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PREFACE

Today	questions	concerning	the	foundations	of	mathematics	are	again	receiving
considerable	attention.	In	particular,	set	theory	has	become	an	important	area	of
investigation	 because	 of	 the	 way	 in	 which	 it	 seems	 to	 permeate	 so	 much	 of
contemporary	 mathematical	 thought.	 The	 subject	 of	 set	 theory	 may	 be
considered	 as	 originating	 with	 Georg	 Cantor,	 who	 attempted	 to	 organize
concepts	on	collections	of	objects	 into	a	structure	which	could	serve	as	a	basis
for	 a	mathematical	 theory	of	 the	 infinite.	The	 infinite,	 in	 this	 sense,	 is	 not	 the
“potential,”	 unattainable	 type	 used	 in	 the	 theory	 of	 limits,	 but	 the	 “actual”	 or
proper	type	conceived	as	a	completely	determined	object	lying	beyond	all	finite
magnitudes.	How	well	Cantor	succeeded	is	easily	recognized	in	the	extension	of
the	 theory	 from	 the	 original	 naive,	 plausible	 approach	 to	 the	 present-day
abstract,	 axiomatic	 development	 which	 has	 become	 the	 basis	 of	 structure	 in
algebra,	geometry,	and	analysis.
In	 the	 English	 language	 there	 exists	 today	 only	 scattered	 fragmentary	 or

advanced	 treatises	 on	 the	 subject.	 There	 is	 now	 a	 need	 for	 a	 treatment	 of	 set
theory	 in	 English,	 from	 a	 less	 than	 abstract	 axiomatic	 approach,	 sufficiently
elementary	to	serve	as	an	introduction	to	the	subject	for	college	and	high	school
instructors,	college	students,	and	interested	laymen.	This	book	meets	that	need.
A	naive	approach,	which	depends	upon	observation	of	the	concrete	world	for	its
development	 and	meaning,	 is	 a	 natural	 way	 to	 introduce	 the	 subject,	 and	 this
procedure	is	used	in	the	following	exposition.	Little	by	little,	certain	properties
and	principles	are	developed,	which	 in	 turn	are	used	 to	prove	further	 theorems
concerning	sets	as	collections	of	abstract	entities.	Thus	one	is	led	from	concrete
finite	sets,	 to	cardinal	numbers,	 to	 infinite	cardinals,	and	 thence	 to	ordinals	via
the	use	of	ordinal-types.
Abstract	set	theory	based	on	an	axiomatic	system	is	not	treated	here.	For	those

who	 care	 to	 pursue	 the	 subject	 further,	 the	 appended	 bibliography	 provides
directed	 study.	 The	 axiom	 of	 choice	 and	 its	 relation	 to	 the	 theorem	 of	 well-
ordering	 have	 had	 tremendous	 effect	 on	 the	whole	 development	 of	 set	 theory,
but	 these	 are	 matters	 of	 concern	 to	 the	 mathematician	 rather	 than	 to	 the
neophyte.	 This	 translation	 is	 offered	with	 the	 hope	 that	 it	will	 provide	 for	 the
reader	sufficient	background	and	impelling	interest	for	further	study.
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1

INTRODUCTION

“Geometry	and	analysis,	differential	and	integral	calculus	deal	continually,	even
though	 perhaps	 in	 disguised	 expression,	 with	 infinite	 sets.”	 Thus	 wrote	 F.
Hausdorff	(1914)	in	his	Fundamentals	of	the	Theory	of	Sets.	To	attain	a	genuine
understanding	and	mastery	of	these	various	branches	of	mathematics	requires	a
knowledge	of	their	common	foundation,	namely,	the	theory	of	sets.
We	 may	 ask,	 what	 are	 the	 things	 with	 which	 mathematics	 concerns	 itself?

They	are,	in	every	case,	sets	of	numbers	or	sets	of	points—generally	infinite	sets,
that	is,	sets	which	contain	an	infinite	number	of	things.
The	 reader	 may	 question	 the	 idea	 of	 approaching	 the	 infinite	 by	 means	 of

mathematical	 analysis,	 thus	bringing	 it	 under	 the	control	of	mathematical	 laws
and	 formulas.	 But	 this	 approach	 is	 the	 essence	 of	 the	 theory	 of	 sets.	 For	 this
purpose,	 our	 concept	 of	 the	 infinite	 must	 be	 separated	 from	 vague	 emotional
ideas	 and	 from	 the	 infinite	 of	 nonmathematical	 realms	 (the	 infinite	 of
metaphysics).
Before	 Cantor’s	 time,	 the	 infinite	 in	 mathematics	 was	 an	 obscure	 and

unpredictable	area.	Even	Gauss,	in	1831,	was	of	the	opinion	that:	“The	infinite	is
only	 a	 ‘manner	 of	 speaking’	 in	 that	 one	 actually	 talks	 of	 limits	which	 certain
ratios	 approach	 as	 closely	 as	 desired,	while	 other	 ratios	 are	 permitted	 to	 grow
larger	without	bounds.”	Gauss,	himself,	rejected	the	use	of	an	“infinite	number,”
as	 something	 which	 is	 never	 permitted	 in	 mathematics.	 He	 recognized	 the
infinite	only	in	the	sense	of	a	process	of	becoming	infinite	in	the	limit:	 	….
One	 of	 Cantor’s	 predecessors,	 Bolzano,*	 recognized	 that	 the	 infinite	 in

mathematics	 was	 replete	 with	 paradoxes	 (contradictions)	 obstructing
arithmetical	treatment	of	the	subject.	It	was	Cantor,	however,	who	taught	us	how
to	 calculate	 with	 the	 “infinite”	 through	 his	 introduction	 of	 clearly	 determined
and	 sharply	 differentiated	 infinite	 numbers,	with	well-defined	 operations	 upon
them:	“…	It	concerned	an	extension;	 that	 is,	a	continuation	of	 the	sequence	of
real	integers	beyond	the	infinite.	As	daring	as	this	might	seem,	I	not	only	express
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the	hope,	but	also	the	firm	conviction	that,	in	time,	this	extension	will	come	to	be
looked	upon	as	thoroughly	simple,	acceptable,	and	natural.”
After	a	ten-year	delay,	when	he	had	come	to	recognize	that	his	concepts	were

indispensable	 to	 the	 further	 development	 of	 mathematics,	 Cantor	 decided	 to
publish	his	creation.	 In	 this	work,	he	generalized	 the	 laws	and	 rules	applied	 to
finite	numbers	so	that	they	would	extend	beyond	the	domain	of	these	numbers.
He	explained	how	one	could	compute	with	infinite	sets,	using	the	same	methods
that	are	applied	to	finite	sets.	With	a	few	clearly	defined	concepts	such	as	order
(going	 back	 to	Dedekind),	 power	 or	 cardinal	 number,	 denumerability,	 etc.,	 he
raised	 the	 theory	 of	 sets	 to	 a	 science	 which	 no	 longer	 contained	 fundamental
barriers	 between	 the	 finite	 and	 the	 infinite—one	 that	 made	 the	 infinite
understandable.
Today	we	know	that	Cantor,	as	Hilbert	has	said,	 thereby	“created	one	of	 the

most	 fertile	 and	 powerful	 branches	 of	mathematics;	 a	 paradise	 from	which	 no
one	can	drive	us	out.”	The	theory	of	sets	stands	as	one	of	the	boldest	and	most
beautiful	 creations	 of	 the	 human	 mind;	 its	 construction	 of	 concepts	 and	 its
methods	of	proof	have	reanimated	and	revitalized	all	branches	of	mathematical
study.	The	theory	of	sets,	indeed,	is	the	most	impressive	example	of	the	validity
of	Cantor’s	statement	that,	“The	essence	of	mathematics	lies	in	its	freedom.”
Mathematics	exercises	its	freedom	in	asking	questions.	Who	has	not	at	some

time	posed	questions	of	the	following	kind?
Are	there	more	whole	numbers	than	there	are	even	numbers?
Does	an	unbounded	straight	line	contain	more	points	than	a	line	segment?
Does	a	plane	contain	fewer	points	than	space?
Are	the	rational	points	densely	situated	on	the	number	scale?
In	particular,	what	do	∞	+	1,	and	∞	·3,	and	∞2	denote?
People	refrained	from	discussing	these	questions	publicly	since	such	inquiries

seemed	naive	or	stupid	and,	above	all,	because	they	appeared	to	have	no	answer.
However,	 the	 theory	 of	 sets	 gives	 clear	 answers	 possessing	 mathematical
precision	to	all	these	questions,	when	the	questions	are	properly	phrased.
The	foundation	of	the	general	theory	of	sets	has	now	been	established	for	over

half	 a	 century.	 To	 understand	 it	 calls	 for	 scarcely	 any	 prerequisite	 technical
knowledge.	 All	 that	 is	 necessary	 is	 an	 interest	 in	 establishing	 the	 “infinitely
large”	and	a	patience	for	grasping	somewhat	difficult	concepts.	Even	though	the
theory	of	sets	starts	in	the	intuitive-concrete,	it	nevertheless	climbs	to	a	very	high
degree	of	abstraction.
This	book	 is	an	 introduction	 to	 the	 theory	of	 sets.	 In	 the	 first	 few	pages	 the

fundamental	 concepts	will	 be	 developed	 through	 the	 use	 of	well-known	 finite
sets.	Although	the	theory	of	finite	sets	is	nothing	else	than	mere	arithmetic	and
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permutations	 and	 combinations,	 yet	 it	 helps	 to	 provide	 the	 terminology	 and
symbolism	 of	 set	 theory.	 These	 concepts	 will	 provide	 the	 basis	 for	 the
subsequent	treatment	of	the	infinite	sets.	The	general	theory	of	sets	ends	with	a
discussion	of	ordered	sets.	A	few	important	theorems	on	point	sets	are	appended
in	a	supplement.	Definitions	that	produce	paradoxes	are	merely	alluded	to	in	the
concluding	paragraphs.
*In	a	work	published	in	1851	after	his	death.
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2

FINITE	SETS

I.	Set,	Element,	Equality	of	Sets
1.	 What	 is	 a	 set?	 It	 is	 not	 that	 which	 we	 usually	 refer	 to	 in	 our	 everyday

speech,	when	we	speak	of	a	large	3	of	people,	of	ships,	or	of	things.	Rather:

A	set	is	a	collection	of	definite	distinct	objects	of	our	perception	or	of	our
thought,	which	are	called	elements	of	the	set*

2.	The	following	are	examples	of	sets:
(a)	In	Figure	1,	the	four	persons	sitting	at	the	table	form	a	set	of	four	persons

because	they	are	four	definite	distinct	objects	of	our	perception.	Father	A,	mother
A,	son	Fred	A,	and	son	Peter	A	are	to	be	considered	as	a	whole,	as	a	set	called
family	A.	The	four	chairs	form	a	set	of	four	elements;	the	four	spoons,	the	four
forks,	the	four	knives,	the	four	plates;	each	form	a	set	of	four	elements.	All	the
eating	 utensils	 can	 be	 considered	 as	 forming	 one	 set	B,	 a	 set	 of	 12	 elements,
provided	we	define	the	elements	of	B	to	consist	of	the	eating	utensils.
In	 the	fruit	bowl	 there	 is	a	set	of	seven	pieces	of	fruit.	We	can	also	say:	 the

bowl	contains	a	set	of	four	apples	and	set	of	three	pears.
Notice	 that	 the	 elements	 belonging	 to	 a	 set	 are	 determined	 by	 the

distinguishing	characteristics	of	the	set.	For	each	thing	considered,	one	must	be
able	to	say	whether	or	not	it	is	an	element	of	the	set.	The	set	of	all	male	members
of	family	A	hence	contains	the	elements,	father	A,	son	Fred	A,	and	son	Peter	A.
The	set	of	female	members	of	family	A	contains	only	one	element—mother	A.	In
mathematics	 there	 can	 also	 be	 a	 set	 so	 small	 that	 it	 has	 only	 one	 element.	 In
order	to	have	greater	generality,	it	is	also	convenient	to	have	an	empty	set.
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Figure	1.

An	empty	set	contains	no	element.

The	set	of	plums	in	the	fruit	bowl	(Figure	1)	is	an	example	of	an	empty	set	or	a
null-set.

(b)	If	a	senior	class	has	15	students,	these	15	elements	form	the	set	of	seniors.
The	defining	property	of	this	set	is:	each	of	its	elements	is	a	student	of	this	senior
class.
Suppose	the	classroom	for	these	15	students	contains	a	set	of	15	seats	only.	If

the	15	senior	students	would	occupy	the	15	seats	in	every	possible	way,	then,	by
the	 laws	 of	 permutations,	 *	 there	would	 be	 15!	 =	 1,307,674,368,000	 different
arrangements.	 Thus	 the	 set	 of	 seating	 arrangements	 contains	 more	 than	 1.3
trillion	elements.	(1.3	trillion	seconds	is	more	than	40,000	years!)
3.	Combining	physical	objects	into	sets	is	much	rarer	in	mathematics	than	is

the	construction	of	sets	from	abstract	objects—objects	of	our	thought.	Examples
of	abstract	objects	are:	numbers,	points,	triangles,	and	the	like.
4.	The	following	are	examples	of	abstract	sets:
(a)	 The	 set	 of	 all	 single-digit	 natural	 numbers	 contains	 the	 elements

1,2,3,4,5,6,7,8,9.	These	are	nine	definite	and	distinct	objects	all	of	which	belong
to	a	set	M	because	they	have	the	particular	property	of	being	single-digit	natural
numbers.
(b)	 Let	 the	 set	 N	 contain	 the	 numbers	 9,8,7,6,5,4,3,2,1.	 To	 designate	 that

certain	things	are	elements	of	a	set,	we	enclose	them	in	braces.	Thus	we	write:

M	=	{1,2,3,4,5,6,7,8,9};

N	=	{9,8,7,6,5,4,3,2,1}.
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The	 statements	 “5	 is	 an	 element	 of	M”	 and	 “5	 is	 an	 element	 of	 N”	 are
respectively	expressed	in	symbols	by	“5	∈	M”	and	“5	∈	N”.	The	symbol	“∈”	is
read	 “is	 an	 element	 of”	 or	 “belongs	 to”;	 correspondingly,	 the	 symbol	 “∉”
signifies	“is	not	an	element	of.”*
5.	 In	 the	 foregoing	 examples,	 the	 sets	M	 and	N	 contain	 the	 same	 elements.

Except	 for	 the	 way	 in	 which	 they	 are	 arranged,	 there	 is	 no	 difference	 in	 the
elements	of	 each	 set.	 In	 this	 case	we	 say	 that	 the	 sets	M	 and	N	 are	 equal.	We
write	this	M	=	N.

Two	sets	are	equal	if	and	only	if	they	contain	the	same	elements.

From	this	definition	of	equality	of	sets,	we	conclude	that:	the	equality	relation
is	reflexive,	symmetric	and	transitive,	that	is;	(a)	M	=	M;	(b)	If	M	=	N,	then	N	=
M;	and	(c)	If	M	=	N,	and	N	=	P,	then	M	=	P.
6.	 Cantor’s	 definition	 of	 a	 set	 demands	 that	 the	 elements	 be	 definite	 and

distinct.	The	same	element	cannot	appear	several	times	in	the	same	set.	Thus	the
letters	g,e,o,m,e,t,r,y,	form	a	set	only	after	one	of	the	two	letters	“e”	is	removed.
Then

M	=	{e,g,m,o,r,t,y}.

7.	Examples	of	sets	from	geometry:
(a)	The	set	of	lattice	points†	K,	in	the	domain	defined	by	the	circular	area	x2	+

y2	 	4	contains	13	points	(see	Figure	2).
(b)	The	set	of	 lattice	points,	Q,	on	and	within	 the	square	with	vertices	(0,2),

(2,0),	(0,–2),	and	(–2,0)	contains	the	same	elements.	Hence	the	two	sets	of	points
are	equal,	and	we	write:	K	=	Q.
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Figure	2.	Sets	of	lattice	points.

Exercises
1.		Search	your	surroundings	for	“things”	that	may	be	combined	as	“elements	of

sets.”	(Hint:	windows,	seats,	books,	….)
2.	 	If	in	the	preceding	Example	7	we	eliminate	the	lattice	points	from	K	and	Q

that	lie	on	the	circle	and	square,	respectively,	will	the	new	sets	be	equal?
3.		Is	the	set	of	lattice	points	lying	in	the	region	bounded	by	the	circles	x2	+	y2	=

12	and	x2	+	y2	=	14	,	an	empty	set?	(Draw	a	graph.)
4.		Form	the	set	of	all	proper	fractions	whose	numerators	and	denominators	are

relatively	prime*	single-digit	natural	numbers.
5.	 	 Why	 does	 the	 set	 of	 improper	 fractions	 (values	 greater	 than	 one)	 whose

numerators	 and	 denominators	 are	 relatively	 prime	 single-digit	 natural
numbers	contain	exactly	eight	elements	less	than	the	set	in	Exercise	4?

II.	Subset,	Complementary	Set,	Union,	Intersection
1.	A	 set	 N	 is	 called	 a	 subset	 of	 a	 set	M,	 (and	M	 a	 superset	 of	 N)	 if	 every

element	of	N	is	also	an	element	of	M.	We	write	this:	“N	⊆	M	if,	given	a	∈	N,
then	 a	∈	M”	The	 symbol	 “⊆”	 is	 read	 “is	 a	 subset	 of”	 or	 “is	 included	 in.”	 If,
furthermore,	N	≠	M,	then	N	is	called	a	proper	subset	of	M.	We	write	this:	“N	⊂
M”	and	read	it:	“N	is	a	proper	subset	of	M.”	In	this	case,	M	contains	at	least	one
element	that	does	not	belong	to	N.	In	case	N	=	M,	N	is	called	an	improper	subset
of	M.	Note	that	every	set	is	an	improper	subset	of	itself.	We	also	agree	that	by
definition:

The	empty	set	is	a	subset	of	every	set

2.	If	N	is	a	proper	subset	of	M,	then	the	set,	R,	of	elements	of	M	which	do	not
belong	to	N,	is	called	the	complementary	set	to	N	over	M.

We	write	this	“R	=	M	–	N.”
3.	Examples:	A	part	of	the	class	of	seniors,	which	contained	15	elements	[see

Sec.	I,	2b)],	is	used	to	form	a	soccer	team.	Then	the	set	of	players,	F,	is	a	subset
of	the	set	of	seniors,	P.	All	11	elements	of	F	are	likewise	elements	of	P.	On	the
contrary,	 P	 contains	 elements	 that	 are	 not	 contained	 in	 F.	 Therefore,	 F	 is	 a
proper	subset	of	P.	The	complementary	set	R	to	F	over	P,	(R	=	P	–	F),	contains
as	elements	the	four	nonplaying	spectators	from	the	senior	class.	Here	R	is	also	a
subset	of	P.	We	can	write	these	properties	briefly	thus:
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Figure	3.	P,	set;	F,	subset;	R,	complementary	set.

The	11	students	on	the	football	team	can	occupy	the	11	positions	on	the	team
in	 11!	 different	 arrangements.	 Besides	 these	 11!	 =	 39,916,800,	 different
arrangements,	 it	 is	 possible	 to	 select	 many	 other	 combinations	 of	 11	 players
from	the	15	seniors.	If	from	the	15	elements	belonging	to	set	P,	we	construct	all
the	possible	different	subsets	of	11	elements,	there	will	be

Then	the	set	of	all	possible	team	arrangements	of	11	players	from	15	seniors

contains	11!· 	=	54,486,432,000	elements.

4.	From	the	set	M	=	{1,2,3}	we	shall	form	all	the	possible	subsets.	First	there
is	the	null	set,	M0	=	{	}.	The	subsets	with	only	one	element	are:	M11	=	{l}	M12	=
{2},	M13	=	{3}.	The	subsets	with	two	elements	are:	M21	=	{1,2};	M22	=	{1,3};
M23	=	{2,3}.	The	improper	subset	is	M3	=	{1,2,3}.	Thus	the	set	M	=	{1,2,3}	has
exactly	eight	or	23	subsets.
Using	the	formula	for	the	number	of	combinations	of	n	things	used	0,1,2,3,…

,p,…,n	at	a	time,†	it	is	easy	to	establish	the	following	theorem.

For	every	set	of	n	elements	there	are	exactly	2n	subsets.

5.	The	union	of	two	sets	is	the	set	of	all	elements	each	of	which	belongs	to	at
least	one	of	the	two	sets.
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The	union	of	two	sets	is	symbolized	by	M	∪	N	(read	“the	union	of	M	and	N”)
and	 the	 union	 set	 contains	 the	 elements	 of	M	 and	 of	N,	 except	 that	 elements
contained	in	both	M	and	N	are	used	only	once.
6.	The	 intersection	 of	 two	 sets	 is	 the	 set	 of	 elements	 each	 of	which	 belongs

simultaneously	to	both	sets.
The	intersection	of	two	sets	is	symbolized	by	M	∩	N	(read	“the	intersection	of

M	and	N”).
7.	Examples:
(a)	Consider	the	sets:

Note	that	M	contains	all	one-digit	natural	numbers;	G,	only	the	even,	U	only
the	 odd,	 and	P	 only	 the	 prime	 one-digit	 natural	 numbers.	 Now	 form	 subsets,
complementary	 sets,	 unions,	 and	 intersections.	 The	 following	 are	 some	 of	 the
possible	relations:

(α)		

(β)		

(γ)		

(δ)		

In	 the	 last	 intersection,	 note	 that	G	 and	U	 have	 no	 common	 elements—the
elements	of	the	one	set	are	entirely	different	from	the	elements	of	the	other	set.
We	say	these	sets	are	disjoint.	The	intersection	of	two	disjoint	sets	is	the	empty
set.
(ε)	The	set	M	has	29	=	512	subsets.	They	are:	{	},	{1},	{2},	…	{9},	{1,2},	…

{8,9},	{1,2,3},	…	{1,2,3,4,5,6,7,8,9}.
(b)	 Computation	 with	 the	 sets	M	 =	 {m,o,r,g,e,n},	N	 =	 {n,a,c,h,t},	 and	P	 =
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{p,r,a,c,h,t}.

(The	last	equality	says	that	the	complementary	set	to	the	intersection	N	∩	P	over
the	set	N	is	{n}.)

8.	Some	well-known	laws	of	operation	for	ordinary	arithmetic	are	also	valid	in
the	formation	of	unions	and	intersections	of	sets.	This	is	illustrated	in	Example
(b)	above	where	we	had:
(a)	The	commutative	laws:

(b)	The	associative	laws:

(c)	The	distributive	law:

Figure	4.	Sets	of	lattice	points
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9.	A	geometrical	example:	In	Figure	4,	there	are	three	sets	of	lattice	points—
the	 set	K	 of	 lattice	points	 interior	 to	 the	 circle	x2	 +	y2	 =	7,	which	 contains	21
points;	the	set	Q	of	lattice	points	interior	to	the	square	with	vertices	(±2.5,±2.5),
which	 contains	 25	 points;	 and	 the	 set	 R	 of	 lattice	 points	 interior	 to	 the
rectangular	area	with	vertices	(±3.5,±0.5),	which	contains	seven	elements.	Here,
K	is	a	proper	subset	of	Q;	we	write	K	⊂	Q.	The	complementary	set	M	to	K	over
Q,	 that	 is	M	 =	 Q	 –	 K,	 contains	 four	 elements	 marked	 x	 in	 the	 figure.	 The
intersection	D1	of	R	and	K,	that	is	D1	=	R	∩	K,	contains	five	elements	designated
by	 •	 .	 The	 intersection	D2	 of	R	 and	Q	 (R	 ∩	Q	 =	D2)	 contains	 the	 same	 five
elements	and	D1	=	D2.	The	complementary	set	N	 to	D1	over	R	or	N	=	R	–	D1
contains	the	two	elements	marked	 	.	The	sets	N	and	Q	are	disjoint	and	hence	N
∩	Q	=	{	}.	The	union	K	∪	R	contains	23	elements.	Finally,	the	union	(K	∪	Q)	∪
R	contains	as	elements	all	27	marked	lattice	points.

Exercises
1.		Construct	all	the	subsets	of	the	set	M	=	{2,3,5,7}.	How	many	are	there?
2.	 	 Show	 that	 for	 two	 sets	M	 and	 N,	 N	⊂	M,	 the	 following	 statements	 are

equivalent:	(a)	M	∩	N	=	N;	(b)	M	∪	N	=	M.
3.	 	From	which	of	 the	following	statements	can	we	conclude	that	M	and	N	are

equal?

4.		How	many	different	basketball	teams	(each	a	subset	of	five	elements)	can	be
formed	from	a	set	of	ten	students?	Disregard	the	actual	position	held	by	the
players.

5.	 	 In	 a	 senior	 class,	 all	 students	 are	 preparing	 to	 take	 college	 entrance
examinations.	Is	the	set	of	students	preparing	for	the	examinations	a	proper	or
improper	set	of	the	senior	class?

III.	Equivalent	Set,	Cardinal	Numbers
1.	 In	our	first	consideration	of	sets	we	dealt	with	a	set	A	containing	the	four

members	of	the	family	called	A	[Sec.	I].	We	also	recognized	a	set	of	four	plates,
a	 set	 of	 four	 chairs,	 a	 set	 of	 four	 knives,	 and	 a	 set	 of	 four	 apples.	 What	 is
common	to	all	 these	sets?	Obviously,	 the	property	that	each	of	 the	sets	has	the
same	number	of	elements,	namely	four.	 In	general,	what	characteristic	remains
for	a	set	when	one	disregards	the	physical	nature	of	the	elements	of	a	set?	It	is
the	 number	 of	 its	 elements;	 and	 it	 is	 in	 the	 number	 of	 elements	 that	 the
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previously	mentioned	sets	agree.
2.	In	the	second	example	(page	5),	the	set	of	senior	students,	P,	contained	15

elements.	The	classroom	contained	a	set	of	15	seats,	which	we	shall	call	S.	The
sets	P	 and	S	have	 the	same	power*;	 they	are	 represented	by	 the	same	cardinal
number	15.
It	is	easy	to	establish	the	fact	that	the	different	sets	P	and	S	contain	the	same

number	 of	 elements.	 For	 this	 purpose	 one	 needs	 only	 to	 count	 the	 set	 P	 of
students:	 “1,2,3,…,15,”	 and	 then	 the	 set	S	 of	 seats:	 “1,2,3,…,15.”	But	 the	 fact
can	be	established	in	a	simpler	way.	A	person	who	is	unfamiliar	with	counting
could	merely	request	the	young	people	to	be	seated.	If	every	student	finds	a	seat
and	no	seats	remain	unoccupied,	one	recognizes	by	this	very	correspondence	that
the	sets	P	and	S	have	the	same	number	of	elements;	they	match	each	other;	they
are	equivalent.

Two	 sets	M	 and	 N	 are	 equivalent	 to	 each	 other	 if	 their	 elements	 can	 be
related	so	that	 to	every	element	of	M	there	corresponds	one	and	only	one
element	of	N,	and	conversely.

Each	 element	 of	M	must	 correspond	 to	 a	 single	 element	 of	N,	 and	 likewise
each	 element	 of	 N	 must	 correspond	 to	 a	 single	 element	 of	M.	 This	 kind	 of
correspondence	 is	called	a	one-to-one	correspondence	between	 the	elements	of
M	and	N.

3.	An	example:

The	set	B	=	{a,b,c}	and	the	set	Z	=	{1,2,3}	have	the	same	number	of	elements
(three);	they	are	equivalent	sets.	The	one-to-one	correspondence	(mapping	of	B
upon	Z)	can	be	made	in	any	one	of	the	following	ways,	(3!	or	six	of	them).

In	 the	 first	 column,	 the	 correspondence	 assigns	 the	 element	 a	 of	 set	B	 to	 the
element	1	of	set	Z,	and	conversely	the	element	1	of	Z	to	the	element	a	of	B,	and
so	on.

4.	Two	counter-examples:
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(a)	 The	 sets	A	 =	 {a,b}	 and	Z	 =	 {1,2,3}	 are	 not	 equivalent.	Although	 every
element	of	A	can	be	ordered	to	some	element	of	Z,	for	example	a	→1	and	b	→	3,
not	every	element	of	Z	can	be	made	to	correspond	uniquely	to	an	element	of	A.

