FEDERAL UNIVERSITY OF TECHNOLOGY, OWERRI SCHOOL OF ENGINEERING AND ENGINEERING TECHNOLOGY (SEET)

DEPARTMENT OF CHEMICAL ENGINEERING

Session: 2017/2018 Rain Semester Examination.

Course Code: CHE302; Course Title: Chemical Engineering Reaction and Kinetics; Time: 3 hours

Instructions: Answer any FIVE questions (Universal gas constant: 8.314 J/mol. K)

- 1. (a) Explain the integral method of analysis for the interpretation of batch reaction data.
 - (b) Use the integral method of analysis to derive an equation in terms of conversion to show that an irreversible chemical reacjkyition of the form: $2A \rightarrow Products$, follow a second order kinetics.
- 2. (a) Discuss the importance of chemical kinetics in the design of a chemical reactor.
 - (b) Use the data below to predict the order of reaction of hydrolysis of a simple sugar in aqueous solution at 298K. Determine the reaction rate constant.

Time (min)	0	60	130	180	240	300
Concentration (mol/dm ³)	1.00	0.81	0.63	0.53	0.43	0.35

3. Pure gaseous reactant A ($C_{AO} = 100$ millimol/liter) is fed at a steady rate into a mixed flow reactor (V =0.1 liter) according to the reaction equation: $3A \rightarrow R$. For different gas feed rates, the following data are obtained:

Run number	1	2	3	4
vo, liter/hr	10.0	3.0	1.2	0.5
CAf, millimol/liter	85.7	66.7	50	33.4

Find a rate equation for this reaction.

- 4. (a) At present, 95% of reactant A is converted into product by a second order reaction in a single mixed flow reactor. We plan to place a second reactor similar to the one being used in series with it.
 - (i) For the same treatment rate as that used at present, how will this addition affect the conversion of reactant?
 - (ii) For the same 95% conversion, by how much can the treatment rate be increased?
 - (b)The reactor set-up below consists of three plug flow reactors in two parallel branches. Branch A has a reactor of volume 50 liters. Branch B has a reactor of volume 30 liters followed by a reactor of volume 60 liters. What fraction of the feed should go to branch A?
- (a) The kinetics of the irreversible reaction $S + R \rightarrow T$ has been studied and it has been found to follow the rate equation: $r_T = kC_R^2$. In an attempt to find the reaction mechanism, the following model has been proposed:

 $25 \underset{K_2}{\overset{k_1}{\rightleftharpoons}} 5_2^*$ $5_2^* + R \underset{K_2}{\overset{k_2}{\rightleftharpoons}} 5 + T$ Check if the proposed mechanism matches the rate equation

- (b) The reaction A \rightarrow R is carried out in a batch reactor at two different temperatures. At 300K $-r_A =$ $1.4p_A^2$, at 350K $-r_A = 1.5p_A^2$. Assuming A is an ideal gas; find the activation energy of the reaction $(R = 82.06 \text{cm}^3 \text{atm} \text{K}^{-1} \text{mol}^{-1})$
- 6. (a) Analyse the relationship between thermodynamics and chemical kinetics
 - (b) Briefly discuss the catalytic behavior of nitric oxide toward ozone
 - (c) Explain heterogeneous catalysis using hydrogenation of ethylene as example