Solutions Manual to Accompany

INTRODUCTION
to LINEAR
REGRESSION
ANALYSIS

Fifth Edition

DOUGLAS C. MONTGOMERY
EIETZAB ETNEHSBATSP EE€ K

G. GEOFFREY VINING

Prepared by ANNE G. RYAN

WILEY



Download more at Learnclax.com



Solutions Manual to Accompany
Introduction to Linear
Regression Analysis

Fifth Edition



Download more at Learnclax.com



Solutions Manual to Accompany
Introduction to Linear
Regression Analysis

Fifth Edition

Douglas C. Montgomery

Arizona State University
School of Computing, Informatics, and Decisions Systems Engineering
Tempe, AZ

Elizabeth A. Peck

The Coca-Cola Company (retired)
Atlanta, GA

G. Geoffrey Vining
Virginia Tech

Department of Statistics
Blacksburg, VA

Prepared by
Anne G. Ryan
Virginia Tech

Department of Statistics
Blacksburg, VA

WILEY

A JOHN WILEY & SONS, INC., PUBLICATION



Copyright © 201 3 by John Wiley & Sons, tnc. Al rights reserved,

Published by John Wiley & Sons, Inc., Hoboken, New Jersey. All rights reserved.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic. mechanical, photocopying,
recording, scanning of otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive,
Danvers, MA 01923, (978} 750-8400, fax (978) 750-4470, or on the web at www copyright.com. Requests 1o the Publisher for permission shouid be
addressed 10 the Permissions Department, John Wiley & Sons, Inc.. LT1 River Street, Hoboken, NJ 07030, {201) 748-601 1. fax (201) 748-6008, or online at
hitpr/fwww.wiley.com/go/permission.

Limit of Liability/Disclaimer of Wamranty: While the publisher and author have used their best efforts in preparing this book, they make noe representation or
warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or
fitness for a particular purpese. No warranty may be created or extended by safes representatives or written sales materials. The advice and strategies
contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be
liable for any loss of profit or any other commercial damages, including but aot limited to special. incidental, consequential. or other damages.

For general information on our other products and services please contact our Customer Care Department within the United States at (800} 762-2974, outside
the Unned States at (317) 572-3993 or fax (317) 572-4G02,

Wiley also publishes its books in a variety of electronic formats, Seme content that appears in prink, however, may nol be available in elecironic formats, For
more information about Wiley products, visil our web sile at www wiley.com.

Library of Congress Cataloging-in-Publication Data is available.

[SBN 978-1-118-47146-3

ID98765432I1



PREFACE

This book contains the complete solutions to the first eight chapters and the odd-
numbered problems for chapters nine through fifteen in Introduction to Linear Regression
Analysis, Fifth Edition. The solutions were obtained using Minitab® | JMP® | and SAS®.

The purpose of the solutions manual is to provide students with a reference to check their
answers and to show the complete solution. Students are advised fo try to work out the
problems on their own before appealing to the solutions manual.

Anne G. Ryan
Virginia Tech

Dana C. Krueger
Arizona State University

Scott M. Kowalski
Minitab, Inc.
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Chapter 2: Simple Linear Regression

21 a y=218—-.007zs

b.

Source d.f. 55 MS
Regression 1 178.09 178.09
Error 26 148.87 5.73
Total 27 326.96

¢. A 95% confidence interval for the slope parameter is —0.007025 + 2.056{(0.00126) =
(—0.0096, —0.0044).

d. R? = 54.5%

e. A 95% confidence interval on the mean number of games won if opponents’ yards

rushing is limited to 2000 yards is 7.738 £+ 2.056(.473) = {6.766, 8.711).

2.2 The fitted value is 9.14 and a 90% prediction interval on the number of games won if

opponents’ yards rushing is limited to 1800 yards is {4.935, 13.351).

2.3 a § =607 — 21.4z,

b.

Source d.f. SS MS
Regression 1 10679 10579
Error 27 4103 152
Total 28 14682

c. A 99% confidence interval for the slope parameter is —21.402 + 2.771(2.565) =
(~28.51, —14.29).



d. R*=721%

e. A 95Y% confidence interval on the mean heat fix when the radial deflection is 16.5

milliradians is 253.96 £ 2.145(2.35) = (249.15. 258.78).

24 a. §=33.7T—.047x,

b.

Source d.f. sS MS
Regression 1 95534 955.34
Error 30 282.20 9.41
Total 31 1237.54

c. R2=77.2%

d. A 95% confidence interval on the mean gasoline 1nileage if the engine displacement

is 275 in? is 20.685 & 2.042(.544) = (19.573,21.796).

e. A 95% prediction interval on the mean gasoline mileage if the engine displacement.

is 275 in® is 20.685 + 2.042(3.116) = (14.322, 27.048).

f. Part d. is an interval estimator on the mean response at 275 in® while part e. is an
interval estimator on a future observation at 275 in®. The prediction interval is wider
than the confidence interval on the mean because it depends on the error from the

fitted model and the future observation.

25 a. §=40.9- 00575z

b.

Source d.f. SS MS
Regression 1 921.53 921.53
Error 30  316.02 10.53
Total 31 1237.54



c. R?=74.5%

The two variables seem to fit about the same. It does not appear that x; is a better

regressor than xiq.

2.6 a §=13.3—3.322,

b.

Source d.f. Ss MS
Regression 1 636.16 636.16
Error 22 192.89 877
Total 23 829.05

c. R? =76.7%

d. A 95% confidence interval on the slope parameter is 3.3244 + 2.074{.3903) =
(2.51,4.13).

e. A 95% confidence interval on the mean selling price of a house for which the current

taxes are $750 is 15.813 + 2.074(2.288) = (11.07, 20.56).

27 a y=7719-118z

b. t = 3%'885 = 3.39 with p = 0.003. The null hypothesis is rejected and we conclude

there is a linear relationship between percent purity and percent of hydrocarbons.
c. R?=38.9%

d. A 95% confidence interval on the slope parameter is 11.801 £ 2.101(3.485) =
(4.48,19.12).



e. A 95% confidence interval on the mean purity when the hydrocarbon percentage is

1.00 is 89.664 = 2.101(1.025) = (87.51,91.82).

2.8 a. r=+VR?=.624

b. This is the same as the test statistic for testing 5, = 0, t = 3.39 with p = 0.003.

¢. A 95% confidence interval for p is
(tanh[arctanh(.624) — 1.96/+/17], tanh[arctanh(.624) + 1.96/+/17]) = tanh{.267,1.21)

= (261, .837)

2.9 The no-intercept model is § = 2.414 with MSE = 21.029. The MSE for the model
containing the intercept is 17.484. Also, the test of By = 0 is significant. Therefore,

the model should not be forced through the origin.

2.10 a. ¥ =69.104 + 419z

b. r=.773

c. t = 5.979 with p = 0.000, reject Hy and claim there is evidence that the correlation

is different from zero.

d. The test is
Zy = |arctanh(.773) — arctanh(.6)]/26 — 3

= (1.0277 - .6932)v/23

= 1.60.
Since the rejection region is |Zg} > Z,/; = 1.96, we fail to reject Hy.
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e. A 95% confidence interval for p is

tanh(1.0277 — (1.96)/v/23) < p < tanh(1.0277 + (1.96)/v/23) = (.55, .89)

2.11 § = .792z with MSE = 158.707. The model with the intercept has MSE = 75.357 and

the test on f is significant. The model with the intercept is superior.

212 a. y=—6.33 +9.21z
b. F = 280590/4 = 74,122.73, it is significant.

c. Hy: By = 10000 vs Hy : B; # 10000 gives ¢ = (9.208 — 10)/.03382 = —23.4 with

p = 0.000. Reject Hy and claim that the usage increase is less than 10,000.

d. A 99% prediction interval on steam usage in a month with average ambient tem-

perature of 58° is 527.759 + 3.169(2.063) = (521.22, 534.29).

2.13 a.

180 165

b. § = 183.596 — 7.404z



c. F'=349.688/973.196 = .359 with p = 0.558. The data suggests no linear associa-

tion.

d.

2.14 a.

e 175 180 a5

&4
a.ﬁ-i
T4
o3

oz

.3 04

b. § = .671 — .296z

c. F=.0369/.0225 = 1.64 with p = 0.248. R? = 21.5%. A linear association is not

present.
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2.15 a. ¥ =1.28 — .00876x

b. F = .32529..00225 = 144.58 with p = 0.000. R? = 96%. There is a linear

association between viscosity and temperature.
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2.16 §j = —290.707 + 2.346z, F = 34286009 with p = 0.000, R? = 100%. There is almost a

perfect linear fit of the data.



2.17 § = 163.931 + 1.5796z, F = 226.4 with p = 0.000, R? = 93.8%. The model is a good
fit of the data.
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2.18 a. § = 22.163 + 0.36317z

b. F = 13.98 with p = 0.001, so the relationship is statistically significant. However,

the R? = 42.4%, so there is still a lot of unexplained variation in this model.
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d. A 95% confidence interval on returned impressions for MCI (x=26.9) is

31.93 + (2.093)/(552.3) (& + 2875047 — (20,654, 43.206).

A 95% prediction interval is

31.93 % (2.093)/(552.32) (1 + & + 32007 — (-18.535, 82.395).




2.19 a. §=130.2—1.249z, F = 72.09 with p = 0.000 ,R? = 75.8%. The model is a good

fit of the data.

b. The fit for the SLR model relating satisfaction to age is much better compared to
the fit for the SLR model relating satisfaction to severity in terms of R*. For the SLR
with satisfaction and age R? = 75.8% compared to R? = 42.7% for the model relating

satisfaction and severity.

2.20 § = 410.7 — 0.2638x, F = 7.51 with p = 0.016 ,R? = 34.9%. The engineer is correct
that there is a relationship between initial boiling point. of the fuel and fuel consump-
tion. However, the R? = 34.9% indicating there is still a lot of unexplained variation

in this model.

2.21 § = 16.56 — 0.01276:x, F' = 4.94 with p = 0.034 ,R? = 14.1%. The winemaker is correct
that sulfur content has a significant negative impact on taste with a p— value = 0.034.
However, the R? = 14.1% indicating there is still a lot of unexplained variation in this

model.

222 §=21.25+780x, F = 0.22 with p = 0.648 ,R* = 1.3%. The chemist’s belief is
incorrect. There is no relationship between the ratio of inlet oxygen to inlet methanol
and percent conversion (p — value = 0.648). The R? = 1.3%, which indicates that the

ratio explains virtually none of the percent conversion.



2.23 a.
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Both histograms are bell-shaped. The one for 3y is centered around 50 and the one for

A, is centered around 10.

b. The histogram is bell-shaped with a center of 100.
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c. 481 out of 500 which is 96.2% which is very close to the stated 95%.

d. 474 out of 500 which is 94.8% which is very close to the stated 95%.

2.24 Using a smaller value of n makes the estimates of the coefficients in the regression
model less precise. It also increases the variability in the predicted value of y at x = 5.
The lengths of the confidence intervals are wider for n = 10 and the histograms are

more spread out.
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2.25 a.
COU(E{],B]) = C-‘ov(g} - ,.Qlfff, 31)

= Cov(y, fi) — .’I‘CO’U(ElsEl)

=0 - :EBE%(— {(by part b)

—Zg?

XX

b.
COT"(?}:El) = ;51;;00’(‘1(2 Yin (T — ZT)y:)

_ _5;__ S (w; — 2)Cov(yi, ys)

noxx

2
= _5'_73-0,\()( Yo(w; — )

= ()

2.26 a. Use the fact that 5(%5 ~ x2_,. Then

EMSE) = E(35E))

= +T5E (x3)

:O’z

b. Use SSR = 5,5,y = 32Sue.

= S.."::.." [VG'T(BI + (E(él))g]

=S,z (fi + ,81?)

- 0-2 + ﬁi?Sx.z:

11



2.27 a. No,

E(A) =E (&l—s;_jﬁ)
= g%;_—i)a@(yi)
— &F(ﬁo + Bz + Boiy)
=5+ &:E_“[,’__i@

b. The bias is
— X{zi — T

B — E(f) =

2.28 a. & = SSE/n. So, E(7?) = L5207 so the bias is (1 — 252 o2

n

b. As n gets large, the bias goes to zero.

2.29 If n is even, then half the points should be at x = —1 and the other half at z = 1.
If n is odd, then one point should be at £ = 0, then the rest of the points are evenly
split between £ = —1 and = = 1. There would be no way to test the adequacy of the

model.

230a r=+vR2=1.00

12



b. The test of p = 0 is equivalent to the test of 3, = 0. Therefore, t = 272.25 with
p = 0.000.

c. For Hy: p=.5, we get
Zy = [arctanh(.99) — arctanh(.5)]+/9

= [2.647 — .549](3)
=6.29.

We reject Hy.

d. (t.anh[a,rcta.nh(.QQ) — 1.96//9], tanh[arctanh(.99) + 1.96/\/§]) = (.963,.997)

2.31 Since R? = SS8kr/Syy and Sy, = SSkg + SSg, then we need to show that in this case
58 > 0. Now SSg = S (y; — #:)?, so for two different y;’s (say y1; and yo;) at the same
value of x;, both yy; and ¥y cannot equal #; at ;. Therefore at. least one of (yy; — #;)?

and (¥ — %)% is > 0. Hence, SSg > 0 and thus R? < 1.

2.32 a. S(Bp.51) = Z{yi — 5o — Bix:)? with 8y known. We need to take the derivative of
this with respect to 3, and set it equal to zero. This gives
—2 gl(yi — Bo — Bizi)z; =0
B X -'1?? = ;(?}a — Bo)ax;

_Z(yi — Bo)x;
)Bl = =1 T
> x?

i=1

13



(S F
i=1 !
n
= "= 1 (Z 5‘9:‘2)02
(X x2)? =1
i=1
T
Sl
i=1

1 — a 2 S _
~ tp-g 80 we get 81 £ t,mn.0y MSeg/ Y &7 which Is narrower than
MSp/ S a2 o [

when both are unknown,

2.33
Var(e;) = Var(y; — %)

= Var(y;) + Var(g:) — 2Cov(y;, 7))

2 - P PO - o
202+[%+&"; .’L‘(I}_Q[%_}_J,.6 T 0‘}
T k4
=32
-2 -1 ‘Et‘"“x)]

which depends on the value of z; and thus is not constant.
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Chapter 3: Multiple Linear Regression

3.1 a. y=—18+.0036xy + .1942; — .0048xg

b. Regression is significant.

