# Download Complex analysis 1 Test and exam-2009,2013,2014,2015,2016 - MAT329 Past Question PDF

You will find Complex analysis 1 Test and exam-2009,2013,2014,2015,2016 past question PDF which can be downloaded for FREE on this page. Complex analysis 1 Test and exam-2009,2013,2014,2015,2016 is useful when preparing for MAT329 course exams.

Complex analysis 1 Test and exam-2009,2013,2014,2015,2016 past question for the year 2016 examines 300-level Science and Technology students of UNILORIN, offering MAT329 course on their knowledge of Complex-valued function, Milne-Thompson, analytic function, Cauchy-Reimann equation, continuity, differentiation, Integration

Technical Details
Updated at:
Size: 2.62 MB

## Past Questions related to Complex analysis 1 Test and exam-2009,2013,2014,2015,2016

Year: 2020

School: University of Benin

Department: Science and Technology

Course Code: MTH112

Topics: Function limit, continuity, differentiation, product rule theorem

Year: 2019

School: Federal University of Agriculture, Abeokuta

Department: Science and Technology

Course Code: MTS102

Topics: limits, Calculus, trignometry, domain, range, continuity, differentiation, integration

Year: 2013

School: University of Ilorin

Department: Science and Technology

Course Code: MAT112

Topics: Functions, continuity, Limits of Functions, Differentiation, Maxima, minima, Point of inflexion, Taylors series, Maclaurin series

Year: 2017

School: University of Ilorin

Department: Science and Technology

Course Code: MAT112

Topics: Integration, differentiation

Year: 2019

School: Nnamdi Azikiwe University

Department: Science and Technology

Course Code: MAT102

Topics: Set, limit, logarithm, differentiation, gradient, integration, domain, range

Year: 2019

School: Federal University of Agriculture, Abeokuta

Department: Science and Technology

Course Code: MTS101, MTS102

Topics: Set theory, real numbers, complex numbers, rational functions, partial fraction, binomial expansion, sequence, series, matrices, Trigonometry, Differentiation, integration

Year: 2018

School: University of Ilorin

Department: Science and Technology

Course Code: MAT326

Topics: Laurent expansion, Liouville theorem, Residue Theorem, Cauchy inequality, Rouche theorem, Analytic continuation, convergence, maximum modulus theorem

Year: 2018

School: University of Ilorin

Department: Science and Technology

Course Code: MAT332

Topics: Jacobi, Gauss seidel, Chebyshev form, Romberg integration, Natural spline, Orthogonal polynomial, Gram-shmidt, Trapezoidal rule, Simpson rule, metric space

Year: 2019

School: Federal University of Technology, Owerri

Department: Science and Technology

Course Code: PHY405

Topics: Advanced Electromagnetism, displacement current, Maxwell's equation, continuity equation, stoke theorem, dielectric, electric field, permittivity, wave frequency, electricity, magnetism

Year: 2019

School: Federal University of Technology, Owerri

Department: Science and Technology

Course Code: MTH305

Topics: complex variable, logarithm, analytic function, linear transformation

Year: 2019

School: Federal University of Technology, Owerri

Department: Science and Technology

Course Code: MTH201

Topics: domain, range, derivative, function, limit, continuity

Year: 2018

School: Federal University of Technology, Owerri

Department: Science and Technology

Course Code: CSC201

Topics: Generations of computer, assignment statements, analytic engine, syntax error, semantic error, program error, type mismatch

Year: 2014

School: University of Nigeria, Nsukka

Department: Science and Technology

Course Code: MTH121

Topics: Limit, calculus, domain, range, differentiation, intergration

Year: 2021

School: Air Force Institute of Technology

Department: Science and Technology

Course Code: MTH202

Topics: differential equation, Bernoulli equation, Homogenous differential equations

### Books related to Complex analysis 1 Test and exam-2009,2013,2014,2015,2016

Author: Joseph Bak, Donald Newman

School: University of Ilorin

Department: Science and Technology

Course Code: MAT210, MAT326, MAT329, MAT434

Topics: complex numbers, complex variable, analytic functions, line integrals, entire functions, analytic functions, simply connected domains, residue theorem, Contour Integral Techniques, conformal mapping, Riemann mapping theorem, maximum-modulus theorem, harmonic functions, analytic continuation, gamma functions, zeta functions

