
Download more at Learnclax.com

OPTIMIZATION THEORY AND
METHODS
Nonlinear Programming

Download more at Learnclax.com

Springer Optimization and Its Applications

VOLUME 1

Managing Editor
Panos M. Pardalos (University of Florida)

Editor—Combinatorial Optimization
Ding-Zhu Du (University of Texas at Dallas)

Advisory Board
J. Birge (University of Chicago)
C.A. Floudas (Princeton University)
F. Giannessi (University of Pisa)
H.D. Sherali (Virginia Polytechnic and State University)
T. Terlaky (McMaster University)
Y. Ye (Stanford University)

Aims and Scope
Optimization has been expanding in all directions at an astonishing rate
during the last few decades. New algorithmic and theoretical techniques have
been developed, the diffusion into other disciplines has proceeded at a rapid
pace, and our knowledge of all aspects of the field has grown even more
profound. At the same time, one of the most striking trends in optimization is
the constantly increasing emphasis on the interdisciplinary nature of the field.
Optimization has been a basic tool in all areas of applied mathematics,
engineering, medicine, economics and other sciences.

The series Springer Optimization and Its Applications publishes
undergraduate and graduate textbooks, monographs and state-of-the-art
expository works that focus on algorithms for solving optimization problems
and also study applications involving such problems. Some of the topics
covered include nonlinear optimization (convex and nonconvex), network
flow problems, stochastic optimization, optimal control, discrete
optimization, multi-objective programming, description of software
packages, approximation techniques and heuristic approaches.

Download more at Learnclax.com

OPTIMIZATION THEORY AND
METHODS

By

WENYU SUN
Nanjing Normal University, Nanjing, China

YA-XIANG YUAN
Chinese Academy of Science, Beijing, China

1 3

Nonlinear Programming

Download more at Learnclax.com

Library of Congress Control Number: 2005042696

Printed on acid-free paper.

O 2006 Springer Science+Business Media, LLC

All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY
10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

Printed in the United States of America.

Download more at Learnclax.com

Contents

Preface xi

1 Introduction 1
1.1 Introduction . 1
1.2 Mathematics Foundations . 2

1.2.1 Norm . 3
1.2.2 Inverse and Generalized Inverse of a Matrix 9
1.2.3 Properties of Eigenvalues 12
1.2.4 Rank-One Update . 17
1.2.5 Function and Differential 22

1.3 Convex Sets and Convex Functions 31
1.3.1 Convex Sets . 32
1.3.2 Convex Functions . 36
1.3.3 Separation and Support of Convex Sets 50

1.4 Optimality Conditions for Unconstrained Case 57
1.5 Structure of Optimization Methods 63
Exercises . 68

2 Line Search 71
2.1 Introduction . 71
2.2 Convergence Theory for Exact Line Search 74
2.3 Section Methods . 84

2.3.1 The Golden Section Method 84
2.3.2 The Fibonacci Method 87

2.4 Interpolation Method . 89
2.4.1 Quadratic Interpolation Methods 89
2.4.2 Cubic Interpolation Method 98

2.5 Inexact Line Search Techniques 102

Download more at Learnclax.com

vi CONTENTS

2.5.1 Armijo and Goldstein Rule 103
2.5.2 Wolfe-Powell Rule . 104
2.5.3 Goldstein Algorithm and Wolfe-Powell Algorithm . . 106
2.5.4 Backtracking Line Search 108
2.5.5 Convergence Theorems of Inexact Line Search 109

Exercises . 116

3 Newton’s Methods 119
3.1 The Steepest Descent Method 119

3.1.1 The Steepest Descent Method 119
3.1.2 Convergence of the Steepest Descent Method 120
3.1.3 Barzilai and Borwein Gradient Method 126
3.1.4 Appendix: Kantorovich Inequality 129

3.2 Newton’s Method . 130
3.3 Modified Newton’s Method 135
3.4 Finite-Difference Newton’s Method 140
3.5 Negative Curvature Direction Method 147

3.5.1 Gill-Murray Stable Newton’s Method 148
3.5.2 Fiacco-McCormick Method 151
3.5.3 Fletcher-Freeman Method 152
3.5.4 Second-Order Step Rules 155

3.6 Inexact Newton’s Method . 163
Exercises . 172

4 Conjugate Gradient Method 175
4.1 Conjugate Direction Methods 175
4.2 Conjugate Gradient Method 178

4.2.1 Conjugate Gradient Method 178
4.2.2 Beale’s Three-Term Conjugate Gradient Method . . . 185
4.2.3 Preconditioned Conjugate Gradient Method 188

4.3 Convergence of Conjugate Gradient Methods 191
4.3.1 Global Convergence of Conjugate Gradient Methods . 191
4.3.2 Convergence Rate of Conjugate Gradient Methods . . 198

Exercises . 200

5 Quasi-Newton Methods 203
5.1 Quasi-Newton Methods . 203

5.1.1 Quasi-Newton Equation 204

Download more at Learnclax.com

CONTENTS vii

5.1.2 Symmetric Rank-One (SR1) Update 207
5.1.3 DFP Update . 210
5.1.4 BFGS Update and PSB Update 217
5.1.5 The Least Change Secant Update 223

5.2 The Broyden Class . 225
5.3 Global Convergence of Quasi-Newton Methods 231

5.3.1 Global Convergence under Exact Line Search 232
5.3.2 Global Convergence under Inexact Line Search 238

5.4 Local Convergence of Quasi-Newton Methods 240
5.4.1 Superlinear Convergence of General Quasi-Newton Meth-

ods . 241
5.4.2 Linear Convergence of General Quasi-Newton Methods 250
5.4.3 Local Convergence of Broyden’s Rank-One Update . . 255
5.4.4 Local and Linear Convergence of DFP Method 258
5.4.5 Superlinear Convergence of BFGS Method 261
5.4.6 Superlinear Convergence of DFP Method 265
5.4.7 Local Convergence of Broyden’s Class Methods 271

5.5 Self-Scaling Variable Metric (SSVM) Methods 273
5.5.1 Motivation to SSVM Method 273
5.5.2 Self-Scaling Variable Metric (SSVM) Method 277
5.5.3 Choices of the Scaling Factor 279

5.6 Sparse Quasi-Newton Methods 282
5.7 Limited Memory BFGS Method 292
Exercises . 301

6 Trust-Region and Conic Model Methods 303
6.1 Trust-Region Methods . 303

6.1.1 Trust-Region Methods 303
6.1.2 Convergence of Trust-Region Methods 308
6.1.3 Solving A Trust-Region Subproblem 316

6.2 Conic Model and Collinear Scaling Algorithm 324
6.2.1 Conic Model . 324
6.2.2 Generalized Quasi-Newton Equation 326
6.2.3 Updates that Preserve Past Information 330
6.2.4 Collinear Scaling BFGS Algorithm 334

6.3 Tensor Methods . 337
6.3.1 Tensor Method for Nonlinear Equations 337
6.3.2 Tensor Methods for Unconstrained Optimization . . . 341

Download more at Learnclax.com

viii CONTENTS

Exercises . 349

7 Nonlinear Least-Squares Problems 353
7.1 Introduction . 353
7.2 Gauss-Newton Method . 355
7.3 Levenberg-Marquardt Method 362

7.3.1 Motivation and Properties 362
7.3.2 Convergence of Levenberg-Marquardt Method 367

7.4 Implementation of L-M Method 372
7.5 Quasi-Newton Method . 379
Exercises . 382

8 Theory of Constrained Optimization 385
8.1 Constrained Optimization Problems 385
8.2 First-Order Optimality Conditions 388
8.3 Second-Order Optimality Conditions 401
8.4 Duality . 406
Exercises . 409

9 Quadratic Programming 411
9.1 Optimality for Quadratic Programming 411
9.2 Duality for Quadratic Programming 413
9.3 Equality-Constrained Quadratic Programming 419
9.4 Active Set Methods . 427
9.5 Dual Method . 435
9.6 Interior Ellipsoid Method . 441
9.7 Primal-Dual Interior-Point Methods 445
Exercises . 451

10 Penalty Function Methods 455
10.1 Penalty Function . 455
10.2 The Simple Penalty Function Method 461
10.3 Interior Point Penalty Functions 466
10.4 Augmented Lagrangian Method 474
10.5 Smooth Exact Penalty Functions 480
10.6 Nonsmooth Exact Penalty Functions 482
Exercises . 490

Download more at Learnclax.com

CONTENTS ix

11 Feasible Direction Methods 493
11.1 Feasible Point Methods . 493
11.2 Generalized Elimination . 502
11.3 Generalized Reduced Gradient Method 509
11.4 Projected Gradient Method 512
11.5 Linearly Constrained Problems 515
Exercises . 520

12 Sequential Quadratic Programming 523
12.1 Lagrange-Newton Method . 523
12.2 Wilson-Han-Powell Method 530
12.3 Superlinear Convergence of SQP Step 537
12.4 Maratos Effect . 541
12.5 Watchdog Technique . 543
12.6 Second-Order Correction Step 545
12.7 Smooth Exact Penalty Functions 550
12.8 Reduced Hessian Matrix Method 554
Exercises . 558

13 TR Methods for Constrained Problems 561
13.1 Introduction . 561
13.2 Linear Constraints . 563
13.3 Trust-Region Subproblems . 568
13.4 Null Space Method . 571
13.5 CDT Subproblem . 580
13.6 Powell-Yuan Algorithm . 585
Exercises . 594

14 Nonsmooth Optimization 597
14.1 Generalized Gradients . 597
14.2 Nonsmooth Optimization Problem 607
14.3 The Subgradient Method . 609
14.4 Cutting Plane Method . 615
14.5 The Bundle Methods . 617
14.6 Composite Nonsmooth Function 620
14.7 Trust Region Method for Composite Problems 623
14.8 Nonsmooth Newton’s Method 628
Exercises . 634

Download more at Learnclax.com

x CONTENTS

Appendix: Test Functions 637
§1. Test Functions for Unconstrained Optimization Problems 637
§2. Test Functions for Constrained Optimization Problems . 638

Bibliography 649

Index 682

Download more at Learnclax.com

Preface

Optimization is a subject that is widely and increasingly used in science,
engineering, economics, management, industry, and other areas. It deals
with selecting the best of many possible decisions in real-life environment,
constructing computational methods to find optimal solutions, exploring the
theoretical properties, and studying the computational performance of nu-
merical algorithms implemented based on computational methods.

Along with the rapid development of high-performance computers and
progress of computational methods, more and more large-scale optimization
problems have been studied and solved. As pointed out by Professor Yuqi He
of Harvard University, a member of the US National Academy of Engineering,
optimization is a cornerstone for the development of civilization.

This book systematically introduces optimization theory and methods,
discusses in detail optimality conditions, and develops computational meth-
ods for unconstrained, constrained, and nonsmooth optimization. Due to
limited space, we do not cover all important topics in optimization. We
omit some important topics, such as linear programming, conic convex pro-
gramming, mathematical programming with equilibrium constraints, semi-
infinite programming, and global optimization. Interested readers can refer
to Dantzig [78], Walsch [347], Shu-Cheng Fang and S. Puthenpura [121], Luo,
Pang, and Ralph [202], Wright [358], Wolkowitz, Saigal, and Vandenberghe
[355].

The book contains a lot of recent research results on nonlinear program-
ming including those of the authors, for example, results on trust region
methods, inexact Newton method, self-scaling variable metric method, conic
model method, non-quasi-Newton method, sequential quadratic program-
ming, and nonsmooth optimization, etc.. We have tried to make the book

Download more at Learnclax.com

xii PREFACE

self-contained, systematic in theory and algorithms, and easy to read. For
most methods, we motivate the idea, study the derivation, establish the global
and local convergence, and indicate the efficiency and reliability of the nu-
merical performance. The book also contains an extensive, not complete,
bibliography which is an important part of the book, and the authors hope
that it will be useful to readers for their further studies.

This book is a result of our teaching experience in various universities
and institutes in China and Brazil in the past ten years. It can be used as a
textbook for an optimization course for graduates and senior undergraduates
in mathematics, computational and applied mathematics, computer science,
operations research, science and engineering. It can also be used as a reference
book for researchers and engineers.

We are indebted to the following colleagues for their encouragement, help,
and suggestions during the preparation of the manuscript: Professors Kang
Feng, Xuchu He, Yuda Hu, Liqun Qi, M.J.D. Powell, Raimundo J.B. Sam-
paio, Zhongci Shi, E. Spedicato, J. Stoer, T. Terlaky, and Chengxian Xu.
Special thanks should be given to many of our former students who read
early versions of the book and helped us in improving it. We are grate-
ful to Edwin F. Beschler and several anonymous referees for many valuable
comments and suggestions. We would like to express our gratitude to the
National Natural Science Foundation of China for the continuous support to
our research. Finally, we are very grateful to Editors John Martindale, An-
gela Quilici Burke, and Robert Saley of Springer for their careful and patient
work.

Wenyu Sun, Nanjing Normal University
Yaxiang Yuan, Chinese Academy of Science
April 2005

Download more at Learnclax.com

Chapter 1

Introduction

1.1 Introduction

Optimization Theory and Methods is a young subject in applied mathemat-
ics, computational mathematics and operations research which has wide ap-
plications in science, engineering, business management, military and space
technology. The subject is involved in optimal solution of problems which are
defined mathematically, i.e., given a practical problem, the “best” solution to
the problem can be found from lots of schemes by means of scientific methods
and tools. It involves the study of optimality conditions of the problems, the
construction of model problems, the determination of algorithmic method
of solution, the establishment of convergence theory of the algorithms, and
numerical experiments with typical problems and real life problems. Though
optimization might date back to the very old extreme-value problems, it did
not become an independent subject until the late 1940s, when G.B. Dantzig
presented the well-known simplex algorithm for linear programming. Af-
ter the 1950s, when conjugate gradient methods and quasi-Newton methods
were presented, the nonlinear programming developed greatly. Now various
modern optimization methods can solve difficult and large scale optimization
problems, and become an indispensable tool for solving problems in diverse
fields.

The general form of optimization problems is

min f(x)
s.t. x ∈ X, (1.1.1)

where x ∈ Rn is a decision variable, f(x) an objective function, X ⊂ Rn

Download more at Learnclax.com

2 CHAPTER 1. INTRODUCTION

a constraint set or feasible region. Particularly, if the constraint set X =
Rn, the optimization problem (1.1.1) is called an unconstrained optimization
problem:

min
x∈Rn

f(x). (1.1.2)

The constrained optimization problem can be written as follows:

minx∈Rn f(x)
s.t. ci(x) = 0, i ∈ E, (1.1.3)

ci(x) ≥ 0, i ∈ I,

where E and I are, respectively, the index set of equality constraints and
inequality constraints, ci(x), (i = 1, · · · , m ∈ E ∪ I) are constraint functions.
When both objective function and constraint functions are linear functions,
the problem is called linear programming. Otherwise, the problem is called
nonlinear programming.

This book mainly studies solving unconstrained optimization problem
(1.1.2) and constrained optimization problem (1.1.3) from the view points of
both theory and numerical methods. Chapters 2 to 7 deal with unconstrained
optimization. Chapters 8 to 13 discuss constrained optimization. Finally, in
Chapter 14, we give a simple and comprehensive introduction to nonsmooth
optimization.

1.2 Mathematics Foundations

In this section, we shall review a number of results from linear algebra and
analysis which are useful in optimization theory and methods.

Throughout this book, Rn will denote the real n-dimensional linear space
of column vector x with components x1, · · · , xn, and Cn the corresponding
space of complex column vectors. For x ∈ Rn, xT denotes the transpose of
x, while, for x ∈ Cn, xH is the conjugate transpose. A real m × n matrix
A = (aij) defines a linear mapping from Rn to Rm and will be written as
A ∈ Rm×n or A ∈ L(Rn, Rm) to denote either the matrix or the linear
operator. Similarly, a complex m× n matrix A will be written as A ∈ Cm×n

or A ∈ L(Cn, Cm).

Download more at Learnclax.com

1.2. MATHEMATICS FOUNDATIONS 3

1.2.1 Norm

Definition 1.2.1 A mapping ‖ · ‖ is called a norm if and only if it satisfies
the following properties:

(i) ‖x‖ ≥ 0,∀x ∈ Rn; ‖x‖ = 0 if and only if x = 0;

(ii) ‖αx‖ = |α|‖x‖,∀α ∈ R, x ∈ Rn;

(iii) ‖x + y‖ ≤ ‖x‖+ ‖y‖, ∀x, y ∈ Rn.

Well-known examples of vector norm are as follows:

‖x‖∞ = max
1≤i≤n

|xi|, (l∞-norm) (1.2.1)

‖x‖1 =
n∑

i=1

|xi|, (l1-norm) (1.2.2)

‖x‖2 =

(
n∑

i=1

|xi|2
)1/2

, (l2-norm). (1.2.3)

The above examples are particular cases of lp-norm which is defined as

‖x‖p =

(
n∑

i=1

|xi|p
)1/p

, (lp-norm). (1.2.4)

Another vector norm frequently used is the ellipsoid norm which is defined
as

‖x‖A = (xT Ax)1/2, (1.2.5)

where A ∈ Rn×n is a symmetric and positive definite matrix.
Similarly, we can define a matrix norm.

Definition 1.2.2 Let A,B ∈ Rm×n. A mapping ‖ · ‖ : Rm×n → R is said to
be a matrix norm if it satisfies the properties

(i) ‖A‖ ≥ 0,∀A ∈ Rm×n; ‖A‖ = 0 if and only if A = 0;

(ii) ‖αA‖ = |α|‖A‖,∀α ∈ R,A ∈ Rm×n;

(iii) ‖A + B‖ ≤ ‖A‖+ ‖B‖, ∀A,B ∈ Rm×n.

Download more at Learnclax.com

4 CHAPTER 1. INTRODUCTION

Corresponding to the above vector lp-norm, we have the matrix lp-norm:

‖A‖p = sup
x�=0

‖Ax‖p

‖x‖p
= max

‖x‖p=1
‖Ax‖p (1.2.6)

which is said to be induced by, or subordinate to, the vector lp-norm. In
particular,

‖A‖1 = max
1≤j≤n

m∑
i=1

|aij |, (maximum column norm) (1.2.7)

‖A‖∞ = max
1≤i≤m

n∑
j=1

|aij |, (maximum row norm) (1.2.8)

‖A‖2 =
(
λmax(AT A)

)1/2
, (spectral norm.) (1.2.9)

Obviously, we have

‖A−1‖p =
1

minx�=0
‖Ax‖p

‖x‖p

.

For an induced matrix norm, we always have ‖I‖ = 1, where I is an n × n
identity matrix. More generally, for any vector norm ‖ · ‖α on Rn and ‖ · ‖β

on Rm, the matrix norm is defined by

‖A‖α,β = sup
x �=0

‖Ax‖β

‖x‖α
. (1.2.10)

The most frequently used matrix norms also include the Frobenius norm

‖A‖F =

⎛
⎝ m∑

i=1

n∑
j=1

|aij |2
⎞
⎠

1/2

= [tr(AT A)]1/2, (1.2.11)

where tr(·) denotes the trace of a square matrix with tr(A) =
∑n

i=1 aii. The
trace satisfies

1. tr(αA + βB) = αtr(A) + βtr(B);

2. tr(AT) = tr(A);

3. tr(AB) = tr(BA);

4. tr(A) =
∑n

i=1 λi if the eigenvalues of A are denoted by λ1, · · · , λn.

Download more at Learnclax.com

1.2. MATHEMATICS FOUNDATIONS 5

The weighted Frobenius norm and weighted l2-norm are defined, respec-
tively, as

‖A‖M,F = ‖MAM‖F , ‖A‖M,2 = ‖MAM‖2, (1.2.12)

where M is an n× n symmetric and positive definite matrix.
Further, let A ∈ Rn×n; if we define ‖x‖′ = ‖Px‖ for all x ∈ Rn and P an

arbitrary nonsingular matrix, then

‖A‖′ = ‖PAP−1‖. (1.2.13)

The orthogonally invariant matrix norm is a class of important norms
which satisfies, for A ∈ Rm×n and U an m × m orthogonal matrix, the
identity

‖UA‖ = ‖A‖. (1.2.14)

Clearly, the l2-norm and the Frobenius norm are orthogonally invariant ma-
trix norms.

A vector norm ‖ · ‖ and a matrix norm ‖ · ‖′ are said to be consistent if,
for every A ∈ Rm×n and x ∈ Rn,

‖Ax‖ ≤ ‖A‖′‖x‖. (1.2.15)

Obviously, the lp-norm has this property, i.e.,

‖Ax‖p ≤ ‖A‖p‖x‖p. (1.2.16)

More generally, for any vector norm ‖ · ‖α on Rn and ‖ · ‖β on Rm we have

‖Ax‖β ≤ ‖A‖α,β‖x‖α, (1.2.17)

where ‖A‖α,β is defined by

‖A‖α,β = sup
x�=0

‖Ax‖β

‖x‖α
(1.2.18)

which is subordinate to the vector norm ‖ · ‖α and ‖ · ‖β.
Likewise, if a norm ‖ · ‖ satisfies

‖AB‖ ≤ ‖A‖‖B‖, (1.2.19)

we say that the matrix norm satisfies the consistency condition (or submulti-
plicative property). It is easy to see that the Frobenius norm and the induced
matrix norms satisfy the consistency condition, and we have

‖AB‖F ≤ min{‖A‖2‖B‖F , ‖A‖F ‖B‖2}. (1.2.20)

Download more at Learnclax.com

6 CHAPTER 1. INTRODUCTION

Next, about the equivalence of norms, we have

Definition 1.2.3 Let ‖ ·‖α and ‖ ·‖β be two arbitrary norms on Rn. If there
exist µ1, µ2 > 0, such that

µ1‖x‖α ≤ ‖x‖β ≤ µ2‖x‖α, ∀x ∈ Rn, (1.2.21)

we say that the norms ‖ · ‖α and ‖ · ‖β are equivalent.

In particular, we have

‖x‖2 ≤ ‖x‖1 ≤
√

n‖x‖2, (1.2.22)
‖x‖∞ ≤ ‖x‖2 ≤

√
n‖x‖∞, (1.2.23)

‖x‖∞ ≤ ‖x‖1 ≤ n‖x‖∞, (1.2.24)
‖x‖∞ ≤ ‖x‖2 ≤ ‖x‖1, (1.2.25)√

λ‖x‖2 ≤ ‖x‖A ≤
√

Λ‖x‖2, (1.2.26)

where λ and Λ are the smallest and the largest eigenvalues of A respectively.
For A ∈ Rm×n, we have

‖A‖2 ≤ ‖A‖F ≤
√

n‖A‖2, (1.2.27)
max

i,j
|aij | ≤ ‖A‖2 ≤

√
mn max

i,j
|aij |, (1.2.28)

1√
n
‖A‖∞ ≤ ‖A‖2 ≤

√
m‖A‖∞, (1.2.29)

1√
m
‖A‖1 ≤ ‖A‖2 ≤

√
n‖A‖1. (1.2.30)

By use of norms, it is immediate to introduce the notation of distance.
Let x, y ∈ Rn, the distance between two points x and y is defined by ‖x−y‖.
In particular, in the 2-norm, if x = (x1, · · · , xn)T , y = (y1, · · · , yn)T , then

‖x− y‖2 =
√

(x1 − y1)2 + · · ·+ (xn − yn)2

which is just a direct generalization of distance in analytical geometry.
Obviously, by Definition 1.2.1, we have the following properties of dis-

tance:

1. ‖x− y‖ ≥ 0, ‖x− y‖ = 0 if and only if x = y.

Download more at Learnclax.com

1.2. MATHEMATICS FOUNDATIONS 7

2. ‖x− z‖ ≤ ‖x− y‖+ ‖y − z‖.

3. ‖x− y‖ = ‖y − x‖.

A vector sequence {xk} is said to be convergent to x∗ if

lim
k→∞

‖xk − x∗‖ = 0. (1.2.31)

A matrix sequence {Ak} is said to be convergent to A if

lim
k→∞

‖Ak −A‖ = 0. (1.2.32)

Choice of norms is irrelevant since all norms in finite dimension space are
equivalent.

Definition 1.2.4 A sequence {xk} ⊂ Rn is said to be a Cauchy sequence if

lim
m,l→∞

‖xm − xl‖ = 0; (1.2.33)

i.e., given ε > 0, there is an integer N such that ‖xm − xl‖ < ε for all
m, l > N .

In Rn, a sequence {xk} converges if and only if the sequence {xk} is a
Cauchy sequence . However, in a normed space, a Cauchy sequence may not
be convergent.

We conclude this subsection with several inequalities on norms.
(1) Cauchy-Schwarz inequality :

|xT y| ≤ ‖x‖2‖y‖2, (1.2.34)

the equality holds if and only if x and y are linearly dependent.
(2) Let A be an n × n symmetric and positive definite matrix, then the

inequality
|xT Ay| ≤ ‖x‖A‖y‖A (1.2.35)

holds; the equality holds if and only if x and y are linearly dependent.
(3) Let A be an n × n symmetric and positive definite matrix, then the

inequality
|xT y| ≤ ‖x‖A‖y‖A−1 (1.2.36)

holds; the equality holds if and only if x and A−1y are linearly dependent.

Download more at Learnclax.com

8 CHAPTER 1. INTRODUCTION

(4) Young inequality: Assume that real numbers p and q are each larger
than 1, and 1

p + 1
q = 1. If x and y are also real numbers, then

xy ≤ xp

p
+

yq

q
, (1.2.37)

and equality holds if and only if xp = yq.
Proof. Set s = xp and t = yq. From the arithmetic-geometry inequality,
we immediately have

xy = s1/pt1/q ≤ s

p
+

t

q
=

xp

p
+

yq

q
.

Further, the equality holds if and only if s = t, i.e., xp = yq. �

(5) Hölder inequality:

|xT y| ≤ ‖x‖p‖y‖q =

(
n∑

i=1

|xi|p
)1/p(n∑

i=1

|yi|q
)1/q

, (1.2.38)

where p and q are real numbers larger than 1 and satisfy 1
p + 1

q = 1.
Proof. If x = 0 or y = 0, the result is trivial. Now we assume that both
x and y are not zero. From Young inequality, we have

|xiyi|
‖x‖p‖y‖q

≤ 1
p

|xi|p
‖x‖p

p
+

1
q

|yi|q
‖y‖q

q
, i = 1, · · · , n.

Taking the sum over i on both sides of the above inequality yields

1
‖x‖p‖y‖q

n∑
i=1

|xiyi|

≤ 1
p‖x‖p

p

n∑
i=1

|xi|p +
1

q‖y‖q
q

n∑
i=1

|yi|q

=
1
p

+
1
q

= 1. �

Multiplying ‖x‖p‖y‖q on both sides gives our result.
(6) Minkowski inequality:

‖x + y‖p ≤ ‖x‖p + ‖y‖p, (1.2.39)

Download more at Learnclax.com

1.2. MATHEMATICS FOUNDATIONS 9

i.e.,

(
n∑

i=1

|xi + yi|p
)1/p

≤
(

n∑
i=1

|xi|p
)1/p

+

(
n∑

i=1

|yi|p
)1/p

, (1.2.40)

where p ≥ 1. The proof of this inequality will be given in §1.3.2 as an
application of the convexity of a function.

1.2.2 Inverse and Generalized Inverse of a Matrix

In this subsection we collect some basic results of inverse and generalized
inverse.

Theorem 1.2.5 (Von-Neumann Lemma) Let ‖ · ‖ be a consistent matrix
norm with ‖I‖ = 1. Let E ∈ Rn×n. If ‖E‖ < 1, then I − E is nonsingular,
and

(I − E)−1 =
∞∑

k=0

Ek, (1.2.41)

‖(I − E)−1‖ ≤ 1
1− ‖E‖ . (1.2.42)

If A ∈ Rn×n is nonsingular and ‖A−1(B − A)‖ < 1, then B is nonsingular
and satisfies

B−1 =
∞∑

k=0

(I −A−1B)kA−1, (1.2.43)

and

‖B−1‖ ≤ ‖A−1‖
1− ‖A−1(B −A)‖ . (1.2.44)

Proof. Since ‖E‖ < 1, then

Sk
∆= I + E + E2 + · · ·+ Ek

defines a Cauchy sequence , and hence Sk is convergent. So,

∞∑
k=0

Ek = lim
k→∞

Sk = (I − E)−1

which proves (1.2.41)-(1.2.42).

Download more at Learnclax.com

10 CHAPTER 1. INTRODUCTION

Since A is nonsingular and ‖A−1(B − A)‖ = ‖ − (I − A−1B)‖ < 1, by
setting E = I−A−1B and using (1.2.41) and (1.2.42), we obtain immediately
(1.2.43) and (1.2.44). �

This theorem indicates that the matrix B is invertible if B is sufficiently
approximate to an invertible matrix A. The above theorem also can be
written in the following form which sometimes is said to be the perturbation
theorem:

Theorem 1.2.6 Let A,B ∈ Rn×n. Assume that A is invertible with ‖A−1‖ ≤
α. If ‖A−B‖ ≤ β and αβ < 1, then B is also invertible, and

‖B−1‖ ≤ α

1− αβ
. (1.2.45)

Let L and M be subspaces of Rn. The sum of two subspaces L and M is
defined as

L + M = {x = y + z | y ∈ L, z ∈M}. (1.2.46)

The intersection of two subspaces L and M is defined as

L ∩M = {x | x ∈ L and x ∈M}. (1.2.47)

Two subspaces L and M are orthogonal, denoted by L ⊥ M , if

< y, z >= 0, ∀y ∈ L,∀z ∈M.

Rn is said to be a direct sum of L and M , denoted by

Rn = L⊕M,

if and only if Rn = L + M and L ∩M = {0}.
Let Rn = L⊕M . If a linear operator P : Rn → Rn satisfies

Py = y, ∀y ∈ L; Pz = 0,∀z ∈M,

then P is called a projector of Rn onto the subspace L along the subspace
M . Such a projector is denoted by PL,M or P . If M ⊥ L, then the above
projector is called an orthogonal projector, denoted by PL or P .

Normally, Cm×n denotes a set of all complex m × n matrices, Cm×n
r

denotes a set of all complex m × n matrices with rank r. A∗ denotes the
conjugate transpose of a matrix A. For a real matrix, Rm×n and Rm×n

r have

Download more at Learnclax.com

1.2. MATHEMATICS FOUNDATIONS 11

similar meaning. Now we present some definitions and representations of the
generalized inverse of a matrix A.

Let A ∈ Cm×n. Then A+ ∈ Cn×m is a Moore-Penrose generalized inverse
of A if

AA+A = A, A+AA+ = A+, (AA+)∗ = AA+, (A+A)∗ = A+A, (1.2.48)

or equivalently,
AA+ = PR(A), A+A = PR(A+), (1.2.49)

where PR(A) and PR(A+) are the orthogonal projectors on range R(A) and
R(A+) respectively.

If A ∈ Cm×n
r and A has the orthogonal decomposition

A = Q∗RP, (1.2.50)

where Q and P are m×m and n×n unitary matrices respectively, R ∈ Cm×n,

R =

[
R11 0
0 0

]
,

where R11 is the r × r nonsingular upper triangular matrix, then

A+ = P ∗R+Q, (1.2.51)

where

R+ =

[
R−1

11 0
0 0

]
.

Similarly, if A ∈ Cm×n
r has the singular value decomposition (SVD)

A = UDV ∗, (1.2.52)

where U and V are m×m and n× n unitary matrices respectively,

D =

[
Σ 0
0 0

]
∈ Cm×n,

where Σ = diag(σ1, · · · , σr), σi > 0 (i = 1, · · · , r) are the nonzero singular
values of A, then

A+ = V D+U∗, (1.2.53)

Download more at Learnclax.com

12 CHAPTER 1. INTRODUCTION

where

D+ =

[
Σ−1 0
0 0

]
.

An important role of the generalized inverse is that it offers the solution
of general linear equations (including singular, rectangular, or inconsistent
case). In the following we state this theorem and prove it by the singular
value decomposition.

Theorem 1.2.7 Let A ∈ Cm×n, b ∈ Cm. Then x̄ = A+b is the unique
solution of Ax = b, i.e.,

‖x̄‖ ≤ ‖x‖,∀x ∈ {x | ‖Ax− b‖ ≤ ‖Az − b‖,∀z ∈ Cn}. (1.2.54)

Such an x̄ is called the minimal least-squares solution of Ax = b.

Proof. From the singular value decomposition (1.2.52), (1.2.54) is equiv-
alent to

min
x∈Rn

{‖V ∗x‖ | ‖DV ∗x− U∗b‖ ≤ ‖DV ∗z − U∗b‖, ∀z ∈ Rn}

i.e., for y = V ∗x,

min
y∈Rn

{‖y‖ | ‖Dy − U∗b‖ ≤ ‖Dẑ − U∗b‖, ∀ẑ ∈ Rn}. (1.2.55)

Since

‖Dy − U∗b‖2 =
r∑

i=1

(σiyi − (U∗b)i)2 +
m∑

i=r+1

((U∗b)i)2

which is minimized by any y with yi = (U∗b)i/σi, (i = 1, · · · , r) and ‖y‖
is minimized by setting yi = 0 (i = r + 1, · · · , m), then y = D+U∗b is the
minimal least-squares solution of (1.2.55). Therefore x̄ = V D+U∗b = A+b is
the minimal least-squares solution of Ax = b. �

1.2.3 Properties of Eigenvalues

In this subsection we state, in brief, some properties of eigenvalues and eigen-
vectors that we will use in the text. We also summarize the definitions of pos-
itive definite, negative definite and indefinite symmetric matrices and their
characterizations in terms of eigenvalues.

Download more at Learnclax.com

1.2. MATHEMATICS FOUNDATIONS 13

The eigenvalue problem of a matrix A is that

Ax = λx, A ∈ Rn×n, x = 0, x ∈ Rn, (1.2.56)

where λ is called an eigenvalue of A, x an eigenvector of A corresponding to
λ, (λ, x) an eigen-pair of A.

The spectral radius of A is defined as

ρ(A) = max
1≤i≤n

|λi|.

Let A ∈ Rm×n have singular values σ1 ≥ σ2 ≥ · · · ≥ σn, then

‖A‖2 = σ1,

‖A‖2F = σ2
1 + · · ·+ σ2

n.

In particular, if A ∈ Rn×n is symmetric with eigenvalues λ1, · · · , λn, then

‖A‖2 = max
1≤i≤n

|λi|.

Then we immediately have that if A is nonsingular, the condition number of
A is

κ(A) =
σ1

σn
;

in addition, if A is symmetric, then

κ(A) =
maxi |λi|
mini |λi|

.

Let A ∈ Rn×n with eigenvalues λ1, · · · , λn. We have the following conclu-
sions about the eigenvalues.

1. The eigenvectors corresponding to the distinct eigenvalues of A are
independent.

2. A is diagonalizable if and only if, for each eigenvalue of A, its geometric
multiplicity is equal to the algebraic multiplicity, i.e., the dimension of
its corresponding eigenvectors is equal to the multiplicity of the eigen-
value.

3. Let f(A) be a polynomial of A. If (λ, x) is an eigen-pair of A, then
(f(λ), x) is the eigen-pair of f(A).

Download more at Learnclax.com

14 CHAPTER 1. INTRODUCTION

4. Let B = PAP−1, where P ∈ Rn×n is a nonsingular transformation
matrix. If (λ, x) is an eigen-pair of A, then (λ, Px) is the eigen-pair
of B. This means that the similar transformation does not change the
eigenvalues of a matrix.

Definition 1.2.8 Let A ∈ Rn×n be symmetric. A is said to be positive
definite if vT Av > 0,∀v ∈ Rn, v = 0. A is said to be positive semidefinite if
vT Av ≥ 0,∀v ∈ Rn. A is said to be negative definite or negative semidefinite
if −A is positive definite or positive semidefinite. A is said to be indefinite
if it is neither positive semidefinite nor negative semidefinite.

The main properties of a symmetric matrix are as follows. Let A ∈ Rn×n

be symmetric. Then

(1) All eigenvalues of A are real.

(2) The eigenvectors corresponding to the distinct eigenvalues of A are or-
thogonal.

(3) A is orthogonally similar to a diagonal matrix, i.e., there exists an n×n
orthogonal matrix Q such that

Q−1AQ = QT AQ =

⎡
⎢⎣

λ1

. . .
λn

⎤
⎥⎦ ,

where λ1, · · · , λn are the eigenvalues of A. This means a symmetric
matrix has an orthonormal eigenvector system.

The following properties are about symmetric positive definite, symmetric
positive semidefinite, and so on.

Let A ∈ Rn×n be symmetric. Then A is positive definite if and only if
all its eigenvalues are positive. A is positive semidefinite if and only if all its
eigenvalues are nonnegative. A is negative definite or negative semidefinite
if and only if all its eigenvalues are negative or nonpositive. A is indefinite
if and only if it has both positive and negative eigenvalues. Furthermore,
A is positive definite if and only if A has a unique Cholesky factorization
A = LDLT with all positive diagonal elements of D.

The following is the definition of the Rayleigh quotient of a matrix and
its properties.

Download more at Learnclax.com

1.2. MATHEMATICS FOUNDATIONS 15

Definition 1.2.9 Let A be an n × n Hermitian matrix and u ∈ Cn. Then
the Rayleigh quotient of A is defined by

Rλ(u) =
u∗Au

u∗u
, u = 0. (1.2.57)

Theorem 1.2.10 Let A be an n × n Hermitian matrix and u ∈ Cn. Then
the Rayleigh quotient defined by (1.2.57) has the following basic properties:

(i) Homogeneous Property:

Rλ(αu) = Rλ(u), α = 0. (1.2.58)

(ii) Extreme Property:

λ1 = max
‖u‖2=1

u∗Au = max
u �=0

u∗Au

u∗u
, (1.2.59)

λn = min
‖u‖2=1

u∗Au = min
u �=0

u∗Au

u∗u
, (1.2.60)

which show that the Rayleigh quotient has bounded property:

λn ≤ Rλ(u) ≤ λ1. (1.2.61)

(iii) Minimal Residual Property: for any u ∈ Cn,

‖(A−Rλ(u)I)u‖ ≤ ‖(A− µI)u‖, ∀ real number µ. (1.2.62)

Proof. Property (i) is immediate from Definition 1.2.9. Now we consider
Property (ii). By Property (i), we can consider the Rayleigh quotient on a
unit sphere, i.e.,

Rλ(u) = u∗Au, ‖u‖2 = 1.

Let T be a unitary matrix such that T ∗AT = Λ, where Λ is a diagonal matrix.
Also let u = Ty, then

u∗Au = y∗Λy =
n∑

i=1

λi|yi|2
{
≥ λn

∑n
i=1 |yi|2,

≤ λ1
∑n

i=1 |yi|2.

Note that ‖u‖2 = ‖y‖2 = 1, hence the boundedness follows. Furthermore,
when y1 = 1 and yi = 0, i = 1, λ1 is the maximum; when yn = 1 and
yi = 0, i = n, λn is the minimum. This proves Property (ii).

Download more at Learnclax.com

16 CHAPTER 1. INTRODUCTION

To establish Property (iii), we define

s(u) = Au−Rλ(u)u, u = 0, (1.2.63)

which implies that
Au = Rλ(u)u + s(u). (1.2.64)

By Definition 1.2.9, we have 〈s(u), u〉 = 〈Au − Rλ(u)u, u〉 = 0 which means
that the decomposition (1.2.64) is an orthogonal decomposition. Thus Rλ(u)u
is an orthogonal projection of Au on L = {u}, which shows that the residual
defined by (1.2.63) has the minimal residual Property (iii). �

Next, we state some concepts of reducible and irreducible matrices which
are useful in discussing invertibility and positive definiteness of a matrix.

Definition 1.2.11 Let A ∈ Rn×n. A is said to be reducible if there is a
permutation matrix P such that

PAP T =

(
B11 B12

0 B22

)
,

where B11 and B22 are square matrices; A is irreducible if it is not reducible.

Equivalently, A is reducible if and only if there is a nonempty subset of indices
J ⊂ {1, · · · , n} such that

akj = 0, ∀k ∈ J, j /∈ J.

Definition 1.2.12 Let A ∈ Rn×n. A is said to be diagonally dominant if

n∑
j=1,j �=i

|aij | ≤ |aii|, i = 1, · · · , n. (1.2.65)

A is said to be strictly diagonally dominant if strict inequality holds in (1.2.65)
for all i. A is said to be irreducibly diagonally dominant if it is irreducible,
diagonally dominant, and strict inequality holds in (1.2.65) for at least one
i.

The above concepts give an important theorem which is called the Diag-
onal Dominant Theorem.

Theorem 1.2.13 (Diagonal Dominant Theorem) Let A ∈ Rn×n be either
strictly or irreducibly diagonal dominant. Then A is invertible.

Download more at Learnclax.com

1.2. MATHEMATICS FOUNDATIONS 17

As a corollary of the above theorem, we state the Gerschgorin circle The-
orem which gives an isolation property of eigenvalues.

Theorem 1.2.14 Let A ∈ Cn×n. Define the i-th circle as

Di = {λ | |λ− aii| ≤
n∑

j=1,j �=i

|aij |}, i = 1, · · · , n.

Then each eigenvalue of A lies in the union S = ∪n
i=1Di. This also means

that

min
i

λi ≥ min
i
{aii −

n∑
j=1,j �=i

|aij |}

and

max
i

λi ≤ max
i
{aii +

n∑
j=1,j �=i

|aij |}.

1.2.4 Rank-One Update

The rank-one update of matrices is often used in optimization. In this sub-
section we introduce inverse of rank-one update, determinant of rank-one
update, chain of the eigenvalues of rank-one update, and updating matrix
factorizations. Detailed proofs can be found in books on linear algebra or
numerical linear algebra.

The following theorem due to Sherman and Morrison is wellknown.

Theorem 1.2.15 Let A ∈ Rn×n be nonsingular and u, v ∈ Rn be arbitrary.
If

1 + vT A−1u = 0, (1.2.66)

then the rank-one update A + uvT of A is nonsingular, and its inverse is
represented by

(A + uvT)−1 = A−1 − A−1uvT A−1

1 + vT A−1u
. (1.2.67)

An interesting generalization of the above theorem is

Theorem 1.2.16 (Sherman-Morrison-Woodburg Theorem)
Let A be an n×n nonsingular matrix, U, V n×m matrices. If I+V ∗A−1U

is invertible, then A + UV ∗ is invertible, and

(A + UV ∗)−1 = A−1 −A−1U(I + V ∗A−1U)−1V ∗A−1. (1.2.68)

Download more at Learnclax.com

18 CHAPTER 1. INTRODUCTION

Consider the determinant of a rank-one update; we have

det(I + uvT) = 1 + uT v. (1.2.69)

In fact, assuming u = 0, we have that the eigenvectors of I + uvT are either
orthogonal to v or parallel to u. If they are orthogonal to v, the corresponding
eigenvalues are 1; otherwise the corresponding eigenvalue is 1 + uT v. Hence
(1.2.69) follows.

Furthermore, for the determinant of rank-two update, we have the fol-
lowing result:

det(I + u1u
T
2 + u3u

T
4)

= (1 + uT
1 u2)(1 + uT

3 u4)− (uT
1 u4)(uT

2 u3). (1.2.70)

In fact, as long as we note that

I + u1u
T
2 + u3u

T
4 = (I + u1u

T
2)[I + (I + u1u

T
2)−1u3u

T
4],

it follows from (1.2.69) and (1.2.67) that

det(I + u1u
T
2 + u3u

T
4)

= (1 + uT
1 u2)[1 + uT

4 (I + u1u
T
2)−1u3]

= (1 + uT
1 u2)

[
1 + uT

4

(
I − u1u

T
2

1 + uT
1 u2

)
u3

]

= (1 + uT
1 u2)(1 + uT

3 u4)− (uT
1 u4)(uT

2 u3).

By ‖A‖2F = tr(AT A), where tr(·) denotes the trace of a matrix, it follows
that the Frobenius norm of rank-one update A + xyT is

‖A + xyT ‖2F = ‖A||2F + 2yT AT x + ‖x‖2‖y‖2. (1.2.71)

About the chain of the eigenvalues of rank-one update, we have the fol-
lowing theorem.

Theorem 1.2.17 Let A be an n×n symmetric matrix with eigenvalues λ1 ≥
λ2 ≥ · · · ≥ λn. Also let Ā = A + σuuT with eigenvalues λ̄1 ≥ λ̄2 ≥ · · · ≥ λ̄n,
where u ∈ Rn. Then we have the conclusions:

(i) if σ > 0, then

λ̄1 ≥ λ1 ≥ λ̄2 ≥ λ2 ≥ · · · ≥ λ̄n ≥ λn.

(ii) if σ < 0, then

λ1 ≥ λ̄1 ≥ λ2 ≥ λ̄2 ≥ · · · ≥ λn ≥ λ̄n.

Download more at Learnclax.com

1.2. MATHEMATICS FOUNDATIONS 19

Next, we discuss updating matrix factorizations which conclude updates
of Cholesky factorization and orthogonal decomposition.

Let B and B̄ be n× n symmetric and positive definite matrices,

B̄ = B + αyyT , B = LDLT . (1.2.72)

We can find the Cholesky factorization B̄ = L̄D̄L̄T as follows:

B̄ = B + αyyT

= L(D + αppT)LT , (1.2.73)

where p solves Lp = y. Note that since D+αppT is a positive definite matrix
with the Cholesky factorization D + αppT = L̂D̂L̂T , we have

B̄ = LL̂D̂L̂T LT = L̄D̄L̄T , (1.2.74)

where L̄ = LL̂, D̄ = D̂. The following algorithm gives the steps for computing
L̄ and D̄.

Algorithm 1.2.18 (Cholesky Factorization of Rank-One Update)

1. Set α1 = α, w(1) = y.

2. For j = 1, 2, · · · , n, compute

pj = w
(j)
j ,

d̄j = dj + αjp
2
j ,

βj = pjαj/d̄j ,

αj+1 = djαj/d̄j ,

w(j+1)
r = w(j)

r − pjlrj , r = j + 1, · · · , n,

l̄rj = lrj + βjw
(j+1)
r , r = j + 1, · · · , n. �

Similarly, for the negative rank-one update of Cholesky factorization , we
have

B̄ = B − yyT = L(D − ppT)LT

= LL̂D̂L̂T LT = L̄D̄L̄T . (1.2.75)

Since, in this case, it is possible that the elements of D̄ become zero or
negative due to round-off error, this phenomenon must be taken into consid-
eration. The following algorithm keeps all d̄j (j = 1, · · · , n) positive.

Download more at Learnclax.com

20 CHAPTER 1. INTRODUCTION

Algorithm 1.2.19 (Cholesky Factorization of Negative Rank-One Update)

1. Solve Lp = y for p. Set tn+1 = 1− pT D−1p. If tn+1 < εM ,
set tn+1 = εM , where εM is the relative precision of the
computer.

2. For j = n, n− 1, · · · , 1, compute

tj = tj+1 + p2
j/dj ,

d̄j = djtj+1/tj ,

βj = −pj/(djtj+1),

w
(j)
j = pj ,

l̄rj = lrj + βjw
(j+1)
r , r = j + 1, · · · , n.,

w(j)
r = w(j+1)

r + pjlrj , r = j + 1, · · · , n. �

Furthermore, Algorithm 1.2.18 and Algorithm 1.2.19 about Cholesky fac-
torization of rank-one update can be used to compute the Cholesky factor-
ization of rank-two update. Consider

B̄ = B + vwT + wvT . (1.2.76)

Setting
x = (v + w)/

√
2, y = (v − w)/

√
2 (1.2.77)

yields
B̄ = B + xxT − yyT , (1.2.78)

so, we can use Algorithm 1.2.18 and Algorithm 1.2.19 to get the Cholesky
factorization of B̄.

Below, we consider the special cases of rank-two update. Let B be an n×n
symmetric positive definite matrix with Cholesky factorization B = LDLT .
Consider the case adding one row and one column to B:

B̄ =

[
B b
bT θ

]
, (1.2.79)

where b ∈ Rn and θ is a number. If we set

B̂ =

[
B 0
0 θ

]
, (1.2.80)

Download more at Learnclax.com

1.2. MATHEMATICS FOUNDATIONS 21

then we have

B̄ = B̂ + en+1

(
b
0

)T

+

(
b
0

)
eT
n+1. (1.2.81)

So, we can use the above algorithm to compute Cholesky factors L̄ and D̄ of
B̄. In addition, we can show that L̄ and D̄ have the following forms:

L̄ =

[
L 0
lT 1

]
, D̄ =

[
D 0
0 d

]
. (1.2.82)

In fact, it is enough to consider[
L 0
lT 1

] [
D 0
0 d

] [
LT l
0 1

]
=

[
B b
bT θ

]
(1.2.83)

and solve the equations obtained

LDl = b,

d = θ − lT Dl (1.2.84)

for l and d. Then we get L̄ and D̄ from (1.2.82).
Now we consider the case deleting the j-th row and j-th column from B.

Let B = LDLT with the form

B =

⎡
⎢⎢⎣

B1
... B2

· · · · · · ·
BT

2

... B3

⎤
⎥⎥⎦← j-th row. (1.2.85)

Define

B̄ =

[
B1 B2

BT
2 B3

]
}n− 1columns. (1.2.86)

The algebraic operations give

B̄ = L̂DL̂T , (1.2.87)

which is our desired result, where L̂ is an (n − 1) × n matrix obtained by
deleting the j-th row from L.

In the above, we discussed the Cholesky factorization of rank-one up-
date. Next, we handle the QR factorization of rank-one update. Let A, Ā ∈
Rn×n, u, v ∈ Rn,

A = QR, Ā = A + uvT . (1.2.88)

Download more at Learnclax.com

22 CHAPTER 1. INTRODUCTION

Then we have
Ā = QR + uvT = Q(R + wvT), (1.2.89)

where w = QT u. Forming QR decomposition

R + wvT = Q̃R̃,

we have
Ā = QQ̃R̃

∆= Q̄R̄, (1.2.90)

where Q̄ = QQ̃, R̄ = R̃.
Similarly, if m× n matrix A (m < n) has an orthogonal decomposition

A = [L 0]Q, (1.2.91)

where L is an m×m unit lower triangular matrix and Q is an n×n orthogonal
matrix with QT Q = I, then we can obtain the LQ decomposition of

Ā = A + xyT (1.2.92)

as follows.

Ā = A + xyT

= [L 0]Q + xyT

= ([L 0] + xwT)Q (where w = Qy)
= ([L 0] + xwT)P T PQ (where P T P = I)
= ([H 0] + αxeT

1)PQ (where Pw = αe1, H = LP T)
= [H̄ 0]PQ

= [H̄ 0]P̄ P̄ T PQ (where P̄ P̄ T = I)
= [L̄ 0]P̄ T PQ (where [H̄ 0]P̄ = [L̄ 0])
= [L̄ 0]Q̄ (where Q̄ = P̄ T PQ). (1.2.93)

1.2.5 Function and Differential

This subsection presents some materials of set theory and multivariable cal-
culus background.

Give a point x ∈ Rn and a δ > 0. The δ-neighborhood of x is defined as

Nδ(x) = {y ∈ Rn | ‖y − x‖ < δ}.

Download more at Learnclax.com

1.2. MATHEMATICS FOUNDATIONS 23

Let D ⊂ Rn and x ∈ D. The point x is said to be an interior point of
D if there exists a δ-neighborhood of x such that Nδ(x) ⊂ D. The set of all
such points is called the interior of D and is denoted by int(D). Obviously,
int(D) ⊂ D. Furthermore, if int(D) = D, i.e., every point of D is the interior
point of D, then D is an open set.

x ∈ D ⊂ Rn is said to be an accumulation point if for each δ > 0, D ∩
Nδ(x) = φ, where φ is an empty set. It means that there exists a subsequence
{xnk

} ⊂ D, such that xnk
→ x. The set of all such points is called the closure

of D and is denoted by D̄. Obviously, D ⊂ D̄. Furthermore, if D = D̄, i.e.,
every accumulation point of D is contained in D, then D is said to be closed.
It is also clear that a set D ⊂ Rn is closed if and only if its complement is
open.

A set D ⊂ Rn is said to be compact if it is bounded and closed. For every
sequence {xk} in a compact set D, there exists a convergent subsequence
with a limit in D.

A function f : Rn → R is said to be continuous at x̄ ∈ Rn if, for any given
ε > 0, there exists δ > 0 such that ‖x− x̄‖ < δ implies |f(x)− f(x̄)| < ε. It
can also be written as follows: ∀ε > 0,∃δ > 0, such that ∀x ∈ Nδ(x̄), we have
f(x) ∈ Nε(f(x̄)). If f is continuous at every point in an open set D ⊂ Rn,
then f is said to be continuous on D.

A continuous function f : Rn → R is said to be continuously differentiable
at x ∈ Rn, if

(
∂f
∂xi

)
(x) exists and is continuous, i = 1, · · · , n. The gradient

of f at x is defined as

∇f(x) =
[

∂f

∂x1
(x), · · · , ∂f

∂xn
(x)

]T

. (1.2.94)

If f is continuously differentiable at every point of an open set D ⊂ Rn, then
f is said to be continuously differentiable on D and denoted by f ∈ C1(D).

A continuously differentiable function f : Rn → R is called twice con-
tinuously differentiable at x ∈ Rn if ∂2f

∂xi∂xj
(x) exists and is continuous,

i = 1, · · · , n. The Hessian of f is defined as the n × n symmetric matrix
with elements

[∇2f(x)]ij =
∂2f

∂xi∂xj
(x), 1 ≤ i, j ≤ n.

If f is twice continuously differentiable at every point in an open set D ⊂ Rn,
then f is said to be twice continuously differentiable on D and denoted by
f ∈ C(2)(D).

Download more at Learnclax.com

24 CHAPTER 1. INTRODUCTION

Let f : Rn → R be continuously differentiable on an open set D ⊂ Rn.
Then for x ∈ D and d ∈ Rn, the directional derivative of f at x in the
direction d is defined as

f ′(x; d)
def
= lim

θ→0

f(x + θd)− f(x)
θ

= ∇f(x)T d, (1.2.95)

where ∇f(x) is the gradient of f at x, an n× 1 vector.
For any x, x + d ∈ D, if f ∈ C1(D), then

f(x + d) = f(x) +
∫ 1

0
∇f(x + td)T ddt

= f(x) +
∫ x+d

x
∇f(ξ)dξ. (1.2.96)

Thus,
f(x + d) = f(x) +∇f(ξ)T d, ξ ∈ (x, x + d). (1.2.97)

Similarly, for all x, y ∈ D, we have

f(y) = f(x) +∇f(x + t(y − x))T (y − x), t ∈ (0, 1), (1.2.98)

or
f(y) = f(x) +∇f(x)T (y − x) + o(‖y − x‖). (1.2.99)

It follows from (1.2.98) that

|f(y)− f(x)| ≤ ‖y − x‖ sup
ξ∈L(x,y)

||f ′(ξ)‖, (1.2.100)

where L(x, y) denotes the line segment with endpoints x and y.
Let f ∈ C(2)(D). For any x ∈ D, d ∈ Rn, the second directional derivative

of f at x in the direction d is defined as

f ′′(x; d) = lim
θ→0

f ′(x + θd; d)− f ′(x; d)
θ

, (1.2.101)

which equals dT∇2f(x)d, where ∇2f(x) denotes the Hessian of f at x. For
any x, x + d ∈ D, there exists ξ ∈ (x, x + d) such that

f(x + d) = f(x) +∇f(x)T d +
1
2
dT∇2f(ξ)d, (1.2.102)

or
f(x + d) = f(x) +∇f(x)T d +

1
2
dT∇2f(x)d + o(‖d‖2). (1.2.103)

Download more at Learnclax.com

1.2. MATHEMATICS FOUNDATIONS 25

Let h : Rn → R, g : Rm → R, f : Rn → Rm. Let f ∈ C1, g ∈
C1, h(x0) = g(f(x0)). Then the chain rule is

h′(x0) = g′(f(x0))f ′(x0), (1.2.104)

where f ′(x0) =
[

∂fi(x0)
∂xj

]
m×n

is an m× n matrix. Also

h′′(x0) = ∇f(x0)T∇2g[f(x0)]∇f(x0) +
m∑

i=1

∂g[f(x0)]
∂fi

[fi(x0)]′′. (1.2.105)

Next, we discuss the calculus of vector-valued functions.
A continuous function F : Rn → Rm is continuously differentiable at x ∈

Rn if each component function fi(i = 1, · · · , m) is continuously differentiable
at x. The derivative F ′(x) ∈ Rm×n of F at x is called the Jacobian matrix
of F at x,

F ′(x) = J(x)

with components

[F ′(x)]ij = [J(x)]ij =
∂fi

∂xj
(x), i = 1, · · · , m; j = 1, · · · , n.

If F : Rn → Rm is continuously differentiable in an open convex set D ⊂ Rn,
then for any x, x + d ∈ D, we have

F (x + d)− F (x) =
∫ 1

0
J(x + td)ddt =

∫ x+d

x
F ′(ξ)dξ. (1.2.106)

In many of our considerations, we shall wish to single out different types
of continuities.

Definition 1.2.20 F : D ⊂ Rn → Rm is Hölder continuous on D if there
exist constants γ ≥ 0 and p ∈ (0, 1] so that for all x, y ∈ D,

‖F (y)− F (x)‖ ≤ γ‖y − x‖p. (1.2.107)

If p = 1, then F is called Lipschitz continuous on D and γ is a Lipschitz
constant.

F : D ⊂ Rn → Rm is Hölder continuous at x ∈ D if (1.2.107) holds for
any y in the neighborhood of x.

Download more at Learnclax.com

26 CHAPTER 1. INTRODUCTION

Definition 1.2.21 F : D ⊂ Rn → Rm is hemi-continuous at x ∈ D if, for
any d ∈ Rn and ε > 0, there is a δ = δ(ε, d) so that whenever |t| < δ and
x + td ∈ D,

‖F (x + td)− F (x)‖ < ε. (1.2.108)

We also can define the upper hemi-continuous and lower hemi-continuous
at x ∈ D if, instead of (1.2.108), we use, respectively, F (x + td) < F (x) + ε
and F (x + td) > F (x)− ε for sufficiently small t.

The following two theorems establish the bounds of errors within which
some standard models approximate the objective functions. For F : Rn →
Rm, Theorem 1.2.22 gives a bound of the error in linear model F (x)+F ′(x)d
as an approximation to F (x + d). Similarly, for f : Rn → R, Theorem
1.2.23 gives a bound of errors with a quadratic model as an approximation
to f(x + d).

Theorem 1.2.22 Let F : Rn → Rm be continuously differentiable in the
open convex set D ⊂ Rn. Let F ′ be Lipschitz continuous at x ∈ D. Then for
any x + d ∈ D, we have

‖F (x + d)− F (x)− F ′(x)d‖ ≤ γ

2
‖d‖2. (1.2.109)

Proof.

F (x + d)− F (x)− F ′(x)d =
∫ 1

0
F ′(x + αd)ddα− F ′(x)d

=
∫ 1

0
[F ′(x + αd)− F ′(x)]ddα.

Hence

‖F (x + d)− F (x)− F ′(x)d‖ ≤
∫ 1

0
‖F ′(x + αd)− F ′(x)‖‖d‖dα

≤
∫ 1

0
γ‖αd‖‖d‖dα

= γ‖d‖2
∫ 1

0
αdα

=
γ

2
‖d‖2. �

Download more at Learnclax.com

1.2. MATHEMATICS FOUNDATIONS 27

Theorem 1.2.23 Let f : Rn → R be twice continuously differentiable in the
open convex set D ⊂ Rn. Let ∇2f(x) be Lipschitz continuous at x ∈ D with
Lipschitz constant γ. Then for any x + d ∈ D, we have∣∣∣∣f(x + d)− [f(x) +∇f(x)T d +

1
2
dT∇2f(x)d]

∣∣∣∣ ≤ γ

6
‖d‖3. (1.2.110)

The proof of this theorem is left to readers as an exercise.
As a generalization of Theorem 1.2.22, we obtain

Theorem 1.2.24 Let F : Rn → Rm be continuously differentiable in the
open convex set D ⊂ Rn. Then for any u, v, x ∈ D, we have

‖F (u)− F (v)− F ′(x)(u− v)‖

≤
[

sup
0≤t≤1

‖F ′(v + t(u− v))− F ′(x)‖
]
‖u− v‖. (1.2.111)

Furthermore, assume that F ′ is Lipschitz continuous in D, then

‖F (u)− F (v)− F ′(x)(u− v)‖ ≤ γσ(u, v)‖u− v‖ (1.2.112)

and

‖F (u)− F (v)− F ′(x)(u− v)‖ ≤ γ
‖u− x‖+ ‖v − x‖

2
‖u− v‖, (1.2.113)

where σ(u, v) = max{‖u− x‖, ‖v − x‖}.

Proof. By (1.2.106) and the mean-value theorem of integration, we have

‖F (u)− F (v)− F ′(x)(u− v)‖

=
∥∥∥∥
∫ 1

0
[F ′(v + t(u− v))− F ′(x)](u− v)dt

∥∥∥∥
≤

∫ 1

0
‖F ′(v + t(u− v))− F ′(x)‖‖u− v‖dt

≤
[

sup
0≤t≤1

‖F ′(v + t(u− v))− F ′(x)‖
]
‖u− v‖

which is (1.2.111). Also since F ′ is Lipschitz continuous in D, we proceed
with the above inequality and get

‖F (u)− F (v)− F ′(x)(u− v)‖

Download more at Learnclax.com

28 CHAPTER 1. INTRODUCTION

≤ γ

∫ 1

0
‖v + t(u− v)− x‖‖u− v‖dt

≤ γ sup
0≤t≤1

‖v + t(u− v)− x‖‖u− v‖

= γσ(u, v)‖u− v‖

which is (1.2.112). Similarly, we can derive (1.2.113) which is left as an
exercise. �

The following theorem is useful, giving a relation between ‖F (u)−F (v)‖
and ‖u− v‖.

Theorem 1.2.25 Let F and F ′ satisfy the conditions of Theorem 1.2.24.
Assume that [F ′(x)]−1 exists. Then there exist ε > 0 and β > α > 0 such
that for all u, v ∈ D, when max{‖u− x‖, ‖v − x‖} ≤ ε, we have

α‖u− v‖ ≤ ‖F (u)− F (v)‖ ≤ β‖u− v‖. (1.2.114)

Proof. By the triangle inequality and (1.2.112),

‖F (u)− F (v)‖ ≤ ‖F ′(x)(u− v)‖+ ‖F (u)− F (v)− F ′(x)(u− v)‖
≤ (‖F ′(x)‖+ γσ(u, v))‖u− v‖
≤

(
‖F ′(x)‖+ γε

)
‖u− v‖.

Set β = ‖F ′(x)‖+ γε, we obtain the right inequality of (1.2.114). Similarly,

‖F (u)− F (v)‖ ≥ ‖F ′(x)(u− v)‖ − ‖F (u)− F (v)− F ′(x)(u− v)‖
≥

[
1/‖[F ′(x)]−1‖ − γσ(u, v)

]
‖u− v‖

≥ [1/‖[F ′(x)]−1‖ − γε]‖u− v‖.

Hence, if 1
‖[F ′(x)]−1‖γ > ε, the left inequality of (1.2.114) also holds with

α =
1

‖[F ′(x)]−1‖ − γε > 0. �

Corollary 1.2.26 Let F and F ′ satisfy the conditions of Theorem 1.2.22.
When u and v are sufficiently close to x, we have

lim sup
ω→0

‖u− x‖
‖v − x‖ ≤ C lim sup

ω→0

‖F (u)− F (x)‖
‖F (v)− F (x)‖ , (1.2.115)

where C = ‖F ′(x)‖‖F ′(x)−1‖ is a constant and ω = max{‖u− x‖, ‖v − x‖}.

Download more at Learnclax.com

1.2. MATHEMATICS FOUNDATIONS 29

Proof. By using Theorem 1.2.22, we have

‖F (v)− F (x)‖ ≤ ‖F ′(x)(v − x)‖+ ‖F (v)− F (x)− F ′(x)(v − x)‖
≤ ‖F ′(x)‖‖v − x‖+ O(‖v − x‖2)

and

‖F (u)− F (x)‖ ≥ ‖F ′(x)(u− x)‖ − ‖F (u)− F (x)− F ′(x)(u− x)‖
≥ ‖u− x‖/‖[F ′(x)]−1‖+ O(‖u− x‖2).

Then
‖F (u)− F (x)‖
‖F (v)− F (x)‖ ≥

‖u− x‖/‖F ′(x)−1‖+ O(‖u− x‖2)
‖F ′(x)‖‖v − x‖+ O(‖v − x‖2) .

Setting C = ‖F ′(x)‖‖F ′(x)−1‖ and taking limit give

C lim sup
ω→0

‖F (u)− F (x)‖
‖F (v)− F (x)‖ ≥ lim sup

ω→0

‖u− x‖
‖v − x‖ ,

where ω = max{‖u− x‖, ‖v − x‖}. �

We conclude this subsection with some remarks about differentiation of
the vector-valued functions.

About the calculus of vector-valued functions, we would like to review
Gateaux and Fréchet derivatives.

Definition 1.2.27 Let D ⊂ Rn be an open set. The function F : D ⊂
Rn → Rm is Gateaux- (or G-) differentiable at x ∈ D if there exists a linear
operator A ∈ L(Rn, Rm) such that for any d ∈ Rn,

lim
α→0

1
α
‖F (x + αd)− F (x)− αAd‖ = 0. (1.2.116)

The linear operator A is denoted by F ′(x) and is called the G-derivative of
F at x.

Definition 1.2.28 Let D ⊂ Rn be an open set. The function F : Rn → Rm

is Fréchet- (or F-) differentiable at x ∈ D if there is a linear operator A ∈
L(Rn, Rm) such that for any d ∈ Rn,

lim
d→0

‖F (x + d)− F (x)−Ad‖
‖d‖ = 0. (1.2.117)

Download more at Learnclax.com

30 CHAPTER 1. INTRODUCTION

The linear operator A is again denoted by F ′(x), and is called the F-derivative
of F at x.

The F-differentiability can also be written as

F (x + d)− F (x) = F ′(x)d + o(‖d‖).

Furthermore, if for any u, v ∈ Rn,

lim
‖u−v‖→0

‖F (u)− F (v)− F ′(x)(u− v)‖
‖u− v‖ = 0, (1.2.118)

then F is called strongly F-differentiable at x ∈ D and F ′(x) is called a strong
F-derivative.

From the above two definitions, we know the following facts.

1. If F : Rn → Rm is continuous at x ∈ Rn, then F is hemi-continuous at
x.

2. If F : Rn → Rm is G-differentiable at x ∈ D, then F is hemi-continuous
at x.

3. If F : Rn → Rm is F-differentiable at x ∈ D, then F is continuous at
x.

4. If F is F-differentiable at x ∈ D, then it is G-differentiable at x; how-
ever, the reverse is not true.

5. If F is G-differentiable and its G-derivative F ′ is continuous, then F is
F-differentiable and the F-derivative is continuous. In this case, we say
that F is continuously differentiable.

6. The G-derivative and F-derivative of F , if they exist, are equal and
given by the Jacobian matrix

F ′(x) =

⎡
⎢⎣

∂f1

∂x1
(x) ∂f1

∂x2
(x) · · · ∂f1

∂xn
(x)

· · · · · · · · · · · ·
∂fm

∂x1
(x) ∂fm

∂x2
(x) · · · ∂fm

∂xn
(x)

⎤
⎥⎦ ,

where f1, f2, · · · , fm are components of F .

Download more at Learnclax.com

1.3. CONVEX SETS AND CONVEX FUNCTIONS 31

7. The mean-value theorem: Let F : Rn → Rm be G-differentiable in the
open convex set D ⊂ Rn. Then we have the following forms of the
mean-value theorem:

(a) For any x, y, z ∈ D, there exist t1, t2, · · · , tm ∈ [0, 1] such that

F (y)− F (x) =

⎛
⎜⎜⎜⎜⎝

f ′
1(x + t1(y − x))

f ′
2(x + t2(y − x))

...
f ′

m(x + tm(y − x))

⎞
⎟⎟⎟⎟⎠ (1.2.119)

and

‖F (y)− F (x)‖ ≤ sup
0≤t≤1

‖F ′(x + t(y − x))‖‖y − x‖.

(b) For any x, y, z ∈ D,

‖F (y)−F (z)−F ′(x)(y−z)‖ ≤ sup
0≤t≤1

‖F ′(z+t(y−z))−F ′(x)‖‖y−z‖.

(1.2.120)

(c) Furthermore, if the G-derivative F ′ is hemi-continuous on D, then
for any x, y ∈ D,

F (y)− F (x) =
∫ 1

0
F ′(x + t(y − x))(y − x)dt. (1.2.121)

(d) If assume also that F ′(x) is Hölder continuous on D, then for all
x, y ∈ D,

‖F (y)− F (x)− F ′(x)(y − x)‖ ≤ γ

p + 1
‖y − x‖p+1. (1.2.122)

If p = 1, it is just (1.2.109).

1.3 Convex Sets and Convex Functions

Convex sets and convex functions play an important role in the study of
optimization. In this section, we introduce the fundamental concepts and
results of convex sets and convex functions.

Download more at Learnclax.com

32 CHAPTER 1. INTRODUCTION

1.3.1 Convex Sets

Definition 1.3.1 Let the set S ⊂ Rn. If, for any x1, x2 ∈ S, we have

αx1 + (1− α)x2 ∈ S, ∀α ∈ [0, 1], (1.3.1)

then S is said to be a convex set.

This definition indicates, in geometry, that for any two points x1, x2 ∈ S,
the line segment joining x1 and x2 is entirely contained in S. It also states
that S is path-connected, i.e., two arbitrary points in S can be linked by a
continuous path.

It can be shown by induction that the set S ⊂ Rn is convex if and only
if for any x1, x2, · · · , xm ∈ S,

m∑
i=1

αixi ∈ S, (1.3.2)

where
∑m

i=1 αi = 1, αi ≥ 0, i = 1, · · · , m.

Figure 1.3.1 Convex set and nonconvex set

In (1.3.1), x = αx1+(1−α)x2, where α ∈ [0, 1], is called a convex combination
of x1 and x2. In (1.3.2), x =

∑m
i=1 αixi is called a convex combination of

x1, · · · , xm, where
∑m

i=1 αi = 1, αi ≥ 0, i = 1, · · · , m.

Example 1.3.2 The hyperplane H = {x ∈ Rn | pT x = α} is a convex set,
where p ∈ Rn is a nonzero vector referred to as the normal vector to the
hyperplane, and α is a scalar.

Download more at Learnclax.com

1.3. CONVEX SETS AND CONVEX FUNCTIONS 33

In fact, for any x1, x2 ∈ H and each θ ∈ [0, 1],

pT [θx1 + (1− θ)x2] = α,

then θx1 + (1− θ)x2 ∈ H.
In the hyperplane H = {x ∈ Rn | pT x = α}, if α = 0, it can be reduced

to a subspace of vectors that are orthogonal to p.
Similarly, the closed half space H− = {x ∈ Rn | pT x ≤ β} and H+ =

{x ∈ Rn | pT x ≥ β} are closed convex sets. The open half space (
◦
H)− =

{x ∈ Rn | pT x < β} and (
◦
H)+ = {x ∈ Rn | pT x > β} are open convex sets .

Example 1.3.3 The ray S = {x ∈ Rn | x = x0 +λd, λ ≥ 0} is a convex set,
where d ∈ Rn is a nonzero vector, and x0 ∈ Rn is a fixed point.

In fact, for any x1, x2 ∈ S and each λ ∈ [0, 1], we have

x1 = x0 + λ1d, x2 = x0 + λ2d,

where λ1, λ2 ∈ [0, 1]. Hence

λx1 + (1− λ)x2 = λ(x0 + λ1d) + (1− λ)(x0 + λ2d)
= x0 + [λλ1 + (1− λ)λ2]d.

Since λλ1 + (1− λ)λ2 ≥ 0, then λx1 + (1− λ)x2 ∈ S.
The finite intersection of closed half spaces

S = {x ∈ Rn | pT
i x ≤ βi, i = 1, · · · , m},

is called a polyhedral set, where pi is a nonzero vector, βi a scalar. The
polyhedral is a convex set .

Since an equality can be represented by two inequalities, the following
sets are examples of polyhedral sets:

S = {x ∈ Rn | Ax = b, x ≥ 0},

S = {x ∈ Rn | Ax ≥ 0, x ≥ 0}.

The theorems below state the algebraic properties and topological prop-
erties. That is the intersection of two convex sets is convex, the algebraic
sum of two convex sets is convex, the interior of a convex set is convex, and
the closure of a convex set is convex.

Download more at Learnclax.com

34 CHAPTER 1. INTRODUCTION

Theorem 1.3.4 Let S1 and S2 be convex sets in Rn. Then

1. S1 ∩ S2 is convex;

2. S1 ± S2 = {x1 ± x2 | x1 ∈ S1, x2 ∈ S2} is convex.

Proof. The proof is immediate from the definition of convex set and left
to readers as an exercise. �

From this theorem, we know that the feasible regions in linear program-
ming and quadratic programming are convex sets, because they are the in-
tersection of a hyperplane and a half space.

Theorem 1.3.5 Let S ⊂ Rn be a convex set. Then

1. the interior intS of S is a convex set;

2. the closure S̄ of S is a convex set.

Proof. 1) Let x and x′ be in intS, and x′′ = αx + (1 − α)x′, α ∈ (0, 1).
Choose δ > 0 such that B(x′, δ) ⊂ S, where B(x′, δ) is the δ-neighborhood
of x′. It is easy to see that ‖x′′ − x‖/‖x′ − x‖ = 1 − α. We know that
B(x′′, (1− α)δ) is just the set αx + (1− α)B(x′, δ) which is in S. Therefore
B(x′′, (1− α)δ) ⊂ S which shows that x′′ ∈ int S.

2) Take x, x′ ∈ S̄. Select in S two sequences {xk} and {x′
k} converging

to x and x′ respectively. Then, for α ∈ [0, 1], we have

‖[αxk + (1− α)x′
k]− [αx + (1− α)x′]‖

= ‖α(xk − x) + (1− α)(x′
k − x′)‖

≤ α‖xk − x‖+ (1− α)‖x′
k − x′‖.

Taking the limit yields

lim
k→∞

‖[αxk + (1− α)x′
k]− [αx + (1− α)x′]‖ = 0,

which shows αx + (1− α)x′ ∈ S̄. �

Now we state some concepts related to convex sets.
Let S ⊂ Rn be a nonempty set. We define the convex hull conv(S) as the

intersection of all convex sets containing S, which is described as the set of

Download more at Learnclax.com

1.3. CONVEX SETS AND CONVEX FUNCTIONS 35

all convex combinations of the elements of S:

conv(S) ∆= ∩{C | C is convex and contains S}

= {x ∈ Rn | x =
m∑

i=1

αixi, xi ∈ S,
m∑

i=1

αi = 1,

αi ≥ 0, i = 1, · · · , m}. (1.3.3)

We can see that conv(S) is the smallest convex set containing S.
A nonempty set C ⊂ Rn is called a cone if it is closed under positive scalar

multiplication, i.e., if x ∈ C implies that λx ∈ C for all λ > 0. If, in addition,
C is convex, then C is called a convex cone. C ⊂ Rn is a convex cone if and
only if it is closed under addition and positive scalar multiplication. The
smallest convex cone containing convex S is

C = {λx | λ > 0, x ∈ S}.

The following are examples of convex cones. For example, the nonnegative
orthant of Rn

{x = (ξ1, · · · , ξn) | ξ1 ≥ 0, · · · , ξn ≥ 0},

positive orthant of Rn

{x = (ξ1, · · · , ξn) | ξ1 > 0, · · · , ξn > 0}

and the intersection of m half-spaces

{x ∈ Rn |xT bi ≤ 0, bi ∈ Rn, i = 1, · · · , m}

are convex cones .
A specially important class of convex cones is polar cone. Let S be

a nonempty set in Rn. The polar cone of S, denoted by S∗, is given by
{p | pT x ≤ 0 for all x ∈ S }. It is easy to see from the above definition that
the polar cone S∗ of a nonempty set S has the following properties:

1. S∗ is a closed convex cone.

2. S ⊂ S∗∗, where S∗∗ is the polar cone of S∗. If S is a nonempty closed
convex set, then S∗∗ = S.

3. If S1, S2 are nonempty sets, then S1 ⊂ S2 implies S∗
2 ⊂ S∗

1 .

Download more at Learnclax.com

36 CHAPTER 1. INTRODUCTION

The normal and tangent cones play a special role in constrained optimiza-
tion. Here we give their definitions below. Let S be a closed convex set. The
normal cone of S at x̄ is defined as

N(x̄) = {y ∈ Rn | 〈y, x− x̄〉 ≤ 0,∀x ∈ S}. (1.3.4)

The tangent cone of S at x̄ ∈ S is the polar of the normal cone at x̄, that is

T (x̄) = (N(x̄))∗ = cl{λ(x− x̄) | λ ≥ 0, x ∈ S} (1.3.5)
= {d | d = lim

x→x̄
λ(x− x̄), λ ≥ 0, x ∈ S},

where cl{S} denotes the closure of S.

1.3.2 Convex Functions

Definition 1.3.6 Let S ⊂ Rn be a nonempty convex set. Let f : S ⊂ Rn →
R. If, for any x1, x2 ∈ S and all α ∈ (0, 1), we have

f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2), (1.3.6)

then f is said to be convex on S. If the above inequality is true as a strict
inequality for all x1 = x2, i.e.,

f(αx1 + (1− α)x2) < αf(x1) + (1− α)f(x2), (1.3.7)

then f is called a strict convex function on S. If there is a constant c > 0
such that for any x1, x2 ∈ S,

f(αx1 +(1−α)x2) ≤ αf(x1)+(1−α)f(x2)−
1
2
cα(1−α)‖x1−x2‖2, (1.3.8)

then f is called a uniformly (or strongly) convex function on S.

If −f is a convex (strictly convex, uniformly convex) function on S, then
f is said to be a concave (strictly concave, uniformly concave) function.

Figure 1.3.2 Convex function and concave function

Download more at Learnclax.com

1.3. CONVEX SETS AND CONVEX FUNCTIONS 37

Figure 1.3.2 gives examples of convex, concave, and neither convex nor
concave functions. The geometrical interpretation of a convex function says
that the function values are below the corresponding chord, that is, the values
of a convex function at points on the line segment αx1 + (1 − α)x2 are less
than or equal to the height of the chord joining the points (x1, f(x1)) and
(x2, f(x2)). It is obvious from the definition of convex function that a linear
function f(x) = aT x+β is both a convex and concave function on Rn, where
a, x ∈ Rn, β ∈ R.

The other basic and important examples of convex functions are indicator
function, support function, norm and distance function.

Let S ⊂ Rn be a nonempty subset; the indicator function IS : Rn →
R ∪ {+∞} is defined by

IS(x) :=

{
0, if x ∈ S,
+∞, otherwise.

(1.3.9)

Clearly, IS is convex if and only if S is convex.
Let S ⊂ Rn be a nonempty subset. The support function of S is defined

by
σS(s) := sup{〈s, x〉 | x ∈ S}. (1.3.10)

This is a convex function.
It is easy to see that a norm on Rn is a convex function. If we define the

distance function as

dS(x) := inf{‖y − x‖ | y ∈ S},

where S ⊂ Rn is a nonempty convex set and ‖ · ‖ is any norm on Rn, then
dS is a convex function.

A convex function can also be described by an epigraph. Now we first
give the definition of the epigraph of f , and then show that f is convex if
and only if its epigraph is a convex set.

Let S ⊂ Rn be a nonempty set. A set {(x, f(x)) : x ∈ S} ⊂ Rn+1

describing the function f is said to be the graph of the function f . Related
to the graph of f , there are the epigraph, which consists of points above the
graph of f , and the hypograph, which consists of points below the graph of
f .

Download more at Learnclax.com

38 CHAPTER 1. INTRODUCTION

Definition 1.3.7 Let S ⊂ Rn be a nonempty set. Let f : S ⊂ Rn → R. The
epigraph of f , denoted by epif , is a subset of Rn+1 defined by

epif = {(x, α) | f(x) ≤ α, x ∈ S, α ∈ R}. (1.3.11)

The hypograph of f , denoted by hypf , is a subset of Rn+1 defined by

hypf = {(x, α) | f(x) ≥ α, x ∈ S, α ∈ R}. (1.3.12)

Figure 1.3.3 Epigraph and hypograph

The following theorem indicates the relation between convex function and
convexity of epif .

Theorem 1.3.8 Let S ⊂ Rn be a nonempty convex set. Let f : S ⊂ Rn →
R. Then f is convex if and only if epif is a convex set.

Proof. Assume that f is convex. Let x1, x2 ∈ S and (x1, α1), (x2, α2) be
in epif . Then, it follows from Definition 1.3.6 and Definition 1.3.7 that

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2) ≤ λα1 + (1− λ)α2

for any λ ∈ (0, 1). Since S is a convex set, λx1 + (1 − λ)x2 ∈ S. Hence
(λx1 + (1− λ)x2, λα1 + (1− λ)α2) ∈ epi f , which means epif is convex.

Conversely, assume that epif is convex, and let x1, x2 ∈ S and (x1, f(x1)),
(x2, f(x2)) ∈ epif . Then we have from the convexity of epif that

(λx1 + (1− λ)x2, λf(x1) + (1− λ)f(x2)) ∈ epif, for λ ∈ (0, 1).

Download more at Learnclax.com

1.3. CONVEX SETS AND CONVEX FUNCTIONS 39

This means

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2)

for each λ ∈ (0, 1). Hence f is convex. �

The epigraph epif of a function f is an important concept and it is used
often in convex programming. Here we would like to mention its properties.
The epif has a closed relation with the lower semi-continuity (l.s.c.) of f
which is also very important, because, for a function to have a minimum, a
very basic requirement is lower semi-continuity. We may recall that a function
f is lower semi-continuous if, for each x ∈ Rn,

lim inf
y→x

f(y) ≥ f(x). (1.3.13)

The following theorem gives an equivalent property between epif and l.s.c.

Theorem 1.3.9 For f : Rn → R ∪ {+∞}, the following three statements
are equivalent:

1. f is lower semi-continuous on Rn;

2. epif is a closed set in Rn ×R;

3. the level sets Lr(f) = {x ∈ Rn | f(x) ≤ r, r ∈ R} are closed for all
r ∈ R.

Proof. (1) ⇒ (2): Let {(yk, rk)} be a sequence of epif converging to (x, r)
for k →∞. Since f(yk) ≤ rk for all k, the (1.3.13) gives

r = lim
k→∞

rk ≥ lim inf
yk→x

f(yk) ≥ f(x),

which indicates that (x, r) ∈ epif .
(2) ⇒ (3): Construct the level set Lr(f) which is the intersection of two

closed sets epif and (Rn × {r}). Obviously the intersection is closed.
(3) ⇒ (1): Suppose that f is not lower semi-continuous at some x, which

means there exists a sequence {yk} converging to x such that {f(yk)} con-
verges to ρ < f(x) ≤ +∞. Take r ∈ (ρ, f(x)). When k tends large enough,
we have f(yk) ≤ r < f(x) which means that Lr(f) does not contain its limit
x. Hence Lr(f) is not closed. �

Using Theorem 1.3.9, we can give a definition of closed function.

Download more at Learnclax.com

40 CHAPTER 1. INTRODUCTION

Definition 1.3.10 A function f : Rn → R ∪ {+∞} is said to be closed if
it is lower semi-continuous everywhere, or if its epigraph is closed, or if its
level sets are closed.

Obviously, the indicator function IS is closed if and only if S is closed.
Also, epiIS = S ×R+. The support function σS is closed too.

Next, we give some properties of convex functions.

Theorem 1.3.11 1. Let f be a convex function on a convex set S ⊂ Rn

and real number α ≥ 0, then αf is also a convex function on S.

2. Let f1, f2 be convex functions on a convex set S, then f1 + f2 is also a
convex function on S.

3. Let f1, f2, · · · , fm be convex functions on a convex set S and real num-
bers α1, α2, · · · , αm ≥ 0, then

∑m
i=1 αifi is also a convex function on

S.

Proof. We only prove the second statement. The others are similar.
Let x1, x2 ∈ S and 0 < α < 1, then

f1(αx1 + (1− α)x2) + f2(αx1 + (1− α)x2)
≤ α[f1(x1) + f2(x1)] + (1− α)[f1(x2) + f2(x2)]. �

Continuity is an important property of a convex function. However, it
is not sure that a convex function whose domain is not open is continuous.
The following theorem shows that a convex function is continuous on an open
convex set or the interior of its domain.

Theorem 1.3.12 Let S ⊂ D be an open convex set. Let f : D ⊂ Rn → R
be convex. Then f is continuous on S.

Proof. Let x0 be an arbitrary point in S. Since S is an open convex set,
we can find n+1 points x1, · · · , xn+1 ∈ S such that the interior of the convex
hull

C = {x | x =
n+1∑
i=1

αixi, αi ≥ 0,
n+1∑
i=1

αi = 1}

is not empty and x0 ∈ intC.

Download more at Learnclax.com

1.3. CONVEX SETS AND CONVEX FUNCTIONS 41

Now let α = max1≤i≤n+1 f(xi), then

f(x) = f

(
n+1∑
i=1

αixi

)
≤

n+1∑
i=1

αif(xi) ≤ α, ∀x ∈ C, (1.3.14)

so that f is bounded over C. Also, since x0 ∈ int C, there is a δ > 0 such
that B(x0, δ) ⊂ C, where B(x0, δ) = {x| ‖x− x0‖ ≤ δ}. Hence for arbitrary
h ∈ B(0, δ) and λ ∈ [0, 1], we have

x0 =
1

1 + λ
(x0 + λh) +

λ

1 + λ
(x0 − h). (1.3.15)

Since f is convex on C, then

f(x0) ≤
1

1 + λ
f(x0 + λh) +

λ

1 + λ
f(x0 − h). (1.3.16)

By (1.3.16) and (1.3.14), we have

f(x0 + λh)− f(x0) ≥ λ(f(x0)− f(x0 − h)) ≥ −λ(α− f(x0)). (1.3.17)

On the other hand,

f(x0 + λh) = f(λ(x0 + h) + (1− λ)x0) ≤ λf(x0 + h) + (1− λ)f(x0),

which is

f(x0 + λh)− f(x0) ≤ λ(f(x0 + h)− f(x0)) ≤ λ(α− f(x0)). (1.3.18)

Therefore, (1.3.17) and (1.3.18) give

|f(x0 + λh)− f(x0)| ≤ λ|f(x0)− α|. (1.3.19)

Now, for given ε > 0, choose δ′ ≤ δ so that δ′|f(x0) − α| ≤ εδ. Set d = λh
with ‖h‖ = δ, then d ∈ B(0, δ) and

|f(x0 + d)− f(x0)| ≤ ε. �

If a convex function is differentiable, we can describe the characterization
of differential convex functions. The following theorem gives the first order
characterization of differential convex functions.

Download more at Learnclax.com

42 CHAPTER 1. INTRODUCTION

Theorem 1.3.13 Let S ⊂ Rn be a nonempty open convex set and let f :
S ⊂ Rn → R be a differentiable function. Then f is convex if and only if

f(y) ≥ f(x) +∇f(x)T (y − x), ∀x, y ∈ S. (1.3.20)

Similarly, f is strictly convex on S if and only if

f(y) > f(x) +∇f(x)T (y − x), ∀x, y ∈ S, y = x. (1.3.21)

Furthermore, f is strongly (or uniformly) convex if and only if

f(y) ≥ f(x) +∇f(x)T (y − x) +
1
2
c‖y − x‖2, ∀x, y ∈ S, (1.3.22)

where c > 0 is a constant.

Proof. Necessity: Let f(x) be a convex function, then for all α with
0 < α < 1,

f(αy + (1− α)x) ≤ αf(y) + (1− α)f(x).

Hence,
f(x + α(y − x))− f(x)

α
≤ f(y)− f(x).

Setting α → 0 yields

∇f(x)T (y − x) ≤ f(y)− f(x).

Sufficiency: Assume that (1.3.20) holds. Pick any x1, x2 ∈ S and set
x = αx1 + (1− α)x2, 0 < α < 1. Then

f(x1) ≥ f(x) +∇f(x)T (x1 − x),
f(x2) ≥ f(x) +∇f(x)T (x2 − x).

Hence

αf(x1) + (1− α)f(x2) ≥ f(x) +∇f(x)T (αx1 + (1− α)x2 − x)
= f(αx1 + (1− α)x2),

which indicates that f(x) is a convex function.
Similarly, we can prove (1.3.21) and (1.3.22) by use of (1.3.20). For

example, from the definition of the strictly convex, we have

f(x + α(y − x))− f(x) < α(f(y)− f(x)).

Download more at Learnclax.com

1.3. CONVEX SETS AND CONVEX FUNCTIONS 43

Then, using (1.3.20) and the above inequality, we have

〈∇f(x), α(y − x)〉 ≤ f(x + α(y − x))− f(x) < α(f(y)− f(x))

which is the required (1.3.21).
To obtain (1.3.22), it is enough to apply (1.3.20) to the function f− 1

2c‖·‖2.
�

Definition 1.3.6 of convex function indicates that the function value is
below the chord, which means that the linear interpolation of the function
values at two points is larger than the function value at the interpolation
point. This theorem represents that the linear approximation based on a
local derivative is a lower estimate, i.e., the convex function always lies above
its tangent at any point. Such a tangent is called a supporting hyperplane of
the convex function.

Figure 1.3.4 The first order characteristic of a convex function

Below, we consider the second order characteristic of a twice continuously
differentiable convex function.

Theorem 1.3.14 Let S ⊂ Rn be a nonempty open convex set, and let f :
S ⊂ Rn → R be twice continuously differentiable. Then

1. f is convex if and only if its Hessian matrix is positive semidefinite at
each point in S.

2. f is strictly convex if its Hessian matrix is positive definite at each point
in S.

3. f is uniformly convex if and only if its Hessian matrix is uniformly
positive definite at each point in S, i.e., there exists a constant m > 0
such that

m‖u‖2 ≤ uT∇2f(x)u, ∀x ∈ S, u ∈ Rn.

Download more at Learnclax.com

44 CHAPTER 1. INTRODUCTION

Proof. We only prove the first case. The other two cases are analogous.
Sufficiency. Suppose that the Hessian matrix ∇2f(x) is positive semidef-

inite at each point x ∈ S. Consider x, x̄ ∈ S. By the mean-value theorem,
we have

f(x) = f(x̄) +∇f(x̄)T (x− x̄) +
1
2
(x− x̄)T∇2f(x̂)(x− x̄),

where x̂ = x̄ + θ(x − x̄), θ ∈ (0, 1). Noting that x̂ ∈ S, it follows from the
assumption that

f(x) ≥ f(x̄) +∇f(x̄)T (x− x̄).

Hence f is a convex function by Theorem 1.3.13.
Necessity. Suppose that f is a convex function and let x̄ ∈ S. We need

to prove pT∇2f(x̄)p ≥ 0, ∀p ∈ Rn. Since S is open, then there exists δ > 0
such that when |λ| < δ, x̄ + λp ∈ S. By Theorem 1.3.13,

f(x̄ + λp) ≥ f(x̄) + λ∇f(x̄)T p. (1.3.23)

Also since f(x) is twice differentiable at x̄, then

f(x̄ + λp) = f(x̄) + λ∇f(x̄)T p +
λ2

2
pT∇2f(x̄)p + o(‖λp‖2). (1.3.24)

Substituting (1.3.24) into (1.3.23) yields

1
2
λ2pT∇2f(x̄)p + o(‖λp‖2) ≥ 0.

Dividing by λ2 and letting λ → 0, it follows that

pT∇2f(x̄)p ≥ 0.�

Next, we would like to characterize a convex function with monotonicity
which is very useful.

We first introduce a definition of monotone mapping.

Definition 1.3.15 A mapping F : D ⊂ Rn → Rn is monotone on D0 ⊂ D
if

〈F (x)− F (y), x− y〉 ≥ 0, ∀x, y ∈ D0; (1.3.25)

F is strictly monotone on D0 if

〈F (x)− F (y), x− y〉 > 0, ∀x, y ∈ D0, x = y; (1.3.26)

Download more at Learnclax.com

1.3. CONVEX SETS AND CONVEX FUNCTIONS 45

F is uniformly (or strongly) monotone if there is a constant c > 0 so that

〈F (x)− F (y), x− y〉 ≥ c‖x− y‖2, ∀x, y ∈ D0. (1.3.27)

If we let F = ∇f in the above definition, we can get the following theo-
rem which says that, for convex function f , its gradient ∇f is a monotone
mapping.

Theorem 1.3.16 Suppose that f : D ⊂ Rn → R is differentiable on an open
set D, and that S ⊂ D is a convex subset. Then f is convex on S if and only
if its gradient ∇f is monotone, i.e.,

〈∇f(x)−∇f(y), x− y〉 ≥ 0, ∀x, y ∈ S; (1.3.28)

and f is strictly convex on S if and only if its gradient ∇f is strictly mono-
tone, i.e.,

〈∇f(x)−∇f(y), x− y〉 > 0, ∀x, y ∈ S, x = y; (1.3.29)

finally, f is uniformly (or strongly) convex on S if and only if its gradient
∇f is uniformly monotone, i.e.,

〈∇f(x)−∇f(y), x− y〉 ≥ c‖x− y‖2, (1.3.30)

where c > 0 is the constant of (1.3.8).

Proof. Let f be uniformly convex on S, then, by Theorem 1.3.13, for any
x, y ∈ S, we have

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
1
2
c‖y − x‖2, (1.3.31)

f(x) ≥ f(y) + 〈∇f(y), x− y〉+
1
2
c‖x− y‖2, (1.3.32)

and addition of these two inequalities shows that (1.3.30) holds.
Similarly, if f is convex, (1.3.31) and (1.3.32) hold with c = 0, and hence

(1.3.28) holds. Moreover, if f is strictly convex, then (1.3.31) and (1.3.32)
hold with c = 0 but with strict inequality for x = y. Hence the addition
establishes (1.3.29).

Conversely, suppose that ∇f is monotone. For any fixed x, y ∈ S, the
mean-value theorem (1.2.97) gives

f(y)− f(x) = 〈∇f(ξ), y − x〉, (1.3.33)

Download more at Learnclax.com

46 CHAPTER 1. INTRODUCTION

where ξ = x + t(y − x), t ∈ (0, 1). Then, it follows from (1.3.28) that

〈∇f(ξ)−∇f(x), y − x〉 =
1
t
[∇f(ξ)−∇f(x)]T (ξ − x) ≥ 0, (1.3.34)

which, together with (1.3.33), gives

f(y)− f(x) = 〈∇f(ξ)−∇f(x), y − x〉+ 〈∇f(x), y − x〉
≥ 〈∇f(x), y − x〉. (1.3.35)

The above inequality shows, by Theorem 1.3.13, that f is convex.
Similarly, if (1.3.29) holds, the same will be true in (1.3.35) with strict

inequality and x = y, and thus f is strictly convex.
Finally, for uniform convexity, suppose (1.3.30) holds. Let φ(t) = f(x +

t(y − x)) = f(u), where u = x + t(y − x), t ∈ (0, 1). Noting that φ′(t) =
〈∇f(u), y − x〉 and φ′(0) = 〈∇f(x), y − x〉, then (1.3.30) means

φ′(t)− φ′(0) = 〈∇f(u)−∇f(x), y − x〉 =
1
t
〈∇f(u)−∇f(x), u− x〉

≥ 1
t
c‖u− x‖2 = tc‖y − x‖2.

Hence,

φ(1)− φ(0)− φ′(0) =
∫ 1

0
[φ′(t)− φ′(0)]dt ≥ 1

2
c‖y − x‖2,

which, by the definition of φ, shows

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
1
2
c‖y − x‖2.

Therefore, we complete the proof. �

Combining Theorem 1.3.14 and 1.3.16, we immediately obtain the follow-
ing theorem.

Theorem 1.3.17 Let S ⊂ Rn be a nonempty open convex set and f be a
twice continuously differentiable function on S. Then

1. ∇f is monotone on S if and only if ∇2f(x) is positive semidefinite for
all x ∈ S.

Download more at Learnclax.com

1.3. CONVEX SETS AND CONVEX FUNCTIONS 47

2. If ∇2f(x) is positive definite for all x ∈ S, then ∇f is strictly monotone
on S.

3. ∇f is uniformly (or strongly) monotone on S if and only if ∇2f(x) is
uniformly positive definite, i.e., there exists a number c > 0 so that

dT∇2f(x)d ≥ c‖d‖2, ∀x ∈ S, d ∈ Rn.

In the following, we are concerned with the level set which is closely
related to a convex function and important to the minimization algorithm.
The following theorem shows that the level set Lα corresponding to a convex
function is convex.

Theorem 1.3.18 Let S ⊂ Rn be a nonempty convex set, f a convex function
defined on S, α a real number. Then the level set Lα = {x | x ∈ S, f(x) ≤ α}
is a convex set.

Proof. Let x1, x2 ∈ Lα, then x1, x2 ∈ S, f(x1) ≤ α, f(x2) ≤ α. Let
λ ∈ (0, 1) and x = λx1 + (1− λ)x2. Then from the convexity of S, we have
x ∈ S. Also since f is convex,

f(x) ≤ λf(x1) + (1− λ)f(x2) ≤ λα + (1− λ)α = α.

Hence x ∈ Lα, which implies that Lα is a convex set. �

From Theorem 1.3.18 and Theorem 1.3.9, we know immediately that if
f is a continuously convex function, then the level set Lα is a closed convex
set. Furthermore, we also have

Theorem 1.3.19 Let f(x) be twice continuously differentiable on S ⊂ Rn,
where S is a nonempty convex set. Suppose that there exists a number m > 0
such that

uT∇2f(x)u ≥ m‖u‖2, ∀x ∈ L(x0), u ∈ Rn. (1.3.36)

Then the level set L(x0) = {x ∈ S | f(x) ≤ f(x0)} is a bounded closed convex
set.

Proof. By using Theorem 1.3.14, (1.3.36) implies that f is convex on
L(x0), and then it follows from Theorem 1.3.18 that L(x0) is convex. Note
that f(x) is continuous, then L(x0) is a closed convex set for all x0 ∈ Rn.

Download more at Learnclax.com

48 CHAPTER 1. INTRODUCTION

Now we prove the boundedness of L(x0). Using (1.3.36) and the fact that
L(x0) is convex, we have for any x, y ∈ L(x0),

m‖y − x‖2 ≤ (y − x)T∇2f(x + α(y − x))(y − x).

Also by twice differentiability and the above inequality, we have

f(y) = f(x) +∇f(x)T (y − x)

+
∫ 1

0

∫ t

0
(y − x)T∇2f(x + α(y − x))(y − x)dαd t

≥ f(x) +∇f(x)T (y − x) +
1
2
m‖y − x‖2,

where m is independent of x and y. Therefore for arbitrary y ∈ L(x0) and
y = x0,

f(y)− f(x0) ≥ ∇f(x0)T (y − x0) +
1
2
m‖y − x0‖2

≥ −‖∇f(x0)‖‖y − x0‖+
1
2
m‖y − x0‖2.

Noting that f(y) ≤ f(x0), the above inequality implies

‖y − x0‖ ≤
2
m
‖∇f(x0)‖,

which shows that the level set L(x0) is bounded. �

To conclude this subsection, we give a proof of Minkowski inequality
which is an application of convexity of function.

Minkowski inequality:

‖x + y‖p ≤ ‖x‖p + ‖y‖p, (1.3.37)

i.e.,
(

n∑
i=1

|xi + yi|p
)1/p

≤
(

n∑
i=1

|xi|p
)1/p

+

(
n∑

i=1

|yi|p
)1/p

, (1.3.38)

where p ≥ 1.

Proof. If x or y is the zero vector, the result is obvious. Now suppose
that x = 0 and y = 0.

Download more at Learnclax.com

1.3. CONVEX SETS AND CONVEX FUNCTIONS 49

If p = 1, since |xi + yi| ≤ |xi| + |yi|, i = 1, · · · , n, then summing over i
gives the result.

Now let p > 1 and consider the function

φ(t) = tp, t > 0.

Since
φ′′(t) = p(p− 1)tp−2 > 0,

then φ(t) is strictly convex. Note that

‖x‖p

‖x‖p + ‖y‖p
+

‖y‖p

‖x‖p + ‖y‖p
= 1,

it follows from the definition of convex function that(
‖x‖p

‖x‖p + ‖y‖p

|xi|
‖x‖p

+
‖y‖p

‖x‖p + ‖y‖p

|yi|
‖y‖p

)p

≤ ‖x‖p

‖x‖p + ‖y‖p

(
|xi|
‖x‖p

)p

+
‖y‖p

‖x‖p + ‖y‖p

(
|yi|
‖y‖p

)p

. (1.3.39)

Hence, using (1.3.39), we get

n∑
i=1

(
|xi + yi|

‖x‖p + ‖y‖p

)p

≤
n∑

i=1

(
|xi|+ |yi|
‖x‖p + ‖y‖p

)p

=
n∑

i=1

(
‖x‖p

‖x‖p + ‖y‖p

|xi|
‖x‖p

+
‖y‖p

‖x‖p + ‖y‖p

|yi|
‖y‖p

)p

≤
n∑

i=1

(
‖x‖p

‖x‖p + ‖y‖p

(
|xi|
‖x‖p

)p

+
‖y‖p

‖x‖p + ‖y‖p

(
|yi|
‖y‖p

)p)

≤ ‖x‖p

‖x‖p + ‖y‖p

n∑
i=1

(
|xi|
‖x‖p

)p

+
‖y‖p

‖x‖p + ‖y‖p

n∑
i=1

(
|yi|
‖y‖p

)p

=
‖x‖p

‖x‖p + ‖y‖p

‖x‖p
p

‖x‖p
p

+
‖y‖p

‖x‖p + ‖y‖p

‖y‖p
p

‖y‖p
p

= 1,

Download more at Learnclax.com

50 CHAPTER 1. INTRODUCTION

which implies that

n∑
i=1

|xi + yi|p ≤ (‖x‖p + ‖y‖p)p.

Taking the p-th root gives our result. �

1.3.3 Separation and Support of Convex Sets

The separation and support of convex sets are important tools for research
of optimality conditions. We first discuss the projection theorem which char-
acterizes the projection and describes the sufficient and necessary condition
for the distance between a closed convex set and a point not in the set to be
minimal.

Theorem 1.3.20 (Projection Theorem)
Let S ⊂ Rn be a nonempty closed convex set and y /∈ S, then there exists

a unique point x̄ ∈ S with minimal distance from y, i.e.,

‖y − x̄‖ = inf
x∈S

‖y − x‖. (1.3.40)

Furthermore, x̄ is the minimal point of (1.3.40) if and only if

〈y − x̄, x− x̄〉 ≤ 0, ∀x ∈ S, (1.3.41)

or say that x̄ is the projection PS(y) of y on S if and only if (1.3.41) holds.

Proof. Let
inf{‖y − x‖ |x ∈ S} = γ > 0. (1.3.42)

There is a sequence {xk} ⊂ S so that ‖y − xk‖ → γ. In the following, we
prove {xk} is a Cauchy sequence and hence there exists a limit x̄ ∈ S.

By the parallelogram law, we have

‖xk − xm‖2 = 2‖xk − y‖2 + 2‖xm − y‖2 − ‖xk + xm − 2y‖2

= 2‖xk − y‖2 + 2‖xm − y‖2 − 4
∥∥∥∥xk + xm

2
− y

∥∥∥∥2

.(1.3.43)

Note that (xk + xm)/2 ∈ S, we have, from the definition of γ,
∥∥∥∥xk + xm

2
− y

∥∥∥∥2

≥ γ2.

Download more at Learnclax.com

1.3. CONVEX SETS AND CONVEX FUNCTIONS 51

Therefore,
‖xk − xm‖2 ≤ 2‖xk − y‖2 + 2‖xm − y‖2 − 4γ2.

Taking k and m sufficiently large yields

‖xk − xm‖ → 0

which indicates that {xk} is a Cauchy sequence with limit x̄. Since S is
closed, then x̄ ∈ S. This shows there exists x̄ such that ‖y − x̄‖ = γ.

Next, we prove the uniqueness. Suppose that x̄, x̄′ ∈ S and satisfy

‖y − x̄‖ = ‖y − x̄′‖ = γ. (1.3.44)

Since S is convex, (x̄ + x̄′)/2 ∈ S. Then∥∥∥∥y − x̄ + x̄′

2

∥∥∥∥ ≤ 1
2
‖y − x̄‖+

1
2
‖y − x̄′‖ = γ. (1.3.45)

If the strict inequality holds, we get a contradiction to (1.3.42). Then the
equality holds in (1.3.45) and we have

y − x̄ = λ(y − x̄′), for some λ.

So, it follows from (1.3.44) that |λ| = 1. If λ = −1, we have y = (x̄+x̄′)/2 ∈ S
which contradicts y /∈ S. Therefore, λ = 1, that means x̄ = x̄′.

Finally, we prove that the distance between x̄ ∈ S and y /∈ S is minimal
if and only if (1.3.41) holds.

Take x arbitrary in S and suppose (1.3.41) holds. Since

‖y − x‖2 = ‖y − x̄ + x̄− x‖2

= ‖y − x̄‖2 + ‖x̄− x‖2 + 2(x̄− x)T (y − x̄),

then ‖y − x‖2 ≥ ‖y − x̄‖2 which is the desired sufficiency.
Conversely, let ‖y−x‖2 ≥ ‖y− x̄‖2, ∀x ∈ S. Since x̄+λ(x− x̄) ∈ S with

λ ∈ (0, 1), then we have

‖y − x̄− λ(x− x̄)‖2 ≥ ‖y − x̄‖2.

Developing the square gives

‖y − x̄− λ(x− x̄)‖2 = ‖y − x̄‖2 + λ2‖x− x̄‖2 + 2λ(x− x̄)T (x̄− y).

Then we get
λ2‖x− x̄‖2 + 2λ(x− x̄)T (x̄− y) ≥ 0.

Dividing by λ and letting λ ↓ 0, we obtain the result. �

Download more at Learnclax.com

52 CHAPTER 1. INTRODUCTION

Figure 1.3.5 The angle-characterization of a projection

In fact, if we note that x̄ = PS(y) is the solution of

min
x∈S

φ(x) ∆=
1
2
‖x− y‖2,

then, for the above minimization problem, one concludes from the optimality
condition that

〈φ′(x̄), x− x̄〉 ≥ 0, ∀x ∈ S.

Since φ′(x) = x− y, we have

〈x̄− y, x− x̄〉 ≥ 0, ∀x ∈ S

which is just (1.3.41).
Remark: If S is an affine manifold (for example, a subspace), then

x̄− x ∈ S whenever x− x̄ ∈ S. Therefore, (1.3.41) implies

〈y − x̄, x− x̄〉 = 0, ∀x ∈ S, (1.3.46)

which is (y − x̄) ⊥ S.

Now we can present the most fundamental separation theorem which
separates a closed convex set and a point not in the set. This theorem is
based on the above projection theorem.

Theorem 1.3.21 Let S ⊂ Rn be a nonempty closed convex set and y /∈ S.
Then there exist a nonzero vector p and a real number α such that

pT y > α and pT x ≤ α, ∀x ∈ S, (1.3.47)

i.e.,
pT y > sup{pT x, ∀x ∈ S} (1.3.48)

which says there exists a hyperplane H = {x | pT x = α} that strictly separates
y and S.

Download more at Learnclax.com

1.3. CONVEX SETS AND CONVEX FUNCTIONS 53

Proof. Since S is a nonempty closed convex set and y /∈ S, then, by
Theorem 1.3.20, there exists a unique point x̄ ∈ S such that

(x− x̄)T (y − x̄) ≤ 0, ∀x ∈ S.

Set p = y − x̄ = 0, then

0 ≥ (y − x̄)T (y − x̄ + x− y)
= pT x− pT y + ‖p‖2.

Hence
pT y ≥ pT x + ‖p‖2, ∀x ∈ S.

Set α = sup{pT x |x ∈ S}, and we get our result. �

As a consequence of Theorem 1.3.21, we immediately obtain Farkas’
Lemma which has been used extensively in the derivation of optimality con-
ditions.

Theorem 1.3.22 (Farkas’ Lemma) Let A ∈ Rm×n and c ∈ Rn. Then ex-
actly one of the following two systems has a solution:

System 1 Ax ≤ 0, cT x > 0, (1.3.49)
System 2 AT y = c, y ≥ 0. (1.3.50)

Proof. Suppose that there is a solution for (1.3.50), that is, there exists
y ≥ 0 such that AT y = c. Let x satisfy Ax ≤ 0, it follows from y ≥ 0 that

cT x = yT Ax ≤ 0,

which shows that (1.3.49) has no solution.
Now suppose (1.3.50) has no solution. Let

S = {x |x = AT y, y ≥ 0},

which is a polyhedral set, and hence it is a nonempty closed convex set and
c /∈ S. By Theorem 1.3.21, there exist p ∈ Rn and α ∈ R such that

pT c > α and pT x ≤ α, ∀x ∈ S.

Since 0 ∈ S, α ≥ pT 0 = 0. Then pT c > 0. Also note that

α ≥ pT x = pT AT y = yT Ap, ∀y ≥ 0

Download more at Learnclax.com

54 CHAPTER 1. INTRODUCTION

and that y could be made arbitrarily large, thus it follows that Ap ≤ 0. So,
there is a vector p ∈ Rn which is a solution of (1.3.49), and the proof is
complete. �

In order to discuss the separation between two convex sets, we need the
following definition and theorem of a supporting hyperplane.

Definition 1.3.23 Let S ⊂ Rn be a nonempty set, p ∈ Rn, and x̄ ∈ ∂S,
where ∂S denotes the boundary of S. If either

S ⊂ H+ = {x ∈ S | pT (x− x̄) ≥ 0} (1.3.51)

or
S ⊂ H− = {x ∈ S | pT (x− x̄) ≤ 0}, (1.3.52)

then the hyperplane H = {x ∈ S | pT (x − x̄) = 0} is called a supporting
hyperplane of S at x̄. If, in addition, S ⊂ H, then H is called a proper
supporting hyperplane of S at x̄.

The following theorem shows that a convex set has a supporting hyper-
plane at each boundary point (see Figure 1.3.6).

Figure 1.3.6 Supporting hyperplane

Theorem 1.3.24 Let S ⊂ Rn be a nonempty convex set and x̄ ∈ ∂S. Then,
there exists a hyperplane supporting S at x̄; that is, there exists a nonzero
vector p such that

pT (x− x̄) ≤ 0, ∀x ∈ S̄, (1.3.53)

where S̄ denotes the closure of S.

Download more at Learnclax.com

1.3. CONVEX SETS AND CONVEX FUNCTIONS 55

Proof. Since x̄ ∈ ∂S, there exists a sequence {yk} ⊂ S̄ so that yk →
x̄, (k → ∞). By Theorem 1.3.21, corresponding to each yk, there exists
pk ∈ Rn with ‖pk‖ = 1, such that

pT
k yk > pT

k x, ∀x ∈ S̄. (1.3.54)

Since {pk} is bounded, there is a convergent subsequence {pk}K with limit p
and ‖p‖ = 1. For this subsequence, (1.3.54) holds, that is

pT
kj

ykj
> pT

kj
x, ∀x ∈ S̄.

Fix x ∈ S̄ and take the limit as k ∈ K and k →∞, we have pT x̄ ≥ pT x, ∀x ∈
S̄, which is our desired result. �

By use of Theorem 1.3.21 and Theorem 1.3.24, the following corollary is
obvious.

Corollary 1.3.25 Let S ⊂ Rn be a nonempty convex set and x̄ /∈ S. Then
there exists a nonzero vector p such that

pT (x− x̄) ≤ 0, ∀x ∈ S̄. (1.3.55)

Proof. Let x̄ /∈ S; there are two cases. If x̄ /∈ S̄, the conclusion is
immediate from Theorem 1.3.21. If x̄ ∈ ∂S, the corollary reduces to Theorem
1.3.24. �

Now, we are going to discuss the separation theorems of two convex sets
which include separation theorem, strict separation theorem and strong sep-
aration theorem.

Definition 1.3.26 Let S1, S2 ⊂ Rn be nonempty convex sets. If

pT x ≥ α, ∀x ∈ S1 and pT x ≤ α, ∀x ∈ S2, (1.3.56)

then the hyperplane H = {x | pT x = α} is said to separate S1 and S2. If, in
addition, S1 ∪ S2 ⊂ H, then H is said to properly separate S1 and S2. If

pT x > α, ∀x ∈ S1 and pT x < α, ∀x ∈ S2, (1.3.57)

then H is said to strictly separate S1 and S2. If

pT x ≥ α + ε, ∀x ∈ S1 and pT x ≤ α, ∀x ∈ S2, (1.3.58)

then H is said to strongly separate S1 and S2, where ε > 0.

Download more at Learnclax.com

56 CHAPTER 1. INTRODUCTION

Theorem 1.3.27 (Separation Theorem)
Let S1, S2 ⊂ Rn be nonempty convex sets. If S1 ∩ S2 = φ, then there

exists a hyperplane separating S1 and S2, that is, there exists a nonzero vector
p ∈ Rn such that

pT x1 ≤ pT x2, ∀x1 ∈ S̄1, x2 ∈ S̄2. (1.3.59)

Proof. Let

S = S1 − S2 = {x1 − x2 |x1 ∈ S1, x2 ∈ S2}.

Note that S is a nonempty convex set and that 0 /∈ S (otherwise, if 0 ∈ S,
then we have x1 − x2 = 0 and x1 = x2 ∈ S1 ∩ S2 which implies S1 ∩ S2 = φ).
Hence, by Corollary 1.3.25, there exists a nonzero vector p such that

pT x ≤ pT 0 = 0, ∀x ∈ S̄,

which implies that

pT x1 ≤ pT x2, ∀x1 ∈ S̄1, x2 ∈ S̄2.

Then we complete the proof. �

Note that (1.3.59) also can be written as

sup{pT x |x ∈ S1} ≤ inf{pT x |x ∈ S2}. (1.3.60)

Theorem 1.3.28 (Strong Separation Theorem)
Let S1 and S2 be two closed convex sets on Rn, and suppose that S2 is

bounded. If S1∩S2 = φ, then there exists a hyperplane that strongly separates
S1 and S2, that is, there exist a nonzero vector p and ε > 0 such that

inf{pT x |x ∈ S2} ≥ sup{pT x |x ∈ S1}+ ε. (1.3.61)

Proof. Let S = S1 − S2. Note that S is convex and 0 /∈ S. We first
prove that S is closed. Let {xk} ⊂ S, xk → x. By the definition of S,
xk = yk− zk, yk ∈ S1, zk ∈ S2. Since S2 is compact, there exists a convergent
subsequence {zk}K, zk → z, z ∈ S2, k ∈ K. Since

yk − zk → x, zk → z, ∀k ∈ K,

Download more at Learnclax.com

1.4. OPTIMALITY CONDITIONS FOR UNCONSTRAINED CASE 57

then yk → y. Also since S1 is closed, y ∈ S1. Therefore,

x = y − z, y ∈ S1, z ∈ S2,

which means x ∈ S and S is closed.
Now we have that S is a closed convex set and 0 /∈ S. Then, by Theorem

1.3.21, there exist nonzero vector p and real number α, such that

pT x ≤ α, ∀x ∈ S and pT 0 > α.

Hence, α < 0. Using the definition of S yields

pT z ≥ pT y − α, ∀y ∈ S1, z ∈ S2,

which, by setting ε = −α > 0, is

inf{pT z | z ∈ S2} ≥ sup{pT y | y ∈ S1}+ ε. �

Similarly, we can obtain the following strict separation theorem.

Theorem 1.3.29 (Strict Separation Theorem)
Let S1 and S2 be two closed convex sets on Rn, and suppose that S2 is

bounded. If S1 ∩ S2 = φ, there exists a nonzero vector p such that

inf{pT x |x ∈ S2} > sup{pT x |x ∈ S1}. (1.3.62)

Proof. The result (1.3.62) is immediate from (1.3.61). �

1.4 Optimality Conditions for Unconstrained Op-
timization

In this section we consider the unconstrained optimization problem

min f(x), x ∈ Rn (1.4.1)

and present its optimality conditions which include first-order conditions and
second-order conditions.

In general, we have two types of minimizers: local minimizer and global
minimizer. In the following, we give their exact definitions.

Download more at Learnclax.com

58 CHAPTER 1. INTRODUCTION

Definition 1.4.1 A point x∗ is called a local minimizer if there exists δ > 0
such that f(x∗) ≤ f(x) for all x ∈ Rn satisfying ‖x− x∗‖ < δ.

A point x∗ is called a strict local minimizer if there exists δ > 0 such that
f(x∗) < f(x) for all x ∈ Rn with x = x∗ and ‖x− x∗‖ < δ.

Definition 1.4.2 A point x∗ is called a global minimizer if f(x∗) ≤ f(x) for
all x ∈ Rn. A point x∗ is called a strict global minimizer if f(x∗) < f(x) for
all x ∈ Rn with x = x∗.

Figure 1.4.1 Types of minimal points

Note that, in practice, most algorithms are able to find only a local mini-
mizer that is not a global minimizer. Normally, finding a global minimizer is
a difficult task. In many practical applications, we are content with getting
a local minimizer. In addition, many global optimization algorithms proceed
by solving a sequence of local optimization algorithms. Hence, in this book,
our focus is on the model, property, convergence and computation of local
optimization algorithms. Usually, in the book, the minimizer refers to the
local minimizer. However, if the problem is a convex programming problem,
all local minimizers are also global minimizers.

The descent direction given in the following definition is an important
concept.

Definition 1.4.3 Let f : Rn → R be differentiable at x ∈ Rn. If there exists
a vector d ∈ Rn such that

〈∇f(x), d〉 < 0, (1.4.2)

then d is called a descent direction of f at x.

Download more at Learnclax.com

1.4. OPTIMALITY CONDITIONS FOR UNCONSTRAINED CASE 59

By means of Taylor’s expansion,

f(xk + td) = f(xk) + t∇f(xk)T d + o(t),

then it is easy to see that

∃δ > 0 such that f(xk + td) < f(xk), ∀t ∈ (0, δ)

if and only if d is a descent direction of f at xk.

Now we discuss the first-order optimality condition.

Theorem 1.4.4 (First-Order Necessary Condition)
Let f : D ⊂ Rn → R be continuously differentiable on an open set D. If

x∗ ∈ D is a local minimizer of (1.4.1), then

∇f(x∗) = 0. (1.4.3)

Proof. [proof I] Let x∗ be a local minimizer. Consider the sequence

xk = x∗ − αk∇f(x∗), αk > 0.

By Taylor’s expansion, for k sufficiently large, we have

0 ≤ f(xk)− f(x∗) = −αk∇f(ηk)T∇f(x∗),

where ηk is a convex combination of xk and x∗. Dividing by αk and taking
the limit, it follows from f ∈ C1 that

0 ≤ −‖∇f(x∗)‖2

which means ∇f(x∗) = 0. �

[proof II] (By contradiction). Suppose that ∇f(x∗) = 0. Taking d =
−∇f(x∗) yields

dT∇f(x∗) = −‖∇f(x∗)‖2 < 0.

So, d is a descent direction and there exists δ > 0 such that

f(x∗ + αd) < f(x∗), ∀α ∈ (0, δ)

which contradicts the assumption that x∗ is a local minimizer. �

Download more at Learnclax.com

60 CHAPTER 1. INTRODUCTION

[proof III] Let x∗ be a local minimizer, then there exists δ > 0 so that
f(x) ≥ f(x∗) for any x with ‖x− x∗‖ < δ. By Taylor’s expansion,

f(x) = f(x∗) +∇f(x∗)T (x− x∗) + o(‖x− x∗‖) ≥ f(x∗).

Dividing ‖x− x∗‖ and letting x→ x∗ yield

∇f(x∗)T (x− x∗)
‖x− x∗‖ ≥ 0.

Setting s = (x− x∗)/‖x− x∗‖, the above inequality is

∇f(x∗)T s ≥ 0, ∀s with ‖s‖ = 1.

Choosing s = ±ei, (i = 1, · · · , n), we obtain ∇f(x∗) = 0. �

Theorem 1.4.4 says that if x∗ is a local minimizer, f has a zero slope at
x∗. The following theorem indicates that if x∗ is a local minimizer, f has
nonnegative curvature at x∗ besides zero slope.

Theorem 1.4.5 (Second-Order Necessary Condition)
Let f : D ⊂ Rn → R be twice continuously differentiable on an open set

D. If x∗ is a local minimizer of (1.4.1), then ∇f(x∗) = 0 and ∇2f(x∗) is
positive semidefinite.

Proof. [proof I] We have known from Theorem 1.4.4 that ∇f(x∗) = 0,
hence we only need to prove that ∇2f(x∗) is positive semidefinite. Consider
the sequence

xk = x∗ + αkd, αk > 0,

where d is arbitrary. Since f ∈ C2 and ∇f(x∗) = 0, then by Taylor’s expan-
sion, we have for k sufficiently large that

0 ≤ f(xk)− f(x∗) =
1
2
α2

kd
T∇2f(ηk)d,

where ηk is a convex combination of xk and x∗. Dividing by 1
2α2

k and taking
the limit, we get

dT∇2f(x∗)d ≥ 0, ∀d ∈ Rn.

Hence we complete the proof. �

[proof II] (By contradiction). Suppose that∇2f(x∗) is not positive semidef-
inite, then we can choose d ∈ Rn such that dT∇2f(x∗)d < 0. Since f ∈ C2,

Download more at Learnclax.com

1.4. OPTIMALITY CONDITIONS FOR UNCONSTRAINED CASE 61

there exists δ > 0 and we can choose ε > 0 such that x∗ + εd ∈ B(x∗, δ) and
dT∇2f(x∗ + εd)d < 0.

By use of ∇f(x∗) = 0, it follows that

f(x∗ + εd) = f(x∗) +
1
2
ε2dT∇2f(x∗ + θεd)d,

where 0 ≤ θ ≤ 1. Therefore f(x∗ + εd) < f(x∗). This contradicts the
assumption that x∗ is a local minimizer. �

Next, we describe the second-order sufficient condition.

Theorem 1.4.6 (Second-Order Sufficient Condition)
Let f : D ⊂ Rn → R be twice continuously differentiable on an open set

D. If ∇f(x∗) = 0 and ∇2f(x∗) is positive definite, then x∗ ∈ D is a strict
local minimizer.

Proof. [proof I] Assume that ∇f(x∗) = 0 and ∇2f(x∗) is positive definite.
By Taylor’s expansion, for any vector d ∈ Rn such that x∗ + d lies in a
neighborhood of x∗ in which ∇2f(x∗ + d) is positive definite, we have

f(x∗ + d) = f(x∗) +
1
2
dT∇2f(x∗ + θd)d,

where θ ∈ (0, 1). Then we can choose δ > 0 such that x∗ + d ∈ B(x∗, δ) and
dT∇2f(x∗ + θd)d > 0. Therefore,

f(x∗ + d) > f(x∗)

which shows our result. �

[proof II] (By contradiction). Assume that x∗ is not a strict local min-
imizer, then there exists a sequence {xk} ⊂ D with xk = x∗, ∀k, such that
f(xk) ≤ f(x∗) for k sufficiently large. By use of Taylor’s expansion,

0 ≥ f(xk)− f(x∗)

= ∇f(x∗)T (xk − x∗) +
1
2
(xk − x∗)T∇2f(ηk)(xk − x∗),

where ηk is a convex combination of xk and x∗. Using ∇f(x∗) = 0, dividing
by 1

2‖xk − x∗‖2 and taking the limit, we have

0 ≥ ēT∇2f(x∗)ē, (1.4.4)

Download more at Learnclax.com

62 CHAPTER 1. INTRODUCTION

where ē is the accumulation point of the uniformly bounded sequence {(xk−
x∗)/‖xk − x∗‖} and ‖ē‖ = 1. Obviously, (1.4.4) contradicts the positive
definiteness of ∇2f(x∗). �

Definition 1.4.7 A point x∗ ∈ Rn is said to be a stationary (or critical)
point for the differentiable f if ∇f(x∗) = 0.

Theorem 1.4.4 tells us that if x∗ is a local minimizer, then it is a station-
ary point. However, the converse is not true. If x∗ is a stationary point, it
is possible for x∗ to be a local minimizer or maximizer, it is also possible for
x∗ to not be an extreme point. If a stationary point x∗ is neither minimizer
nor maximizer, it is called a saddle point. Therefore, a stationary point need
not be a local minimizer. But if the objective function which is differen-
tiable is convex, its stationary points are the local minimizers and the global
minimizers.

Theorem 1.4.8 below says, for a convex function, that its local minimizer
is also a global minimizer. Theorem 1.4.9 says, for a differentiable convex
function, that its stationary point is also a global minimizer.

Theorem 1.4.8 Let S ⊂ Rn be a nonempty convex set and f : S ⊂ Rn → R.
Let x∗ ∈ S be a local minimizer for minx∈S f(x).

1. If f is convex, then x∗ is also a global minimizer.

2. If f is strictly convex, then x∗ is a unique global minimizer.

Proof. (1) Let f be convex and x∗ be a local minimizer, then there exists
a δ-neighborhood B(x∗, δ) such that

f(x) ≥ f(x∗), ∀x ∈ S ∩B(x∗, δ). (1.4.5)

By contradiction, suppose that x∗ is not a global minimizer. Then we can
find some x̂ ∈ S such that f(x̂) < f(x∗). By convexity of f , we have for
α ∈ (0, 1),

f(αx̂ + (1− α)x∗) ≤ αf(x̂) + (1− α)f(x∗)
< αf(x∗) + (1− α)f(x∗)
= f(x∗). (1.4.6)

Download more at Learnclax.com

1.5. STRUCTURE OF OPTIMIZATION METHODS 63

But for sufficiently small α > 0, αx̂ + (1 − α)x∗ ∈ S ∩ B(x∗, δ). Therefore,
(1.4.6) contradicts (1.4.5). This contradiction proves the first conclusion.

(2) From part (1) we have that x∗ is a global minimizer because strict
convexity means convexity. Therefore, it is enough to prove the uniqueness.

By contradiction, suppose that x∗ is not the unique global minimizer, so
that we can find x ∈ S, x = x∗, such that f(x) = f(x∗).

By strict convexity of f ,

f(
1
2
x +

1
2
x∗) <

1
2
f(x) +

1
2
f(x∗) = f(x∗). (1.4.7)

Note from the convexity of S that 1
2x+1

2x∗ ∈ S. Therefore, (1.4.7) contradicts
the fact that x∗ is a global minimizer. �

Theorem 1.4.9 Let f : Rn → R be a differentiable convex function. Then
x∗ is a global minimizer if and only if ∇f(x∗) = 0.

Proof. Sufficiency. Let f be a differentiable convex function in Rn and
∇f(x∗) = 0, then

f(x) ≥ f(x∗) +∇f(x∗)(x− x∗) = f(x∗), ∀x ∈ Rn

which indicates that x∗ is a global minimizer of f .
Necessity. It is obvious because the global minimizer is also a local mini-

mizer, and is also a stationary point. �

The optimality conditions of constrained optimization will be discussed
in Chapter 8.

1.5 Structure of Optimization Methods

Usually, the optimization method is an iterative one for finding the minimizer
of an optimization problem. The basic idea is that, given an initial point
x0 ∈ Rn, one generates an iterate sequence {xk} by means of some iterative
rule, such that when {xk} is a finite sequence, the last point is the optimal
solution of the model problem; when {xk} is infinite, it has a limit point
which is the optimal solution of the model problem. A typical behavior of
an algorithm which is regarded as acceptable is that the iterates xk move
steadily towards the neighborhood of a local minimizer x∗, and then rapidly
converge to the point x∗. When a given convergence rule is satisfied, the

Download more at Learnclax.com

64 CHAPTER 1. INTRODUCTION

iteration will be terminated. In general, the most natural stopping criterion
is

‖∇f(xk)‖ ≤ δ, (1.5.1)

where δ is a prescribed tolerance. If (1.5.1) is satisfied, it implies that the
gradient vector ∇f(xk) tends to zero and the iterate sequence {xk} converges
to a stationary point.

Let xk be the k-th iterate, dk k-th direction, αk k-th steplength factor.
Then the k-th iteration is

xk+1 = xk + αkdk. (1.5.2)

We can see from (1.5.2) that the different stepsize αk and different direction
dk form different methods. In Chapter 2 we will discuss several methods to
determine αk. In Chapter 3 we will present various methods to find search
directions dk. Most optimization methods are so-called descent methods in
the sense that f satisfies at each iteration

f(xk+1) = f(xk + αkdk) < f(xk),

in which dk is a descent direction defined by Definition 1.4.3.
The basic scheme of optimization methods is as follows.

Algorithm 1.5.1 (Basic Scheme)

Step 0. (Initial step) Given initial point x0 ∈ Rn and the tolerance
ε > 0.

Step 1. (Termination criterion) If ‖∇f(xk)‖ ≤ ε, stop.

Step 2. (Finding the direction) According to some iterative scheme,
find dk which is a descent direction.

Step 3. (Line search) Determine the stepsize αk such that the objec-
tive function value decreases, i.e.,

f(xk + αkdk) < f(xk).

Step 4. (Loop) Set xk+1 = xk + αkdk, k := k + 1, and loop to Step
1. �

Download more at Learnclax.com

1.5. STRUCTURE OF OPTIMIZATION METHODS 65

Convergence rate, which is a local characterization of an algorithm, can
measure the effectiveness of an optimization method. We now give a brief
description associated with different types of convergence rate. More details
can be found in Ortega and Rheinboldt (1970).

Let the iterate sequence {xk} generated by an algorithm converge to x∗

in some norm, i.e.,
lim

k→∞
‖xk − x∗‖ = 0. (1.5.3)

If there are real number α ≥ 1 and a positive constant β which is independent
of the iterative number k, such that

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖α

= β, (1.5.4)

we say that {xk} has α-order of Q-convergence rate, where Q-convergence
rate means Quotient-convergence rate. In particular,

1. when α = 1 and β ∈ (0, 1), the sequence {xk} is said to converge
Q-linearly;

2. when α = 1 and β = 0, or 1 < α < 2 and β > 0, the sequence {xk} is
said to converge Q-superlinearly;

3. when α = 2, we say that {xk} has Q-quadratic convergence rate.

The primary motivation for introducing the Q-convergence rate is to com-
pare the speed of convergence of different iterations. It is not difficult to see
that the convergence rate depends on α and (more weakly) on β. Suppose
that there are two sequences {xk} and {x′

k} and that their Q-order and Q-
factor are respectively {α, β} and {α′, β′}. If α > α′, then the sequence with
Q-α order converges faster than the sequence with Q-α′ order. For exam-
ple, a quadratically convergent sequence will eventually converge faster than
linearly and superlinearly convergent sequences. When α = α′, i.e., their
Q-order of convergence rate is the same, if β < β′, then the sequence {xk} is
faster than {x′

k}.
Mainly, we are concerned with Q-linear, Q-superlinear and Q-quadratic

convergence. Usually, if the convergence rate of an algorithm is Q-superlinear
or Q-quadratic, we say that it has rapid convergence rate. For example, quasi-
Newton methods converge Q-superlinearly, and Newton’s method converges
Q-quadratically.

Download more at Learnclax.com

66 CHAPTER 1. INTRODUCTION

Another measure of the convergence rate which is weaker than Q-convergence
rate is R-convergence rate which means Root-convergence rate.

Let {xk} ⊂ Rn be any sequence that converges to x∗. Let

Rp =

{
lim supk→∞ ‖xk − x∗‖1/k, if p = 1;
lim supk→∞ ‖xk − x∗‖1/pk

, if p > 1.

If R1 = 0, {xk} is said to be R-superlinearly convergent to x∗.

If 0 < R1 < 1, {xk} is said to be R-linearly convergent to x∗.

If R1 = 1, {xk} is said to be R-sublinearly convergent to x∗.

Similarly, if R2 = 0, 0 < R2 < 1, R2 ≥ 1 respectively, then {xk} is said to
be R-superquadratically, R-quadratically, and R-subquadratically convergent
to x∗ respectively.

The above R-rate of convergence can also be stated as follows:
The sequence {xk} is said to be R-linearly convergent if there is a sequence

of nonnegative scalars {qk} such that

‖xk − x∗‖ ≤ qk for all k, and {qk} converges Q-linearly to zero.

Similarly, the sequence {xk} is said to be R-superlinearly convergent if {qk}
converges Q-superlinearly to zero; the sequence {xk} is said to be R-quadratically
convergent if {qk} converges Q-quadratically to zero.

Similar to Q-rate of convergence, R-rate of convergence also depends on
R-order p and R-factor Rp. The higher the R-order is, the faster the corre-
sponding sequence converges. When the R-order is the same, the smaller the
R-factor is, the faster the corresponding sequence converges.

Throughout this book we mainly discuss Q-convergence rate. Hence, if
there is not specific indication, the convergence rate refers to Q-convergence
rate.

As indicated above, usually an algorithm with superlinear or quadratic
rate is said to be desirable. However, it must be appreciated that the theo-
retical results of the convergence and convergence rate are not a guarantee of
good performance. Not only do these results themselves fall short of guaran-
tee of good behavior, but also they neglect computer round-off errors which
may be crucial. In addition, these results often impose certain restrictions
on f(x) which may not be easy to verify, and in some cases (for example,
in the convex case), these conditions may not be satisfied in practice. Thus,

Download more at Learnclax.com

1.5. STRUCTURE OF OPTIMIZATION METHODS 67

the development of an optimization method also relies on numerical experi-
mentation. The ideal is a good selection of experimental testing backed up
by the proofs of convergence and convergence rate.

We have known from the above discussion that the convergence rate mea-
sures the local behavior of an algorithm and is used in local analysis. The
theorem below gives a characterization of superlinear convergence which is
useful for constructing termination criteria.

Theorem 1.5.2 If the sequence {xk} converges Q-superlinearly to x∗, then

lim
k→∞

‖xk+1 − xk‖
‖xk − x∗‖ = 1. (1.5.5)

However, in general, the converse is not true.

Proof. For a given integer k ≥ 0,

‖xk+1 − x∗‖
‖xk − x∗‖ =

‖(xk+1 − xk) + (xk − x∗)‖
‖xk − x∗‖

≥
∣∣∣∣‖xk+1 − xk‖
‖xk − x∗‖ − ‖xk − x∗‖

‖xk − x∗‖

∣∣∣∣ .
It follows from the definition of Q-superlinear convergence that

lim
k→∞

‖xk+1 − xk‖
‖xk − x∗‖ = 1.

To show that the converse is not true, we give a counter-example. In
normed space {R, | · |}, define a sequence {xk} as follows:

x2i−1 =
1
i!

(i = 1, 2, · · ·),

x2i = 2x2i−1 (i = 1, 2 · · ·).

Obviously, x∗ = 0. We have

|xk+1 − xk|
|xk − x∗| =

{
1, k = 2i− 1, i ≥ 1,
1− 1

2(i+1) , k = 2i, i ≥ 1.

So, {xk} satisfies (1.5.5) but does not converge Q-superlinearly to x∗. �

Download more at Learnclax.com

68 CHAPTER 1. INTRODUCTION

This theorem shows that if an algorithm is convergent Q-superlinearly,
instead of ‖xk − x∗‖, we can use ‖xk+1− xk‖ to give a termination criterion,
and the estimation will be improved as k increases.

Finally, we discuss some termination criteria which are used frequently
in practice. In order to guarantee convergence of an algorithm, we require

|f(xk)− f(x∗)| ≤ ε or ‖xk − x∗‖ ≤ ε,

where the parameter ε is user-supplied. Unfortunately, these are not practi-
cable since they need the information of the solution x∗.

Instead, we often use the following termination criteria:

‖∇f(xk)‖ ≤ ε3, (1.5.6)
‖xk+1 − xk‖ ≤ ε1, (1.5.7)
f(xk)− f(xk+1) ≤ ε1. (1.5.8)

Normally, when an algorithm can be expected to converge rapidly, it
is suggested to use (1.5.7) or (1.5.8). When an algorithm has first-order
derivative information and can be expected to converge less rapidly, a test
based on (1.5.6) may be appropriate.

Himmeblau [174] suggested that it is suitable to use (1.5.7) together with
(1.5.8) as follows:

When ‖xk‖ > ε2 and |f(xk)| > ε2, use

‖xk+1 − xk‖
‖xk‖

≤ ε1,
|f(xk)− f(xk+1)|

|f(xk)|
≤ ε1; (1.5.9)

otherwise, use

‖xk+1 − xk‖ ≤ ε1, |f(xk)− f(xk+1)| ≤ ε1. (1.5.10)

He also suggested using (1.5.9)-(1.5.10) together with (1.5.6).
In general, take ε1 = ε2 = 10−5, ε3 = 10−4.

Exercises

1. Let A be an n×n nonsingular matrix. Prove that ‖Ax‖ ≥ ‖x‖/‖A−1‖.

2. Prove the equivalence (1.2.22)-(1.2.26) of vector norms.

Download more at Learnclax.com

1.5. STRUCTURE OF OPTIMIZATION METHODS 69

3. Prove Cauchy-Schwarz inequality (1.2.34). Further, prove inequality
(1.2.35).

4. Prove (1.2.45).

5. Let A = UDV ∗ be the singular value decomposition. Prove that
A+ = V D+U∗, where D+ is defined in (1.2.54).

6. Prove Sherman-Morrison formula (1.2.67) and Sherman-Morrison-
Woodburg formula (1.2.68).

7. Show Theorem 1.2.6 (Von-Neumann Lemma).

8. Prove (1.2.69) and (1.2.70).

9. Prove that a function that is Fréchet differentiable must be Gateaux
differentiable, but the converse is not true.

10. Prove Theorem 1.2.23.

11. Show that the intersection of finitely many convex sets is a convex set.

12. Show by induction that the set S ⊂ Rn is convex if and only if for
any x1, x2, · · · , xm ∈ S,

m∑
i=1

αixi ∈ S,

where
∑m

i=1 αi = 1, αi ≥ 0, i = 1, · · · , m. That means a convex combination
of arbitrarily finitely many points of a convex set still belongs to the convex
set.

13. Let A ∈ Rm×n, b ∈ Rm. Show, by definition, that

S = {x ∈ Rn | Ax = b, x ≥ 0}

is a convex set.

14. Let

D1 = {x| x1 + x2 ≤ 1, x1 ≥ 0}, D2 = {x| x1 − x2 ≥ 0, x1 ≤ 0}.

Download more at Learnclax.com

70 CHAPTER 1. INTRODUCTION

Set D = D1∪D2. Show that D is not necessarily convex though both D1 and
D2 are convex. This means that the union of convex sets is not necessarily a
convex set.

15. Write the convex hull of the set S = {(0, 0)T , (1, 0)T , (0, 1)T }.

16. Let S ⊆ Rn. Prove that the following two statements are equivalent.
(1) The convex hull is the set of all convex combinations of arbitrarily finitely
many elements of S as defined in (1.3.3).
(2) The convex hull conv(S) is the intersection of all convex sets containing S.

17. Let fi(x), i = 1, 2, · · · , m, be convex functions defined on convex set
D ⊂ Rn. Show that the function

g(x) =
m∑

i=1

αifi(x)

is also a convex function on D, where
∑m

i=1 αi = 1, αi ≥ 0, i = 1, 2, · · · , m.
This means that the convex combination of convex functions is a convex
function.

18. Discriminate convexity of the following functions:
(1) f(x1, x2) = x1e

−(x1+x2);
(2) f(x1, x2, x3) = x2

1 + 3x2
2 + 9x2

3 − 2x1x2 + 6x2x3 + 2x3x1.

19. Prove Theorem 1.3.11.

20. State the first-order and second-order optimality conditions for un-
constrained optimization and outline their proofs.

Download more at Learnclax.com

Chapter 2

Line Search

2.1 Introduction

Line search, also called one-dimensional search, refers to an optimization pro-
cedure for univariable functions. It is the base of multivariable optimization.
As stated before, in multivariable optimization algorithms, for given xk, the
iterative scheme is

xk+1 = xk + αkdk. (2.1.1)

The key is to find the direction vector dk and a suitable step size αk. Let

φ(α) = f(xk + αdk). (2.1.2)

So, the problem that departs from xk and finds a step size in the direction
dk such that

φ(αk) < φ(0)

is just line search about α.
If we find αk such that the objective function in the direction dk is mini-

mized, i.e.,
f(xk + αkdk) = min

α>0
f(xk + αdk),

or
φ(αk) = min

α>0
φ(α),

such a line search is called exact line search or optimal line search, and αk is
called optimal step size. If we choose αk such that the objective function has
acceptable descent amount, i.e., such that the descent f(xk)−f(xk +αkdk) >

Download more at Learnclax.com

72 CHAPTER 2. LINE SEARCH

0 is acceptable by users, such a line search is called inexact line search, or
approximate line search, or acceptable line search.

Since, in practical computation, theoretically exact optimal step size gen-
erally cannot be found, and it is also expensive to find almost exact step
size, therefore the inexact line search with less computation load is highly
popular.

The framework of line search is as follows. First, determine or give an
initial search interval which contains the minimizer; then employ some section
techniques or interpolations to reduce the interval iteratively until the length
of the interval is less than some given tolerance.

Next, we give a notation about the search interval and a simple method
to determine the initial search interval.

Definition 2.1.1 Let φ : R → R,α∗ ∈ [0,+∞), and

φ(α∗) = min
α≥0

φ(α).

If there exists a closed interval [a, b] ⊂ [0,+∞) such that α∗ ∈ [a, b], then
[a, b] is called a search interval for one-dimensional minimization problem
minα≥0 φ(α). Since the exact location of the minimum of φ over [a, b] is not
known, this interval is also called the interval of uncertainty.

A simple method to determine an initial interval is called the forward-
backward method. The basic idea of this method is as follows. Given an
initial point and an initial steplength, we attempt to determine three points
at which their function values show “high–low–high” geometry. If it is not
successful to go forward, we will go backward. Concretely, given an initial
point α0 and a steplength h0 > 0. If

φ(α0 + h0) < φ(α0),

then, next step, depart from α0+h0 and continue going forward with a larger
step until the objective function increases. If

φ(α0 + h0) > φ(α0),

then, next step, depart from α0 and go backward until the objective function
increases. So, we will obtain an initial interval which contains the minimum
α∗.

Download more at Learnclax.com

2.1. INTRODUCTION 73

Algorithm 2.1.2 (Forward-Backward Method)

Step 1. Given α0 ∈ [0,∞), h0 > 0, the multiple coefficient t > 1
(Usually t = 2). Evaluate φ(α0), k := 0.

Step 2. Compare the objective function values. Set αk+1 = αk + hk

and evaluate φk+1 = φ(αk+1). If φk+1 < φk, go to Step 3;
otherwise, go to Step 4.

Step 3. Forward step. Set hk+1 := thk, α := αk, αk := αk+1, φk :=
φk+1, k := k + 1, go to Step 2.

Step 4. Backward step. If k = 0, invert the search direction. Set
hk := −hk, αk := αk+1, go to Step 2; otherwise, set

a = min{α, αk+1}, b = max{α, αk+1},

output [a, b] and stop. �

The methods of line search presented in this chapter use the unimodality
of the function and interval. The following definitions and theorem introduce
their concepts and properties.

Definition 2.1.3 Let φ : R → R, [a, b] ⊂ R. If there is α∗ ∈ [a, b] such that
φ(α) is strictly decreasing on [a, α∗] and strictly increasing on [α∗, b], then
φ(α) is called a unimodal function on [a, b]. Such an interval [a, b] is called
a unimodal interval related to φ(α).

The unimodal function can also be defined as follows.

Definition 2.1.4 If there exists a unique α∗ ∈ [a, b], such that for any
α1, α2 ∈ [a, b], α1 < α2, the following statements hold:

if α2 < α∗, then φ(α1) > φ(α2);

if α1 > α∗, then φ(α1) < φ(α2);

then φ(α) is the unimodal function on [a, b].

Note that, first, the unimodal function does not require the continuity and
differentiability of the function; second, using the property of the unimodal
function, we can exclude portions of the interval of uncertainty that do not

Download more at Learnclax.com

74 CHAPTER 2. LINE SEARCH

contain the minimum, such that the interval of uncertainty is reduced. The
following theorem shows that if the function φ is unimodal on [a, b], then the
interval of uncertainy could be reduced by comparing the function values of
φ at two points within the interval.

Theorem 2.1.5 Let φ : R → R be unimodal on [a, b]. Let α1, α2 ∈ [a, b],
and α1 < α2. Then

1. if φ(α1) ≤ φ(α2), then [a, α2] is a unimodal interval related to φ;

2. if φ(α1) ≥ φ(α2), then [α1, b] is a unimodal interval related to φ.

Proof. From the Definition 2.1.3, there exists α∗ ∈ [a, b] such that φ(α)
is strictly decreasing over [a, α∗] and strictly increasing over [α∗, b]. Since
φ(α1) ≤ φ(α2), then α∗ ∈ [a, α2] (see Figure 2.1.1). Since φ(α) is unimodal
on [a, b], it is also unimodal on [a, α2]. Therefore [a, α2] is a unimodal interval
related to φ(α) and the proof of the first part is complete.

The second part of the theorem can be proved similarly. �

This theorem indicates that, for reducing the interval of uncertainty, we
must at least select two observations, evaluate and compare their function
values.

Figure 2.1.1 Properties of unimodal interval and unimodal function

2.2 Convergence Theory for Exact Line Search

The general form of an unconstrained optimization algorithm is as follows.

Algorithm 2.2.1 (General Form of Unconstrained Optimization)

Initial Step: Given x0 ∈ Rn, 0 ≤ ε � 1.

Download more at Learnclax.com

2.2. CONVERGENCE THEORY FOR EXACT LINE SEARCH 75

k-th Step: Compute the descent direction dk;
Compute the step size αk, such that

f(xk + αkdk) = min
α≥0

f(xk + αdk); (2.2.1)

Set
xk+1 = xk + αkdk; (2.2.2)

If ‖∇f(xk+1)‖ ≤ ε, stop; otherwise, repeat the above steps.
�

Set
φ(α) = f(xk + αdk), (2.2.3)

obviously we have from the algorithm that

φ(0) = f(xk), φ(α) ≤ φ(0).

In fact, (2.2.1) is to find the global minimizer of φ(α) which is rather difficult.
Instead, we look for the first stationary point, i.e., take αk such that

αk = min{α ≥ 0 | ∇f(xk + αdk)T dk = 0}. (2.2.4)

Since, by (2.2.1) and (2.2.4), we find the exact minimizer and the stationary
point of φ(α) respectively, we say that (2.2.1) and (2.2.4) are exact line
searches.

Let 〈dk,−∇f(xk)〉 denote the angle between dk and −∇f(xk), we have

cos〈dk,−∇f(xk)〉 = − dT
k∇f(xk)

‖dk‖‖∇f(xk)‖
. (2.2.5)

The following theorem gives a bound of descent in function values for each
iteration in exact line search.

Theorem 2.2.2 Let αk > 0 be the solution of (2.2.1). Let ‖∇2f(xk +
αdk)‖ ≤ M ∀α > 0, where M is some positive number. Then

f(xk)− f(xk + αkdk) ≥
1

2M
‖∇f(xk)‖2 cos2〈dk,−∇f(xk)〉. (2.2.6)

Download more at Learnclax.com

76 CHAPTER 2. LINE SEARCH

Proof. From the assumptions we have that

f(xk + αdk) ≤ f(xk) + αdT
k∇f(xk) +

α2

2
M‖dk‖2, ∀α > 0. (2.2.7)

Set ᾱ = −dT
k∇f(xk)/(M‖dk‖2); it follows from the assumptions, (2.2.7) and

(2.2.5) that

f(xk)− f(xk + αkdk) ≥ f(xk)− f(xk + ᾱdk)

≥ −ᾱdT
k∇f(xk)−

ᾱ2

2
M‖dk‖2

=
1
2

(dT
k∇f(xk))2

M‖dk‖2

=
1

2M
‖∇f(xk)‖2

(dT
k∇f(xk))2

‖dk‖2‖∇f(xk)‖2

=
1

2M
‖∇f(xk)‖2 cos2〈dk,−∇f(xk)〉.�

Now we are in position to state the convergence property of general un-
constrained optimization algorithms with exact line search. The following
two theorems state the convergence by different forms.

Theorem 2.2.3 Let f(x) be a continuously differentiable function on an
open set D ⊂ Rn, assume that the sequence from Algorithm 2.2.1 satisfies
f(xk+1) ≤ f(xk)∀k and ∇f(xk)T dk ≤ 0. Let x̄ ∈ D be an accumulation
point of {xk} and K1 be an index set with K1 = {k | limk→∞ xk = x̄}. Also
assume that there exists M > 0 such that ‖dk‖ < M,∀k ∈ K1. Then, if d̄ is
any accumulation point of {dk}, we have

∇f(x̄)T d̄ = 0. (2.2.8)

Furthermore, if f(x) is twice continuously differentiable on D, then

d̄T∇2f(x̄)d̄ ≥ 0. (2.2.9)

Proof. It is enough to prove (2.2.8) because the proof of (2.2.9) is similar.
Let K2 ⊂ K1 be an index set with d̄ = limk∈K2 dk. If d̄ = 0, (2.2.8) is

trivial. Otherwise, we consider the following two cases.

Download more at Learnclax.com

2.2. CONVERGENCE THEORY FOR EXACT LINE SEARCH 77

(i) There exists an index set K3 ⊂ K2 such that limk∈K3 αk = 0. Since
αk is an exact step size, then ∇f(xk +αkdk)T dk = 0. Since ‖dk‖ is uniformly
bounded above and αk → 0, taking the limit yields

∇f(x̄)T d̄ = 0.

(ii) Case of lim infk∈K2 αk = ᾱ > 0. Let K4 ⊂ K2 be an index set of k
with αk ≥ ᾱ/2,∀k ∈ K4. Now assume that the conclusion (2.2.8) is not true,
then we have

∇f(x̄)T d̄ < −δ < 0.

So, there exist a neighborhood N(x̄) of x̄ and an index set K5 ⊂ K4 such
that when x ∈ N(x̄) and k ∈ K5,

∇f(x)T dk ≤ −δ/2 < 0.

Let α̂ be a sufficiently small positive number, such that for all 0 ≤ α ≤ α̂
and all k ∈ K5, xk + αdk ∈ N(x̄). Take α∗ = min(ᾱ/2, α̂), then from
the non-increasing property of the algorithm, exact line search and Taylor’s
expansion, we have

f(x̄)− f(x0) =
∞∑

k=0

[f(xk+1)− f(xk)]

≤
∑

k∈K5

[f(xk+1)− f(xk)]

≤
∑

k∈K5

[f(xk + α∗dk)− f(xk)] (2.2.10)

=
∑

k∈K5

∇f(xk + τkdk)T α∗dk (2.2.11)

≤
∑

k∈K5

−
(

δ

2

)
α∗

= −∞,

where 0 ≤ τk ≤ α∗. The above contradiction shows that (2.2.8) also holds
for case (ii).

The proof of (2.2.9) is similar. It is enough to note using the second-order
form of the Taylor expansion instead of the first-order form in (2.2.11). In
fact, from (2.2.10) we have

f(x̄)− f(x0)

Download more at Learnclax.com

78 CHAPTER 2. LINE SEARCH

≤
∑

k∈K5

[f(xk + α∗dk)− f(xk)]

=
∑

k∈K5

[
∇f(xk)T (α∗dk) +

(α∗)2

2
dT

k∇2f(xk + τkdk)dk

]
for 0 ≤ τk ≤ α∗

≤
∑

k∈K5

(α∗)2

2
dT

k∇2f(xk + τkdk)dk for 0 ≤ τk ≤ α∗

≤
∑

k∈K5

[
−1

2

(
δ

2

)
(α∗)2

]

= −∞. (2.2.12)

We also get a contradiction which proves (2.2.9). �

Theorem 2.2.4 Let ∇f(x) be uniformly continuous on the level set L =
{x ∈ Rn | f(x) ≤ f(x0)}. Let also the angle θk between −∇f(xk) and the
direction dk generated by Algorithm 2.2.1 is uniformly bounded away from
90◦, i.e., satisfies

θk ≤
π

2
− µ, for some µ > 0. (2.2.13)

Then ∇f(xk) = 0 for some k; or f(xk) → −∞; or ∇f(xk) → 0.

Proof. Assume that, for all k, ∇f(xk) = 0 and f(xk) is bounded below.
Since {f(xk)} is monotonic descent, its limit exists. Therefore

f(xk)− f(xk+1) → 0. (2.2.14)

Assume, by contradiction, that ∇f(xk) → 0 does not hold. Then there
exists ε > 0 and a subset K, such that ‖∇f(xk)‖ ≥ ε∀k ∈ K. Therefore

−∇f(xk)T dk/‖dk‖ = ‖∇f(xk)‖ cos θk ≥ ε sin µ
∆= ε1. (2.2.15)

Note that

f(xk + αdk)
= f(xk) + α∇f(ξk)T dk

= f(xk) + α∇f(xk)T dk + α[∇f(ξk)−∇f(xk)]T dk

≤ f(xk) + α‖dk‖
(
∇f(xk)T dk

‖dk‖
+ ‖∇f(ξk)−∇f(xk)‖

)
, (2.2.16)

Download more at Learnclax.com

2.2. CONVERGENCE THEORY FOR EXACT LINE SEARCH 79

where ξk lies between xk and xk + αdk. Since ∇f(x) is uniformly continuous
on the level set L, there exists ᾱ such that when 0 ≤ α‖dk‖ ≤ ᾱ, we have

‖∇f(ξk)−∇f(xk)‖ ≤
1
2
ε1. (2.2.17)

By (2.2.15)–(2.2.17), we get

f

(
xk + ᾱ

dk

‖dk‖

)
≤ f(xk) + ᾱ

(
∇f(xk)T dk

‖dk‖
+

1
2
ε1

)

≤ f(xk)−
1
2
ᾱε1.

Therefore
f(xk+1) ≤ f

(
xk + ᾱ

dk

‖dk‖

)
≤ f(xk)−

1
2
ᾱε1,

which contradicts (2.2.14). The contradiction shows that ∇f(xk) → 0. We
complete this proof. �

In the remainder of this section, we discuss the convergence rate of min-
imization algorithms with exact line search. For convenience of the proof of
the theorem, we first give some lemmas.

Lemma 2.2.5 Let φ(α) be twice continuously differentiable on the closed
interval [0, b] and φ′(0) < 0. If the minimizer α∗ ∈ (0, b) of φ(α) on [0, b],
then

α∗ ≥ α̃ = −φ′(0)/M, (2.2.18)

where M is a positive number such that φ′′(α) ≤ M, ∀α ∈ [0, b].

Proof. Construct the auxiliary function

ψ(α) = φ′(0) + Mα,

which has the unique zero

α̃ = −φ′(0)/M.

Noting that φ′′(α) ≤ M , it follows that

φ′(α) = φ′(0) +
∫ α

0
φ′′(α)d α ≤ φ′(0) +

∫ α

0
Md α = ψ(α).

Download more at Learnclax.com

80 CHAPTER 2. LINE SEARCH

Setting α = α∗ in the above inequality and noting that φ′(α∗) = 0, we obtain

0 ≤ ψ(α∗) = φ′(0) + Mα∗

which is (2.2.18). �

Lemma 2.2.6 Let f(x) be twice continuously differentiable on Rn. Then for
any vector x, d ∈ Rn and any number α, the equality

f(x + αd) = f(x) + α∇f(x)T d + α2
∫ 1

0
(1− t)[dT∇2f(x + tαd)d]dt (2.2.19)

holds.

