UNIVERSITY OF IBADAN DEPARTMENT OF PHYSICS

B.Sc. (Honours) Degree Examination, 2002/2003 Session PHY 114 – Basic Principles of Physics I 1st Semester Examination

Date: 14/10/2003

Time: 8:30 - 10:30a.m.

Answer Any Two Questions

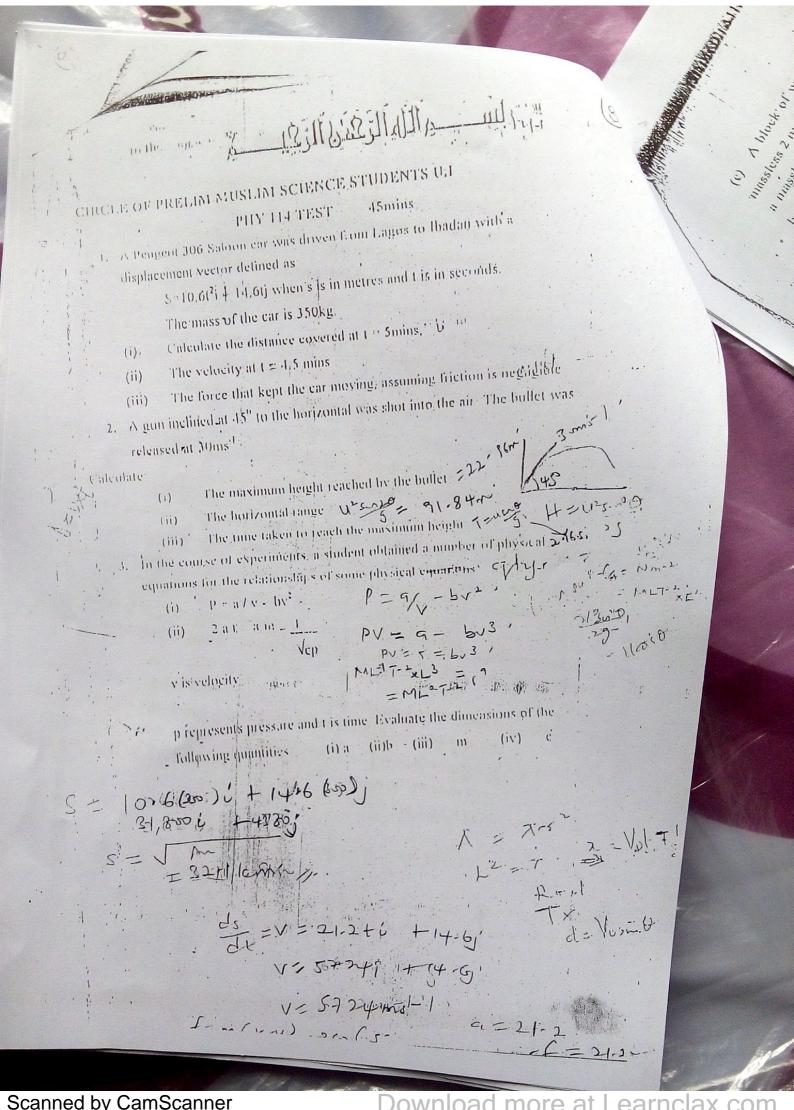
Write your name and Matric No. on your question paper.

Where necessary take: $g = 9.80 \text{m/s}^2$

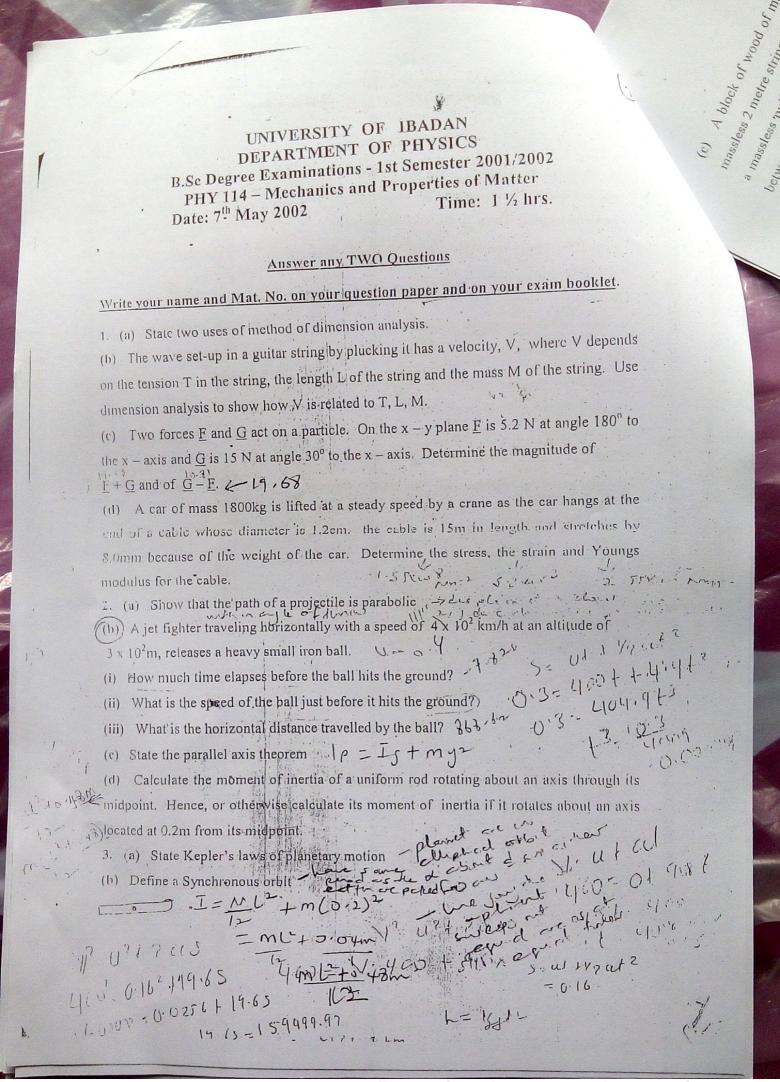
- (a) With the aid of a labelled graph, describe the features exhibited by a typical material under increasing stress.
 - (b) What do you understand by
 - (i) Young's modulus (ii) Shear modulus and (iii) Bulk modulus of a material.
 - (c) Define work and derive its dimensions:

