) + {1/0 ¥ j60)

—

= 100 — 100 — 300 + j300 + j60 = —200 + j260 = 328/128 V
Finally, Z, =V, = 328/128 Q

A 240-V source is connected in series with two components, one of which has an impedance
of 80/60° Q. What is the impedance of the other component if the current that flows is 2 A and if it
leads the source voltage by 40 7
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12.13

12.14

12.15

12.16

Since the total impedance is the sum of the known and unknown impedances. the unknown impedance
is the total impedance minus the known impedance. The total impedance has a magnitude of

Vo 240

I 2

Zy = 120 Q

and an angle of —40 . the angle by which the voltage leads the current. (This angle is negative because
the voltage lags. instead of leads, the current.) Therefore, the total impedance is Z; = 120/ —40° Q.
Subtracting the known impedance of 80@9 Q results in the desired impedance:

Z =120/—40 —80/60 =919 —j77.1 — (40 + j69.3) = 51.9 — j146.3 = 155/=70.5" Q

Find the total impedance of two parallel components that have impedances of Z, =
300/30° Q@ and Z, = 400/—50" Q.

The total impedance is the product of the individual impedances divided by the sum:
YAY 300/30 4400/ — 50 120 000/ — 20
Z_’, == i l__ = 1 __L——_ )(._,_ Z__—_) — _.._____Z: = 222{ __32 Q
Z,+7Z, 300/30 +400/-50  540/—168"

Find the total impedances at 1 krad:s of a 1-H inductor and a 1-uF capacitor connected in series
and also in parallel.

The inductor and capacitor impedances are
—-jl -1

- — = —j1000Q
wC  1000(107°)

JeoL = j1000(1) = j1000 Q and

The total impedance of the clements in series is the sum of the individual impedances: Z = j1000 — j1000 =
09, which is a short circuit. For the two in parallel, the total impedance is
1000( —j1000)  10°
zZ =~’_(.)_(,)(_.L_ _)= L xQ
J1000 — 1000 O

which 1s an open circuit.

What capacitor and resistor connected in series have the same total impedance at 400 rad/s as a
10-uF capacitor and a 500-Q resistor connected in parallel?

At 400 rad:s, the impedance of the 10-uF capacitor is

—jl —jl
o T _jpsoa
wC  400(10 x 107°)

The total impedance of the parallel combination is, of course, the product of the individual impedances
divided by the sum:

500( —250) 125 000/ —90°
500 —j250  559/—26.6°
For the series resistor and capacitor to have this impedance, the resistor resistance must be 100 €, the real

part, and the capacitor reactance must be —200Q, the imaginary part. So, R =100Q. and by the
capacitor reactance formula,

= 224/-63.4° = 100 — j200 Q

—1 —1 ]
S= - = -200Q from which C=— —F=125uF
wC  400C 200(400)

What two circuit elements connected in series have the same total impedance at 4 krad/s as the
parallel combination of a 50-uF capacitor and a 2-mH coil with a 10-Q winding resistance?
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The impedance of the coil is
10 + j4000(2 x 10 %) = 10 + 8 = 12.8/38.7 Q
and that of the capacitor is
4000(501): 10-0 = = R
The impedance of the parallel combination is the product of these impedances divided by the sum:
(12.8/38.7 X5/—90") 64/—51.3

AU L) M2 613/ 68 = 229 — j5.69Q
10 4 8 - j5 10.44/16.7° /68 /

To produce an impedance of 2.29 — j5.69 Q, the two scries components must be a resistor that has a resistance
of 2.29 Q and a capacitor that has a reactance of —5.69 Q. Since X, = ~l/aC,
-1 —1

C="—=- —F
WX 4000(—5.69)

= 44 uF

For the circuit shown in Fig. 12-11, find the indicated unknown phasors and the corresponding
sinusoids. The frequency is 60 Hz. Also, find the average power delivered by the source.

t 120 16 0
—

+ v, - + Vo -
v = 12000° V

Fig. 12-11

Since this is a series circuit, the current can be found first and then used to find the voltages:

_V_ 120/ 12000 6/ sii A

Z 12+j16 20/53.1°

The resistor and inductor voltage drops are the products of this current and the individual impedances:

Ve=1(6/—-53.1"Y12) =72/ -53.1 V
V., =(6/—-53.1Xj16) =(6/—53.1 )(16@ ) =96/369"V

The radian frequency needed for the corresponding sinusoids is  w = 27(60) = 377 rad.s. The peak values
of the sinusoids are, of course, the magnitudes of the corresponding phasors times 2. Thus,

i =6y 2sin (377t — 53.1 ) = 849 sin (377t — 53.1 ) A
rg = 72,/ 2sin (3771 — §3.1°) = 102 sin (377t — 53.1°) V
v, = 96y 28in (377 + 36.9°) = 1365in (3772 + 36.9 ) V

Since the average power absorbed by the inductor is zero, the average power delivered by the source
is the same as that absorbed by the resistor, which is T?R = 6% x 12 =432 W.

Find the current and unknown voltages in the circuit shown in Fig. 12-12a.

The first step is to draw the corresponding phasor-domain circuit shown in Fig. 12-12b using
the « = 4000rad/s of the source. Since sinusoidal results are desired, it is best to use phasors based on
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i 3.6 k) 12 H I 3.6 k0 j4.8 kQ
—
————AWV , %
+ - + v - oy, T + vV, -
Ur R

+ +

v = 140 sin (4000t - 10°) V 0.04 uF /l»u VvV = 140(—1 Y -j6.25 kﬂ—‘\ \%

(a) )

Fig. 12-12

peak rather than on rms values. That is why the source in Fig. 12-12h has a voltage of 140[— 10~ V instead
of 99/—10°V (99 = 140/, /2). The current is

A4 140/ - 10 140/ — 10 ,
; A =361/119 mA

Z 7 3600 + 4800 — j6250  3881/=219

This current can be used to obtain the voltage phasors:
Vg =(0.0361/11.9 ¥3600) = 130/115 V
V, = (0.0361/11.9 K4800/90 ) = 173/102 V
Ve =1(0.0361/11.9 K6250/ —90 ) = 225/ —78.1 V
The corresponding sinusoidal quantitics arc
i=36.1sn {4000t + 11.9 )mA
rg = 130sin (4000 + 119V
v, = 173sin (40007 + 102 ) = (73 cos (40001 + (2 )V
v = 225sin (40001 - 78.1 ) V

12.19 A voltage 100/30 V is applied across a resistor and inductor that are in series. If the resistor rms
voltage drop is 40 V, what is the inductor voltage phasor?

A funicular diagram is useful here. Since the resistor voltage is in phase with the current. and the
inductor voltage leads the current by 90 | the phasor funicular diagram s a right triangle. as shown in Fig.
12-13. This particular diagram is useful only for finding the phasor magmitude and the relutive phasor angular
relations, the latter because the phasors are not at the correct angles. By Pythagoras®™ thecorem. 1, =
+ 1007 — 40% = 91.7 V. The shown angle fis 6§ = tan™ "' (91.7 40) = 66.4 . The angle of the resistor voltage
1s less than the source voltage angle by this 664 : ¢ =30 — 664 = —364 . The angle of the inductor
voltage is, of course, 90 greater than the resistor voltage angle: 90 + (—36.4 ) = 53.6 . So. the inductor

voltage phasor is V, = 91.7/53.6 V.

100/30° V v,

6

Vi = 40[2 v
Fig. 12-13
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12.20

12.21

12.22

12.23

12.24
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In a phasor-domain circuit, 220/30 V is applied across two series components, one of which is
a 20-Q resistor and the other of which is a coil with an impedance of 40/20 Q. Use current to
find the individual component voltage drops.

The current is

vV 220/30

220/3
00 = 3.72/166 A

Z 20+40/20 592/134
Each component voltage drop is the product of the current and the component impedance:

Vi =(372/16.6 ¥20) = 74/16.6 V
V, = (3.72/16.6 140/20 ) = 149/36.6 V

Repeat Prob. 12.20 using voltage division.

Voltage division eliminates the step of finding the current. Instead. the voltages are found directly from
the applied voltage and the impedances:

R 20 .
Vp= -- Vo= - - - x220/30 =74/166 V
"z, 7 592/134 30 —

7, 592/134

I

z, 40/20
v,=""y 20 220/30 = 149/36.6 V

A phasor-domain circuit has 200/15 V applied across three series-connected components having
impedances of 20/15 , 30/ =40 , and 40/50 Q. Use voltage division to find the voltage drop V
across the component with the impedance of 40/50 Q.

8000/65

40/50
- o/ 15 = - -
x 20013 70/13.7

Ve omomoo = I
20/15 + 30/—40 + 40/50

= 114/51.3 V

Use voltage division to find Vg, ¥V, and V. in the circuit shown in Fig. 12-14.
For voltage division, the total impedance Z is needed: Z = 20 + j1000 — j1000 = 20 Q. Incidentally.
since this impedance is purely resistive, the circuit is in resonance. By the voltage division formula,

By

20
V=) ¥ 100/30 = 100/30 V

/1000
v":{fo” x 100/30 = (50/90 K100/30 ) = 5000/120 V

— /1000 v , , /,
Ves T 100/30 = (507290 X100/30 ) = 5000/ =60 V

Notice that the rms inductor and capacitor voltages are 50 times greater than the rms source voltage. This
voltage rise. although impossible in a dc resistive circuit, 1s common in a series resonant ac circuit,

Use voltage division to find the voltage V in the circuit shown in Fig. 12-15.

Because the two voltage sources are in series, they produce a net applied voltage that is the sum of the
individual source voltages: V= 90@ + 100[1(_) = 184@ V. which s the voltage needed for the
voltage division formula. The series components that V is across have a combined impedance of Z =
50 — j60 + j70 = 50 + j10 = 51&.} Q. The total circuit impedance is

Z, =30+ j40 + 50 — j60 + j70 + 80 = 160 + j50 = 168/174 Q
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12.25

12.26

20 0 j1000 02 300 j40 © 50 0
—ANN— /Y Y Y\ ANV SV
+ e + vy, - -
R
.+.
<i> Vo= 10030°V  —j1000 0 = V. 90[60° V v -j60 ©
_ _ ](X)[}—Qo ' mj\

80 0 , ina

Fig. 12-14 Fig. 12-15

Now, all the quantities have been calculated that are needed for the voltage division formula, which is

Z 5](1]

V= T v, = = x 184/442 = —558/38.1 V
Z; ° 168/174

The negative sign is required in the formula because the reference polarity of V does not oppose the polarities
of the sources.

Find the current I in the circuit shown in Fig. 12-16.

I 10 Q 15 Q

100{20° V V: j200 \Z /]\ -j30 2

Fig. 12-16

The current can be found by dividing the voltage by the total impedance, and this impedance can be
found by combining impedances starting at the end of the circuit opposite the source. There, the series
resistor and capacitor have a combined impedance of 15 — j30 = 33.5/~63.4 Q. This can be combined in
parallel fashion with the j20 © of the parallel inductor:

;20(33 5/—634) 671{26

e =37.2/60.3 =185+ j323Q

120+15—]30 18{—33
This plus the 10 Q of the series resistor is the total impedance:
Z =10+ 185 +j32.3 =43.1/48.6" Q

Finally, the current I is

vV 100/20°

I=—=— =232/-286"A
Z 43.1/48.6"

Use voltage division twice to find V, in the circuit shown in Fig. 12-16.

Voltage division can be used to find V, from the source voltage, and used again to find V| from V,.
For the calculation of V,, the equivalent impedance to the right of the 10-Q resistor is needed. It
is 37.2/60.3" = 18.5 + j32.3Q, as was found in the solution to Prob. 12-25. By voltage division,

37.2/60 720/8
- /603 x 100/20° = 3720/80.3 =86.4/32 V

T 104 185 4323 43.1/48.6

2
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And, by voltage division again,

~30 2590/ — 58
V,= -2 - x864/32 = - == =-773/S V
' s a0 [22 33.5/-63 ks

12.27 Derive expressions for the conductance and the susceptance of an admittance in terms of the
resistance and reactance of the corresponding impedance.

In general,
i 1
Y o= o=
7 R+jX
Rationalizing,
1 R —-jX R =X
Y x - - - X - = Bt o BRI
R+jX R—-jX R*4+X* "R+ X?
Since Y =G + /B,
G R d g%
- . an - T
R + X? R+ X?
Notice from G = RAR?> + X?) and B= —X/(R?+ X% that the conductance and the susceptance are

both functions of the resistance and reactance. Also, G # 'R except if X =0. And, B#1 X. How-
ever, B=—-1X if R=0.

12.28 The impedance of a circuit has 2 Q of resistance and 4 Q of reactance. What are the conductance
and susceptance of the admittance?

The expressions developed in the solution to Prob. 12.27 can be used:

' 2 2 ~4 -4
G= .- - = =0.18 and B = = . -=-028
224+ 42 20 2244 20

But. in general. it is easier to use the inverse of impedance:

1 1

Y=-=----= - =0224/-634 =0.1~-,02S
Z 2+j4 447/634 L_—‘_ /
The real part is the conductance: G = 0.1 S; the imaginary part is the susceptance: B = —0.28S.

12.29 Find the total admittances in polar form of a 0.2-uF capacitor and a parallel 5.1-Q resistor at
frequencies of (a) 0 Hz, (b) 100kHz, and (c¢)40 MHz

The total admittance is Y = G + joC = 1/R + j2rfC.
{a) For f=0Hz

Y = 1 5.1 +,27040.2 x 1079 = 0.196 = 0.196/0 S
(b For [=100kHz,
Y = 1.51 + j2r(100 x 1070.2 x 10 %) = 0.196 + j0.126 = 0.233/32.7 S
{¢) For f=40MHz
Y = 1 5.1 4 j2n(40 x 10°%0.2 x 107 °) = 0.196 + j50.3 = 50.3/89.8 S

At 40 MHz, the susceptance is so much Jarger than the conductance that the conductance 1s negligible
for most purposes.
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12.30 A 200-Q resistor, a 1-uF capacitor, and a 75-mH inductor are in parallel. Find the total admittance
in polar form at 400 Hz. Also, draw the admittance diagram and the admittance triangle.

The total admittance is

1 i
Yoo b 20fC o — L 2n(d00K1 X 10 ) 4 - D
R TICH L™ 200 TIEHON 27(400X75 x 10 7)

=5x 1073 4251 x 1073 —j5.31 x 1073 = (5 — j2.8{107 %) S =573/-292 mS

The admittance diagram is shown in Fig. 12-17a and the admittance triangle in Fig. 12-17h. In the
admittance diagram, the end point for the Y arrow is found by starting at the origin and moving down the
vertical axis to —j5.31 mS (jB;), and then by moving horizontally to the right to over S mS (G) and vertically
up by 2.51 mS (B¢).

iB (mS)
LN o
y
i2g=
ity
, Ly 5mS
' 2 3 4 75 G(mS)
_J'l - — — 13
Y = 5.73! 29.2° mS Y = 5_73!_29_ °mS -j2.8 mS
_12 -
-3
]
M |
|
~j5Jr |
-j6 -
(a) (b)

Fig. 12-17

1231 A 100-Q resistor, a I-mH inductor, and a 0.1-uF capacitor are in parallel. Find the total
admittances in polar form at radian frequencies of (a) 50 krad/s, (b) 100 krad/s, and (c¢)
200 krad/s.

The expression for the total admittance is Y = /R + jowC — jl/wL.

! jl
Y = — (50 x 10°)0.0 x 107 = —
(@ oo Tt X )= 50 % 101079

= 0.01 + j0.005 — j0.02 = 0.01 — j0.015 = 0.018/ —56.3° 8

(b) Y=—L + j(10%X0.1 x 10-6)__”__=001 +j0.01 — j0.01 =0.01/0 S
100 ' 1051073 ’ ’ '
1 1
) Y=—+j2x105%0.t x 1078 - -~ _ =001 + j0.02 — j0.005
© 100 " X I OMTEE ;e

= 0.01 + j0.015 = 0.018/56.3° S

Notice for w = 100 krad/s in part (b) that the admittance is real because the inductive and capacitive
susceptance terms cancel. Consequently, this is the resonant radian frequency of the circuit. For lower
frequencies, the circuit is inductive, as is verified in part (a). And for greater {requencies. the circuit is
capacitive, as is verified in part (¢). This response is opposite that for a series RLC circuit.
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1232 Three components in parallel have a total admittance of Y, = 6/30" S. If the admittances of

12.33

12.34

12.35

two of the component are 'Y, =4/45'S and Y, =7/60"S, whatis the admittance Y of the
third component?

Since Yr=Y,+Y,+Y,;
Y, =Y, - Y, - Y, =6/30 —4/45 —7/60- =6/-101 S

What is the total impedance of three parallel components that have impedances of Z, =
25/15°Q, Z,=4/-50°Q, and Z,= 5/45 Q7

Perhaps the best approach is to invert each impedance to find the corresponding admittance, add the
individual admittances to obtain the total admittance, and then invert the total admittance to find the total

impedance.

Inverting,
Y, - : =04/-75S v,= L= ! 025/50°S Y ! ' 02/-45 S
YTz, 251 z, 4/-s0 ‘Tz, s

Adding, Y=Y, + Y, + Y, =04/=75 +0.25/50° + 02/—45 =0527/-397 S

1 !
= L. =19/397 Q
Y, 0527/-39.7

Inverting, Z,=

Find the simplest parallel circuit that has the same impedance at 400 Hz as the series combination
of a 300-Q resistor, a 0.25-H inductor, and a 1-¢F capacitor.

The parallel circuit can be determined from the admittance. which can be found by inverting the
impedance:
Y= 1 1 1
300 + j2r(4000.25) — j1,[2m(400K 10~ %)] 300 + j230 378/37.5
=264 x 10 */-375 S =2096 —j1.61 mS
The simplest parallel circuit that has this admittance is a parallel resistor and inductor. From the real
part of the admittance, this resistor must have a conductance of 2.096 mS and so a resistance of

1/(2.096 x 1073) = 477 Q. And from the imaginary part. the inductor must have a susceptance of — 1.61 mS.
The corresponding inductance is, from B, = —l‘wL,

—1 —1
L= - =_ . . H =247 mH
wB,  2n(400—1.61 x 10" ¥)

A load has a voltage of V = 120/20'V and a current of 1 =48/60 A, both at 2 kHz. Find
the two-element parallel circuit that the load can be. As always, assume associated references
because there is no statement to the contrary.

Because the two elements are in parallel, the load admittance should be used to find them:

I 48/60
Y= = Z— =04/40 = 0.3064 + j0.25718S

Vo 120/20
The real part 0.3064 is, of course, the conductance of a resistor. The corresponding resistance is R =
1/0.3064 = 3.26 Q. The imaginary part 0.2571, being positive. is the susceptance of a capacitor. From
B, = wC,

B. 0.2571
C=—=

— =-—— F=205uF
W 2n(2000)
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12.36

12.37

12.38

12.39

A 0.5-Q resistor is in parallel with a 10-mH inductor. At what radian frequency do the circuit
voltage and current have a phase angle difference of 40°?
A good approach is to find the susceptance from the admittance angle and the conductance. and then

find the radian frequency from the susccptance and the inductance. The admittance angle has a magnitude
of 40° because this is the phase angle difference between the voltage and current, and it is negative because

this is an inductive circuit. So. ¢ = —40 . Then from 0 =tan ' (B, G).
B, =Gtanf =(1051tan(-40 )= —1.678S
And, from the formula for inductive susceptance, B, = —1/wml,
W= - — —_—] — =596rads

LB, 001(- 1.678)

A resistor and a parallel 1-uF capacitor draw 0.48 A when 120 V at 400 Hz is applied. Find the
admittance in polar form.

The magnitude of the admittanceis Y= 1 V= 048,120S = 4 mS. From admittance triangle considera-
tions, the angle of the admittance is ) =sin"!(B.Y). Since B = w(.

B u)C 2n(400}(10 ")

Y Y 0.004
and 0 =sin" ' 0.2 = 38.9 . Thercfore, the admittance is Y = 4/38.9 mS.

Capacitors are sometimes connected in parallel with inductive industrial loads to decrease the
current drawn from the source without affecting the load current. To verify this concept, consider
connecting a capacitor across a coil that has 10 mH of inductance and 2 Q of resistance and that
is energized by a 60-Hz, 120-V source. What is the capacitance required to make the source
current a minimum, and what is the decrease in this current?

Since I =YYV, the current magnitude will be a minimum when the admittance magnitude Y is a
minimum. The total admittance Y is the sum of the admittances of the coil and capacitor:
1

1 1
et jooC = — - = —— 4+ 27(60)C = - — — + j377C
R +j(uL 2 +]27T(60)(10 x 1073) 2 + J3.77

= 0.110 - j0.207 + j377C

Because the capacitance can affect only the susceptance, the admittance magnitude is a minimum for
zero susceptance. For this,

. 0.207
377C = 0.207 from which C= 377 F = 549 uF

With zero susceptance, Y =0.110S and |I| =|Y||¥|=0.110(120) = 13.2 A. In comparison, be-
fore the capacitor was added, the magnitude of the current was equal to the product of the magnitudes of
the coil admittance and voltage: [0.110 — j0.207|(120) = 0.234(120) = 28.1 A. So. the parallel capacitor
causes a decrease in source current of 28.1 — 13.2 = 149 A even though the coil current remains the same
28.1 A. What happens is that some of the coil current flows through the capacitor instead of through the
source. Incidentally, since the susceptance is zero, the circuit is in resonance.

Find the total impedance Z, of the circuit shown in Fig. 12-18.

This is, of course, a ladder circuit. Although for such a circuit it is possible to find Z; by using only
impedance (or admittance), it is usually best to alternate admittance and impedance, using admittance for
parallel branches and impedance for series branches. This will be done starting at the end opposite the input.
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i 20 i i —j:Lﬂ i
o— & Y Y\, - - 1
| T i
Zy l l | l
— 40 ' [ 60 I | in j6 0
I | | |
-~ 1 "
- ] 1 —+ 1
[T Lo Lo | BN
Z4 Y. Z, Y,
Fig. 12-18

There, the 3- and j6-Q elements have a combined admittance of
11
Y =-—j- =0373/-266 S
376
which corresponds to an impedance of

0373/ 266 = 268/266 =24 +/12Q

This adds to the —j4 Q of the series capacitor for an impedance of
Z,=24+/12-j4=24—_j28=369'-494 Q

The inverse of this added to the conductance of the parallel 6-0 resistor is

= ! +I—OI76+'0706+0167—04Q[S
T369/ 494 6 AR RRIEE

Y,
The corresponding impedance adds to the j2 € of the scries inductor:

+j2 =214 —j1.29 4+ j2 =226/184 Q

1
- 04/31
The corresponding admittance plus the conductance of the 4-Q resistor 1s Y,

1

Y, =-——— 4 - =042 — 014 + 025 =0684/— 118 S

]

Finally, Z,=-—=— ——— -=146/11.8 Q
naly "TY, 0684/-118

12.40 Find the input admittance at 50 krad/s of the circuit shown in Fig. 12-19a.

The first step is to use  —jl/wl, G, jwC, and phasors to construct the corresponding phasor-domain
circuit shown in Fig. 12-19b along with a source of IA)' V. With this source. the circuit has an input

i L I
O—— o — o l N — )
2i 20 pH 05 Q 20 uF 1/0° vV 21 -ji1S 28 leS

| J

(a) (b)
Fig. 12-19

o—4é
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12.41

12.42

[
wh
o

admittance of Y, = Iin/lﬂ)f = I,,. Nole that the controlling current 1 is the sum of the currents in the
two right-hand branches:

[=(1/0°%2) + A /0°Njl =2 +j1 A

And so the dependent-source current flowing down is —2I = —2(2 + j1). This can be used in a KCL
equation at the top node to obtain I, :

L= -22+)+(1/0K—j) +2+j1 = =2 —j2=283/-135" A

Finally, Y, =1I,=283/-135°S

Find I,, and I, for the circuit shown in Fig. 12-20.

in 20 I

— —_—

= 120p30° V \ Zo = 630°

Fig. 12-20

The current L, can be found from the source voltage divided by the input impedance Z,,, which equals
the 2 Q of the series resistor plus the total impedance of the three branches to the right of this resistor. Since
these branches extend between the same two nodes. they are in parallel and have a total admittance Y that
is the sum of the individual admittances:

1 + 1 + 1
544 6-j3 6/30°

Adding the 2 Q to the inverse of this admittance results in

=0.156/-38.7 + 0.149/26.6" + 0.167/ =30 = 0416/ -16"S

Z,=2+- =2 =2+ 241/16 = 436/8.72°Q

Y 0416[—1
vV 120/30°

from which L= —- =— = 27.5/21.3" A
Z., 436/872°
The current I, can be found from the load voltage and impedance. The load voltage V, is equal 1o the
current I, divided by the total admittance of the three parallel branches:
I, 27.5/21.3°

Vo=t = DS 662/37°V
Y 0416/—16°

and

vV, _662/37° /7 A

I, =-*
z, 6/
Alternatively, I, can be found directly from I, by current division. I, is equal to the product
of I, and the admittance of the load divided by the total admittance of the three parallel branches:

0.167/ = 30°
1, = 27.5/20L3° x == _1yj7° A
L * 0416/ 16

A current of 4/30° A flows into four parallel branches that have admittances of 6/—70°, 5/30°,
7/60°, and 9/45° S. Use current division to find the current I in the 5/30°-S branch. Of course, since
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there is no statement to the contrary, assume that the current references are such that the current
division formula does not have a negative sign.

The current I in the branch with the admittance of 5@ S is equal to this admittance divided by the sum
of the admittances, all times the input current:

5/30 20/60
A= % af30 = T 5= =107/302 A
6/—70" + 530 + 7/60 + 9/a5 [0 18.7/29.8 202

12,43 Use current division to find I, for the circuit shown in Fig. 12-21.

Since there are just two branches and the branch impedances are specified, the impedance form of the
current division formula is preferable: The current in one branch is equal to the impedance of the other
branch divided by the sum of the impedances, all times the input current. For this circuit, though, a negative
sign is required because the input current and I; have reference directions into the same node  the bottom

node:
6 —24/20
= - —— x4/20 = ——=== = -222/-363 A
6+ j9 10.8/56.3
. ll‘ ‘l’l
6ﬂ§ ;;"m i = 4V2 sin (400t — 10°) A 10 20 mH 80 uF
lt«t[z_o‘* A
Fig. 12-21 Fig. 12-22

12.44 Use current division to find i, for the circuit shown in Fig. 12-22,
The individual admittances are
gt —J

1
G=- =015 B, = — L= _joass B, = jorC = jADE0 x 10°9)
10 ST oL T 40020 x 1078 7 JBe = JoC = 1300

= j0.0328

These substituted into the current division formula give

iB —jO0.125 0 125 —90 ¥4/ —10)
RNV S _ wa/—10 =" [=20 K4/ =10) = 3.66/ -57.1 A
G +jB, +jB( 0.1 —10 125 +]0 0.032 0.1366/ —42.9
from which ip = 3.66,, 2sin (400r — 57.1 ) = 5.18sin (4001 — 57.1 } A

12.45 Use current division twice to find the current I, for the circuit shown in Fig. 12-23.

The approach is to find I from the source current by current division, and then find I, from 1 by current
division. For the 1 current division formula, the impedance to the right of the 2-Q resistor is needed. It is

5
3+4(7—J§): 34 302/ 2387 =2.65/233 Q

4 —
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1 i3
—
lh
20/45° A 20 = -i50 40
Fig. 12-23

By current division,
2 40/a5
=—+— x20/45 = ——— =877/31.T A
2+265/233 L 4.56/13.3
By current division again,

—j$

438/ -58.3
8IT[ILT = === —685/-7 A
45 EN 64/—51.3 [=7

I, =

12.46 Determine V, and I, in the circuit of Fig. 12-24.

1k AKQ

ANA—N '\ Iy
_> L
—l/
- 4k
9:"—30 v

AkQ

+ 0

[

-

Fig. 12-24

(3]
N

Because this circuit has the same configuration as the inverter op-amp circuit of Fig. 6-4, the same
formula applies, with the R's replaced by Z's. The feedback impedance is Z, = 6 — j8 kQ and the input

impedance is Z; = 3 + j4 k€. Therefore. with the impedances expressed in kilohms,
z 6—/8 4/43.7  4/43.7

V,=—- TV, = - —L x2/-30"=4/437 V and I, = —— + == =0.762/30.1°mA
Z, 344 [=30 ° 4+j4 68 [301

12.47 Find v, and i, in the circuit of Fig. 12-25a.

The first step is to draw the corresponding phasor-domain circuit of Fig. 12-25b using the « = 10000
rad/s of the source. The shown peak value of 4 V for the source voltage phasor magnitude is preferable to

the rms value because sinusoidal answers are desired.

Because the circuit of Fig. 12-25b has the same configuration as the noninverting amplifier of Fig. 6-6,
the same voltage gain formula is valid, with the R’s replaced by Z’s. Here, Z,=3—j2kQ and
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4 sin (10 0001 ~ 20°) V

j2k0
e
(a) (2]
Fig. 12-25
Z, =2 + j1 kQ. With the impedances expressed in kilohms,
Z 342
V, = (1 + —C)V,. = (1 + i ) x4/—20°=912/-579°V
z, 2+l
and
9.12/-57.9°
[, =—————— =253/-916"mA
342 ;
The corresponding sinusoids are
v,=912sin (10000t — 579°) V and i, = 2.53sin (10000t — 91.6") mA
12.48 Calculate V, in the circuit of Fig. 12-26.
7kQ j6 k2 4kQ 41?}0
AMA— ASAA M Iy
ok —J10kQ - L__o
+ AL +
20/30 V <~> MWA—K !
Vo
15/ -45°V

+ > - 0
L
Fig. 12-26

Since the op-amp circuit of Fig. 12-26 has the same configuration as the summer of Fig. 6-5, the same
formula applies, with the R’s replaced by Z’s. So, with the impedances expressed in kilohms,

4-8 4-8 ) ‘
V,= - —= x20/30" + ——— x 15/—45" ) = —29.2/— 694" V
(7 +j6 El 9 —j10 [=45

1249 Find 1, in the circuit of Fig. 12-27.

The circuit of Fig. 12-27 consists of two cascaded op-amp circuits that have configurations of,
respectively, a noninverting voltage amplifier and an inverting voltage amplifier. Consequently, the noninvert-
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9 kn /6 kﬂ
M ,\
2k 5k
I,  s5k0
4200V
Fig. 12-27

ing and inverting formulas apply. with the R’s replaced by Z’s. Therefore.

18.3/99.1
and I, = —% == —--%--_1.94{41.1 mA

12.50 Determine V, in the circuit of Fig. 12-28.

10 k(2 -f12k0
WY 1

6k /3K

sk 4kl

Ao
+
+
(Dage v .
0
T o
Fig. 12-28

The first op-amp circuit can be considered to be similar to a summer with one input of 4@ V and the
other of V,. Then the output V, is

—J3 _
v, = ﬁ(gf x 4/30° + 1’6’ i v ) =4.19/—138 +{0.429/—156)V,

V, i1s the input to the second op-amp circuit, which has a configuration similar to that of a noninverting
amplifier. Consequently,

25 9+ j4
=<1+7+{9) o= / [419(—138 +(0429/— 156"V, ] = 3.62/ — 166 + (0.371/175)V,
J
3.62/—166"

Finally, V,=-——=—=—-=264/-165" V

°1-0371/175
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Supplementary Problems

A 0.5-uF capacitor and a 2-kQ resistor are in serics. Find the total impedance in polar form at  (a) O Hz, (b)
60 Hz. and (¢} 10 kHz.

Ans. (a) x/—90"€Q. () 5.67/—69.3 kQ, (c})2/-0912 kQ

A 300-Q resistor, a 1-H inductor, and a 1-uF capacitor are in series. Find the total impedance in polar form
and whether the circuit is inductive or capacitive at  (a) 833 rad-s. (b) 1000 radss. and (¢) 1200 rad/s.

Ans. (a) 474/ — 508 Q. capacitive: (h) 3()0@ Q. ncither capacitive nor inductive: (¢) 474/50.7° Q, in-
ductive

A capacitor and resistor in series have an impedance of 1.34/ —45 kQ at 400 Hz. Find the capacitance and
resistance.

Ans. 042 uF, 948 Q

A load has a voltage of 240@ V and a current of 20@' A at a frequency of 60 Hz. Find the two-element
series circuit that the load can be.

Ans.  An 11.6-Q resistor and an 8.24-mH inductor

Two circuit elements in series draw a current of 16 sin (2007 + 35 } A in response to an applied voltage of
80 cos 2001 V. Find the two elements.

Ans. A 2.87-Q resistor and a 20.5-mH inductor

A 100-Q resistor is in series with a 120-mH inductor. At what frequency do the circuit voltage and current
have a phase angle difference at 35 7

Ans. 929 Hz

A 750-Q resistor is in series with a 0.1-uF capacitor. At what frequency does the total impedance have a
magnitude of 1000 Q?

Ans. 241 kHz

Find the total impedance in polar form of three series-connected components that have impedances of

10/—40 . 12/65 . and 15/-30 Q.
Ans. 259/-671 Q

What resistor in serics with a 2-H inductor limits the current to 120 mA when 120 V at 60 Hz is applied?

Ans. 657 Q

Two circuit elements in series draw a current of 24 sin (5000r — 10 ) mA in response to an applied voltage
of 120, 2 sin (50001 + 30) V. Find the two elements.

Ans. A 5.42-kQ resistor and a 0.909-H inductor

Find the input impedance at 20 krad;s for the circuit shown in Fig. 12-29.

Ans.  228/28.8 Q
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200 3mH
o—" NV 1YY
+
3¢
v
:r 0.5 uF
G
Fig. 12-29

A 300-V source is connected in series with three components, two of which have impedances of 40&)’ Q
and 30/ —60° Q. Find the impedance of the third component if the current that flows is 5 A and if it lags the
source voltage by 20",

Ans. 273/757 Q

Find the total impedance of two parallel components that have identical impedances of 100@‘ Q.

Ans. 50/60° Q

What is the total impedance of two parallel components that have impedances of 80/ — 30" and 60@‘ Q?
Ans. 41.6/10.7°Q

A 120-mH coil with a 30-Q winding resistance is in parallel with a 20-Q resistor. What series resistor and
inductor produce the same impedance at 60 Hz as this parallel combination?

Ans. 1568, 10.6 mH

A 2-mH coil with a 10-Q winding resistance is in parallel with a 10-uF capacitor. What two series circuit
elements have the same impedance at § krad‘s?

Ans. A 13.9-Q resistor and a 7.2-uF capacitor

For the circuit shown in Fig. 12-30, find I, V4, and V., and the corresponding sinusoidal quantities if the
frequency is 50 Hz. Also, find the average power delivered by the source.

Ans.  1=T5/813 A Ve = 150/81.3 V
Vo =187/-866 V i =10.6sin (3141 + 81.3) A
e = 212sin (3141 + 81.3)V v, = 265sin (3141 — 8.66') V

Average power delivered = 1.12 kW

1 200 -j25 0
— A~ ——
+ oy T

G) 240030° v

Fig. 12-30

A voltage source of 340 sin (10007 + 25 ) V, a 2-Q resistor, a 1-H inductor, and a 1-uF capacitor are in series.
Find the current out of the positive terminal of the source. Also, find the resistor, inductor, and capacitor
voltage drops.
Ans.  i=170sin(1000r + 25 )A tg = 340 sin (1000t + 25 V

v; = 170 cos (10007 + 25 ) kV te = 1705in (1000r — 657 ) kV
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A voltage that has a phasor of 200/ —40 V is applied across a resistor and capacitor that are in series. If
the capacitor rms voltage is 120 V, what is the resistor voltage phasor?

Ans. 160/ 313V

A phasor-domain circuit has 220@ V applied across two components, a 30-€ resistor and a coil that has
an impedance of 30[59 Q. Find the voltage drops across the resistor and the coil.

Ans.  Resistor voltage = 117M’ V, coil voltage = 117@‘" A%

A voltage source of 170sin (377t — 30 ) V, a 200-Q resistor, and a 10-uF capacitor are in series. Find the
resistor and capacitor voltage drops.

Ans. vg=102sin (3771 + 23}V, v =136s8in (377t —67) V
Repeat Prob. 12.71 with an added series 1-H inductor. Also, find the inductor voltage.
Ans. vy =148sin (377t — 59)V, v =197sin (377t — 149°) V, v, = 280sin (377t + 31}V

A phasor-domain circuit has 500@“V appiied across three series-connected components that have
impedances of 20&(_)‘, 30/—60", and 40[7_0‘ Q. Find the component voltage drops.

Ans. Vyo=199/509 V. V,,=298/-49.1 V., V., =397/809 V

What is the current I for the circuit shown in Fig. 12-317

Ans. 793/458" A

Use voltage division twice 10 find V in the circuit shown in Fig. 12-31.

Ans. 81.2/604" V

— 18 . I
LA
+
G)ZOOIEV 40 0 2on§v
Fig. 12-31

Derive expressions for the resistance and reactance of an impedance in terms of the conductance and
susceptance of the corresponding admittance.

Ans. R =GAG? + B?. X = —B/{G?+ B

Find the total admittance in polar form of a 1-uF capacitor and a parallel 3.6-kQ resistor at  (a) 5 Hz.
(b) 44.2 Hz, and (c) 450 Hz.

Ans. (a) 0.28/6.45 mS, (b} 0.393&“ mS, (c) 2.84/84.4' mS

A 1-kQ} resistor, a 1-H inductor, and a 1-uF capacitor are in parallel. Find the total admittance in polar
form at (a) 500 rad/s, (b) 1000 rad/s, and (c¢) 5000 rad/s.

Ans. (a) 1.8/=563" mS, (b) 1/0°mS, (c)4.9/78.2° mS

An inductor and a parallel resistor have an admittance of 100/ —30" mS at 400 Hz. What are the inductance
and resistance?

Ans. 796 mH, 11.5Q
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Find the simplest series circuit that has the same total impedance at 400 Hz as the parallel arrangement of
a 620-Q resistor, a 0.5-H inductor, and a 0.5-uF capacitor.

Ans. A 573-Q resistor and a 2.43-uF capacitor

A load has a voltage of 240@ V and a current of 120@ mA. What two-element parallel circuit can this
load be at 400 Hz?

Ans. A 2.61-kQ resistor and a 1.24-H inductor

A resistor and a paralle] 0.5-uF capacitor draw 50 mA when 120 V at 60 Hz is applied. What is the total
admittance in polar form and what is the resistance of the resistor?

Ans. 0417/269 mS, 2.69 kQ

What two circuit elements in parallel have an admittance of 0.4/ —50" S at 60 Hz?

Ans. A 3.89-Q resistor and an 8.66-mH inductor

What two circuit elements in parallel have an admittance of 2.5@2 mS at 400 Hz?

Ans. A 462-Q resistor and a 0.497-uF capacitor

Three circuit elements in parallel have an admittance of 6.3/ —40 mS at a frequency of 2 kHz. If one is a
60-mH inductor, what are the two other clements?

Ans. A 207-Q resistor and a 29.2-mH inductor

A 2-kQ resistor is in parallel with a 0.1-uF capacitor. At what frequency does the total admittance have an
angle of 40 ?

Ans. 668 Hz

A resistor and a parallel 120-mH inductor draw 3 A when 100V at 60 Hz is applied. What is the total
admittance?

Ans. 30/—-47.5 mS

A certain industrial load has an impedance of 0.6@ Q at a frequency of 60 Hz. What capacitor connected
in parallel with this load causes the angle of the total impedance to decrease to 15 ? Also, if the load voltage
is 120 V. what is the decrease in line current produced by adding the capacitor?

Ans. 118 mF, 20.7 A

Find the admittance Y of the circuit shown in Fig. 12-32.

Ans. 229/-422 S

Find the input admittance at 1 krad’s of the circuit shown in Fig. 12-33.
Ans. 48
-j5'S 4S 58 28 i
C o _ —_—
Y )
— -j1's -j28 025 Q 3 1H =<1 uF
o— -— o—e

Fig. 12-32 Fig. 12-33
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Repeat Prob. 1290 for a radian frequency of 1 Mrad s.
Ans. 5.66/45 S

A current of20L3__0‘ A flows into three parallel branches that have impedances of 200, 10, and —j10 Q. Find
the current in the j10-Q branch.

Ans. 400/ —60 A

A current of 205sin (200t — 30) A flows into the paraliel combination of a 100-Q resistor and a 25-uF
capacitor. Find the capacitor current.

Ans. 894 5sin (200r 4+ 334 ) A

A current of 20/ —45 A flows into three parallel branches that have impedances of lﬁ/i) . 20/ 45, and
25/ =60 Q. What is the current in the 25/ —60 Q branch?

Ans. 689/—-449 A

Use current division twice to find I for the circuit shown in Fig. 12-34.

Ans. 141/-195 A

—_—

8/40° A 20 30 Z, = 4/30° Q

Fig. 12-34
Calculate 1, in the circuit of Fig. 12-35.
Ans. 0419/ -384 mA

12kQ 9kQ

10kQ —15kQ
-j16 k2

¢
AN

13kQ

Fig. 12-35

Find i, in the circuit of Fig. 12-36.
Ans.  0.441 cos (10% — 69.9 ) mA
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4kQ 02H
8 kQ 0.5 H
AN L I\ L 002K
N 14
) N
” +
<z>8cos(l0!+8()lv 7kQ
Fig. 12-36

1298 Obtain V, and I in the circuit of Fig. 12-37.

Ans. 749/-450 V.204/—-20.1 mA

=14 kQ
¢
+ N
+ N
T je30 v v, 6 k2
Fig. 12-37
1299 Calculate V, in the circuit of Fig. 12-38.
Ans. —545/—130 V
SkQ i3 k2 —il0kQ
8kQ J
8kQ J10kQ
AAA——— N >
. 0
]&0 v 6k —J4kQ + +
4/40 v {
v0
5/70 vV

Fig. 12-38
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12100 Determine V,oand 1 the arcat of Fig 12-39.

Ans [ON =228 Vo LIS 198 mA
R 17 k2
A
VWV 1€
IR0 1~
AAA '( J } I, 12k
— T4
A

10 k2 i kQ

8 RQ v, EEIJRQ

Y kQ
Fig. 12-39
12,101 Obtan ¢, o the circunt of Figo 12-40.
Any. 74050 (80007« KOSV
6 k(2 0.02 pb
I
A als
Y kQ) 004 b 9 KO OAM gk
. AAA _‘H ——/\/\/\,—K—qi
2R oSN
—_—YYY ¢ s kQ 04 H [
p_JV\/\,_fY'm_. —0O
¢ +
San s 4oy .
0
l T : o

Fig. 12-40



Chapter 13

Mesh, Loop, Nodal, and PSpice Analyses
of AC Circuits

INTRODUCTION

The material in this chapter is similar to that in Chap. 4. Here, however, the analysis techniques
apply to ac phasor-domain circuits instead of to dc resistive circuits and so to voltage and current phasors
instead of to voltages and currents and to impedances and admittances instead of just to resistances and
conductances. Also, an analysis is often considered completed after the unknown voltage or current
phasors are determined. The final step of finding the actual time-function voltages and currents is often
not done because they are not usually important. Besides. it is a simple matter to obtain them from the
phasors.

One other introductory note: From this point on, the term “impedance™ and “admittances™ will
often be used to mean components with impedances and components with admitiances, as is common
practice.

SOURCE TRANSFORMATIONS

As has been explained, mesh and loop analyses are usually easier to do with all current sources
transformed to voltage sources and nodal analysis is usually casier to do with all voltage sources
transformed to current sources. Figure 13-1a shows the rather obvious transformation from a voltage
source to a current source, and Fig. 13-15 shows the transformation from a current source to a voltage
source. In each circuit the rectangle next to Z indicates components that have a total impedance of Z.
These components can be in any configuration and can, of course, include dependent sources -but not
independent sources.

z z
a r ' —O d a a
v #é)l‘z’lﬁz (i). l iz . v-1z
b -Ob Ob b
(a) (b)

Fig. 13-1

MESH AND LOOP ANALYSES

Mesh analysis for phasor-domain circuits should be apparent from the presentation of mesh analysis
for dc circuits in Chap. 4. Preferably all current sources are transformed to voltage sources, then
clockwise-referenced mesh currents are assigned, and finally KVL is applied to each mesh.

As an illustration, consider the phasor-domain circuit shown in Fig. 13-2. The KVL equation for
mesh 1 1s

LZ +(0,-1)Z,+(0, - 1,)Z2, =V, +V, -V,

265
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Z

v,

where ,Z,, (I, —1;)Z,, and (I, —I,)Z; are the voltage drops across the impedances Z,. Z,, and
Z,. Of course, V, + V¥, —V,; s the sum of the voltage rises from voltage sources in mesh 1. As a
memory aid, a source voltage is added if it “aids™ current flow that is, if the principal current has a
direction out of the positive terminal of the source. Otherwise, the source voltage is subtracted.

This equation simplifies to

(Z,+Z,+2Z,)1, -Z,1,-Z,1,=V, +V, -V,

The Z,+Z,+ Z, -coefficient of I, is the self-impedance of mesh 1, which is the sum of the impedances
of mesh 1. The —Z, coefficient of I, is the negative of the impedance in the branch common to meshes
1 and 2. This impedance Z; 1s a mutual impedunce 1t is mutual to meshes | and 2. Likewise, the —Z,
coefficient of I, is the negative of the impedance in the branch mutual to meshes 1 and 3. and so Z, is
also a mutual impedance. It is important to remember in mesh analysis that the mutual terms have
initial negative signs.

It is, of course, easier to write mesh equations using self-impedances and mutual impedances than
it is to directly apply KVL. Doing this for meshes 2 and 3 results in

-2, v (L + L, + ), - 2,1, =V, +V, -V,

and = -Z 0, + (L, + 2 + L)y = -V, -V, +V,
Placing the equations together shows the symmetry of the I coeflicients about the principal diagonal:
(Z,+Z,+Z3)1, — Z,1, - 7,1, = V, +V,-V,
—Z1, +(Zy+ 2, + Z), — Z,0;, = V,+V,-V,
—1,1, - L1, +(Zy+ 7, +ZN;= -V, -V, +V,

Usually, there is no such symmetry if the corresponding circuit has dependent sources. Also, some of
the off-diagonal coefficients may not have initial negative signs.
This symmetry of the coefficients is even better seen with the equations written in matrix form:

Z, +72,+27Z, -7, -7, 1, Vi+V,-V,
-z, Z,+2Z,+2Z, -7, L =] V,+V,-V,
_ZZ -Z4 Z2+Z4+Zb 13 ‘Vl—V4+v6

For some scientific calculators, it is best to put the equations in this form and then key in the coefficients
and constants so that the calculator can be used to solve the equations. The calculator-matrix method
is generally superior to any other procedure such as Cramer’s rule.