Source d.f. SS MS F p-value
Regression 3 257.094 85.698 29.44 0.000
Error 24 69.87 2.911

Total 27 326.964

¢. All three are significant.

Coefficient  test statistic  p-value

B2 5.18  0.000
Jots 2.20  0.038
s =3.77  0.001

d. R? = 78.6% and R%, = 76.0%

e. Fy = {257.094 — 243.03)/2.911 = 4.84 which is significant at @ = 0.05. The test

statistic here is the square of the f-statistic in part c.

3.2 Correlation coefficient between w; and §; is .887. So (.887)% = .786 which is R2.

3.3 a. A 95% confidence interval on the slope parameter 8; is 37 + 2.064(.08823) =
(.012, .376)
b. A 95% confidence interval on the mean number of games won by a team when

xry = 2300, 7 = 56.0 and xz = 2100 is
§ £ tajan[oxb(XX) 1%y = 7.216 £ 2.064(.378)

= (6.44,7.99)



3.4 a =179+ .048x; — 0065425 with F' = 15.13 and p = 0.000 which is significant.
b. R? = 54.8% and R}, = 51.5% which are much lower.

c. For By, a 95% confidence interval is 0.484 + 2.064(.1192) = (—.198,.294} and for
the mean number of games won by a team when z; = 56.0 and zz = 2100, a 95%
confidence interval is 6.926 + 2.064(.533} = (5.829,8.024). Both lengths are greater

than when 7, was included in the model.

d. It can affect many things including the estimates and standard errors of the

coefficients and the value of R2.

3.5 a. ¥ =329 .003z; + 959z

b. Regression is significant.

Source d.f. SS MS F  pvalue
Regression 2 972.8 486.45 53.31 0.000
Error 20 264.65 9.13

Total 31 1237.54

c. R? = 78.6% and Ry, = 77.3%. For the simple linear regression with z;, R* =
77.2%.

d. A 95% confidence interval for the slope parameter 8, is —.053 £ 2.045(.006145) =
(—.0656, —.0405).

e. x, is significant while zg is not.

Coefficient test statistic p-value
B -8.66  0.000
Bs 1.43 0.163

f. A 95% confidence interval on the mean gasoline mileage when z; = 275 in® and

76 = 2 is 20.187 + 2.045(.643) = (18.872, 21.503).

16



g. A 95% prediction interval for a new observation on gasoline mileage when z; = 275

in® and zg = 2 is 20.187 + 2.045(3.089) = (13.887, 26.488)

3.6 The lengths from problem 2.4 are 2.223 and 12.716, respectively. For problem 3.5,
they are 2.631 and 12.634. The lengths are pretty much the same which indicates that

adding g does not help much.

3.7 a. ¥ =1494+1.920,+7.0029+ 14923+ 2.72x4+2.0lx5 — . 4126 — 1. 427 — 037123 + 1.56x¢
b. F = 9.04 with p = 0.000 which is significant.
¢. None of the ¢-tests are significant. There is a multicollinearity problem.

d F = (707'298839?‘;?1'69)j2 = .322 which indicates their is no contribution of lot

size and living space given that all the other regressors are in the model.

e. Yes, there is a multicollinearity problem.

3.8 a. ¥ =253+ .0185x¢ +2.19x7
b. F = 27.95 with p = 0.000 which is significant. R? = 70.0% and R}, = 67.5%.

¢. Both are significant.

Coefficient. test statistic p-value
Bs 6.74  0.000
Bz 2.25 0.034

d. For 35, a 95% confidence interval is .0185 & 2.064(.0027) = (.013,.024) and for 37,
a 95% confidence interval is 2.185 + 2.064(.9727) = (.177,4.193).

17



e. t = 6.62 with p = 0.000 which is significant. R*> = 63.6% and %, = 62.2%. Thesc

are basically the same as in part b.

f. A 95% confidence interval on the slope parameter &g is .019 + 2.064(.0029) =
(.013,.025). The length of this confidence interval is almost exactly the same as the

one from the model including ;.

g. As always, M Sg., is lower when xg and x7 are in the model.

3.9 a. § =.00483 — 345z, — .00014x,
b. F = 24.66 with p = 0.000 which is significant.
c. R? =66.4% and R, = 63.7%
d. x; is significant while x4 is not.
Coefficient test statistic p-value

B -5.12  0.000
By —.02  0.986

e. It doesn’t appear to be.

310 a. 7 = 4.00+ 234z, + 403z, + 273wy + 1170y — .G84i;
b. £ =16.51 with p = 0.000 which is significant.

c. x4 and x5 appear to contribute to the modcl.

Coethicient  test statistic p-value

B 1.35 0.187
Ba 1.77  0.086
B3 0.82 0.418
Ba 3.84  (.001
Bs —2.52  0.017

18



d. For the model in part a, R? = 72.1% and R’ = 67.7%. For the model with only

aroma and flavor, R? = 65.9% and R%,; = 63.9%. These are basically the same.

¢. For the model in part a, the confidence interval is 1.1683 + 2.0369(.3045) =
(.548,1.789). For the model with only aroma and flavor, the confidence interval is

1.1702 4+ 2.0301(.2905) = (.581, 1.759). These two intervals are almost the same.

3.11 a. ¥ =32.1 4 .0556x, + .282x5 + 12523 — .000z4 — 16.1z5
b. F = 29.80 with p = 0.000 which is significant.

¢. x9 and x5 appear to contribute to the model.

Coefficient  test statistic p-value

B 186 0.093
By 490  0.001
Bs 031 0.763
Ba 000 1.00
B, —11.03  0.000

d. For the model in part a, R* = 93.7% and R}, = 90.6%. For the model with only
temperature and particle size, R? = 91.5% and R?‘lcﬁ = 90.2%. These are basically the

sane.

e. For the model in part a. a 95% confidence interval is .282 £ 2.228(.05761) =
(.154,.410). For the model with only aroma and flavor, a 95% confidence interval is

282 + 2.16{.05883) = (.155,.409). These two intervals are almost the same.

3.12 a. § = 11.1 4+ 350z, + .109:x,
b. F = 87.6 with p = 0.000 which is significant.

19



¢. Both contribute to the model.

Coefficient test statistic p-value
Joi) 8.82 0.000
B 10.91  0.000

d. For the model in part a, R* = 84.2% and R%, = 83.2%. For the model with
only time, R?* = 46.8% and R%, = 45.2%. Thesc are very different and suggest that

amount of surfactant is needed in the model.

e. For the model in part a, a 95% confidence interval is .1089 + 2.0345(.00998) =
(.089,.129). For the model with only time, a 95% confidence interval is .0977 &
2.0322(.01788) = (.061, .134). These second interval is wider.

3.13 a. ¥ = 5.80 — 498z, + .183x5 + 35.4z3 + 5.84x,
b. F = 31.92 with p = 0.000 which is significant.

c. &g and x3 contribute to the model.

Coefficient test statistic p-value

i) 141 0.165
B2 10.63  0.000
B3 3.19  0.002
Ba 201  .049

d. For the model in part a, R* = 69.1% and R%, = 67.0%. For the model with only

72 and z3, R? = 66.6% and Ridj = 65.5%. These are basically the same.

e. For the model in part a, a 99% confidence interval is .1827+2(.01718) = (.148, .217).
For the model with only zo and z3, a 99% confidence interval is .1846 + 2(.01755) =

(.149,.219). These intervals are basically the same.

20



3.14 a. § = .679 + 1.41x; — 01562,

b. F = 85.46 with p = 0.000 which is significant.

¢. Both contribute to the model.

Coefficient  test statistic p-value
B 7.15  0.000
B2 —10.85 0.000

d. For the model in part a, R? = 82.2% and R}, = 81.2%. For the model with only
temperature, R? = 57.6% and R%,; = 56.5%. These are very different and suggest that

the ratio variable is needed in the model.

e. For the model in part a, a 99% confidence interval is —.0156 & 2.7(.0014) =
(—.019, —.012). For the model with only time, a 99% confidence interval is —.0156 %
2.7(.0022) = (—.022, —.009). The second interval is wider.

315 a. =996+ 141z — 14.82z5 + 3.20x3 — 0.108z4 + 0.355z5
b. F = 22.39 with p = 0.000 which is significant.

c. PRECIP(z;), EDUC(z;), NONWHITE(z3), and SO2(z5) contribute to the model.

Coefficient test statistic p-value

b1 204 0.046
Ba =2.11 0.040
B3 5.14  0.000
B4 —-0.80 0.427
Bs 3.90 0.000

d. R? = 67.5% and R}, = 64.4%.

e. A 95% confidence interval on fs is 0.355 £ (2.005)(0.09096) = (0.1726, 0.5374)

2]



3.16a. For LifeExp, § = 70.2 — 0.0226x, — 0.000447 ;.
For LifeExpMale, § = 73.1 — 0.0257x; — 0.00047925.

For LifeExpFemale, § = 67.4 — 0.0199x, — 0.000409:x,.

b. For LifeExp,F = 13.46 with p = 0.000 which is significant.
For LifeExpMale, F = 12.53 with p = 0.000 which is significant.
For LifeExpFemale, F' = 14.07 with p = 0.000 which is significant.

c. Both predictors are significant in all three models.

Model Coefficient test statistic p-value
LifeExp 51 —2.35 0.024
LifeExp B2 —-2.22  0.033
LifeExpMale B —2.34  0.025
LifeExpMale Bq —2.07 0.046
LifeExpFemale By —-2.36 0.024
LifeExpFemale By —-2.31 0.027

d. For LifeExp, R? = 43.5%, %, = 40.2%.
For LifeExpMale, R? = 41.7%, R}, = 38.4%.
For LifeExpFemale, R? = 44.6%, R%, ; = 41.4%.

e. For LifeExp, —0.0004470 + (2.024)(0.0002016) = (~0.000855, —00003896).
For LifeExpMale, —0.0004785 + (2.024)(0.0002308) = (—0.0009456, —0.00001136).
For LifeExpFemale, —0.0004086 % (2.024)(0.0001766) = (—0.000766, —0.00005116).
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3.17 The multiple linear regression model that relates age, severity, and anxiety to patient
satisfaction is significant with ' = 30.97 and p = 0.000. It also appears that age and
severity contribute significantly to the model, while anxiety is insignificant (p = 0.417).
Compared to the simple linear regression in Section 2.7 that related only severity to
patient satisfaction, the addition of age and anxiety has improved the model. The R?
has increased from 0.43 to 0.82. The mean square error in the multiple linear regression
is 95.1, considerably smaller than the MSE in the simple linear regression, which was
270.02. Compared to the multiple linear regression is Section 3.6, adding anxiety to
the model does not seem to imprbve the model. The Rf‘dj decreases slightly from 0.792
to 0.789, the MSE increases from 93.7 to 95.1, and the regressor is insignificant with

p = 0.417.

The regression equation is § = 140 — 1.12x45e — 0.463Z seperity + 1.21Zanziety-

Coefficient test statistic p-value

Bage -6.11  0.000
ﬁseverity ‘2.53 0.019
ﬁanmiety 0.83 0.417

3.18 The multiple linear regression model for the fuel consumption data is insignificant
with F = 0.94 and p = 0.527. The variance inflation factors (VIFs} indicate a severe
multicollinearity problem with many VIFs much greater than 10. In addition none of

the t-tests are significant. This model is not satisfactory.

The regression equation is § = —315 + 0.159x; + 1.03z3 — 8.6x4 — 0.432x5 — 0.14xg —
0.32z; — 052$g
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Coeflicient test statistic p-value  VIF

Ba 0.17 0.871 1.901

B3 0.36  0.7290 168.467
B4 -0.19  0.851  43.104
Bs -0.47 0648  60.791
Bs -0.12 0910 275473
Bq -0.10 0.924 185.707
Bs -0.24 0.819 44.363

3.19 The multiple linear regression model for the wine quality of young red wines is sig-
nificant with F' = 6.25 and p = 0.000. However, x7 the anthocyanin color and x, the
jonized anthocyanins {percent} are removed from the model due to linear dependen-
cies. The anthocyanin color is equal to the wine color minus polymeric pigment color

(x5 — z6). The ionized anthocyanins is equal to Eﬁ.goiﬁ

The VIFs indicate an extreme problem with multicollinearity. Remedial methods will
be discussed in Chapter 9. Due to multicollinearity caution is taken when making

interpretations from this model.

The regression equation is ¥ = —5.2 4+ 6.15z2 + 0.00455z3 — 2.96x, + 6.58x5 — 0.66x —
14.5zg — 0.261x4.

Coeflicient test statistic p-value  VIF

Bo 1.77 0.090  3.834
B3 0.59 0.560  3.482
B4 -1.37  0.183 543.612
Bs 2.15 0.042 444.590
Bs -0.37  0.711  30.433
Bs -1.87 0.074  7.356
Be -1.32 0.200 27.849

3.20 The multiple linear regression model for methanol oxidation data is significant with

F = 28.02 and p = 0.000. The R* = 92.1% and R%, = 88.8%. The variables x,,
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T9 and z3 seem to contribute to the model based on the {-tests, however there is a

problem with multicollinearity as evident by the VIFs.Due to multicollinearity caution

is taken when making interpretations from this model.

The regression equation is § = —2669 + 22.3z, + 3.89z, + 10223 + 0.81z4 — 1.63x5.

Coefficient test statistic p-value VIF

B 3.09 0.009 1.519
Ba 570 0.000 26.284
B3 3.91 0.002 26.447
B 0.21 0.840 2.202
Bs -0.21 0.833 1.923

3.21 a. If zo = 2, then for model (1), § = 108 + .2z, and for model (2), § = 101 + 2.15z;.

If 2, = 8, then for model (1), § = 132 + .2z, and for model (2), § = 119+ 8.15z;. The

interaction term in model 2 affects the slope of the line.

yhat

C.

 mod1-2
= - mod1-8
500+ o mod2-2

550

450 ¥ = mod2-8
400 <

350 3

300 o

250
ol --‘z.-,-:-u-x.*.'-::w

1504

OOOOCTACOOO0DNOCO00TCO000000000
15 20 25 30 35 40 45 50 55
x1

100

. This is just the slope which is .2 regardless of the value of z,.

The mean change here is 5+ .15 which is x5 +.15. Thus the result depends on the

value of z5.
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_ SSe/(p—1)(Sw)
8Se/(n — p)(Sy)

__Rn—p)
(p — 1)(1 — R¥)

=F

which then has an F distribution with p - 1 and n — p degrees of freedom.

