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Higher Engineering Mathematics

Now in its eighth edition, Higher Engineering Mathe-
matics has helped thousands of students succeed in their
exams. Theory is kept to a minimum,with the emphasis
firmly placed on problem-solving skills, making this a
thoroughly practical introduction to the advanced engi-
neering mathematics that students need to master. The
extensive and thorough topic coverage makes this an
ideal text for upper-level vocational courses and for
undergraduate degree courses. It is also supported by
a fully updated companion website with resources for
both students and lecturers. It has full solutions to all
2,000 further questions contained in the 277 practice
exercises.

John Bird, BSc (Hons), CMath, CEng, CSci, FITE,
FIMA, FCollT, is the former Head of Applied Electron-
ics in the Faculty of Technology at Highbury College,
Portsmouth, UK. More recently he has combined free-
lance lecturing and examining, and is the author of
over 130 textbooks on engineering and mathemati-
cal subjects with worldwide sales of over one mil-
lion copies. He is currently lecturing at the Defence
School of Marine Engineering in the Defence Col-
lege of Technical Training at HMS Sultan, Gosport,
Hampshire, UK.

Why is knowledge of mathematics important in engineering?

A career in any engineering or scientific field will
require both basic and advanced mathematics. Without
mathematics to determine principles, calculate dimen-
sions and limits, explore variations, prove concepts, and
so on, there would be no mobile telephones, televisions,
stereo systems, videogames,microwaveovens, comput-
ers, or virtually anything electronic. There would be no
bridges, tunnels, roads, skyscrapers, automobiles, ships,
planes, rockets or most things mechanical. There would
be no metals beyond the common ones, such as iron
and copper, no plastics, no synthetics. In fact, society
would most certainly be less advanced without the use
of mathematics throughout the centuries and into the
future.

Electrical engineers require mathematics to design,
develop, test, or supervise themanufacturing and instal-
lation of electrical equipment, components, or systems
for commercial, industrial, military, or scientific use.

Mechanical engineers require mathematics to perform
engineering duties in planning and designing tools,
engines, machines, and other mechanically functioning
equipment; they oversee installation, operation,mainte-
nance, and repair of such equipment as centralised heat,
gas, water, and steam systems.

Aerospace engineers require mathematics to perform
a variety of engineering work in designing, construct-
ing, and testing aircraft, missiles, and spacecraft; they
conduct basic and applied research to evaluate adapt-
ability of materials and equipment to aircraft design and
manufacture and recommend improvements in testing
equipment and techniques.

Nuclear engineers require mathematics to conduct
research on nuclear engineering problemsor apply prin-
ciples and theory of nuclear science to problems con-
cerned with release, control, and utilisation of nuclear
energy and nuclear waste disposal.

Petroleum engineers require mathematics to devise
methods to improve oil and gas well production and
determine the need for new or modified tool designs;
they oversee drilling and offer technical advice to
achieve economical and satisfactory progress.

Industrial engineers require mathematics to design,
develop, test, and evaluate integrated systems for man-
aging industrial production processes, including human
work factors, quality control, inventory control, logis-
tics and material flow, cost analysis, and production
co-ordination.
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Environmental engineers require mathematics to
design, plan, or perform engineering duties in the
prevention, control, and remediation of environmen-
tal health hazards, using various engineering disci-
plines; their work may include waste treatment, site
remediation, or pollution control technology.

Civil engineers require mathematics in all levels in
civil engineering – structural engineering, hydraulics
and geotechnical engineering are all fields that employ

mathematical tools such as differential equations, tensor
analysis,field theory, numericalmethods andoperations
research.

Knowledge of mathematics is therefore needed by each
of the engineering disciplines listed above.

It is intended that this text –Higher EngineeringMathe-
matics –will provide a step-by-step approach to learning
fundamental mathematics needed for your engineering
studies.
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Preface

This eighth edition of HigherEngineeringMathemat-
ics covers essential mathematical material suitable for
students studying Degrees, Foundation Degrees, and
Higher National Certificate and Diploma courses in
Engineering disciplines.
The text has been conveniently divided into the fol-

lowing fourteen convenient categories: number and
algebra, geometry and trigonometry, graphs, complex
numbers, matrices and determinants, vector geometry,
introduction to calculus, further differential calculus,
further integral calculus, further differential equations,
statistics and probability, Laplace transforms, Fourier
series and z-transforms.
Increasingly, difficulty in understanding algebra

is proving a problem for many students as they com-
mence studying engineering courses. Inevitably there
are a lot of formulae and calculations involved with
engineering studies that require a sound grasp of alge-
bra. On the website www.routledge.com/cw/bird/ is a
document which offers a quick revision of the main
areas of algebra essential for further study, i.e. basic
algebra, simple equations, transposition of formulae,
simultaneous equations and quadratic equations.
In this new edition, all of the chapters of the pre-

vious edition are included, plus one extra, but the
order of presenting some of the calculus chapters has
been changed. New material has been added on the
introduction to numbering systems, Bayes’ theorem in
probability, the comparison of numerical methods and
z-transforms.
The primary aim of the material in this text is to

provide the fundamental analytical and underpinning
knowledge and techniques needed to successfully com-
plete scientific and engineering principles modules of
Degree, Foundation Degree and Higher National Engi-
neering programmes. The material has been designed
to enable students to use techniques learned for the
analysis, modelling and solution of realistic engineering
problems at Degree and Higher National level. It also
aims to provide some of the more advanced knowl-
edge required for those wishing to pursue careers in

mechanical engineering, aeronautical engineering, elec-
trical and electronic engineering, communications engi-
neering, systems engineering and all variants of control
engineering.
In Higher Engineering Mathematics 8th Edi-

tion,theory is introduced in each chapter by a full outline
of essential definitions, formulae, laws, procedures, etc;
problem solving is extensively used to establish and
exemplify the theory. It is intended that readerswill gain
real understanding through seeing problems solved and
then through solving similar problems themselves.
Access to software packages such as Maple, Mathe-

matica andDerive, or a graphics calculator,will enhance
understanding of some of the topics in this text.
Each topic considered in the text is presented in a

way that assumes in the reader only knowledge attained
in BTEC National Certificate/Diploma, or similar, in an
Engineering discipline.
Higher Engineering Mathematics 8th Edition pro-

vides a follow-up to Engineering Mathematics 8th

Edition.
This textbook contains over 1050 worked prob-

lems, followed by nearly 2000 further problems (with
answers), arranged within 277 Practice Exercises.
Some 552 line diagrams further enhance understand-
ing.
Worked solutions to all 2000 of the further

problems have been prepared and can be accessed
free by students and staff via the website
www.routledge.com/cw/bird/
At the end of the text, a list of Essential Formulae

is included for convenience of reference.
At intervals throughout the text are some 21Revision

Tests to check understanding. For example, Revision
Test 1 covers the material in chapters 1 to 5, Revi-
sion Test 2 covers the material in chapters 6 to 8,
Revision Test 3 covers the material in chapters 9 to
11, and so on. An Instructor’s Manual, containing
full solutions to the Revision Tests, is available free to
lecturers/instructors via the website (see below).
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Preface xv

‘Learning by example’ is at the heart of Higher
Engineering Mathematics 8th Edition.

JOHN BIRD
Royal Naval Defence College of Marine and Air

Engineering, HMS Sultan,
formerly University of Portsmouth
and Highbury College, Portsmouth

John Bird is the former Head of Applied Electron-
ics in the Faculty of Technology at Highbury College,
Portsmouth, UK. More recently, he has combined free-
lance lecturing at the University of Portsmouth with
examiner responsibilities for Advanced Mathematics
with City and Guilds, and examining for International
Baccalaureate. He is the author of some 130 textbooks
on engineering and mathematical subjects with world-
wide sales of one million copies. He is a chartered
engineer, a chartered mathematician, a chartered scien-
tist and a Fellow of three professional institutions, and
is currently lecturing at the Defence College of Marine
andAirEngineering in theDefenceCollege ofTechnical
Training at HMS Sultan, Gosport, Hampshire, UK.

Free Web downloads
The following supportmaterial is available from

www.routledge.com/cw/bird/

For Students:
1. Full solutions to all 2000 further questions

contained in the 277 Practice Exercises

2. Revision of some important algebra topics

3. A list of Essential Formulae

4. Information on 32 Mathematicians/Engineers
mentioned in the text

For Lecturers/Instructors:
1. Full solutions to all 2000 further questions

contained in the 277 Practice Exercises

2. Revision of some important algebra topics

3. Full solutions and marking scheme for each
of the 21 Revision Tests; also, each test may
be downloaded for distribution to students. In
addition, solutions to the Revision Test given
in the ‘Revision of Algebra Topics’ is also
included.

4. A list of Essential Formulae

5. Information on 32 Mathematicians/Engineers
mentioned in the text

6. All 552 illustrations used in the text may
be downloaded for use in PowerPoint
presentations
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Syllabus guidance

This textbook is written for undergraduate engineering degree and foundation degree courses; however, it is
also most appropriate for BTEC levels 4 and 5 HNC/D studies in engineering and three syllabuses are covered.
The appropriate chapters for these three syllabuses are shown in the table below.

Chapter Analytical Further Advanced
Methods Analytical Mathematics
for Engineers Methods for for

Engineers Engineering
1. Algebra ×
2. Partial fractions ×
3. Logarithms ×
4. Exponential functions ×
5. Inequalities

6. Arithmetic and geometric progressions ×
7. The binomial series ×
8. Maclaurin’s series ×
9. Solving equations by iterative methods ×
10. Binary, octal and hexadecimal ×
11. Boolean algebra and logic circuits ×
12. Introduction to trigonometry ×
13. Cartesian and polar co-ordinates ×
14. The circle and its properties ×
15. Trigonometric waveforms ×
16. Hyperbolic functions ×
17. Trigonometric identities and equations ×
18. The relationship between trigonometric and hyperbolic ×

functions

19. Compound angles ×
20. Functions and their curves ×
21. Irregular areas, volumes and mean value of waveforms ×
22. Complex numbers ×
23. De Moivre’s theorem ×
24. The theory of matrices and determinants ×
25. Applications of matrices and determinants ×

(Continued )
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Chapter Analytical Further Advanced
Methods Analytical Mathematics
for Engineers Methods for for

Engineers Engineering
26. Vectors ×
27. Methods of adding alternating waveforms ×
28. Scalar and vector products ×
29. Methods of differentiation ×
30. Some applications of differentiation ×
31. Standard integration ×
32. Some applications of integration ×
33. Introduction to differential equations ×
34. Differentiation of parametric equations

35. Differentiation of implicit functions ×
36. Logarithmic differentiation ×
37. Differentiation of hyperbolic functions ×
38. Differentiation of inverse trigonometric and hyperbolic ×

functions

39. Partial differentiation ×
40. Total differential, rates of change and small changes ×
41. Maxima, minima and saddle points for functions of two ×

variables

42. Integration using algebraic substitutions ×
43. Integration using trigonometric and hyperbolic substitutions ×
44. Integration using partial fractions ×
45. The t = tan θ /2 substitution

46. Integration by parts ×
47. Reduction formulae ×
48. Double and triple integrals

49. Numerical integration ×
50. Homogeneous first-order differential equations

51. Linear first-order differential equations ×
52. Numerical methods for first-order differential equations × ×
53. Second-order differential equations of the form ×

a
d2y
dx2

+ b
dy
dx

+ cy = 0

(Continued )
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Chapter Analytical Further Advanced
Methods Analytical Mathematics
for Engineers Methods for for

Engineers Engineering
54. Second-order differential equations of the form ×

a
d2y
dx2

+ b
dy
dx

+ cy = f (x)

55. Power series methods of solving ordinary differential equations ×
56. An introduction to partial differential equations ×
57. Presentation of statistical data ×
58. Measures of central tendency and dispersion ×
59. Probability ×
60. The binomial and Poisson distributions ×
61. The normal distribution ×
62. Linear correlation ×
63. Linear regression ×
64. Sampling and estimation theories ×
65. Significance testing ×
66. Chi-square and distribution-free tests ×
67. Introduction to Laplace transforms ×
68. Properties of Laplace transforms ×
69. Inverse Laplace transforms ×
70. The Laplace transform of the Heaviside function

71. Solution of differential equations using Laplace transforms ×
72. The solution of simultaneous differential equations using ×

Laplace transforms

73. Fourier series for periodic functions of period 2π ×
74. Fourier series for non-periodic functions over range 2π ×
75. Even and odd functions and half-range Fourier series ×
76. Fourier series over any range ×
77. A numerical method of harmonic analysis ×
78. The complex or exponential form of a Fourier series ×
79. An introduction to z-transforms
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Number and algebra
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Chapter 1

Algebra

Why it is important to understand: Algebra, polynomial division and the factor and remainder theorems
It is probably true to say that there is no branch of engineering, physics, economics, chemistry or computer
science which does not require the understanding of the basic laws of algebra, the laws of indices, the
manipulation of brackets, the ability to factorise and the laws of precedence. This then leads to the ability
to solve simple, simultaneous and quadratic equations which occur so often. The study of algebra also
revolves around using and manipulating polynomials. Polynomials are used in engineering, computer
programming, software engineering, in management, and in business. Mathematicians, statisticians and
engineers of all sciences employ the use of polynomials to solve problems; among them are aerospace
engineers, chemical engineers, civil engineers, electrical engineers, environmental engineers, industrial
engineers, materials engineers, mechanical engineers and nuclear engineers. The factor and remainder
theorems are also employed in engineering software and electronic mathematical applications, through
which polynomials of higher degrees and longer arithmetic structures are dividedwithout any complexity.
The study of algebra, equations, polynomial division and the factor and remainder theorems is therefore
of some considerable importance in engineering.

At the end of this chapter, you should be able to:

• understand and apply the laws of indices
• understand brackets, factorisation and precedence
• transpose formulae and solve simple, simultaneous and quadratic equations
• divide algebraic expressions using polynomial division
• factorise expressions using the factor theorem
• use the remainder theorem to factorise algebraic expressions

1.1 Introduction

In this chapter, polynomial division and the factor
and remainder theorems are explained (in Sections 1.4
to 1.6). However, before this, some essential algebra
revision on basic laws and equations is included.
For further algebra revision, go to the website:
www.routledge.com/cw/bird

1.2 Revision of basic laws

(a) Basic operations and laws of indices
The laws of indices are:
(i) am × an = am+n (ii)

am

an
= am−n

(iii) (am)n = am×n (iv) a
m
n = n

√
am

(v) a−n = 1
an

(vi) a0 = 1

Higher Engineering Mathematics. 978-1-138-67357-1, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.
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Problem 1. Evaluate 4a2bc3−2ac when a=2,
b = 1

2 and c = 1 12

4a2bc3− 2ac = 4(2)2
(
1
2

)(
3
2

)3
− 2(2)

(
3
2

)

= 4× 2× 2× 3× 3× 3
2× 2× 2× 2 − 12

2

= 27− 6= 21

Problem 2. Multiply 3x + 2y by x − y

3x + 2y
x − y

Multiply by x → 3x2+ 2xy

Multiply by −y → −3xy − 2y2

Adding gives: 3x2− xy − 2y2

Alternatively,

(3x + 2y)(x − y) = 3x2− 3xy + 2xy − 2y2

= 3x2 −xy − 2y2

Problem 3. Simplify
a3b2c4

abc−2 and evaluate when

a = 3, b = 1
8 and c = 2

a3b2c4

abc−2 = a3−1b2−1c4−(−2) = a2bc6

When a = 3, b = 1
8 and c = 2,

a2bc6 = (3)2
(
1
8

)
(2)6 = (9)

(
1
8

)
(64) = 72

Problem 4. Simplify
x2y3+ xy2

xy

x2y3+ xy2

xy
= x2y3

xy
+ xy2

xy

= x2−1y3−1+ x1−1y2−1

= xy2+ y or y(xy + 1)

Problem 5. Simplify
(x2

√
y)(

√
x 3

√
y2)

(x5y3)
1
2

(x2
√

y)(
√

x 3
√

y2)

(x5y3)
1
2

= x2y
1
2 x

1
2 y

2
3

x
5
2 y

3
2

= x2+
1
2− 5

2 y
1
2+ 2

3− 3
2

= x0y− 1
3

= y− 1
3 or

1

y
1
3
or

1
3√y

Now try the following Practice Exercise

Practice Exercise 1 Basic algebraic
operations and laws of indices (Answers
on page 856)

1. Evaluate 2ab + 3bc − abc when a = 2,
b = −2 and c = 4

2. Find the value of 5pq 2r3 when p = 2
5 ,

q = −2 and r = −1
3. From 4x − 3y + 2z subtract x + 2y − 3z.
4. Multiply 2a − 5b + c by 3a + b

5. Simplify (x2y3z)(x3yz2) and evaluate when
x = 1

2 , y = 2 and z = 3

6. Evaluate (a
3
2 bc−3)(a

1
2 b− 1

2 c) when a=3,
b = 4 and c = 2

7. Simplify
a2b + a3b

a2b2

8. Simplify
(a3b

1
2 c− 1

2 )(ab)
1
3

(
√

a3
√

bc)

(b) Brackets, factorisation and precedence

Problem 6. Simplify a2− (2a − ab) − a(3b+ a)

a2− (2a − ab) − a(3b+ a)

= a2− 2a + ab− 3ab − a2

= −2a − 2ab or −2a(1 + b)
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Problem 7. Remove the brackets and simplify the
expression:

2a − [3{2(4a − b) − 5(a + 2b)} + 4a]

Removing the innermost brackets gives:

2a − [3{8a − 2b − 5a − 10b} + 4a]

Collecting together similar terms gives:

2a − [3{3a − 12b} + 4a]

Removing the ‘curly’ brackets gives:

2a − [9a − 36b + 4a]

Collecting together similar terms gives:

2a − [13a − 36b]

Removing the square brackets gives:

2a − 13a + 36b = −11a+36b or

36b − 11a

Problem 8. Factorise (a) xy − 3xz

(b) 4a2+ 16ab3 (c) 3a2b − 6ab2+ 15ab

(a) xy − 3xz = x(y − 3z)

(b) 4a2+ 16ab3 = 4a(a + 4b3)

(c) 3a2b − 6ab2+ 15ab = 3ab(a − 2b + 5)

Problem 9. Simplify 3c + 2c × 4c + c ÷ 5c − 8c

The order of precedence is division, multiplication,
addition, and subtraction (sometimes remembered
by BODMAS). Hence

3c + 2c × 4c + c ÷ 5c − 8c
= 3c + 2c × 4c +

( c

5c

)
− 8c

= 3c + 8c2+ 1
5

− 8c

= 8c2− 5c + 1
5
or c(8c − 5)+ 1

5

Problem 10. Simplify
(2a − 3)÷4a+5× 6−3a

(2a − 3)÷4a + 5× 6− 3a

= 2a − 3
4a

+ 5× 6− 3a

= 2a − 3
4a

+ 30− 3a

= 2a
4a

− 3
4a

+ 30− 3a

= 1
2

− 3
4a

+ 30− 3a = 30 1
2

− 3
4a

− 3a

Now try the following Practice Exercise

Practice Exercise 2 Brackets, factorisation
and precedence (Answers on page 856)

1. Simplify 2(p + 3q − r) − 4(r − q + 2p) + p

2. Expand and simplify (x + y)(x − 2y)

3. Remove the brackets and simplify:

24p − [2{3(5p − q) − 2(p + 2q)} + 3q]
4. Factorise 21a2b2− 28ab

5. Factorise 2xy2+ 6x2y + 8x3y
6. Simplify 2y + 4÷ 6y + 3× 4− 5y
7. Simplify 3÷ y + 2÷ y − 1
8. Simplify a2− 3ab × 2a ÷ 6b + ab

1.3 Revision of equations

(a) Simple equations

Problem 11. Solve 4− 3x = 2x − 11

Since 4− 3x = 2x − 11 then 4+ 11= 2x + 3x
i.e. 15= 5x from which, x= 15

5
= 3

Problem 12. Solve

4(2a − 3) − 2(a − 4) = 3(a − 3) − 1
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Removing the brackets gives:

8a − 12− 2a + 8= 3a − 9− 1
Rearranging gives:

8a − 2a − 3a= −9− 1+ 12− 8
i.e. 3a= −6
and a = −6

3
= −2

Problem 13. Solve
3

x − 2 = 4
3x + 4

By ‘cross-multiplying’: 3(3x + 4)= 4(x − 2)
Removing brackets gives: 9x + 12= 4x − 8
Rearranging gives: 9x − 4x = −8− 12
i.e. 5x = −20

and x = −20
5

= −4

Problem 14. Solve
(√

t + 3√
t

)

= 2

√
t

(√
t + 3√

t

)

= 2√t

i.e.
√

t + 3= 2√t

and 3= 2√t − √
t

i.e. 3= √
t

and 9= t

(c) Transposition of formulae

Problem 15. Transpose the formula v= u + f t

m
to make f the subject.

u+ f t

m
= v from which, f t

m
= v− u

and m

(
f t

m

)

= m(v− u)

i.e. f t = m(v− u)

and f = m

t
(v − u)

Problem 16. The impedance of an a.c. circuit is
given by Z = √

R2+ X2. Make the reactanceX the
subject.

√
R2 + X2 = Z and squaring both sides gives

R2 + X2 = Z2, from which,

X2 = Z2− R2 and reactanceX =
√

Z2−R2

Problem 17. Given that
D

d
=

√(
f + p

f − p

)

express p in terms ofD, d and f.

Rearranging gives:

√(
f + p

f − p

)

= D

d

Squaring both sides gives:
f + p

f − p
= D2

d2

‘Cross-multiplying’ gives:

d2(f + p)= D2(f − p)

Removing brackets gives:

d2f + d2p= D2f − D2p

Rearranging gives: d 2p + D2p= D2f − d2f

Factorising gives: p(d2+ D2)= f (D2 − d2)

and p= f (D2−d2)
(d2+D2)

Now try the following Practice Exercise

Practice Exercise 3 Simple equations
and transposition of formulae (Answers
on page 856)

In problems 1 to 4 solve the equations

1. 3x − 2− 5x = 2x − 4
2. 8+ 4(x − 1) − 5(x − 3) = 2(5− 2x)

3.
1

3a − 2 + 1
5a + 3 = 0

4.
3
√

t

1− √
t

= −6

5. Transpose y = 3(F − f )

L
for f
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6. Make l the subject of t = 2π
√

l

g

7. Transposem = μL

L+ rCR
for L

8. Make r the subject of the formula
x

y
= 1+ r2

1− r2

(d) Simultaneous equations

Problem 18. Solve the simultaneous equations:
7x − 2y = 26 (1)

6x + 5y = 29 (2)

5×equation (1) gives:
35x − 10y = 130 (3)

2×equation (2) gives:
12x + 10y = 58 (4)

Equation (3)+equation (4) gives:
47x + 0 = 188

from which, x = 188
47

= 4
Substituting x = 4 in equation (1) gives:

28− 2y = 26
from which, 28− 26= 2y and y =1

Problem 19. Solve
x

8
+ 5
2

= y (1)

11+ y

3
= 3x (2)

8×equation (1) gives: x + 20= 8y (3)

3×equation (2) gives: 33+ y = 9x (4)

i.e. x − 8y = −20 (5)
and 9x − y = 33 (6)

8×equation (6) gives: 72x − 8y = 264 (7)

Equation (7)− equation (5) gives:
71x = 284

from which, x= 284
71

= 4

Substituting x = 4 in equation (5) gives:
4− 8y = −20

from which, 4+ 20 = 8y and y = 3

(e) Quadratic equations

Problem 20. Solve the following equations by
factorisation:
(a) 3x2− 11x − 4= 0
(b) 4x2+ 8x + 3= 0

(a) The factors of 3x 2 are 3x and x and these are placed
in brackets thus:

(3x )(x )

The factors of −4 are +1 and −4 or −1 and
+4, or −2 and +2. Remembering that the prod-
uct of the two inner terms added to the product
of the two outer terms must equal −11x, the only
combination to give this is +1 and −4, i.e.,

3x2− 11x − 4= (3x + 1)(x − 4)
Thus (3x + 1)(x − 4)= 0 hence

either (3x + 1)= 0 i.e. x = − 1
3

or (x − 4)= 0 i.e. x = 4

(b) 4x2+ 8x + 3= (2x + 3)(2x + 1)
Thus (2x + 3)(2x + 1)= 0 hence

either (2x + 3)= 0 i.e. x =− 3
2

or (2x + 1)= 0 i.e. x = − 1
2

Problem 21. The roots of a quadratic equation
are 13 and−2. Determine the equation in x.

If
1
3
and−2 are the roots of a quadratic equation then,

(x − 1
3
)(x + 2)= 0

i.e. x2+ 2x − 1
3
x − 2

3
= 0

i.e. x2+ 5
3
x − 2

3
= 0

or 3x2 + 5x−2= 0

Problem 22. Solve 4x2+ 7x + 2= 0 giving the
answer correct to 2 decimal places.
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From the quadratic formula if ax 2+ bx + c = 0 then,

x = −b ± √
b2− 4ac

2a

Hence if 4x2+ 7x + 2= 0

then x = −7±
√
72− 4(4)(2)
2(4)

= −7± √
17

8

= −7± 4.123
8

= −7+ 4.123
8

or
−7− 4.123

8
i.e. x= −0.36 or −1.39

Now try the following Practice Exercise

Practice Exercise 4 Simultaneous and
quadratic equations (Answers on page 856)

In problems 1 to 3, solve the simultaneous equa-
tions

1. 8x − 3y = 51
3x + 4y = 14

2. 5a = 1− 3b
2b + a + 4= 0

3.
x

5
+ 2y
3

= 49
15

3x
7

− y

2
+ 5
7

= 0
4. Solve the following quadratic equations by

factorisation:

(a) x2+ 4x − 32= 0
(b) 8x2+ 2x − 15= 0

5. Determine the quadratic equation in x whose
roots are 2 and −5

6. Solve the following quadratic equations, cor-
rect to 3 decimal places:

(a) 2x2+ 5x − 4= 0
(b) 4t2 − 11t + 3= 0

1.4 Polynomial division

Before looking at long division in algebra let us revise
long division with numbers (we may have forgotten,
since calculators do the job for us!).

For example,
208
16

is achieved as follows:

13——–
16

)
208
16

48
48
—· ·
—

(1) 16 divided into 2 won’t go

(2) 16 divided into 20 goes 1

(3) Put 1 above the zero

(4) Multiply 16 by 1 giving 16

(5) Subtract 16 from 20 giving 4

(6) Bring down the 8

(7) 16 divided into 48 goes 3 times

(8) Put the 3 above the 8

(9) 3× 16= 48
(10) 48− 48= 0

Hence
208
16

= 13 exactly

Similarly,
172
15

is laid out as follows:

11——–
15

)
172
15

22
15
—
7
—

Hence
172
15

= 11 remainder 7 or 11+ 7
15

= 11 7
15

Below are some examples of division in algebra, which
in some respects is similar to long division with num-
bers.
(Note that a polynomial is an expression of the form

f (x) = a + bx + cx2+ dx3+ ·· ·
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and polynomial division is sometimes required when
resolving into partial fractions – see Chapter 2.)

Problem 23. Divide 2x2+ x − 3 by x − 1

2x2+ x − 3 is called the dividend and x − 1 the divi-
sor. The usual layout is shown below with the dividend
and divisor both arranged in descending powers of the
symbols.

2x + 3——————–
x − 1

)
2x2+ x − 3
2x2− 2x

3x − 3
3x − 3
———· ·
———

Dividing the first term of the dividend by the first term

of the divisor, i.e.
2x2

x
gives 2x, which is put above

the first term of the dividend as shown. The divisor
is then multiplied by 2x, i.e. 2x(x−1)= 2x 2−2x,
which is placed under the dividend as shown. Subtract-
ing gives 3x −3. The process is then repeated, i.e. the
first term of the divisor, x, is divided into 3x, giving
+3, which is placed above the dividend as shown. Then
3(x −1)=3x−3, which is placed under the 3x −3. The
remainder, on subtraction, is zero, which completes the
process.

Thus (2x2+x −3) ÷ (x − 1)= (2x + 3)

[A check can be made on this answer by multiplying
(2x + 3) by (x − 1) which equals 2x 2+ x − 3.]

Problem 24. Divide 3x3+ x2+ 3x + 5 by x + 1

(1) (4) (7)
3x2− 2x + 5—————————

x + 1
)
3x3+ x2+ 3x + 5
3x3+ 3x2

−2x2+ 3x + 5
−2x2− 2x
————–

5x + 5
5x + 5
———

· ·
———

(1) x into 3x3 goes 3x2. Put 3x2 above 3x3

(2) 3x2(x + 1) = 3x3+ 3x2
(3) Subtract

(4) x into −2x2 goes −2x. Put −2x above the
dividend

(5) −2x(x + 1) = −2x2− 2x
(6) Subtract

(7) x into 5x goes 5. Put 5 above the dividend

(8) 5(x + 1) = 5x + 5
(9) Subtract

Thus 3x3+ x2+ 3x + 5
x + 1 = 3x2 − 2x + 5

Problem 25. Simplify
x3+ y3

x + y

(1) (4) (7)
x2− xy + y2—————————–

x + y

)
x3+ 0 + 0 + y3

x3+ x2y

−x2y + y3

−x2y − xy2
———————

xy2+ y3

xy2+ y3
———–· ·
———–

(1) x into x3 goes x2. Put x2 above x3 of dividend

(2) x2(x + y) = x3+ x2y

(3) Subtract

(4) x into −x2y goes −xy. Put −xy above dividend

(5) −xy(x + y) = −x2y − xy2

(6) Subtract

(7) x into xy2 goes y2. Put y2 above dividend

(8) y2(x + y) = xy2+ y3

(9) Subtract

Thus

x3+ y3

x + y
= x2 − xy + y2

Download more at Learnclax.com



Se
ct

io
n

A
10 Higher Engineering Mathematics

The zeros shown in the dividend are not normally shown,
but are included to clarify the subtraction process and
to keep similar terms in their respective columns.

Problem 26. Divide (x2+ 3x − 2) by (x − 2)

x + 5——————–
x − 2

)
x2+ 3x − 2
x2− 2x

5x − 2
5x − 10
———

8
———

Hence

x2+ 3x − 2
x − 2 = x + 5 + 8

x − 2

Problem 27. Divide 4a3− 6a2b + 5b3 by
2a − b

2a2− 2ab − b2———————————
2a − b

)
4a3− 6a2b + 5b3
4a3− 2a2b

−4a2b + 5b3
−4a2b + 2ab2
————−2ab2 + 5b3

−2ab2 + b3
—————–

4b3
—————–

Thus

4a3− 6a2b + 5b3
2a − b

=2a2 − 2ab − b2 + 4b3

2a − b

Now try the following Practice Exercise

Practice Exercise 5 Polynomial division
(Answers on page 856)

1. Divide (2x2+ xy − y2) by (x + y)

2. Divide (3x2+ 5x − 2) by (x + 2)
3. Determine (10x2+ 11x − 6) ÷ (2x + 3)

4. Find
14x2− 19x − 3

2x − 3

5. Divide (x3+ 3x2y + 3xy2+ y3) by (x + y)

6. Find (5x2− x + 4) ÷ (x − 1)
7. Divide (3x3+ 2x2− 5x + 4) by (x + 2)
8. Determine (5x4+ 3x3− 2x + 1)/(x − 3)

1.5 The factor theorem

There is a simple relationship between the factors of
a quadratic expression and the roots of the equation
obtained by equating the expression to zero.
For example, consider the quadratic equation
x2+ 2x − 8= 0
To solve this we may factorise the quadratic expression
x2+ 2x − 8 giving (x − 2)(x + 4)
Hence (x − 2)(x + 4) = 0
Then, if the product of two numbers is zero, one or both
of those numbers must equal zero. Therefore,
either (x − 2) = 0, from which, x = 2
or (x + 4) = 0, from which, x = −4
It is clear, then, that a factor of (x − 2) indicates a root
of +2, while a factor of (x + 4) indicates a root of−4
In general, we can therefore say that:

a factor of (x − a) corresponds to a
root of x = a

In practice, we always deduce the roots of a simple
quadratic equation from the factors of the quadratic
expression, as in the above example.However,we could
reverse this process. If, by trial and error, we could deter-
mine that x = 2 is a root of the equation x 2+ 2x − 8= 0
we could deduce at once that (x − 2) is a factor of the
expression x2+ 2x − 8. We wouldn’t normally solve
quadratic equations this way – but suppose we have
to factorise a cubic expression (i.e. one in which the
highest power of the variable is 3). A cubic equation
might have three simple linear factors and the difficulty
of discovering all these factors by trial and error would
be considerable. It is to deal with this kind of case that
we use the factor theorem. This is just a generalised
version of what we established above for the quadratic
expression. The factor theorem provides a method of
factorising any polynomial, f (x), which has simple
factors.
A statement of the factor theorem says:
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‘if x = a is a root of the equation
f (x) = 0, then (x − a) is a factor of f (x)’

The following worked problems show the use of the
factor theorem.

Problem 28. Factorise x3− 7x − 6 and use it to
solve the cubic equation x 3− 7x − 6= 0.

Let f (x) = x3− 7x − 6
If x = 1, then f (1) = 13− 7(1) − 6= −12
If x = 2, then f (2) = 23− 7(2) − 6= −12
If x = 3, then f (3) = 33− 7(3) − 6= 0
If f (3) = 0, then (x − 3) is a factor – from the factor
theorem.
We have a choice now. We can divide x 3−7x−6 by
(x − 3) or we could continue our ‘trial and error’ by
substituting further values forx in the given expression –
and hope to arrive at f (x)=0
Let us do both ways. Firstly, dividing out gives:

x2+ 3x + 2—————————
x − 3

)
x3− 0 − 7x − 6
x3− 3x2

3x2− 7x − 6
3x2− 9x
————

2x − 6
2x − 6
———· ·
———

Hence
x3− 7x − 6

x − 3 = x2+ 3x + 2

i.e. x3− 7x − 6= (x − 3)(x2+ 3x + 2)
x2+ 3x + 2 factorises ‘on sight’ as (x + 1)(x + 2).
Therefore

x3 − 7x − 6 = (x − 3)(x + 1)(x + 2)
A second method is to continue to substitute values of
x into f (x).
Our expression for f (3) was 33− 7(3) − 6. We can
see that if we continue with positive values of x the
first term will predominate such that f (x) will not
be zero.
Therefore let us try some negative values for x.
Therefore f (−1) = (−1)3− 7(−1) − 6= 0; hence
(x + 1) is a factor (as shown above). Also
f (−2) = (−2)3− 7(−2) − 6= 0; hence (x + 2) is
a factor (also as shown above).

To solve x3− 7x − 6= 0, we substitute the factors, i.e.
(x − 3)(x + 1)(x + 2) = 0

from which, x = 3, x = −1 and x = −2
Note that the values of x, i.e. 3, −1 and −2, are
all factors of the constant term, i.e. 6. This can
give us a clue as to what values of x we should
consider.

Problem 29. Solve the cubic equation
x3−2x2− 5x + 6=0 by using the factor theorem.

Let f (x) = x3− 2x2− 5x + 6 and let us substitute
simple values of x like 1, 2, 3, −1, −2, and so on.

f (1) = 13− 2(1)2− 5(1) + 6= 0,
hence (x − 1) is a factor

f (2) = 23− 2(2)2− 5(2) + 6 �= 0
f (3) = 33− 2(3)2− 5(3) + 6= 0,

hence (x − 3) is a factor
f (−1) = (−1)3− 2(−1)2− 5(−1) + 6 �= 0
f (−2) = (−2)3− 2(−2)2− 5(−2) + 6= 0,

hence (x + 2) is a factor
Hence x3− 2x2− 5x + 6= (x − 1)(x − 3)(x + 2)
Therefore if x3− 2x2− 5x + 6= 0
then (x − 1)(x − 3)(x + 2) = 0
from which, x = 1, x = 3 and x = −2
Alternatively, having obtained one factor, i.e.
(x − 1) we could divide this into (x 3− 2x2− 5x + 6)
as follows:

x2− x − 6————————–
x − 1

)
x3− 2x2 − 5x + 6
x3− x2

− x2 − 5x + 6
− x2 + x
————–− 6x + 6

− 6x + 6
———–· ·
———–

Hence x3 − 2x2− 5x + 6
= (x − 1)(x2− x − 6)
= (x − 1)(x − 3)(x + 2)
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Summarising, the factor theorem provides us with a
method of factorising simple expressions, and an alter-
native, in certain circumstances, to polynomial division.

Now try the following Practice Exercise

Practice Exercise 6 The factor theorem
(Answers on page 856)

Use the factor theorem to factorise the expressions
given in problems 1 to 4.

1. x2+ 2x − 3
2. x3+ x2− 4x − 4
3. 2x3+ 5x2− 4x − 7
4. 2x3− x2− 16x + 15
5. Use the factor theorem to factorise

x3+ 4x2+ x − 6 and hence solve the cubic
equation x3+ 4x2+ x − 6= 0

6. Solve the equation x 3− 2x2− x + 2= 0

1.6 The remainder theorem

Dividing a general quadratic expression
(ax2+ bx + c) by (x − p), where p is any whole
number, by long division (see Section 1.4) gives:

ax + (b + ap)————————————–
x − p

)
ax2+ bx + c

ax2− apx

(b + ap)x + c

(b + ap)x − (b + ap)p
—————————–

c + (b + ap)p
—————————–

The remainder, c + (b + ap)p = c + bp + ap2 or
ap2 + bp + c. This is, in fact, what the remainder
theorem states, i.e.

‘if (ax2 + bx + c) is divided by (x − p),
the remainder will be ap2 + bp + c’

If, in the dividend (ax 2+ bx + c), we substitute p for x
we get the remainder ap2+ bp + c

For example,when (3x 2− 4x + 5) is dividedby (x − 2)
the remainder is ap2+ bp + c (where a = 3, b = −4,
c = 5 and p = 2),

i.e. the remainder is
3(2)2+ (−4)(2) + 5= 12− 8+ 5= 9

Wecan check this by dividing (3x 2− 4x + 5) by (x − 2)
by long division:

3x + 2——————–
x − 2

)
3x2− 4x + 5
3x2− 6x

2x + 5
2x − 4
———

9
———

Similarly, when (4x2− 7x + 9) is divided by (x+3),
the remainder is ap2+ bp + c (where a = 4, b = −7,
c = 9 and p = −3), i.e. the remainder is
4(−3)2+ (−7)(−3) + 9= 36+ 21+ 9= 66
Also, when (x2+ 3x − 2) is divided by (x − 1), the
remainder is 1(1)2+ 3(1) − 2= 2
It is not particularly useful, on its own, to know the
remainder of an algebraic division. However, if the
remainder should be zero then (x − p) is a factor. This
is very useful therefore when factorising expressions.
For example, when (2x 2+ x − 3) is divided by (x − 1),
the remainder is 2(1)2+ 1(1) − 3= 0,whichmeans that
(x − 1) is a factor of (2x2+ x − 3).
In this case the other factor is (2x + 3), i.e.

(2x2+ x − 3) = (x − 1)(2x − 3)

The remainder theoremmay also be stated for a cubic
equation as:

‘if (ax3 + bx2 + cx + d) is divided by
(x − p), the remainder will be

ap3 + bp2 + cp + d’

As before, the remainder may be obtained by substitut-
ing p for x in the dividend.
For example, when (3x 3+ 2x2− x + 4) is divided
by (x − 1), the remainder is ap3+ bp2+ cp + d

(where a = 3, b = 2, c = −1, d = 4 and p = 1),
i.e. the remainder is 3(1)3+ 2(1)2+ (−1)(1) + 4=
3+ 2− 1+ 4= 8
Similarly, when (x3− 7x − 6) is divided by (x − 3),
the remainder is 1(3)3+ 0(3)2− 7(3) − 6= 0, which
means that (x − 3) is a factor of (x3− 7x − 6)
Here are some more examples on the remainder
theorem.

Problem 30. Without dividing out, find the
remainder when 2x 2−3x + 4 is divided by (x −2)
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By the remainder theorem, the remainder is given by
ap2 + bp + c, where a = 2, b = −3, c = 4 and p = 2.
Hence the remainder is:

2(2)2+ (−3)(2) + 4= 8− 6+ 4= 6

Problem 31. Use the remainder theorem to
determine the remainder when
(3x3−2x2+ x − 5) is divided by (x + 2)

By the remainder theorem, the remainder is given
by ap3+ bp2+ cp + d , where a = 3, b = −2, c = 1,
d = −5 and p = −2
Hence the remainder is:

3(−2)3+ (−2)(−2)2+ (1)(−2) + (−5)
= −24− 8− 2− 5
= −39

Problem 32. Determine the remainder when
(x3− 2x2− 5x + 6) is divided by (a) (x − 1) and
(b) (x + 2). Hence factorise the cubic expression.

(a) When (x3− 2x2− 5x + 6) is divided by (x − 1),
the remainder is given by ap3+ bp2+ cp + d ,
where a = 1, b = −2, c = −5, d = 6 and p = 1,
i.e. the remainder= (1)(1)3+ (−2)(1)2

+ (−5)(1) + 6
= 1− 2− 5+ 6= 0

Hence (x − 1) is a factor of (x3− 2x2− 5x + 6).
(b) When (x3− 2x2− 5x + 6) is divided by (x + 2),

the remainder is given by

(1)(−2)3+ (−2)(−2)2+ (−5)(−2) + 6
= −8− 8+ 10+ 6= 0

Hence (x + 2) is also a factor of (x3− 2x2−
5x + 6). Therefore (x − 1)(x + 2)(x ) = x 3−
2x2− 5x + 6.Todetermine the third factor (shown
blank) we could

(i) divide (x3−2x2−5x +6) by
(x − 1)(x + 2)

or (ii) use the factor theorem where f (x) =
x3− 2x2− 5x+6 and hoping to choose
a value of x which makes f (x) = 0

or (iii) use the remainder theorem, again hoping
to choose a factor (x − p) which makes
the remainder zero.

(i) Dividing (x3− 2x2− 5x + 6) by
(x2+ x − 2) gives:

x − 3————————–
x2+ x − 2

)
x3− 2x2− 5x + 6
x3+ x2 − 2x
——————−3x2− 3x + 6

−3x2− 3x + 6
——————–· · ·
——————–

Thus (x3 − 2x2 − 5x + 6)
= (x − 1)(x + 2)(x − 3)

(ii) Using the factor theorem, we let

f (x) = x3− 2x2− 5x + 6

Then f (3) = 33− 2(3)2− 5(3) + 6
= 27− 18− 15+ 6= 0

Hence (x − 3) is a factor.
(iii) Using the remainder theorem, when

(x3− 2x2− 5x + 6) is divided by
(x − 3), the remainder is given by
ap3+ bp2+ cp + d , where a = 1,
b = −2, c = −5, d = 6 and p = 3
Hence the remainder is:

1(3)3+ (−2)(3)2+ (−5)(3) + 6
= 27− 18− 15+ 6= 0

Hence (x − 3) is a factor.
Thus (x3 − 2x2 − 5x + 6)

= (x − 1)(x + 2)(x − 3)

Now try the following Practice Exercise

Practice Exercise 7 The remainder
theorem (Answers on page 856)

1. Find the remainder when 3x 2− 4x + 2 is
divided by

(a) (x − 2) (b) (x + 1)
2. Determine the remainder when

x3− 6x2+ x − 5 is divided by
(a) (x + 2) (b) (x − 3)
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3. Use the remainder theorem to find the factors
of x3− 6x2+ 11x − 6

4. Determine the factors of x 3+ 7x2+ 14x + 8
and hence solve the cubic equation
x3+7x2+ 14x + 8= 0

5. Determine the value of ‘a’ if (x + 2) is a
factor of (x3− ax2+ 7x + 10)

6. Using the remainder theorem, solve the
equation 2x3− x2− 7x + 6= 0

For more help on basic algebra, simple equations, transposition of formulae,
simultaneous equations and quadratic equations, go to the website:

www.routledge.com/cw/bird

For fully worked solutions to each of the problems in Practice
Exercises 1 to 17 in this chapter, go to website:

www.routledge.com/cw/bird
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Chapter 2

Partial fractions

Why it is important to understand: Partial fractions
The algebraic technique of resolving a complicated fraction into partial fractions is often needed by
electrical and mechanical engineers for not only determining certain integrals in calculus, but for deter-
mining inverse Laplace transforms, and for analysing linear differential equations with resonant circuits
and feedback control systems.

At the end of this chapter, you should be able to:

• understand the term ‘partial fraction’
• appreciate the conditions needed to resolve a fraction into partial fractions
• resolve into partial fractions a fraction containing linear factors in the denominator
• resolve into partial fractions a fraction containing repeated linear factors in the denominator
• resolve into partial fractions a fraction containing quadratic factors in the denominator

2.1 Introduction to partial fractions

By algebraic addition,

1
x − 2 + 3

x + 1 = (x + 1) + 3(x − 2)
(x − 2)(x + 1)

= 4x − 5
x2− x − 2

The reverse process of moving from
4x − 5

x2− x − 2
to

1
x − 2 + 3

x + 1 is called resolving into partial
fractions.
In order to resolve an algebraic expression into partial
fractions:

(i) the denominator must factorise (in the above
example, x2−x −2 factorises as (x −2) (x+1)),
and

(ii) the numeratormust be at least one degree less than
the denominator (in the above example (4x−5) is
of degree 1 since the highest powered x term is x 1
and (x2−x−2) is of degree 2).

When the degree of the numerator is equal to or higher
than the degree of the denominator, the numerator must
be divided by the denominator until the remainder is of
less degree than the denominator (seeProblems 3 and 4).
There are basically three types of partial fraction and the
form of partial fraction used is summarised in Table 2.1,
where f (x) is assumed to be of less degree than the
relevant denominator and A, B and C are constants to
be determined.
(In the latter type inTable 2.1,ax 2+bx+c is a quadratic
expression which does not factorise without containing
surds or imaginary terms.)
Resolving an algebraic expression into partial fractions
is used as a preliminary to integrating certain functions
(see Chapter 44) and in determining inverse Laplace
transforms (see Chapter 69).

Higher Engineering Mathematics. 978-1-138-67357-1, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.
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Table 2.1

Type Denominator containing Expression Form of partial fraction

1 Linear factors
(see Problems 1 to 4)

f (x)

(x + a)(x − b)(x + c)

A

(x + a)
+ B

(x − b)
+ C

(x + c)

2 Repeated linear factors
(see Problems 5 to 7)

f (x)

(x + a)3
A

(x + a)
+ B

(x + a)2
+ C

(x + a)3

3 Quadratic factors
(see Problems 8 and 9)

f (x)

(ax2+ bx + c)(x + d)

Ax + B

(ax2+ bx + c)
+ C

(x + d)

2.2 Worked problems on partial
fractions with linear factors

Problem 1. Resolve
11− 3x

x2+ 2x − 3 into partial
fractions.

The denominator factorises as (x−1) (x+3) and the
numerator is of less degree than the denominator. Thus
11− 3x

x2+ 2x − 3 may be resolved into partial fractions.

Let
11− 3x

x2+ 2x − 3 ≡ 11− 3x
(x − 1)(x + 3)

≡ A

(x − 1) + B

(x + 3)
where A and B are constants to be determined,

i.e.
11− 3x

(x − 1)(x + 3) ≡ A(x + 3) + B(x − 1)
(x − 1)(x + 3)

by algebraic addition.
Since the denominators are the same on each side of the
identity then the numerators are equal to each other.

Thus, 11−3x≡A(x +3)+B(x −1)
To determine constantsA and B, values of x are chosen
to make the term in A or B equal to zero.

When x =1, then
11−3(1) ≡A(1+3)+B(0)

i.e. 8 =4A
i.e. A =2
When x = −3, then

11−3(−3) ≡A(0)+B(−3−1)
i.e. 20=−4B
i.e. B =−5

Thus
11− 3x
x2+ 2x− 3 ≡ 2

(x − 1) + −5
(x + 3)

≡ 2
(x− 1) − 5

(x+ 3)
[

Check:
2

(x − 1) − 5
(x + 3) = 2(x + 3) − 5(x − 1)

(x − 1)(x + 3)

= 11− 3x
x2+ 2x − 3

]

Problem 2. Convert
2x2− 9x − 35

(x + 1)(x − 2)(x + 3) into
the sum of three partial fractions.

Let
2x2− 9x − 35

(x + 1)(x − 2)(x + 3)

≡ A

(x + 1) + B

(x − 2) + C

(x + 3)

≡

(
A(x − 2)(x + 3) + B(x + 1)(x + 3)

+C(x + 1)(x − 2)
)

(x + 1)(x − 2)(x + 3)
by algebraic addition.
Equating the numerators gives:
2x2− 9x − 35≡ A(x − 2)(x + 3)

+B(x + 1)(x + 3) + C(x + 1)(x − 2)

Let x= − 1. Then
2(−1)2−9(−1)−35≡A(−3)(2)

+B(0)(2)+C(0)(−3)
i.e. −24=−6A

i.e. A= −24
−6 =4
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Let x=2. Then
2(2)2−9(2)−35≡A(0)(5)+B(3)(5)+C(3)(0)

i.e. −45=15B

i.e. B = −45
15

=−3

Let x= − 3. Then
2(−3)2−9(−3)−35≡A(−5)(0)+B(−2)(0)

+C(−2)(−5)
i.e. 10 =10C
i.e. C =1

Thus
2x2−9x−35

(x +1)(x−2)(x +3)

≡ 4
(x + 1)

− 3
(x− 2) + 1

(x + 3)

Problem 3. Resolve
x2+ 1

x2− 3x + 2 into partial
fractions.

The denominator is of the same degree as the numerator.
Thus dividing out gives:

1
x2−3x +2

)

x2 + 1
x2−3x +2
—————

3x − 1
———

For more on polynomial division, see Section 1.4,
page 8.

Hence
x2+ 1

x2− 3x + 2≡1+ 3x − 1
x2− 3x + 2

≡1+ 3x − 1
(x − 1)(x − 2)

Let
3x − 1

(x − 1)(x − 2) ≡ A

(x − 1) + B

(x − 2)

≡ A(x − 2) + B(x − 1)
(x − 1)(x − 2)

Equating numerators gives:
3x − 1≡ A(x − 2) + B(x − 1)

Let x = 1. Then 2= −A

i.e. A= −2
Let x = 2. Then 5= B

Hence
3x−1

(x −1)(x−2) ≡ −2
(x−1) + 5

(x −2)

Thus
x2+ 1

x2− 3x+ 2 ≡1− 2
(x−1) + 5

(x−2)

Problem 4. Express
x3− 2x2− 4x − 4

x2+ x − 2 in partial
fractions.

The numerator is of higher degree than the denominator.
Thus dividing out gives:

x − 3
x2+ x − 2

)
x3− 2x2− 4x − 4
x3+ x2− 2x
——————− 3x2− 2x − 4

− 3x2− 3x + 6
———————

x − 10

Thus
x3− 2x2−4x − 4

x2+x −2 ≡ x−3+ x −10
x2+x −2

≡ x−3+ x −10
(x +2)(x−1)

Let
x−10

(x +2)(x−1) ≡ A

(x+2) + B

(x −1)

≡ A(x−1)+B(x +2)
(x+2)(x −1)

Equating the numerators gives:

x −10 ≡ A(x−1)+B(x +2)
Let x=−2. Then −12= −3A
i.e. A= 4
Let x=1. Then −9= 3B
i.e. B= −3

Hence
x −10

(x +2)(x−1) ≡ 4
(x +2) − 3

(x−1)

Thus
x3−2x2−4x−4
x2+x−2

≡x−3+ 4
(x+2) − 3

(x−1)
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Now try the following Practice Exercise

Practice Exercise 8 Partial fractions with
linear factors (Answers on page 856)

Resolve the following into partial fractions.

1.
12

x2− 9

2.
4(x − 4)

x2− 2x − 3

3.
x2− 3x + 6

x(x − 2)(x − 1)

4.
3(2x2− 8x − 1)

(x + 4)(x + 1)(2x − 1)

5.
x2+ 9x + 8
x2+ x − 6

6.
x2− x − 14
x2− 2x − 3

7.
3x3− 2x2− 16x + 20

(x − 2)(x + 2)

2.3 Worked problems on partial
fractions with repeated linear
factors

Problem 5. Resolve
2x + 3

(x − 2)2 into partial
fractions.

The denominator contains a repeated linear factor,
(x − 2)2.

Let
2x + 3

(x − 2)2 ≡ A

(x − 2) + B

(x − 2)2

≡ A(x − 2) + B

(x − 2)2

Equating the numerators gives:

2x + 3≡A(x − 2) + B

Let x = 2. Then 7 =A(0) + B

i.e. B =7
2x + 3≡ A(x − 2) + B ≡ Ax − 2A + B

Since an identity is true for all values of the
unknown, the coefficients of similar terms may be
equated.
Hence, equating the coefficients of x gives: 2= A
[Also, as a check, equating the constant terms gives:

3= −2A + B

When A=2 and B =7,

RHS = −2(2) + 7= 3= LHS]

Hence
2x+ 3

(x− 2)2 ≡ 2
(x− 2) + 7

(x− 2)2

Problem 6. Express
5x2− 2x − 19
(x + 3)(x − 1)2 as the sum

of three partial fractions.

The denominator is a combination of a linear factor and
a repeated linear factor.

Let
5x2− 2x − 19
(x + 3)(x − 1)2

≡ A

(x + 3) + B

(x − 1) + C

(x − 1)2

≡ A(x − 1)2+ B(x + 3)(x − 1) + C(x + 3)
(x + 3)(x − 1)2

by algebraic addition.
Equating the numerators gives:

5x2− 2x − 19≡ A(x − 1)2+ B(x + 3)(x − 1)
+ C(x + 3) (1)
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Let x=−3. Then
5(−3)2− 2(−3) − 19≡ A(−4)2+B(0)(−4)+C(0)
i.e. 32= 16A
i.e. A = 2

Let x=1. Then
5(1)2− 2(1) − 19≡ A(0)2+ B(4)(0) + C(4)

i.e. −16= 4C
i.e. C = −4
Without expanding the RHS of equation (1) it can
be seen that equating the coefficients of x 2 gives:
5=A+B, and since A=2, B=3
[Check: Identity (1) may be expressed as:

5x2− 2x − 19≡A(x2− 2x + 1)
+B(x2 + 2x − 3) + C(x + 3)

i.e. 5x2− 2x − 19≡Ax2− 2Ax + A + Bx2+ 2Bx

−3B + Cx + 3C
Equating the x term coefficients gives:

−2≡ −2A + 2B + C

When A=2, B =3 and C=−4 then

−2A + 2B + C = −2(2) + 2(3) − 4
= −2= LHS

Equating the constant term gives:

−19≡ A − 3B + 3C

RHS= 2− 3(3) + 3(−4) = 2− 9− 12
= −19= LHS]

Hence
5x2− 2x− 19
(x+ 3)(x− 1)2

≡ 2
(x+ 3) + 3

(x− 1) − 4
(x− 1)2

Problem 7. Resolve
3x2+ 16x + 15

(x + 3)3 into partial
fractions.

Let
3x2+ 16x + 15

(x + 3)3

≡ A

(x + 3) + B

(x + 3)2 + C

(x + 3)3

≡ A(x + 3)2+ B(x + 3) + C

(x + 3)3

Equating the numerators gives:

3x2+ 16x + 15≡ A(x + 3)2+ B(x + 3) + C (1)

Let x=−3. Then
3(−3)2+ 16(−3) + 15≡A(0)2+ B(0) + C

i.e. −6=C
Identity (1) may be expanded as:

3x2+ 16x + 15≡ A(x2+ 6x + 9) + B(x + 3) + C

i.e. 3x2+ 16x + 15≡ Ax2+ 6Ax + 9A
+Bx + 3B + C

Equating the coefficients of x 2 terms gives: 3= A
Equating the coefficients of x terms gives:

16= 6A + B

Since A = 3,B= −2

[Check: equating the constant terms gives:

15= 9A + 3B + C

When A=3, B =−2 and C=−6,

9A + 3B + C = 9(3) + 3(−2) + (−6)
= 27− 6− 6= 15= LHS]

Thus
3x2+ 16x+ 15

(x+ 3)3

≡ 3
(x+ 3) − 2

(x+ 3)2 − 6
(x+ 3)3
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Now try the following Practice Exercise

Practice Exercise 9 Partial fractions with
repeated linear factors (Answers on page
857)

1.
4x − 3

(x + 1)2

2.
x2+ 7x + 3
x2(x + 3)

3.
5x2− 30x + 44

(x − 2)3

4.
18+ 21x − x2

(x − 5)(x + 2)2

2.4 Worked problems on partial
fractions with quadratic factors

Problem 8. Express
7x2+ 5x + 13
(x2+ 2)(x + 1) in partial

fractions.

The denominator is a combination of a quadratic factor,
(x2+2), which does not factorise without introduc-
ing imaginary surd terms, and a linear factor, (x+1).
Let,

7x2+ 5x + 13
(x2+ 2)(x + 1) ≡ Ax + B

(x2+ 2) + C

(x + 1)

≡ (Ax + B)(x + 1) + C(x2+ 2)
(x2+ 2)(x + 1)

Equating numerators gives:

7x2+ 5x + 13≡ (Ax + B)(x + 1) + C(x2+ 2) (1)

Let x=−1. Then
7(−1)2+ 5(−1) + 13≡(Ax + B)(0) + C(1+ 2)
i.e. 15= 3C
i.e. C= 5
Identity (1) may be expanded as:

7x2+ 5x + 13≡ Ax2+ Ax + Bx + B + Cx2+ 2C

Equating the coefficients of x 2 terms gives:

7= A + C,and since C = 5,A= 2
Equating the coefficients of x terms gives:

5= A + B,and since A = 2,B= 3
[Check: equating the constant terms gives:

13= B + 2C
When B =3 and C=5,

B + 2C = 3+ 10= 13= LHS]

Hence
7x2+ 5x+ 13
(x2+ 2)(x+ 1) ≡ 2x+ 3

( x2+ 2) + 5
(x+ 1)

Problem 9. Resolve
3+ 6x + 4x2− 2x3

x2(x2+ 3) into

partial fractions.

Terms such as x2 may be treated as (x+0)2, i.e. they
are repeated linear factors.

Let
3+ 6x + 4x2− 2x3

x2(x2+ 3) ≡ A

x
+ B

x2
+ Cx + D

(x2+ 3)

≡ Ax(x2+ 3) + B(x2+ 3) + (Cx + D)x2

x2(x2+ 3)
Equating the numerators gives:

3+ 6x + 4x2− 2x3 ≡ Ax(x2+ 3) + B(x2+ 3)
+ (Cx + D)x2

≡ Ax3+ 3Ax + Bx2+ 3B
+ Cx3+ Dx2

Let x=0. Then 3=3B
i.e. B= 1
Equating the coefficients of x 3 terms gives:

−2= A + C (1)

Equating the coefficients of x 2 terms gives:

4= B + D

Since B = 1, D= 3
Equating the coefficients of x terms gives:

6= 3A
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i.e. A= 2
From equation (1), since A=2, C = −4

Hence
3+ 6 x+ 4x2− 2 x3

x2(x2+ 3) ≡ 2
x

+ 1
x2

+ −4x + 3
x2+ 3

≡ 2
x

+ 1
x2

+ 3− 4x
x2+ 3

Now try the following Practice Exercise

Practice Exercise 10 Partial fractions with
quadratic factors (Answers on page 857)

1.
x2− x − 13

(x2+ 7)(x − 2)

2.
6x − 5

(x − 4)(x2+ 3)

3.
15+ 5x + 5x2− 4x3

x2(x2+ 5)

4.
x3+ 4x2+ 20x − 7
(x − 1)2(x2+ 8)

5. When solving the differential equation
d2θ
dt2

− 6dθ
dt

−10θ =20−e2t by Laplace
transforms, for given boundary conditions,
the following expression for L{θ} results:

L{θ} =
4s3− 39

2
s2+ 42s − 40

s(s − 2)(s2− 6s + 10)
Show that the expression can be resolved into
partial fractions to give:

L{θ} = 2
s

− 1
2(s − 2) + 5s − 3

2(s2− 6s + 10)

For fully worked solutions to each of the problems in Practice Exercises 8 to 10 in this chapter,
go to the website:

www.routledge.com/cw/bird
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Chapter 3

Logarithms

Why it is important to understand: Logarithms
All types of engineers use natural and common logarithms. Chemical engineers use them to measure
radioactive decay and pH solutions, both of which are measured on a logarithmic scale. The Richter
scale, which measures earthquake intensity, is a logarithmic scale. Biomedical engineers use logarithms
to measure cell decay and growth, and also to measure light intensity for bone mineral density measure-
ments. In electrical engineering, a dB (decibel) scale is very useful for expressing attenuations in radio
propagation and circuit gains, and logarithms are used for implementing arithmetic operations in digital
circuits. Logarithms are especially useful when dealing with the graphical analysis of non-linear relation-
ships and logarithmic scales are used to linearise data to make data analysis simpler. Understanding and
using logarithms is clearly important in all branches of engineering.

At the end of this chapter, you should be able to:

• define base, power, exponent and index
• define a logarithm
• distinguish between common and Napierian (i.e. hyperbolic or natural) logarithms
• evaluate logarithms to any base
• state the laws of logarithms
• simplify logarithmic expressions
• solve equations involving logarithms
• solve indicial equations
• sketch graphs of log10 x and logex

3.1 Introduction to logarithms

With the use of calculators firmly established, logarith-
mic tables are no longer used for calculations. However,
the theory of logarithms is important, for there are sev-
eral scientific and engineering laws that involve the rules
of logarithms.

From the laws of indices: 16= 24

The number 4 is called the power or the exponent or
the index. In the expression 24, the number 2 is called
the base.

In another example: 64= 82
In this example, 2 is the power, or exponent, or index.
The number 8 is the base.

What is a logarithm?
Consider the expression 16= 24.
An alternative, yet equivalent, way of writing this
expression is: log2 16= 4.
This is stated as ‘log to the base 2 of 16 equals 4’.
We see that the logarithm is the same as the power
or index in the original expression. It is the base in
the original expression which becomes the base of the
logarithm.

Higher Engineering Mathematics. 978-1-138-67357-1, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.
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The two statements: 16=24 and log2 16=4 are
equivalent.
If we write either of them, we are automatically imply-
ing the other.
In general, if a number y can be written in the form

ax , then the index ‘x’ is called the ‘logarithm of y to the
base of a’,

i.e. if y = ax then x = loga y

In another example, if we write that 64= 82 then the
equivalent statement using logarithms is:

log8 64= 2
In another example, if we write that log3 81=4 then the
equivalent statement using powers is:

34 = 81
So the two sets of statements, one involving powers and
one involving logarithms, are equivalent.

Common logarithms
From above, if we write that 1000= 103, then
3= log10 1000
This may be checked using the ‘log’ button on your
calculator.
Logarithms having a base of 10 are called common
logarithms and log10 is often abbreviated to lg.
The following values may be checked by using a
calculator:

lg27.5= 1.4393 . . ., lg378.1= 2.5776 . . .
and lg0.0204= −1.6903 . . .

Napierian logarithms
Logarithms having a base of e (where ‘e’ is a math-
ematical constant approximately equal to 2.7183) are
called hyperbolic, Napierian or natural logarithms,
and loge is usually abbreviated to ln.
The following values may be checked by using a
calculator:

ln3.65= 1.2947 . . ., ln417.3= 6.0338 . . .
and ln0.182= −1.7037 . . .

More onNapierian logarithms is explained in Chapter 4.

Here are some worked problems to help understanding
of logarithms.

Problem 1. Evaluate log3 9

Let x = log3 9 then 3x = 9 from the definition
of a logarithm,

i.e. 3x = 32 from which, x = 2
Hence, log3 9= 2

Problem 2. Evaluate log10 10

Let x = log10 10 then 10 x = 10 from the
definition of a logarithm,

i.e. 10x = 101 from which,x = 1
Hence, log10 10= 1 (which may be checked

using a calculator)

Problem 3. Evaluate log16 8

Let x = log16 8 then 16x = 8 from the definition

of a logarithm,

i.e. (24)x = 23 i.e. 24x = 23 from the laws of indices,

from which, 4x = 3 and x = 3
4

Hence, log16 8= 3
4

Problem 4. Evaluate lg 0.001

Let x = lg 0.001= log10 0.001 then 10x = 0.001
i.e. 10x = 10−3 from which, x = −3
Hence, lg 0.001= −3 (which may be checked

using a calculator)

Problem 5. Evaluate lne

Let x = lne= loge e then ex = e
i.e. ex = e1

from which, x = 1
Hence, lne = 1 (which may be checked

using a calculator)
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Problem 6. Evaluate log3
1
81

Let x = log3
1
81

then 3x = 1
81

= 1
34

= 3−4

from which, x = −4

Hence, log3
1
81

= −4

Problem 7. Solve the equation: lgx = 3

If lg x = 3 then log10 x = 3
and x = 103 i.e. x = 1000

Problem 8. Solve the equation: log2 x = 5

If log2 x = 5 then x = 25 = 32

Problem 9. Solve the equation: log5 x = −2

If log5 x = −2 then x = 5−2 = 1
52

= 1
25

Now try the following Practice Exercise

Practice Exercise 11 Introduction to
logarithms (Answers on page 857)

In Problems 1 to 11, evaluate the given
expressions:

1. log10 10000 2. log2 16

3. log5 125 4. log2
1
8

5. log8 2 6. log7 343

7. lg100 8. lg 0.01

9. log4 8 10. log27 3

11. lne2

In Problems 12 to 18 solve the equations:

12. log10 x = 4 13. lgx = 5

14. log3 x = 2 15. log4 x = −21
2

16. lgx = −2 17. log8 x = −4
3

18. lnx = 3

3.2 Laws of logarithms

There are three laws of logarithms, which apply to any
base:

(i) To multiply two numbers:

log (A×B) = logA+ log B

The following may be checked by using a calcu-
lator:

lg10= 1
Also, lg 5+ lg 2= 0.69897. . .

+ 0.301029. . . = 1
Hence, lg(5× 2) = lg10= lg 5+ lg 2

(ii) To divide two numbers:

log
(

A

B

)
= logA− log B

The followingmaybe checkedusing a calculator:

ln
(
5
2

)

= ln2.5= 0.91629. . .

Also, ln5− ln2= 1.60943. . .− 0.69314. . .
= 0.91629. . .

Hence, ln
(
5
2

)

= ln5− ln2

(iii) To raise a number to a power:

logAn = n log A

The followingmaybe checkedusing a calculator:

lg 52 = lg 25= 1.39794. . .
Also, 2 lg 5= 2× 0.69897. . . = 1.39794. . .
Hence, lg 52 = 2 lg 5

Download more at Learnclax.com



Se
ct

io
n

A

Logarithms 25

Here are some worked problems to help understanding
of the laws of logarithms.

Problem 10. Write log 4+ log 7 as the logarithm
of a single number.

log 4+ log 7= log(7× 4)
by the first law of logarithms

= log 28

Problem 11. Write log 16− log 2 as the logari-
thm of a single number.

log16− log 2= log
(
16
2

)

by the second law of logarithms

= log 8

Problem 12. Write 2 log 3 as the logarithm of a
single number.

2 log 3= log 32 by the third law of logarithms

= log 9

Problem 13. Write
1
2
log 25 as the logarithm of a

single number.

1
2
log 25 = log 25 12 by the third law of logarithms

= log√
25= log 5

Problem 14. Simplify: log64− log128+ log32.

64= 26,128= 27 and 32= 25

Hence, log64 − log128+ log32
= log26− log27+ log25

= 6log2− 7log2+ 5log2
by the third law of logarithms

= 4 log2

Problem 15. Write
1
2
log16+ 1

3
log27− 2 log5

as the logarithm of a single number.

1
2
log16+ 1

3
log27− 2 log5

= log16 12 + log27 13 − log52
by the third law of logarithms

= log
√
16+ log 3√27− log25

by the laws of indices

= log4+ log3− log25

= log
(
4× 3
25

)

by the first and second laws of logarithms

= log
(
12
25

)

= log0.48

Problem 16. Write (a) log30 (b) log450 in terms
of log2, log3 and log5 to any base.

(a) log30 = log(2× 15) = log(2× 3× 5)
= log2+ log3+ log5

by the first law of logarithms

(b) log450 = log(2× 225) = log(2× 3× 75)
= log(2× 3× 3× 25)
= log(2× 32× 52)
= log2+ log32+ log52

by the first law of logarithms
i.e. log450 = log2+ 2 log3+ 2 log5

by the third law of logarithms

Problem 17. Write log

(
8× 4√5
81

)

in terms of

log2, log3 and log5 to any base.

log

(
8× 4√5
81

)

= log8+ log 4√5− log81
by the first and second

laws of logarithms

= log23+ log5 14 − log34
by the laws of indices

i.e. log

(
8× 4√5
81

)

= 3log2+ 1
4
log5− 4 log3

by the third law of logarithms

Download more at Learnclax.com



Se
ct

io
n

A
26 Higher Engineering Mathematics

Problem 18. Evaluate:
log25− log125+ 1

2 log625
3log5

log25− log125+ 1
2 log625

3log5

= log52− log53+ 1
2 log5

4

3log5

= 2 log5− 3log5+ 4
2 log5

3log5
= 1log5
3log5

= 1
3

Problem 19. Solve the equation:
log(x − 1) + log(x + 8) = 2 log(x + 2)

LHS= log(x − 1) + log(x + 8)
= log(x − 1)(x + 8)

from the first law of logarithms

= log(x2+ 7x − 8)
RHS= 2 log(x + 2) = log(x + 2)2

from the third law of logarithms

= log(x2+ 4x + 4)
log(x2+ 7x − 8) = log(x2+ 4x + 4)Hence,

x2+ 7x − 8= x2+ 4x + 4from which,

7x − 8= 4x + 4i.e.

3x = 12i.e.

x = 4and

Problem 20. Solve the equation:
1
2
log 4= log x

1
2
log4= log4 12 from the third law of logarithms

= log
√
4 from the laws of indices

1
2
log4= logxHence,

log
√
4= logxbecomes

log2= logxi.e.

2= xfrom which,

i.e. the solution of the equation is: x = 2

Problem 21. Solve the equation:
log

(
x2− 3)− logx = log2

log
(
x2− 3)− logx = log

(
x2− 3

x

)

from the second law of logarithms

log
(

x2− 3
x

)

= log2Hence,

x2− 3
x

= 2from which,

x2− 3= 2xRearranging gives:

x2− 2x − 3= 0and

(x − 3)(x + 1) = 0Factorising gives:

x = 3 or x = −1from which,

x = −1 is not a valid solution since the logarithm of a
negative number has no real root.

Hence, the solution of the equation is: x = 3

Now try the following Practice Exercise

Practice Exercise 12 Laws of logarithms
(Answers on page 857)

In Problems 1 to 11, write as the logarithm of a
single number:

1. log 2+ log3
2. log 3+ log5
3. log 3+ log4− log6
4. log 7+ log21− log49
5. 2 log 2+ log3
6. 2 log 2+ 3log5

7. 2 log 5− 1
2
log81+ log36

8.
1
3
log8− 1

2
log81+ log27

9.
1
2
log4− 2 log3+ log45

10.
1
4
log16+ 2 log3− log18

11. 2 log2+ log5− log10
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Simplify the expressions given in Problems 12
to 14:

12. log27− log9+ log81
13. log64+ log32− log128
14. log8− log4+ log32
Evaluate the expressions given in Problems 15
and 16:

15.
1
2 log16− 1

3 log8
log4

16.
log9− log3+ 1

2 log81
2 log3

Solve the equations given in Problems 17 to 22:

17. logx4− logx3 = log5x − log2x
18. log2t 3− log t = log16+ log t
19. 2 logb2− 3logb = log8b − log4b
20. log(x + 1) + log(x − 1) = log3

21.
1
3
log 27= log(0.5a)

22. log
(
x2− 5)− logx = log4

3.3 Indicial equations

The laws of logarithms may be used to solve certain
equations involving powers – called indicial equa-
tions. For example, to solve, say, 3x =27, logari-
thms to a base of 10 are taken of both sides,
i.e. log10 3x = log10 27
and x log10 3= log10 27, by the third law of logarithms.
Rearranging gives

x = log10 27
log10 3

= 1.43136 . . .
0.4771 . . .

= 3

which may be readily checked
(

Note,
(
log8
log2

)

is not equal to lg
(
8
2

))

Problem 22. Solve the equation 2x =3, correct to
4 significant figures.

Taking logarithms to base 10 of both sides of 2x =3
gives:

log10 2x = log10 3
i.e. x log10 2= log10 3
Rearranging gives:

x = log10 3
log10 2

= 0.47712125 . . .
0.30102999 . . .

= 1.585,correct to 4 significant figures.

Problem 23. Solve the equation 2x+1=32x−5
correct to 2 decimal places.

Taking logarithms to base 10 of both sides gives:
log10 2x+1 = log10 32x−5

i.e. (x + 1) log10 2= (2x − 5) log10 3
x log10 2+ log10 2=2x log10 3− 5log10 3

x(0.3010) + (0.3010) =2x(0.4771) − 5(0.4771)
i.e. 0.3010x + 0.3010=0.9542x − 2.3855
Hence

2.3855+ 0.3010=0.9542x − 0.3010x
2.6865=0.6532x

from which x= 2.6865
0.6532

=4.11, correct to
2 decimal places.

Problem 24. Solve the equation x 3.2=41.15,
correct to 4 significant figures.

Taking logarithms to base 10 of both sides gives:

log10 x3.2 = log10 41.15
3.2 log10 x = log10 41.15

Hence log10 x = log10 41.15
3.2

= 0.50449
Thus x=antilog0.50449=100.50449=3.195 correct to
4 significant figures.

Now try the following Practice Exercise

Practice Exercise 13 Indicial equations
(Answers on page 857)

Solve the following indicial equations for x, each
correct to 4 significant figures:
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1. 3x =6.4
2. 2x =9
3. 2x−1=32x−1

4. x1.5=14.91
5. 25.28=4.2x

6. 42x−1=5x+2

7. x−0.25=0.792
8. 0.027x =3.26
9. The decibel gain n of an amplifier is given by:

n = 10 log10
(

P2

P1

)

where P1 is the power input and P2 is the

power output. Find the power gain
P2

P1
when

n=25 decibels.

3.4 Graphs of logarithmic functions

A graph of y = log10 x is shown in Fig. 3.1 and a graph
of y= loge x is shown in Fig. 3.2. Both are seen to be
of similar shape; in fact, the same general shape occurs
for a logarithm to any base.
In general, with a logarithm to any base a, it is noted
that:

(i) loga1=0
Let loga =x, then ax =1 from the definition of
the logarithm.
If ax =1 then x =0 from the laws of indices.
Hence loga1=0. In the above graphs it is seen
that log101=0 and loge 1=0

(ii) logaa=1
Let loga a=x then ax =a from the definition of
a logarithm.
If ax =a then x =1

y

0.5

1.0

0 1 2 3

20.5

21.0

x

x 3

0.48

2

0.30

1

0

0.5

20.30

0.2

20.70

0.1

21.0y 5 log10x

Figure 3.1

y
2

1

0 1 2 3 4 5 6 x

x 6 5 4 3 2 1 0.5 0.2 0.1

1.79 1.61 1.39 1.10 0.69 0 20.69 21.61 22.30

21

22

y 5 logex

Figure 3.2

Hence loga a=1. (Check with a calculator that
log10 10=1 and loge e=1)

(iii) loga0 → −∞
Let loga 0=x then ax =0 from the definition of
a logarithm.
If ax =0, and a is a positive real number,
then x must approach minus infinity. (For
example, check with a calculator, 2−2=0.25,
2−20=9.54×10−7, 2−200=6.22×10−61, and
so on)
Hence loga 0→ −∞

For fully worked solutions to each of the problems in Practice Exercises 11 to 13 in this chapter,
go to the website:

www.routledge.com/cw/bird
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Chapter 4

Exponential functions

Why it is important to understand: Exponential functions
Exponential functions are used in engineering, physics, biology and economics. There aremany quantities
that grow exponentially; some examples are population, compound interest and charge in a capacitor.
With exponential growth, the rate of growth increases as time increases. We also have exponential decay;
someexamples are radioactivedecay, atmospheric pressure,Newton’s lawof coolingand linear expansion.
Understanding and using exponential functions is important in many branches of engineering.

At the end of this chapter, you should be able to:

• evaluate exponential functions using a calculator
• state the exponential series for ex
• plot graphs of exponential functions
• evaluate Napierian logarithms using a calculator
• solve equations involving Napierian logarithms
• appreciate the many examples of laws of growth and decay in engineering and science
• perform calculations involving the laws of growth and decay
• reduce exponential laws to linear form using log-linear graph paper

4.1 Introduction to exponential
functions

Anexponential function is onewhich contains ex, e being
a constant called the exponent and having an approx-
imate value of 2.7183. The exponent arises from the
natural laws of growth and decay and is used as a base
for natural or Napierian logarithms.
The most commonmethod of evaluating an exponen-

tial function is by using a scientific notation calculator.
Use your calculator to check the following values:

e1 = 2.7182818, correct to 8 significant figures,
e−1.618 = 0.1982949, each correct to 7 significant

figures,

e0.12 = 1.1275, correct to 5 significant figures,

e−1.47 = 0.22993, correct to 5 decimal places,

e−0.431 = 0.6499, correct to 4 decimal places,

e9.32 = 11 159, correct to 5 significant figures,

e−2.785 = 0.0617291, correct to 7 decimal places.

Problem 1. Evaluate the following correct to 4
decimal places, using a calculator:

0.0256
(
e5.21− e2.49

)

Higher Engineering Mathematics. 978-1-138-67357-1, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.
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0.0256
(
e5.21− e2.49

)
= 0.0256 (183.094058 . . .

− 12.0612761 . . .)
= 4.3784, correct to 4

decimal places.

Problem 2. Evaluate the following correct to 4
decimal places, using a calculator:

5

(
e0.25 − e−0.25
e0.25 + e−0.25

)

5

(
e0.25 − e−0.25
e0.25 + e−0.25

)

= 5
(
1.28402541 . . .− 0.77880078 . . .
1.28402541 . . .+ 0.77880078 . . .

)

= 5
(
0.5052246 . . .
2.0628262 . . .

)

= 1.2246, correct to 4 decimal places.

Problem 3. The instantaneous voltage v in a
capacitive circuit is related to time t by the
equation: v= V e−t/CR where V , C and R are
constants. Determine v, correct to 4 significant
figures, when t = 50ms, C = 10μF, R = 47k�
and V = 300 volts.

v= V e−t/CR = 300e(−50×10−3)/(10×10−6×47×103)

Using a calculator,

v= 300e−0.1063829 ... = 300(0.89908025 . . .)
= 269.7 volts

Now try the following Practice Exercise

Practice Exercise 14 Evaluating
exponential functions (Answers on
page 857)

1. Evaluate the following, correct to 4 significant
figures:
(a) e−1.8 (b) e−0.78 (c) e10

2. Evaluate the following, correct to 5 significant
figures:
(a) e1.629 (b) e−2.7483 (c) 0.62e4.178

In Problems 3 and 4, evaluate correct to 5 decimal
places:

3. (a)
1
7
e3.4629 (b) 8.52e−1.2651 (c)

5e2.6921

3e1.1171

4. (a)
5.6823
e−2.1347

(b)
e2.1127− e−2.1127

2

(c)
4(e−1.7295 − 1)

e3.6817

5. The length of a bar l at a temperature θ

is given by l = l0eαθ , where l0 and α are
constants. Evaluate l, correct to 4 signifi-
cant figures, where l0 = 2.587,θ = 321.7 and
α = 1.771× 10−4

6. When a chain of length 2L is suspended from
two points, 2D metres apart, on the same hor-
izontal level: D = k

{
ln

(
L+√

L2+k2
k

)}
. Eval-

uate D when k = 75m and L = 180m.

4.2 The power series for ex

The value of ex can be calculated to any required degree
of accuracy since it is defined in terms of the following
power series:

ex = 1+ x + x2

2!
+ x3

3!
+ x4

4!
+ ·· · (1)

(where 3!=3×2×1 and is called ‘factorial 3’)
The series is valid for all values of x.
The series is said to converge, i.e. if all the terms are
added, an actual value for ex (where x is a real number)
is obtained. The more terms that are taken, the closer
will be the value of ex to its actual value. The value of
the exponent e, correct to, say, 4 decimal places, may be
determined by substituting x =1 in the power series of
equation (1). Thus,

e1 =1+ 1+ (1)2

2!
+ (1)3

3!
+ (1)4

4!
+ (1)5

5!

+ (1)6

6!
+ (1)7

7!
+ (1)8

8!
+ ·· ·

=1+ 1+ 0.5+ 0.16667+ 0.04167
+0.00833+ 0.00139+ 0.00020
+0.00002+ ·· ·

i.e. e=2.71828= 2.7183,
correct to 4 decimal places.
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The value of e0.05, correct to, say, 8 significant figures,
is found by substituting x=0.05 in the power series for
ex . Thus

e0.05 = 1+ 0.05+ (0.05)2

2!
+ (0.05)3

3!

+ (0.05)4

4!
+ (0.05)5

5!
+ ·· ·

= 1+ 0.05+ 0.00125+ 0.000020833
+ 0.000000260+ 0.000000003

and by adding,

e0.05 = 1.0512711, correct to 8 significant figures.

In this example, successive terms in the series grow
smaller very rapidly and it is relatively easy to deter-
mine the value of e0.05 to a high degree of accuracy.
However, when x is nearer to unity or larger than unity,
a very large number of terms are required for an accurate
result.
If in the series of equation (1), x is replaced by−x, then,

e−x =1+ (−x) + (−x)2

2!
+ (−x)3

3!
+ ·· ·

i.e. e−x =1− x + x2

2!
− x3

3!
+ ·· ·

In a similar manner the power series for ex may be used
to evaluate any exponential function of the form a e kx ,
where a and k are constants. In the series of equation (1),
let x be replaced by kx. Then,

a ekx =a

{

1+ (kx) + (kx)2

2!
+ (kx)3

3!
+ ·· ·

}

Thus 5e2x =5
{

1+ (2x) + (2x)2

2!
+ (2x)3

3!
+ ·· ·

}

=5
{

1+ 2x + 4x2

2
+ 8x3

6
+ ·· ·

}

i.e. 5e2x =5
{

1+ 2x + 2x2+ 4
3
x3+ ·· ·

}

Problem 4. Determine the value of 5e0.5, correct
to 5 significant figures, by using the power series
for ex

ex = 1+ x + x2

2!
+ x3

3!
+ x4

4!
+ ·· ·

Hence e0.5 =1+ 0.5+ (0.5)2

(2)(1)
+ (0.5)3

(3)(2)(1)

+ (0.5)4

(4)(3)(2)(1)
+ (0.5)5

(5)(4)(3)(2)(1)

+ (0.5)6

(6)(5)(4)(3)(2)(1)

=1+ 0.5+ 0.125+ 0.020833
+0.0026042+ 0.0002604

+0.0000217
i.e. e0.5 =1.64872,

correct to 6 significant figures.

Hence 5e0.5 =5(1.64872) = 8.2436,
correct to 5 significant figures.

Problem 5. Expand ex(x2− 1) as far as the term
in x5

The power series for ex is,

ex = 1+ x + x2

2!
+ x3

3!
+ x4

4!
+ x5

5!
+ ·· ·

Hence ex(x2−1)

=
(

1+ x + x2

2!
+ x3

3!
+ x4

4!
+ x5

5!
+ ·· ·

)

(x2− 1)

=
(

x2+ x3+ x4

2!
+ x5

3!
+ ·· ·

)

−
(

1+ x + x2

2!
+ x3

3!
+ x4

4!
+ x5

5!
+ ·· ·

)

Grouping like terms gives:

ex(x2− 1)
= −1− x +

(

x2− x2

2!

)

+
(

x3− x3

3!

)

+
(

x4

2!
− x4

4!

)

+
(

x5

3!
− x5

5!

)

+ ·· ·

= −1−x+ 1
2
x2+ 5

6
x3+ 11

24
x4+ 19

120
x5

when expanded as far as the term in x 5
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Now try the following Practice Exercise

Practice Exercise 15 Power series for ex

(Answers on page 857)

1. Evaluate 5.6e−1, correct to 4 decimal places,
using the power series for ex

2. Use the power series for ex to determine, cor-
rect to 4 significant figures, (a) e2 (b) e−0.3,
and check your result by using a calculator.

3. Expand (1−2x)e2x as far as the term in x4

4. Expand
(
2ex2

)(
x
1
2
)
to six terms.

4.3 Graphs of exponential functions

Values of ex and e−x obtained from a calculator,
correct to 2 decimal places, over a range x=−3
to x=3, are shown in the following table.

x −3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0

ex 0.05 0.08 0.14 0.22 0.37 0.61 1.00

e−x 20.09 12.18 7.39 4.48 2.72 1.65 1.00

x 0.5 1.0 1.5 2.0 2.5 3.0

ex 1.65 2.72 4.48 7.39 12.18 20.09

e−x 0.61 0.37 0.22 0.14 0.08 0.05

Fig. 4.1 shows graphs of y =ex and y=e−x

Problem 6. Plot a graph of y =2e0.3x over a
range of x=−2 to x=3. Hence determine the value
of y when x =2.2 and the value of x when y =1.6

A table of values is drawn up as shown below.

x −3 −2 −1 0 1 2 3

0.3x −0.9 −0.6 −0.3 0 0.3 0.6 0.9

e0.3x 0.407 0.549 0.741 1.000 1.350 1.822 2.460

2e0.3x 0.81 1.10 1.48 2.00 2.70 3.64 4.92

y

20

16

y 5 ex y 5 e2x 

12

8

4

21 0 1 2 3 x2223

Figure 4.1

A graph of y=2e0.3x is shown plotted in Fig. 4.2.

y

5
y5 2e0.3x

4

3

1.6

3.87

1

20.74 2.2
21 0 1 2 3 x2223

2

Figure 4.2

From the graph, when x =2.2,y =3.87 and when
y =1.6,x =−0.74

Problem 7. Plot a graph of y = 1
3 e

−2x over the
range x =−1.5 to x=1.5. Determine from the
graph the value of y when x =−1.2 and the value
of x when y =1.4

A table of values is drawn up as shown below.

x −1.5 −1.0 −0.5 0 0.5 1.0 1.5

−2x 3 2 1 0 −1 −2 −3
e−2x 20.086 7.389 2.718 1.00 0.368 0.135 0.050
1
3
e−2x 6.70 2.46 0.91 0.33 0.12 0.05 0.02
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A graph of 13 e
−2x is shown in Fig. 4.3.

7

6

5

4

3

3.67

1.4
2

1

0.520.5

20.72

21.0

21.2

21.5 1.0 1.5

y

x

1
3 e22xy 5

Figure 4.3

From the graph, when x =−1.2, y =3.67 and when
y =1.4, x =−0.72

Problem 8. The decay of voltage, v volts, across
a capacitor at time t seconds is given by
v=250e−t

3 . Draw a graph showing the natural
decay curve over the first six seconds. From the
graph, find (a) the voltage after 3.4 s, and (b) the
time when the voltage is 150V.

A table of values is drawn up as shown below.

t 0 1 2 3

e
−t
3 1.00 0.7165 0.5134 0.3679

v=250e
−t
3 250.0 179.1 128.4 91.97

t 4 5 6

e
−t
3 0.2636 0.1889 0.1353

v=250e
−t
3 65.90 47.22 33.83

The natural decay curve of v=250e
−t
3 is shown in

Fig. 4.4.
From the graph:

(a) when time t =3.4 s, voltage v=80V and
(b) when voltage v=150V, time t=1.5 s

250

200

V
ol

ta
ge

 v
 (

vo
lts

)

Time t(seconds)

150

100
80

50

0 1 1.5 2 3 3.4 4 5 6

y 5 250e
t
32

Figure 4.4

Now try the following Practice Exercise

Practice Exercise 16 Exponential graphs
(Answers on page 857)

1. Plot a graph of y =3e0.2x over the range
x =−3 to x =3. Hence determine the value
of y when x =1.4 and the value of x when
y =4.5

2. Plot a graph of y = 1
2 e

−1.5x over a range
x =−1.5 to x =1.5 and hence determine the
value of y when x =−0.8 and the value of x

when y=3.5
3. In a chemical reaction the amount of start-

ing material C cm3 left after t minutes is
given by C =40e−0.006t . Plot a graph of C

against t and determine (a) the concentration
C after one hour, and (b) the time taken for the
concentration to decrease by half.

4. The rate at which a body cools is given by
θ =250e−0.05t where the excess of tempera-
ture of a body above its surroundings at
time t minutes is θ ◦C. Plot a graph showing
the natural decay curve for the first hour of
cooling. Hence determine (a) the temperature
after 25 minutes, and (b) the time when the
temperature is 195◦C.

4.4 Napierian logarithms

Logarithms having a base of ‘e’ are called hyperbolic,
Napierian or natural logarithms and the Napierian
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logarithm of x is written as loge x, or more commonly
as lnx. Logarithms were invented by John Napier∗, a
Scotsman (1550–1617).
The most common method of evaluating a Napierian

logarithm is by a scientific notation calculator.Use your
calculator to check the following values:

ln4.328= 1.46510554 . . .
= 1.4651, correct to 4 decimal places

ln1.812= 0.59443, correct to 5 significant figures
ln1= 0
ln527= 6.2672, correct to 5 significant figures
ln0.17= −1.772, correct to 4 significant figures
ln0.00042= −7.77526, correct to 6 significant

figures

lne3 = 3
lne1 = 1

From the last two examples we can conclude that:

loge ex = x

∗WhowasNapier? JohnNapier ofMerchiston (1550–4 April
1617) is best known as the discoverer of logarithms. The inven-
tor of the so-called ‘Napier’s bones’, Napier alsomade common
the use of the decimal point in arithmetic and mathematics. To
find out more go to www.routledge.com/cw/bird

This is useful when solving equations involving expo-
nential functions. For example, to solve e3x = 7, take
Napierian logarithms of both sides, which gives:

ln e3x = ln7
i.e. 3x = ln7
from which x = 1

3
ln7= 0.6486, correct to 4

decimal places.

Problem 9. Evaluate the following, each correct
to 5 significant figures:

(a)
1
2
ln4.7291 (b)

ln7.8693
7.8693

(c)
3.17ln24.07
e−0.1762

(a)
1
2
ln4.7291= 1

2
(1.5537349 . . .) = 0.77687,
correct to 5 significant figures

(b)
ln7.8693
7.8693

= 2.06296911 . . .
7.8693

= 0.26215,
correct to 5 significant figures

(c)
3.17ln24.07
e−0.1762

= 3.17(3.18096625 . . .)
0.83845027 . . .

= 12.027,
correct to 5 significant figures.

Problem 10. Evaluate the following:

(a)
lne2.5

lg100.5
(b)
5e2.23 lg2.23
ln2.23

correct to 3
decimal places.

(a)
lne2.5

lg100.5
= 2.5
0.5

= 5

(b)
5e2.23 lg2.23
ln2.23

= 5(9.29986607 . . .)(0.34830486 . . .)
0.80200158 . . .

= 20.194, correct to 3 decimal places.

Problem 11. Solve the equation: 9= 4e−3x to
find x, correct to 4 significant figures.

Rearranging 9= 4e−3x gives: 9
4

= e−3x

Taking the reciprocal of both sides gives:
4
9

= 1
e−3x

= e3x

Download more at Learnclax.com

http://www.routledge.com/cw/bird


Se
ct

io
n

A

Exponential functions 35

Taking Napierian logarithms of both sides gives:

ln
(
4
9

)

= ln(e3x)

Since loge eα = α, then ln
(
4
9

)

= 3x

Hence, x = 1
3
ln

(
4
9

)

= 1
3
(−0.81093)=−0.2703,

correct to 4 significant figures.

Problem 12. Given 32= 70
(
1− e− t

2
)
determine

the value of t , correct to 3 significant figures.

Rearranging 32= 70(1− e−
t
2 ) gives:

32
70

= 1− e− t
2

and e−
t
2 = 1− 32

70
= 38
70

Taking the reciprocal of both sides gives:

e
t
2 = 70

38
Taking Napierian logarithms of both sides gives:

lne
t
2 = ln

(
70
38

)

i.e.
t

2
= ln

(
70
38

)

from which, t =2 ln
(
70
38

)

= 1.22, correct to 3 signifi-
cant figures.

Problem 13. Solve the equation: 2.68= ln
(
4.87
x

)

to find x.

From the definition of a logarithm, since

2.68= ln
(
4.87
x

)

then e2.68 = 4.87
x

Rearranging gives: x = 4.87
e2.68

= 4.87e−2.68

i.e. x = 0.3339, correct to 4
significant figures.

Problem 14. Solve
7
4

= e3x correct to 4 signi-
ficant figures.

Taking natural logarithms of both sides gives:

ln
7
4

= lne3x

ln
7
4

= 3x lne

Since lne= 1 ln
7
4

= 3x

i.e. 0.55962= 3x
i.e. x = 0.1865, correct to 4

significant figures.

Problem 15. Solve: ex−1 = 2e3x−4 correct to 4
significant figures.

Taking natural logarithms of both sides gives:

ln
(
ex−1) = ln(2e3x−4)

and by the first law of logarithms,

ln
(
ex−1) = ln2+ ln(e3x−4)

i.e. x − 1= ln2+ 3x − 4
Rearranging gives: 4− 1− ln2= 3x − x

i.e. 3− ln2= 2x

from which, x = 3− ln2
2
= 1.153

Problem 16. Solve, correct to 4 significant
figures: ln(x −2)2 = ln(x −2) − ln(x +3) +1.6

Rearranging gives:

ln(x − 2)2− ln(x − 2) + ln(x + 3) = 1.6

and by the laws of logarithms,

ln
{

(x − 2)2(x + 3)
(x − 2)

}

= 1.6

Cancelling gives: ln {(x − 2)(x + 3)} = 1.6
and (x − 2)(x + 3) = e1.6

i.e. x2+ x − 6= e1.6
or x2+ x − 6− e1.6 = 0
i.e. x2+ x − 10.953= 0
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Using the quadratic formula,

x = −1±
√
12− 4(1)(−10.953)

2

= −1± √
44.812
2

= −1± 6.6942
2

i.e. x = 2.847 or −3.8471
x = −3.8471 is not valid since the logarithm of a
negative number has no real root.
Hence, the solution of the equation is: x = 2.847

Now try the following Practice Exercise

Practice Exercise 17 Napierian logarithms
(Answers on page 857)

In Problems 1 and 2, evaluate correct to 5 signifi-
cant figures:

1. (a)
1
3
ln5.2932 (b)

ln82.473
4.829

(c)
5.62 ln321.62
e1.2942

2. (a)
1.786lne1.76

lg101.41
(b)

5e−0.1629

2 ln0.00165

(c)
ln4.8629− ln2.4711

5.173
In Problems 3 to 7 solve the given equations, each
correct to 4 significant figures.

3. lnx = 2.10
4. 24+ e2x = 45
5. 5= ex+1− 7
6. 1.5= 4e2t
7. 7.83= 2.91e−1.7x

8. 16= 24
(

1− e−
t
2

)

9. 5.17= ln
( x

4.64

)

10. 3.72 ln
(
1.59
x

)

= 2.43

11. 5= 8
(

1− e−x
2

)

12. ln(x + 3) − lnx = ln(x − 1)

13. ln(x − 1)2− ln3= ln(x − 1)
14. ln(x + 3) + 2= 12− ln(x − 2)
15. e(x+1) = 3e(2x−5)

16. ln(x + 1)2 = 1.5− ln(x − 2) + ln(x + 1)
17. Transpose: b = ln t − a lnD to make t the

subject.

18. If
P

Q
= 10 log10

(
R1

R2

)

find the value of R1

when P = 160, Q = 8 and R2 = 5

19. If U2 = U1e
(

W
PV

)

makeW the subject of the
formula.

20. The work done in an isothermal expansion of
a gas from pressure p1 to p2 is given by:

w= w0 ln
(

p1

p2

)

If the initial pressure p1 = 7.0kPa, calculate
the final pressure p2 if w= 3w0

21. The velocity v2 of a rocket is given by:
v2 = v1+ C ln

(
m1
m2

)
where v1 is the ini-

tial rocket velocity, C is the velocity of
the jet exhaust gases, m1 is the mass of
the rocket before the jet engine is fired,
and m2 is the mass of the rocket after
the jet engine is switched off. Calculate
the velocity of the rocket given v1 = 600
m/s, C = 3500 m/s, m1 = 8.50× 104 kg and
m2 = 7.60× 104 kg.

4.5 Laws of growth and decay

The laws of exponential growth and decay are of the
form y=Ae−kx and y=A(1−e−kx), whereA and k are
constants.When plotted, the formof each of these equa-
tions is as shown in Fig. 4.5. The laws occur frequently
in engineering and science and examples of quantities
related by a natural law include.

(i) linear expansion l = l0 eαθ

(ii) change in electrical resistance
with temperature Rθ =R0 eαθ

(iii) tension in belts T1=T0 eμθ

(iv) newton’s law of cooling θ =θ0 e−kt
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(a)

y

x

A

0

y 5 Ae2kx

(b)

y

x

A

0

y 5 A(12e2kx)

Figure 4.5

(v) biological growth y =y0 ekt

(vi) discharge of a capacitor q =Qe−t/CR

(vii) atmospheric pressure p=p0 e−h/c

(viii) radioactive decay N =N0 e−λt

(ix) decay of current in an
inductive circuit i = I e−Rt/L

(x) growth of current in a
capacitive circuit i = I (1−e−t/CR)

Problem 17. The resistance R of an electrical
conductor at temperature θ ◦C is given by
R=R0 eαθ , where α is a constant and
R0=5×103 ohms. Determine the value of α,
correct to 4 significant figures, when
R=6×103 ohms and θ =1500◦C. Also, find the
temperature, correct to the nearest degree, when the
resistance R is 5.4×103 ohms.

Transposing R=R0 eαθ gives
R

R0
=eαθ

Taking Napierian logarithms of both sides gives:

ln
R

R0
= lneαθ = αθ

Hence α = 1
θ
ln

R

R0
= 1
1500

ln
(
6× 103
5× 103

)

= 1
1500

(0.1823215 . . .)

=1.215477 · · ·× 10−4

Hence α=1.215×10−4,
correct to 4 significant figures.

From above, ln
R

R0
=αθ

hence θ = 1
α
ln

R

R0

When R=5.4×103, α=1.215477 . . . ×10−4 and
R0=5×103

θ = 1
1.215477 . . .× 10−4 ln

(
5.4× 103
5× 103

)

= 104

1.215477 . . .
(7.696104 . . .× 10−2)

= 633◦C,correct to the nearest degree.

Problem 18. In an experiment involving
Newton’s law of cooling, the temperature θ(◦C) is
given by θ =θ0 e−kt . Find the value of constant k
when θ0=56.6◦C, θ =16.5◦C and t =83.0seconds.

Transposing θ =θ0 e−kt gives

θ

θ0
=e−kt

from which
θ0

θ
= 1
e−kt

= ekt

Taking Napierian logarithms of both sides gives:

ln
θ0

θ
= kt

from which,

k = 1
t
ln

θ0

θ
= 1
83.0

ln
(
56.6
16.5

)

= 1
83.0

(1.2326486 . . .)

Hence k= 1.485×10−2
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Problem 19. The current i amperes flowing in a
capacitor at time t seconds is given by
i =8.0(1−e

−t
CR ), where the circuit resistance R is

25×103 ohms and capacitance C is
16×10−6 farads. Determine (a) the current i after
0.5 seconds and (b) the time, to the nearest
millisecond, for the current to reach 6.0A. Sketch
the graph of current against time.

(a) Current i =8.0(1−e
−t
CR )

= 8.0[1−e
−0.5

(16×10−6)(25×103) ]=8.0(1−e−1.25)

=8.0(1−0.2865047 . . .)=8.0(0.7134952 . . .)

= 5.71amperes

(b) Transposing i =8.0(1−e
−t
CR )

gives
i

8.0
=1−e

−t
CR

from which, e
−t
CR =1− i

8.0
= 8.0− i

8.0
Taking the reciprocal of both sides gives:

e
t

CR = 8.0
8.0− i

Taking Napierian logarithms of both sides gives:

t

CR
= ln

(
8.0
8.0− i

)

Hence

t = CR ln
(
8.0
8.0− i

)

= (16× 10−6)(25× 103) ln
(

8.0
8.0− 6.0

)

when i =6.0amperes,

i.e. t = 400
103

ln
(
8.0
2.0

)

= 0.4ln4.0

=0.4(1.3862943 . . .) = 0.5545s
=555ms, to the nearest millisecond.

Agraphof current against time is shown inFig. 4.6.

0

2

4

6
5.71

8

0.5
0.555

i (A)

t(s)1.0 1.5

i 5 8.0 (12e2t/CR)

Figure 4.6

Problem 20. The temperature θ2 of a winding
which is being heated electrically at time t is given
by: θ2=θ1(1−e

−t
τ ) where θ1 is the temperature (in

degrees Celsius) at time t =0 and τ is a constant.
Calculate,
(a) θ1, correct to the nearest degree, when θ2 is

50◦C, t is 30 s and τ is 60 s

(b) the time t , correct to 1 decimal place, for θ2 to
be half the value of θ1

(a) Transposing the formula to make θ1 the subject
gives:

θ1 = θ2

(1− e
−t
T )

= 50

1− e
−30
60

= 50
1− e−0.5 = 50

0.393469 . . .

i.e. θ1=127◦C, correct to the nearest degree.
(b) Transposing to make t the subject of the formula

gives:
θ2

θ1
=1− e

−t
τ

from which, e
−t
τ =1− θ2

θ1

Hence − t

τ
= ln

(

1− θ2

θ1

)

i.e. t =−τ ln
(

1− θ2

θ1

)

Since θ2 = 1
2
θ1

t =−60 ln
(

1− 1
2

)

=−60 ln0.5= 41.59s
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Hence the time for the temperature θ 2 to be
one half of the value of θ 1 is 41.6 s, correct to 1
decimal place.

Now try the following Practice Exercise

Practice Exercise 18 The laws of
growth and decay (Answers on page 858)

1. The temperature, T ◦C, of a cooling object
varies with time, t minutes, according to the
equation: T =150e−0.04t . Determine the tem-
perature when (a) t = 0, (b) t = 10 minutes.

2. The pressure p pascals at height h metres

above ground level is given by p=p0 e
−h
C ,

where p0 is the pressure at ground level
and C is a constant. Find pressure p when
p0=1.012×105 Pa, height h=1420m, and
C=71 500

3. The voltage drop, v volts, across an induc-
tor L henrys at time t seconds is given

by v=200e
−Rt
L , where R=150� and

L=12.5×10−3 H. Determine (a) the voltage
when t =160×10−6 s, and (b) the time for the
voltage to reach 85V.

4. The length l metres of a metal bar at tem-
perature t◦C is given by l= l0 eαt , where
l0 and α are constants. Determine (a) the
value of α when l=1.993m, l0=1.894m
and t =250◦C, and (b) the value of l0 when
l=2.416, t =310◦C and α=1.682×10−4

5. The temperature θ ◦
2C of an electrical conduc-

tor at time t seconds is given by:
θ2 = θ1(1− e−t/T ), where θ1 is the initial
temperature and T seconds is a constant.
Determine:
(a) θ2 when θ1=159.9◦C, t =30s and

T = 80s, and
(b) the time t for θ2 to fall to half the value

of θ1 if T remains at 80s.

6. A belt is in contact with a pulley for a
sector of θ =1.12 radians and the coefficient
of friction between these two surfaces is
μ=0.26. Determine the tension on the taut
side of the belt, T newtons, when tension
on the slack side T0=22.7newtons, given

that these quantities are related by the law
T =T0 eμθ . Determine also the value of θ

when T =28.0 newtons.
7. The instantaneous current i at time t is given

by: i =10e
−t
CR when a capacitor is being

charged. The capacitanceC is 7×10−6 farads
and the resistance R is 0.3×106 ohms. Deter-
mine:
(a) the instantaneous current when t is

2.5 seconds, and

(b) the time for the instantaneous current to
fall to 5amperes.

Sketch a curve of current against time from
t =0 to t =6seconds.

8. The amount of productx (inmol/cm3) found in
a chemical reaction starting with 2.5mol/cm3
of reactant is given by x =2.5(1−e−4t )where
t is the time, in minutes, to form product
x. Plot a graph at 30-second intervals up to
2.5minutes and determine x after 1minute.

9. The current i flowing in a capacitor at time t

is given by:
i = 12.5(1− e

−t
CR )

where resistance R is 30 kilohms and the
capacitance C is 20micro-farads. Determine:
(a) the current flowing after 0.5 seconds, and

(b) the time for the current to reach 10
amperes.

10. The percentage concentration C of the start-
ing material in a chemical reaction varies
with time t according to the equation
C = 100e−0.004t . Determine the concen-
tration when (a) t = 0, (b) t = 100 s,
(c) t = 1000 s

11. The current i flowing through a diode at room
temperature is given by: i = iS

(
e40V − 1)

amperes. Calculate the current flowing in
a silicon diode when the reverse saturation
current iS = 50 nA and the forward voltage
V = 0.27V

12. A formula for chemical decomposition is
given by: C = A

(
1− e− t

10
)
where t is the

time in seconds. Calculate the time, in mil-
liseconds, for a compound to decompose to a
value of C = 0.12 given A = 8.5
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13. The mass, m, of pollutant in a water reser-
voir decreases according to the law m =
m0 e−0.1 t where t is the time in days andm0
is the initial mass. Calculate the percentage
decrease in the mass after 60 days, correct to
3 decimal places.

14. A metal bar is cooled with water. Its temper-
ature, in ◦C, is given by: θ = 15 + 1300e−0.2 t

where t is the time in minutes. Calculate
how long it will take for the temperature, θ ,
to decrease to 36◦C, correct to the nearest
second.

4.6 Reduction of exponential laws
to linear form

Frequently, the relationship between two variables, say
x and y, is not a linear one, i.e. when x is plotted against
y a curve results. In such cases the non-linear equation
may be modified to the linear form, y =mx +c, so that
the constants, and thus the law relating the variables can
be determined. This technique is called ‘determination
of law’.
Graph paper is available where the scale markings

along the horizontal and vertical axes are proportional
to the logarithms of the numbers. Such graph paper is
called log-log graph paper.
A logarithmic scale is shown in Fig. 4.7 where the dis-
tance between, say, 1 and 2, is proportional to lg 2− lg1,
i.e. 0.3010 of the total distance from 1 to 10. Simi-
larly, the distance between 7 and 8 is proportional to
lg 8− lg7, i.e. 0.05799 of the total distance from 1 to
10. Thus the distance between markings progressively
decreases as the numbers increase from 1 to 10.

1 2 3 4 5 6 7 8 910

Figure 4.7

With log-log graph paper the scale markings are from
1 to 9, and this pattern can be repeated several times. The
number of times the pattern of markings is repeated on
an axis signifies the number of cycles.When the vertical
axis has, say, three sets of values from 1 to 9, and the
horizontal axis has, say, two sets of values from 1 to 9,
then this log-log graph paper is called ‘log 3 cycle × 2
cycle’. Many different arrangements are available rang-
ing from ‘log1 cycle × 1 cycle’ through to ‘log 5
cycle × 5 cycle’.

To depict a set of values, say, from 0.4 to 161, on an axis
of log-log graph paper, four cycles are required, from
0.1 to 1, 1 to 10, 10 to 100 and 100 to 1000.

Graphs of the form y=a ekx

Taking logarithms to a base of e of both sides ofy=a ekx

gives:

lny = ln(a ekx) = lna + lnekx = lna + kx lne

i.e. lny =kx + lna (since ln e= 1)
which compares with Y =mX+c

Thus, by plotting ln y vertically against x horizon-
tally, a straight line results, i.e. the equation y =a ekx is
reduced to linear form. In this case, graph paper hav-
ing a linear horizontal scale and a logarithmic vertical
scale may be used. This type of graph paper is called
log-linear graph paper, and is specified by the number
of cycles on the logarithmic scale.

Problem 21. The data given below are believed to
be related by a law of the form y =a ekx , where a

and b are constants. Verify that the law is true and
determine approximate values of a and b. Also
determine the value of y when x is 3.8 and the value
of x when y is 85

x −1.2 0.38 1.2 2.5 3.4 4.2 5.3

y 9.3 22.2 34.8 71.2 117 181 332

Since y =a ekx then lny =kx+ lna (from above),
which is of the form Y =mX+c, showing that to pro-
duce a straight line graph lny is plotted vertically against
x horizontally. The value of y ranges from 9.3 to 332,
hence ‘log3 cycle × linear’ graph paper is used. The
plotted co-ordinates are shown in Fig. 4.8, and since a
straight line passes through the points the law y =a ekx

is verified.
Gradient of straight line,

k = AB

BC
= ln100− ln10
3.12− (−1.08) = 2.3026

4.20
= 0.55,correct to 2 significant figures.

Since lny=kx + lna, when x =0, lny = lna, i.e. y=a

The vertical axis intercept value at x=0 is 18, hence
a=18
The law of the graph is thus y =18e0.55x
When x is 3.8, y =18e0.55(3.8) = 18e2.09

=18(8.0849) = 146
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Figure 4.8

When y is 85, 85=18e0.55x

Hence, e0.55x = 85
18

= 4.7222

and 0.55x = ln4.7222= 1.5523

Hence x = 1.5523
0.55

= 2.82

Problem 22. The voltage, v volts, across an
inductor is believed to be related to time, tms, by
the law v=V e

t
T , where V and T are constants.

Experimental results obtained are:

v volts 883 347 90 55.5 18.6 5.2

t ms 10.4 21.6 37.8 43.6 56.7 72.0

Show that the law relating voltage and time is as
stated and determine the approximate values of V
and T . Find also the value of voltage after 25ms
and the time when the voltage is 30.0V.
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(36.5, 100)

v 5Ve
t
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Figure 4.9

Since v=V e
t
T then lnv= 1

T
t + lnV which is of the

form Y =mX+c.
Using ‘log3 cycle× linear’ graph paper, the points are
plotted as shown in Fig. 4.9.
Since the points are joined by a straight line the law
v=Ve

t
T is verified.

Gradient of straight line,
1
T

= AB

BC

= ln100− ln10
36.5− 64.2

= 2.3026−27.7

Hence T = −27.7
2.3026

=−12.0, correct to 3 significant figures.
Since the straight line does not cross the vertical axis
at t = 0 in Fig. 4.9, the value of V is determined
by selecting any point, say A, having co-ordinates
(36.5,100) and substituting these values into v=V e

t
T .
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Thus 100=V e
36.5

−12.0

i.e. V = 100

e
−36.5
12.0

=2090volts,
correct to 3 significant figures.

Hence the law of the graph is v=2090e −t
12.0

When time t =25ms,

voltage v=2090e
−25
12.0 = 260V

When the voltage is 30.0volts, 30.0=2090e
−t
12.0 ,

hence e
−t
12.0 = 30.0

2090

and e
t
12.0 = 2090

30.0
= 69.67

Taking Napierian logarithms gives:

t

12.0
= ln69.67= 4.2438

from which, time t = (12.0)(4.2438) = 50.9ms

Now try the following Practice Exercise

Practice Exercise 19 Reducing exponential
laws to linear form (Answers on page 858)

1. Atmospheric pressure p is measured at vary-
ing altitudes h and the results are as shown:

Altitude, h m pressure, p cm

500 73.39

1500 68.42

3000 61.60

5000 53.56

8000 43.41

Show that the quantities are related by the
law p=a ekh, where a and k are constants.
Determine the values of a and k and state
the law. Find also the atmospheric pressure at
10000m.

2. At particular times, t minutes, measurements
are made of the temperature, θ ◦C, of a cooling
liquid and the following results are obtained:

Temperature θ ◦C Time t minutes

92.2 10

55.9 20

33.9 30

20.6 40

12.5 50

Prove that the quantities follow a law of the
form θ =θ0 ekt , where θ0 and k are constants,
and determine the approximate value of θ0
and k.

For fully worked solutions to each of the problems in Practice Exercises 14 to 19 in this chapter,
go to the website:

www.routledge.com/cw/bird
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Chapter 5

Inequalities

Why it is important to understand: Inequalities
Inmathematics, an inequality is a relation that holds between two values when they are different. Awork-
ing knowledge of inequalities can be beneficial to the practising engineer, and inequalities are central to
the definitions of all limiting processes, including differentiation and integration.When exact solutions are
unavailable, inconvenient, or unnecessary, inequalities can be used to obtain error bounds for numerical
approximation. Understanding and using inequalities is important in many branches of engineering.

At the end of this chapter, you should be able to:

• define an inequality
• state simple rules for inequalities
• solve simple inequalities
• solve inequalities involving a modulus
• solve inequalities involving quotients
• solve inequalities involving square functions
• solve quadratic inequalities

5.1 Introduction to inequalities

An inequality is any expression involving one of the
symbols <, >, ≤ or ≥

p < q means p is less than q

p > q means p is greater than q

p ≤ q means p is less than or equal to q

p ≥ q means p is greater than or equal to q

Some simple rules

(i) When a quantity is added or subtracted to both
sides of an inequality, the inequality still remains.

For example, if p < 3
then p + 2< 3+ 2 (adding 2 to both

sides)

and p − 2< 3− 2 (subtracting 2 from both
sides)

(ii) When multiplying or dividing both sides of
an inequality by a positive quantity, say 5, the
inequality remains the same. For example,

if p > 4 then 5p > 20 and
p

5
>
4
5

(iii) When multiplying or dividing both sides of an
inequality by a negative quantity, say −3, the
inequality is reversed. For example,

if p > 1 then − 3p < −3 and
p

−3 <
1

−3
(Note > has changed to < in each example.)

To solve an inequality means finding all the values of
the variable for which the inequality is true.

Higher Engineering Mathematics. 978-1-138-67357-1, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.
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Knowledgeof simple equations and quadratic equations
is needed in this chapter.

5.2 Simple inequalities

The solution of some simple inequalities, using only
the rules given in section 5.1, is demonstrated in the
following worked problems.

Problem 1. Solve the following inequalities:
(a) 3+ x > 7 (b) 3t < 6

(c) z − 2≥ 5 (d)
p

3
≤ 2

(a) Subtracting 3 from both sides of the inequality:
3+ x > 7 gives:

3+ x − 3> 7− 3, i.e. x> 4
Hence, all values of x greater than 4 satisfy the
inequality.

(b) Dividing both sides of the inequality: 3t < 6 by 3
gives:

3t
3

<
6
3
, i.e. t < 2

Hence, all values of t less than 2 satisfy the
inequality.

(c) Adding 2 to both sides of the inequality z − 2≥ 5
gives:

z − 2+ 2≥ 5+ 2, i.e. z ≥ 7
Hence, all values of z greater than or equal to 7
satisfy the inequality.

(d) Multiplying both sides of the inequality
p

3
≤ 2 by

3 gives:

(3)
p

3
≤ (3)2, i.e. p≤ 6

Hence, all values ofp less than or equal to 6 satisfy
the inequality.

Problem 2. Solve the inequality: 4x + 1> x + 5

Subtracting 1 from both sides of the inequality:
4x + 1> x + 5 gives:

4x > x + 4
Subtracting x from both sides of the inequality:
4x > x + 4 gives:

3x > 4

Dividing both sides of the inequality: 3x > 4 by 3 gives:

x>
4
3

Hence all values of x greater than
4
3
satisfy the

inequality:

4x + 1> x + 5

Problem 3. Solve the inequality: 3− 4t ≤ 8+ t

Subtracting 3 from both sides of the inequality:
3− 4t ≤ 8+ t gives:

−4t ≤ 5+ t

Subtracting t from both sides of the inequality:
−4t ≤ 5+ t gives:

−5t ≤ 5
Dividing both sides of the inequality −5t ≤ 5 by −5
gives:

t ≥ − 1 (remembering to reverse the inequality)
Hence, all values of t greater than or equal to−1 satisfy
the inequality.

Now try the following Practice Exercise

Practice Exercise 20 Simple inequalities
(Answers on page 858)

Solve the following inequalities:

1. (a) 3t > 6 (b) 2x < 10

2. (a)
x

2
> 1.5 (b) x + 2≥ 5

3. (a) 4t − 1≤ 3 (b) 5− x ≥ −1

4. (a)
7− 2k
4

≤ 1 (b) 3z + 2> z + 3

5. (a) 5− 2y ≤ 9+ y (b) 1− 6x ≤ 5+ 2x

5.3 Inequalities involving a modulus

The modulus of a number is the size of the number,
regardless of sign. Vertical lines enclosing the number
denote a modulus.
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For example, |4| = 4 and | − 4| = 4 (the modulus of a
number is never negative),
The inequality: |t| < 1 means that all numbers whose
actual size, regardless of sign, is less than 1, i.e. any
value between−1 and +1
Thus |t | < 1 means −1< t < 1
Similarly, |x| > 3 means all numbers whose actual size,
regardless of sign, is greater than 3, i.e. any value greater
than 3 and any value less than −3
Thus |x | > 3 means x> 3 and x< −3
Inequalities involving a modulus are demonstrated in
the following worked problems.

Problem 4. Solve the following inequality:
|3x + 1| < 4

Since |3x + 1| < 4 then −4< 3x + 1< 4

Now −4< 3x + 1 becomes−5< 3x,

i.e. −5
3

< x and 3x + 1< 4 becomes 3x < 3,

i.e. x< 1

Hence, these two results together become − 5
3

< x< 1
andmean that the inequality |3x + 1| < 4 is satisfied for

any value of x greater than− 5
3
but less than 1

Problem 5. Solve the inequality: |1+ 2t| ≤ 5

Since |1+ 2t| ≤ 5 then −5≤ 1+ 2t ≤ 5
Now −5≤ 1+ 2t becomes −6≤ 2t , i.e. −3≤ t

and 1+ 2t ≤ 5 becomes 2t ≤ 4 i.e. t ≤ 2
Hence, these two results together become:−3≤ t ≤ 2

Problem 6. Solve the inequality: |3z − 4| > 2

|3z − 4| > 2 means 3z − 4> 2 and 3z − 4< −2,
i.e. 3z > 6 and 3z < 2,

i.e. the inequality: |3z − 4| > 2 is satisfied when

z> 2 and z <
2
3

Now try the following Practice Exercise

Practice Exercise 21 Inequalities involving
a modulus (Answers on page 858)

Solve the following inequalities:

1. |t + 1| < 4
2. |y + 3| ≤ 2
3. |2x − 1| < 4
4. |3t − 5| > 4
5. |1− k| ≥ 3

5.4 Inequalities involving quotients

If
p

q
> 0 then

p

q
must be a positive value.

For
p

q
to be positive, either p is positive and q is

positive or p is negative and q is negative.

i.e.
+
+ = + and −

− = +

If
p

q
< 0 then

p

q
must be a negative value.

For
p

q
to be negative, either p is positive and q is

negative or p is negative and q is positive.

i.e.
+
− = − and −

− = −

This reasoning is usedwhen solving inequalities involv-
ing quotients, as demonstrated in the following worked
problems.

Problem 7. Solve the inequality:
t + 1
3t − 6 > 0

Since
t + 1
3t − 6 > 0 then

t + 1
3t − 6 must be positive.

For
t + 1
3t − 6 to be positive,
either (i) t + 1> 0 and 3t − 6> 0

or (ii) t + 1< 0 and 3t − 6< 0

(i) If t + 1> 0 then t > −1 and if 3t − 6> 0 then
3t > 6 and t > 2

Download more at Learnclax.com



Se
ct

io
n

A
46 Higher Engineering Mathematics

Both of the inequalities t > −1 and t > 2 are only
true when t > 2,

i.e. the fraction
t + 1
3t − 6 is positive when t> 2

(ii) If t + 1< 0 then t < −1 and if 3t − 6< 0 then
3t < 6 and t < 2
Both of the inequalities t < −1 and t < 2 are only
true when t < −1,

i.e. the fraction
t + 1
3t − 6 is positive when t < − 1

Summarising,
t + 1
3t − 6 > 0 when t > 2 or t < − 1

Problem 8. Solve the inequality:
2x + 3
x + 2 ≤ 1

Since
2x + 3
x + 2 ≤ 1 then 2x + 3

x + 2 − 1≤ 0

i.e.
2x + 3
x + 2 − x + 2

x + 2 ≤ 0,

i.e.
2x + 3− (x + 2)

x + 2 ≤ 0 or x + 1
x + 2 ≤ 0

For
x + 1
x + 2 to be negative or zero,

either (i) x + 1≤ 0 and x + 2> 0

or (ii) x + 1≥ 0 and x + 2< 0

(i) If x + 1≤ 0 then x ≤ −1 and if x + 2> 0 then
x > −2
(Note that > is used for the denominator, not ≥;
a zero denominator gives a value for the fraction
which is impossible to evaluate.)

Hence, the inequality
x + 1
x + 2 ≤ 0 is true when x

is greater than −2 and less than or equal to −1,
which may be written as −2< x≤ − 1

(ii) If x + 1≥ 0 then x ≥ −1 and if x + 2< 0 then
x < −2
It is not possible to satisfy both x ≥ −1 and x <

−2 thus no values of x satisfies (ii).

Summarising,
2x + 3
x + 2 ≤ 1 when−2< x≤ − 1

Now try the following Practice Exercise

Practice Exercise 22 Inequalities involving
quotients (Answers on page 858)

Solve the following inequalities:

1.
x + 4
6− 2x ≥ 0

2.
2t + 4
t − 5 > 1

3.
3z − 4
z + 5 ≤ 2

4.
2− x

x + 3 ≥ 4

5.5 Inequalities involving square
functions

The following two general rules applywhen inequalities
involve square functions:

(i) if x2 > k then x>
√
k or x< − √

k (1)

(ii) if x2 < k then− √
k< x<

√
k (2)

These rules are demonstrated in the following worked
problems.

Problem 9. Solve the inequality: t 2 > 9

Since t2 > 9 then t2− 9> 0, i.e. (t + 3)(t − 3) > 0 by
factorising
For (t + 3)(t − 3) to be positive,

either (i) (t + 3) > 0 and (t − 3) > 0

or (ii) (t + 3) < 0 and (t − 3) < 0
(i) If (t + 3) > 0 then t > −3 and if (t − 3) > 0 then

t > 3
Both of these are true only when t > 3

(ii) If (t + 3) < 0 then t < −3 and if (t − 3) < 0 then
t < 3
Both of these are true only when t < − 3

Summarising, t2 > 9 when t > 3 or t < − 3
This demonstrates the general rule:

if x2 > k then x>
√
k or x< − √

k (1)

Download more at Learnclax.com



Se
ct

io
n

A

Inequalities 47

Problem 10. Solve the inequality: x 2 > 4

From the general rule stated in equation (1):
if x2 > 4 then x >

√
4 or x < −√

4

i.e. the inequality: x2 > 4 is satisfied when x> 2 or
x< − 2

Problem 11. Solve the inequality: (2z + 1)2 > 9

From equation (1), if (2z + 1)2 > 9 then
2z + 1>

√
9 or 2z + 1< −

√
9

i.e. 2z + 1> 3 or 2z + 1< −3
i.e. 2z > 2 or 2z < −4
i.e. z > 1 or z < − 2

Problem 12. Solve the inequality: t 2 < 9

Since t2 < 9 then t2 − 9< 0, i.e. (t + 3)(t − 3) < 0 by
factorising. For (t + 3)(t − 3) to be negative,

either (i) (t + 3) > 0 and (t − 3) < 0
or (ii) (t + 3) < 0 and (t − 3) > 0

(i) If (t + 3) > 0 then t > −3 and if (t − 3) < 0 then
t < 3
Hence (i) is satisfiedwhen t > −3 and t < 3which
may be written as: −3< t < 3

(ii) If (t + 3) < 0 then t < −3 and if (t − 3) > 0 then
t > 3
It is not possible to satisfy both t < −3 and t > 3,
thus no values of t satisfies (ii).

Summarising, t2 < 9 when −3< t < 3 which means
that all values of t between −3 and +3 will satisfy the
inequality.
This demonstrates the general rule:

if x2 < k then − √
k< x<

√
k (2)

Problem 13. Solve the inequality: x 2 < 4

From the general rule stated in equation (2):
if x2 < 4 then −√

4< x <
√
4

i.e. the inequality: x2 < 4 is satisfied when:

−2< x< 2

Problem 14. Solve the inequality: (y − 3)2 ≤ 16

From equation (2),−√
16≤ (y − 3) ≤ √

16

i.e. −4≤ (y − 3) ≤ 4
from which, 3− 4≤ y ≤ 4+ 3,
i.e. −1≤ y≤ 7

Now try the following Practice Exercise

Practice Exercise 23 Inequalities involving
square functions (Answers on page 858)

Solve the following inequalities:

1. z2 > 16

2. z2 < 16

3. 2x2 ≥ 6

4. 3k2− 2≤ 10

5. (t − 1)2 ≤ 36

6. (t − 1)2 ≥ 36

7. 7− 3y2 ≤ −5

8. (4k + 5)2 > 9

5.6 Quadratic inequalities

Inequalities involving quadratic expressions are solved
using either factorisation or ‘completing the square’.
For example,

x2− 2x − 3 is factorised as (x + 1)(x − 3)
and 6x2+ 7x − 5 is factorised as (2x − 1)(3x + 5)
If a quadratic expression does not factorise, then the
technique of ‘completing the square’ is used. In general,
the procedure for x 2+ bx + c is:

x2+ bx + c ≡
(

x + b

2

)2
+ c −

(
b

2

)2

For example,x2+ 4x − 7does not factorise; completing
the square gives:

x2+ 4x − 7≡ (x + 2)2− 7− 22 ≡ (x + 2)2− 11
Similarly,

x2− 6x − 5≡ (x − 3)2− 5− 32 ≡ (x − 3)2− 14
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Solving quadratic inequalities is demonstrated in the
following worked problems.

Problem 15. Solve the inequality:
x2+ 2x − 3> 0

Since x2+ 2x − 3> 0 then (x − 1)(x + 3) > 0 by fac-
torising. For the product (x − 1)(x + 3) to be positive,

either (i) (x − 1) > 0 and (x + 3) > 0

or (ii) (x − 1) < 0 and (x + 3) < 0

(i) Since (x − 1) > 0 then x > 1 and since (x + 3) >

0 then x > −3
Both of these inequalities are satisfied only when
x> 1

(ii) Since (x − 1) < 0 then x < 1 and since (x + 3) <

0 then x < −3
Both of these inequalities are satisfied only when
x< − 3

Summarising, x2+ 2x − 3> 0 is satisfied when either
x> 1 or x< − 3

Problem 16. Solve the inequality:
t2− 2t − 8< 0

Since t2 − 2t − 8< 0 then (t − 4)(t + 2) < 0 by
factorising.
For the product (t − 4)(t + 2) to be negative,

either (i) (t − 4) > 0 and (t + 2) < 0

or (ii) (t − 4) < 0 and (t + 2) > 0

(i) Since (t − 4) > 0 then t > 4 and since (t + 2) < 0
then t < −2
It is not possible to satisfy both t > 4 and t < −2,
thus no values of t satisfies the inequality (i)

(ii) Since (t − 4) < 0 then t < 4 and since (t + 2) > 0
then t > −2
Hence, (ii) is satisfied when−2< t < 4

Summarising, t2− 2t − 8< 0 is satisfied when
−2< t < 4

Problem 17. Solve the inequality:
x2+ 6x + 3< 0

x2+ 6x + 3 does not factorise; completing the square
gives:

x2+ 6x + 3≡ (x + 3)2+ 3− 32

≡ (x + 3)2− 6
The inequality thus becomes: (x + 3)2− 6< 0 or
(x + 3)2 < 6
From equation (2),−√

6< (x + 3) <
√
6

from which, (−√
6− 3) < x < (

√
6− 3)

Hence, x2+ 6x + 3< 0 is satisfied when

−5.45< x< − 0.55 correct to 2 decimal places.

Problem 18. Solve the inequality:
y2− 8y − 10≥ 0

y2− 8y − 10 does not factorise; completing the square
gives:

y2− 8y − 10≡ (y − 4)2− 10− 42

≡ (y − 4)2− 26
The inequality thus becomes: (y − 4)2− 26≥ 0 or
(y − 4)2 ≥ 26
From equation (1), (y − 4) ≥ √

26 or (y − 4) ≤ −√
26

from which, y≥ 4+ √
26 or y≤ 4− √

26

Hence, y2− 8y − 10≥ 0 is satisfied when y≥ 9.10 or
y ≤ −1.10 correct to 2 decimal places.

Now try the following Practice Exercise

Practice Exercise 24 Quadratic inequalities
(Answers on page 858)

Solve the following inequalities:

1. x2− x − 6> 0

2. t2+ 2t − 8≤ 0
3. 2x2+ 3x − 2< 0

4. y2− y − 20≥ 0
5. z2+ 4z + 4≤ 4
6. x2+ 6x + 6≤ 0
7. t2− 4t − 7≥ 0
8. k2+ k − 3≥ 0

For fully worked solutions to each of the problems in Practice Exercises 20 to 24 in this chapter,
go to the website:

www.routledge.com/cw/bird
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This Revision Test covers the material contained in Chapters 1 to 5. The marks for each question are shown in
brackets at the end of each question.

1. Factorise x3+4x2+x − 6 using the factor theo-
rem. Hence solve the equation

x3+4x2+x −6=0 (6)

2. Use the remainder theorem to find the remainder
when 2x3+x2−7x−6 is divided by
(a) (x −2) (b) (x+1)
Hence factorise the cubic expression (8)

3. Simplify
6x2+7x−5
2x−1 by dividing out (4)

4. Resolve the following into partial fractions

(a)
x − 11

x2− x − 2 (b)
3− x

(x2+ 3)(x + 3)

(c)
x3− 6x + 9
x2+ x − 2 (25)

5. Evaluate, correct to 3 decimal places,

5e−0.982

3 ln0.0173
(2)

6. Solve the following equations, each correct to 4
significant figures:
(a) lnx = 2.40 (b) 3x−1 = 5x−2

(c) 5= 8(1− e− x
2 ) (10)

7. (a) The pressurep at heighth aboveground level is
given by: p=p0e−kh where p0 is the pressure
at ground level and k is a constant. When p0

is 101 kilopascals and the pressure at a height
of 1500m is 100 kilopascals, determine the
value of k.

(b) Sketch a graph of p against h (p the vertical
axis and h the horizontal axis) for values of
height from zero to 12000m when p0 is 101
kilopascals.

(c) If pressure p = 95kPa, ground-level pressure
p0 = 101kPa, constant k = 5× 10−6, deter-
mine the height above ground level, h, in
kilometres correct to 2 decimal places. (13)

8. Solve the following equations:
(a) log

(
x2+ 8)− log(2x) = log3

(b) lnx + ln(x –3) = ln6x – ln(x –2) (13)

9. If θf − θi = R

J
ln

(
U2

U1

)

find the value of U2

given that θf = 3.5, θi = 2.5, R = 0.315, J = 0.4,
U1 = 50 (6)

10. Solve, correct to 4 significant figures:
(a) 13e2x−1 = 7ex

(b) ln (x + 1)2 = ln(x + 1)– ln(x + 2) + 2 (15)

11. Solve the following inequalities:

(a) 2− 5x ≤ 9+ 2x (b) |3+ 2t| ≤ 6

(c)
x − 1
3x + 5 > 0 (d) (3t + 2)2 > 16

(e) 2x2− x − 3< 0 (18)

For lecturers/instructors/teachers, fully worked solutions to each of the problems in Revision Test 1,
together with a full marking scheme, are available at the website:

www.routledge.com/cw/bird

Download more at Learnclax.com

http://www.routledge.com/cw/bird


Chapter 6

Arithmetic and geometric
progressions

Why it is important to understand: Arithmetic and geometric progressions
Number sequences are widely used in engineering applications, including computer data structure and
sorting algorithms, financial engineering, audio compression, and architectural engineering. Thanks to
engineers, robots have migrated from factory shop floors as industrial manipulators, to outer space as
interplanetary explorers, hospitals as minimally invasive surgical assistants, homes as vacuum cleaners
and lawn mowers, and battlefields as unmanned air, underwater, and ground vehicles. Arithmetic pro-
gressions are used in simulation engineering and in the reproductive cycle of bacteria. Some uses of APs
in daily life include uniform increase in speed at regular intervals, completing patterns of objects, calcu-
lating simple interest, speed of an aircraft, increase or decrease in the costs of goods, sales and production,
and so on. GPs are used in compound interest and the range of speeds on a drilling machine. In fact, GPs
are used throughout mathematics, and they have many important applications in physics, engineering,
biology, economics, computer science, queuing theory, and finance.

At the end of this chapter, you should be able to:

• calculate the nth term of an AP
• calculate the sum of n terms of an AP
• calculate the nth term of a GP
• calculate the sum of n terms of a GP
• calculate the sum to infinity of a GP

6.1 Arithmetic progressions

When a sequence has a constant difference between
successive terms it is called an arithmetic progression
(often abbreviated to AP).
Examples include:

(i) 1, 4, 7, 10, 13, . . .where the common difference
is 3 and

(ii) a, a+d , a+2d , a+3d,. . . where the common
difference is d .

General expression for the nth term of an AP
If the first term of an AP is ‘a’ and the common
difference is ‘d’ then

the nth term is: a + (n− 1)d
In example (i) above, the seventh term is given by
1+ (7−1)3=19, which may be readily checked.

Higher Engineering Mathematics. 978-1-138-67357-1, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.
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Sum of n terms of an AP
The sum S of an AP can be obtained by multiplying the
average of all the terms by the number of terms.

The average of all the terms= a+ l

2
, where a is the first

term and l is the last term, i.e. l=a+ (n−1)d , for n

terms.
Hence the sum of n terms,

Sn = n

(
a + l

2

)

= n

2
{a + [a + (n− 1)d]}

i.e. Sn = n

2
[2a + (n− 1)d]

For example, the sumof thefirst seven terms of the series
1, 4, 7, 10, 13, . . . is given by

S7 = 7
2
[2(1) + (7− 1)3], since a = 1 and d = 3

= 7
2
[2+ 18]= 7

2
[20]= 70

6.2 Worked problems on arithmetic
progressions

Problem 1. Determine (a) the ninth and (b) the
sixteenth term of the series 2, 7, 12, 17, . . .

2, 7, 12, 17, . . . is an arithmetic progression with a
common difference, d , of 5

(a) The nth term of an AP is given by a+(n−1)d
Since the first term a=2, d =5 and n=9 then the
ninth term is:
2+(9−1)5=2+(8)(5) = 2+40=42

(b) The sixteenth term is:
2+(16−1)5=2+(15)(5)= 2+75=77

Problem 2. The sixth term of an AP is 17 and the
thirteenth term is 38. Determine the nineteenth
term.

The nth term of an AP is a+(n−1)d
The sixth term is: a + 5d = 17 (1)

The nineteenth term is: a + 12d= 38 (2)

Equation (2)−equation (1) gives: 7d =21, fromwhich,
d = 21

7
=3

Substituting in equation (1) gives: a+15=17, from
which, a=2
Hence the nineteenth term is:
a + (n− 1)d = 2+ (19− 1)3= 2+ (18)(3)

= 2+ 54= 56

Problem 3. Determine the number of the term
whose value is 22 in the series 2 12 , 4, 5

1
2 ,7, . . .

2 12 ,4,5
1
2 ,7, . . . is an AP where a=2 12 and

d =112
Hence if the nth term is 22 then: a+(n−1)d =22
i.e. 2 12 +(n−1)(112

) =22
(n−1)(112

) =22−2 12 =19 12

n− 1= 1912
1 12

= 13 and n = 13+ 1= 14

i.e. the fourteenth term of the AP is 22

Problem 4. Find the sum of the first 12 terms of
the series 5, 9, 13, 17, . . .

5, 9, 13, 17, . . . is an APwhere a=5 and d =4. The sum
of n terms of an AP,

Sn = n

2
[2a + (n− 1)d]

Hence the sum of the first 12 terms,

S12 = 12
2
[2(5) + (12− 1)4]

= 6[10+ 44]= 6(54) = 324

Problem 5. Find the sum of the first 21 terms of
the series 3.5, 4.1, 4.7, 5.3, . . .

3.5, 4.1, 4.7, 5.3, . . . is an AP where a=3.5 and d =0.6
The sum of the first 21 terms,

S21 = 21
2
[2a + (n− 1)d]

= 21
2
[2(3.5) + (21− 1)0.6]= 21

2
[7+ 12]

= 21
2

(19) = 399
2

= 199.5
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Now try the following Practice Exercise

Practice Exercise 25 Arithmetic
progressions (Answers on page 858)

1. Find the eleventh term of the series 8, 14, 20,
26, . . .

2. Find the seventeenth term of the series 11,
10.7, 10.4, 10.1, . . .

3. The seventh term of a series is 29 and the
eleventh term is 54. Determine the sixteenth
term.

4. Find the fifteenth term of an arithmetic pro-
gression of which the first term is 2.5 and the
tenth term is 16.

5. Determine the number of the termwhich is 29
in the series 7, 9.2, 11.4, 13.6, . . .

6. Find the sum of the first 11 terms of the series
4, 7, 10, 13, . . .

7. Determine the sum of the series 6.5, 8.0, 9.5,
11.0, . . . , 32

6.3 Further worked problems on
arithmetic progressions

Problem 6. The sum of seven terms of an AP is
35 and the common difference is 1.2. Determine the
first term of the series.

n=7, d =1.2 and S7=35
Since the sum of n terms of an AP is given by

Sn = n

2
[2a + (n− 1)d], then

35= 7
2
[2a + (7− 1)1.2]= 7

2
[2a + 7.2]

Hence
35× 2
7

= 2a + 7.2
10= 2a + 7.2

Thus 2a = 10− 7.2= 2.8,
from which a = 2.8

2
= 1.4

i.e. the first term, a=1.4

Problem 7. Three numbers are in arithmetic
progression. Their sum is 15 and their product is 80.
Determine the three numbers.

Let the three numbers be (a−d), a and (a+d)

Then (a−d)+a+(a+d)=15, i.e. 3a=15, from
which, a=5
Also, a(a−d)(a+d)=80, i.e. a(a2−d2)=80
Since a = 5,5(52− d2) = 80

125− 5d2 = 80
125− 80= 5d2

45= 5d2

from which, d2= 45
5

=9. Hence d =√
9=±3.

The three numbers are thus (5− 3), 5 and (5+ 3), i.e.
2, 5 and 8.

Problem 8. Find the sum of all the numbers
between 0 and 207 which are exactly divisible by 3.

The series 3, 6, 9, 12, . . . ,207 is an AP whose first term
a=3 and common difference d =3
The last term is a + (n− 1)d = 207
i.e. 3+ (n− 1)3= 207,

from which (n− 1) = 207− 3
3

= 68
Hence n = 68+ 1= 69
The sum of all 69 terms is given by

S69 = n

2
[2a + (n− 1)d]

= 69
2
[2(3) + (69− 1)3]

= 69
2
[6+ 204]= 69

2
(210) = 7245

Problem 9. The first, twelfth and last term of an
arithmetic progression are 4, 31 12 and 376

1
2 ,

respectively. Determine (a) the number of terms in
the series, (b) the sum of all the terms and (c) the
80th term.

(a) Let the AP be a,a+d,a+2d , . . . , a+(n−1)d ,
where a=4
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The twelfth term is: a+(12−1)d =31 12

i.e. 4+ 11d = 31 12
from which, 11d = 31 12 − 4= 27 12

Hence d = 27
1
2

11
=2 12

The last term is a + (n− 1)d

i.e. 4+ (n− 1) (
2 12

) = 376 12

(n− 1) = 376 12 − 4
2 12

= 372 12
2 12

= 149

Hence the number of terms in the series,
n=149+1=150

(b) Sum of all the terms,

S150 = n

2
[2a + (n− 1)d]

= 150
2

[

2(4) + (150− 1)
(

2
1
2

)]

= 75
[

8+ (149)
(

2
1
2

)]

= 85[8+ 372.5]

= 75(380.5) = 28 537 1
2

(c) The 80th term is:

a + (n− 1)d = 4+ (80− 1) (
2 12

)

= 4+ (79)
(
2 12

)

= 4+ 197.5= 201 12

Problem 10. An oil company bores a hole 80m
deep. Estimate the cost of boring if the cost is £30
for drilling the first metre with an increase in cost of
£2 per metre for each succeeding metre.

The series is: 30,32,34, . . . to 80 terms, i.e. a = 30,
d = 2 and n = 80

Thus, total cost,

Sn = n

2

[
2a + (n− 1)d

]

= 80
2
[2(30) + (80− 1)(2)]

= 40[60+ 158]= 40(218) = £8720

Now try the following Practice Exercise

Practice Exercise 26 Arithmetic
progressions (Answers on page 858)

1. The sum of 15 terms of an arithmetic progres-
sion is 202.5 and the common difference is 2.
Find the first term of the series.

2. Three numbers are in arithmetic progression.
Their sum is 9 and their product is 20.25.
Determine the three numbers.

3. Find the sum of all the numbers between 5 and
250 which are exactly divisible by 4

4. Find the number of terms of the series 5, 8,
11, . . . of which the sum is 1025

5. Insert four terms between 5 and 22.5 to form
an arithmetic progression.

6. The first, tenth and last terms of an arithmetic
progression are 9, 40.5 and425.5, respectively.
Find (a) the number of terms, (b) the sum of
all the terms and (c) the 70th term.

7. On commencing employment a man is paid
a salary of £16 000per annum and receives
annual increments of £480. Determine his
salary in the ninth year and calculate the total
he will have received in the first 12years.

8. An oil company bores a hole 120mdeep. Esti-
mate the cost of boring if the cost is £70 for
drilling the first metre with an increase in cost
of £3per metre for each succeeding metre.

6.4 Geometric progressions

When a sequence has a constant ratio between succes-
sive terms it is called a geometric progression (often
abbreviated to GP). The constant is called the common
ratio, r .
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Examples include

(i) 1,2,4,8, . . . where the common ratio is 2 and

(ii) a,ar,ar2,ar3, . . . where the common ratio is r .

General expression for the nth term of a GP
If the first term of a GP is a and the common ratio is r ,
then

the nth term is: arn−1

which can be readily checked from the above examples.

For example, the eighth term of the GP 1, 2, 4, 8, . . . is
(1)(2)7=128, since a=1 and r =2
Sum of n terms of a GP
Let a GP be a, ar , ar2, ar3, . . . , arn−1
then the sum of n terms,

Sn = a + ar + ar2+ ar3+ ·· · + arn−1 · · · (1)

Multiplying throughout by r gives:
rSn = ar + ar2+ ar3+ ar4

+ ·· · + arn−1+ arn + ·· · (2)

Subtracting equation (2) from equation (1) gives:

Sn − rSn = a − arn

i.e. Sn(1− r) = a(1− rn)

Thus the sum of n terms, Sn = a(1−rn)
(1 − r )

, which is valid
when r <1
Subtracting equation (1) from equation (2) gives

Sn = a(rn − 1)
(r −1) which is valid when r > 1

For example, the sum of the first eight terms of the GP

1, 2, 4, 8, 16, . . . is given by S8= 1(2
8−1)

(2−1) , since a=1
and r =2

i.e. S8 = 1(256− 1)
1

= 255

Sum to infinity of a GP

When the common ratio r of a GP is less than unity, the

sum of n terms, Sn = a(1−rn)

(1−r)
, which may be written

as Sn = a

(1−r)
− arn

(1−r)

Since r <1, rn becomes less as n increases, i.e. rn →0
as n→∞

Hence
arn

(1−r)
→0 as n→∞. Thus Sn → a

(1−r)
as

n→∞
The quantity

a

(1−r)
is called the sum to infinity, S∞,

and is the limiting value of the sum of an infinite number
of terms,

i.e. S∞ = a

(1− r)
which is valid when −1<r <1

Convergence means that the values of the terms must
get progressively smaller and the sum of the terms must
reach a limiting value.

For example, the function y = 1
x
converges to zero as x

increases.

Similarly, the series 1+ 1
2

+ 1
4

+ 1
8

+ . . . is convergent
since the value of the terms is getting smaller and the
sum of the terms is approaching a limiting value of 2,

i.e. the sum to infinity, S∞ = a

1− r
= 1

1− 1
2

= 2

6.5 Worked problems on geometric
progressions

Problem 11. Determine the tenth term of the
series 3, 6, 12, 24, . . .

3, 6, 12, 24, . . . is a geometric progression with a com-
mon ratio r of 2. The nth term of a GP is ar n−1,
where a is the first term. Hence the tenth term is:
(3)(2)10−1=(3)(2)9=3(512)=1536

Problem 12. Find the sum of the first seven terms
of the series, 12 , 1

1
2 , 4

1
2 , 13

1
2 , . . .

1
2 , 1

1
2 , 4

1
2 , 13

1
2 , . . . is a GP with a common ratio r =3

The sum of n terms, Sn = a(rn −1)
(r −1)

Hence S7=
1
2 (3

7−1)
(3−1) =

1
2 (2187−1)

2
=5461

2

Problem 13. The first term of a geometric
progression is 12 and the fifth term is 55. Determine
the eighth term and the eleventh term.
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The fifth term is given by ar 4=55, where the first term
a=12

Hence r4 = 55
a

= 55
12

and r = 4

√(
55
12

)

= 1.4631719 . . .

The eighth term is ar 7=(12)(1.4631719 . . .)7=172.3
The eleventh term is ar 10=(12)(1.4631719 . . .)10
= 539.7

Problem 14. Which term of the series 2187, 729,
243, . . . is 19 ?

2187, 729, 243, . . . is a GP with a common ratio r = 1
3

and first term a=2187
The nth term of a GP is given by: ar n−1

Hence
1
9

= (2187)
(1
3
)n−1

from which
(
1
3

)n−1
= 1

(9)(2187)
= 1
3237

= 1
39

=
(
1
3

)9

Thus (n−1)=9, from which, n=9+1=10
i.e. 19 is the tenth term of the GP.

Problem 15. Find the sum of the first nine terms
of the series 72.0, 57.6, 46.08, . . .

The common ratio, r = ar

a
= 57.6
72.0

=0.8
(

also
ar2

ar
= 46.08
57.6

= 0.8
)

The sum of nine terms,

S9 = a(1− rn)

(1− r)
= 72.0(1− 0.89)

(1− 0.8)

= 72.0(1− 0.1342)
0.2

= 311.7

Problem 16. Find the sum to infinity of the
series 3, 1, 13 , . . .

3, 1, 13 , . . . is a GP of common ratio, r = 1
3

The sum to infinity,

S∞ = a

1− r
= 3
1− 1

3
= 3

2
3

= 9
2

= 41
2

Now try the following Practice Exercise

Practice Exercise 27 Geometric
progressions (Answers on page 858)

1. Find the tenth term of the series 5, 10, 20,
40, . . .

2. Determine the sum of the first seven terms of
the series 14 ,

3
4 , 2

1
4 , 6

3
4 , . . .

3. The first term of a geometric progression is 4
and the sixth term is 128.Determine the eighth
and eleventh terms.

4. Find the sum of the first seven terms of the
series 2, 5, 12 12 , . . . (correct to 4 significant
figures).

5. Determine the sum to infinity of the series 4,
2, 1, . . .

6. Find the sum to infinity of the series 2 12 ,−114 ,
5
8 , . . .

6.6 Further worked problems on
geometric progressions

Problem 17. In a geometric progression the sixth
term is eight times the third term and the sum of the
seventh and eighth terms is 192. Determine (a) the
common ratio, (b) the first term, and (c) the sum of
the fifth to eleventh terms, inclusive.

(a) Let the GP be a, ar , ar2, ar3, . . . ,arn−1
The third term=ar 2 and the sixth term=ar 5

The sixth term is eight times the third.
Hence ar5=8ar2 from which, r 3=8, r = 3√8
i.e. the common ratio r =2

(b) The sum of the seventh and eighth terms is 192.
Hence ar6+ar7=192
Since r = 2, then 64a + 128a = 192

192a = 192,
from which, a, the first term, =1
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(c) The sum of the fifth to eleventh terms (inclusive)
is given by:

S11− S4 = a(r11− 1)
(r − 1) − a(r4− 1)

(r − 1)

= 1(211− 1)
(2− 1) − 1(24− 1)

(2− 1)
= (211− 1) − (24− 1)
= 211− 24 = 2048− 16= 2032

Problem 18. A hire tool firm finds that their
net return from hiring tools is decreasing by
10% per annum. If their net gain on a certain tool
this year is £400, find the possible total of all future
profits from this tool (assuming the tool lasts
forever).

The net gain forms a series:

£400+ £400× 0.9+ £400× 0.92+ ·· · ,

which is a GP with a=400 and r =0.9.
The sum to infinity,

S∞ = a

(1− r)
= 400

(1− 0.9)
= £4000= total future profits

Problem 19. If £100 is invested at compound
interest of 8% per annum, determine (a) the value
after ten years, (b) the time, correct to the nearest
year, it takes to reach more than £300.

(a) Let the GP be a, ar , ar2, . . . , arn

The first term a = £100
The common ratio r = 1.08
Hence the second term is

ar = (100)(1.08) = £108,

which is the value after oneyear,
the third term is

ar2 = (100)(1.08)2 = £116.64,

which is the value after twoyears, and so on.
Thus the value after tenyears

= ar10 = (100)(1.08)10 = £215.89

(b) When £300 has been reached, 300=ar n

i.e. 300= 100(1.08)n

and 3= (1.08)n

Taking logarithms to base 10 of both sides gives:

lg3= lg(1.08)n = n lg(1.08),

by the laws of logarithms

from which, n= lg3
lg1.08

=14.3

Hence it will take 15years to reach more than
£300.

Problem 20. A drilling machine is to have six
speeds ranging from 50 rev/min to 750 rev/min. If
the speeds form a geometric progression determine
their values, each correct to the nearest whole
number.

Let the GP of n terms be given by a, ar , ar 2, . . . , arn−1.
The first term a=50rev/min
The sixth term is given by ar 6−1, which is 750 rev/min,

i.e. ar5 = 750

from which r5 = 750
a

= 750
50

= 15

Thus the common ratio, r = 5√15=1.7188
The first term is a=50rev/min
the second term is ar =(50) (1.7188)=85.94,
the third term is ar2=(50) (1.7188)2=147.71,
the fourth term is ar 3=(50) (1.7188)3=253.89,
the fifth term is ar4=(50) (1.7188)4=436.39,
the sixth term is ar5=(50) (1.7188)5=750.06
Hence, correct to the nearest whole number, the
six speeds of the drilling machine are 50, 86, 148, 254,
436 and 750rev/min.

Now try the following Practice Exercise

Practice Exercise 28 Geometric
progressions (Answers on page 858)

1. In a geometric progression the fifth term is
nine times the third term and the sum of the
sixth and seventh terms is 1944. Determine
(a) the common ratio, (b) the first term and
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(c) the sum of the fourth to tenth terms
inclusive.

2. Which term of the series 3, 9, 27, . . . is
59 049?

3. The value of a lathe originally valued at
£3000 depreciates 15%per annum. Calculate
its value after 4 years. The machine is sold
when its value is less than £550. After how
many years is the lathe sold?

4. If the population ofGreat Britain is 55million
and is decreasing at 2.4%per annum, what
will be the population in five years’ time?

5. 100g of a radioactive substance disintegrates
at a rate of 3%per annum. How much of the
substance is left after 11years?

6. If £250 is invested at compound interest of
6%per annum, determine (a) the value after
15years, (b) the time, correct to the nearest
year, it takes to reach £750

7. A drilling machine is to have eight speeds
ranging from 100rev/min to 1000rev/min. If
the speeds form a geometric progression deter-
mine their values, each correct to the nearest
whole number.

For fully worked solutions to each of the problems in Practice Exercises 25 to 28 in this chapter,
go to the website:

www.routledge.com/cw/bird
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Chapter 7

The binomial series

Why it is important to understand: The binomial series
There are many applications of the binomial theorem in every part of algebra, and in general with
permutations, combinations and probability. It is also used in atomic physics, where it is used to count
s, p, d and f orbitals. There are applications of the binomial series in financial mathematics to determine
the number of stock price paths that leads to a particular stock price at maturity.

At the end of this chapter, you should be able to:

• define a binomial expression
• use Pascal’s triangle to expand a binomial expression
• state the general binomial expansion of (a + x)n and (1+ x)n

• use the binomial series to expand expressions of the form (a + x)n for positive, negative and fractional values
of n

• determine the rth term of a binomial expansion
• use the binomial expansion with practical applications

7.1 Pascal’s triangle

A binomial expression is one which contains two
terms connected by a plus or minus sign. Thus (p+q),
(a + x)2, (2x + y)3 are examples of binomial expres-
sions. Expanding (a + x)n for integer values of n

from 0 to 6 gives the results as shown at the top of
page 59.

From these results the following patterns emerge:

(i) ‘a’ decreases in power moving from left to right.

(ii) ‘x’ increases in power moving from left to right.

(iii) The coefficients of each termof the expansions are
symmetrical about the middle coefficient when n

is even and symmetrical about the two middle
coefficients when n is odd.

Higher Engineering Mathematics. 978-1-138-67357-1, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.
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(a + x)0 = 1
(a + x)1 = a + x a + x

(a + x)2 = (a + x)(a + x) = a2+ 2ax + x2

(a + x)3 = (a + x)2(a + x) = a3+ 3a2x + 3ax2+ x3

(a + x)4 = (a + x)3(a + x) = a4+ 4a3x + 6a2x2+ 4ax3+ x4

(a + x)5 = (a + x)4(a + x) = a5+ 5a4x + 10a3x2+ 10a2x3+ 5ax4+ x5

(a + x)6 = (a + x)5(a + x) = a6+ 6a5x + 15a4x2+ 20a3x3+ 15a2x4+ 6ax5+ x6

(iv) The coefficients are shown separately in Table 7.1
and this arrangement is known as Pascal’s tri-
angle.∗ A coefficient of a term may be obtained
by adding the two adjacent coefficients immedi-
ately above in the previous row. This is shown
by the triangles in Table 7.1, where, for example,
1+ 3= 4, 10+ 5= 15, and so on.

(v) Pascal’s trianglemethod is used for expansions of
the form (a + x)n for integer values of n less than
about 8.

∗ Who was Pascal? Blaise Pascal (19 June 1623–19 August
1662) was a French polymath. A child prodigy, he wrote a
significant treatise on the subject of projective geometry at
the age of 16, and later corresponded with Pierre de Fermat
on probability theory, strongly influencing the development of
modern economics and social science. To find out more go to
www.routledge.com/cw/bird

Table 7.1

1
1

1

1

(a 1 x)0

(a 1 x)1

(a 1 x)2

(a 1 x)3

(a 1 x)4

(a 1 x)5

(a 1 x)6

3 3

44
5

6 615 1520

510 10
6

1
1

1
1

1

1
1

1
1

2

Problem 1. Use Pascal’s triangle method to
determine the expansion of (a + x)7

From Table 7.1, the row of Pascal’s triangle corres-
ponding to (a + x)6 is as shown in (1) below. Adding
adjacent coefficients gives the coefficients of (a + x)7

as shown in (2) below.

1 1

1 (1)

(2)

1 6 61515 20

7 721 2135 35

The first and last terms of the expansion of (a+x)7 are
a7 and x7, respectively. The powers of a decrease and
the powers of x increase moving from left to right.
Hence

(a + x)7 = a7+ 7a6x + 21a5x2+ 35a4x3

+35a3x4+ 21a2x5+ 7ax6+ x7

Problem 2. Determine, using Pascal’s triangle
method, the expansion of (2p − 3q)5

Comparing (2p − 3q)5 with (a + x)5 shows that
a = 2p and x = −3q
Using Pascal’s triangle method:

(a + x)5 = a5+ 5a4x + 10a3x2+ 10a2x3+ ·· ·

Download more at Learnclax.com

http://www.routledge.com/cw/bird


Se
ct

io
n

A
60 Higher Engineering Mathematics

Hence

(2p − 3q)5 = (2p)5+ 5(2p)4(−3q)

+ 10(2p)3(−3q)2

+ 10(2p)2(−3q)3

+ 5(2p)(−3q)4+ (−3q)5

i.e. (2p − 3q)5 = 32p5−240p4q +720p3q2

− 1080p2q3+810pq4−243q5

Now try the following Practice Exercise

Practice Exercise 29 Pascal’s triangle
(Answers on page 858)

1. Use Pascal’s triangle to expand (x − y)7

2. Expand (2a + 3b)5 using Pascal’s triangle.

7.2 The binomial series

The binomial series or binomial theorem is a formula
for raising a binomial expression to any power without
lengthymultiplication. The general binomial expansion
of (a + x)n is given by:

(a + x)n = an + nan−1x + n(n − 1)
2!

an−2x2

+ n(n− 1)(n − 2)
3!

an−3x3

+ ···

where 3! denotes 3×2×1 and is termed ‘factorial 3’.
With the binomial theorem, n may be a fraction, a
decimal fraction, or a positive or negative integer.
When n is a positive integer, the series is finite, i.e.,
it comes to an end; when n is a negative integer, or a
fraction, the series is infinite.
In the general expansion of (a+x)n it is noted that the

fourth term is:
n(n−1)(n−2)

3!
an−3x3. The number 3 is

very evident in this expression.
For any term in a binomial expansion, say the rth

term, (r −1) is very evident. It may therefore be rea-
soned that the rth term of the expansion (a+x)n is:

n(n−1)(n−2). . . to (r −1) terms
(r −1)! an−(r−1)xr−1

If a=1 in the binomial expansion of (a+x)n then:

(1+x)n =1+nx + n(n−1)
2!

x2

+ n(n−1)(n−2)
3!

x3+···

which is valid for−1<x <1
When x is small compared with 1 then:

(1+ x)n ≈ 1+ nx

7.3 Worked problems on the
binomial series

Problem 3. Use the binomial series to determine
the expansion of (2+x)7

The binomial expansion is given by:

(a + x)n = an + nan−1x + n(n− 1)
2!

an−2x2

+ n(n− 1)(n− 2)
3!

an−3x3+ ·· ·

When a=2 and n=7:
(2+ x)7=27+ 7(2)6x + (7)(6)

(2)(1)
(2)5x2

+ (7)(6)(5)
(3)(2)(1)

(2)4x3+ (7)(6)(5)(4)
(4)(3)(2)(1)

(2)3x4

+ (7)(6)(5)(4)(3)
(5)(4)(3)(2)(1)

(2)2x5

+ (7)(6)(5)(4)(3)(2)
(6)(5)(4)(3)(2)(1)

(2)x6

+ (7)(6)(5)(4)(3)(2)(1)
(7)(6)(5)(4)(3)(2)(1)

x7

i.e.(2+x)7=128+ 448x + 672x 2+ 560x3
+280x4+84x5+14x6+x7

Problem 4. Use the binomial series to determine
the expansion of (2a − 3b)5

From equation (1), the binomial expansion is given by:

(a + x)n = an + nan−1x + n(n− 1)
2!

an−2x2

+ n(n− 1)(n− 2)
3!

an−3x3+ ·· ·
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When a = 2a, x = −3b and n = 5:

(2a − 3b)5 = (2a)5+ 5(2a)4(−3b)

+ (5)(4)
(2)(1)

(2a)3(−3b)2

+ (5)(4)(3)
(3)(2)(1)

(2a)2(−3b)3

+ (5)(4)(3)(2)
(4)(3)(2)(1)

(2a)(−3b)4

+ (5)(4)(3)(2)(1)
(5)(4)(3)(2)(1)

(−3b)5

i.e. (2a − 3b)5= 32a5 −240a4b + 720a3b2
−1080a2b3+810ab4−243b5

Problem 5. Expand
(

c − 1
c

)5
using the binomial

series.

(

c − 1
c

)5
= c5+ 5c4

(

−1
c

)

+ (5)(4)
(2)(1)

c3
(

−1
c

)2

+ (5)(4)(3)
(3)(2)(1)

c2
(

−1
c

)3

+ (5)(4)(3)(2)
(4)(3)(2)(1)

c

(

−1
c

)4

+ (5)(4)(3)(2)(1)
(5)(4)(3)(2)(1)

(

−1
c

)5

i.e.
(

c− 1
c

)5
= c5−5c3+10c− 10

c
+ 5

c3
− 1

c5

Problem 6. Without fully expanding (3+ x)7,
determine the fifth term.

The rth term of the expansion (a+x)n is given by:
n(n− 1)(n− 2) . . . to (r − 1) terms

(r − 1)! an−(r−1)xr−1

Substituting n=7, a=3 and r −1=5−1=4 gives:
(7)(6)(5)(4)
(4)(3)(2)(1)

(3)7−4x4

i.e. the fifth term of (3+x)7=35(3)3x4=945x4

Problem 7. Find the middle term of
(

2p− 1
2q

)10

In the expansion of (a+x)10 there are 10+1, i.e. 11
terms.Hence themiddle term is the sixth.Using the gen-

eral expression for the rth termwhere a=2p, x =− 1
2q
,

n=10 and r −1=5 gives:

(10)(9)(8)(7)(6)
(5)(4)(3)(2)(1)

(2p)10–5
(

− 1
2q

)5

= 252(32p5)
(

− 1
32q5

)

Hence the middle term of
(

2p− 1
2q

)10
is −252p5

q5

Problem 8. Evaluate (1.002)9 using the binomial
theorem correct to (a) 3 decimal places and (b) 7
significant figures.

(1+ x)n = 1+ nx + n(n− 1)
2!

x2

+ n(n− 1)(n− 2)
3!

x3+ ·· ·

(1.002)9 = (1+ 0.002)9

Substituting x =0.002 and n=9 in the general expan-
sion for (1+x)n gives:

(1+ 0.002)9=1+ 9(0.002) + (9)(8)
(2)(1)

(0.002)2

+ (9)(8)(7)
(3)(2)(1)

(0.002)3+ ·· ·

=1+ 0.018+ 0.000144

+0.000000672+ ·· ·

=1.018144672 . . .

Hence(1.002)9=1.018, correct to 3 decimal places
=1.018145, correct to 7 significant

figures.

Problem 9. Evaluate (0.97)6 correct to 4 signi-
ficant figures using the binomial expansion.
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(0.97)6 is written as (1−0.03)6
Using the expansion of (1+x)n where n=6 and
x =−0.03 gives:

(1− 0.03)6=1+ 6(−0.03) + (6)(5)
(2)(1)

(−0.03)2

+ (6)(5)(4)
(3)(2)(1)

(−0.03)3

+ (6)(5)(4)(3)
(4)(3)(2)(1)

(−0.03)4+ ·· ·

=1− 0.18+ 0.0135− 0.00054
+0.00001215− ·· ·

≈0.83297215

i.e. (0.97)6=0.8330, correct to 4 significant
figures.

Problem 10. Determine the value of (3.039)4,
correct to 6 significant figures using the binomial
theorem.

(3.039)4 may be written in the form (1+x)n as:

(3.039)4=(3+ 0.039)4

=
[

3
(

1+ 0.039
3

)]4

=34(1+ 0.013)4

(1+ 0.013)4=1+ 4(0.013)

+ (4)(3)
(2)(1)

(0.013)2

+ (4)(3)(2)
(3)(2)(1)

(0.013)3+ ·· ·

=1+ 0.052+ 0.001014
+0.000008788+ ·· ·

=1.0530228
correct to 8 significant figures

Hence (3.039)4= 34(1.0530228)

= 85.2948, correct to 6 significant
figures.

Now try the following Practice Exercise

Practice Exercise 30 The binomial series
(Answers on page 859)

1. Use the binomial theorem to expand
(a+2x)4

2. Use the binomial theorem to expand (2−x)6

3. Expand (2x −3y)4

4. Determine the expansion of
(

2x+ 2
x

)5

5. Expand (p+2q)11 as far as the fifth term.

6. Determine the sixth term of
(
3p + q

3

)13

7. Determine the middle term of (2a−5b)8

8. Use the binomial theorem to determine, cor-
rect to 4 decimal places:

(a) (1.003)8 (b) (1.042)7

9. Use the binomial theorem to determine, cor-
rect to 5 significant figures:

(a) (0.98)7 (b) (2.01)9

10. Evaluate (4.044)6 correct to 2 decimal places.

7.4 Further worked problems on the
binomial series

Problem 11.
(a) Expand

1
(1+2x)3

in ascending powers of x as

far as the term in x3, using the binomial series.

(b) State the limits of x for which the expansion
is valid.

(a) Using the binomial expansion of (1+x)n, where
n=−3 and x is replaced by 2x gives:

1
(1+ 2x)3

=(1+ 2x)−3

=1+ (−3)(2x) + (−3)(−4)
2!

(2x)2

+ (−3)(−4)(−5)
3!

(2x)3+ ·· ·

=1−6x +24x2−80x3+···
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(b) The expansion is valid provided |2x|<1,

i.e. |x|< 1
2
or − 1

2
<x <

1
2

Problem 12.
(a) Expand

1
(4−x)2

in ascending powers of x as

far as the term in x3, using the binomial
theorem.

(b) What are the limits of x for which the expan-
sion in (a) is true?

(a)
1

(4− x)2
= 1

[
4
(
1− x

4

)]2 = 1

42
(
1− x

4

)2

= 1
16

(
1− x

4

)−2

Using the expansion of (1+x)n

1
(4− x)2

= 1
16

(
1− x

4

)−2

= 1
16

[

1+ (−2)
(
−x

4

)

+ (−2)(−3)
2!

(
−x

4

)2

+ (−2)(−3)(−4)
3!

(
−x

4

)3+ ·· ·
]

= 1
16

(

1+ x

2
+ 3x

2

16
+ x3

16
+···

)

(b) The expansion in (a) is true provided
∣
∣
∣
x

4

∣
∣
∣ <1,

i.e. |x|<4 or −4<x <4

Problem 13. Use the binomial theorem to expand√
4+x in ascending powers of x to four terms. Give

the limits of x for which the expansion is valid.

√
4+ x =

√[
4
(
1+ x

4

)]

=
√
4
√(
1+ x

4

)
= 2

(
1+ x

4

) 1
2

Using the expansion of (1+x)n,

2
(
1+ x

4

) 1
2

= 2
[

1+
(
1
2

)(x

4

)
+ (1/2)(−1/2)

2!

(x

4

)2

+ (1/2)(−1/2)(−3/2)
3!

(x

4

)3+ ·· ·
]

= 2
(

1+ x

8
− x2

128
+ x3

1024
− ·· ·

)

=2+ x

4
− x2

64
+ x3

512
−···

This is valid when
∣
∣
∣
x

4

∣
∣
∣<1,

i.e. |x|<4 or −4<x <4

Problem 14. Expand
1√

(1−2t) in ascending
powers of t as far as the term in t 3.

State the limits of t for which the expression
is valid.

1√
(1− 2t)

= (1− 2t)−
1
2

= 1+
(

−1
2

)

(−2t) + (−1/2)(−3/2)
2!

(−2t)2

+ (−1/2)(−3/2)(−5/2)
3!

(−2t)3+ ·· ·,

using the expansion for (1+ x)n

=1+ t + 3
2
t2+ 5

2
t3+···

The expression is valid when |2t|<1,

i.e. |t |< 1
2
or −1

2
<t <

1
2

Problem 15. Simplify
3√(1−3x)

√
(1+x)

(
1+ x

2

)3

given that powers of x above the first may be
neglected.

3√(1− 3x)
√

(1+ x)
(
1+ x

2

)3

= (1− 3x)
1
3 (1+ x)

1
2
(
1+ x

2

)−3

≈
[

1+
(
1
3

)

(−3x)

][

1+
(
1
2

)

(x)

][
1+ (−3)

(x

2

)]
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when expanded by the binomial theorem as far as the x

term only,

= (1− x)
(
1+ x

2

)(

1− 3x
2

)

=
(

1− x + x

2
− 3x
2

)
when powers of x higher than
unity are neglected

= (1−2x)

Problem 16. Express
√

(1+ 2x)
3√(1− 3x)

as a power

series as far as the term in x2. State the range of
values of x for which the series is convergent.

√
(1+ 2x)

3√(1− 3x)
= (1+ 2x)

1
2 (1− 3x)

− 13

(1+ 2x)
1
2 =1+

(
1
2

)

(2x)

+ (1/2)(−1/2)
2!

(2x)2+ ·· ·

=1+ x − x2

2
+ ·· · which is valid for

|2x| < 1, i.e. |x| < 1
2

(1− 3x)
− 13 =1+ (−1/3)(−3x)

+ (−1/3)(−4/3)
2!

(−3x)2+ ·· ·

= 1+ x + 2x2+ ·· · which is valid for

|3x| < 1, i.e. |x| < 1
3

Hence
√

(1+ 2x)
3√(1− 3x)

= (1+ 2x)
1
2 (1− 3x)

− 13

=
(

1+ x − x2

2
+ ·· ·

)

(1+ x + 2x2+ ·· · )

= 1+ x + 2x2+ x + x2− x2

2
,

neglecting terms of higher power than 2,

=1+2x+ 5
2
x2

The series is convergent if − 1
3

<x <
1
3

Now try the following Practice Exercise

Practice Exercise 31 The binomial series
(Answers on page 859)

In problems1 to 5 expand in ascendingpowers of x
as far as the term in x3, using the binomial theorem.
State in each case the limits ofx forwhich the series
is valid.

1.
1

(1− x)

2.
1

(1+ x)2

3.
1

(2+ x)3

4.
√
2+ x

5.
1√
1+ 3x

6. Expand (2+ 3x)−6 to three terms. For what
values of x is the expansion valid?

7. When x is very small show that:

(a)
1

(1− x)2
√

(1− x)
≈ 1+ 5

2
x

(b)
(1− 2x)

(1− 3x)4
≈ 1+ 10x

(c)
√
1+ 5x

3√1− 2x ≈ 1+ 19
6

x

8. If x is very small such that x2 and higher pow-
ers may be neglected, determine the power

series for
√

x + 4 3√8− x

5
√

(1+ x)3

9. Express the following as power series in
ascending powers of x as far as the term in
x2. State in each case the range of x for which
the series is valid.

(a)

√(
1− x

1+ x

)

(b)
(1+ x)

3
√

(1− 3x)2
√

(1+ x2)

7.5 Practical problems involving the
binomial theorem

Binomial expansions may be used for numerical
approximations, for calculations with small variations
and in probability theory (see Chapter 60).

Download more at Learnclax.com



Se
ct

io
n

A

The binomial series 65

Problem 17. The radius of a cylinder is reduced
by 4% and its height is increased by 2%. Determine
the approximate percentage change in (a) its
volume and (b) its curved surface area, (neglecting
the products of small quantities).

Volume of cylinder=πr 2h.
Let r and h be the original values of radius and
height.
The new values are 0.96r or (1− 0.04)r and 1.02h or
(1+0.02)h.
(a) New volume=π[(1− 0.04)r]2[(1+ 0.02)h]

=πr2h(1− 0.04)2(1+ 0.02)
Now (1−0.04)2=1−2(0.04)+(0.04)2

=(1−0.08),
neglecting powers of small terms.

Hence new volume

≈ πr2h(1− 0.08)(1+ 0.02)

≈ πr2h(1− 0.08+ 0.02), neglecting
products of small terms

≈ πr2h(1− 0.06) or 0.94πr 2h, i.e. 94%

of the original volume

Hence the volume is reduced by approxi-
mately 6%

(b) Curved surface area of cylinder=2πrh.

New surface area

= 2π[(1− 0.04)r][(1+ 0.02)h]

= 2πrh(1− 0.04)(1+ 0.02)

≈ 2πrh(1− 0.04+ 0.02), neglecting
products of small terms

≈ 2πrh(1− 0.02) or 0.98(2πrh),

i.e. 98% of the original surface area

Hence the curved surface area is reduced by
approximately 2%

Problem 18. The second moment of area of a

rectangle through its centroid is given by
bl3

12

Determine the approximate change in the second
moment of area if b is increased by 3.5% and l is
reduced by 2.5%

New values of b and l are (1+0.035)b and (1−0.025)l
respectively.
New second moment of area

= 1
12
[(1+ 0.035)b][(1− 0.025)l]3

= bl3

12
(1+ 0.035)(1− 0.025)3

≈ bl3

12
(1+ 0.035)(1− 0.075), neglecting

powers of small terms

≈ bl3

12
(1+ 0.035− 0.075), neglecting

products of small terms

≈ bl3

12
(1− 0.040) or (0.96) bl3

12
, i.e. 96%

of the original second moment of area

Hence the second moment of area is reduced by
approximately 4%

Problem 19. The resonant frequency of a

vibrating shaft is given by: f = 1
2π

√
k

I
, where k is

the stiffness and I is the inertia of the shaft. Use the
binomial theorem to determine the approximate
percentage error in determining the frequency using
the measured values of k and I when the measured
value of k is 4% too large and the measured value
of I is 2% too small.

Let f , k and I be the true values of frequency, stiffness
and inertia respectively. Since the measured value of
stiffness, k1, is 4% too large, then

k1 = 104
100

k = (1+ 0.04)k

Themeasured value of inertia, I1, is 2% too small, hence

I1 = 98
100

I = (1− 0.02)I

The measured value of frequency,
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f1 = 1
2π

√
k1

I1
= 1
2π

k

1
2
1 I

− 12
1

= 1
2π
[(1+ 0.04)k] 12 [(1− 0.02)I ]− 12

= 1
2π

(1+ 0.04) 12 k 12 (1− 0.02)− 12 I− 12

= 1
2π

k
1
2 I− 12 (1+ 0.04) 12 (1− 0.02)− 12

i.e. f1= f (1+ 0.04) 12 (1− 0.02)− 12

≈f

[

1+
(
1
2

)

(0.04)
][

1+
(

−1
2

)

(−0.02)
]

≈f (1+ 0.02)(1+ 0.01)
Neglecting the products of small terms,

f1 ≈ (1+ 0.02+ 0.01)f ≈ 1.03f

Thus the percentage error in f based on the measured
values of k and I is approximately [(1.03)(100)−100],
i.e. 3% too large.

Now try the following Practice Exercise

Practice Exercise 32 Practical problems
involving the binomial theorem (Answers
on page 859)

1. Pressure p and volume v are related by
pv3=c, where c is a constant. Determine the
approximate percentage change in c when
p is increased by 3% and v decreased by
1.2%

2. Kinetic energy is given by 12mv2. Determine
the approximate change in the kinetic energy
when mass m is increased by 2.5% and the
velocity v is reduced by 3%

3. An error of +1.5% was made when meas-
uring the radius of a sphere. Ignoring the
products of small quantities, determine the
approximate error in calculating (a) the vol-
ume, and (b) the surface area.

4. The power developed by an engine is given
by I =k PLAN, where k is a constant. Deter-
mine the approximate percentage change in
the power when P and A are each increased

by 2.5% and L and N are each decreased
by 1.4%

5. The radius of a cone is increased by 2.7%
and its height reduced by 0.9%. Determine
the approximate percentage change in its
volume, neglecting the products of small
terms.

6. The electric field strengthH due to a magnet
of length 2l and momentM at a point on its
axis distance x from the centre is given by

H = M

2l

{
1

(x − l)2
− 1

(x + l)2

}

Show that if l is very small comparedwith x,

then H ≈ 2M
x3

7. The shear stress τ in a shaft of diameter

D under a torque T is given by: τ = kT

πD3 .

Determine the approximate percentage error
in calculating τ ifT ismeasured3% too small
and D 1.5% too large.

8. The energy W stored in a flywheel is given
by: W =kr5N2, where k is a constant, r

is the radius and N the number of revolu-
tions. Determine the approximate percentage
change inW when r is increased by 1.3% and
N is decreased by 2%

9. In a series electrical circuit containing induct-
ance L and capacitance C the resonant fre-

quency is given by: fr = 1
2π

√
LC

. If the

values ofL andC used in the calculation are
2.6% too large and 0.8% too small respec-
tively, determine the approximate percentage
error in the frequency.

10. The viscosity η of a liquid is given by:

η= kr4

νl
, where k is a constant. If there is

an error in r of +2%, in ν of +4% and l of
−3%, what is the resultant error in η?

11. A magnetic pole, distance x from the plane
of a coil of radius r , and on the axis of the
coil, is subject to a force F when a cur-
rent flows in the coil. The force is given by:

F = kx
√

(r2+ x2)5
,where k is a constant. Use
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the binomial theorem to show that when x is
small compared to r , then

F ≈ kx

r5
− 5kx3

2r7

12. The flow of water through a pipe is given by:

G=
√

(3d)5H

L
. If d decreases by 2% and H

by 1%, use the binomial theorem to estimate
the decrease inG.

For fully worked solutions to each of the problems in Practice Exercises 29 to 32 in this chapter,
go to the website:

www.routledge.com/cw/bird
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Chapter 8

Maclaurin’s series

Why it is important to understand:Maclaurin’s series
One of the simplest kinds of function to deal with, in either algebra or calculus, is a polynomial (i.e. an
expression of the form a+bx+cx2+dx3+ . . .). Polynomials are easy to substitute numerical values into,
and they are easy to differentiate. One useful application of Maclaurin’s series is to approximate, to a
polynomial, functions which are not already in polynomial form. In the simple theory of flexure of beams,
the slope, bending moment, shearing force, load and other quantities are functions of a derivative of y
with respect to x. The elastic curve of a transversely loaded beam can be represented by the Maclaurin
series. Substitution of the values of the derivatives gives a direct solution of beam problems. Another
application of Maclaurin series is in relating inter-atomic potential functions. At this stage, not all of the
above applications would have been met or understood; however, sufficient to say thatMaclaurin’s series
has a number of applications in engineering and science.

At the end of this chapter, you should be able to:

• determine simple derivatives
• derive Maclaurin’s theorem
• appreciate the conditions of Maclaurin’s series
• use Maclaurin’s series to determine the power series for simple trigonometric, logarithmic and exponential
functions

• evaluate a definite integral using Maclaurin’s series
• state L’Hôpital’s rule
• determine limiting values of functions

Higher Engineering Mathematics. 978-1-138-67357-1, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.
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8.1 Introduction

Some mathematical functions may be represented as
power series, containing terms in ascending powers of
the variable. For example,

ex = 1+ x + x2

2!
+ x3

3!
+ ·· ·

sinx = x − x3

3!
+ x5

5!
− x7

7!
+ ·· ·

andcoshx = 1+ x2

2!
+ x4

4!
+ ·· ·

(as shown in Chapter 16)

Using a series, called Maclaurin’s∗ series, mixed
functions containing, say, algebraic, trigonometric and
exponential functions, may be expressed solely as

∗ Who was Maclaurin? Colin Maclaurin (February 1698–
14 June 1746) was a Scottish mathematician who made impor-
tant contributions to geometry and algebra. The Maclau-
rin series are named after him. To find out more go to
www.routledge.com/cw/bird

algebraic functions, and differentiation and integration
can often be more readily performed.
To expand a function using Maclaurin’s theorem,

some knowledge of differentiation is needed (more on
differentiation is given in Chapter 29). Here is a revision
of derivatives of the main functions needed in this
chapter.

y or f(x) dy
dx or f

′(x)

axn anxn−1

sinax a cosax

cosax −a sinax

eax aeax

lnax 1
x

sinhax a coshax

coshax a sinhax

Given a general function f (x), then f ′(x) is the
first derivative, f ′′(x) is the second derivative, and so
on. Also, f (0) means the value of the function when
x = 0, f ′(0)means the value of thefirst derivativewhen
x = 0, and so on.

8.2 Derivation of Maclaurin’s
theorem

Let the power series for f (x) be

f (x) = a0+ a1x + a2x
2+ a3x

3+ a4x
4

+ a5x
5+ ·· · (1)

where a0,a1,a2, . . . are constants.
When x =0, f(0) = a0
Differentiating equation (1) with respect to x gives:

f ′(x) = a1+ 2a2x + 3a3x2+ 4a4x3
+ 5a5x4+ ·· · (2)

When x =0, f ′(0) = a1
Differentiating equation (2) with respect to x gives:

f ′′(x) = 2a2+ (3)(2)a3x + (4)(3)a4x2

+ (5)(4)a5x3+ ·· · (3)

When x =0, f ′′(0)=2a2=2!a2, i.e. a2 = f ′′(0)
2!
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Differentiating equation (3) with respect to x gives:

f ′′′(x) = (3)(2)a3+ (4)(3)(2)a4x

+ (5)(4)(3)a5x2+ ·· · (4)

When x =0, f ′′′(0)= (3)(2)a3=3!a3, i.e. a3 = f ′′′(0)
3!

Continuing the same procedure gives a4 = f iv(0)
4!

,

a5= f
v(0)
5!

, and so on.

Substituting for a0,a1,a2, . . . in equation (1) gives:

f (x) = f (0) + f ′(0)x + f ′′(0)
2!

x2

+ f ′′′(0)
3!

x3+ ·· ·

i.e. f(x)= f(0) + xf ′(0)+ x2

2!
f ′′(0)

+ x
3

3!
f ′′′(0)+ ··· (5)

Equation (5) is a mathematical statement called
Maclaurin’s theorem orMaclaurin’s series.

8.3 Conditions of Maclaurin’s series

Maclaurin’s series may be used to represent any func-
tion, say f (x), as a power series provided that at
x =0 the following three conditions are met:
(a) f(0) �= ∞

For example, for the function f (x)= cosx,
f (0)= cos0=1, thus cosx meets the condi-
tion. However, if f (x)= lnx, f (0)= ln 0=−∞,
thus lnx does not meet this condition.

(b) f ′(0), f ′′(0), f ′′′(0), . . . �= ∞
For example, for the function f (x)= cosx,
f ′(0)=−sin0=0, f ′′(0)=−cos0=−1, and so
on; thus cosx meets this condition. However, if
f (x)= lnx, f ′(0)= 1

0 =∞, thus lnx does not
meet this condition

(c) The resultant Maclaurin’s series must be
convergent.

In general, this means that the values of the terms,
or groups of terms, must get progressively smaller

and the sum of the terms must reach a limiting
value.
For example, the series 1+ 1

2 + 1
4 + 1

8 + ·· · is con-
vergent since the value of the terms is getting
smaller and the sum of the terms is approaching a
limiting value of 2.

8.4 Worked problems on Maclaurin’s
series

Problem 1. Determine the first four terms of the
power series for cosx

The values of f (0), f ′(0), f ′′(0), . . . in Maclaurin’s
series are obtained as follows:

f (x)= cosx f (0)= cos0=1
f ′(x)= −sinx f ′(0)= −sin0=0
f ′′(x)= −cosx f ′′(0)= −cos0=−1
f ′′′(x)= sinx f ′′′(0)= sin0=0
f iv(x)= cosx f iv(0)= cos0=1
f v(x)= −sinx f v(0)= −sin0=0
f vi(x)= −cosx f vi(0)= −cos0=−1
Substituting these values into equation (5) gives:

f (x) = cosx = 1+ x(0) + x2

2!
(−1) + x3

3!
(0)

+ x4

4!
(1) + x5

5!
(0) + x6

6!
(−1) + ·· ·

i.e. cosx= 1− x2

2!
+ x4

4!
− x6

6!
+ ···

Problem 2. Determine the power series for cos2θ

Replacing x with 2θ in the series obtained in
Problem 1 gives:

cos2θ = 1− (2θ)2

2!
+ (2θ)4

4!
− (2θ)6

6!
+ ·· ·

= 1− 4θ2

2
+ 16θ4

24
− 64θ6

720
+ ·· ·

i.e. cos2θ = 1− 2θ2+ 2
3
θ4− 4

45
θ6+···
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Problem 3. Using Maclaurin’s series, find the
first 4 (non zero) terms for the function f (x) = sinx

f (x) = sinx f (0) = sin0= 0
f ′′(x) = −sinx f ′′(0) = −sin0= 0
f ′′′(x) = −cosx f ′′′(0) = −cos0= −1
f iv(x) = sinx f iv(0) = sin0= 0
f v(x) = cosx f v(0) = cos0= 1
f vi(x) = −sinx f vi(0) = −sin0= 0
f vii(x) = −cosx f vii(0) = −cos0= −1

Substituting the above values into Maclaurin’s series of
equation (5) gives:

sinx = 0+ x (1) + x2

2!
(0) + x3

3!
(−1) + x4

4!
(0)

+ x5

5!
(1) + x6

6!
(0) + x7

7!
(−1) + ·· ·

i.e. sinx = x − x3

3!
+ x5

5!
− x7

7!
+ ···

Problem 4. Using Maclaurin’s series, find the
first five terms for the expansion of the function
f (x) = e3x

f (x) = e3x f (0) = e0 = 1
f ′(x) = 3e3x f ′(0) = 3e0 = 3
f ′′(x) = 9e3x f ′′(0) = 9e0 = 9
f ′′′(x) = 27e3x f ′′′(0) = 27e0 = 27
f iv(x) = 81e3x f iv(0) = 81e0 = 81

Substituting the above values into Maclaurin’s series of
equation (5) gives:

e3x = 1+ x (3) + x2

2!
(9)+ x3

3!
(27)

+ x4

4!
(81) + ·· ·

e3x = 1+ 3x + 9x2

2!
+ 27x3

3!
+ 81x4

4!
+ ·· ·

i.e. e3x = 1+ 3x+ 9x2

2
+ 9x3

2
+ 27x4

8
+···

Problem 5. Determine the power series for tanx

as far as the term in x3

f (x) = tanx

f (0) = tan0= 0
f ′(x) = sec2 x

f ′(0) = sec2 0= 1
cos2 0

= 1

f ′′(x) = (2secx)(secx tanx)

= 2sec2 x tanx

f ′′(0) = 2sec2 0 tan0= 0
f ′′′(x) = (2sec2 x)(sec2 x)

+ (tanx)(4secx secx tanx),by the
product rule,

= 2sec4 x + 4sec2 x tan2 x
f ′′′(0) = 2sec4 0+ 4sec2 0 tan2 0= 2

Substituting these values into equation (5) gives:

f (x) = tanx = 0+ (x)(1) + x2

2!
(0) + x3

3!
(2)

i.e. tanx= x+ 1
3
x3

Problem 6. Expand ln(1+x) to five terms.

f (x)= ln(1+x) f (0)= ln(1+0)=0

f ′(x)= 1
(1+ x)

f ′(0)= 1
1+ 0=1

f ′′(x)= −1
(1+ x)2

f ′′(0)= −1
(1+ 0)2 = −1

f ′′′(x)= 2
(1+ x)3

f ′′′(0)= 2
(1+ 0)3 = 2

f iv(x)= −6
(1+ x)4

f iv(0)= −6
(1+ 0)4 = −6

f v(x)= 24
(1+ x)5

f v(0)= 24
(1+ 0)5 = 24
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Substituting these values into equation (5) gives:

f (x) = ln(1+ x) = 0+ x(1) + x2

2!
(−1)

+ x3

3!
(2) + x4

4!
(−6) + x5

5!
(24)

i.e. ln(1+ x) = x− x2

2
+ x3

3
− x4

4
+ x5

5
−···

Problem 7. Expand ln(1−x) to five terms.

Replacing x by −x in the series for ln(1+x) in
Problem 6 gives:

ln(1−x) = (−x) − (−x)2

2
+ (−x)3

3

− (−x)4

4
+ (−x)5

5
− ·· ·

i.e. ln(1 − x)= −x− x2

2
− x3

3
− x4

4
− x5

5
− ···

Problem 8. Determine the power series for

ln
(
1+ x

1− x

)

ln
(
1+x

1−x

)

= ln(1+x)− ln(1−x) by the laws of

logarithms, and from Problems 6 and 7,

ln
(
1+ x

1− x

)

=
(

x − x2

2
+ x3

3
− x4

4
+ x5

5
− ·· ·

)

−
(

−x − x2

2
− x3

3
− x4

4
− x5

5
− ·· ·

)

= 2x + 2
3
x3+ 2

5
x5+ ·· ·

i.e. ln
(
1 + x
1 − x

)

= 2
(

x + x3

3
+ x5

5
+ ···

)

Problem 9. Use Maclaurin’s series to find the
expansion of (2+x)4

f (x)= (2+ x)4 f (0)= 24=16
f ′(x)= 4(2+ x)3 f ′(0)= 4(2)3=32

f ′′(x)= 12(2+ x)2 f ′′(0)= 12(2)2=48
f ′′′(x)= 24(2+ x)1 f ′′′(0)= 24(2)=48
f iv(x)= 24 f iv(0)= 24
Substituting in equation (5) gives:

(2+ x)4

= f (0) + xf ′(0) + x2

2!
f ′′(0) + x3

3!
f ′′′(0) + x4

4!
f iv(0)

= 16+ (x)(32) + x2

2!
(48) + x3

3!
(48) + x4

4!
(24)

= 16+ 32x+ 24x2+ 8x3+ x4

(This expression could have been obtained by applying
the binomial theorem.)

Problem 10. Expand e
x
2 as far as the term in x4

f (x)= e x
2 f (0)= e0=1

f ′(x)= 1
2
e

x
2 f ′(0)= 1

2
e0 = 1

2

f ′′(x)= 1
4
e

x
2 f ′′(0)= 1

4
e0 = 1

4

f ′′′(x)= 1
8
e

x
2 f ′′′(0)= 1

8
e0 = 1

8

f iv(x)= 1
16
e

x
2 f iv(0)= 1

16
e0 = 1

16

Substituting in equation (5) gives:

e
x
2 = f (0) + xf ′(0) + x2

2!
f ′′(0)

+ x3

3!
f ′′′(0) + x4

4!
f iv(0) + ·· ·

= 1+ (x)

(
1
2

)

+ x2

2!

(
1
4

)

+ x3

3!

(
1
8

)

+ x4

4!

(
1
16

)

+ ·· ·

i.e. e
x
2 = 1+ 1

2
x+ 1

8
x2+ 1

48
x3+ 1

384
x4+···
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Problem 11. Develop a series for sinhx using
Maclaurin’s series.

f (x) = sinhx f (0) = sinh0= e0− e−0
2

= 0

f ′(x) = coshx f ′(0) = cosh0= e0+ e−0
2

= 1
f ′′(x) = sinhx f ′′(0) = sinh0= 0
f ′′′(x) = coshx f ′′′(0) = cosh0= 1
f iv(x)= sinhx f iv(0)= sinh0= 0
f v(x)= coshx f v(0)= cosh0= 1
Substituting in equation (5) gives:

sinhx=f (0) + xf ′(0) + x2

2!
f ′′(0) + x3

3!
f ′′′(0)

+ x4

4!
f iv(0) + x5

5!
f v(0) + ·· ·

=0+ (x)(1) + x2

2!
(0) + x3

3!
(1) + x4

4!
(0)

+ x5

5!
(1) + ·· ·

i.e. sinhx=x+ x3

3!
+ x5

5!
+···
(as shown in Chapter 16)

Problem 12. Produce a power series for cos2 2x
as far as the term in x6

Fromdouble angle formulae, cos2A=2cos2A−1 (see
Chapter 19).

from which, cos2A = 1
2
(1+ cos2A)

and cos2 2x= 1
2
(1+ cos4x)

From Problem 1,

cosx =1− x2

2!
+ x4

4!
− x6

6!
+ ·· ·

hence cos4x =1− (4x)2

2!
+ (4x)4

4!
− (4x)6

6!
+ ·· ·

=1− 8x2+ 32
3

x4− 256
45

x6+ ·· ·
Thus cos2 2x = 1

2
(1+ cos4x)

= 1
2

(

1+ 1− 8x2+ 32
3

x4− 256
45

x6+ ·· ·
)

i.e. cos2 2x=1−4x2+ 16
3
x4− 128

45
x6+···

Now try the following Practice Exercise

Practice Exercise 33 Maclaurin’s series
(Answers on page 859)

1. Determine the first four terms of the power
series for sin2x using Maclaurin’s series.

2. Use Maclaurin’s series to produce a power
series for cosh 3x as far as the term in x 6

3. UseMaclaurin’s theorem to determine thefirst
three terms of the power series for ln(1+ex)

4. Determine the power series for cos 4t as far as
the term in t6

5. Expand e
3
2 x in a power series as far as the term

in x3

6. Develop, as far as the term in x 4, the power
series for sec2x

7. Expand e2θ cos3θ as far as the term in θ 2 using
Maclaurin’s series.

8. Determine thefirst three terms of the series for
sin2 x by applying Maclaurin’s theorem.

9. UseMaclaurin’s series to determine the expan-
sion of (3+2t)4

8.5 Numerical integration using
Maclaurin’s series

The value ofmany integrals cannot be determined using
the various analytical methods. In Chapter 49, the trape-
zoidal, mid-ordinate and Simpson’s rules are used to
numerically evaluate such integrals. Another method of
finding the approximate value of a definite integral is
to express the function as a power series using Maclau-
rin’s series, and then integrating each algebraic term
in turn. This is demonstrated in the following worked
problems.
As a reminder, the general solution of integrals of

the form
∫

axndx, where a and n are constants, is
given by:

∫
axndx = axn+1

n+ 1 + c
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Problem 13. Evaluate
∫ 0.4

0.1
2esinθ dθ , correct to

3 significant figures.

A power series for esinθ is firstly obtained usingMaclau-
rin’s series.

f (θ) = esinθ f (0) = esin0 = e0 = 1

f ′(θ) = cosθ esinθ f ′(0)=cos0esin0=(1)e0=1

f ′′(θ) = (cosθ)(cosθ esinθ ) + (esinθ )(−sin θ),

by the product rule

= esinθ (cos2 θ − sinθ);

f ′′(0) = e0(cos2 0− sin0) = 1

f ′′′(θ) = (esinθ )[(2cosθ(−sinθ) − cosθ)]

+ (cos2 θ − sinθ)(cosθ esinθ )

= esinθ cosθ [−2sinθ − 1+ cos2 θ − sinθ ]

f ′′′(0) = e0 cos0[(0− 1+ 1− 0)]= 0
Hence from equation (5):

esinθ = f (0) + θf ′(0) + θ2

2!
f ′′(0) + θ3

3!
f ′′′(0) + ·· ·

= 1+ θ + θ2

2
+ 0

Thus
∫ 0.4

0.1
2esinθ dθ =

∫ 0.4

0.1
2
(

1+ θ + θ2

2

)

dθ

=
∫ 0.4

0.1
(2+ 2θ + θ2)dθ

=
[

2θ + 2θ2

2
+ θ3

3

]0.4

0.1

=
(

0.8+ (0.4)2+ (0.4)3

3

)

−
(

0.2+ (0.1)2+ (0.1)3

3

)

= 0.98133− 0.21033
= 0.771,correct to 3 significant figures.

Problem 14. Evaluate
∫ 1

0

sin θ

θ
dθ using

Maclaurin’s series, correct to 3 significant figures.

Let f (θ)= sin θ f (0)= 0

f ′(θ)= cosθ f ′(0)= 1

f ′′(θ)= −sin θ f ′′(0)= 0

f ′′′(θ)= −cosθ f ′′′(0)= −1

f iv(θ)= sin θ f iv(0)= 0

f v(θ)= cosθ f v(0)= 1
Hence from equation (5):

sinθ =f (0) + θf ′(0) + θ2

2!
f ′′(0) + θ3

3!
f ′′′(0)

+ θ4

4!
f iv(0) + θ5

5!
f v(0) + ·· ·

=0+ θ(1) + θ2

2!
(0) + θ3

3!
(−1)

+ θ4

4!
(0) + θ5

5!
(1) + ·· ·

i.e. sinθ =θ − θ3

3!
+ θ5

5!
− ·· ·

Hence
∫ 1

0

sinθ

θ
dθ

=
∫ 1

0

(

θ − θ3

3!
+ θ5

5!
− θ7

7!
+ ·· ·

)

θ
dθ

=
∫ 1

0

(

1− θ2

6
+ θ4

120
− θ6

5040
+ ·· ·

)

dθ

=
[

θ − θ3

18
+ θ5

600
− θ7

7(5040)
+ ·· ·

]1

0

= 1− 1
18

+ 1
600

− 1
7(5040)

+ ·· ·

= 0.946, correct to 3 significant figures.
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Problem 15. Evaluate
∫ 0.4

0
x ln(1+ x)dx using

Maclaurin’s theorem, correct to 3 decimal places.

From Problem 6,

ln(1+ x) = x − x2

2
+ x3

3
− x4

4
+ x5

5
− ·· ·

Hence
∫ 0.4

0
x ln(1+ x)dx

=
∫ 0.4

0
x

(

x − x2

2
+ x3

3
− x4

4
+ x5

5
− ·· ·

)

dx

=
∫ 0.4

0

(

x2− x3

2
+ x4

3
− x5

4
+ x6

5
− ·· ·

)

dx

=
[

x3

3
− x4

8
+ x5

15
− x6

24
+ x7

35
− ·· ·

]0.4

0

=
(

(0.4)3

3
− (0.4)4

8
+ (0.4)5

15
− (0.4)6

24

+ (0.4)7

35
− ·· ·

)

− (0)

= 0.02133− 0.0032+ 0.0006827− ·· ·
= 0.019,correct to 3 decimal places.

Now try the following Practice Exercise

Practice Exercise 34 Numerical
integration using Maclaurins series
(Answers on page 859)

1. Evaluate
∫ 0.6

0.2
3esinθ dθ , correct to 3 decimal

places, using Maclaurin’s series.

2. UseMaclaurin’s theorem to expand cos2θ and
hence evaluate, correct to 2 decimal places,∫ 1

0

cos2θ

θ
1
3
dθ

3. Determine the value of
∫ 1

0

√
θ cosθ dθ , cor-

rect to 2 significant figures, using Maclaurin’s
series.

4. Use Maclaurin’s theorem to expand√
x ln(x+1) as a power series. Hence

evaluate, correct to 3 decimal places,∫ 0.5

0

√
x ln (x +1)dx.

8.6 Limiting values

It is sometimes necessary to find limits of the form

lim
x→a

{
f (x)

g(x)

}

, where f (a)=0 and g(a)=0

For example,

lim
x→1

{
x2+ 3x − 4
x2− 7x + 6

}

= 1+ 3− 4
1− 7+ 6 = 0

0

and 00 is generally referred to as indeterminate.
For certain limits a knowledge of series can sometimes
help.
For example,

lim
x→0

{
tanx − x

x3

}

≡ lim
x→0

⎧
⎪⎨

⎪⎩

x + 1
3
x3+ ·· · − x

x3

⎫
⎪⎬

⎪⎭
from Problem 5

= lim
x→0

⎧
⎪⎨

⎪⎩

1
3
x3+ ·· ·

x3

⎫
⎪⎬

⎪⎭
= lim

x→0

{
1
3

}

= 1
3

Similarly,

lim
x→0

{
sinhx

x

}

≡ lim
x→0

⎧
⎪⎪⎨

⎪⎪⎩

x + x3

3!
+ x5

5!
+

x

⎫
⎪⎪⎬

⎪⎪⎭
from Problem 11

= lim
x→0

{

1+ x2

3!
+ x4

5!
+ ·· ·

}

= 1

However, a knowledge of series does not help with

examples such as lim
x→1

{
x2+ 3x − 4
x2− 7x + 6

}
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L’Hôpital’s∗ rulewill enable us to determine such lim-
its when the differential coefficients of the numerator
and denominator can be found.
L’Hôpital’s rule states:

lim
x→a

{
f(x)
g(x)

}

= lim
x→a

{
f ′(x)
g′(x)

}

provided g ′(a) �=0

It can happen that lim
x→a

{
f ′(x)

g′(x)

}

is still 00 ; if so, the

numerator and denominator are differentiated again
(and again) until a non-zero value is obtained for the
denominator.
The following worked problems demonstrate how
L’Hôpital’s rule is used. Refer toChapter 29 formethods
of differentiation.

Problem 16. Determine lim
x→1

{
x2+ 3x − 4
x2− 7x + 6

}

The first step is to substitute x=1 into both numer-
ator and denominator. In this case we obtain 0

0 . It is

∗ Who was L’Hôpital? Guillaume François Antoine, Mar-
quis de l’Hôpital (1661–2 February 1704, Paris) was a French
mathematician. His name is firmly associated with l’Hôpital’s
rule for calculating limits involving indeterminate forms 0/0 and
∞/∞. To find out more go to www.routledge.com/cw/bird

only when we obtain such a result that we then use
L’Hôpital’s rule. Hence applying L’Hôpital’s rule,

lim
x→1

{
x2+ 3x − 4
x2− 7x + 6

}

= lim
x→1

{
2x + 3
2x − 7

}

i.e. both numerator and
denominator have
been differentiated

= 5
−5 = −1

Problem 17. Determine lim
x→0

{
sinx − x

x2

}

Substituting x =0 gives

lim
x→0

{
sinx − x

x2

}

= sin0− 0
0

= 0
0

Applying L’Hôpital’s rule gives

lim
x→0

{
sinx − x

x2

}

= lim
x→0

{
cosx − 1
2x

}

Substituting x =0 gives
cos0− 1
0

= 1− 1
0

= 0
0
again

Applying L’Hôpital’s rule again gives

lim
x→0

{
cosx − 1
2x

}

= lim
x→0

{−sinx

2

}

= 0

Problem 18. Determine lim
x→0

{
x − sinx

x − tanx

}

Substituting x =0 gives

lim
x→0

{
x − sinx

x − tanx

}

= 0− sin0
0− tan0 = 0

0

Applying L’Hôpital’s rule gives

lim
x→0

{
x − sinx

x − tanx
}

= lim
x→0

{
1− cosx
1− sec2 x

}

Substituting x =0 gives

lim
x→0

{
1− cosx
1− sec2 x

}

= 1− cos0
1− sec2 0 = 1− 1

1− 1 = 0
0
again
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Applying L’Hôpital’s rule gives

lim
x→0

{
1− cosx
1− sec2 x

}

= lim
x→0

{
sinx

(−2secx)(secx tanx)

}

= lim
x→0

{
sinx

−2sec2 x tanx

}

Substituting x=0 gives
sin0

−2sec2 0 tan0 = 0
0
again

Applying L’Hôpital’s rule gives

lim
x→0

{
sinx

−2sec2 x tanx

}

= lim
x→0

⎧
⎪⎪⎨

⎪⎪⎩

cosx
(−2sec2 x)(sec2 x)

+(tanx)(−4sec2 x tanx)

⎫
⎪⎪⎬

⎪⎪⎭

using the product rule

Substituting x=0 gives
cos0

−2sec4 0− 4sec2 0 tan2 0 = 1
−2− 0

= −1
2

Hence lim
x→0

{
x − sinx

x − tanx

}

= −1
2

Now try the following Practice Exercise

Practice Exercise 35 Limiting values
(Answers on page 859)

Determine the following limiting values

1. lim
x→1

{
x3− 2x + 1
2x3+ 3x − 5

}

2. lim
x→0

{
sinx

x

}

3. lim
x→0

{
ln(1+ x)

x

}

4. lim
x→0

{
x2− sin3x
3x + x2

}

5. lim
θ→0

{
sinθ − θ cosθ

θ3

}

6. lim
t→1

{
ln t

t2− 1
}

7. lim
x→0

{
sinhx − sinx

x3

}

8. lim
θ→ π

2

{
sinθ − 1
lnsin θ

}

9. lim
t→0

{
sec t −1
t sin t

}

For fully worked solutions to each of the problems in Practice Exercises 33 to 35 in this chapter,
go to the website:

www.routledge.com/cw/bird

Download more at Learnclax.com

http://www.routledge.com/cw/bird


Se
ct

io
n

A Revision Test 2 APs, GPs and binomial and Maclaurin’s series

This Revision Test covers the material contained in Chapters 6 to 8. The marks for each question are shown in
brackets at the end of each question.

1. Determine the twentieth term of the series
15.6,15, 14.4,13.8, . . . (3)

2. The sum of 13 terms of an arithmetic progression
is 286 and the common difference is 3. Determine
the first term of the series. (4)

3. An engineer earns £21 000 per annumand receives
annual increments of £600. Determine the salary
in the ninth year and calculate the total earnings
in the first eleven years. (5)

4. Determine the eleventh term of the series 1.5,3,6,
12, . . . (2)

5. Find the sum of the first eight terms of the series
1,2.5,6.25, . . . , correct to 1 decimal place. (4)

6. Determine the sum to infinity of the series
5,1, 15 , . . . (3)

7. A machine is to have seven speeds ranging from
25rev/min to 500rev/min. If the speeds form a
geometric progression, determine their value, each
correct to the nearest whole number. (8)

8. Use the binomial series to expand (2a−3b)6

(7)

9. Determine the middle term of
(

3x − 1
3y

)18

(6)

10. Expand the following in ascending powers of t as
far as the term in t 3

(a)
1
1+ t

(b)
1√

(1− 3t)
For each case, state the limits for which the
expansion is valid. (11)

11. When x is very small show that:

1
(1+ x)2

√
(1− x)

≈ 1− 3
2
x (5)

12. The modulus of rigidity G is given by G= R4θ

L
where R is the radius, θ the angle of twist and
L the length. Find the approximate percentage
error in G when R is measured 1.5% too large,
θ is measured 3% too small and L is measured
1% too small. (8)

13. UseMaclaurin’s series to determine a power series
for e2x cos3x as far as the term in x2. (10)

14. Show, using Maclaurin’s series, that the first four
terms of the power series for cosh 2x is given by:

cosh2x = 1+ 2x2+ 2
3
x4+ 4

45
x6 (11)

15. Expand the function x 2 ln(1+ sinx) using
Maclaurin’s series and hence evaluate:

∫ 1
2

0
x2 ln(1+ sinx)dx correct to 2 significant

figures. (13)

For lecturers/instructors/teachers, fully worked solutions to each of the problems in Revision Test 2,
together with a full marking scheme, are available at the website:

www.routledge.com/cw/bird
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Chapter 9

Solving equations by
iterative methods

Why it is important to understand: Solving equations by iterative methods
There aremany,many different types of equations used in every branch of engineering and science. There
are straightforward methods for solving simple, quadratic and simultaneous equations; however, there
are many other types of equations than these three. Great progress has been made in the engineering
and scientific disciplines regarding the use of iterative methods for linear systems. In engineering it is
important that we can solve any equation; iterative methods, such as the bisection method, an algebraic
method of successive approximations, and the Newton-Raphson method, help us do that.

At the end of this chapter, you should be able to:

• define iterative methods
• use the method of bisection to solve equations
• use an algebraic method of successive approximations to solve equations
• state the Newton–Raphson formula
• use Newton’s method to solve equations

9.1 Introduction to iterative methods

Many equations can only be solved graphically or by
methods of successive approximations to the roots,
called iterative methods. Three methods of succes-
sive approximations are (i) bisectionmethod, introduced
in Section 9.2, (ii) an algebraic method, introduced in
Section 9.3, and (iii) by using the Newton–Raphson
formula, given in Section 9.4.
Each successive approximation method relies on

a reasonably good first estimate of the value of a
root being made. One way of determining this is to
sketch a graph of the function, say y=f (x), and deter-
mine the approximate values of roots from the points

where the graph cuts the x-axis. Another way is by
using a functional notation method. This method uses
the property that the value of the graph of f (x)=0
changes sign for values of x just before and just
after the value of a root. For example, one root of
the equation x2− x−6=0 is x=3. Using functional
notation:

f (x) = x2− x − 6
f (2) = 22− 2− 6= −4
f (4) = 42− 4− 6= +6

It can be seen from these results that the value of f (x)

changes from−4 at f (2) to+6 at f (4), indicating that

Higher Engineering Mathematics. 978-1-138-67357-1, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.
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a root lies between 2 and 4. This is shown more clearly
in Fig. 9.1.

f (x)

8

4

0�2�4 2 4 x

f (x)�x2�x�6

�4

�6

Figure 9.1

9.2 The bisection method

As shown above, by using functional notation it is pos-
sible to determine the vicinity of a root of an equation by
the occurrence of a change of sign, i.e. if x1 and x2 are
such that f (x1) and f (x2) have opposite signs, there is
at least one root of the equation f (x)=0 in the interval
between x1 and x2 (provided f (x) is a continuous func-
tion). In the method of bisection the mid-point of the
interval, i.e. x3= x1+ x2

2
, is taken, and from the sign

of f (x3) it can be deduced whether a root lies in the
half interval to the left or right of x3. Whichever half
interval is indicated, its mid-point is then taken and the
procedure repeated. The method often requires many
iterations and is therefore slow, but never fails to even-
tually produce the root. The procedure stops when two
successive values of x are equal—to the required degree
of accuracy.
The method of bisection is demonstrated in Prob-

lems 1 to 3 following.

Problem 1. Use the method of bisection to find
the positive root of the equation 5x 2+11x − 17=0
correct to 3 significant figures.

Let f (x)=5x2+11x−17
then, using functional notation:

f (0) = −17
f (1)= 5(1)2+ 11(1) − 17= −1
f (2)= 5(2)2+ 11(2) − 17= +25

Since there is a change of sign from negative
to positive there must be a root of the equation between
x =1 and x =2. This is shown graphically in Fig. 9.2.

f(x)

20

10

0�1�2�3�4 1 2 x

f (x) � 5x2� 11x �17

�10

�17
�20

Figure 9.2

The method of bisection suggests that the root is at
1+2
2

=1.5, i.e. the interval between 1 and 2 has been
bisected.
Hence

f (1.5)= 5(1.5)2+ 11(1.5) − 17
= +10.75

Since f (1) is negative, f (1.5) is positive, and f (2) is
also positive, a root of the equation must lie between
x =1 and x =1.5, since a sign change has occurred
between f (1) and f (1.5)

Bisecting this interval gives
1+1.5
2

i.e. 1.25 as the next
root.
Hence

f (1.25)= 5(1.25)2+ 11x − 17
= +4.5625

Since f (1) is negative and f (1.25) is positive, a root
lies between x=1 and x =1.25
Bisecting this interval gives

1+1.25
2

i.e. 1.125
Hence

f (1.125)= 5(1.125)2+ 11(1.125) − 17
= +1.703125

Since f (1) is negative and f (1.125) is positive, a root
lies between x=1 and x =1.125
Bisecting this interval gives

1+1.125
2

i.e. 1.0625
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Hence

f (1.0625)= 5(1.0625)2+ 11(1.0625) − 17
= +0.33203125

Since f (1) is negative and f (1.0625) is positive, a root
lies between x =1 and x =1.0625
Bisecting this interval gives

1+1.0625
2

i.e. 1.03125
Hence

f (1.03125)= 5(1.03125)2+ 11(1.03125) − 17
= −0.338867. . .

Since f (1.03125) is negative and f (1.0625) is positive,
a root lies between x =1.03125 and x =1.0625
Bisecting this interval gives

1.03125+ 1.0625
2

i.e. 1.046875

Hence

f (1.046875)= 5(1.046875)2+ 11(1.046875) − 17
= −0.0046386. . .

Since f (1.046875) is negative and f (1.0625) is posi-
tive, a root lies between x=1.046875 and x =1.0625
Bisecting this interval gives

1.046875+ 1.0625
2

i.e. 1.0546875

The last three values obtained for the root are 1.03125,
1.046875 and 1.0546875. The last two values are both
1.05, correct to 3 significant figure. We therefore stop
the iterations here.
Thus, correct to 3 significant figures, the positive root
of 5x2+ 11x− 17= 0 is 1.05

Problem 2. Use the bisection method to deter-
mine the positive root of the equation x +3=ex ,
correct to 3 decimal places.

Let f (x)=x +3−ex
then, using functional notation:

f (0)=0+ 3− e0=+2
f (1)=1+ 3− e1=+1.2817. . .
f (2)=2+ 3− e2=−2.3890. . .

Since f (1) is positive and f (2) is negative, a root lies
between x=1 and x=2.A sketch off (x) = x + 3−ex ,
i.e. x+3=ex is shown in Fig. 9.3.
Bisecting the interval between x =1 and x =2 gives
1+2
2

i.e. 1.5

f(x)

1

2

3

4

02122 1 2 x

f (x) 5 x 1 3

f (x) 5 ex

Figure 9.3

Hence
f (1.5)= 1.5+ 3− e1.5

= +0.01831. . .
Since f (1.5) is positive and f (2) is negative, a root lies
between x=1.5 and x=2.
Bisecting this interval gives

1.5+2
2

i.e. 1.75
Hence

f (1.75)= 1.75+ 3− e1.75
= −1.00460. . .

Since f (1.75) is negative and f (1.5) is positive, a root
lies between x =1.75 and x =1.5
Bisecting this interval gives

1.75+1.5
2

i.e. 1.625
Hence

f (1.625)= 1.625+ 3− e1.625
= −0.45341. . .

Since f (1.625) is negative and f (1.5) is positive, a root
lies between x =1.625 and x=1.5
Bisecting this interval gives

1.625+1.5
2

i.e. 1.5625
Hence

f (1.5625)= 1.5625+ 3− e1.5625
= −0.20823. . .

Since f (1.5625) is negative and f (1.5) is positive, a
root lies between x =1.5625 and x=1.5
Bisecting this interval gives

1.5625+ 1.5
2

i.e. 1.53125

Hence

f (1.53125)= 1.53125+ 3− e1.53125
= −0.09270. . .
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Since f (1.53125) is negative and f (1.5) is positive, a
root lies between x =1.53125 and x =1.5
Bisecting this interval gives

1.53125+1.5
2

i.e. 1.515625

Hence

f (1.515625)= 1.515625+ 3− e1.515625
= −0.03664. . .

Since f (1.515625) is negative and f (1.5) is positive, a
root lies between x =1.515625 and x=1.5
Bisecting this interval gives

1.515625+ 1.5
2

i.e. 1.5078125

Hence

f (1.5078125)= 1.5078125+ 3− e 1.5078125
= −0.009026. . .

Since f (1.5078125) is negative and f (1.5) is positive,
a root lies between x =1.5078125 and x =1.5
Bisecting this interval gives

1.5078125+ 1.5
2

i.e. 1.50390625

Hence

f (1.50390625)= 1.50390625+ 3− e 1.50390625
= +0.004676. . .

Since f (1.50390625) is positive and f (1.5078125)
is negative, a root lies between x =1.50390625 and
x =1.5078125
Bisecting this interval gives

1.50390625+ 1.5078125
2

i.e.1.505859375

Hence
f (1.505859375)= 1.505859375+ 3− e 1.505859375

= −0.0021666. . .
Since f (1.50589375) is negative and f (1.50390625)
is positive, a root lies between x =1.50589375 and
x =1.50390625
Bisecting this interval gives

1.505859375+ 1.50390625
2

i.e. 1.504882813

Hence

f (1.504882813)= 1.504882813+ 3− e 1.504882813
= +0.001256. . .

Since f (1.504882813) is positive and
f (1.505859375) is negative,

a root lies between x=1.504882813 and
x =1.505859375
Bisecting this interval gives

1.504882813+ 1.50589375
2

i.e. 1.505388282

The last two values of x are 1.504882813 and
1.505388282, i.e. both are equal to 1.505, correct to
3 decimal places.
Hence the root of x+3=ex is x= 1.505, correct to 3
decimal places.

The above is a lengthy procedure and it is probably
easier to present the data in a table.

x1 x2 x3= x1+x2
2

f (x3)

0 +2

1 +1.2817. . .

2 −2.3890. . .

1 2 1.5 +0.0183. . .

1.5 2 1.75 −1.0046. . .

1.5 1.75 1.625 −0.4534. . .

1.5 1.625 1.5625 −0.2082. . .

1.5 1.5625 1.53125 −0.0927. . .

1.5 1.53125 1.515625 −0.0366. . .

1.5 1.515625 1.5078125 −0.0090. . .

1.5 1.5078125 1.50390625 +0.0046. . .

1.50390625 1.5078125 1.505859375 −0.0021. . .

1.50390625 1.505859375 1.504882813 +0.0012. . .

1.504882813 1.505859375 1.505388282

Download more at Learnclax.com



Se
ct

io
n

A

Solving equations by iterative methods 83

Problem 3. Solve, correct to 2 decimal places,
the equation 2 lnx +x =2 using the method of
bisection.

Let f (x)=2 lnx + x − 2
f (0.1) =2 ln(0.1) + 0.1− 2= −6.5051 . . .

(Note that ln0 is infinite that is why
x=0 was not chosen)

f (1)=2 ln1+ 1− 2=−1
f (2)=2 ln2+ 2− 2=+1.3862 . . .

A change of sign indicates a root lies between x=1 and
x =2
Since 2 lnx + x=2 then 2 lnx =−x + 2; sketches of
2 lnx and−x + 2 are shown in Fig. 9.4.

f (x)

2

1

0 1 2 3 4 x

f (x)��x�2

f (x)� 2In x

�1

�2

Figure 9.4

As shown in Problem 2, a table of values is produced to
reduce space needed.

x1 x2 x3= x1+x2

2
f (x3)

0.1 −6.6051 . . .
1 −1
2 +1.3862 . . .

1 2 1.5 +0.3109 . . .
1 1.5 1.25 −0.3037 . . .
1.25 1.5 1.375 +0.0119 . . .
1.25 1.375 1.3125 −0.1436 . . .
1.3125 1.375 1.34375 −0.0653 . . .
1.34375 1.375 1.359375 −0.0265 . . .
1.359375 1.375 1.3671875 −0.0073 . . .
1.3671875 1.375 1.37109375 +0.0023 . . .

The last two values of x3 are both equal to 1.37 when
expressed to 2 decimal places. We therefore stop the
iterations.
Hence, the solution of 2 lnx+ x=2 is x=1.37,
correct to 2 decimal places.

Now try the following Practice Exercise

Practice Exercise 36 The bisection
method (Answers on page 859)

Use the method of bisection to solve the following
equations to the accuracy stated.

1. Find the positive root of the equation
x2+3x−5=0, correct to 3 significant
figures, using the method of bisection.

2. Using the bisection method, solve ex −x =2,
correct to 4 significant figures.

3. Determine the positive root of x 2=4cosx,
correct to 2 decimal places using the method
of bisection.

4. Solve x−2− lnx =0 for the root near to 3,
correct to 3 decimal places using the bisection
method.

5. Solve, correct to 4 significant figures,
x −2sin2 x =0 using the bisection method.

9.3 An algebraic method of
successive approximations

This method can be used to solve equations of the form:
a + bx + cx2+ dx3+ ·· · = 0,

where a,b,c,d, . . . are constants.
Procedure:

First approximation

(a) Using a graphical or the functional notation
method (see Section 9.1) determine an approxi-
mate value of the root required, say x1

Second approximation

(b) Let the true value of the root be (x1+δ1)

(c) Determine x2 the approximate value of (x1+δ1)
by determining the value of f (x1+δ1)=0, but
neglecting terms containing products of δ1
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Third approximation

(d) Let the true value of the root be (x2+δ2)

(e) Determine x3, the approximate value of (x2+δ2)
by determining the value of f (x2+δ2)=0, but
neglecting terms containing products of δ2

(f) The fourth andhigher approximations are obtained
in a similar way.

Using the techniques given in paragraphs (b) to (f),
it is possible to continue getting values nearer and
nearer to the required root. The procedure is repeated
until the value of the required root does not change on
two consecutive approximations,when expressed to the
required degree of accuracy.

Problem 4. Use an algebraic method of
successive approximations to determine the value
of the negative root of the quadratic equation:
4x2−6x −7=0 correct to 3 significant figures.
Check the value of the root by using the quadratic
formula.

A first estimate of the values of the roots is made by
using the functional notation method

f (x) = 4x2− 6x − 7
f (0) = 4(0)2− 6(0) − 7= −7

f (−1) = 4(−1)2− 6(−1) − 7= 3

These results show that the negative root lies between 0
and −1, since the value of f (x) changes sign between
f (0) and f (−1) (see Section 9.1). The procedure
given above for the root lying between 0 and −1 is
followed.

First approximation

(a) Let a first approximation be such that it divides
the interval 0 to −1 in the ratio of −7 to 3, i.e. let
x1=−0.7

Second approximation

(b) Let the true value of the root, x2, be (x1+δ1).

(c) Let f (x1+ δ1) = 0, then, since x1 = −0.7,

4(−0.7+ δ1)
2− 6(−0.7+ δ1) − 7=0

Hence,4[(−0.7)2+ (2)(−0.7)(δ1) + δ21]

−(6)(−0.7) − 6δ1− 7=0

Neglecting terms containing products of δ1 gives:

1.96−5.6δ1 + 4.2−6δ1−7≈ 0
i.e. −5.6δ1− 6δ1 = −1.96− 4.2+ 7

i.e. δ1 ≈ −1.96− 4.2+ 7
−5.6− 6

≈ 0.84
−11.6

≈ −0.0724
Thus, x2, a second approximation to the root is
[−0.7+(−0.0724)]
i.e. x2=−0.7724, correct to 4 significant figures.
(Since the question asked for 3 significant figure
accuracy, it is usual to work to one figure greater
than this.)

The procedure given in (b) and (c) is now repeated
for x2=−0.7724

Third approximation

(d) Let the true value of the root, x3, be (x2+δ2)

(e) Let f (x2+δ2)=0, then, since x2=−0.7724,
4(−0.7724+ δ2)

2− 6(−0.7724+ δ2) − 7= 0
4[(−0.7724)2+ (2)(−0.7724)(δ2) + δ22]

− (6)(−0.7724) − 6δ2− 7= 0
Neglecting terms containing products of δ2 gives:

2.3864− 6.1792δ2+ 4.6344− 6δ2− 7≈ 0

i.e. δ2 ≈ −2.3864− 4.6344+ 7
−6.1792− 6

≈ −0.0208
−12.1792

≈ +0.001708
Thus x3, the third approximation to the root is
(−0.7724+ 0.001708)
i.e. x3= − 0.7707, correct to 4 significant figures
(or −0.771 correct to 3 significant figures).

Fourth approximation

(f) The procedure given for the second and third
approximations is now repeated for

x3 = −0.7707
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Let the true value of the root, x4, be (x3+δ3).
Let f (x3+ δ3) = 0, then since x3=−0.7707,

4(−0.7707+ δ3)
2− 6(−0.7707

+δ3) − 7= 0
4[(−0.7707)2+ (2)(−0.7707)δ3+ δ23]

−6(−0.7707) − 6δ3− 7= 0
Neglecting terms containing products of δ3 gives:

2.3759− 6.1656δ3+ 4.6242− 6δ3− 7≈ 0

i.e. δ3 ≈ −2.3759− 4.6242+ 7
−6.1656− 6

≈ −0.0001
−12.156

≈ +0.00000822
Thus, x4, the fourth approximation to the root is
(−0.7707+ 0.00000822), i.e. x4= −0.7707, cor-
rect to 4 significant figures, and−0.771, correct to
3 significant figures.

Since the values of the roots are the same on
two consecutive approximations, when stated to
the required degree of accuracy, then the negative
root of 4x2−6x−7=0 is −0.771, correct to 3
significant figures.
[Checking, using the quadratic formula:

x = −(−6) ±
√
[(−6)2− (4)(4)(−7)]

(2)(4)

= 6± 12.166
8

= −0.771 and 2.27,
correct to 3 significant figures]

[Note on accuracy and errors. Depending on the
accuracy of evaluating the f (x+δ) terms, one or two
iterations (i.e. successive approximations) might be
saved. However, it is not usual to work to more than
about 4 significant figures accuracy in this type of cal-
culation. If a small error ismade in calculations, the only
likely effect is to increase the number of iterations.]

Problem 5. Determine the value of the
smallest positive root of the equation
3x3−10x2+4x +7=0, correct to 3 significant
figures, using an algebraic method of successive
approximations.

The functional notationmethod is used to find the value
of the first approximation.

f (x) = 3x3− 10x2+ 4x + 7
f (0) = 3(0)3− 10(0)2+ 4(0) + 7= 7
f (1) = 3(1)3− 10(1)2+ 4(1) + 7= 4

f (2) = 3(2)3− 10(2)2+ 4(2) + 7= −1

Following the above procedure:

First approximation

(a) Let the first approximation be such that it divides
the interval 1 to 2 in the ratio of 4 to−1, i.e. let x1
be 1.8

Second approximation

(b) Let the true value of the root, x2, be (x1+δ1)

(c) Let f (x1+ δ1) = 0, then since x1 = 1.8

3(1.8+ δ1)
3− 10(1.8+ δ1)

2

+4(1.8+ δ1) + 7= 0

Neglecting terms containing products of δ1 and
using the binomial series gives:

3[1.83+ 3(1.8)2 δ1]− 10[1.82+ (2)(1.8)δ1]

+ 4(1.8+ δ1) + 7≈ 0
3(5.832+ 9.720δ1) − 32.4− 36δ1

+ 7.2+ 4δ1+ 7≈ 0
17.496+ 29.16δ1− 32.4− 36δ1

+ 7.2+ 4δ1+ 7≈ 0

δ1 ≈ −17.496+ 32.4− 7.2− 7
29.16− 36+ 4

≈ −0.704
2.84

≈ −0.2479

Thus x2 ≈ 1.8−0.2479=1.5521
Third approximation

(d) Let the true value of the root, x3, be (x2+δ2)

(e) Let f (x2+ δ2) = 0, then since x2=1.5521

3(1.5521+ δ2)
3− 10(1.5521+ δ2)

2

+ 4(1.5521+ δ2) + 7= 0
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Neglecting terms containing products of δ2 gives:

11.217+ 21.681δ2− 24.090− 31.042δ2

+ 6.2084+ 4δ2+ 7≈ 0

δ2 ≈ −11.217+ 24.090− 6.2084− 7
21.681− 31.042+ 4

≈ −0.3354
−5.361

≈ 0.06256
Thus x3 ≈ 1.5521+ 0.06256≈ 1.6147

(f) Values of x4 and x5 are found in a similar way.

f (x3+ δ3) = 3(1.6147+ δ3)
3− 10(1.6147

+ δ3)
2+ 4(1.6147+ δ3) + 7= 0

giving δ3 ≈ 0.003175 and x4 ≈ 1.618, i.e. 1.62
correct to 3 significant figures.

f (x4+ δ4) = 3(1.618+ δ4)
3− 10(1.618+ δ4)

2

+ 4(1.618+ δ4) + 7= 0
giving δ4 ≈ 0.0000417, and x5 ≈ 1.62, correct to
3 significant figures.
Since x4 and x5 are the same when expressed to
the required degree of accuracy, then the required
root is 1.62, correct to 3 significant figures.

Now try the following Practice Exercise

Practice Exercise 37 Solving equations by
an algebraic method of successive
approximations (Answers on page 859)

Use an algebraic method of successive approx-
imation to solve the following equations to the
accuracy stated.

1. 3x2+5x−17=0, correct to 3 significant
figures.

2. x3−2x +14=0, correct to 3 decimal places.
3. x4−3x3+7x −5.5=0, correct to 3 signifi-

cant figures.

4. x4+12x3−13=0, correct to 4 significant
figures.

9.4 The Newton–Raphson method

The Newton–Raphson formula,∗ often just referred to
as Newton’s method, may be stated as follows:

If r1 is the approximate value of a real root of the
equation f (x) = 0, then a closer approximation to the
root r2 is given by:

r2=r1− f(r1)
f ′(r1)

The advantages of Newton’s method over the alge-
braic method of successive approximations is that it
can be used for any type of mathematical equation
(i.e. ones containing trigonometric, exponential, loga-
rithmic, hyperbolic and algebraic functions), and it is
usually easier to apply than the algebraic method.

∗ Who were Newton and Raphson? Sir Isaac Newton PRS
MP (25 December 1642–20 March 1727) was an English
polymath. Newton showed that the motions of objects are
governed by the same set of natural laws, by demonstrating
the consistency between Kepler’s laws of planetary motion
and his theory of gravitation. To find out more go to
www.routledge.com/cw/bird

Joseph Raphson was an English mathematician known best
for the Newton–Raphson method for approximating the roots
of an equation. Tofind outmore go to www.routledge.com/cw/
bird
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Problem 6. Use Newton’s method to determine
the positive root of the quadratic equation
5x2+11x−17=0, correct to 3 significant figures.
Check the value of the root by using the quadratic
formula.

The functional notationmethod is used to determine the
first approximation to the root.

f (x) = 5x2+ 11x − 17

f (0) = 5(0)2+ 11(0) − 17= −17

f (1) = 5(1)2+ 11(1) − 17= −1

f (2) = 5(2)2+ 11(2) − 17= 25

This shows that the value of the root is close to x =1
Let the first approximation to the root, r1, be 1

Newton’s formula states that a closer approximation,

r2 = r1− f (r1)

f ′(r1)
f (x)=5x2+ 11x − 17

thus, f (r1)=5(r1)2+ 11(r1) − 17
=5(1)2+ 11(1) − 17= −1

f ′(x) is the differential coefficient of f (x),

i.e. f ′(x) =10x + 11
Thusf ′(r1)=10(r1) + 11

=10(1) + 11= 21
By Newton’s formula, a better approximation to the
root is:

r2 = 1− −1
21

= 1− (−0.048) = 1.05,

correct to 3 significant figures.
A still better approximation to the root, r3, is given by:

r3 = r2− f (r2)

f ′(r2)

= 1.05− [5(1.05)2+ 11(1.05) − 17]
[10(1.05) + 11]

= 1.05− 0.0625
21.5

= 1.05− 0.003= 1.047,

i.e. 1.05, correct to 3 significant figures.
Since the values of r2 and r3 are the same when
expressed to the required degree of accuracy, the
required root is 1.05, correct to 3 significant figures.
Checking, using the quadratic equation formula,

x = −11± √
[121− 4(5)(−17)]
(2)(5)

= −11± 21.47
10

The positive root is 1.047, i.e. 1.05, correct to 3 signi-
ficant figures (This root was determined in Problem 1
using the bisection method; Newton’s method is clearly
quicker).

Problem 7. Taking the first approximation as 2,
determine the root of the equation
x2−3sinx +2 ln(x +1)=3.5, correct to 3
significant figures, by using Newton’s method.

Newton’s formula states that r2 = r1− f (r1)

f ′(r1)
, where

r1 is a first approximation to the root and r2 is a better
approximation to the root.

Since f (x) = x2− 3sinx + 2 ln(x + 1) − 3.5
f (r1) = f (2) = 22− 3sin2+ 2 ln3− 3.5

where sin2 means the sine of 2 radians

= 4− 2.7279+ 2.1972− 3.5
= −0.0307

f ′(x) = 2x − 3cosx + 2
x + 1

f ′(r1) = f ′(2) = 2(2) − 3cos2+ 2
3

= 4+ 1.2484+ 0.6667
= 5.9151

Hence, r2 = r1− f (r1)

f ′(r1)

= 2− −0.0307
5.9151

= 2.005 or 2.01,correct to
3 significant figures.
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A still better approximation to the root, r3, is given by:

r3 = r2− f (r2)

f ′(r2)

= 2.005− [(2.005)2− 3sin2.005+ 2 ln3.005− 3.5]
[

2(2.005) − 3cos2.005+ 2
2.005+ 1

]

= 2.005− (−0.00104)
5.9376

= 2.005+ 0.000175

i.e. r3 = 2.01, correct to 3 significant figures.
Since the values of r2 and r3 are the same when
expressed to the required degree of accuracy, then the
required root is 2.01, correct to 3 significant figures.

Problem 8. Use Newton’s method to find the
positive root of:

(x + 4)3− e1.92x + 5cos x

3
= 9,

correct to 3 significant figures.

The functional notational method is used to determine
the approximate value of the root.

f (x) = (x + 4)3− e1.92x + 5cos x

3
− 9

f (0) = (0+ 4)3− e0+ 5cos0− 9= 59
f (1) = 53− e1.92+ 5cos 1

3
− 9≈ 114

f (2) = 63− e3.84+ 5cos 2
3

− 9≈ 164
f (3) = 73− e5.76+ 5cos1− 9≈ 19
f (4) = 83− e7.68+ 5cos 4

3
− 9≈ −1660

From these results, let a first approximation to the root
be r1=3
Newton’s formula states that a better approximation to
the root,

r2 = r1− f (r1)

f ′(r1)

f (r1) = f (3) = 73− e5.76+ 5cos1− 9
= 19.35

f ′(x) = 3(x + 4)2− 1.92e1.92x − 5
3
sin

x

3

f ′(r1) = f ′(3) = 3(7)2− 1.92e5.76− 5
3
sin1

= −463.7

Thus, r2 = 3− 19.35
−463.7 = 3+ 0.042

= 3.042= 3.04,
correct to 3 significant figures.

Similarly, r3 = 3.042− f (3.042)
f ′(3.042)

= 3.042− (−1.146)
(−513.1)

= 3.042− 0.0022= 3.0398= 3.04,
correct to 3 significant figures.

Since r2 and r3 are the same when expressed to the
required degree of accuracy, then the required root is
3.04, correct to 3 significant figures.

Now try the following Practice Exercise

Practice Exercise 38 Newton’s method
(Answers on page 859)

In Problems 1 to 7, useNewton’s method to solve
the equations given to the accuracy stated.

1. x2−2x − 13=0, correct to 3 decimal
places.

2. 3x3−10x=14, correct to 4 significant
figures.

3. x4−3x3+7x =12, correct to 3 decimal
places.

4. 3x4−4x3+7x−12=0, correct to 3 deci-
mal places.

5. 3 lnx +4x =5, correct to 3 decimal places.
6. x3=5cos2x, correct to 3 significant figures.

7. 300e−2θ + θ

2
=6, correct to 3 significant

figures.

8. Solve the equations in Problems 1 to 5, Prac-
tice Exercise 36, page 83 and Problems 1
to 4, Practice Exercise 37, page 86 using
Newton’s method.

9. A Fourier analysis of the instantaneous value
of a waveform can be represented by:

y =
(
t + π

4

)
+ sin t + 1

8
sin3t

UseNewton’smethod to determine the value
of t near to 0.04, correct to 4 decimal places,
when the amplitude, y, is 0.880
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10. A damped oscillation of a system is given by
the equation:

y =−7.4e0.5t sin3t
Determine the value of t near to 4.2, correct
to 3 significant figures, when the magnitude
y of the oscillation is zero.

11. The critical speeds of oscillation,λ, of a loaded
beam are given by the equation:

λ3− 3.250λ2+ λ− 0.063= 0
Determine the value of λ which is approx-
imately equal to 3.0 by Newton’s method,
correct to 4 decimal places.

For fully worked solutions to each of the problems in Practice Exercises 36 to 38 in this chapter,
go to the website:

www.routledge.com/cw/bird
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Chapter 10

Binary, octal and
hexadecimal numbers

Why it is important to understand: Binary, octal and hexadecimal numbers
There are infinite ways to represent a number. The four commonly associated with modern computers
and digital electronics are decimal, binary, octal, and hexadecimal. All four number systems are equally
capable of representing any number. Furthermore, a number can be perfectly converted between the
various number systems without any loss of numeric value. At first look, it seems like using any number
system other than decimal is complicated and unnecessary. However, since the job of electrical and
software engineers is toworkwith digital circuits, engineers require number systems that canbest transfer
information between the human world and the digital circuit world. Thus the way in which a number is
represented can make it easier for the engineer to perceive the meaning of the number as it applies to
a digital circuit, i.e. the appropriate number system can actually make things less complicated. Binary,
octal and hexadecimal numbers are explained in this chapter.

At the end of this chapter, you should be able to:

• recognise a binary number
• convert binary to decimal and vice-versa
• add binary numbers
• recognise an octal number
• convert decimal to binary via octal and vice-versa
• recognise a hexadecimal number
• convert from hexadecimal to decimal and vice-versa
• convert from binary to hexadecimal and vice-versa

10.1 Introduction

Man’s earliest number or counting system was prob-
ably developed to help determine how many pos-
sessions a person had. As daily activities became
more complex, numbers became more important in

trade, time, distance, and all other phases of human
life. Ever since people discovered that it was nec-
essary to count objects, they have been looking for
easier ways to do so. The abacus, developed by
the Chinese, is one of the earliest known calcula-
tors; it is still in use in some parts of the world.

Higher Engineering Mathematics. 978-1-138-67357-1, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.
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Blaise Pascal∗ invented the first adding machine in
1642. Twenty years later, an Englishman, Sir Samuel
Morland∗, developedamore compact device that could
multiply, add, and subtract. About 1672,GottfriedWil-
helm von Leibniz∗ perfected a machine that could
perform all the basic operations (add, subtract, multi-
ply, divide), as well as extract the square root. Modern
electronic digital computers still use von Leibniz’s
principles.
Computers are now employed wherever repeated

calculations or the processing of huge amounts of data
are needed. The greatest applications are found in the
military, scientific, and commercial fields. They have
applications that range from mail sorting, and engi-
neering design, to the identification and destruction

∗ Who was Leibniz? Gottfried Wilhelm Leibniz (sometimes
von Leibniz theorem∗) (1 July 1646–14 November 1716) was
a German mathematician and philosopher. Leibniz developed
infinitesimal calculus and invented the Leibniz wheel. To find
out more go to www.routledge.com/cw/bird
∗ Who was Morland? Sir Samuel Morland, 1st Baronet
(1625–1695), was an English academic, diplomat, spy, inven-
tor and mathematician of the 17th century, a polymath
credited with early developments in relation to comput-
ing, hydraulics and steam power. To find out more go to
www.routledge.com/cw/bird
∗ Who was Pascal? For image and resume of Pascal, see
page 59. To find out more go to www.routledge.com/cw/bird

of enemy targets. The advantages of digital comput-
ers include speed, accuracy, and man-power savings.
Often computers are able to take over routine jobs and
release personnel for more important work that can-
not be handled by a computer. People and computers
do not normally speak the same language. Methods of
translating information into forms that are understand-
able and usable to both are necessary.Humans generally
speak in words and numbers expressed in the decimal
number system,while computers only understand coded
electronic pulses that represent digital information.
All data in modern computers is stored as series of

bits, a bit being a binary digit, and can have one of
two values, the numbers 0 and 1. The most basic form
of representing computer data is to represent a piece of
data as a string of 1s and 0s, one for each bit. This is
called a binary or base-2 number.
Because binary notation requires so many bits to rep-

resent relatively small numbers, two further compact
notations are often used, called octal and hexadeci-
mal. Computer programmers who design sequences of
number codes instructing a computer what to do would
have a very difficult task if they were forced to work
with nothing but long strings of 1s and 0s, the ‘native
language’ of any digital circuit.
Octal notation represents data as base-8 numberswith

each digit in an octal number representing three bits.
Similarly, hexadecimal notation uses base-16 numbers,
representing four bits with each digit. Octal numbers
use only the digits 0–7, while hexadecimal numbers
use all ten base-10 digits (0–9) and the letters A–F
(representing the numbers 10–15).
This chapter explains how to convert between the

decimal, binary, octal and hexadecimal systems.

10.2 Binary numbers

The system of numbers in everyday use is the denary
or decimal system of numbers, using the digits 0 to 9.
It has ten different digits (0, 1, 2, 3, 4, 5, 6, 7, 8 and 9)
and is said to have a radix or base of 10.
The binary system of numbers has a radix of 2 and uses
only the digits 0 and 1.

(a) Conversion of binary to decimal

The decimal number 234.5 is equivalent to

2× 102+ 3× 101+ 4× 100+ 5× 10−1

i.e. the sum of terms comprising: (a digit) multiplied by
(the base raised to some power).
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In the binary system of numbers, the base is 2, so 1101.1
is equivalent to:

1× 23+ 1× 22+ 0× 21+ 1× 20+ 1× 2−1

Thus the decimal number equivalent to the binary
number 1101.1 is 8+4+0+1+ 1

2 , that is 13.5 i.e.
1101.12=13.510, the suffixes 2 and 10 denoting binary
and decimal systems of numbers respectively.

Problem 1. Convert 110112 to a decimal number.

From above: 110112 = 1×24+ 1×23+ 0× 22

+ 1× 21+ 1× 20
= 16+ 8+ 0+ 2+ 1
= 2710

Problem 2. Convert 0.10112 to a decimal
fraction.

0.10112 = 1×2−1+ 0×2−2+ 1×2−3+ 1×2−4

= 1× 1
2

+ 0× 1
22

+ 1× 1
23

+ 1× 1
24

= 1
2

+ 1
8

+ 1
16

= 0.5+ 0.125+ 0.0625
= 0.687510

Problem 3. Convert 101.01012 to a decimal
number.

101.01012 = 1×22+ 0×21+ 1×20+ 0×2−1

+ 1×2−2+ 0×2−3+ 1×2−4

= 4+ 0+ 1+ 0+ 0.25+ 0+ 0.0625
= 5.312510

Now try the following Practice Exercise

Practice Exercise 39 Conversion of binary
to decimal numbers (Answers on page 859)

In Problems 1 to 5, convert the binary numbers
given to decimal numbers.

1. (a) 110 (b) 1011 (c) 1110 (d) 1001

2. (a) 10101 (b) 11001 (c) 101101 (d) 110011

3. (a) 101010 (b) 111000 (c) 1000001
(d) 10111000

4. (a) 0.1101 (b) 0.11001 (c) 0.00111
(d) 0.01011

5. (a) 11010.11 (b) 10111.011 (c) 110101.0111
(d) 11010101.10111

(b) Conversion of decimal to binary
An integer decimal number can be converted to a cor-
responding binary number by repeatedly dividing by 2
and noting the remainder at each stage, as shown below
for 3910.

Remainder

0

(most significant bit) (least significant bit)

1 0 0 1 1 1

2 39

2 19
2 9
2 4
2 2
2 1

1
1
1
0
0
1

The result is obtained by writing the top digit of the
remainder as the least significant bit (a bit is a binary
digit and the least significant bit is the one on the right).
The bottom bit of the remainder is the most significant
bit, i.e. the bit on the left.
Thus 3910 = 1001112
The fractional part of a decimal number canbe converted
to a binary number by repeatedly multiplying by 2, as
shown below for the fraction 0.625

(most significant bit) 0.1 1 (least  significant bit)

1.   250

0.   500

1.   000

0.625 3 2 5

0.250 3 2 5

0.500 3 2 5

For fractions, the most significant bit of the result is the
top bit obtained from the integer part of multiplication
by 2. The least significant bit of the result is the bottom
bit obtained from the integer part of multiplication by 2.
Thus 0.62510 = 0.1012
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Problem 4. Convert 4710 to a binary number.

From above, repeatedly dividing by 2 and noting the
remainder gives:

Remainder

0

1 0 1 1 1 1

2 47

2 23

2 11

2 5

2 2

2 1

1

1

1

1

0

1

Thus 4710=1011112

Problem 5. Convert 0.4062510 to a binary
number.

From above, repeatedly multiplying by 2 gives:

.0

0.   8125

1 1 0 1

1.   0

0.40625  3 2 5

0.8125    3 2 5

0.25        3 2 5

0.5          3 2 5

0.625      3 2 5

0.   5

1.   25

1.   625

i.e. 0.4062510=0.011012

Problem 6. Convert 58.312510 to a binary
number.

The integer part is repeatedly divided by 2, giving:

Remainder

0

1 1 1 0 1 0

2 58

2 29

2 14

2 7

2 3

2 1

0

1

0

1

1
1

The fractional part is repeatedly multiplied by 2 giving:

.0

0.625

1 0 1

0.3125 3 2 5
0.625   3 2 5

0.5       3 2 5
0.25     3 2 5

1.0
0.5
1.25

Thus 58.312510=111010.01012
Now try the following Practice Exercise

Practice Exercise 40 Conversion of
decimal to binary numbers (Answers on
page 860)

In Problems 1 to 5, convert the decimal numbers
given to binary numbers.

1. (a) 5 (b) 15 (c) 19 (d) 29

2. (a) 31 (b) 42 (c) 57 (d) 63

3. (a) 47 (b) 60 (c) 73 (d) 84

4. (a) 0.25 (b) 0.21875 (c) 0.28125
(d) 0.59375

5. (a) 47.40625 (b) 30.8125 (c) 53.90625
(d) 61.65625

(c) Binary addition

Binary addition of two/three bits is achieved according
to the following rules:

sum carry sum carry
0+ 0= 0 0 0+ 0+ 0= 0 0
0+ 1= 1 0 0+ 0+ 1= 1 0
1+ 0= 1 0 0+ 1+ 0= 1 0
1+ 1= 0 1 0+ 1+ 1= 0 1

1+ 0+ 0= 1 0
1+ 0+ 1= 0 1
1+ 1+ 0= 0 1
1+ 1+ 1= 1 1

These rules are demonstrated in the following worked
problems.

Problem 7. Perform the binary addition:
1001+ 10110

1001
+10110
11111
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Problem 8. Perform the binary addition:
11111+ 10101

11111
+10101

sum 110100
carry 11111

Problem 9. Perform the binary addition:
1101001+ 1110101

1101001
+1110101

sum 11011110
carry 11 1

Problem 10. Perform the binary addition:
1011101+ 1100001+ 110101

1011101
1100001

+ 110101
sum 11110011
carry 11111 1

Now try the following Practice Exercise

Practice Exercise 41 Binary addition
(Answers on page 860)

Perform the following binary additions:
1. 10 + 11
2. 101+ 110
3. 1101+ 111
4. 1111+ 11101
5. 110111+ 10001
6. 10000101+ 10000101
7. 11101100+ 111001011
8. 110011010+ 11100011
9. 10110+ 1011+ 11011
10. 111+ 10101+ 11011
11. 1101+ 1001+ 11101
12. 100011+ 11101+ 101110

10.3 Octal numbers

For decimal integers containing several digits, repeat-
edly dividing by 2 can be a lengthy process. In this case,
it is usually easier to convert a decimal number to a
binary number via the octal system of numbers. This
system has a radix of 8, using the digits 0, 1, 2, 3, 4,
5, 6 and 7. The decimal number equivalent to the octal
number 43178 is:

4× 83+ 3× 82+ 1× 81+ 7× 80
i.e. 4× 512+ 3× 64+ 1× 8+ 7× 1 or 225510
An integer decimal number can be converted to a cor-
responding octal number by repeatedly dividing by 8
and noting the remainder at each stage, as shown below
for 49310

Remainder

7 5 5

8 493

8 61

8 7

5

5

70

Thus 49310=7558
The fractional part of a decimal number canbe converted
to an octal number by repeatedly multiplying by 8, as
shown below for the fraction 0.437510

4.3

3.  5

4.  0

0.4375 3 8 5

0.5       3 8 5

For fractions, the most significant bit is the top integer
obtained by multiplication of the decimal fraction by
8, thus,

0.437510 = 0.348
The natural binary code for digits 0 to 7 is shown
in Table 10.1, and an octal number can be converted
to a binary number by writing down the three bits
corresponding to the octal digit.

Thus 4378 = 100 011 1112
and 26.358 = 010 110.011 1012
The ‘0’ on the extreme left does not signify anything,
thus 26.358=10 110.011 1012
Conversion of decimal to binary via octal is demon-
strated in the following worked problems.
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Table 10.1
Octal digit Natural

binary number

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

Problem 11. Convert 371410 to a binary number,
via octal.

Dividing repeatedly by 8, and noting the remainder
gives:

Remainder

7 2 0 2

8 3714

8 464

8 58

8 7

0

2

0

2

7

From Table 10.1, 72028 = 111 010 000 0102
i.e. 371410=111 010 000 0102

Problem 12. Convert 0.5937510 to a binary
number, via octal.

Multiplying repeatedly by 8, and noting the integer
values, gives:

.4 6

0.75       3 8 5
0.59375 3 8 5

6.00
4.75

Thus 0.5937510 = 0.468
From Table 10.1, 0.468 = 0.100 1102
i.e. 0.5937510=0.100 112

Problem 13. Convert 5613.9062510 to a binary
number, via octal.

The integer part is repeatedly divided by 8, noting the
remainder, giving:

8 5613

8 701

8 87

8 10

8 1

0

1 2 7 5 5

Remainder

5

5

7

2

1

This octal number is converted to a binary number,
(see Table 10.1).

127558 = 001 010 111 101 1012
i.e. 561310 = 1 010 111 101 1012
The fractional part is repeatedly multiplied by 8, and
noting the integer part, giving:

.7 2

0.25       3 8 5
0.90625 3 8 5

2.00
7.25

This octal fraction is converted to a binary number,
(see Table 10.1).

0.728 = 0.111 0102
i.e. 0.9062510 = 0.111 012
Thus, 5613.9062510 = 1 010 111 101 101.111 012

Problem 14. Convert 11 110 011.100 012 to a
decimal number via octal.

Grouping the binary number in three’s from the binary
point gives: 011 110 011.100 0102
Using Table 10.1 to convert this binary number to an
octal number gives 363.428 and 363.428

= 3× 82+ 6× 81+ 3× 80+ 4× 8−1+ 2× 8−2

= 192+ 48+ 3+ 0.5+ 0.03125

= 243.5312510
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Now try the following Practice Exercise

Practice Exercise 42 Conversion between
decimal and binary numbers via octal
(Answers on page 860)

In Problems 1 to 3, convert the decimal numbers
given to binary numbers, via octal.

1. (a) 343 (b) 572 (c) 1265

2. (a) 0.46875 (b) 0.6875 (c) 0.71875

3. (a) 247.09375 (b) 514.4375 (c) 1716.78125

4. Convert the binary numbers given to decimal
numbers via octal.
(a) 111.011 1 (b) 101 001.01
(c) 1 110 011 011 010.001 1

10.4 Hexadecimal numbers

The hexadecimal system is particularly important in
computer programming, since four bits (each consist-
ing of a one or zero) can be succinctly expressed using
a single hexadecimal digit. Two hexadecimal digits rep-
resent numbers from 0 to 255, a common range used,
for example, to specify colours. Thus, in the HTML
language of the web, colours are specified using three
pairs of hexadecimal digits RRGGBB, where RR is the
amount of red, GG the amount of green, and BB the
amount of blue.
A hexadecimal numbering system has a radix of
16 and uses the following 16 distinct digits:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E and F

‘A’ corresponds to 10 in the decimal system, B to 11,
C to 12, and so on.

(a) Converting from hexadecimal to decimal

For example

1A16 = 1× 161+A× 160

= 1× 161+ 10× 1
= 16+ 10= 26

i.e. 1A16=2610
Similarly, 2E16 = 2× 161+E× 160

= 2× 161+ 14× 160
= 32+ 14= 4610

and 1BF16 = 1× 162+B× 161+ F× 160

= 1× 162+ 11× 161+ 15× 160
= 256+ 176+ 15= 44710

Table 10.2 compares decimal, binary, octal and hexa-
decimal numbers and shows, for example, that
2310=101112=278=1716

Problem 15. Convert the following hexadecimal
numbers into their decimal equivalents:
(a) 7A16 (b) 3F16

(a) 7A16 = 7× 161+A× 160 = 7× 16+ 10× 1

= 112+ 10= 122
Thus 7A16=12210

(b) 3F16 = 3× 161+ F× 160 = 3× 16+ 15× 1

= 48+ 15= 63
Thus 3F16=6310

Problem 16. Convert the following hexadecimal
numbers into their decimal equivalents:
(a) C916 (b) BD16

(a) C916 = C× 161+ 9× 160 = 12× 16+ 9× 1

= 192+ 9= 201
Thus C916=20110

(b) BD16 = B× 161+D× 160

= 11× 16+ 13× 1= 176+ 13= 189
Thus BD16=18910

Problem 17. Convert 1A4E16 into a decimal
number.

1A4E16 = 1×163+A×162+4×161+E× 160

= 1× 163+ 10× 162+ 4× 161+ 14× 160
= 1×4096+10×256+4×16+ 14× 1
= 4096+ 2560+ 64+ 14= 6734

Thus 1A4E16=673410

Download more at Learnclax.com



Se
ct

io
n

A

Binary, octal and hexadecimal numbers 97

Table 10.2
Decimal Binary Octal Hexadecimal

0 0000 0 0

1 0001 1 1

2 0010 2 2

3 0011 3 3

4 0100 4 4

5 0101 5 5

6 0110 6 6

7 0111 7 7

8 1000 10 8

9 1001 11 9

10 1010 12 A

11 1011 13 B

12 1100 14 C

13 1101 15 D

14 1110 16 E

15 1111 17 F

16 10000 20 10

17 10001 21 11

18 10010 22 12

19 10011 23 13

20 10100 24 14

21 10101 25 15

22 10110 26 16

23 10111 27 17

24 11000 30 18

25 11001 31 19

26 11010 32 1A

27 11011 33 1B

28 11100 34 1C

29 11101 35 1D

30 11110 36 1E

31 11111 37 1F

32 100000 40 20

(b) Converting from decimal to hexadecimal

This is achievedby repeatedly dividingby 16 andnoting
the remainder at each stage, as shown below for 2610

0

1 A least significant bit

Remainder

10 ; A16

1 ; 116

16 1

16 26

most significant bit

Hence 2610=1A16
Similarly, for 44710

1 B F

0

Remainder

15 ; F16

11 ; B16

1 ; 116

16 1

16 27

16 447

Thus 44710=1BF16

Problem 18. Convert the following decimal
numbers into their hexadecimal equivalents:
(a) 3710 (b) 10810

(a)

2 5

0

Remainder

5 5 516

2 5 216

16 2

16 37

least significant bitmost significant bit

Hence 3710=2516

(b)

6 C

0

Remainder

12 5 C16

6 5  616

16 108

16 6

Hence 10810=6C16

Problem 19. Convert the following decimal
numbers into their hexadecimal equivalents:
(a) 16210 (b) 23910
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(a)

A 2

0

Remainder

2 5 216

10 5 A16

16 162

16 10

Hence 16210=A216

(b)

E F

0

Remainder

15 5 F16

14 5 E16

16 239

16 14

Hence 23910=EF16

Now try the following Practice Exercise

Practice Exercise 43 Hexadecimal
numbers (Answers on page 860)

In Problems 1 to 4, convert the given hexadecimal
numbers into their decimal equivalents.

1. E716 2. 2C16
3. 9816 4. 2F116

In Problems 5 to 8, convert the given decimal
numbers into their hexadecimal equivalents.

5. 5410 6. 20010
7. 9110 8. 23810

(c) Converting from binary to hexadecimal
The binary bits are arranged in groups of four, start-
ing from right to left, and a hexadecimal symbol is
assigned to each group. For example, the binary num-
ber 1110011110101001 is initially grouped in fours as:
1110︸︷︷︸
E

0111︸︷︷︸
7

1010︸︷︷︸
A

1001︸︷︷︸
9

and a hexadecimal symbol
assigned to each group as above, from Table 10.2.

Hence 11100111101010012 = E7A916

Problem 20. Convert the following binary
numbers into their hexadecimal equivalents:
(a) 110101102 (b) 11001112

(a) Grouping bits in fours from the right gives:
1101︸︷︷︸
D

0110︸︷︷︸
6

and assigning hexadecimal symbols

to each group gives as above, from Table 10.2.

Thus, 110101102 = D616
(b) Grouping bits in fours from the right gives:

0110︸︷︷︸
6

0111︸︷︷︸
7

and assigning hexadecimal symbols
to each group gives as above, from Table 10.2.

Thus, 11001112=6716

Problem 21. Convert the following binary
numbers into their hexadecimal equivalents:
(a) 110011112 (b) 1100111102

(a) Grouping bits in fours from the right gives:
1100︸︷︷︸
C

1111︸︷︷︸
F

and assigning hexadecimal symbols
to each group gives as above, from Table 10.2.

Thus, 110011112 = CF16
(b) Grouping bits in fours from the right gives:

0001︸︷︷︸
1

1001︸︷︷︸
9

1110︸︷︷︸
E

and assigning hexadecimal
symbols to each group gives as above, from
Table 10.2.

Thus,1100111102=19E16

(d) Converting from hexadecimal to binary
The above procedure is reversed; thus, for example,

6CF316 = 0110 1100 1111 0011
from Table 10.2

i.e. 6CF316=1101100111100112

Problem 22. Convert the following hexadecimal
numbers into their binary equivalents:
(a) 3F16 (b) A616

(a) Spacing out hexadecimal digits gives:
3︷︸︸︷
0011

F︷︸︸︷
1111

and converting each into binary
gives as above, from Table 10.2.

Thus,3F16=1111112
(b) Spacing out hexadecimal digits gives:

A︷︸︸︷
1010

6︷︸︸︷
0110

and converting each into binary
gives as above, from Table 10.2.

Thus,A616=101001102
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Problem 23. Convert the following hexadecimal
numbers into their binary equivalents:
(a) 7B16 (b) 17D16

(a) Spacing out hexadecimal digits gives:
7︷︸︸︷
0111

B︷︸︸︷
1011

and converting each into binary
gives as above, from Table 10.2.

Thus,7B16=11110112
(b) Spacing out hexadecimal digits gives:

1︷︸︸︷
0001

7︷︸︸︷
0111

D︷︸︸︷
1101

and converting each into
binary gives as above, from Table 10.2.

Thus,17D16=1011111012

Now try the following Practice Exercise

Practice Exercise 44 Hexadecimal
numbers (Answers on page 860)

In Problems 1 to 4, convert the given binary
numbers into their hexadecimal equivalents.

1. 110101112

2. 111010102

3. 100010112

4. 101001012

In Problems 5 to 8, convert the given hexadecimal
numbers into their binary equivalents.

5. 3716

6. ED16

7. 9F16

8. A2116

For fully worked solutions to each of the problems in Practice Exercises 39 to 44 in this chapter,
go to the website:

www.routledge.com/cw/bird
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Chapter 11

Boolean algebra and logic
circuits

Why it is important to understand: Boolean algebra and logic circuits
Logic circuits are the basis for modern digital computer systems; to appreciate how computer systems
operate an understanding of digital logic and Boolean algebra is needed. Boolean algebra (named after its
developer, George Boole), is the algebra of digital logic circuits all computers use. Boolean algebra is the
algebra of binary systems. A logic gate is a physical device implementing a Boolean function, performing
a logical operation on one or more logic inputs, and produces a single logic output. Logic gates are
implemented using diodes or transistors acting as electronic switches, but can also be constructed using
electromagnetic relays, fluidic relays, pneumatic relays, optics, molecules or even mechanical elements.
Learning Boolean algebra for logic analysis, learning about gates that process logic signals and learning
how to design some smaller logic circuits is clearly of importance to computer engineers.

At the end of this chapter, you should be able to:

• draw a switching circuit and truth table for a two-input and three-input or-function and state its Boolean
expression

• draw a switching circuit and truth table for a two-input and three-input and-function and state its Boolean
expression

• produce the truth table for a two-input not-function and state its Boolean expression
• simplify Boolean expressions using the laws and rules of Boolean algebra
• simplify Boolean expressions using de Morgan’s laws
• simplify Boolean expressions using Karnaugh maps
• draw a circuit diagram symbol and truth table for a three-input and-gate and state its Boolean expression
• draw a circuit diagram symbol and truth table for a three-input or-gate and state its Boolean expression
• draw a circuit diagram symbol and truth table for a three-input invert (or nor)-gate and state its Boolean
expression

• draw a circuit diagram symbol and truth table for a three-input nand-gate and state its Boolean expression
• draw a circuit diagram symbol and truth table for a three-input nor-gate and state its Boolean expression
• devise logic systems for particular Boolean expressions
• use universal gates to devise logic circuits for particular Boolean expressions

Higher Engineering Mathematics. 978-1-138-67357-1, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.
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11.1 Boolean algebra and switching
circuits

A two-state device is one whose basic elements
can only have one of two conditions. Thus, two-way
switches, which can either be on or off, and the binary
numbering system, having the digits 0 and 1 only, are
two-state devices. In Boolean algebra (named after
George Boole),∗ if A represents one state, then A,
called ‘not-A’, represents the second state.

The or-function

In Boolean algebra, the or-function for two elements
A and B is written as A + B, and is defined as ‘A, or
B, or both A and B’. The equivalent electrical circuit
for a two-input or-function is given by two switches
connected in parallel.With reference to Fig. 11.1(a), the
lampwill be onwhenA is on,whenB is on, orwhenboth
A and B are on. In the table shown in Fig. 11.1(b), all

∗ Who was Boole? George Boole (2 November 1815–
8 December 1864) was an English mathematician, philosopher
and logician that worked in the fields of differential equa-
tions and algebraic logic. Best known as the author of The
Laws of Thought, Boole is also the inventor of the proto-
type of what is now called Boolean logic, which became the
basis of the modern digital computer. To find out more go to
www.routledge.com/cw/bird

the possible switch combinations are shown in columns
1 and 2, in which a 0 represents a switch being off and
a 1 represents the switch being on, these columns being
called the inputs. Column 3 is called the output and a
0 represents the lamp being off and a 1 represents the
lamp being on. Such a table is called a truth table.

0

1

0

1B

B

A

A Z  � A �B

0

(a) Switching circuit for or-function (b) Truth table for or-function

0

0

0 0

1

1 2 3

1 1

1

1 1 1

Input
(switches)

Output
(lamp)

Figure 11.1

The and-function

In Boolean algebra, the and-function for two elements
A andB is written asA · B and is defined as ‘bothA and
B’. The equivalent electrical circuit for a two-inputand-
function is given by two switches connected in series.
With reference to Fig. 11.2(a) the lamp will be on only
whenbothA andB are on.The truth table for a two-input
and-function is shown in Fig. 11.2(b).

0

1 1

0

BA
BA Z A.B

(a) Switching circuit for and-function (b) Truth table for and-function

0 0

0 0

0

00 1

1

1 1 1

Input
(switches)

Output
(lamp)

Figure 11.2

The not-function

In Boolean algebra, the not-function for element A is
written asA, and is defined as ‘the opposite toA’. Thus
if A means switch A is on, A means that switch A is
off. The truth table for the not-function is shown in
Table 11.1.
In the above, the Boolean expressions, equivalent
switching circuits and truth tables for the three func-
tions used in Boolean algebra are given for a two-input
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Table 11.1
Input Output
A Z = A

0 1

1 0

system. A system may have more than two inputs and
the Boolean expression for a three-input or-function
having elements A, B and C is A + B + C. Similarly,
a three-input and-function is written as A · B · C. The
equivalent electrical circuits and truth tables for three-
input or and and-functions are shown in Figs 11.3(a)
and (b) respectively.
To achieve a given output, it is often necessary to use
combinations of switches connected both in series and
in parallel. If the output from a switching circuit is given
by the Boolean expression Z = A · B + A · B , the truth
table is as shown in Fig. 11.4(a). In this table, columns
1 and 2 give all the possible combinations of A and B.
Column 3 corresponds to A · B and column 4 to A · B,
i.e. a 1 output is obtained whenA = 0 and when B = 0.
Column 5 is the or-function applied to columns 3 and 4
giving an output ofZ = A · B + A · B . The correspond-
ing switching circuit is shown in Fig. 11.4(b) inwhichA

andB are connected in series to giveA · B,A andB are
connected in series to giveA · B, andA · B andA · B are
connected in parallel to give A · B + A · B. The circuit
symbols used are such that A means the switch is on

A

A

B

B

C

C Z A B C

(a) The or-function
     electrical circuit and
     truth table

(b) The and-function
     electrical circuit and
     truth table

0 0 0

0 0 1

0

1

1

1

1

1

1

1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

InputInput Output

Input Output

Output

A

B

C

A B C Z A · B · C

0 0 0

0 0 1

0

0

0

0

0

0

0

1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Input Output

Figure 11.3

A A · B A · BB

0 0 0 1

1 2 3 4 5

1

0 1 0 0 0

1 0 0 0 0

1 1 1 0 1

Z �AB�A · B

(a) Truth table for Z � A · B �A · B  

A

A

Input Output Z

B

B

(b) Switching circuit for Z�A · B�A · B  

Figure 11.4

whenA is 1,Ameans the switch is on whenA is 0, and
so on.

Problem 1. Derive the Boolean expression and
construct a truth table for the switching circuit
shown in Fig. 11.5.

A

Input
5 6

43

2

7 8

1

Output
B

BA

B

Figure 11.5

The switches between 1 and 2 in Fig. 11.5 are in series
and have a Boolean expression of B · A. The parallel
circuit 1 to 2 and 3 to 4 have a Boolean expression
of (B · A + B). The parallel circuit can be treated as a
single switching unit, giving the equivalent of switches
5 to 6, 6 to 7 and 7 to 8 in series. Thus the output is
given by:

Z= A · (B ·A+B) ·B
The truth table is as shown in Table 11.2. Columns 1 and
2 give all the possible combinations of switches A and
B. Column 3 is the and-function applied to columns 1
and 2, giving B · A. Column 4 is B, i.e. the opposite
to column 2. Column 5 is the or-function applied to
columns 3 and 4. Column 6 is A, i.e. the opposite to
column 1. The output is column 7 and is obtained by
applying the and-function to columns 4, 5 and 6.
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Table 11.2
1 2 3 4 5 6 7
A B B · A B B · A + B A Z = A · (B · A + B) · B
0 0 0 1 1 1 1

0 1 0 0 0 1 0

1 0 0 1 1 0 0

1 1 1 0 1 0 0

Problem 2. Derive the Boolean expression and
construct a truth table for the switching circuit
shown in Fig. 11.6.

