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Chapter 1

Probability and Distributions

1.2.1 Part (c): C1 ∩ C2 = {(x, y) : 1 < x < 2, 1 < y < 2}.

1.2.3 C1 ∩C2 = {mary,mray}.

1.2.6 Ck = {x : 1/k ≤ x ≤ 1 − (1/k)}.

1.2.7 Ck = {(x, y) : 0 ≤ x ≤ 1/k, 0 ≤ y ≤ 1/k}.

1.2.8 limk→∞ Ck = {x : 0 < x < 3}. Note: neither the number 0 nor the number 3
is in any of the sets Ck, k = 1, 2, 3, . . .

1.2.9 Part (b): limk→∞ Ck = φ, because no point is in all the sets Ck, k = 1, 2, 3, . . .

1.2.11 Because f(x) = 0 when 1 ≤ x < 10,

Q(C3) =

∫ 10

0

f(x) dx =

∫ 1

0

6x(1 − x) dx = 1.

1.2.13 Part (c): Draw the region C carefully, noting that x < 2/3 because 3x/2 < 1.
Thus

Q(C) =

∫ 2/3

0

[∫ 3x/2

x/2

dy

]
dx =

∫ 2/3

0

xdx = 2/9.

1.2.16 Note that

25 = Q(C) = Q(C1) +Q(C2) −Q(C1 ∩C2) = 19 + 16 −Q(C1 ∩ C2).

Hence, Q(C1 ∩ C2) = 10.

1.2.17 By studying a Venn diagram with 3 intersecting sets, it should be true that

11 ≥ 8 + 6 + 5 − 3 − 2 − 1 = 13.

It is not, and the accuracy of the report should be questioned.

1
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2 Probability and Distributions

1.3.3

P (C) =
1

2
+

1

4
+

1

8
+ · · · =

1/2

1 − (1/2)
= 1.

1.3.6

P (C) =

∫ ∞

−∞
e−|x| dx =

∫ 0

−∞
ex dx+

∫ ∞

0

e−x dx = 2 6= 1.

We must multiply by 1/2.

1.3.8
P (Cc

1 ∪ Cc
2) = P [(C1 ∩ C2)

c] = P (C) = 1,

because C1 ∩ C2 = φ and φc = C.

1.3.11 The probability that he does not win a prize is
(

990

5

)
/

(
1000

5

)
.

1.3.13 Part (a): We must have 3 even or one even, 2 odd to have an even sum.
Hence, the answer is (

10
3

)(
10
0

)
(
20
3

) +

(
10
1

)(
10
2

)
(
20
3

) .

1.3.14 There are 5 mutual exclusive ways this can happen: two “ones”, two “twos”,
two “threes”, two “reds”, two “blues.” The sum of the corresponding proba-
bilities is (

2
2

)(
6
0

)
+
(
2
2

)(
6
0

)
+
(
2
2

)(
6
0

)
+
(
5
2

)(
3
0

)
+
(
3
2

)(
5
0

)
(
8
2

) .

1.3.15

(a) 1 −
(
48
5

)(
2
0

)
(
50
5

)

(b) 1 −
(
48
n

)(
2
0

)
(
50
n

) ≥ 1

2
, Solve for n.

1.3.20 Choose an integer n0 > max{a−1, (1−a)−1}. Then {a} = ∩∞
n=n0

(
a− 1

n , a+ 1
n

)
.

Hence by (1.3.10),

P ({a}) = lim
n→∞

P

[(
a− 1

n
, a+

1

n

)]
=

2

n
= 0.

1.4.2
P [(C1 ∩C2 ∩ C3) ∩C4] = P [C4|C1 ∩ C2 ∩ C3]P (C1 ∩C2 ∩ C3),

and so forth. That is, write the last factor as

P [(C1 ∩ C2) ∩ C3] = P [C3|C1 ∩C2]P (C1 ∩ C2).
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3

1.4.5 [(
4
3

)(
48
10

)
+
(
4
4

)(
48
9

)]
/
(
52
13

)
[(

4
2

)(
48
11

)
+
(
4
3

)(
48
10

)
+
(
4
4

)(
48
9

)]
/
(
52
13

) .

1.4.10

P (C1|C) =
(2/3)(3/10)

(2/3)(3/10) + (1/3)(8/10)
=

3

7
<

2

3
= P (C1).

1.4.12 Part (c):

P (C1 ∪ Cc
2) = 1 − P [(C1 ∪ Cc

2)
c] = 1 − P (C∗

1 ∩ C2)

= 1 − (0.4)(0.3) = 0.88.

1.4.14 Part (d):
1 − (0.3)2(0.1)(0.6).

1.4.16 1 − P (TT ) = 1 − (1/2)(1/2) = 3/4, assuming independence and that H and
T are equilikely.

1.4.19 Let C be the complement of the event; i.e., C equals at most 3 draws to get
the first spade.

(a) P (C) = 1
4 + 3

4
1
4 +

(
3
4

)2 1
4 .

(b) P (C) = 1
4 + 13

51
39
52 + 13

50
38
51

39
52 .

1.4.22 The probability that A wins is
∑∞

n=0

(
5
6

4
6

)n 1
6 = 3

8 .

1.4.27 Let Y denote the bulb is yellow and let T1 and T2 denote bags of the first and
second types, respectively.

(a)

P (Y ) = P (Y |T1)P (T1) + P (Y |T2)P (T2) =
20

25
.6 +

10

25
.4.

(b)

P (T1|Y ) =
P (Y |T1)P (T1)

P (Y )
.

1.4.30 Suppose without loss of generality that the prize is behind curtain 1. Con-
dition on the event that the contestant switches. If the contestant chooses
curtain 2 then she wins, (In this case Monte cannot choose curtain 1, so he
must choose curtain 3 and, hence, the contestant switches to curtain 1). Like-
wise, in the case the contestant chooses curtain 3. If the contestant chooses
curtain 1, she loses. Therefore the conditional probability that she wins is 2

3 .

1.4.31 (1) The probability is 1 −
(

5
6

)4
.

(2) The probability is 1 −
[(

5
6

)2
+ 10

36

]24
.
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4 Probability and Distributions

1.5.2 Part (a):

c[(2/3) + (2/3)2 + (2/3)3 + · · · ] =
c(2/3)

1 − (2/3)
= 2c = 1,

so c = 1/2.

1.5.5 Part (a):

p(x) =

{
(13

x )( 39
5−x)

(52
5 )

x = 0, 1, . . . , 5

0 elsewhere.

1.5.9 Part (b):
50∑

x=1

x/5050 =
50(51)

2(5050)
=

51

202
.

1.5.10 For Part (c): Let Cn = {X ≤ n}. Then Cn ⊂ Cn+1 and ∪nCn = R. Hence,
limn→∞ F (n) = 1. Let ǫ > 0 be given. Choose n0 such that n ≥ n0 implies
1 − F (n) < ǫ. Then if x ≥ n0, 1 − F (x) ≤ 1 − F (n0) < ǫ.

1.6.2 Part (a):

p(x) =

(
9

x−1

)
(

10
x−1

) 1

11 − x
=

1

10
, x = 1, 2, . . . 10.

1.6.3

(a) p(x) =

(
5

6

)x−1(
1

6

)
, x = 1, 2, 3, . . .

(b)

∞∑

x=1

(
5

6

)x−1(
1

6

)
=

1/6

1 − (25/36)
=

6

11
.

1.6.8 Dy = {1, 23, 33, . . .}. The pmf of Y is

p(y) =

(
1

2

)y1/3

, y ∈ Dy.

1.7.1 If
√
x < 10 then

F (x) = P [X(c) = c2 ≤ x] = P (c ≤
√
x) =

∫ √
x

0

1

10
dz =

√
x

10
.

Thus

f(x) = F ′(x) =

{ 1
20

√
x

0 < x < 100

0 elsewhere.

1.7.2
C2 ⊂ Cc

1 ⇒ P (C2) ≤ P (Cc
1) = 1 − (3/8) = 5/8.

Copyright ©2013 Pearson Education. Inc.
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5

1.7.4 Among other characteristics,

∫ ∞

−∞

1

π(1 + x2)
dx =

1

π
arctanx

∣∣∣∣
∞

−∞
=

1

π

[π
2
−
(
−π

2

)]
= 1.

1.7.6 Part (b):

P (X2 < 9) = P (−3 < X < 3) =

∫ 3

−2

x+ 2

19
dx

=
1

18

[
x2

2
+ 2x

]3

−2

=
1

18

[
21

2
− (−2)

]
=

25

36
.

1.7.8 Part (c):

f ′(x) =
1

2
2xe−x = 0;

hence, x = 2 is the mode because it maximizes f(x).

1.7.9 Part (b): ∫ m

0

3x2 dx =
1

2
;

hence, m3 = 2−1 and m = (1/2)1/3.

1.7.10 ∫ ξ0.2

0

4x3 dx = 0.2 :

hence, ξ40.2 = 0.2 and ξ0.2 = 0.21/4.

1.7.13 x = 1 is the mode because for 0 < x <∞ because

f(x) = F ′(x) = e−x − e−x + xe−x = xe−x

f ′(x) = −xe−x + e−x = 0,

and f ′(1) = 0.

1.7.16 Since ∆ > 0

X > z ⇒ Y = X + ∆ > z.

Hence, P (X > z) ≤ P (Y > z).

1.7.19 Since f(x) is symmetric about 0, ξ.25 < 0. So we need to solve,

∫ ξ.25

−2

(
−x

4

)
dx = .25.

The solution is ξ.25 = −
√

2.

Copyright ©2013 Pearson Education. Inc.
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6 Probability and Distributions

1.7.20 For 0 < y < 27,

x = y1/3,
dx

dy
=

1

3
y−2/3

g(y) = =
1

3y2/3

y2/3

9
=

1

27
.

1.7.22

f(x) =
1

π
,

−π
2

< x <
π

2
.

x = arctany,
dx

dy
=

1

1 + y2
, −∞ < y <∞.

g(y) =
1

π

1

1 + y2
, −∞ < y <∞.

1.7.23

G(y) = P (−2 log X4 ≤ y) = P (X ≥ e−y/8) =

∫ 1

e−y/8

4x3 dx = 1 − e−y/2, 0 < y <∞

g(y) = G′(y) =

{
e−y/2 0 < y <∞
0 elsewhere.

1.7.24

G(y) = P (X2 ≤ y) = P (−√
y ≤ X ≤ √

y)

=





∫√
y

−√
y

1
3 dx =

2
√

y

3 0 ≤ y < 1
∫√

y

−1
1
3 dx =

√
y

3 + 1
3 1 ≤ y < 4

g(y) =





1
3
√

y 0 ≤ y < 1

1
6
√

y 1 ≤ y < 4

0 elsewhere.

1.8.4

E(1/X) =

100∑

x=51

1

x

1

50
.

The latter sum is bounded by the two integrals

∫ 101

51
1
x dx and

∫ 100

50
1
x dx.

An appropriate approximation might be

1

50

∫ 101.5

50.5

1

x
dx =

1

50
(log 100.5− log 50.5).

Copyright ©2013 Pearson Education. Inc.

Download more from Learnclax.com



7

1.8.6

E[X(1 −X)] =

∫ 1

0

x(1 − x)3x2 dx.

1.8.8 When 1 < y <∞

G(y) = P (1/X ≤ y) = P (X ≥ 1/y) =

∫ 1

1/y

2xdx = 1 − 1

y2

g(y) =
2

y3

E(Y ) =

∫ ∞

1

y
2

y3
dy = 2, which equals

∫ 1

0 (1/x)2xdx.

1.8.10 The expectation of X does not exist because

E(|X |) =
2

π

∫ ∞

0

x

1 + x2
dx =

1

π

∫ ∞

1

1

u
du = ∞,

where the change of variable u = 1 + x2 was used.

1.9.2

M(t) =

∞∑

x=1

(
et

2

)x

=
et/2

1 − (et/2)
, et/2 < 1.

Find E(X) = M ′(0) and Var(X) = M ′′(0) − [M ′(0)]2.

1.9.4
0 ≤ var(X) = E(X2) − [E(X)]2.

1.9.6

E

[(
X − µ

σ

)2
]

=
1

σ2
σ2 = 1.

1.9.8

K(b) = E[(X − b)2] = E(X2) − 2bE(X) + b2

K ′(b) = −2E(X) + 2b = 0 ⇒ b = E(X).

1.9.11 For a continuous type random variable,

K(t) =

∫ ∞

−∞
txf(x) dx.

K ′(t) =

∫ ∞

−∞
xtx−1f(x) dx ⇒ K ′(1) = E(X).

K ′′(t) =

∫ ∞

−∞
x(x − 1)tx−2f(x) dx ⇒ K ′′(1) = E[X(X1)];

and so forth.

Copyright ©2013 Pearson Education. Inc.
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8 Probability and Distributions

1.9.12

3 = E(X − 7) ⇒ E(X) = 10 = µ.

11 = E[(X − 7)2] = E(X2) − 14E(X) + 49 = E(X2) − 91

⇒ E(X2) = 102 and var(X) = 102 − 100 = 2.

15 = E[(X − 7)3]. Expand (X − 7)3 and continue.

1.9.16

E(X) = 0 ⇒ var(X) = E(X2) = 2p.

E(X4) = 2p⇒ kurtosis = 2p/4p2 = 1/2p.

1.9.17

ψ′(t) = M ′(t)/M(t) ⇒ ψ′(0) = M ′(0)/M(0) = E(X).

ψ′′(t) =
M(t)M ′′(t) −M ′(t)M ′(t)

[M(t)2]

⇒ ψ′′(0) =
M(0)M ′′(0) −M ′(0)M ′(0)

[M(0)2]
= M ′′(0) − [M ′(0)]2 = var(X).

1.9.19

M(t) = (1 − t)−3 = 1 + 3t+ 3 · 4 t
2

2!
+ 3 · 4 · 5 t

3

3!
+ · · ·

Considering the coefficient of tr/r!, we have

E(Xr) = 3 · 4 · 5 · · · (r + 2), r = 1, 2, 3 . . . .

1.9.20 Integrating the parts with u = 1 − F (x), dv = dx, we get

{[1 − F (x)]x}b
0 −

∫ b

0

x[−f(x)] dx =

∫ b

0

xf(x) dx = E(X).

1.9.23

E(X) =

∫ 1

0

x
1

4
dx+ 0 · 1

4
+ 1 · 1

2
=

5

8
.

E(X2) =

∫ 1

0

x2 1

4
dx+ 0 · 1

4
+ 1 · 1

2
=

7

12
.

var(X) =
7

12
−
(

5

8

)2

=
37

192
.

1.9.24

E(X) =

∫ ∞

−∞
x[c1f1(x) + · · · + ckfk(x)] dx =

k∑

i=1

ciµi = µ.

Copyright ©2013 Pearson Education. Inc.
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Because
∫∞
−∞(x− µ)2fi(x) dx = σ2

i + (µi − µ)2, we have

E[(X − µ)2] =

k∑

i=1

ci[σ
2
i + (µi − µ)2].

1.10.2

µ =

∫ ∞

0

xf(x) dx ≥
∫ ∞

2µ

2µf(x) dx = 2µP (X > 2µ).

Thus 1
2 ≥ P (X > 2µ).

1.10.4 If, in Theorem 1.10.2, we take u(X) = exp{tX} and c = exp{ta}, we have

P (exp{tX} ≥ exp{ta}] ≤M(t) exp{−ta}.

If t > 0, the events exp{tX} ≥ exp{ta} and X ≥ a are equivalent. If t < 0,
the events exp{tX} ≥ exp{ta} and X ≤ a are equivalent.

1.10.5 We have P (X ≥ 1) ≤ [1− exp{−2t}]/2t for all 0 < t <∞, and P (X ≤ −1) ≤
[exp{2t} − 1]/2t for all −∞ < t < 0. Each of these bounds has the limit 0 as
t→ ∞ and t→ −∞, respectively.

Copyright ©2013 Pearson Education. Inc.
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Chapter 2

Multivariate Distributions

2.1.2

P (A5) =
7

8
− 4

8
− 3

8
+

2

8
=

2

8
.

2.1.5

∫ ∞

0

∫ ∞

0

[
2g(
√
x2

1 + x2
2)/π

√
x2

1 + x2
2

]
dx1dx2 =

∫ ∞

0

∫ π/2

0

[2g(ρ)/πρ]ρ dθdρ

=

∫ ∞

0

g(ρ) dρ = 1.

2.1.6

G(z) = P (X + Y ≤ z) =

∫ z

0

∫ z−x

0

e−x−y dydx

=

∫ z

0

[1 − e−(z−x)]e−x dx = 1 − e−z − ze−z.

g(z) = G′(z) =

{
ze−z 0 < z <∞
0 elsewhere.

2.1.7

G(z) = P (XY ≤ z) = 1 −
∫ 1

z

∫ 1

z/x

dydx

= 1 −
∫ 1

z

(
1 − z

x

)
dx = z − z log z

g(z) = G′(z) =

{
− log z 0 < z < 1
0 elsewhere.

Why is − log z > 0?

11
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12 Multivariate Distributions

2.1.8

f(x, y) =





(13
x )(13

y )( 26
13−x−y)

(52
13)

x ≥ 0, y ≥ 0, x+ y ≤ 13, x and y integers

0 elsewhere.

2.1.10

P (X1 +X2 ≤ 1) = 15

∫ 1/2

0

x2
1

[∫ 1−x1

x1

x2 dx2

]
dx1.

2.1.14

E
[
et1X1+t2X2

]
=

∞∑

i=1

∞∑

j=1

et1i+t2j

(
1

2

)i+j

=

∞∑

i=1

(
et1

1

2

)i ∞∑

j=1

(
et1

1

2

)j

=

[
1

1 − 2−1et1
− 1

] [
1

1 − 2−1et2
− 1

]
,

provided ti < log 2, i = 1, 2.

2.2.1

p(y1, y2) =

{ (
2
3

)y2
(

1
3

)2−y2
(y1, y2) = (0, 0), (−1, 1), (1, 1), (0, 2)

0 elsewhere.

2.2.2

p(y1, y2) =

{
y1/36 y1 = y2, 2y2, 3y2; y2 = 1, 2, 3
0 elsewhere.

y1 1 2 3 4 6 9

p(y1) 1/36 4/36 6/36 4/36 12/36 9/36

2.2.4 The inverse transformation is given by x1 = y1y2 and x2 = y2 with Jacobian
J = y2. By noting what the boundaries of the space S(X1, X2) map into, it
follows that the space T (Y1, Y2) = {(y1, y2) : 0 < yi < 1, i = 1, 2}. The pdf of
(Y1, Y2) is fY1,Y2(y1, y2) = 8y1y

3
2 .

2.2.5 The inverse transformation is x1 = y1 − y2 and x2 = y2 with Jacobian J = 1.
The space of (Y1, Y2) is T = {(y1, y2) : −∞ < yi < ∞, i = 1, 2}. Thus the
joint pdf of (Y1, Y2) is

fY1,Y2(y1, y2) = fX1,X2(y1 − y2, y2),

which leads to formula (2.2.1).

Copyright ©2013 Pearson Education. Inc.
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2.3.2

(a) c1

∫ x2

0

x1/x
2
2 dx1 =

c1
2

= 1 ⇒ c1 = 2 and c2 = 5.

(b) 10x1x
2
2, 0 < x1 < x2 < 1; zero elsewhere

(c)

∫ 1/2

1/4

2x1/(5/8)2 dx =
64

25

(
1

4
− 1

16

)
=

12

25
.

(d)

∫ 1/2

1/4

∫ 1

x1

10x1x
2
2 dx2dx1 =

∫ 1/2

1/4

10

3
x1(1 − x3

1) dx1 =
135

512
.

2.3.3

f2(x2) =

∫ x2

0

21x2
1x

3
2 dx1 = 7x6

2, 0 < x2 < 1.

f1|2(x1|x2) = 21x2
1x

3
2/7x

6
2 = 3x2

1/x
3
2, 0 < x1 < x2.

E(X1|x2) =

∫ x2

0

x1(3x
2
1/x

3
2) dx1 =

3

4
x2.

G(y) = P

(
3

4
X2 ≤ y

)
=

∫ 4y/3

0

7x6
2 dx2 =

(
4y

3

)7

, 0 < y <
3

4

g(y) =

{
7
(

4
3

)7
y6 0 < y < 3

4
0 elsewhere.

E(Y ) =
7

8

3

4
=

21

32
.

Var(Y ) =
7

1024
.

E(X1) =
21

32
.

Var(X1) =
553

15360
>

7

1024
.

2.3.8 The marginal pdf of X is

fX(x) = 2

∫ ∞

x

e−xe−y dy = 2e−2x, 0 < x <∞.

Hence, the conditional pdf of Y given X = x is

fY |X(y|x) =
2e−xe−y

2e−2x
= e−(y−x), 0 < x < y <∞,

with conditional mean

E(Y |X = x) =

∫ ∞

x

ye−(y−x) dy = x+ 1, x > 0.
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14 Multivariate Distributions

2.3.9 For Part (c):

(
13

x2

)(
13

x3

)(
13

2 − x2 − x3

)
/

(
39

2

)
, where integers x2, x3 ≥ 0 and x2 + x3 ≤ 2.

2.3.11

(a) f1(x1)f2|1(x2|x1) = 1 · 1

x1
, 0 < x2 < x1 < 1.

(b)

∫ 1

1/2

∫ x1

1−x1

1

x1
dx2dx1 =

∫ 1

1/2

2x1 − 1

x1
dx1 = 2(1/2) + log (1/2) = 1 − log 2.

2.3.12

(b)

∫ ∞

2

e−x dx/

∫ ∞

1

e−x dx = e−2/e−1 = e−1.

2.4.1 For Part (c):

cov = (0)(0)(1/3) + (1)(1)(1/3) + (2)(0)(1/3) − (1)(1/3) = 0.

Thus ρ = 0 and yet X and Y are dependent.

2.4.3
ρ2 = (1/2)(1/2) = 1/4 ⇒ ρ = 1/2.

2.4.7
h(v) = var(X) + 2vcov(X,Y ) + v2var(Y ) ≥ 0,

for all v. Hence, the discriminant of this quadratic must satisfy b2 − 4ac ≤ 0
which yields

[2cov(X,Y )]2 − 4var(X)var(Y ) ≤ 0.

Equivalently,
ρ2 = [cov(X,Y )]2/var(X)var(Y ) ≤ 1.

2.4.11 Let Y = (X1 − µ1) + (X2 − µ2). Then the mean of Y is 0 and its variance is

Var(Y ) = Var(X1 +X2) = σ2 + σ2 + 2ρσ2 = 2σ2(1 − ρ).

Use Chebyshev’s inequality to obtain the result.

2.5.2 X1 and X2 are dependent because 0 < x1 < x2 <∞ is not a product space.

2.5.4 Because X1 and X2 are independent, the probability equals

[∫ 1/3

0

2x1 dx1

][∫ 1/3

0

2(1 − x2) dx2

]
= (1/3)2[1 − (2/3)2] = 5/81.
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2.5.7 The marginal pdf of X1 is given by

fX1(x1) =

∫ −2+
√

1−(x1−1)2

−2−
√

1−(x1−1)2

1

π
dx2 =

2

π

√
1 − (x1 − 1)2, 0 < x < 2.

The random variables X1 and X2 are not independent.

2.5.8 X and Y are dependent because 0 < y < x < 1 is not a product space.

E(X |y) =

∫ 1

y

x[2x/(1 − y2)] dx =
2(1 − y2)

3(1 − y2)
.

