Download Cost estimating - CIE509 Past Question PDF

You will find Cost estimating past question PDF which can be downloaded for FREE on this page. Cost estimating is useful when preparing for CIE509 course exams.

Cost estimating past question for the year 2018 examines 500-level Engineering students of FUTO, offering CIE509 course on their knowledge of Concrete ancilliaries, insitu-concrete

Technical Details
Updated at:
Size: 775.18 KB
Number of points needed for download: 9
Number of downloads: 13

Past Questions related to Cost estimating

Civil engineering materials

Year: 2019

School: Federal University of Technology, Owerri

Department: Engineering

Course Code: CIE204

Topics: Civil engineering materials, concrete, concrete setting time, concrete segregation, fresh concrete, hardened concrete, plastic concrete, fresh concrete breeding, compressive strength, admixtures, batching, curing, workability, steel, steel corrosion, coal tar, asphalt

PRESTRESSED CONCRETE DESIGN

Year: 2012

School: Federal University of Technology, Owerri

Department: Engineering

Course Code: STE509

Topics: prestresssing, reinforced concrete, tendon, flange

PRESTRESSED CONCRETE DESIGN

Year: 2013

School: Federal University of Technology, Owerri

Department: Engineering

Course Code: STE509

Topics: prestresssing, reinforced concrete, tendon, flange

PRESTRESSED CONCRETE DESIGN

Year: 2015

School: Federal University of Technology, Owerri

Department: Engineering

Course Code: STE509

Topics: Ultimate moment of resistance, prestresssing, reinforced concrete, tendon, flange

PRESTRESSED CONCRETE DESIGN

Year: 2014

School: Federal University of Technology, Owerri

Department: Engineering

Course Code: STE509

Topics: Post-tension, pre-tension, prestresssing, reinforced concrete, tendon, flange, self weight

PRESTRESSED CONCRETE DESIGN

Year: 2017

School: Federal University of Technology, Owerri

Department: Engineering

Course Code: STE509

Topics: Extreme fibers, concrete structures, symmetrical pre-stress

Engineering drawing 3

Year: 2018

School: Federal University of Technology, Owerri

Department: Engineering

Course Code: ENG203

Topics: AUTOCAD, flang joint, concrete slab, reinforced concrete, isometric projection

PRESTRESSED CONCRETE DESIGN

Year: 2016

School: Federal University of Technology, Owerri

Department: Engineering

Course Code: STE509

Topics: stress, self weight, live load, pre-tension, tendon eccentricity

FARM PLANNING AND STRUCTURES-2017,2018,2019

Year: 2019

School: Federal University of Technology, Owerri

Department: Engineering

Course Code: ABE/AGE301

Topics: storage, concrete

REINFORCED CONCRETE DESIGN 1

Year: 2019

School: Federal University of Technology, Owerri

Department: Engineering

Course Code: STE403

Topics: staircase, load, reinforcement, beam, tension, supported slab, slab, bending moment

DESIGN OF TIMBER AND FORM WORK STRUCTURES

Year: 2018

School: Federal University of Technology, Owerri

Department: Engineering

Course Code: STE504

Topics: shore spacing, shore, beam, spacing, flat-slab, concrete, timber, flooring structures

REINFORCED CONCRETE DESIGN 2-2012-2018

Year: 2018

School: Federal University of Technology, Owerri

Department: Engineering

Course Code: STE518

Topics: column, beam, floor, shear, deflection, reinforcement, retaining wall, punching shear, yield line method, flat slab, slab, cantilever, dead load, preliminary design, bearing pressure analysis, stem wall design, stem wall reinforcement, axial load, unaxial moment, slender column

Farm planning and structures 2019 & 2020

Year: 2020

School: Federal University of Technology, Owerri

Department: Engineering

Course Code: ABE301

Topics: Farm planning, farm structures, concrete, cement production, swine production, swine housing design, site selection, farmstead layout, farm building planning, depreciation, fam building cost, settlement pattern, diary production

Farm planning and structures 2015, 2016 & 2018

Year: 2018

School: Federal University of Technology, Owerri

Department: Engineering

Course Code: AGE301

Topics: Farm planning, farm structures, depreciation, concretes, Farmer's grain drying system, deep layer dryers, farmer's storage facility, milking system, concrete farm building construction, site cleaning, settlement planning

