### Books related to General physics 2 2003,2006,2009,2011

Basic principle of physics 2(introductry electricity and magnetism )

**Author:** TT Ogunseye

**School:** University of Ibadan

**Department:** Science and Technology

**Course Code:** PHY104

Topics: Electric charges, Coulomb’s law, Conductors, insulators, Electric Field Intensity, Charge Distribution, Electric Field Lines, Electric Field Lines, Charge Density, Volume Charge Density, Surface Charge Density, Line Charge Density, Electric Field, Electric Flux, Gauss’s Law, Electric Field Calculation, Electric Potential, Electrical Potential Energy, Equipotential Surfaces, Capacitance, Dielectrics, Current Electricity, capacitor, Electric current, Electric Current Density, Resistance, Resistivity, Conductivity, Electromotive Force, Internal Resistance, Direct Current Circuits, resistance, Kirchhoff’s Current Law, Kirchhoff’s Voltage Law, energy, power, Wheatstone Bridge, Potentiometer, Slide Wire Bridge, Electrodynamics, Mass Spectrometer, hall effect, Magnetic Field, Magnetic Forces, Biot-Savart Law, Ampere’s Circuital Law, Electromagnetic Induction, Magnetic Flux, Lenz's law, Mutual Inductance, Self Inductance

Static Electricity

**Author:** PHS106 FUNAAB

**School:** Federal University of Agriculture, Abeokuta

**Department:** Science and Technology

**Course Code:** PHS106

Topics: Static Electricity, conductors, insulators, Charge Quantization, Electric Force, Coulomb’s Law, Electric Field Strength, electric potential, Electric Potential Difference, Equipotential Surfaces, current electricity, Ohm’s Law

General physics 2

**Author:** IC Okeyode

**School:** Federal University of Agriculture, Abeokuta

**Department:** Science and Technology

**Course Code:** PHS102

Topics: electric field, point charge, capacitor, magnetic force

Electricity and Magnetism

**Author:** PHY112

**School:** University of Ibadan

**Department:** Science and Technology

**Course Code:** PHY112

Topics: Electric Charge, Insulators, Conductors, Semiconductors, Charging by Induction, Coulomb’s Law, Coulomb’s Law Equation, Electric Field, Continuous Charge Distribution, Electric Field Lines, electric potential, Capacitors, Dielectric, capacitance, current, resistance, Ohm's law, resistivity, conductivity, electrical power, Kirchhoff rule, Electrical instrument, Ammeter, voltmeter, galvanometer, Wheatstone bridge, potentiometer

Electricity and Magnetism

**Author:** NN Jibiri, OE Ogunsola

**School:** University of Ibadan

**Department:** Science and Technology

**Course Code:** PHY112

Topics: Electrostatics, Electroscope, Electric charges, conductor, insulation, Grounding, charging, Coulomb’s Law, Electric Force, Electric Field, Electric Potential, Potential Gradient, Electric Potential Energy

University physics volume 2

**Author:** Samuel Ling, Jeff Sanny

**School:** University of Ibadan

**Department:** Science and Technology

**Course Code:** PHY104

Topics: temperature, heat, thermal equilibrium, thermometer temperature scale, thermal expanusion, heat transfer, specific heat, calorimetry, heat capacity, thermodynamics, work, heat, internal energy, heat engines, refrigerators, heat pumps, carnot cycle, entropy, electricity, magnetism, electric charge, electric field, conductors, insulators, Coulomb's law, electric dipoles, Gauss law, electric flux, electric potential, capacitor, capacitance, electrical current, resistivity, resistance, Ohm's law, electrical eenrgy, power, super conductors, electromotive force, magnetic forces, magnetic fields, hall effect, Biot-Savart law, solenoids, toroids, Faraday's law, Lenz's law, induced electic fields, eddy current, electric generators, inductance, transformers, electromagnetic waves, electromagnetic spectrum

Advance physics Electricity, electromagnetism and optics

**Author:** PI Ekwo, CC Anazodo, AJ Ekpunobi, Okolo

**School:** Nnamdi Azikiwe University

**Department:** Science and Technology

**Course Code:** PHY102

Topics: Electricity, electromagnetism, optics, capacitors, dielectric, capacitance, parallel plate capacitor, dielectric constant, relative permittivity, capacitor network, current electricity, electric current, electronic drift speed, resistance, resistivity, conductivity, Ohm's law, potentiometer, Kirchhoff's law, Wheatstone bridge, electrical heating, electrostatics, magnetic field, magnetic induction, magnetic force, Biot-Savart law, Ampere's circuited law, electromagnetic induction, Maxwell's equation, electromagnetic oscillations, prism, lens