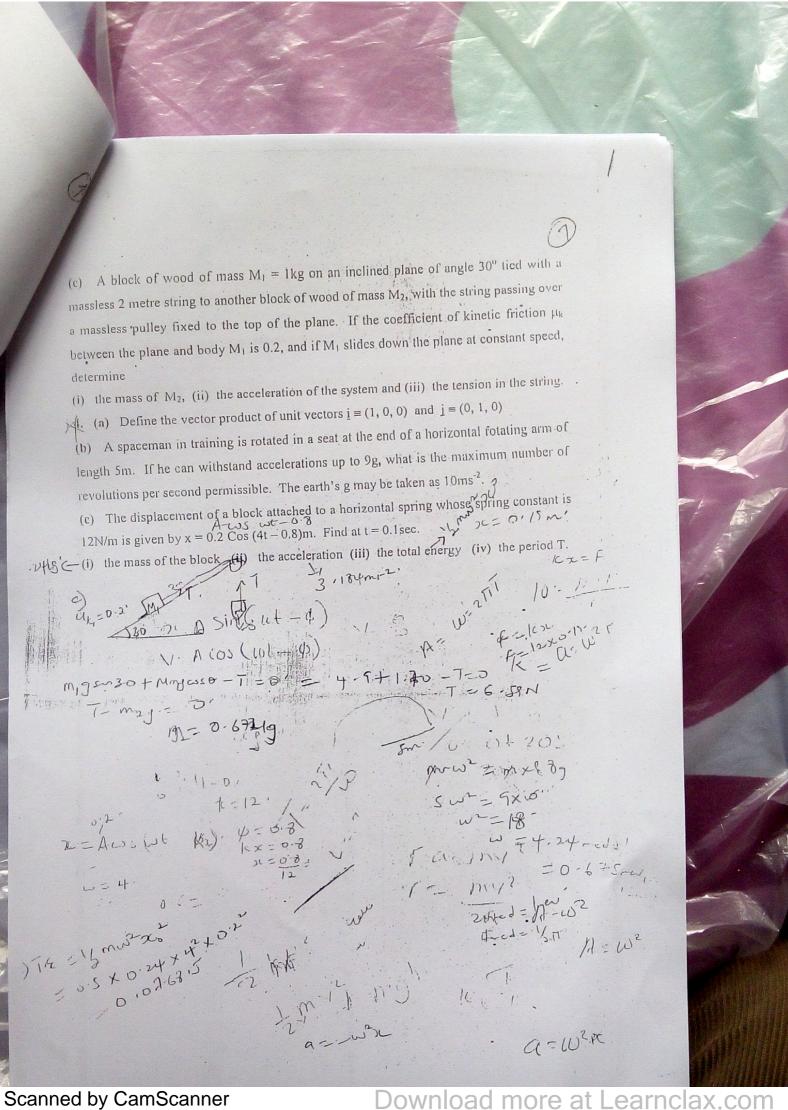
The energy E of a system is given by the equation $E = \frac{P^2}{2M} - 3e^2/(2 - fd) - bx^4$, where E has the dimension of work; P is the momentum, e is an electric charge, and x and d both have dimensions of length. Determine the dimensions of b and M.

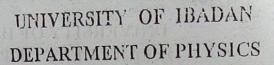
- Two forces D and E are 12N at 40° to the positive x-axis and 14N along the negative x-axis respectively. Find (i) (E + D) and (ii) (E D) in magnitude and direction
- 2 (a) State and explain Newton's first law of motion.
 - Show that, in Atwood Machine, the acceleration, $a = \left(\frac{M_2 m_1}{M_2 + m_1}\right)g$ and the tension, Thin the string, $T = \left(\frac{2M_2m_1}{M_2 + m_1}\right)g$ If M_2 and m_1 are the two un-equal masses $(M_1, M_2) L(1)$ and L(2) gais the acceleration due to gravity.
 - (c) State the parallel axes theorem
 - (d) Calculate the moment of inertia of the wire bent into three semi-circles of radius R each about the point 5R from any of its two ends. (R represents radius of each semi-circle).



- (a) (i) Define Range as it relates to a projective.
 - (ii) A basketball is thrown at 45° above the horizontal. The hoop is located 4m away horizontally at a height of 0.8m above the point of release. What is the required initial speed for a goul to be scored?
- (b) Show that the motion of a mass hanging from a vertical spring (helical spring) is simple harmonic.
- (c) A particle executes simple harmonic motion at a frequency 4.2 Ltz, with an amplitude of 0.09m. The particle is at the origin at time t = 0. Calculate (i) the period, (ii) the angular frequency, (iii) the maximum speed and the acceleration at time $t = \frac{1}{24} \sec$.
- (a) (i) Define (a) the dimension of a physical quantity and (β) the scalar product of two vectors \underline{A} and \underline{B} .
 - (ii) Two passenger trains are passing each other on adjacent tracks. Train 1 is moving North with a speed of 21m/s, and train 2 is traveling South with a speed of 46mls. What is (α) the velocity (magnitude and direction) of train 1 as seen by the passengers in train 2 (β) the velocity (magnitude and direction) of train 1 as seen by the passengers in train 1.
 - (iii) Show that the total energy in simple harmonic motion is \(\lambda \) mo² \(\Lambda^2 \) where m is the inass, (a) is the angular frequency and \(\Lambda \) is the amplitude of vibration.
- (b) A cylindrical copper wire and a cylindrical steel wire, each of length 1.5m and diameter 2mm, are joined at one end to form a composite wire 3m long. The wire is loaded until its length becomes 3.003m. Calculate the strains in the copper and steel wires and the applied force to the wire if $Y_{copper} = 1.2 \times 10^{11} \text{ Nm}^{-2}$ and $Y_{steel} = 2.0 \times 10^{11} \text{ Nm}^{-2}$.




with


4

THE THEOLOGICAL CONTRACTOR OF THE PROPERTY OF A block of wood of mass M1 = 1kg on an inclined plane of angle 30" tied with a massless 2 metre string to another block of wood of mass M2 with the string passing over a massless pulley fixed to the top of the plane. If the coefficient of kinetic friction in between the plane and body M_1 is 0.2, and if M_1 slides down the plane at constant speed. determine (i) the mass of M2. (ii) the acceleration of the system and (iii) the lension in the string. 4. (a) Define the vector product of unit vectors $\mathbf{j} = (1,0,0)$ and $\mathbf{j} = (0,1,0)$ (b) A spaceman in training is rotated in a scat at the end of a horizontal rotating arm of length 5m. If he can withstand accelerations up to 9g. hat is the maximum number of revolutions per second permissible. The earth's g may be taken as 10ms². (c) The displacement of a block attached to a horizontal spring whose spring constant is 12N/m is given by x = 0.2 Cos (41 - 0.8) m. Find at t = 0.1 sec. (i) the mass of the block (ii) the acceleration (iii) the total energy (iv) the period T. Scanned by CamScanner nload more at L

B.Sc. Degree Examination 1st Semester 2000/2001 Session

Date: 23rd January, 2001

Time: 11/2 hrs.

PHY 114 - Basic Principles of Physics I

ANSWER ANY TWO QUESTIONS.

Write your name and Mat. No. on your question paper.

Where necessary take:

Mass of the Sun = 3.24×10^5 of the mass of Earth

The acceleration due to gravity, $g = 9.80m/s^2$

Distance of the sun from the Earth = $14.88 \times 10^{19} m$; $G = 6.67 \times 10^{-11} Nm^2 kg^{-2}$