Books related to Cost estimating

Concrete Technology Theory and Practice, Multicolour Edition

Author: MS Shetty

School: Bayero University, Kano

Department: Engineering

Course Code: CIV5307

Topics: Concrete technology, Cements, Modern cements history, Portland cement manufacturing, Portland cement wet process manufacturing, Portland cement dry process manufacturing, Cement chemical composition, Cements hydration, Heat of hydration, Calcium silicate hydrates, Calcium hydroxide, calcium aluminate hydrates, hydrated cements structure, Water requirement for hydration, Cement types, ASTM cements classification, Ordinary Portland cement, Rapid hardened cement, Extra rapid hardening cement, Portland slag cement, Quick setting cement, super sulphated cement, low heat cement, Portland pozzolana cement, coloured cement, hydrophobic cement, masonry cement, expansive cement, Cement testing, Aggregates, aggregates testing, Aggregates form igneous rock, aggregates from sedimentary rocks, aggregates from metamorphic rock, aggregate crushing value, aggregates impact value, aggregate abrasion value, Deval attrition test, Dorry Abrasion test, Los Angeles test, modulus of elasticity, bulk density, specific gravity, Sieve analysis, Aggregates testing, Water, water qualities, Sea water for mixing concrete, Admixture, construction chemicals, Plasticizers, water reducers, Workability, Plasticizers action, Superplasticizers classification, Factors affecting workability, Superplasticizers types, Fresh concrete, Fresh concrete water content, Fresh concrete mix proportions, Aggregates sizes in fresh concrete, Aggregates shape, Surface texture, Admixture use in fresh concrete, Workability measurement, Slump test, k-slump test, aggregates grading, compacting factor test, flow test, flow table apparatus, vee bee consistometer test, setting of concrete, Manufacture of concrete process, Concrete compaction, Concrete curing, Concrete strength, Water-cement ratio, Strength gaining with age, Concrete maturity concept, Bond strength, High strength concrete, Elasticity, Creep, Shrinkage, Aggregates elastic properties, Modulus of Elasticity, Dynamic modulus of elasticity, Poison's ratio, Creep rheological representation, Creep measurement, Factors affecting creep, Aggregate influence, Mix proportion influence, Shrinkage, Plastic Shrinkage, Drying Shrinkage, Moisture movement, Autogenous Shrinkage, Carbonation shrinkage, Concrete Durability, Strength to Durability relationship, Concrete volume change, Durability definition, durability significance, Permeability, Cement paste permeability, Concrete permeability, Plastic shrinkage cracks, Settlement cracks, Thermal shrinkage, Hardened concrete testing, Concrete mix design, Special concrete, concrete methods

Reinforced Concrete Design To Eurocode 2

Author: Bill Mosley, John Bungey, Ray Hulse

School: Bayero University, Kano

Department: Engineering

Course Code: CIV3307

Topics: Reinforced Concrete Design, Design processes, composite action, stress-strain relations, shrinkage, thermal movement, creep, materials specification, Limit state design, Characteristics material strengths, Combination of actions, Load combinations, Beams analysis, Frames Analysis, Shear wall structures resisting horizontal loads, Moments redistribution, Rectangular-parabolic stress block, Triangular stress block, Shear, bond, Torsion, Anchorage bond, span-effective depth ratio, deflection calculation, flexural cracking, Thermal cracking, Shrinkage cracking, Reinforced concrete beams design, Reinforced concrete slabs design, Column design, column classification, slender column design, Foundations design, Retaining walls design, Prestressed concrete, Water-retaining structures, composite construction, Footings, Reinforcement details, Shear connector design

Building Materials, Revised Third Edition

Author: SK Duggal

School: Bayero University, Kano

Department: Engineering

Course Code: CIV3302

Topics: Building Materials Principal Properties, Structural Clay Products, Brick's Classification, Brick's Testing, Clay Tiles, Terracotta, Porcelain, stoneware, Earthenware, Glazing, Rocks, Stones, Rock-forming minerals, Rock's Classification, Stone Durability, Stones Application, Stone seasoning, wood, wood Products, Trees Classification, Trees growth, Timber Preservation, Timber testing, Timber Structure, Timber's Fire Resistance, Properties of wood, wood products, wood-products applications, Material for making concrete, Cements, Portland cement, Raw materials chemical composition, Cement Hydration, Rate of Hydration, Hydration water requirement, Cements manufacturing, Cements testing, Cement Types, Cements storage, Aggregates, Aggregates classification, Aggregates characteristics, Deleterious Materials, Organic Impurities, Soundness, Aggregates Thermal Properties, Fine Aggregates, Coarse Aggregates, Cinder Aggregates, Mixing water Quality, Effect of mixing water from different source, Water for washing aggregates, Curing water, Lime, Limestone's Impurities, Limestone's Storage, Lime Vs Cement, Pozzolanas, Concrete, water-cement ratio, workability, Maturity, Defects, Re-vibration, Rheology, Non-destructive testing, Admixture for concrete, Concrete Mix design, Building Mortars, Ferrous Metals, Non-Ferrous Metals, Ceramic Materials, Polymeric Materials, Paints, Enamels, Varnishes, Tar, Bitumen, Asphalt, Gypsum, Special Cements, Cement Concretes, Adhesives, Water proofing materials, Fiber, Geosynthetics, Composite Materials, Smart materials, Asbestos, Thermoc0ol, Heat Insulating Materials, Sound Insulating Materials.