Input Output9 8

7

3

1 2

4

65

B

B
A

C

Figure 11.6

The parallel circuit 1 to 2 and 3 to 4 gives (A + B)

and this is equivalent to a single switching unit between
7 and 2. The parallel circuit 5 to 6 and 7 to 2 gives
C + (A + B) and this is equivalent to a single switching
unit between 8 and 2. The series circuit 9 to 8 and 8 to
2 gives the output

Z= B · [C+ (A+B)]

The truth table is shown in Table 11.3. Columns 1,
2 and 3 give all the possible combinations of A, B

and C. Column 4 is B and is the opposite to column
2. Column 5 is the or-function applied to columns 1
and 4, giving (A + B). Column 6 is the or-function
applied to columns 3 and 5 giving C + (A + B). The
output is given in column 7 and is obtained by apply-
ing the and-function to columns 2 and 6, giving
Z = B · [C + (A + B)].

Problem 3. Construct a switching circuit to meet
the requirements of the Boolean expression:
Z = A · C + A · B + A · B · C. Construct the truth
table for this circuit.

The three terms joined by or-functions, (+) , indicate
three parallel branches,

Table 11.3
1 2 3 4 5 6 7
A B C B A + B C + (A + B) Z = B · [C + (A + B)]

0 0 0 1 1 1 0

0 0 1 1 1 1 0

0 1 0 0 0 0 0

0 1 1 0 0 1 1

1 0 0 1 1 1 0

1 0 1 1 1 1 0

1 1 0 0 1 1 1

1 1 1 0 1 1 1

having: branch 1 A and C in series
branch 2 A and B in series

and branch 3 A and B and C in series

C

A

A C

Input Output

A

B

B

Figure 11.7

Hence the required switching circuit is as shown in
Fig. 11.7. The corresponding truth table is shown in
Table 11.4.

Table 11.4
1 2 3 4 5 6 7 8 9
A B C C A · C A A · B A · V · C Z = A · C + A · B

+A · B · C
0 0 0 1 0 1 0 0 0

0 0 1 0 0 1 0 0 0

0 1 0 1 0 1 1 1 1

0 1 1 0 0 1 1 0 1

1 0 0 1 1 0 0 0 1

1 0 1 0 0 0 0 0 0

1 1 0 1 1 0 0 0 1

1 1 1 0 0 0 0 0 0
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Column 4 is C, i.e. the opposite to column 3
Column 5 is A · C, obtained by applying the and-
function to columns 1 and 4
Column 6 is A, the opposite to column 1
Column 7 is A · B, obtained by applying the and-
function to columns 2 and 6
Column 8 is A · B · C, obtained by applying the and-
function to columns 4 and 7
Column 9 is the output, obtained by applying the or-
function to columns 5, 7 and 8

Problem 4. Derive the Boolean expression and
construct the switching circuit for the truth table
given in Table 11.5.

Table 11.5
A B C Z

1 0 0 0 1

2 0 0 1 0

3 0 1 0 1

4 0 1 1 1

5 1 0 0 0

6 1 0 1 1

7 1 1 0 0

8 1 1 1 0

Examination of the truth table shown in Table 11.5
shows that there is a 1 output in the Z-column in rows
1, 3, 4 and 6. Thus, the Boolean expression and switch-
ing circuit should be such that a 1 output is obtained
for row 1 or row 3 or row 4 or row 6. In row 1, A is
0 and B is 0 and C is 0 and this corresponds to the
Boolean expressionA · B · C. In row 3, A is 0 and B is
1 and C is 0, i.e. the Boolean expression in A · B · C.
Similarly in rows 4 and 6, the Boolean expressions are
A · B · C and A · B · C respectively. Hence the Boolean
expression is:

Z= A ·B ·C+A ·B ·C
+A ·B ·C+A ·B ·C

The corresponding switching circuit is shown in
Fig. 11.8. The four terms are joined by or-functions,
(+) , and are represented by four parallel circuits. Each

term has three elements joined by an and-function, and
is represented by three elements connected in series.

C

C

C

CA

A

A

A B

B

B

B

Input Output

Figure 11.8

Now try the following Practice Exercise

Practice Exercise 45 Boolean algebra and
switching circuits (Answers on page 860)

In Problems 1 to 4, determine the Boolean expres-
sions and construct truth tables for the switching
circuits given.

1. The circuit shown in Fig. 11.9.

A

C

A

B

B

Input Output

Figure 11.9

2. The circuit shown in Fig. 11.10.

A

C

A

B
Input Output

Figure 11.10

3. The circuit show in Fig. 11.11.

C

B

A

Input Output

B

C

B

BA

Figure 11.11
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4. The circuit shown in Fig. 11.12.

C

B

B

A

C

C
Input Output

A

Figure 11.12

In Problems 5 to 7, construct switching circuits to
meet the requirements of the Boolean expressions
given.

5. A · C + A · B · C + A · B
6. A · B · C · (A + B + C).
7. A · (A · B · C + B · (A + C)).

In Problems8 to 10, derive theBoolean expressions
and construct the switching circuits for the truth
table stated.

8. Table 11.6, column 4.

Table 11.6
1 2 3 4 5 6
A B C

0 0 0 0 1 1

0 0 1 1 0 0

0 1 0 0 0 1

0 1 1 0 1 0

1 0 0 0 1 1

1 0 1 0 0 1

1 1 0 1 0 0

1 1 1 0 0 0

9. Table 11.6, column 5.

10. Table 11.6, column 6.

11.2 Simplifying Boolean
expressions

A Boolean expression may be used to describe a
complex switching circuit or logic system. If the
Boolean expression can be simplified, then the number
of switches or logic elements can be reduced, resulting

in a saving in cost. Three principal ways of simplifying
Boolean expressions are:

(a) by using the laws and rules ofBoolean algebra (see
Section 11.3),

(b) by applying de Morgan’s laws (see Section 11.4),
and

(c) by using Karnaugh maps (see Section 11.5).

11.3 Laws and rules of Boolean
algebra

A summary of the principal laws and rules of Boolean
algebra are given in Table 11.7. The way in which
these laws and rules may be used to simplify Boolean
expressions is shown in Problems 5 to 10.

Table 11.7
Ref. Name Rule or law

1 Commutative laws A + B = B + A

2 A · B = B · A
3 Associative laws (A + B) + C = A + (B + C)

4 (A · B) · C = A · (B · C)

5 Distributive laws A · (B + C) = A · B + A · C
6 A + (B · C)

= (A + B) · (A + C)

7 Sum rules A + 0= A

8 A + 1= 1
9 A + A = A

10 A + A = 1
11 Product A · 0= 0
12 rules A · 1= A

13 A · A = A

14 A · A = 0
15 Absorption A + A · B = A

16 rules A · (A + B) = A

17 A + A · B = A + B

Problem 5. Simplify the Boolean expression:
P · Q+ P · Q+ P · Q
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With reference to Table 11.7: Reference

P · Q+ P · Q+ P · Q
= P · (Q+ Q) + P · Q 5
= P · 1+ P · Q 10
= P+P ·Q 12

Problem 6. Simplify
(P + P · Q) · (Q+ Q · P)

With reference to Table 11.7: Reference

(P + P · Q) · (Q+ Q · P)

= P · (Q+ Q · P)

+P · Q · (Q+ Q · P) 5
= P · Q+ P ·Q · P + P · Q · Q

+P · Q · Q · P 5
= P · Q+ P ·Q+ P · Q

+P · Q · Q · P 13
= P · Q+ P ·Q+ P · Q+ 0 14
= P · Q+ P ·Q+ P · Q 7
= P · (Q+ Q) + P · Q 5
= P · 1+ P · Q 10
= P+P·Q 12

Problem 7. Simplify
F · G · H + F · G · H + F · G · H

With reference to Table 11.7: Reference

F · G · H + F · G · H + F · G · H
= F · G · (H + H) + F · G · H 5
= F · G · 1+ F · G · H 10

= F · G + F · G · H 12

= G · (F+F ·H) 5

Problem 8. Simplify
F · G · H + F · G · H + F ·G · H + F · G · H

With reference to Table 11.7: Reference

F · G · H + F · G · H + F · G · H + F · G · H
= G · H · (F + F) + G · H · (F + F) 5

= G · H · 1+ G · H · 1 10

= G · H + G · H 12

= H · (G+ G) 5

= H · 1=H 10 and 12

Problem 9. Simplify

A · C + A · (B + C) + A · B · (C + B)

using the rules of Boolean algebra.

With reference to Table 11.7: Reference

A · C + A · (B + C)

+A · B · (C + B)

= A · C + A · B + A · C
+A · B · C + A · B · B 5

= A · C + A · B + A · C
+A · B · C + A · 0 14

= A · C + A · B + A · C + A · B · C 11
= A · (C + B · C) + A · B + A · C 5
= A · (C + B) + A · B + A · C 17
= A · C + A · B + A · B + A · C 5
= A · C + B · (A + A) + A · C 5
= A · C + B · 1+ A · C 10
= A ·C+B+A ·C 12

Problem 10. Simplify the expression
P · Q · R + P · Q · (P + R) + Q · R · (Q+ P),
using the rules of Boolean algebra.

With reference to Table 11.7: Reference
P · Q · R + P · Q · (P + R)

+Q · R · (Q+ P)

= P · Q · R + P · Q · P + P · Q · R
+Q · R ·Q+ Q · R · P 5

= P ·Q · R + 0 · Q+ P · Q · R
+ 0 · R + P · Q · R 14

= P ·Q · R + P · Q · R + P · Q · R 7 and 11
= P ·Q · R + P · Q · R 9
= P · R · (Q+ Q) 5
= P · R · 1 10
= P ·R 12

Now try the following Practice Exercise

Practice Exercise 46 Laws and rules of
Boolean algebra (Answers on page 861)

Use the laws and rules of Boolean algebra given in
Table 11.7 to simplify the following expressions:

1. P · Q+ P · Q
2. P · Q+ P · Q+ P · Q
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3. F · G + F · G + G · (F + F)

4. F · G + F · (G + G) + F · G
5. (P + P · Q) · (Q+ Q · P)

6. F · G · H + F · G · H + F ·G · H
7. F · G · H + F · G · H + F · G · H
8. P · Q · R + P · Q · R + P · Q · R
9. F · G · H + F · G · H + F · G · H + F · G · H
10. F · G · H + F · G · H + F · G ·H + F · G · H
11. R · (P · Q+ P · Q) + R · (P · Q+ P · Q)

12. R · (P · Q+ P · Q+ P ·Q)

+P · (Q · R + Q · R)

11.4 De Morgan’s laws

De Morgan’s∗ laws may be used to simplify
not-functions having two or more elements. The laws
state that:

∗Who was de Morgan? Augustus de Morgan (27 June
1806–18 March 1871) was a British mathematician and
logician. He formulated de Morgan’s laws and introduced
the term mathematical induction. To find out more go to
www.routledge.com/cw/bird

A+B= A ·B and A ·B= A+B
and may be verified by using a truth table (see Prob-
lem 11). The application of de Morgan’s laws in sim-
plifying Boolean expressions is shown in Problems 12
and 13.

Problem 11. Verify that A + B = A · B

A Boolean expression may be verified by using a truth
table. In Table 11.8, columns 1 and 2 give all the pos-
sible arrangements of the inputs A and B. Column 3 is
the or-function applied to columns 1 and 2 and column
4 is the not-function applied to column 3. Columns 5
and 6 are the not-function applied to columns 1 and 2,
respectively, and column 7 is the and-function applied
to columns 5 and 6.
Table 11.8
1 2 3 4 5 6 7
A B A + B A + B A B A · B
0 0 0 1 1 1 1

0 1 1 0 1 0 0

1 0 1 0 0 1 0

1 1 1 0 0 0 0

Since columns 4 and 7 have the same pattem of 0’s and
1’s this verifies that A + B = A · B

Problem 12. Simplify the Boolean expression
(A · B) + (A+ B) by using de Morgan’s laws and
the rules of Boolean algebra.

Applying de Morgan’s law to the first term gives:

A · B = A+ B = A + B since A = A

Applying de Morgan’s law to the second term gives:

A+ B = A · B = A · B

Thus, (A · B) + (A+ B) = (A + B) + A · B
Removing the bracket and reordering gives: A + A ·
B + B

But, by rule 15, Table 11.7, A + A · B = A. It follows
that: A + A · B = A

Thus: (A ·B) + (A+B) = A+B
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Problem 13. Simplify the Boolean expression
(A · B + C) · (A+ B · C) by using de Morgan’s
laws and the rules of Boolean algebra.

Applying de Morgan’s laws to the first term gives:

A · B + C = A · B · C = (A+ B) · C
= (A+ B) · C = A · C + B · C

Applying de Morgan’s law to the second term gives:

A+ B · C = A+ (B + C) = A + (B + C)

Thus (A · B + C) · (A+ B · C)

= (A · C + B · C) · (A+ B + C)

= A · A · C + A · B · C + A · C · C
+ A · B · C + B · B · C + B · C · C

But from Table 11.7, A · A = A and C · C = B · B = 0
Hence the Boolean expression becomes:

A · C + A · B · C + A · B · C
= A · C(1+ B + B)

= A · C(1+ B)

= A · C

Thus: (A ·B+C) · (A+B ·C) = A ·C

Now try the following Practice Exercise

Practice Exercise 47 Simplifying Boolean
expressions using de Morgan’s laws
(Answers on page 861)

Use de Morgan’s laws and the rules of Boolean
algebra given in Table 11.7 to simplify the follow-
ing expressions.

1. (A · B) · (A · B)

2. (A + B · C) + (A · B + C)

3. (A · B + B · C) · A · B
4. (A · B + B · C) + (A · B)

5. (P · Q+ P · R) · (P · Q · R)

11.5 Karnaugh maps

(a) Two-variable Karnaugh maps

A truth table for a two-variable expression is shown
in Table 11.9(a), the ‘1’ in the third row output show-
ing that Z = A · B. Each of the four possible Boolean
expressions associated with a two-variable function can
be depicted as shown in Table 11.9(b), in which one
cell is allocated to each row of the truth table. A matrix
similar to that shown in Table 11.9(b) can be used to
depictZ = A · B, by putting a 1 in the cell corresponding
to A · B and 0s in the remaining cells. This method of
depicting a Boolean expression is called a two-variable
Karnaugh∗ map, and is shown in Table 11.9(c).
To simplify a two-variable Boolean expression, the
Boolean expression is depicted on a Karnaugh map, as
outlined above. Any cells on the map having either a
common vertical side or a common horizontal side are
grouped together to form a couple. (This is a coupling

∗Who is Karnaugh? Maurice Karnaugh (4 October 1924
in New York City) is an American physicist, famous for the
Karnaugh map used in Boolean algebra. To find out more go to
www.routledge.com/cw/bird
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Table 11.9
Inputs

Output Boolean
A B Z expression

0 0 0 A · B
0 1 0 A · B
1 0 1 A · B
1 1 0 A · B

(a)

together of cells, just combining two together). The
simplified Boolean expression for a couple is given by
those variables common to all cells in the couple. See
Problem 14.

(b) Three-variable Karnaugh maps

A truth table for a three-variable expression is shown
in Table 11.10(a), the ls in the output column showing
that:

Z = A · B · C + A · B · C + A · B · C
Each of the eight possible Boolean expressions asso-
ciated with a three-variable function can be depicted
as shown in Table 11.10(b), in which one cell is allo-
cated to each row of the truth table. A matrix similar
to that shown in Table 11.10(b) can be used to depict:
Z = A · B · C + A · B · C + A · B · C, by putting 1s in
the cells corresponding to the Boolean terms on the
right of the Boolean equation and 0s in the remaining
cells. Thismethod of depicting a three-variableBoolean
expression is called a three-variableKarnaughmap, and
is shown in Table 11.10(c).
To simplify a three-variable Boolean expression, the
Boolean expression is depicted on a Karnaugh map as
outlined above. Any cells on the map having common
edges either vertically or horizontally are grouped
together to form couples of four cells or two cells.
During coupling the horizontal lines at the top and
bottom of the cells are taken as a common edge, as are
the vertical lines on the left and right of the cells. The
simplified Boolean expression for a couple is given by
those variables common to all cells in the couple. See
Problems 15 to 17.

Table 11.10
Inputs

Output Boolean
A B C Z expression

0 0 0 0 A · B · C
0 0 1 1 A · B · C
0 1 0 0 A · B · C
0 1 1 1 A · B · C
1 0 0 0 A · B · C
1 0 1 0 A · B · C
1 1 0 1 A · B · C
1 1 1 0 A · B · C

(a)

(c) Four-variable Karnaugh maps

A truth table for a four-variable expression is shown in
Table 11.11(a), the 1’s in the output column showing
that:

Z = A · B · C · D + A · B · C · D
+ A · B. C. D + A. B. C. D

Each of the 16 possible Boolean expressions associated
with a four-variable function can be depicted as shown
in Table 11.11(b), in which one cell is allocated to each
row of the truth table. A matrix similar to that shown in
Table 11.11(b) can be used to depict

Z = A · B · C · D + A · B · C · D
+ A · B · C · D + A · B · C · D
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by putting 1s in the cells corresponding to the Boolean
terms on the right of the Boolean equation and 0s in
the remaining cells. This method of depicting a four-
variable expression is called a four-variable Karnaugh
map, and is shown in Table 11.11(c).
To simplify a four-variable Boolean expression, the
Boolean expression is depicted on a Karnaugh map
as outlined above. Any cells on the map having com-
mon edges either vertically or horizontally are grouped
together to form couples of eight cells, four cells or two
cells. During coupling, the horizontal lines at the top
and bottom of the cells may be considered to be com-
mon edges, as are the vertical lines on the left and the
right of the cells. The simplified Boolean expression for
a couple is given by those variables common to all cells
in the couple. See Problems 18 and 19.

Summary of procedure when simplifying a
Boolean expression using a Karnaugh map

(a) Drawa four-, eight- or sixteen-cellmatrix, depend-
ing on whether there are two, three or four
variables.

(b) Mark in the Boolean expression by putting 1s in
the appropriate cells.

(c) Form couples of 8, 4 or 2 cells having common
edges, forming the largest groups of cells possible.
(Note that a cell containing a 1 may be used more
than once when forming a couple. Also note that
each cell containing a 1 must be used at least
once.)

(d) The Boolean expression for the couple is given by
the variables which are common to all cells in the
couple.

Problem 14. Use the Karnaugh map techniques
to simplify the expression P · Q + P · Q

Using the above procedure:

(a) The two-variable matrix is drawn and is shown in
Table 11.12.

(b) The term P · Q is marked with a 1 in the top
left-hand cell, corresponding toP = 0 andQ = 0;
P · Q is marked with a 1 in the bottom left-hand
cell corresponding to P = 0 andQ = 1

(c) The two cells containing 1s have a common hor-
izontal edge and thus a vertical couple can be
formed.

Table 11.11
Inputs

Output Boolean
A B C D Z expression

0 0 0 0 0 A · B · C · D
0 0 0 1 0 A · B · C · D
0 0 1 0 1 A · B · C · D
0 0 1 1 0 A · B · C · D
0 1 0 0 0 A · B · C · D
0 1 0 1 0 A · B · C · D
0 1 1 0 1 A · B · C · D
0 1 1 1 0 A · B · C · D
1 0 0 0 0 A · B · C · D
1 0 0 1 0 A · B · C · D
1 0 1 0 1 A · B · C · D
1 0 1 1 0 A · B · C · D
1 1 0 0 0 A · B · C · D
1 1 0 1 0 A · B · C · D
1 1 1 0 1 A · B · C · D
1 1 1 1 0 A · B · C · D

(a)

(d) The variable common to both cells in the couple
is P = 0, i.e. P thus

P ·Q+P ·Q= P

Download more at Learnclax.com



Se
ct

io
n

A

Boolean algebra and logic circuits 111

Table 11.12

Problem 15. Simplify the expression
X · Y · Z + X · Y · Z + X · Y · Z + X · Y · Z
by using Karnaugh map techniques.

Using the above procedure:

(a) A three-variable matrix is drawn and is shown in
Table 11.13

Table 11.13

(b) The ls on the matrix correspond to the expression
given, i.e. for X · Y · Z, X = 0, Y = 1 and Z = 0
and hence corresponds to the cell in the two rows
and second column, and so on.

(c) Two couples can be formed as shown. The couple
in the bottom rowmay be formed since the vertical
lines on the left and right of the cells are taken as
a common edge.

(d) The variables common to the couple in the top
row are Y = 1 and Z = 0, that is, Y ·Z and the
variables common to the couple in the bottom row
are Y = 0, Z = 1, that is, Y ·Z. Hence:

X ·Y ·Z+X ·Y ·Z+X ·Y ·Z
+X ·Y ·Z= Y ·Z+Y ·Z

Problem 16. Use a Karnaugh map technique to
simplify the expression (A · B) · (A+ B).

Using the procedure, a two-variablematrix is drawn and
is shown in Table 11.14.

A · B corresponds to the bottom left-hand cell and
(A · B) must therefore be all cells except this one,
marked with a 1 in Table 11.14. (A + B) corresponds to
all the cells except the top right-hand cell marked with a

Table 11.14

2 in Table 11.14.Hence (A+ B)must correspond to the
cell marked with a 2. The expression (A · B) · (A+ B)

corresponds to the cell having both 1 and 2 in it, i.e.

(A ·B) · (A+B) = A ·B

Problem 17. Simplify (P + Q · R) + (P · Q+ R)

using a Karnaugh map technique.

The term (P + Q · R) corresponds to the cells marked
1 on the matrix in Table 11.15(a), hence (P + Q · R)

corresponds to the cells marked 2. Similarly, (P · Q+
R) corresponds to the cells marked 3 in Table 11.15(a),
hence (P · Q+ R) corresponds to the cells marked 4.
The expression (P + Q · R) + (P · Q+ R) corresponds
to cells marked with either a 2 or with a 4 and is shown
in Table 11.15(b) by Xs. These cells may be coupled as
shown. The variables common to the group of four cells
is P = 0, i.e. P, and those common to the group of two
cells areQ = 0, R = 1, i.e. Q ·R
Thus: (P+Q ·R) + (P ·Q+R) = P+Q ·R

Table 11.15

Problem 18. Use Karnaugh map techniques to
simplify the expression: A·B ·C ·D + A·B ·C ·D
+A · B · C · D + A · B · C · D + A · B · C · D.

Using the procedure, a four-variable matrix is drawn
and is shown in Table 11.16. The 1s marked on the
matrix correspond to the expression given. Two cou-
ples can be formed as shown. The four-cell couple has
B = 1, C = 1, i.e. B ·C as the common variables to all
four cells and the two-cell couple has A ·B ·D as the
common variables to both cells. Hence, the expression
simplifies to:
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B ·C+A ·B ·D i.e. B · (C+A ·D)

Table 11.16

Problem 19. Simplify the expression
A · B · C · D + A · B · C · D + A · B · C · D
+A · B · C · D + A · B · C · D by using Karnaugh
map techniques.

The Karnaugh map for the expression is shown in
Table 11.17. Since the top and bottom horizontal lines
are common edges and the vertical lines on the left and
right of the cells are common, then the four corner cells
form a couple, B · D (the cells can be considered as if
they are stretched to completely corner a sphere, as far
as common edges are concerned). The cellA · B · C · D
cannot be coupled with any other. Hence the expression
simplifies to

B ·D+A ·B ·C ·D

Table 11.17

Now try the following Practice Exercise

Practice Exercise 48 Simplifying Boolean
expressions using Karnaugh maps (Answers
on page 861)

In Problems 1 to 12 use Karnaugh map techniques
to simplify the expressions given.

1. X · Y + X · Y

2. X · Y + X · Y + X · Y

3. (P · Q) · (P · Q)

4. A · C + A · (B + C) + A · B · (C + B)

5. P · Q · R + P · Q · R + P · Q · R

6. P · Q · R + P · Q · R + P · Q · R + P · Q · R

7. A · B · C · D + A · B · C · D + A · B · C · D

8. A · B · C · D + A · B · C · D + A · B · C · D

9. A · B · C · D + A · B · C · D + A · B · C · D
+A · B · C · D + A · B · C · D

10. A · B · C · D + A · B · C · D + A · B · C · D
+A · B · C · D + A · B · C · D

11. A · B · C · D + A · B · C · D + A · B · C · D
+ A· B · C · D + A· B · C · D + A· B · C · D

+A · B · C · D

11.6 Logic circuits

In practice, logic gates are used to perform the and,
or and not-functions introduced in Section 11.1. Logic
gates can be made from switches, magnetic devices or
fluidic devices but most logic gates in use are electronic
devices. Various logic gates are available. For exam-
ple, the Boolean expression (A · B · C) can be produced
using a three-input and-gate and (C + D) by using a
two-input or-gate. The principal gates in common use
are introduced below. The term ‘gate’ is used in the same
sense as a normal gate, the open state being indicated by
a binary ‘1’ and the closed state by a binary ‘0’. A gate
will only open when the requirements of the gate are
met and, for example, there will only be a ‘1’ output on
a two-input and-gate when both the inputs to the gate
are at a ‘1’ state.
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The and-gate
The different symbols used for a three-input, and-gate
are shown in Fig. 11.13(a) and the truth table is shown
in Fig. 11.13(b). This shows that there will only be
a ‘1’ output when A is 1 and B is 1 and C is 1,
written as:

Z = A · B · C

A B C Z � A · B · C

(a)

0 0 0

1 0 0

1 0 1

1 1 0

1 1 1

0 0 1

0 1 0

0 1 1

0

0

0

0

0

0

0

1

INPUTS OUTPUT

(b)

A
B
C

Z

BRITISH

A
B
C

AMERICAN

& Z

Figure 11.13

The or-gate
The different symbols used for a three-input or-gate are
shown in Fig. 11.14(a) and the truth table is shown in
Fig. 11.14(b). This shows that there will be a ‘1’ output
when A is 1, or B is 1, or C is 1, or any combination of
A, B or C is 1, written as:

Z = A + B + C

The invert-gate or not-gate
The different symbols used for an invert-gate are
shown in Fig. 11.15 (a) and the truth table is shown
in Fig. 11.15(b). This shows that a ‘0’ input gives a
‘1’ output and vice-versa, i.e. it is an ‘opposite to’
function. The invert of A is written A and is called
‘not-A’.

A B C Z�A�B�C

0 0 0

1 0 0

1 0 1

1 1 0

1 1 1

0 0 1

0 1 0

0 1 1

0

1

1

1

1

1

1

1

INPUTS OUTPUT

(b)

(a)

A
B
C

Z

BRITISH

A
B
C

AMERICAN

1 Z

Figure 11.14

A Z�A

0

1

1

0

INPUT OUTPUT

(b)

(a)

BRITISH

A Z

AMERICAN

ZA

Figure 11.15

The nand-gate
The different symbols used for a nand-gate are shown
in Fig. 11.16(a) and the truth table is shown in
Fig. 11.16(b). This gate is equivalent to an and-gate and
an invert-gate in series (not-and=nand) and the output
is written as:

Z = A · B · C

The nor-gate
The different symbols used for a nor-gate are shown
in Fig. 11.17(a) and the truth table is shown in
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(a)

A
B
C

BRITISH

A
B
C

AMERICAN

& ZZ

A B C

0 0 0

1 0 0

1 0 1

1 1 0

1 1 1

0 0 1

0 1 0

0 1 1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

1

INPUTS

(b)

A.B.C. Z A.B.C.
OUTPUT

Figure 11.16

Fig. 11.17(b). This gate is equivalent to an or-gate and
an invert-gate in series (not-or=nor), and the output is
written as:

Z = A + B + C

A B C

0 0 0

1 0 0

1 0 1

1 1 0

1 1 1

0 0 1

0 1 0

0 1 1

1

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

INPUTS

(b)

A�B�C
OUTPUT

Z � A�B�C

(a)

A
B
C

BRITISH AMERICAN

1 Z Z
A
B
C

Figure 11.17

Combinational logic networks
In most logic circuits, more than one gate is needed
to give the required output. Except for the invert-gate,
logic gates generally have two, three or four inputs and
are confined to one function only. Thus, for example, a
two-input or-gate or a four-input and-gate can be used
when designing a logic circuit. The way in which logic
gates are used to generate a given output is shown in
Problems 20 to 23.

Problem 20. Devise a logic system to meet the
requirements of: Z = A · B + C

With reference to Fig. 11.18 an invert-gate, shown as
(1), gives B. The and-gate, shown as (2), has inputs of
A and B, giving A · B. The or-gate, shown as (3), has
inputs of A · B and C, giving:

Z= A ·B+C

A

B

C
(1)

(2)

(3)

1

&B
A · B

Z � A · B �C

Figure 11.18

Problem 21. Devise a logic system to meet the
requirements of (P + Q) · (R + S)

The logic system is shown in Fig. 11.19. The given
expression shows that two invert-functions are needed
to give Q and R and these are shown as gates (1) and
(2). Two or-gates, shown as (3) and (4), give (P + Q)

and (R + S) respectively. Finally, an and-gate, shown
as (5), gives the required output,

Z= (P+Q) · (R+S)

P

(1)
(3)

(5)

(4)
(2)

1

&

1

Q

R

Q

R

S

Z� (P�Q) · (R�S)

P �Q

R �S

Figure 11.19
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Problem 22. Devise a logic circuit to meet the
requirements of the output given in Table 11.18,
using as few gates as possible.

Table 11.18
Inputs

Output
A B C Z

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

The ‘1’ outputs in rows 6, 7 and 8 of Table 11.18 show
that the Boolean expression is:

Z = A · B · C + A · B · C + A · B · C

The logic circuit for this expression can be built using
three, three-input and-gates and one, three-input or-
gate, together with two invert-gates. However, the
number of gates required can be reduced by using the
techniques introduced in Sections 11.3 to 11.5, result-
ing in the cost of the circuit being reduced. Any of the
techniques can be used, and in this case, the rules of
Boolean algebra (see Table 11.7) are used.

Z = A · B · C + A · B · C + A · B · C
= A · [B · C + B · C + B · C]
= A · [B · C + B(C + C)]= A · [B · C + B]

= A · [B + B · C]= A · [B+C]
The logic circuit to give this simplified expression is
shown in Fig. 11.20.

&
1

A

C

B
Z � A · (B � C)

B � C

Figure 11.20

Problem 23. Simplify the expression:

Z = P · Q · R · S + P · Q · R · S + P · Q · R · S
+ P · Q · R · S + P · Q · R · S

and devise a logic circuit to give this output.

The given expression is simplified using the Karnaugh
map techniques introduced in Section 11.5. Two couples
are formed as shown in Fig. 11.21(a) and the simplified
expression becomes:

Z = Q · R · S + P · R
i.e Z= R · (P+Q · S)
The logic circuit to produce this expression is shown in
Fig. 11.21(b).

P·Q 0.0

R·S

0.1

0.0

0.1

1.1

1.0

1.1 1.0

11 1

1 1

(a)

(b)

P

Q

R

S

P

Q

R

S

Q.S

Z�R.(P �Q.S)
P �Q.S

&

&1

.

.
. .

Figure 11.21

Now try the following Practice Exercise

Practice Exercise 49 Logic circuits (Answers
on page 862)

In Problems 1 to 4, devise logic systems tomeet the
requirements of the Boolean expressions given.

1. Z = A+ B · C
2. Z = A · B + B · C
3. Z = A · B · C + A · B · C
4. Z = (A+ B) · (C + D)

In Problems 5 to 7, simplify the expression given
in the truth table and devise a logic circuit to meet
the requirements stated.
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5. Column 4 of Table 11.19.

6. Column 5 of Table 11.19.

7. Column 6 of Table 11.19.

Table 11.19
1 2 3 4 5 6
A B C Z1 Z2 Z3

0 0 0 0 0 0

0 0 1 1 0 0

0 1 0 0 0 1

0 1 1 1 1 1

1 0 0 0 1 0

1 0 1 1 1 1

1 1 0 1 0 1

1 1 1 1 1 1

In Problems 8 to 12, simplify the Boolean expres-
sions given and devise logic circuits to give the
requirements of the simplified expressions.

8. P · Q+ P · Q+ P · Q
9. P · Q · R + P · Q · R + P · Q · R
10. P · Q · R + P · Q · R + P · Q · R
11. A · B · C · D + A · B · C · D + A · B · C · D

+ A · B · C · D + A · B · C · D
12. (P · Q · R) · (P + Q · R)

11.7 Universal logic gates

The function of any of the five logic gates in common
use can be obtained by using either nand-gates or nor-
gates and when used in this manner, the gate selected is
called a universal gate. The way in which a universal
nand-gate is used to produce the invert, and, or and
nor-functions is shown inProblem24.Theway inwhich
a universal nor-gate is used to produce the invert, or,
and and nand-functions is shown in Problem 25.

Problem 24. Show how invert, and, or and
nor-functions can be produced using nand-gates
only.

A single input to a nand-gate gives the invert-function,
as shown in Fig. 11.22(a). When two nand-gates are
connected, as shown in Fig. 11.22(b), the output from
the first gate is A · B · C and this is inverted by the
second gate, giving Z = A · B · C = A · B · C, i.e. the
and-function is produced. When A, B and C are the
inputs to a nand-gate, the output is A · B · C

(a)

& Z�AA

(b)

&B
C

A
&

Z�A�B�C

(c)

A

B

C

&

&

&

Z�A · B · C

A · B · C

&

(d)

Z�A�B�C& &

A

B

C

&

&

&

A · B · C

A · B · C

A

A

B

C

B

C

A · B · C A · B · C

Figure 11.22

By de Morgan’s law, A · B · C = A+ B + C = A +
B + C, i.e. a nand-gate is used to produce the or-
function. The logic circuit is shown in Fig. 11.22(c).
If the output from the logic circuit in Fig. 11.22(c)
is inverted by adding an additional nand-gate, the
output becomes the invert of an or-function, i.e. the
nor-function, as shown in Fig. 11.22(d).

Problem 25. Show how invert, or, and and
nand-functions can be produced by using nor-gates
only.

A single input to a nor-gate gives the invert-function,
as shown in Fig. 11.23(a).When two nor-gates are con-
nected, as shown in Fig. 11.23(b), the output from the
first gate isA + B + C and this is inverted by the second
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gate, giving Z = A + B + C = A + B + C, i.e. the or-
function is produced. Inputs ofA,B, andC to a nor-gate
give an output of A+ B + C

(a)

1 Z�AA

(b)

1B
C

A
1 Z�A�B�C

(c)

A

B

C

1

1

1

Z�A · B · C1

(d)

Z�A · B · C1 1

A

B

C

1

1

1

Figure 11.23

By de Morgan’s law, A + B + C = A·B ·C = A·B ·C,
i.e. the nor-gate can be used to produce the and-
function. The logic circuit is shown in Fig. 11.23(c).
When the output of the logic circuit, shown in
Fig. 11.23(c), is inverted by adding an additional
nor-gate, the output then becomes the invert of
an or-function, i.e. the nor-function as shown in
Fig. 11.23(d).

Problem 26. Design a logic circuit, using
nand-gates having not more than three inputs, to
meet the requirements of the Boolean expression
Z = A+ B + C + D

When designing logic circuits, it is often easier to start
at the output of the circuit. The given expression shows
there are four variables joined by or-functions. From
the principles introduced in Problem 24, if a four-input
nand-gate is used to give the expression given, the
inputs are A, B, C and D that is A, B, C and D.

However, the problem states that three-inputs are not
to be exceeded so two of the variables are joined, i.e.
the inputs to the three-input nand-gate, shown as gate
(1) in Fig. 11.24, is A, B, C and D. From Problem 24,
the and-function is generated by using two nand-gates
connected in series, as shown by gates (2) and (3) in
Fig. 11.24. The logic circuit required to produce the
given expression is as shown in Fig. 11.24.

A
& &

&

(1)

(2)(3)
B

C C

D

&

A · B, i.e.
(A B)

A · B · C · D, i.e.
Z (A B C D)

A B, i.e.
(A · B )

Figure 11.24

Problem 27. Use nor-gates only to design a logic
circuit to meet the requirements of the expression
Z = D · (A + B + C)

It is usual in logic circuit design to start the design at the
output. From Problem 25, the and-function betweenD

and the terms in the bracket can be produced by using
inputs of D and A+ B + C to a nor-gate, i.e. by de
Morgan’s law, inputs of D and A · B · C. Again, with
reference to Problem 25, inputs ofA · B andC to a nor-
gate give an output ofA+ B + C, which by deMorgan’s
law isA · B · C. The logic circuit to produce the required
expression is as shown in Fig. 11.25.

A 1

1
1

C
C

B

D

1

D A · B · C, i.e.

D · A · B · C, i.e.
Z D · (A B C)

A B C, i.e.
A · B · C

A

Figure 11.25

Problem 28. An alarm indicator in a grinding
mill complex should be activated if (a) the power
supply to all mills is off, (b) the hopper feeding the
mills is less than 10% full, and (c) if less than two
of the three grinding mills are in action. Devise a
logic system to meet these requirements.

Let variable A represent the power supply on to all the
mills, thenA represents the power supply off. LetB rep-
resent the hopper feeding themills beingmore than10%
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full, then B represents the hopper being less than 10%
full. Let C, D and E represent the three mills respec-
tively being in action, then C, D and E represent the
threemills respectively not being in action. The required
expression to activate the alarm is:

Z = A · B · (C + D + E)

There are three variables joined by and-functions in
the output, indicating that a three-input and-gate is
required, having inputs of A, B and (C + D + E). The
term (C + D + E) is produce by a three-input nand-
gate. When variables C, D and E are the inputs to a
nand-gate, the output is C · D · E which, by de Mor-
gan’s law, is C + D + E. Hence the required logic
circuit is as shown in Fig. 11.26.

&

&
C · D · E

A

B

D

C

E

A

B Z A · B · (C D E )

i.e. C D E 

Figure 11.26

Now try the following Practice Exercise

Practice Exercise 50 Universal logic circuits
(Answers on page 862)

In Problems 1 to 3, use nand-gates only to devise
the logic systems stated.

1. Z = A + B · C
2. Z = A · B + B · C
3. Z = A · B · C + A · B · C
In Problems 4 to 6, use nor-gates only to devise
the logic systems stated.

4. Z = (A + B) · (C + D)

5. Z = A · B + B · C + C · D
6. Z = P · Q+ P · (Q+ R)

7. In a chemical process, three of the transducers
used are P ,Q and R, giving output signals of
either 0 or 1. Devise a logic system to give a 1
output when:
(a) P and Q and R all have 0 outputs, or

when:

(b) P is 0 and (Q is 1 or R is 0)

8. Lift doors should close (Z) if:
(a) the master switch (A) is on and either

(b) a call (B) is received from any otherfloor,
or

(c) the doors (C) have been open for more
than 10 seconds, or

(d) the selector push within the lift (D) is
pressed for another floor.

Devise a logic circuit to meet these
requirements.

9. A water tank feeds three separate processes.
When any two of the processes are in operation
at the same time, a signal is required to start
a pump to maintain the head of water in the
tank.
Devise a logic circuit using nor-gates only to
give the required signal.

10. A logic signal is required to give an indication
when:

(a) the supply to an oven is on, and

(b) the temperature of the oven exceeds 210◦C, or

(c) the temperature of the oven is less than 190◦C.
Devise a logic circuit using nand-gates only
to meet these requirements.

For fully worked solutions to each of the problems in Practice Exercises 45 to 50 in this chapter,
go to the website:

www.routledge.com/cw/bird
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This Revision Test covers the material contained in Chapters 9 to 11. The marks for each question are shown in
brackets at the end of each question.

1. Use the method of bisection to evaluate the root
of the equation: x3+5x =11 in the range x=1 to
x =2, correct to 3 significant figures. (11)

2. Repeat question 1 using an algebraic method of
successive approximations. (16)

3. The solution to a differential equation associated
with the path taken by a projectile for which the
resistance to motion is proportional to the velocity
is given by:

y = 2.5(ex − e−x) + x − 25
Use Newton’s method to determine the value of x,
correct to 2 decimal places, for which the value of
y is zero. (11)

4. Convert the following binary numbers to decimal
form:

(a) 1101 (b) 101101.0101 (5)

5. Convert the following decimal numbers to binary
form:

(a) 27 (b) 44.1875 (9)

6. Convert the following decimal numbers to binary,
via octal:

(a) 479 (b) 185.2890625 (9)

7. Convert

(a) 5F16 into its decimal equivalent

(b) 13210 into its hexadecimal equivalent

(c) 1101010112 into its hexadecimal equivalent

(8)

8. Use the laws and rules of Boolean algebra to
simplify the following expressions:
(a) B · (A + B) + A · B
(b) A · B · C + A · B · C + A · B · C + A · B · C

(9)

9. Simplify the Boolean expression

A · B + A · B · C using de Morgan’s laws. (6)

10. Use a Karnaugh map to simplify the Boolean
expression:

A · B · C + A · B · C + A. B. C + A · B · C
(8)

11. A clean room has two entrances, each having two
doors, as shown in Fig. RT3.1.Awarning bellmust
sound if both doorsA and B or doorsC andD are
open at the same time. Write down the Boolean
expression depicting this occurrence, and devise a
logic network to operate the bell using nand-gates
only. (8)

Dust-free
area

A B

C D

Figure RT3.1

For lecturers/instructors/teachers, fully worked solutions to each of the problems in Revision Test 3,
together with a full marking scheme, are available at the website:

www.routledge.com/cw/bird
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Chapter 12

Introduction to
trigonometry

Why it is important to understand: Introduction to trigonometry
There are an enormous number of uses of trigonometry and trigonometric functions. Fields that use
trigonometry or trigonometric functions include astronomy (especially for locating apparent positions
of celestial objects, in which spherical trigonometry is essential) and hence navigation (on the oceans, in
aircraft, and in space), music theory, acoustics, optics, analysis of financial markets, electronics, prob-
ability theory, statistics, biology, medical imaging (CAT scans and ultrasound), pharmacy, chemistry,
number theory (and hence cryptology), seismology, meteorology, oceanography, many physical sciences,
land surveying and geodesy (a branch of earth sciences), architecture, phonetics, economics, electrical
engineering,mechanical engineering, civil engineering, computer graphics, cartography, crystallography
and game development. It is clear that a good knowledge of trigonometry is essential in many fields of
engineering.

At the end of this chapter, you should be able to:

• state the theorem of Pythagoras and use it to find the unknown side of a right-angled triangle
• define sine, cosine, tangent, secant, cosecant and cotangent of an angle in a right-angled triangle
• evaluate trigonometric ratios of angles
• solve right-angled triangles
• understand angles of elevation and depression
• use the sine and cosine rules to solve non-right-angled triangles
• calculate the area of any triangle
• solve practical problems involving trigonometry

Higher Engineering Mathematics. 978-1-138-67357-1, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.
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12.1 Trigonometry

Trigonometry is the branch of mathematics which
deals with the measurement of sides and angles of
triangles, and their relationship with each other. There
are many applications in engineering where knowledge
of trigonometry is needed.

12.2 The theorem of Pythagoras

With reference to Fig. 12.1, the side opposite the right
angle (i.e. sideb) is called thehypotenuse. The theorem
of Pythagoras∗ states:

B

A

Ca

b
c

Figure 12.1

∗ Who was Pythagoras? Pythagoras of Samos (Born c. 570
BC and died about 495 BC) was an Ionian Greek philosopher
and mathematician. He is best known for the Pythagorean the-
orem, which states that in a right-angled triangle a2+b2 = c2.
To find out more go to www.routledge.com/cw/bird

‘In any right-angled triangle, the square on the
hypotenuse is equal to the sum of the squares on the
other two sides.’
Hence b2= a2+ c2

Problem 1. In Fig. 12.2, find the length of EF.

E d F

D

f 5 5 cm
e 513 cm

Figure 12.2

By Pythagoras’ theorem:

e2 = d2+ f 2

Hence 132 = d2+ 52

169= d2+ 25
d2 = 169− 25= 144

Thus d =
√
144 = 12cm

i.e. EF= 12cm

Problem 2. Two aircraft leave an airfield at the
same time. One travels due north at an average
speed of 300km/h and the other due west at an
average speed of 220km/h. Calculate their distance
apart after fourhours.

After fourhours, thefirst aircraft has travelled4× 300=
1200km, due north, and the second aircraft has trav-
elled 4× 220= 880kmduewest, as shown in Fig. 12.3.
Distance apart after fourhours= BC.

A

BN

EW

S

C

1200 km

880 km

Figure 12.3

From Pythagoras’ theorem:

BC2 = 12002+ 8802 = 1440000+ 774400
and BC =

√
(2214400)

Hence distance apart after four hours=1488km
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Now try the following Practice Exercise

Practice Exercise 51 The theorem of
Pythagoras (Answers on page 863)

1. In a triangle CDE, D=90◦, CD=14.83mm
and CE=28.31mm. Determine the length of
DE.

2. Triangle PQR is isosceles, Q being a right
angle. If the hypotenuse is 38.47cm find (a)
the lengths of sides PQ and QR, and (b) the
value of ∠QPR.

3. A man cycles 24km due south and then 20km
due east. Another man, starting at the same
time as thefirst man, cycles 32kmdue east and
then7kmdue south. Find the distance between
the two men.

4. A ladder 3.5m long is placed against a per-
pendicular wall with its foot 1.0m from the
wall. How far up the wall (to the nearest centi-
metre) does the ladder reach? If the foot of
the ladder is now moved 30cm further away
from the wall, how far does the top of the
ladder fall?

5. Two ships leave a port at the same time. One
travels duewest at 18.4km/h and the other due
south at 27.6km/h. Calculate how far apart the
two ships are after four hours.

6. Figure 12.4 shows a bolt rounded off at one
end. Determine the dimension h.

R 5 45 mm

h

r5
16

m
m

Figure 12.4

7. Figure 12.5 shows a cross-section of a
component that is to bemade from a round bar.
If the diameter of the bar is 74mm, calculate
the dimension x.

72 mm
� 74mm

x

Figure 12.5

12.3 Trigonometric ratios of acute
angles

(a) With reference to the right-angled triangle shown
in Fig. 12.6:

(i) sineθ = opposite side
hypotenuse

i.e. sin θ = b
c

(ii) cosineθ = adjacent side
hypotenuse

i.e. cosθ = a
c

(iii) tangentθ = opposite side
adjacent side

i.e. tan θ = b
a

(iv) secant θ = hypotenuse
adjacent side

i.e. sec θ = c
a

(v) cosecant θ = hypotenuse
opposite side

i.e. cosec θ = c
b

Download more at Learnclax.com
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(vi) cotangentθ = adjacent side
opposite side

i.e. cot θ = a
b

�

c
b

a

Figure 12.6
(b) From above,

(i)
sinθ

cosθ
=

b

c
a

c

= b

a
= tanθ,

i.e. tan θ = sinθ

cosθ

(ii)
cosθ
sin θ

=
a

c
b

c

= a

b
= cot θ ,

i.e. cot θ = cosθ
sinθ

(iii) sec θ = 1
cosθ

(iv) cosec θ = 1
sinθ

(Note, the first letter of each ratio, ‘s’ and
‘c’ go together)

(v) cot θ = 1
tanθ

Secants, cosecants and cotangents are called the
reciprocal ratios.

Problem 3. If cosX= 9
41
determine the value of

the other five trigonometry ratios.

Fig. 12.7 shows a right-angled triangleXYZ.

Y

Z

X
9

41

Figure 12.7

Since cosX = 9
41
, then XY = 9 units and

XZ = 41 units.
Using Pythagoras’ theorem: 412 = 92+ YZ2 from
which YZ =

√
(412−92) = 40 units.

Thus

sinX= 40
41

, tanX= 40
9

= 4
4
9
,

cosecX= 41
40

= 1 1
40

,

secX= 41
9

= 45
9
and cotX= 9

40

Problem 4. If sinθ =0.625 and cosθ =0.500
determine, without using trigonometric tables or
calculators, the values of cosecθ,secθ, tanθ

and cotθ .

cosec θ = 1
sinθ

= 1
0.625

= 1.60

secθ = 1
cosθ

= 1
0.500

= 2.00

tanθ = sin θ

cosθ
= 0.625
0.500

= 1.25

cot θ = cosθ
sin θ

= 0.500
0.625

= 0.80

Problem 5. Point A lies at co-ordinate (2, 3) and
point B at (8, 7). Determine (a) the distance AB,
(b) the gradient of the straight line AB, and (c) the
angle AB makes with the horizontal.

(a) Points A and B are shown in Fig. 12.8(a).

In Fig. 12.8(b), the horizontal and vertical lines
AC and BC are constructed.

Since ABC is a right-angled triangle, and
AC=(8−2)=6 and BC =(7−3)=4, then by
Pythagoras’ theorem

AB2 = AC2+ BC2 = 62+ 42
and AB=

√
(62+ 42) =

√
52= 7.211,

correct to 3 decimal places.

(b) The gradient of AB is given by tan A,

i.e. gradient = tan A = BC

AC
= 4
6

= 2
3

(c) The angleABmakeswith the horizontal is given
by tan−1 2

3 =33.69◦
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B

A

20 4

(a)

(b)

6 8

8

f(x)

7
6

4
3
2

B

CA

20 4 6 8

8

f (x)

6

4

2

Figure 12.8

Now try the following Practice Exercise

Practice Exercise 52 Trigonometric ratios
of acute angles (Answers on page 863)

1. In triangle ABC shown in Fig. 12.9, find
sinA,cosA, tanA,sinB,cosB and tanB.

B

C

35

A

Figure 12.9

2. If cosA= 15
17
find sinA and tanA, in fraction

form.

3. For the right-angled triangle shown in
Fig. 12.10, find:
(a) sinα (b) cosθ (c) tanθ

�

� 178

15

Figure 12.10

4. Point P lies at co-ordinate (−3, 1) and point
Q at (5,−4). Determine
(a) the distance PQ

(b) the gradient of the straight line PQ and

(c) the angle PQmakes with the horizontal.

12.4 Evaluating trigonometric ratios

The easiest method of evaluating trigonometric func-
tions of any angle is by using a calculator.
The following values, correct to 4 decimal places, may
be checked:
sine 18◦ = 0.3090, cosine 56◦ = 0.5592
sine 172◦ = 0.1392 cosine 115◦ = −0.4226,
sine 241.63◦ = −0.8799, cosine 331.78◦ = 0.8811
tangent 29◦ = 0.5543,
tangent 178◦ = −0.0349
tangent 296.42◦ = −2.0127
To evaluate, say, sine 42◦23′ using a calculator

means finding sine42
23◦

60
since there are 60 minutes

in 1 degree.

23
60

= 0.3833̇ thus 42◦23′ = 42.383̇◦

Thus sine 42◦23′ = sine 42.383̇◦ = 0.6741, correct to 4
decimal places.

Similarly, cosine72◦38′ = cosine7238
◦

60
=0.2985,

correct to 4 decimal places.
Most calculators contain only sine, cosine and tangent
functions. Thus to evaluate secants, cosecants andcotan-
gents, reciprocals need to be used. The following values,
correct to 4 decimal places, may be checked:

secant32◦ = 1
cos32◦ = 1.1792

cosecant75◦ = 1
sin75◦ = 1.0353

cotangent41◦ = 1
tan41◦ = 1.1504

secant215.12◦ = 1
cos215.12◦ = −1.2226
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cosecant321.62◦ = 1
sin321.62◦ = −1.6106

cotangent263.59◦ = 1
tan263.59◦ = 0.1123

If we know the value of a trigonometric ratio and need
to find the angle we use the inverse function on our
calculators.
For example, using shift and sin on our calculator gives
sin−1 (
If, for example, we know the sine of an angle is 0.5 then
the value of the angle is given by:

sin−1 0.5= 30◦ (Check that sin30◦ = 0.5)

(Note that sin−1 x does not mean
1
sinx

; also, sin−1 x
may also be written as arcsinx)
Similarly, if cosθ = 0.4371 then
θ = cos−1 0.4371= 64.08◦

and if tanA = 3.5984 then A = tan−1 3.5984
= 74.47◦

each correct to 2 decimal places.
Use your calculator to check the following worked
examples.

Problem 6. Determine, correct to 4 decimal
places, sin43◦39′

sin43◦39′ = sin4339
60

◦
= sin43.65◦

= 0.6903
This answer can be obtained using the calculator as
follows:
1. Press sin 2. Enter 43 3. Press ◦ ”’
4. Enter 39 5. Press ◦ ”’ 6. Press )
7. Press = Answer = 0.6902512….

Problem 7. Determine, correct to 3 decimal
places, 6cos62◦12′

6cos62◦12′ = 6cos6212
◦

60
= 6cos62.20◦

= 2.798
This answer can be obtained using the calculator as
follows:
1. Enter 6 2. Press cos 3. Enter 62
4. Press ◦ ”’ 5. Enter 12 6. Press ◦ ”’
7. Press) 8. Press = Answer = 2.798319….

Problem 8. Evaluate, correct to 4 decimal places:
(a) sine168◦14′ (b) cosine271.41◦
(c) tangent98◦4′

(a) sine168◦14′ = sine168
14◦

60
= 0.2039

(b) cosine271.41◦ = 0.0246

(c) tangent98◦4′ = tan98 4
◦

60
= −7.0558

Problem 9. Evaluate, correct to 4 decimal places:
(a) secant161◦ (b) secant302◦29′

(a) sec161◦= 1
cos161◦ =−1.0576

(b) sec302◦29′ = 1
cos302◦29′ = 1

cos302
29◦

60
=1.8620

Problem 10. Evaluate, correct to 4 significant
figures:
(a) cosecant 279.16◦ (b) cosecant 49◦7′

(a) cosec279.16◦= 1
sin279.16◦ =−1.013

(b) cosec49◦7′ = 1
sin49◦7′

= 1

sin49
7◦

60
=1.323

Problem 11. Evaluate, correct to 4 decimal
places:
(a) cotangent17.49◦ (b) cotangent163◦52′

(a) cot 17.49◦= 1
tan17.49◦ =3.1735

(b) cot 163◦52′ = 1
tan163◦52′ = 1

tan163
52◦

60
=−3.4570

Problem 12. Evaluate, correct to 4 significant
figures:
(a) sin1.481 (b) cos(3π/5) (c) tan2.93
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(a) sin1.481 means the sine of 1.481radians. Hence
a calculator needs to be on the radian function.
Hence sin1.481 = 0.9960

(b) cos(3π/5)= cos1.884955 . . . =−0.3090
(c) tan2.93=−0.2148
Problem 13. Evaluate, correct to 4 decimal
places:
(a) secant5.37 (b) cosecantπ/4
(c) cotangentπ/24

(a) Again, with no degrees sign, it is assumed that
5.37 means 5.37radians.

Hence sec5.37= 1
cos 5.37

=1.6361

(b) cosec (π/4)= 1
sin(π/4)

= 1
sin0.785398 . . .

=1.4142
(c) cot(5π/24)= 1

tan(5π/24)
= 1
tan0.654498 . . .

=1.3032

Problem 14. Find, in degrees, the acute angle
sin−1 0.4128 correct to 2 decimal places.

sin−1 0.4128 means ‘the angle whose
sine is 0.4128’

Using a calculator:
1. Press shift 2. Press sin 3. Enter 0.4128
4. Press ) 5. Press= The answer 24.380848…

is displayed

Hence, sin−1 0.4128= 24.38◦

Problem 15. Find the acute angle cos−1 0.2437 in
degrees and minutes.

cos−1 0.2437 means ‘the angle whose
cosine is 0.2437’

Using a calculator:

1. Press shift 2. Press cos 3. Enter 0.2437

4. Press ) 5. Press= The answer 75.894979…
is displayed

6. Press ◦ ”’ and 75◦53′ 41.93′′ is displayed

Hence, cos−1 0.2437= 75.89◦ = 77◦54′
correct to the nearest minute.

Problem 16. Find the acute angle tan−1 7.4523 in
degrees and minutes.

tan−1 7.4523 means ‘the angle whose
tangent is 7.4523’

Using a calculator:

1. Press shift 2. Press tan 3. Enter 7.4523

4. Press ) 5. Press = The answer 82.357318…
is displayed

6. Press ◦ ”’ and 82◦21′26.35′′ is displayed

Hence, tan−1 7.4523= 82.36◦ = 82◦21′
correct to the nearest minute.

Problem 17. Determine the acute angles:
(a) sec−1 2.3164 (b) cosec−11.1784
(c) cot−1 2.1273

(a) sec−1 2.3164= cos−1
(

1
2.3164

)

= cos−1 0.4317 . . .
= 64.42◦ or 64◦25′

or 1.124radians

(b) cosec−11.1784= sin−1
(

1
1.1784

)

= sin−1 0.8486 . . .

= 58.06◦ or 58◦4′

or 1.013radians

(c) cot−1 2.1273= tan−1
(

1
2.1273

)

= tan−1 0.4700 . . .

= 25.18◦ or 25◦11′

or 0.439radians

Problem 18. Evaluate the following expression,
correct to 4 significant figures:

4sec32◦10′ − 2cot15◦19′

3cosec63◦8′ tan14◦57′
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By calculator:

sec32◦10′ = 1.1813,cot15◦19′ = 3.6512
cosec63◦8′ = 1.1210, tan14◦57′ = 0.2670

Hence
4sec32◦10′ − 2cot15◦19′

3cosec63◦8′ tan14◦57′

= 4(1.1813) − 2(3.6512)
3(1.1210)(0.2670)

= 4.7252− 7.3024
0.8979

= −2.5772
0.8979

= −2.870

correct to 4 significant figures.

Problem 19. Evaluate correct to 4 decimal places:
(a) sec(−115◦) (b) cosec (−95◦47′)

(a) Positive angles are considered by convention to be
anticlockwise and negative angles as clockwise.
Hence −115◦ is actually the same as 245◦ (i.e.
360◦−115◦)

Hence sec(−115◦) = sec245◦ = 1
cos245◦

= −2.3662

(b) cosec (−95◦47′)= 1

sin
(

−9547
◦

60

) =−1.0051

Problem 20. In triangle EFG in Fig. 12.11,
calculate angleG.

2.30
8.71

F

E

G

Figure 12.11

With reference to ∠G, the two sides of the triangle
given are the opposite side EF and the hypotenuse
EG; hence, sine is used,

i.e. sinG = 2.30
8.71

= 0.26406429 . . .

from which, G = sin−1 0.26406429 . . .

i.e. G = 15.311360 . . .

Hence, ∠G = 15.31◦ or 15◦19′

Now try the following Practice Exercise

Practice Exercise 53 Evaluating
trigonometric ratios (Answers on page 863)

In Problems 1 to 8, evaluate correct to 4 decimal
places:

1. (a) sine 27◦ (b) sine 172.41◦
(c) sine 302◦52′

2. (a) cosine124◦ (b) cosine21.46◦
(c) cosine284◦10′

3. (a) tangent145◦ (b) tangent310.59◦
(c) tangent49◦16′

4. (a) secant73◦ (b) secant286.45◦
(c) secant155◦41′

5. (a) cosecant213◦ (b) cosecant15.62◦
(c) cosecant311◦50′

6. (a) cotangent71◦ (b) cotangent151.62◦
(c) cotangent321◦23′

7. (a) sine
2π
3
(b) cos1.681 (c) tan3.672

8. (a) sec
π

8
(b) cosec2.961 (c) cot 2.612

In Problems 9 to 14, determine the acute angle
in degrees (correct to 2 decimal places), degrees
and minutes, and in radians (correct to 3 decimal
places).

9. sin−1 0.2341

10. cos−1 0.8271

11. tan−1 0.8106

12. sec−1 1.6214
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13. cosec−12.4891

14. cot−1 1.9614

15. In the triangle shown inFig. 12.12, determine
angle θ , correct to 2 decimal places.

9

5

�

Figure 12.12

16. In the triangle shown inFig. 12.13, determine
angle θ in degrees and minutes.

23

8

�

Figure 12.13

In Problems 17 to 20, evaluate correct to 4 signifi-
cant figures:

17. 4cos56◦19′ −3sin21◦57′

18.
11.5tan49◦11′− sin90◦

3cos45◦

19.
5sin86◦3′

3tan14◦29′ −2cos31◦9′

20.
6.4cosec29◦5′ − sec81◦

2cot12◦

21. Determine the acute angle, in degrees and
minutes, correct to the nearest minute, given

by sin−1
(
4.32sin42◦16′

7.86

)

22. If tanx =1.5276, determine secx, cosecx,
and cotx. (Assume x is an acute angle.)

In Problems 23 to 25 evaluate correct to 4
significant figures:

23.
(sin34◦27′)(cos69◦2′)

(2 tan53◦39′)

24. 3cot 14◦15′ sec23◦9′

25.
cosec27◦19′ + sec45◦29′

1− cosec27◦19′ sec45◦29′

26. Evaluate correct to 4 decimal places:
(a) sine (−125◦) (b) tan(−241◦)
(c) cos(−49◦15′)

27. Evaluate correct to 5 significant figures:
(a) cosec (−143◦) (b) cot(−252◦)
(c) sec(−67◦22′)

12.5 Solution of right-angled
triangles

To ‘solve a right-angled triangle’ means ‘to find the
unknown sides and angles’. This is achieved by using
(i) the theorem of Pythagoras, and/or (ii) trigono-
metric ratios. This is demonstrated in the following
problems.

Problem 21. In triangle PQR shown in
Fig. 12.14, find the lengths of PQ and PR.

Q R

P

7.5 cm
388

Figure 12.14

tan38◦ = PQ
QR

= PQ
7.5

hence PQ= 7.5tan38◦ = 7.5(0.7813)
= 5.860 cm

cos38◦ = QR
PR

= 7.5
PR

hence PR= 7.5
cos38◦ = 7.5

0.7880
= 9.518 cm
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[Check: Using Pythagoras’ theorem

(7.5)2+ (5.860)2 = 90.59= (9.518)2]

Problem 22. Solve the triangle ABC shown in
Fig. 12.15.

A

C

B

37 mm

35 mm

Figure 12.15

To ‘solve triangle ABC’ means ‘to find the length
AC and angles B and C’

sinC = 35
37

= 0.94595

hence ∠C= sin−1 0.94595=71.08◦=71◦5′
∠B=180◦−90◦−71◦5′ =18◦55′ (since angles in a
triangle add up to 180◦)

sinB = AC

37

hence AC= 37sin18◦55′ = 37(0.3242)
= 12.0mm

or, using Pythagoras’ theorem, 372=352+AC2, from
which, AC=

√
(372−352)=12.0mm.

Problem 23. Solve triangle XYZ given
∠X=90◦,∠Y =23◦17′ and YZ=20.0mm.
Determine also its area.

It is always advisable to make a reasonably accurate
sketch so as to visualise the expected magnitudes of
unknown sides and angles. Such a sketch is shown in
Fig. 12.16.

∠Z = 180◦ − 90◦ − 23◦17′ = 66◦43′

sin23◦17′ = XZ
20.0

X Y

Z

20.0 mm

238179

Figure 12.16

hence XZ= 20.0sin23◦17′

= 20.0(0.3953) = 7.906mm

cos23◦17′ = XY

20.0
hence XY= 20.0cos23◦17′

= 20.0(0.9186) = 18.37mm
[Check: Using Pythagoras’ theorem

(18.37)2 + (7.906)2= 400.0=(20.0)2]
Area of triangle XYZ

= 1
2 (base) (perpendicular height)

= 1
2 (XY )(XZ) = 1

2 (18.37)(7.906)

= 72.62mm2

Now try the following Practice Exercise

Practice Exercise 54 The solution of
right-angled triangles (Answers on page
863)

1. Solve triangle ABC in Fig. 12.17(i).

(i)

B

A C5.0 cm
358

(iii)

418

G

l

H

15.0 mm

(ii)
F

E

D
3 cm

4 cm

Figure 12.17

2. Solve triangle DEF in Fig. 12.17(ii).

3. Solve triangle GHI in Fig. 12.17(iii).

4. Solve the triangle JKL in Fig. 12.18(i) andfind
its area.

5. Solve the triangle MNO in Fig. 12.18(ii) and
find its area.

(i)

518

J

K L

6.7 cm

(ii)

M

N

O

32.0 mm

258359

(iii)

P

8.75 m

3.69 m
Q

R

Figure 12.18

6. Solve the triangle PQR in Fig. 12.18(iii) and
find its area.
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7. A ladder rests against the top of the perpendi-
cular wall of a building and makes an angle of
73◦ with the ground. If the foot of the ladder is
2m from the wall, calculate the height of the
building.

12.6 Angles of elevation and
depression

(a) If, in Fig. 12.19, BC represents horizontal gro-
und and AB a vertical flagpole, then the angle of
elevation of the top of the flagpole, A, from the
point C is the angle that the imaginary straight
line AC must be raised (or elevated) from the
horizontal CB, i.e. angle θ .

A

BC
�

Figure 12.19

(b) If, in Fig. 12.20, PQ represents a vertical cliff and
R a ship at sea, then the angle of depression of
the ship from point P is the angle through which
the imaginary straight line PR must be lowered
(or depressed) from the horizontal to the ship, i.e.
angle φ.

P

Q R

�

Figure 12.20

(Note,∠PRQ is also φ – alternate angles between
parallel lines.)

Problem 24. An electricity pylon stands on
horizontal ground. At a point 80m from the base of
the pylon, the angle of elevation of the top of the
pylon is 23◦. Calculate the height of the pylon to the
nearest metre.

Figure 12.21 shows the pylon AB and the angle of
elevation of A from point C is 23◦

tan23◦ = AB
BC

= AB
80

Hence height of pylon AB

= 80 tan23◦ = 80(0.4245) = 33.96m
= 34m to the nearest metre.

80 m
23�

A

BC

Figure 12.21

Problem 25. A surveyor measures the angle of
elevation of the top of a perpendicular building as
19◦. He moves 120m nearer the building and finds
the angle of elevation is now 47◦. Determine the
height of the building.

The building PQ and the angles of elevation are shown
in Fig. 12.22.

In triangle PQS,

tan19◦ = h

x + 120
hence h = tan19◦(x + 120),
i.e. h = 0.3443(x + 120) (1)

P

Q

h

x

R
S

120

478 198

Figure 12.22

In triangle PQR, tan47◦ = h

x

hence h = tan47◦(x), i.e. h = 1.0724x (2)

Equating equations (1) and (2) gives:

0.3443(x + 120) = 1.0724x
0.3443x + (0.3443)(120) = 1.0724x

(0.3443)(120) = (1.0724− 0.3443)x
41.316= 0.7281x

x = 41.316
0.7281

= 56.74m

From equation (2), height of building,
h= 1.0724x = 1.0724(56.74) = 60.85m
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Problem 26. The angle of depression of a ship
viewed at a particular instant from the top of a 75m
vertical cliff is 30◦. Find the distance of the ship
from the base of the cliff at this instant. The ship is
sailing away from the cliff at constant speed and
one minute later its angle of depression from the
top of the cliff is 20◦. Determine the speed of the
ship in km/h.

Fig. 12.23 shows the cliffAB, the initial position of the
ship at C and the final position atD. Since the angle of
depression is initially 30◦ then ∠ACB =30◦ (alternate
angles between parallel lines).

tan30◦ = AB

BC
= 75

BC

hence BC = 75
tan30◦ = 75

0.5774
= 129.9m

= initial position of ship from
base of cliff

x

75 m

308

208

308

208

A

B DC

Figure 12.23

In triangle ABD,

tan20◦ = AB
BD

= 75
BC+CD

= 75
129.9+ x

Hence 129.9+ x = 75
tan20◦ = 75

0.3640
= 206.0m

from which x = 206.0− 129.9= 76.1m
Thus the ship sails 76.1m in one minute, i.e. 60 s, hence
speed of ship

= distance
time

= 76.1
60

m/s

= 76.1×60×60
60×1000 km/h= 4.57km/h

Now try the following Practice Exercise

Practice Exercise 55 Angles of elevation
and depression (Answers on page 864)

1. If the angle of elevation of the top of a vertical
30m high aerial is 32◦, how far is it to the
aerial?

2. From the top of a vertical cliff 80.0m high
the angles of depression of two buoys lying
due west of the cliff are 23◦ and 15◦, respecti-
vely. How far are the buoys apart?

3. From a point on horizontal ground a surveyor
measures the angle of elevation of the top of
a flagpole as 18◦40′. He moves 50m nearer
to the flagpole and measures the angle of ele-
vation as 26◦22′. Determine the height of the
flagpole.

4. A flagpole stands on the edge of the top of a
building. At a point 200m from the building
the angles of elevation of the top and bot-
tom of the pole are 32◦ and 30◦ respectively.
Calculate the height of the flagpole.

5. From a ship at sea, the angles of elevation of
the top and bottom of a vertical lighthouse
standing on the edge of a vertical cliff are
31◦ and 26◦, respectively. If the lighthouse is
25.0m high, calculate the height of the cliff.

6. From awindow 4.2m above horizontal ground
the angle of depression of the foot of a building
across the road is 24◦ and the angle of elevation
of the top of the building is 34◦. Determine,
correct to the nearest centimetre, the width of
the road and the height of the building.

7. The elevation of a tower from two points, one
due east of the tower and the other due west
of it are 20◦ and 24◦, respectively, and the two
points of observation are 300m apart. Find the
height of the tower to the nearest metre.

12.7 Sine and cosine rules

To ‘solve a triangle’ means ‘to find the values of
unknown sides and angles’. If a triangle is right angled,
trigonometric ratios and the theorem of Pythagorasmay
be used for its solution, as shown in Section 12.5.
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However, for a non-right-angled triangle, trigonomet-
ric ratios and Pythagoras’ theorem cannot be used.
Instead, two rules, called the sine rule and the cosine
rule, are used.

Sine rule

With reference to triangle ABC of Fig. 12.24, the sine
rule states:

a
sinA

= b
sinB

= c
sinC

c b

aB

A

C

Figure 12.24

The rule may be used only when:

(i) one side and any two angles are initially given, or

(ii) two sides and an angle (not the included angle) are
initially given.

Cosine rule

With reference to triangleABC of Fig. 12.24, the cosine
rule states:

a2=b2+ c2− 2bccosA
or b2=a2+ c2− 2accosB
or c2=a2+ b2− 2abcosC

The rule may be used only when:

(i) two sides and the included angle are initially given,
or

(ii) three sides are initially given.

12.8 Area of any triangle

The area of any triangle such as ABC of Fig. 12.24 is
given by:

(i) 1
2 ×base×perpendicular height, or

(ii) 1
2ab sinC or 12ac sinB or 12bc sinA, or

(iii)
√
[s(s −a)(s−b)(s −c)], where

s = a+b+c

2

12.9 Worked problems on the
solution of triangles and
finding their areas

Problem 27. In a triangle XYZ, ∠X=51◦,
∠Y=67◦ and YZ=15.2cm. Solve the triangle and
find its area.

The triangle XYZ is shown in Fig. 12.25. Since
the angles in a triangle add up to 180◦, then
Z=180◦−51◦−67◦ =62◦. Applying the sine rule:

15.2
sin51◦ = y

sin67◦ = z

sin62◦

Using
15.2
sin51◦ = y

sin67◦ and transposing gives:

y = 15.2 sin67◦

sin51◦ = 18.00cm=XZ

Using
15.2
sin51◦ = z

sin62◦ and transposing gives:

z = 15.2sin62◦

sin51◦ = 17.27cm=XY

z y

x �15.2 cm

67�

51�

Y

X

Z

Figure 12.25

Area of triangle XYZ= 1
2xy sinZ

= 1
2 (15.2)(18.00)sin62

◦ =120.8cm2 (or area
= 1
2xz sinY = 1

2 (15.2)(17.27)sin67
◦ =120.8cm2).

It is always worth checking with triangle problems
that the longest side is opposite the largest angle, and
vice-versa. In this problem, Y is the largest angle and
XZ is the longest of the three sides.
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Problem 28. Solve the triangle PQR and find its
area given that QR=36.5mm, PR= 29.6mm and
∠Q =36◦.

Triangle PQR is shown in Fig. 12.26.

P

r

Q Rp � 36.5 mm

q � 29.6 mm

36�

Figure 12.26

Applying the sine rule:

29.6
sin36◦ = 36.5

sinP

from which,

sinP = 36.5sin36◦

29.6
= 0.7248

Hence P = sin−1 0.7248=46◦27′ or 133◦33′

When P =46◦27′ andQ=36◦ then
R=180◦−46◦27′−36◦ =97◦33′
When P =133◦33′ andQ=36◦ then
R=180◦ −133◦33′−36◦ =10◦27′

Thus, in this problem there are two separate sets of
results and both are feasible solutions. Such a situation
is called the ambiguous case.

Case 1. P =46◦27′,Q=36◦, R=97◦33′,
p=36.5mm and q =29.6mm.
From the sine rule:

r

sin97◦33′ = 29.6
sin36◦

from which,

r = 29.6sin97◦33′

sin36◦ = 49.92 mm

Area= 1
2pq sinR = 1

2 (36.5)(29.6)sin97
◦33′

= 535.5mm2

Case 2. P =133◦33′,Q=36◦, R=10◦27′,
p=36.5mm and q =29.6mm.
From the sine rule:

r

sin10◦27′ = 29.6
sin36◦

from which,

r = 29.6sin10◦27′

sin36◦ = 9.134mm

Area= 1
2pq sinR = 1

2 (36.5)(29.6)sin10
◦27′

= 97.98mm2

Triangle PQR for case 2 is shown in Fig. 12.27.

P

Q R

36�

133�33�

10�27�

29.6 mm

36.5 mm

9.134 mm

Figure 12.27

Now try the following Practice Exercise

Practice Exercise 56 Solving triangles and
finding their areas (Answers on page 864)

In Problems 1 and 2, use the sine rule to solve the
triangles ABC and find their areas.

1. A=29◦, B =68◦, b=27mm.
2. B =71◦26′, C=56◦32′, b=8.60cm.
In Problems 3 and 4, use the sine rule to solve the
triangles DEF and find their areas.

3. d =17cm, f =22cm, F =26◦

4. d =32.6mm, e=25.4mm, D=104◦22′

In Problems 5 and 6, use the sine rule to solve the
triangles JKL and find their areas.

5. j =3.85cm, k=3.23cm, K =36◦

6. k=46mm, l=36mm, L=35◦

12.10 Further worked problems on
solving triangles and finding
their areas

Problem 29. Solve triangle DEF and find its area
given that EF=35.0mm, DE=25.0mm and
∠E=64◦
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Triangle DEF is shown in Fig. 12.28.

D

E

e

Fd � 35.0 mm

f � 25.0 mm

64�

Figure 12.28

Applying the cosine rule:

e2 = d2+ f 2− 2d f cosE

i.e. e2 = (35.0)2+ (25.0)2

− [2(35.0)(25.0)cos64◦]

= 1225+ 625− 767.1= 1083
from which, e=√

1083=32.91mm
Applying the sine rule:

32.91
sin64◦ = 25.0

sinF

from which, sinF = 25.0sin64◦

32.91
= 0.6828

Thus ∠F = sin−1 0.6828

= 43◦4′ or 136◦56′

F =136◦56′ is not possible in this case since
136◦56′+64◦ is greater than 180◦. Thus only
F= 43◦4′ is valid

∠D= 180◦ − 64◦ − 43◦4′ = 72◦56′

Area of triangleDEF = 1
2 df sinE

= 1
2 (35.0)(25.0) sin64

◦ =393.2mm2

Problem 30. A triangle ABC has sides
a= 9.0cm, b=7.5cm and c=6.5cm. Determine
its three angles and its area.

Triangle ABC is shown in Fig. 12.29. It is usual first
to calculate the largest angle to determine whether the
triangle is acute or obtuse. In this case the largest angle
is A (i.e. opposite the longest side).
Applying the cosine rule:

a2 = b2+ c2− 2bc cosA

from which, 2bc cosA=b2+c2−a2

and cosA = b2+ c2− a2

2bc
= 7.52+ 6.52− 9.02

2(7.5)(6.5)
= 0.1795

A

B C
a 5 9.0 cm

c 5 6.5 cm b 5 7.5 cm

Figure 12.29

HenceA= cos−1 0.1795=79◦40′ (or 280◦20′,which is
obviously impossible). The triangle is thus acute angled
since cosA is positive. (If cosA had been negative, angle
A would be obtuse, i.e. lie between 90◦ and 180◦.)
Applying the sine rule:

9.0
sin79◦40′ = 7.5

sinB

from which,

sinB = 7.5sin79◦40′

9.0
= 0.8198

Hence B= sin−1 0.8198= 55◦4′

and C= 180◦ − 79◦40′ − 55◦4′ = 45◦16′

Area=
√
[s(s − a)(s − b)(s − c)]

where s = a + b + c

2
= 9.0+ 7.5+ 6.5

2
= 11.5cm

Hence area

=
√
[11.5(11.5− 9.0)(11.5− 7.5)(11.5− 6.5)]

=
√
[11.5(2.5)(4.0)(5.0)]= 23.98cm2

Alternatively, area = 1
2ab sinC

= 1
2 (9.0)(7.5)sin45

◦16′ =23.98cm2

Now try the following Practice Exercise

Practice Exercise 57 Solving triangles and
finding their areas (Answers on page 864)

In Problems 1 and 2, use the cosine and sine
rules to solve the triangles PQR and find their
areas.

1. q =12cm,r =16cm,P =54◦

2. q =3.25m,r =4.42m,P =105◦

In problems 3 and 4, use the cosine and sine
rules to solve the triangles XYZ and find their
areas.
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3. x =10.0cm,y =8.0cm,z=7.0cm.

4. x =21mm, y =34mm, z=42mm.

12.11 Practical situations involving
trigonometry

There are a number of practical situations where the
use of trigonometry is needed to find unknown sides and
angles of triangles. This is demonstrated in the following
problems.

Problem 31. A room 8.0m wide has a span
roof which slopes at 33◦ on one side and 40◦ on the
other. Find the length of the roof slopes, correct to
the nearest centimetre.

A section of the roof is shown in Fig. 12.30.

B

A C
8.0 m

338 408

Figure 12.30

Angle at ridge, B =180◦−33◦−40◦ =107◦
From the sine rule:

8.0
sin107◦ = a

sin33◦

from which,

a = 8.0sin33◦

sin107◦ = 4.556m

Also from the sine rule:

8.0
sin107◦ = c

sin40◦

from which,

c = 8.0sin40◦

sin107◦ = 5.377m

Hence the roof slopes are 4.56m and 5.38m, correct
to the nearest centimetre.

Problem 32. Two voltage phasors are shown in
Fig. 12.31. If V1=40V and V2=100V determine

the value of their resultant (i.e. lengthOA) and the
angle the resultant makes with V1

45�
O

B

A

V1� 40 V

V2�100 V

Figure 12.31

Angle OBA=180◦ −45◦ =135◦

Applying the cosine rule:

OA2 = V 21 + V 22 − 2V1V2 cosOBA
= 402+ 1002− {2(40)(100)cos135◦}
= 1600+ 10 000− {−5657}
= 1600+ 10 000+ 5657= 17 257

The resultant

OA =
√

(17257) = 131.4V

Applying the sine rule:

131.4
sin135◦ = 100

sinAOB

from which, sinAOB = 100sin135◦

131.4

= 0.5381

Hence angle AOB= sin−1 0.5381=32◦33′ (or
147◦27′, which is impossible in this case).

Hence the resultant voltage is 131.4 volts at 32 ◦33′
to V1

Problem 33. In Fig. 12.32, PR represents the
inclined jib of a crane and is 10.0 long. PQ is 4.0m
long. Determine the inclination of the jib to the
vertical and the length of tieQR.
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120�

4.0 m
10.0 m

R

Q

P

Figure 12.32

Applying the sine rule:

PR

sin120◦ = PQ

sinR

from which,

sinR = PQsin120◦

PR
= (4.0)sin120◦

10.0
= 0.3464

Hence∠R = sin−1 0.3464= 20◦16′ (or 159◦44′, which
is impossible in this case).
∠P=180◦ −120◦ −20◦16′ =39◦44′, which is the
inclination of the jib to the vertical.

Applying the sine rule:

10.0
sin120◦ = QR

sin39◦44′

from which, length of tie,

QR= 10.0sin39◦44′

sin120◦ = 7.38m

Now try the following Practice Exercise

Practice Exercise 58 Practical situations
involving trigonometry (Answers on page
864)

1. A ship P sails at a steady speed of 45km/h
in a direction of W 32◦N (i.e. a bearing of
302◦) from a port. At the same time another
ship Q leaves the port at a steady speed of
35km/h in a direction N 15◦ E (i.e. a bearing
of 015◦). Determine their distance apart after
four hours.

2. Two sides of a triangular plot of land are
52.0m and 34.0m, respectively. If the area

of the plot is 620m2 find (a) the length of
fencing required to enclose the plot and (b)
the angles of the triangular plot.

3. A jib crane is shown in Fig. 12.33. If the tie
rodPR is 8.0 long and PQ is 4.5m long, deter-
mine (a) the length of jib RQ and (b) the angle
between the jib and the tie rod.

130�

Q

R

P

Figure 12.33

4. A building site is in the form of a quadri-
lateral, as shown in Fig. 12.34, and its area
is 1510m2. Determine the length of the peri-
meter of the site.

728

758

28.5 m

34.6 m

52.4 m

Figure 12.34

5. Determine the length of members BF and EB
in the roof truss shown in Fig. 12.35.

50�50�

A

F

E

D

B5 m

4 m 4 m

5 m

2.5 m2.5 m

C

Figure 12.35

6. A laboratory 9.0m wide has a span roof
which slopes at 36◦ on one side and 44◦ on
the other. Determine the lengths of the roof
slopes.
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12.12 Further practical situations
involving trigonometry

Problem 34. A vertical aerial stands on
horizontal ground. A surveyor positioned due east
of the aerial measures the elevation of the top as
48◦. He moves due south 30.0m and measures the
elevation as 44◦. Determine the height of the aerial.

In Fig. 12.36, DC represents the aerial, A is the initial
position of the surveyor and B his final position.

448

488

30.0 m

D

C

B

A

Figure 12.36

From triangle ACD, tan48◦ = DC

AC

from which AC = DC

tan48◦

Similarly, from triangle BCD,

BC = DC

tan44◦

For triangle ABC, using Pythagoras’ theorem:

BC2 = AB2+ AC2

(
DC

tan44◦

)2
= (30.0)2+

(
DC

tan48◦

)2

DC2
(

1
tan2 44◦ − 1

tan2 48◦

)

= 30.02

DC2(1.072323− 0.810727)= 30.02

DC2 = 30.02

0.261596
= 3440.4

Hence, height of aerial,

DC= √
3440.4= 58.65m

Problem 35. A crank mechanism of a petrol
engine is shown in Fig. 12.37. Arm OA is 10.0cm
long and rotates clockwise about O. The connecting
rod AB is 30.0cm long and end B is constrained to
move horizontally.

30.0 cm
A

B
O

10.0 cm
508

Figure 12.37

(a) For the position shown in Fig. 12.37 determine
the angle between the connecting rod AB and
the horizontal and the length of OB.

(b) How far does B move when angle AOB
changes from 50◦ to 120◦?

(a) Applying the sine rule:

AB
sin50◦ = AO

sinB

from which,

sinB = AO sin50◦

AB
= 10.0sin50◦

30.0
= 0.2553

Hence B = sin−1 0.2553=14◦47′ (or 165◦13′,
which is impossible in this case).
Hence the connecting rod AB makes an angle
of 14◦47′ with the horizontal.

Angle OAB=180◦ −50◦ −14◦47′ =115◦13′.

Applying the sine rule:

30.0
sin50◦ = OB

sin115◦13′

from which,

OB= 30.0sin115◦13′

sin50◦ = 35.43cm

(b) Fig. 12.38 shows the initial and final positions of
the crankmechanism. In triangleOA ′B ′, applying
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the sine rule:
30.0
sin120◦ = 10.0

sinA′B ′O
from which,

sin A′B ′O = 10.0sin120◦

30.0
= 0.2887

A A�

B B� O

50�

30.0 cm

10.0 cm
120�

Figure 12.38

Hence A′B ′O = sin−1 0.2887=16◦47′ (or 163◦13′
which is impossible in this case).
Angle OA′B ′ = 180◦ − 120◦ − 16◦47′ = 43◦13′

Applying the sine rule:

30.0
sin120◦ = OB ′

sin43◦13′

from which,

OB ′ = 30.0sin43◦13′

sin120◦ = 23.72cm

Since OB = 35.43cm and OB ′ = 23.72cm then
BB ′ = 35.43− 23.72= 11.71cm.
Hence B moves 11.71cm when angle AOB changes
from 50◦ to 120◦

Problem 36. The area of a field is in the form of a
quadrilateral ABCD as shown in Fig. 12.39.
Determine its area.

62.3 m

21.4 m

39.8 m

568

1148

D

A

B

C

42.5 m

Figure 12.39

A diagonal drawn fromB toD divides the quadrilateral
into two triangles.

Area of quadrilateral ABCD

= area of triangle ABD + area of triangle BCD

= 1
2 (39.8)(21.4)sin114

◦ + 1
2 (42.5)(62.3)sin56

◦

= 389.04+ 1097.5= 1487m2

Now try the following Practice Exercise

Practice Exercise 59 Practical situations
involving trigonometry (Answers on page
864)

1. PQ and QR are the phasors representing the
alternating currents in two branches of a cir-
cuit. Phasor PQ is 20.0A and is horizontal.
Phasor QR (which is joined to the end of PQ
to form triangle PQR) is 14.0A and is at an
angle of 35◦ to the horizontal. Determine the
resultant phasorPR and the angle itmakeswith
phasor PQ.

2. Three forces acting on a fixed point are repre-
sented by the sides of a triangle of dimensions
7.2cm, 9.6cm and 11.0cm. Determine the
angles between the lines of action and the
three forces.

3. Calculate, correct to 3 significant figures, the
co-ordinates x and y to locate the hole centre
at P shown in Fig. 12.40.

100 mmx

P

y

116� 140�

Figure 12.40

4. An idler gear, 30mm in diameter, has to be
fitted between a 70mm diameter driving gear
and a 90mm diameter driven gear as shown
in Fig. 12.41. Determine the value of angle θ

between the centre lines.
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70 mm dia

30 mm dia

90 mm dia

99.78 mm �

Figure 12.41

5. A reciprocating engine mechanism is shown
in Fig. 12.42. The crank AB is 12.0cm long
and the connecting rod BC is 32.0cm long.
For the position shown determine the length
of AC and the angle between the crank and
the connecting rod.

40�A

B

C

Figure 12.42

6. From Fig. 12.42, determine how far C moves,
correct to the nearest millimetre, when angle
CAB changes from 40◦ to 160◦,B moving in
an anticlockwise direction.

7. A surveyor, standing W 25◦ S of a tower,
measures the angle of elevation of the top
of the tower as 46◦30′. From a position E
23◦ S from the tower the elevation of the top
is 37◦15′. Determine the height of the tower
if the distance between the two observations
is 75m.

8. An aeroplane is sighted due east from a
radar station at an elevation of 40◦ and
a height of 8000m and later at an eleva-
tion of 35◦ and height 5500m in a direc-
tion E 70◦ S. If it is descending uni-
formly, find the angle of descent. Determine
also the speed of the aeroplane in km/h
if the time between the two observations
is 45s.

9. Sixteen holes are equally spaced on a pitch cir-
cle of 70mmdiameter.Determine the length of
the chord joining the centres of two adjacent
holes.

For fully worked solutions to each of the problems in Practice Exercises 51 to 59 in this chapter,
go to the website:

www.routledge.com/cw/bird
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Chapter 13

Cartesian and polar
co-ordinates

Why it is important to understand: Cartesian and polar co-ordinates
Applications where polar co-ordinates would be used include terrestrial navigation with sonar-like
devices, and those in engineering and science involving energy radiation patterns. Applications where
Cartesian co-ordinates would be used include any navigation on a grid and anything involving raster
graphics (e.g. bitmap – a dot matrix data structure representing a generally rectangular grid of pix-
els). The ability to change from Cartesian to polar co-ordinates is vitally important when using complex
numbers and their use in a.c. electrical circuit theory and with vector geometry.

At the end of this chapter, you should be able to:

• change from Cartesian to polar co-ordinates
• change from polar to Cartesian co-ordinates
• use a scientific notation calculator to change from Cartesian to polar co-ordinates and vice-versa

Higher Engineering Mathematics. 978-1-138-67357-1, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.
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13.1 Introduction

There are two ways in which the position of a point in
a plane can be represented. These are

(a) by Cartesian co-ordinates, (named after
Descartes∗), i.e. (x,y), and

(b) by polar co-ordinates, i.e. (r , θ ), where r is a
‘radius’ from a fixed point and θ is an angle from
a fixed point.

13.2 Changing from Cartesian into
polar co-ordinates

In Fig. 13.1, if lengths x and y are known, then the
length of r can be obtained from Pythagoras’ theorem
(see Chapter 12) since OPQ is a right-angled triangle.
Hence r2=(x2+y2)

∗ Who was Descartes? René Descartes (31 March 1596–
11 February 1650) was a French philosopher, mathematician,
and writer. He wrote many influential texts including Medi-
tations on First Philosophy. Descartes is best known for the
philosophical statement ‘Cogito ergo sum’ (I think, therefore I
am), found in part IV of Discourse on the Method. To find out
more go to www.routledge.com/cw/bird

from which, r=√
x2+y2

y

P

Q x0
x

r y

�

Figure 13.1

From trigonometric ratios (see Chapter 12),

tan θ = y

x

from which θ = tan−1 y
x

r =
√

x2+y2 and θ = tan−1 y

x
are the two formulae we

need to change fromCartesian to polar co-ordinates. The
angle θ , which may be expressed in degrees or radians,
must always be measured from the positive x-axis, i.e.,
measured from the line OQ in Fig. 13.1. It is suggested
thatwhen changing fromCartesian to polar co-ordinates
a diagram should always be sketched.

Problem 1. Change the Cartesian co-ordinates
(3, 4) into polar co-ordinates.

A diagram representing the point (3, 4) is shown in
Fig. 13.2.

P

4

3

y

x0

r

�

Figure 13.2

From Pythagoras’ theorem, r = √
32+42=5 (note that

−5 has no meaning in this context). By trigonometric
ratios, θ = tan−1 4

3 = 53.13◦ or 0.927 rad.

[Note that 53.13◦=53.13×(π/180) rad=0.927rad.]
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Hence (3, 4) in Cartesian co-ordinates corres-
ponds to (5, 53.13◦) or (5, 0.927 rad) in polar
co-ordinates.

Problem 2. Express in polar co-ordinates the
position (−4, 3)

A diagram representing the point using the Cartesian
co-ordinates (−4, 3) is shown in Fig. 13.3.

yP

3

4
x0

r

��

Figure 13.3

From Pythagoras’ theorem, r = √
42+32=5

By trigonometric ratios, α= tan−1 3
4 =36.87◦ or

0.644rad.
Hence θ =180◦ −36.87◦=143.13◦ or
θ =π − 0.644=2.498rad.
Hence the position of point P in polar co-ordinate
form is (5, 143.13◦) or (5, 2.498 rad).

Problem 3. Express (−5,−12) in polar
co-ordinates.

A sketch showing the position (−5, −12) is shown in
Fig. 13.4.

r=
√
52+ 122 = 13

and α= tan−1 12
5

= 67.38◦or1.176rad

Hence θ= 180◦ + 67.38◦ = 247.38◦or

θ= π + 1.176= 4.318rad

Thus (−5, −12) in Cartesian co-ordinates corres-
ponds to (13, 247.38◦) or (13, 4.318 rad) in polar
co-ordinates.

y

P

12

5

x0

r

�

�

Figure 13.4

Problem 4. Express (2,−5) in polar
co-ordinates.

A sketch showing the position (2, −5) is shown in
Fig. 13.5.

r=
√
22+ 52 =

√
29= 5.385correct to

3decimalplaces.

α= tan−1 5
2

= 68.20◦ or 1.190rad

Hence θ= 360◦ − 68.20◦ = 291.80◦or

θ= 2π − 1.190= 5.093rad

y

x0

5

2

r

P

�

�

Figure 13.5

Thus (2, −5) in Cartesian co-ordinates corresponds
to (5.385, 291.80◦) or (5.385, 5.093 rad) in polar
co-ordinates.
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Now try the following Practice Exercise

Practice Exercise 60 Changing Cartesian
into polar co-ordinates (Answers on page
864)

In Problems 1 to 8, express the given Cartesian
co-ordinates as polar co-ordinates, correct to 2 dec-
imal places, in both degrees and in radians.

1. (3, 5)

2. (6.18, 2.35)

3. (−2, 4)

4. (−5.4, 3.7)

5. (−7,−3)

6. (−2.4,−3.6)
7. (5, −3)

8. (9.6,−12.4)

13.3 Changing from polar into
Cartesian co-ordinates

From the right-angled triangle OPQ in Fig. 13.6,

cosθ = x

r
andsinθ = y

r
, from

trigonometric ratios

Hence x = rcosθ and y = rsinθ

y

y

Q x
x

O

P

r

u

Figure 13.6

If lengths r and angle θ are known then x =r cosθ and
y =r sinθ are the two formulae we need to change from
polar to Cartesian co-ordinates.

Problem 5. Change (4, 32◦) into Cartesian
co-ordinates.

A sketch showing the position (4, 32◦) is shown in
Fig. 13.7.

Now x= r cosθ = 4cos32◦ = 3.39
and y= r sinθ = 4sin32◦ = 2.12

y

y

0 x
x

r 5 4

� 5 328

Figure 13.7

Hence (4, 32◦) in polar co-ordinates corresponds to
(3.39, 2.12) in Cartesian co-ordinates.

Problem 6. Express (6, 137◦) in Cartesian
co-ordinates.

A sketch showing the position (6, 137◦) is shown in
Fig. 13.8.

x = r cosθ = 6cos137◦ = −4.388
which corresponds to length OA in Fig. 13.8.

y = r sinθ = 6sin137◦ = 4.092
which corresponds to length AB in Fig. 13.8.

B

OA

y

x

r � 6

u � 137�

Figure 13.8

Thus (6, 137◦) in polar co-ordinates corresponds to
(−4.388, 4.092) in Cartesian co-ordinates.
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(Note that when changing from polar to Cartesian
co-ordinates it is not quite so essential to draw
a sketch. Use of x=r cosθ and y =r sinθ automatically
produces the correct signs.)

Problem 7. Express (4.5, 5.16 rad) in Cartesian
co-ordinates.

A sketch showing the position (4.5, 5.16 rad) is shown
in Fig. 13.9.

x = r cosθ = 4.5cos5.16= 1.948

y

A

B

O x

u � 5.16 rad

r � 4.5

Figure 13.9

which corresponds to length OA in Fig. 13.9.

y = r sinθ = 4.5sin5.16= −4.057
which corresponds to length AB in Fig. 13.9.

Thus (1.948, −4.057) in Cartesian co-ordinates
corresponds to (4.5, 5.16 rad) in polar co-ordinates.

Now try the following Practice Exercise

Practice Exercise 61 Changing polar into
Cartesian co-ordinates (Answers on page
864)

In Problems 1 to 8, express the given polar co-
ordinates as Cartesian co-ordinates, correct to
3 decimal places.

1. (5, 75◦)

2. (4.4, 1.12 rad)

3. (7, 140◦)

4. (3.6, 2.5 rad)

5. (10.8, 210◦)

6. (4, 4 rad)

7. (1.5, 300◦)

8. (6, 5.5 rad)

9. Fig. 13.10 shows five equally spaced holes on
an 80mmpitch circle diameter. Calculate their
co-ordinates relative to axesOx and Oy in (a)
polar form, (b) Cartesian form.
(c) Calculate also the shortest distance
between the centres of two adjacent holes.

y

xO

Figure 13.10

13.4 Use of Pol/Rec functions on
calculators

Another name for Cartesian co-ordinates is rectangu-
lar co-ordinates. Many scientific notation calculators
possess Pol and Rec functions. ‘Rec’ is an abbrevi-
ation of ‘rectangular’ (i.e. Cartesian) and ‘Pol’ is an
abbreviation of ‘polar’. Check the operation manual for
your particular calculator to determine how to use these
two functions. They make changing from Cartesian to
polar co-ordinates, and vice-versa, so much quicker and
easier.
For example, with the Casio fx-991ES PLUS calcu-

lator, or similar, to change the Cartesian number (3, 4)
into polar form, the following procedure is adopted:

1. Press ‘shift’ 2. Press ‘Pol’ 3. Enter 3
4. Enter ‘comma’ (obtained by ‘shift’ then ))
5. Enter 4 6. Press )
7. Press = The answer is: r = 5,θ = 53.13◦
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Hence, (3, 4) in Cartesian form is the same as
(5, 53.13◦) in polar form.
If the angle is required in radians, then before repeating
the above procedure press ‘shift’, ‘mode’ and then 4 to
change your calculator to radian mode.
Similarly, to change the polar form number

(7, 126◦) into Cartesian or rectangular form, adopt the
following procedure:

1. Press ‘shift’ 2. Press ‘Rec’ 3. Enter 7
4. Enter ‘comma’

5. Enter 126 (assuming your calculator is in
degrees mode)

6. Press ) 7. Press =
The answer is: X = −4.11, and scrolling across,
Y = 5.66, correct to 2 decimal places.
Hence, (7, 126◦) in polar form is the same as
(−4.11, 5.66) in rectangular or Cartesian form.
Now return to Practice Exercises 60 and 61 in

this chapter and use your calculator to determine the
answers, and see how much more quickly they may be
obtained.

For fully worked solutions to each of the problems in Practice Exercises 60 and 61 in this chapter,
go to the website:

www.routledge.com/cw/bird
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Chapter 14

The circle and its properties

Why it is important to understand: The circle and its properties
A circle is one of the fundamental shapes of geometry; it consists of all the points that are equidistant
from a central point. Knowledge of calculations involving circles is needed with crank mechanisms, with
determinations of latitude and longitude, with pendulums, and even in the design of paper clips. The
floodlit area at a football ground, the area an automatic garden sprayer sprays and the angle of lap of a
belt drive all rely on calculations involving the arc of a circle. The ability to handle calculations involving
circles and its properties is clearly essential in several branches of engineering design.

At the end of this chapter, you should be able to:

• define a circle
• state some properties of a circle – including radius, circumference, diameter, semicircle, quadrant, tangent,
sector, chord, segment and arc

• appreciate the angle in a semicircle is a right angle
• define a radian, change radians to degrees, and vice-versa
• determine arc length, area of a circle and area of a sector of a circle
• state the equation of a circle
• sketch a circle given its equation
• understand linear and angular velocity
• understand centripetal force

14.1 Introduction

A circle is a plainfigure enclosed by a curved line, every
point on which is equidistant from a point within, called
the centre.

14.2 Properties of circles

(i) The distance from the centre to the curve is
called the radius, r , of the circle (see OP in
Fig. 14.1).

C

B

Q

O
P

R

A 

Figure 14.1

(ii) The boundary of a circle is called the circum-
ference, c.

Higher Engineering Mathematics. 978-1-138-67357-1, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.
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(iii) Any straight line passing through the centre and
touching the circumference at each end is called
the diameter, d (see QR in Fig. 14.1). Thus
d=2r.

(iv) The ratio
circumference
diameter

=a constant for any
circle.
This constant is denoted by the Greek letter π

(pronounced ‘pie’), where π =3.14159, correct
to 5 decimal places.
Hence c/d =π or c = πd or c=2πr.

(v) A semicircle is one half of the whole circle.
(vi) A quadrant is one quarter of a whole circle.
(vii) A tangent to a circle is a straight line which

meets the circle in one point only and does not
cut the circle when produced. AC in Fig. 14.1 is
a tangent to the circle since it touches the curve
at pointB only. If radiusOB is drawn, then angle
ABO is a right angle.

(viii) A sector of a circle is the part of a circle between
radii (for example, the portionOXY of Fig. 14.2
is a sector). If a sector is less than a semicir-
cle it is called a minor sector, if greater than a
semicircle it is called amajor sector.

X

Y

TS

R

O

Figure 14.2

(ix) A chord of a circle is any straight line which
divides the circle into two parts and is termin-
ated at each end by the circumference. ST, in
Fig. 14.2 is a chord.

(x) A segment is the name given to the parts into
which a circle is divided by a chord. If the
segment is less than a semicircle it is called a
minor segment (see shaded area in Fig. 14.2).
If the segment is greater than a semicircle it is
called amajor segment (see the unshaded area
in Fig. 14.2).

(xi) An arc is a portion of the circumference of a
circle. The distance SRT in Fig. 14.2 is called
a minor arc and the distance SXYT is called a
major arc.

(xii) The angle at the centre of a circle, subtended by
an arc, is double the angle at the circumference

subtended by the same arc. With reference to
Fig. 14.3, Angle AOC= 2 × angle ABC.

(xiii) The angle in a semicircle is a right angle (see
angle BQP in Fig. 14.3).

Q

A

P
C

O

B

Figure 14.3

Problem 1. If the diameter of a circle is 75mm,
find its circumference.

Circumference, c=π ×diameter=πd

=π(75)=235.6mm

Problem 2. In Fig. 14.4, AB is a tangent to the
circle at B. If the circle radius is 40mm and
AB=150mm, calculate the length AO.

A

B

r
O

Figure 14.4

A tangent to a circle is at right angles to a radius drawn
from the point of contact, i.e. ABO=90◦. Hence, using
Pythagoras’ theorem:

AO2 = AB2+OB2

AO=
√

(AB2+OB2) =
√
[(150)2+ (40)2]

= 155.2mm

Now try the following Practice Exercise

Practice Exercise 62 Properties of circles
(Answers on page 864)

1. If the radius of a circle is 41.3mm, calculate
the circumference of the circle.

2. Find the diameter of a circle whose perimeter
is 149.8cm.

3. A crank mechanism is shown in Fig. 14.5,
whereXY is a tangent to the circle at pointX. If
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the circle radiusOX is 10cm and lengthOY is
40cm, determine the length of the connecting
rod XY.

X

Y
O 40 cm

Figure 14.5

4. If the circumference of the Earth is 40 000km
at the equator, calculate its diameter.

5. Calculate the length of wire in the paper clip
shown in Fig. 14.6. The dimensions are in
millimetres.

2.5 rad

2.5 rad

3 rad

12

6

32

Figure 14.6

14.3 Radians and degrees

One radian is defined as the angle subtended at the
centre of a circle by an arc equal in length to the radius.

s
r

O r

�

Figure 14.7

With reference to Fig. 14.7, for arc length s,

θ radians= s

r

When s = whole circumference (= 2πr) then
θ = s

r
=2πr

r
= 2π

i.e. 2π radians= 360◦ or π radians= 180◦

Thus, 1rad= 180◦

π
= 57.30◦, correct to 2 decimal

places.

Sinceπ rad= 180◦, then
π

2
= 90◦,

π

3
= 60◦,

π

4
= 45◦,

and so on.

Problem 3. Convert to radians: (a) 125◦
(b) 69◦47′

(a) Since 180◦ =π rad then 1◦ =π/180 rad, therefore

125◦ = 125
( π

180

)c = 2.182 rad

(Note that c means ‘circular measure’ and indi-
cates radian measure.)

(b) 69◦47′=6947
◦

60
=69.783◦

69.783◦ = 69.783
( π

180

)c = 1.218 rad

Problem 4. Convert to degrees and minutes:
(a) 0.749 rad (b) 3π /4 rad.

(a) Sinceπ rad=180◦ then 1 rad=180◦/π , therefore

0.749=0.749
(
180
π

)◦
= 42.915◦

0.915◦ =(0.915× 60)′=55′, correct to the near-
est minute, hence

0.749 rad= 42◦55′

(b) Since 1 rad =
(
180
π

)◦
then

3π
4
rad= 3π

4

(
180
π

)◦
= 3
4
(180)◦ = 135◦

Problem 5. Express in radians, in terms of π ,
(a) 150◦ (b) 270◦ (c) 37.5◦
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Since 180◦ =π rad then 1◦ =π/180, hence

(a) 150◦ =150
( π

180

)
rad = 5π

6
rad

(b) 270◦ =270
( π

180

)
rad = 3π

2
rad

(c) 37.5◦ =37.5
( π

180

)
rad= 75π

360
rad= 5π

24
rad

Now try the following Practice Exercise

Practice Exercise 63 Radians and degrees
(Answers on page 865)

1. Convert to radians in terms of π : (a) 30◦
(b) 75◦ (c) 225◦

2. Convert to radians: (a) 48◦ (b) 84◦51′
(c) 232◦15′

3. Convert to degrees: (a)
7π
6
rad (b)

4π
9
rad

(c)
7π
12
rad.

4. Convert to degrees andminutes: (a) 0.0125rad
(b) 2.69rad (c) 7.241rad.

5. A car engine speed is 1000 rev/min. Convert
this speed into rad/s.

14.4 Arc length and area of circles
and sectors

Arc length

From the definition of the radian in the previous section
and Fig. 14.7,

arc length,s = rθ where θ is in radians

Area of circle
For any circle, area= π × (radius)2

i.e. area= πr2

Since r = d

2
, then area= πr 2 or

πd2

4

Area of sector

Area of a sector= θ

360
(πr2) when θ is in degrees

= θ

2π
(πr2) = 1

2
r2θ

when θ is in radians

Problem 6. A hockey pitch has a semicircle of
radius 14.63m around each goal net. Find the area
enclosed by the semicircle, correct to the nearest
square metre.

Area of a semicircle= 1
2
πr2

When r = 14.63m, area= 1
2
π(14.63)2

i.e. area of semicircle= 336m2

Problem 7. Find the area of a circular metal
plate, correct to the nearest square millimetre,
having a diameter of 35.0mm.

Area of a circle= πr2 = πd2

4

When d = 35.0mm, area= π(35.0)2

4
i.e. area of circular plate= 962mm2

Problem 8. Find the area of a circle having a
circumference of 60.0mm.

Circumference, c = 2πr

from which radius r = c

2π
= 60.0
2π

= 30.0
π

Area of a circle= πr2

i.e. area= π

(
30.0
π

)2
= 286.5mm2

Problem 9. Find the length of arc of a circle of
radius 5.5cm when the angle subtended at the
centre is 1.20rad.

Length of arc, s=rθ , where θ is in radians, hence

s = (5.5)(1.20) = 6.60cm

Problem 10. Determine the diameter and
circumference of a circle if an arc of length 4.75cm
subtends an angle of 0.91rad.
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Since s = rθ then r = s

θ
= 4.75
0.91

=5.22cm
Diameter=2× radius=2× 5.22=10.44 cm
Circumference,c=πd =π(10.44)=32.80 cm

Problem 11. If an angle of 125◦ is subtended by
an arc of a circle of radius 8.4cm, find the length of
(a) the minor arc, and (b) the major arc, correct to
3 significant figures.

(a) Since 180◦ =π rad then 1◦ =
( π

180

)
rad and

125◦ =125
( π

180

)
rad.

Length of minor arc,

s =rθ =(8.4)(125)
( π

180

)
=18.3 cm,

correct to 3 significant figures.

(b) Length of major arc

= (circumference−minor arc)
= 2π(8.4) − 18.3=34.5cm,

correct to 3 significant figures.

(Alternatively, major arc=rθ

=8.4(360−125)(π/180)=34.5 cm.)

Problem 12. Determine the angle, in degrees and
minutes, subtended at the centre of a circle of
diameter 42mm by an arc of length 36mm.
Calculate also the area of the minor sector formed.

Since length of arc, s=rθ then θ =s/r

Radius,r = diameter
2

= 42
2

=21mm

hence θ = s

r
= 36
21

=1.7143rad

1.7143rad= 1.7143× (180/π)◦ = 98.22◦=98◦13′ =
angle subtended at centre of circle.
Area of sector

= 1
2 r
2θ = 1

2 (21)
2(1.7143) = 378mm2

Problem 13. A football stadium floodlight can
spread its illumination over an angle of 45◦ to a
distance of 55m. Determine the maximum area that
is floodlit.

Floodlit area= area of sector
= 1
2
r2θ = 1

2
(55)2

(
45× π

180

)

= 1188m2

Problem 14. An automatic garden spray produces
a spray to a distance of 1.8m and revolves through
an angle α which may be varied. If the desired
spray catchment area is to be 2.5m2, to what should
angle α be set, correct to the nearest degree.

Area of sector= 1
2 r
2θ , hence 2.5= 1

2 (1.8)
2α

from which, α= 2.5× 2
1.82

=1.5432rad

1.5432rad=
(

1.5432× 180
π

◦)
=88.42◦

Hence angle α=88◦, correct to the nearest degree.

Problem 15. The angle of a tapered groove is
checked using a 20mm diameter roller as shown in
Fig. 14.8. If the roller lies 2.12mm below the top of
the groove, determine the value of angle θ .

30 mm

�

20 mm

2.12 mm

Figure 14.8

In Fig. 14.9, triangle ABC is right-angled at C (see
Section 14.2 (vii)).

30 mm

10mm

C

2
A

B

2.12 mm

�

Figure 14.9

Length BC=10mm (i.e. the radius of the circle), and
AB=30−10−2.12=17.88mm from Fig. 14.9.
Hence, sin

θ

2
= 10
17.88

and
θ

2
= sin−1

(
10
17.88

)

= 34◦

and angle θ = 68◦
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Now try the following Practice Exercise

Practice Exercise 64 Arc length and area
of circles and sectors (Answers on page 865)

1. Calculate the area of a circle of radius 6.0 cm,
correct to the nearest square centimetre.

2. The diameter of a circle is 55.0mm.Determine
its area, correct to the nearest square
millimetre.

3. The perimeter of a circle is 150mm. Find its
area, correct to the nearest square millimetre.

4. Find the area of the sector, correct to the
nearest square millimetre, of a circle having
a radius of 35mm, with angle subtended at
centre of 75◦

5. An annulus has an outside diameter of
49.0mm and an inside diameter of 15.0mm.
Find its area correct to 4 significant figures.

6. Find the area, correct to the nearest square
metre, of a 2m wide path surrounding a
circular plot of land 200m in diameter.

7. A rectangular park measures 50m by 40m. A
3m flower bed is made round the two longer
sides and one short side. A circular fish pond
of diameter 8.0m is constructed in the centre
of the park. It is planned to grass the remaining
area. Find, correct to the nearest square metre,
the area of grass.

8. Find the length of an arc of a circle of radius
8.32cmwhen the angle subtended at the centre
is 2.14rad.Calculate also the area of theminor
sector formed.

9. If the angle subtended at the centre of a circle
of diameter 82mm is 1.46rad,find the lengths
of the (a) minor arc (b) major arc.

10. A pendulum of length 1.5m swings through
an angle of 10◦ in a single swing. Find, in
centimetres, the length of the arc traced by the
pendulum bob.

11. Determine the length of the radius and circum-
ference of a circle if an arc length of 32.6cm
subtends an angle of 3.76rad.

12. Determine the angle of lap, indegrees andmin-
utes, if 180mm of a belt drive are in contact
with a pulley of diameter 250mm.

13. Determine the number of complete revolutions
a motorcycle wheel will make in travelling
2km, if the wheel’s diameter is 85.1cm.

14. The floodlight at a sports ground spreads its
illumination over an angle of 40◦ to a distance
of 48m. Determine (a) the angle in radians,
and (b) the maximum area that is floodlit.

15. Determine (a) the shaded area in Fig. 14.10
(b) the percentage of the whole sector that the
area of the shaded portion represents.

50 mm
0.75
rad

12mm

Figure 14.10

16. Determine the length of steel strip required to
make the clip shown in Fig. 14.11.

100mm

125mm
rad

100mm

1308

Figure 14.11

17. A 50◦ tapered hole is checked with a 40mm
diameter ball as shown in Fig. 14.12. Deter-
mine the length shown as x.

70mm
x

508

40mm

Figure 14.12
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14.5 The equation of a circle

The simplest equation of a circle, centre at the origin,
radius r , is given by:

x2+ y2 = r2

For example, Fig. 14.13 shows a circle x 2+y2=9.
More generally, the equation of a circle, centre (a, b),
radius r , is given by:

(x − a)2+ (y − b)2 = r2 (1)

Figure 14.14 shows a circle (x −2)2+(y −3)2=4.
The general equation of a circle is:

x2+ y2+ 2ex + 2f y + c = 0 (2)

3

3

2 x21y259

x

y

2

1

10
21

21

22

22

23

23

Figure 14.13

Multiplying out the bracketed terms in equation (1)
gives:

x2− 2ax + a2+ y2− 2by + b2 = r2

5

4

2

0 2 4 x

y

r5
2

b 53

a 52

Figure 14.14

Comparing this with equation (2) gives:

2e = −2a, i.e. a= −2e
2

and 2f = −2b, i.e. b= − 2f
2

and c = a2+ b2− r2,

i.e., r=
√

(a2 + b2 − c)

Thus, for example, the equation

x2+ y2− 4x − 6y + 9= 0

represents a circle with centre a=−
(−4
2

)

,

b = −
(−6
2

)

, i.e. at (2, 3) and

radius r =
√

(22+32−9)=2
Hence x2+y2−4x−6y+9=0 is the circle shown in
Fig. 14.14 (which may be checked by multiplying out
the brackets in the equation

(x − 2)2+ (y − 3)2 = 4)

Problem 16. Determine (a) the radius and (b) the
co-ordinates of the centre of the circle given by the
equation: x2+ y2+ 8x−2y +8=0

x2+y2+8x−2y +8=0 is of the form shown in equa-
tion (2),

where a = −
(
8
2

)

= −4,b = −
(−2
2

)

= 1

and r =
√
[(−4)2+ (1)2− 8]=

√
9= 3

Hence x2+y2+8x−2y+8=0 represents a circle cen-
tre (−4, 1) and radius 3, as shown in Fig. 14.15.

a 524

b 51

22

2

4

y

242628 0

r 5
 3

x

Figure 14.15
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Alternatively, x2+y2+8x −2y +8=0 may be re-
arranged as:

(x + 4)2+ (y − 1)2− 9= 0
i.e. (x+ 4)2+ (y− 1)2 = 32

which represents a circle, centre (−4, 1) and radius 3,
as stated above.

Problem 17. Sketch the circle given by the
equation: x2+y2−4x +6y−3=0

The equation of a circle, centre (a, b), radius r is
given by:

(x − a)2+ (y − b)2 = r2

The general equation of a circle is

x2+y2+2ex +2fy +c=0

From above, a=−2e
2
, b=−2f

2
and

r =
√

(a2+b2−c)

Hence if x2+y2−4x+6y −3=0

then a=−
(−4
2

)

= 2, b=−
(
6
2

)

= −3

and r =
√
[(2)2+ (−3)2− (−3)]

= √
16= 4

Thus the circle has centre (2, −3) and radius 4, as
shown in Fig. 14.16.

24

22

2

4

y

24

28

23

22 2 4 6 x0

r5
4

Figure 14.16

Alternatively, x2+y2−4x +6y−3=0 may be re-
arranged as:

(x − 2)2+ (y + 3)2− 3− 13= 0
i.e. (x − 2)2+ (y + 3)2 = 42

which represents a circle, centre (2, −3) and radius 4,
as stated above.

Now try the following Practice Exercise

Practice Exercise 65 The equation of a
circle (Answers on page 865)

1. Determine (a) the radius, and (b) the co-
ordinates of the centre of the circle given by
the equation x2+y2+6x−2y −26=0

2. Sketch the circle given by the equation
x2+y2−6x +4y −3=0

3. Sketch the curve x 2+(y −1)2−25=0
4. Sketch the curve x =6

√[
1− (y/6)2

]

14.6 Linear and angular velocity

Linear velocity
Linear velocity v is defined as the rate of change of
linear displacement s with respect to time t . For motion
in a straight line:

linear velocity= change of displacement
change of time

i.e. v = s

t
(1)

The unit of linear velocity is metres per second (m/s).

Angular velocity

The speed of revolution of a wheel or a shaft is usually
measured in revolutions per minute or revolutions per
second but these units do not form part of a coherent
system of units. The basis in SI units is the angle turned
through in one second.
Angular velocity is defined as the rate of change of

angular displacement θ , with respect to time t . For an
object rotating about a fixed axis at a constant speed:

angular velocity= angle turned through
time taken
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i.e. ω = θ

t
(2)

The unit of angular velocity is radians per second
(rad/s). An object rotating at a constant speed of n revo-
lutions per second subtends an angle of 2πn radians in
one second, i.e. its angular velocity ω is given by:

ω = 2πnrad/s (3)

From page 152, s =rθ and from equation (2) above,
θ =ωt

hence s = r(ωt)

from which
s

t
= ωr

However, from equation (1) v = s

t

hence v = ωr (4)

Equation (4) gives the relationship between linear
velocity v and angular velocity ω.

Problem 18. A wheel of diameter 540mm is

rotating at
1500
π

rev/min. Calculate the angular

velocity of the wheel and the linear velocity of a
point on the rim of the wheel.

From equation (3), angular velocity ω = 2πn where n

is the speed of revolution in rev/s. Since in this case

n= 1500
π

rev/min= 1500
60π

= rev/s, then

angular velocityω = 2π
(
1500
60π

)

= 50rad/s

The linear velocity of a point on the rim, v=ωr , where
r is the radius of the wheel, i.e.
540
2
mm= 0.54

2
m=0.27m

Thus linear velocity v = ωr = (50)(0.27)

= 13.5m/s

Problem 19. A car is travelling at 64.8km/h and
has wheels of diameter 600mm.
(a) Find the angular velocity of the wheels in both

rad/s and rev/min.

(b) If the speed remains constant for 1.44km,
determine the number of revolutions made by
the wheel, assuming no slipping occurs.

(a) Linear velocity v = 64.8km/h

= 64.8 km
h

× 1000 m
km

× 1
3600

h
s

= 18m/s

The radius of a wheel= 600
2

= 300mm
= 0.3m

From equation (5), v = ωr , from which,

angular velocity ω = v

r
= 18
0.3

= 60rad/s

From equation (4), angular velocity, ω = 2πn,
where n is in rev/s.

Hence angular speed n = ω

2π
= 60
2π
rev/s

= 60× 60
2π
rev/min

= 573rev/min
(b) From equation (1), since v = s/t then the time

taken to travel 1.44km, i.e. 1440m at a constant
speed of 18m/s is given by:

time t = s

v
= 1440m
18m/s

= 80s

Since a wheel is rotating at 573rev/min, then in
80/60minutes it makes

573rev/min× 80
60
min= 764revolutions

Now try the following Practice Exercise

Practice Exercise 66 Linear and angular
velocity (Answers on page 865)

1. A pulley driving a belt has a diameter of
300mm and is turning at 2700/π revolutions
per minute. Find the angular velocity of the
pulley and the linear velocity of the belt
assuming that no slip occurs.

2. A bicycle is travelling at 36km/h and the diam-
eter of the wheels of the bicycle is 500mm.
Determine the linear velocity of a point on the
rim of one of the wheels of the bicycle, and
the angular velocity of the wheels.
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3. A train is travelling at 108km/h and haswheels
of diameter 800mm.
(a) Determine the angular velocity of the

wheels in both rad/s and rev/min.

(b) If the speed remains constant for 2.70km,
determine the number of revolutions
made by a wheel, assuming no slipping
occurs.

14.7 Centripetal force

When an object moves in a circular path at constant
speed, its direction of motion is continually changing
and hence its velocity (which depends on both magni-
tude and direction) is also continually changing. Since
acceleration is the (change in velocity)/(time taken), the
object has an acceleration. Let the object be moving
with a constant angular velocity of ω and a tangential
velocity of magnitude v and let the change of veloc-
ity for a small change of angle of θ (=ωt) be V in
Fig. 14.17. Then v2−v1=V . The vector diagram is
shown in Fig. 14.17(b) and since the magnitudes of v 1
and v2 are the same, i.e. v, the vector diagram is an
isosceles triangle.

r

r

(a)

� 5 �t

v2

v1

(b)

V

2v1 v2

v
2

�
2

Figure 14.17

Bisecting the angle between v2 and v1 gives:

sin
θ

2
= V/2

v2
= V

2v

i.e. V = 2v sin θ

2
(1)

Since θ =ωt then

t = θ

ω
(2)

Dividing equation (1) by equation (2) gives:

V

t
= 2v sin(θ/2)

(θ/ω)
= vω sin(θ/2)

(θ/2)

For small angles
sin(θ/2)
(θ/2)

≈ 1,

hence
V

t
= change of velocity

change of time

= acceleration a = vω

However, ω = v

r
(from Section 14.6)

thus vω = v · v

r
= v2

r

i.e. the acceleration a is
v2

r
and is towards the centre of

the circle ofmotion (alongV ). It is called the centripetal
acceleration. If themass of the rotating object ism, then

by Newton’s second law, the centripetal force is
mv2

r
and its direction is towards the centre of the circle of
motion.

Problem 20. A vehicle of mass 750kg travels
around a bend of radius 150m, at 50.4km/h.
Determine the centripetal force acting on the
vehicle.

The centripetal force is given by
mv2

r
and its direction

is towards the centre of the circle.

Mass m = 750kg,v = 50.4km/h

= 50.4× 1000
60× 60 m/s

= 14m/s
and radius r =150m,

thus centripetal force= 750(14)
2

150
=980N

Problem 21. An object is suspended by a thread
250mm long and both object and thread move in a
horizontal circle with a constant angular velocity of
2.0rad/s. If the tension in the thread is 12.5N,
determine the mass of the object.

Centripetal force (i.e. tension in thread),

F = mv2

r
= 12.5N
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Angular velocity ω=2.0rad/s and
radius r = 250mm=0.25m.
Since linear velocity v=ωr , v=(2.0)(0.25)

= 0.5m/s.

Since F = mv2

r
, then mass m= Fr

v2
,

i.e. mass of object, m= (12.5)(0.25)
0.52

=12.5 kg

Problem 22. An aircraft is turning at constant
altitude, the turn following the arc of a circle of
radius 1.5km. If the maximum allowable
acceleration of the aircraft is 2.5g, determine the
maximum speed of the turn in km/h. Take g as
9.8m/s2.

The acceleration of an object turning in a circle is
v2

r
. Thus, to determine the maximum speed of turn,

v2

r
=2.5g, from which,

velocity, v =
√

(2.5gr) =
√

(2.5)(9.8)(1500)

=
√
36 750= 191.7m/s

and 191.7m/s=191.7× 60× 60
1000

km/h=690km/h

Now try the following Practice Exercise

Practice Exercise 67 Centripetal force
(Answers on page 865)

1. Calculate the tension in a stringwhen it is used
to whirl a stone of mass 200g round in a hor-
izontal circle of radius 90cm with a constant
speed of 3m/s.

2. Calculate the centripetal force acting on a
vehicle of mass 1 tonne when travelling aro-
und a bend of radius 125m at 40km/h. If this
force should not exceed 750N, determine the
reduction in speed of the vehicle to meet this
requirement.

3. A speed-boat negotiates an S-bend consist-
ing of two circular arcs of radii 100m and
150m. If the speed of the boat is constant at
34km/h, determine the change in acceleration
when leaving one arc and entering the other.

For fully worked solutions to each of the problems in Practice Exercises 62 to 67 in this chapter,
go to the website:

www.routledge.com/cw/bird
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Revision Test 4 Trigonometry, Cartesian and polar co-ordinates and properties
of circles

This Revision Test covers the material contained in Chapters 12 to 14. The marks for each question are shown in
brackets at the end of each question.

1. A 2.0m long ladder is placed against a perpen-
dicular pylon with its foot 52cm from the pylon.
(a) Find how far up the pylon (correct to the near-
est mm) the ladder reaches. (b) If the foot of the
ladder is moved 10cm towards the pylon, how far
does the top of the ladder rise? (7)

2. Evaluate correct to 4 significant figures:
(a) cos124◦13′ (b) cot 72.68◦ (4)

3. From a point on horizontal ground a surveyor
measures the angle of elevation of a church spire
as 15◦. He moves 30m nearer to the church and
measures the angle of elevation as 20◦. Calculate
the height of the spire. (9)

4. If secant θ =2.4613, determine the acute
angle θ (4)

5. Evaluate, correct to 3 significant figures:

3.5cosec31◦17′ − cot(−12◦)
3sec79◦41′ (5)

6. A man leaves a point walking at 6.5km/h in
a direction E 20◦N (i.e. a bearing of 70◦). A
cyclist leaves the same point at the same time in a
directionE 40◦S (i.e. a bearing of 130◦) travelling
at a constant speed. Find the average speed of the
cyclist if the walker and cyclist are 80km apart
after five hours. (8)

7. A crank mechanism shown in Fig. RT4.1 com-
prises arm OP, of length 0.90m, which rotates
anticlockwise about the fixed point O, and
connecting rodPQof length 4.20m.EndQmoves
horizontally in a straight line OR.

(a) If ∠POR is initially zero, how far does end
Q travel in 14 revolution.

(b) If ∠POR is initially 40◦ find the angle
between the connecting rod and the horizon-
tal and the length OQ.

(c) Find the distance Q moves (correct to the
nearest cm) when ∠POR changes from 40◦
to 140◦. (16)

O Q

P

R

Figure RT4.1

8. Change the following Cartesian co-ordinates into
polar co-ordinates, correct to 2 decimal places, in
both degrees and in radians:

(a) (−2.3, 5.4) (b) (7.6,−9.2) (10)

9. Change the following polar co-ordinates into
Cartesian co-ordinates, correct to 3 decimal
places: (a) (6.5, 132◦) (b) (3, 3rad) (6)

10. (a) Convert 2.154 radians into degrees and
minutes.

(b) Change 71◦17′ into radians. (4)

11. 140mm of a belt drive is in contact with a pul-
ley of diameter 180mm which is turning at 300
revolutions per minute. Determine (a) the angle
of lap, (b) the angular velocity of the pulley, and
(c) the linear velocity of the belt, assuming that
no slipping occurs. (9)

12. Figure RT4.2 shows a cross-section through a
circular water container where the shaded area
represents the water in the container. Determine:
(a) the depth,h, (b) the area of the shaded portion,
and (c) the area of the unshaded area. (11)
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h
12 cm

608
12 cm

Figure RT4.2

13. Determine (a) the co-ordinates of the centre of the
circle and (b) the radius, given the equation

x2+ y2− 2x + 6y + 6= 0 (7)

For lecturers/instructors/teachers, fully worked solutions to each of the problems in Revision Test 4,
together with a full marking scheme, are available at the website:

www.routledge.com/cw/bird
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Chapter 15

Trigonometric waveforms

Why it is important to understand: Trigonometric waveforms
Trigonometric graphs are commonly used in all areas of science and engineering for modelling many
different natural and mechanical phenomena such as waves, engines, acoustics, electronics, populations,
UV intensity, growth of plants and animals, and so on. Periodic trigonometric graphs mean that the
shape repeats itself exactly after a certain amount of time. Anything that has a regular cycle, like the
tides, temperatures, rotation of theEarth, and so on, canbemodelledusing a sine or cosine curve. Themost
common periodic signal waveform that is used in electrical and electronic engineering is the sinusoidal
waveform. However, an alternating a.c. waveform may not always take a smooth shape based around
the sine and cosine function; a.c. waveforms can also take the shape of square or triangular waves, i.e.
complex waves. In engineering, it is therefore important to have a clear understanding of sine and cosine
waveforms.

At the end of this chapter, you should be able to:

• sketch sine, cosine and tangent waveforms
• determine angles of any magnitude
• understand cycle, amplitude, period, periodic time, frequency, lagging/leading angles with reference to sine
and cosine waves

• perform calculations involving sinusoidal form Asin(ωt ± α)

• define a complex wave and harmonic analysis
• use harmonic synthesis to construct a complex waveform

15.1 Graphs of trigonometric
functions

By drawing up tables of values from 0◦ to 360◦, graphs
of y =sin A, y =cos A and y = tan A may be plotted.
Values obtained with a calculator (correct to 3 deci-
mal places – which is more than sufficient for plotting
graphs), using 30◦ intervals, are shown below, with the
respective graphs shown in Fig. 15.1.

(a) y=sin A
A 0 30◦ 60◦ 90◦ 120◦ 150◦ 180◦

sinA 0 0.500 0.866 1.000 0.866 0.500 0

A 210◦ 240◦ 270◦ 300◦ 330◦ 360◦

sinA −0.500 −0.866 −1.000 −0.866 −0.500 0

Higher Engineering Mathematics. 978-1-138-67357-1, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.
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(b) y=cos A
A 0 30◦ 60◦ 90◦ 120◦ 150◦ 180◦

cosA 1.000 0.866 0.500 0 −0.500 −0.866 −1.000

A 210◦ 240◦ 270◦ 300◦ 330◦ 360◦

cosA −0.866 −0.500 0 0.500 0.866 1.000

(c) y= tan A
A 0 30◦ 60◦ 90◦ 120◦ 150◦ 180◦

tanA 0 0.577 1.732 ∞ −1.732 −0.577 0

A 210◦ 240◦ 270◦ 300◦ 330◦ 360◦

tanA 0.577 1.732 ∞ −1.732 −0.577 0

From Fig. 15.1 it is seen that:

(i) Sine and cosine graphs oscillate between peak
values of ±1.

(ii) The cosine curve is the same shape as the sine
curve but displaced by 90◦.

1.0

21.0

24

20.5

21.0

22

0.5

20.5

0 30 60 90 120 150
180

210 240 270 300 330 360

30 60 90 120 180 210 240 270 300 360

30 60 90 120 150 180 210 240 270 300 330 360

(a)

1.0

0.5

0

(b)

(c)

4

2

0

150 330

y
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y
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y 5 cos A

A8

A8

A8

Figure 15.1

(iii) The sine and cosine curves are continuous and
they repeat at intervals of 360◦; the tangent
curve appears to be discontinuous and repeats at
intervals of 180◦.

15.2 Angles of any magnitude

(i) Fig. 15.2 shows rectangular axes XX ′ and YY′
intersecting at originO. As with graphical work,
measurementsmade to the right and aboveO are
positive while those to the left and downwards
are negative. Let OA be free to rotate about O.
By convention, when OA moves anticlockwise
angular measurement is considered positive, and
vice-versa.

90�

360�

270�

180�
X � X 

Y �

Y

0�

A

Quadrant 2

Quadrant 3 Quadrant 4

Quadrant 1

O

� �

�

�

�

�

Figure 15.2

(ii) Let OA be rotated anticlockwise so that θ1 is any
angle in the first quadrant and let perpendicular
AB be constructed to form the right-angled tri-
angle OAB (see Fig. 15.3). Since all three sides
of the triangle are positive, all six trigonometric
ratios are positive in the first quadrant. (Note:OA
is always positive since it is the radius of a circle.)

(iii) Let OA be further rotated so that θ2 is any angle
in the second quadrant and let AC be constructed
to form the right-angled triangle OAC. Then:

sinθ2 = +
+ = + cosθ2 = −

+ = −

tanθ2 = +
− = − cosecθ2 = +

+ = +

secθ2 = +
− = − cot θ2 = −

+ = −

(iv) Let OA be further rotated so that θ3 is any angle
in the third quadrant and let AD be constructed
to form the right-angled triangleOAD. Then:
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Figure 15.3

sinθ3 = −
+ = − (and hence cosecθ3 is −)

cosθ3 = −
+ = − (and hence secθ3 is +)

tanθ3 = −
− = + (and hence cotθ3 is −)

(v) LetOA be further rotated so that θ4 is any angle
in the fourth quadrant and let AE be constructed
to form the right-angled triangleOAE. Then:

sinθ4 = −
+ = − (and hence cosecθ4 is −)

cosθ4 = +
+ = + (and hence secθ4 is +)

tanθ4 = −
+ = − (and hence cotθ4 is −)

(vi) The results obtained in (ii) to (v) are summarised
in Fig. 15.4. The letters underlined spell theword
CAST when starting in the fourth quadrant and
moving in an anticlockwise direction.

(vii) In the first quadrant of Fig. 15.1 all the curves
have positive values; in the second only sine is
positive; in the third only tangent is positive;
in the fourth only cosine is positive (exactly as
summarised in Fig. 15.4).

Aknowledge of angles of anymagnitude is neededwhen
finding, for example, all the angles between 0◦ and 360◦
whose sine is, say, 0.3261. If 0.3261 is entered into a cal-
culator and then the inverse sine key pressed (or sin−1
key) the answer 19.03◦ appears. However, there is a
second angle between 0◦ and 360◦ which the calcula-
tor does not give. Sine is also positive in the second
quadrant (either from CAST or from Fig. 15.1(a)). The
other angle is shown in Fig. 15.5 as angle θ where
θ =180◦ −19.03◦=160.97◦. Thus 19.03◦ and 160.97◦
are the angles between 0◦ and 360◦whose sine is 0.3261
(check that sin160.97◦= 0.3261 on your calculator).

908

1808

2708

3608
08

Sine (and cosecant)
positive

Tangent
(and cotangent)
positive

Cosine
(and secant)
positive

All positive

Figure 15.4

19.038 19.0381808

2708

3608
08

�

908

S A

T C

Figure 15.5

Be careful! Your calculator only gives you one of these
answers. The second answer needs to be deduced from
a knowledge of angles of any magnitude, as shown in
the following problems.

Problem 1. Determine all the angles between 0◦
and 360◦ whose sine is −0.4638

The angles whose sine is −0.4638 occurs in the
third and fourth quadrants since sine is negative in
these quadrants (see Fig. 15.6(a)). From Fig. 15.6(b),
θ =sin−1 0.4638=27◦38′
Measured from 0◦, the two angles between 0◦ and

360◦ whose sine is −0.4638 are 180◦ +27◦38′, i.e.
207◦38′ and 360◦−27◦38′, i.e. 332◦22′. (Note that
a calculator generally only gives one answer, i.e.
−27.632588◦)

Problem 2. Determine all the angles between 0◦
and 360◦ whose tangent is 1.7629

A tangent is positive in the first and third quad-
rants (see Fig. 15.7(a)). From Fig. 15.7(b),
θ = tan−1 1.7629=60◦26′. Measured from 0◦, the two
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Figure 15.7

angles between 0◦ and 360◦ whose tangent is 1.7629
are 60◦26′ and 180◦ + 60◦26′, i.e. 240◦26′

Problem 3. Solve sec−1 (−2.1499)=α for angles
of α between 0◦ and 360◦.

Secant is negative in the second and third quadrants (i.e.
the same as for cosine). From Fig. 15.8,

θ =sec−1 2.1499=cos−1
(

1
2.1499

)

=62◦17′

Measured from 0◦, the two angles between 0◦ and 360◦
whose secant is −2.1499 are
α = 180◦ − 62◦17′ = 117◦43′ and
α = 180◦ + 62◦17′ = 242◦17′

S

1808

2708

08
3608

908

T

A

C

�

�

Figure 15.8

Problem 4. Solve cot−1 1.3111=α for angles of
α between 0◦ and 360◦.

Cotangent is positive in the first and third quad-
rants (i.e. same as for tangent). From Fig. 15.9,

θ =cot−1 1.3111= tan−1
(

1
1.3111

)

=37◦20′

S

1808

2708

08
3608

908

T

A

C

�

�

Figure 15.9
Hence α = 37◦20′

and α = 180◦ + 37◦20′ = 217◦20′

Now try the following Practice Exercise

Practice Exercise 68 Evaluating
trigonometric ratios of any magnitude
(Answers on page 865)

1. Find all the angles between 0◦ and 360◦whose
sine is −0.7321
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2. Determine the angles between 0◦ and 360◦
whose cosecant is 2.5317

3. If cotangent x =−0.6312, determine the val-
ues of x in the range 0◦≤x≤360◦

In Problems 4 to 6 solve the given equations.

4. cos−1(−0.5316)= t

5. sec−1 2.3162=x

6. tan−1 0.8314=θ

15.3 The production of a sine and
cosine wave

In Fig. 15.10, let OR be a vector 1 unit long and free
to rotate anticlockwise about O. In one revolution a
circle is produced and is shown with 15◦ sectors. Each

radius arm has a vertical and a horizontal component.
For example, at 30◦, the vertical component is TS and
the horizontal component is OS.
From trigonometric ratios,

sin30◦ = TS

TO
= TS

1
, i.e. TS = sin30◦

andcos30◦ = OS

TO
= OS

1
, i.e. OS = cos30◦

The vertical component TS may be projected across to
T ′S′, which is the corresponding value of 30◦ on the
graph of y against angle x ◦. If all such vertical compo-
nents as TS are projected onto the graph, then a sine
wave is produced as shown in Fig. 15.10.
If all horizontal components such as OS are pro-

jected onto a graph of y against angle x ◦, then a
cosine wave is produced. It is easier to visualise these
projections by redrawing the circle with the radius
arm OR initially in a vertical position, as shown in
Fig. 15.11.
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From Figs. 15.10 and 15.11 it is seen that a cosine
curve is of the same form as the sine curve but is
displaced by 90◦ (or π/2radians).

15.4 Sine and cosine curves

Graphs of sine and cosine waveforms

(i) A graph of y =sinA is shown by the broken line
in Fig. 15.12 and is obtained by drawing up a table
of values as in Section 15.1. A similar table may
be produced for y=sin2A.

A◦ 2A sin2A A◦ 2A sin2A

0 0 0 225 450 1.0

30 60 0.866 240 480 0.866

45 90 1.0 270 540 0

60 120 0.866 300 600 −0.866
90 180 0 315 630 −1.0
120 240 −0.866 330 660 −0.866
135 270 −1.0 360 720 0

150 300 −0.866
180 360 0

210 420 0.866

A graph of y=sin2A is shown in Fig. 15.12.

y

1.0

21.0

0 A°

y 5 sin A
y 5 sin 2A

360°90° 180° 270°

Figure 15.12

(ii) A graph of y =sin 12A is shown in Fig. 15.13
using the following table of values.

A◦ 1
2A sin 12A

0 0 0

30 15 0.259

60 30 0.500

90 45 0.707

120 60 0.866

150 75 0.966

180 90 1.00

210 105 0.966

240 120 0.866

270 135 0.707

300 150 0.500

330 165 0.259

360 180 0

y

1.0

21.0

0

1
2

A°

y 5 sin A y 5 sin    A

360°270°180°90°

Figure 15.13

(iii) A graph of y =cosA is shown by the broken line
in Fig. 15.14 and is obtained by drawing up a

y

A80

21.0

1.0
y 5 cos A y 5 cos 2A

1808 3608908 2708

Figure 15.14
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table of values. A similar table may be produced
for y=cos2A with the result as shown.

(iv) A graph of y=cos 12A is shown in Fig. 15.15,
which may be produced by drawing up a table of
values, similar to above.

y

1.0

21.0

0 3608 A8

1
2

y 5 cos Ay 5 cos    A

908 1808 2708

Figure 15.15

Periodic functions and period

(i) Each of the graphs shown in Figs. 15.12 to 15.15
will repeat themselves as angle A increases and
are thus called periodic functions.

(ii) y =sinA and y =cosA repeat themselves every
360◦ (or 2π radians); thus 360◦ is called the
period of these waveforms. y=sin2A and
y =cos2A repeat themselves every 180◦ (or
π radians); thus 180◦ is the period of these
waveforms.

(iii) In general, if y=sinpA or y =cospA (where p

is a constant) then the period of the waveform is
360◦/p (or 2π/p rad). Hence if y=sin3A then
the period is 360/3, i.e. 120◦, and if y=cos4A
then the period is 360/4, i.e. 90◦

Amplitude

Amplitude is the name given to the maximum or peak
value of a sine wave. Each of the graphs shown in
Figs. 15.12 to 15.15 has an amplitude of +1 (i.e. they
oscillate between +1 and −1). However, if y =4sinA,
each of the values in the table is multiplied by 4 and the
maximum value, and thus amplitude, is 4. Similarly,
if y=5cos2A, the amplitude is 5 and the period is
360◦/2, i.e. 180◦.

Problem 5. Sketch y =sin3A between A=0◦
and A=360◦.

Amplitude=1;period=360◦/3=120◦.
A sketch of y =sin3A is shown in Fig. 15.16.

y

1.0

21.0

0 908 2708 A81808 3608

y 5 sin 3A

Figure 15.16

Problem 6. Sketch y =3sin2A from A=0 to
A=2π radians.

Amplitude=3,period=2π/2=π rads (or 180◦)
A sketch of y =3sin2A is shown in Fig. 15.17.

y

3

23

0 A8

y 5 3 sin 2A

2708 36081808908

Figure 15.17

Problem 7. Sketch y =4cos2x from x=0◦ to
x =360◦.

Amplitude=4;period=360◦/2=180◦

A sketch of y =4cos2x is shown in Fig. 15.18.

Download more at Learnclax.com



Se
ct

io
n

B

Trigonometric waveforms 169

y

908 1808 2708 3608 x 80

24

4 y 5 4 cos 2x

Figure 15.18

Problem 8. Sketch y =2sin 3
5
A over one cycle.

Amplitude=2;period= 360◦
3
5

= 360
◦ × 5
3

=600◦

A sketch of y =2sin 3
5
A is shown in Fig. 15.19.

1808 3608 5408 6008

y

A80

22

2
y 5 2 sin   A

3
5

Figure 15.19

Lagging and leading angles

(i) A sine or cosine curve may not always start at 0◦.
To show this a periodic function is represented
by y =sin(A±α) or y =cos(A±α) where α

is a phase displacement compared with y =sinA

or y =cosA.
(ii) By drawing up a table of values, a graph of

y =sin(A−60◦) may be plotted as shown in
Fig. 15.20. If y =sinA is assumed to start at 0◦
then y =sin(A−60◦) starts 60◦ later (i.e. has a
zero value 60◦ later). Thus y=sin(A−60◦) is
said to lag y =sinA by 60◦.

908 2708

y

A80

21.0

1.0
y 5 sin(A 2 608)

y 5 sin A
608

608

1808 3608

Figure 15.20

(iii) By drawing up a table of values, a graph of
y =cos(A+45◦) may be plotted as shown in
Fig. 15.21. If y =cos A is assumed to start at 0◦
then y=cos(A+45◦) starts 45◦ earlier (i.e. has a
zero value 45◦ earlier). Thus y =cos(A+45◦) is
said to lead y =cosA by 45◦

1808

458

3608 A80

y

21.0

y 5 cos (A 1 458)

y 5 cos A
458

2708908

Figure 15.21

(iv) Generally, a graph of y =sin(A−α) lags
y = sinA by angle α, and a graph of
y =sin(A+α) leads y=sinA by angle α.

(v) A cosine curve is the same shape as a sine curve
but starts 90◦ earlier, i.e. leads by 90◦. Hence
cosA=sin(A+90◦)

Problem 9. Sketch y =5 sin(A+30◦) from
A=0◦ to A=360◦.

Amplitude=5; period=360◦/1=360◦.
5 sin(A+30◦) leads 5sinA by 30◦ (i.e. starts 30◦
earlier).
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A sketch of y =5 sin(A+30◦) is shown in Fig. 15.22.

908 2708 A80

5

25

y 5 5 sin(A 1 308)

y 5 5 sin A

308

308

1808 3608

y

Figure 15.22

Problem 10. Sketch y =7 sin(2A−π/3) in the
range 0≤A≤2π

Amplitude=7; period=2π/2=π radians.
In general, y=sin(pt−α) lags y= sin pt by α/p,
hence 7 sin(2A−π/3) lags 7sin2A by (π/3)/2,
i.e. π/6rad or 30◦.
A sketch of y =7 sin(2A−π/3) is shown in Fig. 15.23.

0

7

y

A83608

y 5 7 sin 2A
y 5 7 sin(2A 2 �/3)

�/6 

�/6 

2��

7

27081808908
3�/2�/2

Figure 15.23

Problem 11. Sketch y =2 cos(ωt −3π/10) over
one cycle.

Amplitude=2; period=2π/ω rad.
2 cos(ωt −3π/10) lags 2cosωt by 3π/10ω seconds.
A sketch of y=2 cos(ωt −3π/10) is shown in
Fig. 15.24.

0

y

t�/2� �/� 3�/2� 2�/�

y 52 cos �t

y 52 cos(�t 23�/10)

22

2

3�/10� rads

Figure 15.24

Graphs of sin2A and cos2A
(i) A graph of y =sin2A is shown in Fig. 15.25using

the following table of values.

A◦ sinA (sinA)2=sin2A
0 0 0

30 0.50 0.25

60 0.866 0.75

90 1.0 1.0

120 0.866 0.75

150 0.50 0.25

180 0 0

210 −0.50 0.25

240 −0.866 0.75

270 −1.0 1.0

300 −0.866 0.75

330 −0.50 0.25

360 0 0

0

0.5

1.0

y

908 1808 2708 3608 A8

y 5 sin2 A

Figure 15.25
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(ii) A graph of y = cos2A is shown in Fig. 15.26,
obtained by drawing up a table of values, similar
to above.

0

0.5

1.0

y

908 1808 2708 3608 A8

y 5 cos2 A

Figure 15.26

(iii) y =sin2A and y =cos2A are both periodic func-
tions of period 180◦ (or π rad) and both contain
only positive values. Thus a graph of y =sin2 2A
has a period 180◦/2, i.e. 90◦. Similarly, a graph
of y =4cos2 3A has a maximum value of 4 and a
period of 180◦/3, i.e. 60◦.

Problem 12. Sketch y =3sin2 12A in the range
0<A<360◦.

Maximum value=3; period=180◦/(1/2)=360◦
A sketch of 3sin2 12A is shown in Fig. 15.27.

0

3

y

908 1808 2708 3608 A8

y 5 3 sin2 A1
2

Figure 15.27

Problem 13. Sketch y =7cos2 2A between
A=0◦ and A=360◦

Maximum value=7; period=180◦/2=90◦
A sketch of y =7cos2 2A is shown in Fig. 15.28.

0

7

y

908 1808 2708 3608 A8

y 5 7cos2 2A

Figure 15.28

Now try the following Practice Exercise

Practice Exercise 69 Sine and cosine
curves (Answers on page 865)

In Problems 1 to 9 state the amplitude and period
of the waveform and sketch the curve between
0◦ and 360◦.

1. y = cos3A

2. y =2sin 5x
2

3. y =3sin4t

4. y =3cos θ

2

5. y = 7
2
sin
3x
8

6. y =6sin(t −45◦)

7. y =4cos(2θ +30◦)

8. y =2sin2 2t

9. y =5cos2 3
2
θ

15.5 Sinusoidal form A sin (ωt ±α)

In Fig. 15.29, let OR represent a vector that is free to
rotate anticlockwise about O at a velocity of ω rad/s.
A rotating vector is called a phasor. After a time
t seconds OR will have turned through an angle
ωt radians (shown as angle TOR in Fig. 15.29). If ST is
constructed perpendicular toOR, then sinωt =ST/TO ,
i.e. ST =TO sinωt .
If all such vertical components are projected onto a

graph of y against ωt , a sine wave results of amplitude
OR (as shown in Section 15.3).
If phasor OR makes one revolution (i.e. 2π radians)

in T seconds, then the angular velocity,
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T
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Figure 15.29

ω=2π/T rad/s, from which, T=2π/ω seconds.
T is known as the periodic time.
The number of complete cycles occurring per second is
called the frequency, f

Frequency= number of cycles
second

= 1
T

= ω

2π
i.e. f = ω

2π
Hz

Hence angular velocity, ω=2πf rad/s
Amplitude is the name given to the maximum or peak
value of a sine wave, as explained in Section 15.3. The
amplitude of the sine wave shown in Fig. 15.29 is 1.
A sine or cosine wave may not always start at 0◦.

To show this a periodic function is represented by
y =sin (ωt ±α) or y=cos(ωt ±α), where α is a phase
displacement compared with y =sinA or y=cosA.
A graph of y=sin (ωt −α) lags y =sinωt by angle
α, and a graph of y =sin(ωt +α) leads y =sinωt by
angle α.
The angle ωt is measured in radians (i.e.(

ω
rad
s

)

(ts)=ωt radians) hence angle α should also

be in radians.
The relationship between degrees and radians is:

360◦ = 2π radians or 180◦ = π radians

Hence 1 rad= 180
π

=57.30◦ and, for example,

71◦ =71× π

180
=1.239 rad.

Given a general sinusoidal function
y =A sin(ω t ±α), then

(i) A=amplitude

(ii) ω=angular velocity=2πf rad/s

(iii)
2π
ω

=periodic time T seconds

(iv)
ω

2π
= frequency, f hertz

(v) α=angle of lead or lag (compared with
y =Asinωt)

Problem 14. An alternating current is given by
i =30 sin(100πt +0.27) amperes. Find the
amplitude, periodic time, frequency and phase
angle (in degrees and minutes).

i=30sin(100πt +0.27)A, hence amplitude=30A
Angular velocity ω=100π , hence

periodic time, T = 2π
ω

= 2π
100π

= 1
50

= 0.02s or 20ms

Frequency, f = 1
T

= 1
0.02

= 50Hz

Phase angle, α = 0.27rad=
(

0.27× 180
π

)◦

= 15.47◦ or 15◦28′ leading

i = 30sin(100π t)

Problem 15. An oscillating mechanism has a
maximum displacement of 2.5m and a frequency of
60Hz. At time t =0 the displacement is 90cm.
Express the displacement in the general form
Asin(ωt ± α).
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Amplitude=maximum displacement=2.5m.
Angular velocity, ω=2πf =2π(60)=120π rad/s.
Hence displacement=2.5 sin(120πt +α)m.
When t =0, displacement=90cm=0.90m.

Hence 0.90= 2.sin(0+ α)

i.e. sinα = 0.90
2.5

= 0.36
Hence α = arcsin0.36= 21.10◦ = 21◦6′

= 0.368rad

Thus displacement=2.5 sin(120π t+0.368)m

Problem 16. The instantaneous value of voltage
in an a.c. circuit at any time t seconds is given by
v=340sin(50πt −0.541)volts. Determine:
(a) the amplitude, periodic time, frequency and

phase angle (in degrees)

(b) the value of the voltage when t =0
(c) the value of the voltage when t =10ms
(d) the time when the voltage first reaches 200V

(e) the time when the voltage is a maximum.
Sketch one cycle of the waveform.

(a) Amplitude=340V
Angular velocity, ω=50π

Hence periodic time, T = 2π
ω

= 2π
50π

= 1
25

= 0.04s or 40ms

Frequency, f = 1
T

= 1
0.04

= 25Hz

Phase angle= 0.541 rad=
(

0.541× 180
π

)

= 31◦ lagging v = 340sin(50πt)

(b) When t = 0,

v = 340sin(0− 0.541) = 340sin(−31◦)

= −175.1V

(c) When t=10ms

then v = 340sin
(

50π
10
103

− 0.541
)

= 340sin(1.0298) = 340sin59◦

= 291.4V
(d) When v=200volts

then 200= 340sin(50πt − 0.541)
200
340

= sin(50πt − 0.541)

Hence (50πt − 0.541) = sin−1 200
340

= 36.03◦ or 0.6288rad

50πt = 0.6288+ 0.541
= 1.1698

Hence when v=200V,

time, t = 1.1698
50π

= 7.447ms

(e) When the voltage is a maximum, v=340V.
Hence 340= 340sin(50πt − 0.541)

1= sin(50πt − 0.541)
50πt − 0.541= sin−1 1

= 90◦or 1.5708rad

50πt = 1.5708+ 0.541= 2.1118

Hence time, t = 2.1118
50π

= 13.44ms

A sketch of v=340 sin(50πt −0.541)volts is shown in
Fig. 15.30.

v 5340 sin(50 �t 20.541)

v 5340 sin 50 �t

0
t (ms)10 30 40

7.447 13.44

2340

2175.1

200
291.4

340

Voltage V

20

Figure 15.30

Download more at Learnclax.com



Se
ct

io
n

B
174 Higher Engineering Mathematics

Now try the following Practice Exercise

Practice Exercise 70 The sinusoidal form
Asin(ωt±α) (Answers on page 865)

In Problems 1 to 3, find (a) the amplitude, (b) the
frequency, (c) the periodic time, and (d) the phase
angle (stating whether it is leading or lagging
Asin ωt) of the alternating quantities given.

1. i =40sin(50πt +0.29)mA
2. y =75sin(40t −0.54)cm
3. v=300sin(200πt −0.412)V
4. A sinusoidal voltage has a maximum value of

120V and a frequency of 50Hz. At time t =0,
the voltage is (a) zero and (b) 50V.
Express the instantaneous voltage v in the
form v=A sin(ωt ±α)

5. An alternating current has a periodic time of
25ms and a maximum value of 20A. When
time t =0, current i =−10 amperes. Express
the current i in the form i =A sin(ωt ±α)

6. An oscillatingmechanismhas amaximumdis-
placement of 3.2m and a frequency of 50Hz.
At time t =0 the displacement is 150cm.
Express the displacement in the general form
Asin(ωt ±α)

7. The current in an a.c. circuit at any time
t seconds is given by:

i = 5sin(100πt − 0.432)amperes
Determine (a) the amplitude, frequency, peri-
odic time and phase angle (in degrees), (b) the
value of current at t = 0, (c) the value of
current at t =8ms, (d) the time when the cur-
rent is first a maximum, (e) the time when the
current first reaches 3A. Sketch one cycle of
the waveform showing relevant points.

15.6 Harmonic synthesis with
complex waveforms

A waveform that is not sinusoidal is called a complex
wave.Harmonic analysis is the process of resolving a
complex periodic waveform into a series of sinusoidal

components of ascending order of frequency. Many of
the waveformsmet in practice can be represented by the
following mathematical expression.

v = V1msin(ωt + α1) + V2msin(2ωt + α2)

+ ·· · + Vnmsin(nωt + αn)

and the magnitude of their harmonic components
together with their phase may be calculated using
Fourier series (see Chapters 73 to 76). Numerical
methods are used to analyse waveforms for which
simple mathematical expressions cannot be obtained.
A numerical method of harmonic analysis is explained
in Chapter 77 on page 801. In a laboratory, waveform
analysis may be performed using awaveform analyser
which produces a direct readout of the componentwaves
present in a complex wave.
By adding the instantaneous values of the fundamen-

tal and progressive harmonics of a complex wave for
given instants in time, the shape of a complexwaveform
can be gradually built up. This graphical procedure is
known as harmonic synthesis (synthesis meaning ‘the
putting together of parts or elements so as to make up a
complexwhole’). Formoreon the additionof alternating
waveforms, see Chapter 27.
Some examples of harmonic synthesis are con-

sidered in the following worked problems.

Problem 17. Use harmonic synthesis to construct
the complex voltage given by:

v1 = 100sinωt + 30sin3ωt volts.

The waveform is made up of a fundamental wave of
maximum value 100V and frequency, f =ω/2π hertz
and a third harmonic component of maximum value
30V and frequency=3ω/2π(=3f ), the fundamental
and third harmonics being initially in phase with each
other.
In Fig. 15.31, the fundamental waveform is shown

by the broken line plotted over one cycle, the periodic
time T being 2π/ω seconds. On the same axis is plotted
30sin3ωt , shown by the dotted line, having amaximum
value of 30V and for which three cycles are completed
in time T seconds. At zero time, 30sin3ωt is in phase
with 100sinωt .
The fundamental and third harmonic are combinedby

adding ordinates at intervals to produce the waveform
for v1, as shown. For example, at time T/12seconds,
the fundamental has a value of 50V and the third har-
monic a value of 30V. Adding gives a value of 80V for
waveform v1 at time T/12seconds. Similarly, at time

Download more at Learnclax.com



Se
ct

io
n

B

Trigonometric waveforms 175

Voltage v (V)

0

30

230

250

2100

50

100

Time t (s)

v15 100 sin �t 1 30 sin 3�t

100 sin �t

30 sin 3�t

T
12

T
4

T
2

3T
4

T

Figure 15.31

T/4seconds, the fundamental has a value of 100V and
the third harmonic a value of −30V. After addition,
the resultant waveform v1 is 70V at T/4. The proce-
dure is continued between t =0 and t =T to produce
the complex waveform for v1. The negative half-cycle
of waveform v1 is seen to be identical in shape to the
positive half-cycle.
If further odd harmonics of the appropriate amplitude

and phase were added to v1 a good approximation to a
square wave would result.

Problem 18. Construct the complex voltage
given by:

v2 = 100sinωt + 30sin
(
3ωt + π

2

)
volts.

The peak value of the fundamental is 100volts and the
peak value of the third harmonic is 30V. However, the
third harmonic has a phase displacement of

π

2
radian

leading (i.e. leading 30sin3ωt by
π

2
radian). Note that,

since the periodic time of the fundamental is T seconds,
the periodic time of the third harmonic is T/3seconds,

and a phase displacement of
π

2
radian or

1
4
cycle of the

third harmonic represents a time interval of (T /3) ÷ 4,
i.e. T/12seconds.
Fig. 15.32 shows graphs of 100sinωt and

30sin
(
3ωt + π

2

)
over the time for one cycle of

the fundamental. When ordinates of the two graphs
are added at intervals, the resultant waveform v2 is

as shown. If the negative half-cycle in Fig. 15.32 is
reversed it can be seen that the shape of the positive
and negative half-cycles are identical.
Problems 17 and 18 demonstrate that whenever

odd harmonics are added to a fundamental waveform,
whether initially in phase with each other or not, the
positive and negative half-cycles of the resultant com-
plex wave are identical in shape. This is a feature
of waveforms containing the fundamental and odd
harmonics.

Problem 19. Use harmonic synthesis to construct
the complex current given by:

i1 = 10sinωt + 4sin2ωt amperes.

Current i1 consists of a fundamental component,
10sinωt , and a second harmonic component, 4sin2ωt ,
the components being initially in phase with each other.
The fundamental and second harmonic are shown plot-
ted separately in Fig. 15.33. By adding ordinates at
intervals, the complex waveform representing i1 is pro-
duced as shown. It is noted that if all the values in the
negative half-cycle were reversed then this half-cycle
would appear as amirror imageof the positive half-cycle
about a vertical line drawn through time, t =T/2.

Problem 20. Construct the complex current
given by:

i2 = 10sinωt + 4sin
(
2ωt + π

2

)
amperes.
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30
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2100

50

100

100 sin �t

30 sin 

T
4

T
2
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2

3T
4

T

�
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Figure 15.32

0

4

24

210

10

T

i15 10 sin �t 1 4 sin 2�t

10 sin �t

4 sin 2�t

3T
4

T
2

T
4

Current
i (A)

Time t (s)

Figure 15.33

The fundamental component, 10sinωt , and the second
harmonic component, having an amplitude of 4A and
a phase displacement of

π

2
radian leading (i.e. lead-

ing 4sin2ωt by
π

2
radian or T/8seconds), are shown

plotted separately in Fig. 15.34. By adding ordinates

at intervals, the complex waveform for i2 is produced
as shown. The positive and negative half-cycles of the
resultant waveform are seen to be quite dissimilar.
From Problems 18 and 19 it is seen that when-

ever even harmonics are added to a fundamental
component:
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Current
i (A)

0

4

24

210

10

Time t (s)

T

i25 10 sin �t 14 sin(2�t 1    )�
2

4 sin(2�t 1    )�
2

10 sin �t

3T
4

T
4

T
2

Figure 15.34

(a) if the harmonics are initially in phase, the negative
half-cycle, when reversed, is a mirror image of
the positive half-cycle about a vertical line drawn
through time, t =T/2.

(b) if the harmonics are initially out of phase with
each other, the positive and negative half-cycles
are dissimilar.

These are features of waveforms containing the funda-
mental and even harmonics.

Problem 21. Use harmonic synthesis to construct
the complex current expression given by:

i = 32+ 50sinωt + 20sin
(
2ωt − π

2

)
mA

The current i comprises three components – a 32mA
d.c. component, a fundamental of amplitude 50mA
and a second harmonic of amplitude 20mA, lag-
ging by

π

2
radian. The fundamental and second har-

monic are shown separately in Fig. 15.35. Adding
ordinates at intervals gives the complex waveform
50sinωt +20sin

(
2ωt − π

2

)

This waveform is then added to the 32mA d.c.
component to produce the waveform i as shown.

The effect of the d.c. component is to shift the whole
wave 32mA upward. The waveform approaches that
expected from a half-wave rectifier.

Problem 22. A complex waveform v comprises a
fundamental voltage of 240V rms and frequency
50Hz, together with a 20% third harmonic which
has a phase angle lagging by 3π/4rad at time t =0.
(a) Write down an expression to represent voltage
v. (b) Use harmonic synthesis to sketch the
complex waveform representing voltage v over one
cycle of the fundamental component.

(a) A fundamental voltage having an rms value of
240V has a maximum value, or amplitude of√
2 (240), i.e. 339.4V.

If the fundamental frequency is 50Hz then
angular velocity, ω=2πf=2π(50)=100π rad/s.
Hence the fundamental voltage is represented
by 339.4sin100πt volts. Since the fundamen-
tal frequency is 50Hz, the time for one cycle
of the fundamental is given by T =1/f =1/50s
or 20ms.
The third harmonic has an amplitude equal to 20%
of 339.4V, i.e. 67.9V. The frequency of the third
harmonic component is 3× 50=150Hz, thus the
angular velocity is 2π(150), i.e.300π rad/s. Hence
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2
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T
4

Current
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T
2

Figure 15.35

the third harmonic voltage is represented by
67.9sin(300πt −3π/4)volts. Thus

voltage,v =339.4sin100π t
+67.9sin (300π t−3π/4)volts

(b) One cycle of the fundamental, 339.4sin100πt ,
is shown sketched in Fig. 15.36, together with
three cycles of the third harmonic compon-
ent, 67.9sin(300πt −3π/4) initially lagging by
3π/4rad. By adding ordinates at intervals,

339.4

Voltage
v (V)

67.9

267.9

2339.4

v 5 339.4 sin 100 �t 1 67.9 sin(300 �t 2      )3�
4

67.9 sin(300 �t 2      )3�
4

339.4 sin 100 �t

Time t (ms)

2015

5 10

Figure 15.36
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the complex waveform representing voltage is
produced as shown.

Now try the following Practice Exercise

Practice Exercise 71 Harmonic synthesis
with complex waveforms (Answers on page
865)

1. A complex current waveform i comprises
a fundamental current of 50Arms and fre-
quency 100Hz, together with a 24% third
harmonic, both being in phase with each other
at zero time. (a) Write down an expression
to represent current i. (b) Sketch the complex
waveformof current using harmonic synthesis
over one cycle of the fundamental.

2. A complex voltage waveform v comprises
of a 212.1Vrms fundamental voltage at a
frequency of 50Hz, a 30% second har-
monic component lagging by π/2rad, and
a 10% fourth harmonic component lead-
ing by π/3rad. (a) Write down an expres-
sion to represent voltage v. (b) Sketch the
complex voltage waveform using harmonic
synthesis over one cycle of the fundamental
waveform.

3. A voltage waveform is represented by:

v = 20+ 50sinωt

+ 20sin(2ωt − π/2)volts.

Draw the complexwaveformover one cycle of
the fundamental by using harmonic synthesis.

4. Write down an expression representing a cur-
rent i having a fundamental component of
amplitude 16A and frequency 1kHz, together
with its third andfifth harmonics being respec-
tively one-fifth and one-tenth the amplitude
of the fundamental, all components being in
phase at zero time. Sketch the complex current
waveform for one cycle of the fundamental
using harmonic synthesis.

5. A voltage waveform is described by

v = 200sin377t + 80sin
(
1131t + π

4

)

+ 20sin
(
1885t − π

3

)
volts

Determine (a) the fundamental and harmonic
frequencies of the waveform, (b) the percent-
age third harmonic and (c) the percentage
fifth harmonic. Sketch the voltage waveform
using harmonic synthesis over one cycle of the
fundamental.

For fully worked solutions to each of the problems in Practice Exercises 68 to 71 in this chapter,
go to the website:

www.routledge.com/cw/bird
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Chapter 16

Hyperbolic functions

Why it is important to understand: Hyperbolic functions
There are two combinations of ex and e−x which are used so often in engineering that they are given
their own name. They are the hyperbolic sine, sinh, and the hyperbolic cosine, cosh. They are of interest
because they have many properties analogous to those of trigonometric functions and because they arise
in the study of falling bodies, hanging cables, ocean waves, and many other phenomena in science and
engineering. The shape of a chain hanging under gravity is well described by cosh x and the deformation
of uniform beams can be expressed in terms of hyperbolic tangents. Other applications of hyperbolic
functions are found in fluid dynamics, optics, heat, mechanical engineering, and in astronomy when
dealing with the curvature of light in the presence of black holes.

At the end of this chapter, you should be able to:

• define a hyperbolic function
• state practical applications of hyperbolic functions
• define sinh x, cosh x, tanh x, cosechx, sechx and coth x

• evaluate hyperbolic functions
• sketch graphs of hyperbolic functions
• state Osborne’s rule
• prove simple hyperbolic identities
• solve equations involving hyperbolic functions
• derive the series expansions for cosh x and sinh x

16.1 Introduction to hyperbolic
functions

Functions which are associated with the geometry of
the conic section called a hyperbola are called hyper-
bolic functions. Applications of hyperbolic functions
include transmission line theory and catenary problems.
By definition:

(i) Hyperbolic sine of x,

sinh x= e
x−e−x
2

(1)

‘sinhx’ is often abbreviated to ‘shx’ and is
pronounced as ‘shine x’

(ii) Hyperbolic cosine of x,

cosh x= e
x+e−x
2

(2)

‘coshx’ is often abbreviated to ‘chx’ and is
pronounced as ‘kosh x’

(iii) Hyperbolic tangent of x,

tanh x= sinh x
cosh x

= e
x−e−x
ex+e−x (3)

Higher Engineering Mathematics. 978-1-138-67357-1, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.
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‘tanhx’ is often abbreviated to ‘thx’ and is
pronounced as ‘than x’

(iv) Hyperbolic cosecant of x,

cosech x= 1
sinhx

= 2
ex−e−x (4)

‘cosechx’ is pronounced as ‘coshecx’

(v) Hyperbolic secant of x,

sech x= 1
cosh x

= 2
ex+e−x (5)

‘sech x’ is pronounced as ‘shecx’

(vi) Hyperbolic cotangent of x,

cothx= 1
tanh x

= ex+e−x
e x−e−x (6)

‘cothx’ is pronounced as ‘kothx’

Some properties of hyperbolic functions

Replacing x by 0 in equation (1) gives:

sinh0= e0− e−0
2

= 1− 1
2

= 0

Replacing x by 0 in equation (2) gives:

cosh0= e0+ e−0
2

= 1+ 1
2

= 1

If a function of x, f (−x)=−f (x), then f (x) is called
an odd function of x. Replacing x by−x in equation (1)
gives:

sinh(−x) = e−x − e−(−x)

2
= e−x − ex

2

= −
(
ex − e−x

2

)

= −sinhx

Replacing x by −x in equation (3) gives:

tanh(−x) = e−x − e−(−x)

e−x + e−(−x)
= e−x − ex

e−x + ex

= −
(
ex − e−x

ex + e−x

)

= −tanhx

Hence sinh x and tanhx are both odd functions

(see Section 16.1), as also are cosechx

(

= 1
sinhx

)

and

cothx

(

= 1
tanhx

)

If a function of x, f (−x) = f (x), then f (x) is
called an even function of x. Replacing x by −x in
equation (2) gives:

cosh(−x) = e−x + e−(−x)

2
= e−x + ex

2
= coshx

Hence coshx is an even function (see Section 16.2), as

also is sechx
(

= 1
coshx

)

Hyperbolic functions may be evaluated most easily
using a calculator. Many scientific notation calculators
actually possess sinh and cosh functions; however, if
a calculator does not contain these functions, then the
definitions given above may be used.

Problem 1. Evaluate sinh5.4, correct to 4
significant figures.

Using a calculator,

(i) press hyp

(ii) press 1 and sinh( appears

(iii) type in 5.4

(iv) press ) to close the brackets

(v) press = and 110.7009498 appears
Hence, sinh 5.4= 110.7, correct to 4 significantfigures.

Alternatively,sinh5.4= 1
2
(e5.4− e−5.4)

= 1
2
(221.406416 . . .− 0.00451658 . . .)

= 1
2
(221.401899 . . .)

= 110.7, correct to 4 significant figures.

Problem 2. Evaluate cosh1.86, correct to 3
decimal places.

Using a calculator with the procedure similar to that
used in Problem 1,
cosh1.86= 3.290, correct to 3 decimal places.
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Problem 3. Evaluate th0.52, correct to 4
significant figures.

Using a calculator with the procedure similar to that
used in Problem 1,

th0.52= 0.4777, correct to 4 significant figures.

Problem 4. Evaluate cosech1.4, correct to 4
significant figures.

cosech1.4= 1
sinh1.4

Using a calculator,

(i) press hyp

(ii) press 1 and sinh( appears

(iii) type in 1.4

(iv) press ) to close the brackets

(v) press = and 1.904301501 appears
(vi) press x−1

(vii) press = and 0.5251269293 appears
Hence, cosech1.4= 0.5251, correct to 4 significant
figures.

Problem 5. Evaluate sech0.86, correct to 4
significant figures.

sech0.86= 1
cosh0.86

Using a calculator with the procedure similar to that
used in Problem 4,

sech0.86= 0.7178, correct to 4 significant figures.

Problem 6. Evaluate coth0.38, correct to 3
decimal places.

coth0.38= 1
tanh0.38

Using a calculator with the procedure similar to that
used in Problem 4,

coth0.38= 2.757,correct to 3 decimal places.

Now try the following Practice Exercise

Practice Exercise 72 Evaluating
hyperbolic functions (Answers on page 866)

In Problems 1 to 6, evaluate correct to 4 significant
figures.

1. (a) sh0.64 (b) sh2.182

2. (a) ch0.72 (b) ch2.4625

3. (a) th0.65 (b) th1.81

4. (a) cosech0.543 (b) cosech3.12

5. (a) sech0.39 (b) sech2.367

6. (a) coth0.444 (b) coth1.843

7. A telegraph wire hangs so that its shape is
described by y =50ch x

50
. Evaluate, correct

to 4 significant figures, the value of y when
x =25

8. The length l of a heavy cable hanging under
gravity is given by l=2c sh(L/2c). Find the
value of l when c=40 and L=30

9. V 2=0.55L tanh(6.3d/L) is a formula for
velocity V of waves over the bottom of shal-
low water, where d is the depth and L is the
wavelength. If d=8.0 and L=96, calculate
the value of V .

16.2 Graphs of hyperbolic functions

A graph of y=sinhx may be plotted using calcula-
tor values of hyperbolic functions. The curve is shown
in Fig. 16.1. Since the graph is symmetrical about
the origin, sinhx is an odd function (as stated in
Section 16.1).
A graph of y=coshx may be plotted using cal-

culator values of hyperbolic functions. The curve is
shown in Fig. 16.2. Since the graph is symmetrical
about the y-axis, coshx is an even function (as stated
in Section 16.1). The shape of y = coshx is that of a
heavy rope or chain hanging freely under gravity and is
called a catenary. Examples include transmission lines,
a telegraph wire or a fisherman’s line, and is used in
the design of roofs and arches. Graphs of y = tanhx,
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y =cosechx, y =sechx and y = cothx are deduced in
Problems 7 and 8.

Problem 7. Sketch graphs of (a) y = tanhx
and (b) y = cothx for values of x between
−3 and 3

A table of values is drawn up as shown below.

x −3 −2 −1
shx −10.02 −3.63 −1.18

chx 10.07 3.76 1.54

y = thx = shx
chx

−0.995 −0.97 −0.77

y =cothx = chx
shx

−1.005 −1.04 −1.31

x 0 1 2 3

shx 0 1.18 3.63 10.02

chx 1 1.54 3.76 10.07

y = thx= shx
chx

0 0.77 0.97 0.995

y =cothx = chx
shx

±∞ 1.31 1.04 1.005

(a) A graph of y = tanhx is shown in Fig. 16.3(a)
(b) A graph of y = cothx is shown in Fig. 16.3(b)

Both graphs are symmetrical about the origin, thus
tanhx and cothx are odd functions.

Problem 8. Sketch graphs of (a) y =cosechx
and (b) y =sechx from x =−4 to x =4, and, from
the graphs, determine whether they are odd or
even functions.

y

x

(a)

y 5 tanh x 

232221

1

21

1 2 30

y

x

(b)

y 5coth x 

y 5coth x

232221 1 2 30

1

2

3

21

23

22

Figure 16.3
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A table of values is drawn up as shown below.

x −4 −3 −2 −1
shx −22.29 −10.02 −3.63 −1.18

cosechx = 1
shx

−0.04 −0.10 −0.28 −0.85

chx 27.31 10.07 3.76 1.54

sechx = 1
chx

0.04 0.10 0.27 0.65

x 0 1 2 3 4

shx 0 1.18 3.63 10.02 27.29

cosechx = 1
shx

±∞ 0.85 0.28 0.10 0.04

chx 1 1.54 3.76 10.07 27.31

sechx = 1
chx

1 0.65 0.27 0.10 0.04

(a) A graph of y =cosechx is shown in Fig. 16.4(a).
The graph is symmetrical about the origin and is
thus an odd function.

(b) A graph of y=sechx is shown in Fig. 16.4(b).The
graph is symmetrical about the y-axis and is thus
an even function.

y 5cosech x

y

x

(a)

y 5cosech x

232221 1 2 30

1

2

3

21

23

22

y

x

(b)

y 5sech x

232221 1 2 30

1

Figure 16.4

16.3 Hyperbolic identities

For every trigonometric identity there is a corres-
ponding hyperbolic identity.Hyperbolic identitiesmay
be proved by either

(i) replacing shx by
ex − e−x

2
and chx by

ex +e−x

2
, or

(ii) by using Osborne’s rule, which states: ‘the six
trigonometric ratios used in trigonometrical iden-
tities relating general angles may be replaced by
their corresponding hyperbolic functions, but the
sign of any direct or implied product of two sines
must be changed’.

For example, since cos2 x + sin2 x =1 then, by
Osborne’s rule, ch2 x −sh2 x=1, i.e. the trigonomet-
ric functions have been changed to their corresponding
hyperbolic functions and since sin2 x is a product of two
sines the sign is changed from+ to−. Table 16.1 shows
some trigonometric identities and their corresponding
hyperbolic identities.

Problem 9. Prove the hyperbolic identities
(a) ch2 x−sh2 x =1 (b) 1− th2 x =sech2 x
(c) coth2 x −1=cosech2 x

(a) chx +shx=
(
ex +e−x

2

)

+
(
ex −e−x

2

)

=ex

chx − shx =
(
ex + e−x

2

)

−
(
ex − e−x

2

)

=e−x

(chx + shx)(chx − shx) = (ex)(e−x) = e0 = 1

i.e. ch2x−sh2x=1 (1)

(b) Dividing each term in equation (1) by ch2 x
gives:

ch2 x
ch2 x

− sh2 x
ch2 x

= 1
ch2 x

i.e. 1− th2 x=sech2 x
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Table 16.1

Trigonometric identity Corresponding hyperbolic identity

cos2 x + sin2 x=1 ch2 x−sh2 x =1
1+ tan2 x = sec2 x 1− th2x =sech2 x
cot2 x +1=cosec2 x coth2 x−1=cosech2 x

Compound angle formulae

sin (A±B) = sinAcosB ± cosAsinB sh(A±B) = shAchB ±chAshB
cos(A±B)= cosAcosB ∓ sinAsinB ch(A±B) = chAchB ±shAshB

tan (A±B)= tanA± tanB

1∓ tanA tanB
th (A±B)= thA± thB

1± thA thB

Double angles

sin2x =2sinx cosx sh2x =2shx chx
cos2x = cos2 x− sin2 x ch2x=ch2 x+sh2 x

=2cos2 x −1 =2ch2 x −1
=1−2sin2 x =1+2sh2 x

tan2x = 2 tanx
1− tan2 x th2x = 2 thx

1+ th2 x

(c) Dividing each term in equation (1) by sh2x
gives:

ch2 x
sh2 x

− sh2 x
sh2 x

= 1
sh2 x

i.e. coth2 x−1=cosech2 x

Problem 10. Prove, using Osborne’s rule
(a) ch2A=ch2A+sh2A
(b) 1− th2 x=sech2 x

(a) From trigonometric ratios,
cos2A = cos2A − sin2A (1)
Osborne’s rule states that trigonometric ratios
may be replaced by their corresponding hyper-
bolic functions but the sign of any product
of two sines has to be changed. In this case,
sin2A=(sinA)(sinA), i.e. a product of two sines,
thus the sign of the correspondinghyperbolic func-
tion, sh2A, is changed from + to −. Hence, from
(1), ch2A=ch2A+sh2A

(b) From trigonometric ratios,
1+ tan2 x = sec2 x (2)

and tan2 x = sin2 x
cos2 x

= (sinx)(sinx)

cos2 x

i.e. a product of two sines.
Hence, in equation (2), the trigonometric ratios
are changed to their equivalent hyperbolic func-
tion and the sign of th2x changed + to −, i.e.
1− th2 x=sech2 x

Problem 11. Prove that 1+2sh2 x=ch2x

Left hand side (LHS)

= 1+ 2sh2 x = 1+ 2
(
ex − e−x

2

)2

= 1+ 2
(
e2x − 2exe−x + e−2x

4

)

= 1+ e2x − 2+ e−2x
2

= 1+
(
e2x + e−2x

2

)

− 2
2

= e2x + e−2x
2

= ch2x = RHS
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Problem 12. Show that th2x +sech2 x =1

LHS= th2 x + sech2 x = sh2 x
ch2 x

+ 1
ch2 x

= sh2 x + 1
ch2 x

Since ch2 x −sh2 x =1 then 1+sh2 x =ch2 x

Thus
sh2 x +1
ch2 x

= ch
2 x

ch2 x
=1=RHS

Problem 13. Given Aex +Be−x ≡ 4chx−5shx,
determine the values of A and B.

Aex + Be−x ≡ 4chx − 5shx

= 4
(
ex + e−x

2

)

− 5
(
ex − e−x

2

)

= 2ex + 2e−x − 5
2
ex + 5

2
e−x

= −1
2
ex + 9

2
e−x

Equating coefficients gives: A=− 1
2
and B=41

2

Problem 14. If 4e x −3e−x ≡P shx +Qchx,
determine the values of P andQ

4ex − 3e−x ≡ P shx + Qchx

= P

(
ex − e−x

2

)

+ Q

(
ex + e−x

2

)

= P

2
ex − P

2
e−x + Q

2
ex + Q

2
e−x

=
(

P + Q

2

)

ex +
(

Q− P

2

)

e−x

Equating coefficients gives:

4= P + Q

2
and −3= Q− P

2
i.e. P +Q=8 (1)

−P +Q=−6 (2)

Adding equations (1) and (2) gives: 2Q=2, i.e. Q=1
Substituting in equation (1) gives: P=7

Now try the following Practice Exercise

Practice Exercise 73 Hyperbolic identities
(Answers on page 866)

In Problems 1 to 4, prove the given identities.

1. (a) ch(P −Q)≡chP chQ− shP shQ
(b) ch2x ≡ch2 x +sh2 x

2. (a) cothx ≡2cosech2x + thx
(b) ch2θ −1≡2sh2 θ

3. (a) th (A−B)≡ thA− thB

1− thA thB

(b) sh2A≡2shAchA
4. (a) sh(A+B)≡shAchB +chAshB

(b)
sh2 x +ch2 x−1
2ch2 x coth2 x

≡ tanh4 x

5. Given P ex −Qe−x ≡6chx−2shx, find P

andQ

6. If 5ex −4e−x ≡Ashx +B chx, findA and B.

16.4 Solving equations involving
hyperbolic functions

Equations such as sinhx =3.25 or cothx=3.478 may
be determined using a calculator. This is demonstrated
in Problems 15 to 21.

Problem 15. Solve the equation sh x=3, correct
to 4 significant figures.

If sinhx = 3, then x = sinh−1 3
This can be determined by calculator.

(i) Press hyp
(ii) Choose 4, which is sinh−1

(iii) Type in 3
(iv) Close bracket )
(v) Press = and the answer is 1.818448459
i.e. the solution of sh x = 3 is: x = 1.818, correct to 4
significant figures.

Problem 16. Solve the equation ch x = 1.52,
correct to 3 decimal places.
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Using a calculator with a similar procedure as in
Problem 15, check that:

x = 0.980, correct to 3 decimal places.
With reference to Fig. 16.2, it can be seen that there
will be two values corresponding to y = coshx =1.52.
Hence, x = ±0.980

Problem 17. Solve the equation tanhθ = 0.256,
correct to 4 significant figures.

Using a calculator with a similar procedure as in
Problem 15, check that

θ = 0.2618, correct to 4 significant figures.

Problem 18. Solve the equation sechx = 0.4562,
correct to 3 decimal places.

If sechx = 0.4562, then x = sech−10.4562=
cosh−1

(
1

0.4562

)

since cosh= 1
sech

i.e. x = 1.421, correct to 3 decimal places.
With reference to the graph of y = sechx in Fig. 16.4, it
can be seen that there will be two values corresponding
to y = sechx = 0.4562
Hence, x = ±1.421

Problem 19. Solve the equation
cosechy= −0.4458, correct to 4 significant figures.

If cosechy= − 0.4458, then y=cosech−1(−0.4458)
= sinh−1

(
1

−0.4458
)

since sinh= 1
cosech

i.e. y = −1.547, correct to 4 significant figures.

Problem 20. Solve the equation cothA=2.431,
correct to 3 decimal places.

If cothA=2.431, then A= coth−1 2.431=
tanh−1

(
1

2.431

)

since tanh= 1
coth

i.e. A= 0.437, correct to 3 decimal places.

Problem 21. A chain hangs in the form given by
y = 40 ch x

40
. Determine, correct to 4 significant

figures, (a) the value of y when x is 25, and (b) the
value of x when y = 54.30

(a) y = 40 ch x

40
, and when x = 25,

y = 40 ch 25
40

= 40 ch 0.625

= 40(1.2017536 . . .) = 48.07

(b) When y =54.30,54.30=40ch x

40
, from which

ch
x

40
= 54.30

40
= 1.3575

Hence,
x

40
= cosh−1 1.3575=±0.822219 . . .

(see Fig. 16.2 for the reason as to why the answer
is±) from which, x = 40(±0.822219 . . . .) = ±32.89

Equations of the form achx+bshx=c, where a, b and
c are constants may be solved either by:

(a) plotting graphs of y =a chx+b shx and y =c

and noting the points of intersection, or more
accurately,

(b) by adopting the following procedure:

(i) Change shx to
(
ex − e−x

2

)

and chx to
(
ex + e−x

2

)

(ii) Rearrange the equation into the form
pex +qe−x +r =0, where p, q and r are
constants.

(iii) Multiply each term by e x , which produces
an equation of the form p(e x)2+rex+
q =0 (since (e−x)(ex)=e0=1)

(iv) Solve the quadratic equationp(ex)2+rex+
q =0 for ex by factorising or by using the
quadratic formula.

(v) Given ex =a constant (obtained by solv-
ing the equation in (iv)), take Napierian
logarithms of both sides to give
x = ln (constant)

This procedure is demonstrated in Problem 22.

Problem 22. Solve the equation
2.6chx + 5.1shx =8.73, correct to 4 decimal
places.

Download more at Learnclax.com



Se
ct

io
n

B
188 Higher Engineering Mathematics

Following the above procedure:

(i) 2.6chx +5.1shx =8.73

i.e. 2.6
(
ex +e−x

2

)

+5.1
(
ex −e−x

2

)

=8.73

(ii) 1.3ex +1.3e−x +2.55ex −2.55e−x =8.73
i.e. 3.85ex −1.25e−x −8.73=0

(iii) 3.85(ex)2−8.73ex −1.25=0
(iv) ex

= −(−8.73)±
√
[(−8.73)2−4(3.85)(−1.25)]
2(3.85)

= 8.73±
√
95.463

7.70
= 8.73±9.7705

7.70
Hence ex =2.4027 or e x =−0.1351

(v) x = ln 2.4027 or x = ln(−0.1351) which has no
real solution.
Hence x=0.8766, correct to 4 decimal places.

Now try the following Practice Exercise

Practice Exercise 74 Hyperbolic equations
(Answers on page 866)

In Problems 1 to 8, solve the given equations
correct to 4 decimal places.

1. (a) sinhx = 1 (b) shA = −2.43
2. (a) coshB = 1.87 (b) 2chx = 3
3. (a) tanhy = −0.76 (b) 3thx = 2.4
4. (a) sechB = 0.235 (b) sechZ = 0.889
5. (a) cosechθ = 1.45 (b) 5 cosechx = 4.35
6. (a) cothx = 2.54 (b) 2cothy = −3.64
7. 3.5 sh x + 2.5 ch x = 0
8. 2 sh x + 3 ch x = 5
9. 4 thx −1= 0
10. A chain hangs so that its shape is of the

form y=56cosh
( x

56

)
. Determine, correct to

4 significant figures, (a) the value of y when
x is 35, and (b) the value of x when y is 62.35

16.5 Series expansions for cosh x and
sinh x

By definition,

ex = 1+ x + x2

2!
+ x3

3!
+ x4

4!
+ x5

5!
+ ·· ·

from Chapter 4.
Replacing x by −x gives:

e−x = 1− x + x2

2!
− x3

3!
+ x4

4!
− x5

5!
+ ·· ·

coshx = 1
2
(ex + e−x)

= 1
2

[(

1+ x + x2

2!
+ x3

3!
+ x4

4!
+ x5

5!
+ ·· ·

)

+
(

1− x + x2

2!
− x3

3!
+ x4

4!
− x5

5!
+ ·· ·

)]

= 1
2

[(

2+ 2x2

2!
+ 2x4

4!
+ ·· ·

)]

i.e. coshx=1+ x
2

2!
+ x

4

4!
+··· (which is valid for all

values of x). coshx is an even function and contains
only even powers of x in its expansion.

sinhx = 1
2
(ex − e−x)

= 1
2

[(

1+ x + x2

2!
+ x3

3!
+ x4

4!
+ x5

5!
+·· ·

)

−
(

1− x + x2

2!
− x3

3!
+ x4

4!
− x5

5!
+·· ·

)]

= 1
2

[

2x + 2x3

3!
+ 2x5

5!
+ ·· ·

]

i.e. sinhx=x+ x
3

3!
+ x

5

5!
+··· (which is valid for all

values of x). sinhx is an odd function and contains only
odd powers of x in its series expansion.

Problem 23. Using the series expansion for ch x,
evaluate ch1 correct to 4 decimal places.
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chx = 1+ x2

2!
+ x4

4!
+ ·· · from above

Let x=1,

then ch1= 1+ 12

2×1 + 14

4×3×2×1

+ 16

6×5×4×3×2×1 + ·· ·

= 1+ 0.5+ 0.04167+ 0.001389+ ·· ·
i.e. ch1=1.5431, correct to 4 decimal places,
which may be checked by using a calculator.

Problem 24. Determine, correct to 3 decimal
places, the value of sh 3 using the series expansion
for shx.

shx = x + x3

3!
+ x5

5!
+ ·· · from above

Let x=3, then

sh3= 3+ 33

3!
+ 35

5!
+ 37

7!
+ 39

9!
+ 311

11!
+ ·· ·

= 3+ 4.5+ 2.025+ 0.43393+ 0.05424
+ 0.00444+ ·· ·

i.e. sh3=10.018, correct to 3 decimal places.

Problem 25. Determine the power series for

2ch
(

θ

2

)

−sh2θ as far as the term in θ 5

In the series expansion for chx, let x = θ

2
then:

2ch
(

θ

2

)

= 2
[

1+ (θ/2)2

2!
+ (θ/2)4

4!
+ ·· ·

]

= 2+ θ2

4
+ θ4

192
+ ·· ·

In the series expansion for shx, let x =2θ , then:

sh2θ = 2θ + (2θ)3

3!
+ (2θ)5

5!
+ ·· ·

= 2θ + 4
3
θ3+ 4

15
θ5+ ·· ·

Hence

ch
(

θ

2

)

− sh2θ =
(

2+ θ2

4
+ θ4

192
+ ·· ·

)

−
(

2θ + 4
3
θ3+ 4

15
θ5+ ·· ·

)

= 2−2θ + θ2

4
− 4
3
θ3+ θ4

192

− 4
15

θ5+ ··· as far the term in θ 5

Now try the following Practice Exercise

Practice Exercise 75 Series expansions for
cosh x and sinh x (Answers on page 866)

1. Use the series expansion for chx to evaluate,
correct to 4 decimal places: (a) ch1.5 (b) ch0.8

2. Use the series expansion for shx to evalu-
ate, correct to 4 decimal places: (a) sh0.5
(b) sh2

3. Expand the following as a power series as far
as the term in x5: (a) sh3x (b) ch2x

In Problems 4 and 5, prove the given identities, the
series being taken as far as the term in θ 5only.

4. sh2θ −shθ ≡θ + 7
6

θ3+ 31
120

θ5

5. 2sh
θ

2
− ch θ

2
≡ − 1+ θ − θ2

8
+ θ3

24
− θ4

384

+ θ5

1920

For fully worked solutions to each of the problems in Practice Exercises 72 to 75 in this chapter,
go to the website:

www.routledge.com/cw/bird
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Chapter 17

Trigonometric identities
and equations

Why it is important to understand: Trigonometric identities and equations
In engineering, trigonometric identities occur often, examples being in themore advanced areas of calcu-
lus to generate derivatives and integrals, with tensors/vectors, and with differential equations and partial
differential equations. One of the skills required for more advanced work in mathematics, especially in
calculus, is the ability to use identities to write expressions in alternative forms. In software engineering,
working, say, on the next big blockbuster film, trigonometric identities are needed for computer graphics;
an RF engineer working on the next-generation mobile phone will also need trigonometric identities. In
addition, identities are needed in electrical engineering when dealing with a.c. power, and wave addi-
tion/subtraction and the solutions of trigonometric equations often require knowledge of trigonometric
identities.

At the end of this chapter, you should be able to:

• state simple trigonometric identities
• prove simple identities
• solve equations of the form b sin A + c = 0
• solve equations of the form a sin2A + c = 0
• solve equations of the form a sin2A + b sinA + c = 0
• solve equations requiring trigonometric identities

17.1 Trigonometric identities

A trigonometric identity is a relationship that is true
for all values of the unknown variable.

tan θ = sin θ

cosθ
,cot θ = cosθ

sin θ
,secθ = 1

cosθ

cosecθ = 1
sin θ

and cotθ = 1
tanθ

are examples of trigonometric identities from
Chapter 12.
Applying Pythagoras’ theorem to the right-angled tri-
angle shown in Fig. 17.1 gives:

a2+ b2 = c2 (1)

Dividing each term of equation (1) by c 2 gives:

a2

c2
+ b2

c2
= c2

c2

Higher Engineering Mathematics. 978-1-138-67357-1, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.
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i.e.
(a

c

)2+
(

b

c

)2
= 1

(cosθ)2+ (sinθ)2 = 1

Hence cos2 θ + sin2 θ = 1 (2)

b

�
a

c

Figure 17.1

Dividing each term of equation (1) by a 2 gives:

a2

a2
+ b2

a2
= c2

a2

i.e. 1+
(
b
a

)2
=

( c

a

)2

Hence 1+ tan2 θ = sec2 θ (3)

Dividing each term of equation (1) by b 2 gives:

a2

b2
+ b2

b2
= c2

b2

i.e.
(a

b

)2+ 1=
( c

b

)2

Hence cot2 θ + 1= cosec2 θ (4)

Equations (2), (3) and (4) are three further examples
of trigonometric identities. For the proof of further
trigonometric identities, see Section 17.2.

17.2 Worked problems on
trigonometric identities

Problem 1. Prove the identity
sin2 θ cot θ secθ = sin θ

With trigonometric identities it is necessary to start with
the left-hand side (LHS) and attempt to make it equal to
the right-hand side (RHS) or vice-versa. It is often useful

to change all of the trigonometric ratios into sines and
cosines where possible. Thus,

LHS= sin2 θ cotθ secθ

= sin2 θ
(
cosθ
sin θ

)(
1
cosθ

)

= sinθ (by cancelling)= RHS

Problem 2. Prove that
tanx + secx

secx
(

1+ tanx

secx

) = 1

LHS= tanx + secx
secx

(

1+ tanx

secx

)

=
sinx

cosx
+ 1
cosx

(
1
cosx

)
⎛

⎜
⎝1+

sinx

cosx
1
cosx

⎞

⎟
⎠

=
sinx + 1
cosx(

1
cosx

)[

1+
(
sinx

cosx

)(cosx
1

)]

=
sinx + 1
cosx(

1
cosx

)

[1+ sinx]

=
(
sinx + 1
cosx

)(
cosx
1+ sinx

)

= 1(by cancelling)= RHS

Problem 3. Prove that
1+ cot θ
1+ tanθ

= cotθ

LHS= 1+ cotθ
1+ tanθ

=
1+ cosθ

sin θ

1+ sin θ

cosθ

=
sin θ + cosθ
sinθ

cosθ + sinθ

cosθ
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=
(
sinθ + cosθ
sinθ

)(
cosθ

cosθ + sinθ

)

= cosθ
sin θ

= cot θ = RHS

Problem 4. Show that
cos2 θ − sin2 θ =1−2sin2 θ

From equation (2), cos2 θ + sin2 θ =1, from which,
cos2 θ =1− sin2 θ
Hence, LHS

= cos2 θ − sin2 θ = (1− sin2 θ) − sin2 θ
= 1− sin2 θ − sin2 θ = 1− 2sin2 θ = RHS

Problem 5. Prove that
√(

1− sinx
1+ sinx

)

= secx − tanx

LHS=
√(

1− sinx
1+ sinx

)

=
√{

(1− sinx)(1− sinx)

(1+ sinx)(1− sinx)

}

=
√{

(1− sinx)2

(1− sin2 x)

}

Since cos2 x + sin2 x=1 then 1− sin2 x= cos2 x

LHS=
√{

(1− sinx)2

(1− sin2 x)

}

=
√{

(1− sinx)2

cos2 x

}

= 1− sinx
cosx

= 1
cosx

− sinx

cosx
= secx − tanx = RHS

Now try the following Practice Exercise

Practice Exercise 76 Trigonometric
identities (Answers on page 866)

In Problems 1 to 6 prove the trigonometric
identities.

1. sinx cotx = cosx
2.

1
√

(1− cos2 θ)
= cosecθ

3. 2cos2A−1= cos2A− sin2A

4.
cosx− cos3 x

sinx
= sinx cosx

5. (1+ cotθ)2+(1− cotθ)2=2cosec2 θ

6.
sin2 x(secx + cosecx)

cosx tanx
=1+ tanx

17.3 Trigonometric equations

Equations which contain trigonometric ratios are called
trigonometric equations. There are usually an infinite
number of solutions to such equations; however, solu-
tions are often restricted to those between 0◦ and 360◦.
A knowledge of angles of any magnitude is essential

in the solution of trigonometric equations and calcula-
tors cannot be relied upon to give all the solutions (as
shown in Chapter 15). Fig. 17.2 shows a summary for
angles of any magnitude.

908

1808

2708

3608

08

Sine
(and cosecant
positive)

Tangent
(and cotangent
positive)

Cosine
(and secant
positive)

All positive

Figure 17.2

Equations of the type a sin2A+ b sin A+ c= 0
(i) When a=0, b sinA+c=0, hence

sinA=− c

b
and A= sin−1

(
− c
b

)

There are two values of A between 0◦ and
360◦ which satisfy such an equation, provided
−1≤ c

b
≤1 (see Problems 6 to 9).

(ii) When b=0, a sin2A+c=0, hence
sin2A = − c

a
, sinA =

√(
− c

a

)

and A= sin−1
√(

− c
a

)
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If either a or c is a negative number, then the
value within the square root sign is positive.
Since when a square root is taken there is a pos-
itive and negative answer there are four values
of A between 0◦ and 360◦ which satisfy such an
equation, provided−1≤ c

a
≤ 1 (seeProblems10

and 11).

(iii) When a, b and c are all non-zero:
a sin2A+b sinA+c=0 is a quadratic equation
in which the unknown is sinA. The solution of
a quadratic equation is obtained either by fac-
torising (if possible) or by using the quadratic
formula:

sin A= −b±
√

(b2− 4ac)
2a

(see Problems 12 and 13).

(iv) Often the trigonometric identities
cos2A+sin2A=1, 1+ tan2A=sec2A and
cot2A+1=cosec 2A need to be used to reduce
equations to one of the above forms (see
Problems 14 to 16).

17.4 Worked problems (i) on
trigonometric equations

Problem 6. Solve the trigonometric equation
5sinθ +3=0 for values of θ from 0◦ to 360◦

5sinθ + 3= 0, from which sinθ = − 3
5 = −0.6000

Hence θ = sin−1(−0.6000). Sine is negative in the third
and fourth quadrants (see Fig. 17.3). The acute angle
sin−1(0.6000)=36.87◦ (shown as α in Fig. 17.3(b)).
Hence,

θ = 180◦ + 36.87◦, i.e.216.87◦ or

θ = 360◦ − 36.87◦, i.e.323.13◦

Problem 7. Solve 1.5tanx−1.8=0 for
0◦ ≤ x ≤360◦

1.5tanx −1.8=0, from which
tanx = 1.8

1.5
=1.2000

Hence x = tan−1 1.2000

1.0

21.0

20.6
0 908 2708

323.138216.878

y 5 sin �

T

S A

C

908

1808

2708

3608
08

a a

(a)

(b)

y

�1808 3608

Figure 17.3

Tangent is positive in the first and third quadrants (see
Fig. 17.4).
The acute angle tan−1 1.2000=50.19◦. Hence,

x= 50.19◦ or 180◦ + 50.19◦ = 230.19◦

(a)

(b)

50.198

50.198

908

C

AS

T

2708

1808
3608

08

y

x

1.2

0

50.198

y 5 tan x

230.198

908 1808 2708 3608

Figure 17.4
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Problem 8. Solve for θ in the range
0◦ ≤ θ ≤ 360◦ for 2sinθ = cosθ

Dividing both sides by cosθ gives:
2sinθ

cosθ
= 1

From Section 17.1, tanθ = sin θ

cosθ
hence 2 tanθ = 1
Dividing by 2 gives: tanθ = 1

2

from which, θ = tan−1 1
2

Since tangent is positive in the first and third quadrants,
θ = 26.57◦ and 206.57◦

Problem 9. Solve 4sec t =5 for values of t
between 0◦ and 360◦

4sec t =5, from which sec t = 5
4 =1.2500

Hence t = sec−1 1.2500
Secant=(1/cosine) is positive in the first and
fourth quadrants (see Fig. 17.5) The acute angle
sec−1 1.2500=36.87◦. Hence,

t=36.87◦ or 360◦ − 36.87◦ = 323.13◦

36.878

36.878

908

C

AS

T

2708

1808
3608

08

Figure 17.5

Now try the following Practice Exercise

Practice Exercise 77 Trigonometric
equations (Answers on page 866)

In Problems 1 to 3 solve the equations for angles
between 0◦ and 360◦.

1. 4−7sinθ =0
2. 3cosecA+5.5=0
3. 4(2.32−5.4cot t)=0

In Problems 4 to 6, solve for θ in the range
0◦ ≤ θ ≤ 360◦.

4. secθ = 2
5. cotθ = 0.6
6. cosecθ = 1.5
In Problems 7 to 9, solve for x in the range
−180◦ ≤ x ≤ 180◦.

7. secx = −1.5
8. cotx = 1.2
9. cosecx = −2
In Problem 10 and 11, solve for θ in the range
0◦ ≤ θ ≤ 360◦.

10. 3sinθ = 2cosθ
11. 5cosθ = −sinθ

17.5 Worked problems (ii) on
trigonometric equations

Problem 10. Solve 2−4cos2A=0 for values of
A in the range 0◦ <A<360◦.

2−4cos2A=0, from which cos2A= 2
4 =0.5000

Hence cosA=√
(0.5000)=±0.7071 and

A= cos−1(±0.7071)
Cosine is positive in quadrants one and four and neg-

ative in quadrants two and three. Thus in this case there
are four solutions, one in each quadrant (see Fig. 17.6).
The acute angle cos−1 0.7071=45◦.

Hence, A= 45◦,135◦,225◦ or 315◦

Problem 11. Solve 12 cot
2 y =1.3 for

0◦ < y < 360◦

1
2 cot

2 y =1.3, from which, cot2 y =2(1.3)=2.6
Hence coty =√

2.6=±1.6125, and y = cot−1
(±1.6125). There are four solutions, one in each
quadrant. The acute angle cot−1 1.6125=31.81◦

Hence y=31.81◦,148.19◦,211.81◦ or 328.19◦

Download more at Learnclax.com



Se
ct

io
n

B

Trigonometric identities and equations 195
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Figure 17.6

Now try the following Practice Exercise

Practice Exercise 78 Trigonometric
equations (Answers on page 866)

In Problems 1 to 5 solve the equations for angles
between 0◦ and 360◦.

1. 5sin2 y =3
2. cos2 θ = 0.25

3. tan2 x = 3

4. 5+3cosec2D=8

5. 2cot2 θ =5

17.6 Worked problems (iii) on
trigonometric equations

Problem 12. Solve the equation
8sin2 θ + 2sinθ − 1= 0,

for all values of θ between 0◦ and 360◦.

Factorising 8sin2 θ +2sinθ −1=0 gives
(4sin θ −1) (2sinθ +1)=0
Hence 4sinθ −1=0, from which, sin θ = 1

4 = 0.2500
or 2sinθ +1=0, from which, sin θ =− 1

2 = −0.5000
(Instead of factorising, the quadratic formula can, of
course, be used.)

θ = sin−1 0.2500=14.48◦ or 165.52◦, since sine
is positive in the first and second quadrants, or
θ = sin−1(−0.5000)=210◦ or 330◦, since sine is neg-
ative in the third and fourth quadrants.

Hence θ = 14.48◦,165.52◦,210◦ or 330◦

Problem 13. Solve 6cos2 θ +5cosθ −6=0 for
values of θ from 0◦ to 360◦

Factorising 6cos2 θ +5cosθ −6=0 gives
(3cosθ −2) (2cosθ +3)=0
Hence 3cosθ −2=0, from which, cosθ = 2

3 = 0.6667
or 2cosθ +3=0, from which, cosθ = − 3

2=−1.5000
The minimum value of a cosine is −1, hence the lat-
ter expression has no solution and is thus neglected.
Hence,

θ = cos−1 0.6667= 48.18◦ or 311.82◦

since cosine is positive in the first and fourth quadrants.

Now try the following Practice Exercise

Practice Exercise 79 Trigonometric
equations (Answers on page 866)

In Problems 1 to 4 solve the equations for angles
between 0◦ and 360◦.

1. 15sin2A+ sinA−2=0
2. 8 tan2 θ +2 tanθ =15
3. 2cosec2 t −5cosec t =12
4. 2cos2 θ + 9cosθ − 5= 0

17.7 Worked problems (iv) on
trigonometric equations

Problem 14. Solve 5cos2 t +3sin t −3=0 for
values of t from 0◦ to 360◦.

Download more at Learnclax.com



Se
ct

io
n

B
196 Higher Engineering Mathematics

Since cos2 t + sin2 t =1,cos2 t =1− sin2 t . Substituting
for cos2 t in 5cos2 t +3sin t −3=0 gives:

5(1− sin2 t) + 3sin t − 3= 0

5− 5sin2 t + 3sin t − 3= 0

−5sin2 t + 3sin t + 2= 0

5sin2 t − 3sin t − 2= 0
Factorising gives (5sin t +2)(sin t −1)=0. Hence
5sin t +2=0, from which, sin t =− 2

5 =−0.4000, or
sin t −1=0, from which, sin t =1
t = sin−1(−0.4000)=203.58◦ or 336.42◦, since sine
is negative in the third and fourth quadrants, or
t = sin−1 1=90◦. Hence t =90◦,203.58◦ or 336.42◦
as shown in Fig. 17.7.

1.0

y

t 8
20.4

21.0

0 908

203.588

y 5 sin t

336.428

2708 3608

Figure 17.7

Problem 15. Solve 18sec2A−3tanA=21 for
values of A between 0◦ and 360◦.

1+ tan2A= sec2A. Substituting for sec2A in
18sec2A−3tanA=21 gives
18(1+ tan2A) − 3tanA=21,

i.e. 18+ 18tan2A − 3tanA − 21= 0
18tan2A − 3tanA − 3= 0

Factorising gives (6tanA−3)(3tanA+1)=0
Hence 6tanA−3=0, from which, tanA= 3

6 = 0.5000
or 3tanA+1=0, from which, tanA= − 1

3= − 0.3333
Thus A= tan−1(0.5000)=26.57◦ or 206.57◦, since
tangent is positive in the first and third quadrants, or

A= tan−1(−0.3333)=161.57◦ or 341.57◦, since tan-
gent is negative in the second and fourth quadrants.

Hence, A= 26.57◦,161.57◦,206.57◦ or 341.57◦

Problem 16. Solve 3cosec2 θ −5=4cotθ in the
range 0<θ <360◦.

cot2 θ +1= cosec2 θ . Substituting for cosec2 θ in
3cosec2 θ −5=4cotθ gives:

3(cot2 θ + 1) − 5= 4cotθ
3cot2 θ + 3− 5= 4cotθ
3cot2 θ − 4cotθ − 2= 0

Since the LHS does not factorise the quadratic formula
is used. Thus,

cotθ = −(−4) ±
√
[(−4)2− 4(3)(−2)]
2(3)

= 4± √
(16+ 24)
6

= 4± √
40

6

= 10.3246
6

or − 2.3246
6

Hence cotθ =1.7208 or −0.3874, θ = cot−1
1.7208=30.17◦ or 210.17◦, since cotangent
is positive in the first and third quadrants, or
θ = cot−1(−0.3874)=111.18◦ or 291.18◦, since
cotangent is negative in the second and fourth quadrants.

Hence, θ = 30.17◦,111.18◦,210.17◦ or 291.18◦

Now try the following Practice Exercise

Practice Exercise 80 Trigonometric
equations (Answers on page 866)

In Problems 1 to 12 solve the equations for angles
between 0◦ and 360◦.

1. 2cos2 θ + sinθ = 1
2. 4cos2 t + 5sin t = 3
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3. 2cosθ − 4sin2 θ = 0
4. 3cosθ + 2sin2 θ = 3
5. 12sin2 θ −6= cosθ
6. 16secx−2=14tan2 x
7. 4cot2A−6cosecA+6=0

8. 5sec t +2 tan2 t =3
9. 2.9cos2 a−7sina+1=0
10. 3cosec2β =8−7cotβ
11. cotθ = sinθ

12. tanθ + 3cotθ = 5secθ

For fully worked solutions to each of the problems in Practice Exercises 76 to 80 in this chapter,
go to the website:

www.routledge.com/cw/bird
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Chapter 18

The relationship between
trigonometric and

hyperbolic functions

Why it is important to understand: The relationship between trigonometric and hyperbolic functions
There are similarities between notations used for hyperbolic and trigonometric functions. Both trigono-
metric and hyperbolic functions have applications inmany areas of engineering.For example, the shape of
a chain hanging under gravity (known as a catenary curve) is described by the hyperbolic cosine, cosh x,
and the deformation of uniform beams can be expressed in terms of hyperbolic tangents. Hyperbolic
functions are also used in electrical engineering applications such as transmission line theory. Einstein’s
special theory of relativity used hyperbolic functions and both trigonometric and hyperbolic functions
are needed for certain areas of more advanced integral calculus. There are many identities showing rela-
tionships between hyperbolic and trigonometric functions; these may be used to evaluate trigonometric
and hyperbolic functions of complex numbers.

At the end of this chapter, you should be able to:

• identify the relationship between trigonometric and hyperbolic functions
• state hyperbolic identities

18.1 The relationship between
trigonometric and hyperbolic
functions

In Chapter 23 it is shown that

cosθ + j sinθ = e jθ (1)

and cosθ − j sinθ = e−jθ (2)

Adding equations (1) and (2) gives:

cosθ = 1
2
(e jθ + e−jθ ) (3)

Subtracting equation (2) from equation (1) gives:

sinθ = 1
2j
(e jθ − e−jθ ) (4)

Higher Engineering Mathematics. 978-1-138-67357-1, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.

Download more at Learnclax.com



Se
ct

io
n

B

The relationship between trigonometric and hyperbolic functions 199

Substituting jθ for θ in equations (3) and (4) gives:

cosjθ = 1
2
(e j (jθ) + e−j (jθ))

and sin jθ = 1
2j

(e j (jθ) − e−j (jθ))

Since j 2=−1,cos jθ = 1
2 (e

−θ +eθ )= 1
2 (e

θ +e−θ )

Hence from Chapter 16, cosjθ = coshθ (5)

Similarly, sinjθ = 1
2j

(e−θ − eθ ) = − 1
2j

(eθ − e−θ )

= −1
j

[
1
2
(eθ − e−θ )

]

= −1
j
sinhθ (see Chapter 16)

But −1
j

= −1
j

× j

j
= − j

j2
= j,

hence sinjθ = j sinhθ (6)

Equations (5) and (6) may be used to verify that in all
standard trigonometric identities, jθ may be written for
θ and the identity still remains true.

Problem 1. Verify that cos2 jθ + sin2 jθ =1

From equation (5), cosjθ = coshθ , and from equa-
tion (6), sinjθ =j sinhθ

Thus, cos2 jθ + sin2 jθ = cosh2 θ +j2 sinh2 θ , and
since j 2=−1,

cos2 jθ + sin2 jθ = cosh2 θ − sinh2 θ
But from Chapter 16, Problem 6,

cosh2 θ − sinh2 θ = 1,

hence cos2 jθ + sin2 jθ = 1

Problem 2. Verify that sinj2A=2sinjAcosjA

Fromequation (6),writing 2A for θ,sinj2A=j sinh2A,
and from Chapter 16, Table 16.1, page 185,
sinh2A = 2sinhAcoshA
Hence, sinj2A = j (2sinhAcoshA)

But, sinhA= 1
2 (e

A −e−A) and coshA= 1
2 (e

A +e−A)

Hence, sin j2A = j2
(
eA − e−A

2

)(
eA + e−A

2

)

= −2
j

(
eA − e−A

2

)(
eA + e−A

2

)

= −2
j

(
sin jθ

j

)

(cos jθ)

= 2sin jAcos jA since j 2 = −1
i.e. sinj2A = 2sinjAcosjA

Now try the following Practice Exercise

Practice Exercise 81 The relationship
between trigonometric and hyperbolic
functions (Answers on page 866)

Verify the following identities by expressing in
exponential form.

1. sinj (A+B)= sinjAcosjB + cosjAsinjB

2. cosj (A−B)= cosjAcosjB + sinjAsinjB

3. cosj2A=1−2sin2 jA
4. sinjAcosjB = 1

2 [sinj (A+B)+ sinj (A−B)]

5. sinjA− sinjB

=2cosj
(

A+B

2

)

sin j

(
A−B

2

)

18.2 Hyperbolic identities

From Chapter 16, coshθ = 1
2 (e

θ + e−θ )

Substituting jθ for θ gives:

coshjθ = 1
2 (e

jθ + e−jθ ) = cos θ, from equation (3),

i.e. coshjθ = cosθ (7)

Similarly, from Chapter 16,

sinhθ = 1
2 (e

θ − e−θ )

Substituting jθ for θ gives:

sinhjθ = 1
2 (e

jθ − e−jθ ) = j sinθ , from equation (4).
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Hence sinhjθ = j sinθ (8)

tan jθ = sinjθ

coshjθ

From equations (5) and (6),

sinjθ

cosjθ
= j sinhθ

coshθ
= j tanhθ

Hence tanjθ = j tanhθ (9)

Similarly, tanhjθ = sinhjθ

coshjθ

From equations (7) and (8),

sinhjθ

coshjθ
= j sin θ

cosθ
= j tanθ

Hence tanhjθ = j tanθ (10)

Two methods are commonly used to verify hyperbolic
identities. These are (a) by substituting jθ (and jφ) in
the corresponding trigonometric identity and using the
relationships given in equations (5) to (10) (see Prob-
lems 3 to 5) and (b) by applying Osborne’s rule given
in Chapter 16, page 184.

Problem 3. By writing jA for θ in cot2 θ +1=
cosec 2 θ , determine the corresponding hyperbolic
identity.

Substituting jA for θ gives:

cot2 jA + 1= cosec2jA,

i.e. cos2 jA
sin2 jA

+ 1= 1
sin2 jA

But from equation (5), cosjA= coshA

and from equation (6), sinjA=j sinhA

Hence
cosh2A

j2 sinh2A
+1= 1

j2 sinh2A

and since j 2=−1,−cosh
2A

sinh2A
+1=− 1

sinh2A
Multiplying throughout by −1, gives:

cosh2A
sinh2A

− 1= 1
sinh2A

i.e. coth2A− 1= cosech2A

Problem 4. By substituting jA and jB for θ and
φ, respectively, in the trigonometric identity for
cosθ − cosφ, show that

coshA − coshB
= 2sinh

(
A + B

2

)

sinh
(

A − B

2

)

cosθ − cosφ = −2sin
(

θ + φ

2

)

sin
(

θ − φ

2

)

(see Chapter 19, page 211)

thus cosjA− cosjB

= −2sinj

(
A + B

2

)

sinj

(
A − B

2

)

But from equation (5), cos jA= coshA
and from equation (6), sin jA=j sinhA

Hence, coshA− coshB

= −2j sinh
(

A + B

2

)

j sinh
(

A − B

2

)

= −2j 2 sinh
(

A + B

2

)

sinh
(

A − B

2

)

But j2=−1, hence

coshA− coshB = 2sinh
(

A + B

2

)

sinh
(

A−B

2

)

Problem 5. Develop the hyperbolic identity
corresponding to sin3θ =3sinθ −4sin3 θ by
writing jA for θ

Substituting jA for θ gives:

sin3jA = 3sinjA − 4sin3 jA
and since from equation (6),

sin jA = j sinhA,

j sinh3A = 3j sinhA − 4j 3 sinh3A
Dividing throughout by j gives:

sinh3A = 3sinhA − j 24sinh3A

But j2=−1, hence
sinh3A = 3sinhA+ 4sinh3A
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[An examination of Problems 3 to 5 shows that when-
ever the trigonometric identity contains a term which
is the product of two sines, or the implied product
of two sines (e.g. tan2 θ = sin2 θ/cos2 θ , thus tan2 θ is
the implied product of two sines), the sign of the cor-
responding term in the hyperbolic function changes.
This relationship between trigonometric and hyperbolic
functions is known as Osborne’s rule, as discussed in
Chapter 16, page 184].

Now try the following Practice Exercise

Practice Exercise 82 Hyperbolic identities
(Answers on page 866)

In Problems 1 to 9, use the substitutionA=jθ (and
B =jφ) to obtain the hyperbolic identities corre-
sponding to the trigonometric identities given.

1. 1+ tan2A = sec2A

2. cos(A+B)= cosAcosB − sinAsinB

3. sin(A−B)= sinAcosB − cosAsinB

4. tan2A= 2 tanA
1− tan2A

5. cosAsinB = 1
2
[sin(A + B) − sin(A − B)]

6. sin3A= 3
4
sinA− 1

4
sin3A

7. cot2A(sec2A−1)=1

For fully worked solutions to each of the problems in Practice Exercises 81 and 82 in this chapter,
go to the website:

www.routledge.com/cw/bird
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Chapter 19

Compound angles

Why it is important to understand: Compound angles
It is often necessary to rewrite expressions involving sines, cosines and tangents in alternative forms. To
do this formulae known as trigonometric identities are used as explained previously. Compound angle
(or sum and difference) formulae, and double angles are further commonly used identities. Compound
angles are required, for example, in the analysis of acoustics (where a beat is an interference between two
sounds of slightly different frequencies), and with phase detectors (which is a frequency mixer, analogue
multiplier, or logic circuit that generates a voltage signal which represents the difference in phase between
two signal inputs). Many rational functions of sine and cosine are difficult to integrate without compound
angle formulae.

At the end of this chapter, you should be able to:

• state compound angle formulae for sin(A ± B), cos(A ± B) and tan(A ± B)

• convert a sin ωt + b cosωt into R sin(ωt + α)

• derive double angle formulae
• change products of sines and cosines into sums or differences
• change sums or differences of sines and cosines into products
• develop expressions for power in a.c. circuits – purely resistive, inductive and capacitive circuits, R–L and
R–C circuits

19.1 Compound angle formulae

An electric current i may be expressed as
i = 5sin(ωt −0.33) amperes. Similarly, the displace-
ment x of a body from a fixed point can be expressed
as x=10sin(2t +0.67) metres. The angles (ωt −0.33)
and (2t +0.67) are called compound angles because
they are the sum or difference of two angles. The
compound angle formulae for sines and cosines of the
sum and difference of two angles A and B are:

sin(A + B) = sinAcosB + cosAsinB

sin(A − B) = sinAcosB − cosAsinB

cos(A + B) = cosAcosB − sinAsinB

cos(A − B) = cosAcosB + sinAsinB

(Note, sin(A+B) is not equal to (sinA+ sinB), and
so on.)
The formulae stated abovemay be used to derive two

further compound angle formulae:

tan(A + B) = tanA + tanB
1− tanA tanB

tan(A − B) = tanA − tanB
1+ tanA tanB

The compound angle formulae are true for all values of
A and B, and by substituting values ofA and B into the
formulae they may be shown to be true.

Higher Engineering Mathematics. 978-1-138-67357-1, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.
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Problem 1. Expand and simplify the following
expressions:
(a) sin(π +α) (b) −cos(90◦ +β)

(c) sin(A−B)−sin(A+B)

(a) sin(π +α) = sinπ cosα+ cosπ sinα (from

the formula forsin(A+B))

= (0)(cosα) + (−1)sinα = −sinα

(b) −cos(90◦ + β)

= −[cos90◦ cosβ − sin90◦ sinβ]

= −[(0)(cosβ) − (1)sinβ]= sinβ

(c) sin(A−B)− sin(A+B)

= [sinAcosB − cosAsinB]

− [sinAcosB + cosAsinB]

= −2cosAsinB

Problem 2. Prove that

cos(y − π) + sin
(
y + π

2

)
= 0

cos(y − π) = cosy cosπ + siny sinπ

= (cosy)(−1) + (siny)(0)

= −cosy

sin
(
y + π

2

)
= siny cos

π

2
+ cosy sin π

2

= (siny)(0) + (cosy)(1) = cosy

Hence cos(y −π)+ sin
(
y+ π

2

)

= (−cosy) + (cosy) = 0

Problem 3. Show that

tan
(
x + π

4

)
tan

(
x − π

4

)
= −1

tan
(
x + π

4

)
= tanx + tan π

4
1− tanx tan π

4

from the formula fortan(A + B)

= tanx + 1
1− (tanx)(1)

=
(
1+ tanx
1− tanx

)

since tan
π

4
= 1

tan
(
x − π

4

)
= tanx − tan π

4
1+ tanx tan π

4
=

(
tanx − 1
1+ tanx

)

Hence tan
(
x + π

4

)
tan

(
x − π

4

)

=
(
1+ tanx
1− tanx

)(
tanx − 1
1+ tanx

)

= tanx − 1
1− tanx = −(1− tanx)

1− tanx = −1

Problem 4. If sinP =0.8142 and cosQ=0.4432
evaluate, correct to 3 decimal places:
(a) sin(P − Q) (b) cos(P +Q)

(c) tan(P +Q), using the compound angle
formulae.

Since sinP =0.8142 then
P = sin−1 0.8142=54.51◦

Thus cosP = cos54.51◦=0.5806 and
tanP = tan54.51◦=1.4025
Since cosQ=0.4432,Q= cos−1 0.4432=63.69◦.
Thus sinQ= sin63.69◦=0.8964 and
tanQ= tan63.69◦=2.0225
(a) sin(P −Q)

= sinP cosQ− cosP sinQ

= (0.8142)(0.4432) − (0.5806)(0.8964)
= 0.3609− 0.5204= −0.160

(b) cos(P +Q)

= cosP cosQ− sinP sinQ

= (0.5806)(0.4432) − (0.8142)(0.8964)
= 0.2573− 0.7298= −0.473

(c) tan(P +Q)

= tanP + tanQ
1− tanP tanQ

= (1.4025) + (2.0225)
1− (1.4025)(2.0225)

= 3.4250
−1.8366 = −1.865
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Problem 5. Solve the equation

4sin(x − 20◦) = 5cosx
for values of x between 0◦ and 90◦

4sin(x − 20◦) = 4[sinx cos20◦ − cosx sin20◦]

from the formula forsin(A − B)

= 4[sinx(0.9397) − cosx(0.3420)]

= 3.7588sinx − 1.3680cosx
Since 4sin(x − 20◦) = 5cosx then
3.7588sinx − 1.3680cosx = 5cosx
Rearranging gives:

3.7588sinx = 5cosx + 1.3680cosx
= 6.3680cosx

and
sinx

cosx
= 6.3680
3.7588

= 1.6942

i.e. tanx =1.6942, and x = tan−1 1.6942=59.449◦ or
59◦27′

[Check: LHS= 4sin(59.449◦ − 20◦)

= 4sin39.449◦ = 2.542

RHS= 5cosx = 5cos59.449◦ = 2.542]

Now try the following Practice Exercise

Practice Exercise 83 Compound angle
formulae (Answers on page 867)

1. Reduce the following to the sine of one
angle:

(a) sin37◦ cos21◦ + cos37◦ sin21◦
(b) sin7t cos3t − cos7t sin3t

2. Reduce the following to the cosine of one
angle:

(a) cos71◦ cos33◦ − sin71◦ sin33◦

(b) cos
π

3
cos

π

4
+ sin π

3
sin

π

4

3. Show that:
(a) sin

(
x + π

3

)
+ sin

(

x + 2π
3

)

= √
3cosx

(b)−sin
(
3π
2

− φ

)

= cosφ

4. Prove that:
(a) sin

(
θ + π

4

)
− sin

(

θ − 3π
4

)

=√
2(sinθ + cosθ)

(b)
cos(270◦ +θ)

cos(360◦ −θ)
= tanθ

5. Given cosA=0.42 and sinB =0.73, evaluate
(a) sin(A−B) (b) cos(A−B) (c) tan(A+B),
correct to 4 decimal places.

In Problems 6 and 7, solve the equations for values
of θ between 0◦ and 360◦.

6. 3sin(θ +30◦)=7cosθ

7. 4sin(θ −40◦)=2sinθ

19.2 Conversion of a sin ωt + b cos ωt

into R sin(ωt + α)

(i) R sin(ωt + α) represents a sine wave of maxi-
mum value R, periodic time 2π/ω, frequency
ω/2π and leading R sinωt by angle α (see
Chapter 15).

(ii) R sin(ωt +α) may be expanded using the com-
pound angle formula for sin(A+B), where
A=ωt and B =α. Hence,

R sin(ωt +α)

= R[sinωt cosα + cosωt sinα]

= R sinωt cosα + R cosωt sinα

= (R cosα)sinωt + (R sinα)cosωt

(iii) If a=R cosα and b=R sinα, where a and
b are constants, then R sin(ωt +α)=a sinωt +
b cosωt , i.e. a sine and cosine function of the same
frequencywhen added produce a sinewave of the
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same frequency (which is further demonstrated in
Chapter 27).

(iv) Since a=R cosα, then cosα=a/R, and since
b=R sinα, then sinα=b/R

R b

a

�

Figure 19.1

If the values of a and b are known then the values
ofR and α may be calculated. The relationship between
constants a, b, R and α are shown in Fig. 19.1.

From Fig. 19.1, by Pythagoras’ theorem:

R =
√

a2+b2

and from trigonometric ratios:

α = tan−1 b/a

Problem 6. Find an expression for
3sinωt +4cosωt in the form R sin(ωt +α) and
sketch graphs of 3sinωt , 4cosωt and R sin(ωt +α)

on the same axes.

Let 3sinωt +4cosωt =R sin(ωt +α)

then 3sinωt +4cosωt

= R[sinωt cosα + cosωt sinα]

= (R cosα)sinωt + (R sinα)cosωt

Equating coefficients of sinωt gives:

3= R cosα, from which,cosα = 3
R

Equating coefficients of cosωt gives:

4= R sinα, from which,sinα = 4
R

There is only one quadrant where both sinα and cosα
are positive, and this is the first, as shown in Fig. 19.2.
From Fig. 19.2, by Pythagoras’ theorem:

R =
√

(32+ 42) = 5

R 4

3

�

Figure 19.2

From trigonometric ratios: α= tan−1 4
3=53.13◦ or

0.927 radians.
Hence 3 sinωt + 4cosωt = 5sin(ωt + 0.927)
A sketch of 3sinωt , 4cosωt and 5sin(ωt +0.927) is
shown in Fig. 19.3 on page 206.

Two periodic functions of the same frequency may be
combined by

(a) plotting the functions graphically and combining
ordinates at intervals, or

(b) resolution of phasors by drawing or calculation.

Problem 6, together with Problems 7 and 8 following,
demonstrate a third method of combining waveforms.

Problem 7. Express 4.6sinωt −7.3cosωt in the
form R sin(ωt +α)

Let 4.6sinωt −7.3cosωt =R sin(ωt +α)

then 4.6sinωt − 7.3cosωt

= R [sinωt cosα + cosωt sinα]

= (R cosα)sinωt + (R sinα)cosωt

Equating coefficients of sinωt gives:

4.6= R cosα, from which, cosα = 4.6
R

Equating coefficients of cosωt gives:

−7.3= R sinα, from which,sinα = −7.3
R

There is only one quadrant where cosine is positive and
sine is negative, i.e. the fourth quadrant, as shown in
Fig. 19.4. By Pythagoras’ theorem:
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y 5 4 cos �t

y 5 3 sin �t

y 5 5 sin(�t 1 0.927)

0.927 rad

0.927 rad

� �t (rad)0

23

21

22

24

25

3

1

2

4

5

y

�/2 � 3/2 2�

Figure 19.3

R =
√
[(4.6)2+ (−7.3)2]= 8.628

By trigonometric ratios:

α = tan−1
(−7.3
4.6

)

= −57.78◦ or −1.008 radians.

Hence

4.6sinωt −7.3cosωt =8.628sin(ωt −1.008)

R 27.3

4.6

�

Figure 19.4

Problem 8. Express −2.7 sinωt −4.1cosωt in
the form R sin(ωt +α)

Let −2.7 sinωt −4.1cosωt =R sin(ωt +α)

= R[sinωt cosα + cosωt sinα]

= (R cosα)sinωt + (R sinα)cosωt

Equating coefficients gives:

−2.7= R cosα, from which, cosα = −2.7
R

and −4.1= R sinα, from which, sinα = −4.1
R

There is only one quadrant in which both cosine and
sine are negative, i.e. the third quadrant, as shown in
Fig. 19.5. From Fig. 19.5,

R =
√
[(−2.7)2+ (−4.1)2]= 4.909

and θ = tan−1 4.1
2.7

= 56.63◦

2708

908

36081808
08

�

u

R24.1

22.7

Figure 19.5
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Hence α=180◦ +56.63◦=236.63◦ or 4.130 radians.
Thus,

−2.7sinωt − 4.1cosωt = 4.909sin(ωt +4.130)
An angle of 236.63◦ is the same as −123.37◦ or
−2.153 radians. Hence −2.7sinωt −4.1cosωt may
be expressed also as 4.909sin(ωt −2.153), which is
preferred since it is the principal value (i.e. −π ≤
α ≤ π)

Problem 9. Express 3sinθ +5cosθ in the form
R sin(θ +α), and hence solve the equation
3 sinθ +5cosθ = 4, for values of θ between 0◦ and
360◦

Let 3sinθ + 5cosθ = R sin(θ + α)

= R[sinθ cosα + cosθ sinα]

= (R cosα)sin θ + (R sinα)cosθ

Equating coefficients gives:

3= R cosα, from which, cosα = 3
R

and 5= R sinα, from which, sinα = 5
R

Since both sinα and cosα are positive,R lies in the first
quadrant, as shown in Fig. 19.6.

R 5

3

�

Figure 19.6

From Fig. 19.6, R=
√

(32+52)=5.831 and
α= tan−1 5

3=59.03◦
Hence 3sinθ +5cosθ =5.831sin(θ +59.03◦)

However 3sinθ + 5cosθ = 4
Thus 5.831sin(θ + 59.03◦) = 4, from which

(θ + 59.03◦) = sin−1
(

4
5.831

)

i.e. θ + 59.03◦ = 43.32◦ or 136.68◦

Hence θ = 43.32◦ − 59.03◦ = −15.71◦

or θ = 136.68◦ − 59.03◦ = 77.65◦

Since −15.71◦ is the same as −15.71◦+360◦, i.e.
344.29◦, then the solutions are θ =77.65◦ or 344.29◦,
which may be checked by substituting into the original
equation.

Problem 10. Solve the equation
3.5cosA−5.8sinA=6.5 for 0◦ ≤ A ≤ 360◦

Let 3.5cosA−5.8sinA=R sin(A+α)

= R[sinAcosα + cosAsinα]

= (R cosα)sinA + (R sinα)cosA

Equating coefficients gives:

3.5= R sinα, from which,sinα = 3.5
R

and −5.8= R cosα, from which,cosα = −5.8
R

There is only one quadrant in which both sine is posi-
tive and cosine is negative, i.e. the second, as shown in
Fig. 19.7.

2708

908

3608
1808 08

�
�

R

25.8

3.5

Figure 19.7

From Fig. 19.7, R=
√
[(3.5)2+(−5.8)2]=6.774 and

θ = tan−1 3.5
5.8

=31.12◦

Hence α=180◦ − 31.12◦ =148.88◦

Thus

3.5cosA − 5.8sinA=6.774sin(A + 144.88◦)=6.5
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Hence sin(A + 148.88◦) = 6.5
6.774

, from which,

(A + 148.88◦) = sin−1 6.5
6.774

= 73.65◦ or 106.35◦

Thus A = 73.65◦ − 148.88◦ = −75.23◦

≡ (−75.23◦ + 360◦) = 284.77◦

or A = 106.35◦ − 148.88◦ = −42.53◦

≡ (−42.53◦ + 360◦) = 317.47◦

The solutions are thusA = 284.77◦ or 317.47◦, which
may be checked in the original equation.

Now try the following Practice Exercise

Practice Exercise 84 The conversion of
a sinωt + bcosωt into R sin(ωt ± α)

(Answers on page 867)

In Problems 1 to 4, change the functions into the
form R sin(ωt ± α).

1. 5sinωt +8cosωt

2. 4sinωt −3cosωt

3. −7sinωt +4cosωt

4. −3sinωt −6cosωt

5. Solve the following equations for values of θ
between 0◦ and 360◦: (a) 2sinθ + 4cosθ =3
(b) 12sinθ −9cosθ =7

6. Solve the following equations for
0◦ <A<360◦: (a) 3cosA+2sinA=2.8
(b) 12 cosA−4sinA=11

7. Solve the following equations for values of θ
between 0◦ and 360◦: (a) 3sinθ + 4cosθ = 3
(b) 2cosθ + sinθ = 2

8. Solve the following equations for
values of θ between 0◦ and 360◦:
(a) 6cosθ + sinθ = √

3
(b) 2sin3θ + 8cos3θ = 1

9. The third harmonic of a wavemotion is given
by 4.3cos3θ −6.9sin3θ . Express this in the
form R sin(3θ ± α)

10. The displacement x metres of a mass from
a fixed point about which it is oscillating is
given by x =2.4sinωt +3.2cosωt , where t

is the time in seconds. Express x in the form
R sin(ωt +α).

11. Two voltages, v1=5cosωt and
v2 = −8sinωt are inputs to an analogue cir-
cuit. Determine an expression for the output
voltage if this is given by (v1+v2).

12. The motion of a piston moving in a cylinder
can be described by:
x = (5cos2t + 5sin2t)cm.
Express x in the form R sin(ωt + α)

19.3 Double angles

(i) If, in the compound angle formula for sin(A+B),
we let B =A then

sin2A = 2sinAcosA

Also, for example,

sin4A = 2sin2Acos2A
and sin8A = 2sin4Acos4A, and so on.

(ii) If, in the compound angle formula for
cos(A+B), we let B =A then

cos2A = cos2A− sin2A

Since cos2A+ sin2A=1, then
cos2A=1− sin2A, and sin2A=1− cos2A, and
two further formula for cos2A can be produced.

Thus cos2A = cos2A − sin2A
= (1− sin2 A) − sin2A

i.e. cos2A = 1− 2sin2A
and cos2A = cos2A − sin2A

= cos2A − (1− cos2 A)

i.e. cos2A = 2cos2A−1
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Also, for example,

cos4A = cos2 2A − sin2 2A or

1− 2sin2 2A or

2cos2 2A − 1
and cos6A = cos2 3A − sin2 3A or

1− 2sin2 3A or

2cos2 3A − 1,
and so on.

(iii) If, in the compound angle formula for tan(A+B),
we let B =A then

tan2A = 2tanA

1− tan2A
Also, for example,

tan4A = 2 tan2A
1− tan2 2A

and tan5A = 2 tan 52A
1− tan2 52A

and so on.

Problem 11. I3 sin3θ is the third harmonic of a
waveform. Express the third harmonic in terms of
the first harmonic sinθ , when I3=1

When I3 = 1,
I3 sin3θ = sin3θ = sin(2θ + θ)

= sin2θ cosθ + cos2θ sinθ,

from the sin(A + B) formula

= (2sinθ cosθ)cosθ + (1− 2sin2θ)sin θ,

from the double angle expansions

= 2sinθ cos2 θ + sinθ − 2sin3 θ
= 2sinθ(1− sin2 θ) + sinθ − 2sin3 θ,

(since cos2 θ = 1− sin2 θ)

= 2sinθ − 2sin3 θ + sinθ − 2sin3 θ

i.e. sin3θ = 3sinθ − 4sin3θ

Problem 12. Prove that
1− cos2θ
sin2θ

= tanθ

LHS= 1− cos2θ
sin2θ

= 1− (1− 2sin2 θ)

2sinθ cosθ

= 2sin2 θ
2sinθ cosθ

= sin θ

cosθ

= tanθ = RHS

Problem 13. Prove that
cot 2x+ cosec2x = cotx

LHS= cot 2x +cosec2x = cos2x
sin2x

+ 1
sin2x

= cos2x + 1
sin2x

= (2cos2 x − 1) + 1
sin2x

= 2cos2 x
sin2x

= 2cos2 x
2sinx cosx

= cosx
sinx

= cotx = RHS

Problem 14. Solve the equation
cos2θ +3sinθ =2 for θ in the range 0◦ ≤θ ≤360◦

Replacing the double angle term with the relationship
cos2θ = 1− 2sin2 θ gives:

1− 2sin2 θ + 3sinθ = 2
Rearranging gives: −2sin2 θ + 3sinθ − 1= 0
or 2sin2 θ − 3sinθ + 1= 0
which is a quadratic in sinθ

Using the quadratic formula or by factorising gives:

(2sinθ − 1)(sinθ − 1) = 0
from which, 2sinθ − 1 = 0 or sin θ − 1= 0
and sinθ = 1

2 or sin θ = 1
from which, θ = 30◦ or 150◦ or 90◦

Now try the following Practice Exercise

Practice Exercise 85 Double angles
(Answers on page 867)

1. The powerp in an electrical circuit is given by

p= v2

R
. Determine the power in terms of V ,

R and cos2t when v=V cos t .
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2. Prove the following identities:

(a) 1− cos2φ
cos2φ

= tan2φ

(b)
1+ cos2t
sin2 t

=2cot2 t

(c)
(tan2x)(1+ tanx)

tanx
= 2
1− tanx

(d) 2cosec2θ cos2θ = cotθ − tanθ

3. If the third harmonic of a waveform is given
by V3 cos3θ , express the third harmonic in
terms of the first harmonic cosθ , when V3=1

In Problems 4 to 8, solve for θ in the range
−180◦ ≤ θ ≤ 180◦

4. cos2θ = sin θ

5. 3sin2θ + 2cosθ = 0

6. sin2θ + cosθ = 0

7. cos2θ + 2sinθ = −3

8. tanθ + cotθ = 2

19.4 Changing products of sines and
cosines into sums or differences

(i) sin(A+B)+sin(A−B)=2sinAcosB (from the
formulae in Section 19.1)

i.e. sinAcosB

= 1
2 [sin(A+ B)+ sin(A− B)] (1)

(ii) sin(A+B)−sin(A−B)=2cosAsinB

i.e. cosAsinB

= 1
2 [sin(A+ B)− sin(A− B)] (2)

(iii) cos(A+B)+cos(A−B)=2cosAcosB

i.e. cosAcosB

= 1
2 [cos(A+ B)+ cos(A− B)] (3)

(iv) cos(A+B)−cos(A−B)=−2sinAsinB

i.e. sinAsinB

=− 1
2 [cos(A+B)− cos(A−B)] (4)

Problem 15. Express sin4x cos3x as a sum or
difference of sines and cosines.

From equation (1),

sin4x cos3x = 1
2 [sin(4x + 3x) + sin(4x − 3x)]

= 1
2 (sin7x + sinx)

Problem 16. Express 2cos5θ sin2θ as a sum or
difference of sines or cosines.

From equation (2),

2cos5θ sin2θ = 2
{
1
2
[sin(5θ + 2θ) − sin(5θ−2θ)]

}

= sin7θ −sin3θ

Problem 17. Express 3cos4t cos t as a sum or
difference of sines or cosines.

From equation (3),

3cos4t cos t = 3
{
1
2
[cos(4t + t) + cos(4t − t)]

}

= 3
2
(cos5t +cos3t)

Thus, if the integral
∫
3cos4t cos t dt was required (for

integration see Chapter 31), then
∫
3cos4t cos t dt =

∫
3
2
(cos5t + cos3t)dt

= 3
2

[
sin5t
5

+ sin3t
3

]

+c

Problem 18. In an alternating current circuit,
voltage v=5sinωt and current i =10sin(ωt −
π/6). Find an expression for the instantaneous
power p at time t given that p=vi, expressing the
answer as a sum or difference of sines and cosines.

p = vi = (5sinωt) [10sin (ωt − π/6)]

= 50sinωt sin(ωt − π/6)
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From equation (4),

50sinωt sin(ωt − π/6)

= (50)
[
− 1
2

{
cos(ωt + ωt − π/6)

−cos[ωt − (ωt − π/6)
]}]

= −25{cos(2ωt − π/6) − cosπ/6}
i.e. instantaneous power,

p = 25[cosπ/6− cos(2ωt − π/6)]

Now try the following Practice Exercise

Practice Exercise 86 Changing products
of sines and cosines into sums or
differences (Answers on page 867)

In Problems 1 to 5, express as sums or differences:

1. sin7t cos2t

2. cos8x sin2x

3. 2sin7t sin3t

4. 4cos3θ cosθ

5. 3sin
π

3
cos

π

6

6. Determine
∫
2sin3t cos t dt

7. Evaluate
∫ π
2

0
4cos5x cos2x dx

8. Solve the equation: 2sin2φ sinφ = cosφ in
the range φ = 0 to φ = 180◦

19.5 Changing sums or differences of
sines and cosines into products

In the compound angle formula let,

(A + B) = X

and

(A − B) = Y

Solving the simultaneous equations gives:

A = X + Y

2
and B = X − Y

2
Thus sin(A+B)+ sin(A−B)=2sinAcosB becomes,

sinX+sinY = 2sin
(

X+Y

2

)

cos
(

X − Y

2

)

(5)

Similarly,

sinX − sinY = 2cos
(

X + Y

2

)

sin
(

X −Y

2

)

(6)

cosX + cosY = 2cos
(

X + Y

2

)

cos
(

X −Y

2

)

(7)

cosX − cosY = −2 sin
(

X +Y

2

)

sin
(

X −Y

2

)

(8)

Problem 19. Express sin5θ +sin3θ as a product.

From equation (5),

sin5θ + sin3θ = 2sin
(
5θ + 3θ
2

)

cos
(
5θ − 3θ
2

)

= 2sin4θ cosθ

Problem 20. Express sin7x − sinx as a product.

From equation (6),

sin7x − sinx = 2cos
(
7x + x

2

)

sin
(
7x − x

2

)

= 2cos4x sin3x

Problem 21. Express cos2t − cos5t as a
product.

From equation (8),

cos2t − cos5t = −2sin
(
2t + 5t
2

)

sin
(
2t − 5t
2

)

= −2sin 7
2
t sin

(

−3
2
t

)

= 2sin 7
2
t sin

3
2
t

(

since sin
(

−3
2
t

)

= −sin 3
2
t

)

Problem 22. Show that
cos6x + cos2x
sin6x + sin2x = cot 4x
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From equation (7),
cos6x + cos2x = 2cos4x cos2x

From equation (5),
sin6x + sin2x = 2sin4x cos2x

Hence
cos6x + cos2x
sin6x + sin2x = 2cos4x cos2x

2sin4x cos2x

= cos4x
sin4x

= cot 4x

Problem 23. Solve the equation
cos4θ + cos2θ =0 for θ in the range 0◦ ≤θ ≤360◦

From equation (7),

cos4θ + cos2θ =2cos
(
4θ + 2θ
2

)

cos
(
4θ − 2θ
2

)

Hence, 2cos3θ cosθ = 0

Dividing by 2 gives: cos3θ cosθ = 0

Hence, either cos3θ = 0 or cosθ = 0

Thus, 3θ = cos−1 0 or θ = cos−1 0
from which, 3θ = 90◦ or 270◦ or 450◦ or 630◦ or
810◦ or 990◦

and θ = 30◦,90◦,150◦,210◦,270◦ or 330◦

Now try the following Practice Exercise

Practice Exercise 87 Changing sums or
differences of sines and cosines into
products (Answers on page 867)

In Problems 1 to 5, express as products:

1. sin3x+sinx

2. 1
2 (sin9θ −sin7θ)

3. cos5t +cos3t
4. 1

8 (cos5t −cos t)

5. 1
2

(
cos

π

3
+ cos π

4

)

6. Show that:

(a)
sin4x −sin2x
cos4x+ cos2x = tanx

(b) 1
2 {sin(5x −α)− sin(x+α)}

= cos3x sin(2x −α)

In Problems 7 and 8, solve for θ in the range
0◦ ≤ θ ≤ 180◦

7. cos6θ + cos2θ = 0
8. sin3θ − sinθ = 0
In Problems 9 and 10, solve in the range
0◦ to 360◦

9. cos2x = 2sinx

10. sin4t + sin2t = 0

19.6 Power waveforms in a.c. circuits

(a) Purely resistive a.c. circuits

Let a voltage v=Vm sinωt be applied to a cir-
cuit comprising resistance only. The resulting current
is i =Im sinωt , and the corresponding instantaneous
power, p, is given by:

p = vi = (Vm sinωt)(Im sinωt)

i.e. p = VmIm sin2ωt

From double angle formulae of Section 19.3,

cos2A = 1− 2sin2A, from which,

sin2A = 1
2 (1− cos2A) thus

sin2ωt = 1
2 (1− cos2ωt)

Then power p = VmIm

[
1
2 (l − cos2ωt)

]

i.e. p = 1
2V mIm(1− cos2ω t)

Thewaveforms of v, i andp are shown in Fig. 19.8. The
waveform of power repeats itself afterπ/ω seconds and
hence the power has a frequency twice that of voltage
and current. The power is always positive, having amax-
imum value of VmIm. The average or mean value of the
power is 12VmIm

The rms value of voltage V =0.707Vm, i.e. V = Vm√
2
,

from which, Vm =√
2V
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Similarly, the rms value of current, I = Im√
2
, from

which, Im =√
2I . Hence the average power, P , devel-

oped in a purely resistive a.c. circuit is given by
P = 1

2VmIm = 1
2 (

√
2V )(

√
2I)=VI watts.

Also, powerP =I 2R orV 2/R as for a d.c. circuit, since
V =IR.
Summarising, the average power P in a purely resistive
a.c. circuit given by

P = VI = I 2R = V 2

R

where V and I are rms values.

(b) Purely inductive a.c. circuits

Let a voltage v=Vm sinωt be applied to a circuit con-
taining pure inductance (theoretical case). The resulting

current is i =Im sin
(
ωt − π

2

)
since current lags voltage

by
π

2
radians or 90◦ in a purely inductive circuit, and

the corresponding instantaneous power, p, is given by:

p = vi = (Vm sinωt)Im sin
(
ωt − π

2

)

i.e. p = VmIm sinωt sin
(
ωt − π

2

)

However,

sin
(
ωt − π

2

)
= −cosωt thus

p = −VmIm sinωt cosωt

Rearranging gives:

p = − 1
2VmIm(2sinωt cosωt)

However, from double angle formulae,

2sinωt cosωt = sin2ωt.

Thus power, p=− 1
2V mIm sin2ωt

The waveforms of v, i and p are shown in Fig. 19.9.
The frequency of power is twice that of voltage and
current. For the power curve shown in Fig. 19.9, the area
above the horizontal axis is equal to the area below, thus
over a complete cycle the average power P is zero. It
is noted that when v and i are both positive, power p is
positive and energy is delivered from the source to the
inductance; when v and i have opposite signs, power p
is negative and energy is returned from the inductance
to the source.

2�
�
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v

p

i

p
i
v
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Figure 19.9
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In general, when the current through an inductance is
increasing, energy is transferred from the circuit to the
magnetic field, but this energy is returned when the
current is decreasing.
Summarising, the averagepowerP in a purely induc-
tive a.c. circuit is zero.

(c) Purely capacitive a.c. circuits

Let a voltage v=Vm sinωt be applied to a circuit
containing pure capacitance. The resulting current is
i =Im sin

(
ωt + π

2
)
, since current leads voltage by 90◦

in a purely capacitive circuit, and the corresponding
instantaneous power, p, is given by:

p = vi = (Vm sinωt)Im sin
(
ωt + π

2

)

i.e. p = VmIm sinωt sin
(
ωt + π

2

)

However, sin
(
ωt + π

2

)
= cosωt

thus p = VmIm sinωt cosωt

Rearranging gives

p= 1
2VmIm(2sinωt cosωt)

Thus power, p= 1
2V mIm sin2ωt .

The waveforms of v, i and p are shown in Fig. 19.10.
Over a complete cycle the average power P is zero.
When the voltage across a capacitor is increasing,
energy is transferred from the circuit to the electric

field, but this energy is returned when the voltage is
decreasing.
Summarising, the average powerP in a purely capac-
itive a.c. circuit is zero.

(d) R–L or R–C a.c. circuits

Let a voltage v=Vm sinωt be applied to a cir-
cuit containing resistance and inductance or resis-
tance and capacitance. Let the resulting current be
i =Im sin(ωt +φ), where phase angle φ will be posi-
tive for an R–C circuit and negative for an R–L circuit.
The corresponding instantaneous power, p, is given by:

p = vi = (Vm sinωt)Im sin(ωt + φ)

i.e. p = VmIm sinωt sin(ωt + φ)

Products of sine functions may be changed into differ-
ences of cosine functions as shown in Section 19.4,
i.e. sinAsinB =− 1

2 [cos(A+B)− cos(A−B)]

Substituting ωt =A and (ωt +φ)=B gives:
power, p = VmIm{− 1

2 [cos(ωt + ωt + φ)

− cos(ωt − (ωt + φ))]}
i.e. p = 1

2VmIm[cos(−φ) − cos(2ωt + φ)]

However, cos(−φ)= cosφ
Thus p = 1

2V mIm[cosφ − cos(2ωt + φ)]
The instantaneous power p thus consists of

2�
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(i) a sinusoidal term, − 1
2VmIm cos(2ωt +φ) which

has a mean value over a cycle of zero, and

(ii) a constant term, 12VmIm cosφ (since φ is constant
for a particular circuit).

Thus the average value of power P = 1
2VmIm cosφ.

Since Vm =√
2V and Im =√

2I , average power
P = 1

2 (
√
2V )(

√
2I)cosφ

i.e. P =V I cosφ

The waveforms of v, i and p, are shown in Fig. 19.11
for an R–L circuit. The waveform of power is seen to
pulsate at twice the supply frequency. The areas of the
power curve (shown shaded) above the horizontal time
axis represent power supplied to the load; the small

areas below the axis represent power being returned to
the supply from the inductance as the magnetic field
collapses.
A similar shape of power curve is obtained for an

R–C circuit, the small areas below the horizontal axis
representing power being returned to the supply from
the charged capacitor. The difference between the areas
above and below the horizontal axis represents the heat
loss due to the circuit resistance. Since power is dissi-
pated only in a pure resistance, the alternative equations
for power, P =I 2RR, may be used, where IR is the rms
current flowing through the resistance.
Summarising, the average power P in a circuit

containing resistance and inductance and/or capaci-
tance, whether in series or in parallel, is given by
P =VI cosφ or P = I 2RR (V,I and IR being rms
values).

For fully worked solutions to each of the problems in Practice Exercises 83 to 87 in this chapter,
go to the website:

www.routledge.com/cw/bird
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Revision Test 5 Further trigonometry and hyperbolic functions

This Revision Test covers the material contained in Chapters 15 to 19. The marks for each question are shown in
brackets at the end of each question.

1. Solve the following equations in the range 0◦
to 360◦.

(a) sin−1(−0.4161)=x

(b) cot−1(2.4198)=θ (8)

2. Sketch the following curves, labelling relevant
points:

(a) y =4cos(θ + 45◦)
(b) y=5sin(2t −60◦) (8)

3. The current in an alternating current circuit at
any time t seconds is given by:

i = 120sin(100πt + 0.274) amperes.
Determine
(a) the amplitude, periodic time, frequency and

phase angle (with reference to 120sin100πt)
(b) the value of current when t =0
(c) the value of current when t =6ms
(d) the time when the current first reaches 80A
Sketch one cycle of the oscillation. (19)

4. A complex voltage waveform v is comprised
of a 141.4Vrms fundamental voltage at a fre-
quency of 100Hz, a 35% third harmonic com-
ponent leading the fundamental voltage at zero
time by π/3radians, and a 20% fifth harmonic
component lagging the fundamental at zero time
by π/4radians.

(a) Write down an expression to represent
voltage v.

(b) Draw the complex voltage waveform using
harmonic synthesis over one cycle of the
fundamental waveform using scales of 12cm
for the time for one cycle horizontally and
1cm=20V vertically. (15)

5. Evaluate correct to 4 significant figures:
(a) sinh2.47 (b) tanh0.6439
(c) sech1.385 (d) cosech0.874 (6)

6. The increase in resistance of strip conductorsdue to
eddy currents at power frequencies is given by:

λ = αt

2

[
sinhαt + sinαt

coshαt − cosαt

]

Calculate λ, correct to 5 significant figures, when
α=1.08 and t =1 (5)

7. If A chx −B shx ≡4ex −3e−x determine the
values of A and B. (6)

8. Solve the following equation:

3.52chx + 8.42shx = 5.32
correct to 4 decimal places. (8)

9. Prove the following identities:

(a)

√[
1− cos2 θ
cos2 θ

]

= tanθ

(b) cos
(
3π
2

+φ

)

= sinφ

(c)
sin2 x

1+ cos2x = 1
2 tan

2 x (9)

10. Solve the following trigonometric equations in the
range 0◦ ≤x≤360◦:
(a) 4cosx +1=0
(b) 3.25cosecx =5.25
(c) 5sin2 x +3sinx =4
(d) 2sec2 θ +5tanθ =3 (18)

11. Solve the equation 5 sin(θ −π/6) =8cosθ for
values 0≤ θ ≤ 2π (8)

12. Express 5.3cos t −7.2sin t in the form
R sin(t +α). Hence solve the equation
5.3cos t − 7.2sin t =4.5 in the range
0≤ t ≤ 2π (12)

13. Determine
∫
2cos3t sin t dt (3)

For lecturers/instructors/teachers, fully worked solutions to each of the problems in Revision Test 5,
together with a full marking scheme, are available at the website:

www.routledge.com/cw/bird
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Chapter 20

Functions and their curves

Why it is important to understand: Functions and their curves
Engineers use many basic mathematical functions to represent, say, the input/output of systems – linear,
quadratic, exponential, sinusoidal, and so on, and knowledge of these is needed to determine how these
are used to generate some of the more unusual input/output signals such as the square wave, saw-tooth
wave and fully rectified sine wave. Periodic functions are used throughout engineering and science to
describe oscillations, waves and other phenomena that exhibit periodicity. Graphs and diagrams provide
a simple and powerful approach to a variety of problems that are typical to computer science in general,
and software engineering in particular; graphical transformations have many applications in software
engineering problems.Understanding of continuous anddiscontinuous functions, odd and even functions,
and inverse functions are helpful in this – it’s all part of the ‘language of engineering’.

At the end of this chapter, you should be able to:

• recognise standard curves and their equations – straight line, quadratic, cubic, trigonometric, circle, ellipse,
hyperbola, rectangular hyperbola, logarithmic function, exponential function and polar curves

• perform simple graphical transformations
• define a periodic function
• define continuous and discontinuous functions
• define odd and even functions
• define inverse functions
• determine asymptotes
• sketch curves

20.1 Standard curves

When a mathematical equation is known, co-ordinates
may be calculated for a limited range of values, and
the equation may be represented pictorially as a graph,
within this range of calculated values. Sometimes it
is useful to show all the characteristic features of an
equation, and in this case a sketch depicting the equa-
tion can be drawn, in which all the important features
are shown, but the accurate plotting of points is less

important. This technique is called ‘curve sketching’
and can involve the use of differential calculus, with,
for example, calculations involving turning points.
If, say,y depends on, say,x, theny is said to be a function
of x and the relationship is expressed as y =f (x); x is
called the independent variable and y is the dependent
variable.
In engineering and science, corresponding values are
obtained as a result of tests or experiments.
Here is a brief resumé of standard curves,some ofwhich
have been met earlier in this text.

Higher Engineering Mathematics. 978-1-138-67357-1, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.
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(i) Straight line
The general equation of a straight line is y =mx+c,

where m is the gradient
(

i.e.
dy
dx

)

and c is the y-axis

intercept.
Two examples are shown in Fig. 20.1
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Figure 20.1

(ii) Quadratic graphs
The general equation of a quadratic graph is
y =ax2+bx+c, and its shape is that of a parabola.
The simplest example of a quadratic graph, y =x 2, is
shown in Fig. 20.2.

8

6

4

2

22 21 10 2 x

y

y 5x2

Figure 20.2

(iii) Cubic equations
The general equation of a cubic graph is
y =ax3+ bx2+cx +d .
The simplest example of a cubic graph, y =x 3, is shown
in Fig. 20.3.
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Figure 20.3

(iv) Trigonometric functions (see Chapter 15,
page 162)
Graphs of y=sin θ , y =cosθ and y = tanθ are shown in
Fig. 20.4.
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Figure 20.4
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(v) Circle (see Chapter 14, page 155)

The simplest equation of a circle is x 2+y2=r2,
with centre at the origin and radius r , as shown in
Fig. 20.5.

2r

2r r

r

O x

x21 y25 r 2

y

Figure 20.5

More generally, the equation of a circle, centre (a,b),
radius r , is given by:

(x − a)2+ (y − b)2 = r2

Figure 20.6 shows a circle

(x − 2)2+ (y − 3)2 = 4

0 2 4

2

3

4

5

b 5 3

a 5 2

r 5 2

(x 2 2)21 (y 2 3)25 4

y

x

Figure 20.6

(vi) Ellipse

The equation of an ellipse is

x2

a2
+ y2

b2
= 1

and the general shape is as shown in Fig. 20.7.
The length AB is called the major axis and CD the
minor axis.
In the above equation, a is the semi-major axis and b is
the semi-minor axis.

x2 y2

a2 b2 5 11

y

C

b

O
a

D

x

BA

Figure 20.7

(Note that if b=a, the equation becomes
x2

a2
+ y2

a2
=1,

i.e. x2+y2=a2, which is a circle of radius a).

(vii) Hyperbola

The equation of a hyperbola is

x2

a2
− y2

b2
= 1

and the general shape is shown in Fig. 20.8. The curve
is seen to be symmetrical about both the x- and y-axes.
The distance AB in Fig. 20.8 is given by 2a.

A B

y

xO

x2 y2

a2 b2 5 12

Figure 20.8

(viii) Rectangular hyperbola
The equation of a rectangular hyperbola is xy=c or
y = c

x
and the general shape is shown in Fig. 20.9.

(ix) Logarithmic function (see Chapter 3, page 28)
y = lnx and y= lgx are both of the general shape shown
in Fig. 20.10.
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Figure 20.10

(x) Exponential functions (see Chapter 4, page 32)

y =ex is of the general shape shown in Fig. 20.11.

(xi) Polar curves

The equation of a polar curve is of the form r =f (θ).
An example of a polar curve, r =a sinθ , is shown in
Fig. 20.12.

20.2 Simple transformations

From the graph of y= f (x) it is possible to deduce
the graphs of other functions which are transformations
of y = f (x). For example, knowing the graph of
y = f (x), can help us draw the graphs of y =af (x),

0

1

y 5ex

y

x

Figure 20.11

O

a

a

r 5a sin�

Figure 20.12

y = f (x)+a, y= f (x+a), y= f (ax), y=−f (x) and
y = f (−x)

(i) y=af (x)
For each point (x1, y1) on the graph of y =f (x) there
exists a point (x1, ay1) on the graph of y =af (x).
Thus the graph of y =af (x) can be obtained by
stretching y= f (x) parallel to the y-axis by a scale
factor ‘a’
Graphs of y =x +1 and y =3(x+1) are shown in

Fig. 20.13(a) and graphs of y= sinθ and y=2sinθ are
shown in Fig. 20.13(b).

(ii) y= f (x)+a
The graph of y = f (x) is translated by a units par-
allel to the y-axis to obtain y= f (x)+a. For exam-
ple, if f (x)=x, y= f (x)+3 becomes y =x +3, as
shown in Fig. 20.14(a). Similarly, if f (θ)= cosθ ,
then y = f (θ)+2 becomes y = cosθ +2, as shown in
Fig. 20.14(b). Also, if f (x)=x 2, then y = f (x)+3
becomes y =x2+3, as shown in Fig. 20.14(c).
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(iii) y= f (x+a)
The graph of y =f (x) is translated by a units parallel
to the x-axis to obtain y =f (x+a). If a >0 it moves
y = f (x) in the negative direction on the x-axis (i.e. to
the left), and if a <0 it moves y= f (x) in the positive
direction on the x-axis (i.e. to the right). For example, if
f (x)= sinx, y=f

(
x − π

3

)
becomes y = sin

(
x− π

3

)

as shown in Fig. 20.15(a) and y = sin
(
x + π

4

)
is shown

in Fig. 20.15(b).
Similarly graphs of y=x2, y =(x −1)2 and

y =(x +2)2 are shown in Fig. 20.16.

(iv) y= f (ax)
For each point (x1, y1) on the graph of y = f (x), there
exists a point

(x1

a
,y1

)
on the graph of y = f (ax). Thus

the graph of y= f (ax) can be obtained by stretching

y = f (x) parallel to the x-axis by a scale factor
1
a

(b)
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For example, if f (x)=(x −1)2, and a= 1
2
, then

f (ax)=
(x

2
−1

)2

Both of these curves are shown in Fig. 20.17(a).
Similarly, y =cosx and y =cos2x are shown in
Fig. 20.17(b).
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Figure 20.17

(v) y=− f (x)
The graph of y =−f (x) is obtained by reflect-
ing y = f (x) in the x-axis. For example, graphs of
y =ex and y =−ex are shown in Fig. 20.18(a) and
graphs of y =x2+2 and y =−(x2+2) are shown in
Fig. 20.18(b).

(vi) y= f (−x)
The graph of y = f (−x) is obtained by reflecting
y = f (x) in the y-axis. For example, graphs of y=x 3

and y =(−x)3=−x3 are shown in Fig. 20.19(a)
and graphs of y= lnx and y =−lnx are shown in
Fig. 20.19(b).
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Figure 20.18 (Continued)
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Problem 1. Sketch the following graphs, showing
relevant points:

(a) y = (x − 4)2 (b) y = x3− 8

(a) In Fig. 20.20 a graph of y=x 2 is shown by the bro-
ken line. The graph of y =(x −4)2 is of the form
y =f (x+a). Since a=−4, then y =(x −4)2 is
translated 4 units to the right of y =x 2, parallel to
the x-axis.

(See Section (iii) above).

y �x2 y � (x �4)2

4

�2�4 0

8

2 4 6

y

x

Figure 20.20

(b) In Fig. 20.21 a graph of y =x 3 is shown by the
broken line. The graph of y=x 3−8 is of the
form y = f (x)+a. Since a=−8, then y =x 3−8
is translated 8 units down from y=x 3, parallel to
the y-axis.
(See Section (ii) above).
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Figure 20.21

Problem 2. Sketch the following graphs, showing
relevant points:

(a) y = 5− (x + 2)3 (b) y = 1+ 3sin2x

(a) Fig. 20.22(a) shows a graph of y =x 3.
Fig. 20.22(b) shows a graph of y=(x +2)3
(see f (x +a), Section (iii) above).

Fig. 20.22(c) shows a graph of y = − (x+2)3
(see −f (x), Section (v) above). Figure 20.22(d)
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shows the graph of y =5−(x +2)3 (see
f (x)+ a, Section (ii) above).

(b) Fig. 20.23(a) shows a graph of y = sinx.
Fig. 20.23(b) shows a graph of y = sin2x
(see f (ax), Section (iv) above).
Fig. 20.23(c) shows a graph of y =3sin2x (see
a f (x), Section (i) above). Fig. 20.23(d) shows a
graph of y=1+3sin2x (seef (x)+a, Section (ii)
above).

�4

10

20

y � �(x � 2)3

(c)

–10

–20

0 2�2 x

y

�4

10

20

y � 5 � (x � 2)3

(d)

–10

–20

0 2�2 x

y

Now try the following Practice Exercise

Practice Exercise 88 Simple
transformations with curve sketching
(Answers on page 867)

Sketch the following graphs, showing relevant
points:

1. y =3x−5
2. y = − 3x+4
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y 5 sin x

y

x

1

21

�
2

3�
2

�

(a)

0

y 5 sin 2x
y

x

1

21

�
2

3�
2

� 2�

(b)

0

y 5 3 sin 2x

y

x

1

2

3

21

22

23

�
2

3�
2

� 2�

(c)

0

y �1 � 3 sin 2x

y

x

1

2

3

4

�1

�2

�
2

3�
2

� 2�

(d)

0

Figure 20.23

3. y =x2+3
4. y =(x −3)2
5. y =(x −4)2+2
6. y =x −x2

7. y =x3+2
8. y =1+2cos3x
9. y =3−2sin

(
x + π

4

)

10. y =2 lnx

20.3 Periodic functions

A function f (x) is said to be periodic if f (x +T )=
f (x) for all values of x, where T is some positive
number. T is the interval between two successive repe-
titions and is called the period of the function f (x). For
example, y = sinx is periodic in x with period 2π since
sinx= sin(x+2π)= sin(x +4π), and so on. Similarly,
y = cosx is a periodic function with period 2π since
cosx = cos(x +2π)= cos(x+4π), and so on. In gen-
eral, if y = sinωt or y = cosωt then the period of the
waveform is 2π/ω. The function shown in Fig. 20.24 is
also periodic of period 2π and is defined by:

f (x) =
{

−1, when −π ≤ x ≤ 0
1, when 0 ≤ x ≤ π

1

�1

�2� 2��� �0

f (x)

x

Figure 20.24

20.4 Continuous and discontinuous
functions

If a graph of a function has no sudden jumps or breaks it
is called a continuous function, examples being the
graphs of sine and cosine functions. However, other
graphs make finite jumps at a point or points in the
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interval. The square wave shown in Fig. 20.24 has finite
discontinuities as x =π , 2π , 3π , and so on, and is
therefore a discontinuous function. y = tanx is another
example of a discontinuous function.

20.5 Even and odd functions

Even functions

A function y =f (x) is said to be even if f (−x)=f (x)

for all values of x. Graphs of even functions are always
symmetrical about the y-axis (i.e. is a mirror image).
Twoexamples of even functions arey=x 2 andy= cosx
as shown in Fig. 20.25.