2.5.9

P (X + Y ≤ 60) = P (X ≤ 10) +

∫ 20

10

∫ 60−x

40

1

300
dy dx

=
1

3
+

∫ 20

10

(20 − x)/300 dx =
1

3
+

1

6
=

1

2
.

2.5.12

P (|X1 −X2| = 1) = P (X1 = 0, X2 = 1) + P (X1 = 1, X2 = 0)

= P (X1 = 0)P (X2 = 1) + P (X1 = 1)P (X2 = 0) =
1

3
.

2.6.1 For Part (g):

E(X |y, z) =

∫ 1

0

x
3(x+ y + z)/2

3((1/2) + y + z)/2
dx =

(1/3) + (y/2) + (z/2)

(1/2) + y + z
.

2.6.3

G(y) = 1 − P (y < Xi, i = 1, 2, 3, 4) = 1 − [(1 − y)3]4 = 1 − (1 − y)12

g(y) = G′(y) =

{
12(1 − y)11 0 < y < 1
0 elsewhere.

2.6.6 Multiply both members of E[X1 − µ1|x2, x3] = b2(x2 − µ2) + b3(x3 − µ3)
by the joint pdf of X2 and X3 and denote the result by (1). Multiply both
members of (1) by (x2 − µ2) and integrate (or sum) on x2 and x3. This gives
(2), ρ12σ1σ2 = b2σ

2
2 + 3ρ23σ1σ2. Return to (1) and multiply each member by

(x3 − µ3) and integrate (or sum) on x2 and x3. This yields (3) ρ13σ1σ3 =
b2ρ23σ2σ3 + b3σ

2
3 . Solve (2) and (3) for b2 and b3.

2.6.9

(a)

∫ ∞

0

∫ ∞

x1

e−x1−x2 dx2 dx1 /

∫ ∞

0

∫ ∞

x1/2

e−x1−x2 dx2 dx1

+

∫ ∞

0

e−2x1 dx1 /

∫ ∞

0

e−3x1/2 dx1 =
1

2

2

3
=

3

4
.
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16 Multivariate Distributions

2.7.1
x1 = y1y2y3, x2 = y2y3 − y1y2y3, x3 = y3 − y2y3.

with J = y2y
2
3 , and 0 < y1 < 1, 0 < y2 < 1, 0 < y3 <∞. This yields

g(y1, y2, y3) = y2y
2
3e

−y3 = (1)(2y2)(y
2
3e

−y3/2) = g1(y1)g2(y2)g3(y3).

2.7.2
x1 =

√
y, x2 = −√

y and Ji = 1
2
√

y , i = 1.2.

This yields

g(y) =
1

2

(
1

2
√
y

)
+

1

2

(
1

2
√
y

)
=

1

2
√
y
, 0 < y < 1.

2.7.5 The inverse transformation is x1 = y1y3

1+y1
, x2 = y3

1+y1
, and x3 = y2y3, with

space yi > 0, i = 1, 2, 3. The Jacobian is

J =

∣∣∣∣∣∣

y3

(1+y1)2
0 y1

1+y1−y3

(1+y1)2
0 1

1+y1

0 y3 y2

∣∣∣∣∣∣
=

[
y2
3

(1 + y1)3
+

y1y
2
3

(1 + y1)3

]
=

y2
3

(1 + y1)2
.

2.7.8 Expanding M(t) we get

M(t) =

(
3

4

)2

e0 + 2

(
3

4

)(
1

4

)
et +

(
1

4

)2

e2t.

From this, we immediately get the probabilities

P (X = 0) =
(

3
4

)2
, P (X = 1) = 2

(
3
4

) (
1
4

)
and P (X = 2) =

(
1
4

)2
.

2.8.2 Note that

µ1 = E(Xi) =

∫ 1

0

2x2 dx =
2

3
x3

∣∣∣∣
1

0

=
2

3

E(X2
i ) =

∫ 1

0

2x3 dx =
2

4
x4

∣∣∣∣
1

0

=
1

2

So

σ2 =
1

2
− 4

9
=

1

18
.

Hence,

E(Y ) =
4∑

i=1

E(Xi) =
8

3

V (Y ) =
4∑

i=1

V (Xi) =
4

18
,

where we used the independence of X1, . . . , X4 to establish the variance of Y .
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2.8.4 By independence

E(X1X2) = E(X1)E(X2) = µ1µ2

E(X2
1X

2
2 ) = E(X2

1 )E(X2
2 ) = (σ2

1 + µ2
1)(σ

2
2 + µ2

2).

So,
V (X1X2) = (σ2

1 + µ2
1)(σ

2
2 + µ2

2) − µ2
1µ

2
2,

which simplifies to the answer.

2.8.8 Because in these cases, the correlation coefficient is never influenced by the
means, let µ1 = µ2 = 0. Then

cov(X,Z) = E[X(X − Y )] = E(X2) = σ2
1

ρ = σ2
1/
√
σ2

1(σ2
1 + σ2

2) = σ1/
√
σ2

1 + σ2
2 .

2.8.11

cov(W,Z) = E[(aX + b− aµ1 − b)(cY + d− cµ2 − d)]

= acE[(X − µ1)(Y − µ2)] = acρσ1σ2

correlation coef. =
acρσ1σ2√
a2c2σ2

1σ
2
2

= ρ.

2.8.13

cov(X1X2, X1) = E[(X1X2 − µ1µ2)(X1 − µ1)]

= (µ2
1 + σ2

1)µ2 − µ2
1µ2 − µ2

1µ2 + µ2
1µ2 = σ2

1µ2.

2.8.15 Without loss of generality, let the means equal zero

cov(Y, Z) = (0.3 + 0.5 + 1.0 + 0.2)σ2 = 2σ2,

Answer = 2σ2/
√

[1 + 2(0.3) + 1]σ2[1 + 2(0.2) + 1]σ2 =
2√

(2.6)(2.4)
= 0.801.

2.8.17 Again let µ1 = µ2 = 0.

covE{X [Y − ρ(σ2/σ1)X ]} = ρσ1σ2 − ρ(σ2/σ1)σ
2
1 = 0.

2.8.18 The function g(x) = x2 is strictly convex. Hence, by Jensen’s inequality,

(E(S))2 < E(S2),

which leads to E(S) < σ.
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Chapter 3

Some Special Distributions

3.1.2 Since n = 9 and p = 1/3, µ = 3 and σ2 = 2. Hence, µ − 2σ = 3 − 2
√

2 and
µ+ 2σ = 3 + 2

√
2 and P (µ− 2σ < X < µ+ 2σ) = P (X = 1, 2, . . . , 5).

3.1.3

E

(
X

n

)
=

1

n
E(X) =

1

n
(np) = p

E

[(
X

n
− p

)2
]

=
1

n2
E[(X − np)2] =

np(1 − p)

n2
=
p(1 − p)

n
.

3.1.4 p = P (X > 1/2) =
∫ 1

1/2 3x2 dx = 7
8 and n = 3. Thus

(
3
2

) (
7
8

)2 ( 1
8

)
= 147

512 .

3.1.6 P (Y ≥ 1) = 1− P (Y = 0) = 1 − (3/4)n ≥ 0.70. That is, 0.30 ≥ (3/4)n which
can be solved by taking logarithms.

3.1.9 Assume X and Y are independent with binomial distributions b(2, 1/2) and
b(3, 1/2), respectively. Thus we want

P (X > Y ) = P (X = 1, 2 and Y = 0) + P (X = 2 and Y = 1)

=

[(
2

1

)(
1

2

)2

+

(
2

2

)(
1

2

)2
][(

1

2

)3
]

+

[(
1

2

)2
]

+

[
3

(
1

2

)3
]
.

3.1.11

P (X ≥ 1) = 1 − (1 − p)2 = 5/9 ⇒ (1 − p)2 = 4/9

P (Y ≥ 1) = 1 − (1 − p)4 = 1 − (4/9)2 = 65/81.

3.1.12 Let f(x) denote the pmf which is b(n, p). Show, for x ≥ 1, that f(x)/f(x−1) =
1 + [(n + 1)p − x]/x(1 − p). Then f(x) > f(x − 1) if (n + 1)p > x and
f(x) < f(x − 1) if (n + 1)p < x. Thus the mode is the greatest integer
less than (n + 1)p. If (n + 1)p is an integer, there is no unique mode but
f [(n+ 1)p] = f [(n+ 1)p− 1] is the maximum of f(x).

19

Copyright ©2013 Pearson Education. Inc.

Download more from Learnclax.com



20 Some Special Distributions

3.1.14

P (X ≥ 3) = (1/3)(2/3)3 + (1/3)(2/3)4 + · · · =
(1/3)(2/3)3

1 − (2/3)
= (2/3)3.

p(x|X ≥ 3) =
(1/3)(2/3)x

(2/3)3
= (1/3)(2/3)x−3, x = 3, 4, 5, . . .

3.15
5!

2!1!2!

(
3

6

)2(
2

6

)(
1

6

)2

.

3.1.16 M(t) =
∑∞

y=0

(
y+r−1

r−1

)
pr[(1 − p)et]y = pr[1 − (1 − p)et]−r, because the sum-

mation equals pr(1 − w)−r, where w = (1 − p)et.

3.1.18 (
5

5

)(
1

2

)5

/

[(
5

4

)(
1

2

)5

+

(
5

5

)(
1

2

)5
]

=
1

6
,

which is much different than 1/2 that some might have arrived at by letting
4 coins be heads and tossing the fifth coin.

3.1.19 [
7!

2!1! · · · 1!

(
1

6

)7
]

/

[
7!

2!5!

(
1

6

)2(
5

6

)5
]

=
5!

1! · · · 1!

(
1

5

)5

.

3.1.21

(a) E(X2) =

5∑

x1=1

x1∑

x2=0

[
x2

(
x1

x2

)(
1

2

)x1
]
x1

15
=

5∑

x1=1

x1

2

x1

15
=

11

6
.

(b) f2|1(x2|x1) is b(x1, 1/2) ⇒ E(X2|x1) = x1/2.

(c) E(x1/2) = 11/6.

3.1.22

p1 = 6(1/6)3 = 1/36, p2 = 6 · 5 · 3 · (1/6)3 = 15/36.

Thus X and Y are trinomial (n = 10, p1 = 1/36, p2 = 15/36). cov(X,Y ) =
−np1p2. Thus E(XY ) = −np1p2 + np1np2 = 25/24.

3.1.25 Use the mgf technique and independence to get

E[et(X1−X2+n2)] = E[etX1 ]E[e−tX2 ]etn2

=

(
1

2
+

1

2
et

)n1
(

1

2
+

1

2
e−t

)n2

etn2

=

(
1

2
+

1

2
et

)n1+n2

.
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3.1.27 Part (b): D = 100, so

P [X ≥ 2] = 1 − P [X ≤ 1]

= 1 −
(
100
0

)(
900
10

)
(
1000
10

) −
(
100
1

)(
900
9

)
(
1000
10

) = 0.2637.

Part (c): For the binomial approximation for Part (b), p = 0.10 and n = 10;
hence,

P [X ≥ 2] = 1 − P [X ≤ 1]

≈ 1 − 0.910 −
(

10

1

)
.11.99 = 0.2639.

3.2.1
e−µµ

1!
=
e−µµ2

2!
⇒ µ = 2 and P (X = 4) = e−224

4! .

3.2.4 Given p(x) = 4p(x−1)/x, x = 1, 2, 3, . . .. Thus p(1) = 4p(0), p(2) = 42p(0)/2!,
p(3) = 43p(0)/3!. Use induction to show that p(x) = 4xp(0)/x!. Then

1 =

∞∑

x=0

p(x) = p(0)

∞∑

x=0

4x/x! = p(0)e4 and p(x) = 4xe−4/x!, x = 0, 1, 2, . . . .

3.2.6 For x = 1,Dw[g(1, w)]+λg(1, w) = λe−λw. The general solution toDw[g(1, w)]+
λg(1, w) = 0 is g(1, w) = ce−λw. A particular solution to the full differential
equation is λwe−λw . Thus the most general solution is

g(1, w) = λwe−λw + ce−λw.

However, the boundary condition g(1, 0)requires that c = 0. Thus g(1, w) =
λwe−λw. Now assume that the answer is correct for x = −1, and show that
it is correct for x by exactly the same type of argument used for x = 1.

3.2.8

P (X ≥ 2) = 1 − P (X = 0 or X = 1) = 1 − [e−µ + e−µµ] ≥ 0.99.

Thus 0.01 ≥ (1+µ)e−µ. Solve by trying several values of µ using a calculator.

3.2.10
k∑

x=0

e−33x

x!
≥ 0.99.

From tables, k = 8.

3.2.11 e−µµ
1! = e−µµ3

3! requires µ2 = 6 and µ =
√

6. Since e−
√

6(
√

6)2

2! = 3e−
√

6 >
e−

√
6
√

6
1! , x = 2 is the mode.
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22 Some Special Distributions

3.2.12
E(X !) =

∑∞
x=0 x!

e−1

x! =
∑∞

x=0 e
−1 does not exist.

3.2.13 For Part (a),

M(t1, t2) =

∞∑

y=0

y∑

x=0

et1x+t2y e−2

x!(y − x)!

=

∞∑

y=0

[
y∑

x=0

y!

x!(y − x)!

(
et1
)x
]
e−2et2y

y!

=

∞∑

y=0

e−2[(1 + et1)et2 ]y

y!

= e−2 exp[(1 + et1)et2 ].

3.3.1
(1 − 2t)−6 = (1 − 2t)−12/2 ⇒ X is χ2(12).

From tables, P (X < 5.23) = 0.05.

3.3.4

M(t) = 1 +
2!2t

1!
+

3!22t2

3!
+

4!23t3

3!
+ · · ·

= 1 + 2(2t) + 3(2t)2 + 4(2t)3 + · · ·
= (1 − 2t)−2 = (1 − 2t)−4/2,

so X is χ2(4).

3.3.6 Part (a):

Part(a) : P (Y ≤ y) = 1 − [P (X > y)]3 = 1 − (e−y)3 = 1 − e−3y = G(y).

g(y) = G′(y) = 3e−3y, 0 < y <∞.

3.3.7 f ′(x) = 1
β2 e

−x/β + 1
β2xe

−x/β(−1/β) = 0; hence, x = β which is given as 2.

Thus X is χ2(4).

3.3.9
P (X ≥ 2αβ) ≤ e−2αβt(1 − βt)−α,

for all t < 1/β. The minimum of the right side, say K(t), can be found by

K ′(t) = e−2αβt(αβ)(1 − βt)−α−1 + e−2αβt(−2αβ)(1 − βt)−α = 0

which implies that

(1 − βt)−1 − 2 = 0 and t = 1/2β.

That minimum is

K(1/2β) = e−α(1 − (1/2))−α = (2/e)α.
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3.3.10 If r = 0, M(t) = 1 = e(0)t, which is the mgf of a degenerate distribution at
x = 0.

3.3.14 The differential equation requires

log g(0, w) = −kwr + c.

The boundary condition g(0, 0) = 1 imlies that c = 0. Thus g(0, w) =
exp{−kwr} and G(w) = 1 − exp{−kwr} and

G′(w) = krwr−1 exp{−kwr}, 0 < w <∞.

3.3.15 The joint pdf of X and the parameter is

f(x|m)g(m) =
e−mmx

x!
me−m, x = 0, 1, 2, . . . , 0 < m <∞

P (X = 0, 1, 2) =

2∑

x=0

∫ ∞

0

mx+1e−2m

x!
dm =

2∑

x=0

Γ(x+ 2)(1/2)x+2

x!

=

2∑

x=0

(x+ 1)(1/2)x+2 =
1

4
+

2

8
+

3

16
=

11

16
.

3.3.16

G(y) = P (Y ≤ y) = P (−2 log X ≤ y) = P (X ≥ exp{−y/2})

=

∫ 1

exp{−y/2}
(1) dx = 1 − exp{−y/2}, 0 < y <∞

g(y) = G′(y) = (1/2) exp{−y/2}, 0 < y <∞;

so Y is χ2(2).

3.3.17 f(x) = 1/(b− a), a < x < b, has respective mean and variance of

a+b
2 = 8 and (b−a)2

12 = 16.

Solve for a and b.

3.3.18

E(X) =
Γ(α+ β)Γ(α + 1)Γ(β)

Γ(α)Γ(β)Γ(α + β + 1)
=

α

α+ β
.

E(X2) =
Γ(α+ β)Γ(α + 2)Γ(β)

Γ(α)Γ(β)Γ(α + β + 2)
=

(α+ 1)α

(α+ β + 1)(α+ β)
.

σ2 = E(X2) − [E(X)]2 =
αβ

(α+ β)2(α+ β + 1)
.
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3.3.20

1 = c

∫ 3

o

x(3 − x)4 dx. Let x = 3y, dx
dy = 3.

1 = c

∫ 1

0

(3y)(3 − 3y)43 dy = 36c
Γ(2)Γ(5)

Γ(7)
; so c = 6 · 5/36 = 10/35.

3.3.21 If α = β, show that f
(

1
2 + z

)
= f

(
1
2 − z

)
.

3.3.22 Note that

Dz

[
−

k−1∑

w=0

(
n

w

)
zw(1 − z)n−w

]
=

n!

(k − 1)!(n− k)!
zk−1(1 − z)n−k.

3.3.26 (a). Using the mean value theorem, we have

r(x) = lim
∆→0

P (x ≤ X < x+ ∆)

∆P (X ≥ x)
= lim

∆→0

f(ξ)∆

∆(1 − F (x))
,

where ξ → x as ∆ → 0. Letting ∆ → 0, we then get the desired result.

(d) The pdf of X is

fX(x) = exp
{c
b
(1 − ebx)

}
cebx,

from which the desired result follows.

3.4.1 In the integral for Φ(−z), let w = −v and it follows that Φ(−z) = 1 − Φ(z).

3.4.4

P

(
X − µ

σ
<

89 − µ

σ

)
= 0.90

P

(
X − µ

σ
<

94 − µ

σ

)
= 0.95.

Thus 89−µ
σ = 1.282 and 94−µ

σ = 1.645. Solve for µ and σ.

3.4.5

c2−x2

= ce−x2 log 2 = c exp

{
− (2 log 2)x2

2

}
.

Thus if c = 1/[
√

2π
√

1/(2 log 2)], we would have a N(0, 1/(2 log 2)) distribu-
tion.

3.4.6

E(|X − µ|) = 2

∫ ∞

µ

(x− µ)
1√
2πσ

e−(x−µ)2/2σ2

dx

= 2

[ −σ√
2π

exp
{
−(x− µ)2/2σ2

}]∞

µ

= σ

√
2

π
.
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3.4.8

∫ 3

2

exp{−(x− 3)2/2(1/4)} dx =
√

2π
√

1/4

∫ 3

2

1√
2π
√

1/4
exp{−(x− 3)2/2(1/4)} dx

=

√
π

2

[
Φ

(
3 − 3

1/2

)
− Φ

(
2 − 3

1/2

)]
=

√
π

2

[
1

2
− Φ(−2)

]
.

3.4.10 Of course, X is N(3, 16).

3.4.12

P
[
0.0004 < (X−5)2

10 < 3.84
]

and (X−5)2

10 is χ2(1),

so, the answer is 0.95 − 0.05 = 0.90.

3.4.13

P (1 < X2 < 9) = p(−3 < X < −1) + P (1 < X < 3)

=

[
Φ

(−1 − 1

2

)
− Φ

(−3 − 1

2

)]
+

[
Φ

(
3 − 1

2

)
− Φ (0)

]
.

3.4.15

M(t) = 1 + 0 +
2!/(2)1!

2!
t2 + 0 +

4!/(22)2!

4!
t4 + · · ·

= 1 +
t2/2

1!
+

(t2/2)2

2!
+ · · · = exp{t2/2};

so X is N(0, 1).

3.4.20

lim
σ2→0

[
exp

{
µt+

σ2t2

2

}]
= exp{µt},

which is the mgf of a degenerate distribution at x = µ.

3.4.22 ∫ b

−∞
yf(y)/F (b) dy = −f(b)/F (b).

Multiply both sides by F (b) then differentiate both sides with respect to b.
This yields,

bf(b) = f ′(b) and −(b2/2) + c = log f(b).

Thus

f(b) = c1e
−b2/2,

which is the pdf of a N(0, 1) distribution.
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26 Some Special Distributions

3.4.25 Using W = ZI1−ǫ + σcz(1 − I1−ǫ), the independence of Z and I1−ǫ, and
I2
1−ǫ = I1−ǫ, we get

E(W ) = 0(1 − ǫ) + σc0[1 − (1 − ǫ)] = 0

Var(W ) = E(W 2)

= e[Z2I2
1−ǫ + 2σcZ

2I1−ǫ(1 − I1−ǫ) + σ2
cZ

2(1 − I1−ǫ)
2]

= (1 − ǫ) + σ2
c [1 − (1 − ǫ)],

which is the desired.

3.4.26 If R or SPLUS is available, the code on page 168, i.e.,

(1-eps)*pnorm(w)+eps*pnorm(w/sigc)

evaluates the contaminated normal cdf with parameters eps and sigc. Using
R, the probability asked for in Part (d) is

> eps = .25

> sigc = 20

> w = -2

> w2 = 2

> (1-eps)*pnorm(w)+eps*pnorm(w/sigc)

+ (1-(1-eps)*pnorm(w2)-eps*pnorm(w2/sigc))

[1] 0.2642113

3.4.28 Note X1 −X2 is N(−1, 2). Thus

P (X1 −X2 > 0) = 1 − Φ(1/
√

2) = 1 − Φ(0.707).

3.4.30 The distribution of the sum Y is N(43, 9), so

P (Y < 40) = Φ

(
40 − 43

3

)
= Φ(−1).

3.5.1 For Part (b),

E(Y |x = 3.2) = 110 + (0.6)
10

0.4
(3.2 − 2.8) = 116.

Var(Y |x = 3.2) = 100(1 − 0.36) = 64

Answer = Φ

(
124 − 116

8

)
− Φ

(
106 − 116

8

)
= Φ(1) − Φ(−1.25).

3.5.3

∂ψ

∂t2
=

∂M(t1, t2)

∂t2
/M(t1, t2)

∂2ψ

∂t1∂t2
=

[
M(t1, t2)

∂2M(t1, t2)

∂t1∂t2
− ∂M(t1, t2)

∂t2

∂M(t1, t2)

∂t1

]
/M(t1, t2)

2

∂2ψ

∂t1∂t2

∣∣∣∣
t1=t2=0

=
∂2M(0, 0)

∂t1∂t2
− ∂M(0, 0)

∂t1

∂M(0, 0)

∂t2
,
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because M(0, 0) = 1. This is the covariance.

3.5.5 Because E(Y |x = 5) = 10 + ρ(5/1)(5− 5) = 10, this probability requires that

16−10

5
√

1−ρ2
= 2, 9

25 = 1 − ρ2, and ρ = 4
5 .

3.5.8 f1(x) =
∫∞
−∞ f(x, y) dy = (1/

√
2π) exp{−x2/2}, because the first term of

the integral is obviously equal to the latter expression and the second term
integrates to zero as it is an odd function of y. Likewise

f2(y) =
1√
2π

exp{−y2/2}.

Of course, each of these marginal standard normal densities integrates to one.

3.5.9 Similar to 3.5.8 as the second term of
∫ ∞

−∞
f(x, y, z) dx

equals zero because it is an integral of an odd function of x.

3.5.10 Write

Z = [ a b ]

[
X
Y

]
.

Then apply Theorem 3.5.1.

3.5.14 [
Y1

Y2

]
=

[
3 1 −2
1 −5 1

]
=



X1

X2

X3


 = BX.

Evaluate Bµ and BVB′.

