A12

FEDERAL UNIVERSITY OF TECHNOLOGY, OWERRI SCHOOL OF SCIENCE DEPARTMENT OF PHYSICS

2014/2015 RAIN SEMESTER EXAMINATION PHY 306: MODERN PHYSICS II

DATE: TIME: 3 HOURS

INSTRUCTIONS

Answer any five questions.

Take: Electron charge = 1.60×10⁻¹⁹ C

Electron mass = 9.11×10^{-31} kg Proton mass = 1.67×10-27 kg

Permittivity of fire space = 8.85×10⁻¹² CN⁻¹m⁻¹

Velocity of light = \$.0×108 ms-1 Planck's constant = 6.63×10⁻³⁴ Js

Ouestion 1.

(a) An excited atom gives up its excess energy by emitting a photon of characteristic frequency. The average period that elapses between the excitation of an atom and the time is radiates is 3.0×10-8s. Find the inherent uncertainty in the frequency of the photon.

(b) An electron is in a box 0.20nm across, find its permitted energies corresponding to

n = 1, 2, 3 and 4. (c) If the electron in (1b) above is replaced with a 13g marble and the width of the box increased to 12cm, what are the permitted energies corresponding to n = 1, 2, 3 and 4.

(d) Compare the results obtained in (1b) and (1c) above and briefly discuss the physical implications.

Question 2.

(a) State four conditions that w must meet in order to be an acceptable wave function.

(b) Using the one-dimensional wave function of an unrestricted particle given as

Ψ = Ae-(i/h)(Ei - px), derive the time-independent Schrodinger equation. Hence, express the derived equation in three dimensions.

(c) The wave function for a free electron is given by $\psi(x) = A \sin(2.5 \times 10^{10} \text{ x})$ where x is in

Question 3.

(a) Suppose that an electron moving in a thin metal wire could be measured while in its ground state. What would be the probability of finding it somewhere in the region 0<x<L/4?

(b) What would be the probability of finding it in a very narrow region $\Delta x = 0.01L$ wide $\frac{1}{2}$ = 2. Fx.3 centered at x=51/8? centered at x=5L/8?

(c) Show that the expectation value of the momentum of a particle trapped in the (p(2)2) Arun (non) wat one-dimensional infinite square well is zero at all states.

Question 4.

(a) Briefly discuss two applications of quantum mechanical tunnel effect.

(b) P(x,t) = Asia 2771 (a) Art (b) Art (c) Art

(b) Electrons with energies of 1.0eV and 2.0eV are incident on a barrier 10.0eV high and

0.50nm wide. Calculate their respective approximate transmission probabilities. (c) Sketch and explain brief! the first three harmonic oscillator wave functions.

Question 5. 1

(ii) what is its implication if two electrons have the same set of the four quantum numbers . (a)(i) State Pauli's exclusion principle

(b) Using the principle in (a) above, calculate the number of sub-shells and the total number in a given atom?

of electrons in the M-shell of a given atom. (c) What do you understand by the terms; Symmetric and Anti-symmetric wave functions?

(d) Given two states as ψ_1 and ψ_2 ; write the equations for the linear combinations of these states for a symmetric wave function and anti-symmetry wave function.

(a) What do you understand by the terms. Fermions and Bosons?

(c) What do the following mean: (i) Normal Zeeman's effect and (ii) Anomalous Zeeman's effect?

(d) Calculate the Bohr magneton, $\mu_{oldsymbol{eta}}$, for an electron.