23 22 21 0

(a)

y

2

1 2 3

4

6

8

y 5x 2

0

(b)

y

x2� ��
2

y 5cos x

2�
   2

x

Figure 20.25

Odd functions

A function y =f (x) is said to be odd if f (−x)=−f (x)

for all values of x. Graphs of odd functions are
always symmetrical about the origin. Two examples
of odd functions are y =x 3 and y= sinx as shown in
Fig. 20.26.
Many functions are neither even nor odd, two such

examples being shown in Fig. 20.27.

Problem 3. Sketch the following functions and
state whether they are even or odd functions:
(a) y = tanx

(a)

23

y

x3

27

227

y 5 x 3

0

1

0

(b)

y

x

21

�
2

y 5 sinx

23�
   2

3�
2

2�2� ��
2

2

Figure 20.26

(a)

y

x321�1

20

10

0

y �ex

y

x0

(b)

Figure 20.27

(b) f (x)=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

2, when 0 ≤ x ≤ π

2

−2, when
π

2
≤ x ≤ 3π

2
,

2, when
3π
2

≤ x ≤ 2π
and is periodic of period 2π
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(a) A graph of y = tanx is shown in Fig. 20.28(a) and
is symmetrical about the origin and is thus an odd
function (i.e. tan(−x)=−tanx).

(b) A graph of f (x) is shown in Fig. 20.28(b) and
is symmetrical about the f (x) axis hence the
function is an even one, (f (−x)= f (x)).

(a)

y

x0 � 2�

y � tan x

��

(b)

f(x )

x0 � 2�

�2

2

���2�

Figure 20.28

Problem 4. Sketch the following graphs and state
whether the functions are even, odd or neither even
nor odd:
(a) y = lnx

(b) f (x)=x in the range −π to π and is
periodic of period 2π .

(a) A graph of y = lnx is shown in Fig. 20.29(a)
and the curve is neither symmetrical about the
y-axis nor symmetrical about the origin and is thus
neither even nor odd.

(b) A graph of y =x in the range−π to π is shown in
Fig. 20.29(b) and is symmetrical about the origin
and is thus an odd function.

(a)

y

x

y � In x

�0.5

1.0

0.5

0 2 3 41

(b)

y

x

y � x

0 �

�

��

2��2� ��

Figure 20.29

Now try the following Practice Exercise

Practice Exercise 89 Even and odd
functions (Answers on page 868)

In Problems 1 and 2 determine whether the given
functions are even, odd or neither even nor odd.

1. (a) x4 (b) tan3x (c) 2e3t (d) sin2 x

2. (a) 5t3 (b) ex +e−x (c)
cosθ

θ
(d) ex

3. State whether the following functions, which
are periodic of period 2π , are even or odd:

(a) f (θ) =
{

θ, when−π ≤ θ ≤ 0
−θ, when 0≤ θ ≤ π

(b) f (x) =
⎧
⎨

⎩

x, when−π

2
≤ x ≤ π

2
0, when

π

2
≤ x ≤ 3π

2

20.6 Inverse functions

If y is a function of x, the graph of y against x can be
used to find x when any value of y is given. Thus the
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graph also expresses that x is a function of y. Two such
functions are called inverse functions.
In general, given a function y =f (x), its inverse may

be obtained by interchanging the roles of x and y and
then transposing for y. The inverse function is denoted
by y =f −1(x).
For example, if y =2x+1, the inverse is obtained by

(i) transposing for x, i.e. x = y − 1
2

= y

2
− 1
2
and

(ii) interchanging x and y, giving the inverse as

y= x

2
− 1
2

Thus if f (x)=2x+1, then f −1(x)= x

2
− 1
2

A graph of f (x)=2x +1 and its inverse

f −1(x)= x

2
− 1
2
is shown in Fig. 20.30 and f −1(x) is

seen to be a reflection of f (x) in the line y=x

Similarly, if y = x2, the inverse is obtained by

(i) transposing for x, i.e. x =±√
y and

(ii) interchanging x and y, giving the inverse
y=±√

x

Hence the inverse has two values for every value of x.
Thus f (x)=x2 does not have a single inverse. In
such a case the domain of the original function may
be restricted to y=x2 for x >0. Thus the inverse is
then y =+√

x. A graph of f (x)=x2 and its inverse
f −1(x)=√

x forx>0 is shown inFig. 20.31 and, again,
f −1(x) is seen to be a reflection off(x) in the line y=x.
It is noted from the latter example, that not all func-

tions have an inverse. An inverse, however, can be
determined if the range is restricted.

y

y52x11
y5x

4

2

2 3 4

1

1021

21

x

y5     2
x
2

1
2

Figure 20.30

y

y5x

y5  x

y5x 2

4

31 2 x

2

0

Œ„

Figure 20.31

Problem 5. Determine the inverse for each of the
following functions:
(a) f (x)=x −1 (b) f (x)=x2−4 (x >0)

(c) f (x)=x2+1

(a) If y = f (x), then y =x −1
Transposing for x gives x =y+1
Interchanging x and y gives y =x+1
Hence if f (x)=x−1, then f−1(x)=x+1

(b) If y = f (x), then y =x2−4 (x >0)
Transposing for x gives x =√

y +4
Interchanging x and y gives y = √

x +4
Hence if f (x)=x2−4 (x>0) then
f−1(x)=√

x+4 if x>−4
(c) If y = f (x), then y =x2+1

Transposing for x gives x =√
y −1

Interchangingx andy givesy= √
x −1,whichhas

two values.
Hence there is no inverse of f(x)=x2+1, since
the domain of f (x) is not restricted.

Inverse trigonometric functions

If y= sinx, then x is the angle whose sine is y.
Inverse trigonometrical functions are denoted by pre-
fixing the function with ‘arc’ or, more commonly,−1.
Hence transposing y= sinx for x gives x = sin−1 y.
Interchanging x and y gives the inverse y = sin−1 x.
Similarly, y =cos−1 x, y= tan−1 x, y =sec−1 x,

y =cosec−1x and y=cot−1 x are all inverse trigono-
metric functions. The angle is always expressed in
radians.
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Inverse trigonometric functions are periodic so it is nec-
essary to specify the smallest or principal value of the
angle. For sin−1 x, tan−1 x, cosec−1 x and cot−1 x, the
principal value is in the range− π

2
<y <

π

2
. For cos−1 x

and sec−1 x the principal value is in the range 0<y <π .
Graphs of the six inverse trigonometric functions are
shown in Fig. 38.1, page 436.

Problem 6. Determine the principal values of

(a) arcsin 0.5 (b) arctan(−1)

(c) arccos

(

−
√
3
2

)

(d) arccosec(
√
2)

Using a calculator,

(a) arcsin0.5≡ sin−1 0.5= 30◦

= π

6
rad or 0.5236rad

(b) arctan(−1) ≡ tan−1(−1) = −45◦

= −π

4
rad or −0.7854rad

(c) arccos

(

−
√
3
2

)

≡ cos−1
(

−
√
3
2

)

= 150◦

= 5π
6
rad or 2.6180rad

(d) arccosec(
√
2) = arcsin

(
1√
2

)

≡ sin−1
(
1√
2

)

= 45◦

= π

4
rad or 0.7854rad

Problem 7. Evaluate (in radians), correct to
3 decimal places: sin−1 0.30+ cos−1 0.65

sin−1 0.30= 17.4576◦ = 0.3047rad
cos−1 0.65= 49.4584◦ = 0.8632rad

Hence sin−1 0.30+ cos−1 0.65
=0.3047+0.8632=1.168, correct to 3 decimal places.

Now try the following Practice Exercise

Practice Exercise 90 Inverse functions
(Answers on page 869)

Determine the inverse of the functions given in
Problems 1 to 4.

1. f (x)=x +1

2. f (x)=5x−1
3. f (x)=x3+1

4. f (x)= 1
x

+2
Determine the principal value of the inverse func-
tions in Problems 5 to 11.

5. sin−1(−1)
6. cos−1 0.5

7. tan−1 1

8. cot−1 2

9. cosec−1 2.5

10. sec−1 1.5

11. sin−1
(
1√
2

)

12. Evaluate x, correct to 3 decimal places:

x = sin−1 1
3

+ cos−1 4
5

− tan−1 8
9

13. Evaluate y, correct to 4 significant figures:

y = 3sec−1
√
2− 4cosec−1

√
2

+ 5cot−1 2

20.7 Asymptotes

If a table of values for the function y = x + 2
x + 1 is drawn

up for various values of x and then y plotted against x,
the graph would be as shown in Fig. 20.32. The straight
lines AB, i.e. x =−1, and CD, i.e. y =1, are known as
asymptotes.
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Figure 20.32

An asymptote to a curve is defined as a straight
line to which the curve approaches as the distance
from the origin increases. Alternatively, an asymp-
tote can be considered as a tangent to the curve at
infinity.

Asymptotes parallel to the x- and y-axes

There is a simple rule which enables asymptotes paral-
lel to the x- and y-axes to be determined. For a curve
y = f (x):

(i) The asymptotes parallel to the x-axis are found by
equating the coefficient of the highest power of x
to zero.

(ii) The asymptotes parallel to the y-axis are found by
equating the coefficient of the highest power of y
to zero.

With the above example y = x + 2
x + 1 , rearranging gives:

y(x + 1) = x + 2

i.e. yx + y − x − 2= 0 (1)

and x(y − 1) + y − 2= 0

The coefficient of the highest power of x (in this case x 1)
is (y −1). Equating to zero gives: y −1=0
From which, y=1, which is an asymptote of y = x + 2

x + 1
as shown in Fig. 20.32.

Returning to equation (1): yx + y − x − 2= 0

from which, y(x + 1) − x − 2= 0

The coefficient of the highest power of y (in this case y 1)
is (x+1). Equating to zero gives: x+1=0 fromwhich,
x=−1, which is another asymptote of y= x + 2

x + 1 as
shown in Fig. 20.32.

Problem 8. Determine the asymptotes for the

function y= x − 3
2x + 1 and hence sketch the curve.
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Rearranging y = x − 3
2x + 1 gives: y(2x+1)=x−3

i.e. 2xy + y = x − 3
or 2xy + y − x + 3= 0
and x(2y − 1) + y + 3= 0
Equating the coefficient of the highest power of x to
zero gives: 2y −1=0 from which, y= 1

2 which is an
asymptote.
Since y(2x+1)=x−3 then equating the coefficient of
the highest power of y to zero gives: 2x +1=0 from
which, x=− 1

2 which is also an asymptote.

When x=0, y = x − 3
2x + 1= −3

1
= −3 and when y =0,

0= x − 3
2x + 1 from which, x −3=0 and x =3.

A sketch of y = x − 3
2x + 1 is shown in Fig. 20.33.

Problem 9. Determine the asymptotes parallel to
the x- and y-axes for the function

x2y2=9(x2+y2)

Asymptotes parallel to the x-axis:

Rearranging x2y2=9(x2+y2) gives

x2y2− 9x2− 9y2 = 0
hence x2(y2− 9) − 9y2 = 0

Equating the coefficient of the highest power of x to zero
gives y2−9=0 from which, y 2=9 and y=±3
Asymptotes parallel to the y-axis:

Since x2y2− 9x2− 9y2 = 0
then y2(x2− 9) − 9x2 = 0

Equating the coefficient of the highest power of y to zero
gives x2−9=0 from which, x 2=9 and x=±3.
Hence asymptotes occur at y=±3 and x=±3

Other asymptotes

To determine asymptotes other than those parallel to
x- and y-axes a simple procedure is:

(i) substitute y =mx +c in the given equation

(ii) simplify the expression

(iii) equate the coefficients of the two highest powers
of x to zero and determine the values ofm and c.
y =mx +c gives the asymptote.

Problem 10. Determine the asymptotes for the
function: y(x+1)=(x−3)(x+2) and sketch the
curve.

Following the above procedure:

(i) Substituting y=mx +c into
y(x +1)=(x −3) (x +2) gives:

(mx + c)(x + 1) = (x − 3)(x + 2)

(ii) Simplifying gives

mx2+ mx + cx + c = x2− x − 6

and (m−1)x2+(m+c+1)x+c+6=0
(iii) Equating the coefficient of the highest power of

x to zero givesm−1=0 from which,m= 1
Equating the coefficient of the next highest power
of x to zero gives m+c+1=0
and sincem=1, 1+c+1=0 fromwhich, c=−2
Hence y =mx+c=1x−2.
i.e. y=x−2 is an asymptote.

To determine any asymptotes parallel to the x-axis:

Rearranging y(x + 1) = (x − 3)(x + 2)
gives yx + y = x2− x − 6

The coefficient of the highest power of x (i.e. x 2) is 1.
Equating this to zero gives 1=0which is not an equation
of a line. Hence there is no asymptote parallel to the
x-axis.
To determine any asymptotes parallel to the y-axis:
Since y(x+1)=(x −3)(x+2) the coefficient of
the highest power of y is x +1. Equating this to
zero gives x +1=0, fromwhich, x=−1. Hence x=−1
is an asymptote.
When x=0, y(1)=(−3)(2), i.e. y=−6
Wheny=0,0=(x −3)(x+2), i.e. x=3 and x=−2
A sketch of the function y(x+1)=(x −3)(x+2) is
shown in Fig. 20.34.

Problem 11. Determine the asymptotes for the
function x3−xy2+2x −9=0

Following the procedure:

(i) Substituting y=mx +c gives
x3−x(mx+c)2+2x −9=0
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(ii) Simplifying gives

x3− x[m2x2+ 2mcx + c2]+ 2x − 9=0
i.e. x3− m2x3− 2mcx2− c2x + 2x − 9=0
and x3(1− m2) − 2mcx2− c2x + 2x − 9=0

(iii) Equating the coefficient of the highest power of x
(i.e. x3 in this case) to zero gives 1−m2=0, from
which, m=±1
Equating the coefficient of the next highest power
of x (i.e. x2 in this case) to zero gives−2mc=0,
from which, c=0

Hence y=mx +c=±1x +0, i.e. y=x and y=−x
are asymptotes.
To determine any asymptotes parallel to the x- and
y-axes for the function x 3− xy2+2x −9=0:
Equating the coefficient of the highest power of x term
to zero gives 1=0 which is not an equation of a line.
Hence there is no asymptote parallel with the x-axis.

Equating the coefficient of the highest power of y term
to zero gives −x=0 from which, x=0
Hence x=0, y=x and y= − x are asymptotes for the
function x3−xy2+2x−9=0

Problem 12. Find the asymptotes for the function

y = x2+ 1
x

and sketch a graph of the function.

Rearranging y = x2+ 1
x

gives yx=x2+1
Equating the coefficient of the highest power x term to
zero gives 1=0, hence there is no asymptote parallel to
the x-axis.

Equating the coefficient of the highest power y term to
zero gives x=0
Hence there is an asymptote at x=0 (i.e. the
y-axis)

To determine any other asymptotes we substitute
y =mx +c into yx=x2+1 which gives

(mx + c)x = x2+ 1
i.e. mx2+ cx = x2+ 1
and (m − 1)x2+ cx − 1= 0

Equating the coefficient of the highest power x term to
zero gives m−1=0, from which m=1

Equating the coefficient of the next highest power x term
to zero gives c=0. Hence y =mx+c=1x+0, i.e. y=x
is an asymptote.

A sketch of y = x2+ 1
x

is shown in Fig. 20.35.
It is possible to determine maximum/minimum points
on the graph (see Chapter 30).

Since y = x2+ 1
x

= x2

x
+ 1

x
= x + x−1

then
dy
dx

= 1− x−2 = 1− 1
x2

= 0

for a turning point.

Hence 1= 1
x2
and x2=1, from which, x =±1

When x =1,

y = x2+ 1
x

= 1+ 1
1

= 2
and when x =−1,

y = (−1)2+ 1
−1 = −2

i.e. (1, 2) and (−1,−2) are the co-ordinates of the turning
points.

d2y
dx2

=2x−3= 2
x3
; when x =1, d

2y

dx2
is positive,

which indicates a minimum point and when x =−1,
d2y
dx2

is negative, which indicates a maximum point, as

shown in Fig. 20.35.

Now try the following Practice Exercise

Practice Exercise 91 Asymptotes (Answers
on page 869)

In Problems 1 to 3, determine the asymptotes
parallel to the x- and y-axes.

1. y = x − 2
x + 1

2. y2= x

x − 3

3. y = x(x + 3)
(x + 2)(x + 1)

In Problems 4 and 5, determine all the asymptotes.

4. 8x−10+x3−xy2=0
5. x2(y2−16)=y
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In Problems 6 and 7, determine the asymptotes and
sketch the curves.

6. y = x2− x − 4
x + 1

7. xy2−x2y +2x −y=5

20.8 Brief guide to curve sketching

The following steps will give information from which
the graphs of many types of functions y =f (x) can be
sketched.

(i) Use calculus to determine the location and
nature of maximum and minimum points (see
Chapter 30).

(ii) Determinewhere the curve cuts thex- andy-axes.

(iii) Inspect the equation for symmetry.
(a) If the equation is unchanged when −x is sub-

stituted for x, the graph will be symmetrical
about the y-axis (i.e. it is an even function).

(b) If the equation is unchanged when −y is sub-
stituted for y, the graph will be symmetrical
about the x-axis.

(c) If f (−x)=−f (x), the graph is symmetrical
about the origin (i.e. it is an odd function).

(iv) Check for any asymptotes.
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20.9 Worked problems on curve
sketching

Problem 13. Sketch the graphs of

(a) y=2x2+12x+20
(b) y =−3x2+12x−15

(a) y =2x2+12x+20 is a parabola since the equa-
tion is a quadratic. To determine the turning
point:

Gradient= dy
dx

=4x+12=0 for a turning point.

Hence 4x=−12 and x =−3

When x =−3, y=2(−3)2+12(−3)+20=2

Hence (−3, 2) are the co-ordinates of the turning
point
d2y
dx2

=4, which is positive, hence (−3, 2) is a
minimum point.

When x =0, y=20, hence the curve cuts the
y-axis at y=20
Thus knowing the curve passes through (−3, 2)
and (0, 20) and appreciating the general shape
of a parabola results in the sketch given in
Fig. 20.36.

(b) y =−3x2+12x−15 is also a parabola (but
‘upside down’ due to the minus sign in front of
the x2 term).

Gradient= dy
dx

=−6x+12=0 for a turning point.

Hence 6x=12 and x =2
When x =2, y =−3(2)2+12(2)−15=−3
Hence (2, −3) are the co-ordinates of the turning
point

d2y
dx2

=−6, which is negative, hence (2, −3) is a
maximum point.

When x=0, y=−15, hence the curve cuts the axis
at y =−15
The curve is shown sketched in Fig. 20.36.

y 5 2x 21 12x 1 20

y 5 23x 2112x 2 15

25
23

21 10 2 3222324

5

210

10

20

215

225

x

y

2

220

15

Figure 20.36

Problem 14. Sketch the curves depicting the
following equations:

(a) x=
√
9− y2 (b) y2=16x

(c) xy=5

(a) Squaring both sides of the equation and trans-
posing gives x2+y2=9. Comparing this with
the standard equation of a circle, centre ori-
gin and radius a, i.e. x2+y2=a2, shows that
x2+y2=9 represents a circle, centre origin and
radius 3. A sketch of this circle is shown in
Fig. 20.37(a).

(b) The equation y 2=16x is symmetrical about the
x-axis and having its vertex at the origin (0, 0).
Also, when x =1, y =±4. A sketch of this
parabola is shown in Fig. 20.37(b).

(c) The equation y = a

x
represents a rectangular

hyperbola lying entirely within the first and third

quadrants. Transposing xy=5 gives y = 5
x
, and

therefore represents the rectangular hyperbola
shown in Fig. 20.37(c).
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x

3

y

1

14

24

x

y

x

y

(a) x 5  (92y 2)!

(b) y 2516x

(c) xy 5 5

Figure 20.37

Problem 15. Sketch the curves depicting the
following equations:

(a) 4x2=36−9y2 (b) 3y2+15=5x2

(a) By dividing throughout by 36 and transposing,
the equation 4x2=36−9y2 can be written as
x2

9
+ y2

4
=1. The equation of an ellipse is of the

form
x2

a2
+ y2

b2
=1, where 2a and 2b represent the

length of the axes of the ellipse. Thus
x2

32
+ y2

22
=1

represents an ellipse, having its axes coinciding

with the x- and y-axes of a rectangular co-ordinate
system, the major axis being 2(3), i.e. 6 units long
and the minor axis 2(2), i.e. 4 units long, as shown
in Fig. 20.38(a).

4

6

x

y

x

y

(a) 4x 25 36 29y 2

(b) 3y 211555x 2

2 3Œ„

Figure 20.38

(b) Dividing 3y2+15=5x2 throughout by 15 and
transposing gives

x2

3
− y2

5
=1. The equation

x2

a2
− y2

b2
=1 represents a hyperbolawhich is sym-

metrical about both the x- and y-axes, the distance
between the vertices being given by 2a

Thus a sketch of
x2

3
− y2

5
=1 is as shown in

Fig. 20.38(b), having a distance of 2
√
3 between

its vertices.

Problem 16. Describe the shape of the curves
represented by the following equations:

(a) x=2
√[

1−
(y

2

)2]

(b)
y2

8
=2x

(c) y=6
(

1− x2

16

)1/2

(a) Squaring the equation gives x 2=4
[

1−
(y

2

)2]

and transposing gives x 2=4−y2, i.e.
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x2+ y2=4. Comparing this equation with
x2+ y2=a2 shows that x2+y2=4 is the equa-
tion of a circle having centre at the origin (0, 0)
and of radius 2 units.

(b) Transposing
y2

8
=2x gives y =4√x. Thus

y2

8
=2x is the equation of a parabola having its

axis of symmetry coinciding with the x-axis and
its vertex at the origin of a rectangular co-ordinate
system.

(c) y =6
(

1− x2

16

)1/2
can be transposed to

y

6
=

(

1− x2

16

)1/2
and squaring both sides gives

y2

36
= 1− x2

16
, i.e.

x2

16
+ y2

36
= 1

This is the equation of an ellipse, centre at the ori-
gin of a rectangular co-ordinate system, the major
axis coinciding with the y-axis and being 2

√
36,

i.e. 12 units long. The minor axis coincides with
the x-axis and is 2

√
16, i.e. 8 units long.

Problem 17. Describe the shape of the curves
represented by the following equations:

(a)
x

5
=

√[

1+
(y

2

)2]

(b)
y

4
= 15
2x

(a) Since
x

5
=

√[

1+
(y

2

)2]

x2

25
= 1+

(y

2

)2

i.e.
x2

25
− y2

4
= 1

This is a hyperbola which is symmetrical about
both the x- and y-axes, the vertices being 2

√
25,

i.e. 10 units apart.
(With reference to Section 20.1 (vii), a is equal
to ±5)

(b) The equation
y

4
= 15
2x

is of the form y = a

x
,

a = 60
2

= 30

This represents a rectangular hyperbola, sym-
metrical about both the x- and y-axes, and lying
entirely in the first and third quadrants, similar in
shape to the curves shown in Fig. 20.9.

Now try the following Practice Exercise

Practice Exercise 92 Curve sketching
(Answers on page 869)

1. Sketch the graphs of (a) y =3x 2+9x+ 7
4

(b) y=−5x2+20x +50

In Problems 2 to 8, sketch the curves depicting the
equations given.

2. x =4
√[

1−
(y

4

)2]

3.
√

x = y

9

4. y2 = x2− 16
4

5.
y2

5
= 5− x2

2

6. x = 3
√
1+ y2

7. x2y2=9
8. x = 1

3

√
(36− 18y2)

9. Sketch the circle given by the equation
x2+y2−4x +10y+25=0

In Problems 10 to 15 describe the shape of the
curves represented by the equations given.

10. y =
√
[3(1− x2)]

11. y =
√
[3(x2− 1)]

12. y =√
9− x2

13. y =7x−1

14. y =(3x)1/2

15. y2−8=−2x2

For fully worked solutions to each of the problems in Practice Exercises 88 to 92 in this chapter,
go to the website:

www.routledge.com/cw/bird
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Chapter 21

Irregular areas, volumes and
mean values of waveforms

Why it is important to understand: Irregular areas, volumes and mean values of waveforms
Surveyors, farmers and landscapers oftenneed todetermine the areaof irregularly shapedpieces of land to
workwith the land properly. There aremany applications in business, economics and the sciences, includ-
ing all aspects of engineering, where finding the areas of irregular shapes, the volumes of solids, and the
lengths of irregular shaped curves are important applications. Typical earthworks include roads, railway
beds, causeways, dams and canals. Other common earthworks are land grading to reconfigure the topog-
raphy of a site, or to stabilise slopes. Engineers need to concern themselveswith issues of geotechnical engi-
neering (such as soil density and strength) and with quantity estimation to ensure that soil volumes in the
cutsmatch those of thefills, whileminimizing the distance ofmovement. Simpson’s rule is a staple of scien-
tific data analysis and engineering; it is widely used, for example, by naval architects to numerically deter-
mine hull offsets and cross-sectional areas to determine volumes and centroids of ships or lifeboats. There
are therefore plenty of examples where irregular areas and volumes need to be determined by engineers.

At the end of this chapter, you should be able to:

• use the trapezoidal rule to determine irregular areas
• use the mid-ordinate rule to determine irregular areas
• use Simpson’s rule to determine irregular areas
• estimate the volume of irregular solids
• determine the mean values of waveforms

21.1 Areas of irregular figures

Areas of irregular plane surfaces may be approximately
determined by using (a) a planimeter, (b) the trapezoidal
rule, (c) the mid-ordinate rule, and (d) Simpson’s rule.
Such methods may be used, for example, by engineers
estimating areas of indicator diagrams of steam engines,
surveyors estimating areas of plots of land or naval
architects estimating areas of water planes or transverse
sections of ships.

(a) A planimeter is an instrument for directly mea-
suring small areas bounded by an irregular curve.

(b) Trapezoidal rule

To determine the areas PQRS in Fig. 21.1:

(i) Divide base PS into any number of equal
intervals, each of width d (the greater the
number of intervals, the greater the accu-
racy).

(ii) Accuratelymeasure ordinates y1, y2, y3, etc.

Higher Engineering Mathematics. 978-1-138-67357-1, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.
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Q R

SP
d d d

y1 y2 y3 y4 y5 y6 y7

d d d

Figure 21.1

(iii) Areas PQRS

= d

[
y1+ y7

2
+ y2+ y3+ y4+ y5+ y6

]

In general, the trapezoidal rule states:

Area =
(
width of
interval

)
⎡

⎣1
2

⎛

⎝
first+
last
ordinate

⎞

⎠+
sum of
remaining
ordinates

⎤

⎦

(c) Mid-ordinate rule

To determine the area ABCD of Fig. 21.2:

B C

DA
d d d

y1 y2 y3 y4 y5 y6

d d d

Figure 21.2

(i) Divide base AD into any number of equal
intervals, each of width d (the greater the
number of intervals, the greater the accuracy).

(ii) Erect ordinates in the middle of each interval
(shown by broken lines in Fig. 21.2).

(iii) Accurately measure ordinates y1, y2, y3, etc.

(iv) Area ABCD= d(y1+y2+y3+y4+y5+y6)

In general, the mid-ordinate rule states:

Area=
(
width of
interval

) (
sum of
mid-ordinates

)

(d) Simpson’s rule∗

To determine the area PQRS of Fig. 21.1:

(i) Divide basePS into an even number of inter-
vals, each of width d (the greater the number
of intervals, the greater the accuracy).

(ii) Accurately measure ordinates y1, y2, y3, etc.

(iii) Area PQRS= d

3
[(y1+ y7) + 4(y2+ y4+

y6) + 2(y3+ y5)]

In general, Simpson’s rule states:

Area= 1
3

(
width of
interval

)[(
first+ last
ordinate

)

+ 4
(
sum of even
ordinates

)

+ 2
(
sum of remaining
odd ordinates

)]

∗ Who was Simpson? Thomas Simpson FRS (20 August
1710–14 May 1761) was the British mathematician who
invented Simpson’s rule to approximate definite integrals. To
find out more go to www.routledge.com/cw/bird
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Problem 1. A car starts from rest and its speed is
measured every second for 6 s:

Time t (s) 0 1 2 3 4 5 6

Speed v (m/s) 0 2.5 5.5 8.75 12.5 17.5 24.0

Determine the distance travelled in 6 seconds (i.e.
the area under the v/t graph), by (a) the trapezoidal
rule, (b) the mid-ordinate rule, and (c) Simpson’s
rule.

A graph of speed/time is shown in Fig. 21.3.

30

25

Graph of speed/time

20

15

S
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 (

m
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)

10

5

0 1 2 3 4 5 6
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.0

5.
5

8.
75

10
.7

5

12
.5

17
.5

20
.2

5

24
.0

1.
25

2.
5

Figure 21.3

(a) Trapezoidal rule (see para. (b) on page 241)

The time base is divided into six strips each of
width 1 s, and the length of the ordinatesmeasured.
Thus

area= (1)
[(
0+ 24.0
2

)

+ 2.5+ 5.5

+8.75+ 12.5+ 17.5
]

= 58.75m

(b) Mid-ordinate rule (see para. (c) on page 242)

The time base is divided into six strips each of
width 1 s.

Mid-ordinates are erected as shown in Fig. 21.3 by
the broken lines. The length of each mid-ordinate
is measured. Thus

area= (1)[1.25+ 4.0+ 7.0+ 10.75
+ 15.0+ 20.25]

= 58.25m

(c) Simpson’s rule (see para. (d) on page 242)

The time base is divided into six strips each of
width 1 s, and the length of the ordinatesmeasured.
Thus

area= 1
3 (1)[(0+ 24.0) + 4(2.5+ 8.75

+ 17.5) + 2(5.5+ 12.5)]
= 58.33m

Problem 2. A river is 15m wide. Soundings of
the depth are made at equal intervals of 3m across
the river and are as shown below.

Depth (m) 0 2.2 3.3 4.5 4.2 2.4 0

Calculate the cross-sectional area of the flow of
water at this point using Simpson’s rule.

From para. (d) on page 242,

Area= 1
3 (3)[(0+ 0) + 4(2.2+ 4.5+ 2.4)

+ 2(3.3+ 4.2)]
= (1)[0+ 36.4+ 15]= 51.4m2

Now try the following Practice Exercise

Practice Exercise 93 Areas of irregular
figures (Answers on page 869)

1. Plot a graph of y = 3x − x 2 by completing
a table of values of y from x = 0 to x = 3.
Determine the area enclosed by the curve, the
x-axis and ordinate x = 0 and x = 3 by (a) the
trapezoidal rule, (b) the mid-ordinate rule and
(c) by Simpson’s rule.

2. Plot the graph of y = 2x 2+ 3 between x = 0
and x = 4. Estimate the area enclosed by the
curve, the ordinates x = 0 and x = 4, and the
x-axis by an approximate method.
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3. The velocity of a car at one second intervals is
given in the following table:

time t (s) 0 1 2 3 4 5 6

velocity
v (m/s)

0 2.0 4.5 8.0 14.0 21.0 29.0

Determine the distance travelled in six seconds
(i.e. the area under the v/t graph) using
Simpson’s rule.

4. The shape of a piece of land is shown in
Fig. 21.4. To estimate the area of the land,
a surveyor takes measurements at intervals
of 50m, perpendicular to the straight portion
with the results shown (the dimensions being
in metres). Estimate the area of the land in
hectares (1ha= 104m2).

50 50 50 50

140 160 200 190 180 130

50 50

Figure 21.4

5. The deck of a ship is 35m long. At equal
intervals of 5m the width is given by the
following table:

Width (m) 0 2.8 5.2 6.5 5.8 4.1 3.0 2.3

Estimate the area of the deck.

21.2 Volumes of irregular solids

If the cross-sectional areasA1,A2,A3, . . . of an irregular
solid boundedby two parallel planes are known at equal
intervals of width d (as shown in Fig. 21.5), then by
Simpson’s rule:

volume,V = d
3
[(A1+A7) + 4(A2 + A4

+ A6) + 2(A3 + A5)]

A1 A2 A3 A4 A5 A6 A7

dd d d d d d

Figure 21.5

Problem 3. A tree trunk is 12m in length and has
a varying cross-section. The cross-sectional areas at
intervals of 2m measured from one end are:

0.52, 0.55, 0.59, 0.63, 0.72, 0.84, 0.97m 2

Estimate the volume of the tree trunk.

A sketch of the tree trunk is similar to that shown
in Fig. 21.5 above, where d =2m, A1=0.52m2,
A2=0.55m2, and so on.
Using Simpson’s rule for volumes gives:

Volume= 2
3 [(0.52+ 0.97) + 4(0.55+ 0.63

+ 0.84) + 2(0.59+ 0.72)]
= 2
3 [1.49+ 8.08+ 2.62]= 8.13m3

Problem 4. The areas of seven horizontal
cross-sections of a water reservoir at intervals of
10m are:

210, 250, 320, 350, 290, 230, 170m2

Calculate the capacity of the reservoir in litres.

Using Simpson’s rule for volumes gives:

Volume= 10
3
[(210+ 170) + 4(250+ 350

+ 230) + 2(320+ 290)]

= 10
3
[380+ 3320+ 1220]

= 16 400m3

16 400m3 = 16 400× 106 cm3 and since
1litre= 1000cm3,
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capacity of reservoir= 16 400× 106
1000

litres

= 16400000
= 1.64× 107 litres

Now try the following Practice Exercise

Practice Exercise 94 Volumes of irregular
solids (Answers on page 869)

1. The areas of equidistantly spaced sections of
the underwater form of a small boat are as
follows:

1.76, 2.78, 3.10, 3.12, 2.61, 1.24, 0.85m 2

Determine the underwater volume if the
sections are 3m apart.

2. To estimate the amount of earth to be removed
when constructing a cutting, the cross-
sectional area at intervals of 8m were esti-
mated as follows:

0, 2.8, 3.7, 4.5, 4.1, 2.6, 0m3

Estimate the volume of earth to be excavated.

3. The circumference of a 12m long logof timber
of varying circular cross-section is measured
at intervals of 2m along its length and the
results are:

Distance from
one end (m)

Circumference
(m)

0 2.80

2 3.25

4 3.94

6 4.32

8 5.16

10 5.82

12 6.36

Estimate the volume of the timber in cubic
metres.

21.3 The mean or average value of a
waveform

The mean or average value, y, of the waveform shown
in Fig. 21.6 is given by:

y= area under curve
length of base, b

d d

b

y1
y2 y3 y4 y5 y6 y7

y

dd d dd

Figure 21.6

If the mid-ordinate rule is used to find the area under the
curve, then:

y= sum of mid-ordinates
number of mid-ordinates
(

= y1+ y2+ y3+ y4+ y5+ y6+ y7

7

for Fig. 21.6
)

For a sine wave, the mean or average value:

(i) over one complete cycle is zero (see Fig. 21.7(a)),

(ii) over half a cycle is 0.637×maximum value, or
(2/π)×maximum value,

(iii) of a full-wave rectified waveform (see Fig.
21.7(b)) is 0.637×maximum value,

(iv) of a half-wave rectified waveform (see
Fig. 21.7(c)) is 0.318×maximum value, or
(1/π)maximum value.

Problem 5. Determine the average values over
half a cycle of the periodic waveforms shown in
Fig. 21.8.
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Figure 21.8

(a) Area under triangular waveform (a) for a half-
cycle is given by:

Area= 1
2 (base) (perpendicular height)

= 1
2 (2× 10−3)(20)

= 20× 10−3Vs

Average value of waveform

= area under curve
length of base

= 20× 10−3Vs
2× 10−3 s

= 10V
(b) Area under waveform (b) for a half-cycle =

(1× 1) + (3× 2) = 7As.
Average value of waveform

= area under curve
length of base

= 7As
3s

= 2.33A
(c) A half-cycle of the voltage waveform (c) is com-

pleted in 4ms.

Area under curve= 1
2 {(3− 1)10−3}(10)

= 10× 10−3Vs

Average value of waveform

= area under curve
length of base

= 10× 10−3Vs
4× 10−3 s

= 2.5V

Problem 6. Determine the mean value of current
over one complete cycle of the periodic waveforms
shown in Fig. 21.9.
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Figure 21.9

(a) One cycle of the trapezoidal waveform (a) is
completed in 10ms (i.e. the periodic time is
10ms).

Area under curve=area of trapezium
= 1
2 (sum of parallel sides) (perpendicular

distance between parallel sides)

= 1
2 {(4+ 8) × 10−3}(5× 10−3)

= 30× 10−6As

Mean value over one cycle

= area under curve
length of base

= 30× 10−6As
10× 10−3 s

= 3mA
(b) One cycle of the sawtooth waveform (b) is com-

pleted in 5ms.

Area under curve= 1
2 (3× 10−3)(2)

= 3× 10−3As

Mean value over one cycle

= area under curve
length of base

= 3× 10−3As
5× 10−3 s

= 0.6A

Problem 7. The power used in a manufacturing
process during a sixhour period is recorded at
intervals of onehour as shown below.

Time (h) 0 1 2 3 4 5 6

Power (kW) 0 14 29 51 45 23 0

Plot a graph of power against time and, by using the
mid-ordinate rule, determine (a) the area under the
curve and (b) the average value of the power.

The graph of power/time is shown in Fig. 21.10.

50
Graph of power/time

40

30

P
ow

er
 (

kW
)

20
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0 1 2 3 4 5 6

Time (hours)

7.0 21.5 42.0 49.5 37.0 10.0

Figure 21.10

(a) The time base is divided into six equal inter-
vals, each of width one hour. Mid-ordinates are
erected (shown by broken lines in Fig. 21.10) and
measured. The values are shown in Fig. 21.10.

Area under curve= (width of interval)
× (sum of mid-ordinates)

= (1)[7.0+ 21.5+ 42.0
+49.5+ 37.0+ 10.0]

=167kWh(i.e. a measure
of electrical energy)

(b) Average value of waveform

= area under curve
length of base

= 167kWh
6h

= 27.83kW
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Alternatively, average value

= sum of mid-ordinates
number of mid-ordinates

Problem 8. Fig. 21.11 shows a sinusoidal output
voltage of a full-wave rectifier. Determine, using
the mid-ordinate rule with six intervals, the mean
output voltage.

10
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2
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Figure 21.11

Onecycle of the output voltage is completed inπ radians
or 180◦. The base is divided into six intervals, each of
width 30◦. The mid-ordinate of each interval will lie at
15◦, 45◦, 75◦, etc.
At 15◦ the height of the mid-ordinate is
10sin15◦ =2.588V.
At 45◦ the height of the mid-ordinate is
10sin45◦ =7.071V, and so on.
The results are tabulated below:

Mid-ordinate Height of mid-ordinate

15◦ 10sin15◦ =2.588V
45◦ 10sin45◦ =7.071V
75◦ 10sin75◦ =9.659V
105◦ 10sin105◦ =9.659V
135◦ 10sin135◦ =7.071V
165◦ 10sin165◦ =2.588V

Sum of mid-ordinates=38.636V

Mean or average value of output voltage

= sum of mid-ordinates
number of mid-ordinates

= 38.636
6

= 6.439V

(With a larger number of intervals a more accurate
answer may be obtained.) For a sine wave the actual
mean value is 0.637×maximum value, which in this
problem gives 6.37V.

Problem 9. An indicator diagram for a steam
engine is shown in Fig. 21.12. The base line has
been divided into six equally spaced intervals and
the lengths of the seven ordinates measured with the
results shown in centimetres. Determine (a) the area
of the indicator diagram using Simpson’s rule, and
(b) the mean pressure in the cylinder given that 1cm
represents 100kPa.

12.0 cm

3.6 4.0 3.5 2.9 2.2 1.7 1.6

Figure 21.12

(a) The width of each interval is
12.0
6
cm. Using

Simpson’s rule,

area= 1
3 (2.0)[(3.6+ 1.6) + 4(4.0

+ 2.9+ 1.7) + 2(3.5+ 2.2)]

= 2
3 [5.2+ 34.4+ 11.4]

= 34cm2

(b) Mean height of ordinates

= area of diagram
length of base

= 34
12

= 2.83cm
Since 1cm represents 100kPa, the mean pressure
in the cylinder

=2.83cm× 100kPa/cm= 283kPa

Now try the following Practice Exercise

Practice Exercise 95 Mean or average
values of waveforms (Answers on page 869)

1. Determine the mean value of the periodic
waveforms shown in Fig. 21.13 over a half-
cycle.
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2. Find the average value of the periodic wave-
forms shown in Fig. 21.14 over one complete
cycle.
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Figure 21.14

3. An alternating current has the followingvalues
at equal intervals of 5ms

Time (ms) 0 5 10 15 20 25 30

Current (A) 0 0.9 2.6 4.9 5.8 3.5 0

Plot a graph of current against time and esti-
mate the area under the curve over the 30ms
period using the mid-ordinate rule and deter-
mine its mean value.

4. Determine, using an approximate method, the
average value of a sine wave of maximum
value 50V for (a) a half-cycle and (b) a
complete cycle.

5. An indicator diagram of a steam engine is
12cm long. Seven evenly spaced ordinates,
including the end ordinates, are measured as
follows:

5.90, 5.52, 4.22, 3.63, 3.32, 3.24, 3.16cm

Determine the area of the diagram and the
mean pressure in the cylinder if 1 cm repre-
sents 90kPa.

For fully worked solutions to each of the problems in Practice Exercises 93 to 95 in this chapter,
go to the website:

www.routledge.com/cw/bird
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Revision Test 6 Functions and their curves and irregular areas and volumes

This Revision Test covers the material contained in Chapters 20 and 21. The marks for each question are shown in
brackets at the end of each question.

1. Sketch the following graphs, showing the relevant
points:

(a) y =(x−2)2 (c) x2+y2−2x+4y −4=0

(b) y =3−cos2x (d) 9x 2−4y2=36

(e) f (x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−1 −π ≤x ≤ − π

2

x −π

2
≤x ≤ π

2

1
π

2
≤x ≤π

(15)

2. Determine the inverse of f (x)=3x +1 (3)

3. Evaluate, correct to 3 decimal places:
2 tan−1 1.64+ sec−1 2.43− 3cosec−1 3.85 (4)

4. Determine the asymptotes for the following
function and hence sketch the curve:

y = (x − 1)(x + 4)
(x − 2)(x − 5) (9)

5. Plot a graph of y =3x 2+5 from x =1 to x =4.
Estimate, correct to 2 decimal places, using
six intervals, the area enclosed by the curve, the

ordinates x =1 and x =4, and the x-axis by (a) the
trapezoidal rule, (b) the mid-ordinate rule, and
(c) Simpson’s rule. (16)

6. A circular cooling tower is 20m high. The inside
diameter of the tower at different heights is given
in the following table:

Height (m) 0 5.0 10.0 15.0 20.0

Diameter (m) 16.0 13.3 10.7 8.6 8.0

Determine the area corresponding to each diameter
andhence estimate the capacity of the tower in cubic
metres. (7)

7. A vehicle starts from rest and its velocity is
measured every second for 6 seconds, with the
following results:

Time t (s) 0 1 2 3 4 5 6

Velocity 0 1.2 2.4 3.7 5.2 6.0 9.2
v (m/s)

Using Simpson’s rule, calculate (a) the distance
travelled in 6s (i.e. the area under the v/t graph)
and (b) the average speed over this period. (6)

For lecturers/instructors/teachers, fully worked solutions to each of the problems in Revision Test 6,
together with a full marking scheme, are available at the website:

www.routledge.com/cw/bird
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Chapter 22

Complex numbers

Why it is important to understand: Complex numbers
Complex numbers are used in many scientific fields, including engineering, electromagnetism, quantum
physics, and appliedmathematics, such as chaos theory.Any physicalmotionwhich is periodic, such as an
oscillating beam, string, wire, pendulum, electronic signal, or electromagnetic wave can be represented
by a complex number function. This can make calculations with the various components simpler than
with real numbers and sines and cosines. In control theory, systems are often transformed from the time
domain to the frequency domain using the Laplace transform. In fluid dynamics, complex functions are
used to describe potential flow in two dimensions. In electrical engineering, the Fourier transform is
used to analyse varying voltages and currents. Complex numbers are used in signal analysis and other
fields for a convenient description for periodically varying signals. This use is also extended into digital
signal processing and digital image processing, which utilise digital versions of Fourier analysis (and
wavelet analysis) to transmit, compress, restore, and otherwise process digital audio signals, still images,
and video signals. Knowledge of complex numbers is clearly absolutely essential for further studies in so
many engineering disciplines.

At the end of this chapter, you should be able to:

• define a complex number
• solve quadratic equations with imaginary roots
• use an Argand diagram to represent a complex number pictorially
• add, subtract, multiply and divide Cartesian complex numbers
• solve complex equations
• convert a Cartesian complex number into polar form, and vice-versa
• multiply and divide polar form complex numbers
• apply complex numbers to practical applications

Higher Engineering Mathematics. 978-1-138-67357-1, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.
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22.1 Cartesian complex numbers

There are several applications of complex numbers
in science and engineering, in particular in electrical
alternating current theory and in mechanical vector
analysis.
There are two main forms of complex number –

Cartesian form (named after Descartes∗) and polar
form – and both are explained in this chapter.
If we can add, subtract, multiply and divide complex

numbers in both forms and represent the numbers on
an Argand diagram then a.c. theory and vector analysis
become considerably easier.

(i) If the quadratic equation x 2+ 2x + 5= 0 is
solved using the quadratic formula then,

x = −2±
√
[(2)2− (4)(1)(5)]
2(1)

= −2± √
[−16]
2

= −2± √
[(16)(−1)]
2

= −2± √
16

√−1
2

= −2± 4√−1
2

= −1± 2√−1
It is not possible to evaluate

√−1 in real
terms. However, if an operator j is defined as
j =√−1 then the solution may be expressed as
x =−1± j2.

(ii) −1+ j2 and −1− j2 are known as com-
plex numbers. Both solutions are of the form
a+ jb, ‘a’ being termed the real part and jb
the imaginary part. A complex number of
the form a+ jb is called Cartesian complex
number.

(iii) In pure mathematics the symbol i is used to
indicate

√−1 (i being the first letter of the word
imaginary). However i is the symbol of electric
current in engineering, and to avoid possible con-
fusion the next letter in the alphabet, j , is used to
represent

√−1

∗ Who was Descartes? For image and resume of Descartes, see
page 144. To find out more go to www.routledge.com/cw/bird

Problem 1. Solve the quadratic equation
x2+ 4= 0

Since x2+4=0 then x2=−4 and x =√−4
i.e., x =

√
[(−1)(4)]=

√
(−1)

√
4= j (±2)

= ± j2, (since j = √−1)
(Note that ±j2 may also be written ±2 j)

Problem 2. Solve the quadratic equation
2x2+ 3x + 5= 0

Using the quadratic formula,

x = −3±
√
[(3)2− 4(2)(5)]
2(2)

= −3± √−31
4

= −3± √
(−1)√31
4

= −3± j
√
31

4

Hence x=−3
4

± j
√
31
4
or −0.750± j1.392,

correct to 3 decimal places.

(Note, a graph of y = 2x 2+ 3x + 5 does not cross
the x-axis and hence 2x 2+ 3x + 5= 0 has no real
roots.)

Problem 3. Evaluate

(a) j 3 (b) j 4 (c) j 23 (d)
−4
j 9

(a) j 3= j2× j =(−1)× j =− j, since j 2=−1
(b) j 4= j2× j2=(−1)×(−1)=1
(c) j 23= j × j22= j ×( j2)11= j × (−1)11

= j × (−1)=− j
(d) j 9= j × j8= j × (j2)4= j ×(−1)4

= j ×1= j

Hence
−4
j9

= −4
j

= −4
j

× −j

−j
= 4j

−j2

= 4j
−(−1) = 4 j or j4
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Now try the following Practice Exercise

Practice Exercise 96 Introduction to
Cartesian complex numbers (Answers on
page 869)

In Problems 1 to 9, solve the quadratic equations.

1. x2+25=0
2. x2−2x+2=0
3. x2−4x+5=0
4. x2−6x+10=0
5. 2x2−2x+1=0
6. x2−4x+8=0
7. 25x2−10x+2=0
8. 2x2+3x+4=0
9. 4t2−5t +7=0
10. Evaluate (a) j 8 (b)− 1

j7
(c)

4
2j 13

22.2 The Argand diagram

A complex number may be represented pictorially on
rectangular or Cartesian axes. The horizontal (or x) axis
is used to represent the real axis and the vertical (or y)

22122
2j

j

2j2

j2

2j3

j3

2j4

3 Real axis

Imaginary
axis

A

B

D

C

0 123

2j5

j4

Figure 22.1

axis is used to represent the imaginary axis. Such a dia-
gram is called an Argand diagram∗. In Fig. 22.1,
the point A represents the complex number (3+ j2)
and is obtained by plotting the co-ordinates (3, j2) as
in graphical work. Fig. 22.1 also shows the Argand
points B,C and D representing the complex numbers
(−2+ j4), (−3− j5) and (1− j3) respectively.

22.3 Addition and subtraction of
complex numbers

Two complex numbers are added/subtracted by adding/
subtracting separately the two real parts and the two
imaginary parts.

For example, if Z1=a+ jb and Z2=c+ jd,
then Z1+Z2=(a+ jb)+(c+ jd)

=(a+c)+ j (b+d)

and Z1− Z2=(a+ jb) − (c+ jd)

=(a−c)+ j (b−d)

Thus, for example,

(2+ j3)+(3− j4)=2+ j3+3− j4

=5− j1

∗ Who was Argand? Jean-Robert Argand (18 July 1768–
13 August 1822) was a highly influential mathematician. He
privately published a landmark essay on the representation
of imaginary quantities which became known as the Argand
diagram. To find out more go to www.routledge.com/cw/bird
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and (2+ j3)−(3− j4)=2+ j3−3+ j4

=−1+ j7

The addition and subtraction of complex numbers may
be achieved graphically as shown in theArgand diagram
of Fig. 22.2. (2+ j3) is represented by vector OP and
(3− j4)byvectorOQ. In Fig. 22.2(a) byvectoraddition
(i.e. the diagonal of the parallelogram)OP+OQ=OR.
R is the point (5,−j1)

Hence (2+ j3)+(3− j4)=5− j1

2
2j

j

2j2

j2

2j3

j3

2j4

3 4 5 Real axis
R (5 2j )

Q (3 2j4)

P (21j3)

Imaginary
axis

0 1

(a)

(b)

22122
2j

j

2j2

j2

2j3

j3

2j4

3 Real axis

Q (32j4)

P (21j3)

S (211j7)

Imaginary
axis

Q9

0 123

j4

j5

j7

j6

Figure 22.2

In Fig. 22.2(b), vector OQ is reversed (shown as OQ ′)
since it is being subtracted. (Note OQ=3−j4 and
OQ′ =−(3−j4)=−3+j4)
OP−OQ=OP +OQ′ =OS is found to be the Argand
point (−1,j7)
Hence (2+ j3)−(3− j4)=−1+ j7

Problem 4. Given Z1=2+ j4 and Z2=3− j

determine (a) Z1+Z2, (b) Z1−Z2, (c) Z2−Z1 and
show the results on an Argand diagram.

(a) Z1+Z2=(2+ j4)+(3− j)

=(2+3)+j (4−1)=5+ j3
(b) Z1−Z2=(2+ j4)−(3− j)

=(2−3)+j (4−(−1))=−1+ j5
(c) Z2−Z1=(3− j)−(2+j4)

=(3−2) + j (−1−4)=1− j5

Each result is shown in the Argand diagram of
Fig. 22.3.

221
2j

j

2j2

j2

2j3

j3

2j4

2j5

3 Real axis

(12 j5)

(51 j3)

(211 j5)

Imaginary
axis

0 1 4 5

j4

j5

Figure 22.3

22.4 Multiplication and division of
complex numbers

(i) Multiplication of complex numbers is achieved
by assuming all quantities involved are real and
then using j 2=−1 to simplify.
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Hence (a+ jb)(c+ jd)

=ac+a(jd)+(jb)c+(jb)(jd)

=ac+ jad + jbc+ j2bd

=(ac−bd)+ j (ad +bc),

since j 2=−1
Thus (3+ j2)(4− j5)

=12− j15+ j8− j 210

=(12−(−10))+ j (−15+8)
=22− j7

(ii) The complex conjugate of a complex num-
ber is obtained by changing the sign of the
imaginary part. Hence the complex conjugate
of a+ jb is a− jb. The product of a complex
number and its complex conjugate is always a
real number.

For example,

(3+ j4)(3− j4)=9− j12+ j12− j 216

=9+ 16= 25
[(a+ jb)(a− jb)may be evaluated ‘on sight’ as
a2+b2]

(iii) Division of complex numbers is achieved by
multiplying both numerator and denominator by
the complex conjugate of the denominator.

For example,
2− j5
3+ j4

= 2− j5
3+ j4

× (3− j4)
(3− j4)

= 6− j8− j15+ j 220
32+ 42

= −14− j23
25

= −14
25

− j 23
25

or −0.56− j0.92

Problem 5. If Z1=1− j3,Z2=−2+ j5 and
Z3=−3− j4, determine in a+ jb form:

(a) Z1Z2 (b)
Z1

Z3

(c)
Z1Z2

Z1+ Z2
(d) Z1Z2Z3

(a) Z1Z2=(1− j3)(−2+ j5)

=−2+ j5+ j6− j 215

=(−2+ 15) + j (5+ 6),since j 2 = −1,
=13+ j11

(b)
Z1

Z3
= 1− j3

−3− j4
= 1− j3

−3− j4
× −3+ j4

−3+ j4

= −3+ j4+ j9− j 212
32+ 42

= 9+ j13
25

= 9
25

+ j
13
25

or 0.36+ j0.52

(c)
Z1Z2

Z1+ Z2
= (1− j3)(−2+ j5)

(1− j3) + (−2+ j5)

= 13+ j11
−1+ j2

, from part (a),

= 13+ j11
−1+ j2

× −1− j2
−1− j2

= −13− j26− j11− j 222
12+ 22

= 9− j37
5

= 9
5

− j37
5
or 1.8− j7.4

(d) Z1Z2Z3=(13+ j11)(−3− j4), since

Z1Z2 =13+ j11, from part (a)

=−39− j52− j33− j 244

=(−39+ 44) − j (52+ 33)
=5− j85

Problem 6. Evaluate:

(a)
2

(1+ j)4
(b) j

(
1+ j3
1− j2

)2

(a) (1+ j)2=(1+ j)(1+ j)=1+ j + j + j 2

=1+ j + j −1= j2

(1+ j)4 = [(1+ j)2]2=(j2)2= j24=−4

Hence
2

(1+ j)4
= 2

−4 = −1
2
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(b)
1+ j3
1− j2

= 1+ j3
1− j2

× 1+ j2
1+ j2

= 1+ j2+ j3+ j 26
12+ 22 = −5+ j5

5
= −1+ j1= −1+ j

(
1+ j3
1− j2

)2
= (−1+ j)2=(−1+ j)(−1+ j)

= 1− j − j + j 2=−j2

Hence j

(
1+ j3
1− j2

)2
= j (−j2)=−j 22=2,

since j 2=−1

Now try the following Practice Exercise

Practice Exercise 97 Operations involving
Cartesian complex numbers (Answers on
page 869)

1. Evaluate (a) (3+ j2)+(5− j) and
(b) (−2+ j6)−(3− j2) and show the
results on an Argand diagram.

2. Write down the complex conjugates of
(a) 3+ j4, (b) 2− j

3. If z = 2+ j and w = 3− j evaluate
(a) z + w (b) w − z (c) 3z − 2w
(d) 5z + 2w (e) j (2w − 3z) (f ) 2jw − jz

In Problems 4 to 8 evaluate in a+ jb form
given Z1=1+ j2, Z2=4− j3, Z3=−2+ j3
and Z4=−5− j .

4. (a) Z1+Z2−Z3 (b) Z2−Z1+Z4

5. (a) Z1Z2 (b) Z3Z4

6. (a) Z1Z3+Z4 (b) Z1Z2Z3

7. (a)
Z1

Z2
(b)

Z1+Z3

Z2−Z4

8. (a)
Z1Z3

Z1+Z3
(b) Z2+ Z1

Z4
+Z3

9. Evaluate (a)
1− j

1+ j
(b)

1
1+ j

10. Show that
−25
2

(
1+ j2
3+ j4

− 2− j5
−j

)

= 57+ j24

22.5 Complex equations

If two complex numbers are equal, then their real parts
are equal and their imaginary parts are equal. Hence if
a+ jb=c+ jd , then a=c and b=d

Problem 7. Solve the complex equations:
(a) 2(x + jy)=6− j3

(b) (1+ j2)(−2− j3)=a+ jb

(a) 2(x + jy)=6− j3 hence 2x+ j2y=6− j3

Equating the real parts gives:

2x = 6, i.e. x= 3
Equating the imaginary parts gives:

2y = −3, i.e. y= − 3
2

(b) (1+ j2)(−2− j3)=a+ jb

−2− j3− j4− j 26=a+ jb

Hence 4− j7=a+ jb

Equating real and imaginary terms gives:

a= 4 and b= −7

Problem 8. Solve the equations:

(a) (2− j3)=√
(a+ jb)

(b) (x − j2y)+(y− j3x)=2+ j3

(a) (2− j3)=√
(a+jb)

Hence (2− j3)2=a + jb,

i.e. (2− j3)(2− j3)=a + jb

Hence 4− j6− j6+ j 29=a + jb

and −5− j12=a + jb

Thus a= −5 and b=−12
(b) (x− j2y)+(y − j3x)=2+ j3

Hence (x +y)+ j (−2y −3x)=2+ j3

Equating real and imaginary parts gives:

x + y = 2 (1)

and −3x − 2y = 3 (2)

i.e. two simultaneous equations to solve.
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Multiplying equation (1) by 2 gives:
2x + 2y = 4 (3)

Adding equations (2) and (3) gives:
−x = 7, i.e., x= −7

From equation (1), y= 9, which may be checked
in equation (2).

Now try the following Practice Exercise

Practice Exercise 98 Complex equations
(Answers on page 871)

In Problems 1 to 4 solve the complex equations.

1. (2+ j)(3− j2)=a+ jb

2.
2+ j

1− j
= j (x+ jy)

3. (2− j3)=√
(a+ jb)

4. (x − j2y)−(y − jx)=2+ j

5. If Z = R + jωL+ 1/jωC, express Z in
(a+ jb) form when R=10, L=5, C =0.04
and ω=4

22.6 The polar form of a complex
number

(i) Let a complex number z be x+ jy as shown in
the Argand diagram of Fig. 22.4. Let distance
OZ be r and the angleOZmakeswith the positive
real axis be θ

From trigonometry, x = r cos θ and

y = r sin θ

Hence Z = x + jy = r cos θ + jr sinθ

= r(cosθ + j sin θ)

Z=r(cos θ + j sinθ ) is usually abbreviated to
Z=r∠θ which is known as the polar form of
a complex number.

(ii) r is called themodulus (or magnitude) of Z and
is written as mod Z or |Z|
r is determined using Pythagoras’ theorem on
triangle OAZ in Fig. 22.4,

Real axis

Imaginary
axis

Z

Ax

r

O
�

jy

Figure 22.4

i.e. r =√
(x2+y2)

(iii) θ is called the argument (or amplitude) ofZ and
is written as arg Z

By trigonometry on triangle OAZ ,

arg Z= θ = tan−1 y
x

(iv) Whenever changing fromCartesian form to polar
form, or vice-versa, a sketch is invaluable for
determining the quadrant in which the complex
number occurs.

Problem 9. Determine the modulus and argument
of the complex number Z=2+ j3, and express Z

in polar form.

Z=2+ j3 lies in the first quadrant as shown in
Fig. 22.5.

Real axis2

Imaginary
axis

r

0
�

j3

Figure 22.5

Modulus, |Z|= r =
√

(22+32)=√
13or 3.606, correct

to 3 decimal places.

Argument,argZ = θ = tan−1 3
2

= 56.31◦ or 56◦19′

In polar form, 2+ j3 is written as 3.606∠56.31◦
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Problem 10. Express the following complex
numbers in polar form:

(a) 3+ j4 (b)−3+ j4

(c) −3− j4 (d) 3− j4

(a) 3+ j4 is shown in Fig. 22.6 and lies in the first
quadrant.

22122
2j

j

2j2

j2

2j3

j3

2j4

Real axis

Imaginary
axis

��

��

rr

r r

123

j4

(23 2 j4)

(23 1 j4) (3 1 j4)

(3 2 j4)

3

Figure 22.6

Modulus, r =
√

(32+ 42) = 5 and argument
θ = tan−1 4

3 = 53.13◦

Hence 3+ j4= 5∠53.13◦

(b) −3+ j4 is shown in Fig. 22.6 and lies in the
second quadrant.

Modulus, r =5 and angle α=53.13◦, from
part (a).

Argument=180◦ −53.13◦=126.87◦ (i.e. the
argumentmust be measured from the positive real
axis).

Hence −3+ j4= 5∠126.87◦

(c) −3− j4 is shown in Fig. 22.6 and lies in the third
quadrant.

Modulus, r =5 and α=53.13◦, as above.

Hence the argument=180◦+53.13◦=233.13◦,
which is the same as −126.87◦

Hence (−3− j4)=5∠233.13◦ or 5∠−126.87◦

(By convention the principal value is normally
used, i.e. the numerically least value, such that
−π <θ <π)

(d) 3− j4 is shown in Fig. 22.6 and lies in the fourth
quadrant.

Modulus, r =5 and angle α=53.13◦, as above.

Hence (3− j4)=5∠−53.13◦

Problem 11. Convert (a) 4∠30◦ (b) 7∠−145◦
into a + jb form, correct to 4 significant figures.

(a) 4∠30◦ is shown in Fig. 22.7(a) and lies in the first
quadrant.

(a)

(b)

Real axis

4

0
308

Imaginary
axis

x

jy

� Real axis
1458

7

x

jy

Figure 22.7

Using trigonometric ratios, x=4cos30◦ =3.464
and y =4sin30◦ =2.000
Hence 4∠30◦ =3.464+ j2.000

(b) 7∠145◦ is shown in Fig. 22.7(b) and lies in the
third quadrant.

Angle α=180◦ −145◦=35◦

Hence x =7cos35◦ = 5.734
and y =7sin35◦ = 4.015

Hence 7∠−145◦ =−5.734− j4.015
Alternatively

7∠−145◦=7cos(−145◦) + j7sin(−145◦)

=−5.734− j4.015
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Calculator

Using the ‘Pol’ and ‘Rec’ functions on a calculator
enables changing fromCartesian to polar and vice-versa
to be achieved more quickly.
Since complex numbers are used with vectors and
with electrical engineering a.c. theory, it is essen-
tial that the calculator can be used quickly and
accurately.

22.7 Multiplication and division in
polar form

If Z1=r1∠θ1 and Z2=r2∠θ2 then:

(i) Z1Z2=r1r2∠(θ1+θ2) and

(ii)
Z1
Z2

= r1
r2
∠(θ1−θ2)

Problem 12. Determine, in polar form:

(a) 8∠25◦×4∠60◦

(b) 3∠16◦×5∠−44◦ ×2∠80◦

(a) 8∠25◦×4∠60◦ = (8×4)∠(25◦+60◦) = 32∠85◦

(b) 3∠16◦ × 5∠−44◦ × 2∠80◦

= (3×5×2)∠[16◦+(−44◦)+80◦]= 30∠52◦

Problem 13. Evaluate in polar form

(a)
16∠75◦

2∠15◦ (b)
10∠π

4
× 12∠π

2
6∠−π

3

(a)
16∠75◦

2∠15◦ = 16
2
∠(75◦−15◦)=8∠60◦

(b)
10∠π

4
× 12∠π

2
6∠−π

3

= 10×12
6

∠
(π

4
+ π

2
−

(
−π

3

))

=20∠13π
12

or 20∠−11π
12

or

20∠195◦ or 20∠−165◦

Problem 14. Evaluate, in polar form
2∠30◦ +5∠−45◦ −4∠120◦

Addition and subtraction in polar form is not possible
directly. Each complex number has to be converted into
Cartesian form first.

2∠30◦ =2(cos30◦ + j sin30◦)

=2cos30◦ + j2sin30◦ =1.732+ j1.000

5∠−45◦ =5(cos(−45◦)+ j sin(−45◦))

=5cos(−45◦)+ j5sin(−45◦)

=3.536− j3.536

4∠120◦ =4(cos120◦ + j sin120◦)

=4cos120◦ + j4sin120◦

=−2.000+ j3.464

Hence 2∠30◦ +5∠−45◦ −4∠120◦

=(1.732+ j1.000)+(3.536− j3.536)

−(−2.000+ j3.464)

=7.268− j6.000, which lies in the fourth quadrant

=
√
[(7.268)2+(6.000)2]∠ tan−1

(−6.000
7.268

)

=9.425∠−39.54◦

Now try the following Practice Exercise

Practice Exercise 99 Polar form (Answers
on page 871)

1. Determine the modulus and argument of
(a) 2+ j4 (b) −5− j2 (c) j (2− j)

In Problems 2 and 3 express the given Cartesian
complex numbers in polar form, leaving answers
in surd form.

2. (a) 2+ j3 (b)−4 (c) −6+ j

3. (a) −j3 (b) (−2+ j)3 (c) j 3(1− j)

In Problems 4 and 5 convert the given polar com-
plex numbers into (a+ jb) form giving answers
correct to 4 significant figures.

4. (a) 5∠30◦ (b) 3∠60◦ (c) 7∠45◦

5. (a) 6∠125◦ (b) 4∠π (c) 3.5∠−120◦

In Problems 6 to 8, evaluate in polar form.
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6. (a) 3∠20◦ ×15∠45◦

(b) 2.4∠65◦ ×4.4∠−21◦
7. (a) 6.4∠27◦÷2∠−15◦

(b) 5∠30◦ ×4∠80◦ ÷10∠−40◦

8. (a) 4∠π

6
+3∠π

8
(b) 2∠120◦ +5.2∠58◦−1.6∠−40◦

22.8 Applications of complex
numbers

There are several applications of complex numbers
in science and engineering, in particular in electrical
alternating current theory and in mechanical vector
analysis.
The effect of multiplying a phasor by j is to rotate
it in a positive direction (i.e. anticlockwise) on an
Argand diagram through 90◦ without altering its length.
Similarly, multiplying a phasor by −j rotates the pha-
sor through −90◦. These facts are used in a.c. the-
ory since certain quantities in the phasor diagrams
lie at 90◦ to each other. For example, in the R−L

series circuit shown in Fig. 22.8(a), VL leads I by
90◦ (i.e. I lags VL by 90◦) and may be written as
jVL, the vertical axis being regarded as the imagi-
nary axis of an Argand diagram. Thus VR + jVL =V

and since VR =IR, V =IXL (where XL is the induc-
tive reactance, 2πfLohms) and V =IZ (where Z is
the impedance) then R+ jXL =Z

Phasor diagram Phasor diagram

VR VL

R

V

I

L

(a)

VR

V

I

VL

�

VR VC

R

V

I

C

(b)

VR

VC

V

I
�

Figure 22.8

Similarly, for theR−C circuit shown in Fig. 22.8(b),
VC lags I by 90◦ (i.e. I leads VC by 90◦) and

VR − jVC =V , from which R− jXC =Z (where XC

is the capacitive reactance
1

2πfC
ohms).

Problem 15. Determine the resistance and
series inductance (or capacitance) for each of the
following impedances, assuming a frequency of
50Hz:
(a) (4.0+ j7.0) � (b)−j20 �

(c) 15∠−60◦ �

(a) Impedance, Z=(4.0+ j7.0) � hence,
resistance=4.0 � and reactance=7.00 �.
Since the imaginary part is positive, the reactance
is inductive,
i.e. XL =7.0 �

Since XL =2π fL then inductance,

L= XL

2πf
= 7.0
2π(50)

= 0.0223H or 22.3mH

(b) Impedance, Z= j20, i.e. Z=(0− j20)� hence
resistance=0 and reactance=20�. Since the
imaginary part is negative, the reactance is cap-

acitive, i.e., XC =20� and since XC = 1
2π fC

then:

capacitance, C= 1
2π fXC

= 1
2π(50)(20)

F

= 106

2π(50)(20)
μF= 159.2μF

(c) Impedance, Z

= 15∠−60◦ = 15[ cos(−60◦) + j sin (−60◦)]

= 7.50− j12.99�

Hence resistance=7.50� and capacitive reac-
tance, XC =12.99�

Since XC = 1
2π fC

then capacitance,

C = 1
2π fXC

= 106

2π(50)(12.99)
μF

= 245μF

Problem 16. An alternating voltage of 240V,
50Hz is connected across an impedance of
(60− j100)�. Determine (a) the resistance, (b) the
capacitance, (c) the magnitude of the impedance
and its phase angle and (d) the current flowing.
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(a) Impedance Z=(60− j100)�.

Hence resistance=60�

(b) Capacitive reactance XC =100� and since

XC = 1
2π fC

then

capacitance, C= 1
2πfXC

= 1
2π(50)(100)

= 106

2π(50)(100)
μF

=31.83μF

(c) Magnitude of impedance,

|Z| =
√
[(60)2+ (−100)2]= 116.6�

Phase angle, argZ= tan−1
(−100
60

)

= −59.04◦

(d) Current flowing, I = V

Z
= 240∠0◦

116.6∠−59.04◦

=2.058∠59.04◦A

The circuit and phasor diagrams are as shown in
Fig. 22.8(b).

Problem 17. For the parallel circuit shown in
Fig. 22.9, determine the value of current I and its
phase relative to the 240V supply, using complex
numbers.

240 V, 50 Hz

R35 12 V XC5 5 V
I

R25 10 V

R15 4 V XL5 3 V

Figure 22.9

Current I = V

Z
. Impedance Z for the three-branch

parallel circuit is given by:

1
Z

= 1
Z1

+ 1
Z2

+ 1
Z3

where Z1=4+ j3, Z2=10 and Z3=12− j5

Admittance, Y1= 1
Z1

= 1
4+ j3

= 1
4+ j3

× 4− j3
4− j3

= 4− j3
42+ 32

=0.160− j0.120 siemens

Admittance, Y2= 1
Z2

= 1
10

= 0.10 siemens

Admittance, Y3= 1
Z3

= 1
12− j5

= 1
12− j5

× 12+ j5
12+ j5

= 12+ j5
122+ 52

=0.0710+ j0.0296 siemens

Total admittance, Y =Y1+ Y2+ Y3

=(0.160− j0.120) + (0.10)

+(0.0710+ j0.0296)

=0.331− j0.0904

=0.343∠−15.28◦ siemens

Current I = V

Z
= V Y

= (240∠0◦)(0.343∠−15.28◦)

= 82.32∠−15.28◦A

Problem 18. Determine the magnitude and
direction of the resultant of the three coplanar
forces given below, when they act at a point.

Force A, 10N acting at 45◦ from the positive
horizontal axis.

Force B, 87N acting at 120◦ from the positive
horizontal axis.

Force C, 15N acting at 210◦ from the positive
horizontal axis.

The space diagram is shown in Fig. 22.10. The forces
may be written as complex numbers.
Thus forceA, fA =10∠45◦, force B, fB =8∠120◦ and
force C, fC =15∠210◦
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15 N

8 N 10 N

45�

210�

120�

Figure 22.10

The resultant force

= fA + fB + fC

= 10∠45◦ + 8∠120◦ + 15∠210◦

= 10(cos45◦ + j sin45◦) + 8(cos120◦

+j sin120◦) + 15(cos210◦ + j sin210◦)

= (7.071+ j7.071) + (−4.00+ j6.928)

+(−12.99−j7.50)

= −9.919+ j6.499

Magnitude of resultant force

=
√
[(−9.919)2+ (6.499)2]= 11.86N

Direction of resultant force

= tan−1
(
6.499

−9.919
)

= 146.77◦

(since −9.919+ j6.499 lies in the second quadrant).

Now try the following Practice Exercise

Practice Exercise 100 Applications of
complex numbers (Answers on page 871)

1. Determine the resistanceR and series induc-
tance L (or capacitance C) for each of the
following impedances assuming the frequ-
ency to be 50Hz.

(a) (3+ j8)� (b) (2−j3)�
(c) j14� (d) 8∠−60◦ �

2. Two impedances, Z1=(3+ j6)� and
Z2=(4− j3)� are connected in series to
a supply voltage of 120V. Determine the
magnitude of the current and its phase angle
relative to the voltage.

3. If the two impedances in Problem 2 are
connected in parallel determine the current
flowing and its phase relative to the 120V
supply voltage.

4. A series circuit consists of a 12� resistor, a
coil of inductance 0.10H and a capacitance
of 160μF. Calculate the current flowing
and its phase relative to the supply voltage
of 240V, 50Hz. Determine also the power
factor of the circuit.

5. For the circuit shown in Fig. 22.11, deter-
mine the current I flowing and its phase
relative to the applied voltage.

6. Determine, using complex numbers, the
magnitude and direction of the resultant of
the coplanar forces given below, which are
acting at a point. Force A, 5N acting hori-
zontally, Force B, 9N acting at an angle of
135◦ to force A, Force C, 12N acting at an
angle of 240◦ to force A.

I

R15 30 V

R35 25 V

V 5 200 V

R25 40 V XL5 50 V

XC5 20 V

Figure 22.11

7. A delta-connected impedance ZA is given
by:

ZA = Z1Z2+ Z2Z3+ Z3Z1

Z2
Determine ZA in both Cartesian and polar
form given Z1=(10+ j0)�,
Z2=(0− j10)� and Z3=(10+ j10)�.

8. In the hydrogen atom, the angular momen-
tum p of the de Broglie wave is given

by: pψ = −
(
jh
2π

)

(±jmψ). Determine an

expression for p.
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9. An aircraftP flying at a constant height has a
velocity of (400+ j300)km/h. Another air-
craft Q at the same height has a velocity of
(200− j600)km/h. Determine (a) the veloc-
ity of P relative toQ, and (b) the velocity of
Q relative toP . Express the answers in polar
form, correct to the nearest km/h.

10. Three vectors are represented by P , 2∠30◦,
Q, 3∠90◦ and R, 4∠−60◦. Determine in
polar form the vectors represented by (a)
P +Q+R, (b) P −Q−R

11. In a Schering bridge circuit,
ZX =(RX − jXCX), Z2= −jXC2 ,

Z3= (R3)(−jXC3)

(R3− jXC3)
and Z4=R4

where XC= 1
2π fC

At balance: (ZX)(Z3)=(Z2)(Z4).

Show that at balance RX = C3R4

C2
and

CX = C2R3

R4
12. An amplifier has a transfer function T given

by: T = 500
1+ jω(5× 10−4)

where ω is the

angular frequency. The gain of the amplifier
is given by the modulus of T and the phase is
given by the argument of T . If ω = 2000 rad/s,
determine the gain and the phase (in degrees).

13. The sending end current of a transmission

line is given by: IS = VS

Z0
tanh PL. Calculate

the value of the sending current, in polar
form, given VS = 200V , Z0 = 560+ j420�,
P = 0.20 and L = 10

With a calculator such as the CASIO 991ES PLUS it is possible, using the complex mode, to achieve many of the
calculations in this chapter much more quickly.

For fully worked solutions to each of the problems in Practice Exercises 96 to 100 in this chapter,
go to the website:

www.routledge.com/cw/bird
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Chapter 23

De Moivre’s theorem

Why it is important to understand: De Moivre’s theorem
There are many, many examples of the use of complex numbers in engineering and science. De Moivre’s
theorem has several uses, including finding powers and roots of complex numbers, solving polynomial
equations, calculating trigonometric identities, and for evaluating the sums of trigonometric series. The
theorem is also used to calculate exponential and logarithmic functions of complex numbers. DeMoivre’s
theorem has applications in electrical engineering and physics.

At the end of this chapter, you should be able to:

• state de Moivre’s theorem
• calculate powers of complex numbers
• calculate roots of complex numbers
• state the exponential form of a complex number
• convert Cartesian/polar form into exponential form and vice-versa.
• determine loci in the complex plane

Higher Engineering Mathematics. 978-1-138-67357-1, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.
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23.1 Introduction

Frommultiplication of complex numbers in polar form,

(r∠θ) × (r∠θ) = r2∠2θ

Similarly, (r∠θ)×(r∠θ)×(r∠θ)=r3∠3θ , and so on.
In general, de Moivre’s theorem∗

[r∠θ ]n=rn∠nθ
The theorem is true for all positive, negative and
fractional values of n. The theorem is used to determine
powers and roots of complex numbers.

23.2 Powers of complex numbers

For example [3∠20◦]4=34∠(4× 20◦)=81∠80◦ by
de Moivre’s theorem.

Problem 1. Determine, in polar form
(a) [2∠35◦]5 (b) (−2+j3)6

∗ Who was de Moivre? Abraham de Moivre (26 May
1667–27 November 1754) was a French mathematician famous
for de Moivre’s formula, which links complex numbers
and trigonometry, and for his work on the normal dis-
tribution and probability theory. To find out more go to
www.routledge.com/cw/bird

(a) [2∠35◦]5=25∠(5×35◦),
from de Moivre’s theorem

=32∠175◦

(b) (−2+j3)=
√
[(−2)2+(3)2]∠ tan−1 3

−2
=

√
13∠123.69◦,since −2+ j3

lies in the second quadrant

(−2+ j3)6 = [
√
13∠123.69◦]6

= (
√
13)6∠(6×123.69◦),

by de Moivre’s theorem

= 2197∠742.14◦

= 2197∠382.14◦(since 742.14

≡ 742.14◦ − 360◦ = 382.14◦)

= 2197∠22.14◦(since 382.14◦

≡ 382.14◦ − 360◦=22.14◦)

or 2197∠22◦8′

Problem 2. Determine the value of (−7+ j5)4,
expressing the result in polar and rectangular forms.

(−7+ j5) =
√
[(−7)2+ 52]∠ tan−1 5

−7
=

√
74∠144.46◦

(Note, by considering the Argand diagram, −7+j5
must represent an angle in the second quadrant and not
in the fourth quadrant.)

Applying de Moivre’s theorem:

(−7+ j5)4 = [
√
74∠144.46◦]4

=
√
744∠4×144.46◦

= 5476∠577.84◦

= 5476∠217.84◦

or 5476∠217◦50′ in polar form

Since r∠θ = r cosθ +jr sinθ ,
5476∠217.84◦ = 5476cos217.84◦

+ j5476sin217.84◦

= −4325− j3359

i.e. (−7+ j5)4 = −4325− j3359
in rectangular form
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Now try the following Practice Exercise

Practice Exercise 101 Powers of complex
numbers (Answers on page 871)

1. Determine in polar form (a) [1.5∠15◦]5
(b) (1+ j2)6

2. Determine in polar and Cartesian forms
(a) [3∠41◦]4 (b) (−2−j)5

3. Convert (3−j) into polar form and hence
evaluate (3−j)7, giving the answer in polar
form.

In problems 4 to 7, express in both polar and
rectangular forms.

4. (6+ j5)3

5. (3− j8)5

6. (−2+ j 7)4

7. (−16− j9)6

23.3 Roots of complex numbers

The square root of a complex number is determined by
letting n=1/2 in de Moivre’s theorem,

i.e.
√
[r∠θ ]= [r∠θ ]

1
2 = r

1
2∠1
2
θ = √

r∠θ

2

There are two square roots of a real number, equal in
size but opposite in sign.

Problem 3. Determine the two square roots of the
complex number (5+ j12) in polar and Cartesian
forms and show the roots on an Argand diagram.

(5+ j12) =
√
[52+ 122]∠ tan−1

(
12
5

)

= 13∠67.38◦

When determining square roots two solutions result.
To obtain the second solution one way is to
express 13∠67.38◦ also as 13∠(67.38◦+360◦), i.e.
13∠427.38◦. When the angle is divided by 2 an angle
less than 360◦ is obtained.

Hence
√

(5+ j12) =
√
[13∠67.38◦] and

√
[13∠427.38◦]

= [13∠67.38◦]
1
2 and [13∠427.38◦]

1
2

= 13
1
2∠

(
1
2

× 67.38◦
)

and

13
1
2∠

(
1
2

× 427.38◦
)

=
√
13∠33.69◦ and

√
13∠213.69◦

= 3.61∠33.69◦ and 3.61∠213.69◦

Thus, in polar form, the two roots are
3.61∠33.69◦ and 3.61∠−146.31◦

√
13∠33.69◦ =

√
13(cos33.69◦+ j sin33.69◦)

= 3.0+ j2.0
√
13∠213.69◦ =

√
13(cos213.69◦+ j sin213.69◦)

= −3.0− j2.0

Thus, in cartesian form the two roots are
±(3.0+ j2.0)
From the Argand diagram shown in Fig. 23.1 the two
roots are seen to be 180◦ apart, which is always true
when finding square roots of complex numbers.

j 2

2j 2

3

3.61

3.61

Imaginary axis

213.698
33. 698

23 Real axis

Figure 23.1

In general, when finding the nth root of a complex
number, there are n solutions. For example, there are
three solutions to a cube root, five solutions to a fifth
root, and so on. In the solutions to the roots of a complex
number, the modulus, r , is always the same, but the
arguments, θ , are different. It is shown in Problem 3
that arguments are symmetrically spaced on an Argand
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diagram and are (360/n)◦ apart, where n is the number
of the roots required. Thus if one of the solutions to the
cube root of a complex number is, say, 5∠20 ◦, the other
two roots are symmetrically spaced (360/3)◦, i.e. 120◦
from this root and the three roots are 5∠20◦, 5∠140◦
and 5∠260◦

Problem 4. Find the roots of [(5+j3)]
1
2 in

rectangular form, correct to 4 significant figures.

(5+ j3) =
√
34∠30.96◦

Applying de Moivre’s theorem:

(5+ j3)
1
2 =

√

34
1
2∠ 12 × 30.96◦

= 2.415∠15.48◦or 2.415∠15◦29′

The second root may be obtained as shown above, i.e.
having the same modulus but displaced (360/2)◦ from
the first root.

Thus,(5+ j3)
1
2 = 2.415∠(15.48◦ + 180◦)

= 2.415∠195.48◦

In rectangular form:

2.415∠15.48◦ = 2.415cos15.48◦

+ j2.415sin15.48◦

= 2.327+ j0.6446
and 2.415∠195.48◦ = 2.415cos195.48◦

+ j2.415sin195.48◦

= −2.327− j0.6446

Hence [(5+ j3)]
1
2 = 2.415∠15.48◦and

2.415∠195.48◦or
±(2.327 + j0.6446)

Problem 5. Express the roots of

(−14+ j3)
−2
5 in polar form.

(−14+ j3) =
√
205∠167.905◦

(−14+ j3)
−2
5 =

√

205
−2
5 ∠

[(

−2
5

)

× 167.905◦
]

= 0.3449∠−67.164◦

or 0.3449∠−67◦10′

There are five roots to this complex number,

(

x
−2
5 = 1

x
2
5

= 1
5√
x2

)

The roots are symmetrically displaced from one
another (360/5)◦, i.e. 72◦ apart round an Argand
diagram.
Thus the required roots are 0.3449∠−67◦10′,
0.3449∠4◦50′, 0.3449∠76◦50′, 0.3449∠148◦50′
and 0.3449∠220◦50′

Now try the following Practice Exercise

Practice Exercise 102 The roots of complex
numbers (Answers on page 871)

In Problems 1 to 3 determine the two square roots
of the given complex numbers in Cartesian form
and show the results on an Argand diagram.

1. (a) 1+j (b) j

2. (a) 3−j4 (b) −1−j2

3. (a) 7∠60◦ (b) 12∠3π
2

In Problems 4 to 7, determine the moduli and
arguments of the complex roots.

4. (3+j4)
1
3

5. (−2+j)
1
4

6. (−6−j5)
1
2

7. (4−j3)
−2
3

8. For a transmission line, the characteristic
impedanceZ0 and the propagation coefficient
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γ are given by:

Z0 =
√(

R + jωL

G + jωC

)

and

γ =
√
[(R + jωL)(G + jωC)]

Given R=25�,L=5×10−3 H,
G=80×10−6 siemens, C =0.04×10−6 F
and ω=2000π rad/s, determine, in polar
form, Z0 and γ

23.4 The exponential form of a
complex number

Certain mathematical functions may be expressed as
power series (for example, by Maclaurin’s series – see
Chapter 8), three examples being:

(i) ex = 1+ x + x2

2!
+ x3

3!
+ x4

4!
+ x5

5!
+ ·· · (1)

(ii) sinx = x − x3

3!
+ x5

5!
− x7

7!
+ ·· · (2)

(iii) cosx = 1− x2

2!
+ x4

4!
− x6

6!
+ ·· · (3)

Replacing x in equation (1) by the imaginary number
jθ gives:

e jθ = 1+jθ+ ( jθ)2

2!
+ ( jθ)3

3!
+ ( jθ)4

4!
+ ( jθ)5

5!
+·· ·

= 1+ jθ + j2θ2

2!
+ j3θ3

3!
+ j4θ4

4!
+ j5θ5

5!
+ ·· ·

By definition, j =√
(−1), hence j 2=−1, j 3=−j ,

j4=1, j 5=j , and so on.

Thus e jθ =1+jθ − θ2

2!
−j

θ3

3!
+ θ4

4!
+j

θ5

5!
− ·· ·

Grouping real and imaginary terms gives:

e jθ =
(

1− θ2

2!
+ θ4

4!
− ·· ·

)

+ j

(

θ − θ3

3!
+ θ5

5!
− ·· ·

)

However, from equations (2) and (3):
(

1− θ2

2!
+ θ4

4!
− ·· ·

)

= cosθ

and

(

θ − θ3

3!
+ θ5

5!
− ·· ·

)

= sin θ

Thus e jθ =cosθ + j sinθ (4)

Writing −θ for θ in equation (4), gives:

e j (−θ) = cos(−θ) + j sin(−θ)

However, cos(−θ)= cosθ and sin(−θ)=−sinθ

Thus e−jθ =cosθ − j sinθ (5)

The polar form of a complex number z is:
z=r(cosθ +j sinθ). But, from equation (4),
cosθ +j sin θ =e jθ
Therefore z=re jθ
When a complex number is written in this way, it is said
to be expressed in exponential form.
There are therefore three ways of expressing a complex
number:

(i) z=(a+jb), called Cartesian or rectangu-
lar form,

(ii) z=r(cosθ +j sinθ) or r∠θ , called polar form,
and

(iii) z=re jθ called exponential form.
The exponential form is obtained from the polar form.
For example, 4∠30◦ becomes 4e j

π
6 in exponential

form. (Note that in re jθ ,θ must be in radians.)

Problem 6. Change (3−j4) into (a) polar form,
(b) exponential form.

(a) (3−j4) = 5∠−53.13◦or 5∠−0.927
in polar form

(b) (3−j4) = 5∠−0.927=5e−j0.927
in exponential form

Problem 7. Convert 7.2e j1.5 into rectangular
form.

7.2e j1.5=7.2∠1.5 rad(=7.2∠85.94◦) in polar form

= 7.2cos1.5+ j7.2sin1.5

= (0.509+ j7.182) in rectangular form
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Problem 8. Express z=2e1+j
π
3 in Cartesian

form.

z = (2e1)
(
e j

π
3
)
by the laws of indices

= (2e1)∠π

3
(or 2e∠60◦)in polar form

= 2e
(
cos

π

3
+ j sin

π

3

)

= (2.718+ j4.708) in Cartesian form

Problem 9. Change 6e2−j3 into (a + jb) form.

6e2−j3 = (6e2)(e−j3) by the laws of indices

= 6e2∠−3 rad (or 6e2∠−171.890)
in polar form

= 6e2[cos(−3) + j sin (−3)]
= (−43.89− j6.26) in (a + jb) form

Problem 10. If z=4e j1.3, determine lnz (a) in
Cartesian form, and (b) in polar form.

If z = re jθ then lnz = ln(re jθ )

= ln r + lne jθ

i.e. lnz = ln r + jθ,

by the laws of logarithms

(a) Thus if z=4e j1.3 then lnz= ln(4e j1.3)
= ln4+ j1.3

(or 1.386+ j1.300) in Cartesian form.
(b) (1.386+j1.300)=1.90∠43.17 ◦ or 1.90∠0.753

in polar form.

Problem 11. Given z=3e1−j , find lnz in polar
form.

If z = 3e1−j , then
ln z = ln(3e1−j )

= ln3+ lne1−j

= ln3+ 1− j

= (1+ ln3) − j

= 2.0986− j1.0000

= 2.325∠−25.48◦or 2.325∠−0.445

Problem 12. Determine, in polar form, ln (3+j4)

ln(3+ j4) = ln[5∠0.927]= ln[5e j0.927]

= ln5+ ln(e j0.927)

= ln5+ j0.927

= 1.609+ j0.927

= 1.857∠29.95◦or 1.857∠0.523

Now try the following Practice Exercise

Practice Exercise 103 The exponential form
of complex numbers (Answers on page 871)

1. Change (5+j3) into exponential form.

2. Convert (−2.5+j4.2) into exponential form.

3. Change 3.6e j2 into Cartesian form.

4. Express 2e3+j
π
6 in (a+jb) form.

5. Convert 1.7e1.2−j2.5 into rectangular form.

6. If z=7e j2.1, determine lnz (a) in Cartesian
form, and (b) in polar form.

7. Given z=4e1.5−j2, determine lnz in polar
form.

8. Determine in polar form (a) ln (2+j5)
(b) ln (−4−j3)

9. When displaced electrons oscillate about an
equilibrium position the displacement x is
given by the equation:

x = Ae

{

− ht
2m+j

√
(4mf −h2)
2m−a

t

}

Determine the real part of x in terms of t ,
assuming (4mf − h2) is positive.

23.5 Introduction to locus problems

The locus is a set of points that satisfy a certain con-
dition. For example, the locus of points that are, say, 2
units from pointC, refers to the set of all points that are
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2 units from C; this would be a circle with centre C as
shown in Fig. 23.2.

This circle is the
locus of points 2 units
from C

C
2

Figure 23.2

It is sometimes needed to find the locus of a point
which moves in the Argand diagram according to some
stated condition.Loci (the plural of locus) are illustrated
by the following worked problems.

Problem 13. Determine the locus defined by
|z| = 4, given that z = x + jy

If z = x + jy, then on an Argand diagram as shown in
Figure 23.3, the modulus z,

|z| =
√

x2+ y2

jy

Imaginary
axis

Real
axis0

x

�

z y

Figure 23.3

In this case,
√

x2+ y2 = 4 from which, x2+ y2 = 42
From Chapter 14, x2+ y2= 42 is a circle, with centre
at the origin and with radius 4

The locus (or path) of |z| = 4 is shown in Fig. 23.4.

Problem 14. Determine the locus defined by arg
z = π

4
, given that z = x + jy

In Fig. 23.3 above, θ = tan−1
(y

x

)

where θ is called the argument and is written as
arg z = tan−1

(y

x

)

locus |z| = 4
ie x2 + y2 = 42

0

4

x

z

y

Figure 23.4

Hence, in this example,

tan−1
(y

x

)
= π

4
i.e.

y

x
= tan π

4
= tan45◦ = 1

Thus, if
y

x
= 1, then y = x

arg z =
ie y = x

0 x

�

y

—4

�—4

Figure 23.5

Hence, the locus (or path) of arg z = π

4
is a straight

line y = x (with y > 0) as shown in Fig. 23.5.

Problem 15. If z = x + jy, determine the locus

defined by arg (z − 1) = π

6

If arg (z − 1) = π

6
, then arg (x + jy − 1) = π

6
i.e.

arg[(x − 1) + jy]= π

6

In Fig. 25.3,

θ = tan−1
(y

x

)
i.e. arg z = tan−1

(y

x

)

Hence, in this example,

tan−1
(

y

x − 1
)

= π

6
i.e.

y

x − 1 = tan π

6
= tan30◦ = 1√

3
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Thus, if
y

x − 1 = 1√
3
, then y = 1√

3
(x− 1)

Hence, the locus of arg (z−1) = π

6
is a straight line

y= 1√
3
x− 1√

3

Problem 16. Determine the locus defined by
|z − 2 | = 3, given that z = x + jy

If z = x + jy, then |z − 2 | = |x + jy − 2 |
= | (x − 2) + jy | = 3

On the Argand diagram shown in Figure 23.3,
|z | =

√
x2+ y2

Hence, in this case, |z − 2 | =
√

(x − 2)2+ y2 = 3 from
which, (x − 2)2+ y2 = 32
From Chapter 14, (x − a)2+ (y − b)2 = r2 is a circle,
with centre (a,b) and radius r .

Hence, (x − 2)2+ y2 = 32 is a circle,with centre (2, 0)
and radius 3

The locus of |z − 2 | = 3 is shown in Figure 23.6.

locus |z – 2| = 3
ie (x – 2)2 + y2 = 32

0

3

2 5–1 x

y

–3

Figure 23.6

Problem 17. If z = x + jy, determine the locus

defined by
∣
∣
∣
∣
z − 1
z + 1

∣
∣
∣
∣ = 3

z − 1= x + jy − 1= (x − 1) + jy

z + 1= x + jy + 1= (x + 1) + jy

Hence,
∣
∣
∣
∣
z − 1
z + 1

∣
∣
∣
∣ =

∣
∣
∣
∣
(x − 1) + jy

(x + 1) + jy

∣
∣
∣
∣

=
√

(x − 1)2+ y2
√

(x + 1)2+ y2
= 3

and squaring both sides gives:
(x − 1)2+ y2

(x + 1)2+ y2
= 9

from which,

(x − 1)2+ y2 = 9[(x + 1)2+ y2]

x2− 2x + 1+ y2 = 9[x2+ 2x + 1+ y2]

x2− 2x + 1+ y2 = 9x2+ 18x + 9+ 9y2

0= 8x2+ 20x + 8+ 8y2

i.e.

8x2+ 20x + 8+ 8y2 = 0
and dividing by 4 gives:

2x2+ 5x + 2+ 2y2 = 0 which is the equation of
the locus.

Rearranging gives: x2+ 5
2
x + y2 = −1

Completing the square gives:
(

x + 5
4

)2
− 25
16

+ y2 = −1

i.e.
(

x + 5
4

)2
+ y2 = −1+ 25

16

i.e.
(

x + 5
4

)2
+ y2 = 9

16

i.e.
(

x + 5
4

)2
+ y2 =

(
3
4

)2
which is the equa-

tion of a circle.

Hence the locus defined by
∣∣∣∣ z − 1
z + 1

∣∣∣∣ = 3 is a circle of

centre
(

−5
4
, 0

)
and radius

3
4

Problem 18. If z = x + jy, determine the locus

defined by arg
(

z + 1
z

)

= π

4

(
z + 1

z

)

=
(

(x + 1) + jy

x + jy

)

= [(x + 1) + jy](x − jy)

(x + jy)(x − jy)

= x(x + 1) − j (x + 1)y + jxy + y2

x2+ y2

= x2+ x − jxy − jy + jxy + y2

x2+ y2
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= x2+ x − jy + y2

x2+ y2

=
(
x2+ x + y2

) − jy

x2+ y2

= x2+ x + y2

x2+ y2
− jy

x2+ y2

Since arg
(
z + 1

z

)

= π

4
then tan−1

⎛

⎜
⎜
⎝

−y

x2+ y2

x2+ x + y2

x2+ y2

⎞

⎟
⎟
⎠= π

4

i.e.

tan−1
( −y

x2+ x + y2

)

= π

4

from which,
−y

x2+ x + y2
= tan π

4
= 1

Hence,

−y = x2+ x + y2

Hence, the locus defined by arg
(

z + 1
z

)
= π

4
is:

x2+ x + y + y2 = 0
Completing the square gives:

(

x+ 1
2

)2
+

(

y+ 1
2

)2
= 1
2

which is a circle, centre
(

−1
2
,−1
2

)
and radius

1√
2

Problem 19. Determine the locus defined by
|z − j | = |z − 3 |, given that z = x + jy

Since |z − j | = |z − 3 |
then |x + j (y − 1) | = |(x − 3) + jy |
and

√
x2+ (y − 1)2 =

√
(x − 3)2+ y2

Squaring both sides gives:
x2+ (y − 1)2 = (x − 3)2+ y2

i.e. x2+ y2− 2y + 1= x2− 6x + 9+ y2

from which, −2y + 1= −6x + 9
i.e. 6x − 8= 2y
or y = 3x − 4
Hence, the locus defined by |z − j | = |z − 3 | is a
straight line: y = 3x − 4

Now try the following Practice Exercise

Practice Exercise 104 Locus problems
(Answers on page 872)

For each of the following, if z = x + jy, (a) deter-
mine the equation of the locus, (b) sketch the
locus.

1. |z | = 2
2. |z | = 5
3. arg(z − 2) = π

3

4. arg(z + 1) = π

6
5. |z − 2 | = 4
6. |z + 3 | = 5

7.
∣
∣
∣
∣
z + 1
z − 1

∣
∣
∣
∣ = 3

8.
∣
∣
∣
∣
z − 1

z

∣
∣
∣
∣ = √

2

9. arg
∣
∣
∣
∣
z − 1

z

∣
∣
∣
∣ = π

4

10. arg
∣
∣
∣
∣
z + 2

z

∣
∣
∣
∣ = π

4

11. |z + j | = |z + 2 |
12. |z − 4 | = |z − 2j |
13. |z − 1 | = |z |

For fully worked solutions to each of the problems in Practice Exercises 101 to 104 in this chapter,
go to the website:

www.routledge.com/cw/bird
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Chapter 24

The theory of matrices and
determinants

Why it is important to understand: The theory of matrices and determinants
Matrices are used to solve problems in electronics, optics, quantum mechanics, statics, robotics, linear
programming, optimisation, genetics, and much more. Matrix calculus is a mathematical tool used in
connection with linear equations, linear transformations, systems of differential equations, and so on,
and is vital for calculating forces, vectors, tensions, masses, loads and a lot of other factors that must be
accounted for in engineering to ensure safe and resource-efficient structure. Electrical and mechanical
engineers, chemists, biologists and scientists all needknowledgeofmatrices to solveproblems. In computer
graphics, matrices are used to project a three-dimensional image on to a two-dimensional screen, and to
create realistic motion. Matrices are therefore very important in solving engineering problems.

At the end of this chapter, you should be able to:

• understand matrix notation
• add, subtract and multiply 2 by 2 and 3 by 3 matrices
• recognise the unit matrix
• calculate the determinant of a 2 by 2 matrix
• determine the inverse (or reciprocal) of a 2 by 2 matrix
• calculate the determinant of a 3 by 3 matrix
• determine the inverse (or reciprocal) of a 3 by 3 matrix

24.1 Matrix notation

Matrices and determinants are mainly used for the solu-
tion of linear simultaneous equations. The theory of
matrices and determinants is dealt with in this chap-
ter and this theory is then used in Chapter 25 to solve
simultaneous equations.
The coefficients of the variables for linear simul-

taneous equations may be shown in matrix form.

The coefficients of x and y in the simultaneous
equations

x + 2y = 3
4x − 5y = 6

become
(
1 2
4 −5

)

in matrix notation.

Similarly, the coefficients of p, q and r in the equations

Higher Engineering Mathematics. 978-1-138-67357-1, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.
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1.3p − 2.0q + r = 7
3.7p + 4.8q − 7r = 3
4.1p + 3.8q + 12r = −6

become

⎛

⎝
1.3 −2.0 1
3.7 4.8 −7
4.1 3.8 12

⎞

⎠ in matrix form.

The numbers within a matrix are called an array and
the coefficients forming the array are called the ele-
ments of the matrix. The number of rows in a matrix
is usually specified by m and the number of columns
by n and a matrix referred to as an ‘m by n’ matrix.

Thus,
(
2 3 6
4 5 7

)

is a ‘2 by 3’matrix.Matrices cannotbe

expressed as a single numerical value, but they can often
be simplified or combined, and unknown element val-
ues can be determined by comparison methods. Just as
there are rules for addition, subtraction, multiplication
and division of numbers in arithmetic, rules for these
operations can be applied to matrices and the rules of
matrices are such that they obeymost of those governing
the algebra of numbers.

24.2 Addition, subtraction and
multiplication of matrices

(i) Addition of matrices
Corresponding elements in two matrices may be added
to form a single matrix.

Problem 1. Add the matrices

(a)
(
2 −1

−7 4

)

and
(−3 0
7 −4

)

(b)

⎛

⎝
3 1 −4
4 3 1
1 4 −3

⎞

⎠ and

⎛

⎝
2 7 −5

−2 1 0
6 3 4

⎞

⎠

(a) Adding the corresponding elements gives:
(
2 −1

−7 4

)

+
(−3 0
7 −4

)

=
(
2+ (−3) −1+ 0

−7+ 7 4+ (−4)
)

=
(−1 −1
0 0

)

(b) Adding the corresponding elements gives:
⎛

⎝
3 1 −4
4 3 1
1 4 −3

⎞

⎠+
⎛

⎝
2 7 −5

−2 1 0
6 3 4

⎞

⎠

=
⎛

⎝
3+ 2 1+ 7 −4+ (−5)
4+ (−2) 3+ 1 1+ 0
1+ 6 4+ 3 −3+ 4

⎞

⎠

=
⎛

⎝
5 8 −9
2 4 1
7 7 1

⎞

⎠

(ii) Subtraction of matrices
If A is a matrix and B is another matrix, then (A − B)
is a single matrix formed by subtracting the elements of
B from the corresponding elements of A.

Problem 2. Subtract

(a)
(−3 0
7 −4

)

from
(
2 −1

−7 4

)

(b)

⎛

⎝
2 7 −5

−2 1 0
6 3 4

⎞

⎠ from

⎛

⎝
3 1 −4
4 3 1
1 4 −3

⎞

⎠

To find matrixAminus matrixB, the elements ofB are
taken from the corresponding elements of A. Thus:

(a)

(
2 −1

−7 4

)

−
(−3 0
7 −4

)

=
(
2− (−3) −1− 0

−7− 7 4− (−4)
)

=
(

5 −1
−14 8

)

(b)

⎛

⎝
3 1 −4
4 3 1
1 4 −3

⎞

⎠ −
⎛

⎝
2 7 −5

−2 1 0
6 3 4

⎞

⎠

=
⎛

⎝
3− 2 1− 7 −4− (−5)
4− (−2) 3− 1 1− 0
1− 6 4− 3 −3− 4

⎞

⎠

=
⎛

⎝
1 −6 1
6 2 1

−5 1 −7

⎞

⎠

Problem 3. If

A =
(−3 0
7 −4

)

, B =
(
2 −1

−7 4

)

and
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C =
(
1 0

−2 −4
)

find A+B −C

A + B =
(−1 −1
0 0

)

(from Problem 1)

Hence, A + B − C =
(−1 −1
0 0

)

−
(
1 0

−2 −4
)

=
(−1− 1 −1− 0
0− (−2) 0− (−4)

)

=
(−2 −1
2 4

)

Alternatively A+B −C

=
(−3 0
7 −4

)

+
(
2 −1

−7 4

)

−
(
1 0

−2 −4
)

=
(−3+ 2− 1 0+ (−1) − 0
7+ (−7) − (−2) −4+ 4− (−4)

)

=
(−2 −1
2 4

)

as obtained previously

(iii) Multiplication
When a matrix is multiplied by a number, called scalar
multiplication, a single matrix results in which each
element of the original matrix has been multiplied by
the number.

Problem 4. If A=
(−3 0
7 −4

)

,

B =
(
2 −1

−7 4

)

and C =
⎛

⎝
1 0

−2 −4

⎞

⎠ find

2A−3B +4C

For scalar multiplication, each element is multiplied by
the scalar quantity, hence

2A = 2
(−3 0
7 −4

)

=
(−6 0
14 −8

)

3B = 3
(
2 −1

−7 4

)

=
(

6 −3
−21 12

)

and 4C = 4
(
1 0

−2 −4
)

=
(
4 0

−8 −16
)

Hence 2A−3B +4C
=

(−6 0
14 −8

)

−
(

6 −3
−21 12

)

+
(
4 0

−8 −16
)

=
(−6− 6+ 4 0− (−3) + 0
14− (−21) + (−8) −8− 12+ (−16)

)

=
(−8 3
27 −36

)

When a matrix A is multiplied by another matrix B,
a single matrix results in which elements are obtained
from the sum of the products of the corresponding rows
of A and the corresponding columns of B.
Two matrices A and B may be multiplied together,

provided the number of elements in the rows of matrix
A are equal to the number of elements in the columns of
matrix B. In general terms, when multiplying a matrix
of dimensions (m by n) by a matrix of dimensions (n by
r), the resulting matrix has dimensions (m by r). Thus
a 2 by 3 matrix multiplied by a 3 by 1 matrix gives a
matrix of dimensions 2 by 1.

Problem 5. If A=
(
2 3
1 −4

)

and B =
(−5 7

−3 4
)

find A × B

Let A × B =C where C =
(

C11 C12
C21 C22

)

C11 is the sum of the products of the first row elements
of A and the first column elements of B taken one at a
time,

i.e. C11=(2× (−5)) + (3× (−3)) = −19
C12 is the sum of the products of the first row elements
of A and the second column elements of B, taken one
at a time,

i.e. C12=(2× 7) + (3× 4) = 26
C21 is the sum of the products of the second row
elements ofA and the first column elements ofB, taken
one at a time,

i.e. C21=(1× (−5)) + (−4× (−3)) = 7
Finally, C22 is the sum of the products of the second
row elements of A and the second column elements of
B, taken one at a time,

i.e. C22=(1× 7) + ((−4) × 4) = −9

Thus, A ×B =
(−19 26

7 −9
)
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Problem 6. Simplify
⎛

⎝
3 4 0

−2 6 −3
7 −4 1

⎞

⎠×
⎛

⎝
2
5

−1

⎞

⎠

The sum of the products of the elements of each row of
the first matrix and the elements of the second matrix,
(called a column matrix), are taken one at a time.
Thus:

⎛

⎝
3 4 0

−2 6 −3
7 −4 1

⎞

⎠ ×
⎛

⎝
2
5

−1

⎞

⎠

=
⎛

⎝
(3× 2) + (4× 5) + (0× (−1))
(−2× 2) + (6× 5) + (−3× (−1))
(7× 2) + (−4× 5) + (1× (−1))

⎞

⎠

=
⎛

⎝
26
29
−7

⎞

⎠

Problem 7. If A=
⎛

⎝
3 4 0

−2 6 −3
7 −4 1

⎞

⎠ and

B =
⎛

⎝
2 −5
5 −6

−1 −7

⎞

⎠, find A × B

The sum of the products of the elements of each
row of the first matrix and the elements of each col-
umn of the second matrix are taken one at a time.
Thus:

⎛

⎝
3 4 0

−2 6 −3
7 −4 1

⎞

⎠×
⎛

⎝
2 −5
5 −6

−1 −7

⎞

⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

[(3× 2) [(3× (−5))
+(4× 5) +(4× (−6))
+(0× (−1))] +(0× (−7))]
[(−2× 2) [(−2× (−5))

+(6× 5) +(6× (−6))
+(−3× (−1))] +(−3× (−7))]
[(7× 2) [(7× (−5))

+(−4× 5) +(−4× (−6))
+(1× (−1))] +(1× (−7))]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=
⎛

⎝
26 −39
29 −5
−7 −18

⎞

⎠

Problem 8. Determine
⎛

⎝
1 0 3
2 1 2
1 3 1

⎞

⎠×
⎛

⎝
2 2 0
1 3 2
3 2 0

⎞

⎠

The sum of the products of the elements of each row of
the first matrix and the elements of each column of the
second matrix are taken one at a time. Thus:

⎛

⎝
1 0 3
2 1 2
1 3 1

⎞

⎠×
⎛

⎝
2 2 0
1 3 2
3 2 0

⎞

⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

[(1× 2) [(1× 2) [(1× 0)
+(0× 1) +(0× 3) +(0× 2)
+(3× 3)] +(3× 2)] +(3× 0)]
[(2× 2) [(2× 2) [(2× 0)

+(1× 1) +(1× 3) +(1× 2)
+(2× 3)] +(2× 2)] +(2× 0)]
[(1× 2) [(1× 2) [(1× 0)

+(3× 1) +(3× 3) +(3× 2)
+(1× 3)] +(1× 2)] +(1× 0)]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=
⎛

⎝
11 8 0
11 11 2
8 13 6

⎞

⎠

In algebra, the commutative law of multiplication states
that a×b=b×a. For matrices, this law is only true in
a few special cases, and in general A × B is not equal
to B ×A

Problem 9. If A=
(
2 3
1 0

)

and

B =
(
2 3
0 1

)

show that A×B �=B ×A

A × B =
(
2 3
1 0

)

×
(
2 3
0 1

)

=
(
[(2× 2) + (3× 0)] [(2× 3) + (3× 1)]
[(1× 2) + (0× 0)] [(1× 3) + (0× 1)]

)

=
(
4 9
2 3

)

B × A =
(
2 3
0 1

)

×
(
2 3
1 0

)

=
(
[(2× 2) + (3× 1)] [(2× 3) + (3× 0)]
[(0× 2) + (1× 1)] [(0× 3) + (1× 0)]

)

=
(
7 6
1 0

)
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Since
(
4 9
2 3

)

�=
(
7 6
1 0

)

, then A×B �=B×A

Now try the following Practice Exercise

Practice Exercise 105 Addition,
subtraction and multiplication of matrices
(Answers on page 872)

In Problems 1 to 13, the matrices A to K are:

A=
(
3 −1

−4 7

)

B =
(
5 2

−1 6

)

C =
(−1.3 7.4
2.5 −3.9

)

D=
⎛

⎝
4 −7 6

−2 4 0
5 7 −4

⎞

⎠

E=
⎛

⎝
3 6 2
5 −3 7

−1 0 2

⎞

⎠

F =
⎛

⎝
3.1 2.4 6.4

−1.6 3.8 −1.9
5.3 3.4 −4.8

⎞

⎠ G=
(
6

−2
)

H =
(−2
5

)

J =
⎛

⎝
4

−11
7

⎞

⎠ K =
⎛

⎝
1 0
0 1
1 0

⎞

⎠

In Problems 1 to 12, perform the matrix operation
stated.

1. A+B

2. D + E

3. A−B

4. A+B −C

5. 5A+6B
6. 2D+3E−4F
7. A × H

8. A × B

9. A × C

10. D × J

11. E × K

12. D × F

13. Show that A × C �= C × A

24.3 The unit matrix

A unit matrix, I, is one in which all elements of the
leading diagonal (\) have a value of 1 and all other ele-
ments have a value of 0. Multiplication of a matrix by
I is the equivalent of multiplying by 1 in arithmetic.

24.4 The determinant of a 2 by 2
matrix

The determinant of a 2 by 2 matrix
(

a b

c d

)

is defined

as (ad −bc)
The elements of the determinant of a matrix are
written between vertical lines. Thus, the determinant

of
(
3 −4
1 6

)

is written as
∣
∣
∣
∣
3 −4
1 6

∣
∣
∣
∣ and is equal to

(3× 6)−(−4×1), i.e. 18−(−4) or 22. Hence the
determinant of a matrix can be expressed as a single

numerical value, i.e.
∣
∣
∣
∣
3 −4
1 6

∣
∣
∣
∣ =22

Problem 10. Determine the value of
∣
∣
∣
∣
3 −2
7 4

∣
∣
∣
∣

∣
∣
∣
∣
3 −2
7 4

∣
∣
∣
∣ = (3× 4) − (−2× 7)

= 12− (−14) = 26

Problem 11. Evaluate
∣
∣
∣
∣
(1+ j) j2

−j3 (1− j4)

∣
∣
∣
∣

∣
∣
∣
∣
(1+ j) j2

−j3 (1− j4)

∣
∣
∣
∣ = (1+ j)(1− j4) − (j2)(−j3)

= 1− j4+ j − j 24+ j 26

= 1− j4+ j − (−4) + (−6)
since from Chapter 22, j 2 = −1

= 1− j4+ j + 4− 6
= −1− j 3
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Problem 12. Evaluate
∣
∣
∣
∣
5∠30◦ 2∠−60◦
3∠60◦ 4∠−90◦

∣
∣
∣
∣

∣
∣
∣
∣
5∠30◦ 2∠−60◦
3∠60◦ 4∠−90◦

∣
∣
∣
∣ = (5∠30◦)(4∠−90◦)

− (2∠−60◦)(3∠60◦)

= (20∠−60◦) − (6∠0◦)

= (10− j17.32) − (6+ j0)

= (4− j 17.32) or 17.78∠−77◦

Now try the following Practice Exercise

Practice Exercise 106 2 by 2 determinants
(Answers on page 872)

1. Calculate the determinant of
(
3 −1

−4 7

)

2. Calculate the determinant of(−2 5
3 −6

)

3. Calculate the determinant of(−1.3 7.4
2.5 −3.9

)

4. Evaluate
∣
∣
∣
∣

j2 −j3
(1+j) j

∣
∣
∣
∣

5. Evaluate

∣
∣
∣
∣
∣

2∠40◦ 5∠−20◦

7∠−32◦ 4∠−117◦

∣
∣
∣
∣
∣

6. Given matrix A =
(

(x − 2) 6
2 (x − 3)

)

,

determine values of x for which |A | = 0

24.5 The inverse or reciprocal of a
2 by 2 matrix

The inverse of matrix A is A−1 such that A×A−1=I ,
the unit matrix.
Let matrixA be

(
1 2
3 4

)

and let the inverse matrix,A−1

be
(

a b

c d

)

Then, since A × A−1=I ,(
1 2
3 4

)

×
(

a b

c d

)

=
(
1 0
0 1

)

Multiplying the matrices on the left-hand side, gives
(

a + 2c b + 2d
3a + 4c 3b + 4d

)

=
(
1 0
0 1

)

Equating corresponding elements gives:

b + 2d = 0, i.e. b = −2d
and 3a + 4c = 0, i.e. a = − 4

3
c

Substituting for a and b gives:
⎛

⎜
⎜
⎜
⎝

−4
3
c + 2c −2d + 2d

3
(

−4
3
c

)

+ 4c 3(−2d) + 4d

⎞

⎟
⎟
⎟
⎠

=
(
1 0
0 1

)

i.e.

⎛

⎝
2
3
c 0

0 −2d

⎞

⎠ =
(
1 0
0 1

)

showing that
2
3
c=1, i.e. c= 3

2
and−2d =1, i.e. d=− 1

2
Since b=−2d , b=1 and since a=− 4

3
c, a=−2

Thus the inverse of matrix
(
1 2
3 4

)

is
(

a b

c d

)

that is,
⎛

⎝
−2 1
3
2

−1
2

⎞

⎠

There is, however, a quicker method of obtaining the
inverse of a 2 by 2 matrix.

For any matrix
(

p q

r s

)

the inverse may be

obtained by:

(i) interchanging the positions of p and s,

(ii) changing the signs of q and r , and

(iii) multiplying this new matrix by the reciprocal of

the determinant of
(

p q

r s

)

Thus the inverse of matrix
(
1 2
3 4

)

is

1
4− 6

(
4 −2

−3 1

)

=
⎛

⎝
−2 1
3
2

−1
2

⎞

⎠

as obtained previously.

Problem 13. Determine the inverse of
(
3 −2
7 4

)
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The inverse of matrix
(

p q

r s

)

is obtained by inter-

changing the positions of p and s, changing the signs
of q and r and multiplying by the reciprocal of the

determinant
∣
∣
∣
∣
p q

r s

∣
∣
∣
∣. Thus, the inverse of

(
3 −2
7 4

)

= 1
(3× 4) − (−2× 7)

(
4 2

−7 3

)

= 1
26

(
4 2

−7 3

)

=

⎛

⎜
⎜
⎝

2
13

1
13

−7
26

3
26

⎞

⎟
⎟
⎠

Now try the following Practice Exercise

Practice Exercise 107 The inverse of 2 by 2
matrices (Answers on page 872)

1. Determine the inverse of
(
3 −1

−4 7

)

2. Determine the inverse of

⎛

⎜
⎜
⎝

1
2

2
3

−1
3

−3
5

⎞

⎟
⎟
⎠

3. Determine the inverse of
(−1.3 7.4
2.5 −3.9

)

24.6 The determinant of a 3 by 3
matrix

(i) The minor of an element of a 3 by 3 matrix is
the value of the 2 by 2 determinant obtained by
covering up the row and column containing that
element.

Thus for the matrix

⎛

⎝
1 2 3
4 5 6
7 8 9

⎞

⎠ the minor of

element 4 is obtained by covering the row

(4 5 6) and the column

⎛

⎝
1
4
7

⎞

⎠, leaving the 2 by

2 determinant
∣
∣
∣
∣
2 3
8 9

∣
∣
∣
∣, i.e. the minor of element 4

is (2× 9)−(3× 8)=−6

(ii) The sign of aminor depends on its positionwithin

the matrix, the sign pattern being

⎛

⎝
+ − +
− + −
+ − +

⎞

⎠.

Thus the signed-minor of element 4 in the matrix⎛

⎝
1 2 3
4 5 6
7 8 9

⎞

⎠ is −
∣
∣
∣
∣
2 3
8 9

∣
∣
∣
∣ =−(−6)=6

The signed-minor of an element is called the
cofactor of the element.

(iii) The value of a 3 by 3 determinant is the
sum of the products of the elements and their
cofactors of any row or any column of the
corresponding 3 by 3 matrix.

There are thus six different ways of evaluating a 3× 3
determinant – and all should give the same value.

Problem 14. Find the value of
∣
∣
∣
∣
∣
∣

3 4 −1
2 0 7
1 −3 −2

∣
∣
∣
∣
∣
∣

The value of this determinant is the sum of the products
of the elements and their cofactors, of any row or of any
column. If the second row or second column is selected,
the element 0 will make the product of the element and
its cofactor zero and reduce the amount of arithmetic to
be done to a minimum.
Supposing a second row expansion is selected. The
minor of 2 is the value of the determinant remain-
ing when the row and column containing the 2 (i.e.
the second row and the first column), is covered up.

Thus the cofactor of element 2 is
∣
∣
∣
∣
4 −1

−3 −2
∣
∣
∣
∣ i.e. −11

The sign of element 2 is minus (see (ii) above), hence
the cofactor of element 2, (the signed-minor) is +11
Similarly the minor of element 7 is

∣
∣
∣
∣
3 4
1 −3

∣
∣
∣
∣ i.e. −13,

and its cofactor is +13. Hence the value of the sum
of the products of the elements and their cofactors is
2× 11+7× 13, i.e.,

∣
∣
∣
∣
∣
∣

3 4 −1
2 0 7
1 −3 −2

∣
∣
∣
∣
∣
∣
= 2(11)+0+7(13)=113

The same result will be obtained whichever row or
column is selected. For example, the third column
expansion is
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(−1)
∣
∣
∣
∣
2 0
1 −3

∣
∣
∣
∣ − 7

∣
∣
∣
∣
3 4
1 −3

∣
∣
∣
∣ + (−2)

∣
∣
∣
∣
3 4
2 0

∣
∣
∣
∣

= 6+ 91+ 16= 113,as obtained previously.

Problem 15. Evaluate

∣
∣
∣
∣
∣
∣

1 4 −3
−5 2 6
−1 −4 2

∣
∣
∣
∣
∣
∣

Using the first row:

∣
∣
∣
∣
∣
∣

1 4 −3
−5 2 6
−1 −4 2

∣
∣
∣
∣
∣
∣

= 1
∣
∣
∣
∣
2 6

−4 2

∣
∣
∣
∣− 4

∣
∣
∣
∣
−5 6
−1 2

∣
∣
∣
∣ + (−3)

∣
∣
∣
∣
−5 2
−1 −4

∣
∣
∣
∣

= (4+ 24) − 4(−10+ 6) − 3(20+ 2)
= 28+ 16− 66= −22

Using the second column:

∣
∣
∣
∣
∣
∣

1 4 −3
−5 2 6
−1 −4 2

∣
∣
∣
∣
∣
∣

= −4
∣
∣
∣
∣
−5 6
−1 2

∣
∣
∣
∣ + 2

∣
∣
∣
∣
1 −3

−1 2

∣
∣
∣
∣−(−4)

∣
∣
∣
∣
1 −3

−5 6

∣
∣
∣
∣

= −4(−10+ 6) + 2(2− 3) + 4(6− 15)
= 16− 2− 36= −22

Problem 16. Determine the value of
∣
∣
∣
∣
∣
∣
∣

j2 (1+ j) 3
(1− j) 1 j

0 j4 5

∣
∣
∣
∣
∣
∣
∣

Using the first column, the value of the determinant is:

(j2)

∣
∣
∣
∣
∣

1 j

j4 5

∣
∣
∣
∣
∣
− (1− j)

∣
∣
∣
∣
∣

(1+ j) 3
j4 5

∣
∣
∣
∣
∣

+ (0)

∣
∣
∣
∣
∣

(1+ j) 3
1 j

∣
∣
∣
∣
∣

= j2(5− j 24) − (1− j)(5+ j5− j12) + 0
= j2(9) − (1− j)(5− j7)

= j18− [5− j7− j5+ j 27]

= j18− [−2− j12]

= j18+ 2+ j12= 2+ j 30 or 30.07∠86.19◦

Now try the following Practice Exercise

Practice Exercise 108 3 by 3 determinants
(Answers on page 873)

1. Find the matrix of minors of
⎛

⎝
4 −7 6

−2 4 0
5 7 −4

⎞

⎠

2. Find the matrix of cofactors of
⎛

⎝
4 −7 6

−2 4 0
5 7 −4

⎞

⎠

3. Calculate the determinant of
⎛

⎝
4 −7 6

−2 4 0
5 7 −4

⎞

⎠

4. Evaluate

∣
∣
∣
∣
∣
∣

8 −2 −10
2 −3 −2
6 3 8

∣
∣
∣
∣
∣
∣

5. Calculate the determinant of
⎛

⎝
3.1 2.4 6.4

−1.6 3.8 −1.9
5.3 3.4 −4.8

⎞

⎠

6. Evaluate

∣
∣
∣
∣
∣
∣

j2 2 j

(1+ j) 1 −3
5 −j4 0

∣
∣
∣
∣
∣
∣

7. Evaluate

∣
∣
∣
∣
∣
∣

3∠60◦ j2 1
0 (1+ j) 2∠30◦
0 2 j5

∣
∣
∣
∣
∣
∣

8. Find the eigenvalues λ that satisfy the follow-
ing equations:

(a)
∣
∣
∣
∣
(2− λ) 2

−1 (5− λ)

∣
∣
∣
∣=0

(b)

∣
∣
∣
∣
∣
∣

(5− λ) 7 −5
0 (4− λ) −1
2 8 (−3− λ)

∣
∣
∣
∣
∣
∣
=0

(You may need to refer to Chapter 1, pages
10–14, for the solution of cubic equations).
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24.7 The inverse or reciprocal of a
3 by 3 matrix

The adjoint of a matrix A is obtained by:

(i) forming a matrix B of the cofactors of A, and

(ii) transposingmatrixB to giveBT , whereBT is the
matrix obtained by writing the rows of B as the
columns of BT . Then adj A=BT

The inverse of matrix A, A−1 is given by

A−1 = adj A
|A|

where adj A is the adjoint of matrix A and |A| is the
determinant of matrix A.

Problem 17. Determine the inverse of the matrix
⎛

⎜
⎝

3 4 −1
2 0 7
1 −3 −2

⎞

⎟
⎠

The inverse of matrix A, A−1= adj A|A|
The adjoint of A is found by:

(i) obtaining the matrix of the cofactors of the ele-
ments, and

(ii) transposing this matrix.

The cofactor of element 3 is +
∣
∣
∣
∣
0 7

−3 −2
∣
∣
∣
∣ =21

The cofactor of element 4 is−
∣
∣
∣
∣
2 7
1 −2

∣
∣
∣
∣ =11, and so on.

The matrix of cofactors is

⎛

⎝
21 11 −6
11 −5 13
28 −23 −8

⎞

⎠

The transpose of the matrix of cofactors, i.e. the adjoint
of thematrix, is obtainedbywriting the rows as columns,

and is

⎛

⎝
21 11 28
11 −5 −23
−6 13 −8

⎞

⎠

From Problem 14, the determinant of

∣
∣
∣
∣
∣
∣

3 4 −1
2 0 7
1 −3 −2

∣
∣
∣
∣
∣
∣

is 113

Hence the inverse of

⎛

⎝
3 4 −1
2 0 7
1 −3 −2

⎞

⎠ is

⎛

⎝
21 11 28
11 −5 −23
−6 13 −8

⎞

⎠

113
or

1
113

⎛

⎝
21 11 28
11 −5 −23
−6 13 −8

⎞

⎠

Problem 18. Find the inverse of
⎛

⎜
⎝

1 5 −2
3 −1 4

−3 6 −7

⎞

⎟
⎠

Inverse = adjoint
determinant

The matrix of cofactors is

⎛

⎝
−17 9 15
23 −13 −21
18 −10 −16

⎞

⎠

The transpose of the matrix of cofactors (i.e. the

adjoint) is

⎛

⎝
−17 23 18
9 −13 −10
15 −21 −16

⎞

⎠

The determinant of

⎛

⎝
1 5 −2
3 −1 4

−3 6 −7

⎞

⎠

= 1(7− 24) − 5(−21+ 12) − 2(18− 3)
= −17+ 45− 30= −2

Hence the inverse of

⎛

⎝
1 5 −2
3 −1 4

−3 6 −7

⎞

⎠

=

⎛

⎝
−17 23 18
9 −13 −10
15 −21 −16

⎞

⎠

−2

=
⎛

⎝
8.5 −11.5 −9

−4.5 6.5 5
−7.5 10.5 8

⎞

⎠

Now try the following Practice Exercise

Practice Exercise 109 The inverse of a 3
by 3 matrix (Answers on page 873)

1. Write down the transpose of
⎛

⎝
4 −7 6

−2 4 0
5 7 −4

⎞

⎠
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2. Write down the transpose of
⎛

⎝
3 6 1

2
5 − 2

3 7
−1 0 3

5

⎞

⎠

3. Determine the adjoint of
⎛

⎝
4 −7 6

−2 4 0
5 7 −4

⎞

⎠

4. Determine the adjoint of
⎛

⎜
⎝

3 6 1
2

5 − 2
3 7

−1 0 3
5

⎞

⎟
⎠

5. Find the inverse of
⎛

⎝
4 −7 6

−2 4 0
5 7 −4

⎞

⎠

6. Find the inverse of

⎛

⎜
⎝

3 6 1
2

5 − 2
3 7

−1 0 3
5

⎞

⎟
⎠

For fully worked solutions to each of the problems in Practice Exercises 105 to 109 in this chapter,
go to the website:

www.routledge.com/cw/bird

Download more at Learnclax.com

http://www.routledge.com/cw/bird


Chapter 25

Applications of matrices
and determinants

Why it is important to understand: Applications of matrices and determinants
As mentioned previously, matrices are used to solve problems, for example, in electrical circuits, optics,
quantum mechanics, statics, robotics, genetics, and much more, and for calculating forces, vectors,
tensions, masses, loads and a lot of other factors that must be accounted for in engineering. In the
main, matrices and determinants are used to solve a system of simultaneous linear equations. The
simultaneous solution of multiple equations finds its way into many common engineering problems.
In fact, modern structural engineering analysis techniques are all about solving systems of equations
simultaneously. Eigenvalues and eigenvectors, which are based on matrix theory, are very important
in engineering and science. For example, car designers analyse eigenvalues in order to damp out the
noise in a car, eigenvalue analysis is used in the design of car stereo systems, eigenvalues can be used
to test for cracks and deformities in a solid, and oil companies use eigenvalues analysis to explore land
for oil.

At the end of this chapter, you should be able to:

• solve simultaneous equations in two and three unknowns using matrices
• solve simultaneous equations in two and three unknowns using determinants
• solve simultaneous equations using Cramer’s rule
• solve simultaneous equations using Gaussian elimination
• determine the eigenvalues of a 2 by 2 and 3 by 3 matrix
• determine the eigenvectors of a 2 by 2 and 3 by 3 matrix

Higher Engineering Mathematics. 978-1-138-67357-1, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.
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25.1 Solution of simultaneous
equations by matrices

(a) The procedure for solving linear simultaneous
equations in two unknowns using matrices is:
(i) write the equations in the form

a1x + b1y = c1
a2x + b2y = c2

(ii) write the matrix equation corresponding to
these equations,

i.e.
(

a1 b1
a2 b2

)

×
(

x

y

)

=
(

c1
c2

)

(iii) determine the inverse matrix of
(

a1 b1
a2 b2

)

i.e.
1

a1b2− b1a2

(
b2 −b1

−a2 a1

)

(from Chapter 24)
(iv) multiply each side of (ii) by the inverse

matrix, and
(v) solve for x and y by equating corresponding

elements.

Problem 1. Use matrices to solve the
simultaneous equations:

3x + 5y − 7= 0 (1)
4x − 3y − 19= 0 (2)

(i) Writing the equations in the a1x + b1y = c form
gives:

3x + 5y = 7
4x − 3y = 19

(ii) The matrix equation is
(
3 5
4 −3

)

×
(

x

y

)

=
(
7
19

)

(iii) The inverse of matrix
(
3 5
4 −3

)

is

1
3× (−3) − 5× 4

(−3 −5
−4 3

)

i.e.

⎛

⎜
⎝

3
29

5
29

4
29

−3
29

⎞

⎟
⎠

(iv) Multiplying each side of (ii) by (iii) and remem-
bering that A×A−1=I , the unit matrix, gives:

(
1 0
0 1

)(
x

y

)

=

⎛

⎜
⎜
⎝

3
29

5
29

4
29

−3
29

⎞

⎟
⎟
⎠ ×

(
7
19

)

Thus
(

x

y

)

=

⎛

⎜
⎜
⎝

21
29

+ 95
29

28
29

− 57
29

⎞

⎟
⎟
⎠

i.e.
(

x

y

)

=
(
4

−1
)

(v) By comparing corresponding elements:

x=4 and y=−1
Checking:

equation (1),

3× 4+ 5× (−1) − 7= 0= RHS
equation (2),

4× 4− 3× (−1) − 19= 0= RHS

(b) The procedure for solving linear simultaneous
equations in three unknowns using matrices is:
(i) write the equations in the form

a1x + b1y + c1z = d1

a2x + b2y + c2z = d2

a3x + b3y + c3z = d3

(ii) write the matrix equation corresponding to
these equations, i.e.

⎛

⎝
a1 b1 c1
a2 b2 c2
a3 b3 c3

⎞

⎠×
⎛

⎝
x

y

z

⎞

⎠ =
⎛

⎝
d1
d2
d3

⎞

⎠

(iii) determine the inverse matrix of
⎛

⎝
a1 b1 c1
a2 b2 c2
a3 b3 c3

⎞

⎠ (see Chapter 24)

(iv) multiply each side of (ii) by the inverse
matrix, and

(v) solve for x, y and z by equating the corre-
sponding elements.
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Problem 2. Use matrices to solve the
simultaneous equations:

x + y + z − 4= 0 (1)
2x − 3y + 4z − 33= 0 (2)
3x − 2y − 2z − 2= 0 (3)

(i) Writing the equations in the a1x + b1y + c1z = d1
form gives:

x + y + z = 4
2x − 3y + 4z = 33
3x − 2y − 2z = 2

(ii) The matrix equation is
⎛

⎝
1 1 1
2 −3 4
3 −2 −2

⎞

⎠×
⎛

⎝
x

y

z

⎞

⎠ =
⎛

⎝
4
33
2

⎞

⎠

(iii) The inverse matrix of

A =
⎛

⎝
1 1 1
2 −3 4
3 −2 −2

⎞

⎠

is given by

A−1= adj A|A|
The adjoint of A is the transpose of the matrix of
the cofactors of the elements (see Chapter 24). The
matrix of cofactors is

⎛

⎝
14 16 5
0 −5 5
7 −2 −5

⎞

⎠

and the transpose of this matrix gives

adj A=
⎛

⎝
14 0 7
16 −5 −2
5 5 −5

⎞

⎠

The determinant ofA, i.e. the sum of the products
of elements and their cofactors, using a first row
expansion is

1
∣
∣
∣
∣
−3 4
−2 −2

∣
∣
∣
∣ − 1

∣
∣
∣
∣
2 4
3 −2

∣
∣
∣
∣ + 1

∣
∣
∣
∣
2 −3
3 −2

∣
∣
∣
∣

= (1× 14) − (1× (−16)) + (1× 5) = 35

Hence the inverse of A,

A−1 = 1
35

⎛

⎝
14 0 7
16 −5 −2
5 5 −5

⎞

⎠

(iv) Multiplying each side of (ii) by (iii), and remem-
bering that A × A−1=I , the unit matrix, gives

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ ×
⎛

⎝
x

y

z

⎞

⎠ = 1
35

⎛

⎝
14 0 7
16 −5 −2
5 5 −5

⎞

⎠×
⎛

⎝
4
33
2

⎞

⎠

⎛

⎝
x

y

z

⎞

⎠ = 1
35

⎛

⎝
(14× 4) + (0× 33) + (7× 2)
(16× 4) + ((−5) × 33) + ((−2) × 2)
(5× 4) + (5× 33) + ((−5) × 2)

⎞

⎠

= 1
35

⎛

⎝
70

−105
175

⎞

⎠

=
⎛

⎝
2

−3
5

⎞

⎠

(v) By comparing corresponding elements, x=2,
y= −3, z = 5, which can be checked in the
original equations.

Now try the following Practice Exercise

Practice Exercise 110 Solving
simultaneous equations using matrices
(Answers on page 873)

In Problems 1 to 5 use matrices to solve the
simultaneous equations given.

1. 3x+4y =0
2x +5y+7=0

2. 2p+5q +14.6=0
3.1p+1.7q+2.06=0

3. x +2y+3z=5
2x −3y−z=3
−3x + 4y + 5z = 3

4. 3a + 4b − 3c = 2
−2a + 2b + 2c = 15
7a − 5b + 4c = 26

5. p + 2q + 3r + 7.8= 0
2p + 5q − r − 1.4= 0
5p − q + 7r − 3.5= 0

Download more at Learnclax.com
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6. In two closed loops of an electrical circuit, the
currentsflowing are givenby the simultaneous
equations:
I1+ 2I2+ 4= 0
5I1+ 3I2− 1= 0
Use matrices to solve for I1 and I2

7. The relationship between the displacement s,
velocity v, and acceleration a, of a piston is
given by the equations:
s + 2v + 2a = 4
3s − v + 4a = 25
3s + 2v − a = −4
Use matrices to determine the values of s, v
and a

8. In a mechanical system, acceleration ẍ,
velocity ẋ and distance x are related by the
simultaneous equations:
3.4ẍ + 7.0ẋ − 13.2x = −11.39
−6.0ẍ + 4.0ẋ + 3.5x = 4.98
2.7ẍ + 6.0ẋ + 7.1x = 15.91
Use matrices to find the values of ẍ, ẋ and x

25.2 Solution of simultaneous
equations by determinants

(a) When solving linear simultaneous equations in
two unknowns using determinants:
(i) write the equations in the form

a1x + b1y + c1 = 0
a2x + b2y + c2 = 0

and then

(ii) the solution is given by

x

Dx

= −y

Dy

= 1
D

where Dx =
∣
∣
∣
∣
∣

b1 c1

b2 c2

∣
∣
∣
∣
∣

i.e. the determinant of the coefficients left
when the x-column is covered up,

Dy =
∣
∣
∣
∣
∣

a1 c1

a2 c2

∣
∣
∣
∣
∣

i.e. the determinant of the coefficients left
when the y-column is covered up,

and D =
∣
∣
∣
∣
∣

a1 b1

a2 b2

∣
∣
∣
∣
∣

i.e. the determinant of the coefficients left
when the constants-column is covered up.

Problem 3. Solve the following simultaneous
equations using determinants:

3x − 4y = 12
7x + 5y = 6.5

Following the above procedure:

(i) 3x − 4y − 12= 0
7x + 5y − 6.5= 0

(ii)
x

∣
∣
∣
∣
−4 −12
5 −6.5

∣
∣
∣
∣

= −y
∣
∣
∣
∣
3 −12
7 −6.5

∣
∣
∣
∣

= 1
∣
∣
∣
∣
3 −4
7 5

∣
∣
∣
∣

i.e.
x

(−4)(−6.5) − (−12)(5)

= −y

(3)(−6.5) − (−12)(7)

= 1
(3)(5) − (−4)(7)

i.e.
x

26+ 60 = −y

−19.5+ 84 = 1
15+ 28

i.e.
x

86
= −y

64.5
= 1
43

Since
x

86
= 1
43
then x= 86

43
= 2

and since

−y

64.5
= 1
43
then y= −64.5

43
=−1.5

Problem 4. The velocity of a car, accelerating at
uniform acceleration a between two points, is given
by v=u+at , where u is its velocity when passing
the first point and t is the time taken to pass
between the two points. If v=21m/s when t =3.5s
and v=33m/s when t =6.1s, use determinants to
find the values of u and a, each correct to 4
significant figures.
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Substituting the given values in v = u+at gives:

21= u + 3.5a (1)
33= u + 6.1a (2)

(i) The equations are written in the form

a1x + b1y + c1 = 0
i.e. u + 3.5a − 21= 0
and u + 6.1a − 33= 0

(ii) The solution is given by

u

Du

= −a

Da

= 1
D

where Du is the determinant of coefficients left
when the u column is covered up,

i.e. Du =
∣
∣
∣
∣
∣

3.5 −21
6.1 −33

∣
∣
∣
∣
∣

= (3.5)(−33) − (−21)(6.1)
=12.6

Similarly, Da =
∣
∣
∣
∣
1 −21
1 −33

∣
∣
∣
∣

= (1)(−33)− (−21)(1)
=−12

and D=
∣
∣
∣
∣
1 3.5
1 6.1

∣
∣
∣
∣

= (1)(6.1)− (3.5)(1)= 2.6

Thus
u

12.6
= −a

−12 = 1
26

i.e. u= 12.6
2.6

= 4.846m/s

and a= 12
2.6

= 4.615m/s2,

each correct to 4 significant
figures.

Problem 5. Applying Kirchhoff’s laws to an
electric circuit results in the following equations:

(9+ j12)I1− (6+ j8)I2 = 5
−(6+ j8)I1+ (8+ j3)I2 = (2+ j4)

Solve the equations for I1 and I2

Following the procedure:

(i) (9+j12)I1−(6+j8)I2−5=0
−(6+j8)I1+(8+j3)I2−(2+j4)=0

(ii)
I1∣

∣
∣
∣
−(6+ j8) −5
(8+ j3) −(2+ j4)

∣
∣
∣
∣

= −I2∣
∣
∣
∣
(9+ j12) −5
−(6+ j8) −(2+ j4)

∣
∣
∣
∣

= 1
∣
∣
∣
∣
(9+ j12) −(6+ j8)
−(6+ j8) (8+ j3)

∣
∣
∣
∣

I1

(−20+ j40) + (40+ j15)

= −I2

(30− j60) − (30+ j40)

= 1
(36+ j123) − (−28+ j96)

I1

20+ j55
= −I2

−j100
= 1
64+ j27

Hence I1 = 20+ j55
64+ j27

= 58.52∠70.02◦

69.46∠22.87◦ = 0.84∠47.15◦A

and I2 = 100∠90◦

69.46∠22.87◦

= 1.44∠67.13◦A

(b) When solving simultaneous equations in three
unknowns using determinants:
(i) Write the equations in the form

a1x + b1y + c1z + d1 = 0
a2x + b2y + c2z + d2 = 0
a3x + b3y + c3z + d3 = 0

and then

(ii) the solution is given by

x

Dx

= −y

Dy

= z

Dz

= −1
D
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where Dx is

∣
∣
∣
∣
∣
∣

b1 c1 d1
b2 c2 d2
b3 c3 d3

∣
∣
∣
∣
∣
∣

i.e. the determinant of the coefficients
obtained by covering up the x column.

Dy is

∣
∣
∣
∣
∣
∣

a1 c1 d1
a2 c2 d2
a3 c3 d3

∣
∣
∣
∣
∣
∣

i.e., the determinant of the coefficients
obtained by covering up the y column.

Dz is

∣
∣
∣
∣
∣
∣

a1 b1 d1
a2 b2 d2
a3 b3 d3

∣
∣
∣
∣
∣
∣

i.e. the determinant of the coefficients
obtained by covering up the z column.

and D is

∣
∣
∣
∣
∣
∣

a1 b1 c1
a2 b2 c2
a3 b3 c3

∣
∣
∣
∣
∣
∣

i.e. the determinant of the coefficients
obtained by covering up the constants
column.

Problem 6. A d.c. circuit comprises three closed
loops. Applying Kirchhoff’s laws to the closed
loops gives the following equations for current flow
in milliamperes:

2I1+ 3I2− 4I3 = 26
I1− 5I2− 3I3 = −87

−7I1+ 2I2+ 6I3 = 12
Use determinants to solve for I1, I2 and I3

(i) Writing the equations in the
a1x +b1y +c1z+d1=0 form gives:

2I1+ 3I2− 4I3− 26= 0
I1− 5I2− 3I3+ 87= 0

−7I1+ 2I2+ 6I3− 12= 0
(ii) the solution is given by

I1

DI1
= −I2

DI2
= I3

DI3
= −1

D

where DI1 is the determinant of coefficients
obtained by covering up the I1 column, i.e.

DI1 =
∣
∣
∣
∣
∣
∣

3 −4 −26
−5 −3 87
2 6 −12

∣
∣
∣
∣
∣
∣

= (3)
∣
∣
∣
∣
−3 87
6 −12

∣
∣
∣
∣ − (−4)

∣
∣
∣
∣
−5 87
2 −12

∣
∣
∣
∣

+ (−26)
∣
∣
∣
∣
−5 −3
2 6

∣
∣
∣
∣

= 3(−486) + 4(−114) − 26(−24)
= −1290

DI2 =
∣
∣
∣
∣
∣
∣

2 −4 −26
1 −3 87

−7 6 −12

∣
∣
∣
∣
∣
∣

= (2)(36− 522) − (−4)(−12+ 609)
+ (−26)(6− 21)

= −972+ 2388+ 390
= 1806

DI3 =
∣
∣
∣
∣
∣
∣

2 3 −26
1 −5 87

−7 2 −12

∣
∣
∣
∣
∣
∣

= (2)(60− 174) − (3)(−12+ 609)
+ (−26)(2− 35)

= −228− 1791+ 858= −1161

and D =
∣
∣
∣
∣
∣
∣

2 3 −4
1 −5 −3

−7 2 6

∣
∣
∣
∣
∣
∣

= (2)(−30+ 6) − (3)(6− 21)
+ (−4)(2− 35)

= −48+ 45+ 132= 129
Thus

I1

−1290 = −I2

1806
= I3

−1161 = −1
129

giving

I1 = −1290
−129 = 10mA,

I2 = 1806
129

= 14mA

and I3 = 1161
129

= 9mA
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Now try the following Practice Exercise

Practice Exercise 111 Solving
simultaneous equations using determinants
(Answers on page 873)

In Problems 1 to 5 use determinants to solve the
simultaneous equations given.

1. 3x − 5y = −17.6
7y − 2x − 22= 0

2. 2.3m − 4.4n = 6.84
8.5n− 6.7m = 1.23

3. 3x + 4y + z = 10
2x − 3y + 5z+ 9= 0
x + 2y − z = 6

4. 1.2p − 2.3q − 3.1r + 10.1= 0
4.7p + 3.8q − 5.3r − 21.5= 0
3.7p − 8.3q + 7.4r + 28.1= 0

5.
x

2
− y

3
+ 2z
5

= − 1
20

x

4
+ 2y
3

− z

2
= 19
40

x + y − z = 59
60

6. In a system of forces, the relationship between
two forces F1 and F2 is given by:

5F1+ 3F2+ 6= 0
3F1+ 5F2+ 18= 0

Use determinants to solve for F1 and F2

7. Applying mesh-current analysis to an a.c.
circuit results in the following equations:

(5− j4)I1− (−j4)I2 = 100∠0◦

(4+ j3− j4)I2− (−j4)I1 = 0
Solve the equations for I1 and I2

8. Kirchhoff’s laws are used to determine the
current equations in an electrical network and
show that

i1+ 8i2+ 3i3 = −31
3i1− 2i2+ i3 = −5
2i1− 3i2+ 2i3 = 6

Use determinants to find the values of i1, i2
and i3

9. The forces in three members of a framework
are F1, F2 and F3. They are related by the
simultaneous equations shown below.
1.4F1+ 2.8F2+ 2.8F3 = 5.6
4.2F1− 1.4F2+ 5.6F3 = 35.0
4.2F1+ 2.8F2− 1.4F3 = −5.6

Find the values of F1, F2 and F3 using
determinants.

10. Mesh-current analysis produces the following
three equations:
20∠0◦ = (5+ 3− j4)I1− (3− j4)I2
10∠90◦ = (3− j4+ 2)I2− (3− j4)I1− 2I3
−15∠0◦ − 10∠90◦ = (12+ 2)I3− 2I2
Solve the equations for the loop currents I1,I2
and I3

25.3 Solution of simultaneous
equations using Cramer’s rule

Cramer’s∗ rule states that if

a11x + a12y + a13z = b1

a21x + a22y + a23z = b2

a31x + a32y + a33z = b3

then x = Dx
D

, y = Dy
D
and z = Dz

D

∗ Who was Cramer? Gabriel Cramer (31 July 1704–4 Jan-
uary 1752)was aSwissmathematician.His articles cover awide
range of subjects including the study of geometric problems,
the history of mathematics, philosophy, and the date of Easter.
Cramer’s most famous book is a work which Cramer modelled
on Newton’s memoir on cubic curves. To find out more go to
www.routledge.com/cw/bird
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where
D =

∣
∣
∣
∣
∣
∣
∣
∣

a11 a12 a13
a21 a22 a23
a31 a32 a33

∣
∣
∣
∣
∣
∣
∣
∣

Dx =
∣
∣
∣
∣
∣
∣

b1 a12 a13
b2 a22 a23
b3 a32 a33

∣
∣
∣
∣
∣
∣

i.e. the x-column has been replaced by the RHS b col-
umn,

Dy =
∣
∣
∣
∣
∣
∣

a11 b1 a13
a21 b2 a23
a31 b3 a33

∣
∣
∣
∣
∣
∣

i.e. the y-column has been replaced by the RHS
b column,

Dz =
∣
∣
∣
∣
∣
∣

a11 a12 b1
a21 a22 b2
a31 a32 b3

∣
∣
∣
∣
∣
∣

i.e. the z-column has been replaced by the RHS
b column.

Problem 7. Solve the following simultaneous
equations using Cramer’s rule.

x + y + z = 4
2x − 3y + 4z = 33
3x − 2y − 2z = 2

(This is the same as Problem 2 and a comparison of
methods may be made). Following the above method:

D=
∣
∣
∣
∣
∣
∣

1 1 1
2 −3 4
3 −2 −2

∣
∣
∣
∣
∣
∣

= 1(6− (−8)) − 1((−4) − 12)

+ 1((−4) − (−9)) = 14+ 16+ 5= 35

Dx =

∣
∣
∣
∣
∣
∣
∣

4 1 1
33 −3 4

2 −2 −2

∣
∣
∣
∣
∣
∣
∣

= 4(6− (−8)) − 1((−66) − 8)

+ 1((−66) − (−6)) = 56+ 74− 60= 70

Dy =
∣
∣
∣
∣
∣
∣

1 4 1
2 33 4
3 2 −2

∣
∣
∣
∣
∣
∣

= 1((−66) − 8) − 4((−4) − 12) + 1(4− 99)

= −74+ 64− 95= −105

Dz =
∣
∣
∣
∣
∣
∣

1 1 4
2 −3 33
3 −2 2

∣
∣
∣
∣
∣
∣

= 1((−6) − (−66)) − 1(4− 99)

+ 4((−4) − (−9)) = 60+ 95+ 20= 175

Hence

x= Dx

D
= 70
35

= 2, y= Dy

D
= −105

35
= −3

and z = Dz

D
= 175
35

= 5

Now try the following Practice Exercise

Practice Exercise 112 Solving
simultaneous equations using Cramer’s rule
(Answers on page 873)

1. Repeat problems 3, 4, 5, 7 and 8 of Exercise
110 on page 289, using Cramer’s rule.

2. Repeat problems 3, 4, 8 and 9 of Exercise 111
on page 293, using Cramer’s rule.

25.4 Solution of simultaneous
equations using the Gaussian
elimination method

Consider the following simultaneous equations:

x + y + z = 4 (1)

2x − 3y + 4z = 33 (2)

3x − 2y − 2z = 2 (3)

Leaving equation (1) as it is gives:

x + y + z = 4 (1)
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Equation (2) − 2×equation (1) gives:

0− 5y + 2z = 25 (2′)

and equation (3) − 3×equation (1) gives:

0− 5y − 5z = −10 (3′)

Leaving equations (1) and (2 ′) as they are gives:

x + y + z = 4 (1)

0− 5y + 2z = 25 (2′)

Equation (3′) − equation (2′) gives:

0+ 0− 7z = −35 (3′′)

By appropriately manipulating the three original equa-
tions we have deliberately obtained zeros in the posi-
tions shown in equations (2′) and (3′′).

Working backwards, from equation (3 ′′),

z = −35
−7 = 5

from equation (2′),

−5y + 2(5) = 25,

from which,

y= 25− 10
−5 = −3

and from equation (1),

x + (−3) + 5= 4

from which,

x= 4+ 3− 5= 2

(This is the same example as Problems 2 and 7,
and a comparison of methods can be made). The

above method is known as the Gaussian∗ elimination
method.
We conclude from the above example that if

a11x + a12y + a13z = b1

a21x + a22y + a23z = b2

a31x + a32y + a33z = b3

The three-step procedure to solve simultaneous equa-
tions in three unknowns using the Gaussian elimina-
tion method is:

(i) Equation (2) − a21

a11
×equation (1) to form equa-

tion (2′) and equation (3) − a31

a11
×equation (1) to

form equation (3′).

(ii) Equation (3′) − a32

a22
×equation (2′) to form equa-

tion (3′′).

(iii) Determine z from equation (3 ′′), then y from
equation (2′) and finally, x from equation (1).

∗ Who was Gauss? Johann Carl Friedrich Gauss (30 April
1777–23 February 1855) was a German mathematician and
physical scientist who contributed significantly to many fields,
including number theory, statistics, electrostatics, astronomy
andoptics. Tofindoutmore go towww.routledge.com/cw/bird
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Problem 8. A d.c. circuit comprises three closed
loops. Applying Kirchhoff’s laws to the closed
loops gives the following equations for current flow
in milliamperes:

2I1+ 3I2− 4I3 = 26 (1)

I1− 5I2− 3I3 = −87 (2)

−7I1+ 2I2+ 6I3 = 12 (3)

Use the Gaussian elimination method to solve for
I1, I2 and I3

(This is the same example as Problem 6 on page 292,
and a comparison of methods may be made)
Following the above procedure:

1. 2I1+ 3I2− 4I3 = 26 (1)
Equation (2) − 1

2
×equation (1) gives:

0− 6.5I2− I3 = −100 (2′)

Equation (3) − −7
2

×equation (1) gives:
0+ 12.5I2− 8I3 = 103 (3′)

2. 2I1+ 3I2− 4I3 = 26 (1)

0− 6.5I2− I3 = −100 (2′)

Equation (3′) − 12.5
−6.5×equation (2′) gives:

0+ 0− 9.923I3 = −89.308 (3′′)

3. From equation (3′′),

I3 = −89.308
−9.923 = 9mA

from equation (2′),−6.5I2−9=−100,

from which, I2 = −100+9
−6.5 =14mA

and from equation (1), 2I1+3(14)−4(9)=26,

from which, I1 = 26− 42+ 36
2

= 20
2

= 10mA

Now try the following Practice Exercise

Practice Exercise 113 Solving
simultaneous equations using Gaussian
elimination (Answers on page 873)

1. In a mass−spring−damper system, the accel-
eration ẍm/s2, velocity ẋm/s and displace-
ment xm are related by the following simul-
taneous equations:

6.2ẍ + 7.9ẋ + 12.6x = 18.0
7.5ẍ + 4.8ẋ + 4.8x = 6.39
13.0ẍ + 3.5ẋ − 13.0x = −17.4

By using Gaussian elimination, determine the
acceleration, velocity and displacement for the
system, correct to 2 decimal places.

2. The tensions, T1,T2 and T3 in a simple frame-
work are given by the equations:

5T1+ 5T2+ 5T3 = 7.0
T1+ 2T2+ 4T3 = 2.4
4T1+ 2T2 = 4.0

Determine T1,T2 and T3 using Gaussian elim-
ination.

3. Repeat problems 3, 4, 5, 7 and 8 of Exer-
cise 110 on page 289, using the Gaussian
elimination method.

4. Repeat problems 3, 4, 8 and 9 of Exercise 111
on page 293, using the Gaussian elimination
method.

25.5 Eigenvalues and eigenvectors

In practical applications, such as coupled oscillations
and vibrations, equations of the form:

Ax= λ x

occur, whereA is a square matrix and λ (Greek lambda)
is a number. Whenever x �= 0, the values of λ are
called the eigenvalues of the matrix A; the correspond-
ing solutions of the equation Ax = λx are called the
eigenvectors of A.
Sometimes, instead of the term eigenvalues, character-
istic values or latent roots are used. Also, instead of
the term eigenvectors, characteristic vectors is used.
From above, if Ax = λx then Ax − λx = 0 i.e.
(A − λI)= 0 where I is the unit matrix.
If x �= 0 then |A− λI| = 0
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|A− λI| is called the characteristic determinant of A
and |A− λI| = 0 is called the characteristic equation.
Solving the characteristic equationwill give the value(s)
of the eigenvalues, as demonstrated in the following
worked problems.

Problem 9. Determine the eigenvalues of the

matrix A =
(
3 4
2 1

)

The eigenvalue is determined by solving the character-
istic equation |A− λI| = 0
i.e.

∣
∣
∣
∣

(
3 4
2 1

)

− λ

(
1 0
0 1

)∣
∣
∣
∣ = 0

i.e.
∣
∣
∣
∣

(
3 4
2 1

)

−
(

λ 0
0 λ

)∣
∣
∣
∣ = 0

i.e.
∣
∣
∣
∣
3− λ 4
2 1− λ

∣
∣
∣
∣ = 0

(Given a squarematrix, we can get used to going straight
to this characteristic equation)

Hence, (3− λ)(1− λ) − (2)(4) = 0
i.e. 3− 3λ− λ+ λ2− 8= 0
and λ2 − 4λ− 5= 0
i.e. (λ− 5)(λ+ 1) = 0
from which, λ− 5= 0 i.e. λ = 5 or λ+ 1= 0 i.e.
λ = −1
(Instead of factorising, the quadratic formula could be
used; even electronic calculators can solve quadratic
equations.)

Hence, the eigenvalues of the matrix
(
3 4
2 1

)

are 5

and –1

Problem 10. Determine the eigenvectors of the

matrix A =
(
3 4
2 1

)

From Problem 9, the eigenvalues of
(
3 4
2 1

)

are

λ1 = 5 and λ2 = –1

Using the equation (A – λI)x = 0 for λ1 = 5

then
(
3− 5 4
2 1− 5

)(
x1
x2

)

=
(
0
0

)

i.e.
( −2 4

2 −4
)(

x1
x2

)

=
(
0
0

)

from which,
−2x1+ 4x2 = 0

and
2x1− 4x2 = 0

From either of these two equations, x1 = 2x2
Hence, whatever value x2 is, the value of x1 will be
two times greater. Hence the simplest eigenvector is:

x1 =
(
2
1

)

Using the equation (A – λI)x = 0 for λ2 = −1
then

(
3− −1 4
2 1− −1

)(
x1
x2

)

=
(
0
0

)

i.e.
(
4 4
2 2

)(
x1
x2

)

=
(
0
0

)

from which,
4x1+ 4x2 = 0

and
2x1+ 2x2 = 0

From either of these two equations, x1 = −x2 or
x2 = −x1

Hence, whatever value x1 is, the value of x2 will be
–1 times greater. Hence the simplest eigenvector is:

x2 =
(

1
−1

)

Summarising, x1 =
(
2
1

)

is an eigenvector corre-

sponding to λ1 = 5 and x2 =
(

1
–1

)

is an eigenvector

corresponding to λ2 = −1

Problem 11. Determine the eigenvalues of the

matrix A =
(

5 −2
−9 2

)

The eigenvalue is determined by solving the character-
istic equation |A− λI| = 0

i.e.
∣
∣
∣
∣
5− λ −2
−9 2− λ

∣
∣
∣
∣ = 0

Hence, (5− λ)(2− λ) − (−9)(−2) = 0
i.e. 10− 5λ− 2λ+ λ2− 18= 0
and λ2− 7λ− 8= 0
i.e. (λ− 8)(λ+ 1) = 0
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from which, λ− 8= 0 i.e. λ = 8 or λ+ 1= 0 i.e.
λ = −1 (or use the quadratic formula).

Hence, the eigenvalues of the matrix
(

5 −2
−9 2

)

are 8 and −1

Problem 12. Determine the eigenvectors of the

matrix A =
(

5 −2
−9 2

)

From Problem 11, the eigenvalues of
(

5 −2
−9 2

)

are

λ1 = 8 and λ2 = −1
Using the equation (A − λ I )x = 0 for λ1 = 8

then
(
5− 8 −2
−9 2− 8

)(
x1
x2

)

=
(
0
0

)

i.e.
( −3 −2

−9 −6
)(

x1
x2

)

=
(
0
0

)

from which,
−3x1− 2x2 = 0

and
−9x1− 6x2 = 0

From either of these two equations, 3x1 = −2x2 or
x1 = −2

3
x2

Hence, if x2 = 3, x1 = −2. Hence the simplest eigen-
vector is: x1 =

(
–2
3

)

Using the equation (A – λI)x = 0 for λ2 = – 1

then
(
5− −1 −2

−9 2− −1
)(

x1
x2

)

=
(
0
0

)

i.e. (
6 −2

−9 3

)(
x1
x2

)

=
(
0
0

)

from which,

6x1− 2x2 = 0

and

−9x1+ 3x2 = 0

From either of these two equations, x2 = 3x1
Hence, ifx1 = 1,x2 = 3.Hence the simplest eigenvector
is: x2 =

(
1
3

)

Summarising, x1 =
(
–2
3

)

is an eigenvector corre-

sponding to λ1= 8 and x2 =
(
1
3

)

is an eigenvector

corresponding to λ2 = –1

Problem 13. Determine the eigenvalues of the

matrix A =

⎛

⎝
1 2 1
6 −1 0

−1 −2 −1

⎞

⎠

The eigenvalue is determined by solving the character-
istic equation |A− λI| = 0

i.e.

∣
∣
∣
∣
∣
∣

1− λ 2 1
6 −1− λ 0

−1 −2 −1− λ

∣
∣
∣
∣
∣
∣
= 0

Hence, using the top row:

(1− λ)[(−1− λ)(−1− λ) − (−2)(0)]
− 2[6(−1− λ) − (−1)(0)]
+ 1[(6)(−2) − (−1)(−1− λ) = 0

i.e. (1− λ)[1+ λ+ λ+ λ2]− 2[−6− 6λ]
+ 1[−12− 1− λ]= 0

i.e. (1− λ)[λ2+ 2λ+ 1]+ 12+ 12λ
− 13− λ = 0

and λ2+ 2λ+ 1− λ3− 2λ2− λ+ 12+ 12λ
− 13− λ = 0

i.e. −λ3− λ2+ 12λ = 0
or λ3+ λ2− 12λ = 0
i.e. λ(λ2 + λ− 12) = 0
i.e. λ(λ− 3)(λ+ 4) = 0 by factorising
from which, λ = 0, λ = 3 or λ = −4
Hence, the eigenvalues of the matrix⎛

⎝
1 2 1
6 −1 0

−1 −2 −1

⎞

⎠ are 0, 3 and −4

Problem 14. Determine the eigenvectors of the

matrix A =

⎛

⎝
1 2 1
6 −1 0

−1 −2 −1

⎞

⎠

From Problem 13, the eigenvalues of⎛

⎝
1 2 1
6 −1 0

−1 −2 −1

⎞

⎠ are λ1 = 0, λ2 = 3 and λ3 = −4

Using the equation (A – λI)x = 0 for λ1 = 0
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then

⎛

⎝
1− 0 2 1
6 −1− 0 0

−1 −2 −1− 0

⎞

⎠

⎛

⎝
x1
x2
x3

⎞

⎠ =
⎛

⎝
0
0
0

⎞

⎠

i.e.
⎛

⎝
1 2 1
6 −1 0

−1 −2 −1

⎞

⎠

⎛

⎝
x1
x2
x3

⎞

⎠ =
⎛

⎝
0
0
0

⎞

⎠

from which,
x1+ 2x2+ x3 = 0

6x1− x2 = 0
−x1− 2x2− x3 = 0

From the second equation,

6x1 = x2

Substituting in the first equation,

x1+ 12x1+ x3 = 0 i.e. − 13x1 = x3

Hence, when x1 = 1,x2 = 6 and x3 = −13
Hence the simplest eigenvector corresponding to λ1 = 0

is: x1 =
⎛

⎝
1
6

−13

⎞

⎠

Using the equation (A – λI)x = 0 for λ2= 3

then

⎛

⎝
1− 3 2 1
6 −1− 3 0

−1 −2 −1− 3

⎞

⎠

⎛

⎝
x1
x2
x3

⎞

⎠ =
⎛

⎝
0
0
0

⎞

⎠

i.e.
⎛

⎝
−2 2 1
6 −4 0

−1 −2 −4

⎞

⎠

⎛

⎝
x1
x2
x3

⎞

⎠ =
⎛

⎝
0
0
0

⎞

⎠

from which,
−2x1+ 2x2+ x3 = 0

6x1− 4x2 = 0
−x1− 2x2− 4x3 = 0

From the second equation,

3x1 = 2x2
Substituting in the first equation,

−2x1+ 3x1+ x3 = 0 i.e. x3 = −x1

Hence, if x2 = 3, then x1 = 2 and x3 = −2
Hence the simplest eigenvector corresponding to λ2= 3

is: x2 =
⎛

⎝
2
3
–2

⎞

⎠

Using the equation (A – λI)x = 0 for λ2 = – 4

then

⎛

⎝
1− −4 2 1
6 −1− −4 0

−1 −2 −1− −4

⎞

⎠

⎛

⎝
x1
x2
x3

⎞

⎠

=
⎛

⎝
0
0
0

⎞

⎠

i.e.
⎛

⎝
5 2 1
6 3 0

−1 −2 3

⎞

⎠

⎛

⎝
x1
x2
x3

⎞

⎠ =
⎛

⎝
0
0
0

⎞

⎠

from which,
5x1+ 2x2+ x3 = 0

6x1+ 3x2 = 0
−x1− 2x2+ 3x3 = 0

From the second equation,

x2 = −2x1
Substituting in the first equation,

5x1− 4x1+ x3 = 0 i.e. x3 = −x1

Hence, if x1 = −1, then x2 = 2 and x3 = 1
Hence the simplest eigenvector corresponding to λ2 =

−4 is: x3 =
⎛

⎝
–1
2
1

⎞

⎠

Problem 15. Determine the eigenvalues of the

matrix A =

⎛

⎝
1 −4 −2
0 3 1
1 2 4

⎞

⎠

The eigenvalue is determined by solving the character-
istic equation |A−λ I| = 0

i.e.

∣
∣
∣
∣
∣
∣

1− λ −4 −2
0 3− λ 1
1 2 4− λ

∣
∣
∣
∣
∣
∣
= 0

Hence, using the top row:

(1–λ)[(3–λ)(4–λ)–(2)(1)]–(−4)[0–(1)(1)]
− 2[0–1(3–λ)]= 0

i.e. (1− λ)[12− 3λ− 4λ+ λ2− 2]+ 4[−1]
−2[−3+ λ]= 0

i.e. (1− λ)[λ2− 7λ+ 10]− 4+ 6− 2λ = 0
and λ2− 7λ+ 10− λ3+ 7λ2− 10λ− 4+ 6− 2λ = 0
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i.e. −λ3+ 8λ2− 19λ+ 12= 0
or λ3− 8λ2+ 19λ− 12= 0
To solve a cubic equation, the factor theorem (see
Chapter 1) may be used. (Alternatively, electronic
calculators can solve such cubic equations.)

Let f (λ) = λ3− 8λ2+ 19λ− 12
If λ = 1, then f (1) = 13− 8(1)2+ 19(1) − 12= 0
Since f (1) = 0 then (λ− 1) is a factor.
If λ = 2, then f (2) = 23− 8(2)2+ 19(2) − 12 �= 0
If λ = 3, then f (3) = 33− 8(3)2+ 19(3) − 12= 0
Since f (3) = 0 then (λ− 3) is a factor.
If λ = 4, then f (4) = 43− 8(4)2+ 19(4) − 12= 0
Since f (4) = 0 then (λ− 4) is a factor.
Thus, since λ3− 8λ2+ 19λ− 12= 0
then (λ− 1)(λ− 3)(λ− 4) = 0
from which, λ = 1 or λ = 3 or λ = 4
Hence, the eigenvalues of the matrix⎛

⎝
1 −4 −2
0 3 1
1 2 4

⎞

⎠ are 1, 3 and 4

Problem 16. Determine the eigenvectors of the

matrix A =
⎛

⎝
1 −4 −2
0 3 1
1 2 4

⎞

⎠

From Problem 15, the eigenvalues of

⎛

⎝
1 −4 −2
0 3 1
1 2 4

⎞

⎠

are λ1 = 1, λ2 = 3 and λ3 = 4
Using the equation (A – λI)x = 0 for λ1 = 1

then

⎛

⎝
1− 1 −4 −2
0 3− 1 1
1 2 4− 1

⎞

⎠

⎛

⎝
x1
x2
x3

⎞

⎠ =
⎛

⎝
0
0
0

⎞

⎠

i.e.
⎛

⎝
0 −4 −2
0 2 1
1 2 3

⎞

⎠

⎛

⎝
x1
x2
x3

⎞

⎠ =
⎛

⎝
0
0
0

⎞

⎠

from which,
−4x2− 2x3 = 0
2x2+ x3 = 0

x1+ 2x2+ 3x3 = 0
From the first two equations,

x3 = −2x2 (i.e. ifx2 = 1, x3 = −2)

From the last equation,

x1 = −2x2− 3x3 i.e. x1 = −2x2− 3(−2x2)
i.e.

x1 = 4x2 (i.e. if x2 = 1, x1 = 4)
Hence the simplest eigenvector corresponding to λ1= 1

is: x1=
⎛

⎝
4
1

−2

⎞

⎠

Using the equation (A − λI)x = 0 for λ2 = 3

then

⎛

⎝
1− 3 −4 −2
0 3− 3 1
1 2 4− 3

⎞

⎠

⎛

⎝
x1
x2
x3

⎞

⎠ =
⎛

⎝
0
0
0

⎞

⎠

i.e.
⎛

⎝
−2 −4 −2
0 0 1
1 2 1

⎞

⎠

⎛

⎝
x1
x2
x3

⎞

⎠ =
⎛

⎝
0
0
0

⎞

⎠

from which

−2x1− 4x2− 2x3 = 0
x3 = 0

x1+ 2x2+ x3 = 0
Since x3 = 0,x1 = −2x2 (i.e. if x2 = 1,x1 = −2)
Hence the simplest eigenvector corresponding toλ2 = 3
is: x2 =

( −2
1
0

)

Using the equation (A − λI)x = 0 for λ3 = 4

then

(
1− 4 −4 −2
0 3− 4 1
1 2 4− 4

)(
x1
x2
x3

)

=
(
0
0
0

)

i.e.
( −3 −4 −2
0 −1 1
1 2 0

)(
x1
x2
x3

)

=
(
0
0
0

)

from which,

−3x1− 4x2− 2x3 = 0
−x2+ x3 = 0
x1+ 2x2 = 0

from which, x3 = x2 and x1 = −2x2 (i.e. if x2 = 1,
x1 = −2 and x3 = 1)
Hence the simplest eigenvector corresponding to λ3= 4

is: x3 =
⎛

⎝
−2
1
1

⎞

⎠
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Now try the following Practice Exercise

Practice Exercise 114 Eigenvalues and
eigenvectors (Answers on page 873)

For each of the followingmatrices, determine their
(a) eigenvalues (b) eigenvectors

1.
(
2 −4

−1 −1
)

2.
(
3 6
1 4

)

3.
(
3 1

−2 0

)

4.

⎛

⎝
−1 −1 1
−4 2 4
−1 1 5

⎞

⎠ 5.

⎛

⎝
1 −1 0

−1 2 −1
0 −1 1

⎞

⎠

6.

⎛

⎝
2 2 −2
1 3 1
1 2 2

⎞

⎠ 7.

⎛

⎝
1 1 2
0 2 2

−1 1 3

⎞

⎠

For fully worked solutions to each of the problems in Practice Exercises 110 to 114 in this chapter,
go to the website:

www.routledge.com/cw/bird
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Revision Test 7 Complex numbers, matrices and determinants

This Revision Test covers the material contained in Chapters 22 to 25. The marks for each question are shown in
brackets at the end of each question.

1. Solve the quadratic equation x 2−2x +5=0 and
show the roots on an Argand diagram. (9)

2. If Z1=2+ j5, Z2=1−j3 and Z3=4−j deter-
mine, in both Cartesian and polar forms, the value

of
Z1Z2

Z1+Z2
+Z3, correct to 2 decimal places.

(9)

3. Three vectors are represented by A, 4.2∠45◦, B,
5.5∠−32◦ and C,2.8∠75◦. Determine in polar
form the resultant D, where D=B+C−A (8)

4. Two impedances, Z1=(2+j7) ohms and
Z2=(3−j4) ohms, are connected in series to
a supply voltage V of 150∠0◦V. Determine the
magnitude of the current I and its phase angle
relative to the voltage. (6)

5. Determine in both polar and rectangular forms:

(a) [2.37∠35◦]4 (b) [3.2− j4.8]5

(c)
√
[−1− j3] (18)

In questions 6 to 10, the matrices stated are:

A =
(−5 2
7 −8

)

B =
(
1 6

−3 −4
)

C =
(

j3 (1+ j2)
(−1− j4) −j2

)

D =
⎛

⎝
2 −1 3

−5 1 0
4 −6 2

⎞

⎠ E =
⎛

⎝
−1 3 0
4 −9 2

−5 7 1

⎞

⎠

6. Determine A×B (4)

7. Calculate the determinant of matrix C (4)

8. Determine the inverse of matrix A (4)

9. Determine E×D (9)

10. Calculate the determinant of matrixD (6)

11. Solve the following simultaneous equations:

4x − 3y = 17
x + y + 1= 0

using matrices. (7)

12. Use determinants to solve the following simulta-
neous equations:

4x + 9y + 2z = 21
−8x + 6y − 3z = 41
3x + y − 5z = −73 (11)

13. The simultaneous equations representing the cur-
rents flowing in an unbalanced, three-phase, star-
connected, electrical network are as follows:

2.4I1+ 3.6I2+ 4.8I3 = 1.2
−3.9I1+ 1.3I2− 6.5I3 = 2.6
1.7I1+ 11.9I2+ 8.5I3 = 0

Using matrices, solve the equations for I1, I2
and I3 (11)

14. For the matrix
(
2 −4

−1 −1
)

find the (a) eigenval-

ues (b) eigenvectors. (14)

For lecturers/instructors/teachers, fully worked solutions to each of the problems in Revision Test 7,
together with a full marking scheme, are available at the website:

www.routledge.com/cw/bird
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Chapter 26

Vectors

Why it is important to understand: Vectors
Vectors are an important part of the language of science, mathematics, and engineering. They are used to
discuss multivariable calculus, electrical circuits with oscillating currents, stress and strain in structures
and materials, and flows of atmospheres and fluids, and they have many other applications. Resolving a
vector into components is a precursor to computing things with or about a vector quantity. Because posi-
tion, velocity, acceleration, force, momentum, and angular momentum are all vector quantities, resolving
vectors into components is a most important skill required in any engineering studies.

At the end of this chapter, you should be able to:

• distinguish between scalars and vectors
• recognise how vectors are represented
• add vectors using the nose-to-tail method
• add vectors using the parallelogram method
• resolve vectors into their horizontal and vertical components
• add vectors by calculation – horizontal and vertical components, complex numbers
• perform vector subtraction
• understand relative velocity
• understand i, j , k notation

26.1 Introduction

This chapter initially explains the difference between
scalar and vector quantities and shows how a vector is
drawn and represented.
Any object that is acted upon by an external forcewill

respond to that force by moving in the line of the force.
However, if two or more forces act simultaneously, the
result is more difficult to predict; the ability to add two
or more vectors then becomes important.
This chapter thus shows how vectors are added and

subtracted, both bydrawingandbycalculation, andfind-
ing the resultant of two ormore vectors hasmany uses in
engineering. (Resultant means the single vector which

would have the same effect as the individual vectors.)
Relative velocities and vector i,j ,k notation are also
briefly explained.

26.2 Scalars and vectors

The time taken to fill a water tank may be measured as,
say, 50 s. Similarly, the temperature in a room may be
measured as, say, 16◦C, or the mass of a bearing may
be measured as, say, 3kg.
Quantities such as time, temperature and mass are

entirely defined by a numerical value and are called
scalars or scalar quantities.

Higher Engineering Mathematics. 978-1-138-67357-1, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.
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Not all quantities are like this. Some are defined by
more than just size; some also have direction. For exam-
ple, the velocity of a car is 90 km/h due west, or a force
of 20N acts vertically downwards, or an acceleration of
10m/s2 acts at 50◦ to the horizontal.
Quantities such as velocity, force and acceleration,

which have both a magnitude and a direction, are
called vectors.

Now try the following Practice Exercise

Practice Exercise 115 Scalar and vector
quantities (Answers on page 874)

1. State the difference between scalar and vector
quantities.

In Problems 2 to 9, state whether the quantities
given are scalar (S) or vector (V)

2. A temperature of 70◦C

3. 5m3 volume

4. A downward force of 20N

5. 500 J of work

6. 30cm2 area

7. A south-westerly wind of 10 knots

8. 50m distance

9. An acceleration of 15m/s2 at 60◦ to the
horizontal

26.3 Drawing a vector

A vector quantity can be represented graphically by a
line, drawn so that:

(a) the length of the line denotes the magnitude of the
quantity, and

(b) the direction of the line denotes the direction in
which the vector quantity acts.

An arrow is used to denote the sense, or direction, of
the vector. The arrow end of a vector is called the
‘nose’ and the other end the ‘tail’. For example, a
force of 9N acting at 45◦ to the horizontal is shown
in Fig. 26.1.

Note that an angle of+45◦ is drawn from the horizontal
and moves anticlockwise.

9 N

0

a

458

Figure 26.1

A velocity of 20m/s at −60◦ is shown in Fig. 26.2.
Note that an angle of−60◦ is drawn from the horizontal
and moves clockwise.

60�

20 m/s

0

b

Figure 26.2

Representing a vector
There are a number of ways of representing vector
quantities. These include:

1. Using bold print

2.
−→
AB where an arrow above two capital letters
denotes the sense of direction, where A is the
starting point and B the end point of the vector

3. AB or a i.e. a line over the top of letters

4. a i.e. an underlined letter

The force of 9N at 45◦ shown in Fig. 26.1 may be
represented as:

0a or
−→
0a or 0a

The magnitude of the force is 0a
Similarly, the velocity of 20m/s at −60◦ shown in
Fig. 26.2 may be represented as:

0b or
−→
0b or 0b

The magnitude of the velocity is 0b
In this chapter a vector quantity is denoted by bold
print.
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26.4 Addition of vectors by drawing

Adding two or more vectors by drawing assumes that
a ruler, pencil and protractor are available. Results
obtained by drawing are naturally not as accurate as
those obtained by calculation.

(a) Nose-to-tail method
Two force vectors, F1 and F2, are shown in Fig. 26.3.
When an object is subjected to more than one force,
the resultant of the forces is found by the addition of
vectors.

�

F2

F1

Figure 26.3

To add forces F1 and F2:

(i) ForceF1 is drawn to scale horizontally, shown as
0a in Fig. 26.4.

(ii) From the nose of F1, force F2 is drawn at angle
θ to the horizontal, shown as ab.

(iii) The resultant force is given by length 0b, which
may be measured.

This procedure is called the ‘nose-to-tail’ or ‘triangle’
method.

�
F2

F1 a

b

0

Figure 26.4

(b) Parallelogrammethod
To add the two force vectors,F1 andF2, of Fig. 26.3:

(i) A line cb is constructed which is parallel to and
equal in length to 0a (see Fig. 26.5).

(ii) A line ab is constructed which is parallel to and
equal in length to 0c.

(iii) The resultant force is given by the diagonal of the
parallelogram, i.e. length 0b.

This procedure is called the ‘parallelogram’ method.

0

c

F1

F2

a

b

�

Figure 26.5

Problem 1. A force of 5N is inclined at an angle
of 45◦ to a second force of 8N, both forces acting at
a point. Find the magnitude of the resultant of these
two forces and the direction of the resultant with
respect to the 8N force by:
(a) the ‘nose-to-tail’ method, and (b) the
‘parallelogram’ method.

The two forces are shown in Fig. 26.6. (Although the
8N force is shown horizontal, it could have been drawn
in any direction.)

458

5 N

8 N

Figure 26.6

(a) ‘Nose-to tail’ method

(i) The 8 N force is drawn horizontally 8 units long,
shown as 0a in Fig. 26.7

(ii) From the nose of the 8N force, the 5N force
is drawn 5 units long at an angle of 45◦ to the
horizontal, shown as ab

(iii) The resultant force is given by length 0b and
is measured as 12N and angle θ is measured
as 17◦

458

5 N

8 N a
0

b

�

Figure 26.7
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(b) ‘Parallelogram’ method

(i) In Fig. 26.8, a line is constructedwhich is parallel
to and equal in length to the 8N force

(ii) A line is constructedwhich is parallel to and equal
in length to the 5N force

(iii) The resultant force is given by the diagonal
of the parallelogram, i.e. length 0b, and is
measured as 12N and angle θ is measured
as 17◦.

458

5 N

8 N

b

0
�

Figure 26.8

Thus, the resultant of the two force vectors inFig. 26.6
is 12N at 17◦ to the 8N force.

Problem 2. Forces of 15N and 10N are at an
angle of 90◦ to each other as shown in Fig. 26.9.
Find, by drawing, the magnitude of the resultant of
these two forces and the direction of the resultant
with respect to the 15N force.

15 N

10 N

Figure 26.9

Using the ‘nose-to-tail’ method:

(i) The 15N force is drawn horizontally 15 units
long as shown in Fig. 26.10

(ii) From the nose of the 15N force, the 10N force
is drawn 10 units long at an angle of 90◦ to the
horizontal as shown

(iii) The resultant force is shown asR and ismeasured
as 18N and angle θ is measured as 34◦

Thus, the resultant of the two force vectors is 18N at
34◦ to the 15N force.

10 N
R

15 N

�

Figure 26.10

Problem 3. Velocities of 10m/s, 20m/s and
15m/s act as shown in Fig. 26.11. Determine, by
drawing, the magnitude of the resultant velocity and
its direction relative to the horizontal.

158

�3

�2

�1

308

10 m/s

20 m/s

15 m/s

Figure 26.11

When more than two vectors are being added the ‘nose-
to-tail’ method is used.
The order in which the vectors are added does not mat-
ter. In this case the order taken is v1, then v2, then v3.
However, if a different order is taken the same result
will occur.

(i) v1 is drawn 10 units long at an angle of 30◦ to the
horizontal, shown as 0a in Fig. 26.12.

(ii) From the nose of v1, v2 is drawn 20 units long at
an angle of 90◦ to the horizontal, shown as ab.

(iii) From the nose of v2, v3 is drawn 15 units long at
an angle of 195◦ to the horizontal, shown as br.

(iv) The resultant velocity is given by length 0r and
is measured as 22m/s and the angle measured to
the horizontal is 105◦.

Thus, the resultant of the three velocities is 22m/s at
105◦ to the horizontal.
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b

195�

105�

30�

O

r

a

l 26.12

Worked Problems 1 to 3 have demonstrated how
vectors are added to determine their resultant and their
direction. However, drawing to scale is time-consuming
and not highly accurate. The following sections demon-
strate how to determine resultant vectors by calculation
using horizontal and vertical components and, where
possible, by Pythagoras’ theorem.

26.5 Resolving vectors into horizontal
and vertical components

A force vectorF is shown in Fig. 26.13 at angle θ to the
horizontal. Such a vector can be resolved into two com-
ponents such that the vector addition of the components
is equal to the original vector.

�

F

Figure 26.13

The two components usually taken are a horizontal
component and a vertical component.
If a right-angled triangle is constructed as shown in

Fig. 26.14, then 0a is called the horizontal component
of F and ab is called the vertical component of F .

0 a

F

b

�

Figure 26.14

From trigonometry (see Chapter 12),

cosθ = 0a
0b

from which, 0a= 0bcosθ
= F cosθ

i.e. the horizontal component of F = F cosθ

and sinθ = ab
0b

from which, ab= 0bsin θ

= F sinθ

i.e. the vertical component ofF = F sin θ

Problem 4. Resolve the force vector of 50N at an
angle of 35◦ to the horizontal into its horizontal and
vertical components.

The horizontal component of the 50N force,
0a= 50cos35◦ = 40.96N
The vertical component of the 50N force,
ab= 50sin35◦ = 28.68N
The horizontal and vertical components are shown in
Fig. 26.15.

358
0

40.96 N

28.68 N50 N

a

b

Figure 26.15

(Checking: by Pythagoras, 0b= √
40.962+ 28.682

= 50N
and θ = tan−1

(
28.68
40.96

)

=35◦

Thus, the vector addition of components 40.96N and
28.68N is 50N at 35◦)

Problem 5. Resolve the velocity vector of 20m/s
at an angle of −30◦ to the horizontal into horizontal
and vertical components.

The horizontal component of the 20m/s velocity,
0a= 20cos(−30◦) = 17.32m/s
The vertical component of the 20m/s velocity,
ab= 20sin(−30◦) = −10m/s
The horizontal and vertical components are shown in
Fig. 26.16.
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308
20m/s

210 m/s

17.32 m/s

b

a
0

Figure 26.16

Problem 6. Resolve the displacement vector of
40m at an angle of 120◦ into horizontal and vertical
components.

The horizontal component of the 40m displacement,
0a= 40cos120◦ = −20.0m
The vertical component of the 40m displacement,
ab= 40sin120◦ = 34.64m
The horizontal and vertical components are shown in
Fig. 26.17.

220.0 N

40 N

1208

0

34.64 N

a

b

Figure 26.17

26.6 Addition of vectors by
calculation

Two force vectors, F1 and F2, are shown in Fig. 26.18,
F1 being at an angle of θ1 and F2 being at an angle
of θ2

F1 F2

F
1  

si
n  

�
1

F
2  

si
n  

�
2

H

V

�1
�2

F2 cos �2

F1 cos �1

Figure 26.18

A method of adding two vectors together is to use
horizontal and vertical components.
The horizontal component of force F1 is F1 cosθ1 and
the horizontal component of force F2 is F2 cosθ2
The total horizontal component of the two forces,
H = F1 cosθ1+ F2 cosθ2
The vertical component of force F1 is F1 sin θ1 and the
vertical component of force F2 is F2 sinθ2
The total vertical component of the two forces,
V = F1 sinθ1+ F2 sinθ2
Since we have H and V , the resultant of F1 and F2
is obtained by using the theorem of Pythagoras. From
Fig. 26.19, 0b2 = H 2+ V 2

i.e. resultant =
√

H 2 + V 2 at an angle

given by θ = tan−1
(

V

H

)

V

b

Resu
lta

nt

a
H

0
�

Figure 26.19

Problem 7. A force of 5N is inclined at an angle
of 45◦ to a second force of 8N, both forces acting at
a point. Calculate the magnitude of the resultant of
these two forces and the direction of the resultant
with respect to the 8N force.

The two forces are shown in Fig. 26.20.

458

8 N

5 N

Figure 26.20

The horizontal component of the 8N force is 8cos0 ◦
and the horizontal component of the 5N force is
5cos45◦
The total horizontal component of the two forces,

H = 8cos0◦ + 5cos45◦ = 8+ 3.5355
= 11.5355

Download more at Learnclax.com



Se
ct

io
n

F

Vectors 311

The vertical component of the 8N force is 8sin0◦
and the vertical component of the 5N force is 5sin45 ◦
The total vertical component of the two forces,

V = 8sin0◦ + 5sin45◦ = 0+ 3.5355
= 3.5355

From Fig. 26.21, magnitude of resultant vector

= √
H 2+ V 2

= √
11.53552+ 3.53552 = 12.07N

�

Resu
lta

nt

H �11.5355 N

V � 3.5355 N

Figure 26.21

The direction of the resultant vector,

θ = tan−1
(

V

H

)

= tan−1
(
3.5355
11.5355

)

= tan−1 0.30648866 . . . = 17.04◦

Thus, the resultant of the two forces is a single vector
of 12.07N at 17.04◦ to the 8N vector.

Perhaps an easier and quicker method of calculating
the magnitude and direction of the resultant is to use
complex numbers (see Chapter 22).

In this example, the resultant

= 8∠0◦ + 5∠45◦

= (8cos0◦ + j8sin0◦) + (5cos45◦ + j5sin45◦)

= (8+ j0) + (3.536+ j3.536)

= (11.536+ j3.536)N or 12.07∠17.04◦N

as obtained above using horizontal and vertical
components.

Problem 8. Forces of 15N and 10N are at an
angle of 90◦ to each other as shown in Fig. 26.22.
Calculate the magnitude of the resultant of these
two forces and its direction with respect to the
15N force.

10 N

15 N

Figure 26.22

The horizontal component of the 15N force is 15cos0 ◦
and the horizontal component of the 10N force is
10cos90◦
The total horizontal component of the two velocities,

H = 15cos0◦ + 10cos90◦ = 15+ 0= 15

The vertical component of the 15N force is 15sin0 ◦
and the vertical component of the 10N force is 10sin90 ◦
The total vertical component of the two velocities,

V = 15sin0◦ + 10sin90◦ = 0+ 10= 10

Magnitude of resultant vector
= √

H 2+ V 2 = √
152+ 102 = 18.03N

The direction of the resultant vector,

θ = tan−1
(

V

H

)

= tan−1
(
10
15

)

= 33.69◦

Thus, the resultant of the two forces is a single vector
of 18.03N at 33.69◦ to the 15N vector.

There is an alternative method of calculating the resul-
tant vector in this case. If we used the triangle method,
then the diagram would be as shown in Fig. 26.23.

15 N

10 N
R

�

Figure 26.23

Since a right-angled triangle results then we could use
Pythagoras’ theorem without needing to go through
the procedure for horizontal and vertical components.
In fact, the horizontal and vertical components are 15N
and 10N respectively.
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This is, of course, a special case. Pythagoras can only be
used when there is an angle of 90◦ between vectors.
This is demonstrated in the next worked problem.

Problem 9. Calculate the magnitude and
direction of the resultant of the two acceleration
vectors shown in Fig. 26.24.

15 m/s2

28 m/s2

Figure 26.24

The 15m/s2 acceleration is drawn horizontally, shown
as 0a in Fig. 26.25.
From the nose of the 15m/s2 acceleration, the 28m/s2
acceleration is drawn at an angle of 90◦ to the horizontal,
shown as ab.

015a

28

b

R

� �

Figure 26.25

The resultant acceleration R is given by length 0b.
Since a right-angled triangle results, the theorem of
Pythagoras may be used.

0b =
√
152+ 282 = 31.76m/s2

and α = tan−1
(
28
15

)

= 61.82◦

Measuring from the horizontal,
θ = 180◦ − 61.82◦ = 118.18◦

Thus, the resultant of the two accelerations is a single
vector of 31.76m/s2 at 118.18◦ to the horizontal.

Problem 10. Velocities of 10m/s, 20m/s and
15m/s act as shown in Fig. 26.26. Calculate the
magnitude of the resultant velocity and its direction
relative to the horizontal.

20 m/s

10 m/s

15 m/s

158

308

�1

�2

�3

Figure 26.26

The horizontal component of the 10m/s velocity is
10cos30◦ = 8.660m/s,
the horizontal component of the 20m/s velocity is
20cos90◦ = 0m/s,
and the horizontal component of the 15m/s velocity is
15cos195◦ = −14.489m/s.
The total horizontal component of the three velocities,

H = 8.660+ 0− 14.489= −5.829m/s

The vertical component of the 10m/s velocity is
10sin30◦ = 5m/s,
the vertical component of the 20m/s velocity is
20sin90◦ = 20m/s,
and the vertical component of the 15m/s velocity is
15sin195◦ = −3.882m/s.
The total vertical component of the three forces,

V = 5+ 20− 3.882= 21.118m/s
From Fig. 26.27, magnitude of resultant vector,

R = √
H 2+ V 2 = √

5.8292+ 21.1182 = 21.91m/s
The direction of the resultant vector,

α= tan−1
(

V

H

)

= tan−1
(
21.118
5.829

)

= 74.57◦

Measuring from the horizontal,
θ = 180◦ − 74.57◦ = 105.43◦
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5.829

21.118

R

� �

Figure 26.27

Thus, the resultant of the three velocities is a single
vector of 21.91m/s at 105.43◦ to the horizontal.

Using complex numbers, from Fig. 26.26,

resultant = 10∠30◦ + 20∠90◦ + 15∠195◦

= (10cos30◦ + j10sin30◦)

+ (20cos90◦ + j20sin90◦)

+ (15cos195◦ + j15sin195◦)

= (8.660+ j5.000) + (0+ j20.000)

+ (−14.489− j3.882)

= (−5.829+ j21.118)N or

21.91∠105.43◦N

as obtained above using horizontal and vertical
components.

The method used to add vectors by calculation will
not be specified – the choice is yours, but probably
the quickest and easiest method is by using complex
numbers.

Now try the following Practice Exercise

Practice Exercise 116 Addition of vectors
by calculation (Answers on page 874)

1. A force of 7N is inclined at an angle of 50◦ to
a second force of 12N, both forces acting at
a point. Calculate magnitude of the resultant
of the two forces, and the direction of the
resultant with respect to the 12N force.

2. Velocities of 5m/s and 12m/s act at a point
at 90◦ to each other. Calculate the resultant
velocity and its direction relative to the 12m/s
velocity.

3. Calculate the magnitude and direction of the
resultant of the two force vectors shown in
Fig. 26.28.

10 N

13 N

Figure 26.28

4. Calculate the magnitude and direction of the
resultant of the two force vectors shown in
Fig. 26.29.

22 N

18 N

Figure 26.29

5. A displacement vector s1 is 30m at 0◦. A sec-
ond displacement vector s2 is 12m at 90◦.
Calculate magnitude and direction of the
resultant vector s1+ s2

6. Three forces of 5N, 8Nand13Nact as shown
in Fig. 26.30. Calculate the magnitude and
direction of the resultant force.

5 N

13 N

8 N

708

608

Figure 26.30
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7. If velocityv1 = 25m/s at 60◦ andv2 = 15m/s
at −30◦, calculate the magnitude and direc-
tion of v1+ v2

8. Calculate the magnitude and direction of the
resultant vector of the force system shown in
Fig. 26.31.

308

158

608

6 N

8 N4 N

Figure 26.31

9. Calculate the magnitude and direction of
the resultant vector of the system shown in
Fig. 26.32.

158

458

2 m/s

4 m/s

3.5 m/s

308

Figure 26.32

10. An object is acted uponby two forces ofmag-
nitude 10N and 8N at an angle of 60◦ to each
other. Determine the resultant force on the
object.

11. A ship heads in a direction of E20◦S at a
speed of 20knots while the current is 4knots
in a direction ofN30◦E.Determine the speed
and actual direction of the ship.

26.7 Vector subtraction

In Fig. 26.33, a force vector F is represented by oa.
The vector (−oa) can be obtained by drawing a vector
from o in the opposite sense to oa but having the same
magnitude, shown as ob in Fig. 26.33, i.e. ob = (−oa)

b

o
2F

F
a

Figure 26.33

For two vectors acting at a point, as shown in
Fig. 26.34(a), the resultant of vector addition is:
os = oa + ob

Figure 26.33(b) shows vectors ob + (−oa), that is,
ob − oa and the vector equation is ob − oa = od. Com-
paring od in Fig. 26.34(b) with the broken line ab in
Fig. 26.34(a) shows that the second diagonal of the
‘parallelogram’ method of vector addition gives the
magnitude and direction of vector subtraction of oa

from ob.

(b)(a)
a�a

d bb s

ao o

Figure 26.34

Problem 11. Accelerations of a1 = 1.5m/s2 at
90◦ and a2 = 2.6m/s2 at 145◦ act at a point. Find
a1+ a2 and a1− a2 (a) by drawing a scale vector
diagram, and (b) by calculation.

(a) The scale vector diagram is shown in Fig. 26.35.
By measurement,

a1+ a2 = 3.7m/s2 at 126◦

a1− a2 = 2.1m/s2 at 0◦
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a1� a2

a1� a2

2.6 m/s2

Scale in m/s2

1.5 m/s2

145�

1 2 30

126�

a1

�a2

a2

a1

Figure 26.35

(b) Resolving horizontally and vertically gives:
Horizontal component of a1+a2,

H = 1.5cos90◦+2.6cos145◦ = −2.13
Vertical component of a1+ a2,

V = 1.5sin90◦ + 2.6sin145◦ = 2.99
From Fig. 26.36, magnitude of a1+ a2,

R =√
(−2.13)2+ 2.992 = 3.67m/s2

In Fig. 26.36, α = tan−1
(
2.99
2.13

)

= 54.53◦ and

θ = 180◦ − 54.53◦ = 125.47◦

Thus, a1+ a2 = 3.67m/s2 at 125.47◦

R

022.13

2.99

�
�

Figure 26.36

Horizontal component of a1−a2
=1.5cos90◦ − 2.6cos145◦= 2.13

Vertical component of a1− a2
= 1.5sin90◦ − 2.6sin145◦ = 0

Magnitude of a1−a2=
√
2.132+02

= 2.13m/s2

Direction of a1− a2 = tan−1
(
0
2.13

)

= 0◦

Thus, a1− a2 = 2.13m/s2 at 0◦

Problem 12. Calculate the resultant of (a)
v1− v2+ v3 and (b) v2− v1− v3 when v1 = 22
units at 140◦, v2 = 40 units at 190◦ and v3 = 15
units at 290◦.

(a) The vectors are shown in Fig. 26.37.

15

40

22

1408

1908

2908
2H 1H

1V

2V

Figure 26.37

The horizontal component of

v1− v2+ v3 = (22cos140◦) − (40cos190◦)

+ (15cos290◦)

= (−16.85) − (−39.39) + (5.13)

= 27.67units

The vertical component of

v1− v2+ v3 = (22sin140◦) − (40sin190◦)

+ (15sin290◦)

= (14.14) − (−6.95) + (−14.10)
= 6.99units

The magnitude of the resultant,
R =

√
27.672+ 6.992 = 28.54units

The direction of the resultant R= tan−1
(
6.99
27.67

)

= 14.18◦

Thus, v1− v2+ v3 = 28.54 units at 14.18◦
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Using complex numbers,

v1−v2+v3 = 22∠140◦ −40∠190◦+15∠290◦

= (−16.853+ j14.141)

− (−39.392− j6.946)

+ (5.130− j14.095)

= 27.669+j6.992=28.54∠14.18◦

(b) The horizontal component of

v2 − v1− v3 = (40cos190◦) − (22cos140◦)

− (15cos290◦)

= (−39.39) − (−16.85) − (5.13)

= −27.67 units

The vertical component of

v2− v1− v3 = (40sin190◦) − (22sin140◦)

− (15sin290◦)

= (−6.95) − (14.14) − (−14.10)
= −6.99 units

From Fig. 26.38 the magnitude of the resultant,
R =

√
(−27.67)2+ (−6.99)2 = 28.54 units

and α = tan−1
(
6.99
27.67

)

= 14.18◦, from which,

θ = 180◦ + 14.18◦ = 194.18◦

R

0
227.67

26.99

�

�

Figure 26.38

Thus, v2 − v1− v3 = 28.54 units at 194.18◦

This result is as expected, since v2− v1− v3 =
−(v1− v2+ v3) and the vector 28.54 units at
194.18◦ is minus times (i.e. is 180◦ out of phase
with) the vector 28.54 units at 14.18◦

Using complex numbers,

v2−v1−v3=40∠190◦−22∠140◦−15∠290◦

= (−39.392− j6.946)

− (−16.853+ j14.141)

− (5.130− j14.095)

= −27.669− j6.992

= 28.54∠−165.82◦ or

28.54∠194.18◦

Now try the following Practice Exercise

Practice Exercise 117 Vector subtraction
(Answers on page 874)

1. Forces of F1 = 40N at 45◦ and F2 = 30N at
125◦ act at a point. Determine by drawing and
by calculation: (a) F1+ F2 (b) F1− F2

2. Calculate the resultant of (a) v1+ v2− v3
(b) v3− v2+ v1 when v1 = 15m/s at 85◦,
v2 = 25m/s at 175◦ and v3 = 12m/s at 235◦

26.8 Relative velocity

For relative velocity problems, some fixed datum point
needs to be selected. This is often a fixed point on the
Earth’s surface. In any vector equation, only the start
and finish points affect the resultant vector of a system.
Two different systems are shown in Fig. 26.39, but in
each of the systems, the resultant vector is ad.

a d

b

(a)

a
d

b

c

(b)
Figure 26.39

Thevector equation of the systemshown inFig. 26.39(a)
is:

ad = ab + bd

and that for the system shown in Fig. 26.39(b) is:

ad = ab + bc + cd
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Thus in vector equations of this form, only the first and
last letters, ‘a’ and ‘d’, respectively, fix the magnitude
and direction of the resultant vector. This principle is
used in relative velocity problems.

Problem 13. Two cars, P andQ, are travelling
towards the junction of two roads which are at right
angles to one another. Car P has a velocity of
45km/h due east and carQ a velocity of 55km/h
due south. Calculate (a) the velocity of car P
relative to carQ, and (b) the velocity of carQ
relative to car P .

(a) The directions of the cars are shown in
Fig. 26.40(a), called a space diagram. The veloc-
ity diagram is shown in Fig. 26.40(b), in which
pe is taken as the velocity of car P relative to
point e on the Earth’s surface. The velocity of P

relative to Q is vector pq and the vector equa-
tion is pq = pe + eq. Hence the vector directions
are as shown, eq being in the opposite direction
to qe.
From the geometry of the vector triangle, the mag-
nitude of pq = √

452+ 552 = 71.06km/h and the
direction of pq = tan−1

(
55
45

)

= 50.71◦

i.e. the velocity of car P relative to car Q is
71.06km/h at 50.71◦

(a) (b) (c)

QP

E

N

W

S

55 km/h

45 km/h
p

e

q

p e

q

Figure 26.40

(b) The velocity of carQ relative to car P is given by
the vector equation qp = qe + ep and the vector
diagram is as shown in Fig. 26.40(c), having ep

opposite in direction to pe.
From the geometry of this vector triangle, the
magnitude of qp = √

452+ 552 = 71.06m/s and
the direction of qp = tan−1

(
55
45

)

= 50.71◦ but

must lie in the third quadrant, i.e. the required
angle is: 180◦ + 50.71◦ = 230.71◦

i.e. the velocity of car Q relative to car P is
71.06m/s at 230.71◦

Now try the following Practice Exercise

Practice Exercise 118 Relative velocity
(Answers on page 874)

1. A car is moving along a straight horizontal
road at 79.2km/h and rain is falling vertically
downwards at 26.4km/h. Find the velocity of
the rain relative to the driver of the car.

2. Calculate the time needed to swim across a
river 142mwide when the swimmer can swim
at 2km/h in still water and the river is flowing
at 1 km/h. At what angle to the bank should
the swimmer swim?

3. A ship is heading in a direction N 60◦ E at a
speed which in still water would be 20km/h.
It is carried off course by a current of 8km/h
in a direction of E 50◦ S. Calculate the ship’s
actual speed and direction.

26.9 i, j and k notation

A method of completely specifying the direction of a
vector in space relative to some reference point is to use
three unit vectors, i, j and k, mutually at right angles
to each other, as shown in Fig. 26.41.

y

x

0

z

k

j
i

Figure 26.41

Calculations involving vectors given in i,j k notation
are carried out in exactly the same way as standard
algebraic calculations, as shown in theworked examples
below.
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Problem 14. Determine:
(3i + 2j + 2k) − (4i − 3j + 2k)

(3i + 2j + 2k) − (4i − 3j + 2k) = 3i + 2j + 2k
− 4i + 3j − 2k

= −i + 5j

Problem 15. Given p = 3i + 2k,

q = 4i − 2j + 3k and r = −3i + 5j − 4k
determine:

(a) −r (b) 3p (c) 2p + 3q (d) −p + 2r
(e) 0.2p + 0.6q − 3.2r

(a) −r = −(−3i + 5j − 4k) = +3i − 5j + 4k
(b) 3p = 3(3i + 2k) = 9i + 6k
(c) 2p + 3q = 2(3i + 2k) + 3(4i − 2j + 3k)

= 6i + 4k + 12i − 6j + 9k
= 18i − 6j + 13k

(d) −p + 2r = −(3i + 2k) + 2(−3i + 5j − 4k)

= −3i − 2k + (−6i + 10j − 8k)

= −3i − 2k − 6i + 10j − 8k
= −9i + 10j − 10k

(e) 0.2p + 0.6q − 3.2r = 0.2(3i + 2k)

+0.6(4i − 2j + 3k) − 3.2(−3i + 5j − 4k)

= 0.6i + 0.4k + 2.4i − 1.2j + 1.8k
+9.6i − 16j + 12.8k

= 12.6i − 17.2j + 15k

Now try the following Practice Exercise

Practice Exercise 119 i, j , k notation
(Answers on page 874)

Given that p = 2i +0.5j −3k, q = −i+j +4k
and r = 6j − 5k, evaluate and simplify the follow-
ing vectors in i, j , k form:
1. −q

2. 2p
3. q + r

4. −q + 2p
5. 3q + 4r
6. q − 2p
7. p + q + r

8. p + 2q + 3r
9. 2p + 0.4q + 0.5r
10. 7r − 2q

For fully worked solutions to each of the problems in Practice Exercises 115 to 119 in this chapter,
go to the website:

www.routledge.com/cw/bird
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Chapter 27

Methods of adding
alternating waveforms

Why it is important to understand:Methods of adding alternating waveforms
In electrical engineering, a phasor is a rotating vector representing a quantity such as an alternating
current or voltage that varies sinusoidally. Sometimes it is necessary when studying sinusoidal quantities
to add together two alternating waveforms, for example in an a.c. series circuit, where they are not
in-phase with each other. Electrical engineers, electronics engineers, electronic engineering technicians
and aircraft engineers all use phasor diagrams to visualise complex constants and variables. So, given
oscillations to add and subtract, the required rotating vectors are constructed, called a phasor diagram,
and graphically the resulting sum and/or difference oscillation are added or calculated. Phasors may be
used to analyse the behaviour of electrical andmechanical systems that have reached akind of equilibrium
called sinusoidal steady state. Hence, discovering different methods of combining sinusoidal waveforms
is of some importance in certain areas of engineering.

At the end of this chapter, you should be able to:

• determine the resultant of two phasors by graph plotting
• determine the resultant of two or more phasors by drawing
• determine the resultant of two phasors by the sine and cosine rules
• determine the resultant of two or more phasors by horizontal and vertical components
• determine the resultant of two or more phasors by complex numbers

27.1 Combination of two periodic
functions

There are a number of instances in engineering and sci-
ence where waveforms have to be combined and where
it is required to determine the single phasor (called
the resultant) that could replace two or more separate
phasors. Uses are found in electrical alternating cur-
rent theory, in mechanical vibrations, in the addition of
forces and with sound waves.

There are a number of methods of determining the
resultant waveform. These include:

(a) by drawing the waveforms and adding graphically
(b) by drawing the phasors and measuring the

resultant
(c) by using the cosine and sine rules
(d) by using horizontal and vertical components
(e) by using complex numbers

Higher Engineering Mathematics. 978-1-138-67357-1, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.
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27.2 Plotting periodic functions

This may be achieved by sketching the separate func-
tions on the same axes and then adding (or subtracting)
ordinates at regular intervals. This is demonstrated in
the following worked Problems.

Problem 1. Plot the graph of y1 = 3sinA from
A = 0◦ to A = 360◦. On the same axes plot
y2 = 2cosA. By adding ordinates, plot
yR = 3sinA + 2cosA and obtain a sinusoidal
expression for this resultant waveform.

y1 = 3sinA and y2 = 2cosA are shown plotted
in Fig. 27.1. Ordinates may be added at, say, 15◦
intervals. For example,

at 0◦, y1+ y2 = 0+ 2= 2
at 15◦, y1+ y2 = 0.78+ 1.93= 2.71
at 120◦, y1+ y2 = 2.60+ −1= 1.6
at 210◦, y1+ y2 = −1.50−1.73= −3.23, and
so on.

The resultant waveform, shown by the broken line,
has the same period, i.e. 360◦, and thus the same fre-
quency as the single phasors. The maximum value, or
amplitude, of the resultant is 3.6. The resultant wave-
form leads y1 = 3sinA by 34◦ or 34× π

180
rad=

0.593 rad.
The sinusoidal expression for the resultant wave-
form is:

yR = 3.6 sin(A+34◦ ) or

yR = 3.6 sin(A+ 0.593)

y

y15 3 sin A

y25 2 cos A

yR5 3.6 sin(A 1 34)8

A0

23

22

21

3

3.6

2

1

348

908 1808 2708 3608

Figure 27.1

Problem 2. Plot the graphs of y1 = 4sinωt and
y2 = 3sin(ωt − π/3) on the same axes, over one
cycle. By adding ordinates at intervals plot
yR = y1+ y2 and obtain a sinusoidal expression for
the resultant waveform.

y1 = 4sinωt and y2 = 3sin(ωt − π/3) are shown plot-
ted in Fig. 27.2.

908

y

y15 4 sin �t

y25 3 sin(�t 2 �/3)

0

26

24

22

6
6.1

4

2

258

258

yR5 y11 y2

�t1808 2708 3608

�/2 � 3�/2 2�

Figure 27.2

Ordinates are added at 15◦ intervals and the resul-
tant is shown by the broken line. The amplitude
of the resultant is 6.1 and it lags y1 by 25◦
or 0.436 rad.
Hence, the sinusoidal expression for the resultant wave-
form is:

yR = 6.1 sin(ωt − 0.436)

Problem 3. Determine a sinusoidal expression
for y1− y2 when y1 = 4sinωt and
y2 = 3sin(ωt − π/3)

y1 and y2 are shownplotted in Fig. 27.3.At 15◦ intervals
y2 is subtracted from y1. For example:

at 0◦, y1− y2 = 0− (−2.6) = +2.6
at 30◦, y1− y2 = 2− (−1.5) = +3.5
at 150◦, y1− y2 = 2− 3= −1,and so on.

The amplitude, or peak value of the resultant (shown by
the broken line), is 3.6 and it leads y1 by 45◦ or 0.79
rad. Hence,

y1− y2 = 3.6 sin(ωt+ 0.79)
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908

y

y1

0

24

22

4

2
3.6

458

y2

y12 y2

�t1808 2708 3608
�/2 � 3�/2 2�

Figure 27.3

Problem 4. Two alternating currents are given by:
i1=20sinωt amperes and
i2=10sin

(
ωt + π

3

)
amperes.

By drawing the waveforms on the same axes and
adding, determine the sinusoidal expression for the
resultant i1+ i2

i1 and i2 are shown plotted in Fig. 27.4. The resultant
waveform for i1+ i2 is shown by the broken line. It has
the same period, and hence frequency, as i1 and i2

2� angle �t

198

198

i15 20 sin �t

908 1808 2708 3608

230

220

210

10

20

26.5
30

3�
2

�
2
�

iR5 20 sin �t 110 sin (�t 1    )3
�

i25 10 sin(�t 1    )3
�

Figure 27.4

The amplitude or peak value is 26.5 A
The resultant waveform leads the waveform of
i1 = 20sinωt by 19◦ or 0.33 rad
Hence, the sinusoidal expression for the resultant i1+ i2
is given by:

iR = i1+ i2 = 26.5sin (ωt + 0.33) A

Now try the following Practice Exercise

Practice Exercise 120 Plotting periodic
functions (Answers on page 874)

1. Plot the graph of y =2sinA from A=0◦
to A=360◦. On the same axes plot
y = 4cosA. By adding ordinates at intervals
plot y=2sinA + 4cosA and obtain a sinu-
soidal expression for the waveform.

2. Two alternating voltages are given by
v1= 10sinωt volts and v2=14sin(ωt +π /3)
volts. By plotting v1 and v2 on the same axes
over one cycle obtain a sinusoidal expression
for (a) v1+ v2 (b) v1− v2

3. Express 12sinωt + 5cosωt in the form
Asin(ωt ± α) by drawing and measurement.

27.3 Determining resultant phasors
by drawing

The resultant of two periodic functions may be found
from their relative positions when the time is zero.
For example, if y1 = 4sinωt and y2 = 3sin(ωt − π/3)
then each may be represented as phasors as shown in
Fig. 27.5, y1 being 4 units long and drawn horizontally
and y2 being 3 units long, lagging y1 by π /3 radians or
60◦. To determine the resultant of y1+ y2, y1 is drawn
horizontally as shown in Fig. 27.6 and y2 is joined to the

608 or �/3 rads

y15 4

y25 3

Figure 27.5

y15 4

y
2 5

3

0
� 608

yR

Figure 27.6
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y15 4

y25 3

�

yR

Figure 27.7

end of y1 at 60◦ to the horizontal. The resultant is given
byyR.This is the same as the diagonal of a parallelogram
that is shown completed in Fig. 27.7.
Resultant yR, in Figs. 27.6 and 27.7,may be determined
by drawing the phasors and their directions to scale and
measuring using a ruler and protractor.
In this example, yR ismeasured as 6 units long and angle
φ is measured as 25◦

25◦ = 25× π

180
radians = 0.44 rad

Hence, summarising, by drawing:
yR = y1+y2 = 4sinωt + 3sin(ωt − π/3)

= 6sin(ωt − 0.44)
If the resultant phasor yR = y1− y2 is required, then y2
is still 3 units long but is drawn in the opposite direction,
as shown in Fig. 27.8.

608

608

�

y15 4

2y25 3yR

y2

Figure 27.8

Problem 5. Two alternating currents are
given by: i1 = 20sinωt amperes and
i2 = 10sin

(
ωt + π

3

)
amperes. Determine i1+ i2

by drawing phasors.

The relative positions of i1 and i2 at time t = 0 are shown
as phasors in Fig. 27.9, where

π

3
rad= 60◦

The phasor diagram in Fig. 27.10 is drawn to scale with
a ruler and protractor.

i15 20 A

i25 10 A

608

Figure 27.9

i25 10 A

i15 20 A

iR

608�

Figure 27.10

The resultant iR is shown and is measured as 26 A and
angleφ as 19◦ or 0.33 rad leading i1. Hence, by drawing
and measuring:

iR= i1+ i2=26sin (ωt + 0.33)A

Problem 6. For the currents in Problem 5,
determine i1− i2 by drawing phasors.

At time t = 0, current i1 is drawn 20 units long hor-
izontally as shown by 0a in Fig. 27.11. Current i2 is
shown, drawn 10 units long in broken line and lead-
ing by 60◦. The current −i2 is drawn in the opposite
direction to the broken line of i2, shown as ab in
Fig. 27.11. The resultant iR is given by 0b lagging by
angle φ.
By measurement, iR=17A and φ=30◦ or
0.52 rad

20 A
a

10 A

iR
b

0

210A

608

�

Figure 27.11

Hence, by drawing phasors:

iR = i1−i2 = 17sin(ωt − 0.52)
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Now try the following Practice Exercise

Practice Exercise 121 Determining
resultant phasors by drawing (Answers on
page 874)

1. Determine a sinusoidal expression for
2sinθ + 4cosθ by drawing phasors.

2. Ifv1=10sinωt volts andv2=14sin(ωt +π /3)
volts, determine by drawing phasors
sinusoidal expressions for (a) v1+v2
(b) v1− v2

3. Express 12sinωt +5cosωt in the form
R sin(ωt ± α) by drawing phasors.

27.4 Determining resultant phasors
by the sine and cosine rules

As stated earlier, the resultant of two periodic func-
tions may be found from their relative positions when
the time is zero. For example, if y1 = 5sinωt and
y2 = 4sin(ωt − π/6) then each may be represented by
phasors as shown in Fig. 27.12, y1 being 5 units long and
drawn horizontally and y2 being 4 units long, lagging
y1 by π /6 radians or 30◦. To determine the resultant of
y1+ y2, y1 is drawn horizontally as shown in Fig. 27.13
and y2 is joined to the end of y1 at π /6 radians, i.e. 30◦
to the horizontal. The resultant is given by yR
Using the cosine rule on triangle 0ab ofFig. 27.13gives:

y2R = 52+ 42− [2(5)(4)cos150◦]

= 25+ 16− (−34.641)
= 75.641

y15 5

�/6 or 308

y25 4

Figure 27.12
y15 5

y
2 54

�0

yR

a

b

308

Figure 27.13

from which, yR =
√
75.641= 8.697

Using the sine rule,
8.697
sin150◦ = 4

sinφ

from which, sinφ = 4sin150◦

8.697
= 0.22996

and φ = sin−1 0.22996

= 13.29◦ or 0.232 rad

Hence, yR = y1+ y2 = 5sinωt + 4sin(ωt − π/6)

= 8.697sin(ωt − 0.232)

Problem 7. Given y1=2sinωt and
y2=3sin(ωt + π/4), obtain an expression, by
calculation, for the resultant, yR = y1+ y2

When time t = 0, the position of phasors y1 and y2
are as shown in Fig. 27.14(a). To obtain the resul-
tant, y1 is drawn horizontally, 2 units long, y2 is drawn
3 units long at an angle of π /4 rads or 45◦ and joined to
the end of y1 as shown in Fig. 27.14(b).
From Fig. 27.14(b), and using the cosine rule:

y2R = 22+ 32− [2(2)(3)cos135◦]

= 4+ 9− [−8.485]= 21.49
Hence, yR =

√
21.49= 4.6357

Using the sine rule: 3
sinφ

= 4.6357
sin135◦

from which, sinφ = 3sin135◦

4.6357
= 0.45761

Hence, φ = sin−1 0.45761

= 27.23◦ or 0.475 rad.

Thus, by calculation, yR = 4.635sin(ωt + 0.475)

y15 2 y15 2

y25 3 y25 3

yR

�/4 or 458
1358

458�

(a) (b)

Figure 27.14
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Problem 8. Determine
20sinωt + 10sin

(
ωt + π

3

)
using the cosine

and sine rules.

From the phasor diagram of Fig. 27.15, and using the
cosine rule:

i2R = 202+ 102− [2(20)(10)cos 120◦]

= 700
Hence, iR =

√
700= 26.46 A

i25 10 A

i15 20 A

iR

608�

Figure 27.15

Using the sine rule gives :
10
sinφ

= 26.46
sin120◦

from which, sinφ = 10sin120◦

26.46

= 0.327296
and φ = sin−1 0.327296= 19.10◦

= 19.10× π

180
= 0.333 rad

Hence, by cosine and sine rules,

iR = i1 + i2 = 26.46sin(ωt + 0.333)A

Now try the following Practice Exercise

Practice Exercise 122 Resultant phasors
by the sine and cosine rules (Answers on
page 874)

1. Determine, using the cosine and sine rules, a
sinusoidal expression for:

y =2sinA + 4cosA
2. Given v1=10sinωt volts and

v2=14sin(ωt + π/3) volts use the cosine and
sine rules to determine sinusoidal expressions
for (a) v1+ v2 (b) v1− v2

In Problems 3 to 5, express the given expressions
in the form Asin(ωt ± α) by using the cosine and
sine rules.

3. 12sinωt + 5cosωt

4. 7sinωt + 5sin
(
ωt + π

4

)

5. 6sinωt + 3sin
(
ωt − π

6

)

6. The sinusoidal currents in two parallel
branches of an electrical network are
400 sin ωt and 750 sin(ωt − π/3), both mea-
sured in milliamperes. Determine the total
current flowing into the parallel arrangement.
Give the answer in sinusoidal form and in
amperes.

27.5 Determining resultant phasors
by horizontal and vertical
components

If a right-angled triangle is constructed as shown in
Fig. 27.16, then 0a is called the horizontal component
of F and ab is called the vertical component of F .

F
F sin �

F cos � a

b

0
�

Figure 27.16

From trigonometry (see Chapter 12),

cosθ = 0a
0b

from which,

0a = 0bcosθ = F cosθ

i.e. the horizontal component of F, H = F cosθ

andsinθ = ab

0b
from which ab = 0b sinθ

= F sin θ

i.e. the vertical component of F, V = F sinθ

Determining resultant phasors byhorizontal andvertical
components is demonstrated in the following worked
Problems.
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Problem 9. Two alternating voltages are given by
v1 = 15sinωt volts and v2 = 25sin(ωt − π/6)
volts. Determine a sinusoidal expression for the
resultant vR = v1+ v2 by finding horizontal and
vertical components.

The relative positions of v1 and v2 at time t =0 are
shown in Fig. 27.17(a) and the phasor diagram is shown
in Fig. 27.17(b).
The horizontal component of vR,
H =15cos0◦ + 25cos(−30◦) = 0a + ab = 36.65V
The vertical component of vR,
V =15sin0◦ + 25sin(−30◦) = bc = −12.50V

Hence, vR = 0c =
√
36.652+ (−12.50)2

by Pythagoras’ theorem

= 38.72 volts

tanφ = V

H
= −12.50
36.65

= −0.3411

from which, φ = tan−1(−0.3411) = −18.83◦

or − 0.329 radians.
Hence, vR = v1+ v2 = 38.72sin(ωt − 0.329)V

Problem 10. For the voltages in Problem 9,
determine the resultant vR=v1− v2 using
horizontal and vertical components.

The horizontal component of vR,
H=15cos0◦ − 25cos(−30◦) = −6.65V
The vertical component of vR,
V=15sin0◦ − 25sin(−30◦) = 12.50V

Hence, vR =
√

(−6.65)2+ (12.50)2

by Pythagoras’ theorem

= 14.16 volts

tanφ = V

H
= 12.50

−6.65 = −1.8797

from which, φ = tan−1(−1.8797) = 118.01◦

or 2.06 radians.
Hence,

vR = v1−v2 = 14.16sin(ωt +2.06)V
The phasor diagram is shown in Fig. 27.18.

v15 15 V

2v25 25 V

v25 25 V

�

vR

308

308

Figure 27.18

Problem 11. Determine

20sinωt +10sin
(
ωt + π

3

)
using horizontal and

vertical components.

From the phasors shown in Fig. 27.19:

i15 20 A

i25 10 A

608

Figure 27.19

Total horizontal component,
H=20cos0◦ +10cos60◦ = 25.0
Total vertical component,
V=20sin0◦ +10sin60◦ = 8.66
By Pythagoras, the resultant, iR =

√[
25.02+ 8.662]

= 26.46A
Phase angle, φ= tan−1

(
8.66
25.0

)

=19.11◦

or 0.333 rad

v15 15 V

(a) (b)
v25 25 V

�/6 or 308 �0

vR

v2

v1

3081508

a b

c

Figure 27.17
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Hence, by using horizontal and vertical components,

20sinωt + 10sin
(
ωt + π

3

)
= 26.46sin(ωt + 0.333)

Now try the following Practice Exercise

Practice Exercise 123 Resultant phasors
by horizontal and vertical components
(Answers on page 874)

In Problems 1 to 5, express the combination of
periodic functions in the form Asin(ωt ± α) by
horizontal and vertical components:

1. 7sinωt + 5sin
(
ωt + π

4

)

2. 6sinωt + 3sin
(
ωt − π

6

)

3. i = 25sinωt − 15sin
(
ωt + π

3

)

4. v = 8sin ωt − 5sin
(
ωt − π

4

)

5. x = 9sin
(
ωt + π

3

)
−7sin

(

ωt − 3π
8

)

6. The voltage drops across two compo-
nents when connected in series across
an a.c. supply are: v1=200sin314.2t and
v2=120sin(314.2t −π/5) volts respectively.
Determine the:
(a) voltage of the supply (given by v1+ v2)

in the form Asin(ωt ± α)

(b) frequency of the supply.

7. If the supply to a circuit is v = 20sin628.3t
volts and the voltage drop across one of
the components is v1=15sin(628.3t − 0.52)
volts, calculate the:
(a) voltage drop across the remainder of

the circuit, given by v−v1, in the form
Asin(ωt ± α)

(b) supply frequency

(c) periodic time of the supply.

8. The voltages across three components in a
series circuit when connected across an a.c.

supply are:

v1 = 25sin
(
300πt + π

6

)
volts,

v2 = 40sin
(
300πt − π

4

)
volts,and

v3 = 50sin
(
300πt + π

3

)
volts.

Calculate the:
(a) supply voltage, in sinusoidal form, in the

form Asin(ωt ± α)

(b) frequency of the supply

(c) periodic time.

9. In an electrical circuit, two components are
connected in series. The voltage across thefirst
component is given by 80 sin(ωt + π/3) volts,
and the voltage across the second component is
given by 150 sin(ωt − π/4) volts. Determine
the total supply voltage to the twocomponents.
Give the answer in sinusoidal form.

27.6 Determining resultant phasors
by complex numbers

As stated earlier, the resultant of two periodic func-
tions may be found from their relative positions when
the time is zero. For example, if y1 = 5sinωt and
y2 = 4sin(ωt − π/6) then each may be represented by
phasors as shown in Fig. 27.20, y1 being 5 units long and
drawn horizontally and y2 being 4 units long, lagging
y1 by π /6 radians or 30◦. To determine the resultant of
y1+ y2, y1 is drawn horizontally as shown in Fig. 27.21

y15 5

�/6 or 308

y25 4

Figure 27.20

y15 5

y
2 54

�0

yR

a

b

308

Figure 27.21
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and y2 is joined to the end of y1 at π /6 radians, i.e. 30◦
to the horizontal. The resultant is given by yR

In polar form, yR = 5∠0+ 4∠− π

6
= 5∠0◦ + 4∠− 30◦

= (5+ j0) + (4.33− j2.0)

= 9.33− j2.0= 9.54∠− 12.10◦

= 9.54∠−0.21rad
Hence, by using complex numbers, the resultant in
sinusoidal form is:

y1+ y2 = 5sinωt + 4sin(ωt − π/6)

= 9.54sin (ωt−0.21)

Problem 12. Two alternating voltages are given
by v1=15sinωt volts and v2=25sin(ωt −π/6)
volts. Determine a sinusoidal expression for the
resultant vR = v1+ v2 by using complex numbers.

The relative positions of v1 and v2 at time t = 0 are
shown in Fig. 27.22(a) and the phasor diagram is shown
in Fig. 27.22(b).

In polar form, vR = v1+ v2 = 15∠0+ 25∠− π

6
= 15∠0◦ + 25∠− 30◦

= (15+ j0) + (21.65− j12.5)

= 36.65− j12.5= 38.72∠− 18.83◦

= 38.72∠− 0.329 rad

Hence, by using complex numbers, the resultant in
sinusoidal form is:

vR = v1+ v2 = 15sinωt + 25sin(ωt − π/6)

= 38.72sin(ωt − 0.329)

Problem 13. For the voltages in Problem 12,
determine the resultant vR=v1− v2 using complex
numbers.

In polar form, yR = v1− v2 = 15∠0− 25∠− π

6

= 15∠0◦ − 25∠− 30◦

= (15+ j0) − (21.65− j12.5)

= −6.65+ j12.5= 14.16∠118.01◦

= 14.16∠2.06 rad
Hence, by using complex numbers, the resultant in
sinusoidal form is:

y1− y2 = 15sinωt − 25sin(ωt − π/6)

= 14.16sin(ωt − 2.06)

Problem 14. Determine
20sinωt +10sin

(
ωt + π

3

)
using complex

numbers.

From the phasors shown in Fig. 27.23, the resultant may
be expressed in polar form as:

i25 10 A

i15 20 A

608

Figure 27.23
iR = 20∠0◦ + 10∠60◦

i.e. iR = (20+ j0) + (5+ j8.66)

= (25+ j8.66) = 26.46∠19.11◦A or

26.46∠0.333rad A

v15 15 V v1

vRv25 25 V

�/6 or 308 1508
�

(b)(a)

Figure 27.22
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Hence, by using complex numbers, the resultant in
sinusoidal form is:

iR = i1+ i2 = 26.46sin (ωt + 0.333)A

Problem 15. If the supply to a circuit is
v = 30sin100πt volts and the voltage drop across
one of the components is
v1 = 20sin(100πt − 0.59) volts, calculate the:
(a) voltage drop across the remainder of the

circuit, given by v−v1, in the form
Asin(ωt ± α)

(b) supply frequency

(c) periodic time of the supply

(d) rms value of the supply voltage.

(a) Supply voltage, v=v1+v2 where v2 is the voltage
across the remainder of the circuit.

Hence, v2 = v − v1 = 30sin100πt

− 20sin(100πt − 0.59)
= 30∠0− 20∠− 0.59rad
= (30+ j0) − (16.619− j11.127)
= 13.381+ j11.127
= 17.40∠0.694 rad

Hence, by using complex numbers, the resultant
in sinusoidal form is:

v− v1 = 30sin100πt − 20sin(100πt − 0.59)
= 17.40sin(ωt + 0.694)volts

(b) Supply frequency, f = ω

2π
= 100π

2π
=50 Hz

(c) Periodic time, T = 1
f

= 1
50

= 0.02s or 20 ms

(d) Rms value of supply voltage, = 0.707× 30
=21.21volts

Now try the following Practice Exercise

Practice Exercise 124 Resultant phasors
by complex numbers (Answers on page 875)

In Problems 1 to 4, express the combination of peri-
odic functions in the form Asin(ωt ± α) by using
complex numbers:

1. 8sinωt + 5sin
(
ωt + π

4

)

2. 6sinωt + 9sin
(
ωt − π

6

)

3. v = 12sinωt − 5sin
(
ωt − π

4

)

4. x = 10sin
(
ωt + π

3

)
− 8sin

(

ωt − 3π
8

)

5. The voltage drops across two compo-
nents when connected in series across
an a.c. supply are: v1 = 240sin314.2t and
v2=150sin(314.2t − π/5) volts respectively.
Determine the:
(a) voltage of the supply (given by v1+ v2)

in the form Asin(ωt ± α)

(b) frequency of the supply.

6. If the supply to a circuit is v = 25sin200πt

volts and the voltage drop across one of
the components is v1 = 18sin(200πt − 0.43)
volts, calculate the:
(a) voltage drop across the remainder of

the circuit, given by v − v1, in the form
Asin(ωt ± α)

(b) supply frequency

(c) periodic time of the supply.

7. The voltages across three components in a
series circuit when connected across an a.c.
supply are:

v1 = 20sin
(
300πt − π

6

)
volts,

v2 = 30sin
(
300πt + π

4

)
volts,and

v3 = 60sin
(
300πt − π

3

)
volts.

Calculate the:
(a) supply voltage, in sinusoidal form, in the

form Asin(ωt ± α)

(b) frequency of the supply
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(c) periodic time

(d) rms value of the supply voltage.

8. Measurements made at a substation at peak
demand of the current in the red, yellow and

blue phases of a transmission system are:
Ired=1248∠− 15◦A, Iyellow=1120∠−135◦A
and Iblue = 1310∠95◦A. Determine the cur-
rent in the neutral cable if the sum of the
currents flows through it.

For fully worked solutions to each of the problems in Practice Exercises 120 to 124 in this chapter,
go to the website:

www.routledge.com/cw/bird
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Chapter 28

Scalar and vector products

Why it is important to understand: Scalar and vector products
Common applications of the scalar product in engineering and physics is to test whether two vectors
are perpendicular or to find the angle between two vectors when they are expressed in Cartesian form
or to find the component of one vector in the direction of another. In mechanical engineering the scalar
and vector product is used with forces, displacement, moments, velocities and the determination of work
done. In electrical engineering, scalar and vector product calculations are important in electromagnetic
calculations; most electromagnetic equations use vector calculus which is based on the scalar and vector
product. Such applications include electric motors and generators and power transformers, and so on.
Knowledge of scalar and vector products thus have important engineering applications.

At the end of this chapter, you should be able to:

• define a unit triad
• determine the scalar (or dot) product of two vectors
• calculate the angle between two vectors
• determine the direction cosines of a vector
• apply scalar products to practical situations
• determine the vector (or cross) product of two vectors
• apply vector products to practical situations
• determine the vector equation of a line

28.1 The unit triad

When a vector x of magnitude x units and direction θ ◦
is divided by the magnitude of the vector, the result is a
vector of unit length at angle θ ◦. The unit vector for a

velocity of 10m/s at 50◦ is
10m/sat 50◦

10m/s
, i.e. 1 at 50◦.

In general, the unit vector for oa is
oa
|oa| , the oa being

a vector and having both magnitude and direction and
|oa| being the magnitude of the vector only.
Onemethod of completely specifying the direction of

a vector in space relative to some reference point is to

use three unit vectors, mutually at right angles to each
other, as shown in Fig. 28.1. Such a system is called a
unit triad.

y

x

o

z

k

j
i

Figure 28.1
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y

x
z

k
j

ba

r

i O

Figure 28.2

In Fig. 28.2, one way to get from o to r is to move x

units along i to point a, then y units in direction j to get
to b and finally z units in direction k to get to r . The
vector or is specified as

or=xi+yj+zk
Problem 1. With reference to three axes drawn
mutually at right angles, depict the vectors
(a) op=4i+3j−2k and (b) or=5i−2j+2k

The required vectors are depicted in Fig. 28.3, op being
shown in Fig. 28.3(a) and or in Fig. 28.3(b).

(a)

(b)

k

P

j
i

4

3

22

O

i
r j

k

O

5
2

22

Figure 28.3

28.2 The scalar product of two
vectors

When vector oa is multiplied by a scalar quantity, say k,
the magnitude of the resultant vector will be k times the
magnitude of oa and its direction will remain the same.
Thus 2×(5N at 20◦) results in a vector of magnitude
10N at 20◦.
One of the products of two vector quantities is called the
scalar or dot product of two vectors and is defined as
the product of their magnitudesmultiplied by the cosine
of the angle between them. The scalar product of oa and
ob is shown as oa • ob. For vectors oa=oa at θ1, and
ob=ob at θ2 where θ2>θ1, the scalar product is:

oa •ob = oa ob cos(θ 2 − θ1)

For vectors v1 and v2 shown in Fig. 28.4, the scalar
product is:

v1 •v2 = v1v2 cosθ

�

v2

v1

Figure 28.4

The commutative law of algebra, a×b=b×a applies
to scalar products. This is demonstrated in Fig. 28.5. Let
oa represent vector v1 and ob represent vector v2. Then:

oa •ob= v1v2 cos θ (by definition of
a scalar product)

O

v1

v2
b

�

a

Figure 28.5

Similarly, ob • oa=v2v1 cosθ =v1v2 cosθ by the com-
mutative law of algebra. Thus oa • ob=ob • oa
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(b)

(a)

a
c

b

O

v 2

�

�

v2 cos �

v 1 c
os �

v 2

v1

v1

Figure 28.6

The projection of ob on oa is shown in Fig. 28.6(a) and
by the geometry of triangle obc, it can be seen that the
projection is v2 cosθ . Since, by definition

oa •ob= v1(v2 cosθ),

it follows that

oa •ob= v1 (the projection of v2 on v1)

Similarly the projection of oa on ob is shown in
Fig. 28.6(b) and is v1 cosθ . Since by definition

ob •oa= v2(v1 cosθ),

it follows that

ob •oa= v2(the projection of v1 on v2)

This shows that the scalar product of two vectors
is the product of the magnitude of one vector and
the magnitude of the projection of the other vector on it.
The angle between two vectors can be expressed in
terms of the vector constants as follows:
Because a •b=a b cosθ ,

then cosθ = a •b

ab
(1)

Let a= a1i+ a2 j+ a3k

and b= b1i+ b2 j+ b3k

a •b= (a1i+ a2 j+ a3k) • (b1i+ b2 j+ b3k)

Multiplying out the brackets gives:

a •b= a1b1i • i+ a1b2i • j+ a1b3i •k

+ a2b1 j • i+ a2b2 j • j+ a2b3 j •k

+ a3b1k • i+ a3b2k • j+ a3b3k •k

However, the unit vectors i, j and k all have a magnitude
of 1 and i • i= (1)(1) cos 0◦ =1, i • j= (1)(1) cos 90◦ =0,
i •k= (1)(1) cos 90◦ =0 and similarly j • j=1, j •k=0
and k •k=1. Thus, only terms containing i • i, j • j or
k •k in the expansion above will not be zero.
Thus, the scalar product

a •b = a1b1+ a2b2+ a3b3 (2)

Both a and b in equation (1) can be expressed in terms
of a1, b1, a2, b2, a3 and b3

cP

b

a
A B

O

Figure 28.7

From the geometry of Fig. 28.7, the length of diagonal
OP in terms of side lengths a, b and c can be obtained
from Pythagoras’ theorem as follows:

OP2 = OB2+BP2 and
OB2 = OA2+AB2

Thus, OP2 = OA2+AB2+BP2

= a2+ b2+ c2,
in terms of side lengths
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Thus, the length ormodulus ormagnitude or norm of
vector OP is given by:

OP =
√
(a2+ b2+ c2) (3)

Relating this result to the two vectors a1i+a2 j+ a3k
and b1i+b2 j+b3k, gives:

a =
√

(a21 + a22 + a23)

and b =
√

(b21 + b22+ b23)

That is, from equation (1),

cos θ = a1b1+ a2b2+ a3b3
√
(a21+ a22+ a23)

√
(b21+ b22+ b23)

(4)

Problem 2. Find vector a joining points P andQ

where point P has co-ordinates (4, −1, 3) and point
Q has co-ordinates (2, 5, 0). Also, find |a|, the
magnitude or norm of a

Let O be the origin, i.e. its co-ordinates are (0, 0, 0). The
position vector of P andQ are given by:

OP = 4i− j+ 3k and OQ= 2i+ 5j

By the addition law of vectors OP+PQ=OQ

Hence a=PQ= OQ−OP

i.e. a=PQ= (2i+ 5j) − (4i − j+ 3k)
= −2i+ 6j− 3k

From equation (3), the magnitude or norm of a,

|a| =
√

(a2+ b2+ c2)

=
√
[(−2)2+ 62+ (−3)2]=

√
49= 7

Problem 3. If p=2i+ j−k and q= i−3j+2k
determine:
(a) p •q (b) p+q
(c) |p+q| (d) |p|+ |q|

(a) From equation (2),

if p= a1i+ a2 j+ a3k

and q= b1i+ b2 j+ b3k

then p •q= a1b1+ a2b2+ a3b3

When p= 2i+ j−k,
a1 = 2, a2 = 1 and a3=−1

and when q= i−3j+2k,
b1 = 1, b2 = −3 and b3 = 2

Hence p •q= (2)(1) + (1)(−3) + (−1)(2)
i.e. p •q= −3

(b) p+q=(2i+ j−k)+(i−3j+2k)
=3i−2j+k

(c) |p+q|=|3i−2j + k|
From equation (3),

|p+q| =
√
[32+ (−2)2+ 12]=

√
14

(d) From equation (3),

|p| = |2i + j − k|
=

√
[22+ 12+ (−1)2]=

√
6

Similarly,

|q| = |i − 3j + 2k|
=

√
[12+ (−3)2+ 22]=

√
14

Hence |p|+ |q|=√
6+√

14=6.191, correct to 3
decimal places.

Problem 4. Determine the angle between vectors
oa and ob when

oa= i+ 2j− 3k
and ob= 2i− j+ 4k

An equation for cosθ is given in equation (4)

cosθ = a1b1+ a2b2+ a3b3√
(a21 + a22 + a23)

√
(b21 + b22+ b23)
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Since oa= i+ 2j− 3k,
a1 = 1,a2 = 2 and a3 = −3

Since ob= 2i− j+ 4k,
b1 = 2,b2 = −1 and b3 = 4

Thus,

cosθ = (1× 2) + (2× −1) + (−3× 4)
√

(12+ 22+ (−3)2)
√

(22+ (−1)2+ 42)

= −12√
14

√
21

= −0.6999

i.e. θ = 134.4◦ or 225.6◦

By sketching the position of the two vectors as shown in
Problem1, it will be seen that 225.6◦ is not an acceptable
answer.
Thus the angle between the vectors oa and ob,
θ =134.4◦

Direction cosines

From Fig. 28.2, or=xi+ yj+ zk and from
equation (3), |or| =

√
x2+ y2+ z2

If or makes angles of α, β and γ with the co-ordinate
axes i, j and k respectively, then:
The direction cosines are:

cosα = x
√

x2+ y2+ z2

cosβ = y
√

x2+ y2+ z2

and cosγ = y
√

x2+ y2+ z2

such that cos2α+cos2β + cos2 γ =1
The values of cos α, cos β and cos γ are called the
direction cosines of or

Problem 5. Find the direction cosines of 3

i+2j+k
.

√
x2+ y2+ z2 =

√
32+ 22+ 12 =

√
14

The direction cosines are:

cosα = x
√

x2+ y2+ z2
= 3√

14
= 0.802

cosβ = y
√

x2+ y2+ z2
= 2√

14
= 0.535

and cosγ = y
√

x2+ y2+ z2
= 1√

14
= 0.267

(and hence α= cos−1 0.802=36.7◦,
β =cos−1 0.535=57.7◦ and γ =cos−1 0.267=74.5◦)
Note that cos2 α+ cos2 β + cos2 γ

=0.8022+ 0.5352+0.2672=1

Practical application of scalar product

Problem 6. A constant force of
F=10i+2j−k newtons displaces an object from
A= i+ j+k to B=2i− j+3k (in metres). Find the
work done in newton metres.

One of the applications of scalar products is to the work
done by a constant forcewhenmoving a body.Thework
done is the product of the applied force and the distance
moved in the direction of the force.

i.e. work done = F • d

The principles developed in Problem 13, page 317,
apply equally to this problem when determining the
displacement. From the sketch shown in Fig. 28.8,

AB= AO+OB=OB−OA
that is AB= (2i− j+ 3k) − (i+ j+ k)

= i− 2j+ 2k

A (1,1,1)

B (2, 21, 3)

O (0, 0, 0)

Figure 28.8
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The work done is F • d, that is F • AB in this case

i.e. work done=(10i+2j−k) • (i− 2j+ 2k)
But from equation (2),

a •b= a1b1+ a2b2+ a3b3

Hence work done=
(10×1)+(2×(−2))+((−1)×2)=4Nm

(Theoretically, it is quite possible to get a negative
answer to a ‘work done’ problem. This indicates that
the force must be in the opposite sense to that given, in
order to give the displacement stated.)

Now try the following Practice Exercise

Practice Exercise 125 Scalar products
(Answers on page 875)

1. Find the scalar product a •b when
(a) a= i+2j−k and b=2i+3j+k
(b) a= i−3j+k and b=2i+ j+k

Given p=2i−3j, q=4j−k and
r= i+ 2j−3k, determine the quantities
stated in problems 2 to 8.

2. (a) p •q (b) p •r

3. (a) q •r (b) r •q

4. (a) |p | (b) |r |
5. (a) p •(q+r) (b) 2r •(q−2p)
6. (a) |p+r | (b) |p |+ |r |
7. Find the angle between (a) p and q (b) q

and r

8. Determine the direction cosines of (a) p
(b) q (c) r

9. Determine the angle between the forces:

F1 = 3i+ 4j+ 5k and
F2 = i+ j+ k

10. Find the angle between the velocity vectors
υ1=5i+2j+7k and υ2=4i+ j−k

11. Calculate the work done by a force
F= (−5i+ j+7k)Nwhen its point of appli-
cation moves from point (−2i−6j+k)m to
the point (i− j+10k)m.

28.3 Vector products

A second product of two vectors is called the vector or
cross product and is defined in terms of its modulus
and the magnitudes of the two vectors and the sine of
the angle between them. The vector product of vectors
oa and ob is written as oa×ob and is defined by:

|oa×ob|=oa ob sin θ

where θ is the angle between the two vectors.
The direction of oa×ob is perpendicular to both oa and
ob, as shown in Fig. 28.9.

(a) (b)

o

b

a

oa � ob

�

b

a

ob � oa

o �

Figure 28.9

The direction is obtained by considering that a right-
handed screw is screwed along oa×ob with its head
at the origin and if the direction of oa×ob is cor-
rect, the head should rotate from oa to ob, as shown
in Fig. 28.9(a). It follows that the direction of ob×oa
is as shown in Fig. 28.9(b). Thus oa×ob is not equal to
ob×oa. The magnitudes of oa ob sinθ are the same but
their directions are 180◦ displaced, i.e.

oa×ob=−ob×oa
The vector product of two vectors may be expressed in
terms of the unit vectors. Let two vectors, a and b, be
such that:

a= a1i+ a2 j+ a3k and
b= b1i+ b2 j+ b3k

Then,

a×b= (a1i+ a2 j+ a3k) × (b1i+ b2 j+ b3k)

= a1b1i× i+ a1b2i× j
+a1b3i× k+ a2b1 j× i+ a2b2 j× j
+a2b3 j× k+ a3b1k× i+ a3b2k× j
+a3b3k× k

Download more at Learnclax.com



Se
ct

io
n

F
336 Higher Engineering Mathematics

But by the definition of a vector product,

i× j=k, j×k= i and k× i= j
Also i× i= j× j=k×k=(1)(1)sin0◦ =0
Remembering that a×b=−b×a gives:

a× b= a1b2k− a1b3 j− a2b1k+ a2b3i

+ a3b1 j− a3b2i

Grouping the i, j and k terms together, gives:

a×b= (a2b3− a3b2)i+ (a3b1− a1b3) j

+ (a1b2− a2b1)k

The vector product can be written in determinant
form as:

a×b=
∣
∣
∣
∣
∣
∣

i j k

a1 a2 a3
b1 b2 b3

∣
∣
∣
∣
∣
∣

(5)

The 3×3 determinant
∣
∣
∣
∣
∣
∣

i j k

a1 a2 a3
b1 b2 b3

∣
∣
∣
∣
∣
∣
is evaluated as:

i
∣
∣
∣
∣

a2 a3
b2 b3

∣
∣
∣
∣− j

∣
∣
∣
∣

a1 a3
b1 b3

∣
∣
∣
∣+k

∣
∣
∣
∣

a1 a2
b1 b2

∣
∣
∣
∣

where
∣
∣
∣
∣

a2 a3
b2 b3

∣
∣
∣
∣ = a2b3− a3b2,

∣
∣
∣
∣

a1 a3
b1 b3

∣
∣
∣
∣ = a1b3− a3b1 and

∣
∣
∣
∣

a1 a2
b1 b2

∣
∣
∣
∣ = a1b2− a2b1

The magnitude of the vector product of two vectors can
be found by expressing it in scalar product form and
then using the relationship

a •b= a1b1+ a2b2+ a3b3

Squaring both sides of a vector product equation gives:

(|a×b|)2 = a2b2 sin2 θ = a2b2(1− cos2 θ)

= a2b2− a2b2 cos2 θ (6)

It is stated in Section 28.2 that a •b=ab cosθ , hence
a •a= a2 cosθ

But θ = 0◦, thus a •a= a2

Also, cosθ = a •b
ab

Multiplying both sides of this equation by a 2b2 and
squaring gives:

a2b2 cos2 θ = a2b2(a •b)2

a2b2
= (a •b)2

Substituting in equation (6) above fora 2=a •a,b2=b •b
and a2b2 cos2 θ =(a •b)2 gives:

(|a×b|)2=(a •a)(b •b)−(a •b)2

That is,

|a×b| =
√
[(a •a)(b •b)−(a •b)2] (7)

Problem 7. For the vectors a= i+4j−2k and
b=2i− j+3k find (a) a× b and (b) |a×b|

(a) From equation (5),

a× b=
∣
∣
∣
∣
∣
∣

i j k

a1 a2 a3
b1 b2 b3

∣
∣
∣
∣
∣
∣

= i
∣
∣
∣
∣

a2 a3
b2 b3

∣
∣
∣
∣− j

∣
∣
∣
∣

a1 a3
b1 b3

∣
∣
∣
∣+k

∣
∣
∣
∣

a1 a2
b1 b2

∣
∣
∣
∣

Hence

a×b=
∣
∣
∣
∣
∣
∣

i j k

1 4 −2
2 −1 3

∣
∣
∣
∣
∣
∣

= i
∣
∣
∣
∣
4 −2

−1 3

∣
∣
∣
∣ − j

∣
∣
∣
∣
1 −2
2 3

∣
∣
∣
∣+ k

∣
∣
∣
∣
1 4
2 −1

∣
∣
∣
∣

= i(12− 2) − j(3+ 4) + k(−1− 8)
= 10i−7j−9k

Download more at Learnclax.com



Se
ct

io
n

F

Scalar and vector products 337

(b) From equation (7)

|a×b| =
√
[(a •a)(b •b)−(a •b)2]

Now a •a= (1)(1) + (4× 4) + (−2)(−2)
= 21

b •b= (2)(2) + (−1)(−1) + (3)(3)

= 14
and a •b= (1)(2) + (4)(−1) + (−2)(3)

= −8
Thus |a×b| =

√
(21× 14− 64)

=
√
230= 15.17

Problem 8. If p=4i+ j−2k, q=3i−2j+ k and
r= i−2k find (a) (p−2q)×r (b) p×(2r×3q)

(a) ( p− 2q) × r= [4i+ j− 2k
− 2(3i− 2j+ k)]× (i− 2k)

= (−2i+ 5j− 4k) × (i− 2k)

=

∣
∣
∣
∣
∣
∣
∣

i j k

−2 5 −4
1 0 −2

∣
∣
∣
∣
∣
∣
∣

from equation (5)

= i
∣
∣
∣
∣
∣

5 −4
0 −2

∣
∣
∣
∣
∣
− j

∣
∣
∣
∣
∣

−2 −4
1 −2

∣
∣
∣
∣
∣

+ k

∣
∣
∣
∣
∣

−2 5
1 0

∣
∣
∣
∣
∣

= i(−10− 0) − j(4+ 4)
+ k(0− 5), i.e.

( p− 2q) × r= −10i−8j−5k

(b) (2r× 3q) = (2i− 4k) × (9i− 6j+ 3k)

=

∣
∣
∣
∣
∣
∣
∣

i j k

2 0 −4
9 −6 3

∣
∣
∣
∣
∣
∣
∣

= i(0− 24) − j(6+ 36)
+ k(−12− 0)

= −24i−42j−12k

Hence

p× (2r× 3q) = (4i+ j− 2k)
× (−24i− 42j− 12k)

=

∣
∣
∣
∣
∣
∣
∣

i j k

4 1 −2
−24 −42 −12

∣
∣
∣
∣
∣
∣
∣

= i(−12− 84) − j(−48− 48)
+ k(−168+ 24)

= −96i+96j−144k
or−48(2i−2j+3k)

Practical applications of vector products

Problem 9. Find the moment and the magnitude
of the moment of a force of (i+2j−3k) newtons
about point B having co-ordinates (0, 1, 1), when
the force acts on a line throughA whose
co-ordinates are (1, 3, 4)

The momentM about pointB of a force vectorF which
has a position vector of r from A is given by:

M=r×F

r is the vector from B to A, i.e. r=BA
But BA=BO+OA=OA−OB (see Problem 13,
page 317), that is:

r= (i+ 3j+ 4k) − ( j+ k)
= i+ 2j+ 3k

Moment,

M=r×F = (i+ 2j+ 3k) × (i+ 2j− 3k)

=

∣
∣
∣
∣
∣
∣
∣

i j k

1 2 3
1 2 −3

∣
∣
∣
∣
∣
∣
∣

= i(−6− 6) − j(−3− 3)
+ k(2− 2)

= −12i+6jNm
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The magnitude ofM,

|M| = |r×F|

=
√
[(r •r)(F •F)− (r•F)2]

r •r= (1)(1) + (2)(2) + (3)(3) = 14

F •F = (1)(1) + (2)(2) + (−3)(−3) = 14

r •F = (1)(1) + (2)(2) + (3)(−3) = −4

|M| =
√
[14× 14− (−4)2]

=
√
180Nm = 13.42Nm

Problem 10. The axis of a circular cylinder
coincides with the z-axis and it rotates with an
angular velocity of (2i− 5j+ 7k) rad/s. Determine
the tangential velocity at a point P on the cylinder,
whose co-ordinates are ( j+ 3k)metres, and also
determine the magnitude of the tangential velocity.

The velocity v of pointP on a body rotatingwith angular
velocity ω about a fixed axis is given by:

v=ω×r
where r is the point on vector P

Thus v = (2i− 5j+ 7k) × ( j+ 3k)

=

∣
∣
∣
∣
∣
∣
∣

i j k

2 −5 7
0 1 3

∣
∣
∣
∣
∣
∣
∣

= i(−15− 7) − j(6− 0) + k(2− 0)
= (−22i−6j+2k)m/s

The magnitude of v,

|v| =
√
[(ω •ω)(r •r)−(r•ω)2]

ω •ω = (2)(2) + (−5)(−5) + (7)(7) = 78
r •r= (0)(0) + (1)(1) + (3)(3) = 10
ω •r= (2)(0) + (−5)(1) + (7)(3) = 16

Hence,

|v| =
√

(78× 10− 162)
=

√
524m/s= 22.89m/s

Now try the following Practice Exercise

Practice Exercise 126 Vector products
(Answers on page 875)

In Problems 1 to 4, determine the quantities
stated when
p=3i+2k, q= i−2j+3k and
r=−4i+3j−k

1. (a) p×q (b) q×p
2. (a) |p×r| (b) |r×q|
3. (a) 2p× 3r (b) (p+r)×q
4. (a) p×(r×q) (b) (3p× 2r) × q

5. For vectors p=4i− j+2k and
q=−2i+3j−2k determine: (a) p •q
(b) p×q (c) |p×q| (d) q×p and
(e) the angle between the vectors.

6. For vectors a=−7i+4j+ 1
2k and b=

6i− 5j−k find (a) a •b (b) a×b (c) |a×b|
(d) b×a and (e) the angle between the
vectors.

7. Forces of (i+3j), (−2i− j), (i−2j) newtons
act at three points having position vectors of
(2i+5j), 4j and (−i+ j) metres respectively.
Calculate the magnitude of the moment.

8. A force of (2i− j+k) newtons acts on a line
through point P having co-ordinates (0, 3, 1)
metres. Determine the moment vector and its
magnitude about pointQ having co-ordinates
(4, 0, −1) metres.

9. A sphere is rotating with angular velocity ω

about the z-axis of a system, the axis coincid-
ing with the axis of the sphere. Determine the
velocity vector and its magnitude at position
(−5i+2j−7k)m, when the angular velocity
is (i+2j) rad/s.

10. Calculate the velocity vector and its magni-
tude for a particle rotating about the z-axis
at an angular velocity of (3i− j+2k) rad/s
when the position vector of the particle is at
(i−5j+4k)m.
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28.4 Vector equation of a line

The equation of a straight linemay be determined, given
that it passes through point A with position vector a
relative to O, and is parallel to vector b. Let r be the
position vector of a point P on the line, as shown in
Fig. 28.10.

O

a

A

P
b

r

Figure 28.10

By vector addition, OP=OA+AP,
i.e. r=a+AP
However, as the straight line through A is paral-
lel to the free vector b (free vector means one that
has the same magnitude, direction and sense), then
AP=λb, where λ is a scalar quantity. Hence, from
above,

r=a+λb (8)

If, say, r=xi+yj+zk, a=a1i+a2 j+a3k and
b= b1i+b2 j+b3k, then from equation (8),

xi+ yj+ zk= (a1i+ a2 j+ a3k)

+ λ(b1i+ b2 j+ b3k)

Hence x =a1+λb1, y =a2+λb2 and z=a3+λb3.
Solving for λ gives:

x−a1
b1

= y−a2
b2

= z−a3
b3

=λ (9)

Equation (9) is the standardCartesian formfor thevector
equation of a straight line.

Problem 11. (a) Determine the vector equation of
the line through the point with position vector
2i+3j−k which is parallel to the vector i−2j+3k.
(b) Find the point on the line corresponding to λ=3
in the resulting equation of part (a).
(c) Express the vector equation of the line in
standard Cartesian form.

(a) From equation (8),

r=a+ λb

i.e. r=(2i+3j−k)+λ(i−2j+3k)

or r=(2+λ)i+(3−2λ)j+(3λ−1)k
which is the vector equation of the line.

(b) When λ=3, r=5i−3j+8k
(c) From equation (9),

x − a1

b1
= y − a2

b2
= z − a3

b3
= λ

Since a= 2i+ 3j− k, then a1 = 2,

a2 = 3 and a3 = −1 and

b= i− 2j+ 3k, then

b1 = 1,b2 = −2 and b3 = 3

Hence, the Cartesian equations are:

x − 2
1

= y − 3
−2 = z − (−1)

3
= λ

i.e. x−2= 3−y
2

= z+1
3

=λ

Problem 12. The equation

2x − 1
3

= y + 4
3

= −z + 5
2

represents a straight line. Express this in vector
form.

Comparing the given equation with equation (9) shows
that the coefficients of x, y and z need to be equal to
unity.
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Thus
2x − 1
3

= y + 4
3

= −z + 5
2

becomes:

x − 1
2

3
2

= y + 4
3

= z − 5
−2

Again, comparing with equation (9), shows that

a1 = 1
2
,a2 = −4 and a3 = 5 and

b1 = 3
2
,b2 = 3 and b3 = −2

In vector form the equation is:

r= (a1+ λb1)i+ (a2+ λb2) j+ (a3+ λb3)k,
from equation (8)

i.e. r=
(
1
2

+ 3
2
λ

)

i+ (−4+ 3λ) j+ (5− 2λ)k

or r= 1
2
(1+3λ)i+(3λ−4) j+(5−2λ)k

Now try the following Practice Exercise

Practice Exercise 127 The vector equation
of a line (Answers on page 875)

1. Find the vector equation of the line through the
point with position vector 5i−2j+3k which
is parallel to the vector 2i+7j−4k. Determine
the point on the line corresponding to λ=2 in
the resulting equation.

2. Express the vector equation of the line in
problem 1 in standard Cartesian form.

In problems 3 and 4, express the given straight line
equations in vector form.

3.
3x−1
4

= 5y+1
2

= 4−z

3

4. 2x+1= 1−4y
5

= 3z−1
4

For fully worked solutions to each of the problems in Practice Exercises 125 to 127 in this chapter,
go to the website:

www.routledge.com/cw/bird
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Revision Test 8 Vectors

This Revision Test covers the material contained in Chapters 26 to 28. The marks for each question are shown in
brackets at the end of each question.

1. State whether the following are scalar or vector
quantities:
(a) A temperature of 50◦C

(b) A downward force of 80N

(c) 300 J of work

(d) A south-westerly wind of 15 knots

(e) 70m distance

(f) An acceleration of 25m/s2 at 30◦ to the
horizontal (6)

2. Calculate the resultant and direction of the force
vectors shown in Fig. RT8.1, correct to 2 decimal
places. (7)

5 N

7 N

Figure RT8.1

3. Four coplanar forces act at a point A as shown
in Fig. RT8.2 Determine the value and direc-
tion of the resultant force by (a) drawing (b) by
calculation using horizontal and vertical compo-
nents. (10)

5N

4N

8N

7N

458458

A

Figure RT8.2

4. The instantaneous values of two alternating volt-
ages are given by:

v1 = 150sin(ωt + π/3) volts and

v2 = 90sin(ωt − π/6) volts

Plot the two voltages on the same axes to scales
of 1cm=50 volts and 1cm= π

6
rad.

Obtain a sinusoidal expression for the resultant
v1+v2 in the form R sin(ωt +α): (a) by adding
ordinates at intervals and (b) by calculation.

(13)

5. If velocity v1 = 26m/s at 52◦ and v2 = 17m/s
at −28◦ calculate the magnitude and direction
of v1+ v2, correct to 2 decimal places, using
complex numbers. (10)

6. Given a = −3i + 3j + 5k,b = 2i − 5j + 7k and
c=3i + 6j − 4k, determine the following:
(a) −4b (b) a + b − c (c) 5b − 3c (8)

7. If a=2i+4j−5k and b=3i−2j+6k determine:
(a) a ·b (b) |a+b| (c) a× b (d) the angle between
a and b (14)

8. Determine the work done by a force of F newtons
acting at a pointA on a body, whenA is displaced
to point B, the co-ordinates of A and B being
(2, 5, −3) and (1, −3, 0) metres respectively, and
when F=2i−5j+4k newtons. (4)

9. A force of F=3i−4j+k newtons acts on a line
passing through a point P . Determine momentM
and its magnitude of the force F about a pointQ
when P has co-ordinates (4,−1, 5) metres andQ

has co-ordinates (4, 0, −3) metres. (8)

For lecturers/instructors/teachers, fully worked solutions to each of the problems in Revision Test 8,
together with a full marking scheme, are available at the website:

www.routledge.com/cw/bird
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Chapter 29

Methods of differentiation

Why it is important to understand:Methods of differentiation
There are many practical situations engineers have to analyse which involve quantities that are varying.
Typical examples include the stress in a loaded beam, the temperature of an industrial chemical, the
rate at which the speed of a vehicle is increasing or decreasing, the current in an electrical circuit or the
torque on a turbine blade. Further examples include the voltage on a transmission line, the rate of growth
of a bacteriological culture, and the rate at which the charge on a capacitor is changing. Differential
calculus, or differentiation, is a mathematical technique for analysing the way in which functions change.
There are many methods and rules of differentiation which are individually covered in the following
chapters. A good knowledge of algebra, in particular, laws of indices, is essential. Calculus is one of the
most powerful mathematical tools used by engineers. This chapter explains how to differentiate common
functions, products, quotients and function of a function – all important methods providing a basis for
further study in later chapters.

At the end of this chapter, you should be able to:

• differentiate common functions
• differentiate a product using the product rule
• differentiate a quotient using the quotient rule
• differentiate a function of a function
• differentiate successively

29.1 Introduction to calculus

Calculus is a branch of mathematics involving or lead-
ing to calculations dealing with continuously varying
functions – such as velocity and acceleration, rates
of change and maximum and minimum values of
curves.
Calculus has widespread applications in science and
engineering and is used to solve complicated problems
for which algebra alone is insufficient.
Calculus is a subject that falls into two parts:

(i) differential calculus, or differentiation, which
is covered in Chapters 29, 30 and 34 to 41, and

(ii) integral calculus, or integration, which is cov-
ered in Chapters 31, 32 and 42 to 49.

29.2 The gradient of a curve

If a tangent is drawn at a point P on a curve, then the
gradient of this tangent is said to be the gradient of the
curve at P . In Fig. 29.1, the gradient of the curve at P
is equal to the gradient of the tangent PQ.

Higher Engineering Mathematics. 978-1-138-67357-1, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.
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0 x

Q

P

f (x)

Figure 29.1

0

B

A

E D

C
f(x2)

f(x1)

f(x)

xx1 x2

Figure 29.2

For the curve shown in Fig. 29.2, let the points A and
B have co-ordinates (x1,y1) and (x2,y2), respectively.
In functional notation, y1= f (x1) and y2=f (x2) as
shown.
The gradient of the chord AB

= BC
AC

= BD−CD
ED

= f (x2) − f (x1)

(x2− x1)

For the curve f (x)=x2 shown in Fig. 29.3.

(i) the gradient of chord AB

= f (3) − f (1)
3− 1 = 9− 1

2
= 4

(ii) the gradient of chord AC

= f (2) − f (1)
2− 1 = 4− 1

1
= 3

0 1 1.5 2 3

2

4

6

8

10

f(x)

x

A
D

C

B f(x) 5 x2

Figure 29.3

(iii) the gradient of chord AD

= f (1.5) − f (1)
1.5− 1 = 2.25− 1

0.5
= 2.5

(iv) if E is the point on the curve (1.1, f (1.1)) then
the gradient of chord AE

= f (1.1) − f (1)
1.1− 1 = 1.21− 1

0.1
= 2.1

(v) if F is the point on the curve (1.01, f (1.01)) then
the gradient of chord AF

= f (1.01) − f (1)
1.01− 1 = 1.0201− 1

0.01
= 2.01

Thus as point B moves closer and closer to point A the
gradient of the chord approaches nearer andnearer to the
value 2. This is called the limiting value of the gradient
of the chordAB and whenB coincides withA the chord
becomes the tangent to the curve.

29.3 Differentiation from first
principles

In Fig. 29.4,A andB are two points very close together
on a curve, δx (delta x) and δy (delta y) representing
small increments in the x and y directions, respectively.

Gradient of chord AB= δy

δx
; however,

δy =f (x +δx)−f (x)

Hence
δy

δx
= f (x+δx) − f (x)

δx
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Figure 29.4

As δx approaches zero,
δy

δx
approaches a limiting value

and the gradient of the chord approaches the gradient of
the tangent at A.
When determining the gradient of a tangent to a curve
there are two notations used. The gradient of the curve
at A in Fig. 29.4 can either be written as

limit
δx→0

δy

δx
or limit

δx→0

{
f (x + δx) − f (x)

δx

}

In Leibniz∗ notation,
dy
dx

= limit
δx→0

δy
δx

In functional notation,

f ′(x)= limit
δx→0

{
f (x+δx)− f (x)

δx

}

dy
dx
is the same as f ′(x) and is called the differential

coefficient or the derivative. The process of finding the
differential coefficient is called differentiation.

Problem 1. Differentiate from first principle
f (x)=x2 and determine the value of the gradient
of the curve at x =2

To ‘differentiate from first principles’ means ‘to find
f ′(x)’ by using the expression

f ′(x) = limit
δx→0

{
f (x + δx) − f (x)

δx

}

f (x) = x2

∗ Who was Leibniz? For image and resume, see page 91. For
more information, go to www.routledge.com/cw/bird

Substituting (x+δx) for x gives
f (x +δx)=(x +δx)2=x2+ 2xδx + δx2, hence

f ′(x) = limit
δx→0

{
(x2+ 2xδx + δx2) − (x2)

δx

}

= limit
δx→0

{
(2xδx + δx2)

δx

}

= limit
δx→0

[2x + δx]

As δx →0, [2x+δx]→ [2x +0]. Thus f ′(x)=2x, i.e.
the differential coefficient of x 2 is 2x. At x =2, the
gradient of the curve, f ′(x)=2(2)=4

Differentiation from first principles can be a lengthy
process and itwould not be convenient to go through this
procedure every timewewant to differentiate a function.
In reality we do not have to because a set of general
rules have evolved from the above procedure, which we
consider in the following section.

29.4 Differentiation of common
functions

From differentiation by first principles of a number of
examples such as in Problem 1 above, a general rule
for differentiating y =axn emerges, where a and n are
constants.

The rule is: if y=axn then dy
dx

=anxn−1

(or, if f (x)=axn then f ′(x)=anxn−1) and is true for all
real values of a and n.
For example, if y =4x3 then a=4 and n=3, and

dy
dx

= anxn−1 = (4)(3)x3−1 = 12x2

If y =axn and n=0 then y =ax0 and
dy
dx

=(a)(0)x0−1=0,
i.e. the differential coefficient of a constant is zero.
Fig. 29.5(a) shows a graph of y = sinx. The gradient

is continually changing as the curve moves from 0 to

A to B to C to D. The gradient, given by
dy
dx
, may be

plotted in a corresponding position below y= sinx, as
shown in Fig. 29.5(b).
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Figure 29.5

(i) At 0, the gradient is positive and is at its steepest.
Hence 0′ is a maximum positive value.

(ii) Between 0 and A the gradient is positive but is
decreasing in value until atA the gradient is zero,
shown as A′.