3.5.16 Write

(X1 +X2, X1 −X2) =

[
1 1
1 −1

] [
X1

X2

]
.

Then apply Theorem 3.5.1.

3.5.21 This problem requires statistical software which at least returns the spectral
decomposition of a matrix. The following is from an R output where the
variable amat contains the matrix Σ.

> sum(diag(amat))

[1] 1026 Total Variation

> eigen(amat)

$values

[1] 925.36363 60.51933 25.00226 15.11478 The first eigen value
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28 Some Special Distributions

is the variance of the

first principal component.

$vectors First column is the

first principal component.

[,1] [,2] [,3] [,4]

[1,] -0.5357934 0.1912818 0.7050231 -0.4234138

[2,] -0.4320336 0.7687151 -0.3416228 0.3251431

[3,] -0.5834990 -0.4125759 -0.5727115 -0.4016360

[4,] -0.4310468 -0.4497438 0.2413252 0.7441044

> 925.36363/1026

[1] 0.9019139 Over 90%

3.6.8 Since F = U/r1

V/r2
, then 1

F = V/r2

U/r1
, which has an F -distribution with r2 and r1

degrees of freedom.

3.6.10 Note

T 2 = W 2/(V/r) = (W 2/1)/(V/r).

Since W is N(0, 1), then W 2 is χ2(1), Thus T 2 is F with one and r degrees
of freedom.

3.6.12 The change-of-variable technique can be used. An alternative method is to
observe that

Y =
1

1 + (U/V )
=

V

V + U
,

where V and U are independent gamma variables with respective parameters
(r2/2, 2) and (r1/2, 2). Hence, Y is beta with α = r2/2 and β = r1/2.

3.6.13 Note that the distribution of Xi is Γ(1, 1). It follows that the mgf of Yi = 2Xi

is

MYi(t) = (1 − 2t)−2/2, t < 1/2.

Hence 2Xi is distributed as χ2(2). Since X1 and X2 are independent, we have
that

X1

X2
=

2X1/2

2X2/2

has an F -distribution with ν1 = 2 and ν2 = 2 degrees of freedom.

3.6.14 For Part (a), the inverse transformation is x1 = (y1y2)/(1 + y1) and x2 =
y2/(1 + y1). The space is yi > 0, i = 1, 2. The Jacobian is J = y2/(1 + y1)

2.
It is easy to show that the joint density factors into two positive functions,
one of which is a function of y1 alone while the other is a function y2 alone.
Hence, Y1 and Y2 are independent.
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3.7.3 Recall from Section 3.4, that we can write the random variable of interest as

X = IZ + 3(1 − I)Z,

where Z has a N(0, 1) distribution, I is 0 or 1 with probabilities 0.1 and 0.9,
respectively, and I and Z are independent. Note that E(X) = 0 and the
variance of X is given by expression (3.4.13); hence, for the kurtosis we only
need the fourth moment. Because I is 0 or 1, Ik = I for all positive integers
k. Also I(I − 1) = 0. Using these facts, we see that

E(X4) = .9E(Z4) + 34(.1)E(Z4) = E(Z4)(.9 + (.i)34).

Use expression (1.9.1) to get E(Z4).

3.7.4 The joint pdf is

fX,θ(x, θ) = θ(1 − θ)x−1 Γ(α+ β)

Γ(α)Γ(β)
θα−1(1 − θ)β−1.

Integrating out θ, we have

fX(x) =

∫ 1

0

Γ(α+ β)

Γ(α)Γ(β)
θα+1−1(1 − θ)β+x−1−1 dθ

=
Γ(α+ β)Γ(α + 1)Γ(β + x− 1)

Γ(α)Γ(β)Γ(α + β + x)
.

3.7.7 Both the pdf and cdf of the Pareto distribution are given on page 193 of the
text. Their ratio (h(x)/(1 −H(x))), quickly gives the result.

3.7.10 Part (b). The joint pdf of X and α is given by

fX,α(x, α) =
ατxτ−1

(1 + βxτ )α+1
e−α/β.

Integrating out α, we have

fX(x) =
τxτ−1

1 + βxτ

∫ ∞

0

e−α[log(1+βxτ )+(1/β)] dα

=
τxτ−1

1 + βxτ
[log(1 + βxτ ) + (1/β)]−1, x > 0.
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Chapter 4

Some Elementary Statistical

Inferences

4.1.1 Parts (b), (c), and (d).

(b) The likelihood function is

L(θ) =

n∏

i=1

(
1

θ

)
e−xi/θ = θ−ne−

Pn
i=1 xi/θ.

Hence,

l(θ) = −n log θ − 1

θ

n∑

i=1

xi.

So,

∂l(θ)

∂θ
=

−n
θ

+
1

θ2

n∑

i=1

xi,

resulting in the mle θ̂ = X. For the data in this problem, the estimate
of θ is 101.15.

(c) Since the cdf F (x) = 1−e−x/θ, the population median is ξ where ξ solves
the equation e−x/θ = 1/2; hence, ξ = θ log 2. The sample median is an
estimator of ξ. For the data set of this problem, the sample median is
55.5.

(d) Because the mle of θ is X , the mle of the population median is X log 2.
For the data of this problem, this estimate is 101.15 log2 = 70.11.

4.1.2 Parts (c) and (d). The parameter of interest is

Part (c) Using the binomial model, the estimate of P (X > 215) is

p̂b =
#{xi > 215}

26
=

7

26
= 0.2692.

31
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32 Some Elementary Statistical Inferences

Part (d) Under the normal probability model, the parameter of interest is

p = P (X > 215) = P

(
Z >

215 − µ

σ

)

p = 1 − Φ

(
215 − µ

σ

)
.

Because X and σ̂2 = n−1
∑n

i=1(Xi − X)2 are the mles of µ and σ2,
respectively, the mle of p is

p̂N = 1 − Φ

(
215 −X

σ̂

)
.

For the data in this problem, x = 201 and σ̂ = 17.144. Hence, a cal-
culation using a computer package or using the normal tables results in
p̂N = 0.2701 as the mle estimate of p.

4.1.5 Parts (a) and (b).

Part (a). Using conditional expectation we have

P (X1 ≤ Xi, i = 2, 3, . . . , j) = E[P (X1 ≤ Xi, i = 2, 3, . . . , j|X1)]

= E[(1 − F (X1))
j−1]

=

∫ 1

0

uj−1 du = j−1,

where we used the fact that the random variable F (X1) has a uniform(0, 1)
distribution.

Part (b). In the same way, for j = 2, 3, . . .

P (Y = j − 1) = P (X1 ≤ X2, . . . , X1 ≤ Xj−1, Xj > X1)

= E[(1 − F (X1))
j−2F (X1)] =

∫ 1

0

uj−2(1 − u) du

=
1

j(j − 1)
.

4.1.6 It follows that

E[p̂(aj)] =
1

n

n∑

i=1

E[Ij(Xi)] =
1

n

n∑

i=1

P [Xi = aj ]

=
1

n

n∑

i=1

p(aj) = p(aj).

Hence, the estimator is unbiased. Using independence, its variance is

V [p̂(aj)] =
1

n2

n∑

i=1

V [Ij(Xi)] =
1

n2

n∑

i=1

{p(aj)[1 − p(aj)]}

=
p(aj)[1 − p(aj)]

n
.
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4.1.8 If X1, . . . , Xn are iid with a Poisson distribution having mean λ, then the
likelihood function is

L(λ) =

n∏

i=1

e−λλ
xi

xi!
= e−nλ λ

Pn
i=1 xi

∏n
i=1 xi!

.

Taking the partial of the log of this likelihood function leads to x as the mle
of λ. Hence, the mle of the pmf at k is

p̂(k) = e−xx
k

k!

and the mle of P (X ≥ 6) is

̂P (X ≥ 6) = e−x
∞∑

k=6

xk

k!
.

For the data set of this problem, we obtain x = 2.1333. Using R, the mle of
P (X ≥ 6) is 1 - ppois(5, 2.1333) = 0.0219. Note, for comparison, from
the tabled data, that the nonparametric estimate of this probability is 0.033.

4.1.11 Note in this part of the example that x is fixed and by the Mean Value
Theorem that ξ is such that x−h < ξ < x+h and F (x+h)−F (x−h) = 2hf(ξ).

Part(a) The mean of the estimator is

E[f̂(x)] =
1

2hn

n∑

i=1

E[Ii(x)] =
1

2hn

n∑

i=1

[F (x+ h) − F (x− h)]

=
n2hf(ξ)

2hn
= f(ξ).

Hence, the bias of the estimate is f(ξ) − f(x) which goes to 0 as h→ 0.

Part (b) Since Ii(x) is a Bernoulli indicator, the variance of the estimator is

V [f̂(x)] =
1

4h2n2

n∑

i=1

[F (x+ h) − F (x− h)][1 − [F (x+ h) − F (x− h)]]

=
f(ξ)[1 − 2hf(ξ)]

2hn
.

Note for this variance to go to 0 as h → 0 and n → ∞, h must be of
order nδ for δ > −1.

4.2.7 1 = (1.645)(3/
√
n);

√
n = 4.935;n = 24.35; so take n = 25.

4.2.10 (a). X ± 1.96σ/
√

9, length = (2)(1.96)σ/3 = 1.31σ.
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(b). X ± 2.306S/
√

8, length = (2)(2.306)S/
√

8. Since

E(S) = (σ/
√
n)

∫ ∞

0

w1/2w
4−1e−w/2

Γ(4)24
dw

= (σ/
√

9)
Γ(9/2)29/2

Γ(4)24
=
σ(7/2)(5/2)(3/2)(1/2)Γ(1/2)

√
2

3 · 3 · 2 · 1

=
35

√
2πσ

(6)(16)
= (0.914)σ,

= E(length) =
[
(2)(2.306)(0.914)/

√
8
]
σ = 1.49σ.

4.2.11
(X−Xn+1)/

√
σ2/n+σ2√

(nS2/σ2)/(n−1)
=
√

n−1
n+1

X−Xn+1

S is T (n− 1).

P (−1.415 <
√

7
9

(
X−Xn+1

S

)
< 1.415) = 0.80, or equivalently,

P (X − 1.415
√

9/7S < Xn+1 < X + 1.415
√

9/7S) = 0.80

4.2.13 c1(µ) = µ− 2σ/
√
n < X < µ+ 2σ/

√
n = c2(µ)

is equivalent to
d1(X) = X − 2σ/

√
n < µ < X + 2σ/

√
n = d2(X).

4.2.14
−2 < 5X/2β − 10 < 2,

8 < 5X/2β < 12,
5X
24 < β < 5X

16 .

4.2.16 y
n ± 1.645

√
(y/n)(1−y/n)

n

2(1.645)
√

(y/n)(1−y/n)
n ≤ 2(1.645)

√
(1/2)(1/2)

n = 0.02
1.645

2(0.01) =
√
n;n ≈ 7675.

4.2.18 (c). Use the fact that
∑

(Xi − µ)2/σ2 is χ2(n).

4.2.19 E[exp{t(2X/β)}] = [1 − β(2t/β)]−3 = (1 − 2t)−6/2.
Since 2X/β is χ2(6), 2

∑
Xi/β is χ2(6n). Using tables for χ2(6n), find a and

b such that
P
(
a < 2

∑
Xi/β < b

)
= 0.95

or, equivalently,

P

(
2
∑
Xi

b
< β <

2
∑
Xi

a

)
= 0.95.

4.2.23 Use the fact that

P

[
−1.96 <

X − Y − (µ1 − µ2)√
σ2

1/n+ σ2
2/m

< 1.96

]
= 0.95

and solve the inequalities so that µ1 − µ2 is in the middle.
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4.2.24 Say Z is the N(0, 1) random variable used in 6.32. Thus

Z√
nS2

1/σ2
1+mS2

2/σ2
2

n+m−2

is T (n+m− 2).

However, the unknown variances cannot be eliminated from the expression as
can be when σ2

1 = σ2
2 but unknown. But if σ2

1 = kσ2
2 , k known, then that

ratio can be written (replacing σ2
1 by kσ2

2) without involving the unknown σ2
2 .

It still has a t-distribution with n+m− 2 degrees of freedom.

4.2.26 The distribution ofX is N(µ1, σ
2/n) and the distribution of Y is N(µ2, σ

2/n).
Because the samples are independent the distribution of X − Y is N(µ1 −
µ2, 2σ

2/n). After some algebra, the equation to solve for n can be written as

P

[∣∣∣∣
(X − Y ) − (µ1 − µ2)

σ/
√
n

∣∣∣∣ <
√
n

5

]
= 0.90,

which is equivalent to

P

[
|Z| <

√
n

5

]
= 0.90,

where Z has a N(0, 1) distribution. Hence,
√
n/5 = 1.645 or n = 67.65, i.e.,

n = 68.

4.3.1 Note that
∫ p

0

n!

(k − 1)!(n− k)!
zk−1(1 − z)n−k dz +

∫ 1

p

n!

(k − 1)!(n− k)!
zk−1(1 − z)n−k dz

=

n∑

w=0

(
n

w

)
pw(1 − p)n−w.

Then using Exercise 3.3.22 we have the result, i.e.,

∫ p

0

n!

(k − 1)!(n− k)!
zk−1(1 − z)n−k dz+ =

n∑

w=k

(
n

w

)
pw(1 − p)n−w.

4.3.4 For Part (a), use Exercise 3.3.5 or reason as follows. Let Wn be the waiting
time until the nth event. Then Wn > 1 if and only if at most n − 1 events
occurred in the the interval (0, 1]. Since Wn has a Γ(n, 1/λ) distribution, we
have

λn

Γ(n)

∫ ∞

1

xn−1e−xλ dx =

n−1∑

j=0

e−λλ
j

j!
.

In the integral, make the substitution z = xλ. This results in the identity

1

Γ(n)

∫ ∞

λ

zn−1e−z dx =

n−1∑

j=0

e−λλ
j

j!
.

For Part(b), replace n by nx+ 1 and replace λ by nθ which yields the result.
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4.4.2 Part (b). The cdf and its inverse are

F (x) =
1

1 + e−x
, −∞ < x <∞

F−1(u) = log

[
1 − u

u

]
, 0 < u < 1.

Hence, ξ.25 = log(.25/.75) = −1.099. Because the pdf is symmetric about 0,
ξ.75 = 1.099. Thus h = 1.5(ξ.75 − ξ.25) = 3.296. Thus, the upper inner fence
is ξ.75 + h = 4.395 and the probability of a potential outlier is

2[1 − F (4.395)] = 0.0244.

4.4.5 The cdf of the Y4 is

P (Y4 ≤ t) = (1 − e−t)4, t > 0.

Hence, P (Y4 ≥ 3) = 1 − (1 − e−3)4 = 0.1848.

4.4.7 Since the distribution is of the discrete type, we cannot use the formulas in
the book. However,

P (Y1 = y1) = P (all ≥ y1) − P (all ≥ y1 + 1)

=

(
7 − y1

6

)5

−
(

6 − y1
6

)5

.

4.4.9 Here F (x) = x, 0 ≤ x ≤ 1. Thus, using the Remark,

gk(yk) =
n!

(k − 1)!(n− k)!
yk−1

k (1 − yk)n−k(1), 0 < yk < 1,

which is beta (α = k, β = n− k + 1).

4.4.11 The distribution of the range Y4 − Y1 could be found. An alternative method
is

P (Y4 − Y1 < 1/2) = 1 −
∫ 1/2

0

∫ 1

y1+1/2

12(y4 − y1)
2 dy4 dy1.

4.4.12 y1 = z1z2z3, y2 = z2z3, y3 = z3, with J = z2z
2
3 , 0 < z1 < 1, 0 < z2 < 1, 0 <

z3 < 1. Accordingly,

g(z1, z2, z3) = 3! 2(z1z2z3) 2(z2z3) 2(z3)z2z
2
3

= (2z1)(4z
3
2)(6z5

3), 0 < zi < 1, i = 1, 2, 3.

4.4.13 P (2Y1 < Y2) =
∫ 1/2

0

∫ 1

2y1
8(1 − y1)(1 − y2) dy2 dy1.
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4.4.15 (a).

E(Y1) =

∫ ∞

−∞

∫ y2

−∞
y1

(
2

2πσ2

)
exp

{
−y

2
1 + y2

2

2σ2

}
dy1 dy2

=

( −2

2πσ2

)∫ ∞

−∞
σ2 exp

{
− 2y2

2

2σ2

}
dy2 =

(−1

π

)√
2πσ2/2 = −σ/

√
π.

4.4.17

F (x) = x2, 0 ≤ x < 1.

g34(y3, y4) =
4!

2!
(y2

3)
2(2y3)(2y4), 0 < y3 < y4 < 1.

g4(y4) = 4(y2
4)

3(2y4) = 8y7
4, 0 < y4 < 1.

g3|4(y3|y4) = 6y5
3/y

6
4 , 0 < y3 < y4.

E(Y3|y4) = (6/7)y4.

4.4.18 To form a triangle, we must have y1 < 1−y1, y2−y1 < y1+(1−y2), 1−y2 < y2.

That is, y1 < 1/2, y2 > 1/2, y2−y1 < 1/2; so answer =
∫ 1/2

0

∫ 1/2+y1

1/2
2 dy2 dy1 =

1
4 .

4.4.19

g(u, v) = (2u)(3v2)(1) + (2v)(3u2)(1)

= 6uv(v + u), 0 < u < v < 1,

since each Jacobian is equal to one.

4.4.21 (a). Since Y10 is greater than 9 other Y values, a10 = 9. Since Y9 is greater
than 8 others but smaller than one, a9 = 7. And so on. Thus,

G = (9Y10 + 7Y9 + 5Y8 + 3Y7 + Y6 − Y5 − 3Y4 − 5Y3 − 7Y2 − 9Y1)/45.

(b). It follows from Exercise 3.4.6 that E(|Xi −Xj |) = 2σ/
√
π, and G is the

mean of
(
n
2

)
such absolute differences. Thus E(G) = 2σ/

√
π.

4.4.22 (a). y1 = z1/n, y2 = z2/(n− 1) + z1/n, y3 = z3/(n− 2) + z2/(n− 1) + z1/n,
etc., which has J = 1/n!. Moreover, 0 < y1 < y2 < · · · < yn < ∞ maps
onto 0 < zi <∞, i = 1, 2, . . . , n. Thus

g(z1, z2, . . . , zn) =

(
1

n!

)
(n!e−z1−z2−···−zn) = e−z1−z2−···−zn .

That Z1, Z2, . . . , Zn are independent, each with an exponential distribu-
tion.
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4.4.24 Let F (x) denote the common cdf of the sample. Then ξ0.9 = F−1(0.9). The
solution to the desired inequality is

1 − (F (ξ0.9))
n ≥ 0.75

1 − F (F−1(0.9)))n ≥ 3

4

1 − 0.9n ≥ 3

4

n log(0.9) ≤ 1

4

n ≥ − log(4)

log(0.9)
= 13.14.

Hence, take n = 14.

4.4.27
∑n−1

w=1

(
n
w

)(
1
2

)n
= 1 − 2

(
1
2

)n ≥ 0.99; 0.01 ≥ 1
2n−1 ; n = 8.

4.4.28 (a). It follows from Exercise 3.4.6 that E(Y1) = µ− σ/
√
π. So E(Y2 − Y1) =

2σ/
√
π ≈ 1.13σ.

(b). X ± (0.65)σ/
√

2 is a 50 percent confidence interval for µ with length
(0.65)

√
2σ = 0.92σ.

4.5.3 For a general θ the probability of rejecting H0 is

γ(θ) =

∫ 1

3/4

∫ 1

3/4x1

θ2(x1x2)
θ−1 dx2 dx1 = 1 −

(
3

4

)θ

+ θ

(
3

4

)θ

log

(
3

4

)

γ(1) is the significance level and γ(2) is the power when θ = 2.

4.5.5 (1/2)2 exp{−(x1+x2)/2}
exp{−(x1+x2)} ≤ 1

2 ; 1
4 exp{(x1 + x2)/2} ≤ 1

2 . So x1 + x2 ≤ 2 log 2

describes the critical region.

4.5.8

γ(θ) = P (X ≥ c; θ) = P

(
X − θ

5000/
√
n
≥ c− θ

5000/
√
n

; θ

)

= 1 − Φ

(
c− θ

5000/
√
n

)
.

Thus, solve for n and c knowing that

c− 30000

5000/
√
n

= 2.325 and
c− 35000

5000/
√
n

= −2.05.

4.5.10

γ(p) = P (Y ≥ c; p) = P

(
Y − np√
np(1 − p)

≥ c− np√
np(1 − p)

; p

)

≈ 1 − Φ

(
c− np√
np(1 − p)

)
.
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So solve for n and c knowing that approximately

c− n(1/2)√
n(1/2)(1/2)

= 1.282,
c− n(2/3)√
n(2/3)(1/3)

= −1.645.

4.5.12 Let Y =
∑8

i=1Xi. Then Y has a Poisson(8µ) distribution.

Part (a). The significance level of the test is

α = PH0 [Y ≥ 8] = P [Poisson(4) ≥ 8] = 0.051.

Part (b). The power function is

γ(µ) = Pµ[Y ≥ 8] = P [Poisson(8µ) ≥ 8].

Part (c). γ(0.75) = 0.256.

4.6.2 Suppose µ > µ0. Then

∣∣∣∣
√
n(µ0 − µ)

σ
+ zα/2

∣∣∣∣ <
∣∣∣∣
√
n(µ0 − µ)

σ
− zα/2

∣∣∣∣ .

Hence,

φ

(∣∣∣∣
√
n(µ0 − µ)

σ
+ zα/2

∣∣∣∣
)
> φ

(∣∣∣∣
√
n(µ0 − µ)

σ
− zα/2

∣∣∣∣
)
.

Because φ(t) is symmetric about 0, φ(t) = φ(|t|). This observation plus the
last inequality shows that γ′(µ) is increasing, (for µ > µ0). Likewise for
µ < µ0, γ

′(µ) is decreasing.

4.6.3 Under H0, the statistic t = (X − µ0)/(S/
√
n) has a t-distribution with n− 1

degrees of freedom. Hence,

PH0 [|t| > tα/2,n−1] = α.

4.6.5 (a). The critical region is

t =
x− 10.1

s/
√

15
≥ 1.753.

The observed value of t,

t =
10.4 − 10.1

0.4/
√

15
= 2.90,

is greater than 1.753 so we reject H0.

(b). Since t0.005(15) = 2.947 (from other tables), the approximate p-value of
this test is 0.005.
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4.6.7 Assume that Y and Y are normally distributed. Then the t-statistic

t =
X − Y

Sp

√
(1/n1) + (1/n2)

has under H0 a t-distribution with n1 + n2 − 2 degrees of freedom. A level α
test for the alternative HA : µ1 < µ2 is

Reject H0 in favor of HA, if t < −tα,n1+n2−2.

For Part (b), based on the data we have,

s2p =
(13 − 1)25.62 + (16 − 1)28.32

27

sp =
√
s2p = 27.133

t =
72.9 − 81.7

27.133
√

(1/13) + (1/16)
= −0.8685.

Since t = −0.8685 6< −t.05,27 = −1.703, we fail to reject H0 at level 0.05. The
p-value is P [t(27) < −0.8685] = 0.1964.

4.6.8 For Parts (a) - (c):

Part (a) H0 : p = 0.14; H1 : p > 0.14;

Part (b) C = {z : z ≥ 2.326} where z = y/n−0.14√
(0.14)(0.86)/n

;

Part (c) z = 104/590−0.14√
(0.14)(0.86)/590

= 2.539 > 2.326

so H0 is rejected and conclude that the campaign was successful.