Proof. From calculus, we have

f(x + αd)− f(x)

=
∫ 1

0
df(x + tαd)

= −
∫ 1

0
[α∇f(x + tαd)T d]d(1− t)

= −[(1− t)α∇f(x + tαd)T d]10 +
∫ 1

0
(1− t)d[α∇f(x + tαd)T d]

= α∇f(x)T d + α2
∫ 1

0
[(1− t)dT∇2f(x + tαd)d]dt. �

Lemma 2.2.7 Let f(x) be twice continuously differentiable in the neighbor-
hood of the minimizer x∗. Assume that there exist ε > 0 and M > m > 0,
such that

m‖y‖2 ≤ yT∇2f(x)y ≤ M‖y‖2, ∀y ∈ Rn (2.2.20)

holds when ‖x− x∗‖ < ε. Then we have

1
2
m‖x− x∗‖2 ≤ f(x)− f(x∗) ≤ 1

2
M‖x− x∗‖2 (2.2.21)

and
‖∇f(x)‖ ≥ m‖x− x∗‖. (2.2.22)

Download more at Learnclax.com

2.2. CONVERGENCE THEORY FOR EXACT LINE SEARCH 81

Proof. From Lemma 2.2.6 we have

f(x)− f(x∗)

= ∇f(x∗)T (x− x∗) +
∫ 1

0
(1− t)(x− x∗)T∇2f(tx + (1− t)x∗)(x− x∗)dt

=
∫ 1

0
(1− t)(x− x∗)T∇2f(tx + (1− t)x∗)(x− x∗)dt. (2.2.23)

Note that (2.2.20) and the integral mean-value theorem give

m‖x− x∗‖2
∫ 1

0
(1− t)dt

≤
∫ 1

0
(1− t)(x− x∗)T∇2f(tx + (1− t)x∗)(x− x∗)dt

≤ M‖x− x∗‖2
∫ 1

0
(1− t)dt. (2.2.24)

Then combining (2.2.23) and (2.2.24) yields (2.2.21).
Also, using Taylor expansion gives

∇f(x) = ∇f(x)−∇f(x∗) =
∫ 1

0
∇2f(tx + (1− t)x∗)(x− x∗)dt.

Then

‖∇f(x)‖‖x− x∗‖ ≥ (x− x∗)T∇f(x)

=
∫ 1

0
(x− x∗)T∇2f(tx + (1− t)x∗)(x− x∗)dt

≥ m‖x− x∗‖2

which proves (2.2.22). �

Now we are in the position to give the theorem about convergence rate
which shows that the local convergence rate of Algorithm 2.2.1 with exact
line search is at least linear.

Theorem 2.2.8 Let the sequence {xk} generated by Algorithm 2.2.1 con-
verge to the minimizer x∗ of f(x). Let f(x) be twice continuously differen-
tiable in a neighborhood of x∗. If there exist ε > 0 and M > m > 0 such that
when ‖x− x∗‖ < ε,

m‖y‖2 ≤ yT∇2f(x)y ≤ M‖y‖2, ∀y ∈ Rn (2.2.25)

holds, then the sequence {xk}, at least, converges linearly to x∗.

Download more at Learnclax.com

82 CHAPTER 2. LINE SEARCH

Proof. Let limk→∞ xk = x∗. We may assume that ‖xk − x∗‖ ≤ ε for k
sufficiently large. Since ‖xk+1 − x∗‖ < ε, there exists δ > 0 such that

‖xk + (αk + δ)dk − x∗‖ = ‖xk+1 − x∗ + δdk‖ < ε. (2.2.26)

Note that φ(α) = f(xk +αdk), φ′(α) = ∇f(xk +αdk)T dk, φ
′(0) = ∇f(xk)T dk

and |φ′(0)| ≤ ‖∇f(xk)‖‖dk‖. We have φ′(0) < 0,

ρ‖∇f(xk)‖‖dk‖ ≤ −φ′(0) ≤ ‖∇f(xk)‖‖dk‖, for some ρ ∈ (0, 1) (2.2.27)

and
φ′′(α) = dT

k∇2f(xk + αdk)dk ≤ M‖dk‖2.

Then, by Lemma 2.2.5, we know that the minimizer αk of φ(α) on [0, αk + δ]
satisfies

αk ≥ α̃k =
−φ′(0)
M‖dk‖2

≥ ρ‖∇f(xk)‖
M‖dk‖

∆= ᾱk. (2.2.28)

Set x̄k = xk + ᾱkdk. Obviously, it follows from (2.2.26) that ‖x̄k − x∗‖ < ε.
Therefore,

f(xk + αkdk)− f(xk)
≤ f(xk + ᾱkdk)− f(xk)

= ᾱk∇f(xk)T dk + ᾱ2
k

∫ 1

0
(1− t)dT

k∇2f(xk + tᾱkdk)dkdt (from Lemma 2.2.6)

≤ ᾱk(−ρ)‖∇f(xk)‖‖dk‖+
1
2
Mᾱ2

k‖dk‖2 (from (2.2.25) and (2.2.27))

≤ − ρ2

2M
‖∇f(xk)‖2 (from (2.2.28))

≤ − ρ2

2M
m2‖xk − x∗‖2 (from (2.2.22))

≤ −
(

ρm

M

)2

[f(xk)− f(x∗)] (from (2.2.21)).

The above inequalities give

f(xk+1)− f(x∗) = [f(xk+1)− f(xk)] + [f(xk)− f(x∗)]

≤
[
1−

(
ρm

M

)2
]

[f(xk)− f(x∗)]. (2.2.29)

Download more at Learnclax.com

2.2. CONVERGENCE THEORY FOR EXACT LINE SEARCH 83

Set

θ =

[
1−

(
ρm

M

)2
] 1

2

. (2.2.30)

Obviously θ ∈ (0, 1). Therefore (2.2.29) can be written as

f(xk)− f(x∗) ≤ θ2[f(xk−1)− f(x∗)]
≤ · · ·
≤ θ2k[f(x0)− f(x∗)]. (2.2.31)

Furthermore, by (2.2.21), we have

‖xk − x∗‖2 ≤ 2
m

[f(xk)− f(x∗)]

≤ 2
m

θ2[f(xk−1)− f(x∗)]

≤ 2
m

θ2 M

2
‖xk−1 − x∗‖2

which implies that

‖xk − x∗‖ ≤
√

M

m
θ‖xk−1 − x∗‖ (2.2.32)

and that the sequence {xk}, at least, converges linearly to x∗. �

In the end of this section, we give a theorem which describes a descent
bound of the function value after each exact line search.

Theorem 2.2.9 Let αk be an exact step size. Assume that f(x) satisfies

(x− z)T [∇f(x)−∇f(z)] ≥ η‖x− z‖2. (2.2.33)

Then

f(xk)− f(xk + αkdk) ≥
1
2
η‖αkdk‖2. (2.2.34)

Proof. Since αk is an exact step size, then

∇f(xk + αkdk)T dk = 0. (2.2.35)

Download more at Learnclax.com

84 CHAPTER 2. LINE SEARCH

Therefore, it follows from the mean-value theorem, (2.2.35) and (2.2.33) that

f(xk)− f(xk + αkdk) =
∫ αk

0
−dT

k∇f(xk + tdk)dt

=
∫ αk

0
dT

k [∇f(xk + αkdk)−∇f(xk + tdk)]dt

≥
∫ αk

0
η(αk − t)dt‖dk‖2

=
1
2
η‖αkdk‖2. (2.2.36)

This completes the proof. �

2.3 The Golden Section Method and the Fibonacci
Method

The golden section method and the Fibonacci method are section methods.
Their basic idea for minimizing a unimodal function over [a, b] is iteratively
reducing the interval of uncertainty by comparing the function values of the
observations. When the length of the interval of uncertainty is reduced to
some desired degree, the points on the interval can be regarded as approxi-
mations of the minimizer. Such a class of methods only needs to evaluate the
functions and has wide applications, especially it is suitable to nonsmooth
problems and those problems with complicated derivative expressions.

2.3.1 The Golden Section Method

Let
φ(α) = f(x + αd)

be a unimodal function on the interval [a, b]. At the iteration k of the golden
section method, let the interval of uncertainty be [ak, bk]. Take two observa-
tions λk, µk ∈ [ak, bk] and λk < µk. Evaluate φ(λk) and φ(µk). By Theorem
2.1.5, we have

Case 1 if φ(λk) ≤ φ(µk), then set ak+1 = ak, bk+1 = µk;

Case 2 if φ(λk) > φ(µk), then set ak+1 = λk, bk+1 = bk.

How to choose the observations λk and µk? We require that λk and µk

satisfy the following conditions:

Download more at Learnclax.com

2.3. SECTION METHODS 85

1. The distances from λk and µk to the end points of the interval [ak, bk]
are equivalent, that is,

bk − λk = µk − ak. (2.3.1)

2. The reduction rate of the intervals of uncertainty for each iteration is
the same, that is

bk+1 − ak+1 = τ(bk − ak), τ ∈ (0, 1). (2.3.2)

3. Only one extra observation is needed for each new iteration.

Now we consider Case 1. Substituting the values of Case 1 into (2.3.2) and
combining (2.3.1) yield

µk − ak = τ(bk − ak),
bk − λk = µk − ak.

Arranging the above equations gives

λk = ak + (1− τ)(bk − ak), (2.3.3)
µk = ak + τ(bk − ak). (2.3.4)

Note that, in this case, the new interval is [ak+1, bk+1] = [ak, µk]. For fur-
ther reducing the interval of uncertainty, the observations λk+1 and µk+1 are
selected. By (2.3.4),

µk+1 = ak+1 + τ(bk+1 − ak+1)
= ak + τ(µk − ak)
= ak + τ(ak + τ(bk − ak)− ak)
= ak + τ2(bk − ak). (2.3.5)

If we set
τ2 = 1− τ, (2.3.6)

then
µk+1 = ak + (1− τ)(bk − ak) = λk. (2.3.7)

It means that the new observation µk+1 does not need to compute, because
µk+1 coincides with λk.

Download more at Learnclax.com

86 CHAPTER 2. LINE SEARCH

Similarly, if we consider Case 2, the new observation λk+1 coincides with
µk. Therefore, for each new iteration, only one extra observation is needed,
which is just required by the third condition.

What is the reduction rate of the interval of uncertainty for each iteration?
By solving the equation (2.3.6), we immediately obtain

τ =
−1±

√
5

2
.

Since τ > 0, then take

τ =
bk+1 − ak+1

bk − ak
=
√

5− 1
2

≈ 0.618. (2.3.8)

Then the formula (2.3.3)–(2.3.4) can be written as

λk = ak + 0.382(bk − ak), (2.3.9)
µk = ak + 0.618(bk − ak). (2.3.10)

Therefore, the golden section method is also called the 0.618 method.
Obviously, comparing with the Fibonacci method below, the golden sec-

tion method is more simple in performance and we need not know the number
of observations in advance.

Since, for each iteration, the reduction rate of the interval of uncertainty
is τ = 0.618, then if the initial interval is [a1, b1], the length of the interval
after n-th iteration is τn−1(b1 − a1). Therefore the convergence rate of the
golden section method is linear.

Algorithm 2.3.1 (The Golden Section Method)

Step 1. Initial step. Determine the initial interval [a1, b1] and give
the precision δ > 0. Compute initial observations λ1 and
µ1:

λ1 = a1 + 0.382(b1 − a1),
µ1 = a1 + 0.618(b1 − a1),

evaluate φ(λ1) and φ(µ1), set k = 1.

Step 2. Compare the function values. If φ(λk) > φ(µk), go to Step
3; if φ(λk) ≤ φ(µk), go to Step 4.

Download more at Learnclax.com

2.3. SECTION METHODS 87

Step 3. (Case 2) If bk − λk ≤ δ, stop and output µk; otherwise, set

ak+1 := λk, bk+1 := bk, λk+1 := µk,

φ(λk+1) := φ(µk), µk+1 := ak+1 + 0.618(bk+1 − ak+1).

Evaluate φ(µk+1) and go to Step5.

Step 4. (Case 1) If µk − ak ≤ δ, stop and output λk; otherwise set

ak+1 := ak, bk+1 := µk, µk+1 := λk,

φ(µk+1) := φ(λk), λk+1 := ak+1 + 0.382(bk+1 − ak+1).

Evaluate φ(λk+1) and go to Step 5.

Step 5. k := k + 1, go to Step 2. �

2.3.2 The Fibonacci Method

Another section method which is similar to the golden section method is the
Fibonacci method. Their main difference is in that the reduction rate of
the interval of uncertainty for the Fibonacci method does not use the golden
section number τ ≈ 0.618, but uses the Fibonacci number. Therefore the
reduction of the interval of uncertainty varies from one iteration to another.

The Fibonacci sequence {Fk} is defined as follows:

F0 = F1 = 1, (2.3.11)
Fk+1 = Fk + Fk−1, k = 1, 2, · · · . (2.3.12)

If we use Fn−k/Fn−k+1 instead of τ in (2.3.3)–(2.3.4), we immediately obtain
the formula

λk = ak +
(

1− Fn−k

Fn−k+1

)
(bk − ak) (2.3.13)

= ak +
Fn−k−1

Fn−k+1
(bk − ak), k = 1, · · · , n− 1,

µk = ak +
Fn−k

Fn−k+1
(bk − ak), k = 1, · · · , n− 1, (2.3.14)

which is called the Fibonacci formula.

Download more at Learnclax.com

88 CHAPTER 2. LINE SEARCH

As stated in the last section, in Case 1, if φ(λk) ≤ φ(µk), the new interval
of uncertainty is [ak+1, bk+1] = [ak, µk]. So, by using (2.3.14), we get

bk+1 − ak+1 =
Fn−k

Fn−k+1
(bk − ak) (2.3.15)

which gives a reduction in each iteration. This equality is also true for Case
2.

Assume that we ask for the length of the final interval no more than δ,
i.e.,

bn − an ≤ δ.

Since

bn − an =
F1

F2
(bn−1 − an−1)

=
F1

F2

F2

F3
· · · Fn−1

Fn
(b1 − a1)

=
1
Fn

(b1 − a1), (2.3.16)

then
Fn ≥

b1 − a1

δ
. (2.3.17)

Therefore, given initial interval [a1, b1] and the upper bound δ of the length
of the final interval, we can find the Fibonacci number Fn and further n from
(2.3.17). Our search proceeds until the n-th observation. The procedure
of the Fibonacci method is similar to Algorithm 2.3.1. We leave it as an
exercise.

Letting Fk = rk and substituting in (2.3.11)-(2.3.12), we get

r2 − r − 1 = 0. (2.3.18)

Solving (2.3.18) gives

r1 =
1 +

√
5

2
, r2 =

1−
√

5
2

. (2.3.19)

Then, the general solution of the difference equation Fk+1 = Fk + Fk−1 is

Fk = Ark
1 + Brk

2 . (2.3.20)

Download more at Learnclax.com

2.4. INTERPOLATION METHOD 89

Using the initial condition F0 = F1 = 1, we get

A =
r1√
5
, B = − r2√

5
.

Substituting in (2.3.20) gives

Fk =
1√
5

⎧⎨
⎩
(

1 +
√

5
2

)k+1

−
(

1−
√

5
2

)k+1
⎫⎬
⎭ . (2.3.21)

Hence

lim
k→∞

Fk−1

Fk
=
√

5− 1
2

= τ. (2.3.22)

This shows that, when k →∞, the Fibonacci method and the golden section
method have the same reduction rate of the interval of uncertainty. There-
fore the Fibonacci method converges with convergence ratio τ . It is worth
mentioning that the Fibonacci method is the optimal sectioning method for
one-dimensional optimization and it requires the smallest observations for a
given final length δ, and that the golden section method is approximately
optimal. However, since the procedure of the golden section method is very
simple, it is more popular.

2.4 Interpolation Method

Interpolation Methods are the other approach of line search. This class of
methods approximates φ(α) = f(x + αd) by fitting a quadratic or cubic
polynomial in α to known data, and choosing a new α-value which mini-
mizes the polynomial. Then we reduce the bracketing interval by comparing
the new α-value and the known points. In general, when the function has
good analytical properties, for example, it is easy to get the derivatives, the
interpolation methods are superior to the golden section method and the
Fibonacci method discussed in the last subsection.

2.4.1 Quadratic Interpolation Methods

1. Quadratic Interpolation Method with Two Points (I).
Given two points α1, α2, and their function values φ(α1) and φ(α2), and the
derivative φ′(α1) (or φ′(α2)). Construct the quadratic interpolation function

Download more at Learnclax.com

90 CHAPTER 2. LINE SEARCH

q(α) = aα2 + bα + c with the interpolation conditions:

q(α1) = aα2
1 + bα1 + c = φ(α1),

q(α2) = aα2
2 + bα2 + c = φ(α2), (2.4.1)

q′(α1) = 2aα1 + b = φ′(α1).

Write φ1 = φ(α1), φ2 = φ(α2), φ′
1 = φ′(α1), and φ′

2 = φ′(α2). Solving (2.4.1)
gives

a =
φ1 − φ2 − φ′

1(α1 − α2)
−(α1 − α2)2

,

b = φ′
1 + 2

φ1 − φ2 − φ′
1(α1 − α2)

(α1 − α2)2
α1.

Hence

ᾱ = − b

2a

= α1 +
1
2

φ′
1(α1 − α2)2

α1 − α2 − φ′
1(α1 − α2)

= α1 −
1
2

(α1 − α2)φ′
1

φ′
1 − φ1−φ2

α1−α2

. (2.4.2)

Then we get the following iteration formula:

αk+1 = αk −
1
2

(αk − αk−1)φ′
k

φ′
k −

φk−φk−1

αk−αk−1

. (2.4.3)

where φk = φ(αk), φk−1 = φ(αk−1), and φ′
k = φ′(αk).

After finding the new αk+1, we compare αk+1 with αk and αk−1, and
reduce the bracketing interval. The procedure will continue until the length
of the interval is less than a prescribed tolerance.

2. Quadratic Interpolation Method with Two Points (II).
Given two points α1, α2, and one function value φ(α1) (or φ(α2)), and two
derivative values φ′(α1) and φ′(α2). Construct the quadratic interpolation
function with the following conditions:

q(α1) = aα2
1 + bα1 + c = φ(α1),

q′(α1) = 2aα1 + b = φ′(α1), (2.4.4)
q′(α2) = 2aα2 + b = φ′(α2).

Download more at Learnclax.com

2.4. INTERPOLATION METHOD 91

Precisely, with the same discussion as above we obtain

ᾱ = − b

2a
= α1 −

α1 − α2

φ′
1 − φ′

2

φ′
1. (2.4.5)

Therefore the iteration scheme is

αk+1 = αk −
αk − αk−1

φ′
k − φ′

k−1

φ′
k (2.4.6)

which is also called the secant formula. The formula (2.4.5) can also be got
by setting L(α) = 0 where L(α) is the Lagrange interpolation formula

L(α) =
(α− α1)φ′

2 − (α− α2)φ′
1

α2 − α1
(2.4.7)

which interpolates the derivative values of φ′(α) at two points α1 and α2.
In the following discussion, for convenience, we call the quadratic inter-

polating method (I) the quadratic interpolation formula, and the quadratic
interpolation method (II) the secant formula. Next, we turn to the conver-
gence of the quadratic interpolating method with two points.

Theorem 2.4.1 Let φ : R → R be three times continuously differentiable.
Let α∗ be such that φ′(α∗) = 0 and φ′′(α∗) = 0. Then the sequence {αk}
generated from (2.4.6) converges to α∗ with the order 1+

√
5

2 ≈ 1.618 of con-
vergence rate.

Proof. By the representation of residual term of the Lagrange interpola-
tion formula

R2(α) = φ′(α)− L(α) =
1
2
φ′′′(ξ)(α− αk)(α− αk−1), ξ ∈ (α, αk−1, αk).

(2.4.8)
Setting α = αk+1 and noting that L(αk+1) = 0, we have

φ′(αk+1) =
1
2
φ′′′(ξ)(αk+1 − αk)(αk+1 − αk−1), ξ ∈ (αk−1, αk, αk+1), (2.4.9)

Substituting (2.4.6) into (2.4.9) yields

φ′(αk+1) =
1
2
φ′′′(ξ)φ′

kφ
′
k−1

(αk − αk−1)2

(φ′
k − φ′

k−1)2
, ξ ∈ (αk−1, αk, αk+1). (2.4.10)

Download more at Learnclax.com

92 CHAPTER 2. LINE SEARCH

We know from the mean-value theorem of differentiation that

φ′
k − φ′

k−1

αk − αk−1
= φ′′(ξ0), ξ0 ∈ (αk−1, αk), (2.4.11)

φ′
i = φ′

i − φ′(α∗) = (αi − α∗)φ′′(ξi), (2.4.12)

where ξi ∈ (αi, α
∗), i = k − 1, k, k + 1. Therefore it follows from (2.4.10)-

(2.4.12) that

αk+1 − α∗ =
1
2

φ′′′(ξ)φ′′(ξk)φ′′(ξk−1)
φ′′(ξk+1)[φ′′(ξ0)]2

(αk − α∗)(αk−1 − α∗). (2.4.13)

Let ei = |αi − α∗|, (i = k − 1, k, k + 1). In the intervals considered, let

0 < m2 ≤ |φ′′′(α)| ≤M2, 0 < m1 ≤ |φ′′(α)| ≤M1,

K1 = m2m
2
1/(2M3

1), K = M2M
2
1 /(2m3

1).

Then

K1|αk − α∗||αk−1 − α∗| ≤ |αk+1 − α∗| ≤ K|αk − α∗||αk−1 − α∗|. (2.4.14)

Noting that φ′′ and φ′′′ are continuous at α∗, we get

αk+1 − α∗

(αk − α∗)(αk−1 − α∗)
→ 1

2
φ′′′(α∗)
φ′′(α∗)

. (2.4.15)

Therefore

ek+1 =
∣∣∣∣ φ′′′(η1)
2φ′′(η2)

∣∣∣∣ ekek−1
∆= Mekek−1, (2.4.16)

where η1 ∈ (αk−1, αk, α
∗), η2 ∈ (αk−1, αk), M = |φ′′′(η1)/2φ′′(η2)|. The above

relations indicate that there exists δ > 0 such that, when the initial points
α0, α1 ∈ (α∗ − δ, α∗ + δ) and α0 = α1, the sequence {αk} → α∗.

Next, we consider the convergence rate. Set εi = Mei, yi = ln εi, i =
k − 1, k, k + 1, then

εk+1 = εkεk−1, (2.4.17)

yk+1 = yk + yk−1. (2.4.18)

Obviously, (2.4.18) is the equation that the Fibonacci sequence satisfies, and
its characteristic equation is

t2 − t− 1 = 0 (2.4.19)

Download more at Learnclax.com

2.4. INTERPOLATION METHOD 93

whose solutions are

t1 =
1 +

√
5

2
, t2 =

1−
√

5
2

. (2.4.20)

Therefore the Fibonacci sequence {yk} can be written as

yk = Atk1 + Btk2, k = 0, 1, · · · , (2.4.21)

where A and B are coefficients to be determined. Obviously, when k →∞,

ln εk = yk ≈ Atk1. (2.4.22)

Since
εk+1

εt1
k

≈ exp(Atk+1
1)

[exp(Atk1)]t1
= 1,

then
ek+1

et1
k

≈ M t1−1 (2.4.23)

which implies that the convergence rate is t1 = 1+
√

5
2 ≈ 1.618. �

This theorem tells us that the secant method has superlinear convergence.

3. Quadratic Interpolation Method with Three Points.
Given three distinct points α1, α2 and α3, and their function values. The
required interpolation conditions are

q(αi) = aα2
i + bαi + c = φ(αi), i = 1, 2, 3. (2.4.24)

By solving the above equations, we obtain

a = −(α2 − α3)φ1 + (α3 − α1)φ2 + (α1 − α2)φ3

(α1 − α2)(α2 − α3)(α3 − α1)
,

b =
(α2

2 − α2
3)φ1 + (α2

3 − α2
1)φ2 + (α2

1 − α2
2)φ3

(α1 − α2)(α2 − α3)(α3 − α1)
.

Then

ᾱ = − b

2a

=
1
2

(α2
2 − α2

3)φ1 + (α2
3 − α2

1)φ2 + (α2
1 − α2

2)φ3

(α2 − α3)φ1 + (α3 − α1)φ2 + (α1 − α2)φ3
(2.4.25)

=
1
2
(α1 + α2) +

1
2

(φ1 − φ2)(α2 − α3)(α3 − α1)
(α2 − α3)φ1 + (α3 − α1)φ2 + (α1 − α2)φ3

.(2.4.26)

Download more at Learnclax.com

94 CHAPTER 2. LINE SEARCH

Equations (2.4.25) and (2.4.26) are called the quadratic interpolation formula
with three points. The above formula can also be obtained from considering
the Lagrange interpolation formula

L(α) =
(α− α2)(α− α3)

(α1 − α2)(α1 − α3)
φ1+

(α− α1)(α− α3)
(α2 − α1)(α2 − α3)

φ2+
(α− α1)(α− α2)

(α3 − α1)(α3 − α2)
φ3,

(2.4.27)
and setting L′(α) = 0.

Algorithm 2.4.2 (Line Search Employing Quadratic Interpolation with Three
Points)

Step 0. Given tolerance ε. Find an initial bracket {α1, α2, α3} con-
taining α∗; Compute φ(αi), i = 1, 2, 3.

Step 1. Use the formula (2.4.25) to produce ᾱ;

Step 2. If (ᾱ−α1)(ᾱ−α3) ≥ 0 go to Step 3; otherwise go to Step 4;

Step 3. Construct new bracket {α1, α2, α3} from α1, α2, α3 and ᾱ.
Go to Step 1.

Step 4. If |ᾱ− α2| < ε, stop; otherwise go to Step 3. �

Figure 2.4.1 is a diagram for the quadratic interpolation line search with
three points.

The following theorem shows that the above algorithm has convergence
rate with order 1.32.

Theorem 2.4.3 Let φ(α) have continuous fourth-order derivatives. Let α∗

satisfy φ′(α∗) = 0 and φ′′(α∗) = 0. Then the sequence {αk} generated from
the formula (2.4.25) has convergence rate with order 1.32.

Proof. By Lagrange interpolation formula (2.4.27), we have

φ(α) = L(α) + R3(α), (2.4.28)

where

R3(α) =
1
6
φ′′′(ξ(α))(α− α1)(α− α2)(α− α3). (2.4.29)

Download more at Learnclax.com

2.4. INTERPOLATION METHOD 95

Since 0 = φ′(α∗) = L′(α∗) + R′
3(α

∗), we get

φ1
2α∗ − (α2 + α3)

(α1 − α2)(α1 − α3)
+ φ2

2α∗ − (α3 + α1)
(α2 − α3)(α2 − α1)

+φ3
2α∗ − (α1 + α2)

(α3 − α1)(α3 − α2)
+ R′

3(α
∗) = 0. (2.4.30)

Noting that (2.4.25) can be rewritten as

α4 =
1
2

φ1(α2+α3)
(α1−α2)(α1−α3) + φ2(α3+α1)

(α2−α3)(α2−α1) + φ3(α1+α2)
(α3−α1)(α3−α2)

φ1

(α1−α2)(α1−α3) + φ2

(α2−α3)(α2−α1) + φ3

(α3−α1)(α3−α2)

, (2.4.31)

it follows from (2.4.30) and (2.4.31) that

α∗ − α4 =
1
2

R′
3(α

∗)
φ1

(α1−α2)(α1−α3) + φ2

(α2−α3)(α2−α1) + φ3

(α3−α1)(α3−α2)

. (2.4.32)

Let ei = α∗ − αi, i = 1, 2, 3, 4. It follows from (2.4.32) that

e4[−φ1(e2 − e3)− φ2(e3 − e1)− φ3(e1 − e2)]

= −1
2
R′

3(α
∗)(e1 − e2)(e2 − e3)(e3 − e1). (2.4.33)

Noting that φ′(α∗) = 0, it follows from Taylor expansion that

φi = φ(α∗) +
1
2
e2
i φ

′′(α∗) + O(e3
i). (2.4.34)

Neglecting the third-order term and substituting (2.4.34) into (2.4.33) give

e4 =
1

φ′′(α∗)
R′

3(α
∗). (2.4.35)

Also, by the Lagrange interpolation formula, we have

R′
3(α) =

1
6
φ′′′(ξ(α))[(α− α2)(α− α3) + (α− α1)(α− α3)

+(α− α1)(α− α2)] +
1
24

φ(4)(η)(α− α1)(α− α2)(α− α3),

which implies

R′
3(α

∗) =
1
6
φ′′′(ξ(α∗))(e1e2 + e2e3 + e3e1) +

1
24

φ(4)(η)e1e2e3. (2.4.36)

Download more at Learnclax.com

96 CHAPTER 2. LINE SEARCH

Neglecting the fourth-order derivative term, it follows from (2.4.35) and
(2.4.36) that

e4 =
φ′′′(ξ(α∗))
6φ′′(α∗)

(e1e2 + e2e3 + e3e1) = M(e1e2 + s2e3 + e3e1),

where M is some constant. In general, we have

ek+2 = M(ek−1ek + ekek+1 + ek+1ek−1). (2.4.37)

Since ek+1 = O(ek) = O(ek−1) when ek → 0, there exists M̄ > 0 such that

|ek+2| ≤ M̄ |ek−1||ek|,

i.e.,
M̄ |ek+2| ≤ M̄ |ek−1|M̄ |ek|.

When |ei|, (i = 1, 2, 3) are sufficiently small such that

δ = max{M̄ |e1|, M̄ |e2|, M̄ |e3|} < 1,

one has
M̄ |e4| ≤ M̄ |e1|M̄ |e2| ≤ δ2.

Set
M̄ |ek| ≤ δqk , (2.4.38)

then
M̄ |ek+2| ≤ M̄ |ek|M̄ |ek−1| ≤ δqkδqk−1 ∆= δqk+2 ,

hence
qk+2 = qk + qk−1, (k ≥ 2) (2.4.39)

where q1 = q2 = q3 = 1. Obviously, the characteristic equation of (2.4.39) is

t3 − t− 1 = 0 (2.4.40)

with one root t1 ≈ 1.32 and other two conjugate complex roots, |t2| = |t3| < 1.
The general solution of (2.4.39) has form

qk = Atk1 + Btk2 + Ctk3, (2.4.41)

where A,B and C are coefficients to be determined. Clearly, when k →∞,

qk+1 − t1qk = Btk2(t2 − t1) + Ctk3(t3 − t1) → 0.

Download more at Learnclax.com

2.4. INTERPOLATION METHOD 97

Figure 2.4.1 Flow chart for quadratic interpolation method
with three points

Download more at Learnclax.com

98 CHAPTER 2. LINE SEARCH

So, when k is sufficiently large, we have

qk+1 − t1qk ≥ −0.1. (2.4.42)

Note from (2.4.38) that |ek| ≤ (1/M̄)δqk
∆= Bk, (k ≥ 1). Then, by (2.4.42),

when k is sufficiently large,

Bk+1

Bk
=

δqk+1/M̄

δt1qk/(M̄)t1
= M̄ t1−1δqk+1−t1qk ≤ δ−0.1M̄ t1−1,

which indicates that the convergence order t1 ≈ 1.32. �

2.4.2 Cubic Interpolation Method

The cubic interpolation method approximates the objective function φ(α) by
a cubic polynomial. To construct the cubic polynomial p(α), four interpo-
lation conditions are required. For example, we may use function values at
four points, or function values at three points and a derivative value at one
point, or function values and derivative values at two points. Note that, in
general, the cubic interpolation has better convergence than the quadratic
interpolation, but that it needs computing of derivatives and more expensive
computation. Hence it is often used for smooth functions. In the following,
we discuss the cubic interpolation method with two points.

We are given two points a and b, the function values φ(a) and φ(b), and
the derivative values φ′(a) and φ′(b) to construct a cubic polynomial of the
form

p(α) = c1(α− a)3 + c2(α− a)2 + c3(α− a) + c4 (2.4.43)

where ci are the coefficients of the polynomial which are chosen such that

p(a) = c4 = φ(a),
p′(a) = c3 = φ′(a),
p(b) = c1(b− a)3 + c2(b− a)2 + c3(b− a) + c4 = φ(b),
p′(b) = 3c1(b− a)2 + 2c2(b− a) + c3 = φ′(b). (2.4.44)

From the sufficient condition of the minimizer, we have

p′(α) = 3c1(α− a)2 + 2c2(α− a) + c3 = 0 (2.4.45)

and
p′′(α) = 6c1(α− a) + 2c2 > 0. (2.4.46)

Download more at Learnclax.com

2.4. INTERPOLATION METHOD 99

Solving (2.4.45) yields

α = a +
−c2 ±

√
c2
2 − 3c1c3

3c1
, if c1 = 0, (2.4.47)

α = a− c3

2c2
, if c1 = 0. (2.4.48)

In order to guarantee the condition (2.4.46) holding, we only take the
positive in (2.4.47). So we combine (2.4.47) with (2.4.48), and get

α− a =
−c2 +

√
c2
2 − 3c1c3

3c1
=

−c3

c2 +
√

c2
2 − 3c1c3

. (2.4.49)

When c1 = 0, (2.4.49) is just (2.4.48). Then the minimizer of p(α) is

ᾱ = a− c3

c2 +
√

c2
2 − 3c1c3

. (2.4.50)

The minimizer in (2.4.50) is represented by c1, c2 and c3. We hope to
represent ᾱ by φ(a), φ(b), φ′(a) and φ′(b) directly.

Let

s = 3
φ(b)− φ(a)

b− a
, z = s− φ′(a)− φ′(b),

w2 = z2 − φ′(a)φ′(b). (2.4.51)

By use of (2.4.44), we have

s = 3
φ(b)− φ(a)

b− a
= 3[c1(b− a)2 + c2(b− a) + c3],

z = s− φ′(a)− φ′(b) = c2(b− a) + c3,

w2 = z2 − φ′(a)φ′(b) = (b− a)2(c2
2 − 3c1c3).

Then
(b− a)c2 = z − c3,

√
c2
2 − 3c1c3 =

w

b− a
,

and so
c2 +

√
c2
2 − 3c1c3 =

z + w − c3

b− a
. (2.4.52)

Download more at Learnclax.com

100 CHAPTER 2. LINE SEARCH

Using c3 = φ′(a) and substituting (2.4.52) into (2.4.50), we get

ᾱ− a =
−(b− a)φ′(a)
z + w − φ′(a)

, (2.4.53)

which is

ᾱ− a =
−(b− a)φ′(a)φ′(b)

(z + w − φ′(a))φ′(b)
=

−(b− a)(z2 − w2)
φ′(b)(z + w)− (z2 − w2)

=
(b− a)(w − z)
φ′(b)− z + w

. (2.4.54)

Unfortunately, the formula (2.4.54) is not adequate for calculating ᾱ, because
its denominator is possibly zero or merely very small. Fortunately, it can be
overcome by use of (2.4.53) and (2.4.54), and we have

ᾱ− a =
−(b− a)φ′(a)
z + w − φ′(a)

=
(b− a)(w − z)
φ′(b)− z + w

=
(b− a)(−φ′(a) + w − z)

φ′(b)− φ′(a) + 2w

= (b− a)
(

1− φ′(b) + z + w

φ′(b)− φ′(a) + 2w

)
, (2.4.55)

or

ᾱ = a + (b− a)
w − φ′(a)− z

φ′(b)− φ′(a) + 2w
. (2.4.56)

In (2.4.55) and (2.4.56), the denominator φ′(b)− φ′(a) + 2w = 0. In fact,
since φ′(a) < 0 and φ′(b) > 0, then w2 = z2 − φ′(a)φ′(b) > 0. Taking w > 0,
it follows that the denominator φ′(b)− φ′(a) + 2w > 0.

In the same way as we did in the last subsection, we can discuss the
convergence rate of the cubic interpolation method. Similar to (2.4.16), we
can obtain

ek+1 = M(eke
2
k−1 + e2

kek−1),

where M is some constant. We can show that the characteristic equation is

t2 − t− 2 = 0,

which solution is t = 2. Therefore the cubic interpolation method with two
points has convergence rate with order 2.

Finally, we give a flow diagram of the method in Figure 2.4.2.

Download more at Learnclax.com

2.4. INTERPOLATION METHOD 101

Download more at Learnclax.com

102 CHAPTER 2. LINE SEARCH

Figure 2.4.2 Flow chart for cubic interpolation method with two points

2.5 Inexact Line Search Techniques

Line search is a basic part of optimization methods. In the last sections we
have discussed some exact line search techniques which find αk such that

f(xk + αkdk) = min
α≥0

f(xk + αdk),

or

αk = min{α| ∇f(xk + αdk)T dk = 0, α ≥ 0}.

However, commonly, the exact line search is expensive. Especially, when an
iterate is far from the solution of the problem, it is not effective to solve
exactly a one-dimension subproblem. Also, in practice, for many optimiza-
tion methods, for example, Newton method and quasi-Newton method, their
convergence rate does not depend on the exact line search. Therefore, as
long as there is an acceptable steplength rule which ensures that the objec-
tive function has sufficient descent, the exact line search can be avoided and
the computing efforts will be decreased greatly. In the following, we define
gk = ∇f(xk) without special indication.

Download more at Learnclax.com

2.5. INEXACT LINE SEARCH TECHNIQUES 103

2.5.1 Armijo and Goldstein Rule

Armijo rule [4] is as follows: Given β ∈ (0, 1), ρ ∈ (0, 1
2), τ > 0, there exists

the least nonnegative integer mk such that

f(xk)− f(xk + βmτdk) ≥ −ρβmτgT
k dk. (2.5.1)

Goldstein (1965) [157] presented the following rule. Let

J = {α > 0 | f(xk + αdk) < f(xk)} (2.5.2)

be an interval. In Figure 2.5.1 J = (0, a). In order to guarantee the objective
function decreases sufficiently, we want to choose α such that it is away from
the two end points of the interval J . The two reasonable conditions are

f(xk + αdk) ≤ f(xk) + ραgT
k dk (2.5.3)

and
f(xk + αdk) ≥ f(xk) + (1− ρ)αgT

k dk, (2.5.4)

which exclude those points near the right end-point and the left end-point,
where 0 < ρ < 1

2 , All α satisfying (2.5.3)-(2.5.4) constitute the interval
J2 = [b, c]. We call (2.5.3)-(2.5.4) Goldstein inexact line search rule, in brief,
Goldstein rule. When a step-length factor α satisfies (2.5.3)-(2.5.4), it is
called an acceptable step-length factor, and the obtained interval J2 = [b, c]
is called an acceptable interval.

Figure 2.5.1 Inexact line search

As before, let φ(α) = f(xk + αdk). Then (2.5.3) and (2.5.4) can be
rewritten respectively

φ(αk) ≤ φ(0) + ραkφ
′(0), (2.5.5)

φ(αk) ≥ φ(0) + (1− ρ)αkφ
′(0). (2.5.6)

Download more at Learnclax.com

104 CHAPTER 2. LINE SEARCH

Note that the restriction ρ < 1
2 is necessary. In fact, if φ(α) is a quadratic

function satisfying φ′(0) < 0 and φ′′(0) > 0, then the global minimizer α∗ of
φ satisfies

φ(α∗) = φ(0) +
1
2
α∗φ′(0).

Hence α∗ satisfies (2.5.5) if and only if ρ < 1
2 . The restriction ρ < 1

2 will
also finally permit α = 1 for Newton method and quasi-Newton method.
Therefore, without the restriction ρ < 1

2 , the superlinear convergence of the
methods will not be guaranteed.

2.5.2 Wolfe-Powell Rule

As shown in Figure 2.5.1, it is possible that the rule (2.5.4) excludes the
minimizing value of α outside the acceptable interval. Instead, the Wolfe-
Powell rule gives another rule to replace (2.5.4):

gT
k+1dk ≥ σgT

k dk, σ ∈ (ρ, 1), (2.5.7)

which implies that

φ′(αk) = [∇f(xk + αkdk)]T dk ≥ σ∇f(xk)T dk

= σφ′(0) > φ′(0). (2.5.8)

It shows that the geometric interpretation of (2.5.7) is that the slope φ′(αk)
at the acceptable point must be greater than or equal to some multiple σ ∈
(0, 1) of the initial slope. The rule (2.5.3) and (2.5.7) is called the Wolfe-
Powell inexact line search rule, in brief, the Wolfe-Powell rule, which gives
the acceptable interval J3 = [e, c] that includes the minimizing values of α.

In fact, the rule (2.5.7) can be obtained from the mean-value theorem
and (2.5.4). Let αk satisfy (2.5.4). Then

αk[∇f(xk + θkαkdk)]T dk = f(xk + αkdk)− f(xk)
≥ (1− ρ)αk∇f(xk)T dk

which shows (2.5.7). Now we show the existence of αk satisfying (2.5.3) and
(2.5.7). Let α̂k satisfy the equality in (2.5.3). By the mean-value theorem
and (2.5.3), we have

α̂k[∇f(xk + θkα̂kdk)]T dk = f(xk + α̂kdk)− f(xk)
= ρα̂k∇f(xk)T dk,

Download more at Learnclax.com

2.5. INEXACT LINE SEARCH TECHNIQUES 105

where θk ∈ (0, 1). Let ρ < σ < 1, and note that ∇f(xk)T dk < 0, we have

[∇f(xk + θkα̂kdk)]T dk = ρ∇f(xk)T dk > σ∇f(xk)T dk

which is just (2.5.7) if we set αk = θkα̂k. The discussion above also shows
that the requirement ρ < σ < 1 is necessary, such that there exists steplength
factor αk satisfying the Wolfe-Powell rule.

It should point out that the inequality requirement (2.5.7) is an approxi-
mation of the orthogonal condition

gT
k+1dk = 0

which is satisfied by exact line search. However, unfortunately, one possible
disadvantage of (2.5.7) is that it does not reduce to an exact line search in
the limit σ → 0. In addition, a steplength may satisfy the Wolfe-Powell rule
(2.5.3) and (2.5.7) without being close to a minimizer of φ. Luckily, if we
replace (2.5.7) by using the rule

|gT
k+1dk| ≤ −σgT

k dk, (2.5.9)

the exact line search is obtained in the limit σ → 0, and the points that are
far from a stationary point of φ will be excluded. Therefore the rule (2.5.3)
and (2.5.9) is also a successful pair of inexact line search rules which is called
the strong Wolfe-Powell rule. Furthermore, we often employ the following
form of the strong Wolfe-Powell rule:

|gT
k+1dk| ≤ σ|gT

k dk| (2.5.10)

or

|φ′(αk)| ≤ σ|φ′(0)|. (2.5.11)

In general, the smaller the value σ, the more exact the line search. Nor-
mally, taking σ = 0.1 gives a fairly accurate line search, whereas the value
σ = 0.9 gives a weak line search. However, taking too small σ may be unwise,
because the smaller the value σ, the more expensive the computing effort.
Usually, ρ = 0.1 and σ = 0.4 are suitable, and it depends on the specific
problem.

Download more at Learnclax.com

106 CHAPTER 2. LINE SEARCH

2.5.3 Goldstein Algorithm and Wolfe-Powell Algorithm

Although it is possible that the minimizing value of α may be excluded by the
rule (2.5.4), it seldom occurs in practice. Therefore, Goldstein rule (2.5.3)-
(2.5.4) is a frequently used rule in practice. The overall structure is illustrated
in Figure 2.5.2 and the details of the algorithm are described in Algorithm
2.5.1.

Figure 2.5.2 Flow chart for Goldstein inexact line search

Algorithm 2.5.1 (Inexact Line Search with Goldstein Rule)

Step 1. Choose initial data. Take initial point α0 in [0,+∞) (or
[0, αmax]). Compute φ(0), φ′(0). Given ρ ∈ (0, 1

2), t > 1. Set
a0 := 0, b0 := +∞ (or αmax), k := 0.

Step 2. Check the rule (2.5.3). Compute φ(αk). If

φ(αk) ≤ φ(0) + ραkφ
′(0),

Download more at Learnclax.com

2.5. INEXACT LINE SEARCH TECHNIQUES 107

go to Step 3; otherwise, set ak+1 := ak, bk+1 := αk, go to
Step 4.

Step 3. Check the rule (2.5.4). If

φ(αk) ≥ φ(0) + (1− ρ)αkφ
′(0),

stop, and output αk; otherwise, set ak+1 := αk, bk+1 := bk.
If bk+1 < +∞, go to Step 4; otherwise set αk+1 := tαk, k :=
k + 1, go to Step 2.

Step 4. Choose a new point. Set

αk+1 :=
ak+1 + bk+1

2
,

and k := k + 1, go to Step 2. �

Similarly, we give in Figure 2.5.3 the diagram of the Wolfe-Powell algo-
rithm.

Download more at Learnclax.com

108 CHAPTER 2. LINE SEARCH

Figure 2.5.3 Flow chart for Wolfe-Powell inexact line search

2.5.4 Backtracking Line Search

In practice, frequently, we also use only the condition (2.5.3) if we choose
an appropriate α which is not too small. This method is called backtracking
line search. The idea of backtracking is, at the beginning, to set α = 1. If
xk + αdk is not acceptable, we reduce α until xk + αdk satisfies (2.5.3).

Algorithm 2.5.2

Step 1. Given ρ ∈ (0, 1
2), 0 < l < u < 1, set α = 1.

Step 2. Test
f(xk + αdk) ≤ f(xk) + ραgT

k dk;

Step 3. If (2.5.3) is not satisfied, set α := ωα, ω ∈ [l, u], and go to
Step 2; otherwise, set αk := α and xk+1 := xk + αkdk. �

In Step 3 of the above algorithm, the quadratic interpolation can be used
to reduce α. Let

φ(α) = f(xk + αdk). (2.5.12)

At the beginning, we have

φ(0) = f(xk), φ′(0) = ∇f(xk)T dk. (2.5.13)

After computing f(xk + dk), we have

φ(1) = f(xk + dk). (2.5.14)

If f(xk + dk) does not satisfy (2.5.3), the following quadratic model can be
used to approximate φ(α):

m(α) = [φ(1)− φ(0)− φ′(0)]α2 + φ′(0)α + φ(0), (2.5.15)

which obeys the three conditions in (2.5.13)-(2.5.14). Setting m′(α) = 0 gives

α̂ = − φ′(0)
2[φ(1)− φ(0)− φ′(0)]

, (2.5.16)

Download more at Learnclax.com

2.5. INEXACT LINE SEARCH TECHNIQUES 109

which can be taken as the next value of α.
In order to prevent α from being too small and not terminating, some

safeguards are needed. For example, given the least step minstep, if (2.5.3)
is not satisfied but ‖αdk‖ < minstep, the line search stops.

In summary, in this section we introduced three kind of inexact line search
rules:

1. Goldstein rule: (2.5.3)-(2.5.4).

2. Wolfe-Powell rule: (2.5.3) and (2.5.7); Strong Wolfe-Powell rule: (2.5.3)
and (2.5.9).

3. Backtracking rule (also called Armijo rule): (2.5.3) or (2.5.1).

The above three inexact line search rules are frequently used in optimization
methods below.

2.5.5 Convergence Theorems of Inexact Line Search

In the final subsection we establish convergence theorems of inexact line
search methods. To prove the descent property of the methods, we try to
avoid the case in which the search directions sk = αkdk are nearly orthogonal
to the negative gradient −gk, that is, the angle θk between sk and −gk is
uniformly bounded away from 90o,

θk ≤
π

2
− µ, ∀k (2.5.17)

where µ > 0, θk ∈ [0, π
2] is defined by

cos θk = −gT
k sk/(‖gk‖‖sk‖), (2.5.18)

because, otherwise, gT
k sk will approach zero and so sk is almost not a descent

direction.
A general descent algorithm with inexact line search is as follows:

Algorithm 2.5.3

Step 1. Given x0 ∈ Rn, 0 ≤ ε < 1, k := 0.

Step 2 If ‖∇f(xk)‖ ≤ ε, stop; otherwise, find a descent direction
dk such that dT

k∇f(xk) < 0.

Download more at Learnclax.com

110 CHAPTER 2. LINE SEARCH

Step 3 Find the steplength factor αk by use of Goldstein rule (2.5.3)-
(2.5.4) or Wolfe-Powell rule (2.5.3) and (2.5.7).

Step 4 Set xk+1 = xk + αkdk; k := k + 1, go to Step 2. �

In Algorithm 2.5.3, dk is a general descent direction provided it satisfies
dT

k∇f(xk) < 0, and αk is a general inexact line-search factor provided some
inexact line search rule is satisfied. So, this algorithm is a very general
algorithm, that is, it contains a great class of methods.

Now, we establish the global convergence of the general descent algorithm
with inexact line search.

Theorem 2.5.4 Let αk in Algorithm 2.5.3 be defined by Goldstein rule (2.5.3)-
(2.5.4) or Wolfe-Powell rule (2.5.3) and (2.5.7). Let also sk satisfy (2.5.17).
If ∇f exists and is uniformly continuous on the level set {x| f(x) ≤ f(x0)},
then either ∇f(xk) = 0 for some k, or f(xk) → −∞,or ∇f(xk) → 0.

Proof. Let αk be defined by (2.5.3)-(2.5.4). Assume that, for all k, gk =
∇f(xk) = 0 (whence sk = αkdk = 0) and f(xk) is bounded below, it follows
that f(xk)− f(xk+1) → 0, hence −gT

k sk → 0 from (2.5.3).
Now assume that gk → 0 does not hold. Then there exist ε > 0 and a

subsequence such that ‖gk‖ ≥ ε and ‖sk‖ → 0. Since θk ≤ π
2 − µ, we get

cos θk ≥ cos(
π

2
− µ) = sin µ,

hence
−gT

k sk ≥ sin µ‖gk‖‖sk‖ ≥ ε sin µ‖sk‖.

But the Taylor series gives

f(xk+1) = f(xk) + g(ξk)T sk,

where ξk is on the line segment (xk, xk+1). By uniform continuity, we have
g(ξk) → gk when sk → 0. So

f(xk+1) = f(xk) + gT
k sk + o(‖sk‖).

Therefore we obtain
f(xk)− f(xk+1)

−gT
k sk

→ 1,

Download more at Learnclax.com

2.5. INEXACT LINE SEARCH TECHNIQUES 111

which contradicts (2.5.4). Hence, gk → 0, and the proof is complete.
Similarly, instead of (2.5.4), if we use (2.5.7), we can get global conver-

gence of the Wolfe-Powell algorithm. The proof is essentially the same as
above. We need only to note that, by uniform continuity of g(x), it follows
that

gT
k+1sk = gT

k sk + o(‖sk‖),

such that
gT
k+1sk

gT
k sk

→ 1.

This contradicts gT
k+1sk/gT

k sk ≤ σ < 1 given by (2.5.7). Hence gk → 0.
Therefore, the global convergence theorem also holds when αk is defined by
Wolfe-Powell rule (2.5.3) and (2.5.7). �

Next, we give the convergence theorems with the Wolfe-Powell rule.

Theorem 2.5.5 Let f : Rn → R be continuously differentiable and bounded
below, and let ∇f be uniformly continuous on the level set Ω = {x | f(x) ≤
f(x0)}. Assume that αk is defined by Wolfe-Powell rule (2.5.3) and (2.5.7).
Then the sequence generated by Algorithm 2.5.3 satisfies

lim
k→+∞

∇f(xk)T sk

‖sk‖
= 0, (2.5.19)

which means
‖∇f(xk)‖ cos θk → 0. (2.5.20)

Proof. Since ∇f(xk)T sk < 0 and f is bounded below, then the sequence
{xk} is well-defined and {xk} ⊂ Ω. Also, since {f(xk)} is a descent sequence,
hence it is convergent.

We now prove (2.5.19) by contradiction. Assume that (2.5.19) does not
hold. Then there exist ε > 0 and a subsequence with index set K, such that

−∇f(xk)T sk

‖sk‖
≥ ε, k ∈ K.

From (2.5.3), one has

f(xk)− f(xk+1) ≥ ρ‖sk‖
(
−∇f(xk)T sk

‖sk‖

)
≥ ρ‖sk‖ε.

Download more at Learnclax.com

112 CHAPTER 2. LINE SEARCH

Since also {f(xk)} is a convergent sequence, then {sk : k ∈ K} converges to
zero. Also by (2.5.7), we have

(1− σ)(−∇f(xk)T sk) ≤ (∇f(xk + sk)−∇f(xk))T sk, k ≥ 0.

Therefore

ε ≤ −∇f(xk)T sk

‖sk‖
≤ 1

1− σ
‖∇f(xk + sk)−∇f(xk)‖, k ∈ K. (2.5.21)

However, since we have proved {sk | k ∈ K} → 0, then the right-hand side
of (2.5.21) goes to zero by the uniform continuity of ∇f on the level set Ω.
Hence there is a contradiction which completes the proof. �

Note that (2.5.19) implies

‖∇f(xk)‖ cos θk → 0,

which is called the Zoutendijk condition, where θk is the angle between
−∇f(xk) and sk. If cos θk ≥ δ > 0, we have limk→∞ ‖∇f(xk)‖ = 0. Also,
if the assumption of uniform continuity is replaced by Lipschitz continuity,
the theorem is also true. In the theorem below, we prove this case. We first
prove a lemma which gives a bound of descent for a single step.

Lemma 2.5.6 Let f : D ⊂ Rn → R be continuously differentiable, also let
∇f(x) satisfy Lipschitz condition

‖∇f(y)−∇f(z)‖ ≤ M‖y − z‖,

where M > 0 is a constant. If f(xk + αdk) is bounded below and α > 0, then
for all αk > 0 satisfying (2.5.3) and (2.5.7), we have

f(xk)− f(xk + αkdk) ≥ β‖∇f(xk)‖2 cos2〈dk,−∇f(xk)〉, (2.5.22)

where β > 0 is a constant.

Proof. From Lipschitz condition of ∇f and (2.5.7) we have

αkM‖dk‖2 ≥ dT
k [∇f(xk + αkdk)−∇f(xk)] ≥ −(1− σ)dT

k∇f(xk),

that is

αk‖dk‖ ≥ 1− σ

M‖dk‖
‖dk‖‖∇f(xk)‖ cos〈dk,−∇f(xk)〉

=
1− σ

M
‖∇f(xk)‖ cos〈dk,−∇f(xk)〉.

Download more at Learnclax.com

2.5. INEXACT LINE SEARCH TECHNIQUES 113

Using (2.5.3) yields

f(xk)− f(xk + αkdk) ≥ −αkρdT
k∇f(xk)

= αkρ‖dk‖‖∇f(xk)‖ cos〈dk,−∇f(xk)〉

≥ ρ‖∇f(xk)‖ cos〈dk,−∇f(xk)〉
1− σ

M
‖∇f(xk)‖ cos〈dk,−∇f(xk)〉

=
ρ(1− σ)

M
‖∇f(xk)‖2 cos2〈dk,−∇f(xk)〉,

which is (2.5.22) in which β = ρ(1− σ)/M . �

Theorem 2.5.7 Let f(x) be continuously differentiable on Rn, and let ∇f(x)
satisfy Lipschitz condition

‖∇f(x)−∇f(y)‖ ≤ M‖x− y‖. (2.5.23)

Also let αk in Algorithm 2.5.3 be defined by Wolfe-Powell rule (2.5.3) and
(2.5.7). If the condition (2.5.17) is satisfied, then, for the sequence {xk}
generated by Algorithm 2.5.3, either ∇f(xk) = 0 for some k, or f(xk) →
−∞, or ∇f(xk) → 0.

Proof. Assume that ∇f(xk) = 0,∀k. By Lemma 2.5.6, we have

f(xk)− f(xk+1) ≥ β cos2 θk‖∇f(xk)‖2, (2.5.24)

where β = ρ(1− σ)/M is a positive constant being independent of k. Then,
for all k > 0, we have

f(x0)− f(xk) =
k−1∑
i=0

[f(xi)− f(xi+1)]

≥ β min
0≤i≤k

‖∇f(xi)‖2
k−1∑
i=0

cos2 θi. (2.5.25)

Since θk satisfies (2.5.17), this means that

∞∑
k=0

cos2 θk = +∞. (2.5.26)

Then it follows from (2.5.25) that either ∇f(xk) → 0 or f(xk) → −∞. This
completes the proof. �

Download more at Learnclax.com

114 CHAPTER 2. LINE SEARCH

In fact, Theorem 2.5.7 is a direct result coming from (2.5.20) and the
angle condition (2.5.17).

Finally, we derive an estimate of descent amount of f(x) under inexact
line search.

Theorem 2.5.8 Let αk satisfy (2.5.3). If f(x) is a uniformly convex func-
tion, i.e., there exists a constant η > 0 such that

(y − z)T [∇f(y)−∇f(z)] ≥ η‖y − z‖2, (2.5.27)

or there exist positive constants m and M (m < M), such that

m‖y‖2 ≤ yT∇2f(x)y ≤ M‖y‖2. (2.5.28)

Then
f(xk)− f(xk + αkdk) ≥

ρη

1 +
√

M/m
‖αkdk‖2, (2.5.29)

where ρ is defined in (2.5.3).

Proof. We divide into two cases.
First, assume that dT

k∇f(xk + αkdk) ≤ 0. In this case we have

f(xk)− f(xk + αkdk) =
∫ αk

0
−dT

k∇f(xk + tdk)dt

=
∫ αk

0
dT

k [∇f(xk + αkdk)−∇f(xk + tdk)]dt

≥
∫ αk

0
η(αk − t)dt‖dk‖2

=
1
2
η‖αkdk‖2

≥ ρη

1 +
√

M/m
‖αkdk‖2. (2.5.30)

Second, assume that dT
k∇f(xk + αkdk) > 0. Then there exists 0 < α∗ <

αk, such that dT
k∇f(xk + α∗dk) = 0. So, it follows from (2.5.28) that

f(xk)− f(xk + α∗dk) ≤
1
2
M‖α∗dk‖2, (2.5.31)

and
f(xk + αkdk)− f(xk + α∗dk) ≥

1
2
m‖(αk − α∗)dk‖2. (2.5.32)

Download more at Learnclax.com

2.5. INEXACT LINE SEARCH TECHNIQUES 115

Since f(xk + αkdk) < f(xk), it follows from (2.5.31) and (2.5.32) that

αk ≤

⎛
⎝1 +

√
M

m

⎞
⎠α∗. (2.5.33)

Hence

f(xk)− f(xk + αkdk) ≥ −αkρdT
k∇f(xk)

≥ αkρdT
k [∇f(xk + α∗dk)−∇f(xk)]

≥ ηραkα
∗‖dk‖2

≥ ρη

1 +
√

M/m
‖αkdk‖2. (2.5.34)

Hence (2.5.29) holds in both cases. This completes the proof. �

In this chapter we have discussed exact and inexact line search techniques
which guarantee monotonic decrease of the objective function. On the other
hand it is found that enforcing monotonicity of the function values may con-
siderably slow the rate of convergence, especially in the presence of narrow
curved valleys. Therefore, it is reasonable to present a nonmonotonic line
search technique for optimization which allows an increase in function value
at each step, while retaining global convergence. Grippo etc. [164] general-
ized the Armijo rule to the nonmonotone case and relaxed the condition of
monotonic decrease. Several papers also deal with these techniques. Here we
only state the basic result of nonmonotonic line search as follows.

Theorem 2.5.9 Let {xk} be a sequence defined by

xk+1 = xk + αkdk, dk = 0.

Let τ > 0, σ ∈ (0, 1), γ ∈ (0, 1) and let M be a nonnegative integer. Assume
that

(i) the level set Ω = {x | f(x) ≤ f(x0)} is compact;
(ii) there exist positive numbers c1, c2 such that

∇f(xk)T dk ≤ −c1‖∇f(xk)‖2, (2.5.35)

‖dk‖ ≤ c2‖∇f(xk)‖; (2.5.36)

(iii) αk = σhkτ , where hk is the first nonnegative integer h, such that

f(xk + σhτdk) ≤ max
0≤j≤m(k)

[f(xk−j)] + γσhτ∇f(xk)T dk, (2.5.37)

Download more at Learnclax.com

116 CHAPTER 2. LINE SEARCH

where m(0) = 0 and 0 ≤ m(k) ≤ min[m(k − 1) + 1, M], k ≥ 1.
Then the sequence {xk} remains in Ω and every accumulation point x̄

satisfies ∇f(x̄) = 0.

Proof. See Grippo etc. [164]. �

Exercises

1. Let f(x) = (sin x)6 tan(1− x)e30x. Find the maximum of f(x) in [0, 1]
by use of the 0.618 method, quadratic interpolation method, and Goldstein
line search, respectively.

2. Write the Fibonacci algorithm and its program in MATLAB (or FOR-
TRAN, C).

3. Let φ(t) = e−t + et. Let the initial interval be [−1, 1].
(1) Minimize φ(t) by 0.618 method.
(2) Minimize φ(t) by Fibonacci method.
(3) Minimize φ(t) by Armijo line search.

4. Let φ(t) = 1− te−t2 . Let the initial interval be [0, 1]. Try to minimize
φ(t) by quadratic interpolation method.

5. Let φ(t) = −2t3 + 21t2 − 60t + 50.
(1) Minimize φ(t) by Armijo rule if t0 = 0.5 and ρ = 0.1.
(2) Minimize φ(t) by Goldstein rule if t0 = 0.5 and ρ = 0.1.
(3) Minimize φ(t) by Wolfe rule if t0 = 0.5, ρ = 0.1, and σ = 0.8.

6. Let f(x) = x4
1 + x2

1 + x2
2. Given current point xk = (1, 1)T and

dk = (−3,−1)T . Let ρ = 0.1, σ = 0.5.
(1) Try using the Wolfe rule to find a new point xk+1.
(2) Set α = 1, α = 0.5, α = 0.1 respectively, describe that for which α

satisfies the Wolfe rule and for which α does not satisfy the Wolfe rule.

7. Show that if 0 < σ < ρ < 1, then there may be no steplengths that
satisfy the Wolfe rule.

8. Describe the outline of Theorem 2.5.4.

Download more at Learnclax.com

2.5. INEXACT LINE SEARCH TECHNIQUES 117

9. Prove the other form of Theorem 2.5.5: Let f : Rn → R be continu-
ously differentiable and bounded below, and let ∇f be Lipschitz continuous
on the level set Ω = {x | f(x) ≤ f(x0)}. Assume that αk is defined by Wolfe-
Powell rule (2.5.3) and (2.5.7). Then the sequence generated by Algorithm
2.5.3 satisfies

lim
k→+∞

∇f(xk)T sk

‖sk‖
= 0,

which means
‖∇f(xk)‖ cos θk → 0.

Download more at Learnclax.com

Download more at Learnclax.com

Chapter 3

Newton’s Methods

3.1 The Steepest Descent Method

3.1.1 The Steepest Descent Method

The steepest descent method is one of the simplest and the most fundamental
minimization methods for unconstrained optimization. Since it uses the neg-
ative gradient as its descent direction, it is also called the gradient method.

Suppose that f(x) is continuously differentiable near xk, and the gradient
gk

def= ∇f(xk) = 0. From the Taylor expansion

f(x) = f(xk) + (x− xk)T gk + o(‖x− xk‖), (3.1.1)

we know that, if we write x − xk = αdk, then the direction dk satisfying
dT

k gk < 0 is called a descent direction that is such that f(x) < f(xk). Fixing
α, it follows that the smaller the value dT

k gk (i.e., the larger the value |dT
k gk|)

is, the faster the function value decreases. By the Cauchy-Schwartz inequality

|dT
k gk| ≤ ‖dk‖‖gk‖, (3.1.2)

we have that the value dT
k gk is the smallest if and only if dk = −gk. Therefore

−gk is the steepest descent direction.
The iterative scheme of the steepest descent method is

xk+1 = xk − αkgk. (3.1.3)

In the following we give the algorithm.

Download more at Learnclax.com

120 CHAPTER 3. NEWTON’S METHODS

Algorithm 3.1.1 (The Steepest Descent Method)

Step 0. Let 0 < ε � 1 be the termination tolerance. Given an initial
point x0 ∈ Rn. Set k = 0.

Step 1. If ‖gk‖ ≤ ε, stop ; otherwise let dk = −gk.

Step 2. Find the steplength factor αk, such that

f(xk + αkdk) = min
α≥0

f(xk + αdk);

Step 3. Compute xk+1 = xk + αkdk.

Step 4. k := k + 1, return to Step 1. �

3.1.2 Convergence of the Steepest Descent Method

The steepest descent method is of importance in the area of optimization
from the theoretical point of view. The importance of its convergence theory
is not only in itself but also in other optimization methods. In the following,
we discuss the global convergence and local convergence rate of the steepest
descent method.

Theorem 3.1.2 (Global convergence theorem of the steepest descent method)
Let f ∈ C1. Then each accumulation point of the iterative sequence {xk}
generated by the steepest descent Algorithm 3.1.1 with exact line search is a
stationary point.

Proof. Let x̄ be any accumulation point of {xk} and K an infinite index
set such that limk∈K xk = x̄. Set dk = −∇f(xk). Since f ∈ C1, the sequence
{dk | k ∈ K} is uniformly bounded and ‖dk‖ = ‖∇f(xk)‖. Since the as-
sumptions of Theorem 2.2.3 are satisfied, it follows that ‖∇f(x̄)‖2 = 0, i.e.,
∇f(x̄) = 0. �

Theorem 3.1.3 (Global convergence theorem of the steepest descent method)
Let f(x) be twice continuously differentiable in Rn and ‖∇2f(x)‖ ≤ M for
a positive constant M . Given any initial x0 and ε > 0. Then the sequence
generated from Algorithm 3.1.1 terminates in finitely many iterations, or
limk→∞ f(xk) = −∞, or limk→∞∇f(xk) = 0.

Download more at Learnclax.com

3.1. THE STEEPEST DESCENT METHOD 121

Proof. Consider the infinite case. From Algorithm 3.1.1 and Theorem
2.2.2, we have

f(xk)− f(xk+1) ≥
1

2M
‖∇f(xk)‖2.

Then

f(x0)− f(xk) =
k−1∑
i=0

[f(xi)− f(xi+1)] ≥
1

2M

k−1∑
i=0

‖∇f(xi)‖2.

Taking limits yields either limk→∞ f(xk) = −∞ or limk→∞ ‖∇f(xk)‖ = 0.
The result then follows. �

Instead of the exact line search in Step 2 of Algorithm 3.1.1, the steepest
descent method can also use inexact line search technique. For this case, the
global convergence is given below.

Theorem 3.1.4 (Convergence theorem of the steepest descent method with
inexact line search)

Let f ∈ C1. Consider the steepest descent method with inexact line search.
Then each accumulation point of the sequence {xk} is a stationary point.

Proof. It follows directly from Theorem 2.5.4. �

Unfortunately, the global convergence does not guarantee that the steep-
est descent method is an effective method. We can clearly find this problem
from the following analysis and the local convergence rate theorem.

In fact, the steepest descent direction is only a local property of the
algorithm. For many problems, the steepest descent method is not the actual
“steepest”, but is very slow. Although the method usually works well in the
early steps, as a stationary point is approached, it descends very slowly with
zigzagging phenomena. This zigzagging phenomena is illustrated in Figure
3.1.1 for the problem

min(x1 − 2)4 + (x1 − 2x2)2,

in which zigzagging occurs along the valley shown by the dotted lines.

Download more at Learnclax.com

122 CHAPTER 3. NEWTON’S METHODS

Figure 3.1.1 Zigzagging in the steepest descent method

In fact, the zigzagging of the steepest descent method can be explained
by the following facts. Since, from exact line search, one has

gT
k+1dk = 0,

then
gT
k+1gk = dT

k+1dk = 0. (3.1.4)

This shows that two gradients are orthogonal to each other on the successive
iterates, and thus two successive directions are also orthogonal, which leads
to the zigzagging. When the stationary point is approached, ‖gk‖ will be
very small. By means of the expression

f(xk + αd) = f(xk) + αgT
k d + o(‖αd‖), (3.1.5)

it is easy to see that the first order term αgT
k d = −α‖gk‖2 is of a very small

order of magnitude. Hence the descent of f is very small.
Next, we discuss the convergence rate of the steepest descent method,

first for the case of a quadratic function and then for the case of a general
function.

When the objective function is quadratic, the convergence rate of the
steepest descent method depends on the ratio of the longest axis and the

Download more at Learnclax.com

3.1. THE STEEPEST DESCENT METHOD 123

shortest axis of the ellipsoid which corresponds to the contour of the objec-
tive function. The bigger the ratio is, the slower the descent is. The following
theorem indicates this fact and says that the steepest descent method con-
verges linearly.

Theorem 3.1.5 (The convergence rate theorem of the steepest descent method
for the case of a quadratic function)

Consider the unconstrained minimization problem

min
x∈Rn

f(x) =
1
2
xT Gx, (3.1.6)

where G is an n × n symmetric and positive definite matrix. Let λ1 and
λn be the largest and the smallest eigenvalues of G respectively. Let x∗ be
the solution of the problem (3.1.6). Then the sequence {xk} generated by
the steepest descent method converges to x∗, the convergence rate is at least
linear, and the following bounds hold:

f(xk+1)− f(x∗)
f(xk)− f(x∗)

≤ (κ− 1)2

(κ + 1)2
=

(λ1 − λn)2

(λ1 + λn)2
, (3.1.7)

‖xk+1 − x∗‖G

‖xk − x∗‖G
≤ κ− 1

κ + 1
=
(

λ1 − λn

λ1 + λn

)
, (3.1.8)

‖xk+1 − x∗‖
‖xk − x∗‖ ≤

√
κ

κ− 1
κ + 1

=

√
λ1

λn

(
λ1 − λn

λ1 + λn

)
, (3.1.9)

where κ = λ1/λn.

Proof. Consider the minimization of (3.1.6); we have

xk+1 = xk − αkgk, (3.1.10)

with

αk =
gT
k gk

gT
k Ggk

(3.1.11)

and gk = Gxk.

f(xk)− f(xk+1)
f(xk)

=
1
2xT

k Gxk − 1
2(xk − αkgk)T G(xk − αkgk)

1
2xT

k Gxk

=
αkg

T
k Gxk − 1

2α2
kg

T
k Ggk

1
2xT

k Gxk

Download more at Learnclax.com

124 CHAPTER 3. NEWTON’S METHODS

=

(gT
k gk)2

gT
k

Ggk
− 1

2

(gT
k gk)2

gT
k

Ggk

1
2gT

k G−1gk

=
(gT

k gk)2

(gT
k Ggk)(gT

k G−1gk)
. (3.1.12)

By using Kantorovich inequality (3.1.33), we have immediately that

f(xk+1)
f(xk)

=

[
1− (gT

k gk)2

(gT
k Ggk)(gT

k G−1gk)

]
(3.1.13)

≤
[
1− 4λ1λn

(λ1 + λn)2

]
=
(

λ1 − λn

λ1 + λn

)2

, (3.1.14)

which is just (3.1.7).
By using (3.1.13), it is not difficult to get (3.1.8) and (3.1.9). In fact, let

ek = xk − x∗, ∀k ≥ 0. Noting that G is symmetric and positive definite, we
have

λneT
k ek ≤ eT

k Gek ≤ λ1e
T
k ek. (3.1.15)

Since x∗ = 0, we have

‖xk − x∗‖2G = eT
k Gek = xT

k Gxk = 2f(xk). (3.1.16)

So, it follows from (3.1.15) that

λn‖xk − x∗‖2 ≤ 2f(xk) ≤ λ1‖xk − x∗‖2, ∀k ≥ 0. (3.1.17)

From (3.1.13), (3.1.16) and (3.1.17), we get

λn‖xk+1 − x∗‖2
λ1‖xk − x∗‖2 ≤ ‖xk+1 − x∗‖2G

‖xk − x∗‖2G
≤
(

λ1 − λn

λ1 + λn

)2

, (3.1.18)

which gives (3.1.8) and (3.1.9). �

If we consider, more generally, the objective function with the form

f(x) =
1
2
xT Gx− bT x, (3.1.19)

where G is an n×n symmetric positive definite matrix and b ∈ Rn, the above
theorem is also true.

If the objective function is generalized to the non-quadratic case, we also
can get the linear convergence rate of the steepest descent method.

Download more at Learnclax.com

3.1. THE STEEPEST DESCENT METHOD 125

Theorem 3.1.6 Let f(x) satisfy the assumptions of Theorem 2.2.8. If the
sequence {xk} generated from the steepest descent method converges to x∗,
then the convergence rate is at least linear.

Proof. It is a direct result from Theorem 2.2.8. �

The above convergence rate theorem of the steepest descent method for
a general function can also be described as follows.

Theorem 3.1.7 Let f(x) be twice continuously differentiable near x∗ with
∇f(x∗) = 0 and ∇2f(x∗) positive definite. Let the sequence {xk} generated
by the steepest descent method converge to x∗. Let

f(xk+1)− f(x∗)
f(xk)− f(x∗)

= βk. (3.1.20)

Then βk < 1,∀k and

lim sup
k→+∞

βk ≤
M −m

M
< 1, (3.1.21)

where M and m satisfy

0 < m ≤ λn ≤ λ1 ≤ M, (3.1.22)

and λn and λ1 are respectively the smallest and the largest eigenvalues of
∇2f(x).

Proof. From Theorem 2.2.2, we have

[f(xk)− f(x∗)]− [f(xk+1)− f(x∗)] = f(xk)− f(xk+1)

≥ 1
2M

‖∇f(xk)‖2, (3.1.23)

which is, by the definition of βk, that

(1− βk)[f(xk)− f(x∗)] ≥ 1
2M

‖∇f(xk)‖2.

Hence, by the assumption of f , we get

βk ≤ 1− ‖∇f(xk)‖2
2M [f(xk)− f(x∗)]

< 1. (3.1.24)

Download more at Learnclax.com

126 CHAPTER 3. NEWTON’S METHODS

Now suppose that (xk − x∗)/‖xk − x∗‖ → d̄. It is obvious that

‖∇f(xk)‖2 = ‖xk − x∗‖2(‖∇2f(x∗)d̄‖2 + o(1))

and
f(xk)− f(x∗) =

1
2
‖xk − x∗‖2(d̄T∇2f(x∗)d̄ + o(1)).

Using the above equalities and (3.1.22) yields

lim
k→∞

‖∇f(xk)‖2
f(xk)− f(x∗)

=
2‖∇2f(x∗)d̄‖2
d̄T∇2f(x∗)d̄

≥ 2m. (3.1.25)

Hence, it follows from (3.1.24) and (3.1.25) that

lim sup
k→∞

βk ≤ 1− lim inf
k→∞

‖∇f(xk)‖2
2M [f(xk)− f(x∗)]

≤ 1− m

M
< 1.

We complete the proof. �

3.1.3 Barzilai and Borwein Gradient Method

From the above discussions we know that the classical steepest descent method
performs poorly, converges linearly, and is badly affected by ill-conditioning.

Barzilai and Borwein [8] presented a two-point step size gradient method,
which is called usually the Barzilai-Borwein (or BB) gradient method. In the
method, the step size is derived from a two-point approximation to the secant
equation underlying quasi-Newton methods (see Chapter 5).

Consider the gradient iteration form

xk+1 = xk − αkgk (3.1.26)

which can be written as
xk+1 = xk −Dkgk, (3.1.27)

where Dk = αkI. In order to make the matrix Dk have quasi-Newton prop-
erty, we compute αk such that

min ‖sk−1 −Dkyk−1‖. (3.1.28)

Download more at Learnclax.com

3.1. THE STEEPEST DESCENT METHOD 127

This yields that

αk =
sT
k−1yk−1

yT
k−1yk−1

, (3.1.29)

where sk−1 = xk − xk−1, yk−1 = gk − gk−1.

By symmetry, we may minimize ‖D−1
k sk−1 − yk−1‖ with respect to αk

and get

αk =
sT
k−1sk−1

sT
k−1yk−1

. (3.1.30)

The above description produces the following algorithm.

Algorithm 3.1.8 (The Barzilai-Borwein gradient method)

Step 0. Given x0 ∈ Rn, 0 < ε � 1. Set k = 0.

Step 1. If ‖gk‖ ≤ ε, stop ; otherwise let dk = −gk.

Step 2. If k = 0, find α0 by line search; otherwise compute αk by
(3.1.29) or (3.1.30).

Step 3. Set xk+1 = xk + αkdk.

Step 4. k := k + 1, return to Step 1. �

It is easy to see that in this method no matrix computations and no line
searches (except k = 0) are required. The Barzilai-Borwein method is, in
fact, a gradient method, but requires less computational work, and greatly
speeds up the convergence of the gradient method. Barzilai and Borwein
[8] proved that the above algorithm is R-superlinearly convergent for the
quadratic case.

In the general non-quadratic case, a globalization strategy based on non-
monotone line search is suitable to Barzilai-Borwein gradient method. In
addition, in general non-quadratic case, αk computed by (3.1.29) or (3.1.30)
can be unacceptably large or small. Therefore, we must assume that αk

satisfies the condition

0 < α(l) ≤ αk ≤ α(u), for all k,

where α(l) and α(u) are previously determined numbers.

Download more at Learnclax.com

128 CHAPTER 3. NEWTON’S METHODS

If we employ the iteration

xk+1 = xk −
1
αk

gk = xk − λkgk (3.1.31)

with

αk =
sT
k−1yk−1

sT
k−1sk−1

, λk =
1
αk

, (3.1.32)

note that sk = − 1
αk

gk = −λkgk, then we have

αk+1 =
sT
k yk

sT
k sk

=
−λkg

T
k yk

λ2
kg

T
k gk

= − gT
k yk

λkg
T
k gk

.

Now we give the following Barzilai-Borwein gradient algorithm with non-
monotone globalization.

Algorithm 3.1.9 (The Barzilai-Borwein gradient algorithm with nonmono-
tone linesearch)

Step 0. Given x0 ∈ Rn, 0 < ε � 1, an integer M ≥ 0, ρ ∈ (0, 1), δ >
0, 0 < σ1 < σ2 < 1, α(l), α(u). Set k = 0.

Step 1. If ‖gk‖ ≤ ε, stop.

Step 2. If αk ≤ α(l) or αk ≥ α(u) then set αk = δ.

Step 3. Set λ = 1/αk.

Step 4. (nonmonotone line search) If

f(xk − λgk) ≤ max
0≤j≤min(k,M)

f(xk−j)− ρλgT
k gk,

then set
λk = λ, xk+1 = xk − λkgk,

and go to Step 6.

Step 5. Choose σ ∈ [σ1, σ2], set λ = σλ, and go to Step 4.

Step 6. Set αk+1 = −(gT
k yk)/(λkg

T
k gk), k := k + 1, return to Step 1.

�

Obviously, the above algorithm is globally convergent.

Download more at Learnclax.com

3.1. THE STEEPEST DESCENT METHOD 129

3.1.4 Appendix: Kantorovich Inequality

We conclude this section with a famous Kantorovich Inequality which is used
in the proof of Theorem 3.1.5.

Theorem 3.1.10 (Kantorovich Inequality) Let G be an n × n symmetric
positive definite matrix with eigenvalues λ1 ≥ · · · ≥ λn. Then, for any x ∈
Rn, the following inequality holds:

(xT x)2

(xT Gx)(xT G−1x)
≥ 4λ1λn

(λ1 + λn)2
. (3.1.33)

Proof. Let the spectral decomposition of G be

G = UΛU.

Set x = Uy, then

(xT x)2

(xT Gx)(xT G−1x)
=

(yT y)2

(yT Λy)(yT Λ−1y)

=
(
∑n

i=1 y2
i)

2

(
∑n

i=1 λiy2
i)(
∑n

i=1 y2
i /λi)

. (3.1.34)

Let

ξi =
y2

i∑n
i=1 y2

i

, φ(λ) =
1
λ

, (3.1.35)

then (3.1.34) becomes

(xT x)2

(xT Gx)(xT G−1x)
=

1
(
∑n

i=1 λiξi)(
∑n

i=1 φ(λi)ξi)
. (3.1.36)

Below we use the convexity of φ to estimate the lower bound of the right-
hand side of (3.1.36). Let

λ =
n∑

i=1

λiξi, λφ =
n∑

i=1

φ(λi)ξi. (3.1.37)

Since ξi ≥ 0 (i = 1, · · · , n) and
∑n

i=1 ξi = 1, we have λn ≤ λ ≤ λ1. Then each
λi can be represented as a convex combination of λ1 and λn:

λi =
λ1 − λi

λ1 − λn
λn +

λi − λn

λ1 − λn
λ1.

Download more at Learnclax.com

130 CHAPTER 3. NEWTON’S METHODS

From the convexity of φ, we have obviously

φ(λi) ≤
λ1 − λi

λ1 − λn
φ(λn) +

λi − λn

λ1 − λn
φ(λ1). (3.1.38)

Then, it follows from (3.1.37), (3.1.38) and (3.1.35) that

λφ ≤
n∑

i=1

[
λ1 − λi

λ1 − λn
φ(λn) +

λi − λn

λ1 − λn
φ(λ1)

]
ξi

=
n∑

i=1

λ1 + λn − λi

λ1λn
ξi

=
λ1 + λn − λ

λ1λn
. (3.1.39)

Therefore, by (3.1.36), (3.1.37) and (3.1.39) we obtain

(xT x)2

(xT Gx)(xT G−1x)
=

1
λλφ

≥ λ1λn

λ(λ1 + λn − λ)

≥ λ1λn

maxλ∈[λn,λ1] λ(λ1 + λn − λ)
=

4λ1λn

(λ1 + λn)2
,

which is our result. �

3.2 Newton’s Method

The basic idea of Newton’s method for unconstrained optimization is to it-
eratively use the quadratic approximation q(k) to the objective function f at
the current iterate xk and to minimize the approximation q(k).

Let f : Rn → R be twice continuously differentiable, xk ∈ Rn, and the
Hessian ∇2f(xk) positive definite. We model f at the current point xk by
the quadratic approximation q(k),

f(xk + s) ≈ q(k)(s) = f(xk) +∇f(xk)T s +
1
2
sT∇2f(xk)s, (3.2.1)

where s = x− xk. Minimizing q(k)(s) yields

xk+1 = xk − [∇2f(xk)]−1∇f(xk) (3.2.2)

which is Newton’s formula. Set

Gk = ∇2f(xk), gk = ∇f(xk). (3.2.3)

Download more at Learnclax.com

3.2. NEWTON’S METHOD 131

Then we write (3.2.2) as

xk+1 = xk −G−1
k gk, (3.2.4)

where sk = xk+1 − xk = −G−1
k gk is a Newton’s direction. Clearly, the New-

ton’s direction is a descent direction because it satisfies gT
k sk = −gT

k G−1
k gk <

0 if Gk is positive definite. Please note, in the remainder of this book, the
first and the second derivatives of f will be denoted by

g(x) ∆= ∇f(x), G(x) ∆= ∇2f(x) (3.2.5)

for convenience, if they exist.
The corresponding algorithm is stated as follows.

Algorithm 3.2.1 (Newton’s Method)

Step 1. Given x0 ∈ Rn, ε > 0, k := 0;

Step 2. If ‖gk‖ ≤ ε, stop;

Step 3. Solve Gks = −gk for sk;

Step 4. Set xk+1 = xk + sk;

Step 5. k := k + 1, go to Step 2. �

Obviously, Newton’s method can be regarded as a steepest descent method
under the ellipsoid norm ‖ · ‖Gk

. In fact, for f(xk + s) ≈ f(xk) + gT
k s, we

regard sk as the solution of the minimization problem

min
s∈Rn

gT
k s

‖s‖ . (3.2.6)

The solution of (3.2.6) depends on the norm. If we employ l2 norm, then we
get sk = −gk and the resultant method is the steepest descent method. If
we employ the ellipsoid norm ‖ · ‖Gk

, then we get sk = −G−1
k gk which is just

the Newton’s method. In fact, in this case, (3.2.6) is equivalent to

mins∈Rn gT
k s

s.t. ‖s‖Gk
≤ 1.

Download more at Learnclax.com

132 CHAPTER 3. NEWTON’S METHODS

Note that, by (1.2.36), we have that

(gT
k s)2 ≤ (gT

k G−1
k gk)(sT Gks)

and that gT
k s will be the smallest when s = −G−1

k gk. The above discussion
gives us a clear explanation.

For the positive definite quadratic function, Newton’s method can reach
the minimizer with one iteration. However, for a general non-quadratic func-
tion, it is not sure that Newton’s method can reach the minimizer with
finite iterations. Fortunately, since the objective function is approximate to
a quadratic function near the minimizer, then if the starting point is close
to the minimizer the Newton’s method will converge rapidly. The following
theorem shows the local convergence and the quadratic convergence rate of
Newton’s method.

Theorem 3.2.2 (Convergence Theorem of Newton’s Method) Let f ∈ C2

and xk be close enough to the solution x∗ of the minimization problem with
g(x∗) = 0. If the Hessian G(x∗) is positive definite and G(x) satisfies Lips-
chitz condition

|Gij(x)−Gij(y)| ≤ β‖x− y‖, for some β, for all i, j (3.2.7)

where Gij(x) is the (i, j)-element of G(x), then for all k, Newton’s iteration
(3.2.4) is well-defined; the generated sequence {xk} converges to x∗ with a
quadratic rate.

Proof. Let hk = xk − x∗. From Taylor’s formula, it follows that

0 = g(x∗) = gk −Gkhk + O(‖hk‖2).

Since f ∈ C2, xk is close enough to x∗, and G(x∗) is positive definite, it is rea-
sonable to assume that xk is in the neighborhood of x∗, Gk positive definite,
G−1

k upper bounded. Hence the k-th Newton’s iteration exists. Multiplying
through by G−1

k yields

0 = G−1
k gk − hk + O(‖hk‖2)

= −sk − hk + O(‖hk‖2)
= −hk+1 + O(‖hk‖2).

By definition of O(·), there is a constant C such that

‖hk+1‖ ≤ C‖hk‖2. (3.2.8)

Download more at Learnclax.com

3.2. NEWTON’S METHOD 133

If xk ∈ Ω = {x | ‖h‖ ≤ γ/C, h = x− x∗, γ ∈ (0, 1)}, then

‖hk+1‖ ≤ γ‖hk‖ ≤ γ2/C < γ/C. (3.2.9)

Hence xk+1 ∈ Ω. By induction on k, Newton’s iteration is well-defined for all
k, and ‖hk‖ → 0 as k →∞. Therefore the iteration converges. Also, (3.2.8)
shows that the convergence rate of the iteration sequence is quadratic. �

Note that Newton’s method is a local method. When the starting point
is far away from the solution, it is not sure that Gk is positive definite and
Newton’s direction dk is a descent direction. Hence the convergence is not
guaranteed. Since, as we know, the line search is a global strategy, we can
employ Newton’s method with line search to guarantee the global conver-
gence. However it should be noted that only when the step size sequence
{αk} converges to 1, Newton’s method is convergent with the quadratic rate.
Newton’s iteration with line search is as follows:

dk = −G−1
k gk, (3.2.10)

xk+1 = xk + αkdk, (3.2.11)

where αk is a step size. The formula (3.2.10)–(3.2.11) corresponds to the
following algorithm.

Algorithm 3.2.3 (Newton’s Method with Line Search)

Step 1. Initial step: given x0 ∈ Rn, ε > 0, set k := 0.

Step 2. Compute gk. If ‖gk‖ ≤ ε, stop and output xk; otherwise go
to Step 3.

Step 3. Solve Gkd = −gk for dk.

Step 4. Line search step: find αk such that

f(xk + αkdk) = min
α≥0

f(xk + αdk).

Step 5. Set xk+1 = xk + αkdk, k := k + 1, go to Step 2. �

Next, we prove the above Algorithm 3.2.3 is globally convergent.

Download more at Learnclax.com

134 CHAPTER 3. NEWTON’S METHODS

Theorem 3.2.4 Let f : Rn → R be twice continuously differentiable on
open convex set D ⊂ Rn. Assume that for any x0 ∈ D there exists a constant
m > 0 such that f(x) satisfies

uT∇2f(x)u ≥ m‖u‖2, ∀u ∈ Rn, x ∈ L(x0), (3.2.12)

where L(x0) = {x | f(x) ≤ f(x0)} is the corresponding level set. Then the
sequence {xk} generated by Algorithm 3.2.3 satisfies

1. when {xk} is a finite sequence, gk = 0 for some k;

2. when {xk} is an infinite sequence, {xk} converges to the unique mini-
mizer x∗ of f .

Proof. First, from (3.2.12), we know that f(x) is a strictly convex function
on Rn, and hence its stationary point is the unique global minimizer.

Also, from the assumption, it follows that the level set L(x0) is a bounded
closed convex set. Since {f(xk)} is monotonic descent, then {xk} ⊂ L(x0)
and {xk} is bounded. Therefore there exists a limit point x̄ ∈ L(x0) with
xk → x̄, and further f(xk) → f(x̄). Also since f ∈ C2(D), by Theorem 2.2.4,
we have gk → g(x̄) = 0. Finally, note that the stationary point is unique,
then the whole sequence {xk} converges to x̄ which is the unique minimizer.
�

Similarly, if we employ inexact line search rule (2.5.3) and (2.5.7), it
follows from (2.5.22) that

f(xk)− f(xk + αkdk) ≥ η̄‖gk‖2 cos2〈dk,−gk〉, (3.2.13)

where η̄ is some constant independent of k. In this case the global convergence
still holds.

Theorem 3.2.5 Let f : Rn → R be twice continuously differentiable on an
open convex set D ⊂ Rn. Assume that for any x0 ∈ Rn, there exists m > 0
such that f(x) satisfies (3.2.12) on the level set L(x0). If the line search
employed satisfies (3.2.13), then the sequence {xk} generated from Newton’s
algorithm satisfies

lim
k→∞

‖gk‖ = 0, (3.2.14)

and {xk} converges to the unique minimizer of f(x).

Download more at Learnclax.com

3.3. MODIFIED NEWTON’S METHOD 135

Proof. Since f(x) satisfies (3.2.12), we see that f(x) is uniformly convex
on L(x0). Also, from (3.2.13), it follows that f(x) is strictly monotonically
descending and further that {xk} is bounded. Therefore there exists a con-
stant M > 0 such that

‖Gk|| ≤M ∀k. (3.2.15)

From (3.2.10), (3.2.12) and (3.2.15), it follows that

cos〈dk,−gk〉 =
−dT

k gk

‖dk‖‖gk‖
=

gT
k G−1

k gk

‖G−1
k gk‖‖gk‖

=
dT

k Gkdk

‖dk‖‖Gkdk‖
≥ m

M
. (3.2.16)

Hence, by (3.2.13) and (3.2.16), we have

∞ >
∞∑

k=0

[f(xk)− f(xk+1)] ≥
∞∑

k=0

η̄
m2

M2
‖gk‖2, (3.2.17)

which shows (3.2.14). Note that f(x) is uniformly convex, then f(x) has
only one stationary point, and (3.2.14) indicates that {xk} converges to the
unique minimizer x∗ of f . �

3.3 Modified Newton’s Method

The main difficulty faced by Newton’s method is that the Hessian Gk is not
positive definite. In this case, it is not sure that the model function has
minimizers. When Gk is indefinite, the model function will be unbounded.

To overcome these difficulties, there are several modified schemes.

Goldstein-Price Method
Goldstein and Price [159] presented a modified method: when Gk is not

positive definite, the steepest descent direction −gk is used. If we combine
this strategy with the angle rule

θ ≤ π

2
− µ, for some µ > 0,

where θ is the angle between −gk and dk, we can determine the direction dk

as follows:

dk =

{
−G−1

k gk, if cos θ ≥ η,
−gk, otherwise,

(3.3.1)

Download more at Learnclax.com

136 CHAPTER 3. NEWTON’S METHODS

where η > 0 is a given constant. Then the consultant direction dk satisfies
cos θ ≥ η and the angle rule is satisfied, and thus the corresponding algorithm
is convergent.

Goldfeld et al. Method
Goldfeld et al. [156] presented another modified Newton’s method. Their

method does not substitute the steepest descent method for Newton’s method,
but makes the Newton’s direction −G−1

k gk turn to the steepest descent direc-
tion −gk. More precisely, when Gk is not positive definite, one changes the
model Hessian Gk to Gk + νkI, where νk > 0 such that Gk + νkI is positive
definite and well-conditioned. Ideally, νk is not much larger than the smallest
ν that makes Gk + νI positive definite and well-conditioned. The framework
of the algorithm is as follows.

Algorithm 3.3.1 (Modified Newton’s Method)

Initial step: Given an initial point x0 ∈ Rn.

k-th step:

(1) Set Ḡk = Gk + νkI, where

νk = 0, if Gk is positive definite;

νk > 0, otherwise.

(2) Solve Ḡkd = −gk for dk.

(3) Set xk+1 = xk + dk. �

In the above algorithm, the smallest possible νk is slightly larger than the
magnitude of the most negative eigenvalue of Gk. We suggest applying the
Gill-Murray’s modified Cholesky factorization to Gk to determine νk, which
results in

Gk + E = LDLT , (3.3.2)

where E is a diagonal matrix with nonnegative diagonal elements (see Gill,
Murray and Wright [152]). If E = 0, set νk = 0; if E = 0, we can use the
Gerschgorin Circle Theorem 1.2.14 to compute an upper bound b1 of νk:

b1 =

∣∣∣∣∣∣ min
1≤i≤n

⎧⎨
⎩(Gk)ii −

∑
j �=i

|(Gk)ij |

⎫⎬
⎭
∣∣∣∣∣∣ ≥

∣∣∣∣min
i

λi

∣∣∣∣ . (3.3.3)

Download more at Learnclax.com

3.3. MODIFIED NEWTON’S METHOD 137

In addition, note that
b2 = max

i
{eii} (3.3.4)

is also an upper bound of νk, where eii is the i-th diagonal element of E.
Then we set

νk = min{b1, b2}, (3.3.5)

and get the positive definite matrix Ḡk and its Cholesky factorization.
In the remainder of this section, we would like to introduce another nu-

merically stable modified Cholesky factorization due to Gill and Murray [149].
It is well-known that the Cholesky factorization Gk = LDLT of a positive

definite matrix Gk can be described as follows:

djj = gjj −
j−1∑
s=1

dssl
2
js, (3.3.6)

lij =
1

djj

⎛
⎝gij −

j−1∑
s=1

dssljslis

⎞
⎠ , i ≥ j + 1, (3.3.7)

where gij denote the elements of Gk, djj the diagonal elements of D. Now we
ask the Cholesky factors L and D to satisfy the following two requirements:
one is that all the diagonal elements of D are positive; the other is that the
elements of the factors are uniformly bounded. That is,

dkk > δ > 0, ∀k and |rik| ≤ β, i > k, (3.3.8)

where rik = lik
√

dkk, β is a given positive number and δ is a small positive
number.

Below we will describe the j-th step of this factorization. Suppose that
the first j − 1 columns of the factors have been computed, that is, for k =
1, · · · , j−1, dkk and lik (i = 1, · · · , n) have been computed and satisfy (3.3.8).
Now we compute

γj = |ξj −
j−1∑
s=1

dssl
2
js|, (3.3.9)

where ξj takes gjj and the test value d̄ takes

d̄ = max{γj , δ}. (3.3.10)

Download more at Learnclax.com

138 CHAPTER 3. NEWTON’S METHODS

In order to judge whether to accept d̄ as the j-th element of D, we check if
rij = lij

√
d̄ satisfies (3.3.8). If yes, set djj = d̄ and form the j-th column of

L by use of lij = rij/
√

djj ; otherwise, set

djj =

∣∣∣∣∣∣ξj −
j−1∑
s=1

dssl
2
js

∣∣∣∣∣∣ , (3.3.11)

where we take ξj = gjj + ejj in which ejj is chosen such that max |rij | = β,
and also form the j-th column of L as above.

When the above procedure is complete, we obtain a Cholesky factoriza-
tion of Ḡk,

Ḡk = LDLT = Gk + E, (3.3.12)

where E is a diagonal matrix with nonnegative diagonal elements ejj . For
given Gk, the nonnegative diagonal matrix E depends on the given β. Gill
and Murray (1974) prove that if n > 1, then

‖E(β)‖∞ ≤
(

ξ

β
+ (n− 1)β

)2

+ 2(γ + (n− 1)β2) + δ, (3.3.13)

where ξ and γ are respectively the maximum modules of non-diagonal ele-
ments and diagonal elements of Gk. Since, when β2 = ξ/

√
n2 − 1, the above

bound is minimized, then we take β satisfying

β2 = max{γ, ξ/
√

n2 − 1, εM} (3.3.14)

where εM denotes the machine precision. Also, note that adding the term
εM in (3.3.14) is to prevent the case in which ‖Gk‖ is too small.

Now we are in a position to state the modified Cholesky factorization al-
gorithm in which cis = lisdss(s = 1, · · · , j; i = j, · · · , n) are auxiliary variables
saved in Gk and we need not increase the storage.

Algorithm 3.3.2 (Modified Cholesky Factorization due to Gill and Murray
(1974))

Step 1. Compute β by (3.3.14). Given δ. Set j := 1, cii = gii for
i = 1, · · · , n.

Step 2. Find the smallest index q such that |cqq| = maxj≤i≤n |cii|,
exchange the q-th and the i-th rows, the q-th and the i-th
columns.

Download more at Learnclax.com

3.3. MODIFIED NEWTON’S METHOD 139

Step 3. Compute the j-th row of L and find the maximum module of
lijdjj.

Set ljs = cjs/dss, s = 1, · · · , j − 1;

Compute cij = gij −
∑j−1

s=1 ljscis, i = j + 1, · · · , n;
Set θj = maxj+1≤i≤n |cij | (if j = n, θj = 0).

Step 4. Compute the j-th diagonal element of D:

djj = max{δ, |cjj |, θ2
j /β2};

Update the element ejj: ejj = djj − cjj. If j = n, stop.

Step 5. Update cii = cii − c2
ij/djj , i = j + 1, · · · , n;

Set j := j + 1, go to Step 2. �

The modified Cholesky factorization above needs about 1
6n3 arithmetic

operations which are almost the same as the normal Cholesky factorization.

Example 3.3.3 Consider

Gk =

⎛
⎜⎝ 1 1 2

1 1 + 10−20 3
2 3 1

⎞
⎟⎠ . (3.3.15)

By the above Algorithm 3.3.2, we can get β2 = 1.061,

L =

⎛
⎜⎝ 1 0 0

0.2652 1 0
0.5303 0.4295 1

⎞
⎟⎠ , D =

⎛
⎜⎝ 3.771 0 0

0 5.750 0
0 0 1.121

⎞
⎟⎠ ,

E =

⎛
⎜⎝ 2.771 0 0

0 5.016 0
0 0 2.243

⎞
⎟⎠ .

The difference ‖Ḡk − Gk‖F = ‖E‖F ≈ 6.154. Since djj ≥ δ in the modified
factorization, it is guaranteed that Ḡk = Gk + Ek is positive definite and the
condition number is uniformly bounded, i.e.,

‖Ḡk‖‖Ḡ−1
k ‖ ≤ κ, κ ≥ 0.

So, we have

−∇f(xk)T sk

‖sk‖
≥ 1

κ
‖∇f(xk)‖. (3.3.16)

Download more at Learnclax.com

140 CHAPTER 3. NEWTON’S METHODS

Thus, it follows from the inexact line search, (2.5.19) and (3.3.16) that
{∇f(xk)} converges to zero.

Theorem 3.3.4 Let f : D ⊂ Rn → R be twice continuously differentiable
on an open set D. Let the level set Ω = {x | f(x) ≤ f(x0)} be compact. If
the sequence {xk} is generated by the modified Newton’s method, then

lim
k→∞

∇f(xk) = 0. (3.3.17)

3.4 Finite-Difference Newton’s Method

The finite-difference Newton’s method is to use the finite-difference as an
approximation of derivatives in Newton’s method.

We first review the finite-difference derivative approximations.
Let F : Rn → Rm. The (i, j)-component of the Jacobian J(x) of F (x)

can be approximated by

ai,j =
fi(x + hej)− fi(x)

h
, (3.4.1)

where fi(x) denotes the i-th component of F (x), ej the j-th unit vector, h a
small perturbation of x. Equivalently, if A.j denotes the j-th column of A,
we have

A.j =
F (x + hej)− F (x)

h
. (3.4.2)

Theorem 3.4.1 Let F : Rn → Rm satisfy the conditions of Theorem 1.2.22.
Let the norm ‖ · ‖ satisfy ‖ej‖ = 1, j = 1, · · · , n. Then

‖A.j − J(x).j‖ ≤
γ

2
|h|. (3.4.3)

If the norm used is l1 norm, then

‖A− J(x)‖1 ≤
γ

2
|h|. (3.4.4)

Proof. By setting d = hej in (1.2.109), we obtain

‖F (x + hej)− F (x)− J(x)hej‖ ≤
γ

2
‖hej‖2 =

γ

2
|h|2.

Dividing by h gives (3.4.3). Noting from (1.2.7) that the l1 norm of a matrix
is the maximum of the l1 norm of a vector, we immediately get (3.4.4). �

Download more at Learnclax.com

3.4. FINITE-DIFFERENCE NEWTON’S METHOD 141

Now, let f : Rn → R. An approximation to the gradient ∇f(x) can be
obtained by the forward-difference approximation, defined as

∂f

∂xi
(x) ≈ f(x + hei)− f(x)

h
. (3.4.5)

This process requires evaluation of f at n + 1 points: x and x + hei, i =
1, · · · , n. Obviously, it follows from (1.2.109) that

∂f

∂xi
(x) =

f(x + hei)− f(x)
h

+ δh, (3.4.6)

where
|δh| ≤

γ

2
h. (3.4.7)

It means there is O(h) error in the forward-difference formula.
A more accurate approximation to the derivative can be obtained by using

the central-difference formula, defined as

∂f

∂xi
(x) ≈ f(x + hei)− f(x− hei)

2h
.

The two theorems below give respectively approximations to the gradient
and the Hessian of f , and describe the error bounds of these approximations.

Theorem 3.4.2 Let f : D ⊂ Rn → R satisfy the conditions of Theorem
1.2.23. Let the norm used satisfy ‖ei‖ = 1, i = 1, · · · , n. Assume that x +
hei, x−hei ∈ D, i = 1, · · · , n. Also let the vector a ∈ Rn with components ai,
be defined as

ai =
f(x + hei)− f(x− hei)

2h
. (3.4.8)

Then
|ai − |∇f(x)|i| ≤

γ

6
h2. (3.4.9)

If the norm used is the l∞ norm, then

‖a−∇f(x)‖∞ ≤ γ

6
h2. (3.4.10)

Proof. Define α and β respectively as

α = f(x + hei)− f(x)− h[∇f(x)]i −
1
2
h2[∇2f(x)]ii (3.4.11)

Download more at Learnclax.com

142 CHAPTER 3. NEWTON’S METHODS

and
β = f(x− hei)− f(x) + h[∇f(x)]i −

1
2
h2[∇2f(x)]ii. (3.4.12)

By using (1.2.110) and setting d = ±hei, we have

|α| ≤ γ

6
h3, |β| ≤ γ

6
h3.

Then using the triangle inequality gives

|α− β| ≤ γ

3
h3.

Also, from (3.4.11)-(3.4.12) and (3.4.8), we get

α− β = 2h(ai − [∇f(x)]i),

which gives (3.4.9). Finally, by using the definition of l∞ norm, we get
(3.4.10) immediately from (3.4.9). �

Theorem 3.4.3 Let f satisfy the conditions of Theorem 3.4.2. Assume that
x, x + hei, x + hej , x + hei + hej ∈ D, 1 ≤ i, j ≤ n. Also let A ∈ Rn×n with
components aij defined as

aij =
f(x + hei + hej)− f(x + hei)− f(x + hej) + f(x)

h2
. (3.4.13)

Then
|aij − [∇2f(x)]ij | ≤

5
3
γh. (3.4.14)

If the matrix norm is l1, l∞, or Frobenius norm, then

‖A−∇2f(x)‖ ≤ 5
3
γhn. (3.4.15)

Proof. The proof is similar to the proof in Theorem 3.4.2. Set

α = f(x + hei + hej)− f(x)− (hei + hej)T∇f(x)

−1
2
(hei + hej)T∇2f(x)(hei + hej),

β = f(x + hei)− f(x)− (hei)T∇f(x)− 1
2
(hei)T∇2f(x)(hei),

η = f(x + hej)− f(x)− (hej)T∇f(x)− 1
2
(hej)T∇2f(x)(hej),

Download more at Learnclax.com

3.4. FINITE-DIFFERENCE NEWTON’S METHOD 143

respectively. Then

α− β − η = h2(aij − [∇2f(x)]ij). (3.4.16)

Also, we have

|α− β − η| ≤ |α|+ |β|+ |η|
≤ γ

6
‖hei + hej‖3 +

γ

6
‖hei‖3 +

γ

6
‖hej‖3

≤ 5
3
γh3.

This inequality together with (3.4.16) gives the result (3.4.14). The inequality
(3.4.15) is a consequence of (3.4.14) and definitions of norms. �

Now we are in a position to discuss the finite-difference Newton’s method
for nonlinear equations

F (x) = 0, (3.4.17)

where F : Rn → Rn is continuously differentiable.
The Newton’s method for (3.4.17) is as follows:

Solve J(xk)d = −F (xk) for dk;
Set xk+1 = xk + αkdk;
where J(xk) is the Jacobian matrix of F at xk. When J(x) is not available,
we can use finite-difference derivative approximation and get the following
finite-difference Newton’s method for (3.4.17):

(Ak).j =
F (xk + hkej)− F (xk)

hk
, j = 1, · · · , n, (3.4.18)

xk+1 := xk −A−1
k F (xk), k = 0, 1, · · · . (3.4.19)

Theorem 3.4.4 Let F : Rn → Rn be continuously differentiable on an open
convex set D ⊂ Rn. Assume there exist x∗ ∈ Rn and r, β > 0, so that
N(x∗, r) ⊂ D, F (x∗) = 0, J(x∗)−1 exists and satisfies ‖J(x∗)−1‖ ≤ β, where
J is Lipschitz continuous in the neighborhood N(x∗, r) = {x ∈ Rn| ‖x−x∗‖ <
r}. Then there exist ε, h > 0, such that if x0 ∈ N(x∗, ε) and {hk} is a real
sequence with 0 < |hk| ≤ h, then the sequence {xk} generated from (3.4.18)-
(3.4.19) is well-defined and converges to x∗ linearly. If

lim
k→∞

hk = 0,

Download more at Learnclax.com

144 CHAPTER 3. NEWTON’S METHODS

the convergence is superlinear. Furthermore, if there exists a constant c1,
such that

|hk| ≤ c1‖xk − x∗‖, (3.4.20)

or equivalently, there exists a constant c2, such that

|hk| ≤ c2‖F (xk)‖, (3.4.21)

then the convergence rate is quadratic.

Proof. Choose ε and h such that, for xk ∈ N(x∗, ε), Ak is nonsingular and
|hk| < h. Let ε ≤ r and

ε + h ≤ 1
2βγ

. (3.4.22)

Now we prove, by induction, that

‖xk+1 − x∗‖ ≤ 1
2
‖xk − x∗‖, (3.4.23)

so
xk+1 ∈ N(x∗, ε). (3.4.24)

For k = 0, we first prove A0 is nonsingular. By assumptions and Theorem
3.4.1, we have ‖A(x)− J(x)‖ ≤ γh

2 , and then

‖J(x∗)−1[A0 − J(x∗)]‖
≤ ‖J(x∗)−1‖‖[A0 − J(x0)] + [J(x0)− J(x∗)]‖

≤ β

(
γh

2
+ γε

)
≤ 1

2
. (3.4.25)

From Von-Neumann Theorem 1.2.5 we know that A0 is nonsingular and that

‖A−1
0 ‖ ≤ 2β. (3.4.26)

Hence x1 is well-defined and

x1 − x∗ = −A−1
0 F (x0) + x0 − x∗

= A−1
0 {[F (x∗)− F (x0)− J(x0)(x∗ − x0)]

+[(J(x0)−A0)(x∗ − x0)]}. (3.4.27)

Download more at Learnclax.com

3.4. FINITE-DIFFERENCE NEWTON’S METHOD 145

Then from (3.4.26), (1.2.109) and (3.4.22), we get

‖x1 − x∗‖ ≤ ‖A−1
0 ‖{‖F (x∗)− F (x0)− J(x0)(x∗ − x0)‖

+‖A0 − J(x0)‖‖x∗ − x0‖} (3.4.28)

≤ 2β

{
γ

2
‖x∗ − x0‖2 +

γ

2
h‖x0 − x∗‖

}
(3.4.29)

≤ βγ(ε + h)‖x∗ − x0‖

≤ 1
2
‖x0 − x∗‖. (3.4.30)

Assume that the conclusion holds for k = j, in the same way as k = 0,
we can prove that the conclusion is also true for k = j + 1. Therefore,
(3.4.23)-(3.4.24) hold. They also show the linear convergence of the iterative
sequence.

The key for superlinear and quadratic convergence requires an improved
bound on ‖A0−J(x0)‖. When limk→∞ hk = 0, the second term in the bracket
of (3.4.29) approaches zero, and hence

‖xk+1 − x∗‖
‖xk − x∗‖ → 0, when k →∞,

which implies that the method converges superlinearly. Similarly, when
(3.4.20) is satisfied, it follows from (3.4.29) that the method converges to
x∗ quadratically. Finally, the equivalence of (3.4.20) and (3.4.21) is just a
consequence of Theorem 1.2.25. �

For unconstrained optimization problem

min
x∈Rn

f(x), (3.4.31)

when the gradient ∇f(x) is available, we can obtain the Hessian approxima-
tion by using the forward-difference or central-difference of the gradient. In
this case, the iteration scheme for the k-th step is as follows:

(A).j =
∇f(xk + hjej)−∇f(xk)

hj
, j = 1, · · · , n, (3.4.32)

Ak =
A + AT

2
, (3.4.33)

xk+1 = xk −A−1
k ∇f(xk), (3.4.34)

where
hj =

√
η max{|xj |, x̃j}sign(xj), (3.4.35)

Download more at Learnclax.com

146 CHAPTER 3. NEWTON’S METHODS

x̃j is a typical estimation given by users, and η is a small number more than
the machine accuracy.

If the standard assumptions of Theorem 3.4.4 hold, and if hj satisfies

hj = O(‖xk − x∗‖),

this finite-difference Newton’s method (3.4.34) maintains the quadratic con-
vergence rate.

Sometimes, some algorithms require us to supply the Hessian matrix-
vector product ∇2f(x)d, where d is a given vector. Instead of (3.4.32), we
can use

∇2f(xk)d ≈
∇f(xk + hd)−∇f(xk)

h
, (3.4.36)

which also has O(h) approximation error. For obtaining this approximation,
the cost is only evaluation of a single gradient at xk + hd. However, the cost
of (3.4.32) is evaluation of the gradient at n + 1 points xk and xk + hjej , j =
1, · · · , n.

In the case that the gradient ∇f(x) is not available, we can only use the
function values to approximate the Hessian. The expression (3.4.13) gives
the Hessian approximation as follows:

(Ak)ij =
[f(xk + hiei + hjej)− f(xk + hiei)]− [f(xk + hjej)− f(xk)]

hihj
,

where
hj = 3

√
η max{|xj |, x̃j}sign(xj)

or
hj = (ε̃)1/3xj ,

where ε̃ is a machine accuracy. Using the forward-difference and central-
difference, the gradient approximations are respectively

(ĝk)j =
f(xk + hjej)− f(xk)

hj
, j = 1, · · · , n (3.4.37)

and

(ĝk)j =
f(xk + hjej)− f(xk − hjej)

2hj
, j = 1, · · · , n. (3.4.38)

Download more at Learnclax.com

3.5. NEGATIVE CURVATURE DIRECTION METHOD 147

Their approximation errors are O(hj) and O(h2
j) respectively. In this case,

the finite-difference Newton’s iteration is

xk+1 = xk −A−1
k ĝk, (3.4.39)

where Ak and ĝk are finite-difference approximations of ∇2f(xk) and ∇f(xk)
respectively. Under the standard assumptions of Theorem 3.4.4, we have
similarly

‖xk+1 − x∗‖ ≤ ‖A−1
k ‖(v

2
‖xk − x∗‖2 + ‖Ak −∇2f(xk)‖‖xk − x∗‖

+ ‖ĝk −∇f(xk)‖). (3.4.40)

Note that there is an additional term ‖ĝk−∇f(xk)‖ than (3.4.28). If we want
to get the quadratic convergence rate, it is obvious to require ‖ĝk−∇f(xk)‖ =
O(‖xk − x∗‖2) which implies hj = O(‖xk − x∗‖2). Therefore, it tells us that,
when using the central-difference, the iteration (3.4.39) possesses quadratic
rate. If we use the forward-difference, the iteration has quadratic rate only
when hj = O(‖xk − x∗‖2).

In general, the forward-difference scheme is practical. Although the error
of the central-difference scheme is O(h2

j), as compared to the O(hj) error in
forward-difference, the cost is about twice as much as that of the forward-
difference. Hence, we use the central-difference scheme only for those prob-
lems which need higher accuracy. Stewart [323] gave a switch rule from
forward difference to central difference. Finally, it should be mentioned that,
if the gradient is available, it is better to make the best use of it.

3.5 Negative Curvature Direction Method

Another strategy for modifying Newton’s method, the negative curvature
direction method, is presented, because the modified Newton’s methods de-
scribed above are not adequate for the case in which the Hessian ∇2f(xk) is
indefinite and xk is close to a saddle point.

Now, we first put forward the definition below.

Definition 3.5.1 Let f : Rn → R be twice continuously differentiable on an
open set D ⊂ Rn.

(i) If ∇2f(x) has at least a negative eigenvalue, then x is said to be an
indefinite point.

Download more at Learnclax.com

148 CHAPTER 3. NEWTON’S METHODS

(ii) If x is an indefinite point and d satisfies dT∇2f(x)d < 0, then d is said
to be a negative curvature direction of f(x) at x.

(iii) If
sT∇f(x) ≤ 0, dT∇f(x) ≤ 0, dT∇2f(x)d < 0,

then the vector pair (s, d) is said to be a descent pair at the indefinite
point x. If x is not an indefinite point and satisfies

sT∇f(x) < 0, dT∇f(x) ≤ 0, dT∇2f(x)d = 0,

then the vector pair (s, d) is said to be a descent pair at x.

As an example of a descent pair, we can choose

s = −∇f(x),

d =

{
0, if ∇2f(x) ≥ 0,
−sign (uT∇f(x))u, otherwise,

where u is a unit eigenvector corresponding to a negative eigenvalue of
∇2f(x).

Obviously, there no longer exists the descent pair if and only if∇f(x) = 0
and ∇2f(x) is positive semi-definite.

From the definition above, at the stationary point, the negative curvature
direction must be a descent direction. At a general point, if the negative
curvature direction satisfies dT∇f(x) = 0, then both d and −d are descent
directions. If dT∇f(x) ≤ 0, d is a descent direction, and if dT∇f(x) ≥ 0, −d
is a descent direction.

In this section, we first give the Gill-Murray stable Newton’s method
which uses negative curvature direction. Then we discuss two negative cur-
vature direction methods: Fiacco-McCormick method and Fletcher-Freeman
method. Finally, we consider the second order Armijo step rules and the
second order Wolfe-Powell step rules.

3.5.1 Gill-Murray Stable Newton’s Method

The basic idea of Gill-Murray stable Newton’s method is: when the Hessian
Gk is indefinite, one uses the modified Cholesky factorization to force the
matrix Gk to be positive definite; when xk approaches to a stationary point,
use the negative curvature direction to decrease the objective function.

Download more at Learnclax.com

3.5. NEGATIVE CURVATURE DIRECTION METHOD 149

Let the modified Cholesky factorization be

Ḡk = Gk + Ek = LkDkL
T
k ,

where
Dk = diag(d11, · · · , dnn), Ek = diag(e11, · · · , enn).

When ‖gk‖ ≤ ε and∇2f(xk) is not positive semi-definite, we use the following
negative curvature direction algorithm.

Algorithm 3.5.2

Step 1. Set ψj = djj − ejj , j = 1, · · · , n.

Step 2. Find the subscript t, such that ψt = min{ψj | j = 1, · · · , n}.

Step 3. If ψt ≥ 0, stop; otherwise, solve

LT
k d = et (3.5.1)

for dk, where et is a unit vector with the t-th component of
et being 1. �

Theorem 3.5.3 Let Gk be the Hessian of f(x) at xk and

Ḡk = Gk + Ek = LkDkL
T
k .

If the direction dk is obtained by Algorithm 3.5.2, then dk is a negative cur-
vature direction at xk, and at least one in dk and −dk is descent direction at
xk.

Proof. Since Lk is a unit lower triangular matrix, the solution dk of (3.5.1)
has the form

dk = (ρ1, · · · , ρt−1, 1, 0, · · · , 0)T .

Then

dT
k Gkdk = dT

k Ḡkdk − dT
k Ekdk

= dT
k LkDkL

T
k dk − dT

k Ekdk

= eT
t Dket −

(
t−1∑
r=1

ρ2
rerr + ett

)

= dtt − ett −
t−1∑
r=1

ρ2
rerr

= ψt −
t−1∑
r=1

ρ2
rerr.

Download more at Learnclax.com

150 CHAPTER 3. NEWTON’S METHODS

By the modified Cholesky factorization Algorithm 3.3.2, we have

ejj = ḡjj − gjj = djj +
j−1∑
r=1

l2jrdr − gjj

= djj − cjj ≥ 0,

which indicates that
∑t−1

r=1 ρ2
rerr ≥ 0. Also, since ψt < 0, we obtain dT

k Gkdk <
0, which means dk is a negative curvature direction, and−dk too. If gT

k dk ≤ 0,
then dk is a descent direction; otherwise, −dk is a descent direction. �

The algorithm below is the Gill-Murray numerically stable Newton’s
method.

Algorithm 3.5.4

Step 1. Given a starting point x0, ε > 0. Set k := 1.

Step 2. Compute gk and Gk.

Step 3. Compute modified Cholesky factorization by using Algorithm
3.3.2

Gk + Ek = LkDkL
T
k .

Step 4. If ‖gk‖ > ε, solve LkDkL
T
k dk = −gk for dk, and go to Step

6; otherwise, go to Step 5.

Step 5 Perform Algorithm 3.5.2. If it cannot produce dk (i.e., ψt ≥
0), stop; otherwise, find dk and set

dk =

{
−dk, if gT

k dk > 0,
dk, otherwise.

Step 6. Compute line search factor αk, and set xk+1 = xk + αkdk.

Step 7. If f(xk+1) ≥ f(xk), stop; otherwise, set k = k + 1, and go
to Step 2. �

About the convergence of the algorithm above, we have the following
theorem.

Download more at Learnclax.com

3.5. NEGATIVE CURVATURE DIRECTION METHOD 151

Theorem 3.5.5 Let f : Rn → R be twice continuously differentiable on an
open set D. Assume there exists x̄ ∈ D ⊂ Rn such that the level set

L(x̄) = {x | f(x) ≤ f(x̄)}

is a bounded closed convex set. Assume that we pick ε = 0 in Algorithm
3.5.4, and the starting point x0 ∈ L(x̄). Then the sequence {xk} generated
from Algorithm 3.5.4 satisfies

(i) when {xk} is a finite sequence, its last element must be the stationary
point of f(x);

(ii) when {xk} is an infinite sequence, it must have accumulation points, and
all accumulation points are the stationary points of f(x).

The proof is omitted. We refer the interested reader to the original paper
Gill and Murray [147].

3.5.2 Fiacco-McCormick Method

The idea of the negative curvature direction method was first presented by
Fiacco and McCormick [122] who dealt with the case that the Hessian Gk has
negative eigenvalues and employed the exact line search. The idea is simply
to go forward along a negative curvature direction and decrease the objective
function.

When
dT

k gk ≤ 0 and dT
k Gkdk < 0, (3.5.2)

f(xk + dk) ≈ f(xk) + dT
k gk +

1
2
dT

k Gkdk

will be descending. Since Gk is indefinite, the Fiacco-McCormick method
uses the decomposition

Gk = LDLT , (3.5.3)

where L is a unit lower triangular, and D is a diagonal matrix. If Gk is
positive definite, the dk generated from this decomposition (3.5.3) is a descent
direction. However, if there exists a negative dii, then solve

LT t = a, (3.5.4)

Download more at Learnclax.com

152 CHAPTER 3. NEWTON’S METHODS

where the components ai of the vector a is defined as

ai =

{
1, dii ≤ 0,
0, dii > 0.

(3.5.5)

It is easy to show that

dk =

{
t, gT

k t ≤ 0,
−t, gT

k t > 0,
(3.5.6)

is a negative curvature direction satisfying (3.5.2).
Unfortunately, the decomposition (3.5.3) may be potentially unstable,

amplify the rounding errors, and even do not exist. Hence, Fletcher and
Freeman [135] employ a stable symmetric indefinite factorization.

3.5.3 Fletcher-Freeman Method

Fletcher and Freeman [135], instead, employ a stable symmetric indefinite
factorization due to Bunch and Parlett [33]. For any symmetric matrix Gk,
there exists a permutation matrix, such that

P T GkP = LDLT , (3.5.7)

where L is unit lower triangular, D is a block diagonal matrix with blocks
of dimension 1 or 2. The aim to use the permutation matrix is to maintain
the symmetricity and numerical stability. Contrasting with the factorization
(3.5.3), the factorization (3.5.7) always exists and can be computed by a
numerically stable process. Now, for 1 × 1 pivot case, let A be an n × n
matrix

A = A(0) =

[
a11 �aT

21

�a21 A22

]
, (3.5.8)

where �a21 is (n−1)×1 vector, A22 is an (n−1)×(n−1) matrix. Eliminating
one row and one column yields a reduced matrix A(1):

A(1) = A(0) − d11l1l
T
1 =

[
0 0T

0 A22 − �a21�a
T
21/d11

]
, (3.5.9)

where

d11 = a11, l1 =
1

d11

[
a11

�a21

]
=

[
1

�a21/d11

]
. (3.5.10)

Download more at Learnclax.com

3.5. NEGATIVE CURVATURE DIRECTION METHOD 153

For 2× 2 pivot case, let

A(0) =

[
A11 AT

21

A21 A22

]
, (3.5.11)

where A11 is a 2 × 2 block matrix, A21 is an (n − 2) × 2 matrix, and A22 is
an (n− 2)× (n− 2) matrix. Eliminating two rows and two columns yields a
reduced matrix A(2):

A(2) = A(0) − L1D1L
T
1 = A(0) −

[
I

L21

]
D1[I LT

21]

=

[
0 0
0 A22 −A21D

−1
1 AT

21

]
, (3.5.12)

where

D1 = A11, L1 =

[
A11

A21

]
D−1

1 =

[
I

A21A
−1
11

]
∆=

[
I

L21

]
. (3.5.13)

Next step, we will apply the same process to the remaining matrix A22 −
�a21�a

T
21/d11 or A22−A21D

−1
1 AT

21 with dimension (n−1)× (n−1) or (n−2)×
(n− 2) respectively. Finally, this recursive procedure gives (3.5.7).

In all the iterations, the algorithm has to identify the pivot block between
two pivoting forms. A natural problem is how to identify 1 × 1 submatrix
a11 or 2×2 block submatrix A11 as a pivot block. Now we describe a criteria
as follows. First, compute the largest-magnitude diagonal and the largest-
magnitude off-diagonal elements, denoting their respective magnitude by ξdia

and ξoff . If the growth ratio ξdia/ξoff is acceptable, we choose the diagonal
element with largest-magnitude as a pivot and perform row-column exchange
such that a11 is just the element. Otherwise, we choose the off-diagonal
element, say aij , whose magnitude is ξoff , and choose the corresponding
2× 2 block [

aii aij

aij ajj

]

as a pivot block. Then we perform row-column exchange such that A11 is
this 2× 2 block.

This decomposition needs n3/6 + O(n2) multiplications. Maybe the ex-
pensive computation is a disadvantage of this method. A more economical
improvement is presented by Bunch and Kaufman [32]. The interested reader

Download more at Learnclax.com

154 CHAPTER 3. NEWTON’S METHODS

may consult that paper. The forms of L and D produced by the decompo-
sition are a block lower triangular matrix and a block diagonal matrix, for
example,

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∗
∗ ∗
∗ ∗

∗ ∗
∗ ∗

∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
1
0 1
∗ ∗ 1
∗ ∗ 0 1
∗ ∗ ∗ ∗ 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

The decomposition above is said to be Bunch-Parlett factorization, in brief,
B-P factorization which can generate negative curvature direction.

Let Gk have symmetric indefinite factorization

Gk = LDLT . (3.5.14)

We solve the triangular system of equations

LT t = a, (3.5.15)

where, in the case of 1× 1 pivot, the components of a are

ai =

{
1, dii ≤ 0,
0, dii > 0;

(3.5.16)

in the case of 2× 2 pivot,

(
ai

ai+1

)
is the unit eigenvector corresponding to

the negative eigenvalue of

[
dii di,i+1

di+1,i di+1,i+1

]
. Set

dk =

{
t, when gT

k t ≤ 0,
−t, when gT

k t > 0,
(3.5.17)

then dk is the negative curvature direction satisfying (3.5.2). In fact, we have

dT
k Gkdk = dT

k LDLT dk = aT Da =
∑

i:λi<0

λi < 0, (3.5.18)

and
dT

k gk ≤ 0. (3.5.19)

Download more at Learnclax.com

3.5. NEGATIVE CURVATURE DIRECTION METHOD 155

In addition, when D has negative eigenvalues, the direction dk can also
be computed by

dk = −L−T D̃+L−1gk, (3.5.20)

where D̃ is the positive part of D, i.e.,

D̃i =

{
dii, when dii > 0,
0, otherwise,

and D̃+ is the generalized inverse of D̃.
When D contains at least one zero eigenvalue, the direction dk can be

computed by
Gkdk = LDLT dk = 0, gT

k dk < 0. (3.5.21)

When all the eigenvalues of D are positive, all blocks of D are 1 × 1
elements. In this case, B-P decomposition is reduced to usual Cholesky
factorization, and the direction produced is usual Newton’s direction

dk = −L−T D−1L−1gk.

It is not difficult to see that the negative curvature descent direction de-
termined by (3.5.17) is limited in some subspace; the direction from (3.5.20)
is a Newton’s direction limited in the subspace of positive curvature direc-
tion. Although the idea of using negative curvature directions is in some ways
attractive, Fletcher and Freeman [135] find that it is not satisfactory to use
such directions on successive iterations and that if we alternate positive cur-
vature and negative curvature search, i.e., alternate (3.5.17) and (3.5.20), we
can get better results. Similarly, if one continuously meets zero eigenvalue,
alternating (3.5.20) and (3.5.21) will give better results.

3.5.4 Second-Order Step Rules

Second-Order Armijo Step Rule – McCormick Method

In §2.5 we have discussed Armijo line search rule. Consider

min f(x), x ∈ D ⊂ Rn, (3.5.22)

where f : Rn → R is a continuously differentiable function in the open set
D.

Download more at Learnclax.com

156 CHAPTER 3. NEWTON’S METHODS

Given β ∈ (0, 1) and ρ ∈ (0, 1), mk is the least nonnegative integer m
such that

f(xk + βmτdk) ≤ f(xk) + ρβmτgT
k dk, (3.5.23)

where τ > 0, or require α to satisfy

f(xk + αdk) ≤ f(xk) + ραgT
k dk. (3.5.24)

For the steepest descent method

xk+1 = xk − 2−igk, (3.5.25)

the Armijo rule is

f(xk+1) ≤ f(xk)− ρ2−i‖gk‖2, ρ ∈ (0, 1). (3.5.26)

Instead of using only one descent direction and searching in a line deter-
mined by that direction, we search along a curve of the form

x(α) = xk + φ1(α)sk + φ2(α)dk, (3.5.27)

where (sk, dk) is a descent pair at xk defined in Definition 3.5.1, φ1(α) and
φ2(α) are polynomials with φ1(0) = φ2(0) = 0.

If we set Φ(α) = f(x(α)) and assume that ρ ∈ (0, 1), there is an ᾱ > 0
such that

Φ(α) ≤ Φ(0) + ρ[Φ′(0)α +
1
2
Φ′′(0)α2] (3.5.28)

for all α ∈ [0, ᾱ] provided that either Φ′(0) < 0 or Φ′(0) = 0 and Φ′′(0) < 0.
Normally, in (3.5.27) we choose φ1(α) and φ2(α) as lower-order polyno-

mials. The simplest functions of this type are

φ1(α) = α2, φ2(α) = α,

which lead to the iteration

x(α) = xk + α2sk + αdk. (3.5.29)

If we set α = γi, γ ∈ (0, 1), (3.5.29) becomes

xk(i) = xk + γ2isk + γidk ∈ D. (3.5.30)

Download more at Learnclax.com

3.5. NEGATIVE CURVATURE DIRECTION METHOD 157

The second-order Armijo rule requires us to find i(k) which is the smallest
nonnegative integer i such that

f(xk(i)) ≤ f(xk) + ργ2i[gT
k sk +

1
2
dT

k Gkdk], (3.5.31)

where ρ ∈ (0, 1), and set xk+1 = xk(i(k)). Typically, McCormick [203]
chooses γ2 = 1

2 in (3.5.30).
There exists a finite i(k) satisfying (3.5.31) provided that

sT
k gk < 0, whenever gk = 0 (3.5.32)

and
dT

k Gkdk < 0, whenever gk = 0. (3.5.33)

Only if xk is a point satisfying the second-order optimal condition, there
does not exist the descent pair satisfying (3.5.32)-(3.5.33), and the algorithm
terminates. The following is the convergence theorem of the second-order
Armijo rule.

Theorem 3.5.6 Let f : Rn → R be twice continuously differentiable on the
open set D, and assume that for some x0 ∈ D, the level set

L(x0) = {x ∈ D : f(x) ≤ f(x0)}

is compact. Suppose that {‖sk‖} and {‖dk‖} are bounded. If {xk} satisfies
(3.5.30) and (3.5.31), then

lim
k→∞

gT
k sk = 0 (3.5.34)

and
lim

k→∞
dT

k Gkdk = 0. (3.5.35)

Proof. The sequence {f(xk)} is decreasing and bounded below due to
the continuity of f and the compactness of L(x0). Thus {f(xk) − f(xk+1)}
converges to zero. Let i(k) be the smallest nonnegative integer such that
(3.5.30)-(3.5.31) hold, then there are two cases to consider.

Case 1. Suppose the integer sequence {i(k)} is bounded above by β ≥ 0.
Then

f(xk)− f(xk+1) ≥ −ργ2β [gT
k sk +

1
2
dT

k Gkdk]. (3.5.36)

Download more at Learnclax.com

158 CHAPTER 3. NEWTON’S METHODS

Since −gT
k sk ≥ 0 and −dT

k Gkdk ≥ 0, the conclusion follows.
Case 2. Suppose that the integer {i(k)} is not bounded above. So, with-

out loss of generality, we can assume that limk→+∞ i(k) = +∞. By (3.5.30)-
(3.5.31),

f(x(i(k)− 1))− f(xk) > ργ2[i(k)−1][gT
k sk +

1
2
dT

k Gkdk]. (3.5.37)

For convenience, let

pk = γ2[i(k)−1]sk + γi(k)−1dk.

By using Taylor’s theorem and noting that ∇2f(x) is continuous, we have

f(x(i(k)− 1))− f(xk) = pT
k gk +

1
2
pT

k Gkpk + o(γ2[i(k)−1]). (3.5.38)

Combining (3.5.37) and (3.5.38) gives

o(γ2[i(k)−1]) > (1− ρ)γ2[i(k)−1][−gT
k sk −

1
2
dT

k Gkdk]. (3.5.39)

Dividing by (1− ρ)γ2[i(k)−1] and taking limits yields

gT
k sk → 0 and dT

k Gkdk → 0. �

Furthermore, we have the following result.

Theorem 3.5.7 Assume that the conditions in Theorem 3.5.6 hold. In ad-
dition, suppose there exist positive constants c1, c2, c3, such that

‖sk‖ ≥ c3‖gk‖, (3.5.40)
dT

k Gkdk ≤ c2λGk
, (3.5.41)

−sT
k gk ≥ c1‖sk‖‖gk‖, (3.5.42)

where λGk
is the most negative eigenvalue of Gk. Then the accumulation

point x∗ of {xk} satisfies ∇f(x∗) = 0, and ∇2f(x∗) is positive semi-definite
with at least one zero eigenvalue.

Proof. From Theorem 3.5.6, we have

gT
k sk → 0 and dT

k Gkdk → 0.

Download more at Learnclax.com

3.5. NEGATIVE CURVATURE DIRECTION METHOD 159

Using (3.5.42) and (3.5.40) gives

−gT
k sk ≥ c1c3‖gk‖2.

Thus we get ‖gk‖ → 0. Also, it follows from (3.5.41) that d̄T∇2f(x∗)d̄ = 0
with d̄ a limit eigenvector of a subsequence of {dk}. Therefore, ∇2f(x∗) is
positive semi-definite with at least one zero eigenvalue. �

Second-Order Armijo Step Rule — Goldfarb Method

Goldfarb [154] thinks that the iteration

xk(α) = xk + α2sk + αdk (3.5.43)

is not ideal. The form (3.5.43) may be good in the neighborhood of a saddle
point. However, far from a saddle point, it is not a good approach. Then
Goldfarb [154] put forward a similar second-order Armijo rule based on the
iteration of the form

xk(α) = xk + αsk + α2dk, (3.5.44)

and gives the following algorithm:
For given γ and ρ, where 0 < γ, ρ < 1, and an initial point x0, determine

xk+1, for k = 0, 1, · · · , as follows:
Choose a descent pair (sk, dk) at xk. If none exists, stop. Otherwise, let

i(k) + 1 be the smallest nonnegative integer such that

f(xk(γi))− f(xk) ≤ ρ[γisT
k gk +

1
2
γ4idT

k Gkdk] (3.5.45)

and set
xk+1 = xk(γi(k)+1). (3.5.46)

In very much the same manner as Theorem 3.5.6 and Theorem 3.5.7, we
have the convergence theorems. So we give them as follows without proof.

Theorem 3.5.8 Let f : Rn → R have two continuous derivatives on the
open set D and let the level set S = {x | f(x) ≤ f(x0)} be a compact subset
of D for a given x0 ∈ D. Suppose that an admissible sequence of descent
pairs {(sk, dk)} is used in the above algorithm, and that

−sT
k gk ≥ c1‖sk‖2, (3.5.47)

sT
k Gksk ≤ c2‖sk‖2, (3.5.48)

where 0 < c1, c2 < ∞. Then gk → 0, sk → 0, λk → 0, and dk → 0.

Download more at Learnclax.com

160 CHAPTER 3. NEWTON’S METHODS

Theorem 3.5.9 In addition to the assumptions of Theorem 3.5.8, assume
that the set of stationary points of f(x) in the level set L is finite. Then, if
{xk} is the sequence obtained by the second-order Armijo steplength algorithm
(3.5.45) and (3.5.46), we have

lim
k→∞

xk = x∗, g(x∗) = 0, G(x∗) ≥ 0. (3.5.49)

Moreover, if infinitely many Gk ≥ 0, then G(x∗) has at least one eigenvalue
equal to zero.

Second-Order Wolfe-Powell Step Rule — Moré-Sorensen Rule

Consider the iteration of the form

x(α) = xk + α2sk + αdk, (3.5.50)

where (sk, dk) is a descent pair at xk. Replacing Wolfe-Powell step rule (2.5.3)
and (2.5.7), we ask α to satisfy

f(x(α)) ≤ f(x) + ρα2[∇f(x)T s +
1
2
dT∇2f(x)d], (3.5.51)

∇f(x(α))T x′(α) ≥ σ[∇f(x)T d + 2α∇f(x)T s + αdT∇2f(x)d], (3.5.52)

where 0 < ρ ≤ σ < 1. When d = 0, these conditions reduce to those
of (2.5.3) and (2.5.7). The conditions (3.5.51) and (3.5.52) are said to be
the second-order Wolfe-Powell step rule which is contributed by Moré and
Sorensen [221].

If (sk, dk) is a descent pair at xk and we set

Φk(α) = f(xk + α2sk + αdk), (3.5.53)

then (3.5.51) and (3.5.52) are equivalent to

Φk(αk) ≤ Φk(0) +
1
2
ρΦ′′

k(0)α2
k, (3.5.54)

Φ′
k(αk) ≥ σ[Φ′

k(0) + Φ′′
k(0)αk]. (3.5.55)

The second order Wolfe-Powell step rule has a geometric interpretation as
shown in Figure 3.5.1.

Download more at Learnclax.com

3.5. NEGATIVE CURVATURE DIRECTION METHOD 161

Figure 3.5.1 Second-order Wolfe-Powell step rule

Similar to the preceding discussion, we now give the following convergence
results.

Theorem 3.5.10 Let f : Rn → R have twice continuous derivatives on the
open set D, and assume that for some x0 ∈ D, the level set

L(x0) = {x ∈ D | f(x) ≤ f(x0)}

is a compact subset of D. If {xk} satisfies (3.5.50)-(3.5.52), then

lim
k→∞

gT
k sk = 0 and lim

k→∞
dT

k Gkdk = 0. (3.5.56)

Proof. From (3.5.53) we have Φ′
k(0) = gT

k dk and

Φ′′
k(0) = 2gT

k sk + dT
k Gkdk.

Since (sk, dk) is a descent pair, Φ′
k(0) ≤ 0 and Φ′′

k(0) < 0. Thus (3.5.51)
implies that {xk} ⊂ L(x0). By the continuity of f and compactness of L(x0)
we have that {fk − fk+1} converges to zero. Since

fk − fk+1 ≥ −
1
2
ρΦ′′

k(0)α2
k ≥ 0,

it follows that
lim

k→∞
α2

kg
T
k sk = 0 (3.5.57)

and
lim

k→∞
α2

kd
T
k Gkdk = 0. (3.5.58)

Download more at Learnclax.com

162 CHAPTER 3. NEWTON’S METHODS

From (3.5.55) we have

Φ′
k(αk)− Φ′

k(0)− αkΦ′′
k(0) ≥ −(1− σ)[Φ′

k(0) + Φ′′
k(0)αk],

and hence

Φ′
k(αk)− Φ′

k(0)− αkΦ′′
k(0) ≥ −(1− σ)Φ′′

k(0)αk.

An application of the mean-value theorem yields that for some θk ∈ (0, αk),

Φ′′
k(θk)− Φ′′

k(0) ≥ −(1− σ)Φ′′
k(0). (3.5.59)

In the following, we prove (3.5.56) by contradiction. Suppose either the
first equality or the second equality does not hold, then there is a subsequence
{ki} and η > 0 such that

−Φ′′
ki

(0) ≥ η > 0. (3.5.60)

Hence (3.5.59) implies that {αki
} does not converge to zero. However, if

{αki
} does not converge to zero and (3.5.60) holds, then (3.5.57) and (3.5.58)

cannot be satisfied. This contradiction establishes the theorem. �

Furthermore, we have

Theorem 3.5.11 Let f : Rn → R have twice continuous derivatives on
the open set D, and assume that, for some x0 ∈ D, the level set L(x0) =
{x ∈ D | f(x) ≤ f(x0)} is compact. In addition, assume that f has a finite
number of critical points in L(x0). Then, if {xk} is a sequence obtained by
the second-order step rule (3.5.50)-(3.5.52), we have

lim
k→∞

xk = x∗, g(x∗) = 0, G(x∗) ≥ 0. (3.5.61)

Moreover, if infinitely many Gk ≥ 0, then G(x∗) has at least one eigenvalue
equal to zero.

Proof. It is similar to the proof of Theorem 3.5.7. �

Determine Descent Pair (sk, dk)

Finally, we mention a way to obtain the descent pair (sk, dk) which satisfies all
of the requirements of Theorem 3.5.10 and 3.5.11. First, consider computing
sk. Assume that

Gk = LkDkL
T
k

Download more at Learnclax.com

3.6. INEXACT NEWTON’S METHOD 163

is the Bunch-Parlett symmetric indefinite factorization where we omit the
permutations, Lk is a unit lower triangular matrix, Dk a block diagonal
matrix with 1× 1 or 2× 2 diagonal block. Let

Dk = UkΛkU
T
k

be the spectral decomposition of Dk. Set

λ̄
(k)
j = max

{
|λ(k)

j |, εn max
1≤i≤n

|λ(k)
i |, ε

}
, j = 1, · · · , n,

Λ̄k = diag(λ̄(k)
1 , · · · , λ̄(k)

n),

where ε is the relative machine precision. Set

D̄k = UkΛ̄kU
T
k .

We obtain sk as the solution of

LkD̄kL
T
k s = −gk.

Next, the negative curvature direction dk is obtained as the solution of

LT
k dk = ±|min{λ(Dk), 0}|

1
2 zk,

where λ(Dk) is the smallest eigenvalue of Dk and zk the corresponding unit
eigenvector of Dk. The other way to obtain a negative curvature direction
dk is to solve

LT
k dk = ±

∑
λj(Dk)≤0

zj .

3.6 Inexact Newton’s Method

As mentioned before, the pure Newton’s method is expensive in each iter-
ation, especially when the dimension n is large. Also, the quadratic model
used to derive the Newton equation may not provide a good prediction of the
behavior of the function, especially when the iterate xk is remote from the
solution x∗. In this section, we consider a class of inexact Newton’s methods
in which we only approximately solve the Newton equation. In the following,
we discuss this class of methods for solving nonlinear equations F (x) = 0. It

Download more at Learnclax.com

164 CHAPTER 3. NEWTON’S METHODS

is not difficult for readers to deal with unconstrained optimization problems
by using this way.

Consider solving the nonlinear equations

F (x) = 0, (3.6.1)

where F : Rn → Rn is assumed to have the following properties:

A1 There exists x∗ such that F (x∗) = 0.

A2 F is continuously differentiable in the neighborhood of x∗.

A3 F ′(x∗) is nonsingular.

Recall that the basic Newton’s step is obtained by solving

F ′(xk)sk = −F (xk) (3.6.2)

and setting
xk+1 = xk + sk. (3.6.3)

Now, we consider inexact Newton’s method: solve

F ′(xk)sk = −F (xk) + rk, (3.6.4)

where
‖rk‖ ≤ ηk‖F (xk)‖. (3.6.5)

Set
xk+1 = xk + sk. (3.6.6)

Here, rk = F ′(xk)sk+F (xk) denotes the residual, and {ηk} (with 0 < ηk < 1)
is a forcing sequence which controls the inexactness.

Next, we study the local convergence of inexact Newton’s methods.

Lemma 3.6.1 Let F : D ⊂ Rn → Rn be continuously differentiable in a
neighborhood of x∗ ∈ D, and let F ′(x∗) be nonsingular. Then there exist
δ > 0, ξ > 0, and ε > 0, such that when ‖y − x∗‖ < δ and y ∈ D, F ′(y) is
nonsingular and

‖F ′(y)−1‖ ≤ ξ. (3.6.7)

Also, F ′(y)−1 is continuous at x∗, that is

‖F ′(y)−1 − F ′(x∗)−1‖ < ε. (3.6.8)

Download more at Learnclax.com

3.6. INEXACT NEWTON’S METHOD 165

Proof. Set α = ‖F ′(x∗)−1‖. For a given β < α−1, choose δ such that
when ‖y − x∗‖ < δ with y ∈ D,

‖F ′(x∗)− F ′(y)‖ ≤ β.

It follows from Von-Neumann Theorem 1.2.5 that F ′(y) is invertible, and
(3.6.7) holds with ξ = α/(1− βα). Thus,

‖F ′(x∗)−1 − F ′(y)−1‖ = ‖F ′(x∗)−1(F ′(y)− F ′(x∗))F ′(y)−1‖
≤ αξ‖F ′(x∗)− F ′(y)‖
≤ αβξ
∆= ε,

which says that the continuity of F ′ guarantees the continuity of (F ′)−1. �

In the following, we establish the linear convergence in Theorem 3.6.2 and
superlinear convergence in Theorem 3.6.4.

Theorem 3.6.2 Let F : Rn → Rn satisfy the properties (A1)–(A3). Assume
that the sequence {ηk} satisfies 0 ≤ ηk ≤ η < t < 1. Then, for some ε > 0, if
the starting point x0 is sufficiently near x∗, the sequence {xk} generated by
inexact Newton’s method (3.6.4)–(3.6.6) converges to x∗, and the convergence
rate is linear, i.e.,

‖xk+1 − x∗‖∗ ≤ t‖xk − x∗‖∗, (3.6.9)

where ‖y‖∗ = ‖F ′(x∗)y‖.

Proof. Since F ′(x∗) is nonsingular, for y ∈ Rn, we have

1
µ
‖y‖ ≤ ‖y‖∗ ≤ µ‖y‖, (3.6.10)

where
µ = max{‖F ′(x∗)‖, ‖F ′(x∗)−1‖}. (3.6.11)

Since η < t, there exists sufficiently small γ > 0, such that

(1 + γµ)[η(1 + µγ) + 2µγ] ≤ t. (3.6.12)

Now choose ε > 0 sufficiently small, such that if ‖y − x∗‖ ≤ µ2ε, we have

‖F ′(y)− F ′(x∗)‖ ≤ γ, (3.6.13)
‖F ′(y)−1 − F ′(x∗)−1‖ ≤ γ, (3.6.14)
‖F (y)− F (x∗)− F ′(x∗)(y − x∗)‖ ≤ γ‖y − x∗‖. (3.6.15)

Download more at Learnclax.com

166 CHAPTER 3. NEWTON’S METHODS

Let ‖x0−x∗‖ ≤ ε. We now prove (3.6.9) by induction. By using (3.6.10)–
(3.6.11) and assumption of the induction, we have

‖xk − x∗‖ ≤ µ‖xk − x∗‖∗ ≤ µtk‖x0 − x∗‖∗
≤ µ2‖x0 − x∗‖ ≤ µ2ε.

Then, when y = xk, (3.6.13)–(3.6.15) hold. Since

F ′(x∗)(xk+1 − x∗)
= F ′(x∗)(xk − x∗ − F ′(xk)−1F (xk) + F ′(xk)−1rk)
= F ′(x∗)F ′(xk)−1[F ′(xk)(xk − x∗)− F (xk) + rk]
= [I + F ′(x∗)(F ′(xk)−1 − F ′(x∗)−1)][rk + (F ′(xk)− F ′(x∗))(xk − x∗)

−(F (xk)− F (x∗)− F ′(x∗)(xk − x∗))], (3.6.16)

by taking norms and using (3.6.11), (3.6.14), (3.6.5), (3.6.13) and (3.6.15),
we obtain

‖xk+1 − xk‖∗
≤ [1 + ‖F ′(x∗)‖‖F ′(xk)−1 − F ′(x∗)−1‖][‖rk‖+

‖F ′(xk)− F ′(x∗)‖‖xk − x∗‖+ ‖F (xk)− F (x∗)− F ′(x∗)(xk − x∗)‖]
≤ (1 + µγ)[ηk‖F (xk)‖+ γ‖xk − x∗‖+ γ‖xk − x∗‖]. (3.6.17)

Note that

F (xk) = [F ′(x∗)(xk − x∗)] + [F (xk)− F (x∗)− F ′(x∗)(xk − x∗)],

taking the norm gives

‖F (xk)‖ ≤ ‖xk − x∗‖∗ + γ‖xk − x∗‖. (3.6.18)

Substituting (3.6.18) into (3.6.17) and using (3.6.10) and (3.6.12) yield

‖xk+1 − x∗‖∗ ≤ (1 + µγ)[ηk(‖xk − x∗‖∗ + γ‖xk − x∗‖) + 2γ‖xk − x∗‖]
≤ (1 + µγ)[η(1 + µγ) + 2µγ]‖xk − x∗‖∗
≤ t‖xk − x∗‖∗. �

Below, we discuss the superlinear convergence rate of the inexact New-
ton’s methods. We first give a lemma.

Download more at Learnclax.com

3.6. INEXACT NEWTON’S METHOD 167

Lemma 3.6.3 Let

α = max{‖F ′(x∗)‖+
1
2β

, 2β},

where β = ‖F ′(x∗)−1‖. Then, for ‖y − x∗‖ sufficiently small, the inequality

1
α
‖y − x∗‖ ≤ ‖F (y)‖ ≤ α‖y − x∗‖ (3.6.19)

holds.

Proof. From the continuous differentiability of F , we know that there
exists a sufficiently small δ > 0, such that when ‖y − x∗‖ < δ,

‖F (y)− F (x∗)− F ′(x∗)(y − x∗)‖ ≤ 1
2β
‖y − x∗‖ (3.6.20)

holds. Note that

F (y) = [F ′(x∗)(y − x∗)] + [F (y)− F (x∗)− F ′(x∗)(y − x∗)],

and take norms, then we have

‖F (y)‖ ≤ ‖F ′(x∗)‖‖y − x∗‖+ ‖F (y)− F (x∗)− F ′(x∗)(y − x∗)‖

≤
(
‖F ′(x∗)‖+

1
2β

)
‖y − x∗‖ (3.6.21)

and

‖F (y)‖ ≥ ‖F ′(x∗)−1‖−1‖y − x∗‖ − ‖F (y)− F (x∗)− F ′(x∗)(y − x∗)‖

≥
(
‖F ′(x∗)−1‖−1 − 1

2β

)
‖y − x∗‖

=
1
2β
‖y − x∗‖. (3.6.22)

Combining (3.6.21) and (3.6.22) gives (3.6.19). �

Theorem 3.6.4 Let the assumptions of Theorem 3.6.2 be satisfied. Assume
that the sequence {xk} generated by the inexact Newton’s method converges
to x∗, then, if and only if

‖rk‖ = o(‖F (xk)‖), k →∞, (3.6.23)

{xk} converges to x∗ superlinearly.

Download more at Learnclax.com

168 CHAPTER 3. NEWTON’S METHODS

Proof. Assume that {xk} converges to x∗ superlinearly. Since

rk = F (xk) + F ′(xk)(xk+1 − xk)
= [F (xk)− F (x∗)− F ′(x∗)(xk − x∗)]− [F ′(xk)− F ′(x∗)](xk − x∗)

+[F ′(x∗) + (F ′(xk)− F ′(x∗))](xk+1 − x∗),

taking norms and using property (A1)-(A3) and the superlinear convergence
property of {xk} yield

‖rk‖ ≤ ‖F (xk)− F (x∗)− F ′(x∗)(xk − x∗)‖+ ‖F ′(xk)− F ′(x∗)‖‖xk − x∗‖
+[‖F ′(x∗)‖+ ‖F ′(xk)− F ′(x∗)‖]‖xk+1 − x∗‖

= o(‖xk − x∗‖) + o(1)‖xk − x∗‖
+[‖F ′(x∗)‖+ o(1)]o(‖xk − x∗‖). (3.6.24)

Thus, by use of Lemma 3.6.3, we have, when k →∞, that

‖rk‖ = o(‖xk − x∗‖) = o(‖F (xk)‖). (3.6.25)

Conversely, assume that ‖rk‖ = o(‖F (xk)‖). From (3.6.16), it follows
that

‖xk+1 − x∗‖
≤ (‖F ′(x∗)−1‖+ ‖F ′(xk)−1 − F ′(x∗)−1‖)(‖rk‖

+‖F ′(xk)− F ′(x∗)‖‖xk − x∗‖+ ‖F (xk)− F (x∗)− F ′(x∗)(xk − x∗)‖)
= (‖F ′(x∗)−1‖+ o(1))(o(‖F (xk)‖) + o(1)‖xk − x∗‖+ o(‖xk − x∗‖)).

Therefore, we get from Lemma 3.6.3 that

‖xk+1 − x∗‖ = o(‖F (xk)‖) + o(‖xk − x∗‖)
= o(‖xk − x∗‖),

which shows the superlinear convergence of sequence {xk}. �

The following corollary indicates that when {ηk} → 0, the sequence {xk}
converges to x∗ superlinearly.

Corollary 3.6.5 Assume that the sequence {xk} generated by inexact New-
ton’s method converges to x∗. Then, if sequence {ηk} converges to zero, the
sequence {xk} converges to x∗ superlinearly.

Download more at Learnclax.com

3.6. INEXACT NEWTON’S METHOD 169

Proof. If limk→∞ ηk = 0, then

lim sup
k→∞

‖rk‖
‖F (xk)‖

= 0,

which means that ‖rk‖ = o(‖F (xk)‖). Then the conclusion is obtained from
Theorem 3.6.4. �

There are several proofs of local convergence for the inexact Newton’s
method. Below, we give outlines of other proofs.

The outline of the second proof is as follows.

From (3.6.4)–(3.6.6), we have

xk+1 − x∗

= xk − x∗ − F ′(xk)−1F (xk) + F ′(xk)−1rk

= F ′(xk)−1[F ′(xk)(xk − x∗)− F (xk) + F (x∗) + rk]. (3.6.26)

Taking norms, and using (3.6.7), (3.6.15) and Lipschitzian continuity of F (x),
i.e., ‖F (xk)‖ = ‖F (xk)− F (x∗)‖ ≤ L‖xk − x∗‖, we obtain

‖xk+1 − x∗‖ ≤ ξ[γ‖xk − x∗‖+ ηkL‖xk − x∗‖]
≤ ξ(γ + ηkL)‖xk − x∗‖. (3.6.27)

If we choose γ and ηk such that ξ(γ + ηkL) < 1, then {xk} converges to
x∗ linearly. If we choose ηk → 0 and note that γ is sufficiently small, then
ξ(γ + ηkL)→ 0, and thus the sequence {xk} converges to x∗ superlinearly.

The third proof is as follows.

Theorem 3.6.6 Let F : Rn → Rn satisfy the properties (A1)–(A3). Assume
that the sequence {ηk} satisfies 0 ≤ ηk ≤ η < 1. Then, for some ε > 0, if
the starting point x0 is sufficiently near x∗, the sequence {xk} generated by
inexact Newton’s method (3.6.4)–(3.6.6) converges to x∗, and the convergence
rate is linear, i.e., for all k sufficiently large,

‖xk+1 − x∗‖ ≤ c‖xk − x∗‖ (3.6.28)

for some constant 0 < c < 1.
Furthermore, if ηk → 0, then the sequence {xk} converges to x∗ superlin-

early. If ηk = O(‖F (xk)‖), then the sequence converges to x∗ quadratically.

Download more at Learnclax.com

170 CHAPTER 3. NEWTON’S METHODS

Proof. From (3.6.4),

sk = F ′(xk)−1[−F (xk) + rk].

Taking norms and using (3.6.7) and (3.6.5), we obtain

‖sk‖ ≤ ξ(‖F (xk)‖+ ‖rk‖) ≤ ξ(1 + η)‖F (xk)‖ ≤ 2ξ‖F (xk)‖. (3.6.29)

By using Taylor’s theorem, (3.6.4) and the above expression, we have

F (xk+1) = F (xk) + F ′(xk)sk + O(‖sk‖2)
= rk + O(‖F (xk)‖2). (3.6.30)

By taking norms and using (3.6.5), we get

‖F (xk+1)‖ ≤ ηk‖F (xk)‖+ O(‖F (xk)‖2). (3.6.31)

Dividing both sides by ‖F (xk)‖, passing to the lim sup, k → ∞, noting that
ηk ≤ η < 1, we deduce

lim sup
k→∞

‖F (xk+1)‖
‖F (xk)‖

≤ η < 1. (3.6.32)

By using Corollary 1.2.26 (or Lemma 3.6.3) we immediately obtain

lim sup
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖ ≤ C lim sup

k→∞
‖F (xk+1)‖
‖F (xk)‖

(3.6.33)

for some constant C. When {xk} is sufficiently close to x∗ and Cη < 1, the
sequence {xk} converges to x∗ locally and linearly.

Furthermore, if ηk → 0, then

lim sup
k→∞

‖rk‖
‖F (xk)‖

= 0,

i.e., ‖rk‖ = o(‖F (xk)‖). By using (3.6.30) and taking norms, we have

lim sup
k→∞

‖F (xk+1)‖
‖F (xk)‖

= 0 (3.6.34)

which indicates the superlinear convergence in the function value sequence
{F (xk)}. It is easy to see that

lim sup
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖ = 0 (3.6.35)

Download more at Learnclax.com

3.6. INEXACT NEWTON’S METHOD 171

by use of Corollary 1.2.26 (or (3.6.19)).
If

ηk = O(‖F (xk)‖), (3.6.36)

then there exists some constant c1 such that ηk ≤ c1‖F (xk)‖. By using
(3.6.5) we get that

lim sup
k→∞

‖rk‖
‖F (xk)‖2

≤ c1, (3.6.37)

which shows that
rk = O(‖F ′(xk)‖2). (3.6.38)

We have immediately from (3.6.30) that

lim sup
k→∞

‖F (xk+1)‖
‖F (xk)‖2

= c (3.6.39)

for some constant c, which means quadratic convergence of {F (xk)}. And
therefore we have that

lim sup
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖2 = c. � (3.6.40)

It is easy to apply the above result to unconstrained optimization problem
minx∈Rn f(x). In fact, instead of (3.6.4)–(3.6.5), we use

∇2f(xk)sk = −∇f(xk) + rk, (3.6.41)

where
‖rk‖ ≤ ηk‖∇f(xk)‖, (3.6.42)

and then we can get the same results for unconstrained optimization prob-
lems. Similar to the above discussion we have the following theorem.

