Schaum's outline of advanced mathematics for engineers and scientists by Murray Spiegel PDF free download
Schaum's outline of advanced mathematics for engineers and scientists by Murray Spiegel, PDF, was published in 1971 and uploaded for 300-level Engineering students of Federal University of Agriculture, Abeokuta (FUNAAB), offering MCE341 course. This ebook can be downloaded for FREE online on this page.
Schaum's outline of advanced mathematics for engineers and scientists ebook can be used to learn real numbers, rule of algebra, limits, continuity, derivatives, differentiation formula, Taylor series, Partial derivatives, maxima, minima, Lagrange multiplier, complex numbers, ordinary differential equations, linear differential equations, operator notation, linear operators, linear dependence, Wronskians, Laplace transforms, vector analysis, vector algebra, Jacobians, Orthogonal curvilinear coordinates, Fourier series, Dirichlet conditions, orthogonal functions, Fourier integrals, Fourier transforms, Gamma function, beta function, error function, exponential integral, sine integral, cosine integral, Fresnel sine Integral, Fresnel cosine Integral, Bessel function, Legendre functions, Legendre differential equation, Hermite polynomials, Laguerre polynomial, sturm-Liouville systems, heat conduction equation, vibrating string equation, complex variables, conformal mapping, Cauchy-Riemann equations, Cauchy's theorem, Laurent's series, conformal mapping, complex inversion formula, matrices, Cramer's rule, determinants, Euler's equation, Hamilton's principle.
Technical Details |
---|
Uploaded on: 02-November-2021 |
Size: 9.27 MB |
Number of points needed for download: 66 |
Number of downloads: 16 |
Will you help us reach more students?
Use the link below to get 47 points for each download by a registered user from your shared link below. Share on social media groups to reach more students.
Books related to Schaum's outline of advanced mathematics for engineers and scientists
Advanced Engineering Mathematics ,10th Edition
Author: Erwin Kreyszig, Herbert Kreyszig, Edward
School: University of Nigeria, Nsukka
Department: Engineering
Course Code: MTH207
Topics: Ordinary Differential Equations, Separable Ordinary Differential Equations, exact Ordinary Differential Equations, linear Ordinary Differential Equations, Orthogonal Trajectories, Homogeneous Linear Ordinary Differential Equations, Differential Operators, Euler–Cauchy Equations, Higher Order Linear Ordinary Differential Equations, nonlinear Ordinary Differential Equations, Power Series, egendre’s Equation, Legendre Polynomials, Extended Power Series, Frobenius Method, Bessel’s Equation, Bessel Functions, Laplace Transforms, First Shifting Theorem, Linear Algebra, Vector Calculus, Matrices, Vectors, Determinants, Linear Systems, Determinants, Cramer’s Rule, Gauss–Jordan Elimination, linear transformation, Matrix Eigenvalue Problems, Eigenvalues, Eigenvectors, Eigenbase, Vector Differential Calculus, vector product, Vector Integral Calculus, Integral Theorems, line integrals, Surface Integrals, Stokes’s Theorem, Fourier Analysis, Partial Differential Equations, Fourier series, Sturm–Liouville Problems, Forced Oscillations, Fourier Integral, Fourier Cosine, Sine Transforms, Fourier Transform, Fast Fourier Transforms, Rectangular Membrane, Double Fourier Series, heat equation, Complex Numbers, Complex Differentiation, Cauchy–Riemann Equations, Exponential Function, Complex Integration, Cauchy’s Integral Formula, Cauchy’s Integral Theorem, Taylor series, Laurent Series, Residue Integration, Conformal Mapping, Complex Analysis, Potential Theory, Numeric Analysis, Numeric Linear Algebra, Unconstrained Optimization, Linear Programming, Combinatorial Optimization, Probability, Statistics, Data Analysis, Probability Theory, Mathematical Statistics
Advanced Engineering Mathematics Student Solutions Manual and Study Guide,10th edition Volume 1&2
Author: Herbert Kreyszig, Erwin Kreyszig
School: University of Nigeria, Nsukka
Department: Engineering
Course Code: MTH207