Author: George Thomas, Ross Finney

School: Federal University of Agriculture, Abeokuta

Department: Science and Technology

Course Code: MTS101

Topics: Calculus, Analytic Geometry, real numbers, real line, coordinates, functions, shifting graphs, trignometric functions, rates of change, limits, continuity, tangent lines, derivative of a function, differentiation rules, rates of change, chain rule, derivatives, implicit differentiation, rational exponents, extreme values of functions, mean value theorem, first derivative test, optimization, linearization, differentials, Newton's method, integration, indefinite integrals, differential equations, initial value problems, mathematical modelling, Riemann sums, definite integrals, mean value theorem, fundamental theorem, numerical integration, cylindrical shells, application of integrals, work, fluid pressure, inverse functions, natural logarithms, transcendental functions, L'Hopital's rule, inverse trignometric functions, hyperbolic functions, first order differential equations, Euler's numerical method, Integration formulas, integration by parts, integral tables, infinite series, power series, Maclaurin series, Taylor series, conic sections

Author: GeorgeThomas, Joel Hass, Christopher Heil, Maurice Weir

School: University of Ilorin

Department: Science and Technology

Course Code: MAT112

Topics: Calculus, Trigonometric Functions, functions, limits, continuity, One-Sided Limits, Differentiation Rules, Derivatives, chain rule, implict differentiation, related rates, linearization, differentials, Mean Value Theorem, integrals, Monotonic Functions, First Derivative Test, Concavity, Curve Sketching, Applied Optimization, antiderivatives, Sigma Notation, limits of Finite Sums, Definite integral, Transcendental Functions, inverse functions, natural logarithms, exponential functions, exponential change, seperable differential equation, Indeterminate Form, L’Hôpital’s Rule, Inverse Trigonometric Functions, Hyperbolic Functions, Integration by Parts, integration, trigonometric integrals, trigonometric substitution, Integral Tables, Computer Algebra Systems, probability, numerical integration, improper integrals, probability, First-Order Differential Equations, Slope Fields, Euler’s Method, First-Order Linear Equations, Infinite Sequences, infinite Series, integral test, comparison test, absolute convergence, power series, alternating series, Taylor series, Maclaurin series, Parametric Equations, Polar Coordinates, Conic Sections, vector, Partial Derivatives, Lagrange Multipliers, Multiple Integrals, vector fields, Path Independence, Conservative Fields, Potential Functions, Green’s Theorem, Surface Integrals, Stokes Theorem, Divergence Theorem

Author: Elka Block, Frank Purcell

School: University of Ilorin

Department: Science and Technology

Course Code: MAT112

Topics: Calculus, Trigonometric Functions, functions, limits, continuity, One-Sided Limits, Differentiation Rules, Derivatives, chain rule, implict differentiation, related rates, linearization, differentials, Mean Value Theorem, integrals, Monotonic Functions, First Derivative Test, Concavity, Curve Sketching, Applied Optimization, antiderivatives, Sigma Notation, limits of Finite Sums, Definite integral, Transcendental Functions, inverse functions, natural logarithms, exponential functions, exponential change, seperable differential equation, Indeterminate Form, L’Hôpital’s Rule, Inverse Trigonometric Functions, Hyperbolic Functions, Integration by Parts, integration, trigonometric integrals, trigonometric substitution, Integral Tables, Computer Algebra Systems, probability, numerical integration, improper integrals, probability, First-Order Differential Equations, Slope Fields, Euler’s Method, First-Order Linear Equations, Infinite Sequences, infinite Series, integral test, comparison test, absolute convergence, power series, alternating series, Taylor series, Maclaurin series, Parametric Equations, Polar Coordinates, Conic Sections, vector, Partial Derivatives, Lagrange Multipliers, Multiple Integrals, vector fields, Path Independence, Conservative Fields, Potential Functions, Green’s Theorem, Surface Integrals, Stokes Theorem, Divergence Theorem

Author: CE Chidume, Chukwudi Chidume

School: Federal University of Technology, Owerri

Department: Science and Technology

Course Code: MTH301

Topics: real number system, order relation, natural numbers, countable sets, uncountable sets, bounded sets, limits, Monotone Sequences, Sandwich Theorem, limit theorems, Bolzano-Weierstrass Theorem, Limit Superior, Limit Inferior, Cauchy Sequences, continuity, topological notions, One-sided Continuity, Continuity Theorems, Uniform Continuity, Uniform Continuity Theorems, closed sets, compact sets, continuous maps, differentiability, derivative, Rolle’s Theorem, Mean Value Theorem, L’Hospital’s Rule, Nonnegative Real Numbers series, Integral Test, Comparison Test, Limit Comparison Test, Cauchy’s Root Test, D’Alembert’s Ratio Test, Alternating Series, Absolute Convergence, Conditional Convergence, Riemann Integral, Integration, Uniform convergence, Power Series, Equicontinuity, Arzela-Ascoli Theorem