4.7.1 p10 =
∫ 1/2

0
2−x

2 dx = 1
2 − 1

16 = 7
16 .

Likewise p20 = 5/16, p30 = 3/16, p40 = 1/16.

Q3 = (30−35)2

35 + (30−25)2

25 + (10−15)2

15 + (10−15)2

5 = 8.38.
However, 8.38 > 7.81 so we reject H0 at α = 0.05.

4.7.3 Q5 = (b−20)2

20 + (40−b−20)2

20 = (b−20)2

10 = 12.8,
which is the 97.5 percentile of a χ2(5) distribution. Thus (b− 20)2 = 128 and
b = 20 ± 11.3. Hence b < 8.7 or b > 31.3 would lead to rejection.

4.7.7 The maximum likelihood statistic for p is defined by that value of p which
maximizes

n!

x1!x2!x3!
[p2]x1 [2p(1 − p)]x2 [(1 − p)2]x3 ;

it is p̂ = (2X1 +X2)/(2X1 +2X2 +2X3). Thus if p̂1 = p̂2, p̂2 = 2p̂(1− p̂), and

p̂3 = (1 − p̂)2, the random variable
∑3

1(Xi − np̂i)
2/np̂i has an approximate

chi-square distribution with 3 − 1 − 1 = 1 degree of freedom.
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4.7.8 The expected value of each cell is 15; thus the chi-square statistic equals

4(3k)2

15
+

4(k)2

15
=

40k2

15
≥ 12.6,

which is the 95th percentile of a χ2(6) distribution. Thus k >
√

(3/8)(12.6) =
2.17. So k = 3.

4.8.1 Suppose 0 < z < 1. Then

P (Z ≤ z) = P [F (X) ≤ z] = P [X ≤ F−1(z)] = F [F−1(z)] = z.

Hence, Z has a uniform (0, 1) distribution.

4.8.3 Note that

1.96

∫ 1.96

0

1√
2π

exp

{
−1

2
u2

}
1

1.96
du = 1.96E

[
1√
2π

exp

{
−1

2
U2

}]
,

where U has a uniform distribution on (0, 1.96). The following R-code draws
10,000 variates Zi = 1.96 1√

2π
exp

{
− 1

2U
2
i

}
where Ui are iid with a common

uniform distribution on (0, 1.96). A 95% confidence interval for mean of Zi is
obtained. Notice that it does trap the true mean µ = 0.475.

> u = runif(10000,0,1.96)

> z = 1.96*(1/sqrt(2*pi))*exp(-u^2/2)

> mean(z)

[1] 0.4750519 *** Estimate of mu

> se = var(z)^.5/sqrt(10000)

> se

[1] 0.002225439 *** standard error of estimation

> cil = mean(z) - 1.96*se

> ciu = mean(z) + 1.96*se

> cil

[1] 0.4706901 *** Lower limit of CI

> ciu

[1] 0.4794138 *** Upper limit of CI

4.8.5 The cdf of the logistic distribution is

F (x) =
1

1 + e−x
, −∞ < x <∞.

To determine the inverse of this function, set u = 1/(1 + e−x) and then solve
for x. After some algebra, we get

F−1(u) = log
u

1 − u
.

Hence, if U is uniform (0, 1) then log[U/(1−U)] has a logistic distribution with
cdf F (x). The following R function returns a random sample of n observations
from this logistic distribution:
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rlogist = function(n){

u = runif(n)

rlogist = log(u/(1-u))

rlogist

}

4.8.7 First show that the cdf of the Laplace distribution is given by

F (t) =

{
1
2e

t −∞ < t < 0
1 − 1

2e
−t 0 < t <∞.

Then show that the inverse of the cdf is

F−1(u) =

{
log(2u) 0 < u < 1

2
− log(2 − 2u) 1

2 < u < 1.

Hence, if U is uniform(0, 1) then F−1(U) has the Laplace pdf (5.2.9). The
following R-code generates n observations from this Laplace distribution.

> uni = runif(n)

> x=rep(0,n)

> x[uni<.5]=log(2*uni[uni<.5])

> x[uni>=.5]=-log(2-2uni[uni>=.5])

4.8.10 By a simple change of variable (z = x3/θ3) in its integrand (pdf), the cdf is

F (t) = 1 − exp

{
t3

θ3

}
, t > 0.

Its inverse is given by

F−1(u) = −θ[log(1 − u)]1/3, 0 < u < 1.

Hence, if U has a uniform (0, 1) distribution then F−1(U) has the Weibull
distribution.

4.8.12 The logistic cdf corresponding to the pdf given in expression (4.4.9) is F (x) =
1/(1 + e−x), −∞ < x < ∞. Its inverse function is F−1(u) = log[u/(1 − u)],
0 < u < 1. Hence, if U1, U2, . . . , U20 is a random sample of size 20 from the
uniform (0, 1) distribution then X1, X2, . . . , X20, where Xi = F−1(Ui), is a
random sample of size 20 from this logistic distribution. Use this and the
algorithm given on page 267.

4.8.17 By simple differentiation the derivative of the ratio is

Dx = −x exp

{
−x

2

2

}
(x2 − 1).

hence, ±1 are critical values. The second derivative is

Dxx = exp

{
−x

2

2

}
(x4 − 4x2 + 1).

Notice that it is negative at ±1; hence, ±1 are minimums.
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4.8.18 Parts (a) and (b).

Part(a) Note that F (x) = xβ , which has the inverse function F−1(u) = u1/β.

Part(b) There are many accept-reject algorithms to generate observations from
this distribution. One such algorithm is to take Y to have a uniform (0, 1)
distribution and M = β. Then it follows that f(x) ≤ Mg(x), because
0 < x < 1 and β > 1. The following R function returns n observations
from this distribution based on this accept-reject algorithm.

rpareto = function(n,beta){

ic = 0

x = rep(0,n)

while(ic <= n){

u1 = runif(1)

u2 = runif(1)

chk = u1^(beta-1)

if(u2 <= chk){

ic = ic + 1

x[ic] = u1

}

}

x

}

.

4.8.21 If W = U2 + V 2 > 1 the algorithm begins anew. So suppose W < 1.
Note that X1 and X2 are functions of U and V . So first we get the
conditional distribution of U and V given U2 + V 2 < 1. But this is
easily seen to be a uniform distribution over the unit circle. Hence, the
conditional pdf of (U, V ) is

fU,V |W<1(u, v|w < 1) =
1

π
, u2 + v2 < 1.

Now transform to polar coordinates. Let

u = rsinθ, 0 < θ < 2π,

v = rcosθ, 0 < r < 1.

The partials are
∂u
∂r = sinθ ∂u

∂θ = rcosθ
∂v
∂r = cosθ ∂v

∂θ = −rsinθ.
It follows that the Jacobian is r. Hence, the conditional pdf of R,Θ given
W < 1 is

fR,Θ|W<1(r, θ|w < 1) =
1

π
r, 0 < θ < 2π, 0 < r < 1. (4.0.1)
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Now transform to X1 and X2, which gives

x1 = rsinθ

[
−4

log r

r2

]1/2

, −∞ < x1 <∞,

x2 = rcosθ

[
−4

log r

r2

]1/2

, −∞ < x2 <∞.

For the inverse transform, note that

x2
1 = r2sin2θ

[
−4

log r

r2

]

x2
2 = r2cos2θ

[
−4

log r

r2

]
,

which leads to x2
1 + x2

2 = −4 log r or

r = exp

{
−1

4
(x2

1 + x2
2)

}
. (4.0.2)

For θ, note that x1/x2 = tanθ, or

θ = tan−1

(
x1

x2

)
. (4.0.3)

Taking partials, we get the Jacobian

J =

∣∣∣∣
−2x1

4 r −2x2

4 r
x2

r2
−x1

r2

∣∣∣∣ =
r

2
. (4.0.4)

Putting (4.0.1), (4.0.2) and (4.0.4) together, we have the pdf of X1 and
X2, (note, by the algorithm, this is the unconditional pdf of X1 and X2),

fX1,X2(x1, x2) =
1

π
exp

{
−1

2
(x2

1 + x2
2)

}
, −∞ < x1 <∞, −∞ < x2 <∞.

Thus, X1 and X2 are iid N(0, 1) random variables.

4.9.1 (a). This follows immediately because the sampling is with replacement.

(b).

E(x∗i ) =

n∑

j=1

xj
1

n
= x.

(c). Although a discrete distribution we do have

P [x∗i < x((n+1)/2)] =
n− 1

2n
= P [x∗i > x((n+1)/2)].
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4.9.3 (a). The median ξ0.5 solves

1 − e−ξ0.5/β =
1

2
,

or ξ0.5 = β log 2.

(b). The following R-function produces the bootstrap percentile confidence
interval:

percentcimed<-function(x,b,alpha){

#

theta<-median(x)

thetastar<-rep(0,b)

n<-length(x)

for(i in 1:b){xstar<-sample(x,n,replace=T)

thetastar[i]<-median(xstar)

}

thetastar<-sort(thetastar)

pick<-round((alpha/2)*(b+1))

lower<-thetastar[pick]

upper<-thetastar[b-pick+1]

list(theta=theta,lower=lower,upper=upper,thetasta=thetastar)

#list(theta=theta,lower=lower,upper=upper)

}

Below is the output of a 90% confidence interval based on 1000 boot-
straps. Note the the confidence interval did trap the true value in this
case.

$theta

[1] 67.6

$lower

[1] 32.25

$upper

[1] 126.8

truemed = 100*log2

> 100*log(2)

[1] 69.31472

4.9.5 The following R-code gives a function which returns the confidence interval
defined in expression (4.9.13).

prob595bs<-function(x,b,alpha){

#
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theta<-mean(x)

stan <- var(x)^.5

n = length(x)

teestar<-rep(0,b)

n<-length(x)

for(i in 1:b){xstar<-sample(x,n,replace=T)

teestar[i] = (mean(xstar) - theta)/(var(xstar)^.5/sqrt(n))

}

teestar<-sort(teestar)

pick<-round((alpha/2)*(b+1))

lower0<-teestar[pick]

upper0<-teestar[b-pick+1]

lower = theta - upper0*(stan/sqrt(n))

upper = theta - lower0*(stan/sqrt(n))

list(theta=theta,lower=lower,upper=upper,teestar=teestar)

#list(theta=theta,lower=lower,upper=upper)

}

The results for data in Example 4.9.3 based on 1000 bootstraps are:

> temp=prob595bs(x,1000,.10)

> temp$theta

[1] 90.59

> temp$lower

[1] 63.67547

> temp$upper

[1] 129.4924

4.9.7 Here are the results from a Minitab run on the data of Example 4.9.2:

TWOSAMPLE T FOR C2 VS C1

N MEAN STDEV SE MEAN

C2 15 117.7 18.6 4.8

C1 15 111.1 20.4 5.3

95 PCT CI FOR MU C2 - MU C1: ( -8.0, 21.2)

TTEST MU C2 = MU C1 (VS GT): T= 0.93 P=0.18 DF= 28

POOLED STDEV = 19.5

where the data are in C1 and C2.
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4.9.10

E[z∗] =

n∑

i=1

(xi − x+ µ0)
1

n
= µ0.

Var[z∗] =

n∑

i=1

(xi − x+ µ0 − µ0)
1

n
= µ0.

=

n∑

i=1

(xi − x)2
1

n
.

4.9.13 The paired test is a one sample test based on the paired differences. So the
bootstrap test discussed on page 280 can be used. In this case a bootstrap
sample consists of a sample drawn with replacement from the observations
di = (xi − yi) − (x − y), i = 1, 2, . . . , n. The following R function performs
this bootstrap:

pairsbs2=function(x,y,nb){

d = x-y - mean(x)+mean(y)

n=length(d)

ts = mean(x) - mean(y)

tsstar = rep(0,nb)

pval = 0

for(i in 1:nb){dstar = sample(d,n,replace=T)

tsstar[i] = mean(dstar)

if(tsstar[i]>= ts) pval = pval + 1}

pval = pval/nb

list(teststat=ts,pval=pval,tsstar=tsstar)

}

Here are results of a run based on 10,000 bootstraps:

> temp=pairsbs2(x,y,10000)

> temp$teststat

[1] 2.62

> temp$pval

[1] 0.0062

4.10.1 F (Yn) − F (Y1) is distributed like V = F (Yn−1). So

P (V ≥ 0.5) =

∫ 1

0.5

n(n− 1)vn−2(1 − v) dv

= 1 − n(0.5)n−1 + (n− 1)(0.5)n ≥ 0.95.

That is, 0.05 ≥ n(0.5)n−1−(n−1)(0.5)n = (0.5)n(n+1) means that (by trial)
n = 9 is that smallest value.
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4.10.3 F (Y45) − F (Y4) is distributed as V = F (Y41). So

γ =

∫ 1

0.75

48!

40!7!
v40(1 − v)7 dv =

48∑

w=41

(
48

w

)
(0.75)w(0.25)48−w

≈ Φ

(
48.5 − 36

3

)
− Φ

(
40.5 − 36

3

)
.

4.10.4 (a). 1 − F (Yj) is distributed as V = F (Yn+1−j) which is beta (α = n+ 1 −
j, β = j).

(b). There are n− j+ i−1 coverages so it is distributed as V = F (Yn−j+i−1)
which is beta (α = n− j + i− 1, β = j − i+ 2),

4.10.5 These variables are distributed like U1 = F (Y2) = W2, U2 = F (Y6)−F (Y2) =
W6 −W2, where

g(w2, w6) =
10!

1! 3! 4!
w2(w6 − w2)

3(1 − w6)
4, 0 < w2 < w6 < 1.

Here w2 = u1, w6 = u1 + u2 with J = 1; so the joint pdf of U1 and U2 is

h(u1, u2) =
10!

1! 3! 4!
u1u

3
2(1 − u1 − u2)

4, 0 < u1, 0 < u2 and u1 + u2 < 1,

which is Dirichlet (α1 = 2, α2 = 4, α3 = 5).
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Chapter 5

Consistency and Limiting

Distributions

5.1.3 For all ǫ > 0,

P (|Wn − µ| ≥ ǫ) ≤ b

npǫ2
→ 0,

as n→ ∞.

5.1.5 Note that Yn ≥ t ⇔ Xi ≥ t, for all i = 1, 2, . . . , n. Hence, for t > θ, the fact
that X1, X2, . . . , Xn are iid implies

P (|Yn − θ| ≤ ǫ) = P (Y ≤ ǫ+ θ) = 1 − e−n(ǫ+θ−θ)

1 − e−nǫ → 1,

as n→ ∞.

5.1.7 The density of Yn is f(y) = n exp{−n(y − θ)} for y > θ. Hence,

E[Yn] = n

∫ ∞

θ

ye−n(y−θ) dy

=

∫ ∞

0

( z
n

+ θ
)
e−z dz

=
1

n

∫ ∞

0

z2−1e−z dz + θ

∫ ∞

0

e−z dz =
1

n
+ θ,

where the integral on the second line results from the substitution z = n(y−θ).
Based on this result Yn − 1

n is an unbiased estimate of θ.

49
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50 Consistency and Limiting Distributions

5.2.2

g1(y1) = ne−n(y1−θ), 0 < y1 <∞

z = n(y1 − θ) and
dy1
dz

=
1

n
,

hn(z) = e−z and Hn(z) = 1 − e−z, 0 < z <∞

lim
n→∞

Hn(z) =

{
1 − e−z 0 < z <∞
0 elsewhere.

5.2.4

g2(y2) = n(n− 1)F (y2)[1 − F (y2)]
n−2f(y2),−∞ < y2 <∞

w = nF (y2) ⇒
dy2
dw

=
1

nf(y2)
.

h(w) =
n− 1

n
w(1 − w/n)n−2, 0 < w < n

lim
n→∞

Hn(w) = lim
n→∞

∫ w

0

n− 1

n
z(1 − z/n)n−2 dz

=

∫ w

0

ze−z dz,

which is a Γ(2, 1) cdf.

5.2.5

Fn(y) =

{
0 y < n
1 n ≤ y.

lim
n→∞

Fn(y) = 0, −∞ < y <∞.

There is no cdf which equals this limit at every point of continuity.

5.2.7 limn→∞E(etXn/n) = limn→∞(1 − βt/n)−n = eβt, which is the mgf of a de-
generate distribution at β.

5.2.9

P

(
40 − 50

10
<
X − 50

10
<

60 − 50

10

)
≈ Φ(1) − Φ(−1).

5.2.10

(a)

60∑

x=56

(
60

x

)
(0.95)x(0.05)60−x.

(b) Y = 60 −X is b(n = 60, p = 0.05).

np = 3 and P (Y = 0, 1, 2, 3, 4) ≈ 0.815, from the Poisson Tables.
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5.2.11

lim
n→∞

E[et(Zn−n)/
√

n] = lim
n→∞

{e−tsqrtn exp[n(et/
√

n − 1)]}

= lim
n→∞

{
exp

[
−t/

√
n+ n

(
t/
√
n+

t2

2n
+

t3

6n3/2
− · · ·

)]}
.

= lim
n→∞

[
exp

(
t2

2
+

t3

6n1/2
· · ·
)]

= exp(t2/2),

which is the mgf of N(0, 1).

5.2.18 Note that Yn ≤ t ⇔ Xi ≤ t, for all i = 1, 2, . . . , n. Hence, for 0 < t, the fact
that X1, X2, . . . , Xn are iid implies

P (Yn ≤ t+ logn) = (P (X1 ≤ t+ logn))
n

=
[
1 − e−(t+log n)

]n

=

[
1 − e−t 1

n

]n

→ exp{−e−t},

as n→ ∞.

5.2.20 Using Stirling’s formula,

Γ((n+ 1)/2)√
n/2Γ(n/2)

≈
(

n
2 − 1

2

)n/2
e1/2

(
n
2

)1/2 (n
2 − 1

)(n/2)−(1/2)
e

=

{(
n− 1

n− 2

)n/2
}
e−1/2

{(
n− 2

n

)1/2
}
.

The last factor in braces goes to 1, as n → ∞. The first factor in braces can
be expressed as {[

1 +
1

n− 2

]n−2+2
}1/2

,

which converges to e1/2, as n→ ∞.

5.3.2

var(X) = (2)(42)/128 = 1/4 and E(X) = (2)(4) = 8;

P

(
7 − 8

1/2
<
X − 8

1/2
<

9 − 8

1/2

)
≈ Φ(2) − Φ(−2).

5.3.3

P (21.5 < Y < 28.5) ≈ Φ

(
28.5 − 24

4

)
− Φ

(
21.5 − 24

4

)
,

because E(Y ) = 24 and var(Y ) = 16.
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52 Consistency and Limiting Distributions

5.3.5
E(X) = 3.5 and var(X) = 35/12 ⇒ E(Y ) = 42 and var(Y ) = 35.

Hence,

P (35.5 < Y < 48.5) ≈ Φ

(
48.5 − 42√

35

)
− Φ

(
35.5 − 42√

35

)
.

5.3.7 Φ
(

50.5−50
5

)
− Φ

(
49.5−50

5

)
.

5.3.9 Here Y is b(72, p), where p =
∫ 3

1
(1/x2) dx = 2/3. So,

P (Y > 50) ≈ 1 − Φ

(
50.5 − 48

4

)
.

5.3.12

u(X) ≈ v(X) = u(µ) + u′(µ)(X),

var[v(X)] = [u′(µ)]2(µ/n) = c,

u′(µ) = c1/
√
µ, a solution is u(µ) = c2

√
µ.

Taking c2 = 1, we have u(X) =
√
X .

5.4.1 Assume that Xn
D→ Np(µ,Σ). Consider the sequence of random variables

{a′Xn}. Let t ∈ R. Then by the assumption,

E
[
et(a′Xn)

]
= E

[
e(ta)′Xn

]
→ exp{ta′µ +

1

2
t2(a′Σa)}.

Hence, the sequence of random variables {a′Xn} converges in distribution to
the N(a′µ,a′Σa) distribution. The converse is similar.

5.4.2 Immediate by Theorem 4.5.1.

5.4.5 Use mgfs. Then the result follows because the function exp{t′µ + 1
2t

′Σt} is
continuous in µ and Σ.
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Chapter 6

Maximum Likelihood

Methods

6.1.2 (b). L = e−
P

(xi−θ), provided θ ≤ xi; otherwise L = 0.
log L = −∑(xi−θ) and Dθ(log L) = n > 0. That is, log L is an increas-

ing function of θ provided θ ≤ xi, i = 1, 2, . . . , n. Thus θ̂ = min (Xi).

6.1.4 The likelihood simplifies to

L(θ) =
2n

θ2n

n∏

i=1

xiI(0 < xi ≤ θ).

But xi ≤ θ for all i = 1, . . . , n if and only if max1≤i≤n xi ≤ θ. hence, the
likelihood can be written as

L(θ) =
2n

θ2n
I(0 < max

1≤i≤n
xi ≤ θ)

n∏

i=1

xi.

Part(a) It is clear from the form of the likelihood that the maximum of L(θ)
occurs at the smallest value in the range of θ; hence, the mle of θ is
Y = max1≤i≤nXi.

Part(b) The cdf of Xi is FX(x) = x2/θ2. Hence, the cdf and pdf of Y are,
respectively,

FY (y) =
y2n

θ2n
, 0 < y ≤ θ

fY (y) =
2ny2n−1

θ2n
, 0 < y ≤ θ.

So

E(Y ) =

∫ θ

0

2ny2n

θ2n
dy =

2n

2n+ 1
θ.

So c = (2n+ 1)/(2n).

53
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54 Maximum Likelihood Methods

Part(c) The median is the value of x which solves x2/θ2 = (1/2), which is θ/
√

2.
The mle of the median is therefore Y/

√
2. Note that an unbiased estimate

of the median is [(2n+ 1)Y ]/[2n
√

2].

6.1.5 Since θ̂ = X and P (X ≤ 2) = 1 − e−2/θ, then

̂P (X ≤ 2) = 1 − e−2/X .

6.1.6

p̂ =
(6)(0) + (10)(1) + (14)(2) + (13)(3) + (6)(4) + (1)(5)

250

=
106

250
=

53

125

̂P (X ≥ 3) =

5∑

x=3

(
5

x

)
(p̂)x(1 − p̂)5−x, where p̂ = 53/125.

6.1.8 The mle is X. In terms of the summary data

x =
7(0) + 14(1) + 12(2) + 13(3) + 6(4) + 3(5)

7 + 14 + 12 + 13 + 6 + 3
= 2.109.

6.1.10 The log of the likelihood function is

l(θ) = K1 −K2Q(θ),

where K1 and K2 > 0 are constants and Q(θ) =
∑n

i=1(xi − θ)2. To maximize
l(θ), we must minimize Q(θ). In the unrestricted case Q(θ) is minimized at
x. In the restricted case, θ > 0. Hence, if x > 0 then the minimum occurs
at x. If x ≤ 0 then, because Q(θ) is a quadratic whose leading coefficient is
positive, the minimum occurs at 0.

6.2.2 ∂ log f(x;θ)
∂θ = −1

θ ; nE
[(−1

θ

)2]
= n

θ2 .

Also

E(Yn) =

∫ θ

0

(nyn/θn) dy =
n

n+ 1
θ,

Var(Yn) =
n

n+ 2
θ2 −

(
n

n+ 1

)2

θ2 =
nθ2

(n+ 2)(n+ 1)2
.

