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Chapter 1

Probability and Distributions

1.2.1
1.2.3
1.2.6
1.2.7
1.2.8

1.2.9
1.2.11

1.2.13

1.2.16

1.2.17

Part (¢): C1NCe ={(z,y): 1< <2,1<y<2}
C1 N Cy = {mary,mray}.
Cp={z:1/k<z<1-(1/k)}.

Cr={(z,y): 0< 2 <1/k,0<y <1/k}.

limy 00 Cx = {z : 0 < 2 < 3}. Note: neither the number 0 nor the number 3
is in any of the sets Cy, k=1,2,3,...

Part (b): limg— . Cx = ¢, because no point is in all the sets Cy, k = 1,2,3, ...

Because f(z) =0 when 1 < z < 10,

10 1
Q(C3) = (z)dx = / 6z(1 — x)dx = 1.
0 0
Part (¢): Draw the region C' carefully, noting that z < 2/3 because 3z/2 < 1.
Thus
2/3 [ p3a/2 2/3
Q(C’):/ / dy dz:/ xdr =2/9.
0 @ /2 0

Note that

25=Q(C) = Q(C1) + Q(C2) = Q(C1 N C2) =19+ 16 — Q(C1 N C2).
Hence, Q(Cy N Cy) = 10.
By studying a Venn diagram with 3 intersecting sets, it should be true that
11>8+6+5-3-2-1=13.

It is not, and the accuracy of the report should be questioned.

1
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2 Probability and Distributions

1.3.3 ) 1/9
+_+...:4:1

1-(1/2)

o 0 o
P(C):/ e_lzldz:/ emdz+/ e Pdr=2+#1.
—oo —oo 0

We must multiply by 1/2.

P
oo

1.3.6

1.3.8
P(CTUCy) = P[(C1NCy)°l=P(C) =1,
because C; N Cs = ¢ and ¢¢ =C

1.3.11 The probability that he does not win a prize is
990 / 1000
5 5 )
1.3.13 Part (a): We must have 3 even or one even, 2 odd to have an even sum.
Hence, the answer is
10y (10 10y (10
() () . (DE)
20 20y -
() ()

1.3.14 There are 5 mutual exclusive ways this can happen: two “ones”, two “twos”,
two “threes”, two “reds”, two “blues.” The sum of the corresponding proba-

bilities is
6)E+G 0+ (3)8(3) + () + ()6

+

~—

1.3.15

(a) L- (50)
5
8
1
(b) 1- (7&20() ) > 5 Solve for n.
1.3.20 Choose an integer ng > max{a~!, (1—a)~'}. Then {a} = N o (a — %,a + %)
Hence by (1.3.10),

1 1 2
P = lim P - — — == =0.
()= tim P (0= Tas )] =2 =0

1.4.2
P[(Cy N CyN Cs) N Cy) = P[C4|CL N Ca N C5]P(Cy N Cy N Cy),

and so forth. That is, write the last factor as

P[(Cl n CQ) N 03] = P[C3|Cl n CQ]P(Cl N Cg)

Copyright ©2013 Pearson Education. Inc.



1.4.5

1.4.10

1.4.12

1.4.14

1.4.16

1.4.19

1.4.22

1.4.27

1.4.30

1.4.31

[G)Go) + (DI /G5)
(GG + G Go) + D]/
B (2/3)(3/10) 3 2
PGie) = 2/3)3/10) + (1/3)(8/10) 7 -3~ PiGy).
Part (c):
P(CLUCS) = 1-P[(C1UC5)]=1-P(CTNCy)
= 1-(0.4)(0.3) =0.88.
Part (d):
1 —(0.3)%(0.1)(0.6).
1-P(TT)=1-(1/2)(1/2) = 3/4, assuming independence and that H and

T are equilikely.

Let C be the complement of the event; i.e., C' equals at most 3 draws to get
the first spade.

The probability that A wins is >~ (%%)n : =3

Let Y denote the bulb is yellow and let 77 and T5 denote bags of the first and
second types, respectively.
(a)
20 10
P(Y)=PY|Th)P(T1) + P(Y|T2)P(T2) = %.6 + 2—5.4.
(b)

P(Y|Th)P(Th)

P(TIY) = =51

Suppose without loss of generality that the prize is behind curtain 1. Con-
dition on the event that the contestant switches. If the contestant chooses
curtain 2 then she wins, (In this case Monte cannot choose curtain 1, so he
must choose curtain 3 and, hence, the contestant switches to curtain 1). Like-
wise, in the case the contestant chooses curtain 3. If the contestant chooses

2

curtain 1, she loses. Therefore the conditional probability that she wins is 5.

(1) The probability is 1 — (2)".

24
(2) The probability is 1— [(2)" + 12|,

Copyright ©2013 Pearson Education. Inc.



4 Probability and Distributions

1.5.2 Part (a):

cl(2/3)+(2/3)° + (2/3) + -] = % =2 =1,

soc=1/2.
1.5.5 Part (a):

r=0,1,...,5
p(x) = { (%)
0 elsewhere.

1.5.9 Part (b):
50

_50(51) 51
D @/5050 = 2(5050) _ 202

r=1

1.5.10 For Part (c): Let C,, = {X < n}. Then C,, C Cp11 and U,,C,, = R. Hence,
lim,, o F(n) = 1. Let € > 0 be given. Choose ng such that n > ng implies
1—F(n)<e Thenif z >ng, 1 — F(z) <1— F(ng) <e.

1.6.2 Part (a):

1.6.3

(a) p(w’)=(%)z_l (é) r=1,2,3,...
w 566w

1.6.8 D, = {1,23,33,...}. The pmf of Y is

Thus

L 0<x<100
0 elsewhere.

1.7.2
Oy C C¢ = P(Cy) < P(CS) = 1 — (3/8) = 5/8.

Copyright ©2013 Pearson Education. Inc.



1.7.4

1.7.6

1.7.8

1.7.9

1.7.10

1.7.13

1.7.16

1.7.19

Among other characteristics,

& 1 1
/ ———— dx = —arctanz
T

G

oo T(1 4+ 22) .
Part (b):
P(X?<9) = P(3<X<3)/32z;;2dx
5 3
s B3
Part (c):

hence, z = 2 is the mode because it maximizes f(z).

m 1
/ 3z dr = =;
O 2

hence, m® = 271 and m = (1/2)%/3.

Part (b):

gUAQ
/ 423 dx =0.2:
0

hence, &1, = 0.2 and &5 = 0.21/4.
x = 1 is the mode because for 0 < z < oo because

flx) = Flx)=e"—e " +ze " =ge
flx) = —ze+e T=0,

and f/(1) = 0.

Since A >0
X>2=2Y=X+A>=2

Hence, P(X > z) < P(Y > z).

Since f(x) is symmetric about 0, £ 25 < 0. So we need to solve,

/i (73) de = 25.

The solution is £ o5 = —V/2.

Copyright ©2013 Pearson Education. Inc.



6 Probability and Distributions

1.7.20 For 0 < y < 27,

Tody 3
1 y2/3 1
9(y) 3y2/3 9 27
1.7.22
@) = - F<a<
X - 71'7 2 x 2
" dx 1 <y<
= arcta =1 5 —X 0.
x T ny, dy 1+y2’ Yy
() 1 1 <y <
- _-  _ 0.
9y Tl+y?’ o=y
1.7.23
1
Gly) = P(—210gX4§y)ZP(XZG_y/8):/ 4x3dm:1—e—y/2, 0<y<oo
e—u/8
_ g = ¢ 0<y<x
s = cw={ 5" ke
1.7.24
Gly) = P(X*<y)=P(—/y<X <)
VY o1 _ 2V
[Yildr =2 41 1<y<4
ﬁ 0<y<l1
_ 1
o) = § 55 1<y<4
0 elsewhere.
1.84 100
11
E1/X)=)> -—.
(1/X) 250

The latter sum is bounded by the two integrals
101 1 100 1
f51 2 dz and f50 2 dz.

An appropriate approximation might be

1 101.5

—dx =

1
— — (log 100.5 — log 50.5).
50 Joos 50108 og 50.5)

Copyright ©2013 Pearson Education. Inc.



1.8.6 )
E[X(1-X)]= /0 z(1 — 2)32? dx.

1.8.8 When 1 < y < o0

Gly) = P(l/XSy)P(XZI/y)/I/ 2:rdz:17y—12

Q
—
<
=

I

SRS

&
=
I

2
/ y— dy = 2, which equals fol(l/x)Qac dz.
1 )

1.8.10 The expectation of X does not exist because

2 [ 1 /1
E(|X|):—/ i dz:—/ = du = oo,
T Jo 1422 ) w

where the change of variable u = 1 + z? was used.

1.9.2 N
e\ " et/2 ¢
M(t):;:l: <§> ﬁ/et/z) /2 < 1.

Find E(X) = M’(0) and Var(X) = M"(0) — [M'(0)]%.

1.9.4
0 < var(X) = E(X?) — [E(X)]?.
1.9.6
X—p ? L S
o5 ] 2

1.9.8

K(b) = E[X —0)%=FE(X?) —2bE(X)+ b*

K'(b) = —2B(X)+2b=0=0b=E(X).

1.9.11 For a continuous type random variable,

K(t) = /Ootzf(:c)dx.

K'(t) = /jo ot* " f(z)dr = K'(1) = B(X).
K'(t) = /jo r(z — D)t" 2 f(x)de = K" (1) = BE[X(X1)];

and so forth.

Copyright ©2013 Pearson Education. Inc.



8 Probability and Distributions

1.9.12

3 = EX-T)=EX)=10=pu

11 = E[(X-7?%=FEX?—-M4EX)+49=EX
= E(X?) =102 and var(X) = 102 — 100 = 2.
15 = E[(X —7)%. Expand (X — 7)% and continue.

1.9.16
E(X) = 0= var(X)= E(X?) =2p.
E(X*) = 2p= kurtosis = 2p/4p*> = 1/2p.
1.9.17
Pi(t) = M'(t)/M(t) = +'(0) = M'(0)/M(0) = E(X).
P ()

1.9.19 2 "

Considering the coefficient of ¢"/r!, we have

E(X")=3-4-5---(r+2), r=1,2,3....

1.9.20 Integrating the parts with u =1 — F(z), dv = dz, we get

%) —91

— [M'(0)]? = var(X).

{1 - F@)}, - / o~ f(2)) de = / tf (@) dz = B(X).

1.9.23
E(X) = /1 Yaz+o. +1 >
- Ox4z 2%
1 1
BE(X?) = / Jdr+0-7+1- -
12
var(X) = T §2—£
12 8) 192
1.9.24

E(X)Z/Oo zleyfi(z) + -+ e frlz dx—zczm—

Copyright ©2013 Pearson Education. Inc.



Because [7 (z — p)?fi(z) de = 02 + (u; — p)?, we have

E(X =) =) cilo? + (ni — ).

i=1

1.10.2
= d 2 dr =2uP(X > 2u).
” / of(@)de > [ 2uf(a)de = 2P (X > 29)

5
Thus 3 > P(X > 2pu).

1.10.4 If, in Theorem 1.10.2, we take u(X) = exp{tX} and ¢ = exp{ta}, we have
P(exp{tX} > exp{ta}] < M(t) exp{—ta}.

If t > 0, the events exp{tX} > exp{ta} and X > a are equivalent. If ¢ < 0,
the events exp{tX} > exp{ta} and X < a are equivalent.

1.10.5 We have P(X > 1) < [1 —exp{—2t}]/2t for all 0 < t < 00, and P(X < —1) <
[exp{2t} — 1]/2¢ for all —oo < ¢ < 0. Each of these bounds has the limit 0 as
t — oo and t — —o0, respectively.

Copyright ©2013 Pearson Education. Inc.
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Chapter 2

Multivariate Distributions

2.1.2

2.1.5
/ooo /om [%(ﬁﬁ@/w%x%xﬂ drdrz = /ooo /:/2[29(”>/ el

- /Owgw)dpl.

2.1.6
G(z) = P(X+Y<2)= / / e " Vdydz
0o Jo
= / [1—e e dr=1—e"% - z¢e7%.
0
_ iy e 0<z< 00
9(z) = G'(z) = { 0 elsewhere.
2.1.7

o1 o1
G(z) = P(XYSz)zlf/ / dydz
z Jz/x
1

= 1—/ (1—3) der =2z —zlog z
. x

—logz 0<z<1
elsewhere.

Why is —log z > 07

11
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12 Multivariate Distributions

2.1.8
% x>0,y >0,2+y <13, 2 and y integers
f(:rvy) = (13) o - o
0 elsewhere.
2.1.10
1/2 -z
P(X, +X2§1):15/ x% [/ acgdmg] dxy.
0 X1
2.1.14

oo oo 1+7
E[ethl-i-tQXQ} _ Zzet1i+t2j (%)

i=1 j=1
_ 00 tll)ioo <tll>g

provided t; < log2,:=1,2.

2.2.1
p(yl,yz) = { (()%)yz (%) B gJSle"gi)e; (0’ 0)7 (717 1>a (17 1>a (07 2)

2.2.2

/36 y1 =y2,2y2,3y2592 = 1,2,3
plyr,y2) = { 0 elsewhere.

n 1 2 3 4 6 9
p(yr) | 1/36 | 4/36 | 6/36 | 4/36 | 12/36 | 9/36

2.2.4 The inverse transformation is given by 1 = y1y2 and x2 = yo with Jacobian
J = yo. By noting what the boundaries of the space S(X1, X3) map into, it
follows that the space 7 (Y1,Y2) = {(y1,y2) : 0 < y; < 1,4 =1,2}. The pdf of
(Y1,Y2) is fya,va (y1,92) = 8y195-

2.2.5 The inverse transformation is 1 = y1 — y2 and x2 = yo with Jacobian J = 1.
The space of (Y1,Y2) is 7 = {(y1,92) : —00 < y; < 00,i = 1,2}. Thus the
joint pdf of (Y1, Ys) is

i va(Wi,92) = fxi,x (Y1 — Y2, 92),

which leads to formula (2.2.1).

Copyright ©2013 Pearson Education. Inc.



13

2.3.2
T2 9 Cl
(a) cl/ xl/xQdm:?:lécl:2and02:5.
0
(b) 10,7:1303, 0 < x1 < 72 < 1;zero elsewhere
1/2 64 /1 1 12
201/(5/8)2de = — (= — — | = —=.
(c) /1/4 11/(5/8)" dv = 5 (4 16) 25
d / / 102122 dzodry :/ —x1(1 — xg)dml = _—.
(@) 14 S ? 11 3 (1 —ay 512
2.3.3
falza) = / 21xtxs dry = 725, 0< 2y < 1.
0
fip(@i]ee) = 21afa3/7af =327 /23, 0< a1 < s
T2 3
E(Xilxs) = xl(Sx%/xg)dml = ng.
0
3 /3 1\’ 3
Gly) = P(Zngy):/ 7xgdm2:(?y) , 0<y<1
0
_ [T@)T 0<y<3
9 = { 0 elsewhere.
21
EY) = 73 _
84 32
7
Y) = ——.
Var(Y) 1024
21
E(X = —.
x) = o
553 7
X = —— > —.
Var(X1) 15360 ~ 1024

2.3.8 The marginal pdf of X is
fx(x) = 2/ e e Vdy =2, 0<ax<o0.

Hence, the conditional pdf of Y given X =z is

2e %eY

er_(y_z), 0<£C<y<00,

fyix(lz) =

with conditional mean

oo

EY|X =x) :/ ye U dy =z +1, x>0.

x

Copyright ©2013 Pearson Education. Inc.



14 Multivariate Distributions

2.3.9 For Part (c):

13\ /13 13 39
<x ><$ )(2 - - )/<2>, where integers rs,x3 > 0 and zs + z3 < 2.
2 3 — T2 — X3

2.3.11
1
(a) fl(l'l)f2|1($2|1'1):1'x—1, 0<1'2 <z < 1.
Lomo g Y or -1
(b) / / = dayde; = / L iy = 2(1/2) +log (1/2) = 1~ log 2.
1/2 J1—2y %1 /2 T1
2.3.12

(b) / e ” das// e Pdr=e?/et =L
2 1

2.4.1 For Part (c):
cov = (0)(0)(1/3) + (1)(1)(1/3) + (2)(0)(1/3) — (1)(1/3) = 0.
Thus p =0 and yet X and Y are dependent.

2.4.3
= (1/2)(1/2) =1/4 = p=1/2.

2.4.7
h(v) = var(X) + 2vcov(X,Y) + v*var(Y) > 0,

for all v. Hence, the discriminant of this quadratic must satisfy b — 4ac < 0
which yields
[2cov(X,Y)]? — dvar(X)var(Y) < 0.

Equivalently,
p* = [cov(X,Y)]? /var(X)var(Y) < 1.

2.4.11 Let Y = (X1 — p1) + (X2 — p2). Then the mean of Y is 0 and its variance is
Var(Y) = Var(X; + X3) = 02 4+ 0% + 2po? = 20*(1 — p).
Use Chebyshev’s inequality to obtain the result.
2.5.2 X7 and X5 are dependent because 0 < 1 < x2 < 0o is not a product space.

2.5.4 Because X; and X, are independent, the probability equals

1/3 1/3
[/ 21, dzll U 2(1 — 3) du] = (1/3)*[1 — (2/3)%] = 5/81.
0 0

Copyright ©2013 Pearson Education. Inc.
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2.5.7 The marginal pdf of X; is given by
—2+ 17(I171)2 1 2
o) = |

—drya=—y/1—(r1—-1)2, 0<z<2
T

2T T

The random variables X; and X5 are not independent.

2.5.8 X and Y are dependent because 0 < y < x < 1 is not a product space.

_ 1$$ ) x_2(1_92)
B(Xly) = [ /0 -] de = Grt
2.5.9
20 60—z 1
P(X+Y <60) = P(X§10)+/10 Ao ﬁdydx
1 20 1 1 1
= §+/10 (20— 2)/300d = o + ¢ = 5.
2.5.12
P(X1—Xo|=1) = P(X1=0,Xy=1)4P(X; =1,X,=0)
= P(X;=0)P(Xo=1)4P(X;=1)P(Xs=0) = %
2.6.1 For Part (g):
_ [t Betyta)/2 o (13)+ (u/2) + (2/2)
Bl = [ e e = T e
2.6.3
Gly) = 1-Ply<X;,i=1,234)=1-[1-y)’'=1-1-y)"

s 2=yt 0<y<1
9y) = G'(y) = { 0 elsewhere.

2.6.6 Multiply both members of F[X; — ui|xa, x3] = ba(x2 — ua) + bs(xs — us)
by the joint pdf of X5 and X5 and denote the result by (1). Multiply both
members of (1) by (z2 — p2) and integrate (or sum) on x5 and x3. This gives
(2), p120102 = bao3 + 3pa3o102. Return to (1) and multiply each member by
(x3 — pg) and integrate (or sum) on x2 and zs. This yields (3) pizo103 =
bap23oaos + bzos. Solve (2) and (3) for by and bs.