(iii) Between A and B the gradient is negative but
is increasing in value until at B the gradient is at
its steepest negative value. Hence B ′ is a maxi-
mum negative value.

(iv) If the gradient of y = sinx is further investigated

betweenB andD then the resulting graph of
dy
dx

is seen to be a cosine wave. Hence the rate of
change of sinx is cosx,

i.e. if y=sin x then dy
dx

=cos x

By a similar construction to that shown in Fig. 29.5 it
may be shown that:

if y=sin ax then dy
dx

=a cos ax

If graphs of y = cosx, y =ex and y = lnx are plotted
and their gradients investigated, their differential coef-
ficients may be determined in a similar manner to that
shown for y = sinx. The rate of change of a function is
a measure of the derivative.

The standard derivatives summarised below may be
proved theoretically and are true for all real values of x

y or f (x)
dy
dx
or f ′(x)

axn anxn−1

sinax a cosax

cosax −a sinax

eax aeax

lnax
1
x

The differential coefficient of a sum or difference is
the sum or difference of the differential coefficients of
the separate terms.

Thus, if f (x)=p(x) + q(x) − r(x),
(where f,p,q and r are functions),

then f ′(x) =p′(x) + q ′(x) − r ′(x)

Differentiation of common functions is demonstrated in
the following worked Problems.

Problem 2. Find the differential coefficients of

(a) y =12x3 (b) y= 12
x3

If y =axn then
dy
dx

=anxn−1

(a) Since y = 12x3, a=12 and n=3 thus
dy
dx

=(12)(3)x3−1=36x2

(b) y = 12
x3
is rewritten in the standard axn form as

y =12x−3 and in the general rule a=12 and
n=−3
Thus

dy
dx

=(12)(−3)x−3−1=−36x−4 = −36
x4

Problem 3. Differentiate (a) y=6 (b) y =6x

(a) y =6 may be written as y =6x 0, i.e. in the general
rule a=6 and n=0

Hence
dy
dx

= (6)(0)x0−1 = 0
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In general, the differential coefficient of a con-
stant is always zero.

(b) Since y=6x, in the general rule a=6 and n=1

Hence
dy
dx

= (6)(1)x1−1 = 6x0 = 6

In general, the differential coefficient of kx, where
k is a constant, is always k.

Problem 4. Find the derivatives of

(a) y =3√x (b) y = 5
3√
x4

(a) y =3√x is rewritten in the standard differential

form as y=3x 12
In the general rule, a=3 and n= 1

2

Thus
dy
dx

= (3)
(
1
2

)

x
1
2−1 = 3

2
x

− 12

= 3

2x
1
2

= 3
2
√
x

(b) y = 5
3√
x4

= 5

x
4
3

=5x− 43 in the standard differen-

tial form.
In the general rule, a=5 and n=− 4

3

Thus
dy
dx

= (5)
(

−4
3

)

x
− 43−1 = −20

3
x

− 73

= −20
3x

7
3

= −20
3 3√x7

Problem 5. Differentiate, with respect to x,

y =5x4+4x− 1
2x2

+ 1√
x

−3

y = 5x4+ 4x − 1
2x2

+ 1√
x

− 3 is rewritten as

y = 5x4+ 4x − 1
2
x−2+ x

− 12 −3

When differentiating a sum, each term is differentiated
in turn.

Thus
dy
dx

= (5)(4)x4−1+ (4)(1)x1−1− 1
2
(−2)x−2−1

+(1)
(

−1
2

)

x
− 12−1− 0

=20x3+ 4+ x−3− 1
2
x

− 32

i.e.
dy
dx

= 20x3+4+ 1
x3

− 1
2
√
x3

Problem 6. Find the differential coefficients of
(a) y =3sin4x (b) f (t)=2cos3t with respect to
the variable.

(a) When y =3sin4x then dy
dx

= (3)(4cos4x)

= 12cos4x
(b) When f (t)=2cos3t then

f ′(t)= (2)(−3sin3t)=−6sin3t

Problem 7. Determine the derivatives of
(a) y =3e5x (b) f (θ)= 2

e3θ
(c) y =6ln2x

(a) When y =3e5x then dy
dx

=(3)(5)e5x =15e5x

(b) f (θ)= 2
e3θ

=2e−3θ , thus

f ′(θ)=(2)(−3)e−30=−6e−3θ = −6
e3θ

(c) When y =6ln2x then dy
dx

=6
(
1
x

)

= 6
x

Problem 8. Find the gradient of the curve
y =3x4−2x2+5x−2 at the points (0, −2)
and (1, 4)

The gradient of a curve at a given point is given by
the corresponding value of the derivative. Thus, since
y =3x4−2x2+5x−2

Then the gradient= dy
dx

=12x3−4x +5

At the point (0,−2), x =0
Thus the gradient=12(0)3−4(0)+5=5
At the point (1, 4), x =1
Thus the gradient=12(1)3−4(1)+5=13
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Problem 9. Determine the co-ordinates of the
point on the graph y =3x 2−7x+2 where the
gradient is −1

The gradient of the curve is given by the derivative.

When y =3x2−7x+2 then dy
dx

=6x−7
Since the gradient is−1 then 6x−7=−1, from which,
x =1
When x =1, y =3(1)2−7(1)+2=−2
Hence the gradient is −1 at the point (1, −2)

Now try the following Practice Exercise

Practice Exercise 128 Differentiating
common functions (Answers on page 875)

In Problems 1 to 6 find the differential coeffi-
cients of the given functions with respect to the
variable.

1. (a) 5x5 (b) 2.4x3.5 (c)
1
x

2. (a)
−4
x2

(b) 6 (c) 2x

3. (a) 2
√

x (b) 3 3√
x5 (c)

4√
x

4. (a)
−3
3√x

(b) (x − 1)2 (c) 2sin3x

5. (a) −4cos2x (b) 2e6x (c) 3
e5x

6. (a) 4 ln9x (b)
ex − e−x

2
(c)
1− √

x

x

7. Find the gradient of the curve y =2t 4+
3t3− t +4 at the points (0, 4) and (1, 8)

8. Find the co-ordinates of the point on the
graph y=5x2−3x+1 where the gradient
is 2

9. (a) Differentiate y = 2
θ2

+2 ln2θ −
2 (cos5θ +3sin2θ)− 2

e3θ

(b) Evaluate
dy
dθ

in part (a) when θ = π

2
,

correct to 4 significant figures.

10. Evaluate
ds
dt
, correct to 3 significant figures,

when t = π

6
given s =3sin t −3+√

t

11. Amass,m, is held by a springwith a stiffness
constant k. The potential energy, p, of the

system is given by: p = 1
2
kx2− mgx where

x is the displacement and g is acceleration
due to gravity.

The system is in equilibrium if
dp
dx

= 0.
Determine the expression for x for system
equilibrium.

12. The current i flowing in an inductor of induc-
tance 100 mH is given by: i = 5sin 100t
amperes, where t is the time t in seconds.
The voltage v across the inductor is given

by: v = L
di
dt
volts.

Determine the voltage when t = 10 ms.

29.5 Differentiation of a product

When y =uv, and u and v are both functions of x,

then
dy
dx

=u
dv
dx

+v
du
dx

This is known as the product rule.

Problem 10. Find the differential coefficient of
y =3x2 sin2x

3x2 sin2x is a product of two terms 3x 2 and sin2x
Let u=3x2 and v= sin2x
Using the product rule:

dy
dx

= u
dv
dx

+ v
du
dx

↓ ↓ ↓ ↓
gives:

dy
dx

= (3x2)(2cos2x) + (sin2x)(6x)

i.e.
dy
dx

=6x2 cos2x + 6x sin2x

=6x(xcos 2x+sin 2x)

Download more at Learnclax.com



Se
ct

io
n

G

Methods of differentiation 351

Note that the differential coefficient of a product is
not obtained by merely differentiating each term and
multiplying the two answers together. The product rule
formulamust be used when differentiating products.

Problem 11. Find the rate of change of y with
respect to x given y=3√x ln2x

The rate of change of y with respect to x is given by
dy
dx

y =3√x ln2x=3x
1
2 ln2x, which is a product.

Let u=3x 12 and v= ln2x
Then

dy
dx

= u
dv
dx

+ v
du
dx

↓ ↓ ↓ ↓
=

(

3x
1
2

)(
1
x

)

+ (ln2x)

[

3
(
1
2

)

x
1
2−1

]

=3x 12−1+ (ln2x)

(
3
2

)

x
− 12

=3x− 12
(

1+ 1
2
ln2x

)

i.e.
dy
dx

= 3√
x

(

1+ 1
2
ln 2x

)

Problem 12. Differentiate y =x3 cos3x lnx

Let u=x3 cos3x (i.e. a product) and v= lnx

Then
dy
dx

=u
dv
dx

+ v
du
dx

where
du
dx

= (x3)(−3sin3x) + (cos3x)(3x2)

and
dv
dx

= 1
x

Hence
dy
dx

= (x3 cos3x)

(
1
x

)

+ (lnx)[−3x3 sin3x

+3x2 cos3x]

=x2 cos3x + 3x2 lnx(cos3x − x sin3x)

i.e.
dy
dx

=x2{cos3x+3lnx(cos 3x−xsin3x)}

Problem 13. Determine the rate of change of
voltage, given v=5t sin2t volts when t =0.2s

Rate of change of voltage= dv
dt

= (5t)(2cos2t) + (sin2t)(5)
= 10t cos2t + 5sin2t

When t =0.2, dv
dt

= 10(0.2)cos2(0.2) + 5sin2(0.2)

=2cos0.4+ 5sin0.4 (wherecos0.4
means the cosine of 0.4 radians)

Hence
dv
dt

=2(0.92106) + 5(0.38942)
=1.8421+ 1.9471= 3.7892

i.e. the rate of change of voltage when t=0.2 s is
3.79volts/s, correct to 3 significant figures.

Now try the following Practice Exercise

Practice Exercise 129 Differentiating
products (Answers on page 876)

In Problems 1 to 8 differentiate the given products
with respect to the variable.

1. x sinx

2. x2e2x

3. x2 lnx

4. 2x3 cos3x

5.
√

x3 ln3x

6. e3t sin4t

7. e4θ ln3θ

8. et ln t cos t

9. Evaluate
di
dt
, correct to 4 significant figures,

when t =0.1, and i =15t sin3t

10. Evaluate
dz
dt
, correct to 4 significant figures,

when t =0.5, given that z=2e3t sin2t
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29.6 Differentiation of a quotient

When y = u

v
, and u and v are both functions of x

then
dy
dx

=
v
du
dx

−udv
dx

v2

This is known as the quotient rule.

Problem 14. Find the differential coefficient of

y = 4sin5x
5x4

4sin5x
5x4

is a quotient. Let u=4sin5x and v=5x 4

(Note that v is always the denominator and u the
numerator.)

dy
dx

=
v
du
dx

− u
dv
dx

v2

where
du
dx

= (4)(5)cos5x = 20cos5x

and
dv
dx

= (5)(4)x3 = 20x3

Hence
dy
dx

= (5x4)(20cos5x) − (4sin5x)(20x3)
(5x4)2

= 100x
4 cos5x − 80x3 sin5x

25x8

= 20x
3[5x cos5x − 4sin5x]

25x8

i.e.
dy
dx

= 4
5x5
(5x cos 5x−4 sin 5x)

Note that the differential coefficient is not obtained
by merely differentiating each term in turn and then
dividing the numerator by the denominator. The quo-
tient formula must be used when differentiating
quotients.

Problem 15. Determine the differential
coefficient of y = tanax

y = tanax= sinax

cosax
. Differentiation of tanax is thus

treated as a quotient with u= sinax and v= cosax

dy
dx

=
v
du
dx

− u
dv
dx

v2

= (cosax)(a cosax) − (sinax)(−a sinax)

(cosax)2

= a cos2 ax + a sin2 ax

(cosax)2
= a(cos2 ax + sin2 ax)

cos2 ax

= a

cos2 ax
,sincecos2 ax + sin2 ax = 1

(see Chapter 17)

Hence
dy
dx

=asec2 ax since sec2 ax = 1
cos2 ax

(see

Chapter 12).

Problem 16. Find the derivative of y = secax

y = secax = 1
cosax

(i.e. a quotient). Let u=1 and
v = cosax

dy
dx

=
v
du
dx

− u
dv
dx

v2

= (cosax)(0) − (1)(−a sinax)

(cosax)2

= a sinax

cos2 ax
= a

(
1

cosax

)(
sinax

cosax

)

i.e.
dy
dx

=a sec ax tan ax

Problem 17. Differentiate y = te2t

2cos t

The function
te2t

2cos t
is a quotient, whose numerator is a

product.
Let u= te2t and v=2cos t then
du
dt

= (t)(2e2t ) + (e2t )(1) and
dv
dt

=−2sin t

Hence
dy
dx

=
v
du
dx

− u
dv
dx

v2

= (2cos t)[2te2t + e2t ]− (te2t )(−2sin t)

(2cos t)2

= 4te
2t cos t + 2e2t cos t + 2te2t sin t

4cos2 t
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= 2e
2t [2t cos t + cos t + t sin t]

4cos2 t

i.e.
dy
dx

= e2t

2 cos2t
(2t cos t+cos t+ t sin t)

Problem 18. Determine the gradient of the curve

y = 5x
2x2+ 4 at the point

(√
3,

√
3
2

)

Let y=5x and v=2x2+4

dy
dx

=
v
du
dx

− u
dv
dx

v2
= (2x2+ 4)(5) − (5x)(4x)

(2x2+ 4)2

= 10x2+ 20− 20x2
(2x2+ 4)2 = 20− 10x2

(2x2+ 4)2

At the point

(√
3,

√
3
2

)

, x =√
3,

hence the gradient= dy
dx

= 20− 10(√3)2
[2(

√
3)2+ 4]2

= 20− 30
100

= − 1
10

Now try the following Practice Exercise

Practice Exercise 130 Differentiating
quotients (Answers on page 876)

In Problems 1 to 7, differentiate the quotients with
respect to the variable.

1.
sinx

x

2.
2cos3x

x3

3.
2x

x2+ 1

4.
√

x

cosx

5.
3
√

θ3

2sin2θ

6.
ln2t√

t

7.
2xe4x

sinx

8. Find the gradient of the curve y = 2x
x2− 5 at

the point (2, −4)

9. Evaluate
dy
dx
at x =2.5, correct to 3 significant

figures, given y = 2x
2+ 3
ln2x

29.7 Function of a function

It is often easier to make a substitution before differen-
tiating.

If y is a function of x then
dy
dx

= dy
du

× du
dx

This is known as the ‘function of a function’ rule (or
sometimes the chain rule).
For example, if y =(3x−1)9 then, by making the sub-
stitution u=(3x−1), y=u9, which is of the ‘standard’
form.

Hence
dy
du

= 9u8 and du
dx

= 3

Then
dy
dx

= dy
du

× du
dx

=(9u8)(3)=27u8

Rewriting u as (3x−1) gives: dy
dx

=27(3x−1)8

Since y is a function of u, and u is a function of x, then
y is a function of a function of x.

Problem 19. Differentiate y =3cos(5x 2+2)

Let u=5x2+2 then y=3cosu

Hence
du
dx

=10x and dy
du

=−3sinu

Using the function of a function rule,

dy
dx

= dy
du

× du
dx

= (−3sinu)(10x) = −30x sinu

Rewriting u as 5x2+ 2 gives:
dy
dx

=−30x sin(5x2+2)
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Problem 20. Find the derivative of
y = (4t3−3t)6

Let u=4t3−3t , then y =u6

Hence
du
dt

=12t2−3 and dy
du

=6u5

Using the function of a function rule,

dy
dx

= dy
du

× du
dx

= (6u5)(12t2− 3)

Rewriting u as (4t3−3t) gives:
dy
dt

= 6(4t3− 3t)5(12t2− 3)

= 18(4t2−1)(4t3−3t)5

Problem 21. Determine the differential
coefficient of y =

√
(3x2+4x−1)

y =
√

(3x2+4x−1)=(3x2+4x −1) 12

Let u=3x2+4x−1 then y =u
1
2

Hence
du
dx

= 6x + 4 and dy
du

= 1
2
u

− 12 = 1
2
√

u
Using the function of a function rule,

dy
dx

= dy
du

× du
dx

=
(
1
2
√

u

)

(6x + 4) = 3x + 2√
u

i.e.
dy
dx

= 3x+2
√

(3x2+4x−1)

Problem 22. Differentiate y =3tan4 3x

Let u= tan3x then y =3u4

Hence
du
dx

=3sec2 3x, (from Problem 15), and

dy
du

=12u3

Then
dy
dx

= dy
du

× du
dx

= (12u3)(3sec2 3x)

=12(tan3x)3(3sec2 3x)

i.e.
dy
dx

=36 tan33x sec2 3x

Problem 23. Find the differential coefficient of

y = 2
(2t3−5)4

y = 2
(2t3−5)4 =2(2t3−5)−4. Let u=(2t3−5), then

y =2u−4

Hence
du
dt

=6t2 and dy
du

= −8u−5 = −8
u5

Then
dy
dt

= dy
du

× du
dt

=
(−8

u5

)

(6t2)

= −48t2
(2t3−5)5

Now try the following Practice Exercise

Practice Exercise 131 Function of a
function (Answers on page 876)

In Problems 1 to 9, find the differential coefficients
with respect to the variable.

1. (2x − 1)6
2. (2x3− 5x)5

3. 2sin(3θ − 2)
4. 2cos5α

5.
1

(x3− 2x + 1)5
6. 5e2t+1

7. 2cot(5t2+ 3)
8. 6 tan(3y + 1)
9. 2etanθ

10. Differentiate θ sin
(
θ − π

3

)
with respect to θ ,

and evaluate, correct to 3 significant figures,
when θ = π

2
11. The extension, x metres, of an undamped

vibrating spring after t seconds is given by:

x = 0.54cos(0.3t − 0.15) + 3.2
Calculate the speed of the spring, given by
dx
dt
, when (a) t = 0, (b) t = 2s
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29.8 Successive differentiation

When a function y =f (x) is differentiated with respect

to x the differential coefficient is written as
dy
dx
or f ′(x).

If the expression is differentiated again, the second dif-

ferential coefficient is obtained and is written as
d2y
dx2

(pronounced dee two y by dee x squared) or f ′′(x)

(pronounced f double-dash x).

By successive differentiation further higher derivatives

such as
d3y
dx3

and
d4y
dx4

may be obtained.

Thus if y=3x4, dy
dx

=12x3, d
2y

dx2
=36x2,

d3y
dx3

=72x,
d4y
dx4

=72 and d
5y

dx5
=0

Problem 24. If f (x)=2x5−4x3+3x−5, find
f ′′(x)

f (x) = 2x5− 4x3+ 3x − 5
f ′(x) = 10x4− 12x2+ 3
f ′′(x) = 40x3− 24x = 4x(10x2−6)

Problem 25. If y= cosx − sinx, evaluate x, in

the range 0≤ x ≤ π

2
, when

d2y
dx2

is zero.

Since y = cosx −sinx,
dy
dx

=−sinx −cosx and

d2y
dx2

=−cosx +sinx

When
d2y
dx2

is zero, −cosx +sinx =0,

i.e. sinx = cosx or sinx

cosx
=1

Hence tanx =1 and x=arctan1=45◦ or
π

4
rads in the

range 0≤ x ≤ π

2

Problem 26. Given y =2xe−3x show that
d2y
dx2

+ 6dy
dx

+ 9y = 0

y =2xe−3x (i.e. a product)

Hence
dy
dx

= (2x)(−3e−3x) + (e−3x)(2)

=−6xe−3x + 2e−3x
d2y
dx2

= [(−6x)(−3e−3x) + (e−3x)(−6)]

+(−6e−3x)

=18xe−3x − 6e−3x − 6e−3x

i.e.
d2y
dx2

=18xe−3x − 12e−3x

Substituting values into
d2y
dx2

+6dy
dx

+9y gives:

(18xe−3x − 12e−3x) + 6(−6xe−3x + 2e−3x)

+9(2xe−3x) = 18xe−3x − 12e−3x − 36xe−3x

+12e−3x + 18xe−3x = 0

Thus when y=2xe−3x , d
2y

dx2
+ 6dy

dx
+9y =0

Problem 27. Evaluate
d2y
dθ2

when θ =0 given
y =4sec2θ

Since y=4sec2θ ,

then
dy
dθ

= (4)(2) sec2θ tan2θ (from Problem 16)

=8sec2θ tan2θ (i.e. a product)

d2y
dθ2

= (8sec2θ)(2sec2 2θ)

+(tan2θ)[(8)(2)sec2θ tan2θ ]

=16sec3 2θ + 16sec2θ tan2 2θ

When θ =0, d
2y

dθ2
= 16sec3 0+ 16sec0 tan2 0

=16(1) + 16(1)(0) = 16
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Now try the following Practice Exercise

Practice Exercise 132 Successive
differentiation (Answers on page 876)

1. If y =3x4+2x3−3x+2 find

(a)
d2y
dx2

(b)
d3y
dx3

2. (a) Given f (t) = 2
5
t2 − 1

t3
+ 3

t
− √

t + 1
determine f ′′(t)

(b) Evaluate f ′′(t) when t =1
3. The charge q on the plates of a capacitor is

given by q = CV e−
t

CR , where t is the time,C
is the capacitance andR the resistance. Deter-
mine (a) the rate of change of charge, which is

given by
dq
d t

, (b) the rate of change of current,

which is given by
d2q
d t2

In Problems 4 and 5, find the second differential
coefficient with respect to the variable.

4. (a) 3sin2t + cos t (b) 2 ln4θ
5. (a) 2cos2 x (b) (2x − 3)4

6. Evaluate f ′′(θ) when θ = 0 given
f (θ) = 2sec3θ

7. Show that the differential equation
d2y
dx2

− 4dy
dx

+ 4y = 0 is satisfied
when y = xe2x

8. Show that, if P and Q are constants and
y = P cos(ln t)+ Q sin(ln t), then

t2
d2y
dt2

+ t
dy
dt

+ y = 0

9. The displacement, s, of a mass in a vibrating
system is given by: s = (1+ t)e−ωt where ω

is the natural frequency of vibration. Show
that:

d2s
d t2

+ 2ω ds
d t

+ ω2s = 0

For fully worked solutions to each of the problems in Practice Exercises 128 to 132 in this chapter,
go to the website:

www.routledge.com/cw/bird
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Chapter 30

Some applications of
differentiation

Why it is important to understand: Some applications of differentiation
In the previous chapter some basic differentiation techniques were explored, sufficient to allow us to
look at some applications of differential calculus. Some practical rates of change problems are initially
explained, followed by some practical velocity and acceleration problems. Determining maximum and
minimum points and points of inflexion on curves, together with some practical maximum and minimum
problems follow. Tangents and normals to curves and errors and approximations complete this initial
look at some applications of differentiation. In general, with these applications, the differentiation tends
to be straightforward.

At the end of this chapter, you should be able to:

• determine rates of change using differentiation
• solve velocity and acceleration problems
• understand turning points
• determine the turning points on a curve and determine their nature
• solve practical problems involving maximum and minimum values
• determine points of inflexion on a curve
• determine tangents and normals to a curve
• determine small changes in functions

30.1 Rates of change

If a quantity y depends on and varies with a quantity

x then the rate of change of y with respect to x is
dy
dx
.

Thus, for example, the rate of change of pressurep with

height h is
dp
dh

A rate of change with respect to time is usually just
called ‘the rate of change’, the ‘with respect to time’
being assumed. Thus, for example, a rate of change of

current, i, is
di
dt
and a rate of change of temperature,

θ , is
dθ
dt
, and so on.

Problem 1. The length l metres of a certain
metal rod at temperature θ ◦C is given by
l=1+0.00005θ +0.0000004θ 2. Determine the
rate of change of length, in mm/◦C, when the
temperature is (a) 100◦C and (b) 400◦C.

Higher Engineering Mathematics. 978-1-138-67357-1, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.
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The rate of change of length means
dl
dθ

Since length l=1+0.00005θ + 0.0000004θ 2,
then

dl
dθ

=0.00005+ 0.0000008θ

(a) When θ =100◦C,

dl
dθ

= 0.00005+ (0.0000008)(100)

= 0.00013m/◦C
= 0.13mm/◦C

(b) When θ =400◦C,

dl
dθ

= 0.00005+ (0.0000008)(400)

= 0.00037m/◦C

= 0.37mm/◦C

Problem 2. The luminous intensity I candelas
of a lamp at varying voltage V is given by
I =4×10−4V 2. Determine the voltage at which the
light is increasing at a rate of 0.6 candelas per volt.

The rate of change of light with respect to voltage is

given by
dI
dV

Since I = 4× 10−4V 2,

dI
dV

= (4× 10−4)(2)V = 8× 10−4V

When the light is increasing at 0.6candelas per volt then
+0.6=8×10−4V , from which, voltage

V = 0.6
8× 10−4 = 0.075× 10+4

= 750volts

Problem 3. Newton’s law of cooling is given by
θ =θ0e−kt , where the excess of temperature at zero
time is θ◦

0C and at time t seconds is θ ◦C. Determine
the rate of change of temperature after 40s, given
that θ0=16◦C and k=0.03

The rate of change of temperature is
dθ
dt

Since θ = θ0e−kt

then
dθ
dt

= (θ0)(−k)e−kt = −kθ0e−kt

When θ0 = 16,k = 0.03 and t = 40

then
dθ
dt

= −(0.03)(16)e−(0.03)(40)

= −0.48e−1.2 = −0.145◦C/s

Problem 4. The displacement s cm of the end
of a stiff spring at time t seconds is given by
s =ae−kt sin2πf t . Determine the velocity of the
end of the spring after 1s, if a=2, k=0.9 and
f =5

Velocity, v= ds
dt

where s =ae−kt sin2πf t (i.e. a
product).
Using the product rule,

ds
dt

= (ae−kt )(2πf cos2πf t)

+ (sin2πf t)(−ake−kt )

When a=2, k=0.9, f =5 and t =1,
velocity,v= (2e−0.9)(2π5cos2π5)

+ (sin2π5)(−2)(0.9)e−0.9

= 25.5455cos10π − 0.7318sin10π
= 25.5455(1) − 0.7318(0)
= 25.55cm/s

(Note that cos10π means ‘the cosine of 10π radians’,
not degrees, and cos10π ≡cos2π =1)

Now try the following Practice Exercise

Practice Exercise 133 Rates of change
(Answers on page 876)

1. An alternating current, i amperes, is given by
i =10sin2πf t , where f is the frequency in
hertz and t the time in seconds. Determine the

Download more at Learnclax.com



Se
ct

io
n

G

Some applications of differentiation 359

rate of change of currentwhen t=20ms, given
that f =150Hz.

2. The luminous intensity, I candelas, of a lamp
is given by I =6×10−4V 2, where V is the
voltage. Find (a) the rate of change of luminous
intensitywith voltagewhenV = 200volts, and
(b) the voltage at which the light is increasing
at a rate of 0.3candelas per volt.

3. The voltage across the plates of a capacitor at
any time t seconds is given by v=V e−t/CR,
where V , C and R are constants.
Given V =300volts, C=0.12×10−6 F and
R=4×106� find (a) the initial rate of change
of voltage, and (b) the rate of change of voltage
after 0.5s.

4. The pressure p of the atmosphere at height h
above ground level is given by p=p0e−h/c,
where p0 is the pressure at ground level
and c is a constant. Determine the rate
of change of pressure with height when
p0=1.013×105 pascals and c=6.05×104 at
1450metres.

5. The volume,v cubicmetres, ofwater in a reser-
voir varies with time t , in minutes. When a
valve is opened the relationship between v and
t is given by: v = 2× 104− 20t2− 10t3. Cal-
culate the rate of change of water volume at
the time when t = 3 minutes.

30.2 Velocity and acceleration

When a carmoves a distance xmetres in a time t seconds
along a straight road, if the velocity v is constant then
v= x

t
m/s, i.e. the gradient of the distance/time graph

shown in Fig. 30.1 is constant.
If, however, the velocity of the car is not constant then

the distance/time graphwill not be a straight line. It may
be as shown in Fig. 30.2.
The average velocity over a small time δt and distance

δx is given by the gradient of the chord AB, i.e. the

average velocity over time δt is
δx

δt
As δt →0, the chordAB becomes a tangent, such that

at point A, the velocity is given by:

v = dx
dt

x

t

Time

D
is

ta
nc

e

Figure 30.1

�x

�t

B

A

Time

D
is

ta
nc

e

Figure 30.2

Hence the velocity of the car at any instant is given by
the gradient of the distance/time graph. If an expres-
sion for the distance x is known in terms of time
t then the velocity is obtained by differentiating the
expression.
The acceleration a of the car is defined as the rate

of change of velocity. A velocity/time graph is shown
in Fig. 30.3. If δv is the change in v and δt the

corresponding change in time, then a= δv

δt
As δt →0, the chordCD becomes a tangent, such that

at point C, the acceleration is given by:

a = dv
dt

Hence the acceleration of the car at any instant is
given by the gradient of the velocity/time graph. If an
expression for velocity is known in terms of time t

then the acceleration is obtained by differentiating the
expression.
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Figure 30.3

Acceleration a= dv
dt
. However, v= dx

dt
. Hence

a= d
dt

(
dx
dt

)

= d
2x

dx2
The acceleration is given by the second differential
coefficient of distance x with respect to time t .
Summarising, if a body moves a distance xmetres
in a time t seconds then:

(i) distance x= f(t)

(ii) velocity v= f ′(t) or dx
dt
, which is the gradient of

the distance/time graph.

(iii) acceleration a= dv
dt

=f ′′(t) or d
2x
dt2
, which is the

gradient of the velocity/time graph.

Problem 5. The distance x metres moved
by a car in a time t seconds is given by
x =3t3−2t2+4t −1. Determine the velocity and
acceleration when (a) t =0 and (b) t =1.5s.

Distance x =3t3− 2t2+ 4t − 1m

Velocity v= dx
dt

= 9t2− 4t + 4m/s

Acceleration a= d
2x

dx2
= 18t − 4m/s2

(a) When time t =0,
velocity v=9(0)2−4(0)+4=4m/s and
acceleration a=18(0)−4=−4m/s2 (i.e. a
deceleration)

(b) When time t =1.5s,
velocity v=9(1.5)2−4(1.5)+4=18.25m/s
and acceleration a=18(1.5)−4=23m/s2

Problem 6. Supplies are dropped from a
helicoptor and the distance fallen in a time
t seconds is given by x = 1

2gt2, where g=9.8m/s2.
Determine the velocity and acceleration of the
supplies after it has fallen for 2 seconds.

Distance x= 1
2
gt2= 1

2
(9.8)t2=4.9t2m

Velocity v= dv
dt

=9.8tm/s

and acceleration a= d
2x

dt2
=9.8m/s2

When time t =2s,
velocity, v = (9.8)(2) = 19.6m/s

and acceleration a= 9.8m/s2

(which is acceleration due to gravity).

Problem 7. The distance x metres travelled by a
vehicle in time t seconds after the brakes are
applied is given by x =20t − 5

3 t
2. Determine (a) the

speed of the vehicle (in km/h) at the instant the
brakes are applied, and (b) the distance the car
travels before it stops.

(a) Distance, x =20t − 5
3 t
2

Hence velocity v= dx
dt

=20− 10
3

t

At the instant the brakes are applied, time=0.
Hence velocity,v = 20m/s

= 20× 60× 60
1000

km/h

= 72km/h
(Note: changing fromm/s to km/hmerely involves
multiplying by 3.6)

(b) When the car finally stops, the velocity is zero, i.e.

v=20− 10
3

t =0, from which, 20= 10
3

t , giving
t =6s.
Hence the distance travelled before the car stops
is given by:

x = 20t − 5
3 t
2 = 20(6) − 5

3 (6)
2

= 120− 60= 60m
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Problem 8. The angular displacement θ radians
of a flywheel varies with time t seconds and follows
the equation θ =9t 2−2t3. Determine (a) the
angular velocity and acceleration of the flywheel
when time, t =1s, and (b) the time when the
angular acceleration is zero.

(a) Angular displacement θ =9t 2−2t3 rad

Angular velocity ω= dθ
dt

=18t −6t2 rad/s
When time t =1s,

ω = 18(1) − 6(1)2 = 12rad/s

Angular acceleration α= d2θ
dt2

=18−12t rad/s2
When time t =1s,

α = 18− 12(1) = 6rad/s2

(b) When the angular acceleration is zero,
18− 12t =0, from which, 18=12t , giving time,
t=1.5s

Problem 9. The displacement x cm of the slide
valve of an engine is given by
x =2.2cos5πt +3.6sin5πt . Evaluate the
velocity (in m/s) when time t =30ms.

Displacement x=2.2cos5πt +3.6sin5πt

Velocity v= dx
dt

= (2.2)(−5π)sin5πt + (3.6)(5π)cos5πt

= −11π sin5πt + 18π cos5πt cm/s

When time t =30ms, velocity

= −11π sin
(

5π · 30
103

)

+ 18π cos
(

5π · 30
103

)

= −11π sin0.4712+ 18π cos0.4712

= −11π sin27◦ + 18π cos27◦

= −15.69+ 50.39= 34.7cm/s

= 0.347m/s

Now try the following Practice Exercise

Practice Exercise 134 Velocity and
acceleration (Answers on page 876)

1. A missile fired from ground level rises
x metres vertically upwards in t seconds and

x =100t − 25
2

t2. Find (a) the initial velocity
of the missile, (b) the time when the height of
the missile is a maximum, (c) the maximum
height reached, (d) the velocitywith which the
missile strikes the ground.

2. The distance s metres travelled by a car
in t seconds after the brakes are applied is
given by s=25t −2.5t 2. Find (a) the speed
of the car (in km/h) when the brakes are
applied, (b) the distance the car travels before it
stops.

3. The equation θ =10π +24t −3t 2 gives the
angle θ , in radians, through which a wheel
turns in t seconds. Determine (a) the time
the wheel takes to come to rest, (b) the
angle turned through in the last second of
movement.

4. At any time t seconds the distance x metres
of a particle moving in a straight line from
a fixed point is given by x=4t + ln(1− t).
Determine (a) the initial velocity and
acceleration (b) the velocity and acceleration
after 1.5s (c) the time when the velocity is
zero.

5. The angular displacement θ of a rotating disc is
given by θ =6sin t

4
, where t is the time in sec-

onds.Determine (a) the angular velocity of the
discwhen t is 1.5s, (b) the angular acceleration
when t is 5.5s, and (c) the first time when the
angular velocity is zero.

6. x = 20t
3

3
− 23t

2

2
+6t +5 represents the dis-

tance, x metres, moved by a body in t seconds.
Determine (a) the velocity and acceleration
at the start, (b) the velocity and acceleration
when t =3s, (c) the values of t when the
body is at rest, (d) the value of t when the
acceleration is 37m/s2 and (e) the distance
travelled in the third second.
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7. A particle has a displacement s given by
s = 30t + 27t2− 3t3metres, where time t is
in seconds. Determine the time at which the
acceleration will be zero.

30.3 Turning points

In Fig. 30.4, the gradient (or rate of change) of the
curve changes from positive between O and P to
negative between P and Q, and then positive again
between Q and R. At point P , the gradient is zero
and, as x increases, the gradient of the curve changes
from positive just before P to negative just after.
Such a point is called a maximum point and appears
as the ‘crest of a wave’. At point Q, the gradient
is also zero and, as x increases, the gradient of the
curve changes from negative just before Q to positive
just after. Such a point is called a minimum point,
and appears as the ‘bottom of a valley’. Points such
as P and Q are given the general name of turning
points.

O Q

y

P

R

x

Positive
gradient

Positive
gradient

Negative
gradient

Figure 30.4

It is possible to have a turning point, the gradient on
either side of which is the same. Such a point is given
the special name of a point of inflexion, and examples
are shown in Fig. 30.5.
Maximum and minimum points and points of

inflexion are given the general term of stationary
points.
Procedure for finding and distinguishing between
stationary points:

(i) Given y =f (x), determine
dy
dx
(i.e. f ′(x))

(ii) Let
dy
dx

=0 and solve for the values of x.

0

y

x

Maximum
point

Minimum point

Maximum
point

Points of
inflexion

Figure 30.5

(iii) Substitute the values of x into the original
equation, y =f (x), to find the corresponding y-
ordinate values. This establishes the co-ordinates
of the stationary points.

To determine the nature of the stationary points:
Either

(iv) Find
d2y
dx2

and substitute into it the values of x

found in (ii).
If the result is:
(a) positive− the point is a minimum one,
(b) negative− the point is a maximum one,
(c) zero− the point is a point of inflexion,

or
(v) Determine the sign of the gradient of the curve just

before and just after the stationary points. If the
sign change for the gradient of the curve is:
(a) positive to negative − the point is a maxi-

mum one,

(b) negative to positive− the point is aminimum
one,

(c) positive to positive or negative to negative−
the point is a point of inflexion.

For more on points of inflexion, see Section 30.5.

Problem 10. Locate the turning point on the
curve y =3x2−6x and determine its nature by
examining the sign of the gradient on either side.

Following the above procedure:

(i) Since y =3x2−6x, dy
dx

=6x−6

(ii) At a turning point,
dy
dx

=0. Hence 6x−6=0,
from which, x =1
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(iii) When x =1, y =3(1)2−6(1)=−3
Hence the co-ordinates of the turning point
are (1, −3)

(iv) If x is slightly less than 1, say, 0.9, then

dy
dx

= 6(0.9) − 6= −0.6,

i.e. negative.
If x is slightly greater than 1, say, 1.1, then

dy
dx

= 6(1.1) − 6= 0.6,

i.e. positive.

Since the gradient of the curve is negative just
before the turning point and positive just after
(i.e. − ∨ +), (1,−3) is a minimum point.

Problem 11. Find the maximum and minimum
values of the curve y =x 3−3x+5 by
(a) examining the gradient on either side of the

turning points, and

(b) determining the sign of the second derivative.

Since y=x3−3x+5 then dy
dx

=3x2−3

For a maximum or minimum value
dy
dx

=0

Hence 3x2−3=0, from which, 3x 2=3 and x = ± 1
When x =1, y =(1)3−3(1)+5=3
When x =−1, y =(−1)3−3(−1)+5=7
Hence (1, 3) and (−1,7) are the co-ordinates of the
turning points.

(a) Considering the point (1, 3):
If x is slightly less than 1, say 0.9, then

dy
dx

= 3(0.9)2− 3,

which is negative.
If x is slightly more than 1, say 1.1, then

dy
dx

= 3(1.1)2− 3,

which is positive.
Since the gradient changes from negative to posi-
tive, the point (1, 3) is a minimum point.

Considering the point (−1,7):
If x is slightly less than −1, say −1.1, then

dy
dx

= 3(−1.1)2− 3,

which is positive.

If x is slightly more than −1, say −0.9, then
dy
dx

= 3(−0.9)2− 3,

which is negative.

Since the gradient changes from positive to nega-
tive, the point (−1, 7) is a maximum point.

(b) Since
dy
dx

= 3x2− 3, then d
2y

dx2
= 6x

When x =1, d
2y

dx2
is positive, hence (1, 3) is a

minimum value.

When x = −1, d
2y

dx2
is negative, hence (−1, 7) is

a maximum value.
Thus the maximum value is 7 and the min-
imum value is 3
It can be seen that the seconddifferentialmethodof
determining the nature of the turning points is, in
this case, quicker than investigating the gradient.

Problem 12. Locate the turning point on the
following curve and determine whether it is a
maximum or minimum point: y =4θ +e−θ

Since y =4θ + e−θ

then
dy
dθ

=4− e−θ = 0
for a maximum or minimum value.

Hence 4=e−θ , 14 =eθ, giving θ = ln 14 =−1.3863 (see
Chapter 4).
When θ = − 1.3863, y =4(−1.3863)+e−(−1.3863)

= 5.5452+4.0000=−1.5452
Thus (−1.3863, −1.5452) are the co-ordinates of the
turning point.

d2y
dθ2

= e−θ

When θ =−1.3863,
d2y
dθ2

= e+1.3863 = 4.0,
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which is positive, hence (−1.3863, −1.5452) is a
minimum point.

Problem 13. Determine the co-ordinates of the
maximum and minimum values of the graph

y = x3

3
− x2

2
−6x+ 5

3
and distinguish between

them. Sketch the graph.

Following the given procedure:

(i) Since y= x3

3
− x2

2
−6x + 5

3
then

dy
dx

=x2−x −6

(ii) At a turning point,
dy
dx

=0. Hence
x2−x −6=0, i.e. (x +2)(x −3)=0,
from which x =−2 or x =3

(iii) When x =−2,

y = (−2)3
3

− (−2)2
2

− 6(−2) + 5
3

= 9

When x =3,

y = (3)3

3
− (3)2

2
− 6(3) + 5

3
= −115

6
Thus the co-ordinates of the turning points are
(−2, 9) and

(
3, −11 56

)

(iv) Since
dy
dx

= x2− x − 6 then d
2y

dx2
= 2x−1

When x =−2,
d2y
dx2

= 2(−2) − 1= −5,
which is negative.

Hence (−2, 9) is a maximum point.
When x =3,

d2y
dx2

= 2(3) − 1= 5,

which is positive.

Hence
(
3, −11 56

)
is a minimum point.

Knowing (−2, 9) is amaximumpoint (i.e. crest of
a wave), and

(
3,−11 56

)
is a minimum point (i.e.

bottom of a valley) and that when x =0, y= 5
3 , a

sketch may be drawn as shown in Fig. 30.6.

x

y

2102122

212

2115
6

28

24

4

8
9

12

x3

3
x2

2
5
3

26x 1y5 2

3

Figure 30.6

Problem 14. Determine the turning points on the
curve y =4sinx −3cosx in the range x =0 to
x =2π radians, and distinguish between them.
Sketch the curve over one cycle.

Since y =4sinx −3cosx

then
dy
dx

= 4cosx + 3sinx = 0,
for a turning point, from which,

4cosx = −3sinx and
−4
3

= sinx

cosx
= tanx

Hence x = tan−1
(−4
3

)

=126.87◦ or 306.87◦, since

tangent is negative in the second and fourth quadrants.
When x =126.87◦,

y = 4sin126.87◦ − 3cos126.87◦ = 5

When x =306.87◦,

y = 4sin306.87◦ − 3cos306.87◦ = −5

126.87◦ =
(
126.87◦ × π

180

)
radians

= 2.214rad
306.87◦ =

(
306.87◦ × π

180

)
radians

= 5.356rad
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Hence (2.214, 5) and (5.356, −5) are the
co-ordinates of the turning points.

d2y
dx2

= −4sinx + 3cosx

When x =2.214rad,
d2y
dx2

= −4sin2.214+ 3cos2.214,

which is negative.
Hence (2.214, 5) is a maximum point.
When x =5.356rad,
d2y
dx2

= −4sin5.356+ 3cos5.356,

which is positive.

Hence (5.356,−5) is a minimum point.
A sketch of y =4sinx −3cosx is shown in Fig. 30.7.

�3

�5

5

0 2.214
5.356

�/2 3�/2 2��

y � 4 sin x � 3 cos x

y

x (rads)

Figure 30.7

Now try the following Practice Exercise

Practice Exercise 135 Turning points
(Answers on page 876)

In Problems 1 to 11, find the turning points and
distinguish between them.

1. y = x2− 6x
2. y = 8+ 2x − x2

3. y = x2− 4x + 3
4. y = 3+ 3x2− x3

5. y =3x2−4x+2

6. x =θ(6−θ)

7. y =4x3+3x2−60x−12

8. y =5x−2 lnx

9. y =2x−ex

10. y = t3− t2

2
−2t +4

11. x =8t + 1
2t2

12. Determine themaximum andminimumvalues
on the graph y=12cosθ −5sinθ in the range
θ =0 to θ =360◦. Sketch the graph over one
cycle showing relevant points.

13. Show that the curve y= 2
3 (t −1)3+2t (t −2)

has a maximum value of 23 and a minimum
value of −2

30.4 Practical problems involving
maximum and minimum values

There are many practical problems involving maxi-
mum and minimum values which occur in science and
engineering. Usually, an equation has to be determined
from given data, and rearranged where necessary, so
that it contains only one variable. Some examples are
demonstrated in Problems 15 to 20.

Problem 15. A rectangular area is formed having
a perimeter of 40cm. Determine the length and
breadth of the rectangle if it is to enclose the
maximum possible area.

Let the dimensions of the rectangle be x and y. Then
the perimeter of the rectangle is (2x+2y). Hence

2x + 2y = 40
or x + y = 20 (1)

Since the rectangle is to enclose the maximum possible
area, a formula for area A must be obtained in terms of
one variable only.
Area A=xy. From equation (1), x =20−y
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Hence, area A=(20−y)y=20y −y 2

dA
dy

= 20− 2y = 0

for a turning point, from which, y =10cm

d2A
dy2

= −2,

which is negative, giving a maximum point.
When y =10cm, x =10cm, from equation (1)
Hence the length and breadth of the rectangle are
each 10cm, i.e. a square gives the maximum possible
area. When the perimeter of a rectangle is 40cm, the
maximum possible area is 10×10= 100cm2.

Problem 16. A rectangular sheet of metal having
dimensions 20cm by 12cm has squares removed
from each of the four corners and the sides bent
upwards to form an open box. Determine the
maximum possible volume of the box.

The squares to be removed from each corner are shown
in Fig. 30.8, having sides x cm. When the sides are bent
upwards the dimensions of the box will be:
length (20−2x)cm, breadth (12−2x)cm and height
x cm.

12 cm

20 cm

(20 2 2x )

(12 2 2x )

x
x

x

x x
x

x
x

Figure 30.8

Volume of box,

V = (20− 2x)(12− 2x)(x)

= 240x − 64x2+ 4x3

dV
dx

= 240− 128x + 12x2 = 0

for a turning point.

Hence 4(60− 32x + 3x2) = 0,
i.e. 3x2− 32x + 60= 0

Using the quadratic formula,

x = 32±
√

(−32)2− 4(3)(60)
2(3)

= 8.239cm or 2.427cm.

Since the breadth is (12− 2x)cm then x =8.239cm is
not possible and is neglected. Hence x =2.427cm

d2V
dx2

= −128+ 24x

When x =2.427, d
2V

dx2
is negative, giving a max-

imum value.
The dimensions of the box are:

length= 20− 2(2.427) = 15.146cm,

breadth= 12− 2(2.427) = 7.146cm,

and height = 2.427cm
Maximum volume= (15.146)(7.146)(2.427)

= 262.7cm3

Problem 17. Determine the height and radius of a
cylinder of volume 200cm3 which has the least
surface area.

Let the cylinder have radius r and perpendicular
height h.
Volume of cylinder,

V = πr2h = 200 (1)

Surface area of cylinder,
A = 2πrh+ 2πr2

Least surface area means minimum surface area and a
formula for the surface area in terms of one variable
only is required.
From equation (1),

h = 200
πr2

(2)

Hence surface area,

A = 2πr

(
200
πr2

)

+ 2πr2

= 400
r

+ 2πr2 = 400r−1+ 2πr2

dA
dr

= −400
r2

+ 4πr = 0,

for a turning point.
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Hence 4πr = 400
r2

and r3 = 400
4π

from which,

r = 3

√(
100
π

)

= 3.169cm

d2A
dr2

= 800
r3

+ 4π

When r =3.169cm,
d2A
dr2

is positive, giving a min-
imum value.
From equation (2),

when r = 3.169cm,

h = 200
π(3.169)2

= 6.339cm

Hence for the least surface area, a cylinder of vol-
ume 200cm3 has a radius of 3.169cm and height of
6.339cm.

Problem 18. Determine the area of the largest
piece of rectangular ground that can be enclosed by
100m of fencing, if part of an existing straight wall
is used as one side.

Let the dimensions of the rectangle be x and y as shown
in Fig. 30.9, where PQ represents the straight wall.

P Q

y y

x

Figure 30.9

From Fig. 30.9,

x + 2y = 100 (1)

Area of rectangle,

A = xy (2)

Since the maximum area is required, a formula for area
A is needed in terms of one variable only.
From equation (1), x =100−2y
Hence area A=xy= (100−2y)y=100y−2y2

dA
dy

= 100− 4y = 0,

for a turning point, from which, y =25m
d2A
dy2

= −4,

which is negative, giving a maximum value.
When y =25m, x=50m from equation (1).
Hence themaximum possible area

=xy= (50)(25)=1250m2

Problem 19. An open rectangular box with
square ends is fitted with an overlapping lid which
covers the top and the front face. Determine the
maximum volume of the box if 6m2 of metal are
used in its construction.

A rectangular box having square ends of side x and
length y is shown in Fig. 30.10.

x

x y

Figure 30.10

Surface area of box, A, consists of two ends and five
faces (since the lid also covers the front face).
Hence

A = 2x2+ 5xy = 6 (1)

Since it is the maximum volume required, a formula
for the volume in terms of one variable only is needed.
Volume of box, V =x 2y
From equation (1),

y = 6− 2x2
5x

= 6
5x

− 2x
5

(2)

Hence volume

V = x2y = x2
(
6
5x

− 2x
5

)

= 6x
5

− 2x3

5

dV
dx

= 6
5

− 6x2

5
= 0

for a maximum or minimum value.
Hence 6=6x2, giving x =1m (x=−1 is not possible,
and is thus neglected).

d2V
dx2

= −12x
5
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When x =1, d
2V

dx2
is negative, giving a maximumvalue.

From equation (2), when x=1,

y = 6
5(1)

− 2(1)
5

= 4
5

Hence the maximum volume of the box is given by

V = x2y = (1)2
( 4
5
) = 4

5 m
3

Problem 20. Find the diameter and height of a
cylinder of maximum volume which can be cut
from a sphere of radius 12cm.

A cylinder of radius r and height h is shown enclosed
in a sphere of radius R=12cm in Fig. 30.11.
Volume of cylinder,

V = πr2h (1)

Using the right-angled triangle OPQ shown in
Fig. 30.11,

r2+
(

h

2

)2
=R2 by Pythagoras’ theorem,

i.e. r2+ h2

4
=144 (2)

Since the maximum volume is required, a formula for
the volume V is needed in terms of one variable only.
From equation (2),

r2 = 144− h2

4

h
O

P Q

r

h
2

R5
12 cm

Figure 30.11

Substituting into equation (1) gives:

V = π

(

144− h2

4

)

h = 144πh− πh3

4

dV
dh

= 144π − 3πh2

4
= 0,

for a maximum or minimum value.
Hence

144π = 3πh2

4

from which, h =
√

(144)(4)
3

= 13.86cm

d2V
dh2

= −6πh

4

When h=13.86, d
2V

dh2
is negative, giving a maximum

value.
From equation (2),

r2 = 144− h2

4
= 144− 13.862

4
from which, radius r =9.80cm
Diameter of cylinder=2r =2(9.80)=19.60cm.
Hence the cylinder having themaximumvolume that
can be cut from a sphere of radius 12cm is one in
which the diameter is 19.60cm and the height is
13.86cm.

Now try the following Practice Exercise

Practice Exercise 136 Practical maximum
and minimum problems (Answers on
page 876)

1. The speed, v, of a car (in m/s) is related to
time t s by the equation v=3+12t −3t 2.
Determine the maximum speed of the car
in km/h.

2. Determine the maximum area of a rectangu-
lar piece of land that can be enclosed by
1200m of fencing.

3. A shell is fired vertically upwards and
its vertical height, xmetres, is given by
x =24t −3t2, where t is the time in seconds.
Determine the maximum height reached.
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4. A lidless box with square ends is to be made
from a thin sheet of metal. Determine the
least area of the metal for which the volume
of the box is 3.5m3.

5. A closed cylindrical container has a surface
area of 400cm2. Determine the dimensions
for maximum volume.

6. Calculate the height of a cylinder of max-
imum volume which can be cut from a cone
of height 20cm and base radius 80cm.

7. The power developed in a resistor R by a
battery of emf E and internal resistance r is

given by P = E2R

(R+r)2
. Differentiate P with

respect to R and show that the power is a
maximum when R=r .

8. Find the height and radius of a closed cylin-
der of volume 125cm3 which has the least
surface area.

9. Resistance to motion, F , of a moving vehi-
cle is given by F = 5

x
+100x. Determine the

minimum value of resistance.

10. An electrical voltage E is given by
E= (15sin50πt +40cos50πt) volts,
where t is the time in seconds. Determine the
maximum value of voltage.

11. The fuel economy E of a car, in miles per
gallon, is given by:

E = 21+ 2.10× 10−2v2

− 3.80× 10−6v4

where v is the speed of the car in miles per
hour.
Determine, correct to 3 significant figures,
the most economical fuel consumption, and
the speed at which it is achieved.

12. The horizontal range of a projectile, x,
launched with velocity u at an angle θ to

the horizontal is givenby:x = 2u2 sinθ cosθ
g

Toachievemaximumhorizontal range, deter-
mine the angle the projectile should be
launched at.

13. The signalling range, x, of a submarine cable

is given by the formula: x = r 2 ln
(
1
r

)

where

r is the ratio of the radii of the conductor and
cable. Determine the value of r formaximum
range.

30.5 Points of inflexion

Asmentioned earlier in the chapter, it is possible to have
a turning point, the gradient on either side of which is
the same. This is called a point of inflexion.
Procedure to determine points of inflexion:

(i) Given y = f (x), determine
dy
dx
and

d2y
dx2

(ii) Solve the equation
d2y
dx2

= 0

(iii) Test whether there is a change of sign occurring

in
d2y
dx2

. This is achieved by substituting into the

expression for
d2y
dx2

firstly a value of x just less
than the solution and then a value just greater than
the solution.

(iv) A point of inflexion has been found if
d2y
dx2

= 0
and there is a change of sign.

This procedure is demonstrated in the followingworked
Problems.

Problem 21. Determine the point(s) of inflexion
(if any) on the graph of the function

y = x3− 6x2+ 9x + 5
Find also any other turning points. Hence, sketch
the graph.

Using the above procedure:

(i) Given y = x3− 6x2+ 9x + 5,
dy
dx

= 3x2− 12x + 9 and d
2y

dx2
= 6x − 12

(ii) Solving the equation
d2y
dx2

= 0 gives: 6x − 12= 0
from which, 6x = 12 and x = 2
Hence, if there is a point of inflexion, it occurs at
x = 2
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(iii) Taking a value just less than 2, say, 1.9:
d2y
dx2

= 6x − 12= 6(1.9) − 12,which is negative.
Taking a value just greater than 2, say, 2.1:
d2y
dx2

= 6x − 12= 6(2.1) − 12, which is positive.
(iv) Since a change of sign has occurred a point of

inflexion exists at x = 2
When x = 2,y = 23− 6(2)2+ 9(2) + 5= 7
i.e. a point of inflexion occurs at the co-ordinates
(2, 7)

From above,
dy
dx

= 3x2− 12x + 9= 0 for a turning
point
i.e. x2− 4x + 3= 0
Using the quadratic formula or factorising (or by calcu-
lator), the solution is: x = 1 or x = 3
Since y = x3− 6x2+ 9x + 5, then when x = 1,
y = 13− 6(1)2+ 9(1) + 5= 9
and when x = 3,y = 33− 6(3)2+ 9(3) + 5= 5
Hence, there are turning points at (1, 9) and at (3, 5)

Since
d2y
dx2

= 6x − 12, when x = 1, d
2y

dx2
= 6(1) − 12

which is negative – hence a maximum point

and when x = 3, d
2y

dx2
= 6(3) − 12 which is positive –

hence a minimum point.
Thus, (1, 9) is a maximum point and (3, 5) is a
minimum point.
A sketch of the graph y = x 3− 6x2+ 9x + 5 is shown
in Figure 30.12

Problem 22. Determine the point(s) of inflexion
(if any) on the graph of the function

y = x4− 24x2+ 5x + 60

Using the above procedure:

(i) Given y = x4− 24x2+ 5x + 60,
dy
dx

= 4x3− 48x + 5 and d
2y

dx2
= 12x2− 48

(ii) Solving the equation
d2y
dx2

= 0 gives:
12x2− 48= 0 from which, 12x 2 = 48
and x2 = 4 from which, x = √

4= ±2
Hence, if there are points of inflexion, they occur
at x = 2 and at x = −2

(iii) Taking a value just less than 2, say, 1.9:
d2y
dx2

= 12x2− 48= 12(1.9)2− 48, which is
negative.
Taking a value just greater than 2, say,

2.1:
d2y
dx2

= 12x2− 48= 12(2.1)2− 48, which is
positive.

Taking a value just less than −2, say, −2.1:
d2y
dx2

= 12x2− 48= 12(−2.1)2− 48, which is
positive.
Taking a value just greater than −2, say, −1.9:
d2y
dx2

= 12x2− 48= 12(−1.9)2− 48, which is
negative.

(iv) Since changes of signs have occurred, points of
inflexion exist at x = 2 and x = −2
When x = 2,y=24− 24(2)2+ 5(2) + 60=− 10
When x = −2,
y = (−2)4− 24(−2)2+ 5(−2) + 60= −30
i.e. points of inflexion occur at the co-ordinates
(2,− 10) and at (− 2,− 30)

Now try the following Practice Exercise

Practice Exercise 137 Further problems on
points of inflexion (Answers on page 877)

1. Find the points of inflexion (if any) on the
graph of the function

y = 1
3
x3− 1

2
x2− 2x + 1

12
2. Find the points of inflexion (if any) on the

graph of the function

y = 4x3+ 3x2− 18x − 5
8

3. Find the point(s) of inflexion on the graph of
the function y = x + sinx for 0 < x < 2π

4. Find the point(s) of inflexion on the graph of
the function y = 3x3− 27x2+ 15x + 17

5. Find the point(s) of inflexion on the graph of
the function y = 2xe−x

6. The displacement, s, of a particle is given by:
s = 3t3− 9t2+ 10. Determine the maximum,
minimum and point of inflexion of s.
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Figure 30.12

30.6 Tangents and normals

Tangents

The equation of the tangent to a curve y=f (x) at the
point (x1,y1) is given by:

y− y1 =m(x− x1)

where m= dy
dx

=gradient of the curve at (x1,y1)

Problem 23. Find the equation of the tangent to
the curve y =x2−x−2 at the point (1, −2)

Gradient,m

= dy
dx

= 2x − 1

At the point (1,−2), x =1 andm=2(1)−1=1
Hence the equation of the tangent is:

y − y1 = m(x − x1)
i.e. y − (−2) = 1(x − 1)
i.e. y + 2= x − 1
or y= x− 3

The graph of y=x2−x −2 is shown in Fig. 30.13. The
line AB is the tangent to the curve at the point C, i.e.
(1, −2), and the equation of this line is y =x−3

Normals

The normal at any point on a curve is the line which
passes through the point and is at right angles to the
tangent. Hence, in Fig. 30.13, the line CD is the normal.

2

1

1 2 30

�1

�1�2

�2

�3

y � x2� x�2

y

x
B

C

D
A

Figure 30.13
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It may be shown that if two lines are at right angles then
the product of their gradients is −1. Thus if m is the
gradient of the tangent, then the gradient of the normal

is − 1
m

Hence the equation of the normal at the point (x 1,y1) is
given by:

y− y1 = − 1
m

(x− x1)

Problem 24. Find the equation of the normal to
the curve y =x2−x−2 at the point (1, −2)

m=1 from Problem 21, hence the equation of the
normal is

y − y1 = − 1
m

(x − x1)

i.e. y − (−2) = −1
1
(x − 1)

i.e. y + 2= −x + 1
or y= −x− 1
Thus the line CD in Fig. 30.13 has the equation
y =−x−1

Problem 25. Determine the equations of the

tangent and normal to the curve y = x3

5
at the point

(

−1,−1
5

)

Gradient m of curve y = x3

5
is given by

m = dy
dx

= 3x2

5

At the point
(−1,− 1

5
)
, x = −1 and m= 3(−1)

2

5
= 3
5

Equation of the tangent is:

y − y1 = m(x − x1)

i.e. y −
(

−1
5

)

= 3
5
(x − (−1))

i.e. y + 1
5

= 3
5
(x + 1)

or 5y + 1= 3x + 3
or 5y− 3x= 2

Equation of the normal is:

y − y1 = − 1
m

(x − x1)

i.e. y −
(

−1
5

)

= −1
(3/5)

(x − (−1))

i.e. y + 1
5

= −5
3
(x + 1)

i.e. y + 1
5

= −5
3
x − 5

3

Multiplying each term by 15 gives:

15y + 3= −25x − 25
Hence equation of the normal is:

15y+25x+28= 0

Now try the following Practice Exercise

Practice Exercise 138 Tangents and
normals (Answers on page 877)

For the curves in problems 1 to 5, at the points
given, find (a) the equation of the tangent, and
(b) the equation of the normal.

1. y =2x2 at the point (1, 2)

2. y =3x2−2x at the point (2, 8)

3. y = x3

2
at the point

(

−1,−1
2

)

4. y =1+x −x2 at the point (−2,−5)

5. θ = 1
t
at the point

(

3,
1
3

)

30.7 Small changes

If y is a function of x, i.e. y = f (x), and the approxi-
mate change in y corresponding to a small change δx in
x is required, then:

δy

δx
≈ dy
dx

and δy≈ dy
dx

· δx or δy≈ f ′(x) · δx
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Problem 26. Given y =4x2−x, determine the
approximate change in y if x changes from 1 to
1.02

Since y=4x2−x, then

dy
dx

= 8x − 1

Approximate change in y,

δy ≈ dy
dx

· δx ≈ (8x − 1)δx

When x = 1 and δx = 0.02,δy≈ [8(1) − 1](0.02)

≈ 0.14

[Obviously, in this case, the exact value of dy may
be obtained by evaluating y when x =1.02, i.e.
y =4(1.02)2−1.02=3.1416 and then subtracting from
it the value of ywhen x=1, i.e. y=4(1)2−1=3, giving
δy=3.1416−3=0.1416
Using δy = dy

dx
· δx above gave 0.14, which shows that

the formula gives the approximate change in y for a
small change in x]

Problem 27. The time of swing T of a pendulum
is given by T =k

√
l, where k is a constant.

Determine the percentage change in the time of
swing if the length of the pendulum l changes from
32.1cm to 32.0cm.

If T =k
√

l =kl
1
2 , then

dT
dl

= k

(
1
2
l
−1
2

)

= k

2
√

l

Approximate change in T ,

δt ≈ dT
dl

δl ≈
(

k

2
√

l

)

δl

≈
(

k

2
√

l

)

(−0.1)

(negative since l decreases)

Percentage error

=
(
approximate change in T

original value of T

)

100%

=

(
k

2
√

l

)

(−0.1)

k
√

l
× 100%

=
(−0.1
2l

)

100%=
( −0.1
2(32.1)

)

100%

= −0.156%
Hence the change in the time of swing is a decrease
of 0.156%

Problem 28. A circular template has a radius of
10cm (±0.02). Determine the possible error in
calculating the area of the template. Find also the
percentage error.

Area of circular template, A=πr 2, hence

dA
dr

= 2πr

Approximate change in area,

δA ≈ dA
dr

· δr ≈ (2πr)δr

When r =10cm and δr =0.02,
δA=(2π10)(0.02)≈0.4π cm2
i.e. the possible error in calculating the template area
is approximately 1.257cm2.

Percentage error≈
(
0.4π

π(10)2

)

100%

= 0.40%

Now try the following Practice Exercise

Practice Exercise 139 Small changes
(Answers on page 877)

1. Determine the change in y if x changes from
2.50 to 2.51 when
(a) y =2x −x2 (b) y= 5

x

2. The pressure p and volume v of a mass of gas
are related by the equationpv=50. If the pres-
sure increases from 25.0 to 25.4, determine the
approximate change in the volume of the gas.
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Find also the percentage change in the volume
of the gas.

3. Determine the approximate increase in (a) the
volume, and (b) the surface area of a cube
of side x cm if x increases from 20.0cm to
20.05cm.

4. The radius of a sphere decreases from 6.0cm
to 5.96cm.Determine the approximate change
in (a) the surface area, and (b) the volume.

5. The rate of flow of a liquid through a
tube is given by Poiseuilles’ equation as:

Q= pπr4

8ηL
where Q is the rate of flow, p

is the pressure difference between the ends
of the tube, r is the radius of the tube, L

is the length of the tube and η is the coeffi-
cient of viscosity of the liquid. η is obtained
by measuring Q,p,r and L. If Q can be
measured accurate to ±0.5%, p accu-
rate to ±3%, r accurate to ±2% and
L accurate to ±1%, calculate the max-
imum possible percentage error in the
value of η.

For fully worked solutions to each of the problems in Practice Exercises 133 to 139 in this chapter,
go to the website:

www.routledge.com/cw/bird
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This Revision Test covers the material contained in Chapters 29 and 30. The marks for each question are shown in
brackets at the end of each question.

1. Differentiate the following with respect to the
variable:

(a) y =5+2
√

x3− 1
x2

(b) s=4e2θ sin3θ

(c) y = 3ln5t
cos2t

(d) x = 2
√

(t2−3t +5)
(15)

2. If f (x)=2.5x2−6x+2 find the co-ordinates at
the point at which the gradient is −1 (5)

3. The displacement s cm of the end of a stiff spring
at time t seconds is given by:
s =ae−kt sin2πf t . Determine the velocity and
acceleration of the end of the spring after
twoseconds if a=3, k=0.75 and f =20 (10)

4. Find the co-ordinates of the turning points
on the curve y =3x3+6x2+3x−1 and distin-
guish between them. Find also the point(s) of
inflexion. (14)

5. The heat capacity C of a gas varies with absolute
temperature θ as shown:

C = 26.50+ 7.20× 10−3θ − 1.20× 10−6θ2

Determine the maximum value of C and the
temperature at which it occurs. (7)

6. Determine for the curve y =2x 2−3x at the point
(2, 2): (a) the equation of the tangent (b) the
equation of the normal. (7)

7. A rectangular block of metal with a square cross-
section has a total surface area of 250cm2. Find
the maximum volume of the block of metal. (7)

For lecturers/instructors/teachers, fully worked solutions to each of the problems in Revision Test 9,
together with a full marking scheme, are available at the website:

www.routledge.com/cw/bird
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Chapter 31

Standard integration

Why it is important to understand: Standard integration
Engineering is all about problem solving andmany problems in engineering can be solved using calculus.
Physicists, chemists, engineers, and many other scientific and technical specialists use calculus in their
everyday work; it is a technique of fundamental importance. Both integration and differentiation have
numerous applications in engineering and science and some typical examples include determining areas,
mean and rms values, volumes of solids of revolution, centroids, second moments of area, differential
equations and Fourier series. Besides the standard integrals covered in this chapter, there are a number of
othermethods of integration covered in later chapters. For any further studies in engineering, differential
and integral calculus are unavoidable.

At the end of this chapter, you should be able to:

• understand that integration is the reverse process of differentiation
• determine integrals of the form ax n where n is fractional, zero, or a positive or negative integer

• integrate standard functions: cosax, sinax, sec2 ax, cosec 2ax, cosecax,cotax, secax, tanax, eax ,
1
x

• evaluate definite integrals

31.1 The process of integration

The process of integration reverses the process of
differentiation. In differentiation, if f (x)=2x 2 then
f ′(x)=4x. Thus the integral of 4x is 2x 2, i.e. integra-
tion is the process of moving from f ′(x) to f (x). By
similar reasoning, the integral of 2t is t 2

Integration is a process of summation or adding parts
together and an elongated S, shown as

∫
, is used to

replace the words ‘the integral of’. Hence, from above,∫
4x =2x2 and ∫

2t is t2

In differentiation, the differential coefficient
dy
dx
indi-

cates that a function of x is being differentiated with
respect to x, the dx indicating that it is ‘with respect
to x’. In integration the variable of integration is shown
by adding d (the variable) after the function to be
integrated.

Thus
∫
4x dx means ‘the integral of 4x

with respect to x’,

and
∫
2t dt means ‘the integral of 2t

with respect to t’.

As stated above, the differential coefficient of 2x 2 is
4x, hence

∫
4x dx =2x2. However, the differential coef-

ficient of 2x2+7 is also 4x. Hence ∫
4x dx is also equal

to 2x2+7. To allow for the possible presence of a con-
stant, whenever the process of integration is performed,
a constant ‘c’ is added to the result.

Thus
∫
4x dx =2x2+c and

∫
2t dt = t2+c

‘c’ is called the arbitrary constant of integration.

Higher Engineering Mathematics. 978-1-138-67357-1, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.
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31.2 The general solution of integrals
of the form axn

The general solution of integrals of the form
∫
axndx,

where a and n are constants is given by:
∫

axn dx = axn+1

n+ 1 + c

This rule is true when n is fractional, zero, or a positive
or negative integer, with the exception of n=−1
Using this rule gives:

(i)
∫
3x4 dx = 3x

4+1

4+1 +c= 3
5
x5+c

(ii)
∫ 2

x2
dx =

∫
2x−2 dx = 2x

−2+1

−2+1 +c

= 2x
−1

−1 +c= −2
x

+c, and

(iii)
∫ √

x dx =
∫

x
1
2 dx = x

1
2+1

1
2

+1
+c= x

3
2

3
2

+c

= 2
3
√

x3+c

Each of these three results may be checked by differen-
tiation.

(a) The integral of a constant k is kx + c. For
example,

∫
8dx = 8x + c

(b) When a sumof several terms is integrated the result
is the sum of the integrals of the separate terms.
For example,

∫
(3x + 2x2− 5)dx

=
∫
3x dx +

∫
2x2 dx −

∫
5dx

= 3x
2

2
+ 2x 3

3
− 5x + c

31.3 Standard integrals

Since integration is the reverse process of differentia-
tion the standard integrals listed in Table 31.1 may be
deduced and readily checked by differentiation.

Table 31.1 Standard integrals

(i)
∫

axn dx= axn+1

n+1 +c

(except when n=−1)

(ii)
∫
cosax dx = 1

a
sinax +c

(iii)
∫
sinax dx =− 1

a
cosax+c

(iv)
∫
sec2 ax dx = 1

a
tanax +c

(v)
∫
cosec 2 ax dx =−1

a
cotax +c

(vi)
∫
cosecax cotax dx =− 1

a
cosecax+c

(vii)
∫
secax tanax dx = 1

a
secax+c

(viii)
∫
eax dx = 1

a
eax +c

(ix)
∫
1
x
dx = lnx +c

Problem 1. Determine (a)
∫
5x2 dx (b)

∫
2t3 dt

The standard integral,
∫
axn dx= axn+1

n+1 +c

(a) When a=5 and n=2 then
∫
5x2 dx = 5x2+1

2+1 +c= 5x
3

3
+c

(b) When a=2 and n=3 then

∫
2t3 dt = 2t3+1

3+1 +c= 2t
4

4
+c= 1

2
t4+c

Each of these results may be checked by differentiating
them.
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Problem 2. Determine
∫ (

4+ 3
7
x − 6x2

)

dx

∫
(4+ 3

7x −6x2)dx may be written as∫
4dx + ∫ 3

7x dx−∫
6x2 dx, i.e. each term is integrated

separately. (This splitting up of terms only applies,
however, for addition and subtraction.)

Hence
∫ (

4+ 3
7
x − 6x2

)

dx

= 4x +
(
3
7

)
x1+1

1+ 1 − (6)
x2+1

2+ 1 + c

= 4x +
(
3
7

)
x2

2
− (6)

x3

3
+ c

=4x + 3
14

x 2 − 2x 3 + c

Note that when an integral contains more than one term
there is no need to have an arbitrary constant for each;
just a single constant at the end is sufficient.

Problem 3. Determine

(a)
∫
2x3− 3x
4x

dx (b)
∫

(1− t)2 dt

(a) Rearranging into standard integral form gives:

∫
2x3− 3x
4x

dx

=
∫
2x3

4x
− 3x
4x
dx =

∫
x2

2
− 3
4
dx

=
(
1
2

)
x2+1

2+ 1 − 3
4
x + c

=
(
1
2

)
x3

3
− 3
4
x + c= 1

6
x3− 3

4
x +c

(b) Rearranging
∫

(1− t)2 dt gives:

∫
(1− 2t + t2)dt = t − 2t1+1

1+ 1 + t2+1

2+ 1 + c

= t − 2t2

2
+ t3

3
+ c

= t− t 2+ 1
3
t 3+c

This problem shows that functions often have to be
rearranged into the standard form of

∫
axn dx before

it is possible to integrate them.

Problem 4. Determine
∫ 3

x2
dx

∫
3
x2
dx =

∫
3x−2 dx. Using the standard integral,

∫
axn dx when a=3 and n=−2 gives:

∫
3x−2 dx = 3x−2+1

−2+ 1 + c = 3x−1

−1 + c

= −3x−1+ c= −3
x

+c

Problem 5. Determine
∫
3
√

x dx

For fractional powers it is necessary to appreciate
n
√

am=a
m
n

∫
3
√

x dx =
∫
3x
1
2 dx = 3x

1
2+1

1
2

+ 1
+ c

= 3x
3
2

3
2

+ c = 2x 32 + c=2
√
x 3+c

Problem 6. Determine
∫ −5
9 4√

t3
dt

∫ −5
9 4√

t3
dt =

∫ −5
9t

3
4
dt =

∫ (

−5
9

)

t−
3
4 dt

=
(

−5
9

)
t
−
3
4

+1

−3
4

+ 1
+ c
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=
(

−5
9

)
t
1
4
1
4

+ c =
(

−5
9

)(
4
1

)

t
1
4 + c

= −20
9

4√t + c

Problem 7. Determine
∫

(1+θ)2√
θ

dθ

∫
(1+ θ)2√

θ
dθ =

∫
(1+ 2θ + θ2)√

θ
dθ

=
∫ (

1

θ
1
2

+ 2θ

θ
1
2

+ θ2

θ
1
2

)

dθ

=
∫ (

θ
−1
2 + 2θ1−

(
1
2

)

+ θ
2−

(
1
2

))

dθ

=
∫ (

θ
−1
2 + 2θ 12 + θ

3
2
)
dθ

= θ

(
−1
2

)
+1

− 1
2 + 1 + 2θ

(
1
2

)
+1

1
2 + 1 + θ

(
3
2

)
+1

3
2 + 1 + c

= θ
1
2

1
2

+ 2θ
3
2

3
2

+ θ
5
2

5
2

+ c

= 2θ 1
2 + 4

3
θ
3
2 + 2

5
θ
5
2 + c

= 2
√

θ + 4
3

√
θ3+ 2

5

√
θ5+c

Problem 8. Determine
(a)

∫
4cos3x dx (b)

∫
5sin2θ dθ

(a) From Table 31.1(ii),
∫
4cos3x dx = (4)

(
1
3

)

sin3x + c

= 4
3
sin3x+ c

(b) From Table 31.1(iii),
∫
5sin2θ dθ = (5)

(

−1
2

)

cos2θ + c

= −5
2
cos2θ +c

Problem 9. Determine

(a)
∫
7sec2 4t dt (b) 3

∫
cosec2 2θ dθ

(a) From Table 31.1(iv),
∫
7sec2 4t dt = (7)

(
1
4

)

tan4t + c

= 7
4
tan4t+ c

(b) From Table 31.1(v),

3
∫
cosec2 2θ dθ = (3)

(

−1
2

)

cot 2θ + c

= −3
2
cot 2θ + c

Problem 10. Determine

(a)
∫
5e3x dx (b)

∫
2
3e4t

dt

(a) From Table 31.1(viii),
∫
5e3x dx = (5)

(
1
3

)

e3x + c = 5
3
e3x+ c

(b)
∫

2
3e4t

dt =
∫
2
3
e−4t dt =

(
2
3

)(

−1
4

)

e−4t + c

=−1
6
e−4t +c=− 1

6e4t
+c

Problem 11. Determine

(a)
∫ 3
5x
dx (b)

∫ (
2m2+ 1

m

)

dm

(a)
∫
3
5x
dx =

∫ (
3
5

)(
1
x

)

dx = 3
5
lnx+c

(from Table 39.1(ix))

(b)
∫ (

2m2+1
m

)

dm=
∫ (

2m2

m
+ 1

m

)

dm

=
∫ (

2m + 1
m

)

dm
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= 2m2

2
+ lnm + c

=m2+ lnm+c

Now try the following Practice Exercise

Practice Exercise 140 Standard integrals
(Answers on page 877)

In Problems 1 to 12, determine the indefinite
integrals.

1. (a)
∫
4dx (b)

∫
7x dx

2. (a)
∫
2
5
x2 dx (b)

∫
5
6
x3 dx

3. (a)
∫ (
3x2−5x

x

)

dx (b)
∫

(2+θ)2 dθ

4. (a)
∫ 4
3x2

dx (b)
∫ 3
4x4

dx

5. (a) 2
∫ √

x3 dx (b)
∫
1
4
4
√

x5 dx

6. (a)
∫ −5√

t3
dt (b)

∫ 3
7 5√

x4
dx

7. (a)
∫
3cos2x dx (b)

∫
7sin3θ dθ

8. (a)
∫
3
4
sec2 3x dx (b)

∫
2cosec2 4θ dθ

9. (a) 5
∫
cot 2t cosec2t dt

(b)
∫
4
3
sec4t tan4t dt

10. (a)
∫
3
4
e2x dx (b)

2
3

∫
dx
e5x

11. (a)
∫ 2
3x
dx (b)

∫ (
u2− 1

u

)

du

12. (a)
∫

(2+3x)2√
x

dx (b)
∫ (
1
t

+ 2t
)2
dt

31.4 Definite integrals

Integrals containing an arbitrary constant c in their
results are called indefinite integrals since their precise
value cannot be determinedwithout further information.
Definite integrals are those in which limits are applied.
If an expression iswritten as [x]ba, ‘b’ is called theupper
limit and ‘a’ the lower limit. The operation of applying
the limits is defined as [x]ba =(b)−(a)

The increase in the value of the integral x 2 as x increases
from 1 to 3 is written as

∫ 3
1 x2 dx.

Applying the limits gives:

∫ 3

1
x2 dx =

[
x3

3
+ c

]3

1
=

(
33

3
+ c

)

−
(
13

3
+ c

)

= (9+ c) −
(
1
3

+ c

)

=82
3

Note that the ‘c’ term always cancels outwhen limits are
applied and it need not be shown with definite integrals.

Problem 12. Evaluate

(a)
∫ 2
1 3x dx (b)

∫ 3
−2(4− x2)dx

(a)
∫ 2

1
3x dx =

[
3x2

2

]2

1
=

{
3
2
(2)2

}

−
{
3
2
(1)2

}

=6− 11
2

=41
2

(b)
∫ 3

−2
(4− x2)dx =

[

4x − x3

3

]3

−2

=
{

4(3) − (3)3

3

}

−
{

4(−2) − (−2)3
3

}

= {12− 9} −
{

−8− −8
3

}

= {3} −
{

−51
3

}

=81
3

Problem 13. Evaluate
∫ 4

1

(
θ + 2√

θ

)

dθ , taking

positive square roots only.
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∫ 4

1

(
θ + 2√

θ

)

dθ =
∫ 4

1

(
θ

θ
1
2

+ 2

θ
1
2

)

dθ

=
∫ 4

1

(

θ
1
2 + 2θ

−1
2

)

dθ

=

⎡

⎢
⎣

θ

( 1
2
)
+1

1
2

+ 1
+ 2θ

(−1
2

)
+1

−1
2

+ 1

⎤

⎥
⎦

4

1

=
⎡

⎣θ
3
2
3
2

+ 2θ
1
2
1
2

⎤

⎦

4

1

=
[
2
3

√
θ3+ 4

√
θ

]4

1

=
{
2
3

√
(4)3+ 4

√
4
}

−
{
2
3

√
(1)3+ 4

√
(1)

}

=
{
16
3

+ 8
}

−
{
2
3

+ 4
}

= 51
3

+ 8− 2
3

− 4= 82
3

Problem 14. Evaluate
∫ π

2

0
3sin2x dx

∫ π
2

0
3sin2x dx

=
[

(3)
(

−1
2

)

cos2x
] π
2

0
=

[

−3
2
cos2x

] π
2

0

=
{

−3
2
cos2

(π

2

)}

−
{

−3
2
cos2(0)

}

=
{

−3
2
cosπ

}

−
{

−3
2
cos0

}

=
{

−3
2
(−1)

}

−
{

−3
2
(1)

}

= 3
2

+ 3
2

=3

Problem 15. Evaluate
∫ 2

1
4cos3t dt

∫ 2

1
4cos3t dt =

[

(4)
(
1
3

)

sin3t
]2

1
=

[
4
3
sin3t

]2

1

=
{
4
3
sin6

}

−
{
4
3
sin3

}

Note that limits of trigonometric functions are always
expressed in radians – thus, for example, sin6 means
the sine of 6radians=−0.279415 . . .

Hence
∫ 2

1
4cos3t dt

=
{
4
3
(−0.279415 . . .)

}

−
{
4
3
(0.141120 . . .)

}

= (−0.37255) − (0.18816)=−0.5607

Problem 16. Evaluate

(a)
∫ 2

1
4e2x dx (b)

∫ 4

1

3
4u
du,

each correct to 4 significant figures.

(a)
∫ 2

1
4e2x dx =

[
4
2
e2x

]2

1
=2[e2x]21 = 2[e4−e2]

=2[54.5982−7.3891]=94.42

(b)
∫ 4

1

3
4u
du=

[
3
4
lnu

]4

1
= 3
4
[ln4− ln1]

= 3
4
[1.3863−0]=1.040

Now try the following exercise

Practice Exercise 141 Definite integrals
(Answers on page 877)

In problems 1 to 8, evaluate the definite integrals
(where necessary, correct to 4 significant figures).

1. (a)
∫ 4

1
5x2 dx (b)

∫ 1

−1
−3
4
t2 dt

2. (a)
∫ 2

−1
(3− x2)dx (b)

∫ 3

1
(x2− 4x + 3)dx

3. (a)
∫ π

0

3
2
cosθ dθ (b)

∫ π
2

0
4cosθ dθ

4. (a)
∫ π
3

π
6
2sin2θ dθ (b)

∫ 2

0
3sin t dt

5. (a)
∫ 1

0
5cos3x dx (b)

∫ π
6

0
3sec2 2x dx
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6. (a)
∫ 2

1
cosec2 4t dt

(b)
∫ π

2

π
4

(3sin2x −2cos3x)dx

7. (a)
∫ 1

0
3e3t dt (b)

∫ 2

−1
2
3e2x

dx

8. (a)
∫ 3

2

2
3x
dx (b)

∫ 3

1

2x2+ 1
x

dx

9. The entropy change �S, for an ideal gas is
given by:

�S =
∫ T2

T1

Cv

dT
T

− R

∫ V2

V1

dV
V

where T is the thermodynamic temperature,
V is the volume and R=8.314. Determine
the entropy change when a gas expands from
1litre to 3litres for a temperature rise from
100K to 400K given that:

Cv = 45+ 6× 10−3T + 8× 10−6T 2

10. The p.d. between boundaries a and b of an

electric field is given by: V =
∫ b

a

Q

2πrε0εr

dr

If a=10, b=20, Q=2×10−6 coulombs,
ε0=8.85×10−12 and εr =2.77, show that
V =9kV.

11. The average value of a complex voltage wave-
form is given by:

VAV = 1
π

∫ π

0
(10sinωt + 3sin3ωt

+ 2sin5ωt)d(ωt)

Evaluate VAV correct to 2 decimal places.

12. The volume of liquid in a tank is given by:

v =
∫ t2

t1

q dt. Determine the volume of a

chemical, given
q = (5− 0.05t + 0.003t 2)m3/s, t1 = 0 and
t2 = 16s.

For fully worked solutions to each of the problems in Practice Exercises 140 and 141 in this chapter,
go to the website:

www.routledge.com/cw/bird
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Chapter 32

Some applications of
integration

Why it is important to understand: Some applications of integration
Engineering is all about problem solving and many problems in engineering can be solved using integral
calculus. One important application is to find the area bounded by a curve; often such an area can have a
physical significance like the work done by amotor, or the distance travelled by a vehicle. Other examples
can involve position, velocity, force, charge density, resistivity and current density. Electrical currents
and voltages often vary with time and engineers may wish to know the average or mean value of such
a current or voltage over some particular time interval. An associated quantity is the root mean square
(rms) value of a currentwhich is used, for example, in the calculation of the power dissipated by a resistor.
Mean and rms values are required with alternating currents and voltages, pressure of sound waves, and
much more. Revolving a plane figure about an axis generates a volume, called a solid of revolution,
and integration may be used to calculate such a volume. There are many applications in engineering,
and particularly in manufacturing. Centroids of basic shapes can be intuitive − such as the centre of
a circle; centroids of more complex shapes can be found using integral calculus − as long as the area,
volume or line of an object can be described by a mathematical equation. Centroids are of considerable
importance in manufacturing, and in mechanical, civil and structural design engineering. The second
moment of area is a property of a cross-section that can be used to predict the resistance of a beam to
bending and deflection around an axis that lies in the cross-sectional plane. The stress in, and deflection
of, a beam under load depends not only on the load but also on the geometry of the beam’s cross-section;
larger values of second moment cause smaller values of stress and deflection. This is why beams with
larger second moments of area, such as I-beams, are used in building construction in preference to other
beams with the same cross-sectional area. The second moment of area has applications in many scientific
disciplines including fluid mechanics, engineering mechanics, and biomechanics − for example to study
the structural properties of bone during bending. The static roll stability of a ship depends on the second
moment of area of the waterline section− short fat ships are stable, long thin ones are not. It is clear that
calculations involving areas, mean and rms values, volumes, centroids and second moment of area are
very important in many areas of engineering.

At the end of this chapter, you should be able to:

• calculate areas under and between curves
• determine the mean and rms value of a function over a given range
• determine the volume of a solid of revolution between given limits
• determine the centroid of an area between a curve and given axes
• define and use the theorem of Pappus to determine the centroid of an area
• determine the second moment of area and radius of gyration of regular sections and composite areas

Higher Engineering Mathematics. 978-1-138-67357-1, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.Download more at Learnclax.com
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32.1 Introduction

There are a number of applications of integral calculus
in engineering. The determination of areas, mean and
rms values, volumes, centroids and second moments of
area and radius of gyration are included in this chapter.

32.2 Areas under and between curves

In Fig. 32.1,

total shaded area =
∫ b

a
f (x)dx−

∫ c

b
f (x)dx

+
∫ d

c
f (x)dx

E

0 F

G

y

a b c d x

y 5 f (x)

Figure 32.1

Problem 1. Determine the area between the curve
y = x3− 2x2− 8x and the x-axis.

y = x3−2x2− 8x = x(x2−2x − 8) = x(x + 2)(x − 4)
When y = 0, x = 0 or (x + 2) = 0 or (x − 4) = 0, i.e.
when y = 0, x = 0 or −2 or 4, which means that the
curve crosses the x-axis at 0,−2, and 4. Since the curve
is a continuous function, only one other co-ordinate
value needs to be calculated before a sketch of the
curve can be produced. When x = 1, y = −9, show-
ing that the part of the curve between x = 0 and x = 4
is negative. A sketch of y = x3− 2x2− 8x is shown in
Fig. 32.2. (Anothermethod of sketchingFig. 32.2would
have been to draw up a table of values.)

Shaded area

=
∫ 0

−2
(x3− 2x2− 8x)dx −

∫ 4

0
(x3− 2x2− 8x)dx

=
[

x4

4
− 2x3

3
− 8x2

2

]0

−2
−
[
x4

4
− 2x3

3
− 8x2

2

]4

0

=
(

6
2
3

)

−
(

−422
3

)

=491
3
square units

y

x

210

10

220

22 4

y 5 x32 2x22 8x 

221 0 1 3

Figure 32.2

Problem 2. Determine the area enclosed between
the curves y = x2+ 1 and y = 7− x.

At the points of intersection the curves are equal. Thus,
equating the y values of each curve gives:

x2+ 1= 7− x

from which, x2+ x − 6= 0
Factorising gives (x − 2)(x + 3)= 0
from which x = 2 and x = −3
By firstly determining the points of intersection the
range of x-values has been found. Tables of values are
produced as shown below.

x −3 −2 −1 0 1 2

y = x2+ 1 10 5 2 1 2 5

x −3 0 2

y = 7− x 10 7 5

A sketch of the two curves is shown in Fig. 32.3.

y

10

21 0 1 2 x2223

5
y 5 7 2 x

y 5 x 211

Figure 32.3
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Shaded area=
∫ 2

−3
(7− x)dx −

∫ 2

−3
(x2+ 1)dx

=
∫ 2

−3
[(7− x) − (x2+ 1)]dx

=
∫ 2

−3
(6− x − x2)dx

=
[

6x − x2

2
− x3

3

]2

−3

=
(

12− 2− 8
3

)

−
(

−18− 9
2

+ 9
)

=
(

7
1
3

)

−
(

−131
2

)

= 205
6
square units

Problem 3. Determine by integration the area
bounded by the three straight lines y = 4− x,
y = 3x and 3y = x

Each of the straight lines are shown sketched in
Fig. 32.4.

1 2 3 x4

y 5 3x
y 5 4 2 x

y

4

2

0

3y 5 x (or y 5 x  )
3

Figure 32.4

Shaded area

=
∫ 1

0

(
3x − x

3

)
dx +

∫ 3

1

[
(4− x) − x

3

]
dx

=
[
3x2

2
− x2

6

]1

0
+
[

4x − x2

2
− x2

6

]3

1

=
[(
3
2

− 1
6

)

− (0)
]

+
[(

12− 9
2

− 9
6

)

−
(

4− 1
2

− 1
6

)]

=
(

1
1
3

)

+
(

6− 31
3

)

= 4 square units

Now try the following Practice Exercise

Practice Exercise 142 Areas under and
between curves (Answers on page 877)

1. Find the area enclosed by the curve
y = 4cos3x, the x-axis and ordinates x = 0
and x = π

6
2. Sketch the curves y = x2+ 3 and y = 7− 3x

and determine the area enclosed by them.

3. Determine the area enclosed by the three
straight lines y =3x, 2y=x and y +2x=5

32.3 Mean and rms values

With reference to Fig. 32.5,

mean value, y = 1
b−a

∫ b

a
ydx

and rms value =
√√
√
√

{
1
b−a

∫ b

a
y2 dx
}

0 x 5 a x 5 b

y

x

y

y 5 f(x)

Figure 32.5

Problem 4. A sinusoidal voltage v= 100sinωt

volts. Use integration to determine over half a cycle
(a) the mean value, and (b) the rms value.

(a) Half a cycle means the limits are 0 to π radians.

Mean value, y = 1
π − 0

∫ π

0
v d(ωt)

= 1
π

∫ π

0
100sinωt d(ωt)
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= 100
π
[−cosωt]π0

= 100
π
[(−cosπ) − (−cos0)]

= 100
π
[(+1) − (−1)]= 200

π

= 63.66volts

[Note that for a sine wave,

mean value= 2
π

×maximum value

In this case, mean value= 2
π

× 100= 63.66V]
(b) rms value

=
√{

1
π − 0

∫ π

0
v2 d(ωt)

}

=
√{

1
π

∫ π

0
(100sinωt)2 d(ωt)

}

=
√{

10 000
π

∫ π

0
sin2ωt d(ωt)

}

which is not a ‘standard’ integral.

It is shown in Chapter 19 that
cos2A=1− 2sin2A and this formula is used
whenever sin2A needs to be integrated.

Rearranging cos2A = 1− 2sin2A gives

sin2A = 1
2
(1− cos2A)

Hence

√{
10 000

π

∫ π

0
sin2ωt d(ωt)

}

=
√{

10 000
π

∫ π

0

1
2
(1− cos2ωt)d(ωt)

}

=
√{

10 000
π

1
2

[

ωt − sin2ωt

2

]π

0

}

=

√√
√
√
√
√
√

⎧
⎪⎪⎨

⎪⎪⎩

10 000
π

1
2

[(

π − sin2π
2

)

−
(

0− sin0
2

)]

⎫
⎪⎪⎬

⎪⎪⎭

=
√{

10 000
π

1
2
[π]
}

=
√{

10 000
2

}

= 100√
2

= 70.71volts

[Note that for a sine wave,

rms value= 1√
2

× maximum value.

In this case,

rms value= 1√
2

× 100= 70.71V]

Now try the following Practice Exercise

Practice Exercise 143 Mean and rms values
(Answers on page 877)

1. The vertical height hkm of a missile varies
with the horizontal distance d km, and is given
by h=4d −d2. Determine the mean height of
the missile from d = 0 to d = 4km.

2. The distances of points y from the mean
value of a frequency distribution are related

to the variate x by the equation y = x + 1
x
.

Determine the standard deviation (i.e. the rms
value), correct to 4 significant figures for
values of x from 1 to 2

3. A current i = 25sin100πtmA flows in an
electrical circuit. Determine, using integral
calculus, its mean and rms values each cor-
rect to 2 decimal places over the range t = 0
to t = 10ms.

4. A wave is defined by the equation:

v = E1 sinωt + E3 sin3ωt

where E1, E3 and ω are constants.
Determine the rms value of v over the
interval 0≤ t ≤ π

ω

32.4 Volumes of solids of revolution

With reference to Fig. 32.6, the volume of revolution
V obtained by rotating area A through one revolution

Download more at Learnclax.com
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0 x 5 a x 5 b

y 5 f (x)
y

x

A

Figure 32.6

about the x-axis is given by:

V =
∫ b

a
πy2 dx

If a curve x = f (y) is rotated 360◦ about the y-axis
between the limits y = c and y = d then the volume
generated, V , is given by:

V=
∫ d

c
πx2 dy

Problem 5. The curve y =x2+4 is rotated one
revolution about the x-axis between the limits x = 1
and x = 4. Determine the volume of solid of
revolution produced.

Revolving the shaded area shown in Fig. 32.7 360 ◦
about the x-axis produces a solid of revolution given by:

Volume=
∫ 4

1
πy2 dx =

∫ 4

1
π(x2+ 4)2 dx

=
∫ 4

1
π(x4+ 8x2+ 16)dx

0 1 2 x

4
5

30

20
BA

D C
10

y

43 5

y 5 x21 4

Figure 32.7

= π

[
x5

5
+ 8x3

3
+ 16x

]4

1

= π[(204.8+ 170.67+ 64)
− (0.2+ 2.67+ 16)]

= 420.6π cubic units

Problem 6. Determine the area enclosed by the
two curves y = x2 and y2 = 8x. If this area is
rotated 360◦ about the x-axis determine the volume
of the solid of revolution produced.

At the points of intersection the co-ordinates of the
curves are equal. Since y = x2 then y2 = x4. Hence
equating the y2 values at the points of intersection:

x4= 8x
from which, x4− 8x = 0
and x(x3− 8)= 0

Hence, at the points of intersection, x = 0 and x = 2
When x =0, y =0 and when x =2, y =4. The points of
intersection of the curves y =x 2 and y2=8x are there-
fore at (0,0) and (2,4). A sketch is shown in Fig. 32.8.
If y2=8x then y=√

8x

y

x0 1

2

4

2

y 5 x2

y25 8x
(or y 5ŒŒ(8x)

Figure 32.8

Shaded area

=
∫ 2

0

(√
8x − x2

)
dx =

∫ 2

0

(√
8
)
x
1
2 − x2

)

dx

=
⎡

⎣
(√
8
) x

3
2
3
2

− x3

3

⎤

⎦

2

0

=
{√

8
√
8

3
2

− 8
3

}

− {0}

Download more at Learnclax.com



Se
ct

io
n

G
388 Higher Engineering Mathematics

= 16
3

− 8
3

= 8
3

= 22
3
square units

The volume produced by revolving the shaded area
about the x-axis is given by:
{(volume produced by revolving y 2 = 8x)

− (volume produced by revolving y = x 2)}

i.e. volume=
∫ 2

0
π(8x)dx −

∫ 2

0
π(x4)dx

= π

∫ 2

0
(8x − x4)dx = π

[
8x2

2
− x5

5

]2

0

= π

[(

16− 32
5

)

− (0)
]

= 9.6π cubic units

Now try the following Practice Exercise

Practice Exercise 144 Volumes (Answers
on page 877)

1. The curve xy=3 is revolved one revolution
about the x-axis between the limits x=2 and
x =3. Determine the volume of the solid
produced.

2. The area between
y

x2
=1 and y+x2=8 is

rotated 360◦ about the x-axis. Find the vol-
ume produced.

3. The curve y = 2x2+ 3 is rotated about (a) the
x-axis between the limits x = 0 and x = 3,
and (b) the y-axis, between the same limits.
Determine the volume generated in each case.

4. The profile of a rotor blade is bounded by the
lines x =0.2,y =2x,y =e−x,x =1 and the
x-axis. The blade thickness t varies linearly
with x and is given by: t =(1.1−x)K, where
K is a constant.
(a) Sketch the rotor blade, labelling the limits.
(b) Determine, using an iterative method, the

value of x, correct to 3 decimal places,
where 2x=e−x

(c) Calculate the cross-sectional area of the
blade, correct to 3 decimal places.

(d) Calculate the volume of the blade in terms
of K, correct to 3 decimal places.

32.5 Centroids

A lamina is a thin, flat sheet having uniform thickness.
The centre of gravity of a lamina is the point where
it balances perfectly, i.e. the lamina’s centre of mass.
When dealing with an area (i.e. a lamina of negligible
thickness andmass) the term centre of area or centroid
is used for the point where the centre of gravity of a
lamina of that shape would lie.
If x and y denote the co-ordinates of the centroid C of
area A of Fig. 32.9, then:

x=

∫ b

a
xydx

∫ b

a
ydx

and y=
1
2

∫ b

a
y2 dx

∫ b

a
ydx

0

Area A

x 5 a x 5 b

y

x

y 5 f(x)

y
x

C

Figure 32.9

Problem 7. Find the position of the centroid of
the area bounded by the curve y = 3x 2, the x-axis
and the ordinates x = 0 and x = 2

If (x,y) are co-ordinates of the centroid of the given
area then:

x =

∫ 2

0
xy dx

∫ 2

0
y dx

=

∫ 2

0
x(3x2)dx
∫ 2

0
3x2 dx

=

∫ 2

0
3x3 dx

∫ 2

0
3x2 dx

=

[
3x4

4

]2

0
[x3]20
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= 12
8

= 1.5

y =
1
2

∫ 2

0
y2 dx

∫ 2

0
y dx

=
1
2

∫ 2

0
(3x2)2 dx

8

=
1
2

∫ 2

0
9x4 dx

8
=

9
2

[
x5

5

]2

0
8

=
9
2

(
32
5

)

8
= 18
5

= 3.6

Hence the centroid lies at (1.5, 3.6)

Problem 8. Determine the co-ordinates of
the centroid of the area lying between the curve
y =5x−x2 and the x-axis.

y =5x−x2=x(5−x). When y =0, x =0 or x=5.
Hence the curve cuts the x-axis at 0 and 5 as shown
in Fig. 32.10. Let the co-ordinates of the centroid be
(x,y) then, by integration,

x =

∫ 5

0
xy dx

∫ 5

0
y dx

=

∫ 5

0
x(5x − x2)dx

∫ 5

0
(5x − x2)dx

=

∫ 5

0
(5x2− x3)dx

∫ 5

0
(5x − x2)dx

=

[
5x3
3 − x4

4

]5

0
[
5x2
2 − x3

3

]5

0

8

C

6

4

2

1 2 3 4 5 x

y

y 5 5x2 x2

y

x

0

Figure 32.10

=
625
3

− 625
4

125
2

− 125
3

=
625
12
125
6

=
(
625
12

)(
6
125

)

= 5
2

= 2.5

y =
1
2

∫ 5

0
y2 dx

∫ 5

0
y dx

=
1
2

∫ 5

0
(5x − x2)2 dx

∫ 5

0
(5x − x2)dx

=
1
2

∫ 5

0
(25x2− 10x3+ x4)dx

125
6

=

1
2

[
25x3

3
− 10x4

4
+ x5

5

]5

0
125
6

=
1
2

(
25(125)
3

− 6250
4

+ 625
)

125
6

= 2.5

Hence the centroid of the area lies at (2.5, 2.5)

(Note from Fig. 32.10 that the curve is symmetrical
about x = 2.5 and thus x could have been determined
‘on sight’.)

Now try the following Practice Exercise

Practice Exercise 145 Centroids (Answers
on page 878)

In Problems 1 and 2, find the position of the cen-
troids of the areas bounded by the given curves, the
x-axis and the given ordinates.

1. y = 3x + 2 x = 0,x = 4
2. y = 5x2 x = 1,x = 4
3. Determine the position of the centroid of a

sheet of metal formed by the curve
y = 4x − x2 which lies above the x-axis.
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4. Find the co-ordinates of the centroidof the area
which lies between the curve y/x = x − 2 and
the x-axis.

5. Sketch the curve y2 = 9x between the limits
x = 0 and x = 4. Determine the position of the
centroid of this area.

32.6 Theorem of Pappus

A theorem of Pappus∗ states:

‘If a plane area is rotated about an axis in its own plane
but not intersecting it, the volume of the solid formed is
given by the product of the area and the distance moved
by the centroid of the area’.
With reference to Fig. 32.11, when the curve y =f (x)

is rotated one revolution about the x-axis between
the limits x = a and x = b, the volume V generated
is given by:

volume V = (A)(2πy), from which, y= V
2πA

y

C

Area A

xx 5 bx 5 a

y 5 f(x)

y

Figure 32.11

Problem 9. (a) Calculate the area bounded by the
curve y = 2x2, the x-axis and ordinates x = 0 and
x = 3. (b) If this area is revolved (i) about the
x-axis and (ii) about the y-axis, find the volumes of
the solids produced. (c) Locate the position of the
centroid using (i) integration, and (ii) the theorem
of Pappus.

∗Who was Pappus? Pappus of Alexandria (c. 290–c. 350) was
one of the last great Greek mathematicians of Antiquity. Collec-
tion, his best-known work, is a compendium of mathematics in
eight volumes. It covers a wide range of topics, including geom-
etry, recreational mathematics, doubling the cube, polygons and
polyhedra. To find out more go to www.routledge.com/cw/bird

(a) The required area is shown shaded in Fig. 32.12.

Area=
∫ 3

0
y dx =

∫ 3

0
2x2 dx

=
[
2x3

3

]3

0
= 18 square units

y

0

6

12

18

1 2 3 x

y 5 2x2

x

y

Figure 32.12

(b) (i) When the shaded area of Fig. 32.12 is
revolved 360◦ about the x-axis, the volume
generated

=
∫ 3

0
πy2 dx =

∫ 3

0
π(2x2)2 dx

=
∫ 3

0
4πx4 dx = 4π

[
x5

5

]3

0

= 4π
(
243
5

)

=194.4πcubic units

(ii) When the shaded area of Fig. 32.12 is
revolved 360◦ about the y-axis, the volume
generated

= (volume generated by x = 3)
− (volume generated by y = 2x 2)

=
∫ 18

0
π(3)2 dy −

∫ 18

0
π
(y

2

)
dy

= π

∫ 18

0

(
9− y

2

)
dy = π

[

9y − y2

4

]18

0

=81π cubic units

(c) If the co-ordinates of the centroid of the shaded
area in Fig. 32.12 are (x,y) then:
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(i) by integration,

x =

∫ 3

0
xy dx

∫ 3

0
y dx

=

∫ 3

0
x(2x2)dx

18

=

∫ 3

0
2x3 dx

18
=

[
2x4

4

]3

0
18

= 81
36

=2.25

y =
1
2

∫ 3

0
y2 dx

∫ 3

0
y dx

=
1
2

∫ 3

0
(2x2)2 dx

18

=
1
2

∫ 3

0
4x4 dx

18
=

1
2

[
4x5

5

]3

0
18

= 5.4

(ii) using the theorem of Pappus:

Volume generated when shaded area is
revolved about OY= (area)(2πx)

i.e. 81π = (18)(2πx)

from which, x = 81π
36π

= 2.25

Volume generated when shaded area is
revolved about OX=(area)(2πy)

i.e. 194.4π = (18)(2πy)

from which, y = 194.4π
36π

= 5.4

Hence the centroid of the shaded area in
Fig. 32.12 is at (2.25, 5.4)

Problem 10. A metal disc has a radius of 5.0 cm
and is of thickness 2.0cm. A semicircular groove of
diameter 2.0cm is machined centrally around the
rim to form a pulley. Determine, using Pappus’
theorem, the volume and mass of metal removed
and the volume and mass of the pulley if the density
of the metal is 8000kgm−3

A side view of the rim of the disc is shown in Fig. 32.13.

5.0 cm

2.0 cm

XX

S R

QP

Figure 32.13

When areaPQRS is rotated about axis XX the volume
generated is that of the pulley. The centroid of the

semicircular area removed is at a distance of
4r
3π

from

its diameter (see Engineering Mathematics 8th edition,

Chapter 62), i.e.
4(1.0)
3π

, i.e. 0.424cm from PQ. Thus
the distance of the centroid from XX is 5.0− 0.424,
i.e. 4.576cm.
The distance moved through in one revolution by the
centroid is 2π(4.576)cm.

Area of semicircle= πr2

2
= π(1.0)2

2
= π

2
cm2

By the theorem of Pappus,
volume generated = area × distance moved by

centroid=
(π

2

)
(2π)(4.576)

i.e. volume of metal removed=45.16 cm3
Massofmetal removed= density× volume

= 8000kgm−3×45.16
106

m3

= 0.3613kg or 361.3g

volume of pulley=volume of cylindrical disc
−volume of metal removed

= π(5.0)2(2.0) − 45.16

= 111.9 cm3

Mass of pulley= density×volume

= 8000kg m−3× 111.9
106

m3

= 0.8952kg or 895.2 g
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Now try the following Practice Exercise

Practice Exercise 146 The theorem of
Pappus (Answers on page 878)

1. A right-angled isosceles triangle having a
hypotenuse of 8cm is revolved one revolution
about one of its equal sides as axis. Deter-
mine the volume of the solid generated using
Pappus’ theorem.

2. Using (a) the theorem of Pappus, and (b) inte-
gration, determine the position of the centroid
of a metal template in the form of a quadrant
of a circle of radius 4cm. (The equation of a
circle, centre 0, radius r is x2+ y2 = r2)

3. (a) Determine the area boundedby the curve
y=5x2, the x-axis and the ordinates
x=0 and x=3

(b) If this area is revolved 360◦ about (i) the
x-axis, and (ii) the y-axis, find the vol-
umes of the solids of revolution produced
in each case.

(c) Determine the co-ordinates of the cen-
troid of the area using (i) integral calcu-
lus, and (ii) the theorem of Pappus.

4. A metal disc has a radius of 7.0 cm and is
of thickness 2.5 cm. A semicircular groove of
diameter 2.0 cm is machined centrally around
the rim to form a pulley. Determine the vol-
ume of metal removed using Pappus’ theorem
and express this as a percentage of the origi-
nal volume of the disc. Find also the mass of
metal removed if the density of the metal is
7800kgm−3

For more on areas, mean and rms values, volumes and
centroids, see Engineering Mathematics 8th edition,
Chapters 59 to 63.

32.7 Second moments of area of
regular sections

The first moment of area about a fixed axis of a lamina
of area A, perpendicular distance y from the centroid
of the lamina is defined as Ay cubic units. The second
moment of area of the same lamina as above is given
byAy2, i.e. the perpendicular distance from the centroid
of the area to the fixed axis is squared.

Second moments of areas are usually denoted by I and
have units of mm4, cm4, and so on.

Radius of gyration

Several areas, a1, a2, a3, . . . at distances y1, y2, y3, . . .
from a fixed axis, may be replaced by a single area
A, whereA = a1+ a2+ a3+ ·· · at distance k from the
axis, such that Ak2 =∑ay2.
k is called the radius of gyration of area A about the
given axis. Since Ak2 =∑ay2 = I then the radius of
gyration,

k =
√

I

A

The second moment of area is a quantity much used in
the theory of bending of beams, in the torsion of shafts,
and in calculations involving water planes and centres
of pressure.
The procedure to determine the second moment of area
of regular sections about a given axis is (i) to find the
second moment of area of a typical element and (ii) to
sum all such second moments of area by integrating
between appropriate limits.
For example, the secondmoment of area of the rectangle
shown in Fig. 32.14 about axis PP is found by initially
considering an elemental strip of width δx, parallel to
and distance x from axisPP . Area of shaded strip= bδx

b

l

x

P

P

�x

Figure 32.14

Second moment of area of the shaded strip about
PP= (x2)(b δx)

The secondmoment of area of thewhole rectangle about
PP is obtained by summing all such strips between x =
0 and x = l, i.e.

∑x=l
x=0 x2 bδx
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It is a fundamental theorem of integration that

limit
δx→0

x=l∑

x=0
x2bδx =

∫ l

0
x2bdx

Thus the second moment of area of the rectangle
about PP

= b

∫ l

0
x2 dx = b

[
x3

3

]l

0
= bl3

3

Since the total area of the rectangle, A = lb, then

Ipp = (lb)

(
l2

3

)

= Al2

3

Ipp = Ak2pp thus k2pp = l2

3
i.e. the radius of gyration about axes PP ,

kpp =
√

l2

3
= l√

3

Parallel axis theorem

In Fig. 32.15, axis GG passes through the centroid C

of area A. Axes DD andGG are in the same plane, are
parallel to each other and distance d apart. The parallel
axis theorem states:

IDD = IGG+Ad2

Using the parallel axis theorem the second moment of
area of a rectangle about an axis through the centroid

d

G

C

Area A

G

D

D

Figure 32.15

bC

x

P G

GP

�x

l
2

l
2

Figure 32.16

maybe determined. In the rectangle shown inFig. 32.16,

Ipp = bl3

3
(from above).

From the parallel axis theorem

Ipp = IGG + (bl)

(
1
2

)2

i.e.
bl3

3
= IGG + bl3

4

from which, IGG= bl3

3
− bl3

4
= bl3

12

Perpendicular axis theorem

In Fig. 32.17, axes OX, OY and OZ are mutually per-
pendicular. IfOX andOY lie in the plane of areaA then
the perpendicular axis theorem states:

IOZ = IOX + IOY

Z

Y

X

O

Area A

Figure 32.17

A summary of derived standard results for the second
moment of area and radius of gyration of regular
sections are listed in Table 32.1.
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Table 32.1 Summary of standard results of the second moments of areas of regular sections

Shape Position of axis Second moment Radius of
of area, I gyration, k

Rectangle (1) Coinciding with b
bl3

3
l√
3

length l, breadth b

(2) Coinciding with l
lb3

3
b√
3

(3) Through centroid, parallel to b
bl3

12
l√
12

(4) Through centroid, parallel to l
lb3

12
b√
12

Triangle (1) Coinciding with b
bh3

12
h√
6

Perpendicular height h,

base b (2) Through centroid, parallel to base
bh3

36
h√
18

(3) Through vertex, parallel to base
bh3

4
h√
2

Circle (1) Through centre, perpendicular to
πr4

2
r√
2

radius r plane (i.e. polar axis)

(2) Coinciding with diameter
πr4

4
r

2

(3) About a tangent
5πr4

4

√
5
2

r

Semicircle Coinciding with diameter
πr4

8
r

2
radius r

Problem 11. Determine the second moment of
area and the radius of gyration about axes AA, BB

and CC for the rectangle shown in Fig. 32.18.

A

A
B

b 5 4.0 cm

l 5 12.0 cm

B

CC

Figure 32.18

From Table 32.1, the second moment of area about
axis AA,

IAA = bl3

3
= (4.0)(12.0)3

3
= 2304cm4

Radiusofgyration,kAA= l√
3

= 12.0√
3

= 6.93 cm

Similarly, IBB= lb3

3
= (12.0)(4.0)3

3
= 256cm4

and kBB= b√
3

= 4.0√
3

= 2.31cm
The second moment of area about the centroid of a

rectangle is
bl3

12
when the axis through the centroid
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is parallel with the breadth b. In this case, the axis CC
is parallel with the length l.

Hence ICC= lb3

12
= (12.0)(4.0)3

12
= 64cm4

and kCC= b√
12

= 4.0√
12

= 1.15cm

Problem 12. Find the second moment of area and
the radius of gyration about axis PP for the
rectangle shown in Fig. 32.19.

PP

40.0 mm

15.0 mm

25.0 mm

GG

Figure 32.19

IGG = lb3

12
where l = 40.0mm and b = 15.0mm

Hence IGG = (40.0)(15.0)3

12
= 11 250mm4

From the parallel axis theorem, IPP = IGG + Ad2,
where A = 40.0× 15.0= 600mm2 and
d =25.0+7.5=32.5mm, the perpendicular
distance betweenGG and PP . Hence,

IPP = 11250+ (600)(32.5)2

= 645 000mm4

IPP = Ak2PP, from which,

kPP =
√

IPP

area
=
√(

645 000
600

)

= 32.79mm

Problem 13. Determine the second moment of
area and radius of gyration about axisQQ of the
triangle BCD shown in Fig. 32.20.

Q Q

DC

6.0 cm

12.0 cm

8.0 cm

G

B

G

Figure 32.20

Using the parallel axis theorem: IQQ = IGG + Ad2,
where IGG is the second moment of area about the
centroid of the triangle,

i.e.
bh3

36
= (8.0)(12.0)3

36
= 384cm4,

A is the area of the triangle,

= 1
2bh = 1

2 (8.0)(12.0) = 48cm2

and d is the distance between axesGG andQQ,

= 6.0+ 1
3 (12.0) = 10cm

Hence the second moment of area about axisQQ,

IQQ = 384+ (48)(10)2 = 5184cm4

Radius of gyration,

kQQ =
√

IQQ

area
=
√(

5184
48

)

= 10.4cm

Problem 14. Determine the second moment of
area and radius of gyration of the circle shown in
Fig. 32.21 about axis YY .

Y

3.0 cm

Y

GG

r 5 2.0 cm

Figure 32.21

In Fig. 32.21, IGG = πr4

4
= π

4
(2.0)4 = 4π cm4.

Using the parallel axis theorem, IYY =IGG +Ad2,
where d =3.0+2.0=5.0cm.
Hence IYY = 4π + [π(2.0)2](5.0)2

= 4π + 100π = 104π = 327cm4
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Radius of gyration,

kYY =
√

IYY

area
=
√(

104π
π(2.0)2

)

=
√
26= 5.10cm

Problem 15. Determine the second moment of
area and radius of gyration for the semicircle shown
in Fig. 32.22 about axis XX.

XX

GG

BB

10.0 mm

15.0 mm

Figure 32.22

The centroid of a semicircle lies at
4r
3π
from its diameter.

Using the parallel axis theorem:

IBB= IGG + Ad2

where IBB= πr4

8
(from Table 32.1)

= π(10.0)4

8
= 3927mm4,

A= πr2

2
= π(10.0)2

2
= 157.1mm2

and d = 4r
3π

= 4(10.0)
3π

= 4.244mm
Hence 3927= IGG + (157.1)(4.244)2

i.e. 3927= IGG + 2830
from which, IGG = 3927− 2830= 1097mm4

Using the parallel axis theorem again:

IXX = IGG + A(15.0+ 4.244)2

i.e. IXX= 1097+ (157.1)(19.244)2

= 1097+ 58179
= 59 276mm4 or 59 280mm4

correct to 4 significant figures.

Radius of gyration, kXX =
√

IXX

area
=
√(

59276
157.1

)

= 19.42mm

Problem 16. Determine the polar second moment
of area of the propeller shaft cross-section shown in
Fig. 32.23.

6.
0

cm

7.
0

cm

Figure 32.23

The polar second moment of area of a circle= πr4

2
The polar second moment of area of the shaded area is
given by the polar second moment of area of the 7.0 cm
diameter circle minus the polar second moment of area
of the 6.0 cm diameter circle.
Hence the polar second moment of area of the cross-
section shown

= π

2

(
7.0
2

)4
− π

2

(
6.0
2

)4

= 235.7− 127.2= 108.5cm4

Problem 17. Determine the second moment of
area and radius of gyration of a rectangular lamina
of length 40mm and width 15mm about an axis
through one corner, perpendicular to the plane of
the lamina.

The lamina is shown in Fig. 32.24.

l 5 40 mm

b 5 15 mm
X

X

Z
Y

Y
Z

Figure 32.24

From the perpendicular axis theorem:

IZZ = IXX + IYY

IXX = lb3

3
= (40)(15)3

3
= 45 000mm4
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and IYY = bl3

3
= (15)(40)3

3
= 320 000mm4

Hence IZZ= 45000+ 320000
= 365 000mm4 or 36.5cm4

Radius of gyration,

kZZ =
√

IZZ

area
=
√(

365000
(40)(15)

)

= 24.7mm or 2.47cm

Problem 18. Determine correct to 3 significant
figures, the second moment of area about axis XX

for the composite area shown in Fig. 32.25.

4.0
cm

1.0 cm1.0 cm

8.0 cm

CT

XX

2.0 cm

6.0 cm

2.0 cm

TT

Figure 32.25

For the semicircle,

IXX = πr4

8
= π(4.0)4

8
= 100.5cm4

For the rectangle,

IXX = bl3

3
= (6.0)(8.0)3

3
= 1024cm4

For the triangle, about axis TT through centroid CT ,

ITT = bh3

36
= (10)(6.0)3

36
= 60cm4

By the parallel axis theorem, the secondmoment of area
of the triangle about axis XX

=60+ [12 (10)(6.0)
][
8.0+ 1

3 (6.0)
]2 = 3060cm4

Total second moment of area aboutXX

= 100.5+ 1024+ 3060
= 4184.5
= 4180cm4, correct to 3 significant figures.

Problem 19. Determine the second moment of
area and the radius of gyration about axis XX for the
I -section shown in Fig. 32.26.

CF

CE

CD

3.0 cm
7.0 cm

4.0 cm

3.0 cm

y

C C

X X

S

S

15.0 cm

8.0 cm

Figure 32.26

The I -section is divided into three rectangles, D, E

and F and their centroids denoted by CD , CE and CF

respectively.

For rectangle D:
The second moment of area about CD (an axis through
CD parallel to XX)

= bl3

12
= (8.0)(3.0)3

12
= 18cm4

Using the parallel axis theorem:

IXX = 18+ Ad2

where A = (8.0)(3.0) = 24cm2 and d = 12.5cm

Hence IXX = 18+ 24(12.5)2 = 3768cm4.
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For rectangle E:
The second moment of area about CE (an axis through
CE parallel to XX)

= bl3

12
= (3.0)(7.0)3

12
= 85.75cm4

Using the parallel axis theorem:

IXX = 85.75+ (7.0)(3.0)(7.5)2= 1267cm4

For rectangle F:

IXX = bl3

3
= (15.0)(4.0)3

3
= 320cm4

Total second moment of area for the I-section about
axis XX,

IXX = 3768+ 1267+ 320= 5355cm4

Total area of I -section

= (8.0)(3.0) + (3.0)(7.0) + (15.0)(4.0)

= 105cm2

Radius of gyration,

kXX =
√

IXX

area
=
√(

5355
105

)

= 7.14cm

Now try the following Practice Exercise

Practice Exercise 147 Second moments of
areas of regular sections (Answers on page
878)

1. Determine the second moment of area and
radius of gyration for the rectangle shown in
Fig. 32.27 about (a) axis AA (b) axis BB and
(c) axis CC.

8.0 cm

B

B

C

AA

C

3.0 cm

Figure 32.27

2. Determine the second moment of area and
radius of gyration for the triangle shown in
Fig. 32.28 about (a) axis DD (b) axis EE and

(c) an axis through the centroid of the triangle
parallel to axisDD.

12.0 cm

9.0 cm

DD

E E

Figure 32.28

3. For the circle shown in Fig. 32.29, find the
second moment of area and radius of gyration
about (a) axis FF and (b) axis HH .

r5
4.0

cm

F

H

H

F

Figure 32.29

4. For the semicircle shown in Fig. 32.30,find the
second moment of area and radius of gyration
about axis JJ .

JJ
r5

10
.0

m
m

Figure 32.30

5. For each of the areas shown inFig. 32.31deter-
mine the second moment of area and radius of
gyration about axis LL, by using the parallel
axis theorem.

2.0 cm

5.0 cm

3.0 cm

(a) (b) (c)

15 cm

18 cm 10 cm

15 cm

5.0 cm

LL

Dia 5 4.0 cm

Figure 32.31

Download more at Learnclax.com



Se
ct

io
n

G

Some applications of integration 399

6. Calculate the radius of gyration of a rectan-
gular door 2.0m high by 1.5m wide about a
vertical axis through its hinge.

7. A circular door of a boiler is hinged so that
it turns about a tangent. If its diameter is
1.0m, determine its second moment of area
and radius of gyration about the hinge.

8. A circular cover, centre O, has a radius of
12.0 cm.A hole of radius 4.0 cm and centreX,
whereOX = 6.0cm, is cut in the cover.Deter-
mine the secondmoment of area and the radius
of gyration of the remainder about a diameter
through O perpendicular to OX.

9. For the sections shown in Fig. 32.32, find
the second moment of area and the radius of
gyration about axis XX.

18.0 mm

3.0 cm2.5 cm

2.0 cm

2.0 cm

6.0 cm

12.0 mm

3.0 mm

X X

X X
4.0 mm

(a) (b)

Figure 32.32

10. Determine the secondmoments of areas about
the given axes for the shapes shown in
Fig. 32.33. (In Fig. 32.33(b), the circular area
is removed.)

3.0 cm

16.0 cm

9.0 cm

10.0 cm

(a)

(b)

4.0 cm
15.0 cm

9.0 cm

4.5 cm

A A

B

C

B

C

Dia 5 7.0 cm

Figure 32.33

11. Find the second moment of area and radius
of gyration about the axis XX for the beam
section shown in Fig. 32.34.

2.0 cm
8.0 cm

2.0 cm

X X

1.0 cm

10.0 cm

6.0 cm

Figure 32.34

For fully worked solutions to each of the problems in Practice Exercises 142 to 147 in this chapter,
go to the website:

www.routledge.com/cw/bird
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Chapter 33

Introduction to differential
equations

Why it is important to understand: Solution of first-order differential equations by separation of variables
Differential equations play an important role inmodelling virtually every physical, technical, or biological
process, from celestial motion, to bridge design, to interactions between neurons. Further applications
are found in fluid dynamics with the design of containers and funnels, in heat conduction analysis with
the design of heat spreaders in microelectronics, in rigid-body dynamic analysis, with falling objects, and
in exponential growth of current in an R–L circuit, to name but a few. This chapter introduces first-order
differential equations – the subject is clearly of great importance in many different areas of engineering.

At the end of this chapter, you should be able to:

• sketch a family of curves given a simple derivative
• define a differential equation – first-order, second-order, general solution, particular solution, boundary
conditions

• solve a differential equation of the form
dy
dx

= f (x)

• solve a differential equation of the form
dy
dx

= f (y)

• solve a differential equation of the form
dy
dx

= f (x) · f (y)

33.1 Family of curves

Integrating both sides of the derivative
dy
dx

=3 with
respect to x gives y = ∫

3dx, i.e., y=3x+c, where c

is an arbitrary constant.

y =3x+c represents a family of curves, each of the
curves in the family depending on the value of c.
Examples include y=3x +8, y =3x+3, y=3x and
y =3x−10 and these are shown in Fig. 33.1.
Each are straight lines of gradient 3. A particular curve
of a family may be determined when a point on the

Higher Engineering Mathematics. 978-1-138-67357-1, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.
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216

212

28

24
21222324

4

x

8

12

16

y y 5 3x 1 8

y 5 3x 1 3

y 5 3x 2 10

y 5 3x

10 2 3 4

Figure 33.1

curve is specified. Thus, if y=3x +c passes through the
point (1, 2) then 2=3(1)+c, from which, c=−1. The
equation of the curve passing through (1, 2) is therefore
y =3x−1

Problem 1. Sketch the family of curves given by

the equation
dy
dx

=4x and determine the equation of
one of these curves which passes through the point
(2, 3)

Integrating both sides of
dy
dx

=4x with respect to x

gives:

∫
dy
dx
dx=

∫
4x dx, i.e.,y = 2x2+ c

Some members of the family of curves having
an equation y =2x2+c include y=2x2+15,
y =2x2+8, y=2x2 and y =2x2−6, and these
are shown in Fig. 33.2. To determine the equa-
tion of the curve passing through the point (2, 3),
x =2 and y =3 are substituted into the equation
y =2x2+c

Thus 3=2(2)2+c, from which c=3−8=−5

Hence the equation of the curve passing through the
point (2, 3) is y=2x2−5

x

10

20

30

y

y 
�

 2
x

2  �
 1

5

y 
�

 2
x

2  �
 8

y 
�

 2
x

2  �
 6

y 
�

 2
x

2

�1

�10

�2�3�4 10 2 3 4

Figure 33.2

Now try the following Practice Exercise

Practice Exercise 148 Families of curves
(Answers on page 878)

1. Sketch a family of curves represented by each
of the following differential equations:

(a)
dy
dx

= 6 (b)
dy
dx

= 3x (c)
dy
dx

= x + 2
2. Sketch the family of curves given by the equa-

tion
dy
dx

=2x +3 and determine the equation
of one of these curves which passes through
the point (1, 3)

33.2 Differential equations

A differential equation is one that contains differential
coefficients.
Examples include

(i)
dy
dx

=7x and (ii)
d2y
dx2

+5 dy
dx

+2y =0

Differential equations are classified according to the
highest derivative which occurs in them. Thus exam-
ple (i) above is a first-order differential equation, and
example (ii) is a second-order differential equation.
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The degree of a differential equation is that of the high-
est power of the highest differential which the equation
contains after simplification.

Thus
(
d2x
dt2

)3
+2

(
dx
dt

)5
=7 is a second-order differ-

ential equation of degree three.
Starting with a differential equation it is possible,
by integration and by being given sufficient data to
determine unknown constants, to obtain the original
function. This process is called ‘solving the differ-
ential equation’. A solution to a differential equation
which contains one or more arbitrary constants of inte-
gration is called the general solution of the differential
equation.
When additional information is given so that con-
stants may be calculated the particular solution of the
differential equation is obtained. The additional infor-
mation is called boundary conditions. It was shown in
Section 49.1 that y =3x+c is the general solution of

the differential equation
dy
dx

=3
Given the boundary conditions x = 1 and y = 2, pro-
duces the particular solution of y =3x−1
Equations which can be written in the form

dy
dx

= f (x),
dy
dx

= f (y) and
dy
dx

= f (x) · f (y)

can all be solvedby integration. In each case it is possible
to separate the y’s to one side of the equation and the x’s
to the other. Solving such equations is therefore known
as solution by separation of variables.

33.3 The solution of equations of the

form
dy
dx

= f (x)

A differential equation of the form
dy
dx

= f (x) is solved
by direct integration,

i.e. y=
∫
f (x) dx

Problem 2. Determine the general solution of

x
dy
dx

= 2− 4x3

Rearranging x
dy
dx

=2− 4x3 gives:

dy
dx

= 2− 4x3
x

= 2
x

− 4x3

x
= 2

x
− 4x2

Integrating both sides gives:

y =
∫ (

2
x

− 4x2
)

dx

i.e. y = 2 ln x− 4
3
x3+c,

which is the general solution.

Problem 3. Find the particular solution of the

differential equation 5
dy
dx

+2x = 3, given the
boundary conditions y =1 2

5
when x =2

Since 5
dy
dx

+2x = 3 then dy
dx

= 3− 2x
5

= 3
5

− 2x
5

Hence y =
∫ (

3
5

− 2x
5

)

dx

i.e. y = 3x
5

− x2

5
+ c,

which is the general solution.
Substituting the boundary conditions y=1 25 and x =2
to evaluate c gives:
1 25 = 6

5 − 4
5+c, from which, c=1

Hence the particular solution is y= 3x
5

− x
2

5
+1

Problem 4. Solve the equation

2t
(

t − dθ
dt

)

=5, given θ =2 when t =1

Rearranging gives:

t − dθ
dt

= 5
2t

and
dθ
dt

= t − 5
2t

Integrating gives:

θ =
∫ (

t − 5
2t

)

dt

i.e. θ = t2

2
− 5
2
ln t + c,

which is the general solution.
When θ =2, t =1, thus 2= 1

2 − 5
2 ln 1+c from which,

c= 3
2

Hence the particular solution is:

θ = t2

2
− 5
2
ln t + 3

2

i.e. θ = 1
2
(t2− 5ln t+ 3)

Download more at Learnclax.com



Se
ct

io
n

G

Introduction to differential equations 403

Problem 5. The bending momentM of a beam is

given by
dM
dx

=−w(l − x), where w and x are
constants. DetermineM in terms of x given:
M = 1

2wl2 when x =0

dM
dx

=−w(l − x) = −wl + wx

Integrating with respect to x gives:

M = −wlx + wx2

2
+ c

which is the general solution.

WhenM = 1
2wl2,x =0

Thus
1
2
wl2=−wl(0)+ w(0)2

2
+c

from which, c= 1
2
wl2

Hence the particular solution is:

M =−wlx + w(x)2

2
+ 1
2
wl2

i.e. M= 1
2
w(l2−2lx+x2)

or M= 1
2
w(l−x)2

Now try the following Practice Exercise

Practice Exercise 149 Solving equations of

the form
dy
dx

= f (x) (Answers on page 878)

In Problems 1 to 5, solve the differential
equations.

1.
dy
dx

= cos4x − 2x

2. 2x
dy
dx

=3− x3

3.
dy
dx

+x =3, given y =2 when x =1

4. 3
dy
dθ

+sin θ =0, given y = 2
3
when θ = π

3

5.
1
ex

+2=x − 3dy
dx
, given y =1 when x =0

6. The gradient of a curve is given by:

dy
dx

+ x2

2
=3x

Find the equation of the curve if it passes
through the point

(
1, 13

)

7. The acceleration a of a body is equal to its rate

of change of velocity,
dv
dt
. Find an equation for

v in terms of t , given that when t =0, velocity
v=u

8. An object is thrown vertically upwards with
an initial velocity u of 20m/s. The motion
of the object follows the differential equation
ds
dt

=u − gt , where s is the height of the object

in metres at time t seconds and g=9.8m/s2.
Determine the height of the object after three
seconds if s =0 when t =0

33.4 The solution of equations of the

form
dy
dx

= f ( y)

Adifferential equation of the form
dy
dx

=f (y) is initially

rearranged to give dx = dy
f (y)

and then the solution is

obtained by direct integration,

i.e.
∫
dx=

∫ dy
f ( y)

Problem 6. Find the general solution of
dy
dx

=3+2y

Rearranging
dy
dx

=3+2y gives:

dx = dy
3+ 2y

Download more at Learnclax.com



Se
ct

io
n

G
404 Higher Engineering Mathematics

Integrating both sides gives:
∫
dx =

∫
dy

3+ 2y
Thus, by using the substitution u=(3+2y) – see
Chapter 42,

x= 1
2 ln (3+2y)+c (1)

It is possible to give the general solution of a differential
equation in a different form. For example, if c= lnk,
where k is a constant, then:

x = 1
2 ln(3+ 2y) + lnk,

i.e. x = ln(3+ 2y)
1
2 + lnk

or x = ln [k√(3+2y)] (2)

by the laws of logarithms, from which,

ex = k√(3+ 2y) (3)

Equations (1), (2) and (3) are all acceptable general
solutions of the differential equation

dy
dx

= 3+ 2y

Problem 7. Determine the particular solution of

(y2−1)dy
dx

=3y given that y=1 when x =2 1
6

Rearranging gives:

dx =
(

y2− 1
3y

)

dy =
(

y

3
− 1
3y

)

dy

Integrating gives:
∫
dx =

∫ (
y

3
− 1
3y

)

dy

i.e. x = y2

6
− 1
3
lny + c,

which is the general solution.
When y =1, x =2 16 , thus 2 16= 1

6 − 1
3 ln1+c, from

which, c=2
Hence the particular solution is:

x= y
2

6
− 1
3
lny+ 2

Problem 8. (a) The variation of resistance,
R ohms, of an aluminium conductor with
temperature θ ◦C is given by

dR
dθ

= αR, where α

is the temperature coefficient of resistance of
aluminium. If R=R0 when θ = 0◦C, solve the
equation for R. (b) If α = 38×10−4/◦C, determine
the resistance of an aluminium conductor at 50◦C,
correct to 3 significant figures, when its resistance
at 0◦C is 24.0�.

(a)
dR
dθ

=αR is of the form
dy
dx

=f (y)

Rearranging gives: dθ = dR
αR

Integrating both sides gives:
∫
dθ =

∫
dR
αR

i.e. θ = 1
α
lnR + c,

which is the general solution.
Substituting the boundary conditionsR=R0 when
θ =0 gives:

0= 1
α
lnR0+ c

from which c = − 1
α
lnR0

Hence the particular solution is

θ = 1
α
lnR − 1

α
lnR0 = 1

α
( lnR − lnR0)

i.e. θ = 1
α
ln

(
R

R0

)

or αθ = ln
(

R

R0

)

Hence eαθ = R

R0
from which, R = R0eαθ

(b) Substituting α=38×10−4, R0=24.0 and θ = 50
into R=R0eαθ gives the resistance at 50◦C, i.e.
R50 = 24.0e(38×10−4×50) =29.0ohms

Now try the following Practice Exercise

Practice Exercise 150 Solving equations of

the form
dy
dx

= f ( y) (Answers on page 878)

In Problems 1 to 3, solve the differential
equations.
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1.
dy
dx

=2+3y

2.
dy
dx

=2cos2 y

3. (y2+2)dy
dx

=5y, given y =1 when x= 1
2

4. The current in an electric circuit is given by
the equation

Ri + L
di
dt

=0

where L and R are constants. Show that

i =Ie
−Rt
L , given that i =I when t =0

5. The velocity of a chemical reaction is given by
dx
dt

=k(a−x), where x is the amount trans-
ferred in time t , k is a constant and a is
the concentration at time t =0 when x =0.
Solve the equation and determine x in terms
of t .

6. (a) Charge Q coulombs at time t seconds
is given by the differential equation

R
dQ
dt

+ Q

C
=0, where C is the capaci-

tance in farads and R the resistance in
ohms. Solve the equation for Q given
thatQ=Q0 when t =0

(b) A circuit possesses a resistance of
250×103� and a capacitance of
8.5×10−6 F, and after 0.32 seconds
the charge falls to 8.0C. Determine
the initial charge and the charge after
one second, each correct to 3 significant
figures.

7. A differential equation relating the difference
in tension T , pulley contact angle θ and coef-

ficient of friction μ is
dT
dθ

=μT . When θ =0,
T =150N, and μ=0.30 as slipping starts.
Determine the tension at the point of slipping
when θ =2radians. Determine also the value
of θ when T is 300N.

8. The rate of cooling of a body is given by
dθ
dt

=kθ , where k is a constant. If θ =60◦C
when t =2 minutes and θ =50◦C when
t =5minutes, determine the time taken for θ

to fall to 40◦C, correct to the nearest second.

33.5 The solution of equations of the

form
dy
dx

= f (x) · f (y)

A differential equation of the form
dy
dx

=f (x) · f (y),

wheref (x) is a function of x only andf (y) is a function

of y only, may be rearranged as
dy

f (y)
=f (x)dx, and

then the solution is obtained by direct integration, i.e.

∫ dy
f (y)

=
∫
f (x)dx

Problem 9. Solve the equation 4xy
dy
dx

=y2− 1

Separating the variables gives:
(

4y
y2− 1

)

dy = 1
x
dx

Integrating both sides gives:
∫ (

4y
y2− 1

)

dy =
∫ (

1
x

)

dx

Using the substitution u=y2−1, the general
solution is:

2 ln( y 2−1)= lnx+ c (1)

or ln(y2− 1)2− lnx = c

from which, ln
{

(y2− 1)2
x

}

= c

and
( y2−1)2

x
=ec (2)

If in equation (1), c= lnA, where A is a different
constant,

then ln(y2− 1)2 = lnx + lnA
i.e. ln(y2−1)2 = lnAx
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i.e. ( y 2−1)2=Ax (3)

Equations (1) to (3) are thus three valid solutions of the
differential equations

4xy
dy
dx

= y2− 1

Problem 10. Determine the particular solution of
dθ
dt

=2e3t−2θ , given that t =0 when θ =0

dθ
dt

= 2e3t−2θ = 2(e3t )(e−2θ ),

by the laws of indices.
Separating the variables gives:

dθ
e−2θ

= 2e3tdt,

i.e. e2θdθ = 2e3tdt
Integrating both sides gives:

∫
e2θdθ =

∫
2e3tdt

Thus the general solution is:

1
2
e2θ = 2

3
e3t + c

When t =0, θ =0, thus:
1
2
e0 = 2

3
e0+ c

from which, c = 1
2

− 2
3

= −1
6

Hence the particular solution is:

1
2
e2θ = 2

3
e3t − 1

6

or 3e2θ =4e3t−1

Problem 11. Find the curve which satisfies the
equation xy=(1+x2)

dy
dx
and passes through the

point (0, 1)

Separating the variables gives:

x

(1+ x2)
dx = dy

y

Integrating both sides gives:
1
2 ln(1+ x2) = lny + c

When x =0, y =1 thus 1
2 ln1= ln1+c, from which,

c=0
Hence the particular solution is 12 ln(1+x2)= lny

i.e. ln(1+x2)
1
2 = lny, from which, (1+x 2)

1
2 =y

Hence the equation of the curve is y=√
(1+x2)

Problem 12. The current i in an electric circuit
containing resistance R and inductance L in series
with a constant voltage source E is given by the

differential equationE−L

(
di
dt

)

=Ri. Solve the

equation and find i in terms of time t given that
when t =0, i =0

In theR−L series circuit shown in Fig. 33.3, the supply
p.d., E, is given by

E=VR + VL

VR = iR and VL = L
di
dt

Hence E= iR+ L
di
dt

from which E−L
di
dt

= Ri

VR VL

R

E

i

L

Figure 33.3
Most electrical circuits can be reduced to a differential
equation.

RearrangingE−L
di
dt

=Ri gives
di
dt

= E − Ri

L

and separating the variables gives:

di
E − Ri

= dt
L

Integrating both sides gives:
∫

di
E − Ri

=
∫
dt
L

Hence the general solution is:

− 1
R
ln(E − Ri) = t

L
+ c
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(by making a substitution u=E−Ri, see
Chapter 42).

When t =0, i=0, thus − 1
R
ln E=c

Thus the particular solution is:

− 1
R
ln(E − Ri) = t

L
− 1

R
lnE

Transposing gives:

− 1
R
ln(E − Ri) + 1

R
lnE= t

L

1
R
[lnE − ln(E − Ri)]= t

L

ln
(

E

E − Ri

)

= Rt

L

from which
E

E − Ri
=e RtL

Hence
E − Ri

E
=e−Rt

L and E−Ri =Ee
−Rt
L and

Ri =E − Ee
−Rt
L

Hence current,

i= E
R

(

1−e−Rt
L

)

which represents the law of growth of current in an
inductive circuit as shown in Fig. 33.4.

i

i (1�e�Rt/L )

Time t 0

E
R

E
R

�

Figure 33.4

Problem 13. For an adiabatic expansion of a gas

Cv
dp
p

+Cp
dV
V

=0

where Cp and Cv are constants. Given n = Cp

Cv
show that pV n = constant.

Separating the variables gives:

Cv
dp
p

=−Cp
dV
V

Integrating both sides gives:

Cv

∫
dp
p

= −Cp

∫
dV
V

i.e. Cv ln p = −Cp lnV + k

Dividing throughout by constant Cv gives:

ln p = −Cp

Cv

ln V + k

Cv

Since
Cp

Cv

= n, then ln p+n ln V =K ,

where K = k

Cv

i.e. lnp+ lnV n =K or ln pV n =K , by the laws of
logarithms.

Hence pV n =eK , i.e. pVn=constant.

Now try the following Practice Exercise

Practice Exercise 151 Solving equations of

the form
dy
dx

= f (x) · f ( y) (Answers on page

878)

In Problems 1 to 4, solve the differential equations.

1.
dy
dx

= 2y cosx

2. (2y −1)dy
dx

=(3x2+1), given x =1 when
y =2

3.
dy
dx

=e2x−y , given x =0 when y =0

4. 2y(1−x)+x(1+y)
dy
dx

=0, given x =1
when y=1
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5. Show that the solution of the equation
y2+1
x2+1= y

x

dy
dx
is of the form

√(
y2+1
x2+1

)

= constant.

6. Solve xy=(1−x2)
dy
dx

for y, given x =0
when y =1

7. Determine the equation of the curve which

satisfies the equation xy
dy
dx

=x2−1, and
which passes through the point (1, 2)

8. The p.d., V , between the plates of a capac-
itor C charged by a steady voltage E

through a resistor R is given by the equation

CR
dV
dt

+V =E

(a) Solve the equation for V given that at
t =0, V =0

(b) Calculate V , correct to 3 significant
figures,whenE=25V, C=20×10−6 F,
R=200×103� and t =3.0s

9. Determine the value of p, given that

x3
dy
dx

=p − x, and that y =0 when x = 2 and
when x = 6

For fully worked solutions to each of the problems in Practice Exercises 148 to 151 in this chapter,
go to the website:

www.routledge.com/cw/bird
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This Revision Test covers the material contained in Chapters 31 to 33. The marks for each question are shown in
brackets at the end of each question.

1. Determine: (a)
∫
3
√

t5 dt (b)
∫

2
3√
x2
dx

(c)
∫

(2+θ)2 dθ (9)

2. Evaluate the following integrals, each correct to
4 significant figures:

(a)
∫ π
3

0
3sin2t dt (b)

∫ 2

1

(
2
x2

+ 1
x

+ 3
4

)

dx

(c)
∫ 1

0

3
e2t
dt (13)

3. Calculate the area between the curve
y =x3−x2−6x and the x-axis. (10)

4. A voltage v=25sin50πt volts is applied across
an electrical circuit. Determine, using integration,
its mean and rms values over the range t =0 to
t =20ms, each correct to 4 significant figures.

(11)

5. Sketch on the same axes the curves x 2=2y and
y2=16x and determine the co-ordinates of the
points of intersection. Determine (a) the area
enclosed by the curves, and (b) the volume of the
solid produced if the area is rotated one revolution
about the x-axis. (13)

6. Calculate the position of the centroid of the
sheet of metal formed by the x-axis and the part of
the curve y =5x−x2 which lies above the x-axis.

(9)

7. A cylindrical pillar of diameter 400mm has a
groove cut around its circumference as shown in
Fig. RT10.1. The section of the groove is a semi-
circle of diameter 50mm. Given that the centroid
of a semicircle from its base is

4r
3π
, use the theo-

rem of Pappus to determine the volume ofmaterial
removed, in cm3, correct to 3 significant figures.

(8)

400 mm

200 mm

50 mm

Figure RT10.1

8. A circular door is hinged so that it turns about
a tangent. If its diameter is 1.0m find its second
moment of area and radius of gyration about the
hinge. (5)

9. Solve the differential equation: x
dy
dx

+x2=5
given that y=2.5 when x =1 (4)

10. Determine the equation of the curve which satis-

fies the differential equation 2xy
dy
dx

=x2+1 and
which passes through the point (1, 2) (5)

11. A capacitorC is charged by applying a steady volt-
ageE through a resistanceR. The p.d. between the
plates V is given by the differential equation:

CR
dV
dt

+ V = E

(a) Solve the equation for V given that when time
t =0, V =0

(b) Evaluate voltage V when E=50V, C=10μF,
R=200k� and t =1.2s (13)

For lecturers/instructors/teachers, fully worked solutions to each of the problems in Revision Test 10,
together with a full marking scheme, are available at the website:

www.routledge.com/cw/bird
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Chapter 34

Differentiation of parametric
equations

Why it is important to understand: Differentiation of parametric equations
Rather than using a single equation to define two variables with respect to one another, parametric
equations exist as a set that relates the two variables to one another with respect to a third variable.
Some curves are easier to describe using a pair of parametric equations. The coordinates x and y of
the curve are given using a third variable t , such as x = f (t) and y = g(t), where t is referred to as the
parameter. Hence, for a given value of t , a point (x,y) is determined. For example, let t be the time while
x and y are the positions of a particle; the parametric equations then describe the path of the particle at
different times. Parametric equations are useful in defining three-dimensional curves and surfaces, such
as determining the velocity or acceleration of a particle following a three-dimensional path. CAD systems
use parametric versions of equations. Sometimes in engineering, differentiation of parametric equations
is necessary, for example, when determining the radius of curvature of part of the surface when finding
the surface tension of a liquid. Knowledge of standard differentials and the function of a function rule
from previous chapters are needed to be able to differentiate parametric equations.

At the end of this chapter, you should be able to:

• recognise parametric equations – ellipse, parabola, hyperbola, rectangular hyperbola, cardioids, asteroid and
cycloid

• differentiate parametric equations

34.1 Introduction to parametric
equations

Certain mathematical functions can be expressed more
simply by expressing, say, x and y separately in terms
of a third variable. For example, y=r sin θ , x=r cos θ .
Then, any value given to θ will produce a pair of values
for x and y, which may be plotted to provide a curve of
y =f (x).

The third variable, θ , is called a parameter and the
two expressions for y and x are called parametric
equations.
The above example of y =r sin θ and x =r cos θ are the
parametric equations for a circle. The equation of any
point on a circle, centre at the origin and of radius r is
given by: x2+y2=r2, as shown in Chapter 14.
To show that y =r sin θ and x=r cos θ are suitable
parametric equations for such a circle:

Higher Engineering Mathematics. 978-1-138-67357-1, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.
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Left-hand side of equation

= x2+ y2

= (r cosθ)2+ (r sin θ)2

= r2 cos2 θ + r2 sin2 θ

= r2
(
cos2 θ + sin2 θ

)

= r2= right-hand side
(since cos2 θ + sin2 θ =1,as shown in

Chapter 17)

34.2 Some common parametric
equations

The following are some of themost commonparametric
equations, and Fig. 34.1 shows typical shapes of these
curves.

(a) Ellipse (b) Parabola

(c) Hyperbola (d) Rectangular hyperbola

(e) Cardioid (f) Astroid

(g) Cycloid

Figure 34.1

(a) Ellipse x= a cosθ, y =b sinθ

(b) Parabola x = a t 2, y =2a t

(c) Hyperbola x= a secθ, y=b tanθ

(d) Rectangular x= c t, y = c

t
hyperbola

(e) Cardioid x = a (2cosθ − cos2θ),
y = a (2sinθ − sin2θ)

(f ) Astroid x = a cos3 θ, y=a sin3 θ

(g) Cycloid x= a (θ− sinθ), y =a (1−cosθ)

34.3 Differentiation in parameters

When x and y are given in terms of a parameter, say θ ,
then by the function of a function rule of differentiation
(from Chapter 29):

dy
dx

= dy
dθ

× dθ
dx

It may be shown that this can be written as:

dy
dx

=
dy
dθ
dx
dθ

(1)

For the second differential,

d2y
dx2

= d
dx

(
dy
dx

)

= d
dθ

(
dy
dx

)

· dθ
dx

or

d2y
dx2

=
d
dθ

(
dy
dx

)

dx
dθ

(2)

Problem 1. Given x =5θ −1 and
y =2θ (θ −1), determine dy

dx
in terms of θ .

x =5θ −1,hence dx
dθ

=5

y =2θ(θ −1)=2θ 2−2θ ,

hence
dy
dθ

=4θ −2=2 (2θ −1)
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From equation (1),

dy
dx

=
dy
dθ
dx
dθ

= 2(2θ − 1)
5

or
2
5
(2θ − 1)

Problem 2. The parametric equations of a
function are given by y =3cos2t , x=2sin t .

Determine expressions for (a)
dy
dx
(b)
d2y
dx2

(a) y =3cos2t , hence dy
dt

=−6sin2t

x =2sin t , hence
dx
dt

=2cos t
From equation (1),

dy
dx

=
dy
dt
dx
dt

= −6sin2t
2cos t

= −6(2sin t cos t)
2cos t

from double angles, Chapter 19

i.e.
dy
dx

=−6sin t

(b) From equation (2),

d2y
dx2

=
d
dt

(
dy
dx

)

dx
dt

=
d
dt

(−6sin t)

2cos t
= −6cos t
2cos t

i.e.
d2y
dx2

=−3

Problem 3. The equation of a tangent drawn to a
curve at point (x1,y1) is given by:

y − y1 = dy1
dx1

(x − x1)

Determine the equation of the tangent drawn to the
parabola x=2t 2, y =4t at the point t .

At point t , x1=2t2, hence dx1dt =4t

and y1=4t , hence dy1dt =4

From equation (1),

dy
dx

=
dy
dt
dx
dt

= 4
4t

= 1
t

Hence, the equation of the tangent is:

y−4t= 1
t
(
x−2t2)

Problem 4. The parametric equations of a cycloid
are x =4(θ − sinθ), y=4(1− cosθ). Determine

(a)
dy
dx
(b)
d2y
dx2

(a) x =4(θ − sinθ),

hence
dx
dθ

=4−4cosθ =4(1− cosθ)

y =4(1− cosθ), hence
dy
dθ

=4sinθ

From equation (1),

dy
dx

=
dy
dθ
dx
dθ

= 4sinθ

4(1− cosθ)
= sin θ

(1− cosθ)

(b) From equation (2),

d2y
dx2

=
d
dθ

(
dy
dx

)

dx
dθ

=
d
dθ

(
sin θ

1− cosθ
)

4(1− cosθ)

=
(1− cosθ)(cosθ) − (sinθ)(sinθ)

(1− cosθ)2

4(1− cosθ)

= cosθ − cos2 θ − sin2 θ
4(1− cosθ)3

= cosθ − (
cos2 θ + sin2 θ)

4(1− cosθ)3

= cosθ −1
4(1− cosθ)3

= −(1− cosθ)

4(1− cosθ)3
= −1
4(1− cosθ)2
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Now try the following Practice Exercise

Practice Exercise 152 Differentiation of
parametric equations (Answers on page 878)

1. Given x =3t −1 and y = t (t −1), determine
dy
dx
in terms of t

2. A parabola has parametric equations: x= t 2,

y =2t . Evaluate dy
dx
when t =0.5

3. The parametric equations for an ellipse

are x =4cosθ , y= sin θ . Determine (a)
dy
dx

(b)
d2y
dx2

4. Evaluate
dy
dx

at θ = π

6
radians for the

hyperbola whose parametric equations are
x =3secθ , y =6tanθ

5. The parametric equations for a rectangular

hyperbola are x =2t , y= 2
t
. Evaluate

dy
dx

when t =0.40

The equation of a tangent drawn to a curve at
point (x1,y1) is given by:

y −y1= dy1dx1 (x −x1)

Use this in Problems 6 and 7.

6. Determine the equation of the tangent drawn
to the ellipse x =3cosθ , y=2sinθ at θ = π

6
7. Determine the equation of the tangent drawn

to the rectangular hyperbola x =5t , y = 5
t
at

t =2

34.4 Further worked problems on
differentiation of parametric
equations

Problem 5. The equation of the normal drawn to
a curve at point (x1,y1) is given by:

y − y1 = − 1
dy1
dx1

(x − x1)

Determine the equation of the normal drawn to the
astroid x =2cos3 θ, y =2sin3 θ at the point θ = π

4

x =2cos3 θ, hence
dx
dθ

=−6cos2 θ sinθ

y =2sin3 θ, hence
dy
dθ

=6sin2 θ cosθ

From equation (1),

dy
dx

=
dy
dθ
dx
dθ

= 6sin2 θ cosθ
−6cos2 θ sin θ

=− sin θ

cosθ
= −tanθ

When θ = π

4
,

dy
dx

=−tanπ

4
=−1

x1=2cos3 π

4
=0.7071 and y1=2sin3 π

4
=0.7071

Hence, the equation of the normal is:

y − 0.7071= − 1
−1 (x − 0.7071)

i.e. y −0.7071=x −0.7071
i.e. y =x

Problem 6. The parametric equations for a
hyperbola are x=2secθ , y =4tanθ . Evaluate
(a)
dy
dx
(b)
d2y
dx2

, correct to 4 significant figures,

when θ =1 radian.

(a) x =2secθ , hence dx
dθ

=2secθ tanθ

y =4tanθ , hence
dy
dθ

=4sec2 θ
From equation (1),

dy
dx

=
dy
dθ
dx
dθ

= 4sec2 θ
2secθ tanθ

= 2secθ
tanθ

=
2
(
1
cosθ

)

(
sinθ

cosθ

) = 2
sinθ

or 2cosecθ

When θ =1 rad, dy
dx

= 2
sin1

=2.377, correct to 4
significant figures.
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(b) From equation (2),

d2y
dx2

=
d
dθ

(
dy
dx

)

dx
dθ

=
d
dθ

(2cosecθ)

2secθ tanθ

= −2cosecθ cot θ
2secθ tanθ

=
−

(
1
sinθ

)(
cosθ
sinθ

)

(
1
cosθ

)(
sinθ

cosθ

)

= −
(
cosθ
sin2 θ

)(
cos2 θ
sinθ

)

= −cos
3 θ

sin3 θ
= −cot3 θ

When θ =1 rad,
d2y
dx2

=−cot3 1=− 1
(tan1)3

= −0.2647, correct to 4 significant figures.

Problem 7. When determining the surface
tension of a liquid, the radius of curvature, ρ, of
part of the surface is given by:

ρ =

√√
√
√

[

1+
(
dy
dx

)2]3

d2y
dx2

Find the radius of curvature of the part of the
surface having the parametric equations x =3t 2,
y =6t at the point t =2

x =3t2, hence dx
dt

=6t

y =6t , hence dy
dt

=6

From equation (1),
dy
dx

=
dy
dt
dx
dt

= 6
6t

= 1
t

From equation (2),

d2y
dx2

=
d
dt

(
dy
dx

)

dx
dt

=
d
dt

(
1
t

)

6t
=

− 1
t2

6t
= − 1

6t3

Hence, radius of curvature, ρ =

√√
√
√

[

1+
(
dy
dx

)2]3

d2y
dx2

=

√√
√
√

[

1+
(
1
t

)2]3

− 1
6t3

When t =2, ρ =

√√
√
√

[

1+
(
1
2

)2]3

− 1
6 (2)3

=
√

(1.25)3

− 1
48

= − 48
√

(1.25)3=−67.08

Now try the following Practice Exercise

Practice Exercise 153 Differentiation of
parametric equations (Answers on page 878)

1. A cycloid has parametric equations
x =2(θ −sinθ), y =2(1−cosθ). Evaluate, at
θ =0.62 rad, correct to 4 significant figures,
(a)
dy
dx
(b)
d2y
dx2

The equation of the normal drawn to a
curve at point (x1,y1) is given by:

y −y1=− 1
dy1
dx1

(x −x1)

Use this in Problems 2 and 3.

2. Determine the equation of the normal drawn

to the parabola x = 1
4
t2, y = 1

2
t at t =2

3. Find the equation of the normal drawn to
the cycloid x =2(θ − sinθ), y =2(1− cosθ)

at θ = π

2
rad.

4. Determine the value of
d2y
dx2

, correct to 4 sig-

nificant figures, at θ = π

6
rad for the cardioid

x =5(2θ − cos2θ), y =5(2sinθ − sin2θ)
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5. The radius of curvature, ρ, of part of a sur-
face when determining the surface tension of
a liquid is given by:

ρ=

[

1+
(
dy
dx

)2]3/2

d2y
dx2

Find the radius of curvature (correct to 4 sig-
nificant figures) of the part of the surface
having parametric equations

(a) x=3t , y = 3
t
at the point t = 1

2

(b) x =4cos3 t, y=4sin3 t at t = π

6
rad.

For fully worked solutions to each of the problems in Practice Exercises 152 and 153 in this chapter,
go to the website:

www.routledge.com/cw/bird

Download more at Learnclax.com

http://www.routledge.com/cw/bird


Chapter 35

Differentiation of implicit
functions

Why it is important to understand: Differentiation of implicit functions
Differentiation of implicit functions is another special technique, but it occurs often enough to be impor-
tant. It is needed for more complicated problems involving different rates of change. Up to this chapter
we have been finding derivatives of functions of the form y = f (x); unfortunately not all functions fall
into this form. However, implicit differentiation is nothing more than a special case of the function of a
function (or chain rule) for derivatives. Engineering applications where implicit differentiation is needed
are found in optics, electronics, control, and even some thermodynamics.

At the end of this chapter, you should be able to:

• recognise implicit functions
• differentiate simple implicit functions
• differentiate implicit functions containing products and quotients

35.1 Implicit functions

When an equation can be written in the form y =f (x)

it is said to be an explicit function of x. Examples of
explicit functions include

y = 2x3−3x+4, y = 2x lnx

and y = 3ex

cosx
In these examples y may be differentiated with respect
to x by using standard derivatives, the product rule and
the quotient rule of differentiation respectively.
Sometimes with equations involving, say, y and x,

it is impossible to make y the subject of the formula.

The equation is then called an implicit function and
examples of such functions include
y3+2x2= y2−x and siny =x2+2xy

35.2 Differentiating implicit
functions

It is possible to differentiate an implicit function by
using the function of a function rule, which may be
stated as

du
dx

= du
dy

× dy
dx

Thus, to differentiate y3 with respect to x, the

substitution u=y3 is made, from which,
du
dy

=3y2

Higher Engineering Mathematics. 978-1-138-67357-1, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.
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Hence,
d
dx

(y3)= (3y2)× dy
dx
, by the function of a

function rule.
A simple rule for differentiating an implicit function is
summarised as:

d
dx
[ f ( y)]= d

dy
[ f ( y)]× dy

dx
(1)

Problem 1. Differentiate the following functions
with respect to x:

(a) 2y4 (b) sin3t

(a) Let u=2y4, then, by the function of a function
rule:

du
dx

= du
dy

× dy
dx

= d
dy

(2y4) × dy
dx

= 8y3 dy
dx

(b) Let u= sin3t , then, by the function of a function
rule:

du
dx

= du
dt

× dt
dx

= d
dt

(sin3t) × dt
dx

= 3cos3t dt
dx

Problem 2. Differentiate the following functions
with respect to x:

(a) 4 ln5y (b)
1
5
e3θ−2

(a) Let u=4ln5y, then, by the function of a function
rule:
du
dx

= du
dy

× dy
dx

= d
dy

(4ln5y) × dy
dx

= 4
y
dy
dx

(b) Let u= 1
5
e3θ−2, then, by the function of a function

rule:

du
dx

= du
dθ

× dθ
dx

= d
dθ

(
1
5
e3θ−2

)

× dθ
dx

= 3
5
e3θ−2 dθ

dx

Now try the following Practice Exercise

Practice Exercise 154 Differentiating
implicit functions (Answers on page 879)

In Problems 1 and 2 differentiate the given func-
tions with respect to x.

1. (a) 3y5 (b) 2cos4θ (c)
√

k

2. (a)
5
2
ln3t (b)

3
4
e2y+1 (c) 2 tan3y

3. Differentiate the following with respect to y:

(a) 3sin2θ (b) 4
√

x3 (c)
2
et

4. Differentiate the following with respect to u:

(a)
2

(3x + 1) (b) 3sec2θ (c)
2√
y

35.3 Differentiating implicit
functions containing products
and quotients

The product and quotient rules of differentiation must
be applied when differentiating functions containing
products and quotients of two variables.

For example,
d
dx

(x2y) = (x2)
d
dx

(y) + (y)
d
dx

(x2),

by the product rule

= (x2)

(

1
dy
dx

)

+ y(2x),

by using equation (1)

= x2 dy
dx

+2xy

Problem 3. Determine
d
dx

(2x3y2)

In the product rule of differentiation let u=2x 3 and
v=y2

Thus
d
dx

(2x3y2) = (2x3)
d
dx

(y2) + (y2)
d
dx

(2x3)
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= (2x3)
(

2y
dy
dx

)

+ (y2)(6x2)

= 4x3y dy
dx

+ 6x2y2

= 2x2y
(

2x
dy
dx

+3y
)

Problem 4. Find
d
dx

(
3y
2x

)

In the quotient rule of differentiation let u=3y and
v=2x

Thus
d
dx

(
3y
2x

)

=
(2x)

d
dx

(3y) − (3y)
d
dx

(2x)

(2x)2

=
(2x)

(

3
dy
dx

)

− (3y)(2)

4x2

=
6x
dy
dx

− 6y
4x2

= 3
2x2

(

x
dy
dx

−y
)

Problem 5. Differentiate z=x2+3x cos3y with
respect to y.

dz
dy

= d
dy

(x2) + d
dy

(3x cos3y)

= 2x dx
dy

+
[

(3x)(−3sin3y) + (cos3y)

(

3
dx
dy

)]

= 2xdx
dy

−9xsin3y+3cos3y dx
dy

Now try the following Practice Exercise

Practice Exercise 155 Differentiating
implicit functions involving products and
quotients (Answers on page 879)

1. Determine
d
dx

(3x2y3)

2. Find
d
dx

(
2y
5x

)

3. Determine
d
du

(
3u
4v

)

4. Given z=3√y cos3x find
dz
dx

5. Determine
dz
dy
given z=2x3 lny

35.4 Further implicit differentiation

An implicit function such as 3x 2+y2−5x+y =2,may
be differentiated term by term with respect to x. This
gives:

d
dx

(3x2) + d
dx

(y2) − d
dx

(5x) + d
dx

(y) = d
dx

(2)

i.e. 6x+2y dy
dx

−5+1dy
dx

=0,
using equation (1) and standard derivatives.

An expression for the derivative
dy
dx
in terms of x and

y may be obtained by rearranging this latter equation.
Thus:

(2y + 1)dy
dx

= 5− 6x

from which,
dy
dx

= 5−6x
2y+1

Problem 6. Given 2y2−5x4−2−7y3=0,
determine

dy
dx

Each term in turn is differentiated with respect to x:

Hence
d
dx

(2y2) − d
dx

(5x4) − d
dx

(2) − d
dx

(7y3)

= d
dx

(0)

i.e. 4y
dy
dx

− 20x3− 0− 21y2 dy
dx

= 0

Rearranging gives:

(4y − 21y2)dy
dx

= 20x3

i.e.
dy
dx

= 20x3

(4y−21y2)
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Problem 7. Determine the values of
dy
dx
when

x =4 given that x2+y2=25

Differentiating each term in turn with respect to x

gives:

d
dx

(x2) + d
dx

(y2) = d
dx

(25)

i.e. 2x + 2y dy
dx

= 0

Hence
dy
dx

= −2x
2y

= −x

y

Since x2+y2 = 25, when x =4, y =
√

(25− 42)=±3

Thus when x=4 and y =±3, dy
dx

=− 4
±3 =±4

3

x2+y2=25 is the equation of a circle, centre at the
origin and radius 5, as shown in Fig. 35.1. At x =4, the
two gradients are shown.

y

5

3

0 4 5 x

�3

�5

�5

Gradient

� �
4

         3

Gradient

�
4

     3

x2� y2� 25

Figure 35.1

Above, x2+y2=25 was differentiated implicitly;
actually, the equation could be transposed to
y =

√
(25−x2) and differentiated using the function of

a function rule. This gives

dy
dx

= 1
2
(25− x2)

−1
2 (−2x) = − x

√
(25− x2)

and when x =4, dy
dx

=− 4
√

(25−42)
=±4

3
as obtained

above.

Problem 8. (a) Find
dy
dx
in terms of x and y

given 4x2+2xy3−5y2=0

(b) Evaluate
dy
dx
when x =1 and y=2

(a) Differentiating each term in turn with respect to x

gives:
d
dx

(4x2) + d
dx

(2xy3) − d
dx

(5y2) = d
dx

(0)

i.e. 8x +
[

(2x)

(

3y2
dy
dx

)

+ (y3)(2)
]

−10y dy
dx

= 0

i.e. 8x + 6xy2
dy
dx

+ 2y3− 10y dy
dx

= 0

Rearranging gives:

8x + 2y3 = (10y − 6xy2)
dy
dx

and
dy
dx

= 8x + 2y3
10y − 6xy2

= 4x + y3

y(5 − 3xy)

(b) When x =1 and y =2,
dy
dx

= 4(1) + (2)3

2[5− (3)(1)(2)]
= 12

−2 = −6

Problem 9. Find the gradients of the tangents
drawn to the circle x2+y2−2x −2y=3 at x =2

The gradient of the tangent is given by
dy
dx

Differentiating each term in turnwith respect to x gives:

d
dx

(x2) + d
dx

(y2) − d
dx

(2x) − d
dx

(2y) = d
dx

(3)

i.e. 2x + 2y dy
dx

− 2− 2dy
dx

= 0

Hence (2y − 2)dy
dx

= 2− 2x,

from which
dy
dx

= 2− 2x
2y − 2 = 1− x

y − 1
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The value of y when x =2 is determined from the
original equation.

Hence (2)2+ y2− 2(2) − 2y = 3

i.e. 4+ y2− 4− 2y = 3

or y2− 2y − 3= 0

Factorising gives: (y +1)(y−3)=0, from which
y =−1 or y =3
When x =2 and y =−1,

dy
dx

= 1− x

y − 1 = 1− 2
−1− 1 = −1

−2 = 1
2

When x =2 and y =3,
dy
dx

= 1− 2
3− 1 = −1

2

Hence the gradients of the tangents are± 1
2

The circle having the given equation has its cen-
tre at (1, 1) and radius

√
5 (see Chapter 14) and

is shown in Fig. 35.2 with the two gradients of the
tangents.

Gradient

5 2
1

         2

Gradient

5
1

     2

21 4 x

1

2

4

3

y

21

22

0

r 5 5

x 
21y 

22 2x
22y 5 3

Figure 35.2

Problem 10. Pressure p and volume v of a gas
are related by the law pvγ =k, where γ and k are
constants. Show that the rate of change of pressure
dp
dt

=−γ
p

v

dv
dt

Since pvγ =k, then p= k

vγ
=kv−γ

dp
dt

= dp
dv

× dv
dt

by the function of a function rule

dp
dv

= d
dv

(kv−γ )

= −γ kv−γ−1 = −γ k

vγ+1

dp
dt

= −γ k

vγ+1 × dv
dt

Since k = pvγ ,

dp
dt

= −γ (pvγ )

vγ+1
dv
dt

= −γpvγ

vγ v1
dv
dt

i.e.
dp
dt

=−γ
p
v

dv
dt

Now try the following Practice Exercise

Practice Exercise 156 Implicit
differentiation (Answers on page 879)

In Problems 1 and 2 determine
dy
dx

1. x2+y2+4x −3y+1=0

2. 2y3−y +3x−2=0

3. Given x2+y2=9 evaluate dy
dx
when

x =√
5 and y=2

In Problems 4 to 7, determine
dy
dx

4. x2+2x sin4y=0

5. 3y2+2xy−4x2=0

6. 2x2y +3x3= siny

7. 3y+2x lny =y4+x

Download more at Learnclax.com



Se
ct

io
n

H
424 Higher Engineering Mathematics

8. If 3x2+2x2y3− 5
4
y2=0 evaluate dy

dx
when

x = 1
2
and y =1

9. Determine the gradients of the tangents
drawn to the circle x2+y2=16 at the
point where x =2. Give the answer correct
to 4 significant figures.

10. Find the gradients of the tangents drawn to

the ellipse
x2

4
+ y2

9
=2 at the point where

x =2

11. Determine the gradient of the curve
3xy+y2=−2 at the point (1,−2)

For fully worked solutions to each of the problems in Practice Exercises 154 to 156 in this chapter,
go to the website:

www.routledge.com/cw/bird
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Chapter 36

Logarithmic differentiation

Why it is important to understand: Logarithmic differentiation
Logarithmic differentiation is ameans of differentiating algebraically complicated functions or functions
for which the ordinary rules of differentiation do not apply. The technique is performed in cases where
it is easier to differentiate the logarithm of a function rather than the function itself. Logarithmic differ-
entiation relies on the function of a function rule (i.e. chain rule) as well as properties of logarithms (in
particular, the natural logarithm, or logarithm to the base e) to transform products into sums and divi-
sions into subtractions, and can also be applied to functions raised to the power of variables of functions.
Logarithmic differentiation occurs often enough in engineering calculations to make it an important
technique.

At the end of this chapter, you should be able to:

• state the laws of logarithms
• differentiate simple logarithmic functions
• differentiate an implicit function involving logarithms
• differentiate more difficult logarithmic functions involving products and quotients
• differentiate functions of the form y = [f (x)] x

36.1 Introduction to logarithmic
differentiation

With certain functions containing more complicated
products and quotients, differentiation is often made
easier if the logarithm of the function is taken before
differentiating. This technique, called ‘logarithmic
differentiation’ is achieved with a knowledge of (i) the
laws of logarithms, (ii) the differential coefficients of
logarithmic functions, and (iii) the differentiation of
implicit functions.

36.2 Laws of logarithms

Three laws of logarithms may be expressed as:

(i) log(A × B)= logA+ logB

(ii) log
(

A

B

)

= logA − logB

(iii) logAn =n logA

In calculus, Napierian logarithms (i.e. logarithms to a
base of ‘e’) are invariably used. Thus for two func-
tions f (x) and g(x) the laws of logarithms may be
expressed as:

(i) ln[f (x) ·g(x)]= lnf (x)+ lng(x)

(ii) ln
(

f (x)

g(x)

)

= lnf (x)− lng(x)

(iii) ln[f (x)]n=n lnf (x)

Higher Engineering Mathematics. 978-1-138-67357-1, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.
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Taking Napierian logarithms of both sides of the equa-

tion y = f (x) ·g(x)

h(x)
gives:

lny = ln
(

f (x) ·g(x)

h(x)

)

which may be simplified using the above laws of
logarithms, giving:

lny = lnf (x) + lng(x) − lnh(x)

This latter form of the equation is often easier to
differentiate.

36.3 Differentiation of logarithmic
functions

The differential coefficient of the logarithmic function
lnx is given by:

d
dx

(lnx) = 1
x

More generally, it may be shown that:

d
dx
[ln f (x)]= f ′(x)

f (x)
(1)

For example, if y = ln(3x2+ 2x − 1) then,
dy
dx

= 6x +2
3x2+2x−1

Similarly, if y = ln(sin3x) then
dy
dx

= 3cos3x
sin3x

= 3 cot 3x

Now try the following Practice Exercise

Practice Exercise 157 Differentiating
logarithmic functions (Answers on page 879)

Differentiate the following:

1. ln(4x − 10)
2. ln(cos3x)

3. ln(3x3+ x)

4. ln(5x2+ 10x − 7)
5. ln8x

6. ln(x2− 1)

7. 3 ln4x

8. 2 ln(sinx)

9. ln(4x3− 6x2+ 3x)

36.4 Differentiation of further
logarithmic functions

As explained in Chapter 35, by using the function of a
function rule:

d
dx

(lny) =
(
1
y

)
dy
dx

(2)

Differentiation of an expression such as

y = (1+ x)2
√

(x − 1)
x
√

(x + 2) may be achieved by using the

product and quotient rules of differentiation; how-
ever the working would be rather complicated. With
logarithmic differentiation the following procedure is
adopted:

(i) Take Napierian logarithms of both sides of the
equation.

Thus lny = ln
{

(1+ x)2
√

(x − 1)
x
√

(x + 2)
}

= ln
{

(1+ x)2(x − 1) 12
x(x + 2) 12

}

(ii) Apply the laws of logarithms.
Thus lny = ln(1+ x)2+ ln(x − 1) 12

− lnx − ln(x + 2) 12 , by laws (i)
and (ii) of Section 36.2

i.e. lny = 2 ln(1+ x) + 1
2 ln(x − 1)

− lnx − 1
2 ln(x + 2), by law (iii)

of Section 36.2

(iii) Differentiate each term in turn with respect to x

using equations (1) and (2).

Thus
1
y

dy
dx

= 2
(1+ x)

+
1
2

(x − 1) − 1
x

−
1
2

(x + 2)
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(iv) Rearrange the equation to make
dy
dx
the subject.

Thus
dy
dx

= y

{
2

(1+ x)
+ 1
2(x − 1) − 1

x

− 1
2(x + 2)

}

(v) Substitute for y in terms of x.

Thus
dy
dx

= (1+ x)2√(x− 1)
x
√

(x+ 2)
{

2
(1+ x)

+ 1
2(x− 1) − 1

x
− 1
2(x+ 2)

}

Problem 1. Use logarithmic differentiation to

differentiate y = (x + 1)(x − 2)3
(x − 3)

Following the above procedure:

(i) Since y = (x + 1)(x − 2)3
(x − 3)

then lny = ln
{

(x + 1)(x − 2)3
(x − 3)

}

(ii) lny = ln(x + 1) + ln(x − 2)3− ln(x − 3),
by laws (i) and (ii) of Section 36.2,

i.e. lny = ln(x + 1) + 3ln(x − 2) − ln(x − 3),
by law (iii) of Section 36.2.

(iii) Differentiating with respect to x gives:

1
y

dy
dx

= 1
(x + 1) + 3

(x − 2) − 1
(x − 3) ,

by using equations (1) and (2)

(iv) Rearranging gives:

dy
dx

= y

{
1

(x + 1) + 3
(x − 2) − 1

(x − 3)
}

(v) Substituting for y gives:

dy
dx

= (x+ 1)(x− 2)3
(x− 3)

{
1

(x+ 1)

+ 3
(x− 2) − 1

(x− 3)
}

Problem 2. Differentiate y =
√

(x − 2)3
(x + 1)2(2x − 1)

with respect to x and evaluate
dy
dx
when x = 3

Using logarithmic differentiation and following the
above procedure:

(i) Since y =
√

(x − 2)3
(x + 1)2(2x − 1)

then lny = ln
{ √

(x − 2)3
(x + 1)2(2x − 1)

}

= ln
{

(x − 2) 32
(x + 1)2(2x − 1)

}

(ii) lny = ln(x − 2) 32 − ln(x + 1)2− ln(2x − 1)
i.e. lny = 3

2 ln(x − 2) − 2 ln(x + 1)
− ln(2x − 1)

(iii)
1
y

dy
dx

=
3
2

(x − 2) − 2
(x + 1) − 2

(2x − 1)

(iv)
dy
dx

= y

{
3

2(x − 2) − 2
(x + 1) − 2

(2x − 1)
}

(v)
dy
dx

=
√
(x− 2)3

(x+ 1)2(2x− 1)
{

3
2(x− 2)

− 2
(x + 1)

− 2
(2x− 1)

}

When x = 3, dy
dx

=
√

(1)3

(4)2(5)

(
3
2

− 2
4

− 2
5

)

= ± 1
80

(
3
5

)

=± 3
400

or ±0.0075

Problem 3. Given y = 3e
2θ sec2θ√
(θ − 2) determine

dy
dθ

Using logarithmic differentiation and following the
procedure gives:

(i) Since y = 3e2θ sec2θ√
(θ − 2)
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then lny = ln
{
3e2θ sec2θ√

(θ − 2)
}

= ln
{
3e2θ sec2θ

(θ − 2) 12

}

(ii) lny = ln3e2θ + lnsec2θ − ln(θ − 2) 12
i.e. lny = ln3+ lne2θ + ln sec2θ

− 1
2 ln(θ − 2)

i.e. lny = ln3+ 2θ + lnsec2θ − 1
2 ln(θ − 2)

(iii) Differentiating with respect to θ gives:

1
y

dy
dθ

= 0+ 2+ 2sec2θ tan2θ
sec2θ

−
1
2

(θ − 2)
from equations (1) and (2)

(iv) Rearranging gives:

dy
dθ

= y

{

2+ 2 tan2θ − 1
2(θ − 2)

}

(v) Substituting for y gives:

dy
dθ

= 3e2θ sec2θ√
(θ − 2)

{

2+ 2tan2θ − 1
2(θ − 2)

}

Problem 4. Differentiate y = x3 ln2x
ex sinx

with
respect to x.

Using logarithmic differentiation and following the
procedure gives:

(i) lny = ln
{

x3 ln2x
ex sinx

}

(ii) lny = lnx3+ ln(ln2x) − ln(ex) − ln(sinx)

i.e. lny = 3lnx + ln(ln2x) − x − ln(sinx)

(iii)
1
y

dy
dx

= 3
x

+
1
x

ln2x
− 1− cosx

sinx

(iv)
dy
dx

= y

{
3
x

+ 1
x ln2x

− 1− cotx
}

(v)
dy
dx

= x3 ln2x
ex sinx

{
3
x

+ 1
x ln2x

− 1− cotx
}

Now try the following Practice Exercise

Practice Exercise 158 Differentiating
logarithmic functions (Answers on page 879)

In Problems 1 to 6, use logarithmic differentiation
to differentiate the given functions with respect to
the variable.

1. y = (x − 2)(x + 1)
(x − 1)(x + 3)

2. y = (x + 1)(2x + 1)3
(x − 3)2(x + 2)4

3. y = (2x − 1)√(x + 2)
(x − 3)

√
(x + 1)3

4. y = e2x cos3x√
(x − 4)

5. y = 3θ sinθ cosθ

6. y = 2x4 tanx

e2x ln2x

7. Evaluate
dy
dx
when x = 1 given

y = (x + 1)2√(2x − 1)
√

(x + 3)3

8. Evaluate
dy
dθ
, correct to 3 significant figures,

when θ = π

4
given y = 2eθ sinθ√

θ5

36.5 Differentiation of [ f (x)]x

Whenever an expression to be differentiated con-
tains a term raised to a power which is itself a function
of the variable, then logarithmic differentiation must be
used. For example, the differentiation of expressions
such as xx,(x + 2)x, x

√
(x − 1) and x3x+2 can only be

achieved using logarithmic differentiation.

Problem 5. Determine
dy
dx
given y = xx

Taking Napierian logarithms of both sides of
y = xx gives:
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lny = lnxx = x lnx, by law (iii) of Section 36.2.
Differentiating both sides with respect to x gives:
1
y

dy
dx

= (x)

(
1
x

)

+ (lnx)(1), using the product rule

i.e.
1
y

dy
dx

= 1+ lnx,

from which,
dy
dx

= y(1+ lnx)

i.e.
dy
dx

= xx(1+ lnx)

Problem 6. Evaluate
dy
dx
when x = −1 given

y = (x + 2)x

Taking Napierian logarithms of both sides of
y =(x + 2)x gives:

lny = ln(x + 2)x = x ln(x + 2), by law (iii)
of Section 36.2

Differentiating both sides with respect to x gives:

1
y

dy
dx

= (x)

(
1

x + 2
)

+ [ln(x + 2)](1),

by the product rule.

Hence
dy
dx

= y

(
x

x + 2 + ln(x + 2)
)

=(x+ 2)x
{
x

x+ 2 + ln (x+ 2)
}

When x = −1, dy
dx

= (1)−1
(−1
1

+ ln1
)

= (+1)(−1)=−1

Problem 7. Determine (a) the differential

coefficient of y = x
√

(x − 1) and (b) evaluate dy
dx

when x = 2

(a) y = x
√

(x − 1) = (x − 1) 1x , since by the laws of
indices n

√
am = a

m
n

Taking Napierian logarithms of both sides gives:

lny = ln(x − 1) 1x = 1
x
ln(x − 1),

by law (iii) of Section 36.2.

Differentiating each side with respect to x gives:

1
y

dy
dx

=
(
1
x

)(
1

x − 1
)

+ [ln(x − 1)]
(−1

x2

)

,

by the product rule.

Hence
dy
dx

= y

{
1

x(x − 1) − ln(x − 1)
x2

}

i.e.
dy
dx

= x√(x− 1)
{

1
x(x− 1) − ln(x− 1)

x2

}

(b) When x = 2, dy
dx

= 2√(1)
{
1
2(1)

− ln(1)
4

}

= ±1
{
1
2

− 0
}

= ±1
2

Problem 8. Differentiate x3x+2 with respect to x.

Let y = x3x+2

Taking Napierian logarithms of both sides gives:

lny = lnx3x+2

i.e. lny = (3x + 2) lnx, by law (iii) of Section 36.2.
Differentiating each term with respect to x gives:
1
y

dy
dx

= (3x + 2)
(
1
x

)

+ (lnx)(3),

by the product rule.

Hence
dy
dx

= y

{
3x + 2

x
+ 3lnx

}

= x3x+2
{
3x + 2

x
+ 3lnx

}

= x3x+2
{

3+ 2
x

+ 3lnx
}

Now try the following Practice Exercise

Practice Exercise 159 Differentiating
[ f (x)]x type functions (Answers on page 879)

In Problems 1 to 4, differentiate with respect to x.

1. y = x2x

2. y = (2x − 1)x
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3. y = x
√

(x + 3)

4. y = 3x4x+1

5. Show that when y = 2xx and x = 1, dy
dx

= 2

6. Evaluate
d
dx

{
x
√

(x − 2)} when x = 3

7. Show that if y = θ θ and θ = 2, dy
dθ

= 6.77,
correct to 3 significant figures.

For fully worked solutions to each of the problems in Practice Exercises 157 to 159 in this chapter,
go to the website:

www.routledge.com/cw/bird
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Revision Test 11 Further differentiation

This Revision Test covers the material contained in Chapters 34 to 36. The marks for each question are shown in
brackets at the end of each question.

1. A cycloid has parametric equations given by:
x =5(θ − sinθ ) and y =5(1− cosθ ). Evaluate

(a)
dy
dx
(b)
d2y
dx2

when θ =1.5 radians. Give answers
correct to 3 decimal places. (8)

2. Determine the equation of (a) the tangent, and (b)
the normal, drawn to an ellipse x =4cosθ ,
y = sinθ at θ = π

3
(8)

3. Determine expressions for
dz
dy

for each of the

following functions:

(a) z=5y2 cosx (b) z=x2+4xy−y2 (5)

4. If x2+y2+6x+8y +1=0, find dy
dx
in terms of x

and y. (4)

5. Determine the gradient of the tangents drawn to the
hyperbola x2−y2=8 at x=3 (4)

6. Use logarithmic differentiation to differentiate

y = (x +1)2√(x −2)
(2x−1) 3

√
(x −3)4

with respect to x. (6)

7. Differentiatey = 3e
θ sin2θ√

θ5
and hence evaluate

dy
dθ
,

correct to 2 decimal places, when θ = π

3
(9)

8. Evaluate
d
dt

[
t

√
(2t + 1)] when t =2, correct to 4

significant figures. (6)

For lecturers/instructors/teachers, fully worked solutions to each of the problems in Revision Test 11,
together with a full marking scheme, are available at the website:

www.routledge.com/cw/bird
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Chapter 37

Differentiation of hyperbolic
functions

Why it is important to understand: Differentiation of hyperbolic functions
Hyperbolic functions have applications in many areas of engineering. For example, the shape formed
by a wire freely hanging between two points (known as a catenary curve) is described by the hyperbolic
cosine.Hyperbolic functions are alsoused in electrical engineeringapplications and for solvingdifferential
equations; other applications of hyperbolic functions are found in fluid dynamics, optics, heat,mechanical
engineering, and in astronomy when dealing with the curvature of light in the presence of black holes.
Differentiation of hyperbolic functions is quite straightforward.

At the end of this chapter, you should be able to:

• derive the differential coefficients of hyperbolic functions
• differentiate hyperbolic functions

37.1 Standard differential coefficients
of hyperbolic functions

From Chapter 16,

d
dx

(sinhx) = d
dx

(
ex − e−x

2

)

=
[
ex − (−e−x)

2

]

=
(
ex + e−x

2

)

= coshx

If y=sinhax, where a is a constant, then
dy
dx

=acoshax

d
dx

(coshx) = d
dx

(
ex + e−x

2

)

=
[
ex + (−e−x)

2

]

=
(
ex − e−x

2

)

= sinhx

If y=coshax, where a is a constant, then
dy
dx

=asinhax

Using the quotient rule of differentiation the derivatives
of tanhx, sechx, cosechx and cothx maybe determined
using the above results.
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Problem 1. Determine the differential coefficient
of: (a) thx (b) sechx

(a)
d
dx

(thx) = d
dx

(
shx
chx

)

= (chx)(chx) − (shx)(shx)

ch2 x

using the quotient rule

= ch2 x − sh2x
ch2 x

= 1
ch2 x

= sech2 x

(b)
d
dx

(sechx) = d
dx

(
1
chx

)

= (chx)(0) − (1)(shx)

ch2 x

= −shx
ch2 x

= −
(
1
chx

)(
shx
chx

)

= −sechx thx

Problem 2. Determine
dy
dθ
given

(a) y =cosechθ (b) y = cothθ

(a)
d
dθ

(cosecθ) = d
dθ

(
1
shθ

)

= (shθ)(0) − (1)(chθ)

sh2 θ

= −chθ
sh2 θ

= −
(
1
shθ

)(
chθ
shθ

)

= −cosechθ cothθ

(b)
d
dθ

(cothθ) = d
dθ

(
chθ
shθ

)

= (shθ)(shθ) − (chθ)(chθ)

sh2 θ

= sh2 θ −ch2 θ
sh2 θ

= −(ch2 θ −sh2 θ)

sh2 θ

= −1
sh2 θ

= −cosech2 θ

Summary of differential coefficients

y or f (x)
dy
dx
or f ′(x)

sinhax a coshax

coshax a sinhax

tanhax a sech2 ax

sechax −a sechax tanhax

cosechax −a cosechax cothax

cothax −a cosech2 ax

37.2 Further worked problems on
differentiation of hyperbolic
functions

Problem 3. Differentiate the following with
respect to x:

(a) y =4sh2x− 3
7
ch3x

(b) y=5 th x

2
−2coth4x

(a) y = 4sh2x − 3
7
ch3x

dy
dx

= 4(2 cosh2x) − 3
7
(3sinh3x)

= 8cosh2x− 9
7
sinh3x

(b) y = 5th x

2
− 2coth4x

dy
dx

= 5
(
1
2
sech2

x

2

)

− 2(−4cosech2 4x)

= 5
2
sech2

x
2

+8cosech2 4x

Problem 4. Differentiate the following with
respect to the variable: (a) y=4sin3t ch4t
(b) y= ln (sh3θ)−4ch2 3θ
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(a) y = 4sin3t ch4t (i.e. a product)
dy
dx

= (4sin3t)(4sh4t) + (ch4t)(4)(3cos3t)

= 16sin3t sh4t + 12ch4t cos3t
= 4(4sin3t sh4t+ 3cos3t ch4t)

(b) y = ln (sh3θ) − 4ch23θ
(i.e. a function of a function)

dy
dθ

=
(

1
sh3θ

)

(3ch3θ) − (4)(2ch3θ)(3sh3θ)

= 3 coth3θ − 24ch3θ sh3θ
= 3(coth3θ −8ch3θ sh3θ)

Problem 5. Show that the differential coefficient
of

y = 3x2

ch4x
is: 6x sech4x (1−2x th4x).

y = 3x2

ch4x
(i.e. a quotient)

dy
dx

= (ch4x)(6x) − (3x2)(4sh4x)

(ch4x)2

= 6x(ch4x − 2x sh4x)

(ch2 4x)

= 6x
[
ch4x
ch24x

− 2x sh4x
ch24x

]

= 6x
[
1

ch4x
− 2x

(
sh4x
ch4x

)(
1

ch4x

)]

= 6x[sech4x − 2x th4x sech4x]

= 6xsech4x (1−2x th4x)

Now try the following Practice Exercise

Practice Exercise 160 Differentiation of
hyperbolic functions (Answers on page 879)

In Problems 1 to 5 differentiate the given functions
with respect to the variable:

1. (a) 3sh2x (b) 2ch5θ (c) 4 th9t

2. (a)
2
3
sech5x (b)

5
8
cosech

t

2
(c) 2coth7θ

3. (a) 2 ln(shx) (b)
3
4
ln

(

th
(

θ

2

))

4. (a) sh2x ch2x (b) 3e2x th2x

5. (a)
3sh4x
2x3

(b)
ch2t
cos2t

For fully worked solutions to each of the problems in Practice Exercise 160 in this chapter,
go to the website:

www.routledge.com/cw/bird
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Chapter 38

Differentiation of inverse
trigonometric and

hyperbolic functions

Why it is important to understand: Differentiation of inverse trigonometric hyperbolic functions
As has been mentioned earlier, hyperbolic functions have applications in many areas of engineering.
For example, the hyperbolic sine arises in the gravitational potential of a cylinder, the hyperbolic cosine
function is the shape of a hanging cable, the hyperbolic tangent arises in the calculation of and rapidity
of special relativity, the hyperbolic secant arises in the profile of a laminar jet, and the hyperbolic cotan-
gent arises in the Langevin function for magnetic polarisation. So there are plenty of applications for
inverse functions in engineering and this chapter explains how to differentiate inverse trigonometric and
hyperbolic functions.

At the end of this chapter, you should be able to:

• understand inverse functions
• differentiate inverse trigonometric functions
• evaluate inverse hyperbolic functions using logarithmic forms
• differentiate inverse hyperbolic functions

38.1 Inverse functions

If y =3x−2, then by transposition, x= y +2
3
. The

function x= y +2
3

is called the inverse function of
y =3x−2 (see page 229).
Inverse trigonometric functions are denoted by pre-

fixing the function with ‘arc’ or, more commonly, by
using the −1 notation. For example, if y = sinx, then
x =arcsin y or x =sin−1 y. Similarly, if y= cosx, then

x =arccos y or x =cos−1 y, and so on. In this chapter
the −1 notation will be used. A sketch of each of the
inverse trigonometric functions is shown in Fig. 38.1.
Inverse hyperbolic functions are denoted by pre-

fixing the function with ‘ar’ or, more commonly, by
using the −1 notation. For example, if y=sinhx, then
x =arsinh y or x = sinh−1 y. Similarly, if y=sechx,
then x=arsech y or x =sech−1y, and so on. In this
chapter the −1 notation will be used. A sketch of each of
the inverse hyperbolic functions is shown in Fig. 38.2.

Higher Engineering Mathematics. 978-1-138-67357-1, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.
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38.2 Differentiation of inverse
trigonometric functions

(i) If y= sin−1 x, then x= siny.

Differentiating both sideswith respect to y gives:
dx
dy

= cosy =
√
1− sin2 y

since cos2 y + sin2 y = 1, i.e. dx
dy

= √
1− x2

However
dy
dx

= 1
dx
dy

Hence, when y= sin−1 x then
dy
dx

= 1√
1−x2

(ii) A sketch of part of the curve of y = sin−1 x is
shown in Fig. 38.1(a). The principal value of
sin−1 x is defined as the value lying between
−π/2 andπ/2.Thegradient of the curve between
points A and B is positive for all values of x

and thus only the positive value is taken when

evaluating
1√
1−x2

(iii) Given y = sin−1 x

a
then

x

a
= siny and

x= a siny

Hence
dx
dy

=a cosy = a
√
1− sin2 y

=a

√[

1−
(x

a

)2]= a

√(
a2− x2

a2

)

= a
√

a2− x2

a
= √

a2− x2

Thus
dy
dx

= 1
dx
dy

= 1√
a2−x2

i.e. when y=sin−1 x
a
then

dy
dx

= 1√
a2 − x2

Since integration is the reverse process of differ-
entiation then:

∫ 1√
a2−x2 dx= sin−1 x

a
+ c

(iv) Given y = sin−1 f (x) the function of a function

rule may be used to find
dy
dx

Let u=f (x) then y= sin−1u

Then
du
dx

=f ′(x) and
dy
du

= 1√
1−u2

(see para. (i))

Thus
dy
dx

= dy
du

× du
dx

= 1√
1− u2

f ′(x)

= f ′(x)
√
1− [ f (x)]2

(v) The differential coefficients of the remaining
inverse trigonometric functions are obtained in
a similar manner to that shown above and a
summary of the results is shown in Table 38.1.

Table 38.1 Differential coefficients of inverse
trigonometric functions

y or f (x)
dy
dx
or f ′(x)

(i) sin−1 x

a

1√
a2− x2

sin−1 f (x)
f ′(x)

√
1− [f (x)]2

(ii) cos−1
x

a

−1√
a2− x2

cos−1 f (x)
−f ′(x)

√
1− [f (x)]2

(iii) tan−1 x

a

a

a2+ x2

tan−1 f (x)
f ′(x)

1+ [f (x)]2

(iv) sec−1
x

a

a

x
√

x2− a2

sec−1 f (x)
f ′(x)

f (x)
√
[f (x)]2− 1

(v) cosec−1
x

a

−a

x
√

x2− a2

cosec−1 f (x)
−f ′(x)

f (x)
√
[f (x)]2− 1

(vi) cot−1
x

a

−a

a2+ x2

cot−1 f (x)
−f ′(x)

1+ [f (x)]2
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Problem 1. Find
dy
dx
given y= sin−1 5x2

From Table 38.1(i), if

y = sin−1 f (x) then
dy
dx

= f ′(x)
√
1− [f (x)]2

Hence, if y = sin−1 5x2 then f (x)=5x2 and
f ′(x)=10x

Thus
dy
dx

= 10x
√
1− (5x2)2

= 10x√
1−25x4

Problem 2.
(a) Show that if y = cos−1 x then

dy
dx

= 1√
1− x2

(b) Hence obtain the differential coefficient of
y = cos−1(1−2x2)

(a) If y = cos−1 x then x = cosy
Differentiating with respect to y gives:

dx
dy

= −siny =−
√
1− cos2 y

=−√
1− x2

Hence
dy
dx

= 1
dx
dy

=− 1√
1−x2

The principal value of y =cos−1 x is defined as the
angle lying between 0 and π , i.e. between points C

and D shown in Fig. 38.1(b). The gradient of the curve
is negative between C and D and thus the differential

coefficient
dy
dx
is negative as shown above.

(b) If y = cos−1 f (x) then by letting u=f (x),
y = cos−1u

Then
dy
du

=− 1√
1− u2

(from part (a))

and
du
dx

= f ′(x)

From the function of a function rule,
dy
dx

= dy
du

· du
dx

= − 1√
1− u2

f ′(x)

= −f ′(x)
√
1− [f (x)]2

Hence, when y = cos−1(1− 2x2)

then
dy
dx

= −(−4x)
√
1− [1− 2x2]2

= 4x
√
1− (1− 4x2+ 4x4)

= 4x
√

(4x2− 4x4)

= 4x
√
[4x2(1− x2)]

= 4x
2x

√
1− x2

= 2√
1−x2

Problem 3. Determine the differential coefficient
of y = tan−1 x

a
and show that the differential

coefficient of tan−1 2x
3
is

6
9+ 4x2

If y = tan−1 x

a
then

x

a
= tany and x = a tany

dx
dy

= a sec2 y = a(1+ tan2 y) since

sec2 y = 1+ tan2 y

= a

[

1+
(x

a

)2] = a

(
a2+ x2

a2

)

= a2+ x2

a

Hence
dy
dx

= 1
dx
dy

= a

a2+ x2

The principal value of y= tan−1 x is defined as the
angle lying between − π

2
and

π

2
and the gradient

(

i.e.
dy
dx

)

between these two values is always positive

(see Fig. 38.1(c)).

Comparing tan−1 2x
3
with tan−1 x

a
shows that a= 3

2
Hence if y = tan−1 2x

3
then

dy
dx

=
3
2

(
3
2

)2
+ x2

=
3
2

9
4

+ x2
=

3
2

9+ 4x2
4

=
3
2
(4)

9+ 4x2 = 6
9+4x2

Problem 4. Find the differential coefficient of
y = ln (cos−1 3x)
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Let u= cos−1 3x then y = lnu

By the function of a function rule,

dy
dx

= dy
du

· du
dx

= 1
u

× d
dx

(cos−1 3x)

= 1
cos−1 3x

{
−3

√
1− (3x)2

}

i.e.
d
dx
[ln(cos−1 3x)]= −3√

1−9x2 cos−1 3x

Problem 5. If y = tan−1 3
t2
find

dy
dt

Using the general form from Table 38.1(iii),

f (t) = 3
t2

= 3t−2

from which f ′(t) = −6
t3

Hence
d
dt

(

tan−1 3
t2

)

= f ′(t)
1+ [f (t)]2

=
− 6

t3{

1+
(
3
t2

)2} =
− 6

t3

t4+ 9
t4

=
(

− 6
t3

)(
t4

t4 + 9
)

= − 6t
t4+9

Problem 6. Differentiate y = cot−1 2x
1+ 4x2

Using the quotient rule:

dy
dx

=
(1+ 4x2)

( −2
1+ (2x)2

)

− (cot−1 2x)(8x)

(1+ 4x2)2
from Table 38.1(vi)

= −2(1+4xcot−12x)
(1+4x2)2

Problem 7. Differentiate y =x cosec−1 x

Using the product rule:

dy
dx

= (x)

[ −1
x
√

x2− 1

]

+ (cosec−1 x) (1)

from Table 38.1(v)

= −1√
x2−1 +cosec−1 x

Problem 8. Show that if

y = tan−1
(

sin t

cos t − 1
)

then
dy
dt

= 1
2

If f (t) =
(

sin t

cos t − 1
)

then f ′(t)= (cos t − 1)(cos t) − (sin t)(−sin t)

(cos t − 1)2

= cos
2 t − cos t + sin2 t
(cos t − 1)2 = 1− cos t

(cos t − 1)2

since sin2 t + cos2 t = 1

= −(cos t − 1)
(cos t − 1)2 = −1

cos t − 1
Using Table 38.1(iii), when

y = tan−1
(

sin t

cos t − 1
)

then
dy
dt

=
−1

cos t − 1
1+

(
sin t

cos t − 1
)2

=
−1

cos t − 1
(cos t − 1)2+ (sin t)2

(cos t − 1)2

=
( −1
cos t − 1

)(
(cos t − 1)2

cos2 t − 2cos t + 1+ sin2 t

)

= −(cos t − 1)
2− 2cos t = 1− cos t

2(1− cos t) = 1
2

Now try the following Practice Exercise

Practice Exercise 161 Differentiating
inverse trigonometric functions (Answers on
page 880)
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In Problems 1 to 6, differentiate with respect to the
variable.

1. (a) sin−1 4x (b) sin−1 x

2

2. (a) cos−1 3x (b)
2
3
cos−1

x

3

3. (a) 3 tan−1 2x (b)
1
2
tan−1 √

x

4. (a) 2sec−1 2t (b) sec−1
3
4
x

5. (a)
5
2
cosec−1

θ

2
(b) cosec−1 x2

6. (a) 3 cot−1 2t (b) cot−1
√

θ2− 1
7. Show that the differential coefficient of

tan−1
(

x

1− x2

)

is
1+ x2

1− x2+ x4

In Problems 8 to 11 differentiate with respect to
the variable.

8. (a) 2x sin−1 3x (b) t2 sec−1 2t

9. (a) θ 2 cos−1 (θ2− 1) (b) (1− x2) tan−1 x

10. (a) 2
√

t cot−1 t (b) x cosec−1
√

x

11. (a)
sin−1 3x

x2
(b)

cos−1 x√
1− x2

38.3 Logarithmic forms of inverse
hyperbolic functions

Inverse hyperbolic functions may be evaluated most
conveniently when expressed in a logarithmic
form.
For example, if y =sinh−1 x

a
then

x

a
= sinhy.

From Chapter 16, e y = coshy+ sinhy and
cosh2 y − sinh2 y =1, from which,
coshy =

√
1+ sinh2 y which is positive since coshy is

always positive (see Fig. 16.2, page 183).
Hence ey =

√
1+ sinh2 y + sinhy

=
√[

1+
(x

a

)2]+ x

a
=

√(
a2+ x2

a2

)

+ x

a

=
√

a2+ x2

a
+ x

a
or

x + √
a2+ x2

a

Taking Napierian logarithms of both sides gives:

y = ln
{

x + √
a2+ x2

a

}

Hence, sinh−1 x
a

= ln
{
x+

√
a2+x2
a

}

(1)

Thus to evaluate sinh−1 3
4
, let x =3 and a=4 in

equation (1).

Then sin h−1 3
4

= ln
{
3+ √

42+ 32
4

}

= ln
(
3+ 5
4

)

= ln2= 0.6931

By similar reasoning to the above it may be shown that:

cosh−1 x
a

= ln
{
x+√

x2−a2
a

}

and tanh−1 x
a

= 1
2
ln

(
a+x
a−x

)

Problem 9. Evaluate, correct to 4 decimal places,
sinh−1 2

From above, sinh−1 x

a
= ln

{
x + √

a2+ x2

a

}

With x=2 and a=1,

sinh−1 2= ln
{
2+ √

12+ 22
1

}

= ln(2+
√
5) = ln4.2361

= 1.4436,correct to 4 decimal places

Using a calculator,

(i) press hyp

(ii) press 4 and sinh−1( appears

(iii) type in 2

(iv) press ) to close the brackets

(v) press = and 1.443635475 appears
Hence, sinh−12= 1.4436, correct to 4 decimal places.
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Problem 10. Show that

tanh−1 x

a
= 1
2
ln

(
a + x

a − x

)

and evaluate, correct

to 4 decimal places, tanh−1 3
5

If y = tanh−1 x

a
then

x

a
= tanh y

From Chapter 16,

tanhy = sinhx

coshx
=

1
2 (e

y − e−y)

1
2 (ey + e−y)

= e2y − 1
e2y + 1

by dividing each term by e−y

Thus,
x

a
= e

2y −1
e2y +1

from which, x(e2y +1)=a(e2y −1)
Hence x +a=ae2y −xe2y =e2y(a−x)

from which e2y =
(

a + x

a − x

)

Taking Napierian logarithms of both sides gives:

2y = ln
(

a + x

a − x

)

and y = 1
2
ln

(
a + x

a − x

)

Hence, tanh−1 x
a

= 1
2
ln

(
a+x
a−x

)

Substituting x=3 and a=5 gives:

tanh−1 3
5

= 1
2
ln

(
5+ 3
5− 3

)

= 1
2
ln4

= 0.6931,correct to 4 decimal places.

Problem 11. Prove that

cosh−1 x

a
= ln

{
x +√

x2−a2

a

}

and hence evaluate cosh−11.4 correct to
4 decimal places.

If y = cosh−1 x

a
then

x

a
= cosy

ey = coshy + sinhy = coshy ±
√
cosh2 y − 1

= x

a
±

√[(x

a

)2− 1
]

= x

a
±

√
x2− a2

a

= x ± √
x2− a2

a

Taking Napierian logarithms of both sides gives:

y = ln
{

x ± √
x2− a2

a

}

Thus, assuming the principal value,

cosh−1 x
a

= ln
{
x+√

x2−a2
a

}

cosh−1 1.4=cosh−1 14
10

=cosh−1 7
5

In the equation for cosh−1 x

a
, let x =7 and a=5

Then cosh−1 7
5

= ln
{
7+ √

72− 52
5

}

= ln2.3798= 0.8670
correct to 4 decimal places.

Now try the following Practice Exercise

Practice Exercise 162 Logarithmic forms of
the inverse hyperbolic functions (Answers
on page 880)

In Problems 1 to 3 use logarithmic equivalents of
inverse hyperbolic functions to evaluate correct to
4 decimal places.

1. (a) sinh−1 1
2

(b) sinh−1 4 (c) sinh−1 0.9

2. (a) cosh−1 5
4

(b) cosh−1 3 (c) cosh−1 4.3

3. (a) tanh−1 1
4

(b) tanh−1 5
8

(c) tanh−1 0.7

Download more at Learnclax.com



Se
ct

io
n

H
442 Higher Engineering Mathematics

38.4 Differentiation of inverse
hyperbolic functions

If y = sinh−1 x

a
then

x

a
= sinhy and x=a sinhy

dx
dy

=a coshy (from Chapter 37).

Also cosh2 y−sinh2 y =1, from which,

coshy=
√
1+ sinh2 y =

√[

1+
(x

a

)2]

=
√

a2+ x2

a

Hence
dx
dy

=a coshy = a
√

a2+ x2

a
= √

a2+ x2

Then
dy
dx

= 1
dx
dy

= 1
√
a2+x2

[An alternative method of differentiating sinh−1 x

a
is to differentiate the logarithmic form

ln

{
x + √

a2+ x2

a

}

with respect to x]

From the sketch of y = sinh−1 x shown in Fig. 38.2(a)

it is seen that the gradient
(

i.e.
dy
dx

)

is always positive.

It follows from above that
∫

1√
x2+ a2

dx = sinh−1 x

a
+ c

or ln

{
x + √

a2+ x2

a

}

+ c

It may be shown that

d
dx
(sinh−1 x)= 1

√
x2+1

or more generally

d
dx
[sinh−1 f (x)]= f ′(x)

√
[ f (x)]2+1

by using the function of a function rule as in
Section 38.2(iv).
The remaining inverse hyperbolic functions are dif-

ferentiated in a similar manner to that shown above and
the results are summarised in Table 38.2.

Table 38.2 Differential coefficients of inverse
hyperbolic functions

y or f (x)
dy
dx
or f ′(x)

(i) sinh−1 x

a

1√
x2+ a2

sinh−1 f (x)
f ′(x)

√
[f (x)]2+ 1

(ii) cosh−1 x

a

1√
x2− a2

cosh−1 f (x)
f ′(x)

√
[f (x)]2− 1

(iii) tanh−1 x

a

a

a2− x2

tanh−1 f (x)
f ′(x)

1− [f (x)]2

(iv) sech−1 x
a

−a

x
√

a2− x2

sech−1f (x)
−f ′(x)

f (x)
√
1− [f (x)]2

(v) cosech−1x
a

−a

x
√

x2+ a2

cosech−1f (x)
−f ′(x)

f (x)
√
[f (x)]2+ 1

(vi) coth−1x
a

a

a2− x2

coth−1f (x)
f ′(x)

1− [f (x)]2

Problem 12. Find the differential coefficient
of y =sinh−1 2x

From Table 38.2(i),
d
dx
[sinh−1 f (x)]= f ′(x)

√
[ f (x)]2+ 1

Hence
d
dx

(sinh−1 2x)= 2
√
[(2x)2+ 1]

= 2
√
[4x2+1]
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Problem 13. Determine
d
dx

[
cosh−1

√
(x2+ 1)

]

If y =cosh−1 f (x),
dy
dx

= f ′(x)
√
[f (x)]2− 1

If y = cosh−1 √
(x2+1), then f (x)=

√
(x2+1) and

f ′(x)= 1
2
(x+1)−1/2(2x)= x

√
(x2+1)

Hence,
d
dx

[
cosh−1 √

(x2+1)
]

=

x
√

(x2+ 1)
√[(√

(x2+ 1)
)2− 1

] =

x
√

(x2+ 1)
√

(x2+ 1− 1)

=

x
√

(x2+ 1)
x

= 1
√
(x2+1)

Problem 14. Show that
d
dx

[
tanh−1 x

a

]
= a

a2−x2
and hence determine the

differential coefficient of tanh−1 4x
3

If y = tanh−1 x

a
then

x

a
= tanhy and x =a tanhy

dx
dy

=a sech2 y = a(1− tanh2 y), since

1−sech2 y= tanh2 y

=a

[

1−
(x

a

)2] = a

(
a2− x2

a2

)

= a2− x2

a

Hence
dy
dx

= 1
dx
dy

= a

a2− x2

Comparing tanh−1 4x
3
with tanh−1 x

a
shows that a= 3

4

Hence
d
dx

[

tanh−1 4x
3

]

=
3
4

(
3
4

)2
− x2

=
3
4

9
16

− x2

=
3
4

9− 16x2
16

= 3
4

· 16
(9− 16x2) = 12

9−16x2

Problem 15. Differentiate cosech−1(sinhθ)

From Table 38.2(v),
d
dx
[cosech−1 f (x)]= −f ′(x)

f (x)
√
[f (x)]2+ 1

Hence
d
dθ
[cosech−1(sinhθ)]

= −coshθ

sinhθ
√
[sinh2 θ + 1]

= −coshθ
sinhθ

√
cosh2 θ

sincecosh2 θ − sinh2 θ = 1

= −coshθ

sinhθ coshθ
= −1
sinhθ

= −cosechθ

Problem 16. Find the differential coefficient of
y =sech−1 (2x−1)

From Table 38.2(iv),
d
dx
[sech−1 f (x)]= −f ′(x)

f (x)
√
1− [f (x)]2

Hence,
d
dx
[sech−1 (2x − 1)]

= −2
(2x − 1)

√
[1− (2x − 1)2]

= −2
(2x − 1)

√
[1− (4x2− 4x + 1)]

= −2
(2x − 1)

√
(4x − 4x2)

= −2
(2x−1)√[4x(1−x)]

= −2
(2x − 1)2√[x(1− x)]

= −1
(2x−1)√[x(1−x)]

Problem 17. Show that
d
dx
[coth−1(sinx)]= secx

From Table 38.2(vi),
d
dx
[coth−1 f (x)]= f ′(x)

1− [ f (x)]2

Hence
d
dx
[coth−1(sinx)]= cosx

[1− (sinx)2]

= cosx
cos2 x

since cos2 x + sin2 x = 1

= 1
cosx

= sec x
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Problem 18. Differentiate
y =(x2−1) tanh−1 x

Using the product rule,

dy
dx

= (x2− 1)
(

1
1− x2

)

+ (tanh−1 x)(2x)

= −(1− x2)

(1−x2)
+2x tanh−1 x=2x tanh−1 x − 1

Problem 19. Determine
∫

dx
√

(x2+ 4)

Since
d
dx

(
sinh−1 x

a

)
= 1

√
(x2+ a2)

then
∫

dx
√

(x2+ a2)
= sinh−1 x

a
+ c

Hence
∫

1
√

(x2+ 4)
dx =

∫
1

√
(x2+ 22)

dx

= sinh−1 x
2

+c

Problem 20. Determine
∫

4
√

(x2−3)
dx

Since
d
dx

(
cosh−1 x

a

)
= 1

√
(x2− a2)

then
∫

1
√

(x2− a2)
dx =cosh−1 x

a
+ c

Hence
∫

4
√

(x2− 3)
dx =4

∫
1

√
[x2− (

√
3)2]

dx

=4 cosh−1 x√
3

+c

Problem 21. Find
∫

2
(9−4x2) dx

Since tanh−1 x

a
= a

a2− x2

then
∫

a

a2− x2
dx = tanh−1 x

a
+ c

i.e.
∫

1
a2− x2

dx = 1
a
tanh−1 x

a
+ c

Hence
∫

2
(9− 4x2) dx =2

∫
1

4
( 9
4 − x2

) dx

= 1
2

∫
1

[( 3
2
)2− x2

] dx

= 1
2

[
1

(3
2
) tanh−1 x

(3
2
) + c

]

i.e.
∫

2
(9− 4x2) dx = 1

3
tanh−1 2x

3
+c

Now try the following Practice Exercise

Practice Exercise 163 Differentiation of
inverse hyperbolic functions (Answers on
page 880)

In Problems 1 to 11, differentiate with respect to
the variable.

1. (a) sinh−1 x

3
(b) sinh−1 4x

2. (a) 2 cosh−1 t

3
(b)
1
2
cosh−1 2θ

3. (a) tanh−1 2x
5
(b) 3 tanh−1 3x

4. (a) sech−1 3x
4
(b) −1

2
sech−1 2x

5. (a) cosech−1 x
4
(b)
1
2
cosech−1 4x

6. (a) coth−1 2x
7
(b)
1
4
coth−1 3t

7. (a) 2 sinh−1√(x2− 1)

(b)
1
2
cosh−1 √

(x2+ 1)

8. (a) sech−1(x −1) (b) tanh−1(tanhx)

9. (a) cosh−1
(

t

t −1
)

(b) coth−1(cosx)

10. (a) θ sinh−1 θ (b)
√

x cosh−1 x

11. (a)
2 sech−1√t

t2
(b)
tanh−1 x

(1− x2)
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12. Show that
d
dx
[x cosh−1(coshx)]=2x

In Problems 13 to 15, determine the given
integrals.

13. (a)
∫

1
√

(x2+ 9)
dx

(b)
∫

3
√

(4x2+ 25)
dx

14. (a)
∫ 1

√
(x2− 16)

dx

(b)
∫

1
√

(t2− 5)
dt

15. (a)
∫

dθ
√

(36+ θ2)
(b)

∫
3

(16− 2x2) dx

For fully worked solutions to each of the problems in Practice Exercises 161 to 163 in this chapter,
go to the website:

www.routledge.com/cw/bird
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Chapter 39

Partial differentiation
Why it is important to understand: Partial differentiation
First-order partial derivatives can be used for numerous applications, from determining the volume of
different shapes to analysing anything fromwater to heat flow. Second-order partial derivatives are used
in many fields of engineering. One of its applications is in solving problems related to dynamics of rigid
bodies and in determination of forces and strength of materials. Partial differentiation is used to estimate
errors in calculated quantities that depend on more than one uncertain experimental measurement.
Thermodynamic energy functions (enthalpy, Gibbs free energy, Helmholtz free energy) are functions
of two or more variables. Most thermodynamic quantities (temperature, entropy, heat capacity) can be
expressed as derivatives of these functions. Many laws of nature are best expressed as relations between
the partial derivatives of one or more quantities. Partial differentiation is hence important in many
branches of engineering.

At the end of this chapter, you should be able to:

• determine first-order partial derivatives
• determine second-order partial derivatives

39.1 Introduction to partial
derivatives

In engineering, it sometimes happens that the variation
of one quantity depends on changes taking place in
two, or more, other quantities. For example, the vol-
ume V of a cylinder is given by V = πr 2h. The
volume will change if either radius r or height h is
changed. The formula for volume may be stated math-
ematically as V = f (r,h) which means ‘V is some
function of r and h’. Some other practical examples
include:

(i) time of oscillation, t =2π
√

l

g
i.e. t = f (l,g)

(ii) torque T =Iα, i.e. T =f (I,α)

(iii) pressure of an ideal gas p= mRT
V

i.e. p=f (T ,V )

(iv) resonant frequency fr = 1
2π

√
LC

i.e. fr = f (L,C), and so on.

When differentiating a function having two variables,
one variable is kept constant and the differential
coefficient of the other variable is found with respect
to that variable. The differential coefficient obtained is
called a partial derivative of the function.

39.2 First-order partial derivatives

A ‘curly dee’, ∂ , is used to denote a differential
coefficient in an expression containing more than one
variable.

Higher Engineering Mathematics. 978-1-138-67357-1, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.
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Hence if V =πr2h then
∂V

∂r
means ‘the partial deriva-

tive of V with respect to r , with h remaining constant’.
Thus,

∂V

∂r
= (πh)

d
dr

(r2) = (πh)(2r) = 2πrh

Similarly,
∂V

∂h
means ‘the partial derivative of V with

respect to h, with r remaining constant’. Thus,

∂V

∂h
= (πr2)

d
dh

(h) = (πr2)(1) = πr2

∂V

∂r
and

∂V

∂h
are examples of first order partial

derivatives, since n=1 when written in the form
∂nV

∂rn

First-order partial derivatives are used when finding the
total differential, rates of change and errors for functions
of two or more variables (see Chapter 40), when finding
maxima, minima and saddle points for functions of two
variables (see Chapter 41), and with partial differential
equations (see Chapter 56).

Problem 1. If z=5x4+2x3y2−3y find
(a)

∂z

∂x
and (b)

∂z

∂y

(a) To find
∂z

∂x
, y is kept constant.

Since z = 5x4+ (2y2)x3− (3y)

then,

∂z

∂x
= d
dx

(5x4)+(2y2)
d
dx

(x3)−(3y)
d
dx

(1)

= 20x3+ (2y2)(3x2) − 0
Hence

∂z
∂x

=20x3+6x2y2

(b) To find
∂z

∂y
, x is kept constant.

Since z=(5x4)+(2x3)y2−3y
then,

∂z

∂y
= (5x4)

d
dy

(1) + (2x3)
d
dy

(y2) − 3 d
dy

(y)

= 0+ (2x3)(2y) − 3

Hence
∂z
∂y

=4x3y−3

Problem 2. Given y =4sin3x cos2t , find ∂y

∂x

and
∂y

∂t

To find
∂y

∂x
, t is kept constant.

Hence
∂y

∂x
= (4cos2t)

d
dx

(sin3x)

= (4cos2t)(3cos3x)

i.e.
∂y
∂x

= 12cos3xcos2t

To find
∂y

∂t
, x is kept constant.

Hence
∂y

∂t
= (4sin3x)

d
dt

(cos2t)

= (4sin3x)(−2sin2t)
i.e.

∂y
∂t

= −8sin3xsin2t

Problem 3. If z=sinxy show that
1
y

∂z

∂x
= 1

x

∂z

∂y

∂z

∂x
=y cosxy, since y is kept constant.

∂z

∂y
=x cosxy, since x is kept constant.

1
y

∂z

∂x
=

(
1
y

)

(y cosxy) = cosxy

and
1
x

∂z

∂y
=

(
1
x

)

(x cosxy) = cosxy

Hence
1
y

∂z
∂x

= 1
x

∂z
∂y

Problem 4. Determine
∂z

∂x
and

∂z

∂y
when

z= 1
√

(x2+y2)

z = 1
√

(x2+ y2)
= (x2+ y2)

−1
2

Download more at Learnclax.com



Se
ct

io
n

H
448 Higher Engineering Mathematics

∂z

∂x
= −1

2
(x2+ y2)

−3
2 (2x), by the function of a
function rule (keeping y constant)

= −x

(x2+ y2)
3
2

= −x
√
(x2+ y2)3

∂z

∂y
= −1

2
(x2+ y2)

−3
2 (2y), (keeping x constant)

= −y
√
(x2+ y2)3

Problem 5. Pressure p of a mass of gas is given
by pV =mRT, wherem and R are constants, V is
the volume and T the temperature. Find expressions

for
∂p

∂T
and

∂p

∂V

Since pV =mRT then p= mRT
V

To find
∂p

∂T
, V is kept constant.

Hence
∂p

∂T
=

(
mR
V

)
d
dT

(T ) = mR
V

To find
∂p

∂V
, T is kept constant.

Hence
∂p

∂V
= (mRT)

d
dV

(
1
V

)

= (mRT )(−V −2) = −mRT
V2

Problem 6. The time of oscillation, t , of

a pendulum is given by t =2π
√

l

g
where l is the

length of the pendulum and g the free fall

acceleration due to gravity. Determine
∂t

∂l
and

∂t

∂g

To find
∂t

∂l
, g is kept constant.

t = 2π
√

l

g
=

(
2π√

g

)√
l =

(
2π√

g

)

l
1
2

Hence
∂t

∂l
=

(
2π√

g

)
d
dl

(l
1
2 ) =

(
2π√

g

)(
1
2
l

−1
2

)

=
(
2π√

g

)(
1
2
√

l

)

= π
√
lg

To find
∂t

∂g
, l is kept constant.

t = 2π
√

l

g
= (2π

√
l)

(
1√
g

)

= (2π
√

l)g
−1
2

Hence
∂t

∂g
= (2π

√
l)

(

−1
2
g

−3
2

)

= (2π
√

l)

(
−1
2
√

g3

)

= −π
√

l
√

g3
= −π

√
l
g3

Now try the following Practice Exercise

Practice Exercise 164 First order partial
derivatives (Answers on page 881)

In Problems 1 to 6, find
∂z

∂x
and

∂z

∂y

1. z=2xy

2. z=x3−2xy+y2

3. z= x

y

4. z=sin(4x +3y)

5. z=x3y2− y

x2
+ 1

y

6. z=cos3x sin4y
7. The volume of a cone of height h and base

radius r is given by V = 1
3πr2h. Determine

∂V

∂h
and

∂V

∂r

8. The resonant frequency fr in a series electri-

cal circuit is given by fr = 1
2π

√
LC

. Show

that
∂fr

∂L
= −1
4π

√
CL3

9. An equation resulting from plucking a
string is:
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y = sin
(nπ

L

)
x

{

k cos
(
nπb

L

)

t + c sin
(
nπb

L

)

t

}

Determine
∂y

∂t
and

∂y

∂x

10. In a thermodynamic system, k=Ae
T �S−�H

RT ,
where R, k and A are constants.

Find (a)
∂k

∂T
(b)

∂A

∂T
(c)

∂(�S)

∂T
(d)

∂(�H)

∂T

39.3 Second-order partial derivatives

As with ordinary differentiation, where a differen-
tial coefficient may be differentiated again, a partial
derivative may be differentiated partially again to give
higher-order partial derivatives.

(i) Differentiating
∂V

∂r
of Section 36.2 with respect

to r , keeping h constant, gives
∂

∂r

(
∂V

∂r

)

which

is written as
∂2V

∂r2

Thus if V = πr2h,

then
∂2V

∂r2
= ∂

∂r
(2πrh) = 2πh

(ii) Differentiating
∂V

∂h
with respect to h, keeping

r constant, gives
∂

∂h

(
∂V

∂h

)

which is written

as
∂2V

∂h2

Thus
∂2V

∂h2
= ∂

∂h
(πr2)=0

(iii) Differentiating
∂V

∂h
with respect to r , keeping

h constant, gives
∂

∂r

(
∂V

∂h

)

which is written

as
∂2V

∂r∂h
. Thus,

∂2V

∂r∂h
= ∂

∂r

(
∂V

∂h

)

= ∂

∂r
(πr2) = 2πr

(iv) Differentiating
∂V

∂r
with respect to h, keeping r

constant, gives
∂

∂h

(
∂V

∂r

)

, which is written as

∂2V

∂h∂r
. Thus,

∂2V

∂h∂r
= ∂

∂h

(
∂V

∂r

)

= ∂

∂h
(2πrh) = 2πr

(v)
∂2V

∂r2
,

∂2V

∂h2
,

∂2V

∂r∂h
and

∂2V

∂h∂r
are examples of

second-order partial derivatives.

(vi) It is seen from (iii) and (iv) that
∂2V

∂r∂h
= ∂2V

∂h∂r

and such a result is always true for continuous
functions (i.e. a graph of the function which has
no sudden jumps or breaks).

Second-order partial derivatives are used in the solution
of partial differential equations, in waveguide theory, in
such areas of thermodynamics covering entropy and the
continuity theorem, and when finding maxima, minima
and saddle points for functions of two variables (see
Chapter 41).

Problem 7. Given z=4x2y3−2x3+7y2 find
(a)

∂2z

∂x2
(b)

∂2z

∂y2
(c)

∂2z

∂x∂y
(d)

∂2z

∂y∂x

(a)
∂z

∂x
= 8xy3− 6x2

∂2z

∂x2
= ∂

∂x

(
∂z

∂x

)

= ∂

∂x
(8xy3− 6x2)

= 8y3−12x

(b)
∂z

∂y
= 12x2y2+ 14y

∂2z

∂y2
= ∂

∂y

(
∂z

∂y

)

= ∂

∂y
(12x2y2+ 14y)

= 24x2y+14

(c)
∂2z

∂x∂y
= ∂

∂x

(
∂z

∂y

)

= ∂

∂x
(12x2y2+14y)= 24xy2

(d)
∂2z

∂y∂x
= ∂

∂y

(
∂z

∂x

)

= ∂

∂y
(8xy3− 6x2) = 24xy2

[

It is noted that
∂2z

∂x∂y
= ∂2z

∂y∂x

]
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Problem 8. Show that when z= e−t sinθ ,

(a)
∂2z

∂t2
=− ∂2z

∂θ2
, and (b)

∂2z

∂t∂θ
= ∂2z

∂θ∂t

(a)
∂z

∂t
= −e−t sinθ and

∂2z

∂t2
= e−t sinθ

∂z

∂θ
= e−t cosθ and

∂2z

∂θ2
= − e−t sinθ

Hence
∂2z
∂t2

=− ∂2z
∂θ2

(b)
∂2z

∂t∂θ
= ∂

∂t

(
∂z

∂θ

)

= ∂

∂t
(e−t cosθ)

= −e−t cosθ
∂2z

∂θ∂t
= ∂

∂θ

(
∂z

∂t

)

= ∂

∂θ
(−e−t sin θ)

= −e−t cosθ

Hence
∂2z
∂ t∂θ

= ∂2z
∂θ∂ t

Problem 9. Show that if z= x

y
lny, then

(a)
∂z

∂y
=x

∂2z

∂y∂x
and (b) evaluate

∂2z

∂y2
when

x =−3 and y =1

(a) To find
∂z

∂x
, y is kept constant.

Hence
∂z

∂x
=

(
1
y
lny

)
d
dx

(x) = 1
y
lny

To find
∂z

∂y
, x is kept constant.

Hence
∂z

∂y
= (x)

d
dy

(
lny

y

)

= (x)

⎧
⎪⎪⎨

⎪⎪⎩

(y)

(
1
y

)

− (lny)(1)

y2

⎫
⎪⎪⎬

⎪⎪⎭

using the quotient rule

= x

(
1− lny

y2

)

= x

y2
(1− lny)

∂2z

∂y∂x
= ∂

∂y

(
∂z

∂x

)

= ∂

∂y

(
lny

y

)

=
(y)

(
1
y

)

− (lny)(1)

y2

using the quotient rule

= 1
y2

(1− lny)

Hence x
∂2z
∂y∂x

= x
y2
(1− lny)= ∂z

∂y

(b) ∂2z

∂y2
= ∂

∂y

(
∂z

∂y

)

= ∂

∂y

{
x

y2
(1− lny)

}

= (x)
d
dy

(
1− lny

y2

)

= (x)

⎧
⎪⎪⎨

⎪⎪⎩

(y2)

(

−1
y

)

− (1− lny)(2y)

y4

⎫
⎪⎪⎬

⎪⎪⎭

using the quotient rule

= x

y4
[−y − 2y + 2y lny]

= xy

y4
[−3+ 2 lny]= x

y3
(2 lny − 3)

When x =−3 and y=1,

∂2z

∂y2
= (−3)

(1)3
(2 ln1− 3)=(−3)(−3)=9

Now try the following Practice Exercise

Practice Exercise 165 Second-order
partial derivatives (Answers on page 881)

In Problems 1 to 4, find (a)
∂2z

∂x2
(b)

∂2z

∂y2

(c)
∂2z

∂x∂y
(d)

∂2z

∂y∂x

1. z=(2x−3y)2

2. z=2 lnxy

3. z= (x−y)

(x+y)

4. z= sinhx cosh2y
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5. Given z=x2 sin(x−2y) find (a)
∂2z

∂x2
and

(b)
∂2z

∂y2

Show also that
∂2z

∂x∂y
= ∂2z

∂y∂x

= 2x2 sin(x−2y)−4x cos (x−2y)

6. Find
∂2z

∂x2
,

∂2z

∂y2
and show that

∂2z

∂x∂y
= ∂2z

∂y∂x

when z=cos−1 x

y

7. Given z=
√(

3x
y

)

show that

∂2z

∂x∂y
= ∂2z

∂y∂x
and evaluate

∂2z

∂x2
when

x = 1
2
and y =3

8. An equation used in thermodynamics is
the Benedict–Webb–Rubine equation of state
for the expansion of a gas. The equation
is:

p = RT

V
+

(

B0RT − A0− C0

T 2

)
1

V 2

+(bRT − a)
1

V 3
+ Aα

V 6

+
C

(
1+ γ

V 2

)

T 2

(
1
V3

)

e−
γ

V2

Show that
∂2p

∂T 2

= 6
V 2T 4

{
C

V

(
1+ γ

V 2

)
e−

γ

V 2 − C0

}

For fully worked solutions to each of the problems in Practice Exercises 164 and 165 in this chapter,
go to the website:

www.routledge.com/cw/bird
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Chapter 40

Total differential, rates of
change and small changes

Why it is important to understand: Total differential, rates of change and small changes
This chapter looks at some applications of partial differentiation, i.e. the total differential for variables
which may all be changing at the same time, rates of change, where different quantities have different
rates of change, and small changes, where approximate errors may be calculated in situations where
small changes in the variables associated with the quantity occur.

At the end of this chapter, you should be able to:

• determine the total differential of a function having more than one variable
• determine the rates of change of functions having more than one variable
• determine an approximate error in a function having more than one variable

40.1 Total differential

In Chapter 39, partial differentiation is introduced for
the case where only one variable changes at a time,
the other variables being kept constant. In practice,
variables may all be changing at the same time.
If z= f (u,v,w,. . .), then the total differential, dz, is
given by the sum of the separate partial differentials
of z,

i.e. dz= ∂z
∂u
du+ ∂z

∂v
dv + ∂z

∂w
dw +··· (1)

Problem 1. If z=f (x, y) and z=x2y3+ 2x
y

+1,
determine the total differential, dz

The total differential is the sum of the partial differen-
tials,

i.e. dz = ∂z

∂x
dx + ∂z

∂y
dy

∂z

∂x
= 2xy3+ 2

y
(i.e. y is kept constant)

∂z

∂y
= 3x2y2 − 2x

y2
(i.e. x is kept constant)

Hence dz =
(

2xy3+ 2
y

)

dx+
(

3x2y2− 2x
y2

)

dy

Problem 2. If z=f (u,v,w) and
z=3u2−2v+4w3v2 find the total differential, dz

Higher Engineering Mathematics. 978-1-138-67357-1, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.
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The total differential

dz = ∂z

∂u
du + ∂z

∂v
dv + ∂z

∂w
dw

∂z

∂u
= 6u (i.e. v and w are kept constant)

∂z

∂v
= −2+ 8w3v
(i.e. u and w are kept constant)

∂z

∂w
= 12w2v2 (i.e. u and v are kept constant)

Hence

dz=6udu+ (8vw3− 2) dv + (12v2w2)dw

Problem 3. The pressure p, volume V and
temperature T of a gas are related by pV =kT ,
where k is a constant. Determine the total
differentials (a) dp and (b) dT in terms of p, V
and T .

(a) Total differential dp= ∂p

∂T
dT + ∂p

∂V
dV

Since pV =kT then p = kT

V

hence
∂p

∂T
= k

V
and

∂p

∂V
= −kT

V 2

Thus dp = k

V
dT − kT

V 2
dV

Since pV = kT ,k = pV

T

Hence dp =

(
pV

T

)

V
dT −

(
pV

T

)

T

V 2
dV

i.e. dp = p
T
dT− p

V
dV

(b) Total differential dT = ∂T

∂p
dp+ ∂T

∂V
dV

Since pV =kT ,T = pV

k

hence
∂T

∂p
= V

k
and

∂T

∂V
= p

k

Thus dT = V

k
dp+ p

k
dV and substituting k= pV

T
gives:

dT = V
(

pV

T

) dp + p
(

pV

T

) dV

i.e. dT = T
p
dp+ T

V
dV

Now try the following Practice Exercise

Practice Exercise 166 Total differential
(Answers on page 881)

In Problems 1 to 5, find the total differential dz.

1. z=x3+y2

2. z=2xy− cosx

3. z= x − y

x + y

4. z=x ln y

5. z=xy+
√

x

y
−4

6. If z=f (a,b,c) and z=2ab−3b2c+abc,
find the total differential, dz

7. Given u= lnsin(xy) show that
du= cot(xy)(ydx+x dy)

40.2 Rates of change

Sometimes it is necessary to solve problems in which
different quantities have different rates of change. From

equation (1), the rate of change of z,
dz
dt
is given by:

dz
dt

= ∂z
∂u
du
dt

+ ∂z
∂v

dv
dt

+ ∂z
∂w

dw
dt

+ ··· (2)

Problem 4. If z=f (x,y) and z=2x3 sin2y find
the rate of change of z, correct to 4 significant
figures, when x is 2 units and y is π/6 radians and
when x is increasing at 4 units/s and y is decreasing
at 0.5 units/s.
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Using equation (2), the rate of change of z,

dz
dt

= ∂z

∂x

dx
dt

+ ∂z

∂y

dy
dt

Since z=2x3 sin2y, then

∂z

∂x
= 6x2 sin2y and ∂z

∂y
= 4x3 cos2y

Since x is increasing at 4 units/s,
dx
dt

=+4

and since y is decreasing at 0.5 units/s,
dy
dt

=−0.5
Hence

dz
dt

=(6x2 sin2y)(+4) + (4x3 cos2y)(−0.5)
=24x2 sin2y − 2x3 cos2y

When x =2 units and y= π

6
radians, then

dz
dt

= 24(2)2 sin[2(π/6)]− 2(2)3 cos[2(π/6)]

= 83.138− 8.0

Hence the rate of change of z,
dz
dt

=75.14units/s,
correct to 4 significant figures.

Problem 5. The height of a right circular cone is
increasing at 3mm/s and its radius is decreasing at
2mm/s. Determine, correct to 3 significant figures,
the rate at which the volume is changing (in cm3/s)
when the height is 3.2 cm and the radius is 1.5 cm.

Volume of a right circular cone, V = 1
3
πr2h

Using equation (2), the rate of change of volume,

dV
dt

= ∂V

∂r

dr
dt

+ ∂V

∂h

dh
dt

∂V

∂r
= 2
3
πrh and

∂V

∂h
= 1
3
πr2

Since the height is increasing at 3mm/s,

i.e. 0.3 cm/s, then
dh
dt

=+0.3
and since the radius is decreasing at 2mm/s,

i.e. 0.2 cm/s, then
dr
dt

=−0.2

Hence
dV
dt

=
(
2
3
πrh

)

(−0.2) +
(
1
3
πr2

)

(+0.3)

= −0.4
3

πrh+ 0.1πr2

However, h= 3.2cm and r = 1.5cm.

Hence
dV
dt

= −0.4
3

π(1.5)(3.2) + (0.1)π(1.5)2

= −2.011+ 0.707= −1.304cm3/s

Thus the rate of change of volume is 1.30 cm3/s
decreasing.

Problem 6. The area A of a triangle is given by
A= 1

2ac sinB, where B is the angle between sides a

and c. If a is increasing at 0.4 units/s, c is
decreasing at 0.8 units/s and B is increasing at 0.2
units/s, find the rate of change of the area of the
triangle, correct to 3 significant figures, when a is 3
units, c is 4 units and B is π/6 radians.

Using equation (2), the rate of change of area,

dA
dt

= ∂A

∂a

da
dt

+ ∂A

∂c

dc
dt

+ ∂A

∂B

dB
dt

Since A = 1
2
ac sinB,

∂A

∂a
= 1
2
c sinB,

∂A

∂c
= 1
2
a sinB and

∂A

∂B
= 1
2
ac cosB

da
dt

= 0.4 units/s, dc
dt

= −0.8 units/s

and
dB
dt

= 0.2 units/s

Hence
dA
dt

=
(
1
2
c sinB

)

(0.4) +
(
1
2
a sinB

)

(−0.8)

+
(
1
2
ac cosB

)

(0.2)

When a=3, c=4 and B = π

6
then:

dA
dt

=
(
1
2
(4)sin

π

6

)

(0.4) +
(
1
2
(3)sin

π

6

)

(−0.8)

+
(
1
2
(3)(4)cos

π

6

)

(0.2)

= 0.4− 0.6+ 1.039= 0.839units2/s, correct
to 3 significant figures.
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Problem 7. Determine the rate of increase of
diagonal AC of the rectangular solid, shown in
Fig. 40.1, correct to 2 significant figures, if the sides
x, y and z increase at 6mm/s, 5mm/s and 4mm/s
when these three sides are 5cm, 4cm and 3cm
respectively.

C

b

B z 5 3 cm

x 5 5cmy 5 4 cm
A

Figure 40.1

Diagonal AB =
√

(x2+ y2)

Diagonal AC =
√

(BC2 + AB2)

=
√

[z2+ {
√

(x2+ y2)}2

=
√

(z2+ x2+ y2)

Let AC=b, then b=
√

(x2+y2+z2)
Using equation (2), the rate of change of diagonal b is
given by:

db
dt

= ∂b

∂x

dx
dt

+ ∂b

∂y

dy
dt

+ ∂b

∂z

dz
dt

Since b=
√

(x2+y2+z2)

∂b

∂x
= 1
2
(x2+ y2+ z2)

−1
2 (2x) = x

√
(x2+ y2+ z2)

Similarly,
∂b

∂y
= y

√
(x2+ y2+ z2)

and
∂b

∂z
= z

√
(x2+ y2+ z2)

dx
dt

= 6mm/s= 0.6cm/s,

dy
dt

= 5mm/s= 0.5cm/s,

and
dz
dt

= 4mm/s= 0.4cm/s

Hence
db
dt

=
[

x
√

(x2+ y2+ z2)

]

(0.6)

+
[

y
√

(x2+ y2+ z2)

]

(0.5)

+
[

z
√

(x2+ y2+ z2)

]

(0.4)

When x =5cm, y=4cm and z=3cm, then:

db
dt

=
[

5
√

(52+ 42+ 32)

]

(0.6)

+
[

4
√

(52+ 42+ 32)

]

(0.5)

+
[

3
√

(52+ 42+ 32)

]

(0.4)

= 0.4243+ 0.2828+ 0.1697= 0.8768cm/s

Hence the rate of increase of diagonal AC is
0.88 cm/s or 8.8mm/s, correct to 2 significant figures.

Now try the following Practice Exercise

Practice Exercise 167 Rates of change
(Answers on page 881)

1. The radius of a right cylinder is increasing at
a rate of 8mm/s and the height is decreasing
at a rate of 15mm/s. Find the rate at which the
volume is changing in cm3/s when the radius
is 40mm and the height is 150mm.

2. If z=f (x,y) and z=3x2y5, find the rate of
change of z when x is 3 units and y is 2 units
when x is decreasing at 5 units/s and y is
increasing at 2.5 units/s.

3. Find the rate of change of k, correct to 4
significant figures, given the following data:
k=f (a,b,c); k=2b lna+c2ea; a is increas-
ing at 2 cm/s; b is decreasing at 3 cm/s; c is
decreasing at 1 cm/s; a=1.5cm, b=6cm and
c=8cm.
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4. A rectangular box has sides of length x cm,
y cm and zcm. Sides x and z are expanding at
rates of 3mm/s and 5mm/s respectively and
side y is contracting at a rate of 2mm/s. Deter-
mine the rate of change of volume when x is
3 cm, y is 1.5 cm and z is 6 cm.

5. Find the rate of change of the total surface area
of a right circular cone at the instant when the
base radius is 5 cmand the height is 12cm if the
radius is increasing at 5mm/s and the height
is decreasing at 15mm/s.

40.3 Small changes

It is often useful to find an approximate value for
the change (or error) of a quantity caused by small
changes (or errors) in the variables associated with the
quantity. If z=f (u,v,w,. . .) and δu,δv,δw,. . . denote
small changes in u,v,w,. . . respectively, then the cor-
responding approximate change δz in z is obtained from
equation (1) by replacing the differentials by the small
changes.

Thus δz≈ ∂z
∂u

δu+ ∂z
∂v

δv + ∂z
∂w

δw + ··· (3)

Problem 8. Pressure p and volume V of a gas are
connected by the equation pV 1.4=k. Determine
the approximate percentage error in k when the
pressure is increased by 4% and the volume is
decreased by 1.5%

Using equation (3), the approximate error in k,

δk ≈ ∂k

∂p
δp + ∂k

∂V
δV

Let p, V and k refer to the initial values.

Since k = pV 1.4 then
∂k

∂p
= V 1.4

and
∂k

∂V
= 1.4pV 0.4

Since the pressure is increased by 4%, the change in

pressure δp= 4
100

×p=0.04p
Since the volume is decreased by 1.5%, the change in

volume δV = −1.5
100

×V =−0.015V

Hence the approximate error in k,

δk ≈ (V )1.4(0.04p) + (1.4pV 0.4)(−0.015V )

≈ pV 1.4[0.04− 1.4(0.015)]

≈ pV 1.4[0.019]≈ 1.9
100

pV 1.4 ≈ 1.9
100

k

i.e. the approximate error in k is a 1.9% increase.

Problem 9. Modulus of rigidityG=(R4θ)/L,
where R is the radius, θ the angle of twist and L the
length. Determine the approximate percentage error
inG when R is increased by 2%, θ is reduced by
5% and L is increased by 4%

Using δG ≈ ∂G

∂R
δR + ∂G

∂θ
δθ + ∂G

∂L
δL

Since G = R4θ

L
,
∂G

∂R
= 4R3θ

L
,
∂G

∂θ
= R4

L

and
∂G

∂L
= −R4θ

L2

Since R is increased by 2%, δR= 2
100

R=0.02R
Similarly, δθ =−0.05θ and δL=0.04L
Hence δG ≈

(
4R3θ

L

)

(0.02R) +
(

R4

L

)

(−0.05θ)

+
(

−R4θ

L2

)

(0.04L)

≈ R4θ

L
[0.08− 0.05− 0.04]≈ −0.01R4θ

L
,

i.e. δG ≈ − 1
100

G

Hence the approximate percentage error in G is a
1% decrease.

Problem 10. The second moment of area of a
rectangle is given by I =(bl3)/3. If b and l are
measured as 40mm and 90mm respectively and the
measurement errors are −5mm in b and +8mm in
l, find the approximate error in the calculated value
of I .
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Using equation (3), the approximate error in I ,

δI ≈ ∂I

∂b
δb + ∂I

∂l
δl

∂I

∂b
= l3

3
and

∂I

∂l
= 3bl2

3
= bl2

δb = −5mm and δl = +8mm

Hence δI ≈
(

l3

3

)

(−5) + (bl2)(+8)
Since b=40mm and l=90mm then

δI ≈
(
903

3

)

(−5) + 40(90)2(8)

≈ −1215000+ 2592000

≈ 1377000mm4 ≈ 137.7cm4

Hence the approximate error in the calculated value
of I is a 137.7 cm4 increase.

Problem 11. The time of oscillation t of a

pendulum is given by t =2π
√

l

g
. Determine the

approximate percentage error in t when l has an
error of 0.2% too large and g 0.1% too small.

Using equation (3), the approximate change in t ,

δt ≈ ∂t

∂l
δl + ∂t

∂g
δg

Since t = 2π
√

l

g
,

∂t

∂l
= π√

lg

and
∂t

∂g
= −π

√
l

g3
(from Problem 6, Chapter 39)

δl = 0.2
100

l = 0.002 l and δg = −0.001g

hence δt ≈ π√
lg

(0.002l) + −π

√
l

g3
(−0.001g)

≈ 0.002π
√

l

g
+ 0.001π

√
l

g

≈ (0.001)

[

2π
√

l

g

]

+0.0005
[

2π
√

l

g

]

≈ 0.0015t ≈ 0.15
100

t

Hence the approximate error in t is a 0.15% increase.

Now try the following Practice Exercise

Practice Exercise 168 Small changes
(Answers on page 881)

1. ThepowerP consumed in a resistor is givenby
P =V 2/Rwatts. Determine the approximate
change in power when V increases by 5% and
R decreases by 0.5% if the original values ofV
andR are 50 volts and 12.5ohms respectively.

2. An equation for heat generatedH isH = i 2Rt .
Determine the error in the calculated value of
H if the error in measuring current i is +2%,
the error in measuring resistance R is −3%
and the error in measuring time t is +1%

3. fr = 1
2π

√
LC

represents the resonant

frequency of a series - connected circuit
containing inductance L and capacitance C.
Determine the approximate percentage
change in fr when L is decreased by 3% and
C is increased by 5%

4. The second moment of area of a rectangle
about its centroid parallel to side b is given by
I =bd3/12. If b and d are measured as 15cm
and 6cm respectively and the measurement
errors are +12mm in b and −1.5mm in d ,
find the error in the calculated value of I .

5. The side b of a triangle is calculated using
b2=a2+c2−2ac cosB. If a, c and B are
measured as 3cm, 4cm and π/4 radi-
ans respectively and the measurement errors
which occur are+0.8cm,−0.5cmand+π/90
radians respectively, determine the error in the
calculated value of b.

6. Q factor in a resonant electrical circuit is given

by:Q= 1
R

√
L

C
. Find the percentage change in

QwhenL increases by4%,R decreases by3%
and C decreases by 2%
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7. The rate of flow of gas in a pipe is given by:

v= C
√

d
6√
T 5
,whereC is a constant,d is the diam-

eter of the pipe and T is the thermodynamic
temperature of the gas. When determining the

rate of flow experimentally, d is measured and
subsequently found to be in error by +1.4%,
and T has an error of −1.8%. Determine the
percentage error in the rate of flow based on
the measured values of d and T .

For fully worked solutions to each of the problems in Practice Exercises 166 to 168 in this chapter,
go to the website:

www.routledge.com/cw/bird
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Chapter 41

Maxima, minima and saddle
points for functions of two

variables
Why it is important to understand:Maxima, minima and saddle points for functions of two variables
The problem of finding the maximum and minimum values of functions is encountered in mechanics,
physics, geometry, and in many other fields. Finding maxima, minima and saddle points for functions
of two variables requires the application of partial differentiation (which was explained in the previous
chapters). This is demonstrated in this chapter.

At the end of this chapter, you should be able to:

• understand functions of two independent variables
• explain a saddle point
• determine the maxima, minima and saddle points for a function of two variables
• sketch a contour map for functions of two variables

41.1 Functions of two independent
variables

If a relation between two real variables, x and y,
is such that when x is given, y is determined, then
y is said to be a function of x and is denoted by
y =f (x); x is called the independent variable and y

the dependent variable. If y =f (u,v), then y is a func-
tion of two independent variables u and v. For example,
if, say, y =f (u,v)=3u2−2v then when u=2 and
v=1, y =3(2)2−2(1)=10. This may be written as
f (2,1)=10. Similarly, if u=1 and v=4, f (1,4)=−5

Consider a function of two variables x and y

defined by z=f (x,y)=3x2−2y. If (x,y)=(0,0),
then f (0,0)=0 and if (x,y)=(2,1), then f (2,1)=10.
Each pair of numbers, (x,y), may be represented
by a point P in the (x,y) plane of a rectangular
Cartesian co-ordinate system as shown in Fig. 41.1.
The corresponding value of z=f (x,y) may be rep-
resented by a line PP ′ drawn parallel to the z-axis.
Thus, if, for example, z=3x 2−2y, as above, and P

is the co-ordinate (2, 3) then the length of PP ′ is
3(2)2−2(3)=6. Fig. 41.2 shows that when a large
number of (x,y) co-ordinates are taken for a function

Higher Engineering Mathematics. 978-1-138-67357-1, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.
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6

0

2

3

p

p9

x

z

y

Figure 41.1

f (x,y), and then f (x,y) calculated for each, a large
number of lines such as PP ′ can be constructed, and in
the limit when all points in the (x,y) plane are consid-
ered, a surface is seen to result as shown in Fig. 41.2.
Thus the function z=f (x,y) represents a surface and
not a curve.

z

x

yo

Figure 41.2

41.2 Maxima, minima and saddle
points

Partial differentiation is used when determining station-
ary points for functions of two variables. A function
f (x,y) is said to be a maximum at a point (x,y) if the
value of the function there is greater than at all points
in the immediate vicinity, and is a minimum if less than
at all points in the immediate vicinity. Fig. 41.3 shows

z

b

Maximum
point

y

x

a

Figure 41.3

geometrically a maximum value of a function of two
variables and it is seen that the surface z=f (x,y) is
higher at (x,y)=(a,b) than at any point in the imme-
diate vicinity. Fig. 41.4 shows a minimum value of a
function of two variables and it is seen that the surface
z=f (x,y) is lower at (x,y)=(p,q) than at any point
in the immediate vicinity.

Minimum
point

z

x

p

q

y

Figure 41.4

If z=f (x,y) and a maximum occurs at (a,b), the
curve lying in the two planes x =a and y=b must also
have amaximumpoint (a,b) as shown inFig. 41.5. Con-
sequently, the tangents (shown as t1 and t2) to the curves
at (a,b) must be parallel to Ox and Oy respectively.

This requires that
∂z

∂x
=0 and ∂z

∂y
=0 at all maximum

andminimumvalues, and the solution of these equations
gives the stationary (or critical) points of z
With functions of two variables there are three types

of stationary points possible, these being a maximum
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Maximum
point

z

t1

t2

O b

a

x

y

Figure 41.5

point, a minimum point, and a saddle point. A sad-
dle point Q is shown in Fig. 41.6 and is such that a
point Q is a maximum for curve 1 and a minimum for
curve 2.

Curve 2

Curve 1

Q

Figure 41.6

41.3 Procedure to determine
maxima, minima and saddle
points for functions of two
variables

Given z=f (x,y):

(i) determine
∂z

∂x
and

∂z

∂y

(ii) for stationary points,
∂z

∂x
=0 and ∂z

∂y
=0,

(iii) solve the simultaneous equations
∂z

∂x
=0 and

∂z

∂y
=0 for x and y, which gives the co-ordinates

of the stationary points,

(iv) determine
∂2z

∂x2
,
∂2z

∂y2
and

∂2z

∂x∂y

(v) for each of the co-ordinates of the stationary

points, substitute values ofx andy into
∂2z

∂x2
,
∂2z

∂y2

and
∂2z

∂x∂y
and evaluate each,

(vi) evaluate
(

∂2z

∂x∂y

)2
for each stationary point,

(vii) substitute the values of
∂2z

∂x2
,

∂2z

∂y2
and

∂2z

∂x∂y
into the equation

�=
(

∂2z

∂x∂y

)2
−

(
∂2z

∂x2

)(
∂2z

∂y2

)

and evaluate,

(viii) (a) if �>0 then the stationary point is a
saddle point.

(b) if �<0 and
∂2z
∂x2

<0, then the stationary
point is amaximum point,

and

(c) if �<0 and
∂2z
∂x2

> 0, then the stationary
point is aminimum point.

41.4 Worked problems on maxima,
minima and saddle points for
functions of two variables

Problem 1. Show that the function
z=(x −1)2+(y −2)2 has one stationary point only
and determine its nature. Sketch the surface
represented by z and produce a contour map in the
x–y plane.

Following the above procedure:

(i)
∂z

∂x
=2(x−1) and ∂z

∂y
=2(y −2)

(ii) 2(x−1)=0 (1)

2(y−2) = 0 (2)
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(iii) From equations (1) and (2), x =1 and y=2, thus
the only stationary point exists at (1, 2)

(iv) Since
∂z

∂x
=2(x −1)=2x −2, ∂2z

∂x2
=2

and since
∂z

∂y
=2(y −2)=2y −4, ∂2z

∂y2
=2

and
∂2z

∂x∂y
= ∂

∂x

(
∂z

∂y

)

= ∂

∂x
(2y −4)=0

(v)
∂2z

∂x2
= ∂2z

∂y2
=2 and ∂2z

∂x∂y
=0

(vi)
(

∂2z

∂x∂y

)2
=0

(vii) �=(0)2−(2)(2)=−4

(viii) Since �<0 and
∂2z

∂x2
>0, the stationary point

(1, 2) is a minimum.

The surface z=(x −1)2+(y −2)2 is shown in three
dimensions in Fig. 41.7. Looking down towards the
x–y plane from above, it is possible to produce a con-
tour map. A contour is a line on a map which gives
places having the same vertical height above a datum
line (usually themean sea-level on a geographicalmap).
A contour map for z=(x −1)2+(y−2)2 is shown
in Fig. 41.8. The values of z are shown on the map
and these give an indication of the rise and fall to a
stationary point.

z

1 2

1

o

x

y

Figure 41.7

Problem 2. Find the stationary points of the
surface f (x,y)=x3−6xy+y3 and determine their
nature.

Let z=f (x, y)=x3−6xy+y3

Following the procedure:

(i)
∂z

∂x
=3x2−6y and ∂z

∂y
=−6x+3y2

(ii) for stationary points, 3x 2−6y=0 (1)

and −6x + 3y2=0 (2)

(iii) from equation (1), 3x 2=6y

and y = 3x
2

6
= 1
2
x2

and substituting in equation (2) gives:

−6x + 3
(
1
2
x2

)2
= 0

−6x + 3
4
x4 = 0

3x
(

x3

4
− 2

)

= 0

from which, x =0 or x3

4
−2=0

i.e. x3=8 and x =2

When x=0, y =0 and when x =2, y=2 from
equations (1) and (2).

Thus stationary points occur at (0, 0)
and (2, 2)

(iv)
∂2z

∂x2
= 6x,

∂2z

∂y2
= 6y and ∂2z

∂x∂y
= ∂

∂x

(
∂z

∂y

)

= ∂

∂x
(−6x + 3y2) = −6

(v) for (0, 0)
∂2z

∂x2
= 0, ∂2z

∂y2
=0

and
∂2z

∂x∂y
= −6

for (2, 2),
∂2z

∂x2
= 12, ∂2z

∂y2
=12

and
∂2z

∂x∂y
= −6
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y

z 5 1 z 5 4 z 5 9 z 5 16

x21

1

2

Figure 41.8

(vi) for (0, 0),
(

∂2z

∂x∂y

)2
= (−6)2=36

for (2, 2),
(

∂2z

∂x∂y

)2
= (−6)2=36

(vii) �(0, 0) =
(

∂2z

∂x∂y

)2
−

(
∂2z

∂x2

)(
∂2z

∂y2

)

=36−(0)(0)=36

�(2, 2) =36−(12)(12)=−108
(viii) Since�(0, 0) >0 then (0, 0) is a saddle point.

Since �(2, 2) <0 and
∂2z

∂x2
>0, then (2, 2) is a

minimum point.

Now try the following Practice Exercise

Practice Exercise 169 Maxima, minima
and saddle points for functions of two
variables (Answers on page 881)

1. Find the stationary point of the surface
f (x, y)=x2+ y2 and determine its nature.
Sketch the contour map represented by z

2. Find the maxima, minima and saddle points
for the following functions:
(a) f (x,y)=x2+y2−2x +4y+8
(b) f (x,y)=x2−y2−2x +4y+8
(c) f (x,y)=2x +2y −2xy−2x2−y2+4

3. Determine the stationary values of the func-
tion f (x,y)=x3−6x2−8y2 and distinguish
between them.
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4. Locate the stationary point of the function
z=12x2+6xy+15y2

5. Find the stationary points of the surface
z=x3−xy+y3 and distinguish between
them.

41.5 Further worked problems on
maxima, minima and saddle
points for functions of two
variables

Problem 3. Find the co-ordinates of the
stationary points on the surface

z = (x2+ y2)2− 8(x2− y2)

and distinguish between them. Sketch the
approximate contour map associated with z

Following the procedure:

(i)
∂z

∂x
= 2(x2+ y2)2x − 16x and

∂z

∂y
= 2(x2+ y2)2y + 16y

(ii) for stationary points,

2(x2+ y2)2x−16x =0
i.e. 4x3+4xy2−16x =0 (1)
and 2(x2+y2)2y+16y =0
i.e. 4y(x2+y2+4)=0 (2)

(iii) From equation (1), y 2= 16x−4x3
4x

=4−x2

Substituting y2=4−x2 in equation (2) gives

4y(x2+ 4− x2+ 4) = 0

i.e. 32y=0 and y =0
When y =0 in equation (1), 4x 3−16x=0
i.e. 4x(x2−4)=0
from which, x =0 or x =±2
The co-ordinates of the stationary points are
(0, 0), (2, 0) and (−2, 0)

(iv)
∂2z

∂x2
=12x2+4y2−16,

∂2z

∂y2
=4x2+12y2+16 and ∂2z

∂x∂y
=8xy

(v) For the point (0, 0),

∂2z

∂x2
= −16, ∂2z

∂y2
= 16 and ∂2z

∂x∂y
= 0

For the point (2, 0),

∂2z

∂x2
= 32, ∂2z

∂y2
= 32 and ∂2z

∂x∂y
= 0

For the point (−2, 0),

∂2z

∂x2
= 32, ∂2z

∂y2
= 32 and ∂2z

∂x∂y
= 0

(vi)
(

∂2z

∂x∂y

)2
=0 for each stationary point

(vii) �(0, 0) = (0)2−(−16)(16)=256
�(2, 0) = (0)2−(32)(32)=−1024
�(−2, 0) = (0)2−(32)(32)=−1024

(viii) Since �(0, 0) >0, the point (0, 0) is a saddle
point.

Since �(0, 0) <0 and
(

∂2z

∂x2

)

(2,0)
>0, the point

(2, 0) is a minimum point.

Since �(−2, 0) <0 and
(

∂2z

∂x2

)

(−2,0)
>0, the

point (−2, 0) is a minimum point.
Looking down towards the x–y plane from above, an
approximate contour map can be constructed to repre-
sent the value of z. Such a map is shown in Fig. 41.9.
To produce a contour map requires a large number of
x–y co-ordinates to be chosen and the values of z at
each co-ordinate calculated. Here are a few examples of
points used to construct the contour map.

When z=0, 0=(x2+ y2)2−8(x2−y)2

In addition, when, say, y = 0 (i.e. on the x-axis)

0= x4− 8x2, i.e. x2(x2− 8) = 0

from which, x = 0 or x = ±
√
8
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Figure 41.9

Hence the contour z=0 crosses thex-axis at 0 and±√
8,

i.e. at co-ordinates (0, 0), (2.83, 0) and (−2.83, 0) shown
as points S, a and b respectively.

When z=0 and x=2 then
0= (4+ y2)2− 8(4− y2)

i.e. 0=16+ 8y2+ y4− 32+ 8y2

i.e. 0=y4+ 16y2− 16

Let y2 = p, then p2 + 16p − 16= 0 and

p = −16±
√
162− 4(1)(−16)
2

= −16± 17.89
2

= 0.945 or −16.945

Hence y = √
p =

√
(0.945) or

√
(−16.945)

= ±0.97 or complex roots.

Hence the z=0 contour passes through the co-ordinates
(2, 0.97) and (2,−0.97) shown as a c and d in Fig. 41.9.

Similarly, for the z=9 contour, when y =0,

9= (x2+ 02)2− 8(x2− 02)
i.e. 9= x4− 8x2

i.e. x4−8x2−9=0
Hence (x2−9)(x2+1)=0
from which, x =±3 or complex roots.
Thus the z=9 contour passes through (3, 0) and (−3, 0),
shown as e and f in Fig. 41.9.

If z=9 and x =0,9 = y4+8y2

i.e. y4+ 8y2− 9 = 0
i.e. (y2+ 9)(y2− 1) = 0
from which, y =±1 or complex roots.
Thus the z=9 contour also passes through (0, 1) and
(0, −1), shown as g and h in Fig. 41.9.
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When, say, x = 4 and y = 0,
z= (42)2−8(42)=128
when z=128 and x=0,128=y 4+8y2
i.e. y4+ 8y2− 128 =0
i.e. (y2+ 16)(y2− 8)=0
from which, y =±√

8 or complex roots.
Thus the z=128 contour passes through (0, 2.83) and
(0, −2.83), shown as i and j in Fig. 41.9.
In a similarmannermany other pointsmay be calculated
with the resulting approximate contour map shown in
Fig. 41.9. It is seen that two ‘hollows’ occur at the min-
imum points, and a ‘cross-over’ occurs at the saddle
point S, which is typical of such contour maps.

Problem 4. Show that the function

f (x,y) = x3− 3x2− 4y2+ 2
has one saddle point and one maximum point.
Determine the maximum value.

Let z = f (x, y) = x3− 3x2− 4y2+ 2
Following the procedure:

(i)
∂z

∂x
=3x2−6x and ∂z

∂y
=−8y

0

z521

z522

z 5 24

z5
2

MAX S

x

y

22

22

2

2 4z
5

2
1

3

Figure 41.10

(ii) for stationary points, 3x 2−6x=0 (1)

and −8y=0 (2)

(iii) From equation (1), 3x(x−2)=0 from which,
x =0 and x=2
From equation (2), y =0
Hence the stationary points are (0, 0)
and (2, 0)

(iv)
∂2z

∂x2
=6x−6, ∂2z

∂y2
=−8 and ∂2z

∂x∂y
=0

(v) For the point (0, 0),

∂2z

∂x2
=−6, ∂2z

∂y2
=−8 and ∂2z

∂x∂y
=0

For the point (2, 0),

∂2z

∂x2
=6, ∂2z

∂y2
=−8 and ∂2z

∂x∂y
=0

(vi)
(

∂2z

∂x∂y

)2
=(0)2=0

(vii) �(0, 0) =0−(−6)(−8)=−48
�(2, 0) =0−(6)(−8)=48

Download more at Learnclax.com



Se
ct

io
n

H

Maxima, minima and saddle points for functions of two variables 467

(viii) Since �(0, 0) <0 and
(

∂2z

∂x2

)

(0, 0)
<0, the

point (0, 0) is a maximum point and hence the
maximum value is 0

Since �(2, 0) >0, the point (2, 0) is a saddle
point.

The value of z at the saddle point is
23−3(2)2−4(0)2+2=−2

An approximate contour map representing the surface
f (x,y) is shown in Fig. 41.10where a ‘hollow effect’ is
seen surrounding themaximumpoint and a ‘cross-over’
occurs at the saddle point S.

Problem 5. An open rectangular container is to
have a volume of 62.5m3. Determine the least
surface area of material required.

Let the dimensions of the container be x, y and z as
shown in Fig. 41.11.

Volume V =xyz=62.5 (1)

Surface area, S =xy+2yz+2xz (2)

From equation (1), z= 62.5
xy

Substituting in equation (2) gives:

S =xy + 2y
(
62.5
xy

)

+ 2x
(
62.5
xy

)

z

x

y

Figure 41.11

i.e. S=xy + 125
x

+ 125
y

which is a function of two variables

∂s

∂x
=y − 125

x2
= 0 for a stationary point,

hence x2y=125 (3)
∂s

∂y
=x − 125

y2
= 0 for a stationary point,

hence xy2=125 (4)
Dividing equation (3) by (4) gives:

x2y

xy2
=1, i.e. x

y
=1, i.e. x =y

Substituting y=x in equation (3) gives x 3=125, from
which, x=5m.
Hence y =5m also
From equation (1), (5) (5) z=62.5

from which, z= 62.5
25

=2.5m

∂2S

∂x2
= 250

x3
,
∂2S

∂y2
= 250

y3
and

∂2S

∂x∂y
=1

When x=y = 5, ∂2S

∂x2
= 2, ∂2S

∂y2
= 2 and ∂2S

∂x∂y
= 1

�=(1)2− (2)(2) = −3

Since �<0 and
∂2S

∂x2
>0, then the surface area S is a

minimum.

Hence theminimumdimensions of the container to have
a volume of 62.5m3 are 5m by 5m by 2.5m.

From equation (2),minimum surface area, S
= (5)(5) + 2(5)(2.5) + 2(5)(2.5)
= 75m2

Now try the following Practice Exercise

Practice Exercise 170 Maxima, minima
and saddle points for functions of two
variables (Answers on page 882)

1. The function z=x 2+y2+xy+4x−4y + 3
has one stationary value. Determine its
co-ordinates and its nature.
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2. An open rectangular container is to have a vol-
ume of 32m3. Determine the dimensions and
the total surface area such that the total surface
area is a minimum.

3. Determine the stationary values of the
function

f (x, y)=x4+4x2y2−2x2+2y2−1
and distinguish between them.

4. Determine the stationary points of the surface
f (x,y)=x3−6x2−y2

5. Locate the stationary points on the surface

f (x,y) = 2x3+ 2y3− 6x − 24y + 16

and determine their nature.

6. A large marquee is to be made in the form
of a rectangular box-like shape with canvas
covering on the top, back and sides. Determine
theminimum surface area of canvas necessary
if the volume of the marquee is to be 250m3.

For fully worked solutions to each of the problems in Practice Exercises 169 and 170 in this chapter,
go to the website:

www.routledge.com/cw/bird
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Revision Test 12 Further differentiation

This Revision Test covers the material contained in Chapters 37 to 41. The marks for each question are shown in
brackets at the end of each question.