3.23a. Fy = (3(2)%?1—_3)9) = 99 which exceeds the critical value of Fgs 290 = 3.44 so Hy

is rejected.
b. The value of R? should be surprisingly low.

R%*(n —p)
-1~ R

R2(22

R‘Z
5y > 312727

> 3.44

R > 312727 — 312727R?

R? > 238

]

—~ ) 2 252 1
3.24 88 = Xy — WLy xrx) xry - BE — $ g g
i=1
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3.25a. Use TG =c.

Bo 0
01 -1 0 0O 51 Jéi
T=|0 0 1 -1 ¢ B=|5 c=|48
00 0 1 -1 Bs B
B4 B
0
b. Use 8 from part a, c = (0) and
01 -1 0 0
T_(o 0 0 1 —1)

¢. Use 8 from part a, ¢ = (g) and

01 -2 —4 0
T_(Ol 2 0 0)

0 if sample 1
1 if sample 2

Bo + Bz + (0 — Bo)z + (m — B)xiz + 4

3.26 a. Consider a new variable z = { } Then write the model as y; =

b. Call vy — By = v; and v — f1 = 1. Then we want to test Hy: 1y = 0. Then use

Bo
T=(0 0 0 1) B= I

g
Vg

¢. This is test of v; =0 and v, = 0.

Bo
(3880 4] ()

Vg
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d. Use 8, = ¢ and vy = 0.
Bo

e

3.27
Var(y) = Va'r(XB)

= X[Var(B)|X'
= [X(X'X)~'X'] 02

=¢g’H

3.28
HH = X(X'X)"1X'X(X'X)"'X'

= X(X'X)"X’

and
(I-H{(I-H) =I-H-H+HH

=I-H-H+H

=I-H

2 =
3.29 First note that (X'X)~! = Sl— (Z x"_/ n :1:) When z; moves further from Z, both

h,ig and h@j increase.
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ha =(1 xi)[:s’i;(zﬁ/n —lj)](&‘i)

1] T o 2
= S;; i E;L — &% + T
175 52

PIE

=i§' 0 @%+@ﬂ—%@+ﬁ}

2 _ 2
= [ Lﬂﬁﬁaﬁwa_jﬂ
_ 1 :L',;——ff??
_'n+ e
and
e R DI0)
hy = (=) g (52 z,
[ 2
= :gl— %&—mif—x};i‘{‘:ﬂg:ﬂj}
S 5 S S .
r Tr e
= Sl— Z—T;EL—(f2)+(j2)—$gf—$j3_f+$g$j]
L=xx b oL
1 1 [Z2? — nz? _ _
- || [EETEE + - 2)es - 2)]
_ 1, (@—-72)(z; —7)
L (C
3.30

B =(XX)'Xy
= (XX)"'X'[XB + 8]
= (X'X)"'X'X38 + (X'X)"'X'3
=B+R3
3.31 From equation 3.15b, we get that 3 = (I — H)y. So substituting for y, we get
I-H)Xp+8) =XB8-XXX)"'X'Xg+(I-H)3
=(I-H)3
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_ (SSe)
(J‘W‘Lsyy SS7)

= 8SR/S,, = R?

334 S=(y—-XB8)""'(y — XB) - 2A (T8 — ¢). Then take the derivative of § with respect

to 3 and A and set them equal to zero.

% = —2X'y +2(X'X)713 - 2)T' = 0,

This yields 8 = (X'X)" X'y — (X’X)}~'TA. Now substitute this expression for 3

a8 .
T=2(Tﬁ-—c)=0

into %‘S and solve for .
T[(X'X) X'y - (XX)'T'A] ~¢ =0

T(X'X)"'T' =TB-c

A = [T(XX)"T) (T8 - c)
Finally, substitute A back into the equation for 8 which gives the desired result. Note

that the sign will change when vou write the last part as ¢ — TB.
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3.35

3.36

th

The variance of Bj is the j* diagonal element of ¢2(X'X)~!. Let x; be the column of

X associated with the j** regressor, and let X_; be the rest of X. Therefore,

A(XX)™! = o [ XXy XX ] |

! 7
X X_j  XjX;

From Appendix C.2.1.13, the 7** diagonal element of o?(X'X)} is

var(f;) = o? [x}[l - X_J-(X'_jX_j)_IX'_j]xj]_l

-1

= g2 [x}xj = X}X-j(X’-jX—j)_IXiji]

Since R? = $Sg/ Syy» we need to show that the sum of squares for regression for model
B, S5k, is greater than the sum of squares for regression for model A, $5g,. We can
do this using partitioning SSg into sequential sums of squares. Consider ¢ parameters
in B, and j parameters in 8,. Then model B is using (¢ x j} parameters of which the
first ¢ are the same as model A. Then SSg; equals
R(Bi Bias - - - Buis Bjns Byay - - - By51B0) = R(Bin, Bias - - -, BuslBo)
+R(Bj1, Bz, -, By51Bos Bur, Bz -+, Bas)

Since the second term on the right is a sum of squares, it must be greater than or equal

to zero. Thus, SSgy > SSg, which is equivalent to R% > R3.
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3.37 B, = (X4X,) ' X;y. Therefore,
E(B) =(XiXy) X{E(y)

= (X{X)) ' X (X8, + XaB,)
= (XX 7 XX, 8, + (X X)X X8,

= B; + (X X,) ! X{X,8,
The estimate is unbiased if X{X, is 0, which happens if X, and X, are orthogonal.

3.38
S Var(@i) =3 x| (XX) ™ xi(0?)
i—1 =1

= (Em)

= ¢?(rank of X) = po?

3.39 The j** VIF is the j** diagonal element of {W/W)~!, where W'W is the correlation
matrix. Let w; be the column of W associated with the j** regressor, and let W_; be
the rest of W. Therefore,

! !
ij_J W)

(WW) ™! =
Wi
We note that W'W is the correlation matrix. As a result, w;.wj = 1. From Appendix

C.2.1.13, the j* diagonal element of {(W'W)~! is

' — ] -1 ] ] [ — -1
(Wil— W_ (W W_) "W Jw;| = [wiw, — wyW_ (W W_)"'W’ w,|

7
-1
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Since 1'w; = 0. If we regress w on W_;, we obtain that
SSitu = w;wj — w}l(l’l)_ll’wj =1,
and
88,y = W;W_; (W'_J-W_J-)“IW'_jwj‘

As a result, if we regress w; on W_j;, the resulting Rf- is

S5,
2 reg
Rj SStota!

As a result, the j* diagonal clement of (W/W)~!is

1
1 - R?

7

' ! - 4 -1 -
[1-w/W_(W W_)"'W w,| =[1- R =

3.40 If 8 ~ N(0,0%I), then T3 — ¢ ~ N (T8 —¢, T (X'X)"'T'(¢?)). Note that the
rank [T (X'X)™! T’} = rank|[T] = ¢. First, we need to show that

Q/o? = (TB <) [TXX)" ] (TB-<) /o
is distributed as x2 under Ho. Since 8 = (X'X)™' X'y. then
Q= (TXX) ' Xy~-¢) (TXX"T) (TXX)"'Xy-c)
Now T (X'X)™' X'y — ¢ = T(X'X) "' X' |y — XT'(TT’) ‘¢ Hence,
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Q= [y - X1 (TT)"" cT (X xXX)7" ) (T(XX)™ T')‘1 (T(xX'X)"'X')
ly = XT(TT) ' ¢
Thus Q is expressed as a quadratic form in the vector y — XT' (T'T") ' ¢. It is straight-
forward to verify that the inner matrix of 7 is idempotent. Also, since under Hg,
TS = c, the noncentrality parameter A is zero. Thus (}/6? ~ Xj Now we consider

S8 =y [I - X (x'x)"! X’} y. 85k can also be written as a quadratic form in terms
of the vector y — XT' (TT) ' c:

§8g = [y - XT'(TT)"" c]’ [[-XXX)™"' X] [y - XT(TT) ' ¢].

Since the matrix in this quadratic form is still (I — H}. is it clear it is idempotent and

A =0. Thus SSg/o? is distributed x2_,. Note that
- XXX)"X] (xXXX)™"1T) (TXX)" T’)_l (T(X'X)"'X']=0
Therefore, S§5/0? and Q/0? are independently distributed as central chi-square vari-
ables under Hy. Hence, F = 7\%‘% .,
Now under the alternative, T3 # c. Therefore, we get A = (T3 — ¢}’ (T (X'X)_'l T’) - (T8 —c).

Qq{{;p
12E

g.n—p

H LI .
Hence, Q/d* ~ (XE) which is a noncentral chi-square. Thus £ =

which is a noncentral F-distribution.
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Chapter 4: Model Adequacy Checking

4.1 a. There does not seem to be a problem with the normality assumption.

Mormal Probability Plot of the Residuals

(response is y)

2]

w4

n ,f'

™ Pl

b |

304

E » i |

Y .

n o |

w
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B —_— ————y

1 4 1 [ 1 z i

Deleted Residual

b. The model seems adequate.

(resperee 4 v)
34
. |
S i
17
2
w4
24 — ———
2 L] L L] 10 1
Fitted Valun
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c. It appears that the model will be improved by adding .

Reslduals Varsus x2
{response 5 y]

1500 17sa 000 1250 500 a0 3000
=2

4.2 a. There looks to be a slight problem with normality.

Normal Probabllity Plot of the Residuals

{rempariss s y)
"
L ‘A
i .
»
} = fsf -
-
» ST
2 - =
10 >
¥
Liby — e g L FEE———
| 3 2 1 (] 1 2 3

|
|
|
|
l
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b. The plot looks good.

Residuals Versus the Fitted Values
(resgcioe is ¥

c. The plot for z3 looks ok, the plot for 29 shows mild nonconstant variance, and the

plot for z; exhibits nonconstant variance.

Residunis Versus x2
{re=sponse s v}
. ‘
24
i 1
& )
14
|
2 1 |
1500 10 2000 250 900 2750 3 |
x2
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{resoonee 5y}

rsh Ja00

d. These plots indicate whether the relationships between the response and the re-

gressor variables are correct. They show that there is not a strong linear relationship

between the response and 7.
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e. They can be used to determine influential points and outliers. For this example,

the first observation is identified as a possible outlier.

4.3 a. There does not seem to be any problem with normality.

Normal Probability Plot of the Residuals

i (re=ponie s y)
I A s — —
|
” a
i - |
I
| -
s "
= i
b A
=1 P |
B
[}
P -
3 3 1 o L @ 3
Deleted Residual

b. There appears to be a pattern and possible nonconstant variance.

Reslduals Versus the Fitted Values |
{response is )

1% e 2 2 230 a3 360 Z0 20
Fittod Valua
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4.4 a. There seems to be a slight problem with normality.

Normal Probability Plot of the Residuals
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b. There appears to be a nonlinear pattern.

Residuals Versus the Fittad Values

(reancrse i v)
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o
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w is i 5 o
Firted Value
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»

c. There is a linear pattern for z,. The graph for zg shows no pattern and indicates

it might be unnecessary to include it in the model.

Partial Regression Plot x1

15

1
i s

0 H

- .

10 .
=150 =100 -0 1] 5t 100
Mesidunl x1

ST, 1YL O -

Partial Regression Plot x8

Residunl 28

d. These residual indicate that observations 12 and 15 are possible outliers.

a. There does not appear to be a problem with normality.

Normal Probabllity Plot of the Reslduals
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b. There is a slight drift upward in the plot.

Residuals Versus Fitted Values
(respore = y)

]
i (|
] ]
e

2 — -

= an s ag A%

Fittod Valuo

c. Yes, after x, is in the model, most of the other variables contribute very little.

d. They indicate observation 16 is a possible outlier.

4.6 a. There is a evidence of a problem with normality.

Normal Probability Plot of the Residuals
(respaevie i pliemy)
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b. There is a nonlinear pattern.

1.0

4.7 a. There is a serious problem with normality.

Normai Probability Plot of Residuals
{respanae is 3yr 5p)
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b. There is a nonlinear pattern.

Residuals Fittad Values
{resparnise s 2ys bo)
2 v
|
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|
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|
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c¢. There does not appear to be any pattern with time.
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a. The plot shows normality is not a big problem.

Probability
{responae Is usagn)

» P
E
| o} - 2 i 0 1 F) 3 I
Oeleted Residual
b. There is a pattern.
Versus Fits
{responss s usage]
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c. The plot shows positive autocorrelation.

Versus Order
(responss b usagn)

4.9 a. There appears to be no problem with normality.

HNormal Probability Plot
(responsa |s days)
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b. There is a pattern.

(respuree s deys):
24
14
; ®
-1
e - — = - -
0.0 L X sho 5.5 Ao £2.s 550

¢. The plot shows positive autocorrelation.

Order
(renuonae Is dwrs)
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4.10 a. There appears to be no problem with normality.

[ Naormal Prabability Plot
i L {response 18 visc)
o -
; 4 - [
L2 -
I o £* |
» ,.' v |
5 41’.3 T2 ®1 05 o1 %2 @ a
Betiduaal
b. There is no real difference between the two plots.
Probability Plot
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c. The plot shows a definite pattern.

Versus Fits
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4.11 a. There is a slight problem with normality.

Normal Probability Plot
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b. There is a quadratic pattern indicating that a second-order term is needed.

Versus Fits
{resoonse is yisc)

o5 X [YS o a8 P i i

4.12 a. There is no problem with normality.

Mormal Probability Plot
response s Prawemn]
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b. There is no pattern.

(resporiee iz Pressure)

6000 7000 ‘8000 5000 10600 11000

c. There is no pattern.
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4.13 When 77 and zg are in the model, PRESS = 3388.6 and R%,,, = 56.94%. When just
Zg is in the model, PRESS = 3692.9 and R%,,, = 53.08%. The residual plots for both
models show nonconstant variance and departure from normality. There is no insight

into the best choice of model.

4.14 When z; and zg are in the model, PRESS = 328.8 and R%,,, = 73.43%. When just
z; is in the model, PRESS = 337.2 and R%,., = 72.75%. Both models give basically

the same values.

4.15 a. There does not seem to be a problem with normality.

| Normal Probability Plot
| {response (s v}
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b. There is a nonlinear pattern.

| Versus Fits
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c. x; shows a linear pattern but x; does not.
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4.16 a. There is some problems in the tails.