(a) / / e~ T2 duoday / / / e~ 172 oy day
0 x1 0 Z1/2

12 3
—2z1 g —3z1/2 g — Z2 2
+/0 e zl//o e 21 =53 =

2.6.9

Copyright ©2013 Pearson Education. Inc.



16 Multivariate Distributions

2.7.1
T1 = Y1Y2Ys3, T2 = Y2Y3s — Y1Y2Y3, T3 = Y3 — Y2Y3.

with J = yoy?, and 0 < y1 < 1,0 < yo < 1,0 < y3 < oo. This yields
9(y1,y2,y3) = yayse ¥ = (1)(2y2) (y3e ™" /2) = g1(y1)92(y2) 93 (y3)-

2.7.2
T1 =Y, T2 = — yandJi:ﬁ,i:LQ_

This yields

g(y)%<2—\1@)+%<$>%, 0<y<l.

2.7.5 The inverse transformation is z; = ﬂrﬁ, To = 11‘;1, and T3 = yoy3, with
space y; > 0, ¢ =1,2,3. The Jacobian is
(14?51)2 0 1%1 2 2 2
J —ys 0 1 _ [ Y3 Y1Y3 :| _ Y3 _
S I [ L A E) B RS
Ys Y2

2.7.8 Expanding M (t) we get

2 2
3 3 1 1
M(t)= |- Oyo(= — e - 2
0=(3) 2 (5) (1) (3) -
From this, we immediately get the probabilities

P(X =0)=(3)" P(X=1)=2(}) (}) and P(X =2) = (})".

2.8.2 Note that

! 2 2
w = EX;) */ 20%dy = =23 =2
0 3 |, 3
1 1 1
B(X} = / 203 dr = ~at| ==
0 o 2
So
2_1_4_ 1
772797 18
Hence,
- 8
E(Y) = Y E(X)= 3
i=1
- 4
Y = X’L = 7q
V(Y) ;w ) =13
where we used the independence of X1, ..., X, to establish the variance of Y.

Copyright ©2013 Pearson Education. Inc.
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2.8.4 By independence
BE(X1Xs) = E(X1)E(X2)= pipe
B(X{X3) = E(X?)B(X3)= (of +pui)(03 + p).

So,
V(X1X3) = (07 4 p?) (03 + p3) — pips,

which simplifies to the answer.

2.8.8 Because in these cases, the correlation coefficient is never influenced by the
means, let p1 = po = 0. Then

cov(X,Z) = E[X(X-Y)]=FEX? =o}
p = oi/\/oi(of +03) =01/\[of + 3.
2.8.11
coviW,Z) = E[(aX +b—aus —b)(cY +d— cuz — d)]
= aeB[(X — ) (Y — pa)] = acpora
. acpo102
correlation coef. = —— =
a?c20?0?2
2.8.13
cov(X1 X9, X1) = E[(X1X2 — p1p2)(X1 — )]

= (i + 02 — pipe — pipe + pipe = oip.
2.8.15 Without loss of generality, let the means equal zero

cov(Y,Z) = (0.3+0.5+1.0+0.2)0% =257,

Answer = 202/\/[1 +2(0.3) + 1]o2[1 + 2(0.2) 4+ 1]o2 = m = 0.801.

2.8.17 Again let 3 = po = 0.
covE{X[Y — p(oa/01)X]} = poros — p(oa/o1)o? = 0.
2.8.18 The function g(x) = 2?2 is strictly convex. Hence, by Jensen’s inequality,
(E(9))” < E(S?),

which leads to E(S) < o.

Copyright ©2013 Pearson Education. Inc.
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Chapter 3

Some Special Distributions

3.1.2 Since n = 9 and p = 1/3, u = 3 and ¢ = 2. Hence, y — 20 = 3 — 2¢/2 and
p+20=3+2V2and P(p—20 < X <p+20)=P(X=1,2,...,5).

3.1.3

B(%) = 2B0= 2w =p
. (g_p)] _ %EKX_W)Q]:W(;;I)):pﬂn—m,

3.14 p=P(X >1/2) = [} ,30%do = L and n = 3. Thus (3) (£)* (§) = 4L.
316 P(Y >1)=1-P(Y =0)=1-(3/4)™ > 0.70. That is, 0.30 > (3/4)™ which
can be solved by taking logarithms.

3.1.9 Assume X and Y are independent with binomial distributions b(2,1/2) and
b(3,1/2), respectively. Thus we want

P(X>Y) = P(X=12andY =0)+P(X =2andY =1)
2 2 3 2 3
-[OE OO G
3.1.11
PX>1) = 1-(1-p?=5/9=(1-p)?=4/9
PY>1) = 1-(1-p)*=1-(4/9)=65/81.

3.1.12 Let f(x) denote the pmf which is b(n, p). Show, for > 1, that f(z)/f(x—1) =
14+ [(n+ 1p—z]/z(1 —p). Then f(z) > f(x —1) if (n+ 1)p > z and
f(z) < fl@ —1)if (n + 1)p < x. Thus the mode is the greatest integer
less than (n + 1)p. If (n 4 1)p is an integer, there is no unique mode but
fl(n+1)p] = f[(n+ 1)p — 1] is the maximum of f(x).

19
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20 Some Special Distributions

3.1.14
_ 1 _(@/3)(2/3)°
P(X>3) = (1/3)(2/3)> +(1/3)(2/3)* +--- = T-en) (2/3)3.
1/3)(2/3)* _
p(r|X >3) = %:(1/3)(2/3)@ 5, x=3,4,5,...
3.15

() () ()

3.1.16 M(t) = 0%, (I P [(1 = p)et]Y = pT[1 — (1 — p)e!]™", because the sum-
t

mation equals p" (1 — w)~", where w = (1 — p)e’.

3.1.18
5\ (1N, [/5\ (1) /5)/1\°] 1
5 / 5 + Py = =
) 2 4 2 ) 2 6
which is much different than 1/2 that some might have arrived at by letting
4 coins be heads and tossing the fifth coin.
3.1.19
7! 1\’ 71\ /5\° 500 (1\°
BITTIST (a) /|30 (6) (6) It (5) -
3.1.21
CAN— 1 1\ =y Sz 11
E(Xsy) = - 21 a2
@ Ew=3 3 [x <x) (2> ] s
(b) faj(z2|z1) is b(x1,1/2) = E(Xa|x1) = 21/2.
(¢)  E(x1/2) =11/6.
3.1.22

p1 =6(1/6)> =1/36, po =6-5-3-(1/6)> = 15/36.

Thus X and Y are trinomial (n = 10,p; = 1/36,p2 = 15/36). cov(X,Y) =
—np1p2. Thus E(XY) = —npip2 + npinps = 25/24.

3.1.25 Use the mgf technique and independence to get

E[et(X17X2+n2)] — E[etxl]E[eftXQ]etHQ

Il
7N
N | —

+
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3.1.27 Part (b): D = 100, so
PIX>2 = 1-PX<I]
(100) (900y (100 (900)
1- O100010 - 110009 = 0.2637.
(o) (o)
Part (c): For the binomial approximation for Part (b), p = 0.10 and n = 10;
hence,

P[X>2] = 1-P[X<]]
1
~ 1-0.910_— ( 10) 11,92 = 0.2639.
3.2.1

ef“u e Hu?
1! 2!

7224

= p=2and P(X =4) = &5~

3.2.4 Given p(z) = 4p(x—1)/z,x = 1,2,3,.... Thusp(1) = 4p(0), p(2) = 4?p(0)/2!,
p(3) = 4%p(0)/3!. Use induction to show that p(z) = 4%p(0)/x!. Then

1:Zp(ac) 2496/1;' Jet and p(z) = 4% /2l x = 0,1,2,....
=0

3.2.6 Forx =1, Dy,[g(1,w)]+Ag(1,w) = Ae=*¥. The general solution to D.,[g(1, w)]+
Ag(1,w) = 0is g(1,w) = ce™™. A particular solution to the full differential
equation is Awe™**. Thus the most general solution is

g(1,w) = dwe™ " + ce™ .

However, the boundary condition g(1,0)requires that ¢ = 0. Thus g(1,w) =
Awe~*. Now assume that the answer is correct for = —1, and show that
it is correct for x by exactly the same type of argument used for x = 1.

3.2.8
PX>2)=1-P(X=0o0or X =1)=1—[e*+e#u] >0.99.

Thus 0.01 > (1+p)e*. Solve by trying several values of i using a calculator.

3.2.10

From tables, k = 8.

_ o s
3.2.11 %ﬁ = e—;ﬁ requires u? = 6 and p = V6. Since e;ﬂ = 3¢ V0 >
e Vo/6

i

, x = 2 is the mode.
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3.2.12

EX)=3%>, alet = S0 o~ ! does not exist.

3.2.13 For Part (a),

M (t1,t2)

3.3.1

(1-2t)%=(1-

!

oo Yy 672
Syt
zl(y — x)!

y=02x=0

g . ! pna| e ety
Xﬂzﬂﬁ%ﬁ@”] y

y=0 Lz=0 ’

o0

e 2[(1 + efr)et2]Y
y!

y=0
= e Zexp[(1+eM)e™].

26)712/2 = X is x2(12).

From tables, P(X < 5.23) = 0.05.

3.34

M(t)

so X is x2(4).

3.3.6 Part (a):

Part(a) : P(Y <vy)
9(y)

3.3.7
Thus X is x2(4).

3.3.9

212t 31222 412343
TR 3!
1+2(2t) +3(20)* +4(2t)> + - -
(1—-26)72=(1—2t)"%2,

= 1+

I[P > )P =1 (WP =1— ¥ = G(y)
G'(y) =3¢, 0<y<oo.

fl(x) = %e*z/ﬁ + %xeﬂ”/ﬁ(—l/ﬁ) = 0; hence, z = 3 which is given as 2.

P(X >2aB) < e 2081 — pt)~,

for all ¢ < 1/6. The minimum of the right side, say K(t), can be found by
K'(t) = e 2P aB)(1 — Bt) "2 4 e 290 (—2a8)(1 — ft) " =0

which implies that

That minimum is

(1-pt)" 1 —2=0and t =1/28.

K(1/28) = e (1 = (1/2))7% = (2/e)".
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3310 If r = 0, M(t) = 1 = ¢! which is the mgf of a degenerate distribution at

z=0.
3.3.14 The differential equation requires
log g(0,w) = —kw" + c.

The boundary condition ¢(0,0) = 1 imlies that ¢
exp{—kw"} and G(w) =1 — exp{—kw"} and

= 0. Thus g(0,w) =

G'(w) = krw" ' exp{—kuw"}, 0<w < co.

3.3.15 The joint pdf of X and the parameter is

—m x

€ m

f(zlm)g(m) = me™™, x=0,1,2,...,

O0<m< oo

merl 72m 2 T r+2
P(X =0,1,2) = Z/ ZOF( +2l(!1/2)

Y ol
x=0
3.3.16
G(y) = P <y)=P(-2log X <y)=P(X > exp{—y/2})
= / - /2}(1)dm =1-—exp{—y/2}, 0<y<oo
g(y) = G'(y) = (1/2)exp{—y/2}, 0<y<oc;

3.3.17 f(x) =1/(b—a), a < x < b, has respective mean and variance of

atb _ b—a)® _
atb — 8 and T2 = 16.

Solve for a and b.

3.3.18
_ T(a+B)T(a+1IB)  «
PR = F)P(B)D(a+B8+1)  a+p
B(x?) = Lla+Plla+2IE) (o + Da
T(@TBT(a+B+2) (a+B+D)(a+tpb)
0’ = B(X*) - [E(X) = b

Copyright ©2013 Pearson Education. Inc.
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3.3.20
3
1 = c/ 2(3 — x)* dr. Let x = 3y, Z—Z =3.
! r(2)r(
1 = c/ (3y)(3 — 3y)*3dy = 3667(&7)( ); soc=6-5/30=10/3°
0

3.3.21 If a = (3, show that f (% + z) =f (l — z)
3.3.22 Note that

D, [ kil <n) 2Y(1 - z)"_w] = —n! zk_l(l - z)"_k.
= \w (k—1)l(n—k)!

3.3.26 (a). Using the mean value theorem, we have

(2) = 1 Pa<X<z+A) (A
E N TTAP(X 2 1) am0A(- F(r)

where £ — z as A — 0. Letting A — 0, we then get the desired result.
(d) The pdf of X is
fx(@) = exp {Z(1 - )} eet,
from which the desired result follows.

3.4.1 In the integral for ®(—z), let w = —v and it follows that ®(—z) =1 — &(z).
3.4.4

X—pu 89—
P( Ko “) — 090

g g

X — 4—
P( “<9—“) — 0.95.

g g

Thus 224 = 1.282 and 2=£ = 1.645. Solve for 1 and o.

3.4.5 o log 222
27" = ce® log 2 _ cexp {7( Oi )z } .
Thus if ¢ = 1/[V27/1/(21log 2)], we would have a N(0,1/(2log 2)) distribu-
tion.
3.4.6
° 1 2 2
BIX —l) = 2 [ (om0
u 2mo
= 2 [ g exp {—(z —M)Q/QUQ}]OO =0 g
V2 4 s
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3.4.8

3 3
/2 exp{—(c = 3)2/2(1/4)}de = Var\/1/ / m;mexpuzm?/mm}dx

(51 C) () - i)

3.4.10 Of course, X is N(3,16).

3.4.12
X—5)? (X-=5)2% .
P [0.0004 < S50 < 3.84] and X5 is x2(1),
so, the answer is 0.95 — 0.05 = 0.90.
3.4.13
Pl<X?<9) = p(-3<X<-1)+P1<X<3)
-1-1 -3—-1 3—-1
= |® - O — | —D(0)].
o) e () ) e
3.4.15
2!/(2)1! 41/(2%)2!
M@{t) = 1+0+ %t2+0+%t4+---
t2/2  (t?/2)*
= 1+1—/,+ ( é,) + - =exp{t?/2};
so X is N(0,1).
3.4.20
o?t?
121m0 {exp {ut + T}} = exp{ut},
which is the mgf of a degenerate distribution at x = u.
3.4.22

b
/_ yf(y)/F(b) dy = —f(b)/F(b).

Multiply both sides by F(b) then differentiate both sides with respect to b.
This yields,

bf(b) = f'(b) and —(b2/2) + ¢ = log f(b).

Thus
F(b) = cre™®/2,

which is the pdf of a N (0, 1) distribution.
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3.4.25 Using W = ZI_. + 0.2(1 — I1_¢), the independence of Z and I_., and

.. =1I_.we
EW)
Var(W)

get

= 0(l—-€+0.01—(1-¢)]=0

= E(W?)

= e[Z°1}  +20.2°T_(1-1_)+c2Z*(1 — I,_.)?]
= (1-9+al-(1-e)

which is the desired.

3.4.26 If R or SPLUS is available, the code on page 168, i.e.,

(1-eps) *pnorm(w) +eps*pnorm(w/sigc)

evaluates the contaminated normal cdf with parameters eps and sigc. Using
R, the probability asked for in Part (d) is

eps = .25
sigc = 20
w = -2
w2 = 2

V V V VvV V

(1-eps) *pnorm(w) +eps*pnorm(w/sigc)

+ (1-(1-eps)*pnorm(w2) -eps*pnorm(w2/sigc))

[1] 0.2642113

3.4.28 Note X1 — X5 is N(—1,2). Thus

P(X1—X5>0)=1—®(1/v2) =1— &(0.707).

3.4.30 The distribution of the sum Y is N(43,9), so

3.5.1 For Part (b),

E(Y|z =3.2)
Var(Y|z = 3.2)

Answer

3.5.3
O
ata

9%
t1 0t

0
0t10to

t1=t2=0

P(Y <40)=® (40 g 43) = d(—1).

= 110+ (0.6)%(3.2 —2.8) = 116.
= 100(1 —0.36) = 64
_ @(124116)@(106116)@(1)(?(1.25)'
8 8

B OM (t1,t2)
= pT [M(t1,t2)
B O?M (t1,ta)  OM(t1,t2) OM(t1,t2) 5
- {M(tl’b) ot 0ts Oty oty } Mt t)
_ 9*M(0,0)  9M(0,0) DM (0,0)

Ot10ts ot oty
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because M (0,0) = 1. This is the covariance.
3.5.5 Because E(Y|z =5) = 10+ p(5/1)(5 — 5) = 10, this probability requires that
16-10 _ o 9

s/ O3

358 fi(z) = [ flz,y)dy = (1/v2r)exp{—2?/2}, because the first term of
the integral is obviously equal to the latter expression and the second term
integrates to zero as it is an odd function of y. Likewise

=1—p2,andp:%.

exp{—y>/2}.

1
f2 (y) - m
Of course, each of these marginal standard normal densities integrates to one.

3.5.9 Similar to 3.5.8 as the second term of
/ f(x,y,2)dx

equals zero because it is an integral of an odd function of x.

Z-a b][ii]

3.5.10 Write

Then apply Theorem 3.5.1.
3.5.14

X1
il [3 1 —27_ B
[}/2]_{ }_ o B

Evaluate By and BVB'.

3.5.16 Write

1 1 X
(X1 + X2, X1 — Xp) = [ 1 1 } {X; ]

Then apply Theorem 3.5.1.

3.5.21 This problem requires statistical software which at least returns the spectral
decomposition of a matrix. The following is from an R output where the
variable amat contains the matrix X.

> sum(diag(amat))
[1] 1026 Total Variation

> eigen(amat)

$values
[1] 925.36363 60.51933 25.00226 15.11478 The first eigen value
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3.6.8

3.6.10

3.6.12

3.6.13

3.6.14

is the variance of the
first principal component.

$vectors First column is the
first principal component.

(,1] [,2] [,3] [,4]
[1,] -0.5357934 0.1912818 0.7050231 -0.4234138
[2,] -0.4320336 0.7687151 -0.3416228 0.3251431
[3,] -0.5834990 -0.4125759 -0.5727115 -0.4016360
[4,] -0.4310468 -0.4497438 0.2413252 0.7441044

> 925.36363/1026
(1] 0.9019139 Over 90%

Since F = %:;, then & = gé:? , which has an F-distribution with ro and 7,

degrees of freedom.

Note
% =W?/(V/r) = (W?/1)/(V/r).

Since W is N(0,1), then W? is x?(1), Thus 72 is F' with one and r degrees
of freedom.

The change-of-variable technique can be used. An alternative method is to

observe that
1 14

Y = -
1+ (U)V)  V+U’

where V and U are independent gamma variables with respective parameters
(ro/2,2) and (r1/2,2). Hence, Y is beta with o = r9/2 and 8 = r1/2.

Note that the distribution of X; is I'(1,1). It follows that the mgf of ¥; = 2X;
is

My, (t) = (1 —2t)"%2 t<1/2.