Loop analysis is similar except that the paths around which KVL is applied are not necessarily
meshes, and the loop currents may not all be referenced clockwise. So, even if a circuit his no dependent
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sources, some of the mutual impedance coefficients may not have initial negative signs. Preferably, the
loop current paths are selected such that each current source has just one loop current through it. Then,
these loop currents become known quantities with the result that it is unnecessary to write KVL equations
for the loops or to transform any current sources to voltage sources. Finally, the required number of
loop currents is B — N + 1 where B is the number of branches and N is the number of nodes. For
a planar circuit, which is a circuit that can be drawn on a flat surface with no wires crossing, this number
of loop currents is the same as the number of meshes.

NODAL ANALYSIS

Nodal analysis for phasor-domain circuits is similar to nodal analysis for dc circuits. Preferably, all
voltage sources are transformed to current sources. Then, a reference node is selected and all other nodes
are referenced positive in potential with respect to this reference node. Finally, KCL is applied to each
nonreference node. Often the polarity signs for the node voltages are not shown because of the convention
to reference these voltages positive with respect to the reference node.

For an illustration of nodal analysis applied to a phasor-domain circuit, consider the circuit shown
in Fig. 13-3. The KCL equation for node 1 is

VxY1 + (Vl - Vz)Yz + (Vl - V})Yh = ll + lz - l(,

where VY, (V, —V,)Y,, and (V, —V,)Y, are the currents flowing away from node 1 through
the admittances Y,,Y,,and Y,. Of course, [, + I,— I, is the sum of the currents flowing into node |
from current sources,

3

v, ‘ _@—' A :ﬁ - —@_ ‘ v,
I Y, : I Y, ‘ Y. QD I

Fig. 13-3

This equation simplifies to
Yo+ Y, + YV, —Y,V, - Y. V=1, + I, — 1,

The coefficient Y, + Y, + Y, of V| is the self-admittance of node 1, which is the sum of the
admittances connected to node 1. The coefficient —Y, of V, is the negative of the admittance connected
between nodes 1 and 2. So, Y, is a mutual admittance. Similarly, the coefficient — Y, of V, is the negative
of the admittance connected between nodes 1 and 3, and so Y, is also a mutual admittance.

It is, of course, easier to write nodal equations using self-admittances and mutual admittances than
it is to directly apply KCL. Doing this for nodes 2 and 3 produces

=Y,V + (Y, + Y, + Y )V, - Y.V, = -1, + I, - 1,
and =YV, Y.V, + (Y, + Y+ YV, =1, — I, + I
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Placing the equations together shows the symmetry of the ¥ coellicients about the principal diagonal:

(Y, + Y, + YOV, - Y.V, o Y Vo= I, +0L—1,
O A P R Y,V,= - +1,—1,
—Y,V, - YoV, (Y, 4 Y+ YOV, = I — L+ 1,

Usually. there is no such symmetry if the corresponding cireuit has dependent sources. Also, some of
the off-diagonal coeflicients may not have mitial negative signs. In matrix form these equations are

Y, 4 Y, + Y, Y, -Y, v, L+l -1,
~Y, Yo+ Y, 4 Y, Y, Viol=|-1L+1,—1,
Y, v, AR W G (RN L- 1, +1,

PSPICE AC ANALYSIS

The use of PSpice 1o analyse an ac circuit 1s perhaps best introduced by way of an illustration.
Consider the time-domain circun of Fig. 13-4 A suitable PSpice circuit file for obtaining V, and /1, 1s

CIRCUIT FILE FOR THE CIRCUIT OF FIG. 13-4

vi 1 0 AC 10 -20
Rl 1 2 2K
c1 2 3 1u
R2 3 0 3K
I1 3 0 AC 3M 42
R3 3 4 4K
Ll 4 0 5M

.AC LIN 1 159.155 159.155
.PRINT AC VM(C1) VP(Cl) IM(L1) IP(L1)

. END
I.Il
! 2k o bk 3 1KQ 4
- - AN 1
) o o
Vi O sin (1K 20V R2 1kQ il 3an (10007 + 42 ) mA [.l { SmH
0
Fig. 13-4

Obscerve that the resistor. inductor. and capacitor statements are essentially the same as for the other
types of analyses. except that no inittial conditions are specified in the inductor and capacitor statements.
If the circutt had contaimed a dependent source. the corresponding statement would have been the same
also.

In the independent source statement. the term AC, which must be included after the node
specification, is followed by the peak value of the sinusoidal source and then the phase angle. If rms
magnitudes are desired in the printed outputs, then rms values instead of peak values, should be specified
in the independent source statement.

The frequency of the sources (and all sources must have the same frequency ). in hertz. 1s specified
in an AC control statement. after  AC  LIN 1. Here the frequency s 1000 2 = 159.155 Hz. (The
source frequency of 1000 is, of course. 1n radians per second.) Note that this frequency must be specified
twice. The format of the .AC control statement allows for the variation in frequency. a feature that is
not used in this example.
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e .PRINT statement requires the insertion of AC after .PRINT. After AC are specified the
udes (M) and phases (P) of the desired voltages and currents: VM(C1) specifies the magnitude of
tage across capacitor C1, and VP(C1) specifies its phase; IM(L1) specifies the magnitude of the

current flowing through inductor L1, and 1P(L1) specifics its phase. I the results are desired in rectangular

form, t

hen the letters R for real part and 1 for imaginary part arc used instead of M and P.

If this circuit file is run with PSpice, the output file will include the following:

& % K Kk K
% %k &k k
* d kX Kk

1.

ThkkdkhRhkhkhhhhhhhrhhhhkrhhhrhhhkhhhhhkhkrhthhhkkhkhhkkhhkrhkhhkhrhkhhkhhkhhdhn

AC ANALYSIS
hhkkkkkkhkkkkkhhkdkkkkkkkkkkk Ak hkkkkhkk ko kkkkkhkhkhkkkkkhhkkkhhkkk

FREQ VM(C1) VP(C1) IM(L1) IP(L1)
592E+02 3.436E+00 -7.484E+01 6.656E-04 -4.561E+01

Consequently, V,=3436/—7484 V and I, =06656/—4561 mA, wherethe magnitudes are ex-
pressed in peak values. As stated, if rms magnitudes are desired, then rms magnitudes should be specified

in the independent source statements.

13.1

13.2

Solved Problems

Perform a source transformation on the circuit shown in Fig. 13-5,

The series impedanceis 3 + j4 + 6 {—j5) = 5.565"10.9 €©, which when divided into the voltage of the
original source gives the source current of the equivalent circuit:

20/30

=136/19.1 A
5.56/109

As shown in Fig. 13-6, the current direction is toward node «. as it must be because the positive terminal
of the voltage source is toward that node also. The parallel impedance is. of course. the scries impedance
of the original circuit.

-j5s Q
310 a0 __—K_
] 1L—-O a —Qa
—ANNN—
6N
20/30° V 36/19.1° A 5.56/10.9° O
O b ~O b
Fig. 13-5 Fig. 13-6

Perform a source transformation on the circuit shown in Fig. 13-7,

This circuit has a dependent voltage source that provides a voltage in volts that is three times the
current I flowing elsewhere (not shown) in the complete circuit. When, as here, the controlling quantity is
not in the circuit being transformed, the transformation is the same as for a circuit with an independent
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10 ~j4 0
o - —ou
3 (0.6/53.1°)1 55314
—0 b _ —Ob
Fig. 13-7 Fig. 13-8

source. Therefore, the parallel impedanceis 3 — j4 = 5{—53.! Q. and the source current directed toward
node a is

K} |
= (0.6/53.1 )
5/=353.1 ‘ L— ’

as shown in Fig. {3-8.
When the controlling quantity is in the portion of the circuit being transformed. a different method
must be used, as is explained in Chap. 14 in the section on Thévemn's and Norton's theorems.

13.3  Perform a source transformation on the circuit shown in Fig. 13-9.

The parallel impedance is  61.(5 + j3) = 3.07/15.7 Q. The product of the parallel impedance and the
current 1s the voltage of the equivalent voltage source:

4/ =35 ¥3.07/15.7 )= 123/ =193 V

As shown in Fig. 13-10, the positive terminal of the voltage source is toward node a. as it must be since the
current of the original circuit is toward that node also. The source impedance is. of course, the same
3.07/15.7 €. but is in series with the sourcc instead of in parallel with it,

T —oa 3.07/15.7° 0

j3n - od
4/-35° A <T 60
a3 v()

5Q

4 b b
Fig. 13-9 _ Fig. 13-10

13.4 Perform a source transformation on the circuit shown in Fig. 13-11.

This circuit has a dependent current source that provides a current flow in amperes that is six times
the voltage V across a component elsewhere (not shown) in the complete circuit. Since the controlling quantity
is not in the circuit being transformed, the transformation is the same as for a circuit with an independent
source. Consequently, the series impedance is 5 (4 — j6) = 3.33 /—226 Q. and the source voltage is

6V x 333/ —226 = (20/~22.6"\V

with, as shown in Fig. 13-12, the positive polarity toward node a because the current of the current source
is also toward that node. The same source impedance 1s. of course. in the circuil. but 1s in series with the
source instead of in parallel with it.
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Oa 3.33(-22.6° )

-j6 .___l l___oa
6V 50 A
(20[—22.6°)V<
40 o/

Fig. 13-11 Fig. 13-12

—

13.5 Assume that the following equations are mesh equations for a circuit that does not have any
current sources or dependent sources. Find the quantities that go in the blanks.

(16—, — L— (+2l,=4-)2
—(4+ 31, + (18 +j9I, — (6 — j8)I, = 10/20
I, I, + (20 + j10)I, = 14 + j11

The key is the required symmetry of the 1 coefficients about the principal diagonal. Because of this
symmetry, the coefficient of I, in the first equation must be —(4 + j3), the same as the coefficient of I, in
the second equation. Also, the cocflicient of I, in the third equation must be —(3 + j2), the same as the
coefficient of I, in the first equation. And the coefficient of 1, in the third equation must be —(6 — j§), the
same as the coeflicient of 1, in the second equation.

13.6  Find the voltages across the impedances in the circuit shown in Fig. 13-13a. Then transform the
voltage source and 10/30°-Q component to an equivalent current source and again find the
voltages. Compare results.

10/30° 0

+ v +
i
50/20° V 8/20° 0 5(-10° A 10/30° O v 8/20° 0

(a) I (b)
Fig. 13-13

By voltage division,

10/30 500/50°
Vi= .- . x 50/20 =—L—, =279/244'V
10/30 + 8/20 17.9/25.6°

By KVL.
V, =50/20 - 279/244° =223/144 V

Transformation of the voltage source results in a current source of (50@”)/(10@”) =5/—10"A in
parallel with a lO@“-Q component, both in parallel with the 8@0-0 component, as shown in Fig. 13-135.
In this parallel circuit, the same voltage V is across all three components. That voltage can be found from
the product of the total impedance and the current:

10/30°K8/20° ’
vl /30 ¥8/20') 5/—10° 400/40 =223/144°V

T 10/30 +8/20

179/25.6
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Notice that the 8@"-0 component voltage 1s the same as for the original circuit, but that the 10&(_) -Q
component voltage is different. This result illustrates the fact that a transformed source produces the same
voltages and currents outside the source. but usually not inside 1.

13.7 Find the mesh currents for the circuit shown in Fig. 13-14.

10/20° V
40 j15 Q0 ;‘l
AAAN YL b~ .
/
6f
N + 1 I,
15/-30° V{ = 3-137 A
-i7 (l
Fig. 13-14

The self-impedance and mutual-impedance approach is almost always best for getting mesh equations.
The self-impedance of mesh 1is 4 + j15+ 6 — j7 =10+ /8 Q. and the impedance mutual with mesh 2
is 6 — 7€ The sum of the source voltage rises in the direction of 1, 1is 15@ -~ IO@ =
11.5/ =718 V. In this sum the IOLZ_(_) -V voltage is subtracted because 1t is a voltage drop instead of a risc.
The mesh | equation has. of course, a left-hand side that is the product of the sell-impedance and 1), minus
the product of the mutual impedance and I,. The right-hand side is the sum of the source voltage rises.
Thus. this equation is

(10 + j&}, — (6 — j70, = 11.5/=71.8

No KVL equation is needed for mesh 2 because I, is the only mesh current through the 3/-13 -
current source. As a result, 1, = — ?[ 13 A. The initial negative sign is required because 1, has a posmw
direction down through the source. but the specified lu -A current is up. Remember that. if for some
reason a KVL equation for mesh 2 is wanted. a variable must be included for the voltage across the current
source since this voltage is not known.

The substitution of 1, = —3/—13 A into the mesh | equation produces

(10 + 8, — (6 — jTH—3/=13)=11.5/—
from which
1.5/ =718 +(6—j7 —z’_13 16.4/124.2
I A e L A e R T LI

10 + j8 12.8/38.7

Another good analysis approach is to first transform the current source and parallel impedance to an
equivalent voltage source and serics impedance, and then find 1} from the resulting single mesh circuit. If
this is done, the equation for I, will be identical to the one above.

13.8 Solve for the mesh currents 1, and I, in the circuit shown in Fig. 13-15.

The self-impedance and mutual-impedance approach is the best for mesh analysis. The self-impedance
of mesh 1is 8 —jl4 +4 =12 —jl4Q. the mutual impedance with mc,sh 215 4Q. and the sum of the
source voltage nises in the direction of 1, is l()ﬂ + IZM =20/-126 V. So. the mesh 1 KVL
equation is

(12 - 140, — 41, = 20/ —12.6

For mesh 2 the self-impedance is 6 + /10 + 4 = 10 + j10Q, the mutual impedance is 4 Q. and the
sum of the voltage rises from voltage sources is —12/10 V. So, the mesh 2 KVL equation is

— 4L, + (10 4 10, = —12/10
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j100

NAAAS

Placing the two mesh equations together shows the symmetry of coeflicients there - ) about the
principal diagonal as a result of the common mutual impedance.
(12 ~ il - - 20 - 126
A, 4 00+ 100, - -12.10

By Cramer’s rule.

20/-126 -4 i

-12 10 +100 (20 126 K10 5 jI) (- 1210% 4 239 368

. 12/10 10 +j1 _ O 5 ) - 12100 & =S 0973 415 A
12—j14 -4 (12 <RI+ 10 (- M b 85 47 Sl

| -4 10+ 10

and since 1, has the same denominator as 1,.

12-j14 20 126"
|
4 120 | (12 K- 12000 - K126
T A T T A
: 245/ —4.7 245_-47

139 Use loop analysis to find the current down through the 4-Q resistor in the cireuit shown in Fig,
13-15.

The preferable selection of loop currents is 1, and I because then 1, is the desired current sinee it is
the only current in the 4-Q resistor and has a downward direction. OF course. the self-impedance and
mutual-impedance approach should be used.

The self-impedance of the I loop is 8 - jld4+ 4 =12 - jI4€Q.  the mutual impedance with the 1,
loop is 8 — j14 Q. and the sum of the source voltage rises in the direction of By is 10 _--30 + 1210 -
20/ —12.6 V. The self-impedancc of the I loopis 8  jl4 46 +10= 14 -jid4Q. of which8 jI14Q
mutual with the I, loop. The source voltage rise in the direction of I, in 10_ 40 V. “Therclore.
the loop cquations are

U2 - 101, + (8- j1l, =20 - 126
(8 g1, (4 =il 10 0

——

The mutual terms are positive because the 1, and 1, loop currents have the same direction through the
] k) -
mutual impedance.
By Cramer's rule.

20/-126 8- jl4

10/—40 14— jal (20/-126 K14 - j4) - (10_-30 K& - jI4) 285 4
' lll—jM 8- 147 T (12114 - A - (K- AN j1e M5 47
[8-jl4 14-j4

- L16.XT A

As a check. notice that this loop current should be equal to the difference in the mesh currents 1, and 1,
found in the solution to Prob. 138 Itis. since [, 1, =0974 41.5  ( 063 482). Ll6 X7 A
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13.10 Find the mesh currents for the circuit shown in Fig. 13-16a.

i ja Q -j6 @

SN <

4 ()
—AM———]
I:
GE_QOV ll 5(1 (;\ ¢IM°A (\\ BL'_]éov
(a)

310 j4 Q 40 —j6 (1
YY"y ° o
VVv AAAY ——
S0
630° V C;P ! ,/ C:b o150V
10/65° V \—
(b}
Fig. 13-16

A good first step is to transform the 2[@ -A current source and parallel 5-Q resistor into a voltage
source and series resistor, as shown in the circuit of Fig. 13-16h. Note that this transformation eliminates
mesh 3. The self-impedance of mesh 11s 3+ 4+ 5=8+/4Q, and that of mesh 2is 4 —j6 + 5=
9 — j6 ©. The mutual impedance is 5 €. The sum of the voltage rises from sources is 6@ — 10@ =
6.14/—809 V for mesh 1 and IO@ — 8& = ]I.7/_](ﬂ vV for mesh 2. The corresponding mesh

equations are
(8 +j4l, — 51, = 6.14/ —80.9
—5I, +(9 — o), = 11.7/107

8+ /4 -5 L] 6.14/ —80.9

=5 9—jell1,] | 11.7/107
These equations are best solved using a scientific calculator (or a computer). The solutions obtained
are I, =0631/—1644 = —0631/156 A and 1,=113/1561 = —1.13/-239 A

From the original circuit shown in Fig. 13-16q, the current in the current source 1s [, — I, = 2/65 A.
Consequently,

In matrix form these are

1, =1,-2/65 = —1.13/=239 —2/65 =231/ 1441 = —231/359 A

13.11 Use loop analysis to solve for the current flowing down through the 5-Q resistor in the circuit
shown in Fig. 13-16a.

Because this circuit has three meshes, the analysis requires three loop currents. The loops can be selected
as in Fig. 13-17 with only one current I, flowing through the 5-Q resistor so that only one current needs
to be solved for. Also, preferably only one loop current should flow through the current source.

The sclf-impedance of the 1, loop is 3+ j4 + 5 =8+ j4Q, the impedance mutual with the I,
loopis 3+ /4Q, and the aiding source voltage is 6@ V. So, the loop 1 equation 1s

(8 +jdl, + (3 + j4l, = 6/30

The I, coefficient is positive because I, and I, have the same direction through the mutual components.
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10 4 Q 4Q -j6 0

w0 ) F O ) O

Fig. 13-17

For the second loop. the self-impedanceis 3 +jd4+4 —j6=7—;2Q, ofwhich 3+ j4Qis mutual
with loop 1. The 2@ -A current flowing through the components of 4 — j6 Q produces a voltage drop
of (4 —j6)(2&§“) = 14.4/8.69 V that has the same effect as the voltage from an opposing voltage
source. In addition, the voltage sources have a net aiding voltage of 6/30"-8/—15 =5.67/117° V. The
resulting loop 2 equation is

3+ + (7 -2, =567/117 —14.4/8.69 =17/170

In matrix form these equations are

SR AR
3+j4 7—20l0,] [ 17/170
A scicntific calculator can be used to obtain I, = 1.74/43.1 A from these equations.

As a check, this loop current I, should be equal to the difference in the mesh currents 1, and
I, found in the solution to Prob. 13.10. Itis.since I, — I; = —0.631/15.6" — (—2.31/35.9°) = 1.74/43.1" A

13.12 Use mesh analysis to solve for the currents in the circuit of Fig. 13-18.

wL v 18 Q -j20Q

[/
- A

;12 0 s Q

40 8 == -jl6 0
| | 2 I
20/30° V 16/=70° V T)mspsv
Fig. 13-18

The self-impedances are 4 + j12+8 =12+ 12Q formeshl, 8+ 8 —j16=16—,16Q formesh
2.and 18 —j20 + 8 +j12 =26 — j8Q for mesh 3. The mutual impedances are 8 Q for meshes 1 and 2,
8 Q for meshes 2 and 3, and j12 Q for meshes 1 and 3. The sum of the aiding source voltages is 20/30° ~
16/=70 =27.7/64.7 V for mesh 1. 16/-70" + 18/35° =20.8/—13.1"V for mesh 2, and —72/30" V
for mesh 3. In matrix form. the mesh equations are

12412 -8 12 i, 27.7/64.7

—8  te—j16 =8 |1, {={208/=131

—jn -8 26— 81, ~72/30
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The solutions, which are best obtained by using a calculator or computer, are

1, = 207/ =266 A I, = 1.38/736 A and I, = 1.55/—146 A

13.13 Show a aircuit that corresponds to the following mesh equations:

13.14

(17 = jdl, — (11 + jS), = 6/30
(11 + 51, + (18 + I, = —8/30

Because there are two equations, the circuit has two meshes: mesh 1 for which 1, 1s the principal mesh
current, and mesh 2 for which [, is the principal mesh current. The — (11 + j5) coefficients indicate that
meshes | and 2 have a mutual impedance of 11 + j5 Q which could be from an 11-Q resistor in series with
an inductor that has a reactance of 5 €. In the first equation the I, coeflicient indicates that the resistors
in mesh | have a total resistance of 17 Q. Since 11 Q of this 1s 10 the mutual impedance, thereis 17—-11=6Q
of resistance in mesh | that 1s not mutual. The ~j4 of the I coefficient indicates that mesh 1 has a total
reactance of —4 €. Since the mutual branch has a reactance of 5Q, the remainder of mesh [ must have a
reactance of —4 — 5= -9, which can be from a single capacitor. The 6[3_0 on the right-hand side of
the mesh 1 equation is the result of a total of 6@ V of voltage source rises (aiding source voltages). Onc
way to obtain this is with a single sourse 6&0 V that is not in the mutual branch and that has a polarity
such that I, flows out of its positive terminal

Similarly, from the second equation, mesh 2 has a nonmutual resistance of 18 — 11 =7Q that
can be from a resistor that 1s not in the mutual branch. And from the j7 part of the I, coeflicient, mesh 2
has a total reactance of 7 €L Since 5€ of this is in the mutual branch, thereis 7 —5=2Q remaining
that could be from a single inductor that is not in the mutual branch. The — 8&) on the right-hand side
1s the result of a total of 8@ V of voltage source drops  opposing source voltages. One way to obtain
this is with a single source of 8/30 'V that is not in the mutual branch and that has a polarity such that I,
flows into its posttive terminal

Figure 13-19 shows the corresponding circuit. This is just one of an infinite number of circuits from
which the equations could have been written.

6 -2 Q 7Q j20

6/30° V 1 8/30° V

Fig. 13-19

Use loop analysis to solve for the current flowing to the right through the 6-Q resistor in the
circuit shown in Fig. 13-20.

Three loop currents are required because the circuit has three meshes. Only one of the loop currents
should flow through the 6-Q resistor so that only one current has to be solved for. This current is 1., as
shown. The paths for the two other loop currents can be selected as shown, but there are other suitable paths.

It is relatively easy to put these equations into matrix form. The loop self-impedances and mutual
impedances can be used to fill in the coeflicient matrix. And the elements for the source vector are 100’_2(] \Y
for loop 1 and 0V for the two other loops. Thus. the equations in matrix form are

8§ -2 I 2 I 100/20
12 6=20 =20 |I1,(= 0
j2 —j20 16 - 10| 1, 0

The solutions. which are best obtained from a calculator or computer. include 1, = 3627 458 A.
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j10 0 16 ()

100{20° V G) I

j12 -j% Q)

Fig. 13-20

13.15 Solve for the node voltages in the circutt shown i Figo 13-21

Using self-admittances and mutual admittanees is almost adwin s best for obtaimmg the nodal equations
The self-admittance of node 11
1 ! o
o+ =3 j2S
025 s
of which 4§ is mutual conductance. The sum of the currents from current sources into node 1 s
2(1&] + 15/=30 =329 -702 A So.the node V KCL equation i

(- 2V, - AV, - 229 - 702

No KCL equation is needed for node 2 because o grounded voltage source is connected o 1t
making V, = —12; 15 V. IfL however, for some reason a KCL equation is wanted for nade 200 variable
has to be introduced for the current through the voltage source because this current is unknown. Note that.
because the voltage source does not have a seres impedance. 11 cannot be transfrmed 1o a current source
with the source transformation techniques presented in this chapter,

The substitution of vV, = - 12 - 15 into the node T equation results in

(4= 2V~ di- 12 15 1= 329 - 702

329/ 2702 — 4815 1605 148 ‘
: -2 I T

from which v,

13.16 Find the node voltages in the circuit shown in Fig, 13-22.
1S[-307 A W/15° A

0250

Yl AAA—Y Vil AAA——]—

M oo 2 A
.28 -j0.2

20010°A 3j0.5Q G> 1[5V 30/40° A 2 020 0.4 12 15/20° \

IJT 4

L S

Fig. 13-21 Fig. 13-22
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The self-admittance of node 1 is
1 l

b o - - - =54244+195=769/147 S
02 025-j0.2 g (141

of which 244 +j1.95=3.12/38.7 S 1s mutual admittance. The sum of the currents into node 1 from
current sources is  30/40 — 20/15 =14.6/75.4 A. Therefore, the node | KCL equation is

(7.69/14.71WV, —(3.12/387 )V, = 14.6/75.4

The self-admittance of node 2 is
1 I
— == === =254+244 +195=3531/216 S
04 025 jo2 ! (216
of which 3.12/38.7 S is mutual admittance. The sum of the currents into node 2 from current sources
is 20&' + 15& = 350/17.1 A. The result is 4 node 2 KCL equation of

—(3.12/38.7 W, +(5.31/21.6 )V, = 35.0/17.1
In matrix form these equations are

[ 7.69/147 —3.12/387 }{Vl}_ 14.6/75.4
—3.12{'38.7 531216 I B 35.0/17.1

Vv,
The solutions, which are casily obtained with a scientific calculator, are V, = 5.]3[’473 V and V,
8.18/157 V.

13.17 Use nodal analysis to find V for the circuit shown in Fig. 13-23.

80 AR LR 1}
— VA 4 AN
40
>
10{-40° V C;) jlo Q
12/10° v
=

Fig. 13-23

Although a good approach is to transform both voltage sources to current sources, this transformation
1s not essential because both voltage sources are grounded. (Actually, source transformations are never
absolutely necessary.) Leaving the circuit as it stands and summing currents away from the V node in the
form of voltages divided by impedances gives the equation of

vV - 10/-40 V-(—12QQ)+ v
8 —jl4 4 6 +j10

The first term is the current flowing to the left through the 8 — j14 Q components, the second is the
current flowing down through the 4-Q resistor, and the third is the current flowing to the right through
the 6+ 10Q components.

This equation simplifies to

{0.062/60.3 + 0.25 + 0.0857/ - 59 )V = 0.62/20.3 — 3@
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Further simplification reduces the equation to

(0.325/ -3.47 )V = 2392/ 173

2392/ 173
from which V= 4#141 =7.35/-169.2 = -7.35/108 V

0325/ -3.47

Incidentally. this result can be checked since the circuit shown in Fig. 13-23 is the same as that shown
in Fig. 13-15 for which, in the solution to Prob. 13.9, the current down through the 4-Q resistor was found
to be 1.16&2“ A. The voltage V across the center branch can be calculated from this current: V =

4(1.16/8.7°) — 12/10° = —7.35/10.8 V. which checks.

13.18 Find the node voltages in the circuit shown in Fig. 13-24a.

2[65° V
v, 58 \ 4 V)
. o AV i .

3 2

—

6/30° A 3s :lLMS 48 -j6 'S 8/-15° A

5 I

v, v,

o

<4S  10/65° A 45 -j6'S 8-15" A

—

AVl

6/30° A 3S

X
b)
Fig. 13-24

Since the voltage source does not have a grounded terminal, a good first step for nodal analysis is to
transform this source and the series resistor to a current source and parallel resistor, as shown in Fig. 13-24b.
Note that this transformation eliminates node 3. In the circuit shown in Fig. 13-24b, the self-admittance of
node lis 3+j4+5=8+,48S, andthatofnode2is 5+ 4 —j6 =9 — j6S. The mutual admittance is
5 8. The sum of the currents into node 1 from current sources is 6&) - 10/65 =6.14/ —80.9 A. and
that into node 2is 10/65 — 8&' = 11.7&T A. Thus, the corresponding nodal equations are

8 + j4V, — 5V, =6.14/ =809
=5V, +(9 = j6)V, = 11.7/107

Except for having Vs instead of I's, these are the same equations as for Prob. 13.10. Consequently. the

answers arc numerically the same: V, = —0.631/156°V, and V,= —1.13/-239"V.
From the original circuit shown in Fig. 13-244, the voltage at node 3 is 2/65 V more negative than

the voltage at node 2. So,
V,=V, —2@ = —113/=-239 —2/65 =231/-1441 = —231/359 V
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13.19 Calculate the node voltages in the circuit of Fig. 13-25.

13.20

j12s
L
LY

16/-70° A

V; V)

2030° A 4s

18(35° A

18§ -j20 S 72{30° A

1 . -

Fig. 13-25

The self-admittances are 4 + 8 + j12 =12 +12S fornode |, 8 —jl6 + 8 =16 — j16 S for node
2,and 8 + 18 —j20 + j12 =26 — j8 S for node 3. The mutual admittances are 8 S for nodes 1 and 2,
j12 S for nodes 1 and 3, and 8 S for nodes 2 and 3. The currents flowing into the nodes from current sources
are  20/30° — 16/=70 = 27.7/64.7 A for node I, 16/—70° + 18/35° = 20.8/—13.1" A for node 2,
and —72&)‘ A for node 3. So, the nodal equations are

(12 +jI2)V, — 8V, — j12v,y = 27.7/64.7¢
-8V, + (16 —j16)V, — 8V, = 208/ —13.1
—j12V,; — 8V, + (26 — j8)V, = —T72/30°

Except for having Vs instead of I's, this set of equations is the same as that for Prob. 13.12. So, the answers
are numerically the same: V, =207/-266 V, V,=138/736"V, and V,=155/-146"V.

Show a circuit corresponding to the nodal equations
8+j6O)V, — (3—j4V, =4+ )2
—(3 -4V, + (1l —jO)V, = —6/-50

i

Since there are two equations, the circuit has three nodes, one of which is the ground or reference node,
and the others of which are nodes 1 and 2. The circuit admittances can be found by starting with the mutual
admittance. From the —(3 — j4) coefficients, nodes | and 2 have a mutual admittance of 3 —j4 S, which
can be from a resistor and inductor connected in parallel between nodes 1 and 2. The 8 + j6 coeflicient
of V, in the first equation is the sclf-admittance of node 1. Since 3 — j4 S of this is in mutual admittance,
there must be components connected between node | and ground that have a total of 8 +j6 -~ (3 — j4) =
S +,10S of admittance. This can be from a resistor and parallel capacitor. Similarly, from the second
equation, components connected between node 2 and ground have a total admittance of 1l — j6 —
(3 — j4) =8 — j2 S. This can be from a resistor and parallel inductor.

The 4+ j2 on the right-hand side of the first equation can be from a total current of 4 + 2 =
447/26.6° A entering node | from current sources. The easiest way to obtain this is with a single
current source connected between node 1 and ground with the source arrow directed into node 1. Similarly,
from the second equation, the —6/—50" can be from a single current source of 6/ —50" A connected
between node 2 and ground with the source arrow directed away from node 2 because of the initial negative
sign in ~6ﬂ) .

The resulting circuit is shown in Fig. 13-26.
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13.21

1322

s
V| vZ
1 2
] -jas
447026.6° A 5S 108 == 8S -j28 6/-50° A
=
Fig. 13-26

For the circuit shown in Fig. 13-27, which contains a transistor model, first find V as a function
of 1. Then, find V as a numerical value.

2k} I E 1kQ C -j1 k2 I,
— » . F g o Jl —_—
© 1T +
i8 k2
C{P 0.1/20°V 0.01V 301 10 k2 v
6 k1
B

Fig. 13-27

In the right-hand section of the circuit, the current I, is, by current division,

10* -3 x 10°1
- xW= - = —(17.2/=23.6%)1
10 000 + 6000 + j8000 ~ j1000 17.46 x 10°/23.6° ( )

I =

And, by Ohm’s law,
V = (6000 + j8000), = (10%/53.1°—17.2/ =23.6") = (—17.2 x 10*/29.5°)1

which shows that the magnitude of Vis 17.2 x 10* times that of I, and the angle of Vis  29.5° — 180" =
—150.5° plus that of I. (The — 180° is from the negative sign.)
If this value of V is used in the 0.01-V expression of the dependent source in the left-hand section of

the circuit, and then KVL applied, the result is

20001 + 10001 + 0.01(—17.2 x 10*/29.5°) = 0.1/20°
from which

0.1/20° 0.1/20°
L‘ = =579 x 107%/49.3° A

1= =
2000 + 1000 — 17.2 x 10%/29.5° 1.73 x 103/-29.3°
This, substituted into the equation for V, gives
V= (=172 x 10*/29.5°X5.79 x 107°/49.3°) = —9.95/78.8° V

Solve for 1 in the circuit shown in Fig. 13-28.

What analysis method is best for this circuit? A brief consideration of the circuit shows that two
equations are necessary whether mesh, loop, or nodal analysis is used. Arbitrarily, nodal analysis will be
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20 §0.5 Q

16[—45° V

Fig. 13-28

used to find V,, and then I will be found from V. For nodal analysis. the voltage source and series resistor
are preferably transformed to a current source with parallel resistor. The current source has a current
of (16/—45°)/0.4 = 40/ —45" A directed into node 1. and the parallel resistor has a resistance of 0.4 Q.
The self-admittances are
1 !

!
b 4 =25_j075S
04 0.5 —j08

for node 1, and

! + : =2+ /1258
05 —j08
for node 2. The mutual admittance is  1/(—j0.8) = j1.25 8.
The controlling current Tintermsof V,is I =V,;0.5 = —j2V,. which meansthat 21 = —j4V, is
the current into node 2 from the dependent current source.
From the admittances and the source currents, the nodal equations are

(2.5—jOI5)V, —  jl.25V, = 40/—45
—j125V, + (2 4 j1.25)V, = —j4V,

which, with j4V, added to both sides of the second equation. simplify to

(2.5 — jO.TSHV, — j1.25V, = 40/ —45
J2I5V, + (2 + 125V, =0

The lack of symmetry of the coefficients about the principal diagonal and the lack of an initial negative sign
for the V, term in the second equation are caused by the action of the dependent source.
If a calculator is used to solve for V, the result is  V, = 31.64/—46.02 V. Finally.

V, 3164/ —-46.02 ,
= == =633/ 136 = —633/44 A
j0.5 0.5/90 —

Use PSpice to obtain the mesh currents in the circuit of Fig. 13-18 of Prob. 13.12.

The first step is to obtain a corresponding PSpice circuit. Since no frequency is specified in Prob.
13.12 (or even if one was), a convenient frequency can be assumed and then used in calculating the inductances
and capacitances from the specified inductive and capacitive impedances. Usually, « = t rad/s is the most
convenient. For this frequency, the inductor that has an impedance of j12Q has an inductance of
12/1 = 12 H. The capacitor that has an impedance of —j20Q has a capacitance of 120 =005F, as
should be apparent. And the capacitor that has an impedance of —j16 Q has a capacitance of 1716 =
0.0625 F.

Figure 13-29 shows the corresponding PSpice circuit. For convenience, the voltage-source voltages
remain specified in phasor form, and the mesh currents are shown as phasor variables. Thus, Fig. 13-29 is
really a mixture of a time-domain and phasor-domain circuit diagram.
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12H 8Q
2 o AN~ s
: R4
402 RI C2 A= 0.0625 F
I I, I, [ X3
20:30° V \2 V3 6, 70°V val ~ )isf3s v

Fig. 13-29

In the circuit file the frequency must be specified in hertz, which for 1radsis 1 2rn = 0.159 155 Hz
The circuit file corresponding to the PSpice circuit of Fig. 13-29 is as follows:

CIRCUIT FILE FOR THE CIRCUIT OF FIG. 13-29

vi 1 0 AC 20 30
Rl 1 2 4

v2 2 3 AC 72 30
R2 3 4 18

Cl 45 0.05

L1 2 6 12

R3 6 7 8

v 7 0 AC 16 -70
R4 6 5 8

C2 5 8 0.0625

v4 0 8 AC 18 35

.AC LIN 1 0.159155 0.159155
.PRINT AC IM(R1) IP(R1) IM(C2) IP(C2) IM(R2) IP(R2)
.END

When this circuit file is run with PSpice. the output file will contain the following results.

FREQ IM(R1) IP(R1) IM(C2) IP(C2) IM(R2)
1.592E-01 2.066E+00 =-2.660E+01 1.381E+00 7.356E+00  1.550E+00

FREQ IP(R2)
1.592E-01 -1.458E+02

The answers [, =2.066/—-2660 A. I,=1381/7356 A, and I, =1550/—1458 A agree within
three significant digits with the answers to Prob. 13.12.

13.24 Calculate V, in the circuit of Fig. 13-30.
By nodal analysis,
Vi-30[-46 V-3V, V-V, vV, -V,

— 4+ —_ P — l+ z
20 14 —j16 —j16 10 -8

Also =1 =’
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-j16Q
14
A
200 v, 14 Q _I’
+
V,()
30/-46°V v, 21 100 —jSQa‘:
Fig. 13-30

Substituting from the third equation into the second and multiplying both resulting equations by 280 gives

(34 +j17.5)V, — (60 + j17.5)V, = 420/ — 46¢
(40 — j17.5)V, + (=92 +j52.5)V, =0

Use of Cramer’s rule or a scientific calculator provides the solution V, = 13.56/—-77.07 V.

Repeat Prob. 13.24 using PSpice.

For a PSpice circuit file, capacitances are required instead of the capacitive impedances that are specified
in the circuit of Fig. 13-30. It is often convenient to assume a frequency of w = 1rad/s to obtain these
capacitances. Then, of course, f= 1/2r = 0.159 155 Hz is the frequency that must be specified in the circuit
file. For « = 1rad/s, the capacitor that has an impedance of —j16€) has a capacitance of /16 =
0.0625 F, and the capacitor that has an impedance of —;8 Q has a capacitance of 1/8 = 0.125 F. Figure
13.31 shows the PSpice circuit that corresponds to the phasor-domain circuit of Fig. 13-30. The V2 dummy
source is required to obtain the controlling current for the F1 current-controlled current source.

R1

Vi 30, -46° V CZfT\O.lZSF

Fig. 13-31

The corresponding circuit file is

CIRCUIT FILE FOR THE CIRCUIT OF FIG. 13-31

Vi 1 0 AC 30 -46
Rl 12 20

R2 2 3 14

V2 3 4

El 40 50 3

Cl 2 5 0.0625

F1 5 0 Vv2 2

R3 50 10

c2 5 0 0.125

.AC LIN 1 0.159155 0.159155
.PRINT AC VM(5) VP(5)
.END
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When this circuit file is run with PSpice, the output file includes

FREQ VM(5) VP(5)
1.592E-01 1.356E+01 -=7.707E+01

from which V, =13.56/—77.07° V, which is in complete agreement with the answer to Prob. 13.24.

13.26 Use PSpice to determine v, in the circuit of Fig. 12-25a of Prob. 12.47.

Figure 13-32 is the PSpice circuit corresponding to the circuit of Fig. 12-25a. The op amp has been
deleted and a voltage-controlled voltage source El inserted at what was the op-amp output. This source is,
of course, a model for the op amp. Also, a large resistor R1 has been inserted from node 1 to node 0 to
satisfy the PSpice requirement for at least two components connected to each node.

5

' 0
+

R4S 3kQ
+ vo

Vi <~ 4/-20°V 2 x 105y, 6

L2<502H

-0

=

Fig. 13-32

Following is the circuit file. The specified frequency, 1591.55 Hz, is equal to the source frequency of
10 000 rad/s divided by 2n. Also shown is the output obtained when this circuit file is run with PSpice. The
answer of V(5)=9.121/—5787°V is the phasor for

v, =9.121sin (10 000t — 57.879) V,

which agrees within three significant digits with the v, answer of Prob. 12.47.

CIRCUIT FILE FOR THE CIRCUIT OF FIG. 13-32

vi 1 0 AC 4 -20
Rl 1 0 1O0MEG

R2 2 3 2K

L1 30 0.1

R3 2 4 3K

Cl 45 0.05U

El 50 12 2ES
R4 5 6 3K

L2 6 0 0.2

L.AC LIN 1 1591.55 1591.55
.PRINT AC VM(5) VP(5)
.END

LR R AR A R RS AR s SR R 2 223X 2223222 X2 XY

% kodek AC ANALYSIS
hkkhhhhkhkhhhkmhhhhhkhkdddddkhhdhddddkdkdddkdd ik dddhdo otk ok ok ko ok koo ok ok ok ok ok ok ok

FREQ VM(5) VP(5)
1.592E+03  9.121E+00 -5.787E+01
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13.27 Find V, in the circuit of Fig. 13-33.

6 kQ —jskQ
gkQ —J2kQ
I 0
+
‘Y(l
—0

L

Fig. 13-33

Since the first op-amp circuit has the configuration of a noninverting amplifier, and the second has that
of an inverter, the pertinent fprmulas from Chap. 6 apply, with the R’s replaced by Z’s. So. with the
impedances expressed in kilohms,

6 — j10 6 —Jjs
v, = (1 +- —’—>(— 1)(--—{-)0@ )= 3.74/134.8 V
10 — ja 8 —j2

13.28 Repeat Prob. 13.27 using PSpice.

Figure 13-34 is the PSpice circuit corresponding to the circuit of Fig. 13-33. with the op amps replaced
by voltage-controlled voltage sources that are connected across the former op-amp output terminals. In
addition, a large resistor R has been inserted from node 1 to node 0 to satisfy the PSpice requirement for
at least two components connected to each node. The large resistors R4 and R6 have been inserted to
provide dc paths from nodes 4 and 7 to node 0, as is required from every node. Without these resistors, the
circuit has no such dc paths because of dc blocking by capacitors. The capacitances have been determined
using an arbitrary source frequency of 1000 rad/s, which corresponds to 1000:2n = 159.155 Hz. As an
illustration, for the capacitor which an impedance of —j4 kQ, the magnitude of the reactance is

- = 4000 from which C=025uF
1000C

4 2 s RS C3 . RT g C4 9
+ v, - —c —

0.1 uF BkQ sk 6kQ  02uF N

R2

+
v1<~>2/gv RIS I0MQ 3

10kQ v,

+
10 MQY § R4 EI 10°v, R6 g 0MQ  E2 <> 10°V(7)

-ll—m:

Fig. 13-34
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13.29

13.30

13.31

13.32

13.33

Following is the circuit file for the circuit of Fig. 13-34 and also the results from the output file obtained
when the circuit file is run with PSpice. The output of V(9) =V, = 3.741/134.8°V agrees with the answer
to Prob. 13.27.

CIRCUIT FILE FOR THE CIRCUIT OF FIG. 13-34

Vi 1 0 AC 2

Rl 1 0 10MEG

R2 2 3 10K

Cl1 3 0 0.250

R3 2 4 6K

R4 4 0 10MEG

cC2 45 0.1U

El 50 12 1Eé
R5 5 6 8K

C3 6 7 0.5U

R6 7 0 10MEG

R7 7 8 6K

C4 89 0.2U

E2 90 07 1Eé

.AC LIN 1 159.155 159.155
.PRINT AC VM(9) VP(9)
.END

FREQ VM(9) VP (9)
1.592E+02  3.741E+00  1.348E+02

Supplementary Problems

A 30-Q resistor and a 0.1-H inductor are in serics with a voltage source that produces a voltage of
120 sin (377t + 10°) V. Find the components for the corresponding phasor-domain current-source transfor-
mation.

Ans. A current source of 1.76/ —41.5 A in parallel with an impedance of 48.2/51.5" Q

A 40@_.’3 -V voltage source is in series with a 6-Q resistor and the parallel combination of a 10-Q resistor
and an inductor with a reactance of 8§ Q. Find the equivalent current-source circuit.

Ans. A 3.62/18.8"-A current source and a parallel 11/26.2°-Q impedance

A 2@"-MV voltage source is in scries with the parallel arrangement of an inductor that has a reactance
of 100 Q and a capacitor that has a reactance of — 100 €. Find the current-source equivalent circuit.

Ans.  An open circuit

Find the voltage-source circuit cquivalent of the parallel arrangement of a 30.4/ —24 -mA current source,
a 60-Q resistor, and an inductor with an 80-Q reactance.

Ans. A 1.46/12.9°-V voltage source in series with a 48/36.9°-Q impedance

A 20.1[4_5_"-MA current source is in parallel with the series arrangement of an inductor that has a reactance
of 100 Q and a capacitor that has a reactance of — 100 Q. Find the equivalent voltage-source circuit.

Ans. A short circuit
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In the circuit shown in Fig. 13-35, find the currents I, and I,. Then do a source transformation on the
current source and parallel 4/30°-Q impedance and find the currents in the impedances. Compare.

Ans. 1, =4.06/144° A, 1, = 3.25/84.4° A After the transformation both are 3.25/84.4 A. So, the current
does not remain the same in the 4@”-9 impedance involved in the source transformation.

5/-40° ¢ 15/60° v
Is ! 60 leo j150
ot

TSR

430° 0 <T> 25°A 240 m 90 CT) 9/-60° A

-j3jo 0

HR
=t

Fig. 13-35 Fig. 13-36

Find the mesh currents in the circuit shown in Fig. 13-36.
Ans. 1, =7[25 A, I, = —3/=336"A, 1,=-9/-60°A
Find I in the circuit shown in Fig. 13-37.

Ans. 386/ —34.5° A

8 -jl6 16 Q —-j28 €1 12Q
AN e ~AA——
1 1]
1sj-100v (£ j1203 6050°V SOL—_”OVGD

36[15° V

Fig. 13-37 Fig. 13-38

Find the mesh currents in the circuit shown in Fig. 13-38.

Ans. 1, =146/465" A, I, =—-0945/—-432°"A

Find the mesh currents in the circuit shown in Fig. 13-39.
Ans. 1, = 1.26/106° A, I, =463/309"A, I;=225/-289"A

60 8 Q 80 -jiza

Yy ANV —t
2425° V . 100 (-'\ @4@% n 32f-20°V

Fig. 13-39
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13.39  Use loop analysis to solve for the current that flows down in the 10-Q resistor in the circuit shown in Fig.
13-39.

Ans. —347/38.1° A
13.40 Use mesh analysis to find the current I in the circuit shown in Fig. 13-40.

Ans. 40.6/12.9° A

16 Q
AAAY
I 60 j8 120
400/5° V ]\—jlon 14 Q

Fig. 13-40
1341 Useloop analysis to find the current flowing down through the capacitor in the circuit shown in Fig. 13-40.
Ans. 36.1/29.9° A

13.42 Find the current I in the circuit shown in Fig. 13-41.
Ans. —13.1/-537° A

I 16 (1 1o j6 (1 8N
= AN Ji Y v v\ V2 aaa —AAN
-j4 0 ~-i2a 120/-20° V

240/100° V I

13.43 For the circuit shown in Fig. 13-41, use loop analysis to find the current flowing down through the capacitor
that has the reactance of —j2 Q.

