Books

Search Books...

Extrinsic Semiconductors Books

The science and engineering of materials Instructors‘ Solution Manual, Fourth Edition

Author: Frank Askeland, Pradeep Phulé, Gregory Lea

School: Federal University of Technology, Owerri

Department: Engineering

Course Code: ENG207, ENG208

Topics: Materials Design, Atomic Structure, Atomic Bonding, interatomic spacing, amorphous materials, lattice, basis, unit cells, crystal structure, Allotropic Transformation, Polymorphic Transformation, Crystal Structures, unit cell, Covalent Structures, diffusion, Fick’s Law, Mechanical Properties, Tensile Test, stress, strain, Nanoindentation, Fracture Mechanics, Fatigue, Fatigue Test, creep, rupture, stress corrosion, Strain Hardening, Annealing, Hot Working, Nucleation, cooling curves, cast structure, casting, Directional Solidification, Single Crystal Growth, Epitaxial Growth, Phase Diagram, Phase Equilibrium, Dispersion Strengthening, Eutectic Phase Diagrams, Eutectoid Reaction, Martensitic Reaction, Tempering, Nonferrous Alloys, Glass-Ceramics, Polymers, Polymerization, Thermoplastics, elastomers, rubbers, adhesives, Composites, Particulate Composites, Fiber-Reinforced Composites, plywood, concrete, asphalt, Electronic Materials, semiconductors, insulators, Electrostriction, Piezoelectricity, Ferroelectricity, Magnetic Materials, Magnetization

Electricity and magnetism complete lecture note

Author: Lawal, Olawepo

School: University of Ilorin

Department: Science and Technology

Course Code: PHY152

Topics: Ohm’s Law, ELECTRICITY, MAGNETISM, Capacitance, Dielectrics, Electric current, conductivity, conductors, Semiconductors, semiconductor-Diode, Magnetism, Hysteresis, Power, AC circuit, Conductivity, Mobility, Rectification, Magnetic field, Coulombs Laws, Gauss Laws

Digital Logic Design

Author: Nancy Woods

School: University of Ibadan

Department: Science and Technology

Course Code: CSC213

Topics: Digital Logic Design, Kirchhoff's law, Thevenin's theorem, Norton's theorem, circuit theory, semiconductors, transistors, digital logic, integrated circuits, digital logic gates, logic gates, combinational logic design, logic circuit diagram, truth table, Boolean expression, Boolean Algebra, Karnaugh Maps, Quine-McCluckskey, standard combinational logic circuits, ombinational logic circuits, combinational logic, binary adder, binary subtractor, digital comparator, multiplexer, digital encoder, binary decoder, sequential logic circuit, Flip-Flop, S-R Flip-Flop, JK Flip-Flop, T Flip-Flop, D-type Flip-Flop, registers, counters, computer codes, binary codes, binary-coded decimal, excess-3 code, gray code, error detection, error correction, digital error, parity bit, Hamming codes, Cyclic redundancy check

The Feynman Lectures on Physics, Vol. III The New Millennium Edition Quantum Mechanics

Author: Richard Feynman, Robert Leighton, Matthew Sands, Michael Gottlieb, Rudolf Pfeiffer

School: University of Ilorin

Department: Science and Technology

Course Code: PHY461, PHY462

Topics: Quantum Behavior, Particle Viewpoints, Probability Amplitudes, Identical Particles, Spin One, Spin One-Half, Hamiltonian Matrix, Ammonia Maser, Two-State Systems, Hyperfine Splitting, Crystal Lattice, Semiconductors, Independent Particle Approximation, Symmetry, Conservation Laws, Angular Momentum, Hydrogen Atom, Periodic Table, Operators, Schrodinger Equation, Superconductivity

Exercises for the Feynman Lectures on Physics

Author: Richard Feynman, Robert Leighton, Matthew Sands, Michael Gottlieb, Rudolf Pfeiffer

School: University of Ilorin

Department: Science and Technology

Course Code: PHY115, PHY214, PHY243, PHY314, PHY152, PHY252, PHY353, PHY354, PHY461, PHY462

Topics: Motion, Probability, Gravitation, Dynamics, Momentum, Vector, force, work, Electromagnetism, Differential Calculus, Vector Fields, Vector Integral Calculus, Electrostatics, Gauss Law, Electric Field, Electrostatic Energy, Dielectrics, Electrostatic Analogs, Magnetostatics, Magnetic Field, Vector Potential, Induced Current, motor, generator, transformer, inductance, induction, maxwell equation, Principle of Least Action, AC Circuit, Cavity Resonator, Waveguide, Electrodynamics, Lorentz Transformation, Field Energy, Field Momentum, Electromagnetic Mass, Tensors, Refractive Index, Magnetism, Ferromagnetism, Magnetic Materials, Elasticity, Elastic Materials, Curved Space, Quantum Behavior, Particle Viewpoints, Probability Amplitudes, Identical Particles, Spin One, Spin One-Half, Hamiltonian Matrix, Ammonia Maser, Two-State Systems, Hyperfine Splitting, Crystal Lattice, Semiconductors, Independent Particle Approximation, Symmetry, Conservation Laws, Angular Momentum, Hydrogen Atom, Periodic Table, Operators, Schrodinger Equation, Superconductivity

Fundamentals of Engineering Materials

Author: Adebisi

School: Air Force Institute of Technology

Department: Engineering

Course Code: GET212

Topics: material engineering, material science, performance, ceramics, polymers, composites, advanced materials, semiconductors, biomaterials, nanomaterials, thermal property, electrical property, optical property, magnetic property, nanotechnology

Departments

Administration, Social and Management science image

Administration, Social and Management science

Agriculture and Veterinary Medicine image

Agriculture and Veterinary Medicine

Arts and Humanities image

Arts and Humanities

Education image

Education

Engineering image

Engineering

General studies image

General studies

Law image

Law

Medical, Pharmaceutical and Health science image

Medical, Pharmaceutical and Health science

Science and Technology image

Science and Technology