Topics: Ordinary Differential Equations, Separable Ordinary Differential Equations, exact Ordinary Differential Equations, linear Ordinary Differential Equations, Orthogonal Trajectories, Homogeneous Linear Ordinary Differential Equations, Differential Operators, Euler–Cauchy Equations, Higher Order Linear Ordinary Differential Equations, nonlinear Ordinary Differential Equations, Power Series, egendre’s Equation, Legendre Polynomials, Extended Power Series, Frobenius Method, Bessel’s Equation, Bessel Functions, Laplace Transforms, First Shifting Theorem, Linear Algebra, Vector Calculus, Matrices, Vectors, Determinants, Linear Systems, Determinants, Cramer’s Rule, Gauss–Jordan Elimination, linear transformation, Matrix Eigenvalue Problems, Eigenvalues, Eigenvectors, Eigenbase, Vector Differential Calculus, vector product, Vector Integral Calculus, Integral Theorems, line integrals, Surface Integrals, Stokes’s Theorem, Fourier Analysis, Partial Differential Equations, Fourier series, Sturm–Liouville Problems, Forced Oscillations, Fourier Integral, Fourier Cosine, Sine Transforms, Fourier Transform, Fast Fourier Transforms, Rectangular Membrane, Double Fourier Series, heat equation, Complex Numbers, Complex Differentiation, Cauchy–Riemann Equations, Exponential Function, Complex Integration, Cauchy’s Integral Formula, Cauchy’s Integral Theorem, Taylor series, Laurent Series, Residue Integration, Conformal Mapping, Complex Analysis, Potential Theory, Numeric Analysis, Numeric Linear Algebra, Unconstrained Optimization, Linear Programming, Combinatorial Optimization, Probability, Statistics, Data Analysis, Probability Theory, Mathematical Statistics
Advanced engineering mathematics
Author: Ken Stroud, Dexter Booth
School: Federal University of Technology, Owerri
Department: Engineering
Course Code: ENG307, ENG308
Topics: Advanced engineering mathematics, numerical solution, Newton-Raphson iterative method, numerical methods, linear interpolation, graphical interpolation, Lagrange interpolation, Laplace transform, convolution theorem, periodic functions, Z transform, difference equations, Invariant linear systems, Differential equations, Fourier series, harmonics, Dirichlet conditions, Gibbs’ phenomenon, Complex Fourier series, complex spectra, Fourier’s integral theorem, Leibnitz-Maclaurin method, power series, Cauchy-Euler equi-dimensional equations, Leibnitz theorem, Bessel’s equation, Gamma functions, Bessel functions, Legendre’s equation, Legendre polynomials, Rodrigue’s formula, Sturm-Liouville systems, Orthogonality, Taylor’s series, First-order differential equations, Euler's method, Runge-Kutta method, Matrix algebra, Matrix transformation, Eigenvalues, direction fields, phase plane analysis, nonlinear systems, dynamical systems, Bifurcation, partial differentiation, Elliptic equations, Hyperbolic equations, Parabolic equations, multiple integration, Green’s theorem, integral functions, error function, elliptic functions, vector analysis, Curvilinear coordinates, complex analysis, complex mapping, Maclaurin series, optimization, linear programming, Linear inequalities
Author: GeorgeThomas, Joel Hass, Christopher Heil, Maurice Weir
School: University of Ilorin
Department: Science and Technology
Course Code: MAT112
Topics: Calculus, Trigonometric Functions, functions, limits, continuity, One-Sided Limits, Differentiation Rules, Derivatives, chain rule, implict differentiation, related rates, linearization, differentials, Mean Value Theorem, integrals, Monotonic Functions, First Derivative Test, Concavity, Curve Sketching, Applied Optimization, antiderivatives, Sigma Notation, limits of Finite Sums, Definite integral, Transcendental Functions, inverse functions, natural logarithms, exponential functions, exponential change, seperable differential equation, Indeterminate Form, L’Hôpital’s Rule, Inverse Trigonometric Functions, Hyperbolic Functions, Integration by Parts, integration, trigonometric integrals, trigonometric substitution, Integral Tables, Computer Algebra Systems, probability, numerical integration, improper integrals, probability, First-Order Differential Equations, Slope Fields, Euler’s Method, First-Order Linear Equations, Infinite Sequences, infinite Series, integral test, comparison test, absolute convergence, power series, alternating series, Taylor series, Maclaurin series, Parametric Equations, Polar Coordinates, Conic Sections, vector, Partial Derivatives, Lagrange Multipliers, Multiple Integrals, vector fields, Path Independence, Conservative Fields, Potential Functions, Green’s Theorem, Surface Integrals, Stokes Theorem, Divergence Theorem
Thomas Calculus Early Transcendentals, 13th Edition Instructors Solutions Manual
Author: Elka Block, Frank Purcell
School: University of Ilorin
Department: Science and Technology
Course Code: MAT112