Hence 2X; is distributed as x%(2). Since X; and X, are independent, we have
that

X1 2X,/2

Xy 2X,/2

has an F-distribution with v; = 2 and v, = 2 degrees of freedom.

For Part (a), the inverse transformation is 1 = (y1y2)/(1 + y1) and z2 =
y2/(1+y1). The space is y; > 0, i = 1,2. The Jacobian is J = ya/(1 + y1)?.
It is easy to show that the joint density factors into two positive functions,
one of which is a function of y; alone while the other is a function y, alone.
Hence, Y7 and Y5 are independent.
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3.7.3 Recall from Section 3.4, that we can write the random variable of interest as
X=1Z+3(1-1)Z,

where Z has a N(0,1) distribution, I is 0 or 1 with probabilities 0.1 and 0.9,
respectively, and I and Z are independent. Note that F(X) = 0 and the
variance of X is given by expression (3.4.13); hence, for the kurtosis we only
need the fourth moment. Because I is 0 or 1, I* = I for all positive integers
k. Also I(I — 1) = 0. Using these facts, we see that

E(X*) = 9E(Z*) + 3*(1)E(Z*) = E(Z*)(.9 + (4)3%).
Use expression (1.9.1) to get E(Z%).
3.7.4 The joint pdf is

Fxo(@,0) =001 —0)"" ==
Integrating out 6, we have

) = "T(a+B) atl-1/1 _ p\B+e—1—1
I A

Pla+ )T (a+HI(B+2—1)
Cla)M(B)T(a+B+z)

3.7.7 Both the pdf and cdf of the Pareto distribution are given on page 193 of the
text. Their ratio (h(z)/(1 — H(x))), quickly gives the result.

3.7.10 Part (b). The joint pdf of X and « is given by

T—1

aTx
- —a/B
fX,a(SC, a) (1 + ﬂxr)aJrl € :
Integrating out «, we have
Tz7 1 o -
— —allog(1+827)+(1/8)] 4
fX(‘T) 1 +5$T/O € a
T L

= Tygrlesl+A)+ /BT, @ >0
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Chapter 4

Some Elementary Statistical
Inferences

4.1.1 Parts (b), (c), and (d).
(b) The likelihood function is

Hence,
1 n
1(9) = —nlog — - ;:p
So,

o)  —n 1
90 ’7*9_2;%

resulting in the mle 9 = X. For the data in this problem, the estimate

of 0 is 101.15.

(¢) Since the cdf F(z) = 1—e~%/% the population median is £ where & solves
the equation e~*/¢ = 1/2; hence, £ = 0log2. The sample median is an
estimator of £. For the data set of this problem, the sample median is

95.5.

(d) Because the mle of 6 is X, the mle of the population median is X log 2.

For the data of this problem, this estimate is 101.15log2 = 70.11.
4.1.2 Parts (c) and (d). The parameter of interest is
Part (c¢) Using the binomial model, the estimate of P(X > 215) is

o #{a; > 215} 7
_ Wi 2208 L ) 9602,
Po 2 55 — 0209

31
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Part (d) Under the normal probability model, the parameter of interest is

215 —
P P(X>215)P<Z>M)

g
215 —
1—<1>( “).
g

Because X and 52 = n~ !> (X; — X)? are the mles of p and o2,
respectively, the mle of p is

p

215 - X
= )

px=1-o(

For the data in this problem, T = 201 and ¢ = 17.144. Hence, a cal-
culation using a computer package or using the normal tables results in
pn = 0.2701 as the mle estimate of p.

4.1.5 Parts (a) and (b).
Part (a). Using conditional expectation we have
P(X1 < Xi,i=2.3,....5) = E[P(X1<Xi,i=23,...,5|X1)]
= E[(1-F(X1)™]

1
= / W lhdu =571,
0

where we used the fact that the random variable F'(X7) has a uniform(0, 1)
distribution.

Part (b). In the same way, for j =2,3,...
P(Y:j—l) = P(XlSXQ,...,Xngj_l,Xj>X1)

= E[(1-F(X))?F(X1)] = /0 w2 (1 — u) du

B 1

JjG—=1)
4.1.6 It follows that
Elp(aj)] = — > BlI(X))] = - > PIX; = ay]
=1 =1

LS~ (0 = play)

= = aj) =pla
n i:lp ’ g !

Hence, the estimator is unbiased. Using independence, its variance is

Vi@ = 5 S VL] = 5 Y (plas)ll - pla)])
_ p(a;)[1 — p(a;)]
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418 If Xy,...,X,, are iid with a Poisson distribution having mean A, then the
likelihood function is

AT Aim1 T
L) =]]e? e g —
;l;[l .Tl' Hi:l xi!

Taking the partial of the log of this likelihood function leads to T as the mle
of A. Hence, the mle of the pmf at k is

=k
T
p(k) =e o

and the mle of P(X > 6) is

J— oo Tk

a7
P(X>6)=e kzg.
=6

For the data set of this problem, we obtain T = 2.1333. Using R, the mle of
P(X >6)is 1 - ppois(5, 2.1333) = 0.0219. Note, for comparison, from
the tabled data, that the nonparametric estimate of this probability is 0.033.

4.1.11 Note in this part of the example that = is fixed and by the Mean Value
Theorem that £ is such that z—h < § < z+h and F(z+h)—F(x—h) = 2hf(£).

Part(a) The mean of the estimator is

B = 5= S Bl@) = 5 Sl = Fa = 1)
_ n2hf(§) _

Hence, the bias of the estimate is f(§) — f(z) which goes to 0 as h — 0.

Part (b) Since I;(x) is a Bernoulli indicator, the variance of the estimator is

— 1

VIf@)] = WZ[F(th) — Fz =)l = [F(z +h) = F(z = h)]]

fEONI —2hf(E)]
2hn ’

Note for this variance to go to 0 as h — 0 and n — oo, h must be of
order n® for § > —1.

4.2.7 1= (1.645)(3/y/n); Vi = 4.935;n = 24.35; so take n = 25.

4.2.10 (a). X 4 1.960/1/9, length = (2)(1.96)0/3 = 1.310.

Copyright ©2013 Pearson Education. Inc.



34

Some Elementary Statistical Inferences

4.2.11

4.2.13

4.2.14

4.2.16

4.2.18
4.2.19

4.2.23

(b). X +2.3065/V/8, length = (2)(2.306)S/+/8. Since
o 2w4—1€—w/2
E(S) = (U/ﬁ)/o w'/ de
_ 0(9/2)2° _ a(7/2)(5/2)(3/
= (@/V9) T(4)2" 3.3
35v2m0
(6)(16)
—  E(length) = [(2)(2.306)(0.914)/\/&?] o = 1.49.

2)(1/2)L(1/2)v2
.91

= (0.914)0,

(X Xut )/ o? [ X Xnus
Tosa — Ve s 8T,

P(~1.415 < \/g (Y‘%) < 1.415) = 0.80, or equivalently,
P(X —1.415\/9/78 < X, 11 < X + 1.415,/9/75) = 0.80

ci(p) =p—20/yn <X <p+20/yn=cp)

is equivalent to

di(X)=X —-20/yn<pu<X+20/\/n=d(X).

-2 < 5X/26-10<2,
8 < 5X/28<12,

5X 5X
51 < B<Ts

¥ 41,645,/ Wmzy/n)
2(1.645)/WmO=u/m) < 9(1 645), /L2W/2) _ g

1645 _ /o
5(001) = Vnyn ~ T675.

(c). Use the fact that >_(X; — u)?/0? is x%(n).
Blexp{t(2X/8)}] = [1 - B(2t/B)] 7 = (1 — 2t) /2.

Since 2X/3 is x?(6),2 Y X;/B is x*(6n). Using tables for x?(6n), find a and
b such that

P(a<22Xi/ﬁ<b) —0.95

P<¥<ﬂ<¥)0.95.

or, equivalently,

Use the fact that

TV (-
~1.96 < (i — o)

Vo2 /n+ a3 /m

and solve the inequalities so that p; — po is in the middle.

P

< 1.961 =0.95
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4.2.24

4.2.26

4.3.1

4.3.4

Say Z is the N(0,1) random variable used in 6.32. Thus
Z

nS}/o?+mS2/o2
n+m—2

However, the unknown variances cannot be eliminated from the expression as
can be when 0 = ¢ but unknown. But if 0% = ko3, k known, then that
ratio can be written (replacing 0% by ko3) without involving the unknown o3.

It still has a t-distribution with n + m — 2 degrees of freedom.

isT(n+m—2).

The distribution of X is N(p1,0%/n) and the distribution of Y is N (u2,0?/n).
Because the samples are independent the distribution of X —Y is N(u; —
2,202 /n). After some algebra, the equation to solve for n can be written as

P H (7_?}7/—\/%“ —hz)| @} — 0.90,

5

which is equivalent to

P [|Z| < \f} =0.90,

where Z has a N(0,1) distribution. Hence, v/n/5 = 1.645 or n = 67.65, i.e.,
n = 68.

Note that

P 7’L' 1 n— ! n' -1 n—

/O(kfl)!(nfk)!zk A-2)Fdz + /p(kl)!(nk)!Zk (1—2)""d
5 (2)oeit -

w=0

Then using Exercise 3.3.22 we have the result, i.e.,

n

/Op mzk—l(l )" R et = (Z)pw(l oy,

w=k

For Part (a), use Exercise 3.3.5 or reason as follows. Let W,, be the waiting
time until the nth event. Then W,, > 1 if and only if at most n — 1 events
occurred in the the interval (0, 1]. Since W,, has a I'(n, 1/\) distribution, we

have
n—1

A" e 1 —zk _ —A)\J
F(n)/ dr = Ze

1

In the integral, make the substitution z = x)\. This results in the identity

n—1

1 /°° 4 N
—_— 2" re T dr = e N —.
L(n) Jy Z J!

=0

For Part(b), replace n by nZ 4+ 1 and replace A by nf which yields the result.
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4.4.2

4.4.5

4.4.7

4.4.9

4.4.11

4.4.12

4.4.13

Part (b). The cdf and its inverse are

1
F(z) = T —00 < < 00

10g{—u}, O0<u<l.
U

B

L
S

~—
I

Hence, € 25 = log(.25/.75) = —1.099. Because the pdf is symmetric about 0,
€75 = 1.099. Thus h = 1.5(£75 — €.25) = 3.296. Thus, the upper inner fence
is €75 + h = 4.395 and the probability of a potential outlier is

2[1 — F(4.395)] = 0.0244.

The cdf of the Yy is
PYy<t)=(1—-eH* t>o0.
Hence, P(Yy >3)=1— (1 —e3)* =0.1848.

Since the distribution is of the discrete type, we cannot use the formulas in
the book. However,

PYi=y1) = Pall>wy)—Pall >y +1)
_ (7w (6-wm)’
6 6 '
Here F(x) =z, 0 < 2 < 1. Thus, using the Remark,

Ik (Yk) = myﬁ_l(l —ye)" (), 0<yr <1,

which is beta (a =k, =n—k +1).

The distribution of the range Y, — Y7 could be found. An alternative method
is

1/2 ,1
PY4—Y1<1/2)=1- / / 12(ys — y1)? dya dy; .
0 y1+1/2

Y1 = 212223, Y2 = 2223, Y3 = 23, with J = 2222, 0< 21 < 1,0< 22 < 1,0 <
z3 < 1. Accordingly,

g(z1,22,23) = 312(212223) 2(2223) 2(23) 2223
= (221)(423)(623), 0<z; <1, i=1,2,3.

P2Y: < Ya) = [y'? [ 8(1 = y1)(1 = y2) dya dy.
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4415 (a).
<o 2 vi+u3
o0 = [ () )
2\ [* , 243 -1 _
= | 302 7000 eXpq =55 dys = — V2mo2/2 = —a/\/.
4.4.17
F(z) = 2° 0<z<1.
4!
934(y3,y4) = §(y§)2(2y3)(2y4), 0<ys<wys <l
9a(ys) = 4(y3)’(2ya) =8yi, 0<ys<1.
g3a(yslya) = 6y3/ys, 0 <ys <y
E(Yslys) = (6/7)ya.

4.4.18 To form a triangle, we must have y1 < 1—y1, yo—y1 < y1+(1—y2), 1—y2 < yo.
That i ] /2 f1/240 _
atis, y1 < 1/2, y2 > 1/2, ya—y1 < 1/2; so answer = 0 f1/2 2dys dy, =
1

1

4.4.19

(2u)(30)(1) + (20)(3u?)(1)
= 6ww+u), O<u<v<l,

g9(u,v)

since each Jacobian is equal to one.

4.4.21 (a). Since Yjp is greater than 9 other Y values, a19 = 9. Since Yy is greater
than 8 others but smaller than one, ag = 7. And so on. Thus,

G = (1o + Yo + 5Ys +3Y7 + Y5 — Y5 — 3Ys — 5Y; — T¥s — 9Y7) /45.

(b). It follows from Exercise 3.4.6 that E(|X; — X,|) = 20/+/7, and G is the
mean of (%) such absolute differences. Thus E(G) = 20/+/7.

4.4.22 (a). y1=21/n, Y2 = 22/(n— 1)+ 21/n, y3 = 23/(n — 2) + z2/(n — 1) + 21/n,
etc., which has J = 1/n!. Moreover, 0 < y1 < ya < -+ < ¥y, < 0O mMaps
onto 0 < z; <00, %1=1,2,...,n. Thus

1
91020,y 2) = (—,) (nle™ =) = g
n.

That 21, Zs, ..., Z, are independent, each with an exponential distribu-
tion.
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4.4.24 Let F(z) denote the common cdf of the sample. Then & 9 = F~1(0.9). The
solution to the desired inequality is

1—(F(&.0))" = 0.75
- FET )" > 2
3
1-09" > =
0.9" > <
1
nlog(0.9) < 1
log(4)
> — — 13.14.
"E T10g(0.9)

Hence, take n = 14.
4427 S ()" = 1-2(3)" 2 09% 001> zhrs n=5.

4.4.28 (a). It follows from Exercise 3.4.6 that F(Y1) = u—o/y/m. So E(Y2 — Y1) =
20 /\/m ~ 1.130.

(b). X + (0.65)0/v/2 is a 50 percent confidence interval for p with length
(0.65)v20 = 0.920.

4.5.3 For a general 0 the probability of rejecting Hy is

1 1 3\ ¢ 3\ 0 3
v(0) = / / 0 (v122)  dwg day =1 — <—) +0 (—) log (—)
3/4 J3 /42, 4 4 4

~(1) is the significance level and +(2) is the power when 6 = 2.

455 WeRlEn < L Loxp{(n +22)/2) < 4. S0 a1+ < 2log 2

describes the critical region.

4.5.8

X -0 s 6~ 0 0
5000/v/n — 5000/y/n’
c—0
= 1-®(—].
(5000/\/77)
Thus, solve for n and ¢ knowing that

¢ — 30000 ¢ —35000

¥(0) = mfzqmzp(

So00/ = 2325 and g = 2,05
4.5.10
1p) = P(YZC;p)=P< Yo, com ;p>
Vnp(1—p) — /np(1 —p)

Q

" (i) |
np(l —p)
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So solve for n and ¢ knowing that approximately

Va/2)az) T /e3)/3)
4512 Let Y = Zle X;. Then Y has a Poisson(8u) distribution.
Part (a). The significance level of the test is
a = Py, [Y > 8] = P[Poisson(4) > 8] = 0.051.
Part (b). The power function is
() = P,[Y > 8] = P[Poisson(8u) > 8§].

Part (¢). v(0.75) = 0.256.

4.6.2 Suppose i > pg. Then

‘ Vinlpo — 1) Vi(po — 1)

s

+za/2 o

Hence,

+ Ra)2

5 ( ﬁ(ﬂ; — 1)

)8t

Because ¢(t) is symmetric about 0, ¢(t) = ¢(|t|). This observation plus the
last inequality shows that ~/(u) is increasing, (for p > pg). Likewise for
< o, ¥ (p) is decreasing.

4.6.3 Under Hy, the statistic t = (X — uo)/(S/+/n) has a t-distribution with n — 1
degrees of freedom. Hence,

PHOHtl > ta/gynfl] = (.

4.6.5 (a). The critical region is

t = Lml > 1.753.
s/v/15
The observed value of t,
10.4 — 10.
_ 1042101y 0
0.4/v15

is greater than 1.753 so we reject Hp.

(b). Since tg.005(15) = 2.947 (from other tables), the approximate p-value of
this test is 0.005.
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4.6.7 Assume that Y and Y are normally distributed. Then the ¢-statistic
X-Y
(1/n1) + (1/n2)

has under Hy a t-distribution with n; + no — 2 degrees of freedom. A level «
test for the alternative Hy : pu1 < po is

t=

Reject Hy in favor of Hu, if t < —to ny+4n,—2-

For Part (b), based on the data we have,

2 (13—-1)25.6% + (16 — 1)28.32
= 27
sp = /s =27.133
2.9 — 81.
= 729 817 = —0.8685.

27.133./(1/13) + (1/16)

Since t = —0.8685 £ —t.95,27 = —1.703, we fail to reject Hy at level 0.05. The
p-value is P[t(27) < —0.8685] = 0.1964.

4.6.8 For Parts (a) - (c):

Part (a) Ho:p=0.14; Hy : p > 0.14;

e — _ y/n014 .
Part (b) C'={z:2 > 2.326} where z = (0.14)(0.86)/n

Part (c) z = —&/5%0 01 _ _ 9539 > 2326
(0.14)(0.86) /590

so Hj is rejected and conclude that the campaign was successful.

471 po = [y B dr =5 — 5 = 7.

Likewise pag = 5/16, p3p = 3/16, pso = 1/16.

(30—35)2 (30—25)2 (10—15)2 (10 15)%
Q3= "+ 75—+ 13 5 = 8.38.
However, 8.38 > 7.81 so we reject HO at a = 0.05.

4.7.3 Qp = U200 | (Ob20) _ (0207 _ yp g
which is the 97.5 percentile of a x?(5) distribution. Thus (b — 20)? = 128 and

b=20+11.3. Hence b < 8.7 or b > 31.3 would lead to rejection.

4.7.7 The maximum likelihood statistic for p is defined by that value of p which

maximizes

n!

——— P’]"" [2p(1 = p)]"2[(1 — p)*]"*;
Xr1:T2:X3-

it is ]3 = (2X1 +X2)/(2X1 +2X2+2X3) Thus lfﬁl = ]32, ]32 = 2]3(1 7]3), and
ps = (1 — p)?, the random variable 33(X; — np;)?/np; has an approximate
chi-square distribution with 3 —1 — 1 =1 degree of freedom.
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4.7.8

4.8.1

4.8.3

4.8.5

The expected value of each cell is 15; thus the chi-square statistic equals

A(3))2 2 2

(3R, 4R 40K o

15 15 15
which is the 95th percentile of a x?(6) distribution. Thus k > /(3/8)(12.6) =
2.17. So k = 3.