Normal Probabliity Plot
{response (s )

Percent
i, e 2 8

3 ) 1 [ 1 2 3
Delered Residunl
b. The fit seems pretty good.
Versus Fits
(response 15 ¥)
i | m .
1
i.
1.
3
10 0 3 s a
Fitted Valun

c. When z; and z, are in the model, PRESS = 916.41 and R%,,, = 80.76%. When
just x5 is in the model, PRESS = 2825.62 and R%,,, = 40.66%. The model with both

zy and z, is more likely to provide better prediction of new data.
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4.17 a. There is a serious problem with normality.

Percent

~ wo HESHE2S AR
Sy
Y

Daboted Residual
b. There is a nonlinear pattern.
Versus Fits
(respohoe ls v)
[
5
- 41
i-
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14 e
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a4 ERCE T
a0 s 10 s 0
Fitted Valua

c. When «; and z, are in the model, PRESS = 3.11 and R%,., = 77.75%. When just
xy is in the model, PRESS = 6.77 and R%,.;, = 51.54%. The model with both z; and

To is more likely to provide better prediction of new data.
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4.18 a. Normality seems ok. There is a nonconstant variance problem. There is very little

variability at the center points. The observation with y = 55 is a potential outlier.

Normal Probability Plot Versus Fits
(nesponee it y) (response is y)
i = 100
i = | 75
.
" | 50
b |
“
=
n | 0o
20
10 | 15
| | 50
12 -
“H 5 ] 3 1o 10 0 30 <0
Restdual Vitted Value

b. For lack of fit, Fo = 329 = 31.33 with p = 0.003. There is evidence of lack of fit

of the linear model.
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4.19 a. Normality does not seem to be a problem. There is a nonlinear pattern in the
residual plot versus the fitted values. The observation with y = 198 is a potential

outlier.

Versus Fits
[resparss & v) (rmsporye 14 y)

¥

Residual
Percent
EHS5ENE 53
l‘

“ 3

-— ]
o] 120 140 160 180 -3 -2 -1 0 i 2
Fitted Value Deloted Aesidunl

b. For lack of fit, F, = —22959]5 = 11.81 with p = 0.008. There is evidence of lack of fit

of the linear model.
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4.20 a. There is a problem with normality. There is a problem with nonconstant variance.

The observation with y = 115.2 is a potential outlier.

Normal Probability Plot Versus Fits
[response I y) (respones it y)

s
-

Parcent
. .z m¥sgEzE 23
9
Residusl

2 1 /o 75 o s o o 100

b. There is no test for lack of fit since there are no replicate points. It is possible to

use the near-neighbor approach.
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LRI

4,21 E(AISPF) = ﬁ—_:rn [Z Z (JU g;){l where

1j=1

E [% > (g, "?}i)g} =E liﬂ > (yfj - 2yi;Y; +§'?)}

i=1 ;=1 i=1j=1
m i [ L Ui e
- £ 8 |popy - 2m (s £ %) + B
i=1j=
mon, | n; " o
i)
i=1j=1|

i

2 SO Yiglige 2
=no-—-2% |2 X i + ma
=1

i=1j*=1
= ng —22—*—4—?:302

= no? — 2mo? + mo?

= (n — m)o?
Therefore, E(M Spg) = 2.
Now, SSges = SSpr + SS1or and so SS5por = SSres — SSpg. Using Appendix C for
E(SSpes) when the model is under specified and using E(SSpg) = (n — m)o? from
above, we get.

E(SSpes) — E(SSPE) = (n—2)0® + 3 [E(y:) ~ fo — Brzi]® — (n — m)a?
i=1

= (m ~ 2)o? + 21 [E(y:) — Bo — 5137:‘]2
Therefore,

E(MSior) ZE(SS )

5 Z:l [E(%) — By — ,5111’3@']2
=a + — m — 2
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4.22 a. There is a problem with normality and there is a nonlinear pattern to the residual

plot. Observation 2 is a potential outlier. The model does not fit well.

Normal Prabability Plot Versus Fits
{response = y) (responen i )

Parcemt
- wE EWAEEIR 83
\
A
t
o
\
\
%
Residual
L L - ) N
LY

b. There is still a problem with normality and there is still a nonlinear pattern to the
residual plot. Several observations are potential outliers. The model still does not fit

well.

Mormal Probability Plot Versus Fits
[responss I y) {responss s y)
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4.23 a. There does not appear to be a problem with normality.

Marmal Probablilty Plot
resporan i3 Returmed lmpressions per seek

b. There appears to be a slight pattern and possible nonconstant variance.

Versus Fits
rezpanse i Returned lrpression por week
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4.24 a. There does not appear to be a problem with normality.

l Plot
(msporse i MORT)
"y
: ‘
i -
L e
% J.r.'r'
bi /
n.- ,i_-,"
! |
[-% T
Bl 3 v 3 -1 o 1 2 i | 4
Deltod Fesidual
b. There is no apparent pattern.
{response m MORT)
3
F
B oy
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> | ’
L .
B50 ana 950 1000 1050
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4.25 a. The plots for LifeExp and LifeExpMale show problems in the tails, but the Life-

ExpFemale plot shows no problems in normality.

Normal Probability Plot

HNormal Probabiiity Plot
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b. All three plots show a nonlinear pattern.

[responne ks LiteExp) [reapanda s LifeBpMale )
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4.26 The normal probability plot indicates some possible deviations from normality in the

tails of the distribution; however this may be a result of observations 9 and 17 being

possible outliers. The Deleted Residual versus Fit plot also indicates that observations

9 and 17 are possible outliers but otherwise there is no apparent pattern.

Normal Probability Plot
{responss is Satisfaction)

I
|

Percent
HEBEExR % 2
~
»
iy
E .

Pt e

-3 H -1

o 1 3 H B
Deisted Residunt

Versus Fits
(response (s Satisfaction)

L R

4.27 The residual analysis for the fuel consumption data indicates separation which may be

a result of a variable missing from the model. There is also a pattern in the Deleted

Residual versus Fit plot indicating the model is not adequate.

Normal Probability Plot
(response 15 ¥)

Percant
HHEEESE 2 ¥

= =B
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Versus Fits
(response i y)




4.28 The residual analysis for the wine quality of young red wines data indicates an adequate
model. There appears to be no problem with normality based on the normal probability

plot and there is also no apparent pattern in the Deleted Residuals versus Fit plot.

Normal Probability Plot Versus Fits
{resporise i ¥) (resporisa In y)
1 - A
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54
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4.29 The residual analysis for the methanol oxidation data indicates no major problems
with normality from the normal probability plot. However, the Deleted Residuals

versus Fits plot shows a nonlinear pattern indicating the model does not fit the data

well.
Normal Probability Plot Versus Fits
({response s y) (response Is y)
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Chapter 5: Transformations and Weighting
to Correct Model Inadequacies

5.1 a. It has a nonlinear pattern.

1.3

¥}

0.8 |

0.7

23

0.5

b. While R? = 96%, the residual plot shows a nonlinear pattern and normality is

violated.

Normal Probability Plot Residuals Versus the Fitted Values
[response | visc) (response Is wisc)

3

Percant
Fperein g3
Residual

-~ w8

¢. There is a slight improvement in the model.
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5.2 a. There is a nonlinear pattern.

vapor
.5 88885838

b. There is a problem with normality and a nonlinear pattern in the residuals.

Parcant
g¥sseds 33

c. There is a slight improvement in the model.

68

Residuals Versus Fitted Values
(response is vapor)
A
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5.3 a. There is a nonlinear pattern.

b.There is a problem with normality and a nonlinear pattern in the residuals. Obser-

vation 1 is an outlier.

| Normal Probability Plat Residuals Versus Fitted Values
| (response Is vapor) (response Is vapar)

N,

Purcant
~E ¥E28823 51
N
A
Rasidual

300 4000 500 600

ﬁ
I
k
g

g
g
g
Ly

¢. Fit the number of bacteria versus the natural log of the minutes. The first obser-

vation is still an outlier but otherwise the model fits fine.
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5.4 The scatterplot looks fine. There is a problem with normality and the residual plot

does not look good. Taking the natural log of & makes for a better model.

024
0.22
|
0.20
0.8 .
> 0154
0,144
0,12
| nae
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Residuals Versus Fitted Values
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Normal Probability Plot
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T ———p e iy =y
0125 0150 0,175 0,200 0235 0350
Fitted V.
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5.5 a. § = —31.698 + 7.277z. There is a nonlinear pattern to the residuals.

b. Taking the natural log of defects versus weeks makes for a better model.

5.6 a. The residual analysis from Exercise 4.27 indicates a problem with normality and
a pattern in the residuals versus fits graph that indicates the model is not fitting the
fuel consumption data well. However, this pattern does not suggest a transformation
that would improve the analysis. Various transforms were applied but none improved

the fit of the model. See problem 5.20 for an appropriate analysis of these data.

Normal Probability Plot Versus Fits

1 2 3 30 352 34 356 388 MO0 A2 JA M6 38
Fitted Value
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5.7 Prior to the residual analysis for the methanol oxidation data, the original model was
reduced to only the significant regressors. This reduces the model from 5 regressors
down to 2. This leaves regressors x; and z3 in the model, reactor system and reactor

residence time (seconds).
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The residual plots for this reduced model are seen below. There is a problem with both

the normality ansumption and there is also a pattern in the residual versus fits plot.

A log transformation was performed on the response percent conversion. Regressor z;
is not longer significant. The new regression equation is log(y) = 21.4 — 2.49z3. The

estimate table is:

Coefficient test statistic p-value
Ba -10.13  0.000

The residuals plots below show no problem with the normality assumption and also

show less of a pattern in the residual versus fits plot.

Normal Probability Plot Versus Fits
(respanse i log(y)) (respanee s loalyl)

Parcent
EEAEEXSE 2 3%
X
*
1
-
oy
Deleted Resldual
=2
|

Normal Probability Plot Versus Fits
(responss s v) ‘ (response is y)
" 4.
=
s -~ 3
0 '// . |
=® - . 2
} 2 5 1
%0, s |
a0 % o —
A
30 - .
204 ’/: ! 1 e
104 it |
54 St | 2
1 / 3
3 2 1 0 1 H 3 4+ | -0 20 o 0 40 &0 80
Datetod Residual | Fitted Value

=~ wiB

72



5.8 The models were sketched with Gy = 4, f; = 2 and for 0 < z < 100 by tens. The

pattern is more consistent with a.

420 0.25
| 0.20
| 418
0,15
i 4.104 . i
0.1
405 o
4,004 a.00
0 0 o 5 B0 100 0 20 “ ) 50
L]
a1
2

a4

0.5

064
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5.9 a. There is a problem with normality and a drifting in the residuals. There is an

outlier at observation 28. z; has a nonlinear pattern.

Normal Probability Plot Versus Fits
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b. A square root transformation on y was used.

MNormal Probability Plot Versus Fits
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5.10 a. There is no problem with normality but a drifting in the residuals. There are

outliers. x4 has a nonlinear pattern.

. o5 KESYEYE 53 8

4

b. A natural log transformation on y was used.

Parcant

Probability Plot
(response s logiy)).
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5.11 a. There is a problem with normality and a nonlinear pattern in the residuals. z,

has a nonlinear pattern.

Normal Probability Plot Versus Fits
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b. A transformation of 1/y was used along with inverting both of the independent

variables.
Normal Plot | U Fitted
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5.12 a. There is a departure from normality in the tail. There is a nonlinear pattern to the

residuals. There is nonconstant variance. There are many potential outliers.

Percent
-~ wS ¥HEERAE B8 3
N
%’
\
Rusidusl
-

b. This corrects the nonconstant variance.

c. Use a square root transformation of the sample variance and model the sample

standard deviation.
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5.13 a. There is a departure from normality and a nonlinear pattern to the residuals.

Normal Probability Plot
{resporise is y)
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5.14 a. Yes, Var(y!) = :—clg\r’ar(yi) =.0%,

b. Their roles are reversed.

Residuals Versus Fitted Values
{responae s v)

Fitted Valus

c. The values of the parameters are the same but, by (b), their roles are reversed.

5.15 a. S(B) = f: w;(y; — Bz;)?. Taking the derivative with respect to 8 and setting it
i=1

1

2 Wikl

equal to zero gives 3° w;(Y; — Bs)(—z;) = 0. Solving for f yields f = S——
i=1

b.

2

Var(f) = i‘,l wlr?Var(y;)

v
g =
&
=

= [ 5 wird(o?/w;)
> wir? | 1=
i=1
3 2
szg:i
=]
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¢. Here, we have w; = 1/x;. Therefore,

L

N Z (1/3J¢)-’1?z".0i
p=t——
> (1)}
i=1
) Y
— 'Sil
PIRLE
i=1
~ 2
with Var(8) = =<
T
=1
d. Here, we have w; = 1/z?. Therefore,
N i(l/:‘r?)xl?'l L
R (V)
3 (1/a)a? S
i=1

with Var{j3) = gr_f_

5.16 Let 3 = (gl ), pe be the number of parameters in 3,, K’
2

=(0 I),m=20, and the

rank of K’ = py. Note this gives K@= B2. Then the appropriate test statistic is

Ky

(KB - m) [K(XX)" K] (K8 - m)

P MSE

Now under Hg, Fo above has a central F' distribution and under H; it has a noncentral

F distribution.
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5.17 Notice that we can write the top as the quadratic form,
¥ [v-l —vIX (XVX) T va—l} y.
Call the matrix in the brackets A. Then from Appendix C, we get E(y'Ay) =
trace[(A)(0?V)] + ' Ap where for us, g = E{y) = 0. It is easy to show that [AV]

is idempotent, so it’s trace is equal to its rank, which is n — p. Thus, in this case,

E(y'Ay) = trace[{A)(6?V)] + 'Ap = (n — p)o?.

&6}



5.18 a. There is a nonlinear pattern to the residuals.

Versus Fits
{response i y)

10

Versus Fits
(respanse is y)

Standardized
e -

10

b. Use a natural log transformation on y. It does not improve the model.
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c. Use a natural log transformation on each of the regressors in addition to the

transformation in part b.

Versus Fits
(response ks logly))

Fitted Value

5.19 a.
Var(y) = Var(XB+ Zd +¢)
= ZVar(8)Z' + Var(e)
= Z(o1,)Z + o1
= 0227 +¢°L
b.

From part a, we have Var(y) = 0’1+ 02ZZ = X.

Then
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I = 3¢

= [o’I+ J§ZZ’][$I — kZZ').