Topics: Calculus, Trigonometric Functions, functions, limits, continuity, One-Sided Limits, Differentiation Rules, Derivatives, chain rule, implict differentiation, related rates, linearization, differentials, Mean Value Theorem, integrals, Monotonic Functions, First Derivative Test, Concavity, Curve Sketching, Applied Optimization, antiderivatives, Sigma Notation, limits of Finite Sums, Definite integral, Transcendental Functions, inverse functions, natural logarithms, exponential functions, exponential change, seperable differential equation, Indeterminate Form, L’Hôpital’s Rule, Inverse Trigonometric Functions, Hyperbolic Functions, Integration by Parts, integration, trigonometric integrals, trigonometric substitution, Integral Tables, Computer Algebra Systems, probability, numerical integration, improper integrals, probability, First-Order Differential Equations, Slope Fields, Euler’s Method, First-Order Linear Equations, Infinite Sequences, infinite Series, integral test, comparison test, absolute convergence, power series, alternating series, Taylor series, Maclaurin series, Parametric Equations, Polar Coordinates, Conic Sections, vector, Partial Derivatives, Lagrange Multipliers, Multiple Integrals, vector fields, Path Independence, Conservative Fields, Potential Functions, Green’s Theorem, Surface Integrals, Stokes Theorem, Divergence Theorem
Numerical methods for engineers ,8th edition
Author: Steven Chapra, Raymond Canale
School: University of Uyo
Department: Engineering
Course Code: GRE411
Topics: Mathematical Modeling, Engineering Problem Solving, Programming, Software, structured programming, Modular Programming, EXCEL, MATLAB, Mathcad, Significant Figures, accuracy, precision, error, Round-Off Errors, Truncation Errors, Taylor Series, Bracketing Methods graphical method, bisection method, False-Position Method, Simple Fixed-Point Iteration, Newton-Raphson Method, secant method, Brent’s Method, multiple roots, Roots of Polynomials, Müller’s Method, Bairstow’s Method, Roots of Equations pipe friction, Gauss Elimination, Naive Gauss Elimination, complex systems, Gauss-Jordan, LU Decomposition, Matrix Inversion, Special Matrices, Gauss-Seidel, Linear Algebraic Equations, Steady-State Analysis, One-Dimensional Unconstrained Optimization, Parabolic Interpolation, Golden-Section Search, Multidimensional Unconstrained Optimization, Constrained Optimization, linear programming, Nonlinear Constrained Optimization, Least-Squares Regression, linear regression, polynomial regression, Multiple Linear Regression, Nonlinear Regression, Linear Least Squares, interpolation, Newton’s Divided-Difference Interpolating Polynomials, Lagrange Interpolating Polynomials, Inverse Interpolation, Spline Interpolation, Multidimensional Interpolation, Fourier Approximation, Curve Fitting, Sinusoidal Functions, Continuous Fourier Series, Fourier Integral, Fourier Transform, Discrete Fourier Transform, Fast Fourier Transform, power spectrum, Newton-Cotes Integration Formulas, Trapezoidal Rule, Simpson’s Rules, multiple integrals, Newton-Cotes Algorithms, Romberg Integration, Adaptive Quadrature, Gauss Quadrature, Improper Integrals, Monte Carlo Integration, Numerical Differentiation, High-Accuracy Differentiation Formulas, Richardson Extrapolation, partial derivatives, Numerical Integration, Runge-Kutta Method, Euler’s Method, Boundary-Value Problems, Eigenvalue Problems, Finite Difference, Elliptic Equations, Laplace equation, Boundary Condition, Heat-Conduction Equation, Crank-Nicolson Method, Finite-Element Method
Higher Engineering Mathematics ,Eighth edition
Author: John Bird
School: Federal University of Technology, Owerri
Department: Engineering
Course Code: ENG307, EN308
Topics: Algebra, partial fraction, logarithm, exponential function, inequality, arithmetic progression, geometric progression, binomial series, Maclaurin's series, iterative method, binary, octal, hexadecimal, boolean algebra, logic circuits, trigonometry, circle, Trigonometric waveforms, hyperbolic functions, Trigonometric identities, Trigonometric equation, compound angles, irregular area, irregular volume, graph, complex numbers, De Moivre’s theorem, matrix, determinant, vector geometry, vector, scalar product, vector product, differentiation, calculus, integration, differential equation, parametric equations, implicit functions, Logarithmic differentiation, hyperbolic functions, Partial differentiation, Total differential, rate of change, Maxima, minima, saddle point, integral calculus, hyperbolic substitution, trignometric substitution, Integration by parts, Reduction formulae, double integrals, triple integrals, Numerical integration, Homogeneous first-order differential equation, first-order differential equation, differential calculus, Linear first-order differential equation, Numerical methods, power series, Statistics, probability, Mean, median, mode, standard deviation, binomial distribution, Poisson distribution, normal distribution, Linear correlation, Linear regression, Sampling, estimation theories, Significance testing, Chi-square test, distribution-free test, Laplace transform, Inverse Laplace transform, Heaviside function, Fourier series, periodic functions, non-periodic function, even function, odd function, half-range fourier series, harmonic analysis, Z-Transform
