Complex Analysis, 3rd edition by Joseph Bak, Donald Newman PDF free download

Joseph Bak, Donald Newman Complex Analysis, 3rd edition PDF, was published in 2010 and uploaded for 200-level Science and Technology students of University of Ilorin (UNILORIN), offering MAT210, MAT326, MAT329, MAT434 course. This ebook can be downloaded for FREE online on this page.

Complex Analysis, 3rd edition ebook can be used to learn complex numbers, complex variable, analytic functions, line integrals, entire functions, analytic functions, simply connected domains, residue theorem, Contour Integral Techniques, conformal mapping, Riemann mapping theorem, maximum-modulus theorem, harmonic functions, analytic continuation, gamma functions, zeta functions.

Technical Details
Updated at:
Size: 8.31 MB
Number of points needed for download: 25
Number of downloads: 16

Books related to Complex Analysis, 3rd edition

Schaum's outline of advanced mathematics for engineers and scientists

Author: Murray Spiegel

School: Federal University of Agriculture, Abeokuta

Department: Engineering

Course Code: MCE341

Topics: real numbers, rule of algebra, limits, continuity, derivatives, differentiation formula, Taylor series, Partial derivatives, maxima, minima, Lagrange multiplier, complex numbers, ordinary differential equations, linear differential equations, operator notation, linear operators, linear dependence, Wronskians, Laplace transforms, vector analysis, vector algebra, Jacobians, Orthogonal curvilinear coordinates, Fourier series, Dirichlet conditions, orthogonal functions, Fourier integrals, Fourier transforms, Gamma function, beta function, error function, exponential integral, sine integral, cosine integral, Fresnel sine Integral, Fresnel cosine Integral, Bessel function, Legendre functions, Legendre differential equation, Hermite polynomials, Laguerre polynomial, sturm-Liouville systems, heat conduction equation, vibrating string equation, complex variables, conformal mapping, Cauchy-Riemann equations, Cauchy's theorem, Laurent's series, conformal mapping, complex inversion formula, matrices, Cramer's rule, determinants, Euler's equation, Hamilton's principle

Advanced Engineering Mathematics ,10th Edition

Author: Erwin Kreyszig, Herbert Kreyszig, Edward

School: University of Nigeria, Nsukka

Department: Engineering

Course Code: MTH207

Topics: Ordinary Differential Equations, Separable Ordinary Differential Equations, exact Ordinary Differential Equations, linear Ordinary Differential Equations, Orthogonal Trajectories, Homogeneous Linear Ordinary Differential Equations, Differential Operators, Euler–Cauchy Equations, Higher Order Linear Ordinary Differential Equations, nonlinear Ordinary Differential Equations, Power Series, egendre’s Equation, Legendre Polynomials, Extended Power Series, Frobenius Method, Bessel’s Equation, Bessel Functions, Laplace Transforms, First Shifting Theorem, Linear Algebra, Vector Calculus, Matrices, Vectors, Determinants, Linear Systems, Determinants, Cramer’s Rule, Gauss–Jordan Elimination, linear transformation, Matrix Eigenvalue Problems, Eigenvalues, Eigenvectors, Eigenbase, Vector Differential Calculus, vector product, Vector Integral Calculus, Integral Theorems, line integrals, Surface Integrals, Stokes’s Theorem, Fourier Analysis, Partial Differential Equations, Fourier series, Sturm–Liouville Problems, Forced Oscillations, Fourier Integral, Fourier Cosine, Sine Transforms, Fourier Transform, Fast Fourier Transforms, Rectangular Membrane, Double Fourier Series, heat equation, Complex Numbers, Complex Differentiation, Cauchy–Riemann Equations, Exponential Function, Complex Integration, Cauchy’s Integral Formula, Cauchy’s Integral Theorem, Taylor series, Laurent Series, Residue Integration, Conformal Mapping, Complex Analysis, Potential Theory, Numeric Analysis, Numeric Linear Algebra, Unconstrained Optimization, Linear Programming, Combinatorial Optimization, Probability, Statistics, Data Analysis, Probability Theory, Mathematical Statistics

Advanced Engineering Mathematics Student Solutions Manual and Study Guide,10th edition Volume 1&2