Prestressed Concrete A Fundamental Approach, Fifth edition

Author: Edward Nawy

School: Federal University of Technology, Owerri

Department: Engineering

Course Code: STE509

Topics: fiber stress, stress-strain curve of concrete, creep, shrinkage, nonprestressing reinforcement, ACI Maximum permissible stress, AASHTO maximum permissible stress, circular prestressing, elastic shortening of concrete, steel stress relaxation, creep loss, shrinkage loss, anchorage-seating loss, service-load design, composite beam, ultimate-strength flexural design, shear strength, torsional strength, web-shear reinforcement, dowel reinforcement, torsional behavior, indeterminate frame, indeterminate portal, camber, deflection, crack control, prestressed compression, tension member, LRFD, seismic shear

Reinforced Concrete Structures Analysis and Design

Author: David Fanella

School: Federal University of Technology, Owerri

Department: Engineering

Course Code: STE403, STE518

Topics: reinforced concrete, building code, building standard, reinforcement, loading, moment distribution, strength, serviceability, flexural member, compression member, tension member, axial load, two-way slab, column, preliminary column sizing, slenderness effect, biaxial loading, wall, foundation, footing, mat foundation

Foundations of Materials Science and Engineering, sixth edition

Author: William Smith, Javad Hashemi, Francisco Presuel-Moreno

School: Federal University of Technology, Owerri

Department: Engineering

Course Code: ENG207, ENG208

Topics: Atomic Structure, Atomic Bonding, Crystal structure, Amorphous Structure, Solidification, Crystalline Imperfections, Engineering Alloys, Phase Diagrams, Polymeric Materials, ceramics, Composite Materials, corrosion, light, superconductive materials, magnetic properties, biological materials, biomaterials, smart materials, bond, cubic unit cell, diffusion, alloy, metal, stress, strain, Poisson ratio, plastic deformation, gibbs phase rule, cooling curves, copper, iron, steel, cast iron, aluminum, magnesium, titanium, nickel, thermoplastic, thermost, elastomer, rubber, glass, concrete, asphalt, wood, sandwich structures, corrosion rates, metal-matrix, ceramic-matrix, galvanic cells, microelectronics, nanoelectronics, semiconductors, light, electromagnetic spectrum, laser, luminescence, optical fibers, superconducting materials, ferromagnetic, magnetic field, ferromagnetism, tendon, ligament, articular cartilage

Materials for engineering ,Third edition

Author: John Martin

School: Federal University of Technology, Owerri

Department: Engineering

Course Code: ENG207, ENG208

Topics: engineering materials, mechanical properties, Metals, alloys, Glass, ceramics, Organic polymeric materials, Composite materials, Crystal structure, Microstructure, tensile test, bend testing, Hardness testing, Fracture toughness testing, Glass ceramics, Cement, concrete, Bulk metallic glasses, Cellular solids

The Science and Engineering of Materials ,Seventh Edition

Author: Donald Askeland, Wendelin Wright

School: Federal University of Technology, Owerri

Department: Engineering

Course Code: ENG207, ENG208

Topics: Materials Design, Atomic Structure, Atomic Bonding, interatomic spacing, amorphous materials, lattice, basis, unit cells, crystal structure, Allotropic Transformation, Polymorphic Transformation, Crystal Structures, unit cell, Covalent Structures, diffusion, Fick’s Law, Mechanical Properties, Tensile Test, stress, strain, Nanoindentation, Fracture Mechanics, Fatigue, Fatigue Test, creep, rupture, stress corrosion, Strain Hardening, Annealing, Hot Working, Nucleation, cooling curves, cast structure, casting, Directional Solidification, Single Crystal Growth, Epitaxial Growth, Phase Diagram, Phase Equilibrium, Dispersion Strengthening, Eutectic Phase Diagrams, Eutectoid Reaction, Martensitic Reaction, Tempering, Nonferrous Alloys, Glass-Ceramics, Polymers, Polymerization, Thermoplastics, elastomers, rubbers, adhesives, Composites, Particulate Composites, Fiber-Reinforced Composites, plywood, concrete, asphalt, Electronic Materials, semiconductors, insulators, Electrostriction, Piezoelectricity, Ferroelectricity, Magnetic Materials, Magnetization