Theorem 3.6.7 Suppose that ∇f(x) is continuously differentiable in a neigh-
borhood of a minimizer x∗, and assume that ∇2f(x∗) is positive definite.
Consider the iteration xk+1 = xk + sk, where sk is an inexact Newton step
satisfying (3.6.41) and (3.6.42). Assume that the sequence {ηk} satisfies
0 ≤ ηk ≤ η < 1. Then, if the starting point x0 is sufficiently near x∗, the
sequence {xk} converges to x∗ linearly, i.e., for all k sufficiently large,

‖xk+1 − x∗‖ ≤ c‖xk − x∗‖ (3.6.43)

for some constant 0 < c < 1.
The sequence {xk} converges to x∗ superlinearly if ‖rk‖ = o(‖∇f(xk)‖).
The sequence {xk} converges to x∗ quadratically if ‖rk‖ = O(‖∇f(xk)‖2).

Download more at Learnclax.com

172 CHAPTER 3. NEWTON’S METHODS

About the implementation of the inexact Newton’s method, we can gen-
erate the search direction by applying the conjugate gradient method to the
Newton’s equation∇2f(xk)sk = −∇f(xk), and then ask that the termination
test (3.6.42) be satisfied.

Inexact Newton’s method is an efficient method, especially for large scale
nonlinear equations and optimization problems. Inexact Newton’s method
was due to Dembo, Eisenstat and Steihaug [83]. The other important works
about this method can be found in Steihaug [321], Dennis and Walker [99],
Ypma [365], and Nash [229].

Exercises

1. Let f(x) = 3
2x2

1+ 1
2x2

2−x1x2−2x1. Let the initial point x(0) = (−2, 4)T .
Minimize f(x) by use of the steepest descent method and Newton’s method,
respectively.

2. Let
(1) f(x) = 1

2(x2
1 + 9x2

2);
(2) f(x) = 1

2(x2
1 + 104x2

2).
Discuss the convergence rate of the steepest descent method.

3. Let f(x) = 1
2xT x + 1

4σ(xT Ax)2, where

A =

⎡
⎢⎢⎢⎣

5 1 0 1
2

1 4 1
2 0

0 1
2 3 0

1
2 0 0 2

⎤
⎥⎥⎥⎦ .

Let (1) x(0) = (cos 70◦, sin 70◦, cos 70◦, sin 70◦)T ;
(2) x(0) = (cos 50◦, sin 50◦, cos 50◦, sin 50◦)T .

In the case of σ = 1 and σ = 104, discuss the numerical results and behavior
of convergence rate of pure Newton’s method and Newton’s method with line
search respectively.

4. Minimize the Rosenbrock function f(x) = 100(x2 − x2
1)

2 + (1 − x1)2

by the steepest descent method and Newton’s method respectively, where
x(0) = (−1.2, 1)T , x∗ = (1, 1)T , f(x∗) = 0.

5. By your opinion, state the reasons that the steepest descent method
converges slowly.

Download more at Learnclax.com

3.6. INEXACT NEWTON’S METHOD 173

6. Prove the convergence of the inexact Newton methods.

Download more at Learnclax.com

Download more at Learnclax.com

Chapter 4

Conjugate Gradient Method

In the preceding chapter we have discussed the steepest descent method and
the Newton method. In this chapter we introduce the conjugate gradient
method which is one between the steepest descent method and the Newton
method. The conjugate gradient method deflects the direction of the steepest
descent method by adding to it a positive multiple of the direction used in the
last step. This method only requires the first-order derivatives but overcomes
the steepest descent method’s shortcoming of slow convergence. At the same
time, the method need not save and compute the second-order derivatives
which are needed by Newton method. In particular, since it does not require
the Hessian matrix or its approximation, it is widely used to solve large scale
optimization problems.

In this chapter, we will discuss the derivation, the properties, the al-
gorithm and numerical experiments, and the convergence of the conjugate
gradient method. Note that the restarting and preconditioning are very im-
portant to improve the conjugate gradient method. As a beginning, we first
introduce the concept of conjugate directions and the conjugate direction
method.

4.1 Conjugate Direction Methods

One of the main properties of the conjugate gradient method is that its
directions are conjugate. Now, we first introduce conjugate directions and
conjugate direction methods.

Download more at Learnclax.com

176 CHAPTER 4. CONJUGATE GRADIENT METHOD

Definition 4.1.1 Let G be an n×n symmetric and positive definite matrix,
d1, d2, · · · , dm ∈ Rn be non-zero vectors, m ≤ n. If

dT
i Gdj = 0, ∀i = j, (4.1.1)

the vectors d1, d2, · · · , dm are called G-conjugate or simply conjugate.

Obviously, if vectors d1, · · · , dm are G-conjugate, then they are linearly
independent. If G = I, the conjugacy is equivalent to the usual orthogonality.

A general conjugate direction method has the following steps:

Algorithm 4.1.2 (General Conjugate Direction Method)

Step 1. Given an initial point x0, ε > 0, k := 0. Compute g0 = g(x0);
Compute d0 such that dT

0 g0 < 0.

Step 2. If ‖gk‖ ≤ ε, stop.

Step 3. Compute αk such that

f(xk + αkdk) = min
α≥0

f(xk + αdk).

Set xk+1 = xk + αkdk.

Step 4. Compute dk+1 by some conjugate direction method, such that
dT

k+1Gdj = 0, j = 0, 1, · · · , k.

Step 5. Set k := k + 1, go to Step 2. �

The conjugate direction method is an important class of optimization
methods. The following theorem shows that, under exact line search, the
conjugate direction methods have quadratic termination property, which
means that the method terminates in at most n steps when it is applied
to a quadratic function with positive definite Hessian.

Theorem 4.1.3 (Principal Theorem of Conjugate Direction Method) For a
quadratic function with positive definite Hessian G, the conjugate direction
method terminates in at most n exact line searches. Each xi+1 is the min-
imizer in the subspace generated by x0 and the directions d0, · · · , di, that is
{x | x = x0 +

∑i
j=0 αjdj}.

Download more at Learnclax.com

4.1. CONJUGATE DIRECTION METHODS 177

Proof. Since G is positive definite and the conjugate directions d0, d1, · · ·
are linearly independent, it is enough to prove for all i ≤ n− 1 that

gT
i+1dj = 0, j = 0, · · · , i. (4.1.2)

(Note that if (4.1.2) holds, we immediately have gT
n dj = 0, j = 0, · · · , n − 1

and gn = 0, therefore xn is a minimizer.)
To prove (4.1.2), we consider two cases j < i and j = i. Keep in mind

that
yk

Def
= gk+1 − gk = G(xk+1 − xk) = αkGdk. (4.1.3)

When j < i, by use of exact line search and the conjugacy, we have

gT
i+1dj = gT

j+1dj +
i∑

k=j+1

yT
k dj

= gT
j+1dj +

i∑
k=j+1

αkd
T
k Gdj (4.1.4)

= 0.

When j = i, (4.1.2) is a direct result from the exact line search. Thus (4.1.2)
holds and we complete the proof. �

This theorem is simple but important. All conjugate direction methods
rely on this theorem. We reemphasize that, under exact line search, all
conjugate direction methods satisfy (4.1.2), and have quadratic termination
property. This shows that conjugacy plus exact line search implies quadratic
termination.

Figure 4.1.1 The gradient of conjugate direction method satisfies (4.1.2)

Download more at Learnclax.com

178 CHAPTER 4. CONJUGATE GRADIENT METHOD

4.2 Conjugate Gradient Method

4.2.1 Conjugate Gradient Method

In the conjugate direction method described in §4.1, there is not an explicit
procedure for generating a conjugate system of vectors d1, d2, · · ·. In this
section we describe a method for generating mutually conjugate direction
vectors, which is theoretically appealing and computationally effective. This
method is called the conjugate gradient method.

In conjugate direction methods, the conjugate gradient method is of par-
ticular importance. Now it is widely used to solve large scale optimiza-
tion problems. The conjugate gradient method was originally proposed by
Hestenes and Stiefel [173] in the 1950s to solve linear systems. Since solv-
ing a linear system is equivalent to minimizing a positive definite quadratic
function, Fletcher and Reeves [138] in the 1960s modified it and developed
a conjugate gradient method for unconstrained minimization. By means of
conjugacy, the conjugate gradient method makes the steepest descent direc-
tion have conjugacy, and thus increases the efficiency and reliability of the
algorithm.

Now we derive the conjugate gradient method for the quadratic case.
Let

f(x) =
1
2
xT Gx + bT x + c, (4.2.1)

where G is an n × n symmetric positive definite matrix, b ∈ Rn and c is a
real number. Obviously, the gradient of f(x) is

g(x) = Gx + b. (4.2.2)

Set
d0 = −g0, (4.2.3)

then we have
x1 = x0 + α0d0, (4.2.4)

where α0 is generated by an exact line search. Then we have

gT
1 d0 = 0. (4.2.5)

Set
d1 = −g1 + β0d0, (4.2.6)

Download more at Learnclax.com

4.2. CONJUGATE GRADIENT METHOD 179

and choose β0 such that
dT

1 Gd0 = 0. (4.2.7)

It follows from multiplying (4.2.6) by dT
0 G that

β0 =
gT
1 Gd0

dT
0 Gd0

=
gT
1 (g1 − g0)

dT
0 (g1 − g0)

=
gT
1 g1

gT
0 g0

. (4.2.8)

In general, in the k-th iteration, set

dk = −gk +
k−1∑
i=0

βidi. (4.2.9)

Choosing βi such that dT
k Gdi = 0, i = 0, 1, · · · , k − 1, and noticing from

Theorem 4.1.3 that

gT
k di = 0, gT

k gi = 0, i = 0, 1, · · · , k − 1, (4.2.10)

it follows from multiplying (4.2.9) by dT
j G, (j = 0, 1, · · · , k − 1) that

βj =
gT
k Gdj

dT
j Gdj

=
gT
k (gj+1 − gj)

dT
j (gj+1 − gj)

, j = 0, 1, · · · , k − 1. (4.2.11)

Then

βj = 0, j = 0, 1, · · · , k − 2, (4.2.12)

βk−1 =
gT
k (gk − gk−1)

dT
k−1(gk − gk−1)

=
gT
k gk

gT
k−1gk−1

. (4.2.13)

The above derivation establishes the iterative scheme of the conjugate
gradient method:

xk+1 = xk + αkdk, (4.2.14)
dk = −gk + βk−1dk−1, (4.2.15)

where

βk−1 =
gT
k gk

gT
k−1gk−1

, (F-R Formula) (4.2.16)

and αk is an exact step size, in particular, for the quadratic case,

αk =
−gT

k dk

dT
k Gdk

. (4.2.17)

Download more at Learnclax.com

180 CHAPTER 4. CONJUGATE GRADIENT METHOD

The other famous formulas of βk are as follows:

βk−1 =
gT
k (gk − gk−1)

dT
k−1(gk − gk−1)

, (H-S or C-W Formula) (4.2.18)

βk−1 =
gT
k (gk − gk−1)
gT
k−1gk−1

, (PRP Formula) (4.2.19)

βk−1 = − gT
k gk

dT
k−1gk−1

, (Dixon Formula) (4.2.20)

βk−1 =
gT
k gk

dT
k−1(gk − gk−1)

, (D-Y Formula) (4.2.21)

where F-R, H-S (or C-W), PRP, Dixon and D-Y formula refer respectively
Fletcher-Reeves formula, Hestenes-Stiefel (or Crowder-Wolfe) formula, Polak-
Ribière-Polyak formula, Dixon formula and Dai-Yuan Formula. It is easy to
see that these formulas are equivalent in the sense that all yield the same
search directions when used in minimizing a quadratic function with positive
definite Hessian matrix. However, for a general nonlinear function with inex-
act line search, their behavior is markedly different. Some descriptions will
be given later in this subsection.

From (4.2.14)-(4.2.16), we can see that the conjugate gradient method
is only a little more complex than the steepest descent method, but it has
quadratic termination property and need not compute the Hessian or its
approximation matrix. Besides, we will learn below that the conjugate gra-
dient method has global convergence and n-step local quadratic convergence.
Hence this method is very attractive especially for large scale optimization
problems.

The following theorem includes the main properties of a conjugate gradi-
ent method.

Theorem 4.2.1 (Property theorem of conjugate gradient method) For posi-
tive definite quadratic function (4.2.1), the conjugate gradient method (4.2.14)-
(4.2.16) with exact line searches terminates after m ≤ n steps, and the fol-
lowing properties hold for all i, (0 ≤ i ≤ m),

dT
i Gdj = 0, j = 0, 1, · · · , i− 1, (4.2.22)

gT
i gj = 0, j = 0, 1, · · · , i− 1, (4.2.23)

dT
i gi = −gT

i gi, (4.2.24)

Download more at Learnclax.com

4.2. CONJUGATE GRADIENT METHOD 181

[g0, g1, · · · , gi] = [g0, Gg0, · · · , Gig0], (4.2.25)

[d0, d1, · · · , di] = [g0, Gg0, · · · , Gig0]. (4.2.26)

where m is the number of distinct eigenvalues of G.

Proof. We prove (4.2.22)–(4.2.24) by induction. For i = 1, it is trivial.
Suppose (4.2.22)–(4.2.24) hold for some i < m. We show that they also hold
for i + 1.

For quadratic function (4.2.1), we have obviously

gi+1 = gi + G(xi+1 − xi) = gi + αiGdi. (4.2.27)

From (4.2.17), αi can be written as

αi =
gT
i gi

dT
i Gdi

= 0. (4.2.28)

Using (4.2.27) and (4.2.15) gives

gT
i+1gj = gT

i gj + αid
T
i Ggj

= gT
i gj − αid

T
i G(dj − βj−1dj−1). (4.2.29)

When j = i, (4.2.29) becomes

gT
i+1gi = gT

i gi −
gT
i gi

dT
i Gdi

dT
i Gdi = 0.

When j < i, (4.2.29) is zero directly by induction hypothesis. So, (4.2.23)
follows.

Now, from (4.2.15) and (4.2.27), it follows that

dT
i+1Gdj = −gT

i+1Gdj + βid
T
i Gdj

= gT
i+1(gj − gj+1)/αj + βid

T
i Gdj . (4.2.30)

When j = i, it follows from (4.2.30), (4.2.23), (4.2.28) and (4.2.16) that

dT
i+1Gdi = −

gT
i+1gi+1

gT
i gi

dT
i Gdi +

gT
i+1gi+1

gT
i gi

dT
i Gdi = 0.

When j < i, (4.2.30) is also zero from induction hypothesis. Then (4.2.22)
follows.

Download more at Learnclax.com

182 CHAPTER 4. CONJUGATE GRADIENT METHOD

Also, from (4.2.15) and the exact line search, we have

dT
i+1gi+1 = −gT

i+1gi+1 + βid
T
i gi+1

= −gT
i+1gi+1,

which shows (4.2.24) holds for i + 1.
Finally, we show (4.2.25) and (4.2.26) by induction. It is trivial for i = 0.

Now suppose they hold for some i, and we prove that they hold also for i+1.
From the induction hypothesis, both gi and Gdi belong to

[g0, Gg0, · · · , Gig0, G
i+1g0].

Then it follows from (4.2.27) that gi+1 ∈ [g0, Gg0, · · · , Gi+1g0]. Furthermore,
we need to show

gi+1 /∈ [g0, Gg0, · · · , Gig0] = [d0, · · · , di].

In fact, since vectors d0, · · · , di are conjugate, it follows from Theorem 4.1.3
that gi+1 ⊥ [d0, · · · , di]. If gi+1 ∈ [g0, Gg0, · · · , Gig0] = [d0, · · · , di], then it
results in gi+1 = 0. This is a contradiction. Therefore (4.2.25) follows.

Similarly, by (4.2.15) and induction hypothesis, we can get (4.2.26). �

In this theorem, (4.2.22)–(4.2.24) represent respectively conjugacy of di-
rections, orthogonality of gradients, and descent condition. (4.2.25)–(4.2.26)
give some relations between direction vectors and gradients. Usually, The
subspace [g0, Gg0, · · · , Gig0] is called the Krylov subspace.

Recall please the convergence rate (3.1.7), (3.1.8), and (3.1.9) of the steep-
est descent method for quadratic functions in Theorem 3.1.5. Similarly, for
quadratic functions, we can also obtain the following facts for the conjugate
gradient method:

Fact 1:
‖xk − x∗‖G

‖x0 − x∗‖G
≤
(√

κ− 1√
κ + 1

)k

, (4.2.31)

where κ is the spectral condition number of G.
Fact 2: starting from x1, the iterate xk+2 of the conjugate gradient

method after k + 1 iterations satisfies

E(xk+2) ≤
(

λk+1 − λn

λk+1 + λn

)2

E(x1) =
(

1− λn/λk+1

1 + λn/λk+1

)2

E(x1), (4.2.32)

Download more at Learnclax.com

4.2. CONJUGATE GRADIENT METHOD 183

where E(x) is defined by

E(x) =
1
2
(x− x∗)T G(x− x∗),

and the eigenvalues λi of G satisfy

λ1 ≥ λ2 ≥ · · · ≥ λk ≥ λk+1 ≥ · · · ≥ λn > 0.

Clearly, after the first iteration (k = 0), the obtained iterate x2 satisfies

E(x2) ≤
(

λ1 − λn

λ1 + λn

)2

E(x1)

which is the same as convergence rate (3.1.8) of the steepest descent method,
this is because, at the first iteration, the direction of the conjugate gradient
method just is the steepest descent direction. However, after the second
iteration (k = 1), we have

E(x3) ≤
(

λ2 − λn

λ2 + λn

)2

E(x1).

At this time, the influence of the largest eigenvalue λ1 has been removed. The
formula (4.2.32) indicates that after each additional iteration of the conjugate
gradient method, the influence of one bigger eigenvalue will be removed.

Next, we would like to discuss restart strategy. Since the direction dk

after n steps is no longer conjugate for general non-quadratic functions, it is
suitable to reset periodically dk to the steepest descent direction, i.e., set

dcn = −gcn, c = 1, 2, · · · .

This strategy is called restart. With this strategy, the resultant xn−1 is nearer
to x∗ than x0. Especially, when the iterate enters from an area in which
non-quadratic behavior is strong into a neighborhood in which a quadratic
model function approximates f(x) well, the restart method is able to con-
verge rapidly. For large scale problems, restart strategy will be used more
frequently, for example, every k iterations restart, where k < n, even k � n.

Notice that the restart conjugate gradient method permits inexact line
search. However, some control measures are needed so that the resultant
direction is descending. In fact, we have

gT
k dk = −gT

k gk + βk−1g
T
k dk−1. (4.2.33)

Download more at Learnclax.com

184 CHAPTER 4. CONJUGATE GRADIENT METHOD

If exact line search was used in the previous iteration, then gT
k dk−1 = 0, and

hence gT
k dk = −gT

k gk < 0 which guarantees that dk is a descent direction.
However, if inexact line search was used in the previous iteration, the quantity
βk−1g

T
k dk−1 may be positive and larger than −gT

k gk, consequently −gT
k gk +

βk−1g
T
k dk−1 is possibly larger than zero. In this case dk will not be a descent

direction. A typical remedy for such an eventuality is to restart the algorithm
with dk as the steepest descent direction −gk. However, frequently setting dk

to the steepest descent direction will lessen the efficiency of the algorithm,
and make the behavior of the algorithm incline to a steepest descent method.
This situation requires care. The following control measure can be used to
overcome this difficulty.

Let ḡk+1, d̄k+1 and β̄k denote the computed values of gk+1, dk+1 and βk

at xk + αjdk respectively, where {αj} is a test step size sequence generated
from a step size algorithm. If

−ḡT
k+1d̄k+1 ≥ σ‖ḡk+1‖2‖d̄k+1‖2, (4.2.34)

where σ is a small positive number, then αj is accepted as αk. If (4.2.34) is
not satisfied at any trial points, we will use exact line search to produce αk.

The following algorithm is a restart conjugate gradient method with exact
line search.

Algorithm 4.2.2 (Restart F-R Conjugate Gradient Method)

Step 0. Given x0, ε > 0.

Step 1. Set k = 0. Compute g0 = g(x0).

Step 2. If ‖g0‖ ≤ ε, stop; otherwise, set d0 = −g0.

Step 3. Compute step size αk, such that

f(xk + αkdk) = min
α≥0

{f(xk + αdk)}.

Step 4. Set xk+1 = xk + αkdk, k := k + 1.

Step 5. Compute gk = g(xk). If ‖gk‖ ≤ ε, stop; otherwise go to Step
6.

Step 6. If k = n, set x0 = xk, and go to Step 1; otherwise, go to
Step 7.

Download more at Learnclax.com

4.2. CONJUGATE GRADIENT METHOD 185

Step 7. Compute β = gT
k gk/gT

k−1gk−1, dk = −gk + βdk−1.

Step 8. If dT
k gk > 0, set x0 = xk, and go to Step 1; otherwise go to

Step 3. �

(4.2.18)–(4.2.20) are common formulas of the conjugate gradient method.
The Fletcher-Reeves formula (4.2.16) is the first presented in 1964 for solving
optimization problems and now is the most widely used in practice. However,
in general, this formula does not have the descent property and is often used
in conjunction with exact line search. Dixon’s formula (4.2.20) has descent
property. If we employ inexact line search

|gT
k+1dk| ≤ −σgT

k dk, 0 < σ < 1,

Dixon’s formula satisfies

dT
k gk < 0, if gk = 0.

The Polak-Ribiere-Polyak (PRP) formula (4.2.19) has a characteristic
that it can restart automatically. When the algorithm goes slowly and gk+1 ≈
gk, PRP formula will produce βk ≈ 0 and thus dk+1 ≈ −gk+1. This indicates
that the algorithm has a tendency of restarting automatically, so that it
can overcome some shortcomings of going forward slowly. Various numerical
experiments show that PRP formula is more robust and efficient than other
existing formulas for solving optimization problems.

4.2.2 Beale’s Three-Term Conjugate Gradient Method

Beale [10] considered the three-term conjugate gradient method. The idea is
as follows. When frequently periodic restarts with the steepest descent direc-
tion are used, the reduction at the restart iteration is often poor compared
with the reduction that would have occurred without restarting. However, if
the restart direction is taken as an arbitrary vector, the required conjugacy
relations may not hold. Now we consider restarting at xt, and take the di-
rection dt generated by the algorithm as the restarting direction to begin the
new cycle, and require the constructed sequence of directions to satisfy the
conjugacy.

Set

dt+1 = −gt+1 + βtdt, (4.2.35)
dk = −gk + γk−1dt + βt+1dt+1 + · · ·+ βk−1dk−1, (4.2.36)

Download more at Learnclax.com

186 CHAPTER 4. CONJUGATE GRADIENT METHOD

where n + t − 1 ≥ k ≥ t + 2. Similar to the derivation of the traditional
conjugate gradient method, by means of conjugacy between dt+1 and dt, dk

and dt, dt+1, · · · , dk−1, we can get the following relation:

βk−1 =
gT
k Gdk−1

dT
k−1Gdk−1

, γk−1 =
gT
k Gdt

dT
t Gdt

,

βj = 0, j = t + 1, · · · , k − 2.

Then (4.2.36) can be reduced as

dk = −gk + βk−1dk−1 + γk−1dt, (4.2.37)

where

βk−1 =
gT
k (gk − gk−1)

dT
k−1(gk − gk−1)

, (4.2.38)

γk−1 =

⎧⎨
⎩

0, if k = t + 1;
gT

k (gt+1−gt)

dT
t (gt+1−gt)

, if k > t + 1.
(4.2.39)

Note that βk−1 in (4.2.38) can be represented as any formula in (4.2.18)-
(4.2.21), for example,

βk−1 =
gT
k gk

gT
k−1gk−1

which is F-R formula.
Note also that in Beale’s three-term formula (4.2.37), dk may not be a

descent direction, even if exact line searches are made. In order to make dk

be sufficient downhill and make two consecutive gradients not be far from
orthogonal, we may impose some control measures as follows,

−gT
k dk ≥ σ‖gk‖‖dk‖, (4.2.40)

where σ is a small positive number, and

|gT
k−1gk| < 0.2‖gk‖2. (4.2.41)

Since the iterate xk generated from (4.2.37)-(4.2.39) is a minimizer of the
linear manifold

Bk−1 = xt + [dt, dt+1, · · · , dk−1]
= xt + [dt, gt+1, · · · , gk−1],

Download more at Learnclax.com

4.2. CONJUGATE GRADIENT METHOD 187

and hence

gk ⊥ [dt, dt+1, · · · , dk−1]

and

gk ⊥ [dt, gt+1, · · · , gk−1].

Below, we give Beale’s three-term conjugate gradient algorithm.

Algorithm 4.2.3 (Beale’s three-term CG method)

Step 1. Given x0, set k = 0, t = 0, evaluate g0 = g(x0). If ‖g0‖ ≤ ε,
stop; otherwise set d0 = −g0.

Step 2. Compute αk by exact line search.

Step 3. Set xk+1 = xk + αkdk, set k := k + 1, evaluate gk = g(xk).

Step 4. If ‖gk‖ ≤ ε, stop; otherwise go to Step 5.

Step 5. If both conditions

|gT
k−1gk| ≥ 0.2‖gk‖2

and

k − t ≥ n− 1

do not hold, go to Step 7; otherwise go to Step 6.

Step 6. Set t = k − 1.

Step 7. Compute dk by (4.2.37)-(4.2.39).

Step 8. If k > t + 1, go to Step 9; otherwise go to Step 2.

Step 9 If

−1.2‖gk‖2 ≤ dT
k gk ≤ −0.8‖gk‖2,

go to Step 2; otherwise go to Step 6. �

Download more at Learnclax.com

188 CHAPTER 4. CONJUGATE GRADIENT METHOD

4.2.3 Preconditioned Conjugate Gradient Method

In the discussion above we have known that if the conjugate gradient method
is applied to minimize the quadratic function

f(x) =
1
2
xT Gx + bT x + c, (4.2.42)

where G is symmetric and positive definite, it computes the solution of the
system

Gx = −b. (4.2.43)

In this case, the algorithm is called the linear conjugate gradient method,
and the notation r is used for the gradient vector Gxk + b, which, in fact, is
the residual of the system (4.2.43).

The linear conjugate gradient method is as follows: given x0 and r0 =
Gx0 + b, β−1 = 0, d−1 = 0, and each iteration includes the following steps for
k = 0, 1, · · · :

dk = −rk + βk−1dk−1,

αk =
rT
k rk

dT
k Gdk

,

xk+1 = xk + αkdk, (4.2.44)
rk+1 = rk + αkGdk,

βk =
rT
k+1rk+1

rT
k rk

.

If exact arithmetic is used, the convergence of the linear conjugate gradient
method will be achieved in m(≤ n) iterations, where m is the number of
distinct eigenvalues of G. If the eigenvalues of G are clustered into groups of
approximately equal value, the method may converge very quickly. However,
for general eigenvalue structure, due to rounding errors, considerably more
than n iterations may be required. Hence, the convergence rate depends on
the structure of eigenvalues of G and the condition number of G. If the
original system is replaced by an equivalent system in which the conditioning
of G is improved, then the convergence rate can be improved. This technique
is called preconditioning.

Consider the transformation

x = C−1z,

Download more at Learnclax.com

4.2. CONJUGATE GRADIENT METHOD 189

where C is a nonsingular matrix. The solution of Gx = −b is equivalent to
solving the linear system

C−T GC−1z = −C−T b.

If we adequately choose C such that the condition number of C−T GC−1 is
as small as possible, the convergence rate of the algorithm will be improved.
Since C−T GC−1 is similar to W−1G, where W = CT C, it means that we
should choose W such that the condition number of W−1G is as small as
possible.

The preconditioned conjugate gradient method is as follows: given x0, set
g0 = Gx0 + b, and let v0 = W−1g0 and d0 = −v0. For k = 0, 1, · · ·,

αk =
gT
k vk

dT
k Gdk

, (4.2.45)

xk+1 = xk + αkdk, (4.2.46)
gk+1 = gk + αkGdk, (4.2.47)
vk+1 = W−1gk+1, (4.2.48)

βk =
gT
k+1vk+1

gT
k vk

, (4.2.49)

dk+1 = −vk+1 + βkdk. (4.2.50)

The preconditioning matrix W can be defined in several ways. The sim-
plest strategy is to choose W as the diagonal of G. In this case, the condition
number of W−1G is bounded by (1 + δ)/(1− δ), where δ � 1. The popular
strategy for preconditioning is use of incomplete Cholesky factorization. The
basic idea is as follows. Instead of computing the exact Cholesky factor L
which satisfies G = LLT , we compute an approximate factor L̃ which is more
sparse than L, such that G ≈ L̃L̃T , and then choose C = L̃T , and hence
W = L̃L̃T ,

C−T GC−1 = L̃−1GL̃−T ≈ I

and
W−1G = (L̃L̃T)−1G ≈ I.

In this procedure, any fill-in during the sparse Cholesky factorization is dis-
carded.

The other preconditioning matrix can be obtained by performing a limited-
memory quasi-Newton method. From the quasi-Newton method (see Chap-
ter 5) the limited memory matrix M satisfies the quasi-Newton condition for

Download more at Learnclax.com

190 CHAPTER 4. CONJUGATE GRADIENT METHOD

r (r � n) pairs of vectors {sj , yj},

sj = Myj , j = 1, · · · , r,

where sj = xj+1 − xj , yj = gj+1 − gj . Since Gsj = yj , we have

sj = MGsj ,

and the matrix MG has r unit eigenvalues with eigenvectors {sj}. Therefore,
M can be used as W−1.

For the minimization of a non-quadratic function, the preconditioning
matrix W is varied from iteration to iteration. In this case, we consider

x = C−1z, (4.2.51)

and the objective function is transformed as

f(x) = f(C−1z) = f̃(z). (4.2.52)

Set
zk = Cxk, g̃k = ∇f̃(zk) = C−T∇f(xk) = C−T gk,

then
d̃k = Cdk, s̃k = Csk, ỹk = C−T yk.

So, application of conjugate gradient method, for example (4.2.18), to f̃(z)
yields the direction

d̃k+1 = −g̃k+1 +
g̃T
k+1(g̃k+1 − g̃k)

d̃T
k (g̃k+1 − g̃k)

d̃k

= −
(

I − d̃kỹ
T
k

d̃T
k ỹk

)
g̃k+1, (4.2.53)

and hence

dk+1 = −
(

I − dky
T
k

dT
k yk

)
W−1gk+1,

∆= −Pk+1gk+1 (4.2.54)

which is the formula of the preconditioned conjugate gradient method, where
W = CT C. Similarly, we can obtain

dk+1 = −
[
I − 1

yT
k sk

(yks
T
k + sky

T
k) +

(
1 +

yT
k yk

yT
k sk

)
sks

T
k

yT
k sk

]
W−1gk+1 (4.2.55)

Download more at Learnclax.com

4.3. CONVERGENCE OF CONJUGATE GRADIENT METHODS 191

which is the preconditioned conjugate gradient method in BFGS formula
without memory.

In general, the preconditioning matrix is varied with different problems.
There is not a general-purpose formula for preconditioners.

4.3 Convergence of Conjugate Gradient Methods

As for the convergence results of the conjugate gradient method for mini-
mizing a general non-quadratic function, there have been various results. In
this section, we introduce global convergence results of conjugate gradient
methods due to Zoutendijk [385], Polyak [255] and Al-Baali [2] etc., and also
give in brief the outline of local convergence rates obtained by Cohen [61],
and McCormick and Ritter [205].

4.3.1 Global Convergence of Conjugate Gradient Methods

This subsection is divided into two parts. The first part discusses the global
convergence of conjugate gradient methods with exact line search, and con-
sists of three theorems which state respectively global convergence of Fletcher-
Reeves (F-R) conjugate gradient method, Crowder-Wolfe (C-W) conjugate
gradient method, and Polak-Ribière-Polyak (PRP) conjugate gradient method.
The second part discusses the global convergence of F-R conjugate gradient
method with inexact line search.

Now, we start the discussion by proving the global convergence result of
F-R method in the case of exact line search.

Theorem 4.3.1 (Global convergence of F-R conjugate gradient method)
Suppose that f : Rn → R is continuously differentiable on a bounded level

set L = {x ∈ Rn | f(x) ≤ f(x0)}, and that F-R conjugate gradient method is
implemented with exact line search. Then the produced sequence {xk} has at
least one accumulation point which is a stationary point, i.e.,

(1) when {xk} is a finite sequence, then the final point x∗ is a stationary
point of f ;

(2) when {xk} is an infinite sequence, it has limit point, and any limit
point is a stationary point.

Proof. (1) When {xk} is finite, from the termination condition, it fol-
lows that the final point x∗ satisfies ∇f(x∗) = 0, and hence x∗ is a stationary
point of f .

Download more at Learnclax.com

192 CHAPTER 4. CONJUGATE GRADIENT METHOD

(2) When {xk} is infinite, we have ∇f(xk) = 0,∀k. Noting that dk =
−gk + βk−1dk−1 and gT

k dk−1 = 0 by exact line search, we have

gT
k dk = −‖gk‖2 + βk−1g

T
k dk−1 = −‖gk‖2 < 0, (4.3.1)

which means that dk is a descent direction, {f(xk)} is a monotone descent
sequence, and thus {xk} ⊂ L. Therefore {xk} is a bounded sequence and
must have a limit point.

Let x∗ be a limit point of {xk}. Then there is a subsequence {xk}K1

converging to x∗, where K1 is an index set of a subsequence of {xk}. Since
{xk}K1 ⊂ {xk}, {f(xk)}K1 ⊂ {f(xk)}. It follows from the continuity of f
that for k ∈ K1,

f(x∗) = f(lim
k→∞

xk) = lim
k→∞

f(xk) = f∗. (4.3.2)

Similarly, {xk+1} is also a bounded sequence. Hence there exists a subse-
quence {xk+1}K2 converging to x̄∗, where K2 is an index set of a subsequence
of {xk+1}. In this case,

f(x̄∗) = f(lim
k→∞

xk+1) = lim
k→∞

f(xk+1) = f∗. (4.3.3)

Then
f(x̄∗) = f(x∗) = f∗. (4.3.4)

Now we prove ∇f(x∗) = 0 by contradiction. Suppose that ∇f(x∗) = 0,
then, for α sufficiently small, we have

f(x∗ + αd∗) < f(x∗). (4.3.5)

Since
f(xk+1) = f(xk + αkdk) ≤ f(xk + αdk), ∀α > 0,

then for k ∈ K2, passing to limit k →∞ and using (4.3.5), we get

f(x̄∗) ≤ f(x∗ + αd∗) < f(x∗), (4.3.6)

which contradicts (4.3.4). This proves ∇f(x∗) = 0, i.e., x∗ is a stationary
point of f . �

Similarly, we can state the global convergence of Crowder-Wolfe (C-W)
restart conjugate gradient method with exact line search as follows.

Download more at Learnclax.com

4.3. CONVERGENCE OF CONJUGATE GRADIENT METHODS 193

Theorem 4.3.2 (Global convergence of Crowder-Wolfe conjugate gradient
method) Suppose that the level set L = {x ∈ Rn | f(x) ≤ f(x0)} is bounded,
and that ∇f(x) is Lipschitz continuous. Assume that Crowder-Wolfe conju-
gate gradient method is implemented with exact line search and restart strat-
egy. Then the produced sequence {xk} has at least one accumulation point
which is a stationary point.

Proof. See Polyak [255]. �

As mentioned before, PRP method is more efficient than F-R method.
We naturally hope PRP method has also the above property for a general
non-quadratic function. Unfortunately, the above Theorem 4.3.1 is not true
for PRP method (see Powell [270]). However, with stronger condition that f
is uniformly convex, the PRP method is globally convergent. The following
theorem states this result.

Theorem 4.3.3 Let f(x) be twice continuously differentiable and the level
set L = {x ∈ Rn | f(x) ≤ f(x0)} be bounded. Suppose that there is a constant
m > 0 such that for x ∈ L,

m‖y‖2 ≤ yT∇2f(x)y, ∀y ∈ Rn. (4.3.7)

Then the sequence {xk} generated by PRP method with exact line search
converges to the unique minimizer x∗ of f .

Proof. From Theorem 2.2.4, we know that it is enough to prove that
(2.2.13) holds, that is, there exists a constant ρ > 0 such that

−gT
k dk ≥ ρ‖gk‖‖dk‖, (4.3.8)

which means
cos θk ≥ ρ > 0.

Then, from Theorem 2.2.4, we have gk → 0 and g(x∗) = 0. From (4.3.7), it
follows that {xk} → x∗ which is a unique minimizer.

By using gT
k dk−1 = 0 and (4.2.15), we have

gT
k dk = −‖gk‖2.

Then (4.3.8) is equivalent to
‖gk‖
‖dk‖

≥ ρ. (4.3.9)

Download more at Learnclax.com

194 CHAPTER 4. CONJUGATE GRADIENT METHOD

From (4.2.17) and (4.2.15), it follows that

αk−1 = −
gT
k−1dk−1

dT
k−1Gk−1dk−1

=
‖gk−1‖2

dT
k−1Gk−1dk−1

, (4.3.10)

where

Gk−1 =
∫ 1

0
G(xk−1 + tαk−1dk−1)dt. (4.3.11)

By (4.3.11), the integral form of the mean-value theorem is

gk − gk−1 = g(xk−1 + αk−1dk−1)− g(xk−1) = αk−1Gk−1dk−1. (4.3.12)

Then, by (4.3.11) and (4.3.10), (4.2.19) becomes

βk−1 =
gT
k (gk − gk−1)
gT
k−1gk−1

= αk−1
gT
k Gk−1dk−1

‖gk−1‖2

=
gT
k Gk−1dk−1

dT
k−1Gk−1dk−1

. (4.3.13)

Since the level set L is bounded, there is a constant M > 0, such that

yT G(x)y ≤ M‖y‖2, x ∈ L,∀y ∈ Rn. (4.3.14)

Then, by (4.3.13), (4.3.14) and (4.3.7), we have

|βk−1| ≤
‖gk‖‖Gk−1dk−1‖

m‖dk−1‖2
≤ M

m

‖gk‖
‖dk−1‖

. (4.3.15)

Therefore

‖dk‖ ≤ ‖gk‖+ |βk−1|‖dk−1‖

≤ ‖gk‖+
M

m
‖gk‖

=
(

1 +
M

m

)
‖gk‖, (4.3.16)

which gives
‖gk‖
‖dk‖

≥
(

1 +
M

m

)−1

. (4.3.17)

The above inequality shows that (4.3.9) holds. We complete the proof. �

Download more at Learnclax.com

4.3. CONVERGENCE OF CONJUGATE GRADIENT METHODS 195

Next, we discuss the case of inexact line search. Al-Baali [2] studied the
F-R conjugate gradient method with strong Wolfe-Powell rule (2.5.3) and
(2.5.9), and proved the global convergence. The following theorem indicates
that, in the inexact case, the search direction dk satisfies descent property:
gT
k dk < 0.

Theorem 4.3.4 If, for all k, αk are determined by strong Wolfe-Powell rule
(2.5.3) and (2.5.9), then for F-R-CG method, the inequality

−
k∑

j=0

σj ≤ gT
k dk

‖gk‖2
≤ −2 +

k∑
j=0

σj (4.3.18)

holds for all k, and hence the descent property

gT
k dk < 0, ∀k (4.3.19)

holds, as long as gk = 0.

Proof. The proof is by induction. For k = 0, d0 = −g0, σ
0 = 1, hence

(4.3.18) and (4.3.19) hold for k = 0.
Now we suppose that (4.3.18) and (4.3.19) hold for any k ≥ 0. By (4.2.15)

and (4.2.16), we have

gT
k+1dk+1

‖gk+1‖2
= −1 +

gT
k+1dk

‖gk‖2
. (4.3.20)

Using (2.5.9) and induction assumption (4.3.19) yields

−1 + σ
gT
k dk

‖gk‖2
≤

gT
k+1dk+1

‖gk+1‖2
≤ −1− σ

gT
k dk

‖gk‖2
. (4.3.21)

Also, by induction assumption (4.3.18), we have

−
k+1∑
j=0

σj = −1− σ
k∑

j=0

σj ≤
gT
k+1dk+1

‖gk+1‖2

≤ −1 + σ
k∑

j=0

σj = −2 +
k+1∑
j=0

σj .

Then, (4.3.18) holds for k + 1.

Download more at Learnclax.com

196 CHAPTER 4. CONJUGATE GRADIENT METHOD

Since
gT
k+1dk+1

‖gk+1‖2
≤ −2 +

k+1∑
j=0

σj (4.3.22)

and
k+1∑
j=0

σj <
∞∑

j=0

σj =
1

1− σ
, (4.3.23)

where σ ∈ (0, 1), it follows from 1 − σ > 1
2 that −2 +

∑k+1
j=0 σj < 0. Hence,

from (4.3.22), we obtain gT
k+1dk+1 < 0. We complete the proof by induction.

�

Now, we are in a position to prove the global convergence of F-R-CG
algorithm with inexact line search.

Theorem 4.3.5 Let f be twice continuously differentiable, and the level set
L = {x ∈ Rn | f(x) ≤ f(x0)} be bounded. Suppose that the steplength αk

is determined by strong Wolfe-Powell rule (2.5.3) and (2.5.9), where 0 <
ρ < σ < 1

2 . Then the sequence {xk} generated by F-R-CG method is globally
convergent, i.e.,

lim inf
k→∞

‖gk‖ = 0. (4.3.24)

Proof. By (2.5.9), (4.3.18) and (4.3.23), we have

|gT
k dk−1| ≤ −σgT

k−1dk−1 ≤ σ
k−1∑
j=0

σj‖gk−1‖2 ≤
σ

1− σ
‖gk−1‖2. (4.3.25)

Also, by (4.2.15), (4.3.25) and (4.2.16), we obtain

‖dk‖2 = ‖gk‖2 − 2βk−1g
T
k dk−1 + β2

k−1‖dk−1‖2

≤ ‖gk‖2 +
2σ

1− σ
‖gk‖2 + β2

k−1‖dk−1‖2

=
(

1 + σ

1− σ

)
‖gk‖2 + β2

k−1‖dk−1‖2. (4.3.26)

By applying this relation repeatedly, it follows that

‖dk‖2 ≤
(

1 + σ

1− σ

)
‖gk‖4

⎛
⎝ k∑

j=0

‖gj‖−2

⎞
⎠ , (4.3.27)

Download more at Learnclax.com

4.3. CONVERGENCE OF CONJUGATE GRADIENT METHODS 197

where we used the facts that

β2
kβ2

k−1 · · ·β2
k−i =

‖gk‖2
‖gk−i−1‖2

.

Now we prove (4.3.24) by contradiction. It assumes that (4.3.24) does
not hold, then there exists a constant ε > 0 such that

‖gk‖ ≥ ε > 0 (4.3.28)

holds for all k sufficiently large. Since gk is bounded above on the level set
L, it follows from (4.3.27) that

‖dk‖2 ≤ c1k, (4.3.29)

where c1 is a positive constant. From (4.3.18) and (4.3.23), we have

cos θk = − gT
k dk

‖gk‖‖dk‖
≥

⎛
⎝2−

k∑
j=0

σj

⎞
⎠ ‖gk‖
‖dk‖

≥
(

1− 2σ

1− σ

) ‖gk‖
‖dk‖

. (4.3.30)

Since σ < 1
2 , substituting (4.3.29) and (4.3.28) into (4.3.30) gives

∑
k

cos2 θk ≥
(

1− 2σ

1− σ

)2∑
k

‖gk‖2
‖dk‖2

≥ c2

∑
k

1
k
, (4.3.31)

where c2 is a positive constant. Therefore, the series
∑

k cos2 θk is divergent.
Let M be an upper bound of ‖G(x)‖ on the level set L, then

gT
k+1dk = (gk + αkG(xk)dk)T dk ≤ gT

k dk + αkM‖dk‖2.

By using (2.5.9), i.e., σgT
k dk ≤ gT

k+1dk ≤ −σgT
k dk, we obtain

αk ≥ −
1− σ

M‖dk‖2
gT
k dk. (4.3.32)

Substituting αk of (4.3.32) into (2.5.3) gives

fk+1 ≤ fk −
(1− σ)ρ

M

(
gT
k dk

‖dk‖

)2

= fk − c3‖gk‖2 cos2 θk,

Download more at Learnclax.com

198 CHAPTER 4. CONJUGATE GRADIENT METHOD

where c3 = (1−σ)ρ
M > 0. Since f(x) is bounded below,

∑
k ‖gk‖2 cos2 θk con-

verges, which indicates that
∑

k cos2 θk converges by use of (4.3.28). This
fact contradicts (4.3.31). We complete the proof. �

In the above theorem, the conclusion is also true if, instead of f being
twice continuously differentiable, the assumptions on f are changed: let f be
continuously differentiable and bounded below, and ∇f be Lipschitz contin-
uous.

To conclude the subsection, we give the global convergence of D-Y con-
jugate gradient method with Wolfe-Powell rule.

Theorem 4.3.6 Let x1 be a starting point, f(x) be continuously differen-
tiable and bounded below on the level set L, ∇f(x) satisfy the Lipschitz con-
dition on L. Let αk satisfy Wolfe-Powell rule (2.5.3) and (2.5.7). Then, for
all k,

gT
k dk < 0,

and further
lim inf
k→∞

‖gk‖ = 0.

Proof. See Dai and Yuan [75]. �

4.3.2 Convergence Rate of Conjugate Gradient Methods

We have already seen that the conjugate gradient method has quadratic
termination, that is, for a convex quadratic function, the conjugate gradient
method with exact line search terminates after n iterations.

In (4.2.31) and (4.2.32), we give two formulas for convergence rate of
conjugate gradient method, from which we have seen that, for a quadratic
function, the rate of convergence of conjugate gradient methods is not worse
than that of the steepest descent method; that is, it is not worse than linear.
Furthermore, we can also have the following demonstration. For convenience,
we assume

f(x) =
1
2
xT Gx, (4.3.33)

where G is an n× n positive definite matrix. Clearly, the explicit expression
of steplength is

αk = −dT
k Gxk

dT
k Gdk

= − dT
k gk

dT
k Gdk

. (4.3.34)

Download more at Learnclax.com

4.3. CONVERGENCE OF CONJUGATE GRADIENT METHODS 199

So, we can obtain

f(xk+1) =
1
2
xT

k+1Gxk+1

=
1
2
(xk + αkdk)T G(xk + αkdk)

=
1
2
xT

k Gxk −
1
2

(gT
k dk)2

dT
k Gdk

. (4.3.35)

In the case of the steepest descent (SD) method we have dk = −gk and thus

f(xk+1
SD) =

1
2
xT

k Gxk −
1
2
‖gk‖4
gT
k Ggk

. (4.3.36)

Whereas in the case of the conjugate gradient (CG) method, we have dk =
−gk + βk−1dk−1 and thus

f(xk+1
CG) =

1
2
xT

k Gxk −
1
2
‖gk‖4
dT

k Gdk
(4.3.37)

= f(xk)−
1
2
‖gk‖4
dT

k Gdk
. (4.3.38)

Since

dT
k Gdk = (−gk + βk−1dk−1)T G(−gk + βk−1dk−1)

= gT
k Ggk + β2

k−1dk−1Gdk−1

≤ gT
k Ggk,

it follows that
f(xk+1

CG) ≤ f(xk+1
SD). (4.3.39)

The above discussion indicates again that the conjugate gradient method
reduces the value of f at least as much as the steepest descent method. Since
the steepest descent method has a linear convergence rate, we conclude that
conjugate gradient methods have convergence rates that are no worse than
the linear rate. From (4.3.38) we also know that, for conjugate gradient
methods, the objective value is strictly decreasing. Similarly, the result is
true for the preconditioned conjugate gradient method and we have

f(xk+1
CG) = f(xk)−

1
2

(gT
k vk)2

dT
k Gdk

, (4.3.40)

Download more at Learnclax.com

200 CHAPTER 4. CONJUGATE GRADIENT METHOD

where vk = W−1gk.
Note that the conjugate gradient method with exact line search can find

the minimizer of a convex quadratic function in at most n iterations, which
corresponds to one step of Newton method. Hence we can say that if n
iterations of the conjugate gradient method are regarded as a big iteration,
the conjugate gradient method should have a similar convergence rate as
Newton method. Cohen [61], Burmeister [39], and McCormick and Ritter
[205] studied the n-step quadratic convergence rate. We now state this result
without proof in the following theorem.

Assume that
(A1) f : Rn → R is three times continuously differentiable;
(A2) there exist constants M > m > 0 such that

m‖y‖2 ≤ yT∇2f(x)y ≤ M‖y‖2, ∀y ∈ Rn, x ∈ L, (4.3.41)

where L is a bounded level set.

Theorem 4.3.7 Assume that the conditions (A1) and (A2) are satisfied,
then the sequence {xk} generated by PRP-CG and F-R-CG restart methods
have n-step quadratic convergence rate, that is, there exists a constant c > 0,
such that

lim sup
k→∞

‖xkr+n − x∗‖
‖xkr − x∗‖2 ≤ c <∞, (4.3.42)

where r means that the methods restart per r iterations.

Further, Ritter [287] shows that the convergence rate is n-step super-
quadratic, that is,

‖xk+n − x∗‖ = o(‖xk − x∗‖2). (4.3.43)

The other results on convergence rate of conjugate gradient methods can
consult Stoer [325].

Exercises

1. Let G be an n×n symmetric positive definite matrix, p1, p2, · · · , pn be
n linearly independent vectors. Define

d1 = p1,

dk+1 = pk+1 −
k∑

i=1

pT
k+1Gdi

dT
i Gdi

di, k = 1, 2, · · · , n− 1.

Download more at Learnclax.com

4.3. CONVERGENCE OF CONJUGATE GRADIENT METHODS 201

Prove that {dk} are G-conjugate.

2. Using F-R conjugate gradient method minimize the following func-
tions:

(1) f(x) = x2
1 + 2x2

2 − 2x1x2 + 2x2 + 2, the initial point x(0) = (0, 0)T .
(2) f(x) = (x1 − 1)4 + (x1 − x2)2, the initial point x(0) = (0, 0)T .

3. Using respectively F-R conjugate gradient method and PRP conjugate
gradient method minimize the Rosenbrock function in Appendix 1.1 and Ex-
tended Rosenbrock function in Appendix 1.2.

4. Try to prove respectively that {dk} generated by PRP-CG method
and Dixon-CG method are conjugate.

5. Derive the Beale three-term conjugate gradient formula (4.2.38)–
(4.2.39).

6. Let f(x) = 1
2xT Ax − bT x, where A is an n × n symmetric positive

definite matrix. Setting xk+1 = xk + αkdk and dk = −rk + βkdk−1, prove

(1) the exact step size αk = − rT
k dk

dT
k

Adk
,

(2) βk = rT
k Adk−1

dT
k−1

Adk−1
.

7. Using the linear conjugate gradient method minimize function f(x) =
1
2xT Ax − bT x, where A is a Hilbert matrix A =

(
1

i+j−1

)
, b = (1, 1, · · · , 1)T ,

the initial point x(0) = 0. Try considering the cases of n = 5, 10, 20.

Download more at Learnclax.com

Download more at Learnclax.com

Chapter 5

Quasi-Newton Methods

5.1 Quasi-Newton Methods

We have seen that Newton’s method xk+1 = xk−G−1
k gk is successful because

it uses the Hessian which offers the useful curvature information. However,
for various practical problems, the computing efforts of the Hessian matrices
are very expensive, or the evaluation of the Hessian is difficult, even the
Hessian is not available analytically. These lead to a class of methods that
only uses the function values and the gradients of the objective function and
that is closely related to Newton’s method. Quasi-Newton method is such a
class of methods which need not compute the Hessian, but generates a series
of Hessian approximations, and at the same time maintains a fast rate of
convergence.

Recall that in Chapter 3 the n-dimensional Newton’s method xk+1 =
xk −G−1

k gk comes from the one-dimensional Newton’s method. Can we get
any inspiration to the n-dimensional quasi-Newton method from the one-
dimensional method? The answer is positive.

In Chapter 2, for quadratic interpolation with two points (2.4.6), we use
interpolation condition (2.4.4) and obtain

αk+1 = αk −
αk − αk−1

φ′
k − φ′

k−1

φ′
k. (5.1.1)

If we set

bk =
φ′

k − φ′
k−1

αk − αk−1
, (5.1.2)

Download more at Learnclax.com

204 CHAPTER 5. QUASI-NEWTON METHODS

then (5.1.1) can be written as

αk+1 = αk − b−1
k φ′

k (5.1.3)

which is also called the secant method. Comparing with Newton’s form
αk+1 = αk − [φ′′

k]
−1φ′

k indicates that here bk is used to approach φ′′
k without

computing φ′′
k. Also, the convergence rate of the secant method is 1+

√
5

2 ≈
1.618 (see Theorem 2.4.1) which is fast. Now we apply this idea to the
n-dimensional quasi-Newton method.

5.1.1 Quasi-Newton Equation

Instead of computing the Hessian Gk, we would like to construct Hessian
approximation, for example, Bk in the quasi-Newton method. We hope that
the sequence {Bk} possesses positive definiteness, has the direction dk =
−B−1

k gk down, and behaves like Newton’s method. In addition, it is also
required that its computation is convenient. What conditions does such a
sequence {Bk} satisfy? How to form {Bk}? In this subsection, we first reply
the first question, and in the subsequent subsections we shall discuss the
formations of Bk.

Let f : Rn → R be twice continuously differentiable on an open set
D ⊂ Rn. Let the quadratic approximation of f at xk+1 be

f(x) ≈ f(xk+1) + gT
k+1(x− xk+1) +

1
2
(x− xk+1)T Gk+1(x− xk+1), (5.1.4)

where gk+1
∆= ∇f(xk+1) and Gk+1

∆= ∇2f(xk+1). Finding the derivative
yields

g(x) ≈ gk+1 + Gk+1(x− xk+1). (5.1.5)

Setting x = xk, sk = xk+1 − xk and yk = gk+1 − gk, we get

G−1
k+1yk ≈ sk. (5.1.6)

Clearly, it is true that (5.1.6) holds exactly with equality for quadratic func-
tion f with the Hessian G, i.e.,

sk = G−1yk, or yk = Gsk. (5.1.7)

Now we ask the produced inverse Hessian approximations Hk+1 in the quasi-
Newton method to satisfy this relation, i.e.,

Hk+1yk = sk, (5.1.8)

Download more at Learnclax.com

5.1. QUASI-NEWTON METHODS 205

which is called the quasi-Newton equation or quasi-Newton condition, where

sk = xk+1 − xk, yk = gk+1 − gk. (5.1.9)

In fact, if we consider the model function at xk+1,

mk+1(x) = f(xk+1)+gT
k+1(x−xk+1)+

1
2
(x−xk+1)T Bk+1(x−xk+1) (5.1.10)

which satisfies the interpolation conditions

mk+1(xk+1) = f(xk+1), ∇mk+1(xk+1) = gk+1, (5.1.11)

where Bk+1 = H−1
k+1 is an approximation to the Hessian Gk+1. Instead of the

interpolation condition ∇2mk+1(xk+1) = Gk+1 in Newton’s method, we ask
the model (5.1.10) to satisfy

∇mk+1(xk) = gk, (5.1.12)

that is
gk = gk+1 + Bk+1(xk − xk+1).

So we have
Bk+1(xk+1 − xk) = gk+1 − gk

or
Bk+1sk = yk (5.1.13)

which is also the quasi-Newton equation expressed in Hessian approximation
form.

Premultiplying (5.1.13) by sT
k gives

sT
k Bk+1sk = sT

k yk.

It means that if
sT
k yk > 0, (5.1.14)

the matrix Bk+1 is positive definite. Usually, (5.1.14) is called the curvature
condition.

The above discussion tells us that the key point of the quasi-Newton
method is to produce Hk+1 (or Bk+1) by use of some convenient methods
such that the quasi-Newton equation (5.1.8) (or (5.1.13)) holds. In general,
such an Hk+1 will be produced by updating Hk into Hk+1, which is our
topic in the subsequent subsections. Now we state a general quasi-Newton
algorithm below.

Download more at Learnclax.com

206 CHAPTER 5. QUASI-NEWTON METHODS

Algorithm 5.1.1 (A general quasi-Newton algorithm)

Step 1. Given x0 ∈ Rn, H0 ∈ Rn×n, 0 ≤ ε < 1, k := 0.

Step 2. If ‖gk‖ ≤ ε, stop.

Step 3. Compute
dk = −Hkgk. (5.1.15)

Step 4. Find a step size αk > 0 by line search, and set xk+1 =
xk + αkdk.

Step 5. Update Hk into Hk+1 such that the quasi-Newton equation
(5.1.8) holds.

Step 6. k := k + 1 and go to Step 2. �

In the above algorithm, it is common to start the algorithm with H0 = I,
an identity matrix or set H0 to be a finite-difference approximation to the
inverse Hessian G−1

0 . If H0 = I, the first iteration is just a steepest descent
iteration. Sometimes, quasi-Newton method takes the form of Hessian ap-
proximation Bk. In this case, the Step 3 and Step 5 in Algorithm 5.1.1 have
the following forms respectively.

Step 3*. Solve
Bkd = −gk for dk. (5.1.16)

Step 5*. Update Bk into Bk+1 so that quasi-Newton equation (5.1.13) holds.

Next, we give some comparisons with Newton’s method, which indicate
that the quasi-Newton method is advantageous.

Comparison of quasi-Newton method vs Newton’s method

quasi-Newton method Newton’s method
Only need the function values Need the function values,
and gradients gradients and Hessians
{Hk} maintains positive definite {Gk} is not sure to be
for several updates positive definite
Need O(n2) multiplications Need O(n3) multiplications
in each iteration in each iteration

Download more at Learnclax.com

5.1. QUASI-NEWTON METHODS 207

As Newton’s method is a steepest descent method under the norm ‖·‖Gk
,

the quasi-Newton method is a steepest descent method under the norm ‖·‖Bk
,

where Bk is the approximation of the Hessian Gk. In fact, dk now is the
solution of the minimization problem

min gT
k d

s.t. ‖d‖Bk
≤ 1. (5.1.17)

From the inequality

(gT
k d)2 ≤ (gT

k B−1
k gk)(dT Bkd),

it follows that when
dk = −B−1

k gk = −Hkgk,

gT
k dk is the smallest.

By the way, since the metric matrices Bk are positive definite and always
changed from iteration to iteration, the method is also called the variable
metric method.

5.1.2 Symmetric Rank-One (SR1) Update

As we have seen, the key point of the quasi-Newton method is to generate
Hk+1 (or Bk+1) by means of the quasi-Newton equation. This subsection
and the subsequent two subsections will discuss some typical and popular
quasi-Newton updates. In this subsection we introduce a simple rank-one
update that satisfies the quasi-Newton equation.

Let Hk be the inverse Hessian approximation of the k-th iteration. We
try updating Hk into Hk+1, i.e.,

Hk+1 = Hk + Ek, (5.1.18)

where, usually, Ek is a matrix with lower rank. In the case of rank-one, we
have

Hk+1 = Hk + uvT , (5.1.19)

where u, v ∈ Rn. By quasi-Newton equation (5.1.8), we obtain

Hk+1yk = (Hk + uvT)yk = sk,

that is
(vT yk)u = sk −Hkyk. (5.1.20)

Download more at Learnclax.com

208 CHAPTER 5. QUASI-NEWTON METHODS

This indicates that u must be in the direction of sk − Hkyk. Assume that
sk −Hkyk = 0 (otherwise, Hk has satisfied the quasi-Newton equation) and
that the vector v satisfies vT yk = 0, then it follows from (5.1.19) and (5.1.20)
that

Hk+1 = Hk +
1

vT yk
(sk −Hkyk)vT . (5.1.21)

Since the inverse Hessian approximation Hk is required to be symmetric, we
can set simply v = sk −Hkyk and get

Hk+1 = Hk +
(sk −Hkyk)(sk −Hkyk)T

(sk −Hkyk)T yk
(5.1.22)

which is called the symmetric rank-one update (SR1 update).
By the way, (5.1.21) is a general Broyden rank-one update in which, par-

ticularly, if v = yk, (5.1.21) is called the Broyden rank-one update presented
by Broyden (1965) for solving systems of nonlinear equations.

The distinct property of SR1 update is its natural quadratic termination,
that is, for a quadratic function, it need not to do line search, but can be
terminated within n steps, i.e., Hn = G−1, where G is the Hessian of the
quadratic function. This fact is proved by Theorem 5.1.2 below.

Theorem 5.1.2 (Property Theorem of SR1 Update) Let s0, s1, · · · , sn−1 be
linearly independent. Then, for a quadratic function with a positive definite
Hessian, SR1 method terminates at n + 1 steps, that is, Hn = G−1.

Proof. Let the Hessian G be positive definite. We can use

yk = Gsk, k = 0, 1, · · · , n− 1, (5.1.23)

that is shared by all proofs on quadratic termination.
First, by induction, we prove the hereditary property

Hiyj = sj , j = 0, 1, · · · , i− 1. (5.1.24)

For i = 1, it is trivial from (5.1.22). Now suppose it is true for i ≥ 1; we will
prove it holds for i + 1.

From (5.1.22), we have

Hi+1yj = Hiyj +
(si −Hiyi)(si −Hiyi)T yj

(si −Hiyi)T yi
. (5.1.25)

Download more at Learnclax.com

5.1. QUASI-NEWTON METHODS 209

When j < i, from the induction assumption and (5.1.23), we have

(si −Hiyi)T yj = sT
i yj − yT

i Hiyj

= sT
i yj − yT

i sj

= sT
i Gsj − sT

i Gsj

= 0.

Then
Hi+1yj = Hiyj = sj , j < i.

When j = i, it is a direct consequence from (5.1.22) that

Hi+1yi = si.

Therefore, (5.1.24) follows.
Furthermore, since

sj = Hnyj = HnGsj , j = 0, 1, · · · , n− 1

and sj (j = 0, 1, · · · , n − 1) are linearly independent, then HnG = I, that is
Hn = G−1. �

It is not difficult to find that SR1 update has the following characteristics.

1. SR1 update possesses natural quadratic termination.

2. SR1 update satisfies the hereditary property: Hiyj = sj , j < i.

3. SR1 update does not retain the positive definiteness of Hk. If and
only if (sk − Hkyk)T yk > 0, SR1 update retains positive definiteness.
However, this condition is difficult to guarantee. The remedy is that
SR1 update can be used in the trust region framework since the trust
region method does not require positive definiteness of the Hessian
approximations (see Chapter 6).

4. Sometimes, the denominator (sk−Hkyk)T yk is very small or zero, which
results in serious numerical difficulty or even the algorithm is broken.
This disadvantage restricts its applications. So, it is a topic deserving
research how to modify SR1 update such that it possesses not only
natural quadratic termination but also positive definiteness. A special

Download more at Learnclax.com

210 CHAPTER 5. QUASI-NEWTON METHODS

skipping strategy to prevent the SR1 update from breaking down is as
follows. We use (5.1.22) only if

|(si −Hiyi)T yi| ≥ r‖si −Hiyi‖‖yi‖, (5.1.26)

where r ∈ (0, 1); otherwise we set Hi+1 = Hi.

5. The SR1 update has a good behavior that it continues to generate good
Hessian approximations, which is stated in the following theorem.

Theorem 5.1.3 Let f be twice continuously differentiable, and its Hes-
sian be bounded and Lipschitz continuous in a neighborhood of a point
x∗. Let {xk} be a sequence of iterates with xk → x∗. Suppose that the
skipping rule (5.1.26) holds for all k, and the steps sk are uniformly
linearly independent. Then the matrix sequence {Bk} generated by SR1
update satisfies

lim
i→∞

‖Hi − [∇2f(x∗)]−1‖ = 0. (5.1.27)

5.1.3 DFP Update

DFP update is another typical update which is a rank-two update, i.e., Hk+1

is formed by adding to Hk two symmetric matrices, each of rank one. Let us
consider the symmetric rank-two update

Hk+1 = Hk + auuT + bvvT , (5.1.28)

where u, v ∈ Rn, a and b are scalars to be determined. By the quasi-Newton
equation (5.1.8),

Hkyk + auuT yk + bvvT yk = sk. (5.1.29)

Clearly, u and v are not uniquely determined, but their obvious choices are

u = sk, v = Hkyk.

Then, from (5.1.29), we have

a = 1/uT yk = 1/sT
k yk, b = −1/vT yk = −1/yT

k Hkyk.

Therefore

Hk+1 = Hk +
sks

T
k

sT
k yk

− Hkyky
T
k Hk

yT
k Hkyk

. (5.1.30)

Download more at Learnclax.com

5.1. QUASI-NEWTON METHODS 211

The formula (5.1.30) is the first quasi-Newton update proposed originally by
Davidon [79] and developed later by Fletcher and Powell [137]. Hence it is
called DFP update.

Now we state the quasi-Newton algorithm with DFP update (in brief,
DFP method) as follows.

Algorithm 5.1.4 (DFP method)

Initial Step: Given x0 ∈ Rn an initial point, H0 ∈ Rn×n a symmetric and
positive definite matrix, ε > 0 a termination scalar, k := 0.

k-th Step: For k = 0, 1, · · ·,

1. If ‖gk‖ ≤ ε, stop.

2. Compute dk = −Hkgk.

3. Compute the step size αk.

4. Set sk = αkdk, xk+1 = xk + sk, yk = gk+1 − gk, and

Hk+1 = Hk +
sks

T
k

sT
k yk

− Hkyky
T
k Hk

yT
k Hkyk

.

5. k := k + 1, go to Step 1. �

DFP method has the following important properties:

1. For a quadratic function (under exact line search)

(1) DFP update has quadratic termination, i.e., Hn = G−1.

(2) DFP update has hereditary property, i.e., Hiyj = sj , j < i.

(3) DFP method generates conjugate directions; when H0 = I, the
method generates conjugate gradients.

2. For a general function

(1) DFP update maintains positive definiteness.

(2) Each iteration requires 3n2 + O(n) multiplications.

(3) DFP method is superlinearly convergent.

(4) For a strictly convex function, under exact line search, DFP method
is globally convergent.

Download more at Learnclax.com

212 CHAPTER 5. QUASI-NEWTON METHODS

The convergence properties of DFP method will be established in §5.3
and §5.4. In the remainder of this subsection we shall discuss the other
two important properties: positive definiteness of the update and quadratic
termination of the method.

The fact that quasi-Newton update retains positive definiteness is of im-
portance in efficiency, numerical stability and global convergence. If the Hes-
sian G(x∗) is positive definite, the stationary point x∗ is a strong minimizer.
Hence, we hope Hessian approximation {Bk} (or inverse Hessian approxima-
tion {Hk}) is positive definite. In addition, if {Bk} (or {Hk}) is positive
definite, the local quadratic model of f has a unique local minimizer, and
the direction dk from (5.1.15) or (5.1.16) is a descent direction. Usually, the
update retaining positive definiteness means that if Hk (or Bk) is positive
definite, then Hk+1 (or Bk+1) is also positive definite. Such an update is also
called positive definite update. Next, we discuss the positive definiteness of
DFP update.

Theorem 5.1.5 (Positive Definiteness of DFP Update)
DFP update (5.1.30) retains positive definiteness if and only if sT

k yk > 0.

Proof. For the proof, we give two methods.
Proof (I) Sufficiency. We will prove

zT Hkz > 0, ∀z = 0 (5.1.31)

by induction.
Obviously, H0 is symmetric and positive definite. We now suppose that

(5.1.31) holds for some k ≥ 0 and set Hk = LLT as the Cholesky factorization
of Hk. Let

a = LT z, b = LT yk. (5.1.32)

Then by DFP update (5.1.30) we have

zT Hk+1z = zT

(
Hk −

Hkyky
T
k Hk

yT
k Hkyk

)
z + zT sks

T
k

sT
k yk

z

=

[
aT a− (aT b)2

bT b

]
+

(zT sk)2

sT
k yk

. (5.1.33)

It is obvious from Cauchy-Schwartz inequality that

aT a− (aT b)2

bT b
≥ 0. (5.1.34)

Download more at Learnclax.com

5.1. QUASI-NEWTON METHODS 213

In addition, the second term in (5.1.33) is also nonnegative because of sT
k yk >

0. Therefore we obtain that

zT Hk+1z ≥ 0.

Below, we must prove that at least one term in (5.1.33) is strictly larger
than zero. Since z = 0, the equality holds in (5.1.34) if and only if a is
parallel to b, equivalently, if and only if z is parallel to yk. If z is parallel to
yk, we have z = βyk, where β = 0, and

(zT sk)2

sT
k yk

= β2sT
k yk > 0,

which indicates that if z is parallel to yk, i.e., if the first term in (5.1.33)
equals zero, the second term must be strictly larger than zero. Thus, for any
z = 0, we always have zT Hk+1z > 0. The sufficiency follows.

In analogy, the necessity can be shown. �

Proof (II). Let Hk = LLT , ȳ = LT yk, s̄ = L−1sk. Then DFP update
(5.1.30) can be written as

Hk+1 = LWLT , (5.1.35)

where

W = I − ȳȳT

ȳT ȳ
+

s̄s̄T

s̄T ȳ
. (5.1.36)

By the determinant relation (1.2.70) of update,

det(W) =
s̄T ȳ

ȳT ȳ
=

sT
k yk

yT
k Hkyk

,

which, together with (5.1.35), gives

det(Hk+1) = det(Hk)
sT
k yk

yT
k Hkyk

. (5.1.37)

This implies that if Hk is positive definite, then det(Hk+1) > 0 if and only if
sT
k yk > 0.

Let

Hk+1 = Hk +
sks

T
k

sT
k yk

− Hkyky
T
k Hk

yT
k Hkyk

= H̄ − Hkyky
T
k Hk

yT
k Hkyk

,

Download more at Learnclax.com

214 CHAPTER 5. QUASI-NEWTON METHODS

where H̄ = Hk + sksT
k

sT
k

yk
. Since Hk is positive definite, we know by use of

Theorem 1.2.17 that sT
k yk > 0 implies all eigenvalues of H̄ are positive, i.e.,

H̄ is positive definite. Using Theorem 1.2.17 again indicates that, at most,
the smallest eigenvalue of Hk+1 is not positive. Hence, det(Hk+1) and the
smallest eigenvalue of Hk+1 have the same sign, which shows that Hk+1 is
positive definite if and only if det(Hk+1) > 0. Therefore we have

sT
k yk > 0 ⇔ det(Hk+1) > 0 ⇔ Hk+1 is positive definite. �

This theorem gives a sufficient and necessary condition of positive definite
DFP update. By different definitions of positive definiteness and different
algebraic tricks, we can establish this theorem. The interested readers may
try different methods to give the proofs. The curvature condition sT

k yk > 0 for
preserving positive definiteness is moderate, practical, and can be satisfied.
For a quadratic positive definite function, obviously,

sT
k yk = sT

k Gsk > 0.

For a strong convex function, the average Hessian

Ḡk =
∫ 1

0
∇2f(xk + τsk)dτ (5.1.38)

is positive definite. So, from Taylor’s formula

yk = ∇f(xk + sk)−∇f(xk) =
∫ 1

0
∇2f(xk + τsk)skdτ = Ḡksk,

we have that
yT

k sk = sT
k Ḡksk > 0.

For a general function, we have

sT
k yk = gT

k+1sk − gT
k sk.

Note that gT
k sk < 0 is due to sk being a descent direction. Using exact line

search with gT
k+1sk = 0, we have sT

k yk > 0. When we use inexact line search,
for example, if the rule (2.5.7) is satisfied, the condition sT

k yk > 0 can also
be satisfied. In general, as long as we increase the precision of line search,
we can make gT

k+1sk small enough in magnitude to the desired degree.
From this theorem and the above discussion, it is obvious that, for Algo-

rithm 5.1.4 with exact or inexact line search, the condition sT
k yk > 0 holds

and therefore each update matrix Hk in DFP algorithm is positive definite.
So, we have the following corollary.

Download more at Learnclax.com

5.1. QUASI-NEWTON METHODS 215

Corollary 5.1.6 Each matrix Hk generated by DFP Algorithm 5.1.4 is pos-
itive definite, and the directions dk = −Hkgk are descent directions.

Finally, we give a theorem on quadratic termination of DFP method. This
theorem shows that, for a quadratic function with positive definite Hessian
G, the directions generated from DFP method are conjugate, and the method
terminates at n steps, that is Hn = G−1.

Theorem 5.1.7 (Quadratic Termination Theorem of DFP Method)
Let f(x) be a quadratic function with positive definite Hessian G. Then,

if exact line search is used, the sequence {sj} generated from DFP method
satisfies hereditary property, conjugate property and quadratic termination,
that is, for i = 0, 1, · · · , m, where m ≤ n− 1,

1. Hi+1yj = sj , j = 0, 1, · · · , i; (hereditary property)

2. sT
i Gsj = 0, j = 0, 1, · · · , i− 1; (conjugate direction property)

3. The method terminates at m + 1 ≤ n steps. If m = n − 1, then Hn =
G−1.

Proof. We prove part (1) and (2) by induction. Clearly, when i = 0,
it is trivial. Now suppose that part (1) and (2) hold for some i. We show
that they also hold for i + 1. Since gi+1 = 0, by exact line search, the fact
that yk = gk+1 − gk = G(xk+1 − xk) = Gsk, (1 ≤ k ≤ i) and the induction
hypothesis, we have, for j ≤ i,

gT
i+1sj = gT

j+1sj +
i∑

k=j+1

(gk+1 − gk)T sj

= gT
j+1sj +

i∑
k=j+1

yT
k sj

= 0 +
i∑

k=j+1

sT
k Gsj

= 0. (5.1.39)

Hence, by use of si+1 = −αi+1Hi+1gi+1, induction hypothesis in part (1) and
(5.1.39), it follows that

sT
i+1Gsj = −αi+1g

T
i+1Hi+1yj

Download more at Learnclax.com

216 CHAPTER 5. QUASI-NEWTON METHODS

= −αi+1g
T
i+1sj

= 0, (5.1.40)

which proves part (2) holds for i + 1.
Next, we prove that part (1) holds for i + 1, i.e.,

Hi+2yj = sj , j = 0, 1, · · · , i + 1. (5.1.41)

When j = i + 1, part (1) is immediate from DFP update (5.1.30), that is

Hi+2yi+1 = si+1. (5.1.42)

When j ≤ i, it follows from (5.1.40) and the induction hypothesis in part (1)
that

sT
i+1yj = sT

i+1Gsj = 0,

yT
i+1Hi+1yj = yT

i+1sj = sT
i+1Gsj = 0.

Then

Hi+2yj = Hi+1yj +
si+1s

T
i+1yj

sT
i+1yi+1

−
Hi+1yi+1y

T
i+1Hi+1yj

yT
i+1Hi+1yi+1

= Hi+1yj

= sj . (5.1.43)

This, together with (5.1.42), shows (5.1.41). Therefore part (1) follows.
Finally, since si (i = 0, 1, · · · , m) are conjugate, the method is a conjugate

direction method. Based on Theorem 4.1.3 of the conjugate direction method,
the method terminates after m(≤ n) steps. When m = n − 1, since si (i =
0, 1, · · · , n− 1) are linearly independent, then part (1) means

HnGsj = Hnyj = sj , j = 0, 1, · · · , n− 1

which implies Hn = G−1. �

From this theorem we see that DFP method is a conjugate direction
method. If the initial approximation H0 = I, the method becomes a con-
jugate gradient method. By the hereditary property, we have Hi+1Gsj =
sj , j = 0, 1, · · · , i, which also indicates that these sj are eigenvectors of ma-
trix Hi+1G(j = 0, 1, · · · , i) corresponding to the eigenvalue 1.

DFP method is a seminal quasi-Newton method and has been widely
used in many computer codes. It has played an important role in theoretical

Download more at Learnclax.com

5.1. QUASI-NEWTON METHODS 217

analysis and numerical computing. However, further studies indicate that
DFP method is numerically unstable, and sometimes produces numerically
singular Hessian approximations. The other famous quasi-Newton update —
BFGS update introduced in the next subsection will overcome these draw-
backs and perform better than DFP update.

5.1.4 BFGS Update and PSB Update

In §5.1.1 we have seen that

Hk+1yk = sk and Bk+1sk = yk (5.1.44)

are the quasi-Newton equations with respect to inverse Hessian approxima-
tion and Hessian approximation respectively. Note that any approxima-
tion in (5.1.44) can be obtained from the other by means of exchanging
Hk+1 ↔ Bk+1 and sk ↔ yk. In analogy to the derivation of DFP update
(5.1.30) about Hk, we can get

B
(BFGS)
k+1 = Bk +

yky
T
k

yT
k sk

− Bksks
T
k Bk

sT
k Bksk

, (5.1.45)

which is called BFGS update discovered independently by Broyden [27],
Fletcher [125], Goldfarb [153] and Shanno [304]. In fact, if one makes di-
rectly simple exchanges Hk ↔ Bk and sk ↔ yk, BFGS update (5.1.45) is just
obtained from DFP update (5.1.30). Thus, BFGS update is also said to be
a complement DFP update. Since Bksk = −αkgk and Bkdk = −gk, (5.1.45)
can also be written as

B
(BFGS)
k+1 = Bk +

gkg
T
k

gT
k dk

+
yky

T
k

αky
T
k dk

. (5.1.46)

By using twice the Sherman-Morrison formula (1.2.67), (5.1.45) will be-
come as follows:

H
(BFGS)
k+1 = Hk +

(
1 +

yT
k Hkyk

sT
k yk

)
sks

T
k

sT
k yk

−sky
T
k Hk + Hkyks

T
k

sT
k yk

(5.1.47)

= Hk +
(sk −Hkyk)sT

k + sk(sk −Hkyk)T

sT
k yk

Download more at Learnclax.com

218 CHAPTER 5. QUASI-NEWTON METHODS

−(sk −Hkyk)T yk

(sT
k yk)2

sks
T
k (5.1.48)

=

(
I − sky

T
k

sT
k yk

)
Hk

(
I − yks

T
k

sT
k yk

)
+

sks
T
k

sT
k yk

. (5.1.49)

(5.1.47)–(5.1.49) are the three forms of BFGS update about Hk. Further-
more, by making exchanges Hk ↔ Bk and sk ↔ yk in (5.1.47)–(5.1.49), we
can get three corresponding forms of DFP update about Bk:

B
(DFP)
k+1 = Bk +

(
1 +

sT
k Bksk

yT
k sk

)
yky

T
k

yT
k sk

−yks
T
k Bk + Bksky

T
k

yT
k sk

(5.1.50)

= Bk +
(yk −Bksk)yT

k + yk(yk −Bksk)T

yT
k sk

−(yk −Bksk)T sk

(yT
k sk)2

yky
T
k (5.1.51)

=

(
I − yks

T
k

yT
k sk

)
Bk

(
I − sky

T
k

yT
k sk

)
+

yky
T
k

yT
k sk

. (5.1.52)

The above discussions describe a method for finding its dual update from
a given update. Given a quasi-Newton update Hk+1 about H-form, by ex-
changing Hk ↔ Bk and sk ↔ yk, we can get its dual update B

(D)
k+1 about

B-form. Then, applying the Sherman-Morrison formula to B
(D)
k+1, we will

produce the dual update H
(D)
k+1 of Hk+1 about the H-form. Similarly, if we

employ the same operations to the dual update H
(D)
k+1, the original update

Hk+1 will be restored. Notice that, for an H-form, the dual update of Hk+1 is
H

(D)
k+1. In addition, the dual operation maintains the quasi-Newton equation.

The following figure represents the dual relation.

Download more at Learnclax.com

5.1. QUASI-NEWTON METHODS 219

Figure 5.1.1 Duality of H
(DFP)
k+1 and H

(BFGS)
k+1

For SR1 update

H
(SR1)
k+1 = Hk +

(sk −Hkyk)(sk −Hkyk)T

(sk −Hkyk)T yk
, (5.1.53)

exchanging Hk ↔ Bk and sk ↔ yk gives

B
(D)
k+1 = Bk +

(yk −Bksk)(yk −Bksk)T

(yk −Bksk)T sk
. (5.1.54)

Then applying the Sherman-Morrison formula to (5.1.54), we see that the
resultant H

(D)
k+1 is still the H

(SR1)
k+1 , i.e., H

(D)
k+1 = H

(SR1)
k+1 . Thus SR1 update

is self-dual. As we pointed out in §5.1.2, SR1 update does not retain the
positive definiteness of the update. A self-dual update retaining the positive
definiteness is called Hoshino update which will be given in (5.2.6) of §5.2.

The BFGS update is presently considered to be the best one of all quasi-
Newton updates, which has all good properties of DFP update. In addition,
when inexact line search (2.5.3) and (2.5.7) are used, BFGS method is glob-
ally convergent. Note that it is still an open problem whether DFP update
has this property. The numerical performance of BFGS update is superior
to that of DFP update. In particular, BFGS update can often work well in
conjunction with some line searches with lower accuracy.

The next topic in this subsection is PSB update which is formally known
as the Powell-symmetric-Broyden update due to Powell [260].

Let B ∈ Rn×n be a symmetric matrix. Consider the general Broyden
rank-one update

C1 = B +
(y −Bs)cT

cT s
,

Download more at Learnclax.com

220 CHAPTER 5. QUASI-NEWTON METHODS

where c ∈ Rn, cT s = 0. In general, C1 is not symmetric. So, we consider a
symmetrization:

C2 = (C1 + CT
1)/2.

Now C2 is symmetric but, in general, does not obey the quasi-Newton equa-
tion. Then we might continue the above process and generate the sequence
{Ck}:

C2k+1 = C2k +
(y − C2ks)cT

cT s
,

C2k+2 = (C2k+1 + CT
2k+1)/2, k = 0, 1, · · · (5.1.55)

where C0 = B. Here each C2k+1 is the closest matrix in Q(y, s) to C2k, and
each C2k+2 is the closest symmetric matrix to C2k+1, where Q(y, s) = {C ∈
Rn×n | Cs = y} is a matrix set satisfying the quasi-Newton equation. The
Figure 5.1.2 illustrates the symmetrization process, where S denotes the set
of symmetric matrices.

Figure 5.1.2 Production of the sequence Ck

Below, we show the limit of matrix sequence {Ck} is

B̄ = B +
(y −Bs)cT + c(y −Bs)T

cT s
− (y −Bs)T s

(cT s)2
ccT (5.1.56)

which satisfies symmetricity and the quasi-Newton equation.

Theorem 5.1.8 Let B ∈ Rn×n be symmetric, c, s, y ∈ Rn and cT s = 0. Let
the sequence {Ck} be defined by (5.1.55), and C0 = B. Then the sequence
{Ck} converges to B̄ in (5.1.56).

Download more at Learnclax.com

5.1. QUASI-NEWTON METHODS 221

Proof. We only need to prove that the sequence {C2k} converges. Let
Gk = C2k. From (5.1.55), we have

Gk+1 = Gk +
1
2

wkc
T + cwT

k

cT s
, (5.1.57)

where wk = y −Gks. Note that

wk+1 = y −Gk+1s

= y −Gks−
1
2

wkc
T s + cwT

k s

cT s

=
1
2

(
I − csT

cT s

)
wk,

that is

wk+1 = Pwk, where P =
1
2

[
I − csT

cT s

]
. (5.1.58)

Then it follows from Sherman-Morrison formula (1.2.67) that

∞∑
k=0

wk =
∞∑

k=0

P k(y −G0s) =
∞∑

k=0

P k(y −Bs)

= (I − P)−1(y −Bs) = 2

[
I − 1

2
csT

cT s

]
(y −Bs)

= 2(y −Bs)− csT

cT s
(y −Bs). (5.1.59)

Since

lim
k→∞

Gk = B +
∞∑

k=0

(Gk+1 −Gk), (5.1.60)

and by (5.1.57) and (5.1.59), we get that the sequence {Gk} is convergent.
Note that

∞∑
k=0

(Gk+1 −Gk) =
1
2

∞∑
k=0

wkc
T + cwT

k

cT s

=
1

cT s

[
(y −Bs)cT − 1

2
sT (y −Bs)

cT s
ccT + c(y −Bs)T − 1

2
(y −Bs)T s

cT s
ccT

]

=
1

cT s
[(y −Bs)cT + c(y −Bs)T]− (y −Bs)T s

(cT s)2
ccT , (5.1.61)

Download more at Learnclax.com

222 CHAPTER 5. QUASI-NEWTON METHODS

hence the conclusion (5.1.56) follows by (5.1.60) and (5.1.61). �

(5.1.56) gives a class of rank-two update which is derived by a symmetriza-
tion process. If we add the subscripts, it can be written as

Bk+1 = Bk +
(yk −Bksk)cT

k + ck(yk −Bksk)T

cT
k sk

−(yk −Bksk)T sk

(cT
k sk)2

ckc
T
k , (5.1.62)

which is called the general PSB update. In particular,

If ck = yk −Bksk, (5.1.62) is SR1 update (5.1.54).

If ck = yk, (5.1.62) is DFP update (5.1.51).

If ck = 1
wk+1yk + wk

wk+1Bksk, where wk = (yT
k sk/sT

k Bksk)
1
2 , (5.1.62) is BFGS

update (5.1.46).

If ck = sk, (5.1.62) is PSB update:

Bk+1 = Bk +
(yk −Bksk)sT

k + sk(yk −Bksk)T

sT
k sk

−(yk −Bksk)T sk

(sT
k sk)2

sks
T
k . (5.1.63)

Its dual update in H-form is

Hk+1 = Hk +
(sk −Hkyk)yT

k + yk(sk −Hkyk)T

yT
k yk

−(sk −Hkyk)T yk

(yT
k yk)2

yky
T
k (5.1.64)

which is called Greenstadt update (see Greenstadt [163]).

PSB update (5.1.63) is important in theoretical research and practical
computing. However, the drawback that PSB update does not retain the
positive definiteness of updates hurts its performance in computing. Fortu-
nately, the drawback can be avoided if we employ the trust region framework
with PSB update.

Download more at Learnclax.com

5.1. QUASI-NEWTON METHODS 223

5.1.5 The Least Change Secant Update

Various quasi-Newton updates obey the least change property which refers
to the Hk+1 (or Bk+1) being the minimum change to Hk (or Bk) consistent
with the quasi-Newton equation if the change Hk+1 − Hk (or Bk+1 − Bk)
is measured under some norm. This property is helpful to maintain some
information of the last iteration. By the way, by use of the property, we also
can derive quasi-Newton update.

Theorem 5.1.9 Let B ∈ Rn×n, s, y ∈ Rn and s = 0. Then Broyden rank-
one update

B̄ = B +
(y −Bs)sT

sT s
(5.1.65)

is a unique solution of the minimization problem

min{‖B̂ −B‖F : B̂s = y}. (5.1.66)

Proof. [proof I] Since y = B̂s, then

‖B̄ −B‖ =

∥∥∥∥∥(y −Bs)sT

sT s

∥∥∥∥∥
F

=

∥∥∥∥∥(B̂ −B)
ssT

sT s

∥∥∥∥∥
F

≤ ‖B̂ −B‖F . (5.1.67)

Also, since the Frobenius norm is strictly convex and the set of matrix B̂
satisfying the quasi-Newton equation is convex, then the solution of (5.1.66)
is unique.

[proof II] Define C = B̂−B and let cT
i be the i-th row of C. Then (5.1.66)

can be represented as

min
n∑

i=1

‖cT
i ‖22

s.t. cT
i s = (y −Bs)i, i = 1, · · · , n (5.1.68)

where (y − Bs)i denotes the i-th component of y − Bs. Obviously, (5.1.68)
can be divided into n subproblems

min ‖cT
i ‖22

s.t. cT
i s = (y −Bs)i. (5.1.69)

Download more at Learnclax.com

224 CHAPTER 5. QUASI-NEWTON METHODS

Solving (5.1.69) is equivalent to finding the Moore-Penrose inverse s+ of s.
Therefore

cT
i = (y −Bs)is

+ =
(y −Bs)is

T

sT s

which indicates that (5.1.65) is the unique solution of (5.1.66). �

This theorem shows that Broyden’s rank-one update

Bk+1 = Bk +
(yk −Bksk)sT

k

sT
k sk

(5.1.70)

is the unique solution of the minimization problem

min{‖B̂ −Bk‖F : B̂sk = yk}. (5.1.71)

Similarly,

Hk+1 = Hk +
(sk −Hkyk)yT

k

yT
k yk

(5.1.72)

is the unique solution of the minimization problem

min{‖Ĥ −Hk‖F : Ĥyk = sk}. (5.1.73)

Next, we discuss the least change property of general symmetric rank-two
update.

Theorem 5.1.10 Let B ∈ Rn×n be symmetric, c, s, y ∈ Rn, and cT s > 0.
Assume that M ∈ Rn×n is a symmetric and nonsingular matrix satisfying

Mc = M−1s. (5.1.74)

Then the general PSB update

B̄ = B +
(y −Bs)cT + c(y −Bs)T

cT s
− (y −Bs)T s

(cT s)2
ccT (5.1.75)

is the unique solution of the minimization problem

min{‖B̂ −B‖M,F : B̂s = y, B̂T = B̂}, (5.1.76)

where ‖B‖M,F = ‖MBM‖F .

Download more at Learnclax.com

5.2. THE BROYDEN CLASS 225

Proof. Let B̂ be a symmetric matrix obeying y = B̂s. Let also Mc =
M−1s = z, E = M(B̂−B)M, Ē = M(B̄−B)M . Left- and right-multiplying
(5.1.75) by M yields

Ē =
EzzT + zzT E

zT z
− zT Ez

(zT z)2
zzT .

Clearly, ‖Ēz‖2 = ‖Ez‖2, and if v ⊥ z, then ‖Ēv‖2 ≤ ‖Ev‖2. Therefore
‖Ē‖F ≤ ‖E‖F . Also, note that the weighted Frobenius norm ‖ · ‖M,F is
strictly convex and the matrix set {B̂ | B̂s = y, B̂T = B̂} is convex, thus the
general PSB update (5.1.75) is the unique solution of the problem (5.1.76).
�

In particular, some different choices of c in (5.1.75) give different conclu-
sions.

Choosing c = s (in this case, M = I), we get PSB update (5.1.63). Hence,
Theorem 5.1.10 implies that B̄PSB is the unique solution to the problem

min
B̂∈Rn×n

{‖B̂ −B‖F | B̂s = y, B̂T = B̂}. (5.1.77)

Choosing c = y (in this case, M satisfies M−2s = y), we get DFP update
(5.1.50). Hence Theorem 5.1.10 implies that B̄DFP is the unique solution to
the problem

min{‖B̂ −B‖M,F | B̂s = y, B̂T = B̂}. (5.1.78)

Similarly, by the dual technique, H̄BFGS in (5.1.47) is the unique solution
to the problem

min{‖Ĥ −H‖M−1,F | Ĥy = s, ĤT = Ĥ}. (5.1.79)

As an exercise, it is not difficult to discuss the least change property of
dual general PSB update.

5.2 The Broyden Class

From the last section we have seen that both DFP and BFGS updates are
symmetric and positive definite rank-two updates consisting of Hkyk and sk.
It is natural to discuss their weighted (or convex) combinations which have
the same type, and consider their behaviors.

Download more at Learnclax.com

226 CHAPTER 5. QUASI-NEWTON METHODS

Consider the update class

Hφ
k+1 = (1− φ)HDFP

k+1 + φHBFGS
k+1 , (5.2.1)

where φ is a parameter. (5.2.1) is called the Broyden class of update. If
φ ∈ [0, 1], (5.2.1) is called the Broyden convex class of update. Obviously,
Broyden class (5.2.1) satisfies quasi-Newton equation (5.1.8). We can also
write (5.2.1) in the following forms:

Hφ
k+1 = HDFP

k+1 + φvkv
T
k (5.2.2)

= HBFGS
k+1 + (φ− 1)vkv

T
k (5.2.3)

= Hk +
sks

T
k

sT
k yk

− Hkyky
T
k Hk

yT
k Hkyk

+ φvkv
T
k , (5.2.4)

where

vk = (yT
k Hkyk)

1
2

[
sk

sT
k yk

− Hkyk

yT
k Hkyk

]
. (5.2.5)

In particular, in (5.2.4),

set φ = 0, we get DFP update (5.1.30);

set φ = 1, we get BFGS update (5.1.47);

set φ = sT
k yk

(sk−Hkyk)T yk
, we get SR1 update (5.1.22);

set
φ =

1
1∓ (yT

k Hkyk/sT
k yk)

, (5.2.6)

we get Hoshino update.

Broyden class (5.2.2)–(5.2.4) can be derived directly by the quasi-Newton
equation. Consider a general rank-two update consisting of sk and Hkyk:

Hk+1 = Hk + asks
T
k + b(Hkyks

T
k + sky

T
k Hk) + cHkyky

T
k Hk, (5.2.7)

where a, b, c are scalars to be determined. Using the quasi-Newton equation
yields

1 = asT
k yk + byT

k Hkyk,

0 = 1 + bsT
k yk + cyT

k Hkyk. (5.2.8)

Download more at Learnclax.com

5.2. THE BROYDEN CLASS 227

Here are two equations with three unknowns and one free degree. Set

b = −φ/sT
k yk, (5.2.9)

where φ is a parameter. Solving (5.2.8) and substituting the result into
(5.2.7), we have

Hφ
k+1 = Hk +

sks
T
k

sT
k yk

− Hkyky
T
k Hk

yT
k Hkyk

+ φvkv
T
k = HDFP

k+1 + φvkv
T
k ,

where vk is defined by (5.2.5). The above expression is just (5.2.2) and (5.2.4).
By a slight arrangement, Broyden class has the following matrix form:

Hφ
k+1 = Hk + [sk, Hkyk]

⎡
⎣ 1+φyT

k Hkyk/sT
k yk

sT
k

yk
− φ

sT
k

yk

− φ
sT
k

yk

φ−1
yT

k
Hkyk

⎤
⎦ [sk, Hkyk]T . (5.2.10)

Correspondingly, it is easy to produce Broyden class in B-form:

Bθ
k+1 = θBDFP

k+1 + (1− θ)BBFGS
k+1 (5.2.11)

= BBFGS
k+1 + θwkw

T
k (5.2.12)

= BDFP
k+1 + (θ − 1)wkw

T
k (5.2.13)

= Bk +
yky

T
k

sT
k yk

− Bksks
T
k Bk

sT
k Bksk

+ θwkw
T
k , (5.2.14)

where

wk = (sT
k Bksk)1/2

[
yk

sT
k yk

− Bksk

sT
k Bksk

]
. (5.2.15)

Note that the relation between θ and φ is

θ = (φ− 1)/(φ− 1− φµ), (5.2.16)

where

µ =
yT

k Hkyks
T
k Bksk

(sT
k yk)2

. (5.2.17)

Since vT
k yk = 0 and wT

k sk = 0, then (5.2.1)-(5.2.2) and (5.2.11)-(5.2.14)
satisfy respectively the quasi-Newton equation (5.1.8) and (5.1.13) for any
parameter φ and θ. In analogous to Theorem 5.1.2 and Theorem 5.1.5, we
can show the quadratic termination property and positive definite property
of Broyden class.

Download more at Learnclax.com

228 CHAPTER 5. QUASI-NEWTON METHODS

Theorem 5.2.1 (Quadratic Termination Theorem of Broyden Class) Let
f(x) be a quadratic function with positive definite Hessian G. Then, when
exact line search is used, the Broyden class of update has hereditary property
and conjugate direction property, that is, for i = 0, 1, · · · , m, (m ≤ n− 1),

Hereditary property: Hi+1yj = sj , j = 0, 1, · · · , i. (5.2.18)
Conjugate direction: sT

i Gsj = 0, j = 0, 1, · · · , i− 1. (5.2.19)

The method terminates at m steps. If m = n− 1, then Hn = G−1.

Proof. It is similar to the proof of Theorem 5.1.5. �

Theorem 5.2.2 (Positive Definiteness of Broyden Class of Update) Let φ ≥
0. If and only if sT

k yk > 0, Broyden class of update (5.2.2) retains the positive
definiteness.

Proof. From Theorem 5.1.2, if and only if sT
k yk > 0, DFP update retains

positive definiteness. Since φ ≥ 0, it follows from (5.2.3) and Theorem 1.2.17
that the smallest eigenvalue of Hφ

k+1 is not less than the smallest one of
HDFP

k+1 . Hence Hφ
k+1 is positive definite. �

This theorem shows that not all members of Broyden class retain the
positive definiteness. Clearly, when φ ≥ 0, Hφ

k+1 maintains its positive defi-
niteness; when φ < 0, it is possible that the update becomes singular. The
following Theorem 5.2.3 gives a value φ̄, and says that as long as φ > φ̄, Hφ

k+1

will maintain positive definiteness. Such a value φ̄ is called the degenerate
value of Broyden class, which makes H φ̄

k+1 singular.

Theorem 5.2.3 The degenerate value of Broyden class of update is

φ̄ =
1

1− µ
=

1
1− yT

k Hkyks
T
k Bksk/(sT

k yk)2
. (5.2.20)

Proof. Let dk = −Hkgk, sk = αkdk. When we use exact line search,
gT
k+1dk = 0 = gT

k+1sk. Notice also that gk+1 = yk + gk, v
T
k gk = 0, and using

(5.2.5), we have

dφ
k+1 = −Hφ

k+1gk+1

= −
(

Hk +
sks

T
k

sT
k yk

− Hkyky
T
k Hk

yT
k Hkyk

+ φvkv
T
k

)
gk+1

Download more at Learnclax.com

5.2. THE BROYDEN CLASS 229

= −Hkgk −Hkyk +
yT

k Hk(gk + yk)
yT

k Hkyk
Hkyk − φvT

k gkvk

= −Hkgk +
yT

k Hkgk

yT
k Hkyk

Hkyk − φvT
k gkvk

= dk −
yT

k dk

yT
k Hkyk

Hkyk − φvT
k gkvk

=
dT

k yk

(yT
k Hkyk)1/2

[
(yT

k Hkyk)1/2

(
dk

dT
k yk

− Hkyk

yT
k Hkyk

)]
− φvT

k gkvk

=

(
dT

k yk

(yT
k Hkyk)1/2

− φvT
k gk

)
vk. (5.2.21)

This shows that when exact line search is used, (5.2.21) holds. When gk+1 =
0, if dφ

k+1 = −Hφ
k+1gk+1 = 0, then φ is called the degenerate value of Hφ

k+1.
By using dφ

k+1 = 0 and (5.2.5), we obtain

φ =
yT

k dk

(yT
k Hkyk)1/2vT

k gk

=
yT

k dk

−gT
k Hkyk + (sT

k gk)(yT
k Hkyk)/sT

k yk

=
1

1− (sT
k

Bksk)(yT
k

Hkyk)

(sT
k

yk)2

=
1

1− µ
. �

(5.2.21) indicates that the parameter φ of Broyden class does not change
the search direction, but only the length. Hence, we could expect that: any
method of Broyden class is, in some degree, independent from the parameter
φ. Dixon [107] proves: under exact line search, all updates of Broyden class
(φk > φ̄) generate the identical points, although for non-quadratic functions.

Theorem 5.2.4 Let f : Rn → R be continuously differentiable, the level set
L(x0) = {x | f(x) ≤ f(x0)} be bounded, and H0 ∈ Rn×n be symmetric and
positive definite. Let {Hφ

k } be a sequence generated by Broyden class, where
φk > φ̄ and φ̄ is the degenerate value of Broyden class. Assume that HBFGS

k+1

is an update obtained by applying BFGS update to Hφ
k . Then, under exact

Download more at Learnclax.com

230 CHAPTER 5. QUASI-NEWTON METHODS

line search, Broyden class of update has the property: for all k ≥ 0, xk+1 and
HBFGS

k+1 are independent from parameters φ0, φ1, · · · , φk−1.

Proof. We show this result by induction. For k = 0, it is trivially true.
Now suppose it is true for k ≥ 0, i.e., xk+1 and HBFGS

k+1 are independent from
φ0, φ1, · · · , φk−1. We shall show it is also true for k + 1.

From (5.2.21), the direction dk+1 generated by Broyden class does not
depend on φk. Since dk+1 ∝ −HBFGS

k+1 gk+1, by the induction hypothesis,
the direction dk+1 does not also depend on φ0, φ1, · · · , φk−1. Then, by exact
line search, xk+2 = xk+1 +αk+1dk+1 does not depend on φ0, φ1, · · · , φk−1, φk.
Now, from the assumption,

HBFGS
k+2 =

(
I −

sk+1y
T
k+1

sT
k+1yk+1

)
Hφ

k+1

(
I −

yk+1s
T
k+1

sT
k+1yk+1

)
+

sk+1s
T
k+1

sT
k+1yk+1

. (5.2.22)

Note
Hφ

k+1 = HBFGS
k+1 + (φk − 1)vkv

T
k . (5.2.23)

Since [
I −

sk+1y
T
k+1

sT
k+1yk+1

]
sk+1 = 0,

it follows from (5.2.21) that[
I −

sk+1y
T
k+1

sT
k+1yk+1

]
vk = 0. (5.2.24)

Then, substituting (5.2.23) into (5.2.22) and using (5.2.24) yield that HBFGS
k+2

can be defined by use of HBFGS
k+1 , sk+1, and yk+1. So, by induction hypothesis,

HBFGS
k+2 is independent from φ0, φ1, · · · , φk. We complete the proof. �

To conclude this section, we give a brief introduction to Huang class of
updates. Huang [180] presented a wider class of updates than Broyden class.
In Broyden class, the update matrix sequence {Hk} satisfies symmetricity
and quasi-Newton equation, i.e.,

HT
k = Hk and Hk+1yk = sk. (5.2.25)

However, in Huang class, the symmetricity condition is removed, and the
update matrix {Hk} is required to obey

Hk+1yk = ρsk, (5.2.26)

Download more at Learnclax.com

5.3. GLOBAL CONVERGENCE OF QUASI-NEWTON METHODS 231

which is said to be a generalized quasi-Newton equation or a generalized
quasi-Newton condition, where ρ is a parameter.

Huang class of updates can be described as follows:

Hk+1 = Hk + sku
T
k + Hkykv

T
k , (5.2.27)

where uk and vk satisfy

uk = a11sk + a12H
T
k yk, (5.2.28)

vk = a21sk + a22H
T
k yk, (5.2.29)

uT
k yk = ρ, (5.2.30)

vT
k yk = −1. (5.2.31)

There are five parameters a11, a12, a21, a22 and ρ, in which three parameters
are free. Hence, in fact, Huang class of update depends on three parameters.
In particular, if requiring {Hk} symmetric and setting ρ = 1, then Huang
class is just Broyden class. This means that Broyden class is a subclass of
Huang class.

The main properties of Huang class of update are as follows:

• For positive definite and quadratic functions, Huang class generates
conjugate directions and has quadratic termination property. All meth-
ods of Huang class generate the identical points.

• For general functions, the sequence generated by Huang class only de-
pends on the parameter ρ.

Based on our experience, the generalized quasi-Newton equation (5.2.26)
is important to present a good quasi-Newton method. The parameter ρ will
play a big role on the iterative sequence and the properties of algorithms.

5.3 Global Convergence of Quasi-Newton Methods

In this section we discuss the global convergence for quasi-Newton methods.
The global properties of quasi-Newton methods were established by Pow-
ell [262] and Powell [265]. These results have been extended to restricted
Broyden’s class by Byrd, Nocedal and Yuan [47]. We will study the global
convergence of quasi-Newton methods under exact line search and inexact
line search respectively in §5.3.1 and §5.3.2.

In the discussion of this section, we need the following assumptions:

Download more at Learnclax.com

232 CHAPTER 5. QUASI-NEWTON METHODS

Assumption 5.3.1 (a) f : Rn → R is twice continuously differentiable on
convex set D.

(b) f(x) is uniformly convex, i.e., there exist positive constants m and M
such that for all x ∈ L(x) = {x|f(x) ≤ f(x0)}, which is convex, we
have

m‖u‖2 ≤ uT∇2f(x)u ≤ M‖u‖2, ∀u ∈ Rn. (5.3.1)

The assumption (b) implies that ∇2f(x) is positive definite on L(x), and
that f has a unique minimizer x∗ in L(x).

5.3.1 Global Convergence under Exact Line Search

We begin the discussion in case of exact line search.
Let

Ḡ =
∫ 1

0
∇2f(xk + τsk)dτ, (5.3.2)

then we have from Taylor’s theorem that

yk = Ḡsk. (5.3.3)

Immediately, we have

m ≤ yT
k sk

‖sk‖2
=

sT
k Ḡksk

‖sk‖2
≤ M (5.3.4)

and
1
M
≤ ‖sk‖2

yT
k sk

≤ 1
m

. (5.3.5)

Since also
‖yk‖2
sT
k yk

=
sT
k Ḡ2

ksk

sT
k Ḡksk

,

if we let zk = Ḡ
1
2
k sk, then

‖yk‖2
sT
k yk

=
zT
k Ḡkzk

zT
k zk

≤ M. (5.3.6)

In addition, we have

‖yk‖ ≤ ‖Ḡ‖‖sk‖, ‖sk‖ ≤ ‖Ḡ−1
k ‖‖yk‖

Download more at Learnclax.com

5.3. GLOBAL CONVERGENCE OF QUASI-NEWTON METHODS 233

which give
‖yk‖
‖sk‖

≤ M (5.3.7)

and
‖sk‖
‖yk‖

≤ 1
m

. (5.3.8)

Therefore, from the above discussion, we have

Lemma 5.3.2 Let f : Rn → R satisfy Assumption 5.3.1. Then

‖sk‖
‖yk‖

,
‖yk‖
‖sk‖

,
sT
k yk

‖sk‖2
,

sT
k yk

‖yk‖2
,
‖yk‖2
sT
k yk

are bounded.

Lemma 5.3.3 Under exact line search,
∑ ‖sk‖2 and

∑ ‖yk‖2 are conver-
gent.

Proof. Let ψ(τ) = f(xk+1 − τsk). From (5.3.1), it follows that ψ′′(τ) ≥
m‖sk‖2. Note that the exact line search gives ψ′(0) = 0. Then we have

ψ(τ) ≥ ψ(0) +
1
2
m‖sk‖2τ2.

Taking τ = 1, we deduces

f(xk)− f(xk+1) ≥
1
2
m‖sk‖2.

By summing this expression we have

∞∑
k=0

‖sk‖2 ≤ 2{f(x0)− f(x∗)}/m,

which implies
∑ ‖sk‖2 is convergent, where f(x∗) is the minimum of f(x).

By Lemma 5.3.2, we also obtain that
∑ ‖yk‖2 is convergent. �

Lemma 5.3.4 For all vectors x, the inequality

‖g(x)‖2 ≥ m[f(x)− f(x∗)] (5.3.9)

holds, where f(x∗) is the minimum of f(x).

Download more at Learnclax.com

234 CHAPTER 5. QUASI-NEWTON METHODS

Proof. Since the function

ψ(τ) = f(x + τ(x∗ − x)), (0 ≤ τ ≤ 1)

is a convex function, then

f(x + τ(x∗ − x)) ≥ f(x) + τ(x∗ − x)T g(x).

In particular, set τ = 1, then we have

f(x)− f(x∗) ≤ −(x∗ − x)T g(x) ≤ ‖g(x)‖‖x∗ − x‖. (5.3.10)

By (5.3.5) and Cauchy-Schwartz inequality, we deduce

‖x∗ − x‖2 ≤ (x∗ − x)T (g(x∗)− g(x))/m (5.3.11)
≤ ‖x∗ − x‖‖g(x∗)− g(x)‖/m,

which gives
‖x∗ − x‖ ≤ ‖g(x∗)− g(x)‖/m = ‖g(x)‖/m. (5.3.12)

Substituting (5.3.12) into (5.3.10) establishes (5.3.9). �

Theorem 5.3.5 Suppose that f(x) satisfies Assumption 5.3.1. Then, under
exact line search, the sequence {xk} generated by DFP method converges to
the minimizer x∗ of f .

Proof. Consider DFP formula of inverse Hessian approximation

Hk+1 = Hk −
Hkyky

T
k Hk

yT
k Hkyk

+
sks

T
k

sT
k yk

(5.3.13)

and DFP formula of Hessian approximation

Bk+1 =

(
I − yks

T
k

sT
k yk

)
Bk

(
I − sky

T
k

sT
k yk

)
+

yky
T
k

sT
k yk

. (5.3.14)

Obviously, Bk+1Hk+1 = I. By computing the trace of (5.3.14), we have

Tr(Bk+1) = Tr(Bk)− 2
sT
k Bkyk

sT
k yk

+
(sT

k Bksk)(yT
k yk)

(sT
k yk)2

+
yT

k yk

sT
k yk

. (5.3.15)

Download more at Learnclax.com

5.3. GLOBAL CONVERGENCE OF QUASI-NEWTON METHODS 235

The middle two terms can be written as

−2
sT
k Bkyk

sT
k yk

+
(sT

k Bksk)(yT
k yk)

(sT
k yk)2

= αk

[
2gT

k yk

sT
k yk

+
(−gT

k sk)(yT
k yk)

(sT
k yk)2

]

= αk
2gT

k yk + yT
k yk

sT
k yk

=
‖gk+1‖2 − ‖gk‖2

gT
k Hkgk

. (5.3.16)

Since gT
k+1sk = 0, then

gT
k+1Hk+1gk+1 = gT

k+1

[
Hk −

Hkyky
T
k Hk

yT
k Hkyk

]
gk+1

= gT
k

[
Hk −

Hkyky
T
k Hk

yT
k Hkyk

]
gk

= gT
k

[
Hk −

Hkgkg
T
k Hk

yT
k Hkyk

]
gk

=
(gT

k Hkgk)(gT
k+1Hkgk+1)

gT
k Hkgk + gT

k+1Hkgk+1
.

By finding the inverse number of the above expression, we get
1

gT
k+1Hk+1gk+1

=
1

gT
k+1Hkgk+1

+
1

gT
k Hkgk

. (5.3.17)

Using (5.3.16) and (5.3.17), then (5.3.15) becomes

Tr(Bk+1) = Tr(Bk) +
‖gk+1‖2

gT
k+1Hk+1gk+1

− ‖gk‖2
gT
k Hkgk

− ‖gk+1‖2
gT
k+1Hkgk+1

+
‖yk‖2
sT
k yk

. (5.3.18)

By recurrence, we obtain

Tr(Bk+1) = Tr(B0) +
‖gk+1‖2

gT
k+1Hk+1gk+1

− ‖g0‖2
gT
0 H0g0

−
k∑

j=0

‖gj+1‖2
gT
j+1Hjgj+1

+
k∑

j=0

‖yj‖2
sT
j yj

. (5.3.19)

Download more at Learnclax.com

236 CHAPTER 5. QUASI-NEWTON METHODS

Therefore, by Lemma 5.3.2, there exists a positive number M which is inde-
pendent of k, such that

Tr(Bk+1) ≤
‖gk+1‖2

gT
k+1Hk+1gk+1

−
k∑

j=0

‖gj+1‖2
gT
j+1Hjgj+1

+ Mk. (5.3.20)

In the left part, we will prove that if the theorem does not hold, then the
sum of the last two terms in (5.3.20) is negative.

Now consider the trace of Hk+1. From (5.3.13), we have

Tr(Hk+1) = Tr(H0)−
k∑

j=0

‖Hjyj‖2
yT

j Hjyj
+

k∑
j=0

‖sj‖2
sT
j yj

. (5.3.21)

Since Hk+1 is positive definite, the right-hand side of (5.3.21) is positive. By
Lemma 5.3.2, there exists m > 0 which is independent of k, such that

k∑
j=0

‖Hjyj‖2
yT

j Hjyj
<

k

m
. (5.3.22)

Note that
(yT

j Hjyj)2 ≤ ‖Hjyj‖2‖yj‖2 (5.3.23)

and

yT
j Hjyj = gT

j+1Hjgj+1 + gT
j Hjgj + 2gT

j+1dj

> gT
j+1Hjgj+1 (5.3.24)

by the positive definiteness of Hj and exact line search, then by using (5.3.24),
(5.3.23) and (5.3.22) in turn, we obtain

k∑
j=0

gT
j+1Hjgj+1

‖yj‖2
≤

k∑
j=0

yT
j Hjyj

‖yj‖2
≤

k∑
j=0

‖Hjyj‖2
yT

j Hjyj
≤ k

m
. (5.3.25)

By using Cauchy-Schwartz inequality and (5.3.25)

k∑
j=0

‖gj+1‖2
gT
j+1Hjgj+1

≥

⎛
⎝ k∑

j=0

‖gj+1‖
‖yj‖

⎞
⎠

2/
k∑

j=0

gT
j+1Hjgj+1

‖yj‖2

≥ m

k

⎛
⎝ k∑

j=0

‖gj+1‖
‖yj‖

⎞
⎠

2

. (5.3.26)

Download more at Learnclax.com

5.3. GLOBAL CONVERGENCE OF QUASI-NEWTON METHODS 237

Now suppose that the theorem is not true, that is, there exists δ > 0 such
that for all sufficiently large k,

‖gk‖ ≥ δ. (5.3.27)

Also, by (5.3.11) and Theorem 2.2.9, there exists a constant η > 0 such that

f(xk)− f(xk+1) ≥
1
2
η‖sk‖2,

which gives ‖sk‖ → 0 and further ‖yk‖ → 0. Then, by (5.3.26) and (5.3.27),
we deduce, for k sufficiently large, that

k∑
j=0

‖gj+1‖2
gT
j+1Hjgj+1

> Mk. (5.3.28)

The above inequality implies that the sum of the last two terms in (5.3.20)
is negative.

By (5.3.28) and (5.3.20), we immediately obtain

Tr(Bk+1) <
‖gk+1‖2

gT
k+1Hk+1gk+1

. (5.3.29)

Note that, for a symmetric and positive definite matrix, the inverse of trace
is the lower bound of the least eigenvalue of inverse of the matrix. Then, it
follows from (5.3.29) that

gT
k+1Hk+1gk+1

‖gk+1‖2
< µ, (5.3.30)

where µ is the lower bound of the least eigenvalue of Hk+1. However, from
Theorem 1.2.10 on the property of Rayleigh quotient, we have

gT
k+1Hk+1gk+1

‖gk+1‖2
> µ, (5.3.31)

which contradicts (5.3.30). This contradiction proves that {xk} converges to
x∗ and that our theorem holds. �

Download more at Learnclax.com

238 CHAPTER 5. QUASI-NEWTON METHODS

5.3.2 Global Convergence under Inexact Line Search

Now, we turn to study the global convergence of BFGS method under inexact
line search.

Let us rewrite BFGS method as follows:

xk+1 = xk + sk = xk + αkdk = xk − αkB
−1
k gk, (5.3.32)

Bk+1 = Bk −
Bksks

T
k Bk

sT
k Bksk

+
yky

T
k

sT
k yk

. (5.3.33)

Theorem 5.3.6 Let x0 and B0 be a starting point and a symmetric positive
definite initial matrix, respectively. Suppose that f(x) satisfies Assumption
5.3.1. Then, under Wolfe-Powell inexact line search (2.5.3) and (2.5.7), the
sequence {xk} generated by BFGS method converges to the minimizer x∗ of
f .

Proof. By computing the trace and determinant of BFGS formula (5.3.33),
we obtain that

Tr(Bk+1) = Tr(Bk)−
‖Bksk‖
sT
k Bksk

+
‖yk‖2
yT

k sk
(5.3.34)

and

det(Bk+1) = det(Bk)
yT

k sk

sT
k Bksk

. (5.3.35)

Let us define

mk =
yT

k sk

sT
k sk

, Mk =
yT

k yk

yT
k sk

. (5.3.36)

It follows from (5.3.4) and (5.3.6) that

m ≤ mk ≤ M, m ≤ Mk ≤ M. (5.3.37)

Let us also define

cos θk =
sT
k Bksk

‖sk‖‖Bksk‖
, qk =

sT
k Bksk

sT
k sk

. (5.3.38)

We then obtain that

‖Bksk‖2
sT
k Bksk

=
‖Bksk‖2‖sk‖2

(sT
k Bksk)2

sT
k Bksk

‖sk‖2
=

qk

cos2 θk
. (5.3.39)

Download more at Learnclax.com

5.3. GLOBAL CONVERGENCE OF QUASI-NEWTON METHODS 239

In addition, we have from (5.3.36) that

det(Bk+1) = det(Bk)
yT

k sk

sT
k sk

sT
k sk

sT
k Bksk

= det(Bk)
mk

qk
. (5.3.40)

Now we introduce the following function of a positive definite matrix Bk:

ψ(Bk) = Tr(Bk)− ln(det(Bk)), (5.3.41)

where ln(·) denotes the natural logarithm. It is not difficult to show that
ψ(Bk) > 0. By using (5.3.34)–(5.3.41), we have that

ψ(Bk+1) = Tr(Bk) + Mk −
qk

cos2 θk
− ln(det(Bk))− lnmk + ln qk

= ψ(Bk) + (Mk − lnmk − 1)

+
[
1− qk

cos2 θk
+ ln

qk

cos2 θk

]
+ ln cos2 θk. (5.3.42)

Note that the function h(t) = 1 − t + ln t ≤ 0 for all t > 0. Hence the term
inside the square brackets is nonpositive, and thus by summing both sides of
(5.3.42), we have

0 < ψ(Bk+1) ≤ ψ(B1) + ck +
k∑

j=1

ln cos2 θj , (5.3.43)

where the constant c = M − lnm− 1 is assumed to be positive without loss
of generality.

From Theorem 2.5.5, we have

lim
k→∞

‖gk‖ cos θk = 0. (5.3.44)

If θk is bounded away from 90◦, there is a positive constant δ such that

cos θk > δ > 0, for k sufficiently large,

and thus we have our result.
Now assume, by contradiction, that cos θk → 0. Then there exists k1 > 0

such that for all j > k1, we have

ln cos2 θj < −2c,

Download more at Learnclax.com

240 CHAPTER 5. QUASI-NEWTON METHODS

where c is the constant defined above.
By using (5.3.43), we deduce, for all k > k1, that

0 < ψ(B1) + ck +
k1∑

j=1

ln cos2 θj +
k∑

j=k1+1

(−2c)

= ψ(B1) +
k1∑

j=1

ln cos2 θj + 2ck1 − ck

< 0,

which gives a contradiction. Therefore the assumption cos θj → 0 is not true,
and there exists a subsequence {jk} such that

{cos θjk
} ≥ δ > 0,

which means
lim inf ‖∇f(xk)‖ = 0. (5.3.45)

Since the problem is strong convex, then (5.3.45) implies xk → x∗. �

5.4 Local Convergence of Quasi-Newton Methods

In this section, we discuss local convergence of quasi-Newton methods. The
convergence analysis in this section mainly makes use of Broyden, Dennis, and
Moré [29], Dennis and Moré [91], Dennis and Moré [92], Nocedal and Wright
[233] and others. In §5.4.1 we first consider solving F (x) = 0. The necessary
and sufficient condition of superlinear convergence for solving F (x) = 0 is
given in Theorem 5.4.3, which is basic and the most important in conver-
gence analysis for quasi-Newton methods. Theorem 5.4.4 is a corollary of
Theorem 5.4.3, and Lemma 5.4.5 gives the geometry of superlinear conver-
gence for quasi-Newton methods. Then, we generalize the above results to
minimization problems. We give superlinear convergence results in the case
of basic iteration, exact line search and inexact line search respectively in
Theorem 5.4.6, Theorem 5.4.7 and Theorem 5.4.8. In §5.4.2, we give linear
convergence of general quasi-Newton methods by means of the bounded de-
terioration principle. In §5.4.3 the linear and superlinear convergence of SR1
method is established. In §5.5.4, we discuss the linear convergence of DFP
method. In §5.4.5 and 5.4.6. we give the superlinear convergence results
of BFGS and DFP methods respectively by different techniques. Finally, in
§5.4.7, the local convergence of Broyden’s class methods is discussed.

Download more at Learnclax.com

5.4. LOCAL CONVERGENCE OF QUASI-NEWTON METHODS 241

5.4.1 Superlinear Convergence of General Quasi-Newton Meth-
ods

First, we consider
F (x) = 0, (5.4.1)

where F : Rn → Rn is a mapping. In convergence analysis, we often need
the following assumption.

Assumption 5.4.1 (a) F : Rn → Rn is continuously differentiable on an
open convex set D ⊂ Rn.

(b) There is x∗ ∈ D with F (x∗) = 0 and F ′(x∗) nonsingular.
(c) F ′ is Lipschitzian at x∗, i.e., there is a constant γ such that

‖F ′(x)− F ′(x∗)‖ ≤ γ‖x− x∗‖, x ∈ D.

Second, we consider the minimization problem

min
x∈Rn

f(x). (5.4.2)

If in Assumption 5.4.1, we replace F (x) and F ′(x) by g(x) and ∇2f(x) re-
spectively, we get the following assumption for optimization problem (5.4.2):

Assumption 5.4.2 (a) f : Rn → R is twice continuously differentiable on
an open convex set D ⊂ Rn.

(b) There is a strong local minimizer x∗ ∈ D with ∇2f(x∗) symmetric
and positive definite.

(c) There is a neighborhood N(x∗, ε) of x∗ such that

‖∇2f(x̄)−∇2f(x)‖ ≤ γ‖x̄− x‖, ∀x, x̄ ∈ N(x∗, ε).

Superlinear Convergence: Nonlinear System
We begin our discussion on a basic necessary and sufficient condition of

superlinear convergence for a nonlinear system.

Theorem 5.4.3 Let F : Rn → Rn satisfy (a) and (b) in Assumption 5.4.1.
Let {Bk} be a sequence of nonsingular matrices. Suppose, for x0 ∈ D, that
the iterates generated by

xk+1 = xk −B−1
k F (xk) (5.4.3)

Download more at Learnclax.com

242 CHAPTER 5. QUASI-NEWTON METHODS

remain in D. xk = x∗ (∀k ≥ 0). Suppose also that {xk} converges to x∗.
Then {xk} converges to x∗ at a superlinear rate if and only if

lim
k→+∞

‖[Bk − F ′(x∗)](xk+1 − xk)‖
‖xk+1 − xk‖

= 0. (5.4.4)

Proof. Our idea is to prove the following equivalence:

lim
k→∞

‖[Bk − F ′(x∗)]sk‖
‖sk‖

= 0 ⇔ lim
k→∞

‖F (xk+1)‖
‖sk‖

= 0

⇔ lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖ = 0, (5.4.5)

where sk = xk+1 − xk.
First, suppose (5.4.4) holds. By (5.4.3), we have

[Bk − F ′(x∗)](xk+1 − xk)
= −F (xk)− F ′(x∗)(xk+1 − xk)
= [F (xk+1)− F (xk)− F ′(x∗)(xk+1 − xk)]− F (xk+1). (5.4.6)

By taking the norm, dividing by ‖sk‖, and using Theorem 1.2.24, we obtain

‖F (xk+1)‖
‖sk‖ ≤ ‖(Bk − F ′(x∗))sk‖

‖sk‖
+
‖F (xk+1)− F (xk)− F ′(x∗)sk‖

‖sk‖

≤ ‖(Bk − F ′(x∗))sk‖
‖sk‖

+
γ

2
(‖xk − x∗‖+ ‖xk+1 − x∗‖).(5.4.7)

Since limk→∞ xk = x∗, it follows from (5.4.4) that

lim
k→∞

‖F (xk+1)‖
‖sk‖

= 0. (5.4.8)

Since also limk→∞ ‖sk‖ = 0, we have

F (x∗) = lim
k→∞

F (xk) = 0.

Noting that F ′(x∗) is nonsingular, it follows from Theorem 1.2.25 that there
is a β > 0 and k0 ≥ 0 such that ∀k ≥ k0, we have

‖F (xk+1)‖ = ‖F (xk+1)− F (x∗)‖ ≥ β‖xk+1 − x∗‖.

Download more at Learnclax.com

5.4. LOCAL CONVERGENCE OF QUASI-NEWTON METHODS 243

Thus

‖F (xk+1)‖
‖xk+1 − xk‖

≥ β‖xk+1 − x∗‖
‖xk+1 − x∗‖+ ‖xk − x∗‖ = β

rk

1 + rk
, (5.4.9)

where
rk =

‖xk+1 − x∗‖
‖xk − x∗‖ .

Combining (5.4.8) and (5.4.9) implies that

rk

1 + rk
→ 0

which gives
lim

k→∞
rk = 0, (5.4.10)

i.e., the sequence {xk} is convergent to x∗ superlinearly.
Conversely, assume that {xk} converges superlinearly to x∗ and F (x∗) =

0. By Theorem 1.2.25, there exist β̄ > 0 and k0 ≥ 0, such that ∀k ≥ k0, we
have

‖F (xk+1)‖ ≤ β̄‖xk+1 − x∗‖.

Since {xk} is convergent superlinearly, we have

0 = lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖ ≥ lim

k→∞
‖F (xk+1)‖
β̄‖xk − x∗‖

= lim
k→∞

1
β̄

‖F (xk+1)‖
‖xk+1 − xk‖

‖xk+1 − xk‖
‖xk − x∗‖ .

By use of Theorem 1.5.2 giving limk→∞ ‖xk+1−xk‖/‖xk−x∗‖ = 1, we obtain

lim
k→∞

‖F (xk+1)‖
‖xk+1 − xk‖

= 0,

which gives (5.4.4) by means of (5.4.6). �

Theorem 5.4.3 indicates that if Bk converges to F ′(x∗) along the direction
sk, then quasi-Newton methods converge superlinearly. This theorem is very
important in analysis of quasi-Newton methods. Equation (5.4.4) is called
the Dennis-Moré characterization of superlinear convergence. The following
theorem shows, for the iteration (5.4.11), that the method is convergent su-
perlinearly if and only if the sequence of steplength factors {αk} converges
to 1. The proof of Theorem 5.4.4 is completed by use of Theorem 5.4.3.

Download more at Learnclax.com

244 CHAPTER 5. QUASI-NEWTON METHODS

Theorem 5.4.4 Let F : Rn → Rn satisfy the assumptions of Theorem 5.4.3.
Let {Bk} be a sequence of nonsingular matrices. Suppose, for x0 ∈ D, that
the iteration

xk+1 = xk − αkB
−1
k F (xk) (5.4.11)

remains in D and {xk} converges to x∗. If (5.4.4) holds, then {xk} converges
to x∗ superlinearly and F (x∗) = 0 if and only if {αk} converges to 1.

Proof. Necessity. Suppose that {xk} converges to x∗ superlinearly and
F (x∗) = 0. By Theorem 5.4.3, we have

lim
k→∞

‖[α−1
k Bk − F ′(x∗)](xk+1 − xk)‖

‖xk+1 − xk‖
= 0. (5.4.12)

So, (5.4.4) implies that

lim
k→∞

‖(α−1
k − 1)Bk(xk+1 − xk)‖/‖xk+1 − xk‖ = 0.

Since Bk(xk+1 − xk) = −αkF (xk), the above equality can be written as

lim
k→∞

‖(αk − 1)F (xk)‖/‖xk+1 − xk‖ = 0. (5.4.13)

Noting that F ′(x∗) is nonsingular, it follows from Theorem 1.2.25 that there
exists β > 0 such that ‖F (xk)‖ ≥ β‖xk−x∗‖. Then, from (5.4.13), we obtain

lim
k→∞

|αk − 1| β‖xk − x∗‖
‖xk+1 − xk‖

= 0. (5.4.14)

Since also {xk} is convergent superlinearly, i.e., limk→∞ ‖xk+1 − xk‖/‖xk −
x∗‖ = 1, we obtain immediately from (5.4.14) that {αk} → 1.

Sufficiency. Suppose that {αk} → 1. It follows from (5.4.4) that (5.4.12)
holds. Therefore, from Theorem 5.4.3, we obtain that {xk} converges to x∗

superlinearly and F (x∗) = 0. �

This theorem suggests that when a method is required to be superlinearly
convergent, we should ask for αk → 1 as k →∞.

Next, we interpret the geometry of superlinear convergence of quasi-
Newton methods, which is an equivalent and geometric representation of
(5.4.4).

Let sk = xk+1−xk. Let also Newton’s iteration be sN
k = −F ′(xk)−1F (xk).

Since F (xk) = −Bksk, then

sk − sN
k = sk + F ′(xk)−1F (xk) = F ′(xk)−1[F ′(xk)−Bk]sk. (5.4.15)

Download more at Learnclax.com

5.4. LOCAL CONVERGENCE OF QUASI-NEWTON METHODS 245

By use of Assumption 5.4.1, we have that ‖F ′(xk)−1‖ is bounded above for
xk sufficiently close to x∗. Thus,

F ′(xk)−1[F ′(xk)−Bk]sk = O(‖[F ′(xk)−Bk]sk‖) = o(‖sk‖),

where we have used (5.4.4). Therefore (5.4.15) is equivalent to

lim
k→∞

‖sk − sN
k ‖

‖sk‖
= 0. (5.4.16)

The above (5.4.16) indicates that when {xk} converges superlinearly, the
relative error of sk should tend to zero. It is not difficult to prove that
(5.4.16) is equivalent to the fact that sk tends to sN

k in both direction and
length. For this, we introduce the following lemma.

Lemma 5.4.5 Let u, v ∈ Rn, u, v = 0, and α ∈ (0, 1). If ‖u − v‖ ≤ α‖u‖,
then 〈u, v〉 is positive and

∣∣∣∣1− ‖v‖‖u‖
∣∣∣∣ ≤ α, 1−

(〈u, v〉
‖u‖‖v‖

)2

≤ α2. (5.4.17)

Conversely, if 〈u, v〉 is positive and (5.4.17) holds, then

‖u− v‖ ≤ 3α‖u‖. (5.4.18)

Proof. First, assume that ‖u− v‖ ≤ α‖u‖. Then

∣∣∣∣‖u‖ − ‖v‖‖u‖

∣∣∣∣ ≤ ‖u− v‖
‖u‖ ≤ α,

which implies that the first inequality in (5.4.17) holds.
Let ω = 〈u, v〉/(‖u‖‖v‖). Since

‖v‖2 − 2〈u, v〉+
〈u, v〉2
‖v‖2 =

[
‖v‖ − 〈u, v〉

‖v‖

]2
≥ 0,

then

‖v‖2 − 2〈u, v〉 ≥ −〈u, v〉2
‖v‖2 .

Download more at Learnclax.com

246 CHAPTER 5. QUASI-NEWTON METHODS

So,

‖u− v‖2 = ‖u‖2 − 2‖u‖‖v‖ω + ‖v‖2 (5.4.19)

≥ ‖u‖2 − 〈u, v〉2
‖v‖2

= ‖u‖2(1− ω2). (5.4.20)

Therefore,

1− ω2 ≤ ‖u− v‖2
‖u‖2 ≤ α2

giving the second inequality of (5.4.17). In addition, if ω ≤ 0, it follows from
(5.4.19) that ‖u − v‖ ≥ ‖u‖, and therefore α ≥ 1. Hence, if α < 1, we have
that 〈u, v〉 is positive.

Conversely, if 〈u, v〉 is positive and (5.4.17) holds, then by using (5.4.17)
and some manipulations, we obtain

‖u− v‖2 = (‖u‖ − ‖v‖)2 + 2(1− ω)‖u‖‖v‖
≤ α2‖u‖2[1 + 2(1 + α)],

which gives (5.4.18) since α < 1. �

If (5.4.16) holds, we have, for given ε ∈ (0, 1), that

‖sk − sN
k ‖ ≤ ε‖sk‖

when k ≥ k0. So, by Lemma 5.4.5, it follows that if 〈sk, s
N
k 〉 > 0 and k ≥ k0,

we have ∣∣∣∣∣1− ‖s
N
k ‖

‖sk‖

∣∣∣∣∣ ≤ ε

and

1−
(
〈sk, s

N
k 〉

‖sk‖‖sN
k ‖

)2

≤ ε2.

They show that (5.4.16) is equivalent to

lim
k→∞

‖sN
k ‖

‖sk‖
= lim

k→∞

〈
sk

‖sk‖
,

sN
k

‖sN
k ‖

〉
= 1. (5.4.21)

Therefore we have a conclusion: the necessary and sufficient condition of
superlinear convergence of quasi-Newton method is that sk approaches sN

k in
both length and direction.

Download more at Learnclax.com

5.4. LOCAL CONVERGENCE OF QUASI-NEWTON METHODS 247

Superlinear Convergence: Minimization Problem
Next, we consider minimization problem (5.4.2) and discuss the superlin-

ear convergence in the case of basic iteration, exact line search, and inexact
line search.

Completely similar to Theorem 5.4.3, for minimization problem (5.4.2),
we have

Theorem 5.4.6 Let f : Rn → R satisfy the assumptions (a) and (b) in
Assumption 5.4.2. Consider iteration sequence

xk+1 = xk −B−1
k gk, (5.4.22)

where {Bk} is a sequence of symmetric and positive definite matrices. As-
sume that {xk} converges to x∗. Then {xk} converges superlinearly to x∗ if
and only if

lim
k→∞

‖[Bk −∇2f(x∗)]sk‖
‖sk‖

= 0. (5.4.23)

Proof. The proof is the same as for Theorem 5.4.3. �

The following Theorem 5.4.7 shows the superlinear convergence of quasi-
Newton method in the case of exact line search.

Theorem 5.4.7 Let f : Rn → R satisfy conditions (a) and (b) in Assump-
tion 5.4.2. Suppose {Bk} is a sequence of symmetric and positive definite
matrices. Consider, for a given x0 ∈ D, the iteration

xk+1 = xk − αkB
−1
k gk, (5.4.24)

where αk is determined by exact line search. If the sequence {xk} provided
by (5.4.24) remains in D and xk = x∗ (∀k ≥ 0), and if xk → x∗, then when

lim
k→∞

‖[Bk −∇2f(x∗)]sk‖
‖sk‖

= 0, (5.4.25)

we have αk → 1 and g(x∗) = 0, hence {xk} converges to x∗ superlinearly.

Proof. It is enough to prove αk → 1 when (5.4.25) holds. Other conclu-
sions can be obtained direct from Theorem 5.4.4.

Since ∇2f(x∗) is positive definite, there exists m > 0 such that

sT
k∇2f(x∗)sk ≥ m‖sk‖2.

Download more at Learnclax.com

248 CHAPTER 5. QUASI-NEWTON METHODS

Therefore we only need to prove

(αk − 1)sT
k∇2f(x∗)sk = o(‖sk‖2). (5.4.26)

From (1.2.111), we have

‖gk+1 − gk −∇2f(x∗)sk‖ ≤ max
0≤t≤1

‖∇2f(xk + tsk)−∇2f(x∗)‖‖sk‖.

Then from xk → x∗ and the continuity of ∇2f(x), we obtain

‖gk+1 − gk −∇2f(x∗)sk‖ = o(‖sk‖)

which implies

gT
k+1sk − gT

k sk − sT
k∇2f(x∗)sk = o(‖sk‖2). (5.4.27)

Since αk is a steplength from exact line search, gT
k+1sk = 0. Also, noting

that Bksk = αkBkdk = −αkgk, we may write (5.4.27) as

sT
k∇2f(x∗)sk = −gT

k sk + o(‖sk‖2)

=
1
αk

sT
k Bksk + o(‖sk‖2). (5.4.28)

From (5.4.25), we have

sT
k [Bk −∇2f(x∗)]sk = o(‖sk‖2). (5.4.29)

So, combining (5.4.28) and (5.4.29) gives

(αk − 1)sT
k∇2f(x∗)sk = sT

k [Bk −∇2f(x∗)]sk + o(‖sk‖2)
= o(‖sk‖2)

which proves (5.4.26). �

About inexact line search, we consider Wolfe-Powell rule (2.5.3) and
(2.5.7). By use of dk = −Bkgk, we employ the following rule: if

f(xk −B−1
k gk) ≤ f(xk)− ρgT

k B−1
k gk, (5.4.30)

g(xk −B−1
k gk)T B−1

k gk ≤ σgT
k B−1

k gk (5.4.31)

hold, take αk = 1; otherwise, take αk > 0 such that

f(xk − αkB
−1
k gk) ≤ f(xk)− ραkg

T
k B−1

k gk, (5.4.32)
g(xk − αkB

−1
k gk)T B−1

k gk ≤ σgT
k B−1

k gk, (5.4.33)

where g(·) = ∇f(·).

Download more at Learnclax.com

5.4. LOCAL CONVERGENCE OF QUASI-NEWTON METHODS 249

Theorem 5.4.8 Let f : Rn → R satisfy conditions (a) and (b) in Assump-
tion 5.4.2. Suppose that {Bk} is a sequence of symmetric and positive def-
inite matrices. For given x0 ∈ D, consider the iteration (5.4.24), where αk

is determined by Wolfe-Powell rule (5.4.30)–(5.4.33). If the sequence {xk}
produced by (5.4.24) remains in D and xk = x∗ (∀k ≥ 0) and if xk → x∗, then
when (5.4.25) holds, αk → 1 and hence {xk} converges to x∗ superlinearly.

Proof. Now we only need to prove that for sufficiently large k, (5.4.30)–
(5.4.33) hold, and thus αk = 1. The remainder is obtained from Theorem
5.4.4.

Since Bksk = −αkgk, it follows from (5.4.25) that

0 = lim
k→∞

‖[Bk −∇2f(x∗)]sk‖
‖sk‖

= lim
k→∞

‖gk −∇2f(x∗)B−1
k gk‖

‖B−1
k gk‖

.

Then

gT
k B−1

k gk − (B−1
k gk)T∇2f(x∗)(B−1

k gk)
= (gk −∇2f(x∗)B−1

k gk)T (B−1
k gk)

= o(‖B−1
k gk‖2),

that is

gT
k B−1

k gk = (B−1
k gk)T∇2f(x∗)(B−1

k gk) + o(‖B−1
k gk‖2). (5.4.34)

Since ∇2f(x∗) is positive definite, there exists η > 0 such that for sufficiently
large k,

gT
k B−1

k gk ≥ η‖B−1
k gk‖2. (5.4.35)

Then, from Taylor’s expansion (1.2.103) and (5.4.34), we have

f(xk −B−1
k gk)− f(xk) = −gT

k B−1
k gk +

1
2
gT
k B−1

k gk + o(‖B−1
k gk‖2)

= −1
2
gT
k B−1

k gk + o(‖B−1
k gk‖2)

≤ −ρgT
k B−1

k gk. (5.4.36)

Download more at Learnclax.com

250 CHAPTER 5. QUASI-NEWTON METHODS

Also, by (1.2.111) and a proof similar to (5.4.27), we get

g(xk −B−1
k gk)T B−1

k gk − gT
k B−1

k gk + (B−1
k gk)T∇2f(x∗)(B−1

k gk)
= o(‖B−1

k gk‖2),

which, together with (5.4.34), gives

g(xk −B−1
k gk)T B−1

k gk = o(‖B−1
k gk‖2) ≤ σgT

k B−1
k gk. (5.4.37)

It follows from (5.4.36) and (5.4.37) that (5.4.30)-(5.4.31) hold, and thus
αk = 1 for k sufficiently large. �

5.4.2 Linear Convergence of General Quasi-Newton Methods

In this subsection, our goal is to discuss the local and linear convergence
results of general quasi-Newton methods. Let the iterative scheme of general
quasi-Newton methods be

xk+1 = xk −B−1
k F (xk), (5.4.38)

Bk+1 ∈ U(xk, Bk), (5.4.39)

where U(xk, Bk) denotes a nonempty set of updates, (xk, Bk) ∈ domU , domU
denotes the domain of U .

Theorem 5.4.9 Let F : Rn → Rn satisfy the assumptions (a), (b) and (c)
in Assumption 5.4.1, U an update function, such that for all (xk, Bk) ∈ domU
and Bk+1 ∈ U(xk, Bk), we have that

‖Bk+1 − F ′(x∗)‖ ≤ ‖Bk − F ′(x∗)‖+
γ

2
(‖xk+1 − x∗‖+ ‖xk − x∗‖), (5.4.40)

where γ is some constant, or that

‖Bk+1−F ′(x∗)‖ ≤ [1+α1σ(xk, xk+1)]‖Bk−F ′(x∗)‖+α2σ(xk, xk+1), (5.4.41)

where α1 and α2 are some constants, and

σ(xk, xk+1) = max{‖xk − x∗‖, ‖xk+1 − x∗‖}. (5.4.42)

Then, there exist constants ε and δ, such that, for ‖x0 − x∗‖ < ε and
‖B0 − F ′(x∗)|| < δ, the iteration (5.4.38)–(5.4.39) is well-defined, and {xk}
converges to x∗ linearly.

Download more at Learnclax.com

5.4. LOCAL CONVERGENCE OF QUASI-NEWTON METHODS 251

Proof. First, we prove the conclusion for the given condition (5.4.40).
Assume ‖F ′(x∗)−1‖ ≤ β and choose ε and δ such that

6βδ < 1, (5.4.43)

3γε ≤ 2δ. (5.4.44)

To prove the local and linear convergence, we prove, by induction, that

‖Bk − F ′(x∗)‖ ≤ (2− 2−k)δ, (5.4.45)

‖xk+1 − x∗‖ ≤ 1
2
‖xk − x∗‖. (5.4.46)

For k = 0, (5.4.45) is obvious. Since the proof of (5.4.46) for k = 0 is the
same as that in the following general case, we omit it here.

Now, suppose that (5.4.45) and (5.4.46) hold for k = 0, 1, · · · , i − 1. For
k = i, by assumption of induction and (5.4.40), we have

‖Bi − F ′(x∗)‖ ≤ ‖Bi−1 − F ′(x∗)‖+
γ

2
(‖xi − x∗‖+ ‖xi−1 − x∗‖)

≤ (2− 2−(i−1))δ +
3
4
γ‖xi−1 − x∗‖. (5.4.47)

From (5.4.46) and ‖x0 − x∗‖ < ε, we have

‖xi−1 − x∗‖ ≤ 2−(i−1)‖x0 − x∗‖ ≤ 2−(i−1)ε. (5.4.48)

Substituting (5.4.48) into (5.4.47) and using (5.4.44) yield

‖Bi − F ′(x∗)‖ ≤ (2− 2−(i−1))δ +
3
4
γ · 2−(i−1)ε

≤ (2− 2−(i−1) + 2−i)δ = (2− 2−i)δ, (5.4.49)

which proves (5.4.45).
To prove (5.4.46), we first show that Bi is invertible. In fact, since

‖F ′(x∗)−1‖ ≤ β, it follows from (5.4.45) and (5.4.43) that

‖F ′(x∗)−1[Bi − F ′(x∗)]‖
≤ ‖F ′(x∗)−1‖‖Bi − F ′(x∗)‖

≤ β(2− 2−i)δ ≤ 2βδ ≤ 1
3
.

Download more at Learnclax.com

252 CHAPTER 5. QUASI-NEWTON METHODS

Then, by Von-Neumann Theorem 1.2.5, we know that Bi is invertible, and

‖B−1
i ‖ ≤ ‖F ′(x∗)−1‖

1− ‖F ′(x∗)−1(Bi − F ′(x∗))‖

≤ β

1− 1
3

=
3β

2
. (5.4.50)

Thus, xi+1 is well-defined. Also,

Bi(xi+1 − x∗) = Bi(xi − x∗)− F (xi) + F (x∗)
= [−F (xi) + F (x∗) + F ′(x∗)(xi − x∗)]

+[Bi − F ′(x∗)](xi − x∗), (5.4.51)

which gives

‖xi+1 − x∗‖ ≤ ‖B−1
i ‖[‖ − F (xi) + F (x∗) + F ′(x∗)(xi − x∗)‖

+‖Bi − F ′(x∗)‖‖xi − x∗‖]. (5.4.52)

By use of Theorem 1.2.22,

‖ − F (xi) + F (x∗) + F ′(x∗)(xi − x∗)‖ ≤ γ

2
‖xi − x∗‖2. (5.4.53)

So, (5.4.52), (5.4.50), (5.4.53) and (5.4.49) give

‖xi+1 − x∗‖ ≤ 3
2
β

[
γ

2
‖xi − x∗‖+ (2− 2−i)δ

]
‖xi − x∗‖. (5.4.54)

Also, using (5.4.48) and (5.4.44), we have

γ

2
‖xi − x∗‖ ≤ 2−(i+1)γε ≤ 2−i

3
δ.

Substituting the above inequality into (5.4.54), we obtain

‖xi+1 − x∗‖ ≤ 3
2
β

[
1
3
2−i + 2− 2−i

]
δ‖xi − x∗‖

≤ 3βδ‖xi − x∗‖

≤ 1
2
‖xi − x∗‖.

Therefore, the desired result (5.4.46) is proved.

Download more at Learnclax.com

5.4. LOCAL CONVERGENCE OF QUASI-NEWTON METHODS 253

Similarly, for the given condition (5.4.41), we also can prove our conclu-
sion.

In fact, let ‖F ′(x∗)‖ ≤ β and r ∈ (0, 1). Choose ε(r) = ε and δ(r) = δ,
such that

(2α1δ + α2)
ε

1− r
≤ δ, (5.4.55)

β(1 + r)(γε + 2δ) ≤ r. (5.4.56)

To prove the local and linear convergence, we still prove

‖Bk − F ′(x∗)‖ ≤ 2δ, (5.4.57)
‖xk+1 − x∗‖ ≤ r‖xk − x∗‖ (5.4.58)

by induction.
Obviously, for k = 0, the conclusion holds. Suppose that the conclusion

holds for k = 0, 1, · · · , i− 1. By (5.4.41), we have

‖Bk+1 − F ′(x∗)‖ − ‖Bk − F ′(x∗)‖ ≤ 2α1δεr
k + α2εr

k.

Summing for k = 0 to i− 1 yields

‖Bi − F ′(x∗)‖ ≤ ‖B0 − F ′(x∗)‖+ (2α1δ + α2)
ε

1− r
.

So, using (5.4.55) and ‖B0 − F ′(x∗)‖ ≤ δ, we obtain

‖Bi − F ′(x∗)‖ ≤ 2δ, (5.4.59)

which proves (5.4.57).
To prove (5.4.58), first note that ‖B−1

i ‖ ≤ (1 + r)β from (5.4.59) and
Theorem 1.2.5. Then, by Theorem 1.2.24, we have

‖xi+1 − x∗‖ ≤ ‖B−1
i ‖[‖F (xi)− F (x∗)− F ′(x∗)(xi − x∗)‖

+‖Bi − F ′(x∗)‖‖xi − x∗‖]
≤ β(1 + r)(γε + 2δ)‖xi − x∗‖.

By using (5.4.56) we immediately obtain

‖xi+1 − x∗‖ ≤ r‖xi − x∗‖.

So, (5.4.58) is proved. We complete the proof by induction. �

Similarly, we have the following local and linear convergence theorem for
update of the inverse Hessian approximation.

Download more at Learnclax.com

254 CHAPTER 5. QUASI-NEWTON METHODS

Theorem 5.4.10 Let F : Rn → Rn satisfy the conditions (a), (b), and
(c) in Assumption 5.4.1. Let U be an update function, such that for all
(xk, Hk) ∈ domU and Hk+1 ∈ U(xk, Hk), we have that

‖Hk+1−F ′(x∗)−1‖ ≤ ‖Hk−F ′(x∗)−1‖+ γ

2
(‖xk+1−x∗‖+‖xk−x∗‖), (5.4.60)

where γ is some constant, or that

‖Hk+1 − F ′(x∗)−1‖ ≤ [1 + α1σ(xk, xk+1)]‖Hk − F ′(x∗)−1‖+ α2σ(xk, xk+1),
(5.4.61)

where α1 and α2 are some constants, and

σ(xk, xk+1) = max{‖xk − x∗‖, ‖xk+1 − x∗‖}.

Then, there exist constants ε and δ, such that, for ‖x0 − x∗‖ < ε and ‖H0 −
F ′(x∗)−1‖ < δ, the iteration

xk+1 = xk −HkF (xk), Hk+1 ∈ U(xk, Hk) (5.4.62)

is well-defined and {xk} converges to x∗ linearly.

As a consequence of the above two theorems, we give the following corol-
laries on superlinear convergence for general iterations.

Corollary 5.4.11 Suppose that the assumptions of Theorem 5.4.9 hold. If
some subsequence of {‖Bk−F ′(x∗)‖} converges to zero, then {xk} converges
to x∗ superlinearly.

Proof. We hope to prove

lim
k→+∞

‖xk+1 − x∗‖
‖xk − x∗‖ = 0.

Let r ∈ (0, 1). It follows from Theorem 5.4.9 that there exist ε(r) and δ(r)
such that ‖B0−F ′(x∗)‖ < δ(r) and ‖x0−x∗‖ < ε(r) imply that ‖xk+1−x∗‖ ≤
r‖xk − x∗‖,∀k ≥ 0. From the assumption, we can choose m > 0 such
that ‖Bm − F ′(x∗)‖ < δ(r) and ‖xm − x∗‖ < ε(r). Hence ‖xk+1 − x∗‖ ≤
r‖xk − x∗‖, ∀k ≥ m. Since r ∈ (0, 1) is arbitrary, the conclusion is shown.
�

Similarly, we have

Corollary 5.4.12 Suppose that the conditions of Theorem 5.4.10 hold. If
some subsequence of {‖Hk − F ′(x∗)−1‖} converges to zero, then {xk} con-
verges to x∗ superlinearly.

Download more at Learnclax.com

5.4. LOCAL CONVERGENCE OF QUASI-NEWTON METHODS 255

5.4.3 Local Convergence of Broyden’s Rank-One Update

In this section, we prove the linear convergence and superlinear convergence
of Broyden’s rank-one update

xk+1 = xk −B−1
k F (xk), (5.4.63)

Bk+1 = Bk +
(yk −Bksk)sT

k

sT
k sk

. (5.4.64)

Theorem 5.4.13 Let F : Rn → Rn satisfy the conditions (a), (b), and (c)
in Assumption 5.4.1. Assume that there exist positive constants ε and δ
such that ‖x0 − x∗‖ < ε and ‖B0 − F ′(x∗)‖ < δ. Then the sequence {xk}
generated by Broyden’s rank-one update (5.4.63)–(5.4.64) is well-defined and
convergent to x∗ superlinearly.

Proof. It is enough to prove, under the conditions of the theorem, that
(5.4.40) and (5.4.4) are satisfied respectively.

First, we prove that Bk+1 generated by Broyden’s rank-one update sat-
isfies (5.4.40).

By (5.4.63)–(5.4.64), we have

Bk+1 − F ′(x∗) = Bk − F ′(x∗) +
(yk −Bksk)sT

k

sT
k sk

= Bk − F ′(x∗) +
(F ′(x∗)sk −Bksk)sT

k

sT
k sk

+
(yk − F ′(x∗)sk)sT

k

sT
k sk

= (Bk − F ′(x∗))
[
I − sks

T
k

sT
k sk

]
+

(yk − F ′(x∗)sk)sT
k

sT
k sk

. (5.4.65)

Taking norms gives

‖Bk+1 − F ′(x∗)‖ ≤ ‖Bk − F ′(x∗)‖
∥∥∥∥∥I − sks

T
k

sT
k sk

∥∥∥∥∥+
‖yk − F ′(x∗)sk‖

‖sk‖
. (5.4.66)

Note that ∥∥∥∥∥I − sks
T
k

sT
k sk

∥∥∥∥∥ = 1 (5.4.67)

and

‖yk − F ′(x∗)sk‖ = ‖F (xk+1)− F (xk)− F ′(x∗)sk‖
≤ γ

2
(‖xk+1 − x∗‖+ ‖xk − x∗‖)‖sk‖ (5.4.68)

Download more at Learnclax.com

256 CHAPTER 5. QUASI-NEWTON METHODS

by Theorem 1.2.24, we obtain immediately that

‖Bk+1 − F ′(x∗)‖ ≤ ‖Bk − F ′(x∗)‖+
γ

2
(‖xk+1 − x∗‖+ ‖xk − x∗‖),

which is (5.4.40). The linear convergence is proved.
Next, we prove the superlinear convergence of Broyden’s rank-one update

by use of Theorem 5.4.3, that is, we want to prove that (5.4.4) holds.
Let Ek = Bk − F ′(x∗). From (5.4.65),

‖Ek+1‖F ≤
∥∥∥∥∥Ek

(
I − sks

T
k

sT
k sk

)∥∥∥∥∥
F

+
‖(yk − F ′(x∗)sk)sT

k ‖F

sT
k sk

. (5.4.69)

Since ∥∥∥∥∥Ek
sks

T
k

sT
k sk

∥∥∥∥∥
2

F

= tr

(
(Eksk)T (Eksk)

(sT
k sk)2

sks
T
k

)

=
‖Eksk‖2
‖sk‖4

‖sk‖2 =
‖Eksk‖2
‖sk‖2

,

we get

‖Ek‖2F =

∥∥∥∥∥Ek
sks

T
k

sT
k sk

∥∥∥∥∥
2

F

+

∥∥∥∥∥Ek

(
I − sks

T
k

sT
k sk

)∥∥∥∥∥
2

F

=
‖Eksk‖2
‖sk‖2

+

∥∥∥∥∥Ek

(
I − sks

T
k

sT
k sk

)∥∥∥∥∥
2

F

.

Hence ∥∥∥∥∥Ek

(
I − sks

T
k

sT
k sk

)∥∥∥∥∥
F

=

(
‖Ek‖2F −

‖Eksk‖2
‖sk‖2

) 1
2

. (5.4.70)

Since (α2 − β2)
1
2 ≤ α− β2/(2α) for any α ≥ |β| ≥ 0, (5.4.70) implies that∥∥∥∥∥Ek

(
I − sks

T
k

sT
k sk

)∥∥∥∥∥
F

≤ ‖Ek‖F −
1

2‖Ek‖F

(‖Eksk‖
‖sk‖

)2

. (5.4.71)

Also, by means of Theorem 1.2.24,

‖yk − F ′(x∗)sk‖F ≤
γ

2
(‖xk+1 − x∗‖+ ‖xk − x∗‖)‖sk‖. (5.4.72)

Download more at Learnclax.com

5.4. LOCAL CONVERGENCE OF QUASI-NEWTON METHODS 257

So, by using (5.4.71), (5.4.72), and (5.4.46), we can write (5.4.69) as

‖Ek+1‖F ≤ ‖Ek‖F −
‖Eksk‖2

2‖Ek‖F ‖sk‖2
+

3
4
γ‖xk − x∗‖,

which is

‖Eksk‖2
‖sk‖2

≤ 2‖Ek‖F

[
‖Ek‖F − ‖Ek+1‖F +

3
4
γ‖xk − x∗‖

]
. (5.4.73)

Recalling (5.4.45) and (5.4.46), we have that

‖Ek‖F ≤ 2δ, ∀k ≥ 0

and ∞∑
k=0

‖xk − x∗‖ ≤ 2ε.

Thus, (5.4.73) can be written as

‖Eksk‖2
‖sk‖2

≤ 4δ

[
‖Ek‖F − ‖Ek+1‖F +

3
4
γ‖xk − x∗‖

]
. (5.4.74)

By summing both sides, we obtain

i∑
k=0

‖Eksk‖2
‖sk‖2

≤ 4δ

[
‖E0‖F − ‖Ei+1‖F +

3
4
γ

i∑
k=0

‖xk − x∗‖
]

≤ 4δ

[
‖E0‖F +

3
2
γε

]

≤ 4δ

[
δ +

3
2
γε

]
, (5.4.75)

which holds for any i ≥ 0. Therefore

∞∑
k=0

‖Eksk‖2
‖sk‖2

is finite and further
lim

k→∞
‖Eksk‖
‖sk‖

= 0, (5.4.76)

which is (5.4.4). Then we have proved the superlinear convergence of Broy-
den’s rank-one update by use of Theorem 5.4.3. �

Download more at Learnclax.com

258 CHAPTER 5. QUASI-NEWTON METHODS

Similarly, for the following form of Broyden’s rank-one update in inverse
Hessian approximation:

xk+1 = xk −HkF (xk), (5.4.77)

Hk+1 = Hk +
(sk −Hkyk)yT

k

yT
k yk

, (5.4.78)

we have the following theorem.