6.2.3

log f(x; θ) = − log π − log [1 + (x− θ)2],

∂ log f(x; θ)

∂θ
=

2(x− θ)

1 + (x− θ)2
,

I(θ) =

∫ ∞

−∞

4(x− θ)2

π[1 + (x− θ)2]3
dx =

∫ π/2

−π/2

4 tan2 z sec2 z

π[1 + tan2 z]3
dz
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by letting x− θ = tan z. Thus

I(θ) =

(
4

π

)∫ π/2

−π/2

cos2 z sin2 z dz =
4

π

∫ π/2

−π/2

(
1 + cos 2z

2

)(
1 − cos 2z

2

)
dz

=
1

π

∫ π/2

−π/2

[
1 −

(
1 + cos 4z

2

)]
dz =

1

2
−
∫ π/2

−π/2

cos 4z

2
dz =

1

2
.

Accordingly, 1/nI(θ) = 2/n.

6.2.6 The variance of X is σ2/n, where σ2 is the variance of a contaminated normal
distribution; see expression (3.4.13) on page 167. The asymptotic variance of
the sample median is 1/4f2(0)n. Here,

f(0) = φ(0)(1 − ǫ) + φ(0)
ǫ

σc
,

from which the result follows.

6.2.8 (a).

log f(x; θ) = −1

2
log (2π) − 1

2
log θ − x2

2θ
,

∂ log f(x; θ)

∂θ
= − 1

2θ
+

x2

2θ2
,

∂2 log f(x; θ)

∂θ2
=

1

2θ2
− x2

θ3
,

−nE
[
∂2 log f(x; θ)

∂θ2

]
=

−n
2θ2

+
n

θ2
=

n

2θ2
= nI(θ).

(b). Here θ̂ =
∑
X2

i /n. Since
∑
X2

i /θ is χ2(n), we have

Var(θ̂) =
θ2

n2
Var

(∑
X2

i

θ

)
=

2θ2

n
=

1

nI(θ)
.

6.2.10 Note that

E[|X1|] = 2

∫ ∞

0

x√
2π

exp

{
−1

2

x2

θ

}
dx

= 2
√
θ

∫ ∞

0

1√
2π

exp{−z} dz =

√
2

π

√
θ.

So c =
√
π/2/n. Hence, Y = n−1

∑n
i=1

√
2
π |Xi|. Note that,

V

[√
π

2
|X1|

]
=

π

2
{E(X2

1 ) − [E(|X1|)]2}

=
π

2

[
θ

(
1 − 2

π

)]
= θ

[π
2
− 1
]
.
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56 Maximum Likelihood Methods

By independence,

V (Y ) = θ
[π
2
− 1
] 1

n
. (6.0.1)

To finish, we need the efficiency of the parameter
√
θ. For convenience, let

β =
√
θ. Then

log f(x;β) = − log
√

2π − log β − 1

2

x2

β2
.

The second partial of this expression is,

∂2 log f(x;β)

∂β2
=

1

β2
− 3

x2

β4
.

Hence, using
√
θ = β,

I(
√
θ) = −E

[
1

θ
− 3

X2

θ2

]
=

2

θ
. (6.0.2)

Thus by (6.0.1) and (6.0.2) we have

e(Y ) =
θ/2n

θ[(π/2) − 1]/n
=

1

π − 2
.

6.2.14 For Part (a), recall that (n− 1)S2/θ has χ2(n− 1) distribution. Hence,

V

[
(n− 1)S2

θ

]
= 2(n− 1).

So V (S2) = 2θ2/(n− 1). Also, by Problem (6.28), I(θ) = (2θ2)−1. Thus, the
efficiency of S2 is (n− 1)/n.

6.3.1 Note that under θ, the random variable (θ0/θ)(2/θ0)
∑n

i=1Xi has a χ2(2n)
distribution. Therefore, the power function is

γ(θ) = P

[
T ≤ θ0

θ
χ2

1−α/2(2n)

]
+ P

[
T ≥ θ0

θ
χ2

α/2(2n)

]
,

where T has a χ2(2n) distribution.

6.3.3 The decision rule (6.3.6) is equivalent to the decision rule

Reject H0 if |z| ≥ zα/2,

where z = (x− θ0)/(σ/
√
n). The power function is

γ(θ) = Pθ

[∣∣∣∣
X − θ0
σ/

√
n

∣∣∣∣ ≥ zα/2

]

= Pθ

[∣∣∣∣
X − θ

σ/
√
n

∣∣∣∣ ≤ −zα/2 +

√
n(θ0 − θ)

σ

]

+Pθ

[∣∣∣∣
X − θ

σ/
√
n

∣∣∣∣ ≥ zα/2 +

√
n(θ0 − θ)

σ

]

= Φ

[
−zα/2 +

√
n(θ0 − θ)

σ

]
+ 1 − Φ

[
zα/2 +

√
n(θ0 − θ)

σ

]
.
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6.3.6 Let χ2
1−α/2 and χ2

α/2 be the lower and upper α/2 critical values of a χ2-
distribution with n degrees of freedom. Then the power curve for a level α
test is given by

γ(θ) = Pθ

[
W ≤ χ2

1−α/2

]
+ Pθ

[
W ≥ χ2

α/2

]

= P

[
χ2(n) ≤ θ0

θ
χ2

1−α/2

]
+ Pθ

[
χ2(n) ≥ θ0

θ
χ2

α/2

]
,

where χ2(n) represents a random variable with a χ2-distribution with n de-
grees of freedom. The following R function computes this power function at
the specified value theta. The default values of the other arguments are set
at values given in the exercise. Using this, it is easy to obtain a plot of the
power curve.

pcchitst = function(n=10,alpha=.05,theta0=1,theta){

alp2 = alpha/2

l = (theta0/theta)*qchisq(alp2,n)

u = (theta0/theta)*qchisq(1-alp2,n)

pcchitst = pchisq(l,n) + 1 - pchisq(u,n)

pcchitst

}

6.3.8 Part (a). Under Ω, the mle is x. After simplification, the likelihood ratio test
is

Λ = e−θ0ex−nx log(x/θ0).

Treating Λ as a function of x, upon differentiating it twice we see that the
function has a positive real critical value which is a maximum. Hence, the
likelihood ratio test is equivalent to rejecting H0, if Y ≤ c1 or Y ≥ c2 where
Y = nX. Under H0, Y has a Poisson distribution with mean nθ0. The
significance level of the test is 0.056 for the situation described in Part (b).

6.3.11 Note that under θ = 2, the distribution is N(0, 2−1). Under θ = 1, the
distribution is the standard Laplace. Some simplification leads to

Λ = K exp

{
n∑

i=1

(x2
i − |xi|)

}
,

where K is a constant.

6.3.15 The likelihood function can be expressed as

L(θ) = θnx(1 − θ)n−nx.

To get the information, note that

log p(x; θ) = x log θ + (1 − x) log(1 − θ).
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Upon taking the first two partial derivatives with respect to θ, we obtain the
information

I(θ) = E

[
X

θ2

]
− E

[
1 −X

1 − θ2

]
=

1

θ(1 − θ)
.

(a). Under Ω, the mle is x. Hence, the likelihood ratio test statistic is

Λ =

(
1

3x

)nx (
2/3

1 − x

)n−nx

.

(b). Wald’s test statistic is

χ2
W =

[
x− (1/3)√
x(1 − x)/n

]2

.

(c). For the scores test,

l′(θ0) =

n∑

i=1

[
xi

θ
− 1 − xi

1 − θ

]
=
n(x− θ)

θ(1 − θ)
.

Hence, the scores test statistic is

χ2
R =

{
n(x− θ0)

θ0(1 − θ0)
/

√
n

θ0(1 − θ0)

}2

=

{ √
n(x− θ0)√
θ0(1 − θ0)

}2

.

6.3.18 Recall the the pdf of the Yn is

fYn(y; θ) =

{
n
θ

(
y
θ

)n−1
0 < y < θ

0 elsewhere.
(6.0.3)

(a). The numerator of the likelihood ratio test is (1/θ0)
n, if 0 < yn ≤ θ0 and

is 0 if yn > θ0. The mle under Ω is yn. So, the denominator of the
likelihood ratio test is (1/yn)n. Hence, the result for Λ.

(b). Let Tn = −2 logΛ = −2n log(Yn/θ0). Then the inverse transformation
is yn = θ0 exp{−tn/2n} with Jacobian (−θ0/2n) exp{−t/2n}. Based on
(6.0.3) the pdf of Tn is

fTn(t) =
n

θ0

{
θ0 exp{−t/2n}

θ0

}n−1
θ0
2n

exp{−t/2n}

=
1

2
exp{−t/2},

which is the pdf of χ2(2) distribution.

6.4.2 Note in general that the log of the likelihood is

l(θ1, θ2, θ3, θ4) = K−n

2
log θ3−

m

2
log θ4−

1

2θ3

n∑

i=1

(xi−θ1)2−
1

2θ4

m∑

i=1

(yi−θ2)2,

(6.0.4)
where K is a constant.
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(a). For this part, expression (6.0.4) becomes

l(θ1, θ2, θ3) = K − n+m

2
log θ3 −

1

2θ3

n∑

i=1

(xi − θ1)
2 − 1

2θ3

m∑

i=1

(yi − θ2)
2.

If we take the partial with respect to θ1 and set the resulting expression
to 0, then we see immediately that the mle of θ1 id x. Likewise, the
mle of θ2 is y. Substituting these mles into the above expression and
differentiating with respect to θ3, yields the mle of θ3:

θ̂3 =
1

n+m

[
n∑

i=1

(xi − x)2 +

m∑

i=1

(yi − y)2

]
.

(b). Under the assumptions of this part, we have one (combined) sample from
a N(θ1, θ3) distribution. Hence, based on Example 6.4.1 the mles are

θ̂1 =
1

n+m

[
n∑

i=1

xi +
m∑

i=1

yi

]

θ̂3 =
1

n+m

[
n∑

i=1

(xi − θ̂1)
2 +

m∑

i=1

(yi − θ̂1)
2

]
.

6.4.5 L =
(

1
2ρ

)n

, provided θ − ρ ≤ y1 ≤ yn ≤ θ + ρ. To maximize L make ρ as

small as possible which is accomplished by setting

θ̂ − ρ̂ = Y1 and θ̂ + ρ̂ = Yn.

So

θ̂ =
Y1 + Yn

2
and ρ̂ =

Yn − Y1

2
.

Thus

E

[
(n+ 1)Yn

n

]
= θ, Var

[
(n+ 1)Yn

n

]
=

θ2

n(n+ 2)
.

However, we have that

θ2

n(n+ 2)
<
θ2

n
=

1

nE

{[
∂ log f(X;θ)

∂θ

]2} ,

which seems like a contradiction to the Rao-Cramér inequality until we rec-
ognize that this is not a regular case.

6.4.8 Because b > 0,

P (Xi ≤ t) = P

(
ei ≤

t− a

b

)
,

from which the result follows.
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6.4.10 Write I12 as

I12 =
1

b2

∫ ∞

−∞
{z}

{
f ′(z)

f(z)

}2

{f(z)} dz.

Note that the function in the first set of braces is odd while the last two
functions are even (the third because of the assumed symmetry). Thus their
product is an odd function and hence the integral of it from −∞ to ∞ is 0.

6.5.4 λ =


1

(2π)[(
P

x2
i
+

P
y2

i )/(n+m)]

ff(n+m)/2

»
1

(2π)(
P

x2
i

/n)

–n/2»
1

(2π)(
P

y2
i

/m)

–m/2 ≤ k,

which is equivalent to F ≤ c1 or F ≥ c2, where F =
P

X2
i /nP

Y 2
i /m

has an F (r1 =

n, r2 = m) distribution when θ1 = θ2.

6.5.6 Note θ̂i = max{−1st order statistic, nth order statistic}, where n = n1 = n2.
Hence, in a notation that seems clear, we have

λ =
1/[2 max(θ̂X , θ̂Y )]2n

[1/(2θ̂X)n][1/(2θ̂Y )n]
=

[
min(θ̂X , θ̂Y )

max(θ̂X , θ̂Y )

]n

.

If U = min(θ̂X , θ̂Y )and V = max(θ̂X , θ̂Y ), the joint pdf is

g(u, v) = 2n2un−1vn−1/θ2n, 0 < u < v < θ.

So the distribution function of λ is

H(z) = P (U ≤ z1/nV ), 0 ≤ z ≤ 1,

=

∫ θ

0

∫ z1/nv

0

g(u, v) du dv

=

∫ θ

0

2nzv2n−1/θ2n dv

= z, 0 ≤ z ≤ 1,

which is uniform (0, 1). Thus −2 log λ is χ2(2), where the degrees of freedom
= 2 = 2(dimension of Ω − dimension of ω). Note that this is a nonregular
case.

6.5.9 The likelihood ratio test statistic is

Λ =
p̂n1x+n2y(1 − p̂)n1+n2−(n1x+n2y)

xn1x(1 − x)n1−n1xyn2y(1 − y)n2−n2y
.

After simplification, we have

−2 logΛ = −2

{
n1x log

(
p̂

x

)
+ n2y log

(
p̂

y

)
+ (n1 − n1x) log

(
1 − p̂

1 − x

)

+(n2 − n2y) log

(
1 − p̂

1 − y

)}
.
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6.5.11 Under H0, p1 = p2 = p. Thus both X and Y are consistent estimators of p.
Hence

p̂ =
n1

n
X +

n2

n
Y

P→ λ1p+ λ2p = p.

6.5.13 Using the R code below, we obtained the values of the test statistics and their
associated p-values:

(a) Wald test, (6.5.25), and p-value: -1.727113, 0.08414743.

(b) LRT test, (Exercise 6.5.9), and p-value: 2.993653, 0.0835914.

(c) Test of Exercise 6.5.11, and p-value: -1.725826, 0.0843787

R code:

p6513=function(x,y,n1,n2){

p1=x/n1

p2=y/n2

pc = (n1*p1+n2*p2)/(n1+n2)

zw = (p1-p2)/sqrt((p1*(1-p1)/n1) + (p2*(1-p2)/n2))

pzw = 2*min(pnorm(zw),1-pnorm(zw))

lrt = -2*(n1*p1*log(pc/p1) + n2*p2*log(pc/p2) + (n1-n1*p1)*log((1-pc)/(1-p1))

+ (n2-n2*p2)*log((1-pc)/(1-p2)))

plrt = 1-pchisq(lrt,1)

zpc = (p1-p2)/sqrt(pc*(1-pc)*((1/n1) + (1/n2)))

pzpc = 2*min(pnorm(zpc),1-pnorm(zpc))

list(zw=zw,pzw=pzw,lrt=lrt,plrt=plrt,zpc=zpc,pzpc=pzpc)

}

6.6.1 For Part (c), taking the partial of the log likelihood and setting the result to
0 yields

x1

2 + θ
− x2 + x3

1 − θ
+
x4

θ
= 0.

Upon simplification, we obtain the quadratic equation

nθ2 − (x1 − 2x2 − 2x3 − x4)θ − 2x4 = 0,

which has one positive and one negative root.

6.6.2

(a). The complete likelihood is given by

Lc =
n!

z11!z12!x2!x3!x4!

(
1

2

)z11
(
θ

4

)z12
(

1 − θ

4

)x2+x3
(
θ

4

)x4

.
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(b). The conditional pmf k(z|θ,x) is the ratio of Lc to L, which after simpli-
fication is

k(z|θ,x) =
x1!

z12!(x1 − z12)!

(
θ

2 + θ

)z12
(

1 − θ

2 + θ

)x1−z12

;

i.e., a binomial distribution with parameters x1 and θ/(2 + θ).

(c). Let θ̂(0) be an initial estimate of θ. For the E step, the conditional
expectation of the log of Lc (ignoring constants) simplifies to

E
[
logLc(θ|x, z)|θ̂(0),x

]
= log

(
θ

4

)
E
[
Z12|θ̂(0),x

]
+ (x2 + x3) log

(
1 − θ

4

)

+x4 log

(
θ

4

)

= log

(
θ

4

)[
x1

θ̂(0)

2 + θ̂(0)

]
+ (x2 + x3) log

(
1 − θ

4

)

+x4 log

(
θ

4

)

For the M step: Taking the partial of this last expression with respect to
θ and setting the result to 0 yields the solution given in Part (d) of the
text.

6.6.5 The observable likelihood is

L(θ|x) ∝ exp

{
−1

2

n1∑

i=1

(xi − θ)2

}
,

while the complete likelihood is

Lc(θ|x, z) ∝ exp

{
−1

2

[
n1∑

i=1

(xi − θ)2 +

n2∑

i=1

(zi − θ)2

]}
.

The conditional pmf k(z|θ,x) is the ratio of Lc to L which is easily seen to

be the product of n2 iid N(θ, 1) pdfs. Let θ̂(0) be an initial estimate of θ. For
the E step, the conditional expectation of the log of Lc (ignoring constants)
simplifies to

E[logLc||θ̂(0),x] = −1

2

[
n1∑

i=1

(xi − θ)2 +

n2∑

i=1

Eθ̂(0)(zi − θ)2

]

= −1

2

[
n1∑

i=1

(xi − θ)2 +

n2∑

i=1

Eθ̂(0) [(zi − θ̂(0)) + (θ̂(0) − θ)]2

]

= −1

2

[
n1∑

i=1

(xi − θ)2 +

n2∑

i=1

[1 + (θ̂(0) − θ)2]

]

= −1

2

[
n1∑

i=1

(xi − θ)2 + [n2 + n2(θ̂
(0) − θ)2]

]
.
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For the M step: Taking the partial of this last expression with respect to θ
and setting the result to 0 yields the solution given in the text.
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Chapter 7

Sufficiency

7.1.2
P

X2
i

σ2 is χ2(n). Hence E
[P

X2
i

σ2

]
= n, var

(P
X2

i

σ2

)
= 2n. Accordingly,

E

[∑
X2

i

n

]
= σ2 and var

(∑
X2

i

n

)
=

(
σ2

n

)2

(2n) =
2σ4

n

7.1.3 This is a rather lengthy exercise. One observation that might help is illustrated
with the second part. The pdf of Y2 is

g(y) =
3!

1!1!1!

(y
θ

)(
1 − y

θ

) 1

θ
= 6y(θ − y)/θ3, 0 < y < θ.

E(Y2) =

∫ θ

0

6y2(θ − y)/θ3 dy.

Let y = θw (this is the observation and this substitution can be used in each
part); so

E(Y2) = 6θ

∫ 1

0

w2(1 − w) dw =
6θΓ(3)Γ(2)

Γ(5)
=
θ

2
.

Likewise

E(Y 2
2 ) = 6θ2

Γ(4)Γ(2)

Γ(6)
=

3θ2

10
; var(Y2) =

θ2

20
.

So

E(2Y2) = θ and var(2Y2) = (4)(θ2/20) = θ2/5.

7.1.6 We have that E(Y ) = nθ, var(Y ) = nθ. Thus

E[(θ − b− Y/n)2] = (y − b− θ)2 + (nθ)(1/n)2 = b2 + θ2/n.

Thus take b = 0 and us δ(y) = y/n. Clearly max(θ2/n) does not exist.
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7.1.7

E(bS2) = (bθ/n)E(nS2/θ) = b(n− 1)θ/n,

var(bS2) = (bθ/n)2(2)(n− 1) = 2b2(n− 1)θ2/n.

Therefore

E[(θ − bS2)] = [θ − b(n− 1)θ/n]2 + 2b(n− 1)θ2/n2.

Differentiating this expression with respect to b, we have

2[θ − b(n− 1)θ/n][−(n− 1)θ/n] + 4b(n− 1)θ2/n2 = 0.

Solving this expression for b yields b = n/(n + 1). Thus the estimator that
provides minimum mean square error is

n

n+ 1
S2 =

1

n+ 1

∑
(Xi − X̄)2.

It is interesting to note that this principle implies the use of n+1, rather than
n or n− 1 suggested by most books on statistics.

7.2.2
e−nθθ

P
xi

x1!x2! · · ·xn!
=
[
e−nθθ

P
xi

] [ 1

x1!x2! · · ·xn!

]
;

so, by the factorization theorem, Y =
∑
Xi is a sufficient statistics for θ.

7.2.3 f(x; θ) = Q(θ)M(x)I(0,θ)(x). Therefore

n∏

i=1

Q(θ)M(xi)I(0,θ)(xi) =
{
[Q(θ)]nI(0,θ)[max(xi)]

}
{

n∏

i=1

M(xi)

}
,

because
∏
I(0,θ)(xi) =

∏
I(0,θ)[max(xi)]. According to the factorization the-

orem, Y = max(Xi) is a sufficient statistic for θ.

7.2.7
n∏

i=1

xθ−1
i e−xi/6

Γ(θ)6θ
=

{
(
∏
xi)

θ−1

[Γ(θ)]n6nθ

}
e−

P
xi/6

so Y =
∏
Xi is a sufficient statistic for θ.

7.2.8
n∏

i=1

Γ(2θ)

[Γ(θ)]2
[xi(1 − xi)]

θ−1 =

{
[Γ(2θ)]n

[Γ(θ)]2n

[∏
xi(1 − xi)

]θ−1
}

(1).

Thus Y =
∏

[Xi(1 −Xi)] is a sufficient statistic for θ.

Copyright ©2013 Pearson Education. Inc.

Download more from Learnclax.com



67

7.3.2

g(y3|y5) =
(5!/2!)(y3/θ)

2[(y5 − y3)/θ](1/θ)
2

5(y5/θ)4(1/θ)
, 0 < y3 < y5 < θ,

= 12y2
3(y5 − y3)/y

4
5, 0 < y3 < y5 < θ.

E(2Y3|y5) = 24

∫ y5

0

y3
3(y5 − y3)/y

4
5 dy3.

Let y3 = y5w to obtain

E(2Y3|y5) = 24y5

∫ 1

0

w3(1 − w) dw

=
24y5Γ(4)Γ(2)

Γ(6)
=

(
6

5

)
y5 = ϕ(y5).

7.3.5 For illustration, in Exercise 7.2.1, Y =
∑
X2

i is a sufficient statistic, and

E(Y ) =
∑

E(X2
i ) =

∑
θ = nθ

Thus Y/n =
∑
X2

i /n is an unbiased estimator.

7.3.6 It suffices to find the conditional distribution of X1 given
∑n

i=1Xi = x. As-
suming x ≥ x1 (otherwise the following probability is 0) we have

P [X1 = x1|
n∑

i=1

Xi = x] =
P [X1 = x1,

∑n
i=1Xi = x]

P [
∑n

i=1Xi = x]

=
P [X1 = x1,

∑n
i=2Xi = x− x1]

P [
∑n

i=1Xi = x]

=
e−θ θx1

x1!
e−(n−1)θ [(n−1)θ]x−x1

(x−x1)!

e−nθ [nθ]x

x!

=

(
x

x1

)(
1

n

)x1
(

1 − 1

n

)x−x1

.

Thus, the conditional distribution is binomial and E[X1|
∑n

i=1Xi = x] = x/n.
By linearity of conditional expectation it follows that

E[X1 + 2X2 + 3X3|
n∑

i=1

Xi = x] = (6x)/n = 6x.

7.4.1

2∑

x=0

u(x)

(
2

x

)
θx(1 − θ)2−x = u(0)(1 − θ)2 + 2u(1)θ(1 − θ) + u(2)θ2

= [u(0) − 2u(1) + u(2)]θ2 + [−2u(0) + 2u(1)]θ + [u(0)]

≡ 0
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Thus each expression in brackets must be zero, which implies that u(0) =
u(1) = u(2) = 0.

7.4.2 In each case E(X) = 0 for all θ > 0.

7.4.3 A generalization of 7.4.1. Since E[
∑
Xi] = nθ,

∑
Xi/n is the unbiased mini-

mum variance estimator.