Ans. 28.5/—415° A

Fig. 13-41

13.44 Use loop analysis to find I in the circuit shown in Fig. 13-42.
Ans. 271/—558° A

16 0

150{10° V
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1345 Rework Prob. 13.44 with all impedances doubled.
Any. 1.36/-558 A

13.46 Find the node voltages in the circuit shown in Fig. 13-43.
Ans. V.= —108/25 V, V,= —36/15 V

22.5/0° A
\A .v2
050
30{40° A , R o
{40 ?;1 Q ~ ) 36150V
L
Fig. 13-43
13.47 Find the node voltages in the circuit shown in Fig. 13-44.
Ans. ¥V, =117/-221 V. V,=0675/-733 V
840° A
V1 : : v:
AAA
12/-10° A 8S jl0S== 12s -j14S
- =
Fig. 13-44

13.48 Solve for the node voltages in the circuit shown in Fig. 13-45.

Ans. V= —519/-19.1"V, V,=3587/7139 V

v, J10a vy,
LYYy

1035° A % 40 80 6(5° A

I
Fig. 13-45

13.49 Find the node voltages in the circuit shown in Fig. 13-46.
Ans. V= —126/206"V, V,= -225/—-189"V, V,= —-463/409"V

[CHAP. 13
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0s oy

A\ 1 Vi \ /!

24[35° A 6S J- j8s 85 -j12s 32/-10° A
__L < -
Fig. 13-46

13.50 Solve for the node voltages of the circuit shown in Fig. 13-47.
Ans. V, =175/509"V, V,=247/-246"V, V,=153/236"V

0490
——AAA—

15/-50° A

Era SR

-j02 0 == 0.25 0 020 10/10° A

1
Fig. 13-47

13.51 For the circuit shown in Fig. 13-48, find V as a function of I, and then find V as a numerical value.

Ans. V =(—687 x 10°/29.5), V = —995/688°V

400 0 I 200 Q —§200 0
. £ £ A
-~ LAY +
j1.6 k)
0.5/10°V G) 0.05v 61 2k \4
1.2 kQd
B -
Fig. 13-48
13.52 Solve for I in the circuit shown in Fig. 13-49.
Ans. —253/34 A
020 -jo4 0
-ll [AY
32/-55°V j0.25 0 21 025 Q

Fig. 13-49
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In Probs. 13.53 through 13.58, given the specified PSpice circuit files, determine the output phasor voltages
or currents without using PSpice.

Ans.

Ans.

Ans.

Ans.

772/ -345° A

1.94/35.0° A

744/ -29.7°V

4.64/13.0°V

CIRCUIT FILE FOR PROB. 13.53

Vi 10 AC 60 -10

Rl 12 16

L1 2 0 24

Cl1 2 3 31.25M

V2 30 AC 240 50

.AC LIN 1 0.159155 0.159155
.PRINT AC IM(R1l) IP(R1)

. END

CIRCUIT FILE FOR PROB. 13.54
Vi 10 AC 10 50

Rl 12 3

L1 23 4

R2 34 5

€l 45 0.166667

V2 0S5 AC 8 =30

R3 36 7

L2 6 7 8

Vi 70 AC 12 20

.AC LIN 1 0.159155 0.159155
.PRINT AC IM(R2) IP(R2)
.END

CIRCUIT FILE FOR PROB. 13.55
I1 01 AC 6

RL 10 1

C1 12 0.25

RZ 20 2

12 02 AC 6 -90

.AC LIN 1 0.31831 0.31831
.PRINT AC VM(1) VP(1)

.END

CIRCUIT FILE FOR PROB. 13.56
Vi 01 AC =5 30

Rl 12 4

R2 23 6

El 30 40 2

Cl1 2 4 0.5

F1 40 V1 1.5

R3 4 0 10

.AC LIN 1 0.159155 0.159155

.PRINT AC VM(2) VP(2)

.END
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13.57 CIRCUIT FILE FOR PROB. 13.57

vi 1 0 AC 2 30

R1 1 2 2K

Cl 2 3 0.25M

R2 3 0 10MEG

R3 3 4 4K

cC2 45 0.2M

El 50 0 3 1E6

.AC LIN 1 0.159155 0.159155
.PRINT AC VM(5) VP(5)

.END
Ans. 286/ —138°V

13.58 CIRCUIT FILE FOR PROB. 13.58
vi 1 0 AC 8
Rl 1 0 10MEG
R2 2 0 4K
L1 23 1
El 03 21 1Eé6
R3 3 4 5K
Cl 4 0 0.25U0

.AC LIN 1 318.31 318.31
.PRINT AC IM(E1) IP(E1)
.END

Ans. 3.34/218°mA

(3%



Chapter 14

AC Equivalent Circuits, Network
Theorems, and Bridge Circuits

INTRODUCTION

With two minor modifications, the dc network theorems discussed in Chap. 5 apply as well to ac
phasor-domain circuits: The maximum power transfer theorem has to be modified slightly for circuits
containing inductors or capacitors, and the same 1s true of the superposition theorem if the time-domain
circuits have sources of different frequencies. Otherwise, though, the applications of the theorems for ac
phasor-domain circuits are essentially the same as for dc circuits.

THEVENIN'S AND NORTON'S THEOREMS

In the application of Thévenin's or Norton's theorems to an ac phasor-domain circuit, the circuit
is divided into two parts, A and B, with two joining wires, as shown in Fig. 14-1«. Then, for Thévenin's
theorem applied to part A, the wires are separated at terminals « and h, and the open-circuit voltage
Vin. the Thévenin voltaye, 1s found referenced positive at terminal g, as shown in Fig. 14-1h. The next
step, as shown in Fig. 14-1¢, is to find Thérenin's impedance 2o, of part A at terminals ¢ and b. For
Thévenin's theorem to apply, part A must be linear and bilateral, just as for a dc circuit.

There are three ways to find Z,,. For one way, part A must have no dependent sources. Also,
preferably. the impedances are arranged in a series-parallel configuration. In this approach, the
independent sources in part A are deactivated, and then Z,, is found by combining impedances and
admittances—that is, by circuit reduction,

If the impedances of part 4 are not arranged series-parallel, it may not be convenient to use circuit
reduction. Or, it may be impossible, especially if part 4 has dependent sources. In this case, Z, can

a a a
o ————o0+ ———o0
z
A B A Vi A -—
b b b
- o0 —— | - )
(a) (b) (c)
a ‘L’ a a
+
A Vr g A Vr Ir A VSC
b T b A
— O b
(d) (e) (§2)
1 : .
| — -
Vi Zn B In = Isc Zm, B
b b
(g) (h)
Fig. 14-1

294
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be found in a second way by applying a voltage source as shown in Fig. 14-1d or a current source as
shown in Fig. 14-l¢, and finding Z., = V, I,. Often. the most convenient source voltage is V=
1/0° V  and the most convenient source current is 1, = 1/0 A.

The third way to find Zy, is to apply a short circuit across terminals @ and b, as shown in Fig.
14-1f, then find the short-circuit current Ig.. and use it in = Zq, = V. Ise. Of course, ¥V, must also be
known. For this approach, part 4 must have independent sources. and they must not be deactivated.

In the circuit shown in Fig. 14-1y. the Thévenin equivalent produces the same voltages and currents
in part B that the original part 4 does. But only the part B voltages and currents remain the same: those
in part A almost always change. except at the ¢ and b terminals.

For the Norton equivalent circuit shown in Fig. 14-1)i, the Thévenin impedance is in parallel with
a current source that provides a current up that is equal to the short-circuit current down in the circuit
shown in Fig. 14-1f. The Norton equivalent circuit also produces the same part B voltages and currents
that the original part 4 does.

Because of the relation  Vq = L Zyq,. any two of the three quantities V. Ig. and Zq, can be
found from part 4 and then this equation used to find the third quantity if it is needed for the application
of either Thévenin's or Norton's theorcmn. Obviously. PSpice can be used to obtain the needed two
quantities, one at a time, as should be apparent. However, the . TF feature explained in Prob. 7.5 cannot
be used for this since its use ts hmited to dc analyses.

MAXIMUM POWER TRANSFER THEOREM

The load that absorbs maximum average power from a circuit can be found from the Thévenin
equivalent of this circuit at the load terminals. The load should have a reactance that cancels the reactance
of this Thévenin tmpedance because reactance does not absorb any average power but does limit the
current. Obviously, for maximum power transfer, there should be no reactance limiting the current flow
to the resistance part of the load. This. in turn. means that the load and Thévenin reactances must be
equal in magnitude but opposite in sign.

With the reactance cancellation. the overall circuit becomes essentially purely resistive. As a result,
the rule for maximum power transfer for the resistances is the same as that for a dc circuit: The load
resistance must be equal to the resistance part of the Thévenin impedance. Having the same resistance
but a reactance that differs only in sign, the load impedance for maximun power transfer is the conjugate
of the Thévenin impedance of the circuit connected to the load: 1, = 7.¥,. Also. becausc the overall
circuit is purely resistive, the maximum power absorbed by the load i1s the same as for a dc circuit:
V3,:4R¢,, in which Vy, is the rms value of the Thévenin voltage Vo, and Ry, is the resistance part of Zy,,.

SUPERPOSITION THEOREM

If, in an ac time-domain circuit, the independcnt sources operate at the swme frequency. the
superposition theorem for the corresponding phasor-domain circuit is the same as for a dc circuit. That
15, the desired voltage or current phasor contribution is found from each individual source or combination
of sources, and then the various contributions are algebraically added to obtain the desired voltage or
current phasor. Independent sources not involved in a particular solution are deactivated. but dependent
sources are left in the circuit.

For a circuit in which all sources have the saume frequency, an analysis with the superposition theorem
is usually more work than a standard mesh. loop. or nodal analysis with all sources present. But the
superposition theorem is essential if a time-domain circuit has inductors or capacitors and has sources
operating at different frequencics. Since the reactances depend on the radian frequency. the same
phasor-domain circuit cannot be used for all sources if they do not have the same frequency. There must
be a different phasor-domain circuit for each diflerent radian frequency, with the differences being in the
reactances and in the deactivation of the various independent sources. Preferably, all independent sources
having the same radian frequency are considered at 4 time, while the other independent sources are
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deactivated. This radian frequency is used to find the inductive and capacitive reactances for the
corresponding phasor-domain circuit, and this circuit is analyzed to find the desired phasor. Then, the
phasor is transformed to a sinusoid. This process is repeated for each different radian frequency of the
sources. Finally, the individual sinusoidal responses are added to obtain the total response. Note that
the adding is of the sinusoids and not of the phasors. This is because phasors of different frequencies
cannot be validly added.

AC Y-A and A-Y TRANSFORMATIONS

Chapter 5 presents the Y-A and A-Y transformation formulas for resistances. The only difference
for impedances is in the use of Z's instead of R's. Specifically, for the A-Y arrangement shown in Fig.
14-2, the Y-to-A transformation formulas are

_tals+ Lo+ Tl LaZpH 242+ 2l Zalst Ll 142

y/
' Zy Z. } Z,

and the A-to-Y transformation formulas are
7,7, 7,7, 7.7,

7 - - ARt 7 it S 7. it bk
Y2+ 7,+ 7, B ¢

2, +7,+ 7, 2, +2,+7,

The Y-to-A transformation formulas all have the same numerator, which is the sum of the different
products of the pairs of the Y impedances. Each denominator is the Y impedance shown in Fig. 14-2
that is opposite the impedance being found. The A-to-Y transformation formulas, on the other hand,
have the same denominator, which is the sum of the A impedances. Each numerator is the product of
the two A impedances shown in Fig. 14-2 that are adjacent to the Y impedance being found.

If all three Y impedances are the same Z,, the Y-to-A transformation formulas are the
same: Z, = 3Z,. And if all three A impedances are the same Z,, the A-to-Y transformation formulas are
the same: Z, =Z,/3

Z 2,
Z Zx
Fig. 14-3

AC BRIDGE CIRCUITS

An ac bridge circuit, as shown in Fig. 14-3, can be used to measure inductance or capacitance in
the same way that 2 Wheatstone bridge can be used to measure resistance, as explained in Chap. 5. The
bridge components, except for the unknown impedance Z,, are typically just resistors and a capacitance
standard a capacitor the capacitance of which is known to great precision. For a measurement, two
of the resistors are varied until the galvanometer in the center arm reads zero when the switch is closed.
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Then the bridge is balanced. and the unknown impedance Zy can be found from the bridge balance
equation Zy = Z,7Z,'Z,, which is the same as that for a Wheatstone bridge except for having Z’s
instead of R’s.

Solved Problems

In those Thévenin and Norton equivalent circuit problems in which the equivalent circuits are not
shown, the equivalent circuits are as shown in Fig. 14-1¢ and h with V, referenced positive at terminal a
and Iy =I5 referenced toward the same terminal. The Thévenin impedance is, of course, in series
with the Thévenin voltage source in the Thévenin equivalent circuit, and is in parallel with the Norton
current source in the Norton equivalent circuit.

141 Find Z¢,, V., and I for the Thévenin and Norton equivalents of the circuit external to the load
impedance Z,; in the circuit shown in Fig. 14-4.

60 -4 g
1/30° V 80 Z
b
Fig. 14-4

The Thévenin impedance Zy, is the impedance at terminals ¢ and b with the load impedance removed
and the voltage source replaced by a short circuit. From combining impedances.

88

= —j4 +48/3687 =4/-1626 Q
6+ /8

Zy, = —j4+

Although either V1, or I can be found next, V1, should be found because the — j4-Q series branch makes
I more difficult to find. With an open circuit at terminals a and b, this branch has zero current and so zero
voltage. Consequently, V, is cqual to the voltage drop across the j8-Q impedance. By voltage division,

8 8/120°
Vin = 2= x 1/30 020 _ o 4/6687 v

6+,8 10/531%

Finally,

V., 08/66.87

T Z,, 4/-16.26

=02/831 A

N

142 If in the circuit shown in Fig. 14-4 the load is a resistor with resistance R, what value of R causes
a 0.1-A rms current to flow through the load?

As is evident from Fig. 14-1¢, the load current is equal to the Thévenin voltage divided by the sum of
the Thévenin and load impedances:
vrh_ vTh

I = - from which Zy+2, = -
2, +Z, L
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Since only the rms load current is specified, angles are not known, which means that magnitudes must
be used. Substituting V4, = 0.8V from the solution 10 Prob. 14.1,
brin 08
2y, + 2,1 = = =
R

8Q
Also from this solution, Zy, = 4/—16.26 Q. So.
14/ —16.26 + R| =8 or |3.84 —jl1.12 + R| =8

Because the magnitude of a complex number is equal to the square root of the sum of the squares of
the real and imaginary parts,

LB R+ (112 =8
Squaring and simplifying,

R* + 7.68R + 16 = 64 or R* + 768R —48 =0
Applying the quadratic formula,
~768 & | T.68% —4(—48)  -T.68 + 1584

2 bl

The positive sign must be used to obtain a physically significant positive resistance. So.

—7.68 + 1584
R=- -------=4080Q
2
Note in the solution that the Thévenin and load impedances must be added before and not after the
magnitudes are taken. This is because |Zy,| + |Z,| # 2, + Z ..

143 Find Z,,, Vyy,. and I for the Thévenin and Norton cquivalents of the circuit shown in Fig.

14-5.
30 20
Y\ o ~O a
o= -4 0 3/60° A 40
. —ob
Fig. 14-5

The Thévenin impedance Z, is the impedance at terminals ¢ and b with the current source replaced
by an open circuit. By circuit reduction,
402 + 3 —j4) (3 — j4)

Zoy=4i[2+31(—j4] =
I

Multiplying the numerator and denominator by 3} — j4 gives
4023 — j4) — ji2 40/ —36.87 .
o 26— =] A0 JOBT 4609 g
4+ 233 -4 —j12 297/--47.73 —

The short-circuit current is easy to find because. if a short circuit is placed across terminals « and b
all the source current flows through this short circuit: Iy = Iy = 3@ A. None of the source current can
flow through the impedances because the short circuit places a zero voltage across them. Finaily,

Vi = IgZy, = (3/60 (1.35/10.9 ) = 404/709 V
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144 Find Z.,. Vy,,. and I for the Thévenin and Norton equivalents of the circuit shown in Fig. 14-6.

14.5

100 O j3n

D

40/60° V

Ib

Fig. 14-6

The Thévenin impedance Z, 1s the impedance at terminals ¢ and h. with the current source replaced
by an open circuit and the voltage source replaced by a short circurt. The 100-€2 resistor is then in series
with the open circuit that replaced the current source. Consequently. this resistor has no effect on Z,,,. The
j3- and 4-Q impedances are placed across terminals ¢ and b by the short circuit that replaces the voltage
source. Asaresult. Zp, =4+ /3 =5369Q.

The short-circuit current I = Iy will be found and used to obtain Yy, Il a short circuit is placed
across terminals ¢ and h. the current to the right through the j3-Q impedance 18

40/60  40/60

4435369

8/231 A

because the short circuit places all the 4()L(>_(_) V of the voltage source across the 4- and j3-Q impedances.
Of course, the current to the right through the 100-Q resistor is the 6/_22 -A source current. By KCL applied
at terminal a, the short-circuit current is the difference between these currents:

e =10=6/20 — 8231 =204/ - 1476 = — 204324 A
Finally, Vin=WZ: = (- 204324 K5/36.9 )= — 102693 V

The negative signs for 1 and V|, can. of course, be eliminated by reversing the references  that is. by having
the Thévenin voltage source positive toward terminal b and the Norton current directed toward terminal b,

As a check. Vqy can be found from the open-circuit voltage across terminals a and b. Because of this
open circuit, all the 6&) -A source current must flow through the 4- and j3-Q impedances. Consequently,
from the right-hand half of the circuit, the voltage drop from terminal a to b is

Vi, = (6/20 X4 + j3) — 40/60 = 30/56.9 — 40°60 =102/ —110.7 = —10.2/69.3 V

L L

which checks.

Find Z;, and V, for the Thévenin equivalent of the circuit shown in Fig. 14-7.

40 -j4 Q i5Q 3N
I
ANN——— [T IW
a

2030° V b L 15/-45° V
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The Thévenin impedance Zy, can be found easily by replacing the voltage sources with short circuits
and finding the impedances at terminals « and b. Since the short circuit places the nght- and left-hand haives
of the circuit in parallel.

(4-/’4)(? +j5) 1’+i8 32.98/14.04

7. =T T T e =466/591 Q
m 7.07/8.13 [391

—14 +34j5 T+
A brief inspection of the circuit shows that the short-circuit current is easier to find than the open-circuit
voltage. This current from terminal « to b s
20730 15
I =1, -1, _A,L_, — Lt-_ 3.54/75 —2.57/-104 =6.11/754 A
4-—j4 3+j5
Finally, Vin = looZy, = (6.11/75.4 §4.66/591) = 28.5/81.3 V

146 Find Z;, and Vq, for the Thévenin equivalent of the circuit shown in Fig. 14-8.

30

200/~50° V L 20

—O b

Fig. 14-8

If the voltage source is replaced by a short circuit, the impedance Z,,, at terminals ¢ and b 1s, by circuit
reduction,

Zo =203 +j6 5 < D FWOO O oo g
m= s 24345605 + 6y T

The Thévenin voltage can be found from I,, and I, can be found from mesh analysis. The mesh equations
are, from the self-impedance and mutual-impedance approach,

(S +jo)l, — jol, =200/ - 50
—j6l, +(5+jo), =0
If Cramer’s rule is used to obtain 1. then

5+ j6 200/ 50

i 0 ’ (= j6K200/—507) 1200
J _ —(—JOH200/ =50 /—'—1846—27 A

l) = =
i 15 +j6 -6 (5 +j6) — (—j6)*  65/674
—j6 5+ j6
And Vin =21, = 21846/ 274 ) =369/-274 V

14.7 Find Zy, and 1 for the Norton equivalent of the circuit shown in Fig. 14-9.

When the current source is replaced by an open circuit and the voltage source 1s replaced by a short
circuit, the impedance at terminals « and b is

5(—j8) 20

- — 72
Zo=4+> =" 12992/ 1648° 02

5—Jj8 5—-j8

Because of the series arm connected to terminal ¢ and the voltage source in it, the Norton current is
best found from the Thévenin voltage and impedance. The Thévenin voltage is equal to the voltage drop
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6/—-40° V
40 (=40
AN @—oa

430° A 50 :f -8

—ob

Fig. 14-9

across the parallel components plus the voltage of the voltage source:

5(—j8
Var = 2 L 4730 4 6/—a0 = 22/—1167 V
5-18
v 22/-11.67
And L e T I

Nz 792/-1648 T
148 Find Z;, and V, for the Thévenin equivalent of the circuit shown in Fig. 14-10.

20 Q I j25 0
h—t Y'Y g

120/40° V 1]: -j30 0 6/50° A 40

O b

Fig. 14-10

301

When the voltage source is replaced by a short circuit and the current source by an open circuit, the

admittance at terminals @ and b is

1 |

— 4+ — = 4 = ——- = 0025 +70.0333 + 0.0195 - j0.0244 = 0.0454/11.36 S

40 —j30 20 + 25
The inverse of this is Zq,,:

1
™ 70.0454/11.36

Because of the generally parallel configuration of the circuit, it may be better not to find Vy, directly,
but rather to obtain Iy first and then find Vy, from V4, = IyZy,. If a short circuit is placed across terminals
a and b, the short-circuit current is 1+ 6/50 since the short circuit prevents any current flow through
the two parallel impedances. The current 1 can be found from the source voltage divided by the sum of the

series impedances since the short circuit places this voltage across these impedances:

120/40
I=—- - L = —375/-113 A

20 + 425
And so Iy =1+46/50 = —3.75/=11.3 +6/50 = 534/88.05 A
Finally, Vo, = I Zpy = (5.34/88.05 K22/ —11.36 } = 118/76.7 V

14.9  Using Thévenin’s or Norton's theorem. find I in the bridge circuit shown in Fig. 14-11if I3 =0 A.

Since the current source produces 0 A, 1t is equivalent to an open circuit and can be removed from the
circuit. Also, the 2-Q and j3-Q impedances need 1o be removed in finding an equivalent circuit because these
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12030° V

1?4
\J

Fig. 14-11

are the load impedances. With this done, Z, can be found after replacing the voltage source with a short

circuit. This short circuit places the 3-Q and j5-Q impedances in parallel and also the - j4-Q and 4-Q

impedances in parallel. Since these two parallel arrangements are in series between terminals ¢ and b,
35 M-

Zon =315+ 4l(—jd) = - + — 17=2572/30.96 + 2828/ —45 =426/ -9.14 Q
3445 44 b= —

The open-circuit voltage is easier to find than the short-circuit current. By KVL applied at the bottom
half of the bridge, V, is equal to the difference in voltage drops across the j5- and 4-Q impedances. which
drops can be found by voltage division. Thus,

J5

Vi, =
Th 34

4 ; ,
x 120/30 — x 120/30 =29.1/16 V
5 4 —jd
As should be evident from the Thévenin discussion and also from Fig. 14-1¢, I is equal to the Thévenin
voltage divided by the sum of the Thévenin and load impedances:

20.1/16 ,
— <439/ 45 A

1= — -7
426/-9.14 + 2+ 3 —

Find I for the circuit shown in Fig. 14-11if 13 =10/—-50 A,

The current source does not affect Zy,. which has the same value as found in the solution to Prob.
149: Z;, = 4.26/—9.14°Q. The current source does, however. contribute to the Thévenin voltage. By
superposition, it contributes a voltage equal to the source current times the impedance at terminals ¢ and
b with the load replaced by an open circuit. Since this impedance is Zg,. the voltage contribution of the
current source is  (10/—50 X4.26/ —9.14") = 42.6/—-59.1 V. which is a voltage drop from terminal b to
a because the direction of the source current is into terminal b. Consequently. the Thévenin voltage is. by
superposition, the Thévenin voltage obtained in the solution to Prob. 14.9 minus this voltage:

Vo, =29.1/16 —426/-59.1 =45/82.1 V

v, 45/82.1 45/82.1
and =" = —-L— — = e 2 679/61.6 A
Zy+Z, 426/=9.14 +(2+/3) 663/205 B

Find the output impedance of the circuit to the left of terminals 4 and b for the circuit shown in
Fig. 14-12.
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14.12

in -j2 0

a
NWN——f——o—
\ *
1.5V, 40 Vo 10 A
b
Fig. 14-12

The output impedance is the same as the Thévenin impedance. The only way of finding Zy, is by
applying a source and finding the ratio of the voltage and current at the source terminals. This impedance
cannot be found from Z,, = V, I because V, and Iy are both zero since there are no independent
sources to the left of terminals ¢ and h. And, of course, circuit reduction cannot be used because of the
presence of the dependent source. The most convenient source to apply is a l@°-A current source with a
current dircction into terminal a, as shown in Fig. 14-12. Then, Z;, = V,,,,/l@“ =V,

The first step in calculating Z,, is to find the control voltage V. Itis V, = —(—j2)(1L°) =j2V, with
the initial negative sign occurring because the capacitor voltage and current references are not associated
(The 170°-A current is directed into the negative terminal of V,.). The next step is to find the current flowing
down through the j4-© impedance. This is the 1/0°-A current from the independent current source plus
the 1.5V, = 1.5(;2) = j3-A current from the dependent current source, a total of 1 + j3 A. With this
current known, the voltage V,, can be found from the sum of the voltage drops across the three impedances:

Vo= U/0X3 =2+ (1 +j3(jA) =3 -2 +j4—12=-9+2V

which, as mentioned. means that Zy, = —9 + j2 Q. The negative resistance (—9 ) is the result of the
action of the dependent source. In polar form this impedance is

Z,,=—9+,2=922/167.5 = -922/-125 Q

Find Z, and I for the Norton equivalent of the circuit shown in Fig. 14-13.

v

6 () 40

—A\NV ro- a
+ v -
1
50/-45° V 80

—Ob

Fig. 14-13

Because of the series arm with dependent source connected to terminal a, ¥V, is easier to find than I.
This voltage is equal to the sum of the voltage drops across the j8- impedance and the 3V, dependent
voltage source. (Of course, the 4-Q resistor has a 0-V drop.) It is usually best to first solve for the controlling
quantity, which here is the voltage V, across the 6-Q resistor. By voltage division,

6 ] ]
V,=——— x 50/=45" =30/-98.1" V
6+ 8

Since there is a 0-V drop across the 4-Q resistor, KVL applied around the outside loop gives
Vi, =50/—45 —V, — 3V, =50/-45 — 430/ —98.1 } = 98.49/5791° V

The Thévenin impedance can be found by applying a current source of 1@‘ A at terminals ¢ and b, as
shown in the circuit in Fig. 14-14, and finding the voltage V,,. Then, Z, = Vn,,,/l@' = V,,. The control
voltage V, must be found first, as to be expected. It has a different value than in the V4, calculation because
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60 1 40
e AVAVAY.
+ v) -
8 q 1o A
Fig. 14-14 b

the circuit is different. The voltage V, can be found from the current 1 flowing through the 6-Q resistor
across which V| is taken. Since the 6- and j8-Q impedances are in parallel, and since ]@ A from the current
source flows into this parallel arrangement, I is, by current division,

Jj8
I=-"--x1/0 =08/369 A
6+ /8 Z_
And, by Ohm's law,
V,=-6l= —6(0.8/36.9 )= —4.8/369 V

The negative sign is needed because the V, and I references are not associated.
With V| known, V,, can be found by summing the voltage drops from terminal ¢ to terminal b:

V= —3—48/369 ) +(1/0 X4) — (~4.8/369 ) = 22.53/30.75 V

from which Z, = 22.53/30.75 Q.

 Vy,  98.49/5791

Finally, I = =1l TE== = 437/272 A
Z,, 2253/30.75
Find Z, and I for the Norton equivalent of the transistor circuit shown in Fig. 14.15.
k0 B c —i10ka
o0 IL o
' -0—— Oa
0.3/10° V l'ﬂ 501 10 k(2 2k0
E
L ; -O— . - . 0 b

Fig. 14-15

The Thévenin impedance Z,, can be found directly by replacing the independent voltage source by a
short circuit. Since with this replacement there is no source of voltage in the base circuit, 1, =0A and
so the 501, of the dependent current source is also 0 A. And this means that this dependent source is
equivalent to an open circuit. Notice that the dependent source was not deactivated, as an independent
source would be. Instead, it is equivalent to an open circuit because its control current is 0 A. With this
current source replaced by an open circuit, Zy, can be found by combining impedances:

2000(10 000 — /10 000)

Ze L = 181/=519 kQ

= 2000 + 10000 — /10 000

The current I can be found from the current flowing through a short circuit placed across terminals
a and b. Because this short circuit places the 10-kQ and —j10-kQ impedances in parallel, and since I, is the
current through the —;j10-kQ} impedance, then by current division Iy is

10 000 — 501,
— e x 50l = - —— ——-
10000 — j10 000 2/—45

I =
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The initial negative sign is necessary because both 501, and Iy have directions into terminal b. The 2-kQ
resistance across terminals a and b does not appcar because it is in parallel with the short circuit.
From the base circuit,

0.3/10
Iy = == A=015/10 mA
2000
—50¢0.15/10
Finally, Iy =— —_( —)A) = — 5.3/5_5 mA
< 2/-45

14.14. Use PSpice to obtain the Thévenin equivalent of the circuit of Fig. 14-16.

—j16Q
IL
1t
00 14 Q) 1,
AN~ MN——= 0 a
+
Vo
20/ —14°V v, 2, 10Q = —18Q
* - -O b
Fig. 14-16

In general, using PSpice to obtain a Thévenin equivalent involves running PSpice twice to obtamn
two of the three quantities V4. Ry, and 1. It docs not matter. of course. which two are found.

Figure 14-17 shows the corresponding PSpice circuit for determining the open-circuit voltage. Following
is the circuit file along with the open-circuit voltage from the output lile.

CIRCUIT FILE FOR THE CIRCUIT OF FIG. 14-17

vi 1 0 AC 20 -40
Rl 12 20

R2 2 3 14

v2 3 4

El 40 50 3

Cl 2 5 0.0625

F1 50 V2 2

R3 50 10

c2 5 0 0.125

.AC LIN 1 0.159155 0.159155
.PRINT AC VM(5) VP(5)
.END

khkkdkkhdhhdhhhkhhkhhhkhhkhbkhkhkhkkhkhkhkhk kA hRARAARA Ak kb hhhhhkdhhhdhhhkhhkhkhkhkhkkkk

*okkk AC ANALYSIS
hkhhkkk kA hkdkkkhkkhkhkkkhkhhkkhkkkkkh ko ke hkkkhkhrh ke hhkkhhkkkh

FREQ VM(5) VP(5)
1.592E-01  9.043E+00 ~7.107E+01

So. Vi, =9.043/—-71.07 V.
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1

—Q u
+

Vo,

.

21, R3 e ¢ ~ G125 F

ta
Ay

Fig. 14-17

Obtaining 7, dircetly requires deactivating the independent voltage source. which in turn requires
changing the node 1 specification of resistor R to node 0. Also. a current source of 170 A can be applied
at the a-b terminals with the current directed into node a. Then, the voltage across this source has the same
numerical value as Z . Following is the moditied circuit file along with the source voltage from the output
file.

CIRCUIT FILE FOR THE CIRCUIT OF FIG. 14-17, MODIFIED
Rl 0 2 20

R2 2 3 14

ve 3 4

El 40 50 3
Cl 2 5 0.0625
F1 5 0 V2 2
R3 50 10

c2 5 0 0.125
I1. 05 AC 1

.AC LIN 1 0.159155 0.159155
.PRINT AC VM(5) VP(5)
.END

AAA AR A KAAR KA AR A AR AR AR A AR AR A A A AR AARA AR AR A A AR AR AR AR AR AR A A A A A A Ak hh k&

* ke % AC ANALYSIS
Ak kAR R KRR IR AR IR AR AR R Ak Ak kR khkkkhkkkhhhkhhkhhhhhhkkhkkhhkkhhhkhk

FREQ VM(5) VP(5)
1.592E-01 7.920E+00 -1.602E+02

So. Zy, = 7920/ -1602 Q.

What is the maximum average power that can be drawn from an ac generator that has an internal
impedance of 150;60 Q and an rms open-circuit voltage of 12.5kV? Do not be concerned
about whether the generator power rating may be exceeded.

The maximum average power will be absorbed by a load that is the conjugate of the internal impedance.,
which is also the Thévenin impedance. The formula for this power is P, = F'i, 4Ry, Here. 1y, =
125kV and Ry, = 150cos 60 = 75Q. So,

(12.5 x 10

Po = W = 521 kW
H75)

mix

A signal generator operating at 2 MHz has an rms open-circuit voltage of 0.5V and an internal
impedance of 50/30 Q. If it energizes a capacitor and parallel resistor. find the capacitance and
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resistance of these components for maximum average power absorption by this resistor. Also.
find this power.

The load that absorbs maximum average power has an impedance Z, that is the conjugate of the
internal impedance of the generator. So. Z, = 50/ —30 Q since the conjugate has the same magnitude
and an angle that differs only in sign. Being in parallel, the load resistor and capacitor can best be determined
from the load admittance. which is

l

Y, - = =002/30 S =173 +;10mS
7, S0/=30 —
But Y, =06+ joC in which o =2nf =2r(2 x 10°)rad’s = 12.6 Mrad’s
1
So G=-=173mS from which R=-—-——— =5770Q
R 173 x 1073
. o 10 x 1073
and JooC = j(12.6 x 10°C = j10 x 10 *S from which C=———F =79 pF
12.6 x 10°

The maximum average power absorbed by the 57.7-Q resistor can be found from P, = Vi /4Ry,

in which Ry, is the resistance of  50/30 =433 + j25Q:

max

05?2
= - W=144mW
4(43.3)

Of course, 43.3 Q is used instead of the 57.7 Q of the load resistor because 43.3 Q is the Thévenin resistance

of the source as well as the resistance of the impedance of the parallel resistor-capacitor load.

14.17 For the circuit shown in Fig. 14-18. what load impedance Z; absorbs maximum average power,
and what is this power?

20

I—jSﬂ

Fig. 14-18

The Thévenin equivalent of the source circuit at the load terminals is needed. By voltage division,

4428
Vi = - aa0/300 = 2377/ —423' v

4 +j2—j8+3+j8
The Thévenin impedance is

(3+ j8K4 +j2 — j8) 60 + j14

Z., —— - =846/-2381 Q

T3 j8r44 28 T+)2

For maximum average power absorption, Z, = Z%, = 8.46/2.81° Q, the resistive part of whichis R, =
8.46 cos 2.81 = 8.45 Q. Finally, the maximum average power absorbed is

vi o 23172
P =TT W= L6TKW

p = _" _
4Ry, 4845

max
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14.18 In the circuit shown in Fig. 14-19, find R and L for maximum average power absorption by the

parallel resistor and capacttor load, and also find this power.

A good first step is to find the load impedance. Since the impedance of the capacitor is

_ —jl B —jl

X = - e T e = —10Q
wC  10%0.1 x 1079
the impedance of the load is
8(—j10) .
L= - =488 —j39Q
8 - j10

Since for maximum average power absorption there should be no reactance limiting the current to the
resistive part of the load. the inductance L should be selected such that its inductive reactance cancels the
capacitive reactance of the load. So, oL =39 Q. fromwhich L =39 10°H = 39 uH. With the cancella-
tion of the reactances, the circuit is cssentially the voltage source. the resistance R. and the 4.88 Q of the
load, all in series. As should be apparent, for maximum average power absorption by the 4.88 Q of the load.
the source resistance should be zero: R = 0. Then, all the source voltage is across the 4.88 Q and the
power absorbed is

P ==
max 4.88

Notice that the source impedance is not the conjugate of the load impedance. The reason is that here
the load resistance is fixed while the source resistance 1s a vaniable. The conjugate result occurs in the much
more common situation in which the load mmpedance can be varied but the source impedance is fixed.

3o
- LYY Y\
R L
S Y g 1
40 s[=50° v
+
45 cos (10% + 30°) V 0.1 uF 80 Y
T 6/30° V i 20
Fig. 14-19 Fig. 14-20

14.19 Use superposition to find V in the circuit shown in Fig. 14-20.

The voltage V can be considered to have a component V' from the 6@ -V source and another
component V” from the 5{'750 -V source such that ¥V =V’ + V" The component V' can be found by
using voltage division after replacing the 5/— 50 -V source with a short circuit:

243 , ,
= x 6/30 =3.22/59.7 V

2+j3+4
Similarly. V" can be found by using voltage division after replacing the 6@ -V source with a short circuit:

4 ,
Vo= % §5/—50 =298/-766 V
2+73+4

Adding. V=V + V' =322/597 +298/-766 =232/-282 V
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14.20 Use superposition to find i in the circuit shown in Fig. 14-21.

2mH
T
4V/7 sin 1000t A 4Q 10VvT cos (1000t — 25°) V
Fig. 14-21

It is necessary to construct the corresponding phasor-domain circuit. as shown in Fig. 14-22. The current
I can be considered to have a component I' from the current source and a component I from the voltage
source such that I =1+ I". The component I' can be found by using current division after replacing the

voltage source with a short circuit:

4
I'=——— x4/0 =358/-266 A
4+ 2

And I can be found by using Ohm’s law after replacing the current source with an open circuit:

10/65
"= — L = —224/384 A
4452 —

The negative sign is necessary because the voltage and current references are not associated. Adding.

I=1+1"=358/-266 —224/384 =332/—-642 A

Finally, the corresponding sinusoidal current is

= 2(3.32)sin (10000 — 64.2 ) = 4.7 sin (1000 — 64.2 ) A

20 1
Faa s o Wil d
4@° A 40 10&5“ \Y%
Fig. 14-22

14.21 Use superposition to find i for the circuit shown in Fig. 14-21 if the voltage of the voltage source
is changed to 10,2 cos (2000t — 25} V.

The current i can be considered to have a component i’ from the current source and a component
from the voltage source. Because these two sources have different frequencies. two different phasor-domain
circuits are necessary. The phasor-domain circuit for the current source is the same as that shown in Fig.
14-22, but with the voltage source replaced by a short circuit. As a result, the current phasor I' is the same
as that found in the solution to Prob. 14.20: I' = 3.58/—26.6 A. The corresponding current is

i = 2(3.58) sin (10001 — 26.6 ) = 5.06 sin (10001 — 26.6 ) A
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The phasor-domain circuit for the voltage source and o = 2000 rad s is shown in Fig. 14-23 By
Ohm’s law,

10,65

= - = -1.77°20 A
4+ j4 —
from which "=\ '2( — L7 sin (20000 + 200) = - 238 (20001 + 20 ) A
Finally. P H =500 (10000 — 26.6 ) - 2.55in (20000 + 20 ) A

Notice in this solution that the phasors I' and 17 cannot be added. as they could be in the solution to
Prob. 14-20. The reason is that here the phasors are for different frequencies, while in the solution to Prob.
14.20 they are for the same frequency. When the phasors are for different frequencies, the corresponding
sinusoids must be found first. and then these added. Also. the sinusoids cannot be combined into a single term.

40 I in 1 mH 510
YN\ Y Y .
40 10/65° V G) 3V/2 sin (90001 + 10°) V 4V72 sin (6000t — 15°) V
4V
—i[+
Fig. 14-23 Fig. 14-24

Although superposition does not usually apply to power calculations, it does apply to the
calculation of urerage power absorbed when all sources are sinusoids of different frequencies. (A
dc source can be considered to be a sinusoidal source of zero frequency.} Use this fact to find
the average power absorbed by the 5-Q resistor in the circuit shown in Fig. 14-24.

Consider first the dec component of average power ubsorbed by the 5-Q resistor. Of course, for this
calculation the ac voltage sources are replaced by short circuits. Also, the inductor is replaced by a short
circuit because an inductor is a short circuit to de. So.

4
= =05A
3+5

I

du

This 0.5-A current produces a power dissipation in the 5-Q resistor of Py, = 0.5345) = 1.25 W,
The rms current from the 6000-rad s voltage source 1s. by superposition.

4,151 4

= =04A
3 +j6+ 5 10

1(‘00() =

It produces a power dissipation of P, = 0.47(3) = 0.8 W in the 5-€ resistor. And the rms current from
the 9000-rad s voltage source is

13/10 |

- = 0249 A
349 +5) 1204

,ouml =
1t produces a power dissipation of P4, = 0.249%(5) = 0.31 W in the 5-Q resistor.
The total average power P, absorbed is the sum of these powers:

P, =Py + Pogoo + Pogoo = 125 + 08 + 031 =236 W

av

14.23 Use superposition to find V¥ in the circuit shown in Fig. {4-25
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210
1 30 —"V\VN\—
] [
15[30° V 40 31 v 5(-45° A

Fig. 14-25

If the independent current source is replaced by an open circuit. the circuit is as shown in Fig. 14-26,
in which V" is the component of V from the voltage source. Because of the open-circuited terminals, no part
of I can flow through the 2-Q resistor and the 31 dependent current source. Instead, all of 1 flows through
the j4-Q impedance as well as through the 3-Q resistance. Thus,

15/30
I = —L— =3/-231 A
3+ 4
With this I known. V' can be found from the voltage drops across the 2- and j4-Q impedances:

V= V) 4V, = 203D + jdl = (6 + j4)3/—23.1 ) = 21.6/106 V

20
1 in 0A j\/b/\/+
= AWV — o
_—.@— )
+
15/30° V v:3j40 3 v
4 o

Fig. 14-26

If the voltage source in the circuit of Fig. 14-25 is replaced by a short circuit, the circuit is as shown
in Fig. 14-27, where V7 is the component of V from the independent current source. As a reminder, the
current to the left of the parailel resistor and dependent-source combination is shown as 5/—45" A, the
same as the independent source current, as it must be. Because this current flows into the parallel 3-Q and
j4-Q combination, the current I in the 3-Q resistor can be found by current division:

bo - It is/_as —a/—1ssn A
344

With I known, V” can be found from the voltage drops V, and V, across the 2-Q resistor and the parallel
3-Q and j4-Q impedances. Since the 2-Q resistor current is 31 + 5/ —45

V, =[3(4/—188.1 )+ 5/—4512) = —17.1/124 V

20
[ 10 5[~45° A '__'JV\IV\ITW
+ L—<_>__- +
V: <j40) 31 \ & 5[—45° A

Fig. 14-27
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Also. since the current in the 3-Q and j4-€ paralicl combination is § - 45 A,

, RIFRY . ,
vV, = x 8§ —45 =12 =81\
T3+ 4
So VOo= V4 Vo= — 17124 412 =R = 7210 =132V

Finally. by superposition,

VoV eV =216 106 + 720 —132 = 165 —489 V

The main purpose of this problem 1s to illustrate the fact that dependent sources are not deactivated
in using superposition. Actually, using superposition on the circuit shown i Fig. 14225 requires much more

work than using loop or nodal analysis.

14.24 Transform the A shown in Fig. 14-284 to the Y in Fig. 14-28b for (@) Z,=2,=7,, =
12/36° Q. and (h) Z,=3+,5Q. Z,=6/20 Q. and 7Z,=4,-30 Q

AO R A O

Z (A

C

BoO
(a) (b)
Fig. 14-28

{a)  Because all three A impedances wre the same. all three Y impedances are the same and cach s
cqual to ane-third of the common A impedince:

12°3

36
7, =1,=7, = T =436 Q
(h)  All three A-to-Y transformation formulas have the same denominator. which is
Z,+ 72, +7,=034+j5+0620 +4 =30 =131 22066 Q

By these formulas.

7.7, (3 4 j5X6/20 )
7, = = U= =267/564 Q
YTZ AT, 2, 131/2266 =
] 7.7, (620 N4 — 30 )
Zy=_, -0 = To 0 T — =83 -7 Q
72,1+ 7.+7, 13.1/22.66 —_—
7.7 34504 - 300
. o RN DY ke @
2,47, + 7, 13.1722.66

14.25 Transform the Y shown in Fig. 14-28b to the A in Fig. 1428« for (0} Z,=7,=72,=
4-j7Q, and (h) Z,=10Q, Zp=6—,80Q and Z.=9/30 Q

(¢) Because all three Y impedances are the same, all three A impedances are the same and cach is cqual
to three times the common Y impcdance. So.

Ly=F,=7,=34 -j71=12 -j21 =242 -603 Q



CHAP. 14] AC EQUIVALENT CIRCUITS, NETWORK THEOREMS, AND BRIDGE CIRCUITS 3

(b)Y All three Y-to-A transformation formulas have the same numerator, which here is
2,25+ Z, Lo+ ZgZe = 1006 — j8) + 10(9/30 ) + (6 ~ j8K9,/30 ) = 231.6_—17.7
By these formulas,

2,25+ 7.2+ ZyZe 2316/ 1177

z, = T = _232/354 O
zZ, 6— 8 —=
z. 9730 —
4 Lo + Ly 3te/—-17.7 :
Z, = ?JLLZ;Z_‘_ t Ll 23 %,——_ =232/-177 Q
~“A

14.26 Using a A-to-Y transformation. find 1 for the circuit shown in Fig. 14-29.

-j4 0

J—
LAY

200/30° V

Fig. 14-29 Fig. 14-30

Extending between nodes A, B, and C there is a A, as shown in Fig. 14-30, that can be transformed 1o
the shown Y. with the result that the entire circuit becomes series-parallel and so can be reduced by combining
impedances. The denominator of each A-to-Y transformation formula is 3+ 4 — 4 =7 - jd =
8.062/—29.7 Q. And by these formulas.

IH—jd) 3(4_)

Z,=———"o—— =149/ 603 Q Z,= - .. - =149.297 Q
* 8062/ —-29.7 — B 8062/ 297 =
4 — j4)
= =198/ 603 Q
© 8062/ -29.7 e

With this A-to-Y transformation, the circuit is as shown in Fig. 14-31. Since this circuit is in series-paralle!
form, the input impedance Z,, can be found by circuit reduction. And then Z;, can be divided into the

1.49/-60.3° 1.98/-60.3°

I 2Q jr.sQ A

. 1.4929.7°
200/30° v Cfb — 3 i1a

Fig. 14-31
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applied voltage to get the current I:

1.49/29.7 — j2N198/~60.3 + 1
Z, =2 415+ 149/ =603 + (297 ~ X198/ 603 +)1)

L= AP ] =331/-45 Q
1.49/29.7 —j2 + 198/ —603 + j1 —
v 200/30
Finally, I=--= ""5=  -604/345 A
y Z. 331/-45 ===

in

Incidentally, the circuit shown in Fig. 14-29 can also be reduced to scries-parallel form by transforming
the A of the —j2-. 4-, and j1-Q impedances 10 a Y, or by transforming to a A ecither the Y of the 3-, —j2-,
and 4-Q impedances or that of the —j4-, 4-, and j1-Q impedances.