Suppose 0 < z < 1. Then
P(Z<2)=P[F(X)<2]=P X <F !'(2)]=F[F'(2)] ==
Hence, Z has a uniform (0, 1) distribution.

Note that

roe [ L { 12} L 196E[ 1 { 1U2H
: ——expq—-u’p ——du=1. ——expq —— ,
o Var P T2 196 Var P T2

where U has a uniform distribution on (0,1.96). The following R-code draws
10,000 variates Z; = 1.96\/%7 exp {—%Uf} where U; are iid with a common
uniform distribution on (0,1.96). A 95% confidence interval for mean of Z; is

obtained. Notice that it does trap the true mean p = 0.475.

> u = runif (10000,0,1.96)

>z = 1.96%(1/sqrt (2*pi))*exp(-u~2/2)

> mean(z)

[1] 0.4750519 **x* Estimate of mu

> se = var(z)~.5/sqrt(10000)

> se

[1] 0.002225439 *** standard error of estimation

> cil = mean(z) - 1.96*se
> ciu = mean(z) + 1.96%*se

> cil
[1] 0.4706901 **x* Lower limit of CI
> ciu
[1] 0.4794138 x*%* Upper limit of CI

The cdf of the logistic distribution is

1

Pla) = 1.

—00 < T < 00.

To determine the inverse of this function, set u =1/(1 + e~ ®) and then solve
for z. After some algebra, we get

F~'(u) = log

u

1—u

Hence, if U is uniform (0, 1) then log[U/(1—U)] has a logistic distribution with
cdf F(x). The following R function returns a random sample of n observations
from this logistic distribution:
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rlogist = function(n){
u = runif(n)
rlogist = log(u/(1-u))

rlogist
}
4.8.7 First show that the cdf of the Laplace distribution is given by
1t
_f se —00<t<0
F(t)_{ 1—ie™ 0<t<oo.

Then show that the inverse of the cdf is

_ log(2u) O<u<i
10y — 2
F (u)—{ —log(2—2u) 3 <u<l.

Hence, if U is uniform(0,1) then F~1(U) has the Laplace pdf (5.2.9). The
following R-code generates n observations from this Laplace distribution.

uni = runif(n)

x=rep(0,n)
x[uni<.5]=log(2*uni[uni<.5])
x[uni>=.5]=-1log(2-2uni [uni>=.5])

vV V V V

4.8.10 By a simple change of variable (z = 23/6?) in its integrand (pdf), the cdf is

3
F(t)lexp{9—3}, t > 0.
Its inverse is given by
F~ (u) = —0llog(1 —w)]Y?, 0<u<1.

Hence, if U has a uniform (0, 1) distribution then F~1(U) has the Weibull
distribution.

4.8.12 The logistic cdf corresponding to the pdf given in expression (4.4.9) is F((z) =
1/(14e7%), —00 < o < oco. Its inverse function is F~*(u) = log[u/(1 — u)],
0 < u < 1. Hence, if Uy, Us,...,Us is a random sample of size 20 from the
uniform (0, 1) distribution then X7, Xo,..., X, where X; = F~1(U;), is a
random sample of size 20 from this logistic distribution. Use this and the
algorithm given on page 267.

4.8.17 By simple differentiation the derivative of the ratio is

22
D, = —xeXp{—?} (% —1).

hence, 1 are critical values. The second derivative is

22
D, = exp {—?} (z* —42® +1).

Notice that it is negative at +1; hence, £1 are minimums.
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4.8.18 Parts (a) and (b).

Part(a) Note that F(z) = 2, which has the inverse function F~'(u) = u'/7.

Part(b) There are many accept-reject algorithms to generate observations from

4.8.21

this distribution. One such algorithm is to take Y to have a uniform (0, 1)
distribution and M = 8. Then it follows that f(x) < Mg(z), because
0 <z <1and g > 1. The following R function returns n observations
from this distribution based on this accept-reject algorithm.

rpareto = function(n,beta){
ic =0
x = rep(0,n)
while(ic <= n){
ul = runif (1)
u2 = runif (1)
chk = ul” (beta-1)
if (u2 <= chk){
ic = ic + 1
x[ic] = ul

}
}
X
}
If W = U? +V? > 1 the algorithm begins anew. So suppose W < 1.

Note that X; and X5 are functions of U and V. So first we get the
conditional distribution of U and V given U? + V2 < 1. But this is
easily seen to be a uniform distribution over the unit circle. Hence, the
conditional pdf of (U, V) is

1
Joviw<i(u,v|lw < 1) = - u? +0% < 1.
Now transform to polar coordinates. Let

uw = rsinf, 0<6 < 2m,
= rcosf, 0<r<l1.

The partials are

g—:f = sinf % = rcosf
v ov
5 = cost 5 = rsind.

It follows that the Jacobian is r. Hence, the conditional pdf of R, © given
W <1is

1
frew<(r,0lw <1)= g 0<f<2m 0<r<l1. (4.0.1)
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Now transform to X; and X, which gives

logr 1/2

r1 = rsinf {4 5 ] , —oo< a1 <00,
r
1 1/2

9 = rcost [4 og2r} , —00 < Ty < 0.
r

For the inverse transform, note that

1
2 = r%sin?g {4 Og;]
r
logr
2 _ 2. 2
T5 = TCOS@[4 2 },
which leads to 23 + 23 = —4logr or
1
T = exp {—Z(ac% + x%)} . (4.0.2)

For 6, note that x1/xe = tanf, or

0 = tan~! (ﬂ) . (4.0.3)

€2

Taking partials, we get the Jacobian

—2xq —2x0
J:‘ LT =5 (4.0.4)

Putting (4.0.1), (4.0.2) and (4.0.4) together, we have the pdf of X; and
Xo, (note, by the algorithm, this is the unconditional pdf of X; and X»),

1 1
Ixy.x,(x1,@2) = ;exp{i(xf +x§)}, —00 < 11 <00, —00 < Tg < 00.

Thus, X; and X5 are iid N(0,1) random variables.

4.9.1 (a). This follows immediately because the sampling is with replacement.

(b).

aoN~ L
E(x}) :ijﬁ =T.
j=1

(c). Although a discrete distribution we do have

n—1
2n

Pla} < x(n+1)/2)] = = Plzi > z((nt1)/2)]-
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4.9.3 (a). The median &y 5 solves
1 g $05/8 — l
0%
or o5 = [Blog2.
(b). The following R-function produces the bootstrap percentile confidence
interval:

percentcimed<-function(x,b,alpha){
#
theta<-median(x)
thetastar<-rep(0,b)
n<-length(x)
for(i in 1:b){xstar<-sample(x,n,replace=T)
thetastar[i]<-median(xstar)
}
thetastar<-sort(thetastar)
pick<-round((alpha/2)*(b+1))
lower<-thetastar [pick]
upper<-thetastar [b-pick+1]
list(theta=theta,lower=lower,upper=upper,thetasta=thetastar)
#list (theta=theta,lower=lower,upper=upper)
}

Below is the output of a 90% confidence interval based on 1000 boot-
straps. Note the the confidence interval did trap the true value in this
case.

$theta
[1] 67.6

$lower
[1] 32.25

$upper

[1] 126.8

truemed = 100*log2
> 100x1log(2)

[1] 69.31472

4.9.5 The following R-code gives a function which returns the confidence interval
defined in expression (4.9.13).

prob595bs<-function(x,b,alpha){
#
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theta<-mean(x)
stan <- var(x)~.5
n = length(x)
teestar<-rep(0,b)
n<-length(x)
for(i in 1:b){xstar<-sample(x,n,replace=T)
teestar[i] = (mean(xstar) - theta)/(var(xstar)”.5/sqrt(n))
}
teestar<-sort(teestar)
pick<-round((alpha/2)*(b+1))
lowerO<-teestar [pick]
upperO<-teestar [b-pick+1]
lower = theta - upperO*(stan/sqrt(n))
upper = theta - lowerOx(stan/sqrt(n))
list(theta=theta,lower=lower,upper=upper,teestar=teestar)
#list (theta=theta,lower=lower,upper=upper)
}
The results for data in Example 4.9.3 based on 1000 bootstraps are:
> temp=prob595bs(x,1000, .10)
> temp$theta
[1] 90.59
> temp$lower
[1] 63.67547
> temp$upper
[1] 129.4924
4.9.7 Here are the results from a Minitab run on the data of Example 4.9.2:

TWOSAMPLE T FOR C2 VS C1

N MEAN STDEV ~ SE MEAN
c2 15 117.7 18.6 4.8
Cl1 15 111.1 20.4 5.3

95 PCT CI FOR MU C2 - MU C1: ( -8.0, 21.2)
TTEST MU C2 = MU C1 (VS GT): T= 0.93 P=0.18 DF= 28

POOLED STDEV = 19.5

where the data are in C'1 and C2.
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4.9.10
E[z*] = gym—f+u@£=uo
Var[z"] = é(xierHoMo)Eﬂo
_ ;@x)%

4.9.13 The paired test is a one sample test based on the paired differences. So the
bootstrap test discussed on page 280 can be used. In this case a bootstrap
sample consists of a sample drawn with replacement from the observations
di = (x; —yi) — (T—79),i=1,2,...,n. The following R function performs
this bootstrap:

pairsbs2=function(x,y,nb){
d = x-y - mean(x)+mean(y)
n=length(d)
ts = mean(x) - mean(y)
tsstar = rep(0,nb)
pval = 0O
for(i in 1:nb){dstar = sample(d,n,replace=T)
tsstar[i] = mean(dstar)
if (tsstar[i]>= ts) pval = pval + 1}
pval = pval/nb
list(teststat=ts,pval=pval,tsstar=tsstar)
}

Here are results of a run based on 10,000 bootstraps:

> temp=pairsbs2(x,y,10000)
> temp$teststat

[1] 2.62

> temp$pval

[1] 0.0062

4.10.1 F(Y,) — F(Y1) is distributed like V = F(Y,,—1). So

PV >05) = /O5n(n — D" (1 —v) dv

= 1-n(0.5"" 4+ (n—1)(0.5)" > 0.95.

That is, 0.05 > n(0.5)" "1 — (n—1)(0.5)" = (0.5)"(n+ 1) means that (by trial)
n =9 is that smallest value.
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4.10.3 F(Ya5) — F(Ya) is distributed as V = F(Y41). So

48

! 48! 40 7 48 w 48—w
o /0.75mv 1=v)dv=>Y" (w)(0.75) (0.25)

w=41

o <48.536> % (40.5 36) '
3 3

4.104 (a). 1 — F(Y;) is distributed as V = F(Y,41—;) which is beta (¢ =n+1—
Js B=1j)
(b). There are n— j+¢—1 coverages so it is distributed as V = F(Y,,—;1i—1)
which is beta (a =n—j+i—-1,8=j—i+2),

%

4.10.5 These variables are distributed like Uy = F'(Y2) = W, Uy = F(Ys) — F(Y2) =
We — Wa, where

10!
g(wa, we) = mwg(wg —w2)3(1 —we)?, 0 < wy < wg < 1.

Here wo = w1, wg = u1 + uz with J = 1; so the joint pdf of U; and Us is

10!
h(uy,ug) = mulug(l — Uy — u2)4, 0<wup, 0<wus and uy +us < 1,

which is Dirichlet (o1 = 2, ag =4, ag = 5).
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Chapter 5

Consistency and Limiting
Distributions

5.1.3 For all € > 0,

P(|Wn_ﬂ|26)§

nPe2

as n — oQ.

5.1.5 Note that Y, >t & X; > t,forallt=1,2,...,n. Hence, for t > 6, the fact
that X1, Xo,..., X, are iid implies

P(|Y’n - 9| S 6) - P(Y S €+ 9) =1 efn(5+979)

1—e™™ =1,
as n — oo.

5.1.7 The density of Y,, is f(y) = nexp{—n(y — 6)} for y > 6. Hence,

ElY,] = n/ ye "= gy
0
= / (E + 9) e “dz
0 n

1 [ e 1
—/ 227 te 7 dz 4+ 9/ e *dz=—+0,

where the integral on the second line results from the substitution z = n(y—0).
Based on this result Y,, — % is an unbiased estimate of 6.

49

Copyright ©2013 Pearson Education. Inc.
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5.2.2
— —n(y1—0)
g1(y1) = ne , 0<y <o0
d 1
z = n(y1—0) and %:ﬁ’
hn(z) = e% and Hy(z)=1—€e"70<2< 0
. 1—-e77 0<z<00
nh—{go Hn(z) = { 0 elsewhere.
5.2.4
92(y2) = n(n—1)F(y2)[l = F(y2)]""*f(y2), —00 < y2 < 00
dyg 1
w = nF = == = .
2= 4w = ni )
n—1 n—2
h(w) = wl—w/n)""*,0<w<n
n
Yn—-1
lim H,(w) = lim L 2(1—z/n)"2dz
n— oo n—oo J, n

w
= /zefzdz,
0

which is a I'(2,1) cdf.
5.2.5
_ 0 y<n
0,

)
lim F,(y) =

n—oo

—00 <y < Q.

There is no cdf which equals this limit at every point of continuity.

5.2.7 limy, oo E(e"/™) = lim,, o (1 — Bt/n)™" = €', which is the mgf of a de-
generate distribution at 3.

5.2.9

40-50 X 50 60— 50
P ~ B(1) — B(—1).
( 0 -~ 10 ~T10 ) (1) —(-1)

5.2.10

60
(@ > (60) (0.95)%(0.05)50—=,

x
=56
(b) Y =60— X is b(n = 60, p = 0.05).

np=3and P(Y =0,1,2,3,4) ~ 0.815, from the Poisson Tables.
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5.2.11
lim E[e!Z="/Vr] = lim {71 exp[n(e!/ V™ —1)]}
o o 2 +3
= nlLIgo {exp {—t/\/ﬁJr n <t/\/ﬁ+ o + 6z
= lim [exp <ﬁ + i . )] = exp(t?/2)
n—o0 2 6ntl/2 ’

which is the mgf of N(0,1).

5.2.18 Note that Y, <t < X; <t¢,foralli=1,2,...,n. Hence, for 0 < ¢, the fact
that X1, Xo,..., X, are iid implies

P(Y, <t+logn) = (P(X;<t+logn))"

_ [1 - e—(t—l—logn)}n

1 n
— 1— -t = _—t
[ e n] — exp{—e '},
as n — 00.
5.2.20 Using Stirling’s formula,

g )"
(2 1)

I((n+1)/2) (

Vi/an2) ()Y
n/2 1/2
=) {5}

The last factor in braces goes to 1, as n — oo. The first factor in braces can

be expressed as
| e 1/2
1
{ { + n— 2} } ’
2

which converges to e'/2, as n — oc.

5.3.2
var(X) = (2)(42)/128 = 1/4 and E(X) = (2)(4) = §;
P (71;28 < )(1/—28 < 9&;) ~ B(2) — B(—2).
5.3.3

28.5 — 24 21.5 — 24
P(21.5 <Y < 28.5) ~ ® <T> By <T> ,

because E(Y) = 24 and var(Y) = 16.
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52 Consistency and Limiting Distributions

5.3.5
E(X)=3.5and var(X) =35/12 = E(Y) =42 and var(Y) = 35.

Hence,

48.5 — 42 5—42
P(35.5 <Y < 48.5)~ ® (L) ) (%) .
V35 V35

537 & (50.55750) ) (49.55750) .

5.3.9 Here Y is b(72,p), where p = [;'(1/22) dx = 2/3. So,

P(Y>5O)z1—¢(%_48).
5.3.12
uX) &~ o(X) = up) + ' (1)(X),
varp(X)] = [u'(W)]*(u/n) = c,
u'(p) = 1/, asolution is u(p) = ca\/p.

Taking ¢y = 1, we have u(X) = VX.

5.4.1 Assume that X, D, N,(p,3). Consider the sequence of random variables
{a’X,}. Let t € R. Then by the assumption,

’ / 1
E {et(a Xn)} —E [e(ta) X"} — exp{ta’p + 5152(3/23)}-

Hence, the sequence of random variables {a’X,,} converges in distribution to
the N(a’u,a’Xa) distribution. The converse is similar.

5.4.2 Immediate by Theorem 4.5.1.

5.4.5 Use mgfs. Then the result follows because the function exp{t'p + 1t'St} is
continuous in g and X.
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Chapter 6

Maximum Likelihood
Methods

6.1.2 (b). L =e" 29 provided 6 < z;; otherwise L = 0.
log L =—> (x;—0) and Dy(log L) = n > 0. That is, log L is an increas-
ing function of @ provided § < z;, i = 1,2,...,n. Thus # = min (X5).

6.1.4 The likelihood simplifies to

L(0) = o5 [[zi10 <z <0).
i=1
But z; < 6 for all ¢ = 1,...,n if and only if maxi<;<, x; < 6. hence, the
likelihood can be written as
;< 3
I(0 < 11;1%)(”1:1 <0) 1:[1301

n

L(6)

:92_71

Part(a) It is clear from the form of the likelihood that the maximum of L(#)
occurs at the smallest value in the range of #; hence, the mle of 4 is
Y = maXxj<i<n Xz

Part(b) The cdf of X; is Fx(x) = 22/6*. Hence, the cdf and pdf of YV are,

respectively,
y2n
Fy(y) = g 0<y<¥d
2ny2n71
frly) = —p— 0<y<t.
So

0 2n

2ny 2n

EY)= / g2 dy 0.
0

Soc=(2n+1)/(2n).

93
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54 Maximum Likelihood Methods

Part(c) The median is the value of z which solves 22 /6% = (1/2), which is 6/v/2.
The mle of the median is therefore Y/ /2. Note that an unbiased estimate
of the median is [(2n + 1)Y]/[2nV2].

6.1.5 Since = X and P(X <2)=1-e"2/% then

—

P(X <2)=1-¢2X

6.1.6
5 = (6)(0) + (10)(1) + (14)(2) + (13)(3) + (6)(4) + (1)(5)
250
106 53
T 250 125
— 5. /5
P(X>3) = Y <$> (P)*(1 —p)°~®, where p = 53/125.
=3

6.1.8 The mle is X. In terms of the summary data

7(0) + 14(1) + 12(2) + 13(3) + 6(4) + 3(5)
7T+14+124+134+64+3

= 2.109.

f:

6.1.10 The log of the likelihood function is
1(0) = K1 — K>Q(0),

where K and K» > 0 are constants and Q(6) = >_.", (x; — 0)*. To maximize
1(9), we must minimize Q(#). In the unrestricted case Q(6) is minimized at
T. In the restricted case, 8 > 0. Hence, if > 0 then the minimum occurs
at T. If T < 0 then, because Q(#) is a quadratic whose leading coefficient is
positive, the minimum occurs at 0.