Introductory Chemistry I

**Author:** Maliki

**School:** Edo University

**Department:** Science and Technology

**Course Code:** CHM111

Topics: atomic theory, atoms, Joseph John Thomson atomic model, cathode ray tube, Plum-pudding model, electromagnetic spectrum, subatomic particles, atomic number, mass number, relative atomic mass, mass spectrometer, mass spectra, isotopes, periodic law, transition element, Ionizations energy, electronegativity, atomic radius, ionic radius, electronic configuration, wave mechanical model, quantum numbers, electronic configuration of elements, Heisenberg uncertainty principle, Pauli's exclusion principle, Hund's rule, Aufbau‟s principle, atomic model hybridization, chemical symbols, chemical formula, molecular formula, structural formula, chemical equations, stoichiometry, mole concept, Avogadro's number, gram formula mass, gas laws, Boyle's law, Charles law, general gas equation, standard temperature and pressure, electrochemistry, cell notation, Standard Electrode Potentials, electrochemical, Daniel cell, cell potential electrolysis, reduction reaction, oxidation reaction, oxidation number, REDOX equation, chemical equilibrium, Lechatelier's Principle, solution chemistry, solubility, Raoult's law, nuclear reaction, radioactivity, Alpha rays, Beta rays, Gamma rays, natural radioactive decay series, thorium series, uranium series, actinium series, neptunium series

Physics for Scientists and Engineers with Modern Physics, 4th edition

**Author:** Douglas Giancoli

**School:** Edo University

**Department:** Science and Technology

**Course Code:** PHY121

Topics: measurement, estimating, motion, kinematics, dynamics, friction, circular motion, drag forces, gravitation, Newton's synthesis, work, energy, conservation of energy, linear momentum, rotational motion, angular momentum, static equilibrium, elasticity, fracture, fluids, oscillators, wave motion, sound, temperature, thermal expansion, ideal gas law, kinetic theory of gases, thermodynamics, electric charge, electric field, Gauss law, electric potential, capacitance, dielectrics, electric energy storage, electric currents, resistance, DC circuits, magnetism, magnetic field sources, electromagnetic induction, inductance, electromagnetic oscillations, AC circuits, Maxwell's equations, electromagnetic waves, light, reflection, refraction, lenses, optical instruments, wave nature of light, diffraction, polarization, quantum theory, quantum mechanics, molecules, solids, nuclear physics, radioactivity, nuclear energy, elementary particles

Electricity and magnetism

**Author:** Paul Amon

**School:** Benue State University, Makurdi

**Department:** Engineering

**Course Code:** PHY103

Topics: Electricity, magnetism, Electromagnetic interaction, electrostatic force, electric charge, Coulomb’s law, Electric potential, potential difference, electron volt, electric dipole, dipole moment, electric flux, Gauss Theorem, capacitors, dielectrics, current electricity, electric current, Ohm’s Law, Electrical Resistance, Resistivity, Electrical Conductivity, Ohmic Conductors, Superconductors, Electric Cell, resistor combination, Electric energy, electric power, wattmeter, electrolysis

Instructor Solution Manuals to Physics Principles With Applications ,7th Edition

**Author:** Douglas Giancoli

**School:** Federal University of Agriculture, Abeokuta

**Department:** Science and Technology

**Course Code:** PHS105

Topics: measurement, estimating, describing motion, kinematics, dynamics, Newton's laws of motion, gravitation, circular motion, work, energy, linear momentum, rotational motion, static equilibrium, elasticity, fracture, fluid, Oscillations, Waves, sound, temperature, kinetic theory, heat, laws of thermodynamics, electric charge, electric field, electric potential, electric currents, DC Circuits, magnetism, electromagnetic induction, Faraday's law, Electromagnetic waves, light, geometric optics, wave nature of light, optical instruments, Special Theory of Relativity, quantum theory, models of the atom, Quantum Mechanics of Atoms, molecules, solids, nuclear physics, radioactivity, nuclear energy, elementary particles, Astrophysics, Cosmology

