formanuel C. 20131879363

FEDERAL UNIVERSITY OF TECHNOLOGY, OWERRI SCHOOL OF ENGINEERING & ENGINEERING TECHNOLOGY DEPARTMENT OF MATERIALS & METALLURGICAL ENGINEERING 2018/2019 HARMATTAN SEMESTER EXAMINATIONS.

COURSE: MAE/MTE 521 -KINETIC PROCESSES IN MATERIALS.

DATE: 25/06/2019

ANSWER FIVE QUESTIONS.

TIME: 3 HOURS.

- 1. (a). Derive an expression similar to Jander's equation for the fraction, α that has reacted in a discshaped particle of Mg(OH)2, radius r, and height h, reacting radially inwards. Relate the layer y, formed after time t, to the rate of decomposition dy/dt during a constant-temperature experiment, given that there was no catalytic for retarding effect of the product layer, y.
- (b). One-micron discs of Mg(OH)₂ particles are subjected to a decomposition reaction and 60% of the Mg(OH)₂ decomposed to form MgO during the first hour of a constant-temperature experiment. How long will it take for all the Mg(OH)2 to decompose?
- 2 (a). Write an equation for the number of vacancies contained in a metal at equilibrium at a particular temperature, and also that for the Arrhenius rate equation in the common logarithmic form.
- (b.i) Calculate the equilibrium concentration of vacancies per cubic meter in pure silver at 850°C
- (ii) What is the vacancy fraction at 800°C? Assume the energy of formation of a vacancy in pure silver is 1.10 eV. Assume C=1, Boltzmann's constant = 8.62 x 10⁻⁵ eV/K, density of silver=10.5 g/cm³, atomic mass of silver=107.868 g/at.mass.
- 3 (a) A gear made of 1018 steel (0.18 wt% C) is to be gas-carburized at 927°C. If the carburizing time is 7.5 h, at what depth in millimeters will the carbon content be 0.40 wt%? Assume the carbon content at the surface of the gear is 1.20 wt%. D (C in □ iron at 927° C) = $1.28 \times 10^{-11} \text{ m}^2/\text{s}$.
- (b) The diffusion coefficient for Ni in MgO is 1.23 x 10⁻¹² cm²/s at 1200°C and is 1.45 x 10⁻¹⁰ cm²/s at 1800°C. Calculate the activation energy and the diffusion constant D₀.
- 4. Derive an expression similar to Jander's equation for the fraction, α that has reacted in a cylindrical particle, radius r, height h, reacting from one end face relating the layer y, formed after time t, to the rate of decomposition dy/dt, if the this rate is inversely proportional to the layer, y that has formed.
- 5. Derive the expression for the rate constant, k for a decomposition reaction of a substance A which is a first order reaction.
- 6. In an experiment, the following data were generated:

Concentation (mol m3) Time (s) 0.00735 105 0.00584 242 0.00463 840

Confirm if this is a first or second order reaction and hence determine the rate constant.

ABLE OF THE ERROR FUNCTION	
Z	erf z
0	0
0.025	0.0282
0.05	0.0564
0.10	0.1125
0.15	0.1680
0.20	0.2227
0.25	0.2763
0.30	0.3286
0.35	0.3794
0.40	0.4284
0.45	0,4755
0.50	0.5205
0.55	0.5633
0.60	0.6039
0.65	0.6420
0.70	0.6778
0.75	0.7112
0.80	0.7421
0.85	0.7707
0.90	0.7970
0.95	0.8209
1.00	0.8427
1.10	0.8802
1.20	0.9103
1.30	0.9340
1.40	0.9523
1.50	0.9661
1.60	0.9763
1.70	0.9838
1.80	0.9891
1.90	0.9928
2.00	0.9953