1. Differentiate the following functions with respect
to x:

(a) 5 ln (shx) (b) 3ch32x

(c) e2x sech2x (7)

2. Differentiate the following functions with respect
to the variable:

(a) y = 1
5
cos−1

x

2

(b) y =3esin−1 t

(c) y = 2 sec
−1 5x
x

(d) y =3 sinh−1 √
(2x2−1) (14)

3. Evaluate the following, each correct to 3 decimal
places:

(a) sinh−1 3 (b) cosh−1 2.5 (c) tanh−1 0.8 (6)

4. If z = f (x,y) and z = x cos(x + y) determine

∂z

∂x
,
∂z

∂y
,
∂2z

∂x2
,
∂2z

∂y2
,

∂2z

∂x∂y
and

∂2z

∂y∂x
(12)

5. The magnetic field vector H due to a steady cur-
rent I flowing around a circular wire of radius r

and at a distance x from its centre is given by

H = ±I

2
∂

∂x

(
x√

r2+ x2

)

Show that H = ± r2I

2
√

(r2+ x2)3
(7)

6. If xyz = c, where c is constant, show that

dz = −z

(
dx
x

+ dy
y

)

(6)

7. An engineering function z=f (x,y) and
z=e y

2 ln(2x+3y). Determine the rate of
increase of z, correct to 4 significant figures,
when x =2cm, y =3cm, x is increasing at 5 cm/s
and y is increasing at 4 cm/s. (8)

8. The volume V of a liquid of viscosity coefficient
η delivered after time t when passed through a
tube of length L and diameter d by a pressure p

is given by V = pd4t

128ηL
. If the errors in V , p and

L are 1%, 2% and 3% respectively, determine the
error in η. (8)

9. Determine and distinguish between the stationary
values of the function

f (x,y) = x3− 6x2− 8y2

and sketch an approximate contour map to repre-
sent the surface f (x,y)

(20)

10. An open, rectangular fish tank is to have a volume
of 13.5m3. Determine the least surface area of
glass required. (12)

For lecturers/instructors/teachers, fully worked solutions to each of the problems in Revision Test 12,
together with a full marking scheme, are available at the website:

www.routledge.com/cw/bird
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Chapter 42

Integration using algebraic
substitutions

Why it is important to understand: Integration using algebraic substitutions
As intimated in previous chapters,most complex engineering problems cannot be solvedwithout calculus.
Calculus haswidespread applications in science, economics and engineering and can solvemanyproblems
for which algebra alone is insufficient. For example, calculus is needed to calculate the force exerted on
a particle a specific distance from an electrically charged wire, and is needed for computations involving
arc length, centre of mass, work and pressure. Sometimes the integral is not a standard one; in these
cases it may be possible to replace the variable of integration by a function of a new variable. A change
in variable can reduce an integral to a standard form, and this is demonstrated in this chapter.

At the end of this chapter, you should be able to:

• appreciate when an algebraic substitution is required to determine an integral
• integrate functions which require an algebraic substitution
• determine definite integrals where an algebraic substitution is required
• appreciate that it is possible to change the limits when determining a definite integral

42.1 Introduction

Functions which require integrating are not always in
the ‘standard form’ shown in Chapter 31. However, it is
often possible to change a function into a form which
can be integrated by using either:

(i) an algebraic substitution (see Section 42.2),
(ii) a trigonometric or hyperbolic substitution (see

Chapter 43),
(iii) partial fractions (see Chapter 44),
(iv) the t = tan θ /2 substitution (see Chapter 45),
(v) integration by parts (see Chapter 46), or
(vi) reduction formulae (see Chapter 47).

42.2 Algebraic substitutions

With algebraic substitutions, the substitution usually
made is to let u be equal to f (x) such that f (u)du
is a standard integral. It is found that integrals of the
forms,

k

∫
[f (x)]nf ′(x)dx and k

∫
f ′(x)

[f (x)]n
dx

(where k and n are constants) can both be integrated by
substituting u for f (x).

Higher Engineering Mathematics. 978-1-138-67357-1, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.
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42.3 Worked problems on integration
using algebraic substitutions

Problem 1. Determine
∫
cos (3x+7)dx

∫
cos(3x+7)dx is not a standard integral of the form
shown in Table 31.1, page 377, thus an algebraic
substitution is made.
Let u=3x +7 then du

dx
=3 and rearranging gives

dx= du
3
. Hence,

∫
cos (3x + 7)dx =

∫
(cosu)

du
3

=
∫ 1
3
cosudu,

which is a standard integral

= 1
3
sinu + c

Rewriting u as (3x+7) gives:
∫
cos(3x + 7)dx = 1

3
sin(3x+7)+c,

which may be checked by differentiating it.

Problem 2. Find
∫
(2x − 5)7 dx

(2x −5)maybemultiplied by itself seven times and then
each term of the result integrated. However, this would
be a lengthy process, and thus an algebraic substitution
is made.
Let u=(2x−5) then du

dx
=2 and dx = du

2
Hence

∫
(2x − 5)7 dx =

∫
u7
du
2

= 1
2

∫
u7 du

= 1
2

(
u8

8

)

+ c = 1
16

u8+ c

Rewriting u as (2x−5) gives:
∫
(2x−5)7 dx= 1

16
(2x−5)8+c

Problem 3. Find
∫

4
(5x−3) dx

Let u=(5x−3) then du
dx

=5 and dx = du
5

Hence
∫

4
(5x − 3) dx =

∫
4
u

du
5

= 4
5

∫
1
u
du

= 4
5
lnu + c = 4

5
ln(5x−3)+c

Problem 4. Evaluate
∫ 1

0
2e6x−1 dx, correct to

4 significant figures.

Let u=6x−1 then du
dx

=6 and dx= du
6

Hence
∫
2e6x−1 dx =

∫
2eu

du
6

= 1
3

∫
eu du

= 1
3
eu + c = 1

3
e6x−1+ c

Thus
∫ 1

0
2e6x−1 dx = 1

3
[e6x−1]10 = 1

3
[e5− e−1]= 49.35,

correct to 4 significant figures.

Problem 5. Determine
∫
3x(4x2+ 3)5 dx

Let u=(4x2+3) then du
dx

=8x and dx = du
8x

Hence
∫
3x(4x2+ 3)5 dx =

∫
3x(u)5

du
8x

= 3
8

∫
u5 du,by cancelling.

The original variable ‘x’ has been completely removed
and the integral is now only in terms of u and is a
standard integral.

Hence
3
8

∫
u5 du = 3

8

(
u6

6

)

+ c

= 1
16

u6+ c = 1
16
(4x2+3)6+c

Problem 6. Evaluate
∫ π
6

0
24sin5 θ cosθ dθ

Download more at Learnclax.com



Se
ct

io
n

I

Integration using algebraic substitutions 475

Let u= sinθ then
du
dθ

= cosθ and dθ = du
cosθ

Hence
∫
24sin5 θ cosθ dθ =

∫
24u5 cosθ

du
cosθ

= 24
∫

u5 du,by cancelling

= 24u6

6
+ c = 4u6+ c = 4(sinθ)6+ c

= 4sin6 θ + c

Thus
∫ π
6

0
24sin5 θ cosθ dθ = [4sin6 θ ]

π
6
0

= 4
[(
sin

π

6

)6− (sin0)6
]

= 4
[(
1
2

)6
− 0

]

= 1
16
or 0.0625

Now try the following Practice Exercise

Practice Exercise 171 Integration using
algebraic substitutions (Answers on
page 882)

In Problems 1 to 6, integrate with respect to the
variable.
1. 2sin(4x +9)
2. 3cos(2θ −5)
3. 4sec2(3t +1)

4.
1
2
(5x−3)6

5.
−3

(2x −1)
6. 3e3θ+5

In Problems 7 to 10, evaluate the definite integrals
correct to 4 significant figures.

7.
∫ 1

0
(3x+1)5 dx

8.
∫ 2

0
x
√

(2x2+1)dx

9.
∫ π
3

0
2sin

(
3t + π

4

)
dt

10.
∫ 1

0
3cos(4x −3)dx

11. The mean time to failure, M years,
for a set of components is given by:

M =
∫ 4

0
(1− 0.25t)1.5dt

Determine the mean time to failure.

42.4 Further worked problems on
integration using algebraic
substitutions

Problem 7. Find
∫

x

2+ 3x2 dx

Let u=2+3x2 then du
dx

=6x and dx= du
6x

Hence
∫

x

2+ 3x2 dx =
∫

x

u

du
6x

= 1
6

∫ 1
u
du,

by cancelling

= 1
6
lnu + c = 1

6
ln(2+3x2)+c

Problem 8. Determine
∫

2x
√

(4x2− 1)
dx

Let u=4x2−1 then du
dx

=8x and dx = du
8x

Hence
∫

2x
√

(4x2− 1)
dx =

∫
2x√

u

du
8x

= 1
4

∫
1√
u
du,by cancelling

= 1
4

∫
u

−1
2 du = 1

4

⎡

⎢
⎣

u

(−1
2

)
+1

−1
2

+ 1

⎤

⎥
⎦+ c

= 1
4

⎡

⎢
⎣

u
1
2

1
2

⎤

⎥
⎦+ c = 1

2
√

u + c

= 1
2
√
(4x2−1)+c
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Problem 9. Show that
∫
tanθ dθ = ln(sec θ) + c

∫
tanθ dθ =

∫
sin θ

cosθ
dθ . Let u= cosθ

then
du
dθ

= −sinθ and dθ = −du
sin θ

Hence
∫
sin θ

cosθ
dθ =

∫
sinθ

u

(−du
sinθ

)

= −
∫ 1

u
du = − lnu + c

= − ln(cosθ) + c = ln(cosθ)−1+ c,

by the laws of logarithms.

Hence
∫
tanθ dθ = ln(secθ )+c,

since (cosθ)−1= 1
cosθ

= sec θ

42.5 Change of limits

When evaluating definite integrals involving substi-
tutions it is sometimes more convenient to change
the limits of the integral as shown in Problems 10
and 11.

Problem 10. Evaluate
∫ 3

1
5x

√
(2x2+ 7)dx,

taking positive values of square roots only.

Let u=2x2+7, then du
dx

=4x and dx = du
4x

It is possible in this case to change the limits of inte-
gration. Thus when x=3, u=2(3)2+7=25 and when
x =1, u=2(1)2+7=9
Hence

∫ x=3

x=1
5x

√
(2x2+ 7)dx =

∫ u=25

u=9
5x

√
u
du
4x

= 5
4

∫ 25

9

√
udu

= 5
4

∫ 25

9
u
1
2 du

Thus the limits have been changed, and it is unnecessary
to change the integral back in terms of x.

Thus
∫ x=3

x=1
5x

√
(2x2+ 7)dx = 5

4

⎡

⎣ u
3
2

3/2

⎤

⎦

25

9

= 5
6

[√
u3

]25

9
= 5
6

[√
253−

√
93

]

= 5
6
(125− 27) = 812

3

Problem 11. Evaluate
∫ 2

0

3x
√

(2x2+1)
dx,

taking positive values of square roots only.

Let u=2x2+1 then du
dx

=4x and dx= du
4x

Hence
∫ 2

0

3x
√

(2x2+ 1)
dx =

∫ x=2

x=0
3x√

u

du
4x

= 3
4

∫ x=2

x=0
u

−1
2 du

Since u=2x2+1, when x =2,u=9 and when
x =0,u=1

Thus
3
4

∫ x=2

x=0
u

−1
2 du = 3

4

∫ u=9

u=1
u

−1
2 du,

i.e. the limits have been changed

= 3
4

⎡

⎢
⎣

u
1
2

1
2

⎤

⎥
⎦

9

1

= 3
2

[√
9−

√
1
]

= 3,

taking positive values of square roots only.

Now try the following Practice Exercise

Practice Exercise 172 Integration using
algebraic substitutions (Answers on page
882)

In Problems 1 to 7, integrate with respect to the
variable.

1. 2x(2x2− 3)5
2. 5cos5 t sin t
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3. 3sec2 3x tan3x

4. 2t
√

(3t2− 1)

5.
lnθ

θ

6. 3 tan2t

7.
2et√

(et + 4)
In Problems 8 to 10, evaluate the definite integrals
correct to 4 significant figures.

8.
∫ 1

0
3x e(2x

2−1) dx

9.
∫ π
2

0
3sin4 θ cosθ dθ

10.
∫ 1

0

3x
(4x2− 1)5 dx

11. The electrostatic potential on all parts of a
conducting circular disc of radius r is given
by the equation:

V = 2πσ

∫ 9

0

R√
R2+ r2

dR

Solve the equation by determining the
integral.

12. In the study of a rigid rotor the following
integration occurs:

Zr =
∫ ∞

0
(2J + 1)e

−J (J+1)h2

8π2Ik T dJ

Determine Zr for constant temperature T

assuming h, I and k are constants.

13. In electrostatics,

E =
∫ π

0

⎧
⎨

⎩
a2σ sinθ

2ε
√(
a2− x2− 2ax cosθ)dθ

⎫
⎬

⎭

where a, σ and ε are constants, x is greater
than a, and x is independent of θ . Show that

E= a
2σ

εx

14. The time taken, t hours, for a vehicle to reach
a velocity of 130 km/h with an initial speed

of 60 km/h is given by: t =
∫ 130

60

dv
650− 3v

where v is the velocity in km/h. Determine t ,
correct to the nearest second.

For fully worked solutions to each of the problems in Practice Exercises 171 and 172 in this chapter,
go to the website:

www.routledge.com/cw/bird

Download more at Learnclax.com

http://www.routledge.com/cw/bird


Chapter 43

Integration using
trigonometric and

hyperbolic substitutions

Why it is important to understand: Integration using trigonometric and hyperbolic substitutions
Calculus is the most powerful branch of mathematics. It is capable of computing many quantities accu-
rately, which cannot be calculated using any other branch of mathematics. Many integrals are not
‘standard’ ones that we can determine from a list of results. Some need substitutions to rearrange them
into a standard form. There are a number of trigonometric and hyperbolic substitutions that may be
used for certain integrals to change them into a form that can be integrated. These are explained in this
chapter which provides another piece of the integral calculus jigsaw.

At the end of this chapter, you should be able to:

• integrate functions of the form sin 2x, cos 2x, tan2 x and cot2 x
• integrate functions having powers of sines and cosines
• integrate functions that are products of sines and cosines
• integrate using the sin θ substitution
• integrate using the tan θ substitution
• integrate using the sinh θ substitution
• integrate using the cosh θ substitution

43.1 Introduction

Table 43.1 gives a summary of the integrals that require
the use of trigonometric and hyperbolic substitutions
and their application is demonstrated in Problems 1
to 27.

43.2 Worked problems on integration
of sin2 x, cos2 x, tan2 x and cot2 x

Problem 1. Evaluate
∫ π
4

0
2cos 24t dt

Higher Engineering Mathematics. 978-1-138-67357-1, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.
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Table 43.1 Integrals using trigonometric and hyperbolic substitutions

f (x)
∫

f (x)dx Method See problem

1. cos 2x
1
2

(

x + sin2x
2

)

+ c Use cos2x = 2cos 2x − 1 1

2. sin 2x
1
2

(

x − sin2x
2

)

+ c Use cos2x = 1− 2sin 2x 2

3. tan2 x tanx − x + c Use 1+ tan2 x = sec2 x 3

4. cot2 x −cotx − x + c Use cot2 x + 1= cosec2x 4

5. cosmx sin nx (a) If either m or n is odd (but not both), use

cos 2x + sin 2x = 1 5, 6

(b) If both m and n are even, use either

cos2x = 2cos 2x − 1 or cos2x = 1− 2sin 2x 7, 8

6. sinA cosB Use 12 [ sin(A + B) + sin(A − B)] 9

7. cosA sinB Use 12 [ sin(A + B) − sin(A − B)] 10

8. cosA cosB Use 12 [ cos(A + B) + cos(A − B)] 11

9. sinA sinB Use − 1
2 [ cos(A + B) − cos(A − B)] 12

10.
1

√
(a2− x2)

sin−1 x

a
+ c Use x = a sin θ substitution 13, 14

11.
√

(a2− x2)
a2

2
sin−1 x

a
+ x

2
√

(a2− x2) + c Use x = a sin θ substitution 15, 16

12.
1

a2+ x2
1
a
tan−1 x

a
+ c Use x = a tanθ substitution 17–19

13.
1

√
(x2+ a2)

sinh−1 x

a
+ c Use x = a sinhθ substitution 20–22

or ln

{
x +

√
(x2+ a2)

a

}

+ c

14.
√

(x2+ a2)
a2

2
sinh−1 x

a
+ x

2
√

(x2+ a2)+ c Use x = a sinhθ substitution 23

15.
1

√
(x2− a2)

cosh−1 x

a
+ c Use x = a coshθ substitution 24, 25

or ln

{
x +

√
(x2− a2)

a

}

+ c

16.
√

(x2− a2)
x

2
√

(x2− a2) − a2

2
cosh−1 x

a
+ c Use x = a coshθ substitution 26, 27
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Since cos2t =2cos 2t − 1 (from Chapter 19),

then cos 2t = 1
2
(1+ cos2t) and

cos 24t = 1
2
(1+ cos8t)

Hence
∫ π
4

0
2cos 24t dt

= 2
∫ π
4

0

1
2
(1+ cos8t)dt

=
[

t + sin8t
8

]π
4

0

=

⎡

⎢
⎣

π

4
+
sin8

(π

4

)

8

⎤

⎥
⎦−

[

0+ sin0
8

]

= π

4
or 0.7854

Problem 2. Determine
∫
sin 23x dx

Since cos2x =1− 2sin 2x (from Chapter 19),
then sin 2x = 1

2
(1− cos2x) and

sin 23x = 1
2
(1− cos6x)

Hence
∫
sin 23x dx =

∫
1
2
(1− cos6x)dx

= 1
2

(

x− sin 6x
6

)

+c

Problem 3. Find 3
∫
tan2 4x dx

Since 1+ tan2 x = sec2 x, then tan2 x= sec2 x −1 and
tan2 4x = sec2 4x−1

Hence 3
∫
tan2 4x dx = 3

∫
(sec2 4x − 1)dx

= 3
(
tan 4x
4

−x
)

+c

Problem 4. Evaluate
∫ π
3

π
6

1
2
cot2 2θ dθ

Since cot2 θ +1= cosec2θ , then cot2 θ = cosec2θ−1
and cot2 2θ =cosec2 2θ −1

Hence
∫ π
3

π
6

1
2
cot2 2θ dθ

= 1
2

∫ π
3

π
6

(cosec2 2θ − 1)dθ = 1
2

[−cot 2θ
2

− θ

]π
3

π
6

= 1
2

⎡

⎢
⎣

⎛

⎜
⎝

−cot 2
(π

3

)

2
− π

3

⎞

⎟
⎠−

⎛

⎜
⎝

−cot 2
(π

6

)

2
− π

6

⎞

⎟
⎠

⎤

⎥
⎦

= 1
2
[(0.2887− 1.0472) − (−0.2887− 0.5236)]

= 0.0269

Now try the following Practice Exercise

Practice Exercise 173 Integration of sin2 x,
cos2 x, tan2 x and cot2 x (Answers on page
882)

In Problems 1 to 4, integrate with respect to the
variable.

1. sin 22x

2. 3cos 2t

3. 5 tan2 3θ

4. 2cot2 2t

In Problems 5 to 8, evaluate the definite integrals,
correct to 4 significant figures.

5.
∫ π
3

0
3 sin 23x dx

6.
∫ π
4

0
cos 24x dx

7.
∫ 1

0
2 tan2 2t dt

8.
∫ π
3

π
6
cot2 θ dθ
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43.3 Worked problems on integration
of powers of sines and cosines

Problem 5. Determine
∫
sin 5θ dθ

Since cos 2θ + sin 2θ =1 then sin 2θ =(1− cos 2θ)

Hence
∫
sin 5θ dθ

=
∫
sin θ(sin 2θ)2 dθ =

∫
sin θ(1− cos 2θ)2 dθ

=
∫
sin θ(1− 2cos2θ + cos 4θ)dθ

=
∫

(sinθ − 2sinθ cos 2θ + sinθ cos 4θ)dθ

= −cos θ + 2 cos
3 θ

3
− cos

5 θ

5
+c

Whenever a power of a cosine is multiplied by a sine of
power 1, or vice-versa, the integral may be determined
by inspection as shown.

In general,
∫
cos nθ sinθ dθ = −cos n+1θ

(n+ 1) + c

and
∫
sin nθ cos θ dθ = sinn+1θ

(n+ 1) + c

Problem 6. Evaluate
∫ π
2

0
sin 2x cos 3x dx

∫ π
2

0
sin 2x cos 3x dx =

∫ π
2

0
sin 2x cos 2x cosx dx

=
∫ π
2

0
(sin 2x)(1− sin 2x)(cosx)dx

=
∫ π
2

0
(sin 2x cosx − sin 4x cosx)dx

=
[
sin 3x
3

− sin 5x
5

]π
2

0

=

⎡

⎢
⎣

(
sin

π

2

)3

3
−

(
sin

π

2

)5

5

⎤

⎥
⎦− [0− 0]

= 1
3

− 1
5

= 2
15
or 0.1333

Problem 7. Evaluate
∫ π
4

0
4cos4θ dθ , correct to 4

significant figures.

∫ π
4

0
4cos 4θ dθ = 4

∫ π
4

0
(cos 2θ)2 dθ

= 4
∫ π
4

0

[
1
2
(1+ cos2θ)

]2
dθ

=
∫ π
4

0
(1+ 2cos2θ + cos 22θ)dθ

=
∫ π
4

0

[

1+ 2cos2θ + 1
2
(1+ cos4θ)

]

dθ

=
∫ π
4

0

(
3
2

+ 2cos2θ + 1
2
cos4θ

)

dθ

=
[
3θ
2

+ sin2θ + sin4θ
8

]π
4

0

=
[
3
2

(π

4

)
+ sin

2π
4

+ sin4(π/4)
8

]

− [0]

= 3π
8

+ 1= 2.178,
correct to 4 significant figures.

Problem 8. Find
∫
sin 2t cos 4t dt

∫
sin 2t cos 4t dt =

∫
sin 2t (cos 2t)2 dt

=
∫ (

1− cos2t
2

)(
1+ cos2t

2

)2
dt

= 1
8

∫
(1− cos2t)(1+ 2cos2t + cos 22t)dt

= 1
8

∫
(1+ 2cos2t + cos 22t − cos2t

−2cos 22t − cos 32t)dt

= 1
8

∫
(1+ cos2t − cos 22t − cos 32t)dt

= 1
8

∫ [

1+ cos2t −
(
1+ cos4t

2

)

− cos2t (1− sin 22t)
]

dt

= 1
8

∫ (1
2

− cos4t
2

+ cos2t sin 22t
)

dt

= 1
8

(
t
2

− sin4t
8

+ sin
32t
6

)

+c
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Now try the following Practice Exercise

Practice Exercise 174 Integration of
powers of sines and cosines (Answers on
page 882)

In Problems 1 to 6, integrate with respect to the
variable.

1. sin 3θ

2. 2cos 32x

3. 2 sin 3t cos 2t

4. sin 3x cos 4x

5. 2 sin 42θ

6. sin 2t cos 2t

43.4 Worked problems on integration
of products of sines and cosines

Problem 9. Determine
∫
sin3t cos2t dt

∫
sin3t cos2t dt

=
∫
1
2
[sin(3t + 2t) + sin (3t − 2t)]dt,

from 6 of Table 43.1, which follows from Section 19.4,
page 210,

= 1
2

∫
(sin5t + sin t)dt

= 1
2

(−cos 5t
5

−cos t
)

+c

Problem 10. Find
∫ 1
3
cos5x sin2x dx

∫
1
3
cos5x sin2x dx

= 1
3

∫ 1
2
[sin (5x + 2x) − sin (5x − 2x)]dx,

from 7 of Table 43.1

= 1
6

∫
(sin7x − sin3x)dx

= 1
6

(−cos 7x
7

+ cos 3x
3

)

+c

Problem 11. Evaluate
∫ 1

0
2cos6θ cosθ dθ ,

correct to 4 decimal places.

∫ 1

0
2cos6θ cos θ dθ

= 2
∫ 1

0

1
2
[ cos (6θ + θ) + cos (6θ − θ)]dθ ,

from 8 of Table 43.1

=
∫ 1

0
(cos7θ + cos5θ)dθ =

[
sin7θ
7

+ sin5θ
5

]1

0

=
(
sin7
7

+ sin5
5

)

−
(
sin0
7

+ sin0
5

)

‘sin7’ means ‘the sine of 7radians’ (≡401◦4′) and
sin5≡286◦29′

Hence
∫ 1

0
2cos6θ cosθ dθ

= (0.09386+ (−0.19178)) − (0)

= −0.0979, correct to 4 decimal places.

Problem 12. Find 3
∫
sin5x sin3x dx

3
∫
sin5x sin3x dx

= 3
∫

−1
2
[ cos(5x + 3x) − cos (5x − 3x)]dx,

from 9 of Table 43.1

= −3
2

∫
(cos8x − cos2x)dx

= −3
2

(
sin 8
8

− sin 2x
2

)

+c or

3
16

(4 sin 2x−sin 8x)+c
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Now try the following Practice Exercise

Practice Exercise 175 Integration of
products of sines and cosines (Answers on
page 882)

In Problems 1 to 4, integrate with respect to the
variable.

1. sin5t cos2t

2. 2 sin3x sinx

3. 3cos6x cosx

4.
1
2
cos4θ sin2θ

In Problems 5 to 8, evaluate the definite integrals.

5.
∫ π
2

0
cos4x cos3x dx

6.
∫ 1

0
2 sin7t cos3t dt

7. −4
∫ π
3

0
sin5θ sin2θ dθ

8.
∫ 2

1
3cos8t sin3t dt

43.5 Worked problems on integration
using the sin θ substitution

Problem 13. Determine
∫

1
√

(a2− x2)
dx

Let x=a sinθ , then
dx
dθ

=a cos θ and dx=a cosθ dθ

Hence
∫

1
√

(a2− x2)
dx

=
∫

1
√

(a2− a2 sin 2θ)
a cosθ dθ

=
∫

a cosθ dθ
√
[a2(1− sin 2θ)]

=
∫

a cos θ dθ
√

(a2 cos 2θ)
, since sin 2θ + cos 2θ = 1

=
∫

a cos θ dθ
a cosθ

=
∫
dθ = θ + c

Since x=a sin θ , then sinθ = x

a
and θ =sin−1 x

a

Hence
∫

1
√

(a2− x2)
dx= sin−1 x

a
+c

Problem 14. Evaluate
∫ 3

0

1
√

(9− x2)
dx

From Problem 13,
∫ 3

0

1
√

(9− x2)
dx

=
[
sin−1 x

3

]3

0
, since a = 3

= (sin−1 1− sin−1 0) = π

2
or 1.5708

Problem 15. Find
∫ √

(a2− x2)dx

Let x=a sin θ then
dx
dθ

=a cos θ and dx=a cosθ dθ

Hence
∫ √

(a2− x2)dx

=
∫ √

(a2− a2 sin 2θ)(a cos θ dθ)

=
∫ √

[a2(1− sin 2θ)](a cosθ dθ)

=
∫ √

(a2 cos 2θ)(a cos θ dθ)

=
∫

(a cosθ)(a cosθ dθ)

= a2
∫
cos 2θ dθ = a2

∫ (
1+ cos2θ

2

)

dθ

(since cos2θ = 2cos 2θ − 1)

= a2

2

(

θ + sin2θ
2

)

+ c

= a2

2

(

θ + 2sinθ cosθ
2

)

+ c

since from Chapter 19, sin2θ = 2sinθ cosθ

= a2

2
[θ + sinθ cos θ ]+ c

Download more at Learnclax.com



Se
ct

io
n

I
484 Higher Engineering Mathematics

Since x =a sin θ , then sinθ = x

a
and θ =sin−1 x

a

Also, cos 2θ + sin 2θ = 1, from which,

cosθ =
√

(1− sin 2θ) =
√[

1−
(x

a

)2]

=
√(

a2− x2

a2

)

=
√

(a2− x2)

a

Thus
∫ √

(a2− x2)dx= a2

2
[θ + sin θ cos θ ]

= a2

2

[

sin−1 x

a
+
(x

a

) √(a2− x2)

a

]

+ c

= a2

2
sin−1 x

a
+ x
2
√
(a2−x2)+ c

Problem 16. Evaluate
∫ 4

0

√
(16−x2)dx

From Problem 15,
∫ 4

0

√
(16−x2)dx

=
[
16
2
sin−1 x

4
+ x

2

√
(16− x2)

]4

0

=
[
8 sin−11+ 2

√
(0)
]
− [8 sin−1 0+ 0]

= 8 sin−11= 8
(π

2

)
= 4π or 12.57

Now try the following Practice Exercise

Practice Exercise 176 Integration using
the sin θ substitution (Answers on page
882)

1. Determine
∫ 5
√

(4− t2)
dt

2. Determine
∫ 3
√

(9− x2)
dx

3. Determine
∫ √

(4− x2)dx

4. Determine
∫ √

(16− 9t2)dt

5. Evaluate
∫ 4

0

1
√

(16− x2)
dx

6. Evaluate
∫ 1

0

√
(9− 4x2)dx

43.6 Worked problems on integration
using the tanθ substitution

Problem 17. Determine
∫

1
(a2+ x2)

dx

Letx = a tanθ then
dx
dθ

= a sec2 θ and dx = a sec2 θ dθ

Hence
∫

1
(a2+ x2)

dx

=
∫

1
(a2+ a2 tan2 θ)

(a sec2 θ dθ)

=
∫

a sec2 θ dθ
a2(1+ tan2 θ)

=
∫

a sec2 θ dθ
a2 sec2 θ

, since 1+tan2 θ = sec2 θ

=
∫
1
a
dθ = 1

a
(θ) + c

Since x =a tanθ , θ = tan−1 x

a

Hence
∫ 1
(a2+x2) dx=

1
a
tan−1 x

a
+c

Problem 18. Evaluate
∫ 2

0

1
(4+ x2)

dx

From Problem 17,
∫ 2

0

1
(4+ x2)

dx

= 1
2

[
tan−1 x

2

]2

0
since a = 2

= 1
2
(tan−1 1− tan−1 0) = 1

2

(π

4
− 0
)

= π

8
or 0.3927
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Problem 19. Evaluate
∫ 1

0

5
(3+ 2x2) dx, correct

to 4 decimal places.
∫ 1

0

5
(3+ 2x2) dx =

∫ 1

0

5
2[(3/2) + x2]

dx

= 5
2

∫ 1

0

1
[
√

(3/2)]2+ x2
dx

= 5
2

[
1√

(3/2)
tan−1 x√

(3/2)

]1

0

= 5
2

√(
2
3

)[

tan−1
√(

2
3

)

− tan−1 0

]

= (2.0412)[0.6847− 0]
= 1.3976, correct to 4 decimal places.

Now try the following Practice Exercise

Practice Exercise 177 Integration using
the tan θ substitution (Answers on page
882)

1. Determine
∫ 3
4+ t2

dt

2. Determine
∫

5
16+ 9θ 2 dθ

3. Evaluate
∫ 1

0

3
1+ t2

dt

4. Evaluate
∫ 3

0

5
4+ x2

dx

43.7 Worked problems on integration
using the sinhθ substitution

Problem 20. Determine
∫ 1
√

(x2+ a2)
dx

Let x=a sinhθ , then
dx
dθ

=a coshθ and
dx= a coshθ dθ

Hence
∫

1
√

(x2+ a2)
dx

=
∫

1
√

(a2 sinh2θ + a2)
(a coshθ dθ)

=
∫

a coshθ dθ
√

(a2 cosh2 θ)

since cosh2 θ − sinh2 θ = 1

=
∫

a coshθ
a coshθ

dθ =
∫
dθ = θ + c

= sinh−1 x
a

+c, since x = a sinhθ

It is shown on page 440 that

sinh−1
x

a
= ln

{
x +

√
(x2+ a2)

a

}

which provides an alternative solution to
∫

1
√

(x2+ a2)
dx

Problem 21. Evaluate
∫ 2

0

1
√

(x2+ 4)
dx, correct

to 4 decimal places.

∫ 2

0

1
√

(x2+ 4)
dx =

[
sinh−1 x

2

]2

0
or

[

ln

{
x +

√
(x2+ 4)
2

}]2

0

from Problem 20, where a=2
Using the logarithmic form,
∫ 2

0

1
√

(x2+ 4)
dx

=
[

ln

(
2+ √

8
2

)

− ln
(
0+ √

4
2

)]

= ln2.4142− ln1= 0.8814,
correct to 4 decimal places.

Problem 22. Evaluate
∫ 2

1

2
x2
√

(1+ x2)
dx,

correct to 3 significant figures.
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Since the integral contains a term of the form√
(a2+ x2), then let x = sinhθ , from which
dx
dθ

= coshθ and dx= coshθ dθ

Hence
∫ 2

x2
√

(1+ x2)
dx

=
∫

2(coshθ dθ)

sinh2 θ
√

(1+ sinh2 θ)

= 2
∫ coshθ dθ
sinh2 θ coshθ

since cosh2 θ − sinh2 θ = 1

= 2
∫

dθ
sinh2 θ

= 2
∫
cosech2 θ dθ

= −2cothθ + c

cothθ = coshθ

sinhθ
=
√

(1+ sinh2 θ)

sinhθ
=
√

(1+ x2)

x

Hence
∫ 2

1

2
x2
√
1+ x2)

dx

= −[2cothθ ]21 = −2
[√

(1+ x2)

x

]2

1

= −2
[√

5
2

−
√
2
1

]

= 0.592,
correct to 3 significant figures

Problem 23. Find
∫ √

(x2+ a2)dx

Let x=a sinhθ then
dx
dθ

=a coshθ and
dx=a coshθ dθ

Hence
∫ √

(x2+ a2)dx

=
∫ √

(a2 sinh2 θ + a2)(a coshθ dθ)

=
∫ √

[a2(sinh2 θ + 1)](a coshθ dθ)

=
∫ √

(a2 cosh2 θ)(a coshθ dθ)

since cosh2 θ − sinh2 θ = 1

=
∫

(a coshθ)(a coshθ)dθ = a2
∫
cosh2 θ dθ

= a2
∫ (

1+ cosh2θ
2

)

dθ

= a2

2

(

θ + sinh2θ
2

)

+ c

= a2

2
[θ + sinhθ coshθ ]+ c,

since sinh2θ = 2sinhθ coshθ

Since x =a sinhθ , then sinhθ = x

a
and θ =sinh−1 x

a

Also since cosh2 θ − sinh2 θ =1

then coshθ =
√

(1+ sinh2 θ)

=
√[

1+
(x

a

)2]=
√(

a2+ x2

a2

)

=
√

(a2+ x2)

a

Hence
∫ √

(x2+ a2)dx

= a2

2

[

sinh−1 x

a
+
(x

a

) √(x2+ a2)

a

]

+ c

= a2

2
sinh−1 x

a
+ x
2
√
(x2+a2) + c

Now try the following Practice Exercise

Practice Exercise 178 Integration using
the sinh θ substitution (Answers on page
882)

1. Find
∫

2
√

(x2+ 16)
dx

2. Find
∫

3
√

(9+ 5x2)
dx

3. Find
∫ √

(x2+ 9)dx

4. Find
∫ √

(4t2+ 25)dt

5. Evaluate
∫ 3

0

4
√

(t2+ 9)
dt

6. Evaluate
∫ 1

0

√
(16+ 9θ 2)dθ
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43.8 Worked problems on integration
using the coshθ substitution

Problem 24. Determine
∫

1
√

(x2− a2)
dx

Let x=a coshθ then
dx
dθ

= a sinhθ and
dx=a sinhθ dθ

Hence
∫

1
√

(x2− a2)
dx

=
∫

1
√

(a2 cosh2 θ − a2)
(a sinhθ dθ)

=
∫

a sinhθ dθ
√
[a2(cosh2 θ − 1)]

=
∫

a sinhθ dθ
√

(a2 sinh2 θ)

since cosh2 θ − sinh2 θ = 1

=
∫

a sinhθ dθ
a sinhθ

=
∫
dθ = θ + c

= cosh−1 x
a

+c, since x = a coshθ

It is shown on page 440 that

cosh−1 x
a

= ln

{
x+
√
(x2−a2)
a

}

which provides as alternative solution to
∫

1
√

(x2− a2)
dx

Problem 25. Determine
∫ 2x −3
√

(x2−9)
dx

∫
2x − 3
√

(x2− 9)
dx =

∫
2x

√
(x2− 9)

dx

−
∫

3
√

(x2− 9)
dx

The first integral is determined using the algebraic sub-
stitution u=(x2−9), and the second integral is of the
form

∫
1

√
(x2− a2)

dx (see Problem 24)

Hence
∫

2x
√

(x2− 9)
dx −

∫
3

√
(x2− 9)

dx

= 2
√
(x2−9)−3 cosh−1 x

3
+c

Problem 26.
∫ √

(x2− a2)dx

Let x=a coshθ then
dx
dθ

=a sinhθ and
dx=a sinhθ dθ

Hence
∫ √

(x2− a2)dx

=
∫ √

(a2 cosh2 θ − a2)(a sinhθ dθ)

=
∫ √

[a2(cosh2 θ − 1)](a sinhθ dθ)

=
∫ √

(a2 sinh2 θ)(a sinhθ dθ)

= a2
∫
sinh2 θ dθ = a2

∫ (
cosh2θ − 1

2

)

dθ

since cosh2θ = 1+ 2sinh2 θ

from Table 16.1, page 185,

= a2

2

[
sinh2θ
2

− θ

]

+ c

= a2

2
[sinhθ coshθ − θ ]+ c,

since sinh2θ = 2sinhθ coshθ

Since x=a coshθ then coshθ = x

a
and

θ =cosh−1 x

a

Also, since cosh2 θ − sinh2 θ =1, then

sinhθ =
√

(cosh2 θ − 1)

=
√[(x

a

)2− 1
]

=
√

(x2− a2)

a
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Hence
∫ √

(x2− a2)dx

= a2

2

[√
(x2− a2)

a

(x

a

)
− cosh−1 x

a

]

+ c

= x
2
√
(x2−a2)− a

2

2
cosh−1 x

a
+c

Problem 27. Evaluate
∫ 3

2

√
(x2− 4)dx

∫ 3

2

√
(x2− 4)dx =

[
x

2
√

(x2− 4)− 4
2
cosh−1 x

2

]3

2

from Problem 26, when a = 2,

=
(
3
5
√
5− 2 cosh−1 3

2

)

−(0− 2 cosh−1 1)

Since cosh−1 x
a

= ln
{

x +
√

(x2− a2)

a

}

then

cosh−1
3
2

= ln
{
3+
√

(32− 22)
2

}

= ln2.6180= 0.9624
Similarly, cosh−11=0

Hence
∫ 3

2

√
(x2− 4)dx

=
[
3
2
√
5− 2(0.9624)

]

− [0]

= 1.429, correct to 4 significant figures.

Now try the following Practice Exercise

Practice Exercise 179 Integration using
the cosh θ substitution (Answers on
page 883)

1. Find
∫ 1
√

(t2− 16)
dt

2. Find
∫

3
√

(4x2− 9)
dx

3. Find
∫ √

(θ2− 9)dθ

4. Find
∫ √

(4θ2− 25)dθ

5. Evaluate
∫ 2

1

2
√

(x2− 1)
dx

6. Evaluate
∫ 3

2

√
(t2− 4)dt

For fully worked solutions to each of the problems in Practice Exercises 173 to 179 in this chapter,
go to the website:

www.routledge.com/cw/bird
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Chapter 44

Integration using
partial fractions

Why it is important to understand: Integration using partial fractions
Sometimes expressions which at first sight look impossible to integrate using standard techniques may
in fact be integrated by first expressing them as simpler partial fractions and then using earlier learned
techniques. As explained in Chapter 2, the algebraic technique of resolving a complicated fraction into
partial fractions is often needed by electrical and mechanical engineers for not only determining certain
integrals in calculus, but for determining inverse Laplace transforms, and for analysing linear differential
equations like resonant circuits and feedback control systems.

At the end of this chapter, you should be able to:

• integrate functions using partial fractions with linear factors
• integrate functions using partial fractions with repeated linear factors
• integrate functions using partial fractions with quadratic factors

44.1 Introduction

The process of expressing a fraction in terms of simpler
fractions – called partial fractions – is discussed in
Chapter 2, with the forms of partial fractions used being
summarised in Table 2.1, page 16.
Certain functions have to be resolved into partial frac-
tions before they can be integrated as demonstrated in
the following worked problems.

44.2 Worked problems on
integration using partial
fractions with linear factors

Problem 1. Determine
∫

11−3x
x2+2x −3 dx

As shown in Problem 1, page 16:
11− 3x

x2+ 2x − 3 ≡ 2
(x − 1) − 5

(x + 3)

Hence
∫

11− 3x
x2+ 2x − 3 dx

=
∫ {

2
(x − 1) − 5

(x + 3)
}

dx

= 2 ln(x−1)−5 ln(x+3)+c
(by algebraic substitutions — see Chapter 42)

or ln
{
(x−1)2
(x+3)5

}

+c by the laws of logarithms
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Problem 2. Find
∫

2x2− 9x − 35
(x + 1)(x − 2)(x + 3) dx

It was shown in Problem 2, page 16:

2x2− 9x − 35
(x + 1)(x − 2)(x + 3)≡ 4

(x + 1) − 3
(x − 2) + 1

(x + 3)

Hence
∫

2x2− 9x − 35
(x + 1)(x − 2)(x + 3) dx

≡
∫ {

4
(x + 1) − 3

(x − 2) + 1
(x + 3)

}

dx

= 4 ln(x+1)−3 ln(x−2)+ ln(x+3)+c

or ln

{
(x+1)4(x+3)
(x−2)3

}

+c

Problem 3. Determine
∫

x2+ 1
x2− 3x + 2 dx

By dividing out (since the numerator and denomina-
tor are of the same degree) and resolving into partial
fractions it was shown in Problem 3, page 17:

x2+ 1
x2− 3x + 2 ≡ 1− 2

(x − 1) + 5
(x − 2)

Hence
∫

x2+ 1
x2− 3x + 2 dx

≡
∫ {

1− 2
(x − 1) + 5

(x − 2)
}

dx

= (x−2) ln(x−1)+5 ln(x−2)+c

or x+ ln
{
(x−2)5
(x−1)2

}

+c

Problem 4. Evaluate
∫ 3

2

x3− 2x2− 4x − 4
x2+ x − 2 dx,

correct to 4 significant figures.

By dividing out and resolving into partial fractions it
was shown in Problem 4, page 17:

x3− 2x2− 4x − 4
x2+ x − 2 ≡ x − 3+ 4

(x + 2) − 3
(x − 1)

Hence
∫ 3

2

x3− 2x2− 4x − 4
x2+ x − 2 dx

≡
∫ 3

2

{

x − 3+ 4
(x + 2) − 3

(x − 1)
}

dx

=
[
x2

2
− 3x + 4ln(x + 2) − 3ln(x − 1)

]3

2

=
(
9
2

− 9+ 4ln5− 3ln2
)

− (2− 6+ 4ln4− 3ln1)

= −1.687,correct to 4 significant figures.

Now try the following Practice Exercise

Practice Exercise 180 Integration using
partial fractions with linear factors
(Answers on page 883)

In Problems 1 to 5, integrate with respect to x.

1.
∫

12
(x2− 9) dx

2.
∫ 4(x − 4)

(x2− 2x − 3) dx

3.
∫

3(2x2− 8x − 1)
(x + 4)(x + 1)(2x − 1) dx

4.
∫

x2+ 9x + 8
x2+ x − 6 dx

5.
∫
3x3− 2x2− 16x + 20

(x − 2)(x + 2) dx

In Problems 6 and 7, evaluate the definite integrals
correct to 4 significant figures.

6.
∫ 4

3

x2− 3x + 6
x(x − 2)(x − 1) dx

7.
∫ 6

4

x2− x − 14
x2− 2x − 3 dx

Download more at Learnclax.com



Se
ct

io
n

I

Integration using partial fractions 491

8. Determine the value of k, given that:

∫ 1

0

(x−k)

(3x + 1)(x + 1) dx =0

9. The velocity constant k of a given chemical
reaction is given by:

kt =
∫ (

1
(3−0.4x)(2−0.6x)

)

dx

where x=0 when t =0. Show that:

kt = ln
{
2(3−0.4x)

3(2−0.6x)

}

10. The velocityv of an object in amediumat time

t seconds is given by: t =
∫ 80

20

dv

v(2v − 1)
Evaluate t , in milliseconds, correct to 2 deci-
mal places.

44.3 Worked problems on
integration using partial
fractions with repeated linear
factors

Problem 5. Determine
∫
2x + 3

(x − 2)2 dx

It was shown in Problem 5, page 18:

2x + 3
(x − 2)2 ≡ 2

(x − 2) + 7
(x − 2)2

Thus
∫

2x + 3
(x − 2)2 dx ≡

∫ {
2

(x − 2) + 7
(x − 2)2

}

dx

= 2 ln(x−2)− 7
(x−2) +c

⎡

⎣

∫
7

(x − 2)2 dx is determined using the algebraic

substitution u = (x −2) – see Chapter 42.

⎤

⎦

Problem 6. Find
∫
5x2− 2x − 19
(x + 3)(x − 1)2 dx.

It was shown in Problem 6, page 18:

5x2− 2x − 19
(x + 3)(x − 1)2 ≡ 2

(x + 3) + 3
(x − 1) − 4

(x − 1)2

Hence
∫ 5x2− 2x − 19

(x + 3)(x − 1)2 dx

≡
∫ {

2
(x + 3) + 3

(x − 1) − 4
(x − 1)2

}

dx

=2 ln(x+3)+3ln(x−1)+ 4
(x−1) +c

or ln
{
(x+3)2(x−1)3

}
+ 4
(x−1) +c

Problem 7. Evaluate
∫ 1

−2
3x2+ 16x + 15

(x + 3)3 dx,

correct to 4 significant figures.

It was shown in Problem 7, page 19:

3x2+ 16x + 15
(x + 3)3 ≡ 3

(x + 3) − 2
(x + 3)2 − 6

(x + 3)3

Hence
∫
3x2+ 16x + 15

(x + 3)3 dx

≡
∫ 1

−2

{
3

(x + 3) − 2
(x + 3)2 − 6

(x + 3)3
}

dx

=
[

3ln(x + 3) + 2
(x + 3) + 3

(x + 3)2
]1

−2

=
(

3ln4+ 2
4

+ 3
16

)

−
(

3ln1+ 2
1

+ 3
1

)

= −0.1536,correct to 4 significant figures.
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Now try the following Practice Exercise

Practice Exercise 181 Integration using
partial fractions with repeated linear factors
(Answers on page 883)

In Problems 1 and 2, integrate with respect
to x.

1.
∫
4x − 3

(x + 1)2 dx

2.
∫
5x2− 30x + 44

(x − 2)3 dx

In Problems 3 and 4, evaluate the definite integrals
correct to 4 significant figures.

3.
∫ 2

1

x2+ 7x + 3
x2(x + 3)

4.
∫ 7

6

18+ 21x − x2

(x − 5)(x + 2)2 dx

5. Show that
∫ 1

0

(
4t2+9t +8

(t +2)(t +1)2
)

dt =2.546,

correct to 4 significant figures.

44.4 Worked problems on
integration using partial
fractions with quadratic factors

Problem 8. Find
∫
3+ 6x + 4x2− 2x3

x2(x2+ 3) dx.

It was shown in Problem 9, page 20:

3+ 6x + 4x2− 2x3
x2(x2+ 3) ≡ 2

x
+ 1

x2
+ 3− 4x

(x2+ 3)

Thus
∫ 3+ 6x + 4x2− 2x3

x2(x2+ 3) dx

≡
∫ (

2
x

+ 1
x2

+ (3− 4x)

(x2+ 3)
)

dx

=
∫ {

2
x

+ 1
x2

+ 3
(x2+ 3) − 4x

(x2+ 3)
}

dx

∫
3

(x2+ 3) dx = 3
∫

1
x2+ (

√
3)2
dx

= 3√
3
tan−1 x√

3
, from 12, Table 43.1, page 479.

∫ 4x
x2+ 3 dx is determined using the algebraic substi-

tution u=(x2+3)

Hence
∫ {

2
x

+ 1
x2

+ 3
(x2+ 3) − 4x

(x2+ 3)
}

dx

= 2 lnx − 1
x

+ 3√
3
tan−1

x√
3

− 2 ln(x2+ 3) + c

= ln
(

x
x2+3

)2
− 1
x

+√
3 tan−1 x√

3
+c

Problem 9. Determine
∫

1
(x2− a2)

dx

Let
1

(x2− a2)
≡ A

(x − a)
+ B

(x + a)

≡ A(x + a) + B(x − a)

(x + a)(x − a)

Equating the numerators gives:

1≡ A(x + a) + B(x − a)

Let x=a, then A= 1
2a
, and let x=−a, then

B =− 1
2a

Hence
∫

1
(x2− a2)

dx

≡
∫ 1
2a

[
1

(x − a)
− 1

(x + a)

]

dx

= 1
2a
[ln(x − a) − ln(x + a)]+ c

= 1
2a
ln

(
x−a
x+a

)

+c

Problem 10. Evaluate
∫ 4

3

3
(x2− 4) dx,

correct to 3 significant figures.
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From Problem 9,
∫ 4

3

3
(x2− 4) dx = 3

[
1
2(2)

ln
(

x − 2
x + 2

)]4

3

= 3
4

[

ln
2
6

− ln 1
5

]

= 3
4
ln
5
3

= 0.383, correct to 3
significant figures.

Problem 11. Determine
∫

1
(a2− x2)

dx

Using partial fractions, let

1
(a2− x2)

≡ 1
(a − x)(a + x)

≡ A

(a − x)
+ B

(a + x)

≡ A(a + x) + B(a − x)

(a − x)(a + x)

Then 1≡ A(a+x)+B(a−x)

Let x=a then A= 1
2a
. Let x =−a then B = 1

2a

Hence
∫

1
(a2− x2)

dx

=
∫ 1
2a

[
1

(a − x)
+ 1

(a + x)

]

dx

= 1
2a
[−ln(a − x) + ln(a + x)]+ c

= 1
2a
ln

(
a+ x
a− x

)

+ c

Problem 12. Evaluate
∫ 2

0

5
(9− x2)

dx,

correct to 4 decimal places.

From Problem 11,
∫ 2

0

5
(9− x2)

dx = 5
[
1
2(3)

ln
(
3+ x

3− x

)]2

0

= 5
6

[

ln
5
1

− ln1
]

= 1.3412,correct to 4 decimal places.

Now try the following Practice Exercise

Practice Exercise 182 Integration using
partial fractions with quadratic factors
(Answers on page 883)

1. Determine
∫

x2− x − 13
(x2+ 7)(x − 2) dx

In Problems 2 to 4, evaluate the definite integrals
correct to 4 significant figures.

2.
∫ 6

5

6x − 5
(x − 4)(x2+ 3) dx

3.
∫ 2

1

4
(16− x2)

dx

4.
∫ 5

4

2
(x2− 9) dx

5. Show that
∫ 2

1

(
2+θ +6θ 2−2θ3

θ2(θ2+1)
)

dθ

= 1.606, correct to 4 significant figures.

For fully worked solutions to each of the problems in Practice Exercises 180 to 182 in this chapter,
go to the website:

www.routledge.com/cw/bird
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Chapter 45

The t = tan θ
2 substitution

Why it is important to understand: The t = tan
θ

2
substitution

Sometimes, with an integral containing sin θ and/or cos θ , it is possible, after making a substitution
t = tan

θ

2
, to obtain an integral which can be determined using partial fractions. This is explained in this

chapter where we continue to build the picture of integral calculus, each step building from the previous.
A simple substitution can make things so much easier.

At the end of this chapter, you should be able to:

• develop formulae for sin θ , cos θ and dθ in terms of t , where t = tan
θ

2
• integrate functions using t = tan

θ

2
substitution

45.1 Introduction

Integrals of the form
∫

1
a cosθ + b sinθ + c

dθ , where

a, b and c are constants, may be determinedby using the

substitution t = tan θ

2
. The reason is explained below.

If angle A in the right-angled triangle ABC shown in

Fig. 45.1 is made equal to
θ

2
then, since tangent=

opposite
adjacent

, if BC= t and AB=1, then tan θ

2
= t

�
2A

1
B

�1 1 t 2 

C

t

Figure 45.1

By Pythagoras’ theorem, AC= √
1+ t2

Therefore sin
θ

2
= t√

1+ t2
and cos

θ

2
= 1√

1+ t2
Since

sin2x=2sinx cosx (from double angle formulae,
Chapter 19), then

sinθ = 2sin θ

2
cos

θ

2

= 2
(

t√
1+ t2

)(
t√
1+ t2

)

i.e. sinθ = 2t
(1+ t2) (1)

Since cos2x = cos2 θ
2

− sin2 θ
2

=
(

1√
1+ t2

)2
−
(

t√
1+ t2

)2
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i.e. cosθ = 1− t
2

1+ t2 (2)

Also, since t = tan θ

2
,

dt
dθ

= 1
2
sec2

θ

2
= 1
2

(

1+ tan2 θ
2

)

from trigonometric

identities,

i.e.
dt
dθ

= 1
2
(1+ t2)

from which, dθ = 2d t
1+ t2 (3)

Equations (1), (2) and (3) are used to determine

integrals of the form
∫

1
a cosθ + b sinθ + c

dθ where
a, b or c may be zero.

45.2 Worked problems on the

t = tan θ

2
substitution

Problem 1. Determine
∫

dθ
sin θ

If t = tan θ

2
then sinθ = 2t

1+ t2
and dθ = 2dt

1+ t2
from

equations (1) and (3).

Thus
∫

dθ
sin θ

=
∫

1
sin θ

dθ

=
∫ 1

2t
1+ t2

(
2dt

1+ t2

)

=
∫ 1

t
dt = ln t + c

Hence
∫ dθ
sinθ

= ln
(
tan

θ

2

)
+ c

Problem 2. Determine
∫

dx
cosx

If tan
x

2
then cosx = 1− t2

1+ t2
and dx= 2dt

1+ t2
from

equations (2) and (3).

Thus
∫

dx
cosx

=
∫ 1
1− t2

1+ t2

(
2dt
1+ t2

)

=
∫ 2
1− t2

dt

2
1− t2

may be resolved into partial fractions (see

Chapter 2).

Let
2

1− t2
= 2

(1− t)(1+ t)

= A

(1− t)
+ B

(1+ t)

= A(1+ t) + B(1− t)

(1− t)(1+ t)

Hence 2= A(1+ t) + B(1− t)

When t = 1,2= 2A, from which, A = 1
When t = −1,2= 2B, from which, B = 1

Hence
∫

2dt
1− t2

=
∫

1
(1− t)

+ 1
(1+ t)

dt

= −ln(1− t) + ln(1+ t) + c

= ln
{

(1+ t)

(1− t)

}

+ c

Thus
∫ dx
cosx

= ln

⎧
⎪⎨

⎪⎩

1+ tan x
2

1− tan x
2

⎫
⎪⎬

⎪⎭
+c

Note that since tan
π

4
=1, the above result may be

written as:
∫

dx
cosx

= ln

⎧
⎪⎨

⎪⎩

tan
π

4
+ tan x

2
1− tan π

4
tan

x

2

⎫
⎪⎬

⎪⎭
+ c

= ln
{
tan

(π

4
+ x
2

)}
+c

from compound angles, Chapter 19.

Problem 3. Determine
∫

dx
1+cosx

If tan
x

2
then cos x = 1− t2

1+ t2
and dx= 2dt

1+ t2
from

equations (2) and (3).
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Thus
∫

dx
1+ cosx =

∫
1

1+ cosx dx

=
∫ 1

1+ 1− t2

1+ t2

(
2dt
1+ t2

)

=
∫

1
(1+ t2) + (1− t2)

1+ t2

(
2dt
1+ t2

)

=
∫
dt

Hence
∫

dx
1+cosx = t +c = tan x

2
+c

Problem 4. Determine
∫

dθ
5+4cosθ

If t = tan θ

2
then cos θ = 1− t2

1+ t2
and dx= 2dt

1+ t2
from equations (2) and (3).

Thus
∫

dθ
5+ 4cosθ =

∫

(
2dt
1+ t2

)

5+ 4
(
1− t2

1+ t2

)

=
∫

(
2dt
1+ t2

)

5(1+ t2) + 4(1− t2)

(1+ t2)

= 2
∫ dt

t2+ 9 = 2
∫ dt

t2+ 32

= 2
(
1
3
tan−1 t

3

)

+ c,

from 12 of Table 43.1, page 479. Hence
∫ dθ
5+4cosθ = 2

3
tan−1

(
1
3
tan

θ

2

)

+c

Now try the following Practice Exercise

Practice Exercise 183 The t= tan θ

2
substitution (Answers on page 883)

Integrate the followingwith respect to the variable:

1.
∫

dθ
1+ sinθ

2.
∫

dx
1− cosx + sinx

3.
∫

dα
3+ 2cosα

4.
∫

dx
3sinx − 4cosx

45.3 Further worked problems on

the t= tan θ

2
substitution

Problem 5. Determine
∫

dx
sinx + cosx

If tan
x

2
then sinx= 2t

1+ t2
, cosx = 1− t2

1+ t2
and

dx = 2dt
1+ t2

from equations (1), (2) and (3).

Thus

∫
dx

sinx + cosx =
∫ 2dt

1+ t2
(

2t
1+ t2

)

+
(
1− t2

1+ t2

)

=
∫ 2dt

1+ t2

2t + 1− t2

1+ t2

=
∫

2dt
1+ 2t − t2

=
∫ −2dt

t2− 2t − 1 =
∫ −2dt

(t − 1)2− 2

=
∫

2dt
(
√
2)2− (t − 1)2

= 2
[
1
2
√
2
ln

{√
2+ (t − 1)√
2− (t − 1)

}]

+ c

(see Problem 11, Chapter 44, page 493),

i.e.
∫ dx
sinx + cosx

= 1√
2
ln

⎧
⎪⎨

⎪⎩

√
2−1+ tan x

2√
2+1− tan x

2

⎫
⎪⎬

⎪⎭
+c
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Problem 6. Determine∫ dx
7− 3sinx +6cosx

From equations (1) and (3),
∫

dx
7− 3sinx + 6cosx

=
∫ 2dt

1+ t2

7− 3
(
2t
1+ t2

)

+ 6
(
1− t2

1+ t2

)

=
∫ 2dt

1+ t2

7(1+ t2) − 3(2t) + 6(1− t2)

1+ t2

=
∫

2dt
7+ 7t2− 6t + 6− 6t2

=
∫ 2dt

t2− 6t + 13 =
∫ 2dt

(t − 3)2+ 22

= 2
[
1
2
tan−1

(
t − 3
2

)]

+ c

from 12, Table 43.1, page 479. Hence
∫

dx
7− 3sinx + 6cosx

= tan−1

⎛

⎜
⎝
tan

x
2

−3
2

⎞

⎟
⎠+c

Problem 7. Determine
∫

dθ
4cosθ + 3sinθ

From equations (1) to (3),

∫
dθ

4cosθ + 3sinθ

=
∫ 2dt

1+ t2

4
(
1− t2

1+ t2

)

+ 3
(
2t
1+ t2

)

=
∫

2dt
4− 4t2+ 6t =

∫
dt

2+ 3t − 2t2

= −1
2

∫
dt

t2− 3
2
t − 1

= −1
2

∫
dt

(

t − 3
4

)2
− 25
16

= 1
2

∫ dt
(
5
4

)2
−
(

t − 3
4

)2

= 1
2

⎡

⎢
⎢
⎣

1

2
(
5
4

) ln

⎧
⎪⎪⎨

⎪⎪⎩

5
4

+
(

t − 3
4

)

5
4

−
(

t − 3
4

)

⎫
⎪⎪⎬

⎪⎪⎭

⎤

⎥
⎥
⎦+ c

from Problem 11, Chapter 44, page 493

= 1
5
ln

⎧
⎪⎨

⎪⎩

1
2

+ t

2− t

⎫
⎪⎬

⎪⎭
+ c

Hence
∫

dθ
4cosθ +3sinθ

= 1
5
ln

⎧
⎪⎨

⎪⎩

1
2

+ tan θ

2

2− tan θ

2

⎫
⎪⎬

⎪⎭
+c

or
1
5
ln

⎧
⎪⎨

⎪⎩

1+2tan θ

2

4−2tan θ

2

⎫
⎪⎬

⎪⎭
+c

Now try the following Practice Exercise

Practice Exercise 184 The t = tan θ

2
substitution (Answers on page 883)

In Problems 1 to 4, integrate with respect to the
variable.

1.
∫

dθ
5+4sinθ

2.
∫ dx
1+2sinx
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3.
∫ dp
3−4sinp+2cosp

4.
∫ dθ
3− 4sinθ

5. Show that
∫

dt
1+ 3cos t = 1

2
√
2
In

{√
2+ tan t

2√
2− tan t

2

}

+ c

6. Show that
∫ π/3

0

3dθ
cosθ

=3.95, correct to 3
significant figures.

7. Show that
∫ π/2

0

dθ
2+ cosθ = π

3
√
3

For fully worked solutions to each of the problems in Practice Exercises 183 and 184 in this chapter,
go to the website:

www.routledge.com/cw/bird
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Revision Test 13 Further integration

This Revision Test covers the material contained in Chapters 42 to 45. The marks for each question are shown in
brackets at the end of each question.

1. Determine the following integrals:

(a)
∫
5(6t +5)7 dt (b)

∫
3lnx

x
dx

(c)
∫

2√
(2θ − 1) dθ (10)

2. Evaluate the following definite integrals:

(a)
∫ π
2

0
2sin

(
2t + π

3

)
dt (b)

∫ 1

0
3x e4x

2−3 dx
(10)

3. Determine the following integrals:

(a)
∫
cos3 x sin2 x dx (b)

∫
2

√
(9−4x2)

dx

(c)
∫

2
√

(4x2−9)
dx (14)

4. Evaluate the following definite integrals, correct to
4 significant figures:

(a)
∫ π

2

0
3sin2 t dt (b)

∫ π
3

0
3cos5θ sin3θ dθ

(c)
∫ 2

0

5
4+ x2

dx (15)

5. Determine:

(a)
∫

x −11
x2−x−2dx

(b)
∫ 3−x

(x2+3)(x+3)dx (21)

6. Evaluate
∫ 2

1

3
x2(x+2)dx correct to 4 significant

figures. (12)

7. Determine:
∫

dx
2sinx + cosx

(8)

8. Evaluate
∫ π

2

π
3

dx
3− 2sinx correct to 3 decimal

places. (10)

For lecturers/instructors/teachers, fully worked solutions to each of the problems in Revision Test 13,
together with a full marking scheme, are available at the website:

www.routledge.com/cw/bird
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Chapter 46

Integration by parts

Why it is important to understand: Integration by parts
Integration by parts is a very important technique that is used often in engineering and science. It is
frequently used to change the integral of a product of functions into an ideally simpler integral. It is the
foundation for the theory of differential equations and is used with Fourier series. We have looked at
standard integrals followed by various techniques to change integrals into standard ones; integration by
parts is a particularly important technique for integrating a product of two functions.

At the end of this chapter, you should be able to:

• appreciate when integration by parts is required
• integrate functions using integration by parts
• evaluate definite integrals using integration by parts

46.1 Introduction

From the product rule of differentiation:

d
dx

(uv) = v
du
dx

+ u
dv
dx

,

where u and v are both functions of x.

Rearranging gives: u
dv
dx

= d
dx

(uv) − v
du
dx

Integrating both sides with respect to x gives:
∫

u
dv
dx
dx =

∫
d
dx

(uv)dx −
∫

v
du
dx
dx

i.e.
∫
u
dv
dx
dx=uv−

∫
v
du
dx
dx

or
∫
udv=uv−

∫
vdu

This is known as the integration by parts formula
and provides a method of integrating such prod-
ucts of simple functions as

∫
xex dx,

∫
t sin t dt ,∫

eθ cosθ dθ and
∫

x lnx dx.
Given a product of two terms to integrate the initial
choice is: ‘which part to make equal to u’ and ‘which
part tomake equal tov’. The choicemust be such that the
‘u part’ becomes a constant after successive differenti-
ation and the ‘dv part’ can be integrated from standard
integrals. Invariably, the following rule holds: If a prod-
uct to be integrated contains an algebraic term (such as
x, t2 or 3θ ) then this term is chosen as theu part. The one
exception to this rule is when a ‘lnx’ term is involved;
in this case lnx is chosen as the ‘u part’.

46.2 Worked problems on integration
by parts

Problem 1. Determine
∫

x cosx dx

Higher Engineering Mathematics. 978-1-138-67357-1, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.
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From the integration by parts formula,
∫

udv = uv −
∫

v du

Let u=x, from which
du
dx

=1, i.e. du=dx and let
dv= cosx dx, from which v= ∫

cosx dx= sinx.
Expressions for u, du and v are now substituted into the
‘by parts’ formula as shown below.

�

�

�

�

u

x

u v v

(x)

dv du

cos x dx (sin x) (sin x) (dx)

i.e.
∫

x cosx dx = x sinx − (−cosx) + c

= xsinx+cosx+c
[This result may be checked by differentiating the right-
hand side,

i.e.
d
dx

(x sinx + cosx + c)

= [(x)(cosx) + (sinx)(1)]− sinx + 0
using the product rule

= x cosx,which is the function being integrated.]

Problem 2. Find
∫
3te2t dt

Let u=3t , from which, du
dt

=3, i.e. du=3dt and

let dv=e2t dt , from which, v= ∫
e2t dt = 1

2
e2t

Substituting into
∫

udv=uv− ∫
v du gives:

∫
3te2t dt = (3t)

(
1
2
e2t

)

−
∫ (

1
2
e2t

)

(3dt)

= 3
2
te2t − 3

2

∫
e2t dt

= 3
2
te2t − 3

2

(
e2t

2

)

+ c

Hence
∫
3t e2t dt= 3

2 e
2t

(
t− 1

2

)
+c,

which may be checked by differentiating.

Problem 3. Evaluate
∫ π
2

0
2θ sin θ dθ

Let u=2θ , from which, du
dθ

=2, i.e. du=2dθ and let
dv=sinθ dθ , from which,

v =
∫
sin θ dθ =−cosθ

Substituting into
∫

udv=uv− ∫
v du gives:

∫
2θ sin θ dθ = (2θ)(−cosθ) −

∫
(−cosθ)(2dθ)

= −2θ cosθ + 2
∫
cosθ dθ

= −2θ cosθ + 2sinθ + c

Hence
∫ π

2

0
2θ sin θ dθ

= [−2θ cosθ + 2sinθ ]
π
2
0

=
[
−2

(π

2

)
cos

π

2
+ 2sin π

2

]
− [0+ 2sin0]

= (−0+ 2) − (0+ 0) = 2

sincecos
π

2
= 0 and sin π

2
= 1

Problem 4. Evaluate
∫ 1

0
5xe4x dx, correct to

3 significant figures.

Let u=5x, from which du
dx

=5, i.e. du=5dx and
let dv=e4x dx, from which, v= ∫

e4x dx = 1
4 e
4x

Substituting into
∫

udv=uv− ∫
v du gives:

∫
5xe4x dx = (5x)

(
e4x

4

)

−
∫ (

e4x

4

)

(5dx)

= 5
4
xe4x − 5

4

∫
e4x dx

= 5
4
xe4x − 5

4

(
e4x

4

)

+ c

= 5
4
e4x

(

x − 1
4

)

+ c
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Hence
∫ 1

0
5xe4x dx

=
[
5
4
e4x

(

x − 1
4

)]1

0

=
[
5
4
e4

(

1− 1
4

)]

−
[
5
4
e0

(

0− 1
4

)]

=
(
15
16
e4

)

−
(

− 5
16

)

= 51.186+ 0.313= 51.499= 51.5,
correct to 3 significant figures

Problem 5. Determine
∫

x2 sinx dx

Let u=x2, from which,
du
dx

=2x, i.e. du=2x dx, and
let dv= sinx dx, from which,

v =
∫
sinx dx = −cosx

Substituting into
∫

udv=uv− ∫
v du gives:

∫
x2 sinx dx = (x2)(−cosx) −

∫
(−cosx)(2x dx)

= −x2 cosx + 2
[∫

x cosx dx
]

The integral,
∫

x cosx dx, is not a ‘standard integral’
and it can only be determined by using the integration
by parts formula again.
From Problem 1,

∫
x cosx dx =x sinx + cosx

Hence
∫

x2sinx dx

= −x2 cosx + 2{x sinx + cosx} + c

= −x2 cosx + 2x sinx + 2cosx + c

= (2−x2)cosx+2xsinx+c
In general, if the algebraic term of a product is of power
n, then the integration by parts formula is applied n

times.

Now try the following Practice Exercise

Practice Exercise 185 Integration by parts
(Answers on page 883)

Determine the integrals in Problems 1 to 5 using
integration by parts.

1.
∫

xe2x dx

2.
∫
4x
e3x
dx

3.
∫

x sinx dx

4.
∫
5θ cos2θ dθ

5.
∫
3t2e2t dt

Evaluate the integrals in Problems 6 to 9, correct
to 4 significant figures.

6.
∫ 2

0
2xex dx

7.
∫ π
4

0
x sin2x dx

8.
∫ π
2

0
t2 cos t dt

9.
∫ 2

1
3x2e

x
2 dx

46.3 Further worked problems on
integration by parts

Problem 6. Find
∫

x lnx dx

The logarithmic function is chosen as the ‘u part’.

Thus when u= lnx, then
du
dx

= 1
x
, i.e. du= dx

x

Letting dv=x dx gives v= ∫
x dx = x2

2
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Substituting into
∫

udv=uv− ∫
v du gives:

∫
x lnx dx = (lnx)

(
x2

2

)

−
∫ (

x2

2

)
dx
x

= x2

2
lnx − 1

2

∫
x dx

= x2

2
lnx − 1

2

(
x2

2

)

+ c

Hence
∫

x lnx dx = x2

2

(

lnx− 1
2

)

+c or
x2

4
(2 lnx−1)+c

Problem 7. Determine
∫
lnx dx

∫
lnx dx is the same as

∫
(1) lnx dx

Let u= lnx, from which,
du
dx

= 1
x
, i.e. du= dx

x

and let dv=1dx, from which, v= ∫
1dx=x

Substituting into
∫

udv=uv− ∫
v du gives:

∫
lnx dx = (lnx)(x) −

∫
x
dx
x

= x lnx −
∫
dx = x lnx − x + c

Hence
∫
lnxdx= x(lnx−1)+c

Problem 8. Evaluate
∫ 9

1

√
x lnx dx, correct to

3 significant figures.

Let u = lnx, from which du = dx
x

and let dv=√
x dx=x

1
2 dx, from which,

v =
∫

x
1
2 dx = 2

3
x
3
2

Substituting into
∫

udv=uv−∫
v du gives:

∫ √
x lnx dx = (lnx)

(
2
3
x
3
2

)

−
∫ (

2
3
x
3
2

)(
dx
x

)

= 2
3

√
x3 lnx − 2

3

∫
x
1
2 dx

= 2
3

√
x3 lnx − 2

3

(
2
3
x
3
2

)

+ c

= 2
3

√
x3

[

lnx − 2
3

]

+ c

Hence
∫ 9

1

√
x lnx dx

=
[
2
3

√
x3

(

lnx − 2
3

)]9

1

=
[
2
3

√
93

(

ln9− 2
3

)]

−
[
2
3

√
13

(

ln1− 2
3

)]

=
[

18
(

ln9− 2
3

)]

−
[
2
3

(

0− 2
3

)]

= 27.550+ 0.444= 27.994= 28.0,
correct to 3 significant figures.

Problem 9. Find
∫
eax cosbx dx

When integrating a product of an exponential and a sine
or cosine function it is immaterial which part is made
equal to ‘u’

Let u=eax , from which
du
dx

=aeax ,

i.e. du=aeax dx and let dv= cosbx dx, from which,

v =
∫
cosbx dx = 1

b
sinbx

Substituting into
∫

udv=uv− ∫
v du gives:

∫
eax cosbx dx

= (eax)

(
1
b
sinbx

)

−
∫ (

1
b
sinbx

)

(aeax dx)

= 1
b
eax sinbx − a

b

[∫
eax sinbx dx

]

(1)

∫
eax sinbx dx is now determined separately using inte-
gration by parts again:
Let u=eax then du=aeax dx, and let dv= sinbx dx,
from which

v =
∫
sinbx dx = −1

b
cosbx
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Substituting into the integration by parts formula gives:
∫
eax sinbx dx = (eax)

(

−1
b
cosbx

)

−
∫ (

−1
b
cosbx

)

(aeax dx)

= −1
b
eax cosbx + a

b

∫
eax cosbx dx

Substituting this result into equation (1) gives:
∫
eax cosbx dx = 1

b
eax sinbx − a

b

[

−1
b
eax cosbx

+ a

b

∫
eax cosbx dx

]

= 1
b
eax sinbx + a

b2
eax cosbx

− a2

b2

∫
eax cosbx dx

The integral on the far right of this equation is the same
as the integral on the left hand side and thus they may
be combined.
∫
eax cosbx dx + a2

b2

∫
eax cosbx dx

= 1
b
eax sinbx + a

b2
eax cosbx

i.e.
(

1+ a2

b2

)∫
eax cosbxdx

= 1
b
eax sinbx + a

b2
eax cosbx

i.e.
(

b2+ a2

b2

)∫
eax cosbx dx

= eax

b2
(b sinbx + a cosbx)

Hence
∫
eax cosbx dx

=
(

b2

b2+ a2

)(
eax

b2

)

(b sinbx + a cosbx)

= eax

a2+b2 (bsinbx+acosbx)+c

Using a similar method to above, that is, integrating by
parts twice, the following result may be proved:

∫
eax sinbxdx

= eax

a2+b2 (asinbx−bcosbx)+c (2)

Problem 10. Evaluate
∫ π
4

0
et sin2t dt , correct to

4 decimal places.

Comparing
∫
et sin2t dt with

∫
eax sinbx dx shows that

x = t , a=1 and b=2
Hence, substituting into equation (2) gives:
∫ π

4

0
et sin2t dt

=
[

et

12+ 22 (1sin2t − 2cos2t)
]π
4

0

=
[
e

π
4

5

(
sin2

(π

4

)
− 2cos2

(π

4

))
]

−
[
e0

5
(sin0− 2cos0)

]

=
[
e

π
4

5
(1− 0)

]

−
[
1
5
(0− 2)

]

= e
π
4

5
+ 2
5

= 0.8387, correct to 4 decimal places.

Now try the following Practice Exercise

Practice Exercise 186 Integration by parts
(Answers on page 884)

Determine the integrals in Problems 1 to 5 using
integration by parts.

1.
∫
2x2 lnx dx

2.
∫
2 ln3x dx
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3.
∫

x2 sin3x dx

4.
∫
2e5x cos2x dx

5.
∫
2θ sec2 θ dθ

Evaluate the integrals in Problems 6 to 9, correct
to 4 significant figures.

6.
∫ 2

1
x lnx dx

7.
∫ 1

0
2e3x sin2x dx

8.
∫ π
2

0
et cos3t dt

9.
∫ 4

1

√
x3 lnx dx

10. In determining a Fourier series to repre-
sent f (x)=x in the range −π to π , Fourier
coefficients are given by:

an = 1
π

∫ π

−π

x cosnx dx

and bn = 1
π

∫ π

−π

x sinnx dx

where n is a positive integer. Show by
using integration by parts that an =0 and
bn =−2

n
cosnπ

11. The equations C =
∫ 1

0
e−0.4θ cos1.2θ dθ

and S=
∫ 1

0
e−0.4θ sin1.2θ dθ

are involved in the study of damped
oscillations. Determine the values of C

and S.

For fully worked solutions to each of the problems in Practice Exercises 185 and 186 in this chapter,
go to the website:

www.routledge.com/cw/bird
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Chapter 47

Reduction formulae
Why it is important to understand: Reduction formulae
When an integral contains a power of n, then it may sometimes be rewritten, using integration by parts,
in terms of a similar integral containing (n− 1) or (n − 2), and so on. The result is a recurrence relation,
i.e. an equation that recursively defines a sequence, once one or more initial terms are given; each further
term of the sequence is defined as a function of the preceding terms. It may sound difficult but it’s actually
quite straightforward and is just one more technique for integrating certain functions.

At the end of this chapter, you should be able to:

• appreciate when reduction formulae might be used

• integrate functions of the form
∫

xnex dx using reduction formulae

• integrate functions of the form
∫

xn cosx dx and
∫

xn sinx dx using reduction formulae

• integrate functions of the form
∫
sinn x dx and

∫
cosn x dx using reduction formulae

• integrate further functions using reduction formulae

47.1 Introduction

When using integration by parts in Chapter 46, an
integral such as

∫
x2ex dx requires integration by

parts twice. Similarly,
∫

x3ex dx requires integra-
tion by parts three times. Thus, integrals such as∫

x5ex dx,
∫

x6 cosx dx and
∫

x8 sin2x dx for example,
would take a long time to determine using integra-
tion by parts. Reduction formulae provide a quicker
method for determining such integrals and the method
is demonstrated in the following sections.

47.2 Using reduction formulae for
integrals of the form

∫
xnexdx

To determine
∫

xnex dx using integration by parts,

let u = xn from which,

du
dx

=nxn−1 and du=nxn−1 dx

and dv= ex dx from which,
v=

∫
ex dx =ex

Thus,
∫

xnex dx =xnex −
∫
exnxn−1 dx

using the integration by parts formula,

=xnex −n

∫
xn−1ex dx

The integral on the far right is seen to be of the same
form as the integral on the left-hand side, except that n
has been replaced by n−1
Thus, if we let,

∫
xnex dx = In

Higher Engineering Mathematics. 978-1-138-67357-1, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.
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then
∫

xn−1ex dx = In−1

Hence
∫

xnex dx =xnex −n

∫
xn−1ex dx

can be written as:
In = xnex−nIn−1 (1)

Equation (1) is an example of a reduction formula since
it expresses an integral in n in terms of the same integral
in n−1

Problem 1. Determine
∫

x2ex dx using a
reduction formula.

Using equation (1) with n=2 gives:
∫

x2ex dx = I2=x2ex −2I1
and I1= x1ex −1I0

I0=
∫

x0ex dx=
∫
ex dx=ex +c1

Hence I2= x2ex −2[xex −1I0]
= x2ex −2[xex −1(ex +c1)]

i.e.
∫
x2exdx= x2ex −2xex+2ex +2c1

= ex(x2−2x+2)+c
(where c=2c1)

As with integration by parts, in the following examples
the constant of integration will be added at the last step
with indefinite integrals.

Problem 2. Use a reduction formula to determine∫
x3ex dx

From equation (1), In =xnex −nIn−1

Hence
∫

x3ex dx =I3=x3ex −3I2
I2=x2ex −2I1
I1=x1ex −1I0

and I0=
∫

x0ex dx =
∫
ex dx =ex

Thus
∫

x3ex dx = x3ex −3[x2ex −2I1]
= x3ex −3[x2ex −2(xex −I0)]
= x3ex −3[x2ex −2(xex −ex)]
= x3ex −3x2ex +6(xex −ex)

= x3ex −3x2ex +6xex −6ex

i.e.
∫
x3exdx= ex(x3−3x2+6x−6)+c

Now try the following Practice Exercise

Practice Exercise 187 Using reduction
formulae for integrals of the form

∫
xnexdx

(Answers on page 884)

1. Use a reduction formula to determine∫
x4ex dx.

2. Determine
∫

t3e2tdt using a reduction for-
mula.

3. Use the result of Problem 2 to evaluate∫ 1
0 5t

3e2tdt, correct to 3 decimal places.

47.3 Using reduction formulae for
integrals of the form

∫
xn cosxdx

and
∫
xn sinxdx

(a)
∫
xncosxdx

Let In = ∫
xn cosx dx then, using integration by parts:

if u= xn then
du
dx

=nxn−1

and if dv= cosx dx then

v=
∫
cosx dx = sinx

Hence In = xn sinx −
∫

(sinx)nxn−1 dx

= xn sinx − n

∫
xn−1 sinx dx

Using integration by parts again, this time with
u=xn−1:

du
dx

= (n− 1)xn−2, and dv= sinx dx,

from which,

v=
∫
sinx dx = −cosx

Hence In = xn sinx − n

[

xn−1(−cosx)

−
∫

(−cosx)(n− 1)xn−2 dx
]

= xn sinx +nxn−1 cosx

−n(n− 1)
∫

xn−2 cosx dx

Download more at Learnclax.com
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i.e. In = xnsinx+nxn−1cosx
−n(n−1)In−2 (2)

Problem 3. Use a reduction formula to determine∫
x2 cosx dx

Using the reduction formula of equation (2):
∫

x2 cosx dx = I2

= x2 sinx+2x1 cosx − 2(1)I0
and I0=

∫
x0 cosx dx

=
∫
cosx dx = sinx

Hence
∫
x2cosxdx= x2sinx+2xcosx−2sinx+c

Problem 4. Evaluate
∫ 2

1
4t3 cos t dt , correct to 4

significant figures.

Let us firstly find a reduction formula for∫
t3 cos t dt .

From equation (2),
∫

t3 cos t dt = I3 = t3 sin t + 3t2 cos t − 3(2)I1

and

I1 = t1 sin t + 1t0 cos t − 1(0)In−2
= t sin t + cos t

Hence
∫

t3 cos t dt = t3 sin t + 3t2 cos t
− 3(2)[t sin t + cos t]

= t3sin t + 3t2cos t − 6t sin t − 6cos t
Thus
∫ 2

1
4t3 cos t dt

= [4(t3 sin t +3t2 cos t −6t sin t −6cos t)]21
= [4(8sin2+12cos2−12sin2− 6cos2)]

− [4(sin1+3cos1− 6sin1−6cos1)]
= (−24.53628)−(−23.31305)
= −1.223

Problem 5. Determine a reduction formula

for
∫ π

0
xn cosx dx and hence evaluate

∫ π

0
x4 cosx dx, correct to 2 decimal places.

From equation (2),

In = xn sinx + nxn−1 cosx − n(n− 1)In−2

hence
∫ π

0
xn cosx dx = [xn sinx + nxn−1 cosx]π0

−n(n− 1)In−2
= [(πn sinπ + nπn−1 cosπ)

−(0+ 0)]− n(n− 1)In−2
= −nπn−1− n(n− 1)In−2

Hence∫ π

0
x4 cosx dx =I4

=−4π3− 4(3)I2 since n = 4
When n=2,
∫ π

0
x2 cosx dx = I2 = −2π1− 2(1)I0

and I0=
∫ π

0
x0 cosx dx

=
∫ π

0
cosx dx

= [sinx]π0 = 0
Hence
∫ π

0
x4 cosx dx = −4π 3− 4(3)[−2π − 2(1)(0)]

= −4π3+ 24π or −48.63,
correct to 2 decimal places.

(b)
∫
xnsinxdx

Let In = ∫
xn sinx dx

Using integration by parts, if u=xn then
du
dx

=nxn−1 and if dv= sinx dx then
v= ∫

sinx dx =−cosx. Hence
∫

xn sinx dx

= In = xn(−cosx) −
∫

(−cosx)nxn−1 dx

= −xn cosx + n

∫
xn−1 cosx dx
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Using integration by parts again, with u=x n−1, from

which,
du
dx

=(n− 1)xn−2 and dv= cosx, from which,
v= ∫

cosx dx = sinx. Hence

In = −xn cosx + n

[

xn−1(sinx)

−
∫

(sinx)(n− 1)xn−2 dx
]

= −xn cosx + nxn−1(sinx)

− n(n− 1)
∫

xn−2 sinx dx

i.e. In=−xncosx+nxn−1 sinx− n(n− 1)In−2 (3)

Problem 6. Use a reduction formula to determine∫
x3 sinx dx

Using equation (3),
∫

x3 sinx dx = I3

= −x3 cosx + 3x2 sinx − 3(2)I1
and I1= −x1 cosx + 1x0 sinx

= −x cosx + sinx

Hence
∫

x3 sinx dx = −x3 cosx + 3x2 sinx

−6[−x cosx + sinx]

= −x3cosx+ 3x2sinx
+6xcosx−6sinx+ c

Problem 7. Evaluate
∫ π

2

0
3θ4 sinθ dθ , correct to 2

decimal places.

From equation (3),

In = [−xn cosx + nxn−1(sinx)]
π
2
0 − n(n− 1)In−2

=
[(

−
(π

2

)n

cos
π

2
+ n

(π

2

)n−1
sin

π

2

)

− (0)
]

− n(n− 1)In−2

= n
(π

2

)n−1−n(n− 1)In−2

Hence
∫ π

2

0
3θ4 sinθ dθ = 3

∫ π
2

0
θ4 sinθ dθ

= 3I4

= 3
[

4
(π

2

)3− 4(3)I2
]

I2 = 2
(π

2

)1− 2(1)I0

and I0 =
∫ π

2

0
θ0 sinθ dθ = [−cosx]

π
2
0

= [−0− (−1)]= 1
Hence

3
∫ π

2

0
θ4 sin θ dθ

= 3I4

= 3
[

4
(π

2

)3− 4(3)
{

2
(π

2

)1− 2(1)I0
}]

= 3
[

4
(π

2

)3− 4(3)
{

2
(π

2

)1− 2(1)(1)
}]

= 3
[

4
(π

2

)3− 24
(π

2

)1+ 24
]

= 3(15.503− 37.699+ 24)
= 3(1.8039) = 5.41

Now try the following Practice Exercise

Practice Exercise 188 Using reduction
formulae for integrals of the form

∫
xncosxdx

and
∫
xnsinxdx (Answers on page 884)

1. Use a reduction formula to determine∫
x5 cosx dx

2. Evaluate
∫ π

0
x5 cosx dx, correct to 2 decimal

places.

3. Use a reduction formula to determine∫
x5 sinx dx

4. Evaluate
∫ π

0
x5 sinx dx, correct to 2 decimal

places.
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47.4 Using reduction formulae for
integrals of the form

∫
sinn xdx

and
∫
cosn xdx

(a)
∫
sinnxdx

Let In = ∫
sinn x dx ≡ ∫

sinn−1 x sinx dx from laws of
indices.
Using integration by parts, letu= sinn−1 x, fromwhich,

du
dx

= (n− 1)sinn−2 x cosx and

du = (n− 1)sinn−2 x cosx dx

and let dv= sinx dx, from which,
v=∫

sinx dx =−cosx. Hence,

In =
∫
sinn−1 x sinx dx

= (sinn−1 x)(−cosx)

−
∫

(−cosx)(n− 1)sinn−2 x cosx dx

= −sinn−1 x cosx

+ (n− 1)
∫
cos2 x sinn−2 x dx

= −sinn−1 x cosx

+ (n− 1)
∫

(1− sin2 x)sinn−2 x dx

= −sinn−1 x cosx

+ (n− 1)
{∫

sinn−2 x dx −
∫
sinn x dx

}

i.e. In = −sinn−1 x cosx

+ (n− 1)In−2−(n− 1)In

i.e. In + (n− 1)In

= −sinn−1 x cosx + (n− 1)In−2

and nIn = −sinn−1 x cosx + (n− 1)In−2

from which,
∫
sinn x dx =

In = −1
n
sinn−1 xcosx+ n− 1

n
In−2 (4)

Problem 8. Use a reduction formula to determine∫
sin4 x dx

Using equation (4),
∫
sin4 x dx =I4= −1

4
sin3 x cosx + 3

4
I2

I2= −1
2
sin1 x cosx + 1

2
I0

and I0=
∫
sin0 x dx =

∫
1dx =x

Hence

∫
sin4 x dx = I4 = −1

4
sin3x cosx

+ 3
4

[

−1
2
sinx cosx + 1

2
(x)

]

= −1
4
sin3xcosx− 3

8
sinxcosx

+ 3
8
x+ c

Problem 9. Evaluate
∫ 1

0
4sin5 t dt , correct to 3

significant figures.

Using equation (4),
∫
sin5 t dt = I5= −1

5
sin4 t cos t + 4

5
I3

I3= −1
3
sin2 t cos t + 2

3
I1

and I1= −1
1
sin0 t cos t + 0= −cos t

Hence

∫
sin5 t dt = −1

5
sin4 t cos t

+ 4
5

[

−1
3
sin2 t cos t + 2

3
(−cos t)

]

= −1
5
sin4 t cos t − 4

15
sin2 t cos t

− 8
15
cos t + c
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and
∫ t

0
4sin5 t dt

= 4
[

−1
5
sin4 t cos t

− 4
15
sin2 t cos t − 8

15
cos t

]1

0

= 4
[(

−1
5
sin4 1cos1− 4

15
sin2 1cos1

− 8
15
cos1

)

−
(

−0− 0− 8
15

)]

= 4[(−0.054178− 0.1020196
− 0.2881612) − (−0.533333)]

= 4(0.0889745) = 0.356

Problem 10. Determine a reduction formula for
∫ π

2

0
sinn x dx and hence evaluate

∫ π
2

0
sin6 x dx

From equation (4),
∫
sinn x dx

=In =−1
n
sinn−1 x cosx + n− 1

n
In−2

hence
∫ π

2

0
sinn x dx =

[

−1
n
sinn−1 x cosx

]π
2

0
+ n−1

n
In−2

= [0−0]+ n−1
n

In−2

i.e. In= n−1
n
In−2

Hence
∫ π

2

0
sin6x dx = I6= 56 I4

I4= 3
4
I2, I2= 12 I0

and I0=
∫ π

2

0
sin0 x dx=

∫ π
2

0
1dx = π

2
Thus

∫ π
2

0
sin6 x dx = I6 = 5

6
I4 = 5

6

[
3
4
I2

]

= 5
6

[
3
4

{
1
2
I0

}]

= 5
6

[
3
4

{
1
2

[π

2

]}]

= 15
96

π

(b)
∫
cosnxdx

Let In =∫
cosn x dx ≡∫

cosn−1 x cosx dx from laws of
indices.
Using integration by parts, let u=cosn−1 x from
which,

du
dx

= (n−1)cosn−2 x(−sinx)

and du= (n−1)cosn−2 x(−sinx)dx

and let dv= cosx dx

from which, v=
∫
cosx dx = sinx

Then

In = (cosn−1 x)(sinx)

−
∫

(sinx)(n−1)cosn−2 x(−sinx)dx

= (cosn−1 x)(sinx)+(n−1)
∫
sin2 x cosn−2 x dx

= (cosn−1 x)(sinx)+(n−1)
∫

(1− cos2 x)cosn−2 x dx

= (cosn−1x)(sinx)

+(n−1)
{∫

cosn−2 x dx −
∫
cosn x dx

}

i.e. In =(cosn−1 x)(sinx)+(n−1)In−2−(n−1)In

i.e. In +(n−1)In =(cosn−1 x)(sinx)+(n−1)In−2

i.e. nIn =(cosn−1 x)(sinx)+(n−1)In−2

Thus In= 1
n
cosn−1 xsinx+ n−1

n In−2 (5)

Problem 11. Use a reduction formula to
determine

∫
cos4 x dx

Using equation (5),
∫
cos4 x dx =I4= 1

4
cos3 x sinx + 3

4
I2

and I2= 1
2
cosx sinx+ 1

2
I0

and I0=
∫
cos0 x dx

=
∫
1dx =x
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Hence
∫
cos4 x dx

= 1
4
cos3 x sinx + 3

4

(
1
2
cosx sinx + 1

2
x

)

= 1
4
cos3xsinx+ 3

8
cosxsinx+ 3

8
x+ c

Problem 12. Determine a reduction formula

for
∫ π

2

0
cosn x dx and hence evaluate

∫ π
2

0
cos5x dx

From equation (5),
∫
cosn x dx = 1

n
cosn−1 x sinx + n−1

n
In−2

and hence
∫ π

2

0
cosn x dx =

[
1
n
cosn−1 x sinx

]π
2

0

+ n−1
n

In−2

= [0−0]+ n−1
n

In−2

i.e.
∫ π
2

0
cosnxdx= In= n−1

n
In−2 (6)

(Note that this is the same reduction formula as for∫ π
2

0
sinn x dx (in Problem 10) and the result is usually

known asWallis’∗ formula.)

∗WhowasWallis? JohnWallis (23 November 1616–28 Octo-
ber 1703) was an English mathematician partially credited for
the development of infinitesimal calculus, and is also credited
with introducing the symbol ∞ for infinity. To find out more
go to www.routledge.com/cw/bird

Thus, from equation (6),

∫ π
2

0
cos5 x dx = 4

5
I3, I3= 23 I1

and I1=
∫ π

2

0
cos1 x dx

= [sinx]
π
2
0 =(1−0)=1

Hence
∫ π

2

0
cos5 x dx = 4

5
I3= 45

[
2
3
I1

]

= 4
5

[
2
3
(1)

]

= 8
15

Now try the following Practice Exercise

Practice Exercise 189 Using reduction
formulae for integrals of the form

∫
sinn

xdx and
∫

cosn xdx (Answers on page 884)

1. Use a reduction formula to determine∫
sin7 x dx

2. Evaluate
∫ π

0
3sin3 x dx using a reduction

formula.

3. Evaluate
∫ π

2

0
sin5 x dx using a reduction

formula.

4. Determine, using a reduction formula,∫
cos6 x dx

5. Evaluate
∫ π

2

0
cos7 x dx

47.5 Further reduction formulae

The following worked problems demonstrate further
examples where integrals can be determined using
reduction formulae.

Problem 13. Determine a reduction formula for∫
tann x dx and hence find

∫
tan7 x dx

Let In =
∫
tann x dx≡

∫
tann−2 x tan2 x dx

by the laws of indices

=
∫
tann−2 x(sec2 x −1)dx

since 1+ tan2 x = sec2 x

Download more at Learnclax.com
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=
∫
tann−2 x sec2 x dx −

∫
tann−2 x dx

=
∫
tann−2 x sec2 x dx −In−2

i.e. In = tann−1 x
n−1 −In−2

When n=7,

I7 =
∫
tan7 x dx = tan6 x

6
− I5

I5 = tan4 x
4

− I3 and I3 = tan2 x
2

− I1

I1 =
∫
tanx dx = ln(secx)

from Problem 9, Chapter 42, page 476

Thus
∫
tan7 x dx = tan6 x

6
−

[
tan4 x
4

−
(
tan2 x
2

− ln(secx)

)]

Hence
∫
tan7 xdx

=1
6
tan6 x− 1

4
tan4 x+ 1

2
tan2 x

− ln(secx) + c

Problem 14. Evaluate, using a reduction formula,
∫ π

2

0
sin2 t cos6 t dt

∫ π
2

0
sin2 t cos6 t dt =

∫ π
2

0
(1− cos2 t)cos6 t dt

=
∫ π

2

0
cos6 t dt −

∫ π
2

0
cos8 t dt

If In =
∫ π

2

0
cosn t dt

then
∫ π

2

0
sin2 t cos6 t dt = I6−I8

and from equation (6),

I6= 56I4= 56
[
3
4
I2

]

=5
6

[
3
4

(
1
2
I0

)]

and I0=
∫ π

2

0
cos0 t dt

=
∫ π

2

0
1dt = [x]

π
2
0 = π

2

Hence I6= 56 · 3
4

· 1
2

· π

2

= 15π
96

or
5π
32

Similarly, I8= 78I6= 78 · 5π
32

Thus
∫ π

2

0
sin2 t cos6 t dt = I6− I8

= 5π
32

− 7
8

· 5π
32

= 1
8

· 5π
32

= 5π
256

Problem 15. Use integration by parts to
determine a reduction formula for

∫
(lnx)n dx.

Hence determine
∫
(lnx)3 dx.

Let In = ∫
(lnx)n dx.

Using integration by parts, let u=(lnx)n, from which,

du
dx

= n(lnx)n−1
(
1
x

)

and du = n(lnx)n−1
(
1
x

)

dx

and let dv=dx, from which, v= ∫
dx =x

Then In =
∫

(lnx)n dx

= (lnx)n(x)−
∫

(x)n(lnx)n−1
(
1
x

)

dx

= x(lnx)n −n

∫
(lnx)n−1 dx

i.e. In = x(lnx)n− nIn−1
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When n=3,
∫

(lnx)3 dx = I3 = x(lnx)3− 3I2

I2=x(lnx)2−2I1 and I1=
∫
lnx dx =x(lnx −1) from

Problem 7, page 503.

Hence
∫

(lnx)3 dx = x(lnx)3− 3[x(lnx)2− 2I1]+ c

= x(lnx)3− 3[x(lnx)2

− 2[x(lnx − 1)]]+ c

= x(lnx)3− 3[x(lnx)2

− 2x lnx + 2x]+ c

= x(lnx)3− 3x(lnx)2

+ 6x lnx − 6x + c

= x[(lnx)3− 3(lnx)2
+6 lnx− 6]+ c

Now try the following Practice Exercise

Practice Exercise 190 Reduction formulae
(Answers on page 884)

1. Evaluate
∫ π

2

0
cos2 x sin5 x dx

2. Determine
∫
tan6 x dx by using reduction for-

mulae and hence evaluate
∫ π

4

0
tan6 x dx

3. Evaluate
∫ π

2

0
cos5 x sin4 x dx

4. Use a reduction formula to determine∫
(lnx)4 dx

5. Show that
∫ π

2

0
sin3 θ cos4 θ dθ = 2

35

For fully worked solutions to each of the problems in Practice Exercises 187 to 190 in this chapter,
go to the website:

www.routledge.com/cw/bird
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Chapter 48

Double and triple integrals

Why it is important to understand: Double and triple integrals
Double and triple integrals have engineering applications in finding areas, masses and forces of two-
dimensional regions, and in determining volumes, average values of functions, centres of mass, moments
of inertia, and surface areas.Amultiple integral is a type of definite integral extended to functions ofmore
than one real variable. This chapter explains how to evaluate double and triple integrals and completes
the many techniques of integral calculus explained in the preceding chapters.

At the end of this chapter, you should be able to:

• evaluate a double integral
• evaluate a triple integral

48.1 Double integrals

The procedure to determine a double integral of the

form:
∫ y2

y1

∫ x2

x1
f (x,y)dxdy is:

(i) integrate f (x,y) with respect to x between the
limits of x = x1 and x = x2 (where y is regarded
as being a constant), and

(ii) integrate the result in (i) with respect to y between
the limits of y = y1 and y = y2

It is seen from this procedure that to determine a double
integral we start with the innermost integral and then
work outwards.
Double integrals may be used to determine areas under
curves, secondmoments of area, centroids andmoments
of inertia.
(Sometimes

∫ y2

y1

∫ x2

x1

f (x,y)dx dy is written as:
∫ y2

y1

dy
∫ x2

x1

f (x,y)dx. All this means is that the right

hand side integral is determined first).

Determining double integrals is demonstrated in the
following worked problems.

Problem 1. Evaluate
∫ 3

1

∫ 5

2
(2x − 3y)dx dy

Following the above procedure:

(i) (2x − 3y) is integrated with respect to x between
x = 2 and x = 5, with y regarded as a constant

i.e.
∫ 5

2
(2x − 3y)dx

=
[
2x2

2
− (3y)x

]5

2
=

[
x2− 3xy

]5

2

=
[(
52− 3(5)y

)
−

(
22− 3(2)y

)]

= (25− 15y) − (4− 6y) = 25− 15y − 4+ 6y
= 21− 9y

Higher Engineering Mathematics. 978-1-138-67357-1, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.
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(ii)
∫ 3

1

∫ 5

2
(2x − 3y)dx dy

=
∫ 3

1
(21− 9y)dy

=
[

21y − 9y2

2

]3

1

=
[(

21(3) − 9(3)2

2

)

−
(

21(1) − 9(1)2

2

)]

= (63− 40.5) − (21− 4.5)
= 63− 40.5− 21+ 4.5= 6

Hence,
∫ 3

1

∫ 5

2
(2x− 3y)dxdy= 6

Problem 2. Evaluate
∫ 4

0

∫ 2

1
(3x2− 2)dx dy

Following the above procedure:

(i) (3x2− 2) is integrated with respect to x between
x = 1 and x = 2,

i.e.
∫ 2

1
(3x2− 2)dx

=
[
3x3

3
− 2x

]2

1
=

[(
23− 2(2)

)
−

(
13− 2(1)

)]

= (8− 4) − (1− 2) = 8− 4− 1+ 2= 5

(ii)
∫ 4

0

∫ 2

1
(3x2− 2)dx dy

=
∫ 4

0
(5)dy = [5y]40 = [(5(4))− (5(0))]

= 20− 0= 20

Hence,
∫ 4

0

∫ 2

1
(3x2− 2)dxdy= 20

Problem 3. Evaluate
∫ 3

1

∫ 2

0
(2x2y)dx dy

Following the above procedure:

(i) (2x2y) is integrated with respect to x between
x = 0 and x = 2,

i.e.
∫ 2

0
(2x2y)dx =

[
2x3y
3

]2

0

=
[(
2(2)3y
3

)

− (0)
]

= 16
3

y

(ii)
∫ 3

1

∫ 2

0
(2x2y)dx dy =

∫ 3

1

(
16
3

y

)

dy

=
[
16y2

6

]3

1
=

[(
16(3)2

6

)

−
(
16(1)2

6

)]

= 24− 2.67= 21.33

Hence,
∫ 3

1

∫ 2

0
(2x2y)dxdy= 21.33

Problem 4. Evaluate
∫ 3

1
dy

∫ 2

0
(2x2y)dx

With this configuration:

(i) (2x2y) is integrated with respect to x between
x = 0 and x = 2,

i.e.
∫ 2

0
(2x2y)dx =

[
2x3y
3

]2

0

=
[(
2(2)3y
3

)

− (0)
]

= 16
3

y

(ii)
∫ 3

1
dy

∫ 2

0
(2x2y)dx =

∫ 3

1
dy

(
16
3

y

)

=
∫ 3

1

(
16
3

y

)

dy =
[
16y2

6

]3

1

=
[(
16(3)2

6

)

−
(
16(1)2

6

)]

= 24− 2.67= 21.33

Hence,
∫ 3

1
dy

∫ 2

0
(2x2y)dx= 21.33

The last two worked problems show that

∫ 3

1

∫ 2

0
(2x2y)dx dy gives the same answer as

∫ 3

1
dy

∫ 2

0
2x2y dx

Problem 5. Evaluate
∫ 4

1

∫ π

0
(2+ sin2θ)dθ dr

Download more at Learnclax.com
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Following the above procedure:

(i) (2+ sin2θ) is integratedwith respect to θ between
θ = 0 and θ = π ,

i.e.
∫ π

0
(2+ sin2θ)dx =

[

2θ − 1
2
cos2θ

]π

0

=
[(

2π − 1
2
cos2π

)

−
(

0− 1
2
cos0

)]

= (2π − 0.5) − (0− 0.5) = 2π

(ii)
∫ 4

1

∫ π

0
(2+ sin2θ)dθ dr

=
∫ 4

1
(2π) dr = [2πr]41 = [(2π(4)) − (2π(1))]

= 8π − 2π = 6π or 18.85

Hence,
∫ 4

1

∫ π

0
(2+ sin2θ)dθ dr= 18.85

Now try the following Practice Exercise

Practice Exercise 191 Double integrals
(Answers on page 884)

Evaluate the double integrals in Problems 1 to 8.

1.
∫ 3

0

∫ 4

2
2dx dy

2.
∫ 2

1

∫ 3

2
(2x − y)dx dy

3.
∫ 2

1

∫ 3

2
(2x − y)dy dx

4.
∫ 5

1

∫ 2

−1
(x − 5y)dx dy

5.
∫ 6

1

∫ 5

2
(x2+ 4y)dx dy

6.
∫ 4

1

∫ 2

−3
(3xy2)dx dy

7.
∫ 3

−1

∫ π

0
(3+ sin2θ)dθ dr

8.
∫ 3

1
dx

∫ 4

2
(40− 2xy)dy

9. Thevolumeof a solid,V , boundedby the curve
4− x − y between the limits x = 0 to x = 1
and y = 0 to y = 2 is given by:

V=
∫ 2

0

∫ 1

0
(4− x − y)dx dy

Evaluate V .

10. The second moment of area, I , of a 5 cm by
3 cm rectangle about an axis through one cor-
ner perpendicular to the plane of the figure is
given by:

I =
∫ 5

0

∫ 3

0
(x2+ y2)dy dx

Evaluate I .

48.2 Triple integrals

The procedure to determine a triple integral of the form:∫ z2

z1

∫ y2

y1

∫ x2

x1
f(x, y, z)dxdydz is:

(i) integrate f (x,y,z) with respect to x between the
limits of x = x1 and x = x2 (where y and z are
regarded as being constants),

(ii) integrate the result in (i) with respect to y between
the limits of y = y1 and y = y2, and

(iii) integrate the result in (ii)with respect to z between
the limits of z = z1 and z = z2

It is seen from this procedure that to determine a triple
integral we start with the innermost integral and then
work outwards.

Determining triple integrals is demonstrated in the
following worked problems.

Problem 6. Evaluate
∫ 2

1

∫ 3

−1

∫ 2

0
(x − 3y + z)dx dy dz

Following the above procedure:

(i) (x − 3y + z) is integrated with respect to x

between x = 0 and x = 2, with y and z regarded
as constants,
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i.e.
∫ 2

0
(x − 3y + z)dx =

[
x2

2
− (3y)x + (z)x

]2

0

=
[(
22

2
− (3y)(2) + (z)(2)

)

− (0)
]

= 2− 6y + 2z

(ii) (2− 6y + 2z) is integrated with respect to y

between y = −1 and y = 3, with z regarded as
a constant, i.e.

∫ 3

−1
(2− 6y + 2z)dy

=
[

2y − 6y2

2
+ (2z)y

]3

−1

=
[(

2(3) − 6(3)2

2
+ (2z)(3)

)

−
(

2(−1) − 6(−1)2
2

+ (2z)(−1)
)]

= [(6− 27+ 6z) − (−2− 3− 2z)]
= 6− 27+ 6z+ 2+ 3+ 2z = 8z − 16

(iii) (8z − 16) is integrated with respect to z between
z = 1 and z = 2

i.e.
∫ 2

1
(8z − 16)dz =

[
8z2

2
− 16z

]2

1

=
[(
8(2)2

2
− 16(2)

)

−
(
8(1)2

2
− 16(1)

)]

= [(16− 32) − (4− 16)]
= 16− 32− 4+ 16= −4

Hence,
∫ 2

1

∫ 3

−1

∫ 2

0
(x− 3y+ z)dxdydz= −4

Problem 7. Evaluate
∫ 3

1

∫ 2

0

∫ 1

0
(2a2− b2+ 3c2)da dbdc

Following the above procedure:

(i) (2a2− b2+ 3c2) is integrated with respect to a

between a = 0 and a = 1, with b and c regarded
as constants,

i.e.
∫ 1

0
(2a2− b2+ 3c2)da

=
[
2a3

3
− (b2)a + (3c2)a

]1

0

=
[(
2
3

− (b2) + (3c2)
)

− (0)
]

= 2
3

− b2+ 3c2

(ii)
(
2
3

− b2+ 3c2
)

is integrated with respect to b

between b = 0 and b = 2, with c regarded as a
constant, i.e.
∫ 2

0

(
2
3

− b2+ 3c2
)

db =
[
2
3
b − b3

3
+ (3c2)b

]2

0

=
[(
2
3
(2) − (2)3

3
+ (3c2)(2)

)

− (0)
]

=
(
4
3

− 8
3

+ 6c2
)

− (0) = 6c2− 4
3

(iii)
(

6c2− 4
3

)

is integratedwith respect to c between

c = 1 and c = 3

i.e.
∫ 3

1

(

6c2− 4
3

)

dc =
[
6c3

3
− 4
3
c

]3

1

=
[

(54− 4) −
(

2− 4
3

)]

= [(50) − (0.67)]= 49.33

Hence,
∫ 3

1

∫ 2

0

∫ 1

0
(2a2− b2+ 3c2)dadbdc= 49.33

Now try the following Practice Exercise

Practice Exercise 192 Triple integrals
(Answers on page 884)

Evaluate the triple integrals in Problems 1 to 7.

1.
∫ 2

1

∫ 3

2

∫ 1

0
(8xyz)dzdx dy

2.
∫ 2

1

∫ 3

2

∫ 1

0
(8xyz)dx dy dz

3.
∫ 2

0

∫ 2

−1

∫ 3

1

(
x + y2+ z3

)
dx dy dz
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4.
∫ 3

2

∫ 1

−1

∫ 2

0
(x2+ 5y2− 2z)dx dy dz

5.
∫ π

0

∫ π

0

∫ π

0
(xy sinz)dx dy dz

6.
∫ 4

0

∫ −1

−2

∫ 2

1
(xy)dx dy dz

7.
∫ 3

1

∫ 2

0

∫ 1

−1
(xz + y)dx dy dz

8. A box shape X is described by the triple

integral: X =
∫ 3

0

∫ 2

0

∫ 1

0
(x + y + z)dzdy dx

EvaluateX.

For fully worked solutions to each of the problems in Practice Exercises 191 and 192 in this chapter,
go to the website:

www.routledge.com/cw/bird
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Chapter 49

Numerical integration

Why it is important to understand: Numerical integration
There are two main reasons for why there is a need to do numerical integration− analytical integration
may be impossible or infeasible, or it may be necessary to integrate tabulated data rather than known
functions. As has been mentioned before, there are many applications for integration. For example,
Maxwell’s equations can be written in integral form; numerical solutions of Maxwell’s equations can be
directly used for a huge number of engineering applications. Integration is involved in practically every
physical theory in some way − vibration, distortion under weight, or one of many types of fluid flow −
be it heat flow, air flow (over a wing), or water flow (over a ship’s hull, through a pipe, or perhaps even
groundwater flow regarding a contaminant), and so on; all these things can be either directly solved by
integration (for simple systems), or some type of numerical integration (for complex systems). Numerical
integration is also essential for the evaluation of integrals of functions available only at discrete points;
such functions often arise in the numerical solution of differential equations or from experimental data
taken at discrete intervals. Engineers therefore often require numerical integration and this chapter
explains the procedures available.

At the end of this chapter, you should be able to:

• appreciate the need for numerical integration
• evaluate integrals using the trapezoidal rule
• evaluate integrals using the mid-ordinate rule
• evaluate integrals using Simpson’s rule
• apply numerical integration to practical situations

49.1 Introduction

Even with advanced methods of integration there are
many mathematical functions which cannot be inte-
grated by analytical methods and thus approximate
methods have then to be used. In many cases, such as
in modelling airflow around a car, an exact answer may
not even be strictly necessary. Approximate methods of
definite integrals may be determined by what is termed
numerical integration.
It may be shown that determining the value of a definite
integral is, in fact, finding the area between a curve,

the horizontal axis and the specified ordinates. Three
methods of finding approximate areas under curves are
the trapezoidal rule, the mid-ordinate rule and Simp-
son’s rule, and these rules are used as a basis for
numerical integration.

49.2 The trapezoidal rule

Let a required definite integral bedenotedby
∫ b

a y dx and
be represented by the area under the graph of y = f (x)

between the limits x =a and x =b as shown in Fig. 49.1.
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y1 y2 y3 y4

x � a

yn�1

x � bO

y � f (x)

x

y

ddd

Figure 49.1

Let the range of integration be divided into n equal
intervals each of width d , such that nd =b − a, i.e.
d = b − a

n

The ordinates are labelled y1,y2,y3, . . . ,yn+1 as shown.
An approximation to the area under the curve may be
determined by joining the tops of the ordinates by
straight lines. Each interval is thus a trapezium, and
since the area of a trapezium is given by:

area= 1
2
(sum of parallel sides) (perpendicular

distance between them) then
∫ b

a

y dx ≈ 1
2
(y1+ y2)d+ 1

2
(y2+ y3)d

+ 1
2
(y3+ y4)d+ ·· · 1

2
(yn + yn+1)d

≈ d
[
1
2
y1+ y2+ y3+ y4+ ·· · + yn

+ 1
2
yn+1

]

i.e. the trapezoidal rule states:

∫ b

a
ydx≈

(
width of
interval

){
1
2

(
first+ last
ordinate

)

+
(
sum of remaining
ordinates

)} (1)

Problem 1. (a) Use integration to evaluate,

correct to 3 decimal places,
∫ 3

1

2√
x
dx (b) Use the

trapezoidal rule with four intervals to evaluate the
integral in part (a), correct to 3 decimal places.

(a)
∫ 3

1

2√
x
dx =

∫ 3

1
2x− 12 dx

=

⎡

⎢
⎣
2x

(−1
2

)
+1

−1
2

+ 1

⎤

⎥
⎦

3

1

=
[

4x
1
2

]3

1

= 4[√
x

]3
1 = 4

[√
3−

√
1
]

= 2.928,correct to 3 decimal places.
(b) The range of integration is the difference between

the upper and lower limits, i.e. 3− 1=2.Using the
trapezoidal rule with four intervals gives an inter-

val width d = 3− 1
4

=0.5 and ordinates situated
at 1.0, 1.5, 2.0, 2.5 and 3.0. Corresponding values

of
2√
x
are shown in the table below, each correct

to 4 decimal places (which is one more decimal
place than required in the problem).

x
2√
x

1.0 2.0000

1.5 1.6330

2.0 1.4142

2.5 1.2649

3.0 1.1547

From equation (1):
∫ 3

1

2√
x
dx ≈ (0.5)

{
1
2
(2.0000+ 1.1547)

+1.6330+ 1.4142+ 1.2649
}

= 2.945,correct to 3 decimal places.
This problemdemonstrates that evenwith just 4 inter-

vals a close approximation to the true value of 2.928
(correct to 3 decimal places) is obtained using the
trapezoidal rule.
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Problem 2. Use the trapezoidal rule with eight

intervals to evaluate
∫ 3

1

2√
x
dx correct to 3 decimal

places.

With eight intervals, the width of each is
3− 1
8

i.e. 0.25
giving ordinates at 1.00, 1.25, 1.50, 1.75, 2.00, 2.25,

2.50, 2.75 and 3.00. Corresponding values of
2√
x
are

shown in the table below.

x
2√
x

1.00 2.0000

1.25 1.7889

1.50 1.6330

1.75 1.5119

2.00 1.4142

2.25 1.3333

2.50 1.2649

2.75 1.2060

3.00 1.1547

From equation (1):
∫ 3

1

2√
x
dx ≈ (0.25)

{
1
2
(2.000+ 1.1547) + 1.7889

+ 1.6330+ 1.5119+ 1.4142

+1.3333+ 1.2649+ 1.2060
}

= 2.932,correct to 3 decimal places.
This problem demonstrates that the greater the number
of intervals chosen (i.e. the smaller the interval width)
the more accurate will be the value of the definite inte-
gral. The exact value is found when the number of
intervals is infinite, which is, of course,what the process
of integration is based upon.

Problem 3. Use the trapezoidal rule to evaluate
∫ π
2

0

1
1+ sinx

dx using six intervals. Give the

answer correct to 4 significant figures.

With six intervals, each will have a width of

π

2
− 0
6

i.e.
π

12
rad (or 15◦) and the ordinates occur at

0,
π

12
,
π

6
,
π

4
,
π

3
,
5π
12
and

π

2
Corresponding values of

1
1+ sinx

are shown in the
table below.

x
1

1+sin x
0 1.0000

π

12
(or 15◦) 0.79440

π

6
(or 30◦) 0.66667

π

4
(or 45◦) 0.58579

π

3
(or 60◦) 0.53590

5π
12
(or 75◦) 0.50867

π

2
(or 90◦) 0.50000

From equation (1):
∫ π
2

0

1
1+ sinx dx ≈

( π

12

){
1
2
(1.00000+ 0.50000)

+ 0.79440+ 0.66667
+ 0.58579+ 0.53590

+0.50867
}

= 1.006,correct to 4
significant figures.

Now try the following Practice Exercise

Practice Exercise 193 Trapezoidal rule
(Answers on page 884)

In Problems 1 to 4, evaluate the definite integrals
using the trapezoidal rule, giving the answers
correct to 3 decimal places.
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1.
∫ 1

0

2
1+ x2

dx (use eight intervals)

2.
∫ 3

1
2 ln3x dx (use eight intervals)

3.
∫ π
3

0

√
(sinθ)dθ (use six intervals)

4.
∫ 1.4

0
e−x2dx (use seven intervals)

49.3 The mid-ordinate rule

Let a required definite integral be denoted again
by

∫ b

a
y dx and represented by the area under the graph

of y=f (x) between the limits x=a and x=b, as shown
in Fig. 49.2.

y1 y2 y3 yn

a bO

y � f (x )

x

y

ddd

Figure 49.2

With the mid-ordinate rule each interval of width d is
assumed to be replaced by a rectangle of height equal to
the ordinate at the middle point of each interval, shown
as y1, y2, y3, . . . , yn in Fig. 49.2.

Thus

∫ b

a

y dx≈dy1+dy2+dy3+ ·· · +dyn

≈ d(y1+y2+y3+ ·· · +yn)

i.e. the mid-ordinate rule states:
∫ b

a
ydx≈ (width of interval) (sum

of mid-ordinates)
(2)

Problem 4. Use the mid-ordinate rule with
(a) four intervals, (b) eight intervals, to evaluate∫ 3

1

2√
x
dx, correct to 3 decimal places.

(a) With four intervals, each will have a width of
3− 1
4
, i.e. 0.5 and the ordinates will occur at 1.0,

1.5, 2.0, 2.5 and 3.0. Hence the mid-ordinates
y1, y2, y3 and y4 occur at 1.25, 1.75, 2.25 and

2.75. Corresponding values of
2√
x
are shown in

the following table.

x
2√
x

1.25 1.7889

1.75 1.5119

2.25 1.3333

2.75 1.2060

From equation (2):
∫ 3

1

2√
x
dx ≈ (0.5)[1.7889+ 1.5119

+ 1.3333+ 1.2060]
= 2.920,correct to 3 decimal places.

(b) With eight intervals, eachwill have awidth of 0.25
and the ordinates will occur at 1.00, 1.25, 1.50,
1.75, . . . and thus mid-ordinates at 1.125, 1.375,
1.625, 1.875 . . .

Corresponding values of
2√
x
are shown in the

following table.

x
2√
x

1.125 1.8856

1.375 1.7056

1.625 1.5689

1.875 1.4606

2.125 1.3720

2.375 1.2978

2.625 1.2344

2.875 1.1795
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From equation (2):

∫ 3

1

2√
x
dx ≈ (0.25)[1.8856+ 1.7056

+ 1.5689+ 1.4606+ 1.3720
+ 1.2978+ 1.2344+ 1.1795]

= 2.926,correct to 3 decimal places.

As previously, the greater the number of intervals
the nearer the result is to the true value (of 2.928, correct
to 3 decimal places).

Problem 5. Evaluate
∫ 2.4

0
e

−x2
3 dx, correct to 4

significant figures, using the mid-ordinate rule with
six intervals.

With six intervals each will have a width of
2.4− 0
6

, i.e.

0.40 and the ordinates will occur at 0, 0.40, 0.80, 1.20,
1.60, 2.00 and 2.40 and thusmid-ordinates at 0.20, 0.60,
1.00, 1.40, 1.80 and 2.20. Corresponding values of e

−x2
3

are shown in the following table.

x e
−x2
3

0.20 0.98676

0.60 0.88692

1.00 0.71653

1.40 0.52031

1.80 0.33960

2.20 0.19922

From equation (2):

∫ 2.4

0
e

−x2
3 dx ≈ (0.40)[0.98676+ 0.88692

+ 0.71653+ 0.52031
+ 0.33960+ 0.19922]

= 1.460, correct to 4 significant figures.

Now try the following Practice Exercise

Practice Exercise 194 Mid-ordinate rule
(Answers on page 884)

In Problems 1 to 4, evaluate the definite integrals
using the mid-ordinate rule, giving the answers
correct to 3 decimal places.

1.
∫ 2

0

3
1+ t2

dt (use eight intervals)

2.
∫ π
2

0

1
1+ sinθ

dθ (use six intervals)

3.
∫ 3

1

lnx

x
dx (use ten intervals)

4.
∫ π
3

0

√
(cos3x)dx (use six intervals)

49.4 Simpson’s rule

The approximation made with the trapezoidal rule is to
join the top of two successive ordinates by a straight
line, i.e. by using a linear approximation of the form
a+bx.WithSimpson’s∗ rule, the approximationmade
is to join the tops of three successive ordinates by a
parabola, i.e. by using a quadratic approximation of the
form a+bx+cx2.
Fig. 49.3 shows a parabola y =a+bx+cx 2 with ordi-
nates y1,y2 and y3 at x =−d,x =0 and x =d respec-
tively.
Thus the width of each of the two intervals is d . The
area enclosed by the parabola, the x-axis and ordinates
x = −d and x =d is given by:

∫ d

−d

(a + bx + cx2)dx =
[

ax + bx2

2
+ cx3

3

]d

−d

=
(

ad + bd2

2
+ cd3

3

)

∗ Who was Simpson? Thomas Simpson FRS (20 August
1710–14 May 1761) was the British mathematician who
invented Simpson’s rule to approximate definite integrals. For
an image of Simpson, see page 242. To find out more go to
www.routledge.com/cw/bird
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y

y1 y2 y3

y � a �bx �cx2

dO�d x

Figure 49.3

−
(

−ad + bd2

2
− cd3

3

)

= 2ad + 2
3
cd3 or

1
3

d(6a + 2cd2) (3)

Since y = a + bx + cx2,

at x = −d,y1 = a − bd + cd2

at x = 0, y2 = a

and at x = d, y3 = a + bd + cd2

Hence y1+ y3 = 2a + 2cd2
and y1+ 4y2+ y3 = 6a + 2cd2 (4)

Thus the area under the parabola between x =−d

and x=d in Fig. 49.3 may be expressed as
1
3 d(y1+4y2+y3), from equations (3) and (4), and the
result is seen to be independent of the position of the
origin.
Let a definite integral be denoted by

∫ b

a
y dx and

represented by the area under the graph of y =f (x)

between the limitsx=a andx=b, as shown inFig. 49.4.
The range of integration, b − a, is divided into an even
number of intervals, say 2n, each of width d .
Since an even number of intervals is specified, an odd
number of ordinates, 2n+ 1, exists. Let an approxima-
tion to the curve over the first two intervals be a parabola
of the form y=a + bx + cx2 which passes through the
tops of the three ordinates y1,y2 and y3. Similarly, let
an approximation to the curve over the next two inter-
vals be the parabola which passes through the tops of
the ordinates y3,y4 and y5, and so on.

y1 y2 y3 y4 y2n�1

a

d d d

b

y �f(x)

x

y

O

Figure 49.4

Then
∫ b

a

y dx

≈ 1
3

d(y1+ 4y2+ y3) + 1
3

d(y3+ 4y4+ y5)

+ 1
3

d(y2n−1+ 4y2n + y2n+1)

≈ 1
3

d[(y1+ y2n+1) + 4(y2+ y4+ ·· · + y2n)

+ 2(y3+ y5+ ·· · + y2n−1)]

i.e. Simpson’s rule states:∫ b

a
ydx≈ 1

3

(
width of
interval

){(
first + last
ordinate

)

+4
(
sum of even
ordinates

)

+2
(
sum of remaining
odd ordinates

)}

(5)

Note that Simpson’s rule can only be applied when an
even number of intervals is chosen, i.e. an odd number
of ordinates.

Problem 6. Use Simpson’s rule with (a) four

intervals, (b) eight intervals, to evaluate
∫ 3

1

2√
x
dx,

correct to 3 decimal places.

(a) With four intervals, each will have a

width of
3−1
4
, i.e. 0.5 and the ordinates will

occur at 1.0, 1.5, 2.0, 2.5 and 3.0. The values

Download more at Learnclax.com



Se
ct

io
n

I
526 Higher Engineering Mathematics

of the ordinates are as shown in the table of
Problem 1(b), page 522.
Thus, from equation (5):

∫ 3

1

2√
x
dx ≈ 1

3
(0.5) [(2.0000+ 1.1547)

+ 4(1.6330+ 1.2649) +2(1.4142)]

= 1
3
(0.5)[3.1547+ 11.5916

+ 2.8284]

= 2.929,correct to 3 decimal places.

(b) With eight intervals, each will have a width of
3− 1
8
, i.e. 0.25 and the ordinates occur at 1.00,

1.25, 1.50, 1.75, . . . , 3.0. The values of the ordi-
nates are as shown in the table in Problem 2,
page 522.
Thus, from equation (5):

∫ 3

1

2√
x
dx ≈ 1

3
(0.25) [(2.0000+ 1.1547)

+ 4(1.7889+ 1.5119+ 1.3333
+ 1.2060) + 2(1.6330+ 1.4142

+1.2649)]

= 1
3
(0.25)[3.1547+ 23.3604

+ 8.6242]
= 2.928,correct to 3 decimal places.

It is noted that the latter answer is exactly the same as
that obtained by integration. In general, Simpson’s rule
is regarded as themost accurate of the three approximate
methods used in numerical integration.

Problem 7. Evaluate

∫ π
3

0

√(

1− 1
3
sin2 θ

)

dθ

correct to 3 decimal places, using Simpson’s
rule with six intervals.

With six intervals, each will have a width of

π

3
− 0
6

i.e.

π

18
rad (or 10◦), and the ordinates will occur at

0,
π

18
,
π

9
,
π

6
,
2π
9

,
5π
18
and

π

3

Corresponding values of

√(

1− 1
3
sin2 θ

)

are shown in

the table below.

θ 0
π

18
π

9
π

6
(or 10◦) (or 20◦) (or 30◦)

√(

1− 1
3
sin2 θ

)

1.0000 0.9950 0.9803 0.9574

θ
2π
9

5π
18

π

3
(or 40◦) (or 50◦) (or 60◦)

√(

1− 1
3
sin2 θ

)

0.9286 0.8969 0.8660

From equation (5)

∫ π
3

0

√(

1− 1
3
sin2 θ

)

dθ

≈ 1
3

( π

18

)
[(1.0000+ 0.8660) + 4(0.9950

+ 0.9574+ 0.8969)
+2(0.9803+ 0.9286)]

= 1
3

( π

18

)
[1.8660+ 11.3972+ 3.8178]

= 0.994, correct to 3 decimal places.

Problem 8. An alternating current i has the
following values at equal intervals of
2.0milliseconds:

Time (ms) Current i (A)

0 0

2.0 3.5

4.0 8.2

6.0 10.0

8.0 7.3

10.0 2.0

12.0 0
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Charge q , in millicoulombs, is given by
q = ∫ 12.0

0 i dt .

Use Simpson’s rule to determine the approximate
charge in the 12millisecond period.

From equation (5):

Charge, q =
∫ 12.0

0
i dt ≈ 1

3
(2.0) [(0+ 0) + 4(3.5

+10.0+ 2.0) + 2(8.2+ 7.3)]
= 62mC

Now try the following Practice Exercise

Practice Exercise 195 Simpsons rule
(Answers on page 884)

In Problems 1 to 5, evaluate the definite integrals
using Simpson’s rule, giving the answers correct
to 3 decimal places.

1.
∫ π
2

0

√
(sinx)dx (use six intervals)

2.
∫ 1.6

0

1
1+ θ4

dθ (use eight intervals)

3.
∫ 1.0

0.2

sinθ

θ
dθ (use eight intervals)

4.
∫ π
2

0
x cosx dx (use six intervals)

5.
∫ π
3

0
ex
2
sin2x dx (use ten intervals)

In Problems 6 and 7 evaluate the definite inte-
grals using (a) integration, (b) the trapezoidal rule,
(c) the mid-ordinate rule, (d) Simpson’s rule. Give
answers correct to 3 decimal places.

6.
∫ 4

1

4
x3
dx (Use 6 intervals)

7.
∫ 6

2

1√
(2x − 1)dx (Use 8 intervals)

In Problems 8 and 9 evaluate the definite integrals
using (a) the trapezoidal rule, (b) the mid-ordinate
rule, (c) Simpson’s rule. Use 6 intervals in each
case and give answers correct to 3 decimal places.

8.
∫ 3

0

√
(1+ x4)dx

9.
∫ 0.7

0.1

1
√

(1− y2)
dy

10. A vehicle starts from rest and its velocity is
measured every second for 8s, with values as
follows:

time t (s) velocity v (ms−1)

0 0

1.0 0.4

2.0 1.0

3.0 1.7

4.0 2.9

5.0 4.1

6.0 6.2

7.0 8.0

8.0 9.4

The distance travelled in 8.0s is given by∫ 8.0
0 v dt

Estimate this distance using Simpson’s rule,
giving the answer correct to 3 significant
figures.

11. A pin moves along a straight guide so that its
velocity v (m/s) when it is a distance x(m)

from the beginning of the guide at time t(s) is
given in the table on the right.

Use Simpson’s rule with eight intervals to
determine the approximate total distance trav-
elled by the pin in the 4.0s period.
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t (s) v (m/s)

0 0

0.5 0.052

1.0 0.082

1.5 0.125

2.0 0.162

2.5 0.175

3.0 0.186

3.5 0.160

4.0 0

49.5 Accuracy of numerical
integration

For a function with an increasing gradient, the trape-
zoidal rule will tend to over-estimate and the mid-
ordinate rule will tend to under-estimate (but by half
as much). The appropriate combination of the two in
Simpson’s rule eliminates this error term, giving a rule
which will perfectly model anything up to a cubic, and
have a proportionately lower error for any function of
greater complexity.
In general, for a given number of strips, Simp-

son’s rule is considered the most accurate of the three
numerical methods.

For fully worked solutions to each of the problems in Practice Exercises 193 to 195 in this chapter,
go to the website:

www.routledge.com/cw/bird
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Revision Test 14 Further integration

This Revision Test covers the material contained in Chapters 46 to 49. The marks for each question are shown in
brackets at the end of each question.

1. Determine the following integrals:

(a)
∫
5x e2x dx (b)

∫
t2 sin2t dt (14)

2. Evaluate correct to 3 decimal places:
∫ 4

1

√
x lnx dx (11)

3. Use reduction formulae to determine:

(a)
∫

x3e3x dx (b)
∫

t4 sin t dt (14)

4. Evaluate
∫ π

2

0
cos6 x dx using a reduction

formula. (6)

5. Evaluate
∫ 3

1

∫ π

0
(1+ sin3θ)dθdr correct to 4 sig-

nificant figures. (7)

6. Evaluate
∫ 3

0

∫ 1

−1

∫ 2

1
(2x + y2+ 4z3)dx dy dz (9)

7. Evaluate
∫ 3

1

5
x2
dx using (a) integration (b) the

trapezoidal rule (c) the mid-ordinate rule
(d) Simpson’s rule. In each of the approximate
methods use eight intervals and give the answers
correct to 3 decimal places. (19)

8. An alternating current i has the following values at
equal intervals of 5ms:

Time t(ms) 0 5 10 15 20 25 30

Current i(A) 0 4.8 9.1 12.7 8.8 3.5 0

Charge q , in coulombs, is given by

q =
∫ 30×10−3

0
i dt

Use Simpson’s rule to determine the approximate
charge in the 30ms period. (5)

For lecturers/instructors/teachers, fully worked solutions to each of the problems in Revision Test 14,
together with a full marking scheme, are available at the website:

www.routledge.com/cw/bird
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Chapter 50

Homogeneous first-order
differential equations

Why it is important to understand: Homogeneous first-order differential equations
As was previously stated, differential equations play a prominent role in engineering, physics, economics,
and other disciplines. Applications are many and varied; for example, they are involved in combined
heat conduction and convection with the design of heating and cooling chambers, in fluid mechanics
analysis, in heat transfer analysis, in kinematic analysis of rigid body dynamics, with exponential decay
in radioactive material, Newton’s law of cooling and in mechanical oscillations. This chapter explains
how to solve a particular type of differential equation – the homogeneous first-order type.

At the end of this chapter, you should be able to:

• Recognise a homogeneous differential equation

• solve a differential equations of the form P
dy
dx

= Q

50.1 Introduction

Certain first-order differential equations are not of the
‘variable-separable’ type, but can be made separable by
changing the variable.

An equation of the form P
dy
dx

=Q, where P andQ are
functions of both x and y of the same degree throughout,
is said to be homogeneous in y and x. For exam-
ple, f (x, y)=x2+3xy+y2 is a homogeneous function
since each of the three terms are of degree 2. However,

f (x,y)= x2− y

2x2+ y2
is not homogeneous since the term

in y in the numerator is of degree 1 and the other three
terms are of degree 2.

50.2 Procedure to solve differential

equations of the form P
dy
dx

=Q

(i) Rearrange P
dy
dx

=Q into the form
dy
dx

= Q

P

(ii) Make the substitution y =vx (where v is a func-

tion of x), from which,
dy
dx

=v(1)+x
dv
dx
, by the

product rule.

(iii) Substitute for both y and
dy
dx

in the equation
dy
dx

= Q

P
. Simplify, by cancelling, and an equation

results in which the variables are separable.

Higher Engineering Mathematics. 978-1-138-67357-1, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.
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(iv) Separate the variables and solve using themethod
shown in Chapter 33.

(v) Substitute v= y

x
to solve in terms of the original

variables.

50.3 Worked problems on
homogeneous first-order
differential equations

Problem 1. Solve the differential equation:

y − x =x
dy
dx
, given x=1 when y =2

Using the above procedure:

(i) Rearranging y − x=x
dy
dx
gives:

dy
dx

= y − x

x

which is homogeneous in x and y

(ii) Let y=vx, then
dy
dx

=v+x
dv
dx

(iii) Substituting for y and
dy
dx
gives:

v+x
dv
dx

= vx − x

x
=x(v − 1)

x
=v − 1

(iv) Separating the variables gives:

x
dv
dx

=v − 1− v=−1, i.e. dv=− 1
x
dx

Integrating both sides gives:
∫
dv=

∫
−1

x
dx

Hence, v=−lnx+c

(v) Replacing v by
y

x
gives:

y

x
=−ln x+c, which is

the general solution.

When x =1,y =2, thus: 2
1

=− ln1+c from
which, c=2
Thus, the particular solution is:

y

x
=− lnx +2

or y=−x(ln x−2) or y=x(2− ln x)

Problem 2. Find the particular solution of the

equation: x
dy
dx

= x2+ y2

y
, given the boundary

conditions that y =4 when x=1

Using the procedure of section 50.2:

(i) Rearranging x
dy
dx

= x2+ y2

y
gives:

dy
dx

= x2+ y2

xy
which is homogeneous in x and y

since each of the three terms on the right-hand
side are of the same degree (i.e. degree 2).

(ii) Let y=vx then
dy
dx

=v+x
dv
dx

(iii) Substituting for y and
dy
dx

in the equation

dy
dx

= x2+ y2

xy
gives:

v + x
dv
dx

= x2+ v2x2

x(vx)
= x2+ v2x2

vx2
= 1+ v2

v

(iv) Separating the variables gives:

x
dv
dx

= 1+ v2

v
− v= 1+ v2− v2

v
= 1

v

Hence, v dv= 1
x
dx

Integrating both sides gives:

∫
v dv =

∫
1
x
dx i.e.

v2

2
= lnx +c

(v) Replacing v by
y

x
gives:

y2

2x2
= lnx+c, which is

the general solution.

When x =1,y =4, thus: 16
2

= ln1+c from
which, c=8

Hence, the particular solution is:
y2

2x2
= lnx +8

or y2=2x2(8+ lnx)
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Now try the following Practice Exercise

Practice Exercise 196 Homogeneous
first-order differential equations (Answers
on page 885)

1. Find the general solution of: x 2=y2
dy
dx

2. Find the general solution of:

x −y+x
dy
dx

=0

3. Find the particular solution of the differen-
tial equation: (x2+ y2)dy=xy dx, given that
x =1 when y=1

4. Solve the differential equation:
x + y

y − x
= dy
dx

5. Find the particular solution of the differential

equation:
(
2y − x

y + 2x
)
dy
dx

=1 given that y =3
when x=2

50.4 Further worked problems on
homogeneous first-order
differential equations

Problem 3. Solve the equation:
7x(x−y)dy= 2(x2+ 6xy − 5y2)dx
given that x =1 when y =0

Using the procedure of Section 50.2:

(i) Rearranging gives:
dy
dx

= 2x
2+ 12xy − 10y2
7x2− 7xy

which is homogeneous in x and y since each of
the terms on the right-hand side is of degree 2.

(ii) Let y =vx then
dy
dx

=v+x
dv
dx

(iii) Substituting for y and
dy
dx
gives:

v+x
dv
dx

= 2x2+ 12x(vx)−10 (vx)2

7x2− 7x(vx)

= 2+ 12v − 10v2
7− 7v

(iv) Separating the variables gives:

x
dv
dx

= 2+ 12v − 10v2
7− 7v − v

= (2+ 12v − 10v2) − v(7− 7v)

7− 7v

= 2+ 5v − 3v2
7− 7v

Hence,
7− 7v

2+ 5v − 3v2 dv= dx
x

Integrating both sides gives:
∫ (

7− 7v
2+ 5v − 3v2

)

dv=
∫
1
x
dx

Resolving
7− 7v

2+ 5v − 3v2 into partial fractions

gives:
4

(1+ 3v)
− 1

(2− v)
(see Chapter 2)

Hence,
∫ (

4
(1+ 3v)

− 1
(2− v)

)

dv=
∫
1
x
dx

i.e.
4
3
ln(1+ 3v)+ ln(2− v)= lnx +c

(v) Replacing v by
y

x
gives:

4
3
ln

(

1+ 3y
x

)

+ ln
(
2− y

x

)
= ln+c

or
4
3
ln

(
x + 3y

x

)

+ ln
(
2x − y

x

)

= ln+c

When x=1,y =0, thus: 4
3
ln1+ ln2= ln1+c

from which, c= ln 2
Hence, the particular solution is:

4
3
ln

(
x + 3y

x

)

+ ln
(
2x − y

x

)

= ln + ln2

i.e. ln
(

x + 3y
x

)4
3
(
2x − y

x

)

= ln(2x)

from the laws of logarithms

i.e.
(
x+3y
x

)4
3
(
2x−y
x

)

=2x
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Problem 4. Show that the solution of the

differential equation: x 2−3y2+2xy
dy
dx

=0 is:
y =x

√
(8x + 1), given that y =3 when x=1

Using the procedure of Section 50.2:

(i) Rearranging gives:

2xy
dy
dx

=3y2− x2 and
dy
dx

= 3y
2− x2

2xy

(ii) Let y =vx then
dy
dx

=v+x
dv
dx

(iii) Substituting for y and
dy
dx
gives:

v + x
dv
dx

= 3 (vx)2− x2

2x(vx)
= 3v2 − 1

2v

(iv) Separating the variables gives:

x
dv
dx

= 3v
2− 1
2v

− v= 3v
2− 1− 2v2
2v

= v2− 1
2v

Hence,
2v

v2 − 1 dv= 1
x
dx

Integrating both sides gives:
∫ 2v

v2− 1 dv=
∫ 1

x
dx

i.e. ln(v2− 1)= lnx + c

(v) Replacing v by
y

x
gives:

ln
(

y2

x2
− 1

)

= lnx + c,

which is the general solution.

When y =3,x=1, thus: ln
(
9
1

− 1
)

= ln1+c

from which, c= ln 8

Hence, the particular solution is:

ln
(

y2

x2
− 1

)

= lnx+ ln8= ln8x
by the laws of logarithms

Hence,
(

y2

x2
− 1

)

=8x i.e. y2

x2
=8x+1 and

y2=x2 (8x + 1)
i.e. y = x√(8x+1)

Now try the following Practice Exercise

Practice Exercise 197 Homogeneous
first-order differential equations (Answers
on page 885)

1. Solve the differential equation:
xy3 dy=(x4+ y4)dx

2. Solve: (9xy − 11xy)
dy
dx

=11y2−16xy+3x2

3. Solve the differential equation:

2x
dy
dx

=x +3y, given that when x =1, y =1
4. Show that the solution of the differential equa-

tion: 2xy
dy
dx

=x2+ y2 can be expressed as:

x =K(x2− y2), where K is a constant.

5. Determine the particular solution of
dy
dx

= x3+ y3

xy2
, given that x =1 when y =4

6. Show that the solution of the differential

equation
dy
dx

= y3− xy2− x2y − 5x3
xy2− x2y − 2x3 is of the

form:
y2

2x2
+ 4y

x
+ 18ln

(
y − 5x

x

)

= lnx +42,
when x =1 and y =6

For fully worked solutions to each of the problems in Practice Exercises 196 and 197 in this chapter,
go to the website:

www.routledge.com/cw/bird
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Chapter 51

Linear first-order differential
equations

Why it is important to understand: Linear first-order differential equations
As has been stated in previous chapters, differential equations have many applications in engineering
and science. For example, first-order differential equations model phenomena of cooling, population
growth, radioactive decay, mixture of salt solutions, series circuits, survivability with AIDS, draining a
tank, economics and finance, drug distribution, pursuit problem and harvesting of renewable natural
resources. This chapter explains how to solve another specific type of equation, the linear first-order
differential equation.

At the end of this chapter, you should be able to:

• recognise a linear differential equation

• solve a differential equation of the form
dy
dx

+ Py = Q where P andQ are functions of x only

51.1 Introduction

An equation of the form
dy
dx

+Py =Q, where P and
Q are functions of x only is called a linear differen-
tial equation since y and its derivatives are of the first
degree.

(i) The solution of
dy
dx

+Py =Q is obtained by
multiplying throughout by what is termed an
integrating factor.

(ii) Multiplying
dy
dx

+Py =Q by say R, a function
of x only, gives:

R
dy
dx

+RPy =RQ (1)

(iii) The differential coefficient of a product Ry is
obtained using the product rule,

i.e.
d
dx

(Ry) = R
dy
dx

+ y
dR
dx

which is the same as the left-hand side of
equation (1), when R is chosen such that

RP= dR
dx

(iv) If
dR
dx

=RP, then separating the variables

gives
dR
R

=P dx

Higher Engineering Mathematics. 978-1-138-67357-1, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.
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Integrating both sides gives:
∫
dR
R

=
∫

P dx i.e. lnR=
∫

P dx+c

from which,

R = e
∫
P dx+c = e

∫
P dxec

i.e. R=Ae
∫

P dx , where A=ec =a constant.
(v) Substituting R=Ae

∫
P dx in equation (1) gives:

Ae
∫

P dx
(
dy
dx

)

+ Ae
∫

P dxPy = Ae
∫

P dxQ

i.e. e
∫

P dx
(
dy
dx

)

+ e
∫

P dxPy = e
∫

P dxQ (2)

(vi) The left-hand side of equation (2) is

d
dx

(
ye

∫
P dx

)

which may be checked by differentiating
ye

∫
P dx with respect to x, using the product rule.

(vii) From equation (2),

d
dx

(
ye

∫
P dx

)
= e

∫
P dxQ

Integrating both sides gives:

ye
∫
Pdx =

∫
e
∫
PdxQdx (3)

(viii) e
∫

P dx is the integrating factor.

51.2 Procedure to solve differential
equations of the form
dy
dx

+Py=Q

(i) Rearrange the differential equation into the form
dy
dx

+Py =Q, where P andQ are functions of x

(ii) Determine
∫

P dx

(iii) Determine the integrating factor e
∫

P dx

(iv) Substitute e
∫

P dx into equation (3)

(v) Integrate the right-hand side of equation (3) to
give the general solution of the differential equa-
tion. Given boundary conditions, the particular
solution may be determined.

51.3 Worked problems on linear
first-order differential equations

Problem 1. Solve
1
x

dy
dx

+4y=2 given the
boundary conditions x =0 when y =4

Using the above procedure:

(i) Rearranginggives
dy
dx

+4xy=2x, which is of the

form
dy
dx

+Py =Q where P =4x andQ=2x

(ii)
∫

Pdx = ∫
4xdx=2x2

(iii) Integrating factor e
∫

P dx = e2x2

(iv) Substituting into equation (3) gives:

ye2x
2 =

∫
e2x

2
(2x)dx

(v) Hence the general solution is:

ye2x
2 = 1

2e
2x2 + c,

by using the substitution u=2x 2 When x =0,
y =4, thus 4e0= 1

2 e
0+c, from which, c= 7

2

Hence the particular solution is

ye2x
2 = 1

2e
2x2 + 7

2

or y= 1
2 + 7

2 e
−2x2 or y= 1

2

(
1+7e−2x2

)

Problem 2. Show that the solution of the equation
dy
dx

+1=−y

x
is given by y= 3−x2

2x
, given

x =1 when y=1

Using the procedure of Section 51.2:

(i) Rearranging gives:
dy
dx

+
(
1
x

)

y =−1, which is

of the form
dy
dx

+Py =Q, where P = 1
x
and

Q=−1. (Note that Q can be considered to be
−1x0, i.e. a function of x)

(ii)
∫

P dx=
∫
1
x
dx = lnx

(iii) Integrating factor e
∫

P dx =elnx =x (from the def-
inition of logarithm).
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(iv) Substituting into equation (3) gives:

yx=
∫

x(−1)dx

(v) Hence the general solution is:

yx= −x2

2
+c

When x =1, y=1, thus 1= −1
2

+c, from

which, c= 3
2

Hence the particular solution is:

yx = −x2

2
+ 3
2

i.e. 2yx = 3− x2 and y= 3 − x2

2x

Problem 3. Determine the particular solution of
dy
dx

−x +y =0, given that x =0 when y =2

Using the procedure of Section 51.2:

(i) Rearranging gives
dy
dx

+y =x, which is of the

form
dy
dx

+P,=Q, where P =1 and Q=x.

(In this case P can be considered to be 1x 0, i.e. a
function of x).

(ii)
∫

P dx = ∫
1dx =x

(iii) Integrating factor e
∫

P dx =ex
(iv) Substituting in equation (3) gives:

yex =
∫
ex(x)dx (4)

(v)
∫
ex(x)dx is determined using integration by
parts (see Chapter 46).

∫
xex dx = xex − ex + c

Hence from equation (4): yex =xex −ex +c,
which is the general solution.
When x =0, y =2 thus 2e0=0−e0+c, from
which, c=3
Hence the particular solution is:

yex = xex− ex+ 3 or y= x− 1+ 3e−x

Now try the following Practice Exercise

Practice Exercise 198 Linear first-order
differential equations (Answers on page
885)

Solve the following differential equations.

1. x
dy
dx

=3−y

2.
dy
dx

=x(1−2y)

3. t
dy
dt

−5t =−y

4. x

(
dy
dx

+1
)

=x3−2y, given x =1 when
y =3

5.
1
x

dy
dx

+y=1

6.
dy
dx

+x =2y

51.4 Further worked problems on
linear first-order differential
equations

Problem 4. Solve the differential equation
dy
dθ

= secθ +y tanθ given the boundary conditions
y =1 when θ =0

Using the procedure of Section 51.2:

(i) Rearranging gives
dy
dθ

−(tanθ)y= secθ , which is

of the form
dy
dθ

+Py =Q where P =−tanθ and
Q= secθ

(ii)
∫

P dx =∫ − tanθdθ =− ln(secθ)

= ln(secθ)−1= ln(cosθ)

(iii) Integrating factor e
∫

P dθ =eln(cosθ) = cosθ
(from the definition of a logarithm).

(iv) Substituting in equation (3) gives:

y cosθ =
∫
cosθ(secθ)dθ

i.e. y cosθ =
∫
dθ

Download more at Learnclax.com
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(v) Integrating gives: y cosθ =θ +c, which is the
general solution. When θ =0, y =1, thus
1cos0=0+c, from which, c=1
Hence the particular solution is:

ycosθ = θ + 1 or y= (θ + 1)sec θ

Problem 5.
(a) Find the general solution of the equation

(x − 2)dy
dx

+ 3(x − 1)
(x + 1) y = 1

(b) Given the boundary conditions that y =5 when
x=−1, find the particular solution of the
equation given in (a).

(a) Using the procedure of Section 51.2:

(i) Rearranging gives:

dy
dx

+ 3(x − 1)
(x + 1)(x − 2) y = 1

(x − 2)
which is of the form
dy
dx

+Py =Q, where P = 3(x−1)
(x +1)(x−2)

andQ= 1
(x −2)

(ii)
∫

P dx =
∫

3(x−1)
(x +1)(x−2) dx, which is

integrated using partial fractions.

Let
3x−3

(x+1)(x−2)
≡ A

(x +1) + B

(x −2)

≡ A(x−2)+B(x +1)
(x +1)(x−2)

from which, 3x−3=A(x−2)+B(x +1)
When x =−1,

−6=−3A, from which, A=2

When x =2,
3=3B, from which, B =1

Hence
∫

3x−3
(x +1)(x−2) dx

=
∫ [

2
x + 1 + 1

x − 2
]

dx

= 2 ln(x + 1) + ln(x − 2)
= ln[(x + 1)2(x − 2)]

(iii) Integrating factor

e
∫

P dx = eln[(x+1)2(x−2)] = (x + 1)2(x − 2)
(iv) Substituting in equation (3) gives:

y(x + 1)2(x − 2)

=
∫

(x + 1)2(x − 2) 1
x − 2 dx

=
∫

(x + 1)2 dx
(v) Hence the general solution is:

y(x+ 1)2(x− 2)= 1
3 (x+ 1)3+ c

(b) When x =−1, y =5 thus 5(0)(−3)=0+c, from
which, c=0
Hence y(x+1)2(x −2)= 1

3 (x +1)3

i.e. y= (x +1)3
3(x+1)2(x −2)

and hence the particular solution is

y= (x+ 1)
3(x− 2)

Now try the following Practice Exercise

Practice Exercise 199 Linear first-order
differential equations (Answers on
page 885)

In problems 1 and 2, solve the differential equa-
tions.

1. cotx
dy
dx

=1−2y, given y =1 when x= π

4

2. t
dθ
dt

+ sec t (t sin t + cos t)θ = sec t , given
t =π when θ =1

3. Given the equation x
dy
dx

= 2
x +2 −y show

that the particular solution is y= 2
x
ln(x +2),

given the boundary conditions that x=−1
when y =0

4. Show that the solution of the differential
equation

dy
dx

− 2(x + 1)3 = 4
(x + 1)y
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is y=(x +1)4 ln (x+1)2, given that x =0
when y=0

5. Show that the solution of the differential
equation

dy
dx

+ ky = a sinbx

is given by:

y =
(

a

k2+ b2

)

(k sinbx − b cosbx)

+
(

k2+ b2+ ab

k2+ b2

)

e−kx,

given y =1 when x =0

6. The equation
dv
dt

=−(av+bt), where a and b

are constants, represents an equation ofmotion
when a particle moves in a resisting medium.
Solve the equation for v given that v=uwhen
t =0

7. In an alternating current circuit containing
resistance R and inductance L the current

i is given by: Ri +L
di
dt

=E0 sinωt . Given
i =0 when t =0, show that the solution of the
equation is given by:

i =
(

E0

R2 + ω2L2

)

(R sinωt − ωLcosωt)

+
(

E0ωL

R2 + ω2L2

)

e−Rt/L

8. The concentration C of impurities of an oil
purifier varies with time t and is described by

the equation a
dC
dt

=b+dm−Cm, where a,
b, d and m are constants. Given C =c0 when
t =0, solve the equation and show that:

C =
(

b

m
+ d

)
(
1− e−mt/α

) + c0e−mt/α

9. The equation of motion of a train is given

by:m
dv
dt

=mk(1−e−t )−mcv, where v is the
speed, t is the time and m, k and c are con-
stants. Determine the speed v given v=0 at
t =0.

For fully worked solutions to each of the problems in Practice Exercises 198 and 199 in this chapter,
go to the website:

www.routledge.com/cw/bird
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Chapter 52

Numerical methods for
first-order differential

equations

Why it is important to understand: Numerical methods for first-order differential equations
Most physical systems can be described in mathematical terms through differential equations. Specific
types of differential equation have been solved in the preceding chapters, i.e. the separable-variable type,
the homogeneous type and the linear type. However, differential equations such as those used to solve
real-life problemsmay not necessarily be directly solvable, i.e. do not have closed form solutions. Instead,
solutions can be approximated using numerical methods and in science and engineering, a numeric
approximation to the solution is often good enough to solve a problem. Various numerical methods are
explained in this chapter.

At the end of this chapter, you should be able to:

• state the reason for solving differential equations using numerical methods
• obtain a numerical solution to a first-order differential equation using Euler’s method
• obtain a numerical solution to a first-order differential equation using the Euler–Cauchy method
• obtain a numerical solution to a first-order differential equation using the Runge–Kutta method

52.1 Introduction

Not all first-order differential equations may be solved
by separating the variables (as in Chapter 33) or
by the integrating factor method (as in Chapter 51).
A number of other analytical methods of solving

differential equations exist. However the differential
equations that can be solved by such analytical meth-
ods is fairly restricted. Where a differential equation
and known boundary conditions are given, an approxi-
mate solutionmay be obtainedby applying a numerical
method. There are a number of such numericalmethods

Higher Engineering Mathematics. 978-1-138-67357-1, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.
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available and the simplest of these is called Euler’s∗
method.

52.2 Euler’s method

From Chapter 8, Maclaurin’s series may be stated as:

f (x) = f (0) + x f ′(0) + x2

2!
f ′′(0) + ·· ·

Hence at some point f (h) in Fig. 52.1:

f (h) = f (0) + hf ′(0) + h2

2!
f ′′(0) + ·· ·

If the y-axis and origin are moved a units to the left,
as shown in Fig. 52.2, the equation of the same curve
relative to the new axis becomes y =f (a + x) and the
function value at P is f (a).
At point Q in Fig. 52.2:

f (a+h)= f (a)+h f ′(a)+ h2

2!
f ′′(a)+ ··· (1)

∗ Who was Euler? Leonhard Euler (15 April 1707–18
September 1783) was a pioneering Swiss mathematician and
physicist who made important discoveries in infinitesimal cal-
culus and graph theory. He also introduced much of the modern
mathematical terminology and notation. To find out more go to
www.routledge.com/cw/bird

y
y 5 f (x)

P

h
x

Q

f (0)

f (h)

0

Figure 52.1

y y 5 f (a 1x)

P

ha
x

Q

f (a) f (a 1x)

0

Figure 52.2

which is a statement called Taylor’s∗ series.

∗ Who was Taylor? Brook Taylor (18 August 1685–29
December 1731) solved the problem of the centre of oscillation
of a body. In 1712 Taylor was elected to the Royal Society. Tay-
lor added a new branch to mathematics now called the ‘calculus
of finite differences’, invented integration by parts, and discov-
ered the celebrated series known as Taylor’s expansion. To find
out more go to www.routledge.com/cw/bird
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If h is the interval between two new ordinates y0
and y1, as shown in Fig. 52.3, and if f (a)=y0 and
y1 = f (a + h), then Euler’s method states:

f (a + h) = f (a) + hf ′(a)

i.e. y1 = y0+h ( y′)0 (2)

y

y 5 f (x)

P

h

a x

Q

y0 y1

(a 1 h)0

Figure 52.3

The approximation used with Euler’s method is to take
only the first two terms of Taylor’s series shown in
equation (1).
Hence if y0, h and (y ′)0 are known, y1, which is an
approximate value for the function at Q in Fig. 52.3,
can be calculated.
Euler’s method is demonstrated in the worked problems
following.

52.3 Worked problems on Euler’s
method

Problem 1. Obtain a numerical solution of the
differential equation

dy
dx

= 3(1+ x) − y

given the initial conditions that x=1 when y =4,
for the range x =1.0 to x =2.0 with intervals of 0.2
Draw the graph of the solution.

dy
dx

= y ′ = 3(1+ x) − y

With x0=1 and y0=4, ( y′)0=3(1+ 1) − 4=2
By Euler’s method:

y1 = y0+ h(y ′)0, from equation (2)

Hence y1 = 4+ (0.2)(2) = 4.4, since h = 0.2
At pointQ in Fig. 52.4, x1=1.2, y1=4.4

and (y ′)1 = 3(1+ x1) − y1

i.e. ( y′)1 = 3(1+ 1.2) − 4.4= 2.2

y

P

h

x

Q

y0

x05 1 x15 1.2

y1

0

4

4.4

Figure 52.4

If the values of x, y and y ′ found for point Q are
regarded as new starting values of x0, y0 and (y ′)0, the
above process can be repeated and values found for the
point R shown in Fig. 52.5.

y

P

h

x

Q

R

y0

x05 1.2 x15 1.4

y1

0 1.0

Figure 52.5
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Thus at point R,

y1 = y0+ h(y ′)0 from equation (2)

= 4.4+ (0.2)(2.2) = 4.84

When x1=1.4 and y1=4.84,
( y′)1=3(1+ 1.4) − 4.84=2.36
This step-by-step Euler’s method can be continued and
it is easiest to list the results in a table, as shown
in Table 52.1. The results for lines 1 to 3 have been
produced above.

Table 52.1
x0 y0 (y ′)0

1. 1 4 2

2. 1.2 4.4 2.2

3. 1.4 4.84 2.36

4. 1.6 5.312 2.488

5. 1.8 5.8096 2.5904

6. 2.0 6.32768

For line 4, where x0 = 1.6:
y1 = y0+ h(y ′)0

= 4.84+ (0.2)(2.36) = 5.312

and ( y′)0 = 3(1+ 1.6) − 5.312= 2.488

For line 5, where x0=1.8:
y1 = y0+ h(y ′)0

= 5.312+ (0.2)(2.488) = 5.8096

and ( y′)0 = 3(1+ 1.8) − 5.8096= 2.5904

For line 6, where x0 = 2.0:
y1 = y0+ h(y ′)0

= 5.8096+ (0.2)(2.5904)

= 6.32768

(As the range is 1.0 to 2.0 there is no need to calculate
(y ′)0 in line 6.) The particular solution is given by the
value of y against x.

A graph of the solution of
dy
dx

=3(1+ x) − ywith initial

conditions x =1 and y=4 is shown in Fig. 52.6.
In practice it is probably best to plot the graph as
each calculation is made, which checks that there is a
smooth progression and that no calculation errors have
occurred.

y

x

6.0

5.0

4.0
1.0 1.2 1.4 1.6 1.8 2.0

Figure 52.6

Problem 2. Use Euler’s method to obtain a
numerical solution of the differential equation
dy
dx

+ y=2x, given the initial conditions that at
x =0, y =1, for the range x =0(0.2)1.0. Draw the
graph of the solution in this range.

x =0(0.2)1.0means that x ranges from 0 to 1.0 in equal
intervals of 0.2 (i.e. h=0.2 in Euler’s method).

dy
dx

+ y = 2x,

hence
dy
dx

= 2x − y, i.e. y ′ = 2x − y
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If initially x0=0 and y0=1, then
( y′)0=2(0)−1=−1
Hence line 1 in Table 52.2 can be completed with
x =0, y =1 and y ′(0)=−1

Table 52.2
x0 y0 (y ′)0

1. 0 1 −1
2. 0.2 0.8 −0.4
3. 0.4 0.72 0.08

4. 0.6 0.736 0.464

5. 0.8 0.8288 0.7712

6. 1.0 0.98304

For line 2, where x0=0.2 and h=0.2:

y1 = y0+ h(y ′), from equation (2)

= 1+ (0.2)(−1) = 0.8

and ( y′)0 = 2x0− y0 = 2(0.2) − 0.8= −0.4

For line 3, where x0=0.4:

y1 = y0+ h(y ′)0

= 0.8+ (0.2)(−0.4) = 0.72

and ( y′)0 = 2x0− y0 = 2(0.4) − 0.72= 0.08

For line 4, where x0=0.6:

y1 = y0+ h(y ′)0

= 0.72+ (0.2)(0.08) = 0.736

and ( y′)0 = 2x0− y0 = 2(0.6) − 0.736= 0.464

For line 5, where x0=0.8:

y1 = y0+ h(y ′)0

= 0.736+ (0.2)(0.464) = 0.8288
and ( y′)0 = 2x0− y0 = 2(0.8) − 0.8288= 0.7712

For line 6, where x0=1.0:
y1 = y0+ h(y ′)0

= 0.8288+ (0.2)(0.7712) = 0.98304
As the range is 0 to 1.0, (y ′)0 in line 6 is not needed.

A graph of the solution of
dy
dx

+y =2x, with initial
conditions x =0 and y =1 is shown in Fig. 52.7.

y

x

1.0

0.5

0 0.2 0.4 0.6 0.8 1.0

Figure 52.7

Problem 3.
(a) Obtain a numerical solution, using

Euler’s method, of the differential equation
dy
dx

=y − x, with the initial conditions that at
x =0, y=2, for the range x=0(0.1)0.5. Draw
the graph of the solution.

(b) By an analytical method (using the integrating
factor method of Chapter 51), the solution of
the above differential equation is given by
y =x + 1+ ex
Determine the percentage error at x =0.3

(a)
dy
dx

=y ′ =y − x

If initially x0=0 and y0=2
then (y ′)0=y0− x0=2−0=2
Hence line 1 of Table 52.3 is completed.

For line 2, where x0=0.1:
y1 = y0+ h(y ′)0, from equation (2),

= 2+ (0.1)(2) = 2.2
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Table 52.3
x0 y0 (y ′)0

1. 0 2 2

2. 0.1 2.2 2.1

3. 0.2 2.41 2.21

4. 0.3 2.631 2.331

5. 0.4 2.8641 2.4641

6. 0.5 3.11051

and (y′)0 = y0− x0

= 2.2− 0.1= 2.1
For line 3, where x0=0.2:

y1 = y0+ h(y ′)0

= 2.2+ (0.1)(2.1) = 2.41
and ( y′)0 = y0− x0 = 2.41− 0.2= 2.21
For line 4, where x0=0.3:

y1 = y0+ h(y ′)0

= 2.41+ (0.1)(2.21) = 2.631
and ( y′)0 = y0− x0

= 2.631− 0.3= 2.331
For line 5, where x0=0.4:

y1 = y0+ h(y ′)0
= 2.631+ (0.1)(2.331) = 2.8641

and ( y′)0 = y0− x0

= 2.8641− 0.4= 2.4641
For line 6, where x0 = 0.5:

y1 = y0+ h(y ′)0

= 2.8641+ (0.1)(2.4641)= 3.11051

A graph of the solution of
dy
dx

=y − x with x =0, y =2
is shown in Fig. 52.8.

(b) If the solution of the differential equation
dy
dx

=y −x is given by y=x +1+ex , then when
x =0.3, y =0.3+1+e0.3=2.649859

y

x

3.0

2.5

2.0
0 0.1 0.2 0.3 0.4 0.5

Figure 52.8

By Euler’s method, when x =0.3 (i.e. line 4 in
Table 52.3), y =2.631
Percentage error

=
(
actual− estimated

actual

)

× 100%

=
(
2.649859− 2.631

2.649859

)

× 100%

= 0.712%

Euler’s method of numerical solution of differential
equations is simple, but approximate. The method is
most useful when the interval h is small.

Now try the following Practice Exercise

Practice Exercise 200 Eulers method
(Answers on page 885)

1. Use Euler’s method to obtain a numer-
ical solution of the differential equation
dy
dx

=3− y

x
, with the initial conditions that

x =1 when y =2, for the range x=1.0 to
x =1.5 with intervals of 0.1. Draw the graph
of the solution in this range.
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2. Obtain a numerical solution of the differen-

tial equation
1
x

dy
dx

+ 2y =1, given the initial
conditions that x =0 when y =1, in the range
x =0(0.2)1.0

3. (a) The differential equation
dy
dx

+ 1= −y

x
has the initial conditions that y =1 at
x =2. Produce a numerical solution of
the differential equation in the range
x =2.0(0.1)2.5

(b) If the solution of the differential equa-
tion by an analytical method is given

by y = 4
x

− x

2
, determine the percentage

error at x =2.2

4. UseEuler’smethod to obtain a numerical solu-
tion of the differential equation

dy
dx

=x− 2y
x
,

given the initial conditions that y =1 when
x =2, in the range x=2.0(0.2)3.0.
If the solution of the differential equation is

given by y = x2

4
, determine the percentage

error by using Euler’s method when x=2.8

52.4 The Euler–Cauchy method

In Euler’s method of Section 52.2, the gradient (y ′)0 at
P(x0,y0) in Fig. 52.9 across the whole interval h is used

y

P

x0 x1 x

Q

R

y0

0

h

Figure 52.9

to obtain an approximate value of y1 at pointQ. QR in
Fig. 52.9 is the resulting error in the result.
In an improved Euler method, called the Euler–
Cauchy∗ method, the gradient at P(x0,y0) across half
the interval is used and then continues with a line whose
gradient approximates to the gradient of the curve at x 1,
shown in Fig. 52.10.
Let yP1 be the predicted value at point R using Euler’s
method, i.e. length RZ, where

yP1 = y0+h(y′)0 (3)

The error shown as QT in Fig. 52.10 is now less
than the error QR used in the basic Euler method and
the calculated results will be of greater accuracy. The
corrected value, yC1 in the improved Euler method is
given by:

yC1 = y0+ 1
2h[(y

′)0+ f (x1, yP1)] (4)

∗ Who was Cauchy? Baron Augustin-Louis Cauchy (21
August 1789–23 May 1857) was a French mathematician who
became an early pioneer of analysis. A prolific writer; he wrote
approximately 800 research articles. To find out more go to
www.routledge.com/cw/bird
∗ Who was Euler? For image and resumé of Leonhard
Euler, see page 543. To find out more go to www.rout
ledge.com/cw/bird
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y

P S

x0 x1 x

Q

R

Z

T

0

h

x0 h1 1
2

Figure 52.10

The following worked problems demonstrate how
equations (3) and (4) are used in the Euler–Cauchy
method.

Problem 4. Apply the Euler–Cauchy method to
solve the differential equation

dy
dx

= y − x

in the range 0(0.1)0.5, given the initial conditions
that at x =0, y =2

dy
dx

= y ′ = y − x

Since the initial conditions are x0=0 and y0=2
then (y ′)0=2−0=2. Interval h=0.1, hence
x1= x0+ h=0+ 0.1=0.1
From equation (3),

yP1 = y0+ h(y ′)0 = 2+ (0.1)(2) = 2.2
From equation (4),

yC1 = y0+ 1
2h[(y

′)0+ f (x1,yP1)]

= y0+ 1
2h[(y

′)0+ (yP1 − x1)],

in this case

= 2+ 1
2 (0.1)[2+ (2.2− 0.1)]= 2.205

(y ′)1 = yC1 − x1 = 2.205− 0.1= 2.105
If we produce a table of values, as in Euler’s method,
we have so far determined lines 1 and 2 of Table 52.4.
The results in line 2 are now taken as x0, y0 and (y ′)0
for the next interval and the process is repeated.

Table 52.4
x y y′

1. 0 2 2

2. 0.1 2.205 2.105

3. 0.2 2.421025 2.221025

4. 0.3 2.649232625 2.349232625

5. 0.4 2.89090205 2.49090205

6. 0.5 3.147446765

For line 3, x1=0.2

yP1 = y0+ h(y ′)0 = 2.205+ (0.1)(2.105)

= 2.4155
yC1 = y0+ 1

2h[(y
′)0+ f (x1,yP1)]

= 2.205+ 1
2 (0.1)[2.105+ (2.4155− 0.2)]

= 2.421025
(y ′)0 = yC1 − x1 = 2.421025− 0.2= 2.221025

For line 4, x1=0.3

yP1 = y0+ h(y ′)0

= 2.421025+ (0.1)(2.221025)

= 2.6431275
yC1 = y0+ 1

2h[(y
′)0+ f (x1,yP1)]

= 2.421025+ 1
2 (0.1)[2.221025

+ (2.6431275− 0.3)]
= 2.649232625

(y ′)0 = yC1 − x1 = 2.649232625− 0.3
= 2.349232625

For line 5, x1=0.4

yP1 = y0+ h(y ′)0

= 2.649232625+ (0.1)(2.349232625)

= 2.884155887
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yC1 = y0+ 1
2 h[(y ′)0+ f (x1,yP1)]

= 2.649232625+ 1
2 (0.1)[2.349232625

+ (2.884155887− 0.4)]
= 2.89090205

(y ′)0 = yC1 − x1 = 2.89090205− 0.4
= 2.49090205

For line 6, x1=0.5
yP1 = y0+ h(y ′)0

= 2.89090205+ (0.1)(2.49090205)

= 3.139992255

yC1 = y0+ 1
2h[(y

′)0+ f (x1,yP1)]

= 2.89090205+ 1
2 (0.1)[2.49090205

+ (3.139992255− 0.5)]
= 3.147446765

Problem 4 is the same example as Problem 3 and
Table 52.5 shows a comparison of the results, i.e. it
compares the results of Tables 52.3 and 52.4.
dy
dx

=y −x may be solved analytically by the inte-
grating factor method of Chapter 51 with the solution
y =x +1+ex . Substituting values of x of 0, 0.1, 0.2, . . .
give the exact values shown in Table 52.5.
The percentage error for each method for each value of
x is shown in Table 52.6. For example when x=0.3,

Table 52.6
x Error in Error in

Euler method Euler–Cauchy method

0 0 0

0.1 0.234% 0.00775%

0.2 0.472% 0.0156%

0.3 0.712% 0.0236%

0.4 0.959% 0.0319%

0.5 1.214% 0.0405%

% error with Euler method

=
(
actual− estimated

actual

)

× 100%

=
(
2.649858808− 2.631

2.649858808

)

× 100%

= 0.712%

% error with Euler–Cauchy method

=
(
2.649858808− 2.649232625

2.649858808

)

× 100%

= 0.0236%

This calculation and the others listed in Table 52.6 show
the Euler–Cauchy method to be more accurate than the
Euler method.

Table 52.5

Euler method Euler–Cauchy method Exact value
x y y y=x + 1 + ex

1. 0 2 2 2

2. 0.1 2.2 2.205 2.205170918

3. 0.2 2.41 2.421025 2.421402758

4. 0.3 2.631 2.649232625 2.649858808

5. 0.4 2.8641 2.89090205 2.891824698

6. 0.5 3.11051 3.147446765 3.148721271
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Problem 5. Obtain a numerical solution of the
differential equation

dy
dx

= 3(1+ x) − y

in the range 1.0(0.2)2.0, using the Euler–Cauchy
method, given the initial conditions that x =1 when
y =4

This is the same as Problem 1 on page 544, and a
comparison of values may be made.

dy
dx

= y ′ = 3(1+ x) − y i.e. y ′ = 3+ 3x − y

x0 = 1.0,y0 = 4 and h = 0.2
(y ′)0 = 3+ 3x0− y0 = 3+ 3(1.0) − 4= 2

x1=1.2 and from equation (3),

yP1 =y0+ h(y ′)0=4+ 0.2(2)=4.4

yC1 = y0+ 1
2h[(y

′)0+ f (x1,yP1)]

= y0+ 1
2h[(y

′)0+ (3+ 3x1− yP1)]

= 4+ 1
2 (0.2)[2+ (3+ 3(1.2) − 4.4)]

= 4.42

(y ′)1 = 3+ 3x1− yP1 = 3+ 3(1.2) − 4.42= 2.18

Thus the first two lines of Table 52.7 have been
completed.

Table 52.7
x0 y0 y′0

1. 1.0 4 2

2. 1.2 4.42 2.18

3. 1.4 4.8724 2.3276

4. 1.6 5.351368 2.448632

5. 1.8 5.85212176 2.54787824

6. 2.0 6.370739847

For line 3, x1=1.4
yP1 = y0+ h(y ′)0 = 4.42+ 0.2(2.18) = 4.856

yC1 = y0+ 1
2h[(y

′)0+ (3+ 3x1− yP1)]

= 4.42+ 1
2 (0.2)[2.18

+ (3+ 3(1.4) − 4.856)]

= 4.8724

(y ′)1 = 3+ 3x1− yP1 = 3+ 3(1.4) − 4.8724
= 2.3276

For line 4, x1=1.6
yP1 = y0+ h(y ′)0 = 4.8724+ 0.2(2.3276)

= 5.33792

yC1 = y0+ 1
2h[(y

′)0+ (3+ 3x1− yP1)]

= 4.8724+ 1
2 (0.2)[2.3276

+ (3+ 3(1.6) − 5.33792)]
= 5.351368

(y ′)1 = 3+ 3x1− yP1

= 3+ 3(1.6) − 5.351368

= 2.448632
For line 5, x1=1.8
yP1 = y0+ h(y ′)0 = 5.351368+ 0.2(2.448632)

= 5.8410944

yC1 = y0+ 1
2h[(y

′)0+ (3+ 3x1− yP1)]

= 5.351368+ 1
2 (0.2)[2.448632

+ (3+ 3(1.8) − 5.8410944)]

= 5.85212176

(y ′)1 = 3+ 3x1− yP1

= 3+ 3(1.8) − 5.85212176

= 2.54787824
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For line 6, x1=2.0

yP1 = y0+ h(y ′)0

= 5.85212176+ 0.2(2.54787824)

= 6.361697408

yC1 = y0+ 1
2h[(y

′)0+ (3+ 3x1− yP1)]

= 5.85212176+ 1
2 (0.2)[2.54787824

+ (3+ 3(2.0) − 6.361697408)]
= 6.370739843

Problem 6. Using the integrating factor
method the solution of the differential equation
dy
dx

=3(1+x)−y of Problem 5 is y =3x+e1−x .
When x =1.6, compare the accuracy, correct to 3
decimal places, of the Euler and the Euler–Cauchy
methods.

When x=1.6, y =3x + e1−x =3(1.6) + e1−1.6 =
4.8+e−0.6=5.348811636
From Table 52.1, page 545, by Euler’s method, when
x =1.6, y =5.312
% error in the Euler method

=
(
5.348811636− 5.312

5.348811636

)

× 100%

=0.688%

From Table 52.7 of Problem 5, by the Euler–Cauchy
method, when x =1.6, y =5.351368
% error in the Euler–Cauchy method

=
(
5.348811636− 5.351368

5.348811636

)

× 100%

= −0.048%

The Euler–Cauchy method is seen to be more accurate
than the Euler method when x =1.6.

Now try the following Practice Exercise

Practice Exercise 201 Euler–Cauchy
method (Answers on page 886)

1. Apply the Euler–Cauchy method to solve the
differential equation

dy
dx

= 3− y

x

for the range 1.0(0.1)1.5, given the initial
conditions that x =1 when y =2

2. Solving the differential equation in Prob-
lem 1 by the integrating factor method gives

y = 3
2
x + 1

2x
. Determine the percentage error,

correct to 3 significant figures, when x =1.3
using (a) Euler’s method and (b) the Euler–
Cauchy method.

3. (a) Apply the Euler-Cauchymethod to solve
the differential equation

dy
dx

− x = y

for the range x =0 to x =0.5 in incre-
ments of 0.1, given the initial conditions
that when x=0, y =1

(b) The solution of the differential equation
in part (a) is given by y =2ex − x − 1.
Determine the percentage error, correct
to 3 decimal places, when x=0.4

4. Obtain a numerical solution of the differential
equation

1
x

dy
dx

+ 2y = 1

using the Euler–Cauchy method in the range
x =0(0.2)1.0, given the initial conditions that
x =0 when y =1
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52.5 The Runge–Kutta method

The Runge–Kutta∗ method for solving first-order dif-
ferential equations is widely used and provides a high
degree of accuracy. Again, as with the two previous
methods, the Runge–Kutta method is a step-by-step
process where results are tabulated for a range of
values of x. Although several intermediate calcula-
tions are needed at each stage, the method is fairly
straightforward.
The seven-step procedure for the Runge–Kutta
method, without proof, is as follows:

To solve the differential equation
dy
dx

=f (x,y)given the
initial condition y=y0 at x=x0 for a range of values of
x =x0(h)xn:

∗ Who was Runge? Carl David Tolmé Runge (1856–1927)
was a German mathematician, physicist, and spectroscopist.
He was co-developer of the Runge–Kutta method in the field
of numerical analysis. The Runge crater on the Moon is named
after him. To find out more go towww.routledge.com/cw/bird

1. Identify x0, y0 and h, and values of x1,x2,
x3, . . . .

2. Evaluate k1= f(xn,yn) starting with n=0

3. Evaluate k2= f

(

xn + h

2
, yn + h

2
k1

)

4. Evaluate k3= f

(

xn + h

2
, yn + h

2
k2

)

5. Evaluate k4= f (xn +h, yn +hk3)

6. Use the values determined from steps 2 to 5 to
evaluate:

yn+1= yn + h

6
{k1+ 2k2+ 2k3+ k4}

7. Repeat steps 2 to 6 for n=1, 2, 3, . . .

∗ Who was Kutta? Martin Wilhelm Kutta (3 November
1867–25 December 1944) wrote a thesis that contains the now
famous Runge–Kutta method for solving ordinary differential
equations. Tofind outmore go towww.routledge.com/cw/bird
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Thus, step 1 is given, and steps 2 to 5 are intermediate
steps leading to step 6. It is usually most convenient to
construct a table of values.
The Runge–Kutta method is demonstrated in the fol-
lowing worked problems.

Problem 7. Use the Runge–Kutta method to
solve the differential equation:

dy
dx

=y − x

in the range 0(0.1)0.5, given the initial conditions
that at x =0, y =2

Using the above procedure:

1. x0=0, y0=2 and since h=0.1, and the range
is from x =0 to x =0.5, then x1=0.1, x2=0.2,
x3 = 0.3,x4 = 0.4, and x5 = 0.5

Let n=0 to determine y1:

2. k1= f (x0, y0)=f (0,2);

since
dy
dx

=y −x, f (0,2)=2− 0=2

3. k2 = f

(

x0+ h

2
, y0+ h

2
k1

)

= f

(

0+ 0.1
2

, 2+ 0.1
2

(2)
)

= f (0.05, 2.1) = 2.1− 0.05= 2.05

4. k3 = f

(

x0+ h

2
, y0+ h

2
k2

)

= f

(

0+ 0.1
2

, 2+ 0.1
2

(2.05)
)

= f (0.05, 2.1025)

= 2.1025− 0.05= 2.0525

5. k4 = f (x0+ h, y0+ hk3)

= f (0+ 0.1, 2+ 0.1(2.0525))
= f (0.1, 2.20525)

= 2.20525− 0.1= 2.10525

6. yn+1 = yn + h

6
{k1+ 2k2+ 2k3+ k4} and when

n = 0:

y1 = y0+ h

6
{k1+ 2k2+ 2k3+ k4}

= 2+ 0.1
6

{2+ 2(2.05) + 2(2.0525)

+ 2.10525}

= 2+ 0.1
6

{12.31025} = 2.205171

A table of values may be constructed as shown in
Table 52.8. The working has been shown for the first
two rows.
Let n=1 to determine y2:

2. k1 = f (x1, y1) = f (0.1, 2.205171); since
dy
dx

= y − x, f (0.1, 2.205171)

= 2.205171− 0.1= 2.105171

3. k2 = f

(

x1+ h

2
, y1+ h

2
k1

)

= f

(

0.1+ 0.1
2

, 2.205171+ 0.1
2

(2.105171)
)

= f (0.15, 2.31042955)

= 2.31042955− 0.15= 2.160430

4. k3 = f

(

x1+ h

2
, y1+ h

2
k2

)

= f

(

0.1+ 0.1
2

, 2.205171+ 0.1
2

(2.160430)
)

= f (0.15, 2.3131925) = 2.3131925− 0.15
= 2.163193

5. k4 = f (x1+ h, y1+ hk3)

= f (0.1+ 0.1, 2.205171+ 0.1(2.163193))

= f (0.2, 2.421490)

= 2.421490− 0.2= 2.221490

6. yn+1 = yn + h

6
{k1+ 2k2+ 2k3+ k4}

and when n = 1:

Download more at Learnclax.com



Se
ct

io
n

J

Numerical methods for first-order differential equations 555

Table 52.8

n xn k1 k2 k3 k4 yn
0 0 2

1 0.1 2.0 2.05 2.0525 2.10525 2.205171

2 0.2 2.105171 2.160430 2.163193 2.221490 2.421403

3 0.3 2.221403 2.282473 2.285527 2.349956 2.649859

4 0.4 2.349859 2.417339 2.420726 2.491932 2.891824

5 0.5 2.491824 2.566415 2.570145 2.648838 3.148720

y2 = y1+ h

6
{k1+ 2k2+ 2k3+ k4}

= 2.205171+ 0.1
6

{2.105171+2(2.160430)

+ 2(2.163193) + 2.221490}

= 2.205171+ 0.1
6

{12.973907} = 2.421403

This completes the third row of Table 52.8. In a similar
manner y3, y4 and y5 can be calculated and the results
are as shown in Table 52.8. Such a table is best produced
by using a spreadsheet, such as Microsoft Excel.
This problem is the same as Problem 3, page 546 which
used Euler’s method, and Problem 4, page 549 which
used the improvedEuler’s method, and a comparison of
results can be made.
The differential equation

dy
dx

=y− x may be solved
analytically using the integrating factor method of
Chapter 51, with the solution:

y=x+1+ex

Substituting values of x of 0, 0.1, 0.2, . . ., 0.5 will give
the exact values. A comparison of the results obtained
by Euler’s method, the Euler–Cauchy method and the
Runga–Kutta method, together with the exact values is
shown in Table 52.9.
It is seen from Table 52.9 that the Runge–Kutta
method is exact, correct to 5 decimal places.

Problem 8. Obtain a numerical solution of the
differential equation:

dy
dx

=3(1+x) − y in the
range 1.0(0.2)2.0, using the Runge–Kutta
method, given the initial conditions that x =1.0
when y=4.0

Using the above procedure:

1. x0=1.0, y0=4.0 and since h=0.2, and the
range is from x =1.0 to x =2.0, then x1=1.2,
x2 = 1.4, x3 = 1.6, x4 = 1.8, and x5 = 2.0

Let n=0 to determine y1:

2. k1 = f (x0, y0) = f (1.0, 4.0); since
dy
dx

= 3(1+ x) − y,

f (1.0, 4.0) = 3(1+ 1.0) − 4.0= 2.0

3. k2 = f

(

x0+ h

2
, y0+ h

2
k1

)

= f

(

1.0+ 0.2
2

, 4.0+ 0.2
2

(2)
)

= f (1.1, 4.2) = 3(1+ 1.1) − 4.2= 2.1

4. k3 = f

(

x0+ h

2
, y0+ h

2
k2

)

= f

(

1.0+ 0.2
2

, 4.0+ 0.2
2

(2.1)
)

= f (1.1, 4.21)

= 3(1+ 1.1) − 4.21= 2.09

5. k4 = f (x0+ h, y0+ hk3)

= f (1.0+ 0.2, 4.1+ 0.2(2.09))
= f (1.2, 4.418)

= 3(1+ 1.2) − 4.418= 2.182
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Table 52.9

Euler’s Euler–Cauchy Runge–Kutta
method method method Exact value

x y y y y=x+1+ex
0 2 2 2 2

0.1 2.2 2.205 2.205171 2.205170918

0.2 2.41 2.421025 2.421403 2.421402758

0.3 2.631 2.649232625 2.649859 2.649858808

0.4 2.8641 2.89090205 2.891824 2.891824698

0.5 3.11051 3.147446765 3.148720 3.148721271

6. yn+1 = yn + h

6
{k1+2k2+2k3+k4} and when

n=0:

y1 = y0+ h

6
{k1+ 2k2+ 2k3+ k4}

= 4.0+ 0.2
6

{2.0+ 2(2.1) + 2(2.09)+2.182}

= 4.0+ 0.2
6

{12.562} = 4.418733

A table of values is compiled in Table 52.10. The
working has been shown for the first two rows.

Let n=1 to determine y2:
2.

k1 = f (x1, y1) = f (1.2, 4.418733); since
dy
dx

= 3(1+ x) − y, f (1.2, 4.418733)

= 3(1+ 1.2) − 4.418733= 2.181267

3. k2 = f

(

x1+ h

2
, y1+ h

2
k1

)

= f

(

1.2+ 0.2
2

, 4.418733+ 0.2
2

(2.181267)
)

= f (1.3, 4.636860)

= 3(1+ 1.3) − 4.636860= 2.263140

4. k3 = f

(

x1+ h

2
, y1+ h

2
k2

)

= f

(

1.2+ 0.2
2

, 4.418733+ 0.2
2

(2.263140)
)

= f (1.3, 4.645047)= 3(1+ 1.3)− 4.645047
= 2.254953

5. k4 = f (x1+ h, y1+ hk3)

= f (1.2+ 0.2, 4.418733+ 0.2(2.254953))

Table 52.10

n xn k1 k2 k3 k4 yn

0 1.0 4.0

1 1.2 2.0 2.1 2.09 2.182 4.418733

2 1.4 2.181267 2.263140 2.254953 2.330276 4.870324

3 1.6 2.329676 2.396708 2.390005 2.451675 5.348817

4 1.8 2.451183 2.506065 2.500577 2.551068 5.849335

5 2.0 2.550665 2.595599 2.591105 2.632444 6.367886
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= f (1.4, 4.869724) = 3(1+ 1.4) − 4.869724
= 2.330276

6. yn+1= yn + h

6
{k1+2k2+2k3+k4} and when

n=1:
y2 = y1+ h

6
{k1+ 2k2+ 2k3+ k4}

= 4.418733+ 0.2
6

{2.181267+ 2(2.263140)

+ 2(2.254953) + 2.330276}

= 4.418733+ 0.2
6

{13.547729} = 4.870324

This completes the third row of Table 52.10. In a sim-
ilar manner y3, y4 and y5 can be calculated and the
results are as shown in Table 52.10. As in the previ-
ous problem such a table is best produced by using a
spreadsheet.
This problem is the same as Problem 1, page 544 which
used Euler’s method, and Problem 5, page 551 which
used the Euler–Cauchy method, and a comparison of
results can be made.
The differential equation

dy
dx

=3(1+x) − y may be
solved analytically using the integrating factor method
of Chapter 51, with the solution:

y=3x+e1−x
Substituting values of x of 1.0, 1.2, 1.4, . . ., 2.0will give
the exact values. A comparison of the results obtained
by Euler’s method, the Euler–Cauchy method and the

Runga–Kutta method, together with the exact values is
shown in Table 52.11.
It is seen from Table 52.11 that the Runge–Kutta
method is exact, correct to 4 decimal places.
The percentage error in the Runge–Kuttamethodwhen,
say, x =1.6 is:
(
5.348811636− 5.348817

5.348811636

)

×100%= −0.0001%

From Problem 6, page 552, when x=1.6, the per-
centage error for the Euler method was 0.688%, and
for the Euler–Cauchy method −0.048%. Clearly, the
Runge–Kutta method is the most accurate of the three
methods.

Now try the following Practice Exercise

Practice Exercise 202 Runge–Kutta
method (Answers on page 886)

1. Apply the Runge–Kutta method to solve the

differential equation:
dy
dx

=3− y

x
for the range

1.0(0.1)1.5, given the initial conditions x =1
when y=2

2. Obtain a numerical solution of the differential
equation:

1
x

dy
dx

+ 2y=1 using the Runge–
Kuttamethod in the range x=0(0.2)1.0, given
the initial conditions that x=0 when y =1

Table 52.11

Euler’s Euler–Cauchy Runge–Kutta
method method method Exact value

x y y y y=3x+e1−x
1.0 4 4 4 4

1.2 4.4 4.42 4.418733 4.418730753

1.4 4.84 4.8724 4.870324 4.870320046

1.6 5.312 5.351368 5.348817 5.348811636

1.8 5.8096 5.85212176 5.849335 5.849328964

2.0 6.32768 6.370739847 6.367886 6.367879441
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3. (a) The differential equation:
dy
dx

+ 1= −y

x
has the initial conditions that y=1 at
x=2. Produce a numerical solution of the
differential equation, correct to 6 decimal
places, using the Runge–Kutta method in
the range x =2.0(0.1)2.5

(b) If the solution of the differential equa-
tion by an analytical method is given by:

y = 4
x

− x

2
determine the percentage error at

x =2.2

For fully worked solutions to each of the problems in Practice Exercises 200 to 202 in this chapter,
go to the website:

www.routledge.com/cw/bird
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This Revision Test covers the material contained in Chapters 50 to 52. The marks for each question are shown in
brackets at the end of each question.

1. Show that the solution to the differential equation:

4x
dy
dx

= x2+ y2

y
is of the form

3y2=√
x

(√
x3− 1

)
given that y =0 when

x =1 (12)

2. Show that the solution to the differential equation

x cosx
dy
dx

+ (x sinx + cosx)y = 1
is given by: xy= sinx +k cosx where k is a
constant. (11)

3. (a) Use Euler’s method to obtain a numerical
solution of the differential equation:

dy
dx

= y

x
+ x2− 2

given the initial conditions that x =1 when
y =3, for the range x=1.0 (0.1) 1.5

(b) Apply the Euler–Cauchymethod to the differ-
ential equation given in part (a) over the same
range.

(c) Apply the integrating factor method to
solve the differential equation in part (a)
analytically.

(d) Determine the percentage error, correct to 3
significant figures, in each of the two numeri-
cal methods when x =1.2 (30)

4. Use the Runge–Kutta method to solve the dif-

ferential equation:
dy
dx

= y

x
+ x2−2 in the range

1.0(0.1)1.5, given the initial conditions that at
x =1, y =3. Work to an accuracy of 6 decimal
places. (27)

For lecturers/instructors/teachers, fully worked solutions to each of the problems in Revision Test 15,
together with a full marking scheme, are available at the website:

www.routledge.com/cw/bird
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Chapter 53

Second-order differential
equations of the form
a
d2y
dx2+b

dy
dx +cy =0

Why it is important to understand: Second-order differential equations of the form a
d2y
dx2

+ bdy
dx

+ cy= 0
Second-order differential equations have many engineering applications. These include free vibration
analysis with simple and damped mass-spring systems, resonant and non-resonant vibration analysis,
with modal analysis, time-varying mechanical forces or pressure, fluid-induced vibration such as inter-
mittent wind, forced electrical and mechanical oscillations, tidal waves, acoustics, ultrasonic and random
movements of support. This chapter explains the procedure to solve second-order differential equations

of the form a
d2y
dx2

+ bdy
dx

+ cy= 0

At the end of this chapter, you should be able to:

• identify and solve the auxiliary equation of a second-order differential equation

• solve a second-order differential equation of the form a
d2y
dx2

+ b
dy
dx

+ cy = 0

53.1 Introduction

An equation of the form a
d2y
dx2

+ b
dy
dx

+cy =0, where
a, b and c are constants, is called a linear second-order
differential equationwith constant coefficients.When

the right-hand side of the differential equation is zero,
it is referred to as a homogeneous differential equa-
tion. When the right-hand side is not equal to zero (as
in Chapter 54) it is referred to as a non-homogeneous
differential equation.
There are numerous engineering examples of second-
order differential equations. Three examples are:

Higher Engineering Mathematics. 978-1-138-67357-1, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.
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(i) L
d2q
dt2

+ R
dq
dt

+ 1
C

q =0, representing an equa-
tion for charge q in an electrical circuit containing
resistance R, inductance L and capacitance C in
series.

(ii) m
d2s
dt2

+a
ds
dt

+ks=0, defining amechanical sys-
tem, where s is the distance from a fixed point
after t seconds,m is a mass, a the damping factor
and k the spring stiffness.

(iii)
d2y
dx2

+ P

EI
y=0, representing an equation for the

deflected profile y of a pin-ended uniform strut
of length l subjected to a load P . E is Young’s
modulus and I is the second moment of area.

IfD represents
d
dx
andD2 represents

d2

dx2
then the above

equation may be stated as
(aD2+ bD+ c)y=0. This equation is said to be in
‘D-operator’ form.

If y =Aemx then
dy
dx

=Amemx and
d2y
dx2

=Am2emx

Substituting these values into a
d2y
dx2

+b
dy
dx

+cy =0
gives:

a(Am2emx) + b(Amemx) + c(Aemx) = 0
i.e. Aemx(am2+ bm + c) = 0

Thus y =Aemx is a solution of the given equation
provided that (am2+bm+c)=0. am2+bm+c=0 is
called the auxiliary equation, and since the equation is
a quadratic,m may be obtained either by factorising or
by using the quadratic formula. Since, in the auxiliary
equation, a, b and c are real values, then the equation
may have either

(i) two different real roots (when b2>4ac) or

(ii) two equal real roots (when b2=4ac) or

(iii) two complex roots (when b2<4ac)

53.2 Procedure to solve differential
equations of the form

a
d2y
dx2

+bdy
dx

+cy=0

(a) Rewrite the differential equation

a
d2y
dx2

+ b
dy
dx

+ cy = 0

as (aD2+ bD+ c)y= 0

(b) Substitutem forD and solve the auxiliary equation
am2+bm+c=0 for m

(c) If the roots of the auxiliary equation are:

(i) real and different, say m=α and m=β,
then the general solution is

y = Aeαx + Beβx

(ii) real and equal, say m=α twice, then the
general solution is

y = (Ax + B)eαx

(iii) complex, say m=α±jβ, then the general
solution is

y = eαx{Acosβx + Bsinβx}

(d) Given boundary conditions, constants A and B,
may be determined and the particular solution
of the differential equation obtained.

The particular solutions obtained in the worked prob-
lems of Section 53.3 may each be verified by substi-

tuting expressions for y,
dy
dx
and

d2y
dx2

into the original
equation.

53.3 Worked problems on
differential equations of

the form a
d2y
dx2

+bdy
dx

+cy=0

Problem 1. By applying Kirchhoff’s voltage law
to a circuit the following differential equation is

obtained: 2
d2y
dx2

+ 5dy
dx

− 3y = 0. Determine the
general solution. Find also the particular solution

given that when x = 0, y = 4 and dy
dx

= 9

Using the above procedure:

(a) 2
d2y
dx2

+5dy
dx

−3y=0 in D-operator form is

(2D2+5D−3)y=0, where D≡ d
dx

Download more at Learnclax.com
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(b) Substituting m for D gives the auxiliary equation

2m2+ 5m − 3= 0
Factorising gives: (2m−1)(m+3)=0, from
which, m= 1

2 or m=−3
(c) Since the roots are real and different the general

solution is y=Ae 12 x+Be−3x
(d) When x =0, y=4,

hence 4= A + B (1)

Since y = Ae
1
2 x + Be−3x

then
dy
dx

= 1
2
Ae

1
2 x − 3Be−3x

When x = 0, dy
dx

= 9

thus 9= 1
2
A − 3B (2)

Solving the simultaneous equations (1) and (2)
gives A=6 and B =−2

Hence the particular solution is

y=6e 12 x−2e−3x

Problem 2. Find the general solution of

9
d2y
dt2

−24dy
dt

+16y=0 and also the particular
solution given the boundary conditions that when

t =0, y = dy
dt

=3

Using the procedure of Section 53.2:

(a) 9
d2y
dt2

−24dy
dt

+16y=0 in D-operator form is

(9D2−24D+16)y=0 where D≡ d
dt

(b) Substituting m for D gives the auxiliary equation
9m2−24m+16=0
Factorising gives: (3m−4)(3m−4)=0, i.e.
m= 4

3 twice.

(c) Since the roots are real and equal, the general
solution is y= (At+B)e 43 t

(d) When t =0, y =3 hence 3=(0+B)e0, i.e. B =3.
Since y=(At +B)e

4
3 t

then
dy
dt

=(At +B)

(
4
3
e
4
3 t

)

+ Ae
4
3 t , by the

product rule.

When t= 0, dy
dt

= 3

thus 3= (0+ B)
4
3
e0+ Ae0

i.e. 3= 4
3
B +A from which, A=−1, since

B =3
Hence the particular solution is

y= (−t + 3)e
4
3 t or y= (3− t)e 43 t

Problem 3. Solve the differential equation
d2y
dx2

+6dy
dx

+13y=0, given that when x =0, y=3
and

dy
dx

=7

Using the procedure of Section 53.2:

(a)
d2y
dx2

+6dy
dx

+13y=0 in D-operator form is

(D2+6D+13)y=0, where D≡ d
dx

(b) Substituting m for D gives the auxiliary equation
m2+6m+13=0
Using the quadratic formula:

m= −6±
√
[(6)2− 4(1)(13)]
2(1)

= −6± √
(−16)
2

i.e. m= −6± j4
2

= −3± j2

(c) Since the roots are complex, the general solu-
tion is

y= e−3x(Acos 2x+Bsin2x)
(d) When x =0, y=3, hence

3=e0(Acos0+B sin0), i.e. A=3
Since y=e−3x(Acos2x +B sin2x)

then
dy
dx

= e−3x(−2Asin2x + 2B cos2x)

−3e−3x(Acos2x + B sin2x),

by the product rule,

= e−3x[(2B −3A)cos2x

−(2A+3B)sin2x]
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When x =0, dy
dx

=7,

hence 7=e0[(2B −3A)cos0−(2A+3B)sin0]
i.e. 7=2B −3A, from which, B =8, since A=3
Hence the particular solution is

y=e−3x(3cos2x + 8sin2x)

Since, from Chapter 19, page 204,
a cosωt +b sinωt =R sin(ωt +α), where
R=

√
(a2+b2) and α= tan−1 a

b
then

3cos2x + 8sin2x
=

√
(32+ 82)sin(2x + tan−1 3

8 )

=
√
73sin(2x + 20.56◦)

=
√
73sin(2x + 0.359)

Thus the particular solution may also be
expressed as

y= √
73e−3x sin(2x+0.359)

Now try the following Practice Exercise

Practice Exercise 203 Second-order
differential equations of the form

a
d2y
dx2

+bdy
dx

+cy=0 (Answers on page 886)

In Problems 1 to 3, determine the general solution
of the given differential equations.

1. 6
d2y
dt2

− dy
dt

−2y =0

2. 4
d2θ
dt2

+4dθ
dt

+θ =0

3.
d2y
dx2

+2dy
dx

+5y=0
InProblems4 to 9,find the particular solutionof the
given differential equations for the stated boundary
conditions.

4. 6
d2y
dx2

+5dy
dx

−6y=0; when x=0, y =5 and
dy
dx

=−1

5. 4
d2y
dt2

−5dy
dt

+y =0; when t =0, y =1 and
dy
dt

=−2

6. (9D2+30D+25)y=0, where D≡ d
dx
; when

x =0, y =0 and dy
dx

=2

7.
d2x
dt2

−6dx
dt

+9x=0; when t =0, x=2 and
dx
dt

=0

8.
d2y
dx2

+6dy
dx

+13y=0; when x =0, y =4 and
dy
dx

=0

9. (4D2+20D+125)θ =0, whereD≡ d
dt
; when

t =0, θ =3 and dθ
dt

=2.5

53.4 Further worked problems on
practical differential equations

of the form a
d2y
dx2

+bdy
dx

+cy=0

Problem 4. The equation of motion of a body
oscillating on the end of a spring is

d2x
dt2

+100x=0

where x is the displacement in metres of the body
from its equilibrium position after time t seconds.
Determine x in terms of t given that at time t =0,
x =2m and dx

dt
=0

An equation of the form
d2x
dt2

+m2x=0 is a differential
equation representing simple harmonic motion (SHM).
Using the procedure of Section 53.2:

(a)
d2x
dt2

+100x=0 in D-operator form is
(D2+100)x=0

(b) The auxiliary equation is m2+100=0, i.e.
m2=−100 and m=√

(−100), i.e. m= ± j10
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(c) Since the roots are complex, the general solution
is x =e0(Acos10t +B sin10t),

i.e. x=(Acos 10t+Bsin10t) metres
(d) When t =0, x=2, thus 2=A

dx
dt

=−10Asin10t +10B cos10t

When t =0, dx
dt

=0
thus 0=−10Asin0+10B cos0, i.e. B =0
Hence the particular solution is

x=2cos10t metres

Problem 5. Given the differential equation
d2V
dt2

=ω2V , where ω is a constant, show that its
solution may be expressed as:

V =7coshωt +3sinhωt

given the boundary conditions that when

t =0, V =7 and dV
dt

=3ω

Using the procedure of Section 53.2:

(a)
d2V
dt2

=ω2V , i.e.
d2V
dt2

− ω2V =0 in D-operator

form is (D2−ω2)v=0, where D≡ d
dx

(b) The auxiliary equation is m2−ω2=0, from
which, m2=ω2 andm= ±ω

(c) Since the roots are real and different, the general
solution is

V=Aeωt+Be−ωt

(d) When t =0, V =7 hence 7=A+B (1)

dV
dt

=Aωeωt −Bωe−ωt

When t = 0, dV
dt

=3ω,

thus 3ω = Aω−Bω,

i.e. 3= A−B (2)

From equations (1) and (2), A=5 and B =2

Hence the particular solution is

V=5eωt+2e−ωt

Since sinhωt = 1
2 (e

ωt − e−ωt )

and coshωt = 1
2 (e

ωt + e−ωt )

then sinhωt + coshωt = eωt

and coshωt − sinhωt = e−ωt from Chapter 16.

Hence the particular solution may also be
written as

V = 5(sinhωt +coshωt)

+ 2(coshωt −sinhωt)

i.e. V = (5+ 2)coshωt + (5− 2)sinhωt

i.e. V= 7 coshωt + 3sinhωt

Problem 6. The equation

d2i
dt2

+ R

L

di
dt

+ 1
LC

i =0

represents a current i flowing in an electrical circuit
containing resistance R, inductance L and
capacitance C connected in series. If R=200ohms,
L=0.20 henry and C =20×10−6 farads, solve the
equation for i given the boundary conditions that

when t =0, i =0 and di
dt

=100

Using the procedure of Section 53.2:

(a)
d2i
dt2

+ R

L

di
dt

+ 1
LC

i =0 in D-operator form is

(

D2+ R

L
D+ 1

LC

)

i = 0 where D≡ d
dt

(b) The auxiliary equation is m2+ R

L
m+ 1

LC
=0

Hencem =
−R

L
±

√√
√
√

[(
R

L

)2
− 4(1)

(
1

LC

)]

2

WhenR=200,L=0.20 andC =20×10−6, then

m =
− 200
0.20

±
√√
√
√

[(
200
0.20

)2
− 4

(0.20)(20× 10−6)

]

2
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= −1000±√
0

2
= −500

(c) Since the two roots are real and equal (i.e. −500
twice, since for a second-order differential equa-
tion there must be two solutions), the general
solution is i= (At+B)e−500t

(d) When t =0, i =0, hence B =0
di
dt

=(At +B)(−500e−500t )+(e−500t )(A),

by the product rule

When t =0, di
dt

=100, thus 100=−500B +A

i.e. A=100, since B =0
Hence the particular solution is

i=100te−500t

Problem 7. The oscillations of a heavily damped
pendulum satisfy the differential equation
d2x
dt2

+6dx
dt

+8x =0, where x cm is the

displacement of the bob at time t seconds.
The initial displacement is equal to +4cm and the
initial velocity

(

i.e.
dx
dt

)

is 8cm/s. Solve the

equation for x.

Using the procedure of Section 53.2:

(a)
d2x
dt2

+ 6dx
dt

+ 8x=0 in D-operator form is
(D2+ 6D+ 8)x=0, where D≡ d

dt
(b) The auxiliary equation is m2+6m+8=0

Factorising gives: (m+2)(m+4)=0, from
which, m=−2 or m=−4

(c) Since the roots are real and different, the general
solution is x=Ae−2t+Be−4t

(d) Initial displacement means that time t =0. At this
instant, x =4
Thus 4=A+B (1)

Velocity,

dx
dt

= −2Ae−2t − 4Be−4t

dx
dt

= 8cm/s when t = 0,

thus 8= −2A − 4B (2)

From equations (1) and (2),

A = 12 and B = −8
Hence the particular solution is

x = 12e−2t − 8e−4t

i.e. displacement, x = 4(3e−2t− 2e−4t)cm

Now try the following Practice Exercise

Practice Exercise 204 Second-order
differential equations of the form

a
d2y
dx2

+bdy
dx

+cy=0 (Answers on page 886)

1. The charge q on a capacitor in a certain
electrical circuit satisfies the differential equa-

tion
d2q
dt2

+4dq
dt

+5q =0. Initially (i.e. when
t =0), q =Q and

dq
dt

=0. Show that the
charge in the circuit can be expressed as:
q =√

5Qe−2t sin(t +0.464)

2. A body moves in a straight line so that its
distance smetres from the origin after time

t seconds is given by
d2s
dt2

+a2s =0, where a

is a constant. Solve the equation for s given

that s =c and
ds
dt

=0 when t = 2π
a

3. The motion of the pointer of a galvanometer
about its position of equilibrium is represented
by the equation

I
d2θ
dt2

+ K
dθ
dt

+Fθ = 0

If I , the moment of inertia of the pointer about
its pivot, is 5×10−3, K , the resistance due to
friction at unit angular velocity, is 2×10−2
and F , the force on the spring necessary to
produce unit displacement, is 0.20, solve the
equation for θ in terms of t given that when

t =0, θ =0.3 and dθ
dt

=0
4. Determine an expression forx for a differential

equation
d2x
dt2

+2ndx
dt

+n2x =0which repre-
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sents a critically damped oscillator, given that

at time t =0, x =s and
dx
dt

=u

5. L
d2i
dt2

+R
di
dt

+ 1
C

i =0 is an equation repre-
senting current i in an electric circuit. If
inductance L is 0.25 henry, capacitance C

is 29.76×10−6 farads and R is 250 ohms,
solve the equation for i given the boundary

conditions that when t =0, i =0 and di
dt

=34

6. The displacement s of a body in a damped
mechanical system, with no external forces,
satisfies the following differential equation:

2
d2s
dt2

+ 6ds
dt

+ 4.5s=0

where t represents time. If initially, when

t =0,s =0 and ds
dt

=4, solve the differential
equation for s in terms of t .

For fully worked solutions to each of the problems in Practice Exercises 203 and 204 in this chapter,
go to the website:

www.routledge.com/cw/bird
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Chapter 54

Second-order differential
equations of the form

a
d2y
dx2 + b

dy
dx + cy = f (x)

Why it is important to understand: Second-order differential equations of the form a
d2y
dx2

+ bdy
dx

+ cy= f (x)
Second-order differential equations have many engineering applications. Differential equations govern
the fundamental operation of important areas such as automobile dynamics, tyre dynamics, aerody-
namics, acoustics, active control systems, including speed control, engine performance and emissions
control, climate control, ABS control systems, airbag deployment systems, structural dynamics of build-
ings, bridges and dams, for example, earthquake andwind engineering, industrial process control, control
and operation of automation (robotic) systems, the operation of the electric power grid, electric power
generation, orbital dynamics of satellite systems, heat transfer from electrical equipment (including com-
puter chips), economic systems, biological systems, chemical systems, and so on. This chapter explains the

procedure to solve second-order differential equations of the form a
d2y
dx2

+ bdy
dx

+ cy= f (x) for different
functions f(x).

At the end of this chapter, you should be able to:

• identify the complementary function and particular integral of a second-order differential equation

• solve a second order differential equation of the form a
d2y
dx2

+ b
dy
dx

+ cy = f (x) where f (x) is a constant
or a polynomial function, an exponential function, a sine or cosine function, or a sum or product

Higher Engineering Mathematics. 978-1-138-67357-1, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.
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54.1 Complementary function and
particular integral

If in the differential equation

a
d2y
dx2

+ b
dy
dx

+ cy = f (x) (1)

the substitution y=u+v is made then:

a
d2(u + v)

dx2
+ b

d(u + v)

dx
+ c(u + v) = f (x)

Rearranging gives:

(

a
d2u
dx2

+ b
du
dx

+ cu

)

+
(

a
d2v
dx2

+ b
dv
dx

+cv

)

= f (x)

If we let

a
d2v
dx2

+ b
dv
dx

+ cv = f (x) (2)

then

a
d2u
dx2

+ b
du
dx

+ cu = 0 (3)

The general solution, u, of equation (3) will contain two
unknown constants, as required for the general solution
of equation (1). The method of solution of equation (3)
is shown in Chapter 53. The function u is called the
complementary function (C.F.).
If the particular solution, v, of equation (2) can be deter-
mined without containing any unknown constants then
y =u+v will give the general solution of equation (1).
The function v is called the particular integral (P.I.).
Hence the general solution of equation (1) is given by:

y= C.F.+P.I.

Table 54.1 Form of particular integral for different functions

Type Straightforward cases
Try as particular integral:

‘Snag’ cases
Try as particular integral:

See
problem

(a) f (x)=a constant v=k v=kx (used when C.F.
contains a constant)

1, 2

(b) f (x)=polynomial (i.e. v=a+bx+cx 2+ ·· · 3
f (x)=L+Mx +Nx2+ ·· ·
where any of the coefficients
may be zero)

(c) f (x)=an exponential function v=keax (i) v=kxeax (used when eax 4, 5
(i.e. f (x)=Aeax) appears in the C.F.)

(ii) v=kx2eax (used when eax 6
and xeax both appear in
the C.F.)

(d) f (x)=a sine or cosine function v=Asinpx +B cospx v=x(Asinpx +B cospx) 7, 8
(i.e. f (x)=a sinpx +b cospx, (used when sinpx and/or
where a or b may be zero) cospx appears in the C.F.)

(e) f (x)=a sum e.g. 9
(i) f (x)=4x2−3sin2x (i) v=ax2+bx+c

+d sin2x+ecos2x
(ii) f (x)=2−x +e3x (ii) v=ax+b+ce3x

(f ) f (x)=a product e.g. v=ex(Asin2x +B cos2x) 10
f (x)=2ex cos2x
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54.2 Procedure to solve differential
equations of the form

a
d2y
dx2

+ bdy
dx

+ cy= f (x)

(i) Rewrite the given differential equation as
(aD2+bD+c)y=f (x).

(ii) Substitute m for D, and solve the auxiliary
equation am2+bm+c=0 for m.

(iii) Obtain the complementary function, u, which
is achieved using the same procedure as in
Section 53.2(c), page 561.

(iv) To determine the particular integral, v, firstly
assume a particular integral which is sug-
gested by f (x), but which contains unde-
termined coefficients. Table 54.1 gives some
suggested substitutions for different functions
f (x).

(v) Substitute the suggested P.I. into the dif-
ferential equation (aD2+bD+c)v=f (x) and
equate relevant coefficients to find the constants
introduced.

(vi) The general solution is given by
y =C.F.+P.I., i.e. y=u+v

(vii) Given boundary conditions, arbitrary constants
in the C.F. may be determined and the particular
solution of the differential equation obtained.

54.3 Worked problems on
differential equations of the

form a
d2y
dx2

+ bdy
dx

+ cy= f (x)
where f (x) is a constant or
polynomial

Problem 1. Solve the differential equation
d2y
dx2

+ dy
dx

− 2y = 4

Using the procedure of Section 54.2:

(i)
d2y
dx2

+ dy
dx

−2y =4 in D-operator form is

(D2+D−2)y=4

(ii) Substituting m for D gives the auxiliary equa-
tion m2+m−2=0. Factorising gives:
(m−1)(m+2)=0, fromwhichm=1 orm=−2

(iii) Since the roots are real and different, the C.F.,
u= Aex+Be−2x

(iv) Since the term on the right-hand side of the
given equation is a constant, i.e. f (x)=4, let
the P.I. also be a constant, say v=k (see
Table 54.1(a)).

(v) Substituting v=k into (D2+D−2)v=4
gives (D2+D−2)k=4. Since D(k)=0 and
D2(k)=0 then −2k=4, from which, k=−2.
Hence the P.I., v=−2

(vi) The general solution is given by y =u+v, i.e.
y=Aex+Be−2x−2

Problem 2. Determine the particular solution of

the equation
d2y
dx2

−3dy
dx

=9, given the boundary

conditions that when x=0, y =0 and dy
dx

=0

Using the procedure of Section 54.2:

(i)
d2y
dx2

− 3dy
dx

=9 in D-operator form

is (D2−3D)y =9
(ii) Substitutingm for D gives the auxiliary equation

m2−3m=0. Factorising gives: m(m−3)=0,
from which, m=0 orm=3

(iii) Since the roots are real and different, the C.F.,
u=Ae0+Be3x , i.e. u=A+Be3x

(iv) Since the C.F. contains a constant (i.e.A) then let
the P.I., v=kx (see Table 54.1(a)).

(v) Substituting v=kx into (D2−3D)v=9 gives
(D2−3D)kx=9
D(kx)=k and D2(kx)=0
Hence (D2−3D)kx=0−3k=9, from which,
k=−3
Hence the P.I., v= −3x

(vi) The general solution is given by y=u+v, i.e.
y=A+Be3x−3x

(vii) When x =0, y =0, thus 0=A+Be0−0, i.e.
0=A+B (1)
dy
dx

=3Be3x −3; dy
dx

=0 when x=0, thus
0=3Be0−3 from which, B =1. From equa-
tion (1), A=−1
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Hence the particular solution is

y = −1+ 1e3x − 3x,

i.e. y= e3x− 3x− 1

Problem 3. Solve the differential equation

2
d2y
dx2

− 11dy
dx

+ 12y = 3x − 2

Using the procedure of Section 54.2:

(i) 2
d2y
dx2

−11dy
dx

+12y =3x −2 in D-operator form is

(2D2− 11D+ 12)y = 3x − 2

(ii) Substituting m for D gives the auxiliary
equation 2m2−11m+12=0. Factorising gives:
(2m−3)(m−4)=0, from which, m= 3

2 or
m=4

(iii) Since the roots are real and different, the C.F.,

u=Ae 32 x+Be4x
(iv) Since f (x)=3x−2 is a polynomial, let the P.I.,

v=ax +b (see Table 54.1(b)).

(v) Substituting v=ax +b into
(2D2−11D+12)v=3x−2 gives:

(2D2− 11D+ 12)(ax + b) = 3x − 2,
i.e. 2D2(ax + b) − 11D(ax + b)

+12(ax + b) = 3x − 2
i.e. 0− 11a + 12ax + 12b = 3x − 2

Equating the coefficients of x gives: 12a=3,
from which, a= 1

4

Equating the constant terms gives:
−11a+12b=−2

i.e. −11 ( 1
4
) +12b=−2 from which,

12b=−2+ 11
4

= 3
4
i.e. b= 1

16

Hence the P.I., v=ax+b= 1
4
x+ 1

16
(vi) The general solution is given by y =u+v, i.e.

y= Ae 32 x+Be4x+ 1
4
x+ 1

16

Now try the following Practice Exercise

Practice Exercise 205 Second-order
differential equations of the form

a
d2y
dx2

+ b dy
dx

+ cy= f (x) where f (x) is a

constant or polynomial (Answers on page
887)

In Problems 1 and 2, find the general solutions of
the given differential equations.

1. 2
d2y
dx2

+ 5dy
dx

− 3y = 6

2. 6
d2y
dx2

+ 4dy
dx

− 2y = 3x − 2

In Problems 3 and 4 find the particular solutions of
the given differential equations.

3. 3
d2y
dx2

+ dy
dx

−4y =8; when x =0, y=0 and
dy
dx

=0

4. 9
d2y
dx2

− 12dy
dx

+ 4y = 3x − 1; when x = 0,

y = 0 and dy
dx

= −4
3

5. The charge q in an electric circuit at time t sat-

isfies the equation L
d2q
dt2

+R
dq
dt

+ 1
C

q =E,
where L, R, C and E are constants. Solve the
equation givenL=2H ,C =200×10−6 F and
E=250V, when (a) R=200� and (b) R is
negligible. Assume that when t =0, q =0 and
dq
dt

=0
6. In a galvanometer the deflection θ satisfies

the differential equation
d2θ
dt2

+4dθ
dt

+4θ =8.
Solve the equation for θ given that when t =0,
θ = dθ

dt
=2

54.4 Worked problems on differential
equations of the form

a
d2y
dx2

+ bdy
dx

+ cy= f (x) where

f (x) is an exponential function
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Problem 4. Solve the equation
d2y
dx2

− 2dy
dx

+ y = 3e4x given the boundary

conditions that when x=0, y = − 2
3 and

dy
dx

=413

Using the procedure of Section 54.2:

(i)
d2y
dx2

− 2dy
dx

+ y = 3e4x in D-operator form is

(D2− 2D+ 1)y = 3e4x
(ii) Substituting m for D gives the auxiliary

equation m2−2m+1=0. Factorising gives:
(m−1)(m−1)=0, from which, m=1 twice.

(iii) Since the roots are real and equal the C.F.,
u= (Ax+B)ex

(iv) Let the particular integral, v=ke4x (see
Table 54.1(c)).

(v) Substituting v=ke4x into
(D2−2D+1)v=3e4x gives:

(D2− 2D+ 1)ke4x = 3e4x

i.e. D2(ke4x) − 2D(ke4x) + 1(ke4x) = 3e4x

i.e. 16ke4x − 8ke4x + ke4x = 3e4x

Hence 9ke4x =3e4x, from which, k= 1
3

Hence the P.I., v=ke4x= 1
3 e
4x

(vi) The general solution is given by y =u+v, i.e.
y=(Ax+B)ex+ 1

3e
4x

(vii) When x =0, y= − 2
3 thus

− 2
3 =(0+B)e0+ 1

3 e
0, from which, B =−1

dy
dx

=(Ax +B)ex +ex(A)+ 4
3 e
4x

When x =0, dy
dx

=41
3
, thus

13
3

=B +A+ 4
3

from which, A=4, since B =−1
Hence the particular solution is:

y= (4x− 1)ex+ 1
3 e
4x

Problem 5. Solve the differential equation

2
d2y
dx2

− dy
dx

− 3y = 5e
3
2 x

Using the procedure of Section 54.2:

(i) 2
d2y
dx2

− dy
dx

− 3y=5e 32 x in D-operator form is

(2D2−D− 3)y = 5e 32 x

(ii) Substituting m for D gives the auxiliary
equation 2m2−m−3=0. Factorising gives:
(2m−3)(m+1)=0, from which, m= 3

2 or
m=−1. Since the roots are real and different then
the C.F., u=Ae 32 x+Be−x

(iii) Since e
3
2 x appears in the C.F. and in the right-

hand side of the differential equation, let the

P.I., v=kxe
3
2 x (see Table 54.1(c), snag case (i)).

(iv) Substituting v=kxe
3
2 x into (2D2−D−3)v=

5e
3
2x gives: (2D2−D−3)kxe

3
2 x =5e

3
2 x

D
(

kxe
3
2 x

)

= (kx)

(
3
2 e
3
2 x

)

+
(

e
3
2 x

)

(k),

by the product rule,

= ke
3
2 x ( 3

2x + 1)

D2
(

kxe
3
2 x

)

= D
[

ke
3
2 x ( 3

2x + 1)
]

=
(

ke
3
2x

)
( 3
2
)

+( 3
2x + 1)

(
3
2ke

3
2x

)

= ke
3
2 x ( 9

4x + 3)

Hence (2D2−D− 3)
(

kxe
3
2 x

)

= 2
[

ke
3
2 x ( 9

4x + 3)
]

−
[

ke
3
2 x ( 3

2x + 1)
]

− 3
[

kxe
3
2 x

]

= 5e
3
2 x

i.e. 92kxe
3
2 x + 6ke

3
2 x − 3

2xke
3
2 x − ke

3
2 x

− 3kxe
3
2x =5e 32 x

Equating coefficients of e
3
2 x gives: 5k=5, from

which, k=1
Hence the P.I., v=kxe 32 x=xe 32 x

(v) The general solution is y =u+v, i.e.

y=Ae 32 x+Be−x+ xe 32 x
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Problem 6. Solve
d2y
dx2

− 4dy
dx

+ 4y = 3e2x

Using the procedure of Section 54.2:

(i)
d2y
dx2

−4dy
dx

+4y=3e2x in D-operator form is

(D2−4D+4)y =3e2x
(ii) Substituting m for D gives the auxiliary

equation m2−4m+4=0. Factorising gives:
(m−2)(m−2)=0, from which,m=2 twice.

(iii) Since the roots are real and equal, the C.F.,
u= (Ax+B)e2x

(iv) Since e2x and xe2x both appear in the C.F. let the
P.I., v=kx2e2x (see Table 54.1(c), snag case (ii)).

(v) Substituting v=kx2e2x into (D2−4D+4)v =
3e2x gives: (D2−4D+4)(kx2e2x)=3e2x

D(kx2e2x) = (kx2)(2e2x) + (e2x)(2kx)

= 2ke2x(x2+ x)

D2(kx2e2x) = D[2ke2x(x2+ x)]

= (2ke2x)(2x +1)+(x2+x)(4ke2x)

= 2ke2x(4x + 1+ 2x2)
Hence (D2−4D+ 4)(kx2e2x)

= [2ke2x(4x + 1+ 2x2)]
− 4[2ke2x(x2+ x)]+ 4[kx2e2x]

= 3e2x

from which, 2ke2x =3e2x and k= 3
2

Hence the P.I., v=kx2e2x= 3
2x
2e2x

(vi) The general solution, y =u+v, i.e.

y= (Ax+B)e2x+ 3
2x
2e2x

Now try the following Practice Exercise

Practice Exercise 206 Second-order
differential equations of the form

a
d2y
dx2

+ bdy
dx

+cy= f (x) where f (x) is an

exponential function (Answers on page 887)

In Problems 1 to 4, find the general solutions of the
given differential equations.

1.
d2y
dx2

− dy
dx

− 6y = 2ex

2.
d2y
dx2

− 3dy
dx

− 4y = 3e−x

3.
d2y
dx2

+ 9y = 26e2x

4. 9
d2y
dt2

− 6dy
dt

+ y = 12e
t
3

In problems 5 and 6 find the particular solutions of
the given differential equations.

5. 5
d2y
dx2

+9dy
dx

− 2y = 3ex ; when x = 0, y = 1
4

and
dy
dx

= 0

6.
d2y
dt2

− 6dy
dt

+ 9y = 4e3t ; when t = 0, y = 2
and

dy
dt

= 0

54.5 Worked problems on
differential equations of the

form a
d2y
dx2

+bdy
dx

+cy= f (x)
where f (x) is a sine or cosine
function

Problem 7. Solve the differential equation

2
d2y
dx2

+ 3dy
dx

− 5y = 6sin2x

Using the procedure of Section 54.2:

(i) 2
d2y
dx2

+ 3dy
dx

− 5y = 6sin2x in D-operator form
is (2D2+ 3D− 5)y = 6sin2x

(ii) The auxiliary equation is 2m2+3m−5=0, from
which,

(m − 1)(2m + 5) = 0,
i.e. m = 1 or m = −5

2

(iii) Since the roots are real and different the C.F.,
u=Aex+Be− 5

2 x

(iv) Let the P.I., v=Asin2x +B cos2x (see
Table 54.1(d)).
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(v) Substituting v=Asin2x+B cos2x into
(2D2+3D−5)v=6sin2x gives:
(2D2+3D−5)(Asin2x +B cos2x)=6sin2x
D(Asin2x +B cos2x)

=2Acos2x −2B sin2x
D2(Asin2x +B cos2x)

= D(2Acos2x −2B sin2x)

= −4Asin2x −4B cos2x
Hence (2D2+3D−5)(Asin2x +B cos2x)

=−8Asin2x −8B cos2x+6Acos2x
−6B sin2x−5Asin2x −5B cos2x

=6 sin2x
Equating coefficient of sin2x gives:

−13A − 6B = 6 (1)

Equating coefficients of cos2x gives:

6A − 13B = 0 (2)

6× (1)gives : −78A − 36B = 36 (3)

13× (2)gives : 78A − 169B = 0 (4)

(3) + (4)gives : − 205B = 36
from which, B = −36

205

Substituting B = −36
205

into equation (1) or (2)

gives A = −78
205

Hence the P.I., v= −78
205

sin2x− 36
205

cos2x

(vi) The general solution, y =u+v, i.e.

y= Aex+Be− 5
2 x

− 2
205

(39 sin 2x+18 cos 2x)

Problem 8. Solve
d2y
dx2

+16y=10cos4x given

y =3 and dy
dx

=4 when x=0

Using the procedure of Section 54.2:

(i)
d2y
dx2

+16y=10cos4x in D-operator form is

(D2+ 16)y = 10cos4x
(ii) The auxiliary equation is m2+16=0, from

which m=√−16= ± j4

(iii) Since the roots are complex the C.F.,
u=e0(Acos4x + B sin4x)

i.e. u=Acos4x+Bsin4x
(iv) Since sin4x occurs in the C.F. and in the

right-hand side of the given differential equa-
tion, let the P.I., v=x(C sin4x +D cos4x) (see
Table 54.1(d), snag case – constantsC andD are
used sinceA andB have already been used in the
C.F.).

(v) Substituting v=x(C sin4x+D cos4x) into
(D2+16)v=10cos4x gives:
(D2+ 16)[x(C sin4x + D cos4x)]

= 10cos4x
D[x(C sin4x + D cos4x)]

= x(4C cos4x − 4D sin4x)

+ (C sin4x + D cos4x)(1),

by the product rule

D2[x(C sin4x + D cos4x)]

= x(−16C sin4x − 16D cos4x)

+ (4C cos4x − 4D sin4x)

+ (4C cos4x − 4D sin4x)

Hence (D2+16)[x(C sin4x +D cos4x)]

=−16Cx sin4x−16Dx cos4x +4C cos4x
− 4D sin4x + 4C cos4x − 4D sin4x

+ 16Cx sin4x + 16Dx cos4x

= 10cos4x,

i.e. −8D sin4x +8C cos4x =10cos4x
Equating coefficients of cos4x gives:

8C=10, from which, C= 10
8

= 5
4

Equating coefficients of sin4x gives:
−8D=0, from which, D=0
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Hence the P.I., v=x
(
5
4 sin 4x

)

(vi) The general solution, y =u+v, i.e.

y= A cos 4x+B sin 4x+ 5
4x sin 4x

(vii) When x =0, y=3, thus
3=Acos0+B sin0+0, i.e. A=3

dy
dx

= −4Asin4x + 4B cos4x

+ 5
4x(4cos4x) + 5

4 sin4x

When x =0, dy
dx

=4, thus

4= −4Asin0+ 4B cos0+ 0+ 5
4 sin0

i.e. 4=4B, from which, B =1
Hence the particular solution is

y= 3 cos 4x+ sin 4x+ 5
4x sin 4x

Now try the following Practice Exercise

Practice Exercise 207 Second order
differential equations of the form

a
d2y
dx2

+ bdy
dx

+ cy= f (x) where f (x) is a sine

or cosine function (Answers on page 887)

In Problems 1 to 3, find the general solutions of the
given differential equations.

1. 2
d2y
dx2

− dy
dx

− 3y = 25sin2x

2.
d2y
dx2

−4dy
dx

+4y =5cosx

3.
d2y
dx2

+ y = 4cosx

4. Find the particular solution of the differen-

tial equation
d2y
dx2

− 3dy
dx

− 4y = 3sinx; when

x =0, y =0 and dy
dx

=0

5. A differential equation representing the

motion of a body is
d2y
dt2

+n2y=k sinpt ,

where k,n andp are constants. Solve the equa-
tion (given n �=0 andp2 �=n2) given that when

t =0, y = dy
dt

=0

6. The motion of a vibrating mass is given by
d2y
dt2

+8dy
dt

+20y=300sin4t . Show that the
general solution of the differential equation is
given by:

y = e−4t (Acos2t + B sin2t)

+ 15
13

(sin4t − 8cos4t)

7. L
d2q
dt2

+R
dq
dt

+ 1
C

q =V0 sinωt represents the
variation of capacitor charge in an elec-
tric circuit. Determine an expression for
q at time t seconds given that R=40�,
L=0.02H, C=50×10−6 F, V0=540.8V
and ω=200rad/s and given the boundary
conditions that when t =0, q =0 and dq

dt
=4.8

54.6 Worked problems on
differential equations of the

form a
d2y
dx2

+ b dy
dx

+ cy= f (x)
where f (x) is a sum or a product

Problem 9. Solve
d2y
dx2

+ dy
dx

− 6y = 12x − 50sinx

Using the procedure of Section 54.2:

(i)
d2y
dx2

+ dy
dx

−6y=12x−50sinx in D-operator

form is

(D2+D− 6)y = 12x − 50sinx

(ii) The auxiliary equation is (m2+m−6)=0, from
which,

(m − 2)(m + 3) = 0,
i.e. m = 2 or m = −3
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(iii) Since the roots are real and different, the C.F.,
u=Ae2x+Be−3x

(iv) Since the right-hand side of the given differential
equation is the sum of a polynomial and a sine
function let the P.I. v=ax+b+c sinx+ d cosx
(see Table 54.1(e)).

(v) Substituting v into

(D2+D−6)v=12x−50sinx gives:
(D2+D− 6)(ax + b + c sinx + d cosx)

= 12x − 50sinx

D(ax + b + c sinx + d cosx)

= a + c cosx − d sinx

D2(ax + b + c sinx + d cosx)

= −c sinx − d cosx

Hence (D2+D−6)(v)

= (−c sinx − d cosx) + (a + c cosx

− d sinx) − 6(ax + b + c sinx + d cosx)

= 12x − 50sinx
Equating constant terms gives:

a − 6b = 0 (1)

Equating coefficients of x gives:−6a=12, from
which, a=−2
Hence, from (1), b=− 1

3

Equating the coefficients of cosx gives:

−d + c − 6d = 0
i.e. c − 7d = 0 (2)

Equating the coefficients of sinx gives:

−c − d − 6c = −50
i.e. − 7c − d = −50 (3)

Solving equations (2) and (3) gives: c=7 and
d =1
Hence the P.I.,

υ = −2x− 1
3 + 7 sin x+ cos x

(vi) The general solution, y =u+v,

i.e. y= Ae2x+Be−3x− 2x
− 1
3 + 7 sin x+ cos x

Problem 10. Solve the differential equation
d2y
dx2

−2dy
dx

+2y=3ex cos2x, given that when
x =0, y =2 and dy

dx
=3

Using the procedure of Section 54.2:

(i)
d2y
dx2

−2dy
dx

+2y =3ex cos2x in D-operator
form is

(D2− 2D+ 2)y = 3ex cos2x
(ii) The auxiliary equation is m2−2m+2=0

Using the quadratic formula,

m = 2± √
[4− 4(1)(2)]
2

= 2± √−4
2

= 2±j2
2

i.e. m = 1±j1

(iii) Since the roots are complex, the C.F.,
u= ex(A cos x+B sin x)

(iv) Since the right-hand side of the given dif-
ferential equation is a product of an expo-
nential and a cosine function, let the P.I.,
v=ex(C sin2x +D cos2x) (see Table 54.1(f) –
again, constantsC andD are used sinceA and B

have already been used for the C.F.).

(v) Substituting v into (D2−2D+2)v=3ex cos2x
gives:

(D2− 2D+ 2)[ex(C sin2x + D cos2x)]
= 3ex cos2x

D(v) = ex(2C cos2x − 2D sin2x)

+ ex(C sin2x + D cos2x)

(≡ex{(2C + D)cos2x
+ (C − 2D)sin2x})

D2(v) = ex(−4C sin2x − 4D cos2x)

+ ex(2C cos2x − 2D sin2x)

+ ex(2C cos2x − 2D sin2x)

+ ex(C sin2x + D cos2x)

Download more at Learnclax.com



Se
ct

io
n

J
576 Higher Engineering Mathematics

≡ ex{(−3C − 4D)sin2x + (4C − 3D)cos2x}

Hence (D2−2D+2)v
= ex{(−3C − 4D)sin2x

+ (4C − 3D)cos2x}
− 2ex{(2C + D)cos2x
+ (C − 2D)sin2x}
+ 2ex(C sin2x + D cos2x)

= 3ex cos2x
Equating coefficients of ex sin2x gives:

−3C − 4D − 2C + 4D + 2C = 0
i.e. −3C=0, from which, C =0
Equating coefficients of ex cos2x gives:

4C − 3D − 4C − 2D + 2D = 3
i.e. −3D=3, from which,D=−1
Hence the P.I., υ =ex(−cos2x)

(vi) The general solution, y =u+v, i.e.
y= ex(Acosx+Bsinx) − ex cos2x

(vii) When x =0, y=2 thus
2= e0(Acos0+ B sin0) − e0 cos0

i.e. 2= A − 1, from which, A = 3
dy
dx

= ex(−Asinx + B cosx)

+ex(Acosx + B sinx)

− [ex(−2sin2x) + ex cos2x]

When x = 0, dy
dx

= 3
thus 3= e0(−Asin0+ B cos0)

+e0(Acos0+ B sin0)
−e0(−2sin0) − e0 cos0

i.e. 3= B + A − 1, from which,
B = 1, since A = 3

Hence the particular solution is
y= ex(3 cos x+ sin x)− ex cos2x

Now try the following Practice Exercise

Practice Exercise 208 Second-order
differential equations of the form

a
d2y
dx2

+b dy
dx

+cy=f (x) where f (x) is a sum

or product (Answers on page 887)

In Problems 1 to 4, find the general solutions of the
given differential equations.

1. 8
d2y
dx2

−6dy
dx

+y=2x +40sinx

2.
d2y
dθ2

− 3dy
dθ

+ 2y = 2sin2θ − 4cos2θ

3.
d2y
dx2

+ dy
dx

− 2y = x2+ e2x

4.
d2y
dt2

− 2dy
dt

+ 2y = et sin t

In Problems 5 to 6 find the particular solutions of
the given differential equations.

5.
d2y
dx2

−7dy
dx

+10y=e2x +20; when x = 0,
y =0 and dy

dx
=−1

3

6. 2
d2y
dx2

− dy
dx

−6y=6ex cosx; when x =0,
y =−21

29
and

dy
dx

=−620
29

For fully worked solutions to each of the problems in Practice Exercises 205 to 208 in this chapter,
go to the website:

www.routledge.com/cw/bird
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Chapter 55

Power series methods
of solving ordinary

differential equations
Why it is important to understand: Power series methods of solving ordinary differential equations
The differential equations studied so far have all had closed form solutions, that is, their solutions could be
expressed in terms of elementary functions, such as exponential, trigonometric, polynomial, and logarith-
mic functions, and most such elementary functions have expansions in terms of power series. However,
there are a whole class of functions which are not elementary functions and which occur frequently in
mathematical physics and engineering. These equations can sometimes be solved by discovering a power
series that satisfies the differential equation, but the solution seriesmaynot be summable to an elementary
function. In this chapter the methods of solution to such equations are explained.

At the end of this chapter, you should be able to:

• appreciate the reason for using power series methods to solve differential equations
• determine higher order differential coefficients as a series
• use Leibniz’s theorem to obtain the nth derivative of a given function
• obtain a power series solution of a differential equation by the Leibniz−Maclaurin method
• obtain a power series solution of a differential equation by the Frobenius method
• determine the general power series solution of Bessel’s equation
• express Bessel’s equation in terms of gamma functions
• determine the general power series solution of Legendre’s equation
• determine Legendre polynomials
• determine Legendre polynomials using Rodrigues’ formula

55.1 Introduction

Second-order ordinary differential equations that can-
not be solved by analytical methods (as shown in
Chapters 53 and 54), i.e. those involving variable

coefficients, can often be solved in the form of an infi-
nite series of powers of the variable. This chapter looks
at some of the methods that make this possible – by the
Leibniz–Maclaurin and Frobinius methods, involving
Bessel’s and Legendre’s equations, Bessel and gamma

Higher Engineering Mathematics. 978-1-138-67357-1, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.
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functions andLegendre’s polynomials. Before introduc-
ing Leibniz’s theorem, some trends with higher differ-
ential coefficients are considered. To better understand
this chapter it is necessary to be able to:

(i) differentiate standard functions (as explained in
Chapters 29 and 37),

(ii) appreciate the binomial theorem (as explained in
Chapter 7), and

(iii) use Maclaurin’s theorem (as explained in Chap-
ter 8).

55.2 Higher order differential
coefficients as series

The following is an extension of successive differentia-
tion (see page 355), but looking for trends, or series,
as the differential coefficient of common functions
rises.

(i) If y=eax, then dy
dx

=aeax ,
d2y
dx2

=a2eax , and so
on.

If we abbreviate
dy
dx

as y ′,
d2y
dx2

as y ′′, … and
dny

dxn
as y(n), then y ′ =aeax , y ′′ =a2eax , and the

emerging pattern gives: y(n) = aneax (1)

For example, if y=3e2x, then
d7y
dx7

=y(7)= 3(27)e2x =384e2x

(ii) If y=sin ax,
y ′ = a cos ax=a sin

(
ax+ π

2

)

y ′′ = −a2 sinax=a2 sin(ax +π)

= a2 sin
(

ax+ 2π
2

)

y ′′′ = −a3 cosx

= a3 sin
(

ax + 3π
2

)

and so on.

In general, y(n)=an sin
(
ax+ nπ

2

)
(2)

For example, if

y= sin 3x, then d
5y

dx5
=y(5)

= 35 sin
(

3x+ 5π
2

)

=35 sin
(
3x+ π

2

)

= 243 cos 3x

(iii) If y=cos ax,

y ′ =−a sinax=a cos
(
ax+ π

2

)

y ′′ =−a2 cosax=a2 cos
(

ax+ 2π
2

)

y ′′′ =a3 sinax=a3 cos
(

ax+ 3π
2

)

and so on.

In general, y(n) = an cos
(
ax+ nπ

2

)
(3)

For example, if y=4cos2x,

then
d6y
dx6

=y(6) =4(26)cos
(

2x + 6π
2

)

=4(26)cos(2x + 3π)

=4(26)cos(2x+π)

=−256cos2x
(iv) If y=x a, y ′ =axa−1, y ′′=a(a−1)xa−2,

y ′′′ =a(a − 1)(a − 2)xa−3,

and y(n)=a(a − 1)(a − 2) . . . (a − n+ 1)xa−n

or y(n) = a!
(a−n)! x

a−n (4)

where a is a positive integer.

For example, if y=2x6, then d
4y

dx4
= y(4)

= (2)
6!

(6− 4)!x
6−4

= (2)
6× 5× 4× 3× 2× 1

2× 1 x2

= 720x2
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(v) If y=sinh ax, y ′ =a coshax

y ′′ = a2 sinhax

y ′′′ = a3 coshax, and so on

Since sinh ax is not periodic (see graph on page
43), it is more difficult to find a general state-
ment for y(n). However, this is achieved with the
following general series:

y(n) = an

2
{[1+ (−1)n] sinhax
+ [1− (−1)n]coshax} (5)

For example, if

y= sinh2x, then d
5y

dx5
= y(5)

= 25

2
{[1+ (−1)5]sinh2x

+ [1− (−1)5]cosh2x}

= 25

2
{[0]sinh2x + [2]cosh2x}

= 32 cosh2x

(vi) If y=cosh ax,

y ′ = a sinhax

y ′′ = a2 coshax

y ′′′ = a3 sinhax,and so on

Since cosh ax is not periodic (see graph on page
181), again it is more difficult to find a general
statement for y(n). However, this is achievedwith
the following general series:

y(n) = an

2
{[1− (−1)n] sinhax

+ [1+(−1)n]coshax} (6)

For example, if y= 1
9
cosh 3x,

then
d7y
dx7

=y(7) =
(
1
9

)
37

2
(2sinh3x)

=243 sinh 3x

(vii) If y= ln ax, y ′ = 1
x
, y ′′ = − 1

x2
, y ′′′ = 2

x3
, and so

on.

In general, y(n) = (−1)n−1 (n−1)!
xn

(7)

For example, if y= ln 5x, then
d6y
dx6

= y(6) = (−1)6−1
(
5!
x6

)

= −120
x6

Note that if y = lnx, y ′ = 1
x
; if in equation (7),

n = 1 then y ′ = (−1)0 (0)!
x1

(−1)0 = 1 and if y ′ = 1
x
then (0)!=1 (check that

(−1)0 = 1 and (0)!= 1 on a calculator).

Now try the following Practice Exercise

Exercise 209 Higher-order differential
coefficients as series (Answers on page 887)

Determine the following derivatives:

1. (a) y(4) when y = e2x (b) y(5) when y = 8e
t
2

2. (a) y(4) when y = sin3t
(b) y(7) when y = 1

50
sin5θ

3. (a) y(8) when y =cos2x
(b) y(9) when y =3cos 2

3
t

4. (a) y(7) when y =2x9 (b) y(6) when y = t7

8
5. (a) y(7) when y = 1

4
sinh2x

(b) y(6) when y =2sinh3x
6. (a) y(7) when y = cosh2x

(b) y(8) when y = 1
9
cosh3x

7. (a) y(4) when y=2ln3θ
(b) y(7) when y = 1

3
ln2t

55.3 Leibniz’s theorem

If y = uv (8)

where u and v are each functions of x, then by using the
product rule,

y ′ = uv′ + vu′ (9)

Download more at Learnclax.com



Se
ct

io
n

J
580 Higher Engineering Mathematics

y ′′ = uv′′ + v′u′ + vu′′ + u′v′

= u′′v + 2u′v′ + uv′′ (10)

y ′′′ = u′′v′ + vu′′′ + 2u′v′′ + 2v′u′′ + uv′′′ + v′′u′

= u′′′v + 3u′′v′ + 3u′v′′ + uv′′′ (11)

y(4) = u(4)v + 4u(3)v(1) + 6u(2)v(2)

+ 4u(1)v(3) + uv(4) (12)

From equations (8) to (12) it is seen that

(a) the nth derivativeof u decreases by 1moving from
left to right,

(b) the nth derivative of v increases by 1 moving from
left to right,

(c) the coefficients 1, 4, 6, 4, 1 are the normal binomial
coefficients (see page 59).

In fact, (uv)(n) maybe obtainedby expanding (u+v)(n)

using the binomial theorem (see page 60), where the
‘powers’ are interpreted as derivatives. Thus, expanding
(u + v)(n) gives:

y(n)= (uv)(n)=u(n)v+nu(n−1)v(1)

+ n(n−1)
2!

u(n−2)v(2)

+ n(n−1)(n−2)
3!

u(n−3)v(3)+··· (13)

Equation (13) is a statement of Leibniz’s theorem∗,
which can be used to differentiate a product n times.
The theorem is demonstrated in the following worked
problems.

Problem 1. Determine y(n) when y = x2e3x

For a product y = uv, the function taken as

(i) u is the one whose nth derivative can readily be
determined (from equations (1) to (7)),

∗Whowas Leibniz? For image and resume see page 91. For more
information, go to www.routledge.com/cw/bird

(ii) v is the one whose derivative reduces to zero after
a few stages of differentiation.

Thus, when y=x2e3x , v=x2, since its third derivative
is zero, and u=e3x since the nth derivative is known
from equation (1), i.e. 3neax

Using Leinbiz’s theorem (equation (13),

y(n) = u(n)v + nu(n−1)v(1) + n(n− 1)
2!

u(n−2)v(2)

+ n(n− 1)(n− 2)
3!

u(n−3)v(3) + ·· ·

where in this case v=x2, v(1) = 2x, v(2) = 2 and
v(3) = 0
Hence, y(n) = (3ne3x)(x2) + n(3n−1e3x)(2x)

+ n(n− 1)
2!

(3n−2e3x)(2)

+ n(n− 1)(n− 2)
3!

(3n−3e3x)(0)

=3n−2e3x(32x2+ n(3)(2x)

+n(n− 1) + 0)

i.e. y(n) =e3x3n−2(9x2+6nx+n(n−1))

Problem 2. If x2y ′′ + 2xy ′ + y = 0 show that:
xy(n+2) + 2(n+ 1)xy(n+1) + (n2+ n+ 1)y(n) = 0

Differentiating each term of x 2y ′′ + 2xy ′ + y = 0
n times, using Leibniz’s theorem of equation (13),
gives:

{

y(n+2)x2+ ny(n+1)(2x) + n(n− 1)
2!

y(n)(2) + 0
}

+ {y(n+1)(2x) + ny(n)(2) + 0} + {y(n)} = 0

i.e. x2y(n+2) + 2nxy(n+1) + n(n− 1)y(n)

+ 2xy(n+1) + 2ny(n) + y(n) = 0

i.e. x2y(n+2) + 2(n+ 1)xy(n+1)

+ (n2− n+ 2n+ 1)y(n) = 0
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or x2y(n+2)+2(n+1)xy(n+1)

+ (n2+n+1)y(n)=0

Problem 3. Differentiate the following
differential equation n times:

(1+x2)y ′′ + 2xy ′− 3y=0

By Leibniz’s equation, equation (13),

{

y(n+2)(1+ x2) + ny(n+1)(2x)+ n(n−1)
2!

y(n)(2)+0
}

+ 2{y(n+1)(x) + ny(n)(1) + 0} − 3{y(n)} = 0

i.e. (1+ x2)y(n+2) + 2nxy(n+1) + n(n− 1)y(n)

+ 2xy(n+1) + 2ny(n) − 3y(n) = 0
or (1+ x2)y(n+2) + 2(n+ 1)xy(n+1)

+ (n2− n+ 2n− 3)y(n) = 0
i.e. (1+ x2)y(n+2)+ 2(n+ 1)xy(n+1)

+ (n2+ n− 3)y(n) = 0

Problem 4. Find the fifth derivative of y =x 4 sinx

If y=x4 sinx, then using Leibniz’s equation with
u= sinx and v=x4 gives:

y(n) =
[
sin

(
x + nπ

2

)
x4

]

+ n

[

sin
(

x + (n− 1)π
2

)

4x3
]

+ n(n− 1)
2!

[

sin
(

x + (n− 2)π
2

)

12x2
]

+ n(n− 1)(n− 2)
3!

[

sin
(

x + (n− 3)π
2

)

24x
]

+ n(n− 1)(n− 2)(n− 3)
4!

[

sin
(

x

+ (n− 4)π
2

)

24
]

and y(5) = x4 sin
(

x + 5π
2

)

+ 20x3 sin(x + 2π)

+ (5)(4)
2

(12x2)sin
(

x + 3π
2

)

+ (5)(4)(3)
(3)(2)

(24x)sin(x + π)

+ (5)(4)(3)(2)
(4)(3)(2)

(24)sin
(
x + π

2

)

Since sin
(

x + 5π
2

)

≡ sin
(
x + π

2

)
≡ cosx,

sin(x + 2π) ≡ sinx,sin
(

x + 3π
2

)

≡ −cosx,

and sin (x + π) ≡ −sinx,

then y(5) = x4 cosx+20x3 sinx+120x2(−cosx)

+240x(−sinx) + 120cosx
i.e. y(5)= (x4−120x2+120)cosx

+ (20x3−240x) sin x

Now try the following Practice Exercise

Practice Exercise 210 Leibniz’s theorem
(Answers on page 887)

Use the theorem of Leibniz in the following
problems:

1. Obtain the nth derivative of: x 2y

2. If y =x3e2x find y(n) and hence y(3)

3. Determine the fourth derivative of:y = 2x 3e−x

4. If y = x3 cosx determine the fifth derivative

5. Find an expression for y (4) if y = e−t sin t

6. If y = x5 ln2x find y(3)

7. Given 2x 2y ′′ + xy ′ + 3y = 0 show that
2x 2 y(n+2) + (4n + 1)xy(n+1)

+ (2n2−n+ 3)y(n) = 0

8. If y = (x3+ 2x2)e2x determine an expansion
for y(5)
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55.4 Power series solution by the
Leibniz–Maclaurin method

For second-order differential equations that cannot be
solved by algebraic methods, the Leibniz–Maclaurin∗
method produces a solution in the form of infinite
series of powers of the unknown variable. The follow-
ing simple five-step procedure may be used in the
Leibniz–Maclaurin method:

(i) Differentiate the given equation n times, using
the Leibniz theorem of equation (13),

(ii) rearrange the result to obtain the recurrence
relation at x = 0,

(iii) determine the values of the derivatives at x =0,
i.e. find (y)0 and (y ′)0,

(iv) substitute in the Maclaurin expansion for
y=f (x) (see page 70, equation (5)),

(v) simplify the result where possible and apply
boundary condition (if given).

The Leibniz–Maclaurin method is demonstrated, using
the above procedure, in the followingworked problems.

Problem 5. Determine the power series solution
of the differential equation:
d2y
dx2

+x
dy
dx

+ 2y=0 using the Leibniz–Maclaurin
method, given the boundary conditions that at

x =0, y =1 and dy
dx

=2

Following the above procedure:

(i) The differential equation is rewritten as:
y ′′ +xy ′ +2y=0 and from the Leibniz theorem
of equation (13), each term is differentiated n

times, which gives:

y(n+2)+{y(n+1)(x)+ny(n)(1)+0}+2y(n)=0
i.e. y(n+2) + xy(n+1) + (n+ 2)y(n) =0

(14)

∗ Who was Maclaurin? For image and resume of Maclaurin, see
page 69. To find out more go to www.routledge.com/cw/bird

(ii) At x = 0, equation (14) becomes:

y(n+2) + (n+ 2)y(n) = 0
from which, y(n+2) =−(n+2)y(n)

This equation is called a recurrence relation
or recurrence formula, because each recurring
term depends on a previous term.

(iii) Substituting n=0, 1, 2, 3,…will produce a set
of relationships between the various coefficients.

For n=0, (y ′′)0=−2(y)0

n=1, (y ′′′)0=−3(y ′)0

n=2, (y(4))0=−4(y ′′)0=−4{−2(y)0}
=2× 4(y)0

n=3, (y(5))0=−5(y ′′′)0=−5{−3(y ′)0}
=3× 5(y ′)0

n=4,(y(6))0=−6(y(4))0 = −6{2× 4(y)0}
=−2× 4× 6(y)0

n=5,(y(7))0=−7(y(5))0 = −7{3×5(y ′)0}
=−3× 5× 7(y ′)0

n=6,(y(8))0=−8(y(6))0=
−8{−2× 4× 6(y)0}=2×4×6×8(y)0

(iv) Maclaurin’s theorem from page 70 may be
written as:c

y = (y)0+ x(y ′)0+ x2

2!
(y ′′)0+ x3

3!
(y ′′′)0

+ x4

4!
(y(4))0+ ·· ·

Substituting the above values into Maclaurin’s
theorem gives:

y = (y)0+ x(y ′)0+ x2

2!
{−2(y)0}

+ x3

3!
{−3(y ′)0} + x4

4!
{2× 4(y)0}

+ x5

5!
{3× 5(y ′)0} + x6

6!
{−2× 4×6(y)0}

+ x7

7!
{−3× 5× 7(y ′)0}

+ x8

8!
{2× 4× 6× 8(y)0}
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(v) Collecting similar terms together gives:

y = (y)0

{

1− 2x2

2!
+ 2× 4x4

4!

− 2× 4× 6x6
6!

+ 2× 4× 6× 8x8
8!

− ·· ·
}

+(y ′)0

{

x − 3x3

3!
+ 3× 5x5

5!

− 3× 5× 7x7
7!

+ ·· ·
}

i.e. y = (y)0

{

1− x2

1
+ x4

1× 3 − x6

3× 5

+ x8

3× 5× 7 − ·· ·
}

+(y ′)0×
{

x

1
− x3

1× 2 + x5

2× 4

− x7

2× 4× 6 + ·· ·
}

The boundary conditions are that at x =0,y =1
and

dy
dx

=2, i.e. (y)0=1 and (y ′)0=2
Hence, the power series solution of the differen-

tial equation:
d2y
dx2

+ x
dy
dx

+2y=0 is:

y=
{

1− x
2

1
+ x4

1×3− x6

3×5

+ x8

3×5×7 −···
}

+2
{
x
1

− x3

1×2

+ x5

2×4 − x7

2×4×6 +···
}

Problem 6. Determine the power series solution
of the differential equation:
d2y
dx2

+ dy
dx

+ xy=0 given the boundary conditions
that at x =0, y =0 and dy

dx
=1, using the

Leibniz–Maclaurin method.

Following the above procedure:

(i) The differential equation is rewritten as:
y ′′ + y ′ +xy=0 and from the Leibniz theorem
of equation (13), each term is differentiated n

times, which gives:

y(n+2) + y(n+1) + y(n)(x) + ny(n−1)(1) + 0= 0
i.e. y(n+2) + y(n+1) + xy(n) + ny(n−1) = 0

(15)

(ii) At x =0, equation (15) becomes:

y(n+2) + y(n+1) + ny(n−1) = 0
from which, y(n+2) = −{y(n+1) + ny(n−1)}
This is the recurrence relation and applies for
n≥1

(iii) Substituting n=1,2,3, . . . will produce a set of
relationships between the various coefficients.

For n = 1, (y ′′′)0 =−{(y ′′)0+ (y)0}
n = 2, (y(4))0=−{(y ′′′)0+ 2(y ′)0}
n = 3, (y(5))0=−{(y(4))0+ 3(y ′′)0}

n = 4, (y(6))0=−{(y(5))0+ 4(y ′′′)0}
n = 5, (y(7))0=−{(y(6))0+ 5(y(4))0}
n = 6, (y(8))0=−{(y(7))0+ 6(y(5))0}

From the given boundary conditions, at x =0,
y=0, thus (y)0=0, and at x =0, dy

dx
=1, thus

(y ′)0=1

From the given differential equation,
y ′′ + y ′ + xy = 0, and, at x =0,
(y ′′)0+(y ′)0+(0)y =0 from which,
(y ′′)0=−(y ′)0=−1

Thus, (y)0=0,(y ′)0=1,(y ′′)0=−1,
(y ′′′)0 =−{(y ′′)0+ (y)0}=−(−1+0)=1
(y(4))0=−{(y ′′′)0+ 2(y ′)0}

=−[1+2(1)]=−3
(y(5))0=−{(y(4))0+ 3(y ′′)0}

=−[−3+3(−1)]=6
(y(6))0=−{(y(5))0+ 4(y ′′′)0}

=−[6+4(1)]=−10
(y(7))0=−{(y(6))0+ 5(y(4))0}

=−[−10+5(−3)]=25
(y(8))0=−{(y(7))0+ 6(y(5))0}

=−[25+6(6)]=−61
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(iv) Maclaurin’s theorem states:

y = (y)0+ x(y ′)0+ x2

2!
(y ′′)0+ x3

3!
(y ′′′)0

+ x4

4!
(y(4))0+ ·· ·

and substituting the above values into
Maclaurin’s theorem gives:

y = 0+ x(1) + x2

2!
{−1} + x3

3!
{1} + x4

4!
{−3}

+ x5

5!
{6} + x6

6!
{−10} + x7

7!
{25}

+ x8

8!
{−61} + · · ·

(v) Simplifying, the power series solution of

the differential equation:
d2y
dx2

+ dy
dx

+xy=0 is
given by:

y= x−x
2

2!
+x

3

3!
−3x

4

4!
+6x

5

5!
−10x

6

6!

+25x
7

7!
−61x

8

8!
+···

Now try the following Practice Exercise

Practice Exercise 211 Power series
solutions by the Leibniz-Maclaurin method
(Answers on page 887)

1. Determine the power series solution of the dif-

ferential equation:
d2y
dx2

+2x dy
dx

+y =0 using
the Leibniz–Maclaurin method, given that at

x =0, y =1 and dy
dx

=2

2. Show that the power series solution of the

differential equation: (x + 1)d
2y

dx2
+ (x − 1)

dy
dx

− 2y =0, using the Leibniz–Maclaurin
method, is given by: y =1+x 2+e−x given
the boundary conditions that at x=0, y = 2
and

dy
dx

= −1
3. Find the particular solution of the differ-

ential equation: (x2+1)d
2y

dx2
+ x

dy
dx

−4y =0
using the Leibniz–Maclaurin method, given

the boundary conditions that at x =0, y =1
and

dy
dx

=1
4. Use the Leibniz–Maclaurin method to deter-

mine the power series solution for the differen-

tial equation: x
d2y
dx2

+ dy
dx

+ xy=1 given that

at x=0, y=1 and dy
dx

=2

55.5 Power series solution by the
Frobenius method

A differential equation of the form y ′′ +Py ′ + Qy =0,
where P and Q are both functions of x, such that the
equation can be represented by a power series, may be
solved by the Frobenius method.∗

∗ Who was Frobenius? Ferdinand Georg Frobenius (26
October 1849–3 August 1917) was a German mathemati-
cian best known for his contributions to the theory of ellip-
tic functions, differential equations and to group theory.
He is also known for determinantal identities, known as
Frobenius–Stickelberger formulae. To find out more go to
www.routledge.com/cw/bird
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The following four-step proceduremay be used in the
Frobenius method:

(i) Assume a trial solution of the form y=
xc

{
a0+a1x+a2x2+a3x3+··· +arxr+···}

(ii) differentiate the trial series,

(iii) substitute the results in the given differential
equation,

(iv) equate coefficients of corresponding powers of
the variable on each side of the equation;
this enables index c and coefficients a1, a2,
a3, … from the trial solution, to be determined.

This introductory treatment of the Frobenius method
covering the simplest cases is demonstrated, using the
above procedure, in the following worked problems.

Problem 7. Determine, using the Frobenius
method, the general power series solution of the

differential equation: 3x
d2y
dx2

+ dy
dx

−y =0

The differential equation may be rewritten as:
3xy ′′+y ′ −y =0
(i) Let a trial solution be of the form

y = xc
{
a0+ a1x + a2x

2+ a3x
3+ ·· ·

+arx
r + ·· ·} (16)

where a0 �=0,

i.e. y = a0x
c + a1x

c+1+ a2x
c+2+ a3x

c+3

+ ·· · + arx
c+r + ·· · (17)

(ii) Differentiating equation (17) gives:

y ′ = a0cx
c−1+ a1(c + 1)xc

+ a2(c + 2)xc+1+ ·· ·
+ ar(c + r)xc+r−1+ ·· ·

and y ′′ = a0c(c − 1)xc−2+ a1c(c + 1)xc−1

+ a2(c + 1)(c + 2)xc + ·· ·
+ ar(c + r − 1)(c + r)xc+r−2 + ·· ·

(iii) Substituting y, y ′ and y ′′ into each term of the
given equation 3xy ′′ + y ′ − y = 0 gives:
3xy ′′ = 3a0c(c − 1)xc−1+ 3a1c(c + 1)xc

+ 3a2(c + 1)(c + 2)xc+1+ ·· ·
+ 3ar(c + r − 1)(c+r)xc+r−1+·· · (a)

y ′ = a0cx
c−1+a1(c + 1)xc+a2(c + 2)xc+1

+ ·· · + ar(c + r)xc+r−1+ ·· · (b)

−y = −a0x
c − a1x

c+1− a2x
c+2− a3x

c+3

− ·· · − arx
c+r − ·· · (c)

(iv) The sum of these three terms forms the left-hand
side of the equation. Since the right-hand side is
zero, the coefficients of each power of x can be
equated to zero.
For example, the coefficient of x c−1 is equated
to zero giving: 3a0c(c − 1) + a0c = 0

or a0c[3c − 3+ 1]= a0c(3c−2)=0 (18)

The coefficient of xc is equated to zero giving:
3a1c(c + 1) + a1(c + 1) − a0 = 0
i.e. a1(3c2+ 3c + c + 1) − a0

= a1(3c2+ 4c + 1) − a0 = 0
or a1(3c+1)(c+1)−a0=0 (19)

In each of series (a), (b) and (c) an x c term is
involved, after which, a general relationship can
be obtained for xc+r , where r ≥0
In series (a) and (b), terms in x c+r−1 are present;
replacing r by (r +1)will give the corresponding
terms in xc+r , which occurs in all three equa-
tions, i.e.

in series (a), 3ar+1(c + r)(c + r + 1)xc+r

in series (b), ar+1(c + r + 1)xc+r

in series (c), −arx
c+r

Equating the total coefficients of x c+r to zero
gives:

3ar+1(c + r)(c + r + 1) + ar+1(c + r + 1)
− ar = 0
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which simplifies to:

ar+1{(c+r+1)(3c+3r+1)}−ar=0 (20)

Equation (18),whichwas formed from the coeffi-
cients of the lowest power of x, i.e. x c−1, is called
the indicial equation, from which the value of
c is obtained. From equation (18), since a0 �=0,
then c=0 or c= 2

3
(a) When c=0
From equation (19), if c=0, a1(1×1) − a0 = 0,
i.e. a1=a0
From equation (20), if c=0,
ar+1(r +1)(3r +1)− ar =0,
i.e. ar+1= ar

(r+1)(3r+1) r ≥0
Thus, when r =1, a2= a1

(2× 4) = a0

(2× 4)
since a1 = a0

when r =2, a3= a2

(3× 7) = a0

(2× 4)(3× 7)
or

a0

(2× 3)(4× 7)
when r =3, a4= a3

(4× 10)
= a0

(2× 3× 4)(4× 7× 10)
and so on.

From equation (16), the trial solution was:

y = xc{a0+ a1x + a2x
2+ a3x

3+·· ·+ arx
r + ·· · }

Substituting c=0 and the above values of a1, a2, a3,…
into the trial solution gives:

y = x0
{

a0+ a0x +
(

a0

(2× 4)
)

x2

+
(

a0

(2× 3)(4× 7)
)

x3

+
(

a0

(2× 3× 4)(4× 7× 10)
)

x4+ ·· ·
}

i.e. y = a0

{

1+ x + x2

(2× 4) + x3

(2× 3)(4× 7)

+ x4

(2× 3× 4)(4× 7× 10) + ·· ·
}

(21)

(b) When c= 2
3

From equation (19), if c= 2
3
, a1(3)

(
5
3

)

− a0 = 0, i.e.

a1= a05
From equation (20), if c= 2

3

ar+1
(
2
3

+ r + 1
)

(2+ 3r + 1) − ar = 0,

i.e. ar+1
(

r + 5
3

)

(3r + 3) − ar

= ar+1(3r2+8r +5) − ar = 0,

i.e. ar+1= ar
(r+1)(3r+5) r ≥ 0

Thus, when r =1, a2= a1

(2× 8) = a0

(2× 5× 8)
since a1 = a0

5

when r =2, a3= a2

(3× 11)

= a0

(2× 3)(5× 8× 11)

when r =3, a4= a3

(4× 14)

= a0

(2×3×4)(5×8×11×14)
and so on.

From equation (16), the trial solution was:

y = xc{a0+ a1x + a2x
2+ a3x

3+·· ·+ arx
r +·· · }

Substituting c= 2
3
and the above values of a1, a2,

a3, … into the trial solution gives:

y = x
2
3

{

a0+
(a0

5

)
x +

(
a0

2× 5× 8
)

x2

+
(

a0

(2× 3)(5× 8× 11)
)

x3

+
(

a0

(2× 3× 4)(5× 8× 11× 14)
)

x4+ ·· ·
}
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i.e. y = a0x
2
3

{

1+ x

5
+ x2

(2× 5× 8)

+ x3

(2× 3)(5× 8× 11)

+ x4

(2× 3× 4)(5× 8× 11× 14) + ·· ·
}

(22)

Since a0 is an arbitrary (non-zero) constant in each
solution, its value could well be different.
Let a0=A in equation (21), and a0=B in equation (22).
Also, if the first solution is denoted by u(x) and the
second by v(x), then the general solution of the given
differential equation is y=u(x)+v(x). Hence,

y= A
{

1+x+ x2

(2×4) +
x3

(2×3)(4×7)

+ x4

(2×3×4)(4×7×10) +···
}

+Bx 23
{

1+ x
5

+ x2

(2×5×8)

+ x3

(2×3)(5×8×11)

+ x4

(2×3×4)(5×8×11×14) +···
}

Problem 8. Use the Frobenius method to
determine the general power series solution of the
differential equation:

2x2
d2y
dx2

− x
dy
dx

+ (1− x)y=0

The differential equation may be rewritten as:
2x2y ′′ −xy ′+(1−x)y =0
(i) Let a trial solution be of the form

y = xc{a0+ a1x + a2x
2+ a3x

3+ ·· ·
+ arx

r + ·· · } (23)

where a0 �=0,
i.e. y = a0x

c + a1x
c+1+ a2x

c+2+ a3x
c+3

+ ·· · + arx
c+r + ·· · (24)

(ii) Differentiating equation (24) gives:

y ′ = a0cx
c−1+ a1(c + 1)xc + a2(c + 2)xc+1

+ ·· · + ar(c + r)xc+r−1+ ·· ·

and y ′′ = a0c(c − 1)xc−2+ a1c(c + 1)xc−1

+ a2(c + 1)(c + 2)xc + ·· ·
+ ar(c + r − 1)(c + r)xc+r−2+ ·· ·

(iii) Substituting y, y ′ and y ′′ into each term of
the given equation 2x 2y ′′ −xy ′+(1−x)y=0
gives:

2x2y ′′ = 2a0c(c − 1)xc + 2a1c(c + 1)xc+1

+ 2a2(c + 1)(c + 2)xc+2+ ·· ·
+ 2ar(c + r − 1)(c + r)xc+r + ·· ·

(a)

−xy ′ = −a0cx
c − a1(c + 1)xc+1

− a2(c + 2)xc+2− ·· ·
− ar(c + r)xc+r − ·· · (b)

(1− x)y = (1− x)(a0x
c + a1x

c+1+ a2x
c+2

+ a3x
c+3+ ·· · + arx

c+r + ·· ·)
= a0x

c + a1x
c+1+ a2x

c+2+ a3x
c+3

+ ·· · + arx
c+r + ·· ·

− a0x
c+1− a1x

c+2− a2x
c+3

− a3x
c+4− ·· · − arx

c+r+1− ·· · (c)

(iv) The indicial equation, which is obtained by
equating the coefficient of the lowest power of
x to zero, gives the value(s) of c. Equating the
total coefficients of xc (from equations (a) to (c))
to zero gives:

2a0c(c − 1) − a0c + a0=0
i.e. a0[2c(c − 1) − c + 1]=0
i.e. a0[2c2− 2c − c + 1] =0
i.e. a0[2c2− 3c + 1] =0
i.e. a0[(2c − 1)(c − 1)]=0

from which, c=1 or c= 1
2

The coefficient of the general term, i.e. x c+r ,
gives (from equations (a) to (c)):

2ar(c + r − 1)(c + r) − ar(c + r)

+ ar − ar−1 = 0
from which,

ar [2(c + r − 1)(c + r) − (c + r) + 1]= ar−1
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and ar = ar−1
2(c+r−1)(c+r)−(c+r)+1 (25)

(a) With c=1, ar = ar−1
2(r)(1+ r)− (1+ r)+1

= ar−1
2r + 2r2− 1− r + 1

= ar−1
2r2+ r

= ar−1
r (2r+ 1)

Thus, when r =1,

a1 = a0

1(2+ 1) = a0

1× 3
when r = 2,

a2 = a1

2(4+ 1) = a1

(2× 5)
= a0

(1× 3)(2× 5) or
a0

(1× 2) × (3× 5)
when r = 3,

a3 = a2

3(6+ 1) = a2

3× 7
= a0

(1× 2× 3) × (3× 5× 7)

when r = 4,

a4 = a3

4(8+ 1) = a3

4× 9
= a0

(1× 2× 3× 4) × (3× 5× 7× 9)
and so on.