Theorem 5.4.14 Let F : Rn → Rn satisfy the conditions (a), (b), and
(c) in Assumption 5.4.1. Assume that there exist ε and δ such that ‖x0 −
x∗‖ < ε and ‖H0 − F ′(x∗)−1‖ < δ. Then the sequence {xk} generated by
Broyden’s rank-one update (5.4.77)–(5.4.78) is well-defined and convergent
to x∗ superlinearly.

5.4.4 Local and Linear Convergence of DFP Method

In this subsection and subsequent subsections, we discuss the local conver-
gence of rank-two methods, which includes the linear and superlinear conver-
gence, and local convergence under line search. Note that we introduce two
different techniques to prove the superlinear convergence of BFGS and DFP
methods respectively.

The DFP iteration we consider is

xk+1 = xk −B−1
k ∇f(xk), (5.4.79)

Bk+1 = Bk +
(yk −Bksk)yT

k + yk(yk −Bksk)T

yT
k sk

−(yk −Bksk)T sk

(yT
k sk)2

yky
T
k . (5.4.80)

To study the local convergence of DFP method, it is required to estimate
‖Bk+1 − ∇2f(x∗)‖. As shown in the following theorem, there is a matrix

P = I − skyT
k

sT
k

yk
in Bk+1 −∇2f(x∗). Since

‖P‖2 =
‖sk‖‖yk‖

sT
k yk

, (5.4.81)

it is a secant of the angle between yk and sk. In general, yk and sk is
not parallel, so ‖P‖2 may be quite big, and it is not suitable to estimate

Download more at Learnclax.com

5.4. LOCAL CONVERGENCE OF QUASI-NEWTON METHODS 259

‖Bk+1 − ∇2f(x∗)‖ by means of l2 norm. However, near x∗, f(x) closes a
quadratic function, and hence A− 1

2 yk and A
1
2 sk are approximately parallel,

where A = ∇2f(x∗). It motivates us to use some weighted norm to estimate
‖Bk+1 −∇2f(x∗)‖. Then we define

‖E‖DFP = ‖E‖
A− 1

2 ,F
= ‖A− 1

2 EA− 1
2 ‖F . (5.4.82)

Below, we first develop the linear convergence of DFP method.

Theorem 5.4.15 Let f : Rn → R satisfy Assumption 5.4.2. Also let

µγσ(xk, xk+1) ≤
1
3

(5.4.83)

in a neighborhood of x∗, where µ = ‖∇2f(x∗)−1‖, σ(xk, xk+1) = max{‖xk −
x∗‖, ‖xk+1−x∗‖}. Then, there exist ε > 0 and δ > 0 such that for ‖x0−x∗‖ <
ε and ‖B0−∇2f(x∗)‖DFP < δ, the iteration (5.4.79)–(5.4.80) of DFP method
is well-defined, and the produced sequence {xk} converges to x∗ linearly.

Proof. Based on Theorem 5.4.9, to prove the linear convergence of DFP
method, it is enough to prove

‖Bk+1 −∇2f(x∗)‖DFP < [1 + α1σ(xk, xk+1)]‖Bk −∇2f(x∗)‖DFP

+α2σ(xk, xk+1), (5.4.84)

where α1 and α2 are positive constants independent of xk and xk+1, σ(xk, xk+1) =
max{‖xk − x∗‖, ‖xk+1 − x∗‖}.

Let A = ∇2f(x∗). From (5.4.79)–(5.4.80), it follows that

Bk+1 −A = P T (Bk −A)P +
(yk −Ask)yT

k + yk(yk −Ask)T P

yT
k sk

, (5.4.85)

where

P = I − sky
T
k

sT
k yk

. (5.4.86)

Note that ‖P‖2 = ‖sk‖‖yk‖/sT
k yk, hence

‖P T (Bk −A)P‖DFP ≤ ‖A 1
2 PA− 1

2 ‖22‖Bk −A‖DFP

≤ 1
ω2
‖Bk −A‖DFP , (5.4.87)

Download more at Learnclax.com

260 CHAPTER 5. QUASI-NEWTON METHODS

∥∥∥∥∥yk(yk −Ask)T P

yT
k sk

∥∥∥∥∥
DFP

≤ 1
ω2

‖A− 1
2 yk −A

1
2 sk‖

‖A 1
2 sk‖

, (5.4.88)

∥∥∥∥∥(yk −Ask)yT
k

yT
k sk

∥∥∥∥∥
DFP

≤ 1
ω

‖A− 1
2 yk −A

1
2 sk‖

‖A 1
2 sk‖

, (5.4.89)

where

ω =
yT

k sk

‖A− 1
2 yk‖‖A

1
2 sk‖

=
〈A− 1

2 yk, A
1
2 sk〉

‖A− 1
2 yk‖‖A

1
2 sk‖

. (5.4.90)

Now, we estimate ‖Bk+1−A‖DFP by using (5.4.87), (5.4.88) and (5.4.89),
and have

‖Bk+1 −A‖DFP ≤ 1
ω2
‖Bk −A‖DFP

+
2
ω2

‖A− 1
2 yk −A

1
2 sk‖

‖A 1
2 sk‖

. (5.4.91)

Note from Theorem 1.2.24 that

‖A− 1
2 yk −A− 1

2 sk‖
‖A 1

2 sk‖
≤ ‖A− 1

2 ‖‖yk −Ask‖
‖sk‖/‖A− 1

2 ‖

= µ
‖yk −Ask‖
‖sk‖

≤ µγσ(xk, xk+1) ≤
1
3
. (5.4.92)

Also, by Lemma 5.4.5, we have

1− ω2 ≤
[
µ
‖yk −Ask‖
‖sk‖

]2
≤ [µγσ(xk, xk+1)]2.

Then, if xk and xk+1 are in the neighborhood of x∗, then

1− ω2 ≤ [µγσ(xk, xk+1)]2 <
1
2
,

which is

ω2 >
1
2

> µγσ(xk, xk+1).

Download more at Learnclax.com

5.4. LOCAL CONVERGENCE OF QUASI-NEWTON METHODS 261

Hence

1
ω2

= 1 +
1− ω2

ω2
< 1 +

[µγσ(xk, xk+1)]2

µγσ(xk, xk+1)
= 1 + µγσ(xk, xk+1).

So, the two terms in (5.4.91) satisfy respectively

1
ω2
‖Bk −A‖DFP < (1 + µγσ(xk, xk+1))‖Bk −A‖DFP (5.4.93)

and

2
ω2

‖A− 1
2 yk −A

1
2 sk‖

‖A 1
2 sk‖

< 2[1 + µγσ(xk, xk+1)]µγσ(xk, xk+1)]µγσ(xk, xk+1)

< 3µγσ(xk, xk+1). (5.4.94)

Substituting (5.4.93) and (5.4.94) into (5.4.112) yields (5.4.113), where α1 =
µγ, α2 = 3µγ. So, we complete the proof. �

5.4.5 Superlinear Convergence of BFGS Method

In this subsection, we discuss the superlinear convergence of BFGS method.
Let

s̃k = G
1
2∗ sk, ỹk = G

− 1
2∗ yk, B̃k = G

− 1
2∗ BkG

− 1
2∗ , (5.4.95)

where G∗ = G(x∗) = ∇2f(x∗). Define

cos θ̃k =
s̃T
k B̃ks̃k

‖s̃k‖‖B̃ks̃k‖
, q̃k =

s̃T
k B̃ks̃k

‖s̃k‖2
, (5.4.96)

and define

M̃k =
‖ỹk‖2
ỹT

k s̃k
, m̃k =

ỹT
k s̃k

s̃T
k s̃k

. (5.4.97)

By pre- and postmultiplying the BFGS update (5.1.45) by G
− 1

2∗ , we obtain

B̃k+1 = B̃k −
B̃ks̃ks̃

T
k B̃k

s̃T
k B̃ks̃k

+
ỹkỹ

T
k

ỹT
k s̃k

. (5.4.98)

Download more at Learnclax.com

262 CHAPTER 5. QUASI-NEWTON METHODS

Since this expression has precisely the same form as the BFGS formula, it
follows from the argument leading to (5.3.42) that

ψ(B̃k+1) = ψ(B̃k) + (M̃k − ln m̃k − 1)

=

[
1− q̃k

cos2 θ̃k

+ ln
q̃k

cos2 θ̃k

]
+ ln cos2 θ̃k. (5.4.99)

Noting that
yk −G∗sk = (Ḡk −G∗)sk,

where

Ḡk =
∫ 1

0
∇2f(xk + τsk)dτ,

we obtain

ỹk − s̃k = G
− 1

2∗ (Ḡ∗ −Gk)G
− 1

2∗ s̃k.

Assuming that the Hessian matrix G is Lipschitz at x∗, then we have

‖ỹk − s̃k‖ ≤ ‖G
− 1

2∗ ‖2‖s̃k‖‖Ḡk −G∗‖ ≤ ‖G
− 1

2∗ ‖2‖s̃k‖Lεk,

which gives
‖ỹk − s̃k‖
‖s̃k‖

≤ c̄εk (5.4.100)

for some positive constant c̄, where

εk = max{‖xk+1 − x∗‖, ‖xk − x∗‖}. (5.4.101)

Now we are in a position to prove the superlinear convergence theorem.

Theorem 5.4.16 Let f be twice continuously differentiable and the Hessian
matrix G be Lipschitz continuous at x∗. Suppose that the sequence generated
by the BFGS algorithm converges to a minimizer x∗ and that the condition

∞∑
k=1

‖xk − x∗‖ < ∞ (5.4.102)

holds. Then {xk} converges to x∗ at a superlinear rate.

Download more at Learnclax.com

5.4. LOCAL CONVERGENCE OF QUASI-NEWTON METHODS 263

Proof. By (5.4.100), we have

‖ỹk‖ − ‖s̃k‖ ≤ c̄εk‖s̃k‖, ‖s̃k‖ − ‖ỹk‖ ≤ c̄εk‖s̃k‖,

which give
(1− c̄εk)‖s̃k‖ ≤ ‖ỹk‖ ≤ (1 + c̄εk)‖s̃k‖. (5.4.103)

By squaring (5.4.100) and using (5.4.103), we obtain

(1− c̄εk)2‖s̃k‖2 − 2ỹT
k s̃k + ‖s̃k‖2 ≤ ‖ỹk‖2 − 2ỹT

k s̃k + ‖s̃k‖2 ≤ c̄2ε2k‖s̃k‖2,

and therefore

2ỹT
k s̃k ≥ (1− 2c̄εk + c̄2ε2k + 1− c̄2ε2k)‖s̃k‖2 = 2(1− c̄εk)‖s̃k‖2.

It follows from the definition of m̃k that

m̃k =
ỹT

k s̃k

‖s̃k‖2
≥ 1− c̄εk. (5.4.104)

Combining (5.4.103) and (5.4.104) gives also that

M̃k =
‖ỹk‖2
ỹT

k s̃k
≤ 1 + c̄εk

1− c̄εk
. (5.4.105)

Since xk → x∗, we have that εk → 0. Thus by (5.4.105) there exists a positive
constant c > c̄ such that the following inequalities hold for all sufficient large
k:

M̃k ≤ 1 +
2c̄

1− c̄εk
εk ≤ 1 + cεk. (5.4.106)

Making use of the nonpositiveness of the function h(t) = 1− t + ln t gives

−x

1− x
− ln(1− x) = h

(
1

1− x

)
≤ 0.

Now for k large enough we can assume that c̄εk < 1
2 , and by using the above

inequality we have

ln(1− c̄εk) ≥
−c̄εk

1− c̄εk
≥ −2c̄εk.

This relation and (5.4.104) imply that for sufficiently large k, we have

ln m̃k ≥ ln(1− c̄εk) ≥ −2c̄εk > −2cεk. (5.4.107)

Download more at Learnclax.com

264 CHAPTER 5. QUASI-NEWTON METHODS

We can now deduce from (5.4.99), (5.4.106), and (5.4.107) that

0 < ψ(B̃k+1) ≤ ψ(B̃k) + 3cεk + ln cos2 θ̃k +

[
1− q̃k

cos2 θ̃k

+ ln
q̃k

cos2 θ̃k

]
.

(5.4.108)
By summing this expression and making use of (5.4.102) we have that

∞∑
j=0

(
ln

1
cos2 θ̃j

−
[
1− q̃j

cos2 θ̃j

+ ln
q̃j

cos2 θ̃j

])

≤ ψ(B̃0) + 3c
∞∑

j=0

εj < +∞.

Since the term in the square brackets is nonpositive, and since ln(1/ cos2 θ̃j) ≥
0 for all j, we obtain

lim
j→∞

ln
1

cos2 θ̃j

= 0, lim
j→∞

(
1− q̃j

cos2 θ̃j

+ ln
q̃j

cos2 θ̃j

)
= 0,

which imply that
lim

j→∞
cos θ̃j = 1, lim

j→∞
q̃j = 1. (5.4.109)

By use of these limits we can obtain that

‖G− 1
2∗ (Bk −G∗)sk‖2

‖G
1
2∗ sk‖2

=
‖(B̃k − I)s̃k‖2

‖s̃k‖2

=
‖B̃ks̃k‖2 − 2s̃T

k B̃ks̃k + s̃T
k s̃k

s̃T
k s̃k

=
q̃2
k

cos2 θ̃k

− 2q̃k + 1

→ 0. (5.4.110)

Then we conclude that

lim
k→∞

‖(Bk −G∗)sk‖
‖sk‖

= 0 (5.4.111)

which shows that the rate of convergence is superlinear. �

Download more at Learnclax.com

5.4. LOCAL CONVERGENCE OF QUASI-NEWTON METHODS 265

5.4.6 Superlinear Convergence of DFP Method

We first give the following three lemmas.

Lemma 5.4.17 Let M ∈ Rn×n be a nonsingular symmetric matrix. If, for
β ∈ [0, 1/3], the inequality

‖Myk −M−1sk‖ ≤ β‖M−1sk‖ (5.4.112)

holds, then for any nonzero matrix E ∈ Rn×n, we have
(a)

(1− β)‖M−1sk‖2 ≤ yT
k sk ≤ (1 + β)‖M−1sk‖2, (5.4.113)

(b) ∥∥∥∥∥E
[
I − (M−1sk)(M−1sk)T

yT
k sk

]∥∥∥∥∥
F

≤
√

1− αθ2‖E‖F , (5.4.114)

(c) ∥∥∥∥∥E
[
I − M−1sk(Myk)T

yT
k sk

]∥∥∥∥∥
F

≤
[√

1− αθ2 + (1− β)−1 ‖Myk −M−1sk‖
‖M−1sk‖

]
‖E‖F , (5.4.115)

where

α =
1− 2β

1− β2
∈
[
3
8
, 1
]
, θ =

‖EM−1sk‖
‖E‖F ‖M−1sk‖

∈ [0, 1]. (5.4.116)

Proof. Note that

yT
k sk = (Myk)T (M−1sk) = (Myk−M−1sk)T M−1sk +‖M−1sk‖2. (5.4.117)

Also, it follows from Cauchy-Schwartz inequality and (5.4.112) that

|(Myk −M−1sk)T M−1sk| ≤ β‖M−1sk‖2. (5.4.118)

Then, combining (5.4.117) and (5.4.118) gives the first conclusion (a).
Now, we prove (b). By using the property (1.2.71) of Frobenius norm of

a rank-one update, we have

‖E(I − uvT)‖2F = ‖E‖2F − 2vT ET Eu + ‖Eu‖2‖v‖2.

Download more at Learnclax.com

266 CHAPTER 5. QUASI-NEWTON METHODS

In particular, ∥∥∥∥∥E
[
I − (M−1sk)(M−1sk)T

yT
k sk

]∥∥∥∥∥
2

F

= ‖E‖2F + (−2yT
k sk + ‖M−1sk‖2)

‖EM−1sk‖
(yT

k sk)2
.

Using (a) and (5.4.116) yields∥∥∥∥∥E
[
I − (M−1sk)(M−1sk)T

yT
k sk

]∥∥∥∥∥
2

F

≤ ‖E‖2F −
(

1− 2β

1− β

) ‖EM−1sk‖2
yT

k sk

≤ ‖E‖2F − α

(
‖EM−1sk‖
‖M−1sk‖

)2

= ‖E‖2F (1− αθ2),

which shows (b).
Finally, we prove (c) by means of (b). It is enough to prove that∥∥∥∥∥E M−1sk(M−1sk −Myk)T

yT
k sk

∥∥∥∥∥
F

≤ (1− β)−1

(
‖Myk −M−1sk‖

‖M−1sk‖

)
‖E‖F . (5.4.119)

Since ∥∥∥∥∥M−1sk(M−1sk −Myk)T

yT
k sk

∥∥∥∥∥
F

≤ ‖M
−1sk‖‖M−1sk −Myk‖

yT
k sk

,

then we obtain (5.4.119) by using (a). �

Lemma 5.4.18 Let {φk} and {δk} be sequences of nonnegative numbers sat-
isfying

φk+1 ≤ (1 + δk)φk + δk (5.4.120)

and ∞∑
k=1

δk < +∞, (5.4.121)

then {φk} converges.

Download more at Learnclax.com

5.4. LOCAL CONVERGENCE OF QUASI-NEWTON METHODS 267

Proof. We first prove that {φk} is bounded above. Let

µk =
k−1∏
j=1

(1 + δj).

Obviously, µk ≥ 1. Inequality (5.4.121) indicates that there exists a constant
µ such that µk ≤ µ. By using (5.4.120), we have

φk+1

µk+1
≤ φk

µk
+

δk

µk+1
≤ φk

µk
+ δk.

Hence
φm+1

µm+1
≤ φ1

µ1
+

m∑
k=1

δk.

From (5.4.121) and the boundedness of {µk}, we obtain that {φk} is bounded.
Since {φk} is bounded, then there is at least a limit point. Suppose that

there are two subsequences {φkn} and {φkm}, which converge to φ′ and φ′′

respectively. We can show that φ′ ≤ φ′′, and that φ′′ ≤ φ′ by symmetry.
Thus φ′ = φ′′ and {φk} is convergent.

In fact, let φ be a bound of {φk}. Let also, for example, kn ≥ km. From
(5.4.120), we have

φkn − φkm ≤ (1 + φ)
kn−1∑
j=km

δj .

By the selection of kn, we have

φ′ − φkm ≤ (1 + φ)
∞∑

j=km

δj .

By the selection of km, we have

φ′ − φ′′ ≤ 0.

Therefore φ′ ≤ φ′′. Similarly, by symmetry, we obtain φ′′ ≤ φ′. We complete
the proof. �

We have known that if f : Rn → R satisfies Assumption 5.4.2, then
(5.4.84) holds. Let ‖Bk−A‖DFP = φk and max{α1σ(xk, xk+1), α2σ(xk, xk+1)} =
δk. Then (5.4.121) holds. Thus, it follows from Lemma 5.4.18 that the limit

lim
k→+∞

‖Bk −A‖DFP (5.4.122)

exists.

Download more at Learnclax.com

268 CHAPTER 5. QUASI-NEWTON METHODS

Lemma 5.4.19 Under the assumptions of Theorem 5.4.15, there exist pos-
itive constants β1, β2, and β3, such that ∀xk, xk+1 ∈ N(x∗, ε), we have

‖Bk+1 −∇2f(x∗)‖DFP ≤
[√

1− β1θ2
k + β2σ(xk, xk+1)

]
‖Bk −∇2f(x∗)‖DFP

+β3σ(xk, xk+1), (5.4.123)

where

σ(xk, xk+1) = max{‖xk − x∗‖, ‖xk+1 − x∗‖}, (5.4.124)

θk =
‖∇2f(x∗)−

1
2 [Bk −∇2f(x∗)

1
2]sk‖

‖Bk −∇2f(x∗)‖DFP ‖∇2f(x∗)
1
2 sk‖

. (5.4.125)

Proof. Write A = ∇2f(x∗). From (5.4.85), we have

‖Bk+1 −A‖DFP ≤ ‖P T (Bk −A)P‖DFP +

∥∥∥∥∥(yk −Ask)yT
k

yT
k sk

∥∥∥∥∥
DFP

+

∥∥∥∥∥yk(yk −Ask)T P

yT
k sk

∥∥∥∥∥
DFP

. (5.4.126)

Let

Q = I − A
1
2 sky

T
k A− 1

2

yT
k sk

, Ek = A− 1
2 (Bk −A)A− 1

2 . (5.4.127)

Then

‖P T (Bk −A)P‖DFP = ‖(A− 1
2 P T A

1
2)(A− 1

2 (Bk −A)A− 1
2)(A

1
2 PA− 1

2)‖F

= ‖QT EQ‖F .

Similar to the proof of Theorem 5.4.15, we know that there exist α3 and
α4 > 0 such that∥∥∥∥∥(yk −Ask)yT

k

yT
k sk

∥∥∥∥∥
DFP

≤ 1
ω

‖A− 1
2 yk −A

1
2 sk‖

‖A 1
2 sk‖

≤ α3σ(xk, xk+1),

∥∥∥∥∥yk(yk −Ask)T P

yT
k sk

∥∥∥∥∥
DFP

≤ 1
ω2

‖A− 1
2 yk −A

1
2 sk‖

‖A 1
2 sk‖

≤ α4σ(xk, xk+1).

If we let β3 = α3 + α4, then (5.4.126) becomes

‖Bk+1 −A‖DFP ≤ ‖QT EQ‖F + β3σ(xk, xk+1). (5.4.128)

Download more at Learnclax.com

5.4. LOCAL CONVERGENCE OF QUASI-NEWTON METHODS 269

Since
‖A− 1

2 yk −A
1
2 sk‖

‖A 1
2 sk‖

≤ µγσ(xk, xk+1) ≤
1
3
,

then, by use of Lemma 5.4.17, we obtain

‖QT EQ‖F ≤
[
1 + (1− β)−1 ‖A− 1

2 yk −A
1
2 sk‖

‖A 1
2 sk‖

]
‖QT E‖F .

Note that ‖QT E‖F = ‖ET Q‖F = ‖EQ‖F , thus, by using Lemma 5.4.17 once
more, we obtain

‖EQ‖F ≤
[√

1− αθ2
k + (1− β)−1 ‖A− 1

2 yk −A
1
2 sk‖

‖A 1
2 sk‖

]
‖E‖F ,

where θk is defined by (5.4.125). Then

‖QT EQ‖F ≤
[√

1− αθ2
k +

5
2
(1− β)−1 ‖A− 1

2 yk −A
1
2 sk‖

‖A 1
2 sk‖

]
‖E‖F

≤ [
√

1− β1θ2
k + β2σ(xk, xk+1)]‖E‖F , (5.4.129)

where β1 = α, β2 = 5
2(1 − β)−1µγ. Substituting (5.4.129) into (5.4.128), we

deduce the desired result (5.4.123). The proof is complete. �

Using the above three lemmas, we can establish the following superlinear
convergence theorem of DFP method.

Theorem 5.4.20 Under the assumptions of Theorem 5.4.15, DFP method
defined by (5.4.79)–(5.4.80) is convergent superlinearly.

Proof. Since (1− β1θ
2
k)

1
2 ≤ 1− (β1/2)θ2

k, then (5.4.123) can be written as

(β1θ
2
k/2)‖Bk −A‖DFP ≤ ‖Bk −A‖DFP − ‖Bk+1 −A‖DFP

+[β2‖Bk −A‖DFP + β3]σ(xk, xk+1).

Summing both sides yields

1
2
β1

∞∑
k=1

θ2
k‖Bk −A‖DFP ≤ ‖B1 −A‖DFP + β2

∞∑
k=1

σ(xk, xk+1)‖Bk −A‖DFP

+β3

∞∑
k=1

σ(xk, xk+1).

Download more at Learnclax.com

270 CHAPTER 5. QUASI-NEWTON METHODS

Since, from Theorem 5.4.15, {xk} is linearly convergent, then
∑∞

k=1 σ(xk, xk+1) <
∞. Also, since {‖Bk −A‖DFP } is bounded, then

β1

2

∞∑
k=1

θ2
k‖Bk −A‖DFP < ∞.

By (5.4.56), the limit limk→∞ ‖Bk − A‖DFP exists. Hence, if some subse-
quence of {‖Bk − A‖DFP } converges to zero, the whole sequence converges
to zero. Therefore

lim
k→∞

‖(Bk −A)sk‖
‖sk‖

= 0,

and the conclusion holds. Otherwise, if ‖Bk−A‖DFP ≥ ω > 0,∀k ≥ k0, then
θk → 0. Note that

‖(Bk −A)sk‖
‖sk‖

≤ ‖A 1
2 ‖‖A− 1

2 (Bk −A)sk‖
‖A 1

2 ‖−1‖A 1
2 sk‖

= ‖A‖‖Bk −A‖DFP
‖A− 1

2 (Bk −A)sk‖
‖Bk −A‖DFP ‖A

1
2 sk‖

= ‖A‖‖Bk −A‖DFP θk,

then, by using θk → 0, we immediately obtain

lim
k→∞

‖(Bk −A)sk‖
‖sk‖

= 0.

Hence {xk} is convergent superlinearly. We complete the proof. �

Similarly, we can state the superlinear convergence theorem for BFGS
method.

Theorem 5.4.21 Under the assumptions of Theorem 5.4.15, the sequence
{xk} generated by BFGS method (5.4.79) and (5.1.45) is convergent to x∗

superlinearly.

It is not difficult to describe the above theorems in inverse Hessian ap-
proximations, which proofs are left to interested readers as an exercise.

We consider BFGS update in inverse Hessian approximation (5.1.48), now
written again as

xk+1 = xk −Hkgk, (5.4.130)

Download more at Learnclax.com

5.4. LOCAL CONVERGENCE OF QUASI-NEWTON METHODS 271

Hk+1 = Hk +
(sk −Hkyk)sT

k + sk(sk −Hkyk)T

sT
k yk

−(sk −Hkyk)T yk

(sT
k yk)2

sks
T
k . (5.4.131)

We employ the weighted norm

‖E‖BFGS = ‖E‖A1/2,F = ‖A1/2EA1/2‖F , (5.4.132)

where A = ∇2f(x∗).

Theorem 5.4.22 Let f : Rn → R satisfy Assumption 5.4.2. Also let

µγσ(xk, xk+1) ≤
1
3

(5.4.133)

in a neighborhood of x∗, where µ = ‖∇2f(x∗)−1‖ and σ(xk, xk+1) = max{‖xk−
x∗‖, ‖xk+1−x∗‖}. Then, there exist ε > 0 and δ > 0 such that for ‖x0−x∗‖ <
ε and ‖H0−∇2f(x∗)−1‖BFGS < δ, BFGS method (5.4.130)–(5.4.131) is well-
defined, and the produced sequence {xk} converges to x∗ linearly. Further, if∑∞

k=0 ‖xk−x∗‖ < +∞, then the sequence {xk} converges to x∗ superlinearly.

5.4.7 Local Convergence of Broyden’s Class Methods

Finally, in this section, we discuss local convergence of Broyden’s class meth-
ods.

Byrd, Nocedal and Yuan [47] proved the superlinear convergence of Broy-
den’s class method. We state the theorem without proof.

Theorem 5.4.23 Suppose that f : Rn → R is twice continuously differen-
tiable on a convex set D and that f(x) is uniformly convex, i.e., there exists
m > 0 such that for any x ∈ Rn and u ∈ Rn,

uT∇2f(x)u ≥ m‖u‖2.

Suppose also that there is a neighborhood N(x∗, ε) of x∗, such that

‖∇2f(x̄)−∇2f(x)‖ ≤ γ‖x̄− x‖, ∀x, x̄ ∈ N(x∗, ε).

Then, for any positive definite matrix B0, when line search satisfies Wolfe-
Powell rule (5.4.30)–(5.4.33), the sequence {xk} generated by the restricted
Broyden’s class (θ ∈ (0, 1)) converges to x∗ superlinearly.

Download more at Learnclax.com

272 CHAPTER 5. QUASI-NEWTON METHODS

For Broyden’s class with exact line search, we have

Theorem 5.4.24 Suppose that the assumptions of Theorem 5.4.23 hold.
When the exact line search is employed, the sequence {xk} generated by Broy-
den’s class method converges to x∗ superlinearly.

Byrd, Liu, and Nocedal [43] established the following superlinear char-
acterization in which the superlinear characterization (5.4.25) is replaced by
(5.4.135) and (5.4.136).

Theorem 5.4.25 Let iterates generated by

xk+1 = xk − αkB
−1
k gk

converge to x∗ with ∇f(x∗) = 0 and ∇2f(x∗) positive definite. Then

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖ = 0 (5.4.134)

if and only if
lim

k→∞
cos2〈B−1

k gk,−∇2f(x∗)−1gk〉 = 1 (5.4.135)

and

lim
k→∞

sT
k Bksk

αks
T
k yk

= 1. (5.4.136)

Proof. Suppose that (5.4.134) holds, then we have

lim
k→∞

cos2〈B−1
k gk, xk − x∗〉 = 1. (5.4.137)

Note also that

lim
k→∞

cos2〈xk − x∗,−∇2f(x∗)−1gk〉 = 1. (5.4.138)

Hence (5.4.135) holds.
By (5.4.134) and the positive definiteness of ∇2f(x∗), we have

lim
k→∞

‖gk + yk‖
‖gk‖

= 0,

which implies

lim
k→∞

sT
k gk + sT

k yk

‖sk‖‖gk‖
= 0.

Download more at Learnclax.com

5.5. SELF-SCALING VARIABLE METRIC (SSVM) METHODS 273

Therefore

lim
k→∞

−sT
k gk

sT
k yk

= 1, (5.4.139)

which means (5.4.136).
Conversely, assume that (5.4.135) and (5.4.136) hold. By (5.4.135) and

(5.4.138) we deduce that (5.4.137) holds. Also, (5.4.136) means (5.4.139).
Then, we obtain

lim
k→∞

sT
k gk + sT

k∇2f(x∗)sk

sT
k yk

= 0,

which is

lim
k→∞

sT
k∇2f(x∗)[sk +∇2f(x∗)−1gk]

sT
k∇2f(x∗)sk

= 0. (5.4.140)

Then, (5.4.140) and (5.4.135) gives

lim
k→∞

‖sk +∇2f(x∗)−1gk‖
‖sk‖

= 0, (5.4.141)

which is equivalent to (5.4.134). We complete the proof. �

5.5 Self-Scaling Variable Metric (SSVM) Methods

5.5.1 Motivation to SSVM Method

We have seen that DFP method is a typical rank-two quasi-Newton method.
However, numerical experiments show that its implementation is not ideal.
Why? Below, we would like to give some analysis.

First, we clarify that the single-step convergence Theorem 3.1.5 of the
steepest descent method is also true for various Newton-like methods. Let

f(x) =
1
2
xT Gx− bT x, (5.5.1)

where G is an n×n symmetric and positive definite matrix. Let the Newton-
like method be defined by

xk+1 = xk − αkHkgk, (5.5.2)

where

gk = Gxk − b, (5.5.3)
αk = gT

k Hkgk/gT
k HkGHkgk, (5.5.4)

Download more at Learnclax.com

274 CHAPTER 5. QUASI-NEWTON METHODS

then we have the following theorem.

Theorem 5.5.1 Let x∗ be a minimizer of the quadratic function (5.5.1),
and let Newton-like methods be defined by (5.5.2). Then, the single-step
convergence rate satisfies the following bound:

f(xk+1)− f(x∗)
f(xk)− f(x∗)

≤ (λ1 − λn)2

(λ1 + λn)2
, (5.5.5)

E(xk+1) ≤
(λ1 − λn)2

(λ1 + λn)2
E(xk), (5.5.6)

where E(xk) = 1
2(xk − x∗)T G(xk − x∗), λ1 and λn are the largest and the

smallest eigenvalues of matrix HkG respectively.

Proof. Since
x∗ = xk −G−1gk (5.5.7)

and
f(xk)− f(x∗) =

1
2
gT
k G−1gk, (5.5.8)

and since the exact line search factor αk is represented by (5.5.4), we have

f(xk+1) = f(xk)−
1
2
α2

kg
T
k HkGHkgk

and
f(xk+1)− f(x∗) =

1
2
gT
k G−1gk −

1
2
α2

kg
T
k HkGHkgk.

Hence

f(xk+1)− f(x∗)
f(xk)− f(x∗)

= 1− (gT
k Hkgk)2

(gT
k G−1gk)(gT

k HkGHkgk)

= 1− (zT
k zk)2

(zT
k (H

− 1
2

k)T G−1H
− 1

2
k zk)(zT

k H
1
2
k G(H

1
2
k)T zk)

, (5.5.9)

where zk = H
1
2
k gk. Then the conclusion (5.5.5) is obtained by using Kan-

torovich Theorem 3.1.10.

Download more at Learnclax.com

5.5. SELF-SCALING VARIABLE METRIC (SSVM) METHODS 275

Similarly, we have

E(xk)− E(xk+1)
E(xk)

=
(zT

k zk)2

(zT
k Tkzk)(zT

k T−1
k zk)

,

where Tk = H
1
2
k GH

1
2
k . By using Kantorovich Theorem 3.1.10 and noting that

HkG and Tk are similar, we immediately obtain the conclusion (5.5.6). �

From Theorem 5.5.1, we may see that if the condition number κ(Tk) is
very large, the single-step convergence rate will be very slow. In order to
obtain a rapid rate in every iteration, we should make

(
λ1 − λn

λ1 + λn

)2

or
[
κ(Tk)− 1
κ(Tk) + 1

]2
(5.5.10)

as small as possible, where κ(Tk) = λ1/λn.
Second, let us observe carefully the DFP method. It is not difficult to

see the fact that, usually, the eigenvalues of H0G are greater than 1, and
that DFP method and Broyden class method make one eigenvalue to being
1 in essence in each iteration. Hence, in the iterative procedure, a non-ideal
eigen-ratio of {HkG} is produced. Also since HkG and Tk are similar, the
eigen-ratio of {Tk} is also non-ideal.

In fact, if we let

Rk = G
1
2 HkG

1
2 , rk = G

1
2 sk, (5.5.11)

then Rk is similar to HkG, and further to Tk. By using yk = G
1
2 sk, the DFP

formula (5.1.30) is equivalent to

Rk+1 = Rk −
Rkrkr

T
k Rk

rT
k Rkrk

+
rkr

T
k

rT
k rk

. (5.5.12)

Let the eigenvalues of Rk satisfy λ1 ≥ λ2 ≥ · · · ≥ λn > 0. Let

P = Rk −
Rkrkr

T
k Rk

rT
k Rkrk

(5.5.13)

with eigenvalues µ1 ≥ µ2 ≥ · · · ≥ µn. Obviously, Prk = 0. Then we have

λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ · · · ≥ λn ≥ µn = 0. (5.5.14)

Download more at Learnclax.com

276 CHAPTER 5. QUASI-NEWTON METHODS

From (5.5.12), it follows that

Rk+1 = P +
rkr

T
k

rT
k rk

(5.5.15)

and
Rk+1rk = rk. (5.5.16)

Since rk is the eigenvector of P , and since P is symmetric, then all other
eigenvectors of P are orthogonal to rk. So, the unique different eigenvalue
between Rk+1 and P is the eigenvalue associated to rk, which is 1. This
shows that DFP method moves one eigenvalue of Rk to 1 in each iteration.
Note that Rk is similar to HkG, thus, it implies that if all eigenvalues of H0G
are greater than 1, then the eigen-ratio of HkG will worsen.

However, if 1 ∈ [λn, λ1], then, it follows from the above discussion that
the eigenvalues µ1, µ2, · · · , µn−1 of Rk+1 and 1 will be contained in [λn, λ1].
Hence, in this case, the eigen-ratio of HkG will not worsen. This conclusion
is true for updates of Broyden class with 0 ≤ φ ≤ 1.

Theorem 5.5.2 Let λ1, λ2, · · · , λn be eigenvalues of HkG with λ1 ≥ λ2 ≥
· · · ≥ λn > 0. Suppose that 1 ∈ [λn, λ1]. Then, for any φ with 0 ≤ φ ≤ 1, the
eigenvalues of Hφ

k+1G are contained in [λn, λ1], where Hφ
k+1 is the Broyden

class update defined by (5.2.4).

Proof. The case φ = 0 has been proved as before.
Now we consider the case φ = 1 (BFGS update). The BFGS formula

(5.1.45) can be written as

H−1
k+1 = H−1

k +
yky

T
k

sT
k yk

− H−1
k sks

T
k H−1

k

sT
k H−1

k sk

,

which is equivalent to

R−1
k+1 = R−1

k − R−1
k rkr

T
k R−1

k

rT
k R−1

k rk

+
rkr

T
k

rT
k rk

. (5.5.17)

Since the eigenvalues of R−1
k satisfy

1
λ1
≤ 1

λ2
≤ · · · ≤ 1

λn
,

Download more at Learnclax.com

5.5. SELF-SCALING VARIABLE METRIC (SSVM) METHODS 277

then we have 1 ∈ [1/λ1, 1/λn]. Similar to the above discussion, we know
that if the eigenvalues of R−1

k+1 satisfy 1/µ1 ≤ 1/µ2 ≤ · · · ≤ 1/µn, then these
eigenvalues are contained in [1/λ1, 1/λn]. Hence, we have that 1/λ1 ≤ 1/µ1

and 1/λn ≥ 1/µn, i.e., µn ≥ λn and µ1 ≤ λ1. This shows that all eigenvalues
of Rk+1 are contained in [λn, λ1]. Therefore, the conclusion holds for φ = 1.

Finally, we know that Broyden class updating formula (5.2.4) is equivalent
to

Rφ
k+1 = Rk −

Rkrkr
T
k Rk

rT
k Rkrk

+
rkr

T
k

rT
k rk

+ φuku
T
k , (5.5.18)

where

uk = G
1
2 vk = (rT

k Rkrk)
1
2

[
rk

rT
k rk

− Rkrk

rT
k Rkrk

]
. (5.5.19)

Clearly, the eigenvalues of Rφ
k+1 are increasing monotonically as k in-

creases. Since, for φ = 0 and φ = 1, the eigenvalues of Rφ
k+1 are contained

in [λn, λ1], then, for 0 ≤ φ ≤ 1, the eigenvalues of Rφ
k+1 are also contained

in [λn, λ1]. Thus, from the fact that Rφ
k+1 and Hφ

k+1G are similar, we obtain
the conclusion. �

The above theorem says that if we scale the matrix Hk such that the
eigenvalues of HkG satisfy 1 ∈ [λn, λ1], the eigenvalue structure of Rφ

k+1 will
be improved.

Obviously, for a quadratic function, it is enough to scale only the initial
matrix H0. However, in general, it is useful to scale each Hk.

5.5.2 Self-Scaling Variable Metric (SSVM) Method

In this section we describe SSVM method due to Oren [237]. Multiplying Hk

by γk and then replacing Hk by γkHk in (5.2.2) yield

H
(φ,γk)
k+1 =

(
Hk −

Hkyky
T
k Hk

yT
k Hkyk

+ φvkv
T
k

)
γk +

sks
T
k

sT
k yk

, (5.5.20)

where
vk = (yT

k Hkyk)
1
2 [sk/sT

k yk −Hkyk/yT
k Hkyk],

where φ is a parameter of Broyden class and γk a self-scaling parameter.
The formula (5.5.20) is referred to as the self-scaling variable metric (SSVM)
formula. When γk = 1, it is reduced to Broyden class update.

Download more at Learnclax.com

278 CHAPTER 5. QUASI-NEWTON METHODS

Algorithm 5.5.3 (SSVM Algorithm)

Step 0. Given an initial matrix H0 and a starting point x0. Set
k = 0.

Step 1. Set dk = −Hkgk.

Step 2. Find stepsize αk, and set xk+1 = xk + αkdk, compute gk+1

and set yk = gk+1 − gk.

Step 3. Choose Broyden’s class parameter φ ≥ 0 and self-scaling
parameter γk > 0, and compute H

(φ,γk)
k+1 by (5.5.20).

Step 4. k := k + 1, go to Step 1. �

Similar to the discussion of DFP method in §5.1, we can prove that the
SSVM method has the following properties. The proof is omitted.

Theorem 5.5.4 (Properties of SSVM Method)

1. If Hk is positive definite and sT
k yk > 0, then when φ ≥ 0 and γk > 0,

the matrix H
(φ,γk)
k+1 produced by (5.5.20) is positive definite.

2. If f(x) is a quadratic function with Hessian G, the vectors s0, s1, · · · , sn−1

produced by SSVM method are G-conjugate, i.e., satisfy

sT
i Gsj = 0, i = j; i, j = 0, 1, · · · , n− 1, (5.5.21)

and for each k, s0, s1, · · · , sk are the eigenvalues of H
(φ,γk)
k+1 G, i.e., sat-

isfy

H
(φ,γk)
k+1 Gsi = γ̄i,ksi, 0 < i < k, (5.5.22)

where γ̄i,k =
∏k

j=i+1 γj , γ̄ii = 1.

This theorem shows that although the property H
(φ,γn−1)
n = G−1 is not

retained for quadratic functions by SSVM method, the property of conjugate
directions is still retained. Therefore, for quadratic functions, the sequence
generated from SSVM method converges to a minimizer in at most n steps.

Download more at Learnclax.com

5.5. SELF-SCALING VARIABLE METRIC (SSVM) METHODS 279

5.5.3 Choices of the Scaling Factor

Now, the problem is how to choose a suitable scaling factor. Let λ1 ≥ λ2 ≥
· · · ≥ λn > 0 be eigenvalues of HkG. Clearly, they are also the eigenvalues
of Rk. We hope to choose a suitable scaling factor which is used to multiply
Hk, such that 1 is contained among the new eigenvalues and thus the eigen-
structure is improved. Therefore we get κ(Rφ

k+1) ≤ κ(Rk). The following
theorem is a consequence of Theorem 5.5.2.

Theorem 5.5.5 Let φ ∈ [0, 1] and γk > 0. Let Rk and Rφ
k+1 be defined

respectively by (5.5.11) and (5.5.24). Let λ1 ≥ λ2 ≥ · · · ≥ λn and µφ
1 ≥ µφ

2 ≥
· · · ≥ µφ

n be eigenvalues of Rk and Rφ
k+1 respectively. Then the following

statements hold.

1. If γkλn ≥ 1, then µφ
n = 1 and 1 ≤ γkλi+1 ≤ µφ

i ≤ γkλi, i = 1, 2, · · · , n−
1.

2. If γkλ1 ≤ 1, then µφ
1 = 1 and γkλi ≤ µφ

i ≤ γkλi−1 ≤ 1, i = 2, 3, · · · , n.

3. If γkλn ≤ 1 ≤ γkλ1 and i0 is an index with γkλi0+1 ≤ 1 ≤ γkλi0, then

γkλ1 ≥ µφ
1 ≥ γkλ2 ≥ µφ

2 ≥ · · · ≥ γkλi0 ≥ µi0 ≥ 1 ≥ µi0+1

≥ γkλi0+1 ≥ · · · ≥ γkλn, (5.5.23)

and there is at least one eigenvalue in µφ
i0

and µφ
i0+1 which equals 1.

Proof. This theorem is a direct consequence of Theorem 5.5.2. Since
SSVM method is equivalent to

Rφ
k+1 =

(
Rk −

Rkrkr
T
k Rk

rT
k Rkrk

+ φuku
T
k

)
γk +

rkr
T
k

rT
k rk

, (5.5.24)

where rk and uk are defined respectively by (5.5.11) and (5.5.19), the above
expression is just obtained by replacing Rk by γkRk in (5.5.18). Therefore,
from Theorem 5.5.2, replacing λ1, λ2, · · · , λn by use of γkλ1, · · · , γkλn gives
our conclusion. �

Corollary 5.5.6 Let φ ∈ [0, 1] and γk = 1. Then

|µφ
k − 1| ≤ |λk − 1|. (5.5.25)

Download more at Learnclax.com

280 CHAPTER 5. QUASI-NEWTON METHODS

Proof. From Theorem 5.5.5, for γk = 1, one of the following cases will
hold:

(a) λi ≥ µφ
i ≥ 1;

(b) λi ≤ µφ
i ≤ 1.

Hence the conclusion (5.5.25) is obtained. �

Obviously, if we choose γk such that

λn ≤
1
γk
≤ λ1, (5.5.26)

we have
γkλn ≤ 1 ≤ γkλ1, (5.5.27)

which says that 1 is included in the interval of scaled eigenvalues. In addition,
we have

Corollary 5.5.7 Let φ ∈ [0, 1] and γk > 0. Let κ(·) denote the condition
number. If λn ≤ 1

γk
≤ λ1, then, for (5.5.24), we have

κ(Rφ
k+1) ≤ κ(Rk). (5.5.28)

Proof. From Theorem 5.5.5 (3), it follows that

γkλ1 ≥ µφ
1 ≥ 1 ≥ µφ

n ≥ γkλn, (5.5.29)

which gives
µφ

1

µφ
n

≤ λ1

λn
.

Thus, we complete the proof. �

In the above discussion about the condition of γk, we always restrict the
Broyden class parameter φ ∈ [0, 1]. In fact, this restriction is sufficient and
also necessary for the statement that if λn ≤ 1

γk
≤ λ1, then κ(Rφ

k+1) ≤ κ(Rk)

and H
(φ,γk)
k+1 is positive definite.

Corollary 5.5.7 says that λn ≤ 1
γk
≤ λ1 is a suitable requirement to choose

a scaling factor. Note that

rT
k Rkrk

rT
k rk

=
yT

k Hkyk

sT
k yk

Download more at Learnclax.com

5.5. SELF-SCALING VARIABLE METRIC (SSVM) METHODS 281

and

λn ≤
rT
k Rkrk

rT
k rk

≤ λ1,

it follows that

γk =
sT
k yk

yT
k Hkyk

(5.5.30)

is a suitable scaling factor. Similarly, since

rT
k R−1

k rk

rT
k rk

=
sT
k H−1

k sk

sT
k yk

and
1
λ1
≤ rT

k R−1
k rk

rT
k rk

≤ 1
λn

,

we have that

γk =
sT
k H−1

k sk

sT
k yk

= −αks
T
k gk

sT
k yk

=
sT
k gk

gT
k Hkyk

(5.5.31)

is also a suitable scaling factor. Noting that when αk is an optimal stepsize,
we have that sT

k yk = −sT
k gk, and thus

γk = αk. (5.5.32)

The above (5.5.32) shows an interesting fact, that we may choose directly an
optimal stepsize as a scaling factor.

For any ω ∈ [0, 1],

γk = (1− ω)
sT
k yk

yT
k Hkyk

+ ω
sT
k H−1

k sk

sT
k yk

(5.5.33)

is a convex combination of (5.5.30) and (5.5.31). Hence (5.5.33) gives a convex
class of suitable scaling factors. For this convex class, Oren [239] presented
the following switch rule of parameters φ and ω.

If sT
k yk

yT
k

Hkyk
> 1, choose φ = 1 and ω = 0,

(i.e., φ = 1, γk = sT
k yk/yT

k Hkyk).

If sT
k H−1

k
sk

sT
k

yk
< 1, choose φ = 0, ω = 1.

(i.e., φ = 0, γk = sT
k H−1

k
sk

sT
k

yk
).

Download more at Learnclax.com

282 CHAPTER 5. QUASI-NEWTON METHODS

If sT
k yk

yT
k

Hkyk
≤ 1 ≤ sT

k H−1
k

sk

sT
k

yk
, choose

ω = φ = sT
k yk(yT

k Hkyk−sT
k yk)

(sT
k

H−1
k

sk)(yT
k

Hkyk)−(sT
k

yk)2
, (i.e., γk = 1).

Another technique is an initial scaling method presented by Shanno and
Phua [306]. At the beginning, set H0 = I, and the stepsize α0 is determined
by some line search, such that the objective function descends sufficiently.
Before computing H1, instead of H0, we use

Ĥ0 = α0H0, (5.5.34)

and compute H1 from Ĥ0, where α0 is a stepsize or determined by

α0 := γ0 =
sT
0 y0

yT
0 H0y0

. (5.5.35)

The difference between the initial scaling and SSVM is that SSVM does
process scaling in each iteration, but the initial scaling method does only at
the beginning. Numerical experiments show that the initial scaling is simple
and effective for a lot of problems in which the curvature changes smoothly.

By the way, a special self-scaling BFGS formula

Bk+1 =
sT
k yk

sT
k Bksk

(
Bk −

Bksks
T
k Bk

sT
k Bksk

)
+

yky
T
k

sT
k yk

(5.5.36)

is used widely in practice.

5.6 Sparse Quasi-Newton Methods

Schubert [303] first extended quasi-Newton update to an unsymmetric sparse
matrix and proposed a sparse quasi-Newton method for solving nonlinear
equations. Powell and Toint [276], Toint [341] derived sparse quasi-Newton
update respectively, and Steihaug [321] presented a sparse quasi-Newton
method with preconditioning and established the convergence.

The sparse quasi-Newton method requires generating sparse quasi-Newton
updates which have the same (or similar) sparsity pattern as the true Hes-
sian. It means that the current Hessian approximation Bk reflects the nonzero
structure of the true Hessian, i.e.,

(Bk)ij = 0 for (i, j) ∈ I, (5.6.1)

Download more at Learnclax.com

5.6. SPARSE QUASI-NEWTON METHODS 283

where
I

∆= {(i, j) | [∇2f(x)]ij = 0} (5.6.2)

is a set of integer pairs. We also define

J
∆= {(i, j) | [∇2f(x)]ij = 0}. (5.6.3)

It says that J , a set of integer pairs, is a complement of I. So, we demand
that Bk+1 satisfies the quasi-Newton condition

Bk+1sk = yk, (5.6.4)

and keeps symmetry and sparsity. Neglecting the subscript, we would like to
find B̄, such that

B̄ = B + E, (5.6.5)

where E satisfies

Es = y −Bs, (5.6.6)
E = ET , (5.6.7)
Eij = 0, (i, j) ∈ I, (5.6.8)

where Eij are elements of the matrix E. If we determined E, we can get
B̄ from (5.6.5). However, (5.6.6)–(5.6.8) cannot determine completely the
matrix E. So, to this end, we require that B̄ is as close as possible to B in
Frobenius norm. Therefore, we consider the following minimization problem:

min
1
2
‖E‖2F (5.6.9)

s.t. Es = r, (5.6.10)
E = ET , (5.6.11)
Eij = 0, (i, j) ∈ I, (5.6.12)

where r is assumed to be
r = y −Bs. (5.6.13)

In the left part of the section, we denote the j-th component of the vector
s by sj , and define the component of vector s(i) as

s(i)j =

{
sj , (i, j) ∈ J
0, (i, j) ∈ I.

(5.6.14)

Download more at Learnclax.com

284 CHAPTER 5. QUASI-NEWTON METHODS

Then the condition (5.6.10) can be written as

n∑
j=1

Eijs(i)j = ri, i = 1, · · · , n. (5.6.15)

In order to let E be symmetric, take

E =
1
2
(A + AT). (5.6.16)

Then the problem (5.6.9)-(5.6.12) becomes the following problem: finding a
matrix A, such that

min
1
8
‖A + AT ‖F (5.6.17)

s.t.
n∑

j=1

(Aij + Aji)s(i)j = 2ri, i = 1, · · · , n, (5.6.18)

where Aij denote the elements of A.
Now, we discuss solving the problem (5.6.17)–(5.6.18). The Lagrangian

function is

Φ(A, λ) =
1
8

n∑
i=1

n∑
j=1

(A2
ij + A2

ji + 2AijAji)

−
n∑

i=1

λi

⎡
⎣ n∑

j=1

(Aij + Aji)s(i)j − 2ri

⎤
⎦ . (5.6.19)

Setting the derivative with respect to Aij to be zero, we have

∂Φ(A, λ)
∂Aij

=
1
2
(Aij + Aji)− λis(i)j − λjs(j)i = 0,

i, j = 1, · · · , n. (5.6.20)

By using (5.6.16), the above expression is just

Eij = λis(i)j + λjs(j)i, i, j = 1, · · · , n. (5.6.21)

In place of (5.6.18), we employ (5.6.15). Substituting (5.6.21) into (5.6.15),
we obtain

n∑
j=1

[λis(i)j + λjs(j)i]s(i)j = ri, i = 1, · · · , n, (5.6.22)

Download more at Learnclax.com

5.6. SPARSE QUASI-NEWTON METHODS 285

which is

λi

n∑
j=1

[s(i)j]2 +
n∑

j=1

λjs(j)is(i)j = ri, i = 1, · · · , n. (5.6.23)

Thus, we derive the update formula

B̄ = B + E, (5.6.24)

which is, from (5.6.21), that

B̄ = B +
n∑

i=1

λi[eis(i)T + s(i)eT
i], (5.6.25)

where ei is the i-th unit vector and λ is a Lagrange multiplier vector satisfying

Qλ = r, (5.6.26)

where

Q =
n∑

i=1

(s(i)T sei + eT
i ss(i))eT

i . (5.6.27)

In fact, as long as we notice that

Qλ = r = Es =
n∑

i=1

λi[eis(i)T s + s(i)eT
i s]

=
n∑

i=1

[s(i)T sei + eT
i ss(i)]eT

i λ,

we can immediately obtain (5.6.27).
The matrix Q defined above satisfies symmetry, sparsity and positive

definiteness. The properties of symmetry and sparsity can be seen direct
from (5.6.27). As to the positive definiteness of Q, we give the following
theorem.

Theorem 5.6.1 If all vectors s(i) (i = 1, · · · , n) are nonzero, then the matrix
Q is positive definite, that is

zT Qz > 0, ∀z ∈ Rn, z = 0. (5.6.28)

Download more at Learnclax.com

286 CHAPTER 5. QUASI-NEWTON METHODS

Proof. Take z = 0, z ∈ Rn. Let zi denote the components of vector z.
From (5.6.27),

zT Qz =
n∑

i=1

n∑
j=1

zT
i Qijzj

=
n∑

i=1

n∑
i=1

zis(i)js(j)izj +
n∑

i=1

n∑
j=1

[s(i)j]2z2
i

=
∑

(i,j)∈J

[zisisjzj + z2
i s2

j]

=
1
2

∑
(i,j)∈J

[sizj + sjzi]2

= 2
n∑

i=1

z2
i s2

i +
1
2

∑
(i,j)∈J

i�=j

(zisj + zjsi)2

≥ 0. (5.6.29)

Suppose that zT Qz = 0; since z = 0, there exists a component of z, for
example, zk = 0, such that by (5.6.29) we have

zksk = 0, (5.6.30)
zksj + zjsk = 0, (k, j) ∈ J, j = k. (5.6.31)

Thus, sk = 0. Furthermore, sj = 0, j = k, (k, j) ∈ J . This is equivalent to
s(k) = 0, which contradicts the assumption. We complete the proof. �

Since Q is positive definite, it follows from (5.6.21) and (5.6.26) that

Eij = (Q−1r)is(i)j + (Q−1r)js(j)i, (5.6.32)

which can be written as

Eij =

{
0, (i, j) ∈ I,
λisj + λjsi, (i, j) ∈ J.

(5.6.33)

The above discussion gives the derivation of general sparse quasi-Newton
update.

Now, we turn to the sparse PSB update.
Let F : Rn → Rn. For solving sparse nonlinear equations F (x) = 0,

Schuburt [303] first suggested that Broyden’s rank-one update

B̄ = B +
(y −Bs)sT

sT s
(5.6.34)

Download more at Learnclax.com

5.6. SPARSE QUASI-NEWTON METHODS 287

can be written in the following form

B̄ = B +
n∑

i=1

eie
T
i

(y −Bs)sT

sT s
, (5.6.35)

which is an update by row, where ei is the i-th unit vector. By use of notation
s(i), one knows that

B̄ = B +
n∑

i=1

eie
T
i

(y −Bs)s(i)T

s(i)T s
(5.6.36)

satisfies the quasi-Newton condition B̄s = y, and has the sparsity pattern
desired.

The general form of Schuburt sparse update is

B̄ = B +
n∑

i=1

αieiz(i)T , (5.6.37)

where

αi =
eT
i (y −Bs)
s(i)T s

, z(i)j =

{
zj , (i, j) ∈ J,
0, (i, j) ∈ I.

(5.6.38)

Now we employ symmetrization to (5.6.37) and deduce that

B̄ = B +
n∑

i=1

αi(eiz(i)T + z(i)eT
i). (5.6.39)

Let us choose αi, such that B̄ satisfies the quasi-Newton condition. Obvi-
ously, B̄ is symmetric and satisfies sparsity.

Similar to the discussion before, we can obtain that α satisfies

Tα = r, (5.6.40)

where

T =
n∑

i=1

[z(i)T sei + eT
i sz(i)]eT

i . (5.6.41)

In particular, setting z(i) = s(i), we immediately get (5.6.25)–(5.6.27), which
is sparse PSB update.

Next, let us proceed to the sparse BFGS update.

Download more at Learnclax.com

288 CHAPTER 5. QUASI-NEWTON METHODS

For clarity, we repeat the BFGS update given in (5.1.45):

B̄ = B +
yyT

sT y
− BssT B

sT Bs
, (5.6.42)

where B is assumed to have some sparsity pattern. Since the B̄ defined by
the above formula has not such a structure, we modify it and make it have
this kind of sparsity structure. Define

B̂ = B̄ + E. (5.6.43)

We demand that B̂ satisfies the following conditions:

(i) B̂ satisfies the quasi-Newton condition.

(ii) B̂ is symmetric.

(iii) B̂ is the closest to B̄ in Frobenius norm.

So, we consider the following minimization problem:

min ‖E‖F =
1
2
Tr(ET E) (5.6.44)

s.t. Es = 0, (5.6.45)
Eij = −B̄ij , (i, j) ∈ I, (5.6.46)
E = ET . (5.6.47)

To solve (5.6.44)–(5.6.47), we define the Lagrange function Φ as follows:

Φ(E,µ,Λ, λ) =
1
2
Tr(ET E)− Tr(EsµT)− Tr(Λ(E − ET))

−
∑

(i,j)∈I

λijTr(E + B̄)eje
T
i

=
1
2
Tr(ET E)− Tr(EsµT)− Tr(Λ(E − ET))

−Tr(ΛT (E + B̄)), (5.6.48)

where µ is the multiplier vector, Λ and ∆ are multiplier matrices, and λij

are the elements of the matrix ∆. When (i, j) ∈ J, λij = 0.
Differentiating (5.6.48) and setting ∂Φ

∂E = 0, we have

∂Φ
∂E

= E − sµT − ΛT + Λ−∆ = 0, (5.6.49)

Download more at Learnclax.com

5.6. SPARSE QUASI-NEWTON METHODS 289

which gives
E = sµT + ∆− Λ + ΛT (5.6.50)

and
ET = µsT + ∆T − ΛT + Λ. (5.6.51)

By using (5.6.47), we get

E − ET = sµT + ∆−∆T + 2(ΛT − Λ) = 0, (5.6.52)

that is
Λ− ΛT =

1
2
(sµT − µsT + ∆−∆T). (5.6.53)

By use of (5.6.50) and (5.6.53), we have

E =
1
2
(sµT + µsT + ∆ + ∆T), (5.6.54)

which gives, by (5.6.46), that

eT
i Eej =

1
2
(eT

i µsT ej + eT
i sµT ej + λij + λji) = −B̄ij ,

that is

λij + λji = −2B̄ij − eT
i µsT ej − eT

i sµT ej , (i, j) ∈ I. (5.6.55)

The above expression can be written in matrix form:

∆ + ∆T = −2B̄(I)
ij −

n∑
i=1

eie
T
i (µŝ(i)T + sµ̂(i)T), (5.6.56)

where

B̄
(I)
ij =

{
B̄ij , (i, j) ∈ I,
0, (i, j) ∈ J,

(5.6.57)

ŝ(i)j =

{
sj , (i, j) ∈ I,
0, (i, j) ∈ J,

µ̂(i)j =

{
µj , (i, j) ∈ I,
0, (i, j) ∈ J.

(5.6.58)

By (5.6.54) and (5.6.56), we deduce that

E =
1
2

[
n∑

i=1

eie
T
i (µsT + sµT)− 2B̄(I) −

n∑
i=1

eie
T
i (µŝ(i)T + sµ̂(i)T)

]

=
1
2

[
n∑

i=1

eie
T
i (µs(i)T + sµ(i)T)− 2B̄(I)

]
, (5.6.59)

Download more at Learnclax.com

290 CHAPTER 5. QUASI-NEWTON METHODS

where

µ(i)j =

{
µi, (i, j) ∈ J,
0, (i, j) ∈ I.

(5.6.60)

Also, by (5.6.45), we have

Es =
1
2

[
n∑

i=1

eie
T
i (µs(i)T + sµ(i)T)− 2B̄(I)

]
s = 0, (5.6.61)

which is
n∑

i=1

eie
T
i (µs(i)T s + sµ(i)T s) = 2B̄(I)s. (5.6.62)

Note that
n∑

i=1

eie
T
i sµ(i)T =

n∑
i=1

µis(i)eT
i ,

and we can rewrite (5.6.62) as

n∑
i=1

µi(eis(i)T + s(i)eT
i)s = t, (5.6.63)

where t = 2B̄(I)s.
Then, provided that we solve (5.6.63) for µi and substitute µi into (5.6.59),

we can deduce that

E =
1
2

n∑
i=1

µi(eis(i)T + s(i)eT
i)− B̄(I). (5.6.64)

Thus,

B̂ = B̄ + E

= B̄ +
1
2

n∑
i=1

µi(eis(i)T + s(i)eT
i)− B̄(I)

= B̄(J) +
1
2

n∑
i=1

µi(eis(i)T + s(i)eT
i) (5.6.65)

where

B̄
(J)
ij =

{
B̄ij , (i, j) ∈ J,
0, (i, j) ∈ I.

(5.6.66)

Download more at Learnclax.com

5.6. SPARSE QUASI-NEWTON METHODS 291

The formula (5.6.65) is said to be sparse BFGS update. Similarly, we can
derive the sparse update for other quasi-Newton updates.

Note that the above formula (5.6.65) is obtained by minimization of prob-
lem (5.6.44)–(5.6.47) in Frobenius norm. Instead, we consider this minimiza-
tion problem in the weighted Frobenius norm, i.e., consider the problem

min ‖E‖W,F =
1
2
Tr(WET WE) (5.6.67)

s.t. Es = 0, (5.6.68)
Eij = −B̄ij , (i, j) ∈ I, (5.6.69)
E = ET . (5.6.70)

Then, corresponding to (5.6.54), we have

E =
1
2
[z(sT M) + (Ms)zT + M(∆ + ∆T)M], (5.6.71)

where M = W−1, z = Mµ.
Set p = Ms. We can obtain that if and only if M(∆+∆T)M and ∆+∆T

have the same sparsity pattern, the solution of (5.6.67)–(5.6.70) is

B̂ = B̄(I) +
n∑

i=1

zi(eip(i)T + p(i)eT
i), (5.6.72)

where

p(i)j =

{
pj , (i, j) ∈ J,
0, (i, j) ∈ I,

(5.6.73)

zi is the solution of the equations

n∑
i=1

zi(eip(i)T + p(i)eT
i)s = 2B̄(I)s. (5.6.74)

Clearly, if W is a positive definite and diagonal matrix, M(∆ + ∆T)M and
∆ + ∆T have the same sparsity structure.

Toint [341] considered sparse quasi-Newton update in the case that the
weighted matrix is a non-diagonal matrix. For solving efficiently the sparse
equations about µi, Steihaug [321] presented a preconditioned conjugate gra-
dient method to solve the linear equations.

An alternative approach is to relax the quasi-Newton equation, making
sure that it is approximately satisfied along the last few steps rather than

Download more at Learnclax.com

292 CHAPTER 5. QUASI-NEWTON METHODS

requiring it to hold strictly on the latest step. Define the n×m matrices Sk

and Yk by
Sk = [sk−m, · · · , sk−1], Yk = [yk−m, · · · , yk−1]. (5.6.75)

We ask Bk+1 to be a solution of

min ‖B̄Sk − Yk‖2F (5.6.76)
s.t. B̄ = B̄T , (5.6.77)

B̄ij = 0, (i, j) ∈ I. (5.6.78)

In general, sparse quasi-Newton methods lost some advantages of dense
quasi-Newton methods.

(1) Because of the complexity of the sparse pattern, the modified matrix E
is a rank-n matrix, rather than a rank-two matrix.

(2) To compute the matrix E, we must solve a sparse linear equation about
µi.

(3) The positive definiteness of the update matrix {Bk} cannot be guaran-
teed.

(4) So far, the numerical performance is not ideal.

We think that it is still a challenging topic to solve large-scale optimization
problems by studying sparse quasi-Newton methods.

5.7 Limited Memory BFGS Method

Limited memory quasi-Newton methods are useful for solving large-scale op-
timization problems. For large-scale problems, the methods save only a few
n-dimensional vectors, instead of storing and computing fully dense n × n
approximations of the Hessian. Since BFGS method is the most efficient
method for solving unconstrained optimization problems, in this section we
consider the limited memory BFGS method, known as L-BFGS, which is
based on BFGS method.

As we know that the BFGS formula for inverse Hessian approximation
Hk is

Hk+1 =

(
I − sky

T
k

sT
k yk

)
Hk

(
I − yks

T
k

sT
k yk

)
+

sks
T
k

sT
k yk

. (5.7.1)

Download more at Learnclax.com

5.7. LIMITED MEMORY BFGS METHOD 293

Set
ρk =

1
sT
k yk

, Vk = I − ρyks
T
k , (5.7.2)

then
Hk+1 = V T

k HkVk + ρksks
T
k . (5.7.3)

The above equation says that the matrix Hk+1 is obtained by updating Hk

using the pair {sk, yk}. In L-BFGS method we save implicitly a modified
version of Hk by storing m pairs {si, yi}(i = k −m, k −m + 1, · · · , k − 1).

In the following, we describe the expression of the updating matrix Hk of
the k-th iteration in L-BFGS method.

Choose some initial Hessian approximation H
(0)
k for the k-th iteration.

We apply the formula (5.7.3) m times repeatedly, i.e.,

H
(j+1)
k = V T

k−m+jH
(j)
k Vk−m+j + ρk−m+jsk−m+js

T
k−m+j , j = 0, 1, · · · , m− 1,

(5.7.4)
and obtain

Hk = (V T
k−1 · · ·V T

k−m)H(0)
k (Vk−mVk−m+1 · · ·Vk−1)

+ρk−m(V T
k−1 · · ·V T

k−m+1)sk−msT
k−m(Vk−m+1 · · ·Vk−1)

+ρk−m+1(V T
k−1 · · ·V T

k−m+2)sk−m+1s
T
k−m+1(Vk−m+2 · · ·Vk−1)

+ · · ·
+ρk−1sk−1s

T
k−1. (5.7.5)

It follows from the above expression that if we know pairs {si, yi}(i = k −
m, k −m + 1, · · · , k − 1), we can compute Hk. In fact, we need not compute
and save Hk explicitly, instead, we only save the pairs {si, yi} and compute
Hkgk, where gk is the gradient of f at xk. So, we have

Hkgk = (V T
k−1 · · ·V T

k−m)H(0)
k (Vk−mVk−m+1 · · ·Vk−1)gk

+ρk−m(V T
k−1 · · ·V T

k−m+1)sk−msT
k−m(Vk−m+1 · · ·Vk−1)gk

+ρk−m+1(V T
k−1 · · ·V T

k−m+2)sk−m+1s
T
k−m+1(Vk−m+2 · · ·Vk−1)gk

+ · · ·
+ρk−1sk−1s

T
k−1gk. (5.7.6)

Since
Vigk = (I − ρiyis

T
i)gk, i = k − 1, k − 2, · · · , k −m,

we have the following algorithm to compute Hkgk.

Download more at Learnclax.com

294 CHAPTER 5. QUASI-NEWTON METHODS

Algorithm 5.7.1 (L-BFGS two-loop recursion for Hkgk)

Step 1. q := gk;

Step 2. for i = k − 1, k − 2, · · · , k −m
αi := ρis

T
i q;

q := q − αiyi;
end (for)

Step 3. r := H
(0)
k q;

Step 4. for i = k −m, k −m + 1, · · · , k − 1
β := ρiy

T
i r;

r := r + si(αi − β)
end (for) �

By use of the above algorithm, we obtain r = Hkgk. A choice of H
(0)
k is

H
(0)
k =

sT
k yk

‖yk‖2
I. (5.7.7)

The limited memory BFGS algorithm can be stated as follows.

Algorithm 5.7.2 (L-BFGS Method)

Step 1. Given a starting point x0 ∈ Rn, an initial symmetric and
positive definite matrix H0 ∈ Rn×n, a nonnegative integer
m ≥ 0, an error tolerance ε > 0, k := 0.

Step 2. Compute gk = ∇f(xk). If ‖gk‖ ≤ ε, we take x∗ = xk, stop;
otherwise, compute dk = −Hkgk from Algorithm 5.7.1.

Step 3. Find a step size αk > 0 by using Wolfe rule.

Step 4. Set xk+1 = xk + αkdk.

Step 5. If k > m, discard the vector pairs {sk−m, yk−m} from stor-
age;
Set sk = xk+1 − xk, yk = gk+1 − gk;

Take H
(0)
k = sT

k yk

‖yk‖2 I.

Step 6. k := k + 1 and go to Step 2. �

Download more at Learnclax.com

5.7. LIMITED MEMORY BFGS METHOD 295

The above L-BFGS algorithm is equivalent to the usual BFGS algorithm
if the initial matrix H0 is the same in both algorithms, and if H

(0)
k = H0

at each iteration. Normally, for large-scale problems, we take m � n. In
practice, the choice of m is dependent on the dimension of the problem and
the storage of employed computer. Usually, we take 3 ≤ m ≤ 30.

In the following, we establish the convergence and convergence rate of
L-BFGS method.

Lemma 5.7.3 Let f(x) be a twice continuously differentiable and uniformly
convex function, i.e., there exist 0 < m ≤ M such that

m‖u‖2 ≤ uT G(x)u ≤ M‖u‖2, ∀x ∈ L(x0), u ∈ Rn, (5.7.8)

where G(x) = ∇2f(x) and L(x0) = {x | f(x) ≤ f(x0)}. Then

‖y‖
‖sk‖

≤ M,
‖sk‖2
sT
k yk

≤ 1
m

,
‖yk‖2
sT
k yk

≤ M. (5.7.9)

Proof. 1) Let Ḡ =
∫ 1
0 G(xk + τsk)dτ . Then

yk = gk+1 − gk =
∫ 1

0
G(xk + τsk)skdτ = Ḡsk. (5.7.10)

Taking the norm, then we obtain

‖yk‖ ≤ ‖sk‖
∫ 1

0
‖G(xk + τsk)‖dτ. (5.7.11)

From the assumptions, it follows that L(x0) is a bounded, closed and convex
set, then xk + τsk ∈ L(x0). Then ‖G(xk + τsk)‖ ≤ M . Thus we have that
‖yk‖ ≤ M‖sk‖ which is the first conclusion in (5.7.9).

2) By use of (5.7.10), we have that

sT
k yk =

∫ 1

0
sT
k G(xk + τsk)skdτ ≥ m‖sk‖2, (5.7.12)

which means
‖sk‖2
sT
k yk

≤ 1
m

.

Download more at Learnclax.com

296 CHAPTER 5. QUASI-NEWTON METHODS

3) Since yk = Ḡsk, then

‖yk‖2
sT
k yk

=
yT

k yk

sT
k yk

=
sT
k Ḡ

1
2 ḠḠ

1
2 sk

sT
k Ḡ

1
2 Ḡ

1
2 sk

=
γT

k Ḡγk

γT
k γk

≤ M, (5.7.13)

where γk = Ḡ
1
2 sk. �

Theorem 5.7.4 Let f(x) be a twice continuously differentiable and uni-
formly convex function. Then the iterative sequence {xk} generated from
L-BFGS Algorithm 5.7.2 converges to the unique minimizer x∗ of f(x).

Proof. From Lemma 5.7.3, we have

‖sk‖2
sT
k yk

≤ M,
‖yk‖2
sT
k yk

≤ M. (5.7.14)

Then
‖Vk‖ ≤ 1 + M. (5.7.15)

Let m̄ = min{k, m}. Without loss of generality, we assume that ‖H(0)
k ‖ ≤

M . Then by (5.7.5) and (5.7.14)-(5.7.15) we get

‖Hk‖ ≤ M(1 + M)2m̄ +
m̄∑

j=1

M(1 + M)2(m̄−j)

≤ M(1 + M)2m̄(m̄ + 1). (5.7.16)

On the other hand, write B
(0)
k = (H(0)

k)−1. From (5.7.4) we have

B
(j+1)
k = B

(j)
k −

B
(j)
k sk−m̄+js

T
k−m̄+j(B

(j)
k)T

sT
k−m̄+jB

(j)
k sk−m̄+j

+
yk−m̄+jy

T
k−m̄+j

yT
k−m̄+jsk−m̄+j

, j = 0, 1, m̄−1.

Then
B

(m̄)
k = Bk = H−1

k .

Since Tr(xyT) = xT y for x, y ∈ Rn and Tr(A + B) =Tr(A)+Tr(B) for
n× n matrices A and B, then it follows from (5.7.14) that

Tr(B(j+1)
k) = Tr(B(j)

k)− ‖B(j)
k sk−m̄+j‖2

sT
k−m̄+jB

(j)
k sk−m̄+j

+
‖yk−m̄+j‖2

yT
k−m̄+jsk−m̄+j

≤ Tr(B(j)
k) + M. (5.7.17)

Download more at Learnclax.com

5.7. LIMITED MEMORY BFGS METHOD 297

Repeatedly applying (5.7.17) m̄ times, and using (5.7.7) and (5.7.14), we
obtain that

Tr(Bk) = Tr(B(m̄)
k) ≤ Tr(B(0)

k) + m̄M

= Tr((H(0)
k)−1) + m̄M

≤ (n + m̄)M. (5.7.18)

Let the eigenvalues of Bk be 0 < λ1 ≤ · · · ≤ λn, then the eigenvalues of
Hk are

0 <
1
λn
≤ 1

λn−1
≤ · · · ≤ 1

λ1
.

By use of the property of the Rayleigh quotient and Tr(Bk) =
∑n

j=1 λj , we
obtain

cos θk =
−dT

k gk

‖dk‖‖gk‖
=

gT
k Hkgk

‖Hkgk‖‖gk‖

≥ ‖gk‖2/λn

‖Hk‖‖gk‖2
=

1
λn‖Hk‖

≥ 1
Tr(Bk)‖Hk‖

. (5.7.19)

Then, it follows from (5.7.16) and (5.7.18) that there is a ρ > 0 such that

cos θk ≥ ρ (5.7.20)

holds for all k. This implies that there is µ̄ > 0 such that

θk ≤
π

2
− µ̄, ∀k. (5.7.21)

The assumptions of the theorem and Theorem 1.3.19 indicate that the
level L(x0) is bounded, closed and convex. Then, the continuous function
∇f(x) exists and is uniformly continuous on L(x0). Noting that αk is deter-
mined by Wolfe rule, then we obtain, by Theorem 2.5.5 and (5.7.21), that
the sequence {xk} converges to the unique minimizer x∗ of f(x). �

Next, we establish the convergence rate of L-BFGS method.

Lemma 5.7.5 Let f(x) be a twice continuously differentiable and uniformly
convex function. Then

f(x)− f(x∗) ≤ 1
m
‖g(x)‖2. (5.7.22)

Download more at Learnclax.com

298 CHAPTER 5. QUASI-NEWTON METHODS

Proof. Since f(x) is a convex function, for any x ∈ Rn we have

f(x)− f(x∗) ≤ g(x)T (x− x∗) ≤ ‖g(x)‖‖x− x∗‖. (5.7.23)

Note that

g(x) = g(x)− g(x∗) =
∫ 1

0
G(x∗ + τ(x− x∗))(x− x∗)dτ. (5.7.24)

Writing Ḡ =
∫ 1
0 G(x∗ + τ(x− x∗))dτ , then we have

g(x) = Ḡ(x− x∗). (5.7.25)

By use of (5.7.8), we get

m‖x− x∗‖2 ≤ (x− x∗)T Ḡ(x− x∗) ≤ (x− x∗)T g(x)
≤ ‖x− x∗‖‖g(x)‖, (5.7.26)

that is
‖x− x∗‖ ≤ ‖g(x)‖/m. (5.7.27)

Substituting (5.7.27) into (5.7.23) gives (5.7.22). �

Lemma 5.7.6 Let f(x) be a twice continuously differentiable and uniformly
convex function. Let xk+1 = xk + αkdk, where αk is determined by Wolfe
rule. Then

c1‖gk‖ cos θk ≤ ‖sk‖ ≤ c2‖gk‖ cos θk (5.7.28)

and

f(xk+1)− f(x∗) ≤ (1− ρmc1 cos2 θk)[f(xk)− f(x∗)], (5.7.29)

where c1 = (1 − σ)/M, c2 = 2(1 − ρ)/m, ρ and σ are defined by Wolfe rule,
θk is an angle between dk and −gk.

Proof. From (5.7.9) we have that

yT
k sk

‖sk‖2
≤ ‖yk‖‖sk‖

‖sk‖2
=
‖yk‖
‖sk‖

≤ M. (5.7.30)

By using Wolfe rule, we have that

yT
k sk = gT

k+1sk − gT
k sk ≥ −(1− σ)gT

k sk. (5.7.31)

Download more at Learnclax.com

5.7. LIMITED MEMORY BFGS METHOD 299

Then the above expressions give

‖sk‖2 ≥
yT

k sk

M
≥ −1− σ

M
gT
k sk =

1− σ

M
‖gk‖‖sk‖ cos θk,

that is
‖sk‖ ≥

1− σ

M
‖gk‖ cos θk. (5.7.32)

We obtain the left-hand side inequality of (5.7.28).
By Taylor expression and Wolfe rule, we have that

gT
k sk +

1
2
sT
k G(ξk)sk = f(xk+1)− f(xk) ≤ ρgT

k sk, (5.7.33)

where ξk lies between xk and xk+1. Then

sT
k G(ξk)sk ≤ −2(1− ρ)gT

k sk. (5.7.34)

Since L(x0) is a bounded, closed and convex set, ξk ∈ L(x0). Then we have
that

m‖sk‖2 ≤ sT
k G(ξk)sk. (5.7.35)

The inequalities (5.7.34) and (5.7.35) yield

‖sk‖ ≤
2(1− ρ)

M
‖gk‖ cos θk,

which is the right-hand side of (5.7.28).
Finally, we prove (5.7.29). By using Wolfe rule and (5.7.28), we have that

f(xk+1)− f(xk) ≤ ρgT
k sk = −ρ‖gk‖‖sk‖ cos θk

≤ −ρc1‖gk‖2 cos2 θk. (5.7.36)

From Lemma 5.7.5, we have

‖gk‖2 ≥ m[f(xk)− f(x∗)]. (5.7.37)

So, we can substitute (5.7.37) into (5.7.36) to obtain that

f(xk+1)− f(xk) ≤ −ρmc1 cos2 θk[f(xk)− f(x∗)], (5.7.38)

which gives result (5.7.29) by subtracting f(x∗) from both sides. �

Download more at Learnclax.com

300 CHAPTER 5. QUASI-NEWTON METHODS

Theorem 5.7.7 Let f(x) be a twice continuously differentiable and uni-
formly convex function. Assume that the iterative sequence {xk} generated
by L-BFGS Algorithm 5.7.2 converges to the unique minimizer x∗ of f(x).
Then the rate of convergence is at least R-linear.

Proof. From (5.7.29) we have

f(xk+1)− f(x∗) ≤ δ(f(xk)− f(x∗)),

where δ ∈ (0, 1). Also, since f(x) is a uniformly convex function, there are
0 < m1 ≤ M1 such that

m1‖u‖2 ≤ uT G(x)u ≤ M1‖u‖2, ∀x ∈ L(x0), u ∈ Rn. (5.7.39)

By using Taylor expression of f(xk) at x∗ and (5.7.39), we obtain that

f(xk)− f(x∗) ≥ m1

2
‖xk − x∗‖2. (5.7.40)

Hence

‖xk − x∗‖ ≤
√

2
m1

(f(xk)− f(x∗))
1
2

≤
√

2
m1

δ
1
2 (f(xk−1)− f(x∗))

1
2

≤ · · ·

≤
√

2
m1

(δ
1
2)k(f(x0)− f(x∗))

1
2 . (5.7.41)

The above inequality shows that the sequence {xk} is R-linearly convergent.
�

This theorem indicates that L-BFGS method often converges slowly, which
leads to a relatively large number of function evaluations. Also, it is inef-
ficient on highly ill-conditioned optimization problems. Though there are
some weaknesses, L-BFGS method is a main choice for large-scale problems
in which the true Hessian is not sparse, because, in this case, it may outper-
form other rival algorithms. For further details of L-BFGS method, please
consult Liu and Nocedal [200] and Nash and Nocedal [228].

Download more at Learnclax.com

5.7. LIMITED MEMORY BFGS METHOD 301

At the end of this section, we mension a memoryless BFGS formula. For
BFGS formula (5.7.1) and (5.7.3), if we set Hk = I at each iteration, we have

Hk+1 = V T
k Vk + ρksks

T
k (5.7.42)

=

(
I − sky

T
k

sT
k yk

)(
I − yks

T
k

sT
k yk

)
+

sks
T
k

sT
k yk

. (5.7.43)

The above formula satisfies quasi-Newton condition and positive definite-
ness, and is called the memoryless BFGS formula. Obviously, if m = 1
and H

(0)
k = I,∀k, the limited memory BFGS method is just the memoryless

BFGS method.

Exercises

1. Using DFP method minimize the Rosenbrock function in Appendix
1.1 and the Extended Rosenbrock function in Appendix 1.2.

2. Using BFGS method minimize the Extended Rosenbrock function in
Appendix 1.2 and the Powell singular function in Appendix 1.4.

3. State the properties of DFP and BFGS formulas and their relations.

4. Prove that if f is strong convex, yT
k sk > 0 holds.

5. Prove that HBFGS
k+1 given by (5.1.49) is the unique solution of problem

(5.1.79).

6. Prove Theorem 5.2.1.

7. State the properties of Broyden class and Huang class, and their rela-
tions.

8. Prove Theorem 5.4.3.

9. Describe the motivation of self-scaling strategy in variable metric meth-
ods by observing DFP method.

10. Do programming of L-BFGS algorithm in §5.9 in MATLAB or FOR-
TRAN.

Download more at Learnclax.com

Download more at Learnclax.com

Chapter 6

Trust-Region Methods and
Conic Model Methods

6.1 Trust-Region Methods

6.1.1 Trust-Region Methods

The basic idea of Newton’s method is to approximate the objective function
f(x) around xk by choosing a quadratic model of the form

q(k)(s) = f(xk) + gT
k s +

1
2
sT Gks,

where gk = ∇f(xk) and Gk = ∇2f(xk), and use the minimizer sk of q(k)(s) to
modify xk,

xk+1 = xk + sk.

However, this method can only guarantee the local convergence, i.e., when
s is small enough, the method is convergent locally. In Chapter 2, we have
introduced line search approaches which guarantee the method is convergent
globally. Line search approaches use the quadratic model to generate a search
direction and then find a suitable stepsize α along the direction. Although
it is successful at most time, it does not use sufficiently the n-dimensional
quadratic model. The other disadvantage is that the Newton’s method can-
not be used if the Hessian matrices are not positive definite.

In this section the other class of global approaches is introduced, which
is called the trust-region method. It not only replaces line search to get

Download more at Learnclax.com

304 CHAPTER 6. TRUST-REGION AND CONIC MODEL METHODS

the global convergence, but also circumvents the difficulty caused by non-
positive definite Hessian matrices in line search. Besides, it produces more
significant reduction in objective value f than line search approaches. In the
trust-region method, we first define a region around the current iterate

Ωk = {x : ‖x− xk‖ ≤ ∆k},

where ∆k is the radius of Ωk, in which the model is trusted to be adequate
to the objective function. And then we choose a step to be the approximate
minimizer of the quadratic model in the trust-region, i.e., such that xk + sk

is the approximately best point on the generalized sphere

{xk + s | ‖s‖ ≤ ∆k}

with center xk and radius ∆k. If the step is not acceptable, we reduce the size
of the trust-region and find a new minimizer. This method retains the rapid
local convergence rate of Newton’s method and quasi-Newton method, but
also has ideal global convergence. Since the step is restricted by the trust-
region, it is also called the restricted step method. The model subproblem
of the trust-region method is

min q(k)(s) = f(xk) + gT
k s +

1
2
sT Bks

s.t. ‖s‖ ≤ ∆k, (6.1.1)

where ∆k > 0 is the trust-region radius, Bk is symmetric and approximate to
the Hessian Gk. Normally, we use l2 norm ‖ ·‖2 so that sk is the minimizer of
q(k)(s) in the ball of radius ∆k. Other norms can also be used, however, the
different norms define the different shapes of the trust-region. In (6.1.1), if we
set Bk = Gk, the method is said to be a Newton-type trust-region method.

How to choose ∆k at each iteration? In general, when there is good
agreement between the model q(k)(s) and the objective function value f(xk +
s), one should select ∆k as large as possible. Let

Aredk = f(xk)− f(xk + sk) (6.1.2)

which is called the actual reduction, and let

Predk = q(k)(0)− q(k)(sk) (6.1.3)

Download more at Learnclax.com

6.1. TRUST-REGION METHODS 305

which is called the predicted reduction. Define the ratio

rk =
Aredk

Predk
, (6.1.4)

which measures the agreement between the model function q(k) and the ob-
jective function f . This ratio rk plays an important role in selecting new
iterate xk+1 and updating the trust-region radius ∆k. If rk is close to 1, it
means there is good agreement, and we can expand the trust-region for the
next iteration; if rk is close to zero or negative, we shrink the trust-region;
otherwise, we do not alter the trust-region. The following is the trust-region
algorithm.

Algorithm 6.1.1 (Trust-Region Algorithm)

Step 1. Given initial point x0, ∆̄, ∆0 ∈ (0, ∆̄), ε ≥ 0, 0 < η1 ≤ η2 < 1
and 0 < γ1 < 1 < γ2, k := 0.

Step 2. If ‖gk‖ ≤ ε, stop.

Step 3. Approximately solve the subproblem (6.1.1) for sk.

Step 4. Compute f(xk + sk) and rk. Set

xk+1 =

{
xk + sk, if rk ≥ η1,
xk, otherwise.

Step 5. If rk < η1, then ∆k+1 ∈ (0, γ1∆k];
If rk ∈ [η1, η2), then ∆k+1 ∈ [γ1∆k, ∆k];
If rk ≥ η2 and ‖sk‖ = ∆k, then ∆k+1 ∈ [∆k,min{γ2∆k, ∆̄}].

Step 6. Generate Bk+1, update q(k), set k := k + 1, go to Step 2.
�

In the above algorithm, ∆̄ is an overall bound for all ∆k. The iterations
for which rk ≥ η2 and thus for which ∆k+1 ≥ ∆k, are said to be very
successful iterations; the iterations for which rk ≥ η1 and thus for which
xk+1 = xk + sk, are said to be successful iterations; otherwise the iterations
for which rk < η1 and thus for which xk+1 = xk, are said to be unsuccessful
iterations. Sometimes, the iterations in the first two cases are said to be
successful iterations.

Download more at Learnclax.com

306 CHAPTER 6. TRUST-REGION AND CONIC MODEL METHODS

We like to point out some choices of the parameters, for instance, η1 =
0.01, η2 = 0.75, γ1 = 0.5, γ2 = 2, ∆0 = 1 or ∆0 = 1

10‖g0‖. However, the
algorithm is insensitive to their change. In addition, ∆k+1 can be selected by
polynomial interpolation. For example, if rk < 0.01, then ∆k+1 can be chosen
in an interval (0.01, 0.5)‖sk‖ on the basis of a polynomial interpolation. Also,
if we use quadratic interpolation, we have

λ =
−gT

k sk

2[f(xk + sk)− f(xk)− gT
k sk]

, (6.1.5)

and we set
∆k+1 = λ‖sk‖. (6.1.6)

Finally, to conclude this subsection, we give the characterization of the
solution of subproblem (6.1.1). For convenience, we drop the subscripts in
the following theorem.

Theorem 6.1.2 The vector s∗ is the solution of the subproblem

min f + gT s +
1
2
sT Bs (6.1.7)

s.t. ‖s‖2 ≤ ∆, (6.1.8)

if and only if there is a scalar λ∗ ≥ 0 such that

(B + λ∗I)s∗ = −g, (6.1.9)
‖s∗‖2 ≤ ∆, (6.1.10)
λ∗(∆− ‖s∗‖2) = 0, (6.1.11)

and (B + λ∗I) is positive semidefinite.

Proof. Let s∗ be the solution of subproblem (6.1.7)-(6.1.8). From the
optimality condition of constrained optimization (see Chapter 8), there exists
a multiplier λ∗ ≥ 0 such that (6.1.9)-(6.1.11) hold. We now need to prove
that the matrix (B + λ∗I) is positive semidefinite.

If ‖s∗‖2 < ∆, then λ∗ = 0 and s∗ is an unconstrained minimizer of q,
and thus B is positive semidefinite and furthermore (B + λ∗I) is positive
semidefinite.

If ‖s∗‖2 = ∆, it follows from the second-order necessary condition (see
§8.3) that

sT (B + λ∗I)s ≥ 0 (6.1.12)

Download more at Learnclax.com

6.1. TRUST-REGION METHODS 307

for all s satisfying sT s∗ = 0. If sT s∗ = 0, take t = −2sT s∗/‖s‖22, then
‖s∗ + ts‖2 = ∆. By the definition of s∗, we have

q(s∗ + ts) +
1
2
λ∗‖s∗ + ts‖22 ≥ q(s∗) +

1
2
λ∗‖s∗‖22. (6.1.13)

Developing q(·) yields

1
2
t2sT (B + λ∗I)s ≥ −t(sT [g + (B + λ∗I)s∗]). (6.1.14)

By using (6.1.9) we get that the right-hand side of (6.1.14) is equal to zero.
Then the above inequality indicates that

sT (B + λ∗I)s ≥ 0

for all s with sT s∗ = 0. Therefore, B + λ∗I is positive semidefinite.
Conversely, assume that there is λ∗ ≥ 0 such that s∗ satisfies (6.1.9)-

(6.1.11) and that B + λ∗I is positive semidefinite. Then, for all s satisfying
‖s‖2 ≤ ∆, we have

q(s) = f(x) + gT s +
1
2
sT (B + λ∗I)s− 1

2
λ∗‖s‖22

≥ f(x) + gT s∗ +
1
2
(s∗)T (B + λ∗I)s∗ − 1

2
λ∗‖s‖22

= q(s∗) +
1
2
λ∗[‖s∗‖22 − ‖s‖22].

By use of (6.1.11), we have that λ∗(∆2 − (s∗)T s∗) = 0. So, the above in-
equality becomes

q(s) ≥ q(s∗) +
1
2
λ∗[(‖s∗‖22 −∆2) + (∆2 − ‖s‖22)]

= q(s∗) +
1
2
λ∗[∆2 − ‖s‖2].

Thus, from λ∗ ≥ 0 and ‖s‖2 ≤ ∆, we immediately have

q(s) ≥ q(s∗),

which implies s∗ is the solution of (6.1.7)-(6.1.8). �

If (B + λ∗I) is singular, we refer to this case as the hard case. In this
case, d∗ has the form

d∗ = −(B + λ∗I)+g + v, (6.1.15)

Download more at Learnclax.com

308 CHAPTER 6. TRUST-REGION AND CONIC MODEL METHODS

where (B + λ∗I)+ denotes the generalized inverse of (B + λ∗I), and v is a
vector in null space of (B + λ∗I).

Assume that (B + λ∗I) is positive definite, then d∗ can be obtained by
solving

λ[∆− ‖(B + λI)−1g‖2] = 0, (6.1.16)
‖(B + λI)−1g‖2 ≤ ∆, λ ≥ 0 (6.1.17)

for λ∗ and then setting

d∗ = −(B + λ∗I)−1g.

If B is positive definite and ‖B−1g‖2 < ∆, then d∗ = −B−1g simply. Other-
wise, λ∗ > 0. We need to solve

ψ(λ) =
1

‖(B + λI)−1g‖2
− 1

∆
= 0. (6.1.18)

We consider solving ψ(λ) = 0, instead of solving ∆ − ‖(B + λI)−1g‖2 = 0,
because ψ(λ) is nearly linear in the considered range. By direct computation,
we have

ψ′(λ) =
gT H(λ)−3g

‖H(λ)−1g‖32
, (6.1.19)

ψ′′(λ) = −3gT H(λ)−4g

‖H(λ)−1g‖32
[1− cos2(〈H(λ)−1g, H(λ)−2g〉)], (6.1.20)

where H(λ) = B +λI. Therefore, for the most negative eigenvalue λ1 < 0, if
λ > −λ1, ψ(λ) is strictly increasing and concave. So, Newton’s method can
be used to solve (6.1.18), that is,

λ+ = λ− ψ(λ)
ψ′(λ)

= λ− 1
gT (B+λI)−3g
‖(B+λI)−1g‖3

2

[
1

‖(B + λI)−1g‖2
− 1

∆

]
. (6.1.21)

6.1.2 Convergence of Trust-Region Methods

In order to discuss the convergence of trust-region methods, we first give
some assumptions and technical lemmas.

Download more at Learnclax.com

6.1. TRUST-REGION METHODS 309

We assume that the approximate Hessians Bk are uniformly bounded in
norm, and that the level set

{x | f(x) ≤ f(x0)} (6.1.22)

is bounded, on which the function f : Rn → R is continuously differentiable.
For generality, we also allow the length of the approximate solution sk of the
subproblem (6.1.1) to exceed the trust-region bound, provided that it stays
within a fixed multiple of the bound, that is

‖sk‖ ≤ η̃∆k, (6.1.23)

where η̃ is a positive constant. The above assumptions are said to be As-
sumption (A0).

For trust-region algorithm, in general, we do not seek an accurate solution
of subproblem (6.1.1) but we are content with a nearly optimal solution of
(6.1.1). Strong theoretical and numerical results can be obtained if the step
sk produced by Algorithm 6.1.1 satisfies

qk(0)− qk(sk) ≥ β1‖gk‖2 min
{

∆k,
‖gk‖2
‖Bk‖2

}
, (6.1.24)

where β1 ∈ (0, 1]. Below, we show that the Cauchy point sc
k satisfies (6.1.24)

with β1 = 1
2 and that the exact solution sk of the subproblem (6.1.1) satisfies

(6.1.24) with β1 = 1
2 . If sk is an approximate solution of the subproblem

(6.1.1) with q(k)(0)−q(k)(sk) ≥ β2(q(k)(0)−q(k)(sc
k)), then it satisfies (6.1.24)

with β1 = 1
2β2.

Lemma 6.1.3 Let sk be the solution of (6.1.1), let ‖ · ‖ = ‖ · ‖2, then

Predk = q(k)(0)− q(k)(sk)

≥ 1
2
‖gk‖2 min

{
∆k,

‖gk‖2
‖Bk‖2

}
. (6.1.25)

Proof. By the definition of sk, for all α ∈ [0, 1], we have

q(k)(0)− q(k)(sk) ≥ q(k)(0)− q(k)(−α
∆k

‖gk‖2
gk)

= α∆k‖gk‖2 −
1
2
α2∆2

kg
T
k Bkgk/‖gk‖22

≥ α∆k‖gk‖2 −
1
2
α2∆2

k‖Bk‖2. (6.1.26)

Download more at Learnclax.com

310 CHAPTER 6. TRUST-REGION AND CONIC MODEL METHODS

Therefore we must have

Predk ≥ max
0≤α≤1

[α∆k‖gk‖2 −
1
2
α2∆2

k‖Bk‖2]

≥ 1
2
‖gk‖2 min

{
∆k,

‖gk‖2
‖Bk‖2

}
. � (6.1.27)

The Cauchy point of the subproblem (6.1.1) can be defined by

q(k)(sc
k) = min{q(k)(s) | s = τsG

k , ‖s‖ ≤ ∆k}, (6.1.28)

where sG
k solves a linear version of subproblem (6.1.1):

min f(xk) + gT
k s

s.t. ‖s‖ ≤ ∆k. (6.1.29)

Obviously, the solution of (6.1.29) is

sG
k = − ∆k

‖gk‖2
gk.

Therefore, the Cauchy point of the subproblem (6.1.1) can be expressed as

sc
k = τks

G
k = −τk

∆k

‖gk‖2
gk, (6.1.30)

where

τk =

{
1 if gT

k Bkgk ≤ 0;
min{‖gk‖32/(∆kg

T
k Bkgk), 1} otherwise.

(6.1.31)

In fact, if gT
k Bkgk ≤ 0, the function q(k)(sc

k) = q(k)(τsG
k) decreases monotoni-

cally with τ when gk = 0. Therefore, we can take τ as large as possible within
‖τsG

k ‖ ≤ ∆k. In this case, by use of (6.1.30) and ‖τsG
k ‖ ≤ ∆k, we have that

τk = 1. If gT
k Bkgk > 0, q(k)(τsG

k) is a convex and quadratic function in τ .
Then, by minimizing q(k)(τsG

k), we obtain that τk equals ‖gk‖32/(∆kg
T
k Bkgk),

or the boundary value 1.

Lemma 6.1.4 The Cauchy point sc
k satisfies

q(k)(0)− q(k)(sc
k) ≥

1
2
‖gk‖2 min

{
∆k,

‖gk‖2
‖Bk‖2

}
. (6.1.32)

Download more at Learnclax.com

6.1. TRUST-REGION METHODS 311

Proof. Consider first the case of gT
k Bkgk ≤ 0. In this case, it follows from

(6.1.31) that τk = 1, and we have

q(k)(0)− q(k)(sc
k) = −q(k)

(
− ∆k

‖gk‖2
gk

)

= ∆k‖gk‖2 −
1
2
∆2

kg
T
k Bkgk/‖gk‖22

≥ ∆k‖gk‖2

≥ ‖gk‖2 min
{

∆k,
‖gk‖2
‖Bk‖2

}
. (6.1.33)

Consider the case of gT
k Bkgk > 0 and

‖gk‖3
∆kg

T
k Bkgk

≤ 1. (6.1.34)

In this case, τk = ‖gk‖3/(∆kg
T
k Bkgk), and we have

q(k)(0)− q(k)(sc
k) =

‖gk‖42
gT
k Bkgk

− 1
2
gT
k Bkgk

‖gk‖42
(gT

k Bkgk)2

=
1
2
‖gk‖42

gT
k Bkgk

≥ 1
2
‖gk‖22
‖Bk‖2

≥ 1
2
‖gk‖2 min

{
∆k,

‖gk‖2
‖Bk‖2

}
. (6.1.35)

Consider the case of gT
k Bkgk > 0 and

‖gk‖32
∆kg

T
k Bkgk

> 1. (6.1.36)

In this case, τk = 1, and by use of (6.1.36) we have

q(k)(0)− q(k)(sc
k) = ∆k‖gk‖2 −

1
2
∆2

kg
T
k Bkgk/‖gk‖22

≥ ∆k‖gk‖2 −
1
2

∆2
k

‖gk‖22
‖gk‖32
∆k

=
1
2
∆k‖gk‖2

≥ 1
2
‖gk‖2 min

{
∆k,

‖gk‖2
‖Bk‖2

}
. (6.1.37)

Download more at Learnclax.com

312 CHAPTER 6. TRUST-REGION AND CONIC MODEL METHODS

The above discussion of three cases gives the result (6.1.32). �

Usually, we assume that sk is an approximate solution of the subproblem
(6.1.1) and satisfies

q(k)(0)− q(k)(sk) ≥ β2(q(k)(0)− q(k)(se
k)), (6.1.38)

where se
k is an exact solution of subproblem (6.1.1) and β2 ∈ (0, 1] is a

constant. Since q(k)(se
k) ≤ q(k)(sc

k), we immediately have

q(k)(0)− q(k)(sk) ≥ β2(q(k)(0)− q(k)(sc
k)), (6.1.39)

where sc
k = −τk

∆k
‖gk‖2

gk with 0 ≤ τk ≤ 1 is a Cauchy point. So, we immedi-
ately have

Lemma 6.1.5 Let sk be an approximate solution of (6.1.1) and satisfy (6.1.38)
or (6.1.39). Then

Predk = q(k)(0)− q(k)(sk)

≥ 1
2
β2‖gk‖2 min

{
∆k,

‖gk‖2
‖Bk‖2

}
, (6.1.40)

where β2 ∈ (0, 1].

Next, in order to prove the global convergence theorem, we give some
technical lemmas.

Lemma 6.1.6 Let Assumption (A0) hold. We have

|f(xk + sk)− q(k)(sk)| ≤
1
2
M‖sk‖2 + C(‖sk‖)‖sk‖, (6.1.41)

where C(‖sk‖) is arbitrarily small by restricting the size of sk.

Proof. By Taylor’s theorem,

f(xk + sk) = f(xk) + gT
k sk +

∫ 1

0
[∇f(xk + tsk)−∇f(xk)]T skdt.

Also,

q(k)(sk) = f(xk) + gT
k sk +

1
2
sT
k Bksk.

Then

|f(xk + sk)− q(k)(sk)| = |1
2
sT
k Bksk −

∫ 1

0
[∇f(xk + tsk)−∇f(xk)]T skdt|

≤ 1
2
M‖sk‖2 + C(‖sk‖)‖sk‖. �

Download more at Learnclax.com

6.1. TRUST-REGION METHODS 313

Lemma 6.1.7 Assume that Assumption (A0) holds. Suppose that ‖gk‖2 ≥
ε > 0 and that ∆k is smaller than some threshold ∆̃. Then the k-th iteration
is a very successful iteration which satisfies ∆k+1 ≥ ∆k.

Proof. By Lemma 6.1.5 and the assumptions,

Predk = q(k)(0)− q(k)(sk)

≥ 1
2
β2‖gk‖2 min

{
∆k,

‖gk‖2
‖Bk‖2

}

≥ 1
2
β2ε min

{
∆k,

ε

M

}
. (6.1.42)

From Algorithm 6.1.1, by use of (6.1.41), (6.1.42) and (6.1.23), we have

|rk − 1| =

∣∣∣∣∣(f(xk)− f(xk + sk))− (q(k)(0)− q(k)(sk))
q(k)(0)− q(k)(sk)

∣∣∣∣∣
=

∣∣∣∣∣f(xk + sk)− q(k)(sk)
q(k)(0)− q(k)(sk)

∣∣∣∣∣
≤

1
2M‖sk‖2 + C(‖sk‖)‖sk‖

1
2β2ε min{∆k, ε/M}

≤ η̃∆k(Mη̃∆k + 2C(‖sk‖))
β2ε min{∆k, ε/M} . (6.1.43)

Since ∆k is smaller than some threshold ∆̃, we may choose ∆̃ to be small
enough such that

∆k ≤ ∆̃ ≤ ε/M, Mη̃∆k + 2C(‖sk‖) ≤ (1− η2)β2ε/η̃,

so we have rk ≥ η2. It follows from Algorithm 6.1.1 that ∆k+1 ≥ ∆k. �

This lemma indicates that if the current iterate is not a first-order sta-
tionary point and the trust-region radius ∆k is small enough, then we always
have ∆k+1 ≥ ∆k and the iteration is very successful. Now we are in a position
to give the global convergence theorem.

First, we consider the case when there are only finitely many successful
iterations.

Theorem 6.1.8 Under Assumption (A0), if Algorithm 6.1.1 has finitely many
successful iterations, then the algorithm converges to the first-order stationary
point.

Download more at Learnclax.com

314 CHAPTER 6. TRUST-REGION AND CONIC MODEL METHODS

Proof. Since the algorithm has only finitely many successful iterations,
then, for sufficiently large k, the iteration is unsuccessful. Thus, the sequence
{∆k} from the algorithm converges to zero.

Suppose that k0 is the index of the last successful iteration. If ‖gk0+1‖ > 0,
it follows from Lemma 6.1.7 that there must be a very successful iteration of
index larger than k0, which satisfies ∆k0+1+1 > ∆k0+1. This is a contradiction
to the assumption. The contradiction proves our theorem. �

Next, we only need to restrict our attention to the case where there are
infinitely many successful iterations.

Theorem 6.1.9 Let Assumption (A0) hold. If Algorithm 6.1.1 has infinitely
many successful iterations, then the sequence of Algorithm 6.1.1 satisfies

lim inf
k→∞

‖gk‖ = 0. (6.1.44)

Proof. Assume, by contradiction, that there is ε > 0 and a positive index
K such that

‖gk‖ ≥ ε for all k ≥ K.

From Algorithm 6.1.1 and Lemma 6.1.5, it follows for successful iterations
that

f(xk)− f(xk+1) ≥ η1[q(k)(0)− q(k)(sk)]

≥ 1
2
η1β2‖gk‖2 min

[
∆k,

‖gk‖2
‖Bk‖2

]

≥ 1
2
η1β2ε min

[
∆k,

ε

β

]
, (6.1.45)

where β = max{1+‖Bk‖2} is an upper bound of the Hessian approximation.
So,

f(x0)− f(xk+1) =
∑

j=0,j∈S
[f(xj)− f(xj+1)]

≥ 1
2
σkη1β2ε min

[
∆k,

ε

β

]
,

where σk is a number of successful iterations till the k-th iteration with

lim
k→∞

σk = +∞,

and S is an index set of successful iterations.

Download more at Learnclax.com

6.1. TRUST-REGION METHODS 315

Since f is bounded below, it follows from the above inequality that

lim
k→∞

∆k = 0, (6.1.46)

contradicting the conclusion of Lemma 6.1.7. �

Now we give a stronger result on the convergence which is for all limit
points.

Theorem 6.1.10 Suppose that Assumption (A0) holds. Then

lim
k→∞

gk = 0. (6.1.47)

Proof. Assume, by contradiction, that the conclusion does not hold, then
there is a subsequence of successful iterations such that

‖gti‖ ≥ 2ε > 0 (6.1.48)

for some ε > 0 and for all i.
Theorem 6.1.9 guarantees that, for each i, there exists a first successful

iteration l(ti) > ti such that ‖gl(ti)‖ < ε. We denote li
∆= l(ti). Thus, there

exists another subsequence {li} such that

‖gk‖ ≥ ε for ti ≤ k < li and ‖gli‖ < ε. (6.1.49)

Since

f(xk)− f(xk+1) ≥ η1[q(k)(0)− q(k)(sk)]

≥ 1
2
η1β2ε min[∆k, ε/β], (6.1.50)

it follows from the monotonically decreasing and the bounded below of the
sequence {f(xk)} that

lim
k→∞

∆k = 0. (6.1.51)

Then
∆k ≤

2
η1β2ε

[f(xk)− f(xk+1)] (6.1.52)

which implies that for i sufficiently large,

‖xti − xli‖ ≤
li−1∑
j=ti

‖xj − xj+1‖ ≤
li−1∑
j=ti

∆j

≤ 2
η1β2ε

[f(xti)− f(xli)]. (6.1.53)

Download more at Learnclax.com

316 CHAPTER 6. TRUST-REGION AND CONIC MODEL METHODS

From the fact that the right-hand side converges to zero, we get

‖xti − xli‖ → 0, when i→∞,

which deduces from continuity of gradient that

‖gti − gli‖ → 0,

which contradicts (6.1.49), because (6.1.49) implies that ‖gti − gli‖ ≥ ε. The
contradiction proves our conclusion. �

6.1.3 Solving A Trust-Region Subproblem

The Dogleg Method and The Double Dogleg Method

An efficient implementation to solve the trust-region subproblem is the
so-called dogleg method which was presented by Powell [260]. To find an
approximate solution of the subproblem (6.1.1), i.e., to find xk+1 = xk + sk

such that ‖sk‖ = ∆k, Powell used a path consisting of two line segments to
approximate s. The first line segment runs from the origin to the Cauchy
point (a minimizer C.P. generated by the steepest descent method); the sec-
ond line segment runs from the Cauchy point C.P. to the Newton point (the
minimizer xN

k+1 generated by Newton method or quasi-Newton method). Let
xk+1 be the intersection point of the path and the trust-region boundary. Ob-
viously, ‖xk+1 − xk‖ = ∆k. When the Newton step sN

k satisfies ‖sN
k ‖ ≤ ∆k,

the new iterate xk+1 is just the Newton point, xk+1 = xN
k+1 = xk −B−1

k gk.
Dennis and Mei [90] found that if the point generated by trust-region

iteration is biased towards the Newton direction, the behavior of the algo-
rithm will be further improved. Then we choose a point N̂ on the Newton
direction, and connect the Cauchy point C.P. to N̂ . The intersection point
of the connection line and the trust-region boundary is taken as the new it-
erate xk+1 (see x

(2)
k+1 in Figure 6.1.1). Comparatively, x

(2)
k+1 is more biased to

the Newton direction than x
(1)
k+1. We say xk → C.P. → xN

k+1 as dogleg, and
xk → C.P.→ N̂ → xN

k+1 as double dogleg.

Download more at Learnclax.com

6.1. TRUST-REGION METHODS 317

Figure 6.1.1 Dogleg method and double dogleg method

For quadratic model

q(k)(xk − αgk) = f(xk)− α‖gk‖22 +
1
2
α2gT

k Bkgk,

the exact line search factor αk has the obvious representation

αk =
‖gk‖22

gT
k Bkgk

.

Then the step along the steepest descent direction is

sc
k = −αkgk = − gT

k gk

gT
k Bkgk

gk. (6.1.54)

If ‖sc
k‖2 = ‖αkgk‖2 ≥ ∆k, we take

sk = − ∆k

‖gk‖2
gk (6.1.55)

and
xk+1 = xk −

∆k

‖gk‖2
gk (6.1.56)

which lies at the intersection of the negative gradient and the trust-region
boundary. If ‖sc

k‖2 < ∆k and ‖sN
k ‖2 > ∆k, we take

sk(λ) = sc
k + λ(sN

k − sc
k), 0 ≤ λ ≤ 1,

and thus

xk+1 = xk + sk(λ) = xk + sc
k + λ(sN

k − sc
k), 0 ≤ λ ≤ 1, (6.1.57)

Download more at Learnclax.com

318 CHAPTER 6. TRUST-REGION AND CONIC MODEL METHODS

where the value λ is obtained by solving the equation

‖sc
k + λ(sN

k − sc
k)‖2 = ∆k.

Otherwise, take
sk = sN

k = −B−1
k gk. (6.1.58)

Combining (6.1.56), (6.1.57) and (6.1.58) yields

xk+1 =

⎧⎪⎨
⎪⎩

xk − ∆k
‖gk‖2

gk, when ‖sc
k‖2 ≥ ∆k,

xk + sc
k + λ(sN

k − sc
k), when ‖sc

k‖2 < ∆k and ‖sN
k ‖2 > ∆k,

xk −B−1
k gk, when ‖sc

k‖2 < ∆k and ‖sN
k ‖2 ≤ ∆k,

(6.1.59)
where 0 ≤ λ ≤ 1.

The following theorem demonstrates the property possessed by the dogleg
method and the double dogleg method. In the following, as an example, we
only consider the double dogleg method.

Theorem 6.1.11 In the double dogleg method,

1. The distance from xk to C.P., to N̂ , is increasing monotonically.

2. The model value q(k)(xk +s) is decreasing monotonically when the point
moves from xk to C.P., to N̂ , and to xN

k+1.

Proof. (1) Since

‖sc
k‖ = ‖ − αkgk‖ = ‖gk‖32/gT

k Bkgk

≤ ‖gk‖32
gT
k Bkgk

‖gk‖2‖B−1
k gk‖2

gT
k B−1

k gk

=
‖gk‖42

(gT
k Bkgk)(gT

k B−1
k gk)

‖sN
k ‖2

∆= γ‖sN
k ‖2, (6.1.60)

it follows from Kantorovich inequality (3.1.33) that γ ≤ 1 and then

‖sc
k‖2 ≤ γ‖sN

k ‖2 ≤ ‖sN
k ‖2. (6.1.61)

Take N̂ being
xN̂ = xk − ηB−1

k gk = xk + ηsN
k , (6.1.62)

Download more at Learnclax.com

6.1. TRUST-REGION METHODS 319

where
γ ≤ η ≤ 1. (6.1.63)

Thus
‖xc − xk‖2 ≤ ‖xN̂ − xk‖2 ≤ ‖xN

k+1 − xk‖2 (6.1.64)

which shows the property (1) holds.
(2) It is enough to prove that q(k)(xk + s) decreases monotonically when

the point moves from the point C.P. to the point N̂ . In fact,

xk+1(λ) = xk + sc
k + λ(ηsN

k − sc
k), 0 ≤ λ ≤ 1. (6.1.65)

The direction derivative of q(k) at xk+1(λ) is

∇q(k)(xk+1(λ))T (ηsN
k − sc

k)
= (gk + Bks

c
k)

T (ηsN
k − sc

k) + λ(ηsN
k − sc

k)
T Bk(ηsN

k − sc
k). (6.1.66)

When Bk is positive definite, the right-hand side of (6.1.66) is a monotone
increasing function of λ. Therefore, in order to make the above equality
negative when 0 ≤ λ ≤ 1, it is enough to ask the above equality to be
negative when λ = 1, i.e.,

(gk + Bks
c
k)

T (ηsN
k − sc

k) + λ(ηsN
k − sc

k)Bk(ηks
N
k − sc

k) < 0.

Developing and using Bks
N
k = −gk, the above inequality is equivalent to

0 > (1− η)(gT
k (ηsN

k − sc
k)) = (1− η)(γ − η)(gT

k B−1
k gk). (6.1.67)

Obviously, it is satisfied when γ < η < 1. Therefore the second property
holds. �

In summary, the double dogleg method chooses the point N̂ which is
defined by

xk+1 = xk + ηsN
k , η ∈ [γ, 1]. (6.1.68)

When η = 1, the point N̂ is just the Newton point xN
k+1 and the double

dogleg step is just the dogleg step. Generally, we take η = 0.8γ + 0.2.
After generating the points C.P. and N̂ , we find xk+1(λ) by (6.1.65), such

that
‖sc

k + λ(ηsN
k − sc

k)‖22 = ∆2
k, (6.1.69)

Download more at Learnclax.com

320 CHAPTER 6. TRUST-REGION AND CONIC MODEL METHODS

which is a one-dimensional root-finding problem and can be solved by New-
ton’s method. If xk+1(λ) obtained satisfies the descent requirement

f(xk+1(λ)) ≤ f(xk) + ρgT
k (xk+1(λ)− xk), ρ ∈ (0,

1
2
), (6.1.70)

xk+1(λ) will be accepted as new iterate xk+1, and the trust-region will be
updated by Step 4 in Algorithm 6.1.1; if xk+1(λ) does not satisfy (6.1.70),
then set xk+1 := xk.

Steihaug-CG Method

The methods for solving the trust-region subproblem described above
require the solution of a linear system. When the problem is large, the
operation may be quite costly. Steihaug [322] proposed a technique based
on a preconditioned and truncated conjugate gradient method and trust-
region method, which solves the trust-region subproblem approximately. This
method is usually called Steihaug-CG method. Since it was independently
proposed by Toint [341], it is also called the Steihaug-Toint method.

Consider a scaled trust-region subproblem

min q(s) = gT s +
1
2
sT Bs (6.1.71)

s.t. ‖s‖W ≤ ∆, (6.1.72)

(we drop the subscripts here for simplicity) where W is a symmetric and
positive definite matrix. Steihaug applied the preconditioned conjugate gra-
dient method (PCG) to subproblem (6.1.71)–(6.1.72), and considered three
possible termination rules. Firstly, if dT

k Bdk > 0, the method corresponds to
the convex interior solution. Secondly, if dT

k Bdk ≤ 0, we meet a direction of
negative curvature. In this case, we move to the trust-region boundary along
the line sk +τdk with τ > 0 so that ‖sk +τdk‖W = ∆. Finally, if the solution
lies outside the trust-region, we ask that the new point be on the boundary.

The Steihaug-CG algorithm for trust-region subproblem is as follows.

Algorithm 6.1.12 (Steihaug-CG Algorithm for TR Subproblem)

Step 0. Given ε > 0. Let s0 = 0, g0 = g, v0 = W−1g0, d0 = −v0.
If ‖g0‖ < ε, set s = s0, stop;
For j = 0, 1, · · · , perform the following steps:

Download more at Learnclax.com

6.1. TRUST-REGION METHODS 321

Step 1. If dT
j Bdj ≤ 0, compute τ > 0 so that ‖sj + τdj‖W = ∆,

set s = sj + τdj,
stop;
End if

Step 2. Set αj = gT
j vj/dT

j Bdj;
Set sj+1 = sj + αjdj;
If ‖sj+1‖W ≥ ∆, compute τ > 0 so that ‖sj + τdj‖W = ∆,
set s = sj + τdj,
stop;
End if

Step 3. Set gj+1 = gj + αjBdj;
If ‖gj+1‖W < ε‖g0‖W , set s = sj+1, stop;
End if

Step 4. Set
vj+1 = W−1gj+1,
βj = gT

j+1vj+1/gT
j vj,

dj+1 = −vj+1 + βjdj.

This method has some properties similar to the dogleg method. Next,
we state these properties. In the proof of the property theorem, we need the
following lemma which is easy.

Lemma 6.1.13 Assume dT
i Bdi = 0, then we have

gT
i dj = −gT

j vj , 0 ≤ i ≤ j, (6.1.73)

dT
i Wdj =

gT
j vj

gT
i vi

dT
i Wdi, 0 ≤ i ≤ j, (6.1.74)

q(si+1) = q(si)−
1
2

(gT
i vi)2

dT
i Bdi

. (6.1.75)

Proof. We can use the explicit formula for the steplength α and iterative
scheme of PCG to get the results. In fact, by gT

j dj−1 = 0 and the conjugacy
of dj and dj−1, we have

gT
j vj = gT

j (−dj + βj−1dj−1)

= −gT
j dj

Download more at Learnclax.com

322 CHAPTER 6. TRUST-REGION AND CONIC MODEL METHODS

= −(gj−1 + αj−1Bdj−1)T dj

= −gT
j−1dj

= · · ·
= −gT

i dj , i ≤ j

which shows (6.1.73).
Next, we prove (6.1.74).

dT
j Wdi = (−vj + βj−1dj−1)T Wdi

= −vT
j Wdi + βj−1d

T
j−1Wdi

= −gT
j di + βj−1d

T
j−1Wdi

= βj−1d
T
j−1Wdi.

By recurrence, we have

dT
j Wdi = βj−1βj−2 · · ·βid

T
i Wdi

=
gT
j vj

gT
i vi

dT
i Wdi

that shows (6.1.74).
For (6.1.75), it is a direct consequence of (4.3.40). �

Now we are in a position to state the properties of the Steihaug-CG
algorithm.

Theorem 6.1.14 Let ‖sj‖ be the iterates generated by PCG Algorithm 6.1.12.
Then q(sj) in (6.1.71) is strictly decreasing, i.e.,

q(sj+1) < q(sj). (6.1.76)

Further, ‖sj‖W is strictly increasing:

0 = ‖s0‖W < · · · < ‖sj‖W < ‖sj+1‖W < · · · < ‖s‖W ≤ ∆. (6.1.77)

Proof. We first prove (6.1.76). From (6.1.75), q(sj) is strictly decreasing.
Consider the last iterate s. If s = sj+1, then the result follows directly.

From (6.1.73) we have that

gT
j dj = −gT

j vj = −(Bsj + g)T W−1(Bsj + g) < 0,

Download more at Learnclax.com

6.1. TRUST-REGION METHODS 323

hence dj is a descent direction for q(sj). If dT
j Bdj > 0, then

q(sj) ≥ q(sj + τdj) ≥ q(sj+1), for 0 < τ ≤ αj .

Since τ ≤ αj , we have the desired result.
For dT

j Bdj ≤ 0, then the quadratic term is non-positive, and we have

q(sj) ≥ q(sj + τdj), for τ ≥ 0,

and the result follows.
Now we show that ‖sj‖W is strictly increasing and that (6.1.77) holds.

From Algorithm 6.1.12, we have

sj = s0 +
j−1∑
k=0

αkdk =
j−1∑
k=0

αkdk (6.1.78)

and
αk > 0, k = 0, 1, · · · , j − 1. (6.1.79)

Hence, by (6.1.78) and (6.1.74), we have

sT
j Wdj =

j−1∑
k=0

αkd
T
k Wdj > 0. (6.1.80)

Using (6.1.80) and (6.1.79) gives

sT
j+1Wsj+1 = sT

j Wsj + 2αjs
T
j Wdj + α2

jd
T
j Cdj ≥ sT

j Wsj (6.1.81)

which shows ‖sj‖W is strictly increasing.
If s = sj+1, then (6.1.77) follows directly. If the algorithm stops because

dT
j Bdj ≤ 0 or ‖sj+1‖W ≥ ∆, then the final iterate s is chosen on the bound-

ary, i.e., ‖s‖W = ∆, which is the largest possible length any iterate can have.
Therefore (6.1.77) is satisfied. �

Steihaug-CG method is used in Step 3 in Algorithm 6.1.1 for solving
the trust-region subproblem. The trust-region method with Steihaug-CG
technique is very useful for large-scale optimization problems.

About other techniques of solving subproblems, please consult Gay [144],
Moré and Sorensen [222], and Rendl and Wolkowicz [286].

Download more at Learnclax.com

324 CHAPTER 6. TRUST-REGION AND CONIC MODEL METHODS

6.2 Conic Model and Collinear Scaling Algorithm

6.2.1 Conic Model

The well-known quadratic model usually considered is

q(d) = f(xk) + gT
k d +

1
2
dT Bkd, (6.2.1)

where gk = ∇f(xk) and Bk is a symmetric matrix that is intended to ap-
proximate the Hessian matrix. The model (6.2.1) satisfies

q(0) = f(xk), ∇q(0) = ∇f(xk). (6.2.2)

In quasi-Newton method, the updates satisfy the quasi-Newton condition

Bk(xk − xk−1) = ∇f(xk)−∇f(xk−1), (6.2.3)

which is just the interpolation condition

∇q(−d) = ∇f(xk−1). (6.2.4)

Therefore, a secant method based on a quadratic model satisfies the three
interpolation conditions in (6.2.2) and (6.2.4). However, a quadratic function
simply does not possess enough degrees of freedom to incorporate all of the
information in the iterative procedure. It often leads to poor prediction of
minimizer by these methods based on a quadratic model, especially for those
functions with strong non-quadratic behavior or severely changed curvature.

Davidon [82] proposed a new class of algorithm which is able to interpolate
richer information on functions and gradients. Such a model function is more
general than the quadratic model. This new model is called a conic model.
The new algorithm is called a conic model algorithm or a collinear scaling
algorithm.

A smooth function is said to be conic if and only if it is a ratio of a
quadratic function to the square of an affine function.

Now, we consider the conic model function

c(d) = f(xk) +
gT
k d

1 + bT d
+

1
2

dT Akd

(1 + bT d)2
. (6.2.5)

Download more at Learnclax.com

6.2. CONIC MODEL AND COLLINEAR SCALING ALGORITHM 325

Its gradient is

∇c(d) =
(1 + bT d)gk − gT

k db

(1 + bT d)2
+

(1 + bT d)2Akd− (1 + bT d)dT Akdb

(1 + bT d)4

=
(1 + bT d)I − bdT

1 + bT d
· (1 + bT d)gk + Akd

(1 + bT d)2

=
1

1 + bT d

[
I − bdT

1 + bT d

] [
gk +

Akd

1 + bT d

]
. (6.2.6)

This gradient vanishes, ∇c(d) = 0, if and only if

gk +
Akd

1 + bT d
= 0. (6.2.7)

In this time, the conic model c(d) has minimizer which is by (6.2.7) that

d =
−A−1

k gk

1 + bT A−1
k gk

. (6.2.8)

Hence, if 1 + bT A−1
k gk = 0, then the desired minimizer is

xk+1 = xk −
A−1

k gk

1 + bT A−1
k gk

. (6.2.9)

In fact, an essential ingredient of a conic model is to construct a collinear
scaling

x(d)− x
∆= d̃ =

d

1 + bT d
(6.2.10)

or

d =
d̃

1− bT d̃
. (6.2.11)

In new variable d̃-space, the conic model (6.2.5) becomes a quadratic model

c(d̃) = f(xk) + gT
k d̃ +

1
2
d̃T Akd̃. (6.2.12)

Download more at Learnclax.com

326 CHAPTER 6. TRUST-REGION AND CONIC MODEL METHODS

6.2.2 Generalized Quasi-Newton Equation

By means of collinear scaling, Sorensen [315] derived the generalized quasi-
Newton equations that the conic model method satisfies.

Let collinear scaling be

x(w) = x +
Jw

1 + hT w
, (6.2.13)

where J ∈ Rn×m, h ∈ Rm, and w ∈ Rm. The local quadratic model to the
scaled objective function φ(w) = f(x(w)) has the form

ψ(w) = φ(0) + φ′(0)w +
1
2
wT Bw. (6.2.14)

Obviously,
φ′(w) = f ′(x(w))x′(w) (6.2.15)

with

x′(w) =
1

1 + hT w
J

[
I − whT

1 + hT w

]
. (6.2.16)

In terms of the objective function f and the matrix J in the collinear scaling,
the quadratic model has the form

ψ(w) = f(x) + f ′(x)Jw +
1
2
wT Bw. (6.2.17)

If B is positive definite, then the step v that solves

vT B = −f ′(x)J (6.2.18)

is a predicted minimizer of the scaled function φ(w). The step s from x to x̄
is

s =
Jv

1 + hT v
, (6.2.19)

so that x̄ = x(v) in (6.2.13).
Next, we develop the generalized quasi-Newton equations that the conic

model satisfies. Let x̄ be not an acceptable approximation to a local min-
imizer of f . Then we wish to update the collinear scaling and also the
quadratic model of the new scaled function

φ̄(w) = f(x̄(w)). (6.2.20)

Download more at Learnclax.com

6.2. CONIC MODEL AND COLLINEAR SCALING ALGORITHM 327

Here

x̄(w) = x̄ +
J̄w

1 + h̄T w
(6.2.21)

is a collinear scaling with barred quantities J̄ , h̄, x̄ replacing J, h, x in (6.2.13).
The corresponding new quadratic model of the new scaled function is

ψ̄(w) = φ̄(0) + φ̄′(0)w +
1
2
wT B̄w. (6.2.22)

For convenience of discussion, we write the derivatives as follows:

x̄′(w) =
(1 + h̄T w)J̄ − J̄wh̄T

(1 + h̄T w)2
, (6.2.23)

x̄′(0) = J̄ , (6.2.24)

x̄′(−v) =
(1− h̄T v)J̄ + J̄vh̄T

(1− h̄T v)2
, (6.2.25)

φ̄′(w) = f ′(x̄(w))x̄′(w), (6.2.26)
φ̄′(0) = f ′(x̄(0))x̄′(0) = f ′(x̄)J̄ , (6.2.27)
φ̄′(−v) = f ′(x̄(−v))x̄′(−v) = f ′(x)(J̄ + sh̄T)/γ, (6.2.28)
ψ̄′(w) = φ̄′(0) + wT B̄, (6.2.29)
ψ̄′(0) = φ̄(0) = f ′(x̄)J̄ , (6.2.30)
ψ̄′(−v) = φ̄′(0)− vT B̄ = f ′(x̄)J̄ − vT B̄, (6.2.31)

where
γ = 1 + h̄T (−v) = 1− h̄T v. (6.2.32)

Then, (6.2.22) can be written as

ψ̄(w) = f(x̄) +
∇f(x̄)T s̄

1− h̄T J̄−1s̄
+

1
2

s̄T J̄−T B̄J̄−1s̄

(1− h̄T J̄−1s̄)2
(6.2.33)

= f(x̄) + f ′(x̄)J̄w +
1
2
wT B̄w, (6.2.34)

where

s̄ = J̄w/(1 + h̄T w), (6.2.35)
w = J̄−1s̄/(1− h̄T J̄−1s̄). (6.2.36)

To update J, h, B to J̄ , h̄, B̄, we introduce the consistency condition

x̄(0) = x̄, x̄(−v) = x (6.2.37)

Download more at Learnclax.com

328 CHAPTER 6. TRUST-REGION AND CONIC MODEL METHODS

and the interpolation conditions:

ψ̄(0) = φ̄(0), ψ̄′(0) = φ̄′(0), (6.2.38)
ψ̄(−v) = φ̄(−v), ψ̄′(−v) = φ̄′(−v). (6.2.39)

From the consistency condition x̄(−v) = x, we have

x = x̄(−v) = x̄− J̄v/γ, (6.2.40)

that is
J̄v = γs, (6.2.41)

where s = x̄ − x. Obviously, conditions (6.2.38) are immediately met by
the quadratic model (6.2.22). Also, consider the interpolation conditions
(6.2.39); since

ψ̄(−v) = φ̄(0)− φ̄′(0)v +
1
2
vT B̄v

= f(x̄)− f ′(x̄)J̄v +
1
2
vT B̄v

= f(x̄)− γf ′(x̄)s +
1
2
vT B̄v

and
φ̄(−v) = f(x),

then the first equation of (6.2.39) becomes

f(x) = f(x̄)− γf ′(x̄)s +
1
2
vT B̄v. (6.2.42)

Similarly, it follows from (6.2.31) and (6.2.28) that the second equation of
(6.2.39) becomes

f ′(x)(J̄ + sh̄T)/γ = f ′(x̄)J̄ − vT B̄, (6.2.43)

that can be written as
B̄v = r, (6.2.44)

where

rT = φ̄′(0)− φ̄′(−v) = f ′(x̄)J̄ − f ′(x)(J̄ + sh̄T)/γ, (6.2.45)

which is the gradient difference of the scaled function.

Download more at Learnclax.com

6.2. CONIC MODEL AND COLLINEAR SCALING ALGORITHM 329

Then, we obtain a generalized quasi-Newton equation

B̄v = r, J̄v = γs, h̄T v = 1− γ, (6.2.46)

where r is defined by (6.2.45). In particular, when J̄ = I, h̄ = 0, γ = 1,
the generalized quasi-Newton equations reduce to the usual quasi-Newton
equation

B̄v = r. (6.2.47)

At this time, v = s = x̄− x and r = f ′(x̄)− f ′(x).
It remains to determine the choices of γ. By the second and the third

equations of (6.2.46), we have

(J̄ + sh̄T)v = s, (6.2.48)

so that
vT B̄v = rT v = (γf ′(x̄)− f ′(x)/γ)s ∆= yT s, (6.2.49)

where
y = γf ′(x̄)T − f ′(x)T /γ. (6.2.50)

Substituting the above into (6.2.42) gives

γ2f ′(x̄)s + 2γ[f(x)− f(x̄)] + f ′(x)s = 0. (6.2.51)

To make γ real, we must require

ρ2 ∆= (f(x̄)− f(x))2 − (f ′(x̄)s)(f ′(x)s) ≥ 0. (6.2.52)

If B̄ is to be positive definite, then we obtain

vT B̄v = 2ρ (6.2.53)

from (6.2.49) by taking

γ =
−f ′(x)s

f(x)− f(x̄) + ρ
(6.2.54)

=
f(x)− f(x̄) + ρ

−f ′(x̄)s
(6.2.55)

as the positive root of (6.2.51).
For the one-dimensional case, the corresponding conic model iteration is

as follows.

Download more at Learnclax.com

330 CHAPTER 6. TRUST-REGION AND CONIC MODEL METHODS

Algorithm 6.2.1 (Conic Model Algorithm for One-dimensional Case)

Step 0. Given x1, s1, evaluate f1, f
′
1 at x1;

Step k. for k = 1, 2, · · ·

Step k.1 set xk+1 = xk + sk;

Step k.2 evaluate fk+1, f
′
k+1;

Step k.3 set ρk = ((fk − fk+1)2 − (f ′
ksk)(f ′

k+1sk))
1
2 ;

γk = −f ′
ksk/(fk − fk+1 + ρk);

Step k.4 sk+1 = sk/[(1/γ3
k)(f ′

k/f ′
k+1)− 1]. �

6.2.3 Updates that Preserve Past Information

Based on the generalized quasi-Newton equations and other criteria, we can
obtain some updates about J, h, and B.

Let W be the linear span of previous scaled search directions and let
W̄ = span{W, v}. Then a natural requirement is that

φ̄(w − v) = φ(w), ∀w ∈ N0 ⊂ W, (6.2.56)

where N0 = {w ∈ W : 1 + hT w > 0}. Condition (6.2.56) immediately leads
to the requirement

x̄(w − v) = x(w), ∀w ∈ N0 ⊂ W. (6.2.57)

Since x̄(−v) = x and x̄(0) = x̄, it follows that

x̄(w − v) = x̄(0) +
J̄(w − v)

h̄T (w − v) + 1

= x +
J̄v

γ
+

J̄(w − v)
h̄T w + γ

(by (6.2.46)(iii))

= x +
J̄v(h̄T w/γ) + J̄w

h̄T w + γ

= x +
(J̄ + sh̄T)w
h̄T w + γ

(by (6.2.46)(ii)). (6.2.58)

Download more at Learnclax.com

6.2. CONIC MODEL AND COLLINEAR SCALING ALGORITHM 331

By (6.2.57) and (6.2.58), we have

x +
(J̄ + sh̄T)w
h̄T w + γ

= x(w) = x +
Jw

hT w + 1
. (6.2.59)

Set w = αp, p ∈ N0 ⊂ W, α ∈ [0, 1]. Matching the coefficients of α on both
sides of (6.2.59) yields

(J̄ + sh̄T)p = γJp, h̄T p = γhT p

for every p ∈ N0. Then we obtain

(J̄ + sh̄T)w = γJw (6.2.60)

and
h̄T w = γhT w, ∀w ∈ W. (6.2.61)

Since
s =

Jv

hT v + 1
,

then (6.2.60) becomes

(J̄ + γshT)w = γJw, ∀w ∈ W,

that is
J̄ = γ(J − shT) (6.2.62)

satisfying J̄v = γs as well as (6.2.60). The equation (6.2.62) is an update
about J .

Next, we discuss the update about h. Note that h̄ satisfies

h̄T w = γhT w, h̄T v = 1− γ. (6.2.63)

Now let Q be an orthogonal projector on W and P = I −Q. Let

h̄ = Qc + Pd, (6.2.64)

where c and d are arbitrary vectors. Multiplying (6.2.64) by wT gives

γhT w = h̄T w = wT Qc = cT w,

then we take c = γh. Further, multiplying (6.2.64) by vT yields

1− γ = h̄T v = γvT Qh + vT Pd. (6.2.65)

Download more at Learnclax.com

332 CHAPTER 6. TRUST-REGION AND CONIC MODEL METHODS

Then

h̄T v = 1− γ = γvT Qh +
1− γ − γvT Qh

vT Pd
vT Pd. (6.2.66)

Hence, we take
h̄ = γQh + Pd (6.2.67)

or

h̄ = γQh +
1− γ − γvT Qh

vT Pd
Pd (6.2.68)

as long as vT Pd = 0. So, we obtain the updates about h.
By use of (6.2.27) and (6.2.28), it follows from (6.2.60) that

φ̄′(−v)w =
f ′(x)

γ
(J̄ + sh̄T)w

=
f ′(x)

γ
· γJw

= f ′(x)Jw

= φ′(0)w. (6.2.69)

To update the Hessian of the quadratic model of a scaled function, the
following requirements are imposed:

ψ̄(w − v) = ψ(w), (6.2.70)
ψ̄′(w − v)q = ψ′(w)q, (6.2.71)

for all w, q ∈ W. Condition (6.2.70) implies that

φ̄(0) + φ̄′(0)(w − v) +
1
2
(w − v)T B̄(w − v) = φ(0) + φ′(0)w +

1
2
wT Bw

for all w ∈ W. Arranging it gives[
φ̄(0)− φ̄′(0)v +

1
2
vT B̄v − φ(0)

]
+ [φ̄′(0)− φ′(0)− vT B̄]w

+
1
2
wT (B̄ −B)w = 0, ∀w ∈ W.

The first term vanishes identically due to (6.2.42), and the second term van-
ishes due to (6.2.60) and (6.2.43). Therefore, we have

wT (B̄ −B)w = 0,∀w ∈ W. (6.2.72)

Download more at Learnclax.com

6.2. CONIC MODEL AND COLLINEAR SCALING ALGORITHM 333

Similarly, condition (6.2.71) implies

[φ̄′(0) + (w − v)T B̄]q = [φ′(0) + wT B]q,

that is

[φ̄′(0)− φ′(0)− vT B̄]q + wT (B̄ −B)q = 0, ∀w, q ∈ W.

The first bracket in the left-hand side of the above equation vanishes due to
(6.2.60) and (6.2.43). Then we also get

wT (B̄ −B)q = 0, ∀w, q ∈ W. (6.2.73)

Hence, the above discussion shows that if and only if

wT (B̄ −B)q = 0, ∀w, q ∈ W, (6.2.74)

both (6.2.70) and (6.2.71) are satisfied.
Consequently, the required update satisfies

B̄v = r, wT (B̄ −B)q = 0, ∀w, q ∈ W. (6.2.75)

The above can be written as

B̄ = UQ(B, v, r)

=

{
B̄

∣∣∣∣∣ B̄v = r,QT (B̄ −B)Q = 0, B̄ symmetric,
Q is an orthogonal projector in W.

}
. (6.2.76)

Here the update class coming from additional requirements (6.2.70)-(6.2.71)
is bigger than the update class due to Schnabel [299]:

{
B̄ | B̄v = r, (B̄ −B)w = 0, ∀w ∈ W, B̄ symmetric

}
.

Also, the update (6.2.75) includes the optimal conditioning update due to
Davidon [80].

From the above discussion, we have obtained a class of updates:

J̄ = γ(J − shT), (6.2.77)

h̄ = γQh +
1− γ − γvT Qh

vT Pd
Pd, (6.2.78)

wT (B̄ −B)q = 0, ∀w, q ∈ W. (6.2.79)

Download more at Learnclax.com

334 CHAPTER 6. TRUST-REGION AND CONIC MODEL METHODS

6.2.4 Collinear Scaling BFGS Algorithm

Sorensen [315] developed a collinear scaling BFGS algorithm without projec-
tions. That is, in (6.2.77)–(6.2.79) we take P = I and Q = 0. Further, we
take

d = J̄T g, s = x̄− x, y = γḡ − g/γ.

Then we obtain the following updating formulas:

J̄ = γ(J − shT), (6.2.80)

h̄ =
(

1− γ

γgT s

)
J̄T g, (6.2.81)

H̄ = H +
v(v −Hr)T

vT r
+

(v −Hr)vT

vT r
− rT (v −Hr)

(vT r)2
vvT , (6.2.82)

which is called a collinear scaling BFGS formula for updating the inverse
Hessian approximation H, where H = B−1 and H̄ = B̄−1.

Further, denote
C = JHJT , C̄ = J̄H̄J̄T . (6.2.83)

Using (6.2.80), (6.2.81) and (6.2.45), we have

r = J̄T ḡ − 1
γ

(J̄T + h̄sT)g = J̄T ḡ − 1
γ

(J̄T +
1− γ

γ
J̄T)g

= J̄T ḡ − 1
γ2

J̄T g = (J − shT)T y. (6.2.84)

Thus

J̄

(
I − vrT

vT r

)
= γ(J − shT)− γs(JT y − hsT y)T

sT y
= γ

(
I − syT

sT y

)
J. (6.2.85)

Equation (6.2.85) allows us to obtain

C̄ = γ2

[(
I − syT

sT y

)
C

(
I − ysT

sT y

)
+

ssT

sT y

]
. (6.2.86)

So, instead of updating J and H, we only need to update C.
By (6.2.21), the scaled direction is

sk+1 =
1

1 + hT
k+1vk+1

Jk+1vk+1 (note vk+1 = −Hk+1J
T
k+1gk+1)

Download more at Learnclax.com

6.2. CONIC MODEL AND COLLINEAR SCALING ALGORITHM 335

=
−Jk+1Hk+1J

T
k+1gk+1

1− (1− γk)gT
k Jk+1Hk+1J

T
k+1gk+1/(γkg

T
k sk)

∆=
−Jk+1Hk+1J

T
k+1gk+1

1 + δk+1

∆= −θk+1Ck+1gk+1. (6.2.87)

Hence, we obtain the iterative scheme

xk+1 = xk − θkCkgk, (6.2.88)

where

θk = 1/(1 + δk),
δk = −(1− γk−1)gT

k−1Ckgk/(γk−1g
T
k−1sk−1),

Ck = U(Ck−1, sk−1, yk−1).

In the following, we give a description of the algorithm.

Algorithm 6.2.2 (Collinear Scaling BFGS Algorithm)

Step 1. Initialize C0 positive definite, x0, δ0, αmax > 0. Compute
f0, g0. Set k = 0.

Step 2. If δk < 0, set ᾱ = min(αmax,−1/δk), else ᾱ := αmax.
Do line search for the function

φ(α) ∆= f

(
xk −

α

1 + αδk
Ckgk

)

and find αk ∈ (0, ᾱ). Set

sk = − αk

1 + αkδk
Ckgk,

xk+1 = xk + sk,

fk+1 = f(xk+1), gT
k+1 = f ′(xk+1),

ρ2 = (fk − fk+1)2 − (gT
k+1sk)(gT

k sk),

such that ρ2 > 0 and fk+1 < fk.

Step 3. If “convergence” then stop.

Download more at Learnclax.com

336 CHAPTER 6. TRUST-REGION AND CONIC MODEL METHODS

Step 4. Compute

γk = −gT
k sk/(fk − fk+1 + ρ), yk = γkgk+1 − gk/γk,

Ck+1 = γ2
k [(I − sky

T
k /sT

k yk)Ck(I − yks
T
k /sT

k yk) + sks
T
k /sT

k yk],
δk+1 = −(1− γk)gT

k Ck+1gk+1/γkg
T
k sk.

Set k := k + 1, go to Step 2. �

Following the Broyden-Dennis-Moré convergence theory about quasi-Newton
methods, we can establish Q-superlinear convergence of the collinear scaling
BFGS algorithm, i.e.,

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖ = 0.

Furthermore, Di and Sun [101] propose a conic trust-region method for
unconstrained optimization.

Let x denote the current approximation of the minimizer and let

f = f(x), g = g(x) = ∇f(x). (6.2.89)

Then the conic trust-region model of f(x + s) is

min ψ(s) = f +
gT s

1− aT s
+

1
2

sT As

(1− aT s)2
, (6.2.90)

s.t. ‖Ds‖ ≤ ∆, (6.2.91)

where A ∈ Rn×n is the Hessian approximation at x, a ∈ Rn is a horizontal
vector such that 1 − aT s > 0, D is a scaling matrix and ∆ a trust-region
radius. The above subproblem can be written as

min f + gT Jw +
1
2
wT Bw (6.2.92)

s.t. s = Jw/(1 + hT w), ‖Ds‖ ≤ ∆. (6.2.93)

Di and Sun [101] discussed the necessary and sufficient condition of the so-
lution for the conic trust-region subproblem, presented an algorithm and
established the global and superlinear convergence. Besides, Zhu etc. [384]
discussed a quasi-Newton type trust-region method based on a conic model
for solving unconstrained optimization. Sun and Yuan [337], Sun, Yuan,
and Yuan [338] studied a conic trust-region algorithm for linear and nonlin-
ear constrained optimization respectively. About the topic of conic model
method, readers are referred also to Grandinetti [162], Ariyawansa [3], Sun
[333], Sheng [308], Han, Sun et al. [168].

Download more at Learnclax.com

6.3. TENSOR METHODS 337

6.3 Tensor Methods

The tensor method is also a generalization of the quadratic model method. In
fact, the tensor method is based on the third- or fourth-order model for opti-
mization problems, and intends to improve upon the efficiency and reliability
of standard methods on problem where ∇2f(x∗) is singular.

The tensor method was introduced by Schnabel and Frank [302] for solv-
ing systems of nonlinear equations and by Schnabel and Chow [301] for un-
constrained optimization, respectively. In this section, we will describe the
tensor methods for nonlinear equations and for unconstrained optimization.

6.3.1 Tensor Method for Nonlinear Equations

Let F : Rn → Rn. Consider solving nonlinear equations

F (x) = 0, (6.3.1)

that is to find x∗ ∈ Rn so that F (x∗) = 0. Newton’s method for (6.3.1) is
defined as

x+ = xc − F ′(xc)−1F (xc), (6.3.2)

when F ′(xc) is nonsingular, where xc and x+ denote the current and the next
iterate respectively. Newton’s method is based on the linear model at xc,

M(xc + d) = F (xc) + F ′(xc)d. (6.3.3)

As we know, the outstanding advantage of Newton’s method is its rapid
convergence, that is if F ′(xc) is Lipschitz continuous in the neighborhood of
x∗ and F ′(x∗) is nonsingular, then the sequence produced by (6.3.2) locally
and quadratically converges to x∗. This implies that there are δ > 0 and
c ≥ 0, such that when ‖x0 − x∗‖ ≤ δ, the iterative sequence {xk} satisfies

‖xk+1 − x∗‖ ≤ c‖xk − x∗‖2. (6.3.4)

However, if F ′(x∗) is singular, then the iterative sequence does not converge
rapidly. The tensor method described in this section will overcome the short-
coming, and we can see that the tensor method still has rapid convergence
when F ′(x∗) is singular.

Consider the second-order model

MT (xc + d) = F (xc) + F ′(xc)d +
1
2
Tcdd, (6.3.5)

Download more at Learnclax.com

338 CHAPTER 6. TRUST-REGION AND CONIC MODEL METHODS

where Tc ∈ Rn×n×n is a three-dimensional tensor. Usually, the (6.3.5) is
said to be a tensor model, and the corresponding method is called a tensor
method. To discuss the tensor method, we first give a definition concerning
these tensors.

Definition 6.3.1 Let T ∈ Rn×n×n. Then T consists of n horizontal faces
Hi ∈ Rn×n, i = 1, · · · , n, where Hi[j, k] = T [i, j, k]. For v, w ∈ Rn, we have
Tvw ∈ Rn with the i-th component

Tvw[i] = vT Hiw =
n∑

j=1

n∑
k=1

T [i, j, k]v[j]w[k]. (6.3.6)

Hence, the tensor model given in (6.3.5) is, in fact, an n-dimensional
vector in which each component is a quadratic model of the component of
F (x), i.e.,

(MT (xc + d))[i] = fi + gT
i d +

1
2
dT Hid, i = 1, · · · , n, (6.3.7)

where fi = F (xc)[i], gT
i is the i-th row of F ′(xc), and Hi the Hessian matrix

of the i-th component of F (x).
An obvious choice of Tc in (6.3.5) is F ′′(xc). However, the computational

amount is prohibitive, since, in each iteration, it needs to compute n3 second-
order partial derivatives of F ′′(xc), store over n3/2 elements, and solve n
quadratic equations in n unknowns. To overcome these drawbacks, the tensor
method constructs Tc in low-rank by using available information of function
values and first derivatives. So, the additional efforts are small related to the
standard method.

To construct Tc, we select p not necessarily consecutive past iterates
x−1, · · · , x−p and ask the model (6.3.5) to interpolate F (x) at these points,
i.e.,

F (x−k) = F (xc) + F ′(xc)sk +
1
2
Tcsksk, k = 1, · · · , p, (6.3.8)

where
sk = x−k − xc, k = 1, · · · , p. (6.3.9)

The selected directions {sk} are required to be strongly independent, i.e.,
make the angle between each direction sk and the subspace spanned by other
directions have at least θ degree. Values of θ between 20 and 40 degrees
have proven to be best in practice. This procedure is easily implemented by

Download more at Learnclax.com

6.3. TENSOR METHODS 339

using a modified Gram-Schmidt algorithm. Since directions {sk} are linearly
independent, then p ≤ n. In practice, one takes

p ≤
√

n.

Now we write (6.3.8) as

Tcsksk = zk, k = 1, · · · , p, (6.3.10)

where
zk = 2(F (x−k)− F (xc)− F ′(xc)sk). (6.3.11)

The (6.3.10) is a set of np ≤ n3/2 linear equations in n3 unknowns Tc[i, j, k],
1 ≤ i, j, k ≤ n. We choose the smallest symmetric Tc, in the Frobenius
norm, which satisfies the equations (6.3.10). Below, we choose Tc following
the technique for a secant update with the smallest change in quasi-Newton
methods (see Chapter 5).

First, we define the three-dimensional rank-one tensor.

Definition 6.3.2 Let u, v, w ∈ Rn. The tensor T ∈ Rn×n×n, for which

T [i, j, k] = u[i] · v[j] · w[k], (1 ≤ i, j, k ≤ n), (6.3.12)

is called a third-order rank-one tensor of T ∈ Rn×n×n and is denoted by

T = u⊗ v ⊗ w. (6.3.13)

Obviously, the i-th horizontal face of the rank-one tensor u ⊗ v ⊗ w is a
rank-one matrix u[i](vwT).

Theorem 6.3.3 Let p ≤ n. Let sk ∈ Rn, k = 1, · · · , p with {sk} linearly
independent, and let zk ∈ Rn, k = 1, · · · , p. Define M ∈ Rp×p by M [i, j] =
(sT

i sj)2, 1 ≤ i, j ≤ p, and define Z ∈ Rn×p with zk the k-th column, k =
1, · · · , p. Then M is positive definite, and the solution to

minTc∈Rn×n×n ‖Tc‖F (6.3.14)
s.t. Tcsksk = zk, k = 1, · · · p (6.3.15)

is

Tc =
p∑

k=1

(ak ⊗ sk ⊗ sk), (6.3.16)

where ak is the k-th column of A ∈ Rn×p and A = M−1Z.

Download more at Learnclax.com

340 CHAPTER 6. TRUST-REGION AND CONIC MODEL METHODS

Proof. Since the objective function and constraints can be decomposed
into n separate objective functions and constraints, then (6.3.14)-(6.3.15) are
equivalent to the following separate minimization problem

minHi∈Rn×n ‖Hi‖F (6.3.17)
s.t. sT

k Hisk = zk[i], k = 1, · · · , p, (6.3.18)

where Hi are the horizontal faces of Tc, i = 1, · · · , n. Note that the problem
(6.3.17)-(6.3.18) is a sub-determined set of p equations in n2 unknowns.

Let hi ∈ Rn2
,

hi = (Hi[1, 1], Hi[1, 2], · · · , Hi[1, n], Hi[2, 1], · · · ,
Hi[2, n], · · · , Hi[n, 1], · · · , Hi[n, n])T . (6.3.19)

Let S̄ ∈ Rp×n2
, the k-th row of S̄ is

s̄k = (sk[1]sT
k , sk[2]sT

k , · · · , sk[n]sT
k). (6.3.20)

Let also the i-th row of Z ∈ Rn×p be z̄i,

z̄i ∈ Rp, z̄i[k] = zk[i], 1 ≤ i ≤ n, 1 ≤ k ≤ p.

Then (6.3.17) is equivalent to

min
hi∈Rn2 ‖hi‖2 (6.3.21)

s.t. S̄hi = z̄T
i . (6.3.22)

Note that the {sk} are linearly independent, then S̄ is full row rank, and
hence the solution to (6.3.21)-(6.3.22) is

hi = S̄T (S̄S̄T)−1z̄T
i . (6.3.23)

Since M = S̄S̄T , then M is positive definite. Also,
⎡
⎢⎣

ā1
...

ān

⎤
⎥⎦ = A = M−1Z = (S̄S̄T)−1

⎡
⎢⎣

z̄1
...

z̄n

⎤
⎥⎦ . (6.3.24)

Hence the i-th row of A is

āi = (S̄S̄T
i)−1z̄i. (6.3.25)

Download more at Learnclax.com

6.3. TENSOR METHODS 341

Therefore (6.3.23) means
hi = S̄T āT

i . (6.3.26)

Note that here āi is the i-th row of A and ak is the k-th column of A, then

āi[k] = ak[i], 1 ≤ i ≤ n, 1 ≤ k ≤ p.

Then it follows from (6.3.26) that

hi =
p∑

k=1

āi[k]s̄T
k =

p∑
k=1

ak[i]s̄T
k , (6.3.27)

where s̄k is defined by (6.3.20) and the k-th row of S̄, the s̄T
k denotes a

transpose of s̄k and a column vector with n2 elements.
Returning to (6.3.27) in the terms of Hi and sk, and using (6.3.19) and

(6.3.20) give

Hi =
p∑

k=1

ak[i]sks
T
k . (6.3.28)

Finally, combining n matrices Hi gives the desired Tc in (6.3.16).
Substituting (6.3.16) into (6.3.5), the tensor model has the form

MT (xc + d) = F (xc) + F ′(xc)d +
1
2

p∑
k=1

ak(dT sk)2. (6.3.29)

In the above model, the simple form of the second-order term is a key to
efficiently find a minimizer of this model. In the tensor method, the additional
4pn storage are required to save {ak}, {sk}, {x−k} and {F (x−k)}. Additional
cost is n2p+O(np2) operations for computing A = M−1Z. Since p ≤ √n, this
is a very small additional cost, more than the cost of the standard quadratic
model method.

6.3.2 Tensor Methods for Unconstrained Optimization

In this subsection, we extend the tensor method to solving unconstrained
optimization problem

min
x∈Rn

f(x), f : Rn → R. (6.3.30)

Note that the standard quadratic model methods do not converge quickly if
the Hessian ∇2f(x∗) is singular. In this case, the convergence rate is linear

Download more at Learnclax.com

342 CHAPTER 6. TRUST-REGION AND CONIC MODEL METHODS

at best. Furthermore, the third derivatives do not supply information in the
direction where the second derivative matrix is lacking. Thus, adding an ap-
proximation to ∇3f(xc) alone will not lead to better-than-linear convergence.
Therefore, we consider employing the following fourth order tensor model

mT (xc+d) = f(xc)+∇f(xc) ·d+
1
2
∇2f(xc) ·d2+

1
6
Tc ·d3+

1
24

Vc ·d4, (6.3.31)

where Tc ∈ Rn×n×n, a three-dimensional tensor and Vc ∈ Rn×n×n×n, a four-
dimensional tensor, are symmetric. Equation (6.3.31) is called a tensor model
for unconstrained optimization; the methods based on (6.3.31) are referred
to tensor methods.

How to Choose Tc and Vc?
To select Tc and Vc, we select p not necessarily consecutive past iterates

x−1, · · · , x−p, and ask that the model (6.3.31) interpolate f(x) and ∇f(x) at
these points, i.e.,

f(x−k) = f(xc) +∇f(xc) · sk +
1
2
∇2f(xc) · s2

k +
1
6
Tc · s3

k

+
1
24

Vc · s4
k, (6.3.32)

∇f(x−k) = ∇f(xc) +∇2f(xc) · sk +
1
2
Tc · s2

k

+
1
6
Vc · s3

k, (6.3.33)

where sk = x−k − xc, k = 1, · · · , p. As in the previous subsection, the direc-
tions {sk} are strongly linearly independent. We also set p ≤ n1/3.

Multiplying (6.3.33) by sk gives

∇f(x−k) · sk = ∇f(xc) · sk +∇2f(xc) · s2
k +

1
2
Tc · s3

k +
1
6
Vc · s4

k. (6.3.34)

Define α, β ∈ Rp respectively by

α[k] = Tc · s3
k, (6.3.35)

β[k] = Vc · s4
k, (6.3.36)

where k = 1, · · · , p. Then (6.3.34) and (6.3.32) have the following form
respectively:

1
2
α[k] +

1
6
β[k] = q1[k], (6.3.37)

Download more at Learnclax.com

6.3. TENSOR METHODS 343

1
6
α[k] +

1
24

β[k] = q2[k], (6.3.38)

where

q1[k] = ∇f(x−k) · sk −∇f(xc) · sk −∇2f(xc) · s2
k, (6.3.39)

q2[k] = f(x−k)− f(xc)−∇f(xc) · sk −
1
2
∇2f(xc) · s2

k, (6.3.40)

for k = 1, 2, · · · , p. The system (6.3.37)-(6.3.38) is nonsingular, so each α[k]
and β[k] are uniquely determined. Thus, we can determine Vc by the mini-
mization problem

minVc∈Rn×n×n×n ‖Vc‖F

s.t. Vc · s4
k = β[k], k = 1, · · · , p. (6.3.41)

Vc symmetric.