(b)	 Figure	 5	 shows	 that	 frequently	 in	 a	 public	 conveyance	 the	 set	 of
passengers	is	not	equivalent	to	the	set	of	seats.

Figure	5.	Nonequivalent	sets	in	a	subway	car.

5.	The	correspondence	of	two	equivalent	sets	can	be	established	by	a	function-
equation,	 for	example,	y	=	2x	+	3,	where	x	 signifies	an	element	of	 the	set	X	=
{1,2,3,…,100}.	 The	 set	 Y	 thus	 becomes	 {5,7,9,…,203}.	 A	 one-to-one
correspondence	of	 two	equivalent	sets	 is	also	called	a	mapping.	The	functional
relation	y	=	2x	+	3	maps	the	set	X	onto	the	set	Y.
6.	 If	 the	 sets	M	 and	 N	 are	 equivalent,	 we	 write	 in	 symbols:	M	 ~	 N.	 The

property	of	equivalence	is	reflexive,	symmetric,	and	transitive.	That	is:

(a)		M	~	M;	each	set	is	equivalent	to	itself.
(b)		If	M	~	N,	then	N	~	M.

Download more at Learnclax.com



(c)		If	M	~	N	and	N	~	P,	then	M	~	P.

7.	 The	 common	 property	 of	 all	 equivalent	 sets	 is	 their	 cardinal	 number,	 or
their	power,	or	their	number	of	elements.	We	shall	represent	the	cardinal	number
of	 a	 set	 by	 the	 corresponding	 small	 (lower	 case)	 letter	 of	 the	 alphabet	 or	 by
placing	the	symbol	representing	the	set	between	bars.	Thus:

If	M	=	{a,b,c,d,e},	then	|M|	=	|	{a,b,c,d,e}|	=	m	=	5;
If	N	=	{s,t,u,v,w},	then	|N|	=	|	{s,t,u,v,w}|	=	n	=	5;	n	=	m.

The	cardinal	number	 “5”	denotes	 the	power	of	 all	 equivalent	 sets	 (that	 is,	 sets
that	contain	five	elements).
Now	 we	 are	 in	 a	 position	 to	 understand	 Cantor’s	 definition	 of	 cardinal

number.

The	power	or	cardinal	number	of	M	 is	what	we	call	 the	general	concept,
which	by	 the	aid	of	our	active	capacity	 for	 thought	arises	 from	 the	 set	M
when	we	make	abstractions	from	the	nature	of	 its	various	elements	m	and
the	order	of	their	presentation.

8.	A	set	M	has	a	greater	cardinal	number	than	a	set	N	when	N	is	equivalent	to
a	subset	of	M,	but	M	is	not	equivalent	to	a	subset	of	N.

Examples.

Let	M	=	{a,b,c,d}	and	N	=	{1,2,3}.	Then	N	is	equivalent	to	U	=	{a,b,c},	which
is	a	proper	subset	of	M.	Here	U	⊂	M	and	N	~	U.	However,	M	is	equivalent	to	no
subset	of	N.	Hence	|M|	>	|N|,	that	is,	m	>	n	or	in	this	case	4	>	3.
9.	 All	 the	 concepts	 and	 definitions	 of	 the	 theory	 of	 sets	 thus	 far	 discussed

occur	in	the	realm	of	finite	sets—and	only	such	sets	have	been	recognized	up	to
this	point.	The	results	appear	to	be	self-evident	and	say	nothing	new.	It	is	only	in
the	application	of	 these	concepts	and	operations	 to	 infinite	sets	 that	 it	becomes
evident	how	extensive	and	all-embracing	they	really	are.

Exercises
1.		Give	several	examples	of	equivalent	sets,	using	instances	in	your	immediate

surroundings.
2.	 	How	many	mappings	of	 the	set	M	=	{a,b,c,d}	on	 itself	are	possible?	Write

out	several	of	these	mappings.
3.	Given:	(α)	The	set	K	of	lattice	points	on	and	interior	to	the	circle	x2	+	y2	=	4
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(β)	 The	 set	Q	 of	 lattice	 points	 on	 and	 interior	 to	 the	 square	with
vertices	(±2,	±2)
(a)	Is	either	of	the	sets	K	and	Q	a	proper	subset	of	the	other?
(b)	Determine	the	intersection	of	K	and	Q.
(c)	Determine	the	cardinal	number	|Q	—	K|.
(d)	Excluding	the	points	on	the	circle	and	on	the	square,	are	the	sets	of	lattice

points	in	their	interiors	equivalent	sets?
4.	Let	X	=	{1,2,3,…,10}.	Which	of	 the	following	rules	can	be	used	to	produce

sets	equivalent	to	X?

5.		What	property	must	a	rule	have	in	order	to	form	equivalent	sets?
6.		Let	K	be	the	set	of	lattice	points	interior	to	the	circle	x2	+	y2	=	7.	Let	P	be	the

set	 of	 two-digit	 prime	numbers.	Which	of	 the	 following	 three	 statements	 is
correct?

7.		At	a	dance	how	can	one	determine	whether	the	set	of	men,	M,	and	the	set	of
women,	W,	are	equivalent	sets?

8.		In	your	classroom,	is	the	set	of	blotters	equivalent	to	the	set	of	notebooks?
9.		Give	a	rule	(functional	equation)	that	maps	the	set	X	=	{1,2,3,…	,100}	onto

the	set	Y	=	{2,4,6,…,200}.
10.	 (a)	 Does	 the	 rule	 obtained	 as	 a	 solution	 to	 Exercise	 9	 map	 “all”	 natural

numbers	one-to-one	with	“all”	the	positive	even	numbers?
(b)		Can	we	say	that	the	set	N	=	{1,2,3,…,n,…}	is	equivalent	to	the	set	G	=
{2,4,6,…,2n,…}?

*The	literal	translation	from	the	German	is:	A	set	is	a	bringing	together	into	a	whole	sof	definite	well-
distinguished	objects	of	our	perception	or	thought—which	are	to	be	called	the	elements	of	the	set.	(Georg
Cantor)
*The	number	of	permutations	of	n	different	things	is	n!.	This	is	read	“n-factorial”	and	is	defined	by	the

relation	n!	=	1·2·3…·n.
*All	the	symbols	are	catalogued	in	a	glossary	on	page	97.
†Lattice	points	are	points	with	integral	coordinates.
*Two	natural	numbers	are	relatively	prime	if	they	have	no	common	divisor	(other	than	1).	For	example,	4

and	9	are	relatively	prime,	but	4	and	6	are	not.
*In	the	theory	of	permutations	and	combinations	it	 is	shown	that	 the	number	of	different	combinations

that	can	be	formed	from	N	different	things,	using	P	at	a	time,	a	
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†	There	are	 	or	one	subset	with	0	elelments;	 	or	n	subsets	with	one	element;	 	or	

subsets	with	two	elements;	and	so	on.	Then	the	total	of	subset	is

*The	word	“power”	is	a	translation	for	the	German	“Mächtigkeit.”	Perhaps	a	better	translation	would	be
“strength.”	In	the	rest	of	this	work	we	shall	use	the	phrase	“cardinal	number”	as	equivalent	to	“power”	or
“Mächtigkeit”.
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3

INFINITE	SETS

VI.	Equivalence	and	Transfinite	Cardinal	Numbers
1.	 In	 Exercise	 9	 above,	 the	 set	 of	 natural	 numbers	X	 =	 {1,2,3,…,100}	was

placed	in	one-to-one	correspondence	with	the	set	of	even	numbers	Y	=	{2,4,6,...
,200}.	If	x	 is	an	element	of	set	X,	 then	the	corresponding	element	y	of	set	Y	 is
given	by	the	rule	y	=	2x.	This	rule	(function-relation),	however,	furnishes	much
more	than	the	correspondence	of	these	two	sets.	It	orders	every	natural	number
into	a	one-to-one	correspondence	with	a	positive	even	number.	Thus	the	sets

are	equivalent	sets.	(See	Exercise	10	above.)	We	say	the	sets	N	and	G	have	the
same	“power”;	they	are	characterized	by	the	same	cardinal	number.	If	however,
you	attempt	to	establish	the	equality	of	the	cardinal	numbers	by	counting,	your
attempt	would	fail,	for	the	sets	N	and	G	are	infinite	sets.	The	number	of	elements
that	each	set	contains	is	infinitely	large.
The	 set	 of	 natural	 numbers	 thought	 of	 as	 ordered	 in	 their	 natural	 sequence,

namely	N	=	{1,2,3,...},	forms	an	unbounded	set	(one	without	end	or	infinite)	of
definite	and	distinct	elements,	the	number	of	which	exceeds	every	finite	cardinal
number.	Indeed,	in	this	case	we	can	no	longer	speak	of	the	“number”	of	elements
in	the	usual	sense.
The	elementary	concept	of	number	becomes	meaningless	for	infinite	sets,	and

gives	 us	 no	 help	 in	 answering	 the	 question,	 “Are	 there	more	 natural	 numbers
than	there	are	positive	even	numbers?”	However,	the	equivalence	concept	gives
us	the	means	to	resolve	this	question.	The	sets	N	and	G	have	the	same	cardinal
number.
2.	 If	 we	 say	 that	 the	 set	 N	 is	 “infinite,”	 this	 infinite	 is	 to	 be	 sharply

differentiated	 from	 the	 “infinite”	 as	 we	 understand	 it	 in	 the	 sense	 of	 a	 limit
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process.	 For	 example,	 in	 mathematical	 analysis	 we	 say:	 .	 As	 x

becomes	 zero,	 1/x	 becomes	 infinitely	 large,	 or	 more	 accurately,	 “1/x	 can	 be
made	greater	 than	any	arbitrarily	 selected	number,	no	matter	how	 large,	 if	x	 is
chosen	sufficiently	small.”	This	improper	(potential)	infinity	of	the	limit	process
is	something	altogether	different	from	the	proper	(actual)	 infinity	of	set	N.	The
set	N	=	{1,2,3,...}	displays	a	given	existing	infinity	(not	a	becoming	infinite).
3.	 The	 equivalence	 of	 sets	 N	 and	 G	 displays	 a	 surprising	 property	 of	 the

infinite	set	G:	G	is	a	proper	subset	of	N,	and	yet	it	is	equivalent	to	N.	In	this	case
we	 have	G	⊂	N	 and	G	 ~	N.	 For	 finite	 sets,	 as	 we	 have	 already	 shown,	 the
statement	“A	⊂	B”	is	inconsistent	with	the	statement	“A	~	B.”	For	example,	if	A
=	 {1,2,3}	 and	B	 =	 {1,2,3,4,5},	 then	A	⊂	B	 and	 |A|	 <	 |B|	 (since	 3	 <	 5).	 The
cardinal	number	|A|	=	3,	and	the	cardinal	number	of	the	complementary	set	|B	–
A|	=2	are	each	less	than	the	cardinal	number	|B|	=	5.
Dedekind*	 used	 precisely	 this	 property	 to	 define	 finite	 and	 infinite	 sets	 as

follows:

If	 there	 exists	 no	 proper	 subset	 of	 M	 that	 is	 equivalent	 to	M,	 then	M	 is
called	a	finite†	set.	If	there	is	a	proper	subset	of	M	that	is	equivalent	to	M,
then	M	is	called	an	infinite	set.

Note	that	Euclid’s‡	axiom:	“the	whole	is	greater	than	any	of	its	parts”	is	not
valid	for	infinite	sets.

4.	Examples:

(a)	The	set	of	points	on	a	straight	line	is	an	infinite	set;	the	set	of	points	on	a
ray	 or	 half-line	 is	 also	 an	 infinite	 set.	 These	 two	 sets	 have	 the	 same	 cardinal
number.	The	equivalence	of	the	set	of	points	on	segment	AB	and	the	set	on	ray	s
is	established	as	shown	in	Figure	6	by	using	central	projection	from	the	point	Z.
The	point	P	on	AB	corresponds	to	the	point	P'	on	s,	and	conversely.

Figure	6.	Point	sets	with	the	same	cardinal	number.

Download more at Learnclax.com



Figure	7.	Point	sets	with	the	same	cardinal	number.

(b)	 Figure	 7	 shows	 that	 the	 set	 of	 points	 (other	 than	 z)	 on	 a	 circle	 k	 is
equivalent	to	the	set	of	points	on	a	straight	line	g.	A	line	through	Z	intersects	the
circle	a	second	time	at	P	and	the	line	g	in	the	corresponding	point	P'.
(c)	The	set	of	points	on	a	line	segment	with	length	1.5	inches	is	equivalent	to

the	set	of	points	on	a	line	segment	with	length	3	inches.	The	correspondence	is
shown	in	Figure	8.
(d)	 The	 set	 of	 natural	 numbers	N	 =	 {1,2,3,…}	 and	 the	 set	 of	 positive	 odd

numbers	U	=	{1,3,5,…}	are	equivalent	sets.	In	this	case	U	⊂	N	and	also	U	~	N.
The	correspondence	can	be	given	by	the	rule	u	=	2n	–	1.

Figure	8.	Equivalent	sets	of	points.

5.	Equivalent	finite	sets	are	represented	by	 the	same	cardinal	number.	These
finite	 cardinal	 numbers	 are	 the	 natural	 numbers	 arrived	 at	 by	 counting	 the
number	of	elements	in	the	set.	In	the	case	of	infinite	sets,	equivalent	sets	(that	is,
sets	of	the	same	power)	are	likewise	represented	by	the	same	transfinite	cardinal
number.	These	transfinite	cardinal	numbers	represent	an	extension	of	the	natural
numbers.	 We	 shall	 study	 these	 transfinite	 cardinal	 numbers	 in	 the	 next	 few
sections.

Exercises
1.		Show	the	equivalence	of	the	sets	of	points	on	two	sides	of	a	triangle.
2.	 	 Give	 a	 formula	 that	 maps	 N	 =	 {1,2,3,…}	 one-to-one	 onto	 the	 set	 Z	 =

{1,10,100,…},
3.		Using	central	projection,	map	the	points	of	a	semicircle	onto	the	points	of:	(a)

a	straight	line;	(b)	a	ray;	(c)	a	line	segment.
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V.	Denumerable	Sets
1.	The	simplest	infinite	set	is	the	set	of	natural	numbers,	namely	N	=	{1,2,3,

…}.	We	assign	to	this	set	the	transfinite	number*	a,	and	write	|N|	=	a.
All	 the	 sets	 having	 the	 cardinal	 number	 a	 are	 called	 denumerable	 sets.

Denumerable	 sets	 are	 those	 sets	 which	 can	 be	 put	 into	 one-to-one
correspondence	with	the	set	of	natural	numbers.	In	this	respect,	denumerable	sets
can	 have	 their	 elements	 ordered	 into	 a	 sequence,	 that	 is,	 they	 have	 a	 first
element,	 a	 second,	 a	 third,	 and	 so	 on.	 Besides	 the	 set	 N,	 we	 have	 already
recognized	the	denumerable	sets

2.		The	set	of	prime	numbers	form	a	denumerable	set.

This	set	is	infinite	because	no	matter	how	large	a	prime	number	is	given,	there	is
always	a	greater	prime	number.	We	recall	here	Euclid’s	proof	of	this	fact:	let	the
first	n	prime	numbers	be	given	by	2,3,5,7,…,Pn.	Then	the	number	z	=	(2	·	3	·	5	·
7	·…	·	Pn)	+	1	is	either	a	prime	number	that	is	greater	than	Pn,	or	z	has	a	prime
number	factor	that	is	greater	than	Pn.†
The	prime	numbers	can	be	ordered	into	a	sequence,	for	example,	according	to

their	numerical	size.	We	can	thus	set	up	a	correspondence	in	which	P	⊂	N	and	at
the	same	time	P~	N:

N	=	{1,2,3,4,	5,	6,	7,	8,	9,10,…	,100,.,	200,…,	300,…};

P	=	{2,3,5,7,11,13,17,19,23,29,…	,541,…	,1223,…	,1987,…}.

The	set	of	prime	numbers	is	denumerable.	|P|	=	a.
3.	 The	 set	 of	 squares	 of	 the	 positive	 integers,	 Q	 =	 {1,4,9,16,25,…},	 is

denumerable.	 We	 have	Q	⊂	 N	 and	 also	Q	 ~	 N.	 The	 correspondence	 of	 the
elements	of	Q	and	N,	is	given	by	the	rule	 	or	q	=	n2.
4.	The	 lattice	points	 in	a	plane	 form	a	denumerable	 set.	Using	 the	ordering

scheme	 shown	 in	 Figure	 9,	 the	 set	 of	 lattice	 points	 can	 be	 ordered	 into	 a
sequence	 (that	 is,	 placed	 in	 one-to-one	 correspondence	 with	 the	 natural
numbers).	If	the	ordering	starts	at	the	origin	(0,0),	then	the	lattice	point	(0,1)	is
the	second	element,	(1,1)	the	third,	…,	(3,2)	is	the	thirty-second	element,	and	so
on.
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5.	The	set	of	positive	and	negative	integers	and	zero	is	denumerable.	This	set
can	be	ordered	into	the	following	sequence:

Z	=	{0,1,–1,2,–2,3,–3,4,–4,…}.

6.	The	 set	of	all	 rational	numbers	 is	denumerable.	By	 the	 set	of	 all	 rational
numbers	we	shall	understand	all	fractions	with	relatively	prime	terms,	that	is,	the
numerator	 and	 denominator	 have	 no	 common	 factor	 other	 than	 1.	 To	 form	 an
ordered	 sequence	 of	 the	 rational	 numbers,	 we	 shall	 first	 order	 the	 positive
rationals	according	to	their	increasing	height,	which	is	defined	to	be	the	sum	of
the	 numerator	 and	 denominator.	 Fractions	 having	 the	 same	 height	 will	 be
ordered	according	to	their	increasing	value.

Figure	9.	The	set	of	lattice	points	in	a	plane	is	denumerable.

We	place	the	number	0	as	the	first	term	of	the	sequence	of	rationals,	and	then
exclude	0	as	a	term	of	all	the	remaining	fractions.	Then	we	have:

of	height	2,	the	fraction	 	=	1;

of	height	3,	the	fractions	 ,	 	or	2;

of	height	4,	the	fractions	 ,	 ,	 	or	3	(the	fraction	 	is	not	in	lowest	terms	and

is	eliminated);

of	height	5,	the	fractions	 , ,	 ,	 	or	4,	etc.
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To	include	the	negative	rational	numbers,	we	write	the	corresponding	negative
number	after	each	positive	rational	number.	The	set	of	all	rational	numbers	can
thus	be	written	in	the	following	ordered	sequence:

In	 this	 sequence	 every	 rational	 number	 has	 a	 definite	 position.	 The	 set	R	 is	 a
proper	superset	of	all	the	various	sets	of	numbers	heretofore	considered.
7.	The	denumerability	of	the	set	of	rational	numbers	can	also	be	established	by

the	 following	 method	 known	 as	 the	 diagonal	 process.	 In	 the	 accompanying
diagram	all	fractions	not	in	lowest	terms

	 are	 cancelled.	The	 diagram	 is	 then	 traversed	 in	 the	 diagonally
arrowed	path.	In	this	manner,	every	positive	rational	number	will	be	included.	If
the	corresponding	negative	rational	is	placed	after	each	positive	rational,	and	the
sequence	begun	with	the	rational	0,	then	all	rationals	will	be	included.	We	thus
obtain

It	 is	 obvious	 that	 	 =	R,	 and	 that	 the	 ordering	 of	 the	 two	 sets	 differs	 only
within	 fractions	 having	 the	 same	 height.	 In	 the	 diagram,	 the	 fractions	 in	 any
diagonal	 are	 all	 of	 the	 same	 height,	 only	 their	Values	 alternately	 increase	 and
decrease	in	successive	diagonals.
8.	 One	 of	 the	 greatest	 and	 most	 beautiful	 achievements	 of	 Cantor	 tvas	 the

proof	 that	 a	 set	 of	 numbers	 which	 is	 a	 proper	 superset	 of	 all	 heretofore
considered	 sets	 of	 numbers	 (that	 is,	 in	 a	 naive	 sense	 contains	 still	 “more”
elements)	is	also	of	the	power	a.

The	set	of	all	algebraic	numbers	is	denumerable.
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An	algebraic	number	is	any	number,	real	or	imaginary*,	which	is	the	root	of
an	algebraic	equation;

In	this	equation	it	is	understood	that	n	is	a	natural	number,	and	an,	an–1,…,a0	are
positive	or	negative	integers	or	zero,	and	in	particular	an	≠	0.
The	 rational	 numbers	 are	 evidently	 only	 a	 “small”	 part	 of	 the	 algebraic

numbers	since	each	rational	number	is	the	root	of	the	algebraic	equation	of	the
first	degree:

From	this	equation	we	obtain	x	=	 	 .	For	n	=	2,	both	 irrational	and	 imaginary
numbers	occur	as	roots,	and	are	thus	algebraic	numbers.	For	instance,	
is	a	solution	to	x2	–	2	=	0,	and	x	=	1	+	i	is	a	solution	to	the	equation	x2	–	2x	+	2	=
0.
9.	To	develop	the	proof	of	the	denumerability	of	the	set	of	algebraic	numbers,

we	shall	order	these	numbers	according	to	the	heights	of	the	algebraic	equations.
The	height	of	an	algebraic	equation

is	defined	to	be	that	natural	number

Clearly,	 for	a	given	height,	 there	exists	a	definite	 finite	number	of	algebraic
equations;	 and	 to	 each	 algebraic	 equation	 of	 degree	 n	 there	 are	 at	 most	 n
different	algebraic	numbers	which	are	its	roots.
The	 algebraic	 numbers	 are	 thus	 ordered	 into	 a	 sequence	 (denumerable	 set)

according	to	the	increasing	heights	of	the	algebraic	equations	for	which	they	are
the	 solutions.	 For	 different	 equations	 of	 the	 same	 height	 we	 shall	 order	 the
numbers	 according	 to	 the	 increasing	 degrees	 of	 the	 equations.	 For	 the	 several
solutions	 to	 the	 same	 equation	 we	 shall	 order	 the	 numbers	 according	 to	 their
increasing	value.	Imaginary	roots	we	shall	order	according	to	increasing	values
of	their	real	part;	for	equal	real	parts	of	different	complex	numbers,	according	to
the	increasing	values	of	the	pure	imaginary	part.
Using	 these	 directions,	 we	 obtain	 the	 following	 ordering	 of	 the	 algebraic

numbers:
(a)	The	height	h	=	1	is	not	possible,	for	then	n	=	0,	a0	=	±1,	and	we	have	the
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false	statement	±1	=	0.
(b)	For	h	=	2,	n	=	1	and	a1	=	±1,	a0	=	0.	Thus	we	obtain	the	equations	±x	=	0,

and	the	first	algebraic	number	is	0.
(c)	For	h	=	3,	zhere	are	two	possibilities:

(α)	n	=	1.	If	a1	=	±2	and	a0	=	0	we	obtain	the	equations	±2x	=	0,	and	again
we	have	the	algebraic	number	0.	If	a1	=	±1	and	a0	=	±1,	we	obtain	the	equations
±x	±1	=	0,	and	hence	the	next	two	algebraic	numbers	are	–1	and	+1.

(β)	n	=	2.	If	a2	=	±1,	then	a1	=	a0	=	0,	and	we	obtain	the	equations	±x2	=	0,
which	merely	furnish	the	algebraic	number	0	once	more.
(d)	For	h	=	4	there	are	three	possibilities:

(α)	n	=	1.
α1	=	±1;	a0	=	±2;	±x	±2	=	0;	solutions:	–2	and	+2.
α1	=	±2;	a0	=	±1;	±2	±1	=	0;	solutions:	 	and	 .
α1	=	±3;	a0	=	0;	±3x	=	0;	solution:	0.
(β)	n	=	2.
a2	=	±1;	a1	=	0;	a0	=	±1;	±x2	±1	=	0;
solutions:	–1,	1,	–i,	i.
a2	=	±1;	a1	=	±1;	a1	=	0;	±x2	±x	=	0;	solutions:	–1,	0,	+1.
a2	=	±2;	a1	=	a0	=	0;	±2x2	=	0;	solution:	0.	(γ)	n	=	3.
Then	a3	=	±1,	a2	=	a1	=	a0	=	0;	±x3	=	0;	solution:	0.

The	procedure	can	be	extended	 indefinitely	 in	 this	manner.	The	sequence	of
algebraic	numbers	thus	starts	with

In	this	sequence	every	algebraic	number	has	a	definite	place.	Thus	the	set	of	all
algebraic	numbers	is	denumerable.
10.	The	investigation	of	infinite	sets	according	to	their	power	has,	in	the	case

of	all	the	sets	considered,	namely	G,	U,	Q,	P,	N,	Z,	R	and	A,	always	led	us	to	the
same	cardinal	number	a.	Yet	all	of	 the	sets	discussed	in	this	section	have	been
quite	different.	Set	A	contained	all	the	other	sets	as	proper	subsets.	The	sets	G,
U,	P	and	Q,	were	each	proper	subsets	of	N.	Further,	N	was	a	proper	subset	of	Z,
and	 Z	 a	 proper	 subset	 of	 R.	 Yet	 we	 demonstrated	 that	 all	 these	 sets	 were
equivalent	 to	 the	 set	 of	 natural	 numbers,	N.	 They	 all	 have	 the	 same	 cardinal
number	a.
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From	our	 development	 thus	 far,	 is	 it	 not	 plausible	 to	 expect	 that	 all	 infinite
sets	are	equivalent,	i.e.,	they	are	all	denumerable?	If	this	were	the	case,	it	would
be	uninteresting	and	the	infinite	would	be	without	content;	but	in	fact	so	far	we
have	not	learned	of	any	non-denumerable	set	of	numbers.
To	be	sure	we	have	already	considered	equivalent	sets	of	points,	(e.g.	the	set

of	points	on	a	 line	segment,	a	 ray,	a	 straight	 line,	and	a	circle)	whose	cardinal
numbers—as	we	shall	next	investigate—are	greater	than	a.

Exercises
1.	 	 How	 many	 mappings	 (one-to-one	 correspondences)	 are	 there	 for	 a

denumerable	set	onto	itself?
2.	 	 For	 any	 two	 rational	 numbers,	 no	 matter	 how	 close	 together,	 does	 there

always	exist	another	rational	number	with	a	value	lying	between	them?	Give
an	example.

3.	 	 Determine	 the	 algebraic	 numbers	 that	 are	 solutions	 of	 all	 the	 algebraic
equations	of	height	five.

4.		Is	sin	7°30’	an	algebraic	number?
5.		Show	that	the	following	expressions	are	valid:

(a)	U	⊂	N;	G	⊂	N;	N	⊂	Z;	Z	⊂	R.
(b)	The	sets	U,	G,	N,	Z	and	R	have	the	same	cardinal	number,	i.e.,	U	~	G	~	N
~	 Z	 ~	 R;	 all	 these	 sets	 are	 denumberable;	 all	 have	 the	 same	 transfinite
cardinal	number:

VI.	Non-denumerable	Sets
1.	We	now	consider	all	the	real	numbers	r	in	the	interval	0	<	r	<	1.	All	these

numbers	 can	 be	 written	 in	 a	 unique	 fashion	 as	 infinite	 decimal	 fractions.	 For
example:

If	 all	 these	 real	 numbers	were	 denumerable,	 they	 could	 be	written	 in	 some
ordered	 sequence	 (perhaps	 according	 to	 value).	 Then	 there	would	 be	 a	 first,	 a
second,	a	third,	and	so	on,	as	follows:
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In	these	infinite	decimals	the	Zik	are	digits	from	the	set

{0,1,2,3,4,5,6,7,8,9}.