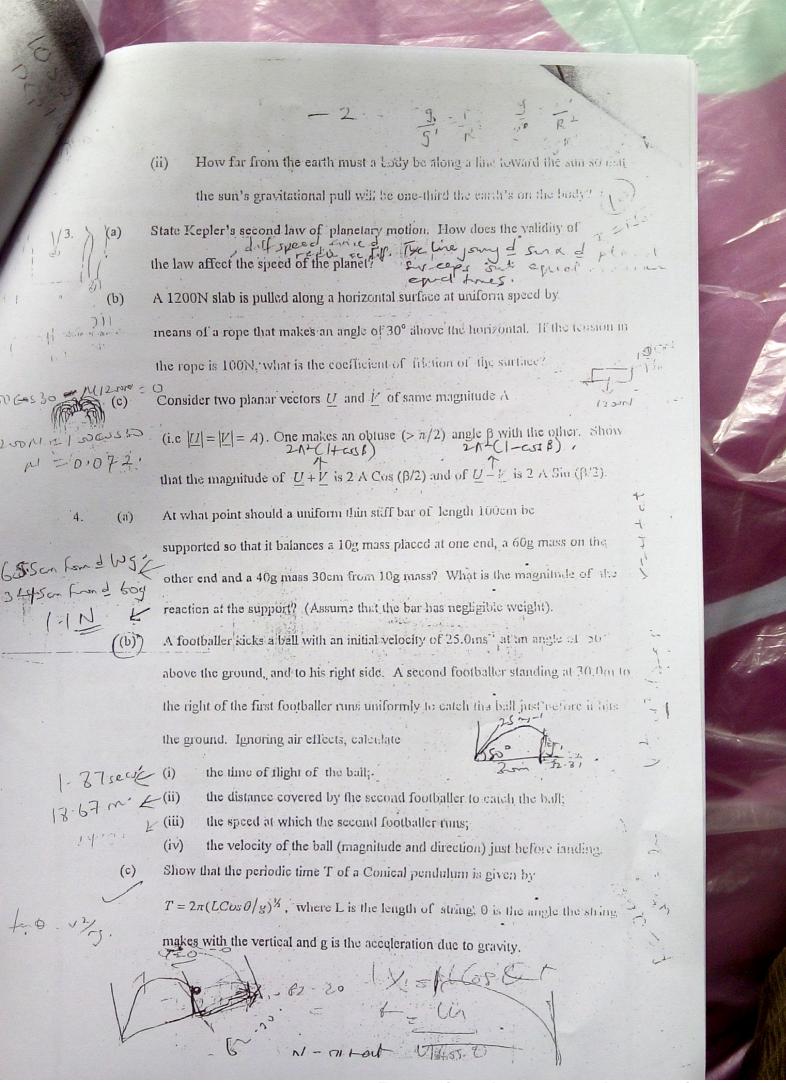
- 1. (a) Define the dimension of a physical quantity, ever of the start has
 - (b) If A and B have different dimensions, which of the following operations are deviced possible and why?
 - (i) A-2B (iii) $\sqrt{A}-B$ (iii) Tan(AB)+Sin(AB)-1
 - (iv) $\frac{(A-B)}{(B-A)}$ \Rightarrow \checkmark
 - (c) lie period T of a Satellite depends on its orbital radius r, the universal

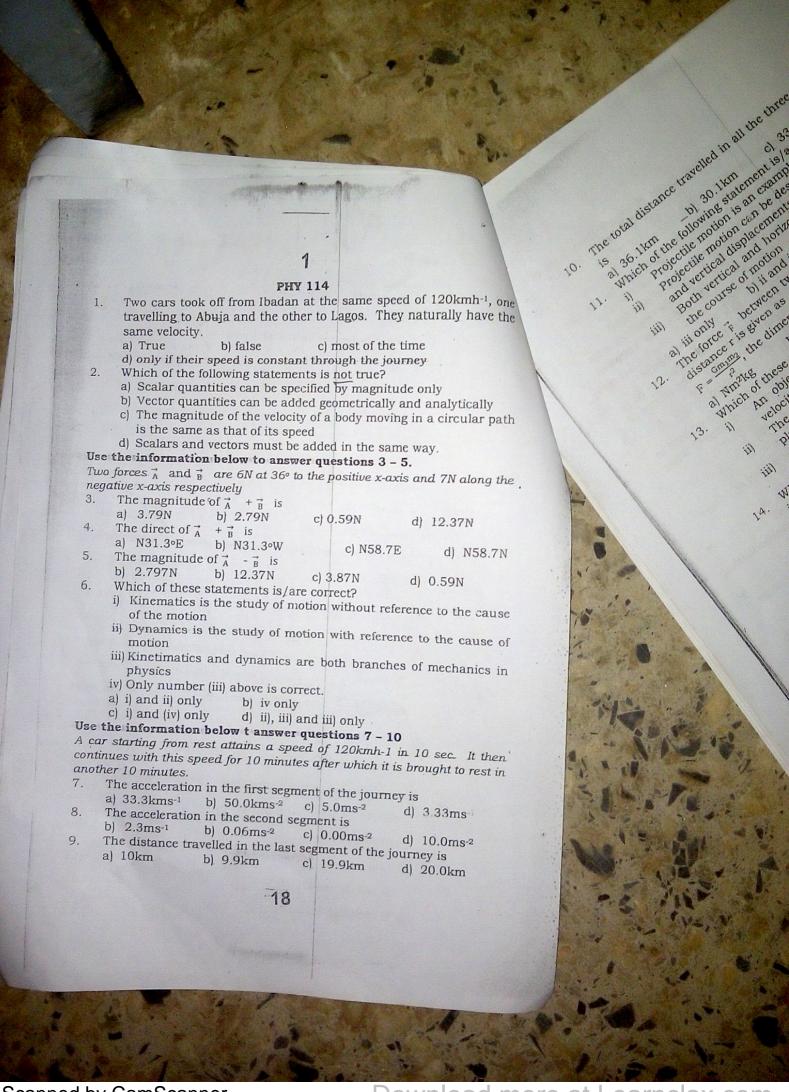
ravitational constant G and the mass M of the attracting body. Express T in

terms of r, G and M.

Define a rigid body' - who se dederce 5h

Distinguish between the mass of a body and the moment of inertia of a rigid body.


Show that the acceleration die to gravity of a body within the earth's interior, g', and that on a body on the earth surface, g relate as


 $g'' = gy/R_E$, where y is the distance between the center of the body in the earth's interior and the center of the earth, and R_R is the radiu

earth.

:11

10,11

The one

	Cab a leaven out
10.	The total distance travelled in all the three segments of the journey is
	a) 36 1km _b) 30.1km c) 33.1km d) 10.5km
11.	Which of the following statement is/are not correct i) Projectile motion is an example of motion in a plane of time horizontal
	ii) Projectile motion can be described in terms of time, horizontal
	and vertical displacements
	iii) Both vertical and horizontal velocities of projectile change in the course of motion
	a) iii only b) ii and iii only c) I only
12.	The force F between two points masses m1 and m2 separated by a
	distance r is given as $F = \frac{Gm_1m_2}{c^2}$, the dimension of G in this equation is
	a) Nm^2kg b) $L^3M^{-1}T^{-2}$ c) $L^2M^{-2}T^{-1}$ d) $L^3M^{-1}T^{-1}$
13.	Which of these statements is/are true
13.	i) An object is an equilibrium when it moves with constant
	velocity
	ii) The apparent weight is the force that an object excert on the platform of a scale
	iii) Apparent weight is always greater than true weight
	a) i) only b) ii and iii only c) iii only d) 1 and iii only
14.	Which of these statements is are false? i) Work done by a force may be positive or negative
	iil Positive work done may indicate increase in kinetic energy
	iii) It is not possible to have negative work done.
	a) iii only b) I only c) ii only d) I, ii and iii A body of mass 2kg initially at rest is acted on by a force F = 55 +
15.	t^2N . the velocity of the body at $t=5$ second is
	a) 148.3ms ⁻¹ b) 120ms ⁻¹ c) 158.3ms ⁻¹ d) 5ms ⁻¹
16	Which of the statement is/are not true of uniform circular motion?
	i) The centripetal and centrifugal forces are always directed towards the entre
	orbiting of satellites is an example of uniform circular motion
	iii) The centre petal force is given as $\frac{mv^2}{r^2}$ where m, v and δ have
	their usual meaning
	a) i only b) ii only c) i and ii d) iii only
17	A simple harmonic oscillator has a period of 0.001 seconds and an amplitude of 0.4m. the magnitude of its velocity at the centre of
	oscillation is
	a) 40ms ⁻¹ b) 800πms ⁻¹ c) 400ms ⁻¹ d) 1000ms ⁻¹
	and the state of t
	19