7.4.4

(a)
∫ θ

0 u(x)(1/θ) dx = 0 implies
∫ θ

0 u(x) dx = 0, 0 < θ. Taking the derivative of
the last expression w.r.t. θ, we obtain u(θ) = 0, 0 < θ.

(b) Take u(x) = x− 1/2, 0 < x < 1, and zero elsewhere.

E[u(x)] =

∫ 1

0

(
x− 1

2

)
dx +

∫ θ

1

0 · dx = 0, provided 1 < θ.

7.4.6

(a) The pdf of Y is

g(y; θ) = P (Y ≤ y) − P (Y ≤ y − 1)

= [y/θ]n − [(y − 1)/θ]n, y = 1, 2, . . . , θ.

The quotient of
∏
f(xi; θ) = (1/θ)n, 1 ≤ xi ≤ θ, and g(y; θ) is free of θ. It

is easy to show
∑
u(y)g(y; θ) ≡ 0 for all θ = 1, 2, 3, . . . implies that u(1) =

u(2) = u(3) = . . . = 0.

(b) The expected value of that expression in the book, say v(Y ), is

θ∑

y=1

v(y)g(y; θ) =

(
1

θn

) θ∑

y=1

[yn+1 − (y − 1)n+1].

Clearly, by substituting y = 1, 2, . . . , θ, the summation equals θn+1; so

E[v(y)] =

(
1

θn

)
θn+1 = θ.

7.4.8 Note that there is a typographical error in the definition of the pmf. The
binomial coefficient should be

(
n
|x|
)

not
(
n
x

)
.

(a). Just consider the function u(X) = X . Then E(X) = 0 for all θ, but X
is not identically 0.

(b). Y is sufficient because the distribution of X conditioned on Y = y has
space {−y, y} with probabilities 1/2 for each point, if y 6= 0. If y = 0 then
conditionally X = 0 with probability 1. The conditional distribution

Copyright ©2013 Pearson Education. Inc.

Download more from Learnclax.com



69

does not depend on θ. For completeness, suppose, for any function u,
E(u(y)) = 0. Then we have

0 =

n∑

j=0

u(j)

(
n

j

)
θj(1 − θ)n−j

= (1 − θ)n





n∑

j=0

u(j)

(
n

j

)(
θ

1 − θ

)j


 .

Because 1 − θ > 0 the expression in braces is 0. This, though, is a
polynomial in θ

1−θ which is equal to the 0 polynomial. Therefore each

of the coefficients u(j)
(
n
j

)
= 0. Because

(
n
j

)
> 0 for all j, we must have

u(j) ≡ 0 for all j. Thus Y is complete.

7.5.2 By Theorem 7.5.2, Y is a complete sufficient statistic for θ. In addition

E(1/Y ) =

∫ ∞

0

(1/y)
θnyn−1e−θy

Γ(n)
dy

=
θnΓ(n− 1)

θn−1Γ(n)
=

θ

n− 1
;

so (n− 1)/Y is that MVUE estimator.

7.5.4 We know that E[ψ(X̄)] = θ since E(X1) = θ. Also E(X̄) = θ. Thus

E[ψ(X̄) − X̄] ≡ 0 for all θ > 0.

Since X̄ is a complete and sufficient statistic for θ, ψ(X̄)−X̄ = 0; that is, ψ(X̄) =
X̄ .

7.5.6

E
[
etK(X)

]
=

∫ b

a

exp{(t+ θ)K(x) + S(x) + q(θ)} dx

= exp{q(θ) − q(θ − t)}
∫ b

a

exp{(t+ θ)K(x) + S(x) + q(θ + t)} dx.

However the integral equals one since the integrand can be treated as a pdf,
provided γ < θ + t < δ.

7.5.10 Since f(x; θ) = exp{(−θ)x + log x + 2 log θ}, 0 < x < ∞, Y =
∑
Xi is a

complete and sufficient statistic for θ. Also

E(1/Y ) =

∫ ∞

0

(1/y)
θ2ny2n−1e−θy

Γ(2n)
dy

=
θ2nΓ(2n− 1)

θ2n−1Γ(2n)
= θ/(2n− 1).

So (2n− 1)/Y is the MVUE estimator.
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7.5.11 Similar to 7.5.4.

7.6.2 The distribution of Y/θ is χ2(n). Thus

E(Y/θ) = n and var(Y/θ) = 2n.

E(Y 2) = (nθ)2 + θ2(2n) = (n2 + 2n)θ2;

thus Y 2/(n2 + 2n) is the MVUE of θ2.

7.6.5 For part (a), since Y =
∑n

i=1Xi, we have

P [X1 ≤ 1|Y = y] = P [X1 = 0|Y = y] + P [X1 = 1|Y = y]

=
P [{X1 = 0} ∩ {

∑n
i=2Xi = y}]

P (Y = y)

+
P [{X1 = 1} ∩ {

∑n
i=2Xi = y − 1}]

P (Y = y)

=
e−θe−(n−1)θ[(n− 1)θ]y/y!

e−nθ(nθ)y/y!

+
e−θθe−(n−1)θ[(n− 1)θ]y−1/(y − 1)!

e−nθ(nθ)y/y!

=

(
n− 1

n

)y

+
y

n− 1

(
n− 1

n

)y

=

(
n− 1

n

)y (
1 +

y

n− 1

)
.

Hence, the statistic
(

n−1
n

)Y (
1 + Y

n−1

)
is the MVUE of (1 + θ)e−θ.

7.6.8 P (X ≤ 2) =
∫ 2

0
(1/θ)e−x/θ dx = 1− e−2/θ. Since X̄ = Y/n, where Y =

∑
Xi,

is the mle of θ, then the mle of that probability is 1−e−2/X̄ . Since I(0,2)(X1)
is an unbiased estimator of P (X ≤ 2), let us find the joint pdf of Z = X1 and
Y by first letting V = X1 +X2, U = X1 +X2 +X3 + . . . . The Jacobian is
one; then we integrate out those other variables obtaining

g(z, y; θ) =
(y − z)n−2ey/θ

(n− 2)!θn
, 0 < z < y <∞.

Since the pdf of Y is

g2(y; θ) =
yn−1e−y/θ

(n− 1)!θn
, 0 < y <∞,

we have that the conditional pdf of Z, given Y = y, is
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h(z|y) =
(n− 1)(y − z)n−2

yn−1
, 0 < z < y.

E
[
I(0,2)(Z)|y

]
=

∫ ∞

0

{[
I(0,2)(z)

]
(n− 1)(y − z)n−2/yn−1

}
dy

= 1 −
(
y − 2

y

)n−1

= 1 − (1 − 2/y)n−1.

That is, the MVUE estimator is

(
1 − 2/X̄

n

)n−1

.

Of course, this is approximately equals to the mle when n is large.

7.6.11 The function of interest is g(θ) = θ(1 − θ). Note, though, that g′(1/2) = 0;
hence, the ∆ procedure cannot be used. Expand g(θ) into a Taylor series
about 1/2, i.e.,

g(θ) = g(1/2) + 0 + g′′(1/2)
(θ − (1/2))2

2
+Rn.

Evaluating this expression at X, we have

X(1 −X) =
1

4
+ (−2)

(X − (1/2))2

2
+Rn.

That is,

n((1/4) −X(1 −X)

1/4
=
n(X − (1/2))2

1/4
+R∗

n.

As on Page 216, we can show that the remainder goes to 0 in probability.
Note that the first term on the right side goes to the χ2(1) distribution as
n→ ∞. Hence, so does the left side.

7.7.3

f(x, y) = exp

{[ −1

2(1 − ρ2)σ2
1

]
x2 +

[ −1

2(1 − ρ2)σ2
2

]
y2 +

[
ρ

(1 − ρ2)σ1σ2

]
xy

+

[
µ1

(1 − ρ)σ2
1

− ρµ2

(1 − ρ2)σ1σ2

]
x+

[
µ2

(1 − ρ2)σ2
2

− ρµ1

(1 − ρ2)σ1σ2

]
y

+ q(µ1, µ2, σ1, σ2, ρ)}

Hence
∑
X2

i ,
∑
Y 2

i ,
∑
XiYi,

∑
Xi,

∑
Yi are joint complete sufficient statis-

tics. Of course, the other five provide a one-to-one transformation with these
five; so they are also joint complete and sufficient statistic.
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7.7.4 Thus K1(x) = cK2(x)+ c1. Substituting this for K1(x) in the first expression
we obtain an expression of the form of the second.

7.7.6

(a) ∫ θ1+θ2

θ1−θ2

∫ yn

θ1−θ2

u(y1, yn)(yn − y1)
n−2

(2θ2)n
dy1dyn ≡ 0

for all −∞ < θ1 <∞, 0 < θ2 <∞. Multiply by (2θ2)
n and differentiate first

w.r.t. θ1 and then w.r.t. θ2 (this is not easy). This finally yields

u(θ1 − θ2, θ1 + θ2) = 0, for all (θ1, θ2),

which implies that
u(y1, y2) = 0, a.e.

(b) E(Y1) = (θ1 − θ2) + (2θ2)/(n+ 1), E(Yn) = (θ1 + θ2) − (2θ2)/(n+ 1). So

E

(
Y1 + Yn

2

)
= θ1 and E(Yn − Y1) = 2θ2 − 4θ2/(n+ 1) = θ2

(
2n− 2

n+ 1

)
.

That is, (Y1 + Yn)/2 and [(n+ 1)(Yn − Y1)]/[2(n− 1)] are those MVUE esti-
mates.

7.7.9 Part (a): Consider the following function of the sufficient and complete statis-
tics

W =

n∑

i=1

(Xi − X)(Xi − X)′

=
n∑

i=1

XiX
′
i − nXX

′
.

Recall that the variance-covariance matrix of a random vector Z can be ex-
pressed as

cov(Z) = E[ZZ′] − E[Z]E[Z]′.

In the notation of the example, we have

E[

n∑

i=1

XiX
′
i] =

n∑

i=1

E[XiX
′
i] = nΣ + nµµ′.

But the random vector X has mean µ and variance-covariance matrix n−1Σ.
Hence,

E[XX
′
] = n−1Σ + µµ′.

Putting these last two results together

E[W] = (n− 1)Σ,

i.e., S = (n − 1)−1W is an unbiased estimator of Σ. Thus the (i, j)th entry
of S is the MVUE of σij .
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7.7.12 The order statistics are sufficient and complete and X is a function of them.
Further, X is unbiased. Hence, X is the MVUE of µ.

7.8.1

(c) We know that Y =
∑
Xi is sufficient for θ and the mle is θ̂ = X̄/3 = Y/3n,

which is one-to-one and hence also sufficient for θ.

7.8.2

(a)
n∏

i=1

(
1

2θ

)
I[−θ,θ](xi) =

(
1

2θ

)n

I[−θ,yn](y1)I[y1,θ](yn);

by the factorization theorem, the pair (Y1, Yn) is sufficient for θ.

(b) L =
(

1
2θ

)n
, provided −θ ≤ y1 and yn ≤ θ. That is, −y1 ≤ θ and yn ≤ θ. We

want to make θ as small as possible and satisfy these two restrictions; hence
θ̂ = max(−Y1, Yn).

(c) It is easy to show from the joint pdf Y1 and Yn that the pdf of θ̂ is g(z; θ) =
nzn−1/θn, 0 ≤ z ≤ θ, zero elsewhere. Hence

L/g(z; θ) =
1

2n(nzn−1)
, − z = −θ̂ ≤ xi ≤ θ̂ = z,

which is free of θ.

7.8.7 For illustration Yn−2 − Y3,min(−Y1, Yn)/max(Y1, Yn) and (Y2 − Y1)/
∑

(Yi −
Y1), respectively.

7.9.3 From previous results (Chapter 3), we know that Z and Y have a bivariate
normal distribution. Thus they are independent if and only if their covariance
is equal to zero; that is

n∑

i=1

aiσ
2 = 0 or, equivalently,

n∑

i=1

ai = 0.

If
∑
ai = 0, note that

∑
aiXi is location-invariant because

∑
ai(xi + d) =∑

aixi.

7.9.5 Of course, R is a scale-invariant statistic, and thus R and the complete suf-
ficient statistic

∑n
1 Yi for θ are independent. Since M1(t) = E[exp(tnY1)] =

(1 − θt)−1 for t < 1/θ, and M2(t) = E[exp(t
∑n

1 Yi)] = (1 − θt)−n we have

M
(k)
1 (0) = θkΓ(k + 1) and M

(k)
2 (0) = θkΓ(n+ k)/Γ(n).

According to the result of Exercise 7.9.4 we now haveE(Rk) = M
(k)
1 (0)/M

(k)
2 (0) =

Γ(k + 1)Γ(n)/Γ(n + k). These are the moments of a beta distribution with
α = 1 and β = n− 1.
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7.9.7 The two ratios are location- and scale-invariant statistics and thus are inde-
pendent of the joint complete and sufficient statistic for the location and scale
parameters, namely X̄ and S2.

7.9.9

(a) Here R is a scale-invariant statistic and hence independent of the complete
and sufficient statistic,

∑
X2

i , for θ, the scale parameter.

(b) While the numerator, divided by θ, is χ2(2) and the denominator, divided
by θ, is χ2(5), they are not independent and hence 5R/2 does not have an
F-distribution.

(c) It is easy to get the moment of the numerator and denominator and thus the
quotient of the corresponding moments to show that R has a beta distribution.

7.9.13 (a). Ignoring constants, the log of the likelihood is

l(θ) ∝ 3n log θ − θ

n∑

i=1

xi.

Taking the partial derivative of this expression with respect to θ, shows
that the mle of θ is 3n/Y . As we show below, it is biased.

(b). Immediate, because this pdf is a member of the regular exponential class.

(c). Because Y has a Γ(3n, θ−1) distribution, we have

E[Y −1] =

∫ ∞

0

1

Γ(3n)θ−3n
y3n−1)−1e−θy dy

=

∫ ∞

0

1

Γ(3n)θ−3n
θ−3n+2−1z(3n−1)−1e−z dz

=
θ

3n− 1
,

where we used the substitution z = θy. Hence, the MVUE is (3n−1)/Y .
Also, the mle is biased.

(d). The mgfs of X1 and Y are (1− θ−1t)−3 and (1− θ−1t)−3n, respectively.
It follows that θX1 and θY have distributions free of θ. Hence, so does
X1/Y = (X1θ)/(Y θ). So by Theorem 7.9.1, X1/Y and Y are indepen-
dent.

(e). Let T = X1/Y = X1/(X1 + Z), where Z =
∑n

i=2Xi. Let S = Y =
X1 + Z. Then the inverse transformation is x1 = st and z = s(1 − t)
with spaces 0 < t < 1 and 0 < s <∞. It is easy to see that the Jacobian
is J = s. BecauseX1 has a Γ(3, 1/θ) distribution, Z has a Γ(3(n−1), 1/θ)
distribution, and X1 and Z are independent, we have

fT,S(t, s) = fX1(st)fZ(s(1 − t))s

=
θ3n

2Γ(3(n− 1))

{
t3−1(1 − t)3(n−1)−1

}
s3n−1e−θs.
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Based on the function of t within the braces, we see immediately that
T = X1/Y has a beta distribution with parameters 3 and 3(n− 1).
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Chapter 8

Optimal Tests of Hypotheses

8.1.4

[
1√

(2π)(1)

]n

exp
[
−

P
x2

i

(2)(1)

]

[
1√

(2π)(2)

]n

exp
[
−

P
x2

i

(2)(2)

] ≤ k,

exp

[−∑x2
i

(2)(2)

]
≤ k/(

√
(2)n,

∑
x2

i ≥ −4 log
[
k/(

√
2)n
]

= c.

Since
∑
Xi is χ2(r = 10) under H0, we take c = 18.3. Yes. Yes.

8.1.5

1n

(2x1)(2x2) . . . (2xn)
≤ k implies that c =

1

2nk
≤

n∏

i=1

xi.

8.1.8

1n

[6x1(1 − x1)][6x2(1 − x2)] · · · [6xn(1 − xn)]
≤ k implies that c =

1

6nk
≤

n∏

i=1

[xi(1−xi)].

8.1.10
(0.1)

P
xie−n(0.1)

x1!x2!···xn!

(0.5)
P

xie−n(0.5)

x1!x2!···xn!

≤ k;
en(0.4)

k
≤ 5

P
xi ; c ≤

n∑

i=1

xi.

If n = 10 and c = 3; γ(θ) = Pθ(
∑
Xi ≥ 3). So α = γ(0.1) = 0.08 and γ(0.5) =

0.875.

8.2.2 The pdf of Y4 is

g(y; θ) = 4y3/θ4, 0 < y < θ;

77
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So

P (Y4 ≤ 1/2 or Y4 ≥ 1) =

∫ 1/2

0

4y3/θ4 dy =

(
1

2θ

)4

, if θ < 1

=

∫ 1/2

0

4y3/θ4 dy +

∫ θ

1

4y3/θ4 dy

=

(
1

2θ

)4

+ 1 − 1

θ4
= 1 − 15

16θ4
, if 1 < θ.

8.2.3

γ(θ) = Pθ(X̄ ≥ 3/5) = Pθ

(
X̄ − θ

2/5
≥ 3/5 − θ

2/5

)

= 1 − Φ

(
3 − 5θ

5

)
.

8.2.6 If θ > θ′, then we want to use a critical region of the from
∑
x2

i ≥ c. If θ < θ′,
the critical region is like

∑
x2

i ≤ c. That is, we cannot find one test which
will be best for each type of alternative.

8.2.9 Let X1, X2, . . . , Xn be a random sample with the common Bernoulli pmf with
parameter as given in the problem. Based on Example 8.2.5, the UMP test
rejects H0 if Y ≥ c, Y =

∑n
i=1Xi. In general, Y has a binomial(n, θ) distri-

bution. To determine n we solve two simultaneous equations, one involving
level and the other power. The level equation is

0.05 = γ(1/20) = P1/20

[
Y − (n/20)√

19n/400
≥ c− (n/20)√

19n/400

]

=̇ P

[
Z ≥ c− (n/20)√

19n/400

]
,

where by the Central Limit Theorem Z has a standard normal distribution.
Hence, we get the equation

c− (n/20)√
19n/400

= 1.645. (8.0.1)

Likewise from the desired power γ(1/10) = 0.90, we obtain the equation

c− (n/20)− (n/10)√
9n/100

= −1.282. (8.0.2)

Solving (8.0.1) and (8.0.2) simultaneously, gives the solution n = 122.
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8.2.10 The mgf of Y =
∑n

i=1Xi is (1 − θt)−n, t < 1/θ, which is gamma (α = n, β =
θ). Thus, with the uniformly most powerful critical region of the form

∑
xi ≥

c, we have the power function

γ(θ) =

∫ ∞

c

1

Γ(n)θn
yn−1e−y/θ dy.

8.2.12 (a)

(
1
2

)P
xi
(

1
2

)5−P
xi

θ
P

xi(1 − θ)5−
P

xi
≤ k, with θ < 1/2.

[(
1/2

θ

)(
1 − θ

1/2

)]P
xi

≤ k[2(1 − θ)]5.

Since the quantity in brackets on the left side is clearly greater than one,
this inequality is of the form

∑
xi ≤ c.

(b) P (Y ≤ 1, when θ = 1/2) =
∑1

y=0

(
5
y

) (
1
2

)5
= 6

32 .

(c) P (Y ≤ 0, when θ = 1/2) =
(

1
2

)5
= 1

32 .

(d) Alway reject H0 if Y = 0. If Y = 1, select a random number from
0, 1, . . . , 9 and if it is 0 or 1, reject H0. Thus

α =
1

32
+

(
5

32

)(
2

10

)
=

2

32
.

8.3.5 Say H0 : θ = θ0 and H1 : θ = θ1. The likelihood ration test is

λ =
f(x1; θ0)f(x2; θ0) · · · f(xn; θ0)

max[f(x1; θi)f(x2; θi) · · · f(xn; θi), i = 0, 1]
≤ k

If the maximum in the denominator occurs when i = 0, the λ = 1 and we do
not reject. If that maximum occurs when i = 1, then

λ =
f(x1; θ0) · · · f(xn; θ0)

f(x1; θ1) · · · f(xn; θ1)
≤ k

which is the critical region given by the Neyman-Pearson theorem.

8.3.6

λ =

(
1√
2π

)n

exp
[
−∑(xi − θ′)2/2

]
(

1√
2π

)n

exp [−
∑

(xi − x̄)2/2]
≤ k

is equivalent to

exp
{[

−
∑

(xi − x̄)2 − n(x̄− θ′)2 +
∑

(xi − x̄)2
]
/2
}
≤ c1

and thus
n(x̄− θ) ≥ c2 and |x̄− θ′| ≥ c3.
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8.3.9 Since
∑

|xi − θ| is minimized when θ̂ = median(Xi) = Y3, the likelihood ratio
test is

λ =

(
1
2

)5
exp [−∑ |xi − θ0|](

1
2

)5
exp [−∑ |xi − y3|]

≤ k.

This is the equivalent to

exp
[
−
∑

|xi − y3| − 5|y3 − θ0| +
∑

|xi − y3|
]
≤ k

and
|y3 − θ0| ≥ c.

8.3.11 The likelihood function for this problem is

L(θ) = θn

[
n∏

i=1

(1 − xi)

]θ−1

.

(a) For θ1 < θ2, the ratio of the likelihoods is

L(θ1)

L(θ2)
=

(
θ1
θ2

)n
[

n∏

i=1

(1 − xi)

]θ1−θ2

.

This has decreasing monotone-likelihood-ratio in the statistic
∏n

i=1(1 −
xi). Hence, the UMP test, rejects H0 if

∏n
i=1(1 − xi) ≥ c.

(b) Taking the partial derivative of the log of the likelihood, yields the mle
estimator:

θ̂ =
n

− log
∏n

i=1(1 − xi)
.

The likelihood ratio test statistic is

Λ =
1

θ̂n(
∏n

i=1(1 − xi))
bθ−1

.

8.3.15 We obtain the cdf of X by conditioning on Iǫ. Using independence between
Iǫ and Z and Y , we have

P (X ≤ x|Iǫ = 0) = P (Z ≤ x) = Φ(x)

P (X ≤ x|Iǫ = 1) = P (Y ≤ x) = Φ

(
x− µc

σc

)
.

Hence, the cdf followed by the pdf are:

P (X ≤ x) = (1 − ǫ)Φ(x) + ǫΦ

(
x− µc

σc

)

fX(x) = (1 − ǫ)φ(x) +
ǫ

σc
φ

(
x− µc

σc

)
.
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The mean and second moment of X are:

E(X) = E(1 − Iǫ)E(Z) + E(Iǫ)E(Y ) = ǫµc

E(X2) = E(1 − Iǫ)E(Z2) + E(Iǫ)E(Y 2) = (1 − ǫ) + ǫ(σ2
c + µ2

c),

where for the second moment we used the fact that the square of an indicator
is the indicator and that the cross product is 0 with probability 1. Hence, the
variance of X is: (1 − ǫ) + ǫ(σ2

c + µ2
c) − ǫ2µ2

c .

8.4.2

0.2

0.9
≈ k0 <

(0.02)
P

xie−n(0.02)

(0.07)
P

xie−n(0.07)
< k1 ≈ 0.8

0.1

2

9
<

(
2

7

)P
xi

e(0.05)n < 8

c1(n) =
log(2/9)− (0.05)n

log(2/7)
>
∑

xi >
log 8 − (0.05)n

log(2/7)
= c0(n).