We	now	form	a	real	number	r1	=	0.a1a2a3a4	…,	where	ai	≠	Zii.	That	is,	a1	≠	Z11;
a	2	≠	Z22;	a3	≠	Z33;	etc.	In	particular,	let	the	digit	ai	be	any	element	other	than	Zii
from	the	set:	{0,1,2,…,9}.	Thus	the	formation	of	the	real	number	rj	is	possible	in
an	 infinite	 number	 of	 ways.	 However,	 no	 r1	 constructed	 in	 this	 manner	 is
contained	in	the	above	written	denumerable	set	of	decimal	fractions,	because:	r1
differs	 from	 the	 first	 number	 at	 least	 in	 the	 first	 decimal	 place	 (a1	 ≠	 Z11);	 it
differs	from	the	second	number	at	least	in	the	second	decimal	place	(a2	≠	Z22);
and	so	on.	Thus	there	exists	no	denumerable	set	of	real	numbers	in	the	interval	0
<	 r	 <	 1	 that	 exhausts	 the	 set	 of	 all	 real	 numbers	 in	 this	 interval.	 We	 must
conclude:

The	set	of	all	real	numbers	in	the	interval	0	<	r	<	1	is	non-denumerable.

2.	The	set	of	all	real	numbers	in	the	interval	0	<	r	<	1	can	be	placed	in	one-to-
one	correspondence	with	the	points	on	a	straight	line	segment	AB	of	length	one.
Of	course	the	end	points	of	the	segment	are	excluded	as	shown	in	Figure	10.
3.	In	a	similar	manner,	the	set	of	all	real	numbers	in	the	domain	∞	<	r	<	+	∞

can	be	ordered	 in	one-to-one	correspondence	with	 the	points	of	a	 straight	 line.
This	is	shown	in	Figure	11.
4.	Figure	12	illustrates	the	equivalence	of	the	set	of	all	real	numbers	–	∞	<	r	<

+	∞	and	 the	set	of	 real	numbers	 in	 the	 interval	0	<	r	<	1.	The	segment	AB,	of
length	1,	is	folded	at	its	mid-point	M	and	formed	into	a	right	angle	at	M.	Then
the	 points	 of	 the	 folded	 line	 segment	 AB	 are	 placed	 in	 one-to-one
correspondence	with	the	points	of	line	g	by	central	projection	from	point	Z.	Thus
it	follows	that:
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Figure	10.	Mapping	the	number	0	<	r	<	1	to	the	points	of	segment	AB.

Figure	11.	The	number	scale	showing	the	equivalence	of	the	real	numbers	to	the
points	of	a	straight	line.

Figure	12.	The	set	of	points	on	the	broken	line	AB	and	the	straight	line	g	are
equivalent.

The	set	of	all	real	numbers	is	non-denumerable.

In	fact,	the	set	of	all	real	numbers	has	the	same	cardinal	number	as	the	set	of
real	numbers	in	the	interval	0	<	r	<	1.	The	power,	or	cardinal	number,	of	the	set
of	 all	 real	 numbers	 is	 called	 the	 cardinal	 number	 of	 the	 continuum,	 i.e.,	 the
cardinal	 number	 of	 the	 set	 of	 points	 of	 a	 continuous	 line	 segment	 or	 of	 a
continuous	unbounded	line.	We	symbolize	the	power	of	this	set	by	the	transfinite
cardinal	number	“c.”*
5.	 The	 power	 of	 the	 set	 of	 all	 real	 numbers,	 or	 of	 the	 real	 numbers	 in	 the

interval	0	<	r	<	1,	is	the	same	as	that	of	the	set	of	points	of	the	segment	AB	or	of
all	points	of	the	straight	line	g.	These	sets	are	equivalent	to	each	other.
6.	Thus	we	have	discovered	 infinite	sets	 that	are	of	higher	power,	or	have	a

greater	cardinal	number	than	any	of	the	denumerable	sets	considered	heretofore.
It	 is	 this	 fact	 that	 gives	 meaning	 to	 the	 introduction	 of	 transfinite	 cardinal
numbers.	 There	 is	 more	 than	 one	 such	 number.	 Not	 all	 infinite	 sets	 are
equivalent	or	of	the	same	power.	There	are	“levels”	in	the	infinite	as	well	as	in
the	 finite.	Later	we	shall	 see	 that	besides	 the	 infinite	cardinal	numbers	a	and	c
there	are	still	others,	indeed	an	infinite	number	of	them.	First,	however,	we	shall
examine	other	sets	with	the	cardinal	number	c.
7.	Sets	that	are	equivalent	to	a	set	with	cardinal	number	c	are;

(a)	the	set	of	all	points	interior	to	a	square;
(b)	the	set	of	all	points	of	a	plane;
(c)	the	set	of	all	points	interior	to	a	cube,	and	even;
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(d)	the	set	of	all	points	in	unbounded	three-dimensional	space.

The	method	of	proof	of	these	statements,	which	is	quite	simple,	will	be	carried
out	here	for	the	case	of	a	cube	having	an	edge	one	unit	in	length.	In	Figure	13,
the	 cube	 is	 placed	 with	 three	 of	 its	 edges	 coinciding	 with	 rectangular	 space
coordinate	axes.	In	a	Cartesian	space-coordinate	system,	a	point	P	interior	to	the
cube	has	the	real	coordinates,	(written	as	decimal	fractions):

Figure	13.	Point	set	of	a	cube.

Let	us	characterize	this	point	P	by	the	decimal	d,	formed	from	x,	y	and	z,	by
writing

In	this	way,	every	point	P	 interior	to	the	cube	is	paired	in	a	unique	way	with	a
definite	decimal	d,	where	0	<	d	<	1.	We	have	already	 shown	 that	 the	cardinal
number	of	all	decimals	d	for	which	0	<	d	<	1	is	c.	Hence,	the	cardinal	number	of
all	points	within	a	cube	with	edge	of	unit	length	is	also	c.
Similarly,	 it	 can	be	shown	 that	 for	every	 linear,	planar,	or	 spatial	 region	 the

cardinal	number	of	its	set	of	points	is	c.
8.	 Previously	 (see	Figure	 9)	we	 saw	 that	 the	 set	 of	 lattice	 points	 of	 a	 plane

could	 be	 mapped	 onto	 the	 set	 of	 lattice	 points	 of	 a	 straight	 line	 (the	 set	 of
integers	 Z).	 Both	 of	 these	 sets	 have	 the	 cardinal	 number	 a.	 Now	 we	 have
obtained	an	even	more	remarkable	result,	namely:	the	sets	of	points	of	a	straight
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line,	of	a	plane	and	of	space	are	equivalent—that	is	they	can	be	placed	in	one-to-
one	correspondence.	The	concept	of	dimension	is	therefore	of	no	significance	in
characterizing	cardinal	number.	Linear,	plane,	and	space	point	sets	contain	point
sets	of	the	same	cardinal	number	c.
Nevertheless,	 there	 exists	 in	 the	 naive	 concept	 of	 dimension,	 something	 of

significance	 for	 the	 theory	 of	 sets.	 By	 rather	 difficult	 investigation	 (done	 by
Peano,	Hilbert,	and	Brouwer)	it	has	been	proved	that:

Between	 two	continuums	of	 different	 order,	 it	 is	 impossible	 to	 establish	a
one-to-one	 correspondence	 that	 maintains	 continuity;	 that	 is,	 a
correspondence	 so	 that	 neighboring	 points	 of	 one	 continuum	 can	 be
ordered	to	the	neighboring	points	of	the	other	continuum.

9.	The	one-to-one	correspondence	of	the	point	sets	0	<	x	<	1	and	0	<	y	<	∞,	x
and	y	real	numbers,	can	also	be	established	by	the	use	of	suitable	function	rules
as	in	the	following	examples:

10.	All	the	infinite	sets	thus	far	studied	have	had	either	the	cardinal	number	a
or	the	cardinal	number	c.	We	summarize	them	here.
(a)	Denumerable	sets:
The	set	of	all	natural	numbers:

N	=	{1,2,3,4,5,…}.

Figure	14.
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Figure	15.

Figure	16.

The	set	of	all	positive	even	integers:

G	=	{2,4,6,8,10,…}.

The	set	of	all	positive	odd	numbers:

U	=	{1,3,5,7,9,11,…}.
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The	set	of	all	prime	numbers:

P	=	{2,3,5,7,11,…}.

The	set	of	squares	of	all	integers:

Q	=	{1,4,9,16,25,…}.

The	set	of	all	integers:

Z	=	{0,1,–1,2,–2,…}.

The	set	of	all	rational	numbers:

The	set	of	all	algebraic	numbers:

The	set	of	all	lattice	points	on	a	straight	line:	Gg.
The	set	of	all	lattice	points	on	a	plane:	Ge.
For	all	of	these	sets	we	have	the	inclusion	relations:

All	of	these	sets	are	equivalent:

All	of	these	sets	have	the	same	cardinal	number;	they	are	all	denumerable:

(b)	Sets	with	the	cardinal	number	of	the	continuum:
The	set	of	all	real	numbers	in	the	interval	0	<	r	<	1: .
The	set	of	all	real	numbers:	Re.
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The	set	of	all	points	on	an	open	segment	AB:	PAB.
The	set	of	all	points	on	a	ray	(Figure	10):	Ps.
The	set	of	all	points	on	a	straight	line	g:	Pg.
The	set	of	all	points	interior	to	a	cube	of	edge	1:	Pw.

For	these	sets	we	have	the	relations:

11.	Are	there	sets	with	the	transfinite	cardinal	number	m,	where	m	is	greater
than	the	cardinal	number	a	of	 the	denumerable	sets	and	m	is	also	less	 than	the
cardinal	number	c	of	the	continuum—	that	is,	for	which	a	<	m	<	c?	This	question
is	to	this	day	an	unanswered	one	and	is	called	the	“problem	of	the	continuum.”
12.	For	our	use	in	later	study,	we	now	examine	a	few	important	theorems.
(a)	 If	 a	 finite	 number	 of	 elements	 is	 added	 to	 or	 subtracted	 from	 a

denumerable	set,	the	new	set	is	denumerable.
Proof:	the	union	of	a	finite	set	E	=	{e1,e2,e3…,en}	and	a	denumerable	set	B	=

{b1,b2,b3…,}	can	be	written	as	the	sequence

and	S	is	therefore	denumerable.
If	 a	 finite	 number	 of	 elements	 is	 subtracted	 from	 a	 denumerable	 set	 S,	 we

obtain	the	denumerable	complementary	set	exhibited	by	cancelling	the	elements
of	S	that	are	subtracted.

Example:

Let	 N	 =	 {1,2,3,4,…}	 and	 let	 P1	 =	 {2,3,5,7}	 (the	 set	 of	 one-digit	 prime
numbers).	Then,

(b)	The	union	of	two	denumerable	sets,	or	the	union	of	a	denumerable	infinity
of	denumerable	sets,	is	denumerable.
(c)	If	a	denumerable	set	of	elements	is	subtracted	(removed	or	cancelled)	from

an	infinite	set,	then	if	the	resulting	complementary	set	is	still	infinite,	it	has	the
same	cardinal	number	as	the	original	set.
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Proof:	 let	M	be	an	 infinite	set.	Let	A	be	a	denumerable	subset	of	M.	Let	 the
complementary	 set	 to	A	 over	M	 be	R,	 that	 is	M	 –	A	=	R.	Assume	 that	R	 is	 an
infinite	set.	Then	M	=	A	∪	R.	In	the	complementary	set	R	let	 	be	a	denumerable
subset	and	let	the	complementary	set	of	 	over	R	be	 ,	that	is	R	=	 	∪	 .	It	is
possible	that	 	could	be	the	empty	set.	We	have	now	partitioned	the	set	M	into
the	subsets	A,	 ,	and	 ,	no	two	of	which	have	any	elements	in	common;	i.e.,	A,	
,	and	 	are	disjoint.	Hence

Since	A	and	 	are	denumerable,	by	theorem	(b)	above	we	have	A	∪	 	and	also	
	~	 .	Hence:

In	outline	form,	the	proof	appears	as	follows:

13.	A	 transcendental	 number	 is	 a	 real	 or	 imaginary	 number,	 that	 is,	 not	 an
algebraic	number.	We	can	now	prove	the	important	theorem:

The	set	of	all	real	transcendental	numbers	is	non-denumerable	and	has	the
cardinal	number	c.

Proof:	the	set	of	all	real	numbers	has	the	cardinal	number	c.	By	definition,	the
set	of	real	algebraic	numbers	is	the	complement	to	the	set	of	real	transcendental
numbers.	If	from	the	real	numbers	the	denumerable	set	of	real	algebraic	numbers
is	subtracted,	 then,	by	theorem	(c)	above,	 the	complementary	set	(the	set	of	all
real	 transcendental	 numbers)	 has	 the	 same	 cardinal	 number	 c	 as	 the	 real
numbers.
In	 the	 first	 place,	 this	 theorem	 demonstrates	 the	 existence	 of	 transcendental

numbers.	 It	 further	 shows	 that	 there	 is	 an	 infinite	 number	 of	 transcendental
numbers.	Indeed,	this	set	has	a	greater	cardinal	number	than	the	set	of	algebraic
numbers.	As	a	rule,	a	real	number	is	a	transcendental	number;	the	real	algebraic
numbers	represent	only	the	exceptional	cases	(a	denumerable	subset).
Nevertheless,	 to	 prove	 the_	 transcendence	 of	 real	 numbers	 in	 special	 cases,

(for	example	 ,	e,	π,	sin	1,	ln	2),	that	is,	to	prove	that	the	number	in	question
cannot	be	the	solution	to	an	algebraic	equation	is	very	difficult,	and	at	present	in
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some	cases	still	impossible.

Exercises
1.		Investigate	the	cardinal	number	of	the	set	of	points	in	a	rectangle	if	the	sides

are	segments	of	length	two	units	and	one	unit.
2.		Determine	the	cardinal	number	of	the	set	of	all	(complex)	numbers.
3.		What	is	the	cardinal	number	of	the	set	of	irrational	algebraic	numbers?
4.		Does	every	infinite	set	have	a	denumerable	subset?
5.		Determine	the	cardinal	number	of	the	set	of	all	powers	mn	where	m	and	n	are

natural	numbers.	(Use	the	diagonal	process.)
6.	 	 Prove	 theorem	 (b)	 of	 the	 previous	 Section	 12.	 Hint:	 for	 a	 denumerable

number	of	denumerable	sets	use	the	diagonal	process.

VII.	Further	Non-denumerable	Sets
1.	Up	to	this	point	we	have	learned	of	two	levels	of	infinity;	of	two	different

kinds	 of	 cardinality	 of	 infinite	 sets,	 and	of	 two	 transfinite	 cardinal	 numbers,	a
and	c.	We	now	seek	others.
Consider	the	set,	F,	of	all	real	functions,	defined	by	y	=	f(x)	in	the	interval,	0	<

x	 <	 1.	 By	 function,	 we	 shall	 mean	 the	 following	 kind	 of	 relationship:	 the
independent	variable	assumes	all	real	values	in	the	interval	0	<	x	<	1,	but	to	each
value	of	x	there	corresponds	exactly	one	definite	value	of	the	dependent	variable
y.	Under	this	condition,	equal	values	of	y	can	correspond	to	different	values	of	x,
but	on	the	other	hand	to	any	value	of	x	there	is	only	one	value	of	y.	As	x	assumes
every	value	in	the	interval	0	<	x	<	1,	y	=	f(x)	takes	on	another	set	of	determinable
values.	 (In	 the	examples	of	Figures	17,	18,	and	19,	 for	 instance,	y	 took	on	 the
values	 0	 <	 y	 <	∞).	 The	 definition	 of	 a	 particular	 function	 can	 be	 given	 by	 an
equation,	 e.g.,	y	=	x/(1	–	x),	or	by	a	 curve,	or	by	 some	 rule.	However,	 special
limitations	(for	example	that	the	function	must	be	continuous)	shall	not	be	made.
In	particular,	two	functions	are	considered	to	be	different	if	they	have	different
values	at	as	much	as	a	single	value	of	x	in	the	interval	0	<	x	<	1.	In	the	set	under
consideration,	that	of	every	possible	conceivable	function	in	the	interval	0	<	x	<
1,	every	element	of	the	set	is	a	function.
The	set	of	all	functions	is	surely	an	infinite	set;	for	the	simplest	functions	are

given	by	y	=	f(x)	=	c,	and	the	constant	c	can	take	on	the	non-denumerable	set	of
real	values,	0	<	c	<	1.
We	must	now	show	that	the	cardinal	number	 	of	the	set	of	all	real	functions	in

the	 interval	 0	 <	 x	 <	 1	 is	 greater	 than	 c.	 Let	 us	 assume	 that	 the	 set	 of	 all	 real
functions	 of	 the	 interval	 0	<	x	<	1	 has	 the	 cardinal	 number	 of	 the	 continuum.
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This	set	of	functions	would	be	equivalent	 to	 the	set	of	real	numbers	0	<	r	<	1,
and	 these	sets	could	be	placed	 in	one-to-one	correspondence.	Call	 the	 function
thus	 ordered	 to	 the	 point	 r;	 fr(x).	We	 shall	 now	 construct	 a	 function	ϕ(x),	 for
which	it	will	be	shown	that

for	every	value	x	=	r	in	the	interval	0	<	x	<	1.	Such	a	function	can	be	constructed
in	infinitely	many	ways;	for	example,	by	the	condition	that	ϕ(r)	=	fr(r)	+	1.	This
function	ϕ(x)	coincides	with	none	of	the	functions	fr(x),	for	we	know	that	at	least
for	 the	 value	 x	 =	 r,	 ϕ(r)	 ≠	 fr(r).	 Hence	 ϕ{x)	 is	 not	 contained	 in	 the	 set	 of
functions	 equivalent	 to	 the	 continuum,	 which	 we	 assumed	 contained	 all
functions.	 The	 assumption	 that	 the	 set,	 F,	 of	 functions	 is	 equivalent	 to	 the
continuum	is	false.	We	must	therefore	conclude:

The	 set	 F	 of	 all	 real	 functions	 in	 the	 interval	 0	 <	 x	 <	 1	 has	 a	 greater
cardinal	number	than	the	continuum,	 	>	c	>	a.

2.	 The	 foregoing	 proof	 can	 also	 be	 looked	 upon	 as	 follows:	 no	 ordinary,
constructed	subset	Fc	of	F,	where	Fc	has	the	cardinal	number	c	can	exhaust	the
set	F,	because	for	any	given	subset	Fc,	elements	of	F	can	be	produced	which	are
not	contained	in	Fc.

Example:

Consider	the	subset	Fe	of	F	that	is	put	in	correspondence	to	the	real	numbers	0
<	r	<	1	by	the	relation	fr(x)	=	 	.	Thus:	to	the	point	r	=	 ,	there	corresponds	the
function

to	the	point	r	=	 ,	there	corresponds	the	function

We	 now	 impose	 the	 condition	 on	 ϕ(x),	 that	 ϕ(r)	 ≠	 fr(r)	 and	 specify	 in
particular	that	ϕ(r)	=	fr(r)	+	1.	Since	fr(r)	=	 	=	1,	ϕ(r)	always	has	the	value	2.	It
is	evident	that	the	line	ϕ(x)	=	2	is	not	contained
in	the	set	of	lines	fr(x)	=	 .	Thus	ϕ(x)	is	an	element	of	F	that	does	not	belong	to
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Fc.
3.	 Without	 proof,	 we	 state	 here	 that	 the	 cardinal	 number	 of	 the	 set	 of	 all

continuous	functions	has	“only”	the	cardinal	number	c.	The	continuous	functions
are	the	“exceptional	cases”	within	the	set	of	all	real	functions.	It	is	therefore	not
surprising	to	find	that	the	set	of	all	differentiable	functions	also	has	the	cardinal
number	 of	 the	 continuum,	 but	 on	 the	 other	 hand,	 the	 set	 of	 all	 integrable
functions	 has	 the	 cardinal	 number	 f	 of	 the	 set	 of	 all*	 functions,	 F.	 The
differentiable	 functions	 are	 again	 the	 “exceptional	 cases”	 of	 the	 integrable
functions.	Here	“integrability”	is	not	to	be	confused	with	“representation	of	the
integral	function	by	an	algebraic	or	elementary	transcendental	function.”	In	this
sense	(sin	x)/x	is	an	integrable	function.
4.	Are	there	cardinal	numbers	beyond	a,	c,	and	f?	The	answer	is	that	there	are

infinitely	 many	 transfinite	 cardinal	 numbers.	 We	 shall	 establish	 this	 fact	 by
proving	the	following	theorem.

For	any	arbitrary	 infinite	 set,	 there	exists	a	set	having	a	greater	cardinal
number	than	that	of	the	selected	set.

This,	of	course,	means	 that	 the	 sequence	of	 transfinite	cardinal	numbers	 is	not
bounded	above—there	is	no	“greatest”	cardinal	number.	By	way	of	illustration,
the	set	U(M)	of	all	subsets	of	a.	given	set	M	has	a	greater	cardinal	number	than
the	set	M	itself.
For	 finite	 sets,	whose	 cardinal	 numbers	 are	 the	 natural	 numbers,	 this	 fact	 is

easily	established,	since	the	finite	set	of	n	elements	has	2n	subsets,	and	2n	>	n.
5.	 To	 gain	 a	 better	 understanding	 of	 the	 general	 proof	 of	 this	 theorem	 for

infinite	 sets,	 let	 us	 clarify	 its	 beautiful,	 but	 rather	 difficult	 line	 of	 thought	 by
applying	it	first	to	a	finite	set	as	in	the	following	example.

Example:

Consider	a	 finite	set	of	 three	elements,	M	=	{1,2,3}.	Then	 the	set	of	subsets
U(M)	contains	2n	=	23	=	eight	elements,	namely:

From	U(M)	we	can	remove	a	subset	Um	that	is	equivalent	to	M;	for	example,	the
subset	 Um	 =	 {{2},	 {2,3},	 {1,2,3}}.	 The	 equivalence	 of	M	 and	 Um	 may	 be
established	through	a	definite	correspondence,	perhaps	like	the	following:
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In	any	such	correspondence	of	the	elements	of	M	and	Um,	two	possibilities	arise,
namely:
An	element	of	M	appears	in	the	corresponding	subset	element	of	Um	to	which

it	 is	 coordinated,	 (Class	 I),	 or	 The	 element	 of	 M	 does	 not	 appear	 in	 the
corresponding	subset	element	of	Um	to	which	it	is	coordinated	(Class	II).
In	 our	 example,	 the	 elements	 of	M	 are	 distributed	 as	 follows	 into	 the	 two

classes:

Class	I Class	II
(Elements	of	,	which	are	like	wise	in
the	subsets	to	which	they
correspond.)

(Elements	of	ilf,	which	do	not	appear	in
the	subsets	to	which	they	correspond.)

2	(contained	in	{1,2,3}). 1	(not	contained	in	{2,3}).
3	(not	contained	in	{2}).

Now	form	the	set	L	which	contains	the	elements	of	Class	II:	L	=	{1,3}.	Then	L
is	a	subset	of	M,	and	hence	L	∈	U(M).	However,	L	is	not	a	member	of	Um,	i.e.,	L
∉	Um,	which	we	shall	now	prove.
If	L	were	contained	in	Um,	 then	the	element	m1	paired	with	it	 in	M,	must	be

either	in	Class	I	or	Class	II.	If	ml	fell	in	Class	I,	then	m1	would	have	to	appear	in
L.	 But	 L	 contains	 only	 those	 elements	 of	 M	 which	 do	 not	 appear	 in	 the
corresponding	subset,	namely	the	elements	of	Class	II.
If	m1	fell	in	Class	II,	then	according	to	the	definition	of	Class	II,	it	could	not

be	in	L.
Now	L	contains	all	the	elements	of	Class	II	and	therefore	it	must	contain	m1.

Hence	L	cannot	be	contained	in	Um.	Thus:
No	subset	Um	of	U(M)	which	is	equivalent	to	M	can	possibly	exhaust	U(M).

Hence	U(M)	has	a	greater	cardinal	number	than	M.
6.	This	typical	method	of	reasoning	in	carrying	out	set-theoretical	proofs	can

easily	be	generalized	to	the	case	where	M	is	an	infinite	set.
Let	M	 be	 an	 infinite	 set	 and	U(M)	 the	 set	 of	 all	 subsets	 of	M.	 Then	 |M|	
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|U(M)|,	that	is,	U(M)	has	either	the	same	cardinal	number	as	M—since	the	set	of
all	subsets	with	only	one	element	is	clearly	equivalent	to	the	set	M—or	U(M)	has
a	greater	cardinal	number	than	M.	We	shall	prove	|	U(M)|	>	|M|.
Let	Um	be	a	subset	of	U(M)	which	is	equivalent	to	M.	Hence	Um	⊆	U(M)	and

Um	~	M.	Let	the	elements	of	M	correspond	in	a	definite	way	to	the	elements	of
Um.	We	 now	 separate	 the	 elements	 of	M	 into	 two	 classes	 as	 follows:	 Class	 I
contains	 those	 elements	 of	M	 which	 are	 also	 in	 the	 subset	 elements	 of	Um	 to
which	 they	 correspond;	 Class	 II	 contains	 those	 elements	 of	M	 which	 do	 not
appear	 in	 the	 subset	 elements	 of	Um	 to	which	 they	 correspond.	 The	 set	 of	 all
elements	of	Class	II	 is	an	element	of	U(M),	but	not	an	element	of	Um.	 (This	is
proved	exactly	as	above	for	finite	sets.)	Thus,	no	subset	of	U(M),	no	matter	how
it	 is	 formed	 to	 have	 the	 cardinal	 number	 |M|,	 can	 be	 equivalent	 to	U(M).	We
conclude	that:

The	set	of	all	subsets	of	a	set	M	has	a	greater	cardinal	number	than	the	set
M	itself.

For	every	transfinite	cardinal	number,	a	greater	one	can	be	determined.
7.	The	vague	and	naive	concept	of	“infinitely	large”	within	which	there	is	no

distinction	as	 to	 size	must	 therefore	be	 revised.	There	 is	 an	 infinite	number	of
well-determined	and	distinct	transfinite	cardinal	numbers	that	sharply	determine
the	multiplicity	of	the	infinite*,	 just	as	the	finite	cardinal	numbers	do	for	finite
quantities.

Exercises
1.		What	is	the	cardinal	number	of	the	set	of	all	lines	y	=	c1x	+	c2	where	c1	and	c2

are	real	numbers?
2.	 	 To	 what	 set	 of	 numbers	 is	 the	 set	 of	 all	 circles	 (x	 –	 a)2	 +	 (y	 –	 b)2	 =	 r2

equivalent?	Here	a,	b,	and	r	are	real	numbers.
3.		Order	according	to	size	the	various	cardinal	numbers,	finite	and	infinite,	thus

far	considered.

VIII.	The	Equivalence	Theorem
1.	 In	order	 to	establish	 the	equivalence	of	 two	finite	sets	M	and	N	we	 try	 to

map	the	elements	of	one	set	onto	the	other	so	that	the	elements	are	in	one-to-one
correspondence.	If	we	succeed	in	making	such	a	correspondence,	we	say	the	sets
are	equivalent,	of	the	same	power,	and	have	the	same	cardinal	number.	We	then
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write

If,	however,	m	comparing	two	infinite	sets,	it	happens	that	M	is	equivalent	to
a	subset	N1	of	N,	but	N	is	not	equivalent	to	any	subset	M1	of	M,	we	say	that	N	is
of	greater	power	than	M,	that	N	has	a	greater	cardinal	number.	We	then	write

It	was	in	this	manner	that	we	found	a	<	c	<	 ,	and	|M|	<	|U(M)|.
Sometimes,	 instead	of	 comparing	 the	 sets	M	 and	N	 directly,	 it	 is	 simpler	 to

attempt	to	set	up	a	correspondence	of	the	elements	of	one	set	with	the	elements
of	a	subset	of	the	other	set.	Then	the	following	four	cases	can	arise:

1. M	is	equivalent	to	a	subset	of	N,	and M	~	N1
N	is	equivalent	to	a	subset	M1	of	M N	~	M1

2. M	is	equivalent	to	a	subset	N1	of	N,	and M	~	N1
N	is	equivalent	to	no	subset	M1	of	M N	 	M1

3. M	is	equivalent	to	no	subset	N1	of	N,	and M	 	N1
N	is	equivalent	to	a	subset	M1	of	M N	 	M1

4. M	is	equivalent	to	no	subset	N1	of	N,	and M	 	N1
N	is	equivalent	to	no	subset	M1	of	M N	 	M1

Cases	2	and	3,	as	we	have	already	seen,	define	the	“greater	than”	and	“smaller
than”	relationship	among	cardinal	numbers:

Case	 4	 evidently	 introduces	 a	 paradox,	 that	 neither	 of	 the	 two	 sets	 contains	 a
subset	equivalent	to	the	other	set.	The	cardinal	numbers	m	and	n	would	then	be
incomparable.	That	this	case	cannot	arise,	was	asserted	by	G.	Cantor,	and	for	the
present	we	must	be	satisfied	with	this	allusion.	The	proof	which	was	given	later
(after	Cantor)	with	the	help	of	the	“well-ordering	theorem”	exceeds	the	level	of
difficulty	of	this	book.
Of	greatest	interest	to	us	now	is	Case	1	where	M	~	N1	and	N	~	M1;	for	then	the

so-called	equivalence	theorem	states	that	the	sets	M	and	N	are	equivalent.
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2.	The	equivalence	theorem:

If	both	M	is	equivalent	to	a	subset	N1	of	N	and	N	is	equivalent	to	a	subset
M1	of	M,	then	the	sets	M	and	N	are	equivalent	to	each	other.