Author: Herbert Kreyszig, Erwin Kreyszig

School: University of Nigeria, Nsukka

Department: Engineering

Course Code: MTH207

Topics: Ordinary Differential Equations, Separable Ordinary Differential Equations, exact Ordinary Differential Equations, linear Ordinary Differential Equations, Orthogonal Trajectories, Homogeneous Linear Ordinary Differential Equations, Differential Operators, Euler–Cauchy Equations, Higher Order Linear Ordinary Differential Equations, nonlinear Ordinary Differential Equations, Power Series, egendre’s Equation, Legendre Polynomials, Extended Power Series, Frobenius Method, Bessel’s Equation, Bessel Functions, Laplace Transforms, First Shifting Theorem, Linear Algebra, Vector Calculus, Matrices, Vectors, Determinants, Linear Systems, Determinants, Cramer’s Rule, Gauss–Jordan Elimination, linear transformation, Matrix Eigenvalue Problems, Eigenvalues, Eigenvectors, Eigenbase, Vector Differential Calculus, vector product, Vector Integral Calculus, Integral Theorems, line integrals, Surface Integrals, Stokes’s Theorem, Fourier Analysis, Partial Differential Equations, Fourier series, Sturm–Liouville Problems, Forced Oscillations, Fourier Integral, Fourier Cosine, Sine Transforms, Fourier Transform, Fast Fourier Transforms, Rectangular Membrane, Double Fourier Series, heat equation, Complex Numbers, Complex Differentiation, Cauchy–Riemann Equations, Exponential Function, Complex Integration, Cauchy’s Integral Formula, Cauchy’s Integral Theorem, Taylor series, Laurent Series, Residue Integration, Conformal Mapping, Complex Analysis, Potential Theory, Numeric Analysis, Numeric Linear Algebra, Unconstrained Optimization, Linear Programming, Combinatorial Optimization, Probability, Statistics, Data Analysis, Probability Theory, Mathematical Statistics

Introduction to Real Analysis, 4th Edition

Author: Robert Bartle, Donald Sherbert

School: Nnamdi Azikiwe University

Department: Science and Technology

Course Code: MAT251

Topics: real analysis, sets, functions, mathematical induction, finite sets, infinite sets, real numbers, absolute value, real line, intervals, sequences, series, limit theorems, monotone sequences, Cauchy criterion, limits, limit theorems, continuous functions, uniform continuity, inverse function, monotone functions, derivative, mean value theorem, L' Hospital rule, Taylor's theorem, Riemann integral, Riemann integral functions, fundamental theorem, Darboux integral, approximate integrations, pointwise convergence, uniform convergence, exponential functions, logarithmic function, trigonometric functions, infinite series, absolute convergence, infinite integrals, convergence theorems, continuous functions, metric spaces

Thomas Calculus ,14th edition

Author: GeorgeThomas, Joel Hass, Christopher Heil, Maurice Weir

School: University of Ilorin

Department: Science and Technology

Course Code: MAT112

Topics: Calculus, Trigonometric Functions, functions, limits, continuity, One-Sided Limits, Differentiation Rules, Derivatives, chain rule, implict differentiation, related rates, linearization, differentials, Mean Value Theorem, integrals, Monotonic Functions, First Derivative Test, Concavity, Curve Sketching, Applied Optimization, antiderivatives, Sigma Notation, limits of Finite Sums, Definite integral, Transcendental Functions, inverse functions, natural logarithms, exponential functions, exponential change, seperable differential equation, Indeterminate Form, L’Hôpital’s Rule, Inverse Trigonometric Functions, Hyperbolic Functions, Integration by Parts, integration, trigonometric integrals, trigonometric substitution, Integral Tables, Computer Algebra Systems, probability, numerical integration, improper integrals, probability, First-Order Differential Equations, Slope Fields, Euler’s Method, First-Order Linear Equations, Infinite Sequences, infinite Series, integral test, comparison test, absolute convergence, power series, alternating series, Taylor series, Maclaurin series, Parametric Equations, Polar Coordinates, Conic Sections, vector, Partial Derivatives, Lagrange Multipliers, Multiple Integrals, vector fields, Path Independence, Conservative Fields, Potential Functions, Green’s Theorem, Surface Integrals, Stokes Theorem, Divergence Theorem