Olog f(xz;0) _ —1. ~1\2| _ n
6.2.2 OgT = 9> nk [(T) :| = p2-

Also
o n
O
2
n n n?
Yn - 92 - 92 =
Var(¥n) n+t2 <n+1) (n+2)(n+1)2
6.2.3
log f(z;0) = —logm—log[l+ (z—0)%,
dlog f(x;0) 2(x —0)
90 14 (x—0)Y
< 4(x—0)? ™2 4tan? zsec? z
©) /—oo w1+ (z —0)?)3 v /_,r/g 7[1 + tan? 23 i
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by letting  — 8 = tan z. Thus

4 /2 4 [7/2 /1 9 1_ 5
1) = (—)/ cosQ,zsiDQZdZ:_/ ( + cos Z)( cos z) "
T —7/2 s —r/2 2 92
l/Tr/2 [1_ (M)} dz:l_/wm cosdz 1
Q0 —7/2 2 2 —n)2 2 2

Accordingly, 1/nI(0) = 2/n.

6.2.6 The variance of X is 0 /n, where o is the variance of a contaminated normal
distribution; see expression (3.4.13) on page 167. The asymptotic variance of
the sample median is 1/4f2(0)n. Here,

£(0) = $(0)(1 — ) + $(0)—

o
from which the result follows.
6.2.8 (a).
22
log f(z;0) = —=log(2m) —10g;t972—6’7
Olog f(z:6) _ 1 2
00 N 20 202’
»Plog f(z;0) 1 a?
062 202 43
0?log f(z;0) -n n n
—nE [T} = o2 T = g2 —MO)

(b). Here 6 = 3" X2/n. Since ZX-Q/H is x?(n), we have

Var() = V (ZXQ) :2%2271]1(9).

6.2.10 Note that

BIX,)] = / e L2,
= Vo P\ e g

2
2 e — = — .
\/5/0 mexp{ z}dz \/;\/5
So ¢ =+/m/2/n. Hence, Y =n=1 37" | \/g|Xl| Note that,

vIama = e - mexann
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By independence,
1
=02 -1] . 0.1
vy =6[5-1]-. (60.1)
To finish, we need the efficiency of the parameter V0. For convenience, let
8= V0. Then
2
log f(z; 8) = —log V2w — log § — ;
The second partial of this expression is,
Plogfwf) _ 1 _a°
0p? g pr
Hence, using v0 = 3,
1 X2 2
I(VO)=—-FE |- —3—|=-. 6.0.2
B =-£ ;-3 =7 (602
Thus by (6.0.1) and (6.0.2) we have
0/2n 1
Y)= = .
V)= G2 —1jn ~ 72
6.2.14 For Part (a), recall that (n — 1)S52/60 has x*(n — 1) distribution. Hence,
—1)S2
1% [u] = 2(n - 1).
0
So V(S8?) = 202/(n — 1). Also, by Problem (6.28), I(f) = (26?)~!. Thus, the
efficiency of S? is (n —1)/n.
6.3.1 Note that under 6, the random variable (6y/60)(2/60) >_" , X; has a x*(2n)
distribution. Therefore, the power function is
0 0
10) =P T < a4 P2 2 iem)]
where T has a x2(2n) distribution.
6.3.3 The decision rule (6.3.6) is equivalent to the decision rule

Reject Hy if [2| > 242,
where z = (T — 0y)/(c/+/n). The power function is

10) = PQ[X_ _za/g]
N
+P9{W‘ZZQ/Q+M]
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6.3.6

6.3.8

6.3.11

6.3.15

Let Xia/z and Xi/z be the lower and upper /2 critical values of a -
distribution with n degrees of freedom. Then the power curve for a level «
test is given by

WO) = Po WS XEap] + P [W 2l
0 0
= P [XQ(R) < %X%_a/z} + Py {XQ(H) = WOXi/Q] )

where x?(n) represents a random variable with a y?-distribution with n de-
grees of freedom. The following R function computes this power function at
the specified value theta. The default values of the other arguments are set
at values given in the exercise. Using this, it is easy to obtain a plot of the
power curve.

pcchitst = function(n=10,alpha=.05,theta0=1,theta){
alp2 = alpha/2
1 = (thetaO/theta)*qchisq(alp2,n)
u = (thetaO/theta)*qchisq(l-alp2,n)
pcchitst = pchisq(l,n) + 1 - pchisq(u,n)
pcchitst

Part (a). Under £, the mle is T. After simplification, the likelihood ratio test

1S
A= efeoeffnflog(i/eo).

Treating A as a function of T, upon differentiating it twice we see that the
function has a positive real critical value which is a maximum. Hence, the
likelihood ratio test is equivalent to rejecting Hy, if Y < ¢; or Y > ¢y where
Y = nX. Under Hy, Y has a Poisson distribution with mean nfy. The
significance level of the test is 0.056 for the situation described in Part (b).

Note that under § = 2, the distribution is N(0,27!). Under 6§ = 1, the
distribution is the standard Laplace. Some simplification leads to

n
A= Kexp {Z(xf — |zz|)} ,

i=1
where K is a constant.

The likelihood function can be expressed as
L(0) = 0" (1 — )" —"*.
To get the information, note that

log p(x;0) = xlog 6 + (1 — ) log(1 — 6).
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Upon taking the first two partial derivatives with respect to 6, we obtain the
information
X 1-X 1
10)=F|=|—-F = .
=2 [%| -5 =%] - ag
(a). Under , the mle is Z. Hence, the likelihood ratio test statistic is

() (55

(b). Wald’s test statistic is

X%:[ f—@ﬁ)}f
vz —7)/n

(c). For the scores test,

’ _ - T4 1—x 771(5—9)
Z(HO)Z{? 1—9] T 1-0)

=1

Hence, the scores test statistic is
— 2 _ 2
&= { n(T — 6p) / n } _ V(T — 6p)
B 00(1 —60)"\ 00(1 —6o) 00(1—0y) |
6.3.18 Recall the the pdf of the Y,, is

n (y\n—1
) =J @ (%) 0<y<¥ 0.
Fr. (:6) { 0 elsewhere. (6.03)

(a). The numerator of the likelihood ratio test is (1/60)™, if 0 < y,, < 6 and
is 0 if y,, > 0p. The mle under 2 is y,. So, the denominator of the
likelihood ratio test is (1/y,)™. Hence, the result for A.

(b). Let T;, = —2log A = —2nlog(Y,,/0p). Then the inverse transformation
is yn = O exp{—t,/2n} with Jacobian (—6y/2n)exp{—t/2n}. Based on
(6.0.3) the pdf of Ty, is

n [ 6pexp{—t/2n} """ 6y
) = LJDEPTHAL 20 el 12
) = {0 % exp(~t/2m}
1
= §exp{—t/2},
which is the pdf of x?(2) distribution.
6.4.2 Note in general that the log of the likelihood is
n m 1 < 1 &
1(01,02,03,04) = K——logfs——log Oy — — i—01)? —— i —02)?
( 1,Y2,VU3, 4) 2 ogus 2 0g Uy 293 i:1($ 1) 294 l:Zl(y 2) )

(6.0.4)
where K is a constant.
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6.4.5

6.4.8

(a).

L =

For this part, expression (6.0.4) becomes

n+m 1 — 1 —
log 6 ,_g i — 0 zi_g i — 05)2.
9 0g U3 205 1:1(:6 1) 205 (y 2)

=1

1(01,05,05) = K —

If we take the partial with respect to #; and set the resulting expression
to 0, then we see immediately that the mle of 6; id T. Likewise, the
mle of f; is . Substituting these mles into the above expression and
differentiating with respect to 63, yields the mle of 63:

~ 1
03 =

n-—+m

. Under the assumptions of this part, we have one (combined) sample from

a N(61,03) distribution. Hence, based on Example 6.4.1 the mles are

R 1 n m

0 = i i

~ 1 n ~ m ~

9 = $179 2+ i—@ 2 .
3 ntm 1:1( 1) ;(y 1)

n
(%) , provided 0 — p < y; <y, < 0+ p. To maximize L make p as

small as possible which is accomplished by setting

0—p=Y, and O+p=Y,.

So Yi+4Y, Y, -1
f=tETn g p=n L
2 2

Thus )

B (n+1)Y, — 0. Var (n+1)Y, __ 0 '

n n n(n + 2)
However, we have that
62 - 0> 1
nn+2) " n

2 )
dlog f(X;0
nE{[igae( )} }

which seems like a contradiction to the Rao-Cramér inequality until we rec-
ognize that this is not a regular case.

Because b > 0,

from

ti
P(Xigt)P<ei§ ba>,

which the result follows.
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6.4.10 Write I as

I O
L= dz.
v=g [ @H{ESL ey
Note that the function in the first set of braces is odd while the last two
functions are even (the third because of the assumed symmetry). Thus their
product is an odd function and hence the integral of it from —oo to oo is 0.

}(n+m)/2
=7z Sk,

6.5.4 \ = {(27‘-)[(2“?+21: y?)/(n#»m)]

1 n/z 1
[(h)(zm?/n)} [(2«)(2 y?/m)}
which is equivalent to F' < ¢ or F' > co, where F' = %

X2 /n
Y?2/m

has an F(r, =

n,ro = m) distribution when 6; = 6,.

6.5.6 Note 0; = max{—1st order statistic, nth order statistic}, where n = ny = no.
Hence, in a notation that seems clear, we have

_1/2 max(fx, 0)]P" _ lmm(éx,éy)r
[1/(20x)"][1/(20y)"]

IfU = min(éx, éy)and V= max(éx, éy), the joint pdf is

maX(éx, éy)

g(u,v) = 2n%u" 1" /0* ) 0 <u < v <.
So the distribution function of \ is

H(z) = PU<zY"V), 0<2z<1,

0 2t/
/ / g(u,v) dudv
o Jo
0

/ 2nz0°" 1 160%™ du

0
= 2z 0<2z<1,

which is uniform (0, 1). Thus —21log X is x%(2), where the degrees of freedom
= 2 = 2(dimension of  — dimension of w). Note that this is a nonregular
case.

6.5.9 The likelihood ratio test statistic is

ﬁmfﬂmﬂ(l _ ﬁ)ernzf(miJrnz?)
A =

Enlf(l _ f)nlfnliy’fmﬂ(l _ y)nzfnzg ’

After simplification, we have

. R 14
—2logA = -2 {nlflog <§> + noylog (g) + (1 — n1T) log (1—€>
7 T

X

oz — e tog (12 )},
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6.5.11 Under Hy, p; = p2 = p. Thus both X and Y are consistent estimators of p.
Hence

p = 22X+ 2y
n n

£> Ap+ Aap = p.

6.5.13 Using the R code below, we obtained the values of the test statistics and their
associated p-values:

(a) Wald test, (6.5.25), and p-value: -1.727113, 0.08414743.
(b) LRT test, (Exercise 6.5.9), and p-value: 2.993653, 0.0835914.
(c) Test of Exercise 6.5.11, and p-value: -1.725826, 0.0843787

R code:

p6513=function(x,y,nl,n2){

pl=x/n1

p2=y/n2

pc = (nl*pl+n2*p2)/(nl+n2)

zw = (p1-p2)/sqrt((p1*(1-p1)/nl1) + (p2*(1-p2)/n2))

pzw = 2*min(pnorm(zw) ,1-pnorm(zw))

1rt = -2%(nl*plxlog(pc/pl) + n2*p2*log(pc/p2) + (nl-nl*pl)x*log((1-pc)/(1-pl)
+ (n2-n2%p2)*log((1-pc)/(1-p2)))

plrt = 1-pchisq(lrt,1)

zpc = (pl-p2)/sqrt(pc*(1-pc)*((1/n1) + (1/n2)))

pzpc = 2+#min(pnorm(zpc) ,1-pnorm(zpc))

list (zw=zw,pzw=pzw,lrt=1rt,plrt=plrt,zpc=zpc,pzpc=pzpc)

}

6.6.1 For Part (c), taking the partial of the log likelihood and setting the result to
0 yields

T wptwy T

2446 1-46 0

Upon simplification, we obtain the quadratic equation

=0.

nb? — (1 — 2m9 — 223 — 24)0 — 224 = 0,

which has one positive and one negative root.
6.6.2

(a). The complete likelihood is given by

e n! 1 Z11 0 Z12 1-6 T2+T3 0 T4
o 211!212!£E2!£E3!$4! 2 4 4 4 '
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(b). The conditional pmf k(z|, x) is the ratio of L€ to L, which after simpli-
fication is

-TI! 9 Z12 9 Tr1—=z12
k(Z|97X) 212!(1'17212)! (2+9) ( 2+9) ’

i.e., a binomial distribution with parameters 1 and /(2 + 6).

(c). Let 6 be an initial estimate of . For the E step, the conditional
expectation of the log of L (ignoring constants) simplifies to

log (g) E {Z12|9A(0),x} + (22 + x3) log <¥)

E |log L¢(0]x, 2)|0®, x}

1-6
+ (SCQ + 563) IOg (T)

| 0 9(0)
= og (Z) X1 72 n é(o)
+x4 1 Q
4 108 1

For the M step: Taking the partial of this last expression with respect to
0 and setting the result to 0 yields the solution given in Part (d) of the
text.

6.6.5 The observable likelihood is

L(O]x) o exp {—% > (o 9)2} ,

i=1

while the complete likelihood is

Le(0]x,2) x exp {—% lZ(ml —0)* + Z(ZZ - 9)2] } .

The conditional pmf k(z|6,x) is the ratio of L® to L which is easily seen to
be the product of ny iid N(6,1) pdfs. Let 0 be an initial estimate of 6. For
the E step, the conditional expectation of the log of L¢ (ignoring constants)
simplifies to

Ellog L¢||0©),x] = _% _i(:ci —0)* + i Ej0) (2i — 9)21

Li=1 i=1

- —% _i(wi — 9)2 + i Ejo (2 — é(o)) + (é(o) - 9)]2]
Li=1 i=1

_ 7% nZ(z —0)% + i[l +(§© — 9)2]]
Li=1 i=1

= —% _i(aci — 9)2 + [n2 + n2(é(0) - 9)2]] .
Li=1
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For the M step: Taking the partial of this last expression with respect to 6
and setting the result to 0 yields the solution given in the text.
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Chapter 7

Sufficiency

7.1.2 %12— is x%(n). Hence £ [%i] =n, var (%i) = 2n. Accordingly,

B[22 o e (Z2) - (2) ) - 22

n n n

7.1.3 This is a rather lengthy exercise. One observation that might help is illustrated
with the second part. The pdf of Y5 is

_ 3y A 3
9(y) = T (5) (1—5) ) =6y(6 —y)/6°, 0 <y <6
6
B = [ 6P~ 0)/6dy
0
Let y = Bw (this is the observation and this substitution can be used in each
part); so
1
69I‘(3)F( 9
EY2)=69/ w?(1 — w) dw —
Likewise
r4r(2) 36 6?
E(Y3) =60 ——~—~—= = —; Ya) = —.
(¥2) re 1w =g
So

E(2Y3) = 0 and var(2Y2) = (4)(6%/20) = 6%/5.
7.1.6 We have that E(Y) = nf, var(Y) = nf. Thus
E[(0—b-Y/n)? = (y—b—0)*+ (nd)(1/n)* = b* + 6% /n.
Thus take b = 0 and us §(y) = y/n. Clearly max(6?/n) does not exist.

65
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Sufficiency

7.1.7

7.2.2

7.2.3

7.2.7

7.2.8

=

=

N

N
\

(b0/n)E(nS?/0) = b(n — 1)0/n,
var(bS?) = (b0/n)%*(2)(n — 1) = 2b*(n — 1)6%/n.

Therefore
E[(6 — bS%)] = [0 — b(n — 1)8/n)* + 2b(n — 1)6% /n?.
Differentiating this expression with respect to b, we have
2[0 — b(n — 1)0/n][—(n — 1)0/n] + 4b(n — 1)6%/n? = 0.

Solving this expression for b yields b = n/(n + 1). Thus the estimator that
provides minimum mean square error is

n_ge_ 1 3 (X - X)%

n+1 n+1

It is interesting to note that this principle implies the use of n+ 1, rather than
n or n — 1 suggested by most books on statistics.

—neez T 1
e _ [e—nGGZmZ} :
zileo! - xy! xileg! - xy!

50, by the factorization theorem, Y = > X, is a sufficient statistics for 6.

f(z;0) = Q)M (x)Ig,9)(x). Therefore

[T QOM (2:)I0,6) (x:) = {[Q(O)" I 0,6)[max(x;)] {HM i }

=1

because [] 1,0y(x:) = [] L(0,0)[max(z;)]. According to the factorization the-
orem, Y = max(X;) is a sufficient statistic for 6.

n xe 16—%/6 (H-Ti)e_l v,
=05 {W)W@}e =l

=1

so Y =[] X; is a sufficient statistic for 6.

7 L(20) o _ [ PO o1

Thus Y = [][[X;(1 — X;)] is a sufficient statistic for 6.
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7.3.2
9(yslys) = (5!/2!)(ygégzﬁ(ey;(ljjs))/ﬂ(1/9)2, 0<ys<ys <9,
= 1295(ys — y3)/ys, 0 <ys <ys < 0.
E(2Yslys) = 24/0 i (ys — y3) /s dys.

Let y3 = ysw to obtain

E(2Y3]ys)

1
24y5/ w?(1 — w) dw
0

BTN _ (8, _

7.3.5 For illustration, in Exercise 7.2.1, Y = Y X2 is a sufficient statistic, and

E(Y)=Y E(X})=) 0=nf
Thus Y/n = > X?/n is an unbiased estimator.

7.3.6 Tt suffices to find the conditional distribution of Xy given > 1 | X; = . As-
suming = > z; (otherwise the following probability is 0) we have

PXi=x1,> 1 X; = 2]
P> X =«
PXi=u1,> 0 5 X; =2 — 11]
P, X, = 2]

6071 —(n—1)0 [(n=1)0]" "
x1! z—x1)!

_no [nb]®
el !

HIONGHEN

Thus, the conditional distribution is binomial and E[X;| Y | X; = z] = z/n.
By linearity of conditional expectation it follows that

PXy=m|) Xi=z2] =

i=1

€

E[X1 +2X, +3X3] Y X; = a] = (62)/n = 6.

i=1

u(0)(1 — 0)% + 2u(1)0(1 — 6) + u(2)6?

(]
S
—
8
N~—
N\
SN
N~
5

8
—
—
|
5
N~—
T
8
Il

[1(0) — 2u(1) 4+ u(2)]6% 4+ [—2u(0) 4 2u(1)]0 + [u(0)]
= 0
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Thus each expression in brackets must be zero, which implies that «(0) =
u(l) =u(2) = 0.

7.4.2 In each case E(X) =0 for all § > 0.

7.4.3 A generalization of 7.4.1. Since E[>_ X;] = nb, > X;/n is the unbiased mini-
mum variance estimator.

7.4.4

(b)

7.4.6
(a)

(b)

7.4.8

fo z)(1/6) dx = 0 implies fo x)dx = 0,0 < 0. Taking the derivative of
the last expression w.r.t. 0, we obtam u(@) =0,0<0.