School: Federal University of Agriculture, Abeokuta

Department: Science and Technology

Course Code: MTS101

Topics: Limits, Continuity, Calculus, differentiation, Transcendental Functions, Integration, Integration techniques, conics, parametric curves, polar curves, sequence, series, power series, vectors, Coordinate Geometry, vector functions, vector curves, partial differentiation, partial derivatives, multiple integration, vector fields, vector calculus, Differential Forms, Exterior Calculus, Ordinary Differential Equations

School: Federal University of Agriculture, Abeokuta

Department: Science and Technology

Course Code: MTS101

Topics: Calculus, limits, continuity, transcendental function, differentiation, integration, conics, parametric curvess, polar curves, sequence, series, power series, vectors, coordinate geometry, vector functions, curves, partial differentiation, multiple integration, vector fields, vector calculus, differential forms, exterior calculus, ordinary differential equations

Author: Frank Ayres, Elliott Mendelson

School: Nnamdi Azikiwe University

Department: Science and Technology

Course Code: MAT231

Topics: Calculus, linear coordinate systems, absolute value, inequalities, rectangular coordinate systems, lines, circles, parabolas, ellipses, hyperbolas, conic sections, functions, limits, continuity, continuous function, derivative, delta notation, chain rule, inverse functions, implicit differentiation, tangent lines, normal lines, critical numbers, relative maximum relative minimum, cure sketching, concavity, symmetry, points of inflection, vertical asymptotes, trigonometry, trigonometric functions, inverse trigonometric functions, rectilinear motion, circular motion, differentials, Newton's method, antiderivatives, definite integral, sigma notation, natural logarithm, exponential functions, logarithmic functions, L'hopital's rule, exponential growth, decay, half-life, integration by parts, trigonometric integrands, trigonometric substitutions, improper integrals, parametric equations, curvature, plane vectors, curvilinear motion, polar coordinates, infinite sequences, infinite series, geometric series, power series, uniform convergence, Taylor's series, Maclaurin series, partial derivatives, total differential, differentiability, chain rules, space vectors, directional derivatives, vector differentiation, vector integration, double integrals, iterated integrals, centroids, triple integrals, Separable Differential Equations, Homogeneous Functions, Integrating Factors, Second-Order Equations

Author: John Bird

School: Federal University of Technology, Owerri

Department: Engineering

Course Code: ENG307, EN308

Topics: Algebra, partial fraction, logarithm, exponential function, inequality, arithmetic progression, geometric progression, binomial series, Maclaurin's series, iterative method, binary, octal, hexadecimal, boolean algebra, logic circuits, trigonometry, circle, Trigonometric waveforms, hyperbolic functions, Trigonometric identities, Trigonometric equation, compound angles, irregular area, irregular volume, graph, complex numbers, De Moivre’s theorem, matrix, determinant, vector geometry, vector, scalar product, vector product, differentiation, calculus, integration, differential equation, parametric equations, implicit functions, Logarithmic differentiation, hyperbolic functions, Partial differentiation, Total differential, rate of change, Maxima, minima, saddle point, integral calculus, hyperbolic substitution, trignometric substitution, Integration by parts, Reduction formulae, double integrals, triple integrals, Numerical integration, Homogeneous first-order differential equation, first-order differential equation, differential calculus, Linear first-order differential equation, Numerical methods, power series, Statistics, probability, Mean, median, mode, standard deviation, binomial distribution, Poisson distribution, normal distribution, Linear correlation, Linear regression, Sampling, estimation theories, Significance testing, Chi-square test, distribution-free test, Laplace transform, Inverse Laplace transform, Heaviside function, Fourier series, periodic functions, non-periodic function, even function, odd function, half-range fourier series, harmonic analysis, Z-Transform

Author: Joel Hass, Christopher Heil, Przemyslaw Bogacki, Maurice Weir, George Thomas