14.27 Find the current I for the circuit shown in Fig. 14-32.

40
A'AA";
i
240[9°v<§>
40 90
AN -j36 0
2oz v (3
aQ
AN

Fig. 14-32

As the circuit stands, a considerable number of mesh or nodal equations are required to find 1. But the
circuit, which has a A and a Y, can be reduced easily to just two meshes by using A-Y transformations.
Although these transformations do not always lessen the work required, they do here because they are so
simple as a result of the common impedances of the Y branches and also of the A branches.

One way to reduce the A-Y configuration is shown in Fig. 14-33. If the Y of 9 + j12-Q impedances is
transformed to a A, the result is a A of 3(9 + j12) = 27 + j36-Q impedances in parallel with the —j36-Q
impedances of the original A, as shown in Fig. 14-33a. Combining the parallel impedances produces a A
with impedances of

(27 + j36) —j36) =48 - 360

27 + j36 — j36
as shown in Fig. 14-33b. Then, if this is transformed to a Y, the Y has impedances of (48 —j36);3=16—j12Q,
as shown in Fig. 14-33c.

Figure 14-34 shows the circuit with this Y replacing the A-Y combination. The self-impedances
of both meshes are the same: 4 + 16 —j12 —j12 + 16 + 4 =40 — ;24 Q, and the mutual impedance is
20 — j12 Q. So, the mesh equations are

{40 — j24)t — (20 — j12)I = 240/0°
—(20 — JI2)1 + (40 — j24)I' = 240/120°
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60 48 0 16 0
—112 9]
-j120 -j12
48( - \ /\,:l]‘/\ /\]1:1\
-j36 N
(a) (b) (c)
Fig. 14-33
By Cramer’s rule,
240/0 —(20 - j12)
240/120 40 — ;24 9696/ —0.96 ,
1= . L P2 s94/61 A
1632/ — 61.93

40 - 24 =20 — j12)
—20 —j12) 40 — j24

In reducing the A-Y circuit. it would have been easier to transform the A of —;36-Q impedances to a
Y of —j363 = —/12-Q impedances. Then. although not obvious, the impedances of this Y would be in
parallel with corresponding impedances of the other Y as a result of the two center nodes being at the same
potential, which occurs because of equal impedance arms in each Y. If the parallel impedances are combined.
the result 1s a Y of cqual impedances of

)Il’(9+,l7]

=16 —j12Q
—j12+9+ /1’
the same as shown in Fig. 14-33c.
40
I 16 Q
240/0° V
_ —jnrzao
40 16 -j1z g T
AN AN J— J_
-j12
240[120° V r
16 Q2
40

Fig. 14-34
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14.28 Assume that the bridge circuit of Fig. 14-3 is balanced for 7, =5Q, Z,=4/30 Q. and
7, =82Q. and for a source frequency of 2 kHz If branch Zy consists of two components in
series, what are they?

The two components can be determined from the real and imaginary parts of Z,. From the bridge
baliance cquation,

2,7, (430)82)

o 7, s

= 6.56,30 = 5.68 + 328 Q
which corresponds to a 5.68-Q resistor and a series inductor that has 4 reactance of 328 Q. The corresponding
mductance is

X, 328

L H - 261 g
o 2202000)

14.29 The bridge circuit shown in Fig. 14-3518 a cupucitance comparison bridge that is used for measuring
the capacitance Cy of a capacitor and any resistance Ry inherent 1o the capacitor or in serics
with it. The bridge has a standard capacitor. the capacitance Cg of which is known. Find R, and
(', if the bridge 1s in balance for R, = 300Q. R, =2kQ. R;=1kQ. (¢ =002uF. and
a source radian frequency of 1 krad/s.

Rx

R:

Fig. 14-35

I'he bridge balance cquation can be used 1o determine Ry and Cy. From a comparison of Figs 14-3
and 14-35 7, = 500Q. 7, = 20000,

1l
/., = 1000 ! - 1000 — 50 000 €2

) 100040.02 x 10 ™)

. i
and Z,=R, - ]
1000C

From the bridge balance equation Zy = 72,2, 7.,

i1 200001000 — 750 00

. = 4000 — j200 000 Q

LO00C, 500

For two complex quantitics in rectangular form to be equal. as here. both the real parts must be equal and
the imaginary parts must be equal. This means that Ry == 40000 and
| 1

= 200000 from which Cy = I- = Snt
1000 1000200 000)
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14.30

14.31

For the capacitance comparison bridge shown in Fig. 14-35. derive general formulas for Ry and
Cy in terms of the other bridge components.

For bridge balance, Z,Z, = Z,Z.,. which in terms of the bridge components is
il il . R, R,
R\ Ry ——=]=Ry{ Ry — or R\Ry—j —. :R:R.xfl-(:
S ’ A

From equating real parts, R,Ry = R,R;. or R, = R,R; R,. And from cquating imaginary parts.
— R A0Cy) = —R{wCy). or Cy =R, CgR,.

The bridge circuit shown in Fig. 14-36. called a Muaxwell bridye. is used for measuring the
inductance and resistance of a coil in terms of a capacitance standard. Find Ly and R, if the
bridge is in balance for R, =3500kQ, R, =62kQ. R;=5kQ, and C¢=0.1uF.

Lx

R,
Rx

Fig. 14-36

First, general formulas will be derived for Ry and Ly in terms of the other bridge components. Then.
values will be substituted into these formulas to find Ry and I, for the specified bridge. From a comparison
of Figs. 14-3 and 14-36, Z,=R,, Z,=R,. Z,=R, +jolLy. and

CRy(=jloCy)  —jR,
TR —jleCy Ry —jl
Substituting these into the bridge balance equation Z,Z, = Z,Z, gives
—JR, .
= — = - - (Ry +joly) =R,R;
RywCs —j1
which, upon being multiplied by R,wCs — j1 and simplified, becomes
RiywlLy — jR\R; = RR;R,0C, — jR,R;

From cquating real parts,

RywlLy = R, R;R C from which Ly =R.R,(C
and from equating imaginary parts,
: R:R,
—-R,R, = —R,R, from which Ry = ~ E
1

which are the general formutas for L, and Ry. For the values of the specified bridge. these formulas give

(6.2 x 10%%5 x 10°%) \ i
== S =62Q and Ly = (6.2 x 10°%(5 x 10%(0.1 x 10" =31 H

500 x 10°

X
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Supplementary Problems
14.32 Find Vy, and Zy, for the Thévenin equivalent of the circuit shown in Fig. 14-37.
Ans. 133/ —-884 V.836/17.6 Q
14.33 What resistor will draw an 8-A rms current when connected across terminals « and b of the circuit shown
in Fig. 14-377
Ans. 844Q
90 40 10 -j6 40
MV ANN—N—04 — +—"VV\—o0a
200/-40°V == -j8 N 90 j6 0 ¢s@m 8N
-0 b . . : —O0b
Fig. 14-37 Fig. 14-38
1434 Find I and Z, for the Norton equivalent of the circuit shown in Fig. 14-38.
Ans. —3.09/507 A, 63/-903 Q
14.35 Find VY, and Z;, for the Thévenin equivalent of the circuit shown in Fig. 14-39 for R =0Q.
Ans. 3.47/123 V,3.05/29.2° Q
3Q j40
AN AL
R
10/40° V §6 Q T) 2200 A
a
ib
Fig. 14-39
1436 Find 1, and Z, for the Norton equivalent of the circuit shown in Fig. 14-39 for =2Q
Ans. 0.71/105° A, 4.89/17.7 Q
1437 Find V4, and Z;, for the Thévenin equivalent of the circuit shown in Fig. 14-40 for R, =R, =

00 and V,=0V.

Ans. —404/-414'V,192/194 Q
v .
80 10 R, R :
e AA—— AN~ @-—oa
150/40° V T=-i6 0 30

Qb

Fig. 14-40
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14.38  Find Vy, and Zy, for the Thévenin cquivalent of the circuit shown in Fig. 14-40 for R, =5Q. R, =
4Q, and Vg=50/-60 V.

Ans.  —71.5/=502 V.624/2.03 Q

14.39  Find Vy, and Z, for the Thévenin equivalent of the circuit shown in Fig. 14-41.

Ans. 11.8/25.3°V, 4.67/525°Q

-Oa

6/15° A 3N j6 Q 80 5/50° A

-0 b

Fig. 1441

14.40 What resistor will draw a 2-A rms current when connected across terminals @ and b of the circuit shown
in Fig. 14-41?

Ans. 121Q

1441  Using Thévenin's or Norton's theorem, find I for the bridge circuit shown in Fig. 14-42if 1,=0A and
Z, = 60/30 Q.

Ans. 104/ —-435 A

14.42  Find I for the bridge circuit shown in Fig. 14-42if 1= IO@ A and Z, =40/-40 Q.

Ans. 15/63 A

0
—"VW\——0a
I
. /
200[-50° V i}) =20
40
b
Fig. 14-42 Fig. 14-43

1443 Find the output impedance of the circuit shown in Fig. 14-43.
Ans. 449/-209 Q

1444 Find the output impedance of the circuit shown in Fig. 14-43 with the 1 reference direction reversed - -being
up nstead of down.

Ans. 1.68/-39.1" Q
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1445 btind V|, and Z, for the Thévenin equivalent of the circuit shown in Fig. 14-44.

fnv. - 17523 V.03617194 Q

38
T o«

3.5123° A 2s 48 21

0b
Fig. 14-44

14.46 In the circuit shown in Fig. 14-44, reverse the I reference direction -have it up instead of down and find
I, and Z,, for the Nerton cquivalent circuit.

Ans. 485/ 702 A 0116/ —188 Q

14.47 Find the output impedance at 10% rad s of the circuit shown in Fig. 14-45.
Ans. 1197247 kQ

4k0 B c 0.0(}5( uF
—O- —Ht— -Oa
tun l‘" 50is 50 k2 15 k1
E
: . —O- . . . —Ob
Fig. 14-45

14.48 Usc PSpice to obtain the Thévenin equivalent at the ¢ and b terminals of the phasor-domain circuit
corresponding to the time-domain circuit of Fig. 14-46.

Ans. 5237105 V. 110/ =217 kQ

5 kQ 0.1 pk 0.1 u¥
(e
i '
Cﬁ) 0.25 cos 100001 V 2 10kQ 2kQ 50, 5kQ 10kQ == 10nF
Fig. 14-46

14.49  What is the maximum average power that can be drawn from an ac generator that has an internal impedance
of 100-20 Q and an open-~circuit vohage of 25kV rms?

Ans. .66 MW
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14.50 A signal generator operating at S MHz has an rms short-circuit current of 100 mA and an internal impedance
of X0 20 Q. Ifitencrgizes a capacitor and a parallel resistor. find the capacitance and resistance for mavimum
average power absorption by the resistor. Also, find this power,

Ans. 136 pE RAT Q0213 W
14.51  For the circuit shown in Fig. 14-47. what Z, draws mavimum average power and what is this power?

Ans. 128/ —51.3 Q. 485 W

. o'2"aY H
. It
6 Q -j8 0
1€
5Q

40 <} 10/-30° A
<$>4qg°v
- Z

Fig. 14-47

14.52  In the circuit shown in Fig. 14-47. move the - /8-Q impedance from in series with the current souree to in
parallel with it. Find the Z, that absorbs maximum average power and find this power.

Ans. l4{—l.69 Q 61W

14.53  Usc superposition to find I for the circuit shown in Fig. 14-48.
Ans. 227/652 A

I j3q -js
—-——

40 3EM°A<:?> 20
(Y1 D
A/

13f25° v 20/-30° V
Fig. 14-48

14.54 For the circuit shown in Fig. 14-49, find the average power dissipated in the 3-Q resistor using superposition
and then without using superposition. Repeat this with the 10 phase angle changed to 40 for the one
voltage source. (This problem illustrates the fact that superposition can be used to find the average power

i 0 2H
A'A% LYY

15V sin (2t + 10°) V 8V sin (21 — 80°) V

Fig. 14-49
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absorbed by a resistor from two sources of the same frequency only if these sources produce resistor currents
that have a 90 difference in phase angle.)

Ans. 347 W using superposition and without using superposition: an incorrect 34.7 W with superposition
and a correct 20.3 W without using superposition

14.55 Find ¢ for the circuit shown in Fig. 14-50.
Ans.  5.24sin (5000t — 61.6 ) — 4.39 sin (8OO0r — 346 } V

5Q

10 sin (5000t - 30°) V v>3= 40 uF 8 {1 2 sin (8000t + 10°) A

Pt

Fig. 14-50

1456 Find the average power dissipated in the 5-Q resistor of the circuit shown in Fig. 14-50.
Ans. 574 W

1457 Find i for the circuit shown in Fig. 14-51.
Ans. = 2sin (50001 + 23.1 ) — 496sin (10* — 287 ) A

1000 i
~“ANN——"
L,

- 200 ) ) .
500 sin (50001 - 30°) V ~> T 4 sin (10t ~10°) A

150i

Fig. 14-51
14.58 Find the average power absorbed by the 200-Q resistor in the circuit shown in Fig. 14-51.

Ans. 523 W

1459 Transform the T shown in Fig. 14-52a to the T in Fig. 18-52b for (a0} Z, =7, =7,=10/-50 Q. and
(b Z,=5/=30 Q. Zy=6/40 Q. Z, =610

Ans, (@) Z,=Z,=2,=30/=50'Q; (b Z,=175/-68 Q Z,=114/214 Q. Z,=21/205 Q

Za Zg Z;
A B A B
Z Z: YA
C C C C
o— -0 Oo— -0
(a) (b)

Fig. 14-52
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14.60 Transform the [1shown in Fig. 14-52hto the T in Fig. 14-52afor (@) Z,=Z,=2,=136/—-24 Q, and

14.61

14.62

14.63

14.64

14.65

b Z,=15/-24 Q, Z,=14-j20Q Z;=10+j16Q.
Ans. (@) Z,=Zy=2Z.=12/=-24 Q. (h) Z,=938/—64 Q. Z,=118/18 Q. Z,=725/49'Q
Using a A-Y transformation, find 1 for the circuit shown in Fig. 14-53.

Ans. 269/22 A

50 40

h
C;b 240/50° V

6 €}

Fig. 14-53

Using a A-Y transformation. find 1 for the circuit shown in Fig. 14-54.

Ans. 17.6/13.1 A

I 40 -j5 Q
- i
VvV 1

C;P 220[-30° V

-j8 0

50

Fig. 14-54

Assume that the bridge circuit shown in Fig. 14-3 is balanced for Z, = 10/-30" Q. Z, = ]5&)‘” Q, and
Z,=9.1Q, and for a source frequency of 5 kHz. If branch Z consists of two components in parallel, what
are they?

Ans. A 39.9-Q resistor and a 462-uH inductor

Find Cy and Ry for the capacitor comparison bridge shown in Fig. 14-35 if this bridge is balanced
for R, =1kQ R,=4kQ R;=2kQ, and Cg=0.1uF.

Ans. 25nF, 8 kQ

Find L, and R, for the Maxwell bridge shown in Fig. 14-36 if this bridge is balanced for R, = S0kQ,
R, =82kQ. R;=4kQ, and Cg=005uF.

Ans. 164 H, 656 Q



Chapter 15

Power in AC Circuits

INTRODUCTION

The major topic of this chapter is the arerage power absorbed over a period by ac components and
circuits. Consequently. it will not be necessary to always use the adjective “average™ with power to avoid
misunderstanding. Also. it is not necessary to use the subscript notation “av™ with the symbol P. Similarly,
since the popular power formulas have only effective or rms values of voltage and current, the subscript
notation “eff " can be deleted from V¢ and I (or *rms™ from V. and I,,.) and just the lightface V and
I used to designate effective or rms values.

As a final introductory point, in the following text material and problems the specified voltages and
currents alwavs have assoctated references unless there are statements or designations to the contrary.

CIRCUIT POWER ABSORPTION

The average power absorbed by a two-terminal ac circuit can be derived from the instantaneous
power absorbed. If the circuit has an applied voltage ¢ =V, sin{w! + ) and an input current
i=1,sinwt, the instantaneous power absorbed by the circuit is

p=ri=V,sin(or+0) x I, sinmt =V, [ sin(mt + (0)sin ot
This can be simplitied by using the trigonometric identity
sin 4 sin B = i[cos (4 — B) — cos (4 + B)]
and the substitutions A =wt + 0 and B = wt. The result is

()
= m-, " [cos ) — cos (2wt + 0]

. v.l, V., I
Since Yy =T -
< 2 2
the instantaneous power can be expressed as
= VIcos ) — VIcos (2ot + 0)

The average value of this power 1s the sum of the average values of the two terms. The second term,
being sinusoidal. has a zero average value over a period. The first term, though. is a constant, and so must
be the average power absorbed by the circuit over a period. So.

P=VIcosf

[t is important to remember that in this formula the angle ¢ i1s the angle by which the input voltage
leads the input current. For a circuit that does not contain any independent sources, this is the impedance
angle.

For a purely resistive circuit, 0 =0  and c¢os0 =1 andso P = Vlcost = VI Fora purely
inductive circuit, # =90 and cosl =¢0s90 =0. andso P =0W, which means that a purely
inductive circuit absorbs zero average power. The same 1s true for a purely capacitive circuit since, for
it., = —-90 and cos(—90)=0.

The term “cos 07 is called the power factor. 1t is often symbolized as PF,asin P = VI x PF. The
angle 0 is called the power fuctor angle. As mentioned, it is often also the impedance angle.

The power factor angle has different signs for inductive and capacitive circuits. but since cos 0 =
cos (—#).  the sign of the power factor angle has no effect on the power factor. Because the power factors
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of inductive and capacitive circuits cannot be distinguished mathematically. they are distinguished by
name. The power factor of an inductive circuit is called a lugging power fuctor and that of a capacitive
cireunt 1s called a leading power fuctor. These names can be remembered from the fact that for an inductive
circuit the current /ags the voltage. and for a capacitive circuit the current leads the voltage.

Another power formula can be obtained by substituting 1"'=177 into P = 1Tcos:

P=VIcostl = (7} cos ) = I’(Z cos ) = I°R

Of course. R = Z cos () is the input resistance. the same as the real part of the input impedance. The
formula P = IR may scem obvious from dc considerations, but remember that R is usually not the
resistance of a physical resistor. Rather. it is the real part of the input impedance and is usually dependent
on inductive and capacitive reactances as well as on resistances.
Similarly. with the substitution of [ = Y1,
P=1lcost=F({bY)ycost =13 (Yeosth =13
in which G = Ycos€ s the input conductance. In using this formula P = 1'*¢G.  remember that,

except for a purely resistive circuit, the input conductance G is not the inverse of the input reststance R.
If. however. V' is the voltage across a resistor of R ohms, then P =176 =1 R.

WATTMETERS

Average power can be measured by an instrument called awarnmerer, as shown in Fig. 15-1. 1t has
two pairs of terminals: a pair of voltage terminals on the left-hand side and a pair of current terminals
on the right-hand side. The bottom terminal of each pair has a + designation for aiding in connecting
up the wattmeter. as will be explained.

( )
WM
i +
o YL »
+ ce _I
Watts *
v Load
pc
Volts Amps
o o) o
o o]
- J
Fig. 15-1 Fig. 15-2

For a measurement of power absorbed by a load. the voltage terminals are connected in paraliel
with the load and the current terminals are connected in series with the load. Because the voltage circunt
inside the wattmeter has a very high resistance and the current circuit has a very low resistance. the
voltage circuit can be considered an open circuit and the current circuit a short cireuit for the power
measurements of almost all loads. As a result. inserting a wattmeter in a circuit seldom has a significant
effect on the power absorbed. For convenience, in circuit diagrams the voltage cireuit will be shown as
a coil labeled “pc™ (for potential coil) and the current circuit will be shown as a coil labeled “cc™ (for
current coil). as shown in Fig. 15-2. One type of wattmeter. the electrodynamometer wattmeter, actually
has such coils.

The + designations help in making wattmeter connections so that the wattmeter reads upscale. to
the right in Fig. 15-1, for positive absorbed power. A wattmeter will read upscale with the connection
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in Fig. 15-2 if the load absorbs average power. Notice that, for the associated voltage and current
references, the reference current enters the + current terminal and the positive reference of the voltage
is at the + voltage terminal. The effect is the same, though, if both coils are reversed. If a load is active a
source of average power then one coil connection, but not both, should be reversed for an upscale
reading. Then, the wattmeter reading is considered to be negative for this connection. Incidentally. in
the circuit shown in Fig. 15-2, the wattmeter reads essentially the same with the potential coil connected
on the source side of the current coil instead of on the load side.

REACTIVE POWER

For industrial power considerations, a quantity called reactive power ts often useful. It has the
quantity symbol Q and the unit of voltampere reactive. the symbol for which is VAR, Reactive power,
which is often referred to as vars, is defined as

Q=VIsing

for a two-terminal circuit with an input rms voltage V' and an input rms current I. This Q is ubsorbed
reactive power. The ¢ is the angle by which the input voltage leads the input current  the power factor
angle. The quantity “sin 0" is called the reactive fuctor of the load and has the symbol RF. Notice that
it is negative for capacitive loads and is positive for inductive loads. A load that absorbs negative vars
is considered to be producing vars that is, it is a source of reactive power.

As was done for real power P, other formulas for @ can be found by substituting from V=1Z
and I =YV into Q= Visin0. These formulas are

Q=X and Q=-V’B

where X is the reactance or imaginary part of the input impedance and B is the susceptance or imaginary
part of the input admittance. (Remember that B is not the inverse of X.) Additionally, if V is the voltage
across an inductor or capacitor with reactance X, then Q = V% X. So, Q = V*/wL for an inductor
and Q= —wCV? for a capacitor.

COMPLEX POWER AND APPARENT POWER

There is a relation among the real power of a load. the reactive power, and another power called
the complex power. For the derivation of this relation, consider the load impedance triangle shown in
Fig. 15-3a. If each side is multiplied by the square of the rms current [ to the load. the result is the
triangle shown in Fig. 15-3h. Notice that this multiplication does not affect the impedance angle ¢ since
each side is multiplied by the same quantity. The horizontal side is the real power P = I?R. the vertical
side is j1 times the reactive power, jI°X = jQ. and the hypotenuse /°Z is the complex power of the
load. Complex power has the quantity symbol § and the unit of roltampere with symbol VA, These
power quantities are shown in Fig. 15-3¢c. which 1s known as the power triungle. From this triangle,
clearly S=P +jQ.

ir'x
iX

(a) (b) (c)
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The length of the hypotenuse |S] = 5. s called the upparent power. Its name comes from the fact
that 1t 15 equal to the product of the input rms voltage and current:

S=|1PZ| =17 x I = VI

and from the fact that in dc circuits this product '] is the power absorbed. The substitution
of V=1Z and I=V Z into S=1VI produces two other formulas: S=171°Z and S=
V2.

The VI formula for apparent power leads to another popular formula for complex power.
Since S=S/0, and S= VI then S=VI/.

A third formula for complex poweris 8 = VI*. where 1* 15 the conjugate of the input current 1.
This is a valid formula since the magnitude of VI* is the product of the applied rms voltage and current,
and, consequently, is the apparent power. Also. the angle of this product 1s the angle of the voltage
phasor minus the angle of the current phasor, with the subtraction occurring because of the use of the
conjugate of the current phasor. This difference in angles 1s. of course, the complex power angle 0 the
angle by which the input voltage leads the input current  and also the power factor angle.

One use of complex power is for obtaiing the total complex power of several loads energized by
the same source, usually in parallel. It can be shown that the total complex power 1s the sum of the
individual complex powers. regardless of how the loads are connected. Tt follows that the total real power
is the sum of the individual real powers. and that the total reactive power is the sum of the individual
reactive powers. To repeat for emphasis: Complex powers, real powers. and reactive powers can be added
to obtain the total complex power. real power, and reactive power. respectively. The same is nor true
for apparent powers. In general. apparent powers cannot be added to obtain a total apparent power
any more than rms voltages or currents can be added to obtain a total rms voltage or current.

The total complex power can be used to find the total input current. as should be apparent from
the fact that the magnitude of the total complex power, the apparent power. is the product of the input
voltage and current. Another use for complex power 1s in power factor correction, which is the subject
of the next section.

POWER FACTOR CORRECTION

In the consumption of a large amount of power, a large power factor is desirable the larger the
better, The reason is that the current required to deliver a given amount of power to a load is inversely
proportional to the load power factor, as is evident from rearranging P = Flcos () to

P P
" VeosO V x PF
So, for a given power P absorbed and applicd voltage V., the smaller the power factor the greater the
current | to the load. Larger than necessary currents are undesirable because of the accompanying larger
voltage losses and I2R power losses in power lines and other power distribution equipment.

As a practical matter, low power factors are always the result of inductive loads because almost all
loads are inductive. From a power triangle viewpoint. the vars that such loads consume make the power
triangle have a large vertical side and so a large angle (). The result 1s a small cos (). which is the power
factor. Improving the power factor of a load requires adding capacitors across the power line at the load
to provide the vars consumed by the inductive load. From another point of view, these capacitors supply
current to the load inductors, which current, without the capacitors, would have to come over the power
line. More accurately, there is a current interchange between these capacitors and the load inductors.

Although adding sufficient capacitance to increase the power factor to unity is possible, it may not
be economical. For finding the minimum capacitance required to improve the power factor to the amount
desired, the general procedure is 10 first calculate the imitial number of vars @; being consumed by the
load. This can be calculated from @, = Ptan 0. which formula should be apparent from the power
triangle shown in Fig. 15-3¢. Of course, 0, is the load impedance angle. The next step is to determine
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the final impedance angle 0} from the final desired power factor: 0, = cos ' PF,. This angle is used
in Q;=Ptan®, to find the total number of vars Q, for the combined load. This formula is valid
since adding the parallel capacitor or capacitors does not change P. The next step is to find the vars
that the added capacitors must provide: AQ = Q, — Q,. Finally, AQ is used to find the required amount
of capacitance:

v AQ

AQ= = = —wC}? from which C=-
X —1.m(C

.5
D1

If AQ is defined as  Q, — Q,. the negative sign can be climinated in the formula for C: then, C =
AQimV?2, All this procedure can be done in one step with
co P[tan(cos ™' PF) — tan(cos ' PF))]
wV?

Although calculating the capacitance required for power factor correction may be a good academic
exercise, it is not necessary on the job. Manufacturers specify their power factor correction capacitors
by operating voltages and the kilovars the capacitors produce. So. for power factor correction. it 1s only
necessary to know the voltages of the lines across which the capacitors will be placed and the kilovars
required.

Solved Problems

15.1 The instantancous power absorbed by a circuit 15 p =10+ 8sin (377t + 40 } W . Find the
maximum, minimum. and average absorbed powers.

The maximum value occurs at those times when the sinusoidal term is a maximum. Since this term has a
maximum value of 8, p_.. =10+ 8 = 18 W. The minimum value occurs when the sinusoidal term is at
its minimum value of —8: p_.. = 10— 8 =2 W. Because the sinusoidal term has a zero average value,
the average power absorbedis P=104+0=10W,

152 With 1 =300cos(20r + 30 )V applied. a circuit draws = 15cos (20t — 25 )A. Find the
power factor and also the average, maximum, and minimum absorbed powers.

The power factor of the circuit is the cosine of the power factor angle. which is the angle by which the
voltage leads the current:

PF =cos[30 —(—25)]=cos55 =0.574

It is lagging because the current lags the voltage.
The average power absorbed is the product of the rms voltage and current and the power factor:

300 1S ;
P=-—x- x0574=129 x 10?W=129kW

NN

The maximum and minimum absorbed powers can be found from the instantancous power. which is
p =ti=300cos{20r + 30 ) x [5cos (20t — 25 ) = 4500 cos (20r + 30 ycos (20t — 25)
This can be simplified by using the trigonometric identity
cos Acos B=05[cos(4 + B} + cos (4 — B)]

and the substitutions A4 =20r + 30  and B =20 — 25 . The result 1s

p=4500 x 0.5[cos (40t + 5 )+ cos 55 7= 2250cos (4 + 5 )+ 2250cos 58 W
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153

Clearly. the maximum valuc occurs when the first cosine term is | and the minimum value when this term

15 =1
Peonar = 225001 + cos 55 )W = 354 kW

Penin = 2250(—1 + cos 55 ) = =959 W

The negative minimum absorbed power indicates that the circuit is delivering power instead of absorbing it.

For each following load voltage and current pair find the corresponding power factor and average
power absorbed:

(@ =277 2sin(377c+30)V. =351 2sin(377r—10)A

(h) ¢t =679sin (377t + 50 )V. i=13cos(377t + 10)A

(¢) v=—170sin{377t —30)V. i=8lcos(377t +30)A

(a) Since the angle by which the voltage leads the current is 0 =30 —(—10) =40 . the power factor
is PF =cosd40 = 0.766. It is lagging because the current lags the voltage. or. in other words. because
the power factor angle € is positive. The average power absorbed is the product of the rms voltage and
current and the power factor:

P=1V1xPF=277(51)0.766) = 1.08 x 10° W = OB kW

(h) The power factor angle ( can be found by phase angle subtraction only if r and 7/ have the same sinusoidal
form. which they do not have here. The cosine term of i can be converted to the sine form of ¢ by using
the identity  cos x = sin (v + 90 )

P=13¢os (377t + 10 ) = 13sin(377r + 10 + 90 ) = 13sin(377: + 100 } A
So. the power factor angle is 0 =50 — 100 = —50 . and the power factor is PF =cos{—50) =
0.643. 1t is a lcading power factor because the current leads the voltage. and also because 0 is negative,
which is equivalent. The averuge power absorbed is
) 679 13
P=11xPF= - x _x0643=28 x10'W =28kW
RN

(¢) The voltage sinusoid will be put in the sume sinusoidal form as the current sinusoid as an aid in finding

). The negative sign can be chminated by using - sin x = sin(x + 180 )
= —170sin{377¢ — 30 ) = 170 sin (3771 — 30 1 180 )

Then the identity  sin v =cos(x - 90 } can be used:
=170 (3771 — 30 + 180 ) == 170 cos (377r — 30 + 180 — 90 )
= 170 cos (3771 — 120 + 180 )
The positive sign of 4 180 should be selected to make the voltage and current phase angles as close
together as possible:
r=1700cos (377t — 120 + 180 ) = 170 cos (3771 + 60 ) V

So, 0=60 —30 =230. and the power factor ts PF = cos 30 = 0.866. It is lagging because 0 is
positive. Finally. the average power absorbed is

S 170 81
P=VIxPF= " x  x0866=59%6W
N 2 N 2

15.4  Find the power factor of a circuit that absorbs 1.5 kW for a 120-V input voltage and a 16-A current.

From P = VI x PF, the power factor is
P average power 1500
pr o= | o CCHARCPOWET = 0.781
VI apparent power  120(16)

There 1s not enough information given to determine whether this power factor is leading or lagging.
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Note that the power factor is equal to the average power divided by the apparent power. Some authors
of circuit analysis books use this for the definition of power factor because it is more general than  PF =
cos §.

155 What is the power factor of a fully loaded 10-hp induction motor that operates at 80 percent

efficiency while drawing 28 A from a 480-V line?

The motor power factor is equal to the power input divided by the apparent power input. And. the
power input is the power output divided by the efliciency of operation:

P, 10 x 7457
P, = "= W = 9321 kW
n 0.8
in which 1 hp = 7457 W s used. So.
P, 9321 x 10
PF = = (.694

T I a80028)

This power factor is lagging because induction motors are inductive loads.

156 Find the power absorbed by a load of 6/30 Q when 42 V is applied.

15.7

The rms current needed for the power formulas is equal to the rms voltage divided by the magnitude
of the impedance: [ =42.6 = 7 A. Of course. the power factor is the cosine of the impedance angle:  PF =
cos 30" = 0.866. Thus.

P = VI x PF = 42(7}0.866) = 255 W
The absorbed power can also be obtained from P = [’R, in which R =Zcos00 =6cos30 =52Q:
P=7"x52=255W

The power cannot be found from P = ¥R, as is cvident from the fact that 172 R =427 52 =
339 W, which is incorrect. The reason for the incorrect result is that the 42 V is across the entire impedance
and not just the resistance part. For P = 12 R to be valid. the I used must be that across R.

What power is absorbed by a circuit that has an input admittance of 0.4 + j0.5 S and an input
current of 30 A?

The formula P = V3G can be used after the input voltage V7 is found. It is equal to the current
divided by the magnitude of the admittance:

o % 30
Y] 104 405 0.64
So P = VG = (46.85)%04 = 8T8 W

=4685V

Alternatively, the power formula P = V1 cos ! can be used. The power factor angle 8 is the negative
of the admittance angle: ¢ = —tan '(0.5:04) = —51.34 . So.

P =VIcosl =468530)cos(—51.34 ) =878 W

158 A resistor in parallel with a capacitor absorbs 20 W when the combination 1s connected to a

240-V, 60-Hz source. If the power factor is 0.7 leading, what are the resistance and capacitance?
The resistance can be found by solving for Rin P = V*R:
Vi 2402

R= =_ -Q=28kQ
P 20
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One way 1o find the capacitance is from the susceptance B, which can be found from B = Gtan¢
after the conductance G and admittance angle ¢ arc known. The conductance is

1
G= = =0347 x 10 *S
R 288 x 10°

For this capacitive circuit, the admittance angle 1s the negative of the power factor angle: ¢ =
—(—cos 10.7) =456 . So.

B==Gtan ¢ =0347 x 10 *tan456 =0354 x 10 *S
Finally. sincc B = o(.
B 0354 x (07
o 2m60)

=094 uF

159 A resistor in series with a capacitor absorbs 10 W when the combination 1s connected to a 120-V,

400-Hz source. If the power factor is 0.6 Icading. what arc the resistance and capacitance?

Because this is a series circuit. impedance should be used to find the resistance and capacitance. The
impedance can be found by using the input current. which from P = I'l x PF 1is
P 10
= = =0.1389 A
" x PF 120400.6)

The magnitude of the impedance is equal to the voltage divided by the current. and the impedance angle
15, for this capacitive circuit. the negative of the arccosine of the power factor:

b 120
Z= —cos 'PF = —cos 0.6 =864 —5313 = 518 - j691 Q
I 0.13%9
From the real part the resistance 1 R = S18€.  and from the imaginary part and X = —1 wC. the
capacitance is
. I -1 .
C= - = = 0.576 uF

aX 2n(400) — 691y

15.10 If a coil draws 0.5 A from a 120-V. 60-Hz source at a 0.7 lagging power factor, what are the coil
resistance and inductance?
The resistance and inductance can be obtained from the impedance. The mmpedance magnitude
is Z=1V1=12005=240Q. and the impedance angle is the power factor angle: 0 =cos 0.7 =
45.57 . So. the coil impedance is 7 = 240./45.57 = 168 + j171.4 Q. From the real part. the coil resistance
is R =168€Q, and from the imaginary part the coil reactance 15 171.4 €. The inductance can be found
from X =wlLItis L=Xo=17142r060)=0455H.

15.11 A resistor and parallel capacitor draw 0.2 A from a 24-V, 400-Hz source at a 0.8 leading power
factor. Find the resistance and capacitance.
Since the components are in parallel. admittance should be used 1o find the resistance and capacitance.
The admittance magnitudets Y =7 1'=02 24 = 833 mS, and the admittance angle is. for this capacitive
circuit, the arccosine of the power factor:  cos ' 0.8 = 36.9 . Thus. the admittance is

Y = %33/369 = 6.67 + j5mS

From the real part. the conductance of the resistor is 6.67 mS. and so the resistance is R =1 (6.67 x
1073) = 150 Q. From the imaginary part the capacitive susceptance is S mS. and so the capacitance is

B 5x10°

¢ 2r400)

= 1.99 uk
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Operating at maximum capacity, a 12 470-V alternator supplies 35 MW at a 0.7 lagging power
factor. What is the maximum real power that the alternator can deliver?

The limitation on the alternator capacity is the maximum voltamperes the apparent power. which is
the real power divided by the power factor. For this alternator, the maximum apparent power is P;PF =
35/0.7 = 50 MVA. At unity power factor ali of this would be real power, which means that the maximum

real power that this alternator can supply is 50 MW.

An induction motor delivers 50 hp while operating at 80 percent efficiency from 480-V lines. If
the power factor is 0.6, what current does the motor draw? If the power factor is 0.9, instead,

what current does this motor draw?
The current can be found from P = VI x PF. where P is the motor input power of 50 x
745.7/0.8 = 46.6 kW. For a power factor of 0.6, the current to the motor is
P 46.6 x 10°
Vx PF 480 x 0.6

1

162 A

And, for a power factor of 0.9, it is
- P 46.6 x 107
TV xPF 480 x 09

=108 A

This 54-A decrease in current for the same output power shows why a large power factor is desirable.

For the circuit shown in Fig. 15-4, find the wattmeter reading when the + terminal of the potential
coil 1s connected to node a4, and also when it is connected to node b.

WM
e [
¢
+1x

200/0° V CE) v 3 j10 0

100/30° V
)
A\

Fig. 15-4

The wattmeter reading is equal to VI cos 8, where V is the rms voltage across the potential coil. I is
the rms current flowing through the current coil, and @ is the phase angle difference of the corresponding
voltage and current phasors when they are referenced as shown with respect to the + markings of the
wattmeter coils. These three quantities must be found to determine the wattmeter reading.

The phasor current 1 is

j 20000 —100/30° _ 124/-238 756/—61.4 A
5+8+10 16.4/37.6

With the + terminal of the potential coil at node a, the phasor voltage drop V across this coil is the 200@“ -V
source voltage minus the drop across the 5-Q) resistor:

V =200/0" — 51 = 200/0" — 5(7.56/—61.4') = 185/10.3 V

The wattmeter reading is

P =VIcosO = 1857.56)cos[103 —(—-614)] =439 W
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With the + terminal of the potential coil at node b, V is cqual to the voltage drop across the j10-Q
impedance and the IO()@ -V source:

Vo= j10(7.56/ =614 ) + 100/30 = 176,294 V
And so the wattmeter rcading is
P=VIicos®=176(756)cos [294 —(-614)]= —18W

Probably the wattmeter cannot directly give a negative reading. If not. then the connections to one wattmeter
coil should be reversed so that the wattmeter reads upscale. And. the reading should be interpreted as being
negative.

15.15 In the circuit shown in Fig. 15-5, find the total power absorbed by the three resistors. Then find
the sum of the readings of the two wattmeters. Compare results.

WM,

1+

cc,

40

—_ e aa g «— " AN —
||

WM: ll«

-j4 0 = -i8

’_l 60
AN

sof-200v (<

|
—

Fig. 15-5

The powers absorbed by the resistors can be found by using P = I*R. The current through the resistors
are

30/50 440/ -20 5767929 _
== — 210197543 A

2T 4—j4  5.66/ —45
30/50 40/ - 20 ,
== =6/-313 A and .= -—=—— =4/331 A
R o688 T

Of coursc, only the rms values of these currents are used in - P = [*R:
P = 13(4) + 133) + 13(6) = 10.19%(4) 4+ 67(3) + 47(6) = 619 W

The currents I, and I, are needed in finding the wattmeter readings since these are the currents that
flow through the current coils:

L=, + 1, = 1019/543 +6,—313 = 1434336 A

L= -1, — 1= —1019/543 - 4/331 =14/- 1316 A
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Obviously, the potential coil voltages are V, = 30@ V and V, = —-40/-20 =40/160 V. These po-
tential coil voltages and current coll currents produce wattmeter rcadings that have a sum of

Pp=30(14.34)cos (50 — 336 )+ 4014 cos [160 —1—131.6 }] =413 + 206 = 619 W

Observe that this sum of the two wattmeter readings is cqual to the total power absorbed. This should
not be expected, since each wattmeter reading cannot be associated with powers absorbed by certain resistors.
It can be shown, though, that this result is completely gencral for loads with three wires and for the
connections shown. This use of wattmeters is the famous nwo-wattmeter method that is popular for measuring
power to three-phase loads, as will be considered in Chap. 17.

What is the reactive factor of an inductive load that has an apparent power input of 50 kVA
while absorbing 30 kW?

The reactive factor is the sine of the power factor angle 0. which is

30000
b oS3
50 000

0=cos ! =cos
S

So RF =sin 531 =08

With ¢ =200sin (377t + 30°) V applied, a circuit draws = 25sin (3771 — 20 ) A. What 1s
the reactive factor and what 1s the reactive power absorbed?
The reactive factor is the sine of the power factor angle (). which is the phase angle of the voltage minus

the phase angle of the current: =30 —(-20})=50.So. RF =sin50 =0.766. The reactive power
absorbed can be foundfrom Q@ = I'J x RF, where I and I are the rms values of the voltage and current:

25
x - x 0.766 = 192 x 10* = 192 kVAR

What is the reactive factor of a circuit that has an input impedance of 40,50 Q? Also, what
reactive power does the circuit absorb when the input current is S A?

The reactive factor is the sine of the impedance angle:  RF = sin S0 = 0.766. An casy way 1o find the
reactlive power is with the formula @ = I°X, where X, the rcactance. is equal to 40 sin 50 = 30.64 €

Q= I’X = 5%30.64) = 766 VAR

What is the reactive factor of a circuit that has an input impedance of 20/ —40 Q? What is the
reactive power absorbed with 240 V applied?

The reactive factor is the sine of the impedance angle: RF =sin{—40 ) = —0.643, Perhaps the casiest
way to find the reactive power absorbed is from @ = V[ x RF. The only unknown in this formula is the
rms current, which is equal to the rms voltage divided by the magmtoude of impedance: [ =1V 7 =
240/20 = 12 A. Then,

Q = VI x RF = 24012} - 0.643) = — 1.85 kVAR

The negative sign indicates that the circuit delivers vars, as should be expected from this capacitive circuit.
As a check, the formula Q = /?X can be vsed. in which X. the imaginary part of the impedance,
is X =20sin(—40)= —1286Q: @ = 12%(—12.86) = — [.85 KVAR, the same.

When 3 A flows through a circuit with an input admittance of 0.4 + j0.5 S. what reactive power
does the circuit consume?
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The reactive power consumed can be found from @ = 12X after X is found from the admittance. Of
course X is the imaginary part of the input impedance Z. Solving for Z,

| 1 1
Z= = — —=- - —=156/-513 =0976 —1.22Q

Y 04405 064/51.3

So. X =-122Q, and
Q0 =1’X=3(-122)= —11 VAR
The negative sign indicates that the circuit delivers reactive power.
A check can be made by using Q = — V2B, where V =1Z = 3(1.56) = 4.68 V. (Of course, B=

0.5S from the input admittance.) So.

Q= -V2B=—(468)%05)= — 11 VAR

Two circuit elements in series consume 60 VAR when connected to a 120-V, 60-Hz source. If the
reactive factor is 0.6, what are the two components and what are their values?

The two components can be found from the input impedance. The angle of this impedance is the arcsine
of the reactive factor: 0 =sin '0.6 = 369 . The magnitude of the impedance can be found by sub-
stituting I =V/Z into Q= VI x RF:

14 VXRF) 120%0.6
0= V(~)(RF) from which Z = —( —’ = - —( ) =144 Q
V4 o 60
So Z =144/369 =115+ j864Q

From this impedance, the two clements must be a resistor with a resistance of R = 115Q  and an inductor
with a reactance of 86.4 Q. The inductance is

X 86.4
L= -= —-=0229H
¢ 2r(60)

What resistor and capacitor in parallel present the same load to a 480-V, 60-Hz source as a fully
loaded 20-hp synchronous motor that operates at a 75 percent efficiency and a 0.8 leading power
factor?

The resistance can be found from the motor input power, which is

P,. 20 x 7457
P =-""=— — - =199kW
] 0.75
3 v? 4802
From P, =V?R, R= —=——-—=116Q
P, 199 x 10°

The corresponding conductance and the admittance angle, which is the negative of the power factor angle,
can be used to find the capacitive susceptance. And then the capacitance can be found from this susceptance.
The conductance is G =1 11.6 = 0.0863 S, and the admiitance angle is ¢ = cos™ ' 0.8 = 36.9". So, the
susceptance is
B = G tan ¢ = 0.0863 tan 36.9 = 0.0647 S

Finally. the capacitance is this susceptance divided by the radian frequency:

. B 00647

( — P

=-=—— =172 uF
¢ 2a(60)

A 120-mH inductor is energized by 120 V at 60 Hz. Find the average, peak, and reactive powers
absorbed.
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Since the power factor is zero (PF =cos90 =0). the inductor absorbs zcro average power:
P = 0 W. The peak power can be obtained from the instantancous power. As derived in this chapter. the
general expression for instantancous power 1s

p=11Tcosth— VIcos(2en + 6)

For an inductor. 0 =90 . which means that the first term is zero. Consequently. the peak power is the
peak value of the second term, which is  VI: p_ . = VI The voltage V is given: ¥ = 120 V. The current
I can be found from this voltage divided by the inductive reactance:

v 120 120
- = = .- =265A
X 2m60)120 x 10 Yy 45.24
So P = 8T = 120(2.65) = 318 W

The reactive power absorbed s
Q= I°X = 2.65(45.24) = 318 VAR

which has the same numerical value as the peak power absorbed by the inductor. This is generally true
because Q = I’X = (IX)I = VI, and V[ is the peak power absorbed by the inductor.

What are the power components resulting from a 4-A current flowing into a load of 30/40 Q?
In other words, what are the complex. real, reactive, and apparent powers of the load?

From Fig. 15-3h. the complex power S is
S =17 =43(3040) = 48():4_() = 368 + j309 VA

The real power is the real part. P = 368 W the reactive power 1s the imaginary part. Q = 309 VAR,
and the apparent power is the magnitude.  § = 480 VA,

Find the power components of an induction motor that delivers 5 hp while operating at an 85
percent efficiency and a 0.8 lagging power factor.
The input power is

P
P, =

in

bt 9 2 1487
] T 085

W = 4.386 kW

The apparent power, which is the magnitude of the complex power. is the real power divided by the power
factor: § = 4386 0.8 = 548kVA. The angle of the complex power is the power factor angle: 0 =
cos ' 0.8 = 369 . So. the complex power is

S = 548/369 = 4386 + j3.29 kKVA

The reactive power is, of course. the imaginary part: 0 = 329 kVAR,

Find the power components of a load that draws 20°—30 A with 240/20 V applied.
The complex power can be found from § = VI* Since 1= 20/ =30 A, its conjugate is I* =
20@ A. and the complex power is
S = (240,20 )20/30 ) = 4800/50 VA = 3.09 + j3.68 kVA

From the magnitude and real and imaginary parts, the apparent. real. and reactive powers are S =
48 kVA, P=309kW. and @ = 368kVAR.