They	have	the	same	transfinite	cardinal	number.

Proof:	 It	 will	 be	 sufficient	 to	 prove	 that	 M1	 ~	 M.	 Since	 the	 equivalence
relation	is	reflexive	and	transitive,	M1	~	M	and	N	~	M1	implies	that	M	~	N.
First,	partition	N	so	that	Nr	is	the	complementary	set	to	N1.	Thus

where	N1	and	Nr	are	disjoint	and	N1	is	the	subset	of	N	equivalent	to	M.

Partition	M1	so	that	it	is	the	union	of	two	disjoint	subsets	M2	and	Mr,

and	also	M2	is	equivalent	to	N1.	Thus

From	II	and	IV	we	have	M2	~	M.

Then

The	equivalence	theorem	is	then	proved	if	we	can	show	that	M2	~	M	and	M2	⊂
M1	⊂	M	implies	that	M1	~	M.
We	must	therefore	prove	the	very	evident	theorem:	if	a	set	M	is	equivalent	to

one	of	its	subsets	M2,	then	it	is	also	equivalent	to	every	one	of	its	subsets	M1	that
lie	between	M	and	M2.	(Here,	the	statement	“M1	lies	between	M2	and	M”	means:
M2	⊂	M1	⊂	M.)	The	proof	will	be	limited	to	proper	subsets,	for	if	M	=	M1	=	M2,
the	theorem	is	obvious.
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3.	We	now	show	that	given	the	relations	(a)	M	~	M2	and	(b)	M2	⊂	M1	⊂	M,	it
follows	that	M1	~	M.	For	the	purpose	of	simplification	we	let	M2	=	A,	M1	–	M2	=
B,	and	M	–	M1	=	C.	Thus	we	have

Then	our	theorem	becomes
Given:
(a)	A	∪	B	∪	C~A,	and	(b)	A	⊂	A	∪	B	⊂	A	∪	B	∪	C.
To	prove:

(c)	A	∪	B	~	A	∪	B	∪	C.
By	(a)	there	exists	a	mapping	of	As	∪	B	∪	C	onto	A,	which	is	illustrated	in

Figure	17.	Here	A1,	Bl	and	C1	are	subsets	of	A	that	are	coordinated	respectively
to	A,	B,	and	C.	The	same	rule	also	maps	A1	∪	B1	∪	C1	on	A1	where	A2,	B2,	and
C2	are	subsets	of	A1	which	are	coordinated	respectively	with	A1,	B1	and	C1.	This
process	can	be	repeated	indefinitely.	Thus	we	have:

Figure	17.	A	mapping	for	the	proof	of	the	equivalence	theorem.

In	every	case	Ai,	Bi	and	Ci	are	disjoint	sets.	The	intersection	of	all	the	sets	Ai	is
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DA	=	A1	∩	A2	∩	A3	∩	….

(Since	the	sequence	A1,	A2,	A3	…	does	not	end,	DA	can	be	an	empty	set.)	Now,
as	the	figure	shows,	we	have

A	∪	B	∪	C	=	DA	∪	B	∪	C	∪	B1	∪	C1	∪	B2	∪	C2	∪	…,

and

A	∪	B	=	DA	∪	B	∪	C1	∪	B1	∪	C2	∪	B2	∪	C3	∪	…,

On	 the	 right-hand	 side	we	 have	 in	 each	 case	 the	 union	 of	 disjoint	 sets,	 and
moreover,	 the	 two	 sets	 in	 each	 column	 on	 the	 right-hand	 side	 are	 equivalent.
Hence	the	left-hand	sides	are	also	equivalent	or	A	∪	B	∪	C	~	A	∪	B,	that	is,	M1
~	M.	(This	proves	the	equivalence	theorem,	which	in	this	form	was	first	given	by
Bernstein.*	The	equivalence	theorem	will	prove	useful	time	after	time.
4.	Of	the	four	different	cases	given	in	Section	1,	Case	4,	where	M1	⊂	M,	N1	⊂

N	and	also	M	 	N1	and	N	 	M1	was	eliminated	as	impossible.
Case	3:
M1	⊂	M,	N1	⊂	N	and	also	M	 	N1	but	N	~	M1	implies	m	>	n.
Case	2:
M1	⊂	Ms,	N1	⊂	N	and	also	M	~	N1	but	N	 	M1	implies	m	<	n.
Case	1:

M1	⊂	M,	N1	⊂	N	and	also	M	~	N1	and	N	~	M1
is	now	decided	by	the	equivalence	theorem:	m	=	n.
Of	the	three	conditions	m	>	n,	m	=	n,	and	m	<	n,	one	and	only	one	can	be	true

in	 a	 given	 situation.	 Further,	 from	 Cases	 1	 and	 2,	 it	 follows	 that	 if	 M	 is
equivalent	to	a	subset	of	N,	that	is	M	~	N1,	then	m	 	n.

Exercises
1.		Are	the	inconsistent	relations	of	infinite	sets:	M1	⊂	M,	N1	⊂	N,	M1	 	N,	and
N	 	M	consistent	for	finite	sets?	(Under	what	conditions?)

2.		Show,	by	the	use	of	the	equivalence	theorem,	that	the	sets	U	=	{1,3,5,…}	and
G	=	{2,4,6,…}	are	equivalent.

3.		Show,	by	the	use	of	Figure	18,	and	with	the	help	of	the	equivalence	theorem,
that	the	set	of	points	on	CD	is	equivalent	to	the	set	of	points	on	AB.
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Figure	18.	Application	of	the	equivalence	theorem	to	point	sets.

IX.	Sums	and	Products	of	Cardinal	Numbers
1.	Although	definite	transfinite	cardinal	numbers	have	now	been	created	and

their	 “greater-lesser”	 relationship	 developed	 in	 some	 detail,	 there	 still	 remains
the	 task	 of	 discovering	 rules	 for	 computing	 with	 these	 numbers.	 For	 finite
cardinal	 numbers,	 computations	 involving	 the	 rational	 operations	 have	 been
commonplace	 since	 early	 childhood	 (even	 though	 we	 may	 have	 been	 able	 to
count	only	to	three).	Further	consideration	gives	us	insight	into	the	laws	that	are
fundamental	to	elementary	arithmetic.	They	are:

(a)	the	commutative	laws:

(b)	the	associative	laws:

(b)	the	distributive	laws:

Now	we	shall	look	for	rules	of	operation	for	the	transfinite	cardinal	numbers,
at	 least	 for	 the	“three	 first”	cardinal	numbers	a,	c,	and	 f.	Actually	 to	call	 these
cardinals	the	“first	three”	corresponds	to	a	naive	childhood	conception	about	the
infinite,	for	we	do	not	know	for	certain	whether	or	not	these	cardinals	are	really
the	“first	three	transfinite	cardinals.”	(This	is	the	problem	of	the	continuum.)
In	the	following,	by	cardinal	number	we	shall	always	understand	a	transfinite

cardinal	 number.	 A	 set	 M	 representing	 the	 cardinal	 number	 m	 can	 be	 any
particular	set	having	the	cardinal	number	m	and	in	view	of	what	we	have	learned
about	 cardinal	 numbers,	 it	 can	 be	 replaced	 by	 any	 other	 set	 having	 this	 same
cardinal	number.
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2.	The	addition	of	 two	cardinal	numbers	 is	defined	 in	 terms	of	 the	union	of
two	sets,	which	we	have	already	defined.	The	union	of	two	sets	M	and	N	having
the	cardinal	numbers	m	and	n	is	the	set	S	=	M	∪	N,	that	is,	the	set	of	all	elements
that	are	contained	in	at	least	one	of	the	sets	M	or	N.	We	now	think	of	M	and	N	as
disjoint	(or	what	is	the	same	thing,	we	replace	M	and	N	by	arbitrary	equivalent
sets	 	and	 	that	are	disjoint)	and	define

From	 this	 definition	 of	 addition	 of	 cardinal	 numbers,	 it	 is	 evident	 that	 the
following	laws	hold:

Using	 the	 theorems	which	we	have	previously	developed,	we	can	obtain	 the
following	relations:

Example:

Example:

Thus	the	rules	for	addition	of	transfinite	cardinal	numbers	are	quite	different
from	 those	 for	 finite	 cardinal	 numbers.	 For	 example,	a	 +	a	 =	a,	 but	 for	 finite
numbers	a	+	a	≠	a	if	a	≠	0.	Without	proof,	we	shall	agree	that	for	any	transfinite
cardinal	number	m,	the	following	rule	will	be	valid
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3.	 It	 is	 not	 possible	 to	 define	 subtraction	 for	 transfinite	 cardinal	 numbers
because—insofar	as	it	is	at	all	possible—it	does	not	lead	to	a	unique	result.	We
show	 this	 in	 the	 following	 example.	 We	 assume	 that	

.	Here	M	and	N	cannot	be	assumed	as	disjoint	since
N	⊆	M.

4.	Multiplication	of	two	cardinal	numbers	is	defined	as	follows:	consider	two
cardinal	numbers	m	and	n	as	represented	by	the	disjoint	sets	M	and	N.	Now	form
the	set	P	of	ordered	pairs	of	numbers	(m,n)	by	taking	each	element	of	the	set	M
and	associating	with	it	in	turn	each	element	of	the	set	N.	We	call	P	=	M	X	N	the
product	set	(or	Cartesian	product)	of	sets	M	and	N.

The	product	of	the	cardinal	numbers	m	and	n	is	the	cardinal	number	of	the
product	set:	m·n	=	|P|	=	|M	X	N|.

This	 definition	 is	 merely	 an	 extension	 of	 the	 common	 definition	 of
multiplication	 for	 finite	 cardinal	 numbers,	 where	 3·4	 means	 the	 sum	 of	 three
equal	 addends	4;	 or	3·4	=	4	+	4	+	4	=	12.	This	 is	 exactly	 the	meaning	of	our
general	definition	m·n	=	|P|.	We	illustrate	our	point	by	an	example.
Example:
Let	M	=	{a,b,c}	and	N	=	{1,2,3,4}-Hence	|M|	=	3;	|N|	=	4.

Hence
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5.	In	the	product	of	more	than	two	factors,	the	product	set	is	constructed	in	a
similar	manner.	P	=	A	X	B	X	C	 is	 the	set	of	all	possible	ordered	 triads	 (a,b,c)
where	a	is	an	element	of	A,	b	is	an	element	of	B,	and	c	an	element	of	C.

Example:

Let	A	=	{1,2,3},	B	=	{g,h},C	=	{α,β}.

Then

For	products,	 it	 is	 evident	 that	 the	 commutative,	 associative	 and	distributive
laws	are	valid:

In	 addition	 to	 these	 laws	we	 also	 require	 that	 if	 one	 of	 the	 sets	M	 or	N	 is	 an
empty	set,	then	M	X	N	=	{	}	and	m	·	n	=	0.
6.	 For	 our	 “first”	 transfinite	 cardinal	 numbers	 we	 have	 in	 particular	 the

following	valid	relations:

and

To	prove	this	relation,	consider	the	set	of	lattice	points	on	a	straight	line	and	the
plane	or	 the	denumerability	of	ordered	pairs	of	 integers,	by	using	 the	diagonal
process.
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and

The	point	set:	0	<	x	<	1	has	the	cardinal	number	c.	The	point	set:	0	<	y	<	1	has
the	 cardinal	 number	 c.	 Then	 the	 product	 set	 with	 elements	 (x,y)	 also	 has	 the
cardinal	 number	 c.	 To	 show	 this,	 look	 upon	 these	 elements	 as	 Cartesian
coordinates.	 The	 product	 set	 can	 then	 be	 placed	 in	 one-to-one	 correspondence
with	 the	 set	 of	 points	 interior	 to	 a	 square	with	 unit	 edge.	 But	 this	 set	 has	 the
cardinal	number	c.

Since	n	<	a	<	c,	we	have	n·c	 	a·c	 	c·c.	Therefore	c	 	a·c	 	c,	that	is	a·c	=	c.
The	 cardinal	 number	 of	 the	 product	 set	 P	 of	 two	 sets,	 which	 contains	 the

elements	 is	 nothing	more	 than	 the	 addition	of	m	addends	 each	n.	 For,	 to	 each
selected	m1	of	M	there	is	a	subset	P1	of	P	with	the	elements	(m1,n).	This	subset
P1	is	equivalent	to	the	set	N,	hence

In	 the	 case	 of	 infinite	 sets	we	 can	 also	 look	 upon	m	 ·	n	 as	 an	 infinitely	 often
repeated	addition	of	equal	addends.
7.	 Division	 of	 transfinite	 cardinal	 numbers,	 like	 subtraction,	 leads	 to

ambiguity	as	is	shown	by	the	following	attempts.
From	n·c	=	c,	it	would	follow	that

From	a·c	=	c,	it	would	follow	that

From	c·c	=	c,	it	would	follow	that
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The	 extension	 of	 computational	 operations	 beyond	 the	 domain	 of	 finite
numbers	is	possible	only	for	the	direct	operations	(addition	and	multiplication),
not	their	inverses.

Exercises

1.		Is	it	always	true	that	if	m	<	n	and	n	 	p),	then	m	<	p	and	m·q	 	n·q	 	p·q?
2.		Compute	the	value	of	a!	=	1·2·3·4
3.		For	disjoint	sets	M	and	N,	when	does	the	relation	|M|	·	|N|	=	|M	X	N|	hold?

X.	Powers	of	Cardinal	Numbers
1.	As	a	final	operation	we	define	the	power	of	cardinal	numbers.	The	power

mn	for	finite	cardinal	numbers	is	defined	by	repeated	multiplication,	that	is,	there
are	 n	 equal	 factors	 m.	 In	 exactly	 the	 same	 way	 we	 define	 powers	 with	 a
transfinite	cardinal	number	as	base:

But	what	happens	when	 the	exponent	 is	 likewise	a	 transfinite	number?	Here
mn	 will	 mean:	 the	 transfinite	 number	m	 shall	 be	 combined	 by	 multiplication
through	 tt	 factors.	Corresponding	 to	 the	definition	of	multiplication	of	cardinal
numbers,	we	have	to	form	the	product	PN(M)	=	M1	X	M2	X	M3	X	…,	where	all
the	sets	Mi	have	the	same	cardinal	number	m	and	the	set	N	=	{M1,M2,M3s…}	has
the	cardinal	number	n.
The	elements	of	this	product	set	consist	of	the	n-tuple:	(m1,m2,m3…)	in	which

in	turn	equals	all	the	elements	of	M1	m2	all	the	elements	of	M2,	etc.	Then

Examples:

We	 shall	 illustrate	 the	 construction	 of	 the	 set	PN(M)	 by	 two	 examples	with
finite	sets.
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Thus	 the	 definition	 of	 power	 of	 finite	 cardinal	 numbers	 is	 contained	 in	 the
foregoing	general	definition.
2.	 In	defining	power,	Cantor	 introduced	a	very	 insightful	and	useful	concept

called	 a	 covering	 set	 (Belegungsmenge).	 Under	 this	 concept	 the	 power	mn	 is
defined	as	follows:	in	the	set	N	representing	the	cardinal	number	n,	each	element
is	“covered”	by	an	arbitrary	set	M	representing	the	cardinal	m.	In	the	foregoing
example	(a),	the	element	1	of	N	is	covered	by	the	set	M1	=	{a,b}:	the	element	2
of	N	 is	 covered	by	 the	 set	M2	=	{α,β};	 and	 the	 element	3	 is	 covered	by	M3	=
{A,B}.	The	set	of	all	possible	sets	arising	from	this	coverage	of	the	elements	of
N	by	sets	Mi	 is	called	the	covering	set,	symbolized	by	“N/M”	The	covering	set
has	the	cardinal	number	mn,	that	is

Example:
A	 covering	 set	N/M	 of	 the	 set	N	 =	 {1,2,3,4,5,6,7,8,9,10}	 with	 the	 set	M	 =

{1,11,0},	represents	the	set	of	ten	teams	in	a	football	lottery,	listed	as	opponents
to	ten	other	teams	in	which	every	element	of	N	(a	definite	game)	is	covered	by
the	elements	of	M	(win,	lose,	tie).
Evidently
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3.	The	concept	of	covering	set	is	closely	related	to	the	concept	of	function.	As
the	independent	variable	x	takes	on	every	value	in	the	set	X	(x	is	thus	replaced	by
any	element	of	X),	the	dependent	variable	y	assumes	all	the	values	y	of	the	set	Y.
Thus	y	=	f(x)	is	a	function	on	X	to	Y.	The	function	represents	a	definite	covering
of	X	by	Y.
4.	The	 elementary	 laws	of	 exponents	 for	 the	 direct	 operations	 (addition	 and

multiplication)	are	also	valid	for	powers	of	transfinite	cardinal	numbers:

Finally	we	define	m°	=	1.
5.	We	defined	the	power	set	of	a	set	N	 to	be	 the	set	of	all	subsets	of	N,	and

designated	 this	 set	 by	U(N).	 We	 have	 already	 proved	 that	 |U(N)|	 >	 |N|.	 The
power	set	of	a	set	N	can	also	be	conceived	as	 the	covering	set	of	N	by	 the	set
{+,–	 }.	 A	 subset	 of	 N	 is	 obtained	 if	 we	 select	 certain	 elements	 of	 N	 (those
covered	by	+)	and	do	not	select	the	others	(those	covered	by	–	).	Every	subset	of
N	can	thus	be	considered	as	some	definite	coverage	of	the	set	N	by	the	set	{+,–
}.	The	empty	subset	is	that	in	which	all	the	elements	of	N	are	covered	by	–.	The
improper	subset	is	that	in	which	all	the	elements	are	covered	by	+.
The	 set	 {+,–}	 has	 the	 cardinal	 number	 2.	 Thus	 the	 cardinal	 number	 of	 the

power	set	U(N)	is	|U(N)|	=	2n.	We	already	have	seen	that	2n	>	n.	From	this	it	will
follow	that	for	every	transfinite	cardinal	number	there	is	a	greater	one.	From	m	=
2n	we	 have	m	 >	n.	 From	p	 =	 2m	we	 have	p	 >	m	 >	n,	 etc.	 The	 question	 as	 to
whether	 2n	 is	 the	 next	 greatest	 cardinal	 number	 after	 n	 or	 whether	 there	 is	 a
cardinal	number	 	for	which	n	<	 	<	2n	is	still	unanswered.	For	n	=	a	this	question
corresponds	to	the	problem	of	the	continuum,	since	as	we	shall	soon	see,	2a	=	c.
6.	 To	 determine	 the	 power	 set	 of	 a	 denumerable	 set	 N	 with	 the	 cardinal

number	 |N|	 =	 a,	 we	 shall	 first	 consider	 the	 power	 10a	 (corresponding	 to	 our
number	system	and	its	decimal	notation).	To	represent	a	we	choose	the	set	N	=
{a1,a2,a3,…}	 and	 interpret	 the	 elements	 an	 as	 digits	 in	 the	 decimal	 number
0·a1,a2,a3,….	Every	element	an	of	N	is	then	covered	by	a	set	Mn	whose	cardinal
number	 is	 |Mn|	 =	 10.	Select	 all	 these	 sets	Mn	 =	 {1,2,3,4,5,6,7,8,9,0}.	Then	 the
covering	set	PN(M)	is	equivalent	to	the	set	of	all	decimal	numbers	between	0	and
1,	for	which	we	already	know	the	cardinal	number	is	c.	Hence	10a	=	c.
For	another	system	of	notation	consisting	of	n	digits,	a	covering	can	be	made

in	an	analogous	manner,	so	that	for	every	cardinal	number	n	>	1,	the	power	na
has	the	value	c.	In	particular,	2a	=	c.
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The	cardinal	number	of	the	set	of	all	subsets	of	a	denumerable	set	is	c.

7.	 Using	 all	 the	 rules	 of	 operation	 we	 now	 know,	 we	 can	 determine	 the
following:

The	formula	cn	=	c	expresses	the	property	previously	determined	that	the	set
of	all	points	of	a	straight	line,	of	a	plane,	of	three-dimensional	space,	and	even	of
space	of	more	dimensions	 (a	denumerable	number	of	dimensions)	 all	have	 the
cardinal	 number	 c.	 All	 these	 point	 sets	 can	 thus	 be	 placed	 in	 one-to-one
correspondence	 with	 the	 set	 of	 points	 on	 an	 arbitrarily-selected	 small	 line
segment.

This	follows	from	the	fact	that	the	set	of	all	real	functions	in	the	interval	0	<	x	<
1	 is	 the	 covering	 set	 of	 the	 continuum,	K,	 (0	 <	 x	 <	 1)	 on	 the	 set	 of	 all	 real
numbers	Rei	(0	<	r	<	1).	That	is	F	=	K/Re1.	Its	cardinal	number	is	|K/Re1|	=	c

c	=	 .
Hence

We	 summarize	 the	 application	 of	 the	 laws	 of	 exponents	 to	 the	 cardinal
numbers	n(>1),	a,	c,	and	 	as	follows:

Exponent	n:

Exponent	a:
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Exponent	c:

Exponent	 :

8.	 To	 conclude	 this	 section,	 we	 consider	 the	 set	 S	 of	 all	 real	 continuous
functions,	y	=	f(x)	in	the	interval	0	<	x	<	1.	We	say	a	function	is	continuous	if	for
every	 value	 x0	 in	 the	 domain	 of	 the	 definition,	 the	 value	 of	 the	 function	 is
determined	by	the	values	of	the	function	in	the	neighborhood	of	x0.	It	may	also
help	 if	 we	 recall	 the	 definition	 of	 continuity	 from	 the	 study	 of	 differential
calculus:	Here

or	very	briefly

A	continuous	function	is	thus	completely	determined	if	its	value	is	known	for
all	rational	values	of	x.	The	values	of	the	function	for	irrational	values	of	x	are
always	as	close	as	we	care	to	make	them	to	the	values	of	the	function	for	rational
values	of	x.	(For	example,	consider	the	approximation	of	irrational	numbers	by
decimal	fractions,	as	in	1.414	<	 	<	1.415.)
All	real	continuous	functions	are	thus	contained	in	a	covering	set	B,	which	is

formed	by	covering	the	denumerable	set	of	all	rational	values	of	x	by	the	set	of
all	real	numbers	 that	has	 the	cardinal	number	of	 the	continuum	c.	The	cardinal
number	of	B	is	|B|	=	ca	=	c.
The	set	S	of	all	real	continuous	functions,	however,	is	only	a	subset	of	B,	and

in	fact	a	proper	subset.	This	is	because	the	conditions	of	continuity	demand	that
neighboring	rational	values	of	x	must	correspond	to	neighboring	values	of	y,	and
the	correspondence	is	not	entirely	arbitrary.	Hence	S	⊂	B.
The	set	K	of	all	constant	functions	f(x)	=	c	is	again	a	proper	subset	of	S,	and	K

⊂	 S.	 The	 cardinal	 number	 of	K	 is	 c.	 Hence	K	⊂	 S	⊂	B,	 and	K	 ~	 B.	 By	 the
equivalence	theorem,	we	conclude	that	S	~	B>	that	is	|S|	=	c.

The	set	of	all	real	continuous	functions	has	the	cardinal	number	c.

Download more at Learnclax.com



Exercises
1.	 	Cover	 the	set	N	=	{1,2,3,…,12}	by	 the	set	M	=	{I,II,0},	and	determine	 the

cardinal	number	of	N/M.
2.		By	what	set:	?	<	y	<	?	does	the	function	y	=	sin	x	cover	the	set	0<	x<	π/2?
3.		What	is	the	set	Y,	for	which	the	function	y	=	(–1)x	covers	the	set	X=	{1,2,3,4,

…}?
4.	 	How	many	possible	ways	are	there	for	assigning	16	students	to	six	classes?

(Hint:	find	the	cardinal	number	of	the	set	covering	N	=	{1,2,3,…,16}	with	M
=	{I,II,…,VI}.)

5.	 	 Prove,	 by	 the	 use	 of	 covering	 sets,	 that	 for	 all	 transfinite	 cardinals	m,	 the
relations	1m	=	1	and	m1	—	m	hold.

6.	 	 What	 is	 the	 cardinal	 number	 of	 all	 real	 functions	 that	 have	 only	 rational
values	of	y?

7.		Prove	the	law	mp·np	=	(m·n)p.

*Richard	Dedekind	(1831–1916).
†Finite	means	ending;	infinite	means	transfinite,	not-ending.
‡Euclid	(c.	325	B.C.).
*a	is	the	German	letter	a	and	is	pronounced	“ah.”
†in	1896,	Jacques	Hadamard	and	Charles	de	la	Vallée	Poussin	proved	the	prime	number	theorem:
The	number	of	prime	numbers	π(n),	less	than	or	equal	to	n	satisfies	the	relation:

The	following	table	illustrates	this	limit.