Schaum's Outline of Calculus, 6th edition
Author: Frank Ayres, Elliott Mendelson
School: Nnamdi Azikiwe University
Department: Science and Technology
Course Code: MAT231
Topics: Calculus, linear coordinate systems, absolute value, inequalities, rectangular coordinate systems, lines, circles, parabolas, ellipses, hyperbolas, conic sections, functions, limits, continuity, continuous function, derivative, delta notation, chain rule, inverse functions, implicit differentiation, tangent lines, normal lines, critical numbers, relative maximum relative minimum, cure sketching, concavity, symmetry, points of inflection, vertical asymptotes, trigonometry, trigonometric functions, inverse trigonometric functions, rectilinear motion, circular motion, differentials, Newton's method, antiderivatives, definite integral, sigma notation, natural logarithm, exponential functions, logarithmic functions, L'hopital's rule, exponential growth, decay, half-life, integration by parts, trigonometric integrands, trigonometric substitutions, improper integrals, parametric equations, curvature, plane vectors, curvilinear motion, polar coordinates, infinite sequences, infinite series, geometric series, power series, uniform convergence, Taylor's series, Maclaurin series, partial derivatives, total differential, differentiability, chain rules, space vectors, directional derivatives, vector differentiation, vector integration, double integrals, iterated integrals, centroids, triple integrals, Separable Differential Equations, Homogeneous Functions, Integrating Factors, Second-Order Equations
Advanced Engineering Mathematics
Author: Alan Jeffrey
School: Federal University of Technology, Owerri
Department: Engineering
Course Code: ENG307, ENG308
Topics: Real Numbers, Mathematical Induction, Mathematical Conventions, Complex Numbers, Taylor Theorem, Maclaurin Theorem, Vectors, Vector Spaces, Matrices, linear equation, Echelon, Eigen, Differential equations, fourier series, Laplace transform, vector calculus, complex analysis, bernoulli, riccati, cauchy-euler, Gamma function, frobenieus method, bessel function, Fourier integrals, Fourier transform, Vector Differential Calculus, Vector Integral Calculus, analytic functions, complex intergration, laurent series
Engineering Mathematics ,8th edition
Author: Dexter Booth, Ken Stroud
School: Federal University of Technology, Owerri
Department: Engineering
Course Code: ENG307, ENG308
Topics: Engineering Mathematics, Algebra, power, logarithms, polynomials, linear equations, polynomial equations, binomials, binomial expansions, sigma notation, factorials, combinations, partial fractions, trigonometry, Trigonometric identities, Trigonometric functions, exponential functions, differentiation, Newton–Raphson iterative method, integration, complex numbers, hyperbolic functions, determinants, matrices, eigenvalues, eigenvectors, Cayley–Hamilton theorem, vector, vector representation, sequences, infinite series, curves, curve fitting, Asymptotes, Systematic curve sketching, Correlation, partial differentiation, reduction formulas, approximate integration, integration application polar coordinate systems, multiple integrals, first-order differential equations, homogenous equations, Laplace transform, probability, Conditional probability, Probability distributions, Continuous probability distributions
Calculus and Analytic Geometry,9th Edition
Author: George Thomas, Ross Finney
School: Federal University of Agriculture, Abeokuta
Department: Science and Technology
Course Code: MTS101