A load, connected across a 12470-V line, draws 20 A at a 0.75 lagging power factor. Find the
load impedance and the power components.
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Since the impedance magnitude is cqual to the voltage divided by the current. and the impedance angle
is the power factor angle. the load impedance is

12470

Z Jeos 1075 =623.5/414 Q

From S =1?Z. thc complex power is
S = 20%(623.5/41.4 ) = 2494 x 10%/414 VA = 187 + j165kVA

From the magnitude and the real and imaginary parts, 5 =2494kVA, P =187kW, and Q=
165 kVAR.

A 20-uF capacitor and a parallel 200-Q resistor draw 4 A at 60 Hz. Find the power components.
Once the impedance is found. the complex power can be obtained from S = /°Z. The capacitive
reactance is
1 —1
N= - — = - L= 13260
oC 2n60)20 x 10 *)
and the impedance of the parallel combination is
2000 —j132.6
7 J )

~110.5/-564 Q
200 — j132.6 —

Substitution into S = I?Z results in a complex power of
S =d2110.5/-564 ) =177 x 10/ =564 VA =098 — j1.47kVA
So, S=177kVA, P=098kW. and Q= —147kVAR.

A fully loaded 10-hp induction motor operates from a 480-V, 60-Hz line at an efficiency of 85
percent and a 0.8 lagging power factor. Find the overall power factor when a 33.3-uF capacitor
is placed in parallel with the motor.

The power factor can be determined from the power factor angle. which is 6 = tan™ '(Q, P,,). For
this, the input power P,  and the total rcactive power Q, are needed. The capacitor does not change the
real power absorbed. which 1s

P 10 x 745.7

in =877kW
] 0.85

The total reactive power is the sum of the motor and capacitive reactive powers. As is evident from power
triangle considerations, the reactive power @, of the motor is ecqual to the power times the tangent of the
motor power factor angle, which is the arccosine of the motor power factor:

v = P,tan,, = 877 tan(cos™ ' 0.8) = 6.58 k
v =P y =877 g 6.58 kVAR

The reactive power absorbed by the capacitor is

Q¢ = —0CV: = —2n(60§33.3 x 10 “§480)* = —289 kVAR

And the total reactive power 1s

0; =0y +0Q,=0658—289 =369kVAR

With @, and P;, known, the power lactor angle ¢ can be determined:
369 % 10°
877 x 10°

) = tan ! Q7 = tan =228

And the overall power factor is PF = cos 22.8 = 0.922. It is lagging because the power factor angle is
positive.
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A 240-V source energizes the parallel combination of a purely resistive 6-kW heater and an
induction motor that draws 7 kVA at a 0.8 lagging power factor. Find the overall load power
factor and also the current from the source.

The power factor and current can be determined from the total complex power S, . which is the sum
of the complex powers of the heater and motor:

S; =Sy + Sy = 6000,0 + 7000;cos ' 0.8 = 600070 4 70007369 = 12347199 kVA
The overall power factor is the cosine of the angle of the total complex power: PF = cos [99 =094, It
1s lagging. of course, because the power factor angle s positive. The source current is equal to the total
apparent power divided by the voltage:
12.34 x 10°
S0

=514A

Notice that the total apparent power of 1234 kVA is not the sum of the load apparent powers of 6
and 7kVA. This 1s generally true except in the unusual situation in which all complex powers have the same
angle.

A 480-V source encrgizes two loads in parallel. supplying 2 kVA at a 0.5 lagging power factor to
one load and 4 kVA at a 0.6 leading power factor to the other load. Find the source current and
also the total impedance of the combination.

The current can be found from the total apparent power. which is the magnitude of the total complex
power:

S = 2000,cos 03 + 000, —cos 0.6 = 2000,60 + 4000, -53.13 - 1703, - 234 kVA

The power factor angle for the 4-kVA load 1s negative because the power factor is leading, which means
that the current leads the voltage.
The current is equal 10 the apparent power divided by the voltage:
53703 % 107

I - = =7715A
I 4580

From §=1I%Z, the impedance is equal to the complex power divided by the square of the current:

S 3703 x 100 -234

A ‘ =622 2234 Q
I 7715

Three loads are connected across a 277-V line. One s a fully loaded 5-hp induction motor
operating at a 75 percent efficiency and a 0.7 lagging power factor. Another is a fully loaded 7-hp
synchronous motor operating at an 80 pereent cefliciency and a 04 leading power factor. The
third is a 5-kW resistive heater. Find the total line current and the overall power factor.

The line current and power factor can be determined from the total complex power, which is the sum
of the individual complex powers. The complex power of the induction motor has a magnitude that is equal
to the input power divided by the power factor. and an angle that is the power factor angle. The same 1s
true for the synchronous motor. The complex power for the heater is. of course. the sume as the real power. So.

S x 7457 7 x 7457

S = cos Y07+ T—cos P04+ 500070
075 x 07— O8 x 04— -

=71 x 10° 456 + 163 x 10* --664 + 5()()()1(‘) =19.23 ~309 kVA

The total hne current s equal o the apparent power divided by the line voltage: [ =
(19.23 x 10%) 277 = 69.4 A. And. the overall power factor is the cosine of the angle of the 10tal complex
power:  PEF =cost =309 ) - 0838 It is leading because the power factor angle is negative.
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15.33 In the circuit shown in Fig. 15-6, load 1 absorbs 2.4 kW and 1.8 kVAR, load 2 absorbs 1.3 kW
and 2.6 kVAR, and load 3 absorbs | kW and generates 1.2kVAR. Find the total power
components, the source current I, and the impedance of each load.

Load 2
ll l:
— =
é 600/20° V l:l] Load IE@
Fig. 15-6

The total complex power is the sum of the individual complex powers:
S, =8, +8,+S; = (2400 + j1800) + (1300 + j2600) + (1000 — j1200}
= 4700 + j3200 VA = 5.69/34.2 kVA

From the total complex power. the total apparent power is S; = 5.69kVA, the total real power
is P, =47kW. and the total reactive power is Q, = 3.2 kVAR. The source current magnitude /, is
equal to the apparent power divided by the source voltage: 1, = (5.69 x 10%):600 = 9.48 A. And the angle
of I, is the angle of the voltage minus the power factor angle: 20 —342 = —142. So, |, =
948/ —142 A,

The angle of the load 1 impedance Z, s the load power factor angle, which is also the angle
of the complex power §;. Since S, = 2400 + j1800 = 3000/36.9 VA, thisimpedance angleis ( = 369 .
Because the load | voltage is known, the magnitude Z, can be found from §, = V2:Z:

TS, 3000
So. Z,= Z,[(_) = 120[36.9 Q. The impedances 7., and Z; of loads 2 and 3 cannot be found in a similar

manner because the load voltages are not known. But the rms current I, can be found from the sum of the
complex powers of loads 2 and 3. and used in S = /2Z 1o find the impedances. This sum is
S,y = (1300 + j2600) + (1000 — j1200) = 2300 + j1400 = 2.693/31.3 kVA
The apparent power §,, can be used to obtain I, from §,, = VI,:
S,, 2693 x 10°
I,=-"2= =449 A
% 600

Since S8, = 1300 + j2600 VA = 291/63.4 kVA, the impedance of load 2 is

S, 291 x 107/63.4
Z,=2= L= 2 144/63.4° Q
p 4.49?

Similarly. S, = 1000 — j1200 VA = 1.562/—50.2 kVA, and

S, 1562 x 10°/—50.2
Z,="1= < 10°/=502 =776/-502 Q

1 4.492

15.34 A load that absorbs 100-kW at a 0.7 lagging power factor has capacitors placed across it to
produce an overall power factor of 0.9 lagging. The line voltage is 480 V. How much reactive
power must the capacitors produce, and what 1s the resulting decrease in line current?

The inittal reactive power is @, = Ptan(,. where (); is the initial power factor angle: @, =
cos ' 0.7 =456 . Therefore
Q; = 100 x 10° tan 45.6 = 102k VAR
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The finai reactive power is
Q,=Prant/, = 100 x 10" tan (cos™ ' 0.9} = 484 kVAR

Consequently. the capacitors must supply 102 .- 484 = 53.6 kVAR.
The inttial and tinal currents can be obtained from P = 1'] x PF:
r 100 x 10° r 100 x 10°

= ol 22976 A and I, = =
F'x PF, 480 x 09

= = =2315A
' x PF, 480 x 0.7

i

The resulting decrease in hine current s 297.6 — 231.5 = 66.1 A.

A synchronous motor that draws 20 kW is in parallel with an induction motor that draws 50 kW
at a lagging power factor of 0.7. If the synchronous motor is operated at a leading power factor,
how much reactive power must it provide to cause the overall power factor to be 0.9 lagging.
and what is its power factor?
Since the totul power input is P, = 20 + 50 = T0kW. the total reactive power is
;= Pptanfcos ' Ph,) = T0tanicos 1 09) = 339kVAR
Because the reactive power absorbed by the induction motor 1s

Qg = Pigtan Oy = 50 tan {cos 1 0.7) = 51 kVAR

the synchronous motor must supply Q- @, == 51 — 339 = 171 kVAR. Thus. Q¢4 = —- [7.1 kVAR,
The resulting power factor of the synchronous motor 1s cos tlyy in which Oy, the synchronous
motor power factor angle. 1s
3
L0y 171 x 10

M tan ! = - 40.5

Iy = tdn
e 20 x 107

SM

So, PFg, =cos(—405) =076 lcading.

A factory draws 100 A at a 0.7 lagging power factor from a 12 470-V, 60-Hz line. What capacitor
placed across the line at the input to the factory increases the overall power factor to unity? Also,
what are the final currents for the factory, capacitor, and line?

The capacitance can be determined from the reactive power that the capacitor must provide to cause
the power factor to be unity. The reactive power absorbed by the factory is the apparent power times the
reactive factor, which is the sine of the arccosine of the power factor:  RF = sin(cos ' 0.7) = 0.714. Thus

Q=11 xRF =12470 x 100 x 0.714 = ¥90.5 KVAR
For a umty power factor, the capacitor must supply all this reactive power. Since the formula for generated
capacitor reactive power is @ = oCE=, the required capacitance is
890.5 x 10*
C - Q,; B R
ol 2a(60K12 470)°

Adding the capacitor in parallel docs not change the current input to the factory since there is no
change in the factory load. This current remains at 100 A, The current to the capacitor can be found
from Q= 1VI.xRF with RF = —1 sincethe power factor angle is —90 for the capacitor. The result
is

3
. _Q_» _ —-89Q.5x IQ ZN4A
V' x RE {12470 -1

¢

The total fina) line current I;; can be found from the input power, which is

P =11, x PF, = (124706 10050.7) = 873 kW
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Adding the capacitor does not change this power, but it docs change the power factor to I. So.
from P = VI, x PF,.

873 x 10°

873 x 10% = 12470(1,, (1) from which Iyp=" = = =T0A
12 470

Notice that the 70-A rms final line current is not equal to the sum of the capacitor 71.4-A rms current
and the factory 100-A rms current. This should not be surprising because. in gencral. rms gquantitics cannot
be validly added since the phasor angles arc not included.

A 240-V, 60-Hz source energizes a load of 30/50 Q. What capacitor in parallel with this load
produces an overall power factor of 0.95 lagging?

Although powers could be used in the solution. it is often casier to use admittance when a circuit or
its impedance is specified. The initial admittance is

Y= 3()& =333 %10 3/=50 =214~ ,255mS
Adding the capacitor changes only the susceptance. which becomes
B=Gtlan(—#) = 2141an{—cos '095) = —-7.04 mS
Thisformula B = Gtan{ - should be evident from admittance triangle considerations and the fact that
the admittance angle is the negative of the power factor angle. From  AB = (.
AB 2558 x 10 * =704 x 10 °?
N

C =491 x 10 © =491 uF

At 60 Hz, what is the power factor of the circuit shown in Fig. 15-7? What capacitor connected
across the input terminals causcs the overall power factor to be 1 (unity)? What capacitor causes
the overall power factor to be 0.85 lagging”

4

30 mH 15Q

A"A'A%

Fig. 15-7

Because a circuit is specitied, the power factor and capacitor are probably casier to find using impedance
and admittance instead of powers. The power factor is the cosine of the impedance angle. Since the reactance
of the inductor is  2z(60K0.03) = 11.3 Q. the impedance of the circuit is

15(j11.3)

Z=4+ =119/37.38 Q

15 + 113

And the power factor is  PF = cos 37.38 = 0.795  lagging.
Because the capacitor is 1o be connected in parallel. the cireuit admittance should be used to determine
the capacitance. Before the capacitor is added. this admittance 1s

1 1

Yoo 00842/ -3738 =669 — j51.1 mS
7 119/37.38 [=31.38 pLEm
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For unity power factor. the imaginary part of the admittance must be zero. which means that the added
capacitor must have a susceptance of 51.1 mS. Consequently, its capacitance is
B 5hlx10?

C= = =136 x 10 " =136 uF
) 2a(60)

A different capacitor 1s required for a power factor of 0.85 Jagging. The new susceptance can be found
from B = Gtan({—#) where G is the conductance. which does not change by adding a parallel capacitor,
and 0 is the new power factor angle:

B =669tan{—cos '0.85) = --41.5mS
Because the added capacitor provides the change in susceptance. its capacitance is
¢ AB  SL1x 10 *—415x%x 10 ¢

=256 x 10 *=256uF
0 2n(60)

Naturally. less capacitance is required to improve the power factor to 0.85 lagging than to 1.

An induction motor draws 50 kW at a 0.6 lagging power factor from a 480-V, 60-Hz source. What
parallel capacitor will increase the overall power factor to 0.9 lagging? What is the resulting
decrease in input current?
The pertinent capacitance formula is
c Pltan(cus ' PF) — tan{cos ' PF)))
- mv?
So. here.

_ O S0000[tan (cos ' 0.6) — tan (cos ' 0.9)] )
C = R = 489 ut
2r(60K480)~

From P = 'l x PF. the decrease ininput current 1s
P P 50 000 50 000

Al=1,—1,= . - .= S =
TT OV x PE WV x PF, 480(0.6)  480(0.9)

9A

A factory draws 30 MVA at a 0.7 lagging power factor from a 12470-V, 60-Hz hne. Find the
capacitance of the parallel capacitors required to improve the power factor to 0.85 lagging. Also,
find the resulting decrease 1n line current.

The power absorbed by the factoris P = 300.7) = 21 MW, So. from the capacitance formula specified
in Prob. 15.39, the capacitance required 1s

.- (21 x 10"[tan(cos ' 0.7) — tfm(cus 10.85)) - 143
2r(60) 12 470y
The decrease in line current is equal 1o the decrease in apparent power divided by the hine voltage. The
initial apparent power is the specitied 30 MV A, and the tinal apparent power s P/PF, = 21 x 10°/0.85 =
247 x 10 VA, So,
/ 30 x 100 -- 247 x 10°

12 470

425 A

A 20-MW industrial load supplied from a 12 470-V, 60-Hz line has its power factor improved to
0.9 lagging by the addition of a 230-uF bank of capacitors. Find the power factor of the original
load.
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15.42

1543

15.44

15.45

15.46

The initial reactive power is needed. It is equal to the final reactive power plus that added by the
capacitors:
Q;=Ptanf; + oCV? =20 x 10®tan(cos '0.9) + 2a(60§230 x 10 °)12 470)°
=9.69 x 10° + 13.5 x 10® = 23.2 MVAR
The real power and the initial reactive power can be used to find the initial power factor angle:
232> 100

20 x 10°

1 i

f; = tan” Q. = tan 2
I)

Finally, the initial power factoris  PF, = cos 0, = cos49.2 = 0.653  lagging.

A 480-V, 60-Hz source energizes a load consisting of an induction motor and a synchronous
motor. The induction motor draws S0 kW at a 0.65 lagging power factor, and the synchronous
motor draws 10 kW at a 0.6 leading power factor. Find the capacitance of the parallel capacitor
required to produce an overall power factor of 0.9 lagging.

The required change in reactive power is needed. The initial absorbed reactive power is the sum of that
of the two motors, which from Q@ = Ptan( s

Q,=50tan(cos '0.65) + 10tan(—cos ' 0.6) = 58.456 — 13.333 = 45,12 kVAR
The final reactive power is, from  Q, = P, tan (cos™ ' PF)),
Q, =1(50 + 101 tan(cos ' 0.9) = 29.06 kVAR
So the change AQ in reactive power is  AQ = 4512 — 29.06 = 16.1 kVAR and
AQ 161 x 10°

T
D)3

C = = 185 uF

2(60)480)7

Supplementary Problems

The instantancous power absorbed by a circuit 1s p =6+ 4cos? (2t + 30 ) W. Find the maximum.
minimum. and average powers absorbed.

Ans. prn=10W. p o =6W. P=8W

With 170sin (377t + 10 ) V applicd. a circuit draws 8sin (3771 + 35 ) A. Find the power factor and the
maximum. minimum. and average powers absorbed.

Ans.  PF = 0906 leading. p,. = 1.3kW. p...= —63TW, P=6I6 W

For each following load voltage and current pair. find the corresponding power factor and average power
absorbed:

170 sin (50t — 40 )V, i=43sin(50r + 10)A

(0 r=340cos (377t — 50}V, i=61sin{3771 +30)A

(¢) v=679sin(377r +40 )V, i= —72co0s(377t +50)A

Ans. {a) 0.643 leading. 235 W (h) 0.985 lagging. 1.02kW: (¢) 0.174 lagging, 424 W

{a) v

Find the power factor of a fully loaded S-hp induction motor that operates at 85 percent efficiency while
drawing 15 A from a 480-V linc.

Ans. 0.609 lagging



344

15.47

1548

15.49

15.50

15.51

15.52

15.54

15.55
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What 1s the power factor of a circuit that has an input impedance of 5/ —25 Q? Also, what is the powcer
absorbed when 50V is applied?

Ans. 0906 leading. 453 W

If a circuit has an input admittance of 40 + j20 S and an applied voltage of 180 V, what is the power factor
and the power absorbed?

Ans.  0.894 leading. 1.3 MW

A resistor in parallel with an inductor absorbs 25 W when the combination is connected to a 120-V, 60-Hz
source. If the total current is 0.3 A, what are the resistance and inductance?

Ans. 576 Q 147H

A coil absorbs 20 W when connected to a 240-V, 400-Hz source. If the current is 0.2 A, find the resistance
and inductance of the coil.

Ans. 500 Q, 0434 H

A resistor and series capacitor draw | A from a 120-V, 60-Hz source at a 0.6 leading power factor. Find the
resistance and capacitance.

Ans. T2Q, 276 uF

A resistor and parallel capacitor draw 0.6 A from a 120-V, 400-Hz source at a 0.7 leading power factor. Find

the resistance and capacitance.

Ans. 286K, 1.42 uF

A 100-kW load operates at a 0.6 lagging power factor from a 480-V, 60-Hz line. What current does the load
draw? What current does the load draw if it operates at unity power factor instead?

Ans. 347 A 208 A

A fully loaded 100-hp induction motor operates at 85 percent efficiency from a 480-V line. If the power

factor is 0.65 lagging, what current does the motor draw? If the power factor is 0.9 lagging, instead, what
current does this motor draw?

Ans. 281 A, 203 A

Find the wattmeter reading for the circuit shown in Fig. 15-8.

Ans. 16 W
20 isQ 10
AN\ —YY NN
x P %
IYWH cc
+
20/10° VC’:P WM § 60N

1Q

Fig. 158
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15.56

15.57

15.58

15.59

15.61

15.62

'ad
oS
N

Find each wattmeter reading for the circuit shown in Fig. 15-9.

Ans. WM, = 1.54 kW, WM, =656 W

WM,
* SYYY
CcC
*
100/20° V pc §4n =-=-j3Q
60/—30° V pc gs 0
+
- cc
— vy
WM,
Fig. 15-9

With 200 sin (754r + 35°) V applied. a circuit draws 456 sin (7547 + 15 ) mA. What is the reactive factor, and
what is the reactive power absorbed?

Ans. 0342, 156 VAR

With 300 cos (377t — 75°) V applied, a circuit draws 2.1 sin (377t + 70 '} A. What is the reactive factor, and
what is the reactive power absorbed?

Ans. —-0819, —258 VAR

What is the reactive factor of a circuit that has an input impedance of 50@ Q? What reactive power does
the circuit absorb when the input current is 4 A?

Ans. 0.574, 459 VAR

What is the reactive factor of a circuit that has an input impedance of 600/ —30 Q7 What is the reactive
power absorbed when 480 V is applied?

Ans. —0.5, —192 VAR

When 120 V is applied across a circuit with an input admittance of 1.23&) S, what reactive power does
the circuit absorb?

Ans. —114kVAR

When 4.1 A flows into a circuit with an input admittance of 0.7 — j1.1 S, what reactive power does the circuit
absorb?

Ans. 109 VAR
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A load consumes 500 VAR when energized from a 240-V source. If the reactive factor is 0.35, what current
does the load draw and what is the load impedance?

Ans. S95A.40.3/205 Q

Two circuit elements in parailel consume 90 VAR when connected to a 120-V. 60-Hz source. If the reactive
factor 1s 0.8, what are the two components and what arc their values?

Ans. A 213-Q resistor and a 0.424-H inductor

Two circuit clements in series consume - 80 VAR when connected to a 240-V. 60-H/ source. If the reactive
factor 1s — 0.7, what arc the two components and what are their values?

Ans. A 360-Q resistor and & 7.52-ub capacitor

A 300-mA. 60-Hz current flows through a 10-g¢F capacitor. Find the average, peak. and reactive powers
absorbed.

Ans. P=0W. p...=239W. Q= 239 VAR

What are the power components resulting from a 3.6-A current flowing through a load of 50, - 30 Q7

Ans. S = 648/—3() VA, §=648VA. P =561 W. @~ —324 VAR

Find the power components of a fully loaded 10-hp synchronous motor operating at an 87 percent efliciency
and a 0.7 leading power factor.

Ans. §=122/-456 kKVA. §=I122KkVA, P =857kW. Q= -B74kVAR

A load draws 3 A with 75 V applicd. If the load power factor is (1.6 lagging. find the power components of
the load.

Ans. §=1225/531 VA, S$=225VA. P=135W. (=150 VAR

Find the power components of a load that draws 81& A with 480_10 V applied.
Ans. §=1389/-26 kVA. S =2389kVA. P=349kW. Q= —[.7kVAR

A 120-mH inductor and a parallel 30-€ resistor draw 6.1 A at 60-Hz. Find the power components.

Ans. $=930/336 VA, S=930VA. P =775 W. Q =514 VAR

A fully loaded 15-hp induction motor operates from a 480-V. 60-Hy line at an efticiency of 83 percent and
a 0.7 lagging power factor. Find the overall power factor when o 75-pF capacitor is placed in parallel with
the motor.

Ans. 0881 lagging

Two loads are connected in parallel across a 277-V line. One is a fully loaded 5-hp induction motor that
operates at an 80 percent efficiency and a 0.7 lagging power fuctor. The other is a 5-kW resistive heater.
Find the overall power factor and line current.

Ans. 0.897 lagging. 389 A
Two loads are connected in parallel across a 12 470-V hne. One load takes 23k VA at a 0.75 lagging power

factor and the other load takes 10 kVA at a 0.6 leading power factor. Find the total line current and also
the impedance of the combination.

Ans. 195 A, 6.39/17.2 kQ
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15.76
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15.79

15.80

15.81
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Three loads are connected across a 480-V line. One s a fully loaded 10-hp induction motor operating at
an 80 percent efficiency and a 0.6 lagging power factor. Another is a fully loaded S-hp synchronous motor
operating at a 75 percent efficiency and a 0.6 leading power factor. The third is a 7-kW resistive heater.
Find the total line current and the overall power factor.

Ans. 46 A 0965 lagging

In the circuit shown in Fig. 15-10, load 1| absorbs 6.3 kW and 9.27 kVAR. and load 2 absorbs 5.26 kW and
generates 2.17 kVAR. Find the total power components. the source voltage V. and the impedance of each
load.

Ans. S, =136/31.6 kVA S; = 13.6kVA P, = IL6kW Q, = 7.1 kVAR
V=221/-134 kV Z,=437/558 Q Z,=1861/-224 Q
+
v 6.13/-45° A Load | Load 2
Fig. 15-10

How much reactive power must be supplicd by parallel capacitors to a 50-kVA load with a 0.65 lagging
power factor to increase the overall power factor to 0.85 lagging?

Ans. 179 kVAR

An electric motor delivers 50 hp while operating from a 480-V line at an &3 percent efficiency and a 0.65
lagging power factor. If it is paralleled with a capacitor that increases the overall power factor to 0.9 lagging.
what is the decrcase in line current?

Ans. 40 A

A load encrgized from a 480-V. 60-Hz line has a power factor of 0.6 tagging. If placing a 100-xF capacitor
across the line raiscs the overall power factor 1o 0.85 lagging. find the real power of the load and the decrease
in line current.

Ans. 122kW. 124 A

A factory draws 90 A at a 0.75 lagging power factor from a 25000-V. 60-Hz line. Find the capucitance of
a parallel capacitor that will increase the overall power factor to 0.9 lagging.

Ans. 285 uF

A fully loaded 75-hp induction motor operates from a 480-V, 60-Hz line at an 80 percent efficiency and a
0.65 lagging power factor. The power factor is to be raised to 0.9 lagging by placing a capacitor across the
motor terminals. Find the capacitance required and the resulting decrecase in line current.

Ans. 551 uF, 62.2 A

A load of 5()&() Q 15 connected to a 480-V. 60-Hz source. What capacitor connected in parallel with the
load will produce an overall power factor of 0.9 lagging?

Ans. 331 uF
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15.83 At 400 Hz. what is the power factor of the circuit shown in Fig. 15.117 What capacitor connected across
the input terminals causes the overall power factor to be 0.9 lagging?

Ans.  0.77 lagging, 8.06 uF

S mH
o—
500 100
O—
Fig. 15-11

1584 For a load energized by a 277-V, 60-Hz source, an added parallel 5-uF capacitor improves the power factor
from 0.65 lagging to 0.9 lagging. What is the source current both before and after the capacitor is added?

Ans. 1.17A, 0847 A



Chapter 16

Transformers

INTRODUCTION

A transformer has two or more windings, also called coils, that are magnetically coupled. As shown
in Fig. 16-1, a typical transformer has two windings wound on a core that may be made from tron. Each
winding encirclement of the core is called a rurn, and is designated by N. Here, winding 1 has N, =4
turns and winding 2 has N, =3 turns.{Windings of practical transformers have many more turns than
these.) Circuit 1, connected to winding 1, is often a source, and circuit 2, connected to winding 2, is often
a load. In this case, winding | is called the primary winding or just primary, and winding 2 is called the
secondary winding or just secondary.

I 1
Winding 1 Winding 2 (
+ I | II h +
Circuit 1 v, [ N, N: <-I/I v, Circuit 2
_ {0 e -
D
LL Core T
¢ml beart — L ¢m2

Fig. 16-1

In the operation, current i, flowing in winding 1 produces a magnetic flux ¢,,, that, for power
transformers, is ideally confined to the core and so passes through or couples winding 2. The m in the
subscript means “mutual”— the flux is mutual to both windings. Similarly, current i, flowing in winding
2 produces a fiux ¢,,, that couples winding 1. When these currents change in magnitude or direction,
they produce corresponding changes in the fluxes and these changing fluxes induce voltages in the
windings. In this way, the transformer couples circuit 1 and circuit 2 so that electric energy can flow
from one circuit to the other.

Although flux is a convenient aid for understanding transformer operation, it is not used in the
analyses of transformer circuits. Instead, either transformer turns ratios or inductances are used, as will
be explained.

Transformers are very important electrical components. At high efficiencies, they change voltage and
current levels, which is essential for electric power distribution. In electronic applications they match
load impedances to source impedances for maximum power transfer. And they couple amplifiers together
without any direct metallic connections that would conduct dc currents. At the same time they may act
with capacitors to filter signals.

RIGHT-HAND RULE

In Fig. 16-1 the flux ¢,,, produced by i, has a clockwise direction, but ¢,, produced by i, has a
counterclockwise direction. The direction of the flux produced by current flowing in a winding can be
determined from a version of the right-hand rule that is different from that presented in Chap. 9 for a
single wire. As shown in Fig. 16-2, if the fingers of a right hand encircle a winding in the direction of
the current, the thumb points in the direction of the flux produced in the winding by the current.

349
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DOT CONVENTION

Using dots at winding terminals in agreement with the dot convention is a convenient method for
specifying winding direction relations. One terminal of each winding is dotted. with the dotted terminals
selected such that currents flowing into the dotted terminals produce adding fluxes. Because these dots
specify the transformer winding relations, they are used in circuit diagrams with inductor symbols in
place of illustrated windings. A transformer circuit diagram symbol counsists of two adjacent inductor
symbols with dots. If the winding relations are not important. the dots may be omitted.

Figure 16-3 shows the use of dots. In a circuit diagram, the more convenient transformer representa-
tion with dots in Fig. 16-3b is used instead of the one with windings in Fig. 16-3a. But both ar¢ equivalent.
An actual transformer may have some marking other than dots. In Fig. 16-3h. the two vertical lines
between the inductor symbols designate the transformer as either an iron-core transformer or an ideal
transformer, which is considered next.

a O———— -0 ¢ aO —O ¢
(/g (_; .
——
1 b .
b O— pb—————0Od b O— —Od
(a) (b)
Fig. 16-3

THE IDEAL TRANSFORMER

In most respects, an ideal transformer is an excellent model for a transformer with an iron core  an
iron-core transformer. Power transformers, the transformers uscd in electric power distribution systems,
are iron-core transformers. Being a model, an ideal transformer i1s a convenient approximation of the
real thing. The approximations are zero winding resistance, zero core loss, and infinite core permeability.
Having windings of zero resistance, an ideal transformer has no winding ohmic power loss (/2R loss)
and no resistive voltage drops. The second property. zero core loss, means that there is no power loss
in the core  no hysteresis or eddy-current losses. And since there i1s no power loss in the windings either,
there is no power loss in the entire ideal transformer  the power out equals the power in. The third and
last feature, infinite core permeability, means that no current is required to establish the magnetic flux
to produce the induced voltages. It also means that all the magnetic flux is confined to the core, coupling
both windings. All flux is mutual, and there is no leakagye flux, which is flux that couples only one winding.

In the analysis of a circuit containing an ideal transformer, the transformer turns ratio. also called
transformation ratio, 1s used instead of flux. The turns ratio. with symbol . is « = N N,. This is the
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ratio of the number of primary turns to secondary turns. In many electric circuits books, however, this
ratio is defined as the number of secondary turns to primary turns, and sometimes the symbol n or N
is used.

In a circuit diagram, the turns ratio of an iron-core or ideal transformer is specified over the
transformer symbol by a designation such as 20:1, which means that the winding on the left of the
vertical bars has 20 times as many turns as the winding on the right. If the designation were 1:25, instead,
the winding on the right would have 25 times as many turns as the winding on the left.

The turns ratio is convenient because it relates the winding voltages. By Faraday's law, ¢, =
+ N dop:dt and r, = £ N,d¢ di. (The same flux ¢ is in both equations because an ideal transformer
has no leakage flux.) The ratio of these equations is

G_  Nidedny N,

=x - =1 = ztu
I, N, (dp:dr) N,

The positive sign must be selected when both dotted terminals have the same reference voltage polarity.
Otherwise the negative sign must be selected. The justification for this selection is that. as can be shown
by Lenz’s law, at any one time the dotted terminals of an ideal transformer always have the same actual
polarities either both positive or both negative with respect to the other terminals. Incidentally, these
actual polarities have nothing to do with the selection of voltage reference polarities, which is completely
arbitrary.

It is obvious from ¢,/r, = +a thatif a transformer has a turns ratio less than one (a < 1), the
secondary rms voltage is greater than the primary rms voltage. Such a transformer is called a step-up
transformer. But if the turns ratio is greater than on¢ (¢ > 1). the secondary rms voltage is less than
the primary rms voltage. and the transformer is called a step-down transformer.

As can be shown from the property of infinite permeability, or from zero power loss, the primary
and secondary currents have a relation that 1s the inverse of that for the primary and secondary voltages.
Specifically,

The positive sign must be selected if one current reference is into a dotted terminal and the other current
reference is out of a dotted terminal. Otherwise the negative sign must be sclected. The reason for this
selection is that, at any one time, actual current flow is into the dotted terminal of one winding and out
of the dotted terminal of the other. So, only the specified selection of signs will give the correct signs for
the currents. But this selection of signs has nothing to do with the selection of current reference directions,
which i1s completely arbitrary.

It 1s important to remember that the winding with the greater number of turns has more voltage
but less current.

In the analysis of a circuit containing ideal transformers, a common approach is to eliminate the
transformers by reflecting impedances and. if necessary, sources. This approach applies only if there are
no current paths between the primary and secondary circuits, as is usually the case. For an understanding
of this reflecting approach, consider the circuit shown in Fig. 16-4a. The impedance Z, “looking into™
the primary winding, is called the reflected impedance,

= Vl _ _NYZ _ az 2 _ aZZZ
I (=1l I,

which is the turns ratio squared times the secondary circuit impedance Z,. If Z, replaces the primary
winding, as shown in Fig. 16-4b, the primary current I, is unchanged. As can be proven by trying all
different dot arrangements, the dot locations have no effect on this reflected impedance.

So if the primary circuit voltages and currents are of interest, the transformer can be eliminated by
replacing the transformer primary winding with the reflected impedance of the secondary circuit,
assuming this circuit contains no independent sources. The resulting primary circuit can be analyzed in
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YA L
——-
+
Vs \Z Z, = a'%,
(b)
Fig. 164

the usual manner. Then if the secondary winding voltage and current are also of interest, they can be
obtained from the primary winding voltage and current.

If the secondary circuit is not a lumped impedance, but a circuit with individual resistive and reactive
components, the total impedance can be found and reflected. Alternatively, the whole secondary circuit
can be reflected into the primary circuit. In this reflection, the circuit configuration is kept the same and
each individual impedance is multiplied by the square of the turns ratio. Of course, the transformer is
eliminated.

Reflection can also be from the primary to the secondary. To see this, consider making cuts at
terminals ¢ and d in the circuit shown in Fig. 16-4a and finding the Thévenin equivalent of the circuit
to the left. Because of the open circuit created by the cuts, the secondary current is zero: 1, =0A,
which in turn means that the primary current is zero: I, = 0 A. Consequently, there is 0 V across Z,
and all the source voltage 1s across the primary winding. As a result, the Thévenin voltage referenced
positive toward terminal ¢ is V4, =V, = —V,/a = —Vs/a. From impedance reflection the Thévenin
impedance is Zp, = Z,/a%, with a® being in the denominator instead of the numerator because the
winding being “looked into” is the secondary winding. The result is shown in the circuit of Fig. 16-4c.
Note that the source voltage polarity reverses because the dots are at opposite ends of the windings. By
use of Norton’s theorem in a similar way, it can be shown that a source of current I would have reflected
into the secondary as alg and would have been reversed in direction because the dots are not at the
same ends of the windings. Whole circuits can be reflected in this way.

An alternative to the reflection analysis approach is to write the circuit equations, which are usually
mesh equations, with the transformer voltages and currents as variables. Since the number of unknowns
will exceed the number of equations, these equations must be augmented with the transformer voltage
and current turns-ratio equations. As an illustration, for the circuit of Fig. 16-4q, these equations are

ZJ0, +V, =V,

Z,1,-V,=0
V,+aV,=0
al, +1,=0

The fact that this approach requires more equations than does the reflection approach is not a significant
disadvantage if an advanced scientific calculator is used in the calculations, and this approach may be
easier overall.

For ac voltages and currents, an ideal transformer gives results that are within a few percent
of those of the corresponding actual power transformer. But for dc voltages and currents, an ideal
transformer gives incorrect results. The reason is that an ideal transformer will transform dc voltages
and currents while an actual transformer will not.

THE AIR-CORE TRANSFORMER

The ideal transformer approximation is not valid for a transformer with a core constructed of
nonmagnetic material, as may be required for operation at radio and higher frequencies. A transformer
with such a core is often called an air-core transformer ot a linear transformer.
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Fig. 16-5

Figure 16-5 shows two circuits coupled by an air-core transformer. Current i; produces a mutual
flux ¢,,, and a leakage flux ¢;,, and current i, produces a mutual flux ¢,, and leakage flux ¢,,. As
mentioned, a mutual flux couples both windings, but a leakage flux couples only one winding.

The coefficient of coupling, with symbol k, indicates the closeness of coupling, which in turn means
the fraction of total flux that is mutual. Specifically,

ke [_Om _ Pm

X o M2
b1+ bt D12+ Pz
Clearly k cannot have a value greater than 1 or less than 0. And the greater each fraction of mutual
flux, the greater the coefficient of coupling. The coefficient of coupling of a good power transformer is
very close to 1, but an air-core transformer typically has a coefficient of coupling less than 0.5.
The voltages induced by changing fluxes are given by Faraday’s law:
d d
Ul=iNl;t(¢ml+¢lli¢m2) vy = iNZa}(¢mZ+¢12i¢ml)

The positive signs in +¢,,; and +¢,,, are selected if and only if both mutual fluxes have the same

direction in each winding.
For circuit analysis, it is better to use inductances instead of fluxes. The self-inductances of the

windings are

L AU R FUNE N

31 )
These are just the ordinary winding inductances as defined in Chap. 9. There is, however, another
inductance called the mutual inductance with symbol M. It accounts for the flux linkages of one winding
caused by current flow in the other winding. Specifically,

_ Nibnr_ Nyt

M

iy i
With these substitutions, the voltage equations become
di, +Mdi2 4 L di2+Mdi1
—= = an vy, = = .
de = di P T di

in which the + signs for the L di/dt terms have been deleted because of the assumption of associated
voltage and current references. For a sinusoidal analysis the corresponding equations are

V, =joL,l, + joMI, and V, = jwL,1, + joMI,
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In these equations, the negative signs of + are used if one current has a reference into a dotted terminal
and the other has a reference out of a dotted terminal. Otherwise the positive signs are used. Put another
way, if positive i, and i, or I, and 1, produce adding mutual fluxes, then the L and M terms add. As
mentioned, these equations are based on associated voltage and current references. If a pair of these
references are not associated, the ¢ or V of the corresponding equation should have a negative sign.
Everything else, though, remains the samc.

In a time-domain circuit diagram the self-inductances are specified adjacent to the corresponding
windings in the usual manner. The mutual inductances are specified with arrows to designate which pair
of windings each mutual inductance is for. In a phasor-domain circuit, of course. jwL,. jwl,, and joM
are used instead of L, L,, and M.

If substitutions are made for the fluxes in the coefficient of coupling equation, the result 1s k =

M/ LL,.

\Mesh and loop analyses are best for analyzing circuits containing air-core transformers since nodal
analysis 1s difficult to use. Writing the KVL equations is the same as for other circuits except for the
necessity of including the jw M1 terms resulting from the magnetic coupling. Also, voltage variables are
not assigned to the windings.

If the secondary circuit contains no independent sources and no current paths to the primary circuit,
it is possible to reflect impedances in & manner similar to that used for ideal transformers. For an
understanding of this reflection. consider the circuit shown in Fig. 16-6. The mesh equations are

Ve =1(Z, + joL)l; — joMI,

0= —joMI, + (jolL, + Z,)1,

1l

The mutual terms are negative in both equations because one winding current is referenced into a dotted
terminal while the other is referenced out of a dotted terminal. If I, is solved for in the second equation
and a substitution made for I, in the first equation, the result is

\Y <7 + jooLL @M |
.= 4 1) +
s R jol, + Z, :

which indicates that the secondary circuit reflects into the primary circuit as an impedance
?M2jool, + Z.,) in series with the primary winding. As can be found by trying different dot locations,
this impedance does not depend on those tocations. Some authors of circuits books call this impedance
a “reflected impedance.”™ Others, however, use the term “coupled impedance.™

THE AUTOTRANSFORMER

An autotransformer is a transformer with a single winding that has an intermediate terminal that
divides the winding into two sections. For an understanding of autotransformer operation, it helps to
consider the two sections of the winding to be the two windings of a power transformer. as is done next.
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Consider a 50-kVA power transformer that has a voltage rating of 10000 200 V. From the kVA
and voltage ratings. the full-load current of the high voltage winding is 50 000 10 000 = S A and that
of the low voltage winding is 50 000 200 = 250 A. Figure 16-7a shows such a transformer, fully loaded.
with its windings connected such that the dotted end of one winding is connected to the undotted end
of the other. As shown, the 10 000-V secondary circuit can be loaded to a maximum of 250 + 5 =
255 A without either of the windings being current overloaded. Since the source current is 250 A, the
transformer can deliver 10200 x 250 = 2550 kVA. This can also be determined from the secondary
circuit: 10000 x 255 = 2550 kVA. In effect, the autotransformer connection has increased the trans-
former kVA rating from 50 to 2550 kVA.

250 A S A
—_— —_—
[ . *
200 V *
_ 255 A 10000 V
——-
Ci) 10200 V + C,tp 10200 V -~ 255 A
~ . ~ ~
+ |
S AT 10000 V Load .
200 V Load
250 A
(a) (b)
Fig. 16-7

The explanation for this increase is that the original 50-k VA transformer had no metallic connections
between the two windings, and so the S0 kVA of a full load had to pass through the transformer by
magnetic coupling. But with the windings connected to provide autotransformer operation. there is a
metallic connection between the windings that passes 2550 — 50 = 2500 kVA  without being magneti-
cally transformed. So, it is the direct metallic connection that provides the kVA increase. Although
advantageous in this respect, such a connection destroys the isolation property that conventional
transformers have, which in turn means that autotransformers cannot be used in every transformer
application.

If the windings are connected as in Fig. 16-7h, the kVA rating is just 10200 x 5 =200 x 255 =
51 kVA. This slight increase of 2 percent in k VA rating is the result of the greatly different voltage levels of
the iwo circuits connected to the autotransformer. In general, the closer the voltage levels are to being
the same, the greater the increase in kVA rating. This is why autotransformers are used as links between
power systems usually only if the systems arc operating at nearly the same voltage levels.

In Fig. 16-7a, the load and the voltage source can be interchanged. Then the load is connected across
both windings and the voltage source across just one. This arrangement is used when the load voltage
is greater than the source voltage. The increase in kVA rating is the same.

In the analysis of a circuit containing an autotransformer, an ideal transformer model can be assumed,
and its turns ratio used in much the same way as for a conventional transformer connection. Along with
this can be used the fact that the lines with the lower voltage carry the sum of the two winding currents.
Also. part of the winding carries only the difference of the source and load currents. This is the part that
is common to both the source and load circuits.

Contrary to what Fig. 16-7 suggests, autotransformers are preferably purchased as such and not
constructed from conventional power transformers. An exception, however, is the “buck and boost™
transformer. A typical one can be used to reduce 120 or 240 V to 12 or 24 V. The principal use, though,
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1s as an autotransformer with the primary and secondary interconnected to give a slight adjustment in
voltage, either greater or lesser.

PSPICE AND TRANSFORMERS

PSpice does not have a built-in ideal transformer component, but a model for one can be constructed
with dependent sources. To see how to do this, consider the ideal transformer of Fig. 16-84. There are,
of course, just two constraints on its operation: v, = —av, and i, = yai,, as obtained from the
turns ratio and also the dot locations. As shown in Fig. 16-8b, and also in Fig. 16-8¢, these constraints can
be satisfied with two dependent sources: a voltage-controlled voltage source to obtain the voltage
constraint and a current-controlled current source to obtain the current constraint. Also needed is a
dummy voltage source to sense the controlling current. Naturally, if the dot locations are at the same
ends of the windings, instead of opposite ends as in Fig. 16-8a, the polarity of the dependent voltage
source and the current direction of the dependent current source must be reversed.

¢ a:1 € 4 4
O~ O —0O oz
1 2 2 \
]
{
L L] ai, L2 v, =
. «
O— 0] -O O
d I ! d

(@) (b)
Fig. 16-8

PSpice does provide for an air-core transformer. Self-inductance statements are used for the two
windings in the same manner as for ordinary inductors. The ordering of the node numbers informs
PSpice of the dot locations, with the first node being at the dot location. The only other requirement is
a coefficient of coupling statement that has a name beginning with the letter K. Following this name
are the names of the two coupled inductors, in either order. Last is the coefficient of coupling. For
example, the following statements could be used for the air-core transformer of Fig. 16-9.

LT 7 8 90M

L2 11 5 40M
K1 LI L2 05

—_——

The indicated coefficient of coupling of 0.5 is obtained from k = M/,/L,L, = 30/"\/90 x 40 = 0.5,
where the inductances are expressed in millihenries.

30 mH
70 N —05
.
90 mH % §40mH
.
8 O O 11

Fig. 169
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16.1

16.2

16.3

16.4

Solved Problems

For the winding shown in Fig. 16-10a, what is the direction of flux produced in the core by current
flowing into terminal a?

C —/~

o D O \
a a i 4’\
|
b b i /'

o o—— y

{(a) (b)
Fig. 16-10

Current that flows into terminal a flows over the core to the right, underneath to the left, then over
the core to the right again, and so on, as is shown in Fig. 16-10b. For the application of the right-hand rule,
fingers of a right hand should be imagined grasping the core with the fingers directed from left to right over
the core. Then the thumb will point up, which means that the direction of the flux is up inside the core.

Supply the missing dots for the transformers shown in Fig. 16-11.

o—— -0 o~ O
a (—_p c a ¢ ) c
(”“> b C_\ C/

b c.—J> C———1 d b c\‘) p d
> S o S g OO
(a) (b)

Fig. 16-11

(a) By the right-hand rule, current flowing into dotted terminal & produces clockwise flux. By trial and
error it can be found that current flowing into terminal ¢ also produces clockwise flux. So, terminal
¢ should have a dot.

(b) Current flowing into dotted terminal d produces counterclockwise flux. Since current flowing into
terminal b also produces counterclockwise flux, terminal b should have a dot.

(¢} Current flowing into dotted terminal a produces flux to the right inside the core. Since current flowing
into terminal d also produces flux to the right inside the core, terminal d should have a dot.

What is the turns ratio of a transformer that has a 684-turn primary winding and a 36-turn
secondary winding?

The turns ratio a is the ratio of the number of primary turns to secondary turns: a = 68436 = 19.

Find the turns ratio of a transformer that transforms the 12 470 V of a power line to the 240 V
supplied to a house.

Since the high-voltage winding is connected to the power lines, it is the primary. The turns ratio is
equal to the ratio of the primary to secondary voltages: a = 12 470,240 = 51.96.
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16.6

16.7

16.8

16.9
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What are the full-load pnimary and secondary currents of a 25 000-240-V. 50-k VA transformer?
Assume, of course, that the 25 000-V winding is the primary.

The current rating of a winding is the transformer kVA rating divided by the winding voltage rating.
So, the full-load primary current is 50000 25000 = 2 A, and the full-load secondary current is
SO 000 240 = 208 A.

