

AIR FORCE INSTITUTE OF TECHNOLOGY
ELECTRICAL/ELECTRONICS ENGINEERING AND INFORMATION &
COMMUNICATION ENGINEERING DEPARTMENTS
SECOND SEMESTER EXAMINATION 2020/2021 SESSION
300 LEVEL

Course Title:

SIGNALS AND SYSTEMS (EEE 316)

Credit Unit:

2 Units

Instruction:

ANSWER THREE QUESTIONS

Duration:

2 HOURS, 15 MINUTES

Date:

27 JAN 2022

Question One

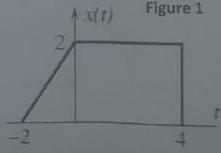
a. A complex exponential signal is given by the expression $x(t)=e^{(\sigma+j\omega)t}$

[6mks]

- i. Using Euler's identity, express x(t) as a sum of decaying sinusoids ii. Given that $\sigma > 0$, sketch the signal x(t)
- b. Using appropriate sketches and mathematical expressions, describe the following signal types
 - ii. Unit impulse function
 - iii. Unit step function
 - iv. Unit ramp sequence

V

[6mks]


- c. Given that a discrete signal $x[n] = \{1, 0.5, 1, 2, 0.5, 0.5, 3, 4, 3\}$, sketch (7mks)
 - i. signal x[n]
 - ii. the decimated signal y[n] = x[2n]
- d. Distinguish between the following

[6mks]

- i. Linear and non-linear system
- ii. Time-varying and time-invariant system

Question Two

a. Given signal x(t) in figure 1, decompose the signal into its even and odd components [8mks]

b. Briefly describe the following signal types

[6mks]

- i. Odd Signal
- ii. Discrete-time signal
- iii. Periodic signal
- c. Determine algebraically whether the following signals are odd, even or neither

[6mks

- i. $x(t) = 2t^3 4t$ ii. $x(t) = 2t^3 - 3t^2 - 4t + 4$
- d. i. What do you understand by the term "system"?

 ii. What conditions must be satisfied for a system to be classified as Linear Time-invariant (LTI) (3mks)

Question Three

(a). Given that x(t) = 1.5t, $0 \le t \le 2$ and zero elsewhere. Sketch the following

[7mks]

- i. x(t)
- ii. f(t) = 1 + x(t-1)
- iii. g(t) = x(1-t)
- b). State 2 major characteristics of each of the following signal types

6mks

- i. Even signal
- ii. Power Signal
- iii. Energy Signal
- (c). Briefly describe the following classes of system

16mks

- a. causal system
- b. memoryless system
- c. feedback system
- (d). Sketch the following signals

[6mks

- i. x(t) = u(t+3) u(t-3)
- ii. x[n] = u[n] u[n-1]
- *iii.* $x[n] = \delta[n] + \delta[n-3]$

Question Four

4(ai) State two functions of Fourier series in signal analysis

[4Marks]

4(aii) What is the condition that must be satisfied before using Fourier series to analyse signals?

[2 Marks]

4(b) The input to the series RC circuit of Figure 4(bi), is the square waveform of Figure 4(bii). Compute the voltage $V_c(t)$ across the capacitor. Consider only the first three terms of the trigonometric Fourier series. For brevity assume that $\omega = 1$. [10 Marks]

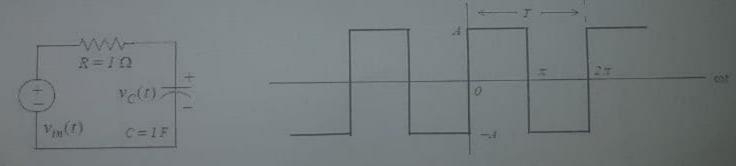


Figure 4(bi)

Figure 4(bii)

4(c) Derived the Fourier Transform of the pulse $f(t) = A[u_0(t) - u_0(t-2T)]$. The pulse is as shown in Figure 4(c). [5 Marks]

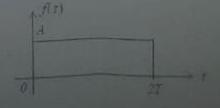


Figure 4(c) 4(d) Show that $f(t-t_0) \Leftrightarrow f(\omega)\ell^{-j\omega t_0}$

14 Marks

Question Five

5 (ai) In signal analysis, Fourier series are often expressed in exponential form rather than in trigonometric form. State the reason behind this.

[2Marks]

(aii) State the importance of Laplace and Z-transforms to signal analysis.

[4Marks]

(b) Find the first five components of the exponential Fourier series for the waveform of the Figure 5(b) shown below. Assume $\omega = 1$

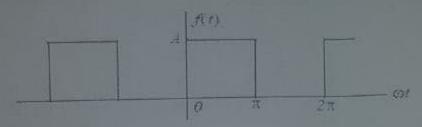


Figure 5(b)

5 (c) Derived the Fourier Transform of the pulse $f(t) = A[u_0(t+T) - u_0(t-T)]$. The pulse is as shown in Figure 5(c). [4 Marks]



Figure 25(c)

5(d) State Parseval's Theorem

[5 Marks]