School: Federal University of Agriculture, Abeokuta

Department: Science and Technology

Course Code: MTS241

Topics: functions, combining functions, trigonometric functions, exponential functions, inverse functions, logarithms, limit, continuity, derivatives, differentiation rules, chain rule, implicit differentiation, inverse trigonometric functions, related rates, linearization, differentials, mean value theorem, monotonic functions, applied optimization, integrals, transcendental functions, hyperbolic functions, integration, trigonometric integrals, trigonometric substitution, numerical integration, improper integrals, infinite sequences, infinite series, integral test, comparison test, absolute convergence, power series, Taylor series, Maclurin series, parametric equations, polar coordinates, vectors, dot product, cross product, vector-valued functions, partial derivatives, saddle points, multiple integrals, vector fields, Euler equations

Author: Samuel Daniel Conte, Carl de Boor

School: Edo University

Department: Science and Technology

Course Code: CMP315

Topics: numerical analysis, number system, interpolation, Fixed-Point Iteration, Polynomial Equations, Real Roots, Complex Roots, Müller’s Method, Triangular Factorization, Determinants, Eigenvalue Problem, Backward-Error Analysis, determinants, Unconstrained Optimization, approximation, data fitting, Orthogonal Polynomials, Fast Fourier Transforms, Piecewise-Polynomial Approximation, differentiation, integration, numerical differentiation, numerical integration, Romberg Integration, Simple Difference Equations, Boundary Value Problems

Author: Ibrahin Danjuma, Manu Donga

School: Modibbo Adama University of Technology

Department: Science and Technology

Course Code: MA102

Topics: Limit of Function, function, limit, Continuous Function, continuity, Differentiation, Trigonometric Functions, Composite Function, Chain Rule, Integration, notion

Author: OO Ugbebor, UN Bassey

Department: Science and Technology

Course Code: MAT101

Topics: exponents, logarithms, functions, polynomials, exponential functions, inequalities, inequality symbol, inequality rules, finite series, arithemetic progression, geometric progression, limit, continuity, differentiation, integration, indefinite integrals, definite integrals, approximate integration, linear programming

Author: Gabriel Nagy

School: University of Ilorin

Department: Science and Technology

Course Code: MAT211

Topics: Ordinary Differential Equations, linear constant coefficient equations, initial value problem, integrating factor method, linear variable coefficient equation, Bernoulli equation, separable equation, Euler Homogenous equations, exact differential equation, exponential decay, Newton's cooling law, carbon-14 dating, nonlinear equations, second order linear equations, variable coefficients, Homogenous Constant Coefficients Equations, Euler Equidimensional Equation, Nonhomogeneous Equations, power series, Laplace transform, discontinous sources, Two-Dimensional Homogeneous Systems, Two-Dimensional Phase Portraits, Autonomous Systems, Stability, Boundary Value Problems, linear algebra, matrix algebra, Eigenvalues, Eigenvectors, Diagonalizable Matrices, Matrix Exponential, exponential function

Author: O'kriso

School: Federal University of Technology, Owerri

Department: Science and Technology

Course Code: MTH201

Topics: Mathematical methods, domain, range, limits, continuity, partial derivatives, chain rule, gradient, jacobian, implicit differentiation, normal derivative, total differentiation, exact equations, laplace equation, harmonic functions, arbitrary functions, extreme value problems, infinite sequence, infinite series, convergence, divergence, Cauchy ratio test

Author: David levermore

School: University of Ilorin

Department: Science and Technology

Course Code: MAT112

Topics: Limits, continuity, differentiability, derivative of elementary function

Author: Ogunfolu Bamidele

Department: Science and Technology

Course Code: MAT101

Topics: Differentiation, Rules of differentiation, standard derivatives, limiting values, implicit functions differentiation, higher derivatives, approximation principle, rate of change

Author: Ogunfolu Bamidele

Department: Science and Technology

Course Code: MAT101

Topics: integration, indefinite integrals arithmetic, standard integrals, definite integral, integration by substitution, finding volumes by integration

Author: Johnny

School: Federal University of Technology, Owerri

Department: Science and Technology

Course Code: MTH102

Topics: functions, limit, continuity, domain, range, differentiation, integration

Author: Okriso

School: Federal University of Technology, Owerri

Department: Science and Technology

Course Code: MTH102

Topics: functions, domain, range, limits, continuity, asymptote, derivative, differentiation, integration