In order to solve for 7!, we must solve for k. Multiplying 23! leads us to setting

the following quantity equal to 0.

2
0 = —ko*ZZ + SZE — kolZZ LT
a

2
= Z[-ko’1+ 21— kolZ'Z)Z".
o
Therefore,

2
0 = —ho’1+ 21— kolZ'Z
a

2
= —ko’T+ g—‘;l — kno?l.
o

We solve for k

Then



Now we must show (X'Z'X)"1X'Ety = (X'X)~'X'y. First let’s solve X’X71X

X'E X = X[=I-

1 o}
= SX'X- b___X'ZZ'X
a? o%(o? + noy)
1 noy
_ _XJ' [ !X
o? o%(o? + noj)
- 1 !
T o2+ nod
Now let’s solve X':!
1 o2
X'Et = X[51- 5552
[02 o2(0? + no? ) Z
1o o3 /
- oX - X'ZZ
o2 o2{0? + no})
_ 1, no; ,
o2 0*{g? + na})
- 1 !
T o2+ mnel

As aresult , (X’271X)"!1X'E 1y becomes

1

(02 + nog)

?

XE'X)y' XSy = (¢*+ned)(X'X)™! X'y

= (X'X)"'Xy.

This proves that the ordinary least squares estimates for 3 are the same as the gener-

alized least squares estimates.
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5.20 The proper analysis for the fuel cousumption data is a regression analysis on the
difference in fuel consumption (y) based on the batch. Because the batches of oil were
divided into two with one batch going to the bus and the other batch going to the
truck, a regression analysis on the difference to overcome the effect of batch. Also,
for the regression analysis, we reduced the model until only significant regressors were
present in the model. This leaves regressors x4 and x5 in the model, viscosity and

initial beiling point.
The new regression equation is §nifference = —106 — 13.0z4 + 0.651xs.

The estimate table is:
Coefficient test statistic p-value
B4 -3.09  0.027
3s 8.99  0.000




The residual plots for this reduced model are seen below. The analysis on the difference

in fuel consumption has alleviated the problems identified in problem 4.27.

Probability Plot Versus Fits
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5.21 A regression analysis using 3 indicator variables for mix rate was carried out for

the tensile strength data. (Note: An ANOVA anlaysis could be performed on this
data. The results from the ANOVA are equivalent with the results from the regression
analysis. )

The regression equation is § = 2666 + 430z 50 + 4902175 + 26 Twap.

The estimate table is:
Coefficient, test statistic p-value

Brso 583  0.000
Brrs 6.65 0.000
Baoo 3.63  0.003

The regression indicates that mix rate (rpm) has an effect on tensile strength. The
p-values from the estimate table are computed from comparisous of average tensile
strength from mix rates 150, 175, and 200 with mix rate 225. The average teunsile
strengths for mix rates 150, 175, and 200 are significantly higher compared to the

tensile strength for a mix rate of 225.
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The residual plots for this model seen below indicate no problems.

Normal Probability Plot Versus Fits
{response is Tensile Strength (Ibfin~2)) (response s Tensiie Strength (lbfin~2))
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5.22 A regression analysis using 3 indicator variables for temperature was carried out for
the density data. (Note: An ANOVA analysis could be performed on this data. The
results from the ANOVA are equivalent with the results from the regression analysis.)

The regression equation is § = 23.2 — 1.46xg00 — 0.700z910 — 0.280zg20.

The estimate table is:
Coefficient test statistic p-value

ggoo -ggllj gggg The regression indicates that peak kiln temper-
910 - )
Ba2o -1.27  0.226

ature has an effect on density of bricks. The p-values from the estimate table are
computed from comparisons of average density from temperatures 900, 910, and 920
with temperature 930. The average density for temperatures 900 and 910 are sig-
nificantly lower compared to the average density at 930. The average density is not

significantly different for temperatures at 920 and 930.
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The residual plots indicate a potential outlier in observation 10 (Temp. 920, Density

Normal Probability Plot Versus Fits
(response ks Density) (response s Density)
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5.23 This Fixed Effects tests for the subsampling analysis indicates that the three vat
pressures do not have a significant effect on strength (F = 2.3984, p —value = 0.1716).
The variance component for batch is 0.743. A high percentage (73%) of the total

variability is due to the batch-to-batch variability.

|Effect Tests |

Sum of

Source Nparm DF Squares F Ratio Prob>F
Pressure 2 2 42238889 23984 0.1716

|REML Variance Component Estimates |

Var

Random Effect Vor Ratlo  Component  SidError  95% Lowsr  95% Upper Pet of Total
Batch[Pressure] 2.7020202 0.7430556 0.5125044 -0.261435 1.7475457 72.988

Residual 0.275 0.1296362 0.1301072 0.9165344 27.012
Total 1.0180556 100.000
-2 LogLikellhood #1.917470887
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The plot of the residuals versus fits shows that the model is reasonable and the normal

probability plot does not show a problem with the normality assumption.

Probability Plot of Residual Strength Fits
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6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

Chapter 6: Diagnostics for Leverage and Influcnce

Observation 1 is identified as influential. It affects the coefficients for w; and zs.

No observations show up as influential.

Observation 14 is identified as influential. [t seriously affects the coefficients for g

and xg.

No observations show up as influential.

No observations show up as influential.

No observations show up as influential.

No observations show up as influential.

Observations 50-53 show up as influential.



6.9 Observation 31 shows up as influential.

- Bt f _1 - -
6.10 Appendix C establishes that 8, — 8 = L%bx—‘e* Therefore,

_ (Bwy - B) XX (B, - B)

D P Sres

x (XX XX (XX) ! xge?
(1 — hy)*pM S,

h

M Srea(l— hﬁ-)) () (l_f?a_)

6.11 Appendix C establishes

= (XX xx! (X'X)

[ Ei)x(iJ]_l = (X'X) 1 — Ay
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Therefore,

-1
l(xh)x(ﬂ) S
(X'X)™} MSr.,

COVRATIO;

I

s o+ 00
_ {i) o fbgg
-~ MSE., |(xXx)7]

(xX) ™+

; ! -1 ! ' -1 .
[ S% l x} (X'K) " x, + XX K] xd XX) x,

gz!
Res X'; (X’X) - Xi

(note the determinants have been dropped because they are scalars)

h2
[ 82 17| hu+t T=h
_ (i) 1—hy
Res J_Eii

- ()
| MSpes | \1 — hy

6.12 No observations show up as influential.
6.13 The last observation shows up as influential.
6.14 Observation 20 shows up as influential.

6.15 Observations 2 and 4 show up as influential.
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6.16 In looking at the plots of the residuals vs. the predictors, we can see a pattern with

SO2.

Scatterplot of Residuals vs PRECIP, EDUC, NONWHITE, S02
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We take the log of SO2 to obtain the model

y =942 - 13.8EDUC + 3.34NONWHITE + 1.67TPRECIP + 34.3logSO2 (Recall that

NOX was not significant in our previous analyses.) The model is significant with

F = 30.14 and p = 0.000 with an R? = 68.7% and R3, = 66.4%. The residuals

look fine plotted against the fitted values and the individual regressors. None of the

observations are influential.

Versus Fits Scatterplot of Residuals vs PRECIP, EDUC, NONWHITE, logS02
(response |5 MORT) FRECTF L3V
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G B =
L . ¥ e
RSt SRR
.. i 50
El 4 «100
n ) © % o T n
. WONWRITE Togsal
w00
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6.17 For all three models, we transform the data using square roots of both the response
and the regressors. For Life Expectancy, this gives the model,
y* = 8.67 — 0.0323sgrt(x;) — 0.00713s¢rt(xy). F = 30.25 with p = 0.000, so the model
is significant. R* = 63.4% and R%,; = 61.3%. The residuals look fine, except. for the

outlier from observation 8. Observations 8, 21, and 30 are influential for each model.

6.18 The regression analysis for the patient satisfaction data can be found in section 3.6 of
the text and the residual analysis can be found in Exercise 4.26. The influence analysig

for this regression indicates that observations 9 and 17 are highly influential.

6.19 From Exercise 5.2 we recognized that the analysis for the fucl consumption data
requires an analysis on the difference in fuel consumption for buses versus trucks.
See Exercise 5.20 for the regression analysis of these data. The residuals indicate
observation 5 as a possible outlier. The influence analysis for this regression indicates

that observation 5 is influential for the model.

6.20 The regression analysis for the wine quality of young red wines data can be found in
Exercise 3.19 and the residual analysis can be found in Exercise 4.28. The influence

analysis for this regression indicates that observations 28 and 32 are highly influential,

6.21 The regression and residual analysis for the methanol oxidation data can be found in
Exercise 5.7. To improve the model we took a log transformation of the response and
reduced the model to only contain the significant predictor ay. The influence analysis

for this regression indicates that observation 1 is highly influential.
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Chapter 7: Polynomial Regression Models

7.1 Yes there are potential problems since the correlation (z, z2) = .995

7.2 a. §=1.63—1.23z + 1.49z2.
b. F = 1.86 x 10° with p = 0.000 which is significant.
c. F= 4:60?

= oo which is significant.

d. Since it is a quadratic model, there can be potential hazards in extrapolating.

7.3 There is a problem with normality. The residuals seem to show that the model is

adequate.

Normal Probabiiity Plot Versus Fits
(resporise is v) (response is y)

Parcent
HEABEAE 2 8
\_\
. \
Deleted Reskdual
& o
W 2

74 a. §=—4.5+ 138z + 1.47z%

b. F = 1044.99 with p = 0.000 which is significant.
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c. F =48.7 with p = 0.001 which is indicates lack of fit.

d F= —22473- = 9 which is significant and indicates the term cannot be deleted.

7.5 There is an outlier which affects the normality and the residual plot which shows the

model is not adequate.

Normal Probabiiity Plot Versus Fits
(response is y)
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o
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7.6 a. §=3025—194z; — 6.1z + 3.632% + 1.1522 — 1.33z2».
b. F = 177.17 with p = 0.000 which is significant.
c. F = .46 with p = .73 which indicates there is no lack of fit.

d. F = 2.21 which is not significant and indicates that the interaction term does not

contribute significantly to the model.

e. The quadratic term for 2, contributes significantly to the model while the quadratic

term for z; does not.
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7.7 Observation 7 is influential which affects the plots. Normality looks pretty good and
the residual plot is ok.

Probability Piot Versus Fits
(response s y) {response is y)
1.0
e
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Residusl Fitted Value

7.8 a. §=3.535+ .360P;(z) + .187P(z).

b. SSg(a;, az) = .360(118.71) + .187(24.66) = 47.31. The linear and quadratic terms

account for all of the variation in the data. Thus, the cubic term is not necessary.

7.9 a. To test Ho: pio = B = b1z = 0 use F' = 553(510‘511,%?4590,501,1%2)/3'
b. Delete the term Bi(z — t)°.

c. Also, delete the term By, (z —t)'.

97




7.10 A complete second-order model was fit to the delivery time data in Example 3.1. The
analysis was done on centered data. Insignificant regressors were removed from the

moadel.

The resulting regression equation is § = 21.1 + 1.26 * (&ym — 8.76) + .01306 * (zyiee —

409.28) + 0.0306 * (zpum — 8.76)°.
Coefficient test statistic p-value

Bram 6.70  0.000 T RS TP TR TN
B 436 0.000 The regression indicates that the quadratic term
2 2.98 0.007

for the number of cases of product stocked improves the model.

7.11 A complete second order model was fit to the patient satisfaction data where the data

have been centered.

The regression equation is § = 69.1 — 1.029 * (24 — 50.84) — 0,422 * (24, — 45.92) +

0.0031  (@qge — 50.84) * (X ey, — 45.92) — 0.00G5 * (T4ge — 50.84)% — 0.0082 * (4, — 45.92).
Coefficient test statistic p-value

Bage -5.54  0.000
Bsew -1.95  0.067
Bagessev 0.14 0.892
B2 -0.56 0.584

2 044  0.663

seu

There is no indication that it is necessary to add these second-order terms to the model.
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7.12 a. Change the ranges to xz < #1, t, < x < t5, and z > ts.
b. Delete the terms Sio{z — £,)% and Feglz — £5)°.

c. Also, delete the terms 8,(x — #,)! and By (z — tq) .

7.13 § = 15.1 — .0502z + .0389(x ~ 200)!. Test Hy : 31, = 0, which gives a ¢ = 6.53 and

p = 0.000. The data do support the fit of this model.

7.14 § = 15.298 — .0516x + .325(;x — 200)° +.0373(x — 200)!. Test Hy : B1g = 0, which gives
at = 079 and p = 0.456. There is no change in the intercept but a change in the

slope.

7.15 The variance inflation factors are 4.9 which do not indicate a multicollinearity problem.

7.16 a. The variance inflation factors are 19.9 which indicates there is a multicollinearity

problem.

b. The variance inflation factors are 1.0) which indicates there is not a multicollinearity

problem.

¢. Many times centering can remove the multicollinearity problem.
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7.17 a. The data are nonlinear.

Fitted Line Plot
¥y= -6 +2713x
s 18,5008
R5g LAY
L
o
P
-
’/
/ .
/
10 30 40 =0

b. This also shows the data is nonlinear.

Scatterplot of y vs FITS1

160
140

140
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c. There is a quadratic pattern.

Versus Fits
(response Is v}
3
2
i 1
i [-E% o —
-1
[ 20 40 B0 100 120 140
Fitted Valua

d. § =20.1 —1.47x + .059z%. The test on the quadratic term is F = %—%ﬁ = 106.62
which is significant.

e. Yes, the second order model fits better.

Fitted Line Plot
y= 20,10 - 1470 x
+ 0,05975 w**2
1801 3 frT
y = o
1404 rd B-Sales) LSS
1204 /
1004 -
= H0d /‘
P
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0
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o
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x
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718 a. § = —1.77 + 421z + 22215 — 12823 — .01932% + .00722 + .0008z3 — .0192 25 +

.0091.’] z3 + .0032’2&."3.

b. F' = 19.63 with p = 0.000 which is significant. All are non-significant.

Coefficient test statistic p-value
B 1.43  0.172
Bs 1.70  0.108
Bs ~1.82  0.087
B —1.15 267
Bag —.62 .545
a3 .07 .H7h
Bia —1.63 118
Bia 1.20  .247
Bos 37 719

c. There are several outliers which affect normality and the residual plot.