This	theorem	not	only	proves	that	the	prime	numbers	form	an	infinite	set,	since	 ,	but	it

also	clarifies	the	nature	of	their	distribution.
As	of	today,	the	questions	are	still	unresolved	as	to	whether	the	set	of	twin-primes	(e.g.,	17,	19	or	1949,

1951)	or	the	set	of	prime	number	quartettes	(e.g.,	11,13,17,	19	or	299471,	299473,	299477,	299479)	do	or
do	not	form	an	infinite	set.
*Editor’s	note:	Each	number	of	elementary	algebra	is	“complex,”	being	of	the	form	a	+	ib,	where	a	and	b
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are	real.	If	b	=	0,	the	(complex)	number	is,	in	particular,	real;	if	a	=	0,	then	the	number	is	“pure	imaginary.”
Each	 (complex)	 number	which	 is	 not	 real	 is	 “imaginary.”	 For	 example,	 1	 +	 i	 is	 imaginary	 but	 not	 pure
imaginary;	1	is	real	and	is	also	complex.	As	long	as	one	discusses	real	numbers	only,	the	term	“complex,”
while	applicable,	need	not	be	mentioned.
*c	is	the	German	small	letter	c,	pronounced	“tsay.”
*The	differential	quotient	and	the	integral,	as	is	well-known,	are	related	by	the	fundamental	theorem	of

integral	calculus.	If	one	differentiates	an	integral	of	a	continuous	function	with	respect	to	its	upper	bound,
one	obtains	the	value	of	the	integrand	at	the	upper	bound:

At	 first	 this	 fundamental	 theorem	 applied	 only	 to	 continuous	 functions,	 its	 underlying	 concept	 of
“integral”	being	 that	of	Bernhart	Riemann	 (1826–66).	This	 concept	of	 integral	was	generalized	by	Henri
Lebesgue	(1875–1931)	 in	connection	with	Cantor’s	 theory	of	point	sets,	so	 that	 the	fundamental	 theorem
became	 valid	 without	 the	 limitation	 of	 continuity.	 Modern	 analysis	 even	 permits	 the	 differentiation	 of
discontinuous	functions—a	very	significant	step	for	modern	physics.
*G.	Cantor	called	his	area	of	study	the	“Theory	of	Multiplicities”	(Mannigfaltigkeitslehre).
*F.Bernstein	(a	student	of	Cantor)	born	1878	in	Halle	and,	until	1933	Professor	at	Göttingen.
*For	finite	sets,	the	cardinal	number	of	the	covering	set	N/M	is	simply	the	number	of	permutations	with

repetitions	of	m	things	used	n	times.	By	the	law	of	variations	with	repetitions	this	is	m·m·m···	(n	factors)	=
mn.
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4

ORDERED	SETS

XI.	Ordered	Sets	and	Order-Types
1.	 	 In	grammar	one	 is	 taught	 the	difference	between	numbers	 that	 tell	 order

and	 those	 that	 tell	 the	 size	 of	 groups	 (ordinal	 and	 cardinal	 numbers).	 As	 we
learned	to	count,	not	only	did	we	conceive	of	three	as	a	plurality	of	three	things,
but	we	also	became	aware	of	what	was	meant	by	speaking	of	the	third	of	these
things	(or	the	second,	or	the	first).
In	general,	we	were	unable	to	think	of	the	quantity	three	except	as	arranged	in

some	 order.	 Often,	 in	 counting,	 we	 pointed	 out	 a	 first,	 a	 second,	 and	 a	 third
thing,	probably	with	the	use	of	our	fingers.	Our	senses	and	our	thinking	almost
always	made	us	conceive	sets	of	things	in	a	definite	spatial	or	temporal	order.
The	definition	of	the	concept	“set”	as	“a	bringing	together	of	definite	distinct

objects	 of	 our	 perception	 or	 our	 thought,	 to	 a	whole,”	 in	 the	 absence	 of	 some
order	 of	 the	 elements,	 places	 considerable	 demands	 upon	 our	 powers	 of
abstraction.	Nevertheless,	the	absence	of	order	and	the	absence	of	any	reference
to	 the	nature	of	 the	 elements,	 furnished	us	 in	 the	 case	of	 infinite	 sets	with	 the
concept	of	transfinite	cardinal	number.	We	came	to	understand	such	a	number	as
represented	 by	 any	 one	 of	 the	 infinite	 number	 of	 equivalent	 sets	 having	 this
number.	Thus

We	can	now	understand	Cantor’s	remark	when	he	said,	“The	cardinal	number
of	M	is	the	name	of	that	general	concept	which	arises	out	of	the	set	M	by	means
of	 our	 active	 powers	 of	 thought,	 and	 is	 apart	 from	 the	 nature	 of	 its	 various
elements	and	the	order	in	which	they	are	given.”
2.		We	shall	now	consider	equivalent	sets,	again	ignoring	the	special	nature	of

the	elements	but	paying	attention,	now,	to	the	ordering	of	the	elements.	By	doing
this,	we	can	determine	fundamental	differences	in	sets.

Download more at Learnclax.com



(a)	 The	 set	N	 =	 {1,2,3,…}	 has	 a	 first,	 but	 no	 last	 element.	 Every	 element
except	 the	 first	 has	 a	 definite	 predecessor.	 The	 element	 5	 precedes	 6,	 and	 7
follows	after	6.
(b)	 The	 set	 	 =	 {…3,2,1}	 has	 a	 last	 element,	 but	 no	 first	 element.	 Every

element	has	a	preceding	element,	and	with	the	exception	of	the	last	element,	also
a	successor.
(c)	The	set	of	all	positive	fractions	ordered	according	to	size	has	no	first	and

no	 last	 element.	No	 element	 has	 an	 immediate	 predecessor	 or	 successor.	 This
follows	 from	 the	 fact	 that	 there	 is	 no	 smallest	 or	 greatest	 proper	 fraction,	 and
between	 two	 fractions,	 no	matter	 how	 close	 they	 are,	 there	 always	 exist	 other
fractions	(for	example	the	arithmetic	mean	of	the	two	fractions).
(d)	 The	 set	 Z	 =	 {0,1,	 –1,2,	 –2,…}	 has	 a	 first,	 but	 no	 last	 element.	 Every

element	except	the	first	has	an	immediate	predecessor	and	successor.
(e)	The	 set	 	=	{…	–3,	–2,	 –1,0,1,2,3,…}	has	no	 first	 and	no	 last	 element.

Every	 element,	 however,	 has	 an	 immediate	 predecessor	 and	 immediate
successor.	Note	that	Z	=	 ,	that	is,	Z	and	 	have	the	same	elements.
(f)	 In	 the	set	M	=	{1,3,5,…,2,4,6,…},	 the	element	2	and	 the	element	1	each

have	no	immediate	predecessor.

Note	 that	 in	 the	 above	 equivalent	 sets,	 the	 elements	 are	 ordered	 in	 quite
different	 manners.	When	 we	 speak	 of	 ordered	 sets	 in	 what	 follows,	 we	 shall
include	in	this	concept	of	set	a	rule	for	ordering	the	set.	By	doing	this	we	shall
make	 accessible	 the	 mathematical	 understanding	 of	 the	 concepts	 of
neighborhood,	continuity,	and	dimension,	all	of	which	were	lost	in	the	generality
of	the	equivalence	relation.
3.		A	set	M	will	be	called	an	ordered	set,	if	for	any	two	of	the	elements	a	and

b,	one	and	only	one	of	the	two	conditions	is	fullfilled:

This	ordering	of	the	elements	has	three	characteristic	properties:
(a)	It	is	non-reflexive;	it	is	never	the	case	that	a	 	a	or	a	 	a.
(b)	It	is	anti-symmetric;	given	a	 	b,	it	follows	that	b	 	a.
(c)	It	is	transitive;	from	a	 	b	and	b	 	c,	it	follows	that	a	 	c.

The	signs	“ ”	and	“ ”	must	not	be	confused	with	the	greaters-smaller	signs,
“>“,	and	“<“	used	with	the	cardinal	numbers.	In	Example	2(a),	N	=	{1,2,3,…};	“
”	corresponds	to	“<“,	and	“ ”	to	“>.”	In	Example	2(b),	 	=	{…	3,2,1},	“ ”

corresponds	to	“>“,	and	“ ”	to	“<”.	In	Example	2(c),	“ ”	corresponds	to	“<“
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and	“ ”	to	“>”.
In	 Example	 2(d),	 the	 directions	 for	 ordering	 can	 be	 given	 thus:	 of	 any	 two

elements	 of	 different	 absolute	 value,	 the	 element	 of	 smaller	 absolute	 value
comes	before	the	element	of	greater	absolute	value;	of	two	elements	of	the	same
absolute	value,	the	positive	element	comes	before	the	negative	element.
In	Example	2(e),	 	=	{…,	–	3,–2,–	1,0,1,2,3,…},	“ ”	corresponds	to	“<“	and

“ ”	to	“>”.
In	 Example	 2(f),	 the	 directions	 for	 ordering	 are:	 every	 odd	 number	 comes

before	 every	 even	 number;	 of	 any	 two	 odd	 numbers,	 or	 even	 numbers,	 the
smaller	comes	before	the	larger.
A	set	has	a	first	element	a,	if	for	every	other	element	m	∈	M,	the	relation	a	

m	is	true.	It	has	a	last	element	b,	if	for	every	other	element	m	∈	M,	the	relation	m
	b	 is	 true.	An	ordered	set,	at	 the	most	contains	only	one	first	element,	and	at

the	most	only	one	last	element.
If	for	three	elements	of	a	set,	a,	b,	and	c,	it	is	known	that	a	 	b	 	c,	then	we

say	b	lies	between	a	and	c.	The	sets	N	=	{1,2,3,…}	and	 	=	{…	,3,2,1}	as	sets
are	equal	since	they	each	contain	the	same	elements.	We	say	N	=	 .	However,
as	 ordered	 sets	 they	 are	 considered	 different	 sets,	 since	 their	 elements	 are
arranged	in	different	orders.
Every	subset	of	an	ordered	set	is	also	an	ordered	set,	in	which	the	principle	of

order	for	the	whole	set	is	maintained.	By	agreement,	the	empty	set	shall	also	be
considered	an	ordered	set.
4.	 	 In	 the	case	of	ordered	sets,	 the	concept	of	equivalence	is	replaced	by	the

sharper	concept	of	similarity.

An	ordered	set	M	 is	 similar	 to	an	ordered	set	N,	when	 the	elements	of	M
and	N	 can	 be	 put	 into	 one-to-one	 correspondence	 in	 such	 a	manner	 that
when	 for	any	 two	elements	of	M,	m1	and	m2	 the	 relation	m1	 	m2	holds,
then	 for	 the	corresponding	elements	n1	 and	n2	of	N,	 the	 relation	n1	 	n2
also	holds.

In	this	case	we	write:	“ ”	and	say	“N	is	similar	to	M”

Example:

Let	N	=	{1,2,3,…};G	=	{2,4,6,…Then	 	since	the	ordering	1	↔	2,	2	↔
4,	3	↔	6,	…,	assigns	every	natural	number	(of	N)	to	its	double	(in	G).	From	this
ordering,	it	follows	that	if	n1	 	n2	then	g1	 	g2;	from	11	 	14,	it	follows	that	22
	28.
In	 contrast,	 the	 sets	 N	 =	 {1,2,3,…}	 and	 	 =	 {…,3,2,1}	 are	 not	 similar
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although	 they	 are	 equivalent.	 Indeed,	 in	N	 there	 is	 a	 first	 element	 that	 all	 the
other	elements	follow,	but	in	 	there	is	no	first	element	to	which	the	1	of	 	can
be	assigned.	Also	 	has	a	last	element	but	N	does	not.
Using	the	definition	of	similarity,	 it	can	be	shown	that	ordered	sets	have	the

following	properties:

(a)	 .	 Each	 ordered	 set	 is	 similar	 to	 itself.	 The	 similarity	 relation	 is
reflexive.
(b)	If	 ,	then	 .	The	similarity	relation	is	symmetric.
(c)	If	 	and	 ,	then	 	The	similarity	relation	is	transitive.

5.	 	 We	 already	 have	 seen	 that	 similar	 sets	 are	 always	 equivalent,	 but	 that
equivalent	 sets	 are	 not	 always	 similar.	 In	 particular,	 using	 the	 example	 of	 the
non-similar	sets	N	=	{1,2,3,…}	and	 	=	{…,3,2,1},	we	reach	the	conclusion:

If,	in	two	similar	sets,	the	one	set	has	a	first	(or	last)	element,	then	the	other
set	also	has	a	first	(or	last)	element.

A	still	further	consequence	is	the	theorem:

If	a	set	M	is	equivalent	to	an	ordered	set	N,	then	M	can	be	so	ordered	that
M	and	N	are	similar	to	each	other.

To	prove	this,	we	need	only	to	make	the	order	relation	n1	 	n2	which	holds
for	 the	elements	of	 the	ordered	set	N	apply	also	 to	 the	corresponding	elements
m1,	and	m2	of	M	to	which	n1	and	n2	are	coordinated,	that	is,	to	stipulate	that	m1	
	m2.

Examples:

(a)	The	sets

are	equivalent;	N	~	 ;	for	both	are	denumerable.	They	are	not	similar,	for	N	has
a	first	element	and	 	does	not.	If	we	order	 	in	the	manner

We	could	also	obtain	a	mapping	of	similarity	by	reordering	N	into
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(b)	The	ordered	set	of	points	X	in	the	interval	1	 	x	 	2	and	the	ordered	set	of
points	 	in	the	interval	5	 	y	 	10	are	similar.	The	order	relation	is	given	by	y	=
5x.	If	x1	 	x2	(which	here	means	x1	<	x2),	then	y1	 	y2	(which	here	means	y1	<
y2).
(c)	The	ordered	point	sets	X,	0	<	x	 	1	and	Y,	0	 	y	<	1	are	not	similar	 to

each	 other,	 if	 as	 a	 principle	 of	 ordering	we	 take	 the	 respective	x	 and	y	 values
according	to	their	size.	In	this	case	X	has	a	last	element	but	no	first,	and	Y	has	a
first	element	but	no	 last.	The	sets	are	equivalent.	To	make	 the	sets	similar,	 the
correspondence	 of	 the	 points	 must	 be	 made	 by	 reordering	 one	 of	 the	 sets.	 A
similarity	correspondence	can	be	given	by	the	relation	y	=	1	–	x.	Then	for	0	<	x	
	1,	we	have	1	>	y	 	0.
The	point	sets	X,	(0	<	x	 	1)	and	 ,	(1	>	 	 	0)	are	similar.	If	x1	 	x2	(or	x1	<

x2),	then	 1	 	 2	(or	 1	>	 2).
(d)	The	following	sets	are	equivalent,	but	obviously	not	similar:

N	=	{1,2,3,…},

and

T	=	{10,20,30,…,11,21,31,…19,29,36,…}

6.	 	 Just	 as	 the	concept	of	 equivalence	 led	 to	 that	of	 cardinal	number,	 so	 the
concept	of	similarity	leads	to	that	of	ordinal-type.	By	the	ordinal-type	μ	of	a	set
M	we	 shall	 understand	 any	 one*	 of	 the	 representatives	 of	 the	 class	 of	 all	 sets
similar	to	M.	Accordingly,	to	say	“two	sets	have	the	same	ordinal-type”	means
merely	“the	two	sets	are	similar.”	Briefly,	we	shall	write	μ	=	[M]	for	the	ordinal-
type	μ	of	set	M.
The	following	examples	will	clarify	and	strengthen	this	symbolism.

It	can	now	be	seen	that	equivalent	sets	may	very	well	have	different	ordinal-
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types.	These	types	are	different,	but	not	in	relation	to	comparison	of	their	sizes.
They	 therefore	 lack	 the	 designating	 characteristic	 for	 numbers,	 namely:
orderability	according	to	size.	Because	of	this	fact	we	do	not	call	them	numbers,
but	ordinal-types.
7.	 	Finite	 sets	having	 the	 same	cardinal	number	must	 always	have	 the	 same

ordinal-type.	Another	way	of	saying	this	is	that	equivalent	finite	sets	are	always
similar	 to	 each	 other.	 No	 matter	 how	 four	 things	 are	 ordered,	 it	 is	 always
possible	to	make	the	last	element	the	fourth	element.	The	sets

all	 have	 the	 same	 ordinal-type.	 For	 practical	 reasons	we	 call	 this	 ordinal-type
four	 and	 use	 the	 symbol	 “4.”	 Thus	 the	 natural	 numbers	 obtain	 a	 double
significance:

(a)	They	represent	the	numbers	of	finite	sets	(cardinal	numbers).
(b)	They	represent	ordinal-types	(ordinal	numbers).

8.	 	We	 shall	 use	 small	Greek	 letters	 to	 represent	 the	ordinal-type	of	 infinite
sets.	The	ordinal-type	of	an	 infinite	set,	which	by	a	 reversal	of	arrangement	of
the	elements	will	produce	an	ordered	set	of	the	ordinal-type	μ	we	shall	represent
by	*μ	In	particular,	we	shall	write:

The	 ordinal-type	 of	 all	 the	 rational	 numbers	 according	 to	 (increasing)	 size	 is
designated	by	η.	The	ordinal-type	of	all	 real	numbers	according	to	(increasing)
size	is	designated	by	λ.
The	adjacent	diagram	(Figure	19)	shows	the	relations:	*η	=	η;	*λ	=	λ.

Figure	19.	Equality	of	ordinal-types	*η	=	η	and	*λ	=	λ.

9.		We	close	this	section	with	a	study	of	computation	with	ordinal-types.	First
we	consider	addition.	Given	two	disjoint	sets	with	the	ordinal-types	μ	=	[M]	and
v	=	[N],	we	define
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In	 forming	 the	union	of	M	 and	N,	we	 shall	 treat	 it	 as	 an	ordered	union	 of	 the
disjoint	sets	M	and	N.	In	this	union	all	elements	of	M	shall	occur	before	those	of
N.	In	general,	an	ordered	union	is	not	symmetric	(commutative),	that	is,

Examples:

Thus	 ω	 +	 1	 is	 different	 from	 1	 +	 ω;	 the	 addition	 of	 ordinal-types	 is	 not
commutative.

The	ordinal-type	ω	+	ω	is	obtaines,	e.g.,	by	the	addition	of

Further	examples:

The	order-type	*ω	+	ω	thus	represents	the	previously	given	ordered	set

According	 to	 the	 definition	 of	 addition	 of	 ordinal-types,	 the	 associative	 law
will	hold,	that	is

Examples	of	this	law	are:
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In	the	case	of	finite	ordinal-types,	addition	is	identical	with	that	of	the	cardinal
numbers.	The	laws	of	addition	for	cardinal	numbers	are	retained	for	addition	of
ordinal-types.

It	 is	 also	 possible	 to	 define	 multiplication	 of	 infinite	 ordinal-types	 as	 a
repeated	 ordered	 addition	 of	 equal	 addends.	 Since	 this	 multiplication	 is	 non-
commutative,	 it	 is	 particularly	 necessary	 to	 differentiate	 between	 the
multiplicand	 (the	 ordinal-type	 of	 the	 set	 that	 is	 repeatedly	 added)	 and	 the
multiplier	 (the	 ordinal	 type	 that	 tells	 how	 often,	 and	 in	 what	 sequence	 the
addition	is	to	be	carried	out).	For	example*

Similarly,	n	·	ω	=	ω.	However,	the	ordinal-types	ω	·	2,	ω	·	3,	ω	·	4,…,	ω	·	n	are
all	different.	Further,

The	point	sets	Pg	of	a	straight	line,	where	P1	 is	the	interval	0	<	x<	1,	P2	 the
interval	1	<	x	<	2,	…,	Pn	the	interval	n	–	1	<	x	<	n	are	all	similar	sets.	That	is	

.	The	ordinal	types	of	each	of	these	sets	are	equal,
that	is,

If	we	form	the	union	of	P1,	x	=	1,	and	P2,	we	obtain

where	P	 is	 the	point	set	of	 the	 interval	0	<	x	<	2.	Adding	 the	ordinal-type,	we
obtain
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By	a	corresponding	union	of	the	intervals	(0	 	x	<	1);	(1	 	x	<	2);	(2	 	x	<	3),
…,	(n	–	1	 	x	<	n),	we	obtain	the	rule:

and	finally

Exercises
1.		Compute	l	+	ω	+	*ω+	1	+	ω.	Give	an	example	for	this	addition.
2.	 	What	 is	 the	ordinal-type	of	all	 fractions	 in	 the	 interval	0	 	x	 	1,	ordered

according	to	(increasing)	size?
3.		Establish	the	following	laws:

XII.	Well-ordered	Sets	and	Ordinal	Numbers

1.		An	ordered	set	is	said	to	be	uwell-ordered”	if	it,	and	every	one	of	its	non-
empty	 subsets,	 contains	 a	 first	 element.	 This	 requirement	 separates	 from	 the
collection	 of	 all	 ordered	 sets	 those	 that	 have	 the	 property	 characteristic	 for
counting,	namely:	 there	 is	 in	 the	 set	 (and	also	 in	every	 subset)	a	 first	 element;
and	every	element	except	for	the	last	has	an	immediate	successor.
We	have	already	dealt	with	well-ordered	sets	in	such	examples	as

According	to	the	definition,	the	following	sets	are	not	well-ordered:
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The	set	of	all	rational	numbers	in	the	interval	0	<	x	<	1;
The	set	of	all	real	numbers	in	the	interval	0	<	x	<	1;	etc.

These	sets	have	no	first	element.
2.		The	following	theorems	are	an	immediate	consequence	of	the	definition	of

well-ordered	sets:

(a)		Every	subset	of	a	well-ordered	set	is	well-ordered.
(b)		Every	ordered	set	which	is	similar	to	a	well-ordered	set,	is	itself	well-

ordered.
(c)		Every	finite	set	is	well-ordered.

The	empty	set	is	assumed	to	be	well-ordered.
3.	 	 If,	 from	 a	 well-ordered	 set	M,	 a	 subset	A	 is	 selected	 to	 contain	 all	 the

elements	of	M	that	appear	before	a	definite	element	m	of	M,	then	the	subset	A	is
called	the	segment	of	M	determined	by	m.	The	segment	determined	by	the	first
element	of	M	is	the	null-set.	In	the	well-ordered	set

{1,3,5,…,2,4,6,…}
the	element	2	determines	the	segment	A	=	{1,3,5,…
4.	 	 A	 rigorous	 study	 of	 well-ordered	 sets	 which,	 carried	 through	 in	 detail,

would	 lead	beyond	 the	scope	of	 this	 text	has	produced	very	significant	 results,
the	most	 important	of	which	are	 summarized	 in	 the	 following	 theorems,	given
without	proof.

(a)		Two	well-ordered	sets	are	either	similar	to	each	other	or	one	of	them	is
similar	 to	 a	 segment	 of	 the	other.	Therefore,	 two	well-ordered	 sets	M
and	N	are	always	comparable	as	to	their	cardinal	numbers.	This	means
that	one	and	only	one	of	the	conditions	m	=	n,	m	<	n,	and	m	>	n	holds.

(b)	 	A	well-ordered	 set	M	can	be	mapped	 into	 a	 set	 similar	 to	 itself	 only
through	an	identity	mapping.

(c)		If	M	is	a	well-ordered	set	and	M	is	similar	to	 ,	then	there	is
only	one	similarity	mapping	of	M	onto	N.

(d)		A	well-ordered	set	is	similar	to	none	of	its	segments.

5.	 	The	 crown	of	 all	 theorems	 about	well-ordered	 sets	 is	 the	 so-called	well-
ordering	theorem,	which	Cantor	had	accepted	as	true,	but	that	was	first	proved
rigorously	by	Zermelo	in	1904:

Every	set	can	be	well-ordered.
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Thus	any	arbitrary	set	can	be	reordered	into	a	well-ordered	set.	Unfortunately,
however,	 even	 though	 the	 existence	 of	well-ordering	 has	 been	 proved,	 still	 no
way	has	been	 found	 for	 the	actual	 construction	of	 this	well-ordering.	Even	 for
relatively	simple	sets,	such	as	those	with	the	cardinal	number	c,	to	this	day	the
construction	of	the	well-ordering	has	not	been	solved.*
6.	 	 Since	 all	 well-ordered	 sets	 are	 comparable	 we	 now	 have	 the	 means	 of

distinguishing	 among	 the	 corresponding	 ordinal-types.	 The	 ordinal-types	 of
well-ordered	sets	are	called	ordinal	numbers.	If	the	well-ordered	set	M	is	similar
to	 a	 segment	 of	 a	 well-ordered	 set	N,	 we	 say	 the	 ordinal	 number	 μ	 =	 [M]	 is
smaller	than	the	ordinal	number	v	=	[N]:	μ	<	v.
Every	well-ordered	 set	M,	 and	 every	 set	 similar	 to	M	 has	 a	 unique	 definite

ordinal	 number	μ	 that	 can	 be	 compared	with	 regard	 to	magnitude	 to	 all	 other
ordinal	numbers	(ordinal-types	of	well-ordered	sets).	For	the	ordinal-types	which
we	have	already	studied,	there	are	the	ordinal	numbers

The	ordinal-types	*ω,	*ω	+	ω,	η,	and	λ	are	not	ordinal	numbers.
7.		In	the	case	of	finite	sets;	cardinal	number,	ordinal-type,	and	ordinal	number

coincide.	For	example,	the	set	of	15	seniors	(Figure	6)	has	the	cardinal	number
“15.”	 Its	 15!	 =	 1,307,674,368,000	 different	 possible	 arrangements,	 are	 similar
sets	of	the	ordinal-type	“15.”	If	we	consider	each	of	these	more	than	1.3	trillion
representations	of	the	senior	class,	we	will	always	reach	the	same	conclusion—
that	the	last	element	is	the	fifteenth.
8.		In	the	case	of	infinite	sets,	a	reordering	of	the	set	leads	to	different	ordinal

numbers.	The	set	N	=	{1,2,3,…}	can	be	reordered	in	many	ways,	for	example:

All	 of	 these	 sets	 are	 equal	 since	 they	 contain	 the	 same	 elements.	 They	 are
equivalent	and	have	 the	same	cardinal	number	a.	All	of	 these	sets	are	ordered.
Their	ordinal-types	are:
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All	the	ordinal-types	are	different.	Among	these	sets	there	are	no	similar	sets.
The	sets	N,	N1,	N2,	N3	and	N6	are	well-ordered.	Their	ordinal	numbers	are	ω,

ω	+	l,	ω	+	2,	ω·2	and	ω·10,	respectively.	Thus	we	have	ω	<	ω	+	1	<	ω	+	2	<	ω·2
<	ω	·	10.	Here	ω	+	1	>	ω,	for	N1	is	similar	to	the	segment	of	N1	determined	by
the	element	“1.”
The	sets	N4	and	N5	are	not	well-ordered.	In	N4	there	is	no	first	element.	In	N5,

although	there	is	a	first	element,	the	subset	defined	as	the	“set	of	even	numbers”
has	no	first	element.
9.	The	rules	of	operation	for	calculating	with	the	ordinal	numbers	are	the	same

as	for	calculating	with	ordinal-types.	The	ordinal	number	that	is	greater	than	and
immediately	following	the	ordinal	number	μ	is	evidently	μ	+	1.	This	fact	enabled
Cantor	 to	 create	 an	 uninterrupted	 number	 sequence	 extending	 beyond	 the
infinite.

ana	so	forth.
In	 general,	 then,	 	 is	 any	 transfinite	 ordinal
number.	The	 same	goes	 for	ωω,	 ,	 etc.	We	 can	now	count	 even	beyond	 the
infinite.
With	every	ordinal	number	there	is	also	associated	a	definite	cardinal	number.

Thus	the	well-ordered	sets	with	the	ordinal	numbers	ω,	ω	+	1,	ω	+	2,	ω	+	n,	ω·2,
…,	ω2,	all	have	the	cardinal	number	a.	To	every	cardinal	number,	there	belongs
a	whole	class	of	ordinal	numbers,	called	the	“associated”	number	class.
10.		We	shall	have	to	be	satisfied	with	this	brief	look	into	the	theory	of	well-

ordered	sets.	It	is	sufficient	for	us	to	realize	that	as	Hilbert	said—“It	concerns	the
wonderful	 flowering	 of	 the	 mathematical	 spirit	 and	 one	 of	 the	 highest
performances	of	pure,	intellectual,	human	creation.”
The	 usual	 sobriety	 of	 mathematics	 does	 not	 in	 the	 least	 prevent	 us	 from

appreciating	Cantor’s	statement	with	reference	to	the	equations
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“When	 the	 finite	 is	 placed	 in	 relation	 to	 the	 infinite,	 as	 one	 can	 plainly	 see,
everything	 happens.	 If	 it	 (the	 finite)	 comes	 first,	 it	 goes	 into	 the	 infinite	 and
disappears	there.	If,	however,	it	knows	this	and	takes	its	place	after	the	infinite,
then	it	remains	preserved	and	joins	itself	to	a	new	and	modified	infinity.”

Exercises
1.		Which	of	the	following	sets	are	well-ordered?

2.	 	 Give	 the	 ordinal-types	 of	 the	 sets	 Z,	 ,	 Z1,	 Z2.	 Z3.	 Which	 are	 ordinal
numbers?

3.		Can	a	well-ordered	set	contain	a	subset	of	the	ordinal-type	*ω?
4.		For	every	ordinal	number	μ	is	it	true	that	μ	<	μ	+	1?
5.		Is	there	more	than	one	way	in	which	the	not	well-ordered	set

can	be	mapped	on	itself	so	as	to	produce	a	similar	set?
6.	Are	η	+	1	and	1	+	η	ordinal	numbers?

