Free-Free or Bremsstrahlung Radiation

e Electrons in a plasma are accelerated by encounters with
massive ions.

® Thisis the dominant continuum emission mechanism in ther-
mal plasmas.

e An important coolant for plasmas at high temperature
Examples :

e Radio emission from HIl regions

e Radio emission from ionised winds and jets

e X-ray emission from clusters of galaxies




Calculation of Bremsstrahlung Spectrum

Important ingredients:
e Consider one particle at a specific b and v.

e When a charged particle accelerates it emits radiation (Lar-
mor’s formula). Acceleration is a function of b, v and Z.

e Acceleration as a function of time — intensity spectrum via
the Fourier Transform (Parseval’s theorem).

e Integrate over b (exact details tricky — gives rise to the Gaunt
Factor, g ¢ which is a function of v, T', Z).

e Include term for collision rate (depends on number densities
N and n; of electrons and ions respectively).

e Integrate over v. Assume plasma in thermal equilibrium
— Maxwellian distribution of v.

= el =6.8x10752 7712 7% n,n; exp[—hv/(ksT)] Gs s (v)

with the result having the units Wm ™ > Hz 1.

e,ff is the emissivity, the emitted power per unit volume per unit
frequency. This is related to the spontaneous emission coeffi-
cient (the emitted power per unit volume per unit frequency per
unit solid angle) by eff = 47),.
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Simple Example: Hydrogen Plasma

A common case is that of an optically thin hydrogen plasma, so
Ne =n;and Z = 1.

Because the plasma is optically thin, the total emitted specific
intensity is proportional to the emissivity integrated along the
line of sight.

L/OC/nzT_l/2dl

This is proportional to n?

process.

as we would expect for a collisonal

The integral [ nZ2 dl is called the emission measure, and is
often written in units of cm —° pC.

Total Emissivity

Integrate over frequency to get the total emissivity:

el =1.4x1078TY2 7% n n; Gs

This has units of Wm™>.

If we set gg = 1.2 we will probably be within 20% of the
correct result.



Free-Free Absorption

e Have calculated how much radiation emitted.

e Now wish to find how much an observer receives. These two
are not equal because free-free absorbtion occurs.

e Find how much absorbed as a function of frequency i.e. «,,
(= fraction of intensity lost per unit distance)

e Kirchoff'sLaw: j, = «a, B,(T) = €, /4n

ff _ €v
= —
T 4w B (T)
Z%neni (1 — exp[—hw/ (kp T))) gy (v)
_ _9 e i ff
= 3.7 x 10 ST/
18 %107 Z%nen; grp(v)
o V2T3/2
in units of m~—L.

e Can now find optical depth 7, = [ v, ds

e |[f optically thin, spectrum is as calculated before (I, appoxi-
mately flat until turnover).

e |[f optically thick, spectrum is effectively blackbody.

'In the Rayleigh-Jeans region



Example: Hll regions around OB stars

Plasma Cloud

e The uv-photons from OB stars photoionises the gas sur-
rounding them. The resulting plasma has a temperature of
around 10* K.

e The optical depth in the R-J limit is given by

n® grr(v)
TO(/ 232 dl

e In this regime g7 (v) oc v~ 017015,

o/, = (1 — e_T’“)BV( e)

e Atlowv, 7, >> 1 : I, o< B,(T.)  v* — Blackbody
like spectrum.

e Athighv, 7, << 1 : I, x 7B,(T.) < v~ %! —“Flat’
spectrum,

e Turnover when 7, = 1. e.g. ¥ = 1 GHz for Orion.



Example: X-ray emission from clusters of galax-
ies

e Gas in clusters of galaxies at temperatures of 7. ~ 10% K
(= 8.6 keV ). Therefore Bremsstrahlung emission extends
into X-rays.

e Very low gas density, n. =~ 10* m™3, so emission optically
thin. Cluster core radius 7. ~ 200 kpc.

e Estimate 7. from location of “knee” in spectrum.
e X-ray flux density F'x o fnzTe_l/zdl.

e Bolometric (total) X-ray luminosity L x o fngTel/zdl.

e Cluster gas also gives rise to the Sunyaev—Zel'dovich effect
Fqr x fneTedl.

e (Can combine SZ and X-ray data to get n. and the line of
sight depth. If assume that line of sight depth is equal to dis-
tance across cluster, can then calculate Hubble’s constant.
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Figure 1: The cluster of galaxies A1413. Greyscale is X-rays
from ROSAT PSPC. Contours are the S—Z effect from Ryle
Telescope



Example: lonised winds from stars

e If wind speed constant = n P2

°7T, = /oz,]jfds
X /n21/_2d3

assuming 7" in wind is constant, in R-Jregionand g ¢ ¢ (v) = 1.

e |n this case the optical depth 7, is a function of distance

from the star x. Need to integrate along line of sight y where

ré = 4 2.