A power transformer with a voltage rating of 12 500 240 V has a primary current rating of 50 A,
Find the transformer kVA rating and the secondary current rating if the 240 V is the secondary
voltage rating.

The transformer has a kVA rating that is equal to the product of the primary voltage rating and the
primary current rating: 12 500(50) = 625 000 VA = 625 kVA. Since this is also equal to the product of the
secondary voltage and current ratings. the sccondary current rating is - 625000 240 = 2.6 x 10 A = 2.6 kA,
As a check, the secondary current rating is cqual to the primary current rating times the turns ratio. which
is o= 12500240 = 52.1. So the secondary current rating is  52.150) = 2.6 x 10" A = 2.6 kA, which
checks.

A transformer has a 500-turn winding linked by flux changing at the rate of 0.4 Wb s. Find the
induced voltage.

If the polarity of the voltage is temporarily ignored. then by Faraday's law. ¢ = N d¢ di. The quantity
d¢ di is the ume rate of change of flux. which is specified as 0.4 Wb s, So. ¢ = 5000.4) = 200 V. the
magnitude of the induced voltage is 200 V. The voltage polarity can be either positive or negative depending
on the voltage reference polarity. the direction of the winding. and the direction in which the magnetic flux
is either decreasing or increasing. none of which are specified. So the most that can be determined 1s that
the magnitude of the induced voltage is 200 V at the time that the flux is changing at the rate of 0.4 Wb s.

An iron-core transformer has 400 primary turns and {00 seccondary turns. If the applied primary
voltage 1s 240 V rms at 60 Hz, find the secondary rms voltage and the peak magnetic flux.

Since the transformer has an iron core. the turns ratio can be used to find the secondary rms
voltage: 17, = (1 @)}y = (100 400)240) = 60 V rms. Because the voltages vary sinusoidally. they are induced
by a sinusoidally varying flux that can be considered to be ¢ = ¢, sin . where ¢, is the peak value of
flux and o is the radian frequency of @ = 2a(6(0) = 377 rad s. The time rate of change of fluxis  do dt =
didh,, sin 1) dt = e, cos ot. which has a peak value of ¢, Since the peak voltage is | 217 it follows

m: rmye

from ¢ = Nd¢ di that the peak voltage and flux values are related by 2V, = N, If ¢, is solved
for and primary quantities used. the result is

i\ 2240) _

- 225 % 10 *Wb = 2.25 mW
Neo . 400(377) 8 SmWb

d)ﬂ'l =

Alternatively, the secondary voltage and turns could have been used since the same flux is assumed to coupie
both windings.

Incidentally, from 2} = Nwé,. the voltage V

 N2ag,

By
\ -

can be expressed as

rms

|

rms

— 444(NG,,

This is called the general transformer equation.

If a 50-turn transformer winding has a 120-V rms applied voltage, and if the peak coupling flux
1s 20 mWh, find the frequency of the apphed voltage.
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From rearranging the general transformer equation defined in Prob. 16.8.

Vo 120
........... = 27Hz~

16.10 An iron-core transformer has 1500 primary turns and 500 sccondary turns. A 12-Q resistor is

16.11

16.12

connected across the secondary winding. Find the resistor voltage when the primary currentis 5 A.

Since no voltage or current references are specified. only rms values are of interest and are to be assumed
without specific mention of them. The secondary current is equal to the turns ratio times the primary
current: (1500-50045) = 15 A. When this current flows through the 12-Q resistor. it produces a voltage
of 15(12)=180V.

The output stage of an audio system has an output resistance of 2 kQ. An output transformer
provides resistance matching with a 6-Q speaker. If this transformer has 400 primary turns, how
many secondary turns does it have?

The term “resistance matching™ means that the output transformer presents a reflected resistance of
2 kQ to the output audio stage so that there is maximum power transfer to the 6-Q speaker. Since, in general,
the reflected resistance R, is equal to the turns ratio squared times the resistance R, of the load connected
to the secondary (R, = a’R; ). the turns ratio of the output transformer is

R oo
a = = = —
VR,V
and the number of secondary turns is
. N, 400
Ny= =~ . =22
B d 18.26

In the circuit shown in Fig. 16-12, find R for maximum power absorption. Also, find 1
for R = 3. Finally, determine if connecting a conductor between terminals 4 and f would
change these results.

The value of R for maximum power absorption is that value for which the reflected resistance aR is
equal to the source resistance of 27 Q. Since the primary winding has 4 turns. and the secondary winding
has 2 turns, the turns ratiois g =N, N, =42 =2 And. from 27 = 2R, the valuc of R for maximum
power absorptionis R =274=6.75Q.

For R =130, thereflected resistance is  2%(3) = 12Q. So the primary current directed into terminal
18 (2[6@ )27 + 12) = 5.54@ A. If terminal ¢ is dotted, then terminal ¢ should be dotted. as is evident
from the right-hand rule. And. since I is directed out of terminal ¢ while the calculated current is into terminal
¢, Lis just the turns ratio times the current entering terminal ¢: 1 = 2(5.54@ ) = ll.l@ A.

A conductor connected between terminals d and f does not affect these results since current cannot
flow in a single conductor. For current to flow there would have to be another conductor to provide a
return path.

27 Q e

b~

q
216/0° V q N R
q

) R

Iron core

Fig. 16-12
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16.13 Find i,.i,. and i; for the circuit shown in Fig. 16-13. The transformers are ideal.

5a 3:1 3a 1:2
b YA'AY; AN N
] [ [ ] [ ]
200 sin 2t V h i i gsn
[ J

Fig. 16-13

A good procedure is to find i, using reflected resistances, then find i, from i. and last find i, from i,.
The 8 Q reflects into the middle circuit as 8,22 = 2Q, making a total resistance of 2+ 3 =58 in the
middle circuit. This 5 Q reflects into the source circuit as  3%(5) = 45 Q. Consequently,

200 sin 2t

,'1 = 4sin 2( A
5+ 45

Because i, and i, both have reference directions into dotted terminals of the first transformer, i, is equal to
the negative of the turns ratio times i,: i, = —3(4sin 2r) = — 12 sin 2t A. Finally, since i, has a reference
direction into a dotted terminal of the second transformer, and i; has a reference direction out of a dotted
terminal of this transformer, iy is equal to the turns ratio (1:2 = 0.5) times i,: iy =05(~12sin21) =
—6sin 21 A,

16.14 Find I, and 1, for the circuit shown in Fig. 16-14.

14[30° 0
g 1
—
[«
o L — I [-45° Q
240[20° V : b /) 2 2/-45
—P
Iron core d

Fig. 16-14

Because the primary has 6 turns and the secondary has 2 turns, the turns ratiois ¢ =6/2 =3 and
so the impedance reflected into the primary circuit is  3%2/—45 ) = 18/ —-45 Q. Thus,

=941/33 A

If the upper primary terminal is dotted. the bottom secondary terminal should be dotted. Then both I, and
1, will be referenced into dots. and so I, 1s equal to the negative of the turns ratio times I,:

1, = —31, = —3(941/33 )= -282/33 A

B 240/20 _240/20
T 14/30 +18/—45  255/—13

16.15 Find I, and I, for the circuit shown in Fig. 16-13a.

The 1-Q resistance and the j2-Q inductive impedance in the secondary circuit reflect into the primary
circuitas 33D =9Q and 3%2) =j18Q in series with the 6-8) resistance, as shown in Fig. 16-15b. In
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60 31 10 60 90
SYAAY AAYAY
¢ 1 1
80/40° V L ’ 2 80/40° V ' j18 Q
' (a) ' (b)

Fig. 16-15

effect, these reflected elements replace the primary winding. From the simplified circuit, the primary current is

4
80/40 _ 80/40 = 341/-102 A

T6+9 418 2343/502

1

Because I, is referenced into a dotted terminal and 1, is referenced out of a dotted terminal, I, is equal to
just the turns ratio times I, (no negative sign):

I, =31, = 3341/=102)=102/-102 A

16.16 Find I,, I, and I, for the circuit shown in Fig. 16-16a.

2q 1:2 120 20 30
—AW - —AAN
ll . J_ lz ° o lz .
120/30° V -js 0 _[ 120£30° V 40
(a) (b)
Fig. 16-16

The 12-Q resistance and the j16-Q inductive impedance reflect into the primary circuitasa (1/2)%(12) =
3-Q resistance and a series  (1/2)*(j16) = j4-Q inductive impedance in parallel with the —j5-Q capacitive
impedance, as shown in Fig. 16-16h. The impedance of the parallel combination is

—j5(3 +j4) 20— ji5

= =791/-184°Q
—j5+3+j4 33—l
120/30
So. [ = = — =122/44.7 A
Y 24791/—184
. —js
By current division, I, =—— — x122/447 =19.3/-268 A
3+jd4—j5

Finally, since I, and I; both have reference directions into dotted terminals, 1, is equal to the negative of
the turns ratio times I,:

I, =-05(193/-268") = —9.66/ —26.8° A

16.17 Find V for the circuit shown in Fig. 16-17a.

Although reflection can be used, a circuit must be reflected instead of just an impedance because each
circuit has a voltage source. And, because a voltage in the secondary circuit is desired, it is slightly preferable
to reflect the primary circuit into the secondary. Of course, each reflected impedance is (1-a)? times the
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a0 -i8Q 20 10 -12Q 20
( 2:1 1
1Y
+ +
[ J
20{-30° V ;"E 3a4yv 10/-30°V 30V
* slrv _ 5/10° v
A
/
(a) (b)
Fig. 16-17

original impedance, and the voltage of the reflected voltage source is 1. @ times the original voltage. Also,
the polarity of the reflected voltage source is reversed because the dots are located at opposite ends of
the windings. The result is shown in Fig. 16-17h. By voliage division,

j3 20.9/212 :
=T x (5/10 —10/=30)="""=" =66/194 = —6.6/14 V
1—j2+2+j3 (10 3.16/18 —

16.18 Use PSpice to determine V in the circuit of Fig. 16-17a of Prob. 16.17.

Vi 2V(5) Fi
0
Fig. 16-18
Figure 16-18 shows the corresponding PSpice circuit for a frequency of « = 1 rad s. Following is the

circuit file and the answers obtained from the output file when this circuit file is run with PSpice. The answer
of V=66/—-166"= a6.6m V agrees with the answer obtained in the solution to Prob. 16.17.

CIRCUIT FILE FOR THE CIRCUIT OF FIG. 16-18

Vi 1 0 AC 20 -30
Rl1 12 4

Cl1 2 3 0.125

vz 3 4

El 04 50 2

F1 50 v2 2

R2 56 2

L1 6 7 3

Vi 07 AC 5 10

.AC LIN 1 0.159155 0.159155
.PRINT AC VM(L1) VP(L1)
. END

FREQ VM(L1) VP(L1)
1.592E-01 6.600E+00 =-1.660E+02
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16.19 Find 1, and I, in the circuit of Fig. 16-19.

20 i3Q _ ~j4Q

- 1t
i€

+.

v,

+
C:P 0/=25 V 60
L,
5Q

Fig. 16-19

Because the 5-Q resistor directly couples both halves of the circuit. the reflection approach cannot be
used. However, two mesh equations can be written, and then these equations augmented with the voltage
and current transformer equations to obtain four equations in terms of four unknowns:

(7+ 30, — 51, + V, = 30/-25
5L, + (11 —jdl, -V, =0

-2V, +V,;=0
I -2,=0
In matrix form. these equations are
T+)3 =5 1 on I 30/-25
-5 11 -j4 0 -1 | 0
0 0 -2 v, | 0
1 -2 0 oV, 0

A scientific calculator can be used to solve for I, and I,. The results are I, = 5.821/—-47.83 A and
1, =2910/-4783 A

16.20 Repeat Prob. 16.19 using PSpice.

Figure 16-20 is the PSpicc circuit corresponding to the circuit of Fig. 16-19. with the inductor and
capacitor values based on a frequency of « = [ rad.s. Resistor R4 is inserted to prevent a capacitor (C1)

V2
R L 6 ICI
1 ' —1 1
25 F
oV 025 F
0.5V(6.5) 0.5KV2)
+
Vldzpm -25°V R4 1 MO R3§60
I, 1,

0

Fig. 16-20
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from being in series with a current source (F1). since PSpice does not allow this. But the resistance of R4 is
so large that the presence of this resistor will not significantly affect the answer. Dummy voltage source V2
1s inserted. of course, to sense the controlling current for dependent current source F1.

Following is the corresponding circuit file along with the answers obtained from the output file when
the circuit file 1s run with PSpice. The answers of 1, =5821/-4783 A and [, =2910/—-4783 A
agree with the answers obtained in the solution to Prob. 16.19,

CIRCUIT FILE FOR THE CIRCUIT OF FIG. 16-20

Vi 1 0 AC 30 -25
Rl 12 2

L1 23 3

vz 3 4

El 45 65 0.5
R2 50 5

F1 5 6 V2 0.5
Ci1 6 7 0.25

R3 7 0 6

R4 6 0 1MEG

.AC LIN 1 0.159155 0.159155
.PRINT AC IM(R1) IP(R1) IM(R3) IP(R3)
.END

FREQ IM(R1) IP(R1) IM(R3) IP(R3)
1.592E-01 5.821E+00 -4.783E+01 2.910E+00 -4.783E+01

16.21 Determine the branch currents I,, I,, and I; in the circuit of Fig. 16-21.

100
— AV
L 70/ —40° V
sQ j6 iy 70
—AAA— N J\/\/\,___N——@——-J,
I, I, _8Q llz +1,
+* .,
LY s0/30 v v, v, 9Q§
Fig. 16-21

Reflection cannot be used here because of the presence of the 10-Q resistor that along with the common
ground provides a current path between the two winding circuits. For reflection to be applicablie, the two
windings must be only magnetically coupled. KVL can, however, be applied, and is best done around the
two winding meshes and the outside loop. The resulting three equations will contain five variables, and must
be augmented with the voltage and current transformer equations. These five equations are

(S + O, + V, = 50/30°
=V, +(7— 8k, + 91, + 1,}) = —70/-40
101, + 915 + 1) = 50/30°
vV, -3V, =0
i, -1,=0

f



(Y]
>
wn

CHAP. 16] TRANSFORMERS

In matrix form these are

5+6 0 o1 oL 50/30
0 16-—8 9 0 —1|I, —70/—40
0 9 19 0 ot |=| 50/30
0 0 01 =3||V, 0
3 —1 00 o]V, 0

If a scientific calculator is used to obtain solutions, the resultsare  1; = 1.693/176.0 A, 1, =35079/176.0" A,
and 1; =4.818/13.80° A.

16.22 Repeat Prob. 16.21 using PSpice.

70/—40 V
14 b 3
RI Vi

/+

A2 50/30 v A2y

Fig. 16-22

Figure 16-22 shows the PSpice circuit corresponding to the circuit of Fig. 16-21. The inductor and
capacitor values are based on a frequency of « = 1 rad.s. A dummy voltage source V2 has been inserted
to sense the controlling current for the dependent current source F1. Following is the corresponding circuit
file along with the answers obtained from the output file when this circuit file is run with PSpice. The answers
agree with those obtained in the solution to Prob. 16.21.

CIRCUIT FILE FOR THE CIRCUIT OF FIG. 16-22

Vi 1 0 AC 50 30
Rl 12 5

L1 2 3 6

F1 3 0 V2 0.333333
El 4 0 3 0 0.333333
V2 4 5

R2 56 7

Cl 6 7 0.125

Vi 7 8 AC 70 -40
R3 8 0 9

R4 1 8 10

.AC LIN 1 0.159155 0.159155
.PRINT AC IM(R1) 1IP(R1) IM(R2) IP(R2) IM(R4) IP(R4)
.END

FREQ IM(R1) IP(R1) IM(R2) IP(R2) IM(R4)
1.592E-01 1.693E+00 1.760E+02 5.079E+00 1.760E+02 4.818E+00

FREQ IP(R4)
1.592E-01 1.380E+01
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16.24

16.25

16.26
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An air-core transformer has primary and secondary currents of i; =02A and i, =04A
that produce fluxes of ¢, = 100 uWb, ¢, = 250 u4Wb, and ¢,; = 300 uWb. Find ¢,,,. M,
L,,L;,and kif N, =25turns and N, =40 turns.

By the mutual inductance formulas,

N N i N, 0.4(40%100
M= N1Omz = N2 bmi from which Pz = 2N 2fm L AN 320 Wb
i i N, 25(0.2)
N bn, 25(320 x 10°°
Also M= 71.¢7 I= ) =20mH
iy 04
From the self-inductance formulas,
N 6 5 -6
L, = ME’L’ = 2\5(,1,09 x,,lg _ tz,,of 1077 = 43.8mH
i 0.2
Ny(b2 + 40(320 x 10°° + 300 x 10°°
and L,=- 2Pz + d02) = 0320 x S ) _ 62 mH
iy 04
The coefficient of coupling is
I S C 100X 107° 32010 °
k= [ Om o Fme ) x ) = 0.384
Ot O D2t Pz 250 x 107 + 100 x 10 ® 300 x 10 “ + 320 x 10 *
. M 20x 1073
Alternatively, k=——= -ee o= 0.384

GLiLy (@38 x 107362 x 10 )

What is the greatest mutual inductance that an air-core transformer can have if its self-inductances
are 0.3 and 0.7 H?

From k= M/V"';L:’ZZV rearranged to M = I\'\"LlLZ and the fact that k has a maximum valuc of

For each of the following, find the missing quantity either self-inductance, mutual inductance.
or coefficient of coupling:

(@) L,=03H, L,=04H, M=02H

() L,=4mH, M=5mH, k=04

(¢) L, =30uH, L,=40uH, k=035

(d L,=04H, M=02H, k=02

(@ k M 02 0.577
a = = — = ().
VL /03(04)
— M? 52
(by kyLLy,=M from which L= ——=-— .- =301mH

Lk: 4047
(¢) M=k,LL,=05,/30(40)= 173 uH
M? 0.2?

@ L L,k?  0.4(0.2)?

An air-core transformer has an open-circuited secondary winding with 50 V across it when the
primary current is 30 mA at 3 kHz. If the primary self-inductance is 0.3 H, find the primary voltage
and the mutual inductance.
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16.27

16.28

16.29

16.30

Since phasors are not specified or mentioned, presumably the electric quantities specified and wanted
are rms. Because the secondary is open-circuited, 7, =0A, which means that oMI, =0 and
wL,I, =0 in the voltage equations. So, the rms primary voltage is

V, = wl,I, = 2n(30000.3X30 x 10" = 170V
Also. the secondary voltage cquation is  V, = oM. from which

V, 50
M=—"= - - —— — . — =884mH
wl,  27(3000%30 x 1073)

An air-core transformer has an open-circuited secondary with 80 V across it when the primary
carries a current of 0.4 A and has a voltage of 120 V at 60 Hz. What are the primary self-inductance
and also the mutual inductance?

Because the secondary is open-circuited, there is no current in this winding and so no mutually induced
voltage in the primary winding. As a consequence, the rms voltage and current of the primary are related
by the primary winding reactance: wL, = V/I,, from which

V, 120
Li=—=————=079%H
wl, 2r(60)0.4)
With the open-circuited secondary carrying zero current, the voltage of this winding is solely the mutually
induced voltage: V, = wM/[,. from which
v, 80

M= 2 - = _0531H
ol 27(60)0.4)

Find the voltage across the open-circuited secondary of an air-core transformer when 35V at
400 Hz is applied to the primary. The transformer inductances are L, =075H, L, =083H,
and M =047 H.

Because the secondary is open-circuited, I, =0A, which means that the rms primary voltage

is V,=wl;I, and the rms secondary voltage is V, = wMI,. The ratio of these equations is
v, oM, , MV, 047(35)
- = —— from which v, = = =219V
Vi ol L, 0.75

An air-core transformer with an open-circuited secondary has inductancesof L,=20mH, L,=
32mH, and M = 13 mH. Find the primary and secondary voltages when the primary current
1s increasing at the rate of 0.4 kA/s.

With the assumption of associated references,

di, di, di, di,
r,=L,-"+M = and v, =L, —+M—
di dt dt dt
In the first equation, di,/dt is zero because of the open circuit, and di,/dt is the specified 0.4 kA/s.
So, v, =(20 x 1077404 x 10°) =8 V. Similarly, the secondary voltage is v, = +M di,/di =
+(13 x 1077404 x 10°) = +52 V. Since the reference for v, is not specified, the sign of v, cannot be
determined.

A transformer with a short-circuited secondary has inductances of L,=03H, L,=
04 H, and M = 0.2 H. Find the short-circuit secondary current I, when the primary current
is [, =05A at60Haz
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Because of the short circuit,
V, =jwL,l, + joMl, =0 from which jolL,1;, = +joMI, and L1, = + M,

Since only rms quantities are of interest, as must be assumed from the problem specification, the angles of
I, and I, can be neglected and the + sign of + used, giving L,I, = MI,. From this, the short-circuit
secondary current [, is

MI,  0.2(0.5)

I, = -

L, 04

025A

The same result would have been obtained by dividing M1, the rms induced generator voltage, by wl.;.
the reactance that the short-circuit secondary current /, flows through.

When connected in series, two windings of an air-core transformer have a total inductance of
0.4 H. With the reversal of the connections to one winding, though, the total inductance is 0.8 H.
Find the mutual inductance of the transformer.

Because the windings are in series, the same current / flows through them during the inductance
measurement, producing a voltage drop of L, di'di + M diidt = (L, + M)di:dt in one winding and a

voltage drop of L, didt + Mdi:dt = (L, + M)di:dt in the other. If the windings are arranged such that
i flows into the dotted terminal of one winding but out of the dotted terminal of the other, both mutual
terms are negative. But if i flows into both dotted terminals or out of them, both mutual terms are positive.
Since the M di;dt terms have the same sign, either both positive or both negative, the total voltage drop
is (L, +L,+2M)di:di. The L, + L, + 2M coeflicient of di di is the total inductance. Obviously. the
larger measured inductance must be for the positive sign, L, + L, + 2M = 0.8 H. and the smaller
measured inductance must be for the negative sign, L, + L, — 2M = 04 H. If the second equation is

subtracted from the first, the result is
Li+L,+2M —(L, + L, -2M)=08 -04 =04

from which 4M =04 and M =0.1H.

Consequently, a method for finding the mutual inductance of an air-core transformer is to connect the
two windings in series and measure the total inductance, then reverse one winding connection and measure
the total inductance. The mutual inductance is one-fourth of the difference of the larger measurement minus
the smaller measurement. Obviously. the self-inductance of a winding can be measured directly if the other
winding is open-circuited.

An air-core transformer has 3-mH mutual inductance and a 5-mH secondary self-inductance. A
5-Q resistor and a 100-pF capacitor are in series with the secondary winding. Find the impedance
coupled into the primary for ® = 1 krads.

The coupled impedance is (»M)*Z,. where Z, is the total impedance of the secondary circuit.
Here, wM = 1033 x 107 =3Q and
. -l . —Jj1 o . :
Z,=R+4joL+—-==5+j1035x10 %+ - -7 - - =54+j5-j10=5~j5=707/-45 Q
: ST e ! 10¥i00 x 1079 77! : (=45
and so the coupled impedance is

2 2
W ¥ 1.27/45 Q
Z, 707/-45
Notice that the capacitive secondary impedance couples into the primary circuit as an inductive
impedance. This change in the nature of the impedance always occurs on coupling because the secondary
circuit impedance is in the denominator of the coupling impedance formula. In contrast. there is no such
change in reflected impedance with an ideal transformer.
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16.33 A 1-kSQ resistor is connected across the secondary of a transformer for which L, =01 H. L, =

16.34

2H, and k =0.5. Find the resistor voltage when 250 V at 400 Hz 1s applied to the primary.

A good approach is to first find wM/,, which is the induced mutual sccondary voltage, and then use
it to find the voltage across the 1-kQ resistor. Since both M and [, in wMI, arc unknown. they must be
found. The mutual inductance M is

M=k LL, =05 0.1(2)=0224H
With M known, the coupled impedance can be used to abtain I,. This impedance is
wM? (2n x 400)%(0.224)*
— e =TT 616/ -T87 Q
R, + jwL, 1000 + j(2r x 400)2) —
The current I, is equal to the applied primary voltage divided by the magnitude of the sum of the coupled
impedance and the primary winding impedance:
| 250 250
') j2n x 400X0.1) + 61.6/—78.7 | 191
Now, with M and I, known, the induced secondary voltage M/, can be found:

oMI = (2 x 400)0.224)1.31) = 735V

=131A

Voltage division can be used to find the desired voltage V, from this induced voltage. The voltage 17, is
equal to this induced voltage times the quotient of the load resistance and the magnitude of the total
impedance of the secondary circuit:

1000 735 % 10°

V,=735—— —— — — =TT 0 L 43y
{1000 + j2n(400%2)]  5.13 x 10°
Find v for the circuit shown in Fig. 16-23a.
1 H 14
5Q 50 !
AA— Y | AN Y
[ ] * ) +
200V2Zsin3tV 2H gJH 100?0 200{0° V j60§ 9 Q 002V
[ J [ 4
(a) (b)
Fig. 16-23

The first step is the construction of the phasor-domain circuit shown in Fig. 16-23h. Next, the mesh
equations are wriiten:
(5 +jo), + J31, =200
J3 + (10491, =0
Notice that the mutual terms are positive because both 1, and I, have reference directions into dotted
terminals. By Cramer's rule,

‘5 +j6 200 I
i3 0 —j3(200) 600/—90  600/—90 .
I, = - - = . : = = = == =571/-1773 A
‘5 +j6 3 ' (54 j6X10 + j9) — (j3)* 5 +,105  105/87.3
3 1049

And V =101, =57.1/-1773 V. The corresponding voltage is

r=571.2sin(3t — 1773 ) = —80.7sin (3 + 27 )V
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16.35 Find I, for the circuit shown in Fig. 16-24.

10 80 k=03 -jto 0
1 )
ANV =t “L
1 L ] [ ]
20030° V ! 20 isa I §4 a
Fig. 16-24

Before mesh equations can be written. the magnitude o M of jiuM must be determined. From multiplying
both sides of M =k L L, by,

oM = k(L )oly) = 0.5, 28) =20
Now the mesh equations can be written:
(3 —j8 + 20, — 21, = 20/30
=2 + 4+ 8 —j10M,=0

Notice that the mutual voltage terms have an opposite sign (negative) from that (positive) of the self-induced
voltage terms because one current reference direction is into a dotted terminal and the other one is not. In

matrix form. these equations arc
3-jo 2] [20/30
=2 4=, 0

from which I, = 1.32/ —157.6 = —1.32/224 A can be obtained by using a scientific caleulator.

L=

16.36 What is the total inductance of an air-core transformer with its windings connected in parallel if
both dots are at the same end and if the mutual inductance 1s 0.1 H and the self-inductances are
0.2 and 0.4 H?

Because of the mutual-inductance eflects. it 1s not possible to simply combine inductances. Instead, a
source must be applied and the total inductance found from the ratio of the source voltage to source current,
which ratio is the input impedance. Of course a phasor-domain circuit will have to be used. For this circuit
the most convenient frequency 15 ¢ = lrad s, and the most convenient source is Iy = l@ A. The
circuit is shown in Fig. 16-25. The transformer impedances should be obvious from the specified inductances
and the radian frequency of = 1 rad s. As shown, I, of the l@ A input current flows through the
left-hand winding. feaving a current of l@ ~ 1, for the right-hand winding.

The voltage drops across the windings arc

V=021, + j0.1(1/0 — 1) and V=011, +j041/0 —1,).

+lll. lL°—l|l

L] .
T) Is = 1f0° A j0.2 0 j0.4 0
v
jo.1 q

Fig. 16-25
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16.37

The mutual voltage terms have the same signs as the self-induced voltage terms because both current reference
directions are into dotted ends. Upon rearrangement and simplification, these equations become

—j0LL, + V = 0.1 and jO31, + V = j04.

The unknown 1, can be eliminated by multiplying the first equation by 3 and adding corresponding sides
of the equations. The result is

j0.7
VAV =03+ j04 from which v ZJT = j0175V
_ V0175
But joLy=—="——=j0.175Q
I 1@.,
Finally, since ® = { radss. the total inductance is L; = 0.175 H.
Find i, for the circuit shown in Fig. 16-264.
40 40
VvV AAN/
IH 20
[ ] L]
120/2sin2t V. 15H z f2 4H nofev /U7 3 I i8 0
[ ] [ ]
60 60
A4 : W\
(a) (b)

Fig. 16-26

The first step is the construction of the phasor-domain circuit shown in Fig. 16-26b, from which mesh
equations can be written. These arc

(@ + i3, — j31, — j21, = 120/0°
3L, =20 + [j3+ 8+ 6+ 2(j2)),=0

In the first equation, the 4 + j3 coefficient of 1, is, of course, the self-impedance of mesh 1, and the —;3
coefficient of I, is the negative of the mutual impedance. The —j2l, term is the voltage induced in the
left-hand winding by I, flowing in the right-hand winding. This term is negative because I, enters a dotted
terminal but I, does not. In the second equation, the —j3I, term is the mutual-impedance voltage, and
—j2L, is the voltage induced in the right-hand winding by I, flowing in the left-hand winding. This term is
negative for the same reason that —j2I, is negative in the first equation, as has been explained. The ;3 +
j8 + 6 part of the cocflicient of I, is the self-impedance of mesh 2. The 2(j2) part of this coefficient is from
a voltage j2I, induced in each winding by I, flowing in the other winding. It is positive because I, enters
undotted terminals of both windings.
These equations simplify to

4 +3)1 — J51, =120
—jSI, + (6 +j151, =0
By Cramer's rule,
i4 +j3 120 ’

—js 0 —(—j5K120) _j60o

=768/294" A

1, = - ~ o = . =
24+ 3 —jS’ (4 + j3X6 + j15) — (—j5) 4 +/78

‘ —j5 6+ji5
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The corresponding current is

iy = 7.68,.2sin(2t + 294 ) = 109sin (2 + 2.94 ) A

16.38 Find V for the circuit shown in Fig. 16-27. Then replace the 15-Q resistor with an open circuit
and find V again.

200 j1oQ
AAA——— g
4+ ® vV, -
+ +
I ) L4 An I
120/0° V j202 4 v, Tosaclyv

Fig. 16-27

The mesh equations are
(20 + j20M, — j201, + j5I, = 120/0
— 200, + 51, + [J20 +j10 + 15 = 2(jS)J, = O

All the terms should be apparent except, perhaps, those for the mutually induced voltages. The j51, in the
first equation is the voltage induced in the vertical winding by I, flowing in the horizontal winding. It is
positive because both I, and I, enter dotted terminals. The j5I, term in the second equation is the voltage
induced in the horizontal winding by 1, flowing in the vertical winding. It is positive for the same reason
that j5I, is positive in the first equation. The —2(;5)I, term is the result of a voltage of jSI, induced in each
winding by I, flowing in the other winding. It is negative because I, enters a dotted terminal of one winding,
but not of the other. These cquations simplify to

(20 + j2001, — j151, =120
—jIS1, + (15 + 2001, = 0
from which
20 + 20 120 '
—j15 0 —~(—j15X120 1800
2 = k*i,———_\—r = -—- (71X _),,gu, B L 2.53/10.1 A
lZO+120 —Jj15 ' (20 + j20X15 + j20) — (—j15)* 125 + j700
—j1s 15 + ;20
Finally, V =151, = 15(2.53/10.1 } = 38/10.1 V

If the 15-Q resistor is removed. then 1, =0 A  and V is equal to the sum of the voltage drops across
the two windings. The only current that flows is 1,. which is

120/0
I, = - =424/ -45 A
Y204 520
Across the vertical winding, I, produces a self-inductive voltage drop of

V, =201, = j20(4.24/ - 45 ) = 84.8/45 V

referenced positive on the dotted end. Across the horizontal winding, I, produces a mutually induced voltage
of

V, =jSI, =j54.24/ =45 ) = 21.2/45 V
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Like the other induced voltage, it also has a positive reference on a dotted end since part of the same flux
produces it. (Actually, a changing flux produces the corresponding voltages v, and r,.) Finaily, since the
dotted ends of the two windings are adjacent, V is equal to the difference in the two winding voltages:

V=V, -V,=2848/45 —21.2/45 =63.6/45 V
16.39 Repeat the first part of Prob. 16.38 using PSpice.

10H 3

200 2
AN~ * 4
RI L2
] SH
Vi L1 <$20H
0

!

120/0° V

Fig. 16-28

Figure 16-28 shows the PSpice circuit corresponding to the phasor-domain circuit of Fig. 16-27. The
inductance values are based on a frequency of w = !radss, which is selected for convenience. The
coefficient of coupling needed for the circuit file is k = M;'\,:"/LILZ =5,20 x 10 =0.353 553.

Following is the corresponding circuit file along with the answer from the output file obtained
when PSpice is run with this circuit file. The answer of V =37.97/10.12 V agrees to three significant
digits with the first answer of Prob. 16.38.

CIRCUIT FILE FOR THE CIRCUIT OF FIG. 16-28
Vi 1 0 AC 120
Rl 12 20

LrL 20 20
L2 2 3 10
Kl L1 L2 0.353553
R2 3 0 15

LAC LIN 1 0.159155 0.159155
.PRINT AC VM(R2) VP(R2)
.END

FREQ VM (R2) VP (R2)
1.592E-01 3.797E+01  1.012E+01

1640 Determine the mesh currents in the circuit of Fig. 16-29.

e 12Q
LYY\
. AN~
I
40 0 —j8Q

50
o/’ gsn

! + -
200130 v :) 1, j4Q 1,

< —j4Q

\

g

Fig. 16-29
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The mesh equations are

|
[ R S

(4 + ja), — jal, — 41, — j5I, = 200/30
—jal, + (A +T7— 846~ i, —(7T~ 8, + 5, =
—Al, = (7= 8, + (4 +j16+ 12— j8 + Ty + 51, —1,) =0

In the I, mesh equation, the mutual term — /51, has a negative sign because I, is directed into a dotted end
of a transformer winding but I, is not. In the I, mesh equation, the mutual term j5I, does not have a
negative sign because both 1, and I; have directions into undotted ends of the transformer windings. And
in the I, mesh equation, the mutual term is jS(1, — I,) because both 1, and I; have directions into undotted
ends of the transformer windings but 1, does not. When simplified and placed in matrix form, these equations

are
4+ ja —jd -4—js |, 200/30
—j4 13-j8 —7+j3fL{=] o
—4—j5 ~7+03 23+58 |1, 0

The solutions to these equations can bc obtained by using a scientific calculator. They are I, =
51.37/5.836 A. I, =1006/4479 A, and I, = ]6.28/16.87 A.

16.41 Repeat Prob. 16.40 using PSpice.

Fig. 16-30
Figure 16-30 shows the PSpice circuit corresponding to the phasor-domain circuit of Fig. 16-29 of Prob.
16.40. As usual, the inductances and capacitances are tjascd on Vthc ffequcncy w = 1 rad s. The coeflicient of
coupling needed for the circuit fileis k=M ( L L, =5 4 x 16 = 0625

Following is the corresponding circuit file along with the answers from the output file obtained when
PSpice is run with this circuit file. The answers agree with those obtained in the solution to Prob. 16.40.

CIRCUIT FILE FOR THE CIRCUIT OF FIG. 16-30

vi 01 AC -200 30
Rl 12 4

L1 20 4

R2 2 3 7

Cl 3 4 0.125

R3 4 5 6

c2 5 0 0.25

L2 6 1 16

K1 L1 L2 0.625

R4 6 4 12

LAC LIN 1 0.159155 0.159155
.PRINT AC  IM(V1) IP(V1) 1IM(R3) IP(R3) IM(R4) IP(R4)
.END

LEE A SRS E SRR 222222222220 RS R Xa i ARt 2Rt i st

FREQ IM(V1) IP (V1) IM(R3) IP (R3) IM(R4)
1.592E-01 5.137E+01 5.836E+00 1.006E+01  4.479E+01  1.628E+01

FREQ IP(R4)
1.592E-01 1.687E+01
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1642

16.43

16.44

16.45

What is the turns ratio of a two-winding transformer that can be connected as a autotransformer
of 500/350kV?

As can be seen from Fig. 16-7, the lower voltage is the voltage across one winding, and the higher voltage
is the sum of the winding voltages. So, for this transformer, one winding voltage rating is 350 kV and the
other is 500 — 350 = 150 kV. The turns ratio is, of course, equal to the ratio of these ratings: a =
350/150 = 2.33 or a = 150/350 = 0.429, depending upon which winding is the primary and which is the
secondary.

Compare the winding currents of a fully loaded 277/120-V, 50-k VA two-winding transformer and
an autotransformer with the same rating.

The high-voltage winding of the conventional transformer must carry 50 000/277 = 181 A, and the
low-voltage winding must carry 50 000/120 = 417 A. So, one winding carries the source current and the
other winding carries the load current. In contrast, and as shown in the circuit of Fig. 16-31, part of the
autotransformer winding must carry only the difference in the source and load currents, which is
417 — 181 = 236 A, as compared to the 417 A that the low-voltage winding of the conventional transformer
must carry. Consequently, smaller wire can be used in the autotransformer, which resulis in a savings in the
cost of copper. Also, the autotransformer can be smaller and lighter.

181 A

Load

Fig. 16-31

A 12 470/277-V, 50-k VA transformer is connected as an autotransformer. What is the k VA rating
if the windings are connected as shown in Fig. 16-7a? And what is this rating if the windings are
connected as shown in Fig. 16-7b?

For either connection the maximum applied voltage is the sum of the voltage ratings of the wind-
ings: 12470 + 277 = 12 747 V. Since, for the connection shown in Fig. 16-7a, the source current flows
through the low-voltage winding, the maximum input current is the current rating of this winding, which
is 50 000/277 = 181 A. So, the kVA rating for this connection is 12 747 x 181 VA = 2300 kVA. For the
other connection, that illustrated in Fig. 16-7b, the source current flows through the high-voltage winding.
Consequently, the maximum input current is the current rating of this winding, which is 50 000/12 470 =
401 A, and the kVA rating is only 12747 x 4.01 VA = 51.1 kVA.

Find the three currents I, I,, and [, for the circuit shown in Fig. 16-32.

n] 120 V 100 0
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The resistor current is obviously 7; = 120/100 = 1.2 A. And the resistor receives 120 x 1.2 = [44 VA,
Since this is also the voltamperes supplied by the source. then 2771, = 144 and I, = 144:277 = 0.52 A.
Last, from KCL applied at the transformer winding tap, I, =1, -1, =12 —-0.52 =068 A. Scalar
addition can be used here since all three currents are in phase.

Supplementary Problems

16.46 In the transformer shown in Fig. 16-33, what is the direction of flux produced in the core by current flow
nto  (a) terminal ¢, (b) terminal b, (c¢) terminal ¢, and  (d) terminal d?

Ans.  (a) Clockwise, (h) counterclockwise, (¢) counterclockwise, (d) clockwise

(o) b
LA
O- l——O
a '*P c
q
q \D
o— N Yo ot —0
A

do
Fig. 16-33

1647 Supply the missing dots for the transformers shown in Fig. 16-34.

Ans.  (a) Dot on terminal d. (b) dot on terminal b: (¢} dots on terminals b, ¢. and g¢.

c dT
(o -0 b q ry -0 Ot P" ~ ——uO0
a d h ¢ a 7R D~ ¢ a ( D €

¢ q c_..D
)

P 4 b d b f
osf - o P o o—1P LI

Og h é

(a) (b) (c)

Fig. 16-34

1648 What is the turns ratio of a power transformer that has a 6.25-A primary current at the same time that it
has a SO-A secondary current?

Ans. a=28§.
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16.49

16.50

16.51

16.52

16.53

16.54

16.55

16.56

16.57

Find the turns ratio of a power transformer that transforms the 12470 V of a power line to the 480 V used
in a factory.

Ans. a = 26.

What are the full-load primary and secondary currents of a 7200/120-V, 25-k VA power transformer? Assume
that the 7200-V winding is the primary.

Ans.  3.47-A primary current and 208-A secondary current

A power transformer with a 13 200/480-V rating has a full-load primary current rating of 152 A. Find the
transformer k VA rating and the full-load secondary current rating if the 480 V is the secondary voltage rating.

Ans. 2000 kVA, 4.18 kA

A 7200/120 V, 60-Hz transformer has 1620 turns on the primary. What is the peak rate of change of magnetic
flux? (Hint: Remember that the voltage ratings are in rms.)

Ans.  6.29 Wb/s

An iron-core transformer has 3089 primary turns and 62 secondary turns. If the applied primary voltage is
13 800 V rms at 60 Hz, find the secondary rms voltage and the peak magnetic flux.

Ans. 277V, 16.8 mWb

If a 27-turn transformer winding has 120 V rms applied, and if the peak coupling flux is 20 mWb. what is
the frequency of the applied voltage?

Ans. 50 Hz

An iron-core transformer has 1620 primary turns and 54 secondary turns. A 10-Q resistor is connected across
the secondary winding. Find the resistor voltage when the primary current is 0.1 A.

Ans. 30V

What should be the turns ratio of an output transformer that connects a 4-Q speaker to an audio system
that has an output resistance of 1600 Q?

Ans. a=20

In the circuit shown in Fig. 16-35, what should a and X be for maximum average power absorption by
the load impedance, and what is this power?

Ans. 3.19, —4.52Q, 376 W

50/40° 0
[ 1

a:l
| E—
240[0° vV “ Z. = 4/20°Q
iXe
Jll

\

Fig. 16-35
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16.58 Find i, i,, and i, in the circuit shown in Fig. 16-36.
Ans. iy =4sin(3t — 369°)A
i, = 8sin (3t — 36.9°) A
iy = —24sin (3t — 36.9°) A

ua g 6H 3.4

480 sin 3t V

Fig. 16-36

16.59 Find V in the circuit shown in Fig, 16-37.

Ans. —312/60.7° V
4/-4002
1:3
+
°
200{20° V " 27[30° 0 \
°

Fig. 16-37

16,60 Find I, I,, and I, in the circuit shown in Fig. 16-38.
Ans. 1, =149/-235°A, 1,=446/—235°A, I,=—-893/-235°A

8a 31 40 TR 10
¢ * 1 * I
ZNLS(_)" V ll 2 3 i4 n
.
Fig. 16-38
16.61 What is v in the circuit shown in Fig. 16-39?
Ans.  —237sin (2t — 6.09°) V
30 20 2:1

Py +
80 sin (2t + 10°) V T uF I 20
° -

Fig. 16-39
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16.62 Find I in the circuit shown in Fig. 16-40.

Ans.

228/=39.7° A

5O .4 50
AAMA AV
® ®
40J50° V ! L oo
120/—40° V
)
\J
Fig. 16-40

16.63 For the following PSpice circuit file, construct a corresponding phasor-domain circuit diagram that contains
an ideal transformer. Then use this diagram to calculate the answer that will appear in the output file when
PSpice is run with this circuit file.

Ans.

231.1/-7245°V

16.64 Repeat Prob. 16.63 for the following PSpice circuit file.

Ans.

6.522/ —23.23° A

CIRCUIT FILE FOR PROB. 16.63
Vi 1 0 AC 200 80
Rl 12 8
L1 2 3 4
F1 30 V2 2
El 04 30 2
V2 5 4
Cl 56 6.25M
R2 6 0 60
.AC LIN 1 0.31831 0.31831
.PRINT AC VM(6) VP(6)
.END
CIRCUIT FILE FOR PROB. 16.64
Vi 10 AC 12 30
Rl 12 8
C1 2 3 20M
V2 3 4
El 40 05 4
F1 50 V2 4
Ll 56 1
R2 76 1
Vi 70 AC 8 =20
.AC LIN 1 0.31831 0.31831
.PRINT AC IM(R2) IP(R2)
.END
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16.65

16.66

16.67

16.68

16.69

16.70

16.71

16.72
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Repeat Prob. 16.63 for the following PSpice circuit file.

CIRCUIT FILE FOR PROB. 16.65
Vi 1 0 AC 16 20

Rl 12 4

ve 2 3

El 3 4 5 4 2
L1 4 0 5

F1 4 65 V2 2
Cl 5 6 0.125
R2 6 0 6

R3 5 0 1MEG

.AC LIN 1 0.159155 0.159155
.PRINT AC VM(R2) VP(R2)
.END

Ans. 4.936/6396° V

An air-core transformer has a primary current of 0.2 A and a secondary current of 0.1 A that produce fluxes
of ¢,, =40 uWb, ¢,, = 10uWb, and ¢,, = 30uWb. Find ¢,,,. L,, L,, M, and kif N, = 30 turns
and N, = 50 turns.

Ans. ¢, =12pWb, L, =78mH, L,=20mH, M =3mH. k=024

What is the greatest possible mutual inductance of an air-core transformer that has self-inductances of 120
and 90 mH?

Ans. 104 mH

For each of the following, find the missing quantity—-either self-inductance, mutual inductance, or coefficient
of coupling.

(@) L, =130mH, L,=200mH, M =645mH

) L, =26uH, L,=3uH, k=04

(¢) L, =350mH, M =100mH, k=03

Ans. (Wk=04, M M=112H. ()L, =31TmH

An air-core transformer has an open-circuited secondary winding with 70 V induced in it when the primary
winding carries a 0.3-A current and has a 120-V, 600-Hz voltage across it. What is the mutual inductance
and the primary self-inductance?

Ans. M =619mH, L, = 106 mH

An air-core transformer with an open-circuited secondary has inductances of L, =200mH, L,=
320mH, and M = 130 mH. Find the primary and secondary voltages, referenced positive at the dotted
terminals, when the primary current is increasing at the rate of 0.3 kA/s into the dotted terminal of the
primary winding.

Ans. v, =60V, v, =39V

An air-core transformer has inductances of L, =03H, L,=07H, and M =03H. The primary
current is increasing into the dotted primary terminal at the rate of 200 A/s, and the secondary current is
increasing into the dotted secondary terminal at the rate of 300 A/s. What are the primary and secondary
voltages referenced positive at the dotted terminals?

Ans. v, =150V, v, =270V
An air-core transformer with a shorted secondary has a 90-mA short-circuit secondary current and a 150-mA

primary current when 50 V at 400 Hz is applied to the primary. If the mutuval inductance is 110 mH, find
the self-inductances.

Ans. L, =199mH, L, =183 mH
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16.73

16.74

16.75

16.76

16.77

16.78

16.79

16.80

An air-core transformer with a shorted secondary has inductances of L, =0.6H. L,=04H, and
M = 0.2 H. Find the winding currents when a primary voltage of S0 V at 60 Hz is applied.

Ans. 1, =265mA, I, =133mA
A transformer has self-inductances of 1 and 0.6 H. One series connection of the windings results in a total
inductance of 1 H. What is the coefficient of coupling?