Topics: Calculus, Analytic Geometry, real numbers, real line, coordinates, functions, shifting graphs, trignometric functions, rates of change, limits, continuity, tangent lines, derivative of a function, differentiation rules, rates of change, chain rule, derivatives, implicit differentiation, rational exponents, extreme values of functions, mean value theorem, first derivative test, optimization, linearization, differentials, Newton's method, integration, indefinite integrals, differential equations, initial value problems, mathematical modelling, Riemann sums, definite integrals, mean value theorem, fundamental theorem, numerical integration, cylindrical shells, application of integrals, work, fluid pressure, inverse functions, natural logarithms, transcendental functions, L'Hopital's rule, inverse trignometric functions, hyperbolic functions, first order differential equations, Euler's numerical method, Integration formulas, integration by parts, integral tables, infinite series, power series, Maclaurin series, Taylor series, conic sections
University calculus early transcendentals, 4th edition
Author: Joel Hass, Christopher Heil, Przemyslaw Bogacki, Maurice Weir, George Thomas
School: Federal University of Agriculture, Abeokuta
Department: Science and Technology
Course Code: MTS241
Topics: functions, combining functions, trigonometric functions, exponential functions, inverse functions, logarithms, limit, continuity, derivatives, differentiation rules, chain rule, implicit differentiation, inverse trigonometric functions, related rates, linearization, differentials, mean value theorem, monotonic functions, applied optimization, integrals, transcendental functions, hyperbolic functions, integration, trigonometric integrals, trigonometric substitution, numerical integration, improper integrals, infinite sequences, infinite series, integral test, comparison test, absolute convergence, power series, Taylor series, Maclurin series, parametric equations, polar coordinates, vectors, dot product, cross product, vector-valued functions, partial derivatives, saddle points, multiple integrals, vector fields, Euler equations
Applied Numerical Methods with MATLAB, 4th edition
Author: Steven Chapra
School: Edo University
Department: Engineering
Course Code: GEE216
Topics: Numerical Methods, mathematical modeling, MATLAB, mathematical operations, structured programming, errors, roundoff errors, truncation errors, total numerical errors, blunders, model errors, data uncertainty, roots, graphical methods, bracketing methods, bisection, roots, Simple Fixed-Point Iteration, Newton-Raphson, secant methods, Brent's method, MATLAB functions, optimization, linear systems, linear algebraic equations, matrices, Gauss elimination, Naive gauss elimination, tridiagonal systems, LU factorization, matrix inverse, system condition, error analysis, iterative methods, linear systems, nonlinear systems, Eugen values, power method, curve fitting, linear regression, random numbers, linear least-squares regression, polynomial regression, multiple linear regression, QR factorization, nonlinear regression, Fourier analysis, Continuous Fourier series, frequency domain, time domain, Fourier integral, Fourier transform, Discrete Fourier transform, power spectrum, polynomial interpolation, Newton interpolating polynomial, Lagrange interpolating polynomial, inverse interpolation, extrapolation, oscillations, splines, linear splines, quadratic splines, cubic spline, multidimensional interpolation, integration, differentiation, Numerical integration formulas, Newton-Cotes formulas, Trapezoidal rule, Simpson's rules, initial value problem, Runge-Kutta methods, adaptive Runge-Kutta methods, stiff systems, Boundary-value problems, shooting method, finite-difference methods, MATLAB function
Foundations of Mathematical Analysis
Author: CE Chidume, Chukwudi Chidume
School: Federal University of Technology, Owerri
Department: Science and Technology
Course Code: MTH301
Topics: real number system, order relation, natural numbers, countable sets, uncountable sets, bounded sets, limits, Monotone Sequences, Sandwich Theorem, limit theorems, Bolzano-Weierstrass Theorem, Limit Superior, Limit Inferior, Cauchy Sequences, continuity, topological notions, One-sided Continuity, Continuity Theorems, Uniform Continuity, Uniform Continuity Theorems, closed sets, compact sets, continuous maps, differentiability, derivative, Rolle’s Theorem, Mean Value Theorem, L’Hospital’s Rule, Nonnegative Real Numbers series, Integral Test, Comparison Test, Limit Comparison Test, Cauchy’s Root Test, D’Alembert’s Ratio Test, Alternating Series, Absolute Convergence, Conditional Convergence, Riemann Integral, Integration, Uniform convergence, Power Series, Equicontinuity, Arzela-Ascoli Theorem
Introduction to Real Analysis, 4th Edition
Author: Robert Bartle, Donald Sherbert
School: Nnamdi Azikiwe University
Department: Science and Technology
Course Code: MAT251
