FEDERAL UNIVERSITY OF TECHNOLOGY, OWERRI SCHOOL OF ENGINEERING AND ENGINEERING TECHNOLOGY DEPARTMENT OF PETROLEUM ENGINEERING 2018/2019 HARMATTAN SEMESTER EXAMINATION

Reservoir Modelling And Simulation Course Title:

21st June, 2019 Date:

Time: 3 Hours

PET 505 Course Code: Instructions:

Answer Only 5 Questions. Question 1 to 4 are Compulsory you can answer either Question 5 or 6 Units:

QUESTION 1

Question 1 a

- What do you mean by the term history matching?
- Name the parameters which can be varied either singly or collectively for history matching optimization. ii.
- With a flow chart only, state the reservoir simulation study process. iii

Question 1 b

- List the history matching parameters
- Why do we have increase in energy during the history matching of Ihiagwa reservoirs? ii.
- Differentiate between simultaneous solution method and IMPES solution of a reservoir simulator iii.

Question 1 c

Name the area where BOAST is not recommended and why?

Whechen of data

QUESTION 2

- Show the flow chart of solving the simulation equation using IMPES
- State the partial differential equations for both oil phase and water phase using a fully implicit formulation
 - Differentiate between a one dimensional model and a three dimensional model.

(MPES

- List the groups of data generally required in making a simulation run.
- State the data sources and their parameters as required by the engineer.

QUESTION 3

- List three advantages of reservoir simulation and three abuses of reservoir simulation.
- Identify the following grid types in the following format:

Figure	Grid type/name	Imax	Jmax	Kmax	Applications
Figure 1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				i.
Figure 2		6			i.
				***	i.
Figure 3		2			ii.

Given the basic single phase flow equation as equation 1 below:

$$\frac{\partial}{\partial x} \left(\beta_c \frac{A_x K_x}{\mu B} \frac{\partial \Phi}{\partial x} \right) \Delta x + \frac{\partial}{\partial y} \left(\beta_c \frac{A_y K_y}{\mu B} \frac{\partial \Phi}{\partial y} \right) \Delta y + \frac{\partial}{\partial z} \left(\beta_c \frac{A_z K_z}{\mu B} \frac{\partial \Phi}{\partial z} \right) \Delta z + q_{SC} = \frac{V_b}{\alpha_c} \frac{\partial}{\partial t} \frac{\theta}{B} \dots 1$$

Derive the simplest form of PDE that governs the flow of an incompressible fluid in a 3D homogenous and isotropic formation with no depth gradient. Assume that there is no well in the reservoir

OUESTION 4

A 2D slightly compressible fluid transport equation is given as equation

appressible fluid transport equation is given as equation
$$\frac{\partial}{\partial x} \left(\beta_c \frac{A_x K_x}{\mu_l B_l} \frac{\partial p}{\partial x} \right) \Delta x + \frac{\partial}{\partial y} \left(\beta_c \frac{A_y K_y}{\mu_l B_l} \frac{\partial p}{\partial y} \right) \Delta y + q_{lsc} = \frac{V_b \emptyset C_l}{\alpha_c B_l} \frac{\partial p}{\partial t}$$
(2)

- Write the explicit finite-difference approximation to this equation
- Write the implicit finite-difference approximation to this equation
- For a 1D Single phase flow of slightly compressible oil, we can show that the flow equation for an explicit formulation in block

$$T_{lxi+1/2}^{n}(P_{i+1}^{n}-P_{i}^{n})-T_{lxi-1/2}^{n}(P_{i}^{n}-P_{i-1}^{n})+q_{lsci}=\left(\frac{v_{b\phi c_{l}}}{a_{c}B_{i}^{\rho}\Delta t}\right)_{i}\left(P_{i}^{n+1}-P_{i}^{n}\right).....3$$

Where the interblock transmissibility is
$$T_{lxi\pm1/2}^n = \left(B_c \frac{A_x K_x}{\mu_l B_l \Delta x}\right)_{i\pm1/2}$$
; $a_c = 5.615$ and $B_c = 1.127$

At the time of discovery of the reservoir illustrated in figure 4; the fluids were in hydrodynamic equilibrium and the pressure of grid block 2 was 3000 psia. All grid blocks have $\Delta x = 400 \, ft$; $\Delta y = 200 ft$; $h = 80 \, ft$; k = 222 md and $\emptyset = 0.20$. The well in gridblock 2 is produced at a rate of 200 STB/D and fluid properties are $\mu_0 = 2cp$, $B_0 = B_0^a = 1$ RB/STB; $C_0 = 5 \times 10^{-5} Psi^{-1}$. Using single phase simulator shown in equation 3 and a time step of 10 days, report the pressure distribution in the reservoir at 2 time steps

Figure 4: Discretized 1D Reservoir

UESTION 5

Find the derivative of $f(x) = \frac{x^3 \sin x}{e^{3x}}$ with respect to X

The single phase transmissibility of a porous medium to gas is given by

$$T_{gx}(P) = \frac{\beta_c \alpha_c A_x K_x}{\mu_g \Delta X} \frac{T_{sc}}{P_{sc}} \frac{P}{ZT}$$

Where $\beta_c, \alpha_c, A_x, K_x, T_{sc}, P_{sc}$ and T are constants while μ_g, P and Z are functions of pressure. Obtain a derivative of the transmissibility with respect to pressure

Evaluate the following

2019

run. (e

nume

ing en

1 hole

solida

ole los

petrol

ole a

ion a

(ft.)

.31

i.
$$\Delta^2 f(X_{i+1})$$

ii. $\nabla^2 f(X_{i-1})$
iii. $\delta^2 f(X_i)$

QUESTION 6

- Find the partial derivative of oil in place with respect to pressure and saturation for a reservoir undergoing simultaneous pressure
- Develop the tri-diagonal matrix of the following incompressible flow equation $\frac{\partial}{\partial x} \left(\beta_c A_x K_x \frac{\partial P}{\partial X} \right) \Delta X + \mu q_{sc} = 0$ for N = 6 cells given that a well is located in cell 4 flowing at a rate of q_{sc} and that the reservoir is completely sealed
- Solve the following system of equations using Gaussian Elimination method

$$\begin{bmatrix} 2 & 3 & -1 \\ 5 & 1 & 8 \\ 4 & -5 & 3 \end{bmatrix} \begin{bmatrix} P_1 \\ P_2 \\ P_3 \end{bmatrix} = \begin{bmatrix} 9 \\ 45 \\ 5 \end{bmatrix}$$

$$CB_1 D + C_1$$