We then substitute the obtained value of Vc into (6.3.33), obtaining

Tc · s2
k = ak, k = 1, · · · , p, (6.3.42)

where
ak = 2

(
∇f(x−k)−∇f(xc)−∇2f(xc) · sk −

1
6
V · s3

k

)
.

This is a set of np ≤ n4/3 linear equations in n3 unknowns Tc[i, j, k], 1 ≤
i, j, k ≤ n. Then we determine Tc by the minimization problem

minTc∈Rn×n×n ‖Tc‖F

s.t. Tc · s2
i = ai, i = 1, · · · , p (6.3.43)

Tc symmetric.

The following two theorems give the solutions of problems (6.3.41) and
(6.3.43).

Theorem 6.3.4 Let p ≤ n. Let sk ∈ Rn, k = 1, · · · , p with {sk} linearly
independent, and let β ∈ Rp. Define M ∈ Rp×p by M [i, j] = (sT

i sj)4, 1 ≤
i, j ≤ p. Define γ ∈ Rp by γ = M−1β. Then the solution to (6.3.41) is

Vc =
p∑

k=1

γ[k](sk ⊗ sk ⊗ sk ⊗ sk). (6.3.44)

Download more at Learnclax.com

344 CHAPTER 6. TRUST-REGION AND CONIC MODEL METHODS

Proof. Define v̂ ∈ Rn4
by

v̂T = (Vc[1, 1, 1, 1], Vc[1, 1, 1, 2], · · · , Vc[1, 1, 1, n],
Vc[1, 1, 2, 1], · · · , Vc[1, 1, 2, n], · · · , Vc[n, n, n, n]).

Let the matrix Ŝ ∈ Rp×n4
with the k-th row as

(sk[1])4, (sk[1])3(sk[2]), · · · , (sk[1])3(sk[n]), · · · , (sk[n])4.

Then, (6.3.41) is equivalent to

minv̂ ‖v̂‖2 (6.3.45)
s.t. Ŝv̂ = β, Vc symmetric, (6.3.46)

where Vc is the original form of v̂. Since {sk} are linearly independent, Ŝ has
full row rank. Hence, the solution to

minv̂ ‖v̂‖2 (6.3.47)
s.t. Ŝv̂ = β (6.3.48)

is
v̂ = ŜT (ŜŜT)−1β = ŜT M−1β = ŜT γ, (6.3.49)

where M = ŜŜT . By reversing the transformation from v̂ to Vc, we get
(6.3.44). Since Vc is symmetric, it is the solution of (6.3.41). �

Theorem 6.3.5 Let p ≤ n. Let sk ∈ Rn, k = 1, · · · , p with {sk} linearly
independent, and let ak ∈ Rn, k = 1, · · · , p. Then the solution to problem
(6.3.43) is

Tc =
p∑

k=1

(bk ⊗ sk ⊗ sk + sk ⊗ bk ⊗ sk + sk ⊗ sk ⊗ bk), (6.3.50)

where bk ∈ Rn, k = 1, · · · , p, and {bk} is the unique set of vectors for which
(6.3.50) satisfies

Tcs
2
i = ai, i = 1, · · · , p.

Proof. First, we show that the constraint set in (6.3.43) is feasible. Let
ti ∈ Rn, i = 1, · · · , p satisfy

tTi sj =

{
1, i = j,
0, i = j,

for j = 1, · · · , p.

Download more at Learnclax.com

6.3. TENSOR METHODS 345

Since {si} are linearly independent, such vectors ti can be obtained via a QR
factorization. Then

T =
p∑

i=1

(ti ⊗ ti ⊗ ai + ti ⊗ ai ⊗ ti + ai ⊗ ti ⊗ ti − 2(aT
i si)(ti ⊗ ti ⊗ ti))

is a feasible solution to (6.3.43).
Dennis and Schnabel [93] assume that the set of tensors Tj ∈ Rn×n×n is

generated by the following procedure: T0 = 0 and for j = 0, 1, · · · , T2j+1 is
the solution of

min ‖T2j+1 − T2j‖F (6.3.51)
s.t. T2j+1 · s2

i = ai, i = 1, · · · , p, (6.3.52)

and T2j+2 is the solution of

min ‖T2j+2 − T2j+1‖F (6.3.53)
s.t. T2j+2 symmetric. (6.3.54)

Then the sequence {Tj} has a limit which is the unique solution to (6.3.43).
(see the derivation of Powell symmetric Broyden update in §5.1).

Next, we show that this limit has form (6.3.50) for some set of vectors
{bk}, by showing that each T2j has this form.

Trivially, it is true for T0. Assume it is true for some j, i.e.,

T2j =
p∑

k=1

(uk ⊗ sk ⊗ sk + sk ⊗ uk ⊗ sk + sk ⊗ sk ⊗ uk) (6.3.55)

for some set of vectors uk. Then from Theorem 6.3.3, the solution to (6.3.51)-
(6.3.52) is

T2j+1 = T2j +
p∑

k=1

(vk ⊗ sk ⊗ sk)

for some set of vectors {vk}. Thus

T2j+2 = T2j +
1
3

p∑
k=1

(vk ⊗ sk ⊗ sk + sk ⊗ vk ⊗ sk + sk ⊗ sk ⊗ vk)

=
p∑

k=1

((
uk +

vk

3

)
⊗ sk ⊗ sk + sk ⊗

(
uk +

vk

3

)
⊗ sk

+sk ⊗ sk ⊗
(

uk +
vk

3

))
, (6.3.56)

Download more at Learnclax.com

346 CHAPTER 6. TRUST-REGION AND CONIC MODEL METHODS

which again has the form (6.3.55). Thus, by induction, the solution Tc must
have the form (6.3.50) for some set of vectors {bk}.

Finally, we show that the set of vectors {bk}, for which Tc given by (6.3.50)
satisfies

Tcs
2
i = ai, i = 1, · · · , p, (6.3.57)

is unique. This will mean that equations (6.3.50) and (6.3.57) uniquely deter-
mine the solution to (6.3.43). In fact, substituting (6.3.50) into (6.3.57) gives
a system of np linear equations in np unknowns, where the matrix is a func-
tion of {sk}, the unknowns are the elements of the {bk}, and the right-hand
side consists of the elements of the {ak}.

Since we have showed above that (6.3.43) is feasible for any {ak}, the
above derivation and the theory of Dennis-Schnabel [93] imply that for any
set {sk}, this linear system has at least one solution for any right-hand side.
Therefore, the linear system must be nonsingular and have a unique solution.
This means that the set of vectors {bk} is uniquely determined. �

Solving the Tensor Model
Substituting the values of Tc and Vc in (6.3.50) and (6.3.44) into the

tensor model (6.3.31) gives

mT (xc + d) = f(xc) +∇f(xc) · d +
1
2
∇2f(xc) · d2

1
2

p∑
k=1

(bT
k d)(sT

k d)2 +
1
24

p∑
k=1

γ[k](sT
k d)4

= f(xc) + gT d +
1
2
dT Hd

+
1
2

p∑
k=1

(bT
k d)(sT

k d)2 +
1
24

p∑
k=1

γ[k](sT
k d)4, (6.3.58)

where g = ∇f(xc), H = ∇2f(xc).
Let S ∈ Rn×p with k-th column sk. Let Z ∈ Rn×(n−p) and W ∈ Rn×p

have full column rank and satisfy ZT S = 0 and W T S = I, respectively. The
Z and W can be calculated through the QR factorization of S.

Write
d = Wu + Zt, (6.3.59)

where u ∈ Rp and t ∈ Rn−p. Substituting (6.3.59) into (6.3.58) gives

mT (xc + Wu + Zt) = f(xc) + gT Wu + gT Zt +
1
2
uT W T HWu

Download more at Learnclax.com

6.3. TENSOR METHODS 347

+uT W T HZt +
1
2
tT ZT HZt +

1
2

p∑
k=1

u[k]2(bT
k Wu + bT

k Zt)

+
1
24

p∑
k=1

γ[k]u[k]4, (6.3.60)

which is a quadratic with respect to t. Therefore, for the tensor model to
have a minimizer, ZT HZ must be positive definite and the derivative of the
model with respect to t must be 0, i.e.,

ZT g + ZT HZt + ZT HWu +
1
2
ZT

p∑
i=1

biu[i]2 = 0. (6.3.61)

Therefore

t = −(ZT HZ)−1ZT

(
g + HWu +

1
2

p∑
i=1

biu[i]2
)

. (6.3.62)

Substituting (6.3.62) into (6.3.60) reduces the problem of minimizing the
tensor model to finding a minimizer of

m̂T (u) = f + gT Wu +
1
2
uT W T HWu +

1
2

p∑
i=1

u[i]2(bT
i Wu)

+
1
24

p∑
i=1

γ[i]u[i]4 − 1
2

(
g + HWu +

1
2

p∑
i=1

biu[i]2
)T

·Z(ZT HZ)−1ZT

(
g + HWu +

1
2

p∑
i=1

biu[i]2
)

, (6.3.63)

which is a fourth-degree polynomial in u-variable. If (6.3.63) has a minimizer
u∗, then the minimizer of the original tensor model (6.3.58) is given by

d∗ = Wu∗ + Zt∗, (6.3.64)

where t∗ is determined by setting u = u∗ in (6.3.60).
In implementation we may employ line search or trust-region strategy. If

the obtained direction d∗ is a descent direction, but xc +d∗ is not acceptable,
we set x+ = xc + λd∗ where λ is a steplength factor. If (6.3.63) has no
minimizer, or d∗ is not in a descent direction, we find the next iterate by
using a line search algorithm based on the standard quadratic model.

Download more at Learnclax.com

348 CHAPTER 6. TRUST-REGION AND CONIC MODEL METHODS

Similarly, we can also use trust-region technique studied in §6.1. The
trust-region tensor model is

mind∈Rn mT (xc + d) (6.3.65)
s.t. ‖d‖2 ≤ ∆c, (6.3.66)

where ∆c ∈ R is the trust-region radius.
The tensor algorithm for unconstrained optimization is as follows.

Algorithm 6.3.6 (Tensor Method) Given xc, f(xc),∆c.

Step 1. Calculate ∇f(xc), and decide whether to stop. If not, go to
Step 2.

Step 2. Calculate ∇2f(xc).

Step 3. Select p past points from among the n1/3 most recent past
points.

Step 4. Calculate Tc and Vc.

Step 5. Find a potential acceptable next iterate xc +dT and a poten-
tial new trust-region radius ∆T by using the tensor model
and a trust-region technique.

Step 6. Find a potential acceptable next iterate xc +dN and a poten-
tial new trust-region radius ∆N by using the quadratic model
and a trust-region technique.

Step 7. If f(xc + dT) ≤ f(xc + dN), then set

x+ = xc + dT , ∆+ = ∆T ;

else set
x+ = xc + dN , ∆+ = ∆N .

Step 8. Set xc = x+, f(xc) = f(x+), ∆c = ∆+, and go to Step 1.
�

Note that in the tensor method, the Hessian can be replaced by finite
difference Hessian approximation or secant updates, because the cost of com-
puting a Hessian is large. Also, we would like to point out that the tensor

Download more at Learnclax.com

6.3. TENSOR METHODS 349

method is a generalization of the standard quadratic model method. How-
ever, there are still various problems waiting for us to solve. For example, the
strategy of computing both tensor model and quadratic model at each itera-
tion is not ideal; how to choose a suitable p, how to use the tensor method in
constrained problems and so on. This kind of method is worth doing further
study.

Exercises

1. Let f(x) = x4
1 +x2

1 +x2
2. Let the current iterate x(k) = (1, 1)T ,∆k = 1

2 .
Try using double-dogleg method to find x(k+1).

2. Let f(x) = 1
2x2

1 +x2
2. Let the starting point x(0) = (1, 1)T . For ∆0 = 1

and ∆0 = 5
4 ,

(1) Use dogleg method to find x(1).
(2) Use double-dogleg method to find x(2).

3. Let sk be an approximate solution of subproblem (6.1.1). Show that
sk satisfies

q(k)(0)− q(k)(sk) ≥ β‖gk‖2 min
{

∆k,
‖gk‖2
‖Bk‖2

}
,

where β ∈ (0, 1].

4. What is the attractive point of the trust-region method?

5. Use trust-region Newton method to minimize the Rosenbrock function
(see Appendix: Problem 1.1).

6. Use trust-region quasi-Newton method to minimize the extended
Rosenbrock function (see Appendix: Problem 1.2).

7. Consider using dogleg method to construct path s(τ). Show that
‖s(τ)‖ increases monotonically along this path.

8. Derive expression (6.1.30)–(6.1.31) of the Cauchy point.

Download more at Learnclax.com

350 CHAPTER 6. TRUST-REGION AND CONIC MODEL METHODS

9. (1) Let sG
k solve

min f(xk) + gT
k s

s.t. ‖Ds‖ ≤ ∆k.

Show that
sG
k = − ∆k

‖D−1gk‖2
D−2gk.

(2) The generalized Cauchy point can be defined by

q(k)(sc
k) = min{q(k)(s) | s = τsG

k , ‖Ds‖ ≤ ∆k},

where sG
k is defined by (1). Therefore, the generalized Cauchy point can be

expressed as

sc
k = τks

G
k = −τk

∆k

‖D−1gk‖2
D−2gk, (6.3.67)

where
τk = arg min

τ>0
q(k)(τsG

k) s.t. ‖τDsG
k ‖ ≤ ∆k.

Show:

τk =

{
1 if gT

k D−2BkD
−2gk ≤ 0;

min{‖D−1gk‖32/(∆kg
T
k D−2BkD

−2gk), 1} otherwise.
(6.3.68)

10. Mimic Theorem 6.1.2, state and prove the necessary and sufficient
condition that s∗ is the solution of subproblem

mins f + gT s +
1
2
sT Bs

s.t. ‖Ds‖2 ≤ ∆.

11. Write out the program of Steihaug-CG Algorithm 6.1.12.

12. Try to state the relations among quadratic model, conic model, tensor
model and collinear scaling.

Download more at Learnclax.com

6.3. TENSOR METHODS 351

13. Starting from collinear scaling s = w
1+hT w

, derive a generalized quasi-
Newton equation.

14. Derive the collinear scaling BFGS formula. Try to derive other for-
mulas of collinear scaling.

Download more at Learnclax.com

Download more at Learnclax.com

Chapter 7

Solving Nonlinear
Least-Squares Problems

7.1 Introduction

This chapter is devoted to solving the following nonlinear least-squares prob-
lems:

min
x∈Rn

f(x) =
1
2
r(x)T r(x) =

1
2

m∑
i=1

[ri(x)]2, m ≥ n (7.1.1)

where r : Rn → Rm is a nonlinear function of x. If r(x) is a linear function,
the problem (7.1.1) is the linear least-squares problem.

Nonlinear least-squares problem (7.1.1) can be regarded as a special case
for unconstrained minimization with a special structure. This problem can
also be interpreted as solving the system of m nonlinear equations

ri(x) = 0, i = 1, 2, · · · , m, (7.1.2)

where ri(x) is called the residual function. When m > n, the system is called
over-determined, and when m = n the system is well-determined.

Nonlinear least-squares problems have wide applications in data fitting,
parameter estimation, function approximation, and others. For example,
suppose we are given the data (t1, y1), (t2, y2), · · · , (tm, ym) and want to fit
a function φ(t, x) which is a nonlinear function of x. We want to choose x
such that the function φ(t, x) fits the data as well as possible in the sense of

Download more at Learnclax.com

354 CHAPTER 7. NONLINEAR LEAST-SQUARES PROBLEMS

minimizing the sum of the squares of the residual,

min
m∑

i=1

[ri(x)]2 (7.1.3)

where
ri(x) = φ(ti, x)− yi, i = 1, · · · , m (7.1.4)

are the residual. Usually, m � n. So, we obtain the problem (7.1.1). For
solving nonlinear least-squares problem, we usually use Newton’s method to
solve the resulting system of the normal equations. However, it is expensive,
and the normal equations tend easily to be ill-conditioned. Note that the
problem (7.1.1) has special structure which inspires some special methods.
In this chapter, we shall give some effective and special methods for solving
nonlinear least-squares problem (7.1.1).

Let J(x) be the Jacobian of r(x),

J(x) =

⎡
⎢⎢⎢⎣

∂r1
∂x1

(x) ∂r1
∂x2

(x) · · · ∂r1
∂xn

(x)
∂r2
∂x1

(x) ∂r2
∂x2

(x) · · · ∂r2
∂xn

(x)
· · · · · · · · · · · ·

∂rm
∂x1

(x) ∂rm
∂x2

(x) · · · ∂rm
∂xn

(x)

⎤
⎥⎥⎥⎦ . (7.1.5)

Then the gradient of f(x) is

g(x) =
m∑

i=1

ri(x)∇ri(x) = J(x)T r(x) (7.1.6)

and the Hessian is

G(x) =
m∑

i=1

(∇ri(x)∇ri(x)T + ri(x)∇2ri(x))

= J(x)T J(x) + S(x), (7.1.7)

where

S(x) =
m∑

i=1

ri(x)∇2ri(x). (7.1.8)

Therefore, the quadratic model of the objective function f(x) is

q(k)(x) = f(xk) + g(xk)T (x− xk) +
1
2
(x− xk)T G(xk)(x− xk)

=
1
2
r(xk)T r(xk) + (J(xk)T r(xk))T (x− xk)

+
1
2
(x− xk)T (J(xk)T J(xk) + S(xk))(x− xk). (7.1.9)

Download more at Learnclax.com

7.2. GAUSS-NEWTON METHOD 355

Then we have Newton’s method for (7.1.1),

xk+1 = xk − (J(xk)T J(xk) + S(xk))−1J(xk)T r(xk). (7.1.10)

We have seen in Chapter 3 that, under standard assumptions, the iter-
ation (7.1.10) is locally quadratically convergent. However, the main disad-
vantage of the above Newton’s method is that the second-order term S(x)
in the Hessian G(x) is difficult or expensive to compute. It is also not suit-
able to use a secant approximation of the whole of G(x), because J(x) and
furthermore the first-order term J(x)T J(x) in G(x) are available when we
compute the gradient g(x). Hence, for reducing the computation, it may be
reasonable and effective to either neglect S(x) or use first-order derivative
information to approximate S(x). Notice from (7.1.8) that when ri(x) ap-
proaches zero or closes to a linear function, in which case ∇2ri(x) approaches
zero, S(x) is small and can be neglected. We call this case a small residual
problem, otherwise, a large residual problem.

7.2 Gauss-Newton Method

In this section, we discuss the Gauss-Newton method, which is obtained by
neglecting the second-order term S(x) of G(x) in the quadratic model (7.1.9).
So, (7.1.9) becomes

q̄(k)(x) =
1
2
r(xk)T r(xk) + (J(xk)T r(xk))T (x− xk)

+
1
2
(x− xk)T (J(xk)T J(xk))(x− xk). (7.2.1)

Hence (7.1.10) becomes

xk+1 = xk + sk = xk − (J(xk)T J(xk))−1J(xk)T r(xk). (7.2.2)

To make the iteration well-defined, it is required that Jacobian matrix J(xk)
has full column rank. The following is the Gauss-Newton algorithm.

Algorithm 7.2.1 (Gauss-Newton Method)

Step 0. Given x0, ε > 0, k := 0.

Step 1. If ‖gk‖ ≤ ε, stop.

Download more at Learnclax.com

356 CHAPTER 7. NONLINEAR LEAST-SQUARES PROBLEMS

Step 2 Solve

J(xk)T J(xk)s = −J(xk)T r(xk) for sk. (7.2.3)

Step 3. Set xk+1 = xk + sk, k := k + 1. Go to Step 1. �

Obviously, whenever J(xk) has full rank and the gradient g(xk) is nonzero,
the search direction sk is a descent direction for f , because

sT
k∇f(xk) = sT

k J(xk)T r(xk) = −sT
k J(xk)T J(xk)sk ≤ 0.

The final inequality is strict unless J(xk)T sk = 0, which is equivalent to
J(xk)T r(xk) = g(xk) = 0.

Equation (7.2.3) is said to be the Gauss-Newton equation. Obviously, by
comparing (7.2.3) and (7.1.10), we find that the difference between Gauss-
Newton method and Newton method is that the first-order term J(xk)T J(xk)
is used to replace the Hessian G(xk).

Note that Step 2 in Algorithm 7.2.1 is just analogous to the normal equa-
tions of linear least-squares problem. Besides, the model (7.2.1) is equivalent
to considering the affine model of r(x) near xk,

M̄k = r(xk) + J(xk)(x− xk), (7.2.4)

and solve the linear least-squares problem

min
1
2
‖M̄k(x)‖2. (7.2.5)

These two observations expose that Gauss-Newton method, in fact, is a lin-
earization method for nonlinear least-squares problem. From (7.2.2), we see
that Gauss-Newton method has some advantages in that it only requires
the first-order derivative information of the residual function r(x), and that
J(x)T J(x) is at least positive semi-definite.

Since Newton’s method, under the standard assumptions, is locally and
quadratically convergent, the success of Gauss-Newton method will depend
on the importance of the neglected second-order term S(x) in G(x). The
following theorem shows:

1. if S(x∗) = 0, the Gauss-Newton method is quadratically convergent;

2. if S(x∗) is small relative to J(x∗)T J(x∗), the Gauss-Newton method is
locally Q-linearly convergent;

Download more at Learnclax.com

7.2. GAUSS-NEWTON METHOD 357

3. if S(x∗) is too large, the Gauss-Newton method will not be convergent.

The proofs of the following theorem are similar to that of Theorem 3.2.2
for Newton’s method. The different proofs given in Theorem 7.2.2 and The-
orem 7.2.3 are helpful to study and understand the convergence theorems of
various iterative methods.

Theorem 7.2.2 Let f : Rn → R and f ∈ C2. Assume that x∗ is the local
minimizer of the nonlinear least-squares problem (7.1.1) and J(x∗)T J(x∗)
is positive definite. Assume also that the sequence {xk} generated by Algo-
rithm 7.2.1 converges to x∗. Then, if G(x) and (J(x)T J(x))−1 are Lipschitz
continuous in the neighborhood of x∗, we have

‖xk+1−x∗‖ ≤ ‖(J(x∗)T J(x∗))−1‖‖S(x∗)‖‖xk−x∗‖+O(‖xk−x∗‖2). (7.2.6)

Proof. Since G(x) is Lipschitz continuous, J(x)T J(x) and S(x) are also
Lipschitz continuous. Hence, there exist α, β, γ > 0, such that for any x, y in
the neighborhood of x∗, we have

‖J(x)T J(x)− J(y)T J(y)‖ ≤ α‖x− y‖, (7.2.7)
‖S(x)− S(y)‖ ≤ β‖x− y‖, (7.2.8)
‖(J(x)T J(x))−1 − (J(y)T J(y))−1‖ ≤ γ‖x− y‖, (7.2.9)

(see Exercise).
Since f ∈ C2 and G(x) is Lipschitz continuous, then we have

g(xk + s) = g(xk) + G(xk)s + O(‖s‖2). (7.2.10)

Let hk = xk − x∗ and s = −hk. We can deduce that

0 = g(x∗) = g(xk)−G(xk)hk + O(‖hk‖2). (7.2.11)

Substituting (7.1.6) and (7.1.7) into (7.2.11) gives

J(xk)T r(xk)− (J(xk)T J(xk) + S(xk))hk + O(‖hk‖2) = 0. (7.2.12)

Assume that xk is in a neighborhood of x∗. From Theorem 1.2.5, it
follows that for k sufficiently large, J(xk)T J(xk) is positive definite, and
hence (J(xk)T J(xk))−1 is bounded above and

‖(J(xk)T J(xk))−1‖ ≤ 2‖(J(x∗)T J(x∗))−1‖. (7.2.13)

Download more at Learnclax.com

358 CHAPTER 7. NONLINEAR LEAST-SQUARES PROBLEMS

Then, multiplying (7.2.12) by (J(xk)T J(xk))−1 yields that

−sk − hk − (J(xk)T J(xk))−1S(xk)hk + O(‖hk‖2) = 0. (7.2.14)

Note that sk + hk = xk+1 − x∗ = hk+1, the above equality can be written as

−hk+1 − (J(x∗)T J(x∗))−1S(x∗)− (J(xk)T J(xk))−1(S(xk)− S(x∗))hk

−[(J(xk)T J(xk))−1 − (J(x∗)T J(x∗))−1]S(x∗)hk + O(‖hk‖2)
= 0. (7.2.15)

Taking the norm and using (7.2.8)–(7.2.9) and (7.2.13) give the result (7.2.6).
�

Theorem 7.2.3 Let f : D ⊂ Rn → R and f ∈ C2(D), where D is an open
convex set. Let J(x) be Lipschitz continuous on D, i.e.,

‖J(x)− J(y)‖2 ≤ γ‖x− y‖2, ∀x, y ∈ D, (7.2.16)

and ‖J(x)‖2 ≤ α,∀x ∈ D. Assume that there exist x∗ ∈ D and λ, σ ≥ 0 such
that J(x∗)T r(x∗) = 0, λ is the smallest eigenvalue of J(x∗)T J(x∗), and

‖(J(x)− J(x∗))T r(x∗)‖2 ≤ σ‖x− x∗‖2, ∀x ∈ D. (7.2.17)

If σ < λ, then, for any c ∈ (1, λ/σ), there exists ε > 0 such that for all
x0 ∈ N(x∗, ε), the sequence generated by Gauss-Newton Algorithm 7.2.1 is
well-defined, converges to x∗, and satisfies

‖xk+1 − x∗‖2 ≤
cσ

λ
‖xk − x∗‖2 +

cαγ

2λ
‖xk − x∗‖22 (7.2.18)

and
‖xk+1 − x∗‖2 ≤

cσ + λ

2λ
‖xk − x∗‖2 < ‖xk − x∗‖2. (7.2.19)

Proof. By induction. For convenience, let J0, r0, r
∗ denote J(x0), r(x0)

and r(x∗). From Theorem 1.2.5, it follows that there exists ε1 > 0 such that
JT

0 J0 is nonsingular and satisfies

‖(JT
0 J0)−1‖ ≤ c/λ, for x0 ∈ N(x∗, ε1). (7.2.20)

Let
ε = min

{
ε1,

λ− cσ

cαγ

}
, (7.2.21)

Download more at Learnclax.com

7.2. GAUSS-NEWTON METHOD 359

where γ is the Lipschitz constant defined in (7.2.16). Then, x1 is well-defined
at the first iteration, and we have

x1 − x∗ = x0 − x∗ − (JT
0 J0)−1JT

0 r0

= −(JT
0 J0)−1[JT

0 r0 + JT
0 J0(x∗ − x0)]

= −(JT
0 J0)−1[JT

0 r∗ − JT
0 (r∗ − r0 − J0(x∗ − x0))]. (7.2.22)

By Theorem 1.2.22, we have

‖r∗ − r0 − J0(x∗ − x0)‖ ≤
γ

2
‖x0 − x∗‖2. (7.2.23)

Noting that J(x∗)T r(x∗) = 0 and using (7.2.17), we get

‖JT
0 r∗‖ = ‖(J0 − J(x∗))T r∗‖ ≤ σ‖x− x∗‖. (7.2.24)

By using (7.2.20), (7.2.24), (7.2.23) and ‖J0‖ ≤ α, it follows from (7.2.22)
that

‖x1 − x∗‖ ≤ ‖(JT
0 J0)−1‖(‖JT

0 r∗‖+ ‖J0‖‖r∗ − r0 − J0(x∗ − x0)‖)

≤ c

λ

(
σ‖x0 − x∗‖+

αγ

2
‖x0 − x∗‖2

)
. (7.2.25)

This proves that (7.2.18) holds at k = 0.
Furthermore, from (7.2.25) and (7.2.21), we deduce that

‖x1 − x∗‖ ≤ ‖x0 − x∗‖
(

cσ

λ
+

cαγ

2λ
‖x0 − x∗‖

)

≤ ‖x0 − x∗‖
(

cσ

λ
+

λ− cσ

2λ

)

=
cσ + λ

2λ
‖x0 − x∗‖

< ‖x0 − x∗‖, (7.2.26)

which shows that (7.2.19) holds at k = 0.
For the general case of k, the proof is the same completely as the above.

Hence, we complete the proof by induction. �

Theorem 7.2.4 Assume that the assumptions of Theorem 7.2.2 or Theorem
7.2.3 are satisfied. If r(x∗) = 0, then there exists ε > 0 such that for any x0 ∈
N(x∗, ε), the sequence {xk} generated by Gauss-Newton method converges to
x∗ with quadratic convergence rate.

Download more at Learnclax.com

360 CHAPTER 7. NONLINEAR LEAST-SQUARES PROBLEMS

Proof. For Theorem 7.2.2, if r(x∗) = 0, then S(x∗) = 0. So, the quadratic
convergence rate is obtained immediately from (7.2.6).

For Theorem 7.2.3, if r(x∗) = 0, then the σ in (7.2.17) can be taken as
σ = 0. Hence, it follows from (7.2.19) that {xk} converges to x∗, and from
(7.2.18) that the rate is quadratic. �

Gauss-Newton method now is the most basic method for solving nonlinear
least-squares problems. The following example demonstrates that it works
well with small residual problems.

Example 7.2.5 Let r1(x) = x + 1, r2(x) = λx2 + x− 1. Consider

min f(x) =
2∑

i=1

ri(x)2 = (x + 1)2 + (λx2 + x− 1)2,

where n = 1, m = 2, and x∗ = 0. For λ = 0.1, the Gauss-Newton iteration
has the following result:

k 1 2 3 4 5 6
xk 1.000000 0.131148 0.013635 0.001369 0.000137 0.000014

You can see that, when λ = 0.1, the degree of nonlinearity in r(x) is
small, and the Gauss-Newton method works well. In this case, from (7.2.2),
the Gauss-Newton iteration is

xk+1 =
2λ2x3

k + λx2
k + 2λxk

1 + (2λxk + 1)2
.

When λ = 0, in which case r(x) is linear, then x1 = 0 = x∗. This indicates
that Gauss-Newton method gets its minimizer in one iteration. When λ = 0,
we have

xk+1 = λxk + O(‖xk‖2).

When λ is small enough, the convergence rate is linear. When |λ| > 1, the
Gauss-Newton method fails to converge. This example shows that Gauss-
Newton method is valuable only when both x0 closes to x∗ and the matrix
S(x∗) is small.

Remark: In practice, we usually use Gauss-Newton method with line
search

xk+1 = xk − αk(J(xk)T J(xk))−1J(xk)T r(xk), (7.2.27)

Download more at Learnclax.com

7.2. GAUSS-NEWTON METHOD 361

which is called the damped Gauss-Newton method, where αk is a step size.
As we have seen, this method guarantees the descent of the objective function
in each step and therefore global convergence.

To conclude this section, we mention some numerical aspects on Gauss-
Newton method. It should be pointed out that for the problem to solve
Gauss-Newton equations

J(xk)T J(xk)s = −J(xk)T r(xk), (7.2.28)

usually, we employ matrix factorization instead of solving (7.2.28) directly.
Then the solution is found by back-substitution technique. So, we can sub-
stantially improve the numerical precision. To see this, it follows from the
error analysis that

‖δs‖
‖s‖ ≤ κ(J(xk)T J(xk))

‖E‖
‖J(xk)T J(xk)‖

, (7.2.29)

where
κ(J(xk)T J(xk)) = σ2

1/σ2
n, (7.2.30)

δs and E denote the errors of s and J(xk)T J(xk) respectively, and σ1 and
σn are the largest and smallest singular values of J(xk) respectively.

If we employ QR factorization for the augmented matrix, we have

[J(xk) rk] = Q[R QT rk], (7.2.31)

where Q is an orthogonal matrix,

R =
[
R1

0

]
,

and R1 is a nonsingular upper triangular matrix. Then, we obtain

J(xk)T J(xk) = RT R = RT
1 R1. (7.2.32)

The solution of (7.2.28) can be found by solving

R1s = −(QT rk)n, (7.2.33)

where (·)n denotes the first n element partition.
It can be shown that

κ(R1) =
σ1

σn
(7.2.34)

and therefore the errors generated by the orthogonal factorization approach
are magnified much less than that directly solve (7.2.28).

Download more at Learnclax.com

362 CHAPTER 7. NONLINEAR LEAST-SQUARES PROBLEMS

7.3 Levenberg-Marquardt Method

7.3.1 Motivation and Properties

Usually, Gauss-Newton method with line search is employed in practice.
However, if J(x) is rank-deficient, then either the Gauss-Newton method
cannot work well, or the algorithm converges to a non-stationary point.

To overcome the difficulty, we consider employing trust-region technique
(for details, see §6.1). In fact, we have seen that, in Gauss-Newton method,
a linearized model (7.2.4) is used to replace nonlinear function r(x), and
that a linear least-squares problem (7.2.5) is obtained. Unfortunately, this
linearization is not effective for all (x − xk). Therefore, we put a constraint
of trust-region on it, and consider the following trust-region model:

min
1
2
‖J(xk)(x− xk) + r(xk)‖22 (7.3.1)

s.t. ‖x− xk‖2 ≤ ∆k, (7.3.2)

which is a constrained linear least-squares problem. Model (7.3.1)-(7.3.2) can
be written as

min qk(x) =
1
2
‖rk‖2 + rT

k J(xk)(x− xk) +
1
2
(x− xk)T J(xk)T J(xk)(x− xk)

s.t. ‖x− xk‖2 ≤ ∆k. (7.3.3)

Set s = x−xk. The solution of the subproblem (7.3.1)-(7.3.2) is characterized
by solving the system

(J(xk)T J(xk) + µkI)s = −J(xk)T r(xk). (7.3.4)

Hence,
xk+1 = xk − (J(xk)T J(xk) + µkI)−1J(xk)T r(xk). (7.3.5)

When ‖(J(xk)T J(xk))−1J(xk)T r(xk)‖ ≤ ∆k, then µk = 0 and the sub-
problem is solved by sk. Otherwise, there exists µk > 0 such that the solution
sk satisfying ‖sk‖ = ∆k and

(J(xk)T J(xk) + µkI)sk = −J(xk)T r(xk). (7.3.6)

Since (J(xk)T J(xk) + µkI) is positive definite, the direction s produced by
(7.3.4) is a descent direction. This method is called the Levenberg-Marquardt
method, since it was proposed by Levenberg [199] and Marquardt [210]. The

Download more at Learnclax.com

7.3. LEVENBERG-MARQUARDT METHOD 363

above discussion exposes that the Levenberg-Marquardt method is just a
Gauss-Newton method by replacing the line search with a trust region strat-
egy.

Another perspective about Levenberg-Marquardt method is as follows.
This method is just a switch rule between Gauss-Newton method and the
steepest descent method. This implies that this method allows choosing any
direction between these two directions to be a search direction. When µk = 0,
it reduces to the Gauss-Newton direction. While µk is very large, (7.3.4) is
approximate to

µkIs = −J(xk)T r(xk). (7.3.7)

The produced direction is close to the steepest descent direction.
Furthermore, if, instead of I, we employ some positive definite and diag-

onal matrix Dk, then (7.3.4) becomes

(J(xk)T J(xk) + µkDk)s = −J(xk)T r(xk). (7.3.8)

In this case, the produced direction is a combination of Gauss-Newton di-
rection and the steepest descent direction with respect to a metric matrix
Dk.

Next, we will describe some properties of Levenberg-Marquardt method.
Let s = s(µ) be a solution of

(JT J + µI)s = −JT r, (7.3.9)

where, for convenience, J = J(x), r = r(x), and g = g(x) = JT r.

Theorem 7.3.1 When µ increases monotonically from zero, ‖s(µ)‖ will de-
crease strictly monotonically.

Proof.

d
dµ
‖s‖ =

d
dµ

(sT s)
1
2 =

sT ds
dµ

‖s‖ . (7.3.10)

Differentiating (7.3.9) gives

(JT J + µI)
ds

dµ
= −s. (7.3.11)

It follows from (7.3.11) and (7.3.9) that

ds

dµ
= (JT J + µI)−2g. (7.3.12)

Download more at Learnclax.com

364 CHAPTER 7. NONLINEAR LEAST-SQUARES PROBLEMS

By substituting (7.3.12) into (7.3.10) and using (7.3.9), we obtain

d
dµ
‖s‖ = −gT (JT J + µI)−3g

‖s‖ . (7.3.13)

When µ ≥ 0, JT J + µI is positive definite. Therefore (7.3.13) shows that
‖s(µ)‖ decreases strictly monotonically. �

Theorem 7.3.2 The angle ψ between s and −g does not increase monoton-
ically as µ increases.

Proof. Since

cos ψ = − gT s

‖g‖‖s‖ , (7.3.14)

then it is enough to prove
d
dµ

cos ψ ≥ 0.

By using (7.3.9)-(7.3.13), we deduce

d
dµ

(cos ψ) =
−gT ds

dµ

‖g‖‖s‖ +
gT s

‖g‖‖s‖

d‖s‖
dµ

‖s‖

=
1

‖g‖‖s‖3 {−(gT (JT J + µI)−2g)2

+(gT (JT J + µI)−1g)(gT (JT J + µI)−3g)}. (7.3.15)

So, it is enough to prove that the part in braces is greater than or equal to
zero.

Note that JT J is symmetric, then there is an orthogonal matrix Q such
that

JT J = QT DQ,

where D = diag(λ1, · · · , λn). Set v = Qg, then the part in braces on the
right-hand-side of (7.3.15) can be written as

n∑
j=1

n∑
k=1

{
−

v2
j v

2
k

(λj + µ)2(λk + µ)2
+

v2
j v

2
k

(λj + µ)(λk + µ)3

}
. (7.3.16)

Download more at Learnclax.com

7.3. LEVENBERG-MARQUARDT METHOD 365

If let

a =
(

v1

(λ1 + µ)3/2
, · · · , vn

(λn + µ)3/2

)T

,

b =
(

v1

(λ1 + µ)1/2
, · · · , vn

(λn + µ)1/2

)T

,

then (7.3.16) becomes
‖a‖2‖b‖2 − 〈a, b〉2,

and it follows from Schwartz inequality that the above expression is greater
than or equal to zero. Therefore ψ is not increasing. We complete the proof.
�

Theorem 7.3.3 Let µk > 0 and sk be a solution of (7.3.4). Then sk is a
global solution of the subproblem

min q(k)(s) =
1
2
‖Jks + rk‖22 (7.3.17)

s.t. ‖s‖ ≤ ‖sk‖. (7.3.18)

Proof. Since sk is a solution of (7.3.4), then

q(k)(sk) =
1
2
rT
k rk + rT

k Jksk +
1
2
sT
k JT

k Jksk

=
1
2
rT
k rk − sT

k (JT
k Jk + µkI)sk +

1
2
sT
k JT

k Jksk

=
1
2
rT
k rk − µks

T
k sk −

1
2
sT
k JT

k Jksk. (7.3.19)

On the other hand, for any s, we have

q(k)(s) =
1
2
rT
k rk + sT JT

k rk +
1
2
sT JT

k Jks

=
1
2
rT
k rk − sT (JT

k Jk + µkI)sk +
1
2
sT JT

k Jks

=
1
2
rT
k rk − µks

T sk − sT JT
k Jksk +

1
2
sT JT

k Jks. (7.3.20)

Then, for any s satisfying ‖s‖ ≤ ‖sk‖, we deduce that

q(k)(s)− q(k)(sk) =
1
2
(sk − s)T JT

k Jk(sk − s) + µk(sT
k sk − sT sk)

≥ 1
2
(sk − s)T JT

k Jk(sk − s) + µk‖sk‖(‖sk‖ − ‖s‖)

≥ 0, (7.3.21)

Download more at Learnclax.com

366 CHAPTER 7. NONLINEAR LEAST-SQUARES PROBLEMS

which shows that sk is a global optimal solution of problem (7.3.17)-(7.3.18).
�

Theorem 7.3.4 The vector sk is a solution of problem (7.3.1)-(7.3.2), i.e.,

min
1
2
‖Jks + rk‖22 (7.3.22)

s.t. ‖s‖ ≤ ∆k (7.3.23)

for some ∆k > 0 if and only if there exists µ ≥ 0 such that

(JT
k Jk + µI)sk = −JT

k rk, (7.3.24)
µ(∆k − ‖sk‖) = 0, (7.3.25)
‖sk‖ ≤ ∆k. (7.3.26)

Proof. It is obtained directly from Theorem 6.1.2. �

Usually, Levenberg-Marquardt method is characterized by the equation

(J(xk)T J(xk) + µkD(xk))s = −J(xk)T r(xk), (7.3.27)

where D(xk) is a diagonal and positive definite matrix. The steplength factor
αk satisfies Armijio rule (2.5.3):

f(xk + αksk) ≤ f(xk) + σαkg
T
k sk, σ ∈

(
0,

1
2

)
. (7.3.28)

Theorem 7.3.5 For (7.3.27), the condition number of J(x)T J(x) + µD(x)
is a non-increasing function of µ.

Proof. Let β1 and βn be the largest and smallest eigenvalues of D(x) re-
spectively. Let λ1 and λn be the largest and smallest eigenvalues of J(x)T J(x)+
µD(x) respectively. Let also µ1 > µ2 ≥ 0. Since the range of a normal matrix
is a convex hull of its spectrum, we have

λ1(µ1)
λn(µ1)

≤ λ1(µ2) + (µ1 − µ2)β1

λn(µ2) + (µ1 − µ2)βn

≤ λ1(µ2) + (µ1 − µ2)(1 + µ2)−1λ1(µ2)
λn(µ2) + (µ1 − µ2)(1 + µ2)−1λn(µ2)

=
λ1(µ2)
λn(µ2)

.

Therefore, the conclusion is obtained. �

This property indicates that the Levenberg-Marquardt method improves
the condition of the equations solved.

Download more at Learnclax.com

7.3. LEVENBERG-MARQUARDT METHOD 367

7.3.2 Convergence of Levenberg-Marquardt Method

In this subsection we establish convergence of the Levenberg-Marquardt method.

Theorem 7.3.6 Let {xk} be a sequence produced by Levenberg-Marquardt
method (7.3.27). Suppose that the step lengths αk are determined by Armijo
rule (7.3.28). If there is a subsequence {xki

} that converges to x∗, and if
the corresponding subsequence {JT

ki
Jki

+ µki
Dki

} converges to some positive
definite matrix P , where Jki

= J(xki
) and Dki

= D(xki
) denoting a diagonal

positive definite matrix, then g(x∗) = 0.

Proof. (By contradiction) Suppose that g(x∗) = 0. Let

ski
= −(JT

ki
Jki

+ µki
Dki

)−1JT
ki

rki
,

s∗ = lim ski
= −P−1J(x∗)T r(x∗),

where rki
= r(xki

). Obviously, g(x∗)T s∗ < 0. Let β ∈ (0, 1), σ ∈ (0, 1
2). Let

also m∗ be the least non-negative integer m such that

f(x∗ + βms∗) < f(x∗) + σβmg(x∗)T s(x∗).

By continuity, for k sufficiently large, we have

f(xki
+ βm∗

ski
) ≤ f(xki

) + σβm∗
g(xki

)T ski
.

Hence

f(xki+1) = f(xki
+ βmki ski

) ≤ f(xki
) + σβm∗

g(xki
)T ski

. (7.3.29)

By the monotone descent of the method, we have

lim f(xki+1) = lim f(xki
) = f(x∗).

Therefore, taking limits on both sides of (7.3.29) yields

f(x∗) ≤ f(x∗) + σβm∗
g(x∗)T s∗ < 0.

This is impossible because σβm∗
g(x∗)T s∗ < 0. So we complete the proof.

�

The above theorem states the convergence of a subsequence. Below, we
give convergence of the whole sequence.

Download more at Learnclax.com

368 CHAPTER 7. NONLINEAR LEAST-SQUARES PROBLEMS

Theorem 7.3.7 Suppose that the following assumptions hold:

(a) the level set
L(x̄) = {x | f(x) ≤ f(x̄)}

is bounded and closed for any x̄ ∈ Rn;

(b) the number of stationary points at which the function values of f(x) are
the same is finite;

(c) J(x)T J(x) is positive definite ∀x;

(d) µk ≤ M < ∞, ∀ k, that is, M is an upper bound of µk.

Then for any initial point x0, the sequence {xk} generated from Levenberg-
Marquardt method converges to a stationary point of f(x).

Proof. From (a) and the monotone property of iterative function, we know
that the sequence {xk} is in compact set L(x̄). This shows that {xk} must
have accumulation points. To prove the theorem, we only need to prove the
accumulation points are unique.

By (c), (d) and Theorem 7.3.6, we have that each accumulation point of
{xk} is unique. Since {f(x)} is a monotone descent sequence, f(x) has the
same values at accumulation points of {xk}. Also, from (b), it follows that
the number of stationary points of f on L(x̄) are finite. Therefore, there are
only finitely many accumulation points.

Notice that, for some subsequence {xki
}, we have xki

→ x̂k and

lim
k→∞

g(xki
) = g(x̂k) = 0.

Notice also that

s(µki
) = −(J(xki

)T J(xki
) + µki

D(xki
))−1g(xki

).

Then it follows from (c) and (d) that s(µki
) → 0. Therefore, for sequence

{s(µk)}, we have s(µk) → 0.
Assume for the moment that there are more than one accumulation point

of {xk}. Let ε∗ be the smallest distance between any two accumulation points.
Since {xk} is in a compact set, there exists a positive integer N , such that
for all k ≥ N , xk is contained in a closed ball with some accumulation point

Download more at Learnclax.com

7.3. LEVENBERG-MARQUARDT METHOD 369

as center and ε∗/4 as radius. On the other hand, there is an integer N ′ ≥ N
such that

‖s(µk)‖ < ε∗/4, ∀k ≥ N ′.

Therefore, when k ≥ N ′, all xk are in the closed ball mentioned above with
that accumulation point as center and ε∗/4 as radius. Then we have a con-
tradiction which proves the theorem. �

The above theorem establishes global convergence of the Levenberg-Marqu-
ardt method. In the following, similar to Theorem 7.2.2, we discuss the
convergence rate of the Levenberg-Marquardt method.

Theorem 7.3.8 Suppose that the iterates xk generated by Levenberg-Marquardt
method converge to a stationary point x∗. Let l be the smallest eigenvalue of
J(x∗)T J(x∗), M the maximum of absolute values of eigenvalues of S(x∗) =∑m

i=1 ri(x∗)∇2ri(x∗). If

τ = M/l < 1, 0 < β < (1− τ)/2, µk → 0, (7.3.30)

then, for all k sufficiently large, the stepsize αk = 1,

lim sup
‖xk+1 − x∗‖
‖xk − x∗‖ ≤ τ, (7.3.31)

and x∗ is a strict local minimizer of f(x).

Proof. We first prove αk = 1 for k large enough. Notice that

f(xk + sk)− f(xk) = gT
k sk +

1
2
sT
k G(xk + θsk)sk, (7.3.32)

where θ ∈ (0, 1). By means of Armijo rule (7.3.28), to prove αk = 1 for k
large enough, we need to show

βgT
k sk − [f(xk + sk)− f(xk)] ≥ 0. (7.3.33)

By use of gk = −(JT
k Jk +µkDk)sk and (7.3.32), the left-hand side of (7.3.33)

can be written as

(1− β)sT
k (JT

k Jk + µkDk)sk −
1
2
sT
k G(xk + θsk)sk

= sT
k

[
(1− β)JT

k Jk −
1
2
G(xk) + (1− β)µkDk

− 1
2
(G(xk + θsk)−G(xk))

]
sk

= sT
k

[(
1
2
− β

)
JT

k Jk −
1
2
S(xk) + Vk

]
sk,

Download more at Learnclax.com

370 CHAPTER 7. NONLINEAR LEAST-SQUARES PROBLEMS

where Vk = (1 − β)µkDk − 1
2(G(xk + θsk) − G(xk)), S(xk) is defined by

(7.1.7). Since Vk → 0, to prove (7.3.33) holds for k large enough, we show
(1
2 − β)JT

k Jk − 1
2S(xk) converges to a positive definite matrix. Note that the

smallest eigenvalue of (
1
2
− β

)
J(x∗)T J(x∗)− 1

2
S(x∗)

is bounded below and that the lower bound is(
1
2
− β

)
l − 1

2
M = l

[
1
2
− β − 1

2
τ

]
> 0,

which holds because the second inequality in (7.3.30) is met for β. So we
obtain αk = 1 for sufficiently large k.

Second, we prove (7.3.31). By (7.3.27) and (7.1.7), we have

xk+1 − x∗ = xk − x∗ − (JT
k Jk + µkDk)−1gk

= xk − x∗ − (JT
k Jk + µkDk)−1[Gk(xk − x∗)

+gk + Gk(x∗ − xk)]
= −(JT

k Jk + µkDk)−1[S(xk)(xk − x∗)
−µkDk(xk − x∗) + gk + Gk(x∗ − xk)]. (7.3.34)

Taking norm gives

‖xk+1 − x∗‖ ≤ ‖(JT
k Jk)−1‖(‖S(xk)‖‖xk − x∗‖

+µk‖Dk‖‖xk − x∗‖+ ‖gk + Gk(x∗ − xk)‖).(7.3.35)

Since

‖gk + Gk(x∗ − xk)‖ = ‖gk − g(x∗)−Gk(xk − x∗)‖
≤ εk‖xk − x∗‖, (7.3.36)

where εk → 0, then dividing the both sides of (7.3.35) by ‖xk − x∗‖ deduces

‖xk+1 − x∗‖
‖xk − x∗‖ ≤ ‖(JT

k Jk)−1‖(‖S(xk)‖+ µk‖Dk‖+ εk). (7.3.37)

Note that µk → 0 and that εk → 0, and it follows immediately that

lim sup
‖xk+1 − x∗‖
‖xk − x∗‖ ≤ M

l
= τ,

Download more at Learnclax.com

7.3. LEVENBERG-MARQUARDT METHOD 371

which proves (7.3.31).
Finally, since g(x∗) = 0 and G(x∗) = J(x∗)T J(x∗)+S(x∗) with the lower

bound l −M > 0 of the smallest eigenvalue, then G(x∗) is positive definite.
Hence x∗ is a strict local minimizer of f(x). �

As mentioned above, the Levenberg-Marquardt method can be described
and analyzed by use of the framework of trust region method (7.3.1)–(7.3.2)
or (7.3.3). So, following the discussions of Section 6.1, we immediately have
the following algorithm and theorem which are straightforward consequences
of Algorithm 6.1.1 and Theorem 6.1.9, respectively.

Algorithm 7.3.9 (Trust-Region Type Levenberg-Marquardt Algorithm)

Step 1. Given initial point x0, ∆̄, ∆0 ∈ (0, ∆̄), ε ≥ 0, 0 < η1 ≤ η2 < 1
and 0 < γ1 < 1 < γ2, k := 0.

Step 2. If ‖gk‖ = ‖JT
k rk‖ ≤ ε, stop.

Step 3. Approximately solve the subproblem (7.3.1)–(7.3.2) for sk.

Step 4. Compute

Predk = f(xk)− qk(sk),
Aredk = f(xk)− f(xk + sk),

rk =
Aredk

Predk
.

Step 5. If rk < η1, set ∆k = γ1∆k and go to Step 3.

Step 6. Set xk+1 = xk + sk. Set

∆k+1 =

{
min{γ2∆k, ∆̄}, if rk ≥ η2 and ‖sk‖ = ∆k,
∆k, otherwise.

Step 7. Set k := k + 1, go to Step 2. �

From Step 3 of the above algorithm, sk is the approximate solution of
subproblem (7.3.1)–(7.3.2). It follows from Lemma 6.1.3 that

qk(0)− qk(sk) ≥ c1‖JT
k rk‖min

(
∆k,

‖JT
k rk‖

‖JT
k Jk‖

)
(7.3.38)

Download more at Learnclax.com

372 CHAPTER 7. NONLINEAR LEAST-SQUARES PROBLEMS

for some constant c1 > 0.
Now we can state the convergence result which is a straightforward con-

sequence of Theorem 6.1.9.

Theorem 7.3.10 Suppose that the function f(x) = 1
2

∑m
i=1[ri(x)]2 is twice

continuously differentiable, that the level set

L(x0) = {x | f(x) ≤ f(x0)}

is bounded, and that there are constants M1 > 0, M2 > 0 such that

‖∇2f(x)‖ ≤ M1, ∀x ∈ L(x0),
‖J(x)T J(x)‖ ≤ M2, ∀x ∈ L(x0).

Then we have that

lim
k→∞

∇f(xk) = lim
k→∞

JT
k rk = 0. (7.3.39)

7.4 Implementation of L-M Method

There are various implementations of the Levenberg-Marquardt method.
Moré [218] gave an efficient and reliable implementation, which is contained
in the MINPACK software package.

The Levenberg-Marquardt method Moré [218] considered is to find s by
means of solving equations

s(µ) = −(JT
k Jk + µkD

T
k Dk)−1JT

k rk, (7.4.1)

which correspond to a trust region subproblem (or a constrained linear least-
squares problem)

min ‖rk + Jks‖ s.t. ‖Dks‖ ≤ ∆k, (7.4.2)

where ∆k > 0 is the trust-region radius. If Jk is singular and µk = 0, the
solution of (7.4.2) can be defined by a limit

Dks(0) = lim
µk→0+

Dks(µk) = −(JkD
−1
k)+rk. (7.4.3)

There are two possibilities: either µk = 0 and ‖Dks(0)‖ ≤ ∆k, in which case
s(0) is the solution of (7.4.2); or µk > 0 and ‖Dks(µk)‖ = ∆k, in which case
s(µk) is a unique solution of (7.4.2). Hence we can describe the following
algorithm.

Download more at Learnclax.com

7.4. IMPLEMENTATION OF L-M METHOD 373

Algorithm 7.4.1 (Levenberg-Marquardt Algorithm)

(a) Given ∆k > 0, find µk ≥ 0 such that

(JT
k Jk + µkDk)sk = −JT

k rk.

Then either µk = 0 and ‖Dksk‖ ≤ ∆k, or µk > 0 and
‖Dksk‖ = ∆k.

(b) If ‖r(xk + sk)‖ ≤ ‖r(xk)‖, set xk+1 = xk + sk and compute
Jk+1; otherwise set xk+1 = xk and Jk+1 = Jk.

(c) Choose ∆k+1 and Dk+1. �

In the following, we discuss how to perform the above algorithm efficiently
and reliably.

(1) How to solve the trust-region subproblem (i.e., constrained linear
least-squares problem).

For equations
(JT

k Jk + µkD
T
k Dk)s = −JT

k rk, (7.4.4)

the simplest way is using Cholesky factorization. However, because of the
special structure of the coefficient matrix in (7.4.4), it is easy to use QR
factorization.

Note that (7.4.4) are just the normal equations for linear least-squares
problem [

Jk

µ
1/2
k Dk

]
s ∼= −

[
r
0

]
. (7.4.5)

For the structure of (7.4.5), instead of computing JT
k Jk and DT

k Dk and their
Cholesky factorization, we can use column pivoting QR factorization.

Now we describe the two-step QR factorization to find the solution of the
linear least-squares problem (7.4.5).

First Step: Calculate the QR factorization of Jk and obtain

QJkπ =

[
T W
0 0

]
, (7.4.6)

where Q is orthogonal, T is a nonsingular upper triangular matrix with
rank(T) =rank(Jk), and π is a permutation matrix. If µk = 0, then the

Download more at Learnclax.com

374 CHAPTER 7. NONLINEAR LEAST-SQUARES PROBLEMS

solution of (7.4.5) is

s = π

[
T−1 0
0 0

]
Qrk ≡ J−

k rk, (7.4.7)

where J−
k denotes {1, 3}-inverse satisfying

JkJ
−
k Jk = Jk, JkJ

−
k = (JkJ

−
k)T

(see X.He and W. Sun [172], Ben-Israel and Greville [12]). If µk > 0, since
(7.4.6) becomes

[
Q 0
0 πT

] [
Jk

µ
1/2
k Dk

]
π =

⎡
⎢⎣ R

0
Dµ

⎤
⎥⎦ , (7.4.8)

where Dµ = µ
1/2
k πT Dkπ and R is an upper trapezoid matrix, it follows from

(7.4.8) that (7.4.5) becomes⎡
⎢⎣ R

0
Dµ

⎤
⎥⎦πT s = −

[
Qr
0

]
. (7.4.9)

Second Step: It is easy to eliminate Dµ in (7.4.9) by a sequence of n(n +
1)/2 Givens rotations and obtain

W

⎡
⎢⎣ R

0
Dµ

⎤
⎥⎦ =

⎡
⎢⎣ Rµ

0
0

⎤
⎥⎦ , (7.4.10)

where Rµ is a nonsingular upper triangular matrix and W a product of a
sequence of rotations. Then (7.4.9) becomes[

Rµ

0

]
πT s = −W

[
Qr
0

]
∆=

[
u
v

]
, (7.4.11)

and we obtain
s = πR−1

µ u. (7.4.12)

(2) How to update the trust-region radius ∆k.

Download more at Learnclax.com

7.4. IMPLEMENTATION OF L-M METHOD 375

As described in §6.1, the choice of ∆k depends on the ratio between actual
reduction and predicted reduction of the objective function. In the nonlinear
least-squares case, the ratio is

ρ =
‖r(xk)‖2 − ‖r(xk + sk)‖2

‖r(xk)‖2 − ‖r(xk) + J(xk)sk‖2
, (7.4.13)

which measures the agreement between the linearized model and the nonlin-
ear function. For example, if r(x) is linear, then ρ = 1. If J(xk)T r(xk) = 0,
then ρ → 1 when ‖sk‖ → 0. If ‖r(xk + sk)‖ ≥ ‖r(xk)‖, then ρ ≤ 0.

Because of roundoff error, there may be overflow when we compute ρ by
(7.4.13). So we write (7.4.13) in a safeguard form. Multiplying both sides of
(7.4.4) by 2sT yields

−2rT
k JT

k s = 2sT JT
k Jks + 2µksD

T
k Dks,

which is

rT
k rk − rT

k rk − 2rT
k JT

k s− sT JT
k Jks = sT JT

k Jks + 2µks
T DT

k Dks.

Then we obtain

‖rk‖2 − ‖rk + Jks‖2 = ‖Jks‖2 + 2µk‖Dks‖2. (7.4.14)

Substituting the above into (7.4.13) gives

ρ =
1−

[
‖r(xk + sk)‖
‖r(xk)‖

]2
[
‖Jks‖
‖r(xk)‖

]2
+ 2

[
µ

1/2
k ‖Dks‖
‖r(xk)‖

]2 . (7.4.15)

It is easy to see from (7.4.14) that

‖Jks‖ ≤ ‖r(xk)‖, µ
1/2
k ‖Dks‖ ≤ ‖r(xk)‖.

Hence the computation in (7.4.15) will not lead to overflow. Also, regardless
of roundoff error, the denominator in (7.4.15) is always nonnegative. It should
be mentioned that when ‖r(xk + sk)‖ � ‖r(xk)‖, the numerator in (7.4.15)
may be overflown. However, since we are only interested in ρ ≥ 0, then
when ‖r(xk + sk)‖ > ‖r(xk)‖, we set ρ = 0 without needing to compute ρ by
(7.4.15).

Download more at Learnclax.com

376 CHAPTER 7. NONLINEAR LEAST-SQUARES PROBLEMS

(3) How to find a Levenberg-Marquardt parameter.
In the Moré algorithm, if

|φ(µ)| ≤ σ∆, σ ∈ (0, 1), (7.4.16)

where
φ(µ) = ‖D(JT J + µDT D)−1JT r‖ −∆, (7.4.17)

then µ > 0 is accepted as a Levenberg-Marquardt parameter, where σ indi-
cates the related error in ‖Dks(µ)‖. If φ(0) ≤ 0, then µ = 0 is a required
parameter. Therefore we only need to discuss the case of φ(0) > 0. Since φ is
a continuous and strictly descending function, then, when µ → ∞, we have
φ(µ) → −∆. Thus, there exists a unique µ∗ > 0 such that φ(µ∗) = 0. To
determine the Levenberg-Marquardt parameter, we start from µ0 > 0 and
generate a sequence {µk} → µ∗.

From (7.4.17), we have

φ(µ) = ‖(J̃T J̃ + µI)−1J̃T r‖ −∆, (7.4.18)

where J̃ = JD−1. Let J̃ = UΣV T be the singular value decomposition of J̃ ,
then

φ(µ) =
n∑

i=1

[
σ2

i z
2
i

(σ2
i + µ)2

]1/2

−∆, (7.4.19)

where z = UT r, σ1, · · · , σn are singular values of J̃ . Hence we assume

φ(µ) ·=
a

b + µ
≡ φ̃(µ) (7.4.20)

and choose a and b such that φ̃(µk) = φ(µk), φ̃′(µk) = φ′(µk). Then φ̃(µk+1) =
0 if

µk+1 = µk −
[
φ(µk) + ∆

∆

] [
φ(µk)
φ′(µk)

]
. (7.4.21)

To make computation of µk+1 safe and reliable, the Moré algorithm de-
signs the following technique for computing µk+1.

Let

u0 =
‖(JD−1)T r‖

∆
,

l0 =

{
−φ(0)/φ′(0), if J is nonsingular,
0, otherwise,

Download more at Learnclax.com

7.4. IMPLEMENTATION OF L-M METHOD 377

(a) If µk /∈ (lk, uk), set µk = max{0.001uk, (lkuk)1/2}.

(b) Compute φ(µk) and φ′(µk). Update uk:

uk+1 =

{
µk, if φ(µk) < 0,
uk, otherwise.

Update lk:

lk+1 = max
{

lk, µk −
φ(µk)
φ′(µk)

}
.

(c) Compute µk+1 by (7.4.21).

The above algorithm gives upper and lower bounds of µk. In (a), it shows
that if µk is not in (lk, uk), a point in (lk, uk) inclining to lk will replace µk.
In (b), the convexity of φ guarantees that the Newton’s iteration can be used
to update lk. The sequence {µk} generated by the algorithm will converge
to µ∗. In fact, if we set σ = 0.1, it takes no more than two steps on average
to satisfy (7.4.16).

As to computing φ′(µ), we have from (7.4.17) that

φ′(µ) = −(DT q(µ))T (JT J + µDT D)−1(DT q(µ))
‖q(µ)‖ , (7.4.22)

where q(µ) = Ds(µ). By (7.4.8) and (7.4.10) we get

πT (JT J + µDT D)π = RT
µ Rµ.

Then

φ′(µ) = −‖q(µ)‖
∥∥∥∥∥R−T

µ

(
πT DT q(µ)
‖q(µ)‖

)∥∥∥∥∥
2

. (7.4.23)

(4) How to update the scaling matrix.
In the Levenberg-Marquardt method, Dk is a diagonal matrix which re-

duces the effects of poor scaling of the problems. In the algorithm, we choose

Dk = diag (d(k)
1 , · · · , d(k)

n), (7.4.24)

where

d
(0)
i = ‖∂ir(x0)‖,

d
(k)
i = max{d(k−1)

i , ‖∂ir(xk)‖}, k ≥ 1.

Download more at Learnclax.com

378 CHAPTER 7. NONLINEAR LEAST-SQUARES PROBLEMS

We should point out that the above scaling is invariant under scaling, that
is, if D is a diagonal and positive definite matrix, then for function r(x)
with starting point x0 and for function r̃(x) = r(D−1x) with starting point
x̃0 = Dx0, Algorithm 7.4.1 generates the same sequence of iterates.

Finally, we give the Moré version of the Levenberg-Marquardt algorithm
and the convergence theorem.

Algorithm 7.4.2 (Moré’s Version)

(a) Let σ ∈ (0, 1). If ‖DkJ
−
k rk‖ ≤ (1 + σ)∆k, set µk = 0 and

sk = −J−
k rk; otherwise, determine µk > 0 such that if[

Jk

µ
1/2
k Dk

]
sk
∼= −

[
rk

0

]

(i.e., sk is the solution of the above least-squares problem),
then

(1− σ)∆k ≤ ‖Dksk‖ ≤ (1 + σ)∆k.

(b) Compute the ratio ρk between the actual reduction and the
predicted reduction of the objective function.

(c) If ρk ≤ 0.0001, set xk+1 = xk and Jk+1 = Jk.
If ρk > 0.0001, set xk+1 = xk + sk, and compute Jk+1.

(d) If ρk ≤ 1
4 , set ∆k+1 ∈

[
1
10∆k,

1
2∆k

]
. If either ρk ∈

[
1
4 , 1

3

]
and µk = 0, or ρk ≥ 3

4 , then set ∆k+1 = 2‖Dksk‖ .

(e) Update Dk by (7.4.24). �

For the above algorithm, the convergence theorem is stated as follows
without proof. The interested readers may consult Moré [218].

Theorem 7.4.3 Let r : Rn → Rm be continuously differentiable. Let {xk}
be a sequence generated by Algorithm 7.4.2. Then

lim inf
k→+∞

‖(JkD
−1
k)T rk‖ = 0. (7.4.25)

This result indicates that the scaled gradient is, at last, sufficiently small. If
{Jk} is bounded, then (7.4.25) implies

lim inf
k→+∞

‖JT
k rk‖ = 0. (7.4.26)

Download more at Learnclax.com

7.5. QUASI-NEWTON METHOD 379

Further, if ∇r(x) is uniformly continuous, then

lim
k→+∞

‖JT
k rk‖ = 0. (7.4.27)

7.5 Quasi-Newton Method

We have seen from the above sections that, for large-residual problems (i.e.,
r(x) is large or r(x) is severely nonlinear), the performance of the Gauss-
Newton method and Levenberg-Marquardt method is usually poor. The
convergence is slow and only linear. This is because we don’t use the second-
order information S(x) in Hessian G(x) = J(x)T J(x) + S(x) which is signif-
icant. As mentioned in §7.1, in fact, computation of S(x) is either difficult
or expensive. It is also not suitable to use the secant approximation of the
whole Hessian G(x). So, it may be a good idea to use a secant approximation
of the second information S(x) =

∑m
i=1 ri(x)∇2ri(x) in G(x).

Let Bk be a secant approximation of S(xk), then the iteration (7.1.10)
becomes

(J(xk)T J(xk) + Bk)dk = −J(xk)T r(xk). (7.5.1)

Since

S(xk+1) =
m∑

i=1

ri(xk+1)∇2ri(xk+1), (7.5.2)

then we use

Bk+1 =
m∑

i=1

ri(xk+1)(Hi)k+1 (7.5.3)

to approximate S(xk+1), where (Hi)k+1 is a secant approximation of∇2ri(xk+1).
Then we have that

(Hi)k+1(xk+1 − xk) = ∇ri(xk+1)−∇ri(xk). (7.5.4)

Hence, we get

Bk+1(xk+1 − xk) =
m∑

i=1

ri(xk+1)(Hi)k+1(xk+1 − xk)

=
m∑

i=1

ri(xk+1)(∇ri(xk+1)−∇ri(xk))

= (J(xk+1)− J(xk))T r(xk+1)
∆= yk (7.5.5)

Download more at Learnclax.com

380 CHAPTER 7. NONLINEAR LEAST-SQUARES PROBLEMS

which is a quasi-Newton condition imposed on Bk.
Similarly, if we ask

(J(xk+1)T J(xk+1) + Bk+1)sk = J(xk+1)T r(xk+1)− J(xk)T r(xk) (7.5.6)

to hold, then Bk+1 should satisfy

Bk+1sk = ỹk, (7.5.7)

where

ỹk = J(xk+1)T r(xk+1)− J(xk)T r(xk)− J(xk+1)T J(xk+1)sk. (7.5.8)

Now, we give an update formula for Bk by weighted Frobenius norm. The
following theorem is a restatement of Theorem 5.1.10 in Chapter 5.

Theorem 7.5.1 Let vT
k sk > 0 and T ∈ Rn×n be a symmetric and positive

definite matrix such that
TT T sk = vk, (7.5.9)

where

vk
∆= ∇f(xk+1)−∇f(xk)
= J(xk+1)T r(xk+1)− J(xk)T r(xk). (7.5.10)

Then the update

Bk+1 = Bk +
(yk −Bksk)vT

k + vk(yk −Bksk)T

sT
k vk

−sT
k (yk −Bksk)

(sT
k vk)2

vkv
T
k (7.5.11)

is a unique solution of the minimization problem

min ‖T−T (Bk+1 −Bk)T−1‖F

s.t. (Bk+1 −Bk) is symmetric, Bk+1sk = yk. (7.5.12)

Dennis, Gay and Welsch [88] use the quasi-Newton condition (7.5.5) and
(7.5.11), and present a quasi-Newton algorithm NL2SOL with trust region
strategy. At each step, it is required to solve the subproblem

min
1
2
r(xk)T r(xk) + (x− xk)T J(xk)T r(xk)

+
1
2
(x− xk)T (J(xk)T J(xk) + Bk)(x− xk)

s.t. ‖x− xk‖ ≤ ∆k. (7.5.13)

Download more at Learnclax.com

7.5. QUASI-NEWTON METHOD 381

In this algorithm, a deficiency of the update (7.5.11) for Bk is that this matrix
is not guaranteed to vanish when the iterates approach to a zero-residual
solution, so it can interfere with superlinear convergence. This problem can
be avoided by a strategy of scaling Bk, that is, we choose a scaling factor

γk = min

{
sT
k yk

sT
k Bksk

, 1

}
, (7.5.14)

multiply Bk by γk, and then use (7.5.11) to update it.
Numerical experiments show that, for large-residual problems, quasi-

Newton algorithm NL2SOL is significantly advantageous; for small-residual
problems, the performance of NL2SOL and Moré’s Levenberg-Marquardt al-
gorithm is similar; for zero-residual problems we prefer the Gauss-Newton
method. Therefore, the Gauss-Newton method, Levenberg-Marquardt method,
and quasi-Newton method introduced in this chapter are very important to
solve nonlinear least-squares problems. Now, Moré’s Levenberg-Marquardt
algorithm and quasi-Newton algorithm NL2SOL are very popular.

Similar to the above discussion, Bartholomew-Biggs [15] uses the quasi-
Newton condition (7.5.5) and the following rank-one updating formula

Bk+1 = Bk +
(yk −Bksk)(yk −Bksk)T

(yk −Bksk)T sk
, (7.5.15)

and gives a quasi-Newton method for nonlinear least-squares problems. In
Bartholomew-Biggs’ algorithm, the scaling factor is

γk = rT
k+1rk+1/rT

k rk. (7.5.16)

Fletcher and Xu [139] presented a hybrid algorithm which combines Gauss-
Newton method and quasi-Newton method. If the current Gauss-Newton
step reduces the function f by a certain fixed amount, i.e.,

f(xk)− f(xk+1) ≥ τf(xk), τ ∈ (0, 1), (7.5.17)

we use the Gauss-Newton step. Otherwise, we use quasi-Newton update
(for example, BFGS update). In the zero-residual case, the method eventu-
ally takes Gauss-Newton steps and gives quadratic convergence; while in the
nonzero-residual case, the method eventually reduces to BFGS formula. The
theoretical analysis shows that Fletcher-Xu method is superlinearly conver-
gent. Normally, we take τ = 0.2 in (7.5.17).

Download more at Learnclax.com

382 CHAPTER 7. NONLINEAR LEAST-SQUARES PROBLEMS

Exercises

1. Solve the least-squares problem

min f(x) =
1
2
[(x2 − x2

1)
2 + (1− x1)2], x(0) = (0, 0)T

by Gauss-Newton method and Levenberg-Marquardt method.

2. Consider nonlinear least-squares problems:

min
x∈Rn

f(x) =
1
2
r(x)T r(x) =

1
2

m∑
i=1

[ri(x)]2, m ≥ n

where

r1(x) = x2
1 + x2

2 + x2
3 − 1,

r2(x) = x2
1 + x2

2 + (x3 − 2)2 − 1,

r3(x) = x1 + x2 + x3 − 1,

r4(x) = x1 + x2 − x3 + 1,
r5(x) = x3

1 + 3x2
2 + (5x3 − x1 + 1)2 − 36.

(1) Compute ∇f(x), J(x)T J(x), and ∇2f(x).
(2) Please answer whether J(x)T J(x) = ∇2f(x) holds for x = (0, 0)T , and
why?

3. Prove (7.2.7)–(7.2.9).
4. Suppose that the function f(x) = 1

2

∑m
i=1[ri(x)]2 is twice continuously

differentiable, and that the level set

L(x0) = {x | f(x) ≤ f(x0)}

is bounded. Let the sequence {xk} generated by trust-region type Levenberg-
Marquardt Algorithm 7.3.9 converge to x∗ with positive definite∇2f(x∗) and

S(x∗) =
m∑

i=1

ri(x∗)∇2ri(x∗) = 0.

Prove that {xk} converges to x∗ with quadratic rate.

Download more at Learnclax.com

7.5. QUASI-NEWTON METHOD 383

5. Let r ∈ Rm, J ∈ Rm×n, µ > 0. Prove that s = −(JT J + µI)−1JT r is
the solution of the least squares problem

min ‖Ws + y‖2,

where

W =

[
J

µ
1
2 I

]
, y =

[
r
0

]
.

6. Consider nonlinear least-squares problems

min
x∈Rn

f(x) =
1
2
r(x)T r(x) =

1
2

m∑
i=1

[ri(x)]2, m ≥ n

where r : Rn → Rm is a nonlinear function of x and its Jacobian matrix
J(x) is full-rank for all x ∈ Rn. Denote the Gauss-Newton direction, the
Levenberg-Marquardt direction, and the steepest descent direction respec-
tively by sGN , sLM , and sC :

sGN = −(JT J)−1JT r,

sLM = −(JT J + µI)−1JT r,

sC = −JT r.

Prove that

lim
µ→0

sLM (µ) = sGN ,

lim
µ→∞

sLM (µ)
‖sLM (µ)‖ =

sC

‖sC‖ .

Download more at Learnclax.com

Download more at Learnclax.com

Chapter 8

Theory of Constrained
Optimization

8.1 Constrained Optimization Problems

A general formulation for nonlinear constrained optimization is

min
x∈Rn

f(x) (8.1.1)

s.t. ci(x) = 0, i = 1, · · · , me; (8.1.2)
ci(x) ≥ 0, i = me + 1, · · · , m, (8.1.3)

where the objective function f(x) and the constrained functions ci(x), (i =
1, · · · , m) are all smooth, real-valued functions on Rn, and at least one is non-
linear, and me and m are nonnegative integers with 0 ≤ me ≤ m. Sometimes,
we set

E = {1, · · · , me} and I = {me + 1, · · · , m}

as index sets of equality constraints and inequality constraints, respectively.
If m = 0, the problem (8.1.1)-(8.1.3) is an unconstrained optimization prob-
lem; if me = m = 0, the problem is called an equality constrained opti-
mization problem; if all ci(x)(i = 1, · · · , m) are linear functions, the problem
(8.1.1)-(8.1.3) is called a linearly constrained optimization problem. A lin-
early constrained optimization problem with quadratic objective function
f(x) is said to be a quadratic programming problem which will be discussed
in Chapter 9.

Download more at Learnclax.com

386 CHAPTER 8. THEORY OF CONSTRAINED OPTIMIZATION

Definition 8.1.1 The point x ∈ Rn is said to be a feasible point if and only
if (8.1.2)-(8.1.3) hold. The set of all feasible points is said to be a feasible
set.

In problem (8.1.1)–(8.1.3), (8.1.2)-(8.1.3) are constrained conditions. From
Definition 8.1.1, the feasible point is the point satisfying all constraints. We
write the feasible set X as

X =

{
x

∣∣∣∣∣ ci(x) = 0, i = 1, · · · , me;
ci(x) ≥ 0, i = me + 1, · · · , m

}
. (8.1.4)

or
X = {x | ci(x) = 0, i ∈ E; ci(x) ≥ 0, i ∈ I}. (8.1.5)

So, we can rewrite problem (8.1.1)-(8.1.3) as

min
x∈X

f(x) (8.1.6)

which means that solution of constrained optimization problem (8.1.1)-(8.1.3)
is just to find a point x on the feasible set X, such that the objective function
f(x) is minimized.

In the following, we give some definitions about local and global minimiz-
ers.

Definition 8.1.2 If x∗ ∈ X and if

f(x) ≥ f(x∗), ∀x ∈ X, (8.1.7)

then x∗ is said to be a global minimizer of the problem (8.1.1)–(8.1.3). If
x∗ ∈ X and if

f(x) > f(x∗), ∀x ∈ X, x = x∗, (8.1.8)

then x∗ is said to be a strict global minimizer.

Definition 8.1.3 If x∗ ∈ X and if there is a neighborhood B(x∗, δ) of x∗

such that
f(x) ≥ f(x∗), ∀x ∈ X ∩B(x∗, δ), (8.1.9)

then x∗ is said to be a local minimizer of problem (8.1.1)–(8.1.3), where

B(x∗, δ) = {x | ‖x− x∗‖2 ≤ δ} (8.1.10)

Download more at Learnclax.com

8.1. CONSTRAINED OPTIMIZATION PROBLEMS 387

and δ > 0.
If x∗ ∈ X and if there is a neighborhood B(x∗, δ) of x∗ such that

f(x) > f(x∗), ∀x ∈ X ∩B(x∗, δ), x = x∗, (8.1.11)

then x∗ is said to be a strict local minimizer.

Definition 8.1.4 If x∗ ∈ X and if there is a neighborhood B(x∗, δ) of x∗

such that x∗ is the only local minimizer in X∩B(x∗, δ), then x∗ is an isolated
local minimizer.

Obviously, a global minimizer is also a local minimizer.
Assume that x∗ is a local minimizer of problem (8.1.1)–(8.1.3), if there is

an index i0 ∈ I = [me + 1, m] such that

ci0(x
∗) > 0, (8.1.12)

then, if we delete the i0-th constraint, x∗ is still the local minimizer of the
problem obtained by deleting i0-th constraint. Thus, we say that the i0-th
constraint is inactive at x∗. Now, we give the definitions of active constraint
and inactive constraint. First, write

I(x) = {i | ci(x) = 0, i ∈ I}. (8.1.13)

Definition 8.1.5 For any x ∈ Rn, the set

A(x) = E ∪ I(x) (8.1.14)

is an index set of active constraints at x, ci(x) (i ∈ A(x)) is an active con-
straint at x, ci(x) (i /∈ A) is an inactive constraint at x.

Assume that A(x∗) is an index set of the active constraints of problem
(8.1.1)–(8.1.3) at x∗, then, from the observation about inactive constraints,
it is enough for us to solve the constrained optimization problem

min f(x)
s.t. ci(x) = 0, i ∈ A(x∗). (8.1.15)

In general, it is easier to solve equality constraint problem (8.1.15) than the
original problem (8.1.1)–(8.1.3).

Download more at Learnclax.com

388 CHAPTER 8. THEORY OF CONSTRAINED OPTIMIZATION

8.2 First-Order Optimality Conditions

In this section we discuss the first-order optimality conditions. Since the
feasible directions play a very important role in deriving the optimality con-
ditions, we first give some definitions of several feasible directions.

Definition 8.2.1 Let x∗ ∈ X, 0 = d ∈ Rn. If there exists δ > 0 such that

x∗ + td ∈ X, ∀t ∈ [0, δ],

then d is said to be a feasible direction of X at x∗. The set of all feasible
directions of X at x∗ is

FD(x∗, X) = {d |x∗ + td ∈ X, ∀t ∈ [0, δ]}. (8.2.1)

Definition 8.2.2 Let x∗ ∈ X and d ∈ Rn. If

dT∇ci(x∗) = 0, i ∈ E,

dT∇ci(x∗) ≥ 0, i ∈ I(x∗),

then d is said to be a linearized feasible direction of X at x∗. The set of all
linearized feasible directions of X at x∗ is

LFD(x∗, X) =

{
d

∣∣∣∣∣ dT∇ci(x∗) = 0, i ∈ E
dT∇ci(x∗) ≥ 0, i ∈ I(x∗)

}
. (8.2.2)

Definition 8.2.3 Let x∗ ∈ X and d ∈ Rn. If there exist sequences dk(k =
1, 2, · · ·) and δk > 0, (k = 1, 2, · · ·) such that x∗ + δkdk ∈ X, ∀k and dk →
d, δk → 0, then the limiting direction d is called the sequential feasible di-
rection of X at x∗. The set of all sequential feasible directions of X at x∗

is

SFD(x∗, X) =

{
d

∣∣∣∣∣ x∗ + δkdk ∈ X, ∀k
dk → d, δk → 0

}
. (8.2.3)

In the definition above, if set xk = x∗ +δkdk, then {xk} is a feasible point
sequence that satisfies:
(1) xk = x∗, ∀k;
(2) limk→∞ xk = x∗;

Download more at Learnclax.com

8.2. FIRST-ORDER OPTIMALITY CONDITIONS 389

(3) xk ∈ X for all k sufficiently large.
If set δk = ‖xk − x∗‖, then we have

dk =
xk − x∗

‖xk − x∗‖ → d,

which means that xk = x∗+δkdk is a feasible point sequence with the feasible
direction d.

Note that if SFD(x∗, X) includes the zero vector, it is referred to as the
tangent cone of X at x∗, i.e.,

TX(x∗) = SFD(x∗, X) ∪ {0}.

Obviously, by use of the above definitions of some feasible directions, we
have the following lemma which indicates the relations of the above sets of
feasible directions FD(x∗, X), SFD(x∗, X) and LFD(x∗, X).

Lemma 8.2.4 Let x∗ ∈ X. If all constraint functions are differentiable at
x∗, then

FD(x∗, X) ⊆ SFD(x∗, X) ⊆ LFD(x∗, X). (8.2.4)

Proof. For any d ∈ FD(x∗, X), it follows from Definition 8.2.1 that there
is a δ > 0 such that (8.2.1) holds. Set dk = d and δk = δ/2k, then (8.2.3)
holds and clearly dk → d and δk → 0. Thus d ∈ SFD(x∗, X). Since d is
arbitrary, then

FD(x∗, X) ⊆ SFD(x∗, X). (8.2.5)

Next, for any d ∈ SFD(x∗, X), if d = 0, then d ∈ LFD(x∗, X). Assume
that d = 0. By Definition 8.2.3, there exist sequences dk (k = 1, 2, · · ·) and
δk > 0 (k = 1, 2, · · ·) such that (8.2.3) holds, and dk → d = 0 and δk → 0. By
use of (8.2.3), we see that x∗ + δkdk ∈ X, i.e.,

0 = ci(x∗ + δkdk) = δkd
T
k∇ci(x∗) + o(‖δkdk‖), i ∈ E; (8.2.6)

0 ≤ ci(x∗ + δkdk) = δkd
T
k∇ci(x∗) + o(‖δkdk‖), i ∈ I(x∗). (8.2.7)

Dividing the above two equations by δk > 0 and setting k → ∞, we obtain
(8.2.2). Thus we also have

SFD(x∗, X) ⊆ LFD(x∗, X). (8.2.8)

Both (8.2.5) and (8.2.8) give the result of (8.2.4). �

Download more at Learnclax.com

390 CHAPTER 8. THEORY OF CONSTRAINED OPTIMIZATION

In order to describe clearly necessary conditions for a local solution, it is
convenient to introduce the set

D(x′) = D′ = {d | dT∇f(x′) < 0}, (8.2.9)

which is called a set of descent direction at x′.
Now we describe the most basic necessary condition – geometry optimality

condition as follows.

Theorem 8.2.5 (Geometry optimality condition) Let x∗ ∈ X be a local
minimizer of problem (8.1.1)-(8.1.3). If f(x) and ci(x) (i = 1, 2, · · · , m) are
differentiable at x∗, then

dT∇f(x∗) ≥ 0, ∀d ∈ SFD(x∗, X), (8.2.10)

which means
SFD(x∗, X) ∩ D(x∗) = φ, (8.2.11)

where φ is an empty set.

Proof. For any d ∈ SFD(x∗, X), there exist δk > 0 (k = 1, 2, · · ·) and
dk (k = 1, 2, · · ·) such that x∗ + δkdk ∈ X with δk → 0 and dk → d. Since
x∗ + δkdk → x∗ and x∗ is a local minimizer, then for k sufficiently large, we
have

f(x∗) ≤ f(x∗ + δkdk) = f(x∗) + δkd
T
k∇f(x∗) + o(δk) (8.2.12)

which implies
dT∇f(x∗) ≥ 0. (8.2.13)

Since d is arbitrary, we obtain (8.2.10).
Furthermore, (8.2.13) also implies d /∈ D(x∗), and hence SFD(x∗, X) ∩

D(x∗) = φ. �

If we use terminology of the tangent cone to represent (8.2.10), we have

dT∇f(x∗) ≥ 0, ∀d ∈ TX(x∗),

i.e.,
−∇f(x∗)T d ≤ 0, ∀d ∈ TX(x∗). (8.2.14)

This implies that
−∇f(x∗) ∈ NX(x∗), (8.2.15)

Download more at Learnclax.com

8.2. FIRST-ORDER OPTIMALITY CONDITIONS 391

where NX(x∗) is the normal cone of X at x∗.
Theorem 8.2.5 shows that there is no sequential feasible direction at a

local minimizer x∗. Unfortunately, it is not possible to proceed further with-
out constraint qualification. In the following, by means of Farkas’ Lemma
1.3.22 and the constraint qualification, we can get the first-order optimality
condition — the famous Karush-Kuhn-Tucker Theorem.

Farkas’ Lemma 1.3.22 gives the following form.

Lemma 8.2.6 The set

S =

⎧⎪⎨
⎪⎩ d

∣∣∣∣∣∣∣
dT∇f(x∗) < 0,
dT∇ci(x∗) = 0, i ∈ E,
dT∇ci(x∗) ≥ 0, i ∈ I

⎫⎪⎬
⎪⎭ (8.2.16)

is empty if and only if there exist real numbers λi, i ∈ E and nonnegative real
numbers λi ≥ 0, i ∈ I such that

∇f(x∗) =
∑
i∈E

λi∇ci(x∗) +
∑
i∈I

λi∇ci(x∗). (8.2.17)

In fact, set

d = −x, ∇f(x∗) = c, A =

⎡
⎢⎣
∇cT

1 (x∗)
...

∇cT
m(x∗)

⎤
⎥⎦ , λ = y,

we immediately have that (8.2.16) is just (1.3.49), and that (8.2.17) and
λi ≥ 0, i ∈ I are just (1.3.50). This implies that Lemma 8.2.6 is a direct
consequence of Farkas’ Lemma 1.3.22 and also called Farkas’ Lemma.

It is convenient to state the optimality condition by introducing the La-
grangian function

L(x, λ) = f(x)−
m∑

i=1

λici(x), (8.2.18)

where λ = (λ1, · · · , λm)T ∈ Rm is a Lagrange multiplier vector.
Now, we are in a position to state the first-order necessary condition of a

local minimizer by use of Farkas’ Lemma and Theorem 8.2.5.

Theorem 8.2.7 (Karush-Kuhn-Tucker Theorem)

Download more at Learnclax.com

392 CHAPTER 8. THEORY OF CONSTRAINED OPTIMIZATION

Let x∗ be a local minimizer of problem (8.1.1)–(8.1.3). If the constraint
qualification (CQ)

SFD(x∗, X) = LFD(x∗, X) (8.2.19)

holds, then there exist Lagrange multipliers λ∗
i such that the following condi-

tions are satisfied at (x∗, λ∗):

∇f(x∗)−
m∑

i=1

λ∗
i∇ci(x∗) = 0, (8.2.20)

ci(x∗) = 0, ∀i ∈ E, (8.2.21)
ci(x∗) ≥ 0, ∀i ∈ I, (8.2.22)

λ∗
i ≥ 0, ∀i ∈ I, (8.2.23)

λ∗
i ci(x∗) = 0, ∀i ∈ I. (8.2.24)

Proof. Since x∗ is a local minimizer, x∗ is feasible and the conditions
(8.2.21) and (8.2.22) are satisfied.

Let d ∈ SFD(x∗, X); since x∗ is a local minimizer, it follows from Theo-
rem 8.2.5 that dT∇f(x∗) ≥ 0. By constraint qualification (8.2.19), we have
d ∈ LFD(x∗, X). Thus the system

dT∇ci(x∗) = 0, i ∈ E, (8.2.25)
dT∇ci(x∗) ≥ 0, i ∈ I(x∗), (8.2.26)
dT∇f(x∗) < 0 (8.2.27)

has no solution. By Farkas’ Lemma, we immediately obtain that

∇f(x∗) =
∑
i∈E

λ∗
i∇ci(x∗) +

∑
i∈I(x∗)

λ∗
i∇ci(x∗), (8.2.28)

where λ∗
i ∈ R (i ∈ E) and λ∗

i ≥ 0 (i ∈ I(x∗)). Setting λ∗
i = 0 (i ∈ I\I(x∗)), it

follows that

∇f(x∗) =
m∑

i=1

λ∗
i∇ci(x∗),

which is (8.2.20). It is obvious that λ∗
i ≥ 0,∀i ∈ I.

Finally, note that:
when i ∈ I(x∗), ci(x∗) = 0 and λ∗

i ≥ 0, therefore λ∗
i ci(x∗) = 0;

when i ∈ I \ I(x∗), ci(x∗) > 0 but λ∗
i = 0, therefore we also have

λ∗
i ci(x∗) = 0.

Download more at Learnclax.com

8.2. FIRST-ORDER OPTIMALITY CONDITIONS 393

Thus we obtain that λ∗
i ci(x∗) = 0, ∀i ∈ I. �

Theorem 8.2.7 was presented by Kuhn and Tucker [193], and is known as
the Kuhn-Tucker Theorem. Since Karush [185] also considered similarly the
optimality condition for constrained optimization, the conditions (8.2.20)–
(8.2.24) are often known as the Karush-Kuhn-Tucker conditions, or KKT
conditions for short. A point that satisfies the conditions is referred to as a
KKT point.

In KKT conditions, (8.2.20) is called a stationary point condition, because
it can be rewritten as

∇xL(x∗, λ∗) = ∇f(x∗)−
m∑

i=1

λ∗
i∇ci(x∗) = 0. (8.2.29)

Conditions (8.2.21) and (8.2.22) are called the feasibility conditions, (8.2.23)
is the nonnegativity condition for multipliers, and (8.2.24) is referred to as the
complementarity condition which states that both λ∗

i and ci(x∗) cannot be
nonzero, or equivalently that Lagrange multipliers corresponding to inactive
constraints are zero.

We say that the strict complementarity condition holds if exactly one
of λ∗

i and ci(x∗) is zero for each i ∈ I, i.e., we have that λ∗
i > 0 for each

i ∈ I ∩ A(x∗).
An inequality constraint ci is strongly active if i ∈ I ∩A(x∗) and λ∗

i > 0,
i.e., λ∗

i > 0 and ci(x∗) = 0. An inequality constraint ci is weakly active if
i ∈ I ∩ A(x∗) and λ∗

i = 0, i.e., λ∗
i = ci(x∗) = 0.

The condition (8.2.19) is called the constraint qualification (CQ). The
constraint qualification is important for KKT conditions. As an example
given by Fletcher [133], it indicates that if constraint qualification (8.2.19)
does not hold, then the local minimizer of problem (8.1.1)–(8.1.3) may not
be a KKT point.

Example:

min
(x1,x2)∈R2

x1 (8.2.30)

s.t. x3
1 − x2 ≥ 0, (8.2.31)

x2 ≥ 0. (8.2.32)

It is not difficult to see that x∗ = (0, 0)T is the global minimizer of
(8.2.30)–(8.2.32). At x∗, we have

SFD(x∗, X) =

{
d

∣∣∣∣∣ d =

(
α
0

)
, α ≥ 0

}
(8.2.33)

Download more at Learnclax.com

394 CHAPTER 8. THEORY OF CONSTRAINED OPTIMIZATION

and

LFD(x∗, X) =

{
d

∣∣∣∣∣ d =

(
α
0

)
, α ∈ R1

}
. (8.2.34)

Therefore, (8.2.19) does not hold. By direct computing, we have

∇f(x∗) =

(
1
0

)
, ∇c1(x∗) =

(
0
−1

)
, ∇c2(x∗) =

(
0
1

)
, (8.2.35)

which show that there does not exist λ∗
1 and λ∗

2 such that

∇f(x∗) = λ∗
1∇c1(x∗) + λ∗

2∇c2(x∗). (8.2.36)

This simple example indicates the importance of constraint qualification.
However, it is not easy to examine whether or not the CQ condition (8.2.19)
holds. In the following, we give some concrete constraint qualifications which
are easy to examine and frequently used.

The most simple and obvious constraint qualification is linear function
constraint qualification.

Definition 8.2.8 If all constraints ci(x∗) (i ∈ A(x∗) = E ∪ I(x∗)) are linear
functions, we say that linear function constraint qualification (LFCQ) holds.

By the definition, if ci(x∗) (i ∈ A(x∗)) are linear functions, then CQ
condition (8.2.19) holds and we have the following corollary.

Corollary 8.2.9 Let x∗ be a local minimizer of problem (8.1.1)-(8.1.3). If
the linear function constraint qualification holds at x∗, then x∗ is a KKT
point.

The most important and frequently used constraint qualification is the
following linear independence constraint qualification (LICQ).

Definition 8.2.10 If active constraint gradients ∇ci(x∗), i ∈ A(x∗) are lin-
early independent, we say that the linear independence constraint qualification
(LICQ) holds.

Theorem 8.2.11 Let x∗ be a feasible point and A(x∗) an index set of active
constraints at x∗. If ∇ci(x∗), i ∈ A(x∗), are linearly independent, then the
constraint qualification (8.2.19) holds.

Download more at Learnclax.com

8.2. FIRST-ORDER OPTIMALITY CONDITIONS 395

Proof. Since SFD(x∗, X) ⊆ LFD(x∗, X), it is enough that we only need
to prove LFD(x∗, X) ⊆ SFD(x∗, X). Let d ∈ LFD(x∗, X) be arbitrary.
Now let

A(x∗) = E ∪ I(x∗) = {1, · · · , l}, me ≤ l ≤ n.

Since ∇c1(x∗), · · · ,∇cl(x∗) are linearly independent, there are bl+1, · · · , bn

such that ∇c1(x∗), · · · ,∇cl(x∗), bl+1, · · · , bn are linearly independent.
Consider the nonlinear system

r(x, θ) = 0, (8.2.37)

whose components are defined as

ri(x, θ) = ci(x)− θdT∇ci(x∗), i = 1, · · · , l, (8.2.38)
ri(x, θ) = (x− x∗)T bi − θdT bi, i = l + 1, · · · , n. (8.2.39)

When θ = 0, the system (8.2.37) is solved by x∗, and when θ ≥ 0 is sufficiently
small, any solution x is also a feasible point in (8.1.1)–(8.1.3).

Let us write

A = [∇c1(x), · · · ,∇cl(x)], B = [bl+1, · · · , bn].

Then the Jacobian matrix J(x, θ) = ∇xrT (x, θ) = [A : B]. Obviously,
J(x∗) = [A(x∗) : B] is nonsingular. Hence by the implicit function theo-
rem there exist open neighborhoods Ωx about x∗ and Ωθ about θ = 0 such
that for any θ ∈ Ωθ, a unique solution x(θ) ∈ Ωx exists, and x(θ) is feasible
and continuously differentiable with respect to θ. From (8.2.37) and using
the chain rule,

0 =
dri

dθ
=
∑
j

∂ri

∂xj

dxj

dθ
+

∂ri

∂θ
, i = 1, · · · , n,

that is

∇ci(x)T dx

dθ
−∇ci(x∗)T d = 0, i = 1, · · · , l, (8.2.40)

bT
i

dx

dθ
− bT

i d = 0, i = l + 1, · · · , n. (8.2.41)

The above system is

JT dx

dθ
− J(x∗)T d = 0.

Download more at Learnclax.com

396 CHAPTER 8. THEORY OF CONSTRAINED OPTIMIZATION

Since x = x∗ at θ = 0, we have J = J(x∗) at θ = 0. Thus the above equation
becomes

J(x∗)[
dx

dθ
|θ=0 − d] = 0.

Since the coefficient matrix is nonsingular, we obtain

dx

dθ
= d at θ = 0,

which implies that if θk ↓ 0 is any sequence, then x(θk) is a feasible sequence
with the feasible direction d, i.e.,

x(θk)− x∗

θk
→ d.

This shows that d ∈ SFD(x∗, X). Since d ∈ LFD(x∗, X) is arbitrary, we get
LFD(x∗, X) ⊆ SFD(x∗, X). �

By the above theorem and Theorem 8.2.7, we immediately obtain the
following theorem.

Theorem 8.2.12 Let x∗ be a local minimizer of problem (8.1.1)–(8.1.3). If
LICQ holds, i.e., ∇ci(x∗), i ∈ A(x∗) = E ∪ I(x∗), are linearly independent,
then there are Lagrange multipliers λ∗

i (i = 1, · · · , m) such that (8.2.20)–
(8.2.24) hold.

We want to mention that sometimes we use the regularity assumption

SFD(x∗, X) ∩ D(x∗) = LFD(x∗, X) ∩ D(x∗). (8.2.42)

Since both sides are subsets of SFD(x∗, X) and LFD(x∗, X) respectively,
this assumption is clearly implied by the CQ (8.2.19). However, the converse
does not hold.

With the regularity assumption (8.2.42), the necessary condition (8.2.14)
in Theorem 8.2.5 (no feasible descent directions: SFD(x∗, X) ∩ D(x∗) = φ)
becomes

LFD(x∗, X) ∩ D(x∗) = φ,

i.e., there are no linearized feasible descent directions. Furthermore, as a
corollary of KKT Theorem 8.2.7, we have

Theorem 8.2.13 Let x∗ be a local minimizer of problem (8.1.1)–(8.1.3). If
the regularity assumption (8.2.42) holds, then x∗ is a KKT point.

Download more at Learnclax.com

8.2. FIRST-ORDER OPTIMALITY CONDITIONS 397

Next, we discuss the first-order sufficiency condition.

Theorem 8.2.14 Let x∗ ∈ X. Let f(x) and ci(x) (i = 1, · · · , m) be differen-
tiable at x∗. If

dT∇f(x∗) > 0, ∀0 = d ∈ SFD(x∗, X), (8.2.43)

then x∗ is a strict local minimizer of problem (8.1.1)–(8.1.3).

Proof. Suppose, by contradiction, that x∗ is not a strict local minimizer,
then there exist xk ∈ X(k = 1, 2, · · ·) such that

f(xk) ≤ f(x∗), (8.2.44)

and xk → x∗, xk = x∗ (k = 1, 2, · · ·). Without loss of generality, we assume
that

xk − x∗

‖xk − x∗‖2
→ d. (8.2.45)

Set dk = (xk−x∗)/‖xk−x∗‖2, δk = ‖xk−x∗‖2. By Definition 8.2.3, we have

d ∈ SFD(x∗, X). (8.2.46)

By use of (8.2.44), (8.2.45) and f(xk) = f(x∗)+ (xk−x∗)T∇f(x∗)+ o(‖xk−
x∗‖2), by dividing ‖xk−x∗‖2 and then taking the limit as k →∞, we obtain

dT∇f(x∗) ≤ 0, (8.2.47)

which, together with (8.2.46), contradicts (8.2.43). This completes the proof.
�

Since SFD(x∗, X) ⊆ LFD(x∗, X), we also have the following corollary.

Corollary 8.2.15 Let x∗ ∈ X. Let f(x) and ci(x) (i = 1, · · · , m) be differ-
entiable at x∗. If

dT∇f(x∗) > 0, ∀0 = d ∈ LFD(x∗, X), (8.2.48)

then x∗ is a strict local minimizer of problem (8.1.1)–(8.1.3).

The other important optimality condition, which is credited to Fritz John
[183], is the Fritz John optimality condition, which needs no the constraint
qualification.

Download more at Learnclax.com

398 CHAPTER 8. THEORY OF CONSTRAINED OPTIMIZATION

Theorem 8.2.16 Let f(x) and ci(x) (i = 1, · · · , m) be continuously differ-
entiable on a nonempty open set containing the feasible set X. If x∗ is a local
minimizer of problem (8.1.1)–(8.1.3), then there exist a scalar λ∗

0 ≥ 0 and a
vector λ∗ ∈ Rm such that

λ∗
0∇f(x∗)−

m∑
i=1

λi∇ci(x∗) = 0, (8.2.49)

ci(x∗) = 0, i ∈ E, (8.2.50)
ci(x∗) ≥ 0, i ∈ I, (8.2.51)
λ∗

i ≥ 0, i ∈ I, (8.2.52)
λ∗

i ci(x∗) = 0, ∀i, (8.2.53)
m∑

i=0

(λ∗
i)

2 > 0. (8.2.54)

Proof. If ∇ci(x∗) (i ∈ A(x∗)) are linearly dependent, then there are
λ∗

i (i ∈ A(x∗)) not all zero, such that

∑
i∈A(x∗)

λ∗
i∇ci(x∗) = 0. (8.2.55)

Set λ∗
0 = 0 and λ∗

i = 0, (i ∈ I\I(x∗)), we obtain (8.2.49)–(8.2.54).
If ∇ci(x∗) (i ∈ A(x∗)) are linearly independent, we can obtain immedi-

ately (8.2.49)–(8.2.54) with λ0 = 1 by means of Theorem 8.2.12. �

The point satisfying (8.2.49)–(8.2.54) is said to be the Fritz John point.
The following weighted Lagrangian function

L̃(x, λ0, λ) = λ0f(x)−
m∑

i=1

λici(x) (8.2.56)

is said to be the Fritz John function. Obviously, the Fritz John point is the
stationary point of the Fritz John function. Note that λ0 ≥ 0. If λ0 > 0,
the Fritz John function can be regarded as a λ0 multiple of the Lagrangian
function. However, if λ0 = 0, the Fritz John function only describes the
constraint functions and is independent of the objective function. In such
a case, Fritz John optimality conditions do not represent actually the op-
timality conditions of the original constrained optimization problem. This
disadvantage makes the Fritz John conditions unfavorable.

Download more at Learnclax.com

8.2. FIRST-ORDER OPTIMALITY CONDITIONS 399

We conclude this section with an optimality condition of convex program-
ming.

As we know, the problem of minimizing a convex function on a convex
set Ω is said to be a convex programming problem. Such a problem has the
form

min f(x)
s.t. x ∈ Ω, (8.2.57)

where f(x) is a convex function on a convex set Ω. Typically, in nonlinear
programming

min f(x)
s.t. ci(x) = 0, i ∈ E, (8.2.58)

ci(x) ≥ 0, i ∈ I,

if f(x) is convex, ci(x), (i ∈ E) are linear functions, and ci(x), (i ∈ I) are
concave, then the constrained set Ω = {x | ci(x) = 0, i ∈ E; ci(x) ≥ 0, i ∈ I}
is a convex set, and hence the problem (8.2.58) is convex programming.

As Theorem 1.4.9 in the unconstrained case, the following theorem in-
dicates that the local minimizer of convex programming is also its global
minimizer.

Theorem 8.2.17 Each local minimizer of convex programming problem (8.2.57)
is also the global minimizer, and the set S of global minimizers is convex.

Proof. Suppose, by contradiction, that x∗ is a local but not global mini-
mizer. Then there exists x1 ∈ Ω such that f(x1) < f(x∗). Consider

xθ = (1− θ)x∗ + θx1, θ ∈ [0, 1].

By convexity of Ω, xθ ∈ Ω. Also, by convexity of f ,

f(xθ) ≤ (1− θ)f(x∗) + θf(x1)
= f(x∗) + θ(f(x1)− f(x∗))
< f(x∗).

For sufficiently small θ, xθ) ∈ N(x∗, ε) ∩ Ω. So, it follows from assumption
that x∗ is a local minimizer that f(xθ) ≥ f(x∗). We get a contradiction
which means that local minimizers are global.

Download more at Learnclax.com

400 CHAPTER 8. THEORY OF CONSTRAINED OPTIMIZATION

Let x0, x1 ∈ S. Define xθ = (1 − θ)x0 + θx1, θ ∈ [0, 1]. By the global
property, f(xθ) ≥ f(x0) = f(x1). However, by convexity of f , f(xθ) ≤
(1 − θ)f(x0) + θf(x1) = f(x0) = f(x1). Therefore f(xθ) = f(x0) = f(x1)
and so xθ ∈ S, which means that S is convex. �

Theorem 8.2.18 The KKT point of convex programming must be its mini-
mizer.

Proof. Let (x∗, λ∗) be any KKT pair of convex programming. Obviously,
the Lagrangian function

L(x, λ∗) = f(x)−
∑
i∈E

λ∗
i ci(x)−

∑
i∈I

λ∗
i ci(x) (8.2.59)

is convex for x. By use of properties of convex function and KKT conditions,
we have for any feasible x,

L(x, λ∗) ≥ L(x∗, λ∗) + (x− x∗)T∇xL(x∗, λ∗)
= L(x∗, λ∗)

= f(x∗)−
m∑

i=1

λ∗
i ci(x∗)

= f(x∗). (8.2.60)

Note that x is a feasible point and λ∗
i ≥ 0, i ∈ I, so we have

λ∗
i ci(x) = 0, i ∈ E; λ∗

i ci(x) ≥ 0, i ∈ I.

Hence
L(x, λ∗) ≤ f(x). (8.2.61)

By (8.2.60) and (8.2.61) we obtain

f(x) ≥ f(x∗), (8.2.62)

that is, KKT point x∗ is a minimizer. �

Theorem 8.2.19 The convex programming with strictly convex objective func-
tion has unique minimizer.

The proof of this theorem is as an exercise.

Download more at Learnclax.com

8.3. SECOND-ORDER OPTIMALITY CONDITIONS 401

8.3 Second-Order Optimality Conditions

We have seen in unconstrained optimization that the second-order derivative
information has significant implications in optimality conditions. Let x∗ ∈ X.
If

dT∇f(x∗) > 0, ∀0 = d ∈ SFD(x∗, X), (8.3.1)

then x∗ is a strict local minimizer of problem (8.1.1)–(8.1.3). If

there exists d ∈ SFD(x∗, X) such that dT∇f(x∗) < 0, (8.3.2)

then from Theorem 8.2.5 it follows that x∗ must not be a local minimizer of
problem (8.1.1)–(8.1.3). These results tell us that, provided either (8.3.1) or
(8.3.2) holds, the first-order optimality condition can be used to determine
whether x∗ is a local minimizer. However, we cannot determine whether x∗

is a local minimizer by the first derivative information alone, if both (8.3.1)
and (8.3.2) do not hold, i.e.,

dT∇f(x∗) ≥ 0, ∀d ∈ SFD(x∗, X); (8.3.3)

dT∇f(x∗) = 0, ∃ 0 = d ∈ SFD(x∗, X). (8.3.4)

In these cases, the second-order derivative information is needed.
Assume that the constraint qualification (8.2.19) holds. It follows from

(8.3.3), (8.2.19) and Farkas’ Lemma 8.2.6 that x∗ is a KKT point. By (8.3.4)
and the definition of Lagrange multipliers, there exists 0 = d ∈ SFD(x∗, X)
such that

dT∇f(x∗) =
m∑

i=1

λ∗
i d

T∇ci(x∗) = 0. (8.3.5)

Since SFD(x∗, X) ⊆ LFD(x∗, X), by use of Definition 8.2.2, we have that
(8.3.5) is equivalent to

λ∗
i d

T∇ci(x∗) = 0, ∀i ∈ I(x∗). (8.3.6)

So, we give the following definitions. Let x∗ be a KKT point of (8.1.1)–
(8.1.3), and λ∗ a corresponding Lagrange multiplier vector. Define a set of
strong active constraints as

I+(x∗) = {i | i ∈ I(x∗) with λ∗
i > 0}. (8.3.7)

Obviously, I+(x∗) ⊆ I(x∗).

Download more at Learnclax.com

402 CHAPTER 8. THEORY OF CONSTRAINED OPTIMIZATION

Definition 8.3.1 Let x∗ be a KKT point of (8.1.1)–(8.1.3), and λ∗ a corre-
sponding Lagrange multiplier vector. If there exist sequences dk (k = 1, 2, · · ·)
and δk > 0 (k = 1, 2, · · ·) such that

x∗ + δkdk ∈ X (8.3.8)

satisfy

ci(xk) = 0, i ∈ E ∪ I+(x∗), (8.3.9)
ci(xk) ≥ 0, i ∈ I(x∗) \ I+(x∗), (8.3.10)

and dk → d and δk → 0, then d is said to be a sequential null constraint
direction at x∗. The set of all sequential null constraint directions is written
as S(x∗, λ∗),

S(x∗, λ∗) =

⎧⎪⎨
⎪⎩d

∣∣∣∣∣∣∣
xk = x∗ + δkdk ∈ X, δk > 0, δk → 0, dk → d,
ci(xk) = 0, i ∈ E ∪ I+(x∗),
ci(xk) ≥ 0, i ∈ I(x∗)− I+(x∗).

⎫⎪⎬
⎪⎭ .

(8.3.11)

It is easy to see that (8.3.9)–(8.3.10) imply that

m∑
i=1

λ∗
i ci(x∗ + δkdk) = 0. (8.3.12)

So, equivalently,

S(x∗, λ∗) =

{
d

∣∣∣∣∣ d ∈ SFD(x∗, X);∑m
i=1 λ∗

i ci(xk) = 0.

}
. (8.3.13)

Obviously, S(x∗, λ∗) ⊆ SFD(x∗, X).
Similar to the linearized feasible direction, we have the following defini-

tion.

Definition 8.3.2 Let x∗ be a KKT point of (8.1.1)–(8.1.3), and λ∗ a corre-
sponding Lagrange multiplier vector. If d is a linearized feasible direction at
x∗ and (8.3.6) holds, then d is said to be a linearized null constraint direction.
The set of all linearized null constraint directions is written as G(x∗, λ∗),

G(x∗, λ∗) =

⎧⎪⎨
⎪⎩d

∣∣∣∣∣∣∣
d = 0,
dT∇ci(x∗) = 0, i ∈ E ∪ I+(x∗),
dT∇ci(x∗) ≥ 0, i ∈ I(x∗) \ I+(x∗).

⎫⎪⎬
⎪⎭ . (8.3.14)

Download more at Learnclax.com

8.3. SECOND-ORDER OPTIMALITY CONDITIONS 403

Equivalently,

G(x∗, λ∗) =

{
d

∣∣∣∣∣ d ∈ LFD(x∗, λ∗);
dT∇ci(x∗) = 0, i ∈ I+(x∗).

}
(8.3.15)

If the Lagrange multiplier at x∗ is unique, G(x∗, λ∗) can be denoted by
G(x∗).

By the above definitions, we have

S(x∗, λ∗) ⊆ SFD(x∗, X), (8.3.16)
G(x∗, λ∗) ⊆ LFD(x∗, X). (8.3.17)

Similar to SFD(x∗, X) ⊆ LFD(x∗, X), we also can prove

S(x∗, λ∗) ⊆ G(x∗, λ∗), (8.3.18)

which is an exercise left to readers.
Now, we state the main results of this section.

Theorem 8.3.3 (Second-order necessary conditions)
Let x∗ be a local minimizer of (8.1.1)–(8.1.3). If the constraint qualifica-

tion (8.2.19) holds, then we have

dT∇2
xxL(x∗, λ∗)d ≥ 0, ∀d ∈ S(x∗, λ∗), (8.3.19)

where L(x, λ) is a Lagrangian function.
Furthermore, if

S(x∗, λ∗) = G(x∗, λ∗), (8.3.20)

then
dT∇2

xxL(x∗, λ∗)d ≥ 0, ∀d ∈ G(x∗, λ∗). (8.3.21)

Proof. For any d ∈ S(x∗, λ∗), if d = 0, it is obvious that dT∇2
xxL(x∗, λ∗)d =

0. Now we consider d = 0. From the definition of S(x∗, λ∗), there exist {dk}
and {δk} such that (8.3.8)–(8.3.12) hold. Therefore, by (8.3.12) and KKT
conditions, we have

f(x∗ + δkdk) = L(x∗ + δkdk, λ
∗)

= L(x∗, λ∗) +
1
2
δ2
kd

T
k∇2

xxL(x∗, λ∗)dk + o(δ2
k)

= f(x∗) +
1
2
δ2
kd

T
k∇2

xxL(x∗, λ∗)dk + o(δ2
k). (8.3.22)

Download more at Learnclax.com

404 CHAPTER 8. THEORY OF CONSTRAINED OPTIMIZATION

Since x∗ is a local minimizer, it follows for all k sufficiently large that

f(x∗ + δkdk) ≥ f(x∗). (8.3.23)

Using (8.3.22)–(8.3.23) and taking limits give

dT∇2
xxL(x∗, λ∗)d ≥ 0.

Since d ∈ S(x∗, λ∗) is arbitrary, then (8.3.19) follows.
By (8.3.20), we immediately obtain (8.3.21) from (8.3.19). �

Theorem 8.3.4 (Second-order sufficient conditions)
Let x∗ be a KKT point of (8.1.1)–(8.1.3). If

dT∇2
xxL(x∗, λ∗)d > 0, ∀d ∈ G(x∗, λ∗), (8.3.24)

then x∗ is a strict local minimizer.

Proof. Assume that x∗ is not a strict local minimizer, then there exists a
sequence {xk} ⊂ X such that

f(xk) ≤ f(x∗), (8.3.25)

with xk → x∗ and xk = x∗ (k = 1, 2, · · ·). Without loss of generality, we
assume that

xk − x∗

‖xk − x∗‖2
→ d.

By a similar argument to (8.2.45)–(8.2.47), we have

dT∇f(x∗) ≤ 0 (8.3.26)

and
d ∈ SFD(x∗, X) ⊆ LFD(x∗, X). (8.3.27)

It follows by KKT conditions and (8.2.4) that

dT∇f(x∗) =
m∑

i=1

λid
T∇ci(x∗) ≥ 0. (8.3.28)

Note that (8.3.26) and (8.3.28) give

dT∇f(x∗) = 0 (8.3.29)

Download more at Learnclax.com

8.3. SECOND-ORDER OPTIMALITY CONDITIONS 405

which implies from (8.3.28) and Definition 8.2.2 that

λid
T∇ci(x∗) = 0, ∀i ∈ I(x∗). (8.3.30)

So, it follows from (8.3.27), (8.3.30) and Definition 8.3.2 that

d ∈ G(x∗, λ∗). (8.3.31)

From (8.3.25), we have

L(x∗, λ∗) ≥ L(xk, λ
∗)

= L(x∗, λ∗) +
1
2
δ2
kd

T
k∇2

xxL(x∗, λ∗)dk + o(δ2
k). (8.3.32)

Dividing by δ2
k and taking the limit give

dT∇2
xxL(x∗, λ∗)d ≤ 0 (8.3.33)

which contradicts (8.3.24). We complete the proof. �

Notice that a sufficient condition for (8.3.24) is that

dT∇2
xxL(x∗, λ∗)d > 0

for all d = 0 such that dT∇ci(x∗) = 0, i ∈ A+(x∗, λ∗), where

A+(x∗, λ∗) = E ∪ {i | i ∈ I(x∗), λ∗
i > 0}, (8.3.34)

which is obtained by deleting indices for which λ∗
i = 0, i ∈ I(x∗) from A(x∗).

The A+(x∗, λ∗) is said to be an index set of strong active constraints, which is
a union of the index sets of equality constraints and strongly active inequality
constraints. So, we immediately obtain the following corollary which is also
a second-order sufficient condition and more convenient to verify in practice.

Corollary 8.3.5 Let x∗ be a KKT point of (8.1.1)–(8.1.3). If

dT∇2
xxL(x∗, d∗)d > 0 (8.3.35)

for all d satisfying

dT∇ci(x∗) = 0, ∀i ∈ A+(x∗, λ∗), (8.3.36)

then x∗ is a strict local minimizer.

Download more at Learnclax.com

406 CHAPTER 8. THEORY OF CONSTRAINED OPTIMIZATION

Proof. It is enough to prove that (8.3.35)–(8.3.36) are the sufficient con-
ditions of (8.3.24). In fact, if x∗ is a KKT point, then ∀d ∈ SFD(x∗, X) ⊆
LFD(x∗, X),

dT∇ci(x∗) = 0, i ∈ E (8.3.37)
dT∇ci(x∗) ≥ 0, i ∈ I(x∗). (8.3.38)

So, (8.3.6) holds, which implies d ∈ G(x∗, λ∗) from Definition 8.3.2. There-
fore, by means of Theorem 8.3.4, it follows that (8.3.35)–(8.3.36) implies
(8.3.24). �

8.4 Duality

We conclude this chapter with a brief discussion of duality. The concept
of duality occurs widely in the mathematical programming literature. The
aim is to provide an alternative formulation of a mathematical programming
problem which is more convenient computationally or has some theoretical
significance.

The original problem is referred to as the primal, and the transformed
problem is referred to as the dual.

In this section, we give an introduction of duality theory which is asso-
ciated with the convex programming problem. We will introduce the La-
grangian dual problem, and prove the duality theorem and the weak duality
theorem. Now we first state the duality theorem.

Theorem 8.4.1 Let x∗ be a minimizer of convex primal problem (P)

min
x

f(x)

s.t. ci(x) ≥ 0, i = 1, · · · , m. (8.4.1)

If f(x) and ci(x), (i = 1, · · · , m) are continuously differentiable and the reg-
ularity condition (8.2.42) holds, then x∗ and λ∗ solve the dual problem

max
x,λ

L(x, λ)

s.t. ∇xL(x, λ) = 0, (8.4.2)
λ ≥ 0.

Furthermore, the minimum of the primal and the maximum of the dual
are equal, i.e.,

f(x∗) = L(x∗, λ∗). (8.4.3)

Download more at Learnclax.com

8.4. DUALITY 407

Proof. By the assumption and KKT Theorem 8.2.7, there exist Lagrange
multipliers λ∗ ≥ 0 such that ∇xL(x∗, λ∗) = 0 and λ∗

i ci(x∗) = 0, i = 1, · · · , m.
Thus, f(x∗) = L(x∗, λ∗).

Let x, λ be dual feasible. Using λ ≥ 0, convexity of L, and ∇xL(x, λ) = 0
gives

L(x∗, λ∗) = f(x∗) ≥ f(x∗)−
m∑

i=1

λici(x∗)

= L(x∗, λ)
≥ L(x, λ) + (x∗ − x)T∇xL(x, λ)
= L(x, λ) (8.4.4)

which means that (x∗, λ∗) solves the dual problem. �

Usually, (8.4.3) is said to be the strong duality. Now, we give some
examples of dual problems. Let the primal problem in linear programming
be

min cT x

s.t. AT x ≥ b. (8.4.5)

By Theorem 8.4.1, we immediately have the dual:

max bT λ

s.t. Aλ = c, (8.4.6)
λ ≥ 0.

Normally, linear programs have standard form:

min cT x

s.t. Ax = b, (8.4.7)
x ≥ 0.

The corresponding dual problem is

max bT λ

s.t. AT λ ≤ c. (8.4.8)

It is easy to examine that the optimality conditions of (8.4.7) and (8.4.8) are
identical.

Download more at Learnclax.com

408 CHAPTER 8. THEORY OF CONSTRAINED OPTIMIZATION

For convex quadratic programming, the primal problem is

min
x

1
2
xT Gx + hT x

s.t. AT x ≥ b, (8.4.9)

where G is positive definite. The dual problem is

max
x,λ

1
2
xT Gx + hT x− λT (AT x− b)

s.t. Gx + h−Aλ = 0, (8.4.10)
λ ≥ 0. (8.4.11)

By eliminating x, we obtain the following problem:

max
λ

−1
2
λT (AT G−1A)λ + λT (b−AT G−1h)− 1

2
hT G−1h

s.t. λ ≥ 0. (8.4.12)

This is a quadratic programming problem in λ with bounded-constraints
λ ≥ 0.

The following theorem, referred to as the weak duality theorem, shows
that the objective value of any feasible point of the primal problem is larger
than or equal to the objective value of any feasible point of the dual problem.

Theorem 8.4.2 Let x′ be any feasible point in primal problem (8.4.1). Let
(x, λ) be any feasible point in dual problem (8.4.2). Then

f(x′) ≥ L(x, λ). (8.4.13)

Proof. Let x′ be primal feasible and (x, λ) dual feasible. Then by convex-
ity of f , dual feasibility, concavity of ci, and nonnegativity of ci(x′) and λi

in turn, it follows that

f(x′)− f(x) ≥ ∇f(x)T (x′ − x)

=
m∑

i=1

λi∇ci(x)T (x′ − x)

≥
m∑

i=1

λi(ci(x′)− ci(x))

≥ −
m∑

i=1

λici(x).

Download more at Learnclax.com

8.4. DUALITY 409

Hence

f(x′) ≥ f(x)−
m∑

i=1

λici(x) = L(x, λ). �

From the above theorem, we immediately have

inf
x

f(x) ≥ sup
x,λ
L(x, λ). (8.4.14)

This implies that if the primal problem is unbounded, it follows that infx f(x) =
supx,λ L(x, λ) = −∞, and this is not possible if (x, λ) is feasible. Therefore,
an unbounded primal implies an inconsistent dual.

Exercises

1. Assume that f(x) is a convex function, ci(x) (1 ≤ i ≤ me) are linear
functions and ci(x) (me + 1 ≤ i ≤ m) are concave functions. Show that x∗ is
a global minimizer of (8.1.1)–(8.1.3) if it is a local minimizer of (8.1.1)–(8.1.3).

2. Define the ε-active set by

Iε(x) = {i | ci(x) ≤ ε, i ∈ I(x)}.

Prove that, for any given x ∈ "n,

lim
ε→0+

Iε(x) = I(x).

3. Prove: if ci(x) (i ∈ A(x∗)) are linear functions, then CQ condition
(8.2.19) holds.

4. Prove (8.3.16) and (8.3.17).

5. Prove (8.3.18).

6. Let 0 = c ∈ "n. Consider the problem

min cT x

s.t. ‖x‖22 ≤ 1.

Download more at Learnclax.com

410 CHAPTER 8. THEORY OF CONSTRAINED OPTIMIZATION

Prove that x∗ = c/‖c‖2 satisfies the second-order sufficient condition.

7. Form the KKT conditions for

max (x + 1)2 + (y + 1)2

s.t. x2 + y2 ≤ 2,

1− y ≥ 0

and then determine the solution.

8. Give an example in which the second-order necessary condition holds
while the second-order sufficient condition fails.

9. By solving the KKT equation, find the point on the ellipse defined
by the intersection of the surface x + y = 1 and x2 + 2y2 + z2 = 1 which is
nearest to the origin.

10. Show that the dual of problem

min
1
2
σx2

1 +
1
2
x2

2 + x1

s.t. x1 ≥ 0

is a maximization problem in terms of a Largrange multiplier λ. For the case
σ = +1 and σ = −1, investigate whether the local solution of the dual gives
the multiplier λ∗ which exists at the local solution to the primal.

Download more at Learnclax.com

Chapter 9

Quadratic Programming

9.1 Optimality Conditions for Quadratic Program-
ming

Quadratic programming is the simplest constrained nonlinear optimization
problem. It is a special class of optimization problem (8.1.1)–(8.1.3) with a
quadratic objective function f(x) and linear constraints ci(x) (i = 1, · · · , m).
The general quadratic programming (QP) has the following form:

min Q(x) =
1
2
xT Gx + gT x (9.1.1)

s.t. aT
i x = bi, i ∈ E, (9.1.2)

aT
i x ≥ bi, i ∈ I, (9.1.3)

where G is a symmetric n×n matrix, E and I are finite sets of indices, E =
{1, · · · , me} and I = {me+1, · · · , m}. If the Hessian matrix G is positive semi-
definite, then (9.1.1)–(9.1.3) is a convex quadratic programming problem
and the local solution x∗ is a global solution. If G is positive definite, then
(9.1.1)–(9.1.3) is a strict convex QP and x∗ is a unique global solution. If G
is indefinite, then (9.1.1)–(9.1.3) is a nonconvex QP which is more important
and worth emphasizing.

From Theorem 8.2.7, Theorem 8.3.3 and Theorem 8.3.4, we immediately
get the following theorems:

Theorem 9.1.1 (Necessary conditions)

Download more at Learnclax.com

412 CHAPTER 9. QUADRATIC PROGRAMMING

Let x∗ be a local minimizer of quadratic programming problem (9.1.1)–
(9.1.3). Then there exist multipliers λ∗

i (i = 1, · · · , m) such that

g + Gx∗ =
m∑

i=1

λ∗
i ai, (9.1.4)

aT
i x∗ = bi, i ∈ E, (9.1.5)

aT
i x∗ ≥ bi, i ∈ I, (9.1.6)

λ∗
i (a

T
i x∗ − bi) = 0, i ∈ I, (9.1.7)

λ∗
i ≥ 0, i ∈ I. (9.1.8)

Furthermore,
dT Gd ≥ 0, ∀d ∈ G(x∗, λ∗), (9.1.9)

where

G(x∗, λ∗) =

⎧⎪⎨
⎪⎩d = 0

∣∣∣∣∣∣∣
dT ai = 0, i ∈ E
dT ai ≥ 0, i ∈ I(x∗)
dT ai = 0, i ∈ I(x∗) and λ∗

i > 0

⎫⎪⎬
⎪⎭ . (9.1.10)

Theorem 9.1.2 (Sufficient conditions)
Let x∗ be a KKT point and λ∗ a corresponding Lagrange multiplier vector.

If dT Gd > 0 ∀ 0 = d ∈ G(x∗, λ∗), then x∗ is a strict local minimizer to
(9.1.1)–(9.1.3).

Next, we give a sufficient and necessary optimality condition for (9.1.1)–
(9.1.3).

Theorem 9.1.3 (Necessary and sufficient conditions)
Let x∗ be a feasible point of quadratic programming problem (9.1.1)–

(9.1.3), then x∗ is a local minimizer if and only if (x∗, λ∗) is a KKT pair
such that (9.1.4)–(9.1.8) hold, and

dT Gd ≥ 0, ∀d ∈ G(x∗, λ∗). (9.1.11)

Proof. Let x∗ be a local minimizer, it follows from Theorem 9.1.1 that
there exists multiplier vector λ∗ such that (9.1.4)–(9.1.8) hold. Let 0 = d ∈
G(x∗, λ∗). Obviously, for sufficiently small t > 0, we have

x∗ + td ∈ X. (9.1.12)

Download more at Learnclax.com

9.2. DUALITY FOR QUADRATIC PROGRAMMING 413

Then, by the definition of d, for sufficiently small t > 0, we have

Q(x∗) ≤ Q(x∗ + td) = Q(x∗) + tdT (Gx∗ + g) +
1
2
t2dT Gd

= Q(x∗) + t
m∑

i=1

λ∗
i a

T
i d +

1
2
t2dT Gd

= Q(x∗) +
1
2
t2dT Gd, (9.1.13)

which, together with the arbitrariness of d, means (9.1.11) holds.
Second, we prove the sufficiency. Suppose, by contradiction, that x∗ is

not a local minimizer, so that there exists xk = x∗ + δkdk ∈ X such that

Q(xk) = Q(x∗ + δkdk) < Q(x∗), (9.1.14)

where δk > 0, δk → 0, dk → d̄. Completely similar to the proof of Theorem
8.3.4, we know that

d̄ ∈ G(x∗, λ∗). (9.1.15)

Thus, it follows from (9.1.14) and KKT conditions that

L(x∗, λ∗) > L(xk, λ
∗)

= L(x∗, λ∗) +
1
2
δ2
kd

T
k Gdk + o(δ2

k). (9.1.16)

Dividing both sides by δ2
k and taking the limit, we obtain

d̄T Gd̄ < 0. (9.1.17)

Noting that d̄ ∈ G(x∗, λ∗), it follows that (9.1.17) contradicts the assumption
(9.1.11). Then we complete the proof. �

Obviously, finding the KKT point of a quadratic programming problem
is equivalent to finding x∗ ∈ Rn, λ∗ ∈ Rm such that (9.1.4)–(9.1.8) hold.

9.2 Duality for Quadratic Programming

In this section we give more detailed discussion on the duality of convex
quadratic programming, because in some classes of practical problems we
can take advantage of the special structure of the dual to solve the problems
more efficiently.

Download more at Learnclax.com

414 CHAPTER 9. QUADRATIC PROGRAMMING

Assume that G is a positive definite matrix. From the results in §9.1, we
have known that solving the quadratic programming problem (9.1.1)–(9.1.3)
is equivalent to solving (9.1.4)–(9.1.8). Write

y = Aλ− g, (9.2.1)

and
ti = aT

i x− bi, i ∈ I, (9.2.2)

where A = [a1, · · · , am] ∈ Rn×m, λ = [λ1, · · · , λm]T ∈ Rm. Note that (9.1.4)
is just y = Gx and that (9.1.5)–(9.1.6) become

AT x− b = (0, · · · , 0, tme+1, · · · , tm)T ,

then (9.1.4)–(9.1.8) can be written as

[
−b

G−1y

]
=

[
−AT

I

]
x + (0, · · · , 0, tme+1, · · · , tm, 0, · · · , 0)T ,(9.2.3)

Aλ− y = g, (9.2.4)
λi ≥ 0, i ∈ I, (9.2.5)
tiλi = 0, i ∈ I, (9.2.6)
ti ≥ 0, i ∈ I. (9.2.7)

By KKT conditions, it follows that (9.2.3)–(9.2.7) are equivalent to solving
the problem

max
λ,y

bT λ− 1
2
yT G−1y

Def
= Q̄(λ, y) (9.2.8)

s.t. Aλ− y = g, (9.2.9)
λi ≥ 0, i ∈ I, (9.2.10)

which is the dual of the primal (9.1.1)–(9.1.3). As an exercise, please prove
that problem (9.2.8)–(9.2.10) just is

maxx,λ L(x, λ) =
1
2
xT Gx + gT x− λT (AT x− b) (9.2.11)

s.t. ∇xL(x, λ) = 0 (9.2.12)
λi ≥ 0, i ∈ I. (9.2.13)

Download more at Learnclax.com

9.2. DUALITY FOR QUADRATIC PROGRAMMING 415

Eliminating y in (9.2.9) by use of (9.2.1), we get that (9.2.8)–(9.2.10) can
be reduced to

min
λ∈Rm

−(b + AT G−1g)T λ +
1
2
λT (AT G−1A)λ (9.2.14)

s.t. λi ≥ 0, i ∈ I. (9.2.15)

Assume that x and (λ, y) are feasible points of the primal problem (9.1.1)–
(9.1.3) and the dual problem (9.2.8)–(9.2.10) respectively, then we have

Q(x)− Q̄(λ, y) = xT (Aλ− y) +
1
2
xT Gx

−(λT Ax−
∑
i∈I

λiti −
1
2
yT G−1y)

=
∑
i∈I

λiti +
1
2
(xT Gx + yT G−1y − 2xT y), (9.2.16)

where ti is defined in (9.2.2). Then, the positive definiteness of G gives

Q(x) ≥ Q̄(λ, y), (9.2.17)

which is what we showed in Theorem 8.4.2.
It also follows from (9.2.16) that both sides of (9.2.17) are equal if and

only if ∑
i∈I

λi(aT
i x− bi) = 0 (9.2.18)

and
x = G−1y. (9.2.19)

It is not difficult to see that (9.2.19) and (9.2.18) are equivalent to (9.1.4)
and (9.1.7) respectively. So, with the assumptions of feasibility, we have the
following theorem.

Theorem 9.2.1 Let G be positive definite. If the primal problem is feasible,
then x∗ ∈ X is a solution of primal problem (9.1.1)–(9.1.3) if and only if
(λ∗, y∗) is the solution of dual problem (9.2.8)–(9.2.10).

In §8.4, we have shown that an unbounded primal implies an infeasible
dual. We would like to know whether or not an infeasible primal implies an
unbounded dual. This guess does not always hold. However, it is true for
linearly constrained problems.

Download more at Learnclax.com

416 CHAPTER 9. QUADRATIC PROGRAMMING

Theorem 9.2.2 Let G be positive definite. Then the primal problem (9.1.1)–
(9.1.3) is infeasible if and only if the dual (9.2.8)–(9.2.10) is unbounded.

Proof. From (9.2.17), if the primal problem is feasible, the objective
function of the dual problem on set satisfying constraints (9.2.9)–(9.2.10) is
uniformly bounded above.

Now suppose that the primal problem is infeasible, then the system

(aT
i , bi)x̃ = 0, i ∈ E, (9.2.20)

(aT
i , bi)x̃ ≥ 0, i ∈ I, (9.2.21)

(0, · · · , 0, 1)x̃ < 0 (9.2.22)

has no solution for x̃ ∈ Rn+1. By Corollary 8.2.6 of Farkas’ Lemma, it follows
that there exist λ̄i (i = 1, · · · , m) such that

(0, · · · , 0, 1) =
∑
i∈E

λ̄i(aT
i , bi) +

∑
i∈I

λ̄i(aT
i , bi), (9.2.23)

i.e.,

m∑
i=1

λ̄iai = 0, (9.2.24)

m∑
i=1

λ̄ibi = 1, (9.2.25)

λ̄i ≥ 0, i ∈ I. (9.2.26)

Set λi = tλ̄i, then (9.2.24) gives Aλ = tAλ̄ = 0. It follows from (9.2.9) that
y = −g. Therefore, when t → +∞, it follows from (9.2.8) and (9.2.25) that

Q̄(λ, y) = t → +∞.

Also, for all t > 0, we have that λ = (tλ̄1, · · · , tλ̄m)T and y = −g satisfy
constraints (9.2.9)–(9.2.10) of the dual problem. This shows that the dual
problem is unbounded. �

There is a closed connection between Lagrangian function

L(x, λ) = Q(x)−
m∑

i=1

λi(aT
i x− bi) (9.2.27)

Download more at Learnclax.com

9.2. DUALITY FOR QUADRATIC PROGRAMMING 417

of the primal problem and duality. It is not difficult to see that solving KKT
conditions is equivalent to finding a stationary point of L(x, λ) on the area
{(x, λ) |λi ≥ 0, i ∈ I}. Since the Hessian matrix of L(x, λ) is

∇2L(x, λ) =

[
G −A
−AT 0

]
, (9.2.28)

by use of the identity[
I 0

AT G−1 I

]
∇2L(x, λ)

[
I G−1A
0 I

]
=

[
G 0
0 −AT G−1A

]
, (9.2.29)

we know that ∇2L(x, λ) has just n positive eigenvalues, and that the number
of negative eigenvalues equals rank(A). Thus, in general, the stationary point
of L(x, λ) is a saddle point, i.e., there is λ∗ ∈ Λ,

Λ = {λ ∈ Rm | λi ≥ 0, i ∈ I},

such that (x∗, λ∗) satisfies

L(x∗, λ) ≤ L(x∗, λ∗) ≤ L(x, λ∗) (9.2.30)

for all x ∈ X and λ ∈ Λ.
In fact, for all x ∈ X, we have

max
λ∈Λ

L(x, λ) = Q(x). (9.2.31)

For any λ ∈ Λ, set
y = Aλ− g, (9.2.32)

then (λ, y) is a feasible point of dual problem (9.2.8)–(9.2.10). This means
that such a feasible (λ, y) satisfies (9.2.9), which is ∇xL(x, λ) = 0, i.e., such
a feasible (λ, y) such that minx∈Rn L(x, λ). Therefore,

min
x∈Rn

L(x, λ) = bT λ− 1
2
yT G−1y = Q̄(λ, y). (9.2.33)

Let (x∗, λ∗) be a solution of (9.1.4)–(9.1.8). Let y∗ = Aλ∗ − g. It follows
that (λ∗, y∗) is a feasible point of (9.2.8)–(9.2.10). Then, for any x ∈ X and
any λ ∈ Λ, we have

L(x, λ∗) ≥ Q̄(λ∗, y∗)
= L(x∗, λ∗) = Q(x∗) ≥ L(x∗, λ), (9.2.34)

Download more at Learnclax.com

418 CHAPTER 9. QUADRATIC PROGRAMMING

which means that (x∗, λ∗) is a saddle point of L(x, λ).
Conversely, if

L(x∗, λ) ≤ L(x∗, λ∗) ≤ L(x, λ∗) (9.2.35)

holds for all x ∈ X and λ ∈ Λ, then

Q(x∗)−
m∑

i=1

λi(aT
i x∗ − bi) ≤ Q(x∗)−

m∑
i=1

λ∗
i (a

T
i x∗ − bi)

≤ Q(x)−
m∑

i=1

λ∗
i (a

T
i x− bi). (9.2.36)

Rearranging the first inequality gives

m∑
i=1

(λi − λ∗
i)(a

T
i x∗ − bi) ≥ 0, (9.2.37)

which is∑
i∈E

(λi − λ∗
i)(a

T
i x∗ − bi) +

∑
i∈I

(λi − λ∗
i)(a

T
i x∗ − bi) ≥ 0. (9.2.38)

Now we prove

aT
i x∗ = bi, i ∈ E (9.2.39)

aT
i x∗ ≥ bi, i ∈ I (9.2.40)

by contradiction. Suppose that aT
k x∗ > bk for some k ∈ E. Set λi = λ∗

i

for i = k and λk = λ∗
k − 1, then we get a contradiction from (9.2.38) to the

assumption aT
k x∗ > bk. If we suppose aT

k x∗ < bk for some k ∈ E, we can get
a similar contradiction. Therefore, we have that aT

i x∗ = bi, ∀i ∈ E.
Now assume, for some k ∈ I, that

λk = λ∗
k + 1 and λi = λ∗

i for i = k. (9.2.41)

Obviously, it follows that

aT
k x∗ − bk ≥ 0, k ∈ I. (9.2.42)

Repeating the process for all k ∈ I, we obtain

aT
i x∗ − bi ≥ 0, ∀i ∈ I. (9.2.43)

Download more at Learnclax.com

9.3. EQUALITY-CONSTRAINED QUADRATIC PROGRAMMING 419

Then, x∗ is a feasible point to the primal problem.
Set λ = 0, it follows from (9.2.35) that L(x∗, λ∗) ≥ L(x∗, 0), which is

m∑
i=1

λ∗
i (a

T
i x∗ − bi) ≤ 0. (9.2.44)

By use of (9.2.44), (9.2.35) and λ∗ ∈ Λ, we have, for all x ∈ X,

Q(x∗) ≤ Q(x∗)−
m∑

i=1

λ∗
i (a

T
i x∗ − bi)

= L(x∗, λ∗)
≤ L(x, λ∗)

≤ L(x, λ∗) +
m∑

i=1

λ∗
i (a

T
i x− bi)

= Q(x), (9.2.45)

which shows that x∗ is a minimizer of the primal problem.
Therefore, we get the following theorem which is a famous saddle point

theorem on the relationship between the saddle point of a Lagrangian func-
tion and the minimizer of the primal problem.

Theorem 9.2.3 (Saddle point theorem for quadratic programming)
Let G be positive definite. Then x∗ ∈ X is a minimizer of the primal

problem (9.1.1)–(9.1.3) if and only if there exists λ∗ ∈ Λ such that (x∗, λ∗) is
a saddle point of Lagrangian function L(x, λ), i.e., the saddle point conditions

L(x∗, λ) ≤ L(x∗, λ∗) ≤ L(x, λ∗) (9.2.46)

hold for all x ∈ X and λ ∈ Λ.

9.3 Equality-Constrained Quadratic Programming

The equality-constrained quadratic programming problem can be written as

min
x∈Rn

Q(x) = gT x +
1
2
xT Gx (9.3.1)

s.t. AT x = b, (9.3.2)

Download more at Learnclax.com

420 CHAPTER 9. QUADRATIC PROGRAMMING

where g ∈ Rn, b ∈ Rm, A = [a1, · · · , am] ∈ Rn×m, G ∈ Rn×n and G is
symmetric. Without loss of generality, we assume that rank (A) = m, i.e., A
has full column rank.

First, we introduce the variable elimination method. Assume that the
partitions are as follows:

x =

(
xB

xN

)
, A =

[
AB

AN

]
, g =

(
gB

gN

)
, G =

[
GBB GBN

GNB GNN

]
, (9.3.3)

where xB ∈ Rm, xN ∈ Rn−m, and AB is invertible. By these partitions, the
constraint condition (9.3.2) can be written as

AT
BxB + AT

NxN = b. (9.3.4)

Since A−1
B exists, then

xB = (A−1
B)T (b−AT

NxN). (9.3.5)

Substituting it into (9.3.1) gives the following form

min
xN∈Rn−m

1
2
xT

N ĜNxN + ĝT
NxN + ĉ, (9.3.6)

which is equivalent to (9.3.1), where

ĝN = gN −ANA−1
B gB + [GNB −ANA−1

B GBB](A−1
B)T b, (9.3.7)

ĜN = GNN −GNB(A−1
B)T AT

N

−ANA−1
B GBN + ANA−1

B GBB(A−1
B)T AT

N , (9.3.8)

ĉ =
1
2
bT A−1

B GBBA−T
B b + gT

BA−T
B b. (9.3.9)

If ĜN is positive definite, the solution of (9.3.6) is

x∗
N = −Ĝ−1

N ĝN (9.3.10)

which is unique. So the solution of problem (9.3.1)–(9.3.2) is

x∗ =

[
x∗

B

x∗
N

]
=

[
(A−1

B)T b
0

]
+

[
(A−1

B)T AT
N

−I

]
Ĝ−1

N ĝN . (9.3.11)

Let λ∗ be the Lagrange multiplier vector at x∗, then

g + Gx∗ = Aλ∗, (9.3.12)

Download more at Learnclax.com

9.3. EQUALITY-CONSTRAINED QUADRATIC PROGRAMMING 421

and thus
λ∗ = A−1

B (gB + GBBx∗
B + GBNx∗

N). (9.3.13)

If ĜN in (9.3.6) is positive semi-definite, then when

(I − ĜN Ĝ+
N)ĝN = 0, (9.3.14)

i.e., ĝN ∈ R(ĜN), the minimization problem (9.3.6) is bounded, and its
solution is

x∗
N = −Ĝ+

N ĝN + (I − Ĝ+
N ĜN)x̃, (9.3.15)

where x̃ ∈ Rn−m is any vector, Ĝ+
N denotes the generalized inverse matrix of

ĜN . In this case, the solution of problem (9.3.1)–(9.3.2) can be represented
by (9.3.15) and (9.3.5). If (9.3.14) does not hold, the problem (9.3.6) has no
lower bound, and thus the original problem (9.3.1)–(9.3.4) also has no lower
bound, that is, the original problem has no finite solution.

If ĜN has negative eigenvalue, it is obvious that the minimization problem
(9.3.6) has not lower bound, and thus the problem (9.3.1)–(9.3.2) has not
finite solution.

Example 9.3.1

min Q(x) = x2
1 − x2

2 − x2
3 (9.3.16)

s.t. x1 + x2 + x3 = 1, (9.3.17)
x2 − x3 = 1. (9.3.18)

From (9.3.18), we have
x2 = x3 + 1. (9.3.19)

Substituting it into (9.3.17) yields

x1 = −2x3. (9.3.20)

In fact, here xB = (x1, x2)T , xN = x3. By substituting (9.3.19)–(9.3.20) into
(9.3.16), we obtain

min
x3∈R

4x2
3 − (x3 + 1)2 − x2

3. (9.3.21)

Solving (9.3.21) gives x3 = 1
2 . By substituting x3 = 1

2 into (9.3.19)–(9.3.20),
we get

x∗ = (−1,
3
2
,
1
2
)T ,

Download more at Learnclax.com

422 CHAPTER 9. QUADRATIC PROGRAMMING

which is the solution of (9.3.16)–(9.3.18).
By use of g∗ = Aλ∗, it follows that⎛

⎜⎝ −2
−3
−1

⎞
⎟⎠ =

⎛
⎜⎝ 1 0

1 1
1 −1

⎞
⎟⎠
(

λ∗
1

λ∗
2

)
(9.3.22)

which gives Lagrange multipliers λ∗
1 = −2 and λ∗

2 = −1. �

The idea of variable elimination method is simple and clear. However,
when AB closes to singular, computing the solution by (9.3.11) will lead to
a numerically instable case.

A direct generalization of the variable elimination method is the gener-
alized elimination method. We partition Rn into two complementary sub-
spaces, i.e., Rn = R(A)⊕N(AT). Let y1, · · · , ym be a set of linearly indepen-
dent vectors in R(A), the range of A, and let z1, · · · , zn−m be a set of linearly
independent vectors in N(AT), the null space of AT . Write

Y = [y1, · · · , ym], Z = [z1, · · · , zn−m],

which are n×m and n× (n−m) matrices respectively. Obviously, R(Y) =
R(A), R(Z) = N(AT), and [Y : Z] is nonsingular. In addition, AT Y is
nonsingular and AT Z = 0. Set

x = Y x̄ + Zx̂, (9.3.23)

where x̄ ∈ Rm, x̂ ∈ Rn−m, it follows from the constraint condition (9.3.2)
that

b = AT x = AT Y x̄. (9.3.24)

Then the feasible point of (9.3.1)–(9.3.2) can be represented as

x = Y (AT Y)−1b + Zx̂. (9.3.25)

By substituting (9.3.25) into (9.3.1), we obtain

min
x̂∈Rn−m

(g + GY (AT Y)−1b)T Zx̂ +
1
2
x̂T ZT GZx̂, (9.3.26)

which is an unconstrained minimization problem in Rn−m. Here ZT GZ and
ZT (g + GY (AT Y)−1b) are called reduced Hessian and reduced gradient, re-
spectively. Suppose that ZT GZ is positive definite, then it follows from
(9.3.26) that

(ZT GZ)x̂ = −[ZT GY (AT Y)−1b + ZT g] (9.3.27)

Download more at Learnclax.com

9.3. EQUALITY-CONSTRAINED QUADRATIC PROGRAMMING 423

or
x̂∗ = −(ZT GZ)−1ZT (g + GY (AT Y)−1b). (9.3.28)

The system (9.3.27) can be solved by means of Cholesky factorization. Thus,
the (9.3.28) and (9.3.25) give the solution of problem (9.3.1)–(9.3.2)

x∗ = Y (AT Y)−1b− Z(ZT GZ)−1ZT (g + GY (AT Y)−1b)
= (I − Z(ZT GZ)−1ZT G)Y (AT Y)−1b− Z(ZT GZ)−1ZT g.(9.3.29)

Furthermore, from the KKT condition

Aλ∗ = g + Gx∗,

by left-multiplying Y T and noting that AT Y is nonsingular, we obtain

(Y T A)λ∗ = Y T (g + Gx∗)

and

λ∗ = (AT Y)−T Y T [g + Gx∗]
= (AT Y)−T Y T [Pg + GP T Y (AT Y)−1b], (9.3.30)

where
P = I −GZ(ZT GZ)−1ZT (9.3.31)

is an affine mapping from Rn to R(A). In particular, if we choose Y such
that

AT Y = I, (9.3.32)

where Y is a left-inverse of AT , then (9.3.25) becomes

x = Y b + Zx̂, (9.3.33)

where x̂ ∈ Rn−m, and further (9.3.29)–(9.3.30) become

x∗ = Y b− Z(ZT GZ)−1ZT (g + GY b) (9.3.34)
= P T Y b− Z(ZT GZ)−1ZT g, (9.3.35)

and

λ∗ = Y T (g + Gx∗)
= Y T (Pg + GP T Y b). (9.3.36)

Download more at Learnclax.com

424 CHAPTER 9. QUADRATIC PROGRAMMING

From (9.3.25), we know that the feasible area of (9.3.1)–(9.3.2) is a sub-
space parallel to N(AT). The generalized elimination method just uses
column-vectors zi (i = 1, · · · , n−m) of Z, which form a base of the null space
of AT , as basis vectors and transforms the quadratic programming prob-
lem (9.3.1)–(9.3.2) into an unconstrained minimization (9.3.26) of quadratic
function in a reduced space. Thus, this kind of method is also said to be
null-space method.

The above discussions tell us that how to choose matrix Z, base matrix
of the null space N(AT), is a key for this kind of methods. Different choices
of Z form different null-space methods for solving quadratic programming
problem (9.3.1)–(9.3.2). In the following we give some typical choices.

Clearly, the variable elimination method is a particular case of the gen-
eralized elimination method in which

Y =

[
A−1

B

0

]
, (9.3.37)

Z =

[
−A−T

B AT
N

I

]
. (9.3.38)

Another particular case is based on QR decomposition of A. Let

A = Q

[
R
0

]
= [Q1 Q2]

[
R
0

]
= Q1R, (9.3.39)

where Q is an n × n orthogonal matrix, R is an m ×m nonsingular upper
triangular matrix. Therefore, we have a choice

Y = (A+)T = Q1R
−T , Z = Q2. (9.3.40)

A general scheme for choosing Y and Z is as follows. For any Y and Z
with AT Y = I and AT Z = 0,

AT [Y Z] = [I 0]. (9.3.41)

Since [Y Z] is nonsingular, there exists V ∈ Rn×(n−m) such that

[Y Z] =

[
AT

V T

]−1

, (9.3.42)

Download more at Learnclax.com

9.3. EQUALITY-CONSTRAINED QUADRATIC PROGRAMMING 425

i.e.,

[A V]−1 =

[
Y T

ZT

]
. (9.3.43)

It means that the different choices of V ∈ Rn×(n−m) lead to different Y and
Z, and different elimination methods. For example, if we set

V =

[
0

In−m

]
,

we can get the variable elimination method (9.3.11). If we set

V = Q2,

the above orthogonal decomposition choice (9.3.40) is obtained. Normally,
null-space method is very useful, especially for small and medium-sized prob-
lems and when the computation of the null-space matrix Z and the factors
of ZT GZ is not very expensive.

The Lagrange method for solving equality-constrained quadratic pro-
gramming is based on KKT conditions, which are

g + Gx = Aλ, (9.3.44)
AT x = b. (9.3.45)

The above system can be written in the matrix form[
G −A
−AT 0

] [
x
λ

]
= −

[
g
b

]
. (9.3.46)

Here [
G −A
−AT 0

]
(9.3.47)

is a KKT matrix for quadratic programming (9.3.1)–(9.3.2). It is not difficult
to show that if A has full column-rank and ZT GZ is positive definite, then
KKT matrix (9.3.47) is nonsingular.

Theorem 9.3.2 Let A ∈ Rn×m be a full column-rank matrix. Assume
that the reduced Hessian ZT GZ is positive definite. Then the KKT matrix
(9.3.47) is nonsingular. Furthermore, there exists a unique KKT pair (x∗, λ∗)
such that equation (9.3.46) is satisfied.

Download more at Learnclax.com

426 CHAPTER 9. QUADRATIC PROGRAMMING

Proof. The proof is by contradiction. Suppose that KKT matrix (9.3.47)
is singular, then there exists nonzero vector (p, v) = 0 such that[

G −A
−AT 0

] [
p
v

]
= 0, (9.3.48)

where p ∈ Rn and v ∈ Rm. Clearly, we have AT p = 0. By left-multiplying[
p
v

]T

on both sides of (9.3.48), we obtain

0 =

[
p
v

]T [
G −A
−AT 0

] [
p
v

]
= pT Gp.

Since p ∈ N(AT) and Z = [z1, · · · , zn−m] spans N(AT), we may denote
p = Zu for some u ∈ Rn−m and have

0 = pT Gp = uT ZGZu.

The assumption that ZT GZ is positive definite gives u = 0 and then

p = Zu = 0. (9.3.49)

So, it follows from (9.3.48) that Av = 0. Notice that A has full column-rank,
then we obtain also v = 0 which together with (9.3.49) contradicts the fact
(p, v) = 0. We complete the proof. �

Now let KKT matrix be nonsingular. Then there exist matrices U ∈
Rn×n, W ∈ Rn×m and T ∈ Rm×m such that[

G −A
−AT 0

]−1

=

[
U W

W T T

]
, (9.3.50)

and the unique solution of (9.3.46) is

x∗ = −Ug −Wb, (9.3.51)
λ∗ = −W T g − Tb. (9.3.52)

As long as the KKT matrix (9.3.47) is nonsingular, then (9.3.50) is deter-
mined uniquely, so the stationary point of the Lagrangian function is deter-
mined uniquely by (9.3.51)–(9.3.52). However, since there are many expres-
sions for U, W , and T , and we can derive a different computational schemes
of formula (9.3.51)–(9.3.52).

Download more at Learnclax.com

9.4. ACTIVE SET METHODS 427

If G is invertible and A has full column-rank, then (AT G−1A)−1 exists.
It is not difficult to show that the expressions of U, W , and T in (9.3.50) are

U = G−1 −G−1A(AT G−1A)−1AT G−1, (9.3.53)
W = −G−1A(AT G−1A)−1, (9.3.54)
T = −(AT G−1A)−1. (9.3.55)

Then it follows from (9.3.46) that the solution for quadratic programming
with equality constraints is

x∗ = −G−1g + G−1A(AT G−1A)−1[AT G−1g + b], (9.3.56)
λ∗ = (AT G−1A)−1[AT G−1g + b]. (9.3.57)

As we said, if A has full column-rank and ZT GZ is positive definite, then
KKT matrix is invertible. In this case, if Y and Z are defined by (9.3.42),
the matrices U, W , and T in (9.3.50) can be represented as

U = Z(ZT GZ)−1zT , (9.3.58)
W = −P T Y, (9.3.59)
T = −Y T GP T Y, (9.3.60)

where P is defined by (9.3.31). Substituting (9.3.58)–(9.3.60) into (9.3.51)–
(9.3.52) yields the formula (9.3.35)–(9.3.36). Hence, the Lagrange method is
equivalent to the generalized elimination method.

9.4 Active Set Methods

Most QP problems involve inequality constraints and so can be expressed
in the form (9.1.1)–(9.1.3). In this section we describe how the methods for
solving equality-constrained QP can be generalized to handle the general QP
problem (9.1.1)–(9.1.3) by means of active set methods, which are, in general,
the most effective methods for small and medium-sized problems. We start
our discussion by considering the convex case, i.e., the matrix G in (9.1.1)–
(9.1.3) is positive semi-definite. The other case in which G is indefinite will
be simply discussed in the end of the section. Intuitively, inactive inequality
constraints do not play any role near the solution, so they can be dropped;
the active inequality constraints have zero values at solution, and so they can
be replaced by equality constraints. The following lemma is a base for active
set methods.

Download more at Learnclax.com

428 CHAPTER 9. QUADRATIC PROGRAMMING

Lemma 9.4.1 Let x∗ be a local minimizer of QP problem (9.1.1)–(9.1.3).
Then x∗ is a local minimizer of problem

minx∈Rn gT x +
1
2
xT Gx (9.4.1)

s.t. aT
i x = bi, i ∈ E ∪ I(x∗). (9.4.2)

Conversely, if x∗ is a feasible point of (9.1.1)–(9.1.3) and a KKT point of
(9.4.1)–(9.4.2), and the corresponding Lagrange multiplier vector λ∗ satisfies

λ∗
i ≥ 0, i ∈ I(x∗), (9.4.3)

then x∗ is also the KKT point of problem (9.1.1)–(9.1.3).

Proof. Since, near x∗, the feasible point of (9.1.1)–(9.1.3) is also feasible
for problem (9.4.1)–(9.4.2), then, obviously, the local minimizer of (9.1.1)–
(9.1.3) is also the local minimizer of problem (9.4.1)–(9.4.2).

Now let x∗ be feasible for (9.1.1)–(9.1.3) and a KKT point for (9.4.1)–
(9.4.2). Let there exist λ∗

i (i ∈ E ∪ I(x∗)) such that

Gx∗ + g =
∑

i∈I(x∗)∪E

aiλ
∗
i , (9.4.4)

λ∗
i (a

T
i x∗ − bi) = 0, λ∗

i ≥ 0, i ∈ I(x∗). (9.4.5)

Define
λ∗

i = 0, i ∈ I \ I(x∗). (9.4.6)

Then we immediately have from (9.4.4)–(9.4.6) that

Gx∗ + g =
m∑

i=1

λ∗
i ai, (9.4.7)

aT
i x∗ = bi, i ∈ E, (9.4.8)

aT
i x∗ ≥ bi, i ∈ I, (9.4.9)

λ∗
i ≥ 0, i ∈ I, (9.4.10)

λ∗
i (a

T
i x∗ − bi) = 0, ∀i (9.4.11)

which means that x∗ is a KKT point of problem (9.1.1)–(9.1.3). �

The active set methods are a feasible point method, that is, all iterates
remain feasible. In each iteration, we solve a quadratic programming sub-
problem with a subset of equality constraints. This subset is said to be a
working set and is denoted by Sk ⊂ E ∪ I(x∗).