Topics: real analysis, sets, functions, mathematical induction, finite sets, infinite sets, real numbers, absolute value, real line, intervals, sequences, series, limit theorems, monotone sequences, Cauchy criterion, limits, limit theorems, continuous functions, uniform continuity, inverse function, monotone functions, derivative, mean value theorem, L' Hospital rule, Taylor's theorem, Riemann integral, Riemann integral functions, fundamental theorem, Darboux integral, approximate integrations, pointwise convergence, uniform convergence, exponential functions, logarithmic function, trigonometric functions, infinite series, absolute convergence, infinite integrals, convergence theorems, continuous functions, metric spaces
Author: Anthony Croft, Robert Davison, martin Hargreaves, James flint
School: Federal University of Technology, Owerri
Department: Engineering
Course Code: ENG307, ENG308
Topics: engineering functions, trigonometric functions, coordinate systems, discrete mathematics, sequences, series, vectors, matrix algebra, complex numbers, differentiation, integration, numerical integration, taylor polynomials, taylor series, maclaurin series, Laplace transform, z transform, Fourier series, Fourier transform, vector calculus, line integrals, multiple integrals, probability, statistics
Ordinary Differential Equations
Author: Gabriel Nagy
School: University of Ilorin
Department: Science and Technology
Course Code: MAT211
Topics: Ordinary Differential Equations, linear constant coefficient equations, initial value problem, integrating factor method, linear variable coefficient equation, Bernoulli equation, separable equation, Euler Homogenous equations, exact differential equation, exponential decay, Newton's cooling law, carbon-14 dating, nonlinear equations, second order linear equations, variable coefficients, Homogenous Constant Coefficients Equations, Euler Equidimensional Equation, Nonhomogeneous Equations, power series, Laplace transform, discontinous sources, Two-Dimensional Homogeneous Systems, Two-Dimensional Phase Portraits, Autonomous Systems, Stability, Boundary Value Problems, linear algebra, matrix algebra, Eigenvalues, Eigenvectors, Diagonalizable Matrices, Matrix Exponential, exponential function
Mathematics for Economics ,3rd edition
Author: Michael Hoy, John Livernois, Chris McKenna, Ray Rees, Thanasis Stengos
School: University of Ibadan
Department: Administration, Social and Management science
Course Code: ECO302
Topics: Economic Model, Sets, Subsets, Numbers, Functions, Sequences, Series, Limits, Derivative, Differential, Higher Order Derivatives:, Taylor Serie, Differentiation, One Variable, Maxima, Minima, Linear Algebra, Matrices, n-Variabies, Constrained Optimization, Comparative Statics, Kuhn-Tucker Conditions, Concave Programming, Integration, Integrals, Dynamic Methods, Economic Dynamics, Autonomous Equations, Qualitative Analysis, Simultaneous Systems, Difference Equations, Optimal Control, Maximum Principle, Optimization Problems, Alternative Boundary Conditions, Infinite Time Horizon, Control Variable, Free-Terminal-Time
Schaum’s Outline of Differential Equations ,4th edition
Author: Richard Bronson, Gabriel Costa
School: University of Ibadan
Department: Science and Technology
Course Code: MAT241
Topics: Differential Equations, Modeling, Qualitative Methods, First-Order Differential Equations, Separable First-Order Differential Equations, Exact First-Order Differential Equations, Linear First-Order Differential Equations, Linear Differential Equations, Second-Order Linear Homogeneous Differential, nth-Order Linear Homogeneous Differential Equations, Method of Undetermined Coefficients, Variation of Parameters, Initial-Value Problems, Laplace Transform, matricies, Inverse Laplace Transforms, Convolutions, Unit Step Function, power series, Series Solutions, Classical Differential Equations, Gamma Functions, Bessel Functions, Partial Differentiall Equations, Second-Order Boundary-Value Problems, Eigenfunction Expansions, Difference Equations
Advanced Level Pure Mathematics, 4th Edition
Author: CJ Tranter
School: Federal University of Agriculture, Abeokuta
Department: Science and Technology
Course Code: MTS105
Topics: Mathematics, quadratic equations, indices, logarithms, remainder theorem, undetermined coefficients, partial fractions, arithmetic progression, geometrical progression permutations, combinations, binomial theorem, trigonometric ratio, addition theorem, sine formula, cosine formula, tangent formula, differential calculus, differentiation, logarithmic functions, exponential functions, coordinates, coordinate geometry, parabola, ellipse, hyperbola, complex numbers, matrices