*Editor’s	 note:	 Cantor	 and	 some	 other	 writers	 consider	 the	 order-type	 (in	 each	 case)	 to	 be	 an
unambiguous	 abstraction,	 rather	 than	 being	 an	 arbitrary,	 or	 even	 uniquely	 selected,	 representative	 of	 the
class.
*“·”	is	to	be	read	“multiplied	by.”	Here	ω	is	the	multiplicand,	2	the	multiplier.
*The	particular	significance	of	the	well-ordering	theorem	lies	in	the	possibility	that	we	can	apply	to	any

arbitrary	well-ordered	 sets,	 the	method	 of	 complete	 induction	 (inference	 from	n	 to	n	 +	 1)	which	 is	well
known	to	us	for	denumerable	sets.	We	wish	to	prove	that	a	certain	property	E	belongs	to	all	elements	of	a
well-ordered	set.	To	do	this	we	prove	that	the	property	E	belongs	to	an	element	as	soon	as	it	applies	to	all
preceding	elements,	and	in	particular	to	the	first	element.
Then	the	property	E	must	belong	to	all	the	elements	of	the	set.	For	suppose	there	were	elements	which

did	not	have	the	property	E,	then	there	would	have	to	be	a	first	element	e	which	does	not	have	this	property.
All	previous	elements,	however,	have	the	property	E,	hence	e	also	has	it.	From	this	contradiction	it	follows
that	all	 the	elements	have	the	property	E.	According	to	 the	well-ordering	theorem,	every	set	can	be	well-
ordered,	and	hence	complete	induction	can	be	applied	to	it.
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5

POINT	SETS

XIII.	Accumulation	and	Condensation	Points
1.		As	a	simple	application	of	set	theory,	let	us	finally	consider	sets	of	points.

We	have	 already	 treated	 several	 examples	 of	 point	 sets:	 the	 lattice	 points	 in	 a
straight	line,	in	a	square,	in	a	cube	and	in	a	plane;	the	points	of	a	line	segment,	of
a	 straight	 line,	 of	 a	 plane,	 of	 a	 cube,	 etc.	 In	 what	 follows	 we	 shall	 limit	 our
discussion	 to	 linear	point	sets;	 that	 is,	sets	of	points	on	a	straight	 line.	We	can
think	 of	 this	 straight	 line	 (Figure	 15)	 as	 a	 number	 scale;	 then	 it	 represents	 a
similarity	mapping	of	the	ordered	set	of	real	numbers	on	the	points	of	this	scale.
If	the	point	P1	is	the	image	of	the	real	number	z1	and	P2	the	image	of	z2	then

from	the	relation	z1	 	z2	(or	z1	<	z2)	we	also	have	the	relation	P1	 	P2	(or,	P1
lies	 to	 the	 left	of	P2).	Thus	all	assertions	about	point	 sets	are	at	 the	same	 time
assertions	 about	 real	 numbers	 ordered	 according	 to	 their	 numerical	 size.	 We
shall	 therefore	 use	 the	 following	 manner	 of	 speaking	 that	 will	 lead	 to	 no
misunderstanding.
Rational	points	are	points	that	are	the	images	of	rational	numbers.	Irrational

points	 are	 points	 that	 are	 the	 images	 of	 irrational	 numbers.	 To	 fix	 the	 exact
concept	of	interval	we	shall	write:

a,b		to	represent	the	closed	interval,	including	the	bounds	a	and	b;
a,b		to	represent	the	open	interval,	excluding	the	bounds	a	and	b;
a,b		to	represent	the	half-open	interval,	including	a	but	excluding	b:
a,b		to	represent	the	half-open	interval,	excluding	a	but	including	b.

The	 point	 set	 X	 in	 the	 interval	 (0,1)	 is	 determined	 by	 0	 <	 x	 <	 1;
correspondingly,	0,1	means	the	same	thing	as	0	 	x	 	1.

Examples:	The	following	are	some	more	examples	of	point	sets:
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The	set	of	all	lattice	points	of	a	straight	line,

The	set	of	all	points:	 .
The	set	of	all	points	of	the	interval	0,1.
The	set	of	all	rational	points	of	the	interval	(0,1.
The	set	of	all	irrational	points	of	the	interval	(0,2).

2.		We	call	P	an	accumulation	point	of	a	point	set	M,	if	in	every	neighborhood
of	P	 there	 is	 an	 infinite	 number	 of	 points	 of	M.	 For	 a	 linear	 point	 set	M,	 the
neighborhood	of	P	shall	mean	the	set	of	all	points	whose	distance,	right	or	left
from	P,	 is	 less	 than	any	pre-assigned	positive	number	 ε,	no	matter	how	small.
We	can	also	say:	P	is	an	accumulation	point	of	M,	if	in	any	neighborhood	of	P,
no	matter	how	small,	there	exists	at	least	one	point	of	M	different	from	P.

Examples:
(a)	The	set	of	lattice	points	of	a	straight	line	has	no	accumulation	point.
(b)	 The	 set	 of	 all	 rational	 points	 consists	 only	 of	 accumulation	 points,	 for

between	any	 two	rational	numbers,	no	matter	how	close	 in	value,	 there	always
exists	 an	 infinite	 number	 of	 other	 rational	 numbers.	 (To	 grasp	 this,	 think	 of	 a
continued	formation	of	the	arithmetic	means.)
(c)	The	set	of	all	points	of	a	straight	line,	and	the	set	of	all	irrational	points	of

a	straight	line	consist	entirely	of	accumulation	points.
(d)	The	set	P1	=	 	has	one	accumulation	point	0,	which	itself	is

not	an	element	of	the	set	P1.
(e)	The	set	P2	=	 	has	only	the	accumulation	point	1,	which	itself	is

not	an	element	of	P2.
(f)	The	point	set	P3	=	 	for	which	the	rule	of	formation	is	(n2

+	n	–	1	)/n2,	n	=	1,2,3,…,	has	 the	accumulation	point	1,	which,	 in	 this	case,	 is
also	an	element	of	the	set	P3.

(g)	The	point	set	P4	=	 	has	two	accumulation	points

1	and	–	1,	neither	of	which	themselves	belong	to	the	set	P4.
3.		Finite	sets	cannot	contain	accumulation	points.	In	the	case	of	infinite	sets,

however,	the	Bolzano-Weierstrass*	theorem	states:

Each	bounded	infinite	point	set	has	at	least	one	accumulation	point.
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A	linear	point	set	 is	said	 to	be	bounded	 if	 it	 lies	entirely	 interior	 to	a	closed
interval.	The	proof	of	the	Bolzano-Weierstrass	theorem	is	proved	very	easily	by
a	process	using	nested	intervals.
The	 bisecting	 point	 of	 the	 interval	 in	 which	 the	 bounded	 infinite	 set	 lies

divides	the	set	into	two	subsets,	of	which	at	least	one	of	them	contains	an	infinite
number	of	points.	Again,	the	bisecting	point	of	this	infinite	subset	divides	it	into
two	 new	 subsets,	 of	which	 at	 least	 one	 contains	 an	 infinite	 number	 of	 points.
Continuing	 the	 bisection	 in	 this	 way,	 eventually	 one	 arrives	 at	 an	 arbitrarily
small	subset	that	contains	an	infinite	number	of	points.	This	proves	the	theorem.
The	 set	 of	 all	 lattice	 points	 of	 a	 straight	 line	 is	 infinite	 and	 yet	 has	 no

accumulation	point,	but	 it	 is	not	bounded.	In	 the	foregoing	examples,	 the	point
sets	P1,	P2,	P3,	and	P4	had	accumulation	points.	However,	 they	were	bounded.
(Do	not	conclude,	however,	 that	an	 infinite	set	must	necessarily	be	bounded	in
order	to	contain	accumulation	points.)
4.	 	 If	 in	 any	neighborhood	of	point	P,	 no	matter	 how	small,	 there	 is	 a	non-

denumerable	 infinity	 of	 points	 of	 a	 point	 set	M,	 then	 the	 point	P	 is	 called	 a
condensation	 point.	 Every	 condensation	 point	 is	 therefore	 an	 accumulation
point,	but	not	every	accumulation	point	is	a	condensation	point.

Examples:

The	set	of	all	real	points	contains	only	condensation	points.
The	set	of	all	irrational	points	contains	only	condensation	points.
The	 set	 of	 all	 rational	 points	 contains	 only	 accumulation	 points;	 no	 one	 of

them	is	a	condensation	point.

Exercises
1.		By	suitable	selection	of	point	sets,	show	that	(1	+	η)·n	=	1	+	η.
2.		In	the	same	manner	as	in	Exercise	1,	show	that	(λ	+	1	)n	=	λ	+	1.
3.	 	 What	 accumulation	 points	 are	 contained	 in	 the	 set	 of	 all	 solutions	 to	 the

equation

if	n	takes	on	the	set	of	all	natural	numbers?
4.		Give	examples	of	sets	that	have	no	accumulation	points.
5.		Prove:	every	non-denumerable	point	set	has	at	least	one	condensation	point.

Hint:	(a)	If	the	set	is	bounded,	then	the	proof	is	the	same	as	for	the	Bolzano-
Weierstrass	 theorem,	 with	 the	 word	 “infinite”	 replaced	 by	 “non-
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denumerable.”	 (b)	 If	 the	 set	 is	 not	 bounded,	 then	 it	 is	 separable	 into	 a
denumerable	 number	 of	 subsets,	 of	 which	 at	 least	 one	 contain	 a	 non-
denumerable	 set	of	points.	Then	apply	 the	method	of	proof	 (a)	 to	 this	non-
denumerable	subset.

XIV.	Closed,	Dense	and	Perfect	Sets
1.		If	all	the	accumulation	points	of	a	point	set	M	are	themselves	contained	as

elements	in	the	set	M,	the	set	M	is	said	to	be	closed.

Examples:

(a)	 The	 point	 set	P1	 =	 	 is	 not	 closed.	 Its	 accumulation	 point	 0
does	not	itself	belong	to	the	set.
(b)	The	 point	 set	P2	 =	 	 is	 not	 closed.	 Its	 accumulation	 point	 1,

does	not	itself	belong	to	the	set.
(c)	The	point	set	P3	=	 	is	closed.	Its	accumulation	point

1	belongs	to	the	set.

(d)	The	point	set	P4	=	 	not	closed;	 in	contrast,	 the	set

P5=	 	is	closed.

(e)	The	point	set	of	a	closed	interval	is	closed.
(f)	The	point	set	of	an	open	interval	is	not	closed,	for	the	point	set	in	the	real

interval	(a,b)	has	a	and	b	as	accumulation	points	which	themselves,	however,	do
not	belong	to	the	point	set.
2.		The	accumulation	points	of	a	set	M	can	be	collected	into	a	new	set	M'.	This

set	M'	is	called	the	derivative*	of	the	set	M.	It	is	possible	for	M'	to	be	an	empty
set,	e.g.	if	M	is	a	finite	set,	or	the	set	of	all	lattice	points	of	a	straight	line.	The
fact	that	M	is	a	closed	set	can	now	be	defined	by	the	relation	M'	⊆	M,	i.e.,	the
derivative	M'	is	a	subset	of	M.
3.		The	derivative	of	any	point	set	is	a	closed	set.
Proof:	let	M'	be	a	derivative	of	M.	Assume	that	P	is	an	accumulation	point	of

M'.	Then	there	are	within	the	neighborhood	of	P	an	infinite	number	of	points	of
M',	which	are	accumulation	points	of	M.	In	the	neighborhood	of	P	we	thus	have
an	 infinite	 number	 of	 points	 of	M.	 This	means	 that	P	 is	 also	 an	 accumulation
point	of	M	and	must	therefore	belong	to	M'.	Thus	M'	contains	its	accumulation
points	and	is	closed.	Thus	for	every	set	 if,	 the	relation	M”	⊆	M'	always	holds,
where	M”	is	the	derivative	of	M'.
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4.	 	A	set	is	called	dense,	when	between	any	two	points	of	M	there	is	at	least
one	other	point	of	M.	This	means	that	in	a	dense	set	M	there	is	no	point	which
has	a	next	neighboring	point.

Examples:

(a)	The	set	of	all	real	(or	rational)	points	of	a	straight	line	in	a	closed	or	open
interval,	is	dense.
(b)	The	point	set	P2	=	 	is	not	dense.
(c)	A	dense	point	set	does	not	necessarily	consist	only	of	accumulation	points.

The	 point	 set	M	 =	 {0,1),2,(3,4}	 is	 dense,	 for	 the	 point	 2	 has	 no	 immediate
neighboring	point	in	the	set	M.	This	is	because	the	boundaries	1	and	3	have	been
excluded.	 However	 2	 is	 not	 an	 accumulation	 point	 of	M.	 Again	 1	 and	 3	 are
accumulation	 points,	 but	 they	 do	 not	 belong	 to	M.	Hence	M	 is	 dense,	 but	 not
closed.
5.	A	dense	point	set	M	can	only	be	similar	to	a	dense	point	set.	For,	suppose	M

is	dense	and	a	non-dense	point	set	N	contains	two	neighboring	points.	Then	if	M
is	 similar	 to	 N,	 the	 two	 points	m1	 and	m2	 of	M,	 which	 are	 paired	 with	 two
neighboring	 points	 n1	 and	 n2	 of	N,	 must	 be	 two	 neighboring	 points.	 Then	M
would	not	be	dense.	Hence	M	can	only	be	similar	to	a	dense	point	set.
6.	 	 All	 dense	 denumerable	 point	 sets	 that	 have	 no	 first	 or	 last	 element	 are

similar	 to	each	other.	As	we	have	previously	learned,	 their	ordinal-type	is	η.	 If
two	ordered	sets	are	similar,	then	both	sets	have	either	a	first	(or	last)	element,	or
neither	 set	 has	 such	 elements.	 From	 this	 it	 follows	 that	 all	 dense	 denumerable
point	sets	must	belong	to	one	of	the	ordinal-types	η,	1	+	η,	η	+	1,	or	1	+	η	+	1.
7.		If	every	point	of	a	point	set	M	is	also	an	accumulation	point	of	M,	then	M

is	a	subset	of	M',	M	⊆	M',	and	we	say	the	set	M	is	dense-in-itself.

Examples:

(a)	The	point	 set	of	 every	closed	or	open	 interval	 is	dense-in-itself.	Further,
the	set	of	all	points	(or	of	all	rational	points)	of	a	straight	line	is	dense-in-itself.
(b)	The	point	set	M	=	{0,1),2,(3,4}	is	dense,	but	not	dense-in-itself.
(c)	The	closed	point	set	P	=	{0,1,2,3}	is	dense-in-itself,	since	every	one	of	its

points	 is	 an	 accumulation	 point.	 It	 is	 not	 dense,	 however,	 since	 1	 and	 2	 are
neighboring	points	of	the	set	P,	and	between	them	there	is	no	further	point	of	P.
8.		If	a	point	set	is	closed	and	dense-in-itself,	it	is	called	perfect.	Perfect	sets

contain	 all	 their	 accumulation	 points;	 and	 every	 one	 of	 their	 points	 is	 an
accumulation	point.	In	this	case	we	have	M'	⊆	M	and	M	⊆	M'	and	hence	M	=
M'.	A	perfect	set	is	identical	with	its	derivative.
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Examples:

(a)	The	set	of	all	points	of	a	straight	line	or	of	a	closed	interval	is	perfect.
(b)	The	 set	 of	 all	 rational	 points	 of	 a	 straight	 line	 or	 of	 a	 closed	 interval	 is

dense,	also	dense-in-itself,	but	not	closed	and	 therefore	not	perfect.	 It	does	not
contain	the	non-denumerable	infinite	set	of	its	irrational	accumulation	points.	In
the	 neighborhood	 of	 every	 irrational	 point	 there	 are	 infinitely	 many	 rational
points.	This	is	evident	if	we	think	of

(c)	A	 finite	 set	 is	 always	closed,	but	never	dense,	dense-in-itself,	or	perfect,
for	it	contains	no	accumulation	points.	Its	derivative	is	the	null-set.
(d)	Every	perfect	linear	point	set	has	the	cardinal	number	c.

Exercises
1.		Is	the	point	set	{0.1,0.01,0.001,…}	closed?
2.		What	is	the	derivative	of	the	set	of	all	rational	points	of	the	interval	(1,2)	?
3.		What	is	the	derivative	of	the	set	of	all	rational	points	of	the	interval	1,2	?
4.		Is	the	set	of	all	rational	points	in	the	interval	2,3	closed?
5.		Is	the	set	of	all	rational	points	in	the	interval	2,3	dense?
6.		Is	the	set	of	all	rational	points	in	the	interval	2,3	dense-in-itself?
7.		Is	the	derivative	of	the	set	of	all	rational	points	in	the	interval	2,3	closed?	Is	it

perfect?
8.		Is	the	derivative	of	every	infinite	set	a	perfect	set?

XV.	Continuous	Sets
1.	 	 In	 1872,	Dedekind	 introduced	 a	 concept	 of	 “cut”	 that	 can	 be	 applied	 to

ordered	point	sets	(and	therefore	to	ordered	sets	of	real	numbers).	If	a	point	set
M	is	divided	into	two	non-empty	subsets	M1	and	M2,	this	partitioning	is	called	a
cut	 in	the	set	M	and	is	designated	by	M1|M2.	In	making	the	cut,	we	shall	agree
that	all	points	of	M1	shall	lie	to	the	left	of	all	points	of	M2.	Then
M	=	M1	∪	M2	(ordered	union)	and	M1	∩	M2	=	0	(the	intersection	of	M1	and

M2	is	empty).
2.		In	making	a	cut,	the	following	cases	can	arise:
(a)	M1	possesses	a	last	point	and	M2	a	first	point.	This	type	of	cut	is	called	a
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jump	in	the	set	M.	Between	the	last	point	of	M1	and	the	first	point	of	M2	there	is
no	point	of	M.	At	the	jump,	M	is	not	dense.
(b)	M1	possesses	a	last	point,	but	M2	has	no	first	point.
(c)	M1	possesses	no	last	point,	but	M2	has	a	first	point.	In	cases	(b)	and	(c)	we

call	the	cut	continuous.
(d)	M1	possesses	no	 last	point	and	M2	has	no	 first	point.	This	 type	of	cut	 is

called	a	gap.
In	all	the	dense	sets	thus	far	considered	no	jump	is	possible.	A	jump	assumes

the	existence	of	two	neighboring	points.

Examples:

(a)	The	non-dense	point	set	{0,1,2,3}	has	the	jump	1|2.	[Case	(a)]
(b)	In	the	set	R	of	all	rational	points	of	the	interval	1,3,	the	point	“2”	generates

a	continuous	cut.	The	rule	for	making	the	partition	is	either

In	the	first	partitioning	“2”	is	the	last	point	of	R1	and	R2	has	no	first	point.	In	the
second	case	R1	has	no	last	point	and	“2”	is	the	first	point	of	R2.
(c)	In	the	same	set	R,	 the	point	 	which	does	not	belong	to	R,	generates	a

non-continuous	cut,	a	gap.	In	this	case,	R1	has	no	last	and	R2	no	first	point.
3.	 	We	 call	 a	 point	 set	 continuous	 if	 every	 cut	 in	 the	 set	 is	 continuous.	 A

continuous	 set	 has	neither	 jumps	or	gaps.	The	 set	 of	 all	 rational	 points	 has	no
jumps	 and	 is	 a	 dense	 set.	But	 it	 has	 gaps,	 in	 fact,	 an	 infinite	 number	 of	 gaps.
Indeed,	 the	 dense	 denumerable	 set	 of	 all	 rational	 points	 displays	 a	 non-
denumerable	set	of	gaps.	As	was	shown	in	the	case	of	 ,	the	irrational	points
fill	 in	 the	gaps.	The	 rational	points	 fill	 the	number	scale	densely	but	no	where
continuously.	This	is	a	surprising	result	because	our	vague	intuition	could	easily
lead	to	a	contradiction	if	the	delusive	appearance	were	not	clarified	by	the	theory
of	sets.
4.		The	one-to-one	correspondence	between	the	point	set	of	a	straight	line	and

a	 set	 of	 numbers	 was	 first	 made	 possible	 by	 the	 introduction	 of	 irrational
numbers.	 If	 we	 limit	 ourselves	 to	 rational	 numbers	 only,	 then	 every	 number
corresponds	to	a	point	on	the	straight	line	(a	rational	point),	but	not	conversely.
For	example,	if	the	diagonal	of	a	square	with	unit	edge	is	laid	off	from	the	origin
0,	 the	 point	which	 is	 the	 end	point	 of	 the	 diagonal	 is	without	 a	 corresponding
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number	unless	one	introduces	 	as	an	irrational	number	that	fills	the	gap	r1i,	<	
	<	r2k	in	the	cut	R1|R2
This	 particular	 gap	 in	 the	 set	 of	 rational	 numbers	 can	 be	 represented	 as

follows.	To	 the	 first	subset	R1	belong	all	 the	positive	 rational	numbers	m/n	 for
which	m2/n2	<	2;	to	the	subset	R2	belong	all	m/n	for	which	m2/n2	>	2.
5.		The	previous	theorem,	that	all	dense	denumerable	sets	which	have	no	first

or	last	element	are	similar	to	each	other	enables	us	to	completely	characterize	the
ordinal-type	η.	(η	is	the	ordinal-type	of	the	set	of	all	rational	points	of	a	straight
line	or	of	an	open	interval.)	These	properties	are:

(a)	The	ordered	set	R	is	denumerable.
(b)	It	is	dense.
(c)	It	contains	no	first	and	no	last	point.

Cantor	 has	 proved	 that	 these	 three	 properties	 completely	 determine	 the
ordinal-type	η.
6.	 	 The	 ordinal-type	 of	 the	 linear	 continuum,	 bounded	 on	 both	 sides,	 (for

example	 the	point	set	0,1)	 is	symbolized	by	θ.	Cantor	has	shown	that	θ	can	be
completely	characterized	by	the	properties:
(a)	The	 ordered	 point	 set	C	 contains	 a	 dense	 denumerable	 subset	R,	 so	 that

between	any	two	points	of	C	there	lies	at	least	one	point	of	R.

(b)	The	set	C	is	continuous.
(c)	The	set	C	contains	a	first	and	a	last	point.

Since	θ	is	represented	by	a	closed	point	set,	the	ordinal-types	θ	+	θ,	θ	+	θ	+	θ,	θ	·
n,	and	θ·ω	are	all	different.	As	an	example,	the	point	set	{1,2,3,4}	that	generates
the	jump	2|3	has	the	ordinal-type	θ	+	θ
7.	 	 The	 ordinal-type	 of	 the	 unbounded	 linear	 continuum	 (or	 the	 set	 of	 all

points	 of	 a	 straight	 line	 or	 an	 open	 interval)	 is	 symbolized	 by	 λ.	 It	 can	 be
completely	described	by	the	properties:
(a)	The	 ordered	 point	 set	 	 contains	 a	 dense	 denumerable	 subset	R,	 so	 that

between	any	two	points	of	C	there	lies	at	least	one	point	of	R.
(b)	 	is	continuous.
(c)	 	contains	no	first	and	no	last	element.	Thus	1	+	λ	+	1	=	θ;	further	λ	+	λ	+	λ

=	λ.

Examples:

(a)	
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(b)	

The	ordinal	type	λ	+	λ	is	different	from	λ,	for	λ	+	λ	can	be	represented	by	the
point	set	{(1,2)	∪	(2,3)},	which	is	not	everywhere	continuous,	but	has	the	gap	2.
In	contrast,	η	+	η	=	η	for	the	set	of	all	rational	points	in	the	interval	(1,3)	with	the
point	2	removed	is	still	dense,	unbounded,	and	denumerable.
8.	 	The	ordering	properties	that	characterize	a	set	as	closed,	dense,	dense-in-

itself,	perfect	or	continuous	naturally	apply	to	all	sets	similar	to	it.

Exercises
1.		Prove	that	 	is	not	a	rational	number,	that	is,	that	it	cannot	be	the	quotient

of	two	relatively	prime	numbers	m/n.
2.		Describe	the	cut	in	the	set	of	all	rational	numbers	generated	by	
3.	 	 What	 type	 of	 cut	 is	 produced	 by	 the	 point	 	 in	 (a)	 the	 set	 of	 natural

numbers?	(b)	the	set	of	all	rational	numbers?	(c)	the	set	of	all	real	numbers?

XVI.	Range	and	Continuity	of	Functions
1.		The	function	y	=	f(x)	has	been	defined	as	a	single-valued	mapping	of	a	set

Y	onto	a	set	X.	If	this	correspondence	is	one-to-one,	that	is,	for	each	value	y	of	Y,
a	value	x	of	X	is	uniquely	determined,	the	function	is	called	univalent.	If	x	is	the
independent	variable,	a	definite	set	of	values,	X,	is	assumed;	f(x)	is	defined	over
this	set	X.

Examples:
(a)	Let	the	function	be	given	by	y	–	f(x)	=	x2.	Let	the	domain	of	X	be	defined

as	the	set	of	all	real	numbers.	Then	Y	is	the	set	of	all	positive	real	numbers.	The
function	however	 is	not	univalent:	every	element	of	X	 is	paired	with	a	definite
value	of	Y,	but	not	conversely.	 If	y	=	 f(x)	–	x2	 is	defined	only	 for	 the	set	X	of
positive	real	numbers,	then	the	set	Y	has	the	same	values	as	before,	but	now	we
have	a	univalent	function.
(b)	Let	y	 =	 f(x)	 =	x!	 be	 defined	 over	 the	 set	X	 =	 {1,2,3,…}.	This	 univalent

function	maps	the	set	X	onto	the	set	 	=	{1,2,6,24,120,…}.
(c)	If	heated	water	is	brought	into	a	cooler	environment	and	for	the	next	hour

the	temperature	of	the	water	is	read	at	ten-minute	intervals,	one	obtains	a	set	of
tabular	values,	for	example:
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This	 table	defines	 the	univalent	 function	T	=	 f(t)	over	 the	 set	 t	=	{0,10,…,60}
onto	the	set	of	values	T	=	{71.2,45.6,…,20.8}.
2.	 	Every	real	function	defined	in	this	manner	can	be	represented	by	a	curve

(or	set	of	points)	because	it	is	possible	to	map	all	ordered	pairs	of	real	numbers
with	the	points	of	a	plane	(Cartesian	coordinates).	Figure	20	shows	the	function
y	=	x2;	Figure	21,	the	function	y	=	x!	where	X	=	{1,2,3,…};	and	Figure	22,	the
function	T	=	f(t).

Figure	20.	The	function	y	=	x2.
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Figure	21.	The	function	y	=	x!	X=	{1,2,3,.	.	.}.

Figure	22.	The	measure	sequence	T	=	f(t).

3.	If	for	a	function	y	=	f(x),	which	is	defined	over	a	set	X,	the	corresponding
set	X	 lies	 entirely	within	 an	open	or	 closed	 interval,	 (a,b)	 or	 (a,b),	we	 say	 the
function	 is	 bounded;	 that	 a	 is	 its	 lower	 bound,	 and	 b	 its	 upper	 bound.	 If	 the
bounds	a	 and	b	 are	values	of	 the	 set	Y	 (a	 closed	 interval)	we	call	a	 and	b	 the
greatest	 lower	 and	 the	 least	 upper	 bounds,	 respectively.	 The	 length	 of	 the
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interval	s	=	|b–a|	is	called	the	range*	of	the	function	y	=	f(x)	over	X.

Examples:
(a)	The	function	y	=	 f(x)	=	sin	x	has,	by	definition,	 the	domain	X	=	{all	 real

numbers}.	 Then	 Y	 =	 {	 –1,	 +	 1)},	 and	 the	 function	 is	 bounded.	 Its	 bounds
(greatest	 lower	 and	 least	 upper)	 are	 “	 –	 1”	 and	 “+1.”	 Its	 range	 is	 2.	 (See
Figure	23.)
(b)	Let	the	function	y	=	1/(x2	+	1)	be	defined	for	the	set	X	of	all	real	numbers.

Then	the	set	of	values	Y	is	Y	=	{(0,1}.	It	has

Figure	23.	The	bounded	function	y	=	sin	x.

Figure	24.	The	bounded	function	

the	bounds	“0”	and	“1.”	The	range	is	s	=	1	(Figure	24).	In	both	examples	(a)
and	(b)	the	function	is	not	inversely	single-valued.
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4.	 	A	 function	 is	 said	 to	be	continuous	 at	x1	 if	 in	 every	neighborhood	of	x1
(that	is,	x1	–	ε	<	x	<	x1	+	ε),	the	range	of	values	of	Y	can	be	made	as	small	as	one
desires	(s	<	δ)	by	the	choice	of	a	sufficiently	small	value	of	ε.	Or:	a	function	is
continuous	 at	 x1	 if	 at	 x1	 the	 range	 of	 values	 of	 f(x)	 becomes	 zero:	 .
This	definition	is	the	same	as	one	given	earlier	where	Δy	appeared	in	place	of	s.