The science and engineering of materials Instructors‘ Solution Manual, Fourth Edition

Author: Frank Askeland, Pradeep Phulé, Gregory Lea

School: Federal University of Technology, Owerri

Department: Engineering

Course Code: ENG207, ENG208

Topics: Materials Design, Atomic Structure, Atomic Bonding, interatomic spacing, amorphous materials, lattice, basis, unit cells, crystal structure, Allotropic Transformation, Polymorphic Transformation, Crystal Structures, unit cell, Covalent Structures, diffusion, Fick’s Law, Mechanical Properties, Tensile Test, stress, strain, Nanoindentation, Fracture Mechanics, Fatigue, Fatigue Test, creep, rupture, stress corrosion, Strain Hardening, Annealing, Hot Working, Nucleation, cooling curves, cast structure, casting, Directional Solidification, Single Crystal Growth, Epitaxial Growth, Phase Diagram, Phase Equilibrium, Dispersion Strengthening, Eutectic Phase Diagrams, Eutectoid Reaction, Martensitic Reaction, Tempering, Nonferrous Alloys, Glass-Ceramics, Polymers, Polymerization, Thermoplastics, elastomers, rubbers, adhesives, Composites, Particulate Composites, Fiber-Reinforced Composites, plywood, concrete, asphalt, Electronic Materials, semiconductors, insulators, Electrostriction, Piezoelectricity, Ferroelectricity, Magnetic Materials, Magnetization

Design of Structural Elements

Author: WMC McKenzie

School: Bayero University, Kano

Department: Engineering

Course Code: CIV3307

Topics: Structural elements design, Structural Analysis Techniques, Shear Force, Bending moment, Shear force diagram, Bending moment diagram, Deflection of Beams, Elastic Shear stress distribution, Elastic Bending stress distribution, Transformed sections, Moment distribution, Bending stiffness, Rotational Stiffness, Carry-over moment, Pinned End, Free Moments, Fixed bending moments, Distribution Factors, Design Philosophies, Permissible stress Design, Load Factor Design, Limit State Design, Design codes, Eurocodes, National Annex, Structural Loading, Dead loads, Imposed loads, Imposed roof loads, Floor load distribution, Load distribution, Structural Instability, Overall Stability, Robustness, Reinforced concrete Element's Design, Structural Steelwork Elements' Design, Structural Timber Elements' Design.

Advanced Structural Mechanics

Author: David Johnson

School: Bayero University, Kano

Department: Engineering

Course Code: CIV5304

Topics: Structural Mechanics, Elasticity, Elasticity theory, Stress, Displacements, strains, Plane stress, Stress function solution, Finite element method, Triangular element theory, concrete cube analysis, Finite element types, Eight-nodded isoperimetric element, Assessment of solution accuracy, Plain strain, Torsion, Torsion behavior, Solid sections, Circular sections, Non-circular sections, Finite difference solutions, solution comparison methods, solid sections properties, Thin-walled sections, singly closed sections, open sections, Plates, slabs, Beam analogy, Grid analogy, Poisson's ratio effect, Elastic plate theory, Moments, curvatures, Equilibrium, General elastic plate equation, Boundary conditions, Thin shells, Axisymmetric shells Membrane theory, Circular cylindrical shells bending, Structural dynamics, Vibration Types, Free, undamped vibration, Free, damped vibration, Forced, damped vibration, Beams Analysis

Applied Strength of Materials, 6th Edition

Author: Robert Mott, Joseph Untener

School: Bayero University, Kano

Department: Engineering

Course Code: CIV3308

Topics: Direct Normal stress, stress, strain, Direct shear stress, Screw Threads, Experimental stress analysis, Computational stress analysis, Fundamental of statics, Materials design properties, Properties of steel, Properties of Cast Iron, Properties of Aluminum, Wood, Concrete, Plastics, Composites, Direct stress, Deformation, Computing design stress, Thermal stress, Bearing stress, Design bearing stress, Twisting, Elastic Torsional Deformation, Torsion, Beam loading, Beams supports, Beam types, Supports reactions, Centroids, Complex shapes centroid, Radius of Gyration, section modulus, Flexure formula, General shear formula, Special shear formulas, Shear flow, Beams deflection, combined stress, Columns, Slenderness Ratio, Buckling formula, Pressure vessels, Bolted connections design, Rivet joints, Eccentrically loaded riveted joints, Eccentrically loaded Bolted joints

forest engineering

Author: NWANOCHIEBE

School: Federal University of Technology, Owerri

Department: Agriculture and Veterinary Medicine

Course Code: FWT306

Topics: swamp, forest, concrete