Which of the following is not true about Newton's third laws of motion? Every object has a form of inertia al Forces always exists in pairs Acceleration of an object is directly proportional to the net b) force acting on the object None of the three laws is applicable in collision problems A ball of mass 0.1kg moving with a velocity of 6ms-1 collides with another ball of mass of 0.2kg at rest. Calculate their common velocity if both move together after collision. d) 0.18ms-1 c) 0.2ms-1 b) 2 ms-1 a) 4 ms-1 At a distance 2R from the centre of the earth the weight of the body is 2.5N. What will be its weight at a distance 3R from the centre of the earth? d) 0.8N c)1.1N a) 4.75N b) 3.75N 21. A particle of mass 0.2kg attached to the end of a string is whirled in a vertical order of radius 2.0m at a constant speed of 5ms-1. What is the tension in the string at the highest point on its path? b) 0.5N c) 12.5N d) 4.5N a) 2.5N Use the following to answer questions 22 to 24 A car of mass 2.0 x 103kg is travelling to the north and at a sped of 15ms-1 The momentum of the car is a) 3.00 x 10kgms⁻¹ b) 1.5 x 104kgms-1 c) 3.0 x 10⁴kgms⁻¹ d) 3.0 x 10⁴kgms⁻¹ due north If the velocity is tripled, by what factor does the momentum 23. increased? c) 4 d) 9 24. If the velocity is tripled by what factor does not the kinetic energy increase? a) 1/3 b) 3 c) 9 d) 6 Two arrows, mass 0.1kg each are shot horizontally with the same speed of 30ms-1, one from east and the other form south meeting at a point. Find the magnitude and direction f the total momentum of both arrows a) 4.2kgms-1 Northwest b) 4.2 kgms-1 southwest c) 3.0kgms-1 40° Northwest d) None of the above Use the problem below to answer questions 26 and 27. Two cars A and B are moving in the same direction along a straight line. Car A has four times the momentum and twice the kinetic energy of B. 26. Determine the ratio of mass of A to that f B a) 4 b) 2 c) 8 b) 20

d laws of

27.	The ratio of velocity of A to B is
	a) 1/4 b) 7 C) 4 u) 0
	$\frac{1}{2}$
culing	drical axle of radius 0.015111 and of hegis
LOSSE	s exist between the strings. Calculate
Thor	momentum of inertial of the disk
	a) 20.5 kgms-1 b) 22.5 x 10-2 kgms-2
28.	to OON force applied langelillally to the wife
	[-] 22 (IVIII)
29.	- I - I - I - I - I - I - I - I - I - I
	a) 16 Orado-1 h) X ()
30.	mis a lair atio apparate of the disc at the end of the 12 seconds
	1 00 0 1
31.	The time required to bring the disc to rest if a breaking lorce of The
	annied tangentially to its TIIII
	b) 2400 0s C124.US U112.US
32.	Till of those statements is not true when subulacung vector B
	from vector \overrightarrow{A} . We can simply reverse the direction of \overrightarrow{B} and add
	it to \overrightarrow{A} .
	a) We simply reverse the direction of \overrightarrow{B} and add it to \overrightarrow{A}
	b) We can use parallelogram law
	c) We can use analytical method
	d) We simply subtract both the magnitude and direction of B
	and that of A
33.	Which of these statements are correct
	i) A rigid body is in equilibrium if its translational acceleration
	is zero
	ii) If its angular acceleration is zero iii) If the vector sum of all the forces acting on the body i
	constant
	iv) If the net torque acting on the body is zero a) i ii and iv only b) i and ii only
	4) 1, 11 41 4
	i di 101- ante transportialle to the simple formance of a dis
34.	
	of radius 2i + j + 3k. Find the torque.
	a) 2i - 2j + 14k Nm b) 22i - 38j - 2kNm c) 46.13Nm d) 22i - 2j + 14kNm
25	The second secon
35.	
	a) Strain b) stress

36. A metal rod 1m long and 0.5cm2 cross sectional area is found to stretch by 0.2cm. calculate the force on the rod of the Young's modulus of the metal is 2.0 x 10¹¹Nm⁻²

a) 2.0 x 10-19N

b) 5.0 x 10-3N

c) 2.0×10^{-3} N

d) 5.0 x 10-9N

37. A muscle requires a force of 50W for an elongation of 4cm. regarding the muscle as a uniform elastic cylinder, calculate the energy stored in it.

a) 1J

b) 2J

c) 4J

d) 8J

38. The study of surface tension is applicable to

a) Liquid only

b) solids only

c) liquids and solids only d) liquids, solids and gases

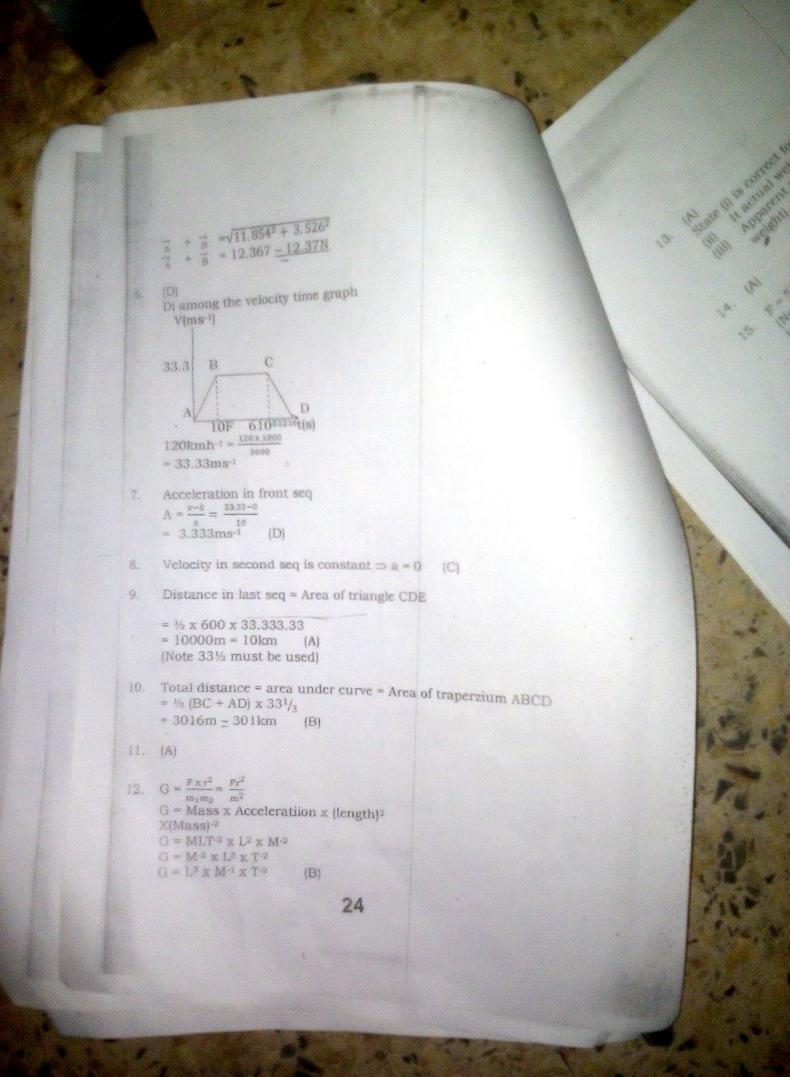
39. At the terminal velocity, a solid moving through a fluid has a

a) Uniform velocity and all the force must be balance

b) Uniform velocity but all the forces do not balance

c) Velocity changing uniformly and all the forces on it balance

d) Velocity changes uniformly but all the forces on it do not balance


Solutions to PHY 114

- B. P. velocity will only be the same if they follow the same direction with equal speeds.
- (D) 2.