= 7,(2) x v 2273
e The flux from the wind F, o< I,,dS); dS) = 2wxdx

o[, = (1—exp(—7,(2)))B, ~ (1—exp(—T7,(x)))2kT /).

2
= F, x /27mzd:v(1 — e~ @)okT v

2
X VQ/S/ (1 — e_l/w3> dw

using substitution w = zv/(2/3)

o F, ox 12?/3

e A full analysis will allow calculation of the mass loss rate.
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Free-Free or Bremsstrahlung Radiation

Free—Free or Bremsstrahlung Radiation

v, where Tas1
12 where hysaskT

-0.1
lyo(y

In IV

e Emission as result of collisions between charged particles,
usually electrons and ions.

e Emitters in thermal equilibrium

e Unpolarised

® cg. — HIl regions
— X-ray emission from clusters of galaxies
— lonised winds from stars



Appendix: Derivation of Bremsstrahlung Spec-
trum

Radiation from single accelerating electron

e Larmor’s formula gives the power from an electron as a func-
tion of acceleration

dw  e*|i(t)|?
dtdQ) 1672 ¢eqc3

Integrating over solid angle gives

dW e |i(t)|?

dt 67 g C3

sin” @

e If we introduce the fourier transform of 7 ()

P(w) = exp(iwt) 7 (t) dt

L

we can write the total energy emitted as P = fooo I, dw
where the spectral density is

2
I, =

7 (w)|*

This follows from Parseval's theorem (that [ |#(¢)|*dt = [ |#(w)|?dw)
and from the symmetry property that #*( —w) = 7*(w).

3megc?

e An electron in a harmonic field F/y exp(iwt) undergoes an

acceleration
—e
r(t) = — FEpe t
7 (t) —Eq xp(iwt)



dW = e* e?Ej
dt ~ 6megcd 2m?2

Now the incident flux in the wave is just € Eg c¢/2, so writing
the radiated power as a cross section so that the power radiated
is o X flux, we find

1 e’ °
o =
7 6n gomc?

Collision of single electron at one speed

Averaging over time = ——

e Consider an electron travelling at speed 7 colliding with an
ion with impact parameter b. Assuming the deviation from a
straight line is small:

AR /°° bdt B 27 e?
(

Ar = —
" b2 + #2t2)15  dmwegmrd

47‘(’80

e The frequency spectrum is given by

P(w) = exp(iwt) 7(t) dt

L

e We define a characteristic interaction time 7 = b/7, where
b is the impact parameter.

wr € 1= i(w) =~ (27) " Ar
wr > 1= #w) =0



e Thus for frequencies up to some value ~ 7*/b, we have a flat
frequency spectrum

72 b

I, =
C 247t ed ABm2r2h?

and most of the energy is emitted at a frequency ~ 7'“/b.

Collision of many electrons at one speed

e Suppose we have number densities 1. and n,; for the elec-
trons and ions. The collison rate per unit volume between im-
pact parameters b and b + db is then

NeN; 2rbdbr

and the total emitted power per unit volume per unit (angular)
frequency is found by integration to be

£ Nnen; 22 e b ax
e = PG log
1273eg c3m? 7 bmin

e The upper limit is set by the condition that we expect no
emission beyond a frequency 7 /b, so that by, & 7/ w.

e There are two limits on the lower limit to b. The straight
line assumption breaks down when the particle kinetic energy
is smaller than the potential energy for a given b: this gives

o 7 e?

min

27 egm T2



The second is the quantum limit set by uncertainty:

peM _ e
min m/",

e \We define the Gaunt Factor to encode all the uncertainties
in the above analysis:

grr(F,w) = V3 log <bmax>

7T bmin
2 6
i NeMN; L° € ,
= e/ = r,w
v 12\/§7T3€8 c3m27°“gff<’ )

Thermal Free-Free emission

e |If the particles obey a Maxwellian distribution, we have a
probability density p(r') o exp(—m#?/(2kT)), and we can
perform the necessary average to obtain the total specific emis-
sivity:

el = AT=Y2 7% neng exp[—hv/(ET)) G5 (V)

32meS [ 2n \'P /1
A=
3med \3km 47eg
e The Gaunt Factor g () has now been averaged over the
Maxwellian distribution.

where