Thomas Calculus Early Transcendentals, 13th Edition Instructors Solutions Manual

Author: Elka Block, Frank Purcell

School: University of Ilorin

Department: Science and Technology

Course Code: MAT112

Topics: Calculus, Trigonometric Functions, functions, limits, continuity, One-Sided Limits, Differentiation Rules, Derivatives, chain rule, implict differentiation, related rates, linearization, differentials, Mean Value Theorem, integrals, Monotonic Functions, First Derivative Test, Concavity, Curve Sketching, Applied Optimization, antiderivatives, Sigma Notation, limits of Finite Sums, Definite integral, Transcendental Functions, inverse functions, natural logarithms, exponential functions, exponential change, seperable differential equation, Indeterminate Form, L’Hôpital’s Rule, Inverse Trigonometric Functions, Hyperbolic Functions, Integration by Parts, integration, trigonometric integrals, trigonometric substitution, Integral Tables, Computer Algebra Systems, probability, numerical integration, improper integrals, probability, First-Order Differential Equations, Slope Fields, Euler’s Method, First-Order Linear Equations, Infinite Sequences, infinite Series, integral test, comparison test, absolute convergence, power series, alternating series, Taylor series, Maclaurin series, Parametric Equations, Polar Coordinates, Conic Sections, vector, Partial Derivatives, Lagrange Multipliers, Multiple Integrals, vector fields, Path Independence, Conservative Fields, Potential Functions, Green’s Theorem, Surface Integrals, Stokes Theorem, Divergence Theorem

Calculus and Analytic Geometry,9th Edition

Author: George Thomas, Ross Finney

School: Federal University of Agriculture, Abeokuta

Department: Science and Technology

Course Code: MTS101

Topics: Calculus, Analytic Geometry, real numbers, real line, coordinates, functions, shifting graphs, trignometric functions, rates of change, limits, continuity, tangent lines, derivative of a function, differentiation rules, rates of change, chain rule, derivatives, implicit differentiation, rational exponents, extreme values of functions, mean value theorem, first derivative test, optimization, linearization, differentials, Newton's method, integration, indefinite integrals, differential equations, initial value problems, mathematical modelling, Riemann sums, definite integrals, mean value theorem, fundamental theorem, numerical integration, cylindrical shells, application of integrals, work, fluid pressure, inverse functions, natural logarithms, transcendental functions, L'Hopital's rule, inverse trignometric functions, hyperbolic functions, first order differential equations, Euler's numerical method, Integration formulas, integration by parts, integral tables, infinite series, power series, Maclaurin series, Taylor series, conic sections

Schaum's Outline of Advanced Calculus, 3rd Edition

Author: Wrede dan Murray, Murray Spiegel

School: University of Ilorin

Department: Science and Technology

Course Code: MAT201

Topics: number, sequence, function, limit, continuity, derivative, integral, partial derivative, vector, multiple integral, line integral, surface integral, infinite series, improper integral, Fourier series, Gamma function, Beta Function, complex variable

Complex Numbers

Author: MTS FUNAAB

School: Federal University of Agriculture, Abeokuta

Department: Science and Technology

Course Code: MTS101

Topics: Complex numbers, Factorization of a complex numbers, Additive Inverse of a Complex Number, Conjugate of a complex number, Argand Plane, De Moivres Theorem

Schaum's Outline of Calculus, 6th edition

Author: Frank Ayres, Elliott Mendelson

School: Nnamdi Azikiwe University

Department: Science and Technology

Course Code: MAT231

Topics: Calculus, linear coordinate systems, absolute value, inequalities, rectangular coordinate systems, lines, circles, parabolas, ellipses, hyperbolas, conic sections, functions, limits, continuity, continuous function, derivative, delta notation, chain rule, inverse functions, implicit differentiation, tangent lines, normal lines, critical numbers, relative maximum relative minimum, cure sketching, concavity, symmetry, points of inflection, vertical asymptotes, trigonometry, trigonometric functions, inverse trigonometric functions, rectilinear motion, circular motion, differentials, Newton's method, antiderivatives, definite integral, sigma notation, natural logarithm, exponential functions, logarithmic functions, L'hopital's rule, exponential growth, decay, half-life, integration by parts, trigonometric integrands, trigonometric substitutions, improper integrals, parametric equations, curvature, plane vectors, curvilinear motion, polar coordinates, infinite sequences, infinite series, geometric series, power series, uniform convergence, Taylor's series, Maclaurin series, partial derivatives, total differential, differentiability, chain rules, space vectors, directional derivatives, vector differentiation, vector integration, double integrals, iterated integrals, centroids, triple integrals, Separable Differential Equations, Homogeneous Functions, Integrating Factors, Second-Order Equations

University calculus early transcendentals, 4th edition

Author: Joel Hass, Christopher Heil, Przemyslaw Bogacki, Maurice Weir, George Thomas