 $Tan\theta = \frac{j}{i}$ $\theta = \tan^{-1}(j/i)$ $\theta = \tan^{-1} \left(\frac{3.526}{2.146} \right)$ $\theta = 58.67^{\circ} \simeq 58.7^{\circ}$ Since j is + ve and I is -ve $\frac{1}{A}$ + $\frac{1}{B}$ is in second quadrant

Hence direction of $\overrightarrow{A} + \overrightarrow{B} = N31.3$ °W

 \vec{A} + \vec{B} = \vec{A} + $(-\vec{B})$ = if \vec{B} = (-7i - 0j) \vec{A} + $(-\vec{B})$ = (4.854i + 3.526j) + <math>(7i - 0j) \vec{A} + \vec{B} = 11.854i + 3.526j

- (A) 13. State (i) is correct for dynamic equilibrium
 - It actual weight not apparent weight
 - Apparent weight is always lesser (Diff between N and true (iii) weight).
- (A) 14.
- $F = 55 + t2 N \dots (i)$ 15. (Note FDt = mDv)

Integrating eqn (i) with respect to t

$$\int Fdt = \int (55 + t^2)dt$$

$$FDt = 55t + \frac{t^2}{3} = mDv$$

When t = s

MDV = 316.66

 $DV = \frac{316.66}{2} = 158.3$

Since u = o (from rest)

$$DV = v - u$$

$$\Rightarrow \nabla = D\nabla = 158.3 \quad (C)$$

(B) 16.

17.
$$V = \sqrt[8]{A^2 - x^2}$$
 at centre $x = 0$

$$V = wA$$

$$V = WA$$

$$V = 2\lambda / T = \frac{2\lambda}{0.001} = 2000\lambda$$

$$v = 2000\lambda \times 0.4$$

= $800\lambda \text{ms}^{-1}$ (B)

- (D) 18.
- Before collision 19. $u = 6ms^{-1}$

After collision

$$\int \left(\frac{5}{3}\right)^3 - \int \frac{(0)^3}{3}$$

B

From the principle of conservation of mom

Mom before = mom after
$$m_1u_1 + m_2u_2 = (m_1 + m_2)V$$

$$v = \frac{m_1 u_1}{(m_1 + m_2)} (u_2 = 0)$$

$$v = \frac{0.1 \times 6}{(0.1 + 0.2)} = 2ms^{-1}$$
 (B)

20. B

21. At highest point, tension is the vector sum of the weight and centrifugal force

$$T = mw^4r - mg (F_g \text{ and } W \text{ are opp})$$

$$T = m (w_2r - g)$$

$$T = 0.2 \left(v^2 /_{\Gamma^2 \times r} - g \right)$$

$$T = 0.2 \left(\frac{v^2}{r} - g \right)$$

$$T = 0.2 \left(\frac{v^2}{r} - g\right)$$

$$T = 0.2 \left(\frac{5x5}{2} - 10\right)$$

$$T = 0.5N$$

$$T = 0.5N$$
 (B

22. Mom = $mv = 2.0 \times 103 \times 15$ = 3.0 x 104kgms-1 due north

Mom is directly proportional to net, hence if velocity is tripled 23. momentum increases by a factor of 3

(D)

K.E $\alpha v^2 [K.E = \frac{1}{2} m v^2]$ 24. If velocity is tripled, the K.E increases by a factor of 9 (C)

25. A

26. and 27.

Momentum of
$$A = M_A V_A$$

Momentum of
$$B = M_B V_B$$

K. E of B =
$$\frac{1}{2}$$
 M_BV_B²

$$\frac{1}{2} M_{\text{A}} V_{\text{A}}^2 = (\frac{1}{2} M_{\text{B}} V_{\text{B}}^2) \times 2$$

$$V_2 M_A V_A^2 = M_B V_B^2$$

 $\begin{array}{l} M_{A}V_{A}{}^{2}=2M_{B}V_{B}{}^{2} \ ... \ (ii) \\ Divide eqn (i) by (ii) \\ \frac{M_{A}V_{A}}{M_{A}V_{A}{}^{2}}=\frac{4M_{B}V_{B}}{2M_{B}V_{B}{}^{2}} \\ \frac{1}{V_{A}}=\frac{2}{V_{B}} \\ V_{B}=2V_{A} \ ... \\ V_{A}/V_{B}{}^{2}=\frac{1}{2} \\ Put eqn (iii) in (i) \\ M_{A}V_{A}=4M_{B}2V_{A} \\ \frac{M_{A}}{M_{B}}=\frac{8V_{A}}{V_{A}} \\ \frac{M_{A}}{M_{B}}=8 \end{array}$

(iii)

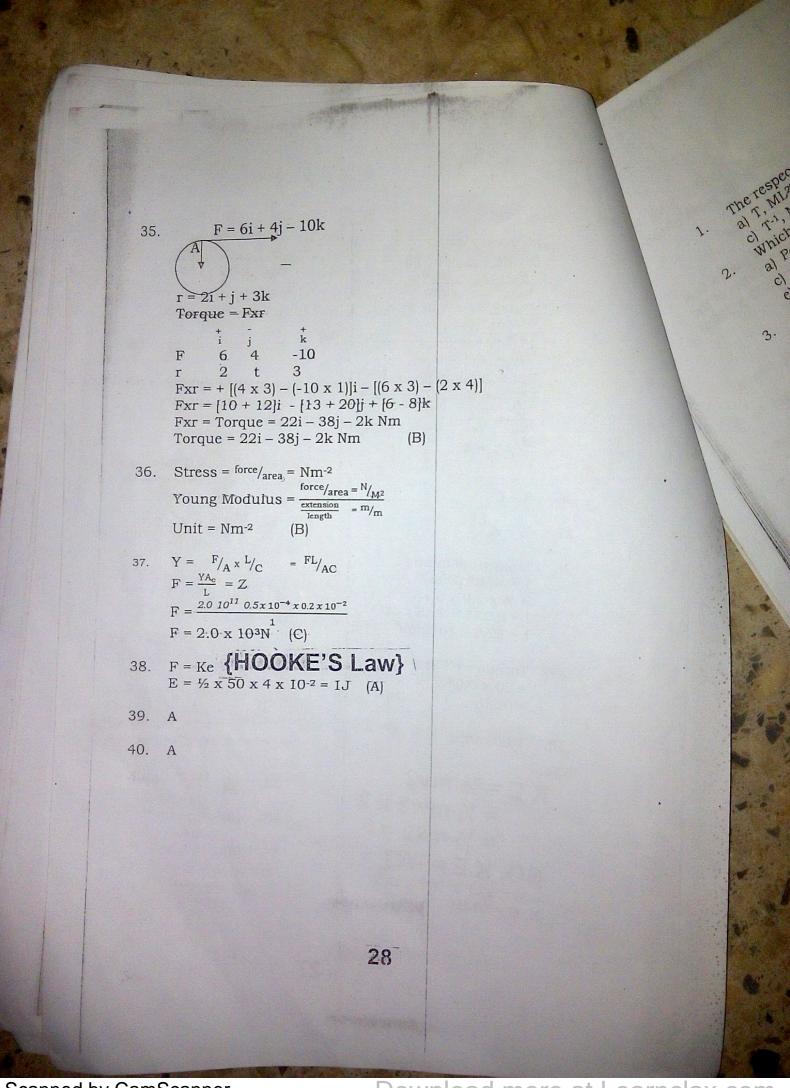
26. 8 = C

27. ½ = A

28. Moment of inertia I $I = \frac{1}{2}Mr^{2} \text{ (Disc)}$ $= \frac{1}{2} \times 2.0 \times 0.15^{2}$ $I = 0.225 = 22.5 \times 10^{-2}$ $I = 22.5 \times 10^{-2} \text{kgm}^{2} \text{ (B)}$