Take u(z) =+ —1/2,0 < x < 1, and zero elsewhere.

Elu(x)] /0 (:L' - §> dx Jr/l 0-dz =0, provided 1 < 6.

The pdf of Y is
g(y;0) = PY <y)—PY <y-—1)
= [y/0]" = [(y—1)/0", y=1,2,...,0.

The quotient of [] f(x:;0) = (1/6)™, 1 < z; < 6, and g(y;0) is free of 6. Tt
is easy to show > u(y)g(y;0) = 0 for all § = 1,2,3,... implies that u(1) =
u(2)=u(3)=...=0.

The expected value of that expression in the book, say v(Y), is
0 1\
> v(y)gy;0) = (9_n> Syt =y -1

y=1 y=1

Clearly, by substituting y = 1,2, ..., 6, the summation equals §”*; so
1 n+1
Eloly)] = (57 ) 0 = 6.

Note that there is a typographical error in the definition of the pmf. The
binomial coefficient should be (IZI) not (Z)

(a). Just consider the function u(X) = X. Then E(X) = 0 for all 0, but X
is not identically 0.

(b). Y is sufficient because the distribution of X conditioned on Y = y has
space {—y, y} with probabilities 1/2 for each point, if y # 0. If y = 0 then
conditionally X = 0 with probability 1. The conditional distribution
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does not depend on . For completeness, suppose, for any function u,
E(u(y)) = 0. Then we have

n

¢ Folp-o

=0

wor{E0) (%)

Jj=0

Because 1 — 6 > 0 the expression in braces is 0. This, though, is a
polynomial in 1%00 which is equal to the 0 polynomial. Therefore each
of the coefficients u(])(?) = 0. Because (7;) > 0 for all j, we must have
u(j) =0 for all j. Thus Y is complete.

7.5.2 By Theorem 7.5.2, Y is a complete sufficient statistic for §. In addition

) Gnyn—le—ey
| am ™ s—
_T(n-1) 0

n=T'(n) n-— 1

EQ1/Y)

so (n —1)/Y is that MVUE estimator.
7.5.4 We know that E[t)(X)] = 0 since E(X;) = 6. Also E(X) = 6. Thus
E[{(X) — X] =0 for all § > 0.

Since X is a complete and sufficient statistic for 6,9(X)—X = 0; that is, ¥(X) =
X .

7.5.6

E [etK(X)} = /ab exp{(t + 0)K(z) + S(x) + q(0)} dx

b
— expla(6) — g(6— 1)} / exp{(t + 0)K () + S(z) + q(0 + 1)} da.

However the integral equals one since the integrand can be treated as a pdf,
provided v < 0+t < 4.

7.5.10 Since f(z;0) = exp{(—0)z + logz + 2logh}, 0 <z < o0, ¥ =3 X, is a
complete and sufficient statistic for 6. Also

92ny2n71670y

E(1/Y) = /Ooo(l/y)wdy

o PTr(2n—1)
= rEn) 0/(2n —1).

So (2n —1)/Y is the MVUE estimator.
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7.5.11 Similar to 7.5.4.

7.6.2 The distribution of Y/6 is x?(n). Thus
E(Y/0) = nandvar(Y/6)=2n.
E(Y?) = (n0)?+60%*2n) = (n® + 2n)6?;

thus Y2/(n? + 2n) is the MVUE of 62.

7.6.5 For part (a), since Y = Y"1 | X;, we have

PX; <1lY =y] = PXi=0Y=y]+PX1=1Y =y]
_ P =030 {30, Xi =y}
P(Y =y)
+P[{X1 =1n{>3, Xi=y—1}]
PY =y)

e e ("0 (n — 1)) /y!
e~ (nd)v /y!
e 0e= D0 (n — 1O/ (y — 1)!
e="(nf)v /y!

Yy -1 Yy
()
n—1 n

y
Yy
1 .
n > <+n—1>

Hence, the statistic ("T’l)y (1 + %) is the MVUE of (1 + 6)e?.

n
n

-1
n
-1

(
(

7.6.8 P(X <2)= f02(1/9)e_””/‘9 dr =1—e"%/% Since X = Y/n, where Y = 3 X,
is the mle of ¢, then the mle of that probability is 1 —e~%/% . Since I(y 2)(X1)
is an unbiased estimator of P(X < 2), let us find the joint pdf of Z = X; and
Y by first letting V = X7 + Xo,U = X7 + Xo + X3+ ... . The Jacobian is
one; then we integrate out those other variables obtaining

(y _ Z)n72ey/0

9(z,y;0) = ,0<z<y<oo.
(n—2)lom
Since the pdf of Y is
n—1,—y/60
y"le
92(y;0) = [CETE 0 <y < oo,

we have that the conditional pdf of Z, given Y = y, is
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(n—1)(y—2)"""

h(zly) = T , 0<z<y.
E [1(0,2) (Z)|y} = /OOO {[1(0,2) (z)] (n — 1)(y _ Z)n—Q/yn_l} dy
= - g " =1 = _ n—1
=1 < ” ) =1—-(1-2/y)" "

That is, the MVUE estimator is

-y

Of course, this is approximately equals to the mle when n is large.

7.6.11 The function of interest is g(6) = 6(1 — #). Note, though, that ¢’(1/2) = 0;
hence, the A procedure cannot be used. Expand ¢(#) into a Taylor series
about 1/2, i.e.,

60— (1/2))?
00) = 9(1/2) + 0+ g1/ =2y
Evaluating this expression at X, we have
- — 1 X —(1/2))?
X0-X) =14 (U

That is,

n((1/4) -X(1-X) nX-(1/2)* .
1/4 B 1/4 .

As on Page 216, we can show that the remainder goes to 0 in probability.
Note that the first term on the right side goes to the x2(1) distribution as
n — oo. Hence, so does the left side.

7.7.3

—1 2 —1 2 P
o) = eo{ | m| s ) 7 [ )
N { mo P2 }H{ p2 P }
(I—p)ot (1 -p*oio2 (1—p*o3  (1-p?)oros
+q(p1, p2,01,02,p)}

Hence Y X2, > V2 Y X,Y;, > X;, > Y; are joint complete sufficient statis-
tics. Of course, the other five provide a one-to-one transformation with these
five; so they are also joint complete and sufficient statistic.
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7.7.4 Thus K;(x) = cK2(x) + ¢;. Substituting this for K (z) in the first expression
we obtain an expression of the form of the second.

7.7.6
(a)

01+62  pyn U(y1 Y )(y 7y1)n72
LCALEA LAL dyidy, =0
/e /e (202)" e

for all —oo < 61 < 00, 0 < 02 < co. Multiply by (262)™ and differentiate first
w.r.t. 61 and then w.r.t. 6, (this is not easy). This finally yields

u(91 — 92,91 + 92) = 0, for all (91,92),

1—02 1—02

which implies that
u(yr,y2) =0, a.e.

(b) E(Y1) = (61 — 02) + (202)/(n + 1), E(Y,) = (01 + 02) — (202)/(n + 1). So

Y, LY, 2n —2
E( ! 5 )91 andE(YnY1)292492/(”+1)92<n+1>'

That is, (Y1 + Y)/2 and [(n + 1)(Y,, — Y1)]/[2(n — 1)] are those MVUE esti-
mates.

7.7.9 Part (a): Consider the following function of the sufficient and complete statis-
tics

W o= ) (X -X)(X; - X)
i=1
= Y XX -nXX.
i=1
Recall that the variance-covariance matrix of a random vector Z can be ex-

pressed as
cov(Z) = E|ZZ') — E|Z]E|Z] .

In the notation of the example, we have

E XiXj] =Y EXX[]=n%+nuy'.
i=1

i=1
But the random vector X has mean p and variance-covariance matrix n=' 3.
Hence,
EXX|=n"'S+ pup'.
Putting these last two results together

E[W] = (n— 1),

ie., S = (n—1)"'W is an unbiased estimator of ¥. Thus the (i, j)th entry
of S is the MVUE of oy;.
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7.7.12 The order statistics are sufficient and complete and X is a function of them.
Further, X is unbiased. Hence, X is the MVUE of pu.

7.8.1

(¢) We know that ¥ = S X, is sufficient for # and the mle is § = X /3 = Y/3n,
which is one-to-one and hence also sufficient for 6.

7.8.2

11 <@) foale) = <@) T, (Y1) 1ys 01 (y);

i=1

by the factorization theorem, the pair (Y7,Y;,) is sufficient for 6.

(b) L = (5)", provided —0 < y; and y,, < 0. That is, —y1 < 0 and y, < 0. We
want to make 6 as small as possible and satisfy these two restrictions; hence
0 = max(—Y1,Y},).

(¢) It is easy to show from the joint pdf Y7 and Y,, that the pdf of 0 is 9(z;0) =
nz""1/6",0 < z < 0, zero elsewhere. Hence
1

L/g(2;0) = (1)’ —z=-

>
IA
&
IN
>
I
I\

which is free of 6.

7.8.7 For illustration Y;,_o — Y3, min(—Y1,Y;,)/max(¥1,Y;,) and (Y2 — Y1)/ > (V; —
Y1), respectively.

7.9.3 From previous results (Chapter 3), we know that Z and Y have a bivariate
normal distribution. Thus they are independent if and only if their covariance
is equal to zero; that is

n n
Z aio? = 0 or, equivalently, Z a; = 0.
=1 =1

If " a; = 0, note that Y a;X; is location-invariant because > a;(z; + d) =
S a;x;.

7.9.5 Of course, R is a scale-invariant statistic, and thus R and the complete suf-
ficient statistic Y| Y; for 6 are independent. Since M;(t) = Elexp(tnY:)] =
(1—6t)~! for t < 1/6, and M(t) = Elexp(t Y. Y;)] = (1 — 6t)~™ we have

MP(0) = 0*T(k + 1) and M (0) = 6*T(n + k) /T(n).
According to the result of Exercise 7.9.4 we now have E(R*) = Ml(k) (0)/M2(k) (0) =

I'(k+ 1)I'(n)/T(n + k). These are the moments of a beta distribution with
a=1land B=n-—1.

Copyright ©2013 Pearson Education. Inc.



74 Sufficiency

7.9.7 The two ratios are location- and scale-invariant statistics and thus are inde-
pendent of the joint complete and sufficient statistic for the location and scale
parameters, namely X and S2.

7.9.9

(a) Here R is a scale-invariant statistic and hence independent of the complete
and sufficient statistic, > X?, for 6, the scale parameter.

(b) While the numerator, divided by 6, is x?(2) and the denominator, divided
by 0, is x?(5), they are not independent and hence 5R/2 does not have an
F-distribution.

(c) Tt is easy to get the moment of the numerator and denominator and thus the
quotient of the corresponding moments to show that R has a beta distribution.

7.9.13 (a). Ignoring constants, the log of the likelihood is

10) o 3nlogf — 0> ;.

i=1
Taking the partial derivative of this expression with respect to 8, shows
that the mle of 6 is 3n/Y. As we show below, it is biased.

(b). Immediate, because this pdf is a member of the regular exponential class.

(c). Because Y has a I'(3n,0~!) distribution, we have

& 1
EY_l — 3n—1)—1 —Oyd
¥ /0 T (3n)0—3" c Y
° 1
— g—3n+2-1 (Bn—1)—1 -z 4
/0 T(3n)0—3n ? © o
B 0
 3n—1’

where we used the substitution z = y. Hence, the MVUE is (3n—1)/Y.
Also, the mle is biased.

(d). The mgfs of X7 and Y are (1 —671¢)=2 and (1 — 0~1¢)~3", respectively.
It follows that #.X; and Y have distributions free of #. Hence, so does
X1/Y = (X10)/(Y0). So by Theorem 7.9.1, X;/Y and Y are indepen-
dent.

(e). Let T = X1/Y = X1 /(X1 + Z), where Z = " , X;. Let S =Y =
X1+ Z. Then the inverse transformation is 1 = st and z = s(1 — t)
with spaces 0 <t < 1and 0 < s < oo. It is easy to see that the Jacobian
is J = s. Because X; has aT'(3,1/0) distribution, Z hasaT'(3(n—1),1/6)
distribution, and X; and Z are independent, we have

frs(t,s) = fx,(st)fz(s(1—1))s
9371

= 20 (3(n—1)) {t?’—l(l - t)3(n—1)—1} $In—1,0s
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Based on the function of ¢ within the braces, we see immediately that
T = X;/Y has a beta distribution with parameters 3 and 3(n — 1).

Copyright ©2013 Pearson Education. Inc.



Copyright ©2013 Pearson Education. Inc.



Chapter 8

Optimal Tests of Hypotheses

8.14

- — < K
i) e [5)
[—fo < k(" 2> —dlog [k/(V2)"| =
e | gt < MW Ytz e [b/(/D7] =

Since > X; is x2(r = 10) under Hy, we take ¢ = 18.3. Yes. Yes.

8.1.5
177/
(221)(2x2) ... (2zy)

- 1+
< k implies that ¢ = BTy < 1_[1:171
1=

8.1.8

177/
[621(1 — 21)][622(1 — 22)] - - - [62 (1 — zp)]

- 1 _1
< k implies that ¢ = oy < 1];[[:171(17:1:1)]

8.1.10
(0.1)Z =i = (0-1)
By T P " en(0.4)
(0.5)2177167"(0‘5) —

zlxg!l - xy!

Ifn=10and ¢ = 3; v(0) = Py(>_ X; > 3). Soa = v(0.1) = 0.08 and 7(0.5) =
0.875.

n
< 52“; c< le

i=1

8.2.2 The pdf of Yj is
g(y;0) = 4y°/6*, 0 < y < 6;

7
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Optimal Tests of Hypotheses

8.2.3

8.2.6

8.2.9

So

P(Yy;<1/2o0r Yy >1)

1/2 1\*
42 /00 dy = | — ifo <1
/0 y” /0% dy (29> , ife<

1/2 0
= / 4y3/94dy+/ 4as3 10* dy
0 1

4
1 1 15 .

v(0) = Pp(X >3/5)=Ps (X—9>3/5—9)

2/5 ~  2/5

Il
—_
\
A
7N
w
o |
ot
>
~

If @ > ¢, then we want to use a critical region of the from Y a? > c. If < ¢,
the critical region is like Y 2? < c¢. That is, we cannot find one test which
will be best for each type of alternative.

Let X1, Xo,..., X, be arandom sample with the common Bernoulli pmf with
parameter as given in the problem. Based on Example 8.2.5, the UMP test
rejects Hy if Y > ¢, Y = 31" | X;. In general, Y has a binomial(n, §) distri-
bution. To determine n we solve two simultaneous equations, one involving
level and the other power. The level equation is

Y — (n/20) S ¢- (n/20)
V/191/400 ~ /19n/400

= plz> ¢ — (n/20)

= /19n,/400

where by the Central Limit Theorem Z has a standard normal distribution.
Hence, we get the equation

0.05

v(1/20) = P1/20

)

¢ — (n/20)

/1917400

Likewise from the desired power v(1/10) = 0.90, we obtain the equation

= 1.645. (8.0.1)

¢ — (n/20) — (n/10)

/9n/100

Solving (8.0.1) and (8.0.2) simultaneously, gives the solution n = 122.

= —1.282. (8.0.2)
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8.2.10 The mgfof Y =" | X, is (1 — 6¢)™™,¢ < 1/6, which is gamma (a = n, [ =
). Thus, with the uniformly most powerful critical region of the form }_ x; >
¢, we have the power function

_ > 1 n—1_-—y/0
7(9)—/6 T’ © dy.

8.2.12 (a)
H=" @) ="

2 2
b (1— ) o

() (=)

Since the quantity in brackets on the left side is clearly greater than one,
this inequality is of the form > x; < c.

(b) P(Y <1, when 0=1/2) = 3! (%) ()" = &.

- _(1\5_ 1

(c) P(Y <0, when 0 =1/2) = (3)" = 5.

(d) Alway reject Hy if Y = 0. If Y = 1, select a random number from
0,1,...,9 and if it is 0 or 1, reject Hy. Thus

1 5\ (2 2
a=—=+(=](=)==.
32 (32) <1o) 32

8.3.5 Say Hp : 0 = 0y and H; : 6 = 6,. The likelihood ration test is

_ f(@1300) f (w25 60) - - - f (w3 bo) <k
max[f(z1;0;) f(22;0:) - - f(2p;0:),4=0,1] ~

IN

k, with 6 < 1/2.

IN

E[2(1—60)]°.

If the maximum in the denominator occurs when ¢ = 0, the A = 1 and we do
not reject. If that maximum occurs when ¢ = 1, then

_ f(&1300) -+ f(xn3 bo)
f($1;91)"'f(50n;91)

which is the critical region given by the Neyman-Pearson theorem.

<k

8.3.6

\— ( #)}XP [— > (2 — 0)%/2]
(\/%) exp [— > (zi — 2)?/2]

<k

is equivalent to

eXp{ [— Z(ml —2)—n(@—-0)* + Z(ml — 5:)2} /2} <c

and thus
n(Z —0) > co and |T — 0’| > cs.
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8.3.9 Since 3 |z; — 0] is minimized when § = median(X;) = Y, the likelihood ratio

test is 5
\ (3) exp = |z — bo]]
1
2

(1) exp [~ X Jzi — sl

< k.

This is the equivalent to

exp [*lei — 3| = 5lys — o + ) _ | —ygﬂ <k

and
lys — o] > c.

8.3.11 The likelihood function for this problem is
n 01
L(6) = 6" lHa - zi)‘| .
i=1
(a) For 01 < 05, the ratio of the likelihoods is

L) (0\" [ e
fas = (7) hI“‘“ﬂ |

i=1

This has decreasing monotone-likelihood-ratio in the statistic ]}, (1 —
z;). Hence, the UMP test, rejects Hp if [[;—, (1 — ;) > c.

(b) Taking the partial derivative of the log of the likelihood, yields the mle

estimator:
n

—log [T, (1 —a)
The likelihood ratio test statistic is

A== ! —.
0" (i (1= )"

8.3.15 We obtain the cdf of X by conditioning on I.. Using independence between
I. and Z and Y, we have

0=

P(X <z|ll.=0) = P(Z<z)=9%(x)

P(X <z|l. =1)

Il
!
~
A
2
Il
]
N
8
\
=
o
N———

Hence, the cdf followed by the pdf are:

P(X<z) = (1-e)d(x)+cd (u)

fx(x)

uewm>+é¢(xm>.

e
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The mean and second moment of X are:

E(X) = E(l_le)E(Z)+E(I€)E(Y):Gﬂc
B(X?) = B(l-I1)BE(Z*)+EI)E(Y?) =1~ ¢)+e(of + ),
where for the second moment we used the fact that the square of an indicator

is the indicator and that the cross product is 0 with probability 1. Hence, the
variance of X is: (1 —€) + e(0? + p2) — 2p2.