School: Federal University of Agriculture, Abeokuta

Department: Science and Technology

Course Code: MTS241

Topics: functions, combining functions, trigonometric functions, exponential functions, inverse functions, logarithms, limit, continuity, derivatives, differentiation rules, chain rule, implicit differentiation, inverse trigonometric functions, related rates, linearization, differentials, mean value theorem, monotonic functions, applied optimization, integrals, transcendental functions, hyperbolic functions, integration, trigonometric integrals, trigonometric substitution, numerical integration, improper integrals, infinite sequences, infinite series, integral test, comparison test, absolute convergence, power series, Taylor series, Maclurin series, parametric equations, polar coordinates, vectors, dot product, cross product, vector-valued functions, partial derivatives, saddle points, multiple integrals, vector fields, Euler equations

Foundations of Mathematical Analysis

Author: CE Chidume, Chukwudi Chidume

School: Federal University of Technology, Owerri

Department: Science and Technology

Course Code: MTH301

Topics: real number system, order relation, natural numbers, countable sets, uncountable sets, bounded sets, limits, Monotone Sequences, Sandwich Theorem, limit theorems, Bolzano-Weierstrass Theorem, Limit Superior, Limit Inferior, Cauchy Sequences, continuity, topological notions, One-sided Continuity, Continuity Theorems, Uniform Continuity, Uniform Continuity Theorems, closed sets, compact sets, continuous maps, differentiability, derivative, Rolle’s Theorem, Mean Value Theorem, L’Hospital’s Rule, Nonnegative Real Numbers series, Integral Test, Comparison Test, Limit Comparison Test, Cauchy’s Root Test, D’Alembert’s Ratio Test, Alternating Series, Absolute Convergence, Conditional Convergence, Riemann Integral, Integration, Uniform convergence, Power Series, Equicontinuity, Arzela-Ascoli Theorem

Probability Theory, 2nd edition

Author: Achim Klenke

School: University of Ilorin

Department: Science and Technology

Course Code: STA121, STA221, ACC401, BUS426, ECN104, ECN207, MEE442, PHY432, AEF204

Topics: measure theory, independence, integral, moments, laws of large numbers, convergence theorem, Lp-Spaces, Radon–Nikodym Theorem, Conditional Expectations, martingale, optional sampling theorem, Martingale Convergence Theorem, Backwards Martingale, exchangeability, De Finetti's theorem, convergence of measures, Characteristic Function, Central Limit Theorem, Infinitely Divisible Distribution, markov chains, Electrical Network, Ergodic Theory, Brownian motion, iterated logarithm, large deviations, Poisson point process, Itô Integral, Stochastic Differential Equations

Introduction to probability and distribution lecture note 2

Author: Favour

School: University of Ilorin

Department: Science and Technology

Course Code: STA124

Topics: mean of random variable, variance of random variable, continuous random variable, probability density function, probability distribution function, mean continuous of random variable, variance continuous of random variable, discrete distribution, Bernoulli distribution, binomial distribution, Poisson distribution, geometric distribution, uniform distribution, continuous distribution, normal distribution, cumulative distribution function, Bivariate probability distribution, conditional probability distribution function

Algebra

Author: JA Oguntuase

School: Federal University of Agriculture, Abeokuta

Department: Science and Technology

Course Code: MTS101

Topics: Real Numbers, Real Line, absolute value, indices, surds, Rationalization, logarithm, matices, matrix algebra, e Moivre’s theorem, complex numbers, Conjugate complex number, Argand Diagram, Roots of Complex Numbers, Roots of Unity, set theory, Binary Operations

Mathematical methods 3 lecture note

Author: Dada, MO Ibrahim

School: University of Ilorin

Department: Science and Technology

Course Code: MAT407

Topics: Hamilton principle, Lagrange equation, Geodesic problem, Dobis-Raymond equation, corner condition, variable end point theorem, variational integral transform, Laplace transform, Fourier Transform, Baned transform, complex variable method, Convolution theorem

Elements of abstract and linear Algebra

Author: EH Connell

School: University of Ibadan

Department: Science and Technology

Course Code: MAT211

Topics: abstract Algebra, linear Algebra, Sets, Cartesian products, Hausdorff maximality principle, groups, Homomorphisms, permutations, rings, domains, fields, Polynomial rings, Chinese remainder theorem, Boolean rings, matrices, matrix rings, Systems of equations, Determinants, Summands, transpose principle, Nilpotent homomorphisms, Jordan canonical form, Eigenvalues, Euclidean domains, jordan blocks, Jordan canonical form

Simple Harmonic Motion

Author: PHY

School: University of Ilorin

Department: Science and Technology

Course Code: PHY115

Topics: Simple Harmonic Motion, Simple Harmonic Oscillator, Period, Simple Pendulum

The Integral (Lecture 5)