Ans. k =0.387

The transformer windings of a transformer are connected in series with dotted terminals adjacent. Find the
total inductance of the series-connected windings if L, =06H, L,=04H. and k =0.35

Ans. 0.657H

An air-core transformer has an 80-mH mutual inductance and a 200-mH secondary self-inductance. A 2-kQ

resistor and a 100-mH inductor are in scries with the secondary winding. Find the impedance coupled into
the primary for @ = 10krad s.

Ans. 178/ -56.3 Q

Find V in the circuit of Fig. 16-41.
Ans. —80/=374°V

10 —j4 ) j2 Q 70
AN —— " )
Cé) a0po° v v ja0d $i3a i1
Fig. 16-41

A 6.8-kQ resistor is connected across the secondary of a transformer having inductances of L, = 150 mH,
L, =300mH, and M =64 mH. What is the resistor current when 40V at 10krad s is applied to the
primary?

Ans. 233 mA

Find i in the circuit of Fig. 16-42.
Ans. 103 sin (1000 — 73.1 ) mA

200 ) 0.12H | uF
—AMN— —i¢
* i
200 sin (1000t + 10°) V 023 H 04 H 400 ()
®
Fig. 16-42

What is the total inductance of the parallel-connected windings of an air-core transformer if the dots are at
opposite ends and if the mutual inductance is 100 mH and the self-inductances are 200 and 400 mH?

Ans. 87.5mH



382 TRANSFORMERS [CHAP. 16

16.81 Find i in the circuit of Fig. 16-43.
Ans.  24sin (2t — 76.6°) A

3q iF 00 j25 0
NAAY ' I AN — 04
+
i b I.SH  ® b ja
120sin (2 - 259V 2 H SH 100/15° V j40 Q v
60 )
ANA— . 5
Fig. 1643 Fig, 16-44

16.82 Find V in the circuit of Fig. 16-44. Then switch the dot on one winding and find V again.
Ans.  100/51.9°V, 60/51.9° V

16.83 In the circuit shown in Fig. 16-44, place a short circuit across terminals a and b and find the short-circuit
current directed from terminal a to terminal b.

Ans. 185/—444°A

16.84 For the circuit shown in Fig. 16-44, what load connected to terminals a and b absorbs maximum power
and what is this power?

Ans. 541/-56.3°9Q, 833 W

1685 Find I in the circuit of Fig. 16-45.
Ans. 1.38/394° A

1490 ~-j15a 40 100 i3a
N
AN i —AAN O
I ®
100/20° V ja jina 70/-30° V
L ]
Fig. 16-45

16.86 Calculate the answer that will appear in the output file when PSpice is run with the following circuit file.

CIRCUIT FILE FOR PROB. 16.86
Vi 1 0 AC 24 -50

R1 12 2

L1 20 2

L2 03 8

Ki L1 L2 0.5

R2 3 4 3

Cl 4 0 0.25

.AC LIN 1 0.159155 0.159155

.PRINT AC IM(R1l) IP(R1)
.END

Ans. 8.485/-78.74° A
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16.87 Calculate the answer that will appear in the output file when PSpice is run with the following circuit file.

CIRCUIT FILE FOR PROB. 16.87
Vi 1 0 AC 50 75

Rl 12 12

L1 20 2

L2 3 0 3.125

Ki L1 L2 0.4

R2 3 4 8

Cl 4 5 0.025

v2 5 0 AC 30 -40

.AC LIN 1 0.31831 0.31831
.PRINT AC IM(R1l) IP(R1)
. END

Ans.  3.657/53.20° A
16.88 Calculate the answer that will appear in the output file when PSpice is run with the following circuit file.

CIRCUIT FILE FOR PROB. 16.88
Vi 1 0 AC 60 25

Rl 12 20

Ll 2 0 16

L2 03 4

K1 L1 L2 0.75
Cl 3 4 0.2

R2 4 0 7

R3 14 11

.AC LIN 1 0.159155 0.159155
.PRINT AC VM(R3) VP(R3)
. END

Ans. 58.87/40.51° V

16.89 What is the turns ratio of a two-winding iron-core transformer that can be connected as a 277120V
autotransformer?

Ans. a=131 or a=0.764

16.90 A 4800/240-V, 75-kVA power transformer is connected as an autotransformer. What is the kVA rating of
the autotransformer for the connection shown in Fig. 16-7a? What is the kVA rating for the connection
shown in Fig. 16-7b?

Ans. 1575kVA, 78.75kVA

1691 Find the currents I, I;, and I, in the circuit of Fig. 16-46.
Ans. I, =800A, I,=2343A, I;,=114kA

---;
I
—

500 kV * 1

400 MVA
,:f 350 kV lond

Fig. 16-46



Chapter 17

Three-Phase Circuits

INTRODUCTION

Three-phase circuits are important because almost all clectric power is generated and distributed
three-phase. A three-phase circuit has an ac voltage generator, also called an alternator, that produces
three sinusoidal voltages that are identical except for a phase angle difference of 120°. The electric energy
is transmitted over either three of four wires. more often called lines. Most of the three-phase circuits
presented in this chapter are halanced. In them, three of the line currents are identical except for a phase
angle difference of 120 .

SUBSCRIPT NOTATION

The polarities of voltages in three-phase circuits are designated by double subscripts, as in V5. As
may be recalled from Chap. 1. these subscripts identify the nodes that a voltage is across. Also, the order
gives the voltage reference polarity. Specifically, the first subscript specifies the positively referenced node
and the second subscript the negatively referenced node. So, V,, is a voltage drop from node 4 to node
B. Also, V.= —Vg,.

Double subscripts are also necessary for some current quantity symbols, as in I;. These subscripts
identify the nodes between which I, flows, and the order of the subscripts specifies the current reference
direction. Specifically, the current reference direction is from the node of the first subscript to the node
of the second subscript. So, the current 1,, has a reference direction from node 4 to node B.
Also, 1,5 = —Ig,. Figure 17-1 illustrates the subscript convention for I, and also for V,;.

Double subscript notation is also used for some impedances, as in Z 5. The subscripts identify the
two nodes that the impedance is connected between. But the order of the subscripts has no significance.
Consequently, Z. ., = Zg,.

Ias A B

Fig. 17-1

THREE-PHASE YOLTAGE GENERATION

Figure 17-2a is a cross-sectional view of a three-phase alternator having a stationary stator and a
counterclockwise rotating rotor. Physically displaced by 120 around the inner periphery of the stator
are three sets of armature windings with terminals 4 and A', B and B, and C and (". It is in these
windings that the three-phase sinusoidal voltages are generated. The rotor has a field winding in which
the flow of a dc¢ current produces a magnetic field.

As the rotor rotates counterclockwise at 3600 r/min, its magnetic field cuts the armature windings,
thereby inducing in them the sinusoidal voltages shown in Fig. 17-2b. These voltages have peaks at
one-third of a period apart. or 120 apart, because of the 120 spatial displacement of the armature
windings. As a result, the alternator produces three voltages of the same rms value, which may be as

384
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Rotor Armature
winding

Field winding

B

Stator

(a) b)
Fig. 17-2

great as 30 kV, and of the same frequency (60 Hz), but phase-shifted by 120 . These voltages might be,
for example,
Ugq = 250005sin 377tV

rgp = 25000 sin (377t — 120)V

and
teer = 25000sin (377t + 120) V

If the voltages shown in Fig. 17-2b are evaluated at any one time. it will be found that they add to
zero. This zero sum can also be shown by vector graphical addition of the phasors corresponding to
these voltages. Figure 17-3a is a phasor diagram of the three phasors V, ;.. V5., and V¢, corresponding
to the generated voltages. These three phasors are added in Fig. 17-3b by connecting the tail of Vzp to
the tip of V, ., and the tail of V... to the tip of V.. Since the tip of Ve touches the tail of V., the
sum is zero. And since the sum of the phasor voltages is zero, the sum of the corresponding instantaneous
voltages is zero for all times.

Var + Vg + Voo

vAA vAA'

(a) (b)
Fig. 17-3

In general, three sinusoids have a sum of zero if they have the same frequency and peak value but
are phase-displaced by 120". This is true regardless of what, if anything, that the sinusoids correspond
to. In particular, it is true for currents.

GENERATOR WINDING CONNECTIONS

The ends of the generator windings are connected together to decrease the number of lines required
for connections to loads. The primed terminals can be connected together to form the Y (wye) shown
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Fig. 174

in Fig. 17-4a, or primed terminals can be connected to unprimed terminals to form the A (delta) shown
in Fig. 17-4b. The primed letters are included this once to show these connections. But since the terminals
at which they are located also have unprimed letters, the primed letters are not necessary. These
Y and A connections are not limited to generator windings but apply as well to transformer windings
and load impedances. There are some practical reasons for preferring the Y connection for alternator
windings, but both the Y and A connections are used for transformer windings and for load impedances.
Incidentally, in circuit diagrams, sometimes circular ac generator symbols are used instead of the coil
symbols.

In the Y connection shown in Fig. 17-4q, the primed terminals are joined it & common terminal
marked N for neutral. There may be a line connected to this terminal, as shown, in which case there are
four wires or lines. If no wire is connected to the neutral, the circuit 1s & three-wire circuit. The A
connection illustrated in Fig. 17-4b inherently results in a three-wire circuit because there is no neutral
terminal.

For the Y connection, the line currents are also the winding currents, also called phase currents. A
line current is a current in one of the lines and by convention is referenced from the source to the load.
A phase current is a current in a generator or transformer winding or in a single load impedance, which
is also called a phase of the load.

A Y connection of windings or of impedances has two sets of voltages. There arc the voltages V, .,
Vn. and V. from terminals 4, B, and C to the neutral terminal N. These are phase voltages. These
differ from the line-to-line voltages, or just line voltages, Vg, Vg, and V., across terminals A, B, and
C. There are three other line voltages that have a 120° angle difference. These are V ., V¥g,, and Vg,
which are the negatives of the other line voltages. In each set of line voltages, no two subscripts begin
or end with the same letter. Also, no two pairs of subscripts have the same letters.

For the A shown in Fig. 17-4b, the line voltages are the same as the phase voltages. But the line
currents 1, I, and I differ from the phase currents 14, I, and I, that flow through the windings.
There is another suitable set of phase currents: 1., 1, and I -5, which are the negatives of the currents
in the first set.

PHASE SEQUENCE

The phase sequence of a three-phase circuit is the order in which the voltages or currents attain their
maxima. For an illustration, Fig. 17-2b shows that v, ,. peaks first, then vgp., then v. then v, ,., ctc,
which is in the order of ... ABCABCAB. ... Any three adjacent letters can be sclected to designate the
phase sequence, but usually the three selected are ABC. This is sometimes called the positive phase
sequence. If in Fig. 17-2a the labels of two windings are interchanged, or if the rotor is rotated clockwise
instead of counterclockwise, the phase sequence is ACB {or CBA or BAC), also called the negative phase
sequence. Although this explanation of phase sequence has been with respect to voltage peaking, phase
sequence applies as well to current peaking.
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Phase sequence can be related to the subscripts of voltage and current phasors. If, for example,
V,x has an angle 120" greater than that of Vg, then v,y must lead vgy by 120° and so the phase
sequence must be ABC. Incidentally, the terms “lead™ and “lag” are often applied to the voltage phasors
as well as to the corresponding instantaneous voltages. For another example, if Voy leads Vg by 120,
then in the phase sequence the first subscript C of V-4 must be immediately ahead of the first subscript
B of V. Consequently, the phase sequence is CBA, or ACB, the negative phase sequence.

Phase sequence can be related to either the first or second subscripts of the line voltage phasors.
This can be verified with an example. Figure 17-5a shows a phasor diagram of phase voltages V,y, Vgy,
and V. for an ABC phase sequence. Also included are terminals 4, B, C, and N positioned such that
lines drawn between them give the correct corresponding phasors. Drawn between terminals A, B, and
C are a set of line voltage phasors: V, 5, V5, and V¢, which are redrawn in the phasor diagram shown
in Fig. 17-5b. Note that V,; leads Vg by 120° and that Vg leads V., by 120°. On the basis of this
leading, the order of the first set of subscripts is ABC, in agreement with the phase sequence. The order
of the second set of subscripts is BC 4, which is equivalent to ABC, also in agreement with the phase
sequence. This order can also be found by using a reference point R on the phasor diagram, as shown.
If the phasors are rotated counterclockwise about the origin, the first subscripts pass the reference point
in the order of the phase sequence, as do the second subscripts.

[ s
O=

Vag

(a) b)
Fig. 17-5

In a similar manner 1t can be shown for a balanced circuit that the line current phasor subscripts
correspond to the phase sequence order in the same way as explained for the voltage phasor subscrnipts.
Also, the same 1s true for either the first or the second subscripts of the phase current phasors for a
balanced A load. (A balanced A load has three equal impedances.)

BALANCED Y CIRCUIT

Figure 17-6 shows a halunced Y circuit that has a balanced Y load (a Y load of identical impedances)
energized by a generator having Y-connected windings. Instead of generator windings, the windings
could as well be the secondary windings of a three-phase transformer, A neutral wire connects the two
neutral nodes.

A balanced three-phasc circuit is easy to analyze because it is, in effect, three interconnected but
separate circuits in which the only difference in responses is an angle difference of 120°. The general
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Fig. 17-6

analysis procedure is to find the desired voltage or current in one phase. and use it with the phase
sequence to obtain the corresponding voltages or currents in the two other phases. For example, in the
circuit shown in Fig. 17-6, the line current I, can be found from 1, =V,./Z,. Then, I and I can be
found from I, and the phase sequence: They have the same magnitude as 1,, but lead and lag I, by
120° as determined from the phase sequence.

Since the three currents 1, Iz, and I have the same magnitude but a 120 angle difference, their
sum is zero: I, + I, + I, = 0. And from KCL, 1, = —(I, + Iz + I) = 0 A. Because the neutral wire
carries no current, it can be eliminated to change the circuit from a four-wire to a three-wire circuit. A
further consequence of the zero neutral current is that the rwo neutral nodes are at the same potential,
even without the neutral wire. In practice, though. it may be a good idea to have a small neutral wire
to ensure balanced phase voltages in case the load impedances are not exactly the same.

The set of phase voltages and either set of line voltages for a balanced Y load have certain angle
and magnitude relations that are independent of the load impedance. These relations can be obtained
from one of the triangles shown in Fig. 17-5¢. Consider the triangle formed by Vg, Vy.and V.. The
largest angle is 120, leaving 180 — 120 = 60 for the other two angles. Since these two are opposite
sides of equal length, they must be equal and so 30 each as shown in Fig. 17-7a. It can be seen that
there is a 30 angle between line voltage Vg and phase voltage Vg, as s better shown in Fig. 17-7h.
As should be evident from Fig. 17-5q4, there 1s also a 30 angle difference between V ; and V,, and
between V., and V.. In general, in the voltage phasor diagram for a balanced Y load, there is a 30
angle between each phase voltage and the nearest line voltage. This 30 can be either a lead or a lag,
depending on the particular set of line voltages and also the phase sequence.

Van

Vac 30°

4\

b)

Fig. 17-7

Figure 17-8 has all the possible phasor diagrams that relate the Y phase voltages and the two sets
of line voltages for the two phase sequences. Thus, all angle relations between the line and Y phase
voltages can be determined from them. From the subscripts it should be apparent that Figs. 17-8a and
b are for an ABC phase sequence and Figs. 17-8¢ and d are for an ACB phase sequence. Only relative
angles are shown. For actual angles, the appropriate diagram would have to be rotated until any one
phasor is at its specified angle, but this is seldom necessary.
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(a) (b)

Fig. 17-8

There is also a relation between the magnitudes of the line and phase voltages. From Fig. 17-7¢ and
the law of sines,

Voo _sin120 (32

Vov  sin30° 1,2 N

i

/3

or Ve =./3Vay. In general, for a balanced Y load the line voltage magnitude 17 is (3 times V),
the phase voltage magnitude: V), = \_..«’}3 V.

Incidentally, in the description of a threc-phase circuit the specified voltage should be assumed to
be the rms line-to-line voltage.

BALANCED A LOAD

Figure 17-9 shows a balanced A load connected by three wires to a three-phase source. As a practical
matter, this source is either a Y-connected alternator or, more probably, a Y- or A-connccted secondary
of a three-phase transformer. There is. of course, no neutral wire because a A load has only threc terminals.

I A
i
\IAB
- +
Vea Vap
Three-phase + 2, Zs -
source
Ic lm/ Zs
] ] B
c L -
- Vge + B(
Is
—
Fig. 17-9

The general procedure for finding the A phase currents is to first find one phase current and then
use it with the phase sequence to find the other two. For example, the phase current 1, can be found
from 1,5=V_z/Z, and then Iy, and 1., from I and the phase sequence: These have the same
magnitude as 1,5, but lead and lag 1, by 120 as determined from the phase sequence.

The set of line currents and either set of phase currents for a balanced A have certain angle and
magnitude relations that are independent of the load impedance. These can be found by applying KCL
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(a) (b)
Fig. 17-10

at any terminal in the circuit shown in Fig. 17-9. If done at terminal 4, the resultis 1, =1, —I.,.
Figure 17-10a is a graphical representation of this subtraction for an ABC phase sequence. Since this is
the same form of triangle as for the phase and line voltages of a balanced Y load, the results are similar:
On a phasor diagram there is a 30 angle difference between each phase current and the nearest line
current, as shown in Fig. 17-10b. This 30 can be either a lead or a lag, depending on the particular set
of phase currents and on the phase sequence. Also, the line current magnitude I, 1s \/3 times I, the
phase current magnitude: [, = \,."",51,,.

Figure 17-11 has all the possible phasor diagrams that relate the line currents and the two sets of
phase currents of balanced A loads for the two phase sequences. Thus all angle relations between the
line and A phase currents can be determined from them. From the subscripts it should be evident that
Figs. 17-11ua and b are for an ABC phase sequence and that Figs. 17-11¢ and d are for an ACB phase
sequence. Only relative angles are shown. For actual angles, the appropriate diagram would have to be
rotated until any one phasor is at its specified angle, but this is seldom necessary.

(d)

Fig. 17-11

PARALLEL LOADS

If a three-phase circuit has several loads connected in parallel, a good first step in an analysis is to
combine the loads into a single Y or A load. Then, the analysis methods for a single Y or A load can
be used. This combining is probably most obvious for two A loads, as shown in Fig. 17-12a. Being in
parallel, corresponding phase impedances of the two A’s can be combined to produce a single equivalent
A.

(a) (b) (c)
Fig. 17-12
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If there are two Y loads, as shown in Fig. 17-12h, and if there is a neutral wire (not shown) connecting
the two neutral nodes of the loads, corresponding phase impedances of the two Y's are in parallel and
can be combined to produce a single equivalent Y. Even if there is no neutral wire, the corresponding
phase impedances are in parallel provided that both Y loads are balanced because then both neutral
nodes are at the same potential. If the loads are unbalanced and there is no neutral wire, corresponding
impedances of the two Y's are not in parallel. Then, the two Y's can be transformed to two A's, and

these combined into a single equivalent A.

Sometimes a three-phase circuit has a Y load and a A load, as shown in Fig. 17-12¢. If the loads
are balanced, the A can be transformed to a Y and then the two Y’s combined. If the loads are unbalanced,
the Y can be transformed to a A and then the two A’s combined into a single equivalent A.

POWER

The average power absorbed by a balanced three-phase Y or A load is, of course, just three times
the average power absorbed by any one of the phase impedances. For either a balanced A or a Y load,
this is P =3V I, cos 6. The power formula is usually expressed in terms of the rms line voltage
¥, and the rms line current [, . Fora Yload, V,=1V, /\/3: and I,=1, . Andfora Aload, V,=
Vp and [, =1, /ﬁ. With either substitution the result is the same:

P= \/gVLchos(?
which is the formula for the total average power absorbed by either a balanced Y or A load. It 1s

important to remember that 0 is the load impedance angle and not the angle between a line voltage and

line current,
Formulas for complex power S and reactive power Q can be readily found using the relations with

average power presented in Chap. 15. For a balanced three-phase load. the result is
S =/3V,1,/0 and Q= 3V sin0
Three-phase power factor correction is obtained with a balanced Y or A of capacitors, with each
phase producing one-third of the required reactive power. Consequently, for each phase of a A the
capacitance required is
_ P[tan(cos™ ! PF) — tan(cos 'PF )]
a 3w V,%

But since for a Y the phase voltage is V /\,"E, the voltage factor in the denominator is  V{/3. So.
the 3s divide out, with the result that

_ Pltan(cos ' PF)) — tan(cos™ ' PF )]

wVi

Cy

Consequently, for a Y connection of power factor correction capacitors, the capacitance required in each
phase is three times that required for a A. On the other hand, though, the breakdown voltage requirement
is less for the Y-connected capacitors.

THREE-PHASE POWER MEASUREMENTS

If a three-phase load is balanced, the total average power absorbed can be measured by connecting
a wattmeter into a single phase and multiplying the wattmeter reading by threc. For this, the wattmeter
current coil should be connected in series with a phase impedance and the wattmeter potential coil
should be connected across this impedance. If the load is unbalanced, three measurements can be made,

one in each phase.
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Frequently, though, it is impossible to connect a wattmeter into a phase. This is true, for example,
for the common three-phase electric motor that has just three wires extending from it. For such an
application, the two-wattmeter method can be used, provided that there are just three wires to a load.

Figure 17-13 shows the wattmeter connections for the two-wattmeter method. Notice that the
current coils are in series in two of the lines and that the respective potential coils are connected between
these two lines and the third line. The + terminals are connected such that each wattmeter is connected as
if to give an upscale reading for power absorbed by the load.

1+

S

1+

WM,

Load

WM.

pc

+

cC

I+

Fig. 17-13

It can be shown that the total average power absorbed by the load is equal to the algebraic sum of
the two wattmeter readings. So, if one reading is negative, it 1s added, sign and all, to the other wattmeter
reading. (Of course, it may be necessary to reverse a coil to obtain this reading.) This two-wattmeter
method is completely general. The load does not have to be balanced. In fact, the circuit does not have
to be three-phase or even sinusoidally excited.

From the line voltage and current phasors, it can be calculated that, for a balanced load with
an impedance angle of 0, one wattmeter reading is V, [, cos(30 + ) and the other is
VI, cos (300 — ). The wattmeter with the VI, cos(30 + ) reading has a current coil in the
line corresponding to the phase sequence letter that immediately precedes the letter of the line in which
there is no current coil. If, for example, there is no current coil in line C, and if the phase sequence is
ABC, then, since B precedes C in the phase sequence, the wattmeter with its current coil in line B has the
V.1, cos(30° + ) reading.

The impedance angle for the phase impedance of a balanced load can be found from the readings
of wattmeters connected for the two-wattmeter method. There are six formulas that relate the tangent
of the impedance angle to the power readings. The appropriate formula depends on the phase sequence
and the lines in which the current coils are connected. If P, Py, and P are the readings of wattmeters
with current coils in lines A, B, and C, then, for an 4BC phase sequence,

Pi=Py_ . Pa—Pc_ PP,
. - . N R = \/ R
P, + Pg Py + P, P.+ P,

For an ACB phase sequence, tan § equals the negative of these.
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UNBALANCED CIRCUITS

If a three-phase circuit has an unbalanced load, none of the shortcuts for the analysis of balanced
three-phase circuits can be used. Conventional mesh or loop analysis is usually preferable. If the load
is an unbalanced Y with a neutral wire, then the voltage across each phase impedance is known, which
means that each phase current can be readily found. The same is true for an unbalanced A load if there
are no hne impedances. Otherwise, it may be preferable to transform the A to a Y so that the line
impedances are in series with the Y phase impedances.

PSPICE ANALYSIS OF THREE-PHASE CIRCUITS

PSpice applies to the analysis of a three-phase circuit, balanced or unbalanced, as to any ac circuit.
There are, however, three special considerations. First, if a Y load has a series-connected capacitor in
each phase and if there is no neutral wire, then PSpice will not complete an analysis because there is
no dc path from the neutral node of this Y to the 0 node, assuming that this neutral node is not the 0
node. This problem is easily solved by inserting between these two nodes a resistor of extremely large
resistance, thus providing the dc path without significantly affecting the analysis.

Second, a A-A circuit has no convenient node for the 0 node, which may or may not be important.
If it is important, a balanced Y of resistors can be inserted and then the neutral node of this Y used for
the 0 node. The resistance of each resistor should be large enough to avoid having the inserted Y affect
the results.

Finally, PSpice will not analyze a circuit that has a A of voltage sources, inductors, or transformer
windings, or a mixture of these. Inserting into this A a single resistor of negligibly small resistance will
eliminate this problem as regards obtaining external voltages or currents. But if currents are of interest
interior to a A of voltage sources, it is necessary to insert two other resistors to achieve balance. Otherwise,
the obtained source currents will not even be approximately accurate.

Incidentally, for a A of voltage sources, one voltage source can be replaced by an open circuit to
avoid having a loop of voltage sources. This deletion will not change the line voltages. It will, however,
affect the currents flowing in the voltage sources, and so cannot be done if these currents are of interest.
Similarly, for a three-phase transformer, if the windings are connected A-A, one primary winding and
the corresponding secondary winding can be replaced by open circuits to avoid having loops of inductors.
Electric utilities sometimes use two single-phase transformers in this manner to obtain three-phase
transformer action. This is called an open-delta installation, and provides 57.7 percent of the capacity of
a three-transformer bank. Ultilities often use an open-delta installation when they know that the load
will be increased in the future.

Solved Problems

17.1  What is the phase sequence of a balanced three-phase circuit in which  V,y = 7200/20° V and
Vey = 7200/—=100° V? What is Vg7
Since Vi lags V4 by 120", and the first subscripts are C and A, respectively. C follows 4 in the phase

sequence. So, the phase sequence is ACB, the negative phase sequence. Of course, Vg, leads V,, by 120,
but has the same magnitude: Vgy = 7200/20° + 120" = 7200/140 V.

17.2  What is the phase sequence of a balanced three-phase circuit in which Vg, =277/-30°V and
Vey = 277/90° V? What is V 7
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174

175
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Since V .y leads V,, by 120, and the first subscripts are C and B. respectively. C leads B in the phase
sequence, which must be CBA. or ACB, the negative phase sequence. Of course. 'V has the same magnitude
as V., but has an angle that is 120 greater:

Vi =277/90 + 120 =277/210 =277/-150 V

In a three-phase, three-wire circuit, find the phasor line currents to a balanced Y load in which
each phase impedance is Zy = 20/30 Q. Also. V,;=120/20 V. and the phase sequence is
ABC.
The line current 1, can be found by dividing the phase voltage ¥, by the phase impedance Z:
V. 120/20 :
I,=-"= l: =6/-10 A

Z, 20030

The other line currents can be determined from I, and the phase sequence. They have the same magnitude
as 1, and for the specifiecd ABC phase sequence, the currents 1, and 1., respectively, lag and lead I, by
120". So,

I, =6/—10 — 120 =6/—130 4 and Io=6/—10 +120 =6/110 A

What is the phase sequence of a three-phase circuit in which V ;= 13200/—-10 V and
Ve = 13200/110° V? Also, which line voltage has an angle that differs by 120 from the angles
of these voltages?

The phase sequence can be found from the voltage angles and first subscripts. Since Vg leads V 5 by
120 , and since the first subscripts are B and A, respectively, B is immediately ahead of 4 in the phase
sequence. So the phase sequence must be BAC or cquivalently. ACB. the negative phase sequence.

The third line voltage is either V., or V . because only 4 and C of ABC have not been used together
in subscripts. The proper third linc voltage the voltage that has an angle differing by 120 from those of
V g and Yg—1s V. since no two line voltages of a set can have subscripts that start with the same letter,
as would be the case if V. were used. Thus, V., =13 2()()/ —130 V. This result 15 also obvious from
Fig. 17-8c.

A balanced three-phase Y load has one phase voltage of V.y = 277/45 V. If the phase sequence
is ACB, find the line voltages V., V 5, and Vg

From Fig. 17-8¢, which is for an ACB phase sequence and the specified hine voltages. it can be seen
that the linc voltage V., has an angle that is 30 less than that of ¥ ... Its magnitude is, of course. greater
by a factor of |, 3. So. V., =277 3/45 —30 =480/15 V. Also. V= 480/15 + 120 =480/135 V.
from the same figure or from the fact that V ,, has an angle that is 120 greater because its first subscript 4 is
just ahead of the first subscript C of V., in the phase sequence ACB. Similarly, V,. must lag V., by
120 : Vg = 480/15 — 120 =480/ 105 V.

What are the phase voltages for a balanced three-phase Y load if V,, = 12470/ -35 V? The
phase sequence is ABC.

From Fig. 17-8h, which is for an ABC phase sequence and the set of line voltages that includes V.
it can be seen that Vg, leads Vg, by 30 . Also. the magnitude of ¥ is less by a factor of | 3. So.

12470 .

sy = - /=35 +30 =7200/=5 V
]
K

7

Also from this figure, or from the phase sequence and first subscript relation. V . leads Vg, by 120 and
Vey lags it by 120 :

Vg =7200/=5 +120 = 7200{115 V and Ve =7200/=5 — 120 = 7200/ -125 V
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17.7

17.8

17.9

17.10

17.11

17.12

A balanced three-phase, three-wire circuit with an ABC phase sequence has one line current
of Iz=20/40" A. Find the other line currents.
Because the circuit is balanced, all threc line currents have the same magnitude of 20 A. And because

the phase sequence is ABC, and A4 precedes B in the sequence, I, leads I, by 120 . For a similar reason, I
lags Iz by 120°. Consequently,

= 20/40° + 120° = 20/160" A and o =20/40 — 120 =20/—80 A

What is the I line current in an unbalanced three-phase, three-wire circuit in which 1, =
50/60° A and I. = 80/160" A?

By KCL, the sum of the three line currents is zero: I, + Iz + 1. =0. from which Ig= -1, - I, =

~50/60° — 80/160° = 86.7/ —54.6 A.

A balanced Y load of 40-§2 resistors is connected to a 480-V, three-phase, three-wire source. Find
the rms line current.

Each line current is equal to the load phase voltage of 480, 3 =277V divided by the phase
impedance of 40 Q: I, = 27740 = 6.93 A.

A balanced Y load of 50/ —30 Q impedances is energized by a 12 470-V, three-phase, three-wire
source. Find the rms line current.

Each line current is equal to the load phase voltage of 12470 3=7200V divided by the phase
impedance magnitude of 50Q: I, = 720050 = 144 A,

Find the phasor line currents to a balanced Y load of impedances Z, = 50/25" Q energized by
a three-phase source. One phase voltageis Vgy = 120@' V., and the phase sequence is ABC.

The line current 15 can be found by dividing the phase voltage Vg, by the phase impedance Z,. Then
the other line currents can be found from I, with the aid of the phase sequence. The line current I is

Vey  120/30 245 A

I,= Y- T—
bz, 502
Since the phase sequence is ABC, the angle of I, is 120 more than the angle of 1,. Of course, the current
magnitudes are the same: I, =24/5 + 120 = 24/125 A. Similarly. the angle of I is 120" less. So.
Ic=24/5 —120 = 24/‘115 A.

In a three-phase, three-wire circuit, find the phasor line currents to a balanced Y load for
which Zy =60/—30°Q and V;=480/65" V. The phase sequence is ABC.

From Fig. 17-8b, the phase voltage V. has an angle that is 30" greater than that of V., and. of course,
has a magnitude that is less by a factor of 1/, /3:

480/65 +30°
Vey = = =277/95 V
3

N C
The line current I is

l. =
Tz, 60/-3

Since A follows C in the phase sequence. I, lags 1. by 120 : 1, = 4.62/125 — 120 = 4.62/';5 A. And because
B precedes C in the phase sequence, I leads I~ by 120 :

1, =4.62/125 + 120 = 4.62/245 —46"{—IH A

Vey 277
= == L— - =4.62/125 A
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What is the phase sequence of a balanced three-phase circuit with a A load in which two of the
phase currents are Iz, =6/-30 A and 1. =6/90 A? What is 1,."

Since 1.5, with a first subscript of C. has an angle 120 greater than that of 1,,. which has a
first subscript of B. the letter C precedes the letter B in the phase sequence. Thus the phase sequence
must be ACB. the negative phase scquence. From this phase sequence, the current T, with a first
subscript of 4, has an angle that is 120 less than that of 1. Of course. the magnitude is the same. So.
Le=6/=30 —120 =6/-150 A.

Find the phase currents I, 1,5, and I, of a balanced three-phase A load to which one linc
current is Iy = 50/ =40 A. The phase sequence is ABC.

From Fig. 17-11a, which is for an ABC phase sequence and the specified set of A phase currents, it can
be seen that Iy has an angle that is 30 greater than that of I, and, of course. has a magnitude that is less

by a factor of 1 | 3. Consequently,

_SL 430 e 10 a

BC = -
3

\
Also, from the samce figure or from the fact that I, has an angle that is 120 greater because its first sub-
script A 15 just ahead of the first subscript B of I in the phase sequence ABC, 1., -
289/—10 + 120 = 28.9/_11_(} A Thcn Iy must have an angle that is 120 less than that of I
So. 1, =289/ -10 — 120 =289/-130 A

A balanced three-phase A load has one phase current of Iy, = 10/30 A. The phase sequence is
ACB. Find the other phasor phase currents and also the phasor line currents.

The two other desired phase currents are those having angles that differ by 120 from the angle of 1,,.
These are 1, and 14, as can be obtained from the relation of subscripts: No two currents can have the
same first or second subscript letters, or the same two letters. This is also obvious from Fig. 17-11¢. Since
the phase sequence 1s ACB or negative, I, must lead 1, by 120 because in the phase sequence the letter
C. the first subscript letter of 1..,. precedes the letter B, the first subscript letter of Iz,. Also. Fig. 17-11¢
shows this 120 lead. Therefore, 1o, = 10/30 4+ 120 = I()ﬂi(_) A. Then I, mustlag 1, by 120 © 1, =
10/30_— 120 =10/ =90 A.

From Fig. 17-11c. 1, lags [, by 30, and since it has a magnitude that 1s greater by a factor of
W3 L=10g 3/-90 — 30 =173/~ 120 A Because the phase sequence is ACB. currents 1, and 1.
respectively, lead and lag 1, by 120 :

I, =17.3/=120 + 120 =173/0 A and I =173/ =120 — 120 = 17.3/-240 = 17.3/120 A

What are the phasor line currents to a balanced three-phase A load if one phase current
is lqp=10/20 A and if the phase sequence is ABC?

From Fig. 17-11h. which is for an ABC phase sequence and the set of phase currents that includes 1.,
it can be seen that I leads I, by 30 . Of course, its magnitude is greater by a factor of { 3. So I =

10 3/20 +30 = 17.3;50 A. From the phasc sequence. I, leads I by 120 and I, lags it by 120 :

1, = 17.3/50 + 120 =17.3/170 A and I, =17.3/50 — 120 =17.3/-70 A

A 208-V three-phase circuit has a balanced A load of 50-Q resistors. Find the rms line current.

The rms line current I, can be found from the rms phase current I,. which is equal to the 208-V line
voltage (and also phase voltage) divided by the 50-Q phase resistance: 1, = 208 50 = 4.16 A. The rms line
current I, is greater by a factor of ( 3: I, = 34.16) = 7.21 A,

Find the phasor line currents to a balanced A three-phase load of impedances  Z, = 40/10 Q if
one phase voltageis V., =480/—15 V and if the phase sequence is ACH.
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A good first step is to find the phase current I

Vi 480/—15
lg=-—=— [=15 =12/-25 A
z,  40/10

From Fig. 17-11¢, which is for an ACB phase sequence and the sct of phasc currents that includes 14, the
line current I lags I.5 by 30°. Of course, its magnitude is greater by a factor of \,"3_ So

o= 12,3/=25 —30 =208/-55 A
Since the phase sequence is ACB, the line currents 1, and I respectively lead and lag 1 by 120 :

I, =208/=55 + 120 = 20.8/65 A and I, =208/=55 — 120 =208/—175 A

17.19 A balanced A load of impedances Z, = 24/ —40° Q is connected to the Y-connected secondary
of a three-phase transformer. The phase sequence is ACBand Vg, = 277/50° V. Find the phasor
line currents and load phase currents.

One approach is to find the corresponding Z, and use it to find Iz from 15 = Vg, 'Z,. The next step
is to use the phase sequence to obtain I, and 1 from 1. The last step is to use either Fig. 17-11¢ or d to
obtain the phase currents from I . This is the approach that will be used. although there are other approaches

just as short.
The corresponding Y impedance is Zy = Z,/3 = (24/—40')/3 = 8/ —40 Q. And

v <
w20 34.6/90° A

I. = = ~
Pz, 8/—a0

Since the phase sequence is ACB, the line currents I, and 1. respectively lag and lead 1, by 120 :

I,=34.6/90° —120° = 34.6/—-30" A and I = 346/90 + 120" = 34.6/210° = 34.6/ —150° A

Either set of load phase currents can be found: I,g, Ige, and I, or Iy, 1., and 1.5 If the first set is
selected, then Fig. 17-11d can be used, which has these currents for an ACB phase sequence. It can be seen
that 15, Ig-, and 1., lag 1, I, and I respectively by 30°. The magnitude of each load phase current is,

of course, 34.6/\/3 =20 A. Thus,

s = 20/—60" A I5c = 20/60 A I, =20/—180 = —20A

17.20 Find the rms line voltage V/, at the source of the circuit in Fig. 17-14. As shown, the rms load
phase voltage i1s 100 V and each line impedance is 2 + j3 Q.

20 ji3a I
ANAN YV _
+ +
100
100 V
Vi -j9 0
Three-phase -
source —j9 n N _1'9 4]
100 10 0
- 20 j3n
AN N YN
20 3
AN/ Y

Fig. 17-14
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The rms line current [, can be used to find V,. Of course, I, is equal to the 100-V load phase voltage
divided by the magnitude of the load phase impedance:
100
L= — - =T43A
10 - 9

In flowing, this current produces a voltage drop from a source terminal 1o the load neutral terminal N,
which drop is equal to the product of this current and the magnitude of the sum of the impedances that
the current flows through. This voltage is

T Ziie + Zy| = 74312 +j3) + (10 — j9)| = 7.43}12 — j6] = 743(13.42) = 99.7 V

The line voltage at the source is equal to |, 3 times this: V, = 3(99.7) =173 V.

Find the rms line voltage V' at the source of the circuit in Fig. 17-15. As shown, the rms line
voltage at the load is 100 V and each line impedance is 2 + j3 Q.

24 j3
AAA s asa
.’.
Vi
Three-phase
source
- 20 j3q
AV e
20 j3n
NN AL
Fig. 17-15

Perhaps the best approach is to transform the A to an cquivalent Y and then proceed as in the solution
to Prob. 17.20. The equivalent Y impedance is (9 + j12):3 = 3 + j4 Q. Since the line voltage at the load is
100 V. the line-to-neutral voltage for the equivalent Y load is 100 3 = 57.74 V. The rms line current /;
is equal to this voltage divided by the magnitude of the Y phase impedance:

57.74 57.74
L=—-— =-- =1155A
|3 + j4) S

In flowing, this current produces a voltage drop from a source terminal to the Y ncutral terminal, which
drop is equal to the product of this current and the magnitude of the sum of the impedances that the current
flows through. The voltage is

10 Zine + Zyl = 11.55](2 + j3) + (3 + j4)] = 11.55]5 + j7| = 11.55(8.6) = 993 V

And the line voltage at the source is equal to | 3 times this:  V, = 3(99.3) = 172 V.

A 480-V, three-phase, three-wire circuit has two parallel-connected balanced A loads, one of 5-Q
resistors and the other of 20-() resistors. Find the total rms line current.

Because the corresponding resistors of the A loads are in parallel, the resistances can be combined to
produce an equivalent single A of 520 = 4-Q resistors. The phase current of this A 1s equal to the line
voltage divided by the 4 Q of resistance: [/, = 480 4 = 120 A. And, of course. the line current is 3 times
greater. So. 1, = 3(120) = 208 A.
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17.23

17.24

17.25

A 208-V, three-phase, three-wire circuit has two parallel-connected balanced Y loads, one of
6-0) resistors and the other of 12-0} resistors. Find the total rms line current.

Since the loads are balanced. the load neutral nodes are at the same potential even if there is no
connection between them. Consequently, corresponding resistors are in parallel and can be combined. The

result is a net resistance of 6 12 =4 Q. This divided into the phase voltage of 208/\/3 =120V gives
the total rms line current: [, = 1204 = 30 A.

A 600-V three-phase circuit has two parallel-connected balanced A loads. one of 40;30°-(
impedances and the other of 50/-60°-() impedances. Find the total rms line current and also
the total average absorbed power.

Being in parallel, corresponding A impedances can be combined to

(40/30 ¥50/ 60 ) 2000/ —30 : _
= o = = 31.2/-87 =309 -j47Q

T 40/30 + 50/—60 ~ 64/-213

The rms phase current for the combined A is equal 10 the line voltage divided by the magnitude of this
impedance:

‘A

v, 600
l,=—=--=192A
Z, 312
And the rms line current is [, = '31,, = 3(19.2) = 333 A.
The total average power can be found using the phase current and resistance for the combined A:
P =3I1R = 3(19.2)’(30.9) = 34.2 x 10* W = 342 kW
Alternatively. it can be found from the line quantities and the power factor:

P =3V, x PF = _ 3(600)33.3)cos (—8.7 ) = 34.2 x 103 W = 342kW

A 208-V three-phase circuit has two parallel-connected balanced loads, one a A of 21;30°-Q)
impedances and the other a Y of 9_ 60°-Q impedances. Find the total rms line current and
also the total average absorbed power.

The two loads can be combined if the A is transformed to a Y or if the Y is transformed to a A so that,
in effect. the loads are in parallel. If the A is transformed to a Y, the equivalent Y has a phase impedance
of (2l@ y3 = 7@ Q. Since the circuit now has two balanced Y loads, corresponding impedances are
in parallel and so can be combined:

7/30 ¥9/=60)  63/=30°
UL V8= s g8 - sa7— 0760
7/30 +9/-60 114/-22.13

The rms line current is equal to the phase voltage of V¥, =208, 3=120V divided by the magnitude
of the combined phase impedance:
vV, 120
I =—=—=217A
Zy 3

Since this current effectively flows through the resistance of the combined Y, the total average power
absorbed is

P =3I2R = 3(21.7)%(547) = 7.8 x 10> W = 78 kW
Alternatively, the line voltage and current power formula can be used:

P = _3V1, x PF = /3(208)21.7)cos (—7.87 ) = 7.8 x 10° W = 7.8 kW
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A balanced Y of 20/20°-Q) impedances and a parallel-connected balanced A of 42;30°-)
impedances are connected by three wires to the secondary of a three-phase transformer. If
V,. = 480/10° V and if the phase sequence is ABC, find the total phasor line currents.

A good approach is to obtain an equivalent single combined Y impedance, and also a phase voltage.
and then find a line current by dividing this phase voltage by this impedance. The other line currents can
be obtained from this line current by using the phase sequence. For this approach the first step is find the
equivalent Y impedance for the A. It is (42@')/3 = 14@9' Q. The next step is to find a combined Y
impedance Zy by using the parallel combination formula:

20/20 X14/30)  280/50
7. - 0[20X14/30) _ 280/50 827/259° Q

"7 2020 +14/30  3387/24.1
From Fig. 17-8a, which is for an ABC phase sequence, Vgy has an angle that is 30" less than that of V.
and, of course, it has a magnitude that is less by a factor of ],\;"3:

Vg = 480M =277/=20 V

V3
The line current I, is equal to this voltage divided by the combined Y phase impedance:

. 2 —20°
Vis 27120 =335/-459 A

="

Z, 827/259 Te—

From the phase sequence, the line currents I, and I respectively lead and lag I; by 120 : 1, =33.5/74.1 A
and I.=335/-1659 A.

A balanced A load of 39/ —40°-Q impedances is connected by three wires, with 4 Q of resistance
each, to the secondary of a three-phase transformer. If the line voltage is 480 V at the secondary
terminals, find the rms line current.

If the A 1s transformed to a Y, the Y impedances can be combined with the line resistances, and the line
current found by dividing the magnitude of the total Y phase impedance into the phase voltage. The Y
equivalent of the A has a phase impedance of

39/—-40
3

== 13/-40" = 9.96 — j8.36 Q

Being a Y impedance, this is in series with the line resistance and so can be combined with it. The result is

4 + (996 — j8.36) = 13.96 — j8.36 = 16.3/ —309 Q

And the rms line current is equal to the phase voltage of 480/, 32277V divided by the magnitude of
this impedance: [, =277/163 =17 A.

Find the average power absorbed by a balanced three-phase load in an ABC circuit in
which Vg =208/15 V and Iy=3/110 A.

The formula P = ./3V;I; x PF can be used if the power factor PF can be found. Since it is the
cosine of the impedance angle, what is needed is the angle between a load phase voltage and current. With
I; known, the most convenient phase voltage is Vg, because the desired angle is that between Vg, and 1.
This approach is based on the assumption of a Y load, which is valid since any balanced load can be
transformed to an equivalent Y. Figure 17-8h, which is for an ABC phase sequence, shows that Vg, leads
Vg by 150, and so here has an angle of 15 + 150" = 165". The power factor angle, the angle between
Vgy and I, is 165 — 110" = 55 . So the average power absorbed by the load is

p= \'SVLIL x PF = \.//31208)(3) cos 55 =620 W
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17.29

17.30

17.31

17.32

A three-phase induction motor delivers 20 hp while operating at an 85 percent efficiency and at
a 0.8 lagging power factor from 480-V lines. Find the rms line current.
The current /; can be found from the formula P, = | 3 V.1, x PF. in which P, is the mput power
to the motor:
P, 20 x 7457
Po= "= T 1755 x 100 W
] 0.85

P, 17.55 x 10°
and I, = = =264A

<3V x PE O 3(480X08)

A three-phase induction motor delivers 100 hp while operating at an efliciency of 80 percent and
a power factor of 0.75 lagging from 480-V lines. The power factor is to be improved to 0.9 lagging
by inserting a A bank of power-factor correction capacitors. Determine the capacitance C,
required in each phase.
The input power to the motor is
P.. 100 x 7457
Pin = = Y
n 0.8
(932 x 10*)[1an (cos ' 0.75) — tan(cos ' 0.9)] v
B H377)X480)

W =932kW

So, C, = 1422 uF

In a 208-V three-phase circuit a balanced A load absorbs 2 kW at a 0.8 leading power factor,
Find Z,.
From P =3V I x PF, the phasc current is
P 2000

I, = = =401 A
3V, x PF 3(208)0.8)

Since the line voltage is also the phase voltage, the magnitude of the phase impedance is

W, 208
Zy="=""2=519Q
1, 401
The impedance angle is the power factor angle: 0= —cos™' 0.8 = —369 . So the phase impedance

is Z,=519/-369 Q.