Percent
- w35 ¥B3ES4E 3%

Normal Probability Plot Versus Fits
{response is y) (response i v)
» .
34
i 24
: 14
i
. L
- ]
_,/ H 214
/’ -
e 2
— - i = o
2 -1 ] 1 2 4 oo 0.1 0.2 L& ] o4 0.5
Deleted Residual Fitted Valus

d F= '0.35908 D 1.61 which is not significant.

7.19 The variance inflation factors are all very large indicating there is a serious problem

with multicollinearity.
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7.20 a. The predicted response at the point is § = .2689 and a 95% confidence interval on

the mean response at the point is (.2106, .3272).

b. The predicted response at the point is § = .2512 and a 95% confidence interval on

the mean response at the point is (.2185,.2840).

c. From the confidence intervals, it appears that the model without the pure quadratic

terms might be better but the M Sg,. are basically the same.

7.21 a. § = —1709 + 2.02z — .00059z2.
b. F = 300.11 with p = 0.000 which is significant.

¢ F= -2—0'%‘8- = 55.18 which is significant. Both terms should be included in the

model.

d. There is a problem with normality and a possibility of nonconstant variance.

Normal Probability Plot Versus Fits
({response is ¥) (respanse is y)
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7.22 a. At z = 1750, the predicted response is § = 14.8324 and a 95% confidence interval
on the mean response at the point is (14.2841,15.3808). At x = 1775, the predicted

response 18 § = 13.153 and a 95% confidence interval on the mean response at the

point is (12.617,13.6889).

b. At x = 1750, the predicted response is § = 14.303 and a 95% confidence interval
on the mean response at the point is (12.888,15.718). At z = 1775, the predicted
response is § = 12.996 and a 95% confidence interval on the mean response at the
point is (11.548, 14.444). The predicted values are closer to the actual values using the

quadratic mode]. Also, the prediction intervals are shorter with the quadratic model.
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Chapter 8: Indicator Variables

8.1 [y, B2, B3, and B4 determine the intercept while the other parameters determine the

slope.
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8.3 a. Let

_ { 1 if San Diego o { 1 if Boston o { 1 if Austin
T3 = : &y = ; Is ;
0 otherwise 0 otherwise 0 otherwise

Then § = 42+ 1.77z, + .011xzy + 2.2925 + 3.741y — .45x5.

b. No, F =9

229 2.41 which is not significant.
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c. There is a problem with normality and a pattern to the residuals.

Normal Probability Plot Versus Fits
(responss s Delivery Time, 1) (response is Delivery Time, v)

N

Percent
E EEAMEIR sS4 3
=
Renidual

8.4 a. y = 33.6—.0457x, — .bay,. No, the t = —.22 with p = 0.824 which is not significant.

8.5

b. § =42.92—.117x, —13.46x,; +.0822,2,,. There is a significant interaction between

engine displacement and the type of transmission. When the transmission is automatic,
y=(42.92—-13.46)+ (—.117+.082)x, = 29.46 —.035x, which indicates that on average
for every increase of one cubic inch in displacement, miles per gallon decreases by .035.
When the transmission is manual, §j = 42.92 — 117z, which indicates that on average

for every inerease of one cubic inch in displacement, miles per gallon decreases by .117.

a. § = 39.2 — .0048z,9p — 2.7xy,. No, the ¢t = —1.36 with p = 0.184 which is not

significant.

b. § = 58.1—-.0125x 19— 26.2x; +.009x0z,,. There is a significant interaction between

vehicle weight and the type of transmission. When the transmission is automatic,
g = (58.1 — 26.2) + (—.0125 4+ .009)z,p = 31.9 — .0035xy¢ which indicates that on

average for every increase of one cubic inch in displacement, miles per gallon decreases
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by .0035. When the transmission is manual, ¥ = 58.1—.0125z,p which indicates that on
average for every increase of one cubic inch in displacement, miles per gallon decreases

by .0125.

8.6 Let
a: _{1 if x5 is negative i F_{(] if 25, =0
BTl0 ifzs=0 52 1 if z5 is positive

This yields § = 19.4 — .007x; — .006x5 + .46x5, + 2.33z55. The effect of turnovers is
agssessed by F' = 22'.276 2. 2.04 which is not significant.

0 itz <t

8.7 E(y) = S(z) = Boo + Borx1 + Bu(x — t)ry where x5 = { 1 iz >t

0 if&?ggt

8.8 E(y)= S(x) = Boo + Bur1 + Broxe + Br(xy — t)xy Where xy = { 1 iy >t

8.9

i

e = = e = e e e e e e

( Y1\
Y12
Yi3
Yn
Yoz
¥
y= Y3z X=
Yas
Y34
Ya

Y4z
\ 43 )

No, Bo =F. — T1. — Go. — 3. = T Br = §1. — Fa» B2 = G2 ~ s, B3 = Ta. — Tu..

—

eI oo B on- B o I e B e i e B vl e B
[ R e i eon i cpe o S 0 B e BN - e A e B e
B B B O ol = i e i e i e i e

—
s
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8.10 a. yyj = fBo + f1 + £y, Yoy = Bo + B2 + €95, y3; = B — 51 — By + £3; which gives
1 = Bo+ B

ty = Bo+ B2
pz = fBo— ph — Ba
Therefore, py + pio + ptz = 35 implying that G5 = M%Q—-"& =pa, = —F=

t1 — ft, and By = po — Bo = pa — i

h.
{ Y11 \ (11 0\
Y12 1 1 0
Yin 1 1 0
Y21 - 1 0 1
y= y?? X= 1 O ]
Yon 1 0 1
31 1 -1 -1
32 1 -1 -1
\ g/ \1 -1 -1/
C

v
=(9. . —F. ¥—8.)| J— ys.

Ya. — ¥Ya.
=y .+ ) — )+ (o —vs) (G2 — 4)
=W+t tn —§) v - 7))~y + 2 —27.)
=yoH +y2P2 +y3.(37. — G — 2)

=Y.91 + Yo G2 + Uz Ys.
which is the same as the usual sum of squares,
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8.11 a.

[ 7 /1 1 0 0 0
7 11000
15 11000
11 1100 0
9 1 1000
12 10100
17 10100
12 10100
18 10100
18 10100
14 100 1 0
18 100 1 0

y=|18 X=1100 10
19 100 1 0
19 100 1 0
19 100 01
25 1 00 01
22 1 00 01
29 1 00 01
23 10001
7| 1000 0
10 10 0 0 0
11 100 0 0
15 100 0 0
\ 11 1 000 0

s -~

b. By =10.8, B; = —1, B = 4.6, B3 = 6.8, 3, = 10.8.
¢. Bi—PBs=—-1-68=-78.

d. F'=14.76 with p = 0.000 which is significant and indicates that the mean tensile

strength is not the same for all five cotton percentages.
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8.12 a. Since Yy = o+ 7+ v+ (7y)i; Fege for i = 1,2, j = 1,2 and £ = 1,2, we get
e =p+T+n+ (Y0 + e

Yo =p+m+v2e+ (772 +
Yo = p+To+ 7 +H (7)) + S2mk

Yook = A+ Ta+ v2 4+ (TY)22 + €22k
Let

o { —1 if level 1 of treat type 1 o { —1 if level 1 of treat type 2
L1 if level 2 of treat type 1 271 1 if level 2 of treat type 2

Then, g = Bo + i1 + Boxy + B3z 02 + €45

b.

(ynlw [1 -1 -1 1\

12 _ 1 -1 -1t 1

a1 1 -1 1 =1

22 |1 -1 1 -1

Y= o X=11 1 -1 =1

Y2 1 1 -1 -1

221 1 1 1 1

\ Y222 / 1 1 1 1

c. To test Hy : 71 = 15 = (} obtain the sum of squares for the first treatment type
and form the ratio F = 3%%&& Do the same for the other treatment type and the
Hes

interaction,

8134, § = 8.32+1.1214—1.22r; —2.76r5. The region does have an impact, F = 50201/ 2 _
19.35.
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b. There is a slight departure from normality.

c. There are 2 outliers: observations 12 and 25.

d. 7 = 10.1+.796x4 — 3.38r, — 6.287 + .403z4r, + .7T14x4r5. No, the model is not

superior to the model in part a.

8.14 The model in question 8.13 is superior.

Model R®*  MSg.s Region is Significant Nonconstant Variance
Problem 8.13 80.9% 0.800 Yes No
Problem 8.14 61.9% 1.584 No Yes

8.15 Because LifeExp is the average between the male and female life expectancy, to predict

average life, we can let

- {—1 if female
C 1 if male

Also, recall from Problem 6.17 that a transformation was needed. If we again use the

square roots of the response and the regressors, the model is
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y* = 8.67 + 0.154x; — 0.0326sq7t(x5) — 0.00704sgrt(z3), with F = 45.05 and p = 0.000.
R? = 65.2% and R%, = 63.8%. MSg., = 0.0935. Observations 8, 21, 30, 46, 59, and
68 are influential, as before, and considering this, there are no problems with the resid-
ual plots. This is very close to our model for average expected life from Problem 6.17:
y* = 8.67— 0.0323sgrt(ze) — 0.00713sgrt(x3) with M Sk = 0.0902 but includes the

adjustment for gender, so all three responses can be fit with a single model.

8.16 The response variable INHIBIT was transformed by taking the squarc root due to

problems with nonconstant variance in the original model. Let

o {0 if Surface
2711 if Deep

The model is f? = —0.264 + 121z, + 2.2525. F = 11.45 with p = 0.001. R? = 62.1%
and R}, = 56.6%. No observations are influential, and the residual plots confirm the

assumptions are not violated.

8.17 Adding the indicator variable has not improved the model. There is no evidence
to support the claim that medical and surgical patients differ in their satisfaction as
evident by the fact that the indicator variable is insignificant (¢ = 0.48 and p—value =

0.633).

The regression equation is § = 140 — 1.067,5. — 0.441%50 + 1.99Tgur —med-

Coefficient  test statistic  p-value

Buge -6.51  0.000
Bsey -2.42  0.025
Bsur*n;ed 048 0633
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8.18 The addition of the indicator variable to the fuel consumption data does not seem to
improve the analysis. In the analysis the only variable that significantly impacts fuel
consumption is the initial boiling point 2. The analysis below shows that adding the
indicator variable is not a significant additional to the model. The proper analysis of

these data is given in Exercise 5.20.

The regression equation is § = 413 ~ 4.25x, — 0.264xs.

Coeflicient  test statistic p-value
5 -1.09  0.295
3 -2.76 0.016

8.19 The model for the wine quality data was reduced to find significant. predictors. The
only significant predictor turned out to be wine color @y, When the indicator for wine
variety was added to the model, the variable was not significant at the 0.05 level with
a p — value = 0.17. For this data we will also note that there was a strong problem

with multicollinearity, so we are hesitant on the accuracy of this model.
The regression equation is §f = 12 — 0.628x; + 0.850x5.
Coeflicient  test statistic p-value

B 141 0.170
Bs 559  0.000

8.20 The regression for the methanol oxidation data was completed in Exercise 5.7. The
indicator for reactor system was already included in the regression model. Exercise 5.7

concludes that the indicator variable is not significant for the transforined model.
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Chapter 9: Multicollinearity

3.1 a. The correlation between x and ®, is .824.
b. The variance inflation factors are 3.1.

¢. The condition number of XX is « = 40.68 which indicates that multicollinearity

is not a problem in these data.

9.3 The cigenvector associated with the smallest eigenvalue is

Eigenvector
—-0.839
0.081

0.437

0.117

0.289

All four factors contribute to multicollinearity.

9.5 There are two large condition indices in the non-centered data. In general, it is better

to center.
Condition
Number Indices €1 Ty T3 Ty
1 1.000 .00037 .00002 .00021 .00004

2 7.453 .01004 .00001 .00266 .0001
3 14.288 00058 .00032 .00159 .00168
4 109.412 05745 .00278 .04569 .G0088
5 62,290.176 93157 99687 94985 9973
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9.7 a. The correlation matrix is
T To T3 Zg 7 T3 Tg T1g
T ( 0.945
zz3 | 0989  0.964
zg | 0.659 0.772  0.653
z7 | —-0.781 —-0.643 -0.746 -0.301
zg | 0.855 0797 (0.864 0425 -0.663
g { 0.801 0718 0.788 0316 —0.668 0.885
10| 0.946 0.883 0943 0521 —0.718 0.948 0.902

zpp \ 0835  0.727  0.801 0.417 —0.855 0.686 0.651 0.772)

which indicates that there is a potential problem with multicollinearity.

h. The variance inflation factors are

Regressor VIF

2 117.6
Z9 33.9
T3 116.0
Ts 4.6
g 5.4
Ts 18.2
Ty 7.6
10 78.6
I 5.1

which indicates there is evidence of multicollinearity.

9.9 The condition indices are
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1.00

9.65

61.93
126.11
2015.02
5453.08
44836.79
85564.32

- 5899200.59
8.86 x 1012

which indicate a serious problem with multicollinearity.

9.11 The condition number is & = 24, 031.36 which indicates a problem with multicollinear-

ity. The variance inflation factors shown below indicate evidence of multicollinearity.

Regressor  VIF

T 3.67
T2 7.73
T4 7.46
T 1.12

9.13 The condition number is x« = 12400885.78 which indicates a problem with multi-

collinearity. The variance inflation factors shown below indicate evidence of multi-

collinearity.

Coefficient test statistic p-value  VIF
B -0.88  0.408 1.00
B 0.16 (1874 1.901
Je ) 0.35 0.734 168.467
B 019 0.854  43.104
Bs -0.47  0.655  60.791
B -0.12 0.911  275.473
B7 -.10  0.925 185.707
Bs -0.23  0.822  44.363
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9.15 The condition number is & = 286096.7Y which indicates a problemn with multicollinear-
ity. The variance inflation factors shown below indicate evidence of multicollinearity,

especially 25 and ;.

Coeflicient test statistic p-value VIF

B 3.09  0.009 1.519
B2 5.70  0.000 26.284
B3 3.91 0002 26.447
Ba 0.21 0.840 2,202
Bs -0.21  0.833  1.923

9.17 a. Using k = .008 gives a model with B? = 97.8% and /M Sg., = .041.

b, Without the use of ridge regression it is (0196 and with ridge regression it is .0218,

which is an increase of about 11%.

c. Both are good models.