29. Torque $\tau = F \times r$ = 20 x 0.015 = 0.3Nm (D)

30. 16.0 radis-1 (A)

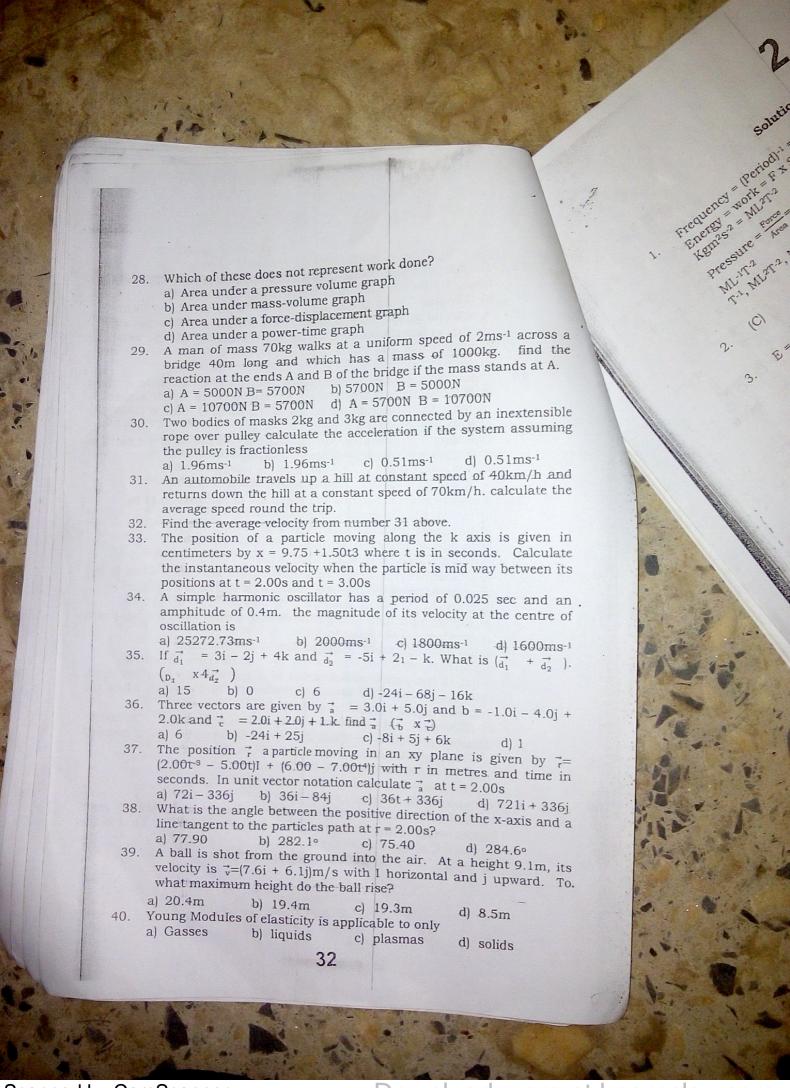

31. $K.E = \frac{1}{2} \text{ mv2}$ $= \frac{1}{2} \text{ mw2 x 2}$ $= \frac{1}{2} \text{ mx2} = 1$ SO, K.E = $\frac{1}{2} \times 22.5 \times 10^{-2} \times 16^{2}$ K. E = $\frac{28.8 \text{ J}}{2}$ (B)

32. A

33. (A)

34. (A)

27


	PHY 114
1.	The respective dimensions for frequency, energy and pressure are
	a) T, ML ² T ² , ML ⁻¹ T ⁻² b) T ⁻¹ , ML ² T ² , ML ⁻¹ T ⁻²
	c) T-1, ML ² T-2, ML-1T-2 d) T, ML ² T-2, ML-2T-2
2.	Which of the set of quantities have the same basic units?
	a) Power, work, moment b) work, moment, momentum
	c) moment, work and energy d) work, energy and power
	e) none of the above
3.	Given that $E = \sqrt{2/t}$ where q has the dimension of energy and it has
	the dimension of time. What is the dimension of E?
	a) M-2T-2,L2T3 b) M-14L14T14
	a) M-21-2,L213 b) M-21-1 c) M-3/2L1/2 d) M-1/2LT M-3/2
4.	If vector A has components Ac = 3.2m and Ay = 1.6m. find the
*	components Gx and Cy of vector C which is perpendicular to A if C
	has a magnitude of 5.0m?
	a) $Cx = 2.0m$ and $Cy = 5m$ b) $Cx = 10m$ and $Cy = 2m$ c) $Cy = \sqrt{5m}$ and $Cx = \sqrt{5m}$ d) $Cx = \sqrt{15m}$ and $Cy = \sqrt{15m}$
	$\sqrt{10\mathrm{m}}$
	c) $Cx = \sqrt{5m}$ and $Cy = \sqrt{20m}$
5.	Two vectors P and Q are given as $P = 3i - 4J + 5k$ and $Q = 2j + 2k$
	respectively. Find P. Q
-	a) 1 b) 5 c) 2 d) -4
6.	A body moving along the ace has its motion described by the equation $X = 406 + 5t^2$. What is the average velocity of the body
	during the first 5 seconds of its motion?
	a) 325ms ⁻¹ b) 5ms ⁻¹ c) 25 ms ⁻¹ d) 65 ms ⁻¹
7.	A stone is projected from a surface at an angle of 300 to the
	horizontal and with an initial velocity of 40.0m/s. calculate the
	vertical component of the stones velocity 2.0s after leaving the
	surface if g = 9.8 ms ⁻²
	a) 0.1 ms ⁻¹ b) 0.2m/s c) 0.3m/s d) 0.4m/s e) 0.5m/s
8.	A body moves from $r_1 = -2i + 3j + k$ to $r_2 = 3i - 2j - k$ (in metres) under
	the action of a force F = 2i - 3j + k (in Newtons). Find the work
	done by the force a) 10J b) 15J c) 20J d) 23J e) 32J
9.	a) 10J b) 15J c) 20J d) 23J e) 32J An alternative definition f impulse is
	a) A change in velocity
	b) Change in acceleration
	c) Change in momentum
	d) Change in torque