8.4.4

0.02

0.98
<

(0.01)
P

xi(0.99)100n−P
xi

(0.05)
P

xi(0.95)100n−P
xi
<

0.98

0.02

− log 49 < (
∑

xi) log

(
19

99

)
+ 100n log

(
99

95

)
< log 49

[−100 log(99/95)]n− log 49

log(19/99)
>

∑
xi >

−100 log(99/95)] + log 49

log(19/99)

or, equivalently,

log 49

log(99/19)
>
∑[

xi − 100
log(99/95)

log(99/19)

]
>

− log 49

log(99/19)
.

8.5.2 (a) and (b) are straightforward.

(c) (1) P (
∑
Xi ≥ c; θ = 1/2) = (2)P (

∑
Xi < c; θ = 1) where

∑
Xi is Poisson (10θ).

Using the Poisson tables, we find, with c = 6, the left side is too large,
namely 1 − 0.616 > (2)(0.067). With c = 7, the left side is too small,
namely 1 − 0.762 < 2(0.130) or, equivalently, 0.238 < 0.260. To make
this last inequality an equality, we need part of the probability that
Y = 6, namely 0.146 and 0.063 under the respective hypotheses. So
0.238 + 0.146p = 0.260 − 2(0.063)p and p = 0.08.

8.5.4 Define g(c) as follows and then take its derivative:

g(c) = Φ(c− 78) − 3 + 3Φ(c− 75)

g′(c) = φ(c− 78) + 3φ(c− 75)
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We want to solve g(c) = 0. If c0 is an initial guess at the solution, then the
next guess via Newton’s algorithm is

c = c0 −
g(c0)

g′(c0)
.

Here is an R function which performs a Newton step for this problem. If
c0 = 75 is chosen, in a few steps it is quite close to 76.8.

newtstp = function(c0){

gc0 = pnorm(c0-78) - 3 + 3*pnorm(c0-75)

gpc0 = dnorm(c0-78) + 3*dnorm(c0-75)

c = c0 - (gc0/gpc0)

gc = pnorm(c-78) - 3 + 3*pnorm(c-75)

list(c0=c0,gc0=gc0,c=c,gc=gc)

}

8.5.5

1
(1)(5) exp

(
−x

1 − y
5

)

1
(3)(2) exp

(
−x

3 − y
2

) =
6

5
exp

(
−2x

3
+

3y

10

)
≤ k

−2x

3
+

3y

10
≤ log

5k

6
= c

leads to classification as to (x, y) coming from the second distribution.
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Chapter 9

Inferences about Normal

Models

Remark In both 9.1.3 and 9.1.5, we can use the two-sample result that

2∑

j=1

nj∑

i=1

(Xij − X̄..)
2 =

2∑

j=1

nj∑

i=1

(Xij − X̄.j)
2 +

2∑

j=1

nj(X.j − X̄..)
2.

Of course, with the usual normal assumptions, the terms on the right side (once
divided by σ2 are chi-squared variables with n1 +n2−2 and one degrees of freedom,
respectively; and they are independent.

9.1.3 Let the two samples be X1 and (X2, . . . , Xn−1). Then, since (X1 −X1)
2 = 0,

n∑

i=1

(Xi − X̄)2 =

n∑

i=2

(Xi − X̄ ′) + [(X1 − X̄)2 + (n− 1)(X̄ ′ − X̄)2].

If we write X̄ = [X1 + (n− 1)X̄ ′]/n, it is easy to show that the second term
on the right side is equal to (n− 1)(X1 − X̄ ′)2/n, and it is χ2(1) after being
divided by σ2.

9.1.5 First take as the two samples X1, X2, X3 and X4. The result in 9.1.3 yields

4∑

i=1

(Xi − X̄)2 =
3∑

i=1

(
Xi −

X1 +X2 +X3

3

)2

+
3

4

(
X4 −

X1 +X2 +X3

3

)2

.

Apply the result again to the first term on the right side using the two samples
X1, X2 and X3. The last step is taken using the two samples of X1 and X2.

9.2.1 It is easy to show the first equality by writing

b∑

j=1

aj∑

i=1

(Xij − X̄..)
2 =

∑∑
[(Xij − X̄.j) + (X̄.j − X̄..)]

2

83
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and squaring the binomial on the right side (the sum of the cross product
term clearly equals zero).

9.2.3 For this problem the random variables Xij are iid with variance σ2. We
express the covariance of interest into its four terms and then by using inde-
pendence we obtain the following simplification for each term:

cov(Xij , X ·j) = cov

(
Xij ,

1

aj

aj∑

l=1

Xlj

)
= cov

(
Xij ,

1

aj
Xij

)
=
σ2

aj

cov(Xij , X ··) = cov

(
Xij ,

1

N

b∑

k=1

ak∑

l=1

Xlk

)
= cov

(
Xij ,

1

N
Xij

)

=
σ2

N

cov(X ·j , X ·j) =
σ2

aj

cov(X ·j , X ··) = cov

(
X ·j,

1

N

b∑

k=1

ak∑

l=1

Xlk

)

= cov

(
X ·j,

1

N

aj∑

l=1

Xlj

)
= cov

(
X ·j,

aj

N
X ·j
)

=
aj

N

σ2

aj
=
σ2

N
.

Hence,

cov(Xij −X ·j , X ·j −X ··) =
σ2

aj
− σ2

N
− σ2

aj
+
σ2

N
= 0.

9.2.5 This can be thought of as a two-sample problem in which the first sample is
the first sample and the second is a combination of the last (b − 1) samples.
The difference of the two means, namely bd, is estimated by

b∑

j=2

X̄.j/(b− 1) − X̄.1 = X̄ ′
.. − X̄.1 = bd̂;

hence the estimator, d̂ of d given in the book. Using the result of 9.1.3,

b∑

j=1

(a)(X̄.j − X̄..)
2 =

b∑

j=2

(a)(X̄.j − X̄ ′
..)

2 +

(
b− 1

b

)
(X̄ ′

.. − X̄.1)
2

= Q6 +Q7, say.

Accordingly,
Q7/1

(Q3 +Q6)/[b(a− 1) + b− 2]

has an F (1, ab− 2) distribution.
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9.3.1

E[exp(t)(Y1 + · · · + Yn)] =

n∏

i=1

{(1 − 2t)−ri/2 exp[tθi/(1 − 2t)]}

= (1 − 2t)−(r1+r2+···+rn)/2 exp[t(
∑

θi)/(1 − 2t)],

which is the mgf of a χ2(
∑
ri,
∑
θi) distribution.

9.3.2

ψ(t) = logM(t) = (−r/2) log(1 − 2t) + tθ/(1 − 2t)

ψ′(t) =
r

1 − 2t
+
θ[(1 − 2t) − t(−2)]

(1 − 2t)2
=

r

1 − 2t
+

θ

(1 − 2t)2

ψ′′(t) =
2r

(1 − 2t)2
+

4θ

(1 − 2t)3
.

Thus mean = ψ′(0) = r + θ and variance = ψ′′(0) = 2r + 4θ.

9.3.6 Substituting µj for Xij we see that the non-centrality parameters are

θ3 =
∑∑

(µj − µj)
2 = 0,

θ4 =
∑

(aj)(µj − µ̄.)
2, where µ̄. =

∑
(aj)µj/

∑
aj .

Thus, Q′
3 and Q′

4 are independent; and

Q′
3/σ

2 is χ2(
∑

aj − b, 0),

Q′
4/σ

2 is χ2(b − 1, θ4),

F =
Q′

4(b − 1)

Q′
3/ (
∑
aj − b)

is F (b− 1,
∑

aj − b, θ4).

9.4.1 P (A1 ∪A2) = P (A1) + P (A2) − P (A1 ∩A2) ≤ P (A1) + P (A2).
Thus

P [(A1 ∪A2) ∪A3] ≤ P (A1 ∪A2) + P (A3) ≤ P (A1) + P (A2) + P (A3),

and so on. Also

P (A∗
1 ∩A∗

2 ∩ · · · ∩A∗
k) = 1 − P (A1 ∪A2 ∪ . . . ∪Ak)

≥ 1 −
k∑

i=1

P (Ai).

9.4.3 In the case of simultaneous testing, a Type I error occurs iff at least one of
the individual test rejects when all the hypotheses are true (∩H0). Choose
the critical regions Ci,α/m, i = 1, 2, . . . ,m. Then by Boole’s inequality

P (Type I Error) = P∩H0

[
∪m

i=1Ci,α/m

]

≤
m∑

i=1

P∩H0

[
Ci,α/m

]
=

m∑

i=1

α

m
= α.
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9.5.1 Write the left side as

b∑

j=1

a∑

i=1

[(Xij − X̄i. − X̄.j + X̄..) + (X̄.j − X̄..)]
2;

then square the binomial, and it is easy to see that the sum of the cross-
product term equals zero.

9.5.3 We want to minimize

∑∑
(xij − µ− αi − βj)

2

=
∑∑

[(xij − x̄i. − x̄.j + x̄..) + (x̄.. − µ) + (x̄i. − x̄.. − αi) + (x̄.j − x̄.. − βj)]
2

=
∑∑

(xij − x̄i. − x̄.j + x̄..)
2 + ab(x̄.. − µ)2 +

∑

i

(b)(x̄i. − x̄.. − αi)
2.

+
∑

j

(a)(x̄.j − x̄.. − βj)
2.

To do this, we can make the last three terms equal to zero by taking µ̂ =
x̄.., α̂i = x̄i. − x̄.., β̂j = x̄.j − x̄... For example,

var(α̂1) = var

(
X̄1. −

X̄1. + · · · + X̄a.

a

)

= var

[
(a− 1)X̄1. − · · · − X̄a.

a

]

=

[(
a− 1

a

)2

+ (a− 1)

(−1

a

)2
]
σ2

n

=

(
a− 1

a

)(
σ2

n

)
.

9.5.6 This can be worked in a manner similar to 9.5.3.

9.6.4 Write

η̂0 = α̂+ β̂(x0 − x) = [1 x0 − x]

[
α̂

β̂

]
.

Then by expression (9.6.6) and Theorem 3.5.1, it follows that η̂0 has a normal
distribution with mean η0 and variance

Var(η̂0) = [1 x0 − x]σ2

[
1
n 0
0 [

∑n
i=1(xi − x)2]−1

] [
1

x0 − x

]

= σ2

[
1

n
+

(x0 − x)2∑n
i=1(xi − x)2

]
.
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Based on the distribution of η̂, the independence between σ̂2 and η̂0 (η̂0 is a

function of α̂ and β̂), and the distribution of σ̂2, the following random variable

t =
η̂0 − η0

σ̂
√

(1/n) + (x0 − x)2/
∑n

i=1(xi − x)2

has a student t-distribution with n− 2 degrees of freedom. The desired con-
fidence interval easily follows from this result.

9.6.7 Let θ = γ2. Then

L =
n∏

i=1

(
1

2πθx2
i

)1/2

e−(yi−βxi)
2/(2θx2

i )

logL = d(x1, . . . , xn) − n

2
log θ −

n∑

i=1

(yi − βxi)
2

2θx2
i

∂ logL

∂β
=

n∑

i=1

(yi − βxi)(xi)

θx2
i

= 0, β̂ =
1

n

∑(
Yi

xi

)

∂ logL

∂θ
=

−n
2θ

+

[
n∑

i=1

(yi − βxi)
2

2x2
i

]
/θ2 = 0,

θ̂ =
∑ (Yi − β̂xi)

2

x2
i

/n = γ̂2.

9.6.9 We wish to minimize

b∑

j=1

a∑

i=1

(xij − µj)
2 =

∑∑
(xij − x̄.j)

2 +
∑

(a)(x̄.j − µj)
2.

That is, we wish to minimize

K(c, d) =

b∑

j=1

{x̄.j − c− d[j − (b + 1)/2]}2

= b(x̄.. − c)2 +

b∑

j=1

{x̄.j − x̄.. − d[j − (b+ 1)/2]}2.

Clearly, we want ĉ = X̄.. . Moreover, ∂K
∂d = 0 yields

d̂ =

b∑

j=1

[j − (b+ 1)/2](X̄.j − X̄..)/

b∑

j=1

[j − (b+ 1)/2]2.

The F -statistic (with one and ab− 2 degrees of freedom) is

d̂2
∑b

j=1(a)[j − (b+ 1)/2]2/1
∑∑{Xij − X̄.. − d̂[j − (b+ 1)/2]}2/(ab− 2)

.
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9.6.11 Let θ ∈ V then θ = α1 + βxc, for some α and β, where 1 is an n× 1 vector
of ones.

(a). Note that

‖Y − θ‖2 = ‖Y − (α+ βxc)‖2

=

n∑

i=1

{Yi − [α+ β(xi − x)]}2.

Hence, by the method of LS, θ̂ = α̂+ β̂.

(c). For θ ∈ V , we have

θ′(Y − θ̂) = (α+ βxc)
′(Y − α̂1− β̂xc)

= αny − αnα̂ − 0 + βx′
cY − 0 − ββ̂x′

cxc

= αnα̂− αnα̂+ ββ̂x′
cxc − ββ̂x′

cxc = 0.

For v ∈ V , we have θ̂ − θ ∈ V . Furthermore from above, we obtain the
identity

‖Y − θ‖2 = ‖Y − θ̂ + θ̂ − θ‖2

= ‖Y − θ̂‖2 + ‖θ̂ − θ‖2,

for all θ ∈ V . In particular the identity is true for θ = 0 whose substi-
tution in the above identity shows that the angle between θ̂ and Y − θ̂

is a right angle.

9.6.14 We have

E(β̂) = (X′X)−1X′Xβ = β,

Var(β̂) = (X′X)−1X′σ2IX(X′X)−1 = σ2(X′X)−1.

9.6.16 The linear model for Yi is

Yi = µ+ ei, i = 1, 2, . . . , n,

where Var(ei) = γ2x2
i . Let Zi = Yi/xi. Then the model for zi is

Zi = µ
1

xi
+ e∗i , i = 1, 2, . . . , n,

where Var(ei) = γ2. Now obtain the LS fit of µ,

µ̂ =

∑n
i=1 Zi/xi∑n
i=1 1/x2

i

,

with the corresponding estimate of variance,

γ̂2 =

∑n
i=1(Zi − µ̂)2

n− 1
.

It follows that (n−1)γ̂2/γ2 has a χ2(n−1) distribution, from which it is easy
to construct a test of H0 : γ = 1.
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9.7.1

∑
(Xi − X̄)(Yi − Ȳ ) =

∑
XiYi − X̄

∑
Yi − Ȳ

∑
Xi + nX̄Ȳ

=
∑

XiYi − X̄(nȲ ) − Ȳ (nX̄) + nX̄Ȳ

=
∑

XiYi − nX̄Ȳ .

9.7.4 Here T has the t-distribution with (n− 2) df; that is,

h(t) =
Γ[(n− 1)/2]√

π(n− 2)Γ[(n− 2)/2]

1

[1 + t2/(n− 2)](n−1)/2
,

−∞ < t <∞. Since

t =
r
√
n− 2√

1 − r2
,

dt

dr
=

√
1 − r2

√
n− 2 − r

√
n− 2

(
1
2

)
(1 − r2)−1/2(−2r)

1 − r2

=

√
n− 2[(1 − r2) + r2]

(1 − r2)3/2
=

√
n− 2

(1 − r2)3/2
,

we have

g(r) =
Γ[(n− 1)/2](1 − r2)(n−1)/2

√
π(n− 2)Γ[(n− 2)/2]

√
n− 2

(1 − r2)3/2
, −1 < r < 1

=
Γ[(n− 1)/2]√
πΓ[(n− 2)/2]

(1 − r2)(n−4)/2, −1 < r < 1.

9.7.5 We know that both X → µX and σ̂X → σX in probability. By the Weak Law
of Large Numbers

1

n

n∑

i=1

XiYi
P→ E[XY ].

Putting these results together, it follows that r → ρ in probability.

9.8.2

AV A =

[
1

σ2
1(1−ρ2)

−ρ
σ1σ2(1−ρ2)

−ρ
σ1σ2(1−ρ2)

1
σ2
2(1−ρ2)

] [
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

] [ 1
σ2
1(1−ρ2)

−ρ
σ1σ2(1−ρ2)

−ρ
σ1σ2(1−ρ2)

1
σ2
2(1−ρ2)

]

=
1

(1 − ρ2)2

[
1 − ρ2 0

0 1 − ρ2

] [ 1
σ2
1

−ρ
σ1σ2

−ρ
σ1σ2

1
σ2
2

]
= A

Hence X ′AX is χ2(2,µAµ). Since µ′Aµ is positive definite, µ1 = µ2 = 0 is
a necessary and sufficient condition for the noncentrality to equal zero.
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9.8.3 It is easy to see that A2 = A and tr(A) = 2. Moreover x′Ax/8 equals, when
x′ = (4, 4, 4),

[(4)(1/2)(16) + 16]/8 = 6;

so we have that the quadratic form is χ2(2, 6).

9.8.5 For Parts (a) and (b), let X′ = (X1, X2, . . . , Xn). Note that

Var(X) = σ2[ρJ + (1 − ρ)I],

where J is the n× n matrix of all ones, which can be written as J = 11′, and
1 is a n× 1 vector of ones.

(a). Note that X = 1′X. Hence,

Var(X) =
σ2

n2
1′ [ρJ + (1 − ρ)I] 1

=
σ2

n2

[
ρn2 + (1 − ρ)n

]

= σ2

[
ρ+

1 − ρ

n

]
.

(b). Note that

(n− 1)S2 = X′
(
I − 1

n
J

)
X.

Hence, using Theorem 9.8.1,

E[(n− 1)S2] = E

[
X′
(
I − 1

n
J

)
X

]

= tr

(
I − 1

n
J

)
Σ + µ21′

(
I − 1

n
J

)
1

= tr

(
I − 1

n
J

)
σ2 [ρ11′ + (1 − ρ)I] + 0

= σ2tr

[
0 + (1 − ρ)

(
I − 1

n
J

)]

= σ2(1 − ρ)(n− 1).

Hence, E[S2/(1 − ρ)] = σ2.

9.8.8 In the hint, take Γ to be the matrix of eigenvectors such that Γ′ΛΓ is the
spectral decomposition of A.

9.8.10 Let Γ′ΛΓ be the spectral decomposition of A. In this problem, Λ2 = Λ be-
cause the diagonal elements of Λ are 0s and 1s. Then because Γ is orthogonal,

A2 = Γ′ΛΓΓ′ΛΓ = Γ′Λ2Γ = Γ′ΛΓ = A.
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9.9.1 The product of the matrices is not equal to the zero matrix. Hence they are
dependent.

9.9.3 


a2
1 a1a2 a1a3 a1a4

a2a1 a2
2 a2a3 a2a4

a3a1 a3a2 a2
3 a3a4

a4a1 a4a2 a4a3 a4







0 1/2 0 0
1/2 0 0 0
0 0 0 −1/2
0 0 −1/2 0


 = 0

requires, among other things, that

a2
1 = 0, a2

2 = 0, a2
3 = 0, a2

4 = 0.

Thus a1 = a2 = a3 = a4 = 0.

9.9.4 Yes, A = X ′AX and X̄2 and independent. The matrix of X̄2 is (1/n)2P .
So AP = 0 means that the sum of each row (column) of A must equal zero.

9.9.5 The joint mgf is

E[exp(t1Q1+t2Q2+ · · ·+tkQk)] = |I−2t1σ
2A1−2t2σ

2A2−· · ·−2tkAk|−1/2.

The preceding can be proved by following Section 9.9 of the text. Now
E[exp(tiQi)] = |I − 2tiσ

2Ai|−1/2, i = 1, 2, . . . , k. If AiAj = 0, i 6= j (which

means pairwise independence), we have
∏k

i=1(I − 2tiσ
2Ai) = I − 2t1σ

2A1 −
· · · − 2tkσ

2Ak. The determinant of the product of several square matrices of
the same order is the product of the determinants. Thus

∏k
i=1 |I−2tiσ

2Ai| =
|I − 2t1σ

2A1 − · · · − 2tkσ
2Ak| which is a necessary and sufficient condition

for mutual independence of Q1, Q2, . . . , Qk.

9.9.6 If b′X and X ′AX are independent, then b′A = 0 and thus (bb′)A = 0 which
implies that X ′bb′X and X ′AX and independent. Conversely, if the two
quadratic forms are independent, the (bb′)A = 0 and (b′b)b′A = 0. Because
b′b is a nonzero scalar, we have b′A = 0 which implies the independence of
b′ and X ′AX.

9.9.7 Let A,A1,A2 represent, respectively, the matrices of Q,Q1, and , Q2. Let
L′(A1 + A2)L = diag{α1, . . . , αr, 0, . . . , 0} where r is the rank of A1 + A2.
Since both Q1 and Q2 are nonnegative quadratic forms, then

(a) αi > 0, i = 1, 2, . . . , r;

(b) L′(A1+A2)LL′AL = 0 implies L′AL =

[
0 0
0 B

]
where B is (n−r);

(c) L′AjL =

[
Bj 0
0 0

]
, where Bj is r by r, j = 1, 2. Thus L′AjLL′AL =

0 and AjA = 0, j = 1, 2.

9.9.10 (a) Because the covariance matrix is σ2I and thus all of the correlation
coefficients are equal to zero.
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(b) The P linear forms β̂ have a p-variate normal distribution with mean
matrix (X ′X)−1X ′Xβ = β and covariance matrix

(X ′X)−1X ′(σ2)IX(X ′X)−1 = σ2(X ′X)−1.

(c) Write the left side as

[(Y − Xβ̂) + X(β̂ − β)]′[(Y − Xβ̂) + X(β̂ − β)]

and carry out the necessary algebra to show that this equals the right
side. It is helpful to note that

(β̂ − β)X ′(Y − Xβ̂) = (β̂ − β)′(X ′Y − X ′Y ) = 0

(d)
(1/σ2)(X ′X)σ2(X ′X)−1(1/σ2)(X ′X) = (1/σ2)(X ′X).
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Chapter 10

Nonparametric and Robust

Statistics

10.1.2 The cdf of X − a is F (t + a), where F (t) is the cdf of X . By symmetry, we
have that the cdf of −(X − a) is

P [−(X − a) ≤ t] = P [X ≥ a− t] = P [X ≤ a+ t] = F (t+ a).

10.1.3 See Section 5.9 on bootstrap procedures.

10.1.4 Part (b): For property (i), let Y = aX . Then

FY (t) = FX(t/a).

It is easy to show that
F−1

Y (u) = aF−1
X (u),

from which we have immediately that

F−1
Y (3/4) = aF−1

X (3/4)

F−1
Y (1/4) = aF−1

X (1/4).

Thus ξY,3/4 − ξY,1/4 = a(ξX,3/4 − ξX,1/4).

10.2.3 If students do not have access to a computer, then have them do normal
(Central Limit Theorem) approximations.

(a). The level of the test is

PH0 [S ≥ 16] = P [bin(25, 1/2) ≥ 16] = 0.1148.

(b). The probability of success here is

p = P [X > 0] = P [Z > −.5] = 0.6915.

Hence, the power of the sign test is

P0.6915[S ≥ 16] = P [bin(25, 0.6915) ≥ 16] = 0.7836.
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(c). To obtain the test, solve for k in the equation

0.1148 = PH0 [X/(1/
√

25) ≥ k] = P [Z ≥ k],

where Z has a standard normal distribution. The solution is k = 1.20.
The power of the this test to detect 0.5 is

Pµ=0.5[X/(1/
√

25) ≥ 1.20] = P [Z ≥ 1.20 − (.5/(1/
√

25))] = 0.9032.

10.2.4 Recall that

τX,S =
1

2f(ξX,0.5)
.