9.19 a. The ridge trace leads to & = .18, but the resulting model is not adequate.

b. Without the use of ridge regression it is 0.00104 and with ridge regression it is

0.56265, which is an increase of about 540%.

c. Without the use of ridge regression it is 99.2% and with ridge regression it is 43.7%,

which is an decrease of over 50%.
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921 a. Principal components regression yields 72 = 96.5% while least squares yields

R? = 98.2%. The loss is minimal at around 2%.
b. The ceoefficient vector is reduced to one term.

c. The principal components model has virtually the same R? but has a higher

SSg = 0.0351 compared to the SSg = 0.0218 with the ridge model.

9.23 a. The variance inflation factors are given below.

Regressor VIF

PRECIP 2.0
EDUC 1.5
NONWHITE 1.3
NOX 1.7
S02 1.4

The correlation matrix is

PREC EDUC NONWHITE NOX

)

EDUC ( —(.490
NONWHITFE} 0403 —0.209
NOX —0.486  0.230 0.025

SO2 \ —0.107 —0.234 0.162 0.412 )

There is no evidence of multicollinearity.
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b. The ridge trace shows flat lines.

Certfipant Estimare

c. The ridge trace indicates k = 0, therefore the estimates of the coefficients for ridge

and OLS are the same.

d. Principle-component regression gives

Eigenvalue 1.9648 1.4736 0.8348 0.4062 0.3206
Proportion  0.393 0.295 0.167 0.081 0.064
Cumulative 0.393 0.688 0.855 0.936 1.000

Variable PCl PC2 PC3 PC4 PG5

PRECIP -0.641 0.007 0.093 0.038 0.761
EDUC 0.490 -0.305 0.551 0.510 0.323
NONWHITE -0.345 0410 0.750 0.011 -0.387
NOX 0471 0.484 0.167 -0.596 0.401
502 0.095 0.710 -0.312 0.619 0.080

120



The principal components regression accounts for 85.5% of the variation with three
variables while OLS (and ridge regression since k=0) accounts for only 67.5% of the

variation in the model with five variables.

9.25 The shrinkage is on the scale versus the location.

9.27 You cannot find the k that minimizes E(L?) because the k does not depend on j. Thus

the sums will not collapse making it impossible to isolate k (see problem 9.24).

9.29 Attempting to shrink only the independent variables that are contributing to the
multicollinearity instead of shrinking the entire vector of independent variables will
introducc less bias. However, shrinking only a subset of the regressors can create new
problems and one must be sure of the subset they are choosing to shrink. It is still

better to use ordinary ridge regression.
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Chapter 10: Variable Selection and Model Building

10.1 a. With a = 0.10, the model chosen is y = 8y + Boxy + Srxy + Bsxs + .
b. With & = 0.10, the model chosen is y = 8y + Foxe + 77 + Gyxs + <.

c. With a;y = 0.05 and agyr = 0.10, the model chosen is y = Gy + Boxa + Brer +

Bsxs + €.

d. The three procedures chose the same model.

10.3 The choice of cut-off values is to prevent the circular addition-subtraction of the

variables.

10.5 a. The model involves just x; with Rg = 75.3%. C, = —1.8 and /M Sg., = 3.12.

h. Stepwise leads to the same model involving just z).

10.7 When Fiy = Foyr = 4.0, the model involves only z4. However, when Fry = Four =

2.0, the model involves &g and z+.

10.9 The model involves z;, o, 3. and 14 with Rﬁ = 95.3%, C, = 5 and /M Sg., = .002.
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10.11 The model is y = Fp + S1z1 + Poxa + Baxq which has a PRESS = 85.35 and R%,., =
96.869%.

10.13 a. From Section 3.7, we get 8 = (W'W)™ W'y® with W'W = (.rl 7.112). There-
i —T12 2
-l | 1=7% 1-r1i . G g2
fore, (W'W) ™~ = . 1 which means that Var(5]) = T
b—rh, 1-7 *

b. Since we are fitting a model with only one regressor, the W'W is the scalar 1.

Thus its inverse is also the scalar 1 and the Var(5,) = o2.

¢. We hiave seen from problem 3.31 earlier that in gencral E(8,) = 81+(X,X,) ™' X/ X,3,.
For this problem, we have only 2 parameters and we are using the correlation form of
the variables. Thus, E(Bﬂ == 3y + 71232 since the W’s are the scalar 1 and W5 is the

scalar ris.

d. MSE = VaT‘(EI) . [E(Bl] — 81)? = 0% + ri,B8%. For B, to be preferable, we need

. . ‘ 2
MSE(8)) < Var(}) which can be written as satisfying 83 < Ti;g—.
— T

10.15 Stepwise produces the model with 24, x5, 71 and r2 which is the model with the lowest

C, from 9.14 part a.

10.17 The model with SOAKTIME and DIFFTIME is selected with C, = 2.8. There is a

slight departure from normality and the several outliers and influential points.
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10.19 The model with DIFFTIME, z; and z; is selected with C, = 4.7. There is still a

slight departure from normality and the several outliers and influential points.

10.21 The model with z;, z3, x5 and z¢ is selected with C, = 5.6. There is a departure

from normality in the tails but the residual plot show the model is adequate. There

are a couple of outliers.

Puorcont
xysusds 33
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10.23 The confidence intervals for the model in 10.21 are narrower than those for 10.22.

Also, the value for the PRESS statistic is smaller, 31685.4 compared to 34081.6.

10.25 Stepwise produces the same model as 10.24.

10.27 a. The model with z;, zg, x3 and z4 is selected (Cp = 4.3) which is the same model

as in 10.24,
b. Stepwise produces the same model.

¢. The confidence intervals for the new data set without observation 2 are narrower
than the one from 10.26. The large residual from observation 2 increased M Sg.s which

in turn widened the confidence intervals in 10.26.

10.29 a. As in Secction 10.4, we will use the log of the response and the log of viscosity for

the model. For Run 0, performing best subsets produces the following table.

Variables R-sq R-sq(adj) Mallow's Cp S Log{x)) x2 x3 x5 %

1 64.7 62.2 6.7 0.12703 X

1 20.1 14.4 30.2 (.19113 X

2 75.2 71.4 3.1 0.11043 X X

2 67.6 62.6 7.1 0.12635 X X

3 78.3 72.8 3.5 0.10769 X X X
3 76.5 70.7 4.4 0.11191 X X X

4 %0.2 73.0 4.5 0.10737 X X X X
4 79.3 71.8 4.9 0.10972 X X X X
3] 81.1 71.6 6.0 0.11006 X X X X X
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From this, we would choose the model with 3 variables, Log{x:), x4. and zg, which are
Log(Visc), Surface, and Voids, respectively. This gives the prediction equation

——

Log{y) = —1.54 — 0.507 Log(x) + 0.454x5 + 0.10925.

For Run = 1, we get the following table from best subsets regression.

Variables R-sq R-sq{adj} Mallow’s Cp S Log{z,) x3 x3 x5 g

1 99.7 56.6 6.3 0.165636 X

1 21.6 15.5 22.6 0.23060 X

2 71.3 66.5 3.3 0.14527 X X
2 63.4 63.1 4.6 0.15239 X X

3 77.2 71.0 2.8 0.13522 X X X
3 74.6 67.6 3.9 0.14278 X X X
4 78.1 69.3 4.4 0.13901 X X X X
4 77.8 68.9 4.5 0.13999 X X X X
) 79.0 67.4 6.0 0.14335 X X X X X

From this, we choose a 3-variable model including Log{x,), x3, and x5, which are
Log(Visc), base, and voids, respectively. The prediction equation is

——

Log(y) = —2.06 — 0.613Log(x, } + 0.48523 + 0.187z,.

b. When we look at the separate runs, we see different regressors are most appropriate.
While Log(Visc) and Voids are significant in both inodels, the percentage of asphalt in
the surface course (z;) is significant only in the first run (4 = 0). Also, the percentage
of asphalt in the base course (x3) is significant in the second run (x4 = 1) but not the

first.

C

Model Ridj MSgs Cp
Run=0 72.8% 0.01160 3.5
Run=1 71L0% 0.01828 2.8
Section 9.4 95.3% 0.09150 2.9

The model in Section 10.4 has more predictive power, but greater error than the models
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created for the two runs. Because the indicator variable for Run {z4) was determined
to not be significant in the model in Section 10.4, we wouid not expect an advantage

in modeling the runs separately, other than this decrease in error.

10.31 The model with age and severity is selected (C,, = 2.0) from the all-possible-regressions
selection. This same modal is selected from stepwise regression. An analysis of this

data can be found in Section 3.6.

10.33

The all-possible-regressions selection on the wine quality of young red wines produced
multiple candidate modcls. We first chose to look at a 6 regressor model (z,, zq, Z3,

T4, Tg, xg) With & Cp = 5.7, R? = 66.6, dej = 58.5, and s = 1.1403.

The VIF’s still indicate a problem with multicoilinearity between x4 and zs. Without,
any advice from a subject matter expert, the decision was made to remove x, from
the model. This results in a slight increase in s, but this is preferred since the model
no longer suffers from the multicollinearity problem. The residual analysis does not

indicate any problems with model adequacy.

Stepwise regression suggested the simple linear regression mode! only containing as.

The fit criteria for this model include s = 1.27181, R? = 50.1% and RZ,; = 48.4%.
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Chapter 11: Validation of Regression Models

11.1 a. PRESS = 87.4612 with
Rz _,_ PRESS
Pred _5'5',}1—

_ - 87.4612
326.964
= 73.25%

The predictive power is not bad.

b. § = —8.5.004x2 + .28z7 — .005x3

Y 7]

10 5.83
11 8.84
11 12.07
4 0.73
10 7.46
5 2,82

The model does not predict very well.

¢. The model does a good job predicting these observations.

City y v
Dallas 11 10.71
Los Angeles 10 12.25
Houston 5 529

San Francisco 8 8.42

11.3 PRESS = 70.82 with R%..; = 59.5% which agrees with problem 11.2 that the model

does not predict well.

11.5 a. §p = 442+ 1.53z; + .012z,.
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b. . = 3.51 + 1.392y + .016x». The models are similar which indicates the overall

model should be valid.

¢. The model predicts fairly well and is consistent with Example 11.3.

11.7 PRESS = 337.37 with R}, = 72.74% which indicates that the predictive perfor-

mance of the model is not bad.

11.9 The model is not predicting very well.

Y i
1890 1243
18.25 14.52
34.7  23.09
365 22.33
14.80  5.26
16.41 16.89
13.9 1167
200 19.22

11.11 The standard errors are larger in the estimation set.

Problem 15.11 Problem 3.9
Coefficient Standard Error Coefficient Standard Error
o 2.409 B 1.535
A 0.009 I 0.006
A, 0.936 B8, 0.671

11.13 The DUPLEX algorithm is probably not efficient for large sample sizes since (g) is

going to very large.
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11.15 From Appendix C, we get

(XX xx] (X'X) !
1— .'Ib.j,;

( ’(nxu})_l = (X'X)"" +

If we postmultiply the above by x; we get
(X'X) ' xax! (XX) ' x;

-1 , -1
(XoXw) x =XX) " x+ T—hs
1 f‘ !-'_1 S
] (XIX)—]- X; + X IX_ h'.).(‘th"t‘t
o (XIX)‘—I X; [1 - h‘ii -+ h,ﬁ]
- 1— h'ii,
XX x
- 1- h’i‘i

Now, we will postmultiply the result from Appendix C by X'y
. -1, , _ XX -1 X;‘XE XX -1 X!
(X X)) Xy =(X'X) 1 xty 4 (XX 1_(}1%.i ) Xy

(X'X) -1 xz-x:;a

(X’(nx(f))_l [Xié)y“) xf_y,:} =B+ 1 — hy

_ A (X'X)—lxiﬁi (XIX)_leyz'
Bo =B+ 1Ip ~ 1T,

i1

5 A X'X - X (Ui — i
By =B+ )1—!:.(;1- :

e (X'X)'x@
By =B-"Fp

11.17 a. The model is y = By + 5121 + Sqa + 3505 + Bgre with C, = 5.0,
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b. The fitted model is § = —302-+1.11x,+5.322,4+1.56x5—13.3z¢ with RQP,,ed = 99.62%

whicli indicates the model 1s adequate and predicts very well,

11.19 a. R, = 75.81%
_2 :

b. RPY'C(I — 77-45%

c. R%,. .= 78.04%

d. All three parts produce relatively the same value for R%,.,.
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Chapter 12: Introduction to Nonlinear Regression

12.1 As 6, decreases, the curve becomes steeper.

12.3 As 05 increases, the curve becomes steeper.
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12.5 a. As 6, decreases, the curve becomes steeper.
b. As z — oo, E(y) — 1.

c. When z =0, E(y) = 0, exp{—02}.

12.7 a. This is an intrinsically linear model.

y = [91362+93“’] £

In(y) = In(61)+ 02 + O3 + In(e)
y* = (0] +02) + Osx +£*

b. The model is nonlinear.

¢. The model is nonlinear.

d. This is an intrinsically linear model.

y = [Gl(xl)"*(:rz)"“] €
In(y) = In(6)+ x;In(f2) + 22 1n(f3) + In(e)

y* =07 +x,05 + 1205 +€*
e. The model is nonlinear.
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129 § = —.121zy + 1.066e%%*1.  An approximate 95% confidence interval for 63 is
(—1.027,.785). Since this interval contains 0, we conclude there is no difference in

the two days.

12.11 a.

Scatterplot of yi vs xi
0,504
L | |
0,48 4 L
. |
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sy  ® e & & & & =
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b. § = .3896 — (—.2194)e~%9%" The starting values were obtained by plotting the

expectation function.
c. F=141.55 with p =< 0.0001 which is significant.

d. An approximate 95% confidence interval for 6, is (.3778. .4014). An approximate
95% confidence interval for f is (—.2828, —.1560). An approximate 95% confidence

interval for 63 is (.0626, .1357). 6, is not different from zero.

e. The residuals show that the model is adequate.
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12.13 a. § = .8703(x;) ™83 (xq)-2%.

b. F = 422.93 with p = 0.000 which is significant. Both variables appear to have

important effects.
¢. The residual plots are better than in 12.12. The model seems adequate.

d. The nonlinear model.

12.15 a. There is a nonlinear pattern.

apor

¥ a8yt
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b. There is a problem with normality and a nonlinear pattern in the residuals.

The regression equation is vapor = —1956 + 6.69%temp.