Physics principles with applications ,Global edition

**Author:** Douglas Giancoli

**School:** Federal University of Agriculture, Abeokuta

**Department:** Science and Technology

**Course Code:** PHS105

Topics: measurement, estimating, describing motion, kinematics, dynamics, Newton's laws of motion, gravitation, circular motion, work, energy, linear momentum, rotational motion, static equilibrium, elasticity, fracture, fluid, Oscillations, Waves, sound, temperature, kinetic theory, heat, laws of thermodynamics, electric charge, electric field, electric potential, electric currents, DC Circuits, magnetism, electromagnetic induction, Faraday's law, Electromagnetic waves, light, geometric optics, wave nature of light, optical instruments, Special Theory of Relativity, quantum theory, models of the atom, Quantum Mechanics of Atoms, molecules, solids, nuclear physics, radioactivity, nuclear energy, elementary particles, Astrophysics, Cosmology

college physics

**Author:** OpenStax College

**School:** University of Ilorin

**Department:** Science and Technology

**Course Code:** PHY115, PHY125, PHY191, PHY142, PHY152, PHY192

Topics: physical quantities, Kinematics, dynamics, FRICTION, DRAG, ELASTICITY, circular motion, gravitation, work, energy, energy resources, force, linear momentum, collisions, statics, torque, rotational motion, Angular momentum, fluid statics, fluid dynamics, TEMPERATURE, KINETIC THEORY, HEAT, HEAT TRANSFER, Thermodynamics, OSCILLATORY MOTION, WAVES, sound, electric charge, electric field, GAS LAWS, ELECTRIC POTENTIAL, ELECTRIC CURRENT, RESISTANCE, OHM'S LAW, CIRCUITS, BIOELECTRICITY, DC
INSTRUMENTS, magnetism, ELECTROMAGNETIC INDUCTION, AC CIRCUITS, ELECTRICAL TECHNOLOGIES, ELECTROMAGNETIC WAVES, GEOMETRIC OPTICS, VISION, OPTICAL INSTRUMENTS, WAVE OPTICS, SPECIAL RELATIVITY, QUANTUM PHYSICS, ATOMIC PHYSICS, RADIOACTIVITY, NUCLEAR PHYSICS, PARTICLE PHYSICS

Principles of Physics For Scientists and Engineers

**Author:** Hafez Radi, John Rasmussen

**School:** University of Nigeria, Nsukka

**Department:** Science and Technology

**Course Code:** PHY121

Topics: Dimensions, Units, vectors, mechanics, motion, force, work, energy, power, linear momentum, collisions, center of mass, rotational motion, angular momentum, matter, thermodynamics, thermal expansion, kinetic theory of gases, sound wave, light, wave, oscillations, wave motion, optics, interference, diffraction, polarization, electricity, electric field, gauss law, electric potential, capacitor, capacitance, electric circuit, magnetism, magnetic field, Faraday's law, alternating current, maxwell's equation, inductance, oscillating circuits, AC circuits

Sears and Zemansky's University Physics with Modern Physics students solution manual, 14th Edition

**Author:** Hugh Young, Roger Freedman

**School:** University of Ibadan

**Department:** Science and Technology

**Course Code:** PHY112, PHY113, PHY114, PHY115

Topics: Units, Physical Quantities, Vector, Motion, Newton's law, Work, Kinetic energy, Potential energy, Energy conservation, Momentum, impulse, collision, rigid bodies, rotational motion, equilibrium, elasticity, fluid mechanics, gravitation, periodic motion, mechanics, mechanical waves, sound, hearing, temperature, heat, thermodynamics, electrical charge, electric field, electric potential, Gauss law, capacitance, dielectric, current, resistance, electromotive force, direct-current circuit, magnetic field, magnetic force, electromagnetic induction, inductance, alternating circuit, electromagnetic wave, Light, Geometric optics, Interference, Diffraction, Relativity, photons, quantum mechanics, wave functions, atomic structure, molecule, condensed matter, Nuclear physics, particle physics, cosmology, electromagnetism, optics, acoustics, modern physics

Sears and Zemansky's University Physics with Modern Physics, 14th Edition

**Author:** Hugh Young, Roger Freedman

**School:** University of Ibadan

**Department:** Science and Technology

**Course Code:** PHY112, PHY113, PHY114, PHY115

Topics: Units, Physical Quantities, Vector, Motion, Newton's law, Work, Kinetic energy, Potential energy, Energy conservation, Momentum, impulse, collision, rigid bodies, rotational motion, equilibrium, elasticity, fluid mechanics, gravitation, periodic motion, mechanics, mechanical waves, sound, hearing, temperature, heat, thermodynamics, electrical charge, electric field, electric potential, Gauss law, capacitance, dielectric, current, resistance, electromotive force, direct-current circuit, magnetic field, magnetic force, electromagnetic induction, inductance, alternating circuit, electromagnetic wave, Light, Geometric optics, Interference, Diffraction, Relativity, photons, quantum mechanics, wave functions, atomic structure, molecule, condensed matter, Nuclear physics, particle physics, cosmology, electromagnetism, optics, acoustics, modern physics