Past Questions related to Schaum's outline of advanced mathematics for engineers and scientists
Year: 2021
School: Air Force Institute of Technology
Department: Engineering
Course Code: EEE316
Topics: signal, Euler identity, decaying sinusoids, unit impulse functions, unit step functions, unit ramp functions, linear system, non-linear system, odd signals, discrete-time signals, periodic signals, system, linear time-invariant system, power signal, casual system, memoryless system, feedback system, Fourier series, RC circuits, Fourier transforms, Laplace transforms, Z-transforms
Year: 2017
School: Federal University of Technology, Owerri
Department: Engineering
Course Code: ENG307
Topics: Differential equations, Laplace transforms, z-transforms, power series, gamma functions, beta functions, Fourier series, Leibniz theorem, jacobian determinant of transformation
Year: 2019
School: Federal University of Technology, Owerri
Department: Engineering
Course Code: MME308
Topics: Fuels technology, furnace technology, Fourier heat conduction equation, steady-state heat conduction, transient-state heat conduction, coking coal, Coke, heat producer
Ordinary differential equations(2018&2019 exam)
Year: 2019
School: University of Lagos
Department: Engineering
Course Code: GEG219
Topics: Simplification of ODEs, application of ODEs, linear differential equation, integrating factor, undetermined coefficients, variation of parameters, Cauchy-Euler equations, Nonlinear differential equation
Engineering mathmatics 2-2011,2012,2014,2015,2016,2017
Year: 2017
School: Federal University of Technology, Owerri
Department: Engineering
Course Code: ENG308
Topics: eigenvalues, eigenvectors, cramer's rules, linear programming, dynamic programming, numerical method, integral, Fourier, Dirichlet, Lagrange, state space analysis
Engineering Mathematics 1 test
Year: 2020
School: Federal University of Technology, Owerri
Department: Engineering
Course Code: ENG307
Topics: integral functions, stationary points, partial differentiation, Laplace transform, LaGrange multiplier
MAT112 Practice questions for UNILORITES
Year: 2013
School: University of Ilorin
Department: Science and Technology
Course Code: MAT112
Topics: Functions, continuity, Limits of Functions, Differentiation, Maxima, minima, Point of inflexion, Taylors series, Maclaurin series
Year: 2020
School: Air Force Institute of Technology
Department: Engineering
Course Code: GET209
Topics: Engineering Mathematics, scalar product, Differential Equations, Determinants, Matrices, Vector calculus, Gaussian Elimination method
Year: 2020
School: Federal University of Technology, Owerri
Department: Engineering
Course Code: ENG307
Topics: Partial Differentials, Laplace Transform, Z-Transform, Beta function, Gamma Function, Fourier Series, Curve Fitting, Engineering Mathematics
Electromagnetic field and waves
Year: 2020
School: Federal University of Technology, Owerri
Department: Engineering
Course Code: EEE305
Topics: Electromagnetic field, electromagnetic waves, Cartesian coordinate variables, cylindrical coordinates variables, coulomb law, Gauss law, flux density, electric field intensity
Tutorial workbook for MTS101 & MTS102
Year: 2019
School: Federal University of Agriculture, Abeokuta
Department: Science and Technology
Course Code: MTS101, MTS102
Topics: Set theory, real numbers, complex numbers, rational functions, partial fraction, binomial expansion, sequence, series, matrices, Trigonometry, Differentiation, integration
Year: 2019
School: Federal University of Technology, Owerri
Department: Engineering
Course Code: ENG307
Topics: Fourier series, gamma function, beta function, differential equation, power series
Computer aided design and computer and computer aided manufacture
Year: 2020
School: Federal University of Technology, Owerri
Department: Engineering
Course Code: MEE505
Topics: Computer aided design, computer aided manufacture, Isometric view drawing, CNC Codes, rapid traverse positioning, CNC turning, computer aided manufacturing operation, tool-holding magazine, machining centers, milling centers, surface finishing operation, Mathematical matrix notation, Bezier cubic curve, Hermite cubic curve, translation transformation, scaling transformation, rotation transformation, parametric modeling, parametric Bezier equations
Year: 2021
School: Air Force Institute of Technology
Department: Engineering
Course Code: GET320
Topics: differential equations, Wronskian set, Laplace transforms, eigenvalues, eigenvectors, linear differential equations