From equation (23), the trial solution was:

y = xc
{
a0+ a1x + a2x

2+ a3x
3+ ·· ·

+arx
r + ·· ·}

Substituting c=1 and the above values of a1, a2,
a3,…into the trial solution gives:

y = x1
{

a0+ a0

(1×3)x+ a0

(1×2)×(3×5)x
2

+ a0

(1× 2× 3) × (3× 5× 7) x3

+ a0

(1×2×3×4)×(3×5×7×9)x
4

+ ·· ·
}

i.e. y = a0x
1
{

1+ x

(1×3) + x2

(1× 2) × (3× 5)

+ x3

(1× 2× 3) × (3× 5× 7)

+ x4

(1×2×3×4)×(3×5×7×9)

+ ·· ·
}

(26)

(b) With c= 1
2

ar = ar−1
2(c + r − 1)(c + r) − (c + r) + 1

from equation (25)

i.e. ar = ar−1

2
(
1
2

+ r − 1
)(
1
2

+ r

)

−
(
1
2

+ r

)

+1

= ar−1

2
(

r − 1
2

)(

r + 1
2

)

− 1
2

− r + 1

= ar−1

2
(

r2− 1
4

)

− 1
2

− r + 1

= ar−1

2r2− 1
2

− 1
2

− r + 1
= ar−1
2r2− r

= ar−1
r(2r−1)

Thus, when r =1, a1= a0

1(2− 1) = a0

1× 1
when r =2, a2= a1

2(4− 1) = a1

(2× 3)
= a0

(2× 3)
when r =3, a3= a2

3(6− 1) = a2

3× 5
= a0

(2× 3) × (3× 5)
when r =4, a4= a3

4(8− 1) = a3

4× 7
= a0

(2×3×4)×(3×5×7)
and so on.
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From equation (23), the trial solution was:

y = xc
{
a0+ a1x + a2x

2+ a3x
3+ ·· ·

+ arx
r + ·· ·}

Substituting c= 1
2
and the above values of a1, a2,

a3,…into the trial solution gives:

y=x
1
2

{

a0+a0x+ a0

(2×3)x
2+ a0

(2×3)×(3×5)x
3

+ a0

(2× 3× 4) × (3× 5× 7)x
4+ ·· ·

}

i.e. y = a0x
1
2

{

1+ x + x2

(2× 3)

+ x3

(2× 3) × (3× 5)

+ x4

(2× 3× 4) × (3× 5× 7)

+ ·· ·
}

(27)

Since a0 is an arbitrary (non-zero) constant in
each solution, its value could well be different.
Let a0=A in equation (26), and a0=B in equa-
tion (27). Also, if the first solution is denoted by
u(x) and the second by v(x), then the general
solution of the given differential equation is
y=u(x)+v(x),

i.e. y=Ax
{

1+ x
(1×3) +

x2

(1×2)× (3×5)

+ x3

(1×2×3)× (3×5×7)

+ x4

(1×2×3×4)×(3×5×7×9)

+···
}

+Bx 12
{

1+x+ x2

(2×3)

+ x3

(2×3)× (3×5)

+ x4

(2×3×4)×(3×5×7) +···
}

Problem 9. Use the Frobenius method to
determine the general power series solution of the

differential equation:
d2y
dx2

−2y =0

The differential equation may be rewritten as:
y ′′ −2y =0
(i) Let a trial solution be of the form

y = xc
{
a0+ a1x + a2x

2+ a3x
3+ ·· ·

+arx
r + ·· ·} (28)

where a0 �=0,

i.e. y = a0x
c + a1x

c+1+ a2x
c+2+ a3x

c+3

+ ·· · + arx
c+r + ·· · (29)

(ii) Differentiating equation (29) gives:

y ′ = a0cx
c−1+ a1(c + 1)xc + a2(c + 2)xc+1

+ ·· · + ar(c + r)xc+r−1+ ·· ·

and y ′′ = a0c(c − 1)xc−2+ a1c(c + 1)xc−1

+ a2(c + 1)(c + 2)xc + ·· ·
+ ar(c + r − 1)(c + r)xc+r−2+ ·· ·

(iii) Replacing r by (r +2) in
ar(c+r −1)(c+ r) xc+r−2 gives:
ar+2(c+r +1)(c+r +2)xc+r

Substituting y and y ′′ into each term of the given
equation y ′′ −2y =0 gives:

y ′′ − 2y = a0c(c − 1)xc−2+ a1c(c + 1)xc−1

+ [a2(c+1)(c + 2)−2a0]xc+·· ·
+ [ar+2(c + r + 1)(c + r + 2)

− 2ar ] xc+r + ·· · = 0 (30)

(iv) The indicial equation is obtained by equating
the coefficient of the lowest power of x to zero.

Hence, a0c(c−1)=0 from which, c=0 or
c=1 since a0 �=0
For the term in xc−1, i.e. a1c(c+1)=0
With c=1, a1=0; however, when c=0, a1 is
indeterminate, since any value of a1 combined
with the zero value of c would make the product
zero.
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For the term in xc,

a2(c + 1)(c + 2) − 2a0 = 0 from which,
a2 = 2a0

(c + 1)(c + 2) (31)

For the term in xc+r ,

ar+2(c + r + 1)(c + r + 2) − 2ar = 0

from which,

ar+2 = 2ar

(c + r + 1)(c + r + 2) (32)

(a) When c=0: a1 is indeterminate, and from
equation (31)

a2 = 2a0
(1× 2) = 2a0

2!

In general, ar +2= 2ar

(r +1)(r +2) and

when r =1, a3= 2a1
(2×3) = 2a1

(1×2×3) = 2a1
3!

when r =2, a4 = 2a2
3× 4 = 4a0

4!

Hence, y = x0
{

a0+ a1x + 2a0
2!

x2+ 2a1
3!

x3

+ 4a0
4!

x4+ ·· ·
}

from equation (28)

= a0

{

1+ 2x2

2!
+ 4x4

4!
+ ·· ·

}

+ a1

{

x + 2x3

3!
+ 4x5

5!
+ ·· ·

}

Since a0 and a1 are arbitrary constants
depending on boundary conditions, let a 0=P

and a1=Q, then:

y=P
{

1+ 2x
2

2!
+ 4x

4

4!
+···

}

+Q
{

x+ 2x
3

3!
+ 4x

5

5!
+···

}

(33)

(b)When c=1: a1=0, and fromequation (31),

a2 = 2a0
(2× 3) = 2a0

3!

Since c=1, ar+2= 2ar

(c + r + 1)(c + r + 2)
= 2ar

(r + 2)(r + 3)
from equation (32) and when r =1,

a3 = 2a1
(3× 4) = 0 since a1 = 0

when r =2,

a4 = 2a2
(4× 5) = 2

(4× 5) × 2a0
3!

= 4a0
5!

when r =3,

a5 = 2a3
(5× 6) = 0

Hence, when c=1,

y =x1
{

a0+ 2a03! x2+ 4a0
5!

x4+ ·· ·
}

from equation (28)

i.e. y = a0

{

x + 2x
3

3!
+ 4x

5

5!
+ . . .

}

Again, a0 is an arbitrary constant; let a0=K ,

then y=K
{

x+ 2x
3

3!
+ 4x

5

5!
+···

}

However, this latter solution is not a separate solution,
for it is the same form as the second series in equation
(33). Hence, equation (33) with its two arbitrary con-
stantsP andQ gives the general solution. This is always
the casewhen the two values of cdiffer by an integer (i.e.
whole number). From the above threeworkedproblems,
the following can be deduced, and in future assumed:

(i) if two solutions of the indicial equation differ by
a quantity not an integer, then two independent
solutions y =u(x)+v(x) result, the general solu-
tion of which is y=Au+Bv (note: Problem 7

had c=0 and 2
3
and Problem 8 had c=1 and 1

2
;

in neither case did c differ by an integer)

(ii) if two solutions of the indicial equationdodiffer by
an integer, as in Problem 9 where c=0 and 1, and
if one coefficient is indeterminate, as with when
c=0, then the complete solution is always given
by using this value of c. Using the second value
of c, i.e. c=1 in Problem 9, always gives a series
which is one of the series in the first solution.

Download more at Learnclax.com



Se
ct

io
n

J

Power series methods of solving ordinary differential equations 591

Now try the following Practice Exercise

Practice Exercise 212 Power series
solutions by the Frobenius method
(Answers on page 888)

1. Produce, using the Frobeniusmethod, a power
series solution for the differential equation:

2x
d2y
dx2

+ dy
dx

− y = 0
2. Use the Frobenius method to determine the

general power series solution of the differen-

tial equation:
d2y
dx2

+y =0
3. Determine the power series solution of the

differential equation: 3x
d2y
dx2

+ 4dy
dx

− y = 0
using the Frobenius method.

4. Show, using the Frobenius method, that
the power series solution of the differential

equation:
d2y
dx2

−y=0 may be expressed as
y =P cosh x+Q sinh x, where P andQ are
constants. [Hint: check the series expansions
for cosh x and sinh x on page 188].

55.6 Bessel’s equation and Bessel’s
functions

One of the most important differential equations in
applied mathematics is Bessel’s∗equation and is of the
form:

x2
d2y
dx2

+ x
dy
dx

+ (x2− v2)y = 0

where v is a real constant. The equation, which has
applications in electric fields, vibrations and heat con-
duction, may be solved using Frobenius’ method of the
previous section.

Problem 10. Determine the general power series
solution of Bessel’s equation.

Bessel’s equation x2
d2y
dx2

+ x
dy
dx

+ (x2− v2)y = 0may
be rewritten as: x2y ′′ + xy ′ + (x2− v2)y = 0

Using the Frobenius method from page 585:

(i) Let a trial solution be of the form

y = xc{a0+ a1x + a2x
2+ a3x

3+ ·· ·
+ arx

r + ·· · } (34)

where a0 �=0,

i.e. y = a0x
c + a1x

c+1+ a2x
c+2+ a3x

c+3

+ ·· · + arx
c+r +·· · (35)

(ii) Differentiating equation (35) gives:

y ′ = a0cx
c−1+ a1(c + 1)xc

+ a2(c + 2)xc+1+·· ·
+ ar(c + r)xc+r−1+ ·· ·

∗ Who was Bessel? Friedrich Wilhelm Bessel (22 July 1784–
17 March 1846) was a German mathematician, astronomer,
and the systematiser of the Bessel functions. Bessel produced
a refinement on the orbital calculations for Halley’s Comet and
produced precise positions for 3222 stars. To find out more go
to www.routledge.com/cw/bird
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and y ′′ = a0c(c − 1)xc−2+ a1c(c + 1)xc−1

+ a2(c + 1)(c + 2)xc +·· ·
+ ar(c + r − 1)(c + r)xc+r−2+ ·· ·

(iii) Substituting y, y ′ and y ′′ into each term of
the given equation: x 2y ′′ + xy ′ + (x2− v2)y = 0
gives:

a0c(c − 1)xc + a1c(c + 1)xc+1

+ a2(c + 1)(c + 2)xc+2+ ·· ·

+ ar(c + r − 1)(c + r)xc+r + ·· · + a0cx
c

+ a1(c + 1)xc+1+ a2(c + 2)xc+2+ ·· ·

+ ar(c + r)xc+r + ·· · + a0x
c+2+ a1x

c+3

+ a2x
c+4+ ·· · + arx

c+r+2+ ·· · − a0v
2xc

− a1v
2xc+1− ·· · − arv

2xc+r + ·· · = 0
(36)

(iv) The indicial equation is obtained by equating
the coefficient of the lowest power of x to zero.

Hence, a0c(c − 1) + a0c − a0v
2 = 0

from which, a0[c2− c + c − v2]= 0

i.e. a0[c2− v2]= 0
from which, c=+v or c=−v since a0 �= 0
For the term in xc+r ,
ar(c + r − 1)(c + r) + ar(c + r) + ar−2

− arv
2 = 0

ar [(c+r −1)(c+r)+(c+r)−v2]=−ar−2

i.e. ar [(c+r)(c+r −1+1)−v2]=−ar−2

i.e. ar [(c+r)2−v2]=−ar−2

i.e. the recurrence relation is:

ar= ar−2
v2− (c+r)2 for r ≥ 2 (37)

For the term in xc+1,

a1[c(c + 1) + (c+ 1) − v2] =0

i.e. a1[(c + 1)2− v2]=0

but if c = v a1[(v + 1)2− v2]=0

i.e. a1[2v + 1]=0

Similarly, if c = −va1[1− 2v]=0
The terms (2v + 1) and (1− 2v) cannot both be
zero since v is a real constant, hence a1 = 0
Since a1=0, then from equation (37)
a3=a5 = a7 = . . . = 0
and

a2= a0

v2− (c + 2)2

a4= a0

[v2− (c + 2)2][v2− (c + 4)2]

a6= a0

[v2− (c + 2)2][v2−(c+4)2][v2− (c+6)2]
and so on.

When c=+v,

a2 = a0

v2 − (v + 2)2 = a0

v2− v2 − 4v − 4

= −a0

4+ 4v = −a0

22(v + 1)

a4 = a0[
v2− (v + 2)2][

v2− (v + 4)2]

= a0

[−22(v + 1)][−23(v + 2)]

= a0

25(v + 1)(v + 2)

= a0

24× 2(v + 1)(v + 2)

a6 = a0

[v2−(v+2)2][v2−(v+4)2][v2−(v+6)2]

= a0

[24× 2(v + 1)(v + 2)][−12(v + 3)]

= −a0

24× 2(v + 1)(v + 2) × 22× 3(v + 3)

= −a0

26× 3!(v + 1)(v + 2)(v + 3) and so on.
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The resulting solution for c=+v is given by:
y = u =

Axv

{

1− x2

22(v +1) + x4

24× 2!(v +1)(v +2)

− x6

26× 3!(v +1)(v + 2)(v + 3) +·· ·
}

(38)

which is valid providedv is not a negative integer
and where A is an arbitrary constant.

When c=−v,

a2= a0

v2 − (−v + 2)2 = a0

v2 − (v2− 4v + 4)

= −a0

4− 4v = −a0

22 (v − 1)
a4= a0

[22(v − 1)][v2− (−v + 4)2]
= a0

[22(v − 1)][23(v − 2)]
= a0

24× 2(v − 1)(v − 2)

Similarly, a6 = a0

26× 3!(v−1)(v−2)(v−3)
Hence,

y = w =
B x−v

{

1+ x2

22(v−1) + x4

24×2!(v−1)(v−2)

+ x6

26× 3!(v − 1)(v − 2)(v − 3) + ·· ·
}

which is valid provided v is not a positive integer
and where B is an arbitrary constant.
The complete solution of Bessel’s equation:

x2
d2y
dx2

+ x
dy
dx

+ (
x2− v2

)
y = 0 is:

y= u + w =

Axv
{

1− x2

22(v+1) + x4

24×2!(v+1)(v+2)

− x6

26×3!(v+1)(v+2)(v+3) +···
}

+Bx−v

{

1+ x2

22(v−1)

+ x4

24×2!(v−1)(v−2)

+ x6

26×3!(v−1)(v−2)(v−3)+···
}

(39)

The gamma function

The solution of the Bessel equation of Problem 10 may
be expressed in terms of gamma functions. � is the
upper caseGreek letter gamma, and the gamma function
�(x) is defined by the integral

�(x) =
∫ ∞

0
tx−1e−tdt (40)

and is convergent for x >0

From equation (40), �(x + 1) =
∫ ∞

0
txe−tdt

and by using integration by parts (see page 500):

�(x + 1) =
[
(
tx

)
(
e−t

−1
)]∞

0

−
∫ ∞

0

(
e−t

−1
)

x tx−1dx

= (0− 0) + x

∫ ∞

0
e−t tx−1dt

= x�(x) from equation (40)

This is an important recurrence relation for gamma
functions.

Thus, since �(x + 1) = x�(x)

then similarly, �(x + 2) = (x + 1)�(x + 1)
= (x + 1)x�(x) (41)

and �(x + 3) = (x + 2)�(x + 2)
= (x + 2)(x + 1)x�(x),

and so on.

These relationships involving gamma functions are used
with Bessel functions.

Bessel functions
The power series solution of the Bessel equation may
be written in terms of gamma functions as shown in
Problem 11 below.
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Problem 11. Show that the power series solution
of the Bessel equation of Problem 10 may be
written in terms of the Bessel functions Jv(x) and
J−v(x) as:

AJv(x) +BJ−v(x)

=
(x

2

)v
{

1
�(v + 1) − x2

22(1!)�(v + 2)

+ x4

24(2!)�(v + 4) − ·· ·
}

+
(x

2

)−v
{

1
�(1− v)

− x2

22(1!)�(2− v)

+ x4

24(2!)�(3− v)
− ·· ·

}

From Problem 10 above,when c=+v,

a2= −a0

22(v + 1)

If we let a0= 1
2v�(v + 1)

then

a2 = −1
22(v + 1)2v�(v + 1) = −1

2v+2(v + 1)�(v + 1)
= −1
2v+2�(v + 2) from equation (41)

Similarly, a4 = a2

v2 − (c + 4)2 from equation (37)

= a2

(v − c − 4)(v + c + 4) = a2

−4(2v + 4)
since c = v

= −a2

23(v + 2) = −1
23(v + 2)

−1
2v+2�(v + 2)

= 1
2v+4(2!)�(v + 3)

since (v + 2)�(v + 2) = �(v + 3)

and a6= −1
2v+6(3!)�(v+4) and so on.

The recurrence relation is:

ar = (−1)r/2
2v+r

( r

2
!
)
�

(
v + r

2
+ 1

)

And if we let r = 2k, then

a2k = (−1)k
2v+2k(k!)�(v+k+1) (42)

for k=1, 2, 3, . . .
Hence, it is possible to write the new form for equation
(38) as:

y = Axv

{
1

2v�(v + 1) − x2

2v+2(1!)�(v + 2)

+ x4

2v+4(2!)�(v + 3) − ·· ·
}

This is called the Bessel function of the first-order kind,
of order v, and is denoted by Jv(x),

i.e. Jv(x)=
(x
2

)v
{

1
�(v+1)−

x2

22(1!)�(v+2)

+ x4

24(2!)�(v+3) −···
}

provided v is not a negative integer.

For the second solution, when c=−v, replacing v

by −v in equation (42) above gives:

a2k = (−1)k
22k−v(k! )�(k − v + 1)

from which, when k=0,a0= (−1)0
2−v(0!)�(1− v)

= 1
2−v�(1− v)

since 0!=1 (see page 579)

when k = 1, a2= (−1)1
22−v (1! )�(1− v + 1)

= −1
22−v(1!)�(2− v)

when k = 2, a4= (−1)2
24−v(2!)�(2− v + 1)

= 1
24−v(2!)�(3− v)

when k = 3, a6= (−1)3
26−v (3! )�(3− v + 1)

= 1
26−v(3!)�(4− v)

and so on.
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Hence, y = Bx−v

{
1

2−v�(1− v)
− x2

22−v(1!)�(2− v)

+ x4

24−v(2!)�(3− v)
− ·· ·

}

i.e. J−v(x)=
(x
2

)−v
{

1
�(1−v)

− x2

22(1!)�(2−v)

+ x4

24(2!)�(3−v)
−···

}

provided v is not a positive integer.

Jv(x) and J−v(x) are two independent solutions of the
Bessel equation; the complete solution is:

y = AJv(x) + BJ−v(x) where A and B are constants

i.e. y=AJv(x)+BJ−v(x)

= A
(x
2

)v
{

1
�(v+1) − x2

22(1!)�(v+2)

+ x4

24(2!)�(v+4) − ···
}

+B
(x
2

)−v
{

1
�(1−v)

− x2

22(1!)�(2−v)

+ x4

24(2!)�(3−v)
− ···

}

In general terms: Jv(x) =
(x

2

)v ∞∑

k=0
(−1)kx2k

22k(k!)�(v+k+1)

and J−v(x) =
(x

2

)−v ∞∑

k=0
(−1)kx2k

22k(k!)�(k − v + 1)

Another Bessel function

Itmay be shown that another series forJn(x) is given by:

Jn(x) =
(x

2

)n
{
1
n!

− 1
(n+ 1)!

(x

2

)2

+ 1
(2!)(n+ 2)!

(x

2

)4− ·· ·
}

From this series two commonly used function are
derived,

i.e. J0(x)= 1
(0!)

− 1
(1!)2

(x

2

)2 + 1
(2!)2

(x

2

)4

− 1
(3!)2

(x

2

)6+ ·· ·

= 1− x2

22(1!)2
+ x4

24(2!)2
− x6

26(3!)2
+···

and J1(x)= x

2

{
1

(1!)
− 1

(1!)(2!)

(x

2

)2

+ 1
(2!)(3!)

(x

2

)4− ·· ·
}

= x
2

− x3

23(1!)(2!)
+ x5

25(2!)(3!)

− x7

27(3!)(4!)
+···

Tables of Bessel functions are available for a range of
values of n and x, and in these, J0(x) and J1(x) aremost
commonly used.

Graphs of J0(x), which looks similar to a cosine, and
J1(x), which looks similar to a sine, are shown in
Figure 55.1.

Now try the following Practice Exercise

Practice Exercise 213 Bessel’s equation
and Bessel’s functions (Answers on page
888)

1. Determine the power series solution of Bes-

sel’s equation: x2
d2y
dx2

+x
dy
dx

+(x2−v2)y =0
when v=2, up to and including the term in x 6.

2. Find the power series solution of the
Bessel function: x2y ′′ +xy ′+ (

x2− v2
)
y =0

in terms of the Bessel function J3(x) when
v=3. Give the answer up to and including the
term in x7.

3. Evaluate the Bessel functions J0(x) and J1(x)

when x=1, correct to 3 decimal places.
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y � J0(x)

y � J1(x)

1

0.5

�0.5

0 2 4 6 8 12 14 x

y

10

Figure 55.1

55.7 Legendre’s equation and
Legendre polynomials

Another important differential equation in physics
and engineering applications is Legendre’s∗ equation

of the form: (1− x2)
d2y
dx2

− 2x dy
dx

+ k(k + 1)y = 0 or
(1− x2)y ′′ − 2xy ′ + k(k + 1)y = 0 where k is a real
constant.

Problem 12. Determine the general power series
solution of Legendre’s equation.

To solve Legendre’s equation
(1− x2)y ′′ −2xy ′+k(k + 1)y=0 using the Frobenius
method:

(i) Let a trial solution be of the form

y = xc
{
a0+ a1x + a2x

2+ a3x
3

+·· · + arx
r + ·· ·} (43)

where a0 �=0,

i.e. y = a0x
c + a1x

c+1+ a2x
c+2+ a3x

c+3

+ ·· · + arx
c+r + ·· · (44)

∗WhowasLegendre?Adrien-MarieLegendre (18 September
1752–10 January 1833) was a French mathematician. Legendre
developed the least squares method, which is used in linear
regression, signal processing, statistics, and curve fitting. To
find out more go to www.routledge.com/cw/bird
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(ii) Differentiating equation (44) gives:

y ′ = a0cx
c−1+ a1(c + 1)xc

+ a2(c + 2)xc+1+ ·· ·

+ ar(c + r)xc+r−1+ ·· ·

and y ′′ = a0c(c − 1)xc−2+ a1c(c + 1)xc−1

+ a2(c + 1)(c + 2)xc + ·· ·

+ ar(c + r − 1)(c + r)xc+r−2+ ·· ·

(iii) Substituting y, y ′ and y ′′ into each term of the
given equation:
(
1− x2

)
y ′′ − 2xy ′ + k(k + 1)y = 0 gives:

a0c(c − 1)xc−2+ a1c(c + 1)xc−1

+ a2(c + 1)(c + 2)xc + ·· ·

+ ar(c + r − 1)(c + r)xc+r−2+ ·· ·

− a0c(c − 1)xc − a1c(c + 1)xc+1

− a2(c + 1)(c + 2)xc+2− ·· ·

− ar(c + r − 1)(c + r)xc+r − ·· · − 2a0cxc

− 2a1(c + 1)xc+1− 2a2(c + 2)xc+2− ·· ·

− 2ar(c + r)xc+r − ·· · + k2a0x
c

+ k2a1x
c+1+ k2a2x

c+2+ ·· · + k2arx
c+r

+ ·· · + ka0x
c + ka1x

c+1+ ·· ·

+ karx
c+r + ·· · = 0 (45)

(iv) The indicial equation is obtained by equating the
coefficient of the lowest power of x (i.e. x c−2) to
zero. Hence, a0c(c−1)=0 from which, c=0 or
c=1 since a0 �= 0
For the term in xc−1, i.e. a1c(c+1)=0, with
c=1, a1=0; however, when c=0, a1 is inde-
terminate, since any value of a1 combined with
the zero value of c would make the product zero.
For the term in xc+r ,

ar+2(c+r +1)(c+r + 2)−ar(c+r −1)
(c+r)−2ar(c+r)+k2ar +kar =0

from which,

ar+2 = ar

[
(c+r−1)(c+r)+2(c+r)−k2−k

]

(c+r+1)(c+r+2)

= ar [(c+r)(c+r +1) − k(k+1)]
(c + r + 1)(c + r + 2) (46)

When c=0,

ar+2 = ar [r(r + 1) − k(k + 1)]
(r + 1)(r + 2)

For r = 0,

a2 = a0[−k(k + 1)]
(1)(2)

For r = 1,

a3 = a1[(1)(2) − k(k + 1)]
(2)(3)

= −a1[k2+ k − 2]
3!

= −a1(k − 1)(k + 2)
3!

For r = 2,

a4 = a2[(2)(3) − k(k + 1)]
(3)(4)

= −a2
[
k2+ k − 6]

(3)(4)

= −a2(k + 3)(k − 2)
(3)(4)

= −(k + 3)(k − 2)
(3)(4)

.
a0[−k(k + 1)]

(1)(2)

= a0k(k+1)(k+3)(k−2)
4!

For r = 3,

a5 = a3[(3)(4)−k(k+1)]
(4)(5)

= −a3[k2+k−12]
(4)(5)

= −a3(k+4)(k−3)
(4)(5)

= −(k + 4)(k − 3)
(4)(5)

.
−a1(k−1)(k+2)

(2)(3)

= a1(k−1)(k−3)(k+2)(k+4)
5!

and so on.
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Substituting values into equation (43) gives:

y = x0
{

a0+a1x − a0k(k+1)
2!

x2

− a1(k−1)(k+2)
3!

x3

+ a0k(k+1)(k−2)(k+3)
4!

x4

+ a1(k−1)(k−3)(k+2)(k+4)
5!

x5

+ ·· ·
}

i.e. y=a0
{

1− k(k+1)
2!

x2

+ k(k+1)(k−2)(k+3)
4!

x4−···
}

+a1
{

x− (k−1)(k+2)
3!

x3

+ (k−1)(k−3)(k+2)(k+4)
5!

x5−···
}

(47)

From page 591, it was stated that if two solutions of
the indicial equation differ by an integer, as in this case,
where c=0 and 1, and if one coefficient is indetermi-
nate, as with when c=0, then the complete solution is
always given by using this value of c. Using the second
value of c, i.e. c=1 in this problem, will give a series
which is one of the series in the first solution. (This may
be checked for c=1 and where a1=0; the result will be
the first part of equation (47) above.)

Legendre’s polynomials

(A polynomial is an expression of the form:
f (x)=a+bx+cx2+dx3+ ·· · .) When k in equation
(47) above is an integer, say, n, one of the solution series
terminates after a finite number of terms. For example,
if k=2, then the first series terminates after the term in
x2. The resulting polynomial in x, denoted by Pn(x), is

called a Legendre polynomial. Constants a0 and a1 are
chosen so that y =1 when x =1. This is demonstrated
in the following worked problems.

Problem 13. Determine the Legendre polynomial
P2(x)

Since in P2(x), n=k=2, then from the first part of
equation (47), i.e. the even powers of x:

y = a0

{

1− 2(3)
2!

x2+ 0
}

= a0{1− 3x2}

a0 is chosen to make y =1 when x=1

i.e. 1=a0{1−3(1)2}=−2a0, from which, a0= − 1
2

Hence, P2(x)=−1
2

(
1− 3x2) = 1

2
(3x2−1)

Problem 14. Determine the Legendre poly-
nomial P3(x)

Since in P3(x), n=k=3, then from the second part of
equation (47), i.e. the odd powers of x:

y = a1

{

x − (k − 1)(k + 2)
3!

x3

+ (k − 1)(k − 3)(k + 2)(k + 4)
5!

x5− ·· ·
}

i.e. y = a1

{

x − (2)(5)
3!

x3+ (2)(0)(5)(7)
5!

x5
}

= a1

{

x − 5
3
x3+ 0

}

a1 is chosen to make y=1 when x =1.

i.e. 1=a1

{

1− 5
3

}

=a1

(

−2
3

)

from which, a1=−3
2

Hence, P3(x)=−3
2

(

x−5
3
x3

)

or P3(x)= 12 (5x
3−3x)
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Rodrigues’ formula

An alternativemethodof determiningLegendrepolyno-
mials is by using Rodrigues’∗ formula, which states:

Pn(x)= 1
2nn!

dn
(
x2−1)n
dxn

(48)

This is demonstrated in the followingworked problems.

Problem 15. Determine the Legendre polynomial
P2(x) using Rodrigues’ formula.

In Rodrigues’ formula, Pn(x)= 1
2nn!

dn
(
x2−1)n
dxn

and when n=2,

P2(x) = 1
222!

d2(x2− 1)2
dx2

∗ Who was Rodrigues? Benjamin Olinde Rodrigues
(1795–1851), was a French banker, mathematician, and
social reformer. Rodrigues is remembered for three results:
Rodrigues’ rotation formula for vectors; the Rodrigues
formula about series of orthogonal polynomials; and the
Euler–Rodrigues parameters. To find out more go to
www.routledge.com/cw/bird

= 1
23
d2(x4− 2x2+ 1)

dx2

d
dx

(x4− 2x2+ 1)

= 4x3− 4x

and
d2

(
x4− 2x2+ 1)

dx2
= d(4x3− 4x)

dx
= 12x2− 4

Hence, P2(x)= 1
23
d2

(
x4−2x2+1)

dx2
= 1
8
(
12x2− 4)

i.e. P2(x)= 12
(
3x2−1), the same as in Problem 13.

Problem 16. Determine the Legendre polynomial
P3(x) using Rodrigues’ formula.

In Rodrigues’ formula, Pn(x) = 1
2nn!

dn
(
x2− 1)n
dxn

and
when n=3,

P3(x) = 1
233!

d3
(
x2− 1)3
dx3

= 1
23(6)

d3
(
x2− 1)(

x4− 2x2+ 1)

dx3

= 1
(8)(6)

d3
(
x6− 3x4+ 3x2− 1)

dx3

d
(
x6−3x4+3x2−1)

dx
= 6x5− 12x3+ 6x

d
(
6x5−12x3+6x)

dx
= 30x4−36x2+6

and
d
(
30x4−36x2+6)

dx
= 120x3− 72x

Hence, P3(x) = 1
(8)(6)

d3
(
x6− 3x4+ 3x2− 1)

dx3

= 1
(8)(6)

(
120x3− 72x) = 1

8
(
20x3− 12x)

i.e. P3(x)= 12
(
5x3−3x), the same as in Problem 14.
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Now try the following Practice Exercise

Practice Exercise 214 Legendre’s equation
and Legendre polynomials (Answers on
page 888)

1. Determine the power series solution of
the Legendre equation:

(
1− x2

)
y ′′ − 2xy ′ + k(k + 1)y = 0 when

(a) k=0 (b) k=2, up to and including the
term in x5.

2. Find the following Legendre polynomials:
(a) P1(x) (b) P4(x) (c) P5(x)

For fully worked solutions to each of the problems in Practice Exercises 209 to 214 in this chapter,
go to the website:

www.routledge.com/cw/bird
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Chapter 56

An introduction to partial
differential equations

Why it is important to understand: An introduction to partial differential equations
In engineering, physics and economics, quantities are frequently encountered − for example energy −
that depend on many variables, such as position, velocity and temperature. Usually this dependency is
expressed through a partial differential equation, and solving these equations is important for under-
standing these complex relationships. Solving ordinary differential equations involves finding a function
(or a set of functions) of one independent variable, but partial differential equations are for functions
of two or more variables. Examples of physical models using partial differential equations are the heat
equation for the evolution of the temperature distribution in a body, the wave equation for themotion of a
wave front, the flow equation for the flow of fluids and Laplace’s equation for an electrostatic potential or
elastic strain field. In such cases, not only are the initial conditions needed, but also boundary conditions
for the region in which the model applies; thus boundary value problems have to be solved. This chapter
provides an introduction to the often complex subject of partial differential equations.

At the end of this chapter, you should be able to:

• recognise some important engineering partial differential equations

• solve a partial differential equation by direct partial integration

• solve differential equations by separating the variables

• solve the wave equation
∂2u

∂x2
= 1

c2
∂2u

∂t2

• solve the heat conduction equation
∂2u

∂x2
= 1

c2
∂u

∂t

• solve Laplace’s equation
∂2u

∂x2
+ ∂2u

∂y2
= 0

Higher Engineering Mathematics. 978-1-138-67357-1, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.
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56.1 Introduction

A partial differential equation is an equation that con-
tains one or more partial derivatives. Examples include:

(i) a
∂u

∂x
+ b

∂u

∂y
= c

(ii)
∂2u

∂x2
= 1

c2
∂u

∂t

(known as the heat conduction equation)

(iii)
∂2u

∂x2
+ ∂2u

∂y2
= 0

(known as Laplace’s equation)

Equation (i) is a first-order partial differential equa-
tion, and equations (ii) and (iii) are second-order
partial differential equations since the highest power
of the differential is 2.
Partial differential equations occur in many areas of

engineering and technology; electrostatics, heat con-
duction, magnetism, wave motion, hydrodynamics and
aerodynamics all use models that involve partial differ-
ential equations. Such equations are difficult to solve,
but techniques have been developed for the simpler
types. In fact, for all but the simplest cases, there are
a number of numerical methods of solutions of partial
differential equations available.
To be able to solve simple partial differential equa-

tions knowledge of the following is required:

(a) partial integration,

(b) first-and second-order partial differentiation – as
explained in Chapter 39, and

(c) the solution of ordinary differential equations – as
explained in Chapters 33 and 50–54.

It should be appreciated that whole books have been
written on partial differential equations and their solu-
tions. This chapter does no more than introduce the
topic.

56.2 Partial integration

Integration is the reverse process of differentiation.

Thus, if, for example,
∂u

∂t
=5cosx sin t is integrated par-

tiallywith respect to t , then the 5cosx term is considered
as a constant,

and u =
∫
5cosx sin t dt = (5cosx)

∫
sin t dt

= (5cosx)(−cos t) + c

= −5 cos x cos t+ f (x)

Similarly, if
∂2u

∂x∂y
=6x2 cos2y is integrated partially

with respect to y,

then
∂u

∂x
=

∫
6x2 cos2y dy=

(
6x2

)∫
cos2y dy

=
(
6x2

)(
1
2
sin2y

)

+ f (x)

= 3x2 sin2y + f (x)

and integrating
∂u

∂x
partially with respect to x gives:

u =
∫
[3x2 sin2y + f (x)]dx

= x3 sin2y+ (x) f (x)+ g(y)
f (x) and g(y) are functions that may be determined
if extra information, called boundary conditions or
initial conditions, are known.

56.3 Solution of partial differential
equations by direct partial
integration

The simplest form of partial differential equations
occurs when a solution can be determined by direct par-
tial integration. This is demonstrated in the following
worked problems.

Problem 1. Solve the differential equation
∂2u

∂x2
=6x2(2y −1) given the boundary conditions

that at x =0, ∂u

∂x
=sin2y and u=cosy

Since
∂2u

∂x2
=6x2(2y−1) then integrating partially with

respect to x gives:

∂u

∂x
=

∫
6x2(2y − 1)dx = (2y − 1)

∫
6x2dx

= (2y − 1) 6x
3

3
+ f (y)

= 2x3(2y − 1) + f (y)

where f (y) is an arbitrary function.

Download more at Learnclax.com



Se
ct

io
n

J

An introduction to partial differential equations 603

From the boundary conditions, when x=0,
∂u

∂x
= sin2y

Hence, sin2y =2(0)3(2y − 1) + f (y)

from which, f (y)= sin2y

Now
∂u

∂x
=2x3(2y − 1) + sin2y

Integrating partially with respect to x gives:

u =
∫
[2x3(2y − 1) + sin2y]dx

= 2x4

4
(2y − 1) + x(sin2y) + F(y)

From the boundary conditions, when x=0,
u=cosy, hence

cosy = (0)4

2
(2y − 1) + (0)sin2y + F(y)

from which, F(y)=cosy

Hence, the solution of
∂2u

∂x2
=6x2(2y − 1) for the given

boundary conditions is:

u= x4

2
(2y−1)+ xsiny+ cosy

Problem 2. Solve the differential equation:
∂2u

∂x∂y
=cos(x + y) given that

∂u

∂x
=2 when y =0,

and u=y2 when x=0

Since
∂2u

∂x∂y
=cos(x + y) then integrating partiallywith

respect to y gives:

∂u

∂x
=

∫
cos(x + y)dy = sin(x + y) + f (x)

From the boundary conditions,
∂u

∂x
=2 when y=0,

hence
2=sinx +f (x)

from which, f (x)=2− sinx

i.e.
∂u

∂x
= sin(x + y) + 2− sinx

Integrating partially with respect to x gives:

u =
∫
[sin(x + y) + 2− sinx]dx

= −cos(x + y) + 2x + cosx + f (y)

From the boundary conditions,u=y 2 whenx=0, hence

y2 = −cosy + 0+ cos0+ f (y)

= 1− cosy + f (y)

from which, f (y) = y2− 1+ cosy

Hence, the solution of
∂2u

∂x∂y
= cos(x + y) is given by:

u= −cos(x+ y)+ 2x+ cosx+ y2− 1+ cosy

Problem 3. Verify that

φ(x,y,z)= 1
√

x2+y2+z2
satisfies the partial

differential equation:
∂2φ

∂x2
+ ∂2φ

∂y2
+ ∂2φ

∂z2
=0

The partial differential equation

∂2φ

∂x2
+ ∂2φ

∂y2
+ ∂2φ

∂z2
=0 is called Laplace’s equation.

If φ(x,y,z) = 1
√

x2+ y2+ z2
= (x2+ y2+ z2)−

1
2

then differentiating partially with respect to x gives:

∂φ

∂x
= −1

2
(x2+ y2+ z2)−

3
2 (2x)

= −x(x2+ y2+ z2)−
3
2

and
∂2φ

∂x2
= (−x)

[

−3
2
(x2+ y2+ z2)−

5
2 (2x)

]

+ (x2+ y2+ z2)−
3
2 (−1)

by the product rule

= 3x2

(x2+ y2+ z2)
5
2

− 1

(x2+ y2+ z2)
3
2

= (3x2) − (x2+ y2+ z2)

(x2+ y2+ z2)
5
2
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Similarly, it may be shown that

∂2φ

∂y2
= (3y2) − (x2+y2+z2)

(x2+y2+z2)
5
2

and
∂2φ

∂z2
= (3z2) − (x2+y2+z2)

(x2+y2+z2)
5
2

Thus,

∂2φ

∂x2
+ ∂2φ

∂y2
+ ∂2φ

∂z2
= (3x2) − (x2+ y2+ z2)

(x2+ y2+ z2)
5
2

+ (3y2) − (x2+ y2+ z2)

(x2+ y2+ z2)
5
2

+ (3z2) − (x2+ y2+ z2)

(x2+ y2+ z2)
5
2

=

⎛

⎜
⎜
⎝

3x2− (x2+ y2+ z2)

+3y2− (x2+ y2+ z2)

+3z2− (x2+ y2+ z2)

⎞

⎟
⎟
⎠

(x2+ y2+ z2)
5
2

= 0

Thus,
1

√
x2+y2+z2

satisfies the Laplace equation

∂2φ

∂x2
+ ∂2φ

∂y2
+ ∂2φ

∂z2
=0

Now try the following Practice Exercise

Practice Exercise 215 The solution of
partial differential equations by direct
partial integration (Answers on page 888)

1. Determine the general solution of
∂u

∂y
=4ty

2. Solve
∂u

∂t
=2t cos θ given that u=2t when

θ =0
3. Verify that u(θ, t)=θ 2+θt is a solution of

∂u

∂θ
−2 ∂u

∂t
= t

4. Verify that u=e−y cosx is a solution of
∂2u

∂x2
+ ∂2u

∂y2
=0

5. Solve
∂2u

∂x∂y
=8ey sin2x given that at y =0,

∂u

∂x
= sinx, and at x = π

2
,u=2y2

6. Solve
∂2u

∂x2
=y(4x2−1) given that at x =0,

u=siny and
∂u

∂x
=cos2y

7. Solve
∂2u

∂x∂t
=sin(x + t) given that

∂u

∂x
=1

when t =0, and when u=2t when x =0

8. Show that u(x,y)=xy+ x

y
is a solution of

2x
∂2u

∂x∂y
+y

∂2u

∂y2
=2x

9. Find the particular solution of the differential

equation
∂2u

∂x∂y
=cosx cosy given the ini-

tial conditions that when y=π ,
∂u

∂x
=x, and

when x =π,u=2cosy

10. Verify that φ(x,y)=x cosy +e x siny satis-
fies the differential equation

∂2φ

∂x2
+ ∂2φ

∂y2
+x cosy =0

56.4 Some important engineering
partial differential equations

There are many types of partial differential equa-
tions. Some typically found in engineering and science
include:

(a) Thewave equation, where the equation of motion
is given by:

∂2u

∂x2
= 1

c2
∂2u

∂t2

where c2= T

ρ
, with T being the tension in a string

and ρ being the mass/unit length of the string.
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(b) The heat conduction equation is of the form:

∂2u

∂x2
= 1

c2
∂u

∂t

where c2= h

σρ
, with h being the thermal conduc-

tivity of the material, σ the specific heat of the
material, and ρ the mass/unit length of material.

(c) Laplace’s∗ equation, used extensively with elec-
trostatic fields is of the form:

∂2u

∂x2
+ ∂2u

∂y2
+ ∂2u

∂z2
= 0

(d) The transmission equation, where the poten-
tial u in a transmission cable is of the form:

∂2u

∂x2
=A

∂2u

∂t2
+B

∂u

∂t
+Cu where A, B and C are

constants.

Some of these equations are used in the next sections.

∗ Who was Laplace? Pierre-Simon, marquis de Laplace
(23 March 1749–5 March 1827) was a French mathemati-
cian and astronomer who formulated Laplace’s equation, and
pioneered the Laplace transform which appears in many
branches of mathematical physics. To find out more go to
www.routledge.com/cw/bird

56.5 Separating the variables

Let u(x, t)=X(x)T (t), where X(x) is a function of x
only and T (t) is a function of t only, be a trial solution to

the wave equation
∂2u

∂x2
= 1

c2
∂2u

∂t2
. If the trial solution is

simplified to u=XT, then
∂u

∂x
=X′T and

∂2u

∂x2
=X′′T .

Also
∂u

∂t
=XT ′ and

∂2u

∂t2
=XT ′′

Substituting into the partial differential equation
∂2u

∂x2
= 1

c2
∂2u

∂t2
gives:

X′′T = 1
c2

XT ′′

Separating the variables gives:

X′′

X
= 1
c2
T ′′

T

Let μ= X′′

X
= 1

c2
T ′′

T
where μ is a constant.

Thus, since μ= X′′

X
(a function of x only), it must be

independent of t; and, since μ= 1
c2

T ′′

T
(a function of t

only), it must be independent of x.
If μ is independent of x and t , it can only be a con-

stant. If μ= X′′

X
then X′′ =μX or X′′ −μX=0 and if

μ= 1
c2

T ′′

T
then T ′′ =c2μT or T ′′ − c2μT =0

Such ordinary differential equations are of the form
found in Chapter 53, and their solutions will depend
on whether μ>0, μ=0 or μ<0
Problem 4 will be a reminder of solving ordinary
differential equations of this type.

Problem 4. Find the general solution of the
following differential equations:

(a) X′′ −4X=0 (b) T ′′ +4T =0

(a) If X′′ −4X=0 then the auxiliary equation (see
Chapter 53) is:

m2−4=0 i.e. m2=4 from which,
m=+2 or m=−2

Thus, the general solution is:

X=Ae2x+Be−2x
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(b) If T ′′ +4T =0 then the auxiliary equation is:
m2+4=0 i.e. m2=−4 from which,
m=√−4=±j2

Thus, the general solution is:

T=e0{A cos2t +B sin2t}=Acos2t+Bsin2t

Now try the following Practice Exercise

Practice Exercise 216 Revising the
solution of ordinary differential equations
(Answers on page 888)

1. Solve T ′′ =c2μT given c=3 and μ=1

2. Solve T ′′ − c2μT =0 given c=3 and μ=−1
3. Solve X′′ =μX given μ=1
4. Solve X′′ −μX=0 given μ=−1

56.6 The wave equation

An elastic string is a string with elastic properties,
i.e. the string satisfies Hooke’s law. Fig. 56.1 shows a
flexible elastic string stretched between two points at
x =0 and x =Lwith uniform tension T . The string will
vibrate if the string is displaced slightly from its initial
position of rest and released, the end points remaining
fixed. The position of any pointP on the string depends
on its distance from one end, and on the instant in time.
Its displacement u at any time t can be expressed as
u=f (x, t), where x is its distance from 0
The equation of motion is as stated in Section 56.4 (a),

i.e.
∂2u

∂x2
= 1

c2
∂2u

∂t2

The boundary and initial conditions are:

0
x

x

y

P

L

u(x, t )

u
5

f (
x,

 t 
)

Figure 56.1

(i) The string is fixed at both ends, i.e. x =0 and
x =L for all values of time t .

Hence, u(x, t) becomes:

u(0, t) = 0
u(L,t) = 0

}

for all values of t ≥0

(ii) If the initial deflection ofP at t = 0 is denoted by
f (x) then u(x,0)=f (x)

(iii) Let the initial velocity of P be g(x), then
[

∂u

∂t

]

t=0
= g(x)

Initially a trial solution of the form u(x, t)=X(x)T (t)

is assumed, whereX(x) is a function of x only and T (t)

is a function of t only. The trial solution may be simpli-
fied to u=XT and the variables separated as explained
in the previous section to give:

X′′

X
= 1

c2
T ′′

T

When both sides are equated to a constantμ this results
in two ordinary differential equations:

T ′′ −c2μT =0 and X′′ −μX=0
Three cases are possible, depending on the value
of μ.

Case 1: μ>0

For convenience, let μ=p2, where p is a real constant.
Then the equations

X′′ − p2X = 0 and T ′′ − c2p2T = 0
have solutions: X=Aepx +Be−px and
T =Cecpt +De−cpt whereA,B,C andD are constants.
But X=0 at x =0, hence 0=A+B i.e. B = −A and
X=0 at x =L, hence
0=AepL +Be−pL = A(epL − e−pL)

Assuming (epL – e−pL) is not zero, thenA=0 and since
B =−A, then B =0 also.
This corresponds to the string being stationary; since it
is non-oscillatory, this solution will be disregarded.

Case 2: μ=0

In this case, since μ=p2=0, T ′′ =0 and X′′ =0. We
will assume that T (t) �=0. Since X′′ =0, X′ =a and
X=ax+b where a and b are constants. But X=0 at
x =0, hence b=0 andX=ax andX=0 at x =L, hence
a=0. Thus, again, the solution is non-oscillatory and is
also disregarded.
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Case 3: μ<0

For convenience,
let μ=−p2 then X′′ + p2X=0 from which,

X = A cospx + B sinpx (1)

and T ′′ + c2p2T = 0 from which,

T = C coscpt + D sincpt (2)

(see Problem 4 above).

Thus, the suggested solution u=XT now becomes:

u = {A cospx + B sinpx}{C coscpt + D sincpt}
(3)

Applying the boundary conditions:

(i) u=0 when x =0 for all values of t ,
thus 0= {A cos0+ B sin0}{C coscpt

+D sincpt}
i.e. 0= A{C coscpt + D sincpt}
from which,A = 0 (since {C coscpt

+ D sincpt} �= 0)
Hence, u = {B sinpx}{C coscpt

+ D sincpt} (4)

(ii) u=0 when x =L for all values of t

Hence, 0= {B sinpL}{C coscpt + D sincpt}
Now B �=0 or u(x, t) would be identically zero.
Thus sinpL=0 i.e. pL=nπ or p= nπ

L
for inte-

ger values of n.
Substituting in equation (4) gives:

u =
{
B sin

nπx

L

}{

C cos
cnπt

L
+ D sin

cnπt

L

}

i.e. u = sin
nπx

L

{

An cos
cnπt

L
+ Bn sin

cnπt

L

}

(where constant An =BC and Bn =BD). There
will be many solutions, depending on the value
of n. Thus, more generally,

un(x, t) =
∞∑

n=1

{

sin
nπx
L

(

An cos
cnπ t
L

+Bn sincnπ tL
)}

(5)

To find An and Bn we put in the initial conditions
not yet taken into account.

(i) At t =0, u(x,0)=f (x) for 0 ≤ x ≤ L

Hence, from equation (5),

u(x,0) = f (x)=
∞∑

n=1

{
An sin

nπx
L

}
(6)

(ii) Also at t =0,
[

∂u

∂t

]

t=0
=g(x) for 0≤x≤L

Differentiating equation (5)with respect to t gives:

∂u

∂t
=

∞∑

n=1

{

sin
nπx

L

(

An

(

−cnπ

L
sin

cnπt

L

)

+Bn

(
cnπ

L
cos

cnπt

L

))}

and when t =0,

g(x) =
∞∑

n=1

{
sin

nπx

L
Bn

cnπ

L

}

i.e. g(x)= cπ
L

∞∑

n=1

{
Bn n sin

nπx
L

}
(7)

FromFourier series (see page 802) it may be shown that:
An is twice the mean value of f (x) sin

nπx

L
between

x =0 and x =L

i.e. An = 2
L

∫ L

0
f (x)sin

nπx
L
dx for n = 1, 2, 3, . . . (8)

and Bn

(cnπ

L

)
is twice the mean value of

g(x)sin
nπx

L
between x=0 and x=L

i.e. Bn = L

cnπ

(
2
L

)∫ L

0
g(x)sin

nπx

L
dx

or Bn = 2
cnπ

∫ L

0
g(x)sin

nπx
L
dx (9)

Summary of solution of the wave equation
The above may seem complicated; however a practical
problemmay be solved using the following eight-point
procedure:

1. Identify clearly the initial and boundary
conditions.
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2. Assume a solution of the form u=XT and express
the equations in terms of X and T and their
derivatives.

3. Separate the variables by transposing the equation
and equate each side to a constant, say, μ; two
separate equations are obtained, one in x and the
other in t .

4. Let μ=−p2 to give an oscillatory solution.

5. The two solutions are of the form:

X = A cospx + B sinpx

and T = C coscpt + D sincpt.

Then u(x, t)={A cospx + B sinpx}{C coscpt +
D sincpt}

6. Apply the boundary conditions to determine con-
stants A and B.

7. Determine the general solution as an infinite sum.

8. Apply the remaining initial and boundary condi-
tions and determine the coefficients An and Bn

from equations (8) and (9), using Fourier series
techniques.

Problem 5. Fig. 56.2 shows a stretched string of
length 50cm which is set oscillating by displacing
its mid-point a distance of 2cm from its rest
position and releasing it with zero velocity. Solve

the wave equation:
∂2u

∂x2
= 1

c2
∂2u

∂t2
where c2=1, to

determine the resulting motion u(x, t)

0

2

4

25 50 x (cm)

u
(x

, 0
 )

u 5 f (x )

y

Figure 56.2

Following the above procedure,

1. The boundary and initial conditions given are:

u(0, t) = 0
u(50, t) = 0

}

i.e. fixed end points

u(x,0) = f (x)= 2
25
x 0≤ x ≤ 25

= − 2
25

x + 4= 100−2x
25

25≤ x ≤ 50

(Note: y=mx+c is a straight line graph, so the gra-
dient, m, between 0 and 25 is 2/25 and the y-axis

intercept is zero, thus y=f (x)= 2
25

x +0; between
25 and 50, the gradient=−2/25 and the y-axis

intercept is at 4, thus f (x)=− 2
25

x +4)
[
∂u

∂t

]

t=0
= 0 i.e. zero initial velocity.

2. Assuming a solution u=XT , where X is a func-
tion of x only, and T is a function of t only,

then
∂u

∂x
=X′T and

∂2u

∂x2
=X′′T and

∂u

∂y
=XT ′ and

∂2u

∂y2
=XT ′′. Substituting into the partial differential

equation,
∂2u

∂x2
= 1

c2
∂2u

∂t2
gives:

X′′T = 1
c2

XT ′′ i.e. X′′T =XT ′′ since c2=1

3. Separating the variables gives:
X′′

X
= T ′′

T

Let constant,

μ= X′′

X
= T ′′

T
then μ= X′′

X
and μ= T ′′

T

from which,

X′′ − μX = 0 and T ′′ − μT = 0
4. Letting μ=−p2 to give an oscillatory solution

gives:

X′′ + p2X = 0 and T ′′ +p2T = 0

The auxiliary equation for each is: m2+ p2=0
from which,m=

√
−p2 = ±jp

5. Solving each equation gives:
X=A cospx + B sinpx, and
T =C cospt +D sinpt

Thus,
u(x, t)={A cospx+B sinpx}{C cospt+D sinpt}
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6. Applying the boundary conditions to determine
constants A and B gives:

(i) u(0, t)=0, hence 0=A{C cospt +D sinpt}
from which we conclude that A = 0
Therefore,

u(x, t)=B sinpx{C cospt + D sinpt} (a)
(ii) u(50, t) = 0, hence

0=B sin50p{C cospt + D sinpt}. B �=0,
hence sin50p=0 fromwhich, 50p=nπ and
p = nπ

50
7. Substituting in equation (a) gives:

u(x, t) = B sin
nπx

50

{

C cos
nπt

50
+ D sin

nπt

50

}

or, more generally,

un(x, t) =
∞∑

n=1
sin

nπx

50

{

An cos
nπt

50

+Bn sin
nπt

50

}

(b)

where An = BC and Bn =BD

8. From equation (8),

An = 2
L

∫ L

0
f (x) sin

nπx

L
dx

= 2
50

[∫ 25

0

(
2
25

x

)

sin
nπx

50
dx

+
∫ 50

25

(
100− 2x
25

)

sin
nπx

50
dx

]

Each integral is determined using integration by
parts (see Chapter 46, page 500) with the result:

An = 16
n2π2

sin
nπ

2

From equation (9),

Bn = 2
cnπ

∫ L

0
g(x) sin

nπx

L
dx

[
∂u

∂t

]

t=0
= 0= g(x) thus, Bn = 0

Substituting into equation (b) gives:

un(x, t) =
∞∑

n=1
sin

nπx

50

{

An cos
nπt

50

+Bn sin
nπt

50

}

=
∞∑

n=1
sin

nπx

50

{
16

n2π2
sin

nπ

2
cos

nπt

50

+(0) sin
nπt

50

}

Hence,

u(x, t)= 16
π2

∞∑

n=1

1
n2
sin
nπx
50

sin
nπ
2
cos

nπ t
50

For stretched string problems as in Problem5 above, the
main parts of the procedure are:

1. Determine An from equation (8).

Note that
2
L

∫ L

0
f (x) sin

nπx

L
dx is always equal

to
8d

n2π2
sin

nπ

2
(see Fig. 56.3)

2. Determine Bn from equation (9)

3. Substitute in equation (5) to determine u(x, t)

0 x

y 5 f (x )

L

d

y

L
2

Figure 56.3

Now try the following Practice Exercise

Practice Exercise 217 The wave equation
(Answers on page 888)

1. An elastic string is stretched between two
points 40cmapart. Its centre point is displaced
1.5 cm from its position of rest at right angles
to the original direction of the string and then
releasedwith zero velocity.Determine the sub-
sequent motion u(x, t) by applying the wave

equation
∂2u

∂x2
= 1

c2
∂2u

∂t2
with c2=9

Download more at Learnclax.com



Se
ct

io
n

J
610 Higher Engineering Mathematics

2. The centre point of an elastic string between
two points P andQ, 80cm apart, is deflected
a distance of 1cm from its position of
rest perpendicular to PQ and released ini-
tially with zero velocity. Apply the wave

equation
∂2u

∂x2
= 1

c2
∂2u

∂t2
where c=8, to deter-

mine themotion of a point distancex fromP at
time t .

56.7 The heat conduction equation

The heat conduction equation
∂2u

∂x2
= 1

c2
∂u

∂t
is solved

in a similar manner to that for the wave equation; the
equation differs only in that the right-hand side contains
a first partial derivative instead of the second.
The conduction of heat in a uniform bar depends on
the initial distribution of temperature and on the phys-
ical properties of the bar, i.e. the thermal conductivity,
h, the specific heat of the material, σ , and the mass
per unit length, ρ, of the bar. In the above equation,

c2= h

σρ
With a uniformbar insulated, except at its ends, any heat
flow is along the bar and, at any instant, the temperature
u at a point P is a function of its distance x from one
end, and of the time t . Consider such a bar, shown in
Fig. 56.4, where the bar extends from x=0 to x =L, the
temperature of the ends of the bar is maintained at zero,
and the initial temperature distribution along the bar is
defined by f (x).
Thus, the boundary conditions can be expressed as:

u(0, t) = 0
u(L,t) = 0

}

for all t ≥ 0

and u(x,0) = f (x) for 0 ≤ x ≤ L

0
x

x

y

P

L

u (x, t )u
5

f (
x,

 t 
)

Figure 56.4

As with the wave equation, a solution of the form
u(x, t)=X(x)T (t) is assumed,whereX is a function of
x only and T is a function of t only. If the trial solution
is simplified to u=XT , then
∂u

∂x
= X′T

∂2u

∂x2
= X′′T and

∂u

∂t
= XT ′

Substituting into the partial differential equation,
∂2u

∂x2
= 1

c2
∂u

∂t
gives:

X′′T = 1
c2

XT ′

Separating the variables gives:

X′′

X
= 1
c2
T ′

T

Let −p2= X′′

X
= 1

c2
T ′

T
where−p2 is a constant.

If −p2 = X′′

X
then X′′ = −p2X or X′′ + p2X = 0,

giving X = Acospx+Bsinpx
and if −p2= 1

c2
T ′

T
then

T ′

T
= −p2c2 and integrating

with respect to t gives:
∫

T ′

T
dt =

∫
−p2c2 dt

from which, lnT = −p2c2t + c1
The left-hand integral is obtained by an algebraic
substitution (see Chapter 42).

If lnT =−p2c2t + c1 then
T =e−p2c2t+c1=e−p2c2tec1 i.e. T=ke−p2c2t (where
constant k=ec1 ).
Hence, u(x, t)=XT ={A cospx + B sinpx}k e−p2c2t

i.e. u(x, t)={P cospx +Q sinpx}e−p2c2t where
P =Ak andQ=Bk

Applying the boundary conditions u(0, t)=0 gives:
0={P cos0+Q sin0}e−p2c2t =P e−p2c2t from which,
P =0 and u(x, t)=Q sinpx e−p2c2t

Also, u(L,t)=0 thus, 0=Q sinpLe−p2c2t and since
Q �=0 then sinpL=0 fromwhich, pL=nπ or p= nπ

L
where n=1,2,3, . . .
There are therefore many values of u(x,t).

Thus, in general,

u(x, t)=
∞∑

n=1

{
Qn e−p2c2t sin

nπx

L

}
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Applying the remaining boundary condition, that when
t =0,u(x, t)=f (x) for 0≤ x ≤ L, gives:

f (x)=
∞∑

n=1

{
Qn sin

nπx

L

}

From Fourier series, Qn =2×mean value of
f (x) sin

nπx

L
from x to L

Hence, Qn = 2
L

∫ L

0
f (x) sin

nπx

L
dx

Thus, u(x, t) =

2
L

∞∑

n=1

{(∫ L

0
f (x) sin

nπx

L
dx

)

e−p2c2t sin
nπx

L

}

Thismethodof solution is demonstrated in the following
worked problem.

Problem 6. A metal bar, insulated along its sides,
is 1m long. It is initially at room temperature of
15◦C and at time t =0, the ends are placed into ice
at 0◦C. Find an expression for the temperature at a
point P at a distance x m from one end at any time
t seconds after t =0

The temperature u along the length of bar is shown in
Fig. 56.5.

The heat conduction equation is
∂2u

∂x2
= 1

c2
∂u

∂t
and the

given boundary conditions are:

u(0, t) = 0, u(1, t) = 0 and u(x,0) = 15

0 1

1

15

x

u 
(x

, 0
 )

x (m )

x (m )0

P

u (x, t )

u
(x

, t
 )

Figure 56.5

Assuming a solution of the form u=XT , then, from
above,

X = A cospx +B sinpx

and T = k e−p2c2t

Thus, the general solution is given by:

u(x, t) = {P cospx +Q sinpx}e−p2c2t

u(0, t) = 0 thus 0= P e−p2c2t

from which, P =0 and u(x, t)={Qsinpx}e−p2c2t

Also, u(1, t)=0 thus 0={Q sinp}e−p2c2t

Since Q �= 0, sinp = 0 from which, p = nπ where
n=1,2,3, . . .

Hence, u(x, t)=
∞∑

n=1

{
Qn e−p2c2t sinnπx

}

The final initial condition given was that at t =0,
u=15, i.e. u(x,0)=f (x)=15
Hence, 15=

∞∑

n=1
{Qn sinnπx} where, from Fourier

coefficients, Qn =2 × mean value of 15 sinnπx from
x =0 to x =1,

i.e. Qn = 2
1

∫ 1

0
15 sinnπx dx = 30

[
− cosnπx

nπ

]1

0

= − 30
nπ
[cosnπ − cos0]

= 30
nπ

(1− cosnπ)

= 0 (when n is even) and
60
nπ
(when n is odd)

Hence, the required solution is:

u(x, t)=
∞∑

n=1

{
Qn e−p2c2t sinnπx

}

= 60
π

∞∑

n(odd)=1

1
n
(sinnπx)e−n2π2c2t

Now try the following Practice Exercise

Practice Exercise 218 The heat conduction
equation (Answers on page 888)

1. A metal bar, insulated along its sides, is 4m
long. It is initially at a temperature of 10◦C
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and at time t =0, the ends are placed into ice at
0◦C. Find an expression for the temperature
at a point P at a distance xm from one end at
any time t seconds after t =0

2. An insulated uniform metal bar, 8m long,
has the temperature of its ends maintained at
0◦C, and at time t =0 the temperature dis-
tribution f (x) along the bar is defined by
f (x)=x(8−x). If c2=1, solve the heat con-
duction equation

∂2u

∂x2
= 1

c2
∂u

∂t
to determine

the temperature u at any point in the bar at
time t .

3. The ends of an insulated rodPQ, 20 units long,
are maintained at 0◦C. At time t =0, the tem-
perature within the rod rises uniformly from
each end, reaching 4◦C at the mid-point of
PQ. Find an expression for the temperature
u(x, t) at any point in the rod, distance x from
P at any time t after t =0. Assume the heat
conduction equation to be

∂2u

∂x2
= 1

c2
∂u

∂t
and

take c2=1

56.8 Laplace’s equation

The distribution of electrical potential, or temperature,
over a plane area subject to certain boundaryconditions,
can be described byLaplace’s∗ equation. The potential
at a point P in a plane (see Fig. 56.6) can be indicated
by an ordinate axis and is a function of its position, i.e.
z=u(x,y),where u(x,y) is the solution of the Laplace

two-dimensional equation
∂2u

∂x2
+ ∂2u

∂y2
= 0

The method of solution of Laplace’s equation is similar
to the previous examples, as shown below.
Fig. 56.7 shows a rectangleOPQR bounded by the lines
x =0,y =0,x =a, and y =b, for which we are required

to find a solution of the equation
∂2u

∂x2
+ ∂2u

∂y2
=0. The

solution z=(x,y) will give, say, the potential at any
point within the rectangleOPQR. The boundary condi-
tions are:

∗ Who was Laplace? See page 605 for image and resume
of Pierre-Simon, marquis de Laplace. To find out more go to
www.routledge.com/cw/bird

0 x

z y

P

Figure 56.6

0 x

z
y

u
(x

, y
 )

P

Q
R

y 5 b

x 5 a

Figure 56.7

u=0 when x=0 i.e. u(0,y)=0 for 0≤y ≤b

u=0 when x=a i.e. u(a,y)=0 for 0≤y ≤b

u=0 when y=b i.e. u(x,b)=0 for 0≤x≤a

u=f (x) when y=0 i.e. u(x,0)=f (x)

for 0≤x≤a

As with previous partial differential equations, a solu-
tion of the form u(x,y)=X(x)Y (y) is assumed, where
X is a function of x only, and Y is a function of
y only. Simplifying to u=XY , determining partial

derivatives, and substituting into
∂2u

∂x2
+ ∂2u

∂y2
=0 gives:

X′′Y +XY ′′ =0
Separating the variables gives:

X′′

X
= −Y ′′

Y
Letting each side equal a constant, −p2, gives the two
equations:

X′′ + p2X = 0 and Y ′′ − p2Y = 0
from which, X=A cospx +B sinpx and
Y =C epy +D e−py or Y =C coshpy +D sinhpy (see
Problem 5, page 564 for this conversion).
This latter form can also be expressed as:
Y = E sinhp(y +φ) by using compound angles.
Hence u(x,y) = XY

= {A cospx + B sinpx}{E sinhp(y + φ)}
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or u(x,y)

= {P cospx + Q sinpx}{sinhp(y + φ)}

where P = AE andQ = BE

The first boundary condition is: u(0,y)=0, hence
0=P sinhp(y + φ) from which, P =0. Hence,
u(x,y)=Q sinpx sinhp(y +φ)

The second boundary condition is: u(a,y)=0,
hence 0=Q sinpa sinhp(y +φ) from which,
sinpa=0, hence, pa=nπ or p= nπ

a
for

n=1,2,3, . . .
The third boundary condition is: u(x,b)=0,
hence, 0=Q sinpx sinhp(b+φ) from which,
sinhp(b+φ)=0 and φ=−b

Hence, u(x,y)=Q sinpx sinhp(y −b)=
Q1 sinpx sinhp(b−y) whereQ1=−Q

Since there are many solutions for integer values of n,

u(x,y) =
∞∑

n=1
Qn sinpx sinhp(b − y)

=
∞∑

n=1
Qn sin

nπx

a
sinh

nπ

a
(b − y)

The fourth boundary condition is: u(x,0)=f (x),

hence, f (x)=
∞∑

n=1
Qn sin

nπx

a
sinh

nπb

a

i.e. f (x)=
∞∑

n=1

(

Qn sinh
nπb

a

)

sin
nπx

a

From Fourier series coefficients,
(

Qn sinh
nπb

a

)

= 2× the mean value of
f (x) sin

nπx

a
from x = 0 to x = a

=
∫ a

0
f (x) sin

nπx

a
dx from which,

Qn may be determined.

This is demonstrated in the following worked
problem.

Problem 7. A square plate is bounded by the
lines x=0,y =0,x =1 and y =1. Apply the
Laplace equation

∂2u

∂x2
+ ∂2u

∂y2
=0 to determine the

potential distribution u(x,y) over the plate, subject
to the following boundary conditions:

u=0 when x=0 0≤y ≤1
u=0 when x=1 0≤y≤1
u=0 when y=0 0≤x ≤1
u=4 when y =1 0≤x ≤1

Initially a solution of the form u(x,y)=X(x)Y (y) is
assumed, where X is a function of x only, and Y is a
function of y only. Simplifying to u=XY , determining

partial derivatives, and substituting into
∂2u

∂x2
+ ∂2u

∂y2
=0

gives: X′′Y +XY ′′ =0
Separating the variables gives:

X′′

X
=−Y ′′

Y
Letting each side equal a constant, −p2, gives the two
equations:

X′′ +p2X = 0 and Y ′′ −p2Y = 0
from which, X=A cospx +B sinpx

and Y =Cepy +De−py

or Y =C coshpy +D sinhpy

or Y =E sinhp(y +φ)

Hence u(x,y) = XY

= {A cospx + B sinpx}{E sinhp(y + φ)}
or u(x,y)

= {P cospx + Q sinpx}{sinhp(y + φ)}
where P = AE andQ = BE

The first boundary condition is: u(0,y)=0, hence
0=P sinhp(y +φ) from which, P =0
Hence, u(x,y)=Q sinpx sinhp(y +φ)

The second boundary condition is: u(1,y)=0, hence
0=Q sinp(1)sinhp(y +φ) from which,
sinp=0, hence, p=nπ for n=1,2,3, . . .
The third boundary condition is: u(x,0)=0, hence,
0=Q sinpx sinhp(φ) from which,
sinhp(φ)=0 and φ=0
Hence, u(x,y)=Q sinpx sinhpy

Since there are many solutions for integer values of n,

u(x,y) =
∞∑

n=1
Qn sinpx sinhpy

=
∞∑

n=1
Qn sinnπx sinhnπy (a)
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The fourth boundary condition is: u(x,1)=4=f (x),

hence, f (x)=
∞∑

n=1
Qn sinnπx sinhnπ(1).

From Fourier series coefficients,

Qn sinhnπ =2× the mean value of
f (x) sinnπx from x = 0 to x = 1

i.e. = 2
1

∫ 1

0
4 sinnπx dx

= 8
[
− cosnπx

nπ

]1

0

= − 8
nπ

(cosnπ − cos0)

= 8
nπ

(1−cosnπ)

= 0 (for even values of n),

= 16
nπ

(for odd values of n)

Hence, Qn = 16
nπ(sinhnπ)

= 16
nπ

cosech nπ

Hence, from equation (a),

u(x,y)=
∞∑

n=1
Qn sinnπx sinhnπy

= 16
π

∞∑

n(odd)=1

1
n

(cosechnπ sinnπxsinhnπy)

Now try the following Practice Exercise

Practice Exercise 219 The Laplace
equation (Answers on page 889)

1. A rectangular plate is bounded by the
lines x =0,y =0,x =1 and y=3. Apply the
Laplace equation

∂2u

∂x2
+ ∂2u

∂y2
=0 to determine

the potential distributionu(x,y)over theplate,
subject to the following boundary conditions:

u=0 when x=0 0≤y ≤2
u=0 when x=1 0≤y ≤2
u=0 when y=2 0≤x ≤1
u=5 when y =3 0≤x ≤1

2. A rectangular plate is bounded by the
lines x =0,y =0,x =3,y =2. Determine the
potential distribution u(x,y) over the rec-
tangle using the Laplace equation
∂2u

∂x2
+ ∂2u

∂y2
=0, subject to the following

boundary conditions:

u(0,y)=0 0≤y ≤2
u(3,y)=0 0≤y ≤2
u(x,2)=0 0≤x ≤3
u(x,0)=x(3−x) 0≤x ≤3

For fully worked solutions to each of the problems in Practice Exercises 215 to 219 in this chapter,
go to the website:

www.routledge.com/cw/bird
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JRevision Test 16 Second-order differential equations, power series methods, and
partial differential equations

This Revision Test covers the material contained in Chapters 53 to 56. The marks for each question are shown in
brackets at the end of each question.

1. Find the particular solution of the following differ-
ential equations:

(a) 12
d2y
dt2

−3y=0 given that when t =0, y =3

and
dy
dt

= 1
2

(b)
d2y
dx2

+2dy
dx

+2y =10ex given thatwhen x=0,

y =0 and dy
dx

=1 (20)

2. In a galvanometer the deflection θ satisfies the
differential equation:

d2θ
dt2

+ 2dθ
dt

+ θ = 4

Solve the equation for θ given that when t =0,
θ =0 and dθ

dt
=0 (12)

3. Determine y(n) when y=2x3e4x (10)

4. Determine the power series solution of the dif-

ferential equation:
d2y
dx2

+ 2x dy
dx

+ y=0 using the
Leibniz–Maclaurin method, given the boundary

conditions that at x=0,y =2 and dy
dx

=1 (20)

5. Use the Frobenius method to determine the gen-
eral power series solution of the differential

equation:
d2y
dx2

+ 4y=0 (21)

6. Determine the general power series solution of
Bessel’s equation:

x2
d2y
dx2

+ x
dy
dx

+ (x2− v2)y = 0

and hence state the series up to and including the
term in x6 when v=+3 (26)

7. Determine the general solution of
∂u

∂x
= 5xy

(2)

8. Solve the differential equation
∂2u

∂x2
= x2(y − 3)

given the boundary conditions that at x =0,
∂u

∂x
= siny and u=cosy (6)

9. Figure RT15.1 shows a stretched string of length
40cm which is set oscillating by displacing its
mid-point a distance of 1cm from its rest posi-
tion and releasing it with zero velocity. Solve the

wave equation:
∂2u

∂x2
= 1

c2
∂2u

∂t2
where c2=1, to

determine the resulting motion u(x, t) (23)

200

1

40 x (cm)

u (x,0)

Figure RT15.1

For lecturers/instructors/teachers, fully worked solutions to each of the problems in Revision Test 16,
together with a full marking scheme, are available at the website:

www.routledge.com/cw/bird

Download more at Learnclax.com

http://www.routledge.com/cw/bird


Download more at Learnclax.com

http://taylorandfrancis.com


Section K

Statistics and probability

Download more at Learnclax.com



Download more at Learnclax.com

http://taylorandfrancis.com


Chapter 57

Presentation of
statistical data

Why it is important to understand: Presentation of statistical data
Statistics is the study of the collection, organisation, analysis, and interpretation of data. It deals with all
aspects of this, including the planning of data collection in terms of the design of surveys and experiments.
Statistics is applicable to a wide variety of academic disciplines, including natural and social sciences,
engineering, government, and business. Statistical methods can be used for summarising or describing a
collection of data. Engineering statistics combines engineering and statistics. Design of experiments is a
methodology for formulating scientific and engineering problems using statisticalmodels. Quality control
and process control use statistics as a tool to manage conformance to specifications of manufacturing
processes and their products. Time and methods engineering use statistics to study repetitive operations
in manufacturing in order to set standards and find optimum manufacturing procedures. Reliability
engineeringmeasures the ability of a system to perform for its intended function (and time) and has tools
for improving performance. Probabilistic design involves the use of probability in product and system
design. System identification uses statistical methods to build mathematical models of dynamical systems
frommeasured data. System identification also includes the optimal design of experiments for efficiently
generating informative data for fitting suchmodels. This chapter introduces the presentation of statistical
data.

At the end of this chapter, you should be able to:

• distinguish between discrete and continuous data
• present data diagrammatically – pictograms, horizontal and vertical bar charts, percentage component bar
charts, pie diagrams

• produce a tally diagram for a set of data
• form a frequency distribution from a tally diagram
• construct a histogram from a frequency distribution
• construct a frequency polygon from a frequency distribution
• produce a cumulative frequency distribution from a set of grouped data
• construct an ogive from a cumulative frequency distribution

Higher Engineering Mathematics. 978-1-138-67357-1, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.
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57.1 Some statistical terminology

Data are obtained largely by two methods:

(a) by counting – for example, the number of stamps
sold by a post office in equal periods of time, and

(b) by measurement – for example, the heights of a
group of people.

When data are obtained by counting and only whole
numbers are possible, the data are called discrete. Mea-
sured data can have any value within certain limits and
are called continuous (see Problem 1).
A set is a group of data and an individual value within
the set is called amember of the set. Thus, if the masses
of five people are measured correct to the nearest 0.1kg
and are found to be 53.1kg, 59.4kg, 62.1kg, 77.8kgand
64.4kg, then the set ofmasses in kilograms for thesefive
people is:

{53.1,59.4,62.1,77.8,64.4}
and one of the members of the set is 59.4
A set containing all themembers is called a population.
Some members selected at random from a population
are called a sample. Thus all car registration numbers
form a population, but the registration numbers of, say,
20 cars taken at random throughout the country are a
sample drawn from that population.
The number of times that the value of a member occurs
in a set is called the frequency of that member. Thus in
the set {2,3,4,5,4,2,4,7,9},member 4 has a frequency
of three, member 2 has a frequency of two and the other
members have a frequency of one.
The relative frequency with which any member of a
set occurs is given by the ratio:

frequency of member
total frequency of all members

For the set: {2,3,5,4,7,5,6,2,8}, the relative fre-
quency of member 5 is 29
Often, relative frequency is expressed as a percent-
age and the percentage relative frequency is: (relative
frequency×100)%

Problem 1. Data are obtained on the topics given
below. State whether they are discrete or continuous
data.
(a) The number of days on which rain falls in a

month for each month of the year.

(b) The mileage travelled by each of a number of
salesmen.

(c) The time that each of a batch of similar
batteries lasts.

(d) The amount of money spent by each of
several families on food.

(a) The number of days on which rain falls in a given
month must be an integer value and is obtained by
counting the number of days. Hence, these data
are discrete.

(b) A salesman can travel any number of miles
(and parts of a mile) between certain limits and
these data are measured. Hence the data are
continuous.

(c) The time that a battery lasts is measured and can
have any value between certain limits. Hence these
data are continuous.

(d) The amount of money spent on food can only be
expressed correct to the nearest pence, the amount
being counted. Hence, these data are discrete.

Now try the following Practice Exercise

Practice Exercise 220 Discrete and
continuous data (Answers on page 889)

In Problems 1 and 2, state whether data relating to
the topics given are discrete or continuous.

1. (a) The amount of petrol produced daily, for
each of 31 days, by a refinery.

(b) The amount of coal produced daily by
each of 15 miners.

(c) The number of bottles of milk delivered
daily by each of 20 milkmen.

(d) The size of ten samples of rivets pro-
duced by a machine.

2. (a) The number of people visiting an exhi-
bition on each of five days.

(b) The time taken by each of 12 athletes to
run 100metres.

(c) The value of stamps sold in a day by each
of 20 post offices.
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(d) The number of defective items produced
in each of ten one-hour periods by a
machine.

57.2 Presentation of ungrouped data

Ungrouped data can be presented diagrammatically in
several ways and these include:

(a) pictograms, in which pictorial symbols are used
to represent quantities (see Problem 2),

(b) horizontal bar charts, having data represented
by equally spaced horizontal rectangles (see Prob-
lem 3), and

(c) vertical bar charts, in which data are repre-
sented by equally spaced vertical rectangles (see
Problem 4).

Trends in ungrouped data over equal periods of time
can be presented diagrammatically by a percentage
component bar chart. In such a chart, equally spaced
rectangles of any width, but whose height corresponds
to 100%, are constructed. The rectangles are then sub-
divided into values corresponding to the percentage
relative frequencies of the members (see Problem 5).
A pie diagram is used to show diagrammatically the
parts making up the whole. In a pie diagram, the area of
a circle represents thewhole, and the areas of the sectors
of the circle are made proportional to the parts which
make up the whole (see Problem 6).

Problem 2. The number of television sets
repaired in a workshop by a technician in six
one-month periods is as shown below. Present these
data as a pictogram.

Month Number repaired
January 11
February 6
March 15
April 9
May 13
June 8

Each symbol shown in Fig. 57.1 represents two
television sets repaired. Thus, in January, 5 12 symbols

are used to represent the 11 sets repaired, in February,
three symbols are used to represent the six sets repaired,
and so on.

January

February

March

Month Number of TV sets repaired ; 2 sets

April

May

June

Figure 57.1

Problem 3. The distances in miles travelled by
four salesmen in a week are as shown below.

Salesmen P Q R S

Distance travelled miles 413 264 597 143

Use a horizontal bar chart to represent these data
diagrammatically.

Equally spaced horizontal rectangles of any width, but
whose length is proportional to the distance travelled,
are used. Thus, the length of the rectangle for salesman
P is proportional to 413miles, and so on. The horizontal
bar chart depicting these data is shown in Fig. 57.2.

0

P

Q

S
al

es
m

en R

S

100 200 300

Distance travelled, miles

400 500 600

Figure 57.2

Problem 4. The number of issues of tools or
materials from a store in a factory is observed for
seven one-hour periods in a day, and the results of
the survey are as follows:

Period 1 2 3 4 5 6 7
Number of
issues 34 17 9 5 27 13 6

Present these data on a vertical bar chart.
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In a vertical bar chart, equally spaced vertical rectangles
of any width, but whose height is proportional to the
quantity being represented, are used. Thus the height of
the rectangle for period 1 is proportional to 34 units,
and so on. The vertical bar chart depicting these data is
shown in Fig. 57.3.

1

10
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um

be
r 
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es

30

40

2 3 4 5 6

Periods

7

Figure 57.3

Problem 5. The numbers of various types of
dwellings sold by a company annually over a
three-year period are as shown below. Draw
percentage component bar charts to present these
data.

Year 1 Year 2 Year 3
Four-roomed bungalows 24 17 7
Five-roomed bungalows 38 71 118
Four-roomed houses 44 50 53
Five-roomed houses 64 82 147
Six-roomed houses 30 30 25

A table of percentage relative frequency values, correct
to the nearest 1%, is the first requirement. Since,

percentage relative frequency

= frequency of member× 100
total frequency

then for four-roomed bungalows in year 1:
percentage relative frequency

= 24× 100
24+ 38+ 44+ 64+ 30 = 12%

The percentage relative frequencies of the other types
of dwellings for each of the three years are similarly
calculated and the results are as shown in the table
below.

Year 1 Year 2 Year 3
(%) (%) (%)

Four-roomed bungalows 12 7 2

Five-roomed bungalows 19 28 34

Four-roomed houses 22 20 15

Five-roomed houses 32 33 42

Six-roomed houses 15 12 7

The percentage component bar chart is produced by
constructing three equally spaced rectangles of any
width, corresponding to the three years. The heights of
the rectangles correspond to 100% relative frequency,
and are subdivided into the values in the table of per-
centages shown above. A key is used (different types
of shading or different colour schemes) to indicate
correspondingpercentage values in the rows of the table
of percentages. The percentage component bar chart is
shown in Fig. 57.4.
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Five-roomed houses

Four-roomed houses

Five-roomed bungalows

Four-roomed bungalows

Figure 57.4

Problem 6. The retail price of a product costing
£2 is made up as follows: materials 10p, labour
20p, research and development 40p, overheads
70p, profit 60p. Present these data on a pie diagram.

A circle of any radius is drawn, and the area of the circle
represents the whole, which in this case is £2. The circle
is subdivided into sectors so that the areas of the sectors
are proportional to the parts, i.e. the parts which make
up the total retail price. For the area of a sector to be
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proportional to a part, the angle at the centre of the circle
must be proportional to that part. Thewhole, £2 or 200p,
corresponds to 360◦. Therefore,

10p corresponds to 360× 10
200

degrees, i.e. 18◦

20p corresponds to 360× 20
200

degrees, i.e. 36◦

and so on, giving the angles at the centre of the circle
for the parts of the retail price as: 18◦, 36◦, 72◦, 126◦
and 108◦, respectively.
The pie diagram is shown in Fig. 57.5.

1088

Ip � 1.88

188
368728

1268
Overheads

Profit

Labour

Research and
development

Materials

Figure 57.5

Problem 7.
(a) Using the data given in Fig. 57.2 only,

calculate the amount of money paid to each
salesman for travelling expenses, if they are
paid an allowance of 37p per mile.

(b) Using the data presented in Fig. 57.4,
comment on the housing trends over the
three-year period.

(c) Determine the profit made by selling 700
units of the product shown in Fig. 57.5.

(a) By measuring the length of rectangle P the
mileage covered by salesman P is equivalent to
413miles. Hence salesmanP receives a travelling
allowance of

£413× 37
100

, i.e. £152.81

Similarly, for salesmanQ, the miles travelled are
264 and his allowance is

£264× 37
100

, i.e. £97.68

Salesman R travels 597 miles and he receives
£597× 37
100

, i.e. £220.89

Finally, salesman S receives

£143× 37
100

, i.e. £52.91

(b) An analysis of Fig. 57.4 shows that five-roomed
bungalows and five-roomed houses are becom-
ing more popular, the greatest change in the
three years being a 15% increase in the sales of
five-roomed bungalows.

(c) Since 1.8◦ corresponds to 1p and the profit occu-
pies 108◦ of the pie diagram, then the profit per
unit is

108× 1
1.8

, that is, 60p

The profit when selling 700 units of the product is

£
700× 60
100

, that is, £420

Now try the following Practice Exercise

Practice Exercise 221 Presentation of
ungrouped data (Answers on page 889)

1. The number of vehicles passing a stationary
observer on a road in six ten-minute intervals
is as shown. Draw a pictogram to represent
these data.

Period of
time 1 2 3 4 5 6

Number of
vehicles 35 44 62 68 49 41

2. The number of components produced by a
factory in a week is as shown below:

Day Number of components
Mon 1580
Tues 2190
Wed 1840
Thur 2385
Fri 1280

Show these data on a pictogram.
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3. For the data given in Problem 1 above, draw
a horizontal bar chart.

4. Present the data given in Problem 2 above on
a horizontal bar chart.

5. For the data given in Problem 1 above,
construct a vertical bar chart.

6. Depict the data given in Problem 2 above on
a vertical bar chart.

7. A factory produces three different types of
components. The percentages of each of
these components produced for three one-
month periods are as shown below. Show this
information on percentage component bar
charts and comment on the changing trend
in the percentages of the types of component
produced.

Month 1 2 3

Component P 20 35 40

Component Q 45 40 35

Component R 35 25 25

8. A company has five distribution centres and
the mass of goods in tonnes sent to each
centre during four one-week periods, is as
shown.

Week 1 2 3 4
Centre A 147 160 174 158
Centre B 54 63 77 69
Centre C 283 251 237 211
Centre D 97 104 117 144
Centre E 224 218 203 194

Use a percentage component bar chart to
present these data and comment on any
trends.

9. The employees in a company can be split
into the following categories: managerial 3,
supervisory 9, craftsmen 21, semi-skilled 67,
others 44. Show these data on a pie diagram.

10. The way in which an apprentice spent his
time over a one-month period is as fol-
lows: drawing office 44 hours, production
64 hours, training 12 hours, at college
28 hours.
Use a pie diagram to depict this information.

11. (a) With reference to Fig. 57.5, determine
the amount spent on labour and materi-
als to produce 1650units of the product.

(b) If in year 2 of Fig. 57.4, 1% corresponds
to 2.5 dwellings, how many bungalows
are sold in that year.

12. (a) If the company sell 23500 units per
annum of the product depicted in
Fig. 57.5, determine the cost of their
overheads per annum.

(b) If 1% of the dwellings represented in
year 1 of Fig. 57.4 corresponds to
two dwellings, find the total number of
houses sold in that year.

57.3 Presentation of grouped data

When the number of members in a set is small, say
ten or fewer, the data can be represented diagrammati-
cally without further analysis, by means of pictograms,
bar charts, percentage components bar charts or pie
diagrams (as shown in Section 57.2).
For sets having more than ten members, those members
having similar values are grouped together in classes
to form a frequency distribution. To assist in accu-
rately counting members in the various classes, a tally
diagram is used (see Problems 8 and 12).
A frequency distribution is merely a table showing
classes and their corresponding frequencies (see Prob-
lems 8 and 12).
The new set of values obtained by forming a frequency
distribution is called grouped data.
The terms used in connection with grouped data are
shown in Fig. 57.6(a). The size or range of a class
is given by the upper class boundary value minus
the lower class boundary value, and in Fig. 57.6 is
7.65−7.35, i.e. 0.30. The class interval for the class
shown inFig. 57.6(b) is 7.4 to 7.6 and the classmid-point
value is given by
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(
upper class

boundary value

)

+
(

lower class
boundary value

)

2

and in Fig. 57.6 is
7.65+7.35

2
, i.e. 7.5

Class interval(a)

(b)

Lower
class

boundary

Upper
class

boundary

Class
mid-point

7.35

to 7.3 7.4 to 7.6 7.7 to

7.657.5

Figure 57.6

One of the principal ways of presenting grouped
data diagrammatically is by using a histogram, in
which the areas of vertical, adjacent rectangles are
made proportional to frequencies of the classes (see
Problem 9). When class intervals are equal, the heights
of the rectangles of a histogram are equal to the fre-
quencies of the classes. For histograms having unequal
class intervals, the area must be proportional to the fre-
quency. Hence, if the class interval of class A is twice
the class interval of class B, then for equal frequencies,
the height of the rectangle representing A is half that
of B (see Problem 11). Another method of presenting
grouped data diagrammatically is by using a frequency
polygon, which is the graph produced by plotting fre-
quency against class mid-point values and joining the
co-ordinates with straight lines (see Problem 12).
A cumulative frequency distribution is a table show-
ing the cumulative frequency for each value of upper
class boundary.The cumulative frequency for a particu-
lar value of upper class boundary is obtained by adding
the frequency of the class to the sum of the previous fre-
quencies.A cumulative frequencydistribution is formed
in Problem 13.
The curve obtained by joining the co-ordinates
of cumulative frequency (vertically) against upper
class boundary (horizontally) is called an ogive or
a cumulative frequency distribution curve (see
Problem 13).

Problem 8. The data given below refer to the gain
of each of a batch of 40 transistors, expressed
correct to the nearest whole number. Form a
frequency distribution for these data having seven
classes.

81 83 87 74 76 89 82 84

86 76 77 71 86 85 87 88

84 81 80 81 73 89 82 79

81 79 78 80 85 77 84 78

83 79 80 83 82 79 80 77

The range of the data is the value obtained by taking
the value of the smallest member from that of the
largest member. Inspection of the set of data shows that,
range=89−71=18. The size of each class is given
approximatelybyrangedividedbythenumberofclasses.
Since seven classes are required, the size of each class
is 18/7, that is, approximately 3. To achieve seven equal
classes spanninga rangeofvalues from71to89, theclass
intervals are selected as: 70–72, 73–75, and so on.
To assistwith accurately determining the number in each
class, a tally diagram is produced, as shown in
Table 57.1(a). This is obtained by listing the classes
in the left-hand column, and then inspecting each of the
40 members of the set in turn and allocating them to
the appropriate classes by putting ‘1s’ in the appropri-
ate rows. Every fifth ‘1’ allocated to the particular row
is shown as an oblique line crossing the four previous
‘1s’, to help with final counting.
A frequency distribution for the data is shown in
Table 57.1(b) and lists classes and their correspond-
ing frequencies, obtained from the tally diagram. (Class
mid-point values are also shown in the table, since they
are used for constructing the histogram for these data
(see Problem 9)).

Problem 9. Construct a histogram for the data
given in Table 57.1(b).

The histogram is shown in Fig. 57.7. The width of
the rectangles correspond to the upper class boundary
values minus the lower class boundary values and the
heights of the rectangles correspond to the class frequen-
cies. The easiest way to draw a histogram is to mark the
class mid-point values on the horizontal scale and draw
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the rectangles symmetrically about the appropriate class
mid-point values and touching one another.

Table 57.1(a)
Class Tally

70–72 1

73–75 11

76–78 1111 11

79–81 1111 1111 11

82–84 1111 1111

85–87 1111 1

88–90 111

Table 57.1(b)

Class Class mid-point Frequency

70–72 71 1

73–75 74 2

76–78 77 7

79–81 80 12

82–84 83 9

85–87 86 6

88–90 89 3

71
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74 77 80 83

Class mid-point values

8986

Figure 57.7

Problem 10. The amount of money earned
weekly by 40 people working part-time in a factory,
correct to the nearest £10, is shown below. Form a
frequency distribution having six classes for these
data.

80 90 70 110 90 160 110 80

140 30 90 50 100 110 60 100

80 90 110 80 100 90 120 70

130 170 80 120 100 110 40 110

50 100 110 90 100 70 110 80

Inspection of the set given shows that the majority of
the members of the set lie between £80 and £110 and
that there are a much smaller number of extreme val-
ues ranging from £30 to £170. If equal class intervals
are selected, the frequency distribution obtained does
not give as much information as one with unequal class
intervals. Since the majority of members are between
£80 and £100, the class intervals in this range are
selected to be smaller than those outside of this range.
There is no unique solution and one possible solution is
shown in Table 57.2.

Table 57.2

Class Frequency

20–40 2

50–70 6

80–90 12

100–110 14

120–140 4

150–170 2

Problem 11. Draw a histogram for the data given
in Table 57.2.

When dealing with unequal class intervals, the his-
togram must be drawn so that the areas (and not the
heights) of the rectangles are proportional to the fre-
quencies of the classes. The data given are shown in
columns 1 and 2 of Table 57.3. Columns 3 and 4 give
the upper and lower class boundaries, respectively. In
column 5, the class ranges (i.e. upper class boundary
minus lower class boundary values) are listed. The
heights of the rectangles are proportional to the ratio
frequency
class range

, as shown in column 6. The histogram is

shown in Fig. 57.8.
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Table 57.3

1 2 3 4 5 6
Class Frequency Upper class boundary Lower class boundary Class range Height of rectangle

20–40 2 45 15 30
2
30

= 1
15

50–70 6 75 45 30
6
30

= 3
15

80–90 12 95 75 20
12
20

= 9
15

100–110 14 115 95 20
14
20

= 10
1
2

15

120–140 4 145 115 30
4
30

= 2
15

150–170 2 175 145 30
2
30

= 1
15
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Figure 57.8

Problem 12. The masses of 50 ingots in
kilograms are measured correct to the nearest 0.1kg
and the results are as shown below. Produce a
frequency distribution having about seven classes
for these data and then present the grouped data as
(a) a frequency polygon and (b) a histogram.

8.0 8.6 8.2 7.5 8.0 9.1 8.5 7.6 8.2 7.8

8.3 7.1 8.1 8.3 8.7 7.8 8.7 8.5 8.4 8.5

7.7 8.4 7.9 8.8 7.2 8.1 7.8 8.2 7.7 7.5

8.1 7.4 8.8 8.0 8.4 8.5 8.1 7.3 9.0 8.6

7.4 8.2 8.4 7.7 8.3 8.2 7.9 8.5 7.9 8.0

The range of the data is the member having the largest
value minus the member having the smallest value.
Inspection of the set of data shows that:

range= 9.1− 7.1= 2.0

The size of each class is given approximately by
range

number of classes

Since about seven classes are required, the size of each
class is 2.0/7, that is approximately 0.3, and thus the
class limits are selected as 7.1 to 7.3, 7.4 to 7.6, 7.7 to
7.9, and so on.
The class mid-point for the 7.1 to 7.3 class is
7.35+7.05

2
, i.e. 7.2, for the 7.4 to 7.6 class is

7.65+7.35
2

, i.e. 7.5, and so on.
To assist with accurately determining the number in
each class, a tally diagram is produced as shown
in Table 57.4. This is obtained by listing the classes
in the left-hand column and then inspecting each of the
50 members of the set of data in turn and allocating it

Table 57.4

Class Tally

7.1 to 7.3 111

7.4 to 7.6 1111

7.7 to 7.9 1111 1111

8.0 to 8.2 1111 1111 1111

8.3 to 8.5 1111 1111 1

8.6 to 8.8 1111 1

8.9 to 9.1 11
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to the appropriate class by putting a ‘1’ in the appropri-
ate row. Each fifth ‘1’ allocated to a particular row is
marked as an oblique line to help with final counting.
A frequency distribution for the data is shown in
Table 57.5 and lists classes and their corresponding fre-
quencies. Class mid-points are also shown in this table,
since they are used when constructing the frequency
polygon and histogram.

Table 57.5

Class Class mid-point Frequency

7.1 to 7.3 7.2 3

7.4 to 7.6 7.5 5

7.5 to 7.9 7.8 9

8.0 to 8.2 8.1 14

8.1 to 8.5 8.4 11

8.2 to 8.8 8.7 6

8.9 to 9.1 9.0 2

A frequency polygon is shown in Fig. 57.9, the
co-ordinates corresponding to the class mid-
point/frequency values, given in Table 57.5. The
co-ordinates are joined by straight lines and the poly-
gon is ‘anchored-down’ at each end by joining to the
next class mid-point value and zero frequency.
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Frequency polygon

Figure 57.9

A histogram is shown in Fig. 57.10, the width of
a rectangle corresponding to (upper class boundary
value – lower class boundary value) and height corre-
sponding to the class frequency.The easiest way to draw
a histogram is to mark class mid-point values on the
horizontal scale and to draw the rectangles symmetri-
cally about the appropriate class mid-point values and
touching one another. A histogram for the data given in
Table 57.5 is shown in Fig. 57.10.
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Figure 57.10

Problem 13. The frequency distribution for the
masses in kilograms of 50 ingots is:

7.1 to 7.3 3, 7.4 to 7.6 5, 7.7 to 7.9 9,

8.0 to 8.2 14, 8.3 to 8.5 11, 8.6 to 8.8, 6,

8.9 to 9.1 2
Form a cumulative frequency distribution for these
data and draw the corresponding ogive.

A cumulative frequency distribution is a table giv-
ing values of cumulative frequency for the value of
upper class boundaries, and is shown in Table 57.6.
Columns 1 and 2 show the classes and their frequen-
cies. Column 3 lists the upper class boundary values
for the classes given in column 1. Column 4 gives
the cumulative frequency values for all frequencies
less than the upper class boundary values given in
column 3. Thus, for example, for the 7.7 to 7.9 class

Table 57.6
1 2 3 4

Class Frequency Upper class Cumulative
boundary frequency

Less than

7.1–7.3 3 7.35 3

7.4–7.6 5 7.65 8

7.7–7.9 9 7.95 17

8.0–8.2 14 8.25 31

8.3–8.5 11 8.55 42

8.6–8.8 6 8.85 48

8.9–9.1 2 9.15 50
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shown in row 3, the cumulative frequency value is
the sum of all frequencies having values of less than
7.95, i.e. 3+5+9=17, and so on. The ogive for the
cumulative frequency distribution given in Table 57.6
is shown in Fig. 57.11. The co-ordinates correspond-
ing to each upper class boundary/cumulative frequency
value are plotted and the co-ordinates are joined by
straight lines (not the best curve drawn through the
co-ordinates as in experimental work). The ogive
is ‘anchored’ at its start by adding the co-ordinate
(7.05, 0).
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Figure 57.11

Now try the following Practice Exercise

Practice Exercise 222 Presentation of
grouped data (Answers on page 889)

1. The mass in kilograms, correct to the nearest
one-tenth of a kilogram, of 60 bars of metal
are as shown. Form a frequency distribution
of about eight classes for these data.

39.8 40.3 40.6 40.0 39.6

39.6 40.2 40.3 40.4 39.8

40.2 40.3 39.9 39.9 40.0

40.1 40.0 40.1 40.1 40.2

39.7 40.4 39.9 40.1 39.9

39.5 40.0 39.8 39.5 39.9

40.1 40.0 39.7 40.4 39.3

40.7 39.9 40.2 39.9 40.0

40.1 39.7 40.5 40.5 39.9

40.8 40.0 40.2 40.0 39.9

39.8 39.7 39.5 40.1 40.2

40.6 40.1 39.7 40.2 40.3

2. Draw a histogram for the frequency distribu-
tion given in the solution of Problem 1.

3. The information given below refers to the
value of resistance in ohms of a batch of 48
resistors of similar value. Form a frequency
distribution for the data, having about six
classes, and draw a frequencypolygon andhis-
togram to represent these data diagramatically.

21.0 22.4 22.8 21.5 22.6 21.1 21.6 22.3

22.9 20.5 21.8 22.2 21.0 21.7 22.5 20.7

23.2 22.9 21.7 21.4 22.1 22.2 22.3 21.3

22.1 21.8 22.0 22.7 21.7 21.9 21.1 22.6

21.4 22.4 22.3 20.9 22.8 21.2 22.7 21.6

22.2 21.6 21.3 22.1 21.5 22.0 23.4 21.2

4. The time taken in hours to the failure of 50
specimens of a metal subjected to fatigue fail-
ure tests are as shown. Form a frequency
distribution, having about eight classes and
unequal class intervals, for these data.

28 22 23 20 12 24 37 28 21 25

21 14 30 23 27 13 23 7 26 19

24 22 26 3 21 24 28 40 27 24

20 25 23 26 47 21 29 26 22 33

27 9 13 35 20 16 20 25 18 22

5. Form a cumulative frequency distribution and
hence draw the ogive for the frequency dis-
tribution given in the solution to Problem 3.

6. Draw a histogram for the frequency distribu-
tion given in the solution to Problem 4.
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7. The frequency distribution for a batch of
50 capacitors of similar value, measured in
microfarads, is:

10.5–10.9 2, 11.0–11.4 7,
11.5–11.9 10, 12.0–12.4 12,
12.5–12.9 11, 13.0–13.4 8

Form a cumulative frequency distribution for
these data.

8. Draw an ogive for the data given in the solution
of Problem 7.

9. The diameter in millimetres of a reel of wire
is measured in 48 places and the results are as
shown.

2.10 2.29 2.32 2.21 2.14 2.22

2.28 2.18 2.17 2.20 2.23 2.13

2.26 2.10 2.21 2.17 2.28 2.15

2.16 2.25 2.23 2.11 2.27 2.34

2.24 2.05 2.29 2.18 2.24 2.16

2.15 2.22 2.14 2.27 2.09 2.21

2.11 2.17 2.22 2.19 2.12 2.20

2.23 2.07 2.13 2.26 2.16 2.12

(a) Form a frequency distribution of diame-
ters having about six classes.

(b) Draw a histogram depicting the data.

(c) Form a cumulative frequency distribu-
tion.

(d) Draw an ogive for the data.

For fully worked solutions to each of the problems in Practice Exercises 220 to 222 in this chapter,
go to the website:

www.routledge.com/cw/bird
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Chapter 58

Mean, median, mode and
standard deviation

Why it is important to understand:Mean, median, mode and standard deviation
Statistics is a field of mathematics that pertains to data analysis. In many real-life situations, it is help-
ful to describe data by a single number that is most representative of the entire collection of numbers.
Such a number is called a measure of central tendency; the most commonly used measures are mean,
median, mode and standard deviation, the latter being the average distance between the actual data and
the mean. Statistics is important in the field of engineering since it provides tools to analyse collected
data. For example, a chemical engineer may wish to analyse temperature measurements from a mix-
ing tank. Statistical methods can be used to determine how reliable and reproducible the temperature
measurements are, how much the temperature varies within the data set, what future temperatures of
the tank may be, and how confident the engineer can be in the temperature measurements made. When
performing statistical analysis on a set of data, the mean, median, mode, and standard deviation are all
helpful values to calculate; this chapter explains how to determine these measures of central tendency.

At the end of this chapter, you should be able to:

• determine the mean, median and mode for a set of ungrouped data
• determine the mean, median and mode for a set of grouped data
• draw a histogram from a set of grouped data
• determine the mean, median and mode from a histogram
• calculate the standard deviation from a set of ungrouped data
• calculate the standard deviation from a set of grouped data
• determine the quartile values from an ogive
• determine quartile, decile and percentile values from a set of data

58.1 Measures of central tendency

A single value, which is representative of a set of
values, may be used to give an indication of the
general size of the members in a set, the word

‘average’ often being used to indicate the single
value.
The statistical term used for ‘average’ is the arithmetic
mean or just the mean. Other measures of central ten-
dency may be used and these include the median and
the modal values.

Higher Engineering Mathematics. 978-1-138-67357-1, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.

Download more at Learnclax.com



Se
ct

io
n

K
632 Higher Engineering Mathematics

58.2 Mean, median and mode for
discrete data

Mean
The arithmeticmean value is foundby adding together
the values of the members of a set and dividing by the
number of members in the set. Thus, the mean of the set
of numbers: {4,5,6,9} is:

4+ 5+ 6+ 9
4

, i.e. 6

In general, the mean of the set: {x1,x2,x3, . . . ,xn} is

x = x1+ x2+ x3+ ·· · + xn

n
, written as

∑
x

n

where
∑
is theGreek letter ‘sigma’ andmeans ‘the sum

of’, and x (called x-bar) is used to signify a mean value.

Median
The median value often gives a better indication
of the general size of a set containing extreme val-
ues. The set: {7,5,74,10} has a mean value of 24,
which is not really representative of any of the val-
ues of the members of the set. The median value is
obtained by:

(a) ranking the set in ascending order of magni-
tude, and

(b) selecting the value of themiddle member for sets
containing an odd number of members, or finding
the value of the mean of the two middle members
for sets containing an even number of members.

For example, the set: {7,5,74,10} is ranked as
{5,7,10,74}, and since it contains an even number of
members (four in this case), the mean of 7 and 10 is
taken, giving a median value of 8.5. Similarly, the set:
{3,81,15,7,14} is ranked as {3,7,14,15,81} and the
median value is the value of the middle member, i.e. 14

Mode
The modal value, or mode, is the most commonly
occurring value in a set. If two values occur with
the same frequency, the set is ‘bi-modal’. The set:
{5,6,8,2,5,4,6,5,3} has a model value of 5, since the
member having a value of 5 occurs three times.

Problem 1. Determine the mean, median and
mode for the set:

{2,3,7,5,5,13,1,7,4,8,3,4,3}

The mean value is obtained by adding together the
values of the members of the set and dividing by the
number of members in the set.

Thus,mean value,

x =
2+ 3+ 7+ 5+ 5+ 13+ 1
+7+ 4+ 8+ 3+ 4+ 3

13
= 65
13

= 5

To obtain the median value the set is ranked, that is,
placed in ascending order of magnitude, and since the
set contains an odd number of members the value of the
middle member is the median value. Ranking the set
gives:

{1,2,3,3,3,4,4,5,5,7,7,8,13}
The middle term is the seventh member, i.e. 4, thus the
median value is 4. The modal value is the value of
the most commonly occurring member and is 3, which
occurs three times, all other members only occurring
once or twice.

Problem 2. The following set of data refers to the
amount of money in pounds taken by a news vendor
for sixdays. Determine the mean, median and
modal values of the set:

{27.90,34.70,54.40,18.92,47.60,39.68}

Mean value=
27.90+ 34.70+ 54.40

+18.92+47.60+39.68
6

= £37.20
The ranked set is:

{18.92,27.90,34.70,39.68,47.60,54.40}
Since the set has an even number of members, the mean
of the middle two members is taken to give the median
value, i.e.

Median value= 34.70+ 39.68
2

= £37.19
Since no two members have the same value, this set has
no mode.
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Now try the following Practice Exercise

Practice Exercise 223 Mean, median and
mode for discrete data (Answers on
page 889)

In Problems 1 to 4, determine the mean, median
and modal values for the sets given.

1. {3, 8, 10, 7, 5, 14, 2, 9, 8}
2. {26, 31, 21, 29, 32, 26, 25, 28}
3. {4.72, 4.71, 4.74, 4.73, 4.72, 4.71, 4.73, 4.72}
4. {73.8, 126.4, 40.7, 141.7, 28.5, 237.4, 157.9}

58.3 Mean, median and mode for
grouped data

The mean value for a set of grouped data is found by
determining the sumof the (frequency× classmid-point
values) and dividing by the sum of the frequencies,

i.e. mean value x = f1x1+ f2x2+ ·· · + fnxn

f1+ f2+ ·· · + fn

=
∑

(f x)
∑

f

where f is the frequencyof the class having amid-point
value of x, and so on.

Problem 3. The frequency distribution for the
value of resistance in ohms of 48 resistors is as
shown. Determine the mean value of resistance.
20.5–20.9 3, 21.0–21.4 10,
21.5–21.9 11, 22.0–22.4 13,
22.5–22.9 9, 23.0–23.4 2

The class mid-point/frequency values are:
20.7 3, 21.2 10, 21.7 11, 22.2 13,
22.7 9 and 23.2 2

For grouped data, the mean value is given by:

x =
∑

(f x)
∑

f

where f is the class frequency and x is the class mid-
point value. Hence mean value,

x =
(3× 20.7) + (10× 21.2) + (11× 21.7)
+(13× 22.2) + (9× 22.7) + (2× 23.2)

48

= 1052.1
48

= 21.919

i.e. themean value is 21.9ohms, correct to 3 significant
figures.

Histogram
The mean, median and modal values for grouped data
may be determined from a histogram. In a histogram,
frequency values are represented vertically and vari-
able values horizontally. The mean value is given by
the value of the variable corresponding to a vertical
line drawn through the centroid of the histogram. The
median value is obtained by selecting a variable value
such that the area of the histogram to the left of a vertical
line drawn through the selected variable value is equal
to the area of the histogram on the right of the line. The
modal value is the variable value obtained by dividing
the width of the highest rectangle in the histogram in
proportion to the heights of the adjacent rectangles. The
method of determining the mean, median and modal
values from a histogram is shown in Problem 4.

Problem 4. The time taken in minutes to
assemble a device is measured 50 times and the
results are as shown. Draw a histogram depicting
this data and hence determine the mean, median
and modal values of the distribution.

14.5–15.5 5, 16.5–17.5 8,

18.5–19.5 16, 20.5–21.5 12,

22.5–23.5 6, 24.5–25.5 3

The histogram is shown in Fig. 58.1. The mean value
lies at the centroid of the histogram. With reference to
any arbitrary axis, say YY shown at a time of 14minutes,
the position of the horizontal value of the centroid canbe
obtained from the relationship AM= ∑

(am), where A

is the area of the histogram,M is the horizontal distance
of the centroid from the axisYY , a is the area of a rectan-
gle of the histogramandm is the distance of the centroid
of the rectangle from YY . The areas of the individual
rectangles are shown circled on the histogram giving a
total area of 100 square units. The positions, m, of the
centroids of the individual rectangles are 1,3,5, . . .units
from YY . Thus

100M = (10× 1) + (16× 3) + (32× 5)

+ (24× 7) + (12× 9) + (6× 11)

i.e. M = 560
100

= 5.6 units from YY
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Figure 58.1

Thus the position of themeanwith reference to the time
scale is 14+5.6, i.e. 19.6minutes.
Themedian is the value of time corresponding to a verti-
cal line dividing the total area of the histogram into two
equal parts. The total area is 100square units, hence the
vertical line must be drawn to give 50units of area on
each side. To achieve this with reference to Fig. 58.1,
rectangleABFEmust be split so that 50−(10+16)units
of area lie on one side and 50−(24+12+6)units of
area lie on the other. This shows that the area of ABFE
is split so that 24units of area lie to the left of the line
and 8units of area lie to the right, i.e. the vertical line
must pass through19.5minutes. Thus themedian value
of the distribution is 19.5minutes.
The mode is obtained by dividing the line AB, which
is the height of the highest rectangle, proportionally to
the heights of the adjacent rectangles.With reference to
Fig. 58.1, this is done by joiningAC andBD and drawing
a vertical line through the point of intersection of these
two lines. This gives themode of the distribution and is
19.3minutes.

Now try the following Practice Exercise

Practice Exercise 224 Mean, median and
mode for grouped data (Answers on
page 890)

1. 21 bricks have a mean mass of 24.2 kg, and
29 similar bricks have a mass of 23.6 kg.
Determine the mean mass of the 50 bricks.

2. The frequency distribution given below refers
to the heights in centimetres of 100 people.

Determine the mean value of the distribution,
correct to the nearest millimetre.

150–156 5, 157–163 18,

164–170 20, 171–177 27,

178–184 22, 185–191 8

3. The gain of 90 similar transistors is measured
and the results are as shown.

83.5–85.5 6, 86.5–88.5 39,

89.5–91.5 27, 92.5–94.5 15,

95.5–97.5 3

By drawing a histogram of this frequency dis-
tribution, determine the mean, median and
modal values of the distribution.

4. The diameters, in centimetres, of 60 holes
bored in engine castings are measured and
the results are as shown. Draw a histogram
depicting these results and hence determine
the mean, median and modal values of the
distribution.

2.011–2.014 7, 2.016–2.019 16,

2.021–2.024 23, 2.026–2.029 9,

2.031–2.034 5

58.4 Standard deviation

(a) Discrete data
The standard deviation of a set of data gives an indication
of the amount of dispersion, or the scatter, of members
of the set from themeasure of central tendency. Its value
is the root-mean-square value of the members of the set
and for discrete data is obtained as follows:

(a) determine themeasure of central tendency, usually
the mean value (occasionally themedian or modal
values are specified),

(b) calculate the deviation of each member of the set
from the mean, giving

(x1− x),(x2− x),(x3− x), . . . ,
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(c) determine the squares of these deviations, i.e.

(x1− x)2,(x2− x)2,(x3− x)2, . . . ,

(d) find the sumof the squares of the deviations, that is

(x1− x)2+ (x2− x)2+ (x3− x)2, . . . ,

(e) divide by the number of members in the set, n,
giving

(x1− x)2+ (x2− x)2+ (x3− x)2+ ·· ·
n

(f) determine the square root of (e).

The standard deviation is indicated by σ (the Greek
letter small ‘sigma’) and is written mathematically as:

Standard deviation,σ =
√√
√
√

{∑
(x − x)2

n

}

where x is a member of the set, x is the mean value of
the set and n is the number of members in the set. The
value of standard deviation gives an indication of the
distance of the members of a set from the mean value.
The set: {1,4,7,10,13} has a mean value of 7 and a
standard deviation of about 4.2. The set {5,6,7,8,9}
also has a mean value of 7, but the standard deviation is
about 1.4. This shows that the members of the second
set are mainly much closer to the mean value than the
members of the first set. The method of determining the
standard deviation for a set of discrete data is shown in
Problem 5.

Problem 5. Determine the standard deviation
from the mean of the set of numbers:
{5,6,8,4,10,3} correct to 4 significant figures.

The arithmetic mean,

x =
∑

x

n
= 5+ 6+ 8+ 4+ 10+ 3

6
= 6

Standard deviation, σ =
√{∑

(x−x )2

n

}

The (x−x)2 values are: (5−6)2, (6−6)2, (8−6)2,
(4−6)2, (10−6)2 and (3−6)2

The sum of the (x − x)2 values,

i.e.
∑

(x − x)2 = 1+ 0+ 4+ 4+ 16+ 9= 34

and
∑

(x − x)2

n
= 34
6

= 5.6̇
since there are six members in the set.
Hence, standard deviation,

σ =
√{∑

(x − x)2

n

}

=
√
5.6

= 2.380, correct to 4 significant figures.

(b) Grouped data
For grouped data, standard deviation

σ =
√√
√
√

{∑{ f (x − x)2}
∑
f

}

where f is the class frequency value, x is the class mid-
point value and x is the mean value of the grouped data.
The method of determining the standard deviation for a
set of grouped data is shown in Problem 6.

Problem 6. The frequency distribution for the
values of resistance in ohms of 48 resistors is as
shown. Calculate the standard deviation from the
mean of the resistors, correct to 3 significant figures.

20.5–20.9 3, 21.0–21.4 10,

21.5–21.9 11, 22.0–22.4 13,

22.5–22.9 9, 23.0–23.4 2

The standard deviation for grouped data is given by:

σ =
√{∑{f (x − x)2}

∑
f

}

From Problem 3, the distribution mean value,
x = 21.92, correct to 4 significant figures.

The ‘x-values’ are the class mid-point values, i.e. 20.7,
21.2, 21.7, . . .

Thus the (x −x)2 values are (20.7−21.92)2,
(21.2−21.92)2, (21.7−21.92)2, . . .

and the f (x−x)2 values are 3(20.7−21.92)2,
10(21.2−21.92)2, 11(21.7−21.92)2, . . .
The

∑
f (x − x)2 values are
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4.4652+ 5.1840+ 0.5324+ 1.0192+ 5.4756

+ 3.2768= 19.9532
∑{

f (x − x)2
}

∑
f

= 19.9532
48

= 0.41569

and standard deviation,

σ =
√√
√
√

{∑{
f (x − x)2

}

∑
f

}

=
√
0.41569

= 0.645, correct to 3 significant figures.

Now try the following Practice Exercise

Practice Exercise 225 Standard deviation
(Answers on page 890)

1. Determine the standard deviation from the
mean of the set of numbers:

{35,22,25,23,28,33,30}
correct to 3 significant figures.

2. The values of capacitances, in microfarads, of
ten capacitors selected at random from a large
batch of similar capacitors are:

34.3, 25.0, 30.4, 34.6, 29.6, 28.7, 33.4,

32.7, 29.0 and 31.3

Determine the standard deviation from the
mean for these capacitors, correct to 3 signifi-
cant figures.

3. The tensile strength in megapascals for 15
samples of tin were determined and found
to be:

34.61, 34.57, 34.40, 34.63, 34.63,

34.51, 34.49, 34.61, 34.52, 34.55,

34.58, 34.53, 34.44, 34.48 and 34.40

Calculate the mean and standard deviation
from the mean for these 15 values, correct to
4 significant figures.

4. Calculate the standard deviation from the
mean for the mass of the 50 bricks given in
Problem 1 of Exercise 224, page 634, correct
to 3 significant figures.

5. Determine the standard deviation from the
mean, correct to 4 significant figures, for the
heights of the 100 people given in Problem 2
of Exercise 224, page 634.

6. Calculate the standard deviation from the
mean for the data given in Problem 4 of
Exercise 225, page 634, correct to 3 significant
figures.

58.5 Quartiles, deciles and
percentiles

Other measures of dispersion which are sometimes
used are the quartile, decile and percentile values.
The quartile values of a set of discrete data are
obtained by selecting the values of members which
divide the set into four equal parts. Thus for the set:
{2,3,4,5,5,7,9,11,13,14,17} there are 11 members
and the values of the members dividing the set into four
equal parts are 4, 7, and 13. These values are signi-
fied byQ1,Q2 andQ3 and called the first, second and
third quartile values, respectively. It can be seen that the
second quartile value, Q2, is the value of the middle
member and hence is the median value of the set.
For groupeddata the ogivemay be used to determine the
quartile values. In this case, points are selected on the
vertical cumulative frequency values of the ogive, such
that they divide the total value of cumulative frequency
into four equal parts. Horizontal lines are drawn from
these values to cut the ogive. The values of the variable
corresponding to these cutting points on the ogive give
the quartile values (see Problem 7).
When a set contains a large number of members, the
set can be split into ten parts, each containing an equal
number of members. These ten parts are then called
deciles. For sets containing a very large number ofmem-
bers, the set may be split into 100 parts, each containing
an equal number ofmembers.Oneof these parts is called
a percentile.

Problem 7. The frequency distribution given
below refers to the overtime worked by a group of
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craftsmen during each of 48 working weeks in a
year.

25–29 5, 30–34 4, 35–39 7,

40–44 11, 45–49 12, 50–54 8,

55–59 1

Draw an ogive for this data and hence determine
the quartile values.

The cumulative frequency distribution (i.e. upper class
boundary/cumulative frequency values) is:

29.5 5, 34.5 9, 39.5 16, 44.5 27,

49.5 39, 54.5 47, 59.5 48

The ogive is formed by plotting these values on a graph,
as shown in Fig. 58.2. The total frequency is divided
into four equal parts, each having a range of 48/4, i.e.
12. This gives cumulative frequency values of 0 to 12
corresponding to the first quartile, 12 to 24 correspond-
ing to the second quartile, 24 to 36 corresponding to
the third quartile and 36 to 48 corresponding to the
fourth quartile of the distribution, i.e. the distribution
is divided into four equal parts. The quartile values are
those of the variable corresponding to cumulative fre-
quency values of 12, 24 and 36, markedQ 1,Q2 andQ3
in Fig. 58.2. These values, correct to the nearest hour,
are 37hours, 43hours and 48hours, respectively. The
Q2 value is also equal to the median value of the distri-
bution. One measure of the dispersion of a distribution
is called the semi-interquartile range and is given by
(Q3−Q1)/2, and is (48−37)/2 in this case, i.e.
512 hours.
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Figure 58.2

Problem 8. Determine the numbers contained in
the (a) 41st to 50th percentile group, and (b) eighth
decile group of the set of numbers shown below:

14 22 17 21 30 28 37 7 23 32

24 17 20 22 27 19 26 21 15 29

The set is ranked, giving:

7 14 15 17 17 19 20 21 21 22 22 23

24 26 27 28 29 30 32 37

(a) There are 20 numbers in the set, hence the first
10% will be the two numbers 7 and 14, the sec-
ond 10% will be 15 and 17, and so on. Thus the
41st to 50th percentile group will be the numbers
21 and 22

(b) The first decile group is obtained by splitting the
ranked set into ten equal groups and selecting the
first group, i.e. the numbers 7 and 14. The second
decile group are the numbers 15 and 17, and so on.
Thus the eighth decile group contains the numbers
27 and 28

Now try the following Practice Exercise

Practice Exercise 226 Quartiles, deciles
and percentiles (Answers on page 890)

1. The number of working days lost due to acci-
dents for each of 12 one-monthly periods are
as shown. Determine the median and first and
third quartile values for this data.

27 37 40 28 23 30 35 24 30 32 31 28

2. The number of faults occurring on a produc-
tion line in a nine-week period are as shown
below. Determine the median and quartile
values for the data.

30 27 25 24 27 37 31 27 35

3. Determine the quartile values and semi-
interquartile range for the frequency distri-
bution given in Problem 2 of Exercise 224,
page 634.

4. Determine the numbers contained in the fifth
decile group and in the 61st to 70th percentile
groups for the set of numbers:
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40 46 28 32 37 42 50 31 48 45
32 38 27 33 40 35 25 42 38 41

5. Determine the numbers in the sixth decile
group and in the 81st to 90th percentile group
for the set of numbers:

43 47 30 25 15 51 17 21
36 44 33 17 35 58 51 35

37 33 44 56 40 49 22
44 40 31 41 55 50 16

For fully worked solutions to each of the problems in Practice Exercises 223 to 226 in this chapter,
go to the website:

www.routledge.com/cw/bird
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Chapter 59

Probability

Why it is important to understand: Probability
Engineers deal with uncertainty in their work, oftenwith precision and analysis, and probability theory is
widely used to model systems in engineering and scientific applications. There are a number of examples
of where probability is used in engineering. For example, with electronic circuits, scaling down the power
and energy of such circuits reduces the reliability and predictability of many individual elements, but the
circuits must nevertheless be engineered so that the overall circuit is reliable. Centres for disease control
need to decide whether to institute massive vaccination or other preventative measures in the face of
globally threatening, possibly mutating diseases in humans and animals. System designers must weigh
the costs and benefits of measures for reliability and security, such as levels of backups and firewalls, in
the face of uncertainty about threats from equipment failures or malicious attackers. Models incorpo-
rating probability theory have been developed and are continuously being improved for understanding
the brain, gene pools within populations, weather and climate forecasts, microelectronic devices, and
imaging systems such as computer aided tomography (CAT) scan and radar. The electric power grid,
including power generating stations, transmission lines, and consumers, is a complex system with many
redundancies; however, breakdowns occur, and guidance for investment comes frommodelling the most
likely sequences of events that could cause outage. Similar planning and analysis is done for communica-
tion networks, transportation networks, water, and other infrastructure. Probabilities, permutations and
combinations are used daily in many different fields that range from gambling and games, to mechanical
or structural failure rates, to rates of detection in medical screening. Uncertainty is clearly all around us,
in our daily lives and inmany professions.Use of standarddeviation is widely usedwhen results of opinion
polls are described. The language of probability theory lets people break down complex problems, and to
argue about pieces of them with each other, and then aggregate information about subsystems to analyse
a whole system. This chapter briefly introduces the important subject of probability.

At the end of this chapter, you should be able to:

• define probability
• define expectation, dependent event, independent event and conditional probability
• state the addition and multiplication laws of probability
• use the laws of probability in simple calculations
• use the laws of probability in practical situations
• determine permutations and combinations
• understand and use Bayes’ theorem

Higher Engineering Mathematics. 978-1-138-67357-1, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.
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59.1 Introduction to probability

The probability of something happening is the likeli-
hood or chance of it happening.Values of probability lie
between 0 and 1, where 0 represents an absolute impos-
sibility and 1 represents an absolute certainty. The prob-
ability of an event happening usually lies somewhere
between these two extreme values and is expressed
either as a proper or decimal fraction. Examples of
probability are:

that a length of copper wire
has zero resistance at 100◦C 0

that a fair, six-sided dice will
stop with a 3 upwards 1

6 or 0.1667
that a fair coin will land with
a head upwards 1

2 or 0.5
that a length of copper wire has
some resistance at 100◦C 1

If p is the probability of an event happening and q is the
probability of the same event not happening, then the
total probability is p+q and is equal to unity, since it is
an absolute certainty that the event either does or does
not occur, i.e. p+q=1

Expectation

The expectation, E, of an event happening is defined
in general terms as the product of the probability p of
an event happening and the number of attempts made,
n, i.e. E=pn
Thus, since the probability of obtaining a 3 upwards
when rolling a fair dice is 16 , the expectation of getting a
3 upwards within four throws of the dice is 16 × 4, i.e. 23
Thus expectation is the average occurrence of an
event.

Dependent event

A dependent event is one in which the probability of
an event happening affects the probability of another
event happening. Let five transistors be taken at ran-
dom from a batch of 100 transistors for test purposes,
and the probability of there being a defective transistor,
p1, be determined. At some later time, let another five
transistors be taken at random from the 95 remaining
transistors in the batch and the probability of there being
a defective transistor, p2, be determined. The value of
p2 is different from p1 since batch size has effectively
altered from 100 to 95, i.e. probability p2 is dependent

on probability p1 Since five transistors are drawn, and
then another five transistors drawn without replacing
the first five, the second random selection is said to be
without replacement.

Independent event

An independent event is one in which the probability
of an event happening does not affect the probability of
another event happening. If five transistors are taken at
random froma batch of transistors and the probabilityof
a defective transistor p1 is determined and the process
is repeated after the original five have been replaced in
the batch to give p2, then p1 is equal to p2. Since the
five transistors are replaced between draws, the second
selection is said to be with replacement.

Conditional probability

Conditional probability is concerned with the probabil-
ity of say event B occurring, given that event A has
already taken place.
If A and B are independent events, then the fact that
event A has already occurred will not affect the proba-
bility of event B.
If A and B are dependent events, then event A having
occurred will effect the probability of event B.

59.2 Laws of probability

The addition law of probability

The addition law of probability is recognized by the
word ‘or’ joining the probabilities. If pA is the proba-
bility of event A happening and pB is the probability
of event B happening, the probability of event A or
eventB happening is given by pA+ pB (providedevents
A andB aremutually exclusive, i.e.A andB are events
which cannot occur together). Similarly, the probability
of events A or B or C or . . .N happening is given by

pA+pB+pC+··· +pN

The multiplication law of probability

The multiplication law of probability is recognized by
the word ‘and’ joining the probabilities. If pA is the
probability of event A happening and pB is the proba-
bility of event B happening, the probability of event A
and event B happening is given by pA×pB . Similarly,
the probability of eventsA and B and C and . . .N hap-
pening is given by

pA×pB×pC×··· ×pN
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59.3 Worked problems on
probability

Problem 1. Determine the probabilities of
selecting at random (a) a man, and (b) a woman
from a crowd containing 20 men and 33 women.

(a) The probability of selecting at randomaman,p, is
given by the ratio

number of men
number in crowd

i.e. p = 20
20+ 33 = 20

53
or 0.3774

(b) The probability of selecting at random a woman,
q , is given by the ratio

number of women
number in crowd

i.e. q = 33
20+ 33 = 33

53
or 0.6226

(Check: the total probability should be equal to 1;

p = 20
53
and q = 33

53
thus the total probability,

p + q = 20
53

+ 33
53

= 1

hence no obvious error has been made.)

Problem 2. Find the expectation of obtaining a 4
upwards with three throws of a fair dice.

Expectation is the average occurrence of an event and is
defined as the probability times the number of attempts.
The probability, p, of obtaining a 4 upwards for one
throw of the dice is 16
Also, three attempts are made, hence n=3 and the
expectation,E, is pn, i.e. E= 1

6 × 3= 1
2 or 0.50

Problem 3. Calculate the probabilities of
selecting at random:
(a) the winning horse in a race in which ten horses

are running,

(b) the winning horses in both the first and second
races if there are ten horses in each race.

(a) Since only one of the ten horses can win, the prob-
ability of selecting at random the winning horse is
number of winners
number of horses

, i.e.
1
10
or 0.10

(b) The probability of selecting the winning horse in
the first race is 1

10 . The probability of selecting
the winning horse in the second race is 1

10 . The
probability of selecting the winning horses in the
first and second race is given by themultiplication
law of probability, i.e.

probability= 1
10

× 1
10

= 1
100

or 0.01

Problem 4. The probability of a component
failing in one year due to excessive temperature is
1
20
, due to excessive vibration is

1
25
and due to

excessive humidity is
1
50
. Determine the

probabilities that during a one-year period a
component: (a) fails due to excessive temperature
and excessive vibration, (b) fails due to excessive
vibration or excessive humidity, and (c) will not fail
because of both excessive temperature and
excessive humidity.

Let pA be the probability of failure due to excessive
temperature, then

pA = 1
20

and pA = 19
20

(where pA is the probability of not failing).
Let pB be the probability of failure due to excessive
vibration, then

pB = 1
25

and pB = 24
25

Let pC be the probability of failure due to excessive
humidity, then

pC = 1
50

and pC = 49
50

(a) The probability of a component failing due to
excessive temperature and excessive vibration is
given by:

pA × pB = 1
20

× 1
25

= 1
500

or 0.002

(b) The probability of a component failing due to
excessive vibration or excessive humidity is:

Download more at Learnclax.com



Se
ct

io
n

K
642 Higher Engineering Mathematics

pB + pC = 1
25

+ 1
50

= 3
50

or 0.06

(c) The probability that a component will not fail due
to excessive temperature and will not fail due to
excess humidity is:

pA × pC = 19
20

× 49
50

= 931
1000

or 0.931

Problem 5. A batch of 100 capacitors contains
73 which are within the required tolerance values,
17 which are below the required tolerance values,
and the remainder are above the required tolerance
values. Determine the probabilities that when
randomly selecting a capacitor and then a second
capacitor: (a) both are within the required tolerance
values when selecting with replacement, and (b) the
first one drawn is below and the second one drawn
is above the required tolerance value, when
selection is without replacement.

(a) The probability of selecting a capacitor within the

required tolerance values is
73
100

. The first capac-
itor drawn is now replaced and a second one is
drawn from the batch of 100. The probability of
this capacitor being within the required tolerance

values is also
73
100

Thus, the probabilityof selecting a capacitorwithin
the required tolerance values for both the first and
the second draw is

73
100

× 73
100

= 5329
10 000

or 0.5329

(b) The probability of obtaining a capacitor below the

required tolerance values on the first draw is
17
100

.
There are now only 99 capacitors left in the batch,
since the first capacitor is not replaced. The proba-
bility of drawing a capacitor above the required tol-

erance values on the second draw is
10
99
, since there

are (100−73−17), i.e. ten capacitors above the
required tolerance value. Thus, the probability of
randomly selecting a capacitor below the required
tolerance values and followed by randomly select-
ing a capacitor above the tolerance values is

17
100

× 10
99

= 170
9900

= 17
990

or 0.0172

Now try the following Practice Exercise

Practice Exercise 227 Probability (Answers
on page 890)

1. In a batch of 45 lamps there are ten faulty
lamps. If one lamp is drawn at random, find
the probability of it being (a) faulty and
(b) satisfactory.

2. A box of fuses are all of the same shape and
size and comprises 23 2A fuses, 47 5A fuses
and 69 13A fuses. Determine the probability
of selecting at random (a) a 2A fuse, (b) a 5A
fuse and (c) a 13A fuse.

3. (a) Find the probability of having a 2 upwards
when throwing a fair six-sided dice. (b) Find
the probability of having a 5 upwards when
throwing a fair six-sided dice. (c) Determine
the probability of having a 2 and then a 5 on
two successive throws of a fair six-sided dice.

4. Determine the probability that the total score
is 8 when two like dice are thrown.

5. The probability of eventA happening is 35 and
the probability of eventB happening is 23 . Cal-
culate the probabilities of (a) both A and B

happening, (b) only event A happening, i.e.
event A happening and event B not happen-
ing, (c) only eventB happening, and (d) either
A, or B, or A and B happening.

6. When testing 1000 soldered joints, four failed
during a vibration test and five failed due to
having a high resistance. Determine the prob-
ability of a joint failing due to (a) vibration,
(b) high resistance, (c) vibration or high resis-
tance and (d) vibration and high resistance.

59.4 Further worked problems on
probability

Problem 6. A batch of 40 components contains
five which are defective. A component is drawn at
random from the batch and tested and then a second
component is drawn. Determine the probability that
neither of the components is defective when drawn
(a) with replacement, and (b) without replacement.
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(a) With replacement
The probability that the component selected on the first

draw is satisfactory is
35
40
, i.e.

7
8
. The component is now

replaced and a second draw is made. The probability

that this component is also satisfactory is
7
8
. Hence, the

probability that both the first component drawn and the
second component drawn are satisfactory is:

7
8

× 7
8

= 49
64

or 0.7656

(b) Without replacement
The probability that the first component drawn is sat-

isfactory is
7
8
. There are now only 34 satisfactory

components left in the batch and the batch number is 39.
Hence, the probability of drawing a satisfactory compo-

nent on the second draw is
34
39
. Thus the probability that

the first component drawn and the second component
drawn are satisfactory, i.e. neither is defective, is:

7
8

× 34
39

= 238
312

or 0.7628

Problem 7. A batch of 40 components contains
five which are defective. If a component is drawn at
random from the batch and tested and then a second
component is drawn at random, calculate the
probability of having one defective component,
both with and without replacement.

The probability of having one defective component can
be achieved in two ways. If p is the probability of draw-
ing a defective component and q is the probability of
drawing a satisfactory component, then the probability
of having one defective component is given by drawing
a satisfactory component and then a defective compo-
nent or by drawing a defective component and then a
satisfactory one, i.e. by q × p+p×q

With replacement:

p = 5
40

= 1
8

and q = 35
40

= 7
8

Hence, probability of having one defective compo-
nent is:

1
8

× 7
8

+ 7
8

× 1
8

i.e.

7
64

+ 7
64

= 7
32

or 0.2188

Without replacement:

p1 = 1
8
and q1= 78 on the first of the two draws. The

batch number is now 39 for the second draw, thus,

p2 = 5
39
and q2 = 35

39

p1q2+ q1p2 = 1
8

× 35
39

+ 7
8

× 5
39

= 35+ 35
312

= 70
312

or 0.2244

Problem 8. A box contains 74 brass washers,
86 steel washers and 40 aluminium washers. Three
washers are drawn at random from the box without
replacement. Determine the probability that all
three are steel washers.

Assume, for clarity of explanation, that a washer is
drawn at random, then a second, then a third (although
this assumption does not affect the results obtained).
The total number of washers is 74+ 86+ 40, i.e. 200.
The probability of randomly selecting a steel washer on

the first draw is
86
200

. There are now 85 steel washers in
a batch of 199. The probability of randomly selecting a

steel washer on the second draw is
85
199

. There are now
84 steel washers in a batch of 198. The probability of
randomly selecting a steel washer on the third draw is
84
198

. Hence the probability of selecting a steel washer
on the first draw and the second draw and the third
draw is:

86
200

× 85
199

× 84
198

= 614 040
7 880 400

= 0.0779
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Problem 9. For the box of washers given in
Problem 8 above, determine the probability that
there are no aluminium washers drawn, when three
washers are drawn at random from the box without
replacement.

The probability of not drawing an aluminiumwasher on

the first draw is 1−
(
40
200

)

, i.e.
160
200

. There are now199

washers in the batch of which 159 are not aluminium
washers. Hence, the probability of not drawing an alu-

minium washer on the second draw is
159
199

. Similarly,
the probability of not drawing an aluminium washer on

the third draw is
158
198

.Hence the probability of not draw-
ing an aluminium washer on the first and second and
third draws is

160
200

× 159
199

× 158
198

= 4 019 520
7 880 400

= 0.5101

Problem 10. For the box of washers in
Problem 8 above, find the probability that there are
two brass washers and either a steel or an
aluminium washer when three are drawn at random,
without replacement.

Two brass washers (A) and one steel washer (B) can be
obtained in any of the following ways:

1st draw 2nd draw 3rd draw

A A B

A B A

B A A

Two brass washers and one aluminium washer (C) can
also be obtained in any of the following ways:

1st draw 2nd draw 3rd draw

A A C

A C A

C A A

Thus there are six possible ways of achieving the
combinations specified. If A represents a brass washer,

B a steel washer and C an aluminium washer, then the
combinations and their probabilities are as shown:

Draw Probability
First Second Third

A A B
74
200

× 73
199

× 86
198

= 0.0590

A B A
74
200

× 86
199

× 73
198

= 0.0590

B A A
86
200

× 74
199

× 73
198

= 0.0590

A A C
74
200

× 73
199

× 40
198

= 0.0274

A C A
74
200

× 40
199

× 73
198

= 0.0274

C A A
40
200

× 74
199

× 73
198

= 0.0274

The probability of having the first combination or the
second, or the third, and so on, is given by the sum of
the probabilities,

i.e. by 3×0.0590+3×0.0274, that is, 0.2592

Now try the following Practice Exercise

Practice Exercise 228 Probability (Answers
on page 890)

1. The probability that component A will oper-
ate satisfactorily for five years is 0.8 and
that B will operate satisfactorily over that
same period of time is 0.75. Find the
probabilities that in a five year period:
(a) both components operate satisfactorily,
(b) only component A will operate satisfac-
torily, and (c) only component B will operate
satisfactorily.

2. In a particular street, 80% of the houses have
telephones. If two houses selected at random
are visited, calculate the probabilities that
(a) they both have a telephone and (b) one
has a telephone but the other does not have
a telephone.
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3. Veroboard pins are packed in packets of 20 by
a machine. In a thousand packets, 40 have less
than 20 pins. Find the probability that if two
packets are chosen at random, onewill contain
less than 20 pins and the other will contain 20
pins or more.

4. A batch of 1kW fire elements contains 16
which are within a power tolerance and four
which are not. If three elements are selected
at random from the batch, calculate the prob-
abilities that (a) all three are within the power
tolerance and (b) two are within but one is not
within the power tolerance.

5. An amplifier is made up of three transis-
tors, A,B and C. The probabilities of A,

B or C being defective are
1
20

,
1
25

and
1
50
, respectively. Calculate the percentage of

amplifiers produced (a) which work satisfac-
torily and (b) which have just one defective
transistor.

6. A box contains 14 40W lamps, 28 60W
lamps and 58 25W lamps, all the lamps being
of the same shape and size. Three lamps are
drawn at random from the box,first one, then a
second, then a third. Determine the probabili-
ties of: (a) getting one 25W, one 40W and one
60W lamp, with replacement, (b) getting one
25W, one 40W and one 60W lamp without
replacement, and (c) getting either one 25W
and two 40Wor one 60Wand two 40W lamps
with replacement.

59.5 Permutations and combinations

Permutations

If n different objects are available, they can be arranged
in different orders of selection. Each different ordered
arrangement is called a permutation. For example,
permutations of the three letters X, Y and Z taken
together are:

XYZ,XZY,YXZ,YZX,ZXY and ZYX

This can be expressed as 3P3 = 6, the raised 3 denot-
ing the number of items from which the arrangements
are made, and the lowered 3 indicating the number of
items used in each arrangement.
If we take the same three letters XYZ two at a time the
permutations

XY,YX,XZ,ZX,YZ,ZY

can be found, and denoted by 3P2=6
(Note that the order of the lettersmatter in permutations,
i.e. YX is a different permutation from XY.) In general,
nPr =n(n−1) (n−2) . . . (n−r +1) or

nPr = n!
(n − r)! as stated in Chapter 15

For example, 5P4=5(4)(3)(2)=120 or
5P4= 5!

(5−4)!=
5!
1!

=(5)(4)(3)(2)=120

Also, 3P3=6 from above; using nPr = n!
(n− r)!

gives

3P3= 3!
(3−3)!=

6
0!
. Since this must equal 6, then 0!=1

(check this with your calculator).

Combinations

If selections of the three lettersX, Y , Z are made with-
out regard to the order of the letters in each group,
i.e. XY is now the same as YX for example, then each
group is called a combination. The number of possi-
ble combinations is denoted by nCr , where n is the
total number of items and r is the number in each
selection.
In general,

nCr = n!
r!(n − r)!

For example,

5C4 = 5!
4!(5− 4)! = 5!

4!

= 5× 4× 3× 2× 1
4× 3× 2× 1 = 5

Problem 11. Calculate the number of
permutations there are of: (a) five distinct objects
taken two at a time, (b) four distinct objects taken
two at a time.

Download more at Learnclax.com



Se
ct

io
n

K
646 Higher Engineering Mathematics

(a) 5P2= 5!
(5−2)! =

5!
3!

= 5×4×3×2
3×2 =20

(b) 4P2= 4!
(4−2)!=

4!
2!

=12

Problem 12. Calculate the number of
combinations there are of: (a) five distinct objects
taken two at a time, (b) four distinct objects taken
two at a time.

(a) 5C2= 5!
2!(5−2)! =

5!
2!3!

= 5×4×3×2×1
(2×1)(3×2×1) =10

(b) 4C2= 4!
2!(4−2)! =

4!
2!2!

=6

Problem 13. A class has 24 students. Four can
represent the class at an exam board. How many
combinations are possible when choosing this
group?

Number of combinations possible,

nCr = n!
r!(n− r!)

i.e. 24C4 = 24!
4!(24− 4)! = 24!

4!20!
= 10626

Problem 14. In how many ways can a team of 11
be picked from 16 possible players?

Number of ways= nCr =16C11

= 16!
11!(16− 11)! = 16!

11!5!
= 4368

Now try the following Practice Exercise

Practice Exercise 229 Permutations and
combinations (Answers on page 890)

1. Calculate the number of permutations there are
of: (a) 15 distinct objects taken two at a time,
(b) nine distinct objects taken four at a
time.

2. Calculate the number of combinations there
are of: (a) 12 distinct objects taken five at a
time, (b) six distinct objects taken four at a
time.

3. In how many ways can a team of six be picked
from ten possible players?

4. 15 boxes can each hold one object. In how
many ways can ten identical objects be placed
in the boxes?

5. Six numbers between 1 and49 are chosenwhen
playing the National Lottery. Determine the
probability of winning the top prize (i.e. six
correct numbers!) if ten tickets were purchased
and six different numberswere chosen on each
ticket.

59.6 Bayes’ theorem

Bayes’ theorem is one of probability theory (originally
stated by the Reverend Thomas Bayes), and may be
seen as a way of understanding how the probability that
a theory is true is affected by a new piece of evidence.
The theorem has been used in a wide variety of con-
texts, ranging from marine biology to the development
of ‘Bayesian’ spam blockers for email systems; in sci-
ence, it has been used to try to clarify the relationship
between theory and evidence. Insights in the philoso-
phy of science involving confirmation, falsification and
other topics can be made more precise, and sometimes
extended or corrected, by using Bayes’ theorem.
Bayes’ theorem may be stated mathematically as:

P(A1 |B )

= P(B |A1 )P(A1)
P(B |A1 )P(A1)+P(B |A2 )P(A2)+ ....

or P (Ai |B )

= P(B |Ai )P(Ai)
n∑
j=1
P

(
B

∣∣Aj )P(
Aj

) (i= 1,2, ...,n)

where P (A |B )is the probability of A given B, i.e. after
B is observed.
P(A) andP(B) are the probabilities ofA andBwithout

regard to each other, and P (B |A) is the probability of
observing event B given that A is true.
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In the Bayes theorem formula, ‘A’ represents a the-
ory or hypothesis that is to be tested, and ‘B’ represents
a new piece of evidence that seems to confirm or dis-
prove the theory. Bayes’ theorem is demonstrated in the
following worked problem.

Problem 15. An outdoor degree ceremony is
taking place tomorrow, 5 July, in the hot climate of
Dubai. In recent years it has rained only 2 days in
the four-month period June to September. However,
the weather forecaster has predicted rain for
tomorrow. When it actually rains, the weatherman
correctly forecasts rain 85% of the time. When it
doesn’t rain, he incorrectly forecasts rain 15% of
the time. Determine the probability that it will rain
tomorrow.

There are two possiblemutually-exclusive events occur-
ring here – it either rains or it does not rain. Also, a third
event occurs when the weatherman predicts rain.

Let the notation for these events be:

Event A1 It rains at the ceremony

Event A2 It does not rain at the ceremony

Event B The weatherman predicts rain

The probability values are:

P (A1) = 2
30+ 31+ 31+ 30 = 1

61

(i.e. it rains 2 days in the months June to September

P (A2) = 120
30+ 31+ 31+ 30 = 60

61

(i.e. it does not rain for 120 of the 122 days

in the months June to September)

P (B |A1 ) = 0.85
(i.e. when it rains, the weatherman predicts rain

85% of the time)

P (B |A2 ) = 0.15
(i.e. when it does not rains, the weatherman

predicts rain 15% of the time)

Using Bayes’ theorem to determine the probability that
it will rain tomorrow, given the forecast of rain by the
weatherman:

P (A1 |B ) = P(B |A1 )P(A1)
P (B |A1 )P(A1) + P(B |A2 )P(A2)

=
(0.85)

(
1
61

)

0.85× 1
61

+ 0.15× 60
61

= 0.0139344
0.1614754

= 0.0863 or 8.63%

Even when the weatherman predicts rain, it rains only
between 8% and 9% of the time.Hence, there is a good
chance it will not rain tomorrow in Dubai for the
degree ceremony.

Now try the following Practice Exercise

Practice Exercise 230 Bayes’ theorem
(Answers on page 890)

1. Machines A, B and C produce similar vehicle
engine parts. Of the total output, machine A
produces 35%,machine B 20% andmachine C
45%. The proportions of the output from each
machine that do not conform to the specifica-
tion are 7% for A, 4% for B and 3% for C.
Determine the proportion of those parts that
do not conform to the specification that are
produced by machine A.

2. A doctor is called to see a sick child. The doctor
has prior information that 85% of sick children
in that area have the flu, while the other 15%
are sick with measles. For simplicity, assume
that there are no other maladies in that area.
A symptom of measles is a rash. The proba-
bility of children developing a rash and having
measles is 94% and the probability of children
with flu occasionally also developing a rash is
7%.Upon examining the child, the doctorfinds
a rash. Determine the probability that the child
has measles.

3. In a study, oncologists were asked what the
odds of breast cancer would be in a woman
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who was initially thought to have a 1% risk of
cancer but who ended up with a positive mam-
mogram result (a mammogram accurately
classifies about 80% of cancerous tumours and

90% of benign tumours). 95 out of a hundred
oncologists estimated the probability of can-
cer to be about 75%. Use Bayes’ theorem to
determine the probability of cancer.

For fully worked solutions to each of the problems in Practice Exercises 227 to 230 in this chapter,
go to the website:

www.routledge.com/cw/bird
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Revision Test 17 Presentation of statistical data, mean, median, mode, standard
deviation and probability

This Revision Test covers the material contained in Chapters 57 to 59. The marks for each question are shown in
brackets at the end of each question.

1. A company produces five products in the following
proportions:

Product A 24 Product B 16 Product C 15
Product D 11 Product E 6

Present these data visually by drawing (a) a vertical
bar chart, (b) a percentage component bar chart,
(c) a pie diagram. (13)

2. The following lists the diameters of 40 components
produced by a machine, each measured correct to
the nearest hundredth of a centimetre:

1.39 1.36 1.38 1.31 1.33 1.40 1.28
1.40 1.24 1.28 1.42 1.34 1.43 1.35
1.36 1.36 1.35 1.45 1.29 1.39 1.38
1.38 1.35 1.42 1.30 1.26 1.37 1.33
1.37 1.34 1.34 1.32 1.33 1.30 1.38
1.41 1.35 1.38 1.27 1.37

(a) Using eight classes form a frequency distribu-
tion and a cumulative frequency distribution.

(b) For the above data draw a histogram, a fre-
quency polygon and an ogive. (21)

3. Determine for the ten measurements of lengths
shown below:

(a) the arithmetic mean, (b) the median, (c) the
mode, and (d) the standard deviation.

28m, 20m, 32m, 44m, 28m, 30m, 30m, 26m,
28m and 34m (10)

4. The heights of 100 people are measured correct to
the nearest centimetre with the following results:

150–157cm 5 158–165cm 18
166–173cm 42 174–181cm 27
182–189cm 8

Determine for the data (a) the mean height and
(b) the standard deviation. (12)

5. Draw an ogive for the data of component mea-
surements given below, and hence determine the
median and the first and third quartile values for
this distribution.

Class Frequency Cumulative
intervals (mm) frequency

1.24–1.26 2 2

1.27–1.29 4 6

1.30–1.32 4 10

1.33–1.35 10 20

1.36–1.38 11 31

1.39–1.41 5 36

1.42–1.44 3 39

1.45–1.47 1 40

(10)

6. Determine the probabilities of:

(a) drawing a white ball from a bag containing
6 black and 14 white balls,

(b) winning a prize in a raffle by buying six tickets
when a total of 480 tickets are sold,

(c) selecting at random a female from a group of
12 boys and 28 girls,

(d) winning a prize in a raffle by buying eight tic-
kets when there are five prizes and a total of
800 tickets are sold. (8)

7. The probabilities of an engine failing are given by:
p1, failure due to overheating; p2, failure due to
ignition problems; p3, failure due to fuel blockage.

When p1= 18 , p2= 15 and p3= 27 , determine the
probabilities of:
(a) all three failures occurring,
(b) the first and second but not the third failure

occurring,
(c) only the second failure occurring,
(d) the first or the second failure occurring but not

the third. (12)
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8. In a box containing 120 similar transistors 70 are
satisfactory, 37 give too high a gainx under normal
operating conditions and the remainder give too low
a gain.
Calculate the probability that when drawing two
transistors in turn, at random, with replacement,
of having
(a) two satisfactory,

(b) none with low gain,
(c) one with high gain and one satisfactory,
(d) one with low gain and none satisfactory.
Determine the probabilities in (a), (b) and (c)
above if the transistors are drawn without
replacement. (14)

For lecturers/instructors/teachers, fully worked solutions to each of the problems in Revision Test 17,
together with a full marking scheme, are available at the website:

www.routledge.com/cw/bird
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Chapter 60

The binomial and
Poisson distributions

Why it is important to understand: The binomial and Poisson distributions
The binomial distribution is used onlywhen both of two conditions aremet− the test has only two possible
outcomes, and the sample must be random. If both of these conditions aremet, then this distribution may
be used to predict the probability of a desired result. For example, a binomial distribution may be used
in determining whether a new drug being tested has or has not contributed to alleviating symptoms of a
disease. Common applications of this distribution range from scientific and engineering applications to
military and medical ones, in quality assurance, genetics and in experimental design.
APoisson distribution has several applications, and is essentially a derived limiting case of the binomial

distribution. It is most applicable to a situation in which the total number of successes is known, but the
number of trials is not. An example of such a situation would be if the mean expected number of cancer
cells present per sample is known and it was required to determine the probability of finding 1.5 times
that amount of cells in any given sample; this is an example of when the Poisson distribution would be
used. The Poisson distribution has widespread applications in analysing traffic flow, in fault prediction
on electric cables, in the prediction of randomly occurring accidents, and in reliability engineering.

At the end of this chapter, you should be able to:

• define the binomial distribution
• use the binomial distribution
• apply the binomial distribution to industrial inspection
• draw a histogram of probabilities
• define the Poisson distribution
• apply the Poisson distribution to practical situations

60.1 The binomial distribution

The binomial distribution deals with two numbers only,
these being the probability that an event will happen,p,
and the probability that an eventwill not happen,q.Thus,

when a coin is tossed, if p is the probability of the coin
landing with a head upwards, q is the probability of the
coin landing with a tail upwards. p + q must always be
equal to unity. A binomial distribution can be used for
finding, say, the probability of getting three heads in

Higher Engineering Mathematics. 978-1-138-67357-1, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.
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seven tosses of the coin, or in industry for determining
defect rates as a result of sampling. One way of defining
a binomial distribution is as follows:

‘If p is the probability that an event will happen and
q is the probability that the event will not happen,
then the probabilities that the event will happen
0, 1, 2, 3, . . . ,n times in n trials are given by the
successive terms of the expansion of (q+ p)n, taken
from left to right.’

The binomial expansion of (q + p)n is:

qn + nqn−1p + n(n− 1)
2!

qn−2p2

+ n(n− 1)(n− 2)
3!

qn−3p3+ ·· ·

from Chapter 7.
This concept of a binomial distribution is used in
Problems 1 and 2.

Problem 1. Determine the probabilities of having
(a) at least one girl and (b) at least one girl and
one boy in a family of four children, assuming
equal probability of male and female birth.

The probability of a girl being born, p, is 0.5 and the
probability of a girl not being born (male birth), q ,
is also 0.5. The number in the family, n, is 4. From
above, the probabilities of 0, 1, 2, 3, 4 girls in a family of
four are given by the successive terms of the expansion
of (q + p)4 taken from left to right. From the binomial
expansion:

(q + p)4 = q4+ 4q3p + 6q2p2+ 4qp3+ p4

Hence the probability of no girls is q 4,
i.e. 0.54 = 0.0625
the probability of one girl is 4q 3p,
i.e. 4× 0.53× 0.5= 0.2500
the probability of two girls is 6q 2p2,
i.e. 6× 0.52× 0.52 = 0.3750
the probability of three girls is 4qp3,

i.e. 4× 0.5× 0.53 = 0.2500
the probability of four girls is p4,

i.e. 0.54 = 0.0625

Total probability, (q + p)4 = 1.0000

(a) The probability of having at least one girl is the
sum of the probabilities of having 1, 2, 3 and 4
girls, i.e.

0.2500+ 0.3750+ 0.2500+ 0.0625= 0.9375
(Alternatively, the probability of having at least
one girl is: 1− (the probability of having no
girls), i.e. 1− 0.0625, giving 0.9375, as obtained
previously.)

(b) The probability of having at least one girl and
one boy is given by the sum of the probabilities
of having: one girl and three boys, two girls and
two boys and three girls and two boys, i.e.

0.2500+ 0.3750+ 0.2500=0.8750
(Alternatively, this is also the probability of having
1− (probabilityof having no girls+ probability of
having no boys), i.e.
1−2×0.0625=0.8750, as obtained previously.)

Problem 2. A dice is rolled nine times. Find the
probabilities of having a 4 upwards (a) three times
and (b) fewer than four times.

Let p be the probability of having a 4 upwards. Then
p = 1/6, since dice have six sides.
Let q be the probability of not having a 4 upwards.
Then q =5/6. The probabilities of having a 4 upwards
0,1,2, . . . ,n times are given by the successive terms of
the expansionof (q + p)n, taken from left to right. From
the binomial expansion:

(q + p)9 = q9+ 9q8p + 36q7p2 + 84q6p3+ ·· ·
The probability of having a 4 upwards zero times is

q9= (5/6)9 = 0.1938
The probability of having a 4 upwards once is

9q8p= 9(5/6)8(1/6) = 0.3489
The probability of having a 4 upwards twice is

36q7p2= 36(5/6)7(1/6)2 = 0.2791
The probability of having a 4 upwards three times is

84q6p3= 84(5/6)6(1/6)3 = 0.1302

(a) The probability of having a 4 upwards three times
is 0.1302
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(b) The probability of having a 4 upwards fewer than
four times is the sum of the probabilities of having
a 4 upwards zero, one, two, and three times, i.e.

0.1938+ 0.3489+ 0.2791+ 0.1302= 0.9520

Industrial inspection

In industrial inspection, p is often taken as the
probability that a component is defective and q is the
probability that the component is satisfactory. In this
case, a binomial distribution may be defined as:

‘The probabilities that 0, 1, 2, 3,…, n components
are defective in a sample of n components, drawn
at random from a large batch of components, are
given by the successive terms of the expansion of
(q+p)n , taken from left to right.’

This definition is used in Problems 3 and 4.

Problem 3. A machine is producing a large
number of bolts automatically. In a box of these
bolts, 95% are within the allowable tolerance values
with respect to diameter, the remainder being
outside of the diameter tolerance values. Seven
bolts are drawn at random from the box. Determine
the probabilities that (a) two and (b) more than two
of the seven bolts are outside of the diameter
tolerance values.

Let p be the probability that a bolt is outside of the
allowable tolerance values, i.e. is defective, and let q be
the probability that a bolt is within the tolerance values,
i.e. is satisfactory. Then p = 5%, i.e. 0.05per unit and
q =95%, i.e. 0.95per unit. The sample number is 7.
The probabilities of drawing 0,1,2, . . . ,n defective
bolts are given by the successive terms of the expansion
of (q + p)n, taken from left to right. In this problem

(q + p)n = (0.95+ 0.05)7

= 0.957+ 7× 0.956× 0.05

+ 21× 0.955× 0.052+ ·· ·
Thus the probability of no defective bolts is

0.957= 0.6983
The probability of one defective bolt is

7× 0.956× 0.05= 0.2573
The probability of two defective bolts is

21× 0.955× 0.052= 0.0406, and so on.

(a) The probability that two bolts are outside of the
diameter tolerance values is 0.0406.

(b) To determine the probability that more than
two bolts are defective, the sum of the probabil-
ities of three bolts, four bolts, five bolts, six bolts
and seven bolts being defective can be determined.
An easier way to find this sum is to find 1− (sum
of zero bolts, one bolt and two bolts being defec-
tive), since the sum of all the terms is unity. Thus,
the probability of there being more than two bolts
outside of the tolerance values is:

1− (0.6983+ 0.2573+ 0.0406), i.e. 0.0038

Problem 4. A package contains 50 similar
components and inspection shows that four
have been damaged during transit. If six
components are drawn at random from the contents
of the package determine the probabilities that in
this sample (a) one and (b) fewer than three are
damaged.

The probability of a component being damaged, p,
is 4 in 50, i.e. 0.08per unit. Thus, the probability of a
component not being damaged, q , is 1− 0.08, i.e. 0.92.
The probability of there being 0,1,2, . . . ,6 damaged
components is given by the successive terms of
(q + p)6, taken from left to right.

(q + p)6 = q6+ 6q5p + 15q4p2+ 20q3p3+ ·· ·
(a) The probability of one damaged component is

6q5p = 6× 0.925× 0.08= 0.3164
(b) The probability of fewer than three damaged com-

ponents is given by the sum of the probabilities of
zero, one and two damaged components.

q6+ 6q5p + 15q4p2

= 0.926+ 6× 0.925× 0.08
+ 15× 0.924× 0.082

= 0.6064+ 0.3164+ 0.0688= 0.9916

Histogram of probabilities

The terms of a binomial distribution may be repre-
sented pictorially by drawing a histogram, as shown in
Problem 5.
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Problem 5. The probability of a student
successfully completing a course of study in three
years is 0.45. Draw a histogram showing the
probabilities of 0,1,2, . . . ,10 students successfully
completing the course in three years.

Let p be the probability of a student successfully com-
pleting a course of study in three years and q be
the probability of not doing so. Then p = 0.45 and
q = 0.55. The number of students, n, is 10
The probabilities of 0,1,2, . . . ,10 students successfully
completing the course are given by the successive terms
of the expansion of (q + p)10, taken from left to right.
(q + p)10 = q10+ 10q9p + 45q8p2 + 120q7p3

+ 210q6p4+ 252q5p5+ 210q4p6
+ 120q3p7+ 45q2p8+ 10qp9+ p10

Substituting q = 0.55 and p = 0.45 in this expansion
gives the values of the successive terms as: 0.0025,
0.0207, 0.0763, 0.1665, 0.2384, 0.2340, 0.1596, 0.0746,
0.0229, 0.0042 and 0.0003. The histogram depicting
these probabilities is shown in Fig. 60.1.
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Now try the following Practice Exercise

Practice Exercise 231 The binomial
distribution (Answers on page 890)

1. Concrete blocks are tested and it is found
that, on average, 7% fail to meet the required
specification. For a batch of nineblocks, deter-
mine the probabilities that (a) three blocks and
(b) fewer than four blocks will fail to meet the
specification.

2. If the failure rate of the blocks in Problem 1
rises to 15%, find the probabilities that (a) no
blocks and (b) more than two blocks will
fail to meet the specification in a batch of
nineblocks.

3. The average number of employees absent
from a firm each day is 4%. An office within
the firm has seven employees. Determine the
probabilities that (a) no employee and (b) three
employees will be absent on a particular day.

4. Amanufacturer estimates that 3%of his output
of a small item is defective. Find the probabil-
ities that in a sample of ten items (a) fewer
than two and (b) more than two items will be
defective.

5. Five coins are tossed simultaneously. Deter-
mine the probabilities of having 0, 1, 2, 3, 4
and 5 heads upwards, and draw a histogram
depicting the results.

6. If the probability of rain falling during a
particular period is 2/5, find the probabili-
ties of having 0, 1, 2, 3, 4, 5, 6 and 7 wet
days in a week. Show these results on a
histogram.

7. An automatic machine produces, on aver-
age, 10% of its components outside of the
tolerance required. In a sample of ten com-
ponents from this machine, determine the
probability of having three components out-
side of the tolerance required by assuming a
binomial distribution.

60.2 The Poisson distribution

When the number of trials, n, in a binomial distribution
becomes large (usually taken as larger than ten), the
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calculations associated with determining the values of
the terms becomes laborious. If n is large andp is small,
and the product np is less than 5, a very good approxi-
mation to a binomial distribution is given by the corre-
sponding Poisson∗ distribution, in which calculations
are usually simpler.
The Poisson approximation to a binomial distribution
may be defined as follows:

‘The probabilities that an event will happen 0, 1, 2,
3,…, n times in n trials are given by the successive
terms of the expression

e−λ

(

1+ λ+ λ2

2!
+ λ3

3!
+ ·· ·

)

taken from left to right.’

The symbol λ is the expectation of an event happening
and is equal to np.

Problem 6. If 3% of the gearwheels produced
by a company are defective, determine the

∗Who was Poisson? Siméon Denis Poisson (21 June 1781–25
April 1840), was a French mathematician, geometer, and physi-
cist. His work on the theory of electricity and magnetism virtu-
ally created a newbranchofmathematical physics, and his study
of celestial mechanics discussed the stability of the planetary
orbits. To find out more go to www.routledge.com/cw/bird

probabilities that in a sample of 80 gearwheels
(a) two and (b) more than two will be defective.

The sample number, n, is large, the probability of a
defective gearwheel, p, is small and the product np is
80× 0.03, i.e. 2.4, which is less than 5
Hence a Poisson approximation to a binomial distri-
bution may be used. The expectation of a defective
gearwheel, λ = np = 2.4
The probabilities of 0,1,2, . . . defective gearwheels are
given by the successive terms of the expression

e−λ

(

1+ λ+ λ2

2!
+ λ3

3!
+ ·· ·

)

taken from left to right, i.e. by

e−λ,λe−λ,
λ2e−λ

2!
, . . .

Thus probability of no defective gearwheels is

e−λ = e−2.4 = 0.0907
probability of one defective gearwheel is

λe−λ = 2.4e−2.4 = 0.2177
probability of two defective gearwheels is

λ2e−λ

2!
= 2.42e−2.4

2× 1 = 0.2613

(a) The probability of having two defective gear-
wheels is 0.2613

(b) The probability of having more than two defec-
tive gearwheels is 1− (the sum of the probabilities
of having zero, one, and two defective gear-
wheels), i.e.

1− (0.0907+ 0.2177+ 0.2613),
that is, 0.4303

The principal use of a Poisson distribution is to deter-
mine the theoretical probabilities when p, the prob-
ability of an event happening, is known, but q , the
probability of the event not happening is unknown. For
example, the average number of goals scored per match
by a football team can be calculated, but it is not pos-
sible to quantify the number of goals which were not
scored. In this type of problem, a Poisson distribution
may be defined as follows:
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‘The probabilities of an event occurring 0, 1, 2, 3,…
times are given by the successive terms of the
expression

e−λ

(

1+ λ+ λ2

2!
+ λ3

3!
+ ·· ·

)

,

taken from left to right.’

The symbol λ is the value of the average occurrence of
the event.

Problem 7. A production department has 35
similar milling machines. The number of
breakdowns on each machine averages 0.06per
week. Determine the probabilities of having
(a) one, and (b) fewer than three machines breaking
down in any week.

Since the average occurrence of a breakdown is known
but the number of times when a machine did not break
down is unknown, a Poisson distribution must be used.
The expectation of a breakdown for 35 machines is
35× 0.06, i.e. 2.1 breakdowns per week. The proba-
bilities of a breakdown occurring 0,1,2, . . . times are
given by the successive terms of the expression

e−λ

(

1+ λ+ λ2

2!
+ λ3

3!
+ ·· ·

)

taken from left to right.
Hence probability of no breakdowns

e−λ = e−2.1 = 0.1225
probability of one breakdown is

λe−λ =2.1e−2.1=0.2572
probability of two breakdowns is

λ2e−λ

2!
= 2.1

2e−2.1

2× 1 =0.2700
(a) The probability of one breakdown per week is

0.2572

(b) The probability of fewer than three breakdowns
per week is the sum of the probabilities of zero,
one, and two breakdowns per week,

i.e. 0.1225+ 0.2572+ 0.2700, i.e. 0.6497

Histogram of probabilities

The terms of a Poisson distribution may be repre-
sented pictorially by drawing a histogram, as shown in
Problem 8.

Problem 8. The probability of a person having an
accident in a certain period of time is 0.0003. For a
population of 7500 people, draw a histogram
showing the probabilities of 0, 1, 2, 3, 4, 5 and 6
people having an accident in this period.

The probabilities of 0,1,2, . . . people having an acci-
dent are given by the terms of expression

e−λ

(

1+ λ+ λ2

2!
+ λ3

3!
+ ·· ·

)

taken from left to right.
The average occurrence of the event, λ, is
7500× 0.0003, i.e. 2.25
The probability of no people having an accident is

e−λ =e−2.25 = 0.1054
The probability of one person having an accident is

λe−λ =2.25e−2.25 = 0.2371
The probability of two people having an accident is

λ2e−λ

2!
= 2.25

2e−2.25

2!
= 0.2668

and so on, giving probabilities of 0.2001, 0.1126,
0.0506 and 0.0190 for 3, 4, 5 and 6 respectively hav-
ing an accident. The histogram for these probabilities is
shown in Fig. 60.2.
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Now try the following Practice Exercise

Practice Exercise 232 The Poisson
distribution (Answers on page 890)

1. In problem 7 of Exercise 231, page 654,
determine the probability of having three com-
ponents outside of the required tolerance using
the Poisson distribution.

2. The probability that an employee will go to
hospital in a certain period of time is 0.0015.
Use a Poisson distribution to determine the
probability of more than two employees going
to hospital during this period of time if there
are 2000 employees on the payroll.

3. When packaging a product, a manufacturer
finds that one packet in 20 is underweight.
Determine the probabilities that in a box of
72 packets (a) two and (b) fewer than four
will be underweight.

4. A manufacturer estimates that 0.25% of
his output of a component is defective.
The components are marketed in packets
of 200. Determine the probability of a
packet containing fewer than three defective
components.

5. The demand for a particular tool from a store
is, on average,five times a day and the demand
follows a Poisson distribution. How many of
these tools should be kept in the stores so that
the probability of there being one available
when required is greater than 10%?

6. Failure of a group of particular machine
tools follows a Poisson distribution with a
mean value of 0.7. Determine the prob-
abilities of 0, 1, 2, 3, 4 and 5 failures
in a week and present these results on a
histogram.

For fully worked solutions to each of the problems in Practice Exercises 231 and 232 in this chapter,
go to the website:

www.routledge.com/cw/bird
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Chapter 61

The normal distribution

Why it is important to understand: The normal distribution
A normal distribution is a very important statistical data distribution pattern occurring in many natural
phenomena, such as height, blood pressure, lengths of objects produced by machines, marks in a test,
errors in measurements, and so on. In general, when data is gathered, we expect to see a particular
pattern to the data, called a normal distribution. This is a distribution where the data is evenly distributed
around the mean in a very regular way, which when plotted as a histogramwill result in a bell curve. The
normal distribution is the most important of all probability distributions; it is applied directly to many
practical problems in every engineering discipline. There are two principal applications of the normal
distribution to engineering and reliability. One application deals with the analysis of items which exhibit
failure to wear, such as mechanical devices – frequently the wear-out failure distribution is sufficiently
close to normal that the use of this distribution for predicting or assessing reliability is valid. Another
application is in the analysis of manufactured items and their ability to meet specifications. No two parts
made to the same specification are exactly alike; the variability of parts leads to a variability in systems
composed of those parts. The design must take this variability into account, otherwise the system may
not meet the specification requirement due to the combined effect of part variability.

At the end of this chapter, you should be able to:

• recognise a normal curve
• use the normal distribution in calculations
• test for a normal distribution using probability paper

61.1 Introduction to the normal
distribution

When data is obtained, it can frequently be considered
to be a sample (i.e. a few members) drawn at random
from a large population (i.e. a set having many mem-
bers). If the sample number is large, it is theoretically
possible to choose class intervals which are very small,
but which still have a number of members falling within
each class. A frequency polygon of this data then has a
large number of small line segments and approximates

to a continuous curve. Such a curve is called a frequency
or a distribution curve.
An extremely important symmetrical distribution curve
is called the normal curve and is as shown in Fig. 61.1.
This curve can be described by a mathematical equa-
tion and is the basis of much of the work done in more
advanced statistics. Many natural occurrences such as
the heights or weights of a group of people, the sizes
of components produced by a particular machine and
the life length of certain components approximate to a
normal distribution.

Higher Engineering Mathematics. 978-1-138-67357-1, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.
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Figure 61.1

Normal distribution curves can differ from one another
in the following four ways:

(a) by having different mean values

(b) by having different values of standard deviations
(c) the variables having different values and different

units and

(d) by having different areas between the curve and
the horizontal axis.

A normal distribution curve is standardised as fol-
lows:

(a) The mean value of the unstandardised curve is
made the origin, thus making the mean value,
x, zero.

(b) The horizontal axis is scaled in standard devia-

tions. This is done by letting z= x − x

σ
, where

z is called the normal standard variate, x is the
value of the variable, x is the mean value of the
distribution and σ is the standard deviation of the
distribution.

(c) The area between the normal curve and the hori-
zontal axis is made equal to unity.

When a normal distribution curve has been standard-
ised, the normal curve is called a standardised normal
curve or a normal probability curve, and any normally
distributed data may be represented by the same normal
probability curve.
The area under part of a normal probability curve is
directly proportional to probability and the value of the
shaded area shown in Fig. 61.2 can be determined by
evaluating:

∫
1√
(2π)

e

(
z2

2

)

dz, where z = x − x

σ

To save repeatedly determining the values of this func-
tion, tables of partial areas under the standardised nor-
mal curve are available in many mathematical formulae
books, and such a table is shown in Table 61.1, on
page 661.

Probability
density

Standard deviations
0 z2z1 z-value

Figure 61.2

Problem 1. The mean height of 500 people is
170cm and the standard deviation is 9cm.
Assuming the heights are normally distributed,
determine the number of people likely to have
heights between 150cm and 195cm.

The mean value, x, is 170cm and corresponds to a
normal standard variate value, z, of zero on the stan-
dardised normal curve. A height of 150cmhas a z-value

given by z= x −x

σ
standard deviations, i.e.

150−170
9

or −2.22 standard deviations. Using a table of par-
tial areas beneath the standardised normal curve (see
Table 61.1), a z-value of −2.22 corresponds to an area
of 0.4868 between the mean value and the ordinate
z=−2.22. The negative z-value shows that it lies to
the left of the z=0 ordinate.
This area is shown shaded in Fig. 61.3(a). Similarly,

195cm has a z-value of
195−170

9
that is 2.78 standard

deviations. FromTable 61.1, this value of z corresponds
to an area of 0.4973, the positive value of z showing
that it lies to the right of the z=0 ordinate. This area
is shown shaded in Fig. 61.3(b). The total area shaded
in Figs. 61.3(a) and (b) is shown in Fig. 61.3(c) and is
0.4868+0.4973, i.e. 0.9841 of the total area beneath
the curve.
However, the area is directly proportional to probability.
Thus, the probability that a person will have a height
of between 150 and 195cm is 0.9841. For a group of
500 people, 500×0.9841, i.e. 492 people are likely to
have heights in this range. The value of 500×0.9841 is
492.05, but since answers based on a normal probability
distribution can only be approximate, results are usually
given correct to the nearest whole number.

Problem 2. For the group of people given in
Problem 1, find the number of people likely to have
heights of less than 165cm.
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0 z-value

0 z-value

z-value

22.22

22.22

(a)

2.78
(b)

0 2.78
(c)

Figure 61.3

A height of 165cm corresponds to
165−170

9
i.e.

−0.56 standard deviations.
The area between z=0 and z=−0.56 (fromTable 61.1)
is 0.2123, shown shaded in Fig. 61.4(a). The total area
under the standardised normal curve is unity and since
the curve is symmetrical, it follows that the total area
to the left of the z=0 ordinate is 0.5000. Thus the area
to the left of the z=−0.56 ordinate (‘left’ means ‘less
than’, ‘right’ means ‘more than’) is 0.5000−0.2123,
i.e. 0.2877 of the total area, which is shown shaded in
Fig 61.4(b). The area is directly proportional to proba-
bility and since the total area beneath the standardised
normal curve is unity, the probability of aperson’s height
being less than 165cm is 0.2877. For a groupof 500peo-
ple, 500×0.2877, i.e. 144 people are likely to have
heights of less than 165 cm.

Problem 3. For the group of people given in
Problem 1 find how many people are likely to have
heights of more than 194cm.

194cm corresponds to a z-value of
194−170

9
that is

2.67 standard deviations. From Table 61.1, the area

0

020.56

20.56
(a)

z-value

z-value

(b)

Figure 61.4

between z=0, z=2.67 and the standardised normal
curve is 0.4962, shown shaded in Fig. 61.5(a). Since
the standardised normal curve is symmetrical, the total
area to the right of the z=0 ordinate is 0.5000, hence the
shaded area shown in Fig. 61.5(b) is 0.5000−0.4962,
i.e. 0.0038. This area represents the probability of a per-
son having a height of more than 194cm, and for 500
people, the number of people likely to have a height of
more than 194cm is 0.0038×500, i.e. two people.

0 z-value

z-value

2.67
(a)

0 2.67
(b)

Figure 61.5

Problem 4. A batch of 1500 lemonade bottles
have an average contents of 753ml and the standard
deviation of the contents is 1.8ml. If the volumes of
the contents are normally distributed, find
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Table 61.1 Partial areas under the standardised normal curve

0 z

z= x − x

σ
0 1 2 3 4 5 6 7 8 9

0.0 0.0000 0.0040 0.0080 0.0120 0.0159 0.0199 0.0239 0.0279 0.0319 0.0359
0.1 0.0398 0.0438 0.0478 0.0517 0.0557 0.0596 0.0636 0.0678 0.0714 0.0753
0.2 0.0793 0.0832 0.0871 0.0910 0.0948 0.0987 0.1026 0.1064 0.1103 0.1141
0.3 0.1179 0.1217 0.1255 0.1293 0.1331 0.1388 0.1406 0.1443 0.1480 0.1517
0.4 0.1554 0.1591 0.1628 0.1664 0.1700 0.1736 0.1772 0.1808 0.1844 0.1879
0.5 0.1915 0.1950 0.1985 0.2019 0.2054 0.2086 0.2123 0.2157 0.2190 0.2224
0.6 0.2257 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2517 0.2549
0.7 0.2580 0.2611 0.2642 0.2673 0.2704 0.2734 0.2760 0.2794 0.2823 0.2852
0.8 0.2881 0.2910 0.2939 0.2967 0.2995 0.3023 0.3051 0.3078 0.3106 0.3133
0.9 0.3159 0.3186 0.3212 0.3238 0.3264 0.3289 0.3315 0.3340 0.3365 0.3389
1.0 0.3413 0.3438 0.3451 0.3485 0.3508 0.3531 0.3554 0.3577 0.3599 0.3621
1.1 0.3643 0.3665 0.3686 0.3708 0.3729 0.3749 0.3770 0.3790 0.3810 0.3830
1.2 0.3849 0.3869 0.3888 0.3907 0.3925 0.3944 0.3962 0.3980 0.3997 0.4015
1.3 0.4032 0.4049 0.4066 0.4082 0.4099 0.4115 0.4131 0.4147 0.4162 0.4177
1.4 0.4192 0.4207 0.4222 0.4236 0.4251 0.4265 0.4279 0.4292 0.4306 0.4319
1.5 0.4332 0.4345 0.4357 0.4370 0.4382 0.4394 0.4406 0.4418 0.4430 0.4441
1.6 0.4452 0.4463 0.4474 0.4484 0.4495 0.4505 0.4515 0.4525 0.4535 0.4545
1.7 0.4554 0.4564 0.4573 0.4582 0.4591 0.4599 0.4608 0.4616 0.4625 0.4633
1.8 0.4641 0.4649 0.4656 0.4664 0.4671 0.4678 0.4686 0.4693 0.4699 0.4706
1.9 0.4713 0.4719 0.4726 0.4732 0.4738 0.4744 0.4750 0.4756 0.4762 0.4767
2.0 0.4772 0.4778 0.4783 0.4785 0.4793 0.4798 0.4803 0.4808 0.4812 0.4817
2.1 0.4821 0.4826 0.4830 0.4834 0.4838 0.4842 0.4846 0.4850 0.4854 0.4857
2.2 0.4861 0.4864 0.4868 0.4871 0.4875 0.4878 0.4881 0.4884 0.4887 0.4890
2.3 0.4893 0.4896 0.4898 0.4901 0.4904 0.4906 0.4909 0.4911 0.4913 0.4916
2.4 0.4918 0.4920 0.4922 0.4925 0.4927 0.4929 0.4931 0.4932 0.4934 0.4936
2.5 0.4938 0.4940 0.4941 0.4943 0.4945 0.4946 0.4948 0.4949 0.4951 0.4952
2.6 0.4953 0.4955 0.4956 0.4957 0.4959 0.4960 0.4961 0.4962 0.4963 0.4964
2.7 0.4965 0.4966 0.4967 0.4968 0.4969 0.4970 0.4971 0.4972 0.4973 0.4974
2.8 0.4974 0.4975 0.4976 0.4977 0.4977 0.4978 0.4979 0.4980 0.4980 0.4981
2.9 0.4981 0.4982 0.4982 0.4983 0.4984 0.4984 0.4985 0.4985 0.4986 0.4986
3.0 0.4987 0.4987 0.4987 0.4988 0.4988 0.4989 0.4989 0.4989 0.4990 0.4990
3.1 0.4990 0.4991 0.4991 0.4991 0.4992 0.4992 0.4992 0.4992 0.4993 0.4993
3.2 0.4993 0.4993 0.4994 0.4994 0.4994 0.4994 0.4994 0.4995 0.4995 0.4995
3.3 0.4995 0.4995 0.4995 0.4996 0.4996 0.4996 0.4996 0.4996 0.4996 0.4997
3.4 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4998
3.5 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998
3.6 0.4998 0.4998 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999
3.7 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999
3.8 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999
3.9 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
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(a) the number of bottles likely to contain less
than 750ml,

(b) the number of bottles likely to contain
between 751 and 754ml,

(c) the number of bottles likely to contain more
than 757ml, and

(d) the number of bottles likely to contain
between 750 and 751ml.

(a) The z-value corresponding to 750ml is given

by
x −x

σ
i.e.

750−753
1.8

=−1.67 standard devi-
ations. From Table 61.1, the area between z=0
and z=−1.67 is 0.4525. Thus the area to the
left of the z=−1.67 ordinate is 0.5000−0.4525
(see Problem 2), i.e. 0.0475. This is the prob-
ability of a bottle containing less than 750ml.
Thus, for a batch of 1500 bottles, it is likely that
1500×0.0475, i.e. 71 bottles will contain less
than 750ml.

(b) The z-value corresponding to 751 and 754ml

are
751−753
1.8

and
754−753
1.8

i.e. −1.11 and
0.56 respectively. From Table 61.1, the areas
corresponding to these values are 0.3665 and
0.2123 respectively. Thus the probability of a
bottle containing between 751 and 754ml is
0.3665+0.2123 (see Problem 1), i.e. 0.5788. For
1500 bottles, it is likely that 1500×0.5788, i.e.
868bottleswill containbetween751and754ml.

(c) The z-value corresponding to 757ml is
757−753
1.8

,

i.e. 2.22 standard deviations. From Table 61.1,
the area corresponding to a z-value of 2.22 is
0.4868. The area to the right of the z=2.22
ordinate is 0.5000−0.4868 (see Problem 3), i.e.
0.0132. Thus, for 1500 bottles, it is likely that
1500×0.0132, i.e. 20 bottles will have contents
of more than 757ml.

(d) The z-value corresponding to 750ml is −1.67
(see part (a)), and the z-value corresponding to
751ml is −1.11 (see part (b)). The areas corre-
sponding to these z-values are 0.4525 and 0.3665
respectively, and both these areas lie on the left
of the z=0 ordinate. The area between z=−1.67

and z=−1.11 is 0.4525−0.3665, i.e. 0.0860 and
this is the probability of a bottle having contents
between 750 and 751ml. For 1500 bottles, it is
likely that 1500×0.0860, i.e. 129 bottles will be
in this range.

Now try the following Practice Exercise

Practice Exercise 233 Introduction to the
normal distribution (Answers on page 890)

1. A component is classed as defective if it has a
diameter of less than 69mm. In a batch of 350
components, the mean diameter is 75mm and
the standard deviation is 2.8mm. Assuming
the diameters are normally distributed,
determine how many are likely to be classed
as defective.

2. The masses of 800 people are normally dis-
tributed, having a mean value of 64.7kg and a
standard deviation of 5.4kg. Find how many
people are likely to have masses of less than
54.4kg.

3. 500 tins of paint have a mean content of
1010ml and the standard deviation of the con-
tents is 8.7ml. Assuming the volumes of the
contents are normally distributed, calculate the
number of tins likely to have contents whose
volumes are less than (a) 1025ml (b) 1000ml
and (c) 995ml.

4. For the 350 components in Problem 1, if those
having a diameter of more than 81.5mm are
rejected, find, correct to the nearest compo-
nent, the number likely to be rejected due to
being oversized.

5. For the 800 people in Problem 2, determine
how many are likely to have masses of more
than (a) 70kg and (b) 62kg.

6. The mean diameter of holes produced by a
drilling machine bit is 4.05mm and the stan-
dard deviation of the diameters is 0.0028mm.
For 20 holes drilled using this machine,
determine, correct to the nearest whole num-
ber, how many are likely to have diameters
of between (a) 4.048 and 4.0553mm and
(b) 4.052 and 4.056mm, assuming the dia-
meters are normally distributed.
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7. The intelligence quotients of 400 children
have a mean value of 100 and a standard devi-
ation of 14. Assuming that I.Q.s are normally
distributed, determine the number of children
likely to have I.Q.s of between (a) 80 and 90,
(b) 90 and 110 and (c) 110 and 130

8. The mean mass of active material in tablets
produced by a manufacturer is 5.00g and the
standard deviation of the masses is 0.036g. In
a bottle containing 100 tablets, find howmany
tablets are likely to havemasses of (a) between
4.88 and 4.92g, (b) between 4.92 and 5.04g
and (c) more than 5.04g.

61.2 Testing for a normal distribution

It should never be assumed that because data is con-
tinuous it automatically follows that it is normally
distributed. One way of checking that data is normally
distributed is by usingnormal probability paper, often
just called probability paper. This is special graph
paper which has linear markings on one axis and per-
centage probability values from 0.01 to 99.99 on the
other axis (see Figs. 61.6 and 61.7). The divisions on the
probability axis are such that a straight line graph results
for normally distributed data when percentage cumu-
lative frequency values are plotted against upper class
boundary values. If the points do not lie in a reasonably
straight line, then the data is not normally distributed.
Themethod used to test the normality of a distribution is
shown inProblems5 and6.Themeanvalue and standard
deviation of normally distributed data may be deter-
mined using normal probability paper. For normally dis-
tributed data, the area beneath the standardised normal
curve and a z-value of unity (i.e. one standard devia-
tion)may be obtained fromTable 61.1. For one standard
deviation, this area is 0.3413, i.e. 34.13%. An area of
±1 standard deviation is symmetrically placed on either
side of the z=0 value, i.e. is symmetrically placed
on either side of the 50% cumulative frequency value.
Thus an area corresponding to ±1 standard deviation
extends frompercentage cumulative frequencyvalues of
(50+34.13)% to (50−34.13)%, i.e. from 84.13% to
15.87%. For most purposes, these values are taken as
84% and 16%. Thus, when using normal probability
paper, the standard deviation of the distribution is
given by:
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(
variable value for 84% cumulative frequency−
variable value for 16% cumulative frequency

)

2

Problem 5. Use normal probability paper to
determine whether the data given below, which
refers to the masses of 50 copper ingots, is
approximately normally distributed. If the data is
normally distributed, determine the mean and
standard deviation of the data from the graph drawn.

Class mid-point value (kg) Frequency

29.5 2

30.5 4

31.5 6

32.5 8

33.5 9

34.5 8
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Class mid-point value (kg) Frequency

35.5 6

36.5 4

37.5 2

38.5 1

To test the normality of a distribution, the upper class
boundary/percentage cumulative frequency values are
plotted on normal probability paper. The upper class
boundary values are: 30, 31, 32,…, 38, 39. The corre-
sponding cumulative frequency values (for ‘less than’
the upper class boundary values) are: 2, (4+2)=6,
(6+4+2)=12, 20, 29, 37, 43, 47, 49 and 50. The cor-
responding percentage cumulative frequency values are
2
50

×100=4, 6
50

×100=12, 24, 40, 58, 74, 86, 94, 98
and 100%
The co-ordinates of upper class boundary/percentage
cumulative frequency values are plotted as shown

in Fig. 61.6. When plotting these values, it will always
be found that the co-ordinate for the 100% cumulative
frequency value cannot be plotted, since the maximum
value on the probability scale is 99.99. Since the points
plotted in Fig. 61.6 lie very nearly in a straight line,
the data is approximately normally distributed.
The mean value and standard deviation can be deter-
mined from Fig. 61.6. Since a normal curve is sym-
metrical, the mean value is the value of the variable
corresponding to a 50% cumulative frequency value,
shown as point P on the graph. This shows that the
mean value is 33.6kg. The standard deviation is deter-
mined using the 84% and 16% cumulative frequency
values, shown asQ andR in Fig. 61.6. The variable val-
ues forQ andR are 35.7 and 31.4 respectively; thus two
standard deviations correspond to 35.7−31.4, i.e. 4.3,
showing that the standard deviation of the distribution

is approximately
4.3
2
i.e. 2.15 standard deviations.

The mean value and standard deviation of the distribu-
tion can be calculated using

mean, x =
(∑

f x
)

(∑
f

)

and standard deviation,

σ =
√√
√
√

{(∑
[f (x − x̄)2]

)

(∑
f

)

}

wheref is the frequency of a class andx is the classmid-
point value. Using these formulae gives a mean value
of the distribution of 33.6 (as obtained graphically) and
a standard deviation of 2.12, showing that the graphical
method of determining the mean and standard deviation
give quite realistic results.

Problem 6. Use normal probability paper to
determine whether the data given below is normally
distributed. Use the graph and assume a normal
distribution whether this is so or not, to find
approximate values of the mean and standard
deviation of the distribution.

Class mid-point values Frequency

5 1

15 2

25 3

35 6
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Class mid-point values Frequency

45 9

55 6

65 2

75 2

85 1

95 1

To test the normality of a distribution, the upper class
boundary/percentage cumulative frequency values are
plotted on normal probability paper. The upper class
boundaryvalues are: 10, 20, 30,…,90 and100. The cor-
responding cumulative frequencyvalues are1, 1+2=3,
1+2+3=6, 12, 21, 27, 29, 31, 32 and 33. The per-
centage cumulative frequency values are

1
33

×100=3,
3
33

×100=9, 18, 36, 64, 82, 88, 94, 97 and 100
The co-ordinates of upper class boundary values/per-
centage cumulative frequency values are plotted as
shown inFig. 61.7.Although six of thepoints lie approx-
imately in a straight line, three points corresponding to
upper class boundary values of 50, 60 and 70 are not
close to the line and indicate that the distribution is
not normally distributed. However, if a normal dis-
tribution is assumed, the mean value corresponds to
the variable value at a cumulative frequency of 50%
and, from Fig. 61.7, point A is 48. The value of the
standard deviation of the distribution can be obtained
from the variable values corresponding to the 84% and
16% cumulative frequency values, shown asB andC in
Fig. 61.7 and give: 2σ =69−28, i.e. the standard devi-
ation σ =20.5. The calculated values of the mean and
standard deviation of the distribution are 45.9 and 19.4
respectively, showing that errors are introduced if the
graphical method of determining these values is used
for data which is not normally distributed.

Now try the following Practice Exercise

Practice Exercise 234 Testing for a normal
distribution (Answers on page 891)

1. A frequencydistribution of 150measurements
is as shown:

Class mid-point value Frequency

26.4 5

26.6 12

26.8 24

27.0 36

27.2 36

27.4 25

27.6 12

Use normal probability paper to show that this
data approximates to a normal distribution and
hence determine the approximate values of the
mean and standard deviation of the distribu-
tion. Use the formula for mean and standard
deviation to verify the results obtained.

2. A frequency distribution of the classmid-point
values of the breaking loads for 275 similar
fibres is as shown below:

Load (kN) 17 19 21 23 25 27 29 31

Frequency 9 23 55 78 64 28 14 4

Use normal probability paper to show that this
distribution is approximately normally dis-
tributed and determine the mean and standard
deviation of the distribution (a) from the graph
and (b) by calculation.

For fully worked solutions to each of the problems in Practice Exercises 233 and 234 in this chapter,
go to the website:

www.routledge.com/cw/bird

Download more at Learnclax.com

http://www.routledge.com/cw/bird


Chapter 62

Linear correlation
Why it is important to understand: Linear correlation
Correlation coefficients measure the strength of association between two variables. The most common
correlation coefficient, called the product-moment correlation coefficient, measures the strength of the
linear association between variables. A positive value indicates a positive correlation and the higher the
value, the stronger the correlation. Similarly, a negative value indicates a negative correlation and the
lower the value the stronger the correlation. This chapter explores linear correlation and the meaning of
values obtained calculating the coefficient of correlation.

At the end of this chapter, you should be able to:

• recognise linear correlation
• state the product-moment formula
• appreciate the significance of a coefficient of correlation
• determine the linear coefficient of correlation between two given variables

62.1 Introduction to linear correlation

Correlation is a measure of the amount of association
existing between two variables. For linear correlation,
if points are plotted on a graph and all the points lie on
a straight line, then perfect linear correlation is said
to exist. When a straight line having a positive gradi-
ent can reasonably be drawn through points on a graph
positive or direct linear correlation exists, as shown
in Fig. 62.1(a). Similarly, when a straight line having
a negative gradient can reasonably be drawn through
points on a graph, negative or inverse linear correla-
tion exists, as shown in Fig. 62.1(b). When there is no
apparent relationship between co-ordinate values plot-
ted on a graph then no correlation exists between the
points, as shown in Fig. 62.1(c). In statistics, when two
variables are being investigated, the location of the co-
ordinates on a rectangular co-ordinate system is called
a scatter diagram – as shown in Fig. 62.1.

62.2 The Pearson product-moment
formula for determining the
linear correlation coefficient

The Pearson product-momentcorrelation coefficient (or
Pearson correlation coefficient, for short) is a mea-
sure of the strength of a linear association between two
variables and is denoted by the symbol r . A Pearson
product-moment correlation attempts to draw a line of
best fit through the data of two variables, and the Pear-
son correlation coefficient, r , indicates how far away all
these data points are to this line of best fit (how well
the data points fit this new model/line of best fit). The
product-moment formula states:
coefficient of correlation,

r =
∑
xy

√{(∑
x2

)(∑
y2

)} (1)

Higher Engineering Mathematics. 978-1-138-67357-1, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.
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Figure 62.1

where the x-values are the values of the deviations of co-
ordinates X from X, their mean value and the y-values
are the values of the deviations of co-ordinatesY fromY ,
their mean value. That is, x =(X−X) and y =(Y −Y ).
The results of this determination give values of r lying
between +1 and −1, where+1 indicates perfect direct
correlation,−1 indicates perfect inverse correlation and
0 indicates that no correlation exists. Between these val-
ues, the smaller the value of r , the less is the amount of
correlation which exists. Generally, values of r in the
ranges 0.7 to 1 and−0.7 to−1 show that a fair amount
of correlation exists.

62.3 The significance of a coefficient
of correlation

When the value of the coefficient of correlation has been
obtained from the product-moment formula, some care
is needed before coming to conclusions based on this
result. Checks should bemade to ascertain the following
two points:

(a) that a ‘cause and effect’ relationship exists
between the variables; it is relatively easy, math-
ematically, to show that some correlation exists
between, say, the number of ice creams sold in a
given period of time and the number of chimneys
swept in the same period of time, although there
is no relationship between these variables;

(b) that a linear relationship exists between the
variables; the product-moment formula given in
Section 62.2 is based on linear correlation. Perfect
non-linear correlationmay exist (for example, the
co-ordinates exactly following the curve y =x 3),
but this gives a low value of coefficient of cor-
relation since the value of r is determined using
the product-moment formula, based on a linear
relationship.

62.4 Worked problems on linear
correlation

Problem 1. In an experiment to determine the
relationship between force on a wire and the
resulting extension, the following data is obtained:

Force (N) 10 20 30 40 50 60 70

Extension
(mm) 0.22 0.40 0.61 0.85 1.20 1.45 1.70

Determine the linear coefficient of correlation for
this data.

Let X be the variable force values and Y be the
dependent variable extension values. The coefficient of
correlation is given by:

r =
∑

xy
√{(∑

x2
)(∑

y2
)}

where x=(X−X) and y =(Y −Y ), X and Y being
the mean values of the X and Y values respectively.
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Using a tabular method to determine the quantities of
this formula gives:

X Y x=(X−X) y =(Y −Y )

10 0.22 −30 −0.699
20 0.40 −20 −0.519
30 0.61 −10 −0.309
40 0.85 0 −0.069
50 1.20 10 0.281

60 1.45 20 0.531

70 1.70 30 0.781

∑
X=280, X= 280

7
=40

∑
Y =6.43, Y = 6.43

7
=0.919

xy x2 y2

20.97 900 0.489

10.38 400 0.269

3.09 100 0.095

0 0 0.005

2.81 100 0.079

10.62 400 0.282

23.43 900 0.610
∑

xy=71.30 ∑
x2=2800 ∑

y2=1.829

Thus r = 71.3√
[2800×1.829] =0.996

This shows that a very good direct correlation exists
between the values of force and extension.

Problem 2. The relationship between expenditure
on welfare services and absenteeism for similar
periods of time is shown below for a small company.

Expenditure
(£′000) 3.5 5.0 7.0 10 12 15 18

Days lost 241 318 174 110 147 122 86

Determine the coefficient of linear correlation for
this data.

Let X be the expenditure in thousands of pounds and Y

be the days lost.

The coefficient of correlation,

r =
∑

xy
√{(∑

x2
)(∑

y2
)}

where x =(X−X) and y =(Y −Y ), X and Y being the
mean values of X and Y respectively. Using a tabular
approach:

X Y x =(X−X) y =(Y −Y )

3.5 241 −6.57 69.9

5.0 318 −5.07 146.9

7.0 174 −3.07 2.9

10 110 −0.07 −61.1
12 147 1.93 −24.1
15 122 4.93 −49.1
18 86 7.93 −85.1
∑

X=70.5, X= 70.5
7

=10.07

∑
Y =1198, Y = 1198

7
=171.1

xy x2 y2

−459.2 43.2 4886

−744.8 25.7 21 580

−8.9 9.4 8

4.3 0 3733

−46.5 3.7 581

−242.1 24.3 2411

−674.8 62.9 7242
∑

xy=−2172 ∑
x2=169.2 ∑

y2=40441

Thus

r = −2172√
[169.2×40441] = −0.830

This shows that there is fairly good inverse correlation
between the expenditure on welfare and days lost due
to absenteeism.
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Problem 3. The relationship between monthly
car sales and income from the sale of petrol for a
garage is as shown:

Cars sold 2 5 3 12 14 7 3 28 14 7 3 13

Income from
petrol sales 12 9 13 21 17 22 31 47 17 10 9 11
(£′000)

Determine the linear coefficient of correlation
between these quantities.

Let X represent the number of cars sold and Y the
income, in thousands of pounds, frompetrol sales.Using
the tabular approach:

X Y x =(X−X) y =(Y −Y )

2 12 −7.25 −6.25
5 9 −4.25 −9.25
3 13 −6.25 −5.25
12 21 2.75 2.75

14 17 4.75 −1.25
7 22 −2.25 3.75

3 31 −6.25 12.75

28 47 18.75 28.75

14 17 4.75 −1.25
7 10 −2.25 −8.25
3 9 −6.25 −9.25
13 11 3.75 −7.25
∑

X=111, X= 111
12

=9.25
∑

Y =219, Y = 219
12

=18.25

xy x2 y2

45.3 52.6 39.1

39.3 18.1 85.6

32.8 39.1 27.6

7.6 7.6 7.6

−5.9 22.6 1.6

−8.4 5.1 14.1

−79.7 39.1 162.6

539.1 351.6 826.6

−5.9 22.6 1.6

18.6 5.1 68.1

57.8 39.1 85.6

−27.2 14.1 52.6
∑

xy=613.4 ∑
x2=616.7 ∑

y2=1372.7

The coefficient of correlation,

r =
∑

xy
√{(∑

x2
)(∑

y2
)}

= 613.4√{(616.7)(1372.7)} = 0.667

Thus, there is no appreciable correlation between
petrol and car sales.

Now try the following Practice Exercise

Practice Exercise 235 Linear correlation
(Answers on page 891)

In Problems 1 to 3, determine the coefficient of
correlation for the data given, correct to 3 decimal
places.

1. X 14 18 23 30 50
Y 900 1200 1600 2100 3800

2. X 2.7 4.3 1.2 1.4 4.9
Y 11.9 7.10 33.8 25.0 7.50

3. X 24 41 9 18 73
Y 39 46 90 30 98

4. In an experiment to determine the relationship
between the current flowing in an electrical
circuit and the applied voltage, the results
obtained are:
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Current
(mA) 5 11 15 19 24 28 33
Applied
voltage (V) 2 4 6 8 10 12 14

Determine, using the product-moment for-
mula, the coefficient of correlation for these
results.

5. A gas is being compressed in a closed cylinder
and the values of pressures and corresponding
volumes at constant temperature are as shown:

Pressure (kPa) Volume (m3)

160 0.034

180 0.036

200 0.030

220 0.027

240 0.024

260 0.025

280 0.020

300 0.019

Find the coefficient of correlation for these
values.

6. The relationship between the number of miles
travelled by a group of engineering salesmen

in ten equal time periods and the correspond-
ing value of orders taken is given below.
Calculate the coefficient of correlation using
the product-moment formula for these values.

Miles Orders taken
travelled (£′000)
1370 23
1050 17
980 19
1770 22
1340 27
1560 23
2110 30
1540 23
1480 25
1670 19

7. The data shown below refers to the number
of times machine tools had to be taken out of
service, in equal time periods, due to faults
occurring and the number of hours worked by
maintenance teams. Calculate the coefficient
of correlation for this data.

Machines
out of
service 4 13 2 9 16 8 7
Maintenance
hours 400 515 360 440 570 380 415

For fully worked solutions to each of the problems in Practice Exercise 235 in this chapter,
go to the website:

www.routledge.com/cw/bird
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Chapter 63

Linear regression

Why it is important to understand: Linear regression
The general process of fitting data to a linear combination of basic functions is termed linear regression.
Linear least squares regression is by far the most widely used modelling method; it is what most people
mean when they say they have used ‘regression’, ‘linear regression’ or ‘least squares’ to fit a model to
their data. Not only is linear least squares regression the most widely used modelling method, but it has
been adapted to a broad range of situations that are outside its direct scope. It plays a strong underlying
role in many other modelling methods. This chapter explains how regression lines are determined.

At the end of this chapter, you should be able to:

• explain linear regression
• understand least-squares regression lines
• determine, for two variablesX and Y , the equations of the regression lines of X on Y and Y on X

63.1 Introduction to linear regression

Regression analysis, usually termed regression, is used
to draw the line of ‘best fit’ through co-ordinates on
a graph. The techniques used enable a mathemati-
cal equation of the straight line form y =mx+c to
be deduced for a given set of co-ordinate values, the
line being such that the sum of the deviations of
the co-ordinate values from the line is a minimum,
i.e. it is the line of ‘best fit’. When a regression analy-
sis is made, it is possible to obtain two lines of best fit,
depending on which variable is selected as the depen-
dent variable and which variable is the independent
variable. For example, in a resistive electrical circuit, the
current flowing is directly proportional to the voltage
applied to the circuit. There are two ways of obtain-
ing experimental values relating the current and voltage.
Either, certain voltages are applied to the circuit and the
current values aremeasured, inwhich case the voltage is
the independent variable and the current is thedependent

variable; or, the voltage can be adjusted until a desired
value of current is flowing and the value of voltage is
measured, in which case the current is the independent
value and the voltage is the dependent value.

63.2 The least-squares regression
lines

For a given set of co-ordinate values, (X1,Y1),
(X2,Y2), . . . , (Xn,Yn) let the X values be the indepen-
dent variables and the Y -values be the dependent values.
Also letD1, . . . ,Dn be the vertical distances between the
line shown as PQ in Fig. 63.1 and the points represent-
ing the co-ordinate values. The least-squares regression
line, i.e. the line of best fit, is the line which makes the
value of D2

1+D2
2+ ·· · +D2

n a minimum value.
The equation of the least-squares regression line is
usually written as Y =a0+a1X, where a0 is the
y-axis intercept value and a1 is the gradient of the line
(analogous to c andm in the equation y=mx +c). The

Higher Engineering Mathematics. 978-1-138-67357-1, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.
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Figure 63.1

values of a0 and a1 to make the sum of the ‘devia-
tions squared’ a minimum can be obtained from the two
equations:

∑
Y = a0N + a1

∑
X (1)

∑
(XY ) = a0

∑
X + a1

∑
X2 (2)

where X and Y are the co-ordinate values, N is the
number of co-ordinates and a0 and a1 are called the
regression coefficients ofY onX. Equations (1) and (2)
are called the normal equations of the regression lines
of Y onX. The regression line of Y onX is used to esti-
mate values of Y for given values of X. If the Y -values
(vertical axis) are selected as the independent variables,
the horizontal distances between the line shown as PQ
in Fig. 63.1 and the co-ordinate values (H3, H4, etc.)
are taken as the deviations. The equation of the regres-
sion line is of the form: X=b0+b1Y and the normal
equations become:

∑
X = b0N + b1

∑
Y (3)

∑
(XY) = b0

∑
Y + b1

∑
Y 2 (4)

where X and Y are the co-ordinate values, b0 and b1
are the regression coefficients of X on Y and N is the
number of co-ordinates. These normal equations are of
the regression line ofX on Y , which is slightly different
to the regression line of Y on X. The regression line of
X on Y is used to estimated values ofX for given values
of Y . The regression line of Y onX is used to determine
any value of Y corresponding to a given value of X. If
the value of Y lies within the range of Y -values of the

extreme co-ordinates, the process of finding the corre-
sponding value of X is called linear interpolation. If
it lies outside of the range of Y -values of the extreme
co-ordinates then the process is called linear extrapo-
lation and the assumption must be made that the line of
best fit extends outside of the range of the co-ordinate
values given.
By using the regression line of X on Y , values of X

corresponding to given values of Y may be found by
either interpolation or extrapolation.

63.3 Worked problems on linear
regression

Problem 1. In an experiment to determine the
relationship between frequency and the inductive
reactance of an electrical circuit, the following
results were obtained:

Frequency Inductive reactance
(Hz) (ohms)

50 30

100 65

150 90

200 130

250 150

300 190

350 200

Determine the equation of the regression line of
inductive reactance on frequency, assuming a linear
relationship.

Since the regression line of inductive reactance on fre-
quency is required, the frequency is the independent
variable, X, and the inductive reactance is the depen-
dent variable, Y . The equation of the regression line of
Y on X is:

Y = a0+ a1X

and the regression coefficients a0 and a1 are obtained
by using the normal equations

∑
Y =a0N + a1

∑
X

and
∑
XY=a0

∑
X + a1

∑
X2

(from equations (1) and (2))
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A tabular approach is used to determine the summed
quantities.

Frequency,X Inductive X2

reactance, Y

50 30 2500

100 65 10 000

150 90 22 500

200 130 40 000

250 150 62 500

300 190 90 000

350 200 122 500
∑

X=1400 ∑
Y =855 ∑

X2=350 000

XY Y 2

1500 900

6500 4225

13 500 8100

26 000 16 900

37 500 22 500

57 000 36 100

70 000 40 000
∑
XY=212 000 ∑

Y 2=128 725

The number of co-ordinate values given, N is 7.
Substituting in the normal equations gives:

855= 7a0+ 1400a1 (1)

212 000= 1400a0+ 350 000a1 (2)

1400×(1) gives:

1 197 000= 9800a0+ 1 960 000a1 (3)

7×(2) gives:

1 484 000= 9800a0+ 2 450 000a1 (4)

(4)−(3) gives:

287 000= 0+ 490 000a1

from which, a1= 287 000490 000
=0.586

Substituting a1=0.586 in equation (1) gives:

855 =7a0+ 1400(0.586)

i.e. a0= 855−820.4
7

=4.94
Thus the equation of the regression line of inductive
reactance on frequency is:

Y=4.94+0.586X

Problem 2. For the data given in Problem 1,
determine the equation of the regression line of
frequency on inductive reactance, assuming a linear
relationship.

In this case, the inductive reactance is the independent
variable X and the frequency is the dependent vari-
able Y . From equations (3) and (4), the equation of the
regression line of X on Y is:

X = b0+ b1Y

and the normal equations are
∑

X = b0N + b1
∑

Y

and
∑
XY= b0

∑
Y + b1

∑
Y 2

From the table shown in Problem 1, the simultaneous
equations are:

1400= 7b0+ 855b1
212 000= 855b0+ 128 725b1

Solving these equations in a similar way to that in
Problem 1 gives:

b0 = −6.15
and b1 = 1.69, correct to 3 significant figures.
Thus the equation of the regression line of frequency on
inductive reactance is:

X=−6.15+1.69Y

Problem 3. Use the regression equations
calculated in Problems 1 and 2 to find (a) the value
of inductive reactance when the frequency is 175Hz
and (b) the value of frequency when the inductive
reactance is 250ohms, assuming the line of best fit
extends outside of the given co-ordinate values.
Draw a graph showing the two regression lines.

Download more at Learnclax.com
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(a) FromProblem1, the regression equation of induc-
tive reactance on frequency is
Y=4.94+0.586X. When the frequency, X, is
175Hz, Y=4.94+0.586(175)=107.5, correct to
4 significant figures, i.e. the inductive reactance is
107.5 ohms when the frequency is 175Hz.

(b) From Problem 2, the regression equation of fre-
quency on inductive reactance is
X=−6.15+1.69Y . When the inductive reac-
tance, Y , is 250ohms,
X=−6.15+1.69(250)=416.4Hz, correct to 4
significant figures, i.e. the frequency is 416.4Hz
when the inductive reactance is 250ohms.

The graph depicting the two regression lines is shown
in Fig. 63.2. To obtain the regression line of induc-
tive reactance on frequency the regression line equation
Y=4.94+0.586X is used, andX (frequency) values of
100 and 300 have been selected in order to find the cor-
respondingY values. These values gave the co-ordinates
as (100, 63.5) and (300, 180.7), shown as points A

and B in Fig. 63.2. Two co-ordinates for the regression
line of frequency on inductive reactance are calculated
using the equation X=−6.15+1.69Y , the values of
inductive reactance of 50 and 150 being used to obtain
the co-ordinate values. These values gave co-ordinates
(78.4, 50) and (247.4, 150), shown as points C and D

in Fig. 63.2.
It can be seen from Fig. 63.2 that to the scale drawn, the
two regression lines coincide. Although it is not nec-
essary to do so, the co-ordinate values are also shown

x
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Figure 63.2

to indicate that the regression lines do appear to be the
lines of best fit. A graph showing co-ordinate values is
called a scatter diagram in statistics.

Problem 4. The experimental values relating
centripetal force and radius for a mass travelling at
constant velocity in a circle are as shown:

Force (N) 5 10 15 20 25 30 35 40

Radius (cm) 55 30 16 12 11 9 7 5

Determine the equations of (a) the regression line of
force on radius and (b) the regression line of radius
on force. Hence, calculate the force at a radius of
40cm and the radius corresponding to a force of
32newtons.

Let the radius be the independent variable X, and the
force be the dependent variable Y . (This decision is
usually based on a ‘cause’ corresponding to X and an
‘effect’ corresponding to Y .)

(a) The equation of the regression line of force on
radius is of the form Y=a0+a1X and the con-
stants a0 and a1 are determined from the normal
equations:

∑
Y = a0N + a1

∑
X

and
∑
XY = a0

∑
X + a1

∑
X2

(from equations (1) and (2))

Using a tabular approach to determine the values
of the summations gives:

Radius, X Force, Y X2

55 5 3025

30 10 900

16 15 256

12 20 144

11 25 121

9 30 81

7 35 49

5 40 25
∑

X=145 ∑
Y =180 ∑

X2=4601
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XY Y 2

275 25

300 100

240 225

240 400

275 625

270 900

245 1225

200 1600
∑
XY=2045 ∑

Y 2=5100

Thus 180= 8a0+ 145a1
and 2045= 145a0+ 4601a1
Solving these simultaneous equations gives
a0=33.7 and a1=−0.617, correct to 3 signifi-
cant figures. Thus the equation of the regression
line of force on radius is:

Y=33.7−0.617X
(b) The equation of the regression line of radius on

force is of the form X=b0+b1Y and the con-
stants b0 and b1 are determined from the normal
equations:

∑
X = b0N + b1

∑
Y

and
∑

XY = b0
∑

Y + b1
∑

Y 2

(from equations (3) and (4))

The values of the summations have been obtained
in part (a) giving:

145= 8b0+ 180b1
and 2045= 180b0+ 5100b1
Solving these simultaneous equations gives
b0=44.2 and b1=−1.16, correct to 3 significant
figures. Thus the equation of the regression line of
radius on force is:

X=44.2−1.16Y
The force, Y , at a radius of 40cm, is obtained
from the regression line of force on radius, i.e.
y =33.7−0.617(40)=9.02,
i.e. the force at a radius of 40 cm is 9.02N

The radius, X, when the force is 32newtons is
obtained from the regression line of radius on
force, i.e. X=44.2−1.16(32)=7.08,
i.e. the radiuswhen the force is 32N is 7.08cm.

Now try the following Practice Exercise

Practice Exercise 236 Linear regression
(Answers on page 891)

In Problems 1 and 2, determine the equation of the
regression line of Y on X, correct to 3 significant
figures.

1. X 14 18 23 30 50

Y 900 1200 1600 2100 3800

2. X 6 3 9 15 2 14 21 13

Y 1.3 0.7 2.0 3.7 0.5 2.9 4.5 2.7

In Problems 3 and 4, determine the equations of
the regression lines of X on Y for the data stated,
correct to 3 significant figures.

3. The data given in Problem 1

4. The data given in Problem 2

5. The relationship between the voltage applied
to an electrical circuit and the current flowing
is as shown:

Current (mA) Applied voltage (V)

2 5

4 11

6 15

8 19

10 24

12 28

14 33

Assuming a linear relationship, determine
the equation of the regression line of applied
voltage, Y , on current,X, correct to 4 signifi-
cant figures.
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6. For the data given in Problem 5, determine the
equation of the regression line of current on
applied voltage, correct to 3 significantfigures.

7. Draw the scatter diagram for the data given
in Problem 5 and show the regression lines
of applied voltage on current and current on
applied voltage. Hence determine the values
of (a) the applied voltage needed to give a
current of 3mA and (b) the current flowing
when the applied voltage is 40volts, assuming
the regression lines are still true outside of the
range of values given.

8. In an experiment to determine the relationship
between force and momentum, a force X, is
applied to a mass, by placing the mass on an
inclined plane, and the time, Y , for the velocity
to change from um/s to vm/s ismeasured. The
results obtained are as follows:

Force (N) Time (s)

11.4 0.56

18.7 0.35

11.7 0.55

12.3 0.52

14.7 0.43

18.8 0.34

19.6 0.31

Determine the equation of the regression line
of timeon force, assuming a linear relationship
between the quantities, correct to 3 significant
figures.

9. Find the equation for the regression line of
force on time for the data given in Problem 8,
correct to 3 decimal places.

10. Draw a scatter diagram for the data given in
Problem 8 and show the regression lines of
time on force and force on time. Hence find
(a) the time corresponding to a force of 16N,
and (b) the force at a time of 0.25 s, assuming
the relationship is linear outside of the range
of values given.

For fully worked solutions to each of the problems in Practice Exercise 236 in this chapter,
go to the website:

www.routledge.com/cw/bird
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Revision Test 18 Binomial, Poisson and normal distributions, correlation and
regression

This Revision Test covers the material contained in chapters 60 to 63. The marks for each question are shown in
brackets at the end of each question.

1. A machine produces 15% defective components.
In a sample of five, drawn at random, calculate,
using the binomial distribution, the probability
that:

(a) there will be four defective items,

(b) there will be not more than three defective
items,

(c) all the items will be non-defective.

Draw a histogram showing the probabilities of 0, 1,
2, . . . , 5 defective items. (20)

2. 2% of the light bulbs produced by a company are
defective. Determine, using the Poisson distribu-
tion, the probability that in a sample of 80 bulbs:
(a) three bulbs will be defective, (b) not more than
three bulbs will be defective, (c) at least two bulbs
will be defective. (13)

3. Some engineering components have a mean length
of 20mm and a standard deviation of 0.25mm.
Assume that the data on the lengths of the com-
ponents is normally distributed.

In a batch of 500 components, determine the
number of components likely to:

(a) have a length of less than 19.95mm,

(b) be between 19.95mm and 20.15mm,

(c) be longer than 20.54mm. (15)

4. In a factory, cans are packed with an average of
1.0kg of a compound and the masses are normally
distributed about the average value. The standard
deviation of a sample of the contents of the cans
is 12g. Determine the percentage of cans con-
taining (a) less than 985g, (b) more than 1030g,
(c) between 985g and 1030g. (10)

5. The data given below gives the experimental val-
ues obtained for the torque output, X, from an
electric motor and the current, Y , taken from the
supply.

Torque X Current Y

0 3

1 5

2 6

3 6

4 9

5 11

6 12

7 12

8 14

9 13

Determine the linear coefficient of correlation for
this data. (18)

6. Some results obtained from a tensile test on a steel
specimen are shown below:

Tensile force (kN) Extension (mm)

4.8 3.5

9.3 8.2

12.8 10.1

17.7 15.6

21.6 18.4

26.0 20.8

Assuming a linear relationship:
(a) determine the equation of the regression line

of extension on force,

(b) determine the equation of the regression line
of force on extension,

(c) estimate (i) the value of extension when the
force is 16kN, and (ii) the value of force
when the extension is 17mm. (24)

For lecturers/instructors/teachers, fully worked solutions to each of the problems in Revision Test 18,
together with a full marking scheme, are available at the website:

www.routledge.com/cw/bird
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Chapter 64

Sampling and estimation
theories

Why it is important to understand: Sampling and estimation theories
Estimation theory is a branch of statistics and signal processing that deals with estimating the values
of parameters based on measured/empirical data that has a random component. Estimation theory can
be found at the heart of many electronic signal processing systems designed to extract information;
these systems include radar, sonar, speech, image, communications, control and seismology. This chapter
introduces some of the principles involved with sampling and estimation theories.

At the end of this chapter, you should be able to:

• understand sampling distributions
• determine the standard error of the means
• understand point and interval estimates and confidence intervals
• calculate confidence limits
• estimate the mean and standard deviation of a population from sample data
• estimate the mean of a population based on a small sample data using a Student’s t distribution

64.1 Introduction

The concepts of elementary sampling theory and esti-
mation theories introduced in this chapter will provide
the basis for a more detailed study of inspection, con-
trol andquality control techniques used in industry. Such
theories can be quite complicated; in this chapter a full
treatment of the theories and the derivation of formulae
have been omitted for clarity – basic concepts only have
been developed.

64.2 Sampling distributions

In statistics, it is not always possible to take into account
all the members of a set and in these circumstances, a

sample, or many samples, are drawn from a population.
Usually when the word sample is used, it means that a
random sample is taken. If each member of a popula-
tion has the samechance of being selected, then a sample
taken from that population is called random. A sample
which is not random is said to be biased and this usually
occurs when some influence affects the selection.
When it is necessary to make predictions about a popu-
lation based on random sampling, often many samples
of, say,N members are taken, before the predictions are
made. If the mean value and standard deviation of each
of the samples is calculated, it is found that the results
vary from sample to sample, even though the samples
are all taken from the same population. In the theories
introduced in the following sections, it is important to

Higher Engineering Mathematics. 978-1-138-67357-1, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.
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Sampling and estimation theories 679

knowwhether the differences in the values obtained are
due to chance or whether the differences obtained are
related in some way. If M samples of N members are
drawn at random from a population, the mean values for
theM samples together form a set of data. Similarly, the
standard deviations of theM samples collectively form
a set of data. Sets of data based on many samples drawn
from a population are called sampling distributions.
They are often used to describe the chance fluctuations
ofmeanvalues and standard deviations basedon random
sampling.

64.3 The sampling distribution of the
means

Suppose that it is required to obtain a sample of two
items from a set containing five items. If the set is the
five lettersA,B,C,D andE, then the different samples
which are possible are:

AB, AC, AD, AE, BC, BD, BE,

CD, CE and DE,

that is, ten different samples. The number of possible

different samples in this case is given by
5× 4
2× 1 i.e.

10. Similarly, the number of different ways in which
a sample of three items can be drawn from a set having

ten members can be shown to be
10× 9× 8
3× 2× 1 i.e. 120.

It follows that when a small sample is drawn from a
large population, there are very many different combi-
nations of members possible. With so many different
samples possible, quite a large variation can occur in
themean values of various samples taken from the same
population.
Usually, the greater the number ofmembers in a sample,
the closer will be the mean value of the sample to that
of the population. Consider the set of numbers 3, 4, 5,
6, and 7. For a sample of twomembers, the lowest value

of the mean is
3+ 4
2
, i.e. 3.5; the highest is

6+ 7
2
, i.e.

6.5, giving a range of mean values of 6.5− 3.5= 3.
For a sample of three members, the range is

3+ 4+ 5
3

to
5+ 6+ 7

3
that is, 2. As the number in the sample

increases, the range decreases until, in the limit, if the
sample contains all the members of the set, the range
of mean values is zero. When many samples are drawn
from a population and a sample distribution of the mean
values of the sample is formed, the range of the mean
values is small provided the number in the sample is

large. Because the range is small it follows that the stan-
dard deviation of all the mean values will also be small,
since it depends on the distance of the mean values
from the distribution mean. The relationship between
the standard deviation of the mean values of a sam-
pling distribution and the number in each sample can be
expressed as follows:
Theorem 1 ‘If all possible samples of size N are drawn
from a finite population, Np , without replacement, and the
standard deviation of the mean values of the sam- pling
distribution of means is determined then:

σx = σ√
N

√(
Np − N

Np − 1
)

where σx is the standard deviation of the sampling dis-
tribution of means and σ is the standard deviation of the
population.’

The standard deviation of a sampling distribution of
mean values is called the standard error of the means,
thus standard error of the means,

σx = σ√
N

√(
Np−N
Np− 1

)

(1)

Equation (1) is used for a finite population of size Np

and/or for sampling without replacement. The word
error in the ‘standard error of the means’ does not mean
that a mistake has been made but rather that there is a
degree of uncertainty in predicting the mean value of
a population based on the mean values of the samples.
The formula for the standard error of the means is true
for all values of the number in the sample,N . WhenNp

is very large compared with N or when the population
is infinite (this can be considered to be the case when
sampling is donewith replacement, the correction factor√(

Np−N

Np−1
)
approaches unit and equation (1) becomes

σx = σ√
N

(2)

Equation (2) is used for an infinite population and/or for
sampling with replacement.

Problem 1. Verify Theorem 1 above for the set of
numbers {3, 4, 5, 6, 7} when the sample size is 2

The only possible different samples of size 2 which can
be drawn from this set without replacement are:

(3,4), (3,5), (3,6), (3,7), (4,5),

(4,6), (4,7), (5,6), (5,7) and (6,7)
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The mean values of these samples form the following
sampling distribution of means:

3.5, 4, 4.5, 5, 4.5, 5, 5.5, 5.5, 6 and 6.5

The mean of the sampling distributions of means,

μx =

(
3.5+ 4+ 4.5+ 5+ 4.5+ 5

+5.5+ 5.5+ 6+ 6.5
)

10
= 50
10

= 5

The standard deviation of the sampling distribution of
means,

σx =

√√
√
√
√
√
√

⎡

⎢
⎢
⎣

(3.5− 5)2+ (4− 5)2+ (4.5− 5)2
+(5− 5)2+ ·· · + (6.5− 5)2

10

⎤

⎥
⎥
⎦

=
√
7.5
10

= ±0.866

Thus, the standard error of the means is 0.866. The
standard deviation of the population,

σ =

√√
√
√
√
√
√

⎡

⎢
⎢
⎣

(3− 5)2+ (4− 5)2+ (5− 5)2
+(6− 5)2+ (7− 5)

5

⎤

⎥
⎥
⎦

=
√
2= ±1.414

But from Theorem 1:

σx = σ√
N

√(
Np − N

Np − 1
)

and substituting for Np, N and σ in equation (1) gives:

σx = ±1.414√
2

√(
5− 2
5− 1

)

=
√
3
4

= ±0.866,

as obtained by considering all samples from the popu-
lation. Thus Theorem 1 is verified.

In Problem 1 above, it can be seen that the mean of the
population,

(
3+ 4+ 5+ 6+ 7

5

)

is 5 and also that themean of the samplingdistribution of
means,μx is 5. This result is generalised in Theorem 2.

Theorem 2 ‘If all possible samples of size N are drawn
from a population of size Np and the mean value of the
sampling distribution of means μx is determined then

μx = μ (3)

where μ is the mean value of the population’.

In practice, all possible samples of sizeN are not drawn
from the population. However, if the sample size is
large (usually taken as 30 or more), then the relation-
ship between the mean of the sampling distribution of
means and the mean of the population is very near to
that shown in equation (3). Similarly, the relationship
between the standard error of themeans and the standard
deviation of the population is very near to that shown
in equation (2). Another important property of a sam-
pling distribution is that when the sample size, N , is
large, the sampling distribution of means approxi-
mates to a normal distribution, of mean valueμx and
standard deviation σx . This is true for all normally dis-
tributed populations and also for populations which are
not normally distributed provided the population size is
at least twice as large as the sample size. This property
of normality of a sampling distribution is based on a
special case of the ‘ central limit theorem’, an important
theorem relating to sampling theory. Because the sam-
pling distribution of means and standard deviations is
normally distributed, the table of the partial areas under
the standardised normal curve (shown in Table 61.1 on
page 661) can be used to determine the probabilities
of a particular sample lying between, say, ±1 stan-
dard deviation, and so on. This point is expanded in
Problem 3.

Problem 2. The heights of 3000 people are
normally distributed with a mean of 175 cm and a
standard deviation of 8 cm. If random samples are
taken of 40 people, predict the standard deviation
and the mean of the sampling distribution of means
if sampling is done (a) with replacement, and
(b) without replacement.

For the population: number of members, Np = 3000
standard deviation, σ = 8 cm; mean, μ = 175 cm.
For the samples: number in each sample, N = 40
(a) When sampling is done with replacement, the

total number of possible samples (two or more
can be the same) is infinite. Hence, from equa-
tion (2) the standard error of the mean (i.e. the
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standard deviation of the sampling distribution
of means)

σ x = σ√
N

= 8√
40

= 1.265 cm

From equation (3), the mean of the sampling
distribution

μx = μ = 175 cm
(b) When sampling is done without replacement,

the total number of possible samples is finite and
hence equation (1) applies. Thus the standard
error of the means

σx = σ√
N

√(
Np − N

Np − 1
)

= 8√
40

√(
3000− 40
3000− 1

)

= (1.265)(0.9935) = 1.257 cm
As stated, following equation (3), provided the
sample size is large, the mean of the sampling dis-
tribution of means is the same for both finite and
infinite populations. Hence, from equation (3),

μx = 175 cm

Problem 3. 1500 ingots of a metal have a mean
mass of 6.5 kg and a standard deviation of 0.5 kg.
Find the probability that a sample of 60 ingots
chosen at random from the group, without
replacement, will have a combined mass of (a)
between 378 and 396 kg, and (b) more than 399 kg.

For the population: numbers of members, Np = 1500;
standard deviation, σ = 0.5 kg; mean μ = 6.5 kg
For the sample: number in sample, N = 60
If many samples of 60 ingots had been drawn from the
group, then the mean of the sampling distribution of
means,μx would be equal to themean of the population.
Also, the standard error of means is given by

σx = σ√
N

√(
Np − N

Np − 1
)

In addition, the sample distribution would have been
approximately normal. Assume that the sample given
in the problem is one of many samples. For many
(theoretical) samples:
the mean of the sampling distribution of means,
μx = μ = 6.5 kg.

Also, the standard error of the means,

σx = σ√
N

√(
Np − N

Np − 1
)

= 0.5√
60

√(
1500− 60
1500− 1

)

= 0.0633kg
Thus, the sample under consideration is part of a normal
distribution of mean value 6.5 kg and a standard error
of the means of 0.0633 kg.

(a) If the combined mass of 60 ingots is between 378
and 396 kg, then the mean mass of each of the 60

ingots lies between
378
60

and
396
60

kg, i.e. between
6.3 kg and 6.6 kg.

Since the masses are normally distributed, it is
possible to use the techniques of the normal dis-
tribution to determine the probability of the mean
mass lying between 6.3 and 6.6 kg. The normal
standard variate value, z, is given by

z = x − x

σ

hence for the sampling distribution of means, this
becomes,

z = x − μx

σx

Thus, 6.3kg corresponds to a z-value of
6.3− 6.5
0.0633

= −3.16 standard deviations.
Similarly, 6.6kg corresponds to a z-value of
6.6− 6.5
0.0633

= 1.58 standard deviations.
Using Table 61.1 (page 661), the areas corre-
sponding to these values of standard deviations are
0.4992 and 0.4430 respectively.Hence the proba-
bility of themeanmass lying between 6.3 kg and
6.6kg is 0.4992+ 0.4430= 0.9422. (This means
that if 10 000 samples are drawn, 9422 of these
samples will have a combined mass of between
378 and 396kg.)

(b) If the combined mass of 60 ingots is 399 kg, the

mean mass of each ingot is
399
60
, that is, 6.65 kg.

The z-value for 6.65 kg is
6.65− 6.5
0.0633

, i.e. 2.37

standard deviations. From Table 61.1 (page 661),
the area corresponding to this z-value is 0.4911.
But this is the area between the ordinate z = 0 and
ordinate z = 2.37. The ‘more than’ value required
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is the total area to the right of the z = 0 ordinate,
less the value between z = 0 and z = 2.37, i.e.
0.5000− 0.4911. Thus, since areas are propor-
tional to probabilities for the standardised normal
curve, the probability of the mean mass being
more than6.65kg is 0.5000− 0.4911, i.e.0.0089.
(This means that only 89 samples in 10 000, for
example, will have a combined mass exceeding
399 kg.)

Now try the following Practice Exercise

Practice Exercise 237 Sampling
distribution of means (Answers on page 891)

1. The lengths of 1500 bolts are normally dis-
tributedwith amean of 22.4 cm and a standard
deviation of 0.0438 cm. If 30 samples are
drawn at random from this population, each
sample being 36 bolts, determine the mean of
the sampling distribution and standard error
of the means when sampling is done with
replacement.

2. Determine the standard error of the means
in Problem 1 if sampling is done without
replacement, correct to four decimal places.

3. A power punch produces 1800 washers per
hour. The mean inside diameter of the wash-
ers is 1.70 cm and the standard deviation is
0.013 cm. Random samples of 20 washers are
drawneveryfiveminutes.Determine themean
of the sampling distribution of means and the
standard error of the means for one hour’s
output from the punch (a) with replacement
and (b) without replacement, correct to three
significant figures.
A large batch of electric light bulbs have a
mean time to failure of 800 hours and the stan-
dard deviation of the batch is 60hours.Use this
data and also Table 61.1 on page 661 to solve
Problems 4 to 6.

4. If a random sample of 64 light bulbs is drawn
from the batch, determine the probability that
the mean time to failure will be less than
785 hours, correct to three decimal places.

5. Determine the probability that the mean time
to failure of a random sample of 16 light bulbs
will be between 790 hours and 810 hours,
correct to three decimal places.

6. For a random sample of 64 light bulbs, deter-
mine the probability that the mean time to
failure will exceed 820 hours, correct to two
significant figures.

7. The contents of a consignment of 1200 tins
of a product have a mean mass of 0.504
kg and a standard deviation of 92g. Deter-
mine the probability that a random sample
of 40 tins drawn from the consignment will
have a combined mass of (a) less than 20.13
kg, (b) between 20.13 kg and 20.17 kg, and
(c) more than 20.17 kg, correct to three signif-
icant figures.

64.4 The estimation of population
parameters based on a large
sample size

When a population is large, it is not practical to deter-
mine its mean and standard deviation by using the basic
formulae for these parameters. In fact, when a popula-
tion is infinite, it is impossible to determine these values.
For large and infinite populations the values of themean
and standard deviation may be estimated by using the
data obtained from samples drawn from the population.

Point and interval estimates

An estimate of a population parameter, such as mean or
standard deviation, based on a single number is called
a point estimate. An estimate of a population parame-
ter given by two numbers between which the parameter
may be considered to lie is called an interval estimate.
Thus if an estimate is made of the length of an object
and the result is quoted as 150 cm, this is a point esti-
mate. If the result is quoted as 150± 10 cm, this is
an interval estimate and indicates that the length lies
between 140 and 160 cm. Generally, a point estimate
does not indicate how close the value is to the true value
of the quantity and should be accompanied by additional
information on which its merits may be judged. A state-
ment of the error or the precision of an estimate is often
called its reliability. In statistics, when estimates are
made of population parameters based on samples, usu-
ally interval estimates are used. The word estimate does
not suggest that we adopt the approach ‘let’s guess that
the mean value is about . . .’ but rather that a value is
carefully selected and the degree of confidence which
can be placed in the estimate is given in addition.
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Confidence intervals

It is stated in Section 64.3 that when samples are taken
from a population, the mean values of these samples are
approximately normally distributed, that is, the mean
values forming the sampling distribution of means is
approximately normally distributed. It is also true that
if the standard deviations of each of the samples is
found, then the standard deviations of all the sam-
ples are approximately normally distributed, that is, the
standard deviations of the sampling distribution of stan-
dard deviations are approximately normally distributed.
Parameters such as themean or the standard deviation of
a sampling distribution are called sampling statistics,
S. Let μs be the mean value of a sampling statistic of
the sampling distribution, that is, the mean value of the
means of the samples or the mean value of the standard
deviations of the samples. Also let σs be the standard
deviation of a sampling statistic of the sampling distri-
bution, that is, the standard deviation of themeans of the
samples or the standard deviation of the standard devia-
tions of the samples. Because the sampling distribution
of themeans and of the standard deviations are normally
distributed, it is possible to predict the probability of the
sampling statistic lying in the intervals:

mean ±1 standard deviation,
mean ±2 standard deviations,

or mean±3 standard deviations,
by using tables of the partial areas under the standardised
normal curve given in Table 61.1 on page 661. from this
table, the area corresponding to a z-value of+1 standard
deviation is 0.3413, thus the area corresponding to ±1
standard deviation is 2× 0.3413, that is, 0.6826. Thus
the percentage probability of a sampling statistic lying
between the mean ±1 standard deviation is 68.26%.
Similarly, the probability of a sampling statistic lying
between the mean ±2 standard deviations is 95.44%
and of lying between the mean ±3 standard deviations
is 99.74%
The values 68.26%, 95.44% and 99.74% are called
the confidence levels for estimating a sampling statis-
tic. A confidence level of 68.26% is associated with
two distinct values, these being S – (1 standard devi-
ation), i.e. S − σs and S+ (1 standard deviation), i.e.
S + σs . These two values are called the confidence
limits of the estimate and the distance between the
confidence limits is called the confidence interval. A
confidence interval indicates the expectation or confi-
dence of finding an estimate of the population statistic
in that interval, based on a sampling statistic. The list in

Table 64.1 is based on values given in Table 61.1, and
gives some of the confidence levels used in practice and
their associated z-values (some of the values given are
based on interpolation). When the table is used in this
context, z-values are usually indicated by ‘ zc’ and are
called the confidence coefficients.

Table 64.1
Confidence level, % Confidence coefficient, zc

99 2.58

98 2.33

96 2.05

95 1.96

90 1.645

80 1.28

50 0.6745

Any other values of confidence levels and their asso-
ciated confidence coefficients can be obtained using
Table 61.1.

Problem 4. Determine the confidence coefficient
corresponding to a confidence level of 98.5%

98.5% is equivalent to a per unit value of 0.9850. This
indicates that the area under the standardised normal
curve between −zc and +zc, i.e. corresponding to 2zc,
is 0.9850 of the total area. Hence the area between the

mean value and zc is
0.9850
2

i.e. 0.4925of the total area.

The z-value corresponding to a partial area of 0.4925
is 2.43 standard deviations from Table 61.1. Thus, the
confidence coefficient corresponding to a confidence
limit of 98.5% is 2.43

(a) Estimating the mean of a population when the
standard deviation of the population is known
When a sample is drawn from a large population

whose standard deviation is known, the mean value of
the sample, x, can be determined. This mean value can
be used to make an estimate of the mean value of the
population, μ. When this is done, the estimated mean
value of the population is given as lying between two
values, that is, lying in the confidence interval between
the confidence limits. If a high level of confidence is
required in the estimated value of μ, then the range of
the confidence interval will be large. For example, if the
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required confidence level is 96%, then from Table 64.1
the confidence interval is from −zc to +zc, that is,
2× 2.05= 4.10 standard deviations wide. Conversely,
a low level of confidence has a narrow confidence inter-
val and a confidence level of, say, 50%, has a confidence
interval of 2× 0.6745, that is 1.3490 standard devia-
tions. The 68.26% confidence level for an estimate of
the populationmean is given by estimating that the pop-
ulation mean, μ, is equal to the same mean, x, and then
stating the confidence interval of the estimate. Since the
68.26%confidence level is associatedwith ‘±1 standard
deviation of the means of the sampling distribution’,
then the 68.26% confidence level for the estimate of the
population mean is given by:

x ± 1σx

In general, any particular confidence level can be
obtained in the estimate by using x ± zcσx , where zc is
the confidence coefficient corresponding to the particu-
lar confidence level required. Thus for a 96% confidence
level, the confidence limits of the population mean are
given by x ± 2.05σx . Since only one sample has been
drawn, the standard error of themeans, σx , is not known.
However, it is shown in Section 64.3 that

σx = σ√
N

√(
Np − N

Np − 1
)

Thus, the confidence limits of the mean of the popu-
lation are:

x± zcσ√
N

√(
Np−N
Np− 1

)

(4)

for a finite population of size Np
The confidence limits for the mean of the population
are:

x± zcσ√
N

(5)

for an infinite population.
Thus for a sample of size N and mean x, drawn from
an infinite population having a standard deviation of σ ,
the mean value of the population is estimated to be, for
example,

x ± 2.33σ√
N

for a confidence level of 98%. This indicates that the
mean value of the population lies between

x − 2.33σ√
N

and x + 2.33σ√
N

with 98% confidence in this prediction.

Problem 5. It is found that the standard deviation
of the diameters of rivets produced by a certain
machine over a long period of time is 0.018 cm.
The diameters of a random sample of 100 rivets
produced by this machine in a day have a mean
value of 0.476 cm. If the machine produces 2500
rivets a day, determine (a) the 90% confidence
limits, and (b) the 97% confidence limits for an
estimate of the mean diameter of all the rivets
produced by the machine in a day.

For the population:

standard deviation, σ = 0.018 cm
number in the population,Np = 2500

For the sample:

number in the sample, N = 100
mean, x = 0.476 cm

There is a finite population and the standard deviation
of the population is known, hence expression (4) is used
for determining an estimate of the confidence limits of
the population mean, i.e.

x ± zcσ√
N

√(
Np − N

Np − 1
)

(a) For a 90% confidence level, the value of zc, the
confidence coefficient, is 1.645 from Table 64.1.
Hence, the estimate of the confidence limits of the
population mean, μ, is

0.476±
(

(1.645)(0.018)√
100

)√(
2500− 100
2500− 1

)

i.e. 0.476± (0.00296)(0.9800)
= 0.476± 0.0029 cm

Thus, the 90% confidence limits are 0.473 cm
and 0.479 cm.
This indicates that if the mean diameter of a sam-
ple of 100 rivets is 0.476 cm, then it is predicted
that the mean diameter of all the rivets will be
between 0.476 cm and 0.479 cm and this predic-
tion is made with confidence that it will be correct
nine times out of ten.

(b) For a 97% confidence level, the value of zc has to
be determined from a table of partial areas under
the standardised normal curve given in Table 61.1,
as it is not one of the values given inTable 64.1.The

Download more at Learnclax.com



Se
ct

io
n

K
Se

ct
io

n
K

Sampling and estimation theories 685

total area between ordinates drawn at−zc and+zc

has to be 0.9700. Because the standardised normal
curve is symmetrical, the area between zc = 0 and
zc is

0.9700
2

, i.e. 0.4850 from Table 61.1 an area

of 0.4850corresponds to a zc value of 2.17.Hence,
the estimated value of the confidence limits of the
population mean is between

x ± zcσ√
N

√(
Np − N

Np − 1
)

= 0.476±
(

(2.17)(0.018)√
100

)√(
2500− 100
2500− 1

)

= 0.476± (0.0039)(0.9800)

= 0.476± 0.0038
Thus, the 97% confidence limits are 0.472 cm
and 0.030 cm.
It can be seen that the higher value of confi-
dence level required in part (b) results in a larger
confidence interval.

Problem 6. The mean diameter of a long length
of wire is to be determined. The diameter of the
wire is measured in 25 places selected at random
throughout its length and the mean of these values
is 0.425 mm. If the standard deviation of the
diameter of the wire is given by the manufacturers
as 0.030 mm, determine (a) the 80% confidence
interval of the estimated mean diameter of the wire,
and (b) with what degree of confidence it can be
said that ‘the mean diameter is 0.425± 0.012 mm’.

For the population: σ = 0.030 mm
For the sample: N = 25,x = 0.425 mm
Since an infinite number of measurements can be
obtained for the diameter of the wire, the population is
infinite and the estimated value of the confidence inter-
val of the populationmean is given by expression (5).

(a) For an 80% confidence level, the value of zc is
obtained from Table 64.1 and is 1.28
The 80% confidence level estimate of the confi-
dence interval of

μ = x ± zcσ√
N

= 0.425± (1.28)(0.030)√
25

= 0.425± 0.0077mm
i.e. the 80% confidence interval is from
0.417 mm to 0.433 mm.

This indicates that the estimatedmean diameter of
the wire is between 0.417 mm and 0.433 mm and
that this prediction is likely to be correct 80 times
out of 100

(b) To determine the confidence level, the given data
is equated to expression (5), giving

0.425± 0.012= x ± zc
σ√
N

But x = 0.425 therefore
±zc

σ√
N

= ±0.012

i.e. zc = 0.012
√

N

σ
= ± (0.012)(5)

0.030
= ±2

Using Table 61.1 of partial areas under the stan-
dardised normal curve, a zc value of 2 stan-
dard deviations corresponds to an area of 0.4772
between the mean value (zc = 0) and+2 standard
deviations.Because the standardised normal curve
is symmetrical, the area between the mean and±2
standard deviations is

0.4772× 2, i.e. 0.9544
Thus the confidence level corresponding to
0.425± 0.012 mm is 95.44%

(b) Estimating the mean and standard deviation of a
population from sample data
The standard deviation of a large population is not

known and, in this case, several samples are drawn from
the population. The mean of the sampling distribution
of means, μx and the standard deviation of the sam-
pling distribution of means (i.e. the standard error of the
means), σx , may be determined. The confidence limits
of the mean value of the population,μ, are given by

μx± zcσ x (6)

where zc is the confidence coefficient corresponding to
the confidence level required.
To make an estimate of the standard deviation, σ , of a
normally distributed population:

(i) a sampling distribution of the standard deviations
of the samples is formed, and

(ii) the standard deviation of the sampling distribution
is determinedbyusing the basic standard deviation
formula.

This standard deviation is called the standard error of the
standard deviations and is usually signified by σs . If s is

Download more at Learnclax.com



Se
ct

io
n

K
Se

ct
io

n
K

686 Higher Engineering Mathematics

the standard deviation of a sample, then the confidence
limits of the standard deviation of the population are
given by:

s± zcσ s (7)

where zc is the confidence coefficient corresponding to
the required confidence level.

Problem 7. Several samples of 50 fuses selected
at random from a large batch are tested when
operating at a 10% overload current and the mean
time of the sampling distribution before the fuses
failed is 16.50 minutes. The standard error of the
means is 1.4 minutes. Determine the estimated
mean time to failure of the batch of fuses for a
confidence level of 90%

For the sampling distribution: the mean, μx = 16.50,
the standard error of the means, σx = 1.4
The estimated mean of the population is based on sam-
pling distribution data only and so expression (6) is used
i.e. the confidence limits of the estimated mean of the
population are μx ± zcσx

For a 90% confidence level, zc = 1.645 (from
Table 64.1), thus,

μx ± zcσx = 16.50± (1.645)(1.4)

= 16.50± 2.30m.

Thus, the 90% confidence level of the mean time to
failure is from 14.20 minutes to 18.80 minutes.

Problem 8. The sampling distribution of random
samples of capacitors drawn from a large batch is
found to have a standard error of the standard
deviations of 0.12 μF. Determine the 92%
confidence interval for the estimate of the standard
deviation of the whole batch, if in a particular
sample, the standard deviation is 0.60 μF. It can be
assumed that the values of capacitance of the batch
are normally distributed.

For the sample: the standard deviation, s = 0.60μF.
For the sampling distribution: the standard error of the
standard deviations,

σs = 0.12μF
When the confidence level is 92%, then by using
Table 58.1 of partial areas order the standardised normal
curve,

area= 0.9200
2

= 0.4600,

giving zc as ±1.751 standard deviations (by interpola-
tion).
Since the population is normally distributed, the con-
fidence limits of the standard deviation of the popu-
lation may be estimated by using expression (7), i.e.
s ± zcσs = 0.60± (1.751)(0.12) = 0.60± 0.21μF.
Thus, the 92% confidence interval for the estimate of
the standard deviation for the batch is from 0.39 μF
to 0.81 μF.

Now try the following Practice Exercise

Practice Exercise 238 Estimation of
population parameters based on a large
sample size (Answers on page 891)

1. Measurements are made on a random sample
of 100 components drawn from a population
of size 1546 and having a standard deviation
of 2.93 mm. The mean measurement of the
components in the sample is 67.45mm.Deter-
mine the 95% and 99% confidence limits for
an estimate of the mean of the population.

2. The standard deviation of the masses of 500
blocks is 150 kg. A random sample of 40
blocks has a mean mass of 2.40 Mg.
(a) Determine the 95% and 99% confidence

intervals for estimating the mean mass of
the remaining 460 blocks.

(b) With what degree of confidence can it be
said that the mean mass of the remaining
460 blocks is 2.40± 0.035 Mg?

3. In order to estimate the thermal expansion
of a metal, measurements of the change of
length for a known change of temperature
are taken by a group of students. The sam-
pling distribution of the results has a mean of
12.89 ×10−4m◦C−1 and a standard error of
the means of 0.04× 10−4m◦C−1. Determine
the 95% confidence interval for an estimate of
the true value of the thermal expansion of the
metal, correct to two decimal places.

4. The standard deviation of the time to fail-
ure of an electronic component is estimated
as 100 hours. Determine how large a sample
of these components must be, in order to be
90% confident that the error in the estimated
time to failurewill not exceed (a) 20 hours and
(b) 10 hours.

Download more at Learnclax.com



Se
ct

io
n

K
Se

ct
io

n
K

Sampling and estimation theories 687

5. A sample of 60 slings of a certain diameter,
used for lifting purposes, are tested to destruc-
tion (that is, loaded until they snapped). The
mean and standard deviation of the breaking
loads are 11.09 tonnes and 0.73 tonnes respec-
tively. Find the 95%confidence interval for the
mean of the snapping loads of all the slings of
this diameter produced by this company.

6. The time taken to assemble a servomecha-
nism is measured for 40 operatives and the
mean time is 14.63 minutes with a stan-
dard deviation of 2.45 minutes. Determine the
maximum error in estimating the true mean
time to assemble the servomechanism for all
operatives, based on a 95% confidence level.

64.5 Estimating the mean of a
population based on a small
sample size

The methods used in Section 64.4 to estimate the popu-
lation mean and standard deviation rely on a relatively
large sample size, usually taken as 30 or more. This
is because when the sample size is large the sampling
distribution of a parameter is approximately normally
distributed.When the sample size is small, usually taken
as less than 30, the techniques used for estimating the
population parameters in Section 64.4 becomemore and
more inaccurate as the sample size becomes smaller,
since the sampling distribution no longer approximates
to a normal distribution. Investigations were carried out
into the effect of small sample sizes on the estimation
theory by W. S. Gosset in the early twentieth century
and, as a result of his work, tables are available which
enable a realistic estimate to bemadewhen sample sizes
are small. In these tables, the t-value is determined from
the relationship

t = (x − μ)

s

√
(N − 1)

where x is the mean value of a sample, μ is the mean
value of the population fromwhich the sample is drawn,
s is the standard deviation of the sample and N is the
number of independent observations in the sample. He
published his findings under the pen name of ‘Student’,
and these tables are often referred to as the ‘Student’s
t distribution’.
The confidence limits of the mean value of a popula-
tion based on a small sample drawn at random from the

population are given by

x± tcs√
(N− 1) (8)

In this estimate, tc is called the confidence coefficient
for small samples, analogous to zc for large samples, s
is the standard deviation of the sample, x is the mean
value of the sample and N is the number of members
in the sample. Table 64.2 is called ‘percentile values
for Student’s t distribution. The columns are headed t p
where p is equal to 0.995, 0.99, 0.975, · · · , 0.55. For a
confidence level of, say, 95%, the column headed t 0.95 is
selected and so on. The rows are headed with the Greek
letter ‘nu’, v, and are numbered from 1 to 30 in steps
of 1, together with the numbers 40, 60, 120 and ∞.
These numbers represent a quantity called the degrees
of freedom, which is defined as follows:

‘The sample number, N, minus the number of popu-
lation parameters which must be estimated for the
sample.’

When determining the t-value, given by

t = (x − μ)

s

√
(N − 1)

it is necessary to know the sample parameters x and s

and the population parameter μ. x and s can be calcu-
lated for the sample, but usually an estimate has to be
made of the population mean μ, based on the sample
mean value. The number of degrees of freedom, v, is
given by the number of independent observations in the
sample,N , minus the number of population parameters
which have to be estimated, k, i.e. v = N − k. For the
equation

t = (x −μ)

s

√
(N − 1)

onlyμ has to be estimated, hence k = 1, and v = N − 1.
When determining the mean of a population based on
a small sample size, only one population parameter
is to be estimated, and hence v can always be taken
as (N − 1) . The method used to estimate the mean
of a population based on a small sample is shown in
Problems 9 to 11.

Problem 9. A sample of 12 measurements of the
diameter of a bar are made and the mean of the
sample is 1.850 cm. The standard deviation of the
sample is 0.16 mm. Determine (a) the 90%
confidence limits and (b) the 70% confidence limits
for an estimate of the actual diameter of the bar.
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For the sample: the sample size, N = 12; mean, x =
1.850 cm; standard deviation s = 0.16mm= 0.016 cm.
Since the sample number is less than 30, the small sam-
ple estimate as given in expression (8)must be used. The
number of degrees of freedom, i.e. sample size minus
the number of estimations of population parameters to
be made, is 12− 1, i.e. 11
(a) Thepercentile value corresponding toa confidence

coefficient value of t0.90 and a degree of freedom
value of v = 11 can be found by using Table 64.2,
and is 1.36, that is, tc = 1.36. The estimated value
of the mean of the population is given by

x ± tcs√
(N − 1) = 1.850± (1.36)(0.016)√

11
= 1.850± 0.0066cm

Thus, the 90% confidence limits are 1.843 cm
and 1.857 cm.
This indicates that the actual diameter is likely to
lie between 1.843 cm and 1.857 cm and that this
prediction stands a 90% chance of being correct.

(b) The percentile value corresponding to t0.70 and to
v = 11 is obtained from Table 64.2, and is 0.540,
that is, tc = 0.540
The estimated value of the 70% confidence limits
is given by:

x ± tcs√
(N − 1) = 1.850± (0.540)(0.016)√

11
= 1.850± 0.0026cm

Thus, the 70% confidence limits are 1.847 cm
and 1.850 cm, i.e. the actual diameter of the bar
is between 1.847 cm and 1.850 cm and this result
has a 70% probability of being correct.

Problem 10. A sample of nine electric lamps are
selected randomly from a large batch and are tested
until they fail. The mean and standard deviations of
the time to failure are 1210 hours and 26 hours
respectively. Determine the confidence level based
on an estimated failure time of 1210± 6.5 hours.

For the sample: sample size,N = 9; standard deviation,
s = 26 hours; mean, x = 1210 hours. The confidence
limits are given by:

x ± tcs√
(N − 1)

and these are equal to 1210± 6.5

Since x = 1210 hours,
then ± tcs√

(N − 1) = ±6.5

i.e. tc = ± 6.5
√

(N−1)
s

= ± (6.5)
√
8

26
= ±0.707

From Table 64.2, a tc value of 0.707, having a v value
of N − 1, i.e. 8, gives a tp value of t0.75
Hence, the confidence level of an estimated failure
time of 1210± 6.5 hours is 75%, i.e. it is likely that
75% of all of the lamps will fail between 1203.5 and
1216.5 hours.

Problem 11. The specific resistance of some
copper wire of nominal diameter 1 mm is estimated
by determining the resistance of six samples of the
wire. The resistance values found (in ohms per
metre) were:

2.16, 2.14, 2.17, 2.15, 2.16 and 2.18

Determine the 95% confidence interval for the true
specific resistance of the wire.

For the sample: sample size, N = 6, and mean,

x = 2.16+ 2.14+ 2.17+ 2.15+ 2.16+ 2.18
6

= 2.16�m−1

standard deviation,

s =

√√
√
√
√
√
√
√
√
√
√

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(2.16− 2.16)2+ (2.14− 2.16)2
+(2.17− 2.16)2+ (2.15− 2.16)2
+(2.16− 2.16)2+ (2.18− 2.16)2

6

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

=
√
0001
6

= 0.0129�m−1

The percentile value corresponding to a confidence
coefficient value of t0.95 and a degree of freedom
value of N − 1, i.e. 6− 1= 5 is 2.02 from Table 64.2.
The estimated value of the 95% confidence limits is
given by:

x ± tcs√
(N − 1) = 2.16± (2.02)(0.0129)√

5
= 2.16± 0.01165�m−1

Thus, the 95% confidence limits are 2.148�m−1 and
2.172�m−1 which indicates that there is a 95% chance
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Table 64.2 Percentile values (tp) for Student’s t distribution with v degrees of freedom (shaded area = p)

tp

v t0.995 t0.99 t0.975 t0.95 t0.90 t0.80 t0.75 t0.70 t0.60 t0.55

1 63.66 31.82 12.71 6.31 3.08 1.376 1.000 0.727 0.325 0.158
2 9.92 6.96 4.30 2.92 1.89 1.061 0.816 0.617 0.289 0.142
3 5.84 4.54 3.18 2.35 1.64 0.978 0.765 0.584 0.277 0.137
4 4.60 3.75 2.78 2.13 1.53 0.941 0.741 0.569 0.271 0.134
5 4.03 3.36 2.57 2.02 1.48 0.920 0.727 0.559 0.267 0.132
6 3.71 3.14 2.45 1.94 1.44 0.906 0.718 0.553 0.265 0.131
7 3.50 3.00 2.36 1.90 1.42 0.896 0.711 0.549 0.263 0.130
8 3.36 2.90 2.31 1.86 1.40 0.889 0.706 0.546 0.262 0.130
9 3.25 2.82 2.26 1.83 1.38 0.883 0.703 0.543 0.261 0.129
10 3.17 2.76 2.23 1.81 1.37 0.879 0.700 0.542 0.260 0.129
11 3.11 2.72 2.20 1.80 1.36 0.876 0.697 0.540 0.260 0.129
12 3.06 2.68 2.18 1.78 1.36 0.873 0.695 0.539 0.259 0.128
13 3.01 2.65 2.16 1.77 1.35 0.870 0.694 0.538 0.259 0.128
14 2.98 2.62 2.14 1.76 1.34 0.868 0.692 0.537 0.258 0.128
15 2.95 2.60 2.13 1.75 1.34 0.866 0.691 0.536 0.258 0.128
16 2.92 2.58 2.12 1.75 1.34 0.865 0.690 0.535 0.258 0.128
17 2.90 2.57 2.11 1.74 1.33 0.863 0.689 0.534 0.257 0.128
18 2.88 2.55 2.10 1.73 1.33 0.862 0.688 0.534 0.257 0.127
19 2.86 2.54 2.09 1.73 1.33 0.861 0.688 0.533 0.257 0.127
20 2.84 2.53 2.09 1.72 1.32 0.860 0.687 0.533 0.257 0.127
21 2.83 2.52 2.08 1.72 1.32 0.859 0.686 0.532 0.257 0.127
22 2.82 2.51 2.07 1.72 1.32 0.858 0.686 0.532 0.256 0.127
23 2.81 2.50 2.07 1.71 1.32 0.858 0.685 0.532 0.256 0.127
24 2.80 2.49 2.06 1.71 1.32 0.857 0.685 0.531 0.256 0.127
25 2.79 2.48 2.06 1.71 1.32 0.856 0.684 0.531 0.256 0.127
26 2.78 2.48 2.06 1.71 1.32 0.856 0.684 0.531 0.256 0.127
27 2.77 2.47 2.05 1.70 1.31 0.855 0.684 0.531 0.256 0.127
28 2.76 2.47 2.05 1.70 1.31 0.855 0.683 0.530 0.256 0.127
29 2.76 2.46 2.04 1.70 1.31 0.854 0.683 0.530 0.256 0.127
30 2.75 2.46 2.04 1.70 1.31 0.854 0.683 0.530 0.256 0.127
40 2.70 2.42 2.02 1.68 1.30 0.851 0.681 0.529 0.255 0.126
60 2.66 2.39 2.00 1.67 1.30 0.848 0.679 0.527 0.254 0.126
120 2.62 2.36 1.98 1.66 1.29 0.845 0.677 0.526 0.254 0.126
∞ 2.58 2.33 1.96 1.645 1.28 0.842 0.674 0.524 0.253 0.126
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that the true specific resistance of the wire lies between
2.148�m−1 and 2.172�m−1

Now try the following Practice Exercise

Practice Exercise 239 Estimating the mean
of a population based on a small sample
size (Answers on page 891)

1. The value of the ultimate tensile strength of
a material is determined by measurements on
ten samples of the materials. The mean and
standard deviation of the results are found to
be 5.17MPaand0.06MPa respectively.Deter-
mine the 95% confidence interval for themean
of the ultimate tensile strength of the material.

2. Use the data given in Problem1 above to deter-
mine the 97.5% confidence interval for the
mean of the ultimate tensile strength of the
material.

3. The specific resistance of a reel of German
silver wire of nominal diameter 0.5 mm is
estimated by determining the resistance of
seven samples of the wire. These were found
to have resistance values (in ohms per metre)
of:
1.12, 1.15, 1.10, 1.14, 1.15, 1.10
and 1.11
Determine the 99% confidence interval for
the true specific resistance of the reel of
wire.

4. In determining the melting point of a metal,
five determinations of the melting point are
made. The mean and standard deviation of
the five results are 132.27◦C and 0.742◦C.
Calculate the confidence with which the pre-
diction ‘the melting point of the metal is
between 131.48◦C and 133.06◦C’ can be
made.

For fully worked solutions to each of the problems in Practice Exercises 237 to 239 in this chapter,
go to the website:

www.routledge.com/cw/bird
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Chapter 65

Significance testing

Why it is important to understand: Significance testing
In statistical testing, a result is called statistically significant if it is unlikely to have occurred by chance,
and hence provides enough evidence to reject the hypothesis of ‘no effect’. The tests involve comparing
the observed values with theoretical values. The tests establish whether there is a relationship between
the variables, or whether pure chance could produce the observed results. For most scientific research, a
statistical significance test eliminates the possibility that the results arose by chance, allowing a rejection
of the null hypothesis. This chapter introduces the principles of significance testing.

At the end of this chapter, you should be able to:

• understand hypotheses
• appreciate type I and type II errors
• calculate type I and type II errors using binomial and Poisson approximations
• appreciate significance tests for population means
• determine hypotheses using significance testing
• compare two sample means given a level of significance

65.1 Hypotheses

Industrial applications of statistics is often concerned
with making decisions about populations and popula-
tion parameters. For example, decisions about which
is the better of two processes or decisions about
whether to discontinue production on a particular
machine because it is producing an economically unac-
ceptable number of defective components are often
based on deciding the mean or standard deviation
of a population, calculated using sample data drawn
from the population. In reaching these decisions, cer-
tain assumptions are made, which may or may not
be true. The assumptions made are called statistical
hypotheses or just hypotheses and are usually con-
cernedwith statements about probability distributions of
populations.

For example, in order to decide whether a dice is fair,
that is, unbiased, a hypothesis can be made that a par-
ticular number, say 5, should occur with a probability
of one in six, since there are six numbers on a dice.
Such a hypothesis is called a null hypothesis and is an
initial statement. The symbol H0 is used to indicate a
null hypothesis. Thus, if p is the probability of throw-
ing a 5, then H0 : p = 1

6 means, ‘the null hypothesis
that the probability of throwing a 5 is 16 ’. Any hypoth-
esis which differs from a given hypothesis is called an
alternative hypothesis, and is indicated by the symbol
H1. Thus, if after many trials, it is found that the dice is
biased and that a 5 only occurs, on average, one in every
seven throws, then several alternative hypotheses may
be formulated. For example: H1:p = 1

7 or H1:p < 1
6

or H1:p > 1
8 or H1:p �= 1

6 are all possible alternative
hypotheses to the null hypothesis that p = 1

6

Higher Engineering Mathematics. 978-1-138-67357-1, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.
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Hypotheses may also be used when comparisons are
being made. If we wish to compare, say, the strength of
two metals, a null hypothesis may be formulated that
there is no difference between the strengths of the two
metals. If the forces that the two metals can withstand
are F1 and F2, then the null hypothesis isH0 : F1 = F2.
If it is found that the null hypothesis has to be rejected,
that is, that the strengths of the two metals are not the
same, then the alternative hypotheses could be of several
forms. For example, H1 : F1 > F2 or H1 : F2 > F1 or
H1 : F1 �= F2. These are all alternative hypotheses to
the original null hypothesis.

65.2 Type I and type II errors

To illustrate what is meant by type I and type II errors,
let us consider an automatic machine producing, say,
small bolts. These are stamped out of a length of metal
and various faults may occur. For example, the heads
or the threads may be incorrectly formed, the length
might be incorrect, and so on. Assume that, say, three
bolts out of every 100 produced are defective in some
way. If a sample of 200 bolts is drawn at random, then
the manufacturer might be satisfied that his defect rate
is still 3% provided there are six defective bolts in the
sample. Also, the manufacturer might be satisfied that
his defect rate is 3% or less provided that there are six
or fewer bolts defective in the sample. He might then
formulate the following hypotheses:

H0 : p = 0.03 (the null hypothesis that
the defect rate is 3%)

The null hypothesis indicates that a 3% defect rate is
acceptable to the manufacturer. Suppose that he also
makes a decision that should the defect rate rise to 5%
or more, he will take some action. Then the alternative
hypothesis is:

H1 : p ≥ 0.05 (the alternative hypothesis that
the defect rate is equal to or
greater than 5%)

Themanufacturer’s decisions, which are related to these
hypotheses, might well be:

(i) a null hypothesis that a 3% defect rate is accept-
able, on the assumption that the associated number
of defective bolts is insufficient to endanger his
firm’s good name;

(ii) if the null hypothesis is rejected and the defect rate
rises to 5% or over, stop the machine and adjust or
renew parts as necessary; since the machine is not
then producing bolts, this will reduce his profit.

These decisions may seem logical at first sight, but by
applying the statistical concepts introduced in previous
chapters it can be shown that the manufacturer is not
necessarily making very sound decisions. This is shown
as follows.
When drawing a random sample of 200 bolts from
the machine with a defect rate of 3%, by the laws
of probability, some samples will contain no defective
bolts, some samples will contain one defective bolt, and
so on.
A binomial distribution can be used to determine the
probabilities of getting 0,1,2, . . . ,9 defective bolts in
the sample. Thus the probability of getting ten or more
defective bolts in a sample, even with a 3% defect
rate, is given by: 1− (the sum of probabilities of getting
0,1,2, . . . ,9 defective bolts). This is an extremely large
calculation, given by:

1−
(
0.97200+ 200× 0.97199× 0.03

+200× 199
2

× 0.97198× 0.032 to 10 terms
)

An alternative way of calculating the required probabil-
ity is to use the normal approximation to the binomial
distribution. This may be stated as follows:

‘If the probability of a defective item is p and a non-
defective item is q, then if a sample of N items is
drawn at random from a large population, provided
both Np and Nq are greater than 5, the binomial
distribution approximates to a normal distribution
of mean Np and standard deviation

√
(Npq).’

The defect rate is 3%, thus p = 0.03. Since q = 1− p,
q = 0.97. Sample size N = 200. Since Np and Nq are
greater than 5, a normal approximation to the binomial
distribution can be used.
The mean of the normal distribution,

x = Np = 200× 0.03= 6
The standard deviation of the normal distribution

σ =
√

(Npq)

=
√
[(200)(0.03)(0.97)]= 2.41

The normal standard variate for ten bolts is

z = variate−mean
standard deviation

= 10− 6
2.41

= 1.66
Table 61.1 on page 661 is used to determine the area
between the mean and a z-value of 1.66, and is 0.4515
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The probability of having ten or more defective bolts
is the total area under the standardised normal curve
minus the area to the left of the z = 1.66 ordinate, i.e.
1−(0.5+0.4515), i.e. 1− 0.9515= 0.0485≈ 5%. Thus
the probability of getting ten or more defective bolts in a
sample of 200 bolts, even though the defect rate is still
3%, is 5%. It follows that as a result of the manufac-
turer’s decisions, for five times in every 100 the number
of defects in the sample will exceed ten, the alterna-
tive hypothesis will be adopted and the machine will
be stopped (and profit lost) unnecessarily. In general
terms:

‘A hypothesis has been rejected when it should
have been accepted.’