Download more at Learnclax.com

9.4. ACTIVE SET METHODS 429

If the solution of the equality-constrained QP subproblem on Sk is feasible
for original problem (9.1.1)–(9.1.3), we need to examine whether (9.4.3) is
satisfied or not. If (9.4.3) is satisfied, then stop and we get the solution of the
original problem. Otherwise, the KKT conditions are not satisfied, and the
objective function q(·) can be decreased by dropping this constraint. Thus,
we remove the index from the working set Sk and solve a new subproblem.
If the solution of equality-constrained QP subproblem on Sk is not feasible
for problem (9.1.1)–(9.1.3), we need to add a constraint into the working set
Sk and then solve a new subproblem.

At each iteration, a feasible point xk and a working set Sk are known.
Each iteration attempts to locate a solution of an equality-constrained sub-
problem on Sk. Let d be a step from xk. We can express the QP subproblem
in terms of d. Consider the QP subproblem

mind∈Rn
1
2
(xk + d)T G(xk + d) + gT (xk + d), (9.4.12)

s.t. aT
i d = 0, i ∈ Sk (9.4.13)

which can be written as

mind∈Rn
1
2
dT Gd + gT

k d (9.4.14)

s.t. aT
i d = 0, i ∈ Sk (9.4.15)

where gk = ∇Q(xk) = Gxk + g. Denote the KKT point of (9.4.12)–(9.4.13)
by dk, the corresponding Lagrange multipliers by λ

(k)
i (i ∈ Sk). If dk = 0,

then xk is the KKT point of subproblem

minx∈Rn
1
2
xT Gx + gT x (9.4.16)

s.t. aT
i x = bi, i ∈ Sk. (9.4.17)

At this time, if λ
(k)
i ≥ 0, ∀i ∈ Sk ∩ I, then xk is a KKT point of problem

(9.1.1)–(9.1.3), and we terminate the iteration. Otherwise, there exists nega-
tive Lagrange multiplier, for example, λ

(k)
ik

< 0. In this case, it is possible to
reduce the objective function by dropping the ik-th constraint from current
working set Sk. Then we solve the resulting QP subproblem. Note that if
there are more than one index such that λi < 0, it is usual to choose ik for
which

λik = min
i∈Sk∩I

λ
(k)
i

<0

λ
(k)
i (9.4.18)

Download more at Learnclax.com

430 CHAPTER 9. QUADRATIC PROGRAMMING

and set
Sk := Sk \ {ik}. (9.4.19)

Suppose that the solution dk = 0. If xk + dk is feasible with regard to all
the constraints, then we set

xk+1 = xk + dk. (9.4.20)

Otherwise, a line search is made along the direction dk and we set

xk+1 = xk + αkdk, (9.4.21)

where αk is a steplength such that xk + αkdk is the “best” feasible point on
[xk, xk + dk] and the closest to xk + dk, i.e., take αk as large as possible in
the interval [0, 1].

Now we derive the explicit formula for αk. We ask xk +αkdk for satisfying
all constraints. Obviously, if i ∈ Sk, then the corresponding constraint will
be certainly feasible. Thus we only need to consider those constraints for
which i /∈ Sk. There are two cases we need to consider. If aT

i dk ≥ 0 for some
i /∈ Sk, then we have for all αk ≥ 0,

aT
i (xk + αkdk) ≥ aT

i xk ≥ bi, i /∈ Sk.

In this case, the constraint is satisfied. If aT
i dk < 0 for some i /∈ Sk, we have

aT
i (xk + αkdk) ≥ bi

only if

αk ≤
bi − aT

i xk

aT
i dk

, i /∈ Sk. (9.4.22)

Hence, we should take

αk = min
i/∈Sk

aT
i

dk<0

bi − aT
i xk

aT
i dk

. (9.4.23)

Since we want αk to be as large as possible in [0, 1] subject to remaining
feasibility, we have the following formula:

αk = min

⎧⎪⎨
⎪⎩1, min

i/∈Sk
aT

i
dk<0

bi − aT
i xk

aT
i dk

⎫⎪⎬
⎪⎭ . (9.4.24)

Download more at Learnclax.com

9.4. ACTIVE SET METHODS 431

If αk < 1, i.e., (9.4.23) holds, then there exists some j /∈ Sk such that

αk =
bj − aT

j xk

aT
j dk

.

Thus,
aT

j xk+1 = aT
j xk + αka

T
j dk = bj .

This means that there is a new constraint indexed by j /∈ Sk becoming an
active constraint at xk+1. So we put it into the working set, that is, set
Sk+1 = Sk ∪ {j}.

If αk = 1, then the working set remains the same, i.e., Sk+1 = Sk.
So, we can continue the next iteration on the new working set Sk+1.
Now, we are in a position to give the algorithm of active set method as

follows.

Algorithm 9.4.2 (Active Set Methods)

Step 1. Given x1, set S1 = E ∪ I(x1), k := 1.

Step 2. Find the solution dk for subproblem (9.4.12)–(9.4.13).
If dk = 0, go to Step 3;
Else if dk = 0, compute λ

(k)
i from Gxk + g =

∑
i∈Sk

λ
(k)
i ai.

If λ
(k)
i ≥ 0 ∀i ∈ Sk ∩ I, stop;

else find ik by (9.4.18).
Sk := Sk \ {ik}, xk+1 = xk, go to Step 4.

Step 3. Find αk by (9.4.24);
Set

xk+1 = xk + αkdk. (9.4.25)

If αk = 1, go to Step 4;
Else find j /∈ Sk such that

aT
j (xk + αkdk) = bj . (9.4.26)

Set Sk := Sk ∪ {j}.

Step 4. Sk+1 := Sk, k := k + 1, go to Step 2. �

Download more at Learnclax.com

432 CHAPTER 9. QUADRATIC PROGRAMMING

Now we give analysis to the algorithm.
From Algorithm 9.4.2, we know that all iterates are feasible, i.e.,

xk ∈ X, ∀k, (9.4.27)

and the objective function remains descent, i.e.,

Q(xk+1) ≤ Q(xk), ∀k. (9.4.28)

Further, as long as dk = 0 (i.e., xk is not the KKT point of (9.4.16)–(9.4.17))
and αk > 0, we have

Q(xk+1) < Q(xk). (9.4.29)

If the algorithm terminates in finitely many steps, the obtained point is
a KKT point of the original problem (9.1.1)–(9.1.3).

Suppose that the algorithm does not terminate in finitely many steps;
since there is only a finite number of constraints, it is impossible that the
number of elements in Sk increases infinitely many times and does not reduce.
So there are infinitely many indices k such that dk = 0. It follows from the
algorithm that there are infinitely many indices k such that xk is a KKT
point of (9.4.16)–(9.4.17). Since the number of constraints is finite, Sk has
only finitely many different combinations and so the sequence of the objective
values {Q(xk)} has only finitely many elements. Therefore, there must exist
a sufficiently large k0 such that

Q(xk+1) = Q(xk), ∀k ≥ k0. (9.4.30)

Then for all k ≥ k0, in both
αk = 0 (9.4.31)

and
dk = 0, (9.4.32)

only one holds. Since there are only finitely many constraints, it is impossible
that the algorithm only increases the constraint into Sk, nor reduces the
constraint from Sk. Hence, there must be infinitely many indices k such that

dk = 0, (9.4.33)

and infinitely many indices k such that

dk = 0. (9.4.34)

Download more at Learnclax.com

9.4. ACTIVE SET METHODS 433

So, there exist k2 > k1 > k0 such that

dk1 = 0, dk2 = 0, (9.4.35)

dk = 0, k1 < k < k2, (9.4.36)

and
k2 > k1 + 1. (9.4.37)

Lemma 9.4.3 Let k0 be an index satisfying (9.4.30). If k2 > k1 > k0 satisfy
(9.4.35)–(9.4.37), then

Sk2 = Sk1 . (9.4.38)

Proof. By (9.4.35), there exist λ
(k1)
i such that

g + Gx̄ =
∑

i∈Sk1

aiλ
(k1)
i , (9.4.39)

where x̄ = xk0 . From (9.4.31)–(9.4.32), it follows that xk = x̄ for all k ≥ k0.
Since dk1+1 = 0, αk1+1 = 0, there must be

j /∈ Sk1+1, (9.4.40)

such that j ∈ Sk1+2,
j ∈ I(x̄) (9.4.41)

and
aT

j dk1+1 < 0. (9.4.42)

Since dk is a solution for subproblem (9.4.12)–(9.4.13), i.e., dk is a descent
direction of the objective function, then

(g + Gx̄)T dk1+1 ≤ 0. (9.4.43)

By using (9.4.39), (9.4.43) and Sk1+1 = Sk1 \ {ik1}, we get

λ
(k1)
ik1

aT
ik1

dk1+1 ≤ 0, (9.4.44)

which means that
aT

ik1
dk1+1 ≥ 0 (9.4.45)

by the definition of {ik}. Comparing (9.4.42)–(9.4.44) gives j = ik1 . Hence
it follows from (9.4.40) that j /∈ Sk1 .

On the other hand, j ∈ Sk1+2 ⊆ Sk2 . Hence we have Sk2 = Sk1 . The
proof is complete. �

Finally, we give the convergence theorem of active set methods.

Download more at Learnclax.com

434 CHAPTER 9. QUADRATIC PROGRAMMING

Theorem 9.4.4 If, for all k, ai (i ∈ E ∪ I(xk)) are linearly independent,
then either the sequence generated from Algorithm 9.4.2 converges to a KKT
point of problem (9.1.1)–(9.1.3) in finite iterations, or the original problem
(9.1.1)–(9.1.3) is unbounded below.

Proof. Assume that the problem (9.1.1)–(9.1.3) is bounded below, then
the sequence {xk} is bounded.

If the solution of subproblem (9.4.12)–(9.4.13) is dk = 0, then xk is a
KKT point of (9.4.16)–(9.4.17) for the current working set Sk. If λ

(k)
i ≥

0, ∀i ∈ Sk∩I, then xk is a KKT point of the original problem (9.1.1)–(9.1.3).
Otherwise, there exists λ

(k)
ik

< 0 (ik ∈ Sk ∩ I) for which we can find a feasible
descent direction dk such that

aT
j dk = 0, j ∈ Sk, j = ik, (9.4.46)

aT
ik

dk > 0 (9.4.47)

and

gT
k dk = (λ(k))T AT

k dk = (aT
ik

dk)(λ(k))T eik = (aT
ik

dk)λ
(k)
ik

< 0. (9.4.48)

If we substitute (9.4.46) for the constraints in (9.4.13), i.e., set Sk := Sk\{ik},
the resulting QP subproblem will have a feasible descent direction. Since
αk > 0, we have

Q(xk+1) < Q(xk),

and consequently, by finiteness of constraints, the algorithm never returns to
the current working set Sk, and the sequence {xk} is finite.

If dk = 0 and αk = 1, then Sk+1 = Sk, and the subproblem (9.4.12)–
(9.4.13) is unchanged for xk+1 and so the xk+1 is the solution of (9.4.12)–
(9.4.13).

Only if dk = 0 and αk < 1, xk+1 is not the solution of (9.4.12)–(9.4.13).
At this time, from (9.4.26) in Step 3 of Algorithm 9.4.2, we know that there is
an index j /∈ Sk such that the j-th constraint is feasible. So, such a constraint
is added into Sk+1. If this procedure occurs repeatedly, then after at most n
iterations the working set Sk will contains n indices, which correspond to n
linearly independent vectors, then it follows from (9.4.13) that dk = 0. Thus
such a procedure continues at most n times. So there will be a KKT point
xk of (9.4.16)–(9.4.17) at most after n iterations.

Combining the above discussion, in any case, the algorithm will converge
in finite iterations to the KKT point of problem (9.1.1)–(9.1.3). �

Download more at Learnclax.com

9.5. DUAL METHOD 435

By modifying the algorithm, the active set method for a convex QP prob-
lem can be adopted to the indefinite case in which the Hessian matrix G has
some negative eigenvalues.

As we know from §9.3 that if G in Sk is indefinite, then the problem
(9.4.13) may be unbounded. We can choose the direction dk such that aT

i dk =
0 (∀i ∈ Sk) and either

dT
k Gdk < 0 (9.4.49)

or
∇Q(xk)T dk < 0, dT

k Gdk = 0 (9.4.50)

where ∇Q(xk) = g + Gxk. If, for all i /∈ Sk, aT
i dk ≥ 0, then the original

problem (9.1.1)–(9.1.3) is unbounded below. Otherwise, we can find i /∈ Sk

and aT
i dk < 0. Then, when α > 0 is sufficiently large, xk + αdk is not

a feasible point of (9.1.1)–(9.1.3). In this case we can take αk as large as
possible and make xk + αkdk feasible.

9.5 Dual Method

For the convex QP problem

minx∈Rn gT x +
1
2
xT Gx (9.5.1)

s.t. aT
i x = bi, i ∈ E, (9.5.2)

aT
i x ≥ bi, i ∈ I, (9.5.3)

where G is symmetric and positive definite. We know from §9.2 that the dual
problem is

minλ∈Rm −(b + AG−1g)T λ +
1
2
λT (AT G−1A)λ (9.5.4)

s.t. λi ≥ 0, i ∈ I. (9.5.5)

Now we adopt the active-set method to (9.5.4)–(9.5.5). The equality-
constrained subproblem we solved at each iteration is

minλ∈Rm −(b + AT G−1g)T λ +
1
2
λT (AT G−1A)λ (9.5.6)

s.t. λi = 0, i ∈ S̄k, (9.5.7)

Download more at Learnclax.com

436 CHAPTER 9. QUADRATIC PROGRAMMING

where S̄k ⊆ I is a working set for dual problem (9.5.4)–(9.5.5). Let λk be a
KKT point of the subproblem (9.5.6)–(9.5.7). Set

xk = −G−1(g −Aλk), (9.5.8)

then
Gxk + g = Aλk, (9.5.9)

and from
(b + AT G−1g −AT G−1Aλk)i = 0, ∀i /∈ S̄k, (9.5.10)

we have
(AT xk − b)i = 0, ∀i /∈ S̄k. (9.5.11)

Thus, xk is the KKT point of the subproblem

minx∈Rn gT x +
1
2
xT Gx (9.5.12)

s.t. aT
i x = bi, i /∈ S̄k. (9.5.13)

Write Sk = {I ∪ E} \ S̄k. It is obvious that (9.5.12)–(9.5.13) is the same as
(9.4.16)–(9.4.17). It is not difficult to see that the Lagrange multipliers of
dual problem (9.5.6)-(9.5.7) satisfy

(AT G−1Aλk − b−AT G−1g)i

= (AT xk − b)i = aT
i xk − bi, i ∈ S̄k. (9.5.14)

We ask λk to be a feasible point of (9.5.4)–(9.5.5). If the Lagrange multiplier
(9.5.14) of the dual problem (9.5.6)–(9.5.7) is nonnegative, xk is a KKT point
of the original problem (9.5.1)–(9.5.3). Let Ak be a matrix with the columns
ai (i ∈ Sk), λ̄k the vector consisting of the components of λk corresponding
to i ∈ Sk. It follows from (9.5.10) that

bi + aT
i G−1g − aT

i G−1Akλ̄k = 0, i ∈ Sk, (9.5.15)

i.e.,
b(k) + AT

k G−1g −AT
k G−1Akλ̄k = 0, (9.5.16)

where b(k) consists of the components of b corresponding to i ∈ Sk. Then
(9.5.16) gives

λ̄k = (AT
k G−1Ak)−1[b(k) + AT

k G−1g]. (9.5.17)

Download more at Learnclax.com

9.5. DUAL METHOD 437

When Lagrange multipliers in (9.5.10) are not all nonnegative, we should,
by the active-set method, drop an index ik ∈ S̄k, that is, add the index ik into
Sk. For convenience of sign, we write ik as p. Then we have Sk+1 = Sk ∪{p}.

Let

λ̄k+1 =

(
λ̄k

0

)
+

(
δλk

βk

)
. (9.5.18)

It follows from (9.5.17) that
(

AT
k G−1Ak AT

k G−1ap

aT
p G−1Ak aT

p G−1ap

)(
δλk

βk

)
=

(
0

bp − aT
p xk

)
, (9.5.19)

which gives

λ̄k+1 =

(
λ̄k

0

)
+ βk

(
−(AT

k G−1Ak)−1AT
k G−1ap

1

)
. (9.5.20)

So,

xk+1 = xk + G−1Ak+1

(
λ̄k+1 −

[
λ̄k

0

])

= xk + βkG
−1(I −Ak(AT

k G−1Ak)−1AT
k G−1)ap. (9.5.21)

Let

A∗
k = (AT

k G−1Ak)−1AT
k G−1, (9.5.22)

yk = A∗
kap. (9.5.23)

Since λ̄k+1 should satisfy λ̄k+1 ≥ 0, it follows from (9.5.20) and (9.5.23) that

0 ≤ βk ≤ min
j∈Sk

(yk)j>0

(λ̄k)j

(yk)j
. (9.5.24)

If
G−1(I −AkA

∗
k)ap = 0 (9.5.25)

and yk ≤ 0, then

(−yk, 1)T (AT
k+1G

−1Ak+1)

(
−yk

1

)
= 0 (9.5.26)

Download more at Learnclax.com

438 CHAPTER 9. QUADRATIC PROGRAMMING

and
(−yk, 1)T (b(k+1) + AT

k+1G
−1g) = bp − aT

p xk > 0, (9.5.27)

which indicate that the dual problem (9.5.4)–(9.5.5) is unbounded. Further,
we know by the duality theory that the original problem (9.5.1)–(9.5.3) has
no feasible point.

Now, by use of the analysis above, we describe the dual method due to
Goldfarb and Idnani [155] as follows (we consider the case in which me = 0,
i.e., the problem with only inequality constraints).

Algorithm 9.5.1 (Dual Method)

Step 1. x1 = −G−1g, f1 = 1
2gT x1,S1 = Φ; k := 1, λ̄1 = Φ, q = 0.

Step 2. Compute ri = bi − aT
i xk, i = 1, · · · , m.

If ri ≤ 0, stop.
Choose p such that rp = max1≤i≤m ri;

λ̄k :=

(
λ̄k

0

)
.

Step 3. dk := Ĝkap = G−1(I −AkA
∗
k)ap; yk := A∗

kap.
If {j| (yk)j > 0, j ∈ Sk} is nonempty, set

αk = min
(yk)j>0

j∈Sk

(λ̄k)j

(yk)j
=

(λ̄k)l

(yk)l
; (9.5.28)

else set αk = ∞.

Step 4. If dk = 0, go to Step 5;
If αk = ∞, stop (the original problem has no feasible point);
Sk := Sk \ {l}; q := q − 1;

λ̄k := λ̄k + αk

(
−yk

1

)
;

Modify A∗
k and Ĝk; turn to Step 3.

Step 5 α̂ := −(bp − aT
p xk)/aT

p dk;
αk := min{αk, α̂};
xk+1 := xk + αkdk;
fk+1 := fk + αka

T
p dk(1

2αk + (λ̄k)q+1);

λ̄k+1 := λ̄k + αk

(
−yk

1

)
.

Download more at Learnclax.com

9.5. DUAL METHOD 439

Step 6. If αk < α̂, go to Step 7;
Sk+1 := Sk ∪ {p}; q := q + 1;
Compute Ĝk+1 and A∗

k+1, k := k + 1; turn to Step 2.

Step 7. Sk := Sk \ {l}; q := q − 1;
Remove the l-th component from λ̄k and obtain a new λ̄k;
Compute Ĝk and A∗

k, turn to Step 3. �

Next, we give a simple example which employs Algorithm 9.5.1.

Example 9.5.2

min
1
2
x2

1 +
1
2
x2

2 +
1
2
x2

3 − 3x2 − x3 (9.5.29)

s.t. −x1 − x2 − x3 ≥ −1, (9.5.30)
x3 − x2 ≥ −1. (9.5.31)

Solution. This example is a modification of the problem (9.3.16)–(9.3.18).
The unique solution is still (−1, 3

2 , 1
2)T . By use of Algorithm 9.5.1, we have

x1 = −G−1g =

⎛
⎜⎝ 0

3
1

⎞
⎟⎠ ,

r1 = 3 > 0, r2 = 1 > 0.

Then we have p = 1 from Step 2, and

d1 = G−1ap =

⎛
⎜⎝ −1
−1
−1

⎞
⎟⎠ .

Since S1 is empty, α1 = ∞ in Step 3. In Step 5, we get

α̂ = −r1/aT
p d1 = 1,

and obtain

α1 = 1, x2 = x1 + α1dk =

⎛
⎜⎝ −1

2
0

⎞
⎟⎠ ,

λ̄2 = (1), S2 = {1}.

Download more at Learnclax.com

440 CHAPTER 9. QUADRATIC PROGRAMMING

Thus, after one iteration, x2 is the solution of the subproblem

min
1
2
x2

1 +
1
2
x2

2 +
1
2
x2

3 − 3x2 − x3 (9.5.32)

s.t. −x1 − x2 − x3 = −1. (9.5.33)

In the second iteration, we have

r1 = 0, r2 = 1.

Then p = 2 from Step 2, and

d2 = G−1(I −

⎛
⎜⎝ 1

1
1

⎞
⎟⎠ 1

3
(1 1 1))

⎛
⎜⎝ 0
−1
1

⎞
⎟⎠ =

⎛
⎜⎝ 0
−1
1

⎞
⎟⎠ .

Since y2 = aT
2 a1 = 0, we have α2 = ∞ in Step 3. In Step 5, we have

α̂ = −r2/aT
2 d2 =

1
2
.

Then α2 := α̂ = 1
2 ,

x3 = x2 + α2d2 =

⎛
⎜⎝ −1
−1
−1

⎞
⎟⎠+

1
2

⎛
⎜⎝ 0
−1
1

⎞
⎟⎠ =

⎛
⎜⎝ −1
−3

2
1
2

⎞
⎟⎠ ,

and λ̄3 = (1 1
2)T . Hence, x3 is the solution of the original problem and λ̄3 is

the corresponding Lagrange multiplier. �

In concrete computation, Goldfarb and Idnani suggested using the Cholesky
factorization of G,

G = LLT ,

and then employing QR decomposition to L−1Ak, that is,

L−1Ak = Qk

[
Rk

0

]
.

This approach allows us to get better numerical stability than by using G−1

directly.

Download more at Learnclax.com

9.6. INTERIOR ELLIPSOID METHOD 441

Instead, Powell [274] suggested using

Ak = Qk

[
Rk

0

]
= [Q(1)

k Q
(2)
k]

[
Rk

0

]
, (9.5.34)

and then employing the inverse Cholesky factorization of [Q(2)
k]T GQ

(2)
k , i.e.,

UkU
T
k = [Q(2)

k]T GQ
(2)
k , (9.5.35)

where Uk is an upper triangular matrix. In the algorithm that Powell [274]
presented, each iteration updates Q

(1)
k , Rk, and Uk.

9.6 Interior Ellipsoid Method

Karmarkar [184] introduced a new polynomial-time algorithm for solving lin-
ear programming problems that sparked enormous interest in the mathemat-
ical programming community. Karmarkar’s algorithm generates a sequence
of points in the interior of the feasible region while converging to the opti-
mal solution. This algorithm is effective and competitive with the simplex
method in terms of solution time for linear programming (LP).

Ye and Tse [364] present an extension of Karmarkar’s LP algorithm for
convex quadratic programming. We introduce this algorithm in brief. The
interested readers can consult the original paper for details.

The original version of Karmarkar’s algorithm solves a linear program-
ming of the special form

min ĉT x̂ (9.6.1)
s.t. ÂT x̂ = 0, eT x̂ = n + 1, x̂ ≥ 0, (9.6.2)

where ĉ ∈ Rn+1, x̂ ∈ Rn+1, Â ∈ R(n+1)×(m+1), e = (1, · · · , 1)T ∈ Rn+1. Now,
we generalize the Karmarkar’s algorithm to convex quadratic programming.

Consider convex quadratic programming problem

min gT x +
1
2
xT Gx

∆= q(x) (9.6.3)

s.t. AT x = b, (9.6.4)
x ≥ 0, (9.6.5)

Download more at Learnclax.com

442 CHAPTER 9. QUADRATIC PROGRAMMING

where A ∈ Rn×m. Let xk be an interior point, i.e.,

AT xk = b, (9.6.6)
xk > 0. (9.6.7)

Define

Dk = diag(xk) =

⎡
⎢⎣

(xk)1 0
. . .

0 (xk)n

⎤
⎥⎦ . (9.6.8)

Let the transformation x̂ = Tkx ∈ Rn+1 as follows:

x̂i =
(n + 1)(D−1

k x)i

eT D−1
k x + 1

, i = 1, · · · , n; (9.6.9)

x̂n+1 = (n + 1)/[eT D−1
k x + 1]. (9.6.10)

Obviously, the inverse transformation T−1
k : Rn+1 → Rn is defined by

x = T−1
k x̂ =

Dkx̂[n]
x̂n+1

, (9.6.11)

where e = (1, · · · , 1)T ∈ Rn+1, x̂[n] = (x̂1, · · · , x̂n)T . Then, the problem
(9.6.3)–(9.6.5) can be written as

minx̂∈Rn+1 x̂n+1q(T−1
k x̂) ∆= q̂(x̂) (9.6.12)

s.t. AT Dkx̂[n]− x̂n+1b = 0, (9.6.13)
eT x̂ = n + 1, (9.6.14)
x̂[n] ≥ 0, x̂ > 0. (9.6.15)

By substituting (9.6.11) into (9.6.12), we obtain an equivalent form of (9.6.12)–
(9.6.15):

min ĝT
k x̂[n] +

1
2
x̂[n]T Ĝkx̂[n]/x̂n+1 (9.6.16)

s.t. ÂT
k x̂ = b̂, (9.6.17)

x̂[n] ≥ 0, x̂n+1 > 0, (9.6.18)

where
Ĝk = DkGDk, ĝk = Dkg, (9.6.19)

Download more at Learnclax.com

9.6. INTERIOR ELLIPSOID METHOD 443

Âk =

⎡
⎢⎣ DkA

e
−bT

⎤
⎥⎦ , b̂ =

⎛
⎜⎜⎜⎜⎝

0
...
0

n + 1

⎞
⎟⎟⎟⎟⎠ . (9.6.20)

Using the interior ellipsoid method, we solve the following subproblem
(9.6.22)–(9.6.24) over an interior ellipsoid centered at x̂k, instead of solving
the subproblem (9.6.12)–(9.6.15). Note that, for a given iterate xk, x̂k =
Tkxk = e and q̂(x̂k) = q̂(e) = q(xk). So, the interior ellipsoid happens to be
an interior sphere in the feasible area of problem (9.6.12)–(9.6.15). Thus, the
condition (9.6.18) can be enhanced to

‖x̂− e‖2 ≤ β < 1. (9.6.21)

Obviously, (9.6.18) will hold provided (9.6.21) holds. Hence, we consider the
subproblem

min ĝT
k x̂[n] +

1
2
x̂[n] +

1
2
x̂[n]T Ĝkx̂[n]/x̂n+1 (9.6.22)

s.t. ÂT
k x̂ = b̂, (9.6.23)
‖x̂− e‖2 ≤ β < 1, (9.6.24)

where β < 1 is a constant independent of k.
By the Karush-Kuhn-Tucker Theorem, solving (9.6.22)–(9.6.24) is equiv-

alent to solving the following system:

ĝk + x̂−1
n+1Ĝkx̂[n] = Âk[n]λ + µ(x̂[n]− e[n]), (9.6.25)

−1
2

1
x̂2

n+1

x̂[n]T Ĝkx̂[n] = (â(k)
n+1)

T λ + µ(x̂n+1 − 1) = 0, (9.6.26)

ÂT
k x̂ = b̂, (9.6.27)
‖x̂− e‖2 ≤ β, (9.6.28)
µ[‖x̂− e‖2 − β] = 0, µ ≤ 0, (9.6.29)

where (9.6.25) and (9.6.26) are the first n equations and the last equation of
the stationary point condition in KKT conditions respectively. Here Âk[n]
is the matrix of the first n rows of matrix Âk, â

(k)
n+1 is the (n + 1)-th row of

Âk, e[n] = (1, · · · , 1)T ∈ Rn and λ ∈ Rm+1. So, (9.6.25) and (9.6.27) can be
written in the following form

Pk

[
x̂[n]
λ̂

]
= x̂n+1b̄ + b̃, (9.6.30)

Download more at Learnclax.com

444 CHAPTER 9. QUADRATIC PROGRAMMING

where

Pk =

[
Ĝk + µ̂I −Â[n]
Â[n]T 0

]
, (9.6.31)

b̄ =

⎡
⎢⎣ −ĝk

b
−1

⎤
⎥⎦ , b̃ =

⎡
⎢⎣ µ̂e

0
n + 1

⎤
⎥⎦ , (9.6.32)

λ̂ = x̂n+1λ, µ̂ = −x̂n+1µ. (9.6.33)

Then, for any given µ̂ ≥ 0, we can find λ̂ and x̂[n] from (9.6.30). Then we
obtain x̂n+1 from substituting λ̂ and x̂[n] into (9.6.26). This indicates that
for any given µ̂ ≥ 0, we can find x̂(µ̂). Define the function

h(µ̂) = ‖x̂(µ̂)− e‖2 − β. (9.6.34)

If h(0) ≤ 0, then x̂(0) is the solution of (9.6.12)–(9.6.15). In this case,
x = Dkx̂(0)[n]/x̂(0)n+1 is the solution of the original problem.

If h(0) > 0, since limµ̂→∞ h(µ̂) = −β < 0, we can find µ̂k by a bisectioning
method such that h(µ̂k) = 0, and further the solution x̂(µ̂k) of problem
(9.6.22)–(9.6.24). By back-substituting x̂(µ̂k), we obtain the new iterate
xk+1, i.e.,

xk+1 = T−1
k x̂(µ̂k) =

Dkx̂(µ̂k)[n]
x̂(µ̂k)n+1

, (9.6.35)

where x̂(µ̂k)[n] = (x̂(µ̂k)1, · · · , x̂(µ̂k)n)T .
The interior ellipsoid algorithm for solving convex quadratic programming

problems is introduced as follows.

Algorithm 9.6.1 (Interior Ellipsoid Method for Convex QP)

Step 1. Given a strict interior point x1 of (9.6.3)–(9.6.5); k := 1.

Step 2. Solve the subproblem (9.6.22)–(9.6.24) for x̂(µ̂k); and com-
pute xk+1 by (9.6.35).

Step 3. If xk+1 is a KKT point, stop;
k := k + 1, go to Step 2. �

The further details of interior ellipsoid methods for convex quadratic pro-
gramming can be found in Ye and Tse (1989).

Download more at Learnclax.com

9.7. PRIMAL-DUAL INTERIOR-POINT METHODS 445

9.7 Primal-Dual Interior-Point Methods

The primal-dual interior-point method for linear programming can be applied
to convex quadratic programming through a simple extension of the method.
Since we have not discussed the topic linear programming in the book, we
first outline this method for linear programming.

Consider the linear programming problem in standard form

minx∈Rn cT x

s.t. Ax = b, (9.7.1)
x ≥ 0,

where c and x are vectors in Rn, b is a vector in Rm, and A is an m × n
matrix. The dual problem for (9.7.1) is

maxλ∈Rm bT λ

s.t. AT λ + s = c, (9.7.2)
s ≥ 0,

where λ is a vector in Rm and s is a vector in Rn. The primal-dual solution
of (9.7.1) and (9.7.2) are characterized by the Karush-Kuhn-Tucker (KKT)
conditions:

AT λ + s = c, (9.7.3)
Ax = b, (9.7.4)
xisi = 0, i = 1, · · · , n (9.7.5)
(x, s) ≥ 0, (9.7.6)

where vectors λ and s are Lagrange multipliers for the constraints Ax = b
and x ≥ 0, respectively.

Primal-dual interior-point methods find primal-dual solutions (x∗, λ∗, s∗)
of KKT system by applying variants of Newton’s method to the three equality
conditions (9.7.3)–(9.7.5) of this system and modifying the search directions
and steplength so that the inequalities (x, s) ≥ 0 are satisfied strictly at every
iteration.

To derive primal-dual interior-point methods, we restate the KKT con-
ditions (9.7.3)–(9.7.6) in a slightly different form by means of a mapping

Download more at Learnclax.com

446 CHAPTER 9. QUADRATIC PROGRAMMING

F : R2n+m → R2n+m:

F (x, λ, s) =

⎡
⎢⎣ AT λ + s− c

Ax− b
XSe

⎤
⎥⎦ = 0, (9.7.7)

(x, s) ≥ 0, (9.7.8)

where
X = diag(x1, x2, · · · , xn), S = diag(s1, s2, · · · , sn),

and e = (1, 1, · · · , 1)T . Note that F is actually linear in its first two terms
Ax− b,AT λ + s− c, and only mildly nonlinear in the remaining term XSe.

Primal-dual interior-point methods generate iterates (xk, λk, sk) that sat-
isfy the bound (9.7.8) strictly, that is, xk > 0 and sk > 0. This property is
the origin of the term interior-point. By respecting these bounds, the meth-
ods avoid spurious solutions, which are points that satisfy F (x, λ, s) = 0 but
not (x, s) ≥ 0.

Newton’s method forms a linear model of F around the current point and
obtains the search direction (∆x,∆λ, ∆s) by solving the following system of
linear equations:

J(x, λ, s)

⎡
⎢⎣ ∆x

∆λ
∆s

⎤
⎥⎦ = −F (x, λ, s), (9.7.9)

where J is the Jacobian of F . If the current point is strictly feasible, the
Newton step equations become⎡

⎢⎣ 0 AT I
A 0 0
S 0 X

⎤
⎥⎦
⎡
⎢⎣ ∆x

∆λ
∆s

⎤
⎥⎦ =

⎡
⎢⎣ 0

0
−XSe

⎤
⎥⎦ . (9.7.10)

Note that a full step along this direction usually is not permissible, since it
would violate the bound (x, s) ≥ 0. To avoid this difficulty, we perform a
line search along the Newton direction so that the new iterate is

(x, λ, s) + α(∆x,∆λ, ∆s) (9.7.11)

for some line search parameter α ∈ (0, 1]. Unfortunately, we often can take
only a small step along the direction (α � 1) before violating the condition
(x, s) > 0. Hence the pure Newton direction (9.7.10) often does not allow us
to make much progress toward a solution.

Download more at Learnclax.com

9.7. PRIMAL-DUAL INTERIOR-POINT METHODS 447

In the following, we give the central path technique which modifies the
basic Newton procedure.

The Central Path

The central path C is an arc of strictly feasible points that plays a vital
role in primal-dual algorithms. It is parametrized by a scalar τ > 0, and each
point (xτ , λτ , sτ) ∈ C solves the following system:

AT λ + s = c, (9.7.12)
Ax = b, (9.7.13)
xisi = τ, i = 1, 2, · · · , n, (9.7.14)
(x, s) > 0. (9.7.15)

These conditions differ from KKT conditions only in the term τ on the right-
hand side of (9.7.14). Instead of the complementarity condition (9.7.5), we
require that the pairwise product xisi have the same value τ for all indices
i. From (9.7.12)–(9.7.15), we can define the central path as

C = {(xτ , λτ , sτ) | τ > 0}.

It can be shown that (xτ , λτ , sτ) is defined uniquely for each τ > 0 if and
only if the strictly feasible set Fo defined by

Fo = {(x, λ, s) | Ax = b,AT λ + s = c, (x, s) > 0}

is nonempty. Hence the entire path C is well defined.
Another way of defining C is to use the mapping F defined in (9.7.7) and

write

F (xτ , λτ , sτ) =

⎡
⎢⎣ 0

0
τe

⎤
⎥⎦ , (xτ , sτ) > 0. (9.7.16)

The equations (9.7.12)–(9.7.15) approximate (9.7.3)–(9.7.6) more and more
closely as τ goes to zero. If C converges to anything as τ ↓ 0, it must con-
verge to a primal-dual solution of the linear program. The central path thus
guides us to a solution along a route that steers clear of spurious solutions by
keeping all the pairwise products xisi strictly positive and decreasing them
to zero at the same rate.

Primal-dual interior-point algorithms take Newton steps toward points on
C for which τ > 0, rather than pure Newton steps for F . Since these steps are

Download more at Learnclax.com

448 CHAPTER 9. QUADRATIC PROGRAMMING

biased toward the interior of the nonnegative orthant defined by (x, s) ≥ 0,
it usually is possible to take longer steps along them than along the pure
Newton steps for F before violating the positivity condition. To describe the
biased search direction, we introduce a centering parameter σ ∈ [0, 1] and a
duality measure µ defined by

µ =
1
n

n∑
i=1

xisi =
xT s

n
, (9.7.17)

which measures the average value of the pairwise product xisi. By writing
τ = σµ and applying Newton’s method to the system (9.7.16), we obtain⎡

⎢⎣ 0 AT I
A 0 0
S 0 X

⎤
⎥⎦
⎡
⎢⎣ ∆x

∆λ
∆s

⎤
⎥⎦ =

⎡
⎢⎣ 0

0
−XSe + σµe

⎤
⎥⎦ . (9.7.18)

The step (∆x,∆λ, ∆s) is a Newton step toward the point (xσµ, λσµ, sσµ) ∈ C,
at which the pairwise product xisi are all equal to σµ. In contrast, the step
(9.7.10) aims directly for the point at which the KKT conditions (9.7.3)–
(9.7.6) are satisfied.

If σ = 1, the equations (9.7.18) define a centering direction, a Newton step
toward the point (xµ, λµ, sµ) ∈ C. If σ = 0, the (9.7.18) gives the standard
Newton step.

In the following, we define a general framework of primal-dual interior-
point algorithm.

Algorithm 9.7.1 (A Primal-Dual Interior-Point Framework)

Given (x0, λ0, s0) ∈ Fo.

For k = 0, 1, 2, · · · ,
solve⎡
⎢⎣ 0 AT I

A 0 0
Sk 0 Xk

⎤
⎥⎦
⎡
⎢⎣ ∆xk

∆λk

∆sk

⎤
⎥⎦ =

⎡
⎢⎣ 0

0
−XkSke + σkµke

⎤
⎥⎦ ,

where σk ∈ [0, 1] and µk = (xk)T sk/n;

set

(xk+1, λk+1, sk+1) = (xk, λk, sk) + αk(∆xk, ∆λk, ∆sk),

choosing αk such that (xk+1, sk+1) > 0.

Download more at Learnclax.com

9.7. PRIMAL-DUAL INTERIOR-POINT METHODS 449

end(For). �

For most problems, however, a strictly feasible starting point (x0, λ0, s0)
is difficult to find. Infeasible interior-point methods require only that the
components of x0 and s0 be strictly positive. Therefore, we give a slight
change to the equation (9.7.18). If we define the residuals for the two linear
equations as

rb = Ax− b, rc = AT λ + s− c,

the modified step equation is⎡
⎢⎣ 0 AT I

A 0 0
S 0 X

⎤
⎥⎦
⎡
⎢⎣ ∆x

∆λ
∆s

⎤
⎥⎦ =

⎡
⎢⎣ −rc

−rb

−XSe + σµe

⎤
⎥⎦ . (9.7.19)

Primal-Dual Interior-Point Methods for Convex Quadratic Pro-
gramming

Now we return to convex quadratic programming. Let us discuss convex
quadratic programming with inequality constraints:

minx∈Rn q(x) def=
1
2
xT Gx + xT g (9.7.20)

s.t. Ax ≥ b, (9.7.21)

where g ∈ Rn, b ∈ Rm, A ∈ Rm×n and G ∈ Rn×n is symmetric and positive
semidefinite. The KKT conditions of (9.7.20)–(9.7.21) state as follows: If
x∗ is a solution of (9.7.20)–(9.7.21), there is a Lagrange multiplier vector λ∗

such that the following conditions are satisfied for (x, λ) = (x∗, λ∗):

Gx−AT λ + g = 0, (9.7.22)
Ax− b ≥ 0, (9.7.23)
(Ax− b)iλi = 0, i = 1, 2, · · · , m, (9.7.24)
λ ≥ 0. (9.7.25)

By introducing the slack vector y = Ax− b, we have

Gx−AT λ + g = 0, (9.7.26)
Ax− y − b = 0, (9.7.27)
yiλi = 0, i = 1, 2, · · · , m, (9.7.28)
(y, λ) ≥ 0. (9.7.29)

Download more at Learnclax.com

450 CHAPTER 9. QUADRATIC PROGRAMMING

As in the case of linear programming, here the KKT conditions are not
only necessary but also sufficient, because problem (9.7.20)–(9.7.21) is convex
programming. Hence we can solve it by finding solutions of system (9.7.26)–
(9.7.29). As discussed above, we apply modifications of Newton’s method to
this system. We can define

F (x, y, λ) =

⎡
⎢⎣ Gx−AT λ + g

Ax− y − b
Y Λe

⎤
⎥⎦ , (y, λ) ≥ 0, (9.7.30)

where

Y = diag(y1, y2, · · · , ym), Λ = diag(λ1, λ2, · · · , λm), e = (1, 1, · · · , 1)T .

Given a current iterate (x, y, λ) that satisfies (y, λ) > 0, we can define a
duality measure µ by

µ =
1
m

m∑
i=1

yiλi =
yT λ

m
. (9.7.31)

The central path C is the set of points (xτ , yτ , λτ)(τ > 0) satisfying

F (xτ , yτ , λτ) =

⎡
⎢⎣ 0

0
τe

⎤
⎥⎦ , (yτ , λτ) > 0. (9.7.32)

The generic step (∆x,∆y, ∆λ) is a Newton-type step toward the point (xσµ, yσµ, λσµ) ∈
C. As in (9.7.19), this step satisfies the following system:⎡

⎢⎣ G −AT 0
A 0 −I
0 Y Λ

⎤
⎥⎦
⎡
⎢⎣ ∆x

∆y
∆λ

⎤
⎥⎦ =

⎡
⎢⎣ −rg

−rb

−ΛSe + σµe

⎤
⎥⎦ , (9.7.33)

where
rg = Gx−AT λ + g, rb = Ax− y − b.

So, we obtain the next iterate

(x+, y+, λ+) = (x, y, λ) + α(∆x,∆y, ∆λ), (9.7.34)

where α is chosen so that (y+, λ+) > 0.

For mode details of primal-dual interior-point methods for convex quadratic
programming, please consult Wright [358].

Download more at Learnclax.com

9.7. PRIMAL-DUAL INTERIOR-POINT METHODS 451

Exercises

1. Let H = Diag(h11, h22, ..., hnn) be a positive definite diagonal matrix.
Find the minimizer of (9.1.1) subject to the condition ‖x‖∞ ≤ 1.

2. Prove Theorem 9.1.1.

3. Prove that problem (9.2.8)–(9.2.10) is the dual of problem (9.1.1)–
(9.1.3).

4. Solve the dual of the problem

min (x2
1 + x2

2)/2 + x1

s.t. x1 ≥ 0.

5. If f(x) is a convex function and ci(x)(i = 1, · · · , m) are concave func-
tions, the problem

min f(x)
s.t. ci(x) ≥ 0

is called a convex programming problem. Generalize the dual theory in Sec-
tion 9.2 from convex quadratic programming to general convex programming.

6. Find the smallest circle in the plane that contains the points (1,−4),
(−2,−2), (−4, 1) and (4, 5). Formulate the problem as a convex program-
ming problem, then solve the dual.

7. Assume that B ∈ Rn×n is positive definite, A ∈ Rm×n, g ∈ Rn and
b ∈ Rm. Give the dual problem of the following QP:

min gT x +
1
2
xT Bx

s.t. Ax = b.

8. Solve the equality constraint QP problem

min

(
1
−1

)T

x +
1
2
xT

(
1 2
2 4

)
x

s.t. x1 + x2 = 1.

Download more at Learnclax.com

452 CHAPTER 9. QUADRATIC PROGRAMMING

9. 1) Check that if set V =

[
0

In−m

]
in (9.3.42), the choice (9.3.37)–

(9.3.38) can be obtained.
2) Check that if set V = Q2 in (9.3.42), the choice (9.3.40) can be ob-

tained.

10. Show that if A ∈ Rn×m has full column-rank and ZT GZ is positive
definite, then KKT matrix (9.3.47) is nonsingular.

11. Show (9.3.53)–(9.3.55).

12. Show (9.3.58)–(9.3.60).

13. Assume A ∈ Rm×n has full row rank. Let Z ∈ Rn×(n−m) be any full
column rank matrix such that AZ = 0. Prove that the matrix[

B AT

A 0

]
(9.7.35)

is nonsingular if and only if ZT BZ is nonsingular.

14. Use the active set method to solve the problem

min −1000x1 − 1000x2 + x2
1 + x2

2

s.t. 3x1 + x2 ≥ 3,

x1 + 4x2 ≥ 4,

x1 ≥ 0,

x2 ≥ 0.

Illustrate the result by sketching the set of feasible solutions.

15. Program Algorithm 9.4.2 and use it to solve

min x2
1 + 2x2

2 − 2x1 − 6x2 − 2x1x2

s.t.
1
2
x1 +

1
2
x2 ≤ 1,

−x1 + x2 ≤ 2,

x1, x2 ≥ 0.

Download more at Learnclax.com

9.7. PRIMAL-DUAL INTERIOR-POINT METHODS 453

16. Try to give the primal-dual interior-point algorithm for convex quadratic
programming (9.7.20)–(9.7.21).

Download more at Learnclax.com

Download more at Learnclax.com

Chapter 10

Penalty Function Methods

10.1 Penalty Function

The penalty function methods are an important class of methods for con-
strained optimization problem

minx∈Rn f(x) (10.1.1)

s.t. ci(x) = 0, i ∈ E
Def
= {1, · · · , me}, (10.1.2)

ci(x) ≥ 0, i ∈ I
Def
= {me + 1, · · · , m}. (10.1.3)

In this class of methods we replace the original constrained problem by a
sequence of unconstrained subproblems that minimizes the penalty functions.
The penalty function is a function with penalty property

P (x) = P̄ (f(x), c(x)), (10.1.4)

constructed from the objective function f(x) and the constraints c(x). The
so-called “penalty” property requires P (x) = f(x) for all feasible points x ∈
X of (10.1.1)–(10.1.3), and P (x) is much larger than f(x) when the constraint
violations are severe.

To describe the degree of constraint violation, we define the constraint
violation function c(−)(x) = (c(−)

1 (x), · · · , c(−)
m (x))T as follows:

c
(−)
i (x) = ci(x), i ∈ E, (10.1.5)

c
(−)
i (x) = min{ci(x), 0}, i ∈ I. (10.1.6)

Download more at Learnclax.com

456 CHAPTER 10. PENALTY FUNCTION METHODS

Define
C = {ci(x) | ci(x) = 0, i ∈ E; ci(x) ≥ 0, i ∈ I}. (10.1.7)

Obviously, x is a feasible point if and only if c(x) ∈ C. Furthermore,

if ci(x) ≥ 0, i.e., ci(x) ∈ C, then c
(−)
i (x) = 0;

if ci(x) < 0, i.e., ci(x) /∈ C, then c
(−)
i (x) = 0.

This means, for each constraint, the constraint violation function is nonzero
when the corresponding constraint is violated and zero when the correspond-
ing constraint is feasible.

It is not difficult to see that for any x ∈ Rn, we have

‖c(−)(x)‖2 = dist (c(x), C), (10.1.8)

where dist(·, ·) denotes the distance from a point to a set and is defined as

dist(x, Y) = min{‖x− y‖2 | ∀y ∈ Y }. (10.1.9)

The penalty function consists of a sum of the original objective function
and a penalty term, i.e.,

P (x) = f(x) + h(c(−)(x)), (10.1.10)

where the penalty term h(c(−)(x)) is a function defined on Rm and satisfies

h(0) = 0, lim
‖c‖→+∞

h(c) = +∞. (10.1.11)

The earliest penalty function is the Courant penalty function, or called
the quadratic penalty function, defined as

P (x) = f(x) + σ‖c(−)(x)‖22, (10.1.12)

where σ > 0 is a positive constant, which is called the penalty parameter.
We give an example to describe the penalty function.

min x

s.t. x− 2 ≥ 0. (10.1.13)

Download more at Learnclax.com

10.1. PENALTY FUNCTION 457

Then

h(c(−)(x)) = ‖c(−)(x)‖22 = [min{0, x− 2}]2 =

{
0 if x ≥ 2,

(x− 2)2 if x < 2.

Note that the minimum of f(x) + σ‖c(−)(x)‖2 occurs at the point 2− 1
σ , and

approaches the minimum point x̄ = 2 of the original problem, as σ approaches
∞.

Obviously, (10.1.12) is a particular case of (10.1.10) in which h(c) =
σ‖c‖22. In fact, for any norm on Rm and any α > 0, the function h(c) = σ‖c‖α

satisfies (10.1.11). So, a class of penalty functions can be defined as:

P (x) = f(x) + σ‖c(−)(x)‖α, (10.1.14)

where σ > 0 is a penalty parameter, α > 0, and ‖ · ‖ is some norm on Rm.
Typically, (10.1.12) is often written as

P (x) = f(x) +
1
2
σ‖c(−)(x)‖2 (10.1.15)

= f(x) +
1
2
σ

me∑
i=1

c2
i (x) +

1
2
σ

m∑
i=me+1

[c(−)
i (x)]2 (10.1.16)

and is called the quadratic penalty function, where σ > 0 and c
(−)
i (x) =

min{0, ci(x)}.
Besides (10.1.12), the common particular forms of (10.1.14) are

P1(x) = f(x) + σ‖c(−)(x)‖1 (10.1.17)

and
P∞(x) = f(x) + σ‖c(−)(x)‖∞, (10.1.18)

which are called L1 penalty function and L∞ penalty function respectively.
If the penalty function takes values approaching +∞ as x approaches the

boundary of the feasible region, it is called the interior point penalty function.
The interior point penalty function is suitable only to inequality-constrained
problems, i.e., me = 0. Typically, the two most important interior point
penalty functions are the inverse barrier function

P (x) = f(x) +
1
σ

m∑
i=1

1
ci(x)

(10.1.19)

Download more at Learnclax.com

458 CHAPTER 10. PENALTY FUNCTION METHODS

and the logarithmic barrier function

P (x) = f(x)− 1
σ

m∑
i=1

log ci(x). (10.1.20)

If given an initial point in the interior of the feasible region, the whole se-
quence generated by the interior point penalty function method is interior
points. Since these functions set an infinitely high “barrier” on the boundary,
they are also said to be barrier functions.

Let x∗ be a KKT point of constrained optimization (10.1.1)–(10.1.3).
Then it follows from (10.1.12) that ∇P (x∗) = ∇f(x∗). In general, x∗ is not
a stationary point of the Courant penalty function, and the penalty function
method attempts to create a local minimizer at x∗ in the limit σk →∞. To
overcome this shortcoming, we introduce parameters θi (i = 1, · · · , m) with
θi ≥ 0 (i = me + 1, · · · , m) to change the origin of the penalty term. Write
θ = (θ1, · · · , θm)T . Modifying (10.1.12) gives

P (x) = f(x) +
m∑

i=1

σi

2

([
(c(x)− θ)(−)

i

]2
− θ2

i

)

= f(x) +
me∑
i=1

[
−λici(x) +

1
2
σi(ci(x))2

]

+
m∑

i=me+1

{
−λici(x) + 1

2σi(ci(x))2, if ci(x) < λi
σi

;
−1

2λ2
i /σi, otherwise

(10.1.21)

where
λi = σiθi, i = 1, · · · , m. (10.1.22)

Because the penalty function (10.1.21) can be obtained from Lagrange func-
tion (8.2.18) by adding a penalty term, (10.1.21) is referred to as an aug-
mented Lagrangian function. Alternatively, (10.1.21) can be also obtained
from the penalty function (10.1.12) by adding a multiplier term−λT c, (10.1.21)
is also called a multiplier penalty function. Let x∗ be a KKT point of
the constrained optimization problem, and λ∗

i (i = 1, · · · , m) correspond-
ing Lagrange multipliers. Then the augmented Lagrangian function with
λ∗

i (i = 1, · · · , m) satisfies ∇P (x∗) = 0. In addition, the Lagrange multiplier
λ∗ is not known in advance, so the augmented Lagrangian function method
needs to update λi (i = 1, · · · , m) successfully.

For equality-constrained problem (me = m), we define

λ(x) = (A(x))+g(x), (10.1.23)

Download more at Learnclax.com

10.1. PENALTY FUNCTION 459

where A(x) = (∇c1(x), · · · ,∇cm(x)) is an n ×m matrix, g(x) = ∇f(x), A+

denotes the generalized inverse of A, and the multiplier λ(x) is the minimum
l2 norm solution of the least-squares problem

min
λ∈Rm

∥∥∥∥∥∇f(x)−
m∑

i=1

λi∇ci(x)

∥∥∥∥∥
2

2

. (10.1.24)

By using (10.1.23), we can give Fletcher’s smooth exact penalty func-
tion (or Fletcher’s augmented Lagrangian function) for the case where only
equality constraints are present in (10.1.1)–(10.1.3) as follows:

P (x) = f(x)− λ(x)T c(x) +
1
2

m∑
i=1

σi(ci(x))2, (10.1.25)

where σi > 0 (i = 1, · · · , m) are penalty parameters.
Let x∗ be the solution of the equality-constrained problem, A(x∗) have

full column rank,

∇xP (x∗) = g(x∗)−A(x∗)λ∗ = 0,

∇2
xxP (x∗) = W ∗ + A(x∗)A(x∗)+W ∗

+W ∗A(x∗)A(x∗)+ + A(x∗)DA(x∗)T , (10.1.26)

where D = diag(σ1, · · · , σm) and

W ∗ = ∇2f(x∗)−
m∑

i=1

λ∗
i∇2ci(x∗) = ∇2

xxL(x∗, λ∗).

Lemma 10.1.1 Let H ∈ Rn×n be symmetric and A ∈ Rn×m. If

dT Hd > 0 (10.1.27)

for any nonzero vector d with AT d = 0, then there exists σ ≥ 0 such that

H + σAAT (10.1.28)

is a positive definite matrix.

Proof. By assumption, there is δ > 0, such that if ‖AT d‖2 ≤ δ and
‖d‖2 = 1, then (10.1.27) holds. Consider

min
‖AT d‖2≥δ
‖d‖2=1

dT Hd

‖AT d‖22
. (10.1.29)

Download more at Learnclax.com

460 CHAPTER 10. PENALTY FUNCTION METHODS

Since the set {d | ‖d‖2 = 1, ‖AT d‖2 ≥ δ} is a finite and closed set, then
the minimum of (10.1.29) is achieved. Hence there is η such that for all
d ∈ {d | ‖d‖2 = 1, ‖AT d‖2 ≥ δ} we have

dT Hd

‖AT d‖22
> η. (10.1.30)

Set σ = max{−η, 0}. Therefore, for any d with ‖d‖2 = 1, we have

dT (H + σAAT)d > 0. (10.1.31)

We complete the proof. �

If the second-order sufficient condition

dT W ∗d > 0, ∀d = 0, (A∗)T d = 0 (10.1.32)

holds, then it follows from the above lemma that there exists σ̄ ≥ 0 such that
for all σi ≥ σ̄, the matrix ∇2

xxP (x∗) defined by (10.1.26) is positive definite.
Therefore the penalty function (10.1.25) is said to be exact if the solution
x∗ of the original problem is also the strict local minimizer of the penalty
function P (x∗).

If Lagrange multipliers λi of the augmented Lagrangian function are the
Lagrange multipliers λ∗

i at the solution x∗ of the problem, then under the
second-order sufficient condition (10.1.32), x∗ is also the local minimizer of
the augmented Lagrangian function (10.1.21) when σ is large enough. Thus,
the augmented Lagrangian function is also an exact penalty function.

For an L1 penalty function, if

σ > ‖λ∗‖∞, (10.1.33)

then under the second-order sufficient condition (10.1.32), the solution x∗ of
the original problem is also a strict local minimizer of the L1 penalty function.
Thus, the L1 penalty function is referred to as an L1 exact penalty function.
Similarly, an L∞ penalty function is also exact.

Note that the KKT point of the constrained optimization problem is not,
in general, the stationary point of the Courant penalty function. Thus, the
Courant penalty function is not an exact penalty function.

In this chapter, we will describe the simple penalty function method,
interior point penalty function method (i.e., barrier function method), mul-
tiplier penalty function method, smooth exact penalty function method and
non-smooth exact penalty function method.

Download more at Learnclax.com

10.2. THE SIMPLE PENALTY FUNCTION METHOD 461

10.2 The Simple Penalty Function Method

The penalty function method is an approach to minimize a sequence of
penalty functions and obtain the minimizer of the original constrained opti-
mization problem.

Consider the simple penalty function

Pσ(x) = f(x) + σ‖c(−)(x)‖α, (10.2.1)

where σ > 0 is the penalty parameter, α > 0 a positive constant, and ‖ · ‖ a
given norm on Rm. Write x(σ) as a solution of problem

min
x∈Rn

Pσ(x). (10.2.2)

Next, we first give some lemmas.

Lemma 10.2.1 Let 0 < σ1 < σ2. Then

Pσ1(x(σ1)) ≤ Pσ2(x(σ2)), (10.2.3)
f(x(σ1)) ≤ f(x(σ2)), (10.2.4)

‖c(−)(x(σ1))‖ ≥ ‖c(−)(x(σ2))‖. (10.2.5)

Proof. From the definition of x(σ), we have

Pσ1(x(σ1)) ≤ Pσ1(x(σ2)) ≤ Pσ2(x(σ2)) ≤ Pσ2(x(σ1)), (10.2.6)

which shows (10.2.3). By use of (10.2.6) and (10.2.1), we have

0 ≤ Pσ1(x(σ2))− Pσ2(x(σ2))− [Pσ1(x(σ1))− Pσ2(x(σ1))]
= (σ1 − σ2)[‖c(−)(x(σ2))‖α − ‖c(−)(x(σ1))‖α], (10.2.7)

which means that (10.2.5) holds. Using (10.2.6) and (10.2.5) gives

f(x(σ1)) ≤ f(x(σ2)) + σ1(‖c(−)(x(σ2))‖α − ‖c(−)(x(σ1))‖α)
≤ f(x(σ2)). (10.2.8)

Hence (10.2.4) holds. We complete the proof. �

Lemma 10.2.2 Let δ = ‖c(−)(x(σ))‖. Then x(σ) is also the solution of
problem

minx∈Rn f(x) (10.2.9)
s.t. ‖c(−)(x)‖ ≤ δ. (10.2.10)

Download more at Learnclax.com

462 CHAPTER 10. PENALTY FUNCTION METHODS

Proof. For any x satisfying (10.2.10), we have

0 ≤ σ(‖c(−)(x(σ))‖α − ‖c(−)(x)‖α)
= Pσ(x(σ))− f(x(σ))− Pσ(x) + f(x)
= [Pσ(x(σ))− Pσ(x)] + f(x)− f(x(σ))
≤ f(x)− f(x(σ)). (10.2.11)

Hence, for any x satisfying (10.2.10), we have

f(x) ≥ f(x(σ)), (10.2.12)

which shows that x(σ) is the solution of (10.2.9)–(10.2.10). �

By the definition of the constraint violation function c(−)(x), the original
problem (10.1.1)–(10.1.3) can be written equivalently as

minx∈Rn f(x), (10.2.13)
s.t. ‖c(−)(x)‖ = 0. (10.2.14)

Hence, if δ is sufficiently small, the problem (10.2.9)–(10.2.10) can be re-
garded as an approximation of (10.2.13)–(10.2.14), and so x(σ) can be re-
garded as the approximate solution of the original problem. In fact, from
Lemma 10.2.2, we know that when c(−)(x(σ)) = 0, x(σ) is just the solution
of problem (10.1.1)–(10.1.3).

The basic idea of the penalty function method is that the penalty param-
eter σ is increased in each iteration until ‖c(−)(x(σ))‖ is smaller than a given
tolerance. Below we give a penalty function method with the simple penalty
function.

Algorithm 10.2.3 (Simple Penalty Function Method)

Step 1. Given x1 ∈ Rn, σ1 > 0, ε ≥ 0, k := 1.

Step 2. Find a solution x(σk) of

min
x∈Rn

Pσk
(x), (10.2.15)

starting at xk.

Step 3. If ‖c(−)(x(σk))‖ ≤ ε, stop;
Set xk+1 = x(σk), σk+1 = 10σk;
k := k + 1, turn to Step 2. �

Download more at Learnclax.com

10.2. THE SIMPLE PENALTY FUNCTION METHOD 463

Note that the parameter {σk} can be chosen flexibly and adoptively. It
means that you can choose σk+1 = 10σk or σk+1 = 2σk, which depends on
the difficulty of minimizing the penalty function at iteration k.

Now we discuss the convergence property of Algorithm 10.2.3.

Theorem 10.2.4 Suppose that the tolerance ε in Algorithm 10.2.3 satisfies

ε > min
x∈Rn

‖c(−)(x)‖, (10.2.16)

then the algorithm must terminate finitely.

Proof. Suppose, by contradiction, that the theorem is not true. Then
there must exist σk → +∞ and for all k,

‖c(−)(x(σk))‖ > ε. (10.2.17)

From (10.2.16), there exists x̂ ∈ Rn such that

‖c(−)(x̂)‖ < ε. (10.2.18)

By use of the definition of x(σ) and (10.2.4), we have

f(x̂) + σk‖c(−)(x̂)‖α ≥ f(x(σk)) + σk‖c(−)(x(σk))‖α

≥ f(x(σ1)) + σk‖c(−)(x(σk))‖α. (10.2.19)

By arranging (10.2.19) and taking the limit as σk → +∞, we obtain that

‖c(−)(x̂)‖α − ‖c(−)(x(σk))‖α

≥ 1
σk

[f(x(σ1))− f(x̂)]→ 0, (10.2.20)

which contradicts (10.2.17)–(10.2.18). This completes the proof. �

Theorem 10.2.5 If Algorithm 10.2.3 does not terminate finitely, then

min
x∈Rn

‖c(−)(x)‖ ≥ ε (10.2.21)

and
lim

k→∞
‖c(−)(x(σk))‖ = min

x∈Rn
‖c(−)(x)‖, (10.2.22)

and any accumulation point x∗ of {x(σk)} is the solution of problem

min
x∈Rn

f(x), (10.2.23)

s.t. ‖c(−)(x)‖ = min
y∈Rn

‖c(−)(y)‖. (10.2.24)

Download more at Learnclax.com

464 CHAPTER 10. PENALTY FUNCTION METHODS

Proof. Suppose that the algorithm does not terminate finitely. It follows
from Theorem 10.2.4 that (10.2.21) holds. Since σk → +∞ and by (10.2.20),
we have that for given x̂ ∈ Rn,

lim inf
k→∞

[
‖c(−)(x̂)‖α − ‖c(−)(x(σk))‖α

]
≥ 0 (10.2.25)

which concludes (10.2.22).
Let x∗ be any accumulation point of {x(σk)}. By (10.2.22), x∗ must be

feasible point of (10.3.25). If x∗ is not the solution of (10.2.23)-(10.3.25),
there exists x̄ such that

f(x̄) < f(x∗) (10.2.26)

and
‖c(−)(x̄)‖ = min

y∈Rn
‖c(−)(y)‖. (10.2.27)

It follows from Lemma 10.2.1 that f(x(σk)) approach to f(x∗). Then, by
(10.2.26), we have that the inequality

f(x̄) < f(x(σk)) (10.2.28)

holds for k sufficiently large, which, together with (10.2.27), gives

f(x̄) + σk‖c(−)(x̄)‖ < f(x(σk)) + σk min
y
‖c(−)(y)‖

= f(x(σk)) + σk‖c(−)(x(σk))‖ (10.2.29)

for k sufficiently large. This is just

Pσk
(x̄) < Pσk

(x(σk)). (10.2.30)

This contradicts the definition of x(σk). The contradiction proves our theo-
rem. �

The above two theorems establish a direct consequence.

Corollary 10.2.6 Let problem (10.1.1)-(10.1.3) have feasible points. Then
Algorithm 10.2.3 either finitely terminates at the solution of (10.2.9)-(10.2.10),
or any accumulation points of the generated sequence are the solution of the
original problem.

Download more at Learnclax.com

10.2. THE SIMPLE PENALTY FUNCTION METHOD 465

For the Courant penalty function, i.e., ‖ · ‖2 and α = 2 in (10.2.1), we
have

∇f(x(σk)) + 2σk

m∑
i=1

c
(−)
i (x(σk))∇c

(−)
i (x(σk)) = 0. (10.2.31)

Suppose that the infinite sequence {xk} from Algorithm 10.2.3 converges to
x∗, we then have

∇f(xk+1) =
m∑

i=1

λ
(k+1)
i ∇ci(xk+1), (10.2.32)

where
λ

(k+1)
i = −2σkc

(−)
i (xk+1). (10.2.33)

Hence the multiplier λ(k+1) given in (10.2.33) is an approximation to a La-
grangian multiplier. It is not difficult to see that if xk → x∗, c(−)(x∗) = 0
and ∇ci(x∗) (i ∈ E ∪ I(x∗)) are linearly independent, then λk → λ∗. Since,
in the general case, ‖λ∗‖2 = 0, it follows from (10.2.33) that

1
σk

= O(‖c(−)(xk+1)‖2) = O(‖xk+1 − x∗‖2). (10.2.34)

On the other hand, by using (10.2.32), c(−)(x∗) = 0 and ‖λk+1 − λ∗‖ =
O(‖xk+1 − x∗‖), we can obtain[

W ∗ −A∗

−(A∗)T 0

](
xk+1 − x∗

λ̂(k+1) − λ̂∗

)
=

(
0

ĉ(xk+1)

)
+ O(‖xk+1 − x∗‖),

(10.2.35)
where

W ∗ = ∇∗
xxL(x∗, λ∗), (10.2.36)

A∗ is a matrix consisting of∇ci(x∗) (i ∈ E or λ∗
i > 0), λ̂∗ is a vector consisting

of those components of λ∗ (i ∈ E or λ∗
i > 0), and the definitions of λ̂k+1 and

ĉ(xk+1) are similar to λ̂∗. By (10.2.33), we have

‖ĉ(xk+1)‖ = O

(
1
σk

)
. (10.2.37)

If the second sufficient conditions (8.3.35)-(8.3.36) are satisfied, then the
matrix [

W ∗ −A∗

−(A∗)T 0

]
(10.2.38)

Download more at Learnclax.com

466 CHAPTER 10. PENALTY FUNCTION METHODS

is nonsingular. By use of (10.2.35) and (10.2.37), we have

‖xk+1 − x∗‖ = O

(
1
σk

)
. (10.2.39)

Then, the above equality and (10.2.34) implies that the rate of ‖xk+1−x∗‖ →
0 is the same as that of 1

σk
→ 0. This phenomenon can be illustrated by the

following example.

Example 10.2.7 Consider the problem

min(x1,x2)∈R2 x1 + x2, (10.2.40)

s.t. x2 − x2
1 = 0. (10.2.41)

Solution. For the Courant penalty function, we have

x(σ) =

[
−1

2
1
4 −

1
2σ

]
= x∗ −

[
0
1
2

]
1
σ

, (10.2.42)

where x∗ = (−1/2, 1/4) is the unique solution of (10.2.40)-(10.2.41). Thus,
the sequence {xk} generated by Algorithm 10.2.3 satisfies

xk+1 − x∗ =

[
0
−1

2

]
1
σk

. (10.2.43)

Therefore, we need to choose a very large penalty factor σk to solve con-
strained optimization problems. However, this leads to numerical difficulties
of ill-conditioning. �

If L1 or L∞ penalty functions are employed, in general, Algorithm 10.2.3
terminates finitely at an exact solution of the original problem. In fact, let
x∗ be a solution of the original constrained problem, and λ∗ a corresponding
Lagrange multiplier, then x∗ is a minimizer of the L1 exact penalty function
if σ1 > ‖λ∗‖∞. Unfortunately, it is a nonsmooth optimization problem to
minimize a L1 exact penalty function. The topic about minimization of
nonsmooth exact penalty function will be discussed in detail in §10.6.

10.3 Interior Point Penalty Functions

Similar to the penalty functions discussed in the previous sections, the inte-
rior point penalty functions are also used to transform a constrained problem

Download more at Learnclax.com

10.3. INTERIOR POINT PENALTY FUNCTIONS 467

into an unconstrained problem or into a sequence of unconstrained problems.
These functions set a barrier against leaving the feasible region, i.e., these
functions are characterized by the property of preserving strict constraint
feasibility at all times (i.e., the generated sequence always lies in the interior
of the feasible region), by using an interior point penalty term which is infi-
nite on the constraint boundaries. Such methods based on an interior point
penalty function are referred to as interior point penalty function methods.
Note that the interior point penalty function is also said to be a barrier
function, and the corresponding techniques are known as barrier function
methods.

The interior point function methods are used to deal with the inequality-
constrained optimization problem

minx∈Rn f(x) (10.3.1)
s.t. ci(x) ≥ 0, i = 1, · · · , m, (10.3.2)

where
X = {x ∈ Rn | ci(x) ≥ 0, i = 1, 2, · · · , m}

is a feasible region. The strictly feasible region is defined by

int(X) ∆= {x ∈ Rn | ci(x) > 0 for all i}. (10.3.3)

We assume that intX is nonempty.
The interior point penalty function is of a general form

Pσ(x) = f(x) +
1
σ

m∑
i=1

h(ci(x)), (10.3.4)

where σ > 0 is a barrier parameter, which controls the iteration. If {σk} → ∞
is chosen, the barrier term becomes more and more negligible except close to
the boundary. The h(ci) is a real function defined on (0, +∞) which satisfies
that

lim
ci→0+

h(ci) = +∞, (10.3.5)

which means the value h(ci) approaches ∞ as x approaches the boundary of
int(X), and that

h(c1) ≥ h(c2), ∀c1 < c2. (10.3.6)

Some interior point penalty functions satisfy

h(ci) > 0, ∀ci > 0. (10.3.7)

Download more at Learnclax.com

468 CHAPTER 10. PENALTY FUNCTION METHODS

As we have seen, the inverse barrier function (10.1.19) and the logarithmic
barrier function (10.3.16) are the two most important special cases of (10.3.4).
For the inverse barrier function, (10.3.7) holds.

Let x(σ) be the solution of the problem

min
x∈Rn

Pσ(x). (10.3.8)

Assume that we solve (10.3.8) with a strict interior point as an initial point.
Note that Pσ(x) has value ∞ on its boundary, then x(σ) must be an interior
point.

Similar to Lemma 10.2.1 and Lemma 10.2.2, we can prove the following
results.

Lemma 10.3.1 Let σ2 > σ1 > 0, then

f(x(σ2)) ≤ f(x(σ1)), (10.3.9)
m∑

i=1

h(ci(x(σ2))) ≥
m∑

i=1

h(ci(x(σ1))). (10.3.10)

Lemma 10.3.2 Set δ =
∑m

i=1 h(ci(x(σ))). Then x(σ) is a solution of prob-
lem

minx∈Rn f(x) (10.3.11)

s.t.
m∑

i=1

h(ci(x)) ≤ δ. (10.3.12)

When δ is sufficiently large, the problem (10.3.11)-(10.3.12) can be re-
garded as an approximation to

minx∈Rn f(x) (10.3.13)

s.t.
m∑

i=1

h(ci(x)) < +∞. (10.3.14)

By the definition of h(ci), (10.3.14) is equivalent to

ci(x) > 0, i = 1, · · · , m. (10.3.15)

The difference between (10.3.15) and (10.3.2) is whether the boundary of the
feasible region is feasible points or not. If σ > 0 is very large and δ in Lemma

Download more at Learnclax.com

10.3. INTERIOR POINT PENALTY FUNCTIONS 469

10.3.2 is very large, then x(σ) is close to the boundary of the feasible region
of (10.3.2). Hence, the feasible region of (10.3.12) is also close to that of
the original problem. Therefore x(σ) is close to the solution of the original
problem.

If σ > 0 is very large but δ bounded, it follows from the definition of
(10.3.4)that the interior point penalty function Pσ(x) is very close to f(x)
near x(σ). In this case, x(σ) is regarded approximately as a local minimizer
of f(x). Based on these analyses, an algorithm can be written as follows. We
assume that h(·) satisfies (10.3.7).

Algorithm 10.3.3 (Algorithm based on interior point penalty function)

Step 1. Given x1 satisfying (10.3.15). Let σ1 > 0, ε ≥ 0, k := 1.

Step 2. Starting with xk solve the problem (10.3.8) for x(σk). Set
xk+1 = x(σk).

Step 3. If
1
σk

m∑
i=1

h(ci(xk+1)) ≤ ε, (10.3.16)

stop; otherwise, set σk+1 = 10σk, k := k + 1; go to Step 2.
�

For Algorithm 10.3.3, we will establish the following convergence theorem.

Theorem 10.3.4 Let f(x) be bounded below on the feasible region X. Then
Algorithm 10.3.3 will terminate finitely at ε > 0, and when it does not ter-
minate finitely, we have that

lim
k→∞

1
σk

h(ci(xk+1)) = 0 (10.3.17)

and
lim

k→∞
f(xk) = inf

x∈int(X)
f(x) (10.3.18)

hold, where int(X) is defined by (10.3.3). Furthermore, any accumulation
point of {xk} is the solution of problem (10.3.1)-(10.3.2).

Download more at Learnclax.com

470 CHAPTER 10. PENALTY FUNCTION METHODS

Proof. Obviously, we only need to prove that (10.3.17)-(10.3.18) hold
when the algorithm does not terminate finitely.

First, for any η > 0, there exists xη ∈ int(X) such that

f(xη) < inf
x∈int(X)

f(x) +
η

2
. (10.3.19)

Since the algorithm does not terminate finitely, there is σk → +∞. Hence
there exists k̄ such that

σk >
2
η

m∑
i=1

h(ci(xη)), ∀k ≥ k̄. (10.3.20)

Then, by using the definition of xk+1, and (10.3.19)-(10.3.20), we have

Pσk
(xk+1) = Pσk

(x(σk)) ≤ Pσk
(xη),

that is

1
σ

m∑
i=1

h(ci(xk+1)) ≤ f(xη) +
1
σk

m∑
i=1

h(ci(xη))− f(xk+1)

≤ inf
x∈int(X)

f(x) +
1
2
η +

1
2
η − f(xk+1)

≤ η (10.3.21)

holds for all k ≥ k̄. Since η > 0 is arbitrary, it follows from (10.3.21) that
(10.3.17) is true.

From the first row in (10.3.21), we also get

f(xk+1) ≤ f(xη) +
1
σk

m∑
i=1

h(ci(xη))

≤ inf
x∈int(X)

f(x) + η (10.3.22)

holds for all k ≥ k̄. Then (10.3.18) holds. �

Suppose that the sequence {xk} generated by Algorithm 10.3.3 converges
to x∗. If x∗ is a strict interior point, then it follows from

∇f(xk+1) +
1
σk

m∑
i=1

h′(ci(xk+1))∇ci(xk+1) = 0 (10.3.23)

Download more at Learnclax.com

10.3. INTERIOR POINT PENALTY FUNCTIONS 471

that
‖∇f(xk+1)‖ = O

(
1
σk

)
. (10.3.24)

If the second-order sufficient condition (i.e., ∇2f(x∗) positive definite) is
satisfied, then (10.3.24) is equivalent to

‖xk+1 − x∗‖ = O

(
1
σk

)
. (10.3.25)

The above discussion also tells us that the rate of ‖xk+1 − x∗‖ → 0 is, in
general, no quicker than 1/σk.

Now, let us consider xk → x∗, where x∗ is a boundary point of the
feasible region of (10.3.2), i.e., there exists i such that ci(x∗) = 0. Let
∇ci(x∗)(i ∈ I(x∗)) be linearly independent. Let λ∗

i denote the Lagrange
multiplier at x∗. From (10.3.23), we have

lim
k→∞

−h′(ci(xk+1))/σk = λ∗
i . (10.3.26)

Write
λ(k+1) = (−h′(c1(xk+1)), · · · ,−h′(cm(xk+1)))T /σk.

Define A∗ as a matrix consisting of ∇ci(x∗) (i ∈ I(x∗)), λ̂∗ as a vector con-
sisting of those components λ∗

i of λ∗ (i ∈ I(x∗)), and note that the definitions
of λ̂(k+1) and ĉ(xk+1) are similar to λ̂∗. By (10.3.26), we have

|λ(k+1)
i | = O

(
1
σk

)
, ∀i /∈ I(x∗). (10.3.27)

Since the columns of A∗ are linearly independent, the above equality gives

‖λ̂(k+1) − λ̂∗‖ = O

(
‖xk+1 − x∗‖+

1
σk

)
. (10.3.28)

Note that by (10.3.23), we obtain

W ∗(xk+1 − x∗)−A∗(λ̂(k+1) − λ̂∗) = o(‖xk+1 − x∗‖) + O

(
1
σk

)
. (10.3.29)

Also,

−(A∗)T (xk+1 − x∗) = −ĉ(xk+1) + o(‖xk+1 − x∗‖). (10.3.30)

Download more at Learnclax.com

472 CHAPTER 10. PENALTY FUNCTION METHODS

Then the above two equalities give[
W ∗ −A∗

−(A∗)T 0

] [
xk+1 − x∗

λ̂(k+1) − λ̂∗

]

=

[
0

−ĉ(xk+1)

]
+ o(‖xk+1 − x∗‖) + O

(
1
σk

)
. (10.3.31)

Suppose that λ∗
i > 0 (i ∈ I(x∗)). Then for an inverse barrier function and

a logarithmic barrier function, by using (10.3.26), we obtain respectively

ci(xk+1) = O

(
1
√

σk

)
, i ∈ I(x∗) (10.3.32)

and
ci(xk+1) = O

(
1
σk

)
, i ∈ I(x∗). (10.3.33)

Hence, provided that the second-order sufficient condition is satisfied, for the
inverse barrier function and logarithmic barrier function, we have

‖xk+1 − x∗‖ = O

(
1
√

σk

)
(10.3.34)

and
‖xk+1 − x∗‖ = O

(
1
σk

)
. (10.3.35)

From (10.3.34)-(10.3.35), it is easy to see that the logarithmic barrier function
converges more quickly than the inverse barrier function does.

Now we consider solving (10.3.8) inexactly by interior point function
methods. Suppose that both f(x) and h(ci(x)) are convex functions of x,
then Pσ(x) is also convex with respect to x. Given starting point xk, then
for problem

min Pσk
(x), (10.3.36)

the Newton step is

dk = −[∇2Pσk
(xk)]−1∇Pσk

(xk). (10.3.37)

To avoid solving the subproblem exactly, the xk + dk is regarded as an ap-
proximate solution of (10.3.36). For simplicity, we assume

h(ci) = − log ci(x). (10.3.38)

Download more at Learnclax.com

10.3. INTERIOR POINT PENALTY FUNCTIONS 473

Set xk+1 = xk + dk. Then we have from (10.3.37) that

∇2Pσk
(xk)(xk+1 − xk) = −∇Pσk

(xk). (10.3.39)

Note that

∇xPσk
(xk) = ∇f(xk)−

m∑
i=1

1
σ

1
ci(xk)

∇ci(xk),

∇2
xPσk

(xk) = ∇2f(xk)−
m∑

i=1

1
σk

1
ci(xk)

∇2ci(xk)

+
m∑

i=1

1
σk

1
(ci(xk))2

∇c− i(xk)∇ci(xk)T .

Write
λ

(k)
i =

1
σkci(xk)

.

Then (10.3.39) can be written as(
∇2f(xk)−

m∑
i=1

λ
(k)
i ∇2ci(xk) +

m∑
i=1

λ
(k)
i

1
ci(xk)

∇ci(xk)∇ci(xk)T

)

·(xk+1 − xk) = −
[
∇f(xk)−

m∑
i=1

λ
(k)
i ∇ci(xk)

]
. (10.3.40)

If the xk+1 defined above lies in the interior of the feasible region, it is re-
garded as next iterate. Otherwise, there is ᾱ > 0 such that the point xk+ᾱkdk

lies on the boundary of the feasible region. In such a case, we set

xk+1 = xk + 0.9ᾱkdk. (10.3.41)

So, the xk+1 still is an interior point. Hence, an inexact interior point penalty
function algorithm for subproblem (10.3.36) can be written as follows.

Algorithm 10.3.5 (Inexact Log-Barrier Function Method)

Step 1. Given x1 satisfying (10.3.15), σ1 > 0, ε ≥ 0, k := 1.

Step 2. Compute λ
(k)
i = 1

σkci(xk) , i = 1, · · · , m;

dk = −[∇2f(xk)−
m∑

i=1

λ
(k)
i ∇2ci(xk)

Download more at Learnclax.com

474 CHAPTER 10. PENALTY FUNCTION METHODS

+
m∑

i=1

λ
(k)
i

1
ci(xk)

∇ci(xk)∇ci(xk)T]−1

·(∇f(xk)−
m∑

i=1

λ
(k)
i ∇ci(xk)); (10.3.42)

If dk = 0 go to Step 3;
If ‖∇f(xk)‖ ≤ ε, stop;
Otherwise, σk := 10σk; go to step 2.

Step 3. Set αk = 1;
If xk + dk is an interior point, go to Step 4;
Find 1 ≥ ᾱk > 0 such that xk + ᾱkdk is on the boundary of
the feasible region;
Set αk := 0.9ᾱk.

Step 4. Set xk+1 := xk + αkdk;
If

1
σk

m∑
i=1

log
(

1
ci(xk)

)
≤ ε, (10.3.43)

stop; σk+1 := 10σk; k := k + 1; go to Step 2. �

10.4 Augmented Lagrangian Method

In this section we discuss the augmented Lagrangian method (or the method
of multiplier penalty function).

We know from §10.1 that this method is an extension of the quadratic
penalty function method. It reduces the possibility of ill-conditioning of the
subproblem by introducing Lagrange multiplier estimates. In fact, it is a
combination of the Lagrangian function and the quadratic penalty function.

For the case where only equality constraints are presented (m = me), we
rewrite the augmented Lagrangian function as

P (x, λ, σ) = f(x)−
m∑

i=1

λici(x) +
1
2

m∑
i=1

σi(ci(x))2. (10.4.1)

When we differentiate with respect to x, we obtain

∇xP (x, λ, σ) = ∇f(x)−
m∑

i=1

(λi − σici(x))∇ci(x), (10.4.2)

Download more at Learnclax.com

10.4. AUGMENTED LAGRANGIAN METHOD 475

which suggests the formula

λ
(k+1)
i = λ

(k)
i − σ

(k)
i ci(xk+1). (10.4.3)

Now we consider the general problem (10.1.1)–(10.1.3) by the augmented
Lagrangian function. We rewrite the augmented Lagrangian function P (x, λ, σ)
(10.1.21) as follows:

P (x, λ, σ) = f(x) +
me∑
i=1

[
−λici(x) +

1
2
σic

2
i (x)

]

+
m∑

i=me+1

{ [
−λici(x) + 1

2σic
2
i (x)

]
, if ci(x) < λi

σi
;

−1
2λ2

i /σi, otherwise
(10.4.4)

where λi (i = 1, · · · , m) are Lagrange multipliers, σi (i = 1, · · · , m) are penalty
parameters.

Consider the k-th iteration, using λ
(k)
i and σ

(k)
i to denote corresponding

components of λ and σ respectively at the k-th iteration. Let xk+1 be the
solution of the subproblem

min
x∈Rn

P (x, λ(k), σ(k)). (10.4.5)

Then we have

∇f(xk+1) =
me∑
i=1

[λ(k)
i − σ

(k)
i ci(xk+1)]∇ci(xk+1)

+
m∑

i=me+1

max{λ(k)
i − σ

(k)
i ci(xk+1), 0}∇ci(xk+1).(10.4.6)

Hence we take

λ
(k+1)
i = λ

(k)
i − σ

(k)
i ci(xk+1), i = 1, · · · , me; (10.4.7)

λ
(k+1)
i = max{λ(k)

i − σ
(k)
i ci(xk+1), 0}, i = me + 1, · · · , m, (10.4.8)

as next Lagrange multipliers. By (10.4.6)–(10.4.8), we have that

∇f(xk+1)−
m∑

i=1

λ
(k+1)
i ∇ci(xk+1) = 0, (10.4.9)

Download more at Learnclax.com

476 CHAPTER 10. PENALTY FUNCTION METHODS

which indicates that for any k ≥ 2, the error of the KKT condition for (xk, λk)
is

‖∇xL(xk, λ
(k))‖+ ‖c(−)(xk)‖ = ‖c(−)(xk)‖, (10.4.10)

where L(x, λ) is the Lagrangian function defined in (8.2.18), c(−)(x) is a
constraint violation function defined in (10.1.5)–(10.1.6). Therefore, for k ≥
2, provided that the inequality

|c(−)
i (xk+1)| ≤

1
4
|c(−)

i (xk)| (10.4.11)

is not satisfied, we enlarge the penalty parameters, i.e., set

σ
(k+1)
i = 10σ(k)

i . (10.4.12)

Below, we give an algorithm based on the augmented Lagrangian function.

Algorithm 10.4.1 (Augmented Lagrangian Method)

Step 1. Given starting point x1 ∈ Rn, λ(1) ∈ Rm with λ
(1)
i ≥ 0 (i ∈

I); σ
(1)
i > 0 (i = 1, · · · , m); ε ≥ 0, k := 1.

Step 2. Find approximate minimizer xk+1 to (10.4.5).
If ‖c(−)(xk+1)‖∞ ≤ ε, stop.

Step 3. For i = 1, · · · , m, set

σ
(k+1)
i =

{
σ

(k)
i , if (10.4.11) holds;

max[10σ
(k)
i , k2], otherwise.

(10.4.13)

Step 4. Update Lagrange multipliers using (10.4.7)–(10.4.8) to ob-
tain λ(k+1), k := k + 1, go to Step 2. �

A practical implementation of the above algorithm is given in LANCELOT
due to Conn, Gould, and Toint [68].

Now we establish the finite termination of Algorithm 10.4.1.

Theorem 10.4.2 Let the feasible region X of problem (10.1.1)–(10.1.3) be
nonempty. Then for some ε > 0, Algorithm 10.4.1 is either finitely termi-
nated, or the sequence {xk} produced by Algorithm 10.4.1 satisfies

lim inf
k→∞

f(xk) = −∞. (10.4.14)

Download more at Learnclax.com

10.4. AUGMENTED LAGRANGIAN METHOD 477

Proof. Suppose, on the contrary, that the theorem is not true, that is,
for some ε > 0, Algorithm 10.4.1 does not terminate finitely, and {f(xk)} is
bounded below. Define the set J by

J =
{

i | lim
k→∞

|c(−)
i (xk)| = 0, 1 ≤ i ≤ m

}
. (10.4.15)

Since the algorithm does not terminate finitely, then the set

Ĵ = {1, 2, · · · , m}/J (10.4.16)

is not empty. Thus, by the construction of the algorithm, for any i ∈ Ĵ , we
have

lim
k→∞

σ
(k)
i = +∞. (10.4.17)

Define
µ

(k)
i = λ

(k)
i /

√
σ

(k)
i . (10.4.18)

It is not difficult to prove that

‖µ(k+1)‖22 ≤
m∑

i=1

[λ(k+1)
i]2/σ

(k)
i

≤ ‖µ(k)‖22 + 2[P (xk+1, λ
(k), σ(k))− f(xk+1)]

−2[P (x̄, λ(k), σ(k))− f(x̄)]
≤ ‖µ(k)‖22 + 2[f(x̄)− f(xk+1)], (10.4.19)

where x̄ is any feasible point of (10.1.1)–(10.1.3). Since {f(xk)} is bounded
below, then (10.4.19) suggests that there exists δ > 0 such that

‖µ(k)‖22 ≤ δk (10.4.20)

holds for all k. Set
J̃ = {i | lim

k→∞
σ

(k)
i = +∞}. (10.4.21)

Equation (10.4.17) indicates that Ĵ ⊆ J̃ . By the definition of xk+1, we have

f(x̄) +
∑

i>me

1
2
σ

(k)
i

⎡
⎣(ci(x̄)− λ

(k)
i

σ
(k)
i

)2

−
−
(

λ
(k)
i

σ
(k)
i

)2
⎤
⎦

≥ f(xk+1) +
∑

i≤me

1
2
σ

(k)
i

⎡
⎣(ci(xk+1)−

λ
(k)
i

σ
(k)
i

)2

−
(

λ
(k)
i

σ
(k)
i

)2
⎤
⎦

+
∑

i>me

1
2
σ

(k)
i

⎡
⎣(ci(xk+1)−

λ
(k)
i

σ
(k)
i

)2

−
−
(

λ
(k)
i

σ
(k)
i

)2
⎤
⎦ , (10.4.22)

Download more at Learnclax.com

478 CHAPTER 10. PENALTY FUNCTION METHODS

where x̄ is any feasible point of (10.1.1)–(10.1.3), (α)− denotes min{0, α}.
By use of (10.4.20)–(10.4.22), we can deduce that

f(x̄) −f(xk+1) ≥ O(k)

+
∑

i≤me

i∈J̃

1
2
σ

(k)
i

⎡
⎣(ci(xk+1)−

λ
(k)
i

σ
(k)
i

)2

−
(

λ
(k)
i

σ
(k)
i

)2
⎤
⎦

+
∑

i>me

i∈J̃

1
2
σ

(k)
i

⎡
⎣(ci(xk+1)−

λ
(k)
i

σ
(k)
i

)2

−
−
(

λ
(k)
i

σ
(k)
i

)2
⎤
⎦ . (10.4.23)

Since the algorithm does not terminate finitely, then for any k, there exists
k̄ > k such that for some i ∈ J̃ , we have σ

(k̄+1)
i > σ

(k̄)
i and

|ci(xk̄+1)| > ε if i ≤ me

or
|(ci(xk̄+1))−| > ε if i > me.

Then it follows from (10.4.23) that

f(x̄)− f(xk̄+1) ≥ O(k̄) +
1
2
σ

(k̄)
i ε2 + o(σ(k̄)

i)

≥ O(k̄) +
1
4
k̄2ε (10.4.24)

≥ 1
8
k̄2ε. (10.4.25)

This contradicts the fact that the {f(xk)} is bounded below. The contradic-
tion proves the theorem. �

Theorem 10.4.3 Let the feasible region X of problem (10.1.1)–(10.1.3) be
nonempty. Then for ε = 0, any accumulation point x∗ of the sequence {xk}
generated by Algorithm 10.4.1 is feasible. Further, if {λ(k)} is bounded, then
x∗ is the solution of the original problem (10.1.1)–(10.1.3).

Proof. By Algorithm 10.4.1 and Theorem 10.4.2, we have

lim
k→∞

‖c−(xk)‖ = 0. (10.4.26)

Hence, any accumulation point of {xk} is a feasible point of (10.1.1)–(10.1.3).

Download more at Learnclax.com

10.4. AUGMENTED LAGRANGIAN METHOD 479

Suppose that {λ(k)} is bounded for all k. Then by (10.4.22) and (10.4.26),
we can deduce that

f(x̄) ≥ f(xk+1) +
∑

i≤me

1
2
σ

(k)
i c2

i (xk+1)

+
∑

i>me

1
2
σ

(k)
i

⎡
⎣(c(xk+1)−

λ
(k)
i

σ
(k)
i

)2

−
−
(
−λ

(k)
i

σ
(k)
i

)2

−

⎤
⎦+ o(1)

≥ f(xk+1) + o(1). (10.4.27)

Since x̄ ∈ X is arbitrary, we have

lim
k→∞

f(x) = inf
x∈X

f(x). (10.4.28)

Thus, any accumulation point x∗ of {xk} is the solution of the original prob-
lem. �

Finally, we consider the convergence rate of Algorithm 10.4.1. For sim-
plicity, we consider the case with equality constraints only.

Suppose that xk → x∗. By Theorem 10.4.3, x∗ is the solution of (10.1.1)–
(10.1.3). Let A(x∗) have full column rank with rank(A(x∗)) = m. Let A(xk)
have full column rank for all k too. Then the λ(k+1) generated by Algorithm
10.4.1 is equivalent to the λ(xk+1) defined by the following expression

A(xk+1)λ(xk+1) = g(xk+1), (10.4.29)

where g(x) = ∇f(x). Note that

λ(x) = [A(x)]+g(x). (10.4.30)

It is not difficult to get

∇λ(x) = [A(x)]+W (x), (10.4.31)

where

W (x) = ∇2f(x)−
m∑

i=1

[λ(x)]i∇2ci(x). (10.4.32)

By (10.4.7), we have

λ(xk+1) + Dkc(xk+1) = λ(xk), (10.4.33)

Download more at Learnclax.com

480 CHAPTER 10. PENALTY FUNCTION METHODS

where

Dk =

⎡
⎢⎢⎣

σ
(k)
1 0

. . .

0 σ
(k)
m

⎤
⎥⎥⎦ . (10.4.34)

Then, it suggests by differentiation that

[DkA(x∗)T +A(x∗)+W (x∗)](xk+1−x∗) ≈ A(x∗)+W (x∗)(xk−x∗). (10.4.35)

The above expression says that, unless σ(k) → +∞, the sequence {xk} gen-
erated by Algorithm 10.4.1 is, in general, convergent linearly.

A shortcoming of the augmented Lagrangian function is that it is only
once continuously differentiable. Hence it is possible that there will be some
numerical difficulties in solving the subproblem (10.4.5).

10.5 Smooth Exact Penalty Functions

For the equality-constrained problem

minx∈Rn f(x), (10.5.1)
s.t. c(x) = 0, (10.5.2)

Fletcher [126] first presented a smooth exact penalty function

P (x, σ) = f(x)− λ(x)T c(x) +
1
2
c(x)T Dc(x), (10.5.3)

where λ(x) is given by (10.1.23), D = diag(σ1, · · · , σm). From the discussions
in §10.1 and §10.4, we know that, if the second-order sufficient condition holds
and σi are sufficiently large, then the local minimizer of (10.5.1)–(10.5.2) is
a strict local minimizer of the penalty function (10.5.3). Conversely, if x̄ is a
minimizer of (10.5.3) and c(x̄) = 0, then x̄ is also the minimizer of problem
(10.5.1)–(10.5.2).

If we set all σi equal in (10.5.3), then a simple form of Fletcher’s smooth
exact penalty function

P (x, σ) = f(x)− λ(x)T c(x) +
1
2
σ‖c(x)‖22 (10.5.4)

is obtained. For this penalty function, let x(σ) be a solution of the subprob-
lem

min
x∈Rn

P (x, σ). (10.5.5)

Download more at Learnclax.com

10.5. SMOOTH EXACT PENALTY FUNCTIONS 481

We have, similar to (10.2.5), that

‖c(x(σ2))‖2 ≤ ‖c(x(σ1))‖2, ∀σ2 ≥ σ1 > 0. (10.5.6)

Comparing with the simple penalty function, by use of (10.5.5) and (10.5.4),
we need not require σ → +∞. Thus it is possible to attempt the solution of
original problem (10.5.1)–(10.5.2) by solving (10.5.5) without needing σ →
+∞. In addition, the exact penalty function (10.5.3) is smooth, and thus
the convergence rate of methods to solve the unconstrained optimization
problem (10.5.5) is rapid. A drawback of this approach is, however, that
computing ∇xP (x, σ) needs computation of ∇λ(x), and further ∇2f(x) and
∇2ci(x), (i = 1, · · · , me). It is expensive.

If, in (10.5.3), we replace D by

2σA+(A+)T , (10.5.7)

where A = ∇c(x), we obtain

P (x) = f(x)− π(x)T c(x), (10.5.8)

where
π(x) = A+(g(x)− σ(A+)T c(x)). (10.5.9)

It is not difficult to find that π(x) is the Lagrange multiplier of the problem

mind∈Rn
1
2
σdT d + g(x)T d (10.5.10)

s.t A(x)T d + c(x) = 0. (10.5.11)

For general inequality constrained optimization problem (10.1.1)–(10.1.3),
we can define π(x) as the Lagrange multiplier of subproblem

mind∈Rn g(x)T d +
1
2
σ‖d‖22, (10.5.12)

s.t. ci(x) + dT∇ci(x) = 0, i ∈ E, (10.5.13)
ci(x) + dT∇ci(x) ≥ 0, i ∈ I, (10.5.14)

and then construct the penalty function

P (x) = f(x)− π(x)T c(x). (10.5.15)

Download more at Learnclax.com

482 CHAPTER 10. PENALTY FUNCTION METHODS

The multiplier π(x) can also be obtained by solve the dual problem of (10.5.12)-
(10.5.14)

min
πi≥0
i∈I

1
2

∥∥∥∥∥g(x)−
m∑

i=1

πi∇ci(x)

∥∥∥∥∥
2

2

+ σπT c(x). (10.5.16)

As an alternative to the subproblem (10.5.4), we may consider the smooth
exact penalty function

P (x, λ) = f(x)− c(x)T λ +
1
2
σ‖c(x)‖22

+
1
2
ρ‖M(x)[g(x)−A(x)λ]‖22 (10.5.17)

to deal with an equality constrained problem, where M(x) can be A(x)T , A(x)+,
or an identity matrix. Equation (10.5.17) may be extended to handle an
inequality-constrained problem. We refer the reader to Di Pillo, Grippo and
Lampariell [104] or Fletcher [132].

10.6 Nonsmooth Exact Penalty Functions

Let h(c) be a convex function defined on Rm with h(0) = 0. If there exists a
positive constant δ > 0 such that

h(c) ≥ δ‖c‖1 (10.6.1)

holds for all c ∈ Rm, then h(c) is called a strong distance function.
For any strong distance function h(c), we say that the penalty function

Pσ,h(x) = f(x) + σh(c(−)(x)) (10.6.2)

is a nonsmooth exact penalty function, where σ > 0 is a penalty parameter
and c(−)(x) is a constraint violation function defined in (10.1.5)–(10.1.6).

For nonsmooth exact penalty function (10.6.2), we give the following
theorem about necessity.

Theorem 10.6.1 Let x∗ be a local minimizer of constrained optimization
problem (10.1.1)–(10.1.3) satisfying, together with the corresponding Lagrange
multiplier vector λ∗, the second-order sufficient condition

dT∇2
xxL(x∗, λ∗)d > 0, ∀0 = d ∈ LFD (x∗, X). (10.6.3)

Download more at Learnclax.com

10.6. NONSMOOTH EXACT PENALTY FUNCTIONS 483

Then, if
σδ > ‖λ∗‖∞, (10.6.4)

the vector x∗ is a strict local minimizer of penalty function Pσ,h(x) defined
in (10.6.2).

Proof. Let (10.6.4) hold. Suppose, to the contrary, that the theorem is
not true. Then there exist xk (k = 1, 2, · · ·) such that xk = x∗, xk → x∗ and

Pσ,h(xk) ≤ P (x∗), ∀k. (10.6.5)

The above expression gives

f(xk) + σδ‖c(−)(xk)‖1 ≤ f(x∗). (10.6.6)

Without loss of generality, we assume that

(xk − x∗)/‖xk − x∗‖ → d. (10.6.7)

By (10.6.6) and the definition of Lagrange multiplier, we obtain

(σδ − ‖λ∗‖∞)‖c(−)(xk)‖1
= (g(x∗)−A(x∗)λ∗)T (xk − x∗) + (σδ − ‖λ∗‖∞)‖c(−)(xk)‖1

= f(xk)−
m∑

i=1

λ∗
i ci(xk)− f(x∗)− 1

2
(xk − x∗)T∇2

xxL(x∗, λ∗)(xk − x∗)

+(σδ − ‖λ∗‖∞)‖c(−)(xk)‖1 + o(‖xk − x∗‖2)

= f(xk) + σδ‖c(−)(xk)‖1 − f(x∗)−
m∑

i=1

(‖λ∗‖∞|c(−)
i (xk)|+ λ∗

i ci(xk))

−1
2
dT∇2

xxL(x∗, λ∗)d‖xk − x∗‖22 + o(‖xk − x∗‖22)

≤ −1
2
dT∇2

xxL(x∗, λ∗)d‖xk − x∗‖22 + o(‖xk − x∗‖22). (10.6.8)

By using (10.6.8) and (10.6.4), and taking the limit, we yield

lim
k→∞

‖c(−)(xk)‖1
‖xk − x∗‖ = 0, (10.6.9)

which indicates
d ∈ LFD(x∗, X). (10.6.10)

Download more at Learnclax.com

484 CHAPTER 10. PENALTY FUNCTION METHODS

From the second-order sufficient condition we have

dT∇2
xxL(x∗, λ∗)d > 0 (10.6.11)

which shows that the last row in inequality (10.6.8) is negative when k is
sufficiently large. Then it produces a contradiction. The contradiction proves
the theorem. �

The common nonsmooth exact penalty functions are the L1 exact penalty
function

P1(x) = f(x) + σ‖c(−)(x)‖1 (10.6.12)

and the L∞ exact penalty function

P∞(x) = f(x) + σ‖c(−)(x)‖∞. (10.6.13)

For nonsmooth exact penalty function (10.6.2), let x(σ) be a minimizer
of the problem

min
x∈Rn

Pσ,h(x). (10.6.14)

Completely similar to Lemma 10.2.1 and Lemma 10.2.2, we have the following
lemmas. The proofs are omitted.

Lemma 10.6.2 Let σ2 > σ1 > 0. Then we have

f(x(σ2)) ≥ f(x(σ1)), (10.6.15)
h(c(−)(x(σ2))) ≤ h(c(−)(x(σ1))). (10.6.16)

Lemma 10.6.3 Let η = h(c(−)(x(σ))), then x(σ) is also the solution of
cconstrained problem

minx∈Rn f(x) (10.6.17)
s.t. h(c(−)(x)) ≤ η. (10.6.18)

It is advantageous for an exact penalty function that it is possible to
attempt exactly the solution of a constrained optimization problem by solving
only a single or finitely many unconstrained problems.

The nonsmooth exact penalty methods can be written in the following
form:

Algorithm 10.6.4 (Nonsmooth Exact Penalty Method)

Download more at Learnclax.com

10.6. NONSMOOTH EXACT PENALTY FUNCTIONS 485

Step 1. Given x1 ∈ Rn, σ1 > 0, k := 1.

Step 2. Solve
min
x∈Rn

Pσ,h(x) (10.6.19)

at xk to obtain x(σ).

Step 3. If c(−)(x(σk)) = 0, stop;
xk+1 := x(σk), σk+1 := 10σk;
k := k + 1; go to Step 2. �

Note that since Pσ,h(x) is an exact penalty function, we can obtain the
exact solution of the original problem provided that σ is sufficiently large.
The following is the convergence result of Algorithm 10.6.4.

Theorem 10.6.5 Let f(x), ci(x) (i = 1, · · · , m) be twice continuously differ-
entiable. Let the feasible region of constrained optimization problem (10.1.1)–
(10.1.3) be nonempty. If second order sufficient condition (10.6.3) holds,
then either Algorithm 10.6.4 terminates at a strict local minimizer of prob-
lem (10.1.1)–(10.1.3) in finitely many iterations, or the generated sequence
satisfies ‖xk‖ → ∞.

Proof. (1) If the algorithm terminates finitely at x(σ), then x(σk) must be
a local minimizer of Pσk,h(x). By Lemma 10.6.6, which will be presented be-
low, x(σk) is also a local minimizer of the original problem (10.1.1)–(10.1.3).
Since the second-order sufficient condition is satisfied at x(σk), then x(σk) is
a strict local minimizer.

(2) Now we prove the second conclusion by contradiction. Suppose that
the theorem is not true. Then, for any k, we have c(−)(xk) = 0, {‖xk‖} has a
bounded subsequence and σk →∞. Let x̄ be any local minimizer of problem
(10.1.1)–(10.1.3). By the definition of x(σk), we have

f(xk+1) + σkh(c(−)(xk+1)) ≤ f(x̄) + σkh(c(−)(x̄)) = f(x̄), (10.6.20)

which means
σkh(c(−)(xk+1)) ≤ f(x̄)− f(xk+1).

Then we have
lim

k→∞
h(c(−)(xk+1)) = 0. (10.6.21)

Download more at Learnclax.com

486 CHAPTER 10. PENALTY FUNCTION METHODS

The above expression and (10.6.1) suggest that

lim
k→∞

‖c(−)(xk)‖ = 0. (10.6.22)

Since {‖xk‖} has a bounded subsequence, we may let x̂ be an accumulation
point of {xk} and therefore using (10.6.22) we have

c(−)(x̂) = 0. (10.6.23)

Let xkj
→ x̂. If x̂ is not a local minimizer of (10.1.1)–(10.1.3), then there

exists x̃ sufficiently approaching x̂ and we have

f(x̃) < f(x̂), (10.6.24)
c(−)(x̃) = 0. (10.6.25)

From (10.6.24) and that xkj
→ x̂, we obtain

f(xkj
) > f(x̃) (10.6.26)

for j sufficiently large. Hence, we deduce

Pσkj−1,h(xkj
) > Pσkj−1,h(x̃), (10.6.27)

which contradicts the definition of {xkj
}. Therefore, x̂ is a local minimizer

of the original problem (10.1.1)–(10.1.3).
Then it follows from Theorem 10.6.1 that there exist δ̄ and σ̄ such that

Pσ̄,h(x) > Pσ̄,h(x̂), ∀‖x− x̂‖ ≤ δ, x = x̂. (10.6.28)

The above expression suggests that

Pσ,h(x) > Pσ,h(x̂), ∀x = x̂, ‖x− x̂‖ ≤ δ, σ > σ̄. (10.6.29)

Since σkj
→∞, xkj

→ x̂ and xkj
= x̂, then there exists j such that ‖xkj

−x̂‖ <
δ and σkj−1 > σ̄. Hence

Pσkj−1,h(xkj
) > Pσkj−1,h(x̂), (10.6.30)

which contradicts the definition of xkj
. The contradiction shows the theorem.

�

If Algorithm 10.6.4 terminates finitely, it is sure that it terminates at
a local minimizer of the original problem. This is based on the following
lemma.

Download more at Learnclax.com

10.6. NONSMOOTH EXACT PENALTY FUNCTIONS 487

Lemma 10.6.6 For any σ > 0 and x̄ ∈ Rn, if h(c(−)(x̄)) = 0 and x̄ is a local
minimizer of the nonsmooth exact penalty function Pσ,h(x), then x̄ is also a
local minimizer of the constrained optimization problem (10.1.1)–(10.1.3).

Proof. Let x̄ satisfy h(c(−)(x̄)) = 0 and be a local minimizer of Pσ,h(x).
Suppose, to the contrary, that the lemma is not true. Then there exist
xk, (k = 1, 2, · · ·), such that xk → x̄, xk = x̄ and

f(xk) < f(x̄), (10.6.31)
c(−)(xk) = 0. (10.6.32)

Then, we have
Pσ,h(xk) < Pσ(x̄), (10.6.33)

which contradicts the fact that x̄ is a local minimizer of Pσ,h(x). Then we
complete the proof. �

We would like to mention that, in a rare case, it is possible that there is
‖xk‖ → ∞ for Algorithm 10.6.4. For example, consider

minx∈R1 100e−x − 1
x2 + 1

(10.6.34)

s.t. xe−x = 0. (10.6.35)

Taking h(c) = |c| yields that the penalty function is

Pσ(x) = 100e−x − 1
x2 + 1

+ σ
∣∣xe−x

∣∣ . (10.6.36)

For a sufficiently large σ > 0, the minimizer x(σ) of Pσ(x) satisfies the
equation

−100 +
2xex

(x2 + 1)2
= σ(x− 1), (10.6.37)

and x(σ) > 1. Then

lim
σ→∞

2ex(σ)

(x(σ)2 + 1)2σ
= 1. (10.6.38)

Therefore
lim

σ→∞x(σ) = +∞, (10.6.39)

which says that the sequence generated by Algorithm 10.6.4 satisfies xk →
+∞.

Download more at Learnclax.com

488 CHAPTER 10. PENALTY FUNCTION METHODS

We note that when the gradients of the constraint function are linearly
dependent, it is possible that the minimizer of the original problem (10.1.1)–
(10.1.3) is not a stationary point of the exact penalty function (10.6.2). For
example,

minx∈R1 x (10.6.40)
s.t. c(x) = x2 = 0. (10.6.41)

Taking h(c) = c yields that, for any given σ > 0, the solution x∗ = 0 of
problem (10.6.40)–(10.6.41) is not the stationary point of the exact penalty
function

Pσ,h(x) = x + σx2. (10.6.42)

However, if the gradients of the constraint function are linearly indepen-
dent, the minimizer of original problem (10.1.1)–(10.1.3) is also the minimizer
of the exact penalty function.

Theorem 10.6.7 Let x∗ be a local minimizer of constrained optimization
problem (10.1.1)–(10.1.3) and λ∗ be a corresponding Lagrange multiplier. If

∇ci(x∗), i ∈ E ∪ I(x∗) (10.6.43)

are linearly independent, then when (10.6.4) holds, the x∗ is also a local
minimizer of the penalty function (10.6.2).

Proof. If the theorem is not true, then there exist xk (k = 1, 2, · · ·) such
that xk = x∗, xk → x∗ and

Pσ,h(xk) < P (x∗), ∀k. (10.6.44)

Then by (10.6.1) we have

f(xk) + σδ‖c(−)(xk)‖1 < f(x∗). (10.6.45)

Similar to the proof of Theorem 10.6.1, we may assume that (10.6.7) holds
and use (10.6.8) to get

d ∈ LFD (x∗, X). (10.6.46)

The second-order necessary condition gives

dT∇2
xxL(x∗, λ∗)d ≥ 0, (10.6.47)

Download more at Learnclax.com

10.6. NONSMOOTH EXACT PENALTY FUNCTIONS 489

from which together with (10.6.8), we can deduce that

dT∇2
xxL(x∗, λ∗)d = 0. (10.6.48)

Then
‖c(−)(xk)‖1 = o(‖xk − x∗‖2). (10.6.49)

Since x∗ is a local minimizer of the original problem (10.1.1)–(10.1.3), it
follows from (10.6.45) that

‖c(−)(xk)‖1 > 0 (10.6.50)

for all sufficiently large k. Since the gradients of all active constraints are
linearly independent, then there is some yk such that

c(−)(yk) = 0 (10.6.51)

and
‖yk − xk‖ = O(‖c(−)(xk)‖). (10.6.52)

By use of the optimality of x∗ and (10.6.51), we have

f(yk) ≥ f(x∗). (10.6.53)

On the other hand, by the KKT condition, (10.6.4) and (10.6.45), we can
obtain that

f(yk) = f(xk) +∇f(x∗)T (yk − xk) + o(‖yk − xk‖)

= f(xk) +
m∑

i=1

λ∗
i (yk − xk)T∇ci(x∗) + o(‖yk − xk‖)

≤ f(xk) + λ∗‖∞‖c(−)(xk)‖1 + o(‖c(−)(xk)‖1)
< f(xk) + σδ‖c(−)(xk)‖1
< f(x∗), (10.6.54)

which contradicts (10.6.53). The contradiction proves the theorem. �

It is not difficult to see that the equivalence between the nonsmooth exact
penalty function (10.6.2) and the constrained optimization problem is based
on (10.6.4). In fact, if the inequality (10.6.4) is not satisfied, then the local
minimizer of (10.1.1)–(10.1.3) is not necessarily a stationary point of the
penalty function (10.6.2).

Download more at Learnclax.com

490 CHAPTER 10. PENALTY FUNCTION METHODS

Theorem 10.6.8 Let x∗ be a local minimizer of constrained optimization
(10.1.1)–(10.1.3) and ∇f(x∗) = 0. Write

T = max
v∈∂h(0)

‖v‖. (10.6.55)

Then, when
σ‖∇c(−)(x∗)‖ < ‖∇f(x∗)‖/T, (10.6.56)

x∗ is not the stationary point of the penalty function (10.6.2).

Proof. Since the subgradient of the penalty function (10.6.2) at x∗ is

∂Pσ,h(x∗) = ∇f(x∗) + σ∇c(−)(x∗)T ∂h(0), (10.6.57)

then, by (10.6.56), we have

0 /∈ ∂Pσ,h(x∗). (10.6.58)

Therefore, x∗ is not a stationary point of Pσ,h(x). �

Exercises

1. Use the Courant penalty function method to solve the problem

min −2x1 + x2

s.t. x2 − x2
1 = 0.

2. Apply the inverse penalty function method to solve the problem

min −x2
1 − x2

2

s.t. x1 ≤ 8,

x2 ≤ 8,

x1 + x2 ≥ 1

with the initial point (2 2)T .

3. Apply the logarithmic barrier function method to solve the problem

min x1 − x2 + x2
2

s.t. x1 ≥ 0,

x2 ≥ 0

Download more at Learnclax.com

10.6. NONSMOOTH EXACT PENALTY FUNCTIONS 491

with the initial point (1, 1)T .

4. Apply the Augmented Lagrangian function method to solve the prob-
lem in the previous exercise, using initial multipliers λ1 = 1 and λ2 = 1.
Compare the performances of the two methods (Logarithmic barrier func-
tion method and the Augmented Lagrangian function method).

5. Let x(σ) be the solution of

min P (x, σ) = f(x) +
1
σ

m∑
i=1

1
ci(x)

(10.6.59)

in the interior region {x|ci(x) > 0, i = 1, ..., m}, where σ > 0 is a parameter.
Prove that, as σ increases,

(1) P (x(σ), σ) is non-increasing;

(2)
∑m

i=1
1

ci(x(σ)) is non-decreasing;

(3) f(x(σ) is non-increasing.

6. Discuss the penalty function (10.1.10) when h(c) = ec.

7. Using the approximation

max{c1, ..., cm} ≈ log

(
m∑

i=1

eci

)
,

we can replace the L∞ penalty function by

Pe(x) = f(x) + σ log

(
m∑

i=1

e|c
−
i (x)|

)
.

Study the properties of the above penalty function Pe(x).

8. Introducing the slack variables for the inequality constraints, we can
reformulate (8.1.1)–(8.1.3) as

min f(x)
s.t. ci(x) = 0, i = 1, · · · , me,

ci(x)− yi = 0, i = me + 1, ..., m,

yi ≥ 0, i = me + 1, ..., m.

Download more at Learnclax.com

492 CHAPTER 10. PENALTY FUNCTION METHODS

Compare the augmented Lagrange function for the reformulated problem and
(10.4.4).

9. Prove (10.5.6).

10. Prove Lemma 10.6.2.

Download more at Learnclax.com

Chapter 11

Feasible Direction Methods

11.1 Feasible Point Methods

A feasible point method requires that all iterate points xk generated are
feasible points of the constraints. For general constrained optimization prob-
lems (8.1.1)-(8.1.3), given a current iterate xk ∈ X, if we can find a descent
direction d which is also a feasible direction at xk, namely

dT∇f(xk) < 0, (11.1.1)
d ∈ FD (xk, X), (11.1.2)

there must exist new feasible points in the form of xk +αd with the property
that f(xk + αd) < f(xk). Here FD (xk, X) is defined by Definition 8.2.1. A
direction d satisfying (11.1.1)-(11.1.2) is called a feasible descent direction at
xk.

Let c1 ∈ (0, 1) be a given positive constant, xk be any point in the feasible
set X, and d be a vector that satisfies (11.1.1)-(11.1.2). We call α a feasible
point Armijo step along direction d at point xk if α > 0 satisfies

f(xk + αd) ≤ f(xk) + αc1d
T∇f(xk), (11.1.3)

and
f(xk + 2αd) > f(xk) + 2αc1d

T∇f(xk) (11.1.4)

holds when xk + 2αd ∈ X.

Download more at Learnclax.com

494 CHAPTER 11. FEASIBLE DIRECTION METHODS

Lemma 11.1.1 Assume that xk ∈ X and d satisfies (11.1.1)-(11.1.2). Let
α be a feasible point Armijo step along direction d at point xk, then

f(xk + αd) ≤ f(xk)−
c1(1− c1)

M

[
dT∇f(xk)
‖d‖2

]2

(11.1.5)

if xk + 2αd ∈ X, and

f(xk + αd) ≤ f(xk) + c1
Γ(xk)
2‖d‖2

dT∇f(xk), (11.1.6)

if xk + 2αd ∈ X, where M = max0≤t≤2 ‖∇2f(xk + td)‖2 and Γ(x̄) is the
distance from x̄ to the set of all infeasible points, namely

Γ(x̄) = inf
y �∈X

‖x̄− y‖. (11.1.7)

Proof. First assume that xk + 2αd ∈ X. It follows from (11.1.4) and
Taylor expansion that

2αc1d
T∇f(xk) < 2αdT∇f(xk) +

1
2
(2αd)T∇2f(xk + ηk2αd)(2αd)

≤ 2αdT∇f(xk) + 2α2M‖d‖22, (11.1.8)

where ηk ∈ (0, 1). From the above inequality we can obtain that

α > −(1− c1)
M‖d‖22

dT∇f(xk). (11.1.9)

Inequality (11.1.15) follows from the above relation and (11.1.3).
Now we consider the case when xk + 2αd ∈ X. It follows from the

definition of Γ(x) that
2α‖d‖2 > Γ(xk). (11.1.10)

Thus, α > Γ(xk)
2‖d‖2

. This inequality and condition (11.1.3) imply (11.1.6). �

The algorithm given below is a simple algorithm for calculating a feasible
point Armijo step. It tries to find an acceptable step by repeatedly doubling
or halving the step.

Algorithm 11.1.2

Download more at Learnclax.com

11.1. FEASIBLE POINT METHODS 495

Step 1. Given x ∈ X, d ∈ DF (x, X) and dT∇f(x) < 0;
given c1 ∈ (0, 1);
let αmax = +∞, α = 1.

Step 2. if
f(x + αd) > f(x) + c1αdT∇f(x),

or x + αd ∈ X go to Step 3;
if αmax < +∞ then stop;
α := 2α; Go to Step 2.

Step 3. αmax := α; α := α/2; Go to Step 2. �

It is easy to see that Algorithm 11.1.2 terminates after finitely many
iterations with a feasible point Armijo step unless x + 2kd ∈ X for all k
and f(x + 2kd) → −∞. Instead of simply doubling or halving the trial step,
we can also use quadratic or cubic interpolations in the above algorithm to
accelerate the convergence speed.

For any x ∈ X and d ∈ FD (x, X), we call the step α∗ > 0 that satisfies

α∗ : min
α>0

x+αd∈X

f(x + αd) (11.1.11)

a feasible point exact line search step.

Lemma 11.1.3 Assume that x ∈ X, d ∈ FD (x, X), and α∗ satisfies (11.1.11).
It follows that

f(x)− f(x + α∗d) ≥ 1
2M

[
dT∇f(x)
‖d‖2

]2

, (11.1.12)

or
f(x)− f(x + α∗d) ≥ − Γ(x)

2‖d‖2
dT∇f(x), (11.1.13)

where M = maxt≥0 ‖∇2f(x + td)‖2 and where Γ(x) is defined by (11.1.7).

Proof. From Taylor expansion, it follows that

f(x + αd) ≤ f(x) + αdT∇f(x) +
M

2
‖d‖22α2 ∆= φ(α). (11.1.14)

Let α0 = −dT∇f(x)/(M‖d‖22). If x + α0d ∈ X, we have that

Download more at Learnclax.com

496 CHAPTER 11. FEASIBLE DIRECTION METHODS

f(x + α∗d) ≤ f(x + α0d) ≤ φ(α0)

= f(x)− 1
2M

[
dT∇f(x)
‖d‖2

]2

. (11.1.15)

If x + α0d /∈ X, it follows that α0 ≥ Γ(x)/‖d‖. From the convexity of φ(α),
we can show that

f(x)− f(x + α∗d) ≥ sup
0<α<Γ(x)/‖d‖2

[f(x)− f(x + αd)]

≥ sup
0<α<Γ(x)/‖d‖2

[f(x)− φ(α)]

= f(x)− φ[Γ(x)/‖d‖2]

≥ Γ(x)
‖d‖2α0

[f(x)− φ(α0)]

=
−Γ(x)
2‖d‖2

dT∇f(x). (11.1.16)

The above two inequalities indicate that the lemma is true. �

Having the technique of searching along a feasible direction in the feasible
region, we can solve a constrained optimization problem iteratively as long
as we can find a feasible descent direction in every iteration. However, it is
not always possible to find a feasible descent direction. For example, for the
constraint

c(x, y) = y − x2 = 0,

(
x
y

)
∈ "2, (11.1.17)

FD((x, y), X) = Φ at every feasible point. Therefore no feasible descent
direction exists at any feasible point. Fortunately, when the feasible set X is
convex, at any point x ∈ X there exists a feasible descent direction provided
that x is not a KKT point. We write this result in the form of a lemma as
follows.

Lemma 11.1.4 Assume that x ∈ X, X is a convex set and f(x) is a convex
function. Then there exists a feasible descent direction at x if and only if x
is not a minimizer of problem (8.1.1)-(8.1.3).

Proof. It is obvious that there exists no feasible descent direction at x if
x is a minimizer.

Download more at Learnclax.com

11.1. FEASIBLE POINT METHODS 497

Now assume that x is not a minimizer, then there exists an x̂ ∈ X such
that

f(x̂) < f(x). (11.1.18)

Because f(x) is a convex function, it follows from (11.1.18) that

dT∇f(x) < 0,

where d = x̂ − x. Because of the convexity of X, d ∈ FD (x, X). Therefore
d is a feasible descent direction. �

A general algorithm that uses feasible descent directions is given as fol-
lows.

Algorithm 11.1.5

Step 1. Given initial point x1 ∈ X, k := 1;

Step 2. If no vector d satisfies (11.1.1)-(11.1.2) then stop;
find dk that satisfies (11.1.1)-(11.1.2);

Step 3. Carry out a certain feasible point search, obtaining αk > 0.

Step 4. xk+1 = xk + αkdk; k := k + 1; Go to Step 2.

We can use a feasible point exact line search or a feasible point Armijo
search to obtain αk in Step 3 of the above algorithm.

From example (11.1.17), even if Algorithm 11.1.5 terminates, it may not
stop at a stationary point. However, when the objective function f(x) is
convex and when the feasible set is convex, xk must be the optimal solution
if Algorithm 11.1.5 terminates at iteration k.

An important issue is the choice of dk that satisfies (11.1.1)-(11.1.2).
Consider the very special case when X = "n. Let f(x) be a uniformly
convex function defined on "n. Assume that dk is the search direction at the
k-th iteration satisfying

dT
k∇f(xk) < 0. (11.1.19)

Let θk be the angle between dk and the steepest descent direction −∇f(xk),
namely

cos θk = − dT
k∇f(xk)

‖dk‖2‖∇f(xk)‖
. (11.1.20)

Download more at Learnclax.com

498 CHAPTER 11. FEASIBLE DIRECTION METHODS

Lemma 11.1.6 For an unconstrained optimization problem, assume that the
objective function is twice continuously differentiable and uniformly convex
and that a line search algorithm with xk+1 = xk + αkdk and ‖∇f(xk)‖ = 0
for all k, satisfies

∞∑
k=1

cos2 θk < +∞, (11.1.21)

where cos θk is defined by (11.1.20). Then

lim
k→∞

inf ‖∇f(xk)‖ > 0. (11.1.22)

Proof. Because f(x) is uniformly convex, there exists x∗ such that

f(x∗) = min
x∈"n

f(x). (11.1.23)

It is obvious that (11.1.22) is equivalent to

lim
k→∞

f(xk) > f(x∗). (11.1.24)

Define X1 = {x|f(x) ≤ f(x1)} and

m1 = min
x∈X1

min
‖d‖2=1

dT∇2f(x)d, (11.1.25)

M1 = max
x∈X1

max
‖d‖2=1

dT∇2f(x)d. (11.1.26)

It can be shown that 0 < m1 ≤ M1 < +∞ because f(x) is uniformly convex.
Therefore,

f(xk)− f(xk+1) ≤ f(xk)−min
t>0

f(xk + tdk)

≤ 1
2m1

‖∇f(xk)‖22 cos2 θk

≤ cos2 θk

2m1
(M1‖xk − x∗‖2)2

≤ cos2 θk

2

(
M1

m1

)2

[f(xk)− f(x∗)]. (11.1.27)

Consequently, it follows that

f(xk+1)− f(x∗) ≥
(

1− M2
1

2m2
1

cos2 θk

)
[f(xk)− f(x∗)], (11.1.28)

Download more at Learnclax.com

11.1. FEASIBLE POINT METHODS 499

for all k. Assumption (11.1.21) implies the existence of k0 such that

M2
1

2m2
1

cos2 θk < 1, ∀k ≥ k0. (11.1.29)

Because ‖∇f(xk0)‖ = 0, we have that f(xk0)−f(x∗) = δ > 0. From (11.1.21)
there exists η > 0 such that

∏∞
j=k0

(
1− M2

1

2m2
1

cos2 θk

)
≥ η > 0. (11.1.30)

Thus, it follows from (11.1.28) and (11.1.30) that

f(xk)− f(x∗) ≥ ηδ > 0

for all k ≥ k0. This implies that (11.1.24). �

The above lemma tells us that we require

∞∑
k=1

cos2 θk = +∞, (11.1.31)

to ensure the algorithm converging to a stationary point.
Similar to the steepest descent direction, we can define the feasible steep-

est descent direction as follows.

Definition 11.1.7 Let x ∈ X; if a vector d in the closure of FD(x, X) solves

min
d∈FD (x,X)

d�=0

dT∇f(x)
‖d‖2

, (11.1.32)

it is called a feasible steepest descent direction.

Because FD(x, X) may not be a closed set, the minimum of (11.1.32)
can not be reached by any d ∈ FD (x, X). Thus, a feasible steepest descent
direction may not belong to FD(x, X). Therefore, it is not easy to generate
the steepest direction directly to constrained optimization by simply making
the steepest descent direction “feasible”.

Consider the inequality constrained optimization problem

min f(x), (11.1.33)

Download more at Learnclax.com

500 CHAPTER 11. FEASIBLE DIRECTION METHODS

s.t. ci(x) ≥ 0 i = 1, · · ·, m. (11.1.34)

Let xk ∈ X. It is obvious that I(xk) = {i|ci(xk) = 0}. In order to find a
feasible descent direction at the k-th iteration, we consider the approximate
subproblem

min αdT∇f(xk), (11.1.35)

s.t. xk + αd ∈ X. (11.1.36)

As the aim for constructing this subproblem is to find a search direction,
we can assume that ‖αd‖ is very small. When ‖αd‖ is sufficiently small,
(11.1.36) is equivalent to

cj(xk + αd) ≥ 0, j ∈ I(xk). (11.1.37)

The above inequalities hold if we require that

αdT∇cj(xk)−
1
2
Mα2‖d‖22 ≥ 0, j ∈ I(xk), (11.1.38)

where M > 0 is an upper bound for

max
x∈X

max
j∈I(xk)

‖∇2cj(x)‖2. (11.1.39)

Replacing αd by d, we can obtain the following subproblem

min dT∇f(xk), (11.1.40)

s.t. dT∇ci(xk)−
M

2
‖d‖22 ≥ 0, i ∈ I(xk). (11.1.41)

By further replacing d by Md, the above problem can be rewritten as

min dT∇f(xk), (11.1.42)

s.t. dT∇ci(xk)−
1
2
‖d‖22 ≥ 0, i ∈ I(xk). (11.1.43)

The dual problem for the above problem is

max
λ

min
d∈"n

⎡
⎣dT∇f(xk)−

∑
i∈I(xk)

λi

(
dT∇ci(xk)−

1
2
‖d‖22

)⎤⎦ (11.1.44)

s.t. λi ≥ 0, i ∈ I(xk). (11.1.45)

Download more at Learnclax.com

11.1. FEASIBLE POINT METHODS 501

The above problem can be written in the equivalent form

minλ

∥∥∥∇f(xk)−
∑

i∈I(xk) λi∇ci(x)
∥∥∥2

2∑
i∈I(xk) λi

, (11.1.46)

s.t. λi ≥ 0, i ∈ I(xk),
∑

i∈I(xk)

λi > 0. (11.1.47)

Define

d(λ) = − 1∑
i∈I(xk) λi

⎛
⎝∇f(xk)−

∑
i∈I(xk)

λi∇ci(xk)

⎞
⎠ . (11.1.48)

The objective function in (11.1.46) can be written as

φ(λ) =
∑

i∈I(xk)

λi‖d(λ)‖22. (11.1.49)

Direct calculations show that

∇φ(λ) =

⎡
⎢⎣

2d(λ)T∇ck1(xk)− ‖d(λ)‖22
...

2d(λ)T∇ckI
(xk)− ‖d(λ)‖22

⎤
⎥⎦ , (11.1.50)

where {k1, k2, · · ·, kI} are the elements of I(xk). Furthermore, we have that

∇2φ(λ) =
2∑

i∈I(xk) λi
T (λ)T T (λ), (11.1.51)

where

T (λ) = (d(λ)−∇ck1(xk), d(λ)−∇ck2(xk), · · ·, d(λ)−∇ckI
(xk)). (11.1.52)

Thus, φ(λ) is a convex function. Let λ(k) be a solution of (11.1.46)-(11.1.47),
then d(λ(k)) is a solution of problem (11.1.40)-(11.1.41). In that case, xk is
a KKT point of (11.1.33)-(11.1.34) if d(λ(k)) = 0, and d(λ(k)) is a feasible
descent direction at xk satisfying

d(λ(k))T∇f(xk) =
‖d(λ(k))‖22∑
i∈I(xk) λ

(k)
i

< 0, (11.1.53)

Download more at Learnclax.com

502 CHAPTER 11. FEASIBLE DIRECTION METHODS

if d(λ(k)) = 0.
It is not difficult to show that subproblem (11.1.40)-(11.1.41) has nonzero

minimum if and only if

dT∇f(xk) < 0, (11.1.54)
dT∇ci(xk) > 0, i ∈ I(xk) (11.1.55)

has a solution. That is to say, when (11.1.54)-(11.1.55) has a solution we
can obtain a feasible descent direction by solving (11.1.40)-(11.1.41). On the
other hand, if (11.1.54)-(11.1.55) has no solution, similar to Lemma 8.2.5 it
can be shown that there exist λ∗

i (i ∈ I(xk)) ≥ 0 and λ∗
0 ≥ 0 such that

λ∗
0∇f(xk)−

∑
i∈I(xk)

λ∗
i∇ci(x∗) = 0, (11.1.56)

and that
∑

i∈I(xk) λ∗2
i + λ∗

0 = 0. Therefore we know that xk is a Fritz John
point of the original optimization problem (11.1.33)-(11.1.34).

Another subproblem for finding a feasible descent direction is directly
based on (11.1.54)-(11.1.55), having the form:

min σ (11.1.57)
s.t. dT∇f(xk) ≤ +σ, (11.1.58)

dT∇ci(xk) ≥ −σ, i ∈ I(xk), (11.1.59)
‖d‖ ≤ 1. (11.1.60)

It is easy to see that the minimum of the above subproblem σ∗ = 0 if and
only if (11.1.54)-(11.1.55) has no solutions.

11.2 Generalized Elimination

Consider the equality constrained problem

min f(x) (11.2.1)
s.t. c(x) = 0, (11.2.2)

where c(x) = (c1(x), · · ·, cm(x))T . Assume that we have a certain partition
on the variable x:

x =

[
xB

xN

]
, (11.2.3)

Download more at Learnclax.com

11.2. GENERALIZED ELIMINATION 503

where xB ∈ "m, xN ∈ "n−m. Therefore (11.2.2) can be written as

c(xB, xN) = 0. (11.2.4)

Suppose that we can solve xB from (11.2.4), namely

xB = φ(xN), (11.2.5)

then (11.2.1)-(11.2.2) is equivalent to

min
xN∈"n−m

f(xB, xN) = f(φ(xN), xN) = f̃(xN). (11.2.6)

The vector
g̃(xN) = ∇xN f̃(xN) (11.2.7)

is called the reduced gradient. It is easy to verify that

g̃(xN) =
∂

∂xN
f(xB, xN) +

∂xT
B

∂xN

∂

∂xB
f(xB, xN). (11.2.8)

From (11.2.4) we can see that ∂xT
B

∂xN
satisfies that

∂xT
B

∂xN

∂

∂xB
c(xB, xN)T +

∂

∂xN
c(xB, xN)T = 0. (11.2.9)

If ∂cT

∂xB
is nonsingular, the above two equations imply that

g̃(xN) =
∂f(xB, xN)

∂xN

−∂c(xB, xN)T

∂xN

[
∂c(xB, xN)T

∂xB

]−1
∂f(xB, xN)

∂xB
. (11.2.10)

Therefore, the reduced gradient can be expressed as the gradient of the La-
grangian function at the reduced space:

g̃(xN) =
∂

∂xN
[f(x)− λT c(x)], (11.2.11)

where λ is a multiplier satisfying

∂f(x)
∂xB

=
∂cT (x)
∂xB

λ. (11.2.12)

Download more at Learnclax.com

504 CHAPTER 11. FEASIBLE DIRECTION METHODS

In other words, when the Lagrange multiplier λ is chosen as[
∂cT (xB)

∂xB

]−1
∂f(x)
∂xB

, (11.2.13)

we have that

∇xL(x, λ) =

[
0

g̃(xN)

]
. (11.2.14)

Therefore, the reduced gradient can be viewed as the nonzero part of the
gradient of the Lagrangian function.

Using the reduced gradients, we can construct line search directions for
the unconstrained problem (11.2.6). For example, we can use the steepest
descent direction

d̄k = −g̃((xN)k) (11.2.15)

or the quasi-Newton direction

d̄k = −B−1
k g̃((xN)k). (11.2.16)

Here the subscript k indicates the iterate number, Bk is an approximate
Hessian matrix which can be updated from iteration to iteration(for example,
by BFGS formula). It is worth pointing out that carrying out a line search

min
α≥0

f(φ((xN)k + αd̄k), (xN)k + αd̄k) (11.2.17)

on the unconstrained problem (11.2.6) is equivalent to carrying out a curve
search on the original objective function f(x) along the following curve:

c(xB, (xN)k + αd̄k) = 0. (11.2.18)

Because the function φ(x) is not known explicitly, for every trial α we need
to solve (11.2.18) to obtain

xB = φ((xN)k + αd̄k) (11.2.19)

when carrying out line searches (11.2.17). This can be done by an approxi-
mate Newton’s method, namely

x
(0)
B = (xB)k, (11.2.20)

x
(i+1)
B = x

(i)
B −

[
∂c(xk)T

∂xB

]−1

c(x(i)
B , (xN)k + αd̄k). (11.2.21)

Download more at Learnclax.com

11.2. GENERALIZED ELIMINATION 505

Because Newton’s method converges quadratically, usually an acceptable xB

will be obtained after applying (11.2.21) for a few iterations. If x
(i)
B does

not converge after some iterations, α should be reduced to continue the line
search procedure.

The following is a general framework of the variable elimination method.

Algorithm 11.2.1 (Variable Elimination Method)

Step 1. Given a feasible point x1 ∈ X, ε ≥ 0, k = 1;

Step 2. Compute
∂c(xk)T

∂x
=

[
AB

AN

]
, (11.2.22)

where the partition satisfies that AB is nonsingular.
Compute λ by (11.2.12), and g̃k by (11.2.11).

Step 3. If ‖g̃k‖ ≤ ε then Stop;
Generate a feasible descent direction d̄k satisfying

d̄T
k g̃k < 0. (11.2.23)

Step 4. Carry out line search (11.2.17) obtaining αk > 0,
Let xk+1 = (φ((xN)k + αkd̄k), (xN)k+ αkd̄k),
k := k + 1; go to Step 2.

It is very easy to see that the above algorithm is in fact a descent method
for the unconstrained optimization problem (11.2.6). The only thing that we
should keep in mind is that the partition (xB, xN) may differ from iteration to
iteration. Using the convergence results of descent methods for unconstrained
optimization, we can easily establish the following result.

Theorem 11.2.2 Assume that f(x) and c(x) are twice continuously differ-
entiable. If [(∇c(x)T)T ∇c(x)T]−1 is bounded above uniformly on the feasible
set X, Algorithm 11.2.1 with exact line searches and the assumption∑

cos2〈d̄k, g̃k〉 = ∞ (11.2.24)

ensures that
lim inf
k→∞

‖(∇f(xk)−∇c(xk)T λk)‖ = 0, (11.2.25)

Download more at Learnclax.com

506 CHAPTER 11. FEASIBLE DIRECTION METHODS

or
lim

k→∞
f(xk) = −∞, (11.2.26)

where λk = [∇c(xk)T]+∇f(xk).

Let d̄k = −g̃k, then (11.2.23) and (11.2.24) hold. In that case, Algo-
rithm 11.2.1 is exactly the steepest descent method in the lower dimensional
space using the variable partition.

Consider any nonsingular matrix S ∈ "n×n and variable transformation:

x = Sw. (11.2.27)

We partition the variable w:

w =

[
wB

wN

]
, (11.2.28)

where wB ∈ "m, wN ∈ "n−m. Using the constrained condition

c((S)BwB + (S)NwN) = 0 (11.2.29)

to eliminate variable wB, namely

wB = φ̄(wN). (11.2.30)

In this way, the optimization problem (11.2.1)-(11.2.2) is equivalent to

min
wN∈"n−m

f(SBwB + SNwN) = f̄(wN). (11.2.31)

Provided that ST
B∇C(x)T is nonsingular, direct calculations give that

∇wN f̄(wN) = ḡ(wN) = ST
N [∇f(x)−∇c(x)T λ], (11.2.32)

where λ satisfies
ST

B[∇f(x)−∇c(x)T λ] = 0. (11.2.33)

Thus, we have obtained an elimination method based on the variable
transformations at every iterations. This method is called the generalized
elimination method.

Algorithm 11.2.3 (General Elimination Method)

Download more at Learnclax.com

11.2. GENERALIZED ELIMINATION 507

Step 1. Given a feasible point x1 ∈ X, ε ≥ 0, k = 1;

Step 2. Construct a nonsingular matrix Sk, and a partition Sk =
[(Sk)B , (Sk)N] such that (Sk)T

B∇c(xk)T nonsingular;
Compute λ by (11.2.33) and ḡk by (11.2.32).

Step 3. If ‖ḡk‖ ≤ ε then stop;
Generate a descent direction d̄k satisfying

d̄T
k ḡk < 0; (11.2.34)

Step 4. Carry out line search:

min
α>0

f((Sk)Bφ̄((wk)N + αd̄k) + (Sk)N [(wk)N + αd̄k])

(11.2.35)
obtaining αk > 0; let

xk+1 = (Sk)Bφ̄((wk)N + αkd̄k) + (Sk)N [(wk)N + αkd̄k];
(11.2.36)

k := k + 1; go to Step 2. �

In the algorithm, wk is a vector satisfying xk = Skwk. Similar to the
elimination method, for each trial step α > 0, we need to compute

wB = φ̄((wk)N + αd̄k), (11.2.37)

which can be done by applying the approximate Newton’s method to the
nonlinear system

c((Sk)BwB + (Sk)N [(wk)N + αd̄k]) = 0. (11.2.38)

That is,

w
(i+1)
B = w

(i)
B − [(∇c(xk)T)T (Sk)B]−1c((Sk)Bw

(i)
B

+ (Sk)N [(wk)N + αd̄k]), i = 1, 2, · · ·. (11.2.39)

It is not difficult to see that if Sk is the unit matrix in every iteration, the
generalized elimination method is exactly the original elimination method.

The variable increment xk+1 − xk of the generalized elimination method
in every iteration is actually the sum of two parts:

xk+1 = xk + d
(1)
k + d

(2)
k , (11.2.40)

Download more at Learnclax.com

508 CHAPTER 11. FEASIBLE DIRECTION METHODS

where

d
(1)
k = αk(Sk)N d̄k, (11.2.41)

d
(2)
k = (Sk)B[φ̄((wk)N + αkd̄k)− (wk)B]. (11.2.42)

The iteration process first obtains the step d
(1)
k , then uses the approximate

Newton method along the direction d
(2)
k to find a point in the feasible set, as

shown in Figure 11.2.1.

Figure 11.2.1 Iterative procedure of generalized elimination method

Looking at Figure 11.2.1, we see an undesirable property of such a process.
The iteration first moves away from the feasible set, and then it comes back,
though the essential idea for feasible point methods is to force all iterate
points inside the feasible region. Except for very special constraints, it is
unavoidable to use the technique of moving away and coming back if we
require that all iterate points are feasible. But, how to make the “moving
away” as small as possible? An intuitive answer is to choose d

(1)
k to be

a linearized feasible direction at xk. It is reasonable to believe that such
a d

(1)
k would make xk + d

(1)
k closer to the feasible region, consequently the

approximate Newton’s method will bring xk +d
(1)
k back to the feasible region

more quickly. Figure 11.2.2 illustrates the above discussions.

Download more at Learnclax.com

11.3. GENERALIZED REDUCED GRADIENT METHOD 509

Figure 11.2.2

When d
(1)
k is a linearized feasible direction, the method is called a feasible

direction method. It is obvious that if

(Sk)T
N∇c(xk)T = 0 (11.2.43)

holds, d
(1)
k is a linearized feasible direction. Because of this, feasible direction

methods can also be viewed as special generalized elimination methods.

11.3 Generalized Reduced Gradient Method

The generalized reduced gradient method (GRG method) is in fact Algo-
rithm 11.2.1 with d̄k = −g̃k. It is the steepest descent method in the reduced
space.

In each iteration, the line search can be the Armijo rule, namely reducing
the trial step repeatedly until an acceptable one is obtained. The condition
for accepting the new point can be the simple reduction

f(xk+1) < f(xk). (11.3.1)

In each iteration, we apply (11.2.21) for at most N times to compute xB,
where N is a given positive number. If the approximate Newton’s method has
not converged after N iterations, we reduce the trial step α and repeat the
iteration. Because the quadratic convergence of Newton’s method, normally
one or two iterations of (11.2.21) will return a sufficiently accurate feasible
point xk+1. Therefore in practice we can choose N between 3 to 6.

The algorithm is the generalized reduced gradient method with Armijo
line searches requiring simple reductions.

Algorithm 11.3.1 (Generalized Reduced Gradient Method)

Download more at Learnclax.com

510 CHAPTER 11. FEASIBLE DIRECTION METHODS

Step 1. Given a feasible point x1 ∈ X, ε ≥ 0, ε̄ > 0; positive integer
M ; k := 1.

Step 2. Compute

∇c(xk)T =

[
AB

AN

]
, (11.3.2)

where the partition satisfies that AB ∈ "m×m is nonsingular;
Compute λ from (11.2.12) and g̃k from (11.2.11).

Step 3. If ‖g̃k‖ ≤ ε then stop;
let d̄k = −g̃k; and α = α

(0)
k > 0.

Step 4. xN = (xk)N + αd̄k;
xB = (xk)B; j := 0.

Step 5. xB = xB −A−T
B c(xB, xN);

compute c(xB, xN);
if ‖c(xB, xN)‖ ≤ ε̄ then go to Step 7;
j := j + 1; if j < M go to Step 5.

Step 6. α := α/2, go to Step 4.

Step 7. If f(xB, xN) ≥ f(xk) then go to Step 6.
xk+1 = (xB, xN), k := k + 1; go to Step 2.

This algorithm is in fact a gradient method. Thus the simple reduction
(11.3.1) on the objective function can not guarantee convergence. In other
words, we can not show that the iterates generated by Algorithm 11.3.1
converges to a KKT point of the original optimization problem (11.2.1)-
(11.2.2). There are two ways to overcome this. The first one is to use a
better line search condition. For example, we can replace the simple reduction
condition (11.3.1) by the Wolfe line search condition

f̃((xk)N + αkd̄k) ≤ f̃((xk)N) + βαkd̄
T
k g̃k, (11.3.3)

where α is the step length, β ∈ (0, 1) is a positive constant, and f̃(xN) is
defined by (11.2.6). Condition (11.3.3) can be written as

f(xk+1) ≤ f(xk)− αkβ‖g̃k‖22. (11.3.4)

Download more at Learnclax.com

11.3. GENERALIZED REDUCED GRADIENT METHOD 511

Thus if we replace the condition f(xB, xN) ≥ f(xk) for rejecting a new point
in Step 7 of Algorithm 11.3.1 by

f(xB, xN) > f(xk)− αβ‖g̃k‖22, (11.3.5)

the Wolfe line search condition (11.3.3) is satisfied. Another way is to require
that the initial trial step length α

(0)
k in Step 3 of the algorithm satisfies that

α
(0)
k

‖g̃k‖
→ 0, (11.3.6)

∞∑
k=1

α
(0)
k

‖g̃k‖
= +∞. (11.3.7)

Similar to convergence analyses for unconstrained optimization methods,
we can prove the following convergence results.

Theorem 11.3.2 Assume that f(x), c(x) are twice continuously differen-
tiable, that the matrices A−1

B in Step 2 of Algorithm 11.3.1 are bounded above
uniformly, and that α

(0)
k in Step 3 satisfies that (α(0)

k)−1 is uniformly bounded.
If the condition f(xB, xN) ≥ f(xk) in Step 7 is replaced by (11.3.5), if ε = 0
and if Algorithm 11.3.1 does not terminate, it follows that either

lim
k→∞

‖g̃k‖ = 0 (11.3.8)

or
lim

k→∞
f(xk) = −∞. (11.3.9)

Theorem 11.3.3 Assume that f(x), c(x) are twice continuously differen-
tiable, that the matrices A−1

B in Step 2 of Algorithm 11.3.1 are bounded above
uniformly, and that α

(0)
k in Step 3 satisfies (11.3.6) and (11.3.7). Then if

ε = 0 and if Algorithm 11.3.1 does not terminate, either (11.3.8) or (11.3.9)
holds.

One advantage of the generalized reduced gradient method is the dimen-
sion of the problem is reduced due to variable elimination. The method can
also make good use of the special structure of the problem such as sparsity
and constant coefficients so that λ and g̃ can be computed quickly. Simi-
larly, if AB is sparse, sparse linear system solvers can be used when using

Download more at Learnclax.com

512 CHAPTER 11. FEASIBLE DIRECTION METHODS

the approximate Newton’s method to obtain xB. Therefore, for large-scale
nonlinear programming problems there are many linear constraints or with
sparse structures, the generalized reduced gradient method is one of the most
efficient methods.

Because one or more systems of nonlinear equations have to be solved in
the generalized reduced gradient method, its computation cost is very high
if the matrix AB is not sparse and without special structures.

11.4 Projected Gradient Method

From the discussions at the end of Section 11.2, in order to choose d
(1)
k as a

linearized feasible direction in the generalized elimination method, Sk should
satisfy

(Sk)T
N∇c(xk)T = 0. (11.4.1)

Consider the case that the steepest descent direction is used in the generalized
elimination method, namely

d̄k = −ḡk. (11.4.2)

From (11.2.41) it follows that

d
(1)
k = −αk(Sk)N (Sk)T

N∇f(xk). (11.4.3)

Obviously, (Sk)N (Sk)T
N is a linear projection from "n to the subspace spanned

by the columns of (Sk)N . Suppose Ak = ∇c(xk)T is full column rank, the
subspace spanned by the columns of (Sk)N is the null space of AT

k . Therefore
the direction defined by (11.4.3) is actually the projection of the negative
gradient of the objective function to the null space of the Jacobi matrix. If
Sk satisfies

(Sk)T
N (Sk)N = I, (11.4.4)

(Sk)N (Sk)T
N is an orthogonal projector, and

Pk = (Sk)N (Sk)T
N

= I −Ak(AT
k Ak)−1AT

k , (11.4.5)

when Ak has full column rank. In this case, Pk∇f(xk) is an orthogonal pro-
jection of ∇f(xk) to the null space of AT

k . Therefore, the generalized elimina-
tion method is a projected gradient method. In a practical implementation

Download more at Learnclax.com

11.4. PROJECTED GRADIENT METHOD 513

of the projected gradient method, we can use the QR factorization of Ak:

Ak = [Yk Zk]

[
Rk

0

]
. (11.4.6)

It is easy to see that we can let (Sk)N = Zk. Hence,

ḡk = ZT
k gk (11.4.7)

is the reduced gradient and

dk = −Zkḡk = −ZkZ
T
k gk (11.4.8)

is a projection of the negative gradient to the null space of AT
k , which is a

descent direction of f(x). Thus, we can choose αk such that

f(xk + αkdk) < f(xk). (11.4.9)

The point xk + αkdk may be infeasible. A feasible point can be obtained by
the approximate Newton’s method

x
(1)
k = xk + αkdk, (11.4.10)

x
(i+1)
k = x

(i)
k − YkR

−1
k c(x(i)

k), i = 1, 2, (11.4.11)

When c(xi+1
k) is sufficiently small, we terminate (11.4.11) and set xk+1 =

x
(i+1)
k . The above iteration process is essentially (11.2.39) with (Sk)B = Yk.

If αk is sufficiently small, we have that

‖xk+1 − (xk + αkdk)‖ = O(α2
k), (11.4.12)

therefore there exists αk > 0 such that

f(xk+1) < f(xk). (11.4.13)

The algorithm given below is the projected gradient method with Armijo line
searches requiring simple reductions.

Algorithm 11.4.1 (Projected Gradient Method)

Step 1. Given a feasible point x1 ∈ X, ε ≥ 0, ε̄ > 0, a positive
integer N , k := 1.

Download more at Learnclax.com

514 CHAPTER 11. FEASIBLE DIRECTION METHODS

Step 2. Compute the QR Factorization

∇C(xk)T = [Yk Zk]

[
Rk

0

]
;

ḡk = ZT
k ∇f(xk);

if ‖ḡk‖ ≤ ε then stop;
dk = −Zkḡk; set α = α

(0)
k > 0.

Step 3. y := xk + αdk; i := 0.

Step 4. y := y − YkR
−1
k c(y);

if ‖C(y)‖ ≤ ε̄ and f(y) < f(xk) then go to Step 5;
i := i + 1; if i < N then go to Step 4;
α = α/2; go to Step 3.

Step 5. xk+1 := y, k := k + 1; go to Step 2.

Similar to the generalized reduced gradient method, Algorithm 11.4.1
needs to modify its line search conditions or to impose certain conditions on
the initial steplength in order to guarantee convergence.

For inequality constraints, active set technique can be used to obtain
feasible directions. However, one difficulty of the active set technique is the
zigzagging phenomenon, which was pointed out by Wolfe [350]. There are
many ways to overcome zigzagging in feasible direction methods. The main
idea for avoiding zigzagging is not to delete constraints from the active set
unless it is absolutely needed.

If the search direction dk = −Zkḡk in the last line of Step 2 in Algo-
rithm 11.4.1 is replaced by

dk = −Zkzk, (11.4.14)

where zk ∈ "n−m is any vector that satisfies

zT
k ḡk < 0, (11.4.15)

then the algorithm is a general form of the linearized feasible direction method,
often called feasible direction method.

Based on our definitions, the search directions in a feasible direction
method is only a linearized feasible direction instead of a feasible direction.
An exception is the case when all the constraints are linear functions. In this

Download more at Learnclax.com

11.5. LINEARLY CONSTRAINED PROBLEMS 515

case, the linearized feasible directions are also feasible directions. Because
feasible direction methods were first used for linearly constrained problems,
when they are generalized to nonlinear constraints they are still called feasible
direction methods. To be precise, this method, when applied to nonlinearly
constrained problems, should be called linearized feasible direction method
instead of feasible direction method.

For nonlinear constraints, normally linearized feasible directions are not
feasible directions. Therefore searching along a linearized feasible direction
may return an infeasible point. That is why Newton’s method or approximate
Newton’s method should be applied to bring the iterate back to the feasible
region before continuing the next search along a search direction and another
moving back to the feasible region. This procedure leads to the sawtooth
phenomenon, as indicated by Figure 11.4.1

Figure 11.4.1

11.5 Linearly Constrained Problems

Feasible direction methods are very efficient for linearly constrained problems,
for example, for equality constrained problem

minx∈"n f(x), (11.5.1)

s.t. AT x = b, (11.5.2)

where b ∈ "m, A ∈ "n×m, rank(A) = m, and f(x) is a nonlinear function.
The search direction of a feasible direction method can be expressed by

dk = Zd̄k, (11.5.3)

Download more at Learnclax.com

516 CHAPTER 11. FEASIBLE DIRECTION METHODS

where d̄k ∈ "n−m, and Z ∈ "n×(n−m) satisfying

AT Z = 0, (11.5.4)
d̄T

k ZT∇f(xk) < 0. (11.5.5)

Specifically, we can let d̄k = −ZT∇f(xk), which leads to the following feasible
direction method based on steepest descent direction.

Algorithm 11.5.1

Step 1. Given a feasible point x1;
Compute Z such that AT Z = 0 and Rank(Z) = n−m;
k = 1, ε ≥ 0.

Step 2. dk = −ZZT∇f(xk); if ‖dk‖ ≤ ε then stop;
Carry out line search along dk obtaining αk > 0;
xk+1 = xk + αkdk; k := k + 1; go to Step 2.

The algorithm is actually a steepest descent method in the feasible region.
Thus, its convergence can be established under certain line search conditions.
When Z satisfies ZT Z = I, Algorithm 11.5.1 is a projected gradient method.

Now we discuss a projected gradient method for general linearly con-
strained optimization problems, which was proposed by Calamai and Moré
[50].

For a general linearly constrained optimization problem

minx∈"n f(x), (11.5.6)

s.t. aT
i x = bi, i ∈ E, (11.5.7)

aT
i x ≥ bi, i ∈ I, (11.5.8)

the feasible set X is

X = {x|aT
i x = bi, i ∈ E; aT

i x ≥ bi, i ∈ I}. (11.5.9)

Define the mapping P ,

P (x) = arg min{‖z − x‖, z ∈ X}, (11.5.10)

where arg min indicates any z ∈ X that minimizes ‖z − x‖, ‖ · ‖ is a norm.
For simplicity, we assume that ‖ · ‖ is the Euclidean norm ‖ · ‖2.

Download more at Learnclax.com

11.5. LINEARLY CONSTRAINED PROBLEMS 517

Consider the steepest descent method. The iterate xk+1 should be a point
on the straight line

x̄k(α) = xk − α∇f(xk). (11.5.11)

But we need the iterate points on the feasible region, we use the projection
P to project the line (11.5.11) to X, obtaining the piecewise line

xk(α) = P [xk − α∇f(xk)]. (11.5.12)

We search along the piecewise line, namely find αk > 0 such that

f(xk(αk)) ≤ f(xk) + µ1(xk(αk)− xk)T∇f(xk), (11.5.13)

αk ≥ γ1 or αk ≥ γ2 ᾱk > 0, (11.5.14)

where ᾱk satisfies

f(xk(ᾱk)) > f(xk) + µ2(xk(ᾱk)− xk)T∇f(xk). (11.5.15)

Here, γ1, γ2, µ1, µ2 are positive constants and µ1, µ2 ∈ (0, 1).
The method of Calamai and Moré can be stated as follows.

Algorithm 11.5.2

Step 1. Given a feasible point x1, µ ∈ (0, 1), γ > 0, α0 = 1, k := 1;

Step 2. αk := max{2αk−1, γ}.

Step 3. if (11.5.13) holds go to Step 4;
αk = αk/4; go to Step 3;

Step 4. xk+1 := xk(αk); k := k + 1; go to Step 2.

It is easy to see that αk computed by Algorithm 11.5.2 satisfies (11.5.13)-
(11.5.15) for µ2 = µ1 = µ, γ1 = γ, γ2 = 1/4.

From the definition of P (x), for any x ∈ "n it follows that

(x− P (x))T (z − P (x)) ≤ 0, ∀z ∈ X. (11.5.16)

Let x = xk − αk∇f(xk) and z = xk in the above relation, then we obtain
that

(xk − αk∇f(xk)− xk+1)T (xk − xk+1) ≤ 0. (11.5.17)

Download more at Learnclax.com

518 CHAPTER 11. FEASIBLE DIRECTION METHODS

Thus, it follows from (11.5.13) and (11.5.17) that

f(xk)− f(xk+1) ≥ µ1
‖xk+1 − xk‖22

αk
. (11.5.18)

First we have the following lemmas.