We shall show that Properties (i) and (ii) on page 518 are true. For (i), let
Y = aX , a > 0. First, fY (t) = (1/a)fX(t/a). Then, since the median is a
location parameter (functional), ξY,0.5 = aξX,0.5. Hence,

τY,S =
1

2fY (ξY,0.5)
=

1

2(1/a)fX(aξX,0.5/a)
= aτX,S .

For (ii), let Y = X + b. Then fY (t) = fX(t− b). Also, since the median is a
location parameter (functional), ξY,0.5 = ξX,0.5 + b. Hence,

τY,S =
1

2fY (ξY,0.5)
=

1

2fX(ξX,0.5 + b− b)
= τX,S .

10.2.8 The t-test rejects H0 in favor of H1 if X/(σ/
√
n) > zα.

(a). The power function is

γt(θ) = Pθ

[
X

σ/
√
n
> zα

]
= 1 − Φ

[
zα −

√
nθ

σ

]
.

(b). Hence,

γ′t(θ) = φ

[
zα −

√
nθ

σ

] √
n

σ
> 0.

(c). Here θn = δ/
√
n. Thus,

γt(δ/
√
n) = 1 − Φ

[
zα − δ

σ

]
.

(d). Write θ∗ =
√
nθ∗/

√
n. Then we need to solve the following equation for

n:

γ∗ = γt(θ
∗) = 1 − Φ

[
zα −

√
nθ∗

σ

]
.

After simplification, we get

√
n =

(zα − zγ∗)σ

θ∗
.
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10.3.1 Expanding the product, we obtain

mT (s) =
1

8

[
e−6s + e−4s + e−2s + e0 + e2s + e4s + e6s

]
,

from which the distribution can be read.

10.3.4 Property (1) follows because all the terms in the sum are nonnegative and
R|vi| > 0, for all i. Property (2), follows because ranks of absolute values are
invariant to a constant multiple. For the third property, following the hint we
have

‖u + v‖ ≤
n∑

i=1

R|ui + vi||ui| +
n∑

i=1

R|ui + vi||vi|

≤
n∑

j=1

j|u|(j) +

n∑

j=1

j|v|(j)

=
n∑

j=1

j|u|ij +
n∑

j=1

j|v|ij

=
n∑

i=1

R|ui||ui| +
n∑

i=1

R|vi||vi| = ‖u‖ + ‖v‖,

where the permutation ij denotes the permutation of the antiranks.

10.3.5 Note that the definition of θ̂ should read

θ̂ = Argmin‖X− θ‖.

Write the norm in terms of antiranks; that is,

‖X − θ‖ =

n∑

j=1

j|Xij − θ|.

Taking the partial of the right-side with respect to θ, we get

∂

∂θ
‖X− θ‖ = −

n∑

j=1

jsgn(Xij − θ) = −
n∑

i=1

R|Xi − θ|sgn(Xi − θ).

Setting this equation to 0, we see that it is equivalent to the equation

2T+(θ) − n(n+ 1)

2
= 0,

which leads to the Hodges-Lehmann estimate; see expression (10.3.10).

10.4.3 Write

√
n(Y −X − ∆) =

√
n

n2

√
n2(Y − µY ) −

√
n

n1

√
n1(X − µX).
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By the Central Limit Theorem, the terms on the right-side converge in dis-
tribution to N(0, σ2/λ2) and N(0, σ2/λ1) distributions, respectively. Using
independence between the samples leads to the asymptotic distribution given
in expression (10.4.28).

10.4.4 From the asymptotic distribution of U , we obtain the equation

α

2
= P∆[U(∆) ≤ c] = P∆[U(∆) ≤ c+ (1/2)]

=̇ P
[
Z ≤

{
(c+ (1/2)− (n1n2/2))/

√
n1n2(n+ 1)/12

}]
.

Setting the term in braces to −zα/2 yields the desired result.

10.4.5 Using ∆ > 0, we get the following implication which implies that FY (y) ≤
FX(y):

Y ≤ y ⇔ X + ∆ ≤ y ⇔ X ≤ y − ∆ ⇒ X ≤ y.

10.5.3 The value of s2a for Wilcoxon scores is

s2a = 12

n∑

i=1

[
i

n+ 1
− 1

2

]2

=
12

(n+ 1)2

{
n∑

i=1

i2 − (n+ 1)

n∑

i=1

i+
n(n+ 1)2

4

}

=
n(n− 1)

n+ 1
.

10.5.5 Use the change of variables u = Φ(x) to obtain

∫ 1

0

Φ−1(u) du =

∫ ∞

−∞
xφ(x) dx = 0

∫ 1

0

(Φ−1(u))2 du =

∫ ∞

−∞
x2φ(x) dx = 1.

10.5.10 For this problem

τ−1
ϕ =

∫ 1

0

Φ−1(u)

{
−f

′(F−1(u))

f(F−1(u))

}
du.

Without loss of generality assume that µ = 0. Then f(x) = (1/
√

2πσ) exp{−x2/2σ2}.
It follows that

f ′(x)

f(x)
= − x

σ2
.

Furthermore, because F (t) = Φ(t/σ) we get F−1(u) = σΦ−1(u). Substituting
this into the expression which defines τ−1

ϕ , we obtain τ−1
ϕ = σ−1.
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10.5.12 The Riemann approximation yields

1 =

∫ 1

0

ϕ2(u) du=̇

n∑

i=1

ϕ2

(
i

n+ 1

)
1

n
.

10.5.15 Let F (t) be the common cdf of Xi.

(a). Without loss of generality assume that θ = 0. Let 0 < u < 1 be an
arbitrary but fixed u. Let t = F−1(1 − u). Then

ϕ(1 − u) = −f
′(F−1(1 − u))

f(F−1(1 − u))
= −f

′(t)

f(t)
. (10.0.1)

But F−1(1 − u) = t implies, by symmetry about 0, that u = 1 − F (t) =
F (−t). Because f ′(t) and f(t) are odd and even functions, respectively,
we have

−ϕ(u) =
f ′(F−1(u))

f(F−1(u))
=
f ′(−t)
f(−t) = −f

′(t)

f(t)
. (10.0.2)

By (10.0.1) and (10.0.2) the result follows.

Also, by (10.5.40), ϕ(1/2) = −ϕ(1/2). So ϕ(1/2) = 0

(b). Since (u+ 1)/2 > 1/2 and ϕ(u) is nondecreasing

ϕ+(u) = ϕ((u+ 1)/2) ≥ ϕ(0) = 0.

(e). Let ij denote the permutation of antiranks. Then we can write Wϕ+ as

Wϕ+ =
n∑

j=1

sgn(Xij )a
+(ij).

By the discussion on page 532, sgn(Xij ) are iid with pmf p(−1) = p(1) =
1/2. Hence, the statistic Wϕ+ is distribution-free under H0.

The above expression can be used to find the null mean and variance of
Wϕ+ and to state its asymptotic distribution.

10.6.1 The following R code (driver and 4 functions) computes the four tests statis-
tics based on the four respective score functions given in Exercise 10.6.1. In
particular, the code returns the variances of the four tests. For sample sizes
n1 = n2 = 15, the variances are: 2.419, 7.758, 2.419, and 2.419.

drive4 = function(x,y){

n1 = length(x)

n2 = length(y)

n = n1 + n2

cb = (1:n)/(n+1)
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const = (n1*n2)/(n*(n-1))

p1 = phi1(cb)

var1 = const*sum(p1^2)

p2 = phi2(cb)

var2 = const*sum(p2^2)

p3 = phi1(cb)

var3 = const*sum(p3^2)

p4 = phi1(cb)

var4 = const*sum(p4^2)

vars = c(var1,var2,var3,var4)

allxy = c(x,y)

rall = rank(allxy)/(n+1)

ind = c(rep(0,n1),rep(1,n2))

s1 = sum(ind*phi1(rall))

s2 = sum(ind*phi2(rall))

s3 = sum(ind*phi3(rall))

s4 = sum(ind*phi4(rall))

tests = c(s1,s2,s3,s4)

ztests = tests/sqrt(vars)

list(vars=vars,tests=tests,ztests=ztests)

}

phi1 = function(u){

phi1 = 2*u - 1

phi1

}

phi2 = function(u){

phi2 = sign(2*u - 1)

phi2

}

phi3 = function(u){

n = length(u)

phi3 = rep(0,n)

for (i in 1:n){

if(u[i] <= .25){phi3[i] = 4*u[i] - 1}

if(u[i] > .75){phi3[i] = 4*u[i] - 3}

}

phi3

}

phi4 = function(u){

n = length(u)

phi4 = rep(.5,n)

for (i in 1:n){
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if(u[i] <= .50){phi4[i] = 4*u[i] - (3/2)}

}

phi4

}

10.6.2 Based on the above code, the standardized test statistics for the 4 respective
scores are: 1.555, 1.077, 0.850, and 0.839.

10.7.1 Note that the ranks are invariant to constant shifts. From Model (10.7.1),
under β we have,

Pβ(Yi ≤ t) = P [ε ≤ t− α− β(xi − x)]. (10.0.3)

Under β = 0, we have

P0(Yi + β(xi − x) ≤ t) = P [ε+ α+ β(xi − x) ≤ t],

which is the same as (10.0.3).

10.7.4 The power function is

γ(β) = Pβ [Tϕ(0) ≥ cα] = P0[Tϕ(−β) ≥ cα].

Suppose β1 < β2 then, since Tϕ is nonincreasing, Tϕ(−β1) ≤ Tϕ(−β2). This
leads to the implication

Tϕ(−β1) ≥ cα ⇒ Tϕ(−β2) ≥ cα.

From which we get, γ(β1) ≤ γ(β2).

10.7.5 As in the last exercise, the power function is

γ(βn) = Pβn

[
Tϕ(0) ≥ zασTϕ

]

= Pβn

[
Tϕ(0) − Eβn [Tϕ(0)]

σTϕ

≥ zα − Eβn [Tϕ(0)]

σTϕ

]
.

In the last expression, the random variable on the leftside is approximately
N(0, 1) and, using the discussion on page 569, the right-side reduces to zα −
β1cT . These approximations can be made rigorous in a more advanced course.

10.8.1 Write τ as
τ = 2P [sgn[(X1 −X2)(Y1 − Y2)]] − 1.

It is easy to show that the right-side is between 0 and 1.

10.8.3 The following results were obtained at the site www.stat.wmich.edu/slab/RGLM.

Procedure α̂ (SE) β̂ (SE)
LS 206.2 (13.01) 0.0151 (0.0055)
Wilcoxon 211.0 (2.59) 0.0098 (0.0011)
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The obvious outlier spoiled the LS fit and its standard errors.

10.8.5 Part (a). Note that the scores are centered and
∑n

i=1 a
2(i) = s2a. Hence, ra

is a correlation coefficient on the pairs (a(R(Xi)), a(R(Yi))), i = 1, 2, . . . , n.

10.8.9 As with the other rank score correlations,
√
n− 1rN has a null asymptotic

N(0, 1) distribution. The following R-code computes rN and its corresponding
z-test statistic:

rn1089 = function(){

data=matrix(scan("olymp3.dat"),ncol=2,byrow=T)

x=data[,1]

y=data[,2]

n=length(x)

rx=rank(x)/(n+1)

ry=rank(y)/(n+1)

sx=qnorm(rx)

sy=qnorm(ry)

sa2 = sum(sx^2)

rn = sum(sx*sy)/sa2

zn = sqrt(n-1)*rn

list(rn=rn,zn=zn)

}

10.9.1 With η = θ1, write

‖Y − η‖2
LS =

n∑

i=1

(yi − θ)2.

Now take the partial derivative with respect to θ, set the result to 0, and solve
for θ. This yields θ̂ = y and, hence, η̂ = y1.

10.9.4 Note that

Fx,ǫ(t) − FX(t) =

{
ǫ[−FX(t)] if t < x
ǫ[1 − FX(t)] if t ≥ x.

In either case the expression in brackets is less that or equal to 1 in absolute
value.

10.9.7 Let V (F ) denote the variance functional of the cdf F (t).

(a). Let Fn denote the empirical cdf of Y1−y, . . . , Yn−Y . Then V (Fn) solves

0 =

∫ ∞

−∞
[t2 − V (Fn)] dFn(t) =

1

n

n∑

i=1

(Yi − Y )2 − V (Fn).
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(b). The functional at the contaminated cdf solves

0 =

∫ ∞

−∞
[t2 − V (Fy,ǫ)] dFy,ǫ(t)

= (1 − ǫ)

∫ ∞

−∞
[t2 − V (Fy,ǫ)] dF (t) + ǫ

∫ ∞

−∞
[t2 − V (Fy,ǫ)] d∆y(t)

Taking the partial of both sides with respect to ǫ, we get

0 = −
∫ ∞

−∞
[t2 − V (Fy,ǫ)] dF (t) − (1 − ǫ)

∫ ∞

−∞
dF (t)

∂V

∂ǫ

+

∫ ∞

−∞
[t2 − V (Fy,ǫ)] d∆y(t) + ǫ

∂B

∂ǫ
,

where the last partial derivative is not needed. Evaluation of the last
expression at ǫ = 0 yields

∂V

∂ǫ

∣∣∣∣
ǫ=0

= y2 − σ2.

10.9.9 Recall that θ is the true median. We then have

E[IF (Y ; θ̂L1)] =
1

2fY (θ)

1

2
− 1

2fY (θ)

1

2
= 0

and

E[IF 2(Y ; θ̂L1)] =
1

4f2
Y (θ)

1

2
+

1

4f2
Y (θ)

1

2
=

1

4f2
Y (θ)

.

10.9.12 Part (a): Note that

∂

∂β

n∑

i=1

a(i)(Y − x′
cβ)(i) = −

n∑

i=1

a(i)[xc](i)

= −
n∑

i=1

a((R(Yi − x′
ciβ))xci,

where the notation [xc](i) means the xc associated with (Y − x′
cβ)(i).

Part (c): From the Wilcoxon normal equations determined in the last exercise,

it is clear that β̂W is chosen so that the vector of ranked-scores of the residuals,

a(R(Y − Xcβ̂W )), is orthogonal to the range of of the matrix Xc.
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10.9.15 Start with the right-side, i.e.,

∑

i,j

|vi − vj | =
∑

i,j

|v(i) − v(j)|

= 2
∑

i<j

|v(i) − v(j)|

= 2
∑

i<j

(v(j) − v(i))

= 2





n∑

j=2

j−1∑

i=1

v(j) −
n−1∑

i=1

n∑

j=i+1

v(i)





= 2





n∑

j=2

(j − 1)v(j) −
n−1∑

i=1

(n− i)v(i)





= 4

n∑

j=2

(
j − n+ 1

2

)
v(j)

=
2√

3(n+ 1)

n∑

j=1

√
12

(
j

n+ 1
− 1

2

)
v(j).

10.9.16 Part (b). We know that F (ei) has an uniform(0, 1) distribution. Hence, since
the scores are standardized,

E[ϕ(F (ei))] =

∫ 1

0

ϕ(u) du = 0

E[ϕ2(F (ei))] =

∫ 1

0

ϕ2(u) du = 1.
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Chapter 11

Bayesian Statistics

11.2.2

k(θ|x1, x2, . . . , xn) ∝ θ
P

xi(1 − θ)n−
P

xiθα−1(1 − θ)β−1

= θ
P

xi+α−1(1 − θ)n−
P

xi+β−1,

which is the pdf of a beta (α∗ =
∑
xi + α, β∗ = n −∑ xi + β) and, with

y =
∑
xi, is the same as that of Example 11.2.2.

11.2.4 Considering Example 11.2.1, we know that the posterior distribution of the
parameter, given the data, is gamma [α∗ =

∑
xi +α, β∗ = β/(nβ+1)]. With

Y =
∑
Xi and square error loss, we want our Bayes estimator to be the

conditional mean of the parameter, given the data. That is,

α∗β∗ = (Y + α)β/(nβ + 1) =
(Y/n)n+ (αβ)(1/β)

n+ (1/β)
,

which is the weighted average of X = Y/n and the prior mean of αβ.

11.2.6

k(θ1, θ2|y1, y2) ∝ θy1

1 θ
y2

2 (1 − θ1 − θ2)
n−y1−y2θα1−1

1 θα2−1
2 (1 − θ1 − θ2)

α3−1

= θy1+α1−1
1 θy2+α2−1

2 (1 − θ1 − θ2)
n−y1−y2+α3−1,

which is Dirichlet with α∗
1 = y1 + α1, α

∗
2 = y2 + α2, α

∗
3 = n − y1 − y2 + α3.

The two conditional means are

y1+α1

n+α1+α2+α3
and y2+α2

n+α1+α2+α3
.

11.2.8

(a) E

[(
θ − 10 + Y

45

)2
]

=

(
θ − 10 + 30θ

45

)2

+

(
1

45

)2

30θ(1 − θ)

(a) E

[(
θ − 10 + Y

45

)2
]
<
θ(1 − θ)

30
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requires that

k(θ) =

(
θ

3
− 2

9

)2

− 1

54
θ(1 − θ) < 0.

Find the two zeroes of k(θ), one of which is greater (less) than 2/3.

11.2.9 The conditional pdf of the parameter, given Y4 = y4, is

h(θ|y4) ∝
(

4y3
4

θ4

)(
2

θ3

)
∝ 1

θ7
, y4 < θ and 1 < θ.

This means that

h(θ|y4) =

{
6
θ7 y4 < 1 < θ
6y6

4

θ7 1 < y4 < θ.

With the absolute value loss function, our Bayes decision is the median of the
posterior distribution, namely

∫ ∞

m

6

θ7
dθ = 1/2 ⇒ m = 21/6 when y4 < 1,

and ∫ ∞

m

6y6
4

θ7
dθ = 1/2 ⇒ m = 21/6y4 when 1 < y4.

11.3.2 The Bayes model is

X |θ ∼ Γ(3, 1/θ), θ > 0

Θ ∼ Γ(10, 2).

(a). The posterior pdf simplifies to

k(θ|x) ∝ θ40−1 exp{−θ[(1/2) + nx]},

which is the pdf of a Γ(40, 1/[(1/2) + nx]) distribution.

(b). Squared error loss implies the Bayes estimate is the mean of the posterior;
i.e., 40/[(1/2) + nx].

(d). Note that 2[(1/2) + nx]Θ has a χ2(80) distribution.

11.3.4 Let τ = u(θ). By the chain rule we have

∂ log f(x; θ)

∂τ
=
∂ log f(x; θ)

∂θ

∂θ

∂τ

Squaring both sides and taking expectations leads to

I(τ) = I(θ)

(
∂θ

∂τ

)2

.

By the transformation rule the prior for τ is

h2(τ) = h(θ)

∣∣∣∣
∂θ

∂τ

∣∣∣∣ ∝
√
I(θ)

∣∣∣∣
∂θ

∂τ

∣∣∣∣ =
√
I(τ).
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11.37 By Exercise 11.3.4, the Jeffreys prior is proportional to the square root of
the information which, by Page 6.2.1, is 1/

√
θ(1 − θ). Hence, the prior is a

beta(1/2, 1/2) distribution. For Part (b), the posterior pdf is

k(θ|x) ∝ θnx(1 − θ)n−nxθ(1/2)−1(1 − θ)(1/2)−1

∝ θnx+(1/2)−1(1 − θ)n−nx+(1/2)−1.

Hence, the posterior distribution is beta(nx+ (1/2), n− nx+ (1/2)).

11.4.1 It is easy to show that the inverse conditional cdf of X given Y = y is
F−1

X|Y (u) = y − log(1 − u).

(a). Hence, the algorithm is of the form:

(0). Generate U1 and U2 iid uniform(0, 1)

(1). Generate Y = log(1/(1 − U1)

(2). Generate X = Y + log(1/(1 − U2).

(b). For n large, generate X1, X2, . . . Xn. Then X is an estimator of E(X).

(c). The following R function will compute the algorithm.

condsim2<-function(nsims){

collect<-rep(0,nsims)

for(i in 1:nsims)

{y<--log(1-runif(1))

collect[i]<--log(1-runif(1))+y

}

collect

}

11.4.3 Both marginal pdfs and the conditional pdf are given in the example.

(a). Use conditional expectation, i.e.

E(X) = E[E(X |Y )] = E(1 + Y ) =
3

2
.

(b) The cdf of X is

FX(x) = 1 − 2e−x + e−2x, x > 0.

For 0 < u < 1, the inverse of this cdf is the solution of the equation

e−2x − 2e−x + (1 − u) = 0.

This is a quadratic equation in e−x with the solution 1−√
u, (the other

solution cannot be true). This leads to the inverse of the cdf which is

F−1
X (u) = log[1/(1 −

√
u)].

Based on this, X can be generated by log[1/(1 −
√
U)], where U has a

uniform (0, 1) distribution.
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11.4.7 For this exercise a computer is not needed.

(a). The constant of proportionality K solves the equation

1 = K

∫ 1

0

yα−1(1 − y)β−1

{
n∑

x=0

(
n

x

)
yx(1 − y)n−x

}
dy,

which is easily determined to be K = Γ(α+ β)/(Γ(α)Γ(β)).

(b) from the joint pdf, we have

f(x|y) ∝
(
n

x

)
yx(1 − y)n−x.

Hence, X |Y is binomial(n, Y ). Likewise,

f(y|x) ∝ yx+α−1(1 − y)n−x+β−1;

so Y |X is beta(x + α, n− x+ β).

(c). The Gibbs sampler algorithm is: for i = 1, 2, . . . ,m

(1). Generate Yi|Xi−1 ∼ beta(α+Xi−1, n−Xi−1 + β)

(2). Generate Xi|Yi ∼ binomial(n, Yi) .

11.4.8 Here is R-code which runs the Gibbs sampler of the last exercise:

gibbser3 = function(alpha,beta,nt,m,n){

x0 = 1

yc = rep(0,m+n)

xc = c(x0,rep(0,m-1+n))

for(i in 2:(m+n)){yc[i] = rbeta(1,xc[i-1]+alpha,nt-xc[i-1]+beta)

xc[i] = rbinom(1,nt,yc[i])}

y1=yc[1:m]

y2=yc[(m+1):(m+n)]

x1=xc[1:m]

x2=xc[(m+1):(m+n)]

list(y1 = y1,y2=y2,x1=x1,x2=x2)

}

To determine the mean of X , use the joint pdf to find that E(X) = n(α/(α+
β)).

11.5.3 The Bayes model is

X |p ∼ bin(n, p), 0 < p < 1

p|θ ∼ h(p|θ) = θpθ−1, θ > 0

θ ∼ Γ(1, a), a specified.

Copyright ©2013 Pearson Education. Inc.

Download more from Learnclax.com



107

(a). The conditional pdf of p given y and θ is

g(p|y, θ) ∝ py+θ−1(1 − p)n−y+1−1,

which is the pdf of a beta(y + θ, n− y + 1) distribution.

(b). The conditional pdf of θ given y and p is

g(θ|y, p) ∝ θ exp{−θ[(1/a) − log p]},

which is the pdf of a Γ(2, [(1/a)− log p]−1) distribution.

(c). The Gibbs sampler algorithm is for i = 1, 2, . . . ,m

(1). Generate Pi|y,Θi−1 ∼ beta(y + Θi−1, n− y + 1)

(2). Generate Θi|y, Pi ∼ Γ

(
2,

[
1

a
− logPi

]−1
)
.

11.5.5 Recall that

g(y, p|θ) = g(y|p)g(p|θ) =

(
n

y

)
py+θ−1(1 − p)n−yθpθ−1.

Integrating out p, we have

g(y|θ) = θ

∫ 1

0

(
n

y

)
py+θ−1(1 − p)n−y+1−1 dp

= θ

(
n

y

)
Γ(y + θ)Γ(n− y + 1)

Γ(y + θ + n− y + 1)
.
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