Author: GC Ezeamama

School: Nnamdi Azikiwe University

Department: Science and Technology

Course Code: MAT102

Topics: Integral, Riemann Sum, Indefinite Integral, Calculus

Pure Mathematics for Advanced Level ,2nd edition

Author: BD Bunday, Mulholland

School: Federal University of Agriculture, Abeokuta

Department: Science and Technology

Course Code: MTS105

Topics: Finite sequences, finite series, complex numbers, binomial theorem, quadratic function, quadratic equation, Trigonometric equations, Trigonometric functions, solution of triangles, differential calculus, differentiation, differentiation techniques, logarithmic functions, exponential functions, intefration, integral calculus, differential equations, co-ordinate geometry, straight line, parabola, ellipse, hyperbola, numerical methods, vectors

Past Questions related to Complex Analysis, 3rd edition

Complex analysis 2 test and exam

Year: 2018

School: University of Ilorin

Department: Science and Technology

Course Code: MAT326

Topics: Laurent expansion, Liouville theorem, Residue Theorem, Cauchy inequality, Rouche theorem, Analytic continuation, convergence, maximum modulus theorem

FUNCTIONS OF A COMPLEX VARIABLE AND ITS APPLICATIONS 1

Year: 2019

School: Federal University of Technology, Owerri

Department: Science and Technology

Course Code: MTH305

Topics: complex variable, logarithm, analytic function, linear transformation

Complex analysis 1 Test and exam-2009,2013,2014,2015,2016

Year: 2016

School: University of Ilorin

Department: Science and Technology

Course Code: MAT329

Topics: Complex-valued function, Milne-Thompson, analytic function, Cauchy-Reimann equation, continuity, differentiation, Integration

Real analysis 2-2011,2015,2016

Year: 2016

School: University of Ilorin

Department: Science and Technology

Course Code: MAT307

Topics: RIemann integral, Weierstrass convergence criterion, partition

Tutorial workbook for MTS101 & MTS102

Year: 2019

School: Federal University of Agriculture, Abeokuta

Department: Science and Technology

Course Code: MTS101, MTS102

Topics: Set theory, real numbers, complex numbers, rational functions, partial fraction, binomial expansion, sequence, series, matrices, Trigonometry, Differentiation, integration

Sets, binary operation, partial fractions, mathematical induction

Year: 2020

School: University of Benin

Department: Science and Technology

Course Code: MTH110

Topics: Sets, binary operation, partial fractions, mathematical induction, real numbers, remainder theorem, factor theorem, polynomial, mapping, complex number, Argand diagram, trigonometric function, sequence, series, recurrency, D'Alembert ratio test, permutation, combination

Probability distributions

Year: 2017

School: University of Ilorin

Department: Science and Technology

Course Code: STA124

Topics: random variable, probability distribution, binomial experiment, binomial probabilities, geometric distribution, Poisson distribution, binomial distribution

40 Elementary Differential and Integral Calculus practice question

Year: 2017

School: University of Ilorin

Department: Science and Technology

Course Code: MAT112

Topics: Integration, differentiation

Answers to Elementary Mathematics test mock by WCCCF FUTO

Year: 2020

School: Federal University of Technology, Owerri

Department: Science and Technology

Course Code: MTH101

Topics: Logarithm, indices, combination, complex numbers, binomial expansion, geometric progression, inequalities, partial fraction, remainder theorem

Algebra and number theory

Year: 2019

School: Federal University of Technology, Minna

Department: Science and Technology

Course Code: MAT111

Topics: Binomials, Complex number, Sequence, series, mapping, binomial expansion

VECTOR AND TENSOR ANALYSIS

Year: 2018

School: Federal University of Technology, Owerri

Department: Science and Technology

Course Code: MTH322

Topics: vector, tensor, integral, coriollis acceleration

Mechanics and Properties of Matter-2001-2003,2005,2006

Year: 2006

School: University of Ibadan

Department: Science and Technology

Course Code: PHY114

Topics: stress, strain, Young's modulus, shear modulus, Bulk modulus, work, force, Newton's law, parallel axis theorem, projectile, simple harmonic motion, inclined plane, motion on a plane, dimension analysis, Kepler's law, synchronous orbit, rigid body, physical quantity, acceleration due to gravity

General chemistry

Year: 2018

School: Chukwuemeka Odumegwu Ojukwu University

Department: Science and Technology

Course Code: CHM101

Topics: NUCLEUS, GAMMA RAY, ANTIMONY, NUCLEAR REACTION

General physics 2 2003,2006,2009,2011

Year: 2011

School: Federal University of Agriculture, Abeokuta

Department: Science and Technology

Course Code: PHS102

Topics: charges, electric field, gamma rays, point charge, electricity