8.4.2
0.2 (0.02)2 @i e—n(0:02) 0.8
— =k k —
00 " < (o 07)Zme—n<0-07> SMROT
2 2 =
4 4 e(0.05)n g
9 = \7 =
_ log(2/9) — (0.05)n log8 — (0.05)n
alr) = log(2/7) > gy - o
8.4.4
0.02 (0.01)2:(0.99)100 =@ (.98

0.98 =~ (0.05)%%(0.95) 005w ~ 0.02

19 99
—log49 < (Z x;) log <@) + 100n log <%) < log49

[—10010g(99/95)]n — log 49 N Zx N —10010g(99/95)] + log 49
log(19/99) ! log(19/99)

or, equivalently,

log 49 log(99/95) —log 49
10g(99/19) 2 [ i 10010g(99/19)] ~ Tog(99/19)°

8.5.2 (a) and (b) are straightforward.

() (HPO.Xi>c¢0=1/2)=(2)P(>_ X; < ¢;0 =1) where > X; is Poisson (106).
Using the Poisson tables, we find, with ¢ = 6, the left side is too large,
namely 1 — 0.616 > (2)(0.067). With ¢ = 7, the left side is too small,
namely 1 — 0.762 < 2(0.130) or, equivalently, 0.238 < 0.260. To make
this last inequality an equality, we need part of the probability that
Y = 6, namely 0.146 and 0.063 under the respective hypotheses. So
0.238 + 0.146p = 0.260 — 2(0.063)p and p = 0.08.

8.5.4 Define g(c) as follows and then take its derivative:

glc) = P(c—78)—3+3P(c—75)
g'(c) = ¢(c—178)+3¢(c—175)
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Optimal Tests of Hypotheses

8.5.5

We want to solve g(c) = 0. If ¢¢ is an initial guess at the solution, then the
next guess via Newton’s algorithm is

C=C —

Here is an R function which performs a Newton step for this problem. If
co = 75 is chosen, in a few steps it is quite close to 76.8.

newtstp = function(c0){
gcO0 = pnorm(c0-78) - 3 + 3*pnorm(c0-75)
gpcO = dnorm(c0-78) + 3*dnorm(c0-75)
c = c0 - (gc0/gpc0)
gc = pnorm(c-78) - 3 + 3*pnorm(c-75)
list(c0=c0,gc0=gc0,c=c,gc=gc)

L —exp(—% - ¥ 2
0E) ( 1 2) _ S <_$+3y> <k
) eXP (—2-14) 5 3 10
2z 3y 5k
L R P
3 710 = %G ¢

leads to classification as to (z,y

~—

coming from the second distribution.
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Chapter 9

Inferences about Normal
Models

Remark In both 9.1.3 and 9.1.5, we can use the two-sample result that
nj 2 T

Z (X — X )? :ZZ(X” *X.j)QJanj(X,ij”)Q.

j=11i=1 j=1i=1

Of course, with the usual normal assumptions, the terms on the right side (once
divided by o2 are chi-squared variables with n; +ns —2 and one degrees of freedom,
respectively; and they are independent.

9.1.3 Let the two samples be X; and (Xa,...,X,,_1). Then, since (X; — X1)? =0,

n n

DX X =) (X - X+ [(X - X (n - DX - X))

=1 1=2

If we write X = [X; + (n — 1)X']/n, it is easy to show that the second term
on the right side is equal to (n — 1)(X; — X’)?/n, and it is x?(1) after being
divided by o2.

9.1.5 First take as the two samples X1, X2, X3 and X4. The result in 9.1.3 yields

4 3

) Xi+Xo+X3\2 3 X1+ Xo+ X3\
X, X2 =S"(x, -2t A2T A3} Sy AT A2T A
S0 =3 ) (-

Apply the result again to the first term on the right side using the two samples
X1, X5 and X3. The last step is taken using the two samples of X; and Xs.

9.2.1 It is easy to show the first equality by writing

b aj

PN Xy =X )= D (X - X))+ (X, - X )

j=1i=1

83
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and squaring the binomial on the right side (the sum of the cross product
term clearly equals zero).

9.2.3 For this problem the random variables X;; are iid with variance o2.

We

express the covariance of interest into its four terms and then by using inde-
pendence we obtain the following simplification for each term:

COV()(Z'j7 X

5)

COV(Xij, X)

cov(X.j, X ;)

>

cov(X.;, X..)

Hence,

COV(Xij — Y.j,Y.j — Y) =

Cov (Xij;

b ag
1 1
Cov (Xij; N E E Xlk) = COoV (Xij; NXZ])

1 <& 1 2
— Zle> = COV (Xij; —X”) = J—
a; a; a;

7 1=1

k=11=1
0_2
N
0_2
aj
b ap
Ccov <Y.j, ZZXlk>
k=11=1
cov | X.; iGZJXZ- :cov<7 ﬂy )
J0 N = J 70 N J
aj o? _ o?
Na;j N
o? o? o? o?
————— +—=0
aj N aj N

9.2.5 This can be thought of as a two-sample problem in which the first sample is
the first sample and the second is a combination of the last (b — 1) samples.
The difference of the two means, namely bd, is estimated by

hence the estimator, dofd given in the book. Using the result of 9.1.3,

b
S (@)X - X

Jj=1

Accordingly,

im)(x,j -x (B (- X

6+Q77

say.

Q7/1
(@3 +Qe)/[b(a —1) +b—2]

has an F'(1,ab — 2) distribution.
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9.3.1

9.3.2

9.3.6

9.4.1

9.4.3

Elexp(t)(Yi +-+-+Y,)] = H{ )"/ 2 explth; /(1 — 2t)]}

= (L—2t) At 2 exple(Y 0:)/(1 — 2t))

which is the mgf of a x2(>_ 74, 6;) distribution.

() = logM(t) = (—r/2)log(l —2t) +t0/(1 — 2t)

, _ r O[(1—2t) —t(=2)] r 0
v = T (1—2t)2 _172t+(172t)2
W) = 2r n 40

(1—202 " (1—2t)3
Thus mean = ¢’(0) = r + 6 and variance = ¢”(0) = 2r + 46.

Substituting p; for X;; we see that the non-centrality parameters are

05 = > > (5 —my)* =0,
0n = > (a;)(n; — )% where .= (a;)u;/ Y a;.
Thus, Q% and @ are independent; and
Q)0 is XQ(Zaj —b,0),
Qi/0® is X*(b— 1,04),

_@b-1) is - a
0 (xay ) B FO =12 a5 = b00)

P(A; UAy) = P(A1)+ P(A2) — P(A1 N Ay) < P(A1) + P(Asg).
Thus

P[(A1 U Ag) U A3] < P(A1 U A) + P(As) < P(A1) + P(As) + P(As),

F =

and so on. Also

PATNAN--NAL) = 1-PAUAU...UA)

k
> 1-) P(A)

In the case of simultaneous testing, a Type I error occurs iff at least one of
the individual test rejects when all the hypotheses are true (NHp). Choose
the critical regions C; o /m, © = 1,2,...,m. Then by Boole’s inequality

P(Type I Error) = Prnp, (U2 Cia/m]

ZPF‘IHO za/m :Z%:
=1

IN
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9.5.1 Write the left side as

b a

YN UKy =X =X+ X )+ (X - X%

j=11i=1

then square the binomial, and it is easy to see that the sum of the cross-
product term equals zero.

9.5.3 We want to minimize

To do this, we can make the last three terms equal to zero by taking i =
Z., 60 =% —2., (=2, — .. For example,

var(d;) = var ()_(1,—
a

X1++Xa)

— var {(a—l))_(l. _"'_Xa.:|

(0 (2]
(=) (%)

9.5.6 This can be worked in a manner similar to 9.5.3.

9.6.4 Write

PN _ | @
o =a+ B(xo —7) = [l 20 — 7| [ 3 ]
Then by expression (9.6.6) and Theorem 3.5.1, it follows that 7y has a normal
distribution with mean 7y and variance

V) = 20=717 | 5z oz ][]
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Based on the distribution of 7, the independence between 52 and 7y (7o is a
function of @ and /3), and the distribution of 52, the following random variable

t = 70 — 1o
o/ (1/n) + (w0 — )2/ 320, (2 — T)?

has a student ¢-distribution with n — 2 degrees of freedom. The desired con-
fidence interval easily follows from this result.

9.6.7 Let § = ~2. Then

n

1\ 12
L - LN e /(2002)
H (277936? ) ¢

=1

<.

n 2
n i — PT;
logL = d(x1,...,2,) — §log9—z%
i=1 i

dlogL _ N~Wi—fBr)@) o 5 15~ (Y
s 2 . ﬂnz<wi)

Ox-

i=1 g
dlogL  —n "L (yi — Br;)? g
20 29*2 2z |10 =0

9.6.9 We wish to minimize

b a
Z Z(wij — pj)? = Z Z(% —7)* + Z(a)(f-j — )%

j=1i=1

That is, we wish to minimize

b
K(c,d) = Z{f.j —c—dlj—(0+1)/2]}’

b
= b@. -+ > {7, — 7. —dj— (b+1)/2]}>

j=1
Clearly, we want ¢ = X . Moreover, %—I; =0 yields
R b B B b
d=> [j-0+1)/2(X,; - X )/ li—(b+1)/27
Jj=1 Jj=1

The F-statistic (with one and ab — 2 degrees of freedom) is

A2y (a)[j — (b+1)/212/1
S Xy — X —dlj — (b+1)/2]}2/(ab—2)
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9.6.11 Let 8 € V then 0 = al + (x., for some « and 3, where 1 is an n X 1 vector
of ones.

(a). Note that
Y —o]* = ||Y— (a + Bxc)||?

Z{Y [ov+ Bl — D)}

Hence, by the method of LS, § = a + 3.
(c). For @ € V, we have

o~

0(Y—-8) = (a+p8x.) (Y —al—px.)
= any—and —0+px.Y —0— BBX'CXC
= and —and + ﬁﬁxgxc - Bﬁx’cxc = 0.

For v € V, we have 0 — 6 € V. Furthermore from above, we obtain the
identity

Y —6+6—6|>
1Y —6]*+ 16— 6]

Iy —o]*

for all @ € V. In particular the identity is true for & = 0 whose substi-
tution in the above identity shows that the angle between OandY — 0
is a right angle.

9.6.14 We have
E(B) = (X'X)'X'XB =8
Var(8) = (X'X)'X/¢2IX(X'X)"! = o2(X'X)"!
9.6.16 The linear model for Y; is
Yi=pde, i=1,2,...,n,
where Var(e;) = y?2?. Let Z; = Y;/z;. Then the model for 2; is

1
Zi=p—+e;, i=1,2,...,n,
Ly

where Var(e;) = v2. Now obtain the LS fit of p,
ﬁ _ Z?:l Zi/xi
i 1/af
with the corresponding estimate of variance,
~2 _ 2i(Zi —)?
N ==
n—1

It follows that (n—1)32/42 has a x?(n — 1) distribution, from which it is easy
to construct a test of Hy : v = 1.
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9.7.1

(]
>
|
5|
=
|
=
I

% YMXiYi—XY V-V X;+nXY

> XiYi = X(nY) = Y(nX) + nXY

Z X.Y; —nXY.

9.7.4 Here T has the t-distribution with (n — 2) df; that is,

I(n—1)/2 |
(n— 2(n—2)/2| [1 + 2/ (n = |72’

h(t) =

—00 < t < 00. Since

rvn—2  dt VI—r2/n=2—-ry/n—2(3) (1 —r?)~Y2(-2r)

t: _— _ =
V1i—r2'  dr 1—1r2
VA 2-r) 4 Vn—2
- (1 _ T2)3/2 - (1 _ 7,2)3/2’
we have

T [ L B
9(r) = T —2)7 @_rpr LTt

_ I[(n—1)/2] _ p2)(n—4)/2 o r
VAl -2y T e st

9.7.5 We know that both X — ux and ox — ox in probability. By the Weak Law

of Large Numbers

1
=Y xiv; & B[XY).
n

i=1

Putting these results together, it follows that » — p in probability.

9.8.2

02(117/)2) alozzlpf;ﬂ) U% pPO102 02(117;)2) alogzlppr)
AVA = o 1 2 o 1

P P

o102(1=p%)  o03(1-p?) o102(1-p?)  03(1-p?)
! 1-p* 0 7 mer |4
oA=L 0 1=y 2 L |

Hence X' AX is x2(2, uAp). Since p' Ap is positive definite, y; = po = 0 is
a necessary and sufficient condition for the noncentrality to equal zero.
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9.8.3 It is easy to see that A> = A and tr(A) = 2. Moreover ' Az /8 equals, when
' = (4,4,4),
[(4)(1/2)(16) + 16)/8 = 6

so we have that the quadratic form is x?(2, 6).
9.8.5 For Parts (a) and (b), let X’ = (X1, Xo,...,X,). Note that
Var(X) = ?[pJ + (1 - p)I],

where J is the n x n matrix of all ones, which can be written as J = 11/, and
1 is a n x 1 vector of ones.

(a). Note that X = 1’X. Hence,

Var(X) = Z—zll P+ (1 —pI1
= L+ (1o
= o? {p + ! ; p}

(b). Note that
(n—1)8? =X’ (I — lJ) X.
n

Hence, using Theorem 9.8.1,

E[(n-1)8% = FE {X’ (I - —J) X}

Hence, E[S?/(1 — p)] = o>

9.8.8 In the hint, take T' to be the matrix of eigenvectors such that I'VAT is the
spectral decomposition of A.

9.8.10 Let IVAT be the spectral decomposition of A. In this problem, A? = A be-
cause the diagonal elements of A are Os and 1s. Then because T is orthogonal,

A?2 =T/ATT'AT = TVA’T' = TVAT = A.
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9.9.1 The product of the matrices is not equal to the zero matrix. Hence they are

dependent.
9.9.3
a? ajaz ajaz ajay 0 1/2 0 0
aza; a3 agaz asay 1/2 0 0 0 _o
asai asas ag asaq 0 0 0 -1/2 |
asay1 Q402 aqa3 a4 0 0 —1/2 0

requires, among other things, that
a3 =0, a3 =0, a§:0, ar=0.
Thus a1 = a9 = a3 = a4 = 0.

9.9.4 Yes, A = X'AX and X? and independent. The matrix of X2 is (1/n)%P.
So AP = 0 means that the sum of each row (column) of A must equal zero.

9.9.5 The joint mgf is
E[exp(t1Q1 +t2Q2+' . '+thk)] == |I—2t10‘2A1 —2t20‘2A2—- . -—thAk|71/2.

The preceding can be proved by following Section 9.9 of the text. Now
Elexp(t:Q:)] = [T — 2t;0%2A;|7Y2i = 1,2,..., k. If A;A; = 0,i # j (which
means pairwise independence), we have Hle(I —2t;0%A;) = I —2t10% A, —
-+ — 2t,,02 Ay. The determinant of the product of several square matrices of
the same order is the product of the determinants. Thus Hle |[T—2t;0%A;] =
|I —2t102A; — -+ — 2tx0? Ag| which is a necessary and sufficient condition
for mutual independence of @1, Qo, ..., Qk.

9.9.6 If b’ X and X' AX are independent, then b’ A = 0 and thus (bb") A = 0 which
implies that X’bb’X and X' AX and independent. Conversely, if the two
quadratic forms are independent, the (bb')A = 0 and (b'b)b’ A = 0. Because

b'b is a nonzero scalar, we have b’ A = 0 which implies the independence of
b and X'AX.

9.9.7 Let A, Ay, A represent, respectively, the matrices of Q,Q1, and , Q2. Let
L'(A; + Ay)L = diag{ay,...,q;,0,...,0} where r is the rank of A; + As.
Since both @ and Q)2 are nonnegative quadratic forms, then

(a) a; >0, i=1,2,...,1;

b) L'(A;+Ay)LL' AL = 0 implies L'AL = 00 where B is (n—r);
0 B
, B; 0 . , R
(¢c) L'A;L = o o | where B isr by r, j=1,2. Thus L'A;LL'AL =

0Oand A;A=0, j=1,2.

9.9.10 (a) Because the covariance matrix is 0?1 and thus all of the correlation
coefficients are equal to zero.
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(b) The P linear forms B have a p-variate normal distribution with mean
matrix (X'X)"1X’'X3 = B and covariance matrix

(X' X)X () IX(X'X)" = o?(X'X)".
(¢) Write the left side as

(Y - XB)+X(B-B)Y —XB)+ X (B~ B)]

and carry out the necessary algebra to show that this equals the right
side. It is helpful to note that

B-BX'(Y-XB)=B-8)(XY-XY)=0

(1/o*)(X'X)o*(X'X) 1 (1/0%)(X'X) = (1/0%)(X'X).
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Chapter 10

Nonparametric and Robust
Statistics

10.1.2 The cdf of X —a is F(t + a), where F(t) is the cdf of X. By symmetry, we
have that the cdf of —(X —a) is

P—-(X—a)<t]=P[X>a—-t]=P[X <a+t]=F(+a).
10.1.3 See Section 5.9 on bootstrap procedures.
10.1.4 Part (b): For property (i), let Y = aX. Then
Fy (t) = Fx(t/a).

It is easy to show that
Fy'(u) = aFy’ (u),

from which we have immediately that
Fyi(3/4) = aFx'(3/4)
FPl(1/4) = aFx'(1/4).
Thus €Y,3/4 - €Y,1/4 = a(fX,3/4 - §X,1/4)-

10.2.3 If students do not have access to a computer, then have them do normal
(Central Limit Theorem) approximations.

(a). The level of the test is
Py, [S > 16] = P[bin(25,1/2) > 16] = 0.1148.
(b). The probability of success here is
p = P[X > 0] = P[Z > —.5] = 0.6915.
Hence, the power of the sign test is

Pygo15[S > 16] = P[bin(25,0.6915) > 16] = 0.7836.

93
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(c). To obtain the test, solve for k in the equation
0.1148 = Py, [X /(1/V/25) > k] = P[Z > k],

where Z has a standard normal distribution. The solution is £ = 1.20.
The power of the this test to detect 0.5 is

Pa—05[X/(1/v/25) > 1.20] = P[Z > 1.20 — (.5/(1//25))] = 0.9032.
10.2.4 Recall that )
" 2f(€x0s)

We shall show that Properties (i) and (ii) on page 518 are true. For (i), let
Y =aX, a > 0. First, fy(t) = (1/a)fx(t/a). Then, since the median is a
location parameter (functional), £y,0.5 = a€x,0.5. Hence,

TX,S

! 1
T 2y (€vos)  2(1/a)fx(abxosja) S

For (ii), let Y = X 4+ b. Then fy(¢t) = fx(t —b). Also, since the median is a
location parameter (functional), £y,0.5 = £x,0.5 + b. Hence,

Ty,S

1 1
8 T o (Evos)  2ix(Exos +b-b) T
10.2.8 The t-test rejects Hy in favor of Hy if X /(0//n) > za-
(a). The power function is
v(0) = Py {%>za} =1 @[za—@]
(b). Hence,
40 =6 |2~ Y2 U250

(c). Here 6,, = §/y/n. Thus,
Y(6/vn) =1 |:Zoz_§:| :

(d). Write 8* = /n6*/+/n. Then we need to solve the following equation for

" =l

g

7 =) =1 [z -

After simplification, we get

(2o —2y7)0
i = Lozl
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10.3.1 Expanding the product, we obtain

mT(S) — [6765 + 6745 4 6725 + 60 4 €2S + 645 + 665] ,

8
from which the distribution can be read.