Given that V5 =480/30° V in an ABC three-phase circuit, find the phasor line currents to a
balanced load that absorbs 5 kW at a 0.6 lagging power factor.

From P=_ %V, I, x PF, the linc current magnitude is
P 5000

- = T 2 10A
<3V x PE /3(480X0.6)

ll,:

If, for convenience, a Y load is assumed. then from Fig. 17-84, V ,y lags V 5 by 30 and so has an angle
of 30" — 30 =0 .Sincel, lags V , by the power factor angle of ) = cos "1 0.6 = 53.1 . 1, has an angle
of 0 —531 = —53.1. Consequently. I,=10/—53.1 A and. from the 4BC phase sequence,

I, =10/=531 —120 =10/—173.1 A
and Io = 10/=53.1 + 120

fl

10/66.9 A
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A 480-V three-phase circuit has two balanced loads connected in parallel. One is a 5-k W
resistive heater and the other an induction motor that delivers 15 hp while operating at an 80
percent efficiency and a 0.9 lagging power factor. Find the total rms line current.

A good approach is to find the total complex power S; and then solve for I, from |S;| =58, =

N 3 Vi 1, . the apparent power. Since the heater is purcly resistive, its complex power is S, = 5@ kVA.
The complex power of the motor has a magnitude (the apparent power) that is equal to the input power
divided by the power factor, and it has an angle that 1s the arccosine of the power factor:

15 x 745.7
0.8(0.9)
The total complex power is the sum of these two complex powers:

S, =S, + Sy =5+ (1398 + j6.77) = 20.15/19.6 kVA

fcos ' 0.9 =155 % 10%/258 VA = 1398 + j6.77kVA

M=

Since the apparent power is |S;| = S; = 20.15kVA,

Sy 2015 x 10°
T =242A

I, = -
W, 3480)

\

If in a three-phase, three-wire, ABC circuit, 1,=10/-30 A, 1,=8/45 A, and V =
208/60 V, find the reading of a wattmeter connected with its current coil in line C and its
potential coil across lines B and C. The + terminal of the current coil is toward the source, and
the + terminal of the potential coil is at line C.

From the specified wattmeter connections, the wattmeter readingisequalto P =V, [ . cos{ang V. p —
angl). Of course. V, =208 V. Also,

o= -1, —lg=—10/=30" — 8/45 =143/-1774 A

From an inspection of Figs. 17-84 and b, it should be fairly apparent that V.4 leads V 5 by 60" and so here
is V. =208/60 + 60 =208/120 V. Therefore, the wattmeter reading is

P =208(14.3)cos [120 —(—1774 )] W = 1.37TkW

A balanced Y load of 25-Q resistors is energized from a 480-V, three-phase, three-wire, ABC
source. Find the reading of a wattmeter connected with its current coil in line A and its potential
coil across lines A and B. The + terminal of the current coil is toward the source, and the +
terminal of the potential coil is at line 4.

With the specified connections, the wattmeter has a reading equal to P =V, I, cos(angV ,; —
ang I,), for which I, and the angles of V .z and 1, are needed. Since no phasors are specified in the problem
statement, the phasor V ,, can be conveniently assigned a 0 angle: V,, = 480/0 V. The current I, can
be found from the phase voltage V ;. and the phase resistance of 25 (). Of course, V ,, has a magnitude
of 480/ 3 =277 V. Also. from Fig. 17-8a. it lags V ,, by 30 and so has an angle of 0 —30 = —30".
Consequently. V, =277/-30 V and

Voo 277/-30
1,= = [-30 =11.09/-30 A
R, 25
Since the magnitude of I, is the rms line current,
P =V, I, coslang V,, —angl,) = 480{11.09)cos [0 — (—30)] =461 x 10° W = 4.61 kW

Incidentally, this wattmeter reading is just half the total average power absorbed of \//3 Vi I, x PF =

N (480K 11.09K1) = 9220 W. As should be evident from the two-wattmeter formulas Vi, cos(30° + 0)
and VI, cos(30 — 0), this result is generally true for a purely resistive balanced load (¢ =0) anda
wattmeter conngcted as if it is one of the two wattmeters of the two-wattmeter method.
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A balanced A load of j40-Q inductors is encrgized from a 208-V, ACB source. Find the reading
of a wattmeter connected with its current coil in line B and its potential coil across lines B and
C. The + terminal of the current coil is toward the source, and the + terminal of the potential
coil is at line B.

With the specified connections, the wattmeter has a reading equal to P = VI, cos(ang Vg —
ang L. for which I, and the angles of ¥ and 1 are needed. Since no phasors are specified. the phasor

Vg can be conveniently assigned a 0 angle: V. = 208@ V.Then V_,,=208/—120 V, asisapparent
from the relation between the specified ACB phase sequence and the first subscripts. It follows that

Ve Van 208/0  208/—120
B( _ 4B - L S L:" =901/-60 A
7, Z, 40 740

lg=Ig — 1=

So the wattmeter reading is
P =V, I, cos(ang Vy. — angI,) = 208(9.01)cos [0 —(—60)] =937 W

This reading has, of course. no relation to the average power absorbed by the load. which must be 0 W
because the load is purely inductive.

A 240-V ABC circuit has a balanced Y load of 20/ —60 -Q impedances. Two wattmeters are
connected for the two-wattmeter method with current coils in lines A and C. Find the wattmeter
readings. Also, find these readings for an ACB phase sequence.

Since the line voltage magnitude and the impedance angle are known, only the line current magnitude
is needed to determine the wattmeter readings. This current magnitude is

240, 3
I=1,=-"2=""YY"=693A
Zy 20

For the ABC phase sequence. the wattmeter with its current coil in line 4 has a reading of

P,= V.1, cos(30 + 0)) = 240(6.93)cos (30 — 60 )= 1440 W
because A precedes B in the phase sequence and there is no current coil in line B. The other wattmeter
rcading is

Pe=1,1,cos(30 —0)=240(693)cos[30 —(—60)]=0W
Notice that one wattmeter reading is 0 W and the other is the total average power absorbed by the load.
as is generally true for the two-wattmeter method for a balanced load with a power factor of 0.5.

For the ACB phase sequence. the wattmeter readings switch because C is before B in the phase sequence
and there is no current coil in line B. So, P =1440W and P, =0W.

A 208-V circuit has a balanced A load of 30/40°-Q impedances. Two wattmeters are connected
for the two-wattmeter method with current coils in lines A and B. Find the wattmeter readings
for an ABC phase sequence.

The rms line current i1s needed for the wattmeter formulas. This current is | 3 times the rms phase
current:

VY, 208
L=\31,=32=35 =124
A

Since there is no current coil in line C, and since B precedes C in the phase sequence, the reading of the
wattmeter with its current coil in line B is

Pg=V, I, cos(30 + 0)=208(12)cos {30 + 40) =854 W
The other wattmeter reading is

P,=V,1,cos(30 —0)=208(12)cos (30 — 40 ) W = 2.46 kW
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A balanced Y load is connected to a 480-V three-phase source. The two-wattmeter method is
used to measure the average power absorbed by the load. If the wattmeter readings are 5 kW and
3kW, find the impedance of each arm of the load.

Since the phase sequence and wattmeter connections are not given, only the magnitude of the impedance
angle can be found from the wattmeter readings. From the angle-power formulas, this angle magnitude is

53
(0] = tan” ‘(\/3 ——) =234
5+3

The magnitude of the phase impedance Zy can be found from the ratio of the phase voltage and current.
The phase voltage is  480/,'3 = 277 V. The phase current, which is also the line current, can be found from
the total power absorbed, whichis 5 + 3 =8 kW:

P 8000
=l =—n——=— —— =105A

IV x PE/3(480)cos 23.4°)

From the ratio of the phase voltage and current, the magnitude of the phase impedanceis 277/10.5 = 26.4 Q.
So the phase impedance is either Z, = 264/234 Q or Z, =264/-234 Q.

Two wattmeters both have readings of 3 kW when connected for the two-wattmeter method with
current coils in lines A and B of a 600-V, ABC circuit having a balanced A load. Find the A
phase impedance.

For an ABC phase sequence and current coils in lines 4 and B, the phase impedance angle is given by
~-P,—P ~3-3
# =tan™! (\'3 A —9) =tan"! (\,’3 —— ) =tan " '0=0
P,+ Py 3+3
Because the load impedance angle'is 0, the load is purely resistive. The phase resistance is equal to the
phase voltage of 600 V, which is also the line voltage, divided by the phase current. From P = 3V [ cos 0.

P 3000 + 3000
I, = = - =333A
3V, cos ) 3(600X 1)
. v, 600
inally. A== =
Finally R 180 Q
1 3.33

4

Two wattmeters are connected for the two-wattmeter method with current coils in lines B and C
of a 480-V, ACB circuit that has a balanced A load. If the wattmeter readings are 4 kW and 2 kW,
respectively, find the A phase impedance Z,.

The phase impedance angle is

P.—P 2-4 /3
0 =tan"! (VIG—C~J> =tan"! (\/[3 —-—) =tan""' (— V——) = -30
P+ Py 2+4 3

The magnitude of the phase impedance can be found by dividing the phase voltage of 480 V. which is also
the line voltage, by the phase current. From P =3 V,I cos (), the phase current is

P 4000 + 2000
= - = — — — =48] A
3V,cos i 3(480) cos (—30)
This divided into the phase voltage is the magnitude of the phase impedance. Consequently,

Z,=-—/-30"=99.8/-30"Q

481
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Two wattmeters are connected for the two-wattmeter method with current coils in lines 4 and
C of a 240-V, ACB circuit that has a balanced Y load. Find the Y phase impedance if the two
wattmeter readings are — 1 kW and 2 kW, respectively.

The impedance angle is

-1 7 P,— P -1 w1 =2 1 ’
0 =1tan v3TD——]=tan WI———|)=tan (=3 3= -T791
P,+ P,

The magnitude of the phase impedance can be found by dividing the phasc voltage of V =
240/’\/"'3 =139V by the phase current, which is also the line current. From P = 31, [, cos ), the line

current is
P — 1000 + 2000

=127A

< Iicos 3(240)cos(—T79.1 )

39
So Z,=——/=791 =109/-79.1 Q

-
bl
I
-~
1

A 240-V, ABC circuit has an unbalanced A load consisting of resistors R, =45Q, Ry, =
30Q, and R =40Q. Two wattmeters are connected for the two-wattmeter method with
current coils in lines 4 and B. What are the wattmeter readings and the total average power
absorbed?

From the wattmeter connections, the wattmeter readings are equal to
P,=V,I,cos(angV . —angl)) and Py = Vg lgcos(ang Vo — angly)

For the calculations of these powers, the phasors V .. V.. 1,. and Iy are needed. Since no angles are
specified, the angle of V. can be conveniently sclected as 0, making V.= 240./_0 V. For an 4ABC
phase sequence, Vg leads V - by 120 and sois V5 = 240/120 V. But V. is needed:

Voo = — Vg = —240/120 =240/120 — 180 = 240/ =60 V

Also, Vg, lags V- by 120 and is V,, = 240/ =120 V. The lin¢ currents I, and I, can be determined
from the phase currents:

Vi Vuo 240/0  240/-120

=0 =y, ="t - = 11.6/366 A
AT T R e Ry, 45 30 —
v V. 240/-120  240/120 v
lp=lg, —lep= 2= Polle—== 7= —122/-947 A
Ry. Rep 30 40 —

Now P, and Py can be determined:

P,=V,l,cos{angV . —angl ) =240(11.6)cos (0 — 36.6 )W = 224 kW

Pg = Vyelgcos(ang Vg — ang lg) = 240(12.2)cos [ 60 — (—94.7 )] W = 24 kW
Notice that the two wattmeter readings are not the same, even though the load is purely resistive. The rcason
they are not the same is that the load is not balanced.

The total power absorbed is P, + Pg =224 + 2.4 = 464 kW. This can be checked by summing the
V2/R power absorptions by the individual resistors:

2402 2407 2402
Pr="" + 4T W=464kW
45 30 40

For a four-wire, ACB circuit in which 'V, =277/—-40"V, find the four phasor line currents to
aYloadof Z,=15/30 Q Zz;=20/—25Q, and Z.=25/45 Q.

The three phase currents, which are also three of the line currents. are equal to the phase voltages
divided by the phase impedances. One phase voltage is the specified V,,. The others arc Vg, and V.
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From the specified ACB phase sequence, the voltages Vg, and V., respectively lead and lag V,, by
120 © Vg, = 277@‘ V and V¢, =277/-160 V. So the phase currents are

V. 277/-40 Vee  277/80
= 22— _185/-70 A = = = [0 _ 13.9/105 A
z, 15/3 Z, 20/-25
Ve 277/=160 :
.= = 77/ 160 =11.1/-205 = —11.1/-25 A

Z, 25/45

By KCL the neutral line current is

Iy= —(+ I+ 1) = —(185/=70 +139/105 — 11.1/=25)=173/=553 A

For an ABC circuit in which V5 =480/40" V, find the phasor line currents to a A load
of Z,,=40/30"Q, Zz =30/-70 Q, and Z,, = 50/60 Q.

Each line current is the difference of two phase currents, and each phase current is the ratio of a phase
voltage and impedance. One phase voltage is the given V g = 480@ V. And from the given ABC phase
sequence, the other phase voltages, Vg and V., respectively lag and lead V ,, by 120 : V. = 480/ —-80" V
and V., =480/160 V. So the phase currents are

A% 480/40 ,
ly=="= 80/40 =12/10 4
Z.y 40/30
Ve 480/160
_ Ve _ 480/160 =9.6/100 A

o= F =S

Zoy  50/60

V,o 480/ —80
e O30 6/ 10 A
Zoe /=70 E—

Iy =

And, by KCL, the line currents are
I,o=lg— I =12/10 —96/100 =154/-287 A
Iy =Ty — L =16/=10 —12/10 =6.26/-51 A
Io = ley — lye = 96/100 — 16/ 10 =21.3/1449 = —21.3/-351 A

As a check, the three line currents can be added to see if the sum is zero, as it should be by KCL. This
sum is zero, but it takes more than three significant digits to show this convincingly.

In a three-wire, ABC circuit in which V,, = 480/60 V, find the phasor line currents to a Y
load of Z,=16/-30"Q, Zz=14/50 Q, and Z;=12/-40 Q.

Since the Y load is unbalanced and there is no neutral wire, the load phase voltages are not known.
And this means that the line currents cannot be found readily by dividing the load phase voltages by the
load phase impedances, as in the solution to Prob. 17.44. A Y-10-A transformation is tempting so that the
phase voltages will be known and the approach in the solution to Prob. 17.45 can be used. But usually this
is considerably more effort than using loop analysis on the original circuit.

As shown in Fig. 17-16, loop analysis can be used to find two of the three line currents, here
I, and I.. Of course, after thesc are known, the third line current Iy can be found from them by
KCL. Note in Fig. 17-16 that the V., gencrator is not shown. 1t is not needed because the shown
two generators illustrated supply the correct voltage between terminals 4 and C. Of course, as shown, Vg
lags the given V ,, by 120 because the phase sequence is ABC.

The loop equations are

(16/ =30 + 14/50 )1, + (14/50 M1 = 480/60
(14/50 ), + (12/ =40 + 14/50 ). = —480/—60

which simplify to

(23/6.8 M, + (14/50')1 = 480/60
(14/50")1, + (18.4/9.4)1, = —480/—60"
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A
|
Vs = 480/60° V ' Za=16/-30°Q
Zs = 1450° Q
— L
I
Vac = 480/-60° V ‘ Zc =12/-40° 0
: T
Fig. 17-16

By Cramer’s rule,

‘ 480/60 14/50
—480/—60° 18.4/9.4°| 12.1 x 103/36.2° .
- = = 269/458" A
L ‘23@< 14/50° 448/ —9.6
14/50° 18.4/9.4°
}23@~ 480/60 ‘
14/50" —480/—60"| 5.01 x 103/149.6° .
I = = =11.2/159.2° A
448/ -9.6 448/ -9.6"

Of course, by KCL,

Ig= -1, — o= —269/458" — 11.2/159.2" = 247/ 110" A

In the circuit of Fig. 17-16, include the third voltage generator V., and use PSpice to obtain the
three generator currents 1,5, I, and I-,, as well as the line currents I, Ig, and 1.

The PSpice circuit is shown in Fig. 17.17. Resistors R1, R2, and R3 of the same negligibly small
resistance have been inserted to avoid having a loop of voltage sources, which PSpice will not accept. There
is nothing especially significant about the node numbering or the particular choice of the 0 node. Since

Ci
0 R4 6
. o It
— M’ hdl [AY
[N 13856 Q 0125F
R1 1 uQ
V.= 480/180° V C}D ! l'w
V.5 = 480/60° V
RS 8 L1
59 2 AN— X
—
1, " 10.725 H
R2 1 uf
R3 § 1 uQ 3 l'ur
Ve = 480/— 60 V
Tca T R6 9 (;2
o (
hd — VW hd A9
4 I 9.19250 0.12964 F

Fig. 17-17
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inductances and capacitances must be specified instead of impedances, the load impedances have been
converted to time-domain guantities, with the inductor and capacitor values based on a radian frequency
of Lrads. Then since 16/ —30 Q= 13856 - 8 Q. the 7, impedance is obtained with u resistor of
PIRS6 Q n series with a capacitor of L = 0.125 F. Similarly. because 14@ Q=9+j10725Q. the
7., impedance is obtained with a 9-€ resistor in series with a 10.725-H inductor. And since lZw Q=
91925 - j17135Q. the Z¢ impedance is obtained with a 9.1925-Q resistor in series with a capacitor
of 1 77135 = 012964 F capacitance.

Following is the corresponding PSpice cireuit file and the output obtained when PSpice is run with

this circuit file. This output. expressed in terms of the currents specified in the circuit of Fig. 17.17 are
[, — 1682 1225 A Ly = 9.102,9447 A I, = 11.00:2767 A

and
I, = 2692,4577 A I, = 2470, - 1097 A o= TLIR 1592 A

The line carrent values agree within three significant digits with those obtained in the solution to Prob. 17.46.

CIRCUIT FILE FOR THE CIRCUIT OF FIG. 17-17

R1 01 1U

VAB 1 2 AC 480 60
R2 2 3 10U

VBC 3 4 AC 480 =60
R3 4 5 1U

VCA 5 0 AC 480 180
R4 0 6 13.856

C1 6 7 0.125

RS 28 9

L1 8 7 10.72%5

R6 4 9 9.1925

c2 9 7 0.12964

.AC LIN 1 0.159155 0.159155

.PRINT AC 1IM(VAB) IP(VAB) IM(VBC) IP(VBC) IM(VCA) IP(VCA)
.PRINT AC IM(R4) IP(R4) IM(R5) IP(R5) IM(R6) 1P (R6)
.END

FREQ IM(VAB) IP(VAB) IM(VBC) IP(VBCQ) IM(VCA)

.592E-01 1.682E+01 -1.225E+02 9.102E+00 9.447E+01 1.10QE+01

FREQ IP(VCA)

.592E-01 2.767E+01

FREQ IM(R4) IP(R4) IM(RS) IP(R5) IM(R6)

.592E-01 2.692E+01 4.577E+401 2.470E+401 ~-1.097E+02 1.118E+01

FREQ IP(R6)

.592E-01 1.592E+02

In the circuit shown in Fig. 17-18, in which cach line has an impedance of S + j8 Q. determine
I, and 1.

The Toop equations are

(5+/8+ 15, =30 + 1325 + 54+ 80, + (5 + j8 + 13725 ), = 208/40
(S+ 8 + 132500, + (S 4 8 + 10745 +13/25 + 5 + 8, = —208; — 80

In matrix form. these simplify to

375219 215388 1, 208/40
2157388 4067447 |1, | —208/—80

The solutions are 1=641 =914 A and 1,=511941 A Ofcourse Ipo= - 1,-1,==722 146 A.
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a 50 80 A

. . J\/V\, -t Y - -J_

I
Voo = 208/40° V 15/-30°
13/25° 0
— ¢ 54 8 N L
_~_> V,, = 208/160° V — AAA Y -
Is
Vo, = 208/-80° V 10/45°

b 50 8 0 B LI"

! — AAN 1YL -
Fig. 17-18

Notice in Fig. 17-18 the use of lowercase letters at the source terminals to distinguish them from the
load terminals, as is necessary because of the line impedances.

1749 In a three-wire, ACB circuit in which one phase voltage at the Y-connected source is
V., = 120/—30° V, determine the phasor line currents to a A load in which Z 5 = 30/ —40° Q,
Zgc = 40/30°Q, and Z., = 35/60° Q. Each line has an impedance of 4 + j7 Q.

A good approach is to transform the A to a Y and then use loop analysis. The three A-to-Y
transformation formulas have the same denominator of

Zyg+ Zpc + Ze = 30/ —40° + 40/30° + 35/60° = 81.3/22.4°

With this inserted, the transformation formulas are

ZpZc, (30/—40°%35/607)  1050/20 .
Z,=-A8T0 =T T e =129/-24"Q
81.3/224 81.3/224° 81.3/224
YAy A 30/ — 40 ¥40/30° 1200/ —10
Zy=-t0K _ G40 L ot L =148/-324'Q
81.3/22.4° 81.3/22.4 81.3/22.4
2o, Zg 35/60" X40/30° 1400/90°
Ze=——1 "‘p:‘ (60X L’: [0 =17.2/67.6 Q
81.3/22.4° 81.3/22.4 81.3/22.4
With the equivalent Y inserted for the A, the circuit is as shown in Fig. 17-19. Because of the ACB phase
sequence, V,, leads V,, by 120° and V_, lags V,, by 120°, as shown.

j70 B
Ve o o o W .
In
Zs = 148/-32.4°Q
70
Z.=129/-2.4°Q
l<
‘ Zo = 172/67.6° 0
i7Q C
7YY

[ ]

Fig. 17-19
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The loop equations are

(4 + 7+ 148/ =32.4° + 129/ 24" + 4 + jIlg + (4 +jT + 129/ - 2.4 ). = 120/90 — 120/ 30
(4 +j7 + 129/ 2405 + (4 + j7 + 17.2/67.6' + 129/ =24 + 4 + jD. = 120/ =150 — 120/ 30
These simplify to

(33.8/9.41°), + (18.1/20.9)1 = 208/120°
(18.1/20.9°) 5 + (40.2/46.9 )1 = —208

The solutions are Iz =54/842°A and I.=511/160"A. Of course I,= —Iz— 1. from which
1,=827/-589°A. .

Supplementary Problems

What is the phase sequence of a Y-connected three-phase alternator for which V¥, = 7200/ —-130 V
and Vgy = 7200/110° V? Also, what is V,?

Ans. ABC, Vo =7200{-10°V

Find the phase sequence of a balanced three-phase circuit in which V,=120/15 V and V. =
120/135° V. Also, find Vy.

Ans. ABC, Vgy=120/—105°V

For a three-phase, three-wire circuit, find the phasor line currents to a balanced Y load in which each phase
impedance is 30/ —40° Q and for which V., = 277/—70" V. The phase sequence is ACB.

Ans. 1,=9.23/90°A, I5=923/-150" A, I.=923/-30 A

Find the phase sequence of a three-phase circuit in which Vg, =12470/—140 V and V,. =
12 470/100° V. Also, find the third line voltage.

Ans. ACB, V. p=12470/-20°V

What is the phase sequence of a three-phase circuit for which Vg, =762/-45 kV and V4=
13.2/105° kV?

Ans. ACB

A balanced Y load has one phase voltage of Vg, = 120/130° V. If the phase scquences is ABC, find the
line voltages V .., V¢g, and Vg,.

Ans. Ve =208/—140°V, V.5=208/=20"V, Vg, =208/100° V

What are the phase voltages for a balanced three-phase Y load if V., = 208/ —125 V? The phase sequence
is ACB.

Ans. V, = 120@“ V., Ve =120/145"V, V. =120/-95V
A balanced three-wire, ACB circuit has one line current of I = 6/ —10" A. Find the other line currents,
Ans. 1,=6/110°A, I=6/—130"A

Find the I; line current in an unbalanced three-wire, three-phase circuit in which 1, = 6/73() A and
I = —4/50° A

Ans. 1o =661/113°A,
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A balanced Y load of 100-Q resistors is connected to a 208-V, three-phase, three-wire source. Find the rms
line current.

Ans. 12A

A balanced Y load of 40@ -Q impedances is connected to a 600-V. three-phase, three-wire source. Find
the rms line current.

Ans. 8.66 A
Find the phasor line currents to a balanced Y load of 45/—48°-Q impedances. One phase voltage
is Vey=120/—65°V, the phase sequence is ACB, and there are only three wires.
Ans. 1,=267/103" A, Iy=267/-137 A, I.=267/—17 A
For a three-phase, three-wire circuit, find the phasor line currents to a balanced three-phase Y load of
80/25°-Q impedances if V ;= 600/—30 V and the phase sequence is ACB.
Ans. 1,=433/-25'A, Iz= 4.33[9_5' A, 1.=433/—145 A
Find the phase sequence of a three-phasc circuit in which two of the phase currents of a balanced A load
are I, z= l()@o A and 1., =10/170° A. Also, find the third phase current.
Ans. ABC, lg=10/-70"A
Find the phase currents 1, I3, and Iz, of a balanced three-phase A load to which one line current
is I, = 1‘4@’ A. The phase sequence is ACB.
Ans. L= 0.808@5" A, I =0808/-25 A, I;,=0808/—-145 A
A balanced three-phase A load has one phase current of 1., = 4/—35 A.If the phase sequence is ABC, find
the phasor line currents and the other phasor phase currents.
Ans. 1,=693/175" A le=4/-155 A

I, = 6.93/55 A Ipe = 4/85 A

I, =693/—-65 A
Find the phasor line currents to a balanced three-phase A load in which one phase current is
1,, = 4.2/ —30° A The phase sequence is ACB.
Ans. 1,=—-727TA, I,=727/-60°"A, 1l.= 7.27&9 A
Find the rms value of the line currents to a balanced A load of 100-Q resistors from a 480-V, three-phase,
three-wire source.
Ans. 831A
Find the phasor line currents to a balanced three-phase A load of 200/ —55°-Q impedances if the phase
sequence is ABC and if one phase voltage is V., = 208/ —60° V.
Ans. 1,=18/—155A, l;=18/85"A, I.=18/-35A
A balanced A load of 50[3_5”’-9 impedances is energized from the Y-connected secondary of a three-phase

transformer for which V= 120/-10° V. If the phase sequence is ABC, find the phasor line and load
currents.

Ans. 1, =72[—45A l,=416/-75A
Ip=72/—165°A Iz =4.16/—195"A
Ic=72/15°A leg = 4.16/45° A
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A balanced Y load with impedances of 8 + j6 Q is connected to a threc-phase source by threc wires, each
of which has 3 + j4 Q of impedance. The rms load phase voltage is 50 V. Find the rms line voltage at the
source.

Ans. 129V

A balanced A load with impedances of 15 — j9 Q is connccted to a three-phasce source by three wires, each
of which has 2 + j5 Q of impedance. The rms load phasce voltage is 120 V. Find the rms line voltage at the
source.

Ans. 150V

A 600-V, three-phase, three-wire circuit has two parallel-connected balanced A loads, one of 30-(}
resistors and the other of 60-() resistors, Find the total rms line current.

Ans. S2A

A 480-V, three-phase, three-wire circuit has two parallel-connected balanced Y loads, one of 40-{ resistors
and the other of 120-£} resistors. Find the total rms line current.

Ans. 924 A
A 480-V three-phase circuit has two paraliel-connected balanced A loads, one of 50/ __60° {) impedances and
the other of 70_50°-() impedances. Find the total rms line current and the total average power absorbed.

Ans. 168 A, 13.3kW

A 600-V three-phase circuit has two parallel-connected balanced loads, one a A of 90;__ 40°-() impedances
and the other a Y of S0 30°-Q impedances. Find the total rms line current and the total average power
absorbed.

Ans. 154 A, 154 kW

A balanced Y load of 30; __30°-(} impedances and a parallel-connected balanced A load of 90/ - 50°-0)

impedances are connected by three wires to the secondary of a three-phase transformer. If ¥, = 208/ - 30° V
and the phase sequence is ACB, find the total phasor line currents.

Ans. 1, =788/~140 A. 1,=788/-20 A, I.=788/100 A

A balanced A load of 6()@ -Q impedances is connected to the secondary of a three-phase transformer by
three wires that have 3 + j4 Q of impedance cach. If the rms line voltage is 480 V at the secondary terminals,
find the rms line current.

Ans. TL1TA

Find the average power absorbed by a balanced three-phase load in an ACB circuit in which one line voltage
is Ve =480/30 V and onc line current to the load is 1, = 2.1/80° A.

Ans.  1.34kW

A three-phase induction motor delivers 100 hp while operating at an 80 percent efficiency and a 0.7 lagging
power factor from 600-V lines. Find the rms line current.

Ans. 128 A

A three-phase induction motor delivers 150 hp while operating at an cfficiency of 75 percent and a power

factor of 0.8 lagging from 480-V lincs. A Y bank of power factor correction capacitors is to be inserted to
improve the overall power factor to 0.9 lagging. Determine the capacitance required per phase.

Ans. 456 p¥

In a 480-V three-phase circuit. a bulanced A load absorbs S kW at a 0.7 lagging power factor. Find the A
phase impedance.

Ans. 96.8/45.6 Q
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Given that V.= 208/—40 V inan ACB three-phase circuit, find the phasor line currents to a balanced
load that absorbs 10 kW at a 0.8 lagging power factor.

Ans. 1,=347/—10T" A, 1,=347/13 A, I =347/133 A

A 600-V three-phase circuit has two parallel-connected balanced loads. One is a synchronous motor that
delivers 30 hp while operating at an 85 percent efficiency and a 0.7 leading power factor. The other is an
induction motor that delivers S0 hp while operating at an 80 percent efficiency and a 0.85 lagging power factor.
Find the total rms line current.

Ans. 702 A

If Ig= 20@3 A, I.=15/=-30"A, and Vg =480/—40°V in a three-wire, ACB circuit, find the
reading of a wattmeter connected with its current coil in line 4 and its potential coil across lines 4 and B.
The + terminal of the current coil is toward the source, and the + terminal of the potential coil is at line A.

Ans. 13.6 kW

A balanced Y load of 50-Q resistors is connected to a 208-V, ACB. three-wire, three-phase source. Find the
reading of a wattmeter connected with its current coil in line B and its potential coil across lines A and C.
The + terminal of the current coil is toward the source, and the + terminal of the potential coil is at line 4.

Ans. OW

A balanced A load with impedances of 9 + j12 Q is connected to a 480-V, ABC source. Find the reading of
a wattmeter connected with its current coil in line 4 and its potential coil across lines B and C. The +
terminal of the current coil is toward the source, and the + terminal of the potential coil is at line C.

Ans. —-21.3kW

A 600-V three-phase circuit has a balanced Y load of 40@’-9 impedances. Find the wattmeter readings
for the two-wattmeter method.

Ans. 52kW, 26 kW

A 480-V, ACB circuit has a balanced Y load of 30/ —50°-Q impedances. Two wattmeters are connected for
the two-wattmeter method with current coils in lines B and C. Find the wattmeter readings.

Ans. Py=4.17kW, P.=770W

A 600-V, ACB circuit has a balanced A load of 60@ -Q impedances. Two wattmeters are connected for
the two-wattmeter method with current coils in lines B and C. Find the wattmeter readings.

Ans. Pg=668kW, Pc=102kW

A balanced Y load is connected to a 208-V three-phase source. The two-wattmeter method is used to measure
the average power absorbed by the load. If the wattmeter readings are 8 kW and 4 kW, find the Y phase
impedance.

Ans.  Either 3.12/30° Q or 3.12/-30° Q

Two wattmeters both have readings of 5 kW when connected for the two-wattmeter method in a 480-V
three-phase circuit that has a balanced A load. Find the A phase impedance.

Ans. 69.1/0° Q

Two wattmeters are connecled for the two-wattmeter method with current coils in lines A and B of a 208-V,
ABC circuit that has a balanced A load. If the wattmeter readings are 6 kW and — 3 kW, respectively. find the
A phase impedance.

Ans. 8.18/79.1° Q
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Two wattmeters are connected for the two-wattmeter method with current coils in lines B and € of a 600-V.
ABC circuit that has a balanced Y load. Find the Y phase impedance if the two wattmeter readings are 3 kW
and 10 kW, respectively.

Ans. 20.3/-43°Q

A 480-V, ACB circuit has an unbalanced A load consisting of resistors R, =60Q, Ry, =85Q. and
Ry = 70 Q. Two wattmeters are connected for the two-wattmeter method with current coils in lines 4 and
C. What are the wattmeter readings?

Ans. P,=463kW, P.=521kW

For a four-wire, ABC circuit in which Vgy = 208[6_° V, find the four phasor line currents to a Y load
of Z,=30/=-50°Q, Zz= 25@° Q, and Z=35/-65"Q.

Ans. 1, =693/~125°A, 1,=832/27°A, 1.=594/10°A, 1,=933/175°A

For an ACB circuit in which V, . =600/—15"V, find the phasor line currents to a A load of
Z,o=150/=35°Q, Zg,=200/60°Q, and Zcp=175/-70"Q.

Ans. 1,=18/—-247°A, 1,=527/82.7°A, I.=504/—-117"A

In a three-wire, ACB circuit in which V.5 =208/ —40°V, find the phasor line currents to a Y load
of Z,=10/30°Q, Z,=20/60°Q, and Z. =15/-50"Q

Ans. 1,=253/888°A, I3=107/133°A, 1-=126/—548" A

In a three-wire, ACB circuit in which one source line voltage is  V, =480/ —30 V. find the phasor line

currentsto a Y load of Z, = 12/60°Q, Z,=8/20°Q, and Z.=10/=30" Q. Each linc has an imped-
ance of 3 +j4 Q.

Ans. K, =152/—165° A, ly=273/=339°A, I =209/113 A

In a three-wire, ABC circuit in which one source line voltage is V,, = 480&0 V. find the phasor line
currents to a A load of Z,;=40/-50°Q, Zg = 35@” Q and Z., = 50&) Q. Fach line has an
impedance of 8 + 9 Q.

Ans. 1, =744/278° A, l1z=14/—112°A, I, =964/978° A
Determine the answers that will be printed in the output file when PSpice is run with the {ollowing circuit file.

CIRCUIT FILE FOR PROB. 17.100

V1 1 0 AC 340 S0
Ve 2 0 AC 340 -30
v3 3 0 AC 340 -150
R1 1 4 1

L1 4 5 1

R2 2 6 1

L2 6 7 1

R3 3 8 1

L3 g8 9 1

R4 510 ¢

Ci 10 7 66.667M

RS 7 11 6

c2 11 9 66.667M

R6 9 12 6

c3 12 5 66.667M

.AC LIN 1 0.159155 0.159155
.PRINT AC VM(5) VP(5) IM(R4) IP(R4)
.END

Ans.  366.2/74.93°V, 39.26/173.1"A



ac (alternating current), 3, 194
ac circuit, 194
ac generator (alternator), 195, 384
ac PSpice analysis, 268-269
Admittance, 238

conductance of, 238

mutual, 267

self-, 267

susceptance of, 238
Admittance diagram, 238
Admittance triangle, 238
Air-core transformer, 352
Algebra, complex, 217-221
Alternating current (ac), 3, 194
Alternating current circuit, 194
Alternator (ac generator), 195, 384
Ampere, 2
Analysis:

loop, 57, 266

mesh, 56, 265

nodal, 58, 267
Angle, phase, 197
Angular frequency, 195
Angular velocity, 195
Apparent power, 327
Associated references, §
Autotransformer, 354
Average power, 194, 324
Average value of periodic wave, 198

Balanced bridge, 87, 297
Balanced three-phase load, 387, 389
Branch, 31
Bridge balance equation, 87, 297
Bridge circuit, 86
capacitance comparison, 316
Maxwell, 317
Wheatstone, 86
Buffer, 116

Capacitance, 153

equivalent, 154

total, 154
Capacitance comparison bridge, 316
Capacitive circuit, 235
Capacitive reactance, 200
Capacitor, 153

energy stored, 155

sinusoidal response, 200
Cascaded op amps, 116

Index
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Charge, t

conservation of, 2

electron, 1

proton, 1
Choke, 175
Circuit, 2

ac, 194

capacitive, 235

de, 31

inductive, 235

phasor-domain, 232

three-phase, 384-414

time-domain, 232
Coefficient of coupling, 353
Coil, 175
Color code, resistor, 20
Complex algebra, 217-221
Complex number:

angle, 219

conjugate, 219

exponential form, 219

magnitude, 219

polar form, 219

rectangular form, 218
Complex plane, 218
Complex power, 326
Conductance, 17

of admittance, 238

equivalent, 33

mutual, 58

self-, 58

total, 33
Conductivity, 18
Conductor, 17
Conjugate, 219
Conservation of charge, 2
Controlled source, 4
Conventional current flow direction, 2
Cosine wave, 197
Coulomb, 2
Coupled impedance, 354
Coupling, coefficient of, 353
Cramer’s rule, 54
Current, 2

ac, 3, 194

dc, 3

loop, 57

mesh, 56

phase, 386

short-circuit, 83, 295
Current direction, 2

reference, 2
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Current division rule, 34, 239 General transformer equation, 358
Current source, 3 Generator:

controlled, 4 ac, 195, 384

dependent, 4 A-connected, 386

independent, 4 Y-connected, 385

Norton, 83, 295 Giga-, 2
Cycle, 194 Ground, 33

Grouping of digits, 1
dc (direct current), 3

dc circuit, 31
dc PSpice analysis, 136140

dc source, 4 Henry, 175

Delta (A) connection, 85, 296, 386 Hertz, 194

A-Y transformation, 85, 296 Horsepower. 5

Dependent source. 4

PSpice, 138 Ideal transformer, 350

Derivative, 155 Imaginary number, 217

Determinant, 54 Impedance. 234

Dielectric, 153 coupled, 354

Dielectric constant, 154 equivalent, 234

Digit grouping, | input, 235

Direct current (dc), 3 mutual, 266

Direct current circuit, 31 output, 303

Direction, current, 2 reactance of, 235

Dot convention, 350 reflected, 351, 354

Double-subscript notation, 3, 384 resistance of. 235

Drop, voltage, 3 self-, 266

Dual, 72 Thévenin, 294
total, 234

Impedance angle, 235
Impedance diagram, 235

Effective value, 198 Impedance plane, 235

Efficiency, 5 Impedance triangle, 236
Electron, |
Electron charge, 2 Independent source, 4

? Induced voltage, 175, 353
Energy, 3, §

Inductance, 175

stored by a capacitor, 155 equivalent, 176

stored by an inductor, 177
. . mutual, 353
Equivalent circuit: If-. 353
Norton's 83, 295 fe‘ 1 17.6
Theévenin's, 82, 294 otaL 15
) Inductive circuit, 235
Equivalent sources, 56, 265 .
\ ) Inductive reactance, 199
Euler’s identity, 219
- Inductor, 175
Exponential form of complex number, 219
energy stored, 177
sinusoidal response, 199
Inferred zero resistance temperature, 18

Farad, 153 Input impedance, 235

Faraday’s law. 175 Input resistance, 84

Ferromagnetic material, 174 Instantaneous current, 155

Flux: Instantaneous power, 198, 324
leakage, 350 Instantaneous voltage, 155
magnetic, 174, 349 Insulator, 17
mutual, 349 Internal resistance, 20

Flux linkage, 175 International System of Units (SI), 1

Frequency, 194 Inverter, 114
angular, 195 Ion, 2

radian, 195 Iron-core transformer, 350



Joule, 3

Kilo-, 2
Kilohm-milliampere method, 34
Kilowatthour, 5
Kirchhoff's laws:
current law (KCL), 32, 267
voltage law (KVL), 31, 265

Lagging power factor, 325

Lattice circuit, 86

Leading power factor, 325

Leakage flux, 350

Line current, 386

Line voltage, 386

Linear circuit, 82

Linear circuit element, 82

Linear transformer, 352

Load:
balanced, 387, 389
A-connected, 85, 296, 389
parallel three-phase, 390
unbalanced. 393
Y-connected, 85, 296, 387

“Long time.” 165

Loop, 31

Loop analysis, 57, 266

Loop current, 57

Magnetic flux, 174
Matching, resistance, 84, 359
Maximum power transfer theorem, 84, 295
Maxwell bridge, 317
Mega-, 2
Mesh, 31
Mesh analysis, 56, 265
Mesh current, 56
Mho, 17
Micro-, 2
Milli-, 2
Millman’s theorem, 84
Model:
op amp, 112
PSpice op-amp, 139
transformer, 350
Mutual admittance, 267
Mutual conductance, 58
Mutual flux, 349
Mutual impedance, 266
Mutual inductance, 353
Mutual resistance, 57

Nano-, 2
Negative charge, 1
Negative phase sequence, 386

INDEX
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Network (see Circuit)
Network theorem (see Theorem)
Neutral, 386
Neutron, 2
Newton, 3
Nodal analysis, 58, 267
Node. 31
reference, 33
Node voltage, 33
Nominal value of resistance, 19
Noninverting voltage amplifier. 115
Norton's theorem, 83, 295

Ohm, 17
Ohm’s law, 17
Op amp: {x¢e Operational amplifier)
Open circuit. 20
Open-circuit voltage, 82, 294
Opcrational amplificr (op amp). 112
model. 112
open-loop voltage gain. 112
PSpice model. 139
Opcrational-amplificr circuits, 112-138
buffer, 116
cascaded op amps, 116
inverter, 114
noninverting voltage amplifier, 115
voltage follower. 116
voltage-to-current converter, 116
Oscillator, 157
Output impedance. 303
Qutput resistance. 82, 84

Parallel connection, 21, 31

Passive sign convention, §

Period, 158, 194

Periodic quantity, 194
cffective value, 198

Permcability. 174

Permittivity. 154

Phase angle, 197

Phasc current, 386

Phase difference, 197

Phase relation, 197

Phase sequence, 386

Phase voltage, 386

Phasor, 221

Phasor diagram, 221

Phasor-domain circuit, 232

Pico-, 2

Plane, complex, 218

Polar form of complex number, 219

Polarity, reference voltage, 4

Polarity, voltage, 3

Positive charge. 1

Positive phase sequence, 386
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Potential drop, 3
Potential rise, 3
Power, 5, 324
apparent, 327
average, 194, 324
complex, 326
instantaneous, 198, 324
maximum transfer of, 84, 295
reactive, 326
real, 326
resistor, 19
three-phase, 391
Power factor, 324
lagging, 325
leading, 325
Power factor angle, 324
Power factor correction, 327
Power measurement:
single-phase, 325
three-phase, 391
two-wattmeter method, 334, 392
Power triangle, 326
Primary winding, 349
Probe, 178
Proton, 1
PSpice analysis:
ac, 268-269
dc, 136-140
Probe, 178
transient, 177-179
three-phase circuits, 393
transformer circuits, 356

Radian, 195
Radian frequency, 195
Rationalizing, 218, 219
RC time constant, 156
RC timer, 157
Reactance:
capacitive, 200
of impedance, 235
inductive, 199
Reactive factor, 326
Reactive power, 326
Real number, 217
Rectangular form of complex number, 218
Reference current direction, 2
Reference node, 33
Reference voltage polarity, 4
Relerences, associated, S
Reflected impedance, 351, 354
Relative permeability, 175
Relative permittivity, 154
Resistance, 17
equivalent, 31
of impedance, 235

INDEX

Resistance (cont.):
input, 84
internal, 20
mutual, 57
nominal value, 19
output, 82, 84
self-, §7
Thévenin, 82
tolerance, 19
total, 31
Resistance matching, 84, 359
Resistivity, 17
Resistor, 19
color code, 20
linear, 19
nonlinear, 19
sinusoidal response, 198
Resonant frequency, 240
Right-hand rule. 174, 349
Rise, voltage, 3
RL time constant, 177

rms {root-mean-square) value, 199

Secondary winding, 349
Self-admittance, 267
Self-conductance, 58
Self-impedance, 266
Self-inductance, 353
Self-resistance, 57
Semiconductor, 18

Series connection, 21, 31
Short circuit, 20
Short-circuit current, 83, 295

SI (International System of Units), 1

Siemens, 17
Sin¢ wave, 194, 195
Sinusoid, 197
average value, 198
effective value, 199
Source:
ac, 194, 384
controlled, 4
current, 3
dc, 4
dependent, 4
cquivalent, 56, 265
independent, 4
Norton, 83, 295
practical, 20
Thévenin, 82, 294
voltage, 4
Source transformation, 56, 265
SPICE program, 136
Step-down transformer, 351
Step-up transformer, 351
Subscript notation:
current, 384



Subscript notation {cont.):

voltage. 3. 384
Superposition thecorem, 84, 295
Susceptance, 238

Temperature cocflicient of resistance, 19
Tera-. 2
Theorem:

maximum power transfer, 84, 295

Millman’s, 84

Norton’s, 83, 295

superposition, 84, 295

Thévenin’s, 82, 294
Thévenin’s theorem, 82, 294
Three-phase circuits, 384414

balanced, 384, 387, 389

PSpice analysis, 393

unbalanced, 393
Three-phase power, 391
Three-phase power measurement. 391
Time constant, 156

RC. 156

RL, 177
Time-domain circuit, 232
Time-varying voltages and currents, 155
Timer, RC, 157
Tolerance. resistance, 19
Transformation:

A-Y, 85, 296

source 56, 265
Transformation ratio, 350
Transformers, 349-383

air-core, 352

ideal. 350

iron-core, 350

lincar, 352

PSpice models, 356

step-down, 351

step-up, 351
Transient, 156
Transient PSpice analysis, 177-179
Turns ratio, 350
Two-wattmeter method, 334, 392

INDEX

Unbalanced three-phase circuit, 393
Unit symbol, 1
Units, SI, 1

VAR, 326

Volt, 3

Voltage, 3
induced, 175, 353
node, 33
open-circuit, 82, 294
phase, 386

Voltage difference, 3

Voltage division rule, 32, 236

Voltage drop, 3

Voltage follower, 116

Voltage polarity, 3
reference, 4

Voltage rise, 3

Voltage source, 4
controlled, 4
dependent, 4
independent, 4
Thévenin, 82, 294

Voltage-to-current converter, 116

Voltampere, 326

Voltampere reactive, 326

Watt, S
Wattmeter, 325
Weber, 174
Wheatstone bridge, 86
Winding:
primary, 349
secondary, 349
Work, 3

Y (Wye) connection, 85, 296, 385
Y-A transformation, 85, 296
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* Electric Circuits

¢ Electromagnetics
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e Thermodynamics For Engineers
e Fluid Mechanics and Hydraulics
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Free Software

Pspice is a circuit simulator software package used to calculate the behavior of electrical circuits. Class
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