Lemma 11.5.3 Assume that f(x) is continuously differentiable and bounded
below on the feasible set X. If ∇f(x) is uniformly continuous on X, the
iterates generated by Algorithm 11.5.2 satisfy

lim
k→∞

‖xk+1 − xk‖
αk

= 0. (11.5.19)

Proof. If the lemma is not true, there is an infinite subsequence K0 such
that

‖xk+1 − xk‖
αk

≥ δ, ∀k ∈ K0 (11.5.20)

where δ > 0 is a positive constant independent of k. It follows from the above
relation and (11.5.18) that for all k ∈ K0 we have that

f(xk)− f(xk+1) ≥ δµ1‖xk+1 − xk‖ ≥ δ2µ1αk. (11.5.21)

Because f(x) is bounded below on the feasible set and all xk are feasible, it
follows that ∞∑

k=1

[f(xk)− f(xk+1)] < +∞. (11.5.22)

Inequalities (11.5.21) and (11.5.22) imply that

lim
k→∞
k∈K0

‖xk+1 − xk‖ = lim
k→∞
k∈K0

αk = 0. (11.5.23)

Therefore the first condition of (11.5.14) does not hold for sufficiently large
k ∈ K0, which shows that

αk ≥ γ2ᾱk, (11.5.24)

and that (11.5.15) holds. Using the monotonically non-increasing property
of

Ψ(α) =
‖P (x + αd)− x‖

α
, α > 0 (11.5.25)

Download more at Learnclax.com

11.5. LINEARLY CONSTRAINED PROBLEMS 519

and relation (11.5.24), we can prove that

‖xk − xk(ᾱk)‖
ᾱk

≥ min
{
1,

1
γ2

}‖xk − xk(αk)‖
αk

. (11.5.26)

Thus, letting x = xk − ᾱk∇f(xk) and z = xk in (11.5.16) gives that

−(xk(ᾱk)− xk)T∇f(xk) ≥
‖xk − xk(ᾱk)‖2

ᾱk

≥ min
{

1,
1
γ2

}
δ‖xk − xk(ᾱk)‖ (11.5.27)

for all sufficiently large k ∈ K0. The uniform continuity of ∇f(x) on X
implies that

f(xk(ᾱk))− f(xk) = (xk(ᾱk)− xk)T∇f(xk) + o(‖xk(ᾱk)− xk‖). (11.5.28)

It follows from (11.5.15) and (11.5.28) that

−(xk(ᾱk)− xk)T∇f(xk) ≤ o(‖xk − xk(ᾱk)‖). (11.5.29)

The above inequality contradicts (11.5.27), which shows that the lemma is
true. �

Lemma 11.5.4 A point x∗ ∈ X is a KKT point of problem (11.5.6)-(11.5.8)
if and only if there exists δ̄ > 0 such that

P (x∗ − α∇f(x∗)) = x∗ (11.5.30)

holds for all α ∈ [0, δ̄].

Proof. Equation (11.5.30) is equivalent to

‖x∗ − δ̄∇f(x∗)− x∗‖22 ≤ ‖x∗ − δ̄∇f(x∗)− x‖22 (11.5.31)

holds for all x ∈ X. Because X is a convex set, (11.5.31) is equivalent to

(x− x∗)∇f(x∗) ≥ 0 (11.5.32)

holds for all feasible points sufficiently close to x∗. This means that x∗ is the
minimizer of function xT∇ f(x∗) on X, which is equivalent to that x∗ is a
KKT point of problem (11.5.6)-(11.5.8). �

From the above two lemmas, we can easily establish the convergence result
of Algorithm 11.5.2.

Download more at Learnclax.com

520 CHAPTER 11. FEASIBLE DIRECTION METHODS

Theorem 11.5.5 Assume that f(x) is continuously differentiable on the fea-
sible set X. Then, any accumulation point x∗ of {xk} generated by Algo-
rithm 11.5.2 is a KKT point of problem (11.5.6)-(11.5.8).

Proof. If the theorem is not true, there exist a subsequence of {xk}
satisfying

lim
k∈K0
k→∞

xk = x∗, (11.5.33)

and
P (x∗ − δ̄∇f(x∗)) = x∗, (11.5.34)

where δ̄ > 0, K0 is a subset of {1, 2, · · ·}. Because of (11.5.33), we can
assume that xk ∈ S (k ∈ K0), and S is a bounded closed set. Because ∇f(x)
is continuous on S, it is also uniformly continuous on S. It follows from
Lemma 11.5.3 that

lim
k∈K0
k→∞

‖xk+1 − xk‖
αk

= 0. (11.5.35)

From the continuity of ∇f(x) and (11.5.33)-(11.5.34), we can show that

lim
k∈k0
k→∞

‖xk(δ̄)− xk‖
δ̄

=
‖P (x∗ − δ̄∇f(x∗))− x∗‖

δ̄
> 0. (11.5.36)

Because the function Ψ(α) defined by (11.5.25) is monotonically non-increasing,
it follows from (11.5.35) and (11.5.36) that αk ≥ δ̄ holds for all sufficiently
large k ∈ K0. Therefore,

f(xk)− f(xk+1) ≥ −µ1(∇f(xk))T (xk(αk)− xk)
≥ −µ1(∇f(xk))T (xk(δ̄)− xk)

≥ µ1
‖xk(δ̄)− xk‖2

δ̄
. (11.5.37)

Now it follows from (11.5.37) and (11.5.36) that

lim
k∈K0
k→∞

inf[f(xk)− f(xk+1)] > 0. (11.5.38)

This contradicts the fact that limk→∞ f(xk) = f(x∗). Therefore the theorem
is true. �

Exercises

Download more at Learnclax.com

11.5. LINEARLY CONSTRAINED PROBLEMS 521

1. Assume that X is a convex polyhedral defined by X = {x | Ax ≥ b}.
Show that finding a direction d satisfying (11.1.1)–(11.1.2) is a convex pro-
gramming problem and give its dual.

2. By direct elimination, find the point on the ellipse defined by the in-
tersection of the surface x + y = 1 and x2 + 2y2 + z2 = 1 which is nearest to
the origin.

3. Apply Newton’s method with the generalized elimination to solve the
problem

min 8x4
1 − x4

2

s.t. x1 + x2 = 1.

4. For the above problem, at the point (3,−2)T , please give the projected
gradient and the projected Hessian. What are the projected gradient and the
projected Hessian at the solution?

5. Give the projected gradient algorithm for the box constrained problem

min f(x)
s.t. l ≤ x ≤ u.

6. Prove Theorem 11.3.2.

7. Assume the symmetric matrix B ∈ "n×n is invertible and b ∈ "n.
Prove that the matrix

B̂ =
[

B b
bT β

]
(11.5.39)

is invertible if and only if β − bT B−1b = 0. And prove that, when B̂ is
invertible, there exist µ and u such that

B̂−1 =
[
B−1 0

0 0

]
+ µuuT . (11.5.40)

Download more at Learnclax.com

Download more at Learnclax.com

Chapter 12

Sequential Quadratic
Programming

12.1 Lagrange-Newton Method

Consider the equality constrained optimization problem

min
x∈"n

f(x) (12.1.1)

s.t. c(x) = 0, (12.1.2)

where c(x) = (c1(x), · · · , cm(x))T ∈ "n. The Lagrangian function is

L(x, λ) = f(x)− λT c(x). (12.1.3)

A point x is a KKT point of (12.1.1)-(12.1.2) if and only if there exists λ ∈ "m

such that

∇xL(x, λ) = ∇f(x)−∇c(x)T λ = 0, (12.1.4)
∇λL(x, λ) = −c(x) = 0. (12.1.5)

The nonlinear system (12.1.4)-(12.1.5) requires x to be a stationary point of
the Lagrangian function. Therefore any method based on solving (12.1.4)-
(12.1.5) can be called a Lagrange method. For a given iterate point xk ∈ "n

and an approximate Lagrange multiplier λk ∈ "m, the Newton-Raphson step
for solving (12.1.4)-(12.1.5) is ((δx)k, (δλ)k), which satisfies(

W (xk, λk) −A(xk)
−A(xk)T 0

)(
(δx)k

(δλ)k

)
= −

(
∇f(xk)−A(xk)λk

−c(xk)

)
,

(12.1.6)

Download more at Learnclax.com

524 CHAPTER 12. SEQUENTIAL QUADRATIC PROGRAMMING

where

A(xk) = ∇c(xk)T , (12.1.7)

W (xk, λk) = ∇2f(xk)−
m∑

i=1

(λk)i∇2ci(xk). (12.1.8)

Consider the penalty function

P (x, λ) = ‖∇f(x)−A(x)λ‖22 + ‖c(x)‖22; (12.1.9)

it is easy to show that (δx)k and (δλ)k defined by (12.1.6) satisfy that

((δx)T
k , (δλ)T

k)∇P (xk, λk) = −2P (xk, λk) ≤ 0. (12.1.10)

Here ∇P is the gradient of P in the space (x, λ). The method given below
is based on (12.1.6), hence it is called the Lagrange-Newton method.

Algorithm 12.1.1 (Lagrange-Newton Method)

Step 1. Given x1 ∈ "n, λ1 ∈ "m, β ∈ (0, 1), ε ≥ 0, k := 1;

Step 2. Compute P (xk, λk); if P (xk, λk) ≤ ε then stop;
solving (12.1.6) obtaining (δx)k and (δλ)k;
α = 1;

Step 3. if

P (xk +α(δx)k, λk +α(δλ)k) ≤ (1−βα)P (xk, λk), (12.1.11)

then go to Step 4;
α = α/4, go to Step 3;

Step 4. xk+1 = xk + α(δx)k; λk+1 = λk + α(δλ)k;
k := k + 1; go to Step 2. �

For the above algorithm, we have the following convergence result.

Theorem 12.1.2 Assume that f(x) and c(x) are twice continuously differ-
entiable. If the matrix [

W (xk, λk) −A(xk)
−A(xk)T 0

]−1

(12.1.12)

is uniformly bounded, then any accumulation point of {(xk, λk)} generated by
Algorithm 12.1.1 is a root of P (x, λ) = 0.

Download more at Learnclax.com

12.1. LAGRANGE-NEWTON METHOD 525

Proof. Suppose that the theorem is not true, i.e., suppose (x̄, λ̄) is an
accumulation point of {(xk, λk)} and

P (x̄, λ̄) > 0. (12.1.13)

Then there exists a subset K0 ⊆ {1, 2, · · ·} which has infinitely many elements
and satisfies that

lim
k∈K0
k→∞

xk = x̄, lim
k∈K0
k→∞

λk = λ̄. (12.1.14)

From the line search condition (12.1.11), we can see that

P (xk+1, λk+1) ≤ (1− βαk)P (xk, λk). (12.1.15)

It follows from (12.1.13)-(12.1.15) that

lim
k∈K0
k→∞

αk = 0. (12.1.16)

Therefore we have that

P (xk + α̂k(δx)k, λk + α̂k(δλ)k) > (1− βα̂k)P (xk, λk) (12.1.17)

for all sufficiently large k ∈ K0, where α̂k = 4αk ∈ (0, 1). Let (δx, δλ) be the
solution of(

W (x̄, λ̄) −A(x̄)
−A(x̄)T 0

)(
δx
δλ

)
= −

(
∇f(x̄)−∇c(x̄)T λ̄

c(x̄)

)
. (12.1.18)

Because α̂k → 0, we can show that

lim
k∈K0
k→∞

P (x̄ + α̂kδx, λ̄ + α̂kδλ)− P (x̄, λ̄)
α̂k

= −2P (x̄, λ̄) < −P (x̄, λ̄). (12.1.19)

From the uniform boundedness of (12.1.12) and the fact that (xk, λk) →
(x̄, λ̄)(k ∈ K0), it follows that ((δx)k, (δλ)k) → (δx, δλ). Therefore, for
sufficiently large k ∈ K0 we have that

P (xk + α̂k(δx)k, λk + α̂k(δλ)k)− P (xk, λk)
α̂k

≤ −P (xk, λk). (12.1.20)

Because β < 1, (12.1.20) contradicts (12.1.17). This implies that the theorem
is true. �

Download more at Learnclax.com

526 CHAPTER 12. SEQUENTIAL QUADRATIC PROGRAMMING

Theorem 12.1.3 Assume that f(x) and c(x) are twice continuously differ-
entiable. If the matrix (12.1.12) is uniformly bounded, then any accumulation
point of {xk} generated by Algorithm 12.1.1 is a KKT point of (12.1.1)-
(12.1.2).

Proof. If the theorem is not true, it follows from the monotonicity of
P (xk, λk) that

lim
k→∞

P (xk, λk) > 0. (12.1.21)

This limit and condition (12.1.11) imply that

∞∏
k=1

(1− βαk) > 0. (12.1.22)

The above relation indicates that
∞∑

k=1

αk < +∞. (12.1.23)

Because[
W (xk, λk) −A(xk)
−A(xk)T 0

] [
(δx)k

λk + (δλ)k

]
=

[
−∇f(xk)

c(xk)

]
, (12.1.24)

there exists a positive constant γ > 0 such that

‖(δx)k‖+ ‖λk + (δλ)k‖ ≤ γ(‖∇f(xk)‖+ ‖c(xk)‖). (12.1.25)

Let x̄ be any accumulation point of {xk}. Define the set

Sδ = {x|‖x− x̄‖ ≤ δ}, (12.1.26)

where δ > 0 is any given positive constant. From (12.1.25) we know that
there exists a constant η > 0 such that

‖(δx)k‖ ≤ η (12.1.27)

for all xk ∈ Sδ. It follows from (12.1.23) that there exists k̄ such that

∞∑
k=k̄

αk <
δ

2η
. (12.1.28)

Download more at Learnclax.com

12.1. LAGRANGE-NEWTON METHOD 527

Because x̄ is an accumulation point of {xk}, there exists k̂ > k̄ such that

‖xk̂ − x̄‖ <
δ

2
. (12.1.29)

From (12.1.27)-(12.1.29) and the fact that ‖xk+1−xk‖ = αk‖(δx)k‖ we have
that

xk ∈ Sδ, ∀k ≥ k̂. (12.1.30)

Therefore (12.1.27) holds for all k ≥ k̂. Thus, it follows from (12.1.23) that

lim
k→∞

xk = x̄. (12.1.31)

This relation and the last theorem imply that there are no accumulation
points of {(xk, λk)}, which shows that

lim
k→∞

‖λk‖ = ∞. (12.1.32)

Hence, it follows from (12.1.32) and (12.1.25) that

‖λk+1‖ = ‖λk + αk(δλ)k‖
= ‖(1− αk)λk + αk(λk + (δλ)k)‖
= (1− αk)‖λk‖+ O(αk) < ‖λk‖ (12.1.33)

holds for all sufficiently large k, which contradicts (12.1.32). This completes
our proof. �

About the convergence rate of Algorithm 12.1.1, we have the following
result.

Theorem 12.1.4 Assume that the sequence {xk} generated by Algorithm 12.1.1
converges to x∗, if f(x) and c(x) are three times continuously differentiable
near x∗, A(x∗) is full column rank, and the second-order sufficient condition
is satisfied at x∗, then λk → λ∗, and∥∥∥∥∥

(
xk+1 − x∗

λk+1 − λ∗

)∥∥∥∥∥ = O

⎛
⎝
∥∥∥∥∥
(

xk − x∗

λk − λ∗

)∥∥∥∥∥
2
⎞
⎠ . (12.1.34)

Proof. Because Algorithm 12.1.1 is the Newton-Raphson method for
(12.1.4)-(12.1.5), and because the second-order sufficient condition implies
that the matrix [

W (x∗, λ∗) −A(x∗)
−A(x∗)T 0

]
(12.1.35)

Download more at Learnclax.com

528 CHAPTER 12. SEQUENTIAL QUADRATIC PROGRAMMING

is nonsingular, we have that
∥∥∥∥∥
(

xk + (δx)k − x∗

λk + (δλ)k − λ∗

)∥∥∥∥∥ = O

⎛
⎝
∥∥∥∥∥
(

xk − x∗

λk − λ∗

)∥∥∥∥∥
2
⎞
⎠ (12.1.36)

for all sufficiently large k. The above relation, and the fact that f(x) and
c(x) are three times continuously differentiable imply that (12.1.11) holds for
α = 1. Therefore (12.1.34) holds. �

It should be pointed out that (12.1.34) is not equivalent to the usual
quadratic convergence, which is

‖xk+1 − x∗‖ = O(‖xk − x∗‖2). (12.1.37)

For the analysis of the convergence rate of the iterates {xk}, we need the
following result.

Lemma 12.1.5 Under the assumptions of Theorem 12.1.4, we have that

εk+1 = O(‖xk − x∗‖εk), (12.1.38)

where
εk = ‖xk − x∗‖+ ‖λk − λ∗‖. (12.1.39)

Proof. From the proof of Theorem 12.1.4 we see that αk = 1 for all
sufficiently large k. Therefore it follows from the definitions of (δx)k and
(δλ)k that[

W (xk, λk) −A(xk)
−A(xk)T 0

] [
xk+1 − x∗

λk+1 − λ∗

]
=

[
−∇f(xk) + A(xk)λk

c(xk)

]

+

[
W (xk, λk)(xk − x∗)−A(xk)(λk − λ∗)

−A(xk)T (xk − x∗)

]

=

[
(A(x∗)−A(xk))(λk − λ∗) + O(‖xk − x∗‖2)

O(‖xk − x∗‖2)

]

=

[
O(‖xk − x∗‖[‖xk − x∗‖+ ‖λk − λ∗‖])

O(‖xk − x∗‖2)

]

= O(‖xk − x∗‖εk). (12.1.40)

The above relation and the nonsingularity of matrix (12.1.35) show that the
lemma holds. �

Download more at Learnclax.com

12.1. LAGRANGE-NEWTON METHOD 529

Theorem 12.1.6 Under the assumptions of Theorem 12.1.4, the sequence
{xk} converges to x∗ superlinearly and

‖xk+1 − x∗‖ = o

⎛
⎝‖xk − x∗‖

p∏
j=1

‖xk−j − x∗‖

⎞
⎠ (12.1.41)

holds for any given positive integer p.

Proof. It follows from (12.1.38) that {xk} converges to x∗ superlinearly.
For any given positive integer p, applying (12.1.38) recursively we obtain that

‖xk+1 − x∗‖ = O(εk+1) = O(‖xk − x∗‖εk)
= O(‖xk − x∗‖ ‖xk−1 − x∗‖εk−1)

= O

⎛
⎝‖xk − x∗‖

p∏
j=1

‖xk−j − x∗‖εk−p

⎞
⎠

= o

⎛
⎝‖xk − x∗‖

p∏
j=1

‖xk−j − x∗‖

⎞
⎠ . (12.1.42)

Therefore the theorem is true. �

One of the most important contributions of the Lagrange-Newton method
is the development of the sequential quadratic programming method based
on it. Sequential quadratic programming algorithms are the most impor-
tant algorithms for solving medium and small scale nonlinear constrained
optimization problems.

Setting λ̄k = λk +(δλ)k, we can write (12.1.6) in the following equivalent
form

W (xk, λk)(δx)k +∇f(xk) = A(xk)[λk + (δλ)k], (12.1.43)
c(xk) + A(xk)T (δx)k = 0, (12.1.44)

which is just, in matrix form,[
W (xk, λk) −A(xk)
−A(xk)T 0

] [
(δx)
λ̄

]
=

[
−g(xk)
c(xk)

]
(12.1.45)

with solution (δx)k and λ̄k. Then xk+1 is given by

xk+1 = xk + (δx)k. (12.1.46)

Download more at Learnclax.com

530 CHAPTER 12. SEQUENTIAL QUADRATIC PROGRAMMING

It is easy to show that the above system (12.1.45) is a KKT condition of the
quadratic programming subproblem

min
d∈n

dT∇f(xk) +
1
2
dT W (xk, λk)d, (12.1.47)

s.t. c(xk) + A(xk)T d = 0 (12.1.48)

with ((δx)k, λ̄k) being the corresponding KKT pair thereof. Therefore, the
Lagrange-Newton method can be viewed as a method that solves the quadratic
programming subproblem (12.1.47)-(12.1.48) successively.

12.2 Wilson-Han-Powell Method

In this section we present a sequential quadratic programming method, which
was proposed by Han [169]. The method is based on the Lagrange-Newton
method discussed in the previous section. In each iteration the matrix
W (xk, λk) is replaced by a matrix Bk. Because the Lagrange-Newton method
was first considered by Wilson [349], and because Han’s method was modified
and analyzed by Powell [268], the method presented in this section is often
called the Wilson-Han-Powell method.

Consider nonlinearly constrained optimization problem (8.1.1)-(8.1.3),
Similar to (12.1.47)-(12.1.48), we construct the following subproblem

min
d∈"n

gT
k d +

1
2
dT Bkd, (12.2.1)

s.t. ai(xk)T d + ci(xk) = 0, i ∈ E, (12.2.2)
ai(xk)T d + ci(xk) ≥ 0, i ∈ I, (12.2.3)

where
A(xk) = [a1(xk), · · ·, am(xk)] = ∇c(xk)T , (12.2.4)

gk = g(xk) = ∇f(xk), E = {1, 2, · · ·me}, I = {me+1, · · ·, m}, and Bk ∈ "n×n

is an approximation to the Hessian matrix of the Lagrangian function. Let
dk be a solution of (12.2.1)-(12.2.3). The vector dk is the search direction in
the k-th iteration by the Wilson-Han-Powell method. Let λk be the corre-
sponding Lagrange multiplier of (12.2.1)-(12.2.3) (just like λ̄k in the previous
section), then it follows that

gk + Bkdk = A(xk)λk, (12.2.5)
(λk)i ≥ 0, i ∈ I, (12.2.6)

(λk)i[ci(xk) + ai(xk)T dk] = 0, i ∈ I. (12.2.7)

Download more at Learnclax.com

12.2. WILSON-HAN-POWELL METHOD 531

A very good property of dk is that it is a descent direction of many penalty
functions. For example, considering the L1 exact penalty function, we have
the following result.

Lemma 12.2.1 Let dk be a KKT point of (12.2.1)-(12.2.3) and λk be the
corresponding Lagrange multiplier. Consider the L1 penalty function

P (x, σ) = f(x) + σ‖c(−)(x)‖1, (12.2.8)

where c(−)(x) is defined by (10.1.2)-(10.1.3). Then we have that

P ′
α(xk + αdk, σ)|α=0 ≤ −dT

k Bkdk − σ‖c(−)(xk)‖1 + λT
k c(xk). (12.2.9)

If dT
k Bkdk > 0 and σ ≥ ‖λk‖∞, then dk is a descent direction of the penalty

function (12.2.8) at xk.

Proof. By Taylor expression and using convexity of ‖(c + Ad)(−)‖1, we
have that

P ′
α(xk + αdk, σ)|α=0 = lim

α→0+

P (xk + αdk)− P (xk)
α

= gT
k dk + lim

α→0+

σ
‖[c(xk) + αA(xk)T dk](−)‖1 − ‖c(−)(xk)‖1

α

≤ gT
k dk + σ[‖(c(xk) + A(xk)T dk)(−)‖1 − ‖c(−)(xk)‖1]

= gT
k dk − σ‖c(−)(xk)‖1. (12.2.10)

It follows from (12.2.5) and (12.2.7) that

gT
k dk = −dT

k Bkdk + λT
k c(xk). (12.2.11)

Therefore (12.2.9) follows from (12.2.10) and (12.2.11).
Because λk satisfies (12.2.6), it follows from the definition of c(−)(x) that

λT
k c(xk) ≤

m∑
i=1

|(λk)i| |c(−)
i (xk)|. (12.2.12)

Substituting the above inequality into (12.2.9), and using the assumptions
that dT

k Bkdk > 0 and σ ≥ ‖λk‖∞, we have that

P ′
α(xk + αdk, σ)|α=0 ≤ −dT

k Bkdk −
m∑

i=1

(σ − |(λk)i|)|c(−)
i (xk)| < 0. (12.2.13)

Download more at Learnclax.com

532 CHAPTER 12. SEQUENTIAL QUADRATIC PROGRAMMING

This shows that the lemma is true. �

The following algorithm is the sequential quadratic programming algo-
rithm proposed by Han [169].

Algorithm 12.2.2

Step 1. Given x1 ∈ "n, σ > 0, δ > 0, B1 ∈ "n×n, ε ≥ 0, k := 1;

Step 2. Solve (12.2.1)-(12.2.3) giving dk;
if ‖dk‖ ≤ ε then stop;
find αk ∈ [0, δ] such that

P (xk + αkdk, σ) ≤ min
0≤α≤δ

P (xk + αdk, σ) + εk. (12.2.14)

Step 3. xk+1 = xk + αkdk;
Evaluate f(xk+1), gk+1, c(xk+1), Ak+1;

Step 4. Compute λk+1 = −(AT
k+1Ak+1)−1AT

k+1gk+1;
Set sk = αdk, yk = ∇xL(xk+1, λk+1)−∇xL(xk, λk+1);
generate Bk+1 by updating Bk using a quasi-Newton for-
mula;
k := k + 1; go to Step 2. �

In (12.2.14), the penalty function P (x, σ) is the L1 exact penalty function,
εk is a sequence of nonnegative numbers satisfying

∞∑
k=1

εk < +∞. (12.2.15)

The global convergence result of the above algorithm is as follows.

Theorem 12.2.3 Assume that f(x) and ci(x) are continuously differen-
tiable, and that there exist constants m,M > 0 such that

m‖d‖2 ≤ dT Bkd ≤ M‖d‖2 (12.2.16)

holds for all k and d ∈ "n, if ‖λk‖∞ ≤ σ for all k, then any accumulation
point of {xk} generated by Algorithm 12.2.2 is a KKT point of (8.1.1)-(8.1.3).

Download more at Learnclax.com

12.2. WILSON-HAN-POWELL METHOD 533

Proof. If the theorem is not true, there exists a subsequence of {xk}
converging to x̄ which is not a KKT point. Therefore there exists a subset
K0 having infinitely many elements such that

lim
k∈K0
k→∞

xk = x̄. (12.2.17)

Without loss of generality, we can assume that

lim
k∈K0
k→∞

λk = λ̄, lim
k∈K0
k→∞

Bk = B̄. (12.2.18)

If
lim

k∈K0
k→∞

‖dk‖ = 0, (12.2.19)

from the relation
gk + Bkdk = A(xk)λk, (12.2.20)

it follows that
g(x̄) = A(x̄)λ̄. (12.2.21)

This contradicts the fact that x̄ is not a KKT point. Therefore we can assume
that

‖dk‖ ≥ η > 0, ∀k ∈ K0, (12.2.22)

where η is a constant. The above relation and (12.2.13) imply that

P ′
α(xk + αdk, σ)|α=0 ≤ −mη‖dk‖, (12.2.23)

holds for all k ∈ K0. It follows from (12.2.23) and the continuity assumptions
on the functions that there exists a positive constant η̄ such that

min
0≤α≤δ

P (xk + αdk, σ) ≤ P (xk, σ)− η̄ (12.2.24)

hold for all k ∈ K0. Thus,

P (xk+1, σ) ≤ P (xk, σ)− η̄ + εk, ∀k ∈ K0. (12.2.25)

Consequently we can derive the inequality∑
k∈K0

η̄ ≤
∑

k∈K0

[P (xk, σ)− P (xk+1, σ)] +
∑

k∈K0

εk

≤
∞∑

k=1

[P (xk, σ)− P (xk+1, σ)] +
∞∑

k=1

εk. (12.2.26)

Download more at Learnclax.com

534 CHAPTER 12. SEQUENTIAL QUADRATIC PROGRAMMING

Because limk→∞ P (xk, σ) = P (x̄, σ), it follows that

∑
k∈K0

η̄ ≤ P (x1, σ)− P (x̄, σ) +
∞∑

k=1

εk < +∞. (12.2.27)

From the above inequality and η̄ > 0 we see that K0 can have only finitely
many elements, which contradicts our assumption in the beginning of the
proof. This indicates that the theorem is true. �

The global convergence requires that

σ > ‖λk‖∞ (12.2.28)

for all k. However, in practice it is very difficult to choose such a penalty
parameter. If σ is too small, condition (12.2.28) may be violated. If σ
is too large, the step-length αk may tend to be too small to prevent the
fast convergence of the algorithm. Powell [268] suggests using exact penalty
function

P (x, σk) = f(x) +
m∑

i=1

(σk)i|c(−)
i (x)| (12.2.29)

in the k-th iteration, where (σk)i > 0 and these parameters are updated in
the following way.

(σ1)i = (λ1)i, (12.2.30)

(σk)i = max
{
|[λk]i|,

1
2
[(σk−1)i + |(λk)i|]

}
, k > 1, (12.2.31)

for all i = 1, · · · , m. The parameters σk defined above satisfy

(σk)i ≥ |(λk)i|, i = 1, 2, · · ·, m. (12.2.32)

This very clever update technique allows the penalty parameters to change
from iteration to iteration, and, intuitively, the inequality (12.2.32) offers
a similar property to (12.2.28). But, because (σk)i are not constants, the
conditions of Theorem 12.2.3 do not hold. And Chamberlain [53] gives an
example to show that cycles may happen due to this update technique.

Now we discuss the update of Bk+1, which is usually generated by a cer-
tain quasi-Newton formula. From our analyses in Section 12.1, we hope that
Bk+1 is an approximation to the Hessian matrix of the Lagrangian function.

Download more at Learnclax.com

12.2. WILSON-HAN-POWELL METHOD 535

Similar to unconstrained optimization, we can apply the standard quasi-
Newton updates using

sk = xk+1 − xk, (12.2.33)
yk = ∇f(xk+1)−∇f(xk)

−
m∑

i=1

(λk)i[∇ci(xk+1)−∇ci(xk)]. (12.2.34)

A crucial difference is that line

sT
k yk > 0, (12.2.35)

which would be always true for unconstrained optimization. Therefore, for
example, we can not directly apply the BFGS update. Powell [268] suggests
that yk be replaced by

ȳk =

{
yk, if sT

k yk ≥ 0.2sT
k Bksk,

θkyk + (1− θk)Bksk, otherwise
(12.2.36)

where

θk =
0.8sT

k Bksk

sT
k Bksk − sT

k yk
. (12.2.37)

The vector ȳk defined above satisfies sT
k ȳk > 0.

The idea of such a choice of ȳk is to obtain an update vector using the
convex combination of yk and Bksk. Because Bksk can also be viewed as
an approximation to yk, because it satisfies (assuming that Bk is positive
definite)

sT
k (Bksk) > 0, (12.2.38)

it is very natural to use the convex combination of yk and Bksk. The geomet-
ric interpretation of Powell’s formula is as follows. Suppose we normalize the
length of the projection of Bksk to direction sk. The rule (12.2.36)-(12.2.37)
is in fact to choose ȳk from the line segment between yk and Bksk that is
as close to yk as possible and whose projection to sk is at least 0.2. This is
shown in Figure 12.2.1.

Download more at Learnclax.com

536 CHAPTER 12. SEQUENTIAL QUADRATIC PROGRAMMING

Figure 12.2.1

Having computed the vector ȳk, we can now apply the BFGS formula to
update Bk+1:

Bk+1 = Bk −
Bksks

T
k BT

k

sT
k Bksk

+
ȳkȳ

T
k

sT
k ȳk

. (12.2.39)

Another way to modify yk is to use

ŷk = yk + 2ρ
m∑

i=1

−ci(xk)∇ci(xk) (12.2.40)

to replace yk, where ρ > 0 is a parameter. Because

ŷk ≈ [∇2L(xk, λk) + 2ρA(xk)A(xk)T]sk, (12.2.41)

updating Bk by using ŷk can be viewed as making Bk+1 approximate the
Hessian matrix of the augmented Lagrange function. An advantage of this
choice is that

sT
k ŷk > 0 (12.2.42)

can usually be satisfied. If sT
k ŷk ≤ 0, we can always make (12.2.42) hold

by increasing ρ, unless ‖A(xk)sk‖ = 0. Normally, the Hessian matrix of the
augmented Lagrange function is positive definite, thus it is very reasonable
to use a positive definite matrix Bk to approximate it.

Download more at Learnclax.com

12.3. SUPERLINEAR CONVERGENCE OF SQP STEP 537

12.3 Superlinear Convergence of SQP Step

In order to prove the superlinear convergence property of the sequential
quadratic programming method, i.e.

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖ = 0, (12.3.1)

we only need to show that the search direction dk satisfies

lim
k→∞

‖xk + dk − x∗‖
‖xk − x∗‖ = 0 (12.3.2)

and that the line search condition will allow αk = 1 for all large k if (12.3.2)
holds. Thus, the important thing is to show that the search direction gen-
erated by the SQP method satisfies (12.3.2). A step dk satisfying (12.3.2) is
called a superlinearly convergent step. In this section, we discuss the condi-
tions for ensuring the sequential quadratic programming method to produce
superlinearly convergent steps.

Throughout this section, we make the following assumptions.

Assumption 12.3.1

1) f(x), ci(x) are twice continuously differentiable;

2) xk → x∗;

3) x∗ is a KKT point and

∇ci(x∗), i ∈ E ∪ I(x∗) (12.3.3)

are linearly independent. Let A(x∗) be the n × |E ∪ I(x∗)| matrix
consisting of the vectors given in (12.3.3). For all nonzero vectors d
satisfying

A(x∗)T d = 0, (12.3.4)

we have that
dT W (x∗, λ∗)d = 0, (12.3.5)

where W (x∗, λ∗) is defined by (12.1.8), and λ∗ is the Lagrange mul-
tiplier at x∗.

Download more at Learnclax.com

538 CHAPTER 12. SEQUENTIAL QUADRATIC PROGRAMMING

The above assumptions are often used for local convergence analyses of
algorithms for constrained optimization. For example, relations (12.3.4) and
(12.3.5) hold if we assume the second-order sufficient condition

dT W (x∗, λ∗)d > 0, ∀d = 0, A(x∗)T d = 0. (12.3.6)

We also make the assumption that the active set at the solution can be
identified when the iterations are very close to the solution. Therefore, when
k is sufficiently large, the search direction dk is actually the solution of an
equality constrained quadratic programming subproblem.

Assumption 12.3.2 For sufficiently large k, dk is a solution of

min
d∈"n

gT
k d +

1
2
dT Bkd (12.3.7)

s.t. ci(xk) + dT∇ci(xk) = 0, i ∈ E ∪ I(x∗). (12.3.8)

Under Assumption 12.3.2, for all large k there exists λk ∈ "|E∪I(x∗)| such
that

gk + Bkdk = A(xk)λk, (12.3.9)
A(xk)T dk = −ĉ(xk), (12.3.10)

where ĉ(x) is a vector whose elements are ci(x)(i ∈ E ∪ I(x∗)).

Theorem 12.3.3 Under the conditions of Assumptions 12.3.1 and 12.3.2,
dk is a superlinearly convergent step, namely

lim
k→∞

‖xk + dk − x∗‖
‖xk − x∗‖ = 0 (12.3.11)

if and only if

lim
k→∞

‖Pk(Bk −W (x∗, λ∗))dk‖
‖dk‖

= 0, (12.3.12)

where Pk is a projection from "n onto the null space of A(xk)T :

Pk = I −A(xk)(A(xk)T A(xk))−1A(xk)T . (12.3.13)

Download more at Learnclax.com

12.3. SUPERLINEAR CONVERGENCE OF SQP STEP 539

Proof. From (12.3.9) and the definition of Pk, we have that

PkBkdk = −Pkgk = −Pk[∇f(xk)−A(xk)λ∗]
= −Pk[∇xL(xk, λ

∗)−∇xL(x∗, λ∗)]
= −PkW (x∗, λ∗)(xk − x∗) + O(‖xk − x∗‖2). (12.3.14)

Therefore, it follows that

Pk(Bk −W (x∗, λ∗))dk = −PkW (x∗, λ∗)[xk + dk − x∗]
+O(‖xk − x∗‖2). (12.3.15)

Using relation (12.3.10) and

ĉ(xk) = ĉ(xk)− ĉ(x∗)
= A(xk)T (xk − x∗) + O(‖xk − x∗‖2), (12.3.16)

we can show that

A(xk)T (xk + dk − x∗) = O(‖xk − x∗‖2). (12.3.17)

Equations (12.3.15) and (12.3.17) can be rewritten in matrix form:
[

PkW (x∗, λ∗)
A(xk)T

]
(xk + dk − x∗) =

[
−Pk(Bk −W (x∗, λ∗))dk

0

]

+ O(‖xk − x∗‖2). (12.3.18)

Define the matrix

G∗ =

[
P∗W (x∗, λ∗)

A(x∗)T

]
, (12.3.19)

where P∗ = I − A(x∗)(A(x∗)T A(x∗))−1A(x∗)T . For any d ∈ "n, if G∗d = 0
we have that

A(x∗)T d = 0, (12.3.20)
dT P∗W (x∗, λ∗)d = 0. (12.3.21)

From (12.3.20) it follows that P∗d = d. Thus,

dT W (x∗, λ∗)d = 0. (12.3.22)

Download more at Learnclax.com

540 CHAPTER 12. SEQUENTIAL QUADRATIC PROGRAMMING

The above relation and Assumption 12.3.1 show that d = 0. Therefore matrix
G∗ is a full column rank matrix. Hence, from (12.3.18) and the fact that
xk → x∗ we can see that (12.3.11) is equivalent to

lim
k→∞

‖Pk(Bk −W (x∗, λ∗))dk‖
‖xk − x∗‖ = 0. (12.3.23)

Using the equivalence between (12.3.23) and (12.3.11) and that between
(12.3.11) and

lim
k→∞

‖xk − x∗‖
/
‖dk‖ = 1, (12.3.24)

we can show that (12.3.23) is equivalent to (12.3.12). This completes the
proof. �

Using relation (12.3.9) and λk → λ∗, we have that

W (x∗, λ∗)dk = W (xk, λk)dk + o(‖dk‖)
= ∇f(xk + dk)−A(xk + dk)λk −∇f(xk) + A(xk)λk + o(‖dk‖)
= ∇f(xk + dk)−A(xk + dk)λk + Bkdk + o(‖dk‖). (12.3.25)

Therefore,

Pk(Bk −W (x∗, λ∗))dk = −Pk[∇f(xk + dk)−A(xk + dk)λk]
+o(‖dk‖). (12.3.26)

From the above relation and Theorem 12.3.3, we can get the following
result.

Corollary 12.3.4 Under the assumptions of Theorem 12.3.3, (12.3.11) is
equivalent to

lim
k→∞

‖Pk[∇f(xk + dk)−A(xk + dk)λk‖
‖dk‖

= 0. (12.3.27)

From Theorem 12.3.3, we should choose Bk such that (12.3.12) is satis-
fied in order to have superlinear convergence, namely Bk should be a good
approximation to W (x∗, λ∗).

Download more at Learnclax.com

12.4. MARATOS EFFECT 541

12.4 Maratos Effect

For unconstrained optimization, if x∗ is a stationary point at which the
second-order sufficient condition holds, namely

∇2f(x∗) positive definite, (12.4.1)

if xk → x∗, and if dk is a superlinearly convergent step, then

f(xk + dk) < f(xk) (12.4.2)

holds for all large k. That is to say, superlinearly convergent steps are ac-
ceptable for unconstrained problems. However, this is not always true for
constrained problems. Such a phenomenon was first discovered by Maratos
[209], so it is called the Maratos Effect.

Consider the equality constrained optimization problem

min
x=(u,v)∈"2

f(x) = 3v2 − 2u, (12.4.3)

s.t. c(x) = u− v2 = 0. (12.4.4)

It is easy to see that x∗ = (0, 0)T is the unique minimizer and condition 3) of
Assumption 12.3.1 is satisfied. In fact, the second-order sufficient condition
holds at x∗. Consider any points that are close to the solution x∗ and that
have the form

x̄(ε) = (u(ε), v(ε))T = (ε2, ε)T (12.4.5)

where ε > 0 is a small parameter. Let B = W (x∗, λ∗); the quadratic pro-
gramming subproblem is

min
d∈"2

dT

(
−2
6ε

)
+

1
2
dT

[
0 0
0 2

]
d, (12.4.6)

s.t. dT

(
1
−2ε

)
= 0. (12.4.7)

It is easy to see that the solution of (12.4.6)-(12.4.7) is

d̄(ε) =

[
−2ε2

−ε

]
. (12.4.8)

Download more at Learnclax.com

542 CHAPTER 12. SEQUENTIAL QUADRATIC PROGRAMMING

Therefore, we have that

‖x̄(ε) + d̄(ε)− x∗‖ = O(‖x̄(ε)− x∗‖2). (12.4.9)

Thus, d̄(ε) is a superlinearly convergent step. Direct calculation indicates
that

f(x̄(ε) + d̄(ε)) = 2ε2, (12.4.10)
c(x̄(ε) + d̄(ε)) = −ε2. (12.4.11)

Because

f(x̄(ε)) = ε2, (12.4.12)
c(x̄(ε)) = 0, (12.4.13)

we have that

f(x̄(ε) + d̄(ε)) > f(x̄(ε)), (12.4.14)
|c(x̄(ε) + d̄(ε))| > |c(x̄(ε))|. (12.4.15)

This example shows that even though d̄(ε) is a superlinearly convergent step
(namely x̄(ε) + d̄(ε) is much closer to x∗ than x̄(ε)), the point x̄(ε) + d̄(ε) is
“worse” than x̄(ε) from the objective function values and from the constraint
violations. In fact, for any penalty functions Pσ,h(x) having the form of
(10.6.2), we would have that

Pσ,h(x̄(ε) + d̄(ε)) > Pσ,h(x̄(ε)). (12.4.16)

Especially, when the merit function is the L1 exact penalty function,
x̄(ε) + d̄(ε) is not acceptable.

The Maratos Effect shows that for many penalty functions a superlin-
early convergent step may not be accepted, which, sometimes, prevents the
algorithm from fast convergence.

There are mainly three ways to overcome the Maratos Effect. The first
one is to relax the line search conditions. Roughly speaking, since the search
direction dk is a superlinearly convergent step, we should choose αk = 1 as
often as possible provided that convergence is ensured. The second one is to
use a second-order correction step d̂k, where d̂k satisfies ‖d̂k‖ = O(‖dk‖2),
and Pσ(xk + dk + d̂k) < Pσ(xk). In this way, dk + d̂k is an acceptable step
and it is still a superlinearly convergent step. The third way is to use smooth

Download more at Learnclax.com

12.5. WATCHDOG TECHNIQUE 543

exact penalty functions as merit functions. If the penalty function Pσ(x) is
smooth, we can show that

Pσ(xk + dk) < Pσ(xk) (12.4.17)

for all large k as long as (12.3.11) holds.
We will discuss these three techniques in the following sections.

12.5 Watchdog Technique

The nature of the Maratos Effect is the inequality

Pσ(xk + dk) > Pσ(xk), (12.5.1)

makes xk+1 = xk + dk, therefore the superlinearly convergent property is
destroyed. In the Watchdog technique proposed by Chamberlain et. al. [54],
the standard linear search which implies that

Pσ(xk+1) < Pσ(xk), (12.5.2)

is used in some iterations, but in the other iterations, the line search con-
ditions are relaxed. The relaxed line search can be either simply αk = 1 or
requiring the Lagrange function to be reduced. Assume that the new point
obtained in one iteration yields a sufficient reduction on the merit function
Pσ(x); comparing with the best point in the previous iterations, we can use
the relaxed line search in the next iteration.

Define the function

Pσ(x) = f(x) +
me∑
i=1

σi|ci(x)|+
m∑

i=me+1

σi|min[0, ci(x)]|, (12.5.3)

and the approximate models

P (k)
σ (x) = f(xk) + (x− xk)T∇f(xk) +

1
2
(x− xk)T Bk(x− xk)

+
me∑
i=1

σi|ci(xk) + (x− xk)T∇ci(xk)|

+
m∑

i=me+1

σi|min[0, ci(xk) + (x− xk)T∇ci(xk)]|. (12.5.4)

Download more at Learnclax.com

544 CHAPTER 12. SEQUENTIAL QUADRATIC PROGRAMMING

Assume that l ≤ k is the index in which the best point has been found
up to the k-th iteration, namely

Pσ(xl) = min
1≤i≤k

Pσ(xi). (12.5.5)

Let β ∈
(
0, 1

2

)
be a given positive constant. If the iterate point obtained in

the k-th iteration xk+1 = xk + αkdk satisfies

Pσ(xk+1) ≤ Pσ(xl)− β[Pσ(xl)− P (l)
σ (xl+1)], (12.5.6)

then we say xk+1 (comparing to xl) yields a “sufficient” reduction on the
merit function Pσ(x).

The following is an algorithm with the Watchdog technique.

Algorithm 12.5.1 (Watchdog Method)

Step 1. Given x1 ∈ "n, a positive constant n̄.
Set line search type to be standard; k := l := 1;

Step 2. Compute the search direction dk;
Carry out line search using the line search type, obtaining
αk > 0;
xk+1 = xk + αkdk;

Step 3. if (12.5.6) holds, then set the next line search type to be
“relaxed”, otherwise to be standard.

Step 4. if Pσ(xk+1) ≤ Pσ(xl), then l := k + 1;

Step 5. if k < l + n̄, then go to Step 6;
xk+1 := xl; l := k + 1;

Step 6. if convergence criterion is satisfied then stop;
k := k + 1; go to Step 2. �

Actually, if the “relaxed” line search conditions are the same as the stan-
dard condition, the above algorithm is the original method that is based on
the standard line searches. Therefore, the Watchdog method is a generaliza-
tion of the standard method.

Assume the standard line search condition is

Pσ(xk+1) ≤ Pσ(xk)− β[Pσ(xk)− P (k)
σ (xk+1)]. (12.5.7)

Download more at Learnclax.com

12.6. SECOND-ORDER CORRECTION STEP 545

From the descriptions of the above algorithm, we know that there exists
k ≤ l + n̄ + 1 such that

Pσ(xk+1) ≤ Pσ(xl)− β[Pσ(xl)− P (l)
σ (xl+1)]. (12.5.8)

Thus, the watchdog method will reduce the merit function Pσ(x) in every n̄+1
iterations, even though it can not guarantee the monotonically decreasing of
Pσ(xk). Let l(j) be the j-th value of l; from the discussions above we see
that

l(j) < l(j + 1) ≤ l(j) + n̄ + 2. (12.5.9)

If we assume that the sequence {xk} is bounded, then Pσ(xl(j)) will not tend
to negative infinity. Thus, it follows from the inequality

Pσ(xl(j+1)) ≤ Pσ(xl(j))− β[Pσ(xl(j))− P (l(j))
σ (xl(j)+1)] (12.5.10)

that ∞∑
j=1

[Pσ(xl(j))− P (l(j))
σ (xl(j)+1)] < +∞. (12.5.11)

The above relation shows that there exists an accumulation point of {xk}
that is a KKT point of the constrained optimization problem.

12.6 Second-Order Correction Step

A second-order correction step is a vector d̂k such that

‖d̂k‖ = O(‖dk‖2) (12.6.1)

and
Pσ(xk + dk + d̂k) < Pσ(xk) (12.6.2)

for all sufficiently large k. Consider that d̂k is defined as a solution of the
following quadratic programming problem:

min
d∈"n

gT
k (dk + d) +

1
2
(dk + d)T Bk(dk + d), (12.6.3)

s.t. ci(xk + dk) + ai(xk)T d = 0, i ∈ E, (12.6.4)
ci(xk + dk) + ai(xk)T d ≥ 0, i ∈ I, (12.6.5)

where dk is the solution of (12.2.1)-(12.2.3).

Download more at Learnclax.com

546 CHAPTER 12. SEQUENTIAL QUADRATIC PROGRAMMING

For simplicity, we assume that all the constraints are equality constraints.
We also assume that the second-order sufficient conditions hold at x∗ and that
xk → x∗. From the KKT condition there exist λk ∈ "m and λ̂k ∈ "m such
that

Bkdk = −gk + A(xk)λk, (12.6.6)
A(xk)T dk = −c(xk) (12.6.7)

and that

Bkdk + Bkd̂k = −gk + A(xk)λ̂k, (12.6.8)
A(xk)T d̂k = −c(xk + dk). (12.6.9)

From (12.6.6) and (12.6.8) we see that

PkBkd̂k = 0, (12.6.10)

where Pk is defined by (12.3.13). We make the following assumptions.

Assumption 12.6.1

1) xk → x∗;

2) A(x∗) is full column rank;

3) there exist positive constants m̄ and M̄ such that ‖Bk‖ ≤ M̄ and that

dT Bkd ≥ m̄‖d‖22 (12.6.11)

holds for all d satisfying A(xk)T d = 0 for all k.

From the above assumptions we can show the following lemma.

Lemma 12.6.2 Under the conditions of Assumption 12.6.1, there exists a
positive constant η such that∥∥∥∥∥

(
PkBk

A(xk)T

)
d

∥∥∥∥∥
2

≥ η‖d‖2 (12.6.12)

holds for all d ∈ "n and all sufficiently large k.

Download more at Learnclax.com

12.6. SECOND-ORDER CORRECTION STEP 547

Proof. Let the QR factorization of A(xk) be

A(xk) = [Yk Zk]

[
Rk

0

]
. (12.6.13)

Because A(x∗) is nonsingular, there exists k0 such that for k ≥ k0 we have

‖R−1
k ‖2 ≤ η̂, (12.6.14)

where η̂ > 0 is a constant. Therefore,

‖A(xk)T d‖2 = ‖RT
k Y T

k d‖2 ≥
1
η̂
‖Y T

k d‖2, (12.6.15)

for k ≥ k0. Using the relation YkY
T
k + ZkZ

T
k = I, we can show that

‖PkBkd‖2 = ‖ZkZ
T
k Bkd‖2

= ‖ZkZ
T
k BkYkY

T
k d + ZkZ

T
k BkZkZ

T
k d‖2

≥ ‖ZkZ
T
k BkZkZ

T
k d‖2 − ‖Bk‖2‖Y T

k d‖2
≥ m̄‖ZT

k d‖2 − M̄‖Y T
k d‖2. (12.6.16)

Thus, if

‖Y T
k d‖ ≥ m̄

2M̄
‖ZT

k d‖, (12.6.17)

it follows from (12.6.15) that

‖A(xk)T d‖2 ≥ 1
η̂
‖Y T

k d‖2

≥
m̄

2M̄

η̂

√
1 +

(
m̄

2M̄

)2
‖d‖2. (12.6.18)

If (12.6.17) does not hold, it follows from (12.6.16) that

‖PkBkd‖2 ≥
1
2
m̄‖ZT d‖2 ≥

M̄√
1 +

(
2M̄
m̄

)2
‖d‖2. (12.6.19)

Therefore, when k ≥ k0, either of (12.6.18) and (12.6.19) must hold. Let

η = min
{1

η̂
, M̄

} 1√
1 + 4(M̄/m̄)2

, (12.6.20)

Download more at Learnclax.com

548 CHAPTER 12. SEQUENTIAL QUADRATIC PROGRAMMING

then we see that (12.6.12) holds for all k ≥ k0 and all d ∈ "n. �

Using (12.6.9)-(12.6.10), we have that[
PkBk

A(xk)T

]
d̂k =

[
0

−c(xk + dk)

]
= O(‖dk‖22). (12.6.21)

Now, from the above relation and Lemma 12.6.2 we can show the following
lemma.

Lemma 12.6.3 Under the conditions of Assumption 12.6.1, there exists a
positive constant η̄ > 0 such that

‖d̂k‖2 ≤ η̄‖dk‖22. (12.6.22)

To this end, we have shown that the step defined by (12.6.3)-(12.6.5) is
indeed a second-order correction step.

In the following we show that the second-order correction step d̂k will
make the step dk + d̂k acceptable. First, using (12.6.9) we see that

c(xk + dk + d̂k) = c(xk + dk) + A(xk)T d̂k + o(‖d̂k‖)
= o(‖dk‖2) = o(‖xk − x∗‖2). (12.6.23)

Define the vector

d̄k = −(A(xk)T)+c(xk + dk)− Pk(xk + dk − x∗), (12.6.24)

then it follows that

‖xk + dk + d̄k − x∗‖ = ‖(I − Pk)(xk + dk − x∗)
−(A(xk)T)+c(xk + dk)‖

= ‖(I − Pk)(xk + dk − x∗)
−(A(xk)T)+A(xk)T (xk + dk − x∗)‖
+o(‖xk − x∗‖2) = o(‖xk − x∗‖2). (12.6.25)

Furthermore, it follows from (12.6.24) that

A(xk)T d̄k = −c(xk + dk). (12.6.26)

If we assume not only (12.3.12) but also

‖(Bk −W (x∗, λ∗))d‖
‖d‖ → 0 (12.6.27)

Download more at Learnclax.com

12.6. SECOND-ORDER CORRECTION STEP 549

holds for d = dk + d̂k, and d = dk + d̄, then it follows that

(gk −Akλ
∗)T d +

1
2
dT Bkd

= L(xk + d, λ∗)− L(xk, λ
∗) + o(‖d‖2) + o(‖xk − x∗‖2)

= L(xk + d, λ∗)− L(xk, λ
∗) + o(‖xk − x∗‖2) (12.6.28)

holds for d = dk + d̂k and d = dk + d̄k. From the definition of d̂k, we can
show that

gT
k d̂k +

1
2
(dk + d̂k)T Bk(dk + d̂k)

≤ gT
k d̄k +

1
2
(dk + d̄k)T Bk(dk + d̄k). (12.6.29)

If follows from (12.6.28) and (12.6.29) that

L(xk + dk + d̂k, λ
∗) ≤ L(xk + dk + d̄k, λ

∗) + o(‖xk − x∗‖2)
≤ L(x∗, λ∗) + o(‖xk − x∗‖2). (12.6.30)

The above inequality and (12.6.23) imply that

f(xk + dk + d̂k) ≤ f(x∗) + o(‖xk − x∗‖2). (12.6.31)

It follows from the above relation and (12.6.23) that

Pσ(xk + dk + d̂k) ≤ Pσ(x∗) + o(‖xk − x∗‖2). (12.6.32)

Under the second-order sufficient condition, there exists a positive constant
δ > 0 such that

Pσ(xk) ≥ Pσ(x∗) + δ‖xk − x∗‖2. (12.6.33)

Therefore, by the above two inequalities we can deduce that

Pσ(xk + dk + d̂k) < Pσ(xk). (12.6.34)

To be more exact, from (12.6.32)-(12.6.33) we can show that

lim
k→∞

Pσ(xk)− Pσ(xk + dk + d̂k)
Pσ(xk)− Pσ(x∗)

= 1. (12.6.35)

Therefore, it follows from (12.6.22) and (12.6.34), that

lim
k→∞

‖xk + dk + d̂k − x∗‖
‖xk − x∗‖ = 0, (12.6.36)

Download more at Learnclax.com

550 CHAPTER 12. SEQUENTIAL QUADRATIC PROGRAMMING

namely, dk + d̂k is a superlinearly convergent step and it is acceptable.
Another way to compute a second-order correction step is to solve the

following subproblem:

min
d∈"n

g̃T
k d +

1
2
dT Bkd, (12.6.37)

s.t. ci(xk) + ai(xk)T d = 0, i ∈ E, (12.6.38)
ci(xk) + ai(xk)T d ≥ 0, i ∈ I, (12.6.39)

where

g̃k = gk +
1
2

m∑
i=1

(λk)i[∇ci(xk)−∇ci(xk + dk)], (12.6.40)

and where λk is the Lagrange multiplier of the quadratic programming sub-
problem (12.2.1)-(12.2.3). It can be shown that the search direction defined
by (12.6.37)-(12.6.39) is a superlinearly convergent step and is also an ac-
ceptable step. For more detailed discussions, please see Mayne and Polak
[214] and Fukushima [142].

12.7 Smooth Exact Penalty Functions

The reason for the Maratos Effect to happen is because the merit function
used to carry out line search is nonsmooth. If P (x) is a smooth function,
if x∗ is its minimizer, and if ∇2P (x∗) is positive definite, we can easily see
that, for all x sufficiently close to x∗,

M̄‖x− x∗‖2 ≥ P (x)− P (x∗) ≥ m̄‖x− x∗‖2, (12.7.1)

where M̄ ≥ m̄ are two positive constants. Therefore if

‖xk + dk − x∗‖
‖xk − x∗‖ → 0, (12.7.2)

it is easy to show that

P (xk + dk) ≤ P (x∗) + M̄‖xk + dk − x∗‖2

< P (x∗) + m̄‖xk − x∗‖2 ≤ P (xk) (12.7.3)

holds for sufficiently large k. Therefore, the Maratos Effect can be avoided
if we use a smooth exact penalty function as the merit function.

Download more at Learnclax.com

12.7. SMOOTH EXACT PENALTY FUNCTIONS 551

Consider the equality constrained optimization problem:

min
x∈"n

f(x), (12.7.4)

s.t. c(x) = 0. (12.7.5)

We use Fletcher’s smooth exact penalty function (10.5.4) as the merit func-
tion. Because the derivative of function (10.5.4) needs to compute the second-
order derivatives of f(x) and c(x), Powell and Yuan [277] uses an approximate
form of (10.5.4):

Φk,i(αβk,i) = f(xk + αβk,idk)
− [λ(xk) + α(λ(xk + βk,idk)− λ(xk))]T c(xk + αβk,idk)

+
1
2
σk,i‖c(xk + αβk,idk)‖22, 0 ≤ α ≤ 1, (12.7.6)

where dk is a solution of the quadratic programming subproblem (12.2.1)-
(12.2.3), βk,i is the (i + 1)-th trial step length in the k-th iteration, and σk,i

is the current penalty parameter which satisfies that

Φ′
k,i(0) ≤ −1

2
[dT

k Bkdk + σk,i‖c(xk)‖22]

≤ −1
4
σk,i‖c(xk)‖22. (12.7.7)

The Powell and Yuan’s method can be stated as follows:

Algorithm 12.7.1 (Powell and Yuan’s Method)

Step 1. Given x1 ∈ "n, β1 ∈ (0, 1), β2 ∈ (β1, 1), µ ∈ (0, 1/2),
σ1,−1 > 0, B1 ∈ "n×n, ε ≥ 0. k := 1;

Step 2. Solve (12.2.1)-(12.2.3), giving dk;
if ‖dk‖ ≤ ε then stop;
let i = 0, βk,0 = 1;

Step 3. Choose σk,i such that (12.7.7) holds; if

Φk,i(βk,i) ≤ Φk,i(0) + µβk,iΦ′
k,i(0), (12.7.8)

then go to Step 4.
i := i + 1, βk,i ∈ [β1, β2]βk,i−1; go to Step 3;

Download more at Learnclax.com

552 CHAPTER 12. SEQUENTIAL QUADRATIC PROGRAMMING

Step 4. xk+1 = xk + βk,idk; σk+1,−1 = σk,i; update Bk+1;
k := k + 1; go to Step 2.

For the above algorithm, it can be shown that the following lemma holds.

Lemma 12.7.2 Assume that {xk}, {dk}, {Bk} are bounded. If A(x) =
∇c(x)T is full column rank for all x ∈ "n and if there exists a constant
δ > 0 such that

dT Bkd ≥ δ‖d‖22, ∀A(xk)T d = 0 (12.7.9)

holds for all k, then there exists a positive integer k′ such that

σk,i = σk′,0 = σ̄ > 0 (12.7.10)

for all k ≥ k′ and that
lim

k→∞
‖dk‖ = 0. (12.7.11)

Using this lemma, we can prove the global convergence result of Algo-
rithm 12.7.1

Theorem 12.7.3 Under the conditions of Lemma 12.7.2, any accumulation
point of {xk} generated by Algorithm 12.7.1 is a KKT point of (12.7.4)-
(12.7.5).

Now we show that when the iterates are close to a solution, any super-
linearly convergent step will be accepted by Algorithm 12.7.1.

Lemma 12.7.4 Suppose that the assumptions of Lemma 12.7.2 are satisfied,
and assume that the sequence {xk} generated by Algorithm 12.7.1 converges
to x∗. For any subsequence {ki, i = 1, 2, · · ·}, if

‖xki
+ dki

− x∗‖ = o(‖xki
− x∗‖), ki →∞, (12.7.12)

then we have that
xki+1 = xki

+ dki
(12.7.13)

for all large i.

Download more at Learnclax.com

12.7. SMOOTH EXACT PENALTY FUNCTIONS 553

Proof. Without loss of generality, we assume that ki ≥ k′. For simplicity
of notation, we substitute ki by j. From the descriptions of the algorithm,
we only need to show that

Φj,0(1)− Φj,0(0)− µΦ′
j,0(0) < 0. (12.7.14)

It follows from (12.7.10) that

Φj,0(1) = f(xj + dj)− λ(xj + dj)T c(xj + dj) +
1
2
σ̄‖c(xj + dj)‖22. (12.7.15)

Because f(x) is twice continuously differentiable, we have that

f(xj + dj) = f(xj) +
1
2
dT

j [gj + g(xj + dj)] + o(‖dj‖22)

= f(xj) +
1
2
dT

j [gj + g(x∗)] + o(‖dj‖22). (12.7.16)

Also, we can obtain similar formulae as (12.7.16) for ci(xj +dj). Substituting
all these formulae into (12.7.15), we obtain that

Φj,0(1) − Φj,0(0) =
1
2
dT

j [gj + g(x∗)]

−λ(xj + dj)T
[
cj +

1
2
AT

j dj +
1
2
A(x∗)T dj

]

−
[
−λT

j cj +
1
2
σ̄‖cj‖22

]
+ o(‖dj‖22)

=
1
2
Φ′

j,0(0) +
1
2
dT

j [g(x∗)−A(x∗)λ(xj + dj)]

+o(‖dj)‖22) =
1
2
Φ′

j,0(0) + o(‖dj‖22). (12.7.17)

It is not difficult to show there exists a positive constant η̄ such that

Φ′
k,i(0) ≤ −η̄‖dk‖22 (12.7.18)

holds for all k and i. From (12.7.17), (12.7.18) and µ < 1
2 , we can see that

(12.7.14) holds for sufficiently large j = ki. Thus, the lemma is true. �

A direct corollary of the above result is the superlinear convergence of
the algorithm, which we write as follows.

Download more at Learnclax.com

554 CHAPTER 12. SEQUENTIAL QUADRATIC PROGRAMMING

Theorem 12.7.5 Suppose that the assumptions of Lemma 12.7.2 are satis-
fied, and assume that the sequence {xk} generated by Algorithm 12.7.1 con-
verges to x∗. If

lim
k→∞

‖xk + dk − x∗‖
‖xk − x∗‖ = 0, (12.7.19)

then we have that xk+1 = xk + dk for all sufficiently large k, which implies
that {xk} superlinearly converges to x∗.

12.8 Reduced Hessian Matrix Method

The reduced Hessian matrix method was also developed from the Lagrange-
Newton method. A fundamental idea of the reduced Hessian matrix method
is that only part of the Hessian matrix of the Lagrangian function is used so
that the method requires less storage and computing costs in each iteration.

Consider the equality constrained problem (12.1.1) and (12.1.2). Denot-
ing the Lagrange-Newton step by (dk, (δλ)k), it follows from (12.1.6) that
[

W (xk, λk) −A(xk)
−A(xk)T 0

] [
dk

(δλ)k

]
= −

[
∇f(xk)−A(xk)λk

−c(xk)

]
. (12.8.1)

Using the notations

Wk = W (xk, λk), (12.8.2)
Ak = A(xk) = ∇c(xk)T , (12.8.3)
gk = ∇f(xk), (12.8.4)
ck = c(xk), (12.8.5)
λ̂k = λk + (δλ)k, (12.8.6)

we can rewrite (12.8.1) as
[

Wk −Ak

−AT
k 0

] [
dk

λ̂k

]
=

[
−gk

ck

]
. (12.8.7)

Let the QR factorization of Ak be

Ak = [Yk Zk]

[
Rk

0

]
, (12.8.8)

Download more at Learnclax.com

12.8. REDUCED HESSIAN MATRIX METHOD 555

then linear system (12.8.7) can be written in the following form:⎡
⎢⎣ Y T

k WkYk Y T
k WkZk −Rk

ZT
k WkYk ZT

k WkZk 0
−RT

k 0 0

⎤
⎥⎦
⎡
⎢⎣ pk

qk

λ̂k

⎤
⎥⎦ =

⎡
⎢⎣ −Y T

k gk

−ZT
k gk

ck

⎤
⎥⎦ , (12.8.9)

where

pk = Y T
k dk, (12.8.10)

qk = ZT
k dk. (12.8.11)

It is obvious that pk and qk are the projections of dk to the range space of
AT

k and the null space of AT
k . Because (12.8.9) has a block triangle form, we

can easily solve pk, qk and λ̂k in turns:

RT
k pk = −ck, (12.8.12)

(ZT
k WkZk)qk = −ZT

k gk − ZT
k WkYkpk, (12.8.13)

Rkλ̂k = Y T
k gk + Y T

k Wk(Ykpk + Zkqk). (12.8.14)

If we consider only the last two lines in the linear system (12.8.9), we obtain
a linear system independent of λ:[

ZT
k WkYk ZT

k WkZk

−RT
k 0

] [
pk

qk

]
=

[
−ZT

k gk

ck

]
, (12.8.15)

which is essentially [
ZT

k Wk

−AT
k

]
dk =

[
−ZT

k gk

ck

]
. (12.8.16)

Nocedal and Overton [232] suggests that the matrix ZT
k Wk be replaced by

a quasi-Newton matrix Bk, namely at each iteration the line search direction
dk is obtained by solving the linear system[

Bk

−AT
k

]
d =

[
−ZT

k gk

ck

]
, (12.8.17)

where Bk ∈ "(n−m)×n is an approximation to ZT
k Wk. We can apply Broy-

den’s nonsymmetric rank-one formula to update Bk, that is

Bk+1 = Bk +
(yk −Bksk)sT

k

sT
k sk

, (12.8.18)

Download more at Learnclax.com

556 CHAPTER 12. SEQUENTIAL QUADRATIC PROGRAMMING

where

sk = xk+1 − xk, (12.8.19)
yk = ZT

k+1gk+1 − ZT
k gk. (12.8.20)

Because ZT
k Wk is a one-side reduced Hessian matrix, this method is also

called the one-side reduced Hessian matrix method. Under certain conditions,
Nocedal and Overton [232] proved that the one-side reduced Hessian matrix
method using (12.8.18)-(12.8.20) is locally superlinearly convergent.

If we use a symmetric matrix Bk ∈ "(n−m)×(n−m) to substitute for
ZT

k WkZk, and a zero matrix to replace ZT
k WkYk, we can see that (12.8.15)

yields that [
0 Bk

−RT
k 0

] [
pk

qk

]
=

[
−ZT

k gk

ck

]
. (12.8.21)

One reason for doing so is a fact discovered by Powell [274] that the SQP
method converges 2-step Q-superlinearly

lim
k→∞

‖xk+1 − x∗‖
‖xk−1 − x∗‖ = 0 (12.8.22)

provided Y T
k WkZk is bounded. Another reason is that when all iteration

points are feasible, we have pk = 0, the value of ZT
k WkYk does not alter qk.

For linearly constrained problems, all iteration points xk(k ≥ k0) are feasible
if the initial point xk0 is feasible. An advantage of updating ZT

k WkZk instead
of ZT

k Wk is that ZT
k WkZk is a square matrix and it is symmetric positive

definite near the solution where the second-order sufficient conditions hold.
Therefore, we can use positive definite matrices to approximate it, such as
the BFGS update:

Bk+1 = Bk −
Bksks

T
k Bk

sT
k Bksk

+
yky

T
k

sT
k yk

, (12.8.23)

where

sk = ZT
k (xk+1 − xk), (12.8.24)

yk = ZT
k+1gk+1 − ZT

k gk. (12.8.25)

We can write (12.8.21) in the equivalent form[
BkZ

T
k

−AT
k

]
dk =

[
−ZT

k gk

ck

]
. (12.8.26)

Download more at Learnclax.com

12.8. REDUCED HESSIAN MATRIX METHOD 557

Because the matrix Bk tries to approximate ZT
k WkZk, which is a two-side

reduced Hessian matrix, the method using search direction dk defined by
(12.8.26) is called the two-side reduced Hessian matrix method. Such a
method is two-step superlinearly convergent near the solution.

Theorem 12.8.1 Let dk be defined by (12.8.26). If xk+1 = xk+dk, xk → x∗,
A(x∗) is full column rank, second-order sufficient conditions hold at x∗, and
‖B−1

k ‖ is bounded uniformly and satisfies

lim
k→∞

‖[Bk − Z(x∗)T W (x∗, λ∗)Z(x∗)]ZT
k dk‖

‖dk‖
= 0, (12.8.27)

then the sequence converges 2-step Q-superlinearly:

lim
k→∞

‖xk+1 − x∗‖
‖xk−1 − x∗‖ = 0. (12.8.28)

Proof. It follows from (12.8.26) that

BkZ
T
k dk = −ZT

k gk = −ZT
k [gk −Akλ

∗]
= −ZT

k W (x∗, λ∗)(xk − x∗) + O(‖xk − x∗‖2). (12.8.29)

Thus, we have that

[Bk − Z(x∗)T W (x∗, λ∗)Z(x∗)]ZT
k dk

= −ZT
k W (x∗, λ∗)(xk − x∗)− Z(x∗)T W (x∗, λ∗)dk

+O(‖xk − x∗‖2) + O(‖Y (x∗)T dk‖) + o(‖dk‖)
= −ZT

k W (x∗, λ∗)(xk + dk − x∗)
+O(‖xk − x∗‖2 + ‖Y (x∗)T dk‖) + o(‖dk‖). (12.8.30)

Therefore, based on the assumption (12.8.27), it follows from the above in-
equality that

ZT
k W (x∗, λ∗)(xk+dk−x∗) = o(‖xk−x∗‖+‖dk‖)+O(‖Y (x∗)T dk‖). (12.8.31)

The definition of dk implies that

AT
k (xk + dk − x∗) = O(‖xk − x∗‖2). (12.8.32)

Because A(x∗) is full column rank, we have that

‖Y (x∗)T dk‖ = O(‖c(xk)‖) = O(‖dk−1‖2). (12.8.33)

Download more at Learnclax.com

558 CHAPTER 12. SEQUENTIAL QUADRATIC PROGRAMMING

Using (12.8.31) and (12.8.32), we see that[
ZT

k W (x∗, λ∗)
AT

k

]
(xk+dk−x∗) = o(‖xk−x∗‖+‖dk‖)+o(‖dk−1‖). (12.8.34)

Observing the assumption that B−1
k is uniformly bounded, and using (12.8.26),

we can show that
‖dk‖ = O(‖xk − x∗‖), (12.8.35)

which indicates that ‖xk − x∗‖ ≤ ‖xk−1 − x∗‖ + ‖dk−1‖ = O(‖xk−1 − x∗‖).
Thus, it follows from (12.8.34) that[

ZT
k W (x∗, λ∗)

AT
k

]
(xk + dk − x∗) = o(‖xk−1 − x∗‖). (12.8.36)

Similar to (12.3.19), we can prove that the matrix[
Z(x∗)T W (x∗, λ∗)

A(x∗)T

]
(12.8.37)

is nonsingular. Therefore, it follows from (12.8.36) that

‖xk + dk − x∗‖ = o(‖xk−1 − x∗‖), (12.8.38)

which shows that the theorem is true. �

The 2-step superlinearly convergence result of the two-side reduced Hes-
sian matrix method can not be improved. In fact, an example given by Yuan
[370] shows that it is possible to show that

‖x2k+1 − x∗‖∞ = ‖x2k − x∗‖∞, (12.8.39)
‖x2k+2 − x∗‖∞ = ‖x2k+1 − x∗‖2∞, (12.8.40)

which reveals the “one-step fast one-step slow” behaviour of the two-side
reduced Hessian matrix method, and it shows that it is impossible to establish
a one-step Q-superlinearly convergence result. A similar example was also
given by Byrd [40] independently.

Exercises

1. Use the Lagrange-Newton method to solve Rosenbrock’s problem:

min (1− x1)2

s.t. x2 − x2
1 = 0

Download more at Learnclax.com

12.8. REDUCED HESSIAN MATRIX METHOD 559

with initial point (0.8, 0.6)T and λ = 1.0. Give the first three iterations.

2. The damped BFGS update (12.2.39) uses ȳk which is a linear combina-
tion of yk and Bksk. Consider the case generating ȳk by linear combinations
of yk and sk. What are the advantages and disadvantages of using sk instead
of Bksk?

3. Prove Corollary 12.3.4.

4. If the QP subproblem in a SQP method is infeasible, one way to
overcome this difficulty is to consider the subproblem

mind∈n,θ∈[0,1] gT
k d +

1
2
dT Bkd + σ(1− θ)2

s.t. ai(xk)T d + θci(xk) = 0, i ∈ E,

ai(xk)T d + θci(xk) ≥ 0, i ∈ I.

Let (d(σ), θ(σ) be the solution of the above QP subproblem. Prove that θ(σ)
is non-decreasing as σ increases. Discuss the case when θ(σ) = 0 for all σ > 0.

5. Consider application of the SQP method to the following problem:

min −x1 + 10(x2
1 + x2

2)
s.t. x2

1 + x2
2 = 1.

Give the point x̄ = (cos(θ), sin(θ))T and calculate d by solving the QP sub-
problem with B = I. Assume θ is very small and show that

Pσ(x̄) < Pσ(x̄ + d)

for any σ ≥ 0, where Pσ(x) is the L1 exact penalty function. Calculate a
second-order correction step d̂ and verify that

Pσ(x̄) > Pσ(x̄ + d + d̂).

6. Prove that the Watchdog Technique (Algorithm 12.5.1) can overcome
the Maratos Effect.

Download more at Learnclax.com

560 CHAPTER 12. SEQUENTIAL QUADRATIC PROGRAMMING

7. Apply the two-sided reduced Hessian method to the following problem:

min
1
2
x2

2 − x1x2 +
1

6(1− x2)3
[
−4(x2 − x1)3 − 6(x2 − x1)2(x1 − x2

2)

−12(x2 − x1)(x1 − x2
2)

2 − 17(x1 − x2
2)

3 + 3
(x1 − x2

2)
4

1− x2

]

s.t. x1 +
1

(1− x2)2
[(x2 − x1)2 + (x2 − x1)(x1 − x2

2) + 2(x1 − x2
2)

2] = 0

with initial point (ε, ε), where ε > 0 is a very small positive number. You
will find the iterates converge to the solution (0, 0) in the one-fast-one-slow
pattern.

Download more at Learnclax.com

Chapter 13

Trust-Region Methods for
Constrained Problems

13.1 Introduction

Trust-region methods for unconstrained optimization have been discussed in
Chapter 6. In this chapter we consider trust-region methods for constrained
optimization.

The essential of a trust-region method is that the trial step is within
a trust-region. Unlike line search methods where line searches are carried
out along a search direction, trust-region algorithms compute a trial step dk

which satisfies
‖dk‖ ≤ ∆k, (13.1.1)

where ∆k > 0 is the trust-region bound at the k-th iteration, and ‖ · ‖
is some norm in "n. The fundamental belief is that the increment to the
variables should not be too large and that it seems not to be a wise idea to
search along a not-so-good direction (for example when step of one is not
accepted in the search direction). For unconstrained optimization, a line
search type algorithm normally obtains its search direction by minimizing
an approximation model (for example, a quadratic model in a quasi-Newton
method). Minimizing the same approximation model with the trust-region
constraint:

‖d‖ ≤ ∆k (13.1.2)

would give a trial step in the trust-region. Therefore it is obvious that almost
all line search algorithms for unconstrained optimization can be modified to

Download more at Learnclax.com

562 CHAPTER 13. TR METHODS FOR CONSTRAINED PROBLEMS

derive corresponding trust-region algorithms.
Unfortunately, the situation for constrained cases are not the same. First,

it is easy to see that we can not transform a line search algorithm for con-
strained optimization into a trust-region algorithm by simply adding a trust-
region constraint (13.1.2) to the subproblem of a line search algorithm. Be-
cause the subproblems of most line search algorithms for constrained opti-
mization have linear or quadratic constraints, which are approximations to
the original constraints, these linear or quadratic constraints may not be
consistent with the trust-region condition. For example, if the line search al-
gorithm we have in mind is the Wilson-Han-Powell method discussed in Sec-
tion 12.2, the undesirable situation is that the linearized constraints (12.2.2)–
(12.2.3) may have no solutions in the trust-region (13.1.2). To overcome this
infeasibility difficulty, some special considerations have to be made. There are
mainly three approaches, which lead to three different types of trust-region
subproblems.

The first approach is to scale the constraint violations:

θkci(xk) + dT∇ci(xk) = 0 i = 1, 2, . . . , me; (13.1.3)
θkci(xk) + dT∇ci(xk) ≥ 0 i = me + 1, . . . , m (13.1.4)

where θk ∈ (0, 1] is a parameter (see Byrd, Schnabel and Shultz [48] and
Vardi [345]). We can see that a smaller θk would have smaller constraint
violations for the linearized constraints (13.1.3)–(13.1.4), which makes it more
likely that its feasible set has a nonempty intersection with the trust-region
(13.1.2). Geometrically, the parameter θk moves all the feasible points of the
linearized constraints (12.2.2)–(12.2.3) towards the origin with the fraction of
βk. Trial steps of the trust-region algorithms that apply null space techniques
can also be viewed as solutions of (13.1.2)–(13.1.4).

The second approach is replacing all the linearized constraints by a linear
squares constraint. Namely, linear constraints (12.2.2)–(12.2.3) are replaced
by a single constraint:

me∑
i=1

(ci(xk) + dT∇ci(xk))2 +
m∑

i=me+1

(
min(0, ci(xk) + dT∇ci(xk))

)2
≤ ξk

(13.1.5)
where ξk ≥ 0 is a parameter. It can be seen that if ξk = 0, the single
constraint on piece-wise linear squares is equivalent to the original linearized
constraints (12.2.2)–(12.2.3). The parameter ξk should be chosen in such a

Download more at Learnclax.com

13.2. LINEAR CONSTRAINTS 563

way that the constraint (13.1.5) has a nonempty intersection with the trust-
region ball (13.1.2).

The third way to overcome the inconsistency of the linearized constraints
and the trust-region constraint is replacing the linearized constraints by a
penalty term in the subproblem. This approach is essentially applying a trust-
region algorithm for nonsmooth optimization to the corresponding penalty
function.

A giant monograph on trust-region methods was published by Conn,
Gould and Toint [70].

13.2 Linear Constraints

In this section we give a trust-region algorithm for linearly constrained opti-
mization problems. The method uses trust-region conditions to define trial
steps and forces all iteration points in the feasible set. The method can be
considered as a combination of the feasible point method and a trust-region
technique.

Consider the linearly constrained problem

min
x∈"n

f(x) (13.2.1)

s. t. aT
i x = bi, i ∈ E, (13.2.2)

aT
i x ≥ bi, i ∈ I. (13.2.3)

Assume that the current iterate point xk at the k-th iteration is feasible. The
trust-region subproblem can be defined by

min
d∈"n

gT
k d +

1
2
dT Bkd

∆= φk(d), (13.2.4)

s.t. aT
i d = 0, i ∈ E, (13.2.5)

aT
i (xk + d) ≥ bi, i ∈ I, (13.2.6)
‖d‖∞ ≤ ∆k. (13.2.7)

It is easy to see that (13.2.4)–(13.2.7) is a quadratic programming prob-
lem, which can be solved by methods discussed in Chapter 9. Let dk be a
solution of (13.2.4)–(13.2.7). Define the ratio of actual reduction and pre-
dicted reduction by

rk =
f(xk)− f(xk + dk)

φk(0)− φk(dk)
. (13.2.8)

Download more at Learnclax.com

564 CHAPTER 13. TR METHODS FOR CONSTRAINED PROBLEMS

From the definition of dk, we can easily see that dk = 0 if and only if xk is a
KKT point of the original problem (13.2.1)–(13.2.3). Because all constraints
are considered in the subproblem (13.2.4)–(13.2.7), the zigzagging can not
happen. The following is the statement of a trust-region algorithm, assuming
that the initial point x1 is feasible.

Algorithm 13.2.1

Step 1. Given x1 satisfying (13.2.2)–(13.2.3); given B1 ∈ "n×n,
∆1 > 0, ε ≥ 0, k := 1.

Step 2. Solve (13.2.4)–(13.2.7) giving dk; if ‖dk‖ ≤ ε then stop;
Compute (13.2.8);

xk+1 =

{
xk + dk, if rk > 0
xk, Otherwise.

(13.2.9)

Step 3. If rk ≥ 0.25, go to Step 4;
∆k := ∆k/2, go to Step 5.

Step 4. If rk < 0.75 or ‖dk‖∞ < ∆k then go to Step 5;
∆k := 2∆k.

Step 5. ∆k+1 := ∆k; Generate Bk+1;
k := k + 1; go to Step 2.

The matrix Bk+1 can be updated by quasi-Newton formulae. In the
convergence analyses below, we assume that {Bk} are uniformly bounded.
Namely, there exists a positive constant M such that

‖Bk‖ ≤ M (13.2.10)

holds for all k.

Theorem 13.2.2 Assume that f(x) is continuously differentiable on the fea-
sible set and that (13.2.10) holds. If the sequence {xk} generated by Algo-
rithm 13.2.1 has accumulation points, then there exists an accumulation point
which is also a KKT point of the original constrained optimization problem
(13.2.1)–(13.2.3).

Download more at Learnclax.com

13.2. LINEAR CONSTRAINTS 565

Proof. If the theorem is not true, we can show that

lim
k→∞

∆k = 0. (13.2.11)

If the above relation does not hold, there exists a positive constant δ > 0,
such that

∆k ≥ δ and rk ≥ 0.25 (13.2.12)

hold for infinitely many k. Define by K0 the set of all k such that (13.2.12)
hold. Without loss of generality, we assume that

lim
k∈K0
k→∞

xk = x̄. (13.2.13)

From our assumption, x̄ is not a KKT point of (13.2.1)–(13.2.2), thus d = 0
is not a solution of

min g(x̄)T d +
M

2
‖d‖22 (13.2.14)

s.t. aT
i d = 0, i ∈ E, (13.2.15)

aT
i (x̄ + d) ≥ 0, i ∈ I, (13.2.16)
‖d‖∞ ≤ δ/2. (13.2.17)

Let d̄ be a solution of (13.2.14)–(13.2.17), then

η = g(x̄)T d̄ +
1
2
M‖d̄‖22 < 0. (13.2.18)

Thus, it follows from (13.2.12), (13.2.13) and (13.2.18) that

φk(0)− φk(dk) ≥ −
1
2
η > 0 (13.2.19)

holds for all sufficiently large k ∈ K0. Using (13.2.19) and the second in-
equality of (13.2.12) we can see that

f(xk)− f(xk+1) ≥ −
1
8
η > 0 (13.2.20)

holds for all sufficiently large k ∈ K0. Because limk→∞ f(xk) = f(x̄),
(13.2.20) can not hold for infinitely many k. This contradiction indicates
that (13.2.11) must hold if the theorem is not true.

Download more at Learnclax.com

566 CHAPTER 13. TR METHODS FOR CONSTRAINED PROBLEMS

Now we suppose that the theorem is not true. The above analyses imply
that (13.2.11) holds. There exists a subsequence K1 such that

rk < 0.25, ∀k ∈ K1. (13.2.21)

Assume that
lim

k∈K1
k→∞

xk = x̂. (13.2.22)

From our assumption, x̂ is not a KKT point. Let d̂ be a solution of the
subproblem

min
d∈"n

g(x̂)T d +
1
2
M‖d‖22, (13.2.23)

s.t. aT
i d = 0, i ∈ E, (13.2.24)

aT
i (x̂ + d) ≥ bi, i ∈ I, (13.2.25)
‖d‖∞ ≤ 1, (13.2.26)

then we have that
g(x̂)T d̂ +

M

2
‖d̂‖22 = η̂ < 0. (13.2.27)

Thus, because (∆kd̂) is a feasible point of the problem

mind∈"n g(x̂)T d +
1
2
M‖d‖22, (13.2.28)

s.t. aT
i d = 0, i ∈ E, (13.2.29)

aT
i (x̂ + d) ≥ bi, i ∈ I, (13.2.30)
‖d‖∞ ≤ ∆k, (13.2.31)

we can see that
g(x̂)T d̂k +

1
2
M‖d̂k‖22 < ∆kη̂, (13.2.32)

provided that ∆k ≤ 1, where d̂k is a solution of (13.2.28)–(13.2.31). It follows
from (13.2.22) and (13.2.32) that

φk(0)− φk(dk) ≥ −
1
2
η̂∆k (13.2.33)

holds for all sufficiently large k ∈ K1. From the continuously differentiable
property of f(x) and the uniform boundedness of {Bk}, we have that

Predk = Aredk + o(‖dk‖). (13.2.34)

Download more at Learnclax.com

13.2. LINEAR CONSTRAINTS 567

It can be shown from (13.2.33) and (13.2.34) that

lim
k∈K1
k→∞

rk = 1. (13.2.35)

This contradicts (12.2.21). Therefore the theorem is true. �

Similar to our analysis of the trust-region method for unconstrained op-
timization, Theorem 13.2.2 is still true if the condition (13.2.10) is replaced
by

∞∑
k=1

1
1 + max1≤i≤k ‖Bi‖

= +∞. (13.2.36)

From the proof of the above theorem, we can see that it is not necessary to
require the trial step dk to be the exact solution of (13.2.4)–(13.2.7). Define
the projected gradient of f(x) (with respect to the feasible set X) by

∇Xf(x) = lim
α→0+

P (x− α∇f(x))− x

α
, (13.2.37)

where
P (y) = arg min{‖z − y‖, z ∈ X}.

It is not difficult to show that x∗ is a KKT point of (13.2.1)–(13.2.3) if and
only if

∇Xf(x∗) = 0. (13.2.38)

From the proof of Theorem 13.2.2, we can see that Algorithm 13.2.1 remains
globally convergent provided that dk is a feasible point of (13.2.5)–(13.2.7)
and satisfies

φk(0)− φk(dk) ≥ δ̄‖∇Xf(xk)‖min
{

∆k,
‖∇Xf(xk)‖
‖Bk‖

}
. (13.2.39)

As for local convergence analysis, we assume that xk → x∗ and that there
are only equality constraints. We also assume that the second-order sufficient
conditions hold at x∗ and that the Jacobian matrix A(x∗) = ∇c(x∗)T ∈ "n×m

has full column rank. Under these conditions, it is not difficult to show that
Algorithm 13.2.1 is superlinearly convergent, namely

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖ = 0 (13.2.40)

Download more at Learnclax.com

568 CHAPTER 13. TR METHODS FOR CONSTRAINED PROBLEMS

if and only if

lim
k→∞

‖Z∗T (Bk − [∇2f(x∗)−∑λ∗
i∇2ci(x∗)])Z∗Z∗T dk‖

‖dk‖
= 0, (13.2.41)

where Z∗ ∈ "n×(n−m) is a matrix satisfying Z∗T A(x∗) = 0 and Z∗T Z∗ = I.

13.3 Trust-Region Subproblems

The key part of a trust-region algorithm is the calculation of the trial step
dk, which is normally a solution of a trust-region subproblem. Therefore the
crucial issue of a trust-region algorithm is the construction of the trust-region
subproblem. Because one of the most successful line search type methods is
the sequential quadratic programming method, it is natural to consider the
combination of quadratic models and trust-region technique. The combined
method is usually called the TR-SQP (Trust-Region – Sequential Quadratic
Programming) method. Since a trust-region constraint has the form

‖d‖ ≤ ∆k, (13.3.1)

directly amalgamating (13.3.1) and the quadratic programming subproblem
(12.2.1)–(12.2.3) of the sequential quadratic programming method gives the
following subproblem:

mind∈"n gT
k d +

1
2
dT Bkd

∆= φk(d), (13.3.2)

s.t. ci(xk) + ai(xk)T d = 0, i ∈ E (13.3.3)
ci(xk) + ai(xk)T d ≥ 0, i ∈ I (13.3.4)
‖d‖ ≤ ∆k. (13.3.5)

This is not a perfect way, as the constraints (13.3.3)–(13.3.5) might have
no solutions. Therefore, the subproblem (13.3.2)–(13.3.5) has to be modi-
fied in order to derive a reasonable trust-region subproblem for constrained
optimization.

First, we can consider a subproblem of the following type:

mind∈"n gT
k d +

1
2
dT Bkd

∆= φk(d), (13.3.6)

s.t. θkci(xk) + dT∇ci(xk) = 0, i ∈ E, (13.3.7)
θkci(xk) + dT∇ci(xk) ≥ 0, i ∈ I, (13.3.8)
‖d‖ ≤ ∆k, (13.3.9)

Download more at Learnclax.com

13.3. TRUST-REGION SUBPROBLEMS 569

where θk ∈ (0, 1] is a parameter. Subproblem (13.3.7)–(13.3.9) usually has
feasible points when θk is sufficiently small. Geometrically, multiplying ci(xk)
by a factor θk is to pull the feasible points of the linearized constraints towards
the original. In other words, the role of θk is to shift the line corresponding
to the linearized constraints to a parallel line that intersects the trust-region.
This technique of introducing a parameter had already been used in line
search algorithms.

If θk = 1, obviously the trial step dk obtained by solving subproblem
(13.3.6)–(13.3.9) may not be a feasible point of (13.3.3) and (13.3.4). In
order to force dk to be as feasible in the sense of (13.3.3)–(13.3.4) as possible,
we should choose θk as close to 1 as possible. On the other hand, the larger
the parameter θk, the smaller the feasible set of (13.3.7)–(13.3.9). To allow
certain freedom to the subproblem, we should not choose a too large θk.

The minimum-norm solution of the problem

min
d∈"n

‖(c(xk) + A(xk)T d)(−)‖2 (13.3.10)

is called the Gauss-Newton step, which is denoted by dGN
k . Here c(−) is

defined by (10.1.5)–(10.1.6). From the definition of dGN
k , (13.3.7)–(13.3.9) is

feasible if and only if
θk‖dGN

k ‖ ≤ ∆k. (13.3.11)

To avoid unnecessary small θk, it is reasonable to require

θk‖dGN
k ‖ ≥ δ1∆k (13.3.12)

if θk < 1, where δ1 ∈ (0, 1) is a given constant. For example, we can define
θk by the formula

θk =

{
1, if 2‖dGN

k ‖ ≤ ∆k,
1
2∆k/‖dGN

k ‖, otherwise.
(13.3.13)

An indirect way to choose the parameter θk is regarding θ = θk as a
variable. The idea of forcing θ as large as possible is achieved by a penalty
term σ(θ − 1)2. The subproblem can be written as

mind∈"n
,θ∈(0,1] gT

k d +
1
2
dT Bkd + σk(θ − 1)2, (13.3.14)

s.t. θci(xk) + dT∇ci(xk) = 0, i ∈ E, (13.3.15)
θci(xk) + dT∇ci(xk) ≥ 0, i ∈ I, (13.3.16)
‖d‖ ≤ ∆k, (13.3.17)

Download more at Learnclax.com

570 CHAPTER 13. TR METHODS FOR CONSTRAINED PROBLEMS

where σk > 0 is a penalty parameter.
Another method to overcome the inconsistency of (13.3.3)–(13.3.5) is re-

placing (13.3.3)–(13.3.4) by a single constraint, which requires the sum of the
squares of all linearized constraints being bounded by a certain bound:

‖(ck + AT
k d)(−)‖22 ≤ ξk, (13.3.18)

where ck = c(xk) = (c1(xk), · · ·, cm(xk))T , Ak = A(xk) = ∇c(xk)T , and
ξk > 0 is a parameter. Thus, the subproblem has the form

min
d∈"n

gT
k d +

1
2
dT Bkd, (13.3.19)

s.t. ‖(ck + AT
k d)(−)‖22 ≤ ξk, (13.3.20)

‖d‖22 ≤ ∆2
k. (13.3.21)

It is easy to see that ξk must satisfy

ξk ≥ min
‖d‖2≤∆k

‖(ck + AT
k d)(−)‖22, (13.3.22)

in order to secure the feasibility of (13.3.20)–(13.3.21). Let d̄k be the negative
gradient direction of the function ‖(ck + AT

k d)(−)‖22 at d = 0, namely d̄k =
−Akc

(−)
k , and let ᾱk > 0 be the solution of problem

min
α>0

‖αd̄k‖2≤∆k

‖(ck + AT
k αd̄k)(−)‖22. (13.3.23)

We call ᾱkd̄k the Cauchy point or the Cauchy step, which is denoted by dCP
k .

In the method of Celis, Dennis and Tapia [52],

ξk = ‖(ck + AT
k dCP

k)(−)‖22, (13.3.24)

while in Powell and Yuan [278], ξk can be any number satisfying

min
‖d‖2≤b1∆k

‖(ck + AT
k d)(−)‖22 ≤ ξk ≤ min

‖d‖2≤b2∆k

‖(ck + AT
k d)(−)‖22, (13.3.25)

where b1 ≥ b2 are two positive constants in (0, 1).
The third type of trust-region subproblem is based on exact penalty func-

tions. For example, based on the exact penalty function

P (x, σ) = f(x) + σ‖c(−)(x)‖, (13.3.26)

Download more at Learnclax.com

13.4. NULL SPACE METHOD 571

we can construct trust-region subproblem

min
d∈"n

gT
k d +

1
2
dT Bkd + σk‖(ck + AT

k d)(−)‖, (13.3.27)

s.t. ‖d‖ ≤ ∆k. (13.3.28)

For this kind of subproblems, the norm in (13.3.27) and that in (13.3.28) may
not be necessarily the same. For example, if we take the l1-norm in (13.3.27)
and l∞-norm in (13.3.28), we obtain the subproblem

min
d∈"n

gT
k d +

1
2
dT Bkd + σk

∑
i∈E

|ci(xk) +∇ci(xk)T d|

+σk

∑
i∈I

|ci(xk) +∇ci(xk)T d|(−) (13.3.29)

s.t. ‖d‖∞ ≤ ∆k. (13.3.30)

Essentially, a trust-region algorithm based on subproblem (13.2.27)–(13.2.28)
is the same as a nonsmooth trust-region algorithm for minimizing the exact
penalty function (13.3.26).

13.4 Null Space Method

Consider the equality constrained problem

minx∈"n f(x), (13.4.1)
s.t. c(x) = 0. (13.4.2)

The trust-region subproblem (13.3.6)–(13.3.9) can be written as

mind∈"n gT
k d +

1
2
dT Bkd = φk(d), (13.4.3)

s.t. θkck + AT
k d = 0, (13.4.4)

‖d‖2 ≤ ∆k. (13.4.5)

We assume that ck ∈ Range (AT
k), it follows from (13.3.11) that θk should

satisfy
θk‖(AT

k)+ck‖2 ≤ ∆k. (13.4.6)

Download more at Learnclax.com

572 CHAPTER 13. TR METHODS FOR CONSTRAINED PROBLEMS

Let dk be a solution of (13.4.3)–(13.4.5). It can be seen that dk is also a
solution of the following problem

mind∈"n φk(d), (13.4.7)

s.t. AT
k (d− d̂k) = 0, (13.4.8)
‖d− d̂k‖2 ≤ ∆̄k, (13.4.9)

where

d̂k = −θk(AT
k)+ck, (13.4.10)

∆̄k =
√

∆2
k − ‖d̂k‖22. (13.4.11)

Notice that d̂k = θkd
GN
k where dGN

k is the Gauss-Newton step discussed in
the previous section. Define variable d̄ = d− d̂k and let Zk be a matrix whose
columns are an orthonormal base of the null space of AT

k , namely AT
k Zk = 0,

ZT
k Zk = I. We can then write

d̄ = Zku, u ∈ "n−r, (13.4.12)

where r is the rank of Ak. Using the above relation, we can rewrite subprob-
lem (13.4.7)–(13.4.9) in the following equivalent form:

min
u∈"n−r ḡT

k u +
1
2
uT B̄ku, (13.4.13)

s.t. ‖u‖2 ≤ ∆̄k, (13.4.14)

where ḡk = ZT
k (gk +Bkd̂k), B̄k = ZT

k BkZk. This is already in the form of the
trust-region subproblem for unconstrained optimization, which is discussed
in Chapter 6. Techniques given there can be used to solve problem (13.4.13)–
(13.4.14), giving uk. Once uk is computed, the trial step dk can be obtained
by using dk = d̂k + Zkuk.

We use the L1 exact penalty function

P1(x) = f(x) + σk‖c(x)‖1 (13.4.15)

as the merit function to decide whether the trial step dk should be accepted.
The actual reduction of the exact penalty function is

Aredk = P1(xk)− P1(xk + dk). (13.4.16)

Download more at Learnclax.com

13.4. NULL SPACE METHOD 573

We define the predicted reduction by the reduction of the approximate penalty
function φk(d) + σk‖ck + AT

k d‖1, namely,

Predk = φk(0)− φk(dk) + σk[‖ck‖1 − ‖ck + AT
k dk‖1]. (13.4.17)

Assume that f(x) and c(x) are twice continuously differentiable and ‖Bk‖ is
bounded, then we have that

Aredk = Predk + O(‖dk‖22). (13.4.18)

From the definition of d̂k, it follows that

d̂k = (AT
k)+AT

k dk, (13.4.19)
dk − d̂k = ZkZ

T
k dk = (I − (AT

k)+AT
k)dk. (13.4.20)

The step d̂k is a vector in the range space of Ak, hence it is called the range
space step. While the step dk − d̂k is in the null space of AT

k , it is called the
null space step. Geometrically, it is often that the range space step is vertical
and the null space step is horizontal when we sketch an illustrated diagram
(for example, see Figure 13.4.1). Therefore, the range space step and the null
space step are called the vertical step and the horizontal step respectively.

Figure 13.4.1

Using the vertical step and the horizontal step, we can decompose the
predicted reduction into two parts:

V predk = φk(0)− φk(d̂k) + σk(‖ck‖1 − ‖ck + AT
k d̂k‖1), (13.4.21)

Hpredk = φk(d̂k)− φk(dk). (13.4.22)

Download more at Learnclax.com

574 CHAPTER 13. TR METHODS FOR CONSTRAINED PROBLEMS

We can assume that θk satisfies the “not too small” condition:

θk‖(AT
k)+ck‖2 ≥ δ1∆k, if θk < 1. (13.4.23)

Assume again that we choose a sufficiently large σk so that

σk ≥
∥∥∥∥A+

k

(
gk +

1
2
Bkd̂k

)∥∥∥∥∞ + ρ. (13.4.24)

With all these, we can show that

V predk ≥ ρ min[‖ck‖1, δ1∆k/‖(AT
k)+‖2]. (13.4.25)

For the null space, the situation is essentially the same as that of uncon-
strained optimization. Applying Lemma 6.1.3, we have that

Hpredk ≥
1
2
‖ḡk‖2 min[∆̄k, ‖ḡk‖2/‖B̄k‖2]. (13.4.26)

Thus, we have established that there exist positive constants ρ1, ρ2 such that

Predk ≥ ρ1 min[‖ck‖1,∆k/‖(AT
k)+‖2]

+ρ2‖ḡk‖2 min[∆̄k, ‖ḡk‖2/‖B̄k‖2]. (13.4.27)

In practice, we can first compute d̂k using the Gauss-Newton step, and then
obtain uk by solving (13.4.13)–(13.4.14) inexactly. The vector dk = d̂k+Zkuk

satisfies the sufficient reduction condition (13.4.27).
The following is a trust-region algorithm based on null space technique.

Algorithm 13.4.1

Step 1. Given x1 ∈ "n, ∆1 > 0, ε ≥ 0.
0 < β3 < β4 < 1 < β1, 0 ≤ β0 ≤ β2 < 1,
β2 > 0, σ1 > 0, k := 1;

Step 2. If ‖ck‖2 + ‖ZT
k gk‖2 ≤ ε then stop;

If (13.4.24) is satisfied then go to Step 3. Set

σk =
∥∥∥∥A+

k

(
gk +

1
2
Bkd̂k

)∥∥∥∥+ 2ρ;

Step 3. Compute a trial step dk satisfying (13.4.27).

Download more at Learnclax.com

13.4. NULL SPACE METHOD 575

Step 4. Compute Aredk and Predk by (13.4.16)–(13.4.17);
Set rk = Aredk/Predk;

xk+1 =

{
xk + dk, if rk > β0,
xk, otherwise.

(13.4.28)

Choose ∆k+1 such that

∆k+1 ∈
{

(β3‖dk‖2, β4∆k), if rk < β2,
(∆k, β1∆k), otherwise.

(13.4.29)

Step 5. Generate Bk+1; Set σk+1 := σk and k := k + 1; go to Step
2.

In order to establish the global convergence of the above algorithm, we
need the following lemma.

Lemma 13.4.2 If dk satisfies (13.4.27), the inequality

Predk ≥ τ min[εk, 1] min[∆k, εk/(1 + ‖Bk‖2)] (13.4.30)

holds, where τ = min[ρ1/[2 max(1, ‖A+
k ‖2)], ρ2/4] and

εk = ‖ck‖2 + ‖ZT
k gk‖2. (13.4.31)

Proof. If
‖ck‖2 >

∆k

2‖A+
k ‖2

, (13.4.32)

it follows directly from (13.4.27) that

Predk ≥ ρ1∆k/2‖A+
k ‖2. (13.4.33)

Thus we see that (13.4.30) holds.
Therefore, for the rest of the proof we can assume that (13.4.32) is not

true. This implies that

∆̄k =
√

∆2
k − ‖d̂k‖22 ≥

√
∆2

k − (‖A+
k ‖2‖ck‖22)2 ≥

1
2
∆k. (13.4.34)

If
(1 + 2‖Bk‖2‖A+

k ‖2)‖ck‖2 ≤ ‖ZT
k gk‖2, (13.4.35)

Download more at Learnclax.com

576 CHAPTER 13. TR METHODS FOR CONSTRAINED PROBLEMS

we can show that

‖ḡk‖2 ≥ ‖ZT
k gk‖2 − ‖Bk‖2‖d̂k‖2

≥ ‖ZT
k gk‖2 − ‖Bk‖2‖A+

k ‖2‖ck‖2

≥ 1
2
(‖ZT

k gk‖2 + ‖ck‖2) =
1
2
εk. (13.4.36)

This inequality, (13.4.34) and (13.4.27) indicate that (13.4.30) holds when
τ = ρ2/4.

Now, we assume that inequality (13.4.35) does not hold, which implies
that

‖ck‖2 ≥
εk

2(1 + ‖Bk‖2‖A+
k ‖2)

. (13.4.37)

Consequently, we can use (13.4.27) to show that

Predk ≥ ρ1 min[εk/[2(1 + ‖Bk‖2‖A+
k ‖2)], ∆k/‖A+

k ‖2]
≥ ρ1

2 max[1, ‖A+
k ‖2]

min[∆k, εk/(1 + ‖Bk‖2)], (13.4.38)

which says that (13.4.30) holds when τ = ρ1/(2 max[1, ‖A+
k ‖2]). �

The following lemma says that the norm of the trial step can not converge
to zero faster than the reciprocal of the norm of quasi-Newton matrices Bk,
if the iteration points are bounded away from KKT points.

Lemma 13.4.3 Assume that f(x) and c(x) are twice continuously differen-
tiable and that {xk, k = 1, 2, ...} are generated by Algorithm 13.4.1. If ‖Ak‖2
is bounded above uniformly and

‖ck‖2 + ‖ZT
k gk‖2 ≥ δ > 0 (13.4.39)

for all k, then there exists a positive constant β5 such that

‖dk‖2 ≥ β5/Mk, k = 1, 2, · · · (13.4.40)

holds for all k, where
Mk = max

1≤i≤k
‖Bi‖2 + 1. (13.4.41)

Proof. If ‖dk‖2 < ∆k, we can easily see that

‖d̄k‖2 < ∆̄k. (13.4.42)

Download more at Learnclax.com

13.4. NULL SPACE METHOD 577

The definition of d̄k and the above inequality imply that

ḡk + B̄kd̄k = 0. (13.4.43)

Thus, we have

‖d̄k‖2 ≥
‖ḡk‖2
‖B̄k‖2

≥ ‖Z
T
k gk‖2
‖Bk‖2

≥ ‖Z
T
k gk‖2
Mk

. (13.4.44)

From the definition of d̂k, we see that

‖d̂k‖2 ≥ min
[
δ1∆k,

‖ck‖2
‖Ak‖2

]
. (13.4.45)

Relations (13.4.44) and (13.4.45) indicate that either

‖dk‖2 ≥ δ1∆k, (13.4.46)

or

‖dk‖2 ≥
1

2(1 + ‖Ak‖2)
‖ck‖2 + ‖ZT

k gk‖2
Mk

. (13.4.47)

The boundedness of ‖Ak‖ shows that (13.4.40) holds if (13.4.46) fails.
For the rest of the proof, we assume that (13.4.46) holds. If the lemma

is not true there exists a subsequence {ki} such that

‖dki
‖2 ≥ δ1∆ki

(13.4.48)

and
lim
i→∞

∆ki
Mki

= 0. (13.4.49)

A direct consequence of the above limit is ∆ki
→ 0. Because Mk is monotoni-

cally increasing, we can assume that ∆ki
< ∆ki−1 for all i. Denote ī = ki−1,

(13.4.29) implies that ‖dī‖2 ≥ ∆ki
/β3, which, together with (13.4.49) and

Mī ≤ Mki
, shows that

lim
i→∞

‖dī‖Mī = 0. (13.4.50)

This shows that
‖dī‖ ≥ δ1∆ī. (13.4.51)

This inequality guarantees the existence of a positive number τ̄ such that

Predī ≥ τ̄‖dī‖2 (13.4.52)

Download more at Learnclax.com

578 CHAPTER 13. TR METHODS FOR CONSTRAINED PROBLEMS

for sufficiently large i. This inequality and (13.4.18) show that

lim
i→∞

rki−1 = lim
i→∞

Aredī

Predī

= 1. (13.4.53)

Therefore, for sufficient large i, we have that

∆ki
≥ ∆ki−1. (13.4.54)

This contradicts the assumption that ∆ki−1 < ∆ki
. Thus, the lemma is true.

�

The following lemma is due to Powell [264], which is a very powerful tool
for convergence analysis of trust-region algorithms.

Lemma 13.4.4 Suppose that {∆k} and {Mk} are two sequences of positive
numbers. If there exist positive constants τ > 0, β1 > 0, β4 ∈ (0, 1), and a
subset I of {1, 2, 3, · · ·} such that

∆k+1 ≤ β1∆k, ∀k ∈ I;
∆k+1 ≤ β4∆k, ∀k ∈ I;
∆k ≥ τ/Mk, ∀k; (13.4.55)
Mk+1 ≥ Mk, ∀k;∑

k∈I 1/Mk < +∞,

then ∞∑
k=1

1
Mk

< +∞. (13.4.56)

Proof. Let p be a positive integer satisfying

β1 · βp−1
4 < 1. (13.4.57)

Define the set
Ik = I ∩ {1, 2, · · · , k}. (13.4.58)

Denote the number of elements of Ik by |Ik|. Define the set

J := {k | k ≤ p|Ik|}. (13.4.59)

From the monotone property of Mk and the above definition, we have that
∑
k∈J

1
Mk

≤ p
∑
k∈I

1
Mk

< +∞. (13.4.60)

Download more at Learnclax.com

13.4. NULL SPACE METHOD 579

For k ∈ J , we have that |Ik| < k/p, which gives |Ik−1| ≤ |Ik| ≤ (k − 1)/p.
Thus,

∆k ≤ β
|Ik−1|
1 β

k−1−|Ik−1|
4 ∆1

≤ (β1β
p−1
4)(k−1)/p∆1 (13.4.61)

holds for all k ∈ J . Consequently, we have that

∑
k �∈J

1
Mk

≤
∞∑

k=1

(β1β
p−1
4)(k−1)/p∆1/τ

=
∆1

τ [1− (β1β
p−1
4)1/p]

. (13.4.62)

Now, we can see that (13.4.56) follows from (13.4.60) and (13.4.62). �

Using the above lemmas, we can prove the global convergence of Algo-
rithm 13.4.1.

Theorem 13.4.5 Assume that f(x) and c(x) are twice continuously differ-
entiable, that all the iteration points {xk} generated by Algorithm 13.4.1 are
in an open set S, and that ∇f(x), ∇2f(x), A(x), ∇A(x) are bounded above
on S. If σk = σ̄ for all sufficiently large k, P1(xk) is bounded below, and
{‖Ak‖2, ‖A+

k ‖2} are uniformly bounded, and

∞∑
k=1

1
1 + max1≤i≤k ‖Bi‖2

= ∞, (13.4.63)

then
lim inf
k→∞

[‖ck‖2 + ‖ZT
k gk‖2] = 0. (13.4.64)

Furthermore, under additional assumptions that ‖Bk‖2 is uniformly bounded
and β0 > 0, we have that

lim
k→∞

[‖ck‖2 + ‖ZT
k gk‖2] = 0. (13.4.65)

Proof. If the theorem is not true, the sequence {Pσ̄(xk) = f(xk) +
σ̄‖c(xk)‖1} is bounded below and there exists a positive constant δ such
that (13.4.39) holds for all k. Define the set

I = {k|rk ≥ β2}, (13.4.66)

Download more at Learnclax.com

580 CHAPTER 13. TR METHODS FOR CONSTRAINED PROBLEMS

then it follows from Lemmas 13.4.2 and 13.4.3 that

+∞ >
∞∑

k=1

[Pσ̄(xk)− Pσ̄(xk+1)] ≥
∑
k∈I

[Pσ̄(xk)− Pσ̄(xk+1)]

≥
∑
k∈I

β2Predk ≥
∑
k∈I

1
2
β2δ min[∆k, δ/Mk]

≥
∑
k∈I

1
2
β2δ min[β5, δ]/Mk. (13.4.67)

This inequality and the previous lemma imply that

∞∑
k=1

1
Mk

< +∞, (13.4.68)

which contracts (13.4.63). Therefore the theorem is true. �

13.5 CDT Subproblem

Consider the subproblem (13.3.19)–(13.3.21) for the case when there are only
equality constraints (me = m). It can be written as

min
d∈"n

gT d +
1
2
dT Bd = φ(d), (13.5.1)

s.t. ‖AT d + c‖2 ≤ ξ, (13.5.2)
‖d‖2 ≤ ∆, (13.5.3)

here we omit the subscript for convenience. Such a subproblem was proposed
by Celis, Dennis and Tapia [52], and is generally called the CDT subproblem.

Obviously, only when

ξ ≥ ξmin = min
‖d‖2≤∆

‖AT d + c‖2, (13.5.4)

there exist feasible points for (13.5.2)–(13.5.3).
First, we consider the case when ξ = ξmin. It is easy to deduce from the

convexity of ‖d||2 that either there is only one feasible solution of (13.5.2)–
(13.5.3) or that

ξ = ξ∗min = min
d∈"n

‖AT d + c‖2. (13.5.5)

Download more at Learnclax.com

13.5. CDT SUBPROBLEM 581

The case when there is only one feasible solution of (13.5.2)–(13.5.3) requires
no further consideration since this feasible point must be the solution of the
CDT subproblem. This feasible point must have the following form:

d = −(AAT + λI)+c, (13.5.6)

where λ ≥ 0, and λ = 0 if ‖d‖2 < ∆. AAT + λI is nonsingular unless
‖d‖2 = ∆. For the case when (13.5.5) holds, we have that

‖d̂‖2 ≤ ∆, (13.5.7)

where d̂ = −(AT)+c is the minimal norm solution (also called the Gauss-
Newton Step). Let Z be a matrix whose columns are a basis of the null space
of AT . By the variable substitution d = d̂ + Zu as given in the previous
section, problem (13.5.1)–(13.5.3) can be transformed as

minu∈n̄ ḡT u +
1
2
uT B̄u, (13.5.8)

s.t. ‖u‖2 ≤ ∆̄, (13.5.9)

which is already in the form of the trust-region subproblem for unconstrained
optimization discussed in Chapter 6.

Therefore in this section, we concentrate our attention on the case when

ξ > ξmin. (13.5.10)

First we have the following necessary result.

Theorem 13.5.1 Let d∗ be a global solution of the subproblem (13.5.1)–
(13.5.3). Assume that (13.5.10) holds. Then there exist nonnegative con-
stants λ∗, µ∗ such that

(B + λ∗I + µ∗AAT)d∗ = −(g + µ∗Ac), (13.5.11)

where λ∗ and µ∗ satisfy the complementarity conditions

λ∗[∆− ‖d∗‖2] = 0, (13.5.12)
µ∗[ξ − ‖c + AT d∗‖2] = 0. (13.5.13)

Furthermore, the matrix

H(λ∗, µ∗) = B + λ∗I + µ∗AAT (13.5.14)

has at most one negative eigenvalue if the multipliers λ∗ and µ∗ are unique.

Download more at Learnclax.com

582 CHAPTER 13. TR METHODS FOR CONSTRAINED PROBLEMS

Proof. Assumption (13.5.10) implies that the feasible region X of (13.5.2)–
(13.5.3) is convex and has a nonempty interior, and we can easily prove that
LFD(d∗, X) = SFD(d∗, X). From the results in Chapter 8, there exist non-
negative numbers λ∗ and µ∗ such that (13.5.11)–(13.5.13) hold. To complete
the proof, we only need to prove that the matrix H(λ∗, µ∗) has no more than
one negative eigenvalue if the multipliers λ∗, µ∗ are unique.

If at most one of the constraints (13.5.2)–(13.5.3) is active at the solution
d∗, the second-order sufficient condition given in Chapter 8 shows that the
matrix H(λ∗, µ∗) has at most one negative eigenvalue.

For the rest of the proof, we assume that both constraints are active.
Define the vector

y∗ = A(c + AT d∗). (13.5.15)

If d∗ and y∗ are linearly dependent, there exists η ∈ " such that

y∗ = ηd∗. (13.5.16)

The assumption ξ > ξmin implies η > 0. It follows from the uniqueness
of λ∗ and µ∗ that λ∗ = µ∗ = 0. Thus, d∗ is a stationary point of φ(d).
From (13.5.16) and η > 0 we see that d is a feasible direction provided that
dT d∗ < 0. This shows that dT Bd ≥ 0 holds for all d satisfying dT d∗ ≤ 0,
which implies that B is a semi-definite matrix.

If d∗ and y∗ are linearly independent, the second-order necessary condi-
tion shows that the matrix H(λ∗, µ∗) is positive semi-definite in the n−2 di-
mensional subspace orthogonal to d∗ and y∗. Assume that H(λ∗, µ∗) has two
negative eigenvalues, then there exist linearly independent vectors z1, z2 ∈ "n

such that H(λ∗, µ∗) is negative definite on Span(z1, z2). The intersection of
Span(z1, z2) and the n − 2 dimensional subspace mentioned above is empty
except the original. Therefore the matrix(

zT
1 d∗ zT

2 d∗

zT
1 y∗ zT

2 y∗

)
(13.5.17)

is nonsingular. The nonsingularity of the above matrix implies the existence
of a nonzero vector d̄ ∈ Span(z1, z2) such that

‖d∗ + d̄‖2 = ∆, ‖c + AT (d∗ + d̄)‖2 = ξ. (13.5.18)

Relation (13.5.18) and the negative definiteness of H(λ∗, µ∗) on Span(z1, z2)
give that φ(d∗ + d̄) < φ(d∗). This contradicts the optimality of d∗. Hence
the lemma is true. �

The following is a sufficient condition.

Download more at Learnclax.com

13.5. CDT SUBPROBLEM 583

Theorem 13.5.2 Let d∗ be a feasible point of (13.5.2)–(13.5.3). If there ex-
ist λ∗ ≥ 0 and µ∗ ≥ 0 such that (13.5.11)–(13.5.13) hold, and that H(λ∗, µ∗)
is positive semi-definite, then d∗ is a global solution of (13.5.1)–(13.5.13).

Proof. Let d be any vector satisfying (13.5.2)–(13.5.3). We have that

φ(d) = φ(d) +
1
2
λ∗‖d‖22 +

1
2
µ∗‖c + AT d‖22

−1
2
[λ∗‖d‖22 + µ∗‖c + AT d‖22]

≥ φ(d∗) +
1
2
λ∗‖d∗‖22 +

1
2
µ∗‖c + AT d∗‖22

−1
2
[λ∗‖d‖22 + µ∗‖c + AT d‖22]

= φ(d∗) +
1
2
λ∗[∆2 − ‖d‖22] +

1
2
µ∗[ξ2 − ‖c + AT d‖22]

≥ φ(d∗). (13.5.19)

Thus, we can see that d∗ is a global solution of (13.5.1)–(13.5.3). �

A direct consequence of the above theorem is the following.

Corollary 13.5.3 Assume that B is positive semi-definite. A feasible point
d∗ of (13.5.2)–(13.5.3) is a solution of (13.5.1)–(13.5.3) if and only if there
exist λ∗ ≥ 0, µ∗ ≥ 0 such that (13.5.11)-(13.5.13) hold.

Therefore, when B is positive definite, the solution of (13.5.1)–(13.5.3)
must have the form

d(λ, µ) = −H(λ, µ)−1[g + µAc]. (13.5.20)

From Corollary 13.5.3 we can easily see that the following lemma holds.

Lemma 13.5.4 Assume that B is positive definite. Then d(λ, µ) defined by
(13.5.20) is a solution of (13.5.1)–(13.5.3) if and only if it is a feasible point
of (13.5.2)–(13.5.3), and one of the following holds:

1. λ = µ = 0;

2. λ > 0, µ = 0, ‖d(λ, µ)‖2 = ∆;

3. λ = 0, µ > 0, ‖c + AT d(λ, µ)‖2 = ξ;

Download more at Learnclax.com

584 CHAPTER 13. TR METHODS FOR CONSTRAINED PROBLEMS

4. λ > 0, µ > 0, ‖d(λ, µ)‖2 = ∆, ‖c + AT d(λ, µ)‖2 = ξ.

From the above statements, solving a convex CDT subproblem is equiv-
alent to finding λ∗, µ∗ ≥ 0 such that d(λ∗, µ∗) is feasible and one of the four
possibilities in Lemma 13.5.4 holds.

For the case λ∗ = µ∗ = 0, the solution is d = −B−1g.
For µ∗ = 0 and λ∗ > 0, we can solve ψ̄(λ, 0) = 0 to obtain λ∗, where

ψ̄(λ, µ) =
1

‖d(λ, µ)‖2
− 1

∆
. (13.5.21)

The reason for considering ψ̄(λ, 0) = 0 instead of ‖d(λ, 0)‖2 = ∆ is similar to
that in Chapter 6, namely ψ̄(λ, 0) behaves more like a linear function. ψ̄(λ, µ)
as a function of λ is concave and increasing, thus we can apply Newton’s
iteration:

λ+ = λ− ψ̄(λ, 0)
ψ̄

′
λ(λ, 0)

. (13.5.22)

It is not difficult to show that iteration process (13.5.22) with any initial
λ ∈ [0, λ∗] will generate a monotone increasing sequence converging to λ∗.

When λ∗ = 0 and µ∗ > 0, we define

ψ̂(λ, µ) =
1

‖c + AT d(λ, µ)‖2
− 1

ξ
. (13.5.23)

Similarly, we can apply Newton’s method to ψ̂(0, µ) = 0, that is,

µ+ = µ− ψ̂(0, µ)
ψ̂′

µ(0, µ)
. (13.5.24)

When λ∗ > 0 and µ∗ > 0, we need to solve

ψ̄(λ, µ) = 0, (13.5.25)
ψ̂(λ, µ) = 0. (13.5.26)

The Newton iteration for the above system is(
λ+

µ+

)
=

(
λ
µ

)
− J(λ, µ)−1

(
ψ̄(λ, µ)
ψ̂(λ, µ)

)
, (13.5.27)

where J(λ, µ) is the Jacobi matrix:

J(λ, µ) =

[
ψ̄

′
λ(λ, µ) ψ̄

′
µ(λ, µ)

ψ̂
′
λ(λ, µ) ψ̂

′
µ(λ, µ)

]
. (13.5.28)

An algorithm based on the above analyses is given as follows.

Download more at Learnclax.com

13.6. POWELL-YUAN ALGORITHM 585

Algorithm 13.5.5

Step 1. Given g ∈ "n, B positive definite, ∆ > 0, ξ > ξmin.

Step 2. Compute d(0, 0). If d(0, 0) is feasible then stop;
If ‖d(0, 0)‖ ≤ ∆ then go to Step 4;

Step 3. Applying (13.5.22) to solve ψ̄(λ, 0) = 0 giving λ∗;
If d(λ∗, 0) is feasible then stop;

Step 4 Applying (13.5.24) to solve ψ̂(0, µ) = 0 giving µ∗;
If d(0, µ∗) is feasible then stop;

Step 5. Applying (13.5.27) to solve (13.5.25)–(13.5.26) giving λ∗, µ∗;
stop.

The above algorithm is in fact an enumeration of the four cases given in
Lemma 13.5.4. A more direct way is to solve the system(

ψ̄(λ, µ)
ψ̂(λ, µ)

)
≥ 0, (λ, µ)T

[
ψ̄(λ, µ)
ψ̂(λ, µ)

]
= 0 (13.5.29)

in the nonnegative orthant "2
+ = {λ ≥ 0, µ ≥ 0}. Such an approach to

identify the Lagrange multipliers λ∗ and µ∗ is equivalent to solving the dual
problem of (13.5.1)–(13.5.3). A truncated Newton’s method based on the
dual of (13.5.1)–(13.5.3) is given by Yuan [373], which is basically the Newton-
Raphson method for the nonlinear system (13.5.29). The approach given by
Zhang [381] is to reformulate (13.5.29) as a univariate problem. Basically it
is to solve the problem

ψ̂(λ(µ), µ) = 0 (13.5.30)

where λ(µ) is defined by ψ̄(λ, µ) = 0.

13.6 Powell-Yuan Algorithm

Consider the constrained optimization problem (13.4.1)–(13.4.2). The trial
step dk is obtained by solving

min
d∈"n

gT
k d +

1
2
dT Bkd = φk(d), (13.6.1)

s. t. ‖ck + AT
k d‖2 ≤ ξk, (13.6.2)

‖d‖2 ≤ ∆k, (13.6.3)

Download more at Learnclax.com

586 CHAPTER 13. TR METHODS FOR CONSTRAINED PROBLEMS

where ∆k is the trust-region radius, ξk is a parameter satisfying (13.3.25).
The merit function is Fletcher’s differentiable function:

Pk(x) = f(x)− λ(x)T c(x) + σk‖c(x)‖22, (13.6.4)

where σk > 0 is a penalty parameter, λ(x) is the minimum norm solution of

min
λ∈"m

‖g(x)−A(x)λ‖2. (13.6.5)

The actual reduction is

Aredk = Pk(xk)− Pk(xk + dk), (13.6.6)

and the predicted reduction is defined by

Predk = −(gk −Akλk)T dk −
1
2
dT

k Bkd̄k

+[λ(xk + dk)− λk]T
(
ck +

1
2
AT

k dk

)
+σk(‖ck‖22 − ‖ck + AT

k dk‖22), (13.6.7)

where d̄k is the orthogonal projection of dk to the null space of AT
k , namely

d̄k = P̄kdk, (13.6.8)
P̄k = I −A(xk)A(xk)+. (13.6.9)

If ‖ck‖2−‖ck+AT
k dk‖2 > 0, from (13.6.7) and by increasing σk (if needed),

we have that
Predk ≥

1
2
σk(‖ck‖22 − ‖ck + AT

k dk‖22). (13.6.10)

If ‖ck‖2−‖ck+AT
k dk‖2 = 0, dk is the minimizer of φk(d) in the intersection

of the trust-region and the null space of AT
k and Predk = φk(0) − φk(dk).

Thus, Predk = 0 if and only if gk −Akλk = 0.
The following algorithm is given by Powell and Yuan(1991):

Algorithm 13.6.1

Step 1. Given x1 ∈ "n, ∆1 > 0, ε > 0.
0 < τ3 < τ4 < 1 < τ1, 0 ≤ τ0 ≤ τ2 < 1, τ2 > 0; k := 1.

Step 2. If ‖ck‖2 + ‖gk −Akλk‖2 ≤ ε then Stop. Otherwise solve the
problem (13.6.1)-(13.6.3) which gives dk;

Download more at Learnclax.com

13.6. POWELL-YUAN ALGORITHM 587

Step 3. Calculate Predk by formula (13.6.7); If (13.6.10) is satisfied
then go to Step 4; Set

σk := 2σk + max
{
0,

−2Predk

‖ck‖22 − ‖ck + AT
k dk‖22

}
. (13.6.11)

Recalculate Predk by (13.6.7).

Step 4. Calculate the ratio rk = Aredk/Predk. Set the values

xk+1 =

{
xk + dk, if rk > 0,
xk, otherwise;

(13.6.12)

and

∆k+1 =

⎧⎪⎨
⎪⎩

max[4‖dk‖2, ∆k], if rk > 0.9,
∆k, 0.1 ≤ rk ≤ 0.9,
min[∆k/4, ‖dk‖2/2], rk < 0.1.

(13.6.13)

Step 5. Generate Bk+1. Set σk+1 := σk. Set k := k + 1 and go to
Step 2.

In order to establish the convergence results of the above algorithm, we
make the following assumptions.

Assumption 13.6.2

1. There exists a bounded convex closed set Ω ∈ "n such that {xk}, {xk +
dk} are all in Ω for all k.

2. A(x) has full column rank for all x ∈ Ω.

3. The matrices {Bk|k = 1, 2, · · ·} are uniformly bounded.

The following two lemmas provide a lower bound on the predicted reduc-
tion Predk.

Lemma 13.6.3 The inequality

‖ck‖2 − ‖ck + AT
k dk‖2 ≥ min

[
‖ck‖2,

b2∆k

‖A+
k ‖2

]
(13.6.14)

holds for all k, where b2 is introduced in (13.3.25).

Download more at Learnclax.com

588 CHAPTER 13. TR METHODS FOR CONSTRAINED PROBLEMS

Proof. If b2∆k ≥ ‖(AT
k)+ck‖2, we have ξk = 0. Thus,

‖ck‖2 − ‖ck + AT
k dk‖2 = ‖ck‖2, (13.6.15)

which implies (13.6.14).
In the case when b2∆k < ‖(AT

k)+ck‖2, it follows from (13.3.25) and con-
straint condition (13.6.2) that

‖ck‖2 − ‖ck + AT
k dk‖ ≥ ‖ck‖2 − ξk

≥ ‖ck‖2 −
∥∥∥ck −AT

k

[b2∆k

‖(AT
k)+ck‖2

]
(AT

k)+ck

∥∥∥
2

= ‖ck‖2
b2∆k

‖(AT
k)+ck‖2

≥ b2∆k

‖A+
k ‖2

. (13.6.16)

Thus the lemma is true. �

Lemma 13.6.4 There exists a positive constant δ1 such that the inequality

Predk − 1
2
σk(‖ck‖22 − ‖ck + AT

k dk‖22) + δ1‖dk‖2‖ck‖2

≥ 1
4
‖P̄kḡk‖2 min

[
∆̄k,

‖P̄kḡk‖2
2‖Bk‖2

]

+
1
2
σk‖ck‖2 min

[
‖ck‖2,

b2∆k

‖A+
k ‖2

]
(13.6.17)

holds for all k, where we use the notation

ḡk = gk + Bkd̂k, (13.6.18)
d̂k = dk − P̄kdk = dk − d̄k, (13.6.19)

∆̄k =
√

∆2
k − ‖d̂k‖22. (13.6.20)

Proof. The definition of d̂k and ‖ck + AT
k dk‖2 ≤ ‖ck‖2 imply the bound

‖d̂k‖2 = ‖AkA
+
k dk‖2 = ‖(A+

k)T [(ck + AT
k dk)− ck]‖2

≤ 2‖A+
k ‖2‖ck‖2. (13.6.21)

From its definition, d̄k is a solution of the subproblem

min
d∈"n

ḡT
k d +

1
2
dT Bkd, (13.6.22)

s. t. AT
k d = 0, (13.6.23)
‖d̂k + d‖2 ≤ ∆k. (13.6.24)

Download more at Learnclax.com

13.6. POWELL-YUAN ALGORITHM 589

It is easy to see that d̄k also solves the calculation

min
d∈"n

(P̄kḡk)T d +
1
2
(P̄kd)T Bk(P̄kd), (13.6.25)

s. t. ‖d‖2 ≤ ∆̄k. (13.6.26)

Similar to the proof of Lemma 6.1.3, we can show that

ḡT
k d̄k ≤ −

1
2
‖P̄kḡk‖2 min

[
∆̄k,

‖P̄kḡk‖2
2‖Bk‖2

]
. (13.6.27)

Hence the definitions of λk, d̄k, ḡk, the fact that expression (13.6.25) increases
monotonically between d = d̄k and d = 0, and the inequalities (13.6.21) and
(13.6.27) imply the bound

(gk −Akλk)T dk +
1
2
dT

k Bkdk =
(
gk +

1
2
Bkdk

)T
d̄k

=
1
2
[gT

k d̄k + d̄T
k Bkd̄k + ḡT

k d̄k] ≤
1
2
gT
k d̄k

≤ 1
2
ḡT
k d̄k +

1
2
‖Bkd̂k‖2‖d̄k‖2

≤ −1
4
‖P̄kḡk‖2 min

[
∆̄k,

‖P̄kḡk‖2
2‖Bk‖2

]
+‖A+

k ‖2‖Bk‖2‖dk‖2‖ck‖2. (13.6.28)

Moreover, due to the definition of λ(x) and Assumption 13.6.2, there exists
a positive constant δ2 > 0 such that the condition

‖λ(xk)− λ(xk + dk)‖2 ≤ δ2‖dk‖2 (13.6.29)

holds for all k. The convexity of ‖ck + AT
k d‖2 shows that

∥∥∥ck +
1
2
AT

k dk

∥∥∥
2
≤ 1

2
(‖ck‖2 + ‖ck + AT

k dk‖2) ≤ ‖ck‖2. (13.6.30)

Therefore, the inequality (13.6.17) now follows from (13.6.7) and (13.6.14)
and (13.6.28)-(13.6.30) if we let δ1 = δ2 + supk≥1{‖Bk‖2‖A+

k ‖2}, which is
finite due to Assumption 13.6.2. �

A direct corollary of the above lemma is that (13.6.10) is satisfied if
‖ck‖2/∆k is sufficiently small.

Download more at Learnclax.com

590 CHAPTER 13. TR METHODS FOR CONSTRAINED PROBLEMS

Corollary 13.6.5 There exist positive constants δ3 and δ4, such that, on the
iterations that satisfy the condition

‖ck‖2 ≤ δ3∆k, (13.6.31)

we have the inequality

Predk ≥
1
2
σk[‖ck‖22 − ‖ck + AT

k dk‖22] + δ4∆k. (13.6.32)

Proof. From Assumption 13.6.2, there exists M̄ such that ∆k ≤ M̄ . If
δ3 < ε

3M̄
, (13.6.31) implies ‖ck‖2 ≤ ε/3. Unless the algorithm terminates, we

have that
‖gk −Akλk‖2 ≥ 2ε/3. (13.6.33)

If δ3 < ε/(6M̄ supk ‖Bk‖2‖A+
k ‖2), (13.6.31) yields

‖ck‖2 ≤
ε

6 sup1≤k ‖Bk‖2‖A+
k ‖2

, (13.6.34)

which implies that

‖gk −Akλk‖2 = ‖P̄kgk‖2 ≤ ‖P̄kḡk‖2 + ‖P̄kBkd̂k‖2
≤ ‖P̄kḡk‖2 + 2‖A+

k ‖2‖Bk‖2‖ck‖2
≤ ‖P̄kḡk‖2 +

ε

3
. (13.6.35)

Thus, provided that

δ3 <
ε

3M̄
min

[
1,

1
2 sup ‖Bk‖2‖A+

k ‖2

]
, (13.6.36)

we have, using (13.6.33) and (13.6.35), that

‖P̄kḡk‖2 ≥
ε

3
. (13.6.37)

Consequently, it follows from Lemma 13.6.4 that

Predk − 1
2
σk[‖ck‖22 − ‖ck + AT

k dk‖22] + δ1‖dk‖2‖ck‖2

≥ ε

12
min

[
∆̄k,

ε

6‖Bk‖
]
. (13.6.38)

Download more at Learnclax.com

13.6. POWELL-YUAN ALGORITHM 591

If δ3 satisfies
δ3 ≤ 0.3/ sup

k
‖A+

k ‖, (13.6.39)

we have ∆̄k > 0.8∆k from (13.6.31). When

δ3 <
ε

24δ1
min

[0.8
M̄

,
ε

6M̄2 supk ‖Bk‖2

]
, (13.6.40)

it follows from (13.6.31) that

δ1‖ck‖2‖dk‖2 ≤
ε

24
min

[
0.8∆k,

ε

6‖Bk‖2

]
. (13.6.41)

Now, inequalities (13.6.38) and (13.6.41) give that

Predk − 1
2
σk[‖ck‖22 − ‖ck + AT

k dk‖22]

≥ ε

24
min

[
0.8∆k,

ε

6‖Bk‖
]
. (13.6.42)

The corollary follows from the above inequality, and the assumptions that
{∆k}, {‖Bk‖} are bounded. �

Now, using the above results, we can easily prove the boundedness of the
sequence {σk}, which is important in establishing the convergence properties
of the algorithm.

Lemma 13.6.6 The sequence {σk|k = 1, 2, · · ·} remains bounded. In other
words, because any increase in σk is by at least a factor of 2, there exists k̄,
such that

σk = σk̄, ∀k ≥ k̄. (13.6.43)

Proof. Corollary 13.6.5 shows that (13.6.10) fails only if ‖ck‖2 > δ3∆k.
In this case, using ∆k ≥ ‖dk‖2 too, Lemma 13.6.4 provides the bound

Predk − 1
2
σk(‖ck‖22 − ‖ck + AT

k dk‖22)

≥ ‖dk‖2‖ck‖2
[1
2
σk min(δ3, b2/δ5)− δ1

]
, (13.6.44)

where δ5 is an upper bound on {‖A+
k ‖2, k = 1, 2, · · ·}. Hence condition

(13.6.10) holds if σk > 2δ1 max[1/δ3, δ5/b2]. Therefore the number of in-
crease in σk is finite. �

We now assume without loss of generality that σk ≡ σ for all k. The next
lemma shows that both the trust-region bound and the constraints converges
to zero, if the algorithm does not terminate after finitely many iterations.

Download more at Learnclax.com

592 CHAPTER 13. TR METHODS FOR CONSTRAINED PROBLEMS

Lemma 13.6.7 If the algorithm does not terminate, we have the limits

lim
k→∞

∆k = 0, (13.6.45)

lim
k→∞

‖ck‖2 = 0. (13.6.46)

Proof. To prove (13.6.45), we assume that the number

η = lim sup
k→∞

∆k (13.6.47)

is positive and deduce a contradiction. Define K to be the set of integers k
satisfying

rk ≥ 0.1, ∆k ≥ η/8. (13.6.48)

The set K contains infinitely many elements because of (13.6.47). Since the
monotonically decreasing sequence {P (xk)} is convergent, we have that

lim
k∈K
k→∞

Predk = 0. (13.6.49)

Therefore, (13.6.32) does not hold for sufficiently large k ∈ K. It follows
from Corollary 13.6.5 and (13.6.48) that

‖ck‖2 > δ3η/8 (13.6.50)

holds for all sufficiently large k ∈ K. Thus, Lemma 13.6.3 implies that

Predk ≥ 1
2
σ[‖ck‖22 − ‖ck + AT

k dk‖22]

≥ 1
2
σ‖ck‖2 min

[
‖ck‖2,

b2∆k

‖A+
k ‖2

]
. (13.6.51)

Using the above inequality, relations (13.6.48) and (13.6.49), we can deduce
that

lim
k∈K
k→∞

‖ck‖2 = 0, (13.6.52)

which contradicts (13.6.50). Therefore (13.6.45) is true.
As for (13.6.46), we deduce a contradiction from the assumption that

η̄ = lim sup
k→∞

‖ck‖2 > 0. (13.6.53)

Download more at Learnclax.com

13.6. POWELL-YUAN ALGORITHM 593

Define K̄ = {k|‖ck‖2 > η̄/2}. It follows from (13.6.51) and (13.6.45) that
there exists a constant δ̄ > 0 such that

Predk ≥ δ̄∆k, ∀k ∈ K̄. (13.6.54)

The above inequality and (13.6.45) imply that

lim
k∈K
k→∞

rk = 1, (13.6.55)

which, together with (13.6.54), shows that∑
k∈K̄

∆k < +∞. (13.6.56)

From the definition of K̄, inequality (13.6.56) and the continuity of c(x), we
can show that

lim
k→∞

‖ck‖2 = η̄. (13.6.57)

Thus, k ∈ K̄ for all sufficiently large k. This observation and relation
(13.6.55) imply that ∆k+1 ≥ ∆k for all sufficiently large k. This contra-
dicts (13.6.45). Therefore, (13.6.46) is true. �

Having established the above results, we can easily show the global con-
vergence of the algorithm.

Theorem 13.6.8 Under Assumption 13.6.2, Algorithm 13.6.1 will termi-
nate after finitely many iterations. In other words, if we remove the conver-
gence test from Step 2, then dk = 0 for some k or the limit

lim inf
k→∞

[‖ck‖2 + ‖P̄kgk‖2] = 0 (13.6.58)

is obtained, which ensures that {xk, k = 1, 2, ...} is not bounded away from
stationary points of the problem (13.4.1)-(13.4.2).

Proof. First we assume that ε > 0. If the algorithm does not terminate,
then the inequality

‖ck‖2 + ‖P̄kgk‖2 ≥ ε (13.6.59)

holds for all k. It follows from (13.6.46) that

‖P̄kgk‖2 ≥ ε/2 (13.6.60)

Download more at Learnclax.com

594 CHAPTER 13. TR METHODS FOR CONSTRAINED PROBLEMS

holds for all sufficiently large k. Using (13.6.60), (13.6.45), (13.6.46) and
(13.6.17) we can show that there exists a positive constant δ such that

Predk ≥ δ∆k (13.6.61)

is true for all sufficiently large k. The above inequality implies that

lim
k→∞

rk = 1, (13.6.62)

which leads to the inequality ∆k+1 ≥ ∆k (for all sufficiently large k). This
contradicts (13.6.45). The contradiction indicates that for any positive ε > 0
Algorithm 13.6.1 will terminate after finitely many iterations.

If ε = 0, then the algorithm terminates if and only if dk = 0. If dk =
0, then xk is a KKT point of the optimization problem (13.4.1)–(13.4.2).
Assume that the algorithm dost not terminate, then dk = 0 for all k. Let

η = inf
k

[‖ck‖2 + ‖P̄kgk‖2]. (13.6.63)

If η > 0, we see that the algorithm does not terminate for ε = η/2, which
contradicts the proof given above. This shows that we must have η = 0,
which implies (13.6.58). �

Under second-order sufficient conditions and other mild conditions, lo-
cally superlinear convergence of the algorithm can be proved (see, Powell
and Yuan [278]).

Exercises

1. Prove that the trust-region subproblem

min
d∈n

gT
k d +

1
2
dT Bkd + σk‖(ck + AT

k d)(−)‖∞

subject to
‖d‖∞ ≤ ∆k

can be reformulated as a quadratic programming problem.

2. Extend the null space trust-region method for equality constrained
optimization to handle also inequality constraints.

Download more at Learnclax.com

13.6. POWELL-YUAN ALGORITHM 595

3. Consider the CDT subproblem when

g =

(
2
0

)
, B =

(
−2 0
0 2

)
, A = I, c =

(
−2
0

)
,

∆ = 2 and ξ = 1. Verify that the Hessian of the Lagrange function can have
one negative eigenvalue even when only one of the constraints are active at
the solution.

4. Construct an example to show that the Hessian of the Lagrange of the
CDT subproblem at the solution may have two negative eigenvalues.

5. Let C, D ∈ "n×n be two symmetric matrices and let A and B be two
closed sets in "n such that A ∪B = "n. If we have that

xT Cx ≥ 0,∀x ∈ A, xT Dx ≥ 0,∀x ∈ B,

prove that there exists a t ∈ [0, 1] such that the matrix tC + (1 − t)D is
positive semi-definite.

6. Discuss the local convergence properties of Powell-Yuan’s trust-region
algorithm.

Download more at Learnclax.com

Download more at Learnclax.com

Chapter 14

Nonsmooth Optimization

14.1 Generalized Gradients

In this book, nonsmooth functions are those functions which need not be
differentiable. Therefore they are also called nondifferentiable functions.

The nonlinear programming problem (8.1.1)–(8.1.3) is said to be a nons-
mooth optimization problem, provided that either the objective function f(x)
or at least one of the constraint functions ci(x), (i = 1, · · · , m) is a nonsmooth
function.

To conclude the book, we would like to give an initial and readable in-
troduction to nonsmooth optimization. To study the optimality condition
of nonsmooth optimization and construct some numerical methods for solv-
ing nonsmooth optimization problems, we first introduce the fundamental
conceptions and properties of nonsmooth functions.

Let X be a Banach space with a norm ‖ · ‖ defined on X. Let Y be a
subset of X. A function f : Y → R is Lipschitz on Y if f(x) satisfies

|f(x)− f(y)| ≤ K‖x− y‖, ∀x, y ∈ Y ⊆ X, (14.1.1)

where K is called the Lipschitz constant. The inequality (14.1.1) is also
referred to as a Lipschitz condition.

We define a generalized sphere

B(x, ε) = {y | ‖x− y‖ ≤ ε}. (14.1.2)

We say that f is Lipschitz near x if, for some ε > 0, f satisfies a Lipschitz
condition on B(x, ε).

Download more at Learnclax.com

598 CHAPTER 14. NONSMOOTH OPTIMIZATION

It is easy to see that a function having a Lipschitz property near a point
need not be differentiable there, nor need admit a directional derivative in
the classical sense.

The directional derivative of f at x in the direction d is

f ′(x; d) = lim
t↓0

f(x + td)− f(x)
t

. (14.1.3)

The upper Dini directional derivative of f at x in the direction d is

f (D)(x; d) = lim sup
t↓0

f(x + td)− f(x)
t

. (14.1.4)

Let f be Lipschitz near a given point x, and let d be any other vector in X.
The generalized directional derivative of f at x in the direction d is defined
as follows:

fo(x; d) = lim sup
y→x
t↓0

f(y + td)− f(y)
t

, (14.1.5)

where of course y is a vector in X and t is a positive scalar, and t ↓ 0 denotes
that t tends to zero monotonically and downward. Since the generalized
directional derivative is due to Clarke [60], it is also referred to as a Clarke
directional derivative.

For a locally Lipschitz function, the directional derivative may not exist
but the Dini and the Clarke directional derivatives always exist. Obviously,
we always have the relation

f (D)(x; d) ≤ fo(x; d) (14.1.6)

for all x and d. If the directional derivative exists, then it is equal to the
upper Dini directional derivative. If f ′(x; d) exists at x for all d, then f is
said to be directionally differentiable at x. If f is directionally differentiable
at x and

f ′(x; d) = fo(x; d), (14.1.7)

then f is said to be regular at x. The function f is said to be a regular
function if it is regular everywhere.

Lemma 14.1.1 Let f(x) be Lipschitz near x. Then

1. The function d → fo(x; d) is positive homogeneous and subadditive on
X, and satisfies

|fo(x; d)| ≤ K‖d‖. (14.1.8)

Download more at Learnclax.com

14.1. GENERALIZED GRADIENTS 599

2. fo(x; d) is Lipschitz on X as a function of d.

3. fo(x; d) is upper semicontinuous as a function of (x; d).

4. fo(x;−d) = (−f)o(x; d).

Proof. 1) In view of (14.1.1), (14.1.5) and the fact that f(x) is Lipschitz
near x, we immediately have (14.1.8). The fact that

fo(x;λd) = λfo(x; d)

for any λ > 0 is immediate from the definition (14.1.5). Now we turn to the
subadditivity.

From (14.1.5), we have

fo(x; d1 + d2) = lim sup
y→x
t↓0

f(y + t(d1 + d2))− f(y)
t

≤ lim sup
y→x
t↓0

f(y + td1 + td2)− f(y + td2)
t

+ lim sup
y→x
t↓0

f(y + td2)− f(y)
t

≤ fo(x; d1) + fo(x; d2). (14.1.9)

2) Let any d1, d2 ∈ X be given. We have from the Lipschitz condition
that

f(y + td1)− f(y) ≤ f(y + td2)− f(y) + Kt‖d1 − d2‖ (14.1.10)

holds for y near x, t > 0 sufficiently small. Dividing by t and taking upper
limits as y → x, t ↓ 0, gives

fo(x; d1) ≤ fo(x; d2) + K‖d1 − d2‖. (14.1.11)

Similarly, we obtain

fo(x; d2) ≤ fo(x; d1) + K‖d1 − d2‖. (14.1.12)

The above two inequalities give

|fo(x; d1)− fo(x; d2)| ≤ K‖d1 − d2‖. (14.1.13)

Download more at Learnclax.com

600 CHAPTER 14. NONSMOOTH OPTIMIZATION

Then we complete 2).
3) Now let {xi} and {di} be arbitrary sequences with xk → x and dk → d

respectively. For each i, by definition of upper limit, there exist yk ∈ X and
tk > 0 such that

‖yk − xk‖+ tk <
1
k
, (14.1.14)

fo(xk; dk)−
1
k

≤ f(yk + tdk)− f(yk)
tk

≤ f(yk + tkdk)− f(yk + tkd)
tk

+
f(yk + tkd)− f(yk)

tk
. (14.1.15)

Upon taking upper limits (as k →∞), we derive

lim sup
k→∞

fo(xk; dk) ≤ fo(x; d), (14.1.16)

which establishes the upper semicontinuity.
4) Finally, we calculate

fo(x;−d) = lim sup
y→x
t↓0

f(y − td)− f(y)
t

= lim sup
u→x
t↓0

(−f)(u + td)− (−f)(u)
t

= (−f)o(x; d), (14.1.17)

where u = y − td. Hence, we complete the proof. �

The Hahn-Banach Theorem (for example, see Cryer [72], Theorem 7.4)
asserts that any positive homogeneous and subadditive functional on X ma-
jorizes some linear functional on X. Under the condition of Lemma 14.1.1,
therefore, there is at least one linear functional ξ : X → R such that, for all
d ∈ X, one has

fo(x; d) ≥ ξ(d).

It follows also that ξ is bounded, and hence belongs to the dual space X∗

of continuous linear functionals on X, for which we adopt the convention of
using 〈ξ, d〉 or 〈d, ξ〉 for ξ(d).

We then give the following definition:

Download more at Learnclax.com

14.1. GENERALIZED GRADIENTS 601

Definition 14.1.2 Let f(x) be Lipschitz near x. Then we say that the gen-
eralized differential (or Clarke differential) of f at x is the set

∂f(x) = {ξ ∈ X∗ | fo(x; d) ≥ 〈ξ, d〉, ∀d ∈ X}. (14.1.18)

The ξ is said to be the generalized gradient.

The norm ‖ξ‖∗ in conjugate space X∗ is defined as

‖ξ‖∗ = sup{〈ξ, d〉 : d ∈ X, ‖d‖ ≤ 1}. (14.1.19)

The following summarizes some basic properties of the generalized gradi-
ent.

Lemma 14.1.3 Let f(x) be Lipschitz near x. Then
1) ∂f(x) is a nonempty, convex, weak*-compact subset of X∗ and ‖ξ‖∗ ≤

K for every ξ ∈ ∂f(x).
2) For every d ∈ X, one has

fo(x; d) = max
ξ∈∂f(x)

{〈ξ, d〉}. (14.1.20)

Proof. Assertion 1) is immediate from the preceding remarks and Lemma
14.1.1. (The weak*-compactness follows from Alaoglu’s Theorem.)

Assertion 2) is simply a restatement of the fact that ∂f(x) is by definition
the weak*-closed convex set whose support function is fo(x; ·). To see this
independently, suppose that for some d, fo(x; d) exceeded the given maximum
(it cannot be less, by definition of ∂f(x)). According to a common version of
the Hahn-Banach Theorem there is a linear functional ξ majorized by fo(x, ·)
and agreeing with it at d. It follows that ξ ∈ ∂f(x), whence fo(x; d) >
〈ξ; d〉 = fo(x; d). This contradiction establishes the assertion 2). �

Note that if f(x) is convex, the conceptions of generalized directional
derivative and generalized gradient coincide with that of directional derivative
and subgradient defined for convex functions due to Rockafellar [288].

As an example, we calculate the generalized differential of the absolute-
value function in the case of X = R.

Consider the problem
f(x) = |x|.

Download more at Learnclax.com

602 CHAPTER 14. NONSMOOTH OPTIMIZATION

Obviously, f is Lipschitz by the triangle inequality. If x > 0, we calculate

fo(x; d) = lim sup
y→x
t↓0

y + td− y

t
= d,

so that
∂f(x) = {ξ | d ≥ ξd, ∀d ∈ R}

reduces to the singleton {1}.
Similarly, we have

∂f(x) = {−1} if x < 0.

The remaining case is x = 0. We find

fo(0; d) =

{
d, if d ≥ 0,
−d, if d < 0,

that is
fo(0, d) = |d|.

Thus ∂f(0) consists of those ξ satisfying |d| ≥ ξd for all d; that is ∂f(0) =
{−1, 1}. Therefore, we conclude

∂f(x) =

⎧⎪⎨
⎪⎩

{1}, x > 0,
{−1}, x < 0,
{−1, 1}, x = 0.

We introduce an important conception as follows.
The support function of a nonempty subset Ω of X is a function σΩ(ξ) :

X∗ → R ∪ {+∞} defined by

σΩ(ξ) := sup
x∈Ω
{〈ξ, x〉}. (14.1.21)

It is easy to see that fo(x; ·) is the support function of ∂f(x).
By (14.1.21) and Definition 14.1.2, the following lemma is obvious.

Lemma 14.1.4 Let f(x) be Lipschitz near x. Then

ξ ∈ ∂f(x) if and only if fo(x; d) ≥ 〈ξ; d〉 ∀d ∈ X. (14.1.22)

Furthermore, ∂f(x) has the following properties:

Download more at Learnclax.com

14.1. GENERALIZED GRADIENTS 603

a)
∂f(x) = ∩δ>0 ∪y∈x+B(0,δ) ∂f(y), (14.1.23)

where
B(0, δ) = {x | ‖x‖ ≤ δ, x ∈ X}.

If X is finite-dimensional, then the ∂f is upper semi-continuous.
b) If fi (i = 1, · · · , m) are finitely many Lipschitz functions near x, then∑m

i=1 fi is also Lipschitz near x and

∂(
m∑

i=1

fi)(x) ⊂
m∑

i=1

∂fi(x). (14.1.24)

c) If f(x) = g(h(x)), where h(x) = (h1(x), · · · , hn(x))T , each hi(x) is
Lipschitz near x, and g(x) is Lipschitz near h(x), then f(x) is Lipschitz near
x and

∂f(x) ⊂ co

{
n∑

i=1

αiξi : ξi ∈ ∂hi(x), α ∈ ∂g(h)|h=h(x)

}
, (14.1.25)

where co denotes a weak∗-compact convex hull (see Theorem 2.3.9 in Clarke
[60]).

Below, we turn to the optimal condition for minimization of a Lipschitz
function. By Lemma 14.1.4, we can immediately deduce the first-order nec-
essary condition.

Theorem 14.1.5 If f(x) attains a local minimum or maximum at x∗ and
f(x) is Lipschitz near x∗, then

0 ∈ ∂f(x∗). (14.1.26)

Proof. If x∗ is a local minimizer of f(x), then it follows from the definition
(14.1.5) that for any d ∈ X we have

fo(x∗; d) ≥ 0. (14.1.27)

Thus, by Lemma 14.1.4, we have 0 ∈ ∂f(x∗).
If x∗ is a local maximizer of f(x), then x∗ is a local minimizer of (−f)(x).

It suggests that 0 ∈ ∂(−f)(x∗). It is not difficult to show that for any scalar

Download more at Learnclax.com

604 CHAPTER 14. NONSMOOTH OPTIMIZATION

s, one has ∂(sf)(x) = s∂f(x). Therefore 0 ∈ ∂(−f)(x∗) = −∂f(x∗) which
means 0 ∈ ∂f(x∗). Hence we complete the proof. �

A point x∗ is called a stationary point of f if f is directionally differen-
tiable at x∗ and for all d,

f ′(x∗, d) ≥ 0. (14.1.28)

A point x∗ is called a Dini stationary point of f if for all d,

f (D)(x∗; d) ≥ 0. (14.1.29)

A point x∗ is called a Clarke stationary point of f if for all d,

fo(x∗; d) ≥ 0, (14.1.30)

i.e.,
0 ∈ ∂f(x∗). (14.1.31)

A local minimizer x∗ of a local Lipschitzian function f is always a Dini
stationary point of f . If f is directionally differentiable at x∗, then x∗ is also
a stationary point. A Dini stationary point is always a Clarke stationary
point but not vice versa.

Now we state the sufficient condition which is based on a lemma below.

Lemma 14.1.6 Let f(x) be convex and Lipschitz near x∗, then the general-
ized differential ∂f(x) coincides with the subdifferential at x, and the gener-
alized directional derivative fo(x; d) coincides with the directional derivative
f ′(x; d) for each d.

Proof. It is known from convex analysis that f ′(x; d) exists for each d
and f ′(x; d) is the support function of the subdifferential at x. It suffices
therefore to prove that for any d, fo(x; d) = f ′(x; d). Note that

fo(x; d) = lim
ε↓0

sup
‖x′−x‖<εδ

sup
0<t<ε

f(x′ + td)− f(x′)
t

, (14.1.32)

where δ is any fixed positive number. It follows from the definition of convex
function that the function

t → f(x′ + td)− f(x′)
t

Download more at Learnclax.com

14.1. GENERALIZED GRADIENTS 605

is non-decreasing, whence

fo(x; d) = lim
ε↓0

sup
‖x′−x‖<εδ

f(x′ + εd)− f(x′)
ε

.

Now by the Lipschitz condition, for any x′ in x + B(0, εδ), one has∣∣∣∣f(x′ + εd)− f(x′)
ε

− f(x + εd)− f(x)
ε

∣∣∣∣ ≤ 2δK,

so that

fo(x; d) ≤ lim
ε↓0

f(x + εd)− f(x)
ε

+ 2δK = f ′(x; d) + 2δK.

Since δ is arbitrary, we deduce fo(x; d) ≤ f ′(x; d). Therefore the equality
follows. The proof is complete. �

We now can state the sufficient condition.

Theorem 14.1.7 Let f(x) be convex and Lipschitz near x∗, and

0 ∈ ∂f(x∗), (14.1.33)

then x∗ is a local minimizer of f(x).

Proof. For a convex and Lipschitzian function, from Lemma 14.1.6, the
generalized differential and the subdifferential

{ξ ∈ X∗ | f(z)− f(x) ≥ 〈ξ, z − x〉, ∀z ∈ X} (14.1.34)

are equivalent. Then, by (14.1.33) and (14.1.34), we have that x∗ is a local
minimizer of f(x). �

Hence, for a convex and Lipschitzian function, (14.1.33) is a sufficient
and necessary condition for x∗ to be a local minimizer of f(x). This is also
equivalent to

fo(x∗; d) ≥ 0, ∀d ∈ X. (14.1.35)

For a convex and Lipschitzian function, the generalized directional derivative
fo(x; d) coincides with the directional derivative f ′(x; d):

f ′(x; d) = lim
t↓0

f(x + td)− f(x)
t

. (14.1.36)

(We would like to mention that, from convex analysis, convex functions are
Lipschitz except in the pathological case).

Furthermore, we can state a sufficient condition for a strict (strong) min-
imizer.

Download more at Learnclax.com

606 CHAPTER 14. NONSMOOTH OPTIMIZATION

Theorem 14.1.8 Let f(x) be convex and Lipschitz near x∗. If

f ′(x∗; d) > 0, ∀d = 0, d ∈ X, (14.1.37)

then x∗ is a strict (strong) minimizer of f(x), i.e., there exists δ > 0 such
that

f(x)− f(x∗) ≥ δ‖x− x∗‖ (14.1.38)

holds for all x sufficiently close to x∗.

Proof. Define a set

S = {d | d ∈ X, ‖d‖ = 1}.