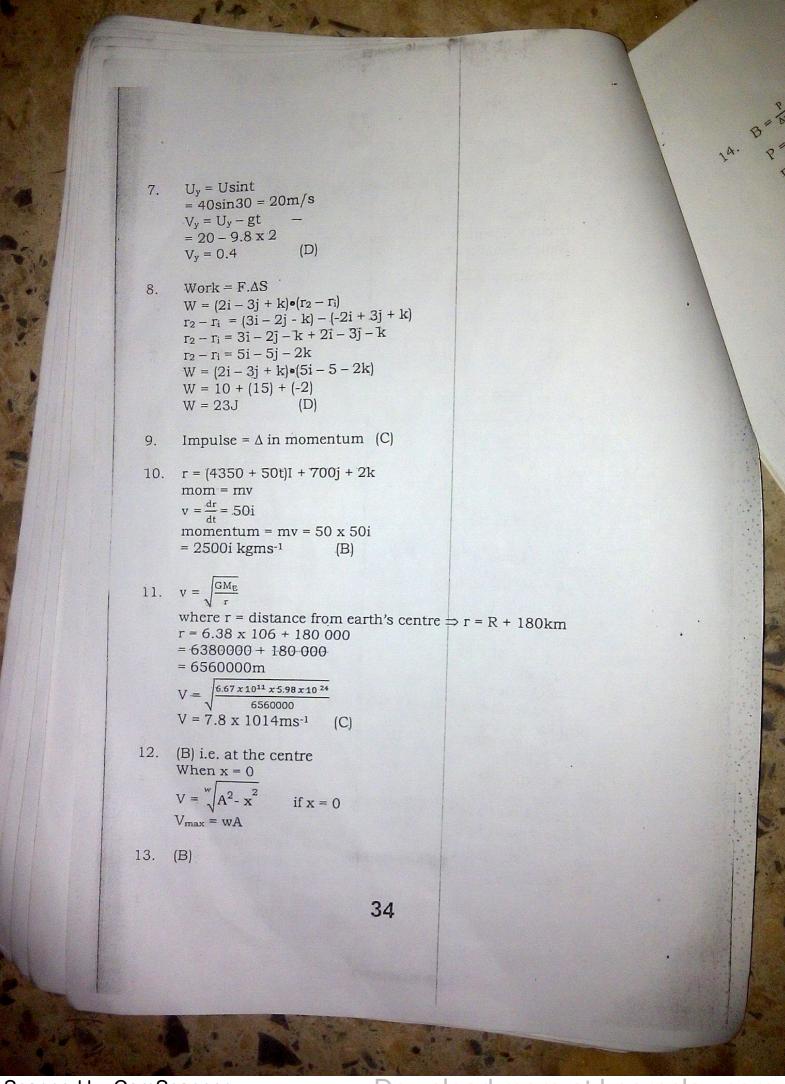
An object is found to have a position vector r = (4350 + 50t)7000j + 2k with r in metres and t in seconds. If the mass of the 10. object is 50kg. What is the momentum? c) 50i kgms-1 b) 2500i kgm/s a) 50j kgm/s e) 5000i kgm/s d) 4000kgms-1 Calculate the speed of an artificial satellite of mass in places in a . 11. circular orbit of 180km above the surface of the earth. [Mass of the earth Me = $5-98 \times 10^{24}$ kg]. Radius of the earth re = 6.38×106 m and gravitational constant G = 6.67 x 1011Nm2kg-2] b) $7.0 \times 10^{14} \text{m/s}$ a) $5.6 \times 10^3 \text{m/s}$ c) 7.8 x 10¹⁴m/s d) $7.9 \times 10^3 \text{m/s}$ 12. The velocity of a particle in a simple harmonic motion has a maximum magnitude when a) The particle displacement from the position of equilibrium is maximum b) The particle displacement from the position of the equilibrium is c) The particle potential energy is maximum d) The particle acceleration in maximum e) None of the above occurs Which of the following system is not in oscillatory motion? 13. a) Atom in a solid b) Electrons in the antennas of radio and television transmitters c) Guitars strings which are plucked d) Balance wheel of a wrist watch How much pressure is needed to compress the volume of an iron block by 0.11% is the bulk modulus of iron is $90 \times 10^{9} \text{Nm}^{-2}$? a) 7.5 x 10⁷Nm⁻² b) 8.0 x 108Nm-2 c) 9.9 x 107Nm-2 d) 7.5 x 109Nm-2 e) 9.9 x 10-13Nm-2 A 0.2kg billard ball was hit with a rod such that it moved with a 15. velocity of 3ms-1. If the impact between the ball lasted for 10-2s, the a) 0.6N b) 0.4N c) 0.006N A girl drop a bag inside a moving train. Her friends saw this helper from a platform. The bag drops 1m from rest when the train is moving steadily along the platform at 2ms-1. How long does it take for the body t reach the floor of the train? a) 0.19s b) 0.45s From question 16, calculate the resultant velocity just before it hits c) 0.35s 17. a) 2.0ms-1 b) 4.4ms-1 c) 4.8 ms-1 d) 0.735 ms-1

18.

- 18. The human adult tibia contracts by about 1mm per 1000N applied force. By how much is the tibia of 75kg man contracts?
 - a) 0.75mm -b) 0.735mm c) 0.735mm d) 0.735cm
- 19. A satellite weighs 80N at the earth's surface. If R is the earth's
- radius, at what distance from the earth centre would the weight of the satellite by 20N?
 - a) R/2 b) R/4 c) 2R d) 4R
- 20. Calculate the least kinetic energy that must be given to a mass 2000kg at the earth's surface for the mass to reach a point a distance 9000km from the center of the earth G = 6.7 x 15 TNmkg M = 6 x 10²⁴kg R = 6.4 x 10⁶m
- 21. Calculate the mass f the earth giving that the radius of the earth is $6400 \text{km g} = 9.8 \text{ms}^{-2} \text{ G} = 6.7 \times 10^{-11} \text{Nm}^2 \text{kg}^{-2}$
 - a) 5.99a x 10¹⁸kg b) 5.991 x 10²⁷kg
 - c) 5.991 x 10²⁴kg d) 5.99 x 10²⁷g
- 22. A skaler brings her hands and legs close to her body so as to
 - a) Increase her moment of inertia
 - b) Increase the torque f her body
 c) Reduce angular momentum
 - d) Reduce angular velocity
- 23. A flywheel completes 90 revolution in 30 seconds. What is the kinetic energy of the flywheel. Moment of inertia is 0.32kgm⁻²
 a) 18.852J b) 5.76J c) 56.85J d) 113.73J
- 24. At the Olympic high diving competition, a diver from the top board curves her body in order to
 - a) Dive into the water with her legs b) Spin more
 - c) Increase her speed d) Increase her energy
- 25. What is the period of revolution of a spy satellite in a low earth orbit a distance 7100km from the centre of the earth when the grantation field strength is 8.0Nkg-1
- a) 5900hrs b) 900min c) 570secs d) 1hr 38 mins
- 26. Which of the following is not true about performing arcular motion?

 a) The weight of the body equals centripetal force
 - b) Acceleration is always directed towards the centre
 - c) The speed and velocity are constantly changing
 - d) None of the above
- 27. A stationary mass explodes into two parts, 4 unit and 40 units respectively. If the larger mass has initial K.E of 100J what is the initial K.E of the smaller mass?
 - a) 10kJ
- b) 1000kJ
- c) 100kJ
- d) 1kc

Solutions to PHY 114


- 1. Frequency = (Period)-1 = T-1
 Energy = work = F x S = kgms-2 x m
 Kgm²s-² = ML²T-²
 Pressure = Force / Area = MLT²
 ML-1T-²
 T-1, ML²T-², ML-1T-²
 {C}
- 2. (C)
- 3. $E = \sqrt{\frac{Energy}{Time}}$ $E = \sqrt{\frac{Work}{Time}} = \sqrt{\frac{F.S}{T}}$ $E = \left(\frac{F.S}{T}\right)^{\frac{1}{2}}$ $E = \left(\frac{Kgms^{-2} \times m}{s}\right)^{\frac{1}{2}}$ $E = \left(kgms^{2}S^{-3}\right)^{\frac{1}{2}} = \left(ML^{2}T^{-3}\right)^{\frac{1}{2}}$ $E = M^{\frac{1}{2}}LT^{-\frac{3}{2}} \quad (D)$
- 4.
- 5. P = 3i 4j + 5k Q = 2j + 2k $\Rightarrow Q = 0i + 2j + 2k$ $P. Q. = (3i - 4j + 5k) \bullet (0i + 2j + 2k)$ $(3 \times 0) + (-4 \times 2) + (5 \times 2)$ = 3 - 8 + 10 = 5 (B)
- 6. $X = 40t + 5t^2$ Average velocity $V_{avg} = (x_2 - x_1)/t$ $X_2 = 40(5) + 5(5)^2 = 325m$ $X_1 = 0$ $V_{avg} = \frac{325 - 0}{5} = 65ms^{-1}$ (E)

