FEDERAL UNIVEERSITY OF TECHNOLOGY, OWERRI DEPARTMENT OF MATHEMATICS 2017/2018 HARMATTAN SEMESTER EXAMINATION MTH 203; ODE ANSWER 5 QUESTIONS TIME; 31(RS

1. a) Obtain the differential equation corresponding to the family of curves $v = C_1 \sin x + C_2 \cos x$

and classify them as linear or nonlinear. State the order and degree.

b) Solve the differential equation

$$(y^{2}e^{xy^{2}} + 6x)dx + (2xye^{xy^{2}} - 4y)dy = 0$$

- a) Define the concept of i) Complete Fundamental Set ii) the Wronskian of nsolution function of an nth order differential equation.
 - b) To solve $y'' + 4y' + 8y = \sin x$ by variation of parameters method, Henry obtained $v_1(x) = -\frac{1}{2} \int \frac{\sin 2x \sin x}{e^{-2x}} dx$ and $v_2(x) = \frac{1}{2} \int \frac{\cos 2x \sin x}{e^{-2x}} dx$. Trace your working to these expressions.
- 3. a) Given the equation of the form $y' + p(x)y = q(x)y^n$; $n \neq 0$. Obtain its linear differential equation equivalent.
 - b) Solve the initial value problem (IVP) $\begin{cases} xdx + e^{-x^2}(y^5 1)dy = 0\\ y(0) \end{cases}$
- 4. a) Given that M(x, y)dx + N(x, y)dy = 0 is not Exact, obtain the integrating factor $\mu(x)$ that will make it Exact.
 - b) Show that $y = 2e^{3x} 5e^{4x}$ is a solution of the d.e. y'' 7y' + 12y = 0
- 5. a) Solve by the method of undetermined coefficients, the differential equation $y'' + 4y = 3 \sin 2x$
 - b) Solve the IVP $\frac{dy}{dx} = \frac{x+y+1}{x+y+3}$; y(0) = -1
- 6. a) Solve the differential equation ; $y' + \frac{2}{x}y = x^6y^3$
 - b) Solve the differential equation: $y' = \frac{x^3 + y^3}{3xy^2}$

SCHOOL OF PHYSICAL SCIENCES DEPARTMENT OF MATHEMATICS

2018/2019 HARMATTAN SEMESTER EXAMINATIONS

MTH 203: Ordinary Differential Equations I

Instruction: Answer any 5 (five) questions. TIME: 3 Hours

1(a) Given that the Laplace transform of a piecewise continuous function f is defined for $t \geq 0$ as

$$\mathcal{L}\{f(t)\} = \int_0^\infty e^{-st} f(t) dt,$$

obtain the Laplace transform of the function

$$f(t) = \begin{cases} \sin t, & 0 \le t < \pi \\ 0, & t \ge \pi \end{cases}$$

I(b) Solve
$$y'' - 3y' + 2y = e^{-4t}$$
, $y(0) = 1$, $y'(0) = 5$

2(a) Solve
$$\frac{dy}{dx} + y \cot x = 5e^{\cos x}$$
;

2(b) Solve
$$(\cos^2 x - y\cos x)dx - (1 + \sin x - 2y - 3)dy = 0$$

3(a) Solve the equation
$$\frac{dx}{dt} + \frac{x}{t} = tx^2$$

(b) Find the solution of the initial value problem

$$y'' - 2y' - 8y = 0$$
, $y(0) \le 1$, $y'(0) = 2$

4(a) Find the solution of the equation

$$\frac{dy}{dx} = \frac{2x - 5y + 3}{2x + 4y - 6}$$

- 4(b) Detain a differential equation from $y = e^{x+A} = -Be^x$, where A and B are constants.
- 5(a) Determine whether the following equation is exact, and then solve it

$$(e^x \sin y + 3y)dx - (3x - e^x \sin y)dy = 0$$

5(b) Prove that if $y_1(x)$ and $y_2(x)$ are solutions of

$$a_0(x)\frac{d^2y}{dx^2} + c_1(x)\frac{dy}{dx} + a_2(x)y = 0$$

then $c_1y_1(x) + c_2y_2(x)$ is also a solution of this equation where c_1 and c_2 are arbitrary constants

- 6(a) Find the general solution of $y'' 2y' + y = \frac{e^x}{2}$ using variation of parameters.
- 6(b) Find a second linearly independent solution for the differential equation $(1-x^2)y'' 2xy' + 2y = 0$, given that $y_1(x) = x$ is a solution.

Moderated by Dr. C. A. Nee