When this occurs, it is called a type I error, and, in this
example, the type I error is 5%
Assume now that the defect rate has risen to 5%, i.e.
the expectancy of a defective bolt is now ten. A sec-
ond error resulting from this decision occurs due to the
probability of getting fewer than ten defective bolts in a
random sample, even though the defect rate has risen to
5%. Using the normal approximation to a binomial dis-
tribution:N = 200,p = 0.05,q = 0.95.Np andNq are
greater than 5, hence a normal approximation to a bino-
mial distribution is a satisfactory method. The normal
distribution has:

mean, x = Np = (200)(0.05) = 10
standard deviation,

σ =
√

(Npq)

=
√
[(200)(0.05)(0.95)]= 3.08

The normal standard variate for nine defective bolts,

z = variate−mean
standard deviation

= 9− 10
3.08

= −0.32

Using Table 61.1 of partial areas under the standardised
normal curve given on page 661, a z-value of −0.32
corresponds to an area between the mean and the ordi-
nate at z = −0.32 to 0.1255. Thus, the probability of
there being nine or fewer defective bolts in the sample
is given by the area to the left of the z = 0.32 ordinate,
i.e. 0.5000− 0.1255, that is, 0.3745.Thus, the probabil-
ity of getting nine or fewer defective bolts in a sample
of 200 bolts, even though the defect rate has risen
to 5%, is 37%. It follows that as a result of the man-
ufacturer’s decisions, for 37 samples in every 100, the

machine will be left running even though the defect rate
has risen to 5%. In general terms:

‘A hypothesis has been accepted when it should
have been rejected.’

When this occurs, it is called a type II error, and, in
this example, the type II error is 37%
Tests of hypotheses and rules of decisions should be
designed to minimise the errors of decision. This is
achieved largely by trial and error for a particular set of
circumstances. Type I errors can be reduced by increas-
ing the number of defective items allowable in a sample,
but this is at the expense of allowing a larger percentage
of defective items to leave the factory, increasing the
criticism from customers. Type II errors can be reduced
by increasing the percentage defect rate in the alternative
hypothesis. If a higher percentage defect rate is given in
the alternative hypothesis, the type II errors are reduced
very effectively, as shown in the second of the two tables
below, relating the decision rule to the magnitude of the
type II errors. Some examples of themagnitude of type I
errors are givenbelow, for a sample of 1000components
being produced by a machine with a mean defect rate
of 5%

Decision rule Type I error
Stop production if the number
of defective components is
equal to or greater than:

(%)

52 38.6

56 19.2

60 7.35

64 2.12

68 0.45

Decision rule Type II error
Stop production when
the number of defective
components is 60, when the
defect rate is (%):

(%)

5.5 75.49

7 10.75

8.5 0.23

10 0.00
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The magnitude of the type II errors for the output of the
samemachine, again based on a random sample of 1000
components and a mean defect rate of 5%, is given on
page 693.
When testing a hypothesis, the largest value of proba-
bility which is acceptable for a type I error is called the
level of significanceof the test. The level of significance
is indicated by the symbol α (alpha) and the levels com-
monly adopted are 0.1, 0.05, 0.01, 0.005 and 0.002. A
level of significance of, say, 0.05 means that five times
in 100 the hypothesis has been rejected when it should
have been accepted.
In significance tests, the following terminology is fre-
quently adopted:

(i) if the level of significance is 0.01 or less, i.e. the
confidence level is 99% or more, the results are
considered to behighly significant, i.e. the results
are considered likely to be correct,

(ii) if the level of significance is 0.05 or between
0.05 and 0.01, i.e. the confidence level is 95%
or between 95% and 99%, the results are consid-
ered to be probably significant, i.e. the results
are probably correct,

(iii) if the level of significance is greater than 0.05, i.e.
the confidence level is less than 95%, the results
are considered to be not significant, that is, there
are doubts about the correctness of the results
obtained.

This terminology indicates that the use of a level of sig-
nificance of 0.05 for ‘probably significant’ is, in effect, a
rule of thumb. Situations can arise when the probability
changes with the nature of the test being done and the
use being made of the results.
The example of amachine producing bolts, used to illus-
trate type I and type II errors, is based on a single random
sample being drawn from the output of the machine. In
practice, sampling is a continuous process and using
the data obtained from several samples, sampling dis-
tributions are formed. From the concepts introduced
in Chapter 64, the means and standard deviations of
samples are normally distributed, thus for a particular
sample its mean and standard deviation are part of a
normal distribution. For a set of results to be proba-
bly significant a confidence level of 95% is required
for a particular hypothesis being probably correct. This
is equivalent to the hypothesis being rejected when the
level of significance is greater than 0.05. For this to
occur, the z-value of the mean of the samples will lie
between −1.96 and +1.96 (since the area under the
standardised normal distribution curve between these

95% of total area

�1.96 1.96 z

Critical region
(2.5% of
total area)

Critical region
(2.5% of
total area)

Figure 65.1

z-values is 95%). The shaded area in Fig. 65.1 is based
on results which are probably significant, i.e. having a
level of significance of 0.05, and represents the proba-
bility of rejecting a hypothesis when it is correct. The
z-values of less than −1.96 and more than 1.96 are
called critical values and the shaded areas in Fig. 65.1
are called the critical regions or regions for which the
hypothesis is rejected. Having formulated hypotheses,
the rules of decision and a level of significance, themag-
nitude of the type I error is given. Nothing can now be
done about type II errors and in most cases they are
accepted in the hope that they are not too large.
When critical regions occur on both sides of themean of
a normal distribution, as shown in Fig. 65.1, they are as
a result of two-tailed or two-sided tests. In such tests,
consideration has to be given to values on both sides
of the mean. For example, if it is required to show that
the percentage of metal, p, in a particular alloy is x%,
then a two-tailed test is used, since the null hypothesis
is incorrect if the percentage of metal is either less than
x or more than x. The hypothesis is then of the form:

H0 : p = x% H1 : p �= x%

However, for the machine producing bolts, the man-
ufacturer’s decision is not affected by the fact that a
sample contains say one or two defective bolts. He is
only concerned with the sample containing, say, ten or
more defective bolts. Thus a ‘tail’ on the left of themean
is not required. In this case a one-tailed test or a one-
sided test is really required. If the defect rate is, say, d
and the per unit values economically acceptable to the
manufacturer are u1 and u2, where u1 is an acceptable
defect rate and u2 is the maximum acceptable defect
rate, then the hypotheses in this case are of the form:

H0 : d = u1 H1 : d > u2

and the critical region lies on the right-hand side of the
mean, as shown in Fig. 65.2(a). A one-tailed test can
have its critical region either on the right-hand side or
on the left-hand side of the mean. For example, if lamps
are being tested and the manufacturer is only interested
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(a)

(b)

95% of total area

1.645 z

Critical region
(5% of
total area)

95% of total area

�1.645

Critical region
(5% of
total area)

Figure 65.2

in those lamps whose life length does not meet a certain
minimum requirement, then the hypotheses are of the
form:

H0 : l = h H1 : l < h

where l is the life length and h is the number of hours
to failure. In this case the critical region lies on the left-
hand side of the mean, as shown in Fig. 65.2(b).
The z-values for various levels of confidence are given
in Table 64.1 on page 683. The corresponding levels of
significance (a confidence level of 95% is equivalent to
a level of significance of 0.05 in a two-tailed test) and
their z-values for both one-tailed and two-tailed tests
are given in Table 65.1. It can be seen that two values
of z are given for one-tailed tests, the negative value
for critical regions lying to the left of the mean and a
positive value for critical regions lying to the right of
the mean.
The problem of the machine producing 3% defective
bolts can now be reconsidered from a significance test-
ing point of view. A random sample of 200 bolts is
drawn, and the manufacturer is interested in a change in
the defect rate in a specified direction (i.e. an increase),

hence the hypotheses tests are designed accordingly. If
the manufacturer is willing to accept a defect rate of 3%,
but wants adjustments made to the machine if the defect
rate exceeds 3%, then the hypotheses will be:

(i) a null hypothesis such that the defect rate, p, is
equal to 3%,
i.e. H0 : p = 0.03, and

(ii) an alternative hypothesis such that the defect rate
is greater than 3%,
i.e. H1 : p > 0.03

The first rule of decision is as follows: let the level
of significance, α, be 0.05; this will limit the type I
error, that is, the error due to rejecting the hypothe-
sis when it should be accepted, to 5%, which means
that the results are probably correct. The second rule
of decision is to decide the number of defective bolts
in a sample for which the machine is stopped and
adjustments are made. For a one-tailed test, a level
of significance of 0.05 and the critical region lying to
the right of the mean of the standardised normal dis-
tribution, the z-value from Table 65.1 is 1.645. If the
defect rate p is 0.03%, the mean of the normal distribu-
tion is given by Np = 200× 0.03= 6 and the standard
deviation is

√
(Npq) = √

(200× 0.03× 0.97) = 2.41,
using the normal approximation to a binomial distri-

bution. Since the z-value is
variate−mean
standard deviation

, then

1.645= variate− 6
2.41

giving a variate value of 9.96. This
variate is the number of defective bolts in a sample such
that when this number is reached or exceeded the null
hypothesis is rejected. For 95 times out of 100 this will
be the correct thing to do. The second rule of decision
will thus be ‘rejectH0 if the number of defective bolts in
a random sample is equal to or exceeds ten, otherwise
accept H ′

0. That is, the machine is adjusted when the
number of defective bolts in a random sample reaches
ten and this will be the correct decision 95% of the time.
The type II error can now be calculated, but there is lit-
tle point, since having fixed the sample number and the
level of significance, there is nothing that can be done
about it.

Table 65.1

Level of significance, α 0.1 0.05 0.01 0.005 0.002

z-value, one-tailed test
{ −1.28
or 1.28

−1.645
or 1.645

−2.33
or 2.33

−2.58
or 2.58

−2.88
or 2.88

z-value, two-tailed text
{ −1.645
and 1.645

−1.96
and 1.96

−2.58
and 2.58

−2.81
and 2.81

−3.08
and 3.08
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A two-tailed test is used when it is required to test for
changes in anunspecified direction. For example, if the
manufacturer of bolts, used in the previous example, is
inspecting the diameter of the bolts, hewillwant to know
whether the diameters are too large or too small. Let the
nominal diameter of the bolts be 2 mm. In this case the
hypotheses will be:

H0 : d = 2.00mm H1 : d �= 2.00mm,

where d is the mean diameter of the bolts. His first
decision is to set the level of significance, to limit his
type I error. A two-tailed test is used, since adjustments
must be made to the machine if the diameter does not
lie within specified limits. The method of using such a
significance test is given in Section 65.3.
When determining the magnitude of type I and type
II errors, it is often possible to reduce the amount of
work involved by using a normal or a Poisson distri-
bution rather than binomial distribution. A summary of
the criteria for the use of these distributions and their
form is given below, for a sample of size N , a proba-
bility of defective components p and a probability of
non-defective components q

Binomial distribution

From Chapter 60, the probability of having 0,1,2,
3, . . . defective components in a random sample of N

components is given by the successive terms of the
expansion of (q + p)N , taken from the left. Thus:

Number of
defective
components

Probability

0 qN

1 NqN−1p

2
N(N − 1)

2!
qN−2p2

3
N(N − 1)(N − 2)

3!
qN−3p3 . . .

Poisson approximation to a binomial
distribution

When N ≥ 50 and Np < 5, the Poisson distribution is
approximately the same as the binomial distribution. In
the Poisson distribution, the expectation λ = Np and
from Chapter 60, the probability of 0,1,2,3, . . . defec-
tive components in a random sample of N components
is given by the successive terms of

e−λ

(

1+ λ+ λ2

2!
+ λ3

3!
+ ·· ·

)

taken from the left. Thus,

Number of defective 0 1 2 3
components

Probability e−λ λe−λ λ2e−λ

2!
λ3e−λ

3!

Normal approximation to a binomial
distribution

When both Np and Nq are greater than 5, the normal
distribution is approximately the same as the binomial
distribution, The normal distribution has a mean of Np

and a standard deviation of
√

(Npq)

Problem 1. Wood screws are produced by an
automatic machine and it is found over a period of
time that 7% of all the screws produced are
defective. Random samples of 80 screws are drawn
periodically from the output of the machine. If a
decision is made that production continues until a
sample contains more than seven defective screws,
determine the type I error based on this decision for
a defect rate of 7%. Also determine the magnitude
of the type II error when the defect rate has risen to
10%

N = 80, p = 0.07, q = 0.93
Since both Np and Nq are greater than 5, a normal
approximation to the binomial distribution is used.

Mean of the normal distribution,

Np = 80× 0.07= 5.6
Standard deviation of the normal distribution,

√
(Npq) =

√
(80× 0.07× 0.93) = 2.28

A type I error is the probability of rejecting a hypoth-
esis when it is correct, hence, the type I error in this
problem is the probability of stopping the machine, that
is, the probability of getting more than seven defective
screws in a sample, even though the defect rate is still
seven%. The z-value corresponding to seven defective
screws is given by:

variate−mean
standard deviation

= 7− 5.6
2.28

= 0.61
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Using Table 61.1 of partial areas under the standard-
ised normal curve given on page 661, the area between
the mean and a z-value of 0.61 is 0.2291. Thus, the
probability of more than seven defective screws is the
area to the right of the z-ordinate at 0.61, that is,

[total area− (area to the left of mean

+area between mean and z = 0.61)]
i.e. 1− (0.5+ 0.2291). This gives a probability of
0.2709. It is usual to express type I errors as apercentage,
giving

type I error = 27.1%

A type II error is the probability of accepting a hypoth-
esis when it should be rejected. The type II error in this
problem is the probability of a sample containing fewer
than seven defective screws, even though the defect rate
has risen to 10%. The values are now:

N = 80, p = 0.1, q = 0.9
AsNp andNq are both greater than 5, a normal approx-
imation to a binomial distribution is used, in which the
mean Np is 80× 0.1= 8 and the standard deviation√

(Npq) = √
(80× 0.1× 0.9) = 2.68

The z-value for a variate of seven defective screws is
7− 8
2.68

= −0.37

Using Table 61.1 of partial areas given on page 661,
the area between the mean and z = −0.37 is 0.1443.
Hence, the probability of getting fewer than sevendefec-
tive screws, even though the defect rate is 10% is (area
to the left of mean – area betweenmean and a z-value of
−0.37), i.e. 0.5− 0.1443= 0.3557. It is usual to express
type II errors as a percentage, giving

type II error = 35.6%

Problem 2. The sample size in Problem 1 is
reduced to 50. Determine the type I error if the
defect rate remains at 7% and the type II error when
the defect rate rises to 9%. The decision is now to
stop the machine for adjustment if a sample
contains four or more defective screws.

N = 50, p = 0.07
When N ≥ 50 and Np < 5, the Poisson approximation
to a binomial distribution is used. The expectation λ =
Np = 3.5. The probabilities of 0,1,2,3, . . . defective

screws are given by e−λ, λe−λ,
λ2e−λ

2!
,
λ3e−λ

3!
, . . .

Thus,

probability of a sample containing
no defective screws, e−λ = 0.0302
probability of a sample containing
one defective screw, λe−λ = 0.1057
probability of a sample containing

two defective screws,
λ2e−λ

2!
= 0.1850

probability of a sample containing

three defective screws,
λ3e−λ

3
= 0.2158

probability of a sample containing
zero, one, two, or three defective screws is 0.5367

Hence, the probability of a sample containing four or
more defective screws is 1− 0.5367= 0.4633. Thus
the type I error, that is, rejecting the hypothesis when
it should be accepted or stopping the machine for
adjustment when it should continue running, is 46.3%
When the defect rate has risen to 9%, p = 0.09 and
Np = λ = 4.5. Since N ≥ 50 and Np < 5, the Poisson
approximation to a binomial distribution can still be
used. Thus,

probability of a sample containing
no defective screws, e−λ = 0.0111
probability of a sample containing
one defective screw, λe−λ = 0.0500
probability of a sample containing

two defective screws,
λ2e−λ

2!
= 0.1125

probability of a sample containing

three defective screws,
λ3e−λ

3!
= 0.1687

probability of a sample containing
zero, one, two, or three defective screws is 0.3423

That is, the probability of a sample containing less than
four defective screws is 0.3423. Thus, the type II error,
that is, accepting the hypothesis when it should have
been rejected or leaving the machine running when it
should be stopped, is 34.2%

Problem 3. The sample size in Problem 1 is now
reduced to 25. Determine the type I error if the
defect rate remains at 7%, and the type II error
when the defect rate rises to 10%. The decision is
now to stop the machine for adjustment if a sample
contains three or more defective screws.
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N = 25, p = 0.07, q = 0.93
The criteria for a normal approximation to a bino-
mial distribution and for a Poisson approximation to
a binomial distribution are not met, hence the binomial
distribution is applied.

Probability of no defective screws in a sample,
qN = 0.9325 = 0.1630

Probability of one defective screw in a sample,
NqN−1p = 25× 0.9324× 0.07 = 0.3066
Probability of two defective screws in a sample,

N(N − 1)
2

qN−2p2

= 25× 24
2

× 0.9323× 0.072 = 0.2770
Probability of zero, one, or two defective screws
in a sample = 0.7466

Thus, the probability of a type I error, i.e. stopping
the machine even though the defect rate is still 7%, is
1− 0.7466= 0.2534. Hence, the type I error is 25.3%
When the defect rate has risen to 10%:

N = 25, p = 0.1, q = 0.9
Probability of no defective screws in a sample,

qN = 0.925 = 0.0718
Probability of one defective screw in a sample,

NqN−1P = 25× 0.924× 0.1 = 0.1994
Probability of two defective screws in a sample,

N(N − 1)
2

qN−2p2

= 25× 24
2

× 0.923× 0.12 = 0.2659
Probability of zero, one, or two defective screws
in a sample = 0.5371

That is, the probability of a type II error, i.e. leaving the
machine running even though the defect rate has risen
to 10%, is 53.7%

Now try the following Practice Exercise

Practice Exercise 240 Type I and type II
(Answers on page 891)

Problems 1 and 2 refer to an automatic machine
producing piston rings for car engines. Random

samples of 1000 rings are drawn from the output of
the machine periodically for inspection purposes.
A defect rate of 5% is acceptable to the manu-
facturer, but if the defect rate is believed to have
exceeded this value, the machine producing the
rings is stopped and adjusted.

In Problem 1, determine the type I errors which
occur for the decision rules stated.

1. Stop production and adjust the machine if a
sample contains (a) 54 (b) 62 and (c) 70 or
more defective rings.

In Problem 2, determine the type II errors which
are made if the decision rule is to stop production
if there are more than 60 defective components in
the sample.

2. When the actual defect rate has risen to (a) 6%
(b) 7.5% and (c) 9%

3. A random sample of 100 components is drawn
from the output of amachinewhose defect rate
is 3%. Determine the type I error if the deci-
sion rule is to stop productionwhen the sample
contains: (a) four or more defective compo-
nents, (b) five or more defective components,
and (c) six or more defective components.

4. If there are four ormore defective components
in a sample drawn from the machine given in
Problem 3 above, determine the type II error
when the actual defect rate is: (a) 5% (b) 6%
(c) 7%

65.3 Significance tests for population
means

When carrying out tests or measurements, it is often
possible to form a hypothesis as a result of these tests.
For example, the boiling point of water is found to
be: 101.7◦C, 99.8◦C, 100.4◦C, 100.3◦C, 99.5◦C and
98.9◦C, as a result of six tests. The mean of these six
results is 100.1◦C. Based on these results, how confi-
dently can it be predicted that at this particular height
above sea level and at this particular barometric pres-
sure, water boils at 100.1◦C? In other words, are the
results based on sampling significantly different from
the true result? There are a variety of ways of testing
significance, but only one or two of these in commonuse
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are introduced in this section. Usually, in significance
tests, some predictions about population parameters,
based on sample data, are required. In significance
tests for population means, a random sample is drawn
from the population and the mean value of the sam-
ple, x, is determined. The testing procedure depends on
whether or not the standard deviationof the population is
known.

(a) When the standard deviation of the
population is known

A null hypothesis is made that there is no difference
between the value of a sample mean x and that of the
population mean, μ, i.e. H0: x = μ. If many samples
had been drawn from a population and a sampling dis-
tribution of means had been formed, then, provided N

is large (usually taken asN ≥ 30) themean valuewould
form a normal distribution, having a mean value of μx

and a standard deviation or standard error of the means
(see Section 64.3).
The particular value of x of a large sample drawn for a
significance test is therefore part of a normal distribution
and it is possible to determine by howmuch x is likely to
differ fromμx in terms of the normal standard variate z.

The relationship is z = x − μx

σx

.
However, with reference to Chapter 64, page 679,

σx = σ√
N

√(
Np−N

Np−1
)
for finite populations,

= σ√
N
for infinite populations, and μx = μ

whereN is the sample size,Np is the size of the popula-
tion,μ is the mean of the population and σ the standard
deviation of the population.
Substituting for μx and σx in the equation for z gives:

z = x − μ
σ√
N

for infinite populations, (1)

z = x − μ

σ√
N

√(
Np − N

Np − 1
) (2)

for populations of size Np

In Table 65.1 on page 695, the relationship between
z-values and levels of significance for both one-tailed
and two-tailed tests are given. It can be seen from this
table for a level of significance of, say, 0.05 and a two-
tailed test, the z-value is +1.96, and z-values outside
of this range are not significant. Thus, for a given level

of significance (i.e. a known value of z), the mean of
the population, μ, can be predicted by using equations
(1) and (2) above, based on the mean of a sample x.
Alternatively, if themean of the population is known, the
significance of a particular value of z, based on sample
data, can be established. If the z-value basedon themean
of a random sample for a two-tailed test is found to be,
say, 2.01, then at a level of significance of 0.05, that
is, the results being probably significant, the mean of
the sampling distribution is said to differ significantly
from what would be expected as a result of the null
hypothesis (i.e. that x = μ), due to the result of the test
being classed as ‘not significant’ (see page 694). The
hypothesis would then be rejected and an alternative
hypothesis formed, i.e.H1: x �= μ. The rules of decision
for such a test would be:

(i) reject the hypothesis at a 0.05 level of significance,
i.e. if the z-value of the sample mean is outside of
the range−1.96 to +1.96

(ii) accept the hypothesis otherwise.

For small sample sizes (usually taken as N < 30),
the sampling distribution is not normally distributed,
but approximates to Student’s t-distributions (see
Section 64.5). In this case, t-values rather than z-values
are used and the equations analogous to equations (1)
and (2) are:

|t| = x − μ
σ√
N

for infinite populations (3)

|t| = x − μ

σ√
N

√(
Np − N

Np − 1
) (4)

for populations of size Np

where |t|means the modulus of t , i.e. the positive value
of t .

(b) When the standard deviation of the
population is not known

It is found, in practice, that if the standard deviation of a
sample is determined, its value is less than the value of
the standard deviation of the population fromwhich it is
drawn. This is as expected, since the range of a sample
is likely to be less than the range of the population. The
difference between the two standard deviations becomes
more pronounced when the sample size is small. Inves-
tigations have shown that the variance, s 2, of a sample
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ofN items is approximately related to the variance, σ 2,
of the population from which it is drawn by:

s2 =
(

N − 1
N

)

σ 2

The factor
(

N − 1
N

)

is known as Bessel’s correction.

This relationship may be used to find the relationship
between the standard deviation of a sample, s, and an
estimate of the standard deviation of a population, σ̂ ,
and is:

σ̂ 2 = s2
(

N

N − 1
)

i.e. σ̂ = s

√(
N

N − 1
)

For large samples, say, a minimum of N being 30,

the factor

√(
N

N − 1
)

is
√
30
29
which is approximately

equal to 1.017. Thus, for large samples s is very nearly

equal to σ̂ and the factor

√(
N

N − 1
)

can be omitted

without introducing any appreciable error. In equations
(1) and (2), s can be written for σ , giving:

z = x − μ
s√
N

for infinite populations (5)

and z = x − μ

s√
N

√(
Np − N

Np − 1
) (6)

for populations of size Np

For small samples, the factor

√(
N

N − 1
)

cannot be

disregarded and substituting σ = s

√(
N

N − 1
)

in equa-

tions (3) and (4) gives:

|t| = x − μ

s

√(
N

N − 1
)

√
N

= (x − μ)
√

(N − 1)
s

(7)

for infinite populations, and

|t| = x − μ

s

√(
N

N − 1
)

√
N

√(
Np − N

Np − 1
)

= (x − μ)
√

(N − 1)

s

√(
Np − N

Np − 1
) (8)

for populations of size Np

The equations given in this section are parts of tests
which are applied to determine population means. The
way in which some of them are used is shown in the
following worked problems.

Problem 4. Sugar is packed in bags by an
automatic machine. The mean mass of the contents
of a bag is 1.000 kg. Random samples of 36 bags
are selected throughout the day and the mean mass
of a particular sample is found to be 1.003 kg. If the
manufacturer is willing to accept a standard
deviation on all bags packed of 0.01 kg and a level
of significance of 0.05, above which values the
machine must be stopped and adjustments made,
determine if, as a result of the sample under test, the
machine should be adjusted.

Population mean μ = 1.000 kg, sample mean
x = 1.003 kg, population standard deviation σ = 0.01
kg and sample size, N = 36
A null hypothesis for this problem is that the sample
mean and the mean of the population are equal, i.e.
H0: x = μ

Since the manufacturer is interested in deviations on
both sides of the mean, the alternative hypothesis is that
the sample mean is not equal to the population mean,
i.e. H1: x �= μ

The decision rules associated with these hypothe-
ses are:

(i) rejectH0 if the z-value of the sample mean is out-
side of the range of the z-values corresponding to
a level of significance of 0.05 for a two-tailed test,
i.e. stop machine and adjust, and

(ii) accept H0 otherwise, i.e. keep the machine run-
ning.

The sample size is over 30 so this is a ‘large sample’
problem and the population can be considered to be infi-
nite. Because values of x, μ, σ and N are all known,
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equation (1) can be used to determine the z-value of the
sample mean,

i.e. z = x − μ
σ√
N

= 1.003− 1.000
0.01√
36

= ± 0.003
0.0016

= ± 1.8

The z-value corresponding to a level of significance of
0.05 for a two-tailed test is given in Table 65.1 on page
695 and is ±1.96. Since the z-value of the sample is
within this range, the null hypothesis is accepted and
the machine should not be adjusted.

Problem 5. The mean lifetime of a random
sample of 50 similar torch bulbs drawn from a
batch of 500 bulbs is 72 hours. The standard
deviation of the lifetime of the sample is 10.4 hours.
The batch is classed as inferior if the mean lifetime
of the batch is less than the population mean of
75 hours. Determine whether, as a result of the
sample data, the batch is considered to be inferior at
a level of significance of (a) 0.05 and (b) 0.01.

Population size, Np = 500, population mean, μ = 75
hours,meanof sample,x = 72 hours, standard deviation
of sample, s = 10.4 hours, size of sample, N = 50
The null hypothesis is that the mean of the sample is
equal to the mean of the population, i.e. H0: x = μ

The alternative hypothesis is that themean of the sample
is less than the mean of the population, i.e. H1: x < μ

(The fact that x = 72 should not lead to the conclusion
that the batch is necessarily inferior. At a level of sig-
nificance of 0.05, the result is‘probably significant’, but
since this corresponds to a confidence level of 95%,
there are still five times in every 100 when the result
can be significantly different, that is, be outside of the
range of z-values for this data. This particular sample
result may be one of these five times.)
The decision rules associatedwith the hypotheses are:

(i) reject H0 if the z-value (or t-value) of the sample
mean is less than the z-value (or t-value) corre-
sponding to a level of significance of (a) 0.05 and
(b) 0.01, i.e. the batch is inferior,

(ii) accept H0 otherwise, i.e. the batch is not inferior.

The data given is N , Np , x, s and μ. The alternative
hypothesis indicates a one-tailed distribution and since
N > 30 the ‘large sample’ theory applies.

From equation (6),

z = x − μ

s√
N

√(
Np − N

Np − 1
) = 72− 75

10.4√
50

√(
500− 50
500− 1

)

= −3
(1.471)(0.9496)

= − 2.15

(a) For a level of significance of 0.05 and a one-
tailed test, all values to the left of the z-ordinate at
−1.645 (see Table 65.1 on page 695) indicate that
the results are ‘not significant’, that is, they differ
significantly from the null hypothesis. Since the
z-value of the sample mean is−2.15, i.e. less than
−1.645, the batch is considered to be inferior at
a level of significance of 0.05

(b) The z-value for a level of significance of 0.01 for a
one-tailed test is−2.33 and in this case, z-values of
the samplemeans lying to the left of the z-ordinate
at−2.33 are ‘not significant’. Since the z-value of
the sample lies to the right of this ordinate, it does
not differ significantly from the null hypothesis
and the batch is not considered to be inferior at
a level of significance of 0.01

(At first sight, for a mean value to be significant
at a level of significance of 0.05, but not at 0.01,
appears to be incorrect. However, it is stated ear-
lier in the chapter that for a result to be probably
significant, i.e. at a level of significance of between
0.01 and 0.05, the range of z-values is less than the
range for the result to be highly significant, that is,
having a level of significance of 0.01 or better.
Hence the results of the problem are logical.)

Problem 6. An analysis of the mass of carbon in
six similar specimens of cast iron, each of mass
425.0 g, yielded the following results:

17.1 g, 17.3 g, 16.8 g, 16.9 g,
17.8 g, and 17.4 g

Test the hypothesis that the percentage of carbon is
4.00% assuming an arbitrary level of significance of
(a) 0.2 and (b) 0.1.

The sample mean,

x = 17.1+ 17.3+ 16.8+ 16.9+ 17.8+ 17.4
6

= 17.22
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The sample standard deviation,

s =

√√
√
√
√
√
√

⎧
⎪⎪⎨

⎪⎪⎩

(17.1− 17.22)2+ (17.3− 17.22)2
+(16.8− 17.22)2+ ·· · + (17.4− 17.22)2

6

⎫
⎪⎪⎬

⎪⎪⎭

= 0.334
The null hypothesis is that the sample and population
means are equal, i.e. H0 : x = μ

The alternative hypothesis is that the sample and popu-
lation means are not equal, i.e. H1 : x �= μ

The decision rules are:

(i) reject H0 if the z- or t-value of the sample mean
is outside of the range of the z- or t-value corre-
sponding to a level of significance of (a) 0.2 and
(b) 0.1, i.e. the mass of carbon is not 4.00%,

(ii) accept H0 otherwise, i.e. the mass of carbon is
4.00%

The number of tests taken, N , is 6 and an infinite
number of tests could have been taken, hence the pop-
ulation is considered to be infinite. Because N < 30, a
t-distribution is used.
If the mean mass of carbon in the bulk of the metal is
4.00%, the meanmass of carbon in a specimen is 4.00%
of 425.0, i.e. 17.00 g, thus μ = 17.00
From equation (7),

|t| = (x − μ)
√

(N − 1)
s

= (17.22− 17.00)√(6− 1)
0.334

= 1.473
In general, for any two-tailed distribution there is a

critical region both to the left and to the right of the
mean of the distribution. For a level of significance
of 0.2, 0.1 of the percentile value of a t-distribution
lies to the left of the mean and 0.1 of the percentile
value lies to the right of the mean. Thus, for a level of
significance of α, a value t(1− α

2 ) , is required for a two-
tailed distribution when using Table 64.2 on page 689.
This conversion is necessary because the t-distribution
is given in terms of levels of confidence and for a one-
tailed distribution. The row t-value for a value ofαof 0.2
is t(1− 02

2 ), i.e. t0.90. The degrees of freedom v areN − 1,
i.e. 5. FromTable 64.2 on page 689, the percentile value
corresponding to (t0.90, v = 5) is 1.48, and for a two-
tailed test, ±1.48. Since the mean value of the sample
is within this range, the hypothesis is accepted at a level
of significance of 0.2

The t-value for α = 0.1 is t(1− 0.1
2 ) , i.e. t0.95. The per-

centile value corresponding to t0.95, v = 5 is 2.02 and
since the mean value of the sample is within the range
±2.02, the hypothesis is also accepted at this level of sig-
nificance. Thus, it is probable that the mass of metal
contains 4% carbon at levels of significance of 0.2
and 0.1

Now try the following Practice Exercise

Practice Exercise 241 Significance tests for
population means (Answers on page 891)

1. A batch of cables produced by a manufacturer
have a mean breaking strength of 2000 kN and
a standard deviation of 100 kN. A sample of
50 cables is found to have a mean breaking
strength of 2050 kN. Test the hypothesis that
the breaking strength of the sample is greater
than the breaking strength of the population
fromwhich it is drawn at a level of significance
of 0.01

2. Nine estimations of the percentage of copper
in a bronze alloy have a mean of 80.8% and
standard deviation of 1.2%. Assuming that the
percentage of copper in samples is normally
distributed, test the null hypothesis that the
true percentage of copper is 80% against an
alternative hypothesis that it exceeds 80%, at
a level of significance of 0.05

3. The internal diameter of a pipe has a mean
diameter of 3.0000 cm with a standard devi-
ation of 0.015 cm. A random sample of 30
measurements are taken and the mean of the
samples is 3.0078 cm. Test the hypothesis that
the mean diameter of the pipe is 3.0000 cm at
a level of significance of 0.01

4. A fishing line has a mean breaking strength
of 10.25 kN. Following a special treatment on
the line, the following results are obtained for
20 specimens taken from the line

Breaking strength Frequency
(kN)

9.8 1

10 1

10.1 4
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Breaking strength Frequency
(kN)

10.2 5

10.5 3

10.7 2

10.8 2

10.9 1

11.0 1

Test the hypothesis that the special treatment
has improved the breaking strength at a level
of significance of 0.05

5. A machine produces ball bearings having a
mean diameter of 0.50 cm. A sample of ten
ball bearings is drawn at random and the sam-
ple mean is 0.53 cm with a standard deviation
of 0.03 cm. Test the hypothesis that the mean
diameter is 0.50 cm at a level of significance
of (a) 0.05 and (b) 0.01

6. Six similar switches are tested to destruction at
an overload of 20% of their normal maximum
current rating. Themean number of operations
before failure is 8200 with a standard devia-
tion of 145. The manufacturer of the switches
claims that they can be operated at least 8000
times at a 20% overload current. Can the man-
ufacturer’s claim be supported at a level of
significance of (a) 0.1 and (b) 0.02

65.4 Comparing two sample means

The techniques introduced in Section 65.3 can be used
for comparison purposes. For example, it may be nec-
essary to compare the performance of, say, two similar
lamps produced by different manufacturers or differ-
ent operators carrying out a test or tests on the same
items using different equipment. The null hypothesis
adopted for tests involving two different populations is
that there is no difference between the mean values of
the populations.
The technique is based on the following theorem:

If x1 and x2 are themeans of random samples of size
N1 and N2 drawn from populations having means

of μ1 and μ2 and standard deviations of σ1 and σ2,
then the sampling distribution of the differences of
the means, (x1− x2), is a close approximation to a
normal distribution, having a mean of zero and a

standard deviation of

√√
√
√

(
σ21
N1

+ σ22
N2

)

For large samples, when comparing themean values of
two samples, the variate is the difference in themeans of
the two samples, x1− x2; the mean of sampling distri-
bution (and hence the difference in population means is
zero and the standard error of the sampling distribution

σx is

√√
√
√

(
σ 21
N1

+ σ 22
N2

)

Hence, the z-value is

(x1− x2) − 0
√√
√
√

(
σ 21
N1

+ σ 22
N2

) = x1− x2√√
√
√

(
σ 21
N1

+ σ 22
N2

) (9)

For small samples, Student’s t-distribution values are
used and in this case:

|t| = x1− x2√√
√
√

(
σ 21
N1

+ σ 22
N2

) (10)

where |t|means the modulus of t , i.e. the positive value
of t .
When the standard deviation of the population is not

known, then Bessel’s correction is applied to estimate
it from the sample standard deviation (i.e. the estimate

of the population variance, σ 2 = s2
(

N

N − 1
)

(see page

690). For large populations, the factor
(

N

N − 1
)

is small

and may be neglected. However, when N < 30, this
correction factor should be included. Also, since esti-
mates of both σ1 and σ2 are being made, the k factor in
the degrees of freedom in Student’s t-distribution tables
becomes 2 and v is given by (N1+ N2− 2) . With these
factors taken into account, when testing the hypotheses
that samples come from the same population, or that
there is no difference between the mean values of two
populations, the t-value is given by:

|t| = x1− x2

σ

√(
1

N1
+ 1

N2

) (11)
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An estimate of the standard deviation σ is based on a
concept called ‘pooling’. This states that if one esti-
mate of the variance of a population is based on a

sample, giving a result of σ 21 = N1s
2
1

N1− 1 and another esti-

mate is based on a second sample, giving σ 22 = N2s
2
2

N2− 1 ,
then a better estimate of the population variance, σ 2, is
given by:

σ 2 = N1s
2
1 + N2s

2
2

(N1− 1) + (N2− 1)

i.e. σ =
√√
√
√

(
N1s

2
1 + N2s

2
2

N1+ N2− 2

)

(12)

Problem 7. An automatic machine is producing
components, and as a result of many tests the
standard deviation of their size is 0.02 cm. Two
samples of 40 components are taken, the mean size
of the first sample being 1.51 cm and the second
1.52 cm. Determine whether the size has altered
appreciably if a level of significance of 0.05 is
adopted, i.e. that the results are probably significant.

Since both samples are drawn from the same population,
σ1 = σ2 = σ = 0.02 cm. Also N1 = N2 = 40 and x1 =
1.51 cm, x2 = 1.52 cm.
The level of significance, α = 0.05
The null hypothesis is that the size of the component has
not altered, i.e. x1 = x2, hence it is H0: x1− x2 = 0.
The alternative hypothesis is that the size of the com-
ponents has altered, i.e. that x1 �= x2, hence it is
H1 : x1− x2 �= 0
For a large sample having a known standard deviation

of the population, the z-value of the difference of means
of two samples is given by equation (9), i.e.

Z = x1− x2√√
√
√

(
σ 21
N1

+ σ 22
N2

)

Since N1 = N2 = say, N , and σ1 = σ2 = σ , this equa-
tion becomes

z = x1− x2

σ

√(
2
N

) = 1.51− 1.52

0.02

√(
2
40

) = −2.236

Since the difference between x1 and x2 has no speci-
fied direction, a two-tailed test is indicated. The z-value
corresponding to a level of significance of 0.05 and a
two-tailed test is+1.96 (see Table 65.1, page 695). The
result for the z-value for the difference of means is out-
side of the range+1.96, that is, it is probable that the
size has altered appreciably at a level of significance
of 0.05

Problem 8. The electrical resistances of two
products are being compared. The parameters of
product 1 are:
sample size 40, mean value of sample
74 ohms, standard deviation of whole of
product 1 batch is 8 ohms

Those of product 2 are:
sample size 50, mean value of sample
78 ohms, standard deviation of whole of
product 2 batch is 7 ohms

Determine if there is any significant difference
between the two products at a level of significance
of (a) 0.05 and (b) 0.01

Let the mean of the batch of product 1 be μ1, and that
of product 2 be μ2
The null hypothesis is that the means are the same, i.e.
H0 : μ1− μ2 = 0
The alternative hypothesis is that the means are not the
same, i.e. H1 : μ1− μ2 �= 0
The population standard deviations are known, i.e.
σ1 = 8 ohms and σ2 = 7 ohms, the sample means are
known, i.e. x1 = 74 ohms and x2 = 78 ohms. Also the
sample sizes are known, i.e. N1 = 40 and N2 = 50.
Hence, equation (9) can be used to determine the z-
value of the difference of the sample means. From
equation (9),

z = x1− x2√√
√
√

(
σ 21
N1

+ σ 22
N2

) = 74− 78
√(

82

40
+ 72

50

)

= −4
1.606

= −2.49

(a) For a two-tailed test, the results are probably sig-
nificant at a 0.05 level of significance when z lies
between −1.96 and +1.96. Hence the z-value of
the difference of means shows there is ‘no signifi-
cance’, i.e. that product 1 is significantly differ-
ent from product 2 at a level of significance of
0.05
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(b) For a two-tailed test, the results are highly sig-
nificant at a 0.01 level of significance when z

lies between −2.58 and +2.58. Hence there is
no significant difference between product 1 and
product 2 at a level of significance of 0.01

Problem 9. The reaction time in seconds of two
people, A and B, are measured by electrodermal
responses and the results of the tests are as shown
below.

Person A(s) 0.243 0.243 0.239

Person B(s) 0.238 0.239 0.225

Person A(s) 0.232 0.229 0.241

Person B(s) 0.236 0.235 0.234

Find if there is any significant difference between
the reaction times of the two people at a level of
significance of 0.1

The mean, x, and standard deviation, s, of the response
times of the two people are determined.

xA =
0.243+ 0.243+ 0.239+ 0.232

+0.229+ 0.241
6

= 0.2378s

xB =
0.238+ 0.239+ 0.225+ 0.236

+0.235+ 0.234
6

= 0.2345s

sA =

√√
√
√
√
√
√

⎡

⎢
⎢
⎣

(0.234− 0.2378)2+ (0.243− 0.2378)2
+·· · + (0.241− 0.2378)2

6

⎤

⎥
⎥
⎦

= 0.00543s

sB =

√√
√
√
√
√
√

⎡

⎢
⎢
⎣

(0.238− 0.2345)2+ (0.239− 0.2345)2
+·· · + (0.234− 0.2345)2

6

⎤

⎥
⎥
⎦

= 0.00457s
The null hypothesis is that there is no difference
between the reaction times of the two people, i.e.
H0: xA − xB = 0

The alternative hypothesis is that the reaction times are
different, i.e. H1: xA − xB �= 0 indicating a two-tailed
test.
The sample numbers (combined) are less than 30 and
a t-distribution is used. The standard deviation of all
the reaction times of the two people is not known, so an
estimate based on the standard deviations of the samples
is used.ApplyingBessel’s correction, the estimate of the
standard deviation of the population,

σ 2 = s2
(

N

N − 1
)

gives σA = (0.00543)

√(
6
5

)

= 0.00595

and σB = (0.00457)

√(
6
5

)

= 0.00501
From equation (10), the t-value of the difference of the
means is given by:

|t| = xA − xB√√
√
√

(
σ 2A
NA

+ σ 2B
NB

)

= 0.2378− 0.2345
√(

0.005952

6
+ 0.005012

6

)

= 1.039
For a two-tailed test and a level of significance of 0.1,
the column heading in the t-distribution of Table 64.2
(on page 689) is t0.95 (refer to Problem 6). The degrees
of freedomdue to k being 2 is v = N1+ N2− 2, i.e. 6+
6− 2= 10. The corresponding t-value from Table 64.2
is 1.81. Since the t-value of the difference of the means
is within the range ±1.81, there is no significant dif-
ference between the reaction times at a level of
significance of 0.1

Problem 10. An analyst carries out ten analyses
on equal masses of a substance which is found to
contain a mean of 49.20 g of a metal, with a standard
deviation of 0.41 g. A trainee operator carries out
12 analyses on equal masses of the same substance
which is found to contain a mean of 49.30 g,
with a standard deviation of 0.32 g. Is there any
significance between the results of the operators?

Let μ1 and μ2 be the mean values of the amounts of
metal found by the two operators.
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The null hypothesis is that there is no difference
between the results obtained by the two operators, i.e.
H0: μ1 = μ2
The alternative hypothesis is that there is a differ-
ence between the results of the two operators, i.e.
H1: μ1 �= μ2
Under the hypothesis H0 the standard deviations of
the amount of metal, σ , will be the same, and from
equation (12)

σ =
√√
√
√

(
N1s

2
1 + N2s

2
2

N1+ N2− 2

)

=
√(

(10)(0.41)2+ (12)(0.32)2

10+ 12− 2
)

= 0.3814
The t-value of the results obtained is given by equation
(11), i.e.,

|t| = x1− x2

σ

√(
1

N1
+ 1

N2

) = 49.20− 49.30
(0.3814)

√( 1
10 + 1

12
)

= −0.612
For the results to be probably significant, a two-tailed
test and a level of significance of 0.05 is taken. H0 is
rejected outside of the range t−0.975 and t0.975. The num-
ber of degrees of freedom is N1+ N2− 2. For t0.975,
v = 20, from Table 64.2 on page 689, the range is from
−2.09 to +2.09. Since the t-value based on the sample
data is within this range, there is no significant differ-
ence between the results of the two operators at a
level of significance of 0.05

Now try the following Practice Exercise

Practice Exercise 242 Comparing two
sample means (Answers on page 891)

1. A comparison is beingmade betweenbatteries
used in calculators. Batteries of type A have
a mean lifetime of 24 hours with a standard
deviation of 4 hours, this data being calcu-
lated from a sample of 100 of the batteries.
A sample of 80 of the type B batteries has
a mean lifetime of 40 hours with a standard
deviation of 6 hours. Test the hypothesis that
the type B batteries have a mean lifetime of at

least 15 hours more than those of type A, at a
level of significance of 0.05

2. Two randomly selected groups of 50 opera-
tives in a factory are timed during an assembly
operation. The first group take a mean time
of 112 minutes with a standard deviation of
12 minutes. The second group take a mean
time of 117 minutes with a standard devia-
tion of 9 minutes. Test the hypothesis that the
mean time for the assembly operation is the
same for both groups of employees at a level
of significance of 0.05

3. Capacitors having a nominal capacitance of
24 μF but produced by two different compa-
nies are tested. The values of actual capaci-
tance are:

Company 1 21.4 23.6 24.8 22.4 26.3

Company 2 22.4 27.7 23.5 29.1 25.8

Test the hypothesis that the mean capacitance
of capacitors produced by company 2 are
higher than those produced by company 1 at a
level of significance of 0.01
(

Bessel’s correction is σ̂ 2 = s2N

N − 1
)

4. A sample of 100 relays produced by manufac-
turer A operated on average 1190 times before
failure occurred, with a standard deviation of
90.75. Relays produced by manufacturer B,
operated on average 1220 times before failure
with a standard deviation of 120. Determine
if the number of operations before failure are
significantly different for the two manufactur-
ers at a level of significance of (a) 0.05 and
(b) 0.01

5. A sample of 12 car engines produced by
manufacturer A showed that the mean petrol
consumption over a measured distance was
4.8 litres with a standard deviation of 0.40
litres. Twelve similar engines formanufacturer
B were tested over the same distance and the
mean petrol consumption was 5.1 litres with
a standard deviation of 0.36 litres. Test the
hypothesis that the engines produced by man-
ufacturer A are more economical than those
produced by manufacturer B at a level of
significance of (a) 0.01 and (b) 0.05
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6. Four-star and unleaded petrol is tested in
five similar cars under identical conditions.
For four-star petrol, the cars covered a mean
distance of 21.4 kilometres with a stan-
dard deviation of 0.54 kilometres for a
given mass of petrol. For the same mass of

unleaded petrol, the mean distance covered
was 22.6 kilometres with a standard deviation
of 0.48 kilometres. Test the hypothesis that
unleadedpetrol givesmore kilometres per litre
than four-star petrol at a level of significance
of 0.05

For fully worked solutions to each of the problems in Practice Exercises 240 to 242 in this chapter,
go to the website:

www.routledge.com/cw/bird
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Chapter 66

Chi-square and
distribution-free tests

Why it is important to understand: Chi-square and distribution-free tests
Chi-square and distribution-free tests are used in science and engineering. Chi-square is a statistical test
commonly used to compare observed data with data we would expect to obtain according to a specific
hypothesis. Distribution-free methods do not rely on assumptions that the data are drawn from a given
probability distribution. Non-parametric methods are widely used for studying populations that take on
a ranked order. These test are explained in this chapter.

At the end of this chapter, you should be able to:

• calculate a Chi-square value for a given distribution
• test hypotheses on fitting data to theoretical distribution using the Chi-square distribution
• recognise distribution-free test
• use the sign test for two samples
• use the Wilcoxon signed-rank test for two samples
• use the Mann–Whitney test for two samples

66.1 Chi-square values

The significance tests introduced in Chapter 65 rely
very largely on the normal distribution. For large sam-
ple numbers where z-values are used, the mean of the
samples and the standard error of the means of the
samples are assumed to be normally distributed (cen-
tral limit theorem). For small sample numbers where
t-values are used, the population from which samples
are taken should be approximately normally distributed
for the t-values to bemeaningful.Chi-square tests (pro-
nouncedKY and denoted by the Greek letter χ), which
are introduced in this chapter, do not rely on the popula-
tion or a sampling statistic such as the mean or standard

error of the means being normally distributed. Signifi-
cance tests based on z- and t-values are concerned with
the parameters of a distribution, such as themean and the
standard deviation, whereas Chi-square tests are con-
cerned with the individual members of a set and are
associated with non-parametric tests.

Observed and expected frequencies

The results obtained from trials are rarely exactly the
same as the results predicted by statistical theories. For
example, if a coin is tossed 100 times, it is unlikely that
the result will be exactly 50 heads and 50 tails. Let us
assume that, say, five people each toss a coin 100 times
and note the number of, say, heads obtained. Let the
results obtained be as shown below.

Higher Engineering Mathematics. 978-1-138-67357-1, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.
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Person A B C D E

Observed frequency 43 54 60 48 57

Expected frequency 50 50 50 50 50

A measure of the discrepancy existing between the
observed frequencies shown in row 2 and the expected
frequencies shown in row 3 can be determined by cal-
culating the Chi-square value. The Chi-square value is
defined as follows:

χ2 =
∑{

(o − e)2

e

}

whereo and e are the observed and expected frequencies
respectively.

Problem 1. Determine the Chi-square value for
the coin-tossing data given above.

The χ2 value for the given data may be calculated by
using a tabular approach as shown below.

Person Observed
frequency,

o

Expected
frequency,

e

A 43 50

B 54 50

C 60 50

D 48 50

E 57 50

o − e (o − e)2
(o − e)2

e

−7 49 0.98

4 16 0.32

10 100 2.00

−2 4 0.08

7 49 0.98

χ2 = ∑
{

(o − e)2

e

}

=
−−−−−−
4.36−−−−−−

Hence the Chi-square value χ2 = 4.36

If the value of χ2 is zero, then the observed and
expected frequencies agree exactly. The greater the
difference between the χ2-value and zero, the greater
the discrepancy between the observed and expected
frequencies.

Now try the following Practice Exercise

Practice Exercise 243 Determining
Chi-square values (Answers on page 892)

1. A dice is rolled 240 times and the observed
and expected frequencies are as shown.

Face Observed
frequency

Expected
frequency

1 49 40

2 35 40

3 32 40

4 46 40

5 49 40

6 29 40

Determine the χ2-value for this distribution.

2. The numbers of telephone calls received by
the switchboard of a company in 200 five-
minute intervals are shown in the distribution
below.

Number of
calls

Observed
frequency

Expected
frequency

0 11 16

1 44 42

2 53 52

3 46 42

4 24 26

5 12 14

6 7 6

7 3 2

Calculate the χ2-value for this data.
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66.2 Fitting data to theoretical
distributions

For theoretical distributions such as the binomial, Pois-
son and normal distributions, expected frequencies can
be calculated. For example, from the theory of the bino-
mial distribution, the probability of having 0,1,2, . . . ,n
defective items in a sample of n items can be determined
from the successive terms of (q + p)n, where p is the
defect rate and q = 1− p. These probabilities can be
used to determine the expected frequencies of having
0,1,2, . . . ,n defective items. As a result of counting the
number of defective items when sampling, the observed
frequencies are obtained. The expected and observed
frequencies can be compared by means of a Chi-square
test and predictions can bemade as towhether the differ-
ences are due to random errors, due to some fault in the
method of sampling, or due to the assumptions made.
As for normal and t distributions, a table is available for
relating various calculated values of χ2 to those likely
because of randomvariations, at various levels of confi-
dence. Such a table is shown inTable 66.1. InTable 66.1,
the column on the left denotes the number of degrees of
freedom, v, and when the χ2-values refer to fitting data
to theoretical distributions, the number of degrees of
freedom is usually (N − 1) , where N is the number of
rows in the table fromwhich χ2 is calculated. However,
when the population parameters such as the mean and
standard deviation are based on sample data, the num-
ber of degrees of freedom is given by v = N − 1− M ,
whereM is the number of estimated population param-
eters. An application of this is shown in Problem 4.
The columns of the table headed χ20.995, χ

2
0.99, . . . give

the percentile of χ2-values corresponding to levels of
confidence of 99.5%, 99%, . . . (i.e. levels of significance
of 0.005, 0.01 , . . .). On the far right of the table, the
columns headed . . ., χ20.01, χ

2
0.005 also correspond to lev-

els of confidence of . . .99%, 99.5%, and are used to
predict the ‘too good to be true’ type results,where thefit
obtained is so good that the method of samplingmust be
suspect. The method in which χ2-values are used to test
the goodness of fit of data to probability distributions is
shown in the following problems.

Problem 2. As a result of a survey carried out of
200 families, each with five children, the
distribution shown below was produced. Test the
null hypothesis that the observed frequencies are
consistent with male and female births being
equally probable, assuming a binomial distribution,
a level of significance of 0.05 and a ‘too good to be
true’ fit at a confidence level of 95%

Number of boys (B)
and girls (G)

Number of
families

5B, 0G 11

4B, 1G 35

3B, 2G 69

2B, 3G 55

1B, 4G 25

0B, 5G 5

To determine the expected frequencies

Using the usual binomial distribution symbols, let p

be the probability of a male birth and q = 1− p be the
probabilityof a female birth. The probabilities of having
5 boys, 4 boys, . . . ,0 boys are given by the successive
terms of the expansion of (q + p)n. Since there are five
children in each family, n = 5, and

(q + p)5 = q5+ 5q4p + 10q3p2+ 10q2p3
+ 5qp4+ p5

When q = p = 0.5, the probabilities of 5 boys,
4 boys, . . . ,0 boys are
0.03125, 0.15625, 0.3125, 0.3125,

0.15625 and 0.3125

For 200 families, the expected frequencies, rounded off
to the nearest whole number are: 6, 31, 63, 63, 31 and 6
respectively.

To determine the χχχ2-value

Using a tabular approach, the χ2-value is calculated
using χ2 = ∑{

(0−e)2

e

}

Number of
boys (B)
and girls (G)

Observed
frequency,

o

Expected
frequency,

e

5B, 0G 11 6

4B, 1G 35 31

3B, 2G 69 63

2B, 3G 55 63

1B, 4G 25 31

0B, 5G 5 6
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Table 66.1 Chi-square distribution

�p
2

Percentile values (χ2p) for the Chi-square distribution with v degrees of freedom

v χ20.995 χ0.99
2 χ20.975 χ20.95 χ20.90 χ20.75 χ20.50 χ20.25 χ20.10 χ20.05 χ20.025 χ20.01 χ20.005

1 7.88 6.63 5.02 3.84 2.71 1.32 0.455 0.102 0.0158 0.0039 0.0010 0.0002 0.0000

2 10.6 9.21 7.38 5.99 4.61 2.77 1.39 0.575 0.211 0.103 0.0506 0.0201 0.0100

3 12.8 11.3 9.35 7.81 6.25 4.11 2.37 1.21 0.584 0.352 0.216 0.115 0.072

4 14.9 13.3 11.1 9.49 7.78 5.39 3.36 1.92 1.06 0.711 0.484 0.297 0.207

5 16.7 15.1 12.8 11.1 9.24 6.63 4.35 2.67 1.61 1.15 0.831 0.554 0.412

6 18.5 16.8 14.4 12.6 10.6 7.84 5.35 3.45 2.20 1.64 1.24 0.872 0.676

7 20.3 18.5 16.0 14.1 12.0 9.04 6.35 4.25 2.83 2.17 1.69 1.24 0.989

8 22.0 20.1 17.5 15.5 13.4 10.2 7.34 5.07 3.49 2.73 2.18 1.65 1.34

9 23.6 21.7 19.0 16.9 14.7 11.4 8.34 5.90 4.17 3.33 2.70 2.09 1.73

10 25.2 23.2 20.5 18.3 16.0 12.5 9.34 6.74 4.87 3.94 3.25 2.56 2.16

11 26.8 24.7 21.9 19.7 17.3 13.7 10.3 7.58 5.58 4.57 3.82 3.05 2.60

12 28.3 26.2 23.3 21.0 18.5 14.8 11.3 8.44 6.30 5.23 4.40 3.57 3.07

13 29.8 27.7 24.7 22.4 19.8 16.0 12.3 9.30 7.04 5.89 5.01 4.11 3.57

14 31.3 29.1 26.1 23.7 21.1 17.1 13.3 10.2 7.79 6.57 5.63 4.66 4.07

15 32.8 30.6 27.5 25.0 22.3 18.2 14.3 11.0 8.55 7.26 6.26 5.23 4.60

16 34.3 32.0 28.8 26.3 23.5 19.4 15.3 11.9 9.31 7.96 6.91 5.81 5.14

17 35.7 33.4 30.2 27.6 24.8 20.5 16.3 12.8 10.1 8.67 7.56 6.41 5.70

18 37.2 34.8 31.5 28.9 26.0 21.6 17.3 13.7 10.9 9.39 8.23 7.01 6.26

19 38.6 36.2 32.9 30.1 27.2 22.7 18.3 14.6 11.7 10.1 8.91 7.63 6.84

20 40.0 37.6 34.4 31.4 28.4 23.8 19.3 15.5 12.4 10.9 9.59 8.26 7.43

21 41.4 38.9 35.5 32.7 29.6 24.9 20.3 16.3 13.2 11.6 10.3 8.90 8.03

22 42.8 40.3 36.8 33.9 30.8 26.0 21.3 17.2 14.0 12.3 11.0 9.54 8.64

23 44.2 41.6 38.1 35.2 32.0 27.1 22.3 18.1 14.8 13.1 11.7 10.2 9.26

24 45.6 43.0 39.4 36.4 33.2 28.2 23.3 19.0 15.7 13.8 12.4 10.9 9.89

25 46.9 44.3 40.6 37.7 34.4 29.3 24.3 19.9 16.5 14.6 13.1 11.5 10.5

26 48.3 45.9 41.9 38.9 35.6 30.4 25.3 20.8 17.3 15.4 13.8 12.2 11.2

27 49.6 47.0 43.2 40.1 36.7 31.5 26.3 21.7 18.1 16.2 14.6 12.9 11.8
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Table 66.1 (Continued)

v χ20.995 χ20.99 χ20.975 χ20.95 χ20.90 χ20.75 χ20.50 χ20.25 χ20.10 χ20.05 χ20.025 χ20.01 χ20.005

28 51.0 48.3 44.5 41.3 37.9 32.6 27.3 22.7 18.9 16.9 15.3 13.6 12.5

29 52.3 49.6 45.7 42.6 39.1 33.7 28.3 23.6 19.8 17.7 16.0 14.3 13.1

30 53.7 50.9 47.7 43.8 40.3 34.8 29.3 24.5 20.6 18.5 16.8 15.0 13.8

40 66.8 63.7 59.3 55.8 51.8 45.6 39.3 33.7 29.1 26.5 24.4 22.2 20.7

50 79.5 76.2 71.4 67.5 63.2 56.3 49.3 42.9 37.7 34.8 32.4 29.7 28.0

60 92.0 88.4 83.3 79.1 74.4 67.0 59.3 52.3 46.5 43.2 40.5 37.5 35.5

70 104.2 100.4 95.0 90.5 85.5 77.6 69.3 61.7 55.3 51.7 48.8 45.4 43.3

80 116.3 112.3 106.6 101.9 96.6 88.1 79.3 71.1 64.3 60.4 57.2 53.5 51.2

90 128.3 124.1 118.1 113.1 107.6 98.6 89.3 80.6 73.3 69.1 65.6 61.8 59.2

100 140.2 135.8 129.6 124.3 118.5 109.1 99.3 90.1 82.4 77.9 74.2 70.1 67.3

0− e (o − e)2
(o − e)2

e

5 25 4.167

4 16 0.516

6 36 0.571

−8 64 1.016

−6 36 1.161

−1 1 0.167

χ2 = ∑
{

(o − e)2

e

}

=
−−−−−−
7.598−−−−−−

To test the significance of the χχχ2-value

The number of degrees of freedom is given by v =
N − 1whereN is the number of rows in the table above,
thus v = 6− 1= 5. For level of significance of 0.05,
the confidence level is 95%, i.e. 0.95 per unit. From
Table 66.1 for theχ20.95, v = 5 value, the percentile value
χ2p is 11.1. Since the calculated value of χ2 is less than
χ2p the null hypothesis that the observed frequen-
cies are consistent withmale and female births being
equally probable is accepted.
For a confidence level of 95%, the χ20.05, v = 5 value
fromTable 66.1 is 1.15 and because the calculated value
of χ2 (i.e. 7.598) is greater than this value, the fit is not
so good as to be unbelievable.

Problem 3. The deposition of grit particles from
the atmosphere is measured by counting the number
of particles on 200 prepared cards in a specified
time. The following distribution was obtained.

Number of particles 0 1 2 3 4 5 6

Number of cards 41 69 44 27 12 6 1

Test the null hypothesis that the deposition of grit
particles is according to a Poisson distribution at a
level of significance of 0.01 and determine if the
data is ‘too good to be true’ at a confidence level of
99%

To determine the expected frequency

The expectation or average occurrence is given by:

λ = total number of particles deposited
total number of cards

= 69+ 88+ 81+ 48+ 30+ 6
200

= 1.61
The expected frequencies are calculated using a Pois-
son distribution, where the probabilities of there being
0,1,2, . . . ,6 particles deposited are given by the succes-

sive terms of e−λ

(

1+ λ+ λ2

2!
+ λ3

3!
+ ·· ·

)

taken from

left to right,

i.e. e−λ, λe−λ,
λ2e−λ

2!
,
λ3e−λ

3!
· · ·
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Calculating these terms for λ = 1.61 gives:

Number of
particles
deposited

Probability Expected
frequency

0 0.1999 40

1 0.3218 64

2 0.2591 52

3 0.1390 28

4 0.0560 11

5 0.0180 4

6 0.0048 1

To determine the χχχ2-value

The χ2-value is calculated using a tabular method as
shown below.

Number of
grit particles

Observed
frequency, o

Expected
frequency, e

0 41 40

1 69 64

2 44 52

3 27 28

4 12 11

5 6 4

6 1 1

o − e (o − e)2
(o − e)2

e

1 1 0.0250

5 25 0.3906

−8 64 1.2308

−1 1 0.0357

1 1 0.0909

2 4 1.0000

0 0 0.0000

χ2 = ∑
{

(o − e)2

e

}

=
−−−−−−
2.773−−−−−−

To test the significance of the χχχ2-value

The number of degrees of freedom is v = N − 1, where
N is the number of rows in the table above, giving
v = 7− 1= 6. The percentile value of χ2 is determined
from Table 66.1, for (χ20.99, v = 6) , and is 16.8. Since
the calculated value of χ2 (i.e. 2.773 is smaller than the
percentile value, the hypothesis that the grit deposi-
tion is according to aPoissondistribution is accepted.
For a confidence level of 99%, the (χ20.01, v = 6) value
is obtained from Table 66.1, and is 0.872. Since the cal-
culated value of χ2 is greater than this value, the fit is
not ‘too good to be true’.

Problem 4. The diameters of a sample of 500
rivets produced by an automatic process have the
following size distribution.

Diameter (mm) Frequency

4.011 12

4.015 47

4.019 86

4.023 123

4.027 107

4.031 97

4.035 28

Test the null hypothesis that the diameters of the
rivets are normally distributed at a level of
significance of 0.05 and also determine if the
distribution gives a ‘too good’ fit at a level of
confidence of 90%

To determine the expected frequencies

In order to determine the expected frequencies, themean
and standard deviation of the distribution are required.
These population parameters, μ and σ , are based on
sample data, x and s, and an allowance is made in the
number of degrees of freedom used for estimating the
population parameters from sample data.
The sample mean,

x =
12(4.011) + 47(4.015)+ 86(4.019) + 123(4.023)

+107(4.027) + 97(4.031)+ 28(4.035)
500

= 2012.176
500

= 4.024
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The sample standard deviation s is given by:

s =

√√
√
√
√
√
√

⎡

⎢
⎢
⎣

12(4.011− 4.024)2+ 47(4.015− 4.024)2
+·· · + 28(4.035− 4.024)2

500

⎤

⎥
⎥
⎦

=
√
0.017212
500

= 0.00587

The class boundaries for the diameters are 4.009 to
4.013, 4.013 to 4.017, and so on, and are shown in col-
umn 2 of Table 66.2. Using the theory of the normal
probability distribution, the probability for each class
and hence the expected frequency is calculated as shown
in Table 66.2.
In column 3, the z-values corresponding to the class

boundaries are determined using z = x − x

s
which in

this case is z = x − 4.024
0.00587

. The area between a z-

value in column 3 and the mean of the distribution

at z = 0 is determined using the table of partial areas
under the standardised normal distribution curve given
in Table 61.1 on page 661, and is shown in column
4. By subtracting the area between the mean and the
z-value of the lower class boundary from that of the
upper class boundary, the area and hence the probability
of a particular class is obtained, and is shown in column
5. There is one exception in column 5, corresponding to
class boundaries of 4.021 and 4.025,where the areas are
added to give the probability of the 4.023 class. This is
because these areas lie immediately to the left and right
of the mean value. Column 6 is obtained by multiplying
the probabilities in column5 by the sample number. 500
The sum of column 6 is not equal to 500 because the
area under the standardizednormal curve for z-values of
less than −2.56 and more than 2.21 are neglected. The
error introduced by doing this is 10 in 500, i.e. 2%, and
is acceptable in most problems of this type. If it is not
acceptable, each expected frequency can be increased
by the percentage error.

Table 66.2

1
Class

mid-point

2
Class

boundaries, x

3
z-value for

class boundary

4
Area from
0 to z

5
Area for
class

6
Expected
frequency

4.009 −2.56 0.4948

4.011 0.0255 13

4.013 −1.87 0.4693

4.015 0.0863 43

4.017 −1.19 0.3830

4.019 0.1880 94

4.021 −0.51 0.1950

4.023 0.2628 131

4.025 0.17 0.0678

4.027 0.2345 117

4.029 0.85 0.3023

4.031 0.1347 67

4.033 1.53 0.4370

4.035 0.0494 25

4.037 2.21 0.4864

Total
−−−−−−
490−−−−−−
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To determine the χχχ2-value

The χ2-value is calculated using a tabular method as
shown below.

Diameter
of rivets

Observed
frequency, o

Expected
frequency, e

4.011 12 13

4.015 47 43

4.019 86 94

4.023 123 131

4.027 107 117

4.031 97 67

4.035 28 25

o − e (o − e)2
(o − e)2

e

−1 1 0.0769

4 16 0.3721

−8 64 0.6809

−8 64 0.4885

−10 100 0.8547

30 900 13.4328

3 9 0.3600

χ2 = ∑
{

(o − e)2

e

}

=
−−−−−−−−
16.2659−−−−−−−−

To text the significance of the χχχ2-value

The number of degrees of freedom is given byN − 1−
M , whereM is the number of estimated parameters in
the population. Both the mean and the standard devia-
tion of the population are based on the sample value,
M = 2, hence v = 7− 1− 2= 4. From Table 66.1, the
χ2p-value corresponding to χ20.95 and v4 is 9.49. Hence
the null hypothesis that the diameters of the rivets
are normally distributed is rejected. For χ20.10, v4, the
χ2p-value is 1.06, hence the fit is not ‘too good’. Since
the null hypothesis is rejected, the second significance
test need not be carried out.

Now try the following Practice Exercise

Practice Exercise 244 Fitting data to
theoretical distributions (Answers on
page 892)

1. Test the null hypothesis that the observed data
given below fits a binomial distribution of the
form 250(0.6+ 0.4)7 at a level of significance
of 0.05

Observed
frequency 8 27 62 79 45 24 5 0

Is the fit of the data ‘too good’ at a level of
confidence of 90%?

2. The data given below refers to the number of
people injured in a city by accidents forweekly
periods throughout a year. It is believed that
the data fits a Poisson distribution. Test the
goodness offit at a level of significance of 0.05

Number of
people injured
in the week

Number of
weeks

0 5

1 12

2 13

3 9

4 7

5 4

6 2

3. The resistances of a sample of carbon resistors
are as shown below.

Resistance
(M�)

Frequency

1.28 7

1.29 19

1.30 41

1.31 50

1.32 73
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Resistance
(M�)

Frequency

1.33 52

1.34 28

1.35 17

1.36 9

Test the null hypothesis that this data corre-
sponds to a normal distribution at a level of
significance of 0.05

4. The quality assurance department of a firm
selects 250 capacitors at random from a large
quantity of them and carries out various tests
on them. The results obtained are as follows:

Number of
tests failed

Number of
capacitors

0 113

1 77

2 39

3 16

4 4

5 1

6 and over 0

Test the goodness of fit of this distribution to a
Poisson distribution at a level of significance
of 0.05

5. Test the hypothesis that the maximum load
before breaking supported by certain cables
produced by a company follows a normal dis-
tribution at a level of significance of 0.05,
based on the experimental data given below.
Also test to see if the data is ‘too good’ at a
level of significance of 0.05

Maximum
load (MN)

Number of
cables

8.5 2

9.0 5

9.5 12

Maximum
load (MN)

Number of
cables

10.0 17

10.5 14

11.0 6

11.5 3

12.0 1

66.3 Introduction to distribution-free
tests

Sometimes, sampling distributions arise from popula-
tions with unknown parameters. Tests that deal with
such distributions are called distribution-free tests;
since they do not involve the use of parameters,
they are known as non-parametric tests. Three such
tests are explained in this chapter – the sign test in
Section 66.4 following, the Wilcoxon signed-rank
test in Section 66.5 and the Mann–Whitney test in
Section 66.6.

66.4 The sign test

The sign test is the simplest, quickest and oldest of all
non-parametric tests.

Procedure

(i) State for the data the null and alternative hypothe-
ses, H0 and H1

(ii) Know whether the stated significance level, α,
is for a one-tailed or a two-tailed test. Let, for
example, H0 : x = φ, then if H1 : x �= φ then a
two-tailed test is suggested because x could be
less than ormore thanφ (thus useα2 in Table 66.3
on page 718), but if sayH1 : x < φ orH1 : x > φ

then a one-tailed test is suggested (thus use α1 in
Table 66.3).

(iii) Assign plus or minus signs to each piece of data –
comparedwithφ (see Problems 5 and 6) or assign
plus and minus signs to the difference for paired
observations (see Problem 7).

(iv) Sumeither the number of plus signs or the number
of minus signs. For the two-tailed test, whichever
is the smallest is taken; for a one-tailed test, the

Download more at Learnclax.com



Se
ct

io
n

K

Chi-square and distribution-free tests 717

one which would be expected to have the smaller
value when H1 is true is used. The sum decided
upon is denoted by S.

(v) Use Table 66.3 for given values of n andα 1 orα2
to read the critical region of S. For example, if,
say, n = 16 and α1 = 5%, then from Table 66.3,
S ≤ 4. Thus if S in part (iv) is greater than 4
we accept the null hypothesis H0 and if S is
less than or equal to 4 we accept the alternative
hypothesisH1

This procedure for the sign test is demonstrated in the
following Problems.

Problem 5. A manager of a manufacturer is
concerned about suspected slow progress in dealing
with orders. He wants at least half of the orders
received to be processed within a working day
(i.e. seven hours). A little later he decides to time 17
orders selected at random, to check if his request
had been met. The times spent by the 17 orders
being processed were as follows:

4 34 h 9 34 h 15 12 h 11h 8 14 h 6 12 h

9h 8 34 h 10 34 h 3 12 h 8 12 h 9 12 h

15 14 h 13h 8h 7 34 h 6 34 h

Use the sign test at a significance level of 5% to
check if the manager’s request for quicker
processing is being met.

Using the above procedure:
(i) The hypotheses are H0: t = 7h and H: t > 7h,

where t is time.

(ii) SinceH1 is t > 7h, a one-tail test is assumed, i.e.
α1 = 5%

(iii) In the sign test each value of data is assigned a +
or− sign. For the above data let us assign a+ for
times greater than seven hours and a – for less than
seven hours. This gives the following pattern:

− + + + + − + + +
− + + + + + + −

(iv) The test statistic, S in this case, is the number of
minus signs (− if H0 were true there would be
an equal number of + and − signs). Table 66.3
gives critical values for the sign test and is given
in terms of small values; hence in this case S is
the number of − signs, i.e. S= 4

(v) From Table 66.3, with a sample size n =
17, for a significance level of α1 = 5%,
S ≤ 4.
Since S = 4 in our data, the result is signifi-
cant at α1 = 5%, i.e. the alternative hypothesis
is accepted – it appears that the manager’s
request for quicker processing of orders is not
being met.

Problem 6. The following data represents the
number of hours that a portable car vacuum cleaner
operates before recharging is required.

Operating
time (h) 1.4 2.3 0.8 1.4 1.8 1.5

1.9 1.4 2.1 1.1 1.6

Use the sign test to test the hypothesis, at a 5% level
of significance, that this particular vacuum cleaner
operates, on average, 1.7 hours before needing a
recharge.

Using the procedure:

(i) Null hypothesisH0: t = 1.7h
Alternative hypothesisH1: t �= 1.7h

(ii) Significance level, α2 = 5% (since this is a two-
tailed test).

(iii) Assuming a + sign for times >1.7 and a – sign
for times <1.7 gives:

− + − − + − + − + − −

(iv) There are four plus signs and seven minus signs;
taking the smallest number, S= 4

(v) From Table 66.3, where n = 11 and α2 = 5%,
S ≤ 1
Since S = 4 falls in the acceptance region (i.e. in
this case is greater than 1), the null hypothesis is
accepted, i.e. the average operating time is not
significantly different from 1.7 h.

Problem 7. An engineer is investigating two
different types of metering devices, A and B, for an
electronic fuel injection system to determine if they
differ in their fuel mileage performance. The
system is installed on 12 different cars, and a test is
run with each metering system in turn on each car.
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Table 66.3 Critical values for the sign test

α1 = 5% 212% 1% 1
2% α1 = 5% 212% 1% 1

2%

n α2 = 10% 5% 2% 1% n α2 = 10% 5% 2% 1%

1 — — — — 26 8 7 6 6

2 — — — — 27 8 7 7 6

3 — — — — 28 9 8 7 6

4 — — — — 29 9 8 7 7

5 0 — — — 30 10 9 8 7

6 0 0 — — 31 10 9 8 7

7 0 0 0 — 32 10 9 8 8

8 1 0 0 0 33 11 10 9 8

9 1 1 0 0 34 11 10 9 9

10 1 1 0 0 35 12 11 10 9

11 2 1 1 0 36 12 11 10 9

12 2 2 1 1 37 13 12 10 10

13 3 2 1 1 38 13 12 11 10

14 3 2 2 1 39 13 12 11 11

15 3 3 2 2 40 14 13 12 11

16 4 3 2 2 41 14 13 12 11

17 4 4 3 2 42 15 14 13 12

18 5 4 3 3 43 15 14 13 12

19 5 4 4 3 44 16 15 13 13

20 5 5 4 3 45 16 15 14 13

21 6 5 4 4 46 16 15 14 13

22 6 5 5 4 47 17 16 15 14

23 7 6 5 4 48 17 16 15 14

24 7 6 5 5 49 18 17 15 15

25 7 7 6 5 50 18 17 16 15

The observed fuel mileage data (in miles/gallon) is
shown on the right.
Use the sign test at a level of significance of 5% to
determine whether there is any difference between
the two systems.

A 18.7 20.3 20.8 18.3 16.4 16.8

B 17.6 21.2 19.1 17.5 16.9 16.4

A 17.2 19.1 17.9 19.8 18.2 19.1

B 17.7 19.2 17.5 21.4 17.6 18.8
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Using the procedure:

(i) H0: FA = FB and H1: FA �= FB where FA and
FB are the fuels inmiles/gallon for systemsA and
B respectively.

(ii) α2 = 5% (since it is a two-tailed test).

(iii) The difference between the observations is deter-
mined and a + or a − sign assigned to each as
shown below:
(A−B) +1.1 −0.9 +1.7 +0.8

−0.5 +0.4 −0.5 −0.1
+0.4 −1.6 +0.6 +0.3

(iv) There are seven ‘+ signs and five ‘− signs’.
Taking the smallest number, S= 5

(v) From Table 66.3, with n = 12 and α2 = 5%,
S ≤ 2

Since from (iv), S is not equal or less than 2,
the null hypothesis cannot be rejected, i.e. the
two metering devices produce the same fuel
mileage performance.

Now try the following Practice Exercise

Practice Exercise 245 The sign test
(Answers on page 892)

1. The following data represent the number of
hours of flight training received by 16 trainee
pilots prior to their first solo flight:

11.5h 20h 9h 12.5h 15h 19h

11h 10.5h 13h 22h 14.5h 16.5h

17h 18h 14h 12h

Use the sign test at a significance level of 2%
to test the claim that, on average, the trainees
solo after 15 hours of flight training.

2. In a laboratory experiment, 18 measurements
of the coefficient of friction,μ, betweenmetal
and leather gave the following results:

0.60 0.57 0.51 0.55 0.66 0.56

0.52 0.59 0.58 0.48 0.59 0.63

0.61 0.69 0.57 0.51 0.58 0.54

Use the sign test at a level of significance of
5% to test the null hypothesisμ = 0.56 against
an alternative hypothesis μ �= 0.56

3. 18 random samples of two types of 9 V batter-
ies are taken and the mean lifetime (in hours)
of each are:

Type A 8.2 7.0 11.3 13.9 9.0
13.8 16.2 8.6 9.4 3.6
7.5 6.5 18.0 11.5 13.4
6.9 14.2 12.4

Type B 15.3 15.4 11.2 16.1 18.1
17.1 17.7 8.4 13.5 7.8
9.8 10.6 16.4 12.7 16.8
9.9 12.9 14.7

Use the sign test, at a level of significance of
5%, to test the null hypothesis that the two
samples come from the same population.

66.5 Wilcoxon signed-rank test

The sign test represents data by using only plus and
minus signs, all other information being ignored. The
Wilcoxon signed-rank test does make some use of the
sizes of the differences between the observed values
and the hypothesisedmedian. However, the distribution
needs to be continuous and reasonably symmetric.

Procedure

(i) State for the data the null and alternative hypothe-
ses, H0 andH1

(ii) Know whether the stated significance level, α, is
for a one-tailed or a two-tailed test (see (ii) in the
procedure for the sign test on page 716).

(iii) Find the difference of eachpiece of data compared
with the null hypothesis (see Problems 8 and 9)
or assign plus and minus signs to the difference
for paired observations (see Problem 10).

(iv) Rank the differences, ignoring whether they are
positive or negative.

(v) The Wilcoxon signed-rank statistic T is cal-
culated as the sum of the ranks of either the
positive differences or the negative differences–
whichever is the smaller for a two-tailed test,
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and the one which would be expected to have the
smaller valuewhenH1 is true for a one-tailed test.

(vi) Use Table 66.4 for given values of n, andα 1 orα2
to read the critical region of T . For example, if,
say, n = 16 and α1 = 5%, then from Table 66.4,
T ≤ 35. Thus if T in part (v) is greater than 35

we accept the null hypothesis H0 and if T is
less than or equal to 35 we accept the alternative
hypothesisH1

This procedure for the Wilcoxon signed-rank test is
demonstrated in the following Problems.

Table 66.4 Critical values for the Wilcoxon signed-rank test

α1 = 5% 212% 1% 1
2% α1 = 5% 212% 1% 1

2%

n α2 = 10% 5% 2% 1% n α2 = 10% 5% 2% 1%

1 — — — — 26 110 98 84 75

2 — — — — 27 119 107 92 83

3 — — — — 28 130 116 101 91

4 — — — — 29 140 126 110 100

5 0 — — — 30 151 137 120 109

6 2 0 — — 31 163 147 130 118

7 3 2 0 — 32 175 159 140 128

8 5 3 1 0 33 187 170 151 138

9 8 5 3 1 34 200 182 162 148

10 10 8 5 3 35 213 195 173 159

11 13 10 7 5 36 227 208 185 171

12 17 13 9 7 37 241 221 198 182

13 21 17 12 9 38 256 235 211 194

14 25 21 15 12 39 271 249 224 207

15 30 25 19 15 40 286 264 238 220

16 35 29 23 19 41 302 279 252 233

17 41 34 27 23 42 319 294 266 247

18 47 40 32 27 43 336 310 281 261

19 53 46 37 32 44 353 327 296 276

20 60 52 43 37 45 371 343 312 291

21 67 58 49 42 46 389 361 328 307

22 75 65 55 48 47 407 378 345 322

23 83 73 62 54 48 426 396 362 339

24 91 81 69 61 49 446 415 379 355

25 100 89 76 68 50 466 434 397 373
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Problem 8. A manager of a manufacturer is
concerned about suspected slow progress in dealing
with orders. He wants at least half of the orders
received to be processed within a working day (i.e.
seven hours). A little later he decides to time 17
orders selected at random, to check if his request
had been met. The times spent by the 17 orders
being processed were as follows:

4 34 h 9 34 h 15 12 h 11 h 8 14 h 6 12 h

9 h 8 34 h 10 34 h 3 12 h 8 12 h 9 12 h

15 14 h 13 h 8 h 7 34 h 6 34 h

Use the Wilcoxon signed-rank test at a significance
level of 5% to check if the manager’s request for
quicker processing is being met.

(This is the same as Problem 5 where the sign test was
used.)
Using the procedure:

(i) The hypotheses areH0 : t = 7h andH1 : t > 7h,
where t is time.

(ii) SinceH1 is t > 7 h, a one-tail test is assumed, i.e.
α1 = 5%

(iii) Taking the difference between the time taken for
each order and 7 h gives:

−214 h +2 34 h +8 12 h +4 h +1 14 h
− 1
2 h +2 h +1 34 h +3 34 h −3 12 h

+112 h +2 12 h +8 14 h +6 h +1 h
+ 3
4 h − 1

4 h

(iv) These differences may now be ranked from 1 to
17, ignoringwhether they are positive or negative:

Rank 1 2 3 4 5 6

Difference − 1
4 − 1

2
3
4 1 1 14 1 12

Rank 7 8 9 10 11 12

Difference 1 34 2 −2 14 2 12 2 34 −312

Rank 13 14 15 16 17

Difference 3 34 4 6 8 14 8 12

(v) The Wilcoxon signed-rank statistic T is calcu-
lated as the sum of the ranks of the negative
differences for a one-tailed test.
The sum of the ranks for the negative values is:

T = 1+ 2+ 9+ 12= 24
(vi) Table 66.4 gives the critical values of T for

the Wilcoxon signed-rank test. For n = 17 and
a significance level α1 = 5%, T ≤ 41

Hence the conclusion is that since T= 24 the result is
within the 5% critical region.There is therefore strong
evidence to support H1, the alternative hypothe-
sis, that the median processing time is greater than
seven hours.

Problem 9. The following data represents the
number of hours that a portable car vacuum cleaner
operates before recharging is required.

Operating
time (h) 1.4 2.3 0.8 1.4 1.8 1.5

1.9 1.4 2.1 1.1 1.6

Use the Wilcoxon signed-rank test to test the
hypothesis, at a 5% level of significance, that this
particular vacuum cleaner operates, on average,
1.7 hours before needing a recharge.

(This is the same as Problem 6 where the sign test was
used.)
Using the procedure:

(i) H0 : t = 1.7h and H1 : t �= 1.7h.
(ii) Significance level, α2 = 5% (since this is a two-

tailed test).

(iii) Taking the difference between each operating
time and 1.7 h gives:

−0.3h +0.6h −0.9h −0.3h
+0.1h −0.2h +0.2h −0.3h
+0.4h −0.6h −0.1h

(iv) These differencesmay nowbe ranked from1 to 11
(ignoring whether they are positive or negative).
Some of the differences are equal to each other.
For example, there are two 0.1s (ignoring signs)
that would occupy positions 1 and 2 when
ordered. We average these as far as rankings are

concerned, i.e. each is assigned a rankingof
1+ 2
2

i.e. 1.5. Similarly, the two 0.2 values in positions 3
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and 4when ordered are each as signed rankings of
3+ 4
2

i.e. 3.5, and the three 0.3 values in positions

5, 6, and7 are each assigned rankings of
5+ 6+ 7
3

i.e. 6, and so on. The rankings are therefore:

Rank 1.5 1.5 3.5 3.5

Difference +0.1 −0.1 −0.2 +0.2

Rank 6 6 6 8

Difference −0.3 −0.3 −0.3 +0.4

Rank 9.5 9.5 11

Difference +0.6 −0.6 −0.9

(v) There are four positive terms and seven nega-
tive terms. Taking the smaller number, the four
positive terms have rankings of 1.5, 3.5, 8 and
9.5. Summing the positive ranks gives:T = 1.5+
3.5+ 8+ 9.5= 22.5

(vi) From Table 66.4, when n = 11 and α2 = 5%,
T ≤ 10
Since T = 22.5 falls in the acceptance region (i.e.
in this case is greater than10), thenull hypothesis
is accepted, i.e. the average operating time is
not significantly different from 1.7 h.

[Note that if, say, a piece of the given data was 1.7 h,
such that the difference was zero, that data is ignored
and n would be 10 instead of 11 in this case.]

Problem 10. An engineer is investigating two
different types of metering devices, A and B, for an
electronic fuel injection system to determine if they
differ in their fuel mileage performance. The
system is installed on 12 different cars, and a test is
run with each metering system in turn on each car.
The observed fuel mileage data (in miles/gallon) is
shown below:

A 18.7 20.3 20.8 18.3 16.4 16.8

B 17.6 21.2 19.1 17.5 16.9 16.4

A 17.2 19.1 17.9 19.8 18.2 19.1

B 17.7 19.2 17.5 21.4 17.6 18.8

Use the Wilcoxon signed-rank test, at a level of
significance of 5%, to determine whether there is
any difference between the two systems.

(This is the same as Problem 7 where the sign test was
used.)
Using the procedure:

(i) H0 : FA = FB and H1 : FA �= FB where FA and
FB are the fuels in miles/gallon for systemsA and
B respectively.

(ii) α2 = 5% (since it is a two-tailed test).

(iii) The difference between the observations is deter-
mined and a + or a − sign assigned to each as
shown below:
(A − B) +1.1 −0.9 +1.7 +0.8

−0.5 +0.4 −0.5 −0.1
+0.4 −1.6 +0.6 +0.3

(iv) The differences are now ranked from 1 to 12
(ignoring whether they are positive or negative).
When ordered, 0.4 occupies positions 3 and 4;
their average is 3.5 and both are assigned this
value when ranked. Similarly, 0.5 occupies posi-
tions 5 and 6 and their average of 5.5 is assigned
to each when ranked.

Rank 1 2 3.5 3.5

Difference −0.1 +0.3 +0.4 +0.4

Rank 5.5 5.5 7 8

Difference −0.5 −0.5 +0.6 +0.8

Rank 9 10 11 12

Difference −0.9 +1.1 −1.6 +1.7
(v) There are seven + signs and five − signs. Tak-

ing the smaller number, the negative signs have
rankings of 1, 5.5, 5.5, 9 and 11
Summing the negative ranks gives:

T = 1+ 5.5+ 5.5+ 9+ 11= 32
(vi) From Table 66.4, when n = 12 and α2 = 5%,

T ≤ 13
Since from (iv), T is not equal or less than 13,
the null hypothesis cannot be rejected, i.e. the
two metering devices produce the same fuel
mileage performance.
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Now try the following Practice Exercise

Practice Exercise 246 Wilcoxon
signed-rank test (Answers on page 892)

1. The time to repair an electronic instrument is
a random variable. The repair times (in hours)
for 16 instruments are as follows:

218 275 264 210 161 374 178 265

150 360 185 171 215 100 474 248

Use the Wilcoxon signed-rank test, at a 5%
level of significance, to test the hypothesis that
the mean repair time is 220 hours.

2. 18 samples of serum are analysed for their
sodium content. The results, expressed as ppm
are as follows:

169 151 166 155 149 154

164 151 147 142 168 152

149 129 153 154 149 143

At a level of significance of 5%, use the
Wilcoxon signed-rank test to test the null
hypothesis that the average value for the
method of analysis used is 150 ppm.

3. A paint supplier claims that a new additivewill
reduce the drying time of their acrylic paint. To
test his claim, 12 pieces of wood are painted,
one half of eachpiecewith paint containing the
regular additive and the other half with paint
containing the new additive. The drying times
(in hours) were measured as follows:

New additive 4.5 5.5 3.9 3.6 4.1 6.3
Regular
additive

4.7 5.9 3.9 3.8 4.4 6.5

New additive 5.9 6.7 5.1 3.6 4.0 3.0

Regular
additive

6.9 6.5 5.3 3.6 3.9 3.9

Use the Wilcoxon signed-rank test at a signif-
icance level of 5% to test the hypothesis that
there is no difference, on average, in the drying
times of the new and regular additive paints.

66.6 The Mann–Whitney test

As long as the sample sizes are not too large, for tests
involving two samples, the Mann–Whitney test is easy
to apply, is powerful and is widely used.

Procedure

(i) State for the data the null and alternative hypothe-
ses, H0 andH1

(ii) Know whether the stated significance level, α, is
for a one-tailed or a two-tailed test (see (ii) in the
procedure for the sign test on page 716).

(iii) Arrange all the data in ascending order whilst
retaining their separate identities.

(iv) If the data is now a mixture of, say, As and Bs,
write under each letter A the number of Bs that
precede it in the sequence (or vice-versa).

(v) Add together the numbers obtained from (iv) and
denote total byU. U is defined as whichever type
of count would be expected to be smallest when
H1 is true.

(vi) Use Table 66.5 on pages 724 to 727 for given
values of n1 and n2, andα1 orα2 to read the criti-
cal region ofU . For example, if, say, n1 = 10 and
n2 = 16 andα2 = 5%, then fromTable 66.5,U ≤
42. If U in part (v) is greater than 42 we accept
the null hypothesis H0, and if U is equal or less
than 42, we accept the alternative hypothesisH1

The procedure for the Mann–Whitney test is demon-
strated in the following problems.

Problem 11. Ten British cars and eight
non-British cars are compared for faults during
their first 10000 miles of use. The percentage of
cars of each type developing faults were as follows:

Non-British cars, P 5 8 14 10 15

British cars,Q 18 9 25 6 21

Non-British cars, P 7 12 4

British cars,Q 20 28 11 16 34

Use the Mann–Whitney test, at a level of
significance of 1%, to test whether non-British cars
have better average reliability than British models.
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Table 66.5 Critical values for the Mann–Whitney test

α1 = 5% 212% 1% 1
2% α1 = 5% 212% 1% 1

2%

n1 n2 α2 = 10% 5% 2% 1% n1 n2 α2 = 10% 5% 2% 1%

2 2 — — — — 3 13 6 4 2 1

2 3 — — — — 3 14 7 5 2 1

2 4 — — — — 3 15 7 5 3 2

2 5 0 — — — 3 16 8 6 3 2

2 6 0 — — — 3 17 9 6 4 2

2 7 0 — — — 3 18 9 7 4 2

2 8 1 0 — — 3 19 10 7 4 3

2 9 1 0 — — 3 20 11 8 5 3

2 10 1 0 — —

2 11 1 0 — — 4 4 1 0 — —

2 12 2 1 — — 4 5 2 1 0 —

2 13 2 1 0 — 4 6 3 2 1 0

2 14 3 1 0 — 4 7 4 3 1 0

2 15 3 1 0 — 4 8 5 4 2 1

2 16 3 1 0 — 4 9 6 4 3 1

2 17 3 2 0 — 4 10 7 5 3 2

2 18 4 2 0 — 4 11 8 6 4 2

2 19 4 2 1 0 4 12 9 7 5 3

2 20 4 2 1 0 4 13 10 8 5 3

4 14 11 9 6 4

3 3 0 — — — 4 15 12 10 7 5

3 4 0 — — — 4 16 14 11 7 5

3 5 1 0 — — 4 17 15 11 8 6

3 6 2 1 — — 4 18 16 12 9 6

3 7 2 1 0 — 4 19 17 13 9 7

3 8 3 2 0 — 4 20 18 14 10 8

3 9 4 2 1 0

3 10 4 3 1 0 5 5 4 2 1 0

3 11 5 3 1 0 5 6 5 3 2 1

3 12 5 4 2 1 5 7 6 5 3 1
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Table 66.5 (Continued)

α1 = 5% 212% 1% 1
2% α1 = 5% 212% 1% 1

2%
n1 n2 α2 = 10% 5% 2% 1% n1 n2 α2 = 10% 5% 2% 1%

5 8 8 6 4 2 7 7 11 8 6 4

5 9 9 7 5 3 7 8 13 10 7 6

5 10 11 8 6 4 7 9 15 12 9 7

5 11 12 9 7 5 7 10 17 14 11 9

5 12 13 11 8 6 7 11 19 16 12 10

5 13 15 12 9 7 7 12 21 18 14 12

5 14 16 13 10 7 7 13 24 20 16 13

5 15 18 14 11 8 7 14 26 22 17 15

5 16 19 15 12 9 7 15 28 24 19 16

5 17 20 17 13 10 7 16 30 26 21 18

5 18 22 18 14 11 7 17 33 28 23 19

5 19 23 19 15 12 7 18 35 30 24 21

5 20 25 20 16 13 7 19 37 32 26 22

7 20 39 34 28 24

6 6 7 5 3 2

6 7 8 6 4 3 8 8 15 13 9 7

6 8 10 8 6 4 8 9 18 15 11 9

6 9 12 10 7 5 8 10 20 17 13 11

6 10 14 11 8 6 8 11 23 19 15 13

6 11 16 13 9 7 8 12 26 22 17 15

6 12 17 14 11 9 8 13 28 24 20 17

6 13 19 16 12 10 8 14 31 26 22 18

6 14 21 17 13 11 8 15 33 29 24 20

6 15 23 19 15 12 8 16 36 31 26 22

6 16 25 21 16 13 8 17 39 34 28 24

6 17 26 22 18 15 8 18 41 36 30 26

6 18 28 24 19 16 8 19 44 38 32 28

6 19 30 25 20 17 8 20 47 41 34 30

6 20 32 27 22 18
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Table 66.5 (Continued)

α1 = 5% 212% 1% 1
2% α1 = 5% 212% 1% 1

2%
n1 n2 α2 = 10% 5% 2% 1% n1 n2 α2 = 10% 5% 2% 1%

9 9 21 17 14 11 11 16 54 47 41 36

9 10 24 20 16 13 11 17 57 51 44 39

9 11 27 23 18 16 11 18 61 55 47 42

9 12 30 26 21 18 11 19 65 58 50 45

9 13 33 28 23 20 11 20 69 62 53 48

9 14 36 31 26 22

9 15 39 34 28 24 12 12 42 37 31 27

9 16 42 37 31 27 12 13 47 41 35 31

9 17 45 39 33 29 12 14 51 45 38 34

9 18 48 42 36 31 12 15 55 49 42 37

9 19 51 45 38 33 12 16 60 53 46 41

9 20 54 48 40 36 12 17 64 57 49 44

12 18 68 61 53 47

10 10 27 23 19 16 12 19 72 65 56 51

10 11 31 26 22 18 12 20 77 69 60 54

10 12 34 29 24 21

10 13 37 33 27 24 13 13 51 45 39 34

10 14 41 36 30 26 13 14 56 50 43 38

10 15 44 39 33 29 13 15 61 54 47 42

10 16 48 42 36 31 13 16 65 59 51 45

10 17 51 45 38 34 13 17 70 63 55 49

10 18 55 48 41 37 13 18 75 67 59 53

10 19 58 52 44 39 13 19 80 72 63 57

10 20 62 55 47 42 13 20 84 76 67 60

11 11 34 30 25 21 14 14 61 55 47 42

11 12 38 33 28 24 14 15 66 59 51 46

11 13 42 37 31 27 14 16 71 64 56 50

11 14 46 40 34 30 14 17 77 69 60 54

11 15 50 44 37 33 14 18 82 74 65 58
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Table 66.5 (Continued)

α1 = 5% 212% 1% 1
2% α1 = 5% 212% 1% 1

2%
n1 n2 α2 = 10% 5% 2% 1% n1 n2 α2 = 10% 5% 2% 1%

14 19 87 78 69 63 17 17 96 87 77 70

14 20 92 83 73 67 17 18 102 92 82 75

17 19 109 99 88 81

15 15 72 64 56 51 17 20 115 105 93 86

15 16 77 70 61 55

15 17 83 75 66 60 18 18 109 99 88 81

15 18 88 80 70 64 18 19 116 106 94 87

15 19 94 85 75 69 18 20 123 112 100 92

15 20 100 90 80 73

19 19 123 112 101 93

16 16 83 75 66 60 19 20 130 119 107 99

16 17 89 81 71 65

16 18 95 86 76 70 20 20 138 127 114 105

16 19 101 92 82 74

16 20 107 98 87 79

(cont. from page 723)

Using the above procedure:

(i) The hypotheses are:

H0: Equal proportions of British and non-British
cars have breakdowns.

H1: A higher proportion of British cars have
breakdowns.

(ii) Level of significance α1 = 1%
(iii) Let the sizes of the samples be nP and nQ, where

nP = 8 and nQ = 10. The Mann–Whitney test
compares every item in sample P in turn with
every item in sample Q, a record being kept of
the number of times, say, that the item from P is
greater than Q, or vice-versa. In this case there
are nP nQ, i.e. (8)(10) = 80 comparisons to be
made. All the data is arranged into ascending
order whilst retaining their separate identities –
an easy way is to arrange a linear scale as shown
in Fig. 66.1, on page 728.

From Fig. 66.1, a list of P s andQs can be ranked
giving:

P P Q P P Q P Q P P P Q Q Q

Q Q Q Q

(iv) Write under each letter P the number ofQs that
precede it in the sequence, giving:

P P Q P P Q P Q P P P Q

0 0 1 1 2 3 3 3

Q Q Q Q Q Q

(v) Add together these eight numbers, denoting the
sum by U , i.e.

U = 0+ 0+ 1+ 1+ 2+ 3+ 3+ 3= 13
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SAMPLE Q

SAMPLE P
4 5 7

6 9 11 16 18 20 21 25 28 34

3020100

8 10 12 14 15

Figure 66.1

(vi) The critical regions are of the form U ≤ critical
region.

From Table 66.5, for a sample size 8 and 10 at
significance level α1= 1% the critical regions is
U ≤ 13
The value of U in our case, from (v), is 13 which
is significant at 1% significance level.

The Mann–Whitney test has therefore confirmed that
there is evidence that thenon-British carshavebetter
reliability than the British cars in the first 10 000
miles, i.e. the alternative hypothesis applies.

Problem 12. Two machines, A and B, are used to
measure vibration in a particular rubber product.
The data given below are the vibrational forces, in
kilograms, of random samples from each machine:

A 9.7 10.2 11.2 12.4 14.1 22.3
29.6 31.7 33.0 33.2 33.4 46.2
50.7 52.5 55.4

B 20.6 25.3 29.2 35.2 41.9 48.5
54.1 57.1 59.8 63.2 68.5

Use the Mann–Whitney test at a significance level
of 5% to determine if there is any evidence of the
two machines producing different results.

Using the procedure:

(i) H0: There is no difference in results from the
machines, on average.

H1: The results from the two machines are differ-
ent, on average.

(ii) α2 = 5%
(iii) Arranging the data in order gives:

9.7 10.2 11.2 12.4 14.1 20.6 22.3
A A A A A B A

25.3 29.2 29.6 31.7 33.0 33.2 33.4
B B A A A A A

35.2 41.9 46.2 48.5 50.7 52.5 54.1
B B A B A A B

55.4 57.1 59.8 63.2 68.5

A B B B B

(iv) The number of Bs preceding the As in the
sequence is as follows:

A A A A A B A B B
0 0 0 0 0 1

A A A A A B B A B
3 3 3 3 3 5

A A B A B B B B
6 6 7

(v) Adding the number from (iv) gives:

U = 0+ 0+ 0+ 0+ 0+ 1+ 3+ 3+ 3+ 3
+ 3+ 5+ 6+ 6+ 7= 40

(vi) From Table 66.5, for n1 = 11 and n2 = 15, and
α2 = 5%, U ≤ 44
Since our value of U from (v) is less than 44,H0
is rejected andH1 accepted, i.e. the results from
the two machines are different.
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Now try the following Practice Exercise

Practice Exercise 247 The Mann–Whitney
test (Answers on page 892)

1. The tar content of two brands of cigarettes (in
mg) was measured as follows:

Brand P 22.6 4.1 3.9 0.7 3.2

Brand Q 3.4 6.2 3.5 4.7 6.3

Brand P 6.1 1.7 2.3 5.6 2.0

Brand Q 5.5 3.8 2.1

Use the Mann–Whitney test at a 0.05 level of
significance to determine if the tar contents of
the two brands are equal.

2. A component is manufactured by two pro-
cesses. Some components from each process
are selected at random and tested for breaking
strength to determine if there is a difference
between the processes. The results are:

Process A 9.7 10.5 10.1 11.6 9.8

Process B 11.3 8.6 9.6 10.2 10.9

Process A 8.9 11.2 12.0 9.2

Process B 9.4 10.8

At a level of significance of 10%, use the
Mann–Whitney test to determine if there
is a difference between the mean breaking
strengths of the components manufactured by
the two processes.

3. An experiment, designed to compare two pre-
ventive methods against corrosion, gave the
following results for the maximum depths of
pits (in mm) in metal strands:

Method A 143 106 135 147 139 132 153 140

Method B 98 105 137 94 112 103

Use the Mann–Whitney test, at a level of sig-
nificance of 0.05, to determinewhether the two
tests are equally effective.

4. Repeat Problem 3 of Exercise 245, page 719
using the Mann–Whitney test.

For fully worked solutions to each of the problems in Practice Exercises 243 to 247 in this chapter,
go to the website:

www.routledge.com/cw/bird
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Revision Test 19 Sampling and estimation theories, significance testing, chi-square
and distribution-free tests

This Revision Test covers the material contained in Chapters 64 to 66. The marks for each question are shown in
brackets at the end of each question.

1. 1200 metal bolts have a mean mass of 7.2 g and a
standard deviation of 0.3 g. Determine the standard
error of the means. Calculate also the probability
that a sample of 60 bolts chosen at random,without
replacement, will have a mass of (a) between 7.1 g
and 7.25 g, and (b) more than 7.3 g. (12)

2. A sample of ten measurements of the length of a
component are made and the mean of the sample is
3.650 cm. The standard deviation of the samples is
0.030 cm.Determine (a) the 99% confidence limits,
and (b) the 90% confidence limits for an estimate
of the actual length of the component. (10)

3. An automated machine produces metal screws and
over a period of time it is found that eight% are
defective. Random samples of 75 screws are drawn
periodically.
(a) If a decision is made that productioncontinues

until a sample contains more than eight defec-
tive screws, determine the type I error based
on this decision for a defect rate of 8%.

(b) Determine the magnitude of the type II error
when the defect rate has risen to 12%

The above sample size is now reduced to
55 screws. The decision now is to stop the
machine for adjustment if a sample contains
four or more defective screws.

(c) Determine the type I error if the defect rate
remains at 8%

(d) Determine the type II error when the defect
rate rises to 9% (22)

4. In a random sample of 40 similar light bulbs drawn
from a batch of 400 the mean lifetime is found to
be 252 hours. The standard deviation of the lifetime
of the sample is 25 hours. The batch is classed as
inferior if the mean lifetime of the batch is less
than the population mean of 260 hours. As a result
of the sample data, determine whether the batch is
considered to be inferior at a level of significance
of (a) 0.05 and (b) 0.01 (9)

5. The lengths of two products are being compared.

Product 1: sample size = 50, mean value of
sample = 6.5 cm, standard deviation
of whole of batch = 0.40 cm.

Product 2: sample size = 60, mean value of
sample = 6.65 cm, standard deviation
of whole of batch = 0.35 cm.

Determine if there is any significant difference
between the two products at a level of significance
of (a) 0.05 and (b) 0.01 (7)

6. The resistance of a sample of 400 resistors pro-
duced by an automatic process have the following
resistance distribution.

Resistance Frequency

(�)

50.11 9

50.15 35

50.19 61

50.23 102

50.27 89

50.31 83

50.35 21

Calculate for the sample: (a) the mean and (b)
the standard deviation. (c) Test the null hypothe-
sis that the resistances of the resistors are normally
distributed at a level of significance of 0.05, and
determine if the distribution gives a ‘too good’ fit
at a level of confidence of 90% (25)

7. A fishing line is manufactured by two processes, A
and B. To determine if there is a difference in the
mean breaking strengths of the lines, eight lines by
each process are selected and tested for breaking
strength. The results are as follows:

Download more at Learnclax.com



Se
ct

io
n

K

Revision Test 19 Sampling and estimation theories, significance testing, chi-square and distribution-free tests 731

Process A 8.6 7.1 6.9 6.5 7.9 6.3 7.8 8.1

Process B 6.8 7.6 8.2 6.2 7.5 8.9 8.0 8.7

Determine if there is a difference between themean
breaking strengths of the lines manufactured by the

two processes, at a significance level of 0.10, using
(a) the sign test, (b) the Wilcoxon signed-rank test,
(c) the Mann–Whitney test. (15)

For lecturers/instructors/teachers, fully worked solutions to each of the problems in Revision Test 19,
together with a full marking scheme, are available at the website:

www.routledge.com/cw/bird
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Chapter 67

Introduction to Laplace
transforms

Why it is important to understand: Introduction to Laplace transforms
The Laplace transform is a very powerful mathematical tool applied in various areas of engineering
and science. With the increasing complexity of engineering problems, Laplace transforms help in solving
complex problems with a very simple approach; the transform is an integral transform method which
is particularly useful in solving linear ordinary differential equations. It has very wide applications
in various areas of physics, electrical engineering, control engineering, optics, mathematics and signal
processing. This chapter just gets us started in understanding some standard Laplace transforms.

At the end of this chapter, you should be able to:

• define a Laplace transform
• recognise common notations used for the Laplace transform
• derive Laplace transforms of elementary functions
• use a standard list of Laplace transforms to determine the transform of common functions

Higher Engineering Mathematics. 978-1-138-67357-1, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.
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67.1 Introduction

The solution of most electrical circuit problems can be
reduced ultimately to the solution of differential equa-
tions. The use of Laplace∗ transforms provides an
alternative method to those discussed in Chapters 33
and 50 to 54 for solving linear differential equations.

67.2 Definition of a Laplace transform

The Laplace transform of the function f (t) is defined
by the integral

∫ ∞
0 e−stf (t)dt , where s is a parameter

assumed to be a real number.

Common notations used for the Laplace
transform
There are various commonly used notations for the
Laplace transform of f (t) and these include:

(i) L{f (t)} or L{f (t)}
(ii) L(f ) or Lf

(iii) f (s) or f (s)

Also, the letter p is sometimes used instead of s as
the parameter. The notation adopted in this book will
be f (t) for the original function and L{f (t)} for its
Laplace transform.
Hence, from above:

L{ f (t)}=
∫ ∞

0
e−stf (t)d t (1)

67.3 Linearity property of the
Laplace transform

From equation (1),

L{kf (t)} =
∫ ∞

0
e−st k f (t)dt

= k

∫ ∞

0
e−stf (t)dt

∗ Who was Laplace? See page 605 for image and resume
of Pierre-Simon, marquis de Laplace. To find out more go to
www.routledge.com/cw/bird

i.e. L{k f (t)}=kL{f (t)} (2)

where k is any constant.

Similarly,

L{a f (t) + bg(t)} =
∫ ∞

0
e−st (a f (t) + bg(t))dt

= a

∫ ∞

0
e−stf (t)dt

+ b

∫ ∞

0
e−stg(t)dt

i.e. L{af (t) + bg(t)} = aL{f (t)}+bL{g(t)}, (3)

where a and b are any real constants.
The Laplace transform is termed a linear operator
because of the properties shown in equations (2) and (3).

67.4 Laplace transforms of
elementary functions

Using the definition of the Laplace transform in equa-
tion (1) a number of elementary functions may be
transformed. For example:

(a) f (t)=1. From equation (1),

L{1} =
∫ ∞

0
e−st (1)dt =

[
e−st

−s

]∞

0

= −1
s
[e−s(∞) − e0]= −1

s
[0− 1]

= 1
s

(provided s >0)

(b) f (t)=k. From equation (2),
L{k} = kL{1}

Hence L{k} = k

(
1
s

)

= k
s
, from (a) above.

(c) f (t)=eat (where a is a real constant �= 0).
From equation (1),

L{eat } =
∫ ∞

0
e−st (eat )dt =

∫ ∞

0
e−(s−a)t dt,

from the laws of indices,
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=
[
e−(s−a)t

−(s − a)

]∞

0

= 1
−(s − a)

(0− 1)

= 1
s− a
(provided (s − a)>0, i.e. s >a)

(d) f (t)=cosat (where a is a real constant).
From equation (1),

L{cosat} =
∫ ∞

0
e−stcosat dt

=
[
e−st

s2+ a2
(a sinat − s cosat)

]∞

0

by integration by parts twice (see page 500),

=
[
e−s(∞)

s2+ a2
(a sina(∞)−s cosa(∞))

− e0

s2+ a2
(a sin0− s cos0)

]

= s
s2+a2 (provideds >0)

(e) f (t)= t. From equation (1),

L{t} =
∫ ∞

0
e−st t dt =

[
te−st

−s
−

∫
e−st

−s
dt

]∞

0

=
[

te−st

−s
− e−st

s2

]∞

0
by integration by parts

=
[

∞e−s(∞)

−s
− e−s(∞)

s2

]

−
[

0− e0

s2

]

= (0− 0) −
(

0− 1
s2

)

since (∞×0)=0
= 1
s2

(provided s >0)

(f) f (t)= tn (where n=0, 1, 2, 3, …).
By a similar method to (e) it may be shown

that L{t2}= 2
s3
and L{t3} = (3)(2)

s4
= 3!

s4
. These

results can be extended to n being any positive
integer.

Thus L{tn}= n!
sn+1

provided s >0)

(g) f (t)=sinhat. From Chapter 16,
sinhat = 1

2
(eat − e−at ). Hence,

L{sinhat} = L
{
1
2
eat − 1

2
e−at

}

= 1
2
L{eat} − 1

2
L{e−at }

from equations (2) and (3)

= 1
2

[
1

s − a

]

− 1
2

[
1

s + a

]

from (c) above

= 1
2

[
1

s − a
− 1

s + a

]

= a
s2−a2 (provided s >a)

A list of elementary standard Laplace transforms are
summarised in Table 67.1.

Table 67.1 Elementary standard Laplace transforms

Function Laplace transforms
f (t) L{f (t)}= ∫ ∞

0 e−st f (t)dt

(i) 1
1
s

(ii) k
k

s

(iii) eat 1
s − a

(iv) sinat
a

s2+ a2

(v) cosat
s

s2+ a2

(vi) t
1
s2

(vii) t2
2!
s3

(viii) tn (n = 1,2,3, . . .) n!
sn+1

(ix) coshat
s

s2− a2

(x) sinhat
a

s2− a2
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67.5 Worked problems on standard
Laplace transforms

Problem 1. Using a standard list of Laplace
transforms, determine the following:

(a) L
{

1+2t − 1
3
t4

}

(b) L{5e2t −3e−t }

(a) L
{

1+ 2t − 1
3
t4

}

= L{1} + 2L{t} − 1
3
L{t4}
from equations (2) and (3)

= 1
s

+ 2
(
1
s2

)

− 1
3

(
4!

s4+1

)

from (i), (vi) and (viii) of Table 67.1

= 1
s

+ 2
s2

− 1
3

(
4 .3 .2 .1

s5

)

= 1
s

+ 2
s2

− 8
s5

(b) L{5e2t − 3e−t} = 5L(e2t ) − 3L{e−t }

from equations (2) and (3)

= 5
(

1
s − 2

)

− 3
(

1
s − (−1)

)

from (iii) of Table 67.1

= 5
s − 2 − 3

s + 1

= 5(s + 1) − 3(s − 2)
(s − 2)(s + 1)

= 2s+11
s2−s−2

Problem 2. Find the Laplace transforms of:
(a) 6sin3t − 4cos5t (b) 2cosh2θ − sinh3θ

(a) L{6sin3t −4cos5t}

= 6L{sin3t} − 4L{cos5t}

= 6
(

3
s2 + 32

)

−4
(

s

s2+ 52
)

from (iv) and (v) of Table 67.1

= 18
s2+ 9 − 4s

s2+ 25
(b) L{2cosh2θ −sinh3θ}

= 2L{cosh2θ} −L{sinh3θ}

= 2
(

s

s2− 22
)

−
(

3
s2− 32

)

from (ix) and (x) of Table 67.1

= 2s
s2−4 − 3

s2−9

Problem 3. Prove that

(a) L{sinat}= a

s2 + a2
(b) L{t2}= 2

s3

(c) L{coshat}= s

s2− a2

(a) From equation (1),

L{sinat} =
∫ ∞

0
e−stsinat dt

=
[
e−st

s2+ a2
(−s sinat − a cosat)

]∞

0

by integration by parts

= 1
s2+ a2

[e−s(∞)(−s sina(∞)

− a cosa(∞)) − e0(−s sin0
−a cos0)]

= 1
s2+ a2

[(0) − 1(0− a)]

= a
s2+ a2 (provided s>0)

(b) From equation (1),

L{t2} =
∫ ∞

0
e−st t2 dt

=
[
t2e−st

−s
− 2te−st

s2
− 2e−st

s3

]∞

0

by integration by parts twice
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=
[

(0− 0− 0) −
(

0− 0− 2
s3

)]

= 2
s3

(provided s>0)

(c) From equation (1),

L{coshat} = L
{
1
2
(eat + e−at )

}

from Chapter 16

= 1
2
L{eat} + 1

2
L{e−at } from

equations (2) and (3)

= 1
2

(
1

s − a

)

+ 1
2

(
1

s − (−a)

)

from (iii) of Table 67.1

= 1
2

[
1

s − a
+ 1

s + a

]

= 1
2

[
(s + a) + (s − a)

(s − a)(s + a)

]

= s
s2−a2 (provided s >a)

Problem 4. Determine the Laplace transforms of:
(a) sin2 t (b) cosh2 3x

(a) Since cos2t =1−2sin2 t then
sin2 t = 1

2
(1− cos2t). Hence,

L{sin2 t} = L
{
1
2
(1− cos2t)

}

= 1
2
L{1} − 1

2
L{cos2t}

= 1
2

(
1
s

)

− 1
2

(
s

s2+ 22
)

from (i) and (v) of Table 67.1

= (s2+ 4) − s2

2s(s2+ 4) = 4
2s(s2 + 4)

= 2
s(s2+4)

(b) Since cosh2x=2cosh2 x −1 then
cosh2 x = 1

2
(1+cosh2x) from Chapter 16.

Hence cosh2 3x = 1
2
(1+cosh6x)

Thus L{cosh2 3x} = L
{
1
2
(1+ cosh6x)

}

= 1
2
L{1} + 1

2
L{cosh6x}

= 1
2

(
1
s

)

+ 1
2

(
s

s2− 62
)

= 2s2− 36
2s(s2− 36) = s2−18

s(s2−36)

Problem 5. Find the Laplace transform of
3sin(ωt +α), where ω and α are constants.

Using the compound angle formula for sin(A+B),
from Chapter 19, sin(ωt +α) may be expanded to
(sinωt cosα+cosωt sinα). Hence,

L{3sin(ωt +α)}
= L{3(sinωt cosα + cosωt sinα)}
= 3cosαL{sinωt} + 3sinαL{cosωt},

since α is a constant

= 3cosα
(

ω

s2+ ω2

)

+ 3sinα

(
s

s2+ ω2

)

from (iv) and (v) of Table 67.1

= 3
(s2+ω2)

(ωcosα+ssinα)

Now try the following Practice Exercise

Practice Exercise 248 Introduction to
Laplace transforms (Answers on page 892)

Determine the Laplace transforms in Problems
1 to 9.

1. (a) 2t −3 (b) 5t 2+4t −3

2. (a)
t3

24
−3t +2 (b) t5

15
−2t4+ t2

2
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3. (a) 5e3t (b) 2e−2t

4. (a) 4sin3t (b) 3cos2t

5. (a) 7cosh2x (b)
1
3
sinh3t

6. (a) 2cos2t (b) 3sin2 2x

7. (a) cosh2 t (b) 2sinh2 2θ

8. 4sin(at +b), where a and b are constants.

9. 3cos(ωt −α), where ω and α are constants.

10. Show that L(cos2 3t − sin2 3t)= s

s2+36

For fully worked solutions to each of the problems in Practice Exercise 248 in this chapter,
go to the website:

www.routledge.com/cw/bird
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Chapter 68

Properties of Laplace
transforms

Why it is important to understand: Properties of Laplace transforms
As stated in the preceding chapter, the Laplace transform is a widely used integral transform with many
applications in engineering, where it is used for analysis of linear time-invariant systems such as electrical
circuits, harmonic oscillators, optical devices, and mechanical systems. The Laplace transform is also a
valuable tool in solving differential equations, such as in electronic circuits, and in feedback control
systems, such as in stability and control of aircraft systems. This chapter considers further transforms
together with the Laplace transform of derivatives that are needed when solving differential equations.

At the end of this chapter, you should be able to:

• derive the Laplace transform of eatf (t)

• use a standard list of Laplace transforms to determine transforms of the form e atf (t)

• derive the Laplace transforms of derivatives
• state and use the initial and final value theorems

68.1 The Laplace transform of eat f (t)

FromChapter 67, the definition of theLaplace transform
of f (t) is:

L{f (t)} =
∫ ∞

0
e−stf (t)dt (1)

Thus L{eatf (t)} =
∫ ∞

0
e−st (eatf (t))dt

=
∫ ∞

0
e−(s−a)f (t)dt (2)

(where a is a real constant)

Hence the substitution of (s −a) for s in the transform
shown in equation (1) corresponds to the multiplication
of the original function f (t) by eat . This is known as a
shift theorem.

68.2 Laplace transforms of the form
eat f(t)

From equation (2), Laplace transforms of the form
eatf (t) may be deduced. For example:

(i) L{eat tn}
Since L{tn}= n!

sn+1 from (viii) of Table 67.1,
page 737.

Higher Engineering Mathematics. 978-1-138-67357-1, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.
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then L{eat tn}= n!
(s−a)n+1 from equation (2)

above (provided s >a)

(ii) L{eat sinωt}

Since L{sinωt} = ω

s2+ ω2
from (iv) of Table

67.1, page 737.

then L{eat sinωt}= ω

(s−a)2+ω2
from equa-

tion (2) (provided s >a)

(iii) L{eat coshωt}

Since L{coshωt} = s

s2− ω2
from (ix) of Table

67.1, page 737.

then L{eat coshωt}= s−a
(s−a)2−ω2

from equa-

tion (2) (provided s >a)

A summary of Laplace transforms of the form
eatf (t) is shown in Table 68.1.

Problem 1. Determine (a) L{2t 4e3t }
(b) L{4e3t cos5t}

(a) From (i) of Table 68.1,

L{2t4e3t } = 2L{t4e3t } = 2
(

4!
(s − 3)4+1

)

= 2(4)(3)(2)
(s − 3)5 = 48

(s−3)5

Table 68.1 Laplace transforms of the form
eatf (t)

Function eatf (t) Laplace transform
(a is a real constant) L{eatf (t)}

(i) eat tn
n!

(s−a)n+1

(ii) eat sinωt
ω

(s −a)2+ ω2

(iii) eat cosωt
s −a

(s −a)2+ω2

(iv) eat sinhωt
ω

(s −a)2− ω2

(v) eat coshωt
s − a

(s − a)2− ω2

(b) From (iii) of Table 68.1,

L{4e3t cos5t} = 4L{e3t cos5t}

= 4
(

s − 3
(s − 3)2+ 52

)

= 4(s − 3)
s2− 6s + 9+ 25

= 4(s−3)
s2−6s+34

Problem 2. Determine (a) L{e−2t sin3t}
(b) L{3eθ cosh4θ}

(a) From (ii) of Table 68.1,

L{e−2t sin3t}= 3
(s−(−2))2+32 = 3

(s+2)2+9

= 3
s2+ 4s + 4+ 9 = 3

s2+4s+13

(b) From (v) of Table 68.1,

L{3eθ cosh4θ}= 3L{eθ cosh4θ}= 3(s−1)
(s −1)2−42

= 3(s − 1)
s2−2s+1−16= 3(s−1)

s2−2s−15

Problem 3. Determine the Laplace transforms of
(a) 5e−3t sinh2t (b) 2e3t (4cos2t − 5sin2t)

(a) From (iv) of Table 68.1,

L{5e−3t sinh2t}= 5L{e−3t sinh2t}

= 5
(

2
(s − (−3))2− 22

)

= 10
(s+3)2−22 = 10

s2+6s+9−4

= 10
s2+6s+5

(b) L{2e3t (4cos2t − 5sin2t)}

= 8L{e3t cos2t} − 10L{e3t sin2t}
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= 8(s − 3)
(s − 3)2+ 22 − 10(2)

(s − 3)2+ 22

from (iii) and (ii) of Table 68.1

= 8(s − 3) − 10(2)
(s − 3)2+ 22 = 8s−44

s2−6s+13

Problem 4. Show that

L
{

3e−
1
2 x sin2 x

}

= 48
(2s + 1)(4s2+ 4s + 17)

Since cos2x =1−2sin2 x, sin2 x= 1
2
(1− cos2x)

Hence,

L
{

3e−
1
2 x sin2 x

}

= L
{

3e−
1
2 x 1
2
(1− cos2x)

}

= 3
2
L

{

e−
1
2 x

}

− 3
2
L

{

e−
1
2 x cos2x

}

= 3
2

⎛

⎜
⎜
⎝

1

s −
(

−1
2

)

⎞

⎟
⎟
⎠−3

2

⎛

⎜
⎜
⎜
⎝

(

s −
(

−1
2

))

(

s −
(

−1
2

))2
+22

⎞

⎟
⎟
⎟
⎠

from (iii) of Table 67.1 (page 737) and (iii)
of Table 68.1 above,

= 3

2
(

s + 1
2

) −
3
(

s + 1
2

)

2

[(

s + 1
2

)2
+ 22

]

= 3
2s + 1 − 6s + 3

4
(

s2+ s + 1
4

+ 4
)

= 3
2s + 1 − 6s + 3

4s2+ 4s + 17

= 3(4s2+ 4s + 17) − (6s + 3)(2s + 1)
(2s + 1)(4s2+ 4s + 17)

= 12s2+ 12s + 51− 12s2− 6s − 6s − 3
(2s + 1)(4s2+ 4s + 17)

= 48
(2s+1)(4s2+4s+17)

Now try the following Practice Exercise

Practice Exercise 249 Laplace transforms
of the form eat f (t) (Answers on page 893)

Determine the Laplace transforms of the following
functions:

1. (a) 2te2t (b) t2et

2. (a) 4t3e−2t (b)
1
2
t4e−3t

3. (a) et cos t (b) 3e2t sin2t

4. (a) 5e−2t cos3t (b) 4e−5t sin t

5. (a) 2et sin2 t (b)
1
2
e3t cos2 t

6. (a) et sinh t (b) 3e2t cosh4t

7. (a) 2e−t sinh3t (b)
1
4
e−3t cosh2t

8. (a) 2et (cos3t − 3sin3t)
(b) 3e−2t (sinh2t − 2cosh2t)

68.3 The Laplace transforms of
derivatives

(a) First derivative
Let the first derivative of f (t) be f ′(t) then, from
equation (1),

L{f ′(t)} =
∫ ∞

0
e−stf ′(t)dt

From Chapter 46, when integrating by parts
∫

u
dv
dt
dt = uv −

∫
v
du
dt
dt

When evaluating
∫ ∞
0 e−stf ′(t)dt ,

let u = e−st and
dv
dt

= f ′(t)

from which,

du
dt

= −se−st and v =
∫

f ′(t)dt = f (t)
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Hence
∫ ∞

0
e−stf ′(t)dt

= [
e−stf (t)

]∞
0 −

∫ ∞

0
f (t)(−se−st )dt

= [0− f (0)]+ s

∫ ∞

0
e−stf (t)dt

= −f (0) + sL{f (t)}
assuming e−stf (t) → 0 as t → ∞, andf (0) is the value
of f (t) at t =0. Hence,

L{ f ′(t)}= sL{ f (t)}− f (0)
or L

{
dy
dx

}

= sL{y}−y(0)

⎫
⎬

⎭
(3)

where y(0) is the value of y at x=0
(b) Second derivative
Let the second derivative of f (t) be f ′′(t), then from
equation (1),

L{f ′′(t)} =
∫ ∞

0
e−stf ′′(t)dt

Integrating by parts gives:
∫ ∞

0
e−stf ′′(t)dt = [

e−stf ′(t)
]∞
0 + s

∫ ∞

0
e−stf ′(t)dt

= [0− f ′(0)]+ sL{f ′(t)}
assuming e−st f ′(t) → 0 as t → ∞, and f ′(0) is the
value of f ′(t) at t =0. Hence
{f ′′(t)} = −f ′(0) + s[s(f (t)) − f (0)], from equa-
tion (3),

i.e.

L{ f ′′(t)}
=s2L{ f (t)}−sf (0)− f ′(0)

or L
{
d2y
dx2

}

=s2L{y}−sy(0)−y′(0)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(4)

where y ′(0) is the value of
dy
dx
at x =0

Equations (3) and (4) are important and are used in
the solution of differential equations (see Chapter 71)
and simultaneous differential equations (Chapter 72).

Problem 5. Use the Laplace transform of the first
derivative to derive:

(a) L{k} = k

s
(b) L{2t} = 2

s2

(c) L{e−at } = 1
s + a

From equation (3), L{f ′(t)}=sL{f (t)}−f (0)

(a) Let f (t)=k, then f ′(t)=0 and f (0)=k

Substituting into equation (3) gives:

L{0} = sL{k} − k

i.e. k = sL{k}
Hence L{k}= k

s
(b) Let f (t)=2t then f ′(t)=2 and f (0)=0

Substituting into equation (3) gives:

L{2} = sL{2t} − 0
i.e.

2
s

= sL{2t}
Hence L{2t}= 2

s2

(c) Let f (t)=e−at then f ′(t)=−ae−at and f (0)=1
Substituting into equation (3) gives:

L{−ae−at } = sL{e−at } − 1
−aL{e−at } = sL{e−at } − 1

1= sL{e−at } + aL{e−at }
1= (s + a)L{e−at }

Hence L{e−at} = 1
s+a

Problem 6. Use the Laplace transform of the
second derivative to derive

L{cosat} = s

s2+ a2

From equation (4),

L{f ′′(t)} = s2L{f (t)} − sf (0) − f ′(0)

Let f (t)= cosat , then f ′(t) = −a sinat and

f ′′(t) = −a2 cosat , f (0) = 1 and f ′(0) = 0
Substituting into equation (4) gives:
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L{−a2 cosat}= s2{cosat} − s(1) − 0
i.e. −a2L{cosat}= s2L{cosat} − s

Hence s = (s2+ a2)L{cosat}

from which, L{cosat}= s
s2+a2

Now try the following Practice Exercise

Practice Exercise 250 Laplace transforms
of derivatives (Answers on page 893)

1. Derive the Laplace transform of the first
derivative from the definition of a Laplace
transform. Hence derive the transform

L{1} = 1
s

2. Use the Laplace transform of the first deriva-
tive to derive the transforms:

(a) L{eat} = 1
s − a

(b) L{3t2} = 6
s3

3. Derive the Laplace transform of the second
derivative from the definition of a Laplace
transform. Hence derive the transform

L{sinat} = a

s2+ a2

4. Use the Laplace transform of the second
derivative to derive the transforms:

(a) L{sinhat} = a

s2− a2

(b) L{coshat} = s

s2 − a2

68.4 The initial and final value
theorems

There are several Laplace transform theorems used to
simplify and interpret the solution of certain problems.
Two such theorems are the initial value theorem and the
final value theorem.

(a) The initial value theorem states:

limit
t→0

[ f (t)]= limit
s→∞ [sL{ f (t)}]

For example, if f (t)=3e4t then

L{3e4t } = 3
s − 4

from (iii) of Table 67.1, page 737.

By the initial value theorem,

limit
t→0

[3e4t ]= limit
s→∞

[

s

(
3

s − 4
)]

i.e. 3e0=∞
(

3
∞ − 4

)

i.e. 3=3, which illustrates the theorem.

Problem 7. Verify the initial value theorem for
the voltage function (5+2cos3t) volts, and state its
initial value.

Let f (t)=5+2cos3t

L{f (t)} = L{5+ 2cos3t} = 5
s

+ 2s
s2 + 9

from (ii) and (v) of Table 67.1, page 737.

By the initial value theorem,

limit
t→0

[ f (t)]= limit
s→∞[sL{ f (t)}]

i.e. limit
t→0

[5+ 2cos3t]= limit
s→∞

[

s

(
5
s

+ 2s
s2+ 9

)]

= limit
s→∞

[

5+ 2s2

s2+ 9
]

i.e. 5+ 2(1)=5+ 2∞2

∞2+ 9 = 5+ 2
i.e. 7=7, which verifies the theorem in this case.
The initial value of the voltage is thus 7V

Problem 8. Verify the initial value theorem for
the function (2t − 3)2 and state its initial value.

Let f (t) = (2t − 3)2 = 4t2− 12t + 9
Let L{ f (t)}=L(4t2 − 12t + 9)

=4
(
2
s3

)

− 12
s2

+ 9
s

from (vii), (vi) and (ii) of Table 67.1, page 737.
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By the initial value theorem,

limit
t→0

[(2t − 3)2]= limit
s→∞

[

s

(
8
s3

− 12
s2

+ 9
s

)]

= limit
s→∞

[
8
s2

− 12
s

+ 9
]

i.e. (0− 3)2 = 8
∞2 − 12

∞ + 9

i.e. 9=9, which verifies the theorem in this case.
The initial value of the given function is thus 9

(b) The final value theorem states:

limit
t→∞ [f (t)]= limit

s→0
[sL{ f (t)}]

For example, if f (t)=3e−4t then:

limit
t→∞[3e

−4t ]= limit
s→0

[

s

(
3

s + 4
)]

i.e. 3e−∞ = (0)
(

3
0+ 4

)

i.e. 0=0, which illustrates the theorem.

Problem 9. Verify the final value theorem for the
function (2+ 3e−2t sin4t) cm, which represents the
displacement of a particle. State its final steady
value.

Let f (t)=2+ 3e−2t sin4t
L{f (t)}=L{2+ 3e−2t sin4t}

= 2
s

+ 3
(

4
(s − (−2))2+ 42

)

= 2
s

+ 12
(s + 2)2+ 16

from (ii) of Table 67.1, page 737 and (ii) of
Table 68.1 on page 742.

By the final value theorem,
limit
t→∞[f (t)]= limit

s→0
[sL{f (t)}]

i.e. limit
t→∞[2+ 3e−2t sin4t]

= limit
s→0

[

s

(
2
s

+ 12
(s + 2)2+ 16

)]

= limit
s→0

[

2+ 12s
(s + 2)2+ 16

]

i.e. 2+0=2+0
i.e. 2=2, which verifies the theorem in this case.
The final value of the displacement is thus 2 cm.

The initial and final value theorems are used in pulse
circuit applications where the response of the circuit
for small periods of time, or the behaviour immediately
after the switch is closed, are of interest. The final value
theorem is particularly useful in investigating the sta-
bility of systems (such as in automatic aircraft-landing
systems) and is concernedwith the steady state response
for large values of time t , i.e. after all transient effects
have died away.

Now try the following Practice Exercise

Practice Exercise 251 Initial and final
value theorems (Answers on page 893)

1. State the initial value theorem.Verify the theo-
rem for the functions (a) 3−4sin t (b) (t −4)2
and state their initial values.

2. Verify the initial value theorem for the voltage
functions: (a) 4+2cos t (b) t − cos3t and state
their initial values.

3. State the final value theorem and state a prac-
tical application where it is of use. Verify the
theorem for the function 4+e−2t (sin t + cos t)
representing a displacement and state its final
value.

4. Verify the final value theorem for the function
3t2e−4t and determine its steady state value.

For fully worked solutions to each of the problems in Practice Exercises 249 to 251 in this chapter,
go to the website:

www.routledge.com/cw/bird
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Chapter 69

Inverse Laplace transforms

Why it is important to understand: Inverse Laplace transforms
Laplace transforms and their inverses are a mathematical technique which allows us to solve differential
equations, by primarily using algebraic methods. This simplification in the solving of equations, coupled
with the ability to directly implement electrical components in their transformed form, makes the use of
Laplace transforms widespread in both electrical engineering and control systems engineering. Laplace
transforms havemany further applications inmathematics, physics, optics, signal processing, and proba-
bility. This chapter specifically explains how the inverse Laplace transform is determined, which can also
involve the use of partial fractions. In addition, poles and zeros of transfer functions are briefly explained;
these are of importance in stability and control systems.

At the end of this chapter, you should be able to:

• define the inverse Laplace transform
• use a standard list to determine the inverse Laplace transforms of simple functions
• determine inverse Laplace transforms using partial fractions
• define a pole and a zero
• determine poles and zeros for transfer functions, showing them on a pole–zero diagram

69.1 Definition of the inverse Laplace
transform

If the Laplace transform of a function f (t) is F (s),
i.e. L{f (t)}=F(s), then f (t) is called the inverse
Laplace transform of F (s) and is written as
f (t)= L−1{F(s)}
For example, since L{1}= 1

s
thenL−1

{
1
s

}

=1
Similarly, since L{sinat}= a

s2+a2
then

L−1
{

a
s2+ a2

}

= sinat, and so on.

69.2 Inverse Laplace transforms of
simple functions

Tables of Laplace transforms, such as the tables in
Chapters 67 and 68 (see pages 737 and 742) may be
used to find inverse Laplace transforms.
However, for convenience, a summary of inverse
Laplace transforms is shown in Table 69.1.

Problem 1. Find the following inverse Laplace
transforms:

(a) L−1
{

1
s2+9

}

(b) L−1
{

5
3s−1

}

Higher Engineering Mathematics. 978-1-138-67357-1, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.
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Table 69.1 Inverse Laplace transforms

F(s)=L{f (t)} L−1{F(s)}=f (t)

(i)
1
s

1

(ii)
k

s
k

(iii)
1

s −a
eat

(iv)
a

s2+a2
sinat

(v)
s

s2+a2
cosat

(vi)
1
s2

t

(vii)
2!
s3

t2

(viii)
n!

sn+1 tn

(ix)
a

s2−a2
sinhat

(x)
s

s2−a2
coshat

(xi)
n!

(s −a)n+1 eat tn

(xii)
ω

(s −a)2+ω2
eat sinωt

(xiii)
s−a

(s −a)2+ω2
eat cosωt

(xiv)
ω

(s −a)2−ω2
eat sinhωt

(xv)
s−a

(s −a)2−ω2
eat coshωt

(a) From (iv) of Table 69.1,

L−1
{

a

s2 + a2

}

= sinat,

Hence L−1
{

1
s2+ 9

}

= L−1
{

1
s2+ 32

}

= 1
3
L−1

{
3

s2 + 32
}

= 1
3
sin3t

(b) L−1
{

5
3s−1

}

= L−1

⎧
⎪⎪⎨

⎪⎪⎩

5

3
(

s − 1
3

)

⎫
⎪⎪⎬

⎪⎪⎭

= 5
3
L−1

⎧
⎪⎪⎨

⎪⎪⎩

1
(

s− 1
3

)

⎫
⎪⎪⎬

⎪⎪⎭
= 5
3
e
1
3 t

from (iii) of Table 69.1

Problem 2. Find the following inverse Laplace
transforms:

(a) L−1
{
6
s3

}

(b) L−1
{
3
s4

}

(a) From (vii) of Table 69.1, L−1
{
2
s3

}

= t2

Hence L−1
{
6
s3

}

=3L−1
{
2
s3

}

=3t2

(b) From (viii) of Table 69.1, if s is to have a power
of 4 then n=3

Thus L−1
{
3!
s4

}

= t3 i.e. L−1
{
6
s4

}

= t3

Hence L−1
{
3
s4

}

= 1
2
L−1

{
6
s4

}

= 1
2
t3

Problem 3. Determine

(a) L−1
{
7s

s2+4
}

(b) L−1
{

4s
s2−16

}

(a) L−1
{
7s

s2+4
}

=7L−1
{

s

s2+22
}

=7 cos 2t

from (v) of Table 69.1

(b) L−1
{

4s
s2− 16

}

= 4L−1
{

s

s2 − 42
}

= 4cosh4t
from (x) of Table 69.1
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Problem 4. Find

(a) L−1
{

3
s2−7

}

(b) L−1
{

2
(s−3)5

}

(a) From (ix) of Table 69.1,

L−1
{

a

s2− a2

}

= sinhat

Thus

L−1
{

3
s2− 7

}

= 3L−1
{

1
s2− (

√
7)2

}

= 3√
7
L−1

{ √
7

s2− (
√
7)2

}

= 3√
7
sinh

√
7t

(b) From (xi) of Table 69.1,

L−1
{

n!
(s − a)n+1

}

= eat tn

Thus L−1
{

1
(s − a)n+1

}

= 1
n!
eat tn

and comparing with L−1
{

2
(s−3)5

}

shows that

n=4 and a=3
Hence

L−1
{

2
(s − 3)5

}

= 2L−1
{

1
(s − 3)5

}

= 2
(
1
4!
e3t t4

)

= 1
12
e3tt4

Problem 5. Determine

(a) L−1
{

3
s2−4s+13

}

(b) L−1
{
2(s +1)

s2+2s +10
}

(a) L−1
{

3
s2− 4s + 13

}

= L−1
{

3
(s − 2)2+ 32

}

= e2t sin3t
from (xii) of Table 69.1

(b) L−1
{

2(s + 1)
s2+ 2s + 10

}

= L−1
{

2(s + 1)
(s + 1)2+ 32

}

= 2e−t cos3t
from (xiii) of Table 69.1

Problem 6. Determine

(a) L−1
{

5
s2+2s−3

}

(b) L−1
{

4s−3
s2−4s −5

}

(a) L−1
{

5
s2+ 2s − 3

}

= L−1
{

5
(s + 1)2− 22

}

= L−1

⎧
⎪⎨

⎪⎩

5
2
(2)

(s + 1)2− 22

⎫
⎪⎬

⎪⎭

= 5
2
e−t sinh2t

from (xiv) of Table 69.1

(b) L−1
{

4s − 3
s2 − 4s − 5

}

= L−1
{

4s − 3
(s − 2)2− 32

}

= L−1
{
4(s − 2) + 5
(s − 2)2− 32

}

= L−1
{

4(s − 2)
(s − 2)2− 32

}

+ L−1
{

5
(s − 2)2− 32

}

= 4e2t cosh3t +L−1

⎧
⎪⎨

⎪⎩

5
3
(3)

(s − 2)2− 32

⎫
⎪⎬

⎪⎭

from (xv) of Table 69.1

= 4e2t cosh3t + 5
3
e2t sinh3t

from (xiv) of Table 69.1
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Now try the following Practice Exercise

Practice Exercise 252 Inverse Laplace
transforms of simple functions (Answers on
page 893)

Determine the inverse Laplace transforms of the
following:

1. (a)
7
s
(b)

2
s −5

2. (a)
3

2s+1 (b)
2s

s2+4

3. (a)
1

s2+25 (b)
4

s2+9

4. (a)
5s

2s2+18 (b)
6
s2

5. (a)
5
s3

(b)
8
s4

6. (a)
3s

1
2

s2−8
(b)

7
s2−16

7. (a)
15

3s2−27 (b)
4

(s−1)3

8. (a)
1

(s+2)4 (b)
3

(s−3)5

9. (a)
s+1

s2+2s +10 (b)
3

s2+6s+13

10. (a)
2(s−3)

s2−6s+13 (b)
7

s2−8s+12

11. (a)
2s+5

s2+4s−5 (b)
3s+2

s2−8s+25

69.3 Inverse Laplace transforms using
partial fractions

Sometimes the function whose inverse is required is not
recognisable as a standard type, such as those listed in
Table 69.1. In such cases it may be possible, by using
partial fractions, to resolve the function into simpler

fractions which may be inverted on sight. For example,
the function,

F(s) = 2s − 3
s(s − 3)

cannot be inverted on sight from Table 69.1. However,

by using partial fractions,
2s −3

s(s−3) ≡ 1
s

+ 1
s−3 which

maybe inverted as 1+e3t from (i) and (iii) of Table 67.1.
Partial fractions are discussed in Chapter 2, and a sum-
maryof the formsof partial fractions is given inTable 2.1
on page 16.

Problem 7. Determine L−1
{
4s −5

s2−s −2
}

4s − 5
s2− s − 2 ≡ 4s − 5

(s − 2)(s + 1) ≡ A

(s − 2) + B

(s + 1)

≡ A(s+1) + B(s−2)
(s − 2)(s + 1)

Hence 4s−5≡ A(s+1)+B(s −2)
When s =2, 3=3A, from which, A=1
When s =−1, −9=−3B, from which, B =3

Hence L−1
{
4s −5

s2−s −2
}

≡ L−1
{
1

s − 2 + 3
s + 1

}

= L−1
{
1

s − 2
}

+L−1
{
3

s + 1
}

= e2t + 3e−t, from (iii) of Table 69.1

Problem 8. Find L−1
{
3s3+s2+12s+2

(s−3)(s+1)3
}

3s3+ s2+ 12s + 2
(s − 3)(s + 1)3

≡ A

s − 3 + B

s + 1 + C

(s + 1)2 + D

(s + 1)3

≡

(
A(s + 1)3+ B(s − 3)(s + 1)2
+C(s − 3)(s + 1) + D(s − 3)

)

(s − 3)(s + 1)3
Hence

3s3+ s2+ 12s + 2≡ A(s + 1)3+ B(s − 3)(s + 1)2
+C(s − 3)(s + 1) + D(s − 3)

Download more at Learnclax.com
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When s =3, 128=64A, from which, A=2
When s =−1,−12=−4D, from which,D=3
Equating s3 terms gives: 3=A+B from which, B =1
Equating constant terms gives:

2= A − 3B− 3C− 3D
i.e. 2= 2− 3− 3C − 9
from which, 3C=−12 and C =−4
Hence

L−1
{
3s3+s2+12s+2

(s −3)(s+1)3
}

≡ L−1
{
2

s − 3 + 1
s + 1 − 4

(s + 1)2 + 3
(s + 1)3

}

= 2e3t + e−t − 4e−t t+ 3
2
e−t t2

from (iii) and (xi) of Table 69.1

Problem 9. Determine

L−1
{
5s2+8s−1

(s+3)(s2+1)
}

5s2+ 8s − 1
(s + 3)(s2+ 1) ≡ A

s + 3 + Bs + C

(s2+ 1)

≡ A(s2+ 1) + (Bs + C)(s + 3)
(s + 3)(s2+ 1)

Hence 5s2+8s−1≡A(s2+1)+(Bs+C)(s +3)
When s =−3,20=10A, from which, A=2
Equating s2 terms gives: 5=A+B, fromwhich, B =3,
since A=2
Equating s terms gives: 8=3B +C, from which,
C =−1, since B =3

Hence L−1
{
5s2+8s−1

(s+3)(s2+1)
}

≡ L−1
{
2

s + 3 + 3s − 1
s2+ 1

}

≡ L−1
{
2

s + 3
}

+L−1
{
3s

s2 + 1
}

−L−1
{

1
s2+ 1

}

= 2e−3t + 3cos t− sin t

from (iii), (v) and (iv) of Table 69.1

Problem 10. Find L−1
{

7s+13
s(s2+4s+13)

}

7s + 13
s(s2+ 4s + 13) ≡ A

s
+ Bs + C

s2 + 4s + 13

≡ A(s2+ 4s + 13) + (Bs + C)(s)

s(s2+ 4s + 13)
Hence 7s+13≡ A(s2+4s+13)+(Bs + C)(s).

When s =0,13=13A, from which, A=1
Equating s2 terms gives: 0=A+B, from which,
B =−1
Equating s terms gives: 7=4A+C, from which, C=3
Hence L−1

{
7s+13

s(s2+4s+13)
}

≡ L−1
{
1
s

+ −s + 3
s2+ 4s + 13

}

≡ L−1
{
1
s

}

+L−1
{ −s + 3

(s + 2)2+ 32
}

≡ L−1
{
1
s

}

+L−1
{−(s + 2) + 5

(s + 2)2+ 32
}

≡ L−1
{
1
s

}

−L−1
{

s + 2
(s + 2)2+ 32

}

+ L−1
{

5
(s + 2)2+ 32

}

≡ 1− e−2t cos3t+ 5
3
e−2t sin3t

from (i), (xiii) and (xii) of Table 69.1

Now try the following Practice Exercise

Practice Exercise 253 Inverse Laplace
transforms using partial fractions (Answers
on page 893)

Use partial fractions to find the inverse Laplace
transforms of the following functions:

1.
11−3s

s2+2s −3
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2.
2s2−9s−35

(s+1)(s−2)(s +3)

3.
5s2− 2s − 19
(s + 3)(s − 1)2

4.
3s2+16s+15

(s +3)3

5.
7s2+5s+13
(s2+2)(s +1)

6.
3+6s+4s2−2s3

s2(s2+3)

7.
26−s2

s(s2+4s+13)

69.4 Poles and zeros

It was seen in the previous section that Laplace trans-

forms, in general, have the form f (s)= φ(s)

θ(s)
. This is

the same form as most transfer functions for engineer-
ing systems, a transfer function being one that relates
the response at a given pair of terminals to a source or
stimulus at another pair of terminals.

Let a function in the s domain be given by:

f (s)= φ(s)

(s −a)(s−b)(s−c)
where φ(s) is of less

degree than the denominator.

Poles: The values a, b, c,…that makes the denomi-
nator zero, and hence f (s) infinite, are called
the system poles of f (s).
If there are no repeated factors, the poles are
simple poles.
If there are repeated factors, the poles are
multiple poles.

Zeros: Values of s that make the numeratorφ(s) zero,
and hence f (s) zero, are called the system
zeros of f (s).

For example:
s −4

(s+1)(s−2) has simple poles at s=−1

and s=+2, and a zero at s =4 s +3
(s +1)2(2s+5) has a

simple pole at s=− 5
2
and double poles at s=−1, and

a zero at s = −3 and s +2
s(s−1)(s+4)(2s+1) has simple

poles at s=0,+1, −4, and − 1
2
and a zero at s =−2

Pole–zero diagram

The poles and zeros of a function are values of complex
frequency s and can therefore be plotted on the complex
frequencyor s-plane. The resulting plot is the pole–zero
diagram or pole–zero map. On the rectangular axes,
the real part is labelled the σ -axis and the imaginary
part the jω-axis.
The location of a pole in the s-plane is denoted by a
cross (×) and the location of a zero by a small circle
(o). This is demonstrated in the following examples.
From the pole–zero diagram it may be determined that
the magnitude of the transfer function will be larger
when it is closer to the poles and smaller when it is
close to the zeros. This is important in understanding
what the system does at various frequencies and is cru-
cial in the study of stability and control theory in
general.

Problem 11. Determine for the transfer function:

R(s)= 400 (s+10)
s (s +25)(s2+10s+125)

(a) the zero and (b) the poles. Show the poles and
zero on a pole–zero diagram.

(a) For the numerator to be zero, (s+10)=0
Hence, s=−10 is a zero of R(s)

(b) For the denominator to be zero, s=0 or s =−25
or s2+10s+125=0
Using the quadratic formula.

s = −10±
√
102−4(1)(125)
2

= −10±√−400
2

= −10±j20
2

= (−5± j10)

Hence, poles occur at s=0, s=−25, (−5+ j10)
and (−5− j10)
The pole–zero diagram is shown in Figure 69.1.
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210 0

2j10

j10

j�

215220225
�

25

Figure 69.1

Problem 12. Determine the poles and zeros for

the function: F(s)= (s+3)(s−2)
(s +4)(s2+2s+2)

and plot them on a pole–zero map.

For the numerator to be zero, (s +3)=0 and (s −2)=0,
hence zeros occur at s=−3 and at s=+2 Poles occur
when the denominator is zero, i.e. when (s +4)=0, i.e.
s=−4, and when s2+2s+2=0

i.e. s= −2±
√
22− 4(1)(2)
2

= −2± √−4
2

= −2± j2
2

= (−1+ j) or (−1− j)

The poles and zeros are shown on the pole–zeromap of
F(s) in Figure 69.2.

2j

j

j�

24 23 22 21 1 2 3 �0

Figure 69.2

It is seen from these problems that poles and zeros are
always real or complex conjugate.

Now try the following Practice Exercise

Practice Exercise 254 Poles and zeros
(Answers on page 893)

1. Determine for the transfer function:

R(s)= 50 (s+4)
s (s +2)(s2−8s+25)

(a) the zero and (b) the poles. Show the poles
and zeros on a pole–zero diagram.

2. Determine the poles and zeros for the function:

F(s)= (s −1)(s+2)
(s +3)(s2−2s+5) and plot them on

a pole–zero map.

3. For the function G(s)= s −1
(s+2)(s2+2s+5)

determine the poles and zeros and show them
on a pole–zero diagram.

4. Find the poles and zeros for the transfer func-

tion:H(s)= s2−5s−6
s(s2+4) and plot the results in

the s-plane.

For fully worked solutions to each of the problems in Practice Exercises 252 to 254 in this chapter,
go to the website:

www.routledge.com/cw/bird
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Chapter 70

The Laplace transform of the
Heaviside function

Why it is important to understand: The Laplace transform of the Heaviside function
The Heaviside unit step function is used in the mathematics of control theory and signal processing
to represent a signal that switches on at a specified time and stays switched on indefinitely. It is also
used in structural mechanics to describe different types of structural loads. The Heaviside function has
applications in engineering where periodic functions are represented. In many physical situations things
change suddenly; brakes are applied, a switch is thrown, collisions occur. The Heaviside unit function is
very useful for representing sudden change.

At the end of this chapter, you should be able to:

• define the Heaviside unit step function
• use a standard list to determine the Laplace transform of H(t − c)

• use a standard list to determine the Laplace transform of H(t − c) · f (t − c)

• determine the inverse transforms of Heaviside functions

70.1 Heaviside unit step function

In engineering applications, functions are frequently
encountered whose values change abruptly at specified
values of time t . One common example is when a volt-
age is switched on or off in an electrical circuit at a
specified value of time t .
The switching process can be described mathemati-
cally by the function called the Unit Step Function –
otherwise known as the Heaviside unit step function.
Fig. 70.1 shows a function that maintains a zero value
for all values of t up to t = c and a value of 1 for all
values of t ≥ c. This is the Heaviside unit step function
and is denoted by:

f (t)=H(t− c) or u(t− c)

1

f(t)

f(t ) = H (t – c)

0 c t

Figure 70.1

where the c indicates the value of t at which the func-
tion changes from a value of zero to a value of unity
(i.e. 1).

Higher Engineering Mathematics. 978-1-138-67357-1, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.
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It follows that f (t)=H(t− 5) is as shown in Fig. 70.2
and f (t)=3H(t− 4) is as shown in Fig. 70.3.

1

f(t )

f(t ) = H (t – 5)

0 5 t

Figure 70.2

3

f(t )

f(t ) = 3 H (t – 4)

0 4 t

Figure 70.3

If the unit step occurs at the origin, then c = 0 and
f (t) = H(t − 0), i.e. H(t) as shown in Fig. 70.4.

1

f(t )

f(t ) = H (t )

0 t

Figure 70.4

Fig. 70.5(a) shows a graph of f (t) = t 2; the graph
shown in Fig. 70.5(b) is f (t)=H(t− 2) · t 2
where for t < 2,H(t − 2)t 2 = 0 and when t ≥ 2,
H(t − 2) · t2 = t2. The function H(t − 2) suppresses
the function t 2 for all values of t up to t = 2 and then
‘switches on’ the function t 2 at t = 2.
A common situation in an electrical circuit is for a

voltage V to be applied at a particular time, say, t = a,

–1 0–2–3–4
(a)

4321

4

t

8

12

f(t)

f(t) = t2

–1 0–2–3–4
(b)

4321

4

t

8

12

f(t )

f(t ) = H(t–2).t2

Figure 70.5

and removed later, say at t = b. Such a situation is
written using step functions as:

V (t) = H(t − a) − H(t − b)

For example, Fig. 70.6 shows the function
f (t)=H(t− 2)−H(t− 5)

1

f(t)

0 t2 5

f(t) = H(t − 2) − H(t − 5)

Figure 70.6

Representing the Heaviside unit step function is further
explored in the following worked problems.

Problem 1. A 12 V source is switched on at time
t = 3 s. Sketch the waveform and write the function
in terms of the Heaviside step function.

Download more at Learnclax.com



Se
ct

io
n

L
756 Higher Engineering Mathematics

The function is shown sketched in Fig. 70.7.

12

v(t)
(volts)

0 3 t (s)

Figure 70.7

The Heaviside step function is:

V(t)=12H(t− 3)

Problem 2. Write the function

V (t) =
{
1 for 0< t < a

0 for t > a

in terms of the Heaviside step function and sketch
the waveform.

The voltage has a value of 1 up until time t = a; then it
is turned off.
The function is shown sketched in Fig. 70.8.

1

v(t)

0 t a

Figure 70.8

The Heaviside step function is:

V(t)=H(t)−H(t− a)

Problem 3. Sketch the graph of f (t) = 5H(t − 2)

A function H(t − 2) has a maximum value of 1 and
starts when t = 2.

5

f(t )

0 t 2

Figure 70.9

A function 5H(t− 2) has a maximum value of 5 and
starts when t = 2, as shown in Fig. 70.9.

Problem 4. Sketch the graph of
f (t) = H(t − π/3).sin t

Fig. 70.10(a) shows a graph of f (t) = sin t; the graph
shown in Fig. 70.10(b) is f (t)=H(t− π /3) · sin t where
the graph of sin t does not ‘switch on’ until t = π/3

f(t)

f(t) = sin t

t0

–1
(a)

�
2

� 3�
2

2�

1

f(t)

t0

–1
(b)

�
2

�
3

� 3�
2

2�

1
f(t) = H(t –     ).sin t�

3

Figure 70.10

Problem 5. Sketch the graph of
f (t) = 2H(t − 2π/3) · sin(t − π/6)

Fig. 70.11(a) shows a graph of f (t) = 2sin(t − π/6);
the graph shown in Fig. 70.11(b) is

f (t)=2H(t− 2π /3) · sin(t−π /6)
where the graph of 2sin(t − π/6) does not ‘switch on’
until t = 2π/3
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f(t)

f(t) = 2 sin t

t0

–2
(a)

�
6

�
2

� 3�
2

2�

2
f(t) = 2 sin (t –   )�

6

f(t)

t0

–2
(b)

�
2

2�
3

� 3�
2

2�

2 f(t) = 2 H(t –     ). sin (t –     )2�
3

�
6

Figure 70.11

Problem 6. Sketch the graphs of
(a) f (t) = H(t − 1).e−t

(b) f (t) = [H(t − 1) − H(t − 3)].e−t

Fig. 70.12(a) shows a graph of f (t) = e−t

(a) The graph shown in Fig. 70.12(b) is
f (t)=H(t− 1) · e−t where the graph of e−t

does not ‘switch on’ until t = 1.
(b) Fig. 70.12(c) shows the graph of

f (t)= [H(t− 1)−H(t− 3)] · e−t where the graph
of e−t does not ‘switch on’ until t = 1, but then
‘switches off’ at t = 3.

0

(a)

4321

0.25

0.5

0.75

1

t

f(t)

f(t ) = e–t

Figure 70.12

t0

(b)

4321

0.5

1

f(t )

f(t ) = H(t – 1).e–t

0

(c)

4321

0.5

1

f(t )

f(t ) = [H (t – 1) – H(t – 3)].e–t

t

Figure 70.12 (Continued)

Now try the following Practice Exercise

Practice Exercise 255 Heaviside unit step
function (Answers on page 893)

1. A 6 V source is switched on at time t = 4 s.
Write the function in terms of the Heaviside
step function and sketch the waveform.

2. Write the functionV (t) =
{
2 for 0< t < 5
0 for t > 5

in terms of the Heaviside step function and
sketch the waveform.

In problems 3 to 12, sketch graphs of the given
functions.

3. f (t) = H(t − 2)
4. f (t) = H(t)

5. f (t) = 4H(t − 1)
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6. f (t) = 7H(t − 5)

7. f (t) = H
(
t − π

4

)
· cos t

8. f (t) = 3H
(
t − π

2

)
· cos

(
t − π

6

)

9. f (t) = H (t − 1) · t2

10. f (t) = H(t − 2) · e− t
2

11. f (t) = [H(t − 2) − H(t − 5)] · e− t
4

12. f (t) = 5H
(
t − π

3

)
· sin

(
t + π

4

)

70.2 Laplace transform of H(t – c)

From the definition of a Laplace transform,

L{H(t − c)} =
∫ ∞

0
e−stH (t − c)dt

However, e−stH (t − c) =
{
0 for 0< t < c

e−st for t ≥ c

Hence, L{H(t − c)} =
∫ ∞

0
e−stH (t − c)dt

=
∫ ∞

c

e−stdt =
[
e−st

−s

]∞

c

=
[
e−s(∞)

−s
− e−s c

−s

]

=
[

0− e−s c

−s

]

= e−sc

s

When c = 0 (i.e. a unit step at the origin),

L{H(t)} = e−s(0)

s
= 1

s

Summarising,L{H(t)} = 1
s
and L{H(t− c)} = e−c s

s
From the definition of H(t): L{1} = {1·H(t)}

L{t} = {t ·H(t)}
and L{f(t)}= {f (t) ·H(t)}

70.3 Laplace transform of
H(t – c) · f(t – c)

It may be shown that:

L{H(t− c) · f (t− c)}=e−csL{f (t)}=e−csF(s)

where F(s) = L{f (t)}

This is demonstrated in the followingworked problems.

Problem 7. Determine L{4H(t − 5)}

From above,L{H(t − c) · f (t − c)} = e−c sF (s) where
in this case, F(s) = L{4} and c = 5
Hence, L{4H(t − 5)} = e−5s

(
4
s

)

from (ii) of

Table 67.1, page 737

= 4 e−5s

s

Problem 8. Determine L{H(t − 3) · (t − 3)2}

From above,L{H(t − c) · f (t − c)} = e−c sF (s) where
in this case, F(s) = L{t2} and c = 3
Note that F(s) is the transform of t 2 and not of (t − 3)2

Hence, L{H(t − 3) · f (t − 3)2} = e−3s

(
2!
s3

)

from

(vii) of Table 67.1, page 737

= 2 e−3s

s3

Problem 9. Determine L{H(t − 2).sin(t − 2)}

From above,L{H(t − c) · f (t − c)} = e−c sF (s) where
in this case, F(s) = L{sin t} and c = 2
Hence, L{H(t − 2) · sin(t − 2)} = e−2s

(
1

s2+ 12
)

from (iv) of Table 67.1, page 737

= e−2s

s2+ 1

Problem 10. Determine
L{H(t − 1) · sin4(t − 1)}

From above,L{H(t − c) · f (t − c)} = e−c sF (s) where
in this case, F(s) = L{sin4t} and c = 1
Hence, L{H(t − 1) · sin4(t − 1)} = e−s

(
4

s2+ 42
)

from (iv) of Table 67.1, page 737

= 4 e−s

s2+ 16

Problem 11. Determine L{H(t − 3) · et−3}

From above,L{H(t − c) · f (t − c)} = e−c sF (s) where
in this case, F(s) = L{et } and c = 3
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Hence,L{H(t − 3) · et−3} = e−3s

(
1

s − 1
)

from (iii) of

Table 67.1, page 737

= e−3s

s− 1
Problem 12. Determine

L
{
H

(
t − π

2

)
· cos3

(
t − π

2

)}

From above,L{H(t − c) · f (t − c)} = e−c sF (s) where
in this case, F(s) = L{cos3t} and c = π

2
Hence, L

{(
t − π

2

)
· cos3

(
1− π

2

)}
=

e−
π
2 s

(
s

s2+ 32
)

from (v) of Table 67.1, page 737

= se−
π
2 s

s2+ 9
Now try the following Practice Exercise

Practice Exercise 256 Laplace transform of
H (t – c) · f (t – c) (Answers on page 895)

1. Determine L{H(t − 1)}
2. Determine L{7H(t − 3)}
3. Determine L{H(t − 2) · (t − 2)2}
4. Determine L{H(t − 3) · sin(t − 3)}
5. Determine L{H(t − 4) · et−4}
6. Determine L{H(t − 5) · sin3(t − 5)}
7. Determine L{H(t − 1) · (t − 1)3}
8. Determine L{H(t − 6) · cos3(t − 6)}
9. Determine L{5H(t − 5) · sinh2(t − 5)}

10. Determine L{H
(
t − π

3

)
· cos2

(
t − π

3

)
}

11. Determine L{2H(t − 3) · et−3}
12. Determine L{3H(t − 2) · cosh(t − 2)}

70.4 Inverse Laplace transforms of
Heaviside functions

In the previous section it was stated that:
L{H(t−c).f (t−c)} = e−csF (s)whereF(s)=L{f (t)}

Written in reverse, this becomes:

if F(s)= L{f(t)}, then e−c sF(s)= L{H(t− c) · f (t− c)}

This is known as the second shift theorem and is
used when finding inverse Laplace transforms, as
demonstrated in the following worked problems.

Problem 13. Determine L−1
{
3e−2 s

s

}

Part of the numerator corresponds to e−c s where c = 2
This indicates H(t − 2)
Then

3
s

= F(s) = L{3} from (ii) of Table 67.1,

page 737

Hence, L−1
{
3 e−2s

s

}

= 3H(t− 2)

Problem 14. Determine the inverse of
e−3s

s2

The numerator corresponds to e−c s where c = 3. This
indicates H(t − 3)
1
s2

= F(s) = L{t} from (vi) of Table 67.1,
page 737

Then L−1
{
e−3s

s2

}

=H(t− 3) · (t− 3)

Problem 15. DetermineL−1
{
8e−4s

s2+ 4
}

Part of the numerator corresponds to e−c s where c = 4.
This indicates H(t − 4)
8

s2+ 4 may be written as: 4
(

2
s2+ 22

)

Then 4
(

2
s2+ 22

)

= F(s) = L{4sin2t} from (iv) of

Table 67.1, page 737

Hence, L−1
{
8 e−4s

s2+ 4

}

=H(t− 4) · 4sin 2(t− 4)

= 4H(t− 4) · sin 2(t− 4)
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Problem 16. Determine L−1
{
5s e−2 s

s2+ 9
}

Part of the numerator corresponds to e−c s where c = 2.
This indicates H(t − 2)
5s

s2+ 9 may be written as: 5
(

s

s2+ 32
)

Then 5
(

s

s2+ 32
)

= F(s) = L{5cos3t} from (v) of

Table 67.1, page 737

Hence, L−1
{
5 se−2s

s2+ 32
}

=H(t− 2) · 5 cos 3(t− 2)

= 5H(t− 2) · cos 3(t− 2)

Problem 17. Determine L−1
{
7e−3 s

s2 − 1
}

Part of the numerator corresponds to e−c s where c = 3.
This indicates H(t − 3)
7

s2− 1 may be written as: 7
(

1
s2− 12

)

Then 7
(

1
s2− 12

)

= F(s) = L{7sinh t} from (x) of

Table 67.1, page 737

Hence, L−1
{
7 e−3s

s2− 1

}

=H(t− 3) · 7sinh(t− 3)

= 7H(t− 3) · sinh(t− 3)

Now try the following Practice Exercise

Practice Exercise 257 Inverse Laplace
transformer of Heaviside functions
(Answers on page 896)

1. Determine L−1
{
e−9s

s

}

2. Determine L−1
{
4e−3s

s

}

3. Determine L−1
{
2e−2s

s2

}

4. Determine L−1
{
5e−2s

s2+ 1
}

5. Determine L−1
{
3s e−4s

s2+ 16
}

6. Determine L−1
{
6e−2s

s2− 1
}

7. Determine L−1
{
3e−6s

s3

}

8. Determine L−1
{
2 s e−4s

s2− 16
}

9. Determine L−1
{
2 s e−

1
2 s

s2+ 5

}

10. Determine L−1
{
4 e−7s

s − 1
}

For fully worked solutions to each of the problems in Practice Exercises 255 to 257 in this chapter,
go to the website:

www.routledge.com/cw/bird
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Chapter 71

The solution of differential
equations using Laplace

transforms
Why it is important to understand: The solution of differential equations using Laplace transforms
Laplace transforms and their inverses are a mathematical technique which allows us to solve differential
equations, by primarily using algebraic methods. This simplification in the solving of equations, coupled
with the ability to directly implement electrical components in their transformed form, makes the use
of Laplace transforms widespread in both electrical engineering and control systems engineering. The
procedures explained in previous chapters are used in this chapter which demonstrates how differential
equations are solved using Laplace transforms.

At the end of this chapter, you should be able to:

• understand the procedure to solve differential equations using Laplace transforms
• solve differential equations using Laplace transforms

71.1 Introduction

An alternative method of solving differential equations
to that used in Chapters 33 and 50 to 54 is possible by
using Laplace transforms.

71.2 Procedure to solve differential
equations by using Laplace
transforms

(i) Take the Laplace transform of both sides of the
differential equation by applying the formulae

for the Laplace transforms of derivatives
(i.e. equations (3) and (4) of Chapter 68) and,
where necessary, using a list of standard Laplace
transforms, such as Tables 67.1 and 68.1 on
pages 737 and 742.

(ii) Put in the given initial conditions, i.e. y(0)
and y ′(0).

(iii) Rearrange the equation to makeL{y} the subject.
(iv) Determine y by using, where necessary, partial

fractions, and taking the inverse of each term by
using Table 69.1 on page 748.

Higher Engineering Mathematics. 978-1-138-67357-1, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.
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71.3 Worked problems on solving
differential equations using
Laplace transforms

Problem 1. Use Laplace transforms to solve the
differential equation

2
d2y
dx2

+5 dy
dx

−3y =0, given that when x=0,

y =4 and dy
dx

=9

This is the same problem as Problem 1 of Chapter 53,
page 581 and a comparison of methods can be made.
Using the above procedure:

(i) 2L
{
d2y
dx2

}

+5L
{
dy
dx

}

−3L{y}=L{0}

2[s2L{y} − sy(0) − y ′(0)]+ 5[sL{y}

−y(0)]− 3L{y}=0,

from equations (3) and (4) of Chapter 68.

(ii) y(0)=4 and y ′(0)=9

Thus 2[s2L{y}− 4s − 9]+ 5[sL{y} − 4]
− 3L{y}=0

i.e. 2s2L{y}− 8s − 18+ 5sL{y} − 20
− 3L{y}=0

(iii) Rearranging gives:

(2s2+ 5s − 3)L{y}=8s + 38

i.e. L{y} = 8s + 38
2s2+ 5s − 3

(iv) y =L−1
{

8s+38
2s2+5s−3

}

8s + 38
2s2+ 5s − 3 ≡ 8s + 38

(2s − 1)(s + 3)

≡ A

2s − 1 + B

s + 3

≡ A(s + 3) + B(2s − 1)
(2s − 1)(s + 3)

Hence 8s+38=A(s+3)+B(2s −1)

When s= 1
2
, 42=31

2
A, from which, A=12

When s=−3,14=−7B, from which, B =−2

Hence y = L−1
{

8s + 38
2s2+ 5s − 3

}

= L−1
{
12

2s − 1 − 2
s + 3

}

= L−1
{

12
2
(
s − 1

2
)

}

−L−1
{
2

s + 3
}

Hence y= 6e 12 x−2e−3x, from (iii) of
Table 69.1.

Problem 2. Use Laplace transforms to solve the
differential equation:

d2y
dx2

+6 dy
dx

+13y=0, given that when x =0, y =3

and
dy
dx

=7

This is the same as Problem 3 of Chapter 53, page 562.
Using the above procedure:

(i) L
{
d2x
dy2

}

+ 6L
{
dy
dx

}

+13L{y}=L{0}

Hence [s2L{y} − sy(0) − y ′(0)]

+6[sL{y} − y(0)]+ 13L{y}= 0,

from equations (3) and (4) of Chapter 68.

(ii) y(0)=3 and y ′(0)=7

Thus s2L{y}− 3s − 7+ 6sL{y}
−18+ 13L{y} = 0
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(iii) Rearranging gives:

(s2+ 6s + 13)L{y} = 3s + 25

i.e. L{y} = 3s + 25
s2+ 6s + 13

(iv) y =L−1
{

3s+25
s2+6s+13

}

= L−1
{

3s + 25
(s + 3)2+ 22

}

= L−1
{
3(s + 3) + 16
(s + 3)2+ 22

}

= L−1
{

3(s + 3)
(s + 3)2+ 22

}

+L−1
{

8(2)
(s + 3)2+ 22

}

= 3e−3t cos2t + 8e−3t sin2t, from (xiii)
and (xii) of Table 69.1

Hence y=e−3t(3 cos 2t+8 sin 2t)

Problem 3. Use Laplace transforms to solve the
differential equation:
d2y
dx2

−3 dy
dx

=9, given that when x =0, y=0 and
dy
dx

=0

This is the same problem as Problem 2 of Chapter 54,
page 569. Using the procedure:

(i) L
{
d2y
dx2

}

− 3L
{
dy
dx

}

=L{9}

Hence [s2L{y} − sy(0) − y ′(0)]

−3[sL{y} − y(0)]= 9
s

(ii) y(0)=0 and y ′(0)=0

Hence s2L{y} − 3sL{y} = 9
s

(iii) Rearranging gives:

(s2− 3s)L{y} = 9
s

i.e. L{y} = 9
s(s2− 3s) = 9

s2(s − 3)

(iv) y =L−1
{

9
s2(s−3)

}

9
s2(s − 3) ≡ A

s
+ B

s2
+ C

s − 3

≡ A(s)(s − 3) + B(s − 3) + Cs2

s2(s − 3)
Hence 9≡ A(s)(s −3)+B(s −3)+Cs2

When s =0,9=−3B, from which, B =−3
When s =3,9=9C, from which, C=1
Equating s2 terms gives: 0=A+C, from which,
A=−1, since C =1. Hence,

L−1
{

9
s2(s − 3)

}

= L−1
{

−1
s

− 3
s2

+ 1
s − 3

}

= −1− 3x + e3x, from (i),
(vi) and (iii) of Table 69.1.

i.e. y=e3x−3x−1

Problem 4. Use Laplace transforms to solve the
differential equation:
d2y
dx2

−7 dy
dx

+10y =e2x +20, given that when

x =0, y =0 and dy
dx

=−1
3

Using the procedure:

(i) L
{
d2y
dx2

}

−7L
{
dy
dx

}

+10L{y}=L{ e2x +20}

Hence [s2L{y}− sy(0) − y ′(0)]− 7[sL{y}
− y(0)]+10L{y}= 1

s −2 + 20
s

(ii) y(0)=0 and y ′(0)=−1
3

Hence s2L{y} − 0−
(

−1
3

)

− 7sL{y} + 0

+ 10L{y}= 21s − 40
s(s − 2)

(iii) (s2−7s+10)L{y}= 21s−40
s(s−2) − 1

3

= 3(21s − 40) − s(s − 2)
3s(s − 2)
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= −s2+ 65s − 120
3s(s − 2)

Hence L{y} = −s2+ 65s − 120
3s(s − 2)(s2− 7s + 10)

= 1
3

[ −s2+ 65s − 120
s(s − 2)(s − 2)(s − 5)

]

= 1
3

[−s2+ 65s − 120
s(s − 5)(s − 2)2

]

(iv) y = 1
3
L−1

{−s2+65s−120
s(s −5)(s−2)2

}

−s2+ 65s − 120
s(s − 5)(s − 2)2

≡ A

s
+ B

s − 5 + C

s − 2 + D

(s − 2)2

≡

(
A(s − 5)(s − 2)2+ B(s)(s − 2)2

+C(s)(s − 5)(s − 2) + D(s)(s − 5)

)

s(s − 5)(s − 2)2
Hence

−s2+ 65s − 120

≡A(s − 5)(s − 2)2+ B(s)(s − 2)2

+ C(s)(s − 5)(s − 2) + D(s)(s − 5)
When s =0,−120= − 20A, from which, A=6
When s =5,180=45B, from which, B =4
When s =2,6=−6D, from which,D=−1
Equating s3 terms gives: 0=A+B +C, from
which, C=−10

Hence
1
3
L−1

{−s2+65s−120
s(s −5)(s−2)2

}

= 1
3
L−1

{
6
s

+ 4
s − 5 − 10

s − 2 − 1
(s − 2)2

}

= 1
3
[6+ 4e5x − 10e2x − x e2x]

Thus y=2+ 4
3
e5x− 10

3
e2x− x

3
e2x

Problem 5. The current flowing in an electrical
circuit is given by the differential equation

Ri +L(di/dt)=E, where E, L and R are
constants. Use Laplace transforms to solve the
equation for current i given that when t =0,
i =0

Using the procedure:

(i) L{Ri}+L
{

L
di
dt

}

=L{E}

i.e. RL{i} + L[sL{i} − i(0)]= E

s

(ii) i(0)=0, hence RL{i}+LsL{i}= E

s

(iii) Rearranging gives:

(R + Ls)L{i} = E

s

i.e. L{i} = E

s(R + Ls)

(iv) i =L−1
{

E

s(R+Ls)

}

E

s(R + Ls)
≡ A

s
+ B

R + Ls

≡ A(R + Ls) + Bs

s(R + Ls)

Hence E =A(R + Ls) + Bs

When s =0,E = AR,

from which, A= E

R

When s =−R

L
, E = B

(

−R

L

)

from which, B =−EL

R

Hence L−1
{

E

s(R+Ls)

}

= L−1
{

E/R

s
+ −EL/R

R + Ls

}

= L−1
{

E

Rs
− EL

R(R + Ls)

}

= L−1

⎧
⎪⎨

⎪⎩

E

R

(
1
s

)

− E

R

⎛

⎜
⎝

1
R

L
+ s

⎞

⎟
⎠

⎫
⎪⎬

⎪⎭
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= E

R
L−1

⎧
⎪⎪⎨

⎪⎪⎩

1
s

− 1
(

s + R

L

)

⎫
⎪⎪⎬

⎪⎪⎭

Hence current i= E
R

(

1−e−RtL
)

Now try the following Practice Exercise

Practice Exercise 258 Solving differential
equations using Laplace transforms
(Answers on page 896)

1. A first-order differential equation involving
current i in a series R−L circuit is given by:
di
dt

+5i= E

2
and i =0 at time t =0

Use Laplace transforms to solve for i

when (a) E = 20 (b) E = 40e−3t and
(c) E=50sin5t

In Problems 2 to 9, use Laplace transforms to solve
the given differential equations.

2. 9
d2y
dt2

−24 dy
dt

+16y=0, given y(0)=3 and
y ′(0)=3

3.
d2x
dt2

+100x=0, given x(0)=2 and
x ′(0)=0

4.
d2i
dt2

+1000 di
dt

+250 000i=0, given
i(0)=0 and i ′(0)=100

5.
d2x
dt2

+6 dx
dt

+8x=0, given x(0)=4 and
x ′(0)=8

6.
d2y
dx2

−2 dy
dx

+y=3e4x , given y(0)=−2
3
and

y ′(0)=41
3

7.
d2y
dx2

− 3dy
dx

− 4y = 3sinx, given y(0) = 0
and y ′(0) = 0

8.
d2y
dx2

+ dy
dx

−2y=3cos3x−11sin3x, given
y(0)=0 and y ′(0)=6

9.
d2y
dx2

−2 dy
dx

+2y=3ex cos2x, given
y(0)=2 and y ′(0)=5

10. The free oscillations of a lightly damped
elastic system are given by the equation:

d2y
dt2

+ 2 dy
dt

+ 5y = 0

where y is the displacement from the equi-
librium position. If when time t = 0, y = 2
and

dy
dt

= 0, determine an expression for the
displacement.

11. Solve, using Laplace transforms, Problems 4
to 9 of Exercise 203, page 563 and Problems
1 to 5 of Exercise 204, page 565.

12. Solve, using Laplace transforms, Problems
3 to 6 of Exercise 205, page 570, Problems
5 and 6 of Exercise 206, page 572, Prob-
lems 4 and 7 of Exercise 207, page 574
and Problems 5 and 6 of Exercise 208,
page 576.

For fully worked solutions to each of the problems in Practice Exercise 258 in this chapter,
go to the website:

www.routledge.com/cw/bird
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Chapter 72

The solution of simultaneous
differential equations using

Laplace transforms

Why it is important to understand: The solution of simultaneous differential equations using Laplace
transforms
As stated in previous chapters, Laplace transforms have many applications in mathematics, physics,
optics, electrical engineering, control engineering, signal processing, and probability and Laplace trans-
forms and their inverses are a mathematical technique which allows us to solve differential equations,
by primarily using algebraic methods. Specifically, this chapter explains the procedure for solving
simultaneous differential equations; this requires all of the knowledge gained in the preceding chapters.

At the end of this chapter, you should be able to:

• understand the procedure to solve simultaneous differential equations using Laplace transforms
• solve simultaneous differential equations using Laplace transforms

72.1 Introduction

It is sometimes necessary to solve simultaneous differ-
ential equations.An example occurswhen two electrical
circuits are coupled magnetically where the equations
relating the two currents i1 and i2 are typically:

L1
di1
dt

+ M
di2
dt

+ R1i1 = E1

L2
di2
dt

+ M
di1
dt

+ R2i2 = 0

whereL represents inductance,R resistance,M mutual
inductance andE1 the p.d. applied to one of the circuits.

72.2 Procedure to solve simultaneous
differential equations using
Laplace transforms

(i) Take the Laplace transform of both sides of each
simultaneous equation by applying the formu-
lae for the Laplace transforms of derivatives (i.e.
equations (3) and (4) ofChapter 68, page 744) and

Higher Engineering Mathematics. 978-1-138-67357-1, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.
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using a list of standard Laplace transforms, as in
Table 67.1, page 738 and Table 68.1, page 742.

(ii) Put in the initial conditions, i.e. x(0), y(0), x ′(0),
y ′(0)

(iii) Solve the simultaneous equations for L{y} and
L{x} by the normal algebraic method.

(iv) Determine y and x by using, where necessary,
partial fractions, and taking the inverse of each
term.

72.3 Worked problems on solving
simultaneous differential
equations by using Laplace
transforms

Problem 1. Solve the following pair of
simultaneous differential equations

dy
dt

+ x = 1

dx
dt

− y + 4et = 0

given that at t =0, x =0 and y =0

Using the above procedure:

(i) L
{
dy
dt

}

+L{x} = L{1} (1)

L
{
dx
dt

}

−L{y} + 4L{et} = 0 (2)

Equation (1) becomes:

[sL{y} − y(0)]+L{x} = 1
s

(1′)

from equation (3), page 744 and Table 67.1,
page 738.

Equation (2) becomes:

[sL{x} − x(0)]−L{y} = − 4
s − 1 (2′)

(ii) x(0)=0 and y(0)=0 hence
Equation (1′) becomes:

sL{y} +L{x} = 1
s

(1′′)

and equation (2′) becomes:

sL{x} −L{y} = − 4
s − 1

or −L{y} + sL{x} = − 4
s − 1 (2′′)

(iii) 1× equation (1′′) and s ×equation (2′′) gives:

sL{y} +L{x} = 1
s

(3)

−sL{y} + s2L{x} = − 4s
s − 1 (4)

Adding equations (3) and (4) gives:

(s2+ 1)L{x} = 1
s

− 4s
s − 1

= (s − 1) − s(4s)
s(s − 1)

= −4s2+ s − 1
s(s − 1)

from which, L{x} = −4s2+ s − 1
s(s − 1)(s2+ 1) (5)

Using partial fractions

−4s2+ s − 1
s(s − 1)(s2+ 1) ≡ A

s
+ B

(s − 1) + Cs + D

(s2+ 1)

=

(
A(s − 1)(s2+ 1) + Bs(s2+ 1)

+(Cs + D)s(s − 1)

)

s(s − 1)(s2+ 1)
Hence

−4s2+ s − 1= A(s − 1)(s2+ 1) + Bs(s2+ 1)
+ (Cs + D)s(s − 1)

When s=0, −1=−A hence A=1
When s=1, −4=2B hence B=−2

Equating s3 coefficients:

0= A + B + C hence C=1
(sinceA=1 and B =−2)

Equating s2 coefficients:

−4= −A + D − C hence D=−2
(sinceA=1 and C =1)

Download more at Learnclax.com
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Thus L{x} = −4s2+ s − 1
s(s − 1)(s2+ 1)

= 1
s

− 2
(s − 1) + s − 2

(s2+ 1)
(iv) Hence

x = L−1
{
1
s

− 2
(s − 1) + s − 2

(s2 + 1)
}

= L−1
{
1
s

− 2
(s − 1) + s

(s2+ 1) − 2
(s2+ 1)

}

i.e. x=1−2et+cos t−2sin t,

from Table 69.1, page 748
From the second equation given in the question,

dx
dt

− y + 4et = 0

from which,

y = dx
dt

+ 4et

= d
dt

(1− 2et + cos t − 2sin t) + 4et

= −2et − sin t − 2 cos t + 4et

i.e. y= 2et−sin t−2cos t

[Alternatively, to determine y, return to
equations (1′′) and (2′′)]

Problem 2. Solve the following pair of
simultaneous differential equations

3
dx
dt

− 5dy
dt

+ 2x = 6

2
dy
dt

− dx
dt

− y = −1

given that at t =0, x =8 and y =3

Using the above procedure:

(i) 3L
{
dx
dt

}

− 5L
{
dy
dt

}

+2L{x} = L{6} (1)

2L
{
dy
dt

}

−L
{
dx
dt

}

−L{y} = L{−1} (2)

Equation (1) becomes:

3[sL{x} − x(0)]− 5[sL{y} − y(0)]

+ 2L{x} = 6
s

from equation (3), page 744, and Table 67.1,
page 738.

i.e. 3sL{x} − 3x(0) − 5sL{y}
+ 5y(0) + 2L{x} = 6

s

i.e. (3s + 2)L{x} − 3x(0) − 5sL{y}
+ 5y(0) = 6

s
(1′)

Equation (2) becomes:

2[sL{y} − y(0)]− [sL{x} − x(0)]

− L{y} = −1
s

from equation (3), page 744, and Table 67.1,
page 738,

i.e. 2sL{y} − 2y(0) − sL{x}
+ x(0) −L{y} = −1

s

i.e. (2s − 1)L{y} − 2y(0) − sL{x}
+ x(0) = −1

s
(2′)

(ii) x(0)=8 and y(0)=3, hence equation (1 ′)
becomes

(3s + 2)L{x} − 3(8) − 5sL{y}
+ 5(3) = 6

s
(1′′)

and equation (2′) becomes

(2s − 1)L{y} − 2(3) − sL{x}
+ 8= −1

s
(2′′)

i.e. (3s + 2)L{x} − 5sL{y} = 6
s

+ 9 (1′′)

(3s + 2)L{x} − 5sL{y}

= 6
s

+ 9 (1′′′)

−sL{x} + (2s − 1)L{y}

= −1
s

− 2 (2′′′)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A)
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(iii) s × equation (1′′′) and (3s + 2)× equation (2 ′′′)
gives:

s(3s + 2)L{x} − 5s2L{y} = s

(
6
s

+ 9
)

(3)

−s(3s + 2)L{x} + (3s + 2)(2s − 1)L{y}

= (3s + 2)
(

−1
s

− 2
)

(4)

i.e. s(3s + 2)L{x} − 5s2L{y} = 6+ 9s (3′)

−s(3s + 2)L{x} + (6s2+ s − 2)L{y}

= −6s − 2
s

− 7 (4′)

Adding equations (3′) and (4′) gives:

(s2+ s − 2)L{y} = −1+ 3s − 2
s

= −s + 3s2− 2
s

from which, L{y} = 3s2− s − 2
s(s2 + s − 2)

Using partial fractions

3s2− s − 2
s(s2 + s − 2)

≡ A

s
+ B

(s + 2) + C

(s − 1)

= A(s + 2)(s − 1) + Bs(s − 1) + Cs(s + 2)
s(s + 2)(s − 1)

i.e. 3s2− s − 2= A(s + 2)(s − 1)
+ Bs(s − 1) + Cs(s + 2)

When s=0, −2=−2A, hence A=1

When s=1, 0=3C, hence C=0

When s=−2, 12=6B, hence B=2

Thus L{y} = 3s2− s − 2
s(s2 + s − 2) = 1

s
+ 2

(s + 2)

(iv) Hence y= L−1
{
1
s

+ 2
s + 2

}

= 1+2e−2t

Returning to equations (A) to determine L{x} and
hence x:
(2s − 1)×equation (1′′′) and 5s×(2′′′) gives:

(2s − 1)(3s + 2)L{x} − 5s(2s − 1)L{y}

= (2s − 1)
(
6
s

+ 9
)

(5)

and −s(5s)L{x} + 5s(2s − 1)L{y}

= 5s
(

−1
s

− 2
)

(6)

i.e. (6s2+ s − 2)L{x} − 5s(2s − 1)L{y}

= 12+ 18s − 6
s

− 9 (5′)

and − 5s2L{x} + 5s(2s − 1)L{y}
= −5− 10s (6′)

Adding equations (5′) and (6′) gives:

(s2+ s − 2)L{x} = −2+ 8s − 6
s

= −2s + 8s2− 6
s

from which, L{x} = 8s2− 2s − 6
s(s2 + s − 2)

= 8s2− 2s − 6
s(s + 2)(s − 1)

Using partial fractions

8s2− 2s − 6
s(s + 2)(s − 1)

≡ A

s
+ B

(s + 2) + C

(s − 1)

= A(s + 2)(s − 1) + Bs(s − 1) + Cs(s + 2)
s(s + 2)(s − 1)

i.e. 8s2− 2s − 6= A(s + 2)(s − 1)
+ Bs(s − 1) + Cs(s + 2)
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When s =0, −6=−2A, hence A=3

When s =1, 0=3C, hence C=0

When s =−2, 30=6B, hence B=5

Thus L{x} = 8s2− 2s − 6
s(s + 2)(s − 1) = 3

s
+ 5

(s + 2)

Hence x= L−1
{
3
s

+ 5
s + 2

}

=3+5e−2t

Therefore the solutions of the given simultaneous dif-
ferential equations are

y=1+2e−2t and x=3+5e−2t

(These solutions may be checked by substituting the
expressions for x and y into the original equations.)

Problem 3. Solve the following pair of
simultaneous differential equations

d2x
dt2

− x = y

d2y
dt2

+ y = −x

given that at t =0, x =2, y =−1, dx
dt

=0

and
dy
dt

=0

Using the procedure:

(i) [s2L{x} − sx(0) − x ′(0)]−L{x} = L{y} (1)

[s2L{y} − sy(0) − y ′(0)]+L{y} = −L{x} (2)

from equation (4), page 744

(ii) x(0)=2, y(0)=−1, x ′(0)=0 and y ′(0)=0

hence s2L{x} − 2s −L{x} = L{y} (1′)

s2L{y} + s +L{y} = −L{x} (2′)

(iii) Rearranging gives:

(s2 − 1)L{x} −L{y} = 2s (3)

L{x} + (s2+ 1)L{y} = −s (4)

Equation (3)×(s2+1) and equation (4)×1
gives:

(s2+ 1)(s2− 1)L{x} − (s2+ 1)L{y}
= (s2+ 1)2s (5)

L{x} + (s2+ 1)L{y} = −s (6)

Adding equations (5) and (6) gives:

[(s2+ 1)(s2− 1) + 1]L{x} = (s2+ 1)2s − s

i.e. s4L{x} = 2s3+ s = s(2s2+ 1)

from which, L{x} = s(2s2 + 1)
s4

= 2s2+ 1
s3

= 2s2

s3
+ 1

s3
= 2

s
+ 1

s3

(iv) Hence x = L−1
{
2
s

+ 1
s3

}

i.e. x= 2+ 1
2
t2

Returning to equations (3) and (4) to deter-
mine y:
1×equation (3) and (s 2−1)×equation (4) gives:

(s2− 1)L{x} −L{y} = 2s (7)

(s2− 1)L{x} + (s2− 1)(s2+ 1)L{y}
= −s(s2− 1) (8)

Equation (7)−equation (8) gives:
[−1− (s2− 1)(s2+ 1)]L{y}

= 2s + s(s2− 1)
i.e. −s4L{y} = s3+ s

and L{y} = s3+ s

−s4
= −1

s
− 1

s3

from which, y = L−1
{

−1
s

− 1
s3

}

i.e. y= −1− 1
2
t2
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Now try the following Practice Exercise

Practice Exercise 259 Solving
simultaneous differential equations using
Laplace transforms (Answers on page 896)

Solve the following pairs of simultaneous differ-
ential equations:

1. 2
dx
dt

+ dy
dt

= 5et

dy
dt

− 3dx
dt

= 5

given that when t =0, x =0 and y =0
2. 2

dy
dt

− y + x + dx
dt

− 5sin t = 0

3
dy
dt

+ x − y + 2dx
dt

− et = 0

given that at t =0, x =0 and y =0

3. d2x
dt2

+ 2x = y

d2y
dt2

+ 2y = x

given that at t =0, x =4, y=2, dx
dt

=0

and
dy
dt

=0

For fully worked solutions to each of the problems in Practice Exercise 259 in this chapter,
go to the website:

www.routledge.com/cw/bird

Download more at Learnclax.com

http://www.routledge.com/cw/bird


Se
ct

io
n

K

Revision Test 20 Laplace transforms

This Revision Test covers the material contained in Chapters 67 to 72. The marks for each question are shown in
brackets at the end of each question.

1. Find the Laplace transforms of the following
functions:
(a) 2t3− 4t + 5 (b) 3e−2t − 4sin2t
(c) 3cosh2t (d) 2t 4e−3t

(e) 5e2t cos3t (f) 2e3t sinh4t (16)

2. Find the inverse Laplace transforms of the follow-
ing functions:

(a)
5

2s+1 (b)
12
s5

(c)
4s

s2+9 (d)
5

s2−9
(e)

3
(s+2)4 (f)

s −4
s2−8s−20

(g)
8

s2−4s+3 (17)

3. Use partial fractions to determine the following:

(a) L−1
{
5s − 1

s2− s − 2
}

(b) L−1
{
2s2 + 11s − 9
s(s − 1)(s + 3)

}

(c) L−1
{

13− s2

s(s2+ 4s + 13)
}

(24)

4. Determine the poles and zeros for the transfer func-

tion: F(s)= (s +2)(s−3)
(s +3)(s2+2s+5) and plot them on

a pole–zero diagram. (10)

5. Sketch the graphs of (a) f (t) = 4H(t − 3)
(b) f (t) = 3[H(t − 2) − H(t − 5)] (5)

6. Determine (a) L{H(t − 2).e t−2}
(b) L{5H(t − 1).sin(t − 1)} (6)

7. Determine (a) L−1
{
3e−2s

s2

}

(b) L−1
{
3se−5s

s2+ 4

}

(9)

8. In a galvanometer the deflection θ satisfies the
differential equation:

d2θ
dt2

+ 2dθ
dt

+ θ = 4

Use Laplace transforms to solve the equation for θ

given that when t =0, θ =0 and
dθ
dt

=0 (13)

9. Solve the following pair of simultaneous differen-
tial equations:

3
dx
dt

= 3x + 2y

2
dy
dt

+ 3x = 6y

given that when t =0, x =1 and y =3 (20)

For lecturers/instructors/teachers, fully worked solutions to each of the problems in Revision Test 20,
together with a full marking scheme, are available at the website:

www.routledge.com/cw/bird
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Chapter 73

Fourier series for periodic
functions of period 2π

Why it is important to understand: Fourier series for periodic functions of periodic 2π
A Fourier series changes a periodic function into an infinite expansion of a function in terms of sines and
cosines. In engineering and physics, expanding functions in terms of sines and cosines is useful because it
makes it possible to more easily manipulate functions that are just too difficult to represent analytically.
The fields of electronics, quantum mechanics and electrodynamics all make great use of Fourier series.
The Fourier series has become one of the most widely used and useful mathematical tools available to
any scientist. This chapter introduces and explains Fourier series.

At the end of this chapter, you should be able to:

• describe a Fourier series
• understand periodic functions
• state the formula for a Fourier series and Fourier coefficients
• obtain Fourier series for given functions

Higher Engineering Mathematics. 978-1-138-67357-1, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.
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73.1 Introduction

Fourier∗ seriesprovides amethodof analysingperiodic
functions into their constituent components. Alternating
currents and voltages, displacement, velocity and accel-
eration of slider-crank mechanisms and acoustic waves
are typical practical examples in engineering and sci-
ence where periodic functions are involved and often
require analysis.

73.2 Periodic functions

A function f (x) is said to be periodic if
f (x +T )=f (x) for all values of x, where T is
some positive number. T is the interval between two
successive repetitions and is called the period of
the functions f (x). For example, y = sinx is peri-
odic in x with period 2π since sinx = sin(x +2π)

= sin(x+4π), and so on. In general, if y=sinωt then
the period of the waveform is 2π/ω. The function
shown in Fig. 73.1 is also periodic of period 2π and is

∗Whowas Fourier? JeanBaptiste JosephFourier (21March
1768–16 May 1830) was a French mathematician and physicist
best known for initiating the investigation of Fourier series and
their applications to problems of heat transfer and vibrations.
Fourier is also credited with the discovery of the greenhouse
effect. To find out more go to www.routledge.com/cw/bird

x

f (x)

2�0

1

21

22� �2�

Figure 73.1

defined by:

f (x) =
{−1, when −π < x < 0
1, when 0< x < π

If a graph of a function has no sudden jumps or breaks
it is called a continuous function, examples being the
graphs of sine and cosine functions. However, other
graphs make finite jumps at a point or points in the
interval. The square wave shown in Fig. 73.1 has finite
discontinuities at x =π , 2π , 3π , and so on. A great
advantage of Fourier series over other series is that it
can be applied to functions which are discontinuous as
well as those which are continuous.

73.3 Fourier series

(i) The basis of a Fourier series is that all func-
tions of practical significancewhich are defined in
the interval−π ≤x ≤π can be expressed in terms
of a convergent trigonometric series of the form:

f (x) = a0+ a1 cosx + a2 cos2x

+ a3 cos3x + ·· · + b1 sinx

+ b2 sin2x + b3 sin3x + ·· ·
when a0,a1,a2, . . . b1,b2, . . . are real con-
stants, i.e.

f (x)=a0+
∞∑
n=1
(an cosnx+bn sinnx) (1)

where for the range−π to π :

a0= 1
2π

∫ π

−π

f (x)dx

an= 1
π

∫ π

−π

f (x)cosnxdx

(n=1,2,3, . . .)
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and bn= 1
π

∫ π

−π

f (x)sinnxdx

(n=1,2,3, . . .)
(ii) a0, an and bn are called the Fourier coefficients

of the series and if these can be determined, the
series of equation (1) is called the Fourier series
corresponding to f (x).

(iii) An alternative way of writing the series is by
using the a cosx +b sinx=c sin(x +α) relation-
ship introduced in Chapter 19, i.e.

f (x) = a0+ c1 sin(x + α1) + c2 sin(2x + α2)

+ ·· · + cn sin(nx + αn),

where a0 is a constant,

c1 =
√

(a21 + b21), . . . cn =
√

(a2n + b2n)

are the amplitudes of the various components,
and phase angle

αn = tan−1 an

bn

(iv) For the series of equation (1): the term
(a1 cosx +b1 sinx) or c1 sin(x+α1) is called the
first harmonic or the fundamental, the term
(a2 cos2x+b2 sin2x) or c2 sin(2x +α2) is called
the second harmonic, and so on.

For an exact representation of a complex wave, an infi-
nite number of terms are, in general, required. In many
practical cases, however, it is sufficient to take the first
few terms only (see Problem 2).

x

f (x)

3�/20

8

23

2�/2 �/2 �2�

Figure 73.2

The sumof aFourier series at a point of discontinuity
is givenby the arithmeticmeanof the two limiting values
of f (x) as x approaches the point of discontinuity from
the two sides. For example, for the waveform shown in

Fig. 73.2, the sum of the Fourier series at the points of
discontinuity (i.e. at

π

2
,π, . . . is given by:

8+ (−3)
2

= 5
2
or 2

1
2

73.4 Worked problems on Fourier
series of periodic functions of
period 2π

Problem 1. Obtain a Fourier series for the
periodic function f (x) defined as:

f (x) =
{ −k, when −π < x < 0

+k, when 0< x < π

The function is periodic outside of this range with
period 2π .

The square wave function defined is shown in Fig. 73.3.
Since f (x) is given by two different expressions in
the two halves of the range the integration is per-
formed in two parts, one from −π to 0 and the other
from 0 to π .

x

f (x)

2�0

k

2k

22� �2�

Figure 73.3

From Section 73.3(i):

a0 = 1
2π

∫ π

−π

f (x)dx

= 1
2π

[∫ 0

−π

−k dx +
∫ π

0
k dx

]

= 1
2π

{[−kx]0−π + [kx]π0 } = 0

[a0 is in fact the mean value of the waveform over a
complete period of 2π and this could have been deduced
on sight from Fig. 73.3]
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From Section 73.3(i):

an = 1
π

∫ π

−π

f (x)cosnx dx

= 1
π

{∫ 0

−π

−k cosnx dx +
∫ π

0
k cosnx dx

}

= 1
π

{[−k sinnx

n

]0

−π

+
[
k sinnx

n

]π

0

}

= 0

Hence a1, a2, a3, . . . are all zero (since sin0=
sin(−nπ)= sin nπ =0), and therefore no cosine terms
will appear in the Fourier series.
From Section 73.3(i):

bn = 1
π

∫ π

−π

f (x)sin nx dx

= 1
π

{∫ 0

−π

−k sin nx dx +
∫ π

0
k sin nx dx

}

= 1
π

{[
k cosnx

n

]0

−π

+
[−k cos nx

n

]π

0

}

When n is odd:

bn = k

π

{[(
1
n

)

−
(

−1
n

)]

+
[

−
(

−1
n

)

−
(

−1
n

)]}

= k

π

{
2
n

+ 2
n

}

= 4k
nπ

Hence b1= 4k
π
, b3= 4k

3π
, b5= 4k

5π
, and so on.

When n is even:

bn = k

π

{[
1
n

− 1
n

]

+
[

−1
n

−
(

−1
n

)]}

= 0

Hence, from equation (1), the Fourier series for the
function shown in Fig. 73.3 is given by:

f (x) = a0+
∞∑

n=1
(an cosnx + bn sinnx)

= 0+
∞∑

n=1
(0+ bn sinnx)

i.e. f (x) = 4k
π
sinx + 4k

3π
sin3x + 4k

5π
sin 5x + ·· ·

i.e. f (x)= 4k
π

(

sinx+ 1
3
sin3x + 1

5
sin5x+ ···

)

Problem 2. For the Fourier series of Problem 1
let k=π . Show by plotting the first three partial
sums of this Fourier series that as the series is added
together term by term the result approximates more
and more closely to the function it represents.

If k=π in the Fourier series of Problem 1 then:

f (x) = 4(sinx + 1
3 sin3x + 1

5 sin5x + ·· · )
4sinx is termed the first partial sum of the
Fourier series of f (x), (4sinx+ 4

3 sin3x) is termed
the second partial sum of the Fourier series, and
(4sinx + 4

3 sin3x+ 4
5 sin5x) is termed the third partial

sum, and so on.

Let P1 = 4sinx,

P2 = (
4sinx + 4

3 sin3x
)

and P3 = (
4sinx + 4

3 sin3x + 4
5 sin5x

)

Graphs of P1, P2 and P3, obtained by drawing up
tables of values, and adding waveforms are shown in
Figs. 73.4(a) to (c) and they show that the series is
convergent, i.e. continually approximating towards a
definite limit as more and more partial sums are taken,
and in the limit will have the sum f (x)=π .
Even with just three partial sums, the waveform is start-
ing to approach the rectangular wave the Fourier series
is representing.

Problem 3. If in the Fourier series of Problem 1,
k=1, deduce a series for π

4
at the point x = π

2

If k=1 in the Fourier series of Problem 1:
f (x) = 4

π

(

sinx + 1
3
sin3x + 1

5
sin5x + ·· ·

)

When x = π

2
, f (x) = 1,

sinx = sin π

2
= 1,

sin3x = sin 3π
2

= −1,

sin5x = sin 5π
2

= 1, and so on.

Hence 1= 4
π

[

1+ 1
3
(−1) + 1

5
(1) + 1

7
(−1) + ·· ·

]

i.e.
π

4
= 1− 1

3
+ 1
5

− 1
7

+ ···
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x

f (x)

f (x)

P1

0

(a)

(b)

(c)

4

24

2�/22�

2�

�/2 �

�

x

f (x) f (x)

4/3 sin 3x

02�/22�

2�

�/2 �

�

x

f (x) f (x)

4/5 sin 5x

P2

P2

P1

P3

0

2�/2

2�

2�

�/2 �

�

Figure 73.4

Problem 4. Determine the Fourier series for

the full wave rectified sine wave i =5sin θ

2
shown

in Fig. 73.5.

0

5

22� 2� 4�

i 5 5 sin �/2
i

�

Figure 73.5

i =5sin θ

2
is a periodic function of period 2π .

Thus

i = f (θ) = a0+
∞∑

n=1
(an cos nθ + bn sin nθ)

In this case it is better to take the range 0 to 2π
instead of−π to+π since the waveform is continuous
between 0 and 2π .

a0 = 1
2π

∫ 2π

0
f (θ)dθ = 1

2π

∫ 2π

0
5sin

θ

2
dθ

= 5
2π

[

−2cos θ

2

]2π

0

= 5
π

[(

−cos 2π
2

)

− (−cos0)
]

= 5
π
[(1) − (−1)]= 10

π

an = 1
π

∫ 2π

0
5sin

θ

2
cos nθ dθ

= 5
π

∫ 2π

0

1
2

{

sin
(

θ

2
+ nθ

)

+sin
(

θ

2
− nθ

)}

dθ

(see Chapter 43,page 482)

= 5
2π

[
−cos[θ ( 1

2 + n
)]

( 1
2 + n

)

− cos
[
θ
( 1
2 − n

)]

( 1
2 − n

)

]2π

0

= 5
2π

{[
−cos[2π ( 1

2 + n
)]

( 1
2 + n

)

− cos
[
2π

( 1
2 − n

)]

( 1
2 − n

)

]

−
[

−cos0
( 1
2 + n

) − cos0
( 1
2 − n

)

]}

When n is both odd and even,

an = 5
2π

{[
1

( 1
2 + n

) + 1
( 1
2 − n

)

]
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−
[

−1
( 1
2 + n

) − 1
( 1
2 − n

)

]}

= 5
2π

{
2

( 1
2 + n

) + 2
( 1
2 − n

)

}

= 5
π

{
1

( 1
2 + n

) + 1
( 1
2 − n

)

}

Hence

a1 = 5
π

[
1
3
2

+ 1
− 1
2

]

= 5
π

[
2
3

− 2
1

]

= −20
3π

a2 = 5
π

[
1
5
2

+ 1
− 3
2

]

= 5
π

[
2
5

− 2
3

]

= −20
(3)(5)π

a3 = 5
π

[
1
7
2

+ 1
− 5
2

]

= 5
π

[
2
7

− 2
5

]

= −20
(5)(7)π
and so on

bn = 1
π

∫ 2π

0
5sin

θ

2
sinnθ dθ

= 5
π

∫ 2π

0
−1
2

{

cos
[

θ

(
1
2

+ n

)]

−cos
[

θ

(
1
2

− n

)]}

dθ

from Chapter 43

= 5
2π

[
sin

[
θ
( 1
2 − n

)]

( 1
2 − n

) − sin
[
θ
( 1
2 + n

)]

( 1
2 + n

)

]2π

0

= 5
2π

{[
sin2π

( 1
2 − n

)

( 1
2 − n

) − sin2π
(1
2 + n

)

( 1
2 + n

)

]

−
[
sin0

( 1
2 − n

) − sin0
( 1
2 + n

)

]}

When n is both odd and even, bn =0 since sin(−π),
sin0, sinπ , sin3π , . . . are all zero. Hence the Fourier
series for the rectified sine wave,

i =5sin θ

2
is given by:

f (θ) = a0+
∞∑

n=1
(an cosnθ + bn sinnθ)

i.e. i = f (θ) = 10
π

− 20
3π
cosθ − 20

(3)(5)π
cos2θ

− 20
(5)(7)π

cos3θ − ·· ·

i.e. i = 20
π

(
1
2

− cosθ
(3)

− cos2θ
(3)(5)

− cos3θ
(5)(7)

−···
)

Now try the following Practice Exercise

Practice Exercise 260 Fourier series of
periodic functions of period 2π (Answers on
page 896)

1. Determine the Fourier series for the periodic
function:

f (x) =
{ −2, when −π < x < 0

+2, when 0< x < π

which is periodic outside this range of
period 2π .

2. For the Fourier series in Problem 1, deduce a
series for

π

4
at the point where x = π

2

3. For the waveform shown in Fig. 73.6 deter-
mine (a) the Fourier series for the function and
(b) the sum of the Fourier series at the points
of discontinuity.

x

f (x)

0

1

2� 3�
2

�23�
   2

2�
   2

�
2

Figure 73.6

4. For Problem 3, draw graphs of the first three
partial sums of the Fourier series and show that
as the series is added together term by term the
result approximates more and more closely to
the function it represents.

5. Find the term representing the third harmonic
for the periodic functionofperiod2π givenby:

f (x) =
{
0, when −π < x < 0
1, when 0< x < π
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6. Determine the Fourier series for the periodic
function of period 2π defined by:

f (t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, when −π < t < 0

1, when 0< t <
π

2
−1, when

π

2
< t < π

The function has a period of 2π .

7. Show that the Fourier series for the periodic
function of period 2π defined by

f (θ) =
{
0, when −π <θ <0
sin θ, when 0<θ <π

is given by:

f (θ) = 2
π

(
1
2

− cos2θ
(3)

− cos4θ
(3)(5)

− cos6θ
(5)(7)

− ·· ·
)

For fully worked solutions to each of the problems in Practice Exercise 260 in this chapter,
go to the website:

www.routledge.com/cw/bird
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Chapter 74

Fourier series for a
non-periodic function

over range 2π

Why it is important to understand: Fourier series for a non-periodic function over range 2π
As was stated in the previous chapter, there are many practical uses of Fourier series in science and
engineering. The technique has practical applications in the resolution of sound waves into their different
frequencies, for example, in anMP3 player, in telecommunications andWi-Fi, in computer graphics and
image processing, in climate variation, in water waves, andmuchmore. In this chapter, the Fourier series
for non-periodic functions is explained.

At the end of this chapter, you should be able to:

• appreciate that Fourier expansions of non-periodic functions have limited range
• determine Fourier series for non-periodic functions over a range of 2π

74.1 Expansion of non-periodic
functions

If a function f (x) is not periodic then it cannot be
expanded in aFourier series forallvalues ofx.However,
it is possible to determine a Fourier series to represent
the function over any range of width 2π .
Given a non-periodic function, a new function may
be constructed by taking the values of f (x) in the
given range and then repeating them outside of the
given range at intervals of 2π . Since this new func-
tion is, by construction, periodic with period 2π ,
it may then be expanded in a Fourier series for

all values of x. For example, the function f (x)=x

is not a periodic function. However, if a Fourier
series for f (x)=x is required then the function
is constructed outside of this range so that it is
periodic with period 2π as shown by the broken lines in
Fig. 74.1.
For non-periodic functions, such as f (x)=x, the sum
of the Fourier series is equal to f (x) at all points in the
given range but it is not equal to f (x) at points outside
of the range.
For determining a Fourier series of a non-periodic
function over a range 2π , exactly the same
formulae for the Fourier coefficients are used as in
Section 73.3(i).

Higher Engineering Mathematics. 978-1-138-67357-1, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.
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x

f (x)
f (x)5x

022� 2�

2�

4�

Figure 74.1

74.2 Worked problems on Fourier
series of non-periodic functions
over a range of 2π

Problem 1. Determine the Fourier series to
represent the function f (x)=2x in the range
−π to +π .

The function f (x)=2x is not periodic. The function is
shown in the range −π to π in Fig. 74.2 and is then
constructed outside of that range so that it is periodic of
period 2π (see broken lines) with the resulting sawtooth
waveform.
For a Fourier series:

f (x) = a0+
∞∑

n=1
(an cosnx + bn sinnx)

From Section 73.3(i),

a0 = 1
2π

∫ π

−π

f (x) dx

= 1
2π

∫ π

−π

2x dx = 2
2π

[
x2

2

]π

−π

=0

an = 1
π

∫ π

−π

f (x)cosnx dx = 1
π

∫ π

−π

2x cosnx dx

= 2
π

[
x sinnx

n
−

∫
sinnx

n
dx

]π

−π

by parts (see Chapter 46)

x

f (x)
f (x)52x

02�22�

22�

�

2�

2� 3�

Figure 74.2

= 2
π

[
x sinnx

n
+ cosnx

n2

]π

−π

= 2
π

[(
0+ cosnπ

n2

)
−

(

0+ cosn(−π)

n2

)]

= 0

bn = 1
π

∫ π

−π

f (x)sinnx dx = 1
π

∫ π

−π

2x sinnx dx

= 2
π

[−x cosnx

n
−

∫ (−cosnx

n

)

dx
]π

−π

by parts

= 2
π

[−x cosnx

n
+ sinnx

n2

]π

−π

= 2
π

[(−π cosnπ

n
+ sinnπ

n2

)

−
(−(−π)cosn(−π)

n
+ sinn(−π)

n2

)]

= 2
π

[−π cosnπ

n
− π cos(−nπ)

n

]

= −4
n
cosnπ

When n is odd, bn = 4
n
. Thus b1=4, b3= 43 ,

b5= 45 , and so on.
When n is even, bn = −4

n
. Thus b2=−4

2
,

b4=−4
4
, b6=−4

6
, and so on.

Thus f (x) = 2x = 4sinx − 4
2
sin2x + 4

3
sin3x

− 4
4
sin4x + 4

5
sin5x − 4

6
sin6x + ·· ·

i.e. 2x= 4
(

sinx− 1
2
sin2x+ 1

3
sin3x− 1

4
sin4x

+ 1
5
sin5x− 1

6
sin6x+···

)

(1)

for values of f (x) between −π and π . For values
of f (x) outside the range −π to +π the sum of the
series is not equal to f (x).

Problem 2. In the Fourier series of Problem 1, by
letting x =π/2, deduce a series for π/4.

When x =π/2, f (x)=π from Fig. 74.2.

Download more at Learnclax.com



Se
ct

io
n

M
784 Higher Engineering Mathematics

Thus, from the Fourier series of equation (1):

2
(π

2

)
= 4

(

sin
π

2
− 1
2
sin
2π
2

+ 1
3
sin
3π
2

− 1
4
sin
4π
2

+ 1
5
sin
5π
2

− 1
6
sin
6π
2

+ ·· ·
)

π = 4
(

1− 0− 1
3

− 0+ 1
5

− 0− 1
7

− ·· ·
)

i.e.
π

4
= 1− 1

3
+ 1
5

− 1
7

+···

Problem 3. Obtain a Fourier series for the
function defined by:

f (x) =
{

x, when 0< x < π

0, when π < x < 2π

Thedefined function is shown inFig. 74.3 between0and
2π . The function is constructed outside of this range so
that it is periodic of period 2π , as shown by the broken
line in Fig. 74.3.

x

f (x) f (x) 5 x

02�22� �

�

2� 3�

Figure 74.3

For a Fourier series:

f (x) = a0+
∞∑

n=1
(an cosnx + bn sinnx)

It is more convenient in this case to take the limits from0
to 2π instead of from−π to+π . The value of theFourier
coefficients are unaltered by this change of limits. Hence

a0 = 1
2π

∫ 2π

0
f (x)dx = 1

2π

[∫ π

0
x dx +

∫ 2π

π

0 dx
]

= 1
2π

[
x2

2

]π

0
= 1
2π

(
π2

2

)

= π

4

an = 1
π

∫ 2π

0
f (x)cosnx dx

= 1
π

[∫ π

0
x cosnx dx +

∫ 2π

π

0 dx
]

= 1
π

[
x sinnx

n
+ cosnx

n2

]π

0

(from Problem 1, by parts)

= 1
π

{[
π sinnπ

n
+ cosnπ

n2

]

−
[

0+ cos0
n2

]}

= 1
πn2

(cosnπ − 1)

When n is even, an =0.

When n is odd, an = −2
πn2

Hence a1= −2
π

,a3= −2
32π

,a5= −2
52π

, and so on

bn = 1
π

∫ 2π

0
f (x)sinnx dx

= 1
π

[∫ π

0
x sinnx dx −

∫ 2π

π

0 dx
]

= 1
π

[−x cosnx

n
+ sinnx

n2

]π

0

(from Problem 1, by parts)

= 1
π

{[−π cosnπ

n
+ sinnπ

n2

]

−
[

0+ sin0
n2

]}

= 1
π

[−π cosnπ

n

]

= −cosnπ

n

Hence b1=−cosπ =1, b2=−1
2
, b3= 13 , and so on.

Thus the Fourier series is:

f (x) = a0+
∞∑

n=1
(an cosnx + bn sinnx)

i.e. f (x) = π

4
− 2

π
cosx − 2

32π
cos3x

− 2
52π

cos5x − ·· · + sinx

− 1
2
sin2x + 1

3
sin3x − ·· ·

i.e. f (x)

= π

4
− 2

π

(

cosx+ cos3x
32

+ cos5x
52

+···
)

+
(

sinx− 1
2
sin2x+ 1

3
sin3x−···

)

Download more at Learnclax.com



Se
ct

io
n

M

Fourier series for a non-periodic function over range 2π 785

Problem 4. For the Fourier series of Problem 3:
(a) What is the sum of the series at the point of
discontinuity (i.e. at x =π)? (b) What is the
amplitude and phase angle of the third harmonic?
and (c) Let x =0, and deduce a series for π 2/8

(a) The sum of the Fourier series at the point of dis-
continuity is given by the arithmetic mean of the
two limiting values of f (x) as x approaches the
point of discontinuity from the two sides.

Hence sum of the series at x =π is
π − 0
2

= π

2
(b) The third harmonic term of the Fourier series is

(

− 2
32π

cos3x + 1
3
sin3x

)

This may also bewritten in the form c sin(3x+α),

where amplitude, c =
√√
√
√

[( −2
32π

)2
+

(
1
3

)2]

= 0.341
and phase angle,

α = tan−1

⎛

⎜
⎝

−2
32π
1
3

⎞

⎟
⎠

= −11.98◦ or −0.209radians
Hence the third harmonic is given by

0.341 sin(3x−0.209)
(c) When x =0, f (x)=0 (see Fig. 74.3).

Hence, from the Fourier series:

0= π

4
− 2

π

(

cos0+ 1
32
cos0+ 1

52
cos0+·· ·

)

+(0)

i.e. − π

4
= − 2

π

(

1+ 1
32

+ 1
52

+ 1
72

+ ·· ·
)

Hence
π2

8
= 1+ 1

32
+ 1
52

+ 1
72

+···

Problem 5. Deduce the Fourier series for the
function f (θ)=θ 2 in the range 0 to 2π .

f (θ)=θ2 is shown in Fig. 74.4 in the range 0 to 2π .
The function is not periodic but is constructed outside
of this range so that it is periodic of period 2π , as shown
by the broken lines.

f (�)
f (�)5�2

024� 22� 2� 4�

4�2

�

Figure 74.4

For a Fourier series:

f (x) = a0+
∞∑

n=1
(an cosnx + bn sinnx)

a0 = 1
2π

∫ 2π

0
f (θ)dθ = 1

2π

∫ 2π

0
θ2 dθ

= 1
2π

[
θ3

3

]2π

0
= 1
2π

[
8π3

3
− 0

]

= 4π2

3

an = 1
π

∫ 2π

0
f (θ)cosnθ dθ

= 1
π

∫ 2π

0
θ2 cosnθ dθ

= 1
π

[
θ2 sinnθ

n
+ 2θ cosnθ

n2
− 2sinnθ

n3

]2π

0

by parts

= 1
π

[(

0+ 4π cos2πn

n2
− 0

)

− (0)
]

= 4
n2
cos2πn = 4

n2
when n = 1,2,3, . . .

Hence a1= 4
12
, a2= 4

22
, a3= 4

32
and so on

bn = 1
π

∫ 2π

0
f (θ)sinnθ dθ = 1

π

∫ 2π

0
θ2 sinnθ dθ

= 1
π

[−θ2 cosnθ

n
+ 2θ sinnθ

n2
+ 2cosnθ

n3

]2π

0

by parts
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= 1
π

[(−4π2 cos2πn

n
+ 0+ 2cos2πn

n3

)

−
(

0+ 0+ 2cos0
n3

)]

= 1
π

[−4π2
n

+ 2
n3

− 2
n3

]

= −4π
n

Hence b1= −4π
1
, b2= −4π

2
, b3= −4π

3
, and so on.

Thus f (θ) = θ2

= 4π2

3
+

∞∑

n=1

(
4
n2
cosnθ − 4π

n
sinnθ

)

i.e. θ2=
4π2

3
+4

(

cosθ + 1
22
cos2θ + 1

32
cos3θ +···

)

− 4π
(

sinθ + 1
2
sin2θ + 1

3
sin3θ +···

)

for values of θ between 0 and 2π .

Problem 6. In the Fourier series of Problem 5, let

θ =π and determine a series for
π2

12

When θ =π, f (θ)=π2

Hence π2 = 4π2

3
+ 4

(

cosπ + 1
4
cos2π

+ 1
9
cos3π + 1

16
cos4π + ·· ·

)

− 4π
(

sinπ + 1
2
sin2π

+ 1
3
sin3π + ·· ·

)

i.e. π2− 4π2

3
= 4

(

−1+ 1
4

− 1
9

+ 1
16

− ·· ·
)

− 4π(0)

−π2

3
= 4

(

−1+ 1
4

− 1
9

+ 1
16

− ·· ·
)

π2

3
= 4

(

1− 1
4

+ 1
9

− 1
16

+ ·· ·
)

Hence
π2

12
= 1− 1

4
+ 1
9

− 1
16

+···

or
π2

12
= 1− 1

22
+ 1
32

− 1
42

+···

Now try the following Practice Exercise

Practice Exercise 261 Fourier series of
non-periodic functions of period 2π

(Answers on page 896)

1. Show that the Fourier series for the function
f (x)=x over the range x =0 to x =2π is
given by:

f (x) = π − 2
(

sinx + 1
2
sin2x

+1
3
sin3x + 1

4
sin4x + . . .

)

2. Determine the Fourier series for the function
defined by:

f (t) =
{
1− t, when −π < t < 0

1+ t, when 0< t < π

Draw a graph of the function within and
outside of the given range.

3. Find the Fourier series for the function
f (x)=x + π within the range−π < x < π

4. Determine the Fourier series up to and
including the third harmonic for the
function defined by:

f (x) =
{

x, when 0< x < π

2π − x, when π < x < 2π

Sketch a graph of the function within and
outside of the given range, assuming the period
is 2π .

5. Expand the function f (θ)=θ 2 in a Fourier
series in the range−π < θ < π

Sketch the function within and outside of the
given range.

6. For the Fourier series obtained in Problem 5,

let θ =π and deduce the series for
∞∑

n=1
1
n2
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7. Sketch the waveform defined by:

f (x) =

⎧
⎪⎨

⎪⎩

1+ 2x
π

, when −π < x < 0

1− 2x
π

, when 0< x < π

Determine the Fourier series in this range.

8. For the Fourier series of Problem 8, deduce a

series for
π2

8

For fully worked solutions to each of the problems in Practice Exercise 261 in this chapter,
go to the website:

www.routledge.com/cw/bird

Download more at Learnclax.com
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Chapter 75

Even and odd functions and
half-range Fourier series

Why it is important to understand: Even and odd functions and half-range Fourier series
It has already been noted in previous chapters that the Fourier series is a very useful tool. The Fourier
series has many applications; in fact, any field of physical science that uses sinusoidal signals, such as
engineering, applied mathematics and chemistry will make use of the Fourier series. Applications are
found in electrical engineering, such as in determining the harmonic components in a.c. waveforms, in
vibration analysis, acoustics, optics, signal processing, image processing and in quantum mechanics. If
it can be found ‘on sight’ that a function is even or odd, then determining the Fourier series becomes an
easier exercise. This is explained in this chapter, together with half-range Fourier series.

At the end of this chapter, you should be able to:

• define even and odd functions
• determine Fourier cosine series and Fourier sine series
• determine Fourier half-range cosine series and Fourier half-range sine series

75.1 Even and odd functions

Even functions
A function y=f (x) is said to be even if f (−x)=f (x)

for all values of x. Graphs of even functions are always
symmetrical about the y-axis (i.e. amirror image). Two
examples of even functions are y =x 2 and y =cosx as
shown in Fig. 20.25, page 228.

Odd functions
A function y =f (x) is said to be odd if f (−x)=
−f (x) for all values of x. Graphs of odd functions are
always symmetrical about the origin. Two examples

of odd functions are y =x 3 and y=sinx as shown in
Fig. 20.26, page 228.
Many functions are neither even nor odd, two such
examples being shown in Fig. 20.27, page 228.
See also Problems 3 and 4, pages 228 and 229.

75.2 Fourier cosine and Fourier
sine series

(a) Fourier cosine series

The Fourier series of an even periodic function
f (x) having period 2π contains cosine terms only (i.e.

Higher Engineering Mathematics. 978-1-138-67357-1, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.
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contains no sine terms) and may contain a constant
term.

Hence f (x)= a0+
∞∑

n=1
an cosnx

where a0 = 1
2π

∫ π

−π

f (x)dx

= 1
π

∫ π

0
f (x)dx

(due to symmetry)

and an = 1
π

∫ π

−π

f (x)cosnx dx

= 2
π

∫ π

0
f (x)cosnxdx

(b) Fourier sine series
The Fourier series of an odd periodic function f (x)

having period 2π contains sine terms only (i.e. contains
no constant term and no cosine terms).

Hence f (x)=
∞∑

n=1
bn sinnx

where bn = 1
π

∫ π

−π

f (x)sinnx dx

= 2
π

∫ π

0
f (x)sinnxdx

Problem 1. Determine the Fourier series for the
periodic function defined by:

f (x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−2, when −π <x<−π

2
2, when −π

2
<x <

π

2
−2, when

π

2
<x <π

and has a period of 2π

The square wave shown in Fig. 75.1 is an even function
since it is symmetrical about the f (x) axis.

Hence from para. (a) the Fourier series is given by:

f (x) = a0+
∞∑

n=1
an cosnx

(i.e. the series contains no sine terms.)

2

f (x)

�2

�3�/2 3�/2 2� x�� ��/2 �/2 �0

Figure 75.1

From para. (a),

a0 = 1
π

∫ π

0
f (x)dx

= 1
π

{∫ π/2

0
2dx +

∫ π

π/2
−2dx

}

= 1
π

{
[2x]π/2

0 + [−2x]ππ/2

}

= 1
π
[(π) + [(−2π) − (−π)]= 0

an = 2
π

∫ π

0
f (x)cosnx dx

= 2
π

{∫ π/2

0
2cosnx dx +

∫ π

π/2
−2cosnx dx

}

= 4
π

{[
sinnx

n

]π/2

0
+

[−sinnx

n

]π

π/2

}

= 4
π

{(
sin(π/2)n

n
− 0

)

+
(

0− −sin(π/2)n
n

)}

= 4
π

(
2sin(π/2)n

n

)

= 8
πn

(
sin

nπ

2

)

When n is even, an = 0
When n is odd, an = 8

πn
for n=1,5,9, . . .
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and an = −8
πn

for n=3,7,11, . . .

Hence a1= 8
π
, a3= −8

3π
, a5= 8

5π
, and so on.

Hence the Fourier series for the waveform of Fig. 75.1
is given by:

f (x)= 8
π

(

cosx− 1
3
cos3x+ 1

5
cos5x

− 1
7
cos 7x+···

)

Problem 2. In the Fourier series of Problem 1 let
x =0 and deduce a series for π/4.

When x =0, f (x)=2 (from Fig. 75.1).
Thus, from the Fourier series,

2= 8
π

(

cos0− 1
3
cos0+ 1

5
cos0

− 1
7
cos0+ ·· ·

)

Hence
2π
8

= 1− 1
3

+ 1
5

− 1
7

+ ·· ·

i.e.
π

4
= 1− 1

3
+ 1
5

− 1
7

+···

Problem 3. Obtain the Fourier series for the
square wave shown in Fig. 75.2.

2

f (x)

x0

22

2� � 2� 3�

Figure 75.2

The square wave shown in Fig. 75.2 is an odd function
since it is symmetrical about the origin.

Hence, from para. (b), the Fourier series is given by:

f (x) =
∞∑

n=1
bn sinnx

The function is defined by:

f (x) =
{ −2, when −π <x <0

2, when 0<x<π

From para. (b), bn = 2
π

∫ π

0
f (x)sinnx dx

= 2
π

∫ π

0
2sinnx dx

= 4
π

[−cosnx

n

]π

0

= 4
π

[(−cosnπ

n

)

−
(

−1
n

)]

= 4
πn

(1− cosnπ)

When n is even, bn =0

When n is odd, bn = 4
πn

(1− (−1))= 8
πn

Hence b1= 8
π

, b3= 8
3π

, b5= 8
5π
,

and so on.

Hence the Fourier series is:

f (x)= 8
π

(

sinx+ 1
3
sin3x+ 1

5
sin5x

+ 1
7
sin7x+···

)

Problem 4. Determine the Fourier series for the
function f (θ)=θ 2 in the range−π <θ <π . The
function has a period of 2π .

A graph of f (θ)=θ 2 is shown in Fig. 75.3 in the range
−π to π with period 2π . The function is symmetrical
about the f (θ) axis and is thus an even function. Thus
a Fourier cosine series will result of the form:

f (θ) = a0+
∞∑

n=1
an cosnθ

22� 0

f (�)

f (�) 5 �2

�2

2� � 2� �

Figure 75.3
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From para. (a),

a0 = 1
π

∫ π

0
f (θ)dθ = 1

π

∫ π

0
θ2 dθ

= 1
π

[
θ3

3

]π

0
= π2

3

and an = 2
π

∫ π

0
f (θ)cosnθ dθ

= 2
π

∫ π

0
θ2 cosnθ dθ

= 2
π

[
θ2 sinnθ

n
+ 2θ cosnθ

n2
− 2sinnθ

n3

]π

0

by parts

= 2
π

[(

0+ 2π cosnπ

n2
− 0

)

− (0)
]

= 4
n2
cosnπ

When n is odd, an = −4
n2
. Hence a1= −4

12
,

a3= −4
32
, a5= −4

52
, and so on.

When n is even, an = 4
n2
. Hence a2= 4

22
, a4= 4

42
, and

so on.
Hence the Fourier series is:

f (θ )= θ 2 = π2

3
−4

(

cosθ − 1
22
cos2θ + 1

32
cos3θ

− 1
42
cos4θ + 1

52
cos5θ −···

)

Problem 5. For the Fourier series of Problem 4,

let θ =π and show that
∞∑

n=1
1
n2

= π2

6

When θ =π , f (θ)=π2 (see Fig. 75.3). Hence from the
Fourier series:

π2 = π2

3
− 4

(

cosπ − 1
22
cos2π + 1

32
cos3π

− 1
42
cos4π + 1

52
cos5π − ·· ·

)

i.e.

π2− π2

3
= −4

(

−1− 1
22

− 1
32

− 1
42

− 1
52

− ·· ·
)

2π2

3
= 4

(

1+ 1
22

+ 1
32

+ 1
42

+ 1
52

+ ·· ·
)

i.e.
2π2

(3)(4)
= 1+ 1

22
+ 1
32

+ 1
42

+ 1
52

+ ·· ·

i.e.
π2

6
= 1
12

+ 1
22

+ 1
32

+ 1
42

+ 1
52

+ ·· ·
Hence

∞∑

n=1

1
n2

= π2

6

Now try the following Practice Exercise

Practice Exercise 262 Fourier cosine and
Fourier sine series (Answers on page 897)

1. Determine the Fourier series for the function
defined by:

f (x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−1, −π < x < −π

2
1, −π

2
< x <

π

2
−1, π

2
< x < π

which is periodic outside of this range of
period 2π .

2. Obtain the Fourier series of the function
defined by:

f (t)=
{

t + π, −π < t < 0

t − π, 0< t < π

which is periodic of period 2π . Sketch the
given function.

3. Determine the Fourier series defined by

f (x) =
{
1− x, −π < x < 0

1+ x, 0< x < π

which is periodic of period 2π

4. In the Fourier series of Problem 3, let x =0
and deduce a series for π 2/8

5. Show that the Fourier series for the triangular
waveform shown in Fig. 75.4 is given by:

y = 8
π2

(

sin θ − 1
32
sin3θ + 1

52
sin5θ

− 1
72
sin7θ + . . .

)

The function is periodic of period 2π .
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y

0

21

1

2�� �

Figure 75.4

75.3 Half-range Fourier series

(a) When a function is defined over the range say 0
to π instead of from 0 to 2π it may be expanded
in a series of sine terms only or of cosine terms
only. The series produced is called a half-range
Fourier series.

(b) If a half-range cosine series is required for the
function f (x)=x in the range 0 to π then an
even periodic function is required. In Fig. 75.5,
f (x)=x is shown plotted from x =0 to x =π .
Since an even function is symmetrical about the
f (x) axis the line AB is constructed as shown.
If the triangular waveform produced is assumed
to be periodic of period 2π outside of this range
then the waveform is as shown in Fig. 75.5.When
a half-range cosine series is required then the
Fourier coefficients a0 and an are calculated as
in Section 75.2(a), i.e.

f (x)= a0 +
∞∑

n=1
an cosnx

where a0 = 1
π

∫ π

0
f (x)dx

and an = 2
π

∫ π

0
f (x)cosnxdx

22� 2�0

A

x

B

f (x )

f (x)5x

2� �

�

Figure 75.5

(c) If a half-range sine series is required for the func-
tion f (x)=x in the range 0 to π then an odd peri-
odic function is required. In Fig. 75.6, f (x)=x

is shown plotted from x=0 to x =π . Since an
odd function is symmetrical about the origin the
line CD is constructed as shown. If the sawtooth
waveform produced is assumed to be periodic of
period 2π outside of this range, then thewaveform
is as shown in Fig. 75.6. When a half-range sine
series is required then the Fourier coefficient bn is
calculated as in Section 75.2(b), i.e.

f (x)=
∞∑

n=1
bn sinnx

where bn = 2
π

∫ π

0
f (x) sinnxdx

22�

D

C

f (x)
f(x )5x

2� 3� x02�

2�

�

�

Figure 75.6

Problem 6. Determine the half-range Fourier
cosine series to represent the function f (x)=3x in
the range 0 ≤ x ≤ π

From para. (b), for a half-range cosine series:

f (x) = a0+
∞∑

n=1
an cosnx

When f (x)=3x,

a0 = 1
π

∫ π

0
f (x)dx = 1

π

∫ π

0
3x dx

= 3
π

[
x2

2

]π

0
= 3π
2

an = 2
π

∫ π

0
f (x)cosnx dx

= 2
π

∫ π

0
3x cosnx dx

= 6
π

[
x sinnx

n
+ cosnx

n2

]π

0
by parts
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= 6
π

[(
π sinnπ

n
+ cosnπ

n2

)

−
(

0+ cos0
n2

)]

= 6
π

(

0+ cosnπ

n2
− cos0

n2

)

= 6
πn2

(cosnπ − 1)

When n is even, an =0
When n is odd, an = 6

πn2
(−1 −1)= −12

πn2

Hence a1= −12
π
, a3= −12

π32
, a5= −12

π52
, and so on.

Hence the half-range Fourier cosine series is given by:

f (x)= 3x= 3π
2

− 12
π

(

cosx+ 1
32
cos3x

+ 1
52
cos5x + ···

)

Problem 7. Find the half-range Fourier sine
series to represent the function f (x)=3x in the
range 0 ≤ x ≤ π

From para. (c), for a half-range sine series:

f (x) =
∞∑

n=1
bn sinnx

When f (x)=3x,

bn = 2
π

∫ π

0
f (x)sinnx dx = 2

π

∫ π

0
3x sinnx dx

= 6
π

[−x cosnx

n
+ sinnx

n2

]π

0
by parts

= 6
π

[(−π cosnπ

n
+ sinnπ

n2

)

− (0+ 0)
]

= −6
n
cosnπ

When n is odd, bn = 6
n

Hence b1= 61 , b3=
6
3
, b5= 65 and so on.

When n is even, bn =−6
n

Hence b2=−6
2
, b4=−6

4
, b6=−6

6
and so on.

Hence the half-range Fourier sine series is given by:

f (x)= 3x= 6
(

sinx− 1
2
sin2x+ 1

3
sin3x

− 1
4
sin4x+ 1

5
sin5x−···

)

Problem 8. Expand f (x)=cosx as a half-range
Fourier sine series in the range 0≤x ≤π , and sketch
the function within and outside of the given range.

When a half-range sine series is required then an
odd function is implied, i.e. a function symmetrical
about the origin. A graph of y =cosx is shown in
Fig. 75.7 in the range 0 toπ . For cosx to be symmetrical
about the origin the function is as shown by the broken
lines in Fig. 75.7 outside of the given range.

2�

21

� 2�0 x

y 5 cos x1

f (x )

Figure 75.7

From para. (c), for a half-range Fourier sine series:

f (x) =
∞∑

n=1
bn sinnx dx

bn = 2
π

∫ π

0
f (x)sinnx dx

= 2
π

∫ π

0
cosx sinnx dx

= 2
π

∫ π

0

1
2
[sin(x + nx) − sin(x − nx)]dx

= 1
π

[−cos[x(1+ n)]
(1+ n)

+ cos[x(1− n)]
(1− n)

]π

0

= 1
π

[(−cos[π(1+ n)]
(1+ n)

+ cos[π(1− n)]
(1− n)

)

−
( −cos0

(1+ n)
+ cos0

(1− n)

)]
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When n is odd,

bn = 1
π

[( −1
(1+ n)

+ 1
(1− n)

)

−
( −1

(1+ n)
+ 1

(1− n)

)]

= 0

When n is even,

bn = 1
π

[(
1

(1+ n)
− 1

(1− n)

)

−
( −1

(1+ n)
+ 1

(1− n)

)]

= 1
π

(
2

(1+ n)
− 2

(1− n)

)

= 1
π

(
2(1− n) − 2(1+ n)

1− n2

)

= 1
π

( −4n
1− n2

)

= 4n
π(n2− 1)

Hence b2= 8
3π
, b4= 16

15π
, b6= 24

35π
and so on.

Hence the half-range Fourier sine series for f (x) in the
range 0 to π is given by:

f (x) = 8
3π
sin2x + 16

15π
sin4x

+ 24
35π

sin6x + ·· ·

or f (x)= 8
π

(
1
3
sin2x+ 2

(3)(5)
sin4x

+ 3
(5)(7)

sin6x+···
)

Now try the following Practice Exercise

Practice Exercise 263 Half-range Fourier
series (Answers on page 897)

1. Determine the half-range sine series for the
function defined by:

f (x) =
⎧
⎨

⎩

x, 0< x <
π

2
0,

π

2
< x < π

2. Obtain (a) the half-range cosine series and
(b) the half-range sine series for the function

f (t) =

⎧
⎪⎨

⎪⎩

0, 0< t <
π

2
1,

π

2
< t < π

3. Find the half-range Fourier sine series for
the function f (x) = sin2 x in the range
0≤ x ≤ π . Sketch the function within and
outside of the given range.

4. Determine the half-rangeFourier cosine series
in the range x =0 to x =π for the function
defined by:

f (x) =

⎧
⎪⎪⎨

⎪⎪⎩

x, 0< x <
π

2

(π − x),
π

2
< x < π

For fully worked solutions to each of the problems in Practice Exercises 262 and 263 in this chapter,
go to the website:

www.routledge.com/cw/bird
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Chapter 76

Fourier series over any range

Why it is important to understand: Fourier series over any range
As has beenmentioned in preceding chapters, theFourier series hasmany applications; in fact, any field of
physical science that uses sinusoidal signals, such as engineering, appliedmathematics and chemistry, will
make use of the Fourier series. In communications, the Fourier series is essential to understanding how
a signal behaves when it passes through filters, amplifiers and communications channels. In astronomy,
radar and digital signal processing Fourier analysis is used tomap the planet. In geology, seismic research
uses Fourier analysis, and in optics, Fourier analysis is used in light diffraction. This chapter explains
how to determine the Fourier series of a periodic function over any range.

At the end of this chapter, you should be able to:

• understand the Fourier series of a periodic function of period L

• determine the Fourier series of a periodic function of period L

• determine the half-range Fourier series for functions of period L

76.1 Expansion of a periodic function
of period L

(a) A periodic function f (x) of period L

repeats itself when x increases by L, i.e.
f (x +L)=f (x). The change from functions
dealt with previously having period 2π to func-
tions having period L is not difficult since it may
be achieved by a change of variable.

(b) To find a Fourier series for a function f (x) in

the range −L

2
≤x ≤ L

2
a new variable u is intro-

duced such that f (x), as a function of u, has

period 2π . If u= 2πx

L
then, when x=−L

2
,

u=−π and when x = L

2
,u=+π . Also, let

f (x)=f

(
Lu

2π

)

=F(u). The Fourier series for

F(u) is given by:

F(u) = a0+
∞∑

n=1
(an cosnu + bn sinnu),

where a0 = 1
2π

∫ π

−π

F (u)du,

an = 1
π

∫ π

−π

F (u)cosnudu

and bn = 1
π

∫ π

−π

F (u)sinnudu

(c) It is however more usual to change the formula of

para. (b) to terms of x. Since u= 2πx

L
, then

du = 2π
L
dx,

Higher Engineering Mathematics. 978-1-138-67357-1, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.

Download more at Learnclax.com



Se
ct

io
n

M
796 Higher Engineering Mathematics

and the limits of integration are − L

2
to +L

2
instead of from −π to +π . Hence the Fourier
series expressed in terms of x is given by:

f (x)=a0+
∞∑
n=1

[

an cos
(
2πnx

L

)

+bn sin
(
2πnx

L

)]

where, in the range− L

2
to +L

2
:

and

a0 = 1
L

∫ L
2

−L
2

f (x)dx,

an = 2
L

∫ L
2

−L
2

f (x)cos
(
2πnx
L

)

dx

bn = 2
L

∫ L
2

−L
2

f (x)sin
(
2πnx
L

)

dx

The limits of integrationmay be replaced by any interval
of length L, such as from 0 to L.

Problem 1. The voltage from a square wave
generator is of the form:

v(t) =
{
0, −4<t <0

10, 0<t <4
and has a period of 8ms.

Find the Fourier series for this periodic function.

The square wave is shown in Fig. 76.1. From para. (c),
the Fourier series is of the form:

v(t) = a0+
∞∑

n=1

[

an cos
(
2πnt

L

)

+ bn sin
(
2πnt

L

)]

Period L 5 8 ms

0

10

v (t)

t (ms)24 4 8 1228

Figure 76.1

a0 = 1
L

∫ L
2

−L
2

v(t)dt = 1
8

∫ 4

−4
v(t)dt

= 1
8

{∫ 0

−4
0dt +

∫ 4

0
10dt

}

= 1
8
[10t]40 = 5

an = 2
L

∫ L
2

−L
2

v(t)cos
(
2πnt

L

)

dt

= 2
8

∫ 4

−4
v(t)cos

(
2πnt

8

)

dt

= 1
4

{∫ 0

−4
0cos

(
πnt

4

)

dt +
∫ 4

0
10cos

(
πnt

4

)

dt
}

= 1
4

⎡

⎢
⎢
⎣

10sin
(

πnt

4

)

(πn

4

)

⎤

⎥
⎥
⎦

4

0

= 10
πn
[sinπn− sin0]

= 0 for n=1,2,3, . . .

bn = 2
L

∫ L
2

−L
2

v(t)sin
(
2πnt

L

)

dt

= 2
8

∫ 4

−4
v(t)sin

(
2πnt

8

)

dt

= 1
4

{∫ 0

−4
0sin

(
πnt

4

)

dt +
∫ 4

0
10sin

(
πnt

4

)

dt
}

= 1
4

⎡

⎢
⎢
⎣

−10cos
(

πnt

4

)

(πn

4

)

⎤

⎥
⎥
⎦

4

0

= −10
πn

[cosπn− cos0]

When n is even, bn =0

When n is odd, b1= −10
π

(−1−1) = 20
π

,

b3= −10
3π

(−1−1) = 20
3π

,

b5= 20
5π

, and so on.
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Thus the Fourier series for the function v(t) is given by:

v(t)= 5+ 20
π

[

sin
(

π t
4

)

+ 1
3
sin
(
3π t
4

)

+ 1
5
sin
(
5π t
4

)

+ ···
]

Problem 2. Obtain the Fourier series for the
function defined by:

f (x) =

⎧
⎪⎨

⎪⎩

0, when −2< x < −1
5, when −1< x < 1
0, when 1< x < 2

The function is periodic outside of this range of
period 4

The function f (x) is shown in Fig. 76.2 where period,
L = 4. Since the function is symmetrical about the f (x)

axis it is an even function and the Fourier series contains
no sine terms (i.e. bn =0)

L 5 4

5

f (x)

x22 21 0 1 2 3 4 525 24 23

Figure 76.2

Thus, from para. (c),

f (x) = a0+
∞∑

n=1
an cos

(
2πnx

L

)

a0 = 1
L

∫ L
2

−L
2

f (x)dx = 1
4

∫ 2

−2
f (x)dx

= 1
4

{∫ −1

−2
0dx +

∫ 1

−1
5dx +

∫ 2

1
0dx

}

= 1
4
[5x]1−1 = 1

4
[(5) − (−5)]= 10

4
= 5
2

an = 2
L

∫ L
2

−L
2

f (x)cos
(
2πnx

L

)

dx

= 2
4

∫ 2

−2
f (x)cos

(
2πnx

4

)

dx

= 1
2

{∫ −1

−2
0cos

(πnx

2

)
dx

+
∫ 1

−1
5cos

(πnx

2

)
dx

+
∫ 2

1
0cos

(πnx

2

)
dx
}

= 5
2

⎡

⎢
⎣
sin

πnx

2
πn

2

⎤

⎥
⎦

1

−1

= 5
πn

[

sin
(πn

2

)
− sin

(−πn

2

)]

When n is even, an =0
When n is odd,

a1 = 5
π

(1− (−1)) = 10
π

a3 = 5
3π

(−1− 1) = −10
3π

a5 = 5
5π

(1− (−1)) = 10
5π

and so on.

Hence the Fourier series for the function f (x) is
given by:

f (x)= 5
2

+ 10
π

[

cos
(πx
2

)
− 1
3
cos
(
3πx
2

)

+ 1
5
cos
(
5πx
2

)

− 1
7
cos
(
7πx
2

)

+ ···
]

Problem 3. Determine the Fourier series for the
function f (t)= t in the range t =0 to t =3

The function f (t)= t in the interval 0 to 3 is shown in
Fig. 76.3. Although the function is not periodic it may
be constructed outside of this range so that it is periodic
of period 3, as shown by the broken lines in Fig. 76.3.

Download more at Learnclax.com



Se
ct

io
n

M
798 Higher Engineering Mathematics

Period L 5 3

f (t )

f (t ) 5t

t 
23 30 6

Figure 76.3

From para. (c), the Fourier series is given by:

f (t) = a0+
∞∑

n=1

[

an cos
(
2πnt

L

)

+ bn sin
(
2πnt

L

)]

a0 = 1
L

∫ L
2

−L
2

f (t)dx = 1
L

∫ L

0
f (t)dx

= 1
3

∫ 3

0
t dt = 1

3

[
t2

2

]3

0
= 3
2

an = 2
L

∫ L
2

−L
2

f (t)cos
(
2πnt

L

)

dt

= 2
L

∫ L

0
t cos

(
2πnt

L

)

dt

= 2
3

∫ 3

0
t cos

(
2πnt

3

)

dt

= 2
3

⎡

⎢
⎢
⎢
⎣

t sin
(
2πnt

3

)

(
2πn

3

) +
cos
(
2πnt

3

)

(
2πn

3

)2

⎤

⎥
⎥
⎥
⎦

3

0

by parts

= 2
3

⎡

⎢
⎢
⎢
⎣

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

3sin2πn
(
2πn

3

) + cos2πn
(
2πn

3

)2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

−

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0+ cos0
(
2πn

3

)2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

⎤

⎥
⎥
⎥
⎦

= 0

bn = 2
L

∫ L
2

−L
2

f (t)sin
(
2πnt

L

)

dt

= 2
L

∫ L

0
t sin

(
2πnt

L

)

dt

= 2
3

∫ 3

0
t sin

(
2πnt

3

)

dt

= 2
3

⎡

⎢
⎢
⎢
⎣

−t cos
(
2πnt

3

)

(
2πn

3

) +
sin
(
2πnt

3

)

(
2πn

3

)2

⎤

⎥
⎥
⎥
⎦

3

0

by parts

= 2
3

⎡

⎢
⎢
⎢
⎣

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−3cos2πn
(
2πn

3

) + sin2πn
(
2πn

3

)2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

−

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0+ sin0
(
2πn

3

)2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

⎤

⎥
⎥
⎥
⎦

= 2
3

⎡

⎢
⎢
⎣

−3cos2πn
(
2πn

3

)

⎤

⎥
⎥
⎦= −3

πn
cos2πn = −3

πn

Hence b1= −3
π

, b2= −3
2π

,b3= −3
3π

and so on.

Thus the Fourier series for the functionf (t) in the range
0 to 3 is given by:

f (t)= 3
2

− 3
π

[

sin
(
2π t
3

)

+ 1
2
sin
(
4π t
3

)

+ 1
3
sin
(
6π t
3

)

+ ···
]

Now try the following Practice Exercise

Practice Exercise 264 Fourier series over
any range L (Answers on page 897)

1. The voltage from a square wave generator is
of the form:

v(t) =
{
0, −10< t < 0
5, 0< t < 10
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and is periodic of period 20. Show that the
Fourier series for the function is given by:

v(t) = 5
2

+ 10
π

[

sin
(

πt

10

)

+ 1
3
sin
(
3πt

10

)

+1
5
sin
(
5πt

10

)

+ ·· ·
]

2. Find the Fourier series for f (x)=x in the
range x =0 to x =5

3. A periodic function of period 4 is defined by:

f (x) =
{−3, −2< x < 0
+3, 0< x < 2

Sketch the function and obtain the Fourier
series for the function.

4. Determine the Fourier series for the half-wave
rectified sinusoidal voltage V sin t defined by:

f (t) =
{

V sin t, 0< t < π

0, π < t < 2π

which is periodic of period 2π

76.2 Half-range Fourier series for
functions defined over range L

(a) By making the substitution u= πx

L
(see

Section 76.1), the range x =0 to x=L corre-
sponds to the range u=0 to u=π . Hence a
function may be expanded in a series of either
cosine terms or sine terms only, i.e. a half-range
Fourier series.

(b) A half-range cosine series in the range 0 toL can
be expanded as:

where

f (x)=a0+
∞∑

n=1
an cos

(nπx
L

)

a0 = 1
L

∫ L

0
f (x)dx and

an = 2
L

∫ L

0
f (x)cos

(nπx
L

)
dx

(c) A half-range sine series in the range 0 to L can
be expanded as:

f (x)=
∞∑

n=1
bn sin

(nπx
L

)

where bn= 2
L

∫ L

0
f (x)sin

(nπx
L

)
dx

Problem 4. Determine the half-range Fourier
cosine series for the function f (x)=x in the range
0≤x ≤2. Sketch the function within and outside of
the given range.

A half-range Fourier cosine series indicates an even
function. Thus the graph of f (x)=x in the range 0 to
2 is shown in Fig. 76.4 and is extended outside of this
range so as to be symmetrical about the f (x) axis as
shown by the broken lines.

f (x )

f (x ) 5 x

x 2224

2

420 6

Figure 76.4

From para. (b), for a half-range cosine series:

f (x) = a0+
∞∑

n=1
an cos

(nπx

L

)

a0 = 1
L

∫ L

0
f (x)dx = 1

2

∫ 2

0
x dx

= 1
2

[
x2

2

]2

0
= 1

an = 2
L

∫ L

0
f (x)cos

(nπx

L

)
dx

= 2
2

∫ 2

0
x cos

(nπx

2

)
dx

=

⎡

⎢
⎣

x sin
(nπx

2

)

(nπ

2

) +
cos
(nπx

2

)

(nπ

2

)2

⎤

⎥
⎦

2

0

=

⎡

⎢
⎣

⎛

⎜
⎝
2sinnπ
(nπ

2

) + cosnπ
(nπ

2

)2

⎞

⎟
⎠ −

⎛

⎜
⎝0+ cos0

(nπ

2

)2

⎞

⎟
⎠

⎤

⎥
⎦

=

⎡

⎢
⎣
cosnπ
(nπ

2

)2 − 1
(nπ

2

)2

⎤

⎥
⎦

=
(
2

πn

)2
(cosnπ − 1)
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When n is even, an =0
a1 = −8

π2
, a3 = −8

π232
, a5 = −8

π252
and so on.

Hence the half-range Fourier cosine series for f (x) in
the range 0 to 2 is given by:

f (x)= 1 − 8
π2

[

cos
(πx
2

)
+ 1
32
cos
(
3πx
2

)

+ 1
52
cos
(
5πx
2

)

+ ···
]

Problem 5. Find the half-range Fourier sine
series for the function f (x)=x in the range
0≤x ≤2. Sketch the function within and outside of
the given range.

A half-range Fourier sine series indicates an odd func-
tion. Thus the graph of f (x)=x in the range 0 to 2 is
shown in Fig. 76.5 and is extended outside of this range
so as to be symmetrical about the origin, as shown by
the broken lines.

f (x )

f (x ) 5 x

x 2224

2

420 6

22

Figure 76.5

From para. (c), for a half-range sine series:

f (x) =
∞∑

n=1
bn sin

(nπx

L

)

bn = 2
L

∫ L

0
f (x)sin

(nπx

L

)
dx

= 2
2

∫ 2

0
x sin

(nπx

L

)
dx

=

⎡

⎢
⎣

−x cos
(nπx

2

)

(nπ

2

) +
sin
(nπx

2

)

(nπ

2

)2

⎤

⎥
⎦

2

0

=

⎡

⎢
⎣

⎛

⎜
⎝

−2cosnπ
(nπ

2

) + sinnπ
(nπ

2

)2

⎞

⎟
⎠−

⎛

⎜
⎝0+ sin0

(nπ

2

)2

⎞

⎟
⎠

⎤

⎥
⎦

= −2cosnπ
nπ

2

= −4
nπ
cosnπ

Hence b1 = −4
π

(−1) = 4
π

b2 = −4
2π

(1) = −4
2π

b3 = −4
3π

(−1) = 4
3π

and so on.

Thus the half-range Fourier sine series in the range 0 to
2 is given by:

f (x)= 4
π

[

sin
(πx
2

)
− 1
2
sin
(
2πx
2

)

+ 1
3
sin
(
3πx
2

)

− 1
4
sin
(
4πx
2

)

+···
]

Now try the following Practice Exercise

Practice Exercise 265 Half-range Fourier
series over range L (Answers on page 897)

1. Determine the half-rangeFourier cosine series
for the function f (x)=x in the range
0≤x ≤3. Sketch the function within and out-
side of the given range.

2. Find the half-range Fourier sine series
for the function f (x)=x in the range
0≤x ≤3. Sketch the function within and out-
side of the given range.

3. Determine the half-range Fourier sine series
for the function defined by:

f (t) =
{

t, 0< t < 1
(2− t), 1< t < 2

4. Show that the half-range Fourier cosine series
for the function f (θ) = θ 2 in the range 0 to 4
is given by:

f (θ) = 16
3

− 64
π2

(

cos
(

πθ

4

)

− 1
22
cos
(
2πθ

4

)

+ 1
32
cos
(
3πθ

4

)

− ·· ·
)

Sketch the function within and outside of the
given range.

For fully worked solutions to each of the problems in Practice Exercises 264 and 265 in this chapter,
go to the website:

www.routledge.com/cw/bird
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Chapter 77

A numerical method of
harmonic analysis

Why it is important to understand: A numerical method of harmonic analysis
In music, if a note has frequency f, integer multiples of that frequency, 2f, 3f, 4f, and so on, are known
as harmonics. As a result, the mathematical study of overlapping waves is called harmonic analysis; this
analysis is a diverse field andmay be used to produce a Fourier series. Signal processing,medical imaging,
astronomy, optics, and quantum mechanics are some of the fields that use harmonic analysis extensively.
This chapter explains a simple method of harmonic analysis using the trapezoidal rule.

At the end of this chapter, you should be able to:

• define harmonic analysis
• perform a harmonic analysis on data in tabular or graphical form
• consider complex waveform considerations to reduce working of harmonic analysis

77.1 Introduction

Many practical waveforms can be represented by sim-
ple mathematical expressions, and, by using Fourier
series, the magnitude of their harmonic components
determined, as shown in Chapters 73 to 76. For wave-
forms not in this category, analysis may be achieved by
numerical methods. Harmonic analysis is the process
of resolving a periodic, non-sinusoidal quantity into a
series of sinusoidal components of ascending order of
frequency.

77.2 Harmonic analysis on data given
in tabular or graphical form

The Fourier coefficients a0, an and bn used in Chap-
ters 73 to 76 all require functions to be integrated, i.e.

a0 = 1
2π

∫ π

−π

f (x)dx = 1
2π

∫ 2π

0
f (x)dx

= mean value of f (x)

in the range−π to π or 0 to 2π

Higher Engineering Mathematics. 978-1-138-67357-1, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.
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an = 1
π

∫ π

−π

f (x)cosnx dx

= 1
π

∫ 2π

0
f (x)cosnx dx

= twice the mean value of f (x)cosnx

in the range 0 to 2π

bn = 1
π

∫ π

−π

f (x)sinnx dx

= 1
π

∫ 2π

0
f (x)sinnx dx

= twice the mean value of f (x)sinnx

in the range 0 to 2π

However, irregular waveforms are not usually defined
by mathematical expressions and thus the Fourier coef-
ficients cannot be determinedby using calculus. In these
cases, approximate methods, such as the trapezoidal
rule, can be used to evaluate the Fourier coefficients.
Most practicalwaveforms to be analysed are periodic.

Let the period of a waveform be 2π and be divided into
p equal parts as shown in Fig. 77.1. The width of each

interval is thus
2π
p
. Let the ordinates be labelled y0,

y1, y2, . . . yp (note that y0 = yp). The trapezoidal rule
states:

Area= (width of interval)
[
1
2
(first+ last ordinate)

+ sum of remaining ordinates
]

≈ 2π
p

[
1
2
(y0+ yp) + y1+ y2+ y3+ ·· ·

]

Since y0 = yp, then
1
2
(y0+ yp) = y0 = yp

f(x)

0

Period 5 2�

2�/p
2� x

yp

�

y0 y1 y2 y3 y4

Figure 77.1

Hence area ≈ 2π
p

p∑

k=1
yk

Mean value= area
length of base

≈ 1
2π

(
2π
p

) p∑

k=1
yk ≈ 1

p

p∑

k=1
yk

However,a0 =mean value off (x) in the range0 to 2π .

Thus a0≈ 1p
p∑

k=1
yk (1)

Similarly, an = twice the mean value of f (x)cosnx in
the range 0 to 2π ,

thus an≈ 2
p

p∑

k=1
yk cosnxk (2)

and bn = twice the mean value of f (x)sinnx in the
range 0 to 2π,

thus bn≈ 2
p

p∑

k=1
yk sinnxk (3)

Problem 1. The values of the voltage V volts at
different moments in a cycle are given by:

θ◦ (degrees) V (volts)

30 62

60 35

90 −38
120 −64
150 −63
180 −52

θ◦ (degrees) V (volts)

210 −28
240 24

270 80

300 96

330 90

360 70

Draw the graph of voltage V against angle θ and
analyse the voltage into its first three constituent
harmonics, each coefficient correct to 2 decimal
places.

The graph of voltage V against angle θ is shown in
Fig. 77.2. The range 0 to 2π is divided into 12 equal

intervals giving an interval width of
2π
12
, i.e.

π

6
rad

or 30◦. The values of the ordinates y1, y2, y3, . . . are
62, 35, −38, . . . from the given table of values. If
a larger number of intervals are used, results having
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80

90 180

360270
y7

y1
y2

y3 y4 y5 y6

y8

y9 y11y12

y10

� degrees

V
ol

ta
ge

 (
vo

lts
)

60
40
20

220
240
260
280

0

Figure 77.2

a greater accuracy are achieved. The data is tab-
ulated in the proforma shown in Table 77.1, on
page 804.

From equation (1), a0≈ 1
p

p∑

k=1
yk = 1

12
(212)

= 17.67 (since p = 12)

From equation (2), an ≈ 2
p

p∑

k=1
yk cosnxk

hence a1≈ 2
12

(417.94) = 69.66

a2≈ 2
12

(−39) = −6.50

and a3≈ 2
12

(−49) = −8.17

From equation (3), bn ≈ 2
p

p∑

k=1
yk sinnxk

hence b1≈ 2
12

(−278.53) = −46.42

b2≈ 2
12

(29.43) = 4.91

and b3≈ 2
12

(55) = 9.17

Substituting these values into the Fourier series:

f (x) = a0+
∞∑

n=1
(an cosnx + bn sinnx)

gives: V = 17.67+ 69.66 cosθ − 6.50cos2θ
−8.17 cos3θ +··· −46.42 sin θ

+4.91sin2θ +9.17sin3θ +··· (4)

Note that in equation (4), (−46.42sinθ +69.66cosθ)

comprises the fundamental, (4.91sin2θ −6.50cos2θ)

comprises the second harmonic and (9.17sin3θ −
8.17cos3θ) comprises the third harmonic.
It is shown in Chapter 19 that:

a sinωt + b cosωt = R sin(ωt + α)

where a=R cosα, b=R sinα, R=√
a2+b2 and

α= tan−1 b

a

For the fundamental,R =
√

(−46.42)2+ (69.66)2

= 83.71

If a = R cosα, thencosα = a

R
= −46.42
83.71

which is negative,

and if b = R sinα, then sinα = b

R
= 69.66
83.71

which is positive.

The only quadrant where cosα is negative and sinα is
positive is the second quadrant.

Hence α = tan−1 b

a
= tan−1 69.66

−46.42
= 123.68◦ or 2.16rad

Thus (−46.42sinθ + 69.66cosθ)

= 83.71sin(θ +2.16)
By a similar method it may be shown that the second
harmonic

(4.91sin2θ −6.50cos2θ)=8.15sin(2θ −0.92)
and the third harmonic

(9.17sin3θ−8.17cos3θ)=12.28sin(3θ−0.73)
Hence equation (4) may be re-written as:

V = 17.67+83.71 sin(θ +2.16)
+8.15sin(2θ −0.92)

+12.28sin(3θ −0.73)volts
which is the form used in Chapter 27 with complex
waveforms.
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Table 77.1

Ordin-
ates θ◦ V cosθ V cosθ sinθ V sinθ cos2θ V cos2θ sin2θ V sin2θ cos3θ V cos3θ sin3θ V sin3θ

y1 30 62 0.866 53.69 0.5 31 0.5 31 0.866 53.69 0 0 1 62

y2 60 35 0.5 17.5 0.866 30.31 −0.5 −17.5 0.866 30.31 −1 −35 0 0

y3 90 −38 0 0 1 −38 −1 38 0 0 0 0 −1 38

y4 120 −64 −0.5 32 0.866 −55.42 −0.5 32 −0.866 55.42 1 −64 0 0

y5 150 −63 −0.866 54.56 0.5 −31.5 0.5 −31.5 −0.866 54.56 0 0 1 −63
y6 180 −52 −1 52 0 0 1 −52 0 0 −1 52 0 0

y7 210 −28 −0.866 24.25 −0.5 14 0.5 −14 0.866 −24.25 0 0 −1 28

y8 240 24 −0.5 −12 −0.866 −20.78 −0.5 −12 0.866 20.78 1 24 0 0

y9 270 80 0 0 −1 −80 −1 −80 0 0 0 0 1 80

y10 300 96 0.5 48 −0.866 −83.14 −0.5 −48 −0.866 −83.14 −1 −96 0 0

y11 330 90 0.866 77.94 −0.5 −45 0.5 45 −0.866 −77.94 0 0 −1 −90
y12 360 70 1 70 0 0 1 70 0 0 1 70 0 0

12∑

k=1
yk =(212)

12∑

k=1
yk cosθk

12∑

k=1
yk sin θk

12∑

k=1
yk cos2θk

12∑

k=1
yk sin2θk

12∑

k=1
yk cos3θk

12∑

k=1
yk sin3θk

= 417.94 = −278.53 = −39 = 29.43 = −49 = 55
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Now try the following Practice Exercise

Practice Exercise 266 Numerical harmonic
analysis (Answers on page 898)

Determine the Fourier series to represent the peri-
odic functions given by the tables of values in
Problems 1 to 3, up to and including the third har-
monic and each coefficient correct to 2 decimal
places. Use 12 ordinates in each case.

1. Angle θ ◦ 30 60 90 120 150 180

Displacement y 40 43 38 30 23 17

Angle θ ◦ 210 240 270 300 330 360

Displacement y 11 9 10 13 21 32

2. Angle θ ◦ 0 30 60 90 120 150

Voltage v −5.0 −1.5 6.0 12.5 16.0 16.5

Angle θ ◦ 180 210 240 270 300 330

Voltage v 15.0 12.5 6.5 −4.0 −7.0 −7.5

3. Angle θ ◦ 30 60 90 120 150 180

Current i 0 −1.4 −1.8 −1.9 −1.8 −1.3

Angle θ ◦ 210 240 270 300 330 360

Current i 0 2.2 3.8 3.9 3.5 2.5

77.3 Complex waveform
considerations

It is sometimes possible to predict the harmonic con-
tent of awaveformon inspection of particularwaveform
characteristics.

(i) If a periodic waveform is such that the area above
the horizontal axis is equal to the area below
then the mean value is zero. Hence a0=0 (see
Fig. 77.3(a)).

(ii) An even function is symmetrical about the
vertical axis and contains no sine terms (see
Fig. 77.3(b)).

(iii) An odd function is symmetrical about the origin
and contains no cosine terms (see Fig. 77.3(c)).

(a) a05 0 (b) Contains no sine terms

(c) Contains no cosine terms (d) Contains only even harmonics

(e) Contains only odd harmonics

f (x)

x0 � 2�

f (x)

x22� 2�02� �

f (x)

x22� 2�02� �

f (x)

x2�02� �

f (x)

x02� � 2�

Figure 77.3

(iv) f (x)=f (x +π) represents a waveform which
repeats after half a cycle and only even
harmonics are present (see Fig. 77.3(d)).

(v) f (x)=−f (x +π) represents a waveform for
which the positive and negative cycles are
identical in shape and only odd harmonics are
present (see Fig. 77.3(e)).

Problem 2. Without calculating Fourier
coefficients state which harmonics will be present
in the waveforms shown in Fig. 77.4.

(a)

(b)

f (x)

2

22

2� � 2�0 x

f(x)

5

2� � 2�0 x

Figure 77.4
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(a) The waveform shown in Fig. 77.4(a) is sym-
metrical about the origin and is thus an odd
function. An odd function contains no cosine
terms. Also, the waveform has the characteris-
tic f (x)=−f (x +π), i.e. the positive and neg-
ative half cycles are identical in shape. Only
odd harmonics can be present in such a wave-
form. Thus the waveform shown in Fig. 77.4(a)
contains only odd sine terms. Since the area
above the x-axis is equal to the area below,
a0=0.