Solutions to PHY 114

Frequency = $(Period)^{-1} = T^{-1}$ Energy = work = $F \times S = kgms^{-2} \times m$ $Kgm^2s^{-2} = ML^2T^{-2}$

 $Pressure = \frac{Force}{Area} = \frac{MLT^2}{L^2}$ ML-1T-2 T-1, ML2T-2, ML-1T-2 {C}

- (C)
- $E = \sqrt{\frac{\dot{W}ork}{Time}} = \sqrt{\frac{F.S}{T}}$ $E = \left(\frac{F.S}{T}\right)^{V_2}$ $E = \left(\frac{Kgms^{-2} \times m}{S}\right)^{1/2}$ $E = \left(kgms^2S^{-3}\right)^{1/2} = \left(ML^2T^{-3}\right)^{1/2}$ $E = M^{\frac{1}{2}}LT^{-\frac{3}{2}}$ (D)
- 4.
- P = 3i 4j + 5kQ = 2j + 2k \Rightarrow Q = 0i + 2j + 2k P. Q. = $(3i - 4j + 5k) \circ (0i + 2j + 2k)$ $(3 \times 0) + (-4 \times 2) + (5 \times 2)$ =3-8+10=5
- 6. $X = 40t + 5t^2$ Average velocity $V_{avg} = (x_2 - x_1)/t$ $X_2 = 40(5) + 5(5)^2 = 325m$ $X_1 = 0$ $V_{avg} = \frac{325 - 0}{5} = 65 \text{ms}^{-1}$ (E)

14.
$$B = \frac{P}{\Delta v/v}$$

$$P = B \times \frac{\Delta V}{v}$$

$$P = 90 \times 90^{9} \times \frac{0.11\%}{v}$$

$$P = 90 \times 10^{9} \times \frac{0.11}{100}$$

$$P = 9.9 \times 10^{7} \text{Nm}^{-2}$$
(C)

15.
$$F = \frac{m(v-u)}{t}$$

$$F = \frac{0.2(3-0)}{10^{-2}}$$

$$F = 60N \quad (E)$$

16. B 4.87 ms-1

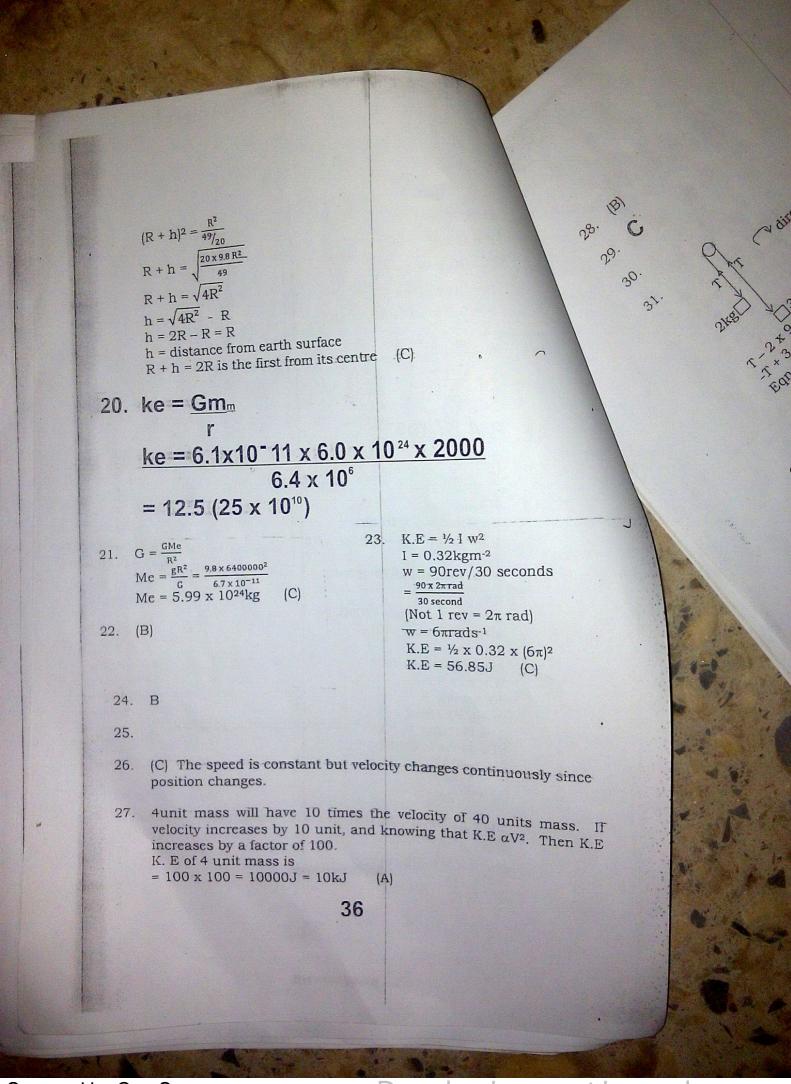
-

5

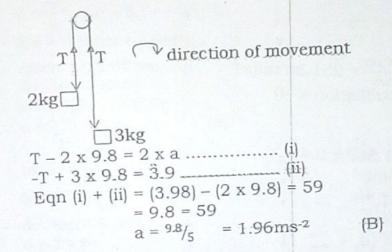
18.
$$F = ke$$

 $e = 1mm = 1 \times 10-3m$
 $k = F/e = \frac{1000}{1 \times 10^{-3}} = 1 \times 10^{6} N/m$

Now, for tibia of 75kg man
$$e = \frac{mg}{k} = \frac{75 \times 9.8}{1 \times 10^6}$$
 $e = 7.35 \times 10^{-4} \text{m} = 0.000735 \text{m}$ $e = 0.735 \text{mm}$ (C)


19. At the earth surface
$$W = m \times 9.8$$
 $80 = x 9.8$ $m = (80/9.8) \text{kg}$

At a distance h, let g¹ be acceleration due to gravity. NB: Mass is constant


$$20 = \left(\frac{800}{9.8}\right) \times g^{1}$$

$$G^{1} = \frac{49}{20}$$

Since g1 is < g. the distance L is outside earth's surface Apply g1 = $\frac{R^2g)}{(R+h)^2}$ where R = radius of the earth $\frac{49}{20} = \frac{R^2 \times 9.8}{(R+h)^2}$

- 28. (B)
- 29. C
- 30.
- 31.

Let t₁ be time when travelling upwards by 40kmhr⁻¹ and t₂ time when travelling downwards by 70kmhr⁻¹. (Note distance is equal up and down the hill)

$$S_{1} = 40t_{1}$$

$$S_{2} = 70t_{2}$$
But $S_{1} = S_{2}$

$$40t_{1} = 70t_{2}$$

$$T_{2} = \frac{4}{7}t_{1}$$

$$T_{2} = \frac{40}{70}t_{1}$$
Average speed = $\frac{\text{Total dist}}{\text{Total time}}$

$$= \frac{S_{1} + S_{2}}{t_{2} + t_{2}}$$

$$= \frac{40t_{1} + 70(\frac{40}{70})t_{1}}{t_{1} + \frac{40}{70}t_{1}}$$

$$= \frac{80t_{1}}{\frac{110}{70}t_{1}}$$

$$= \frac{80t_{1}}{110t_{1}} = 50.91 \text{kmhr}^{-1}$$

(D)

11,