Examples:

(a)	Let	the	function	y	–	f(x)	be	defined	as	follows:	over	the	interval	X1	=	{0,1},
f1(x)	=	x	and	over	the	interval	X2	=	{1,2},	f2(x)	=	x	+	1.	At	the	point	where	x⊂	=
1,	 the	 function	 is	 discontinuous,	 for	 	 and	

.	(See	Figure	25.)
(b)	Let	 the	 function	 y	 =	 (x2	 –	 1)/(x	 –	 1)	 have	 the	 domain	 of	 definition	X	 =

{0,2}.	At	the	point	x1	=	1	it	is	indeterminate.	If	we	agree	at	the	start,	f(x1)	=	3	at
x1	=	1,	then	the	function	is	discontinuous.	Then	 .	If	however,	we	agree
that	 the	value	of	 the	 function	at	 the	point	x1	=	1	 shall	have	 the	 limiting	value	

,	 then	 the	 discontinuity	 is	 removed.	 Following	Riemann*
such	a	discontinuity	(Figure	26)	is	called	“removable”	(hebbare).

Figure	25.	The	function	y	=	f(x)	is	discontinuous	at	x1	=	1.
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Figure	26.	The	function	y	=	 	has	an	open	discontinuity	at	x1	=	1.
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Figure	27.	The	function	y	=	1/(1	–	x)	has	a	pole	at	x1	=	1.

Figure	28.	The	function	y	–	|x|	is	continuous	everywhere	but	not	differentiable	at
x1	=	0.

5.	The	following	theorems	hold	for	continuous	functions:

Every	junction	continuous	in	a	closed	interval	which	assumes	two	values	a
and	b,	also	assumes	every	value	between	a	and	b.
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Every	function	continuous	in	a	closed	interval	is	bounded.	Examples:

Examples;

(a)	The	function	y	=	 	is	not	bounded	in	the	interval	X	=	{0,2}.	It	is
not	everywhere	continuous.	At	x1	=	1	it	has	a	pole.	(See	Figure	27).
(b)	The	function	y	–	|x|	is	continuous	for	all	real	values	of	x.	(See	Figure	28.)

However,	at	the	point	x1	=	0,	y	=	|x|	is,	as	is	well-known,	not	differentiable.

Exercises
1.	 	 Show	 that	 the	 function	 shown	 in	 Figure	 22	 can	 also	 be	 defined	 by	 the

functional	relation	T	=	20	+	51.2·	2–i/10.
2.		Is	the	function	y	=	In	(x2	+	2)/(x2	+	1)	bounded?	X	=	{all	real	numbers}.
3.		Determine	the	range	of	the	function	y	–	x2	for	the	interval	x1–ε,x1+ε)	if	x1	=	1

and	(a)	ε	=	0.2?	(b)	ε	=	0.02?	(c)	ε	=	0.001?
4.		At	the	point	x1	=	3,	what	value	of	ε	must	be	selected	for	the	function	y	=	5x	–

8	so	that	the	range	s	becomes	less	than	0.01?
5.		Is	the	function	y	=	(x2	–	3x	+	2)/(x2	–	1)	everywhere	continuous?
6.		Is	the	quotient	of	two	continuous	functions	also	a	continuous	function?
7.	 	 Can	 the	 abody-temperature	 curve”	 be	 used	 as	 an	 example	 of	 a	 continuous

function?

*Bernard	Bolzano	(1781–1848);	Karl	Th.	W.	Weierstrass	(1815–97).
*The	derivative	is	also	called	a	“derived	set.”
*Editor’s	 note:	 The	word	 “range”	 is	 usually	 applied	 to	 the	 set	 of	 values	 assumed	 by	 y,	 the	 dependent

variable.
*Bernhard	Riemann	(1826–66).
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6

CONCLUSION

XVI.	The	Paradoxes	of	Set	Theory
1.	Starting	with	a	consideration	of	 finite	 sets,	we	 took	several	 steps	 forward

into	an	introductory	study	of	 the	infinite	and	began	to	compute	with	transfinite
numbers.	We	became	aware	of	the	fact	that	we	can	count	and	compute	beyond
the	infinite	and	do	this	with	that	complete	definiteness	which	is	characteristic	of
all	mathematical	definitions	and	operations.
2.	We	then	studied	point	sets	 through	a	sort	of	set-theoretic	microscope	and,

since	 we	 viewed	 them	 in	 infinite	 enlargement,	 sharp	 differences	 emerged	 in
these	sets.	We	now	know	that	a	dense	set,	as	well	as	a	set	dense-in-itself	can	still
have	an	infinite	number	of	gaps.
3.	 In	 set	 theory	 we	 have	 entered	 a	 field	 of	 inquiry	 which	 today	 places	 the

various	areas	of	mathematical	study	on	a	firmer	foundation,	and	which	has	also
enriched	them.	In	this	penetrating	creation	of	the	human	mind	we	made	wide	use
of	the	“freedom”	to	bring	to	light	new	concepts.	These	concepts	are	simple	and
clear	even	though	their	abundance	demands	careful	distinctions.
4.	 But	 in	 our	 freedom	 of	 creation,	 we	 were	 not	 so	 careless	 as	 to	 allow

paradoxes	to	appear.	Such	paradoxes	arise	easily	when	the	construction	of	new
sets	is	unrestricted;	for	example,	when	sets	themselves	are	permitted	to	occur	as
elements	of	new	sets.	The	paradoxes	that	have	been	uncovered	in	the	theory	of
sets	have	proved	to	be	a	deterrent	to	the	program	of	the	theory	toward	its	present
acceptance.	A	final	clarification	of	all	these	problems	does	not	exist	to	this	day.
In	our	previous	work	we	have	deliberately	avoided	definitions	that	would	have
led	 to	 paradoxes.	 Now,	 in	 closing,	 we	 shall	 investigate	 just	 a	 few	 of	 these
paradoxes.
5.	Suppose	we	construct	the	set	N	of	all	sets,	each	of	which	does	not	contain

itself	 as	 an	 element.	 That	 there	 is	 a	 set	 which	 does	 not	 contain	 itself	 as	 an
element	 is	known	to	us,	 for	we	have	almost	always	worked	with	sets	 in	which
the	elements	were	not	 sets,	but	 things,	numbers,	or	points.	The	only	exception
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was	the	set	U(M)	of	all	subsets	of	a	set	M.	Its	members	are	only	sets.	But	U(M)
did	 not	 contain	 itself	 as	 a	 set.	 Its	 most	 inclusive	 member	 was	 the	 set	M,	 the
improper	subset,	and	here	we	have

Now	one	can	also	say:	“construct	the	set	J	of	all	sets,	each	of	which	contains
itself	 as	 an	 element.”	 As	 yet	 such	 a	 set	 has	 never	 been	 found	 in	 the	 field	 of
mathematics,	and	it	is	possible	that	there	is	no	such	set.	If	there	is	one,	it	would
be	ruled	out	of	mathematics	since	Cantor’s	definition	demands	that	in	collecting
elements	into	a	whole	(a	set),	the	set	must	be	something	new,	different	from	its
elements.*
Nevertheless,	let	us	assume	that	there	is	a	set	of	all	sets	each	of	which	contains

itself	as	an	element.	This	set	itself	is	then	included	in	J.	Now	any	arbitrary	set	of
all	sets	belongs	either	to	N	or	to	J.	(N	is	the	set	of	all	sets	each	of	which	does	not
contain	 itself	 as	 an	 element.)	 We	 now	 ask	 where	 the	 set	 N	 falls	 in	 this
classification,	in	N	or	in	J?
Assumption	I.	The	set	of	all	sets	each	of	which	does	not	contain	itself	as	a	set

belongs	to	N.
Then	N	must	contain	itself	as	an	element.	This	contradicts	the	definition	of	N.

Therefore	N	cannot	be	in	N.
Assumption	II.	N	is	an	element	of	J.
All	 elements	 of	 J,	 however,	 are	 sets	 each	 of	 which	 contains	 itself	 as	 an

element.	By	definition,	N	cannot	be	in	J.
Both	of	 these	assumptions	lead	to	contradictions.	This	 is	known	as	RusselPs

paradox	(1903).*
The	 set	 of	 all	 sets	 each	 of	which	 does	 not	 contain	 itself	 as	 an	 element	 thus

becomes	an	inadmissable	concept,	which	is	excluded	from	the	theory	of	sets	to
avoid	contradictions.
6.	As	an	intuitive	analogy	to	RusselPs	paradox	we	have	the	story	of	that	poor

village	barber	who	shaved	all	 the	villagers	(and	only	 those)	who	did	not	shave
themselves.	What	 about	 the	barber	 himself?	 If	 he	 shaves	himself,	 he	 is	 a	 self-
shaver,	and	he	ought	not	to	shave	himself.	If	he	does	not	shave	himself,	then	he
belongs	 to	 that	 set	 the	members	 of	 which	 he	must	 shave.	 No	matter	 what	 he
does,	he	will	be	inconsistent.
7.	Entirely	similar	is	 the	situation	of	the	liar	who	admits,	“I	 lie.”	If	he	really

lies,	then	the	expression	is	true,	and	he	does	not	lie.	If,	however,	he	does	not	lie,
then,	the	expression	is	untrue,	and	he	lies.
8.	The	“set	of	all	conceivable	sets”	 is	obviously	 the	most	 inclusive	set	 there

can	 be.	 It	must,	 a	 priori,	 have	 the	 greatest	 cardinal	 number.	Yet	 the	 set	 of	 its
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subsets	has	a	greater	cardinal	number	and	is	therefore	“more	inclusive.”
The	expression	“set	of	all	sets”	leads	to	contradictions	and	for	this	reason	it	is

excluded	 in	 our	 theory	 of	 sets.	 This	 “set	 of	 all	 sets”	 is,	 to	 be	 sure,	 a	 set	 that
contains	 itself	 as	 an	 element.	 But	 this	 set,	 as	 we	 have	 already	 inferred,	 is	 in
contradiction	to	Cantor’s	definition	of	set.
“No	 totality	 can	 contain	members	which	 are	 defined	only	 by	means	 of	 that

totality	and	are	therefore	dependent	on	that	totality.”	(Russell)
9.	The	Italian	mathematician,	Burali-Forti†	likewise,	 in	1897	pointed	out	 the

paradox	 that:	“The	set	of	all	ordinal	numbers	has	a	 larger	ordinal	number	 than
the	 largest	number	 in	 the	 set	of	 all	ordinal	numbers.”	Likewise,	 the	 “set	of	 all
cardinal	 numbers,”	 as	 can	 be	 shown,	 has	 a	 greater	 cardinal	 number	 than	 the
greatest	cardinal	number	contained	in	the	set.
10.	 This	 assortment	 of	 paradoxes	 must	 suffice	 here.	 If	 we	 exclude	 the

hazardous	 concepts	 “set	 of	 all	 sets,”	 “set	 of	 all	 ordinal	 numbers,”	 etc.,	 the
contradictions	will	not	arise.	These	concepts	are	selfcontradictory,	and	under	the
strong	axiomatic	foundation	of	the	theory	of	sets,	given	first	by	Zermelo	in	1908,
there	is	no	place	for	them.

XVII.	Formalism	and	Intuitionalism
1.	 Mathematics,	 and	 especially	 its	 foundations,	 can	 be	 considered	 from

different	 viewpoints.	 Two	 quite	 different	 points	 of	 view	 are	 formalism	 and
intuitionalism.	(There	are	rather	extreme	cases,	and	we	shall	not	go	into	others.)
2.	 The	 paradoxes	 of	 set	 theory	 were	 the	 direct	 cause	 of	 the	 outbreak	 of	 a

strong	 disagreement	 between	 formalists	 and	 intuitionalists.	 However,	 the
disagreement	 was	 concerned	 not	 only	 with	 these	 paradoxes,	 but	 penetrated
deeply	into	mathematical	thought.
3.	We	are	already	familiar	with	formalism,	whose	most	outstanding	advocate

is	David	Hilbert.	Cantor’s	set	theory	is	an	extension	of	formalistic	thinking.	The
characteristics	of	formalism	are:
(a)	 The	 axiomatic	 method.	 At	 the	 start	 of	 mathematics,	 a	 system	 of

independent	fundamental	statements	called	axioms	are	postulated.	They	are	(we
trust)	 complete	 and	 free	 of	 contradiction.	 From	 these	 fundamental	 theorems,
further	 theorems	 are	 deduced	 by	 logical	 procedures.	 The	 objects	 of	 thought
about	 which	 statements	 are	 made	 in	 these	 theorems	 are	 “objects”	 without
“meaning,”	 e.g.	 “numbers”	 and	 “symbols	without	 content.”	 That	we	 represent
the	geometrical	constructs	of	our	spatial	perception	 in	 terms	of	“point,”	“line,”
“plane,”	etc.,	is	possible,	but	it	is	not	necessary.

Examples:
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1.	Consider	the	parallel	axiom:	in	a	given	plane,	 through	a	point	A	outside	a
straight	line	a,	one	and	only	one	straight	line	can	be	drawn	that	does	not	intersect
a.
2.	As	a	first	 theorem	demonstrated	from	this	postulate,	we	 learn:	 the	sum	of

the	angles	of	a	triangle	is	180°.
(b)	Existence	as	freedom	from	contradiction.	Not	only	the	axioms,	but	also	the

concepts	must	be	free	from	contradiction.
For	every	concept,	the	law	of	identity	must	hold,	i.e.,

For	 the	 formalist,	 mathematical	 existence	 of	 a	 concept	 is	 synonymous	 with
freedom	from	contradiction.

Examples:

The	 “set	 of	 all	 sets”	 is	 a	 concept	 filled	 with	 contradictions,	 therefore,	 a
nonexistent	concept.	In	this	case,	it	is	true	that	both	(I):	M	=	M	and	(II):	M	≠	M
(since	M	⊂	M).
(c)	The	law	of	the	excluded	middle.	Either	a	=	b	or	a	≠	b;	a	third	possibility

does	not	exist.	The	formalist	makes	repeated	use	of	this	method	of	reasoning	for
proving	an	impossibility	(indirect	method	of	proof).

Examples:

1.	There	is	no	rational	number	m/n	for	which	m/n	=	 	hence	the	opposite	is
ture,	 	≠	m/n.
2.	The	application	of	 the	second	diagonal	process:	 the	set	of	real	numbers	 is

not	 denumerable,	 because	 the	 assumption	 of	 denumerability	 leads	 to	 a
contradiction.
3.	The	proof	of	the	equivalence	theorem.
4.	The	proof	of	the	Bolzano-Weierstrass	theorem.
(d)	 The	 decidability	 of	 every	 mathematical	 problem.	 To	 the	 early	 formalist

every	mathematical	problem	was	decidable,	even	 if	at	 the	 time	 it	had	not	been
decided.	 According	 to	 Hilbert,	 every	 mathematician	 surely	 shares	 “the
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conviction	that	every	definite	mathematical	problem	must	necessarily	be	capable
of	a	rigorous	settlement—through	the	use	of	pure	thought.”

Examples:

1.	The	number	299,909	is	either	a	prime	number,	or	it	is	not	a	prime	number.
In	a	finite	number	of	steps	it	can	be	proved	prime.
2.	There	are	either	a	finite	or	an	infinite	number	of	prime	number	twins.	(So

far	this	is	unsolved.)	Twin	primes	are	two	prime	successive	odd	numbers,	as	(11,
13);	(17,	19).
3.	Every	whole	number	can	be	represented	as	the	sum	of	two	prime	numbers.

(Theorem	of	Goldbach,*	which	is	as	yet	unsolved.)
4.	There	is	at	least	one	number	triad	(x,y,z)	for	which	xn	+	yn	=	zn,	n	=	3,4,5,...,

or	 there	 is	 no	 such	 number	 triad.	 (Theorem	 of	 Fermat,*	 which	 is	 as	 yet
unsolved.)
5.	 There	 are	 either	 finitely	 or	 infinitely	many	 “perfect	 numbers.”	 A	 perfect

number	is	equal	to	the	sum	of	all	its	(proper)	factors.	Some	perfect	numbers	are
6	=	1	+	2	+	3;	28	=	1	+	2	+	4	+	7	+	14;	496	=	1	+	2	+	4	+	8	+	16	+	31	+	62	+	124
+	248.	Euclid,	in	his	Elements	proved	that	every	number

is	perfect	if	2n+1	−	1	is	a	prime	number.	Whether	or	not	there	are	infinitely	many
prime	 numbers	 having	 the	 form	 2n+1	 −	 1	 is	 at	 present	 unknown.	 For	 example
2127	−	1	is	a	39-digit	prime	number.	Euler	has	proved	that	there	can	be	no	perfect
even	 numbers	 other	 than	 those	 constructed	 according	 to	 Euclid’s	 law.	 The
question	of	whether	or	not	there	are	odd	perfect	numbers	is	still	unanswered.
4.	One	of	 the	primary	objectives	of	elementary	mathematical	 instruction	has

been	to	learn	the	mastery	of	this	formalistic	mathematics.	Formalism,	as	we	have
seen,	is	not	a	mechanical	thought-	lacking	procedure,	but	is	on	the	contrary	the
high	 and	 difficult	 art	 of	 making	 abstractions	 and	 logical	 deductions.	 In	 this
sense,	all	mathematicians	are	more	or	less	formalists.
5.	The	strength	of	the	formalistic	method,	its	rigor,	and	its	elegance	appeared

to	give	mathematics	an	immovable	permanence,	until	about	the	year	1900,	when
intuitionalism	broke	this	firm	foundation	wide	open.
6.	The	 intuitionalists	 received	 their	name	by	viewing	 the	natural	numbers	as

“original-intuition”	 (a	 compelling	 inner	 feeling	 of	 knowing	 these	 numbers).
They	consider	the	natural	numbers	as	something	originally	given,	for	which	no
further	foundation	is	necessary.	(For	the	formalists,	the	natural	numbers	and	the
arithmetic	operations	upon	them	require	proof	of	being	free	of	contradiction.)	As
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a	 forerunner	of	 the	 intuitionalists	we	mention	Kronecker†	who	expressed	 their
fundamental	 viewpoint	 in	 his	 well-known	 expression,	 “The	 natural	 numbers
were	made	by	God,	all	 else	 is	 the	work	of	man.”	The	 intuitionalists	have	now
focused	sharp	criticism	on	“the	work	of	man.”	Among	the	leading	intuitionalists
are	Hermann	Weyl*	and	especially	Jan	Brouwer,†	who	because	of	his	extreme
position	calls	himself	a	neo-intuitionalist.
7.	Characteristics	of	intuitionalism	are:

(a)	The	original-intuitiveness	of	the	natural	numbers.
(b)	Mathematical	existence	as	constructibility.

To	 accept	 freedom	 from	 contradiction	 as	 existence,	 as	 is	 claimed	 by	 the
formalists,	 is	 impossible	 for	 the	 intuitionalists.	 They	 see	 in	 freedom	 from
contradiction	 only	 a	 game	 to	 be	 played	with	 empty	words.	 For	 intuitionalists,
“Mathematics	is	more	a	performance	than	a	study.”	Objectivity	must	rise	above
the	method.	Mathematical	thought	is	pure	construction.
“Construction”	means	starting	from	simple	objects	into	whose	nature	we	have

insight	and,	by	using	a	finite	number	of	steps,	producing	something	else.	What	is
incapable	of	such	construction	is	valueless,	e.g.	every	mere	existence	statement
of	 the	form	“There	are	 ....”	Such	an	existence	statement	 is,	according	 to	Weyl,
“A	 sheet	 of	 paper	which	 shows	 the	 existence	 of	 a	 treasure,	without,	 however,
revealing	in	what	place	it	lies.”

Examples:

1.	The	intuitionalists	consider	the	well-ordering	theorem	valueless,	because	it
merely	proves	the	existence	of	“well-ordering”	without	showing	a	way	in	which
well-ordering	can	be	achieved.
2.	What	is	the	significance	of	having	“proved”	the	existence	of	transcendental

numbers,	 if,	 in	 an	 individual	 case,	 it	 is	 not	possible	 to	decide	whether	 a	given
real	number	is	transcendental	or	algebraic?
How	frivolous	has	been	the	treatment	of	concepts	such	as	“ordering,”	“rule,”

etc.,	that	are	not	capable	of	constructible	verification!

Examples:

1.	 In	 the	 decimal	 number	 	 =	 1.4142	 ...,	 let	 us	 replace	 every	 fourth	 digit
after	the	decimal	point	by	the	digit	5.	Is	the	number	thus	constructed,	y	=	1.4145
...	5	...	5	...,	algebraic	or	transcendental?	To	this	day	we	do	not	know	the	answer!
2.	The	digits	a1,	a2,	a3,	...,	ai,	...	in	the	decimal	number	r	=	0.	a1a2a3...	ai...	can

be	assigned	by	the	digits	in	the	number	π	=	3.14159	...	in	the	following	manner.
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First	separate	into	groups	of	ten	the	digits	after	the	decimal	point	in	the	decimal
numeral	 for	 π.	 If	 the	 ith	 group	 consists	 of	 ten	 equal	 digits,	 all	 7’s,	 let	ai	 =	 1,
otherwise	 let	 ai	 =	 0.	 It	 is	 now	 impossible,	 in	 a	 finite	 number	 of	 steps,	 to
determine	whether	r	=	0,	or	r	≠	0.	The	formalists	say:	“There	is	such	a	number	r,
for	 it	 is	 determined	 uniquely	 and	 without	 contradiction	 by	 the	 one-to-one
correspondence	between	its	digits	and	groups	of	digits	of	π.”	The	intuitionalists
say:	“At	no	 time	do	we	know	whether	r	 is	equal	 to	zero	or	r	 is	different	 from
zero.	We	cannot	construct	r.	The	number	r	has	no	mathematical	existence.”
(c)	Forbidding	the	use	of	the	law	of	the	excluded	middle.	To	the	intuitionalist,

the	law	of	the	excluded	middle	is	an	unfounded	prejudice.	According	to	him,	this
law,	 taken	 from	classical	 logic,	 arose	 from	abstraction	 from	 the	 study	of	 finite
sets.	One	gives	this	law,	without	proper	authority,	an	a	priori	validity	for	infinite
sets.	The	intuitionalists	go	on	to	say	that	one	of	the	two	relations

need	not	always	be	true	(as	the	formalists	maintain),	but	that	instead	there	is	yet
a	third	possibility,	namely:
(d)	The	 undecidability	 of	mathematical	 problems.	 The	 intuitionalists	 believe

that	not	all	problems	are	solvable.	To	this	day,	however,	no	undecidable	problem
of	mathematics	has	become	known,	although	many	numerical	problems	are	still
undecidable.

Examples:

1.	Is	21024	+	1	a	prime	number?	We	do	not	know.	This	question,	however,	is
answerable	 for	both	 the	 formalists	and	 the	 intuitionalists.	 In	a	 finite	number	of
steps	(finite	construction)	the	question	can	be	solved,	even	if	it	needs	a	hundred
years	 of	 computation.	 (Electronic	 computers	 may	 reduce	 this	 time
tremendously.)
2.	Has	the	equation	xn	+	yn	=	zn,	n	=	3,4,5,...	a	non-zero	integral	solution	for	x,

y,	and	z?	The	intuitionalists	believe	three	answers	are	possible:
(a)	There	is	at	least	one	whole	number	triplet	x,	y,	z.
(b)	There	is	no	number	triplet	x,	y,	z.
(c)	The	question	is	undecidable.
8.	The	 rigorous	 criticism	of	 intuitionalism	makes	 the	 following	demands	 on

the	present	theory	of	sets:
(a)	 The	 removal	 of	 everything	 beyond	 the	 denumerable.	 The	 continuum	 is

then	no	longer	an	actual	infinity,	but	only	a	“medium	of	creation,”	namely,	the
set	 of	 all	 unending	 number	 sequences	 (decimal	 numbers)	whose	 digits	 can	 be
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selected	at	will.
(b)	Elimination	of	the	equivalence	theorem.
(c)	Elimination	of	the	Bolzano-Weierstrass	theorem.
(d)	Elimination	of	the	well-ordering	theorem.
(e)	Elimination	of	the	theorem	of	Cantor:	|U(M)|	>	|M|.
(f)	Renunciation	of	the	Dedekind	method	of	cuts,	and	much	more.
9.	 Intuitionalism	 has	 not	 merely	 created	 difficulties	 for	 the	 classical

formalistic	 mathematics.	 Inasmuch	 as	 it	 has	 forced	 critical	 rigor,	 it	 has	 also
revitalized	the	formalistic	field.	For	a	time,	the	conflict	of	the	two	ideologies	was
violent.	Cantor	wrote:	“There	is	inherent	here	to	a	certain	measure,	a	question	of
power.	...	It	is	asked,	‘Which	ideas	are	the	stronger,	more	embracing,	and	fruitful
ones,	Kronecker’s	or	mine?’	Time	only	will	decide	the	outcome	of	our	battle.”
And	how	did	 the	battle	 turn	out?	From	the	quiet	distance	of	several	decades

and	thousands	of	kilometers,	a	mathematician	and	historian	of	our	day	gives	us
his	judgement.*
“It	was	a	battle	of	life	and	death	between	Hilbert’s	formalism	and	Brouwer’s

intuitionism	 for	 the	 possession	 of	 mathematics.	 It	 does	 not	 seem	 to	 have
occurred	to	either	combatant	that	while	he	was	engaged	in	trying	to	exterminate
his	enemy,	some	ragged	camp	follower	might	make	off	with	the	prize;	or	that	it
might	 not	make	 the	 slightest	 difference	 to	mathematics	whether	 the	 battle	 for
him;	was	won,	lost,	or	drawn.”
There	probably	will	always	be	 formalists	and	 intuitionalists.	 Indeed,	 the	 real

mathematician	 will	 follow	 the	 paths	 of	 both.	 This	 polarity,	 productive	 of	 so
much	tension,	will	become	a	source	of	new	mathematical	creation.
10.	“Let	us	be	glad	that	we	can	enter	into	the	theory	of	sets,	into	that	paradise

from	which	no	one	can	drive	us	out.”	(Hilbert)	Since	it	has	opened	our	eyes	to
the	 “levels”	 of	 infinity,	 has	 it	 not	 taught	 us	 something	 that	 borders	 on	 the
“miraculous”?	 Because	 the	 infinite	 has	 been	 acquired	 through	 mathematical
analysis,	the	“miraculous”	loses	some	of	its	incomprehensibility.
We	close	with	a	word	from	Stevin*,	the	man	who,	through	his	development	of

computation	with	decimal	numbers,†	created	 the	 implement	without	which	 the
theory	 of	 sets	 could	 not	 have	 developed	 its	 methods	 of	 proof,	 namely,	 the
representation	of	every	real	number	as	an	infinite	decimal	number.
Stevin	 gave	 a	 motto	 to	 his	 work	 (an	 expression	 of	 his	 emotion	 after

discovering	 the	 law	 of	 the	 parallelogram	 of	 forces	 for	 an	 inclined	 plane)	 a
statement	 that	 likewise	 applies	without	 qualification	 to	 set	 theory:	 “A	miracle,
and	yet	no	miracle!”
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*In	this	connection,	the	following	method	of	reasoning	is	also	prohibited	as	being	paradoxical:	What	is	a
set?	 Answer:	 An	 abstract	 concept.	 But	 the	 set	 of	 all	 abstract	 concepts	 contains	 itself	 as	 an	 element	 (an
abstract	concept).
*Bertrand	Russell	(born	1872).
†Cesare	Burali-Forti	(1861–1931).
*Christian	Goldbach	(1690–1764).
*Pierre	de	Fermat	(1601–65).
†Leopold	Kronecker	(1823–91).
*Hermann	Weyl	(1885–1955).
†Luitzen	Egbertus	Jan	Brouwer	(born	1882).
*E.	T.	Bell,	The	Development	of	Mathematics,	1st	ed.	McGraw-Hill,	New	York,	1945.
*Simon	Stevin	(1548–1620).
†De	thiende,	Dutch,	the	tenth	(part),	1585;	la	disme,	French,	1634.
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7

APPENDIX

XVIII.	Glossary	of	Definitions	and	Theorems
Page	4.	A	set	 is	a	collection	of	definite	distinct	objects	of	our	perception	of	or
our	thought.	These	objects	are	called	the	elements	of	the	set.	(Cantor)

Page	6.	Two	sets	are	equal	if	they	contain	the	same	elements.
Page	7.	A	set	N	is	a	subset	of	a	set	M	if	every	element	of	N	is	also	an	element	of
M.