Physics for Scientists and Engineers with modern Physics ,10th Edition

**Author:** RA Serway, JW Jewitt

**School:** University of Ibadan

**Department:** Science and Technology

**Course Code:** PHY101

Topics: Modern physics, physics, measurement, motion, vectors, laws of motion, motion, circular motion, Energy of a System, energy, Linear Momentum, Collisions, rotation of rigid bodies, Angular Momentum, Static Equilibrium, Elasticity, Universal Gravitation, Fluid Mechanics, Oscillations, Mechanical Waves, Oscillatory Motion, wave motion, Superposition, Standing Waves, thermodynamics, temperature, Law of Thermodynamics, kinetic theory of gases, heat engines, entropy, electricity, magnetism, electric fields, Continuous Charge Distributions, Gauss’s Law, electric potential, Capacitance, Dielectrics, current, resistance, Direct-Current Circuits, magnetic fields, Faraday’s Law, inductance, Alternating-Current Circuits, electromagnetic waves, light, optics, image formation, wave optics, Diffraction Patterns, Polarization, Quantum Physics, relativity, Quantum Mechanics, atomic physics, Molecules, Solids, Nuclear Physics, Particle Physics, Cosmology

Schaum’s Outline of College Physics, Twelfth Edition

**Author:** Eugene Hecht

**School:** University of Ibadan

**Department:** Science and Technology

**Course Code:** PHY112, PHY113, PHY114, PHY115

Topics: Speed, Displacement, Velocity, vector, Uniformly Accelerated Motion, Newton law, Equilibrium, Work, Energy, Power, simple machine, impulse momentum, angular motion, Rigid-body rotation, simple harmonic motion, density, elasticity, fluid, thermal expansion, ideal gas, heat quantity, thermal energy, thermodynamics, entropy, wave motion, sound, Coulomb’s Law, Electric Field, Electric Potential, Capacitance, Current, Resistance, Ohm’s Law, Electrical Power, Kirchhoff’s Law, Magnetic field, Induced EMF, Electric generator, motor, inductance, Alternating current, Light, Lens, Optical instrument, Interference, Diffraction, special relativity, quantum physics, hydrogen atom, multielectron atom, subatomic physics, Nuclear physics

Electricity and Magnetism

**Author:** Teruo Matsushita

**School:** University of Ilorin

**Department:** Science and Technology

**Course Code:** PHY152, PHY252, ITE105, ITE302

Topics: electrostatic field, conductor, electrostatic induction, capacitor, electrostatic, dielectric material, electric polarization, electric flux density, boundary conditions, steady current, ohm's law, electromotive force, Kirchhoff's law, current, magnetic flux density, Biot-savart law, superconductors, inductance, coils, magnetic energy, magnetic force, magnetic material, magnetization, magnetic field, electromagnetic induction, induction law, skin effect, displacement current, electromagnetic potential, Poynting vector, electromagnetic wave, wave guide, spherical wave, retarded potential, Maxwell's equation

Exercises for the Feynman Lectures on Physics

**Author:** Richard Feynman, Robert Leighton, Matthew Sands, Michael Gottlieb, Rudolf Pfeiffer

**School:** University of Ilorin

**Department:** Science and Technology

**Course Code:** PHY115, PHY214, PHY243, PHY314, PHY152, PHY252, PHY353, PHY354, PHY461, PHY462

Topics: Motion, Probability, Gravitation, Dynamics, Momentum, Vector, force, work, Electromagnetism, Differential Calculus, Vector Fields, Vector Integral Calculus, Electrostatics, Gauss Law, Electric Field, Electrostatic Energy, Dielectrics, Electrostatic Analogs, Magnetostatics, Magnetic Field, Vector Potential, Induced Current, motor, generator, transformer, inductance, induction, maxwell equation, Principle of Least Action, AC Circuit, Cavity Resonator, Waveguide, Electrodynamics, Lorentz Transformation, Field Energy, Field Momentum, Electromagnetic Mass, Tensors, Refractive Index, Magnetism, Ferromagnetism, Magnetic Materials, Elasticity, Elastic Materials, Curved Space, Quantum Behavior, Particle Viewpoints, Probability Amplitudes, Identical Particles, Spin One, Spin One-Half, Hamiltonian Matrix, Ammonia Maser, Two-State Systems, Hyperfine Splitting, Crystal Lattice, Semiconductors, Independent Particle Approximation, Symmetry, Conservation Laws, Angular Momentum, Hydrogen Atom, Periodic Table, Operators, Schrodinger Equation, Superconductivity