Obviously, S is compact and closed. By (14.1.37), it follows that f ′(x∗, d) is
positive on S. Then, from the continuity of f ′(x∗, d) (in fact, f ′(x∗; d) is a
positive homogeneous and convex function of d), there exists δ > 0 such that

f ′(x∗; d) ≥ 2δ, ∀d ∈ S. (14.1.39)

Then for any d ∈ S, there exists t(d) > 0 such that

f(x∗ + td)− f(x∗) ≥ td, ∀t ∈ [0, t(d)]. (14.1.40)

By convexity and continuity of f(x), we can show that there is an ε > 0 such
that

t(d) ≥ ε, ∀d ∈ S. (14.1.41)

Hence, for all x with ‖x− x∗‖ ≤ ε, we have

f(x)− f(x∗) ≥ δ‖x− x∗‖ (14.1.42)

which indicates (14.1.38). �

However, for a non-convex function, the above sufficiency result is not
true. In fact, let us consider an example below: for f : R1 → R1,

f(x) =

{
(−1)k+1

[
1

2k+1 − 3x
]
, x ∈

[
1

2k−1 , 1
2k

]
,

0, x = 0,
(14.1.43)

f(x) = f(−x), ∀x ∈ [−1, 0). (14.1.44)

Clearly, f(x) is Lipschitz on [−1, 1], and

fo(x∗;±1) = 3 > 0 (14.1.45)

at x∗ = 0, which means there are two generalized directional derivatives equal
to 3. But x∗ = 0 is not the extreme point.

Download more at Learnclax.com

14.2. NONSMOOTH OPTIMIZATION PROBLEM 607

14.2 Nonsmooth Optimization Problem

Consider unconstrained optimization problem

min
x∈X

f(x), (14.2.1)

where f(x) is a nondifferentiable function defined in Banach space and sat-
isfies a Lipschitz condition. From the discussion in §14.1, if x∗ is a solution
of (14.2.1), then

0 ∈ ∂f(x∗), (14.2.2)

i.e., x∗ is a stationary point of (14.2.1).
As to solution for nonsmooth optimization problem (14.2.1), there are two

main difficulties if one is using a method suitable for differentiable problems.
First, it is not easy to give a termination criteria. It is well-known that when
x approaches the minimizer of a continuously differentiable function f(x),
the ‖∇f(x)‖ is very small. Hence the common termination criteria

‖∇f(x)‖ ≤ ε (14.2.3)

is used. However, for a nonsmooth function, there are no similar results. For
example, consider the simple problem that f : R1 → R1 and f(x) = |x|.
Then, for any x that is not a solution, f(x) is differentiable and

|∂f(x)| = |∇f(x)| = 1. (14.2.4)

Hence, in this case, we cannot use (14.2.3) as a termination criteria.
Second, as indicated by Wolfe [354], when f(x) is nondifferentiable, if

one uses the steepest descent method with line search to solve (14.2.1), it is
possible to generate a sequence {xk} converging to a non-stationary point.
For example, let f : R2 → R1, x = (u, v)T and

f(x) = max
[
1
2
u2 + (v − 1)2,

1
2
u2 + (v + 1)2

]
. (14.2.5)

Suppose that xk has the form

xk =

(
2(1 + |εk|)

εk

)
, (14.2.6)

where εk = 0. Then we can calculate

∇f(xk) =

(
2(1 + |εk|)

2(1 + |εk|)tk

)
= 2(1 + |εk|)

(
1
tk

)
, (14.2.7)

Download more at Learnclax.com

608 CHAPTER 14. NONSMOOTH OPTIMIZATION

where tk = sign(εk). If we employ the negative gradient direction −∇f(xk),
then we have

xk+1 = xk + αk(−∇f(xk)) =

[
2(1 + |εk|/3)
−εk/3

]

=

[
2(1 + |εk+1|)

εk+1

]
, (14.2.8)

where εk+1 = −εk/3 = 0. Then we can prove εk → 0. So, for a given initial
point as (2 + 2|δ|, δ)T , where δ = 0, the sequence generated by the steepest
descent method with exact line search converges to (2, 0)T . It is obvious that
(2, 0)T is not the stationary point.

A nonsmooth constrained optimization problem has the form

min
x∈Y

f(x), (14.2.9)

where Y ⊆ X is a set, or a feasible region. Define a distance function

dist(x, Y) = min
y∈Y

‖y − x‖. (14.2.10)

By the theory of penalty function, under suitable conditions, (14.2.9) is equiv-
alent to

min
x∈X

f(x) + σdist(x, Y), (14.2.11)

where f(x) + σdist(x, Y) is a non-differentiable function. Hence, the non-
smooth constrained optimization problem is transformed to an equivalent
nonsmooth unconstrained problem. This interprets why one always is inter-
ested in studying nonsmooth unconstrained optimization problems.

There are many examples of nonsmooth optimization problems, for ex-
ample, the minimax problem

min
x∈X

max
1≤i≤m

fi(x). (14.2.12)

In addition, in order to solve nonlinear equations

fi(x) = 0, i = 1, · · · , m, (14.2.13)

we often find the solution of the minimization problem

min
x∈X

f(x) = min
x∈X

‖f̄(x)‖ (14.2.14)

Download more at Learnclax.com

14.3. THE SUBGRADIENT METHOD 609

under some norm ‖ · ‖, where f(x) = ‖f̄(x)‖, f̄(x) = (f1(x), · · · , fm(x)) is a
vector function from X to Rn. Clearly, the problem (14.2.14) is a nonsmooth
optimization problem. In particular, if ‖ · ‖ = ‖ · ‖1, it is a L1 minimization
problem; if ‖ · ‖ = ‖ · ‖∞, it is Chebyshev approximation problem.

Note that the exact penalty function (10.6.2) is also a nonsmooth func-
tion. Therefore, the minimization to the exact penalty function is also a
nonsmooth optimization problem.

14.3 The Subgradient Method

The subgradient method is a direct generalization of the steepest descent
method, which generates a sequence {xk} by use of −gk as a direction, where
gk ∈ ∂f(xk).

Let f(x) be a convex function on Rn and the minimization problem be
minx∈Rn f(x). We have seen that the convex function is differentiable almost
everywhere, and

∂f(x) = conv Ω(x), (14.3.1)

where convΩ denotes the convex hull of Ω,

Ω(x) = {g | g = lim∇f(xi), xi → x,∇f(xi) exists}. (14.3.2)

The subgradient method is described as follows.

Algorithm 14.3.1 (The subgratient method)

Step 1. Given an initial point x1 ∈ Rn, k := 1.

Step 2. Compute f(xk), gk ∈ ∂f(xk).

Step 3. Choose stepsize αk > 0 and set

xk+1 = xk − αkgk/‖gk‖2, (14.3.3)

k := k + 1, go to Step 2. �

As shown in the above section, in the subgradient method, the exact line
search may cause convergence to a non-stationary point.

In smooth optimization, inexact line search is to find the stepsize αk such
that

f(xk + αkdk) ≤ f(xk) + αkc1d
T
k∇f(xk), (14.3.4)

Download more at Learnclax.com

610 CHAPTER 14. NONSMOOTH OPTIMIZATION

where c1 ∈ (0, 1) is a constant. For the steepest descent method, the above
rule becomes

f(xk − αk∇f(xk)) ≤ f(xk)− αkc1‖∇f(xk)‖2. (14.3.5)

However, when f(x) is nonsmooth, then for any c1 ∈ (0, 1) and gk ∈ ∂f(xk),
the inequality

f(xk − αgk) ≤ f(xk)− αc1‖gk‖2 (14.3.6)

may not hold for any α > 0. Therefore, inexact line search is also not
practicable in nonsmooth optimization.

Note that a constant stepsize is unsuitable because the function may be
nondifferentiable at the solution and then {gk} does not necessarily tend to
zero, even if {xk} converges to the optimal point.

Therefore, the rules for determining αk for the subgradient method are
entirely different from that for the steepest descent method.

Although the exact and inexact line search for smooth optimization can-
not be simply generalized to the nonsmooth case, the negative subgradient
direction is a “good” direction such that the new iterate is closer to the
solution.

Lemma 14.3.2 Let f(x) be a convex function and the set

S∗ = {x | f(x) = f∗ = min
x∈Rn

f(x)} (14.3.7)

be nonempty. If xk /∈ S∗, then for any x∗ ∈ S∗ and gk ∈ ∂f(xk), there must
exist Tk > 0 such that∥∥∥∥xk − α

gk

‖gk‖2
− x∗

∥∥∥∥
2

< ‖xk − x∗‖2 (14.3.8)

holds for all α ∈ (0, Tk).

Proof. For any xk,

∥∥∥∥xk − α
gk

‖gk‖2
− x∗

∥∥∥∥2

2

= ‖xk − x∗‖22

+2α

(
gk

‖gk‖2

)T

(x∗ − xk) + α2. (14.3.9)

Download more at Learnclax.com

14.3. THE SUBGRADIENT METHOD 611

Since gk ∈ ∂f(xk) and xk /∈ S∗, then we have

gT
k (x∗ − xk) ≤ f(x∗)− f(xk) < 0. (14.3.10)

Define
Tk = −2gT

k (x∗ − xk)/‖gk‖2 > 0, (14.3.11)

then (14.3.9) becomes

‖xk − α
gk

‖gk‖2
− x∗‖22 = ‖xk − x∗‖22 + α(α− Tk). (14.3.12)

If 0 < α < Tk, then α(α− Tk) < 0 and further (14.3.8) holds. �

By use of the above property of subgradient direction, we can take a
sufficiently small step, such that the sequence {xk} is closer and closer to the
solution. From the above lemma we can deduce easily the following result
due to Shor [309].

Theorem 14.3.3 Let f(x) be convex and the set S∗ be nonempty. For any
δ > 0 there exists r > 0 such that if the subgradient Algorithm 14.3.1 is used
with αk ≡ α ∈ (0, r) then we have

lim inf
k→∞

f(xk) ≤ f∗ + δ. (14.3.13)

Note that the choice of constant stepsize αk ≡ α may cause the algorithm
not to converge. Ermoliev [118] and Polyak [254] suggest choosing αk which
would satisfy

αk > 0, lim
k→∞

αk = 0, (14.3.14)
∞∑

k=1

αk = ∞, (14.3.15)

and establish the following convergence theorem.

Theorem 14.3.4 Let f(x) be convex, and the set S∗ be nonempty and bounded.
If αk satisfies (14.3.14) and (14.3.15), then the sequence {xk} generated by
Algorithm 14.3.1 satisfies

lim
k→∞

dist(xk, S
∗) = 0, (14.3.16)

where dist(x, S) is defined by (14.2.10).

Download more at Learnclax.com

612 CHAPTER 14. NONSMOOTH OPTIMIZATION

Proof. Since f(x) is convex, there exists continuous function δ(ε) such
that

f(x) ≤ f∗ + ε (14.3.17)

holds for any
dist(x, S∗) ≤ δ(ε), (14.3.18)

where δ(ε) > 0 (∀ε > 0). For each k, we define

εk = f(xk)− f∗ ≥ 0. (14.3.19)

If εk > 0, then

‖xk+1 − x∗‖2 = ‖xk − x∗‖2 + α2
k − 2αk(xk − x∗)T gk/‖gk‖2

= ‖xk − x∗‖2 + α2
k − 2δ(εk)αk

−2αk

[
xk − x∗ − δ(εk)

gk

‖gk‖2

]T

gk/‖gk‖2

≤ ‖xk − x∗‖2 + α2
k − 2δ(εk)αk. (14.3.20)

Hence

[dist(xk+1, S
∗)]2 − [dist(xk, S

∗)]2 ≤ −αk[2δ(εk)− αk]. (14.3.21)

Define δ(0) = 0, then the above expression holds for every k. Summing both
sides of (14.3.21) gives

lim inf
k→∞

δ(εk) = 0. (14.3.22)

Thus,
lim inf
k→∞

dist(xk, S
∗) = 0. (14.3.23)

Suppose to the contrary that the theorem is not true. Then there exist a
positive constant δ′ > 0 and infinitely many k such that

dist(xk+1, S
∗) > dist(xk, S

∗) (14.3.24)

and
εk > δ′ (14.3.25)

hold. From (14.3.24) and (14.3.21), we deduce that

2δ(εk) < αk (14.3.26)

Download more at Learnclax.com

14.3. THE SUBGRADIENT METHOD 613

holds for sufficiently large k. Clearly, (14.3.26) contradicts (14.3.25). This
contradiction shows the theorem. �

The above theorem indicates that Algorithm 14.3.1 converges if αk satis-
fies (14.3.14)–(14.3.15). However, for such chosen αk, the algorithm does not
converge rapidly. In fact, we have

‖xk − x∗‖+ ‖xk+1 − x∗‖ ≥ ‖xk − xk+1‖ = αk. (14.3.27)

Then, by (14.3.27) and (14.3.15), we have immediately that

∞∑
k=1

‖xk − x∗‖ = +∞, (14.3.28)

which shows that the sequence cannot converge R-linearly.
To make the algorithm converge R-linearly, Shor [310] takes

αk = α0q
k, 0 < q < 1. (14.3.29)

But, such an αk does not satisfy (14.3.15). For any given α0 and q, as long
as

dist(x1, S
∗) >

α0

1− q
, (14.3.30)

the sequence generated from the algorithm is not possible to close S∗.
The convergence result of the algorithm with step rule (14.3.29) is stated

as follows.

Theorem 14.3.5 Let f(x) be convex and let there exist positive constant
δ1 > 0 such that for all x,

(x− x∗)T g ≥ δ1‖g‖‖x− x∗‖, ∀g ∈ ∂f(x), (14.3.31)

then there must exist constants q̄ ∈ (0, 1) and ᾱ > 0 such that, provided that

q ∈ (q̄, 1), α0 > ᾱ, (14.3.32)

then the sequence {xk} generated by Algorithm 14.3.1 satisfies

‖xk − x∗‖ ≤ M(δ, α0)qk, (14.3.33)

where x∗ ∈ S∗, q̄ and ᾱ are constants related to ‖x1−x∗‖ and δ1, M(δ1, α0) >
0 is a constant irrelative to k and related to δ1 and α0.

Download more at Learnclax.com

614 CHAPTER 14. NONSMOOTH OPTIMIZATION

However, the rule (14.3.29) to determine stepsize is almost infeasible in
practice, because, in general, it is impossible to know the values of ᾱ and q̄.
If the given α0 is too small, then (14.3.32) is not satisfied; if α0 is too big,
then the algorithm converges very slowly.

When f∗ is known in advance, let us set

αk = λ
f(xk)− f∗

‖gk‖
, 0 < λ < 2. (14.3.34)

The convergence theorem of Algorithm 14.3.1 with stepsize rule (14.3.34) is
due to Polyak [255] and stated as follows.

Theorem 14.3.6 Let f(x) be convex and the set S∗ be nonempty. If there
exist positive numbers c̄ and ĉ such that

‖g‖ ≤ c̄, ∀g ∈ ∂f(x), (14.3.35)
f(x)− f∗ ≥ ĉ dist(x, S∗) (14.3.36)

hold for all x satisfying dist(x, S∗) ≤ dist(x1, S
∗), then the sequence generated

by Algorithm 14.3.1 with stepsize (14.3.34) converges to some x∗ ∈ S∗, and
there exists a positive constant M such that

‖xk − x∗‖ ≤ Mqk, (14.3.37)

where q = (1− λ(2− λ)ĉ2/c̄2)1/2 < 1.

The above discussion has shown that the improvements only in the step-
size rule cannot, in general, significantly accelerate convergence. Indeed, slow
convergence is due to the fact that the gradient is almost perpendicular to
the direction towards the minimum. There is a simple way of changing the
angles between the gradient and the direction towards the minimum. This
can be done by performing a space dilation technique, which, in fact, is a
generalization of the variable metric method.

Now we describe the space dilation method as follows:

Algorithm 14.3.7 (The space dilation method)

Step 1. Given initial point x1, α > 0, H1 = αI; k := 1.

Step 2. Evaluate gk ∈ ∂f(xk); find the stepsize αk > 0; set

xk+1 = xk − αkHkgk/(gT
k Hkgk)1/2. (14.3.38)

Download more at Learnclax.com

14.4. CUTTING PLANE METHOD 615

Step 3. Choose rk > 0 and βk < 1. Set

Hk+1 = rk

(
Hk − βk

Hkgkg
T
k Hk

gT
k Hkgk

)
. (14.3.39)

k := k + 1, go to Step 2. �

It is not difficult to see that the matrix sequence {Hk} generated by
(14.3.39) are positive definite. There are various ways to choose αk, βk and
rk, for example,

αk =
1

n + 1
, βk =

2
n + 2

, rk =
n2

n2 − 1
. (14.3.40)

Below, we state the convergence of the space dilation method without
proof. The interested reader can consult Shor [311].

Theorem 14.3.8 Let f(x) be convex and the set S∗ be nonempty. If

dist(x1, S
∗) ≤ α,

then the sequence {xk} generated by Algorithm 14.3.7 with (14.3.40) satisfies

lim inf
k→∞

f(xk)− f∗

qk
< +∞, (14.3.41)

where

q =
(

1− 2
n + 1

) 1
2n n√

n2 − 1
. (14.3.42)

There are other generalizations to the subgradient method, for example,
ellipsoid algorithm, finite difference approximation etc. We refer the readers
to Zowe [386] and Shor [313] for details.

14.4 Cutting Plane Method

The cutting plane method for convex programming was presented indepen-
dently by Kelley [186] and Cheney and Goldstein [58] respectively. The
underlying idea of the cutting plane method is to find the minimum of a
function on a convex polyhedral set in each iteration. After each iteration,
a cutting plane is introduced, and a point, which does not satisfy the new

Download more at Learnclax.com

616 CHAPTER 14. NONSMOOTH OPTIMIZATION

hyperplane, is cut off from the feasible region, and hence the polyhedral set
is reduced. At last, the iterates converge to a solution. The procedure is
performed by solving a sequence of approximating linear programming.

For convex function f(x), obviously, we have

f(x) = sup
y

sup
g∈∂(y)

[f(y) + gT (x− y)]. (14.4.1)

Therefore, the minimization of f(x) is equivalent to the following problem

min v (14.4.2)
s.t. v ≥ f(y) + gT (x− y), ∀y ∈ Rn, g ∈ ∂f(y). (14.4.3)

The cutting plane method is just, at each iteration, to solve an approxi-
mation problem to (14.4.2)–(14.4.3). Let xi (i = 1, · · · , k) be existing iterates.
At each iteration, we would like to solve the subproblem

min v (14.4.4)
s.t. v ≥ f(xi) + gT

i (x− xi), i = 1, · · · , k. (14.4.5)

Obviously, the linear programming problem (14.4.4)–(14.4.5) is an approxi-
mation to problem (14.4.2)–(14.4.3).

We can state the cutting plane method as follows.

Algorithm 14.4.1 (Cutting plane method)

Step 1. Given an initial point x1 ∈ S, where S is a given polyhedral
set. Set k := 1.

Step 2. Compute gk ∈ ∂f(xk).

Step 3. Solve the linear program (14.4.4)–(14.4.5) for vk+1 and xk+1.
Set k := k + 1, go to Step 2. �

As indicated above, at each iteration, the algorithm adds a new con-
straint, which means, in geometry, that a part in S which does not contain
the solution, will be cut off by a hyperplane.

The convergence of the cutting plane method can be stated below.

Theorem 14.4.2 Let f(x) be convex and bounded below. Then the sequences
{xk} and {vk} generated by Algorithm 14.4.1 satisfy

1) v2 ≤ v3 ≤ · · · ≤ vk → f∗.
2) Any accumulation point of {xk} is a minimizer of f(x) in S.

Download more at Learnclax.com

14.5. THE BUNDLE METHODS 617

Suppose that f(x) is differentiable and the algorithm converges to a so-
lution, then for k sufficiently large, gk = ∇f(xk) is very small, and hence
the constraint condition (14.4.5) will be ill-conditioned. The other disadvan-
tage of the cutting plane method is that when k is sufficiently large, there
are too many constraints in problem (14.4.4)–(14.4.5) such that the cost is
prohibitively expensive, since cutting plane constraints are always added to
the existing set of constraints but are never deleted. Because of these disad-
vantages, the cutting plane methods have never been attractive, although it
is one of the earliest methods for general convex programming. Therefore,
some modified versions of the cutting plane methods are needed.

14.5 The Bundle Methods

The bundle method is a class of methods extended from the conjugate sub-
gradient method. This is a descent method with f(xk+1) ≤ f(xk) for each
k.

The conjugate subgradient method was presented by Wolfe [354]. At the
k-th iteration, there is an index set Ik ⊂ {1, · · · , k}. The search direction is
determined by

dk = −
∑
i∈Ik

λ
(k)
i gi, gi ∈ ∂f(xk), (14.5.1)

where λ
(k)
i (i ∈ Ik) are obtained by solving the subproblem

min

∥∥∥∥∥∥
∑
i∈Ik

λigi

∥∥∥∥∥∥
2

2

(14.5.2)

s.t.
∑
i∈Ik

λi = 1, λi ≥ 0. (14.5.3)

When f(x) is a convex quadratic function and Ik = {1, 2, · · · , k}, under exact
line search, the direction generated from (14.5.1)–(14.5.3) is the same as that
of the conjugate gradient method. So, this method is said to be a conjugate
subgradient method. We now state the algorithm as follows.

Algorithm 14.5.1 (Conjugate Subgradient Method)

Step 1. Given initial point x1 ∈ Rn, compute g1 ∈ ∂f(x1). Choose
0 < m2 < m1 < 1

2 , 0 < m3 < 1; ε > 0, η > 0, k := 1; I1 =
{1}.

Download more at Learnclax.com

618 CHAPTER 14. NONSMOOTH OPTIMIZATION

Step 2. Compute the direction dk by (14.5.1)–(14.5.3).
If ‖dk‖ ≤ η stop.

Step 3. Compute yk = xk + αkdk such that

f(yk) ≤ f(xk)−m2αk‖dk‖22, (14.5.4)

or
‖yk − xk‖ ≤ m3ε. (14.5.5)

Step 4. If there is gk+1 ∈ ∂f(yk) such that

gT
k+1dk ≥ −m1‖dk‖22, (14.5.6)

then set xk+1 := yk, otherwise set xk+1 := xk.

Step 5. Set Ik+1 := Ik ∪ {k + 1} \ Tk, where Tk is an index set

Tk = {i | ‖xi − xk+1‖ > ε}.

Step 6. k := k + 1, go to Step 2. �

The following convergence theorem was given by Wolfe [354].

Theorem 14.5.2 Let f(x) be convex and ‖∂f(x)‖ be bounded on some open
set containing the set {x | f(x) ≤ f(x1)}. Let the sequence {xk} generated
by Algorithm 14.5.1 make f(xk) bounded below. Then the algorithm must
terminate in finitely many iterations.

Now we consider an extension of the conjugate subgradient method. Sup-
pose that we have performed several steps of the conjugate subgradient
method. A certain number of points have been generated, at which the value
of f has been computed together with some subgradient. We symbolize this
information by the bundle x1, · · · , xk; f1, · · · , fk; g1, · · · , gk; where fi = f(xi)
and gi ∈ ∂f(xi).

Suppose that at k-th iteration we have weighted factors t
(k)
i ≥ 0 (i =

1, · · · , k). Consider the following subproblem

min

∥∥∥∥∥
k∑

i=1

λigi

∥∥∥∥∥ (14.5.7)

Download more at Learnclax.com

14.5. THE BUNDLE METHODS 619

s.t.
k∑

i=1

λi = 1, λi ≥ 0, (14.5.8)

k∑
i+1

λit
(k)
i ≤ ε̄, (14.5.9)

where ε̄ > 0 is a given constant. Write λ
(k)
i as a solution of (14.5.7)–(14.5.9).

Then the search direction of the bundle method is

dk = −
k∑

i=1

λ
(k)
i gi. (14.5.10)

It is not difficult to see that if t
(k)
i = 0 (i ∈ Ik) and t

(k)
i = +∞ (i /∈ Ik), then

(14.5.7)–(14.5.9) is equivalent completely to (14.5.2)–(14.5.3).

Algorithm 14.5.3 (Bundle Method)

Step 1. Given initial point x1 ∈ Rn, compute g1 ∈ ∂f(x1). Choose
0 < m2 < m1 < 1

2 , 0 < m3 < 1, ε > 0, η > 0, k := 1 and
t
(1)
1 = 1.

Step 2. Solve (14.5.7)–(14.5.9) for λ
(k)
i .

Compute dk by (14.5.10).
If ‖dk‖ ≤ η stop.

Step 3. Compute yk = xk + αkdk such that (14.5.4) holds or

f(yk)− αkg
T
k+1dk ≥ f(xk)− ε, (14.5.11)

where gk+1 ∈ ∂f(yk).
If (14.5.4) does not hold, then go to Step 5.

Step 4. xk+1 := yk, t
(k+1)
k+1 = 1,

t
(k+1)
j = t

(k)
j + f(xk+1)− f(xk)− αkg

T
j dk, j = 1, · · · , k.

Set k := k + 1, go to Step 2.

Step 5. xk+1 := xk, t
(k+1)
j = t

(k)
j (j = 1, · · · , k)

t
(k+1)
k+1 = f(xk)− f(yk) + αkg

T
k+1dk.

Set k := k + 1, go to Step 2. �

Download more at Learnclax.com

620 CHAPTER 14. NONSMOOTH OPTIMIZATION

The convergence of the bundle method was established by Lemarechal
[196] and stated below.

Theorem 14.5.4 Under the assumptions of Theorem 14.5.2, Algorithm 14.5.3
will terminate in finitely many iterations, i.e., there exists k ∈ IN such that
f(xk) ≤ f∗ + ε, where IN is an index set of positive integers.

14.6 Basic Property of a Composite Nonsmooth
Function

In the following two sections of the chapter, we will discuss a problem with
the special form

min
x∈Rn

h(f(x)), (14.6.1)

and develop the trust-region method for solving this class of problems. In
(14.6.1), f(x) = (f1(x), · · · , fm(x))T is a continuously differentiable function,
and h(f) : Rm → R1 is convex but nonsmooth. The objective function in
(14.6.1) is a composite function, and the problem (14.6.1) is referred to as
composite nonsmooth optimization (for brief, composite NSO) or composite
nondifferentiable optimization (for brief, composite NDO).

There are many examples of composite NSO in discrete approximation
and data fitting. The following is a simple example.

Consider linear equations
Ax = b, (14.6.2)

where A ∈ Rm×n and b ∈ Rm. If m > n, the equations (14.6.2) in general
have no solution. However, we can take x such that the error between Ax and
b is as small as possible. This means that we need to solve the minimization
problem

min
x∈Rn

‖Ax− b‖, (14.6.3)

where ‖ · ‖ is a norm on Rm. Obviously, (14.6.3) is a form of (14.6.1). If we
take ‖ · ‖2 in (14.6.3), the problem is just the classical least-squares problem.

In addition, note that a general smooth constrained optimization problem
can be transformed to a composite NSO problem via an L1 exact penalty
function. This is the other reason that the composite NSO attracts us.

A prerequisite for describing algorithms for composite NSO is a study of
optimality conditions for composite NSO, which is a direct use of the result

Download more at Learnclax.com

14.6. COMPOSITE NONSMOOTH FUNCTION 621

in §14.1. For simplicity, we introduce the following conception:

χ(x, d) = h(f(x))− h(f(x) + A(x)T d), (14.6.4)
ψt(x) = max

‖d‖≤t
χ(x, d), (14.6.5)

DF (x, d) = sup
λ∈∂h(f(x))

dT A(x)λ, (14.6.6)

where ∂h(f(x)) denotes the subgradient of h(·) at f(x), A(x) = ∇f(x)T is
an n×m matrix.

Since h(·) is a convex function, by use of the chain rule of the subgradient
of a composite function, it is not difficult to get the following lemma.

Lemma 14.6.1 For composite function f̃(x) = h(f(x)), the fact

0 ∈ ∂f̃(x) (14.6.7)

is equivalent to
DF (x, d) ≥ 0, ∀d ∈ Rn. (14.6.8)

Then the stationary point of nonsmooth optimization satisfies (14.6.8).
From the convexity of h(f), we can also obtain the following results:

Lemma 14.6.2 Let χ(x, d), ψt(x), DF (x, d) be defined in (14.6.4)–(14.6.6).
Then

1) DF (x, d) exists for all x and d ;
2) χ(x, d) is a concave function with respect to d, its directional derivative

at d∗ = 0 in the direction d is −DF (x, d).
3) ψt(x) ≥ 0, ∀t ≥ 0; ψ1(x) = 0 if and only if x is a stationary point;
4) ψt(x) is a concave function of t;
5) ψt(x) is a continuous function of x for any given t ≥ 0.

By the above results, we can show that the following statements are
equivalent:

1) The sequence {xk} has an accumulation point x∗ which is a stationary
point.

2)
lim inf
k→∞

ψ1(xk) = 0. (14.6.9)

From the necessity theorem in §14.1, it follows that if x∗ is a minimizer
of h(f(x)), then it is a stationary point. For a special form of composite
nonsmooth function, it can be written in the following equivalent form.

Download more at Learnclax.com

622 CHAPTER 14. NONSMOOTH OPTIMIZATION

Theorem 14.6.3 If x∗ is a local minimizer of composite NSO problem (14.6.1),
then there exists λ∗ ∈ ∂h(f(x∗)) such that

A(x∗)λ∗ = 0, (14.6.10)

where A(x) = ∇f(x)T .

Proof. It is enough to prove that (14.6.10) and

DF (x∗, d) ≥ 0, ∀d ∈ Rn (14.6.11)

are equivalent.
If (14.6.10) holds, then it follows from the definition (14.6.6) that (14.6.11)

holds.
Now let us assume that (14.6.11) holds. Suppose to the contrary that

(14.6.10) does not hold. Then the set

S̄ = {A(x∗)λ | λ ∈ ∂h(f(x∗))} (14.6.12)

does not contain the origin. Since ∂h(f(x∗)) is a closed convex set, then S̄
is too. Hence by applying the separation theorem of convex sets, we know
there must exist d̄ ∈ Rn such that

d̄T A(x∗)λ < 0, ∀λ ∈ ∂h(f(x∗)). (14.6.13)

Since ∂h(f(x∗)) is closed, the above expression (14.6.13) contradicts the
fact that DF (x∗, d̄) ≥ 0. This contradiction shows the equivalence between
(14.6.11) and (14.6.10). �

Although the function f̃(x) = h(f(x)) may not be convex, we can obtain
the following first-order sufficient conditions.

Theorem 14.6.4 (First order sufficient conditions) If

DF (x∗, d) > 0 (14.6.14)

holds for all nonzero vectors d, then x∗ is a strictly local minimizer of h(f(x)).

Proof. By (14.6.14), there exists δ > 0 such that

DF (x∗, d) ≥ δ, ∀‖d‖2 = 1. (14.6.15)

Download more at Learnclax.com

14.7. TRUST REGION METHOD FOR COMPOSITE PROBLEMS 623

Suppose that the theorem is not true, then there exists xk → x∗ with
h(f(xk)) ≤ h(f(x∗)). Let us suppose that

xk = x∗ + αkdk, ‖dk‖2 = 1, αk > 0, αk → 0+.

Then

h(f(xk))− h(f(x∗))
= h(f(x∗) + A(x∗)T (xk − x∗))− h(f(x∗)) + o(αk)
≥ αkDF (x∗, dk) + o(αk)
≥ αkδ + o(αk), (14.6.16)

which contradicts the fact that h(f(xk)) ≤ h(f(x∗)). The contradiction
proves the theorem. �

In fact, it also follows from (14.6.16) that, under assumption (14.6.14),
there exist δ̄ and ε̄ such that

h(f(x))− h(f(x∗)) ≥ δ̄‖x− x∗‖ (14.6.17)

holds for all x with ‖x− x∗‖ ≤ ε̄.

14.7 Trust Region Method for Composite Nons-
mooth Optimization

For composite nonsmooth optimization (14.6.1), the subproblem of the trust-
region method has the form

mind∈Rn h(f(xk) + A(xk)T d) +
1
2
dT Bkd

∆= φk(d) (14.7.1)

s.t. ‖d‖ ≤ ∆k, (14.7.2)

where A(x) = ∇f(x)T ∈ Rn×m, Bk ∈ Rn×n is a symmetric matrix, and ∆k >
0 is a radius of the trust-region which is adjusted adaptively to be as large
as possible subject to adequate agreement between φk(d) and h(f(xk + d))
being maintained. The norm ‖ · ‖ in (14.7.2) is arbitrary but ‖ · ‖2 is used in
this section without special specification.

Let dk be a solution of subproblem (14.7.1)–(14.7.2). Similar to Theorem
14.6.3, we can prove that there must exist

λk ∈ ∂h(f(xk) + A(xk)T dk), (14.7.3)
µk ∈ ∂‖dk‖, (14.7.4)

Download more at Learnclax.com

624 CHAPTER 14. NONSMOOTH OPTIMIZATION

and µ̄k ≥ 0 such that

A(xk)λk + Bkdk + µ̄kµk = 0, (14.7.5)
µ̄k[∆k − ‖dk‖] = 0. (14.7.6)

The trust-region algorithm for composite nonsmooth optimization due to
Fletcher [129] is as follows.

Algorithm 14.7.1 (Trust-region algorithm for composite NSO)

Step 1. Given x1 ∈ Rn, λ0 ∈ Rm, ∆1 > 0, ε ≥ 0, k := 1.

Step 2. Compute

Bk =
m∑

i=1

(λk−1)i∇2fi(xk); (14.7.7)

Solve the subproblem (14.7.1)–(14.7.2) for dk;

If ‖dk‖ ≤ ε, stop.

Step 3. Calculate

rk =
h(f(xk))− h(f(xk + dk))

φk(0)− φk(dk)
. (14.7.8)

If rk < 0.25 set ∆k+1 := ‖dk‖/4;
if rk > 0.75 and ‖dk‖ = ∆k, set ∆k+1 = 2∆k;
otherwise, set ∆k+1 = ∆k.

Step 4. If rk > 0 go to Step 5;
else xk+1 := xk, λk := λk−1, go to Step 6.

Step 5. Set xk+1 := xk + dk, λk is defined by (14.7.5).

Step 6. k := k + 1, go to Step 2. �

To analyze the convergence of Algorithm 14.7.1, we assume that the se-
quence {xk} from the algorithm is bounded, which is implied if any level set
{x | h(f(x)) ≤ h(f(x1))} is bounded. The boundedness of {xk} suggests that
there exists a bounded, closed convex set Ω such that

xk ∈ Ω, xk + dk ∈ Ω, ∀k = 1, 2, · · · . (14.7.9)

Download more at Learnclax.com

14.7. TRUST REGION METHOD FOR COMPOSITE PROBLEMS 625

Since h(·) is convex and well-defined on all of Rm, then there exists constant
L > 0 such that

|h(f1)− h(f2)| ≤ L‖f1 − f2‖ (14.7.10)

holds for all f1, f2 ∈ f(Ω) = {v = f(x), x ∈ Ω}. From the continuous
differentiability of f and the boundedness of Ω, it follows that there is a
constant M > 0 such that

‖A(x)‖ ≤ M (14.7.11)

holds for all x ∈ Ω.

Theorem 14.7.2 Let fi(x) (i = 1, · · · , m) be twice continuously differen-
tiable, if the sequence {xk} generated by Algorithm 14.7.1 is bounded, then
there exists an accumulation point x∗ of Algorithm 14.7.1, which is a station-
ary point of optimization problem (14.6.1).

As to the proof of the theorem, please consult Fletcher (1981). Further,
we have the following corollary.

Corollary 14.7.3 Under the assumption of Theorem 14.7.2, if, instead of
(14.7.7), ‖Bk‖ is uniformly bounded, then {xk} has an accumulation point
x∗, which is a stationary point.

Now, the uniform boundedness of ‖Bk‖ is relaxed to

‖Bk‖ ≤ c5 + c6

k∑
i=1

∆i. (14.7.12)

Also, the adjustment of trust-region radius can be extended to the general
case:

‖dk‖ ≤ ∆k+1 ≤ min[c1∆k, ∆̄], if rk ≥ c2, (14.7.13)
c3‖dk‖ ≤ ∆k+1 ≤ c4∆k, if rk < c2, (14.7.14)

where ci(i = 1, · · · , 6) are positive constants and satisfy c1 > 1 > c4 >
c3, c2 < 1; ∆̄ is a constant given in advance, an upper bound of the trust-
region radius.

Under the extended conditions, we also can establish the convergence.
We first give a lemma.

Download more at Learnclax.com

626 CHAPTER 14. NONSMOOTH OPTIMIZATION

Lemma 14.7.4 Let dk be a solution of (14.7.1)–(14.7.2), then

h(f(xk))− φk(dk) ≥
1
2
ψ∆k

(xk) min

[
1,

ψ∆k
(xk)

‖Bk‖∆2
k

]
, (14.7.15)

where ψt(x) is defined by (14.6.4)–(14.6.5).

Proof. It follows from the definition of dk that

h(f(xk))− φk(dk) ≥ h(f(xk))− φk(d) (14.7.16)

holds for any d with ‖d‖ ≤ ∆k. By the definition (14.6.5) of ψt(x), there
exists ‖d̄k‖ ≤ ∆k such that

ψ∆k
(xk) = h(f(xk))− h(f(xk) + A(xk)T d̄k). (14.7.17)

Then, by using the convexity of h(·), we obtain that

h(f(xk))− φk(dk) ≥ h(f(xk))− φk(αd̄k)

= χ(xk, αd̄k)−
1
2
α2d̄T

k Bkd̄k

≥ αχ(xk, d̄k)−
1
2
α2‖Bk‖‖d̄k‖2

≥ αψ∆k
(xk)−

1
2
α2‖Bk‖∆2

k (14.7.18)

holds for all α ∈ [0, 1]. Therefore

h(f(xk))− φk(dk) ≥ max
0≤α≤1

[
αψ∆k

(xk)−
1
2
α2‖Bk‖∆2

k

]

≥ 1
2

min

[
ψ∆k

(xk),
[ψ∆k

(xk)]2

‖Bk‖∆2
k

]
. (14.7.19)

We complete the proof. �

It is now possible to establish an extended conclusion of Theorem 14.7.2.

Theorem 14.7.5 Let fi(x) (i = 1, · · · , m) be twice continuously differen-
tiable. Suppose that Bk in Algorithm 14.7.1 is not given by (14.7.7) but
instead by (14.7.12) and that the sequence {xk} of the algorithm is bounded,
then there must exist an accumulation point x∗ of {xk} which is a stationary
point of the problem (14.6.1).

Download more at Learnclax.com

14.7. TRUST REGION METHOD FOR COMPOSITE PROBLEMS 627

Proof. Suppose that the theorem does not hold, so there exists a positive
constant δ > 0 such that

ψ1(xk) ≥ δ, ∀k. (14.7.20)

By use of 5) of Lemma 14.6.2, Lemma 14.7.4, inequality (14.7.20) and bound-
edness of ∆k, we deduce that

h(f(xk))− φk(dk) ≥ c7 min
[
∆k,

1
‖Bk‖

]

≥ c7 min

[
∆k,

1
c5 + c6

∑k
i=1 ∆i

]
, (14.7.21)

where c7 is a positive constant. Define a set

S = {k | rk ≥ c2}, (14.7.22)

then we have

h(f(x1))−min
x∈Ω

h(f(x)) ≥
∞∑

k=1

[h(f(xk))− h(f(xk+1))]

≥
∑
k∈S

[h(f(xk))− h(f(xk+1))]

≥ c2

∑
k∈S

[h(f(xk))− φk(dk)]. (14.7.23)

By (14.7.23), (14.7.21), (14.7.12) and ∆k ≤ ∆̄, it follows that

∑
k∈S

∆k/

(
c5 + c6

k∑
i=1

∆i

)
< +∞. (14.7.24)

In view of definition of ∆k+1, we have

∆k+1 ≤ c4∆k, ∀k /∈ S, (14.7.25)

which gives
k∑

i=1

∆i ≤
(

1 +
c1

1− c4

)⎡⎢⎣ k∑
i=1
i∈S

∆i + ∆1

⎤
⎥⎦ . (14.7.26)

Combining (14.7.24) and (14.7.26) yields that
∑

i∈S ∆i converges, and fur-
ther that

∑∞
k=1 ∆k converges by (14.7.26) again. Hence ‖Bk‖ is uniformly

Download more at Learnclax.com

628 CHAPTER 14. NONSMOOTH OPTIMIZATION

bounded. So, by Corollary 14.7.3, we know that (14.7.20) cannot hold for all
k. The contradiction proves the theorem. �

Similar to the analysis of the trust-region method for unconstrained op-
timization, the condition (14.7.12) can further be weakened to

‖Bk‖ ≤ c8 + c9k. (14.7.27)

However, for the nonsmooth trust-region method, no matter what choices
of Bk, there is only linear convergence. Several modifications are available to
avoid the Maratos effect and enable the second-order rate to be established.
The interested reader can consult Fletcher [131] and Yuan [369] for details.

14.8 Nonsmooth Newton’s Method

Qi and Sun [283] extended the classical Newton’s method to a non-smooth
case by using the generalized Jacobian instead of the classical Jacobian. In
this section, following Qi and Sun [283], we discuss the non-smooth Newton’s
method.

First, we introduce the generalized Jacobian and semismooth function.
Suppose that F : Rn → Rm is a locally Lipschitzian function. Rademacher’s
theorem says that F is differentiable almost everywhere. Denote the set of
points at which F is differentiable by DF . We write JF (x) for the usual
m× n Jacobian matrix of partial derivatives whenever x is a point at which
the necessary partial derivatives exist.

The generalized Jacobian of F at x, denoted by ∂F (x), is a convex hull of
all m×n matrices V obtained as the limit of a sequence of the form JF (xi),
where xi → x and xi ∈ DF . Then, we have

∂F (x) = co {limJF (xi) | xi → x, xi ∈ DF }. (14.8.1)

Let F be Lipschitz on an open convex set U in Rn, and let x and y be
points in U . Then, by Proposition 2.6.5 of Clarke [60], one has

F (y)− F (x) ∈ ∂F ([x, y])(y − x). (14.8.2)

Assume that for any h ∈ Rn,

lim
V ∈∂F (x+th)

t↓0

{V h} (14.8.3)

Download more at Learnclax.com

14.8. NONSMOOTH NEWTON’S METHOD 629

exists. Then the classical directional derivative

F ′(x;h) = lim
t↓0

F (x + th)− F (x)
t

(14.8.4)

exists, and
F ′(x; h) = lim

V ∈∂F (x+th)
t↓0

{V h}. (14.8.5)

In fact, by (14.8.2), we have

F (x + tjh)− F (x)
tj

∈ co ∂F ([x, x + tjh])h.

By the Carathèodory theorem, there exist t
(k)
j ∈ [0, tj], λ

(k)
j ∈ [0, 1], V

(k)
j ∈

∂F ([x, x + t
(k)
j h]), for k = 0, 1, · · · , m,

∑m
k=0 λ

(k)
j = 1, such that

F (x + tjh)− F (x)
tj

=
m∑

k=0

λ
(k)
j V

(k)
j h.

By passing to a subsequence, we can assume that λ
(k)
j → λj as j → ∞. We

have λj ∈ [0, 1] for k = 0, · · · , m and
∑m

k=0 λj = 1. Then there are tj ↓ 0 such
that

F ′(x;h) = lim
j→∞

F (x + tjh)− F (x)
tj

= lim
j→∞

{
m∑

k=0

λ
(k)
j V

(k)
j h}

=
m∑

k=0

lim
j→∞

λ
(k)
j lim

j→∞
{V (k)

j h} =
m∑

k=0

λj lim
V ∈∂F (x+th)

t↓0

{V h}

= lim
V ∈∂F (x+th)

t↓0

{V h}.

F is called semismooth at x if F is locally Lipschitzian at x and

lim
V ∈∂F (x+th′)

h′→h,t↓0

{V h′} (14.8.6)

exists for any h ∈ Rn. It implies that

lim
h′→h

t↓0

F (x + th′)− F (x)
t

= lim
V ∈∂F (x+th′)

h′→h,t↓0

{V h′}. (14.8.7)

Download more at Learnclax.com

630 CHAPTER 14. NONSMOOTH OPTIMIZATION

Lemma 14.8.1 suppose that F : Rn → Rm is locally Lipschitzian and
F ′(x;h) exists for any h at x. Then
(1) F ′(x;h) is Lipschitzian;
(2) for any h, there exists a V ∈ ∂F (x) such that

F ′(x; h) = V h. (14.8.8)

Proof. For any h, h′ ∈ Rn,

‖F ′(x;h)− F ′(x; h′)‖ =
∥∥∥∥limt↓0

F (x + th)− F (x + th′)
t

∥∥∥∥
≤ lim

t↓0
‖F (x + th)− F (x + th′)‖

t
≤ L‖h− h′‖,

where L is the Lipschitzian constant near x. This proves (1).
By (14.8.2) and (14.8.4), there are a sequence {tk} and a sequence {Vk}

such that tk ↓ 0, Vk ∈ co ∂F ([x, x + tkh]),

F ′(x;h) = lim
k→∞

{Vkh}.

Because of the local Lipschitzian property of F , {Vk} is bounded. By passing
to a subsequence, we may assume that Vk → V . Also since ∂F is closed,
V ∈ ∂F (x). So, (2) is proved. �

If F is semismooth, then for any V ∈ ∂F (x + h) and h → 0,

V h− F ′(x;h) = o(‖h‖) (14.8.9)

and

lim
x+h∈Df

h→0

F ′(x + h; h)− F ′(x;h)
‖h‖ = 0. (14.8.10)

In fact, if F is semismooth, we have a conclusion that the right-hand side of
(14.8.7) is uniformly convergent for all h. Suppose that this conclusion does
not hold. Then there exist ε > 0, {hk ∈ Rn | ‖hk‖ = 1, k = 1, 2, · · ·}, ‖h̄k −
hk‖ → 0, tk ↓ 0, Vk ∈ ∂F (x + tkh̄k) such that

‖Vkh̄k − F ′(x;hk)‖ ≥ 2ε, (14.8.11)

for k = 1, 2, · · ·. By passing to a subsequence, we may assume that hk → h.
Thus, h̄k → h too. By Lemma 14.8.1 (1) and (14.8.11), we can get

‖Vkh̄k − F ′(x;h)‖ ≥ ε (14.8.12)

Download more at Learnclax.com

14.8. NONSMOOTH NEWTON’S METHOD 631

for all sufficiently large k. This contradicts the semismoothness assumption.
The uniform convergence of the right-hand side of (14.8.7) implies the

uniform convergence of the right-hand side of (14.8.5), which further implies
(14.8.9).

Also, it immediately follows from (14.8.9) and (14.8.8) that (14.8.10)
holds.

The Fréchet derivative F ′(x) is said to be strong if

lim
y→x
z→x

F (z)− F (y)− F ′(x)(z − y)
‖z − y‖ = 0. (14.8.13)

Clearly, if F has strong Fréchet derivative at x, then F is semismooth at x.
If for any V ∈ ∂F (x + h) and h→ 0,

V h− F ′(x;h) = O(‖h‖1+p),

where 0 < p ≤ 1, then we call F p-order semismooth at x. Obviously, p-order
semismoothness (0 < p ≤ 1) implies semismoothness.

Note that, if F is semismooth at x, then for any h → 0,

F (x + h)− F (x)− F ′(x; h) = o(‖h‖). (14.8.14)

If F is p-order semismooth at x, then for any h → 0,

F (x + h)− F (x)− F ′(x; h) = O(‖h‖1+p). (14.8.15)

Now, we are in a position to give the nonsmooth Newton’s method.
It is well-known that for smooth function F : Rn → Rn, the Newton’s

method for solving the nonlinear equation

F (x) = 0 (14.8.16)

is
xk+1 = xk − [F ′(xk)]−1F (xk). (14.8.17)

Now, suppose that F is not a smooth function, but a locally Lipschitzian
function. Then the formula (14.8.17) cannot be used. Let ∂F (xk) be the
generalized Jacobian of F at xk. Instead of (14.8.17), we may use

xk+1 = xk − V −1
k F (xk), (14.8.18)

where Vk ∈ ∂F (xk), to solve the nonsmooth equation

F (x) = 0. (14.8.19)

Download more at Learnclax.com

632 CHAPTER 14. NONSMOOTH OPTIMIZATION

Lemma 14.8.2 If all V ∈ ∂F (x) are nonsingular, then there is a neigh-
borhood N(x) of x and a constant C such that for any y ∈ N(x) and any
V ∈ ∂F (y), V is nonsingular and

‖V −1‖ ≤ C. (14.8.20)

Proof. By contradiction. If the lemma is not true, there is a sequence
yk → x, Vk ∈ ∂F (yk) such that either all Vk are singular or ‖V −1

k ‖ → ∞.
Since F is locally Lipschitzian, ∂F is bounded in a neighborhood of x. By
passing to a subsequence, we may assume that Vk → V . Then V must
be singular, a contradiction to the assumption for this proposition. This
completes the proof. �

Theorem 14.8.3 (Local Convergence) Suppose that x∗ is a solution of non-
smooth equation (14.8.19), F is locally Lipschitzian and semismooth at x∗,
and all V ∈ ∂F (x∗) are nonsingular. Then the iterative method (14.8.18)
is well-defined and convergent to x∗ in a neighborhood of x∗. If in addition
F is p-order semismooth at x∗, then the convergence of (14.8.18) is of order
1 + p.

Proof. By Lemma 14.8.2, the iteration (14.8.18) is well-defined in the
neighborhood of x∗. By (14.8.18), (14.8.9) and (14.8.14), we have

‖xk+1 − x∗‖ = ‖xk − x∗ − V −1
k F (xk)‖

≤ ‖V −1
k [F (xk)− F (x∗)− F ′(x∗, xk − x∗)]‖

+‖V −1
k [Vk(xk − x∗)− F ′(x∗;xk − x∗)]‖

= o(‖xk − x∗‖). (14.8.21)

The case that F is p-order semismooth at x is similar. �

Finally we give the global convergence of nonsmooth Newton’s method.

Theorem 14.8.4 (Global Convergence) Suppose that F is locally Lipschitzian
and semismooth on S = {x ∈ Rn : ‖x − x0‖ ≤ r}. Also suppose that for
any V ∈ ∂F (x) and x, y ∈ S, V is nonsingular,

‖V −1‖ ≤ β, ‖V (y − x)− F ′(x; y − x)‖ ≤ γ‖y − x‖,

and
‖F (y)− F (x)− F ′(x; y − x)‖ ≤ δ‖y − x‖,

Download more at Learnclax.com

14.8. NONSMOOTH NEWTON’S METHOD 633

where α = β(γ+δ) < 1 and β‖F (x0)‖ ≤ r(1−α). Then the iterates (14.8.18)
remain in S and converge to the unique solution x∗ of (14.8.19). Moreover,
the error estimate

‖xk − x∗‖ ≤ [α/(1− α)]‖xk − xk−1‖ (14.8.22)

holds for k = 1, 2, · · ·

Proof. Obviously,

‖x1 − x0‖ = ‖V −1
0 F (x0)‖ ≤ β‖F (x0)‖ ≤ r(1− α).

So x1 ∈ S. Suppose now that x1, x2, · · · , xk ∈ S. Then

‖xk+1 − xk‖ = ‖V −1
k F (xk)‖ ≤ β‖F (xk)‖

≤ β‖F (xk)− F (xk−1)− F ′(xk−1; xk − xk−1)‖
+β‖Vk−1(xk − xk−1)− F ′(xk−1, xk − xk−1)‖

≤ β(δ + γ)‖xk − xk−1‖ = α‖xk − xk−1‖ ≤ αk‖x1 − x0‖
≤ rαk(1− α). (14.8.23)

Hence

‖xk+1 − x0‖ ≤
k∑

j=0

‖xj+1 − xj‖ ≤
k∑

j=0

rαj(1− α) ≤ r. (14.8.24)

So xk+1 ∈ S, i.e., all the iterates (14.8.18) remain in S.
For any k and n,

‖xk+n+1 − xk‖ ≤
k+n∑
j=k

‖xj+1 − xj‖ ≤
k+n∑
j=k

rαj(1− α) ≤ rαk. (14.8.25)

So the iterates (14.8.18) converge to a point x∗ in S. Since F is Lipschitzian
in S, ‖Vk‖ is uniformly bounded. Thus

‖F (x∗)‖ = lim
k→∞

‖F (xk)‖ ≤ lim
k→∞

‖Vk‖‖xk+1 − xk‖ = 0,

i.e., F (x∗) = 0.

Download more at Learnclax.com

634 CHAPTER 14. NONSMOOTH OPTIMIZATION

Suppose that there are x∗, y∗ ∈ S with F (x∗) = 0 and F (y∗) = 0. Let
V ∗ ∈ ∂F (x∗). Then

‖y∗ − x∗‖ ≤ β‖V ∗(y∗ − x∗)‖
≤ β‖V ∗(y∗ − x∗)− F ′(x∗; y∗ − x∗)‖

+β‖F (y∗)− F (x∗)− F ′(x∗; y∗ − x∗)‖
≤ β(δ + γ)‖y∗ − x∗‖ = α‖y∗ − x∗‖. (14.8.26)

This implies
‖y∗ − x∗‖ ≤ 0,

i.e., x∗ = y∗. This shows that x∗ is the unique solution of (14.8.19).
Finally,

‖xk+n+1 − xk‖ ≤
k+n∑
j=k

‖xj+1 − xj‖ ≤
n∑

j=0

αj+1‖xk − xk−1‖

≤ α

1− α
‖xk − xk−1‖.

Setting n →∞, we obtain the result (14.8.22). �

Exercises

1. Describe directional derivative, Dini directional derivative, Clarke di-
rectional derivative of f at x in the direction d respectively, and their prop-
erties and relations.

2. Describe the definition and properties of semi-smoothness.

3. Assume that f(x) is continuously differentiable. Prove that

∂f(x) = ∇f(x).

4. Assume that ci(x)(i = 1, ..., m) are continuously differentiable. Let
f(x) = max1≤i≤m ci(x) and f̄(x) =

∑m
i=1 |ci(x)|. Compute ∂f(x) and ∂f̄(x).

5. Prove Theorem 14.3.3.

Download more at Learnclax.com

14.8. NONSMOOTH NEWTON’S METHOD 635

6. Assume that f(x) is a convex function. Prove

f(x) = sup
y

sup
g∈∂f(y)

[f(y) + gT (x− y)].

7. Prove Theorem 14.4.2.

8. Prove the global convergence of the bundle method for uniformly con-
vex functions.

9. Prove Lemma 14.6.2.

10. Apply the trust-region Algorithm 14.7.1 to problem

min f(x) = max{1 + x1 − x2
2, 1− x1 + (1 + ε)x2

2}

where ε > 0 is a small positive number with the starting point (δ, δ2) and
initial trust-region radius ∆1 = 0.5δ, δ > 0 being a small positive number.
You should observe that the iterates converge only linearly if the trust-region
is chosen {d| ‖d‖∞ ≤ ∆k}.

11. Prove Theorem 14.7.2.

12. Modify Algorithm 14.7.1 to derive a nonmonotone algorithm.

13. Give a generalized Newton’s method for nonsmooth optimization and
establish its global and local convergence.

Download more at Learnclax.com

Download more at Learnclax.com

Appendix: Test Functions

§1.Test Functions for Unconstrained Optimization Problems

Problem 1.1 Rosenbrock function:

f(x) = 100(x2 − x2
1)

2 + (1− x1)2, (1.1)

x0 = [−1.2, 1]T , x∗ = [1, 1]T , f(x∗) = 0.

Problem 1.2 Extended Rosenbrock function:

f(x) =
n−1∑
i=1

[100(xi+1 − x2
i)

2 + (1− xi)2], (1.2)

x0 = [−1.2, 1, · · · ,−1.2, 1]T , x∗ = [1, 1, · · · , 1, 1]T , f(x∗) = 0.

Problem 1.3 Wood function:

f(x) = 100(x2
1 − x2)2 + (x1 − 1)2 + (x3 − 1)2 + 90(x2

3 − x4)2

+10.1[(x2 − 1)2 + (x4 − 1)2] + 19.8(x2 − 1)(x4 − 1), (1.3)

x0 = [−3,−1,−3,−1]T , x∗ = [1, 1, 1, 1]T , f(x∗) = 0.

Problem 1.4 Powell singular function:

f(x) = (x1 + 10x2)2 + 5(x3 − x4)2 + (x2 − 2x3)4 + 10(x1 − x4)4, (1.4)

x0 = [3,−1, 0, 1]T , x∗ = [0, 0, 0, 0]T , f(x∗) = 0.

Problem 1.5 Cube function

f(x) = 100(x2 − x3
1)

2 + (1− x1)2, (1.5)

x0 = [−1.2,−1]T , x∗ = [1, 1]T , f(x∗) = 0.

Download more at Learnclax.com

638 APPENDIX: TEST FUNCTIONS

Problem 1.6 Trigonometric function

f(x) =
n∑

i=1

⎡
⎣n + i(1− cos xi)− sin xi −

n∑
j=1

cos xj

⎤
⎦

2

, (1.6)

x0 =
[

1
5n

, · · · , 1
5n

]T

, x∗ = [0, · · · , 0]T , f(x∗) = 0.

Problem 1.7 Helical valley function

f(x) = 100[(x3 − 10θ)2 + (
√

x2
1 + x2

2 − 1)2] + x2
3, (1.7)

where

2πθ =

{
arctan(x1/x2) if x1 > 0,
π + arctan(x2/x1) if x1 < 0,

x0 = [−1, 0, 0]T , x∗ = [1, 0, 0]T , f(x∗) = 0.

§2. Test Functions for Constrained Optimization Problems

The test functions for constrained optimization are selected from Hock
and Schittkowski [176].

Problem 2.1 (No. 14 in [176])
Number of Variables: n = 2
Objective Function:

f(x) = (x1 − 2)2 + (x2 − 1)2

Constraints:

−0.25x2
1 − x2

2 + 1 ≥ 0,

x1 − 2x2 + 1 = 0.

Start: x0 = (2, 2), f(x0) = 1.
Solution: x∗ = (0.5(

√
7− 1), 0.25(

√
7 + 1)),

f(x∗) = 9− 2.875
√

7.

Problem 2.2 (No. 22 in [176])

Download more at Learnclax.com

639

Number of Variables: n = 2
Objective Function:

f(x) = (x1 − 2)2 + (x2 − 1)2

Constraints:

−x1 − x2 + 2 ≥ 0
−x2

1 + x2 ≥ 0

Start: x0 = (2, 2), f(x0) = 1.
Solution: x∗ = (1, 1), f(x∗) = 1.

Problem 2.3 (No. 59 in [176])
Number of Variables: n = 2
Objective Functions:

f(x) = −75.196 + 3.8112x1 + 0.0020567x3
1 − 1.0345E-5x4

1

+6.8306x2 − 0.030234x1x2 + 1.28134E-3x2x
2
1

+2.266E-7x4
1x2 − 0.25645x2

2 + 0.0034604x3
2 − 1.3514E-5x4

2

+28.106/(x2 + 1) + 5.2375E-6x2
1x

2
2 + 6.3E-8x3

1x
2
2

−7E-10x3
1x

3
2 − 3.405E-4x1x

2
2 + 1.6638E-6x1x

3
2

+2.8673 exp(0.0005x1x2)− 3.5256E-5x3
1x2

Constraints:

x1x2 − 700 ≥ 0,

x2 − x2
1/125 ≥ 0,

(x2 − 50)2 − 5(x1 − 55) ≥ 0,

0 ≤ x1 ≤ 75,

0 ≤ x2 ≤ 65.

Start: x0 = (90, 10), f(x0) = 86.878639
Solution: x∗ = (13.55010424, 51.66018129), f(x∗) = −7.804226324.

Problem 2.4 (No. 63 in [176])
Number of Variables: n = 3
Objective Function:

f(x) = 1000− x2
1 − 2x2

2 − x2
3 − x1x2 − x1x3

Download more at Learnclax.com

640 APPENDIX: TEST FUNCTIONS

Constraints:

8x1 + 14x2 + 7x3 − 56 = 0,

x2
1 + x2

2 + x2
3 − 25 = 0,

0 ≤ xi, i = 1, 2, 3.

Start: x0 = (2, 2, 2), f(x0) = 976
Solution: x∗ = (3.512118414, 0.2169881741, 3.552174034), f(x∗) = 961.7151721

Problem 2.5 (No. 25 in [176])
Number of Variables: n = 3
Objective Function:

f(x) =
99∑
i=1

(fi(x))2

where

fi(x) = −0.01i + exp(− 1
x1

(ui − x2)x3)

ui = 25 + (−50 ln(0.01i))2/3, i = 1, · · · , 99.

Constraints:

0.1 ≤ x1 ≤ 100
0 ≤ x2 ≤ 25.6
0 ≤ x3 ≤ 5

Start: x0 = (100, 12.5, 3), f(x0) = 32.835
Solution: x∗ = (50, 25, 1.5), f(x∗) = 0

Problem 2.6 (No. 35 in [176])
Number of Variables: n = 3
Objective Function:

f(x) = 9− 8x1 − 6x2 − 4x3 + 2x2
1 + 2x2

2 + x2
3

+2x1x2 + 2x1x3

Constraints:

3− x1 − x2 − 2x3 ≥ 0
0 ≤ xi, i = 1, 2, 3.

Download more at Learnclax.com

641

Start: x0 = (0.5, 0.5, 0.5), f(x0) = 2.25
Solution: x∗ = (4/3, 7/9, 4/9), f(x∗) = 1/9.

Problem 2.7 (No. 38 in [176])
Number of Variables: n = 4
Objective Function:

f(x) = 100(x2 − x2
1)

2 + (1− x1)2 + 90(x4 − x2
3)

2 + (1− x3)2

+10.1((x2 − 1)2 + (x4 − 1)2) + 19.8(x2 − 1)(x4 − 1)

Constraints:
−10 ≤ xi ≤ 10, i = 1, · · · , 4

Start: x0 = (−3,−1,−3,−1), f(x0) = 19192
Solution: x∗ = (1, 1, 1, 1), f(x∗) = 0.

Problem 2.8 (No. 43 in [176])
Number of Variables: n = 4
Objective Function:

f(x) = x2
1 + x2

2 + 2x2
3 + x2

4 − 5x1 − 5x2 − 21x3 + 7x4

Constraints:

8− x2
1 − x2

2 − x2
3 − x2

4 − x1 + x2 − x3 + x4 ≥ 0
10− x2

1 − 2x2
2 − x2

3 − 2x2
4 + x1 + x4 ≥ 0

5− 2x2
1 − x2

2 − x2
3 − 2x1 + x2 + x4 ≥ 0

Start: x0 = (0, 0, 0, 0), f(x0) = 0.
Solution: x∗ = (0, 1, 2,−1), f(x∗) = −44

Problem 2.9 (No. 73 in [176])
Number of Variables: n = 4
Objective Function:

f(x) = 24.55x1 + 26.75x2 + 39x3 + 40.50x4

Constraints:

2.3x1 + 5.6x2 + 11.1x3 + 1.3x4 − 5 ≥ 0
12x1 + 11.9x2 + 41.8x3 + 52.1x4 − 21
−1.645(0.28x2

1 + 0.19x2
2 + 20.5x2

3 + 0.62x2
4)

1
2 ≥ 0

x1 + x2 + x3 + x4 − 1 = 0
0 ≤ xi, i = 1, · · · , 4.

Download more at Learnclax.com

642 APPENDIX: TEST FUNCTIONS

Start: x0 = (1, 1, 1, 1), f(x0) = 130.8
Solution:

x∗ = (0.6355216,−0.12E-11, 0.3127019, 0.05177655),
f(x∗) = 29.894378

Problem 2.10 (No. 83 in [176])
Number of Variables: n = 5
Objective Function:

f(x) = 5.3578547x2
3 + 0.8356891x1x5 + 37.293239x1 − 40792.141

Constraints:

92 ≥ a1 + a2x2x5 + a3x1x4 − a4x3x5 ≥ 0
20 ≥ a5 + a6x2x5 + a7x1x2 + a8x

2
3 − 90 ≥ 0

5 ≥ a9 + a10x3x5 + a11x1x3 + a12x3x4 − 20 ≥ 0
78 ≤ x1 ≤ 102
33 ≤ x2 ≤ 45
27 ≤ xi ≤ 45, i = 3, 4, 5,

where

a1 = 85.334407, a2 = 0.0056858, a3 = 0.0006262,

a4 = 0.0022053, a5 = 80.51249, a6 = 0.0071317,

a7 = 0.0029955, a8 = 0.0021813, a9 = 9.300961,

a10 = 0.0047026, a11 = 0.0012547, a12 = 0.0019085

Start: x0 = (78, 33, 27, 27, 27), f(x0) = −32217
Solution: x∗ = (78, 33, 29.99526, 45, 36.77581), f(x∗) = −30665.53867

Problem 2.11 (No. 86 in [176])
Number of Variables: n = 5
Objective Function:

f(x) =
5∑

j=1

ejxj +
5∑

i=1

5∑
j=1

cijxixj +
5∑

j=1

djx
3
j

Download more at Learnclax.com

643

Constraints:
5∑

j=1

aijxj − bi ≥ 0, i = 1, · · · , 10,

0 ≤ xi, i = 1, · · · , 5,

where

j 1 2 3 4 5
ej -15 -27 -36 -18 -12
c1j 30 -20 -10 32 -10
c2j -20 39 -6 -31 32
c3j -10 -6 10 -6 -10
c4j 32 -31 -6 39 -20
c5j -10 32 -10 -20 30
dj 4 8 10 6 2
a1j -16 2 0 1 0
a2j 0 -2 0 4 2
a3j -3.5 0 2 0 0
a4j 0 -2 0 -4 -1
a5j 0 -9 -2 1 -2.8
bj -40 -2 -0.25 -4 -4

Start: x0 = (0, 0, 0, 0, 1), f(x0) = 20
Solution: x∗ = (0.3, 0.33346761, 0.4, 0.42831010, 0.22396487), f(x∗) = −32.34867897

Problem 2.12 (No. 93 in [176])
Number of Variables: n = 6
Objective Function:

f(x) = 0.0204x1x4(x1 + x2 + x3) + 0.0187x2x3(x1 + 1.57x2 + x4)
+0.0607x1x4x

2
5(x1 + x2 + x3)

+0.0437x2x3x
2
6(x1 + 1.57x2 + x4)

Constraints:

0.001x1x2x3x4x5x6 − 2.07 ≥ 0,

1− 0.00062x1x4x
2
5(x1 + x2 + x3),

−0.00058x2x3x
2
6(x1 + 1.57x2 + x4) ≥ 0,

0 ≤ xi, i = 1, · · · 6.

Download more at Learnclax.com

644 APPENDIX: TEST FUNCTIONS

Start: x0 = (5.54, 4.4, 12.02, 11.82, 0.702, 0.852), f(x0) = 137.066

Solution:

x∗ = (5.332666, 4.656744, 10.43299,

12.08230, 0.7526074, 0.87865084),
f(x∗) = 135.075961

Problem 2.13 (No. 108 in [176])
Number of Variables: n = 9
Objective Function:

f(x) = −0.5(x1x4 − x2x3 + x3x9 − x5x9 + x5x8 − x6x7)

Constraints:

1− x2
3 − x2

4 ≥ 0,

1− x2
5 − x2

6 ≥ 0,

1− x2
9 ≥ 0,

1− x2
1 − (x2 − x9)2 ≥ 0,

1− (x1 − x5)2 − (x2 − x6)2 ≥ 0,

1− (x1 − x7)2 − (x2 − x8)2 ≥ 0,

1− (x3 − x5)2 − (x4 − x6)2 ≥ 0,

1− (x3 − x7)2 − (x4 − x8)2 ≥ 0,

1− x2
7 − (x8 − x9)2 ≥ 0,

x1x4 − x2x3 ≥ 0,

x3x9 ≥ 0,

−x5x9 ≥ 0,

x5x8 − x6x7 ≥ 0,

0 ≤ x9.

Start:

x0 = (1, 1, 1, 1, 1, 1, 1, 1, 1),
f(x0) = 0

Download more at Learnclax.com

645

Solution:

x∗ = (0.8841292, 0.4672425, 0.03742076, 0.9992996,

0.8841292, 0.4672424, 0.03742076, 0.9992996,

0.26E-19),
f(x∗) = −0.8660254038

Problem 2.14 (No. 110 in [176])
Number of Variables: n = 10
Objective Function:

f(x) =
10∑
i=1

[(ln(xi − 2))2 + (ln(10− xi))2 − (
10∏
i=1

xi)2]

Constraints:
2.001 ≤ xi ≤ 9.999, i = 1, · · · , 10.

Start: x0 = (9, · · · , 9), f(x0) = −43.134337
Solution: x∗ = (9.35025655, · · · , 9.35025655), f(x∗) = −45.77846971

Problem 2.15 (No. 111 in [176])
Number of Variables: n = 10
Objective Function:

f(x) =
10∑

j=1

exp(xj)(cj + xj − ln(
10∑

k=1

exp(xk)))

where

c1 = −6.089, c2 = −17.164, c3 = −34.054,

c4 = −5.914, c5 = −24.721, c6 = −14.986,

c7 = −24.100, c8 = −10.708, c9 = −26.662, c10 = −22.179

Constraints:

exp(x1) + 2 exp(x2) + 2 exp(x3) + exp(x6) + exp(x10)− 2 = 0,
exp(x4) + 2 exp(x5) + exp(x6) + exp(x7)− 1 = 0,
exp(x3) + exp(x7) + exp(x8) + 2 exp(x9) + exp(x10)− 1 = 0,
−100 ≤ xi ≤ 100, i = 1, · · · , 10.

Download more at Learnclax.com

646 APPENDIX: TEST FUNCTIONS

Start: x0 = (−2.3, · · · ,−2.3), f(x0) = −21.015
Solution:

x∗ = (−3.201212,−1.912060,−0.2444413,−6.537489,

−0.7231524,−7.267738,−3.596711,−4.017769,

−3.287462,−2.335582),
f(x∗) = −47.76109026

Problem 2.16 (No. 112 in [176])
Number of Variables: n = 10
Objective Function:

f(x) =
10∑

j=1

xj(cj + ln
xj

x1 + · · ·+ x10
)

where cj are defined in Problem 2.15.
Constraints:

x1 + 2x2 + 2x3 + x6 + x10 − 2 = 0,
x4 + 2x5 + x6 + x7 − 1 = 0,
x3 + x7 + x8 + 2x9 + x10 = 0,

1.E-6 ≤ xi, i = 1, · · · , 10.

Start: x0 = (0.1, · · · , 0.1), f(x0) = −20.961
Solution:

x∗ = (0.01773548, 0.08200180, 0.8825646, 0.7233256E-3,

0.4907851, 0.4335469E-3, 0.01727298,

0.007765639, 0.01984929, 0.05269826),
f(x∗) = −47.707579

Problem 2.17 (No. 117 in [176])
Number of Variables: n = 15
Objective Function:

f(x) = −
10∑

j=1

bjxj +
5∑

j=1

5∑
k=1

ckjx10+kx10+j + 2
5∑

j=1

djx
3
10+j

Download more at Learnclax.com

647

Constraints:

2
5∑

k=1

ckjx10+k + 3djx
2
10+j + ej −

10∑
k=1

akjxk ≥ 0, j = 1, · · · , 5,

0 ≤ xi, i = 1, · · · , 15,

where

j 1 2 3 4 5
a6j 2 0 -4 0 0
a7j -1 -1 -1 -1 -1
a8j -1 -2 -3 -2 -1
a9j 1 2 3 4 5
a10j 1 1 1 1 1
b5+j -1 -40 -60 5 1

and other parameters are defined as in Problem 2.11.
Start:

x0 = 0.001(1, 1, 1, 1, 1, 1, 60000, 1, 1, 1, 1, 1, 1, 1, 1),
f(x0) = 2400.1053

Solution:

x∗ = (0, 0, 5.174136, 0, 3.061093, 11.83968, 0, 0,

0.1039071, 0, 0.2999929, 0.3334709, 0.3999910,

0.4283145, 0.2239607)
f(x∗) = 32.348679

Download more at Learnclax.com

Download more at Learnclax.com

Bibliography

[1] N. Abachi, On variable metric algorithms, J. Optimization Theory and
Methods 7 (1971) 391-410.

[2] M. Al-Baali, Descent property and global convergence of the Fletcher-
Reeves method with inexact line search, IMA J. Numerical Analysis 5
(1985) 121-124.

[3] K.A. Ariyawansa, Deriving collinear scaling algorithms as extensions of
quasi-Newton methods and the local convergence of DFP- and BFGS-
related collinear scaling algorithms, Mathematical Programming 49
(1990) 23-48.

[4] L. Armijo, Minimization of functions having Lipschitz continuous par-
tial derivatives, Pacific J. Mathematics 16 (1966) 1-3.

[5] M. Avriel, Nonlinear Programming: Analysis and Methods, Prentice-
Hall, Inc., Englewood Cliffs, New Jersey, (1976).

[6] P. Baptist and J. Stoer, On the relation between quadratic termina-
tion and convergence properties of minimization algorithms, Part II:
Applications, Numerische Mathematik 28 (1977) 367-392.

[7] R. Bartels and A. Conn, An approach to nonlinear l1 data fitting,
in: J.P. Hennart ed., Lecture Notes in Mathematics 909: Numerical
Analysis, Cocoyoc 1981 (Springer-Verlag, Berlin, 1982), 48-58.

[8] J. Barzilai and J.M. Borwein, Two-point step size gradient methods,
IMA Journal of Numerical Analysis 8 (1988) 141-148.

[9] M.S. Bazara and C.M. Shetty, Nonlinear Programming, Theory and
Algorithms, John Wiley and Sons, New York, (1979).

Download more at Learnclax.com

650 BIBLIOGRAPHY

[10] E.M.L. Beale, A derivative of conjugate gradients, in F.A. Lootsma
eds., Numerical Methods for Nonlinear Optimization, London, Aca-
demic Press, (1972), 39-43.

[11] C.S. Beighter, D.T. Phillips and D.J. Wilde, Foundations of Optimiza-
tion, Prentice-Hall, Englewood Cliffs, N.J., (1979).

[12] A. Ben-Israel and T.N.E. Greville, Generalized Inverses: Theory and
Applications, John Wiley & Sons, New York, (1974).

[13] D.P. Bertsekas, Constrained Optimization and Lagrange Multipler
Methods, Academic Press, New York, (1982).

[14] D.P. Bertsekas, Nonlinear Programming, Athena Scientific, Belmont,
Mass., (1995).

[15] M.C. Bartholomew-Biggs, The estimation of the Hessian matrix in non-
linear least squares problems with non-zero residuals, Mathematical
Programming 12 (1977) 67-80.

[16] M.C. Bartholomew-Biggs, Recursive quadratic programming meth-
ods based on the augmented Lagrangian, Mathematical Programming
Study 31 (1987) 21-24.

[17] M.C. Biggs, Minimization algorithms making use of non-quadratic
properties of the objective function, Institute of Mathematics and Its
Applications 8 (1971) 315-327.

[18] A. Bjöck, Numerical Methods for Least Squares Problems, SIAM Pub-
lications, Philadelphia, Penn, (1996).

[19] P.T. Boggs and J.W. Tolle, Merit function for nonlinear programming
problems, Operations Research and System Analysis Report No 81-2,
University of North Carolina at Capel Hill, (1981).

[20] P.T. Boggs and J.W. Tolle, Convergence properties of a class of rank-
two updates, SIAM Journal on Optimization 4 (1994) 262-287.

[21] P.T. Boggs and J.W. Tolle, Sequential quadratic programming, Acta
Numerica 4 (1996) 1-51.

Download more at Learnclax.com

BIBLIOGRAPHY 651

[22] P.T. Boggs, J.W. Tolle, and P. Wang, On the local convergence methods
for constrained optimization, SIAM J. Control and Optimization 20
(1982) 161-171.

[23] I. Bongartz, A.R. Conn, N.I.M. Gould, and Ph.L. Toint, CUTE: Con-
strained and unconstrained testing environment, ACM Transactions on
Mathematical Software 21 (1995) 123-160.

[24] C.A. Botsaris and D.H. Jacobson, A Newton-type curvilinear search
method for optimization, J. Mathematical Analysis and Applications
54 (1976) 217–229.

[25] A. Bouaricha and R.B. Schnabel, Tensor methods for large sparse non-
linear least-squares problems, SIAM J. Scientific Computing 21 (1999)
1199-1221.

[26] C.G. Broyden, A class of methods for solving nonlinear simultaneous
equations, Mathematics of Computation 19 (1965) 577-593.

[27] C.G. Broyden, The convergence of a class double-rank minimization al-
gorithms, Journal of the Institute of Mathematics and its Applications
6 (1970) 76-90.

[28] C.G. Broyden, J.E. Dennis and J.J. Moré, On the local and superlinear
convergence of quasi-Newton algorithm, J. Inst. Math. Appl. 12 (1973)
222-236.

[29] C.G. Broyden, J.E. Dennis, Jr., and J.J. Moré, On the local superlinear
convergence of quasi-Newton methods, J. Institute of Mathematics and
Applications 12 (1973) 223-246.

[30] A. Buckley, A combined conjugate gradient quasi-Newton minimization
algorithm, Mathematical Programming 15 (1978) 200-210.

[31] J.P. Buleau and J.Ph. Vial, Curvilinear path and trust region in un-
constrained optimization: a convergence analysis, Mathematical Pro-
gramming Study 30 (1987) 82-101.

[32] J.R. Bunch and L. Kaufman, Some stable methods for calculating iner-
tia and solving symmetric linear systems, Mathematics of Computation
31 (1977) 163-179.

Download more at Learnclax.com

652 BIBLIOGRAPHY

[33] J.R. Bunch and B.N. Parlett, Direct methods for solving symmetric in-
definite systems of linear equations, SIAM Journal on Numerical Anal-
ysis 8 (1971) 639-655.

[34] J.V. Burke, Descent methods for composite nondifferential optimiza-
tion problems, Mathematical Programming 33 (1985) 260-279.

[35] J.V. Burke, Second order necessary and sufficient conditions for convex
composite NDO, Mathematical Programming 38 (1987) 287-302.

[36] J.V. Burke, A robust trust region method for constrained nonlinear
programming problems, SIAM J. Optimization 2 (1992) 325-347.

[37] J.V. Burke and J.J. Moré, On the identification of active constraints,
SIAM J. Numerical Analysis 25 (1988) 1197-1211.

[38] J.V. Burke, J.J. Moré, and G. Toraldo, Convergence properties of trust
region methods for linear and convex constraints, Mathematical Pro-
gramming 47 (1990) 305-336.

[39] W. Burmeister, Die konvergenzordnung des Fletcher-Powell algorith-
mus, Z. Angew. Math. Mech. 53 (1973) 693-699.

[40] R.H. Byrd, An example of irregular convergence in some constrained
optimization methods that use projected Hessian, Mathematical Pro-
gramming 32 (1985) 232-237.

[41] R.H. Byrd, M.E. Hribar, and J. Nocedal, An interior-point algorithm
for large-scale nonlinear programming, Technical Report 97/05, Opti-
mization Technology Center, Argonne National Laboratory and North-
western University, July (1997).

[42] R.H. Byrd, H.F. Khalfan, and R.B. Schnabel, Analysis of symmetric
rank-one trust region method, SIAM Journal on Optimization 6 (1996)
1025-1039.

[43] R.H. Byrd, D.C. Liu, and J. Nocedal, On the behavior of Broydens class
of quasi-Newton methods, SIAM Journal on Optimization (1992).

[44] R.H. Byrd and J. Nocedal, A tool for the analysis of quasi-Newton
methods with application to unconstrained minimization, SIAM Jour-
nal on Numerical Analysis 26 (1989) 727-739.

Download more at Learnclax.com

BIBLIOGRAPHY 653

[45] R.H. Byrd and J. Nocedal, An analysis of reduced Hessian methods for
constrained optimization, Mathematical Programming 49 (1991) 285-
323.

[46] R.H. Byrd, J. Nocedal, and R.B. Schnabel, Representations of quasi-
Newton matrices and their use in limit-memory methods, Mathematical
Programming 63 (1994) 129-156.

[47] R.H. Byrd, J. Nocedal and Y. Yuan, Global convergence of a class
of variable metric algorithms, SIAM J. Numerical Analysis 24 (1987)
1171-1190.

[48] R.H. Byrd, R.B. Schnabel, and G.A. Schultz, A trust region algorithm
for nonlinearly constrained optimization, SIAM J. Numerical Analysis
24 (1987) 1152-1170.

[49] R.H. Byrd, R.B. Schnabel, and G.A. Schultz, Approximate solution of
the trust region problem by minimization over two-dimensional sub-
spaces, Mathematical Programming 40 (1988) 247-263.

[50] P.H. Calamai and J.J. Moré, Projected gradient methods for linearly
constrained problems, Mathematical Programming 39 (1987) 93-116.

[51] M.R. Celis, A trust region strategy for nonlinear equality constrained
optimization, Ph.D. thesis, Dept of Math. Sci., Rice University, Hous-
ton, (1985).

[52] M.R. Celis, J.E. Dennis and R.A. Tapia, A trust region algorithm for
nonlinear equality constrained optimization, in P.T. Boggs, R.H. Byrd
and R.B. Schnabel, eds., Numerical Optimization (SIAM Philadelphia,
1985), 71-82.

[53] R.M. Chamberlain, Some examples of cycling in variable metric meth-
ods for constrained minimization, Mathematical Programming 16
(1979) 378-383.

[54] R.M. Chamberlain, C. Lemarechal, H.C. Pedersen, and M.J.D. Pow-
ell, The watchdog techniques for forcing convergence in algorithms for
constrained optimization, Mathematical Programming Study 16 (1982)
1-17.

Download more at Learnclax.com

654 BIBLIOGRAPHY

[55] C. Charelambous, Unconstrained optimization based on homogeneous
models, Mathematical Programming 5 (1973) 189-198.

[56] C. Charelambous and A.R. Conn, An efficient method to solve the
minimax problem directly, SIAM J. Numerical Analysis 15 (1978) 162-
187.

[57] X. Chen, Superlinear convergence of smoothing quasi-Newton methods
for nonsmooth equations, J. of Computational and Applied Mathemat-
ics 80 (1997) 105-126.

[58] E.W. Cheney and A.A. Goldstein, Newton’s method for convex pro-
gramming and Chebyshev approximation, Numerische Mathematik 1
(1959) 253-268.

[59] V. Chvatál, Linear Programming, W.M. Freeman and Company, New
York, (1983).

[60] F.H. Clarke, Optimization and Nonsmooth Analysis, John Wiley and
Sons, New York, (1983).

[61] A. Cohen, Rate of convergence of several conjugate gradient algorithms,
SIAM J. Numer Anal. 9 (1972) 248-259.

[62] T.F. Coleman and A.R. Conn, Nonlinear programming via an exact
penalty function: asymptotic analysis, Mathematical Programming 24
(1982) 123-136.

[63] T.F. Coleman and A.R. Conn, On the local convergence of a quasi-
Newton method for the nonlinear programming problem, SIAM J. Nu-
merical Analysis 21 (1984) 755-769.

[64] A.R. Conn, N.I.M. Gould, D. Orban, and Ph.L. Toint, A primal-dual
trust region algorithm for nonconvex nonlinear programming, Mathe-
matical Programming 87 (2000) 215-249.

[65] A.R. Conn, N.I.M. Gould, and Ph.L. Toint, Global convergence of a
class of trust region algorithms for optimization with simple bounds,
SIAM J. on Numerical Analysis 25 (1988) 433-460.

[66] A.R. Conn, N.I.M. Gould, and Ph.L. Toint, Testing a class of algo-
rithms for solving minimization problems with simple bounds on the
variables, Mathematics of Computation 50 (1988) 399-430.

Download more at Learnclax.com

BIBLIOGRAPHY 655

[67] A.R. Conn, N.I.M. Gould, and Ph.L. Toint, Convergence of quasi-
Newton matrices generated by symmetric rank one update, Mathe-
matical Programming 50 (1991) 177-195.

[68] A.R. Conn, N.I.M. Gould, and Ph.L. Toint, LANCELOT: a FORTRAN
package for large-scale nonlinear optimization (Release A), No. 17 in
Springer Series in Computational Mathematics, Springer-Verlag, New
York, (1992).

[69] A.R. Conn, N.I.M. Gould, and Ph.L. Toint, Convergence properties of
minimization algorithms for convex constraints using a structured trust
region, SIAM Journal on Numerical Analysis 25 (1996) 1059-1086.

[70] A.R. Conn, N.I.M. Gould and Ph.L. Toint, Trust-Region Methods,
SIAM, (2000).

[71] G. Corradi, Quasi-Newton methods for nonlinear equations and un-
constrained optimization methods, International Journal of Computer
Mathematics 38 (1991) 71-89.

[72] C.W. Cryer, Numerical Functional Analysis, Clarendon Press, Oxford,
(1982).

[73] Y.H. Dai, New properties of a nonlinear conjugate gradient method,
Numerische Mathematik 89 (2001) 83-98.

[74] Y.H. Dai and Y. Yuan, Convergence properties of Fletcher–Reeves
method, IMA J. Numerical Analysis 16 (1996) 155-164.

[75] Y.H. Dai and Y. Yuan, A nonlinear conjugate gradient method with
a strong global convergence property, SIAM J. Optimization 10 (1999)
177-182.

[76] Y.H. Dai and Y. Yuan, An efficient hybrid conjugate gradient method
for unconstrained optimization, Annals of Operations Research 103
(2001) 33-47.

[77] Y.H. Dai and Y. Yuan, A three-parameter family of nonlinear conjugate
gradient methods, Mathematics of Computation 70 (2001) 1155-1167.

[78] G.B. Dantzig, Linear Programming and Extensions, Princeton Univer-
sity Press, Princeton, New Jersey, (1963).

Download more at Learnclax.com

656 BIBLIOGRAPHY

[79] W.C. Davidon, Variable metric methods for minimization, Argonne
National Labs Report, ANL-5990, (1959).

[80] W.C. Davidon, Optimally conditioned optimization algorithms without
line searches, Mathematical Programming 9 (1975) 1-30.

[81] W.C. Davidon, Optimization by nonlinear scaling, in: D. Jacobs ed.,
Proceedings of the conference on Applications of Numerical Software
— Needs and Availability, Academic Press, New York, (1978), 377-383.

[82] W.C. Davidon, Conic approximation and Collinear scaling for optimiz-
ers, SIAM Numer. Anal. 17 (1980) 268-281.

[83] R.S.Dembo, S.C.Eisenstat, and T.Steihaug, Inexact Newton methods,
SIAM Journal on Numerical Analysis 19 (1982) 400-408.

[84] V.F. Demyanov and L.V. Vaselev, Nondifferentiable Optimization, Op-
timization Software, Inc., New York, (1985).

[85] N.Y. Deng, Computational Methods for Unconstrained Optimization,
Science Press, Beijing, (1982).

[86] N.Y. Deng, Y. Xiao and F. Zhou, A nonmonotonic trust region al-
gorithm, Journal of Optimization Theory and Applications 76 (1993)
259-285.

[87] J.E. Dennis Jr., M. El-Alem, and M.C. Maciel, A global convergence
theory for general trust region based algorithms for equality constrained
optimization, SIAM J. Optimization 7 (1997) 177-207.

[88] J.E. Dennis Jr., D.M. Gay and R.E. Welsch, An adaptive nonlinear
least-squares algorithm, ACM Transactions on Math. Software 7 (1981)
348-368.

[89] J.E. Dennis Jr., S.B. Li, and R.A. Tapia, A unified approach to
global convergence of trust region methods for nonsmooth optimiza-
tion, Mathematical Programming 68 (1995) 319-346.

[90] J.E. Dennis and H.H.W. Mei, Two new unconstrained optimization
algorithms with use function and gradient values, Journal of Optimiza-
tion Theory and Applications 28 (1979) 453-482.

Download more at Learnclax.com

BIBLIOGRAPHY 657

[91] J.E. Dennis Jr., and J.J. Moré, A charaterization of superlinear con-
vergence and its application to quasi-Newton methods, Math. Comp.
28 (1974) 549-560.

[92] J.E. Dennis Jr., and J.J. Moré, Quasi-Newton Methods, motivation
and theory, SIAM Review 19 (1977) 46-89.

[93] J.E. Dennis Jr., and R.B. Schnabel, Least change secant updates for
quasi-Newton methods, SIAM Review 19 (1979) 443-459.

[94] J.E. Dennis Jr., and R.B. Schnabel, A new derivation of symmetric
positive definite secant updates, in: O.L. Mangasarian, R.R. Meyer and
S.M. Robinson eds., Nonlinear Programming vol. 4, Academic Press,
New York, (1980) 167-199.

[95] J.E. Dennis and R.B. Schnabel, Numerical Methods for Uncon-
strained Optimization and Nonlinear Equations, Prentice-Hall, Engle-
wood Cliffs, NJ, (1983).

[96] J.E. Dennis and R.B. Schnabel, A view of unconstrained optimization,
in: Optimization Vol. 1 of Handbooks in Operations Research and
Management, Elsevier Science Publishers, Amsterdam, (1989) 1–72.

[97] J.E. Dennis Jr. and K. Turner, Generalized conjugate directions, Re-
port 85-11, Dept of Mathmatics, Rice University, Houston, (1985).

[98] J.E.Dennis Jr. and H.F. Walker, Convergence theorems for least change
secant update methods, SIAM J. Numer. Anal. 18 (1981) 949-987; 19
(1982) 443-443.

[99] J.E.Dennis Jr. and H.F. Walker, Least-change sparse secant update
methods with inaccurate secant conditions, SIAM J. Numer. Anal. 22
(1985) 760-778.

[100] J.E. Dennis, Jr. and H. Wolkowicz, Sizing and least change secant meth-
ods, Research Report 90-02, Faculty of Mathematics, University of Wa-
terloo, Canada, (1990).

[101] S. Di and W. Sun, Trust region method for conic model to solve uncon-
strained optimization problems, Optimization Methods and Software 6
(1996) 237–263.

Download more at Learnclax.com

658 BIBLIOGRAPHY

[102] G. Di Pillo and L. Grippo, A new class of augmented Lagrangians in
nonlinear programming, SIAM J. Control and Optimization 17 (1979)
618-828.

[103] G. Di Pillo and L. Grippo, An exact penalty function method with
global convergence properties for nonlinear programming problem,
Math. Prog. 36 (1986) 1-18.

[104] G. Di Pillo, L. Grippo and F. Lampariello, A class of algorithms for
the solution of optimization problems with inequalities, CNR Inst. di
Anal. dei Sistemi ed Inf. Report R18, (1981).

[105] L.C.W. Dixon, The choice of step length, a crucial factor in the per-
formance of variable metric method, in: F.A. Lootsma, ed., Numerical
Methods for Nonlinear Optimization, (Academic Press, London, 1972)
149–170.

[106] L.C.W. Dixon, Variable metric algorithms: necessary and sufficient
conditions for identical behavior of nonquadratical functions, J. Opti-
mization Theory and Appl. 10 (1972) 34–40.

[107] L.C.W.Dixon, Quasi-Newton family generates identical points, Part I
and Part II, Math. Prog. 2 (1972) 383–387, 3 (1972) 345–358.

[108] L.C.W. Dixon, E. Spedicato and G.P. Szego, eds. Nonlinear Optimiza-
tion Birkhauser, Boston, (1980).

[109] L.C.W. Dixon and G.P. Szegö, Towards Global Optimization, Vol. 1,
Vol. 2, North-Holland, Amsterdam, (1975), (1978).

[110] I.S. Duff, J. Nocedal, and J.K. Reid, The use of linear programming
for the solution of sparse sets of nonlinear equations, SIAM J. Scientific
and Statistical Computing 8 (1987) 99–108.

[111] M. El-Alem, A Global Convergence Theory for a Class of Trust Re-
gion Algorithms for Constrained Optimization, Ph. D. Thesis, Dept of
Mathematical Sciences, Rice University, Houston, (1988).

[112] M. El-Alem, A global convergence theory for the Celis-Dennis-Tapia
trust region algorithm for constrained optimization, SIAM J. Numerical
Analysis 28 (1991) 266–290.

Download more at Learnclax.com

BIBLIOGRAPHY 659

[113] M. El-Alem, A robust trust region algorithm with nonmonotone
penalty parameter scheme for constrained optimization, SIAM J. Op-
timization 5 (1995) 348–378.

[114] M. El-Hallabi, A global convergence theory for a class of trust region
methods for nonsmooth optimization, Report MASC TR 90-16, Rice
University, USA.

[115] M. El-Hallabi and Tapia, A global convergence theory for arbitrary
norm trust-region methods for nonlinear equations, Report MASC TR
93-43, Rice University, Houston, USA.

[116] M. El-Hallabi and R.A. Tapia, An inexact trust regionfeasible-point
algorithm for nonlinear systems and inequalities, Report MASC TR
95-09, Rice University, Houston, USA.

[117] I.I. Eremin, A generalization of the Motzkin-Agmon relaxation method,
Soviet Math. Doklady 6 (1965) 219-221.

[118] Yu.M. Ermoliev, Method of solution of nonlinear extremal problems,
(in Russian), Kibernetika 2 (1966) 1-17.

[119] D.J. Evans, W. Sun, R.J.B. Sampaio, and J. Yuan, Restricted gener-
alized inverse corresponding to constrained quadratic system, Interna-
tional Journal of Computer Mathematics 62 (1996) 285-296.

[120] F. Facchinei and S. Lucidi, Nonmonotone bundle-type scheme for con-
vex nonsmooth minimization, J. Optimization Theory and Applications
76 (1993) 241-257.

[121] Shu-Cheng Fang and S. Puthenpura, Linear Programming and Exten-
sions, Theory and Algorithms, Prentice Hall, Inc., (1993).

[122] A.V. Fiacco and G.P. McCormick, Nonlinear Programming: Sequential
Unconstrained Mininization Techniques, (John Wiley, New York 1968).

[123] J. Flachs, On the convergence, invariance, and related aspects of a mod-
ification of Huang’s algorithm, J. Optimization Theory and Methods
37 (1982) 315-341.

[124] J. Flachs, On the generalization of updates for quasi-Newton method,
J. Optimization Theory and Applications 48 (1986) 379-418.

Download more at Learnclax.com

660 BIBLIOGRAPHY

[125] R. Fletcher, A new approach to variable metric algorithms, Computer
J. 13 (1970) 317-322.

[126] R. Fletcher, An exact penalty function for nonlinear programming with
inequalities, Math. Prog. 5 (1973) 129-150.

[127] R. Fletcher, An ideal penalty function for constrained optimization, J.
Inst. Math. Applications 15 (1975) 319-342.

[128] R. Fletcher, Practical Methods of Optimization, Vol. 1, Unconstrained
Optimization, (John Wiley and Sons, Chichester, 1980).

[129] R. Fletcher, Practical Methods of Optimization, Vol. 2, Constrained
Optimization, (John Wiley and Sons, Chichester, 1981).

[130] R. Fletcher, A model algorithm for composite NDO problem, Math.
Prog. Study 17 (1982) 67-76. (1982a)

[131] R. Fletcher, Second order correction for nondifferentiable optimization,
in: G.A. Watson, ed., Numerical Analysis, (Springer-Verlag, Berlin,
1982), 85-115. (1982b).

[132] R. Fletcher, Penalty functions, in: A. Bachem, M. Grötschel and B. Ko-
rte, eds., Mathematical Programming: The State of the Art, (Springer-
Verlag, Berlin, 1983), 87-114.

[133] R. Fletcher, Practical Methods of Optimization (second edition), (John
Wiley and Sons, Chichester, 1987).

[134] R. Fletcher, An optimal positive definite update for sparse hessian ma-
trices, SIAM Journal on Optimization 5 (1995) 192-218.

[135] R. Fletcher and T.L. Freeman, A modified Newton method for mini-
mization, J. Optimization Theory and Methods 23 (1977) 357-372.

[136] R. Fletcher, S. Leyffer, and Ph.L. Toint, On the global convergence of
a filter-SQP algorithm, SIAM J. Optimization No.1 (2002) 44-59.

[137] R. Fletcher and M.J.D. Powell, A rapid convergent descent method for
minimization, Computer Journal 6 (1963) 163-168.

[138] R. Fletcher and C.M. Reeves, Function minimization by conjugate gra-
dients, Computer Journal 7 (1964) 149-154.

Download more at Learnclax.com

BIBLIOGRAPHY 661

[139] R. Fletcher and C. Xu, Hybrid methods of nonlinear least squares, IMA
J. of Numerical Analysis 7 (1987).

[140] J.A. Ford and R.A. Ghundhari, On the use of curvature estimates in
quasi-Newton methods, J. Comput. Appl. Math. 35 (1991) 185-196.

[141] M. Fukushima, A descent algorithm for non-smooth convex program-
ming, Mathematical Programming 30 (1984) 163-175.

[142] M. Fukushima, A succesive quadratic programming algorithm with
global and superlinear convergence properties, Mathematical Program-
ming 35 (1986) 253-264.

[143] M. Fukushima and L. Qi, A globally and superlinearly convergent al-
gorithm for nonsmooth convex minimization, SIAM J. Optimization 6
(1996) 1106-1120.

[144] D.M. Gay, Computing optimal local constrained step, SIAM J. Sci.
Stat. Comp. 2 (1981) 186-197.

[145] D.M. Gay, A trust region approach to linearly constrained optimization,
in: D.F. Griffiths, ed., Lecture Notes in Mathematics 1066: Numerical
Analysis, Springer-Verlag, Berlin, (1984) 72-105.

[146] J.C. Gilbert and J. Nocedal, Global convergence properties of conjugate
gradient methods for optimization, SIAM J. Optimization 2 (1992) 21-
42.

[147] P.E. Gill and W. Murray, Quasi-Newton methods for unconstrained
optimization, J. Inst. Maths. Appli. 9 (1972) 91-108.

[148] P.E. Gill, G.H. Golub, W. Murray, and M.A. Sauders, Methods
for modifying matrix factorizations, Mathematics of Computation 28
(1974) 505-535.

[149] P.E. Gill and W. Murray, Newton-type methods for unconstrained
and linearly constrained optimization, Mathematical Programming 28
(1974) 311-350.

[150] P.E. Gill and W. Murray, Numerically stable methods for quadratic
programming, Math. Prog. 14 (1978) 348-372.

Download more at Learnclax.com

662 BIBLIOGRAPHY

[151] P.E. Gill and W. Murray, Conjugate gradient methods for large-scale
nonlinear optimization, Technical Report SOL 79-15, Department of
Operations Research, Stanford University, Stanford, California, (1979).

[152] P.E. Gill and W. Murray and M.H. Wright, Practical Optimization,
Academic Press, London, (1981).

[153] D. Goldfarb, A family of variable metric methods derived by variation
mean, Mathematics of Computation 23 (1970) 23-26.

[154] D.Goldfarb, Curvilinear path steplength algorithms for minimization
which use directions of negative curvature, Mathematical Programming
18 (1980) 31-40.

[155] D. Goldfarb and A. Idinani, A numerical stable dual method for solving
strictly convex quadratic programs, Math. Prog. 27 (1983) 1-33.

[156] S.M. Goldfeld, R.E. Quandt, and H.F. Trotter, Maximisation by
quadratic hill-climbing, Econometrica 34 (1966) 541-551.

[157] A.A. Goldstein, On steepest descent, SIAM J. Control 3 (1965) 147-
151.

[158] A.A. Goldstein, Constructive Real Analysis, Harper & Row, New York,
(1967).

[159] A.A. Goldstein and J.F. Price, An effective algorithm for minimization,
Numer. Math. 10 (1967) 184-189.

[160] G.H. Golub and C.F.Van Loan, Matrix Computations, The Johns Hop-
kins University Press, Baltimore, 3rd ed., (1996).

[161] N.I.M. Gould, D. Orban, Ph.L. Toint, CUTEr and SifDec: A con-
strained and unconstrained testing environment revisited, ACM Trans-
actions on Mathematical Software 29 (2003) 373-394.

[162] L. Grandinetti, Some investigation in a new algorithm for nonlinear op-
timization based on conic model of objective function, J. Optimization
Theory and Applications 43 (1984) 1-21.

[163] J. Greenstadt, Variations on variable metric methods, Mathematics of
Computation 24 (1970) 1-22.

Download more at Learnclax.com

BIBLIOGRAPHY 663

[164] L. Grippo, F. Lampariello and S. Lucidi, A nonmonotone line search
technique for Newton’s methods, SIAM J. Numer. Anal. 23 (1986) 707-
716.

[165] L. Grippo and S. Lucidi, A globally convergence version of the Polak–
Ribiere conjugate gradient method, Mathematical Programming 78
(1997) 375-391.

[166] J. Hald and K. Madsen, Combined LP and quasi-Newton methods for
minmax, Math. Prog. 20 (1981) 49-62.

[167] D. Han and W. Sun, New decomposition methods for solving variable
inequality problems, Mathematics and Computer Modeling 37 (2003)
408–418.

[168] Q. Han, W. Sun, J. Han and R.J.B. Sampaio, An adaptive conic trust-
region method for unconstrained optimization, Optimization Methods
and Software 20 (2005) 645-663.

[169] S.P. Han, A global convergent method for nonlinear programming, J.
Optimization Theory and Applications 22 (1977) 297-309.

[170] S.P. Han, J.S. Pang and N. Rangaraj, Globally convergent Newton
methods for nonsmooth equations, Mathematics of Operations Re-
search, 17 (1992) 586-607.

[171] X. He and W. Sun, Analysis on Greville’s method, Journal of Nanjing
University, Mathematical Biquarterly 5 (1988) 1-10.

[172] X. He and W. Sun, Introduction to Generalized Inverses of Matrices,
Jiangsu Sci. & Tech. Publishing House, Nanjing, (1991). (in Chinese).

[173] M.R. Hestenes and E. Stiefel, Method of conjugate gradient for solving
linear system, J. Res. Nat. Bur. Stand. 49 (1952) 409-436.

[174] D.M. Himmeblau, Applied Nonlinear Programming, McGraw-Hill,
(1972).

[175] J.B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Mini-
mization Algorithms, Springer-Verlag, Berlin, New York, (1993).

Download more at Learnclax.com

664 BIBLIOGRAPHY

[176] W. Hock and K. Schittkowski, Test Examples for Nonlinear Program-
ming Codes, Lecture Notes in Economical and Mathematical Systems
187, Springer-Verlag, Berlin, (1981).

[177] E. Höpfinger, On the solution of the unidimensional local minimization
problem, J. Optimization Theory and Appl. 18 (1976) 425-428.

[178] R. Hooke and T.A. Jeeves, Direct search solution of numerical and
statistical problems, J. ACM 8 (1961) 212-229.

[179] Yuda Hu, Nonlinear Programming, Higher Education Press, Beijing,
(1990). (in Chinese).

[180] H.Y. Huang, Unified approach to quadratically convergent algorithms
for function minimization, J. Optimization Theory and Appl. 5 (1970)
405-423.

[181] D.H. Jacobson and W. Oxman, An algorithm that minimizes homoge-
neous functions of n variables in n+2 iterations and rapidly minimizes
general functions, J. Math. Anal. Appl. 38 (1972) 533-552.

[182] D.H. Jacobson and L.M. Pels, A modified homogeneous algorithm for
function minimization, J. Math. Anal. Appl. 46 (1974) 533-541.

[183] F. John, Extremum problem with inequalities as subsidiary conditions,
in: F.D. Friedrichs, et al. (eds.) Studies and Essays, Courant Anniver-
sary Volume (Interscience Publishers, New York, 1948)

[184] N. Karmarkar, A new polynomial-time algorithm for linear program-
ming, Combinatorica, 4 (1984) 374-395.

[185] W. Karush, Minima of functions of several variables with inequalities
as side conditions, Master’s thesis, University of Chicago, Chicago,
Illinois, (1939).

[186] J.E. Kelley, The cutting plane method for solving convex programs, J.
of SIAM 8 (1960) 703-712.

[187] J.E. Kelley, Iterative Methods for Linear and Nonlinear Equations,
SIAM Publications, Philadelphia, Penn., (1995).

[188] L.G. Khachiyan, A polynomial algorithm in linear programming, Soviet
Mathematics Doklady 20 (1979) 191-194.

Download more at Learnclax.com

BIBLIOGRAPHY 665

[189] H.F.H. Khalfan, Topics in quasi-Newton methods for unconstrained
optimization, Ph D thesis, University of Colorado, (1989).

[190] K.C. Kiwiel, Methods of Descent for Nondifferentiable Optimization,
Lecture Notes in Mathematics 1133, Springer-Verlag, Berlin, (1985).

[191] M. Kojima and S. Shindo, Extensions of Newton and quasi-Newton
methods to systems of PC1 equations, J. Oper. Res. Soc. Japan 29
(1986) 352-374.

[192] J. Kowalik and K. Ramakrishnan, A numerically stable optimization
method based on homogeneous function, Math. Prog. 11 (1976) 50-66.

[193] H.W. Kuhn and A.W. Tucker, Nonlinear programming, in: J. Neyman,
ed., Proceedings of the Second Berkeley Symposium on Mathemati-
cal Statistics and Probability (University of California Press, Berkeley,
California, 1951) 481-492.

[194] C.J.L. Lagrange, Essai dune nouvelle methods pour deteminer les max-
ima et les minima, Miscellanea Taurinensia 2 (1760-61) Oeuvres, 1, pp.
356-357, 360.

[195] C. Lemaréchal, Bundle methods in nonsmooth optimization, in: C.
Lemaréchal and R. Mifflin, eds., Nonsmooth Optimization (Pergamon,
Oxford, 1978) 79-102.

[196] C. Lemaréchal, Nondifferentiable optimization, in: L.C.W. Dixon, E.
Spedicato and G.P. Szego, eds., Nonlinear Optimization (Birkhauser,
Boston, 1980) 149-199.

[197] C.Lemarechal and C.Sagastizabal, Variational metric bundle methods:
From conceptual to implementable forms, Mathematical Programming
B, 76 (1997) 393-410.

[198] C. Lemarechal and C. Sagastizabal, Practical aspects of the Moreau
Yosida relarization: Theoretical preliminaries, SIAM J. Optimization
7 (1997).

[199] K. Levenberg, A method for the solution of certain nonlinear problems
in least squares, Qart. Appl. Math. 2 (1944) 164-166.

Download more at Learnclax.com

666 BIBLIOGRAPHY

[200] D.C. Liu and J. Nocedál, On the limited memory BFGS method for
large scale optimization, Mathematical Programming 45 (1989) 503-
528.

[201] D.G. Luenberger, Linear and Nonlinear Programming (2nd Edition),
(Addison-Wesley, Massachusetts, 1984).

[202] Z.Q. Luo, J.S. Pang and D. Ralph, Mathematical Programs with Equi-
librium Constraints, Cambridge University Press, Cambridge, (1996).

[203] G. McCormick, A modification of Armijio’s step-size rule for negative
curvature, Mathematical Programming 13 (1977) 111-115.

[204] G. McCormick, Nonlinear Programming: Theory, Algorithms, and Ap-
plications, (John Wiley and Sons, New York, 1983)

[205] G. McCormick and K. Ritter, Alternative proofs of the convergence
properties of the conjugate gradient method, J. Optimization Theory
and Applications 13 (1974) 497-518.

[206] K. Madsen, An algorithm for the minimax solution of overdetermined
systems of nonlinear equations, J. Inst. Math. Appl. 16 (1975) 1-20.

[207] O.L Mangasarian, Nonlinear Programming, (McGraw-Hill, New York,
1969).

[208] O.L. Mangasarian and S. Fromowitz, The Fritz John necessary opti-
mality conditions in the presence of equality and inequality constraints,
J. Math. Anal. Appl. 17 (1967) 37-47.

[209] N. Maratos, Exact Penalty Function Algorithms for Finite Dimensional
and Control Optimization Problems, Ph. D. thesis, Imperial College
Sci. Tech., University of London, (1978).

[210] D.W. Marquardt, An algorithm for least-squares estimation of nonlin-
ear inequalities, SIAM J. Appl. Math. 11 (1963) 431-441.

[211] J.M. Martinez, Quasi-Newton methods with factorization scaling for
solving sparse nonlinear systems of equations, Computing 38 (1987)
133-144.

Download more at Learnclax.com

BIBLIOGRAPHY 667

[212] J.M. Martinez and A.C. Moretti, A trust region method for minimiza-
tion of nonsmooth functions with linear constraints, Mathematical Pro-
gramming 76 (1997) 431-449.

[213] J.M. Martinez and S.A. Santos, A trust-region strategy for minimiza-
tion on arbitrary domains, Mathematical Programming 68 (1995) 267-
301.

[214] D.Q. Mayne and E. Polak, A superlinearly convergent algorithm for
constrained optimization problems, Math. Prog. Study 16 (1982) 45-
61.

[215] R.R. Meyer, Theoretical and computational aspects of nonlinear re-
gression, in: J. Rosen, O. Mangasarian and K. Ritter eds., Nonlinear
Programming, (Academic Press, London, 1970), 465-486.

[216] R. Mifflin, An algorithm for constrained optimization with semismooth
functions, Math. Oper.Research 2 (1977) 197-207.

[217] R. Mifflin, Semismooth and semiconvex function in constrained opti-
mization, SIAM J. Control and Optimization 15 (1977) 957-972.

[218] J.J. Moré, The Levenberg-Marquardt algorithm: implementation and
theory, in: G.A. Watson, ed., Lecture Notes in Mathematics 630: Nu-
merical Analysis (Springer-Verlag, Berlin, 1978) 105-116.

[219] J.J. Moré, Recent developments in algorithms and software for trust
region methods, in: A. Bachem, M. Grötschel and B. Korte, eds., Math-
ematical Programming: The State of the Art (Springer-Verlag, Berlin,
1983) 258-287.

[220] J.J. Moré, B.S. Garbow and K.E. Hilstrom, Testing unconstrained op-
timization software, ACM Transactions on Mathematical Software 7
(1983) 17-41; 9 (1983) 503-524.

[221] J.J. Moré and D.C.Sorensen, On the use of directions of negative curva-
ture in adified Newton method, Mathematical Programming 16 (1979)
1-20.

[222] J.J. Moré and D.C. Sorensen, Computing a trust region step, SIAM J.
Sci. Stat. Comp. 4 (1983) 553-572.

Download more at Learnclax.com

668 BIBLIOGRAPHY

[223] T. Motzkin and I.J. Schoenberg, The relaxation method for linear in-
equalities, Candian J. Math. 6 (1954) 393-404.

[224] W. Murray and M.L. Overton, A projected Lagrangian algorithm for
nonlinear minimax optimization, SIAM J. Sci. Stat. Comp. 1 (1980)
345-370.

[225] W. Murray and M.L. Overton, A projected Lagrangian algorithm for
nonlinear L1 optimization, SIAM J. Sci. Stat. Comp. 2 (1981) 207-224.

[226] B.A. Murtagh, and R.H.W. Sargent, A constrained minimization
method with quadratic convergence, in: R. Fletcher, ed., Optimiza-
tion (Academic Press, London, 1969) 215-346.

[227] S.G. Nash, Preconditioning of truncated-Newton methods, SIAM
J.Scientific Statistics and Computing 6 (1985) 599-616.

[228] S.G. Nash and J. Nocedal, A numerical study of the limited memory
BFGS method and truncated-Newton method for large-scale optimiza-
tion, SIAM J. Optimization 1 (1991) 358-372.

[229] S.G. Nash, A survey of truncated-Newton methods, Journal of Com-
putational and Applied Mathematics 124 (2000) 45-59.

[230] L. Nazareth, A relationship between the BFGS and conjugate gradient
algorithms and its implications for new algorithms, SIAM J. Numer.
Anal. 16 (1979) 794-800.

[231] L. Nazareth, Some recent approaches to solving large residual nonlinear
least squares problems, SIAM Review 22 (1980) 1-11.

[232] J. Nocedal and M.L. Overton, Projected Hessian update algorithms for
nonlinear constrained optimization, SIAM J. Numer. Anal. 22 (1985)
821-850.

[233] J. Nocedal and S.J. Wright, Numerical Optimization, Springer, New
York, (1999).

[234] J. Nocedal and Y. Yuan, Analysis of a self-scaling quasi-Newton
method, Math. Prog. 61 (1993) 19-37.

[235] E.A. Nurminski, (ed.) Progress on Nondifferentiable Optimization
(IIASA, Laxenburg, 1982)

Download more at Learnclax.com

BIBLIOGRAPHY 669

[236] .O. Omojokun, Trust Region Algorithms for Optimization with Non-
linear Equality and Inequality Constraints, Ph. D. Thesis, University
of Colorado at Boulder, (1989).

[237] S.S. Oren, Self-scaling variable metric algorithm for unconstrained min-
imization, Ph.D. Dissertation, Computer Science Department, Stanford
University, USA, (1972).

[238] S.S. Oren, Self-scaling variable metric algorithm without line-search for
unconstrained minimization, Mathematics of Computation 27 (1973)
873-885.

[239] S.S. Oren, On the selection of parameters in self-scaling variable metric
algorithms, Mathematical Programming 7 (1974) 351-367.

[240] S.S. Oren, Self-scaling variable metric algorithm II: Implementation
and experiments, Management Science 20 (1974) 863-874.

[241] S.S. Oren, Perspectives on self-scaling variable metric algorithms, J.
Optimization Theory and Methods 37 (1982) 137-147.

[242] S.S. Oren, Planar quasi-Newton algorithm for unconstrained saddle
point problems, J. Optimization Theory and Methods 43 (1984) 167-
204.

[243] S.S. Oren and D.G. Luenberber, Self-scaling variable metric (SSVM)
algorithm I: Criteria and sufficient conditions for scaling a class of al-
gorithms, Management Science 20 (1974) 845-862.

[244] S.S. Oren and E. Spedicato, Optimal conditioning of self-scaling vari-
able metric algorithm, Math. Prog. 10 (1976) 70-90.

[245] J.M. Ortega and W.C. Rheinboldt, Iterative Solution of Nonlinear
Equations in Several Variables, (Academic Press, New York, 1970).

[246] M.L. Overton, Algorithms for nonlinear l1 and l∞ fitting, in: M.J.D.
Powell, ed., Nonlinear Optimization 1981 (Academic Press, London,
1982).

[247] J.S. Pang, Newton’s method for B-differentiable equations, Mathemat-
ics of Operations Research 15 (1990) 311-341.

Download more at Learnclax.com

670 BIBLIOGRAPHY

[248] J.S. Pang, S.H. Han and N. Rangaraj, Minimization of locally Lips-
chitzian functions, SIAM J. Optimization 1 (1991) 57-82.

[249] J.S, Pang, A B-differentiable equation based, globally and locally
quadratic convergent algorithm for nonlinear programs, complemen-
tarity and variable inequality problems, Mathematical Programming
51 (1991) 101-131.

[250] J.S. Pang and L. Qi, Nonsmooth equations: Motivation and Algo-
rithms, SIAM J. Optimization

[251] J.S. Pang and L. Qi, A globally convergent Newton method for convex
SC1 minimization problems, J. Optimization Theory and Applications
85 (1995) 633-648.

[252] J.D. Pearson, Variable metric methods of minimization, The Computer
J. 12 (1969) 171-178.

[253] E. Polak and G. Ribière, Note sur la convergence de directions con-
jugées, Rev. Francaise Informat. Recherche Operationelle, 3e année 16
(1969) 35-43.

[254] B.T. Polyak, A general method of solving extremal problems, Soviet
Math. Doklady 8 (1967) 14-29.

[255] B.T. Polyak, The conjugate gradient method in extremum problems,
USSR Comp. Math. and Math. Phys. 9 (1969) 94-112.

[256] B.T. Polyak, Subgradient methods: A survey of Soviet research, in: C.
Lemarechal and R. Mifflin, eds., Nonsmooth Optimization (Pergamon,
Oxford, 1978) 5-30.

[257] M.J.D. Powell, An efficient method for finding the minum of a function
of several variables without calculating derivatives, The Computer J. 7
(1964) 155-162.

[258] M.J.D. Powell, On the calculation of orthogonal vectors, Computer J.
11 (1968) 302-304.

[259] M.J.D. Powell, A theory on rank one modifications to a matrix and its
inverse, The Computer J. 12 (1969) 288-290.

Download more at Learnclax.com

BIBLIOGRAPHY 671

[260] M.J.D. Powell, A new algorithm for unconstrained optimization, in:
J.B. Rosen, O.L. Mangasarian and K. Ritter, eds., Nonlinear Program-
ming (Academic Press, New York, 1970) 31-66.

[261] M.J.D. Powell, A hybird method for nonlinear equations, in: P. Robi-
nowitz, ed., Numerical Methods for Nonlinear Algebraic Equations
(Gordon and Breach Science, London, 1970) 87-144.

[262] M.J.D. Powell, On the convergence of the variable metric algorithm, J.
Inst. Maths. Appl. 7 (1971) 21-36.

[263] M.J.D. Powell, Quadratic termination properties of minimization algo-
rithms, Part I and Part II, J. Inst. Maths. Appl. 10 (1972) 332-357.

[264] M.J.D. Powell, Convergence properties of a class of minimization algo-
rithms, in: O.L. Mangasarian, R.R. Meyer and S.M. Robinson, eds.,
Nonlinear Programming 2 (Academic Press, New York, 1975) 1-27.

[265] M.J.D. Powell, Some global convergence properties of a variable metric
algorithm for minimization without exact line searches, in: R.W. Cottle
and C.E. Lemke, eds., Noninear Programming, SIAM-AMS Proceed-
ings vol. IX (SIAM publications, Philadelphia, 1976) 53-72. (1976a).

[266] M.J.D. Powell, Some convergence properties of the conjugate gradient
method, Math. Prog. 11 (1976) 42-49. (1976b)

[267] M.J.D. Powell, Restart procedure for the conjugate gradient method
Mathematical Programming 12 (1977) 241-254.

[268] M.J.D. Powell, A fast algorithm for nonlinearly constrained optimiza-
tion calculations, in: G.A. Watson, ed., Numerical Analysis (Springer-
Verlag, Berlin, 1978) 144-157.

[269] M.J.D. Powell, VMCWD: A FORTRAN subroutine for constrained
optimization, DAMTP Report 1982/NA4, University of Cambridge,
England (1982).

[270] M.J.D. Powell, Nonconvex minimization calculations and the conjugate
gradient method, in: D.F. Griffiths, ed., Numerical Analysis Lecture
Notes in Mathematics 1066 (Springer-Verlag, Berlin, 1984) pp. 122-141.

Download more at Learnclax.com

672 BIBLIOGRAPHY

[271] M.J.D. Powell, On the rate of convergence of variable metric algorithms
for unconstrained optimization, in: Z. Ciesielki and C. Olech, eds.,
Proceeding of the International Congress of Mathematicians (Elsevier,
New York, 1984) 1525-1539.

[272] M.J.D. Powell, General algorithms for discrete nonlinear approxima-
tion calculations, in: L.L. Schumacher, ed., Approximation Theory IV
(Academic Press, New York, 1984) 187-218.

[273] M.J.D. Powell, On the global convergence of trust region algorithms
for unconstrained optimization, Math. Prog. 29 (1984) 297-303.

[274] M.J.D. Powell, On the quadratic programming algorithm of Goldfarb
and Idnani, Math. Prog. Study 25 (1985) 46-61.

[275] M.J.D. Powell, Updating conjugate directions by the BFGS formular,
Mathematical Programming 38 (1987) 29-46.

[276] M.J.D. Powell and Ph.L. Toint, On the estimation of sparse Hessian
matrices, SIAM J. Numer. Anal. 16 (1979) 1060-1074.

[277] M.J.D. Powell and Y. Yuan, A recursive quadratic programming al-
gorithm that uses differentiable exact penalty function, Mathematical
Programming 35 (1986) 265-278.

[278] M.J.D. Powell and Y. Yuan, A trust region algorithm for equality con-
strained optimization, Mathematical Programming 49 (1991) 189-211.

[279] L. Qi, Convergence analysis of some algorithms for solving nonsmoth
equations, Mathematics of Operations Research 18 (1993) 227-244.

[280] L. Qi, Trust region algorithms for solving nonsmooth equations, SIAM
J. Optimization 5 (1995) 219-230.

[281] L. Qi and X. Chen, A globally convergent successive approximation
method for severely nonsmooth equations, SIAM J. Control and Opti-
mization 33 (1995) 402-418.

[282] L. Qi and D. Sun, A survey of some nonsmooth equations and smooth-
ing Newton methods, in: A. Eberhard, R. Hill, D. Ralph and B.M.
Glover eds., Progress in Optimization, Kluwer Academic, Dordrecht,
(1999), 121-146.

Download more at Learnclax.com

BIBLIOGRAPHY 673

[283] L. Qi and J. Sun, A nonsmooth version of Newton’s method, Mathe-
matical Programming 58 (1993) 353-367.

[284] L. Qi and W. Sun, An iterative method for the minimax problem, in
D.Z. Du and P.M. Pardalos eds., Minimax and Applications, Kluwer
Academic Publisher, Boston, (1995), 55-67.

[285] D. Ralph, Global convergence of damped Newton’s method for nons-
mooth equations, via the path search, Mathematics of Operations Re-
search.

[286] F. Rendle and H. Wolkowicz, A semidefinite framework for trust region
subproblems with applications to large scale minimization, Mathemat-
ical Programming 77 (1997) 273-299.

[287] K. Ritter, On the rate of superlinear convergence of a class of variable
metric methods, Numerische Mathematik 35 (1980) 293-313.

[288] R.T. Rockafellar, Convex Analysis (Princeton University Press, Prince-
ton, 1970).

[289] R.T. Rockafellar, Augmented Lagrangians and applications of the prox-
imal point algorithm in convex programming, Mathematics of Opera-
tions Research 1 (1976) 97-116. (1976a).

[290] R.T. Rockafellar, Monotone operators and the proximal point algo-
rithm. SIAM J. Control and Optimization 14 (1976) 877-898.

[291] R.T. Rockafellar, The Theory of Subgradient and Its Application
to Problems of Optimization: Convex and Not Convex Functions
(Heldermann-Verlag, West Berlin, 1981).

[292] R.T. Rockafellar, Computational scheme for solving large-scale prob-
lems in extended linear-quadratic programming, Mathematical Pro-
gramming 48 (1990) 447-474.

[293] R.T. Rockafellar and R.J.B. Wets, Variational Analysis, Springer-
Verlag, Berlin, (1998).

[294] J.B. Rosen, The gradient projection method for nonlinear program-
ming, Part 1: Linear constraints, J. SIAM 8 (1960) 181-217.

Download more at Learnclax.com

674 BIBLIOGRAPHY

[295] J.B. Rosen, The gradient projection method for nonlinear program-
ming, Part 2: Nonlinear constraints, J. SIAM 9 (1961) 514-532.

[296] R.J.B. Sampaio, W. Sun, and J. Yuan, On the trust region algorithm
for nonsmooth optimization, Applied Mathematics and Computation
85 (1997) 109-116.

[297] K. Schittkowski, The nonlinear programming method of Wilson, Han
and Powell with an augmented Lagragian type line search function,
Part 1: convergence analysis, Numerische Mathematik 38 (1981) 83-
114.

[298] K. Schittkowski, More test examples for nonlinear programming codes,
Lecture Notes in Economics and Mathematical System 282, Springer-
Verlag, Berlin, (1987).

[299] R.B. Schnabel, Analysing and improving quasi-Newton methods for
unconstrained optimization, PhD thesis, Department of Computer Sci-
ence, Cornell University, Ithaca, NY, (1977).

[300] R.B. Schnabel, Conic methods for unconstrained optimization and ten-
sor methods for nonlinear equations, in: A. Bachem, M. Grotschel
and B. Korte eds., Mathematical Programming, The State of the Art
(Springer-Verlag, Berlin, 1983) 417-438.

[301] R.B. Schnabel and Ta-Tung Chow, Tensor methods for unconstrained
optimization using second derivatives, SIAM J. Optimization 1 (1991)
293-315.

[302] R.B. Schnabel and P.D. Frank, Tensor methods for nonlinear equations,
SIAM J.Numer.Anal. 21 (1984) 815-843.

[303] L.K. Schubert, Modification of a quasi-Newton method for nonlinear
equations with sparse Jacobian, Mathematics of Computation 24 (1970)
27-30.

[304] D.F. Shanno, Conditioning of quasi-Newton methods for function min-
imization, Math. Comput. 24 (1970) 647-656.

[305] D.F. Shanno, Conjugate gradient methods with inexact searches, Math.
Oper. Res. 3 (1978) 244-256.

Download more at Learnclax.com

BIBLIOGRAPHY 675

[306] D.F. Shanno and K.H. Phua, Matrix conditioning and nonlinear opti-
mization, Mathematical Programming 14 (1978) 149-160.

[307] D.F. Shanno and K.H. Phua, Remark on Algorithm 500: Minimization
of unconstrained multivariate functions, ACM Transactions on Mathe-
matical Software 6 (1980) 618-622.

[308] S. Sheng, A class of collinear scaling algorithm for unconstrained opti-
mization, Numerical Mathematics, A Journal of Chinese Universities 6
(1997) 219-230.

[309] N.Z. Shor, An application of the method of gradient descent to the
solution of the network transpotation problems (in Russian), in: Notes
Scientific Seminar on Theory and Application of Cybernetics and Op-
erations Research (Acdemy of Science, Ukrain, SSSR, 1 (1962) 9-17.

[310] N.Z. Shor, On the speed of convergence of the generalized gradient,
Kibernetika 3 (1968) 98-99.

[311] N.Z. Shor, An application of the operation of space dilation to the
problems of minimizing convex functions, Kibernetika 1 (1970) 6-12.

[312] N.Z. Shor, Generalized gradient methods of nondifferentiable optimiza-
tion emplying space dilation operations, in: A. Bachem, M. Grotchel,
and B. Korte, eds., Mathematical Programming, The State of the Art,
Springer-Verlag, Berlin, (1983), 501-529.

[313] N.Z. Shor, Minimization Methods for Non-differentiable Functions,
Springer-Verlag, Berlin, (1985).

[314] G.A. Shultz, R.B. Schnable and R.H. Byrd, A family of trust region
based algorithms for unconstrained minimization with strong global
convergence properties, SIAM J. Numerical Analysis 22 (1985) 47-67.

[315] D.C. Sorensen, The q-superlinear convergence of a collinear scaling
algorithm for unconstrained optimization, SIAM J.Numer.Anal. 17
(1980) 84-114.

[316] D.C. Sorensen, Newton’s method with a model trust region modifica-
tion, SIAM J. Numer. Anal. 20 (1982) 409-426.

Download more at Learnclax.com

676 BIBLIOGRAPHY

[317] D.C. Sorensen, Trust region methods for unconstrained optimization,
in: M.J.D. Powell, ed., Nonlinear Optimization 1981 (Academic Press,
London, 1982) 29-38. (1982b).

[318] E. Spedicato, A variable metric method for function minimization de-
rived from invariancy to nonlinear scaling, J. Optimization Theory and
its Applications (1976).

[319] E. Spedicato, A note on the determination of the scaling parameters
in a class of quasi-Newton methods for unconstrained optimization, J.
Inst. Maths. Applics. 21 (1978) 285-291.

[320] E. Spedicato and Zunquan Xia, Finding general solutions of the quasi-
Newton equation via the ABS approach, Optimization Methods and
Software 1 (1992) 243-252.

[321] T. Steihaug, Quasi-Newton methods for large scale optimization, Ph.
D. Dissertation, SOM Technical Report No.49, Yale University. (1980).

[322] T. Steihaug, The conjugate gradient and trust regions in large scale
optimization, SIAM Journal on Numerical Analysis 20 (1983) 626-637.

[323] G.W. Stewart, A modification of Davidon’s method to accept difference
approximation of derivatives, J. ACM 14 (1967) 72-83.

[324] J. Stoer, On the convergence rate of imperfect minimization algorithms
in broyden’s β class”, Math. Prog., 9 (1975) 313-335.

[325] J. Stoer, On the relation between quadratic termination and con-
vergence properties of minimization algorithms, Part I: Theory, Nu-
merische Mathematik 28 (1977) 343-366.

[326] J. Stoer, Foundations of recusive quadratic programming methods for
solving nonlinear programs, in: K. Schittkowski, ed. Computational
Mathematical Programming (Springer-Verlag, Berlin, 1985) 165-207.

[327] J. Stoer and R. Bulirsch, Introduction to Numerical Analysis,
(Springer-Verlag, New York, 1993).

[328] J. Stoer, High order long-step methods for solving linear complemen-
tarity problems, Annals of Operations Research 103 (2001) 149-159.

Download more at Learnclax.com

BIBLIOGRAPHY 677

[329] J. Stoer, M. Wechs and S. Mizuno, High order infeasible-interior-point
methods for solving sufficient linear complementarity problems, Math-
ematics of Operations Research 23 (1998) 832-862.

[330] W. Sun and X. Chang, An unconstrained minimization method based
on homogeneous functions, Journal of Applied Mathematics & Com-
putational Mathematics 3 (1989) 81-88.

[331] W. Sun and Z. Wu, Numerical research on self-scaling variable metric
algorithm, Numerical Mathematics, A Journal of Chinese Universities
11 (1989) 145-158.

[332] W. Sun, Generalized Newton method for LC1 unconstrained optimiza-
tion, Journal of Computational Mathematics 15 (1995) 502-508.

[333] W. Sun, On nonquadratic model optimization methods, Asia and Pa-
cific Journal of Operations Research 13 (1996) 43-63.

[334] W. Sun, On convergence of an iterative method for minimax problem,
Journal of Australian Mathematics Society, Series B, 39 (1997) 280-
292.

[335] W. Sun, Newton’s method and quasi-Newton-SQP method for general
LC1 constrained optimization, Applied Mathematics and Computa-
tion, 92 (1998) 69-84.

[336] W. Sun and Y. Wei, Inverse order rule for weighted generalized inverse,
SIAM Matrix Analysis and Applications 19 (1998) 772-775.

[337] W. Sun and Y. Yuan, A conic trust-region method for nonlinearly con-
strained optimization, Annals of Operations Research 103 (2001) 175-
191.

[338] W. Sun, J. Yuan and Y. Yuan, Conic trust-region method for linearly
constrained optimization, Journal of Computational Mathematics 21
(2003) 295-304.

[339] W. Sun, C. Xu and D. Zhu, Optimization Methods, Higher Education
Press, Beijing, (2004). (in Chinese).

[340] R.A. Tapia, Diagonalized multiplier methods and quasi-Newton meth-
ods for constrained optimization, J. Optimization Theory and Appli-
cations 22 (1977) 135-194.

Download more at Learnclax.com

678 BIBLIOGRAPHY

[341] Ph.L. Toint, Towards an efficient sparsity exploiting Newton method
for minimization, in: I.S. Duff, ed., Sparse Matrices and Their Uses
(Academic Press, London, 1981) 57-88.

[342] Ph.L. Toint, Global convergence of a class of trust region methods
for nonconvex minimization in Hilbert space, IMA J. Numer. Anal. 8
(1988) 231-252.

[343] Ph.L. Toint, An assessment of nonmonotone linesearch technique for
unconstrained optimization, SIAM J. Scientific Computing 17 (1996)
725-739.

[344] L. Vandenberghe and S. Boyd, Semidefinite programming, SIAM Re-
view 38 (1996) 49-95.

[345] A. Vardi, A trust region algorithm for equality constrained minimiza-
tion: convergence properties and implementation, SIAM J. Numer.
Anal. 22 (1985) 575-591.

[346] H. Wang and Y. Yuan, An second order convergent method for one-
dimensional optimization, Chinese Journal of Operations Research 11
(1992) 1-10.

[347] G.R. Walsch, An Introduction to Linear Programming, (John Wiley
and Sons, New York, 1985).

[348] G.A. Watson, Methods for best approximation and regression, in: A.
Iserles and M.J.D. Powell eds., The State of the Art in Numerical Anal-
ysis, (Clarendon Press, Oxford, 1987) 139-164.

[349] R.B. Wilson, A simplicial algorithm for concave programming, Ph.D.
thesis, Graduate School of Business administration, Harvard Univer-
sity, (1963).

[350] P. Wolfe, Methods of recent advances in mathematical programming,
in: R.L. Graves and P. Wolfe, eds., Recent Advances in Mathematical
Programming (McGraw-Hill, New York, 1963) 67-86.

[351] P. Wolfe, Another variable metric method, working paper, (1968).

[352] P. Wolfe, Convergence conditions for ascent methods, SIAM Review 11
(1969) 226-235.

Download more at Learnclax.com

BIBLIOGRAPHY 679

[353] P. Wolfe, Convergence conditions for ascent methods, (II): some cor-
rections, SIAM Review 13 (1971) 185-188.

[354] P. Wolfe, A method of conjugate subgradients for minimizing nondif-
ferentiable functions, Math. Prog. Study 3 (1975) 145-173.

[355] H. Wolkowitz, R. Saigal, and L. Vandenberghe, edc., Handbook of
Semidefinite Programming: Theory, Algorithms and Applications,
Kluwer International Series in Operational Research and Management
Science, Kluwer, Boston, (2000).

[356] R. S. Womersley, Local properties of algorithms for minimizing nons-
mooth composite functions, Mathematical Programming 32 (1985) 69-
89.

[357] S.J. Wright, Local properties of inexact methods for minimizing nons-
mooth composite functions, Mathematical Programming 37 (1987) 232-
252.

[358] S.J. Wright, Primal-Dual Interior-Point Methods, SIAM Publications,
Philadelphia, PA, (1997).

[359] S. Xi, Nonlinear Optimization Methods, Higher Education Press, Bei-
jing, (1992). (in Chinese).

[360] S. Xi and F. Zhao, Computational Methods for Optimization, Shanghai
Sci & Tech Press, Shanghai, (1983). (in Chinese).

[361] Y. Xiao and F.J. Zhou, Nonmonotone trust region methods with curvi-
linear path in unconstrained optimization, Computing 48 (1992) 303-
317.

[362] C.X. Xu and J. Zhang, A survey of quasi-Newton equations and quasi-
Newton methods for optimization, Annals of Operations Research 103
(2001) 213-234.

[363] Y. Ye and M.J. Todd, Containing and shrinking ellipsoids in the path-
following algorithm, Math. Porg. 47 (1990) 1-9.

[364] Y. Ye and E. Tse, An extension of Karmarkar’s algorithm to convex
quadratic programming, Math. Prog. 44 (1989) 157-179.

Download more at Learnclax.com

680 BIBLIOGRAPHY

[365] T.J. Ypma, Local convergence of inexact Newton methods, SIAM J.
Numer. Anal. 21 (1984) 583-590.

[366] Y. Yuan, On the least Q-order of convergence of variable metric algo-
rithms, IMA J. Numerical Analysis 4 (1984) 233-239. (1984a).

[367] Y. Yuan, An example of only linearly convergence of trust region algo-
rithms for nonsmooth optimization, IMA J. Numerical Analysis 4(1984)
327-335. (1984b).

[368] Y. Yuan, Conditions for convergence of trust region algorithms for non-
smooth optimization, Mathematical Programming 31 (1985) 220-228.
(1985a).

[369] Y. Yuan, On the superlinear convergence of a trust region algorithm for
nonsmooth optimization, Mathematical Programming 31 (1985) 269-
285. (1985b).

[370] Y. Yuan, An only 2-step Q-superlinear convergence example for some
algorithms that use reduced Hessian approximation, Mathematical Pro-
gramming 32 (1985) 224-231. (1985c).

[371] Y. Yuan, On a subproblem of trust region algorithms for constrained
optimization, Mathematical Programming 47 (1990) 53-63.

[372] Y. Yuan, A modified BFGS algorithm for unconstrained optimization,
IMA Journal of Numerical Analysis 11 (1991) 325-332.

[373] Y. Yuan, A dual algorithm for minimizing a quadratic function with
two quadratic constraints, Journal of Computational Mathematics 9
(1991) 348-359.

[374] Y.Yuan, On self-dual update formulae in the Broyden family, Opti-
mization Methods and Software 1 (1992) 117-127.

[375] Y. Yuan, NumericaL Methods for Nonlinear Programming, Shanghai
Sci. & Tech Press, Shanghai, (1993).

[376] Y. Yuan and R. Byrd, Non-quasi-Newton updates for unconstrained
optimization, J. Comp. Math. 13 (1995) 95-107.

[377] Y. Yuan, On the truncated conjugate gradient method, Mathematical
Programming 87 (2000) 561-573.

Download more at Learnclax.com

BIBLIOGRAPHY 681

[378] W.I. Zangwill. Non-linear programming via penalty functions, Man-
agement Sci. 13 (1967) 344-358.

[379] J.Z. Zhang, N.Y. Deng, and L.H. Chen, A new quasi-Newton equa-
tion and related methods for unconstrained optimization, Journal of
Optimization Theory and applications 102 (1999) 147-167.

[380] J.Z. Zhang and C.X. Xu, A class of indefinite dogleg path methods for
unconstrained minimization, SIAM J. on Optimization 9 (1994) 646-
667.

[381] Y. Zhang, Computing a Celis-Dennis-Tapia trust region step for equal-
ity constrained optimization, Mathematical Programming 55 (1992)
109-124.

[382] H.C. Zhou and W. Sun, Optimality and duality without a constraint
qualification for minimax programming, Bulletin of the Australian
Mathematical Society 67 (2003) 121-130.

[383] H.C. Zhou and W. Sun, Nonmonotone descent algorithm for nonsmooth
unconstrained optimization problems, International Journal of Pure
and Applied Mathematics 9 (2003) 153-163.

[384] M. Zhu, Y. Xue, and F. Zhang, A quasi-Newton type trust region
method based on the conic model, Numerical Mathematics, A Journal
of Chinese Universities No.1 (1995) 36-47.

[385] G. Zoutendijk, Nonlinear programming, computational methods, in: J.
Abadie ed. Integer and Nonlinear Programming, North-Holland, Ams-
terdam, (1970), 37-86.

[386] J. Zowe, Nondifferentiable optimization — a motivation and a short
introduction into the subgradient and the bundle concept, in: K. Schit-
tkowski, ed., Computational Mathematical Programming (Springer-
Verlag, Berlin, 1985) 321-356.

Download more at Learnclax.com

Index

Accumulation point: see Limit point,
23, 62, 76, 116, 120, 121,
151, 191, 193, 368, 463, 464,
478, 486, 520, 524, 545, 564,
621, 625

Active constraint, 387, 489, 582
strong, 393
weak, 393

Active set, 387, 394, 538
Active set method, 427, 428, 431,

433, 435
Actual reduction, 563
Approximate Newton’s method, 513
Armijo line search, 103, 509, 513
Augmented Lagrangian function, 460,

474, 480
Average Hessian, 214

Barrier function, 467
Barzilai-Borwein gradient method,

127
BFGS method, 217, 381, 536, 556
Bunch-Parlett factorization, 152, 163
Bundle method, 617, 619

Cauchy point, 316, 570
Cauchy sequence, 7, 9, 50, 51
Cauchy-Schwarz inequality, 7, 119,

212
Cholesky factorization, 14, 19–21,

136, 138, 148, 150, 373

Clarke directional derivative, 598
Collinear scaling, 325
Collinear scaling algorithm, 324
Collinear scaling BFGS algorithm,

334
Complementarity condition, 393
Composite nonsmooth optimization,

620, 623
Concave function, 36
Cone, 35
Conic model, 324, 325, 329
Conic model algorithm, 324
Conic trust-region method, 336
Conjugate direction, 175
Conjugate direction method, 176,

177
Conjugate gradient method, 1, 175,

178, 180
Beale, 186
convergence, 191, 193, 200
Crowder-Wolfe formula, 180
Dai-Yuan formula, 180
Dixon formula, 180
Fletcher-Reeves formula, 180
Hestenes-Stiefel formula, 180
Polak-Ribière-Polyak formula,

180
preconditioned, 189
restart, 183

Conjugate subgradient method, 617

Download more at Learnclax.com

INDEX 683

Constraint qualification (CQ), 391–
393, 401, 403

linear function (LFCQ), 394
linear independence (LICQ), 394,

396
Constraint violation function, 455,

462, 476, 482
Convergence, 524
Convex combination, 32
Convex cone, 35
Convex function, 31, 36, 62, 114,

134, 472, 482, 496, 621
geometry, 43
property, 40, 41, 43, 44

Convex hull, 34
Convex programming, 39, 58, 615
Convex set, 25–27, 31–34, 36, 37,

46, 47, 134, 358
separation and support, 50, 52,

54, 56
Convexity, 9, 38, 46, 377
Cutting plane method, 615, 616

Descent direction, 58, 64, 119, 131,
148, 156, 493

Descent pair, 156, 160
DFP method, 210, 211, 215
Dini directional derivative, 598
Directional derivative, 24

second order, 24
Dual method, 438
Dual problem, 417, 435
Duality, 406

Eigen-pair, 13
Eigenvalue, 4, 6, 12, 14, 17, 18,

181, 188, 366, 369, 371
Eigenvector, 12, 14
Epigraph, 37, 40

Exact penalty function, 570

Farkas Lemma, 53, 391, 401
Feasible descent direction, 493, 496,

502
Feasible direction, 388, 493, 496

linearized, 388
sequential, 388

Feasible direction method, 509, 515
Feasible point, 386, 456, 464
Feasible point Armijo step, 493, 495
Feasible point method, 493, 563
Feasible region, 2, 34, 457, 467, 469,

473, 474, 476, 485
Feasible set, 386, 493
Feasible steepest descent direction,

499
Finite-difference Newton’s method,

140, 146
First-order optimality condition, 59,

388, 391
Fréchet derivative, 29

Strong, 631
Fritz John optimality condition, 397
Frobenius norm, 291, 380

Gateaux derivative, 29
Gauss-Newton equation, 356, 361
Gauss-Newton method, 355, 356,

359, 360, 363
Generalized elimination method, 422,

506
Generalized inverse, 9
Generalized Jacobian, 628
Generalized quasi-Newton equation,

326
Generalized reduced gradient method

(GRG method), 509
Gerschgorin circle, 17

Download more at Learnclax.com

684 INDEX

Global convergence, 369, 532, 552,
579, 593

Global minimizer, 57, 58, 62, 63,
134

Goldstein line search, 103
Gradient method, 119
Graph, 37

Hölder inequality, 8
Hypograph, 37

Inactive constraint, 387, 393
Indefinite factorization, 152, 163
Indicator function, 40
Inexact Log-barrier function method,

473
Inexact Newton’s method, 163, 164,

169
Interior ellipsoid method, 443
Interior point, 473
Inverse barrier function, 457

Karmarkar’s algorithm, 441
Karush-Kuhn-Tucker conditions: see

KKT conditions, 393
Karush-Kuhn-Tucker Theorem, 391
KKT conditions, 393, 546
KKT matrix, 426
KKT point, 393, 401, 402, 460, 520,

526, 532, 564, 566, 576
Krylov subspace, 182

Lagrange multiplier, 391, 393, 460,
482, 523, 537

Lagrange-Newton method, 524, 554
Lagrangian dual problem, 406
Lagrangian function, 391, 398, 403,

416, 503, 523, 554

Least-squares problem, 353, 360, 373,
381

Level set, 47
Levenberg-Marquardt method, 362,

366
convergence, 367, 369
implementation, 372

Limit point, 63, 134
Limited memory BFGS method, 292
Line search, 71, 127, 133, 140, 150,

176–178, 200, 360, 362
Armijo rule: see Armijo line

search, 103
backtracking, 108
exact, 71, 75, 81, 120, 180, 184,

191, 192
Goldstein rule: see Goldstein

line search, 103
inexact, 72, 102, 109, 114, 121,

183, 185, 195
interpolation, 89
nonmonotone: see Nonmono-

tone line search, 115, 127
second order, 157, 160
Wolfe rule: see Wolfe rule or

Wolfe-Powell rule, 104
Linear convergence, 81
Linear programming, 34, 407, 616
Linearized feasible direction method,

515
Lipschitz condition, 597
Lipschitz continuous, 25–27, 112,

132, 143, 169, 210, 241, 262,
337, 357, 358

Lipschitzian function, 604
Local minimizer, 57–60, 357, 371,

488, 622
Logarithmic barrier function, 458

Download more at Learnclax.com

INDEX 685

Lower hemi-continuous, 26
Lower semi-continuous, 39

Maratos Effect, 541, 550
Memoryless BFGS formula, 301
Merit function, 543, 550, 572
Minkowski inequality, 48
Modified Newton’s method, 136, 140,

147
Monotone mapping, 44

Negative curvature direction, 147
Newton point, 316
Newton’s method, 130, 131
Newton-Raphson step, 523
Nondifferentiable function, 597
Nonmonotone line search, 116
Nonsmooth exact penalty method,

484
Nonsmooth function, 609
Nonsmooth Newton’s method, 628,

631
global convergence, 632

Nonsmooth optimization, 597, 608,
610

Norm, 3, 37
l1-norm, 3
l2-norm, 3
lp-norm, 3
l∞-norm, 3
consistency, 6
equivalence, 6
Frobenius norm, 4, 18
inequalities, 7
matrix norm, 4
orthogonally invariant matrix

norm, 5
vector norm, 3
weighted, 5

Null space, 538, 555, 562
Null space method, 571
Null space step, 573

Objective function, 1, 26, 62
Optimality condition, 59, 412, 620

Penalty function, 455, 456, 524
L1 exact penalty function, 484,

531, 572
L1 penalty function, 457
L∞ exact penalty function, 484
L∞ penalty function, 457
Courant penalty function, 456
Fletcher’s smooth exact penalty

function, 459
interior point penalty function,

457, 466
multiplier penalty function: see

Augmented Lagrangian func-
tion, 474

nonsmooth exact penalty func-
tion, 482

quadratic penalty function, 456
simple penalty function, 461
smooth exact penalty function,

480
Penalty function method, 455, 461,

462
Penalty parameter, 457
Powell-Yuan’s method, 551
Preconditioned, 190
Predicted reduction, 563
Primal problem, 407, 408
Primal-dual interior-point method,

445
central path, 447

Projected gradient method, 513, 516
Projection, 513

Download more at Learnclax.com

686 INDEX

Projection theorem, 50
PSB method, 219

Q-convergence, 65
QR factorization, 21, 361, 554
Quadratic convergence, 65, 100, 144,

146, 147, 169
Quadratic model, 26, 130, 163
Quadratic programming (QP), 34,

408, 411, 413, 419, 428, 441,
563

equality-constrained, 419, 425
necessary and sufficient condi-

tions, 412
Quadratic termination, 177
Quasi-Newton equation, 205, 220,

380
Quasi-Newton method, 204, 381,

535
BFGS: see BFGS method, 217
Broyden class, 226, 229
DFP: see DFP method, 211
global convergence, 231, 238
Huang class, 231
least change update, 223
local convergence, 240
PSB: see PSB method, 219
SR1: see Symmetric rank-one

update (SR1), 207

R-convergence, 66
Rademacher’s theorem, 628
Range space, 555
Range space step, 573
Rank-one tensor, 339
Rank-one update, 17
Rayleigh quotient, 15
Reduced gradient, 504
Reduced Hessian matrix, 554

Reduced Hessian matrix method,
554

one-side, 556
two-side, 557

Sawtooth phenomenon, 515
Second-order Armijo rule, 157
Second-order correction step, 545
Second-order optimality condition,

60, 61, 401
Second-order Wolfe-Powell rule, 160
Self-scaling variable metric method

(SSVM), 277
Semismooth, 629
Semismooth function, 630

p-order, 631
Separation theorem, 55, 56
Sequential quadratic programming

method (SQP), 530, 532
superlinear convergence, 537

Sherman-Morrison formula, 17, 217
Sherman-Morrison-Woodburg for-

mula, 17
Singular value, 13
Singular value decomposition (SVD),

11
Sparse PSB update, 286
Sparse quasi-Newton method, 282
Spectral radius, 13
Stationary point, 62, 120, 121, 134,

148, 151, 160, 191, 193, 212,
368, 621, 625

Clarke stationary point, 604
Dini stationary point, 604

Strong duality theorem, 406
Subdifferential, 604
Subgradient method, 609
Superlinear convergence, 65, 93, 127,

Download more at Learnclax.com

INDEX 687

144, 165, 168, 169, 336, 529,
537, 553, 556, 594

Superlinearly convergent step, 538,
550, 552

Support function, 37, 40, 601, 604
Supporting hyperplane, 43, 54
Symmetric rank-one update (SR1),

208, 210

Tensor method, 337, 338
nonlinear equations, 337
optimization, 341, 348

Trust-region method, 304, 363, 380,
561, 563, 624

CDT subproblem, 580
dogleg method, 316
double dogleg method, 318
null space technique, 574
Powell-Yuan algorithm, 585
Steihaug-CG method, 320
Steihaug-Toint method, 320

Trust-region subproblem, 372, 562,
563, 568, 623

Upper hemi-continuous, 26

Variable elimination method, 420,
505

Variable metric method: see Quasi-
Newton method, 207

Von-Neumann Lemma, 9

Watchdog technique, 543, 544
Weak duality theorem, 408
Weighted Frobenius norm, 291
Wilson-Han-Powell method, 530
Wolfe rule or Wolfe-Powell rule, 104

Zigzagging, 514
Zoutendijk condition, 112

Download more at Learnclax.com

	OPTIMIZATION THEORY AND METHODS: NONLINEAR PROGRAMMING
	Springerlink
	Half-title
	Title Page
	Copyright Page
	Contents
	Preface
	Chapter 1. Introduction
	1.1 Introduction
	1.2 Mathematics Foundations
	1.2.1 Norm
	1.2.2 Inverse and Generalized Inverse of a Matrix
	1.2.3 Properties of Eigenvalues
	1.2.4 Rank-One Update
	1.2.5 Function and Differential

	1.3 Convex Sets and Convex Functions
	1.3.1 Convex Sets
	1.3.2 Convex Functions
	1.3.3 Separation and Support of Convex Sets

	1.4 Optimality Conditions for Unconstrained Optimization
	1.5 Structure of Optimization Methods
	Exercises

	Chapter 2. Line Search
	2.1 Introduction
	2.2 Convergence Theory for Exact Line Search
	2.3 The Golden Section Method and the Fibonacci Method
	2.3.1 The Golden Section Method
	2.3.2 The Fibonacci Method

	2.4 Interpolation Method
	2.4.1 Quadratic Interpolation Methods
	2.4.2 Cubic Interpolation Method

	2.5 Inexact Line Search Techniques
	2.5.1 Armijo and Goldstein Rule
	2.5.2 Wolfe–Powell Rule
	2.5.3 Goldstein Algorithm and Wolfe–Powell Algorithm
	2.5.4 Backtracking Line Search
	2.5.5 Convergence Theorems of Inexact Line Search

	Exercises

	Chapter 3. Newton’s Methods
	3.1 The Steepest Descent Method
	3.1.1 The Steepest Descent Method
	3.1.2 Convergence of the Steepest Descent Method
	3.1.3 Barzilai and Borwein Gradient Method
	3.1.4 Appendix: Kantorovich Inequality

	3.2 Newton’s Method
	3.3 Modified Newton’s Method
	3.4 Finite-Difference Newton’s Method
	3.5 Negative Curvature Direction Method
	3.5.1 Gill–Murray Stable Newton’s Method
	3.5.2 Fiacco–McCormick Method
	3.5.3 Fletcher–Freeman Method
	3.5.4 Second-Order Step Rules

	3.6 Inexact Newton’s Method
	Exercises

	Chapter 4. Conjugate Gradient Method
	4.1 Conjugate Direction Methods
	4.2 Conjugate Gradient Method
	4.2.1 Conjugate Gradient Method
	4.2.2 Beale’s Three-Term Conjugate Gradient Method
	4.2.3 Preconditioned Conjugate Gradient Method

	4.3 Convergence of Conjugate Gradient Methods
	4.3.1 Global Convergence of Conjugate Gradient Methods
	4.3.2 Convergence Rate of Conjugate Gradient Methods

	Exercises

	Chapter 5. Quasi-Newton Methods
	5.1 Quasi-Newton Methods
	5.1.1 Quasi-Newton Equation
	5.1.2 Symmetric Rank-One (SR1) Update
	5.1.3 DFP Update
	5.1.4 BFGS Update and PSB Update
	5.1.5 The Least Change Secant Update

	5.2 The Broyden Class
	5.3 Global Convergence of Quasi-Newton Methods
	5.3.1 Global Convergence under Exact Line Search
	5.3.2 Global Convergence under Inexact Line Search

	5.4 Local Convergence of Quasi-Newton Methods
	5.4.1 Superlinear Convergence of General Quasi-Newton Methods
	5.4.2 Linear Convergence of General Quasi-Newton Methods
	5.4.3 Local Convergence of Broyden’s Rank-One Update
	5.4.4 Local and Linear Convergence of DFP Method
	5.4.5 Superlinear Convergence of BFGS Method
	5.4.6 Superlinear Convergence of DFP Method
	5.4.7 Local Convergence of Broyden’s Class Methods

	5.5 Self-Scaling Variable Metric (SSVM) Methods
	5.5.1 Motivation to SSVM Method
	5.5.2 Self-Scaling Variable Metric (SSVM) Method
	5.5.3 Choices of the Scaling Factor

	5.6 Sparse Quasi-Newton Methods
	5.7 Limited Memory BFGS Method
	Exercises

	Chapter 6. Trust-Region Methods and Conic Model Methods
	6.1 Trust-Region Methods
	6.1.1 Trust-Region Methods
	6.1.2 Convergence of Trust-Region Methods
	6.1.3 Solving A Trust-Region Subproblem

	6.2 Conic Model and Collinear Scaling Algorithm
	6.2.1 Conic Model
	6.2.2 Generalized Quasi-Newton Equation
	6.2.3 Updates that Preserve Past Information
	6.2.4 Collinear Scaling BFGS Algorithm

	6.3 Tensor Methods
	6.3.1 Tensor Method for Nonlinear Equations
	6.3.2 Tensor Methods for Unconstrained Optimization

	Exercises

	Chapter 7. Solving Nonlinear Least-Squares Problems
	7.1 Introduction
	7.2 Gauss–Newton Method
	7.3 Levenberg–Marquardt Method
	7.3.1 Motivation and Properties
	7.3.2 Convergence of Levenberg–Marquardt Method

	7.4 Implementation of L–M Method
	7.5 Quasi-Newton Method
	Exercises

	Chapter 8. Theory of Constrained Optimization
	8.1 Constrained Optimization Problems
	8.2 First-Order Optimality Conditions
	8.3 Second-Order Optimality Conditions
	8.4 Duality
	Exercises

	Chapter 9. Quadratic Programming
	9.1 Optimality Conditions for Quadratic Programming
	9.2 Duality for Quadratic Programming
	9.3 Equality-Constrained Quadratic Programming
	9.4 Active Set Methods
	9.5 Dual Method
	9.6 Interior Ellipsoid Method
	9.7 Primal-Dual Interior-Point Methods
	Exercises

	Chapter 10. Penalty Function Methods
	10.1 Penalty Function
	10.2 The Simple Penalty Function Method
	10.3 Interior Point Penalty Functions
	10.4 Augmented Lagrangian Method
	10.5 Smooth Exact Penalty Functions
	10.6 Nonsmooth Exact Penalty Functions
	Exercises

	Chapter 11. Feasible Direction Methods
	11.1 Feasible Point Methods
	11.2 Generalized Elimination
	11.3 Generalized Reduced Gradient Method
	11.4 Projected Gradient Method
	11.5 Linearly Constrained Problems
	Exercises

	Chapter 12. Sequential Quadratic Programming
	12.1 Lagrange–Newton Method
	12.2 Wilson–Han–Powell Method
	12.3 Superlinear Convergence of SQP Step
	12.4 Maratos Effect
	12.5 Watchdog Technique
	12.6 Second-Order Correction Step
	12.7 Smooth Exact Penalty Functions
	12.8 Reduced Hessian Matrix Method
	Exercises

	Chapter 13. Trust-Region Methods for Constrained Problems
	13.1 Introduction
	13.2 Linear Constraints
	13.3 Trust-Region Subproblems
	13.4 Null Space Method
	13.5 CDT Subproblem
	13.6 Powell–Yuan Algorithm
	Exercises

	Chapter 14. Nonsmooth Optimization
	14.1 Generalized Gradients
	14.2 Nonsmooth Optimization Problem
	14.3 The Subgradient Method
	14.4 Cutting Plane Method
	14.5 The Bundle Methods
	14.6 Basic Property of a Composite Nonsmooth Function
	14.7 Trust Region Method for Composite Nonsmooth Optimization
	14.8 Nonsmooth Newton’s Method
	Exercises

	Appendix: Test Functions
	§1. Test Functions for Unconstrained Optimization Problems
	§2. Test Functions for Constrained Optimization Problems

	Bibliography
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