10.3.4 Property (1) follows because all the terms in the sum are nonnegative and
R|v;| > 0, for all i. Property (2), follows because ranks of absolute values are
invariant to a constant multiple. For the third property, following the hint we
have

lu+vl < > Rlui+ villus| + Y Rlui + vil|vs]
=1 =1
> dlulgy + > dlvlg
j=1 j=1
= Z]'ull; +Zj|v|ij
j=1 j=1

= > Rluillug| + Y Rlvillvi| = [l + |IvIl,
i=1 i=1

IN

where the permutation i; denotes the permutation of the antiranks.
10.3.5 Note that the definition of 8 should read
0= Argmin||X — 6]
Write the norm in terms of antiranks; that is,
n
IX =0l =2_jlXi, —l.
j=1

Taking the partial of the right-side with respect to 6, we get

n

d _ -
551X 0l =~ > gsgn(Xi, —0) = = > RIX; — 0lsgn(X; — 0).

j=1 i=1
Setting this equation to 0, we see that it is equivalent to the equation

n(n+1)

277(0) — 5

:0’

which leads to the Hodges-Lehmann estimate; see expression (10.3.10).

10.4.3 Write

VAT =X = 8) =\ [T ) = [T )
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10.4.4

10.4.5

10.5.3

10.5.5

10.5.10

By the Central Limit Theorem, the terms on the right-side converge in dis-
tribution to N(0,0%/\2) and N(0,0%/\;) distributions, respectively. Using
independence between the samples leads to the asymptotic distribution given
in expression (10.4.28).

From the asymptotic distribution of U, we obtain the equation
3 = PalU(d)<d=PalU(a) <c+(1/2)]
= Pz<{(+(1/2) ~ (mna/2))/Vrma(n + 1)/12}] .
Setting the term in braces to —z, /o yields the desired result.

Using A > 0, we get the following implication which implies that Fy (y) <
Fx(y):
Y<yesX+A<yeX<y-—-A= X<y

The value of s2 for Wilcoxon scores is
n i 1 2
2
= 12 - -
* -kl
= n+1
e P

n(n—1)
n+1

Use the change of variables u = ®(z) to obtain

/01<I>_1(u)du = /Oox¢(x)dx20

— 00

/01(<I>1(u))2 du = /Oo 226(x) dz = 1.

For this problem

1 ()
7'71:/ o (u {—f( }du.

A (I0)
Without loss of generality assume that ;4 = 0. Then f(z) = (1/v270) exp{—2?/20?}.
It follows that

fll@) =

fl@) o
Furthermore, because F(t) = ®(t/o) we get F~1(u) = c®~!(u). Substituting
this into the expression which defines 7, T, ~!, we obtain To Y
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10.5.12 The Riemann approximation yields

1/01<p2(u)du'i502 (nil> %

10.5.15 Let F'(t) be the common cdf of X;.

(a).

Without loss of generality assume that 6 = 0. Let 0 < u < 1 be an
arbitrary but fixed u. Let t = F~1(1 — u). Then

ol —u)=— =— . (10.0.1)

But F~(1 — u) = t implies, by symmetry about 0, that u =1 — F(t) =
F(—t). Because f’(t) and f(t) are odd and even functions, respectively,
we have

— =L (10.0.2)

By (10.0.1) and (10.0.2) the result follows.
Also, by (10.5.40), ©(1/2) = —p(1/2). So ¢(1/2) =0

. Since (u+1)/2 > 1/2 and ¢(u) is nondecreasing

" (u) = p((u+1)/2) = ¢(0) = 0.

. Let i; denote the permutation of antiranks. Then we can write W+ as

Wer = Z sgn(X;,)a™ (i ).
j=1

By the discussion on page 532, sgn(X;,) are iid with pmf p(—1) = p(1) =
1/2. Hence, the statistic W,,+ is distribution-free under Hy.
The above expression can be used to find the null mean and variance of

W+ and to state its asymptotic distribution.

10.6.1 The following R code (driver and 4 functions) computes the four tests statis-
tics based on the four respective score functions given in Exercise 10.6.1. In
particular, the code returns the variances of the four tests. For sample sizes
ni1 = ng = 15, the variances are: 2.419, 7.758, 2.419, and 2.419.

drive4 = function(x,y){

nl = length(x)
n2 = length(y)
n =nl + n2

cb = (1:n)/(n+1)
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const = (n1*n2)/(n*(n-1))

pl = phil(cb)

varl = const*sum(pl~2)

p2 = phi2(cb)

var2 = const*sum(p2~2)

p3 = phil(cb)

var3 = const*sum(p3~2)

p4 = phil(cb)

vard = const*sum(p4~2)

vars = c(varl,var2,var3,var4d)
allxy = c(x,y)

rall = rank(allxy)/(n+1)

ind = c(rep(0,n1),rep(1,n2))
s1 = sum(ind*phil(rall))

s2 = sum(ind*phi2(rall))
s3 = sum(ind*phi3(rall))
s4 = sum(ind*phi4(rall))

tests = c(s1,s82,s83,s4)
ztests = tests/sqrt(vars)
list(vars=vars,tests=tests,ztests=ztests)

phil = function(u){
phil = 2*%u - 1
phil

}

phi2 = function(u){
phi2 = sign(2%u - 1)
phi2

}

phi3 = function(u){
n = length(u)
phi3 = rep(0,n)
for (i in 1:n){
if(uli] <= .25){phi3[i] = 4*ul[i] - 1}
if (uli] > .75){phi3[i] = 4*u[i] - 3}
}
phi3
}

phi4d = function(u){
n = length(u)
phi4 = rep(.5,n)
for (i in 1:n){
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if(ul[i] <= .50){phi4[i] = 4*ul[i] - (3/2)}
}
phi4

10.6.2 Based on the above code, the standardized test statistics for the 4 respective
scores are: 1.555, 1.077, 0.850, and 0.839.

10.7.1 Note that the ranks are invariant to constant shifts. From Model (10.7.1),
under 8 we have,

Py(Y; <t)=Ple <t —a— B(z; — 7). (10.0.3)
Under 8 = 0, we have
Po(Yi+B(xi —T) <t)=Ple+a+ 8z, —7) <t
which is the same as (10.0.3).
10.7.4 The power function is
V(B) = Fp[T((0) = cal = Bo[To(=f) = cal-

Suppose 1 < 2 then, since T,, is nonincreasing, Ty,(—31) < T,,(—F2). This
leads to the implication

Tw(*ﬂl) 2 Co = T«P(762) > Ca-
From which we get, v(61) < v(82).

10.7.5 As in the last exercise, the power function is

'Y(ﬁn) = Pg, [T<P(O) > ZOfUTv:]
L [0 - B0 | Ea(T0)
o or, = fo oT,

@ @

In the last expression, the random variable on the leftside is approximately
N(0,1) and, using the discussion on page 569, the right-side reduces to z, —
Brer. These approximations can be made rigorous in a more advanced course.

10.8.1 Write 7 as
7 = 2P[sgn[(X1 — X2)(V1 — Y2)]] — 1.

It is easy to show that the right-side is between 0 and 1.

10.8.3 The following results were obtained at the site www.stat.wmich.edu/slab/RGLM.

Procedure a (SE) é] (SE)
LS 206.2 (13.01) | 0.0151 (0.0055)
Wilcoxon | 211.0  (2.59) | 0.0098 (0.0011)
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The obvious outlier spoiled the LS fit and its standard errors.
10.8.5 Part (a). Note that the scores are centered and Y, a®(i) = 52 Hence Ta
is a correlation coefficient on the pairs (a(R(X;)), a(R(Y7))), i = TR
10.8.9 As with the other rank score correlations, /n — 1ry has a null asymptotic
N(0,1) distribution. The following R-code computes ry and its corresponding
z-test statistic:
rn1089 = function(){
data=matrix(scan("olymp3.dat"),ncol=2,byrow=T)
x=datal, 1]
y=datal,2]
n=length(x)
rx=rank(x)/(n+1)
ry=rank(y)/(n+1)
sx=qnorm(rx)
sy=qnorm(ry)
sa2 = sum(sx"2)
rn = sum(sx*sy)/sa2
zn = sqrt(n-1)*rn
list(rn=rn,zn=zn)
}
10.9.1 With n = 01, write
1Y —nllZs = (v —0)*
i=1
Now take the partial derivative with respect to 6, set the result to 0, and solve
for 6. This yields 6 = 7 and, hence, i) = y1.
10.9.4 Note that
e[—Fx(t)] ift<az
Foc(t) = Fx(t) = { e[l — Fx(t)] ift>a
In either case the expression in brackets is less that or equal to 1 in absolute
value.
10.9.7 Let V(F') denote the variance functional of the cdf F(t).

(a). Let F,, denote the empirical cdf of Y —7%,...,Y,, —Y. Then V(F,) solves

o:/w[#—V( :%Z V(E).

— 00
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(b). The functional at the contaminated cdf solves

0 = [ P-VEIE.

— 00
o0

= (1—¢) /OO [t* — V(F, )] dF(t) + e/ [t — V(Fy.e)lda,(t)

— 0o —0o0
Taking the partial of both sides with respect to €, we get

0 = - [ e-vmare-a-q [ arng

— 00 — 00

[ VE s, 0+

b
oo Je

where the last partial derivative is not needed. Evaluation of the last
expression at e = 0 yields

o
Oe

— 2~ o2
e=0

10.9.9 Recall that 6 is the true median. We then have

1 1 1

@2 @2 "

E[IF(Y;0L,)]

and

1 1 1 1

2(v. 0 = .
EUE (Y3000l = tmgya Y a/20)2 ~ 12(0)°

10.9.12 Part (a): Note that

&l
NIE
2
=
P
=

\
NIE

a(i)[xel )

i=1 i=1

I

a((R(Y; - X;i/@))xci;

=1

where the notation [x.](;) means the x. associated with (Y —x.3).

Part (c¢): From the Wilcoxon normal equations determined in the last exercise,
it is clear that By, is chosen so that the vector of ranked-scores of the residuals,
a(R(Y — X.:By)), is orthogonal to the range of of the matrix X..
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10.9.15 Start with the right-side, i.e.,
dolvi—vl = > v — v
irj irj
= 2) | — o)

1<J
= 2 () — )
1<J
n j—1 n—1 n
= 20> > v =D D v
j=21i=1 i=1 j=i+1
n n—1
= 2 Z(] — 1)1)(]) - Z(TL — Z)’U(z)
j=2 i=1

_ 2§ A S
a \/§(n+1);\/ﬁ<n+1 2) @

10.9.16 Part (b). We know that F'(e;) has an uniform(0, 1) distribution. Hence, since
the scores are standardized,

Elp(F(es)] = / () du = 0
E[g*(F(e:))] = /0 G2 ) du = 1.
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Chapter 11

Bayesian Statistics

11.2.2

11.2.4

11.2.6

11.2.8

0= (1 — )"~ 2 Tigol(1 — g)P1
— 92 mi-l-oz—l(l _ H)n—z mi-i-ﬁ—l7

k(0]z1, 22, ..., 2n)

R

which is the pdf of a beta (o* = > x; + o, 8% = n— > z; + () and, with
y = Y. x;, is the same as that of Example 11.2.2.

Considering Example 11.2.1; we know that the posterior distribution of the
parameter, given the data, is gamma [o* = > x; + o, 8* = 8/(nf+1)]. With
Y = > X, and square error loss, we want our Bayes estimator to be the
conditional mean of the parameter, given the data. That is,

(Y/n)n + (B)(1/8)
n+ (1/6) ’

which is the weighted average of X = Y/n and the prior mean of af3.

a’f" = (Y +a)f/(nf+1) =

k(@l, 92|y1, yg) o8 9%1932(1 — 0, — 92)"*741*929?1—192&2—1(1 — 6, — 92)a371
gutar—lguata=l(| _g _ g yn—vi—yrtas—1

which is Dirichlet with o] = y1 + a1, a5 = y2 + a2, a5 =n —y1 — y2 + 3.
The two conditional means are

Yyiton Yatao

and

n+tai+aztas ntortoaztas”
10+Y\? 10+ 300\ > 1\?
E - =(0- —= — 1—
w e [(- )| (o= ) (1) s
10+Y\?*|  6(1-0)
FE _
() (9 15 ) <730
103
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11.2.9

11.3.2

11.34

requires that

0 2\* 1
k(@):(§—§) —5—49(1—6)<0.

Find the two zeroes of k(6), one of which is greater (less) than 2/3.

The conditional pdf of the parameter, given Yy = yy, is

4y3 2 1
h(0ya) o< (%) (9—3) X g7 Y <fand1<0.

This means that
6
o7 Ys < 1<86
h(0lys) = { g

With the absolute value loss function, our Bayes decision is the median of the
posterior distribution, namely

<6
/ ﬁd9:1/2:>m:21/6 when y4 < 1,
and

0066
/ %d9:1/2¢m:21/6y4 when 1 < y4.

m

The Bayes model is
X0 ~ TI(3,1/6), 6 >0
e ~ TI(10,2).
(a). The posterior pdf simplifies to
k(0]x) o 01~ exp{~0[(1/2) + nz]},
which is the pdf of a I'(40,1/[(1/2) 4+ nZ]) distribution.

(b). Squared error loss implies the Bayes estimate is the mean of the posterior;
ie., 40/[(1/2) + n7].

(d). Note that 2[(1/2) + nZ]O© has a x?(80) distribution.

Let 7 = u(). By the chain rule we have

dlog f(x;6) _ Olog f(x;0) 00
or o o7} or

Squaring both sides and taking expectations leads to

I(7) = 1(0) (g)Q.

By the transformation rule the prior for 7 is

ha(1) = h(6) ’% x +/1(9) ‘%

— VI,
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11.37 By Exercise 11.3.4, the Jeffreys prior is proportional to the square root of
the information which, by Page 6.2.1, is 1/4/6(1 — 6). Hence, the prior is a
beta(1/2,1/2) distribution. For Part (b), the posterior pdf is

k(Olx) o 077(1—0)""Tet/D (1 — g) (/2
o grEHA/2)=1(] _ gyn-na+(1/2)-1,
Hence, the posterior distribution is beta(nZT + (1/2),n — nZ + (1/2)).
11.4.1 Tt is easy to show that the inverse conditional cdf of X given ¥ = y is
F)aly(u) =y —log(1l — u).
(a). Hence, the algorithm is of the form:

(0). Generate Uy and Us iid uniform(0, 1)

(1). Generate Y = log(1/(1 — Un)

(2). Generate X =Y +log(1/(1 — Us).
(b). For n large, generate X, Xo,...X,. Then X is an estimator of E(X).
(¢). The following R function will compute the algorithm.

condsim2<-function(nsims){

collect<-rep(0,nsims)

for(i in 1:nsims)
{y<--log(1-runif (1))

collect[i]<--log(1l-runif (1))+y

}

collect

}

11.4.3 Both marginal pdfs and the conditional pdf are given in the example.

(a). Use conditional expectation, i.e.
3
E(X)=E[EX|Y))=E(1+Y)= >
(b) The cdf of X is
Fx(z)=1-2e""+e 2 1z >0.
For 0 < u < 1, the inverse of this cdf is the solution of the equation
e — 27" 4+ (1 —u) =0.

This is a quadratic equation in e~* with the solution 1 — \/u, (the other
solution cannot be true). This leads to the inverse of the cdf which is

Fit(u) = log[1/(1 — vu)].

Based on this, X can be generated by log[1/(1 — vU)], where U has a
uniform (0, 1) distribution.

Copyright ©2013 Pearson Education. Inc.



106 Bayesian Statistics

11.4.7 For this exercise a computer is not needed.

(a). The constant of proportionality K solves the equation

1= K/Oly‘”(l —y)’! {zn: (Z)y””(l - y)”””} dy,

=0
which is easily determined to be K = T'(a + 3)/(T'(«)L(5)).
(b) from the joint pdf, we have

flaly) o (Z) y L=y "

Hence, XY is binomial(n,Y). Likewise,

z+oz—1(1 o n—m-l—ﬁ—l;

flylz) <y Y)

so Y| X is beta(z + a,n — z + ).
(c). The Gibbs sampler algorithm is: for i =1,2,...,m

(1) Generate }/i|Xi71 Nbeta(a+Xi,1,ani,1 +6)
(2). Generate X;|Y; ~ binomial(n,Y;) .

11.4.8 Here is R-code which runs the Gibbs sampler of the last exercise:

gibbser3 = function(alpha,beta,nt,m,n){

x0 =1

yc = rep(0,m+n)

xc = c(x0,rep(0,m-1+n))

for(i in 2: (m+n)){yc[i] = rbeta(l,xc[i-1]+alpha,nt-xc[i-1]+beta)
xc[i] = rbinom(1,nt,ycl[il)}

yl=yc[1:m]

y2=yc[(m+1) : (m+n)]

x1=xc[1:m]

x2=xc[(m+1) : (m+n)]

list(yl = y1,y2=y2,x1=x1,x2=x2)

}

To determine the mean of X, use the joint pdf to find that E(X) = n(a/(a+
B))-

11.5.3 The Bayes model is

X|p ~ bin(n,p), 0<p<1
plo ~ h(plf) =6p""1, 6>0
0 ~ T(1,a), a specified.
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(a). The conditional pdf of p given y and 6 is
9(ply,0) ocp? (1 — )T,

which is the pdf of a beta(y + 6,n — y + 1) distribution.
(b). The conditional pdf of 8 given y and p is

9(0ly, p) o< O exp{—0[(1/a) — logpl},

which is the pdf of a I'(2,[(1/a) — logp]~!) distribution.
(¢). The Gibbs sampler algorithm is for i =1,2,...,m

(1). Generate P;ly,©;_1 ~beta(ly+0;_1,n—y+1)
1 —1
(2). Generate ©;ly, P, ~ T ( {— - logP} ) .
11.5.5 Recall that

9(y,pl0) = g(ylp)g(pl0) = (Z)py+9‘1(1 —p) Ve’

Integrating out p, we have

1
g(ylo) = 9/ ( ) vl —pynmvt Tl dp
0

H(TL) (y+0)f(n—y+1)
y)T(y+0+n—y+1)
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