(b) The waveform shown in Fig. 77.4(b) is sym-
metrical about the f (x) axis and is thus an
even function. An even function contains no sine
terms. Also, the waveform has the characteris-
tic f (x)=f (x +π), i.e. the waveform repeats
itself after half a cycle. Only even harmonics
can be present in such a waveform. Thus the
waveform shown in Fig. 77.4(b) contains only
even cosine terms (together with a constant
term, a0).

Problem 3. An alternating current i amperes is
shown in Fig. 77.5. Analyse the waveform into its
constituent harmonics as far as and including the
fifth harmonic, correct to 2 decimal places, by
taking 30◦ intervals.

2180 2120 260

290 230 30 60 90 120 150

360180

y5

y7 y8
y9

y10

y11

y4y3y2y1 240 300

�8

25

5

10

i

210

0 210 270 3302150

Figure 77.5

With reference to Fig. 77.5, the following characteristics
are noted:

(i) The mean value is zero since the area above the
θ axis is equal to the area below it. Thus the
constant term, or d.c. component, a0 = 0

(ii) Since the waveform is symmetrical about the
origin the function i is odd, which means

that there are no cosine terms present in the
Fourier series.

(iii) The waveform is of the form f (θ)= − f (θ +π)

whichmeans that only oddharmonics arepresent.

Investigating waveform characteristics has thus saved
unnecessary calculations and in this case the Fourier
series has only odd sine terms present, i.e.

i = b1 sinθ + b3 sin3θ + b5 sin5θ + ·· ·

A proforma, similar to Table 77.1, but without the
‘cosine terms’ columns and without the ‘even sine
terms’ columns is shown in Table 77.2 up to and
including the fifth harmonic, from which the Fourier
coefficients b1, b3 and b5 can be determined. Twelve
co-ordinates are chosen and labelled y1, y2, y3, . . .y12
as shown in Fig. 77.5
From equation (3),

bn = 2
p

p∑

k=1
ik sinnθk,where p = 12

Hence b1 ≈ 2
12

(48.24) = 8.04,

b3 ≈ 2
12

(−12) = −2.00,

and b5 ≈ 2
12

(−0.24) = −0.04

Thus the Fourier series for current i is given by:

i = 8.04 sin θ −2.00sin3θ −0.04 sin 5θ

Now try the following Practice Exercise

Practice Exercise 267 A numerical method
of harmonic analysis (Answers on page 898)

1. Without performing calculations, state which
harmonics will be present in the waveforms
shown in Fig. 77.6.

2. Analyse the periodic waveform of displace-
ment y against angle θ in Fig. 77.7(a) into
its constituent harmonics as far as and
including the third harmonic, by taking 30 ◦
intervals.
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Table 77.2

Ordinate θ i sinθ i sinθ sin3θ i sin3θ sin5θ i sin5θ

y1 30 2 0.5 1 1 2 0.5 1

y2 60 7 0.866 6.06 0 0 −0.866 −6.06
y3 90 10 1 10 −1 −10 1 10

y4 120 7 0.866 6.06 0 0 −0.866 −6.06
y5 150 2 0.5 1 1 2 0.5 1

y6 180 0 0 0 0 0 0 0

y7 210 −2 −0.5 1 −1 2 −0.5 1

y8 240 −7 −0.866 6.06 0 0 0.866 −6.06
y9 270 −10 −1 10 1 −10 −1 10

y10 300 −7 −0.866 6.06 0 0 0.866 −6.06
y11 330 −2 −0.5 1 −1 2 −0.5 1

y12 360 0 0 0 0 0 0 0

12∑

k=1
yk sinθk =48.24

12∑

k=1
yk sin3θk =−12

12∑

k=1
yk sin5θk =−0.24

(a)

(b)

f (t )

t22� 2� 4�0

24

4

2� �

x

y

2��

210

0

10

2�

Figure 77.6

3. For the waveform of current shown
in Fig. 77.7(b) state why only a d.c.

component and even cosine terms will
appear in the Fourier series and deter-
mine the series, using π /6 rad intervals,
up to and including the sixth harmonic.

2� �rads

40
y
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20
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10

5

0

�10

�/2 3�/2�

270� 360� � ��

�20
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(b)

0 180�90�

C
ur

re
nt
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Figure 77.7
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4. Determine the Fourier series as far as the third
harmonic to represent the periodic function y

given by the waveform in Fig. 77.8. Take 12
intervals when analysing the waveform.

100

y

80
60
40
20

220
240
260
280
2100

2908 908 1808 2708 3608 �80

Figure 77.8

For fully worked solutions to each of the problems in Practice Exercises 266 and 267 in this chapter,
go to the website:

www.routledge.com/cw/bird
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Chapter 78

The complex or
exponential form
of a Fourier series

Why it is important to understand: The complex or exponential form of a Fourier series
A Fourier series may be represented not only as a sum of sines and cosines, as in previous chapters, but
as a sum of complex exponentials. The complex exponentials provide a more convenient and compact
way of expressing the Fourier series than the trigonometric form. It also allows the magnitude and phase
spectra to be easily calculated. This form is widely used by engineers, for example, in circuit theory and
control theory. This chapter explains how the trigonometric and exponential forms are equivalent.

At the end of this chapter, you should be able to:

• derive the exponential or complex form of a Fourier series
• derive the complex coefficients for a Fourier series
• determine the complex Fourier series for a given function
• deduce the complex coefficient symmetry relationships
• understand the frequency spectrum of a waveform
• determine phasors in exponential form for various sinusoidal voltages

78.1 Introduction

The form used for the Fourier series in Chapters 73 to
77 consisted of cosine and sine terms. However, there is
another form that is commonly used – one that directly
gives the amplitude terms in the frequency spectrumand
relates to phasor notation. This form involves the use of
complex numbers (see Chapters 22 and 23). It is called
the exponential or complex form of a Fourier series.

78.2 Exponential or complex
notation

It was shown on page 270, equations (4) and (5) that:

ejθ = cosθ + j sinθ (1)

and e−jθ = cosθ − j sinθ (2)

Higher Engineering Mathematics. 978-1-138-67357-1, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.
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Adding equations (1) and (2) gives:

ejθ + e−jθ = 2cosθ

from which, cosθ = ejθ + e−jθ

2
(3)

Similarly, equation (1) – equation (2) gives:

e jθ − e−jθ = 2j sin θ

from which, sinθ = ejθ − e−jθ

2j
(4)

Thus, from page 796, the Fourier series f (x) over
any range L,

f (x) = a0 +
∞∑

n=1

[

an cos
(
2πnx

L

)

+ bn sin
(
2πnx

L

)]

may be written as:

f (x) = a0+
∞∑

n=1

[

an

(
e j 2πnx

L + e−j 2πnx
L

2

)

+bn

(
e j 2πnx

L − e−j 2πnx
L

2j

)]

Multiplying top and bottom of the bn term by −j (and
remembering that j 2=−1) gives:

f (x) = a0+
∞∑

n=1

[

an

(
e j 2πnx

L + e−j 2πnx
L

2

)

−jbn

(
ej 2πnx

L − e−j 2πnx
L

2

)]

Rearranging gives:

f (x) = a0+
∞∑

n=1

[(
an − jbn

2

)

e j 2πnx
L

+
(

an + jbn

2

)

e−j 2πnx
L

]

(5)

The Fourier coefficients a0, an and bn may be replaced
by complex coefficients c0, cn and c−n such that

c0 = a0 (6)

cn = an − jbn

2
(7)

and c−n = an + jbn

2
(8)

where c−n represents the complex conjugate of cn (see
page 257).
Thus, equation (5) may be rewritten as:

f (x) = c0+
∞∑

n=1
cn ej 2πnx

L +
∞∑

n=1
c−n e−j 2πnx

L (9)

Since e0=1, the c0 term can be absorbed into the sum-
mation since it is just another term to be added to the
summation of the cn term when n=0. Thus,

f (x) =
∞∑

n=0
cn ej 2πnx

L +
∞∑

n=1
c−n e−j 2πnx

L (10)

The c−n term may be rewritten by changing the limits
n=1 to n=∞ to n=−1 to n=−∞. Since n has been
made negative, the exponential term becomes e j 2πnx

L

and c−n becomes cn. Thus,

f (x) =
∞∑

n=0
cn e j 2πnx

L +
−∞∑

n=−1
cn ej 2πnx

L

Since the summations now extend from−∞ to−1 and
from 0 to +∞, equation (10) may be written as:

f (x)=
∞∑

n=−∞
cne j

2πnx
L (11)

Equation (11) is the complex or exponential form of
the Fourier series.

78.3 The complex coefficients

From equation (7), the complex coefficient cn was

defined as: cn = an −jbn

2
However, an and bn are defined (from page 796) by:

an = 2
L

∫ L
2

− L
2

f (x) cos
(
2πnx

L

)

dx and

bn = 2
L

∫ L
2

− L
2

f (x) sin
(
2πnx

L

)

dx

Thus, cn =

⎛

⎜
⎝

2
L

∫ L
2

− L
2

f (x)cos
( 2πnx

L

)
dx

−j 2
L

∫ L
2

− L
2

f (x)sin
( 2πnx

L

)
dx

⎞

⎟
⎠

2
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= 1
L

∫ L
2

− L
2

f (x)cos
(
2πnx

L

)

dx

− j
1
L

∫ L
2

− L
2

f (x)sin
(
2πnx

L

)

dx

From equations (3) and (4),

cn = 1
L

∫ L
2

− L
2

f (x)

(
e j 2πnx

L +e−j 2πnx
L

2

)

dx

− j
1
L

∫ L
2

− L
2

f (x)

(
ej

2πnx
L − e−j 2πnx

L

2j

)

dx

from which,

cn = 1
L

∫ L
2

− L
2

f (x)

(
e j 2πnx

L + e−j 2πnx
L

2

)

dx

− 1
L

∫ L
2

− L
2

f (x)

(
e j 2πnx

L − e−j 2πnx
L

2

)

dx

i.e. cn= 1
L

∫ L
2

− L
2

f (x)e−j
2πnx
L dx (12)

Care needs to be takenwhendetermining c0. Ifn appears
in the denominator of an expression the expansion can
be invalidwhenn=0. In such circumstances it is usually
simpler to evaluate c0 by using the relationship:

c0 = a0 = 1
L

∫ L
2

− L
2

f (x)dx (from page 796). (13)

Problem 1. Determine the complex Fourier series
for the function defined by:

f (x) =
⎧
⎨

⎩

0, when−2≤x ≤−1
5, when−1≤x ≤1
0, when 1≤x≤2

The function is periodic outside this range of
period 4

This is the same Problem as Problem 2 on page 797 and
we can use this to demonstrate that the two forms of
Fourier series are equivalent.
The function f (x) is shown in Fig. 78.1, where the
period, L = 4
From equation (11), the complex Fourier series is
given by:

f (x)=
∞∑

n=−∞
cn e j 2πnx

L

121 0

5

222 323 424 5 x

L 5 4

f (x)

25

Figure 78.1

where cn is given by:

cn = 1
L

∫ L
2

− L
2

f (x) e−j 2πnx
L dx (from equation 12).

With reference to Fig. 78.1, when L = 4,

cn = 1
4

{∫ −1

−2
0dx +

∫ 1

−1
5e−j 2πnx

4 dx +
∫ 2

1
0dx
}

= 1
4

∫ 1

−1
5e−

jπnx
2 dx = 5

4

[
e−

jπnx
2

− jπn
2

]1

−1

= −5
j2πn

[
e−

jπnx
2
]1

−1
= −5

j2πn

(
e−

jπn
2 − e

jπn
2
)

= 5
πn

(
e j πn

2 − e−j πn
2

2j

)

= 5
πn
sin

πn

2
(from equation (4)).

Hence, from equation (11), the complex form of the
Fourier series is given by:

f (x)=
∞∑

n=−∞
cn e j 2πnx

L =
∞∑

n=−∞

5
πn
sin

πn
2
e j

πnx
2

(14)

Let us show how this result is equivalent to the result
involving sine and cosine terms determinedonpage 797.
From equation (13),

c0 = a0 = 1
L

∫ L
2

− L
2

f (x)dx = 1
4

∫ 1

−1
5dx

= 5
4
[
x
] 1
−1 = 5

4
[1− (−1)]= 5

2

Since cn = 5
πn
sin

πn

2
, then

c1 = 5
π
sin

π

2
= 5

π

c2 = 5
2π
sinπ = 0
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(in fact, all even terms will be zero since
sin nπ =0)

c3 = 5
πn
sin

πn

2
= 5
3π
sin
3π
2

= − 5
3π

By similar substitution,

c5 = 5
5π

c7 = − 5
7π

,and so on.

Similarly,

c−1 = 5
−π

sin
−π

2
= 5

π

c−2 = − 5
2π
sin

−2π
2

= 0= c−4 = c−6, and so on.

c−3 = − 5
3π
sin

−3π
2

= − 5
3π

c−5 = − 5
5π
sin

−5π
2

= 5
5π

, and so on.

Hence, the extended complex form of the Fourier series
shown in equation (14) becomes:

f (x) = 5
2

+ 5
π
e j πx

2 − 5
3π
e j 3πx

2 + 5
5π
e j 5πx

2

− 5
7π
e j 7πx

2 + ·· · + 5
π
e−j πx

2

− 5
3π
e−j 3πx

2 + 5
5π
e−j 5πx

2

− 5
7π
e−j 7πx

2 + ·· ·

= 5
2

+ 5
π

(
ej πx

2 + e−j πx
2
)

− 5
3π

(
e j 3πx

2 + e−j 3πx
2
)

+ 5
5π

(
e
5πx
2 + e−j 5πx

2
)
− ·· ·

= 5
2

+ 5
π

(2)

(
e j πx

2 + e−j πx
2

2

)

− 5
3π

(2)

(
e j 3πx

2 + e−j 3πx
2

2

)

+ 5
5π

(2)

(
e j 5πx

2 + e−j 5πx
2

2

)

− ·· ·

= 5
2

+ 10
π
cos
(πx

2

)
− 10
3π
cos
(
3πx

2

)

+ 10
5π
cos
(
5πx

2

)

− ·· ·

(from equation (3))

i.e. f (x) = 5
2

+ 10
π

[

cos
(πx
2

)
− 1
3
cos
(
3πx
2

)

+ 1
5
cos
(
5πx
2

)

−···
]

which is the same as obtained on page 797.

Hence,
∞∑

n=−∞

5
πn
sin
nπ
2
e j

πnx
2 is equivalent to

5
2

+ 10
π

[

cos
(πx
2

)
− 1
3
cos
(
3πx
2

)

+ 1
5
cos
(
5πx
2

)

−···
]

Problem 2. Show that the complex Fourier series
for the function f (t)= t in the range t =0 to t =1,
and of period 1, may be expressed as:

f (t) = 1
2

+ j

2π

∞∑

n=−∞

e j2πnt

n

The sawtooth waveform is shown in Fig. 78.2.
From equation (11), the complex Fourier series is
given by:

f (t) =
∞∑

n=−∞
cn e j 2πnt

L

Period L 5 1

f (t )
f (t ) 5 t

21 0 1 2 t

Figure 78.2
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and when the period L=1, then:

f (t) =
∞∑

n=−∞
cn e j2πnt

where, from equation (12),

cn = 1
L

∫ L
2

− L
2

f (t)e−j 2πnt
L dt = 1

L

∫ L

0
f (t)e−j 2πnt

L dt

and when L=1 and f (t)= t , then:

cn = 1
1

∫ 1

0
t e−j 2πnt

1 dt =
∫ 1

0
t e−j2πnt dt

Using integration by parts (see Chapter 46), let u = t ,

from which,
du
dt

=1, and dt =du, and

let dv=e−j2πnt , from which,

v=
∫
e−j2πnt dt = e

−j2πnt

−j2πn

Hence, cn =
∫ 1

0
t e−j2πnt = uv −

∫
v du

=
[

t
e−j2πnt

−j2πn

]1

0
−
∫ 1

0

e−j2πnt

−j2πn
dt

=
[

t
e−j2πnt

−j2πn
− e−j2πnt

(−j2πn)2

]1

0

=
(
e−j2πn

−j2πn
− e−j2πn

(−j2πn)2

)

−
(

0− e0

(−j2πn)2

)

From equation (2),

cn =
(
cos2πn−j sin2πn

−j2πn
− cos2πn− j sin2πn

(−j2πn)2

)

+ 1
(−j2πn)2

However, cos2πn=1 and sin2πn=0 for all positive
and negative integer values of n.

Thus, cn = 1
−j2πn

− 1
(−j2πn)2

+ 1
(−j2πn)2

= 1
−j2πn

= 1(j)

−j2πn(j)

i.e. cn= j
2πn

From equation (13),

c0 = a0 = 1
L

∫ L
2

− L
2

f (t)dt

= 1
L

∫ L

0
f (t)dt = 1

1

∫ 1

0
t dt

=
[
t2

2

]1

0
=
[
1
2

− 0
]

= 1
2

Hence, the complex Fourier series is given by:

f (t) =
∞∑

n=−∞
cn e j 2πnt

L from equation (11)

i.e. f (t)= 1
2

+
∞∑

n=−∞

j
2πn

e j2πnt

= 1
2

+ j
2π

∞∑

n=−∞

e j2πnt

n

Problem 3. Show that the exponential form of the
Fourier series for the waveform described by:

f (x) =
{
0 when−4 ≤ x ≤ 0
10 when 0 ≤ x ≤ 4

and has a period of 8, is given by:

f (x) =
∞∑

n=−∞
5j
nπ

(cosnπ − 1) e j nπx
4

From equation (12),

cn = 1
L

∫ L
2

− L
2

f (x)e−j 2πnx
L dx

= 1
8

[∫ 0

−4
0e−j πnx

4 dx +
∫ 4

0
10e−j πnx

4 dx
]

= 10
8

[
e−j πnt

4

−j πn
4

]4

0

= 10
8

(
4

−jπn

)[
e−jπn − 1

]

= 5j
−j2πn

(
e−jπn − 1

)
= 5j

πn

(
e−jπn − 1

)

From equation (2), e−jθ = cosθ −j sinθ , thus
e−jπn = cosπn−j sinπn= cosπn for all integer
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values of n. Hence,

cn = 5j
πn

(
e−jπn − 1

)
= 5j

πn
(cosnπ − 1)

From equation (11), the exponential Fourier series is
given by:

f (x) =
∞∑

n=−∞
cn e j

2πnx
L

=
∞∑

n=−∞

5j
nπ
(cosnπ −1)e j nπx4

Now try the following Practice Exercise

Practice Exercise 268 The complex form
of a Fourier series (Answers on page 898)

1. Determine the complex Fourier series for the
function defined by:

f (t)=
{
0, when −π ≤ t ≤ 0
2, when 0 ≤ t ≤ π

The function is periodic outside of this range
of period 2π .

2. Show that the complex Fourier series for the
waveform shown in Fig. 78.3, that has period
2, may be represented by:

f (t) = 2+
∞∑

n=−∞
(n�=0)

j2
πn

(cosnπ − 1)e jπnt

21 0

4

1 2 t

Period L 5 2

f (t )

Figure 78.3

3. Show that the complex Fourier series of
Problem 2 is equivalent to:

f (t) = 2+ 8
π

(

sinπt + 1
3
sin3πt

+ 1
5
sin5πt + ·· ·

)

4. Determine the exponential form of the Fourier
series for the function defined by: f (t)=e2t
when−1<t <1 and has period 2.

78.4 Symmetry relationships

If even or odd symmetry is noted in a function, then time
can be saved in determining coefficients.
The Fourier coefficients present in the complex Fourier
series form are affected by symmetry. Summarising
from previous chapters:
An even function is symmetrical about the vertical axis
and contains no sine terms, i.e. bn =0
For even symmetry,

a0 = 1
L

∫ L

0
f (x)dx and

an = 2
L

∫ L

0
f (x) cos

(
2πnx

L

)

dx

= 4
L

∫ L
2

0
f (x)cos

(
2πnx

L

)

dx

An odd function is symmetrical about the origin and
contains no cosine terms, a0=an =0
For odd symmetry,

bn = 2
L

∫ L

0
f (x)sin

(
2πnx

L

)

dx

= 4
L

∫ L
2

0
f (x)sin

(
2πnx

L

)

dx

From equation (7), page 810, cn = an − jbn

2
Thus, for even symmetry, bn = 0 and

cn = an

2
= 2
L

∫ L
2

0
f (x)cos

(
2πnx
L

)

dx (15)

For odd symmetry, an = 0 and

cn = −jbn

2
= −j 2

L

∫ L
2

0
f (x)sin

(
2πnx
L

)

dx (16)
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For example, in Problem 1 on page 811, the function
f (x) is even, since the waveform is symmetrical about
the f (x) axis. Thus equation (15) could have been used,
giving:

cn = 2
L

∫ L
2

0
f (x)cos

(
2πnx

L

)

dx

= 2
4

∫ 2

0
f (x)cos

(
2πnx

4

)

dx

= 1
2

{∫ 1

0
5cos
(πnx

2

)
dx +

∫ 2

1
0dx
}

= 5
2

⎡

⎢
⎣
sin
(πnx

2

)

πn

2

⎤

⎥
⎦

1

0

= 5
2

(
2

πn

)(
sin

nπ

2
− 0
)

= 5
πn
sin
nπ
2

which is the same answer as in Problem 1; how-
ever, a knowledge of even functions has produced the
coefficient more quickly.

Problem 4. Obtain the Fourier series, in complex
form, for the square wave shown in Fig. 78.4.

2

f (x )

x0

22

2� � 2� 3�

Figure 78.4

Method A
The square wave shown in Figure 78.4 is an odd
function since it is symmetrical about the origin.
The period of the waveform, L=2π .
Thus, using equation (16):

cn = −j
2
L

∫ L
2

0
f (x)sin

(
2πnx

L

)

dx

= −j
2
2π

∫ π

0
2sin
(
2πnx

2π

)

dx

= −j
2
π

∫ π

0
sinnx dx = −j

2
π

[−cosnx

n

]π

0

= −j
2

πn

(

(−cosπn) − (−cos0)
)

i.e. cn = −j 2
πn
[1− cosπn] (17)

Method B
If it had not been noted that the function was odd,
equation (12) would have been used, i.e.

cn = 1
L

∫ L
2

− L
2

f (x)e−j 2πnx
L dx

= 1
2π

∫ π

−π

f (x)e−j 2πnx
2π dx

= 1
2π

{∫ 0

−π

−2e−jnx dx +
∫ π

0
2e−jnx dx

}

= 1
2π

{[−2e−jnx

−jn

]0

−π

+
[
2e−jnx

−jn

]π

0

}

= 1
2π

(
2
jn

){[
e−jnx

]0

−π
−
[
e−jnx

]π

0

}

= 1
2π

(
2
jn

){[
e0− e+jnπ

]
−
[
e−jnπ − e0

]}

= 1
jπn

{
1− e jnπ − e−jnπ + 1

}

= 1
jnπ

{

2− 2
(
ejnπ + e−jnπ

2

)}

by rearranging

= 2
jnπ

{

1−
(
ejnπ + e−jnπ

2

)}

= 2
jnπ

{1− cosnπ} from equation (3)

= −j2
−j (jnπ)

{1− cosnπ}

by multiplying top and bottom by−j

i.e. cn = −j 2
nπ
(1− cosnπ ) (17)

It is clear that method A is by far the shorter of the two
methods.
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From equation (11), the complex Fourier series is
given by:

f (x) =
∞∑

n=−∞
cn ej 2πnx

L

=
∞∑

n=−∞
−j 2
nπ
(1− cosnπ )e jnx (18)

Problem 5. Show that the complex Fourier series
obtained in Problem 4 above is equivalent to

f (x) = 8
π

(

sinx + 1
3
sin3x + 1

5
sin5x

+ 1
7
sin7x + ·· ·

)

(which was the Fourier series obtained in terms of
sines and cosines in Problem 3 on page 790).

From equation (17) above, cn = −j
2

nπ
(1− cosnπ)

When n=1,
c1 = −j

2
(1)π

(1− cosπ)

= −j
2
π

(

1− (−1)
)

= −j4
π

When n=2,

c2 = −j
2
2π

(1− cos2π) = 0;
in fact, all even values of cn will be zero.
When n=3,

c3 = −j
2
3π

(1− cos3π)

= −j
2
3π

(1− (−1)) = − j4
3π

By similar reasoning,

c5=− j4
5π

, c7=− j4
7π

, and so on.

When n=−1,
c−1 = −j

2
(−1)π (1− cos(−π))

= +j
2
π

(1− (−1)) = +j4
π

When n=−3,

c−3 = −j
2

(−3)π (1− cos(−3π))

= +j
2
3π

(1− (−1)) = + j4
3π

By similar reasoning,

c−5 = + j4
5π

, c−7 = + j4
7π

, and so on.

Since the waveform is odd, c0=a0=0
From equation (18) above,

f (x) =
∞∑

n=−∞
−j

2
nπ

(1− cosnπ)e jnx

Hence,

f (x) = −j4
π
e jx − j4

3π
e j3x − j4

5π
e j5x

− j4
7π
e j7x − ·· · + j4

π
e−jx + j4

3π
e−j3x

+ j4
5π
e−j5x + j4

7π
e−j7x + ·· ·

=
(

−j4
π
e jx + j4

π
e−jx

)

+
(

− j4
3π
e3x + j4

3π
e−3x
)

+
(

− j4
5π
e5x + j4

5π
e−5x
)

+ ·· ·

= −j4
π

(
e jx − e−jx

)
− j4
3π

(
e3x − e−3x

)

− j4
5π

(
e5x − e−5x

)
+ ·· ·

= 4
jπ

(
e jx − e−jx

)
+ 4

j3π

(
e3x − e−3x

)

+ 4
j5π

(
e5x − e−5x

)
+ ·· ·

by multiplying top and bottom by j

= 8
π

(
e jx − e−jx

2j

)

+ 8
3π

(
e j3x − e−j3

2j

)

+ 8
5π

(
e j5x − e−j5x

2j

)

+ ·· ·

by rearranging

= 8
π
sinx + 8

3π
sin3x + 8

3x
sin5x + ·· ·

from equation (4), page 810

i.e.

f (x)= 8
π

(

sinx+ 1
3
sin 3x+ 1

5
sin 5x

+ 1
7
sin 7x+···

)
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Hence,

f (x) =
∞∑

n=−∞
−j 2
nπ

(1−cosnπ)e jnx

≡ 8
π

(

sinx+ 1
3
sin3x+ 1

5
sin5x

+ 1
7
sin7x+···

)

Now try the following Practice Exercise

Practice Exercise 269 Symmetry
relationships (Answers on page 898)

1. Determine the exponential form of the Fourier
series for the periodic function defined by:

f (x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−2, when −π ≤ x ≤ −π

2
2, when −π

2
≤ x ≤ +π

2
−2, when+π

2
≤ x ≤ +π

and has a period of 2π .
2 Show that the exponential form of the Fourier
series in problem 1 above is equivalent to:

f (x) = 8
π

(

cosx − 1
3
cos3x + 1

5
cos5x

−1
7
cos7x + ·· ·

)

3. Determine the complex Fourier series to rep-
resent the function f (t)=2t in the range −π

to +π .

4. Show that the complex Fourier series in
problem 3 above is equivalent to:

f (t) = 4
(

sin t − 1
2
sin2t + 1

3
sin3t

−1
4
sin4t + ·· ·

)

78.5 The frequency spectrum

In the Fourier analysis of periodic waveforms seen
in previous chapters, although waveforms physically
exist in the time domain, they can be regarded as com-
prising components with a variety of frequencies. The
amplitude and phase of these components are obtained
from the Fourier coefficients an and bn; this is known as
a frequency domain. Plots of amplitude/frequency and
phase/frequency are together known as the spectrum
of a waveform. A simple example is demonstrated in
Problem 6, following.

Problem 6. A pulse of height 20 and width 2 has a
period of 10. Sketch the spectrum of the waveform.

The pulse is shown in Fig. 78.5.
The complex coefficient is given by equation (12):

cn = 1
L

∫ L
2

− L
2

f (t)e−j 2πnt
L dt

= 1
10

∫ 1

−1
20e−j 2πnt

10 dt = 20
10

[
e−j πnt

5

−jπn
5

]1

−1

= 20
10

(
5

−jπn

)[
e−j πn

5 − ej πn
5
]

= 20
πn

[
ej πn

5 − e−j πn
5

2j

]

i.e. cn = 20
πn
sin
nπ
5

from equation (4), page 810.
From equation (13),

c0 = 1
L

∫ L
2

− L
2

f (x)dx = 1
10

∫ 1

−1
20dt

= 1
10
[20t]1−1 = 1

10
[20− (−20)]= 4

c1 = 20
π
sin

π

5
=3.74 and

c−1 = −20
π
sin
(
−π

5

)
= 3.74

L 5 10

f (t )

t121

20

0

Figure 78.5 Download more at Learnclax.com
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Further values of cn and c−n, up ton = 10, are calculated
and are shown in the following table.

n cn c−n

0 4 4

1 3.74 3.74

2 3.03 3.03

3 2.02 2.02

4 0.94 0.94

5 0 0

6 −0.62 −0.62
7 −0.86 −0.86
8 −0.76 −0.76
9 −0.42 −0.42
10 0 0

A graph of |cn| plotted against the number of the
harmonic, n, is shown in Figure 78.6.
Figure 78.7 shows the corresponding plot of cn

against n.
Since cn is real (i.e. no j terms) then the phase must be
either 0◦ or ±180◦, depending on the sign of the sine,
as shown in Figure 78.8.
When cn is positive, i.e. between n=−4 and n=+4,
angle αn = 0◦
When cn is negative, then αn =±180◦; between n=+6
and n=+9, αn is taken as +180◦, and between n=−6
and n=−9, αn is taken as −180◦
Fig. 78.6 to 78.8 together form the spectrum of the
waveform shown in Fig. 78.5.

78.6 Phasors

Electrical engineers in particular often need to analyse
alternating current circuits, i.e. circuits containing a

210 29 28 27 26 25 24 23 22 21 0

1

2

3

4

1 2 3 4 5 6 7 8 9 n10

|cn|

Figure 78.6

210
29 28 27 26 25

24 23 22 21 0

1

2

3

4

1 2 3 4 5
6 7 8 9

n10

cn

Figure 78.7

Download more at Learnclax.com



Se
ct

io
n

M

The complex or exponential form of a Fourier series 819

210 29 28 27 26

25 24 23 22 21

2908

908

21808

1808

0 1 2 3 4 5 n6 7 8 9 10

�n

Figure 78.8

sinusoidal input and resulting sinusoidal currents and
voltages within the circuit.
It was shown in Chapter 15, page 171, that a general
sinusoidal voltage function can be represented by:

v = Vm sin (ωt + α)volts (19)

where Vm is the maximum voltage or amplitude of the
voltage v, ω is the angular velocity (=2πf , where f is
the frequency), and α is the phase angle compared with
v=Vm sinωt

Similarly, a sinusoidal expressionmay also be expressed
in terms of cosine as:

v = Vm cos(ωt + α)volts (20)

It is quite complicated to add, subtract, multiply and
divide quantities in the time domain form of equations
(19) and (20). As an alternative method of analysis
a waveform representation called a phasor is used.
A phasor has two distinct parts – a magnitude and
an angle; for example, the polar form of a complex
number, say 5∠π/6, can represent a phasor, where 5
is the magnitude or modulus, and π /6 radians is the
angle or argument. Also, it was shown on page 270
that 5∠π/6 may be written as 5e jπ/6 in exponential
form.
In Chapter 23, equation (4), page 270, it is shown that:

ejθ = cosθ + j sin θ (21)

which is known as Euler’s∗ formula.
From equation (21),

e j (ωt+α) = cos(ωt + α) + j sin(ωt + α)

and Vmej (ωt+α) = Vm cos(ωt + α)

+ jVm sin(ωt + α)

Thus a sinusoidal varying voltage such as in equa-
tion (19) or equation (20) can be considered to be either
the real or the imaginary part of Vm e j (ωt+α), depend-
ing on whether the cosine or sine function is being
considered.
Vm ej (ωt +α) may be rewritten as Vm e jωtejα since
am+n =am × an from the laws of indices, page 1.
The e jωt term can be considered to arise from the fact
that a radius is rotated with an angular velocity ω, and
α is the angle at which the radius starts to rotate at time
t =0 (see Chapter 15, page 171).
Thus, Vmejωtejα defines a phasor. In a particular cir-
cuit the angular velocity ω is the same for all the
elements thus the phasor can be adequately described
by Vm∠α, as suggested above.

∗ Who was Euler? For image and resume of Euler, see page 543.
To find out more go to www.routledge.com/cw/bird
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Alternatively, if

v = Vm cos(ωt + α)volts

and cos θ = 1
2

(
ejϑ + e−jθ

)

from equation (3), page 810

then v = Vm

[
1
2

(
ej (ωt+α) + e−j (ωt+α)

)]

i.e. v = 1
2
Vmejωtejα + 1

2
Vme−jωte−jα

Thus, v is the sum of two phasors, each with half the
amplitude, with one having a positive value of angular
velocity (i.e. rotating anticlockwise) and a positive value
of α, and the other having a negative value of angular
velocity (i.e. rotating clockwise) and a negative value of
α, as shown in Figure 78.9.

The two phasors are
1
2
Vm ∠α and

1
2
Vm ∠−α.

Real axis

Im
ag

in
ar

y 
ax

is

�

�

�

�

0

1 V m
2

1
V
m

2

Figure 78.9

From equation (11), page 810, the Fourier representa-
tion of a waveform in complex form is:

cne j 2πnt
L =cnejωnt for positive values of n

(

since ω = 2π
L

)

and cne−jωnt for negative values of n.

It can thus be considered that these terms represent pha-
sors, those with positives powers being phasors rotating
with a positive angular velocity (i.e. anticlockwise), and
those with negative powers being phasors rotating with
a negative angular velocity (i.e. clockwise).
In the above equations,

n=0 represents a non-rotatingcomponent, since e0=1,
n=1 represents a rotating component with angular
velocity of 1ω,
n=2 represents a rotating component with angular
velocity of 2ω, and so on.

Thus we have a set of phasors, the algebraic sum of
which at some instant of time gives the magnitude of
the waveform at that time.

Problem 7. Determine the pair of phasors that
can be used to represent the following voltages:
(a) v=8cos2t (b) v=8 cos (2t −1.5)

(a) From equation (3), page 810,

cosθ = 1
2
(e jθ + e−jθ )

Hence,

v = 8cos2t = 8
[
1
2

(
e j2t + e−j2t

)]

= 4e j2t+4e−j2t

This represents a phasor of length 4 rotating anti-
clockwise (i.e. in the positive direction) with an
angular velocity of 2 rad/s, and another phasor
of length 4 and rotating clockwise (i.e. in the
negative direction) with an angular velocity of
2 rad/s. Both phasors have zero phase angle.
Fig. 78.10 shows the two phasors.

(b) From equation (3), page 810,

cosθ = 1
2

(
ejθ + e−jθ

)

Hence, v = 8cos(2t − 1.5)

= 8
[
1
2

(
ej(2t−1.5) + e−j(2t−1.5)

)]

= 4e j (2t−1.5) + 4e−j (2t−1.5)
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i.e. v=4e2t e−j1.5+4e−j2t e j1.5

This represents a phasor of length 4 and phase
angle −1.5 radians rotating anticlockwise (i.e. in
the positive direction) with an angular velocity of
2 rad/s, and another phasor of length 4 and phase
angle +1.5 radians and rotating clockwise (i.e. in
the negative direction) with an angular velocity of
2 rad/s. Fig. 78.11 shows the two phasors.

Real axis

4

4

Im
ag

in
ar

y 
ax

is

0

� 5 2 rad/s

� 5 2 rad/s

1.5 rad

1.5 rad

Figure 78.11

Problem 8. Determine the pair of phasors that
can be used to represent the third harmonic

v = 8cos3t − 20sin3t

Using cos t = 1
2

(
ej t + e−j t

)

and sin t = 1
2j
(
ej t − e−j t

)
from page 810

gives: v = 8cos3t − 20sin3t

= 8
[
1
2

(
ej3t + e−j3t

)]

− 20
[
1
2j

(
ej3t − e−j3t

)]

= 4e j3t + 4e−j3t − 10
j
e j3t + 10

j
e−j3t

= 4e j3t +4e−j3t − 10(j)

j (j)
ej3t + 10(j)

j (j)
e−j3t

= 4e j3t + 4e−j3t + 10je j3t − 10je−j3t

since j 2=−1

= (4+ j10)ej3t + (4− j10)e−j3t

(4+ j10) =
√
42+ 102∠ tan−1

(
10
4

)

= 10.77∠1.19

and (4− j10)

= 10.77∠−1.19

Hence, v = 10.77∠1.19+10.77∠−1.19

Thus v comprises a phasor 10.77∠1.19 rotating anti-
clockwise with an angular velocity if 3 rad/s, and a
phasor 10.77∠−1.19 rotating clockwisewith an angular
velocity of 3 rad/s.
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Now try the following Practice Exercise

Practice Exercise 270 Phasors (Answers
on page 898)

1. Determine the pair of phasors that can be used
to represent the following voltages:
(a) v=4cos4t (b) v = 4cos(4t + π/2)

2. Determine the pair of phasors that can repre-
sent the harmonic given by:

v=10cos2t −12sin2t
3. Find the pair of phasors that can represent the

fundamental current: i =6sin t +4cos t

For fully worked solutions to each of the problems in Practice Exercises 268 to 270 in this chapter,
go to the website:

www.routledge.com/cw/bird
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Chapter 79

An introduction to z-transforms
Why it is important to understand: An introduction to z-transforms
Inmathematics and signal processing, the z-transform converts a discrete-time signal, which is a sequence
of real or complex numbers, into a complex frequency domain representation. It can be considered as a
discrete-time equivalent of the Laplace transform.
Laplace transform methods are widely used for analysis in linear systems and are used when a system

is described by a linear differential equation, with constant coefficients. However, there are numerous
systems that are described by difference equations - not differential equations - and these systems are
common and different from those described by differential equations.
Systems that satisfy difference equations include computer controlled systems - systems that take mea-

surements with digital input/output boards or GPIB instruments (digital 8-bit parallel communications
interface with data transfer rates up to 1 Mbyte/s), calculate an output voltage and output that voltage
digitally. Frequently these systems run a program loop that executes in a fixed interval of time. Other
systems that satisfy difference equations are those systems with digital filters - which are found anywhere
digital signal processing/digital filtering is undertaken - that includes digital signal transmission systems
like the telephone system or systems that process audio signals. A CD contains digital signal information,
and when it is read off the CD, it is initially a digital signal that can be processed with a digital filter.
There are an incredible number of systems used every day that have digital components which satisfy
difference equations. In continuous systems Laplace transforms play a unique role. They allow system
and circuit designers to analyse systems and predict performance, and to think in different terms - like
frequency responses - to help understand linear continuous systems. They are a very powerful tool that
shapes how engineers think about those systems. Z-transforms play the role in sampled systems that
Laplace transforms play in continuous systems. In sampled systems, inputs and outputs are related by
difference equations and z-transform techniques are used to solve those difference equations. In continu-
ous systems, Laplace transforms are used to represent systems with transfer functions, while in sampled
systems, z-transforms are used to represent systems with transfer functions.
This chapter merely provides an introduction to z-transforms – how to read z-transforms from a table,

to appreciate various properties of z-transforms, how to determine inverse z-transforms and how to solve
difference equations using z-transforms.

At the end of this chapter, you should be able to:

• define the z-transform
• prove z-transforms for simple sequences
• use a table of z-transforms to determine simple transforms
• understand the properties of z-transforms – linearity, first and second shift theorems, translations, final and
initial value theorems, and derivatives of transforms

• use a table of z-transforms to determine inverse transforms
• use z-transforms to solve difference equations

Higher Engineering Mathematics. 978-1-138-67357-1, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.Download more at Learnclax.com
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79.1 Sequences

The sequence . . . , 2−3, 2−2, 2−1, 20, 21, 22, 23, . . .has
a general term of the form 2k and this series can be
written as

{
2k

}∞
−∞indicating that the power or index of

the number 2 has a range from−∞ to∞.

The sum
∞∑

k=−∞

(
2
z

)k

= . . .+
(
2
z

)−3
+

(
2
z

)−2
+

(
2
z

)−1
+

(
2
z

)0
+

(
2
z

)1
+

(
2
z

)2
+ . . ..

is called the z-transform of the sequence Z
{
2k

}∞
−∞and

is denoted by F(z), where the complex number z is
chosen to ensure that the sum is finite.

Thus,
{
2k

}∞
−∞ and Z

{
2k

}∞
−∞ = F(z)=

∞∑

k=−∞

(
2
z

)k

forming what is referred to as a ‘z-transform pair’.
For simplicity, the range will be restricted to z {xk}∞0
where xk= 0 for k < 0 and denote it by {xk}

i.e. Z{xk} = F(z) =
∞∑

k=0
xk
zk

This is the definition of the z-transform of the
sequence {xk} and is used in the following worked
problems.

Problem 1. Determine the z-transform for the
unit impulse {δk} = {1, 0, 0, 0, . . . .}

The z-transform of {δk} is given by:

Z {δk} = F(z) =
∞∑

k=0

δk

zk
= 1

z0
+ 0

z1
+ 0

z2
+ . . . = 1

i.e. Z{δk} = 1 valid for all values of z

Problem 2. Determine the z-transform for the
unit step sequence {uk} = {1, 1, 1, 1, . . . .} = {1}

The z-transform of {uk} is given by:

Z {uk} = F(z) =
∞∑

k=0

uk

zk
=

∞∑

k=0

1
zk

= 1
z0

+ 1
z1

+ 1
z2

+ 1
z3

+ 1
z4

+ . . .

i.e. Z{uk} = 1 + 1
z

+ 1
z2

+ 1
z3

+ 1
z4

+ . . . (1)

Using the binomial theorem for (1+ x)n, the series

expansion of
1

1− x
may be determined:

1
1− x

= (1− x)−1

= 1+ (−1)(−x) + (−1)(−2)
2!

(−x)2

+ (−1)(−2)(−3)
3!

(−x)3+ . . .

= 1+ x + x2+ x3+ . . . valid for |x| < 1 (2)

Comparing equations (1) and (2) gives: F(z) = 1

1− 1
z

provided
∣
∣
∣
∣
1
z

∣
∣
∣
∣ < 1

1

1− 1
z

= 1
z − 1

z

= z

z − 1 hence, z {uk} = z

z − 1 pro-

vided |z| > 1

Problem 3. Show that the z-transform for the unit
step sequence
{xk} = {

1, a, a2, a3, a4, . . . .
} = {

ak
}
is given by

z

z − a

The z-transform of {xk} is given by:

z {xk} = z
{
ak

}
=

∞∑

k=0

ak

zk
=

∞∑

k=0

(
a

z

)k

=
(

a

z

)0
+

(
a

z

)1
+

(
a

z

)2
+

(
a

z

)3
+

(
a

z

)4
+ . . .

= 1+ a

z
+

(
a

z

)2
+

(
a

z

)3
+

(
a

z

)4
+ . . .

Comparing this with the series expansion of
1

1− x
= 1+ x + x2+ x3+ . . .which is valid for |x |<1

i.e. equation (2) above, shows that:

F(z) = 1+ a

z
+

(
a

z

)2
+

(
a

z

)3
+

(
a

z

)4
+ . . .

= 1

1− a

z

provided
∣
∣
∣
∣
a

z

∣
∣
∣
∣ < 1

Hence,
1

1− a

z

= 1
z − a

z

= z

z − a
and F(z) = z

z− a
provided |z | > |a |
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Problem 4. Determine the z-transform for the
unit step sequence {xk} = {0, 1, 2, 3, 4, . . . .} = {k}
and show that it is equivalent to

z

(z − 1)2

The z-transform of {uk} is given by:

Z {xk} = F(z) =
∞∑

k=0

xk

zk
=

∞∑

k=0

k

zk

= 0
z0

+ 1
z1

+ 2
z2

+ 3
z3

+ 4
z4

+ . . .

= 0+ 1
z

+ 2
z2

+ 3
z3

+ 4
z4

+ . . . (3)

It was shown earlier, equation (2), that
1

1− x
= (1− x)−1 = 1+ x + x2+ x3+ . . .

Now
d

dx

(
1+ x + x2+ x3+ x4+ . . .

)

= 1+ 2x + 3x2+ 4x3+ . . . (4)

and
d

dx

[
(1− x)−1

]
= −(1− x)−2(−1) = 1

(1− x)2

using the function of a function rule,

i.e. 1+ 2x + 3x2+ 4x3+ . . . = 1
(1− x)2

Comparing equations (3) and (4) shows that by multi-
plying F(z) by z,

then zF(z) = z

(

0+ 1
z

+ 2
z2

+ 3
z3

+ 4
z4

+ . . .

)

= 1+ 2
z

+ 3
z2

+ 4
z3

+ . . . = 1
(

1− 1
z

)2

Dividing both sides by z gives:

F(z)= 1

z

(

1− 1
z

)2 = 1

z

(
z − 1

z

)2 = 1

z
(z − 1)2

z2

= 1
(z − 1)2

z

= z

(z − 1)2

Hence, Z{xk } = F(z)= 0 + 1
z

+ 2
z2

+ 3
z3

+ 4
z4

+ . . .

= z
(z−1)2

From the results obtained in Problems 1 to 4, together
with some additional results, a summary of some z-
transforms is shown in Table 79.1, on page 828, which
may now be accepted and used.
Here are some further problems using Table 79.1.

Problem 5. Determine the z-transform of 5k 2

From 4 in Table 79.1, Z
{
k2

} = z(z + 1)
(z − 1)3

Hence, Z
{
5k2

} = 5Z {
k2

} = 5z(z+ 1)
(z − 1)3

Problem 6. Determine the z-transform of
(a) 3k (b) (−3)k

(a) From 6 in Table 79.1, Z
{
ak

}
= z

z − a

If a = 3, then Z
{
3k

}
= z
z− 3

(b) From 6 in Table 79.1, Z
{
ak

}
= z

z − a

If a = −3, then Z
{
(−3)k

}
= z

z − −3 = z

z + 3
Problem 7. Determine the z-transform of 2e−3k

From 9 in Table 79.1, Z
{
e−ak

}
= z

z − e−a

Hence, Z
{
2e−3k} = 2Z

{
e−3k} = 2z

z − e−3

Problem 8. Determine Z{cos3k}

From 11 in Table 79.1, Z{cosak} = z(z − cosa)

z2− 2zcosa + 1
Hence, since a = 3, Z{cos3k} = z(z − cos3)

z2−2zcos3+ 1
Problem 9. Determine the z-transform of 3 sin 2k

From 10 in Table 79.1, Z{sinak} = z sina

z2− 2zcosa + 1
Hence, since a = 2, Z{3sin2k} = 3Z {sin2k}

= 3
(

z sin2
z2− 2zcos2+ 1

)

= 3z sin2
z2− 2zcos2+ 1

Problem 10. Determine Z
{
e−2k cos4k

}

From 13 in Table 79.1,

Z
{
e−ak cosbk

}
= z2− ze−a cosb

z2− 2ze−a cosb + e−2a
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Table 79.1

Sequence Transform F(z)

1. {δk} = {1, 0, 0, . . .} 1 for all values of z

2. {uk} = {1, 1, 1, . . .} z

z − 1 for |z | > 1

3. {k} = {0, 1, 2, 3, . . .} z

(z − 1)2 for |z | > 1

4.
{
k2

} = {0, 1, 4, 9, . . .} z(z + 1)
(z − 1)3 for |z | > 1

5.
{
k3

} = {0, 1, 8, 27, . . .} z(z2+ 4z + 1)
(z − 1)4 for |z | > 1

6.
{
ak

} = {
1, a, a2, a3, . . .

} z

z − a
for |z | > |a |

7.
{
kak

} = {
0, a, 2a2, 3a3, . . .

} az

(z − a)2
for |z | > |a |

8.
{
k2ak

} = {
0, a, 4a2, 9a3, . . .

} az(z + a)

(z − a)3
for |z | > |a |

9.
{
e−ak

} = {
e−a, e−2a, e−3a, . . .

} z

z − e−a

10. sin ak = {sina, sin2a, . . .} z sina

z2− 2zcosa + 1

11. cos ak = {cosa, cos2a, . . .} z(z − cosa)

z2− 2zcosa + 1

12. e−ak sinbk = {
e−a sinb, e−2a sin2b, . . .

} ze−a sinb

z2− 2ze−a cosb + e−2a

13. e−ak cosbk = {
e−a cosb, e−2a cos2b, . . .

} z2− ze−a cosb
z2− 2ze−a cosb + e−2a

Hence, since a = 2 and b = 4,
Z

{
e−2k cos4k

} = z2− ze−2 cos4
z2− 2ze−2 cos4+ e−4

Now try the following Practice Exercise

Practice Exercise 271 Determining
z-transforms (Answers on page 898)

Use Table 79.1 to find the z-transforms of the
following:

1. 2k 2. 3k2 3. 4k3

4. sin 3k 5. 2k 6. k(2)k

7. 5 cos 2k 8. 3e−2k 9. sin 12k

10. 4e3k cos2k 11. (−4)k 12. 3k2(2)k

13. 3(−5)k 14. k(−3)k 15. 3e5k

16. 2e−4k sin2k
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79.2 Some properties of z-transforms

(a) Linearity property
The z-transform is a linear transform,

i.e. Z (a {xk} + b {yk}) = aZ {xk}+ bZ {yk} (4)

where a and b are constants

Problem 11. Determine the z-transform of

2 {k} − 3
{
e−2k

}

Now, 2Z {k} = 2
{

z

(z − 1)2
}

from 4 in Table 79.1

and since Z
{
e−ak

} = z

z − e−a
from 9 in Table 78.1,

then Z
{
e−2k} = z

z − e−2

Hence, Z
(
2 {k}− 3

{
e−2k

})
= 2Z {k} − 3Z

{
e−2k

}

= 2
{

z

(z − 1)2
}

− 3
{

z

z − e−2

}

from equation (5)

=
{

2z
(z − 1)2

}

−
{

3z
z − e−2

}

= 2z
(
z − e−2)− 3z (z − 1)2
(z − 1)2 (z − e−2)

= 2z2− 2ze−2− 3z (
z2− 2z + 1)

(z − 1)2 (z − e−2)

= 2z2− 2ze−2− 3z3+ 6z2− 3z
(z − 1)2 (z − e−2)

i.e. 2Z {k} − 3Z
{
e−2k}

= −3z3+ 8z2− z
(
2e−2+ 3)

(z − 1)2 (z − e−2)

Now try the following Practice Exercise

Practice Exercise 272 Linearity property
of z-transforms (Answers on page 898)

Use Table 79.1 to find the z-transforms of the
following:

1. 5 {k} − 4{
e−3k}

2. 4
{
k2

}+ 3 {k}

3. 3 {sin2k − cos2k}
4. 2

{
(3)k

}+ 4{
(−3)k}

5.
{
k + e−k

}

(b) First shift theorem (shifting to the left)
It may be shown by the first shift theorem (shifting to
the left), that
if Z {xk} = F(z)

then Z
{
xk+m

}

= zmF(z)−
[
zmx0+ zm−1x1+ . . . . + zxm−1

]

(6)

is the z-transform of the sequence that has been shifted
by m places to the left.
This theorem is often needed when solving difference
equations (see Section 79.4).

Problem 12. Determine Z
{
3k+2}

Since from equation (6),
Z {xk+m} = zmF(z) − [

zmx0+ zm−1x1+ . . . . + zxm−1
]

then Z
{
3k+2

}
= z2Z

{
3k

}
−

[
z230+ z31

]
(7)

From 6 of Table 79.1, Z
{
ak

}
= z

z − a
thus

Z
{
3k

} = z

z − 3
Hence, substituting in equation (7),

Z
{
3k+2

}
= z2

(
z

z − 3
)

−
[
z2+ 3z

]

= z3

z − 3 −
[
z2+ 3z

]

= z3− (z − 3)[z2+ 3z]

z − 3

= z3− [
z3+ 3z2− 3z2− 9z]

z − 3

= z3− [
z3− 9z]

z − 3
i.e. Z

{
3k+2

}
= 9z

z − 3
This is the z-transform of the sequence {9, 27, 81, . . .}
by shifting the sequence {1, 3, 9, 27, . . .} two places to
the left and losing the first two terms.
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Problem 13. Determine Z
{
5k+3}

Since from equation (6),
Z {xk+m} = zmF(z) − [

zmx0+ zm−1x1+ . . . . + zxm−1
]

then Z
{
5k+3

}
= z3Z

{
5k

}
−

[
z350+ z251+ z52

]

(8)

From 6 of Table 79.1, Z
{
ak

}
= z

z − a

thus Z
{
5k

}
= z

z − 5
Hence, substituting in equation (8),

Z
{
5k+3

}
= z3

(
z

z − 5
)

−
[
z3+ 5z2+ 25z

]

= z4

z − 5 −
[
z3+ 5z2+ 25z

]

= z4− (z − 5)[z3+ 5z2+ 25z]

z − 5

= z4− [
z4+ 5z3+ 25z2− 5z3− 25z2− 125z]

z − 5

= z4− [
z4− 125z]

z − 5
i.e. Z

{
5k+3

}
= 125z

z − 5
This is the z-transform of the sequence
{125,625,3125, . . .} by shifting the sequence
{1,5,25,125, . . .} three places to the left and losing the
first three terms.

Problem 14. Determine Z{k + 1}

From 3 of Table 79.1, Z{k} = z

(z − 1)2
Since from equation (6),

Z {xk+m} = zmF(z) − [
zmx0+ zm−1x1+ . . . . + zxm−1

]

then Z{k + 1} = z1Z(k) − [
z1x0

]

= z1
(

z

(z − 1)2
)

− [
z1× 0] from 3 of Table 79.1

i.e. Z{k + 1} = z2

(z − 1)2

Now try the following Practice Exercise

Practice Exercise 273 First shift theorem
of z-transforms (Answers on page 899)

Use Table 79.1 to find the z-transforms of the
following:

1.
{
2k+3} 2.

{
4k+1}

3. 6{k + 1} 4.
{
3k+2− 2k+1}

(c) Second shift theorem (shifting to the right)
It may be shown by the second shift theorem (shifting
to the right), that
if Z {xk} = F(z)

then Z {xk−m} = z−mF(z) (9)

is the z-transform of the sequence that has been shifted
by m places to the right.

Problem 15. Determine Z{xk−2}

Since from equation (9), Z {xk−m} = z−mF(z)

then Z{xk−2} = z−2F(z)

= z−2
(

z

z − 1
)

since Z{xk} = z

z − 1 from 2 of Table 79.1

i.e. Z{xk−2} =
(

z−1

z − 1
)

= 1
z(z − 1)

This is the z-transform of the sequence
{0, 0, 1, 1, 1, . . .} by shifting the sequence
{1, 1, 1, 1, . . .} two places to the right and defining the
first two terms as zeros.

Problem 16. Determine Z
{
ak−1}

Since from equation (9), Z {xk−m} = z−mF(z)

then Z
{
ak−1}=z−1F(z)=z−1

(
z

z − a

)

since Z
{
ak

}
=

z

z − a
from 6 of Table 79.1

i.e. Z
{
ak−1} =

(
z−1× z

z − a

)

= 1
(z − a)

which is the z-transformof
{
ak

}
shifted one place to the

right.
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Now try the following Practice Exercise

Practice Exercise 274 Second shift
theorem of z-transforms (Answers on
page 899)

Use Table 79.1 to find the z-transforms of the
following:

1. {xk−1} 2. {xk−3}

3.
{
ak−2} 4.

{
ak−3}

5.
{
3k−4}

(d) Translation
If the sequence {xk} has the z-transform

Z
{
akxk

}
= F(z),

then the sequence
{
akxk

}
has the z-transform

Z
{
akxk

}
= F

(
a−1z

)

Problem 17. Determine Z
{
3kk

}

Since Z(k) =
z

(z − 1)2 from 3 of Table 79.1
then by the translation property,

Z
{
3kk

}
= F

(
3−1z

)
= 3−1z

(3−1z − 1)2

= 3−1z
[
3−1

(
z − 1

3−1

)]2

= 3−1z
3−2 (z − 3)2 = 32z

31 (z − 3)2

i.e. Z
{
3kk

}
= 3z

(z − 3)2

(e) Final value theorem
For the sequence {xk} with the z-transform F(z),

Lim
k→∞

xk =Lim
z→1

{(
z − 1

z

)

F(z)

}

provided that Lim
k→∞

xk

exists

Problem 18. Determine Lim
k→∞

{( 1
3
)k}

F
{
xk

}
= z

z − 1 and F
{(
1
3

)k
}

= z

z − 1
3

= 3z
3z − 1

Now Lim
k→∞

{(
1
3

)k
}

= Lim
z→1

{(
z − 1

z

)

F(z)

}

= Lim
z→1

{(
z − 1

z

)
3z

3z − 1
}

= Lim
z→1

{
3(z − 1)
3z − 1

}

= 0

i.e. Lim
k→∞

{(
1
3

)k
}

= 0

Problem 19. DetermineLim
k→∞

{
33z2−25z

(z − 1) (3z − 1)2
}

By the final value theorem,

Lim
k→∞

{
33z2− 25z

(z − 1)(3z − 1)2
}

= Lim
z→1

{(
z − 1

z

)

F(z)

}

= Lim
z→1

{(
z − 1

z

)
33z2− 25z

(z − 1)(3z − 1)2
}

= Lim
z→1

{
33z− 25
(3z − 1)2

}

= 33− 25
22

= 8
4

= 2

(f) The initial value theorem
For the sequence {xk} with the z-transform F(z),

initial value, x0 = Lim
z→∞ {F(z)}

Problem 20. Determine Lim
z→∞

{
ak

}

F(z) = F
{
ak

}
= z

z − a
from 6 of Table 79.1

and Lim
z→∞ {F (z)} = Lim

z→∞

{
z

z − a

}

= Lim
z→∞

{
d
dz

(z)dz

d
dz

(z − a)dz

}

= Lim
z→∞

{
1
1

}

by L’Hôpital’s rule (see Chapter 8)

i.e. Lim
z→∞

{
ak

}
= 1

(g) The derivative of the transform

If Z{xk} = F(z)
then −zF ′(z) = Z {kxk}
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Problem 21. Determine the derivative of Z
{
kak

}

F(z) = F
{
ak

}
= z

z − a
from 6 of Table 79.1

Now Z {kxk} = −zF ′(z) from above

i.e. Z {kxk} = −zF ′
(

z

z − a

)

= −z

[
(z − a)(1) − z(1)

(z − a)2

]

using the quotient rule

= −z

[
z − a − z

(z − a)2

]

= −z

[ −a

(z − a)2

]

= az

(z − a)2

i.e. the derivative of Z
{
kak

} = −zF ′(z) =
az

(z − a)2
which confirms result 7 in Table 79.1

Now try the following Practice Exercise

Practice Exercise 275 Properties of
z-Transforms (Answers on page 899)

1. Determine Z
{
2kk

}

2. Determine Z
{
4kk

}

3. Determine Lim
k→∞

{( 1
2
)k}

4. Determine Lim
k→∞

{
15z2+ 5z

(z − 1)(4z− 1)2
}

5. Determine Lim
z→∞

{
3k

}

6. Determine the derivative of Z
{
k(2)k

}

79.3 Inverse z-transforms

If the sequence {xk} has a Z transform Z{xk} = F(z),
then the inverse z-transform is defined as:

Z−1F(z)= {xk}
In the following problems, some inverses may be deter-
mined directly from Table 79.1, albeit with a little
manipulation; others sometimes require the use of par-
tial fractions – just as with inverse Laplace transforms.

Problem 22. Determine the inverse z-transform
of F(z) =

z

z + 5

From 6 in Table 79.1, Z
{
ak

}
= z

z − a

hence Z−1
{

z

z − a

}

= ak

Comparing
z

z + 5 with
z

z − a
shows that a = −5

Thus, Z−1
{

z

z + 5
}

= (−5)k

Problem 23. Determine the inverse z-transform of

F(z) =
2z

2z + 1

2z
2z + 1 = 2z

2
(
z + 1

2
) = z

z + 1
2

From 6 in Table 79.1, Z
{
ak

}
= z

z − a

hence Z−1
{

z

z − a

}

= ak

Comparing
z

z + 1
2
with

z

z − a
shows that a = −1

2

Thus, Z−1
{
2z

2z+ 1
}

= Z−1
{

z

z + 1
2

}

=
(

−1
2

)k

Problem 24. If F(z) =
3z

3z − 1 determine Z−1F(z)

3z
3z − 1 = 3z

3
(
z − 1

3
) = z

z − 1
3

From 6 in Table 79.1, Z
{
ak

}
= z

z − a

hence Z−1
{

z

z − a

}

= ak

Comparing
z

z − 1
3
with

z

z − a
shows that a =

1
3

Thus, Z−1
{
3z

3z − 1
}

= Z−1
{

z

z − 1
3

}

=
(
1
3

)k

Problem 25. Determine the inverse z-transform
of F(z) =

z

z − e2

From 9 in Table 79.1, Z
{
e−ak

}
= z

z − e−a

hence Z−1
{

z

z − e−a

}

= e−ak
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Comparing
z

z − e2
with

z

z − e−a
shows that a = − 2

Thus, Z−1
{

z

z−e2

}

= e− −2k = e2k

Problem 26. If F(z) =
z

z2+ 1 determine Z−1F(z)

In Table 79.1, results 10 and 11 have z2 in their
denominators.

If the numerator is to be z in result 10, then sin a has to
equal 1, i.e. a = π

2

From 10 in Table 79.1, Z{sinak} = z sina

z2− 2zcosa + 1
hence Z−1

{
z sina

z2− 2zcosa + 1
}

= sin ak

When a =
π

2
,

z sina

z2− 2zcosa + 1 = z sin π
2

z2− 2zcos π
2 + 1

= z

z2+ 1

Thus, Z−1
{

z

z2+ 1
}

=sinπ

2
k

Problem 27. Determine the inverse z-transform
of F(z) =

z

z2− 7z + 12

Using partial fractions, let
z

z2− 7z + 12 = z

(z − 4)(z − 3) = A

(z − 4) + B

(z − 3)

= A(z − 3) + B(z − 4)
(z − 4)(z − 3)

from which, z = A(z − 3) + B(z − 4)
Letting z = 4 gives: 4 = A
Letting z = 3 gives: 3 = –B i.e. B = –3

Hence, F(z) =
z

z2− 7z + 12 = 4
(z − 4) − 3

(z − 3)
The nearest transform in Table 79.1 to either of these
partial fractions is Z

{
ak

} = z

z − a

Rearranging gives: F(z) = 4
(z − 4) − 3

(z − 3)
= 4

z
× z

(z − 4) − 3
z

× z

(z − 3)
= 4× z−1Z

{
4k

}
− 3× z−1Z

{
3k

}

Hence, Z−1F(z) = 4×
{
4k−1

}
− 3×

{
3k−1

}
by the

second shift theorem

=
{
4k

}
−

{
3k

}
=

{
4k − 3k

}

i.e. the sequence is xk = 4k − 3k
With the denominator of F(z) =

z

z2− 7z+ 12 being
z, there is an alternative, and more straight-forward
method of determining the inverse transform,

i.e. by initially rearranging as:
F(z)

z
= 1

z2− 7z + 12
Using partial fractions,

1
z2− 7z + 12 = 1

(z − 4)(z − 3)

= A

(z − 4) + B

(z − 3) = A(z − 3) + B(z − 4)
(z − 4)(z − 3)

from which, 1 = A(z – 3) + B(z − 4)
Letting z = 4 gives: 1 = A
Letting z = 3 gives: 1 = –B i.e. B = –1

Hence,
F(z)

z
= 1

z2− 7z + 12 = 1
(z − 4) − 1

(z − 3)
and F (z) = z

(z − 4) − z

(z − 3)
and z−1F(z) =

{
4k

}
−

{
3k

}
=

{
4k − 3k} from 6 in

Table 90.1

Problem 28. Determine the inverse z-transform
of F(z) =

z

z2− 3z + 2

Since F(z) =
z

z2− 3z + 2 then
F(z)

z
= 1

z2− 3z + 2
Using partial fractions, let

1
z2− 3z + 2 = 1

(z − 1)(z − 2) = A

(z − 1) + B

(z − 2)

= A(z − 2) + B(z − 1)
(z − 1)(z− 2)

from which, 1 = A(z – 2) + B(z – 1)
Letting z = 1 gives: 1 = – A i.e. A = – 1
Letting z = 2 gives: 1 = B
Hence,
F(z)

z
= −1

(z − 1) + 1
(z − 2) = 1

(z − 2) − 1
(z − 1)
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and F(z) =
z

(z − 2) − z

(z − 1)

Thus, Z−1F(z) = Z−1
{

z

(z − 2) − z

(z − 1)
}

= Z−1
{

z

(z − 2)
}

− Z−1
{

z

(z − 1)
}

From 6 in Table 79.1,Z−1F(z)= (2)k − (1)k = (2)k − 1

Problem 29. Determine the sequence {xk} which
has the z-transform F(z) =

4z
(z + 3)(z2− 4z + 4)

F (z)
z

= 1
z

× 4z
(z + 3)(z2− 4z + 4) = 4

(z + 3)(z2− 4z + 4)

Using partial fractions,

4
(z + 3) (z2− 4z + 4) = 4

(z + 3)(z − 2)2

= A

(z + 3) + B

(z − 2) + C

(z − 2)2

= A(z − 2)2+ B(z + 3)(z− 2) + C(z + 3)
(z + 3)(z − 2)2

fromwhich, 4 =A(z− 2)2+B(z + 3)(z−2)+C(z+ 3)
Letting z = –3 gives: 4 = 25A i.e. A = 4/25
Letting z = 2 gives: 4 = 5C i.e. C = 4/5
Equating z2coefficients gives: 0 = A + B from which,

B = –4/25

Hence,
F (z)

z
= 4

(z + 3)(z− 2)2

= 4/25
(z + 3) − 4/25

(z − 2) + 4/5
(z − 2)2

and F(z) =
(4/25)z
(z + 3) − (4/25)z

(z − 2) + (4/5)z
(z − 2)2

=
4
25

× z

(z + 3) − 4
25

× z

(z − 2) + 4
5

× z

(z − 2)2

=
4
25

× z

(z + 3) − 4
25

× z

(z − 2) + 2
5

× 2z
(z − 2)2

i.e. Z−1F(z) = 4
25

{
(−3)k

}
− 4
25

{
(2)k

}
+ 2
5

{
k(2)k

}

from 6 and 7 of Table 79.1

i.e. {xk} = 4
25

{
(−3)k

}
− 4
25

{
(2)k

}
+ 2
5

{
k(2)k

}

Now try the following Practice Exercise

Practice Exercise 276 Inverse
z-Transforms (Answers on page 899)

In problems 1 to 12, use Table 79.1 to find the
sequences which have the following z transforms

1.
z

z − 1 2.
z

z − 2
3.

z

z + 1 4.
z

z + 4
5.

z

z − 1
3

6.
4z

4z + 1

7.
5z

5z − 1
8.

z

z − e−5

9.
z

z − e3
10.

3z
(z − 1)2

11.
5z(z + 1)
(z − 1)3

12.
z

2(z − 2)2

In problems 13 to 20, use partial fractions to deter-
mine the inverse z-transforms of the following.

13.
z

(z + 1)(z − 2) 14.
3z

(z − 1)(z + 3)

15.
z

(z − 1)(z + 2) 16.
z

(z − 3)(2z+ 1)

17.
z

2− 3z+ z2 18.
z(3z+ 1)

z2− 5z + 6

19.
2z

2z2+ z − 1 20.
3z

z2+ 3z − 10

79.4 Using z-transforms to solve
difference equations

In Chapter 71, Laplace transforms were used to solve
differential equations; in this section, the solution of dif-
ference equations using z-transforms is demonstrated.
Difference equations arise in a number of different
ways – sometimes from the direct modelling of systems
in discrete time, or as an approximation to a differential
equation describing the behaviour of a systemmodelled
as a continuous-time system. The z-transform method
is based on the first shift theorem, (see earlier, page
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829), and the method of solution is explained through
the following problems.

Problem 30. Solve the difference equation
xk+1− 2xk = 0 given the initial condition that
x0 = 3

Taking the z-transform of each term gives:

Z {xk+1} − 2Z {xk} = Z {0}
Since from equation (6),

Z {xk+m} = zmF(z) −
[
zmx0+ zm−1x1+ . . . . + zxm−1

]

then
(
z1Z {k} −

[
z1(3)

])
− 2Z {xk} = 0

i.e. zZ {xk} − 3z − 2Z {xk} = 0
i.e. (z − 2)Z {xk} = 3z

and Z {xk} = 3z
z − 2

Taking the inverse z-transform gives:

{xk} = Z−1
(
3z

z − 2
)

= 3Z−1
(

z

z − 2
)

i.e. {xk} = 3
(
2k

)
from 6 of Table 79.1

Problem 31. Solve the difference equation:
xk+2− 3xk+1+ 2xk = 1 given that x0 = 0 and x1 = 2

Taking the z-transform of each term gives:

Z {xk+2}− 3Z {xk+1}+ 2Z {xk} = Z {1}
Since from equation (6),

Z {xk+m} = zmF(z) −
[
zmx0+ zm−1x1+ . . . . + zxm−1

]

(
z2Z {xk}−

[
z2(0) + z1(2)

])

−3
(
z1Z {xk}−

[
z1(0)

])
+ 2Z {xk} = z

z − 1
i.e. z2Z {xk} − 2z − 3zZ {xk} + 2Z {xk} = z

z − 1
and (z2− 3z + 2)Z {xk} = z

z − 1 + 2z

= z + 2z(z − 1)
z − 1 = 2z2− z

z − 1 = z(2z − 1)
z − 1

from which, Z {xk} = z(2z − 1)
(z − 1)(z2− 3z+ 2)

= z(2z − 1)
(z − 1)(z − 2)(z − 1)

or
Z {xk}

z
= (2z − 1)

(z − 1)(z − 2)(z − 1)
= (2z − 1)

(z − 1)2(z − 2)
Using partial fractions, let

(2z − 1)
(z − 1)2(z − 2) = A

(z − 1) + B

(z − 1)2 + C

(z − 2)

= A(z − 1)(z− 2) + B(z − 2) + C(z− 1)2
(z − 1)2(z − 2)

and 2z – 1 = A(z − 1)(z − 2) + B(z − 2) + C(z− 1)2
Letting z = 1 gives: 1 = –B i.e. B = –1
Letting z = 2 gives: 3 = C
Equating z2coefficients gives: 0 = A + C i.e. A = –3

Hence,
Z {xk}

z
= (2z − 1)

(z − 1)2(z − 2) = −3
(z − 1) + −1

(z − 1)2

+ 3
(z − 2)

Therefore, Z {xk} = 3
(

z

(z − 2)
)

− 3
(

z

(z − 1)
)

− z

(z − 1)2
Taking the inverse z-transform gives:

{xk} = 3Z−1
(

z

(z − 2)
)

− 3Z−1
(

z

(z − 1)
)

− Z−1
(

z

(z − 1)2
)

= 3(2)k − 3(1)k − k from 6 and 3 of Table 79.1

i.e. {xk} = 3(2k
)−3− k

Problem 32. Solve the difference equation:
xk+2− xk = 1 given that x0 = 0 and x1 = −1

Taking the z-transform of each term gives:

Z {xk+2}− Z {xk} = Z {1}

Since from equation (6),

Z {xk+m} = zmF(z) −
[
zmx0+ zm−1x1+ . . . . + zxm−1

]

z2Z {xk}−
[
z2(0) + z1(−1)

]
− Z {xk} = z

z − 1

i.e. z2Z {xk} + z − Z {xk} = z

z − 1
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and
(
z2− 1

)
Z {xk} = z

z − 1 − z = z − z(z − 1)
z − 1

= 2z − z2

z − 1

from which, Z{xk} = 2z − z2

(z − 1)(z2− 1)

= 2z − z2

(z − 1)(z − 1)(z + 1) = 2z − z2

(z − 1)2(z + 1)

and
Z {xk}

z
= 2− z

(z − 1)2(z + 1)
Using partial fractions, let

2− z

(z − 1)2(z + 1) = A

(z − 1) + B

(z − 1)2 + C

(z + 1)

= A(z − 1)(z+ 1) + B(z + 1) + C(z − 1)2
(z − 1)2(z + 1)

and 2 – z = A(z − 1)(z+ 1) + B(z + 1) + C(z− 1)2
Letting z = 1 gives: 1 = 2B i.e. B = 1/2
Letting z = - 1 gives: 3 = 4C i.e. C = 3/4
Equating z2coefficients gives: 0= A+C
i.e. A= −3/4

Hence,
Z {xk}

z
= 2− z

(z − 1)2(z + 1)

= −3/4
(z − 1) + 1/2

(z − 1)2 + 3/4
(z + 1)

Therefore, Z {xk} = −3
4

(
z

z − 1
)

+ 1
2

(
z

(z − 1)2
)

−3
4

(
z

z + 1
)

Taking the inverse z-transform gives:

{xk} = −3
4
Z−1

(
z

(z − 2)
)

+ 1
2
Z−1

(
z

(z − 1)2
)

−3
4
Z−1

(
z

z + 1
)

i.e. {xk} = −3
4

(
2k

)
+ 1
2
k − 3

4
(−1)k from 6 and 3 of

Table 79.1

Problem 33. Solve the difference equation:
xk+2− 3xk+1+ 2xk = 1 given that x0 = 0 and x1 = 1

Taking the z-transform of both sides of the equation
gives:

Z {xk+2− 3xk+1+ 2xk} = Z {1}

i.e. Z {xk+2}− 3Z {xk+1}+ 2Z {xk} = Z {1}
Using the first shift theorem and Z{xk} = F(z) gives:
(
z2F(z) − z2x0− zx1

)
− 3 (zF (z) − zx0) + 2F(z)

= z

z − 1

x0 = 0 and x1 = 1, hence
(
z2F(z) − z2(0) − z(1)

)
−

3 (zF (z) − z(0)) + 2F(z) = z

z − 1
i.e. z2F(z) − z− 3zF (z) + 2F(z) = z

z − 1

and
(
z2− 3z+ 2

)
F(z) = z

z − 1 + z = z

z − 1 + z

1

= z + z(z − 1)
z − 1 = z + z2− z

z − 1 = z2

z − 1

Hence, F(z) =
z2

(
z2− 3z + 2)(z − 1)

= z2

(z − 2)(z − 1)(z− 1) = z2

(z − 2)(z − 1)2

and
F(z)

z
= z

(z − 2)(z − 1)2
Using partial fractions, let

z

(z − 2)(z − 1)2 = A

(z − 2) + B

(z − 1) + C

(z − 1)2

= A(z − 1)2+ B(z − 2)(z − 1) + C(z− 2)
(z − 2)(z − 1)2

fromwhich, z=A(z−1)2+B(z − 2)(z − 1)+C(z− 2)
Letting z = 2 gives: 2 = A(1)2 i.e. A = 2
Letting z = 1 gives: 1 = C(– 1) i.e. C = – 1
Equating z2coefficients gives: 0 = A + B i.e. B = - 2

Therefore,
F(z)

z
= 2

(z − 2) − 2
(z − 1) − 1

(z − 1)2

or F(z) =
2z

(z − 2) − 2z
(z − 1) − z

(z − 1)2
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Taking the inverse z-transform of F(z) gives:

Z−1F(z) = 2Z−1
(

z

(z − 2)
)

− 2Z−1
(

z

(z − 1)
)

−Z−1
(

z

(z − 1)2
)

= 2 (
2k

)− 2(1) − k

from 2, 6 and 7 of Table 79.1

i.e. {xk} = 2k+1− 2− k

Now try the following Practice Exercise

Practice Exercise 277 Solving difference
equations (Answers on page 899)

1. Solve the difference equation:
xk+1− 3xk = 0 given x0 = 4

2. Solve the difference equation:
xk+1− 3xk = −6 given x0 = 1

3. Solve the difference equation:
2xk+2− 5xk+1+ 4xk = 0 given x0 = 3 and
x1 = 2

4. Solve the difference equation:
2xk+1− xk = 2k given x0 = 2

5. Solve the difference equation:
xk+2+ 3xk+1+ 2xk = 0 given x0 = 0 and
x1 = 1

6. Solve the difference equation:
xk+2− 5xk+1+ 6xk = 5 given x0 = 0 and
x1 = 1

For fully worked solutions to each of the problems in Practice Exercises 271 to 277
in this chapter, go to the website:
www.routledge.com/cw/bird
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Revision Test 21 Fourier series and z-transforms

This Revision Test covers the material contained in Chapters 73 to 79. The marks for each question are shown in
brackets at the end of each question.

1. Obtain a Fourier series for the periodic function
f (x) defined as follows:

f (x) =
{−1, when − π ≤ x ≤ 0
1, when 0 ≤ x ≤ π

The function is periodic outside of this range with
period 2π . (13)

2. Obtain a Fourier series to represent f (t) = t in the
range−π to +π . (13)

3. Expand the function f (θ)=θ in the range
0≤θ ≤π into (a) a half range cosine series, and
(b) a half-range sine series. (18)

4. (a) Sketch the waveform defined by:

f (x) =
⎧
⎨

⎩

0, when −4≤ x ≤ −2
3, when −2≤ x ≤ 2
0, when 2 ≤ x ≤ 4

and is periodic outside of this range of period 8.

(b) State whether the waveform in (a) is odd, even
or neither odd nor even.

(c) Deduce the Fourier series for the function
defined in (a). (15)

5. Displacement y on a point on a pulley when
turned through an angle of θ degrees is given by:

θ y

30 3.99

60 4.01

90 3.60

120 2.84

150 1.84

180 0.88

θ y

210 0.27

240 0.13

270 0.45

300 1.25

330 2.37

360 3.41

Sketch the waveform and construct a Fourier series
for the first three harmonics (23)

6. A rectangular waveform is shown in Fig. RT20.1.

(a) State whether the waveform is an odd or even
function.

(b) Obtain the Fourier series for the waveform in
complex form.

(c) Show that the complex Fourier series in (b) is
equivalent to:

f (x) = 20
π

(

sinx + 1
3
sin3x + 1

5
sin5x

+ 1
7
sin7x + ·· ·

)

(18)

5

f (x)

x0

25

2�22� � 2� 3�

Figure RT20.1

7. Determine the z-transform of
(a) 2k (b) 5e−2k (c) 2e−3k cos5k (d) 4k+2 (10)

8. Determine the inverse z-transform of

(a)
2z

4z + 1 (b)
z

z − e4
(c)

z

z2− z − 2 (10)

9. Solve the difference equation:
xk+2− 2xk+1− 3xk = 1 given x0 = 0 and x1 = 1

(20)

For lecturers/instructors/teachers, fully worked solutions to each of the problems in Revision Test 21,
together with a full marking scheme, are available at the website:

www.routledge.com/cw/bird
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Essential formulae

Number and algebra

Laws of indices:

am × an = am+n am

an
= am−n (am)n = amn

a
m
n = n

√
am a−n = 1

an
a0 = 1

Quadratic formula:

If ax2+ bx + c = 0 then x = −b ± √
b2− 4ac

2a

Factor theorem:
If x=a is a root of the equation f (x)=0, then (x−a)

is a factor of f (x).

Remainder theorem:
If (ax2+bx+c) is divided by (x−p), the
remainder will be: ap2+bp+c

or if (ax3+bx2+cx+d) is divided by (x−p), the
remainder will be: ap3+bp2+cp+d

Partial fractions:
Provided that the numerator f (x) is of less degree than
the relevant denominator, the following identities are
typical examples of the form of partial fractions used:

f (x)

(x + a)(x + b)(x + c)

≡ A

(x + a)
+ B

(x + b)
+ C

(x + c)

f (x)

(x + a)3(x + b)

≡ A

(x + a)
+ B

(x + a)2
+ C

(x + a)3
+ D

(x + b)

f (x)

(ax2+ bx + c)(x + d)

≡ Ax + B

(ax2+ bx + c)
+ C

(x + d)

Definition of a logarithm:
If y =ax then x = loga y

Laws of logarithms:

log(A × B) = logA + logB

log
(

A

B

)

= logA − logB

logAn = n× logA

Exponential series:

ex = 1+ x + x2

2!
+ x3

3!
+ ·· ·

(valid for all values of x)

Hyperbolic functions:

sinhx = e
x − e−x

2
cosech x = 1

sinhx
= 2
ex − e−x

coshx = e
x + e−x

2
sech x = 1

coshx
= 2
ex + e−x

tanhx = e
x − e−x

ex + e−x
cothx = 1

tanhx
= ex + e−x

ex − e−x

cosh2 x − sinh2=1 1− tanh2 x = sech2 x

coth2 x − 1= cosech2 x

Higher Engineering Mathematics. 978-1-138-67357-1, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.
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Arithmetic progression:
If a=first term and d =common difference, then the
arithmetic progression is: a, a+d , a+2d , . . .
The nth term is: a+(n−1)d
Sum of n terms, Sn = n

2
[2a+(n−1)d]

Geometric progression:
If a=first term and r =common ratio, then the geomet-
ric progression is: a, ar , ar 2, . . .

The nth term is: arn−1

Sum of n terms, Sn = a(1−rn)

(1−r)
or

a(rn −1)
(r −1)

If −1<r <1, S∞ = a

(1−r)

Binomial series:

(a + b)n = an + nan−1b + n(n− 1)
2!

an−2b2

+ n(n− 1)(n− 2)
3!

an−3b3+ ·· ·

(1+ x)n = 1+ nx + n(n− 1)
2!

x2

+ n(n− 1)(n− 2)
3!

x3+ ·· ·

Maclaurin’s series:

f (x) = f (0) + x f ′(0) + x2

2!
f ′′(0)

+ x3

3!
f ′′′(0) + ·· ·

Newton–Raphson iterative method:
If r1 is the approximate value for a real root of the equa-
tion f (x)=0, then a closer approximation to the root,
r2, is given by:

r2 = r1− f (r1)

f ′(r1)

Boolean algebra:
Laws and rules of Boolean algebra

Commutative laws: A+B =B +A

A ·B =B ·A
Associative laws: A+B +C = (A+B)+C

A ·B ·C = (A ·B) ·C
Distributive laws: A ·(B +C)=A ·B +A ·C

A+(B ·C)= (A+B) · (A+C)

Sum rules: A+A=1
A+1=1
A+0=A

A+A=A

Product rules: A ·A=0
A ·0=0
A ·1=A

A ·A=A

Absorption rules: A+A ·B =A

A ·(A+B)=A

A+A ·B =A+B

De Morgan’s laws: A+B =A ·B
A ·B =A+B

Geometry and trigonometry

Theorem of Pythagoras:

b2 = a2+ c2

A

B C

c
b

a

Figure FA1

Identities:

secθ = 1
cosθ

cosec θ = 1
sinθ

cotθ = 1
tanθ

tanθ = sinθ

cosθ
cos2 θ + sin2 θ = 1 1+ tan2 θ = sec2 θ
cot2 θ + 1= cosec2 θ
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Triangle formulae:
With reference to Fig. FA2:

Sine rule
a

sinA
= b

sinB
= c

sinC

Cosine rule a2=b2+ c2− 2bc cosA

A

B C

c

a

b

Figure FA2

Area of any triangle
(i) 1

2 × base× perpendicular height

(ii) 1
2ab sinC or 12ac sinB or 12bc sinA

(iii)
√
[s(s −a)(s−b)(s−c)] where s= a+b+c

2

Compound angle formulae:
sin(A ± B) = sinAcosB ± cosAsinB

cos(A ± B) = cosAcosB ∓ sinAsinB

tan(A ± B) = tanA ± tanB
1∓ tanA tanB

If R sin (ωt+α)=a sin ωt+b cos ωt,

then a =R cosα, b = R sinα,

R=
√

(a2+ b2) and α = tan−1 b

a

Double angles:

sin2A = 2sinAcosA

cos2A = cos2A − sin2A = 2cos2A − 1
= 1− 2sin2A

tan2A = 2 tanA
1− tan2A

Products of sines and cosines into sums or
differences:

sinAcosB = 1
2 [sin(A + B) + sin(A − B)]

cosAsinB = 1
2 [sin(A + B) − sin(A − B)]

cosAcosB = 1
2 [cos(A + B) + cos(A − B)]

sinAsinB = − 1
2 [cos(A + B)−cos(A − B)]

Sums or differences of sines and cosines
into products:

sinx + siny = 2sin
(

x + y

2

)

cos
(

x − y

2

)

sinx − siny = 2cos
(

x + y

2

)

sin
(

x − y

2

)

cosx + cosy = 2cos
(

x + y

2

)

cos
(

x − y

2

)

cosx − cosy = −2sin
(

x + y

2

)

sin
(

x − y

2

)

For a general sinusoidal function
y=Asin(ωt±α), then:

A = amplitude
ω = angular velocity= 2π f rad/s

2π
ω

= periodic time T seconds

ω

2π
= frequency, f hertz

α = angle of lead or lag (compared with
y = Asinωt)

Cartesian and polar co-ordinates:
If co-ordinate (x,y)=(r,θ) then r =

√
x2+y2 and

θ = tan−1 y

x
If co-ordinate (r,θ)=(x,y) then x =r cosθ and
y =r sin θ
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The circle:
With reference to Fig. FA3.

Area= πr2 Circumference= 2πr

π radians= 180◦

sr

r

�

Figure FA3

For sector of circle:
s = rθ (θ in rad)

shaded area= 1
2 r
2θ (θ in rad)

Equation of a circle, centre at (a, b), radius r:

(x − a)2+ (y − b)2 = r2

Linear and angular velocity:

Ifv= linear velocity (m/s), s=displacement (m),
t = time (s), n= speed of revolution (rev/s),
θ =angle (rad), ω=angular velocity (rad/s),
r = radius of circle (m) then:

v = s

t
ω = θ

t
= 2πn v = ωr

centripetal force= mv2

r

where m=mass of rotating object.

Graphs

Equations of functions:
Equation of a straight line: y=mx +c

Equation of a parabola: y=ax2+bx+c

Circle, centre (a, b), radius r:
(x−a)2+(y−b)2=r2

Equation of an ellipse, centre at origin, semi-axes a

and b:
x2

a2
+ y2

b2
=1

Equation of a hyperbola:
x2

a2
− y2

b2
=1

Equation of a rectangular hyperbola: xy=c2

Irregular areas:
Trapezoidal rule

Area ≈
(
width of
interval

)[
1
2

(
first+ last
ordinates

)

+
(
sum of remaining

ordinates

)]

Mid-ordinate rule

Area ≈
(
width of
interval

)(
sum of

mid-ordinates

)

Simpson’s rule

Area ≈ 1
3

(
width of
interval

)[(
first+ last
ordinate

)

+4
(
sum of even
ordinates

)

+2
(
sum of remaining
odd ordinates

)]

Vector geometry

If a=a1i+a2 j+a3k and b=b1 i+b2 j+b3k

a · b= a1b1+ a2b2+ a3b3

|a | =
√

a21 + a22 + a23 cosθ = a · b
|a| |b|

a× b=
∣
∣
∣
∣
∣
∣

i j k

a1 a2 a3
b1 b2 b3

∣
∣
∣
∣
∣
∣

|a × b | =
√
[(a · a)(b · b) − (a · b)2]
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Complex numbers

z=a+jb=r(cosθ +j sinθ)=r∠θ =re jθ where
j2=−1
Modulus r =|z|=

√
(a2+b2)

Argument θ =arg z= tan−1 b

a

Addition: (a+jb)+(c+jd)=(a+c)+j (b+d)

Subtraction: (a +jb)−(c+jd)=(a −c)+j (b−d)

Complex equations: If m+jn=p+jq then m=p

and n=q

Multiplication: z1 z2=r1 r2∠(θ1+θ2)

Division:
z1

z2
= r1

r2
∠(θ1−θ2)

De Moivre’s theorem:
[r∠θ ]n =rn∠nθ =rn(cosnθ +j sinnθ)=rejθ

Matrices and determinants

Matrices:

If A =
(

a b

c d

)

and B =
(

e f

g h

)

then

A + B =
(

a + e b + f

c + g d + h

)

A − B =
(

a − e b − f

c − g d − h

)

A × B =
(

ae + bg af + bh

ce + dg cf + dh

)

A−1 = 1
ad − bc

(
d −b

−c a

)

If A=

⎛

⎜
⎝

a1 b1 c1
a2 b2 c2
a3 b3 c3

⎞

⎟
⎠ then A−1= BT

|A| where

BT = transpose of cofactors of matrix A

Determinants:
∣
∣
∣
∣
a b

c d

∣
∣
∣
∣= ad − bc

∣
∣
∣
∣
∣
∣

a1 b1 c1
a2 b2 c2
a3 b3 c3

∣
∣
∣
∣
∣
∣
= a1

∣
∣
∣
∣
b2 c2
b3 c3

∣
∣
∣
∣− b1

∣
∣
∣
∣
a2 c2
a3 c3

∣
∣
∣
∣

+ c1

∣
∣
∣
∣
a2 b2
a3 b3

∣
∣
∣
∣

Differential calculus

Standard derivatives:

y or f (x)
dy
dx
or f ′(x)

axn anxn−1

sinax a cosax

cosax −a sinax

tanax a sec2 ax

secax a secax tanax

cosecax −a cosecax cotax

cotax −a cosec 2 ax

eax aeax

lnax
1
x

sinhax a coshax

coshax a sinhax

tanhax a sech 2 ax

sechax −a sechax tanhax

cosechax −a cosechax cothax

cothax −a cosech 2ax

sin−1 x

a

1√
a2− x2

sin−1 f (x)
f ′(x)

√
1− [ f (x)]2

cos−1
x

a

−1√
a2− x2
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y or f (x)
dy
dx
or f ′(x)

cos−1 f (x)
−f ′(x)

√
1− [f (x)]2

tan−1
x

a

a

a2+ x2

tan−1 f (x)
f ′(x)

1+ [f (x)]2

sec−1
x

a

a

x
√

x2− a2

sec−1 f (x)
f ′(x)

f (x)
√
[f (x)]2− 1

cosec−1
x

a

−a

x
√

x2− a2

cosec−1f (x)
−f ′(x)

f (x)
√
[f (x)]2− 1

cot−1
x

a

−a

a2+ x2

cot−1 f (x)
−f ′(x)

1+ [f (x)]2

sinh−1
x

a

1√
x2+ a2

sinh−1 f (x)
f ′(x)

√
[f (x)]2+ 1

cosh−1
x

a

1√
x2− a2

cosh−1 f (x)
f ′(x)

√
[f (x)]2− 1

tanh−1 x

a

a

a2− x2

tanh−1 f (x)
f ′(x)

1− [f (x)]2

sech−1 x
a

−a

x
√

a2− x2

sech−1 f (x)
−f ′(x)

f (x)
√
1− [ f (x)]2

y or f (x)
dy
dx
or f ′(x)

cosech−1 x

a

−a

x
√

x2+ a2

cosech−1 f (x)
−f ′(x)

f (x)
√
[f (x)]2+ 1

coth−1 x

a

a

a2− x2

coth−1 f (x)
f ′(x)

1− [f (x)]2

Product rule:
When y =uv and u and v are functions of x then:

dy
dx

=udv
dx

+v
du
dx

Quotient rule:

When y = u

v
and u and v are functions of x then:

dy
dx

=
v
du
dx

−udv
dx

v2

Function of a function:
If u is a function of x then:

dy
dx

= dy
du

× du
dx

Parametric differentiation:
If x and y are both functions of θ , then:

dy
dx

=
dy
dθ
dx
dθ

and
d2y
dx2

=
d
dθ

(
dy
dx

)

dx
dθ

Implicit function:

d
dx
[ f (y)]= d

dy
[ f (y)]× dy

dx
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Maximum and minimum values:

If y =f (x) then
dy
dx

=0 for stationary points.
Let a solution of

dy
dx

=0 be x=a; if the value of

d2y
dx2

when x=a is: positive, the point is a minimum,
negative, the point is a maximum.

Velocity and acceleration:

If distance x =f (t), then

velocity v =f ′(t) or
dx
dt
and

acceleration a =f ′′(t) or
d2x
dt2

Tangents and normals:

Equation of tangent to curve y = f (x) at the point
(x1,y1) is:

y − y1 = m(x − x1)

where m=gradient of curve at (x1, y1).

Equation of normal to curve y=f (x) at the point
(x1,y1) is:

y − y1 = − 1
m

(x − x1)

Partial differentiation:
Total differential
If z=f (u,v, . . .), then the total differential,

dz = ∂z

∂u
du + ∂z

∂v
dv + . . . .

Rate of change
If z=f (u,v, . . .) and

du
dt
,
dv
dt
,… denote the rate of

change of u, v,… respectively, then the rate of change
of z,

dz
dt

= ∂z

∂u
· du
dt

+ ∂z

∂v
· dv
dt

+ . . .

Small changes
If z=f (u,v, . . .) and δx, δy,… denote small changes
in x, y,… respectively, then the corresponding change,

δz ≈ ∂z

∂x
δx + ∂z

∂y
δy + . . . .

To determinemaxima,minima and saddle points for
functions of two variables: Given z = f (x,y),

(i) determine
∂z

∂x
and

∂z

∂y

(ii) for stationary points,
∂z

∂x
=0 and ∂z

∂y
=0

(iii) solve the simultaneous equations
∂z

∂x
=0 and

∂z

∂y
=0 for x and y, which gives the co-ordinates

of the stationary points

(iv) determine
∂2z

∂x2
,
∂2z

∂y2
and

∂2z

∂x∂y

(v) for each of the co-ordinates of the station-
ary points, substitute values of x and y into
∂2z

∂x2
,
∂2z

∂y2
and

∂2z

∂x∂y
and evaluate each

(vi) evaluate
(

∂2z

∂x∂y

)2
for each stationary point,

(vii) substitute the values of
∂2z

∂x2
,
∂2z

∂y2
and

∂2z

∂x∂y
into

the equation � =
(

∂2z

∂x∂y

)2
−
(

∂2z

∂x2

)(
∂2z

∂y2

)

and evaluate

(viii) (a) if�>0 then the stationary point is a saddle
point

(b) if �<0 and
∂2z
∂x2

<0, then the stationary
point is a maximum point, and

(c) if �<0 and
∂2z
∂x2

>0, then the stationary
point is a minimum point
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Integral calculus

Standard integrals:

y
∫

y dx

axn a
xn+1

n+ 1 + c

(except where n = −1)

cosax
1
a
sinax + c

sinax −1
a
cosax + c

sec2 ax
1
a
tanax + c

cosec2 ax −1
a
cotax + c

cosecax cotax − 1
a
cosecax + c

secax tanax
1
a
secax + c

eax 1
a
eax + c

1
x

lnx + c

tanax
1
a
ln(secax) + c

cos2 x
1
2

(

x + sin2x
2

)

+ c

sin2 x
1
2

(

x − sin2x
2

)

+ c

tan2 x tanx − x + c

cot2 x −cotx − x + c

1
√

(a2− x2)
sin−1 x

a
+ c

√
(a2− x2)

a2

2
sin−1 x

a
+ x

2
√

(a2− x2) + c

y
∫

y dx

1
(a2+ x2)

1
a
tan−1 x

a
+ c

1
√

(x2+ a2)
sinh−1

x

a
+ c or

ln

[
x +
√

(x2+ a2)

a

]

+ c

√
(x2+ a2)

a2

2
sinh−1 x

a
+ x

2
√

(x2+ a2) + c

1
√

(x2− a2)
cosh−1

x

a
+ c or

ln

[
x +
√

(x2− a2)

a

]

+ c

√
(x2− a2)

x

2
√

(x2− a2) − a2

1
cosh−1

x

a
+ c

t= tanθ

2
substitution:

To determine
∫ 1

a cosθ + b sinθ + c
dθ let

sinθ = 2t
(1+ t2)

cosθ = 1− t2

1+ t2
and

dθ = 2dt
(1+ t2)

Integration by parts:
If u and v are both functions of x then:

∫
u
dv
dx
dx=uv−

∫
v
du
dx
dx

Reduction formulae:
∫

xnex dx = In = xnex − nIn−1
∫

xn cosx dx = In = xn sinx + nxn−1 cosx

−n(n− 1)In−2
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∫ π

0
xn cosx dx = In = −nπn−1− n(n− 1)In−2

∫
xn sinx dx = In = −xn cosx + nxn−1 sinx

−n(n− 1)In−2
∫
sinn x dx = In = −1

n
sinn−1 x cosx + n− 1

n
In−2

∫
cosn x dx = In = 1

n
cosn−1 sinx + n− 1

n
In−2

∫ π/2

0
sinn x dx =

∫ π/2

0
cosn x dx = In = n− 1

n
In−2

∫
tann x dx = In = tann−1 x

n− 1 − In−2
∫

(lnx)n dx = In = x(lnx)n − nIn−1

With reference to Fig. FA4.

y

y 5 f(x)

x 5 a x 5 b x0

A

Figure FA4

Area under a curve:

area A =
∫ b

a

y dx

Mean value:

mean value= 1
b − a

∫ b

a

y dx

Rms value:

rms value=
√{

1
b − a

∫ b

a

y2 dx
}

Volume of solid of revolution:

volume=
∫ b

a

πy2 dx about the x-axis

Centroids:
With reference to Fig. FA5:

x̄ =

∫ b

a

xy dx
∫ b

a

y dx
and ȳ =

1
2

∫ b

a

y2 dx
∫ b

a

y dx

y

C

Area A

x
y

y 5 f(x)

x 5 a x 5 b x0

Figure FA5

Theorem of Pappus:
With reference toFig. FA5,when the curve is rotated one
revolution about the x-axis between the limits x=a and
x =b, the volume V generated is given by: V = 2πAȳ

Parallel axis theorem:
If C is the centroid of area A in Fig. FA6 then

Ak2BB = Ak2GG + Ad2 or k2BB = k2GG + d2

G B

G B

d

C

Area A

Figure FA6
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Second moment of area and radius of gyration:

Shape Position of axis Second moment Radius of
of area, I gyration, k

Rectangle (1) Coinciding with b
bl3

3
1√
3length l

(2) Coinciding with l
lb3

3
b√
3

breadth b

(3) Through centroid,
bl3

12
1√
12parallel to b

(4) Through centroid,
lb3

12
b√
12parallel to l

Triangle (1) Coinciding with b
bh3

12
h√
6Perpendicular

(2) Through centroid,
bh3

36
h√
18

height h

parallel to basebase b

(3) Through vertex,
bh3

4
h√
2parallel to base

Circle (1) Through centre,
πr4

2
r√
2radius r perpendicular to plane

(i.e. polar axis)

(2) Coinciding with diameter
πr4

4
r

2

(3) About a tangent
5πr4

4

√
5
2

r

Semicircle Coinciding with πr4

8
r

2
radius r diameter

Perpendicular axis theorem:
If OX and OY lie in the plane of area A in Fig. FA7,

then Ak2OZ = Ak2OX + Ak2OY or k
2
OZ = k2OX + k2OY

Z

O

Y

X

Area A

Figure FA7

Numerical integration:
Trapezoidal rule

∫
ydx ≈

(
width of
interval

)[
1
2

(
first+ last
ordinates

)

+
(
sum of remaining

ordinates

)]

Mid-ordinate rule

∫
ydx ≈

(
width of
interval

)(
sum of

mid-ordinates

)
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Simpson’s rule

∫
ydx ≈ 1

3

(
width of
interval

)[(
first+ last
ordinate

)

+ 4
(
sum of even
ordinates

)

+2
(
sum of remaining
odd ordinates

)]

Differential equations

First-order differential equations:
Separation of variables

If
dy
dx

= f (x) then y =
∫

f (x)dx

If
dy
dx

= f (y) then
∫
dx =

∫ dy
f (y)

If
dy
dx

= f (x) ·f (y) then
∫

dy
f (y)

=
∫

f (x)dx

Homogeneous equations:

IfP
dy
dx

=Q, whereP andQ are functions of both x and
y of the same degree throughout (i.e. a homogeneous
first-order differential equation) then:

(i) rearrange P
dy
dx

=Q into the form
dy
dx

= Q

P

(ii) make the substitution y =vx (where v is a func-
tion of x), from which, by the product rule,

dy
dx

= v(1) + x
dv
dx

(iii) substitute for both y and
dy
dx

in the equation
dy
dx

= Q

P

(iv) simplify, by cancelling, and then separate the

variables and solve using the
dy
dx

=f (x) ·f (y)

method

(v) substitute v= y

x
to solve in terms of the original

variables.

Linear first-order:

If
dy
dx

+ Py = Q,where P and Q are functions of x

only (i.e. a linear first-order differential equation), then

(i) determine the integrating factor, e
∫

P dx

(ii) substitute the integrating factor (I.F.) into
the equation

y (I.F.) =
∫

(I.F.) Qdx

(iii) determine the integral
∫
(I.F.)Qdx

Numerical solutions of first-order
differential equations:
Euler’s method: y1= y0+ h(y ′)0
Euler–Cauchy method: yP1 = y0+ h(y ′)0

and yC1 = y0+ 1
2
h[(y ′)0+ f (x1,yp1)]

Runge–Kutta method:
To solve the differential equation

dy
dx

= f (x,y) given
the initial condition y = y0 at x = x0 for a range of
values of x = x0(h)xn:

1. Identify x0, y0 and h, and values of x1, x2, x3, . . .

2. Evaluate k1 = f (xn,yn) starting with n = 0

3. Evaluate k2 = f

(

xn + h

2
,yn + h

2
k1

)

4. Evaluate k3 = f

(

xn + h

2
,yn + h

2
k2

)

5. Evaluate k4 = f(xn + h,yn + hk3)

6. Use the values determined from steps 2 to 5 to
evaluate:

yn+1 = yn + h

6
{k1+ 2k2+ 2k3+ k4}

7. Repeat steps 2 to 6 for n = 1,2,3, . . .

Second-order differential equations:

If a
d2y
dx2

+ b dy
dx

+ cy= 0 (where a, b and c are con-
stants) then:
(i) rewrite the differential equation as

(aD2+bD+c)y=0
(ii) substitutem forDand solve the auxiliary equation

am2+bm+c=0
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(iii) if the roots of the auxiliary equation are:
(a) real and different, say m=α and m=β

then the general solution is

y= Aeαx+Beβx

(b) real and equal, say m=α twice, then the
general solution is

y= (Ax+B) eαx

(c) complex, say m=α±jβ, then the general
solution is

y= eαx(Acosβx+Bsinβx)

(iv) given boundary conditions, constants A and B

can be determined and the particular solution
obtained.

If a
d2y
dx2

+ bdy
dx

+ cy= f (x) then:
(i) rewrite the differential equation as

(aD2+bD+c)y=0
(ii) substitutem forDand solve the auxiliary equation

am2+bm+c=0
(iii) obtain the complimentary function (C.F.), u, as

per (iii) above.

(iv) to find the particular integral, v, first assume a
particular integral which is suggested by f (x),
butwhich contains undetermined coefficients (see
Table 54.1, page 568 for guidance).

(v) substitute the suggested particular integral into
the original differential equation and equate
relevant coefficients to find the constants
introduced.

(vi) the general solution is given by y=u+v

(vii) given boundary conditions, arbitrary constants in
the C.F. can be determined and the particular
solution obtained.

Higher derivatives:

y y(n)

eax an eax

sinax an sin
(
ax + nπ

2

)

y y(n)

cosax an cos
(
ax + nπ

2

)

xa a!
(a − n)!

xa−n

sinhax
an

2
{[
1+ (−1)n]sinhax

+[1− (−1)n]coshax
}

coshax
an

2
{[
1− (−1)n]sinhax

+[1+ (−1)n]coshax
}

lnax (−1)n−1 (n− 1)!
xn

Leibniz’s theorem:
To find the nth derivative of a product y = uv:

y(n) = (uv)(n) = u(n)v + nu(n−1)v(1)

+ n(n− 1)
2!

u(n−2)v(2)

+ n(n− 1)(n− 2)
3!

u(n−3)v(3) + ·· ·

Power series solutions of second-order
differential equations:
(a) Leibniz–Maclaurin method

(i) Differentiate the given equation n times,
using the Leibniz theorem

(ii) rearrange the result to obtain the recurrence
relation at x = 0

(iii) determine the values of the derivatives at
x = 0, i.e. find (y)0 and (y ′)0

(iv) substitute in the Maclaurin expansion for
y=f (x)

(v) simplify the result where possible and apply
boundary condition (if given).

(b) Frobenius method
(i) Assume a trial solution of the form:

y=xc{a0+a1x +a2x
2+a3x

3+ ·· · +
arx

r + ·· · } a0 	= 0
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(ii) differentiate the trial series to find y ′
and y ′′

(iii) substitute the results in the given differential
equation

(iv) equate coefficients of correspondingpowers
of the variable on each side of the equa-
tion: this enables index c and coefficients
a1,a2,a3, . . . from the trial solution, to be
determined.

Bessel’s equation:

The solution of x2
d2y
dx2

+ x
dy
dx

+ (x2− v2)y = 0 is:

y = Axv

{

1− x2

22(v + 1)

+ x4

24× 2!(v + 1)(v + 2)

− x6

26× 3!(v + 1)(v + 2)(v + 3) + ·· ·
}

+ Bx−v

{

1+ x2

22(v − 1) + x4

24× 2!(v − 1)(v − 2)

+ x6

26× 3!(v − 1)(v − 2)(v − 3) + ·· ·
}

or, in terms of Bessel functions and gamma functions:

y = AJv(x) + BJ−v(x)

= A
(x

2

)v { 1

(v + 1) − x2

22(1!)
(v + 2)

+ x4

24(2!)
(v + 4) − ·· ·
}

+ B
(x

2

)−v
{

1

(1− v)

− x2

22(1!)
(2− v)

+ x4

24(2!)
(3− v)
− ·· ·

}

In general terms:

Jv(x) =
(x

2

)v ∞∑

k=0

(−1)kx2k
22k(k!)
(v + k + 1)

and J−v(x) =
(x

2

)−v
∞∑

k=0

(−1)kx2k
22k(k!)
(k − v + 1)

and in particular:

Jn(x) =
(x

2

)n{ 1
n!

− 1
(n+ 1)!

(x

2

)2

+ 1
(2!)(n+ 2)!

(x

2

)4− ·· ·
}

J0(x) = 1− x2

22(1!)2
+ x4

24(2!)2

− x6

26(3!)2
+ ·· ·

and J1(x) = x

2
− x3

23(1!)(2!)
+ x5

25(2!)(3!)

− x7

27(3!)(4!)
+ ·· ·

Legendre’s equation:

The solution of (1− x2)
d2y
dx2

− 2x dy
dx

+ k(k + 1)y = 0

is:

y = a0

{

1− k(k + 1)
2!

x2

+ k(k + 1)(k − 2)(k + 3)
4!

x4− ·· ·
}

+ a1

{

x − (k − 1)(k + 2)
3!

x3

+ (k − 1)(k − 3)(k + 2)(k + 4)
5!

x5− ·· ·
}

Rodrigues’ formula:

Pn(x) = 1
2nn!

dn(x2− 1)n
dxn

Statistics and probability

Mean, median, mode and standard
deviation:
If x =variate and f = frequency then:

mean x̄ =
∑

f x
∑

f

Themedian is the middle term of a ranked set of data.
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The mode is the most commonly occurring value in a
set of data.

Standard deviation:

σ =
√√
√
√
[∑{

f (x − x̄)2
}

∑
f

]

for a population

Bayes’ theorem:

P (A1 |B ) = P (B |A1 )P (A1)

P (B |A1 )P (A1)+P (B |A2)P (A2)+ ....

or P
(
Ai |B )= P (B |Ai )P (Ai)

n∑

j=1
P
(
B
∣
∣Aj

)
P
(
Aj

) (i = 1,2, ...,n)

Binomial probability distribution:
If n=number in sample, p=probability of the occur-
rence of an event and q =1−p, then the probability of
0,1,2,3, . . . occurrences is given by:

qn, nqn−1p,
n(n− 1)
2!

qn−2p2,

n(n− 1)(n− 2)
3!

qn−3p3, . . .

(i.e. successive terms of the (q +p)n expansion).

Normal approximation to a binomial distribution:
Mean=np Standard deviation σ = √

(npq)

Poisson distribution:
If λ is the expectation of the occurrence of an event then
the probability of 0,1,2,3, . . . occurrences is given by:

e−λ, λe−λ, λ2
e−λ

2!
, λ3

e−λ

3!
, . . .

Product-moment formula for the linear
correlation coefficient:

Coefficient of correlation r =
∑

xy
√[(∑

x2
)(∑

y2
)]

where x =X−X and y =Y −Y and (X1,Y1),
(X2,Y2), . . . denote a random sample from a bivariate
normal distribution and X and Y are the means of the
X and Y values respectively.

Normal probability distribution:
Partial areas under the standardized normal curve— see
Table 61.1 on page 661.

Student’s t distribution:
Percentile values (tp) for Student’s t distribution with ν

degrees of freedom – see Table 64.2, page 689, on the
website.

Chi-square distribution:
Percentile values (χ 2p) for the Chi-square distribution
with ν degrees of freedom–see Table 66.1, page 711, on
the website.

χ2=∑
{

(o−e)2

e

}

where o and e are the observed and

expected frequencies.

Symbols:
Population
Number of membersNp , meanμ, standard deviation σ

Sample
Number of members N , mean x, standard deviation s

Sampling distributions
Mean of sampling distribution of means μx

Standard error of means σx

Standard error of the standard deviations σs

Standard error of the means:
Standard error of themeans of a sample distribution, i.e.
the standard deviation of the means of samples, is:

σx = σ√
N

√(
Np − N

Np − 1
)

for a finite population and/or for sampling without
replacement, and

σx = σ√
N

for an infinite population and/or for sampling with
replacement.

The relationship between sample mean
and population mean:
μx =μ for all possible samples of size N are drawn
from a population of size Np
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Estimating the mean of a population
(σ known):
The confidence coefficient for a large sample size,
(N ≥ 30) is zc where:

Confidence Confidence
level % coefficient zc

99 2.58

98 2.33

96 2.05

95 1.96

90 1.645

80 1.28

50 0.6745

The confidence limits of a population mean based on
sample data are given by:

x ± zcσ√
N

√(
Np − N

Np − 1
)

for a finite population of size Np, and by

x ± zcσ√
N
for an infinite population

Estimating the mean of a population
(σ unknown):
The confidence limits of a population mean based on
sample data are given by: μx ± zcσx

Estimating the standard deviation of a
population:
The confidence limits of the standard deviation of a pop-
ulation based on sample data are given by:

s ± zcσs

Estimating the mean of a population based
on a small sample size:
The confidence coefficient for a small sample size
(N <30) is tcwhich can be determinedusingTable 64.1,
page 683, on the website. The confidence limits

of a population mean based on sample data is
given by:

x ± tcs√
(N − 1)

Laplace transforms

Function Laplace transforms

f (t) L{f (t)} = ∫∞
0 e−stf (t)dt

1
1
s

k
k

s

eat 1
s − a

sinat
a

s2 + a2

cosat
s

s2 + a2

t
1
s2

tn(n = positve integer) n!
sn+1

coshat
s

s2 − a2

sinhat
a

s2 − a2

e−at tn
n!

(s + a)n+1

e−at sinωt
ω

(s + a)2+ ω2

e−at cosωt
s + a

(s + a)2+ ω2

e−at coshωt
s + a

(s + a)2− ω2

e−at sinhωt
ω

(s + a)2− ω2
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The Laplace transforms of derivatives:
First derivative

L
{
dy
dx

}

= sL{y}− y(0)

where y(0) is the value of y at x = 0

Second derivative

L
{
dy
dx

}

= s2L{y}− sy(0)− y′(0)

where y ′(0) is the value of
dy
dx
at x = 0

Fourier series

If f (x) is a periodic function of period 2π then its
Fourier series is given by:

f (x) = a0+
∞∑

n=1
(an cosnx+ bn sinnx)

where, for the range −π to +π :

a0 = 1
2π

∫ π

−π

f (x)dx

an = 1
π

∫ π

−π

f (x)cosnx dx (n = 1,2,3, . . .)

bn = 1
π

∫ π

−π

f (x)sinnx dx (n = 1,2,3, . . .)

If f (x) is a periodic function of periodL then its Fourier
series is given by:

f (x) = a0+
∞∑

n=1

{
an cos

(
2πnx
L

)
+ bn sin

( 2πnx
L
)}

where for the range− L

2
to +L

2
:

a0 = 1
L

∫ L/2

−L/2
f (x)dx

an = 2
L

∫ L/2

−L/2
f (x)cos

( 2πnx
L

)
dx (n = 1,2,3, . . .)

bn = 2
L

∫ L/2

−L/2
f (x)sin

( 2πnx
L

)
dx (n = 1,2,3, . . .)

Complex or exponential Fourier series:

f (x) =
∞∑

n=−∞
cnej 2πnx

L

where cn = 1
L

∫ L
2

− L
2

f (x)e−j 2πnx
L dx

For even symmetry,

cn = 2
L

∫ L
2

0
f (x)cos

( 2πnx
L

)
dx

For odd symmetry,

cn = −j
2
L

∫ L
2

0
f (x)sin

( 2πnx
L

)
dx
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Sequence Transform F(z)

1. {δk} = {1, 0, 0, ...} 1 for all values of z

2. {uk} = {1, 1, 1, ...} z

z − 1 for |z | > 1

3. {k} = {0, 1, 2, 3, ...} z

(z − 1)2 for |z | > 1

4.
{
k2
}= {0, 1, 4, 9, ...} z(z + 1)

(z − 1)3 for |z | > 1

5.
{
k3
}= {0, 1, 8, 27, ...} z(z2+ 4z + 1)

(z − 1)4 for |z | > 1

6.
{
ak
}= {1, a, a2, a3, ...

} z

z − a
for |z | > |a |

7.
{
kak
}= {0, a, 2a2, 3a3, ...

} az

(z − a)2
for |z | > |a |

8.
{
k2ak
}= {0, a, 4a2, 9a3, ...

} az(z + a)

(z − a)3
for |z | > |a |

9.
{
e−ak
}= {e−a, e−2a, e−3a, ...

} z

z − e−a

10. sin ak = {sina, sin2a, ...} z sina

z2− 2zcosa + 1
11. cos ak = {cosa, cos2a, ...} z(z − cosa)

z2− 2zcosa + 1

12. e−ak sinbk = {e−a sinb, e−2a sin2b, ...
} ze−a sinb

z2− 2ze−a cosb + e−2a

13. e−ak cosbk = {e−a cosb, e−2a cos2b, ...
} z2− ze−a cosb

z2− 2ze−a cosb + e−2a

These formulae are available for downloading at the website:
www.routledge.com/cw/bird
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Answers

Answers to Practice Exercises

Chapter 1

Exercise 1 (page 4)

1. −16 2. −8
3. 3x− 5y+ 5z 4. 6a2− 13ab+ 3ac− 5b2+ bc
5. x5y4z3, 13

1
2

6. ±41
2

7.
1+ a

b
8. a

11
6 b

1
3 c−

3
2 or

6√a11 3√b√
c3

Exercise 2 (page 5)

1. −5p+ 10q− 6r 2. x2− xy− 2y2
3. 11q− 2p 4. 7ab(3ab− 4)
5. 2xy(y+ 3x+ 4x2) 6.

2
3y

+ 12− 3y

7.
5
y

− 1 8. ab

Exercise 3 (page 6)

1.
1
2

2. −3
3. −1

8
4. 4

5. f= 3F− yL
3

or f= F− yL
3

6. � = gt2

4π2

7. L= mrCR
μ−m 8. r=

√(
x− y
x+ y

)

Exercise 4 (page 8)

1. x= 6, y= −1 2. a= 2, b= −3
3. x= 3, y= 4 4. (a) 4, −8 (b) 5

4
,−3
2

5. x2+ 3x− 10= 0
6. (a) 0.637,−3.137 (b) 2.443, 0.307

Exercise 5 (page 10)

1. 2x− y 2. 3x− 1 3. 5x− 2
4. 7x+ 1 5. x2+ 2xy+ y2 6. 5x+ 4+ 8

x− 1
7. 3x2− 4x+ 3− 2

x+ 2
8. 5x3+ 18x2+ 54x+ 160+ 481

x− 3

Exercise 6 (page 12)

1. (x− 1)(x+ 3)
2. (x+ 1)(x+ 2)(x− 2)
3. (x+ 1)(2x2+ 3x− 7)

4. (x− 1)(x+ 3)(2x− 5)
5. x3+ 4x2+ x− 6= (x− 1)(x+ 2)(x+ 3)
x= 1, x= −2 and x= −3

6. x= 1, x= 2 and x= −1

Exercise 7 (page 13)

1. (a) 6 (b) 9
2. (a) −39 (b)−29
3. (x− 1)(x− 2)(x− 3)
4. x= −1, x= −2 and x= −4
5. a= −3
6. x= 1, x= −2 and x= 1.5

Chapter 2

Exercise 8 (page 18)

1.
2

(x− 3) − 2
(x+ 3) 2.

5
(x+ 1) − 1

(x− 3)

3.
3
x

+ 2
(x− 2) − 4

(x− 1) 4.
7

(x+ 4) − 3
(x+ 1) − 2

(2x− 1)
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5. 1+ 2
(x+ 3) + 6

(x− 2) 6. 1+ 3
(x+ 1) − 2

(x− 3)
7. 3x − 2+ 1

(x − 2) − 5
(x + 2)

Exercise 9 (page 20)

1.
4

(x+ 1) − 7
(x+ 1)2 2.

2
x

+ 1
x2

− 1
(x+ 3)

3.
5

(x− 2) − 10
(x− 2)2 + 4

(x− 2)3

4.
2

(x− 5) − 3
(x+ 2) + 4

(x+ 2)2

Exercise 10 (page 21)

1.
2x+ 3

(x2+ 7) − 1
(x− 2) 2.

1
(x− 4) + 2− x

(x2+ 3)

3.
1
x

+ 3
x2

+ 2− 5x
(x2+ 5) 4.

3
(x− 1) + 2

(x− 1)2 + 1− 2x
(x2+ 8)

5. Proof

Chapter 3

Exercise 11 (page 24)

1. 4 2. 4 3. 3 4. −3
5.

1
3

6. 3 7. 2 8. −2
9. 1

1
2

10.
1
3

11. 2 12. 10,000

13. 100,000 14. 9 15.
1
32

16. 0.01

17.
1
16

18. e3

Exercise 12 (page 26)

1. log6 2. log15 3. log2
4. log3 5. log12 6. log500
7. log100 8. log6 9. log10
10. log1= 0 11. log2
12. log243 or log35 or 5log3
13. log16 or log24 or 4log2
14. log64 or log26 or 6log2
15. 0.5 16. 1.5 17. x= 2.5
18. t= 8 19. b= 2 20. x= 2
21. a= 6 22. x= 5

Exercise 13 (page 27)

1. 1.690 2. 3.170 3. 0.2696 4. 6.058
5. 2.251 6. 3.959 7. 2.542 8. −0.3272
9. 316.2

Chapter 4

Exercise 14 (page 30)

1. (a) 0.1653 (b) 0.4584 (c) 22030
2. (a) 5.0988 (b) 0.064037 (c) 40.446
3. (a) 4.55848 (b) 2.40444 (c) 8.05124
4. (a) 48.04106 (b) 4.07482 (c) −0.08286
5. 2.739
6. 120.7 m

Exercise 15 (page 32)

1. 2.0601 2. (a) 7.389 (b) 0.7408

3. 1− 2x2− 8
3
x3− 2x4

4. 2x1/2+ 2x5/2+ x9/2+ 1
3
x13/2+ 1

12
x17/2+ 1

60
x21/2

Exercise 16 (page 33)

1. 3.95, 2.05
2. 1.65,−1.30
3. (a) 28 cm3 (b) 116 min
4. (a) 70◦C (b) 5 minutes

Exercise 17 (page 36)

1. (a) 0.55547 (b) 0.91374 (c) 8.8941
2. (a) 2.2293 (b) −0.33154 (c) 0.13087
3. 8.166 4. 1.522 5. 1.485
6. −0.4904 7. −0.5822 8. 2.197
9. 816.2 10. 0.8274 11. 1.962
12. 3 13. 4 14. 147.9
15. 4.901 16. 3.095
17. t= eb+a lnD = ebea lnD = ebelnDa i.e. t= ebDa
18. 500

19. W= PV ln
(
U2
U1

)

20. p2 = 348.5 Pa
21. 992 m/s
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Exercise 18 (page 39)

1. (a) 150◦C (b) 100.5◦C
2. 99.21 kPa
3. (a) 29.32 volts (b) 71.31× 10−6 s
4. (a) 2.038× 10−4 (b) 2.293 m
5. (a) 50◦C (b) 55.45 s
6. 30.4 N, 0.807 rad
7. (a) 3.04 A (b) 1.46 s
8. 2.45 mol/cm3
9. (a) 7.07 A (b) 0.966 s
10. (a) 100% (b) 67.03% (c) 1.83%
11. 2.45 mA
12. 142 ms
13. 99.752%
14. 20 min 38 s

Exercise 19 (page 42)

1. a= 76, k= −7× 10−5, p= 76e−7×10−5h, 37.74 cm
2. θ0 = 152, k= −0.05

Chapter 5

Exercise 20 (page 44)

1. (a) t> 2 (b) x< 5 2. (a) x> 3 (b) x ≥ 3
3. (a) t≤ 1 (b) x≤ 6 4. (a) k≥ 3

2
(b) z>

1
2

5. (a) y≥ −4
3
(b) x≥ −1

2

Exercise 21 (page 45)

1. −5< t< 3 2. −5≤ y≤ −1
3. −3

2
< x<

5
2

4. t> 3 and t<
1
3

5. k ≤ −2 and k≥ 4

Exercise 22 (page 46)

1. −4≤ x ≤ 3 2. t> 5 or t< −9
3. −5< z ≤ 14 4. −3< x ≤ −2

Exercise 23 (page 47)

1. z> 4 or z< −4 2. −4< z< 4

3. x ≥ √
3 or x≤ −√

3 4. −2≤ k ≤ 2
5. −5≤ t ≤ 7 6. t ≥ 7 or t≤ −5

7. y ≥ 2 or y ≤ −2 8. k> − 1
2
or k< −2

Exercise 24 (page 48)

1. x> 3 or x< −2 2. −4≤ t ≤ 2
3. −2< x<

1
2

4. y ≥ 5 or y< −4
5. −4≤ z ≤ 0
6.

(
−√

3− 3
)

< x<
(√
3− 3

)

7. t ≥
(√
2+ 11

)
or t ≤

(
2− √

11
)

8. k ≥ 1
2

(
1+ √

13
)
or k ≤ 1

2

(
1− √

13
)

Chapter 6

Exercise 25 (page 52)

1. 68 2. 6.2 3. 85.25 4. 23.5
5. 11th 6. 209 7. 346.5

Exercise 26 (page 53)

1. −0.5 2. 1.5, 3, 4.5 3. 7808 4. 25
5. 8.5, 12, 15.5, 19
6. (a) 120 (b) 26070 (c) 250.5
7. £19840, £223680
8. £29820

Exercise 27 (page 55)

1. 2560 2. 273.25 3. 512, 4096

4. 812.5 5. 8 6. 1
2
3

Exercise 28 (page 56)

1. (a) 3 (b) 2 (c) 59022 2. 10th
3. £1566, 11 years 4. 48.71 M
5. 71.53 g
6. (a) £599.14 (b) 19 years
7. 100, 139, 193, 268, 373, 518, 720, 1000 rev/min

Chapter 7

Exercise 29 (page 60)

1. x7− 7x6y + 21x5y2− 35x4y3+ 35x3y4
−21x2y5+ 7xy6− y7

2. 32a5+ 240a4b + 720a3b2+ 1080a2b3+ 810ab4
+243b5
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Exercise 30 (page 62)

1. a4+ 8a3x+ 24a2x2+ 32ax3+ 16x4
2. 64− 192x+ 240x2− 160x3+ 60x4− 12x5+ x6
3. 16x4− 96x3y+ 216x2y2− 216xy3+ 81y4

4. 32x5+ 160x3+ 320x+ 320
x

+ 160
x3

+ 32
x5

5. p11+ 22p10q+ 210p9q2+ 1320p8q3+ 5280p7q4
6. 34749p8q5

7. 700000a4b4

8. (a) 1.0243 (b) 1.3337
9. (a) 0.86813 (b) 535.51
10. 4373.88

Exercise 31 (page 64)

1. 1+ x+ x2+ x3+ . . ., |x| < 1

2. 1− 2x+ 3x2− 4x3+ . . ., |x| < 1

3.
1
8

[

1− 3
2
x+ 3

2
x2− 5

4
x3+ . . .

]

, |x| < 2

4.
√
2
(

1+ x
4

− x2

32
+ x3

128
− ·· ·

)

, |x| < 2

or −2< x< 2

5. 1− 3
2
x+ 27

8
x2− 135

16
x3, |x| <

1
3

6.
1
64

[

1− 9x+ 189
4
x2+ . . .

]

, |x| <
2
3

7. Proofs

8. 4− 31
15
x

9. (a) 1− x+ x2

2
, |x| < 1 (b) 1− x− 7

2
x2, |x|< 1

3

Exercise 32 (page 66)

1. 0.6% decrease 2. 3.5% decrease
3. (a) 4.5% increase (b) 3.0% increase
4. 2.2% increase 5. 4.5% increase
6. Proof 7. 7.5% decrease
8. 2.5% increase 9. 0.9% too small
10. +7% 11. Proof
12. 5.5%

Chapter 8

Exercise 33 (page 73)

1. sin2x= 2x− 4
3
x3+ 4

15
x5− 8

315
x7

2. cosh3x= 1+ 9
2
x2+ 27

8
x4+ 81

80
x6

3. ln2+ x
2

+ x2

8

4. 1− 8t2+ 32
3
t4− 256

45
t6

5. 1+ 3
2
x2+ 9

8
x4+ 9

16
x6

6. 1+ 2x2+ 10
3
x4

7. 1+ 2θ − 5
2
θ2

8. x2− 1
3
x4+ 2

45
x6

9. 81+ 216t+ 216t2+ 96t3+ 16t4

Exercise 34 (page 75)

1. 1.784 2. 0.88 3. 0.53 4. 0.061

Exercise 35 (page 77)

1.
1
9

2. 1 3. 1 4. −1 5.
1
3

6.
1
2

7.
1
3

8. 1 9.
1
2

Chapter 9

Exercise 36 (page 83)

1. 1.19 2. 1.146 3. 1.20 4. 3.146 5. 1.849

Exercise 37 (page 86)

1. −3.36, 1.69 2. −2.686
3. −1.53, 1.68 4. −12.01, 1.000

Exercise 38 (page 88)

1. −2.742, 4.742 2. 2.313
3. −1.721, 2.648 4. −1.386, 1.491
5. 1.147 6. −1.693,−0.846, 0.744
7. 2.05 8. See above answers
9. 0.0399 10. 4.19
11. 2.9143

Chapter 10

Exercise 39 (page 92)

1. (a) 610 (b) 1110 (c) 1410 (d) 910
2. (a) 2110 (b) 2510 (c) 4510 (d) 5110
3. (a) 4210 (b) 5610 (c) 6510 (d) 18410
4. (a) 0.812510 (b) 0.7812510 (c) 0.2187510
(d) 0.3437510
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5. (a) 26.7510 (b) 23.37510 (c) 53.437510
(d) 213.7187510

Exercise 40 (page 93)

1. (a) 1012 (b) 11112 (c) 100112 (d) 111012
2. (a) 111112 (b) 1010102 (c) 1110012
(d) 1111112

3. (a) 1011112 (b) 1111002 (c) 10010012
(d) 10101002

4. (a) 0.012 (b) 0.001112 (c) 0.010012
(d) 0.100112

5. (a) 101111.011012 (b) 11110.11012
(c) 110101.111012
(d) 111101.101012

Exercise 41 (page 94)

1. 101 2. 1011 3. 10100
4. 101100 5. 1001000 6. 100001010
7. 1010110111 8. 1001111101 9. 111100
10. 110111 11. 110011 12. 1101110

Exercise 42 (page 95)

1. (a) 1010101112 (b) 10001111002
(c) 100111100012

2. (a) 0.011112 (b) 0.10112 (c) 0.101112
3. (a) 11110111.000112 (b) 1000000010.01112
(c) 11010110100.110012

4. (a) 7.437510 (b) 41.2510 (c) 7386.187510

Exercise 43 (page 98)

1. 23110 2. 4410 3. 15210 4. 75310
5. 3616 6. C816 7. 5B16 8. EE16

Exercise 44 (page 99)

1. D716 2. EA16
3. 8B16 4. A516
5. 1101112 6. 111011012
7. 100111112 8. 1010001000012

Chapter 11

Exercise 45 (page 104)

1. Z = C.
(
A.B + A.B

)

A B C A ·B A A ·B A ·B + A ·B Z =
C · (A ·B + A ·B)

0 0 0 0 1 0 0 0

0 0 1 0 1 0 0 0

0 1 0 0 1 1 1 0

0 1 1 0 1 1 1 1

1 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0

1 1 0 1 0 0 1 0

1 1 1 1 0 0 1 1

2. Z = C.
(
A.B + A

)

A B C A B A ·B A ·B+A Z=C · (A ·B+A)

0 0 0 1 1 0 1 0

0 0 1 1 1 0 1 1

0 1 0 1 0 0 1 0

0 1 1 1 0 0 1 1

1 0 0 0 1 1 1 0

1 0 1 0 1 1 1 1

1 1 0 0 0 0 0 0

1 1 1 0 0 0 0 0

3. Z = A.B.
(
B.C + B.C + A.B

)

A B C A B C B·C B·C A·B (
B·C + Z= A·B·(B·C+

B·C+A·B) B·C +A ·B)

0 0 0 1 1 1 0 0 0 0 0

0 0 1 1 1 0 0 1 0 1 0

0 1 0 1 0 1 1 0 1 1 0

0 1 1 1 0 0 0 0 1 1 0

1 0 0 0 1 1 0 0 0 0 0

1 0 1 0 1 0 0 1 0 1 0

1 1 0 0 0 1 1 0 0 1 1

1 1 1 0 0 0 0 0 0 0 0
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4. Z = C.
(
B.C.A+ A.(B + C)

)

A B C A C B ·C ·A B+C A ·(B+C) B ·C ·A+ Z

A · (B+C)

0 0 0 1 1 0 1 0 0 0

0 0 1 1 0 0 0 0 0 0

0 1 0 1 1 0 1 0 0 0

0 1 1 1 0 1 1 0 1 1

1 0 0 0 1 0 1 1 1 0

1 0 1 0 0 0 0 0 0 0

1 1 0 0 1 0 1 1 1 0

1 1 1 0 0 0 1 1 1 1

5. C

CB

Input Output

A

A

A

B

6.
Input Output

A

B

C

A B C

7.
OutputInput

C

B

A

BA

A

C

8. A · B · C + A · B · C

C

B C

A

A

B

OutputInput

9. A.B.C + A.B.C + A.B.C

C

C

C

A

A

A B

B

B

Input Output

10. A.B.C + A.B.C + A.B.C + A.B.C

C

C

C

CA

A

A

A

B

B

B

B

Input Output

Exercise 46 (page 106)

1. P 2. P + P.Q

3. G 4. F

5. P.Q 6. H.
(
F+F.G)

7. F.G.H + G.H 8. Q.R + P .Q.R

9. G 10. F.H + G.H

11. P.R + P .R 12. P + R.Q

Exercise 47 (page 108)

1. A.B 2. A + B + C 3. A.B + A.B.C

4. 1 5. P .
(
Q+ R

)

Exercise 48 (page 112)

1. Y 2. X+ Y
3. P .Q 4. B + A.C + A.C

5. R.
(
P + Q

)
6. P.(Q+ R) + P .Q.R

7. A.C.
(
B +D) 8. B.C.

(
A+D)

9. D.
(
A + B.C

)
10. A.D+ A.B.C.D

11. A.C + A.C.D+ B.D.
(
A+ C

)
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Exercise 49 (page 115)

1. A

1
&

B

C

Z�A�B · C

2. A

B

C

&

&
1 Z�A · B�B · C

3. A

B

C

&

&
1 Z�A · B · C�A · B · C

4. A

&

1

1

Z�(A�B) · (C�D)
C

B

D

5. Z1 = A.B + C

1 Z1�A · B�C&
A

B

C

6. Z2 = A.B + B.C

1 Z2�A · B�B · C&

&C

A

B

7. Z3 = A.C + B

1 Z3�A · C�B&

A

C

B

8. Z = P + Q

1

Q

P Z�P�Q

9. R.
(
P + Q

)

1 &Q

P

R

Z�R · (P�Q)

10.Q.
(
P + R

)

1
&

Q

P

R

Z�Q · (P�R )

11. D.
(
A.C + B

)

1
A

B

C

D

&

& Z�D · (A · C�B )

12. P .
(
Q+ R

)

1

& Z�P · (Q�R )
P

Q

R

Exercise 50 (page 118)

1. &
&

&

A

B

C

Z A B · C

2. & &

&

&

&

A

B

C

Z A · B B · C

3. &

&

& &

& &

A

B

C

Z5A · B · C1A · B · C

4.
1

1

1 1

1

C

D

A

B
Z (A B) · (C D)

5.
1 1

1

11

1 1 1

A

B

C

D

Z A · B B · C C · D

Download more at Learnclax.com



Answers to Practice Exercises 863

6. 1
1

1

1 1
1 1 1

P

Q

R

Z P · Q P · (Q R)

7.

1

&P

Q

R

Z P · (Q R)

8.

1

&A

B

C

D

Z A · (B C D)

9. 1

1

1

1

1

1 1 1
A

B

C

Z
A · (B C ) B · C

10.
&

&
& & &

A

B

C

Z A · (B C)

Chapter 12

Exercise 51 (page 125)

1. 24.11 mm 2. (a) 27.20 cm each (b) 45 ◦

3. 20.81 km 4. 3.35 m, 10 cm
5. 132.7 km 6. 2.94 mm
7. 24 mm

Exercise 52 (page 127)

1. sinA = 3
5
, cosA = 4

5
, tanA = 3

4
, sinB = 4

5
,

cosB = 3
5
, tanB = 4

3
2. sinA = 8

17
, tanA = 8

15
3. (a)

15
17

(b)
15
17

(c)
8
15

4. (a) 9.434 (b) −0.625 (c) 32◦

Exercise 53 (page 130)

1. (a) 0.4540 (b) 0.1321 (c) −0.8399
2. (a) −0.5592 (b) 0.9307 (c) 0.2447
3. (a) −0.7002 (b) −1.1671 (c) 1.1612
4. (a) 3.4203 (b) 3.5313 (c) −1.0974
5. (a) −1.8361 (b) 3.7139 (c) −1.3421
6. (a) 0.3443 (b) −1.8510 (c) −1.2519
7. (a) 0.8660 (b) −0.1100 (c) 0.5865
8. (a) 1.0824 (b) 5.5675 (c) −1.7083
9. 13.54◦, 13◦32′, 0.236 rad
10. 34.20◦, 34◦12′, 0.597 rad
11. 39.03◦, 39◦2′, 0.681 rad
12. 51.92◦, 51◦55′, 0.906 rad
13. 23.69◦, 23◦41′, 0.413 rad
14. 27.01◦, 27◦1′, 0.471 rad
15. 29.05◦

16. 20◦21′

17. 1.097
18. 5.805
19. −5.325
20. 0.7199
21. 21◦42′

22. 1.8258, 1.1952, 0.6546
23. 0.07448
24. 12.85
25. −1.710
26. (a) −0.8192 (b) −1.8040 (c) 0.6528

27. (a) −1.6616 (b) −0.32492 (c) 2.5985

Exercise 54 (page 132)

1. BC = 3.50 cm, AB = 6.10 cm, ∠B = 55◦

2. FE = 5 cm, ∠E = 53.13◦, ∠F= 36.87◦

3. GH = 9.841 mm,GI = 11.32 mm, ∠H = 49◦

4. KL = 5.43 cm, JL= 8.62 cm, ∠J = 39◦,
area= 18.19 cm2

5. MN = 28.86 mm, NO = 13.82 mm, ∠O = 64◦25′,
area= 199.4 mm2
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6. PR = 7.934 m, ∠Q = 65.06◦, ∠R = 24.94◦,
area= 14.64 m2

7. 6.54 m

Exercise 55 (page 134)

1. 48 m 2. 110.1 m 3. 53.0 m
4. 9.50 m 5. 107.8 m 6. 9.43 m, 10.56 m
7. 60 m

Exercise 56 (page 136)

1. C = 83◦, a= 14.1 mm, c= 28.9 mm,
area= 189 mm2

2. A = 52◦2′, c= 7.568 cm, a= 7.152 cm,
area= 25.65 cm2

3. D= 19.80◦, E = 134.20◦, e = 36.0 cm,
area= 134 cm2

4. E = 49◦0′, F= 26◦38′, f= 15.09 mm,
area= 185.6 mm2

5. J = 44◦29′, L = 99◦31′, l = 5.420 cm,
area= 6.133 cm2
OR J = 135◦31′, L= 8◦29′, l = 0.811 cm,
area= 0.917 cm2

6. K = 47◦8′, J = 97◦52′, j = 62.2 mm,
area= 820.2 mm2
OR K = 132◦52′, J = 12◦8′, j = 13.19 mm,
area= 174.0 mm2

Exercise 57 (page 137)

1. p= 13.2 cm,Q = 47.34◦, R = 78.66◦,
area= 77.7 cm2

2. p= 6.127 m,Q = 30.83◦, R = 44.17◦,
area= 6.938 m2

3. X= 83.33◦, Y= 52.62◦, Z = 44.05◦,
area= 27.8 cm2

4. X = 29.77◦, Y= 53.50◦, Z = 96.73◦,
area= 355 mm2

Exercise 58 (page 139)

1. 193 km
2. (a) 122.6 m (b) 94.80◦, 40.66◦, 44.54◦

3. (a) 11.4 m (b) 17.55◦ 4. 163.4 m
5. BF = 3.9 m, EB = 4.0 m 6. 6.35 m, 5.37 m

Exercise 59 (page 141)

1. 32.48 A, 14.31◦ 2. 80.42◦, 59.38◦, 40.20◦

3. x= 69.3 mm, y= 142 mm 4. 130◦

5. 40.25 cm, 126.05◦ 6. 19.8
7. 36.2 m 8. 13.95◦, 829.9 km/h
9. 13.66 mm

Chapter 13

Exercise 60 (page 146)

1. (5.83, 59.04◦) or (5.83, 1.03 rad)
2. (6.61, 20.82◦) or (6.61, 0.36 rad)
3. (4.47, 116.57◦) or (4.47, 2.03 rad)
4. (6.55, 145.58◦) or (6.55, 2.54 rad)
5. (7.62, 203.20◦) or (7.62, 3.55 rad)
6. (4.33, 236.31◦) or (4.33, 4.12 rad)
7. (5.83, 329.04◦) or (5.83, 5.74 rad)
8. (15.68, 307.75◦) or (15.68, 5.37 rad)

Exercise 61 (page 147)

1. (1.294, 4.830) 2. (1.917, 3.960)
3. (−5.362, 4.500) 4. (−2.884, 2.154)
5. (−9.353,−5.400) 6. (−2.615,−3.027)
7. (0.750,−1.299) 8. (4.252,−4.233)
9. (a) 40∠18◦, 40∠90◦, 40∠162◦, 40∠234◦, 40∠306◦

(b) (38.04, 12.36), (0, 40), (−38.04, 12.36),
(−23.51,−32.36), (23.51,−32.36)

(c) 47.02 mm

Chapter 14

Exercise 62 (page 150)

1. 259.5 mm 2. 47.68 cm 3. 38.73 cm
4. 12730 km 5. 97.13 mm
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Exercise 63 (page 152)

1. (a)
π

6
(b)

5π
12

(c)
5π
4

2. (a) 0.838 (b) 1.481 (c) 4.054
3. (a) 210◦ (b) 80◦ (c) 105◦

4. (a) 0◦43′ (b) 154◦8′ (c) 414◦53′

5. 104.72 rad/s

Exercise 64 (page 154)

1. 113.1 cm2 2. 2376 mm2

3. 1790 mm2 4. 802 mm2

5. 1709 mm2 6. 1269 m2

7. 1548 m2

8. 17.80 cm, 74.07 cm2

9. (a) 59.86 mm (b) 197.8 mm
10. 26.2 cm
11. 8.67 cm, 54.48 cm 12. 82.5 ◦

13. 748
14. (a) 0.698 rad (b) 804.2 m2

15. (a) 396 mm2 (b) 42.24%
16. 701.8 mm 17. 7.74 mm

Exercise 65 (page 156)

1. (a) 6 (b) (−3, 1)
2. Centre at (3, −2), radius 4
3. Circle, centre (0, 1), radius 5
4. Circle, centre (0, 0), radius 6

Exercise 66 (page 157)

1. ω = 90 rad/s, v = 13.5 m/s
2. v = 10 m/s, ω = 40 rad/s
3. (a) 75 rad/s, 716.2 rev/min (b) 1074 revs

Exercise 67 (page 159)

1. 2 N 2. 988 N, 5.14 km/h 3. 1.49 m/s2

Chapter 15

Exercise 68 (page 165)

1. 227.06◦ and 312.94◦ 2. 23.27◦ and 156.73◦

3. 122.26◦ and 302.26◦ 4. t= 122.11◦ and 237.89◦

5. x= 64.42◦ and 295.58◦ 6. θ = 39.74◦ and 219.74◦

Exercise 69 (page 171)

1. 1, 120◦ 2. 2, 144◦ 3. 3, 90◦

4. 3, 720◦ 5. 3.5, 960◦ 6. 6, 360◦

7. 4, 180◦ 8. 2, 90◦ 9. 5, 120◦

Exercise 70 (page 174)

1. (a) 40 mA (b) 25 Hz (c) 0.04 s or 40 ms
(d) 0.29 rad (or 16.62◦) leading 40sin50πt

2. (a) 75 cm (b) 6.37 Hz (c) 0.157 s
(d) 0.54 rad (or 30.94◦) lagging 75sin40t

3. (a) 300 V (b) 100 Hz (c) 0.01 s or 10 ms
(d) 0.412 rad (or 23.61◦) lagging 300sin200πt

4. (a) v = 120sin100πt volts
(b) v = 120sin(100πt+ 0.43) volts

5. i = 20sin
(
80πt− π

6

)
A or

i = 20sin(80πt− 0.524) A
6. 3.2sin(100πt+ 0.488)m
7. (a) 5 A, 50 Hz, 20 ms, 24.75◦lagging (b) −2.093 A
(c) 4.363 A (d) 6.375 ms (e) 3.423 ms

Exercise 71 (page 179)

1. (a) i = (70.71sin628.3t+ 16.97sin1885t)A
2. (a) v = 300sin314.2t+ 90sin(628.3t−π/2)

+30sin(1256.6t+π/3) V
3. Sketch

4. i = (16sin2π103t+ 3.2sin6π103t+ 1.6sinπ104t)A
5. (a) 60 Hz, 180 Hz, 300 Hz (b) 40% (c) 10%
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Chapter 16

Exercise 72 (page 182)

1. (a) 0.6846 (b) 4.376 2. (a) 1.271 (b) 5.910
3. (a) 0.5717 (b) 0.9478 4. (a) 1.754 (b) 0.08849
5. (a) 0.9285 (b) 0.1859 6. (a) 2.398 (b) 1.051
7. 56.38 8. 30.71
9. 5.042

Exercise 73 (page 186)

1–4. Proofs 5. P = 2,Q = −4 6. A = 9, B = 1

Exercise 74 (page 188)

1. (a) 0.8814 (b) −1.6209
2. (a) ±1.2384 (b) ±0.9624
3. (a) −0.9962 (b) 1.0986
4. (a) ±2.1272 (b) ±0.4947
5. (a) 0.6442 (b) 0.9832
6. (a) 0.4162 (b) −0.6176
7. −0.8959
8. 0.6389 or −2.2484
9. 0.2554
10. (a) 67.30 (b) ±26.42

Exercise 75 (page 189)

1. (a) 2.3524 (b) 1.3374
2. (a) 0.5211 (b) 3.6269

3. (a) 3x+ 9
2
x3+ 81

40
x5 (b) 1+ 2x2+ 2

3
x4

4 – 5. Proofs

Chapter 17

Exercise 76 (page 192)

1 – 6. Proofs

Exercise 77 (page 194)

1. θ = 34.85◦ or 145.15◦ 2. A = 213.06◦ or 326.94◦

3. t= 66.75◦ or 246.75◦ 4. 60◦, 300◦

5. 59◦, 239◦ 6. 41.81◦, 138.19◦

7. ±131.81◦ 8. 39.81◦, −140.19◦

9. −30◦, −150◦ 10. 33.69◦, 213.69◦

11. 101.31◦, 281.31◦

Exercise 78 (page 195)

1. y= 50.77◦, 129.23◦, 230.77◦ or 309.23◦

2. θ = 60◦, 120◦, 240◦ or 300◦

3. θ = 60◦, 120◦, 240◦ or 300◦

4. D= 90◦ or 270◦

5. θ = 32.31◦, 147.69◦, 212.31◦ or 327.69◦

Exercise 79 (page 195)

1. A = 19.47◦, 160.53◦, 203.58◦ or 336.42◦

2. θ = 51.34◦, 123.69◦, 231.34◦ or 303.69◦

3. t= 14.48◦, 165.52◦, 221.81◦ or 318.19◦

4. θ = 60◦ or 300◦

Exercise 80 (page 196)

1. θ = 90◦, 210◦, 330◦

2. t= 190.10◦, 349.90◦

3. θ = 38.67◦, 321.33◦

4. θ = 0◦, 60◦, 300◦, 360◦

5. θ = 48.19◦, 138.59◦, 221.41◦ or 311.81◦

6. x= 52.94◦ or 307.06◦

7. A = 90◦

8. t= 107.83◦ or 252.17◦

9. a= 27.83◦ or 152.17◦

10. β = 60.17◦, 161.02◦, 240.17◦ or 341.02◦

11. θ = 51.83◦, 308.17◦

12. θ = 30◦, 150◦

Chapter 18

Exercise 81 (page 199)

1 – 5. Proofs

Exercise 82 (page 201)

1. 1− tanh2 θ = sech2θ
2. cosh(θ + φ) = coshθ coshφ + sinhθ sinhφ

3. sinh(θ −φ) = sinhθ coshφ − coshθ sinhφ

4. tanh2θ = 2 tanhθ
1+ tanh2 θ

5. coshθ sinhφ = 1
2
[sinh(θ + φ) − sinh(θ − φ)]

6. sinh3 θ = 1
4
sinh3θ − 3

4
sinhθ

7. coth2 θ
(
1− sech2θ) = 1
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Chapter 19

Exercise 83 (page 204)

1. (a) sin58◦ (b) sin4t 2. (a) cos104◦ (b) cos
π

12
3. Proof 4. Proof

5. (a) 0.3136 (b) 0.9495 (c) −2.4678
6. 64.72◦ or 244.72◦ 7. 67.52◦ or 247.52◦

Exercise 84 (page 208)

1. 9.434 sin(ωt+ 1.012) 2. 5sin(ωt− 0.644)
3. 8.062sin(ωt+ 2.622) 4. 6.708 sin(ωt− 2.034)
5. (a) 74.44◦ or 338.70◦ (b) 64.69◦ or 189.05◦

6. (a) 72.74◦ or 354.64◦ (b) 11.15◦ or 311.98◦

7. (a) 90◦ or 343.74◦ (b) 0◦ or 53.14◦

8. (a) 82.9◦ or 296◦

(b) 32.36◦, 97◦, 152.36◦, 217◦, 272.36◦ or 337◦

9. 8.13sin(3θ + 2.584) 10. x= 4.0sin(ωt+ 0.927)m
11. 9.434sin(ωt+ 2.583) V
12.x= 7.07sin

(
2t+ π

4

)
cm

Exercise 85 (page 209)

1.
V 2

2R
(1+ cos2t )

2. Proofs

3. cos3θ = 4cos3 θ − 3cosθ
4. −90◦, 30◦, 150◦

5. −160.47◦, −90◦, −19.47◦, 90◦

6. −150◦, −90◦, −30◦, 90◦

7. −90◦

8. 45◦, −135◦

Exercise 86 (page 211)

1.
1
2
[sin9t+ sin5t] 2.

1
2
[sin10x− sin6x]

3. cos4t− cos10t 4. 2[cos4θ + cos2θ ]

5.
3
2

[
sin

π

2
+ sin π

6

]
6. −cos4t

4
− cos2t

2
+ c

7. −20
21

8. 30◦, 90◦ and 150◦

Exercise 87 (page 212)

1. 2sin2xcosx 2. cos8θ sin θ

3. 2cos4tcos t 4. − 1
4
sin3tsin2t

5. cos
7π
24
cos

π

24
6. Proofs

7. 22.5◦, 45◦, 67.5◦, 112.5◦, 135◦, 157.5◦

8. 0◦, 45◦, 135◦, 180◦ 9. 21.47◦ or 158.53◦

10. 0◦, 60◦, 90◦, 120◦, 180◦, 240◦, 270◦, 300◦, 360◦

Chapter 20

Exercise 88 (page 226)

y � 3x �5

1 2 3

10

5

0 x

y

�5

1.

y � �3x �4

1 2 3

4

2

0 x

y

�2

2.

y � x 2�3

�1�2 1 2

8

6

4

2

0 x

y
3.
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y �(x �3)2

2 4 6

8

4

0 x

y
4.

2 4 8

10

15

5.

5

0 x

y

6

y �(x�4) 2�2

6.

1

0.50

0.25

0 x

y

y �x �x 2

7.

y �x 3�2

�1�2 1 2

10

�10

5

�5

0 x

y

8.

y � 1� 2 cos 3x
3

1

2

�1

0 x

y

p
2

3p
2

p 2p

9.

6

2

4

0 x

y

�
2

y � 3 � 2 sin(x �   )p
4

3�
2

� 2�

10.

y � 2 ln x

3

1

2

�1

0 1 2 3 4 x

y

�2

Exercise 89 (page 229)

1. (a) even (b) odd (c) neither (d) even
2. (a) odd (b) even (c) odd (d) neither
3. (a) even (b) odd
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Exercise 90 (page 231)

1. f −1(x) = x− 1 2. f −1(x) = 1
5
(x+ 1)

3. f −1(x) = 3√x− 1 4. f −1(x) = 1
x− 2

5. −π

2
or −1.5708 rad 6.

π

3
or 1.0472 rad

7.
π

4
or 0.7854 rad 8. 0.4636 rad

9. 0.4115 rad 10. 0.8411 rad

11.
π

4
or 0.7854 rad 12. 0.257

13. 1.533

Exercise 91 (page 236)

1. y= 1, x= −1
2. x= 3, y= 1 and y= −1
3. x= −1, x= −2 and y= 1
4. x= 0, y= x and y= −x
5. y= 4, y= −4 and x= 0
6. x= −1, y= x− 2 (see Fig. 20.40 on page 870)
7. x= 0, y= 0, y= x (see Fig. 20.41 on page 870)

Exercise 92 (page 240)

1. (a) Parabola with minimum value at (−1.5,−5)
and passing through (0, 1.75)

(b) Parabola with maximum value at (2, 70)
and passing through (0, 50)

2. Circle, centre (0, 0), radius 4 units
3. Parabola, symmetrical about x-axis, vertex
at (0, 0)

4. Hyperbola, symmetrical about x- and y- axes,
distance between vertices 8 units along x-axis

5. Ellipse, centre (0, 0), major axis 10 units along
y-axis, minor axis 2

√
10 units along x-axis

6. Hyperbola, symmetrical about x- and y- axes,
distance between vertices 6 units along x-axis

7. Rectangular hyperbola, lying in first and third
quadrants only

8. Ellipse, centre (0, 0), major axis 4 units along
x-axis, minor axis 2

√
2 units along y-axis

9. Circle, centre (2, −5), radius 2 units
10. Ellipse, centre (0, 0), major axis 2

√
3 units

along y-axis, minor axis 2 units along x-axis
11. Hyperbola, symmetrical about x- and y- axes,

vertices 2 units apart along x-axis
12. Circle, centre (0, 0), radius 3 units

13. Rectangular hyperbola, lying in first and third
quadrants, symmetrical about x- and y- axes

14. Parabola, vertex at (0, 0), symmetrical about
the x-axis

15. Ellipse, centre (0, 0), major axis 2
√
8 units along

y-axis, minor axis 4 units along x-axis

Chapter 21

Exercise 93 (page 243)

1. 4.5 square units 2. 54.7 square units
3. 63.33 m 4. 4.70 ha
5. 143 m2

Exercise 94 (page 245)

1. 42.59 m3 2. 147 m3 3. 20.42 m3

Exercise 95 (page 248)

1. (a) 2 A (b) 50 V (c) 2.5 A
2. (a) 2.5 mV (b) 3 A
3. 0.093 As, 3.1 A
4. (a) 31.83 V (b) 0
5. 49.13 cm2, 368.5 kPa

Chapter 22

Exercise 96 (page 255)

1. ±j5 2. x= 1± j 3. x= 2± j

4. x= 3± j 5. x= 0.5± j0.5 6. x= 2± j2
7. x= 0.2± j0.2

8. x= −3
4

± j

√
23
4
or x= −0.750± j1.199

9. x= 5
8

± j

√
87
8
or x= 0.625± j1.166

10. (a) 1 (b) −j (c) −j2

Exercise 97 (page 258)

1. (a) 8+ j (b) −5+ j8
2. (a) 3− j4 (b) 2+ j

3. (a) 5 (b) 1− j2 (c) j5 (d) 16+ j3
(e) 5 (f) 3+ j4

4. (a) 7− j4 (b) −2− j6
5. (a) 10+ j5 (b) 13− j 13
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Figure 20.40
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6. (a) −13− j2 (b) −35+ j20

7. (a) − 2
25

+ j
11
25

(b) −19
85

+ j
43
85

8. (a)
3
26

+ j
41
26

(b)
45
26

− j
9
26

9. (a) −j (b)
1
2

− j
1
2

10. Proof

Exercise 98 (page 259)

1. a= 8, b= −1 2. x= 3
2
, y= −1

2
3. a= −5, b= −12 4. x= 3, y= 1
5. 10+ j13.75

Exercise 99 (page 261)

1. (a) 4.472, 63.43◦ (b) 5.385,−158.20◦

(c) 2.236, 63.43◦

2. (a)
√
13∠56.31◦ (b) 4∠180◦ (c)

√
37∠170.54◦

3. (a) 3∠− 90◦ (b)
√
125∠100.30◦ (c)

√
2∠− 135◦

4. (a) 4.330+ j2.500 (b) 1.500+ j2.598

(c) 4.950+ j4.950

5. (a) −3.441+ j4.915 (b) −4.000+ j0

(c) −1.750− j3.031

6. (a) 45∠65◦ (b) 10.56∠44◦

7. (a) 3.2∠42◦ (b) 2∠150◦

8. (a) 6.986∠26.79◦ (b) 7.190∠85.77◦

Exercise 100 (page 264)

1. (a) R = 3�, L= 25.5 mH
(b) R = 2�, C = 1061μF
(c) R = 0, L= 44.56 mH
(d) R = 4�, C = 459.4μF

2. 15.76 A, 23.20◦ lagging

3. 27.25 A, 3.37◦ lagging

4. 14.42 A, 43.85◦ lagging, 0.721

5. 14.6 A, 2.51◦ leading

6. 8.394 N, 208.68◦ from force A

7. (10+ j20)�, 22.36∠63.43◦�

8. ±mh

2π
9. (a) 922 km/h at 77.47◦ (b) 922 km/h at −102.53◦

10. (a) 3.770∠8.17◦ (b) 1.488∠100.37◦

11. Proof

12. 353.6∠− 45◦

13. 275∠− 36.87◦ mA

Chapter 23

Exercise 101 (page 268)

1. (a) 7.594∠75◦ (b) 125∠20.61◦

2. (a) 81∠164◦, −77.86+ j22.33

(b) 55.90∠− 47.18◦, 38− j41

3.
√
10∠− 18.43◦, 3162∠− 129◦

4. 476.4∠119.42◦, −234+ j415

5. 45530∠12.78◦, 44400+ j10 070

6. 2809∠63.78◦, 1241+ j2520

7.
(
38.27× 106)∠176.15◦, 106(−38.18+ j2.570)

Exercise 102 (page 269)

1. (a) ±(1.099+ j0.455) (b) ±(0.707+ j0.707)

2. (a) ±(2− j) (b) ±(0.786− j1.272)

3. (a) ±(2.291+ j1.323) (b) ±(−2.449+ j2.449)

4. Modulus 1.710, arguments 17.71◦, 137.71◦

and 257.71◦

5. Modulus 1.223, arguments 38.36◦, 128.36◦, 218.36◦

and 308.36◦

6. Modulus 2.795, arguments 109.90 ◦ and 289.90◦

7. Modulus 0.3420, arguments 24.58 ◦, 144.58◦
and 264.58◦

8. Z0 = 390.2∠− 10.43◦�, γ = 0.1029∠61.92◦

Exercise 103 (page 271)

1. 5.83ej0.54

2. 4.89ej2.11
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3. −1.50+ j3.27
4. 34.79+ j20.09
5. −4.52− j3.38
6. (a) ln7+ j2.1 (b) 2.86∠47.18◦ or 2.86∠0.82 rad
7. 3.51∠− 0.61 or 3.51∠− 34.72◦

8. (a) 2.06∠35.25◦ or 2.06∠0.615 rad
(b) 4.11∠66.96◦ or 4.11∠1.17 rad

9. Ae
−

ht

2m cos

(√
4mf − h2

2m− a

)

t

Exercise 104 (page 274)

1. (a) x2+ y2 = 4
(b) a circle, centre (0, 0) and radius 2

2. (a) x2+ y2 = 25
(b) a circle, centre (0, 0) and radius 5

3. (a) y= √
3 (x− 2) (b) a straight line

4. (a) y= 1√
3

(x+ 1) (b) a straight line

5. (a) x2− 4x− 12+ y2 = 0 or (x− 2)2+ y2 = 42
(b) a circle, centre (2, 0) and radius 4

6. (a) x2+ 6x− 16+ y2 = 0 or (x+ 3)2+ y2 = 52
(b) a circle, centre (−3, 0) and radius 5

7. (a) 2x2− 5x+ 2+ 2y2 = 0

or
(

x− 5
4

)2
+ y2 =

(
3
4

)2

(b) a circle, centre
(
5
4
,0
)

and radius
3
4

8. (a) x2+ 2x− 1+ y2 = 0 or (x+ 1)2+ y2 = 2
(b) a circle, centre (−1, 0) and radius √

2

9. (a) x2− x− y+ y2 = 0

or
(

x− 1
2

)2
+
(

y− 1
2

)2
= 1
2

(b) a circle, centre
(
1
2
,
1
2

)

and radius
1√
2

10. (a) x2+ 2x+ 2y+ y2 = 0 or (x+ 1)2+ (y+ 1)2 = 2
(b) a circle, centre (−1,−1) and radius √

2

11. (a) y= 2x + 1.5 (b) a straight line

12. (a) y= 2x− 3 (b) a straight line

13. (a) x= 1
2
(b) a straight line

Chapter 24

Exercise 105 (page 281)

1.
(

8 1
−5 13

)

2.

⎛

⎝
7 −1 8
3 1 7
4 7 −2

⎞

⎠

3.
( −2 −3

−3 1

)

4.
(

9.3 −6.4
−7.5 16.9

)

5.
(

45 7
−26 71

)

6.

⎛

⎝
4.6 −5.6 −7.6
17.4 −16.2 28.6

−14.2 0.4 17.2

⎞

⎠

7.
( −11

43

)

8.
(

16 0
−27 34

)

9.
( −6.4 26.1
22.7 −56.9

)

10.

⎛

⎝
135
−52
−85

⎞

⎠

11.

⎛

⎝
5
12
1

6
−3
0

⎞

⎠

12.

⎛

⎝
55.4 3.4 10.1

−12.6 10.4 −20.4
−16.9 25.0 37.9

⎞

⎠

13. A × C =
( −6.4 26.1
22.7 −56.9

)

C × A =
( −33.5 53.1

23.1 −29.8
)

Hence, A × C �= C × A

Exercise 106 (page 282)
1. 17 2. −3 3. −13.43
4. −5+ j3
5. (−19.75+ j19.79) or 27.96∠134.94 ◦

6. x= 6 or x= −1

Exercise 107 (page 283)

1.

⎛

⎜
⎜
⎝

7
17

1
17

4
17

3
17

⎞

⎟
⎟
⎠ 2.

⎛

⎜
⎜
⎝

7
5
7

8
4
7

−42
7

−63
7

⎞

⎟
⎟
⎠

3.
(
0.290 0.551
0.186 0.097

)
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Exercise 108 (page 284)

1.

⎛

⎝
−16 8 −34
−14 −46 63
−24 12 2

⎞

⎠

2.

⎛

⎝
−16 −8 −34
14 −46 −63

−24 −12 2

⎞

⎠

3. −212 4. −328 5. −242.83
6. −2− j

7. 26.94∠− 139.52◦ or (−20.49− j17.49)
8. (a) λ = 3 or 4 (b) λ = 1 or 2 or 3
Exercise 109 (page 285)

1.

⎛

⎝
4 −2 5

−7 4 7
6 0 −4

⎞

⎠

2.

⎛

⎜
⎜
⎜
⎝

3 5 −1
6 −2

3
0

1
2

7
3
5

⎞

⎟
⎟
⎟
⎠

3.

⎛

⎝
−16 14 −24
−8 −46 −12

−34 −63 2

⎞

⎠

4.

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−2
5

−33
5

42
1
3

−10 2
3
10

−181
2

2
3

−6 −32

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

5. − 1
212

⎛

⎝
−16 14 −24
−8 −46 −12

−34 −63 2

⎞

⎠

6. − 15
923

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−2
5

−33
5

42
1
3

−10 2
3
10

−181
2

−2
3

−6 −32

⎞

⎟
⎟
⎟
⎟
⎟
⎠

Chapter 25

Exercise 110 (page 289)
1. x= 4, y= −3
2. p= 1.2, q= −3.4
3. x= 1, y= −1, z= 2
4. a= 2.5, b= 3.5, c= 6.5
5. p= 4.1, q= −1.9, r= −2.7

6. I1 = 2, I2 = −3
7. s = 2, v = −3, a= 4
8. ẍ = 0.5, ẋ = 0.77, x= 1.4

Exercise 111 (page 293)

1. x= −1.2, y= 2.8
2. m= −6.4, n= −4.9
3. x= 1, y= 2, z= −1
4. p= 1.5, q= 4.5, r= 0.5

5. x= 7
20
, y= 17

40
, z= − 5

24
6. F1 = 1.5, F2 = −4.5
7. I1 = 10.77∠19.23◦A, I2 = 10.45∠− 56.73◦A

8. i1 = −5, i2 = −4, i3 = 2
9. F1 = 2, F2 = −3, F3 = 4
10. I1 = 3.317∠22.57◦A, I2 = 1.963∠40.97◦A,

I3 = 1.010∠− 148.32◦A

Exercise 112 (page 294)

Answers to Exercises 110 and 111
are as above

Exercise 113 (page 296)

1. ẍ= −0.30, ẋ= 0.60, x= 1.20
2. T1 = 0.8, T2 = 0.4, T3 = 0.2
3. Answers to Exercise 110 are as above
4. Answers to Exercise 111 are as above

Exercise 114 (page 301)

1. (a) λ1 = 3, λ2 = −2 (b)
( −4
1

)

,
(
1
1

)

2. (a) λ1 = 1, λ2 = 6 (b)
( −3
1

)

,
(
2
1

)

3. (a) λ1 = 1, λ2 = 2 (b)
(
1

−2
)

,
(
1

−1
)

4. (a) λ1 = 2, λ2 = 6, λ3 = −2

(b)

⎛

⎝
1

−2
1

⎞

⎠,

⎛

⎝
0
1
1

⎞

⎠ ,

⎛

⎝
1
1
0

⎞

⎠
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5. (a) λ1 = 0, λ2 = 1, λ3 = 3

(b)

⎛

⎝
1
1
1

⎞

⎠,

⎛

⎝
1
0

−1

⎞

⎠ ,

⎛

⎝
1

−2
1

⎞

⎠

6. (a) λ1 = 1, λ2 = 2, λ3 = 4

(b)

⎛

⎝
−2
1
0

⎞

⎠,

⎛

⎝
−2
1
1

⎞

⎠,

⎛

⎝
0
1
1

⎞

⎠

7. (a) λ1 = 1, λ2 = 2, λ3 = 3

(b)

⎛

⎝
0
2

−1

⎞

⎠,

⎛

⎝
1
1
0

⎞

⎠,

⎛

⎝
2
2
1

⎞

⎠

Chapter 26

Exercise 115 (page 306)

1. A scalar quantity has magnitude only; a vector
quantity has both magnitude and direction.

2. Scalar 3. Scalar 4. Vector 5. Scalar
6. Scalar 7. Vector 8. Scalar
9. Vector

Exercise 116 (page 313)

1. 17.35 N at 18.00◦ to the 12 N vector

2. 13 m/s at 22.62◦to the 12 m/s velocity

3. 16.40 N at 37.57◦ to the 13 N force

4. 28.43 N at 129.29◦ to the 18 N force

5. 32.31 N at 21.80◦ to the 30 N displacement

6. 14.72 N at – 14.72◦ to the 5 N force

7. 29.15 m/s at 29.04◦ to the horizontal

8. 9.28 N at 16.70◦ to the horizontal

9. 6.89 m/s at 159.56◦ to the horizontal

10. 15.62 N at 26.33◦to the 10 N force

11. 21.07 knots, E 9.22◦S

Exercise 117 (page 316)

1. (a) 54.0 N at 78.16◦ (b) 45.64 N at 4.66◦

2. (a) 31.71 m/s at 121.81◦ (b) 19.55 m/s at 8.63◦

Exercise 118 (page 317)

1. 83.5 km/h at 71.6◦ to the vertical
2. 4 minutes 55 seconds, 60◦

3. 22.79 km/h. E 9.78◦N

Exercise 119 (page 318)

1. i− j− 4k 2. 4i+ j− 6k
3. −i+ 7j− k 4. 5i− 10k
5. −3i+ 27j− 8k 6. −5i+ 10k
7. i+ 7.5j− 4k 8. 20.5j− 10k
9. 3.6i+ 4.4j− 6.9k 10. 2i+ 40j− 43k

Chapter 27

Exercise 120 (page 321)

1. 4.5sin(A + 63.5◦)
2. (a) 20.9sin(ωt+ 0.63) volts
(b) 12.5sin(ωt− 1.36) volts

3. 13sin(ωt+ 0.393)

Exercise 121 (page 323)

1. 4.5sin(A + 63.5◦)
2. (a) 20.9sin(ωt+ 0.62) volts
(b) 12.5sin(ωt− 1.33) volts

3. 13sin(ωt+ 0.40)

Exercise 122 (page 324)

1. 4.472sin(A + 63.44◦)
2. (a) 20.88sin(ωt+ 0.62) volts
(b) 12.50sin(ωt− 1.33) volts

3. 13sin(ωt+ 0.395)
4. 11.11sin(ωt+ 0.324)
5. 8.73sin(ωt− 0.173)
6. 1.01sin(ωt− 0.698)A

Exercise 123 (page 326)

1. 11.11sin(ωt+ 0.324)
2. 8.73sin(ωt− 0.173)
3. i = 21.79sin(ωt− 0.639)
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4. v = 5.695sin(ωt+ 0.695) V
5. x= 14.38sin(ωt+ 1.444)
6. (a) 305.3sin(314.2t− 0.233) V (b) 50 Hz
7. (a) 10.21sin(628.3t+ 0.818) V (b) 100 Hz
(c) 10 ms

8. (a) 79.83sin(300πt+ 0.352) V (b) 150 Hz
(c) 6.667 ms

9. 150.6sin(ωt− 0.247) V

Exercise 124 (page 328)

1. 12.07sin(ωt+ 0.297)
2. 14.51sin(ωt− 0.315)
3. 9.173sin(ωt+ 0.396)
4. 16.168sin(ωt+ 1.451)
5. (a) 371.95sin(314.2t− 0.239) V (b) 50 Hz

6. (a) 11.44sin(200πt+ 0.715) V (b) 100 Hz

(c) 10 ms

7. (a) 79.73sin(300πt− 0.536) V (b) 150 Hz

(c) 6.667 ms (d) 56.37 V

8. IN = 354.6∠32.41◦ A

Chapter 28

Exercise 125 (page 335)

1. (a) 7 (b) 0 2. (a) −12 (b) −4
3. (a) 11 (b) 11 4. (a)

√
13 (b)

√
14

5. (a) −16 (b) 38 6. (a)
√
19 (b) 7.347

7. (a) 143.82◦ (b) 44.52◦

8. (a) 0.555, −0.832, 0 (b) 0, 0.097, −0.243
(c) 0.267, 0.535,−0.802

9. 11.54◦ 10. 66.40◦

11. 53 Nm

Exercise 126 (page 338)

1. (a) 4i− 7j− 6k (b) −4i+ 7j+ 6k
2. (a) 11.92 (b) 13.96
3. (a) −36i− 30j+ 54k (b) 11i+ 4j− k

4. (a) −22i− j+ 33k (b) 18i+ 162j+ 102k
5. (i) −15 (ii) −4i+ 4j+ 10k (iii) 11.49
(iv) 4i− 4j− 10k (v) 142.55◦

6. (i) −62.5 (ii) −1.5i− 4j+ 11k (iii) 11.80
(iv) 1.5i+ 4j− 11k (v) 169.31◦

7. 10 Nm
8. M = (5i+ 8j− 2k) Nm, |M| = 9.64 Nm
9. v= −14i+ 7j+ 12k, [v]= 19.72 m/s
10. 6i− 10j− 14k, 18.22 m/s

Exercise 127 (page 340)
1. r= (5+ 2λ)i+ (7λ− 2)j+ (3− 4λ)k,
r= 9i+ 12j− 5k

2.
x− 5
2

= y+ 2
7

= 3− z
4

= λ

3. r= 1
3

(1+ 4λ) i+ 1
5

(2λ− 1) j+ (4− 3λ)k

4. r= 1
2

(λ− 1) i+ 1
4

(1− 5λ) j+ 1
3

(1+ 4λ)k

Chapter 29

Exercise 128 (page 350)

1. (a) 25x4 (b) 8.4x2.5 (c) − 1
x2

2. (a)
8
x3

(b) 0 (c) 2

3. (a)
1√
x
(b) 5 3√x2 (c) − 2√

x3

4. (a)
1
3√x4

(b) 2(x− 1) (c) 6cos3x

5. (a) 8sin2x (b) 12e6x (c) − 15
e5x

6. (a)
4
x
(b)

ex+ e−x
2

(c) − 1
x2

+ 1
2
√
x3

7. −1, 16

8.
(
1
2
,
3
4

)

9. (a) − 4
θ3

+ 2
θ

+ 10sin5θ − 12cos2θ + 6
e3θ

(b) 22.30

10. 3.29

11. x= mg
k

12. 27.0 volts
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Exercise 129 (page 351)

1. xcosx+ sinx 2. 2xe2x(x+ 1)
3. x(1+ 2 lnx) 4. 6x2 (cos3x− xsin3x)
5.

√
x
(

1+ 3
2
ln3x

)

6. e3t (4cos4t+ 3sin4t)

7. e4θ
(
1
θ

+ 4ln3θ
)

8. et
{(
1
t

+ ln t
)

cos t− ln t sin t
}

9. 8.732 10. 32.31

Exercise 130 (page 353)

1.
xcosx− sinx

x2
2. − 6

x4
(xsin3x+ cos3x)

3.
2(1− x2)
(
x2+ 1)2

4.

cosx
2
√
x

+
√
xsinx

cos2 x

5.
3
√

θ {3sin2θ − 4θ cos2θ }
4sin2 2θ

6.
1√
t3

(

1− 1
2
ln2t

)

7.
2e4x

sin2 x
{(1+ 4x)sinx− xcosx}

8. −18 9. 3.82

Exercise 131 (page 354)

1. 12 (2x− 1)5 2. 5
(
2x3− 5x)4 (6x2− 5)

3. 6cos (3θ − 2) 4. −10cos4αsinα

5.
5
(
2− 3x2)

(
x3− 2x+ 1)6

6. 10e2t+1

7. −20t cosec2 (5t2+ 3) 8. 18sec2 (3y+ 1)
9. 2sec2 θetanθ 10. 1.86
11. (a) 24.21 mm/s (b) −70.46 mm/s

Exercise 132 (page 356)

1. (a) 36x2+ 12x (b) 72x+ 12
2. (a)

4
5

− 12
t5

+ 6
t3

+ 1
4
√
t3

(b) −4.95

3. (a) −V

R
e−

t
CR (b)

V

CR2
e−

t
CR

4. (a) −(12sin2t+ cos t) (b) − 2
θ2

5. (a) 4
(
sin2 x− cos2 x) (b) 48 (2x− 3)2

6. 18

7. Proof
8. Proof
9. Proof

Chapter 30

Exercise 133 (page 358)

1. 3000π A/s 2. (a) 0.24 cd/V (b) 250 V
3. (a) −625 V/s (b) −220.5 V/s
4. −1.635 Pa/m 5. −390 m3/min

Exercise 134 (page 361)

1. (a) 100 m/s (b) 4 s (c) 200 m (d) −100 m/s
2. (a) 90 km/h (b) 62.5 m
3. (a) 4 s (b) 3 rads
4. (a) 3 m/s, −1 m/s2 (b) 6 m/s, −4 m/s2 (c) 0.75 s
5. (a) ω = 1.40 rad/s (b) α = −0.37 rad/s2
(c) t= 6.28 s

6. (a) 6 m/s, −23 m/s2 (b) 117 m/s, 97 m/s2

(c) 0.75 s or 0.4 s (d) 1.5 s (e) 75
1
6
m

7. 3 s

Exercise 135 (page 365)

1. (3,−9) Minimum
2. (1, 9) Maximum
3. (2,−1) Minimum
4. (0, 3) Minimum, (2, 7) Maximum

5. Minimum at
(
2
3
,
2
3

)

6. (3, 9) Maximum
7. (2,−88) Minimum, (−2.5, 94.25) Maximum
8. (0.4000, 3.8326) Minimum
9. (0.6931,−0.6137) Maximum
10. (1, 2.5) Minimum,

(

−2
3
,4
22
27

)

Maximum

11. (0.5, 6) Minimum
12. Maximum of 13 at 337.38◦,

Minimum of – 13 at 157.38◦

13. Proof

Exercise 136 (page 368)

1. 54 km/h 2. 90000 m2 3. 48 m
4. 11.42 m2
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5. Radius = 4.607 cm, height = 9.212 cm
6. 6.67 cm 7. Proof
8. Height = 5.42 cm, radius = 2.71 cm 9. 44.72

10. 42.72 volts 11. 50.0 miles/gallon, 52.6 miles/hour
12. 45◦ 13. 0.607

Exercise 137 (page 370)

1.
(
1
2
,−1

)

2.
(

−1
4
,4
)

3. (π, π)

4. (3, −100) 5. (2, 0.541)
6. Max at (0,10), Min at (2,−2), point of inflexion
at (1,4)

Exercise 138 (page 372)

1. (a) y= 4x− 2 (b) 4y+ x= 9
2. (a) y= 10x− 12 (b) 10y+ x= 82
3. (a) y= 3

2
x+ 1 (b) 6y+ 4x+ 7= 0

4. (a) y= 5x+ 5 (b) 5y+ x+ 27= 0
5. (a) 9θ + t= 6 (b) θ = 9t− 26 2

3
or 3θ = 27t− 80

Exercise 139 (page 373)

1. (a) −0.03 (b) −0.008 2. −0.032,−1.6%
3. (a) 60 cm3 (b) 12 cm2

4. (a) −6.03 cm2 (b) −18.10 cm3
5. 12.5%

Chapter 31

Exercise 140 (page 380)

1. (a) 4x+ c (b)
7x 2

2
+ c

2. (a)
2
15
x3+ c (b)

5
24
x4+ c

3. (a)
3x2

2
− 5x+ c (b) 4θ + 2θ 2+ θ3

3
+ c

4. (a) − 4
3x

+ c (b) − 1
4x3

+ c

5. (a)
4
5
√
x5+ c (b)

1
9
4√x9+ c

6. (a)
10√

t
+ c (b)

15
7

5√x+ c

7. (a)
3
2
sin2x+ c (b) −7

3
cos3θ + c

8. (a)
1
4
tan3x+ c (b) − 1

2
cot 4θ + c

9. (a) −5
2
cosec2t+ c (b)

1
3
sec4t+ c

10. (a)
3
8
e2x+ c (b)

−2
15e5x

+ c

11. (a)
2
3
lnx+ c (b)

u2

2
− lnu + c

12. (a) 8
√
x+ 8

√
x3+ 18

5
√
x5+ c

(b) −1
t

+ 4t+ 4t3

3
+ c

Exercise 141 (page 381)

1. (a) 105 (b) −0.5 2. (a) 6 (b) −1 1
3

3. (a) 0 (b) 4 4. (a) 1 (b) 4.248

5. (a) 0.2352 (b) 2.598 6. (a) 0.2527 (b) 2.638

7. (a) 19.09 (b) 2.457 8. (a) 0.2703 (b) 9.099

9. 55.65 10. Proof

11. 7.26 12. 77.7 m3

Chapter 32

Exercise 142 (page 385)

1. 1
1
3
square units 2. 20

5
6
square units

3. 2
1
2
square units

Exercise 143 (page 386)

1. 2
2
3
km 2. 2.198

3. 15.92 mA, 17.68 mA 4.

√
E21 + E23
2

Exercise 144 (page 388)

1. 1.5π cubic units 2. 170
2
3
π cubic units

3. (a) 329.4π (b) 81π

4. (b) 0.352 (c) 0.419 square units (d) 0.222 K
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Exercise 145 (page 389)

1. (2.5, 4.75) 2. (3.036, 24.36) 3. (2, 1.6)
4. (1, −0.4) 5. (2.4, 0)

Exercise 146 (page 392)

1. 189.6 cm3

2. On the centre line, distance 2.40 cm from the
centre, i.e. at co-ordinates (1.70, 1.70)

3. (a) 45 square units (b)(i) 1215π cubic units
(ii) 202.5π cubic units (c) (2.25, 13.5)

4. 64.90 cm3, 16.86%, 506.2 g

Exercise 147 (page 398)

1. (a) 72 cm4, 1.73 cm (b) 128 cm4, 2.31 cm
(c) 512 cm4, 4.62 cm

2. (a) 729 cm4, 3.67 cm (b) 2187 cm4, 6.36 cm
(c) 243 cm4, 2.12 cm

3. (a) 201 cm4, 2.0 cm (b) 1005 cm4, 4.47 cm
4. 3927 mm4, 5.0 mm
5. (a) 335 cm4, 4.73 cm (b) 22030 cm4, 14.3 cm
(c) 628 cm4, 7.07 cm

6. 0.866 m
7. 0.245 m4, 0.559 m
8. 14280 cm4, 5.96 cm
9. (a) 12190 mm4, 10.9 mm
(b) 549.5 cm4, 4.18 cm

10. IAA = 4224 cm4, IBB = 6718 cm4,
ICC = 37300 cm4

11. 1350 cm4, 5.67 cm

Chapter 33

Exercise 148 (page 401)

1. Sketches 2. y= x2+ 3x− 1

Exercise 149 (page 403)

1. y= 1
4
sin4x− x2+ c 2. y= 3

2
lnx− x3

6
+ c

3. y= 3x− x2

2
− 1
2

4. y= 1
3
cosθ + 1

2

5. y= 1
6

(

x2− 4x+ 2
ex

+ 4
)

6. y= 3
2
x2− x3

6
− 1

7. v = u + at 8. 15.9 m

Exercise 150 (page 404)

1. x= 1
3
ln(2+ 3y) + c 2. tany= 2x+ c

3.
y2

2
+ 2 lny= 5x− 2 4. Proof

5. x= a (1− e−kt)

6. (a) Q = Q0e−
t

CR (b) 9.30 C, 5.81 C

7. 273.3 N, 2.31 rad 8. 8 m 40 s

Exercise 151 (page 407)

1. lny= 2sinx+ c 2. y2− y = x3+ x

3. ey = 1
2
e2x+ 1

2
4. ln

(
x2y

)= 2x− y− 1

5. Proof 6. y= 1
√(
1− x2)

7. y2 = x2− 2 lnx+ 3 8. (a) V = E

(

1− e−
t

CR

)

(b) 13.2 V

9. 3

Chapter 34

Exercise 152 (page 416)

1.
1
3

(2t− 1) 2. 2

3. (a) −1
4
cot θ (b) − 1

16
cosec3θ

4. 4 5. −6.25

6. y= −1.155x+ 4 7. y= − 1
4
x+ 5

Exercise 153 (page 417)

1. (a) 3.122 (b) −14.43 2. y= −2x+ 3
3. y= −x+π 4. 0.02975
5. (a) 13.14 (b) 5.196
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Chapter 35

Exercise 154 (page 420)

1. (a) 15y4
dy
dx

(b) −8sin4θ dθ
dx

(c)
1
2
√
k
dk
dx

2. (a)
5
2t
dt
dx

(b)
3
2
e2y+1

dy
dx

(c) 6sec2 3y
dy
dx

3. (a) 6cos2θ
dθ
dy

(b) 6
√
x
dx
dy

(c) − 2
et
dt
dy

4. (a) − 6
(3x+ 1)2

dx
du

(b) 6sec2θ tan2θ
dθ
du

(c) − 1
√
y3
dy
du

Exercise 155 (page 421)

1. 3xy2
(

3x
dy
dx

+ 2y
)

2.
2
5x2

(

x
dy
dx

− y
)

3.
3
4v2

(

v − u
dv
du

)

4. 3
(
cos3x
2√y

)
dy
dx

− 9√ysin3x

5. 2x2
(
x
y

+ 3lnydx
dy

)

Exercise 156 (page 423)

1.
2x+ 4
3− 2y 2.

3
1− 6y2 3. −

√
5
2

4.
−(x+ sin4y)
4xcos4y

5.
4x− y
3y+ x 6.

x(4x+ 9y)
cosy− 2x2

7.
1− 2 lny

3+ 2x
y

− 4y3
8. 5 9. ± 0.5774

10. ±1.5 11. −6

Chapter 36

Exercise 157 (page 426)

1.
2

2x− 5 2. −3tan3x 3.
9x2+ 1
3x3+ x

4.
10(x+ 1)

5x2+ 10x− 7 5.
1
x

6.
2x
x2− 1

7.
3
x

8. 2cotx 9.
12x2− 12x+ 3
4x3− 6x2+ 3x

Exercise 158 (page 428)

1.
(x− 2)(x+ 1)
(x− 1)(x+ 3)

{
1

(x− 2) + 1
(x+ 1)

− 1
(x− 1) − 1

(x+ 3)
}

2.
(x+ 1)(2x+ 1)3
(x− 3)2(x+ 2)4

{
1

(x+ 1) + 6
(2x+ 1)

− 2
(x− 3) − 4

(x+ 2)
}

3.
(2x− 1)√(x+ 2)
(x− 3)

√
(x+ 1)3

{
2

(2x+ 1) + 1
2(x+ 2)

− 1
(x− 3) − 3

2(x+ 1)
}

4.
e2x cos3x√

(x− 4)
{

2− 3tan3x− 1
2(x− 4)

}

5. 3θ sinθ cosθ
{
1
θ

+ cosθ − tanθ

}

6.
2x4 tanx
e2x ln2x

{
4
x

+ 1
sinxcosx

− 2− 1
x ln2x

}

7.
13
16

8. −6.71

Exercise 159 (page 429)

1. 2x2x (1+ lnx)
2. (2x− 1)x

{
2x

2x− 1 + ln(2x− 1)
}

3. x√(x+ 3)
{

1
x(x+ 3) − ln(x+ 3)

x2

}

4. 3x4x+1
(

4+ 1
x

+ 4lnx
)

5. Proof

6.
1
3

7. Proof

Chapter 37

Exercise 160 (page 434)

1. (a) 6 ch 2x (b) 10 sh 5θ (c) 36sech29t

2. (a) −10
3
sech5x tanh5x (b) − 5

16
cosech

t
2
coth

t
2

(c) −14cosech27θ
3. (a) 2cothx (b)

3
8
sech

θ

2
cosech

θ

2
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4. (a) 2
(
sh22x+ ch22x) (b) 6e2x

(
sech22x+ th2x)

5. (a)
12xch4x− 9sh4x

2x4
(b)

2 (cos2tsh2t+ ch2tsin2t)
cos2 2t

Chapter 38

Exercise 161 (page 439)

1. (a)
4

√(
1− 16x2)

(b)
1

√(
4− x2)

2. (a)
−3

√(
1− 9x2)

(b)
−2

3
√(
9− x2)

3. (a)
6

1+ 4x2 (b)
1

4
√
x(1+ x)

4. (a)
2

t
√(
4t2− 1)

(b)
4

x
√(
9x2− 16)

5. (a)
−5

θ

√(
θ2− 4)

(b)
−2

x
√(
x4− 1)

6. (a)
−6

1+ 4t2 (b)
−1

θ

√(
θ2− 1)

7.
1+ x2

(
1− x2+ x4)

8. (a)
6x

√(
1− 9x2)

+ 2sin−1 3x

(b)
t

√(
4t2− 1)

+ 2t sec−1 2t

9. (a) 2θ cos−1
(
θ2− 1)− 2θ2

√(
2− θ2

)

(b)
(
1− x2
1+ x2

)

− 2xtan−1x

10. (a)
(−2√t

1+ t2

)

+ 1√
t
cot−1 t

(b) cosec−1
√
x− 1

2
√

(x− 1)

11. (a)
1
x3

⎧
⎨

⎩
3x

√(
1− 9x2)

− 2sin−1 3x
⎫
⎬

⎭

(b)
−1+ x√

1− x2
(
cos−1 x

)

1− x2

Exercise 162 (page 441)

1. (a) 0.4812 (b) 2.0947 (c) 0.8089

2. (a) 0.6931 (b) 1.7627 (c) 2.1380

3. (a) 0.2554 (b) 0.7332 (c) 0.8673

Exercise 163 (page 444)

1. (a)
1

√(
x2+ 9)

(b)
4

√(
16x2+ 1)

2. (a)
2

√(
t2− 9)

(b)
1

√(
4θ2− 1)

3. (a)
10

25− 4x2 (b)
9

1− 9x2

4. (a)
−4

x
√(
16− 9x2)

(b)
−1

2x
√(
1− 4x2)

5. (a)
−4

x
√(
x2+ 16)

(b)
−1

2x
√(
16x2+ 1)

6. (a)
14

49− 4x2 (b)
3

4
(
1− 9t2)

7. (a)
2

√(
x2− 1)

(b)
1

2
√(
x2+ 1)

8. (a)
−1

(x− 1)√[x(2− x)] (b) 1

9. (a)
−1

(t− 1)√2t− 1 (b) −cosecx

10. (a)
θ

√(
θ2+ 1)

+ sinh−1 θ

(b)
√
x√

x2− 1 + cosh−1 x
2
√
x

11. (a) − 1
t3

[
1√
1− t + 4sech

−1√t
]

(b)
1+ 2x tanh−1 x

(
1− x2)2

12. 2x

13. (a) sinh−1 x
3

+ c (b)
3
2
sinh−1 2x

5
+ c

14. (a) cosh−1 x
4

+ c (b) cosh−1 t√
5

+ c

15. (a)
1
6
tan−1 θ

6
+ c (b)

3
2
√
8
tanh−1 x√

8
+ c
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Chapter 39

Exercise 164 (page 448)

1.
∂z
∂x

= 2y, ∂z
∂y

= 2x

2.
∂z
∂x

= 3x2− 2y, ∂z
∂y

= −2x+ 2y

3.
∂z
∂x

= 1
y
,
∂z
∂y

= − x
y2

4.
∂z
∂x

= 4cos(4x+ 3y), ∂z
∂y

= 3cos(4x+ 3y)

5.
∂z
∂x

= 3x2y2+ 2y
x3
,
∂z
∂y

= 2x3y− 1
x2

− 1
y2

6.
∂z
∂x

= −3sin3xsin4y, ∂z
∂y

= 4cos3xcos4y

7.
∂V
∂h

= 1
3
πr2,

∂V
∂r

= 2
3
πrh

8. Proof

9.
∂z
∂x

=
(

nπb
L

)

sin
(nπ

L

)
x
{

ccos
(

nπb
L

)

t

−ksin
(

nπb
L

)

t
}

∂z
∂y

=
(nπ

L

)
cos

(nπ

L

)
x
{

kcos
(

nπb
L

)

t

+csin
(

nπb
L

)

t
}

10. (a)
∂k
∂T

= A�H

RT 2
e

T �S−�H
RT

(b)
∂A

∂T
= −k�H

RT 2
e

�H−T �S
RT

(c)
∂(�S)

∂T
= −�H

T 2

(d)
∂(�H)

∂T
= �S − R ln

(
k
A

)

Exercise 165 (page 450)

1. (a) 8 (b) 18 (c) −12 (d) −12
2. (a) − 2

x2
(b) − 2

y2
(c) 0 (d) 0

3. (a) − 4y
(x+ 3)3 (b)

4x
(x+ 3)3

(c)
2(x− y)
(x+ y)3 (d)

2(x− y)
(x+ y)3

4. (a) sinhxcosh2y (b) 4sinhxcosh2y
(c) 2coshxsinh2y (d) 2coshx sinh2y

5. (a)
(
2− x2)sin(x− 2y) + 4xcos(x − 2y)

(b) −4x2 sin(x− 2y)
6.

−x
√(
y2− x2)3

,
−x

√
y2− x2

(
1
y2

+ x
(
y2− x2)

)

,

∂2z
∂x∂y

= ∂2z
∂y∂x

= y
√(
y2− x2)3

7. − 1√
2
or −0.7071

8. Proof

Chapter 40

Exercise 166 (page 453)

1. 3x2dx + 2ydy
2. (2y+ sinx)dx + 2xdy

3.
(

2y
(x+ y)2

)

dx −
(

2x
(x+ y)2

)

dy 4. lny dx + x
y
dy

5.
(

y+ 1
2y

√
x

)

dx +
(

x−
√
x
y2

)

dy

6. b(2+ c)da + (2a− 6bc+ ac)db + b(a− 3b)dc

7. du = cot(xy)[y dx + x dy]

Exercise 167 (page 455)

1. +226.2 cm3/s 2. 2520 units/s
3. 515.5 cm/s 4. 1.35 cm3/s
5. 17.4 cm2/s

Exercise 168 (page 457)

1. +21 watts 2. +2% 3. −1%
4. +1.35 cm4 5. −0.179 cm 6. +6%
7. +2.2%

Chapter 41

Exercise 169 (page 463)

1. Minimum at (0, 0)
2. (a) Minimum at (1,−2) (b) Saddle point at (1, 2)
(c) Maximum at (0, 1)

3. Maximum point at (0, 0), saddle point at (4, 0)
4. Minimum at (0, 0)

5. Saddle point at (0, 0), minimum at
(
1
3
,
1
3

)
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Exercise 170 (page 467)

1. Minimum at (−4, 4)
2. 4 m by 4 m by 2 m, surface area = 48 m2

3. Minimum at (1, 0), minimum at (−1, 0), saddle
point at (0, 0)

4. Maximum at (0, 0), saddle point at (4, 0)
5. Minimumat (1, 2),maximumat (−1,−2), saddle
points at (1,−2) and (−1, 2)

6. 150 m2

Chapter 42

Exercise 171 (page 475)

1. −1
2
cos(4x+ 9) + c 2.

3
2
sin(2θ − 5) + c

3.
4
3
tan(3t+ 1) + c 4.

1
70

(5x− 3)7+ c

5. −3
2
ln(2x− 1) + c 6. e3θ+5+ c

7. 227.5 8. 4.333
9. 0.9428 10. 0.7369
11. 1.6 years

Exercise 172 (page 476)

1.
1
12

(
2x2− 3)6+ c 2. −5

6
cos6 t+ c

3.
1
2
sec2 3x+ c or 1

2
tan2 3x+ c

4.
2
9

√(
3t2− 1)3+ c

5.
1
2

(lnθ)2+ c 6.
3
2
ln(sec2t) + c

7. 4
√(
e4+ 4)+ c 8. 1.763

9. 0.6000 10. 0.09259

11. 2πσ
{√(

92+ r2)− r
}

12.
8π2IkT

h2

13. Proof 14. 11 min 50 s

Chapter 43

Exercise 173 (page 480)

1.
1
2

(

x− sin4x
4

)

+ c 2.
3
2

(

t+ sin2t
2

)

+ c

3. 5
(
1
3
tan3θ − θ

)

+ c 4. −(cot 2t+ 2t) + c

5.
π

2
or 1.571 6.

π

8
or 0.3927

7. −4.185 8. 0.6311

Exercise 174 (page 482)

1. −cosθ + cos3 θ
3

+ c 2. sin2x− sin3 2x
3

+ c

3. −2
3
cos3 t+ 2

5
cos5 t+ c 4. −cos

5 x
5

+ cos7 x
7

+ c

5.
3θ
4

− 1
4
sin4θ + 1

32
sin8θ + c

6.
t
8

− 1
32
sin4t+ c

Exercise 175 (page 483)

1. −1
2

(
cos7t
7

+ cos3t
3

)

+ c 2.
sin2x
2

− sin4x
4

+ c

3.
3
2

[
sin7x
7

+ sin5x
5

]

+ c

4.
1
4

(
cos2θ
2

− cos6θ
6

)

+ c

5.
3
7
or 0.4286 6. 0.5973

7. 0.2474 8. −0.1999

Exercise 176 (page 484)

1. 5sin−1 t
2

+ c 2. 3sin−1 x
3

+ c

3. 2sin−1 x
2

+ x
2

√(
4− x2)+ c

4.
8
3
sin−1 3t

4
+ t
2

√(
16− 9t2)+ c

5.
π

2
or 1.571 6. 2.760

Exercise 177 (page 485)

1.
3
2
tan−1 t

2
+ c 2.

5
12
tan−1 3θ

4
+ c

3. 2.356 4. 2.457

Exercise 178 (page 486)

1. 2sinh−1 x
4

+ c 2.
3√
5
sinh−1

√
5
3
x+ c

3.
9
2
sinh−1 x

3
+ x
2

√[
x2+ 9]+ c
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4.
25
4
sinh−1

2t
5

+ t
2

√[
4t2+ 25]+ c

5. 3.525 6. 4.348

Exercise 179 (page 488)

1. cosh−1 t
4

+ c 2.
3
2
cosh−1 2x

3
+ c

3.
θ

2

√(
θ2− 9)− 9

2
cosh−1 θ

3
+ c

4. θ

√(

θ2− 25
4

)

− 25
4
cosh−1 2θ

5
+ c

5. 2.634 6. 1.429

Chapter 44

Exercise 180 (page 490)

1. 2 ln(x− 3) − 2 ln(x+ 3) + c or ln
(
x− 3
x+ 3

)2

2. 5ln(x+ 1) − ln(x− 3) + c or ln
{

(x+ 1)5
(x− 3)

}

+ c

3. 7ln(x+ 4) − 3ln(x+ 1) − ln(2x− 1) + c

or ln

(
(x+ 4)7

(x+ 1)3 (2x− 1)

)

+ c

4. x+ 2 ln(x+ 3) + 6ln(x− 2) + c

or x+ ln{(x+ 3)2 (x− 2)6}+ c

5.
3x2

2
− 2x+ ln(x− 2) − 5ln(x+ 2) + c

6. 0.6275
7. 0.8122

8.
1
3

9. Proof
10. 19.05 ms

Exercise 181 (page 492)

1. 4ln(x+ 1) + 7
(x+ 1) + c

2. 5ln(x− 2) + 10
(x− 2) − 2

(x− 2)2 + c
3. 1.663 4. 1.089 5. Proof

Exercise 182 (page 493)

1. ln
(
x2+ 7)+ 3√

7
tan−1

x√
7

− ln(x− 2) + c

2. 0.5880 3. 0.2939 4. 0.1865 5. Proof

Chapter 45

Exercise 183 (page 496)

1. − 2

1+ tan θ

2

+ c 2. ln

⎧
⎪⎨

⎪⎩

tan
x
2

1+ tan x
2

⎫
⎪⎬

⎪⎭
+ c

3.
2√
5
tan−1

(
1√
5
tan

α

2

)

+ c

4.
1
5
ln

⎧
⎪⎨

⎪⎩

2 tan
x
2

− 1
tan
x
2

+ 2

⎫
⎪⎬

⎪⎭
+ c

Exercise 184 (page 497)

1.
2
3
tan−1

⎛

⎜
⎝
5tan

θ

2
+ 4

3

⎞

⎟
⎠+ c

2.
1√
3
ln

⎛

⎜
⎝
tan
x
2

+ 2− √
3

tan
x
2

+ 2+ √
3

⎞

⎟
⎠+ c

3.
1√
11
ln

⎧
⎪⎨

⎪⎩

tan
p
2

− 4− √
11

tan
p
2

− 4+ √
11

⎫
⎪⎬

⎪⎭
+ c

4.
1√
7
ln

⎛

⎜
⎝
3tan

θ

2
− 4− √

7

3tan
θ

2
− 4+ √

7

⎞

⎟
⎠+ c

5.
1
2
√
2
ln

⎧
⎪⎨

⎪⎩

√
2+ tan t

2√
2− tan t

2

⎫
⎪⎬

⎪⎭
+ c 6. Proof

7. Proof

Chapter 46

Exercise 185 (page 502)

1.
e2x

2

(

x− 1
2

)

+ c 2. −4
3
e−3x

(

x+ 1
3

)

+ c
3. −xcosx+ sinx+ c
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4.
5
2

(

θ sin2θ + 1
2
cos2θ

)

+ c

5.
3
2
e2t

(

t2− t+ 1
2

)

+ c 6. 16.78

7. 0.2500 8. 0.4674
9. 15.78

Exercise 186 (page 504)

1.
2
3
x3
(

lnx− 1
3

)

+ c 2. 2x(ln3x− 1) + c

3.
cos3x
27

(
2− 9x2)+ 2

9
xsin3x+ c

4.
2
29
e5x(2sin2x+ 5cos2x) + c

5. 2[θ tanθ − ln(secθ)]+ c 6. 0.6363
7. 11.31 8. −1.543
9. 12.78 10. Proof
11. C = 0.66, S = 0.41

Chapter 47

Exercise 187 (page 507)

1. ex(x4− 4x3+ 12x2− 24x+ 24) + c

2. e2t
(
1
2
t3− 3

4
t2+ 3

4
t− 3
8

)

+ c 3. 6.493

Exercise 188 (page 509)

1. x5 sinx+ 5x4 cosx− 20x3 sinx− 60x2 cosx
+ 120xsinx+ 120cosx+ c

2. −134.87
3. −x5 cosx+ 5x4 sinx+ 20x3 cosx− 60x2 sinx

− 120xcosx+ 120sinx+ c
4. 62.89

Exercise 189 (page 512)

1. −1
7
sin6 xcosx− 6

35
sin4 xcosx− 8

35
sin2 xcosx

− 16
35
cosx+ c

2. 4

3.
8
15

4.
1
6
cos5 xsinx+ 5

24
cos3 xsinx+ 5

16
cosxsinx

+ 5
16
x+ c

5.
16
35

Exercise 190 (page 514)

1.
8
105

2.
13
15

− π

4
or 0.08127 3.

8
315

4. x(lnx)4− 4x(lnx)3+ 12x(lnx)2− 24x lnx+ 24x+ c
5. Proof

Chapter 48

Exercise 191 (page 517)

1. 12 2. 3.5 3. 0.5
4. −174 5. 405 6. −157.5
7. 15π or 47.12 8. 112
9. 5 10. 170 cm4

Exercise 192 (page 518)

1. 15 2. 15 3. 60 4. −8

5.
π4

2
or 48.70 6. −9 7. 8 8. 18

Chapter 49

Exercise 193 (page 522)

1. 1.569 2. 6.979 3. 0.672 4. 0.843

Exercise 194 (page 524)

1. 3.323 2. 0.997 3. 0.605 4. 0.799

Exercise 195 (page 527)

1. 1.187 2. 1.034 3. 0.747
4. 0.571 5. 1.260
6. (a) 1.875 (b) 2.107 (c) 1.765 (d) 1.916
7. (a) 1.585 (b) 1.588 (c) 1.583 (d) 1.585
8. (a) 10.194 (b) 10.007 (c) 10.070

9. (a) 0.677 (b) 0.674 (c) 0.675
10. 28.8 m 11. 0.485 m

Download more at Learnclax.com



Answers to Practice Exercises 885

Chapter 50

Exercise 196 (page 535)

1. −1
3
ln
(
x3− y3
x3

)

= lnx+ c
2. y= x(c− lnx)

3. x2 = 2y2
(

lny+ 1
2

)

4. −1
2
ln
(

1+ 2y
x

− y2

x2

)

= lnx+ c or x2+ 2xy− y2 = k

5. x2+ xy− y2 = 1

Exercise 197 (page 536)

1. y4 = 4x4(lnx+ c)

2.
1
5

[
3
13
ln
(
13y− 3x
x

)

− ln
(
y− x
x

)]

= lnx+ c

3. (x+ y)2 = 4x3 4. Proof

5. y3 = x3 (3lnx+ 64) 6. Proof

Chapter 51

Exercise 198 (page 539)

1. y= 3+ c
x

2. y= 1
2

+ ce−x2

3. y= 5t
2

+ c
t

4. y= x3

5
− x
3

+ 47
15x2

5. y= 1+ ce−x2/2 6. y= 1
2
x+ 1

4
+ ce2x

Exercise 199 (page 540)

1. y= 1
2

+ cos2 x 2. θ = 1
t
(sin t−πcos t)

3. Proof 4. Proof

5. Proof 6. v = b
a2

− bt

a
+
(

u − b
a2

)

e−at

7. Proof

8. C =
(
b
m

+ d

)
⎛

⎝1− e−
mt

a

⎞

⎠+ c0e
−

mt

a

9. v = k
{
1
c

− e−t

c− 1 + e−ct

c(c− 1)
}

Chapter 52

Exercise 200 (page 547)

1. x y

1.0 2
1.1 2.1
1.2 2.209091
1.3 2.325000
1.4 2.446154
1.5 2.571429

2. x y (y′)0
0 1 0

0.2 1 −0.2
0.4 0.96 −0.368
0.6 0.8864 −0.46368
0.8 0.793664 −0.469824
1.0 0.699692

3. (a) x y

2.0 1
2.1 0.85
2.2 0.709524
2.3 0.577273
2.4 0.452174
2.5 0.333334

(b) 1.206%
4. (a)

x y

2.0 1
2.2 1.2
2.4 1.421818
2.6 1.664849
2.8 1.928718
3.0 2.213187

(b) 1.596%
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Exercise 201 (page 552)

1. x y y′

1.0 2 1

1.1 2.10454546 1.08677686

1.2 2.216666672 1.152777773

1.3 2.33461539 1.204142008

1.4 2.457142859 1.244897958

1.5 2.5883333335

2. (a) 0.412% (b) 0.000000214%
3. (a)

x y y′

0 1 1

0.1 1.11 1.21

0.2 1.24205 1.44205

0.3 1.398465 1.698465

0.4 1.581804 1.981804

0.5 1.794893

(b) 0.117%

4. x y (y′)0
0 1 0

0.2 0.98 −0.192
0.4 0.925472 −0.3403776
0.6 0.84854666 −0.41825599
0.8 0.76433779 −0.42294046
1.0 0.68609380

Exercise 202 (page 557)

1. n xn yn

0 1.0 2.0

1 1.1 2.104545

2 1.2 2.216667

3 1.3 2.334615

4 1.4 2.457143

5 1.5 2.533333

2.
n xn yn

0 0 1.0

1 0.2 0.980395

2 0.4 0.926072

3 0.6 0.848838

4 0.8 0.763649

5 1.0 0.683952

3. (a)
n xn yn

0 2.0 1.0

1 2.1 0.854762

2 2.2 0.718182

3 2.3 0.589130

4 2.4 0.466667

5 2.5 0.340000

(b) No error

Chapter 53

Exercise 203 (page 563)

1. y= Ae
2
3 t+ Be−

1
2 t 2. θ = (At + B)e−

1
2 t

3. y= e−x {Acos2x+ B sin2x}
4. y= 3e

2
3 x+ 2e−

3
2 x 5. y= 4e

1
4 t− 3et

6. y= 2xe−
5
3 x 7. x= 2 (1− 3t)e3t

8. y= 2e−3x {2cos2x+ 3sin2x}
9. θ = e−2.5t {3cos5t+ 2sin5t}

Exercise 204 (page 565)

1. Proof 2. s = ccosat
3. θ = e−2t {0.3cos6t+ 0.1sin6t}
4. x= {s + (u + ns) t}e−nt

5. i = 1
20

(
e−160t− e−840t)

6. s = 4te−
3
2
t
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Chapter 54

Exercise 205 (page 570)

1. y= Ae
1
2 x+ Be−3x− 2

2. y= Ae
1
3 x+ Be−x− 2− 3

2
x

3. y= 2
7

(

3e−
4
3 x+ 4ex

)

− 2

4. y= −
(

2+ 3
4
x
)

e
2
3 x+ 2+ 3

4
x

5. (a) q= 1
20

−
(
5
2
t+ 1
20

)

e−50t

(b) q= 1
20

(1− cos50t)

6. θ = 2 (te−2t+ 1)

Exercise 206 (page 572)

1. y= Ae3x+ Be−2x− 1
3
ex

2. y= Ae4x+ Be−x− 3
5
xe−x

3. y= Acos3x+ B sin3x+ 2e2x

4. y= (At + B)e
t
3 + 2

3
t2e

t
3

5. y= 5
44

(

e−2x− e
1
5 x
)

+ 1
4
ex

6. y= 2e3t (1− 3t+ t2)

Exercise 207 (page 574)

1. y= Ae
3
2 x+ Be−x− 1

5
(11sin2x− 2cos2x)

2. y= (Ax + B)e2x− 4
5
sinx+ 3

5
cosx

3. y= Acosx+ B sinx+ 2xsinx
4. y= 1

170
(
6e4x− 51e−x)− 1

34
(15sinx− 9cosx)

5. y= k
(
n4− p4)

(
p2
(
sinpt − p

n
sinnt

)

+n2(cospt − cosnt)
)

6. Proof
7. q= (10t+ 0.01)e−1000t+ 0.024sin200t

−0.010cos200t

Exercise 208 (page 576)

1. y= Ae
1
4 x+Be

1
2 x+ 2x+ 12+ 8

17
(6cosx− 7sinx)

2. y= Ae2θ + Beθ + 1
2

(sin2θ + cos2θ)

3. y= Aex+ Be−2x− 3
4

− 1
2
x− 1

2
x2+ 1

4
e2x

4. y= et (Acos t+ B sin t) − t
2
et cos t

5. y= 4
3
e5x− 10

3
e2x− 1

3
xe2x+ 2

6. y= 2e−
3
2 x− 2e2x+ 3ex

29
(3sinx− 7cosx)

Chapter 55

Exercise 209 (page 579)

1. (a) 16e2x (b)
1
4
e
1
2 t

2. (a) 81sin3t (b) −1562.5cos5θ

3. (a) 256cos2x (b) − 2
9

38
sin
2
3
t

4. (a) (9!)x2 (b) 630 t

5. (a) 32cosh2x (b) 1458sinh3x

6. (a) 128sinh2x (b) 729cosh3x

7. (a) −12
θ4

(b)
240
t7

Exercise 210 (page 581)

1. x2y(n) + 2nxy(n−1) + n(n− 1)y(n−2)

2. y(n) = e2x2n−3{8x3+ 12nx2+ n(n− 1)(6x)

+n(n− 1)(n− 2)}
y(3) = e2x(8x3+ 36x2+ 36x + 6)

3. y(4) = 2e−x(x3− 12x2+ 36x − 24)
4. y(5) = (60x − x3)sinx + (15x2− 60)cosx
5. y(4) = −4e−t sin t 6. y(3) = x2(47+ 60 ln2x)

7. Proof 8. y(5) = e2x24(2x3+ 19x2+ 50x + 35)

Exercise 211 (page 584)

1. y=
{

1− x
2

2!
+ 5x4

4!
− 5× 9x6

6!
+ 5× 9× 13x8

8!
− ·· ·

}

+2
{

x− 3x3

3!
+ 3× 7x5

5!
− 3× 7× 11x7

7!
+ ·· ·

}

2. Proof
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3. y= 1+ x+ 2x2+ x3

3
− x5

8
+ x7

16
+ ·· · · · ·

4. y=
{

1− 1
22
x2+ 1

22× 42 x
4− 1

22× 42× 62 x
6+ ·· ·

}

+2
{

x− x3

32
+ x5

32× 52 − x7

32× 52× 72 · · ·
}

Exercise 212 (page 591)

1. y= A

{

1+ x+ x2

(2× 3) + x3

(2× 3)(3× 5)
+ x4

(2× 3× 4)(3× 5× 7) + . . .

}

+Bx
1
2

{

1+ x
(1× 3) + x2

(1× 2)(3× 5)

. + x3

(1× 2× 3)(3× 5× 7)

+ x4

(1× 2× 3× 4)(3× 5× 7× 9) + ·· ·
}

2. y= A

{

1− x2

2!
+ x4

4!
− ·· ·

}

+ B

{

x− x3

3!
+ x5

5!
− . . .

}

= P cosx+ Qsinx

3. y=A

{

1+ x
(1× 4) + x2

(1× 2)(4× 7)

+ x3

(1× 2× 3)(4× 7× 10) + ·· ·
}

+Bx
− 13

{

1+ x
(1× 2) + x2

(1× 2)(2× 5)

+ x3

(1× 2× 3)(2× 5× 8) + ·· ·
}

4. Proof

Exercise 213 (page 595)

1. y=Ax2
{

1− x2

12
+ x4

384
− ·· ·

}

or A
{

x2− x4

12
+ x6

384
− ·· ·

}

2. J3(x) =
( x
2

)3{ 1
4

− x2

225
+ x4

256
− ·· ·

}

or
x3

84
− x5

255
+ x7

286
− ·· ·

3. J0(x) = 0.765, J1(x) = 0.440

Exercise 214 (page 600)

1. (a) y= a0+ a1
(

x+ x3

3
+ x5

5
+ ·· ·

)

(b) y= a0
(
1− 3x2)+ a1

(

x− 2
3
x3− 1

5
x5− ·· ·

)

2. (a) x

(b)
1
8
(
35x4− 30x2+ 3) (c)

1
8
(
63x5− 70x3+ 15x)

Chapter 56

Exercise 215 (page 604)

1. u = 2ty2+ f(t) 2. u = t2 (cosθ − 1) + 2t
3. Proof 4. Proof
5. u = −4ey cos2x− cosx+ 4cos2x+ 2y2− 4ey+ 4

6. u = y
(
x4

3
− x2

2

)

+ xcos2y+ siny
7. u = −sin (x+ t) + x+ sinx+ 2t+ sin t
8. Proof
9. u = sinxsiny+ x2

2
+ 2cosy− π2

2
10. Proof

Exercise 216 (page 606)

1. T = Ae3t+ Be−3t 2. T = Acos3t+ B sin3t

3. X= Aex+ Be−x 4. X= Acosx+ B sinx

Exercise 217 (page 609)

1. u(x, t) = 12
π2

∞∑

n=1
1
n2
sin

nπ

2
sin

nπx
40

cos
3nπ t
40

2. u(x, t) = 8
π2

∞∑

n=1
1
n2
sin

nπ

2
sin

nπx

80
cos

nπ t
10

Exercise 218 (page 611)

1. u(x, t) = 40
π

∞∑

n(odd)=1
1
n
e−

n2π2c2t
16 sin

nπx

4

2. u(x, t) =
(
8
π

)3 ∞∑

n(odd)=1
1
n3
e−

n2π2t
64 sin

nπx
8

3. u(x, t) = 320
π2

∞∑

n(odd)=1
1
n2
sin

nπ

2
sin

nπx

20
e
−
(

n2π2t
400

)
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Exercise 219 (page 614)

1. u(x,y) = 20
π

∞∑

n(odd))=1
1
n
cosechnπ sin nπx

sinh nπ(y− 2)

2. u(x,y) = 216
π3

∞∑

n(odd))=1
1
n3
cosech

2nπ

3
sin

nπx
3

sinh
nπ

3
(2− y)

Chapter 57

Exercise 220 (page 620)

1. (a) continuous (b) continuous (c) discrete
(d) continuous

2. (a) discrete (b) continuous (c) discrete
(d) discrete

Exercise 221 (page 623)

1. If one symbol is used to represent ten vehicles,
working correct to the nearestfive vehicles, gives
3.5, 4.5, 6, 7, 5 and 4 symbols respectively.

2. If one symbol represents 200 components, work-
ing correct to the nearest 100 components gives:
Mon 8, Tues 11, Wed 9, Thurs 12 and Fri 6.5

3. Six equally spaced horizontal rectangles, whose
lengths are proportional to 35, 44, 62, 68, 49 and
41 respectively

4. Five equally spaced horizontal rectangles,whose
lengths are proportional to 1580, 2190, 1840,
2385 and 1280 units, respectively

5. Six equally spaced vertical rectangles, whose
heights are proportional to 35, 44, 62, 68, 49 and
41 units, respectively

6. Six equally spaced vertical rectangles, whose
heights are proportional to 1580, 2190, 1840,
2385 and 1280 units, respectively

7. Three rectangles of equal height, subdivided in
the percentages shown; P increases by 20% at the
expense of Q and R

8. Four rectangles of equal heights, subdivided as
follows: Week 1: 18%, 7%, 35%, 12%, 28%
Week 2: 20%, 8%, 32%, 13%, 27% Week 3:
22%, 10%, 29%, 14%, 25%Week 4: 20%, 9%,
27%, 19%, 25%. Little change in centres A and
B, there is a reduction of around 8% in centre
C, an increase of around 7% in centre D and a
reduction of about 3% in centre E.

9. A circle of any radius, subdivided into sectors,
having angles of 7.5◦, 22.5 ◦, 52.5 ◦, 167.5 ◦ and
110 ◦, respectively.

10. A circle of any radius, subdivided into sec-
tors, having angles of 107◦, 156◦, 29◦ and 68◦,
respectively.

11. (a) £495 (b) 88
12. (a) £16450 (b) 138

Exercise 222 (page 629)

1. There is no unique solution, but one solution is:
39.3 – 39.4 1; 39.5 – 39.6 5; 39.7 – 39.8 9;
39.9 – 40.0 17; 40.1 – 40.2 15; 40.3 – 40.4 7;
40.5 – 40.6 4; 40.7 – 40.8 2;

2. Rectangles, touching one another, having mid-
points of 39.35, 39.55, 39.75, 39.95.. . . and
heights of 1, 5, 9, 17,. . .

3. There is no unique solution, but one solution is:
20.5 – 20.9 3; 21.0 – 21.4 10; 21.5 – 21.9 11;
22.0 – 22.4 13; 22.5 – 22.9 9; 23.0 – 23.4 2

4. There is no unique solution, but one solution is:
1 – 10 3; 11 – 19 7; 20 – 22 12; 23 – 25 11;
26 – 28 10; 29 – 38 5; 39 – 48 2

5. 20.95 3; 21.45 13; 21.95 24; 22.45 37; 22.95 46;
23.45 48

6. Rectangles, touching one another, having mid-
points of 5.5, 15, 21, 24, 33.5 and 43.5. The
heights of the rectangles (frequencyper unit class
range) are 0.3, 0.78, 4, 3.67, 3.33, 0.5 and 0.2

7. (10.95 2), (11.45 9), (11.95 19), (12.45 31),
(12.95 42), (13.45 50)

8. Ogive
9. (a) There is no unique solution, but one solu-
tion is: 2.05 – 2.09 3; 2.10 – 2.14 10;
2.15 – 2.19 11; 2.20 – 2.24 13; 2.25 – 2.29
9; 2.30 – 2.34 2. (b) Rectangles, touching one
another, having mid-points of 2.07, 2.12 .. . . and
heights of 3, 10 . . . (c) Using the frequency dis-
tribution given in the solution to part (a) gives:
2.095 3; 2.145 13; 2.195 24; 2.245 37; 2.295
46; 2.345 48. (d) A graph of cumulative fre-
quency against upper class boundary having the
co-ordinates given in part (c).

Chapter 58

Exercise 223 (page 633)

1. Mean 7
1
3
, median 8, mode 8

2. Mean 27.25, median 27, mode 26
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3. Mean 4.7225, median 4.72, mode 4.72
4. Mean 115.2, median 126.4, no mode

Exercise 224 (page 634)

1. 23.85 kg 2. 171.7 cm
3. Mean 89.5, median 89, mode 88.2
4. Mean 2.02158 cm, median 2.02152 cm,
Mode 2.02167 cm

Exercise 225 (page 636)

1. 4.60 2. 2.83 μF
3. Mean 34.53 MPa, standard deviation 0.07474MPa
4. 0.296 kg 5. 9.394 cm
6. 0.00544 cm

Exercise 226 (page 637)

1. 30, 27.5, 33.5 days 2. 27, 26, 33 faults
3. Q1 = 164.5 cm,Q2 = 172.5 cm,

Q3 = 179 cm, 7.25 cm
4. 37 and 38; 40 and 41 5. 40, 40, 41; 50, 51, 51

Chapter 59

Exercise 227 (page 642)

1. (a)
2
9
or 0.2222 (b)

7
9
or 0.7778

2. (a)
23
139

or 0.1655 (b)
47
139

or 0.3381

(c)
69
139

or 0.4964

3. (a)
1
6
(b)

1
6
(c)

1
36

4.
5
36

5. (a)
2
5
(b)

1
5
(c)

4
15

(d)
13
15

6. (a)
1
250

(b)
1
200

(c)
9
1000

(d)
1

50000

Exercise 228 (page 644)

1. (a) 0.6 (b) 0.2 (c) 0.15
2. (a) 0.64 (b) 0.32
3. 0.0768
4. (a) 0.4912 (b) 0.4211
5. (a) 89.38% (b) 10.25%
6. (a) 0.0227 (b) 0.0234 (c) 0.0169

Exercise 229 (page 646)

1. (a) 210 (b) 3024 2. (a) 792 (b) 15

3. 210 4. 3003

5.
10
49C6

= 10
13983816

= 1
1398382

or 715× 10−9

Exercise 230 (page 647)

1. 53.26% 2. 70.32% 3. 7.48%

Chapter 60

Exercise 231 (page 654)

1. (a) 0.0186 (b) 0.9976
2. (a) 0.2316 (b) 0.1408
3. (a) 0.7514 (b) 0.0019
4. (a) 0.9655 (b) 0.0028
5. Vertical adjacent rectangles, whose heights are
proportional to 0.0313, 0.1563, 0.3125, 0.3125,
0.1563 and 0.0313

6. Vertical adjacent rectangles, whose heights are
proportional to 0.0280, 0.1306, 0.2613, 0.2903,
0.1935, 0.0774, 0.0172 and 0.0016

7. 0.0574

Exercise 232 (page 657)

1. 0.0613 2. 0.5768
3. (a) 0.1771 (b) 0.5153 4. 0.9856
5. The probabilities of the demand for 0, 1, 2,. . .. .
tools are 0.0067, 0.0337, 0.0842, 0.1404, 0.1755,
0.1755, 0.1462, 0.1044, 0.0653, . . . This shows
that the probability of wanting a tool eight times
a day is 0.0653, i.e. less than 10%. Hence seven
should be kept in the store

6. Vertical adjacent rectangles having heights pro-
portional to 0.4966, 0.3476, 0.1217, 0.0284,
0.0050 and 0.0007

Chapter 61

Exercise 233 (page 662)

1. 6 2. 22
3. (a) 479 (b) 63 (c) 21 4. 4
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5. (a) 131 (b) 553 6. (a) 15 (b) 4
7. (a) 65 (b) 209 (c) 89 8. (a) 1 (b) 85 (c) 13

Exercise 234 (page 665)

1. Graphically, x= 27.1,σ = 0.3; by calculation,
x= 27.079,σ = 0.3001;

2. (a) x= 23.5kN,σ = 2.9kN
(b) x= 23.364kN,σ = 2.917kN

Chapter 62

Exercise 235 (page 669)

1. 0.999 2. – 0.916 3. 0.422 4. 0.999

5. –0.962 6. 0.632 7. 0.937

Chapter 63

Exercise 236 (page 675)

1. Y= −256+ 80.6X 2. Y= 0.0477+ 0.216X
3. X= 3.20+ 0.0124Y 4. X= −0.056+ 4.56Y
5. Y= 1.142+ 2.268X 6. X= −0.483+ 0.440Y
7. (a) 7.95 V (b) 17.1 mA 8. Y= 0.881− 0.0290X
9. X= 30.194− 34.039Y 10. (a) 0.417 s (b) 21.7 N

Chapter 64

Exercise 237 (page 682)

1. μx = μ = 22.4 cm σx = 0.0080 cm
2. σx = 0.0079 cm
3. (a) μx = 1.70 cm, σx = 2.91× 10−3 cm

(b) μx = 1.70 cm, σx = 2.89× 10−3 cm

4. 0.023

5. 0.497

6. 0.0038

7. (a) 0.0179 (b) 0.740 (c) 0.242

Exercise 238 (page 686)

1. 66.89 and 68.01 mm, 66.72 and 68.18 mm
2. (a) 2.355Mg to 2.445Mg; 2.341Mg to 2.459Mg
(b) 86%

3. 12.73× 10−4m◦C−1 to 12.89× 10−4m◦C−1

4. (a) at least 68 (b) at least 271
5. 10.91t to 11.27t
6. 45.6 seconds

Exercise 239 (page 690)
1. 5.133 MPa to 5.207 MPa
2. 5.125 MPa to 5.215 MPa
3. 1.10�m−1 to 1.15�m−1

4. 95%

Chapter 65

Exercise 240 (page 698)

1. (a) 28.1% (b) 4.09% (c) 0.19%
2. (a) 55.2% (b) 4.65% (c) 0.07%
3. (a) 35.3% (b) 18.5% (c) 8.4%
4. (a) 32.3% (b) 20.1% (c) 11.9%

Exercise 241 (page 702)

1. z (sample) = 3.54, zα = 2.58, hence hypothesis is
rejected, where zα is the z-value corresponding to a
level of significance of α

2. t0.95,ν8 = 1.86, |t| = 1.89, hence null hypothesis
rejected

3. z (sample)= 2.85,zα = ±2.58, hence hypothesis is
rejected

4. x= 10.38,s = 0.33, t0.95,ν19 = 1.73,
|t| = 1.72, hence hypothesis is accepted

5. |t| = 3.00, (a) t0.975,ν9 = 2.26, hence hypothesis
rejected, (b) t0.995,ν9 = 3.25, hence hypothesis is
accepted

6. |t| = 3.08, (a) t0.95,ν5 = 2.02, hence claim sup-
ported, (b) t0.99,ν5 = 3.36, hence claim not sup-
ported

Exercise 242 (page 706)

1. Take x as 24+ 15, i.e. 39 hours, z= 1.28,z0.05, one-
tailed test = 1.645, hence hypothesis is accepted

2. z= 2.357,z0.05, two-tailed test = ±1.96, hence
hypothesis is rejected

3. x1 = 23.7,s1 = 1.73,σ1 = 1.93,x2 = 25.7,
s2 = 2.50,σ2 = 2.80, |t| = 1.32, t0.995,ν8 = 3.36
hence hypothesis is accepted

4. z (sample) = 1.99, (a) z0.05, two-tailed test =
±1.96, no significance, (b) z0.01, two-tailed test
= ±2.58, significant difference
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5. Assuming null hypothesis of no difference, σ =
0.397, |t| = 1.85, (a) t0.995,ν8 = 2.82, hypoth-
esis rejected, (b) t0.95,ν22 = 1.72, hypothesis
accepted

6. σ = 0.571, |t| = 3.32, t0.95,ν8 = 1.86, hence
hypothesis is rejected

Chapter 66

Exercise 243 (page 709)

1. 10.2 2. 3.16

Exercise 244 (page 715)

1. Expected frequencies: 7, 33, 65, 73, 48, 19, 4, 0;
χ2-value= 3.62,χ20.95,ν7 = 14.1, hence hypoth-
esis accepted. χ20.10,ν7 = 2.83, hence data is not
‘too good’

2. λ = 2.404; expected frequencies: 11, 27, 33,
26, 16, 8, 3 χ2-value = 42.24; χ20.95,ν6 = 12.6,
hence the data does not fit a Poisson distribution
at a level of significance of 0.05

3. x= 1.32,s = 0.0180; expected frequen-
cies, 6, 17, 36, 55, 65, 55, 36, 17, 6;
χ2-value = 5.98; χ20.95ν6 = 12.6, hence
the null hypothesis is accepted, i.e.
the data does correspond to a normal
distribution

4. λ = 0.896; expected frequencies are 102, 91, 41,
12, 3, 0, 0; χ2-value = 5.10; χ20.95,ν6 = 12.6,
hence this data fits a Poisson distribution at a
level of significance of 0.05

5. x= 10.09 MN; σ = 0.733 MN; expected fre-
quencies, 2, 5, 12, 16, 14, 8, 3, 1; χ2-
value = 0.563;χ20.95,ν5 = 11.1. Hence hypoth-
esis accepted. χ20.05,ν5 = 1.15, hence the results
are ‘too good to be true’

Exercise 245 (page 719)

1. H0 : t = 15h,H1 : t �= 15h S = 7. From Table
66.3, S ≤ 2, hence accept H0

2. S = 6. From Table 66.3, S ≤ 4, hence null
hypothesis accepted

3. H0: mean A = mean B, H1: mean A �= mean
B, S = 4. From Table 66.3, S ≤ 4, hence H1 is
accepted

Exercise 246 (page 723)

1. H0 : t= 220h,H1 : t �= 220h,T = 74. From Table
66.4, T ≤ 29, henceH0 is accepted

2. H0 : s = 150,H1 : s �= 150,T = 59.5. From Table
66.4, T ≤ 40, hence hypothesisH0 is accepted

3. H0 : N = R,H1 :N �= R,T = 5. From Table 66.4,
with n = 10 (since two differences are zero), T ≤ 8,
Hence there is a significant difference in the drying
times

Exercise 247 (page 729)

1. H0 : TA = TB,H1 : TA �= TB,U = 30. From
Table 66.5, U ≤ 17, hence accept H0, i.e. there
is no difference between the brands

2. H0 : B.S.A = B.S.B ,H1 : B.S.A �= B.S.B ,α2 =
10%, U = 28. From Table 66.5, U ≤ 15, hence
acceptH0, i.e. there is no difference between the
processes

3. H0 : A = B,H1 :A �= B,α2 = 5%,U = 4. From
Table 66.5, U ≤ 8, hence null hypothesis is
rejected, i.e. the two methods are not equally
effective

4. H0 : meanA =meanB , H1 : meanA �=meanB ,
α2 = 5%, U = 90. From Table 66.5, U ≤ 99,
hence H0 is rejected andH1 accepted

Chapter 67

Exercise 248 (page 739)

1. (a)
2
s2

− 3
s
(b)

10
s3

+ 4
s2

− 3
s

2. (a)
1
4s4

− 3
s2

+ 2
s
(b)

8
s6

− 48
s5

+ 1
s3

3. (a)
5

s − 3 (b)
2

s + 2
4. (a)

12
s2+ 9 (b)

3s
s2+ 4

5. (a)
7s

s2− 4 (b)
1

s3− 9
6. (a)

2
(
s2+ 2)

s
(
s2+ 4) (b)

24
s
(
s2+ 16)

7. (a)
s2− 2

s
(
s2− 4) (b)

16
s
(
s2− 16)

8.
4

s2+ a2 (acosb+ s sinb)

9.
3

s2+ω2
(s cosα+ωsinα)

10. Proof
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Chapter 68

Exercise 249 (page 743)

1. (a)
2

(s − 2)2 (b)
2

(s − 1)3

2. (a)
24

(s + 2)4 (b)
12

(s + 3)5

3. (a)
s − 1

s2− 2s + 2 (b)
6

s2− 4s + 8
4. (a)

5 (s + 2)
s2+ 4s + 13 (b)

4
s2+ 10s + 26

5. (a)
1

s − 1 − s − 1
s2 − 2s + 5

(b)
1
4

(
1

s − 3 − s − 3
s2− 6s + 13

)

6. (a)
1

s(s − 2) (b)
3 (s − 2)

s2 − 4s − 12
7. (a)

6
s2+ 2s − 8 (b)

s + 3
4
(
s2+ 6s + 5)

8. (a)
2 (s − 10)

s2− 2s + 10 (b)
−6 (s + 1)
s (s + 4)

Exercise 250 (page 745)

1. Proof 2. Proof 3. Proof 4. Proof

Exercise 251 (page 746)

1. (a) 3 (b) 16 2. (a) 6 (b) –1 3. 4 4. 0

Chapter 69

Exercise 252 (page 750)

1. (a) 7 (b) 2e5t

2. (a)
3
2
e
−
1
2
t
(b) 2cos2t

3. (a)
1
5
sin5t (b)

4
3
sin3t

4. (a)
5
2
cos3t (b) 6t

5. (a)
5
2
t2 (b)

4
3
t3

6. (a) 6cosh4t (b)
7
4
sinh4t

7. (a)
5
3
sinh3t (b) 2ett2

8. (a)
1
6
e−2tt3 (b)

1
8
e3tt4

9. (a) e−t cos3t (b)
3
2
e−3t sin2t

10. (a) 2e3t cos2t (b)
7
2
e4t sinh2t

11. (a) 2e−2t cosh3t+ 1
3
e−2t sinh3t

(b) 3e4t cos3t+ 14
3
e4t sin3t

Exercise 253 (page 751)

1. 2e−t− 5e−3t
2. 4e−t− 3e2t+ e−3t
3. 2e−3t+ 3et− 4ett
4. e−3t(3− 2t− 3t2)
5. 2cos

√
2t+ 3√

2
sin

√
2t+ 5e−t

6. 2+ t+ √
3sin

√
3t− 4cos√3t

7. 2− 3e−2t cos3t− 2
3
e−2t sin3t

Exercise 254 (page 753)

1. (a) s = −4 (b) s = 0, s = −2, s = 4+ j3,
s = 4− j3

2. Poles at s = −3, s = 1+ j2, s = 1− j2, zeros at
s = +1, s = −2

3. Poles at s = −2, s = −1+ j2, s = −1− j2,
zero at s = 1

4. Poles at s = 0, s = +j2, s = −j2, zeros at
s = −1, s = 6

Chapter 70

Exercise 255 (page 757)

1. V (t) = 6(H − 4)

v(t)

t
0

6

4

(a)
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2. 2H(t) − H(t − 5)

v(t)

t
0

2

5

(b)

3.

f(t)

t
0

1

2

(c)

4.

f(t)

t
0

1

(d)

5.

f(t)

t
0

4

1

(e)

6.

f(t)

t
0

7

5

(f)

7.

f(t)

t0

–1

�
2

� 3�
2

2�

1

�
4

(g)
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8.

f(t)

t0

–3

�
2

�
6

� 3�
2

2�

3

(h)

9.

f(t)

t

4

–2

8

–1 10 2 3

(i)

10.

f(t)

t

0.5

0

1

1 2 3 4 5(j)

11.

f(t)

t

0.5

0

1

1 2 3 4 5 6

(k)

12.

f(t)

t0

–5

�
2

�
3

�
4

� 3�
2

2�

5

(l)

Exercise 256 (page 759)

1.
e−s

s
2.
7e−3s

s
3.
2e−2s

s3

4.
e−3s

s2+ 1 5.
e−4s

s − 1 6.
3e−5s

s2+ 9
7.
6e−s

s4
8.

se−6s

s2+ 9 9.
10e−5s

s2− 4

10.
se−

π
3 s

s2+ 4 11.
2e−3s

s − 1 12.
3se−2s

s2 − 1
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Exercise 257 (page 760)

1. H(t− 9)
2. 4H(t− 3)
3. 2H(t− 2).(t− 2)
4. 5H(t− 2).sin(t− 2)
5. 3H(t− 4).cos4(t− 4)
6. 6H(t− 2).sinh(t− 2)
7. 1.5H(t− 6). (t− 6)2

8. 2H(t− 4).cosh4(t− 4)

9. 2H
(

t− 1
2

)

.cos
√
5
(

t− 1
2

)

10. 4H(t− 7).et−7

Chapter 71

Exercise 258 (page 765)

1. (a) 2
(
1− e−5t) (b) 10

(
e−3t− e−5t)

(c) i = 5
2
(
e−5t+ sin5t− cos5t)

2. y= (3− t)e
4
3 t

3. x= 2cos10t
4. i = 100te−500t

5. y= 4 (3e−2t− 2e−4t)

6. y= (4x− 1)ex+ 1
3
e4x

7. y= 3
85
e4x− 3

10
e−x+ 9

34
cosx− 15

34
sinx

8. y= ex− e−2x+ sin3x
9. y= 3ex (cosx+ sinx) − ex cos2x
10. y= e−t (2cos2t+ sin2t)
11. See answers to Exercises 203 and 204 of Chapter 53

12. See answers to Exercises 205 to 208 of Chapter 54

Chapter 72

Exercise 259 (page 771)

1. x= et− t− 1 and y= 3et+ 2t− 3

2. x= 5cos t+ 5sin t− e2t− et− 3
and y= e2t+ 2et− 3− 5sin t

3. x= 3cos t+ cos
(√
3t
)
and y= 3cos t− cos

(√
3t
)

Chapter 73

Exercise 260 (page 780)

1. f(x) = 8
π

(

sinx+ 1
3
sin3x+ 1

5
sin5x+ . . .

)

2.
π

4
= 1− 1

3
+ 1
5

− 1
7

+ . . . .

3. (a) f(x)= 1
2

+ 2
π

(

cosx− 1
3
cos3x+ 1

5
cos5x+ . . .

)

(b)
1
2

4. Graph sketching

5.
2
3π
sin3x

6. f (x) =
2
π

(

cos t− 1
3
cos3t+ 1

5
cos5t− . . .+ sin2t

+1
3
sin6t+ 1

5
sin10t+ . . .

)

7. f(θ) = 2
π

(
1
2

− cos2θ
(3)

− cos4θ
(3)(5)

− cos6θ
(5)(7)

− . . .

)

Chapter 74

Exercise 261 (page 786)

1. f(x) = π− 2(sinx+ 1
2
sin2x+ 1

3
sin3x

+ 1
4
sin4x+ 1

5
sin5x+ 1

6
sin6x+ . . .)

2. f(t) = π

2
+ 1− 4

π

(

cos t+ cos3t
32

+ cos5t
52

+ . . .

)

3. f(x) = π+ 2(sinx− 1
2
sin2x+ 1

3
sin3x

−1
4
sin4x+ 1

5
sin5x− 1

6
sin6x+ . . .)

4. f(x) = π

2
− 4

π

(

cosx+ cos3x
32

+ cos5x
52

+ . . .

)

5. f(θ)= π2

3
− 4

(

cosθ − 1
22
cos2θ + 1

32
cos3θ − ·· ·

)

6.
∞∑

n=1
1
n2

= π2

6
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7. f(x) = 8
π2

(

cosx+ 1
32
cos3x+ 1

52
cos5x

+ 1
72
cos7x+ . . .

)

8.
π2

8
= 1+ 1

32
+ 1
52

+ 1
72

+ 1
92

+ . . .

Chapter 75

Exercise 262 (page 791)

1. f(x) = 4
π

(

cosx− 1
3
cos3x+ 1

5
cos5x

−1
7
cos7x+ . . .

)

2. f(t) = −2
(

sin t+ 1
2
sin2t+ 1

3
sin3t

+1
4
sin4t+ . . .

)

3. f(x) = π

2
+ 1− 4

π

(

cosx+ 1
32
cos3x

+ 1
52
cos5x+ . . .

)

4.
π2

8
= 1+ 1

32
+ 1
52

+ 1
72

+ . . .

5. y= 8
π2

(

sin θ − 1
32
sin3θ + 1

52
sin5θ

− 1
72
sin7θ + . . .

)

Exercise 263 (page 794)

1. f(x) = 2
π

(

sinx+ π

4
sin2x− 1

9
sin3x

−π

8
sin4x+ . . .

)

2. (a) f(t)= 1
2

− 2
π

(

cos t− 1
3
cos3t+ 1

5
cos5t− . . .

)

(b) f(t) = 2
π

(

sin t− sin2t+ 1
3
sin3t+ 1

5
sin5t

−1
3
sin6t+ . . .

)

3. f(x) = sin2 x= 8
π

(
sinx

(1)(3)
− sin3x

(1)(3)(5)
− sin5x

(3)(5)(7)

− sin7x
(5)(7)(9)

− . . .

)

4. f(x) = π

4
− 2

π

(

cos2x+ cos6x
32

+ cos10x
52

+ . . .

)

Chapter 76

Exercise 264 (page 798)

1. v(t) = 5
2

+ 10
π

[

sin
(

π t
10

)

+ 1
3
sin

(
3π t
10

)

+1
5
sin

(
5π t
10

)

+ . . .

]

2. f(x) = 5
2

− 5
π

[

sin
(
2πx
5

)

+ 1
2
sin

(
4πx
5

)

+1
3
sin

(
6πx
5

)

+ . . .

]

3. f(x) = 12
π

{

sin
(πx
2

)
+ 1
3
sin

(
3πx
2

)

+1
5
sin

(
5πx
2

)

+ . . .

}

4. f(t) = V

π
+ V

2
sin t− 2V

π

(
cos2t
(1)(3)

+ cos4t
(3)(5)

+ cos6t
(5)(7)

+ . . .

)

Exercise 265 (page 800)

1. f(x) = 3
2

− 12
π2

{

cos
(πx
3

)
+ 1
32
cos

(
3πx
3

)

+ 1
52
cos

(
5πx
3

)

+ . . .

}

2. f(x) = 6
π

{

sin
(πx
3

)
− 1
2
sin

(
2πx
3

)

+ 1
3
sin

(
3πx
3

)

−1
4
sin

(
4πx
3

)

+ . . .

}

3. f(t) = 8
π2

{

sin
(

π t
2

)

− 1
32
sin

(
3π t
2

)

+ 1
52
sin

(
5π t
2

)

− . . .

}

4. f(θ) = 16
3

− 64
π2

{

cos
(

πθ

4

)

− 1
22
cos

(
2πθ

4

)

+ 1
32
cos

(
3πθ

4

)

− . . .

}
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Chapter 77

Exercise 266 (page 805)

1. y= 23.92+ 7.81cosθ + 14.61sinθ +
0.17cos2θ + 2.31sin2θ − 0.33cos3θ +
0.50sin3θ

2. y= 5.00− 10.78cosθ + 6.83sinθ +
0.13cos2θ + 0.79sin2θ + 0.58cos3θ −
1.08sin3θ

3. i = 0.64+ 1.58cosθ − 2.73sinθ −
0.23cos2θ − 0.42sin2θ + 0.27cos3θ +
0.05sin3θ

Exercise 267 (page 806)

1. (a) Only odd cosine terms present (b) Only
even sine terms present

2. y= 9.4+ 13.2cosθ − 24.1sinθ +
0.92cos2θ − 0.14sin2θ + 0.83cos3θ +
0.67sin3θ

3. i = 4.00− 4.67cos2θ + 1.00cos4θ−
0.66cos6θ + . . .

4. y= 1.83− 25.67cosθ + 83.89sinθ
+1.0cos2θ − 0.29sin2θ + 15.83cos3θ

+10.5sin3θ

Chapter 78

Exercise 268 (page 814)

1. f(t) =
∞∑

n=−∞
j

nπ
(cosnπ − 1)ejnt

= 1− j
2
π

(

ej t + 1
3
ej3t+ 1

5
ej5t+ . . .

)

+j
2
π

(

e−j t + 1
3
e−j3t+ 1

5
e−j5t+ . . .

)

2. Proof
3. Proof

4. f(t) = 1
2

∞∑
n=−∞

(
e(2−jπn) − e−(2−jπn)

2− jπn

)

ejπnt

Exercise 269 (page 817)

1. f(x) =
∞∑

n=−∞

{
4

πn
sin

(nπ

2

)}

ejnx

2. f(x) = 8
π

(

cosx− 1
3
cos3x+ 1

5
cos5x

−1
7
cos7x+ . . .

)

3. f(t) =
∞∑

n=−∞

(
j2
n
cosnπ

)

ejnt

4. f(t) = 4
(

sin t− 1
2
sin2t+ 1

3
sin3t− 1

4
sin4t+ ...

)

Exercise 270 (page 822)

1. (a) 2ej4t+ 2e−j4t, 2∠0◦ anticlockwise,
2∠0◦ clockwise, each with ω = 4 rad/s
(b) 2ej4tejπ/2+ 2e−j4te−jπ/2, 2∠π/2 anti-
clockwise, 2∠− π/2 clockwise, each with
ω = 4 rad/s

2. (5+ j6)ej2t+ (5− j6)e−j2t, 7.81 ∠0.88 rotat-
ing anticlockwise, 7.81∠− 0.88 rotating clock-
wise each with ω = 2 rad/s

3. (2− j3)ej t + (2+ j3)e−j t , 3.61∠− 0.98 rotat-
ing anticlockwise, 3.61∠0.98 rotating clock-
wise, each with ω = 1 rad/s

Chapter 79

Exercise 271 (page 828)

1.
2z

(z − 1)2 2.
3z(z + 1)
(z − 1)3

3.
4z(z2+ 4z + 1)

(z − 1)4 4.
z sin3

z2− 2zcos3+ 1

5.
z

z − 2 6.
2z

(z − 2)2

7.
5z(z− cos2)

z2− 2zcos2+ 1 8.
3z

z − e−2

9.
z sin

1
2

z2− 2zcos 1
2

+ 1
10. 4

(
z2− ze3 cos2

z2− 2ze3 cos2+ e6

)

11.
z

z + 4 12.
6z(z + 2)
(z − 2)3

13.
3z

z + 5 14.
−3z

(z + 3)2
15.

3z
z − e5

16.
2ze−4 sin2

z2− 2ze−4 cos2+ e−8

Exercise 272 (page 829)

1.
{

5z
(z − 1)2

}

−
{

4z
z − e−3

}

or
−4z3+ 13z2− z

(
5e−3+ 4)

(z − 1)2 (z − e−3)

2.
z(7z + 1)
(z − 1)3
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3.
3z(sin2− z + cos2)

z2− 2zcos2+ 1

4.
6z(z − 1)
z2− 9

5.
z

(z − 1)2 + z
(
z − e−1) or

z3− z2+ z
(
1− e−1)

(z − 1)2 (z − e−1)

Exercise 273 (page 830)

1.
8z

z − 2 2.
4z

z − 4 3.
6z2

(z − 1)2

4.
z(7z − 12)
z2− 5z + 6

Exercise 274 (page 831)

1.
1

(z − 1) 2.
1

z2(z − 1) 3.
1

z(z − a)

4.
1

z2(z − a)
5.

1
z3(z − 3)

Exercise 275 (page 832)

1.
2z

(z − 2)2 2.
4z

(z − 4)2 3. 0

4. 20/9 or 2
2
9

5. 1 6.
2z

(z − 2)2

Exercise 276 (page 834)

1. 1 2. (2)k

3. (−1)k 4. (−4)k

5.
(
1
3

)k

6.
(

−1
4

)k

7.
(
1
5

)k

8. e−5k

9. e3k 10. 3k

11. 5k2 12.
1
2
k

13.
1
3
{
(2)k − (−1)k} 14.

3
4
{
1− (−3)k}

15.
1
3
{
1− (−2)k} 16.

1
7

{

(3)k −
(

−1
2

)k
}

17. (2)k − 1 18. 10(3)k − 7(2)k

19.
2
3

{(
1
2

)k

− (−1)k
}

20.
3
7
{
(2)k − (−5)k}

Exercise 277 (page 837)

1. 4
(
3k
)

2. 3− 2(3)k

3.
1
3
{
10− (4)k

}
4.
1
3

{

(2)k − 5
(
1
2

)k
}

5. (−1)k − (−2)k 6.
5
2

− 6 (2)k + 7
2
(3)k
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Abacus, 90
Accuracy of numerical integration, 528
Adding alternating waveforms, 319
Adjoint of matrix, 285
Algebra, 3
Algebraic method of successive

approximations, 83
substitution, integration, 473

Amplitude, 168, 172
And-function, 101
-gate, 113

Angle between two vectors, 332
of any magnitude, 163
of depression, 133
of elevation, 133

Angular velocity, 156, 172
Applications of complex numbers, 262
differentiation, 357
rates of change, 357
small changes, 372
tangents and normals, 371
turning points, 362
velocity and acceleration, 359

integration, 383
areas, 384
centroids, 388
mean value, 385
rms value, 385
second moment of area, 392
volumes, 386

matrices and determinants, 287
Arc, 150
length, 152

Area of circle, 152
sector, 152
irregular figures, 241
triangle, 135
under curve, 384

Argand diagram, 255
Argand, Jean-Robert, 255
Argument, 259
Arithmetic mean, 632
progression, 50

Astroid, 414
Asymptotes, 231
Auxiliary equation, 561
Average, 631
value of waveform, 245

Base, 91
Bayes’ theorem, 646
Bessel, Friedrich Wilhelm, 591
Bessel functions, 591, 593, 595
Bessel’s correction, 700
equation, 591

Binary, 91
addition, 93
numbers, 91

Binomial distribution, 651, 692, 696
expression, 58
series/theorem, 58, 60
practical problems, 64

Bisection method, 80
Bits, 91
Boole, George, 101
Boolean algebra, 100
laws and rules of, 105

Boundary conditions, 402
Brackets, 4

Calculus, 345
Cardioid, 414
Cartesian complex numbers, 254
co-ordinates, 143, 144

Catenary, 182
Cauchy, Baron Augustin-Louis, 548
Centre of area, 388
gravity, 388
mass, 388

Centripetal acceleration, 158
force, 158

Centroids, 388
Chain rule, 353
Change of limits, 476
Characteristic determinant, 297
equation, 297
value, 296
vectors, 296

Chi-square distribution, 708, 711
values, 709

Chord, 150
Circle, 149, 221
area, 152
equation of, 155

Circumference, 149
Class interval, 624
Coefficient of correlation, 666
Cofactor, 283

Combination of periodic functions, 319
Combinational logic networks, 114
Combinations, 645
Common difference, 50
logarithms, 23
ratio, 53

Complementary function, 568
Completing the square, 47
Complex numbers, 253
Addition and subtraction, 255
applications of, 262
Cartesian form, 254
coefficients, 810
conjugate, 257
equations, 258
exponential form, 270
form of Fourier series, 809
multiplication and division, 256. 261
phasors, 326
polar form, 254, 259
powers of, 267
roots of, 268

Complex wave, 801, 805
considerations, 805

Compound angles, 202
Conditional probability, 640
Confidence intervals, 683
limits of the mean of a population,

684
Continuous data, 620
function, 227, 776

Contour map, 462
Convergence, 30, 54
Conversion of a sinωt+ bcosωt into

Rsin(ωt+ α), 204
Correlation, linear, 666
Cosecant, 125
Cosh, 180
series, 188

Cosh θ substitution, 487
Coshec, 181
Cosine, 125
curves, 167
rule, 135, 323
wave production, 166

Cotangent, 126
Coth, 181
Cramer, Gabriel, 293
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Cramer’s rule, 293
Cross product, 335
Cubic equations, 220
Cumulative frequency distribution,

625, 628
Curve sketching, 237
Cycloid, 414

Deciles, 636
Definite integrals, 380
Definition of z-transform, 826
Degree of differential equation,

402
Degrees of freedom, 687
De Moivre, Abraham, 267
De Moivre’s theorem, 266
De Morgan, Augustus, 107
De Morgan’s laws, 107
Denary number, 91
Dependent event, 640
Depression, angle of, 133
Derivatives, 347
Laplace transforms of, 743
z-transforms, 831

Descartes, René, 144, 254
Determinant, 281, 283
to solve simultaneous equations,

290
Determination of law, 40
Diameter, 150
Difference equations, 834
Differential coefficient, 347
Differential equations, 400

a
d2x
dy2

+ bdy
dx

+ cy= 0 type, 560

a
d2x
dy2

+ bdy
dx

+ cy= f(x) type, 567

dy
dx

= f(x) type, 402
dy
dx

= f(y) type, 403
dy
dx

= f(x).f(y) type, 405
dy
dx

+ Py= Q type, 538
degree of, 402
first order, separation of variables,

402
homogeneous first order, 533
partial, 601, 602

P
dy
dx

= Q, 533
power series methods, 577
numerical methods, 542

simultaneous, using Laplace
transforms, 766

using Laplace transforms, 761
Differentiation, 345, 347
applications, 357
from first principles, 346
function of a function, 353, 419
implicit, 419
inverse hyperbolic function,

435, 442
trigonometric function, 435, 437

logarithmic, 425
methods of, 345
of common functions, 347
of hyperbolic functions, 431
of parametric equations, 413, 414
partial, 446
first order, 446
second order, 449

product, 350
quotient, 352
successive, 355

Direction cosines, 334
Discontinuous function, 228
Discrete data, 620
Distribution-free tests, 716
Mann-Whitney test, 723–727
sign test, 716
Wilcoxon signed-rank test, 719, 720

Dividend, 9
Divisor, 9
D-operator form, 561
Dot product, 335
Double angles, 208
integral, 515

Eigenvalues, 296
Eigenvectors, 296
Elastic string, 605
Elevation, angle of, 133
Ellipse, 221, 414
Equations,
Bessel’s, 591
circle, 155
complex, 258
heat conduction, 604, 609
hyperbolic, 186
indicial, 27
iterative methods, 79
Laplace, 603, 605, 611
Legendre’s, 596
Newton-Raphson, 86
normals, 372
of circle, 155
quadratic, 7
simple, 5

simultaneous, 7
solving by iterative methods, 79
tangents, 371
transmission, 605
trigonometric, 192–197
wave, 604, 605

Estimation of population parameters
based on a large sample size,
682

the means of a population based on a
small sample size, 687

Euler-Cauchy method, 548
Euler’s formula, 819
Euler’s method, 543
Euler, Leonhard, 543, 819
Even function, 181, 182, 228, 788
Expectation, 640
Exponent, 22
Exponential form of complex number,

270
Fourier series, 809

Exponential functions, 29, 222
graphs of, 32, 222
power series, 30

Extrapolation, 672

Factorisation, 4
Factor theorem, 10
Family of curves, 400
Final value theorem, 745, 746, 831
First moment of area, 392
shift theorem, 829

Fitting data to theoretical distributions,
710

Formulae, 839–855
Fourier coefficients, 777
Fourier, Jean Baptiste Joseph, 776
Fourier series, 174, 775
cosine, 788
exponential form, 780
half range, 792
non-periodic over range 2π , 782
over any range, 795
periodic of period 2π , 775
sine, 789

Frequency, 172, 621
curve, 658
distribution, 624, 625, 628
domain, 817
polygon, 625, 628
relative, 621
spectrum, 817

Frobenius, Ferdinand Georg, 585
Frobenius method, 584
Function of a function, 353, 419
Functional notation, 347
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Functions of two variables, 459
Fundamental, 777

Gamma function, 593
Gauss, Johann Carl Friedrich, 294
Gaussian elimination, 294
General solution of a differential

equation, 402
Geometric progression, 53
Gradient of a curve, 345
Graphs of exponential functions, 32
hyperbolic functions, 182
logarithmic functions, 28
trigonometric functions, 162

Grouped data, 624
Growth and decay laws, 36

Half range Fourier series, 792, 799
Half-wave rectifier, 177
Harmonic analysis, 174, 801
synthesis, 174

Heat conduction equation, 604, 610
Heaviside unit step function, 754
Hexadecimal number, 91, 96
Higher order differentials, 578
Histogram, 625, 626, 628, 633
of probabilities, 653, 654, 656

Homogeneous, 533
first order differential equations, 533

Horizontal bar chart, 621
component, 309, 324

Hyperbola, 221, 414
rectangular, 221, 414

Hyperbolic functions, 180, 432
differentiation of, 432
graphs of, 182
inverse, 435
solving equations, 186

Hyperbolic identities, 184, 199
logarithms, 23, 33

Hypotenuse, 124
Hypotheses, 691

Identities, hyperbolic, 180
Identities, trigonometric, 190
i, j, k notation, 317
Imaginary part, 254
Implicit differentiation, 419
function, 419

Independent event, 640
Index, 22
Indices, laws of, 3
Indicial equations, 27, 587
Industrial inspection, 653
Inequalities, 43

involving a modulus, 44
quadratic functions, 47
quotients, 45
square functions, 46

rules of, 43
Inflexion, points of, 362, 369
Initial conditions, 602
value theorem, 745, 831

Integrals, double, 515
triple, 517

Integrating factor, 537
Integration, 375
algebraic substitution, 473
applications of, 383
areas, 384
centroids, 388
mean value, 385
rms value, 385
second moment of area, 392
t = tan θ /2 substitution, 494
volumes, 386

by partial fractions, 489
by parts, 500
change of limits, 476
cosh θ substitution, 487
definite, 380
hyperbolic substitutions, 478
numerical, 73, 520
reduction formulae, 506
sine θ substitution, 483
sinh θ substitution, 485
standard, 376
tan θ substitution, 484
trigonometric substitutions, 478

Interpolation, 672
Inverse functions, 128, 229, 435
hyperbolic, 435
differentiation of, 442

trigonometric, 230, 435
differentiation of, 435, 437

Inverse Laplace transforms, 747
of Heaviside functions, 759
using partial fractions, 750

Inverse matrix, 282, 285
z-transform, 832

Invert-gate, 113
Irregular areas, 241
volumes, 244

Iterative methods, 79

Karnaugh maps, 108
Karnaugh, Maurice, 108
Kutta, Martin Wilhelm, 553

Lagging angle, 169, 172
Lamina, 392

Laplace, Pierre-Simon, 736
Laplace transforms, 735
common notations, 736
definition, 736
derivatives, 743
for differential equations, 761
for simultaneous differential

equations, 766
Heavisude function, 754
inverse, 747
using partial fractions, 750

linearity property, 736
of elementary functions, 736, 742
of H(t – c), 758
of H(t – c).(t – c), 758
properties of, 741

Laplace’s equation, 603, 605, 611
Latent roots, 296
Laws of Boolean algebra, 105
growth and decay, 36
indices, 3
logarithms, 24, 425
probability, 640

Leading angle, 169, 172
Least-squares regression lines, 671
Legendre, Adrien-Marie, 596
Leibniz notation, 347
theorem, 580

Leibniz, Gottfried Wilhelm,
91, 580

Leibniz-Maclaurin method, 582
Legendre polynomials, 596, 598
Legendre’s equation, 596
L’Hôpital, Gillaume Francois

Antoine, 76
L’Hôpital’s rule, 76
Limiting values, 75, 346
Linear correlation, 666
first order differential equation, 537
regression, 671
second order differential equation,

560
velocity, 156

Locus problems, 271
Logarithmic differentiation, 425
forms of inverse hyperbolic

functions, 440
scale, 40

Logarithms, 22
graphs of, 28, 221
laws of, 24, 425

Logic circuits, 112
Log-linear graph paper, 40
Log-log graph paper, 40
Lower class boundary value, 624
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Maclaurin, Colin, 69, 582
Maclaurin’s series/theorem, 68, 69
numerical integration, 73

Mann-Whitney test, 723–727
Matrices, 277
to solve simultaneous equations, 288

Matrix, 277
adjoint, 285
determinant of, 281, 283
inverse, 282, 285
reciprocal, 282, 285
transpose, 285
unit, 281

Maxima, minima and saddle points,
459, 460

Maximum point, 362
practical problems, 365

Mean value, 385, 631, 632, 633
of waveform, 245

Measures of central tendency, 631
Median, 631, 632
Mid-ordinate rule, 242, 523
Minimum point, 362
practical problems, 365

Minor, 283
Mode, 631, 632
Modulus, 259
Moment of a force, 337
Morland, Sir Samuel, 91

Nand-gate, 113
Napier, John, 34
Napierian logarithms, 23, 33
Natural logarithms, 23, 33
Newton, Sir Isaac, 86
Newton-Raphson method, 86
Non-homogeneous differential equation,

560
Non-right-angled triangles, 135
Nor-gate, 113
Norm, 333
Normal, 371
approximation to a binomial

distribution, 692, 696
distribution, 658
equations, 672
probability curve, 658
paper, 663

Nose-to-tail method, 307
Not-function, 101
gate, 113

Numerical integration, 73, 520
accuracy of, 528
methods for first order differential

equations, 542

Numerical method of harmonic
analysis, 174, 801

Octal numbers, 91, 94
Odd function, 181, 182, 228, 788
Ogive, 625, 629
Order of precedence, 4
Or-function, 101
-gate, 113

Osborne’s rule, 184

Pappus of Alexandria, 390
Pappus theorem, 390
Parabola, 414
Parallel axis theorem, 393
Parallelogram method, 307
Parameter, 413
Parametric equations, 413, 414
Partial differential equations, 601
Partial differentiation, 446
equations, 601–614

Partial fractions, 15
inverse Laplace transforms, 747
integration, using, 489
linear factors, 16, 489
quadratic factors, 20, 492
repeated linear factors, 18, 491

Partial integration, 602
Particular integral, 568
solution of differential equation,

402, 561
Pascal, Blaise, 59, 91
Pascal’s triangle, 59
Pearson product-moment correlation

coefficient, 666
Percentage component bar chart,

621
Percentile, 636
Percentile values for Chi-square

distribution, 711
Student’s t distribution, 687, 689

Period, 168, 776
Periodic function, 168, 227, 320, 776
combination of, 319–328

Periodic time, 172
Permutations, 645
Perpendicular axis theorem, 393
Phasor, 171, 321, 818
Pictogram, 621
Pie diagram, 621, 623
Planimeter, 241
Point and interval estimates, 682
Point of inflexion, 362, 369
Poisson distribution, 655, 696
Poisson, Simeon Denis, 655
Polar co-ordinates, 143, 144

curves, 222
form, 254, 259

Poles, 752
Pole-zero diagram, 752, 753
Pol/Rec function, 147
Polynomial division, 8
Polynomial, Legendre’s, 596, 598
Population, 620
Power series for ex, 30
cosh x and sinh x, 188

Power series methods of solving
differential equations, 577

by Frobenius’s method, 584, 585
by Leibniz-Maclaurin method, 582

Powers of complex numbers, 267
Power waveforms, 212
Practical binomial theorem, 64
trigonometry, 138

Precedence, 4
Principal value, 260
Probability, 639, 640
laws of, 640
paper, 663

Product-moment formula, 666
Product rule of differentiation, 350
Properties of circles, 149
z-transforms, 829

Pythagoras of Samos, 124
Pythagoras, theorem of, 124

Quadrant, 150
Quadratic equations, 7
graphs, 220
inequalities, 43

Quartiles, 636
Quotient rule of differentiation, 352

Radian, 151, 172
Radius, 149
of curvature, 417
of gyration, 392

Radix, 91
Raphson, Joseph, 86
Rates of change, 357, 453
Reciprocal matrix, 282, 283
ratios, 126

Rectangular hyperbola, 221, 414
Recurrence formula, 582
relation, 582

Reduction formulae, 506
Reduction of exponential laws to

linear form, 40
Regression, 671
coefficients, 672
linear, 671
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Relation between trigonometric and
hyperbolic functions, 198

Relative frequency, 620
velocity, 316

Reliability, 682
Remainder theorem, 12
Resolution of vectors, 309
Resultant phasor by complex

numbers, 326
horizontal and vertical

components, 324
phasor diagrams, 321
plotting, 320
sine and cosine rules, 323

Right-angled triangles, 131
rms values, 385
Rodrigue’s formula, 599
Rodrigues, Benjamin Olinde, 599
Roots of complex numbers, 268
Runge, Carl David Tolme, 553
Runge-Kutta method, 553

Saddle point, 460
Sample, 620, 678
Sampling and estimation theories,

678
distribution of the means, 679
distributions, 679
statistics, 683

Scalar product, 330, 331
application of, 334

Scalar quantity, 305
Scatter diagram, 666
Secant, 125
Sech, 181
Second moment of area, 392
order differential equations,

560, 567
shift theorem, 759

Sector, 150
area of, 152

Segment, 150
Semicircle, 150
Semi-interquartile range, 637
Separation of variables, 402, 608
Sequences, 826
Series, binomial, 58, 60
exponential, 30
Maclaurin’s, 69
sinh and cosh, 188

Set, 620
Sign test, 716
table of critical values, 718

Simple equations, 5
Simpson, Thomas, 242, 524
Simpson’s rule, 242, 524

Simultaneous differential equations
by Laplace transforms, 766

Simultaneous equations, 7
by Cramers rule, 293
by determinants, 290
by Gaussian elimination, 294
by matrices, 288

Sine, 125
curves, 167
rule, 134, 323
wave, 166
wave production, 166

Sine θ substitution, 483
Significance testing, 691
tests for population means, 698

Sinh, 180
series, 188

Sinh θ substitution, 485
Sinusoidal form, A sin(ωt ± α), 171
Small changes, 372, 456
Solution of any triangle, 134
right-angled triangles, 131

Space diagram, 317
Spectrum of waveform, 817
Square wave, 175
Standard curves, 219
derivatives, 348
deviation, 634
error of the means, 681
integration, 375

Stationary points, 362
Statistical table of normal curve,

661
Straight line, 220
Student’s t distribution, 687, 689
Successive differentiation, 355
Sum to infinity, 54
Switching circuits, 101
Symmetry relationships, 814

Table of Laplace transforms, 737
normal curve, 661
z-transforms, 828

Tally diagram, 624, 625, 627
Tan θ substitution, 484
Tangent, 125, 150, 371
Tangential velocity, 338
Tanh, 180
Taylor, Brook, 543
Taylor’s series, 543
Testing for a normal distribution,

663
Theorems:
binomial, 58, 60
Maclaurin’s, 68, 69

Pappus, 390
Parallel axis, 393
Perpendicular axis, 393
Pythagoras, 124

Total differential, 452
Transfer function, 752
Transformations, 222
Translation of z-transform, 831
Transmission equation, 605
Transposition of formulae, 6
Trapezoidal rule, 241, 520, 802
Trial solution, 606
Triangle, area of, 135
Trigonometric ratios, 125
evaluation of, 127
functions, 198, 220
and hyperbolic substitutions,

integration, 478
equations, 192–197
identities, 190
inverse function, 230
waveforms, 162

Trigonometry, 123, 124
practical situations, 138

Triple integrals, 517
t = tan θ /2 substitution, 494
Turning points, 362
Type 1 and type 2 errors, 692

Ungrouped data, 621–624
Unit matrix, 281
step function, 754
triad, 330

Universal logic gates, 116
Upper class boundary value, 624

Vector addition, 307
nose-to-tail method, 307
parallelogram method, 307

Vector drawing, 306
equation of a line, 329
products, 330, 335
applications of, 337

quantities, 305
Vector subtraction, 314
Vectors, 305
Velocity and acceleration, 359
Vertical bar chart, 621
component, 309, 324

Volumes of irregular solids, 244
solids of revolution, 386

Wallis, John, 512
Wallis’s formula, 512
Wave equation, 604, 605
Waveform analyser, 174
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Wilcoxon signed-rank test, 719, 720
Work done, 334

Zeros (and poles), 752
Z-transforms, 825
definition of, 826

derivative of, 831
final value theorem, 831
first shift theorem, 829
initial value theorem, 831
inverse, 832
properties of, 829

second shift theorem, 830
sequences, 826
table of, 828
to solve difference equations,

834
translation, 831
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