Normal Probability Plot Residunls Versus Fitted Values
{response bs vapor) (responss s vapor)
" — £
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3 2 E [ 1 H 3 H 200 100 o 100 200 300 4
Daleted Residual Fitted Valus

¢. There is a slight improvement in the model. However, there contiues to be a

problem with normality and a nonlinear pattern in the residuals.

The new regression equation is In(vapor) = 20.6074 — 5200.76(1/temp)
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d. The appropriate nonlinear model is vapor = fye? (/%) The estimated coefficients

are 5; = 576741131 and 5[ = —5050. We still notice a pattern in the residuals.

Normal Probability Plot Versus Fits
{responsa is v} (response s vp)
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Note: To determine starting values, the nonlinear equation was linearized and the
estimates from simple linear regression on a subset of the data were used as starting
values. Another way for determining the starting value for #; would be to use the
chemical theory that the heat of vaporization (H,) for water is H, = 9729cal/mole.
The ideal gas constant (R) is R = 1.9872cal/mole° K. Therefore,a starting value for
6, is 4 = 4895.8.

e. The simple linear regression models differ from the nonlinear model in terms of the
error structures. We prefer the nonlinear model because it appears to be a better fit to
the data. However, there is a still a problem with the residuals because the chemical

theory assumes an idea gas and that assumption is violated with real data.
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Chapter 13: Generalized Linear Models

- 1
131 a. 7= 1 + e(~6-07H.0177x)

b. Deviance = 17.59 with p = 0.483 indicating that the model is adequate.

c. Og = =017 = 9825 indicating that for cvery additional knot in speed the odds of

hitting the target decrease by 1.75%.

d. The difference in the deviances is basically zero indicating that there is no need for

the gquadratic term.

. 1
133 a 7= 1+ (~5.34+.00150)

b. Deviance = .372 with p = 1.000 indicating that the model is adequate.

¢. The difference in the deviances is Dev(s) — Dev(z,2?) = 372 - 284 = 088

indicating that there is no need for the quadratic term.

d. For Hy : 51 = 0, the Wald statistic 1s Z = —.42 which is not significant. For

Hy : 8y, = 0, the Wald statistic is Z = —.30 which is not significant.

e. An approximate 95% coufidence iuterval for 8 is (—.0018,.0033) and an approxi-

mate 95% confidence interval for 8, is {(7.15 x 1077,5.27 x 1077).

- 1
13.5 a. 7= 1 4 (12-35~ 000271~ 1.2502)

b. Deviance = 14.76 indicating that the model is adequate.
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c. For 51, we get. éH 7z 1 indicating that the odds are basically even. For 31, we
get Op = 3.52 indicating that every one year increase in the age of the current car

increases the odds of purchasing a new car by 252%.

d. 7= 1 + (12-35—0002(45000) — L. 250(5)) = .76

e. The difference in the deviances is Dev{z,, zo} — Dev(z,, 23, 2172) = 14.764 - 10.926

= 3.838 indicating that the interaction term could be inciuded.

f. For Hy : 51 = 0, the Wald statistic is Z = —.26 which is not significant. For
Hg : B2 = 0, the Wald statistic is Z = —.80 which is not significant. For Hy : B2 = 0,

the Wald statistic is Z = 1.13 which is not significant.

g. An approximate 95% confidence interval for 3 is (—.0005,.0004}, an approximate
95% confidence interval for 3y is (—10.827,4.555) and an approximate 95% confidence
interval for 312 is {—.0001, .0003).

13.7 a. 7 = E,(-S.ﬁl-,00143:1+.06263:2—,00‘21:::3-.02891.1}

b. Deviance = 37.92 indicating that the model is adequate.
¢. This indicates that z3 should be removed.

d. Consider o« = 0.05 for all tests. For Hy : 3, = 0, the Wald statistic is Z = 1.73
which is not significant. For Hy : 8, = 0, the Wald statistic is Z = 5.08 which is
significant. For Hy : B3 = 0, the Wald statistic is Z = .13 which is not significant. For

Hy 1 85 =0, the Wald statistic is Z = 1.87 which is not significant.
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e. An approximate 95% confidence interval for 8, is (—.0031,.0002), an approximate

95% confidence interval for 8, is (.0384,.0867), an approximate 95% confidence in-

terval for B3 is (—.012,.0079), and an approximate 95% confidence interval for Sy is

(—.0592,.0014).

13.9 Normality seems to be satisfied but there is a pattern to the residuals.

‘Studentized Deviance Residual by Predicted

Studentized
Deviance Residual

0.5+
-1.04
-1.54
-2.0

25

2.0
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1.0
0.5
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0

y Predicted
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13.11 Normality seems to be satisfied and the residual plot show that the model is satisfac-

tory.

Scatterplot of DRES1 vs EPRO1
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13.13 f(y,r, A) = a(6y,02)b(y) exp{X ¢;(6:,0:2)d;(y) gives a(b,,8,) = I‘)‘T:'j’ b(y) =y~ %,

Y cj(64,62) = —Ay +rn(y).

13.15 Another way to write the exponential family is

f(y;0) = B(0)eQORW p(y)

For the negative binomial, if replace (1 — 7)? by e'*8U=™¥ we get

B(#) Q) R(y)  h(y)
™ log(l—m) y y;f’_:‘

13.17 There is no need to rework the problem since all of the regressor were important.
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13.19 Both plots look good and indicate the model is adequate.

| vs d Value Probabiiity Plot of Deviance Residual
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13.21 Look at
Mz +1) — i) = Bo+ Bi(wy + 1) + Bawy + Pra(ay + 1)(z2) — (ﬁn + Bi(xy) + Baza + 512-’1?12?2)

= B1 + Biaxa
Therefore, Or = €%+51222 which includes the estimated interaction coefficient and z

has to be fixed.

13.23 The logit model from Problem 14.5 is

7= 1
= 14el7-087—0.00007x; —0.9870x7) *
G = 6.644 with p-value = 0.036, D = 18.3089 with p-value = 0.306.

The probit function is

F o= 1
T = el 350-0.000046x; —0.6099+ *

G = 6.771 with p-value = 0.034, D = 18.1819 with p-value = (.313.

. . s l
The complimentary log-log model is T = o 737=00000875; 0T8T

G = 6.871 with p-value = 0.032, D = 18.0827 with p-value = 0.319.

The likelihood ratio tests all show model significance for the three links. Also, the
goodness of fit, tests using the deviance show the models are very similar. This is to
be expected since for small sample sizes, the three models do not show meaningful

differences.
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13.25 a. Using the logit function, & = ——wemsrorm-

The model fits the data well.

G=5.944 with a p-value of 0.015 and D=15.7592 with p-value=0.398.

Scatterplot of At Least One O-r, EPRO1 vs Temperature at L
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b. Ogr = 0.84 This implies that an additional degree (Fahrenheit) of temperature

decreases the odds of o-ring failure by 16%.

c. ©=0.9097 at 50 °F.

d. # = 0.1221 at 75°F.

e. ™ =0.9962 at 31 °F. There is danger in extrapolating beyond the range of tem-
peratures used in the model, but we can see from the graph of estimated probabilities
and from the calculated values in parts ¢ and d that the probability of failure at this

low temperature is very high.
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f. The deviance residuals are shown below.

Temperature (F) Deviance Residual

53 0.35569
56 0.56743
57 0.65666
63 1.60629
66 1.05038
67 3.00090
68 0.78648
69 0.67896
70 5.99277
72 0.43192
73 0.36997
75 2.09057
76 0.47858
79 0.14041
80 0.11883
81 0.10046

There may be some problems with the model.

| Delta Deviance versus Probability

Deita Deviance

0.0 {5 1 0.2 o3 [E] 0.5 0.6 or 0.8 09
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g. Using the logit function,
T = : ;- G = 6.386 with p = 0.041. D = 15.3177 with p = 0.357.

]+€{_39‘1593+I'01923x1 —0.00630.r

The plot of deviance residuals for this model looks better than that for the model in

part a., suggesting this model may be an improvement to the original.

Delta Deviance versus Probability

Deita Daviance

- I T T S ™ S SRR

13.27

Four indicator variables were used to incorporate the five levels of dose into the analysis.
A Poisson regression model with a log link was used to determine the effect of dose on
the number of offspring. The model adequacy checks based on deviance (x? = 47.44)
and the Pearson chi-square (x? = 50.7188) statistics are satisfactory. From the analysis,
we notice when comparing to the control, dosages 235 and 310 have a significant effect

on number of offspring.
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Source Test Statistic p-value

80 0.0016  0.9682
160 1.61  0.2044
235 42.10 < 0.0001
310 189.07 < 0.0001

The residual plots show some problems with normality and model fit.

Graph Builder
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13.29

A regression with a gamma response distribution and a log link function was performed
on the resistivity of a urea formaldehyde resin data. For the full model, the scaled
deviance is 32.97 indicating that the model is adequate. The LR statistics for the
Type III analysis indicate that some of the regressors should be removed from the
model because they are not significant. Insignificant regressors were removed from
the model and the resulting model only has E, the water collection time as the single

predictor. The same analysis was completed using the canonical link but this had no

Source Test Statistic p-value

effect on the conclusions for the analysis. B 383 0.0503

Normality seems to be satisfied and the residual plot shows the model is satisfactory.
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Chapter 14: Regression Analysis of Time Series Data

14.3 a.

7 = 24.6 — 0.0892z. The residual plot versus time indicates there is autocorrelation.

Versus Order
(respor= 5 y)
s
0.254 « : :
; 0.00 . |
25 |

0150

9 0 1t 2z 13 M 15

b. d = .81 which rejects the null hypothesis and indicates that there is evidence of

positive autocorrelation.

c. We get

p = 2 €€
€

_ 1.1693
— 2.1610

= .5411.
The new regression equation is y' = 12.0854 — 0.1105z

The standard errors of the regression coefficients are se(3,) = 0.5542 and se(]) =

0.0.01403.

d. d = .90 which indicates there is still evidence of positive autocorrelation.

148



14.5

The regression through the origin for the first difference approach vields an estimataed
slope of (.28943 with a standard error of 0.02508. The previous estimate for 3, was
{.29799 with a standard error of 0.0123. As a result, the estimates are very similar,

but the standard error is smaller for the Cochrane-Orcutt approach in exercise 14.4

14.7

The objective function is

3 lu=o- ]

Taking the derivatives with respect to [}U and 5’1 and setting equal to 0, we obtain
T 1 N i
2323 g = Bo~ Bi] (1) =0

and

and
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noindent Let
EII >
i1 t

We note that Hr is the harmonic number represented by the partial sum through T

terms. The resulting solutions to the normal equations arc

B :Zi—_l%_?
Fo 4—HT_1

and

B=7-5

14.9

The regression equation using the Cochran-Orcutt procedure in exercise 14.3 is y =
12.0854 — 0.1105z" and the standard crrors of the regression coefficients are se(F)) =

0.5542 and se(3!) = 0.01403.

The regression equation using the Cochran-Orcutt procedure in exercise 14.3 is y =
12.0854 — 0.1105z" and the standard crrors of the regression coefficients are .56?(36) =

0.5542 and se(B]) = 0.0.01403.

The time series regression model with antocorrelated errors produces the regression
equation ¥ = 26.1875 — 0.1075x and the standard errors of the regression coefficients

are se(fy) = 1.1827 and se(f,} = 0.0131.
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The estimates are very similar but the standard error is smaller for the time series

regression.

14.11

The time series regression has qb = 0.600189, which is the same as the Cochrane-Orcutt
procedure from before. The previous estimate for fil was 0.29799 with a standard
error of 0.01230. The time series regression estimate is 0.2910 with a standard error of
009776. As a result, the estimates are very similar, but the standard error is smaller

for the time series regression.
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Chapter 15: Other Topics in the Use of Regression Analysis

15.1 It is possible, especially in small data sets, that a few outliers that follow the pattern

of the “good” points can throw the fit off.

15.3 They are both oscillating functions that have similar shapes with Tukey’s bi-weight
being a faster wave. However, Tukey’s bi-weight can exceed 1 while Andrew’s wave

function cannot.

Tukey's bi-weight
LS
|

=1 25 00 5 50 5

15.5 The fitted model is § = 2.34 — 288z + .248x5 + .45x3 — .543z4 + .005x5 with a couple

of outliers.
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15.7 a. The cstimate is

Fo ?Og 0
~1
_ 17 —33.7
T =071
= 352.32

b. First we solve the following

2
d?{ 0474)2 — (2042 95"] 2d(—.0474)(17 — 20.223)

+[(17 - 20.223) — (2.042)%(9.39) (1+ )] =0

022d* - 3.055d - 29.99 =0
which gives d; = —66.41 and dy = 205.27. Then the confidence interval is
285.04 — 6641 < mp < 285.04 4 205.27

218.63 < xg < 490.31

15.9 The normal-theory confidence interval for 3 is .01438541.717(.003613) = {.0082, .0206).

The bootstrap confidence interval is {.0073, .0240) which is similar to the normal-theory

interval.

15.11 First, fit the model. Then, estimate the mean response at xy. Bootstrap this m times

and store all of these mean responses. Finally, find the standard deviation of these

responses.

15.15 Regression tree for NFL data:



15.17 Var(By) = o2 (5,1-?— + 3’%;) which for fixed n is minimized when 7 = 0. If this is not

possible, then the experimenter should maximize Sy y.

15.19 a. Let D be the X-matrix without the intercept column., Then D = (d, dy -+ dy).
Suppose the spread of the design is bounded (it has to bLe) then, did; < ¢ for

t=1,2,...%k and some constant. ¢;. This is cquivalent to

th

where dj; is the i** diagonal element of D'D. It can be shown that

y i
d“ZT i=1.2,...,k
i

where d is the ¢** diagonal element of (D’D)_l. There is cquality in the above ex-

pression only when all the d;;'s = 0. Therefore, if the design is orthogoual
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Var(B) = o%d®

2

q

>

3
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2

2

!

1

since did; = 0 for ¢ # j and djd; = ¢ when the design is orthogonal.

b. Var(g) = (02)x} (X’X) " xo. Since the design is orthogonal, we have

1
(w00
XxX)"'=]0o L1 o
0 0 2

Consider the center of the design as 0, then for any xo = (1 =z; z;) it has distance

from the center of d = /1 + 22 + x? and

—~ 172 x? z?
Var(f) ———(ﬁ) —I—H§+E§
_ 1 2 2
—Eg(l‘F.I'i-f—L‘J)

_d?

T nl

Thus, for any point with distance d the variance will be the same which means the

design is rotatable.
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