Page	8.	If	N	is	a	proper	subset	of	M,	then	the	set	of	elements	of	M	that	do	not
belong	to	N	is	called	the	complement	set	R	to	N	over	M.

Page	 9.	 The	 union	 of	 two	 sets	 is	 the	 set	 of	 all	 elements	 each	 of	 which	 is
contained	in	at	least	one	of	the	two	sets.

Page	9.	The	 intersection	of	 two	sets	 is	 the	set	of	all	elements	each	of	which	is
contained	in	both	sets.

Page	13.	Two	sets,	M	and	N,	are	equivalent	 to	each	other	if	the	elements	of	M
can	be	ordered	in	one-to-one	correspondence	with	those	of	N.

Page	18.	If	there	is	no	proper	subset	of	M	 that	is	equivalent	to	ikf,	then	M	 is	a
finite	set.
If	 there	is	a	proper	subset	of	M	 that	 is	equivalent	 to	M,	 then	M	 is	an	 infinite

(transfinite)	set.	(Dedekind)
Page	 20.	 The	 set	 of	 prime	 numbers	 is	 denumerable.	 The	 set	 of	 all	 whole
numbers	is	denumerable.	The	set	of	all	rational	numbers	is	denumerable.

Page	23.	The	set	of	all	algebraic	numbers	is	denumerable.
Page	28.	The	set	of	all	real	numbers	is	non-denumerable.
Page	34.	The	set	of	all	real	transcendental	numbers	is	non-de-numerable	and	has
the	cardinal	number	c.

Page	 36.	 The	 set	 of	 all	 real	 functions	 in	 the	 interval	 0	 <	 x	 <	 1	 has	 a	 greater
cardinal	number	than	the	continuum.

Page	53.	The	set	of	all	real	continuous	functions	has	the	cardinal	number	c.
Page	 37.	 Given	 any	 infinite	 set,	 there	 exists	 a	 set	 having	 a	 greater	 cardinal
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number	than	the	given	set.
Page	37.	The	set	of	all	subsets	of	a	set	M	always	has	a	greater	cardinal	number
than	the	set	M	itself.

Page	41.	If	M	 is	equivalent	to	a	subset	N1	of	N	and	N	 is	equivalent	to	a	subset
M1	of	M,	then	M	and	N	are	equivalent	sets	(equivalence	theorem).

Page	57.	An	ordered	set	M	 is	similar	 to	an	ordered	set	N,	 if	the	elements	of	M
and	N	 can	 be	 placed	 in	 one-to-one	 correspondence	 in	 such	 a	 manner	 than
when	for	any	two	elements	m1	and	m2	of	M,	the	relation	m1	 	m2	holds,	then
for	the	corresponding	elements	n1	and	n2	of	N	the	relation	n1	 	n2	also	holds.

Page	58.	If	a	set	M	is	equivalent	to	an	ordered	set	N,	then	M	can	be	so	ordered
that	M	and	N	become	similar	sets.

Page	64.	Every	finite	set	is	well-ordered.
Page	65.	Every	set	can	be	well-ordered	(well-ordering	theorem).
Page	71.	Every	 bounded	 infinite	 point	 set	 has	 at	 least	 one	 accumulation	 point
(theorem	of	Bolzano-Weierstrass).

XIX.	Brief	Historical	Outline

1.	The	actual	infinite;	the	theory	of	sets:

Bernhard	Bolzano,	born	October	5,	1781,	in	Prague,	died	December	18,	1848,	in
Prague;	was	a	preacher	and	professor	of	theology	in	Prague.	A	forerunner	of
Cantor,	 his	 work	 The	 Paradoxes	 of	 the	 Infinite	 appeared	 posthumously	 in
1851.

Georg	Cantor,	born	March	3,	1845,	 in	Petersburg,	 the	 son	of	 a	merchant	 from
Copenhagen,	died	January	6,	1918,	 in	Halle;	emigrated	to	Germany	with	his
family	when	he	was	11	years	of	age.	He	studied	in	Darmstadt,	Gottingen,	and
Berlin.	 In	 Berlin	 he	 was	 a	 student	 of	 Kronecker	 and	 Weierstrass.	 He	 was
professor	at	Halle,	where	from	1878	he	published	frequently	on	the	theory	of
sets.

Ernst	Zermelo,	born	July	27,	1871,	died	may	21,	1953,	in	Freiburg;	proved	the
well-ordering	theorem	in	1904.

Cesare	Burali-Forti	 (1861/1931).	 In	1897	he	proposed	 the	well-known	paradox
named	after	him.

Bertrand	Russell,	born	May	18,	1872,	in	Chapstow;	professor	at	Cambridge;	in
1903	proposed	the	well-known	paradox	named	after	him.	His	Introduction	to
Mathematical	Philosophy	appeared	in	1923.

2.	Intuitionalism	and	formalism:
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Leopold	 Kronecker,	 born	 December	 7,	 1823,	 in	 Liegnitz,	 died	 December	 29,
1891,	 in	Berlin;	 teacher	 of	Cantor	 and	 forerunner	 of	 intuitionalism.	He	 said
“The	integers	were	made	by	God,	all	else	is	the	work	of	man.”	He	rejected	his
student	Cantor’s	theory	of	sets.

Hermann	Weyl,	born	November	9,1885,	 in	Elmshorn,	died	December	1955,	 in
Geneva.	 He	was	 professor	 at	 Princeton	 and	 among	 other	 works	wrote:	The
Continuum	(1918),	Concerning	the	New	Crisis	in	Foundations	of	Mathematics
(1921),	Philosophy	of	Mathematics	and	Natural	Sciences	(1926).

Luitzen	 Egbertus	 Jan	 Brouwer,	 born	 February	 27,1881,	 in	 Overschie,
Netherlands;	professor	at	Amsterdam.	He	rejected	Cantor’s	theory	of	sets	and
turned	 against	Hilbert’s	 formalistic	methods.	Among	 other	 things	 he	wrote:
Concerning	 the	 Foundations	 of	 Knowledge	 (1907),	 Intuitionalism	 and
Formalism	(1912),	Intuitionalistic	Theory	of	Sets	(1919).

David	Hilbert,	born	January	23,	1861,	in	Königsburg,	died	February	14,	1932,	in
Göttingen.	He	brought	the	axiomatic	method	to	completion.	Among	his	works
were	 Foundations	 of	 Geometry	 (1899)	 and	 Foundations	 of	 Mathematics
(1928).	 He	was	 an	 opponent	 of	 the	 intuitionalists.	 He	wrote,	 “I	must	 again
bring	to	mathematics	the	voice	of	indisputable	truth	that	it	seems	to	be	losing
through	the	paradoxes	of	the	theory	of	sets:	indeed,	I	think	that	this	is	possible
with	 complete	 maintenance	 of	 all	 of	 its	 possessions.	 The	 method	 that	 I
employ,	is	no	other	than	the	axiomatic	method.”

XXI.	Bibliography
For	those	who	care	to	study	further	in	the	theory	of	sets,	the	following	references
will	 be	 found	 an	 extension	 and	deepening	of	 the	 present	 volume,	 yet	 to	 too
difficult.

Cantor,	 George,	 Contributions	 to	 the	 Founding	 of	 the	 Theory	 of	 Transfinite
Numbers.	 Dover	 Publications,	 Inc.,	 New	 York.	 These	 original	 papers	 of
Cantor	 (1895,	 1897)	 were	 translated	 from	 the	 German	 by	 Philip	 E.	 B.
Jourdain,	 who	 provides	 an	 82	 page	 historical	 and	 explanatory	 introduction.
Cantor’s	work	is	somewhat	abstract	and	not	well	adapted	for	first	reading	in
the	subject.

Duren,	W.	L.,	 et	 al.,	Universal	Mathematics—Part	 II.	Tulane	University	Book
Store,	New	Orleans,	1955.	A	presentation	of	set	theory	from	a	contemporary
point	of	view.	It	treats	largely	of	finite	sets	and	Boolean	algebra.	In	addition,	it
gives	the	finite	combinatorial	background	used	in	the	present	book.

Fraenkel,	 Abraham	 A.	 Abstract	 Set	 Theory.	 North	 Holland	 Publishing	 Co.,
Amsterdam,	1953.	A	more	rigorous	and	thorough	treatment	of	the	material	in
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this	volume.	An	excellent	 follow-up	for	 the	 interested	reader.	 It	contains	 the
most	comprehensive	bibliography	of	all	writings	on	set	theory	up	to	1950	(128
pages).

Kamke,	E.	Theory	of	Sets.	Dover	Publications,	Inc.,	New	York.	Translated	from
the	 German	 by	 F.	 Bagemihl,	 this	 is	 a	 presentation	 in	 which	 the	 degree	 of
difficulty	 is	 between	 that	 of	 the	 present	 volume	 and	 Frankel’s	 Abstract	 Set
Theory.

Kemeny,	 J.	 G.,	 Snell,	 J.	 L.,	 and	 Thompson,	 G.	 L.	 Introduction	 to	 Finite
Mathematics.	 Prentice-Hall,	 Inc.,	 Englewood	 Cliffs,	 N.	 J.	 This	 is	 a	modern
approach	to	finite	sets	and	operations	with	sets.	The	applications	are	to	other
than	 the	 physical	 sciences,	 are	 close	 to	 experience,	 and	 furnish	 good
background	for	later	study	of	infinite	sets	and	limiting	processes.	It	should	be
read	along	with	the	present	volume.

Weyl,	Hermann,	Philosophy	of	Mathematics	and	the	Natural	Sciences.	Princeton
University	 Press.	 A	 good	 account	 of	 the	 philosophical	 problems	 in
mathematics	 (Metamathematics)	 including	 that	 of	 formalism	 and
intuitionalism.

For	 those	who	can	 read	German	and	French	 the	 following	 references	 are	of
value.

Bachmann,	Heinz,	Transfinite	Zahlen.	Springer-Verlag,	Berlin.	The	most	recent
point	of	view	on	set	theory	and	a	most	comprehensive	bibliography	of	works
from	 1950	 to	 1955.	 A	 first	 treatment	 of	 arithmetic	 of	 cardinal	 numbers
without	use	of	the	axiom	of	choice.

Bourbaki,	N.,	Theorie	des	Ensembles.	Livre	I.	Herman	&	Cie,	Paris.	The	first	and
very	compact	volume	by	a	group	of	mathematicians	(called	Bourbaki)	on	the
rigorous	foundation	of	analysis.	A	very	difficult	book.

Hausdorff,	F.,	Mengenlehre,	 3rd	 rev.	 ed.,	Dover	Publications,	 Inc.,	New	York.
This	 is	 a	 comprehensive	 treatment	 with	 much	 descriptive	 and	 explanatory
material.

XXII.	Glossary	of	Symbols
a	=	b	a	is	equal	to	b.
a	≠	b	a	is	not	equal	to	b.
a	<	b	a	is	less	than	b.
a	>	b	a	is	greater	than	b.
M	=	{1,2,3,..	.,n}	Finite	set	with	the	elements:	1,	2,	3,	...	,	n
M	=	{1,2,3,...}	Infinite	set	with	the	elements:	1,	2,	3,	...
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a	ε	M	a	is	an	element	of	M.
b	 	M	b	is	not	an	element	of	M.
M	=	N	The	sets	M	and	N	are	equal.	They	contain	the	same	elements.
N	⊂	M	N	is	a	proper	subset	of	M.
N	⊆	M	N	is	a	(proper	or	improper)	subset	of	M.
R	 =	M	—	N	 =	 	 The	 complementary	 set	R	 to	N	 over	M	 contains	 only	 those
elements	of	M	that	do	not	belongs	to	the	subset	N.

S	=	M	∪	N	The	union	S	contains	those	elements	that	are	contained	either	in	N	or
in	M,	or	in	M	and	N	simultaneously.

D	=	M	∩	N	The	intersection	contains	only	those	elements	that	are	contained	both
in	M	and	in	N.

M	∼	N	M	is	equivalent	to	N.	M	can	be	mapped	on	N.
M	 	N	M	is	not	equivalent	to	N.
|M|	=	m	Cardinal	number	(power)	of	M
a	Cardinal	number	of	a	denumerable	set
c	Cardinal	number	of	the	continuum
M	×	N	The	cross	product	set	(Cartesian	product)	contains	the	elements:

N/M	The	covering	set	N/M	(N	is	covered	by	M)	has	the	cardinal	number	|N/M|	=
mn.

U(M)	The	power	set	of	M	is	the	set	of	all	subsets	of	M.

a	 	a	comes	before	b.
a	 	a	comes	after	b.
M	 	N	M	and	N	are	similar	and	have	equal	ordinal-types.
ω	Ordinal-type	(ordinal	number)	of	the	set	{1,2,3,}.
*ω	Ordinal-type	of	the	set	{...	3,2,1}.
η	Ordinal-type	of	the	set	of	all	rational	points	of	a	straight	line.
λ	Ordinal-type	of	the	unbounded	linear	continuum.
θ	Ordinal-type	of	the	bounded	linear	continuum.
μ	=	[M]	Ordinal-type	of	the	ordered	set	M.
a,	b	Closed	interval	(including	a	and	b).
(a,b)	Open	interval	(excluding	a	and	b).
a,b);	(a,b	Half-open	interval.
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a|b	Jump.	Between	a	and	b	there	are	no	elements.
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ANSWERS	TO	EXERCISES

Page	7
1.	Teachers,	students,	flowers,	chairs,	etc.	2.	No.	The	lattice	points	(±1,±1)	still
belong	to	K,	but	they	are	no	longer	elements	of	Q.	3.	No.	It	contains	the	lattice
points	 (±2,±3)	 and	 (±3,±2).	 Make	 a	 drawing.	 4.	

	 The	 set	 contains	 27	 elements.	 5.	 The
inverses	of	the	eight	unit	fractions	 	are	not	improper	fractions,	but
whole	numbers.

Page	12
1.	 24	 =	 16	 subsets.{},	 {2},	 {3},	 {5},	 {7},	 {2,3},	 {2,5},	 {2,7},	 {3,5},	 {3,7},
{5,7},	 {2,3,5},	 {2,3,7},	 {2,5,7},	 {3,5,7},	 {2,3,5,7}.	2.	The	 assertion	 follows
from	the	definition.	3.	Yes.	It	follows	from	the	definitions	of	the	operations.	4.

	 =	 252.	 Within	 each	 squad	 there	 are	 in	 addition	 5!	 =	 120	 different
permutations	of	positions.	5.	An	improper	subset,	for	all	seniors	must	take	the
examinations.

Page	15
1.	Feet	and	shoes;	eyes	and	ears;	etc.	Perhaps	books	and	book	covers.	2.	4!	=	24,
e.g.:

3.	(a)	K	⊂	Q;	(b)	K;	∩	Q	=	K;	(c)	 |Q	—	K|	=	12;	(d)	Yes,	even	equal.	Make	a
drawing.	4.	Only	(a),	(b),	(c),	and	(e).	5.	In	the	domain	of	the	definition	they
must	be	in	one-to-one	correspondence.	6.	|K|	=	|P|	=	21.	7.	If	in	the	pairing	for
the	purposes	of	dancing,	no	one	is	left	unpaired,	then	D	~	H.	8.	Let	us	hope	so.
9.	y	=	2x.	10.	Yes;	N	~	G.

Page	20
1.	Coordinate	 the	set	of	points	 through	parallel	projection	by	drawing	parallels
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t.o	the	third	side.

2.	z	=	10n	–	1;	 	3.	Consider	Figures	29,	30,	and	31.	4.
n!

Figure	29.	Mapping	a	semicircle	on	a	straight	line.

Figure	30.	Mapping	a	semicircle	on	a	ray.

Figure	31.	Mapping	a	semicircle	on	a	segment.

Page	26
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1.	a!;	 to	 compute	a!	 see	Exercise	 2,	 page	15.	2.	Yes.	Construct	 the	 arithmetic
mean	(r1	+	r2)/2.	3.	To	the	algebraic	numbers	listed	on	page	25,	the	height	five
will	give	in	addition	the	following	numbers:

4.	Sin	7°30ˊ	is	an	algebraic	number	for	sin	7°30ˊ	=	+	

and	 cos	 15°	 =	 	 and	 cos	 30°	 =	 	 In	 fact,
sinα°	is	always	an	algebraic	number,	if	α	is	rational.	On	the	contrary,	sin	x	(x
=	radian	measure),	where	x	is	rational,	is	always	a	transcendental	number.

Page	34
1.	Prove	it	as	in	Section	VI,	paragraph	7.	(The	set	of	points	in	the	interior	of	a
cube.)	2.	z	=	x	+	 iy.	The	cardinal	number	of	 the	set	of	all	 real	number	pairs
(x,y)	is	c.	Therefore,	the	cardinal	number	of	the	set	of	all	complex	numbers	is
c.	3.	a.	4.	Yes.	5.	The	cardinal	number	of	all	powers	mn	is	that	of	the	set	of	all
pairs	of	natural	numbers	in	the	plane.	One	can	also	prove	this	by	the	diagonal
process:

Page	39
1.	The	cardinal	number	of	all	pairs	of	real	numbers	c1	and	c2	is	c.	2.	The	circle
set	is	the	set	of	all	points	equivalent	to	the	three-dimensional	space,	therefore
it	 has	 the	 cardinal	 number	 c.	 Consider	 that	 a,	 b,	 and	 r	 are	 Cartesian
coordinates	of	space	points.	3.	1<	2<	3<	4<	...<	a	<	c	<	f.

Page	43
1.	Yes.	 If	M	and	N	have	 the	same	finite	cardinal	number,	neither	of	 the	sets	 is
equivalent	 to	 a	 proper	 subset	 of	 the	 other.	 2.	 For	 example,	 choose	 U1	 =
{3,7,11,...}	and	G1	=	{2,6,10,...}.	Then	U1	⊂	U,	G1	⊂	G	 ,	 and	U1	~	G:	 the
ordering	is	obtained	by	u1	=	2g	—	1.	G1	~	U:	the	ordering	is	obtained	by	g1	=
2u.	3.	The	subset	EF	of	AB	is	mapped	on	CD	by	a	central	projection	from	Z.1
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The	subset	GH	of	CD	is	mapped	on	AB	by	a	central	projection	from	Z2.
Page	49

1.	Yes.	2.	a!	=	c;	for	2a	 	aa	 	aa	and	2a	=	aa	=	c.	3.	Always.
Page	54

1.	 |N/M|	 =	 312	 =	 531,441.	 2.	 0	 <	 y	 <	 1.	 3.	 Y	 =	 {−1,+	 1}.	 4.	 |N/M|	 =	 616	 =
2,821,109,907,456.	5.	 1m	 =	 1.	All	m	 places	 of	M	 are	 covered	with	 a	 single
element.	The	covering	set	has	the	cardinal	number	1.	m1	=	m.	A	place	can	be
covered	by	m	different	element.	There	are	m	coverings.	The	covering	set	has
the	cardinal	number	nt.	6.	The	set	X,	(|X|	=	c)	is	covered	by	the	set	Y	(|Y|	=	a).
This	gives	ac	=	f.

7.mp–np	=	m-m-m	...	n-n-n	...	=	m-n-m-n-m-n	...	=	(m-n)p,	since	the	commutative
law	holds.

Page	63

1.	
2.	1	+	η	+	1

Page	68
1.	The	well-ordered	sets	are	Z,	Z1	Z2,	Z3.
2.	

3.	No.	4.	Yes.	The	section	belonging	to	the	last	element	of	the	second	set	(having
the	ordinal	number	μ	+	1)	is	similar	to	the	first	set	(having	the	ordinal	number
μ).	5.	Yes,	in	infinitely	many	ways,	e.g.,

6.	No.	Sets	of	the	ordinal	type	η	+	1	have	no	first	element.	Sets	of	the	type	1	+	μ
have	subsets	without	a	first	element	(e.g.,	the	subset	that	arises	from	removing
the	first	element).

Page	72
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1.		{1	 	rational	points	of	(1,2)}	 	{2	 	rational	points	of	(2,3)}	 	+...	
{n	 	rational	points	of	(n,n	+	1)}	=	{1	 	rational	points	of	(1,	n	+	1)}.

2.	{(0,1)	 	1}	 	{(1,2)	 	2}	 	...	 	{(n	−	1,	n)	 	n}	=	{(0,n)	 	n}.
3.	x1	=	(n	+	1)/2n,	x2	=	1/n.	Accumulation	points	are	 ,	0.
4.	 All	 finite	 sets	 have	 no	 accumulation	 points.	 Some	 unbounded	 infinite	 sets
have	no	accumulation	points,	e.g.,	{1,2,3,4,...}.

Page	75
1.		No.	It	does	not	contain	its	accumulation	point	“0.”	2.	The	set	of	all	points	in
the	interval	1,2.	3.	The	set	of	all	points	in	the	interval	1,2.	4.	No.	It	does	not
contain	 irrational	 points	 of	 the	 interval	 that	 are	 accumulation	 points	 of	 the
rational	points.	5.	Yes.	Compare	with	Exercise	2,	page	26.	6.	Yes.	Every	point
is	an	accumulation	point.	7.	Yes.	Yes.	The	derivative	of	any	arbitrary	selected
set	is	closed.	The	derivative	of	the	given	set	is	the	interval	2,3.	This	interval	is
closed;	it	is	dense-in-itself,	hence	also	perfect.	8.	No.	It	is	merely	closed,	e.g.,
M	=	{0.1,0.01,0.001,...}.	Then	M1	=	{0},	0	is	no	accumulation	point	of	M1.

Page	78
1.	Assume	 	=	m/n,	 then	m2/n2	=	2	or	m2	=	2n2.	 It	 follows	from	this	 that	m
must	be	an	even	number.	Let	m	=	2k	(k	a	natural	number).	Then	m2	=	4k2	=
2n2	or	n2	=	2k2,	 from	which	 it	 follows	that	n	must	be	an	even	number.	This
contradicts	the	premise	that	m	and	n	are	relatively	prime.	2.	 	is	that	gap
which	separates	all	the	rational	numbers	m/n	for	which	m2/n2	<	5	from	those
rational	numbers	for	which	m2/n2	>	5.

3.	(a)	A	jump:	1|2;	(b)	A	gap;	(c)	A	continuous	cut.
Page	82

1.	All	measurable	values	satisfy	the	given	equation.	2.	Yes.	Y	=	{(0,	In	2}.	3.	Let
s	=	4x1	 ·	є	=	4є,	 then	(a)	s	=	0.8;	(b)	s	=	0.08;	(c)	s	=	0.004.	4.	s	=	10	 ·	є	<
0.001.	 5.	 s	 =	 4.	 6.	 No.	 At	 x1	 =	 —1	 there	 is	 a	 pole.	 At	=	 +1	 there	 is	 an
(indeterminate)	 removable	 discontinuity.	 The	 condition	 is	

	 7.	 	 where

f(x)	 and	 g(x)	 are	 everywhere	 continuous,	 is	 also	 everywhere	 continuous,
except	 for	g(x)	 =	 0.	8.	Yes,	 if	we	 assume	 that	 between	 two	measured	 body
temperatures	every	 intermediate	value	 is	 taken	on,	 i.e.,	 the	 temperature	does
not	rise	by	discrete	quantities.	(Newton:	“Nature	does	not	make	leaps.”)
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Combinations,	9
Commutative	law,	11,	44
Complementary	set,	8
Complete	induction,	65
Complex	number,	23
Condensation	point,	71
Constructibility,	89
Continuity,	53
Continuous	sets,	75–76
Continuum,	28,	30
Correspondence,	13,	17
Covering	set,	50
Cut,	75

D

Decidability,	87
Decimal	Fractions,	26,	92
Dense-in-itself,	74
Dense	set,	73
Denumerable	set,	20–26,	30–31
Derivative,	73
Derived	set,	73
Diagonal	process,	23
Differential	quotient,	36
Dimension,	30
Disjoint	sets,	10
Distributive	law,	11,	44
Division,	48–49

E

Elements,	of	a	set,	4
Empty	set,	5
Equation,	24
Equivalence,	17
Equivalence	theorem,	39–43
Equivalent	sets,	12–16,	18
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Excluded	middle,	87
Existence,	86
Exponents,	83

F

Formalism,	86–87
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bounded,	79
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defined,	35
discontinuous,	80–81
range	of,	79
univalent,	78

Functions:
cardinal	number	of,	35
real	continuous,	53

G

Gap,	75
Glossary:
of	symbols,	97–98
of	terms,	93

H

Hausdorff,	F.,	1
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of	equations,	24
of	fractions,	22

Hilbert,	D.,	95
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Induction,	65
Infinite:
decimal	fractions,	26
levels	of,	29
set,	18,	37–39

Infinity:
actual,	18
improper,	18
potential,	18
proper,	18

Integers,	21
Integral,	36
Intersection,	9
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closed,	69
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nested,	71
open,	69

Intuitionalism,	88–89
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Jump,	75
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Kronecker,	L.,	95

L
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M
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Mapping,	14,	42
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of	cardinal	numbers,	46–47
of	ordered	types,	62
of	ordinal	numbers,	67

Multiplier,	62

N
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Non-denumerable,	27
Non-reflexive,	57
Null-set,	5
Number:
algebraic,	23
cardinal,	12,	15
complex,	23
even,	2
imaginary,	23
odd,	10
ordinal,	65
prime,	20
rational,	21
real,	23,	26
transcendental,	34
transfinite,	19
whole,	2

O

Odd	numbers,	10
Operations,	11
Ordered:
sets,	55–56
union,	61

Order-types,	55–63
Ordinal	numbers:
computing	with,	67
defined,	65
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sequence	of,	67
Ordinal-types:
computation	with,	61
defined,	59
symbols	for,	59–61

P

Paradoxes:
Burali-Forti,	85
defined,	83
Russell’s,	84–85

Perfect	set,	74
Permutations,	5
Point:
accumulation,	70
condensation,	71

Points:
irrational,	69
lattice,	6,	7,	11
rational,	69

Point	sets:
defined,	69
derivative,	73
linear,	69

Pole,	81
Power,	12,	15
Powers,	49–53
Prime	number	theorem,	20
Prime,	relatively,	7
Product:
Cartesian,	46
of	cardinal	numbers,	46–48
set,	46

R
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Rational	numbers,	21
Real	functions,	53–54
Real	numbers,	26,	28
Reflexive,	law,	14
Relations,	inclusion,	32
Relatively	prime	numbers,	7
Riemann,	B.,	81
Russell,	B.,	85,	95

S
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Set:
abstract,	6
closed,	72
complementary,	8
continuous,	76
covering,	50
definition,	4
dense,	73–74
denumerable,	20
derived,	73
element	of,	6
empty,	5
finite,	18
infinite,	18
non-denumerable,	26–27
null,	5
of	algebraic	numbers,	23–25
of	all	subsets,	52
of	functions,	35,	53
of	positive	and	negative	integers,	21
of	rational	numbers,	21–23
of	real	numbers,	27–29
ordered,	55
perfect,	74
product,	46
super-,	7,	23
well-ordered,	63
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Sets:
disjoint,	10
equal,	6
equivalent,	13
intersection	of,	9
of	points,	18,	19,	65–66
similar,	57–58
theorems	on,	32–34,	36,	39,	41
union	of,	9

Similarity,	57
Similar	sets,	57
Solutions	to	exercises,	99–103
Squares,	21
Subset:
defined,	7
improper,	8
number	of,	9
proper,	8,	18

Subtraction,	46
Sum,	of	numbers,	44–46
Superset,	7,	23
Symmetric	law,	14

T

Transcendental	number,	34
Transfinite	number,	19
Transitive	law,	14

U

Undecidability,	90
Union,	9
Union,	ordered,	61
Univalence,	78
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